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Abstract

In survival studies the individual study subjects may experience multiple failures.

These failures may be repetitions of the same kind of event or may be events of dif-

I bl di d

failure time

ferent natures. Most of the multivariate i
so far in the literature are of the former type. The multivariate incomplete failure
time problem of the second type has not been adequately addressed in the litera-
ture. In this practicum, we concentrate on the multivariate incomplete failure time
problem of the first kind. Many authors, for example, Wei, Lin, and Weissfeld (1985.
JASA) have analysed this type of multivariate incomplete failure time problem by
using the univariate partial likelihood approach. The application of the univariate
partial likelihood approach to such correlated failure time data may not, however,
reveal the actual effect of the treatment. To overcome this problem, we propose an
ad hoc modification to this type of multivariate incompiete failure time data, in or-
der to make the failure times (recorded at different stages) independent. and then
apply the univariate partial likelihood approach to cbtain (estimate) the treaument
effects. Further, under the assumption that the treatment, effect remains the same
all throughout the study group (failure group), we estimate the combined treatment
effects for multivariate incomplete failure time data, by using the restricted partial
likelihood estimation {RPLE) method. The univariate partial likelihood method ap-
plied to the modified data appears to provide more appealing inferences about the
treatment effects than when this method is applied to the original data. Also the

restricted partial likelihood estimation (RPLE) method appears to provide more pre-

cise esti for the combined treatment effects as compared to the lincar estimation

(LE) method used in the literature, for example, by Wei et al. (1989).
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Chapter 1

Introduction

1.1 Background of Multivariate Incomplete Fail-
ure Time Study

Multivariate failure time data arise when each subject experiences several types of
event or when there are clustering of observational units such that failure times within
the same cluster are correlated. More specifically, one encounters in practice multi-
variate failure time problems in the following two ways:

(i) Repetitions of the same event: In this case each individual may experience
two or more distinct failures and these failures may be due to the repetiticns of the
same kind of event.

(i) Failure of distinct event: Here each subject may experience two or more
distinct failures and these failures may be events of different natures.

Most of the multivariate failure problems considered so far in the literature belong
to the first group. Frequently this type of data can be found in biomedical sciences.

For example, Makuch and Parks (1988) considered the following multivariate incom-
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plete failure time problem. In their study, in order to evaluate the effectiveness of

the drug ribavrin, patients with ired immune defici ynd (AIDS) were
randomly assigned to one of the three groups: placebo, low-dose ribavrin, and high-
dose ribavrin. Blood samples for each patient were collected at weeks 4, 8 and 12
and for each serum sample, measurements of p24 antigen levels. (which are impor-

tant markers of HIV-1 infection) were recorded. The "viral load” in each serum was

evaluated by measuring the number of days when virus positivity was detected, that
is, when the p24 level was greater than 100 picograms per milliliter. Therefore, po-
tentially each patient in the study should have three such event times (number of
days) corresponding to the samples taken at weeks 4. 8, and 12, which are repetitions
of the same event for three times. This problem may be treated as a 3- dimensional

multivariate failure time problem. Note, however, that in this 3-dimensional mul-

tivariate studz, some observations were missing, because patients did not make the

scheduled visits or because serum specimens were iradequate for laboratory analysis.
In addition, censored observaticns occurred wher the culture required a longer period
of time o register as virus positive than was achievable in the laboratory, or when
the serum sampie was contaminated before positivity was detected. Based on these
virological data, one would like to know, for example, whether the drug ribavrin ef-
fectively prolonged the time to virus positivity and how the drug effects changed over
time. This 3-dimensional multivariate problem, because of the occurance of censored
observations. now becomes a multivariate incomplete failure time based regression
problem.

A similar multivaciate failure time problem, in the context of bladder cancer, was
studied by the Veterans Administration Cooperative Urological Research Group (Byar

1980). In this study, all patients had superficial bladder tumors when they entered



the trial. These tumors were removed transurethrally and patients were randomly
assigned to one of three treatments: placebo, thiotepa and pyridoxine. Many patients
had multiple recurrences of tumors during the study and new tumors were removed at
each visit. Here each recurrence time of a patient was measured from the beginning of
his/her treatment. Since each individual visited the clinic multiple numbers of times,
the experiment belongs to a multivariate failure time problem. As indicated in Byar
(1930), one of the analyses to evaluate the effectiveness of thiotepa should be based
on the tumor recurrence times computed from patients based on patient’s visit. This
tumor recurrence data for bladder cancer patients was later analysed by Wei, Lin and
Weissfeid (1989).

Recently, Guo and Lin (1994) has referred to another multivariate failure study
conducted by D. H. Uttal of Northwestern University in the context of a psychological
problem. In this psychological experiment, the main objective was to study the
childrens™ abilities to locate hidden objects. For this a sample of 83 childrez was
considered and each of the 83 children was asked to search for objects hidden in 10
different locations. For each location, the child was given three chances to find the
object. The experiments might differ in terms of whether a map was taken while
searching for the object and whether the map was rotated. These two factors were
expected to affect how quickly the child could find the object. The child’s age (which
was categorized into groups, 4-5 years vs. 6-7 years old) was also thought to be
predictive. Since each child was using similar technique to detect hidden objects in
10 different locations, this problem may be considered as a multivariate failure time
problem of the first kind, where every finding is a repetition of the first finding.

Huster et al. (1989) and Liang et al. (1993) used an example on Diabetic

Retinopathy Study (DRS) which was begun in 1971 to study the effectiveness of



laser photocoagulation in delaving the onset of blindness in patients with diabetic

Diabetic reti hy is a licati iated with diabetes mellitus

isting of ab lities in the mi 1 within the retina of the eye. It is

the leading cause of new cases of blindness in patients under 60 years of age in the
United States and is the major cause of visual loss elsewhere in many industrialized
countries (Murphy and Patz, 1978). Patients with diabetic retinopathy in both eyes
and visual acuity of 20/100 or better in both eyes were eligible for the study. One eye
of each patient was randomly selecied for treatment and the other eye was observed
without treatment. The total study size was 1,742 patients followed over several
years. A sample of size N=197 of the high-risk patients as defined by DRS criteria
was considered for the analysis. The end-point used to assess the treatment effect
was the occurence of visual acuity less than 5/200 at two consecutively completed
4-moath follow-ups. Since each patient ir the study should have two event (same

kind) times, this problem also may be si d as a tw

! multivariate

failure time problem of the first kind.
The primary question of the DRS study was to assess the effectiveness of the laser

photocoagulation treatment. Secondary questi were whether the survival times

for the eyes of a patient were related and whether the treatment and type of diabetes
were related.

Another example can be found in the experiment conducted by Thompson et
al. (1978) on the development of mammary cancer. In this experiment seventy-six
rats were injected with a carcinogen for mammary cancer at day zero, and then all
animals were given retinal acetate to prevent cancer for sixty days. After 60 days, the
48 animals which remained tumor-free were randomly assigned to continued retinoid

prophylaxis (Treatment Group 1) or control (Treatment Group 2). Rats were palpated



for tumors twice weekly, and observation ended 182 days after the initial carcinogen

injection. The times to devel of 'y cancer were d from the
day of injection. Since the same kind of event occurred repeatedly to each animal,
the data may be considered as multivariate failure time data of the first kind.

The multivariate failure time problem of the second type, that is, failure of distinct
event, has not been addressed adequately in the biostatistical literature. This problem
can. however, occur in many practical situations. For example, AIDS researchers are
often interested in time to the drop of the CD4-lymphocyte count below a threshold,
in time to the first detectable level of HIV antigen. as well as in times to prominent
changes of other biological markers for an H[V-infected person. Here. this is a 3
or more dimensional multivariate failure problem of the second kind. The scientific
interest of a multivariate survival study of this kind typically lies in the effects of
covariates on the risks for failures.

In this practicum, we will concentrate on the multivariate incomplete failure time
problem of the first kind. We will mainly be concerned with the methodological
development in estimating as well as testing the treatment effect in a multivariate
incomplete failure time problem. For this purpose, we review and examine the effect
of the univariate partial likelihood approach applied by Wei et al. (1989) to a bladder
cancer daia set as mentioned before. In this regard, it is to be noted that application
of such a partial likelihood approach to a correlated data set of first kind may not
reveal the actual effect of the treatment. As a remedy, 2 modification to the bladder
cancer data is proposed to make the multivariate data groupwise independent, and
then we apply the univariate partial likelihood approach to analyse such data. In
contrast to Wei et al.’s (1939) linear estimation method we provide a likelihood based

estimation approach to estimate the combined cancer treatment effects and to study



the inference about them.

The specific outline of the practicum is given in the next section.

