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Abstract

Approximate inelastic strain estimation is of great use in several types of applications.
Besides classical nonlinear FEA. robust techniques such as Neuber's rule, EGLOSS, etc..
are available for this purpose. These robust techniques are applicable for small loads just
above the initial yield. These methods find secant modulus based on unbalanced local
element energy. They do not account for change in the yield boundary while computing

secant modulus. Several i secant i were to update the

secant stiffness directly in FEA based on nonlinear schemes. The present study explores
simple and systematic methods for determining inelastic effects based on line search and
direct secant modulus. The main concept of these methods is the minimization of the
total residual energy after first linear FEA. A line search with the displacements due to

the unbalanced forces spreads the yield zone considerably closer to the actual state.

The present study izes important ies of available i based on the

Newton-Raphson and secant schemes (traditional as well as robust). Seven different
possible altematives for robust estimation of inelastic strain based on line search are
examined. Two schemes based on Neuber's rule are examined. These are compared
with full nonlinear analysis and EGLOSS, etc. The schemes are applied to study the
problems of simply supported beam, propped cantilever, fixed beam (all with UDL),
bending of rectangular plate with irregular boundary, simple truss, stretching of a plate

with a hole, thick cylinder with internal pressure, thick cylinder with a circumferential



notch, and torisherical shell. The problems were studied for load ranging from just above
initial yield to nearly limit loads. The studies indicate that the line search techniques
significantly improve the predictions as compared to those made by existing robust
techniques. Recommendations based on these results have been made. Two alteratives
have been found to be good for general bending and stretching type problems. Another

altemnative has been found to be good for strain concentration problems.
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Nomenclature

All notations are defined in the text when used first. The following is only a list of some

frequently used symbols.

Symbols

>

representative area over which the equivalent stress acts for any
element k

strain-displacement matrix

condition number for updating stiffness matrix

original Young's modulus

initial Young's modulus (same as Eo)

second Young's modulus

modified equilibrium Young's modulus

modulus at iteration {
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error quantity defined as the inner product of the residual force
vector after the ing and the ing di
increment along the secant direction

MM a s ND O
£ 2 § =

ER error quantity defined as the self inner product of the residual force
vector after the accelerating process

F restoring force

5 function value at point ;

J, Jjacobian at iteration i

1 unit matrix

Al arc-length

K, an approximate stiffness matrix

K, diagonal triangular matrix

K, lower triangular matrix

‘K tangent stiffness

K, global tangent stiffness matrix

K tangent stiffness at equilibrium configuraticns

°K original stiffness matrix

xiii
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global constant stiffness matrix

global implicit secant stiffness matrix
applied load

global residual force vector at iteration i
global residual force vector

reference force value

residual force

external load increment

residual or load di between two
iterations such as i and i-1

element stress intensity

code allowable stress

displacements after first linear elastic analysis
displacements at iteration {

displacements after line search

incremental displacements

improved incremental displacements
reference displacement value

volume of the structure

work done

scalar quantity

Euclidean norm
unknown diagonal matrix of co-efficient at iteration i
line search parameter

obtained from minimizing E,"

obtained from izing E;'
displacement changes between two successive iterations, e., g,
iandi-1
load factor
Poisson’s ratio
strain in micron units (10)
degree of mult-axiality and follow up
total potential at iteration i
equivalent strains after first linear elastic analysis
equivalent element strain
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equivalent element strain after first linear elastic analysis
equivalent element strain after second linear elastic analysis
equivalent strain for iteration i
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plastic strain

force tolerance
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equivalent stresses after first linear elastic analysis
arbitrary stress in the modulus softening process
equivalent element stress

equivalent element stress after first linear elastic analysis
equivalent element stress after second linear elastic analysis
equivalent stress for iteration i

additional equivalent stress

principal stresses (i = 1, 2, 3)

stress after line search

yield stress

modified yield stress

hydrostatic stress
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indicate the principal directions
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equivalent
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line search
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EGLOSS Extended Generalized Local Stress Strain
FE Finite Element

FEA Finite Element Analysis
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MNR Modified Newton-Raphson
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NR Newton-Raphson
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Chapter 1

Introduction

1.1  General Background

Inelastic strain determination in structures and structural components has been a topic of

interest to in i problems. The importance of
investigating the inelastic effects of various types of structures for adequate design is
being recognized to an increasing extent. In some cases, the behavior is significantly
nonlinear at even relatively small loading and for other structures the influence of the

geometry changes due to plastic strain on the response of the structure can not be

neglected. Economy of costs, ensuring safety and durability of
structure are needed of a good design. In certain designs, extensive testing is carried out
in order to assess accurately the response of the structure considered. However, reliable
test data is often very expensive and hence the need for parametric studies has increased
the emphasis on theoretical nonlinear analysis. If appropriate analysis techniques are
available, expensive testing and accumulation of data can be reduced significantly and a

better understanding of the structural behavior can be obtained.

A robust and simple method for estimating inelastic effects aids design procedures in
becoming more rational and economical. Besides, inelastic analysis provides reserve

strength estimations that are available beyond the elastic limit. This reserve strength is



for statically i with high Nonlinear FEA

to determine inelastic response is frequently used in engineering problems. This requires
a significant computational effort. It produces a large amount of output data that has to
be interpreted properly to make practical sense. Although cost of computation is coming
down significantly, it must be noted that more and more problems are being analyzed for
nonlinear effects and hence. these factors create a need for the development of simplified
techniques for inelastic analysis. Simplified techniques also serve as checks to verify the
effectiveness of full-scale nonlinear analyses. Besides, many simplified techniques

possess a robustness that is not often present in full-scale nonlinear analyses.

1.2 Necessity for the Robust Techniques

The Finite Element Analysis (FEA) of structures has proven to be very effective in linear
analysis. With regard to nonlinear analysis, FEA is based on the extensions of linear
analyses. In nonlinear analysis, stability and accuracy are a great deal more difficult to
obtain than in linear analysis and depend on various factors. An important aspect is the

use of 2 i ion and an effective FE discretization.

The most difficult and inescapable stage in FEA is to solve the resulting system of
simultaneous equilibrium equations. This problem becomes very difficult and costly if
these equations are nonlinear. The use of nonlinear elasto-plastic stress-strain
relationships makes the analysis more complicated when compared to linear elastic
analysis. A second aspect is the use of material models, which represent the actual

materials under field conditions. Specific attention needs to be given to the



implementation of the material model such that it does not introduce instabilities into the

solution.

The determination of the most effective approach to a general nonlinear analysis is at
present largely a matter of experience on the part of the analyst. In numerical analysis,
the accuracy of the results obtained for a system of nonlinear algebraic equations also
depends very much on the type of the solution method employed. The most important
aspects in FEA are the appropriate finite element model selection and the corresponding
interpretation of the results. Generally, incremental step by step solutions where the
variables are updated incrementally for each load step thus tracing the full solution path
are preferred regardless of which method is used. If complete solution path is not
determined, for the particular case of material unloading, it is assumed that the response
of the system cannot be evaluated properly. It is also essential in each load step to get
good accuracy satisfying all FE equations; otherwise, errors can be significant. An
expected solution of nonlinear FE equations mostly depends on the number of
incremental load steps. But for a large problem, small incremental steps can result in
high costs of analysis. On the other hand, larger load steps might require more iterations
since the convergence process might be too slow. Performing equilibrium iterations to
obtain proper results is necessary if large or moderately large load steps are used. Thus it
is important for engineers to understand the general behavior of nonlinear analytical

procedures to control the cost and accuracy of analyses.



Inelastic FEA has become a versatile tool of carrying out elastic-plastic analysis after the

advancement of high-speed For g FEA, many

packages are available. It is a general method and could be applied for most engineering
problems. A variety of element types and modeling techniques allows good simulation of
the problems. Nevertheless inelastic FEA has some inherent drawbacks as well.
Applying a detailed inelastic analysis is often questionable due to convergence

and the time Therefore, a detailed nonlinear analysis may not

be always significant in situations where great accuracy is not important. Moreover, the
accuracy of FEA is affected by the simplifying assumptions while modeling the
problems. This clearly shows the need of developing robust techniques. In the present
context, robustness means the ability to provide acceptable results on the basis of
conceptual insight and economy of computational effort. Such robust techniques are
simple, reliable, and could be based on linear elastic analyses. They are capable of
predicting inelastic effects. They are relatively insensitive to errors in material models
and other such data collection problems. For performing a preliminary analysis to assess
the feasibility of a structure, robust approximates are ideally suited. It can be used to
identify critical locations and to approximate the response. Besides, they provide a good

alternative estimate to verify full nonlinear analyses results.

1.3  Objectives

The following are the objectives of the present study:
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. Survey the conventional numerical nonlinear solution techniques (Secant and

Tangent methods such as Newton-Raphson) and approximate methods (robust

methods based on direct secant modulus such as Neuber's rule, EGLOSS, etc.).

. Develop ining the ideas of

and direct secant methods for inelastic strain estimations. These ideas can include

line searches, relaxation locus, etc.

. Apply the possible alternatives to a variety of problems at different loading

situations and compare the results with those obtained by inelastic FEA and the

other robust methods.

. Investigate other possible approximate techniques such as those based on

Neuber's rule.

Based on the ination of possible ives,

strategies to obtain approximate and yet robust estimates of inelastic strains.

The Scope of the Present Study

Chapter | gives an introduction about the importance of nonlinear analysis. The cost and

time posed by nonlinear FEA and the need for the robust methods of determining

inelastic effects are very briefly explained. The objectives and the scope of present study

are also presented.



In Chapter 2. material behaviors such as i i . ative.
uniaxial stress-strain curve, plastic stress-strain relationship, and different types of
yielding criteria are described. The nonlinear solution algorithms pertaining to the
elasto-plastic problems are also described. The concept of combining incremental and

iterative methods has been studied.

A review of nonlinear solution methods based on secant methods is presented in
Chapter 3. Always using conventional methods (e.g., nonlinear FEA) are not suitable for
feasibility study as well as the preliminary stages of design. Although these solution
methods give the best representation of structural plasticity, obtaining solution may not
be easy. Some approximate methods but robust methods (EGLOSS, etc.) based on direct
secant techniques (elastic modulii adjustment techniques) have been studied. The

usefulness of Neuber's rule for nonlinear evaluations is also discussed.

Seven alternatives (LSM1 to LSM?7) based on line search, direct estimation of secant
modulii and relaxation line projections are studied in Chapter4. In addition, two
combinations (N1 and N2) based on extensions of Neuber's rule for determining the

inelastic strains have been studied.

All these alternatives are applied to a variety of numerical examples in Chapter 5. They
include beams, truss, plate with hole, cylinder with notch, bending of plate, thick-walled
cylinder and torispherical head etc. They include problems with general bending and

stretching as well as problems having strain concentration. Results obtained either by the



robust techniques currently in use such as EGLOSS or the detailed inelastic FEA are

compared with those obtained by possible selected alternatives.

In Chapter 6, conclusions and recommendations with a brief summary are discussed. The
Appendices contain the input files and ANSYS 5.5 macros written using ADPL that are
necessary for solving the numerical examples. An exact analysis for the bending of a

simply supported beam with UDL is listed in Appendix E.



Chapter 2

Literature Review

2.1 Introduction

In numerical analysis, the accuracy of results obtained for the nonlinear simultaneous
equations depends very much on the type of solution methods employed. The nonlinear

solution i of si i quations that arise in the static analysis

of structures and the overall effectiveness of an analysis of numerical procedures used for
the solution depends on problem involved as well. In obtaining accuracy, the finite
element model could be a significant factor. In the FEA, an accuracy of the analysis can,
in general, be improved if a more refined mesh is used. However, this means the cost of
the analysis. Therefore, in practice, an analyst tends to employ larger and larger finite
element systems (i.e., load steps) to approximate the actual structure. But the fact is that

and j by the user might be required to assure a stable

and accurate solution. In general, a nonlinear static FEA is most effectively performed

using incremental formulation combined with iterative procedure where the variables are

updated either i y ponding to ive load steps) or iteratively. In
such a solution it is important that the governing finite element equations are satisfied in
each load step. The equilibrium solution could result in many load steps that render the

analysis of a large finite element prohibitively expensive. In fact, its practical feasibility



depends on the algorithms available for the solution of the resulting system of equations.
Because of requirements that large system be solved, much research effort has gone into
optimizing the equation solution algorithms. In the present Chapter, some of popular and

related solution methods are outlined.

