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Abstract

Approximate indastic strain estimation is of great use in several types of applications.

Besides classical nonlinear FEA. robust techniques such as Neuber's rule. EGLOSS. etc..

are :available for this purpose. These robust techniques are applicable for small loads just

above the initial yield. These methods find secant modulus b~ on unbalanced local

element energy. They do not account for ch<ltlge in the yield boundary while computing

secant modulus. Several traditional secant techniques were developed to update the

secant stiffness directly in FEA based on nonlinear schemes. The present study explores

simple and syslem:alic methods for detcnnining inelastic effects based on line search :11111

direct secant modulus. The main concept of these methods is the minimization of the

lOla! ~idual energy "fter first linear FEA. A line seardI with the displacements due [0

the unbalanced forces spreads the yield zone considerably closer 10 the actual state.

The present study summarizes important categories of available techniques based on the

Newton.R:aphson and secant schemes (tradition3.1 as well as robust). $even different

possible 3.Itematives for robust estimation of inelastic strain based on line search are

examined. Two schemes based on Neuber's rule are examined. These are compared

with full nonlinear :an3.lysis :and EGlOSS, etc. The schemes are applied to study the

problems of simply supported beam, propped cantilever. fixed beam (3.11 with UDl),

bending of rectangular plate with inegular boundary, simple truss, stretching of a plate

with a hole, thick cylinder with intem3.1 pressure. thick cylinder with a circumferential



nOfch. and lorisheric31 shell. The problems were studied for load ranging from jusl above

initial yield 10 nc3rly limit loods. The sfudies indicale Ihat fhe line search Icchniques

significanlly improve the prediclions as compmd 10 fhose made by exisling robust

fcchniqucs. Recommcnd.:uions based on these resullS have been~. Two aIlCmalives

have bren found to be good for general bending and stretching fype problems. AnOlher

alternative has been found fO be good for Slnin concenrnllion problems.
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Nomenclature

All notations are defined in the text when used first The following is only a list of rome

frequently used symbols.

Symbo~

A,

8
C.
E,

E,

E"
E_
E,

E,

E,

representative area over which the equivalent stress acts for any

elementk
strnin-displacementmatrix
condition number for updating stiffness matrix

original Young's modulus

initial Young's modulus (same as Eo)
second Young's modulus

modified equilibrium Young's modulus

modulus at iteration i

reduced Young's modulus

secant modulus

error quantity defined as the inner product of the residual force
vector after the accelerating and the corresponding displacement
increment along the secant direction

error quantity defined as the self inner product of the residual force

vector after the accelerating process
restoring force
function value al point IIi

jacobian al iteration i

unit matrix
arc·length
an approximate stiffness matrix

diagonal triangular matrix
lower triangular matrix

tangent stiffness
global tangent stiffness matrix

tangent stiffness at equilibrium configurations
original stiffness matrix

~i;i
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5.
u,
u,

u,

6u

Au;

u'"
V
W
Z

II
a,

"8
n,
e,
e,

global constant stiffness maulx

global implicit secant stiffness matrix.

applied load
global residual force \'cctor al iteration i

global residual force vector

reference force value

residual force
cxtemalloadincrement

residual or unbalanced load difference between two successive

iterations such as i and i-!
element Strcss intensity
code allowable stress

displacements after first linear elastic analysis

displacementsal iteration i

displacements after line search

incremental displacements
improved incremental displacements

reference displacement value

volume of the structure
work done
scalar quantity

Euclidean nonn

unknown diagonal mauix. of co.efficienl at iteration i

line search parameter

accelerating parameter obtained from minimizing E;·l
accelerating parameter obtained from minimizing Et
displacement changes between twO successive iterations, e.. g,

iandi-l
load factor
Poisson's ratio
slrain in micron units 00-6)
degree of mull-axiality and follow up
total potential at iteration i

equivalent slrains after firsllinearelastic analysis

equivalentelementslrain



E.. ~uivalent element str.l.in after first linear elastic analysis

E.~ equivalent element str.l.in after second linear elastic analysis

E.. equivalent strain for itenuion ;

e II equivalent tOlai strain after line search

E, plastic slmin

e. force tolerance
E. displacement tolerance

£, principalstr.lins (i = L 2, 31
a, equivalent s~sses after fif$[ line3f'elastic analysis
<1_ arbitrary streSs in the mCKIulus softening process

a. equivalent element stress

0',1 equivalenl element stress after first linear elastic analysis

a,~ equivalent element stress after second line3f'elastic analysis

0'.. equivalent slress for iteration ;

(Aa,), additional equivalent stress

a, principal stresses(j= 1,2,3)

all strcss after line search

a, yieldSl.ress

tT
J

modifiedyieldstre5S

'if hydrostatic stress

a; deviatiric strcss(i=l. 2, )

Subsc:ripts

I
/I
1,2,3
arbi,
I,

y
/I
L

initial
s,,:c,nd
indicate the principal directions
arbitrary
equivalent
iteration number corresponding to a set of analyses
line search
maximum
reduced
yield
diagonal
lower
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Chapter 1