1.2 Outline of Practicum

1.2.1 Review of Univariate Incomplete Failure Time Re-
gression Model

A review of analysis of incomplete failure time data is given in chapter 2. In secticn

2.1, atteation is given to the partial likelihood method of estimation under Cox's

(1975) proportional hazards models. This method was used by Wei et al. (1639) i

estimating the treatment effects from bladder cancer data as mentioned above. The

estimation methed and test for regression parameters are described in section

1.2.2 Multivariate Incomplete Failure Time Data Analysis

Chapter 3 concerns the analysis of multivariate incomplete failure time data. Tae
regression analysis of such multivariate incomplete (correlated) data is not adequately
studied in the literature. In this case, the main difficulty is to develop a suitable
methodology for regression effects, taking the correlation of the failure times into
account. Prentice et al. (1981), Wei et al.(1939), and Wei and Lin (1989) have,
however, used the univariate partial likelihood approach to analyse such multivariate
incomplete failure time data. Regression estimates in such cases may not be reliable.
To overcome this problem, modification to the data is proposed in order to make the
failure times as independent as possible, and the univariate partial likelihood method

is then applied.



In section 3.1, we outline the univariate partial likelihood method to analyse the
multivariate incomplete failure time data. The estimation method and test for regres-

sion parameters are outlined in section 3.2. In section 3.3, in contrast to Wei et al.

(1989), we discuss a method to estimate the bined effects for
ate incomplete failure time data by using the restricted partial likelihood estimation
(RPLE) method. In section 3.4, a method is given to modify the multivariate failure

time data in order to make all failure groups independent of each other.

1.2.3 Analysis of Modified Bladder Cancer Data

The analysis of modified bladder cancer data is discussed in chapter 4. In section 4.1,
three different approaches are discussed to analyse the multivariate incomplete failure
time data, and these three approaches are compared for each recurrence group. Esti-
mation and test for treatment, effects in different recurrence groups for the modified
as well as the original blood cancer data is discussed in section 4.2. The application
of the univariate partial likelihood estimation method to the modified data seems
to provide more appealing interpretations than when this method is applied to the

original data. In contrast to Wei et al's linear estimation (LE) method a restricted

bined

partial likelihood estimation (RPLE) method is di d to esti the
treatment effects in section 4.3. and it is found that the restricted partial likeli-
hood estimation (RPLE) method is more precise than the method used by Wei et
al. (1989). In section +.4. the likelihood ratio and Wald type tests are performed for

simultaneous treatment effecis.



Chapter 2

Review of Univariate Incomplete

Failure Time Regression Model

2.1 Introduction

Over the last two decades there has been a great deal of interest in the analysis of
censored data, particularly in the context of survival analysis in medical trials where
patients often survive beyond the end of the trial period or are lesi to follow-up for
various rezsons. For the univariate failure time regression study with censored obser-
vations. many parametric and non-paramertric methods are available in the literature
(cf. Lawless 1982). Here. attention is focused on the methods of estimation under
proportional hazards models, suggested by Cox (1972). The proportional hazards
model is non-parametric in the sense that it involves an unspecified function in the
form of an arbitrary base-line hazard function. Therefore, this model is flexible, but
different approaches are required for estimation and testing under different conditions.

Let n be the number of study subjects and T; be the failure time of the ith

individual (i = 1,2,--,n). Let C; be the corresponding censoring time. Instead of



observing failure times Ty, T3, - - - . T, we observe
X = min(T;, Cy)-
Define the indicator variable
& = 1, i T:;<C; (uncensored)
= 0 otherwise.

Whenever T; is missing, we consider C; = 0. Because T; is always nonnegative, this
implies that §; = 0, in such missing cases. Now, let Zi(t) = (Zu(t), -, Zip(t))
denote a p x I vector of covariates for the ith subject at time ¢t > 0. We assume

that (T:,C:, Zi(.)).i = 1,--,n, are independently identically distributed random

quantities. In such studies our main interest is to know the effect of the covari-
ates on the failure time of the individuals. For the estimation purpose, Cox’s pro-

portional hazard model is widely used. The Cox model for censored survival data

specifies that the hazard function for the ith (: = 1,---.n) individual is given by

Alt,=) = limpo LPr{T < t+A|T > t; =, ¢ 2 0, where x corresponds to =(t). For

simplicity, il throughout Ai(t, =) will be denoted by A,(£) which is given by

Ailt) = Ao(t)exp(3'Zi(t)), if £20 (2.1)

where Ao(t) is an arbitrary and ified base-line hazard function and 8 = (B, -+, 35)"

is a vector of regression coefficients, indicating the effects of the covariates.

Here one may also want to esti Ao(t), from d data. One h is to
maximize the likelihood function for the observed data simultaneously with respect
to B and Ag(t). A more attractive approach is one based on the concept of partial
likelihood as presented by Cox (1975). In Cox’s approach, the likelihood function for
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3 does not depend upon Ao(t), which then can be maximized to give an estimate of
B and to provide tests for 3 in the absence of knowledge of Ag(t). Once 3 has been
d, Ao(t) can be estimated by maximizing the full likelihood function for Ao(t),

assuming that 8 is equal to the maximum partial likelihood estimate (m.p.Le.) of
B. Partial likelihood applied to censored data problems has been discussed by Cox
(1975), Efron (1977), Kalbfleisch and Mackay (1978), Kalbfeisch and Prentice {1980),

and others. For the sake of completeness, we now outline the partial likelihood as

well as the estimation method and infe for 3 based on the partial likelihood.

2.2 Partial Likelihood

Assume that in a random sample of n study subjects we have a sample of r distinct
observed failure times and n — r censoring times. Let the r individuals be observed
to fail at T}, ---,T.. The order statistics corresponding to these failure times ordered
from smallest to largest are denoted by Tyy) <, +-. < Tjy). Let R(Ts)) denote the risk
set at Ty, — 0, that is, the set of individuals alive and uncensored just prior to Ty,

for i’ = 1,---.r. Now the partial likelihood function suggested by Cox (1972,1973)

for estimating 3 in the absence of knowledge of Ao(t) is
<5
: . exp(FZ(X.)) 5
L(3)= — (22)
.-I;J; {Elen(.x‘.,) exp{3'Zi(X;))
where Z;(X;) is the covariate vector associated with the ith individual at time X; =
min(T;, Ci).
The above likelihood function does not depend on \g(t) and is traditionally max-

imized to esti the ion p vector f.
In practice ties frequently occur in data on continous variables because of rounding

off or grouping. If there are only a few ties, the partial likelihood can be obtained
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based on one of the modifications suggested by Peto (1972a) as

5
= 8'S:)
Frr T | ... B (23)
-‘I_—Il (Z,me(_‘) acp(ﬁ'zl(-‘fi)))‘l

where d; is the number of lifetimes equal to X{;) and S; is the sum of the covariate

vectors Z for these d; individuals. In such tie situati the

are estimated by maximizing (2.3) instead of (2.2).

It is important to note that the partial likelihood method is distribution free
and certain properties of the procedure do not depend oa the underlying lifetime
distribution, more specifically, on the baseline hazard function \o(t). This is actually
true when there is no censoring, but with many types of censoring the dependence
on Ao{t} is small. If the distribution form of \o(t) is knowa. that is , the data come
from a particular known baseline hazard function, there will be some loss of efficiency
in using tke non-parametric approach instead of the correct parametric model. In
some cases, however, this loss of efficiency is slight (cf. Lawless 1832). It should
also be mentioned that the regression parameter vector 3 can be estimated by direct
maximum likelihcod rather than through the partial likelihood. Maximum likelihood
is, however. less convenient than the partial likelihood method because it requires
simultaneous consideration of 3 and Ao(£).

The estimation of 3 based on Cox’s partial likelihood and the inference about 4

are now summarized below.
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2.3 Estimation and Test for 3 Based on Partial
Likelihood Approach

The log likelihood arising from (2.2) is given by

logL(B) = 3" 863 Z(X:) = 3 Silog ( > exp(,’?’Z,(X,))) (2.4)
= =1 1eR(X)
and the first derivatives of logL with respect to the elements of 3 are
% _ OlogL
U(3.) = 8.

i zlmx,)zm(xf)ezp(a'z,(x;))]
= Zu( X)) =3 & {%——

; 2 i ; U Zeerx) e2p(8'21(X:))

e i = (TR YiOG) Z(Xs)ezp(8' Zi( X)) "
= Y 6iZu(X) - Y6 | ==L, : | (s
Lozl - [ Thoesn(i %) | OV

foru=1,---,p, where Y{(£) = I(X; > t) with

I =1 if x>t
= 0 otherwise.