2.2 Need for Nonlinear Analysis

All phenomena in continuum mechanics are naturally nonlinear. Although using linear
formulation is convenient in practice of solving many engineering problems, sometimes,
nonlinear analysis is required in order to describe their behavior adequately [Elsawaf,
1979]. Attempts were made to solve such type of problems during the first half of the
past century. Series approximations have been applied for solving problems with simple
boundary conditions and idealized loading. Closed form solutions are seldom possible

because of the ity of the g

are being employed for such cases and many important problems can be solved for
practical purposes using digital computers. Among the techniques used, the finite

element method has proved to be the best in dealing with complicated problems,

with complex and loading

The main di between the ical theory of i ics and that

of the finite element method lies in the fact that the former establishes the behavior of an
infinitesimal element. By allowing the dimensions of this infinitesimal element to

approach zero, partial differential equations can be derived to describe the behavior of the



whole domain. Such equations must be integrated over the domain to establish the
solution. On the contrary, the finite element method studies the properties of an element
of finite dimensions. Integration is replaced by a finite summation, resulting in a system
of algebraic equations [Logan. 1992]. On solving these, the behavior of the whole

domain is known.

2.3 Causes of Non-linearity

Non-linearity arises in problems from several sources, which can be grouped into three

principal categories:

Changing Status

Some structural features exhibit status-dependent non-linearity. For instance, a tension
cable is either slack or tout: a roller support is either in contact or not in contact. Status
changes are directly related to load, or determined by some external causes. Situations
where contact occurs are common to many different nonlinear applications, and are a

distinctive and important subset to the category of changing-status non-linearity.

Geometric Non-linearity

When a structure i large it its changing
causes the structure to respond non-linearly. Basically, large deflections or rotations

characterize geometric non-linearity.



Material Non-linearity

Nonlinear stress-strain relationships are the most common cause of nonlinear structural

behavior. Many factors influence material stress-strain properties. including load history

(as in elasto-pl i itions (such as and the

amount of time that a load is applied (as in creep response).

2.4 Behavior of Materials: Conservative and Non-Conservative

When all energy put into a system by external loads is recovered if the loads are
removed, the system can be said to be conservative. If some energy is dissipated by the
system due to plastic deformation, the system is non-conservative. An analysis of a
conservative system is path-independent. Loads usually can be applied in any order and

in any number of increments without affecting the end results. Conversely, an analysis of

a ive system is path- The actual load response history of the
system must be followed closely to obtain accurate results. Path dependent problems
usually require that loads be applied slowly by using many sub-steps to the final load
value. In the present work only proportional loading paths are considered. The work can

be extended to non-proportional loads, if required.

2.5 Material Stress-Strain Curve

A typical stress-strain diagram for steal is shown in Fig. 2.1. The straight portion of the

curve OA is the elastic range, and point A is the yield point that demarcates the linear and
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Fig. 2.1: Uniaxial Material Stress-Strain Curve



the nonlinear range of the behavior. On further increasing of load. the stress-strain curve
follows the nonlinear path AB. Since the deformation continues the stress required also

increases showing the resistance of the material to further plastic deformation.

The stress required to produce this further plastic deformation is usually referred to as the
flow stress. Stress and strain are no longer proportional, therefore there is a need to
characterize plastic behavior through more appropriate constitute equations. [f the
material unloads from stressed up to point B, the unloading path is considered to be linear
and parallel to the loading OA. The total strain is comprised of two parts. The portion

DE is the recoverable elastic and the portion OD is the irrecoverable plastic strains.

2.6 Theories of Failure

As the loading is increased, a point is eventually reached at which changes in geometry
are no longer reversible. The beginning of nonlinear behavior is thus marked. The extent
of the inelastic deformation preceding fracture is very much dependent upon the material
involved. From the viewpoint of design, it is imperative that some practical guidelines be
available to predict yielding under the condition of stress, as they are likely to exist in
service. To meet this need and to understand the basis of material failure, a number of
theories has been developed. Some of them are briefly outlined below [Ugural and

Fenster, 1987; Shames and Cozzarelli, 1992].



According to the maximum principal stress theory (Rankine (1802-1872)), material fails
by yielding when the maximum principal stress exceeds the tensile yield stress or the

minimum principal stress exceeds the compressive yield stress.

According to the maximum shear stress theory (Tresca), yielding starts when maximum
shear stress in the material equals the maximum shear stress at yielding in a simple

tensile test.

In a multiaxial stress state (if 0, > 0, > &, ). the maximum shearing stress 7, is

o, -0y (26-1)

Therefore, yielding begins when
o,-0,=0, (26-2)

According to the maximum principal strain theory (St. Venant (1797-1866)). a material
fails by yielding when the maximum principal strain exceeds the tensile yield strain or
when the minimum principal strain exceeds the compressive yield strain. This theory has

been applied with success in the design of thick-walled cylinders.

The von Mises Criterion was proposed by Huber (1904) and further developed by von
Mises (1913) and Hencky (1925). According to this theory, failure by yielding occurs
when the distortion energy per unit volume in a state of combined stress becomes equal

to that associated with yielding in a simple tension test.



\~0.) +(0.-0.) +(0,-0,) (26-3)

This theory finds i i support in i involving ductile

materials and plane stress. For this reason, it is commonly used in design.

2.7 Basic Stress-Strain Relationships

Consider an element subjected to a general state of stresses 0, >0, >0, where 1,2, 3
indicate the principal directions. The principal stresses in any three-dimensional stress
system can be written in the summation of &, the hydrostatic stress or the mean of the
three principal stress values and o , the deviatoric stress. The hydrostatic or the mean

stress for the uniaxial case is given by

5:%:% @71

Therefore, the deviatoric stresses are obtained as

2 = 1 o 1
a'=a,-7=30.. o. ‘-a=—-3v,. ﬂ,=6,-d=-sﬂ| 272

or, 2.7-3)

Similarly, the deviatoric strains can also be defined. For volume constancy, the sum of

strains must be zero.



Symmetry in the uniaxial case leads to

L= (2.74)
& &

and a comparison with Eq. 2.7-3 shows that
L -5 5 - constant @7-5)
o, o, o

Eq. 2.7-5 can be manipulated to give the following equations [Ugural and Fenster, 1987]

(2.7-6)

E =— .77

inwhich &, and €, indicate the effective stress and strain, respectively.
According to von Mises theory, the effective stress connects the uniaxial yield stress to
the general state of stress at a point given by

=L{o-0.f +(0:-0,) +(oy -0, (2.7-8)
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For loading situations in which the components of stress do not increase continuously, the
incremental theory must be used. Upon these circumstances. the total strain theory or the
deformational theory can not describe the complete plastic behavior of the material. The
incremental theory offers another approach. treating not the total strain associated with a

state of stress but rather the increment of strain.

2.8 Solution Algorithms for Nonlinear Problems

In the finite element idealization, the whole (continuous) body is divided into a finite
number of sub regions called finite element, which interconnect at node. The solution

function over each element is assumed in terms of the generalized nodal variables, which

are usually the function itself and its . Using this
function with an appropriate variational principle or the governing differential equations
the element matrices are obtained. Finally, a system of algebraic equation is solved, in

order to obtain the unknown nodal variables.

Based on any of the well-k 1ati inci in solid ics, a variety of

finite element models has been established. At present, the displacement model is most
widely used because of simplicity and easy to program. The principle of minimum of
potential energy is used to construct the load-nodal variable equations for the

model. The di functions are assumed over each element so that




compatibility within each element and across inter-element boundaries is assured. A
displacement model of a nonlinear finite element problems demands the simultaneously
satisfaction of the global stiffness equation. In this model. the equilibrium equations are

required to solve, namely:
r
AR=R-[Boav=0 @8-
v

where. R and AR are the applied (external) and the generalized residual or unbalanced
force vectors, respectively. B is the derivative matrix defining strain-displacement
relationship and o is the stress vector based on strain energy per unit undeformed

volume.

These solution techniques are quite general and are entirely and directly applicable to ail
those analyses that lead to symmetric coefficient matrices. Two types of solution
techniques such as direct and iterative are available. In direct (incremental) solution
techniques, the equilibrium equations are solved using a number of load steps and
operations are predetermined in an exact manner. In such techniques, the elasto-plastic
problem is dealt as a series of linear analyses. The load vector is broken into a number of
smaller but finite increments. The structure is assumed to respond linearly within each
step and the response is obtained without iteration. The stiffness (in secant methods) or
tangent matrix (in Newton-Raphson schemes) is evaluated at the beginning of each step

and assumes constant for the whole increment. The final solution obtained by the



of the i i due to each load increment. Errors are

likely to accumulate after several steps unless very fine steps are adopted.

Otherwise, the solution may diverge considerably from the true response. The accuracy

can be improved by applying equilibrium corrections.

Iterations are used when an iterative technique is employed. In such technique, the whole
load is applied on the structure and equilibrium is restored by iteration. Either the
stiffness or tangent matrix is reformed at every iteration (e.g., Full Newton -Raphson
method) or held constant for several iterations (e.g., modified Newton-Raphson). An
iterative procedure can be assumed to have converged when the unbalanced load

becomes acceptably small. The Euclidean norm or some other property of the vector

judges the It may also be to devise mixed iteration
schemes combining the features of both techniques. Currently, most of the finite element
packages are based on a step-by-step load incrementation and a corresponding iteration

procedure.

2.8.1 The Newton-Raphson Method

The most frequently used iterative schemes in the FEA are the Newton-Raphson (NR)
schemes [Kao, 1974; Bathe, 1996]. Such Newton-Raphson schemes are based on the
tangential stiffness matrix and can be applied as an incrementally or iteratively or both.
After each load increment or iteration, the tangent stiffness matrix is reformed. At each

iteration, the NR evaluates the load. The dif between the




restoring force and the applied load gives the unbalanced load. A linear solution is

with the load. The load is luated until the

convergence is satisfied.

The coefficient matrix is updated and a new solution is obtained. At each sub step. a
number of equilibrium iterations may be performed to obtain a converged solution. This

iteration continues until the problem converges.

In this method, the converged solution «, for the particular load step is known. The
solution for the next load step or iteration is required. The updated tangent matrix 'K,

and the restoring load F, are ing to the ion of known

solution u,. The incremental displacement Au, and the next approximation of u,,, are

evaluated by

‘K,Au, =R-F, 282

=u, +0u, 283)

Uy

Repeating Egs. 2.8-2 to 2.8-3 and updating of tangent stiffness matrix at each iteration
gives converged solution. The solution obtained at converged would correspond to
applied load level. The final solution would be in equilibrium such that the resorting load

F, (computed from the current stress state) would equal the applied load R (or at least



Fo

Fig. 2.2: Basic Newton-Raphson Scheme - Single DOF System



within some tolerance). This procedure is also known as Full Newton-Raphson (FNR)

procedure. Iterative solution (for one DOF system) is depicted graphically in Fig. 2.2

Usually, the Newton-Raphson methods are used according to their original definition in

which the load i is i The i of load step size in

advance requires a lot of intuition, nevertheless the final convergence failure in the
neighborhood of critical points can not be avoided (Ramm. 1982]. Without additional
modifications the solution procedure is not able to trace the structural response beyond
critical points. Although post critical states are usually not tolerated in the design of a

structure the knowledge of this range allows a much better judgement of the structure.

2.8.2 The Initial Stiffness Method

In the Full Newton-Raphson (FNR) schemes, re-calculating and factorizing tangent
stiffness matrix at every iteration are expensive and laborious. The expense of these
re-calculating and factorizing many times the coefficient matrix defined in Eq. 2.8-2 can
be avoided. Only the stiffness matrix needs to be formulated corresponding to a
linearization of the response about the initial configuration of the finite element system

[Zienkiewicz, et al., 1969].