Introduction

1.1 Go....., Background

fnelastic sirain dctennination in structures and structural components has been a lopic of

considerable interest to researchers in engineenng problems. The importance of

invcslig3ting the inelastic effeelS of various types of sln.lCtures for adequate design is

being recognized to an increasing extent. in some cases. the behavior is significantly

nonlinear at even relatively small loading and for other structures the innucnce of the

geometry changes d~ to plastic strain on the response of the structure can not be

ncglectt:d. Economy of operational costs. ensuring perfonnancc, safety and durability of

structure an:~d of a good design. In certain designs. extensive testing is eamed OUt

in order [0 aness 3/Xur3lcly the response of the structure coruidered.. However, reliable

tesl data is often very expensive and hence the need for paramelric studies has increased

the emphasis on theoretical nonlinear analysis. Ir appropriate analysis techniques are

available, expensive tesling and accumulation of d:lla can be ~uced significanlly and (l

belIer underslanding of the struclUr:1I behavior can be obtained.

A robust and simple method for estimating inelastic effects aids design procedures in

becoming more rational and economical. Besides, inelastic analysis provides reserve

strength estimations that are available beyond the elastic limit. This reserve strength is



significant for statically indetenninate structures with high redundancies. Nonlinear FE'"

to determine inelastic response IS frequently used in engineering problems. This requires

a significant computational effon. It produces a large amount of OUtput data that has to

be interpreted properly to make pr.1ctical sense. Although cost of computation is coming

down significantly. it musl be noted that more and more problems are being analyzed for

nonlinearerfects and hence. these factors create a need for the development of simplified

lechniques for inelastic analysis. Simplified techniques also serve as checks to verify the

effectiveness of full·scale nonlinear analyses. Besides. many simplified techniques

possess 3 robustness th31. is not orten present in full-scale nonlinear analyses.

1.2 Necessity for the Robust Techniques

The Finite Element Analysis (FEA) of structures has proven to be very dfective in linear

analysis. With regard to nonlinear analysis. FEA is based on the extensions of linear

analyses. In nonlinear analysis. stability and accuracy are a great deal more difficult to

obtain than in linear analysis and depend on various factors. An imponant aspect is the

use of a. consiSlent continuum mechanics formulation and an effective FE discretization.

The: mosl difficult and inescapable stage in FEA is to solve the resulting system of

simultaneous equilibrium equ01tions. This problem becomes very djfficuh and costly if

these equations are nonlinear. The use of nonlinear elasto-plastic sU"Css-strain

relationships makes the analysis more complicated when compared to linear elastic

analysis. A second aspect is the use of material models, which represent the actual

materials under field condilions. Specific attention needs to be given to the



implementation of the material model such that it does not introduce instabilities into the

solution.

The determination of the most effective approach [0 a general nonlinear analysis is at

present largely a matter of ellperience on the part of the analyst. In numerical analysis,

the acCU!1lcy of the results obtained for a system of nonlinear algebraic equations also

depends very much on the type of the solution method employed. The most important

aspects in FEA are the appropriate finite element model selection and the corresponding

interpretation of the results. Gener:l.lly, incremental step by step solutions where the

variables are updated incrementally for each load step thus tracing the full solution path

are preferred regardless of which method is used. If complete solution path is nO(

dctennined, for the panicular case of material unloading, it is assumed that the response

of the system cannot be evaluated properly. It is also essential in each load step to get

good accuracy satisfying all FE equations: otherwise, errors can be significant, An

expected solution of nonlinear FE equations mostly depends on the number of

incremental load steps. But for a large problem, small incremental steps can result in

high coses of analysis. On the other hand, larger load steps might require more iterations

since the convergence process might be too slow. Perfonning equilibrium iterations to

obtain proper results is necessary if large or moderately large load steps are used. Thus it

is important for engineers to understand the general behavior of nonlinear analytical

procedures to control the cost and accuracy of analyses.



Inelastic FEA has become a versatile tool of carrying OUI elastic-plastic analysis after the

advancement of high-speed computers. For performing FEA. many commercial

packages are available. It is a general method and could be applied for most engineering

problems. A variety of element types and modeling techniques allows good simulation of

the problems. Nevertheless inelastic FEA has some inherent drawbacks as well.

Applying a detailed inelastic analysis is often questionable due to convergence

difficulties and the time requirements. Therefore. a detailed nonlinear analysis may not

be always significant in situations where great accuracy is not important. Moreover. the

accuracy of FEA is affe<::ted by the simplifying assumptions while modeling the

problems. This clearly shows the need of developing robustlechniques. [n the present

conteltt, robustness means the ability to provide acceptable results on the basis of

conceptual insight and economy of computational effort. Such robust techniques are

simple. reliable. and could be based on linear elastic analyses. They are capable of

predicting inelastic effects. They are relatively insensitive to errors in material models

and other such data collection problems. For performing a preliminary analysis to assess

the feasibility of a structure. robust approltimates are ideally suited. [t can be used to

identify critical locations and to approximate the response. Besides, they provide a good

alternative estimale to verify full nonlinear analyses results.