Substituting g:{3) = ¥i(X;)ezp(3'Z;(X;}) in (2.5) the score function reduces to

V() = 36ZuX) 36 F
=1 i=1

The second partial derivatives of (2.4) are
9%logL
30,00,
_ ‘Z”' [(ET:,Y:(Xa)Zml.Vi)Z:w(-‘(:)exp(ﬂ’zr(-\'-)))(Zf:iﬂ(x.)exp(ﬁ‘zr(x-)))
(Tl Vil Xi)exp{2/ Zi( X))
(2" Yi(X0) Ziu( X:)exp(8' 21X ) (Torey i) Zw (Xi)exp(8Z1( X)) |
(T, Yl X)exp(@'Z{(X:))°
= ‘Z” [():,_ 1 Zi(Xi) 21 (X:)01(8)) o1 91(3))
i= (T a(@n®
_ (s Zu(X)e:(3) (7 Zia( X )9:(»3))] @0
(Thea(8)?

Lw(3) =




13

The i partial likelihood esti 3 for 3 is defined as the solution to

the likelihood equation
OlogL _
a8

which can be solved easily by the Newton-Raphson iterative method utilizing (2.6)

0

and (2.7) as
A= 3 - D(EY)
where J; denotes the value of 8 at the hth iteration. U( 3%) is the score vector U(f) =

(U(B0).+ -+ .U(8,)) evaluated at 3 = 3*, and

_ ( PloglL
o= (aaua.aw) -

is the p x p matrix with general (u, w)th element given by (2.7) evaluated at 3%.

Tt appears that maximum partial likelihood estimates (m.p.l.e.’s) obtained by max-

1 likelihood

imizing L(8) possess the usual asymptotic ies of ordinary
estimates under quite broad couditions. Cox ( 1975) and Kalbfleisch and MacKay
{1978) give heuristic treatments that attempt to place only mild conditions on the
censoring and lifetime processes. Alen (1978) gives some relevant results as part of a

general treatment of counting processes. Tsiatis (1978a) and Liu and Crowley (1978)

demonstrate under models i ing random independ ing mechanisms that
the m.p.le. is consistent and asymptotically normal and the likelihood ratio tests
based on L(3) are valid.

Now to make inferences about 8 one can use a very simple approach by treating
3 as being approximately normal with mean § and covariance matrix ()", where

" &logL . _
I(8) = (765.3ﬂ..,)§ with w=1,-,




which implies that under Ho: 3 = 5o
(8- Bo)I"'(BY(B - ) (28)

has asymptotically a x? distribution with p degrees of freedom.
Inferences can also be based on likelihood ratio methods, in which case,

A= —alog 2P (2.9)

" L(8)
has an asymptotic x? distribution with p degrees of freedom.

Further, for testing the hypothesis Hy : 3 = 8, one can construct the well-known

score test statistic
C(Bo) ™" {B0)U(B0) (2.10)

which again has an asymptotic x? distribution with p degrees of freedom. Here

dloglL ,
38, 120

U(Bo) =
is the score function which has an asymptotic normal distribation with mean zero
and covariance matrix /~'(d).

In some survival studies, it is, seen that one patient may experience two or more
distinct failures. Suppose that each patient experiences A (> 2) such failures. These
K failures may be due to repetitions of the same kind of event or they may be events
of different nature. In either case, these K failure times for a patient wili be corre-
lated. The regression analysis of such multivariate failure time data is not adequately
discussed in the literature. While, in general, it is not easy to take the correlation of
the data into account to analyse such multivariate failure regression data, some au-
thors {cf. Prentice et al. (1981) Wei et al. (1989), Wei and Lin (1989)) have used the
univariate partial likelihood approach to analyse the multivariate failure time data
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which arise due to the repetitions of the same kind of event. Regression estimates in
such cases are usually consistent but will not be fully efficient. This is because, in
this approach, estimates are obtained based on the assumption that the K groups of
failure time data are independent, when in practice they are correlated. Nevertheless,
in the next chapter, we outline the univariate partial likelihood approach used by Wei
et al. (1986), among others. to analyse the multivariate incomplete failure time data.
In the same chapter, we suggest a2 modification to the multivariate failure time data
discussed by Wei et al. (1989), in order to make the K groups of failure times al-
most independent of each other. The application of the univariate partial likelihood
method to such modified data will naturally produce regression estimates similar to
the estimates obtained by certain suitable methods using the correct correlation ma-
trix of the failure time data. The modification of the multivariate failure time data

is discussed in the context of can-er data considered by Wei et al. (1939).



Chapter 3

Multivariate Incomplete Failure

Time Data Analysis

3.1 Introduction

In many survival studies we record the times of two or more distinct failures on each

subject. These failures may be events of different natures or may be repetitions of

the same kind of event. as mentioned in the last chapter. Several regression meth-

ods have been proposed in the literature to deal with situations where individuals

experience repeated failures such as multiple tumor recurrences. These methods im-

d

pose specific structures of d e among the on each subject and
can be thought of as generalizations of survival data techniques in which the haz-
ard function modeling is continued beyond a subject’s first failure to the second and

failures. For le, Lawless (1987) presented a class of parametric and

semiparametric procedures based on nonhomogeneous Poisson process models with

proportional intensi ions. The counting process lation of Andersen

and Gill (1982) can be regarded as a special case of the Cox proportional intensity

16
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mode!. The approach of Preatice, Williams. and Paterson (1981) differs from that of
Andersen and Gill (1982) in two aspects: (a) the risk sets for the (k + 1)th recur-

rences are restricted to the individuals who have i d the first &

and (b) the underlying intensity fi i and it are allowed to

vary among distinct recurrences. The method of Gail, Santner, and Brown (1980)
is a two-sample special case of Prentice et al. (1981). Wei et al. (1989) proposed
semiparametric methods to analyze general multivariate failure time data. Here, the
multivariate failure time data correspond to 2 A x ! dimensional random vector, &
being the number of recurrence groups. Wei et al. (1989) model such multivariate
data by using the margiral distribution of each of the X groups. No particular struc-
ture of dependence among distinct failure times on each subject was imposed here.

The regressi were esti d by imizing the fail pecific partial

likelihoods. and the resulting estimators across all types of failures were shown to be

asymptotically jointly normal with a covariance matrix that can be easily estimated

from the data. In this chapter we outline the ion analysis of multi failure

time observations following Wei et al. (1989), among others by using the univariate
partial likelinood method and we suggest a modified muitivariate incomplete failure
time data in the context of tumor recurrence data used by Wei et al. (1989). Also,

unlike Wei et al. (1989), we discuss a method to esti the bined

effects for the multivariate data by using the restri partial lik

(RPLE) method.




3.2 Univariate Partial Likelihood Approach

Let there be n individuals in a study and let T, (i =1,---,n: k=1,---,K) be the
kth failure time of the ith subject. Here, instead of Ti; one observes the bivariate

vector (X i), where

= min(7Tki, Cii),
Cr is the censoring time and

. [ 1. if Tu < Ci (uncensored)
0. otherwise.
If Ty; is missing. we assume that Cy; = 0. Since T is always positive, this implies
that X = 0 and & = 0. Now. let us assume that Zi(t) = (Zia(2), -~ . Zaip(t))
denotes a px 1 vector of covariates for the ith patient at time ¢ > 0 with respect
to the kth type of failure. Conditional on Zj;, the failure vector T, = (Ty;, -+, Tki)’
and censoring vector C; = (Ci,---,Ck:)’ (i = 1,---,n) are assumed to be in-
dependent. Furthermore, one can assume that (X.§;, Z(.)) (i = 1,---.n), where

Z: = (Z};,--+, Z;). are independently identically distributed (iid) random vectors

with bounded covariates Z;(.). In such multivariate failure time data to estimate the
effects of covariates, the widely used Cox's proportional hazard function Ay(¢), for

the kth type of failure of the ith subject has the form

Au(t) = Mio(t)exp(3Zii(t)), 20 (3.1)

where A\io(?) is an arbitrary and unspecified baseline hazard function and gx =
(B,

As in the univariate case to esti the i 3 one can use the

,Bip)' is the failure-specific covariate parameter vector.

Cox’s (1972, 1973) partial likelihood approach. Let us assume that in the above



19

random sample of n individuals there are r distinct observed failure times and n —r
censoring times with respect to kth failure group. Let Ri(t) = {I : Xy > t}, thatis,
the set of subjects at risk just prior to time ¢ with respect to the kth type of failure.
Then similar to (2.2). Cox’s (1972,1975) partial likelihood for the kth group is

Sen
= exp(8i Zui( X))
LB =]] |g——sal — 3.2
wo =11 [E:e&(x(..n exp(Za( o) @)
where Zy; is the covariate vector corresponding to the individual observed to die at
X

Then the maximum partiai likelihood estimator §; for f; is the value that maxi-
mizes the partial likelihood fuaction (3.2).

