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Abstract

In survival studies the individual study subjects ma.y c::\.'l)erience multiple failures.

These failures may be repetitions of the same kind of event or may be events of dif­

ferent natures. Most of the multivariate incomplete failure time problems discussed

so far in the literature are of the former type. The multivariate incomplete iailure

time problem of the ~econd type has not been adequately addressed in the litera­

ture. In this practicum, we concentrate on the multivariate incomplete failure time

problem of the first kiild. Many authors, for e.xample, \Vei, Lin, and Weissfe!d (1959.

JASA) have analysed this type of multivariate incomplete failure time problem by

~sing the u~JVariate partial likelihood approa..::.b. The application of the univariate

pa.rt:a.I. likelihood app~oach to sc.rn correlated failure time data ma.y not, however,

reveal the actual effe<:' of the treatment. To overCOI!J.e this problem. we propose an

ad hoc modifi~a.t!on to this type of multi,..a,.';a.te incomplete failure time data, in or­

der to make the failure times (recorded at did'erent stages) indepenriet'it. and then

<l.pply the univarj,lte pa.rtiallike!ihood approach to obtain (estimate) the treatmen~

effects. Further, und~r :.he assumption that the treatment effect re[!:ains the same

ali throughout the study group (failure group), we estima.te the combined treatment

effects for multivariate incomplete failure time data, by using tne restricted partial

likelihood estimation ~RPLE) method. The uni ....ariate partia.l likelihood metnod ap­

plied to the modified data. appears to provide more appealing inferences about the

treatment effects than when this method is applied to the origilla.l data. Also the

restricted partial likelihood estimation (RPLE) method appear~ to provid~ more pre­

cise estimates for the combined treatment effects as compaxed to the linear estimation

(LE) method u:;ed in the literature, for example, by Wei et al. (1989).
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Chapter 1

Introduction

1.1 Background of Multivariate Incomplete Fail­

ure Time Study

Mult·jvariatc failure time data arise when each subject experiences several types of

event or when there are clustering of observational units such that failure times within

the same duster are correlated. More specifically, one encounter:; in practice multi-

variate failure time problems in the following two ways:

(i) Repetitions of the same event: In this case each iodi\;dual may experience

twO or mor"" distinct failures and these failures may be due to the repetitions of the

same kind of event.

(ii) Failure of distinct event: Here each subject ma.y experience two or more

distinct failures and these failures may be events of different natures.

:\105t of the multh-ariate failure problems considered so fae in the literature belong

to the first group. Frequently thi.s type of data. can be found in biomedica.l sciences,

For example, Makuch and Parks (1988) considered the follov.ing multi\'ariate incom-



plete failure time problem. In their study, in order to e\'a!uate the effedi\'eness of

tbe drug ribavrin, patients with acquired immune deficiency syndrome (...\.IOS) were

randomly assigned to one of the three groups: placebo, low-dose ribavrin, and high­

dose ribavrin. Blood samples for each patient were colleeted at weeks 4, Sand 12

and for each serum sample, measurements of p24 antigen levels. (which are impor­

tant markers of HIV-1 infection) were recorded. The ~vira.lload" in each serum was

evaluated by measuring tbe number of days when virus positi~'ity was detected, that

is, when the p24 level was greatet than 100 picograms per milliliter. Therefore, po­

tentiallyeach patient in the study should have three :ouch event times (number of

days) corresponding to the samples taken at weeks 4. S, and 12, which are repetitions

of the same event for three times, This problem mar be treated as a 3- dimensional

multivariate fai1ur~ time problem. Note, however, that in this 3-dimensional mul·

~ivariate stud:.', some ob~erva.Lions were missing, because patients did not make the

scheduled \-isits or b('.;:auSt> .serum specimens w~re it:adequate for laboratory analysis.

In c.ddition, censored ,)bservat:ons occurred when the culture required a longe:- period

of time to registe:- as \':rus p05itive than ...:as achievable in the laboratory, or when

the s~rum sampie was ..:ontam.:aa.:.ed before positivity was ((eteete,,]. Based on these

virological data, one woald like to know, for example, whether the drug ribanin er·

fectio'e1y prolonged the time to virus p05itivity and how the drug effects changed over

time_ This 3-dimensional mu[ti~'ariate problem, because of the occurance of censored

observations, now b~t.:"rr.es a multivariate incomplete failure time base<! regression

problem.

A similar rnu!ti'laz-iate failure time problem, in the context of bladder cancer, was

studied by the Veterans Administration Cooperative Urological Research Group (Byar

1980). In this study, all pa.tients ha.d superficial bla.dder tumors when they entered



the trial. These tumors were removed traasurethrally and patients were randomly

assigned to one of three treatmeats: placebo, thiotepa aad pyridoxine. Many pa.tients

had multiple recurrences of tumors during the study and new tumors were removed at

each visit. Here each recurrence time of a patient was measured from the beginning of

h.is/her treatment. Since each individual visited the clinic multiple numbers of times,

the experiment belongs to a multivariate failure time problem. As indicated in Byar

(19::50), one of the analyses to evaluate the effectiveness of thiotepa should be based

on the tumor reeurreace times computed from patients base<:! on patient '5 visit. This

tumor recurrence data for bladder cancer patients was later analysed by Wei, Lin and

\-Veissfdd (1989).

R~cently, Guo and Lin (1994) has referred to another multivariate failure study

conducted by D. H. l:ttal of Northwestern University in the context of a psychological

problem. In this psychological experiment, the main objecti\'e was to study the

chilcl.ens' abilities to lor.ate hidden objects. For this a sample of 83 childre:::. was

con::idered ar.d each of the 83 children was asked to search for objec~s hidden in 10

different iocations. For each location, the child was gi\'en :.nree cha.nces to find the

object. TOt; experiments migltt differ in tetlT'oS of whether a map wa:; ~akeu while

searching for the object and whether the map was rotated. Tbese two factors were

e:q)ccted to affect how quickly the child could find the object. The child's age (which

was catego.ized into groups, 44 5 years \"s. 6-7 years old) was a.lso thought to be

predicti,·e. Since each child was using similar technique to detecL hidden objects in

10 different locations, this problem may be considered as a multivar.ate failure time

problem of the first kind, where every finding is a repetition of the first finding.

Huster et 01.1. (1989) and Liang et al. (1993) used an example on Diabetic

Retinopathy Study (DRS) which was begun in 19i1 to study the effectiveness of



laser photocoagulation in delaying the onset of blindness in patients with diabetic

retinopathy. Diabetic retinopathy is a complication associated \vitb diabetes mellitus

consisting of abnormalities in the microvasculature within the retina of the eye. [t is

the leading cause of new cases of blindness in patients under 60 years of age in the

United States and is the major cause of ~;sual loss elsewhere in many mdustrialized

countries (Murphy and Patz, 19(8). Patients with diabetic retinopathy in both eyes

and visual acuity of 20/100 or better in both eyes were eligible for tbe study. One eye

of each patient was raodomly seleded for treatment and the other eye was observed

without treatment. The total study size was 1,742 patients followed over several

years. A sample of size N=197 of the high-risk patients as defined by DRS criteria

Was con.,idered for the analysis. Tbe end-point m:cd to assess the treatment effect

was the occurence of visual acuity less than 5/200 at two consecutively completed

4-mooth follo\tr-ups. Since each patient iI'. the study should ha~'e two event (same

kind) times, thi::: problem also may be considered as a two-dimensional multivariate

failure time problem of the first kind.

The primary question of the DRS study ......as to assess the effectiveness of the laser

photo<:oagulation treatment. S~onda.y qt;estioos were whether the survival tim<$

for the eyes of a patient were related and whether the treatment and type of diabetes

were related.

Another example can be fOlind in the experiment conducted. by Thompson et

al. (1978) on the development of mamma.ry cancer. [n thi:; experiment seventy-six

rats were injected with a carcinogen for mammar)' cancer a.t day zero, and then all

animals were git'en retinal acetate to prevent cancer for sixty days. After 60 days, the

4$ animals which remaio.ed tumor~free were randomly assigned to continued retinoid

prophyla.xis (Treatment Group 1) or control (Treatment Group 2). Rats were palpated



for tumors twice weekly, and observation ended 182 da.ys after the initial carcinogen

injection. The times to de~'elopment of mammary cancer were measured from the

day of injection. Since the same kind of eveot occurred repeatedly to each animal,

the data may be considered as multivariate failure time data of the first kind.

The multivariate failure time problem of the second type, that is, failure of distmct

event, has oat been addressed adequately in the biostatisticalliterature. This problem

can. however. occur in many practical situations. For example, AIDS researchers are

often interested in time to the drop of the CD4-I.ymphocyte count below a threshold,

in time to the first detectable level of HIV antigen, as well as in times to prominent

changes of other biological markeI"3 for an arv-infected person. Here, this is a 3

or more dimensional multi"wate failure problem of the second kind. The scientific

interest of a multivariate su.....ival study of this kind ty?ically lies in the effects of

covaria.tes on the risks for failures.

In this practicum, we will concentrate on the multivariate incomplete failure time

problem of the first kind. We win mainly be concerned with the methodological

de...·dopmcot in estimating as well as testing the treatment effect in a multivariate

in<:omplete failure time problem. For this purpose, we review a.od examine the effect

of the uni\a.riate partial likelihood approach applied by \Vei et al. (1989) to a bladder

cancer da;;a set as mentioned b~fore. In ~his regard, it is to be noted that application

of such a partial likelihood. approach to a. correlated data set of first kind may not

reveal the actual effect of the treatment. As a. remedy, a modification to the bladder

cancer data is proposed to r:lake the multi....ariate data groupwise independent, and

then we apply the uni,,-ariate partial likelihood approach to analyse such data. In

contrast to Wei et al.'s (19S9j linear estimation method we prov1de a likelihood based

esti"lIation approach to estimate the combined cancer treatment effects and to study



the ic.ference about tbem.

The specific outline of the practicum is given in the next section.