1.3 Objectives

1l\e following are Ihe objectives of the prescnt study:



I. Survey the conventional numerical nonlinear solution techniques (Secanl and

Tangent methods such as Newton-R:lphson) and approximate methods (robust

methods based on direct secant modulus such as Neuber's rule, EGLOSS. elc.).

2. Develop simplified alternative algorithms combining the ideas of convention:ll

and direct secant melhods for inelastic strain estimations. These ideas can include

line searches. relaxation locus, elc.

3. Apply the possible alternatives to a variety of problems at different loading

situations and compare the results with those obtained by inelastic FEA and the

other robust methods.

4. Investigate other possible approximate techniques such as those based on

Neuber's rule.

5. Based on the examination of possible altematives, recommend simplified

strategies to obtain approxim:lle and yet robust estimates of inelastic strains.

1.4 The Scope ofthe P.....nt Study

Chapter I gives an introduction about the importance of nonlinear analysis. The cost and

time posed by nonlim:ar FEA and the need for the robust methods of detennining

inelastic effects are very briefly explained. The objectives and the scope of present study

arealsopresemed.



In Chapter 2. malerial behavioo such as nonlinearily. conservative. non-conserv3tive.

uniaxial s~·strain curve. plastic s~·SIrain relationship. and diffeR:nI types of

yielding criteria are described. The nonlinear solulion algorilhms pertaining 10 Ihe

elaslo-plastic problems are also described. The concept of combining incremental and

ilerative melh<X1s has been sludied.

A review of nonlinear solulion meth<X1s based on secam methods is presented in

Chapter 3. Always using conventional melhods (e.g.. nonlinear FEA) are nOI suitable for

feasibility study as well as Ihe preliminary stages of design. Although these solution

melhods give the best represent:ltion of slruclural plasticilY. oblaining solution may not

be easy. Some approximate methods but robust methods (EGLOSS. etc.) based on direci

secant techniques (elastic modulii adjustment lechniques) have been studied. The

usefulness of Neuber's rule for nonlinear evaluations is also discussed.

Seven alternatives (L.5MI to LSM7) based on line search. direct estimation of secant

modulii 3l1d relaxation line projections are studied in Chapter4. In addition. two

combinations (NI and N2) b32d on extensions of Neuber's rule for determining the

inelastic strains have been studied.

All these a1lernatives are applied to a variety of numerical examples in Chapter S. They

include beams. truss, plale wilh hole. cylinder with notch, bending of plate. thick-walled

cylinder 3l1d torispherical head etc, They include problems with generaJ bending and

stretching as well as problems having strain concentration. Results obtained either by the



robust techniques currently in use such as EGlOSS or the detailed inelastic FEA are

compared with those obtained by possible selected ahematives.

In Chapter 6. conclusions and recommendations with a brief summary are discussed. The

Appendices contain the input files and ANSYS 5.5 macros written using ADPL that are

necessary for solving the numerical e:tarnples. An exact analysis for the bending of 3

simply supported beam with VOL is listed in Appendix E.



Chapter 2

Literature Review

2.1 Introduction

In numerical analysis. the accuracy of results obtained for the nonlinear simultaneous

equations depends very much on the type of solution methods employed. The nonlinear

solution techniques of simultaneous equilibrium equations thai arise in the static analysis

of structures and the overall effectiveness of an analysis of numerical procedures used for

the solution depends on problem involved as well. In obtaining accuracy, the finite

element model could be a significant factor. In the: FEA. an accuracy of the analysis can.

in general. be improved if a more refined mesh is used. However, this means the cost of

the analysis. Therefore. in practice. an analyst tends [0 employ larger and larger finite

element systems (i.e., load steps) to approximate the actual structure. But the fact is that

considerable knowledge and judgement by the user might be required to assure a stable

and accul1lte solution. In general, a nonlinear stalic FEA is most effectively performed

using incrememal formulation combined with iterative procedure where !he variables are

updated either incrementally (corresponding to successive load steps) or iteratively. In

such a solution it is important that the governing finite element equations are salisfied in

each load step. The equilibrium solution could result in many load steps that render the

analysis of a large finite element prohibitively expensive. In fact. its practical feasibility



depends on Ihe algorithms avail3ble for Ihe solution of the resulting system of equations.

Because of requirements Ihal l;uge system be solved. much rescan:h effon has gone inlo

optimizing !he equation solution algotithms. In the present Chapler. some of popular and

related solution methods are outlined.

1:.2 Need ror Nonlinear Analysis

All phenomena in cOnlinuum mechanics are naturally nonlinear. Although using linear

fonnuJation is convenient in practice of solving many engineeting problems. sometimes.

nonlinear analysis is required in order to describe their behavior ildequately [Elsawilf.

1979]. Auempts were made 10 solve such type of problems during the first half of the

pasl century. Series appro.\imations have been applied for solving problems with simple

boundary conditions and idealized loading. Closed fonn solutions are seldom possible

because of the comple.\ity of the governing differential equations. Numetical techniques

are being employed for such cases and many important problems can be solved fOf"

praclical purposes using digital computers. Among the techniques used. the: finite

element method has proved 10 be the best in dealing with complicaled problems.

espcc:ially with complex boundaries and loading conditions.