In case of 2 few ties the likelihood function (3.2) is replaced by

Ban
n 1S (X
LG =T SRAuKe) @3)
=1 | (Trer (e =P8 Zul X))

where di; is the number of failure times equal to X}; and S, is the sum of the covariate
vectors Z; for these dy; subjects.

Therefore. in tie situations to esti the i one should use

the likelihood function (3.3). But the likelihood function (3.3) is more difficuit for
computation than that of (3.2). However, as recommanded in the literature (cf.
Lawless, 1932) that (3.3) can be approximated by (3.2). We discuss the estimation

and test based on (3.2) as follows.

3.3 Estimation and Tests For S:
The log likelihood arising from (3.2) is given by

1osz(:w=isﬁ.s;zﬁ(.rk;)—isulog( z ap(ﬁ'.zu(xa))) 34
=t = 1ER(Xu)



and the first derivatives of logL are
Cge) = FoE)
S - [t

where Yiu(t) = I(Xy > t) and more specifically, ¥z(Xi) = 1. if X > X and 0,

otherwise.
Substituting Gu(3) = Yiu(Xki)exp(B; Zu( X)) in (3.5) the score function reduces
to

Ziet Ziul Xii) GralBe)
i1 Gual(B)

Wei et al. (1989) obtained the maximum partial likelihood estimates ,'j; of Bi as

G = Steali% -k @6)
=1 =1

the solution of the likelihood equation

G = alugL/:i,. =0
h
The estimator J; is consistent for 3 if the model (3.1} is correctly specified.
The esti Bu’s are generally correiated. As shown by Wei et al. (1989), for
large n, (3. - -, Bk}’ is approximately normal with mean (3, --, 3% )’ and covariance

matrix Q. say. For large n, the covariance matrix of (8{,---, 3%) can be estimated
by
Du(Br.B) -+ Di(3i.5x)
Q=n"1 Do H (3.7
Di(Br,81) -+ Drx(Bx, Bx)

4

where Dy(3c,31), (k0 = 1,---,K) is the p x p
matrix between n'/*(3 — fi) and n/2(f; — 3;) which is given by

DutBe B) = A7 (Be) Bul B BVAT (B)
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For additional details see Wei et al. (1989). By theorem 4.2 of Anderson and Gill
(1982), the matrix A:(3:) is the consistent estimate of A(3:) aad is given by
o - 21 Vel Xiy) Zai( Xi5)® exp(8: 2 Xis))
Ad) = a7t 5,[):‘_1&- 2] )7 ¢
e Py T, Yl Xay) exp(FiZ(Xeg))
_ (Z?:- YH(-"H)ZH(X&;)'T‘Cp(é'nzﬁ(xkj))\ . 39
T Yl Xy) exp(BiZu( X)) 7 i

Here, a®? denotes the matrix aa’ for 2 colum vector a.

In (3.7),

Bu(3e,3) =n"'Y Wk;(ﬁk‘ﬂ‘%‘ﬁt)
=1
where
S(8e: Xiy)
$(Be: Xu)
_ i: Biem Ve (X ) €XP{F 22 (Xiom )
it S8k Xim)

a*:’(ak;xk.)]
S (Be: Xim)

Wiil3e) = & [Z'q(xk;')—

x [z,,(.\'b.) -~
and
SBt) = a7t Y Viult) Zult) exp (B Z(t)
=1

SHBut)

'Y Yalt) exp (1 Zu 1)) -
=
The matrix @ provides a basis for simultaneous inferences about the f§'s. For

example, suppose that one is interested in the effects of a particular type of covariate

on the K event times. More i one may be i 1 to test jointly the
hypothesis
Ho:8u 2 0, k=1,---,K (3.9)

Hy:8a < 0
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where 3y, is the treatment effect for the kth group. To test this hypothesis Wei et al.
(1989) used the Wald type test statistic

W= (Bu,- - B )b (Bua -+, B ) (3.10)

which has approximately 2 distribution with K degrees of freedom. Here in (3.10),
@i is K x K estimated covariance matrix of i, obtained by partitioning the

pK x pK estimated covariance matrix 0, of ﬁ Further, based on the assumption

that treatment effects of all groups are same, that is, Jy; = -+ = Bi = 35, Wei et al.
(1989) estimate 35 by using a linear combination of the Ju's, that is, S5, Widu
with K, Wi = 1. By Wei and Johnson (1985), the estimator J; = (31, -+, r1}
with weight

W= (W, W) = (bgkne) " wrkae

where e =(l,---,1)’, has the smallest asvmptotic variance among 2ll of the linear

estimators. We use this linear estimati h to esti: 37 for modified data
as well as for the original data.
‘We remark here that in contrast to Wei et al. (1989), one may test the hypothesis

(3.9) by using the likelihood ratio method, and the combined estimate of 83 can

be obtained by using the icted i likelihood h. We follow these

procedures in the next chapter for the modified data set as well as for the original

blood cancer data.
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3.4 Combined Treatment Effects: Restricted Par-
tial Likelihood Estimation (RPLE) Method
In this section, unlike Wei et al. (1989), we discuss a method to estimate the com-
bined treatment effects for multivariate incomplete failure time data by using the
restricted partial likelihood estimation (RPLE) method. First, we estimate the com-

bined treatment effect considering all other covariates as nuisance and second under

the presence of treatment only (other covariates are ignored).

3.4.1 When Other Covariates are Nuisance
For this case we impose the restrictions

(3.11)

Bu=pn=---

to the partial likelihood function (3.2) and esti the bined effects

37. Under the restriction the likelihood function (3.2) now reduces to

dG: % Zei (X)) + 35 Z5:( X bn
g =11 [exp(ﬂ.:zm('\h)-r3 n(x“))))]{ (312)

L(83. 85, ~ .
(i Ctera () €P(31 Ziis + BF Ziy{ X

k=1i=1
where Z; = (Zpiz. -+, Ziip)' is the covariate vector corresponding to the individual
observed to die at X and 37 = (B2, -+, Bep)’-
Letting 3° = (33,57 ,---.3%)’ the log likelihood arising from (3.12) is given by
K n
logL(8") = 33 8812k (Xui) + B Ziu(Xu)

k=1i=1

K n
=3 3" brilog ( > exp(33 Zea(Xes) +‘d,:'Z;,(X,,.-)))

E=tist [ER(Xs)
and the score functions for estimating 83 and Bz, - -, 8, are given by,
- BlogL(3~
(87) logL(5")

a8y
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S e zrzlzu.(xﬁ)cz,(ﬁ-)]
= 8 Zkir( Xi) — | R 3
2,3, fu Bl %) §.§"“[ Tmcue) | o9

and

. L(8~
G = 282

= Ig.s,,.»zh_(xﬁ) - § 8 [%ﬁ;‘—(@ (3.14)
respectively. where, u = 2.--+, p, and G(5°) = Yiu(Xa:) exp(83 Ziia (Xui)+85 Ziy(Xii))-
Now the maximum partial likelihood estimators d', and 37 = (Bear- -+ ,ﬂ,)’ are
obtained by using Newton Raphson method as the solution of the equations

Blogl(d") _ o . BlogL(g") _

EER 93 0

It then follows from Wei et al.(1939) that, for large n, (83,8, --. A%, where.
8z = (Be:

ance matrix Q~, (say), where Q" can be estimated following the procedure that was

,3i) is approximately normal with meaa (33,8}, ---.9%) and covari-

used to compute Qin (3.7). Now the new estimated variance covariance matrix oy

of Q" is given by

Dai83.30) - Dx(Bi.Bz)
gt | DuBLE) DuiEd) o D)

Di(Bi:83) Da(Bic-B7) -+ Diexe(Bic.Bx)
where ﬁ_k(ﬁ}.ﬁﬂ), (k=1,--+,K) is the 1 x (p— 1) estimated asymptotic covariance

vector between n'/2(47 — f7) and n'/*(3; — 3;) which is given by

Da(3i.B) = AT\ B1) B3 A AT (Bo)-
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Similarly, Duw (B, 32), (kK = 1,---, K) is the (p—1) x (p—1) estimated asymp-

totic covariance matrix between n*/3(3; — 8;) and n'/*(8g — 8z which is given by

Due(8:,32) = AT (30) B B2 32) AT (B2

For additional details see Wei et al. (1989). The variance of the combined estimate
37 is obtained as

Var(8;) = n7'D.(83.37)

= AT 8B ADATNAD
where.
Ziia (X1’ GL(37)
T Gu(3)

-(BEaEeY]

with GL(3"} = Yai(Xs;) exp(37 Zear(Xi;) + 57 Z5:( X)) 2nd

where

el
S, 3%:%
Wald) = &; [z,,,.(.n,-)— e

_ i im Yei (Xiom) eXP (331 Zkst (Xim) + 35 Zi;(Xim))