The initial stiffness matrix °K is applied in Eq. 2.8-2 and operates on the equilibrium

equations given below

°KAu, =R-F, (2.84)



Fig. 2.3: Initial Stiffness Method - Single DOF System



This process may lead to a very slow 2 for si linearity. Even the
solution may diverge (Schmidt, 1977). This occurs particularly when the system stiffens

during the response.

To prevent divergence of the solution for slowly stiffening problems and meet the
convergence early, it may be effective to use the modified Newton-Raphson procedure

described below.

2.8.3 The Modified Newton-Raphson Method

In a modified form of Newton-Raphson method, the tangent stiffness is held constant for
several iterations before updating is required. Evaluating and factoring a new tangent
stiffness matrix at each iteration is expensive and time consuming. In practice,
depending on the non-linearity present in the analysis, to evaluate a new tangent stiffness
at a centain time, can be more efficient. The choice of load steps when the stiffness
matrix should be updated depends on the degree of non-linearity in the system response
and the of the solution also depends on the specific problem

involved. For small load increment, matrix updating at every iteration appears
unnecessary. Establishing new tangent stiffness “K (where, 7 indicates an accepted
equilibrium configurations for tangent stiffness 'K) only at the beginning of each load
step modifies the FNR procedure. This reduces the computing time considerably

involving fewer tangent stiffness ions than the FNR Of course, the

modified Newton-Raphson method (MNR) procedure requires much more iterations in a



i
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Fig. 2.4: Modified Newton-Raphson Scheme - Single DOF System



load step compared to the FNR procedure. The most powerful procedure for reaching

convergence is definitely the FNR but if the MNR p is employed, the

solution cost may be reduced significantly. Therefore, practically. both solution options

can also be very valuable.

The procedure followed in such method is exactly the same as in the case of the FNR

procedure except no reformulation of tangent stiffness at each iteration.
In such cases, Eq. 2.8-2 can be replaced by

*KAu,=R~-F, (28-5)

2.8.4 Alpha-Constant Stiffness Method

An improved value Au, of incremental displacement Au, obtained in the FNR schemes

could be evaluated as [Nayak and Zienkiewicz, 1972]
Au, =,Au, (2.8-6)
where, @, is an unknown diagonal matrix of coefficients.

Defining Au; as the improved displacement change corresponding to force AR, the

approximate relation is expressed as

‘Kaw, = ("K=K)Au, =-AR (287



where. “K="K-'K is a function of displacements and the degree of non-linearity of the

problem at any stage.

Pre-multiplying the above equation by K™ and inserting Eq. 2.8-2.

@, Au~"K™ ‘K Au, ="K"'AR , = Au, (2.8-8)

Loads

Fig. 2.5: Alpha - Constant Method-Accelerated Itcration



The approximation to the second term by taking the previous &,_, is

Qu, = du] =@ u,

Thus writing,

A=K ‘Ka,,du,

or/ and

@, - 1)Au="K" ‘Ka_, Au,
3 , -

which defines the matrix @, for the k™ diagonal term results in

with the restriction that when Au' =0, & =1

289

(2.8-10)

28-11)

(2.8-12)

This allows an improved value to be used i iately and the new

correction is calculated from Eq. 2.8-6.

2.8.5 Self-Correcting Incremental Procedure

Stricklin, et al. [1971] first proposed this form and Stebbins [1971] studied it again. The

procedure has proven itself to be stable and accurate upon proper selection of Z



[Massett, etal., 1971]. The advantages are best realized for problems of highly nonlinear

behavior and for systems with many degrees of freedom.

Derivative of equilibrium equations of Ku = AR - F (where K = structural stiffness

matrix. u = i i AR = ized forces due to applied external

loads and F = column matrix of pseudo forces due to non-linearity) with respect to the

scalar multiplier A yields

Ki=R-F (2.8-13)
or,

(K+kyi=R (2.8-14)
where, F(u) = k(i) k =dF, [du,

A common solution procedure is by an Euler forward difference, which results in the

solution p The solution tends to drift away from the true

solution unless very small load increments are taken where Z is a scalar quantity.

AR+ZAR =0 (2.8-15)

It is notable that even if AR becomes nonzero the solution tends to reduce the

unbalanced loads AR exponentially to zero and is thus called a self-correcting procedure.



For Z =1/AA, the procedure reduces to the incremental approach with a one step NR

method.

2.8.6 Variable Step Incremental Procedure

Simplicity is the main attraction of the incremental approach and easy to incorporate in a
computer program. But in basic form of the incremental approach. it gives rise to an
appreciable drift error. Methods that have been presented in this section to reduce this
error tend. The one-step NR corrector of Hommeister, et al. (1970) and the
mid-increment procedure [Roberts and Ashwell, 1971] among of others are very effective
at improving the accuracy of the basic incremental technique. However, these improved
methods do not possess an accurate estimate of the discretization errors. Thomas [1973]
presented an algorithm that does have such an estimate and suggested for use where the

varying step size might prove profitable.

In this algorithm, the nonlinear problem of structural analysis is transformed into a first

order ordinary differential equation such as

‘K(u)du=dAR (2.8-16)

In the limit as dA4 approaches zero, the first order ordinary equation can be written as

K™ w)R 8-17)



The extrapolation method such as Bulirsch and Stoer method (1966) can be used to solve
the above equations. Two separate estimates of displacements are given at every other
load increment. These values are averaged before the algorithm is repeated with a new

starting point as shown in Fig. 2.6.

i

Displacements

Fig. 2.6: Basic Steps - Bulirsch and Stoer Method

The basic steps of Bulirsch and Stoer method to be followed are listed below.

u =u, +di{ K@)} R

iy =u, #2740 KGO R

31



=u,, +di{ K@, )} 'R

(2.8-18)

collapse load ion is an important i in a nonlinear FEA. The
structural response becomes increasingly nonlinear as the load increases. At certain point

the collapse load is reached. In order to calculate the response for collapse mechanism,

initially relatively larger i are empl . But at the ing of collapse
mechanism, the load increment needs to be small. However, there is a difficulty of
traversing the collapse point. At that point the stiffness becomes singular (i.c., the slope
of the load-dispiacement response curve is zero) and beyond that point a special solution
procedure that allows for a decrease in load and an increase in displacement must be used

to calculate the ensuing response. In this approach, when iteration in the load

space is the equation becomes
Ku, = (2, +04)R-F,, (2.8-19)
Both i i Au, and load multiplier A4, are the The

additional equation required for solution is

f(a4,.8u) = 0 (2.8-20)



Several constraint equations of this form have been proposed e.g.. the tangent constant
arc-length [Risks, 1979] and the spherical constant are-length [Crisfield, 1981 and
Ramm, 1981-82]. Bathe and Dvorkin [1983] considered two different constraints
depending on the response and load level: the spherical constraint arc-length and a

constant increment of external work.

The spherical constant arc-length is in general used in the response of regions far from

critical points and incremental equation mentioned above becomes

A)+ (&) (2.8-21)

where, Al is the arc length for the step and # is a normalizing factor.

The scheme of constant increment of external work W based on the history of iterations
in the previous incremental steps is used near the critical points. In this case, the

incremental equation becomes

(/1 +% AL JR’Au, =W (2.8-22a)
and for i=234,......
(/1,4 Ly, )R'Au, -0 @822)

To solve the governing equations, this incremental equation can be rewritten as



AR
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Displacements

Fig. 2.7: Spherical Constant Arc-Length Criterion
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Loads
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A’/—w

Displacements

Fig. 2.8: Constant Increment of External Work Criterion



‘KA, = A_R-F,_, (28-23)
‘KAu=R (28-24)

Therefore,
Au, = Au, +Ad A (2.8-25)

Employing the spherical constant arc length criterion, the next load multiplier and
displacements are evaluated. The load multiplier A4, is determined from the quadratic

equation given by the combination of Eqgs. 2.8-21 and 2.8-26 to0 2.8-27.
A=A, 404 (2.8-26)
+Au, + AL Au (28-21)

The load multiplier A4, is directly calculated using external work criterion from Eq.

2.8-22 and the values A4, for i =2,3,4,...... are obtained from

R™Au,

pv -
R™Au

(2.8-28)

A complete solution algorithm based on the above method must of course also contain a
special scheme to start the incremental solution and iterating when divergence is

imminent and then restart itself with new iterative parameters. Complete solution



methods with these ingredients are very valuable and are in common use for the structural

collapse analysis.

In some nonlinear static analyses in the case of Newton-Raphson method, the tangent
stiffiess matrix may become singular (or non-unique), causing severe convergence
difficulties. Such occurrences include nonlinear buckling analyses in which the structure
either collapses completely or ‘snaps through' to another stable configuration. The
arc-length method causes the Newton-Raphson equilibrium iterations to converge along

an arc, thereby often preventing divergence.

2.8.8 Classical Gauss-Seidel Method

Clough and Wilson applied the Gauss-Seidel method in the early applications of the FEA.
An initial estimate «, for the displacement is assumed. The number of iterations required
depends on the quality of the starting estimate «, and on the conditioning of the stiffness

matrix. After an initial estimate. the iterative equation to evaluate the solution is

=K;'(R-K, u.,-Klu) (2.8-29)

where, K, and K, are the diagonal and lower triangular matrices, respectively.

To increase the convergence rate, an over relaxation J can be used. In such cases, the

equation mentioned above becomes

36



. =u +BK;(R-K u_ ~Kou -Klu) (2:8-30)

2.8.9 Conjugate Gradient Method

The conjugate gradient algorithm of Hestenes and Stiefel (1952) is one of the most
effective and simple iterative techniques for solving equilibrium equations [Bathe, 1996]

The algorithm based on the idea of minimizing total potential given as

M= %u{Ku, -u'R (2.8-31)

The aim is to improve di: ., ing to decrease total
potential (i.e., for [T, <[1,) in each iteration. Like the classical Gauss-Seidal method,
the starting displacement «, is chosen and calculated the residual or unbalanced force

AR, based on the formula

AR, = R-Ku, (2.8-32)

If the residual force AR, equals to zero, quit that evaluation for next independent load
otherwise, the values of «,,,, AR, and p,,, are calculated based on the equations given
by

U, =u,+a,p, (2.8-33)

AR, =AR -2, K p, (2.8-34)



P =8R_+B,p, (2.835)

ARTAR
== (2.8-36)
p Kp
AR[ AR, 5
=l 2.8-37
A ARTAR, 4 )

The iteration continues until the convergence achieves.

2.8.10 Improved Iteration Strategy

The computational self-correcting method proposed by Haisler and Stricklin [1971] was
rather cumbersome. Batoz and Dhatt (1979] modified the self-correcting method and

proposed a simpler procedure discussed below.

In this method, incremental displacements Ax, and Au, due to AR, unbalanced load and

AR, , an extemal load i pectively, are as
Au,='K" AR (2.8-38)
Au ='K™ AR, (2.8-39)

The actual external load increment to be applied is AR, such that that displacement

increment satisfies the specified displacement limit. The value of & is easy to calculate

from



Au =Au, +aldu, (2.8-40)

Powell and Simons [1981] modified this strategy by choosing a linear combination of the

two separate increments for iteration such as

Au= aAu, +adu, (2.841)

where. @, and @, are determined according to certain criteria.

This procedure has a great deal of flexibility because of using varieties of criteria. The
simplest iteration scheme is obtained by requiring (a) that the entire unbalanced load be
applied in each iteration (&, =1) and (b) that a specified displacement component u,

remains constant (i.e., Au, =0). The increment Au, is expressed as

Au, = blAu (2842)

in which b, contains zero except for unity at location n. Therefore, the requirement for

the iteration (with @,=1) is

Au, =0=b]Au, +a,bAu, (2.8-43)
Therefore,
T
a,= -%;% (2844)



where, b, is any convenient vector (i.c..b, = AR, ).

Other solution strategies could also be considered e.g.. @, =1.2,=0 anda,=0,a,

corresponds to constant load iteration and step by step analysis without an equilibrium

criterion.