"The main difference belween the mathemalical theory of continuum mechanics and that

of the finite element method lies in the fact that the former establishes the behavior of an

infinilesimal elemenl. By allowing the dimensions of this infinitesimal element to

approach zero. p3l1.iaJ differential equations can be detived 10 describe the behavior of the



whole domain. Such equ:uions mUSI be: integr.l.led over the domain 10 eSlablish the

solution. On the: conlr.lry. Ihe finite elemenl melhod sludies the propenies of an element

of finite dimensions. Integration is replaced by a finite summation, resulting in a system

of algebraic equations [Logan. 19921. On solving these. !he behavior of lhe whole

domain is known.

1.3 Causes of Non-linearity

Non.linearity arises in problems from several sources. which can be grouped into three

principal categories:

Clulnging StOlU'

Some suuetura1 features exhibit status..<Jependc:nt non-linearity. For instance, a tension

cable is either slack or IOUI; a roller support is ei!her in contact or not in contacl. Status

changes are directly related to load. or determined by some external causes. Situatioos

where contact OCCUl$ ~ common to many different nonlinear applications, and art a

distinctive and imponant SUbsel to the category of changing-status non-linearity.

Geom~ Non-linearity

When a structure experiences large defonnations. its changing geometric configuration

causes the structure to respond non·linearly. Basically. large deflections or rolations

characterize geometric non.linearity.

10



Nonlinear stress-stnlin ~lationships are the most common cause of nonlinear structural

behavior. Many f:IClor'S innuence material stress-strain properties. including load history

(as in el:1Slo.-plastic response). environmental conditions (such 3$ temperalu~), and the

amount of lime that 3 load is applied (as in c~ep response).

2.4 Behavior of Materials: Consen'ative and Non-CoRWrvative

When all energy put into a system by extemal loads is recovered if Ihe loads are

removed, the sySlem can be said to be conservative. If some energy is dissipated by the

system due 10 plastic defomation, the system is non-conservative. An analysis of a

conservative system is path-independent. Loads usually can be applied in any order and

in any numbc:rof inc~ment5 without affecting the end ~sult5. Conversely, an analysis of

a non-conservative system is p3th-dependenl. The tlCtual load ~sponse history of the

system must be followed closely to obtain 3CCurale ~sult5. Palh dependent problems

usually requi~ that loads be applied slowly by using many sub-steps 10 the final load

value. In the present work only proportional loading paths are considered The wort can

be: extended to non-proportional loads, if required.

2.5 Material Stress-Strain Curve

A typical stress-strain diagram for steal is shown in Fig. 2.1. The straight portion of the

curve OA is the elastic range, and point A is the yield point that demarcates the linear and

II
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Fig. 2.1: Uniaxial Malerial Stress-Strain Curve



the nonlinear range of the behavior. On funher increasing of load. the stress-strain curve

follows the nonlinear p3th AB. Since the defonnation continues the stress required also

increases showing the resist:mce of the material to funher plastic deformation.

The stress requirerl to produce this further plastic deformation is usually referred to as me

flow suess. Stress and strain are no longer proportional. therefore there is a need to

characterize plastic behavior through more appropriate constitute equations. If the

material unloads from stressed up to point B. the unloading path is considered to be linear

and parallel to me loading OA. The total strain is comprised of two parts. The panion

DE is the recovcrable elastic and the portion 00 is the irrecoverable plastic strains.

2.6 Theories of Failure

As the loading is increased. a point is eventually reached at which changes in geometry

are 00 longer reversible. The beginning of nonlinear behavior ismus marlced. The extent

of the inelastic defonnation preceding fracture is very much ~ndent upon the material

invol ....ed. From the viewpoint of design. it is imperative thai some practical guidelines be

available to predict yielding under the condition of stress. as they are likely 10 exiSt in

service. To ITlCCI this need and to understand the basis of material failure. a number of

theories has been developed. Some of them are briefly outlined below [Ugura! and

Fenster. 1987; Shames and Cozzarelli. 1992].
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According to the muimum principal stress Iheory (Rankine (1802·1872»). matenal fails

by yielding when the m3.Jl.imum principal stress ex~ the tensile yield stress Of the

minimum principals~ exceeds the comprfiSive yield stress.

According 10 the m:lJtimum shears~ Iheory (Tresc.3.). yielding Sl3ftS when m:uimum

she.ar stress in the m.3.terial eqwJs lhe maximum shear stress .3.1 yielding in a simple

tensiletesl.

In.3. multiaxial slress state (if 0'[ > 0": > 0',). the ffi3.Jl.imum shearingscress 1'.... is

(2.6·1)

Therefore, yielding begins .....hen

(2.6·2)

According to the maximum principal strain theory (51. Venant (1797·1866». a malerial

fails by yielding .....hen the maximum principal strain exceeds the tensile yield strain or

when the minimum principal str.lin exceeds the compressive yield strain. This theory has

been applied with success in the design of thick-walled cylinders.