= nS:(31; Xim)
) 5083 Xim)
) [Z*"(X“") " 535 Xim)

and
S@E = Y Vel Zuslt) exp (33 2a(6) + 57 Z20)

SOt = 73 Vislt) exp (33 Zua(t) + B2 Zl0) -
=1
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3.4.2 When Other Covariates are Ignored

As in the above section applying the same restriction (3.11), the partial likelihood
function (3.2) reduces to

A ep(BiZe(Xe) | ;
L = = 3.1
) o=t [Z:en.(.\'(.‘)) exp(81 Zun (Xi:) (3:13)

The log likelihood function from (3.13) is given by
K n
logL(33) = Z Ziﬁ(.i.'xz:r:;(-‘fs))
e
k=ti=t X

K n
—zzﬁhkw< > exp(,S_',Zku(Xh)))
e

and the score function for estimating 37 is given by,

v = a“’ffsﬁ
) _ L. Zun(Xu)GE31)
- zr.shzm.m E..;‘ i (B 2o EE)] o)

where, Gz7(331) = Yiu(Xa)exp( 87 Zen( X))
The maximum partial likelihood estimator 8} is obtained as the solution of the
equation
BlogL(33) _
331
Now following (3.7} the estimated variance covariance matrix Q== of Q™ is given

by

g

and the variance of the
Var(3;) = n7'D.(83,83)
nT AT (B3) B85, B)ATN(8Y)



where,

_(): zhv.(xk,‘)cz(ﬂ;))@‘J

with Gz(31) = Yei(Xis) exp( 31 Zeia (Xi;)) 2nd

s K n -
81,81) =nT 3 Y Wi (3
k=1j=1

where

Wal2i) = & !:Z&Jl<-¥ky)_
_ i Sk Yiej (Xiem) exp(33 Zej1 (Xim ))
=t 257N (8%; Xem)

S8y Xem)
% | Zeit(Xigm ) — —mor——=
["‘( ) S G X

and
SeOEul = pTN Y Yadt)Zea () exp (31 Zia (1)
=

STy = n"ihi(l)&w(ﬂizm(t))-

3.5 Ad Hoc Modification of Bladder Cancer Data

The multivariate failure time for each blood cancer patient discussed in Wei et al.
(1989) are not independent for the A (A = 4) different groups. Wei et al. (1989),
however, used the univariate (marginal) partial likelihood approach to obtain the re-
gression estimates as well as the estimate of their covariance matrix. These regression

estimates may be treated as be interpretable like the least square regression estimates
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obtaired from a correlated linear regression model, and the estimate of the covariance
matrix of the regression estimates may be treated as interpretable as the estimate of
the correct covariance matrix of the least square regression estimates. This type of
regression estimate naturally will not be optimal. With this in view, we now try to
obtain a group-wise independent data set as follows, which will be analysed in the
next chapter by using the univariate partial likelihood approach.

The original blood cancer data consist of initial tumor number, initial tumor size,
a followup time and four different recurrence times for each of the 86 patients. These

T times were ded based on the rep d visits of the patients, and con-

sequently they are correlated. The analysis of such multivariate correlated data is
quite complex. Since in every visit the recurred tumors are removed and the patient
is kept under the therapy (treatment) until the next visit, it seems appropriate to

consider the time gap between two ive r es as an independent recur-

rence time for the patient involved, provided the followup time is adjusted (modified)
accordingly. This we do as in the following.

+-+, K. be the original tumor recurrence time of the ith patient

Let rg;, for k

correspondiag to his (her) kth visit. Suppose ri: be the Ath modified recurrence (visit)

time of the ith patient. We now define ry; as
o= Ty
and rg = rg-— Tle-1)ir for k£>2.
Further, let ¢; (i = L,---,n) denote the original followup time for the ith patient.

We now consider K different followup times for K distinct visits. The followup times

for the first two visits are given by
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and fx = ti—ryu.

Next, the followup time with respect to the kth visit for k > 3 of the ith patient
is defined as follows:

S = f—ii =ty for k>3

To d how these modified tumor and foll times are com-
P

puted, we consider here. for example, the 15th patient in Table 7.1. From the Table
7.1, we have ti5 = 24, ri;5 = T. r3y5 = 10, riy5 = 16 and rj;5 = 24. Now the

modified recurrence times for different groups are

Pas = Tis=T

ras = s rias=3
rais = iy —ris=6
Taas = Tis—Thas =3

Also the modified followup times for different failure groups are obtained as follows:

fras = tus=24

fais = tus—ras=17
fais = fus—raas=14
fas = fais—raas =3,

This data for modified followup and recurrence times is shown in Table 3.1. Also

for the sake of completeness, we exhibit the original blood cancer data in the appendix.



Table 3.1: Modified Tumor Recurrence Data for Patients With Bladder Cancer

Treatment | Ini. Tum. | Ini. Tum. || Follow-up time || Recurrence time
group size number Fu| fou fai | fu | rii| rai | rai| ra
3 1 1 0 0 0 0 0 0 0 0
1 1 3 1 1 hi 1 0 0 0 0
1 2 1 4 4 4 4 0 0 0 0
i 1 1 7 T & 7 0 0 0 9
1 3 1y 10| 10} 10| 10 0 0 0 0
1 4 110 4 4 4 6 0 0 Q
1 L 1 14 4] 14 14 0 0 0 0
1 1. 104 18, 18| 18| i8 0 0 0 0
i 1 34 18| 13| 13| I3 5 0 0 [t}
1 1 1 18 6 2 12 4 0 0
1 3 30 23] 23] 23] 23 0 0 0 0
1 1 34 231 13 13| 13 10 3 0 0
1 1 1] 23| 20 7 0 3| 13 7 0
1 3 1 234 20| 14 2 3 6| 12 [
1 2 3f 24| 17| 14 8 7 3 6 8
1 1 1§ 25| 22| 10 0 3| 12} 10 0

30
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table 3.1 contd.

Treatment | Ini. Tum. | Ini. Tum. | Follow-up time Recurrence time
group size number Jul fui| fa| faif| ru| ra| ra| ra
2 6 1/ 39| 35( 23| 16 4| 12| 7| 4
2 3 1| 40| 14| 16| 11 24| 2| 3] 11
2 3 2| 41| 41| 41| 41 o of o] o
9 L Lif 41| 41| 41] 41 0 0f 0| ©
2 1 1 43 2| 16| 16 1) 26| 0| 0
2 1 1f a4l a4 1| 14 o] o} of o
2 6 If 4] 42y 24|21 2| 18| 3| 4
2 1 201 45| 45| 45| 45 0 0 0 0
2 1 4ff 46| 44| 44| a4 2| 0f o] 0O
2 1 4]l 46| 46| 46| 46 0| of 0| O
2 3 3049 49| 49/ 494 0 ©f 0] ©
2 1 1 s0|s0fs0]s0] of of of o
2 4 11 50| 46| 26 3 40 20| 21 0
2 3 41 54| 54 54| 54 0 0 1} 4]
2 2 1)l 34/ 16| 16| 16 33 0o, o 0
2 1 3] 9] 3939394 0 0 ‘; [ 0
Note:

e Treatment group: 1, placebo: 2, thitepa, Follow-up times (fi) and recurrence times
(rxi) are measured in months. Initial tumor size is measured in centimeters. Initial

tumor number of eight denotes eight or more initial tumors.




Chapter 4

Analysis of Modified Bladder

Cancer Data

4.1 Risk Comparison

In this chapter we will analyse the modified as well as the original bladder cancer

data by using the univariate partial likelihood method described in chapter 3, but

the risk set for this likelihood computation will be d based on the following
three approaches. These approaches will differ from each other due to the difference
in definitions of how censored cbservations are counted under each of the K (> 2)
groups.

Approach One (A(I)): Wei et al. (1989) used this approach to detect the
number of risk cases in each group. Here all the subjects (patients) censored and

d are idered in each group, that is. the total number of

individuals in any recurrence group remains the same. The risk set for the kth
recurrence group is defined as follows:

Let Ri(t) denotes the risk set corresponding to the recurrence time ¢. The /th

35
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(I =1.---,n) individual will belong to the risk set Ri(t) if
Xu 2t, orequivalently fi; >t and & =0,

where fi; and X}, are the follow-up and recurrence time for the lth patient in the kth
group respectively, and 6 is the censoring indicator for the /th individual. Further,
let Yi(¢) be the number of individuals in the risk set Ri(t) corresponding to the

recurrence time ¢. It then follows that
Yu(t) =#{l: Xy >t, orequivalently fu >t and &g =0}

Approach Two (A(II)): Following Prentice et al. (1981), in this approach the
paiients who were censored in the kth failure group are excluded from the (k + 1)th

failure group. Here the risk set is defined as:

Xyt orequivalently fy>¢ and 6§, =0, for k=1

and for k=2,---, K

Xu>t orequivelently fu>t and Sy =0
vielding

Yu(t) = #{l:Xu>t orequivalently fy >t and 6, =0, for k=1

and
Yu(ty = #{l:Xu2>t, orequivalently fy >t and -1y =0}
for k=2,--- K.