2.9 Convergence Criteria

Often the numerical solution techniques are based either on iterative process alone or

involving the ination of an i and iterative A problem

associated with iterative techniques is the decision as to whether the current solution is
sufficiently close to the true solution without knowing itself. An incremental solution
strategy based on iterative process is effective and rational when realistic criteria are used
for the termination of iteration. The solution obtained at the each iteration must be
checked to see whether it has converged or diverged. If the convergence tolerance is too
high inaccurate results are obtained and if the tolerance is too small much more
computational effort is spent to obtain needless accuracy. Similarly, an ineffective
divergence check can terminate the iteration when the solution is not actually diverging

or force the iteration to search for an unattainable solution.

The convergence criteria used for nonlinear structural problems that are solved by
iteration can in general be grouped into four categories described below [Bergan and

Clough, 1972].



Force Criterion

This criterion is based on a comparison between the unbalanced forces or residual forces
AR within the structure and external loads. This requires that the norm (a scalar measure

of the magnitude) of the unbalanced load vector within a preset tolerance, e.g.,

|aRj<e, R, 2.9-1)

where, €, and R, are the tolerance and reference values, respectively.

When the force quantity requires to be compared with completely different order or even
of different dimensions, such comparison does not make sense. For instance, the
inconsistencies in units can appear in the force vector e.g., forces and moments in beam
clements and the displacement solution does not enter the termination criterion.

However, this in fact to working with di so that direct use of a

displacement criterion would appear to be preferable.

Displacement Criterion

This criterion is based on the di in stead of forces. In this

criterion, the displacement at the end of each iteration is within a certain tolerance of the

true displacement solution, e.g..

[au] <&, u,, 292
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where. €, and u,,, are the tolerance and reference values, respectively.

Incremental Internal Energy Criterion

There are some difficulties (e.g.. an elasto-plastic truss with a very small strain-hardening
modulus entering the plastic region) where the unbalanced loads may be very small but
the displacements may still be much in emor. In this situations. there is another
convergence criterion based on internal energy increment would be much more effective.
In this approach, the increment in internal energy at each iteration (i.e., the amount of

work done by the loads on the di: i ) can be compared to

the initial intemal energy increment.

Stress Criteria

A stress criterion involves a check on changes in stress values during an iteration cycle.
These changes can be compared with prescribed stress level. This type of criterion is

well suited for truss, cable and membrane structures.

2.10 Summary

Material behaviors such as linearity, uniaxial in curve, plastic stress-strai
relationship, and different types of yielding criteria have been studied [Ugural and
Fenster, 1987; Shames and Cozzarelli, 1992]. The nonlinear solution algorithms (regular

NR, MNR, initial stiffness methods, etc.) pertaining to the elasto-plastic problems have



been also reviewed (Zienkiewicz. et al., 1969: Stricklin, et al., 1971: Kao, 1974: Bathe,
1996: Kowalczyk and Bojczuk. 1996]. Most of them are based on updating co-ordinates
of tangent stiffness matrix and initial displacements iteratively. The concept of
combining incremental and iterative methods [Thomas, 1973; Batoz and Dhatt, 1979;
Wellford and Sen, 1981] with line search could also be adopted. In incremental

are i in an exact manner as a series of linear

problems. Errors are likely to accumulate after several steps unless very fine steps are
adopted. Therefore, the solution may diverge considerably from the true response. To
prevent this, iteration could be used and assumed to have converged when the unbalanced
load becomes acceptably small judged by the Euclidean norm. The modified
Newton-Raphson method is the same as the regular Newton-Raphson method except for
updating of stiffness matrix is performed after a given number of iterations. The
conventional incremental procedure is a single iteration of its modified version wherein
the unbalanced forces in the previous load increment are neglected. Always using
conventional methods (e.g.. nonlinear FEA) is not suitable for feasibility study as well as
the preliminary stages of design. Although full nonlinear analysis gives the best

representation of structural plasticity, obtaining solution may be difficuit. The nonlinear

process could lead to i g and errors and even to solution
instabilities [Risks, 1979; Crisfield, 1981-84; Ramm 1981-82; Bathe and Dvorkin, 1983].
Thus, it requires the analysis be restarted with necessary modifications made to the

geometry, applied loading i or the g criteria [Bergan and

Clough, 1972]. Besides, the accuracy of the solution obtained depends on the size of load
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increments taken and the degree of non-linearity of the problem involved. Consequently.
there is no guarantee of a numenical solution being reasonably accurate. In the absence of
a method to easily verify the full numerical solution, sometimes it is difficult to judge the

effectiveness of the solution.



Chapter 3

The Secant Method

3.1 Introduction

Knowledge of the behavior of the materials in the plastic range is essential in order to
understand structural behavior and to have reliable estimate of the usefulness and the life
of the structure. The nonlinear stress-strain relationship and the loading path dependency
in the plastic range make the analysis tedious. Over the years, FEA has been successfully
employed in analyzing the material behaviors in elastic and elasto-plastic range. The
nonlinear FEA techniques can be broadly classified into Newton-Raphson based and
Secant based methods. The first category is described in the previous Chapter. The
secant methods can be further classified as direct secant methods or incremental secant
methods. Amongst the direct methods are the ‘robust’ methods. Various robust methods
have been developed to evaluate local inelastic effects., based on elastic modulus
adjustment procedures [Neuber. 1961; Molski and Glinka, 1981 and Seshadri, 1991].
They are based on direct secant method for determining inelastic effects where linear
elastic FEA is carried out for solving elasto-plastic problems using material parameters as

field variables. Most of these methods currently in use are described below.
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3.2 The Direct Secant Techniques

The slope obtained by joining any two points located on the uniaxial stress-strain curve is
known as secant modulus. Usually in robust methods. one of the two points is taken to
be the origin. Any method taking the secant line from the origin can be called as the
direct secant method. Regular Newton-Raphson technique if applied without considering,
load increments results in a form of direct secant analysis. Several other ‘incremental’

methods can also be extended to obtain ‘secant’ results. Usually, this is not adopted in

traditional nonlinear FEA since the g and other i i ies are seen
to be difficult to overcome. However, in a simplified method where a good estimate of
the nonlinear strain at a critical point is all that is required, approximate but highly
effective ‘secant techniques’ come in handy. They achieve the required objective very
efficiently with considerably less labour. Besides this, these methods are ‘robust’ in the
sense that they can absorb defects in data collection and are not very susceptible to minor
changes in material and geometric parameters. Full nonlinear FEA in an ‘incremental’

‘manner is seen to be susceptible to such problems.

.1 Basic Secant Analysis

Secant analysis can be carried out in a simple iterative manner using basic principles
borrowing from classical (Newton based) secant methods for the solution of single
nonlinear algebraic equations. The general methodology in secant analysis can be briefly

described as below.



Carry out a linear elastic FEA for the given loading and geometry of structure. Use the
results to compute equivalent stress and strain as per the applicable yield criteria (e.g..
von Mises). If the loading is more than the yield load for the structure, at least some
elements will exhibit equivalent stresses above the yield stress, e.g., point D in Fig. 3.1.
The excess stress at point D is the result of assigning a larger stiffness to the
corresponding element than should have been the case. This excess can be removed by
assigning a more ‘appropriate’ stiffness to all such elements. Methods that attempt to
reduce the stiffness by finding the “tangent’ to the load-deformation curve are described
in Chapter 2. The appropriate stiffness can also be assigned in a ‘secant’ manner.
*Secant’ approaches are well known in several branches of engineering including
structural and soil mechanics. In the present context. a line joining the origin to the point
representing the ‘correct” state of stress and strain is considered to be the correct secant
line. Adluri [2001] showed that the total strain energy represented by the total area under
all such ‘secant” lines for all the clements of the model will be exactly equal to the total
work represented by a similar secant line on the load-deformation curve. Thus, for
proportional loading, a single linear analysis using the correct secant stiffness will yield
the correct state of stress and strain even if the material or geometry shows nonlinear
properties. The aim of all the secant methods is to obtain this ‘correct secant stiffness’ as
accurately as possible. In the basic secant analysis, an approximate secant stiffness is
obtained by reducing the modulii of all the elements (such as those represented by point
D in Fig. 3.1) with stresses above the yield limit. This new modulus is used to carry out a

second analysis. The second analysis will indicate that



a. the stress at the previously yielded elements is reduced (not necessarily to yield

stress level), and

b. the yield zone has expanded beyond that indicated by the first analysis.

Further improvements to the analysis can be made by iteratively adjusting the modulii.
The simplest method of evaluating the new modulus after each analysis is to assume
strain control. Assuming that the strain of the element remains the same while the stress

drops to the yield surface

o) o
E. =(—‘] ==, (3.2-1)
€. o,
where, o,. €, are the equivalent stress and strain for iteration /,

E,, E,, arethe Young's modulii for iteration i and i+1, and

o, is the yield stress.

The modulus can be adjusted by several other means. All such modulus adjustment
techniques result in re-computing the full stiffness matrix after each analysis. Techniques
based on this process are being called as ‘robust’ methods, examples of which can be

found in the application of Neuber's rule, EGLOSS [Seshadri and Babu, 2000], etc.
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Instead of adjusting the modulus. the overall stiffness can be directly adjusted based on
the results of the current analysis. This new stiffness matrix is used for the next iteration.
Traditional nonlinear FEA theory produced several studies that adjust the stiffness matrix
directly (Quasi-Newton, BFGS. etc.). These secant methods are incremental just like the
‘tangent’ techniques described in Chapter 2. Although they have been developed as
‘incremental’ techniques, they can easily be applied without the incremental option. i.e.,
each iteration starts by applying the entire load on the structure and the structure starts
from zero deformation. These techniques are not classified as “robust.” However, they
present many efficient and mathematically sound ideas that can be used for improving the

‘robust’ i Some of the ive methods of the two kinds are described

below.

3.3 Robust Methods

In this section, different ‘robust’ methods for the determination of inelastic response and
limit load estimation are described. Many such methods and their vanations have been
developed in recent years. All of them have the idea of elastic modulus adjustment

scheme as common.

3.3.1 The Neuber’s Rule

Strain concentration problems are often subjected to load that causes localized yielding.

The resulting inelastic strains are of interest in determining the fatigue life of structures.



Neuber's rule has been traditionally used extensively for such inelastic strain estimations.
It states that [Neuber, 1961]. the geometric mean of stress and strain concentration factors
during plastic deformation remains invariant and is equal to the elastic concentration
factor. Using this approach. the strain in an inelastic body can be estimated using an
elastic analysis. Let point D in Fig. 3.2 represent a yielded element as observed in an
elastic analysis. It can be seen that the elastic modulus (and hence stiffness) needs to be
modified to get a better estimate of the strain. This is achieved by projecting point D
onto point H (on the uniaxial stress-strain curve) such that the elastic strain energy is
conserved (i.e., the area ODB is the same as OHB' or OGDB is the same as OG'HB"). If

an elastic-perfectly-plastic matenial is considered, the modulii of yielded elements is:

(3.3-1)

This new effective modulus (represented by the slope of OH) is used to perform the next
linear elastic analysis. This procedure can be iteratively repeated until all the effective
material parameters converge and equivalent stress falls on the experimental uniaxial

stress-strain curve.

As mentioned above, Neuber's rule is well known in Mechanical design. It can be
profitably used to carry out inelastic analysis as well. The procedure described above is

not strictly Neuber's rule but is ar extension of it for nonlinear analysis.
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3.3.2 Reduced Modulus Technique

A technique using a reduced modulus was developed by Jones and Dhalla, [1981] for
stress categorization (particularly for piping stress). This procedure was extended to
analyze the inelastic response and follow up characteristics of piping systems. The
analysis involves progressively modifying the elastic modulus at each stage by
performing repeated linear elastic analyses [Dhalla, 1984 and Severud, 1984]. Dhalla
[1987] later directed his efforts toward developing a simple procedure of classifying

stresses at highly loaded regions using linear elastic analysis.

This procedure is straightforward. In essence, it is the same as that described as ‘basic
secant technique’ at the beginning of the present Chapter. Dhalla and co-workers applied
it for stress classification in a detailed manner. An initial elastic analysis is performed to
obtain the effective stress and strain at the highly loaded regions. The inelastic strain is
then estimated roughly based on the calculated elastic stress. The minimum secant
modulus is then calculated as the ratio of the elastic stress to the estimated inelastic strain

defined as
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where, 0, and €, are effective element stress and estimated inelastic strain, respectively.