The von Mises Criterion was proposed by Huber 09(4) and funher developed by von

Mises (1913) and Hencky (1925), According 10 this theory. failure by yielding occurs

when the distonion energy per unil volume in a state of combined stress becomes equal

to that associated wilh yielding in a simple tension test



(2.6-3)

This theory finds considerable e:<pcri~nlal support in situations involving ductile

lTL3.terials and plane suess. For this l'e3S0n. it is commonly used in design.

2.7 Basic Stress-Strain Relationships

Consider an clement subjccted to a gener.ll slate of stresses 0\ > {7: > (7J where l. 2. 3

indicate the principal directions. The principal stresses in any three-dimensional stress

system can be written in the summation of it. the hydrostatic stress or the mean of the

three principal stress vaJucs and 0"'. the deviatoric stress. The hydrostatic or the mean

stress for the uniaxial case is given by

it",O"j+O"'+O"l "'~
) )

Therefore. the deviatoric stresses are obtained as

(2.7-1)

0'. (2.7.3)

Similarly. the dcviatoric slrains can also be defined. For volume constancy. the sum of

strains must be zcro.
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Symmetry in the uniaxial case leads to

(2.7-4)

and a comparison with Eq, 2.7-3 shows that

(2.7-5)

Eq. 2.7-5 can be manipulated 10 give the following equations [Ugural and Fenster. L987J

E, =*[u, -v(u, +<7,)]

where, £, is the secant modulus (a function of the state of stress) and evaluated by

£,=f
in which (7. and E. indicate Ihe effective stress and strain, respectively.

(2.7-6)

(2.7-7)

According to von Mises Iheory, the effective stress connects Ihe uniaxial yield stress to

the general state of stress at a point given by

u. =*«u, -u,J' +(u, -u,)' +(u, -u,J')'

16
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(2.7·9)

For loading situations in which the components of stress do not incre;lSe continuously. the

incremenu.l theory mu.st be used. Upon these circumsUnces. the 10131 strain theory Of the

defonn:l.Iional theory can not describe the complete plastic behavior of rhe material. The

incremental theory offers another approach. treating not me rOlal srrain associated with a

stale of stress but rather the increment of strain.

2.8 Solution Algorilhms for Nonlinear Problems

In lhe finite element idealization. the whole (continuous) body is divided into a finite

number of sub regions called finite element. which interconnect at node. The solution

function over each element is assumed in tcnns of the genet:llized nod:l.l variables. which

are usually the function ilSclf and sometimes. its deriv:atives. Using this approxirmle

function with an appropriate variational principle or the governing differenti:l1 equations

me element m:atrices are obtained. Finally. a system of algebraic equation is soh·cd. in

order to obtain the unknown nodal va.ri3blcs.

Based on any of the well-known va.ri:uion3l principles in solid mechanics, a variety of

finite element models h3.S been est:ablished. At present, lhe displacement model is most

widely used bec3use of simplicily :and easy to progrun. The principle of minimum of

potential energy is used to construct the load-no(bl var\3ble equations for the

displacement model. The displacement functions arc: assumed over each element so that

"



compatibility within exh element and acrou inter-clement boundaries is assured. A

displacement model of a nonline:LJ' finite element problems demands the simultaneously

satisfaction of the global stiffness equation. In this model. the equilibrium equations are

required to solve. namely:

(2.8-1)

whert. R 3fld fiR are the applied (e~lemal) and the generalized residual or unbalanced

force vectors. rtspectively. B is the derivative matrix defining strain-displacemenl

rel::ltionship and q is the stress vector based on strain energy per unit undeformed

volume.

These solution techniques are quite general ;rnd are entirtly 3fld directly applicable to all

those analyses that lead to symmetric coefficient matrices. Two types of solution

techniques such as direct and iterative are available. In direct (incremental) solution

techniques. the equilibrium equations are solved using a number of load steps and

operations are predetennined in an exact manner. In such techniques. the e1aste-plastic

problem is dealt as a series of linear analyses. The 103d vector is broken into a number of

smaller but finite increments. The structure is assumed to respond linearly within each

step and the response is obtained without iter.nion. The stiffness (in secant methods) or

tangent matrix (in Newton.Raphson schemes) is evaluated at the beginning of each step

and assumes constant for the whole increment. The final solution obtained by the

18



summation of the i~menlal displacements due to each load incn:ment. Errors are

likely 10 aet:umulate after several steps unless very fine steps are adopted.

Otherwise. the solution may diverge considerably from the true response. The accuracy

can be improved by applying equilibrium corrections.

Iterations are used when an ilerative lechnique is employen In such technique. the whole

load is applied on the struelun: and equilibrium is restored by iteration. Either the

stiffness or tangent matrix is refonned 011 every iteration (e.g.. Full Newton -Raphson

method) or held constant for several ilemlions (e.g.. modified Newton-Raphson). An

iterative procedure can be assumed to have converged when the unbalanced load

becomes acceptably small. The Euclidean nonn or some other property of the vector

judges lhe convergent tolerances. It may also be advantageous 10 devise mixed iteration

schemes combining the fealures of both techniques. Currently. most of lhc: finile e1emenl

packages are based on a step-by-step load incrementalion and a corresponding iteration

procedure.