In the first recurrence group the risk sets are same for A(J) and A(II). For the other
groups the risk sets in this approach are less than the risk sets in A(I), that is, the

number of patients who are at risk here is less than those in A([).
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Approach Three (A(II)): This approach provides a further reduction in the
risk sets. Here we do not consider at all the censored individuals in the risk sets. For

the kth failure group the risk sets are given by:
Xu>t

and in this case
Ya(t) = #{l: X 2 ¢}

Now using the above three approaches we have computed Yi(t), the number of
individuals under risk for all of the recurrence groups. The risk sets constructed
under the above approaches for original and modified data sets are shown in figures
4.1,4.2,4.3,4.4,4.5,4.6. 1.7, and 4.8, for four different recurrence groups respectively.
Two figures for each of the four groups, for examples. 4.1 and 4.2 for the first group,
show the risk set for the original and modified blood cancer data.

Since in the first recurrence group the risk sets are equal for the modified and
original blood cancer data, there is no difference between figure 4.1 and 4.2. When
approaches are compared to each other for any data set. original or modified, the risk
sets are always smaller in A(/]) as compared to A(/). except for the first recurrence
group, where they are same. The risk sets of A(/II) are, however, always smaller

than those of A(IT).
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4.2 Estimation of Treatment Effects in Different
Recurrence Groups: Univariate Partial Like-

lihood Approach

In this section similar to Wei et al. (1989), we apply the univariate ( marginal) partial

likelihood estimati h to the modified data and estimate the treatment effects

for four different recurrence groups. The application of the univariate (margical)
partial likelihood estimation method to the modified data appears to be much more
meaningful than to applying this method to the original data. This is because the
modificatior to the original data is done it such a way that the four recurrence time
groups would be moderately independent of each other. More specifically, the current
recurrence time is computed in suck a way that it is independent of the previous
time(s) for the individual concerned. We report the regression estimate of the effect

of the iate for the modified data with the standard error in columns 2

to 5 of table +.1. Our resuits are presented for three different approaches A{I}. A(IT),
and A(II]). where the approaches are defined in the last section. We also apply the
univariate partial likelihood method to the original data and estimate the treatment
effects for four different groups under all of the three approaches (Table 1.2). Observe

that the i i and their dard errors under approach 4([) in Table

4.2 are same as the estimate obtained by Wei et al. (1989, Table 5, p. 1070). It is clear
from Table 4.1 that when Ho : 3 2 0 (k = 1,---,4) is tested against H, : g <0,
the treatment effect appears to be insignificant except in group 1 under both A(I)
and A(II) approaches. Here fB;; > 0 indicates that there is no treatment effect or

the may detoriate patient’s dition, and B; < 0 indicates that treatment

is effective. Under approach A(//]), the treatment effects appear to be insignificant
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in all the groups. The signil pattern of the treatment effects for the
original data (cf. Table 4.2), in general, however, appears to be quite different. For
the original data, the effects under h A([), as also mentioned by

Wei et al. (cf. Table 5 ). are found to be significant for the first three recurence groups,
whereas treatment was found to be insignificant in the last group. In approach A(7),
the treatment effect was found to be significant only for the first recurrence group.

We remark here that the censoring mechanism in A(I7) is similar to that of Prentice

et al. (1981). Wei et al. (1989) also obtained the effect under app h
A(II), but by using the model (2) due to Prentice et al. (1921), and it was found

that the was signifi in the groups L and 3, but not in group

2. Wei et al. (1989) interpreted this difiiculty as an effect of smaller risk sets in
approach A(/I). But. as it was mentioned above, this difficulty does not arise when
treatment effects are computed under approach A(II) by using the univariate partial
likelihood method. Thus, this problem does not appear to be due to the smaller risk

d to the selection of the estimation method. When the

set, rather ‘t may be
treatment effects for the modified data in Table 4.1 are compared to the treatment
efects for the original data in Table 1.2 the treatment appears to be significant on
more occasions for the original data, which may be due to the application of the
univariate partial method to the correlated data. To be more spedific. one of the
main reasons that treatment effects appear to be significant in more occasions for the

original data is that the standard errors of Jk ( ion estimate corresponding to

the treatment effect) appear to be smaller. in general. than those for the modified
data. This behaviour of the estimates of the standard errors of fi does not guarantee
inference accuracy of the treatment effects for the original data. This is because, it

has been shown empirically in the context of cluster regression study by some authors
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(cf. Sutradhar and Qu (1995)) that when correlation among observations in a cluster

increases, the standard errors of the regression estimates get smaller. Consequently,

d dard errors of the effects for the modified data

the:

are found to be generally larger, they appear to be more correct standard errors as

they were obtained by the inal partial likelihood h applied to the right
type of data, i.e. to the independent data.

We also analyse the modified and original data using only treatment as a covari-
ate. The results for modified and original data are presented in Tables 4.3 and 4.4
respectively. From Table 4.3, the treatment effects appear to be insignificant for all
of the recurrences under approaches A(I), A(II) and A(/II), which may be due to
ignoring the other two covariates. initial tumor number and initial tumor size. Sim-
ilar results are found from Table 4.4 for the original data except for group-2 under
AUITT).
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Table +.1: Ry ion Analyses of Tt Effects for the Modified Data Based on
Partial Likelihood Method for all Groups; and Linear and Restricted Partial Likeli-
hood (RPL) Estimation Methods for the Combined Group.

App. Recurrence number Combined Est. 33
140 | 2:8n | 38w | 4Ba LE RPLE

A(D) -0.514 -0.526 -0.525 -0.327 -0.503 -0.494

(0.308) | (0.347) | (0.438) | (0.366) | (0.291) | (0.193)

[re6) | (1.52] | [11s] | [058] | [L.73] 1
A(TD) -0.514 -0.246 0.243 -0.027 -0.252 -0.276
(0.308) (0.508) | (0.821) | (1.537) (0.244) (0.201)
-1.66] | [-0.48] | [0.29] | {0017 || [-1.08] | [-137]
A(ITL) | -0.066 -0.419 0.302 0.043 -0.053 -0.006
(0.331) | (0.642) | (0.727) | (0.705) | (0.247) | {0.209)
{-0.199] | [-0.633) | [1.103] | [0.064] ! [-0.235] | [-0.029]

[-2.
15

Note:
e Estimated standard errors are in parenthesis ().
o Zescores (Z = 34—) are in square braket [.

o Critical vaiue for Z = —1.643 for 1-tailed test with a = 0.05.
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Tabie 4.2: R ion Analyses of Tt Effects for the Original Data Based on
Partial Likelihood Method for all Groups; and Linear and Restricted Partial Likeli-
hood (RPL) Estimation Methods for the Combined Group.
App- R 3 Combined Est. f;
1:5u | 2:8n | 3:8n | 4:Ba LE RPLE

A | -0514 | -0619 | -0.697 | -0650 | -0.547 | -0.580
(0.308) | (0.364) | (0-415) | (0.488) | (0.286) | (0.212)
[-1.668] | [-1.701] | [1.680] | [-1.339] | [-1.910] | [-2.740]
A(ID || -0.514 | -0431 | 0.146 | 0754 | -0.400 | -0.515
(0.308) | (0.410) | (0.495) | (0.916) |l (0.239) | (0.194)
[-1.668 | [-1.051] | [0.205] | [0.823] || [-L.670] | [-2.650]
Ay | 0065 | -1.386 | -0.495 | 0183 || -0340 | -0.429
{0.331) | (0.460) | (0.537) | (0.615) | (0.273) | (0.196)
i 10.199] | [-3.013] | (:0.922} | [0.208] | [1.270] | [-2.130]

Note:
e Estimated standard errors are in parenthesis ().
o Zescores (Z = 24) are in square braket [

o Critical value for Z = —1.645 (1-sided test at a = 0.05).



Table £3: R

Analyses of Ti

Effects (ignoring other covariates) for

the Modified Data Based on Partial Likelihood Method for all Groups; and Linear and
Restricted Partial Likelihood (RPL) Estimation Methods for the Combined Group.