A relaxation trend with repeated iterations is established by this procedure. Marriot

[1988] proposed a reduced modulus method in a modified version for determining

primary stresses in pressure vessel and i the ility of
determining limit load. The procedure identifies all elements having stresses above the

code allowable stress. The elastic modulii of these elements are then reduced by using
E, =[-4]E,, (3.3-3)

where, E, is the previous value of the modulus. S_ and S/ are the code allowable stress

and the element stress intensity, respectively.

A second analysis is carried out to evaluate a new stress distribution followed by a
readjustment of the elastic modulii for critically stressed element. This procedure is
repeated in an iterative manner until the maximum stress intensity is less than code
allowable stress or some other selected convergence criteria. Reducing stresses in a
structure so that the stresses are everywhere below the code allowable or yield stress of
the material suggests that a statically admissible stress field exists. A lower bound limit
load solution is one in which a statically admissible stress field exists in which the stress
no where exceeds the yield stress of the material. Thus, the procedure of modulus
reduction is one that yields a lower bound limit load, provided all stresses are everywhere
below yield. If however, the procedure gives a converged solution in which the
maximum stress is greater than the yield stress the applied load does not meet the lower

bound limit load criterion. This method was later extended by Boyle and co-worker



[e.g.. Mackenzie and Boyle. 1993] and Seshadri and co-worker [e.g.. Seshadri and
Fernando, 1992] 10 develop robust limit load estimation methods such as the elastic

compensation method and the r-node method.

3.3.3 The MARS Method

In the Modulus Adjustment and Redistribution of Stress (MARS) method, the concept of
Neuber's rule and the Generalized Local Stress Strain (GLOSS) method are used based
on an iterative strategy combined with a modulus reduction technique [Babu and Iyer,

1998]. Statically stress and ki ible strain di: ions are

brought close to actual distributions. This ensures satisfaction of constitutive equation

more closely.

For the first iteration, linear FEA is carried out for a given load, geometry and material
properties to obtain point D defined by the equivalent stress G, and equivalent total
strain €¢; (Fig. 3.3). The equilibnum point E is obtained by drawing a line whose slope
is equal to the final equilibrium state Eeqm from point B. To evaluate Eeqm, an iterative
strategy (which satisfies equilibrium conditions and yield condition altemately) combined

with a modulus reduction technique is used.

At point D, ilibri and ibilil iti are satisfied, but constitutive
equation is violated. For all points where equivalent stress exceeds the yield stress, it is
brought back to yield level by scaling down the stress. Once the stress level is brought to

yield level, equilibrium is lost.
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However, itutive and ibilit it are satisfied Intemal forces
corresponding to this reduced stress level are calculated and compared with the given
total load. The difference gives the unbalance force or residual force. In the next

iteration, this residual force is applied as an external load.

The modulus of elasticity corresponding to those points, where the equivalent stress
exceeds the yield stress before bringing it on to the yield surface, is reduced using

modulus reduction technique based on Neuber's energy criterion.

] (3.34)
where, i indicates the number of iterations and
o J o
E={—"\E, (33-5)
{(a.),,.} '
ORI CARRACARY (3.3-6)

2

Modulus of elasticity at all other points is left unchanged. A linear elastic FEA with the
residual force is carried out and the additional equivalent stress (Ao, ), is calculated.

‘The total equivalent stress at the end of the iteration is given by

(0,), =0, +(A0,), 337



For all points with equivalent stress exceeding yield stress, the stress components are
again linearly scaled down to the yield level and residual force is calculated. This
residual force is applied again as an external load with the modulus of elasticity given by

Eq. 3.3-4. The procedure is repeated until the convergence is achieved.

The modulus of elasticity corresponding to converged iteration is taken as the modulus of
elasticity to equilibrium state E.m and used to locate E as shown in Fig. 3.3. The
relaxation locus is obtained by joining points D and E by a straight line. The point of
intersection F of relaxation locus and material stress-strain curve determines the final

state of the structure.

3.34 The Extended GLOSS Method

It is a simple and systematic method for carrying out inelastic strain evaluations of
pressure components and structures based on two linear elastic FEA. It is based in part
on the reduced modulus method used by Dhalla. It was initially developed as the GLOSS
method [Seshadri, 1991; Adinarayana and Seshadri, 1996]. In the GLOSS (Generalized
Local Stress-Strain analysis) method, the structure or component to be analyzed is
divided into two regions, viz., local region and the remainder. The local region is chosen
as the highest stressed element and is determined on the basis of first linear elastic FEA.
The largest inelastic effects are experienced in the local region and are often of interest
from a design standpoint, while the remainder of the system typically operates at nominal

levels of elastic stresses. The determination of the local region relaxation modulus as an



approximation to the relaxation locus is the key to GLOSS evaluations. The GLOSS
diagram (Fig. 3.4) is essentially a plot of the equivalent stress and the total equivalent
strain. For small plastic zone sizes. the relaxation locus is almost linear. Therefore, the
local region relaxation modulus is determined assuming a linear relaxation locus. Thus

local region response appears to be insensitive to the precise nature of the local region

nonlinearly and the material i i The implication is quite si

in that the relaxation modulus can be i using any

relationship that allows progressive relative softening of the local region. Therefore,
GLOSS analysis can be used to predict inelastic response whether the inelasticity arises
due to first stage creep, steady state creep, or even time-dependent plasticity. Local
region softening by systematically reducing the elastic modulus, for instance, is therefore

an attractive prospect.

In the Extended Generalized Local Stress Strain (EGLOSS) analysis, an initial FEA is
carried out assuming that the entire structure is linearly elastic. Seshadri and Babu [2000]
argued that for every individual element in which the equivalent stress exceeds the yield

stress, pseudo-equilibrium can be postulated as
(.-0,)A =(0.~)), 638

where, modified yield stress is 0, =20, -0, and A, indicates representative area over

which the equivalent stress &, acts.
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Using this idea, the approximate secant modulii of all elements beyond yield stress (e.g-,

point D in Fig. 3.4) are estimated as
o,
Ey = [_]E, (339

A second linear analysis is carried out. The Poisson's ratio is initially left unchanged.
The results of the first and second analyses (points D and E in Fig. 3.4) are joined to

obtain an approximate relaxation locus.

The intersection of this locus and the modified yield curve (point F) is obtained. This

point would satisfy the st since di: have been
stipulated to be continuous and ulso satisfy the stress-strain relationship. The point F'
gives the desired strain that we are looking for, despite the fact that the equilibrium

requirement is not fully satisfied.

3.4 Traditional Incremental Secant Methods

As outlined earlier, there are several studies in traditional nonlinear FEA that use secant
stiffness in carrying out incremental nonlinear analysis. All these can be reduced to
‘direct’ secant metheds by suppressing the incremental option. Many of these are
considered to be theoretically very sound. However, they are generally believed to
converge somewhat more slowly than their ‘tangent’ counterparts described in the

previous Chapter. They nevertheless are implemented in several major software
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packages because of their numerical stability and other useful characteristics. They
contain many useful techniques that can be used with other procedures. For example, the
highly useful ‘line search’ has been first developed in conjunction with secant methods
but later adopted by ‘tangent’ methods. Some of the secant methods of this kind

(including the path following methods) are discussed briefly below.

3.4.1 The Arc-Length Method

The arc-length methods are intended to enable solution algorithms to pass limit points.
Those methods were originally introduced by Riks and Wempner [Crisfield, 1991] with
later modifications being made be several authors. They are suitable for nonlinear static
equilibrium solutions of unstable problems. Applications of the arc-length method
involve the tracing of a complex path in the load-displacement response into the buckling

or post-buckling regime.

Ramm [1982] has shown that the constant arc-length method of Riks/Wempner seems to
be the most versatile technique, being advantages in the entire load range. The arc-length
method uses explicit spherical iterations to maintain the orthogonality between the
arc-length radius and the orthogonal direction. It is assumed that all load magnitudes are
controlled by a single scalar parameter (i.e., the total load factor). Unsmooth or
discontinuous load-displacement response in the cases often seen in contact analyses and

elastic-perfectly plastic analyses can not be traced effectively by the arc-length

. the arc-length method can be viewed as the trace of a single



equilibrium curve in a space spanned by the displacement variables and the total load
factor [ANSYS, 1998]. During the solution, the arc-length method will vary the
arc-length radius at each arc-length substep according to the degree of non-linearity that

is involved.

Oe

an arc center

Equivalent Stress

Total Equivalent Strain

Fig. 3.5: Arc-Length Method - Iteration Process
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In this method, the yielded point D as shown in Fig. 3.5 is projected onto the uniaxial
stress-strain curve considering OD as the arc radius and O as the center. The intersecting
point B on the experimental uniaxial stress-strain curve is used to obtain the new

effective modulus for the next iteration.

3.5 Incr (or Path Following) Secant T

Most nonlinear solution algorithms of the traditional kind (including the secant based

ones) use the path following or i Only at the ing of the

solution, the origin is used. After that, the origin is shifted to another point evaluated
after first iteration. In all subsequent iterations, the point evaluated in the previous
iteration is considered as the ongin. The origin is always shifted and moved following
the path influenced by the loading and the experimental uniaxial stress-strain curve.

Some of the techniques of this kind are described below.

5.1 The BFGS Method

Itisa ization of secant method to multi-dis i problems to

solve nonlinear simultaneous equations. In secant methods, an approximation to the
tangent matrix ‘K is used at each iteration. In the Quasi-Newton (QN) methods, a
simple updating is deduced to compute a new secant matrix from the previous one
[Dennis and More, 1977]. The QN methods are basically a compromise between the full

reformation of the stiffness matrix performed in the Full Newton-Raphson (FNR) method



and the use of a stiffness matrix from a previous configuration as is done in the Modified
Newton-Raphson (MNR) method. Among the QN methods. the BFGS method appears
to be the most effective. The method has been developed based on the contributions of
Broyden. Fletcher, Goldfarb and Shanno and has been summarized by several authors,

e.g.. Matthies and Strang [1979].

In this method. for each load increment, the stiffness matrix is formed using the results of
the previous load step by updating the stiffness matrix in a ‘secant’ manner. Let K,

R, and F, be the stiffness matrix, the applied external load and the resistance of force

(by the structure) in the iteration -1, respectively. Then a di: vector i

(Au,) is evaluate as

(3.5-1)

where, AR, = R, - F,_, indicates the residual or unbalanced loads. A line search in the
direction Au, at iteration { satisfying equilibrium is performed. Using this line search the

displacement vector «, at iteration { is determined as follows:

o+ B, (3.5-2)

where, f is a scalar multiplier. Calculation of AR, = R, - F, gives the unbalanced loads

corresponding to these displacements. The parameter /4 is varied until the component of



the unbalanced loads as defined by the inner product Au"AR, is approximately zero. In

other words

Au"AR <Tol Au" AR, (3.5-3)

where, Tol is the convergence tolerance.

It is noted that the initial displacement vector u,_, at iteration i-1, for a given load vector

increment R,_, is obtained by

u =KIR, (354)
The updated matrix is evaluated on the new u, and exp d in
product form of

K'=B'K\B, (35-5)

where, B, =1+ p,q] . and the updated matrix ( K,) must satisfy the Quasi-Newton (QN)

relation defined as K,J, =r,.

The vectors p, and g, are calculated from the known displacements and forces (that are

equivalent to element stresses).

. [__""' } £.5r 356
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4= (35-7)

where, & =u, -u_ and r =3R_ -AR are the displacement changes and the

unbalanced load difference between two successive iterations (for a given load

increment), respectively.