1.2 Outline of Practicum

1.2.1 Review of Univariate Incomplete Failure Time Re­

gression Model

A review of analysis of incomplete failure time data is given in chapter 2. In section

2.1, attcntioa is givea to the partial likelihood method of estimation under Cox"s

(1975) proportional b.zards models. This method wa.' used by 'Wei et al. (1989) ic.

estimating the treatmec.t effects from bladder cancer da.ta as mentioned abo~·e. Tbe

estimation method and test for regression parameters are described in 5cc:ion 2.2.

1.2.2 rvIultivariate Incomplete Failure Time Data Analysis

Chapter 3 concern.s the analysis of multivariate incomplete failure time data. Tile

regression analysis of sllch multi\·ariat.e incomplete (c()rrelaterl) data is not· adequately

studied in the literature. In this case, the main difficulty is to develop a suitable

methodology for regression effects, taking the correlation of the ra.ilur~ times iat.;l

account. Prentice et al. (19S1), Wei et al.(1989), and Wei and Lin (1989) ha.ve,

however, used the uni ...·ariatc partia.llikelihood approach to analyse such multivaria.te

incomplete failure time data. Regression estimates in such cases may not be reliable.

To overcome this problem, modification to the data is proposed in order to make the

failure times as independent as p05sible, and the univariate partial likelihood method

is then applied.



rn section 3.1, we outline the univariate partial Likelihood method to analyse the

multivariate incomplete failure time data. The estimation method and test for regres~

sion parameters are outlined in section 3.2. fn section 3.3, in contrast to \-Vei et al.

(1989), we discuss a method to estimate the combined treatment effects for multivari.

ate incomplete failure time data. by using the restricted partial likelihood estimation

(RPLE) method. fn section 3.4, a method is given to modify the multiliariate failure

time data in order to make all failure groups independent of each other.

1.2.3 Analysis of Modified Bladder Cancer Data

The analysis of modified bladder cancer data is discussed i:J chapter 4. In section 4.1,

three different approaches are discussed to analyse the multivariate incomplete failure

time data, and these tbree approaches are compared for eocb. recurrence group. Esti­

mation and test fGc treatment. eff~cts in djfferent recurrence groups for the modified

as well a.;; the original blood cancer data is discussed in section -L~. The application

of the univariate partial likelihood estimation method to the modjfied data seems

to provide more appeaJing interpretations than when this method is applied to the

original data. In coutrast to \Vei et aI's linear estimation (LE) method a restricted

partial l!kelihood estimation (RP LE) method is discussed to estimate the combined

treatment effects in section ·~.3. and it is found tnat the restricted partial likeli­

hood estima.tion (RPLE) method is more precise than the method used by Wei et

al. (1989). rn section 4.4. the likelihood ratio and Wald type tests are performed for

simultaneous treatment effects.



Chapter 2

Review of Univariate Incomplete

Failure Time Regression Model

2.1 Introduction

Over the last two decades there has been a great deal of interest in the analysis of

censorea daca, par~icularly in the conte:<:t of survival aDalysis in medical trials where

patients often survive beyond the end of the tria.! per:od or are [Cst to follow-ui' for

various reesons. For the t:nivariate failure time regression sLuciy with censored obser­

vations. many parametric and non-pa.ramertric methods are available in the literature

(d. Lawless 1982). Here. attention is focused. on the methods of estimation under

proportional hazards models. suggested by Cox (19i2). 'The proportional hazards

model is non-parametric in the seIlse tbat it involves an unspecified function in the

form of an arbitrary bas~-Iine hazard function. Therefore, this model is flexible, but

different approaches are required for estimation and testing under different conditions.

Let n be the number of study subjects and Ii be the failure time of the ith

individual (i = 1,2. ··,n). Let C; be the corresponding censoring time. Instead of



obser'l·;ng failure times Tt. T1 ,' " T.. , we observe

x, =min(T" C;).

Define the indicator variable

6, I, if T. $; C, (uncensored)

= 0 otherwise.

\I/henever Ti is missing, we consider Ci =O. Because T; is always nonnegative. th.is

implies that 6; = 0, in. such missing cases. Now, let Z,(t) =: (ZiI(t)," ,Z,,,(t))'

denote a p x 1 vector of covariates for the ith subject at time t ?: O. \rVe assume

that (T.,C.Z,(.)),i = 1,. ',n, are independently identically distributed random

quantities. In such studies our main inter~t is to know the effect of the co..-ari-

ates on the failure r,ime of the indi..;duals. For the estimatio:l purpose, Cox's pro­

portional hazard moGe!. is widely used. The Cox model for censored survival data

specifies that the baza:d function for the itb (i = 1,· " n) indi..;dual is given by

..\;(t, =,) = uIIlJt-o tPr{T $: t + hiT> t; =,J, t ~ 0, where z, corresponds to z,(tt For

simplicity, ail throughout A,(t, =d will be denoted by A,(t) which is given by

.1,(1) = .I.(l)exp()'Z,(I)), if I ~ 0 (2.1)

where AO(t) is an arbitrary and unspecified base-line hazard function and fJ = (PI,' . ,.J"Y

is a vector of regression coefficients, indicating the effects of the covariate:>,

Here one may also want to estimate Ao(t), from censored data.. One approach is to

maximize the likelihood function for the observed dato. simultaneously with respect

to fJ and .\o(t). A more attractive approach is one based On the concept of partial

liJ;:elibood as presented by Cox (19i5). In Cox's approach, the likelihood function for
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P does not depend upon >'o(t), which then ca.n be m&Ximized to give iU1 estimate of

{3 and to provide tests for p in the absence of knowledge of >.o(t). Dnce:J has been

estimated, Ao(t) can be estimated. by maximizing the full likelihood function for ,\,;,(t),

assuming that /3 is equal to the maximum partial likelihood estimate (m.p.l.e.) of

;3. Partial likelihood applied to censored data problems bas been discu~sed by Cox

l1975), Efron (1977), Kalbfleisch and Mackay (1978), Kalblleisch and Prentice (1980),

and otbers. For the sake of completeness, we now outline the partial likelihood as

well as the estimation method and inferences for P based on the partial likelihood.

2.2 Partial Likelihood

Assume that in a random sample of n study subjects we ha':e a. sample of r distinct

observed failure times and n - r censoring times. Let the r individuals be observed

to fail a.t T1 ,' '. T,. The order statistics corresponding to these failure times ordered

korn $maUCH to largest are denoted by T(I) <, ", < T('l' Let R(T(i'I) denote the t:$k

set a.t TI ,,) - O. tha.t i$, the set of indi..;dual$ alive and uncensored just prior to Tw),

ror i' = 1. ". r. ~o," the pa.rtial likelihood. function sugge;ted by Cox: (19i2,1975)

(or estimating fJ in the absence of knowledge of .\o(t) is

L(8) = IT [ e",,(j'Z,~.:,)) "j"
.",,1 LIER{.l('I)e..'<PtPZ,(X.))

(2.2)

where Z.(X,) is the cova.riate vector associated with the ith individual at time Xi =

min(T"C;).

The above likelihood function does not depend on '\IJ(t) and i$ traditionally max-

imized to estimate the regres$ion parameter vector fl.

In practice ties frequently occur in data. on continous variables b«ause of roundlIlg

off or groupin!. U thW': arc onl}' a few ties, the partial likWhood can be obtained
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based on one of the modifica.tions suggested by Pete (1912<\.) as

(2.3)

where d; is the number of ureti~ ~ua.l to XI•1 and S; is the sum of the covariate

\'ectors Z Cor these <4. iocli ..;duili. tn such tie situations, the regression parameters

a.re estirc.a.ted by maximizing (2.3) instead of (2.2).

[t is important to note tbat the partial likelihood method is distribution free

and certain properties of the procedure do Dot depend on the underlying lifetime

distribution, more specifically, on the baseline haza.rd function -\o(t). This is actually

true when there is no censoring, but with many t}o-pes of censoring th~ dependence

00 '\o{tj is small. H the distribution form of .\o(t) is known. that is , the data come

from a. puticular knoYo-n baseline hazard function, tbere v,-ill be some loss of efficiency

in ~ing tee oon-parametdc a.pproach instead of the carrect parametric mocieL in

5OtT'.e C~, however, this loss of efficiency is slight (d. Lawless 1882}. 1~ ~bou1d

also ~ mentioned that the regres~ionparameter vector fJ C.l.O be estimated by direct

ma.ximum likdihood rather than through the partial likelihood. Maximum likeL:hood

is, however, Ie:!s CJ)D~·enient than the partial Lik~ihood method beca.U5e it requires

simu!~a.neous ~onsider~t:on of iJ and >'o(l)-

The estima.tion of 13 based on Cox's partial Likelihood and the inferellce about d

are now summarized below.
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2.3 Estimation and Test for (3 Based on Partial

Likelihood Approach

The tog likelihood arising from (2.2) i~ given by

logLlp) ~ t ',P'Z,IX,) - t ,;log ( L: exp(p'z,(x,))) (2.4)
i:::l ,=1 I€Jl(X(.)}

and the first derivati ..-es of togL with respect to the elements of 8 are

= 0 at herwise.