2.8.1 Tho Newton-Raphson Method

The most frequently used iteralive schemes in the FEA are lhe Newton-Raphson (NR)

schemes (Kao. 1974: Bathe. 1996]. Such Newton-Raphson schemes are based on the

tangential stiffness matrix and can be applied as an incrementally or iteratively or both.

Afler each load increment or iteration. the tangent stiffness matrix is reformed. At each

iteration. the NR pnxcdure evaluales the unbalanced load. The difference belwccn the

"



restoring force and the 3pplied load gives the unb31:mced lo3d. A linear solution is

performed with the unbalanced load. The unbalanced load is re-cvaluated unlil the

convergcna: is satisfied.

The coerticient matrix is upd:lIed and a new solution is obtained. At each sub step. a

number of equilibrium iter:uions may be performed to obtain a converged solution. This

iteration continues until the problem converges.

In this method, the converged solution u, for the p3l1icul3r load step is known. The

solution for the next load step or iteration is required. The updated tangent m3trix 'K,

and the restoring load F, are computed corresponding to the configuration of known

solution u" The incremental displacement ~, and the next approJ.imation of U,., 3le

evaluated by

'K,lisl, =R-F,

14,0' =u, +6u,

(2.8-2)

(2.8-3)

Repe3ting Eqs. 2.8-2 10 2.8-3 3Ild updating of tangent stiffness matrix at each iteration

gives converged solution. 1lle solution oblained at converged would correspond 10

applied load level. The final solUlion would be in equilibrium such thai the resorting load

F, (computed from the current stress state) would equallhe applied load R (or at leasl



F,

R

Fig. 1.2: Basic: Newton.Raphson Sdteme· Single OOF Systml
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within some tolerance). This procedure is 3lso known as Full Newton-Raphson (FNR)

procedure. Iterative solution (for one DOF system) is depicted gr.aphically in Fig. 2.1.

L'sua.!ly. the N'ewton-Raphson methods ~ used according to their original ckfinition in

which the load increment is predetermined The determination of lood step size in

Jdvance requires a lot of intuition. neverthdess the final convergence failure in the

neighborhood of critical points can not be avoided [Ramm. 19821. Without additional

modifications the solution procedure is not able to trace the structural response beyond

critical points. Although post critical states are USU:l.J1y not tolerated in the design of a

structure the knowledge of this range allows a much better judgement of the structure.

1.8.1 The Initial StitT.... Method

In the Full Newton-Raphson (FNR) schemes. re-calculating and factorizing tangent

stiffness matrix at every iteration are expensive and laOOrious. The expense of these

re-calculating and factorizing many times the coefficient matrix defined in Eq. 2.8-2 can

be avoided.. Only the stiffness matrix needs to be formulated corresponding to a

linearization of !he response about the initial configuration of the finite element system

[Zienkiewicz. et a1.. 1969).

The initial stiffness matrix 0 K is applied in Eq. 2.g-2 and operates on the equilibrium

equations given below

°Kl!u, :::R-F, (2.8-4)



R

o

"'

Fig. 2.J: Initial Stiffness Method· Sinale DOF System



This process may lead to a very slow convergence fOf" significant non-linearity. Even the

solution m:ty diverge (Schmidt. 1977]. This occurs particularly when the system sliffens

during the n:sponse.

To pn:\'ent divergence of the 5Olution fOf" slowly sliffening problems :Iond meet the

convergence e:lrly. it may be effecti\'e 10 use the modified Newton-Ra!Jhson procedure

described below.

2.8.3 The Modined New'on·Raphson Method

In a modified fom or Newton-Raphson method. lhe tangent stirrness is held constant for

severnl iterntions before updating is required. Evaluating and factoring a new tangent

stiffness matrix at each iterntion is expensive and time consuming. In practice.

depending on the non-linearity present in the analysis. to evaluate a new tangent stiffness

at a certain time. can be more efficient. The choice of load steps Ilo'hen the stiffness

matrix should be updated ikpends on the degree of non-linearity in the system response

and the effectiveness of the solution approaches also depends on lhe specific problem

involved. For small load increment. matrix updating at every iteration appears

unnecessary. Establishing new tangent stiffness r K (where. r indicates an accepted

equilibrium configurations for ttmgent stiffness IK) only at lhe beginning of each load

step modifies the FNR procedun:. This reduces the computing lime considernbly

involving fewer tangent stiffness n:formations than the FNR procedun:. Of course. lhe

modified Newton-Raphson method (MNR) procedure requires much mon: Iterations in a



R

F,

---!.-o","--~""----+--!----_u

Fig. 2.4: Modified Newton-Raphson Scheme· Single DOF System
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load step compared to the FNR procedure. The most powerful procedure for reaching

convergence is definitely the P.Io'R procedure but if the MNR procedure is employed. the

solution cost may be reduced significantly. Therefore. practically. both solution options

can also be very valuable.