The product defined in Eq. 3.5-6 is positive definite and symmetric. To avoid
numerically dangerous updates. the condition number C, defined in Eq. 3.5-6 of the
updating matrix B, will be compared with some prescribed tolerance limit. The updating
is not performed if the condition number exceeds the prescribed tolerance.

i

otr |
= et | 3.5-8
lTKs] oD

This method and its variations are quite regular. Computational costs for the solution of
large nonlinear system of equations can be reduced drastically by using convenient
Quasi-Newton updates or by adequate combined Newton/Quasi-Newton strategies
[Geradin, et al., 1981]. They are implemented in several software packages. For
example, ANSYS uses a method similar to this based on the work of Schweizerhof and
Wriggers, [1986]. ABAQUS FE software uses these techniques (Quasi-Newton methods,

e.g., BFGS method) as well.
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3.5.2 The SN Method

An improved technique for the solution of implicit equations is the Newton Secant

method (SN) which uses a imation of the function derivatives [Garcia.

1998]. This method simpli the solution by ing only two equations.

The first equation is the implicit function and the second equation represents the

of the derivative. The iti Newton-Raphson (NR)
method takes a seed value of « (the unknown being solved) and finds a derivative of the
implicit function evaluated at . A new value u,, is found by correcting the initial value

u, by the ratio of the function to the function derivative. The iterative process for

structural equilibri quations in the traditional NR method is as follows:

fw,)
fw)

B=u, =

(3.5-9)

The iterative process is continued until the absolute value of the function is within a
specified error limit. It requires the computation of the function derivative with respect
to the unknown being solved. Each different unknown requires the formulation of a new

derivati The secant ification as per the Secant Newton method consists of

replacing the derivatives by a different quotient such as

fiu) = flu) A

TR

fw)=



where, u,, and f(u,,) are the previous values of the unknown displacements and

implicit function, respectively.

The SN method is a more simplified iterative procedure where the function derivative is
numerically approximated. In this manner. only two functions are evaluated regardless of
the unknown. However, care must be exercised in supplying the correct seed value for

the iterations.

3.5.3 The Modified SN Method

In the Modified SN (MSN) method of Zhang and Owen [1982], the iterative
displacement change involves only a scalar multiple. Both the MSN and SN methods are
based on a secant approach but the MSN method leads to a reduction in the required
number of iterations compared to the SN method. In the SN iteration scheme, the
iterative deflection change is a scalar times the previous iterative change plus a further
scalar times the usual unaccelerated change. These scalars are automatically recalculated
at each iteration. These are related to inner products involving the iterative deflection

and the present and past out of the balance force vectors.

Before introducing the MSN method, the complete iteration process for the SN method is

summarized by the following expressions.

Au,=e,Au,, + AT, @35-11)



AL, =K;'AR, (3.5-12)

Uy =0, + Au, (3.5-13)

(3.5-14)

¢ =d@'r. d,=8u AR,

(3.5-15)

where, u,. u,., are the displacements on the (" and (i+1)® iterations and Au,, Au,, are
displacement changes on the i and (i-1)" iterations. A, is the usual unaccelerated
change. K,'. AR, and AR, are the stiffness matrix at the beginning of the increment,
residual forces on the * and (i-1)" iterations, respectively. r, =AR, —AR,_, gives the

difference between the two residual or unbalanced forces.

In the Modified Secant Newton (MSN) method, Eq. 3.5-11 is replaced by the following

expressions.

(35-16)
Bi=(h -2 (35-17)
<

It is evident that iterative deflection change is now only a scalar times the usual

unaccelerated change. Zhang and Owen [1982] compared the SN and MSN methods and



concluded that the latter one is more economic with regard to computational time, due to
the reduced number of iterations. [t is noted that the MSN method can also be derived

from the variable metric method.

3.5.4 Crisfield’s MSN Method

Crisfield [1980, 1981] has argued that line search with the MNR method is a simple and

effective method for i the of the iterative i The line search
is an integral part of the solution method. With the line search performed within an
iteration, the expense of iteration increases but fewer iterations may be need for
convergence. Also the line search may prevent the divergence of the iterations and in
practice this increased robustness is the major reason why a line search can in general be

effective.

While the SN method can be derived [Crisfield, 1980-81] from any QN techniques,
Crisfield has shown that it is also possible to update inverse stiffness matrix K, from the
previous inverse stiffness matrix K| using the BFGS procedure of Broyden [1970],

Fletcher (1570) and Wolfe (1975). and given by

S KL KrAul

(3.5-18)



Crisfield’s SN method [1980] can be considered as single-cycle restarted versions of

these up-dates and the procedure to be taken is as follows:

Az, =-K7 AR (3.5-19)
A, =-K AR, (3.5-20)
Au=-K'AR, =A A7, +B B, +C AR, (3.5-21)
where,
- AR (3522)
aul,r,

(3.5-23)

(a7, a7 )" aR, (a7 -87.)'r,

3.5-24)
Brosiar, O Bty 829

B,=-C,

At the beginning of cycle, K, , =K, where, K_ is an approximate stiffness matrix,

which could be the exact matrix at the beginning of the increment and

A =-K, AR, (3.5:25)

A, =-K, AR, (3.5-26)



Eg. 3.5-21 defines a three-p: it This method is derived
from the BFGS technique and implies a stiffness matrix K, update from K, which
satisfies the secant relationships. Crisfield [1979] called Eq. 3.5-22, SN-2 and derived a

simpler two-parameter acceleration (SN-3) for which

Au,=A A&, +Df, Au,, (3.5-21)
where,
A'r, Ai'r
D=-C-A| =t |=A|l-——t—|-1 35-28
[ﬂ,.. ul,y ,,] [ Bdul, r.) PR
By making the approximation
-K'AR =B, Au,, (3.5-29)

No approximation is therefore involved if the previous iteration is a standard
unaccelerated MNR iteration. However, numerical experience has shown that good

solutions can be obtained by applying Egs. 3.5-27 and 3.5-28. As the coefficient A, of

the dominant A%, is the same for both the and the th
accelerators, a further approximation whereby the Au,_, term in Eq. 3.5-27 is ignored and

the acceleration becomes simply

Au= AAT, (3.5-30)
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This procedure therefore, involves the application of the dominant term in a restarted
single-cycle BFGS technique. However it is not called a SN method since it does not

degenerate to the standard secant method for one-dimensional problems.

3.5.5 Barnes’s Secant Method

The algorithm given by Barnes [1965] has the advantage of not requiring the explicit

evaluation of derivatives. This uses instead an approximate value of the Jacobian and

corrects this after each function and is equi to the i secant
method described by Wolfe [1959] with additional advantage of being able to make use
of an initial approximation to the Jacobian. The benefit of this last fact is significant
since the situation often anises in practice where the same set of equations are to be
solved several times with slightly different values of certain parameters. The final
solution point and the Jacobian often provide excellent initial conditions for the next and
under these circumstances the method may prove to be many times faster than the NR
method. Both theoretical and experimental results have shown that this method is in
general about twice as good as NR procedure in the neighborhood of a solution [Bames,

1965].

Assume J, and u, are an initial guess of the Jacobian and an initial point, respectively,

where the function value is f, , then the first step for Au, is defined by

Jiduy ==, (3.5-31)



Here, if the assumption J, were correct. it would give the Newton-Raphson (NR) step

and rise to the point u, = u, +Au, at which the function value is f,.

The correction to be applied to the Jacobian J, is determined by considering the behavior
of a linear system which has values f,. f, at ,, u,, respectively. For Jacobian J of a

system, it can be written as
f:= Lo+ 0 (3530

The corrected Jacobian J. is chosen to satisfy above the equation where d, is a
correction so that J, = J, +d,. Then d, satisfies f, = f, +(J, +d,)Au, and the above

equation becomes
f.=ddu, (3.5-32)

A solution of this where z, is an arbitrary vector is

(35-33)

A general iteration process where the vectors z, are as yet undefined is thus



(3.5-39)

where, d Au, = f, and J, Au, = f., - f.

A desirable feature of any method of solving nonlinear equations is to rapidly solve a
linear set of equations. In fact. function evaluation n +1 should suffice to determine the
Jacobian of the system exactly and hence the solution ought to be found on the function
evaluation n+ 2. This means that «,_, ought to be the solution. The magnitude of z, is
irrelevant. For convenience it is taken to be unit vector and the above computation is
then readily referred in either case by the well known Gram-Schmidt orthogonalization

process.

The important consequence of the choice of z, is that

dAu, =0 1<i-j<n (3.5-35)

Therefore,

Bty =+ d et d ),

=J.0u, 1<i-j<n

(3.5-36)



Considering the behavior with the general set of nonlinear equations (i.e., defined by

f,(u,)=0) the above equation is expressed as

Jdu, =, du,

=fia— (3.5-37)
=4, i<k. O<is<n
In particular if k > n
T (Bt 8t B0, ) = (B B gt By (3.5-38)

The value of Jacobian J, is therefore that of the linear system defined by the n+1 pairs
of points and function values, u,_,. f,_,......u4;, f,. This method is therefore identified
with the generalized secant method. As mentioned earlier, the present representation of
secant method however has the advantages of being able to use an initial value of J and

in practice has been found to be more reliable.

3.5.6 Chen’s Method

A consistent approach for carrying out the iterative computation of nonlinear FE
problems has been suggested [Chen, 1990, 1992]. In this computation procedure, the
direction of incremental response vector is defined by the constant stiffness prediction.
Then a relaxation parameter obtained by minimizing certain error quantity is adopted for
defining an improved incremental response vector in iteratively updating the total

response vector. The secant formulation is adopted for constructing the error quantity by



introducing an implicit secant stiffness matrix. This approach is considered to be
consistent with the geometrical sense inherent in the relaxation process. The resuiting
algorithm requires only a small amount of post data for carrying out the relaxation
process. The relaxation parameters are simply defined by the inner products of a certain
combination involving incremental response vector obtained by the constant stiffness
prediction and residual force vectors. Moreover, it is easy to implement this computation

procedure into a FEA code. The computational procedure can be applied to the collapse

analysis of a structure. This p can ish the ion task
while 2 good ical stability. though a large load step is
adopted for this analysis.

As described in Chapter 2, the Full Newton-Raphson iteration is defined in different
notations (where, K., = global tangent stiffness matrix, Au)' = incremental

displacement vector and R, = global residual force vector at iteration step i) as

Kou =R
W =+ Aul (3.5-39)
To improve the of the el plastic analysis, a i i is

adopted for replacing the above iteration procedures. The constant stiffness matrix,

denoted as K, formed at the beginning of the iteration process is used to predict the

9



direction of di: i for all iteration steps. Letting £''

denote the i then this can be as follows:

KoAu" =R!

Wt a4 B A (3.540)

A series of iteration schemes using different accelerating parameters has been proposed.
Some of these methods adopted a dynamic way in which different accelerating
parameters are used for scaling different degrees of freedom in the global discrete system
to improve the convergence. Taking ' equal to 1, the relaxation algorithm stated by

above equation lead to the Modified Newton-Raphson (MNR) scheme.

In this approach, the data obtained from the MNR method are used for constructing a
secant relation. Two different error quantities defined by adopting the secant relation are

used to two i which lead to two iteration algorithms.

Let R! and l_(':, denote, respectively, the residual force vector after the MNR prediction
and the stiffness matrix that establishes the secant relation for the period with incremental

displacement vector Au'™'. Then R! is related to R! through the following equation

R'=R +K.Au'" (3.541)

Selecting the scaled incremental displacement vector A''Au." as the true response

increment, the residual vector at the end of the current iteration step can be obtained by



R =R + B K. Au™ (3.542)

In the first algorithm to be derived. a physical parameter defined as the inner product of
R and the displacement increment vector caused by R.™ along the linear deformation
path predicted by I?,‘_ is selected to be the error quantity. Letting E;™ denote this error

quantity, the following expression can be defined
EN =RMEL) R (3.543)

Introducing Egs. 3.5-42 and 3.3-43, it shows that E."" is related to 4" stated by Eq.