Substituting g,{:3) = ~·i(X;)exp(.J'ZI(Xin in (2.5) the score function reduces to

U(p") = t "Z,"IX,I- t 5, [E ~:'"IX,~,(3)] . (2.6)
;=! ,:1 _1=19/(. )

The second partial derivatives of (2.4) are

luwUJ) :;~~~~
_ t6. [O=~ ,\'i(XflZr.. {X;)ZI.(X;)exp(,B'Z,(X";)))(E? J Yi(Xi )",xp(,6"Z,(Xi)))

;=\ ' (I:7=, Yi(X;)exp(~IZI(X;}))2

_ (E?=II'i(X;)ZI.. (X,)exp(.:3'Zr(X,»)O::::7=1 Y,(Xj):I.. (x;)e;~p(8IZdX;)))]

n::::?"'l Yi(.'<;)exp(.8'ZtCX,»)"

_f:., [14:;.. z,"(-';)Z,:('>,)"IB)) ll::::', ,,(,ill
;=1 (LI=,9/C8n

_ (Llal z,.. (X;jgiCB»)CL:j ! 21.. (X;)9/(,3))] (2.7)

CLI.:lg/(;;,))2
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The ma..'Ci.mum partial likelihood estimator /J for ;3 is defined as the solution to

the likelihood equation

which can be solved easily by the Newton-Rapbson iterative method utilizing (2.6)

a.cd (2.7) as

where .9.~ denotes the value of fJ at the hth iteration. f/(,3h ) is the score vector U(!3) =

(U(/ld . .. .U(.8p ))' evaluated at p =: j", and

D, = (a'logL)
8.8..8.13", .J~

is th~ P x P mattix with general (u, w)th element gi,-en by (2.7) evaluated at .8".

ft appears that maximum partial likelihood estimates (m.p.l.e. 's) obtained by max·

irnizing LCB) possess the usual asym.~toticproperties of ordinary maximum likelihood

estimates under quite broad conditions. Cox ( t9(5) and Kalbfleisch and MacKay

(1973) give heuristic treatments that attempt to place oW,.- mild conditions on the

censoring and lifetime processes. Alen (1978) git;es some relet;ant results as part of a

general treatment of counting processes. Tsiatis (1978a) and Liu and Crowley (1978)

detr.oostrate under models involving random independent censoring mechanisms that

the m.p.Le. is consistent and asymptotically normal and the likelihood ratio tests

based on L(.3) are valid.

Now to make inferences about fJ one can use a very simple approach by treating

/J as being appro:rimately normal with mean .8 and covariance matri.,,< [(.l3)-t, where

!LO) = (-:;~~~)6 \\;tb u = 1, .. ,p; Ut = I, .. ,p



which implies that under Ho : fJ =fJo

has asymt>totica.lly a :(2 dist.ribution with p degrees of fr~om_

rnIerell~ can also be based on likelihood ratio methods, in which case,

.I~-2Iol(~)
[(II)

(2.8)

(2.9)

has an asymptotic X2 distribution with p degrees of freedom.

Further. for testing the hypothesis Ho : J = .80, one call constnrct the well-known

..core test statistic

U(PoW'(Po)U(Bol (2.10)

which again has an asymptotic x2 distribution with p degrees of freedom. Here

U(fJo) = a~O:'L iAl

is the score function which has a.n uymptotic normal distribution with mean zero

and covariance matrix r-l(dol.

In some sun'iva! studies, it is, seen that one patient may experience two or more

distinct faihues. Suppose ;bat each patient experiences K (~ 2) such failures. These

/\ failures may be due to repetitiollS of the same kind of e\'ent or they may be e'.-ents

of different aature. In either case, these K failure times for a patient witi be corre­

lated, The regression analysis of such multivariate failure time data is not adequately

discussed in the literature, \oVhile, in general, it is not easy to take the correlation of

the data into account to analyse such multivariate failure regression data., some au-

thors (cr. Pr~ntice et a1. (1981) Wei et at. (1989), Wei and Lin (1989» ha...e used. the

univariate pa..rtia.l likelihood approach to analyse the multivariate failure time data
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which arise due to the repetitiocs of the same kind of event. Regression est mutes in

such cases are usually coD!istent but will Dot be fuHy efficient. Tim is because, in

this approach, estima.tes axe obtained based on the assumption that the K groups of

failure time data. Me independent, when in pra.etice they Me correlated. Nevertheless,

in the next chapter, we outline the uni....ariate partial likelihood approach used by Wei

et a1. (1989), among others. to analyse the multivariate incomplete failure time data.

Io tbe same chapter, we suggest a modification to the multivariate fai!ure time data

discussed. by Wei et a1. (1989), in order to make the K groups of failun! times al­

most independent of eaca other. The application of the univariate partial likelihood

method to such modified data will naturaHy produce regression estimates sim.ilar to

the estimates obtained by certain suitable methods using the correc: correlation rna·

trt.'( of the failure time data. The modification of the multivariate fai!u...-e time data

is discus~ed in the context of ca.n:er da.ta considered by Wei et al. (1969).



Chapter 3

Multivariate Incomplete Failure

Time Data Analysis

3.1 Introduction

In many survival studies we record the times of t .....o or more distinct failures on each

subject. These failures may be events of different natures or may be repetitions of

th~ same kind of ewmt. as mec.tioned in the last chapter. Sc\"eral regression meth­

ods have been p;oposed in the literature to deal with situations where individuals

experience rcpeate>:i failures such as multiple tumor recurrences. These methods im­

pose specific structures of dependence among the recurrences 00 each subject and

can be thought of as generalizatiollS of sun"ival data techniques in wbich the bu·

ard function modeling is continued beyond a subject's first failure to the se<:ond and

subsequent failures. For example, Lawless (1987) presented a class of parametric and

semiparametric procedures based 00. nonhomogeo.eous Poissoo process models with

proportional ioten,ity assumptions. The counting process formulatioo of Andersen

and GiU (1982) can be regarded as a special case of the Cox proportional intensity

16
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mode!. The approach of Prentice. Williams. and Paterson (1951) diffe~ £rom that of

Andeneo and Gill (1982) io. two aspects: (a) the risk sds Cor the (1: + l)th ~-

rences are restricted to the individuals who ha....e experienced the first k recurrences;

and (6) the underl}ing intensity functions and regression para.meters are allowed to

vary among distinct recurrences. The method of Gail, Saotner, and Brown (1980)

is a two-sample special case of Prentice et a1. (1981). Wei et a1. (1989) proposed

semiparametric methods to analyze general multhariate failure time data. Here. the

multhariate failure time dAta. correspond to a K x 1 dimensional random ve<:tor, J(

being tbe number of recurrence groUpi. Wei et aI. (1989) model such multivariate

data by using the margir.al distribution of each of the K groups. :'10 pa:1.icu1ar stI".1C­

lure of dcO'cadence among distinct failure times on each subject was imposed here.

The regression parameters were estimated by maximizing the failure-specific partial

likelihoods. and the resulting estimators across all types of failures were shown to be

asymptotically jointly normal with a covariance matrix that can be easily estimated

from the data. r.n this chapter we outline the regression analysis of multj~-a.riatefailure

tim~ obser..-aticns ioUowiag Wei e~ al (1989), among others by using lhe univa....iate

partial likelihood metl10d and .....e suggest a modified mIJlti~<uiate incomplete iailure

time da.ta in the coate.'Ct of tumor recurreo~ da.ta used by Wei et al. (1989). Also.

unlike Wei e~ a.:. (l9S9), we discuss a methc.d to estimate the combined trea.tment

effects for the multivariate da.ta by using the restricted partial likelihood estimation

(RPLE) method.
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3.2 Univariate Partial Likelihood Approach

Let there be n individuals in a study and let Tt-i' (i = 1, ",n; .l: = 1" ',K) be tbe

ktb failure time of the ith subject. Here. instead of T.« one observes the bivariate

e;n is tile censoring time and

6/ri = { 1. if T,a $ C.i (uncensored)

0, otherwise.

U T;n is missing, we assume tht CIn = O. Since TIri is always positive, this im9lies

that XIri = 0 and "in = O. l\ow. let us ~sume that Zh(t) = (Zl-i1(t),' . I Z;np(t»'

denote; a. Jlx 1 vector of covariatcs for the ith patient at time t ~ 0 with respect

to the kth type of faih.:.e. Cooriitional on Z"", the failure vector T. = (Tho ". TKo)'

and ceosoriog \"ector C, = (Cti, ",CKi)' (i = 1, ··,n) ~ assumed to be in·

dependent. Furthermore, ooe. car:: assume tbat (X;.Di,Z.(.)} (i = 1" -.n), wbere

Z. = (Z;,.· '. ZKi), are indepe::ldently identically distributed (lid) rand.:lffi \-ectors

\\;th bounded CO\"arla;es Z;(.). In such multivariate failute time data to estimate the

effects of co~-ariates. the widely wed Cox's proportional haz.a.rd function ..\t,;(t), for

the kt~ type of failure of the itb subj~t has tbe fonn

(3.1)

where '\ko(l) is an arbitrary and unspecified baseline hazard function and Pit =
(Pu, .. 'Pier)' is the failure-specific covariate parameter vector.

As in the univariate c~ to estimate the regression parameter 15 one can use the

Cox's (1972, 1975) partial likelihood approach. Let us assume that. in the abO\"C
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random 5"amplc of D. individuals there are r distinct obsen-ecJ fa.ilure times and n - r

censoring times with respect to ktb failure group. Let R",(t) = {i : Xjd?: t}. that is,

the set of subjects at risk just prior to lime l with res~t to the kth type of failure.

Then similar to (2.2). Cox's (1972,1975) partial likelihood for the ktb group :5

L(),) ~ IT [ exp(8;Z,,(X.)) ]'.. (3.2)
.=1 Ele~{x(.'I)e.'(P<'~Z",(X"i}l

where Z", is the covAriate \"ector corresponding to the individual observed to die a.t

X(..,;}.

Then the maximum partia.l likelihood estimator PI< for 13:. is the value that maxi­

mizes the partial likelihood fllD.CtioD. (3.2).

[n case of a fe'A' lies the !.ikelibood function (3.2) is replaced by

L(8,) ~ IT [ exp(S;S,,(X,,)) ,] ' ••

i_I (I:I€R"(.'('(.'lle:q><'8~Z,"(XH)})··

'Gbere dlri is tb~ numb~r of failure times equal to -""./0; and Sh is the sum of the covariate

vectors Z/rt for the5'e d.,. subjects.

Therefore. in tie ~;(uatio~ to e;timate the reg~sion parameters one should use

toe likeE~ood function t1.3j. But the Iikt"lihood function (3.3) is more difficuit Cor

computation than tbat of (3.2). However, as re.:ommanded in the literatlU"e (d.