App. Recurrence b Combined Est. 83
1:3, 2:35 3:3y, 4:8, LE RPLE
AD -0.362 -0.472 -0.346 -0.414 -0.368 -0.433
(0.298) | (0.386) | (0.298) | (0.551) ! (0.329) | (0.196)
[F1.210] | [1.220] | {-1.100] | [-0.750] | F-L.120] | [-2.210]
A(ID -0.362 -0.163 0.274 0.387 -0.119 -0.116
(0.298) | (0.380) | (0.498) | (0.333) | (0.197) | (0.198)
[F1210] | {0.420] | [0.550] | [0.720] | [-0.600] | [-0.590]
A(IID) | -0.023 -0.276 0.223 0.341 -0.039 -0.043
(0.302) | (0.431) | (0.335) | (0.546) [ (0.231) | (0.206)
[-0.100] | [0.640] | [0.420] | [0.620] | [-0.170] | [-0.210]
Note:

s Estimated standard errors are in parenthesis ().

e Z-scores (Z =

V.
el

) are in square braket [J.

@ Critical value for Z = —1.645 (i-sided test at a = 0.03).
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Table +.4: R ion Analyses of Tr Effects (ignoring cther covariates) for
the Original Data Based on Partial Likelihood Method for all Groups; and Linear and
Restricted Partial Likelihood (RPL) Estimation Methods for the Combined Group.
App. Recurrence number Combined Est. §;
L:8n | 28 3:8y 4:8a LE RPLE
A(D) -0.362 -0.472 -0.547 -0.414 -0.390 -0.470

(0.208) | (0.372) | (0-442) | (0.529) | (0.291) | (0.192)
[-1.210] | [-1.270] | [-1.240] | [-0.780] || [-1.340] | [-2.450]
A(IT) -0.362 -0.323 -0.664 -0.031 -0.330 -0.368
(0298) | (0.353) | (0.471) | (0.515) | (0.215) | (0.190)
1201 | [-0.920] | [-1.410] | [-0.060] || [-1.530] | {-1.940]
A(IIT) | -0.023 -0.788 -0.624 -0.243 -0.276 -0.361
{0-301) | (0.396) ! (0.433) | (0.506) | (0.257) | (0.198)
10,080} | +1.990] | [-1.290] | [-0.480] || [-1.070] | {1.8%0] |

Note:
e Estimated standard errors are in pareathesis ().

® Z-scores (Z = ) are in square braket [J.

i Y
se(3u)

® Critical value for Z = —1.645 (1-sided test at a = 0.05).
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4.3 Combined Estimate of Treatment Effect: Lin-
ear Estimation (LE) Versus Restricted Par-

tial Likelihood Estimation (RPLE)

In this section unlike Wei et al. (1939), we estimate the combined effect of treatment
for modified as well as original data by using the restricted partial likelihood estima-
tion (RPLE) method under all three approaches. [n this RPLE method we use the
restriction gi = 33 for k =1,---. K and then exploit the partial likelihood function
(3.2) to derive 33 and fi, for u =2,---.pand k = 1,---, K. To obtain the standard
errors of 33 we partition the (A (p— 1)+ 1) x (K(p— 1) + 1) covariance matrix Q" of

3" = (3131, .3%). where, i = (.-, 8k,)". We also compute the combined

effect for the modified data by using the linear estimation (LE) method

leul

used by Wei et al. (1989). The dard error of the esti is d by comput-

ing TK, W72V(3). where V(3u) is obtained from the K x K covariance matrix &
of By { see Wei et al. (1989). 3.2) and W7 is the kth element of the weight vector W,
Further. we present the resuits on the combined effect of treatment for the original
data based on the LE method. These estimates and their standard errors are shown
in the last two coiumns of Tables 4.1,4.2,4.3 and 4.4. Consider the results shown in
Table 4.1 and 4.2. It is interesting to observe that the RPLE method always yields
smaller standard errors than the LE method. This is true for both the original and
modified data. This is not surprising because unlike the linear estimate used by Wei at
el. the RPL estimate exploits the likelihood function. Observe that for the modified

and original data, both methods generally appear to give similar conclusions about

the signil e of the bined effects. More ifically, both

yield significant treatment effects for the original data under approaches A(f) and
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A(II) , and they yield similar significant effects under approach A(7) for the mod-
ified data. But, the combined treatment effects yielded by the RPLE method are
found to be significant at a lower level of significance (1%) than those vielded by the
LE method (significant at 5% level). Since the inference made by the RPLE method
is likelihood based, in contrast to the inference made by the LE methed, the resuits
produced by the RPLE method about the treatment effects are preferable to the LE
method.

Further, when a particular method ( LE or RPLE) is examined for the combined
linear effects for modified and original data, it is found that the standard errors of
the estimates are generally smaller for the original data as compared to the modified
data. Consequently, the treatment effecis appear to be significant on more vccasions
for the original data as compared to the modified data. These conciusions abous
the combined treatment effects are quite similar to the conclusions about the group
treatment effects for the modified and original data, reported in the last section.

In Table 4.3. where treatment is the only covariate, the combined treatment effects
are found to be insignificant under all of the approaches except for the RPLE method
under A{I}). For the original data, the combined treatment effects appear to be
insignificant for the LE method and significant for the RPLE method under all of the
zpproaches. Thus we observe again that the significance pattern for treatment effect
for she original data differs from that of the modified data, the treatment effects being
significant in more occasions for the original data. It is also observed again that uader
all of the approaches in Table 4.3 and 4.4 the RPLE method gives smaller standard
errors of estimates than the LE method.

We now combine all four groups to form a similar group with respect to all three

covariates: treatment, initial tumor number, and initial tumor size for the modified
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as well as the original data and study the signifi pattern of For both
data sets, the RPLE method is used to obtain the combined estimates of treatment
effects and combined effects of each of the other two covariates. The results presented
in Table 4.5 show that for the modified data the effects are signifi

only under approach A([), whereas, for the original data the treatment effects are

significant under all three hes. Thus the lusions derived from Table 4.5
about the combined treatment effect is similar to the conclusions already obtained
above. Observe, again that the standared errors of the RPL estimates for the modified
data are larger than those for the original data under all of the approaches, which

may be because of the correlation in the original data.



Table 4.5:

Anal

of All C

56

( tumor size, and tu-

'y

mor number) for Modified and Original Data Based on Restricted Partial Likelihood
Estimation (RPLE) Method for the Combined Group.

App- Modified Data Original Data
L3 | 2dp | 38 | udn | 28 | sdp
A(D -0.501 0.225 -0.011 -0.579 0.209 -0.051
(0.199) | (0.047) | (0.070) § (0.201) | (0.047) | (0.069)
(251 | [+78] | [0.13] | (288 | (.44 [0.74]
A(IT) -0.244 0.161 0.013 -0.489 0.110 -0.038
(0.209} | (0.052) | (0.069) | (0.209) | (0.051) | (0.068)
(117 | [20.81 | [-0.188] || [-2.34] [2.20] [0.53]
A(IID) || -0.005 0.055 0.047 -0.384 -0.005 0.029
(0.236) | (0.057) | (0.069) | (0.227) | (0.036) | (0.069)
(0621} | [0.96] f0.68] (-1.69] | [-0.086; | [0.420]
Note:

e Estimated standard errors are in pareathesis ().

5,
res (Z = —Sip—
o Zscores (Z = 2

) are in square braket [J.

o Critical value for Z = —1.645 {1-sided test at a = 0.03).
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4.4 Likelihood Ratio and Wald Type Tests for Si-
multaneous Treatment Effects

In this section we apply the Likelihood Ratio and Wald type tests to test the treatment
effects of all recurrence groups for the modified as well as for the original data under
2ll three approaches to handling censoring. More specifically, we test jointly the
bypothesis Hi : 3 = 0 (k = 1,2,3.4), first for the case where other covariates
{initial tumor number and initial tumor size) are nuisance and second under tke
assumption that the other covariates are absent ( ignored). Finally, we test the same

hypothesis about the effect for the bined group for the first case. To

test, the above hypothesis, for the first case, the Wald type test statistic as mentioned
in chapter 3 is given by

W= (B BBk (B B (+)
This was computed for both modified and original data. Aiso we performed the

likelihood ratio test, where the test statistic A* for the first case is given by

[ Lo(Bs

A = —2log (+2)
2l

. The Wald and likelihood ratio

with o' = 2,3, u =123, and
test staristics W, (4.1} and \; (4.2) have an approximately x? distmbution with K
degrees of freedom. In (4.2), Brw denotes the restricted regression estimate of Giu
and By, denotes the unrestricted regression estimate of Sk,. The values of W; and )\,
are shown in Table 4.6.