3544
EX =B K au au £ 287 auR + (K. )" RIR, (3.544)

Minimizing E,”" with respect to S and using B;" to replace ', the accelerating

parameter ;™ is defined as follows:

(3.545)

In deriving the second iteration algorithm, the self-inner product of R is selected to be

the error quantity. Letting £} denote this error quantity, then E}" can be expressed as

E[' =R"R" (3.546)



Introducing Egs. 3.5-41 and 3.5-42 into the above, E‘," appears to be a quadratic form of

B stated by the following equation
£ =(pf(R -R IR -R:)£ 28 R:(R. - R )+ R (3547

Minimizing E;" with respect o ' and using B;' to replace B, the second

acceleration parameter can be found to have the form of

| R -F) S

l(R,‘ -R/)R -R))

Egs. 3.5-45 and 3.5-48 represent the two accelerating parameters that are derived for

the rate and stability of the MNR iteration. It is noted

that the essence inherent in these two algorithms is the introduction of a secant relation.

3.5.7 Tangent-Secant Approach

A tangent-secant technique for nonlinear FE equations in small elasto-plastic structural
problems is developed by Alfano. et al. [1999]. Its peculiar feature lies in the choice of
the most suitable consecutive operator to be adopted at each iteration of a generic load
step. It ensures the utmost stability and convergence rate. Namely, the consistent tangent
operator is replaced by a secant one or vice versa, whether the adopted form of the

residual does not, or does conveniently decrease at the current iteration. The secant

operator is defined as to recover the finite step i of the



stress from the total. not iterative. strain increment. The original formulation of the
original solution procedure consists of alternative tangent and secant iterations. It can

extend to achieve an effective coupling with line searches as well.

The displacement-based FEA of elasto-plastic structural models relies upon two main

the ical integration of the rate itutive equations over a generic
time step and the iterative algorithm exploited for solving the nonlinear equilibrium
equations. To enhance the overall efficiency of the solution procedure, a greater attention
has to be devoted to the iterative algorithm exploited for solving the nonlinear
equilibrium equations since the numerical integration of the rate constitutive equations
over a generic time step is currently carried out by fairly standard methods. This is the

outcome of the extensive attention, which has been devoted, in the last 15 years.

On the contrary, the choice of most economical iterative scheme for the solution of
nonlinear FE equations is still the argument of an open debate, as it is usually problem
dependent. It is well known that NR method is conditionally convergent and as a general
rule, the convergence rate decreases as the degree of stability increases. The MNR is
extremely robust but requires a large number of iterations to ensure convergence. The
method is very economical since the Jacobian matrix can be assembled and factorized
once per load increment but the rate of convergence is so poor that usually offsets any

other computational advantages. On the contrary, the FNR provides the highest rate of

8 (ie., i dratic) among the iterative methods currently

employed to solve nonlinear sets of equations [Luenberger, 1984]. Stability is however
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rather critical since small load steps are required to ensure convergence. Further the
Jacobian matrix needs to be computed and factorized afresh at each iteration thus

considerably increasing the numerical cost of the whole strategy.

Looking for more stable solution strategies. attention was naturally drawn to the so-called

Quasi-N or secant which exhibit i i between the

MNR and FNR methods. The Quasi-Newton methods are usually very economical since
the Jacobian does not need to be inverted at each iteration. Rather the Jacobian inverse is
periodically updated by rank one or rank two (BFP, BFGS) corrections [Matthies and
Strang, 1979]. The convergence rate of Quasi-Newton methods is only linear but the

stability properties are significantly greater than the ones characterizing a NR approach.

The previous i make one feel that a solution strategy
encompassing both the high convergence rate of FNR method and the stability of the
secant one can be very effective. However as they stand, Quasi--Newton methods don't
seem to be well suited to a simple straightforward merging with the traditional
implementations of the NR method, aithough some proposals in this sense can be found
[Geradin, et al., 1981]. This led Alfano, et al. to search for alternative formulations of the

secant method, a goal already pursued [Martin and Bird, 1986] from a different

perspective. Thus, the ion of a ic secant operator which provides the
total, not iterative increment in the step of the plasticity admissible stress associates with
a given strain increment is derived. Hence the method described by Alfano, et al. [1997]

belongs to the class of the so-called Picard or direct procedures. Actually the structural

stiffness operator i with secant el plastic operator i an explicit



nonlinear relation between the total displacement increment in the step and the assigned
load increment. The stability properties of secant method exploited tumed out to be
excellent and in some cases it was possible to assign load steps several times greater than
the ones that make the NR method converge. However, as expected the number of

iterations required at each load step was comparable with the one pertaining to a MNR

method and hence for large !

The main objective is to present a general and robust solution procedure for small

elasto-plastic structural problems. which can both the high rate
of the tangent approach and the remarkable stability properties of the secant one. To this
end, the secant procedure originally formulated in terms of the total increment of the
displacements in the step is conveniently transformed so as to assume the iterative

displacement increments as the primary unknowns. This greatly facilitates the

of the tang strategy since just a logical switch needs to be
added to the routine in which the constitutive operator is evaluated at the element level.
In implementation, the most convenient choice between the consistent tangent and the
secant operator to be made at each structural iteration is assumed to depend upon the
energy norm of the residual. Specially, the tangent operator is tried to use so as to speed
up the calculations by switching to the secant one at those iterations in which the energy
norm does not reduce according to a user defined ratio, with respect to the least value
achieved at the previous iterations. Only subsequently, when the energy norm has

conveniently decreased, the converse switch from the secant to the tangent operator is

The i of the tang strategy tumned out to be



comparable with the ones achievable with a pure tangent approach supplemented by line
searches. This prompted to find out the most convenient way of coupling this classical

technique [Crisfield. 1991] with the proposed one.

The basic idea underlying this strategy is different from the tangent methods and belongs
to the class of direct or Picard procedures. A solution of the nonlinear system is
iteratively sought for by defining a secant. which associates the total rather than iterative
displacement increments in the step. The values of the state variables at the beginning of

the step satisfy the equilibrium equation:

Ry~ [B"E(Buy-py)dV =0 (3.549)
;

The structural equilibrium equation is expressed in terms of the numerical vector u of

displacement parameters through the residual AR () defined by

AR(u)=R- [B"E(Bu-p)dV (3.5-50)
7

where, R and AR () are the applied and loads, respectively. The di

between applied loads and the forces associated with the intemal stress o = E(Bu - p)

gives the unbalanced loads. B and p are the strain-displacement operator and nonlinear

function of di u, respectively. The i ion is extended to the domain V'

of the structural model.



‘The combination leads to solving the nonlinear system in the unknown Au .

AR(Au) = AR, - [B"E(BAu-Ap)dV =0 (3.5-51)
\

It is noted that AR, is an applied load increment. Defining a linear secant operator E,,

where, E Ag = E(A¢ — Ap). the previous system is recast in the equivalent form of

AR(Au) = AR, - [B7E BAudV =0 (3.5-52)
¢’
Accordingly, when applied to the given total strain increment A& = BAu, the secant
operator provides the associated stress increment in the step. A solution of the nonlinear
system is then iteratively sought for by solving the linear system of the equations,

AR, -{ jn’s,mu,mdv}m,, =0 (3.5-53)

Setting

K,, =K,(Au,) = [BTE,(Au)BdV (3.5-54)

Eq. 3.5-53 becomes

AR - K, Au =0 (3.5-55)



The previous linear system of equations expressed in terms of the tral values
Au, =u, -u, of the total displacement increment in the step, can be reformulated in

terms of the iterative increments du, by letting &, = Au, - Au, so that Eq. 3.5-55

becomes
K, &, =AR, -K, Au, (3.5-56)
or,
AR, - K, Au, = R-Ry~ [BTE((Bu, ~us) = (p, ~po)1dV
F
=R- [B'E(Bu, - p,)dV (3.5-57)
;
=AR(u,)
Therefore, finally
K, & = AR, (3.5-58)

Different implementations of line search techniques are possible to accelerate the
convergence rate. It has been shown that the tangent-secant approach and its coupling
with line searches provide valuable tools to analyze elasto-plastic structural problems in
the small strain regime. In particular the proposed strategies exhibited numerical
performances appreciably better than a tangent approach with line searches [Alfano, et

al., 1999).



3.6 Summary

A review of nonlinear solution methods based on secant methods is presented in this
Chapter [Wolfe, 1959: Bames. 1961: Matthies and Strang, 1978; Owen and Gomez,
1981; Powell and Simons, 1981: Alfano, et al., 1997, 1999]. They include direct and
path following secant techniques (BFGS. SN, MSN, etc.) [Crisfield. 1981-84; Zhang and
Owen, 1982; Bathe, 1996]. Most of them are a combination of incremental and iterative
procedures. However, they can be either incremental or iterative alone. Incremental
procedures are adopted using stiffness matrix with updating co-ordinates and initial
displacements using a number of load steps. and operations are predetermined as a series
of linear problems. As in the case of tangent methods described in Chapter 2, errors are
likely to accumulate after several steps unless very fine steps are adopted. Therefore, the

accuracy can be improved by applying ilibri il and thus p

divergence considerably. An iterative procedure can be assumed to have converged
when the unbalanced load becomes acceptably small, judged by the Euclidean norm (a
scalar measure of the magnitude of the vector). In pure iterative methods, the total load is
applied at a time and equilibrium is restored by iteration. Most of the time, path
following techniques devise mixed schemes combining the features of both procedures.
Secant type methods (e.g., Quasi-Newton) converge almost always in a larger number of
steps than an optimal Newton strategy. They become competitive when the cost of
Jacobian evaluation is significantly larger than that of the residual vector calculation.
The procedure of using secant approximation to the derivative in Newton's iterative

scheme for finding the solution of simultaneous equations generally takes less computer
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time than the classical techniques [Jeeves, 1958]. Although the secant method requires
more iterations, each iteration requires less time since there is no evaluation of the
derivative of the function. Conversely, strong nonlinearity could lead to an
ill-conditioned iteration matrix. However. for complex material nonlinearities, secant
type methods (e.g., BFGS) are preferable. A line search can be applied to reduce the
number of iterations significantly. The line search also costs the analysis, but most of the
time, it makes the analysis more efficient and effective. Some approximate methods
(Neuber, EGLOSS, etc.) in this Chapter based on direct secant techniques (robust
methods based on elastic modulii adjustment techniques) have been studied [Neuber,
1961; Molski and Glinka. 1981; Seshadri. 1991, 1995; Alwar and Babu, 1995; Babu and
Iyer, 1998-99: Raghavan, 1998; Knop, et al., 2000; Seshadri and Babu, 2000]. Most
direct secant (e.g., EGLOSS) methods involve elastic modulii adjustment techniques that
directly recalculate the stiffness matrix of the structures. All robust methods have the
some considerations of relaxation locus, residual energy, etc. Traditional path following
secant methods all have some kind of accelerations (line searches) associated with them.
In the next Chapter, possible alternative robust methods combining the features of

traditional secant line searches and ideas of relaxation locus are explored.



Chapter 4

Line Search Techniques for Secant Analyses

4.1 Introduction

Various robust techniques have been developed to predict local inelastic strains as well as
limit load estimations based on elastic modulus adjustment procedures, e.g., Neuber
(1961], Molski and Glinka [1981] and Seshadri [1991]. Robustness in the present
context can be viewed as an ability to provide acceptable results on the basis of
conceptual insight and the availability of a less than ideal material. Many of the robust
techniques are based on the direct secant method for determining inelastic effects. In
these methods, simple linear elastic FEA is carried out for solving elasto-plastic problems
considering material parameters as field variables. The nonlinear response is obtained by
employing two elastic analyses rather than carries out full nonlinear analysis. Highly
stressed regions of the structure are systematically weakened by a reduction of their
modulii in an attempt to simulate local inelastic softening. Robust methods don’t require
detailed constitutive relationships describing the inelastic flow. Since robust techniques
are based on linear elastic FEA, they can be easily used to evaluate inelastic strains in
practical structures having complicated geometry. The use of robust methods based on
linear elastic analysis is significant from the design point of view. The design

community has adapted these techniques as a design tools for some applications. Such
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secant techniques have also been used successfully for the estimation of limit loads, e.g..
Mackenzie, et al. [1993] and Shi. et al. [1993]. The present Chapter discusses some of

these methods and possible extensions.