Lawle;s. 1982) that (:1.3; can be approxima~ by (3.2). We discuss the estimatioo

and tC!it based on (=3.2) a.s Collows.

3.3 Estimation and Tests For {3:

The log likelihood arising Crom (3.2) is gh·~ by

logL(P,) ~ t 6"P~Z,,(X,;) - t 6,;log ( L exp(!r.z,,(X,;))) (3.4)
;,.1 ._1 leR(X•• )
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and the first deri\'d.ti\"e5 of log! are

8IogL{,9,)
ap;;:-
t '~Z~.(X~) - t '. [L<eRI-'''' Z".(X~l<;",ca:z"(X~))l
0'=1 izl LIER{X•• I exp(8..Z.w{X... ))

t,~Z~.(X~) - t,~ [L'._ Y::(X~)Z".(X~)e"P(Il;Z,,(X~)) .5)
.:1 .=1 LI:1 Y",(X...,:)e."q)(Pi,Z.w(Xli})

where YId(t) = [(X,,/ ~ t) and more specifically, Y.-,(X.;) = 1. if X. , ~ Xn and 0,

otherwise.

Substituting G"I(,S~} = Ykl(Xb)exp(p~ZIcI(.Yko» in (3.5) the score function reduces

to

(;(,3 ) = ~,·z· (~) - ~, . [["1 z".(X,;)G,,(;3>i] (3.6)
.l:u t=t h .1:,. ~ ki ~ I.. Ei:::t G

k
tC8

k
)

\Vei et aL (1939) obta.in~ the ma.ximum partial likelihood estimates :3:. of f)" as

the solution of the likelihood equation

U{/Jr...J = 8lo:;~B..)=0
The estimator 3. is consistent for!J~ if the model (:],1) i~ correi:dy specified.

The estima.tor d.'s are generally correiated. As shown by \Vei et a.L (1959). for

large n. (#i,'" .fJ~·j' is approximately normal with mean (pt, .. ,!fKY and covariance

matrix Q. say. For large n, the co'lo-ariance matrix of C~, "" ,;fK)' can be enimateC.

by

.bIK(~'.~K~ ]

DKK(PK,PK)

(3.7)

where DIr/(JJ:".dJ), (k,l = 1, "",K) is the p x p estimat~ asymptotic covariance

matrix between nlr-C3" - p,,) and nl/2(~, - i3f) which is gi,"en by
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FOt" add.itioD.aJ details see Wei ~t aI. (l9S9). By theorem 4.2 of Anderson and GiL:

(1982), the matrix 04.;.(.5... ) is the consistent estimate of A,,(P,,) and is given by

A/r{,i,,) = -I E6 .rEi'.. ! Y.a(x",)Za(·'·l-i)8:!:exp(~Z..n(X"j))
n j::l leI I:":I Y:n(X",)e.'(})(,O.Z.ti(Xloi»
_(1:7.. y,,(x.t )z.;(x' j )-;'<P(.9:.Z ,,(x.j ))\"] • (3.8)

l:"sl Yr,;(X"j)exp(,8~ZH(X"j» }

Here. (l~1 denotes the ma.trix aa' Cor a. calum vector a.

In (HI,

iJlclcak,~d = 11-
1t Wlrj(.ak)~V;j(.8,j
J:I

where

and

~(P.;t)

n- 1~ l'~;(t)Z1-i(t) l!xp (tf.Z,.,,.(t))

n-l~l'k.;{t)e.'<P(,9"Zh:(t)}.

The matrix Q provides a basis for simultaneous inferences about the fJ" '!J. For

example, suppose that ODe is interested in the effects of a. particular type of covariate

on the K event times. More specifically, one may be interested to test jointly the

hypothesis

HO:,tJ ltL ~ 0, k= 1,' "1'(

H .... :fJicl < 0

p.9)
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where {Jill is the treatment effect for the kth group. To test this hypothesis Wei et al.

(19S9) used the Wald type test statistic

(3.10)

which bas approximately Xl distribution with K degrees of freedom. Here in (3.10),

t'K>tK is K)<. K estimated covariance matrix of PUI obtained by pa.rtitioning the

pK x pK estimated covariance matrix Q, of p. Further, based on the assumption

that treatment effects of all groups are same, that Ls, ;3u = ... = 13/d = P.i, 'Wei et al.

(1989) estimate fl,·l by using a linear combination of the PH '5. that is. Z~"'l WIo.a"1
with L:f:,l WI< = 1. By \-Vei and Johnson {l985}, the estimator.31 = (,jUt" ,!JKd'

with weight

where e = (I, . - ,I)', bas the smallest a!"ymptotic variance among all of the linear

est~aton;. We use this tineu estimation approach to estimate :3:1 for modified data

as well as for the original data..

We remark here tbat in contrast to \Vo et ai. (1989), ol".e may test the bypothesis

(3.9) by using the likelihood ra.tio method, and the combined estimate of P.i can

be obtained by using the restricted ma:crmum likelihood approach. \Ve follow th~e

procedures in the next cha.pter ior the modified data set as well as for the original

blood cancer data.
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3.4 Combined 'Ireatment Effects: Restricted Par-

tial Likelihood Estimation (RPLE) Method

In this section, unlike Wei et al. (1989), we discuss a method to estimate the com­

bined treatment effects for multivariate incomplete failure time data by using the

restricted partial likelihood estimation (RPLE) method. First, we estimate the com-

bined treatment effect considering all other covariates as nuisance and second under

the presence of treatment only (other covariates a.:e ignored).

3.4.1 When Other Covariates are Nuisance

For th:s case we impose the restrictions

(3.11)

to the ?artia[ likelihood function (3.2) and estimate the combined treatment effects

.B~I' Under the restriction the likelihood function (3.2) nolV reduces to

L(8:,,13; .. . 8·)~frfr[ ,xp(fi.;Z,,,P:,,)+3;'Zi;(X,,)) 1'" (3.12)
. h -'<=1;=01 LIER~(x.;)exp(/·tZI".+P;:Zk!(X.ki))J

where Zk, = (Zki2. ",Z",,,y is the covariat~ vector corresponding to the individual

observed to die at Xk• and 13k = (Pia, .. •13",,)'.

Letting .8" = C8~t,.8i', ... ;3;"~)' the log likelihood a.rising from (3.12) is given by

K "
10gL(fi") ~ L: L: 'h(fi"Zh'(X,,) +a;' Z;,(X,,))

*:::t':::\

-t t ,,,log ( I: ,xp(~.;Z,,"X,,)+tI;'Z;,(Xn)))
*'=1.:::\ IER(X.,)

and the score functions for estimating fJ.i and 13k:," ,l31tp are given by,
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and

(3.[4)

respectively. where, u =2... ,p, and Gk,(p·) =Ykl(Xii ) exp(.8~IZal(X."i)+8k'Zkl(XH»)'

Now the ma.timum partial likelihood estimators P~I and fi,; = (.8l'2,' " /1,.,)' are

obtained by using )iewton Raphson method a.:!I the solution of the equatiollS

(t tben foUo....-s from Wei et a..I.(19$9) that, foc large n, (.8~I,iJi',· -,Pk)', where,

iJ~ = (.8kZ: "l)~)' is appro:.:ima.tely nonnal with mean (.8"11.~' ·· . .8'K)' and covan­

uce matn.'< Q., (say), where Q" can be estimated following the procedure that was

used to compute Q in (3. j). Nmv the new estimat~ variance covariance matri... ¢­

of Q. is given by

D.,C8:i.Pi)

iJu{~i •.8ii

where b.,A,iJ;,!J;), (k = I, ",I{) is the 1 x (p-l) estimated asymptotic covariance

vector between n l/2(P:r - P;) and nlnea,; - ,j.) whicb is given by
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Similariy, Duo(P."iJ;.). (k,k':::: 1, -', K) is the (p-l) x (P-l) estimated asymp­

totic co...ariance matrix between nl/'2(.Bk -11k) and n l /1(Pz, -13;.) which is given by

For additional det&ils see Wei et aL (989). The variance of the combined estimate

,9~1 is obtained as

n-liJJ.8~1·.j.i)

n- I .4:-tca.i)B..cj~I' ~.·d.<i:-t(.8~,)

where.

A.(P:;) -, .f-- '" li. [Ei., Z",(X"I'G"CJ·)
n .6l tt "J Li.t G~i(P')

_(Ei., Z:dX:i)~';(8"))·']
L.=,G"tS )

with Gi;(.a-) = Yii(X'J) e.'q)C8:-1 Z1-il (X-"i) +.a;'ZZ;(X",)) and
K •

B.Jj~l'j.i) = ,.-1 L L n~l(..j:"l)
bo.lpol

where

and

1\-1~ Yki(t)Zj:;:(t)exp (P,iZal(t) +.3;'Z;;(f))

n- It Ya(ncXp(.j~ZIhI(t) +P;'Z;;(tl).
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3.4.2 When Other Covariates are Ignored

As in the a.bove SKtioQ applying the same restriction (3.11), the pa.rt.ial likelihood

function (3.2) reduces to

LC,>:;) ~ IT IT [ ~",,(P:",Z.,CX.) ]'..
bt i=l L:1ER.lx{~'1}exp(P:i.Z~/I(Xki}

The log likelihood function from (3.15) is given by

Ii: ..

10gL(J.;) = 2: 2: 6.(j;Z",(X,,))
.\:=1 i",t

a.nd the score function for estimating p~ is given by,

81o,LIP.;)
~

t t 6"Z.,IX.) - £: t 6. [l::'.., z~.cx~:)Gmp"')l (3.16)
,",I i.-I 1=li""l L,.. IGJ</.(f1j,)

where, Gm3~1) = ~'(.Yh}cxp(.8'"IZcli(X.l:;)

The ma..'Cimum partial likelihood estimator .~ is obtain~ as the solution of the

equation

&lo~~~;:,) = o.