The procedure followed in such method is exactly the same as in the case of the FNR

procedure except no reformul::llion of tangent stiffness at each iteration.

In such cases. Eq. 2.8-2 can be replaced by

rKau, =R-F,

2.8.4 Alpha-Constant Stiffness Method

(2.8·5)

An improved value 6u; of incremental displacement l1u, obtained in the FNR schemes

could be evaluated as [Nayak and Zienkiewicz, 1972)

6u, =a,l1u,

where. a, is an unknown diagonal matrix of coefficients.

(2.8-6)

Defining au; as the improved displacement change corresponding to force liR,_I' the

approximate relalion is expressed as

(2.8-7)



where.•K:-K-'K is a function of displacements and the degree of non·linearity of lhe

problem 3t ;my stage.

Pre-multiplying the above equ:lIion by - K- l and inserting Eq. 2.8-2.

R

(2.8-8)

FIC. 2.S: Alpha· Constant Method-Accelerated Iteration
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The appro~imation 10 the second term by taking the previous a'_1 is

Thuswriling.

rx/and

which defines the matrix 0, for Ihe lito diagonal term results in

(2.8-IO)

(2.8·11)

(2.8-12)

wilh the reslr1clion that when t1u.' =0. 0: =1.

This allows an improved v:a.Jue 10 be used immediately and the new displacemenl

cOlTeClion is calculated from Eq. 2.8-6.

u.s SeII.Correcting Inc..mental Procedu..

Stricklin. el al. (1971 J first proposed Ihis fonn and Slebbins {1971 J sludied it again. The

procedure has proven itself 10 be stable and accurale upon proper seleclion of Z

"



[Massett. et aI.. 19711. The advantages are best realized for problems of highly nonlinear

behavior and for systems with many ~grees of freedom.

Derivative of equilibrium equations of Xu::).R - F (where K = suuctural stiffness

mauix. u = generalized displacements. ).R = gencrnlizcd forttS due to applied e.uemal

loads and F = column mauix of pseudo forces due to non-linearity) with resp«t to the

scalar multiplier A yields

KU:r::ER-F

(X+k)u=R

where. F(u):: k(u). k :: dF,/du 1

(2.8-1])

(2.8-14)

A common solution procedure is by an Euler forward difference. which results in the

incremental solution procedure. The solution procedure lends 10 drift away from the true

solulion unless very smaillood increments are taken where Z is a scaIarquantity.

(2.8·15)

It is n()(able that even if 6R becomes nonzero the solution lends to reduce the

unbalanced loads 6R exponentially to zero and is thus called a self-correcting procedure.
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For Z:: I/d).. the procedure reduc~s to lh~ increm~nlal approach with a one slep NR

melhod.

2.8.6 Variable Step Incremental PnM:edure

Simplicity is th~ main auraclion of th~ incr~mental approach and ~asy to incorporate in a

comput~r program. But in basic form of th~ increm~ntal approach. it giv~s rise 10 an

appreciabl~ drift ~rror. Melhods that have been presenled in this seelion to ~ucc rhis

~rror I~nd. The on~-step NR corrector of Hommeist~r. ~t a!. (1970) and th~

mid-increment proc~dute [Roberts and Ashw~11. 19711 among of ochers are "ery effectiv~

at improving the 3CCUrxy of lhe basic incremenlal t«hnique. However, these improved

melhods do not possess 31\ accurate estimate of the discretization erron. Thomas (19731

presenled an algorithm that does have such an eSlimat~ and suggested for use where the

varying step size mighl prove profilable.

In this algorithm, the nonlinear problem of struclural analysis is Inlnsformed into a first

order ordinary differential equation such as

, K(u)du :: dJ. R (2_8-16)

In the limit as dJ. approaches zero, the first order ordinary equation can be wrinen as

(2.8-17)
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The eXlTapolation method such as Bulirsch and Stoer method (1%6) can be used to solve

lhe abO\·e equations. Two separ.lle estimates of displacements are given al every other

load in~menl. These values are aver.lged before the algorilhm is ~peated with a new

slatting point 3$ shown in Fig. 2.6.

u

Loads

fl•. 2.6: Basic SkpS • Bulirsch and Stotr Method

The basic steps of Bulirsch and Sloer melhod to be followed are listed below.