From Table 4.6 observed values of I¥; and A; for testing the hypotheses H : Gi; =
0 (k=1,2,3,4) jointly, each with 4 df appears to be insignificant (at e = 0.05) for

the modified data under all of the approaches. The Wald and likelihood ratio test



Table 4.6: The Values of the Wald type and Likelihood Ratio Test Statistics for

Testing Treatment Effects (other covariates being nuisance)

Approach Modified Data Original Data
Wy P Wy M
A(D) 344 6.45 3.93 5.05
(7>0.1) (p>0.1) (>0.1) (p>0.1)
A(ID 7.71 7.41 5.08 30.91
(p>0.1) (p>0.1) (p>0.1) (p < .005)
A(IID) 3.32 2.30 10.71 8.69
(p>0.1) (p>0.1) (025 < p < .05) (p>0.1)

appears to give conflicting inferences for the original data under approaches A(IT)

and A(III).

To test the treatment effect for the second case we computed the Wald type test
statistic W; given in {4.1), but the 8’s and ¢’s are computed under the condition
that we do not have available information on the other two covariates. We denote
the Wald statistic in this case by . The likelihood ratio test statistic here reduces
to

Az = —2log [Eﬂ(ﬁ"‘_‘—‘o)]

Ly(B:)
where By, is the regression estimate of 3i;. The values of Wa and ), are given in Table
4.7. The observed values of W, and A, each with 4 d.f. to test the above hypothesis

appears to be insignificant (at & = 0.03) both for the original and the modified data

under all three approaches.



Table 4.7: The Values of the Wald type and Likelihood Ratio Test Statistics for

Testing Treatment Effects (other covariates being ignoreed)

Approach Modified Data Original Data
W, A2 W, Az
Al 0.86 5.08 1.52 6.11
(p>0.1) (p>0.1) (p>0.1) (p>0.1)
A(ID) 1.50 241 1.37 1.15
(p>0.1) (p>0.1) (p>0.1) (p>0.1)
ALIIT) 0.04 1.89 0.04 5.71
(p>0.1) (p>0.1) (p>0.1) (p>0.1)

Finally. for the third case we also compute the Wald type and likelibood ratio test

statistics W3 and A; respectively to test the effects of the bined group,

that is , to test the hypothesis Hy : 8 = 0. Here the Wald test statistic is given by

where ,93 is the combined treatment effect and @y is the variance covariance ma-
trix corresponding to treatment which is marginally pickedup from the full variance

covariance matrix Ysa. And the likelihood ratio test statistic is as follows

i

3; u=1,2,3 and 57, is the estimated combined effects of the other two

As = —2log lL“(ﬂ‘

where v’ =

covariates under the null hypothesis Hp : §7 = 0 and F, is the regression estimate
under the assumption: Se, = B, for k =1,2,3,4 and u = 1,2,3. Now the values

of W3 and \; each with 1 d.f. presented in Table 4.8 show that the treatment effect
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Table 4.8: The Values of the Likelihood Ratio Test Statistic for Testing Treatment

Effects (combining the groups for all covariates)

Approach Modified Data Original Data
Wy Aa Wy As
A(D) 0.95 6.64 L1 8.93
(p>0.1) (p=001) (p>0.1) (p < 0.005)
A(TL 0.066 1.43 0.67 6.12
(p>0.1) (p>0.1) (p>0.1) (-01 < p < .025)
A(ILD) 0.009 0.00L 0.63 3.51
{p>01) (p>0.1) (p>0.1) (05<p<.l)

appears to be insignificant (at « = 0.05) for the modified data under all three ap-
proaches except for the likelihood ratio test under approach A(I). For the original
data the Wald and the likelihood ratio tests give conflicting inferences for the first

two approaches.



Chapter 5

Summary and Some Topics For

Further Research

5.1 Summary

It was found by Wei et al. (1989) that theotepa (treatment) was significantly effective
for the first three recurrence groups under approach A(I). When the data were
modified to make the recurrence groups as independent as possible and a partial
likelihood approach similar to Wei et al. (1989) was used for estimation, it was found
that the treatment effects are significant for the first recurrence group under approach
A([) oniy, This discrepancy may be attributed due to the fact that Wei et al. applied

the univariate partial likelihood method to correlated data.

Again when we esti d the bined effects for both data sets, it
was found that the treatment effects appeared to be significant in more occasions for
the original data as compared to the modified data. Thus we get the same conclusion
about the treatment effects from the combined aad group estimates.

It was found that although in some cases both the methods (RPLE and LE)

61
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lead to similar lusions about the signi! of the effects, the RPLE

method yields the regression estimates with smaller standard errors. Thus for this
blood cancer data set, there seems to be a difference in the outcomes depending on
the method chosen.

5.2 Topics for Further Research

In this practi the univariate partial likelihood was applied to the original as well

as modified data, where the modified data was obtained by a suitable differencing
technique. The purpose of the modification was to make the failure times recorded
at different stages, as independent as possible. It is interesting to observe that the

standard errors of the r i timates for the modified data were generally larger

than those from the original data. This finding is in agreement with the simulation
results shown by Sutradhar and Qu (1995), in the context of a cluster regression
probiem, that as the cluster correlation decreases the standard errors of the regression
estimates increases. Note, however, that a theoretical derivation to justify the above
finding is not easy in general. Further study in this direction is necessary.

In contrast to the construction of independent failure time data, an alternative way
to take the correlation of the data into account, is to apply the generalized estimation
equation approach suggested by Liang and Zeger (1986). This requires the modelling
of the correlations among the repeated failure times for each individual, which alse
does not appear to be easy.

Recently, Cai and Prentice (1995) have considered a specific correlation structure
to analyse such correlated data. Since their work seems highly relevant to this work,

a comparative study can be made in future.
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Chapter 7

Appendix



Table 7.1: Original Tumor Recurrence Data for Patients With Bladder Cancer

Treatment | Ini. Tum. | Ini. Tum. || Follow-up | Recurrence time
group size number time ¢; M TR | oTa ] TE
1 1 1 of o] ol of o
| 1 3 1] of of of o
1 2 1 4f ol of of o
1 1 1 74 o of of o !
1 5 1 ) of of of o i
1 1 1 0f 6] 0f 0f o
1 | 1 ! 4f of of of o
3 i 1 i 18y o] of ol o
i ! 1 3 i8f 51 ol ol o
1 } 1 184 12) 16| ol o
1 ! 3 3 23] of of o] o
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table 7.1 contd.

Treatment | [ni. Tam. | Ini. Tum. | Follow-up || Recurrence time
group size number || time ¢; i orel s rE
L 1 3 23 10| 15 0 0
1 1 1 23 3] 16| 23 0
1 3 L 23 3 9| 21 0
ik 2 3 24 Tl 10 16 24
1 s 1 25 3| 15f 25 0
1 1 2 26 0 0 0 0
1 8 1 26 1 0 0 0
1 1 4 26 2] 2 0 0
1 3 2 284 25 0 G 0
- 1 4 29 0 e 0 0
1 1 2 29 0 0 0 0
1 4 1 29 0 0 0 0
1 6 30 281 30 0 0
1 1 3 30 2 1T 2 0
1 1 30 3 3 31 12
1 I 3 31 120 15 24 0
1 1 2 32 0 o 0 0
1 2 1 34 0 0 0 0
1 2 1 36 0 0 0 0
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table 7.1 contd.

(5]

2

20

19

11

b

16

18

36

40
41

43
43
44

43

49

number | time ¢;

~

™

size

&

™

Treatment | Ini. Tum. | Ini. Tam. || Follow-up | Recurrence time

group

o




table 7.1 contd.

T4

13
14

n

number || time ¢;

o

size

Bl

o

Treatment | Ini. Tum. | Ini. Tum. || Follow-up || Recurrence time

o

o

™~

o~

™

™

Mo

o~

~

™

™

o~

&

o




table 7.1 contd.

Treatment | Ini. Tum. | Ini. Tum. || Follow-up | Recurrence time
group size number || time ¢; Ll T T T
2 1 1 39 22| 23! 27| 32
2 6 1 39 1) 16| 23| 27
2 3 1 400 24| 261 29| 40
2 3 2 A1 0 0 0 0
2 & 1 4l 0 0 0
2 1 1 43 L| 27 0 0
2 1 1 44 0 0 0 0
2 6 i 44 2] 201 23} 27
2 1 2 43 0 0 ol o
2 1 4 16 2 0 0 0
2 1 4 46 0 0 0] 0
2 3 3 49 0 ] 0 0
2 1 1 30 0 G (1] 0
2 4 1 30 4y 2|27 0
2 3 4 34 0 0 0 0
2 2 1 34 38 0 0 0
2 1 3 59 0 0 ol 0

©

« Note: Treatment group: 1, placebo; 2, thiotepa. Follow-up time and recurreace time are

measured in months. Initial tumor size is measured in centimeters. Initial tumor number of

8 denotes eight or more initial tumors.
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