Now fo:lowing (3.T) the estimated variance co..Griuce cnatn.'( Q•• of QU is given

by

and the variance of the comb:ned estima.te #~l is obtained as

n-'b-<iJ~,iJj)

n-tA:-l(0:"1)B-<.8~1'~I)A:-I(.8~1}
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where,

with GkiC8~,) =Y.ti(Xltj ) exp(,3:1Zki!(X.~j)) and

fJ..(~.~,,/3"I) = n- i t t ~vJI().i)
'=lj=i

where

and

S;-{O)(.3.i;t)

r:-
1~ r~;(t)Z.tiI(t) exp{P'."rZ;;i1(t))

n- I ~Ylti(t)e.XP(.a.iZ.nl(t)).

3.5 Ad Hoc IVlodification of Bladder Cancer Data

The multivariate failure time for each blood cancer patient discussed in Wei et al.

(1989) are not independent for the 1\' (K = 4) different groups. Wei et al. (1989),

however, used the univariate (marginal) partial likelihood approach to obtain the re-

gression estimates as well as the estimate of their covariance matrix. These regression

estimates may be treated as be interpretable like the least square regression estimates
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ohtaiLed from a correlated linear regression model, and the estimate of the covariance

matrix of the regression estimates may be treated as inte£flretable as the estimate of

the correct covariance ma.trix of the least square regression estimates. This type of

regression estimate naturally will not be optimal. With this in view, we !lOW try to

obtain a group-wise independent data set as follows. which will be analysed in the

next chapter by using tbe univariate paxtiallikelihood approach.

The original blood cancer data COD.sist of initial tumor number, initial tumor size,

a followup time and four different recurrence times for each of the 86 patients. These

recurrence times were recorded based on the repeated visits of the patientd, and con­

sequently they are correlated. The analysis of such multivariate correlated data is

quite complex. Since in every \isit the recurred tumors are remo"'ed and the patient

is kept under the therapy (treat.ment) until the next visit, it seeOl>l appropriate to

consider the time gap betweeo. two consecutive recurrences as an independent recur­

reuce time for the patient io.\'olved, provided the rouowup time is adjusted (modified)

accorJiiogly. This we d,j as in the following.

Let r~i' for k = I,' '. i\·. be the original tumor recurreuce time of the ith patient

corr~pondingto his (her) kth "isit. Suppose rki be the kth modified recurrence (visit)

ti:ne of the ith patient. \Ve no'.... defin~ rJri as

and ra ri; - rC.I:_Il" for k ~ 2.

Further. let to (i = l,' " n) deoote the original followup time for the itb pati£ot.

We now coasider [{ different foUowup times for K distinct visits. The followup times

for the first two visits are given by

Iti
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Next, tbe foUowup time with respect to the kth visit for Ie 2:: 3 of toe ith patient

is defined as follows:

To demonstra.te how tbese modified tumor recurrence and followup times are com­

puted, we consider bere. for example, the l.5th patient in Table 7.1. From the Table

i.l, we ha....e t u = 24, ri.1S = 7, riu = 10, ril5 = 16 and r~.t5 = 24. :'iow the

modified recurrence times for different group;; are

'"L,U rj,ls = i

r~.15 r;.1$ - r;'IS = s.

.-\Iso the modified foHowup times for different failure groups are obtained as follows;

f3.U /1.15 - T~.15 = 14

Ius 13.15 - rJ,1S =S.

Tbi.:> data for modified foUo...."'p and recurrence times is shown in Table 3.1. Also

for the sake of completeness, we exhibit the original blood cancer data in the appendix.
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Treatment I ~i. Tum. lni. Tum. Follow-up time Recurrence time

group sIZe number fll ,. ,
.;

1 1 ., 26 26 26 26 0

~I
0 0

1 S 1 26 25 25 25 1 0 0

1 1 • 26 24 0 0 2 0 0

1 1 2 28 3 3 3 25 0 0I 1 • 29 :1:1 29 0

~I
0 0

i: 1 2 29 :29 0 O! 0

• 1 29 291 20 29 0 01 0

~ : I 6 30 21 0 I 0 28 .1
01 0,:1I 5 30 "I "I

8 .,
:1 51 0

III 2 1 30 2' 2.1 22 3

:1
4

il' I

:1 31 I 16 7 l~ 12 31 0

'1
1 1 32 32 32! 32 0 °i o[ 0

~ : 2 III 34
1

3< 3. 3.
1

~I
°i 01

0,

2
II

36 I 36 36 36 0 0
1

0

, 1 3' I "6 I - , , 29 0

~I
0

I I 2

;: 1

3
;

3' 10 0 0 :I1 4 I 40 31 23. 18 9 8 :iI 5 I, 40 24 ~1 I 10 16 31
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table 3.1 contd.

Twn. [n'Twn I Follow-up time Recurrence time

ize number II; /" f" f .. rio " '" r...

4! 4[ 41 41

43 40 40 40 0

:1
43 37 37 37 0 1

44 41 :1 35 0

45 36 25 9 11 26

4S 30 30 I 30 18

3 <9 <9 49

1

0 0

d 5l 16 l6 16 35j
1 53 36 36

1

36 17

:1
53 50 37

59 59

:: I

59

:1
61 59 37

61 59 50 45

31
61 6> 54 50

[i -I I! [3 1,

[ .

:1
11 ij [
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Treatment Ini. Tum. lo..i. Tum. Follow-up time Recurrence time

group size number fai f,. hi t" rli ,~ ,~ I r4i

I:
1 [ [0 10 10 lO 0 0

~I
0

1 l l3 13 13 13 0 0 0

~ ~I
6 l4 II II 11 3 0 0 0

3 17 16 14 12 1 2 ., 2

I2 :1 1 IS 18 18 18 0 0 0 0

~:
~ I :~

18 1 1 1 17 0 0 0

I
19 17 IT 17 2 01 0, 0

I -
21 01I 2

:!I
:21 4 ., 17

~I
01

1
2 1 .., 22

221
". 0 O[

~II 2 I
1 25 25 25 25 0 0,

01

1
2 I 1 5 I 25 2.5 25

1
25 0 01 0

1
0

i 2 1 [ 25 25 25 I 25 0 OJ 01 0

I 2 1 1. 1 26 20 12 13 6 61 ti 0

1 :2
I 1 Ii 27 21 I 21 21 6 01 01

0

2 2 1 :l9 27 27 27 I 2 0 0, 0
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table 3.1 contd.

Treatment lni. Tum. lni. Tum. Follow-up tiIne Recurrence tiIIle

group size number Iii hi hi h rio rZi I "~ T"i

2 6 1 39 35 23 16 4 12 7 4

2 3 1 40 14 16 11 24 2 3 11
., 3

., 41 41 41 41 0 0 0 0

2

I
1 1 41 41 41 41 0 0 0 0

2 1 1 43 42 16

:1
1 26 0

~I2 1 1 44 44 44 0 0 0

2 6 1 44 42 I 24

~: ~
2 18 :,

4[

I' 1
., ..1,5 4,j 45 0 0 0 01

2 1[

~I
46 44 44 44 2 0 0 01

!:
11 46 46 46

46 II
0 0 0

~I3 'i 49 49 49

:~ 'I

01 0 0

1
2 1

11
50 50 50 01 G 0

~I
II;

4 ·;0 46 26 31 4' 20 0'11

"I3
4 'I " 54 54 0 0 G oi

,I
1 II .54 161 16

:: Ii
33 0 0 0 1

II ~ ~I 59 ! 011- 3 ii .;9 59 0 0 0

Note:

• Treatment group: 1, placebo: 2, thitepa. FOUOW-llP times (ft.il and recurre:::ce times

(rln') are oeasured in months. Initial tumor size is measured in centimeters. Initial.

tumor number of eight denotes eight or more initial tumors.



Chapter 4

Analysis of Modified Bladder

Cancer Data

4.1 Risk Comparison

U1 this chapter we will a.I:.alyse the modified as well as the original bladder cancer

data by using the univariate partial likelihood method described in chapter 3, but.

the risk set for thi" likelihood computation will be geIierated based on the following

three approaciJ.t$. These approaches will d:.trer from each other due to the difference

in definitions of how censored observations are counted under each of the J( (2: 2)

groups.

Approach One (A(I): Wei et aI. (1989) used this approach to detect the

nurober of risk cases in each group. Here all the subjects (patients) censored and

uncensored are considered in each recurrence group. that is. the total number of

individuals in any recurrence group remains tbe same. The risk set for the kth

recurrence group is defined as follows:

Let RI«t) denotes the risk set corresponding to the recurrence time t. The fth

35
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(l = 1. ·-,n) individual will belong to the risk set R.l:(t) if

X/</ ;?: t, or equivalently AI?: t and ~I<I = 0,

where [;./ and X k/ are the follow-up and recurrence time for the lth patient in the kth

group respectively, and 0kl is the ceosoring indicator for the ltb individuaL Further,

let l'"k(t) be the number of individuals in the risk set R,.(t) corresponding to the

recurrence time t. It tben follows that

Approach Two (A(II)): Following Prentice et aI. (1981), in this approach the

pai:ients who were censored in the kth failure group are excluded from the (k + I)th

failure group. Here the risk set is defined as:

Xu ?: t, or equivalently ill?: t and ell = 0, for k = 1

and for k = 2. ". l....

yielding

}·~,(t) #{l: XII?: t or equivalently til?: t and 61/ =0, for k = 1

and

Ykl(t) #{l: Xi</ ?: t, or equivalently j'd 2:: t and 6(.k-tll = O}

for k=2, ··.K.

[n the first recurreace group the risk sets are S<l.me for A.(l} and A(II). For the other

groups the risk sets in this approach are less than the risk sets in A(I), that is, the

number of patients who are at risk here is less than those ia A(l).
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Approach Three (A(ID)): This approach provides a. further reduction in the

risk sets. Here we do not consider at all the censored individuals in the risk sets. For

the kth failure group the risk sets are given by:

XI:t?:t

and in tbis case

Now using the abo~'e three approaches we have r.omputed Ykl(t), the number of

!ndividuals under risk for all of the recurrence groups. The risk sets constructed

under the abo\'e approaches for original and modified data. set.s are shown in figures

4.1,4.2,4.3,4.4,4.5.4.6...1.i, and 4.8, fOf four differenL recurrence groups respectively.