"



(2.8-18)

2.8.1 Load-Displacement-Constraint Methods

Structurnl collapse load calculation is an important requirement in a nonlinear FEA. The

structurnl response becomes increasingly nontine3t as Ihe load increases. At certain point

the collapse load is reached. In order to calculate the response for collapse mechanism.

initially relatively larger increments are employed. 8U1 at the approaching of collapse

mechanism. the load increment needs to be small. However. there is a difficulty of

traversing the collapse point. At that point the stiffness becomes singular (i.e.. the slope

of the load.<fisplacement response curve is zero) and beyond thaI point a special solution

procedure that allows for a decrease in load and an increase in displacement must be used

to calculate the ensuing response. In this approach. when iteration in the load

displacement space is performed the i~mentalequation becomes

(2.8-19)

Both incremental displacemenl Wi, and load multiplier 6,;\, are the unknowns. The

additional equation required for solution is
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Several consuaint equations of lhis form have been proposed e.g.. the tangcm constant

arc-Ienglh (Risks. 1979) and the spherical conSliltlt are.length [Crisfield. 1981 and

Ramm, [981-821. Balhe and Dvorkin [19831 considered two different COnstraints

depending on the response iltId load le\'el: the spherical conslrainl arc-length and a

constanl increment of extemal work.

The spherical COnSliltlt arc-length is in general used in the response of regions far from

critical points and incremenlal equation mentioned above becomes

(2.8-21)

where, tJ is the arc length for the step and P is a normalizing factor.

The scheme of conStanl increment of elltemat work W based on the hislory of iteralions

in the previous incremenlal steps is used ncar the critical points. In this case, the

increlnCmaJ equation becomes

(2.8-213)

and for j = 2.3,4, ..

(2.8.22b)

To solve the governing equations, this incremental equation can be rewritten as

II



ria- 2.7: Spherical Constanl Att·Lmgth Crilerion

w

Displacltmltnls

F"rg. 2.8: Constanl Incremenl of Exlltmal Work Crilltnon



Therefore,

'KAU. :A'olR-F,_.

.1u:. :.:1u,+&.t,611

(2.8-23)

(2.8-24)

(2.8-2S)

Employing the spherical constant arc length criterion, the next load multiplier and

displacements are evaluated. The load multiplier liA, is detennined from the quadratic

equation given by the combination of Eqs. 2.8-21 and 2.8-26 to 2.8-27.

A, =).,_1 +liA, (2.8-26)

(2.8-27)

The load multiplier ~ is directly c3.lculated using external work criterion from Eq.

2.8-22 and the values Ai, for i : 2,3,4•..... arc: obtained from

(2.8-28)

A complete solulion algorithm based on the above method must of course also contain a

special scheme to start the incremental solution and iterating when divergence is

imminent and then reSlOm itself wilh new iteralive parameten. Complete solution



methods with these: ingredients are very valuable and are in common use for the SlruCtura!

collapse analysis.

In SO~ nonlinear static analyses in the case of Newton.Raphson I"nethod. the tangent

stiffness manix may btcome singular (or non-unique). causing severe convergence

difficulties. Such occurrences include noalinear buckling analyses in which the structure

either collapses completely or 'snaps through' to another stable configuration. The

arc-length method causes the Newton-Raphson equilibrium iterations to converge along

an arc, thereby often preventing divergence.

2.8.8 Classical Gauss-Seidel Method

Clough and Wilson applied the Gauss-5eidel method in the early applications of the FEA.

An initial estimate "I for the displxement is assumed. The number of ilerations required

depends on the quality of the starting estimate ". and on the conditioning of the stiffness

matrix. After an initial estimate. the ilerative equation to evaluate the solution is

(2.8-29)

where, Ko and K L are the diagonal and lower triangular matrices, respectively.

To increase the convergence rate, an over relaxation P can be used. In such cases, the

equation mentioned above becomes
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(2.8-30)

2.8.9 Conjugate Gradient Method

The conjugate gradient algorithm of Heslenes and Stiefel (1952) is one of the most

effective and simple iterative techniques for solving equilibrium equations (Bathe. 1996)

The algorithm based on the idea of minimizing 100ai potential given;lS

(2.8.31)

The aim is to improve displ~ment ",.1 efficicnlly corresponding to decrease total

potential (i.e., for n"1 s n,) in each iteration. like the classical Gauss-5eidaJ method.

lhe starting displacement "I is chosen and calculated the residual or unbalanced force

M l based on the fonnuJa

(2.8-32)

If the residual force 1iR, equals to zero. quit that evaluation for I1Cxt independent load

otherwise. the values of "••,. AR"1 and P"l are calculated based on the equations given

by

""1 ""u, +a,p,

M", = liR, -a, K p,

J7

(2.8-33)

(2.8-34)



P,., =dR,., +P, p,

a,=~,'dR,
p, K p,

p. = dR,~IM,.,
, M,'M,

The iteration continues until the convergence 3chieves.

2.8.10 Improved Iteration Strategy

C!.8-35)

(2.8-]6)

(2.8-37)

The comput3tional self-correcting method proposed by Haisler and Sukklin [1971 J was

r.lIher cumbersome. 8atoz and Dhatt (1979J modified Ute sel(~orrecting method and

proposed a simpler procedure discussed below.

In this method. incremental displacements Au. and du, due to 6R unbalanced load and

t1R., an external toad increment, respectively, are calculated as

6u.='K-'M

6.w.='K-'M,

(2.8-38)

(2.8-39)

The actual eltlemal load increment to be applied is aM. such that that displacement

incremem satisfies the specified displacement limil. The value of a is easy to calculate

from

l8
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