Two figures for each of the four groups, for examples, -Ll and 4.2 for the first group,

show the risk set for the original and modified blood Ca.!lcer data..

Since in the first recurrence group the risk sets are equal. for the modified an<!.

original blood cancer data, there is no difference between figure 4.1 and 4.:2. Wheu

approaches are compared to each other for any data set. original or modifiP.d, the risk

sets are always smaller in A(lI) as compared to .4(1). except for the first recurrence

group, where they are same. The risk sets of A(lll) an:, however, always smaller

than those of A(ll).
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4.2 Estimation of Treatment Effects in Different

Recurrence Groups: Univariate Partial Like­

lihood Approach

In tbis section similar to Wei et al. (1989), we appl~· the uni\..mate ( marginal) partial

likelihood estimation approach to the modified data and estima.tethe treatment effects

for four different recurrence groups_ The: application of the univariate (marginal)

partial likelihood estimation method to tbe modjfied data appears to be muc..':1 moce

meaningful than to applying this method to the original data. This is because tbe

modification to the original data :'J done ir. such a way that the four .ecurrence time

groups would be rr.oderately independeot of each oth~r. ~Iore spt:cmc?Uy, Lb.e current

recurrence time is computed in such a. way that it is independent of the previous

time(s) {or the indi,-idua( coocerned. We report the regression estimate of the effect

of the tr~3.tment covariate (or tbe modified. data ....;tb thf\ sta.nda.rd error in columns 2

to 5 o( table ~.!. Our results ace presented. fo:- tb.ree diff~r~t approaches A( l), A.{ I f).

and A(IIn. where the approaches are defined in the la.zt ~tion. ""e a~ apply th~

Ulli"oriate partial lik~lihood method to the origina! data and estimate the treatm~t

effect3 (or (our different groups under all of the three approa.cbes (Table -1..2). Observ~

that the regression estimates and their standard ~rrors under approach .4(1) in Table

4.2 are same as the estimate obtained by Wei et al. (1989, Table 5, p. 1070). It is dear

(rom Table 4.1 tbat when Ho : i31d ?: 0 (k = 1. ··,4) is tested a.gainst H.. : 13k < 0,

the treatment effect appears to be insignificant except in group 1 under both A(1)

and .4.( I I) apprOAChes. Here flirt ?: 0 indicates that there is no treatment effect or

the tr~atment may detoriate patient's condition, and PI< < 0 indicates that treatmeot

is effecti·..e. linder approach A.(lI/), the treatment ~Jfects appear to be insignificant



in all the recuru'nce groups. The significant pattern o( the treatment effects for the

original data (d_ Ta.bte 4.2), in genera.!, howe'ier, appears to be quite different. For

the original data, the treatment effects under approach -".( l), a! also mentioned by

Wei et a.L (d. TableS), are found to be significant for the first t~recurenceg:roups,

"'hereas treatment was found to be insignificant in the last group. In approach A(TT).

the treatmeot effect Wa! found to be significant only for the first recurreoce group.

We rernark here tbat the censoring mechanism in .<t{II) is similar to that of Prentice

et a1. (1981). Wei et a1. (1989) also obtained the treatment effect under approach

A(IJ), but by using the model (2) due to Prentice et aI. (1981). and it was found

tha.t the treatment .....as significant in the recurrence grol.1ps 1 a..cd :1, but not in group

2. Wei et '11. (1989) illterpreted this difficulty as an effect of smaller risk sets in

approach A.(ll). But. as it was mentioned a.bo\-e. this difficulty does oot ...rise .....hen

treatment effects are computed under approach A{/1) by using the univariate partial

like!ihood method. Thw, tbis problem does !lot appear to be due to the !:maJler risk

se~, rather =t ma.y be attributed to the selection of the estimation method. \Vhcn the

treatl":lcut effects for the mo.>dified data io Table -t.} are compared to the treatment

effects for the original data iIi. Table -l.2 the treatment appears to be sig!lifi.caD.~ on

more occasioD.S for the original data., which rna.)" be due to the application of the

u.:::li\"ariate partial method to the correlated da.ta. To be more specific, one of the

main re.asons t~at treatment effects appear to be significant in more occasiOIU for tbe

origina.l data. is that the standard errors of Pu (regression estimate corr~ponding to

the trea.tment effect) a.ppear to be sma.l1er. in genera.1. tban those (or the modified

data. This behaviol.1r of the estimates of the standard errors of PH does not guarantee

inference accuracy of the treatment effects for the original data. This is because. it

hilS been shown empirica.l1y in the context of duster regression study by some authors



(d. Sutradhar and Qu (1995j) that when correla.tion among observations in a duster

ina~~, thl! standard errors of thl! regression estimates get smaller. Consequently,

although the·estima.ted standard errors of the treatment effects for the modilied data

are found to be gl!nttally larger, they appear to be more correct standard errors &:5

they were obtainl!d by the marginal partial likelihood approach applierl to the right

type of data, i.e. to the independent data.

We also analyse the modified and original data using only treatment as a covari­

ate. The results for modified and original data a.rl! presented in Tables 4.3 and 4.4

respectively. From Table 4.3. the: treatment effe;:ts appear to be insignificant for all

of the recurrences under approaches A(l),A(II) and A(lII), which may be due to

ignoring the other two) cova.riates. initial tumor number and initial tumor size. Sim~

ilar results are found £rom Table 4.4 for the oriA:inal data. except for group-2 under

A(lll).
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Table ..... 1: Regression Analyses of Treatment Effects for the ~[odified Data Based on

Partial Likelihood )fethod for all Groups; and Linear a.cd Restricted Partial Likeli­

hood (RPL) Estimation Metboch for the Combined Group_

App. 11---,_,R_e_c-ou<T,.--en_cre_n_u,-m_b_".,.-,-_+-~C_o_m_b_in_ed,-E_,_t.-,p-,·.'i'-l'
".8u 2'.0" 3'J,,! .,P.. I LE I RPLE

·0.514A(I) -0.526 -0.525 I -0.327 III -0.50$ 'I -0.494

(0.30S) (0.347) (0.'58) I(0.566) I (0.291) , (0.193)

[-1.66] I (-1.521 1·1.15] [-0.58] [-1.751! [-2.55]

A(II) -O.SH I -0.246 0.2'13 I -0.027 11 -0.252 -0.276

(0.308) I (0.50S) (0.821) I(1.55') ,'I (0.2·14) (0.201)

(·1.661 (·MS] (0.29] I (·0.017! II (·1.03[ (·1.3']

~ A(m) III ·0.066 j.0.419 0.802 I 0.045 II ·0.058 ' ·0.006

! (0.331) i(0.642) (0.02') (O.'OS) II (0.247) (0.209)

I [·0.199] (·0.633} [1.103j [o.o&lI!1 [·0.235} {·0.029}

• Estimated standard errors are in parenthesis ().

• z..scores (Z = ~) are in square braket G.

• Critical value for Z = -l.6-l5 for I-tailed tC:5t with a = 0.05.
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Tabie 4.2: Regression Analyses of Treatment Effects for the Original Data. Based on

Pa.rtial Likelihood Method for all Groups; and Linear and Restricted Partial Liketi·

hood (RPL) Estimation Methods for the Combined Group.

RPLELE
App. 11-----:_-,R_e<-,uc-"_'n_cr'_n_u.,-m_b_'Tc_-:---iI-C_om_bin-,.d_E_s'_.C.P"-"-iI

1:,311 I 2:,~t 3:8:n I 4:P41

:\{Ij -0.514 1.0.619 -0.697 I -0.650

I
, (0.308) I (0.36") (00415) I (0.-188)

, [-1.668! I [-UOlj [-1.680] i [-1.339!

-0.547

(0.286)

[-1.9lO!

-0.580

(0.212)

[-2.740!

I A(I1) ! -0.51" ! -00431 0.1'6 I 0.75"

il II (030S) I' :0.410) (OA9~) I~09?16)
~ II (-1.66S! [-1.05lj (0.290] ,O.S_3J

-0-"00

(0.239) I
[-1.670j

-0.515

(0.19")

[-2.6501 I

AIlll) li·0.066 1-1.386 -00495 I 0.183
I ,0.331) (0.460) (0.537) (0.615)

i [-0.109! {-3.013[ [-0.92'21 [0.298]

-0..429

(0.196)

(-2.1801

Note:

• Estimated standa.rd aTOrs are in parenthesis O.

• Z-sccres (Z = ~) are in square braket O.

• Critical value fOr Z = -1.645 (I-sided lest at Q = 0.05).
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Table 4.3: Regrelsion Analysel of Treatment Effects (ignoring other covaria.tes) for

the Modified Data Based on Partial likelihood :\fethod [or all Groups: and Linear and

Restricted Partial Likelihood (RPL) Estimation ~[ethods for the Combicd Group.

App. Recurrence number Combined Est. iJ:1 I
l:PlI 2:.~1 3:9:)1 4:.8H LE I RPLE ~

A(I) [ -O.3€~ ·O.-l72 -0.546 -O.41~ -0.368 I -0.433

il
I !

(0.298) (0.386) (0.498) (0..551) (0.3:19) I (0.196)

[-1.210j [-1.220J [ [-1.I00J [-0 .•.50] [-1.l20J i [-2.210[ I

i
All[) -0.362 I -0.163 I 0.274 I O~S7 -0.119 I -0.116

(0.298) i (03~01 I (0~:8) 1,·0.033)

I
(0.197) I (0.198)

I[ [-1.210J I-OA_O[ [O.ooOJ [0.720[ [-0.600[ I [-0.5901 I

A(!II) -0.023 ! -0.276 0.223 I 03H
-0 039 i -0 0-/3

I
(0.302) I(0.-/31) (0.535) (0.5-16) (0231) (0206) I

1-0.1001 [-O.6-IOj [O.4~j {0.620J [-0 170j i [-0210[

l";ote:

• Estimated standard errors are in parenthesis 0-

• Z-scores (Z=~) are in squa.re braket O.

• Critical value for Z = -1.6-1,5 (I-sided telL at Q = 0.05).
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Table -1.4: Regression Analyses of Treatment Effectll (ignoring ether covariates) for

the Origina.l Da.ta Bued OD Partial Likelihood Method for all Groups; and Line.a.r a.nd

Restricted Pactial Likelihood (RPL) Estimation Methods for the Combined Group.

App_ ~ Recurrence number Combined Est. P.ol

~ 1:.811 2:~1 3'8" 4:.8~1 LE I RPLE I

A(l) II -0_352 -0.472 -0.547 -0.414 -0_390 I -0.470

I (0.298) (0_372) (0-442) (0.529) (0_291) (0_192)

[-1.210) 1-1.270] 1-1.240] [-0_7S0] [-1.340] I [-2.450)

MIl) -0.362 I -0.323 -0_664 ~0.031 -0.330 I ·0.368

I (0.298) i (0.353) (0.471) I (0.515) (0.21.i) I (0.190)
i ! [-0_0601 (-1.5301 [-'_940][-120) [-0.9201 [-1.410]

A(Ill) i -0.023 I -0.788 -0.624 -0.243 -0.276 i -0_361
I

(0-301) ((0_396) i (0.48-3) (0.506) (0.257) I ~0.'98)
[-0.0801 I ~-1.9901 [-1.2901 [-OASOI [-1.070J I i-l.8201

~ot~:

• Estimated s:a.ndard errors are in parenthesis O.

• Z-scores (Z =~ j are in squa.re braket O.

• Critial value for Z = -1.64·j (I-sided test at Q = 0.05).



4.3 Combined Estimate of Treatment Effect: Lin­

ear Estimation (LE) Versus Restricted Par­

tial Likelihood Estimation (RPLE)

to this section unli~ Wei ~t al. (1989), we estimate the combined effect of treatment

for modified ~ wdI as original data by using the restricted. partial likelihood estima.·

tion (RPLE) method under all three approaches. [0 this RPLE method we use the

restricti·:m "it = .a,"t for k = I, ". K and then exploit the partial likelihood function

(3.2) to deri\'e!J} and ,Bin. for u = 2, ",pand k = 1. ··,K. To obtain the standard

errors of $.i we pa.ttidon th., iK(p - 1) + 1))( (K(p- 1) + t) covariance matrix Q"..:.(

p" = (p.l.;1;, ... ;3;.)'. where. fl; = C8u ... ,13K,,)'. We also compute tbe combined

treatment effect for th~ modifi~ data by using the linear estimation (tE) method

used by \"ei et aL (19$9). The sta.ndarc error of the estimate is calculated by ,;omput·

i.::lg L~I ""-::lV!;1.H). where q.8..ti is obtained from the K x K cm-a.nance matrix-if;

of :t:'1 [ see \Vel et aJ. (1989).3,2) and H'; is th~ ktb ~.emeotof the weight vector H"-.

Furth~r. we !,re!cnt thoe r~uits on the combined effeet of treatment for thoe original

data based on the LE Olctl::OQ. These estimates and their standard errors arc shown

iillhe last two columns of Tables -!.1.4,~.4,3 and -l.4. C-oQsider the results show!l in

T<J.bl~ 4,1 :lond 4.2. It is interesti!!!!" to observe thal the RPLE method alwa.y~ yielQ!

smaller standard erron: tban the ~E meth<ld. This is true for both the original and

modified data. This is not surprising because unlike the linea.r estimate used by \Vci at

eL the RPL estimate exploits the likelihood function. Observe that for the morlined

and original data, both methods generally appear to give similar conclusions about

the significance of the combined treatment elfects. sIOTe specifically, both methods

yield significant treatment effects Ior the original data under approaches .-1.(1) and



A.(lI) , and they yield similar significant effects under approach A(l) for the mod­

ified data. But. the combined treatment effects yielded by the RPLE method are

found to be significant at a lower level of significance (l%) than those yielded by the

LE method (significant at 5% level). Since the inference made by tile RPLE method

is likelihood based, in contrast to the inference made by the LE method, the rcsuits

produced by the RPLE method about the treatment effects are preferable to the LE

method.

Further, when a. pa.rticular method ( LE or RPLE) is examined for the combined

linear effects for modified and Qriginal data. it is found that the standard errors of

the estimates are generally smaller for the original data. as compared to the modified

data. Consequ~ntly, the treatment effects appear to be significant on more <Jccasions

for the original data. as comparecl to the modified data. These condusions abGut

the combined treatment effects are quite similar to the conclusions about the group

treatment effects for the modified and original data, reported in the last section.

In Table -1.3. where treatment is the only covariate, the combined treatment effeds

are found to be insignificant under all of the approaches except for the RPLE method

under A.(Ij. For .he original data, the combined treatment effect! appear to be

insignificant for the LE method and signific..nt for the RPLE method under all of the

approachoes. Thus we observe again that the significance pattern for treatment effect

for the original data differs £rom that of the modified data, the treatment effects being

significant in more occasions for the original data. It is also obser....ed again tbat under

all of the approaches in Table 4.3 and -1."\' the RPLE method gives smaller standard

errors of estimates than the LE method.

\Ve now combine all fOUf groups to fonn a similar group with respect to all three

covariates: treatment, in.itial tumor number, and initial tumor size for the modified



as weU as the original data and study the significance pattern of treatment_ For both

data ~e~s, the RPLE method is w;ed to obtain tbe combined estimates of treatment

effects and combined dI'~ts of each of the other two covuiates. The results presented

in Table ·Li show that for the modified data the treatment effects are significant

only under approach A(l), whereas, for the origina.l da.ta the treatment effects are

significant under aJl three approaches. Thus the coaclusioas deri\.-ed from Ta.ble 4.5

about the combined treatment effect is similar to the conclusions a.!ready obtained

above. Obsen'e, again that the sta.ndared errors of the RPL estimates for the modified

data are laxger than tbose for the original data. under aU of the approaches, which

may be because of the correlation in the original data.
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Ta.ble ..lo5: Regressiol1 Analyses of All Co\Ol.riates (trea.tment, tumor size, and tu­

mor number) for Modifi~ and Original Data. Based on R.estricted Partial Likelihood

Estima.tion (RPLE) Method for the Combined Croup.

App. Modified Data Odginal Data
I

1:~1 2:3i2 3:.8l.J l:,:jil 2:,jj::z I 3:,di3

A(l) -0 ..501 0.223 -D.OlL -0.579 0.209 I -0.051

(0.199) (ON7) (0.070) (O.WI) (0.047) I (0.069)

[-2.51J [4.iS] [-0.151 I [-2.88] [M4J [·0.741

A(ll)

11-
0

.

244 0.161 I 0.013 ~ -0.489 0.110 I -0.038

11

(0.209) (0.0.;2) I (0.069) (0.203) (0.051) i (0.Oti8)

[-1.171 [29.8j : [-0.188J I [-2.3·'J [2.20J I [-0.5·;1

A(llI) -0.005 0.05·; I 0.047 ~ -0.384 -0.00.')
I

0.029

(0.236) I (0.057) (0.069) (0.227) (0.056)

!
(0.069)

I [-O.O:H} [O.96J I [0.681 [-1.691 [-0.0891 [0.4201

i\'ote;

• Estimated standard errors are in pa.renth~i5 D.

• Z-scores (Z = ~) a.re in squa.rc braket O.

• Critical \<uue for Z = -l.645 (i-sided test at 0 = 0.05).
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4.4 Likelihood Ratio and Wald Type Tests for Si-

multaneous Treatment Effects

In this section we apply the Likelihood Ratio and Wald type tests to test the treatment

effects of all recurrence groups for the modified as well as for the origioal data u!lder

all three approaches to handling censoring. ~'[ore specifically, we test jointly the

hypothesis fl,. : PH = 0 (k = 1.2,3.4), first for tbe case where other cO'Y-a.riates

(initial tumor number and initial tumor size) are nuisance and second under the

assumption tbat the otber covariates are absent ( ignored). Finally, we test the Sa.IDe

hypothesi!': about tbe treatment effect for tbe combined group for ~he fust case. To

test the above hypothesis, for the first case, the \Vald type test statistic a.:5 mentioned

in chapter 3 j!'; given by

This wa.~ computed for both modified and original data. Aiso we perior:::nec. the

likeiihQod ra.tio te::t. whp.re the test statistic .\- for the first case is given by

(4.:'?)

with u' = 2,3, u = 1,2.3, and k = 1" ·,K. The Wald aud li.1,;dihood ratio

test stali~tics W l (,*.1) a.nd.\, (-1.2) have an approximately X' distnhutioo with K

degrees of freedom. [n (4.2), fh"" denotes the restricted regressIon estimate of /3iro.'

a."ld .an. denotes the unrestricted regression estimate of .Bkt•. The values of ~VI :load '\1

are shown in Table 4.6.

From TabLe 4.6 obsen'-ed values of WI and >'l for testing the hypotheses Hi: : .Bi: i =

o (k =1,2,3,4) jointly, each with 4: df appears to be insignificant (at a =0.05) for

the modified data under ail of the approaches. The Wald and likelihood ratio test
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Table 4.6: The Values of the Wald type and Likelihood Ratio Test Statistics {or

Testing Treatment Effects (other covanates being nuisance)

Modified Data Original Data

H·', -I, W, A,

A(I) 3.44 6.45 3.93 5.05

[P> O.l) Ip > 0.1) Ip> 0.1) (p> 0.1)

AIll) 7.71 7.41 5.08 30.91

(p > O.l) Ip > O.l) [p> 0.1) Ip < .00-5)

A(IlI) 3.32 2.30 IO.n 8.69

Ip > O.l) (p > 0.1) (.025 < P < .05) (p> O.l)

appears to give conflicting inferences for the original data under approaches A( II)

and A(III).

To test the treatment effect for the second case we computed the Wald type test

statistic WI given in (4.1), but th~ ,8's and ¢'s are computed under the .::ondition

tbat we do not have a\"ailable information 00. the other two co\'ariates. We denote

the \Vald statistic in this case by W2 • The likelibood ratio ..est statistic here reduces

A, ~ - 2100[~l• L,(8.,)

where fhd is the regression estimat~of 131c1- The ..'alues of W~ and '\2 are given in Table

4.7. The observed values of W'l and ..\2 each with 4 d.C. to test the above hypothesis

appears to be insignificant (at Q = 0.05) both for the original aod the modified data

under all three approaches.
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Table 4.7: The Values of the Wa.1d type and Likelihood Ratio Test Stati;;tics for

Testing Treatment Effects (other cO'.ariatcs being ignoreed)

Approach I Modified Data Original Data

t-l/2 >, W, >,

,I AU)
0.86 5.08 1.52 6.11

(p> 0.1) (p> 0.1) (p> 0.1) (p > 0.1)

I A(II)

il
1.50

I
2..11 1.37 ·U5

(p> 0.1) (p > 0.1) (p > 0.1) (p >0.1)

II Aim)
I 0.04

I
U!9 0.04 .5,.1I

I (p > 0.1) (p> 0.1) (p > 0.1) (p> 0.1)I
"

Finally. for tae third case we also compute the Wald type and likdihood ratio test

sta.tistics Hl3 and '\3 respecti\"ely to test the treatment effects of tbe combined group,

that is . to test tbe hypothesis Ho : iJ.i = O. Here the \Vald test statistic is gh'en by

where ,8'-1 i~ the c~mbined rrea.tment effect and ill is the variance cO\"arian.ce ma­

trix corresponding to t.eatment wbich is marginally pickedup from the full variance

covaria..r.ce matrix ;[33' And the likelihood ratio test statistic is as follows

> - ?l [' L,(P:, - o,;i.~,)]
3 - -- og LtC8~..)

where u' =2,3; u =1,2,:] and fJ:" is the estimated combined effects of the other two

covanates under the D.ull hypothesis Ho : ~l = 0 and iJ~ is the regression estimate

under the assumption: {31;u = .8.", for k = 1,2,3,4 and I.l = 1,2,3. Now the values

of }lf3 and .\3 each with 1 dJ. presented in Table 4.8 show that the trea.tment effect
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Table 4.8: The Values of the Likelihood Ratio Te:;t Statistic for Testing Treatment

Effects (combining the groups for all cavanates)

Original Data

.I, IV, .I,

6.64 1.11 8.93

, (p ~ 0.01) (p> 0.1) (p < 0.005)

1.48 0.67 6.12

(p> 0.1) (p > 0.1) (p > 0.1) (.01 < P < .025)

0.009 0.001 0.63 3.51

\p> 0.1) I.P > O.lj (p > 0.1) (.05 < p < .1;

appears to be insignificant (at a = 0.05) for the modified data under aU three ap­

proaches e.xcept for tae likelihood ratio test under approach A(l). For the original

data the Wald and the likelihood ratio tests give conflicting inferences for the first

two appf:)aches.



Chapter 5

Summary and Some Topics For

Further Research

5.1 Summary

It IVa,.,; fvund by \Vei et al. (1989) that theotepa (tr~atment)was significantly effective

for the fu~t three recurrence groups under approach A.(l). \Vhen the data were

modified to make the recurrence groups as independent a.s possible and a partial.

likelihood a?proach similar to Wei et at. (1989) was u~ed for estima.tion, it was found

that the treatment effects are significCit for the first recUITeac~ group under app~o:J.c.h

A(f) ani);. Illis discrepancy may be attributed due to the fact that W~j et a1. applied

tile univanate ?artial likelihood method to correlated data.

Again when we estimated the combined treatment effects for both da.ta sets, it

was found that the treatment effects appeared to he significant in more occasions for

the original data as compared to the modified data. Thus we get the same conclusion

about the treatment effects from the combined and group estimates.

It was found that although in some cases both the methods (RPLE a.nd LE)

61
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lead to similar conclusions about the significance of the treatment effects, the RPLE

method yields the regression estimates w-ith smaller standard errors. Thus for this

blood cancer data set, there seems to be a difference in the outcomes depending on

the metbod cbosen.

5.2 Topics for Further Research

In this practicum. the univariate partiat likelihood was applied to the original as well

as modified data, where the modified. data was obtained by a suitable differencing

te<:hnique. The purpo~e of the modification was to make the failure times recorded

at different stages, as iadp.peadent as possible. It is inte,esting to obser\'e that the

standard errors of tb.e' regression estimates for the modified data were generaUy l<i.rger

than those from the original data. This finding is in agreement with the simulation

results shown by Sutradhar and Qu (l995), in the context of a duster regression

probIe::n. that i\S the duster correlation decreases the standard errors of the regressio:l

estimates inGe:..se5. Note, however, tnat a theoretical deriV3.tion to justify the above

finding :s not eas.y in general. Further study in this direction is necessary.

In contr:J.St to the construction of independent failure time data, an alternati\'e \""2oy

to take the correlation of the data into account, b to apply the generalized estimation

equation approach suggested by Liang and Zeger (i986). This requires the modelling

of the correlations among th~ repeated. failure times for each individual, which also

does not appe<s.r to be easy_

Recently, Cai and Prentice (199.5) have considered a specific correlation structure

to analyse sucb correlated data. Since their work seems highly relevant to this work,

a. comparative study can be made in future.
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Table 7.1: Original Tumor Recurrence Data. for Patients With Bladder Cancer

Treatment I Ini. Tam. [ni. Tum. Follow-up Recurrence time ~

group 1 size number time t; ri.. r;i rii l ,;,11

ii' 1 , 'I 01

~ I
01 01 'I1

I,

I

, 3 , o 01 0 1

21
I, , , 0 01 01

ti
0

1
oj1 'I

, 0 0 0
,

! 51 [. [0 0 0 01 ~ ~,
I ·1 [ to : ~I

01
1

1 I 1. ,
"

01

~ I1 i 11 , 18
01 0 0 I, I Ii 3 18 5 0 01

:iI

:I 12 [~I 0 I1 I [ IS

1 ! 3 23 oi 0 0 I
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ta.ble i.l contd.

81 12 i
2.1 0

o
o
o

Treatment w. Tum. 1m. Tum. Follow-up I Recurrence time

group size number tImet; rii rii ri; r.j,

L L

il
23 l~ [15

~~ I
0

L , 23 :II: 0

II:
3 23 0
., 2.

~ :: I
16 2', 25 25 0

I ~
, 2 I 26 o 0 0 0

I
8 ,[ 26

11
1 0

1 ~I ~ ~I
,1 I 4 2611 ., ')61
I,

:1
2 2; ~ 251 0: G O',

ole I 0I 4 29 1 0,

:1
2 291

01 0 I 0 0

I 'I ~I 01 0,
0 u

" 61 30 2S 30! 0 0

!I, 1 51 30 I 21 li i 22 I 0
1I I



ta.ble i.l contd.

Treatment lni. Tum.j Ini. TllDl. FolIow·up Recurrence time

group ,ize number time t, ri·

1 3 1 36 291 0 0 0

1 1 2 37

01 0

0 0

1 , 1 40 9 "I 22 2' I

l' ~I
1 '0 16 191 23

~~2 41 q

II: '1
1 '3 ~ I ~ I 0 o ;

I I
I,

:1
6 '3 61 01 n 0

~ 1
I

1 H 31 61 9 e
Il, 1; 1 '5

91" i 20 26

II:
I

11 1 48 0 0

,I 3 '9 :~ I ~ I
0

~ ~11 31 1 51 f)

ill :1
7 53 "I ~ I

0 0,

II' 1 53 3 1'1 46 llilI, Ii 1 59 o 0 ' 0 0:

L 31 rl 1
"," 6i 24 30

L

~I
3 64

5 "I 1~ :!7

!: 3 64 2 Sl I~ 13

3 1 o 01 0 0

70



71

table i.I contd.

Treatment lni. Tum. mi. Tum. I Fol1ow.up Recurrence time

group siz~ number tim~ t.

36

10

38

g,

is

19

18

13

o 0 0

5 0 0

o 0 0 0

~ ~ I ~ I ~
1 31; I '
o 0: 0: 0

': I ~ II ~ I ~

:: ':1 ':1 :1 :

~ ~"Jjl j
2:3~1~1~

1

1

6

3

1

3

1

I

~I
I

I

: I
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table 7.1 contd.

Treatment Ini. Tum. I.ni. Tum. Follow-up Recurrence time

group size number rio: 1 r~j

2 [ [ 39 22 2312'132

2 6 [ 39 .'
[61

23
1

27

2 3 [ 40 24 26 :!9 40

2 3 2 ·11 0 0

:1 :0 [ [ 41 0 0

II ~ :1
[ • 3 [ 2•

[ 44 ~ 0 0

2: I ,; II! 2
6.

:1
4~ II

., 20
I ;1

~: tI .0 I 0 01 0

[I .61 2 0 01 0

!: 11 4 46 0 0 01 0

3 3 49
1

0 0 o i 0

[I:
I 1 50 0 0 01 0

4 [ 50 ,! :2i 2: I 0,

3 , 54

3: I
0 0

Ii 2
2 [ .54 0 :I

0

'l2 1 3 59 0 0

• Not.:: Tre&tment P'Ollp: 1, placebo; 2, thiote~ Follow-up lime and recurrence time are

meuure<!. in months. Initial tumor sae is mea.sured in «ntimete~. Initial tumoc number of

8 denotes ei&bt or more initial tumors.
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