As described previously, Babu and Iyer [1998] developed a procedure called the MARS
method using relaxation based on GLOSS analysis. There, an attempt was made to
satisfy force equilibrium in the plastic range for a specific set of applications. In this
approach, the residual force after every iteration is calculated and applied to figure out
the equilibrium modified Young's modulus. This method requires several iterations. The
calculation of unbalanced force seems to be application specific. In case of the EGLOSS
method, the final state described by local inelastic strain does not satisfy the equilibrium
of the structure for a given loading condition. The residual force after first linear elastic
FEA is not directly accounted for although there is an implied localized compensation of
the excess energy. Usually, the compensation obtained by modifying the modulus of
elasticity of the yielded elements from the first linear elastic FEA is not enough. The
increase in the volume of the yield zone is only indirectly accounted for. At larger loads,
the discrepancy between the initial analysis yield zone size and the actual yield zone is
very significant. This discrepancy increases with increase in loading except in the case of
sudden stiffening (which is even more difficult to track through an initial elastic
analysis). Hence, the inelastic strains are not estimated accurately and the error in the
estimation increases with increase in the load level. Besides, at larger load levels, using
EGLOSS modifications, Young's modulus could become negative thus rendering the

method inapplicable.



Several other approximate methods have been developed to predict the local inelastic
stresses and strains, e.g., Neuber's rule [Neuber. 1961], variations of Neuber's rule
[Seeger and Heuler, 1985], strain energy density approach [Molski and Glinka, 1981],

etc.

Neuber's rule predicts inelastic strains reasonably well for certain applications, e.g., plane
stress problems. In plane strain situations, Neuber's rule has been widely reported to
overestimate the inelastic strain. This could lead to significant errors in fatigue life

predictions.

Since Neuber's rule overestimates the local plastic strains, a new method of
elastic-plastic stress and strain calculation based on strain energy density was developed
by Molski and Glinka [1980]. This approach is based on the assumption that the strain
energy density distribution in the plastic zone ahead of a notch tip is the same as that
determined on the basis of an elastic solution. When the stress near the notch increases
beyond the yield stress, plastic deformation takes place. It is assumed that the energy
ratio (the ratio of the strain energy per unit volume due to the local stress and the nominal
remote stress, respectively) does not change due to the small plastic region. The
relatively high volume of the elastic material surrounding the small plastic zone controls
the amount of strain energy absorbed by the plastic zone. The results of an elastic
analysis can be used in combination with the material constitutive relationship to estimate
the strains in plastic zone without actually carrying out a plastic analysis. The application

of this method is limited to the cases in which the plastic zone is small in comparison
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with the surrounding elastic field. Neuber's rule has the same energy density
interpretation (as Molski and Glinka) in the elastic regime. However, Neuber's
stress-strain product does not represent the same energy density in the elastic-plastic
regime. Therefore, the difference between these two methods is higher for plastic

materials and high stress concentration factors.

Knop, et al. [2000] has done extensive work on both Neuber's rule and Molski and
Glinka's approach for the prediction of inelastic stresses and strains near the notches and
cracks. Neuber's rule tends to overestimate the notch tip stress and strain while Glinka's
approach underestimates them. Neuber's rule makes better predictions for plane stress
loading conditions, while Glinka's method makes better predictions for plane strain
conditions. As the value of the stress concentration factor increases the predictions made
by the Glinka's method improve. For tension loading the predictions made by Neuber's
rule are better than for bending loading. The converse is true for Glinka. For torsion

loading, the prediction made by Glinka method is better than Neuber's rule.

42 Line Search

In all the methods discussed above, one important aspect is either not recognized or is

but not for icitly. Itis with the di between

the size of the plastic zone indicated by the initial elastic analysis and the actual plastic

zone. In the following, extensions to the concepts presented by previous researchers are



discussed. These extensions are mainly dependent on using line search to estimate the

spread of the yield zone beyond that indicated by the first linear elastic FEA.

The basic steps involved in line search are described in Chapter 3. Several methods, e.g..
BFGS. Crisfield MSN. basic or modified Newton-Raphson, etc. can use this technique.
Several variants of this technique are possible. The procedure adopted in the present

study is described below.

4.2.1 Basic Line Search Technique

The basic line search technique involves, as in the case of all other techniques, carrying

out an elastic analysis on the original structure with all the given loading R and boundary

Let the qui stresses and strains of this analysis be
indicated by [wy]. [4i], [€], respectively. If structure was loaded beyond the elastic limit,
the stresses in the inelastic zone would show values higher than the yield stress of the
material. Let the highest stressed element in the structure has equivalent (von Mises)
stress O,; and equivalent strain €. This is represented by point D in Fig. 4.1. At point

D, equilibrium and ibili itions are satisfied while the constitutive equation

is violated. The excess stress at such points needs to be removed.

Once the stress level is brought down to yield stress, constitutive and compatibility
conditions are satisfied but equilibrium is violated, i.e., removal of these stresses results

in a net force imbalance. Let F represent the internal forces corresponding to this
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reduced stress level. It can be estimated easily as [Zienkiewicz, et al., 1969: Owen and

Hinton, 1986).
F=[80dv @21
v
where, [B] is the derivative matrix defining strain-displacement relationship,
(0] is the stress

The difference between the applied load and F can be viewed to constitute an

‘unbalanced’ or a ‘residual’ force (AR).

AR=R-F 4.2-2)

This is the force due to the excess stresses beyond the yield point. This unbalanced force
needs to be redistributed to the remainder of the structure in order to establish

Such redistri involves i ing the stresses at several points of the

structure. As a result, some of the areas that were elastic in the initial analysis might be
rendered inelastic. This means the yield boundary as indicated by the initial analysis
expands upon redistribution. Also, the strain in the already yielded zones increases to

maintain compatibility.

In line search technique, the residual force is applied as an external load to the original
structure and the deformation [Au] due to the unbalanced forces is calculated. This does

not involve a fresh analysis since the structure stiffness (and hence [K” 1) is not altered.



Computation of [Au] is like finding the displacements to an alternate load case without
disturbing the original matrix. This however, implies that the matrix (or its decomposed
form) must be stored and hence requires an extension of the storage time. If such extra
storage time is not needed, the matrix might be disposed off after the initial linear
analysis. It must be noted that most practical techniques such as FNR, MNR, BFGS, etc.,
do not actually discard the matrix [K]. They store it (in its decomposed or inverse form)
and ‘update’ it to carry out further iterations. Some of the techniques used in this regard
are explained in Chapters 2 and 3. In that sense, the present computation of [Au] does not
involve any additional storage or analysis except the computations implied by Eq. 4.2-1
to 4.2-3. It must be pointed out that this differs from the implementation of current
‘robust’ techniques such as EGLOSS, etc. These techniques carry out the initial analysis
for the given loading and immediately discard the global matrix and other such data.
They do not need to store it since the second analysis involves the assembly of a mostly
‘new’ stiffness matrix. Although they have not recognized it, these techniques can be
modified to update only the necessary portions of the ‘old’ stiffness matrix to obtain a

‘new’ secant matrix based on the results of the initial analysis.

These di: [Au] are i asi to the di [u] obtained

by the initial linear analysis. These displacement increments will not be the correct

increments to fully balance the unbalanced force since the application of the increment
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might result in further expansion of the yielded zone. However, this increment vector is
thought to provide the ‘direction’ in which further increments can be carried out. A very
good estimate of the exact increment is calculated by linearly scaling the computed
increment [Au]. If the scaling parameter is f. the line search displacement can be

calculated as

u, =u, +Bou (4.24)

The parameter f is computed such that the product of the unbalanced load due to such
increased displacement and [Au] is a minimum. In order to obtain the optimum value for
. a trial value is first assumed and trial values of (u] are calculated. Strains and stresses
for this displacement field are estimated. For this trial field of stresses, the unbalanced

force is calculated (in the same manner as that indicated by Eq. 4.2-2). The work done by

these forces on the di i [Au] is minimized by iteratively

adjusting A. In other words,

AuTAR =0 (4.2-5)
or,

Au"(R-F., )< tolAu" (R~ F....) (42-6)
where, tol is the tolerance number,

i refers to the trial number.
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The trail for determining the value of B is called as the line search. The final value of
displacement at the end of line search is given by Eq. 4.2-4 where the converged or
“optimal’ value of £ needs to be used. Let the highest stressed element at this stage has

the corresponding equivalent (von Mises) stress dj; and equivalent (von Mises) strain €.

The new di field (] i of the yielded zone

compared to that predicted by the initial linear analysis [«/]. This increase in the yielded
zone is especially significant at large loads. As mentioned above, different variations of
the line search technique can be used to accelerate the convergence rate in the FNR,

MNR, Initial Stress, BFGS methods, as well as some other nonlinear solution algorithms.

However, previously described ‘robust’ techniques have not recognized the utility of the
line search or its variants in estimating the inelastic zone size. Adluri [2001] showed that
if the inelastic zone size is estimated with good accuracy, the analysis becomes linear and

is i The de bed below apply a variety of simple

geometrical constructions using the power of line search. These procedures give good
predictions of inelastic strain for a variety of structures subject to a wide range of load

levels.

After the line search is carried out, for all elements with equivalent stress exceeding yield

stress, the a new secant modulus is estimated as below:

E, =—~ 4.2-7
"=, 4.2-7)



A new yield stress akin to the reduced yield stress or equilibrium primary stress can be

computed by lowering the yield stress level as below:

(4.2-8)

This equation is derived on the basis of line search and basic secant modulus concept
explained in Chapter 3. A line search is carried out to expand the yield zone size (close
to actual yield zone size) after initial elastic analysis. To satisfy the constitutive condition
at this stage, the stress level is brought down to the specified yield stress. To carry out the
second elastic analysis, the modulii of all yielded elements are reduced based on the
specified yield stress and line search strain. Bringing 0. (the pseudo stress after initial
clastic analysis) down to this secant line establishes the modified yield stress level

defined by the Eq. 4.2.8.

All the work described above can be carried out after the initial linear analysis involving
the assembly and processing of a single global stiffness equation. After the line search
and the estimation of a secant modulus, a second linear elastic analysis is carried out
(using the modified secant modulii of Eq. 4.2-7). The Poisson’s ratio is left unchanged.
The elastic properties of all other elements where the secant modulus is not used are left
unchanged in the second FEA. The corresponding equivalent stress and strain of highest

stressed element are determined and denoted as Gcz and € 2.



It must be noted that sometimes. line search could overestimate the strain. In this case,
the strain €. obtained by second linear elastic FEA will be less than the strain €.
Computation of the optimum value £ depends on the minimization of the product of the
unbalanced load due to increased displacement and [Au]. Therefore, the position of the

strain after second linear elastic FEA depends on the prediction of line search.

OAC is the elastic-perfectly plastic stress-strain curve and OD is the elastic line. The
pseudo elastic point D (6.1.€.1) of the local element after first linear FEA is represented
on this elastic line. For a particular element, the pseudo elastic point D' (6, is) shown in
Fig. 4.2 (in Figs. 4.1 and 4.3, this point is not shown) is obtained after line search. This
point has crossed the yield stress. Keeping the strain value the same and projecting the
point D' on the stress-strain curve, the effective value of Young's modulus for the second
FEA is obtained. The point M (Gez, €.2) locates the stress and strain of the local element
obtained from the second linear FEA. The slope of OM denoted, as Eg is known as

secant modulus.

There are several ways of combinations to represent the pseudo-elastic stresses and
strains after second linear FEA. To do this, several combinations are explored here.

These are outlined as LSM1 to LSM7.
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4.2.2 LsM1

In this procedure, an initial elastic analysis. a line search and a second linear analysis are
carried out as described above. The stress-strain points D (from the first pseudo linear
elastic analysis) and M (from the second pseudo linear elastic analysis) are joined
together as shown in Fig. 4.1. The approximate relaxation line DM is extended to the
point F on the yield stress line AC. If the point M is lower than the yield stress line, the
point F is taken at the intersection of DM and the yield stress line AC. The maximum
strain could be found either at point F or M depends upon the direction of line search.

This maximum strain gives the approximate estimation including the plastic effects.

4.2.3 LSM2

In this procedure, the same analyses as described above are carried out. A modified

yield stress is evaluated using Eq. 4.2-8.

As in the case of LSMI, the line DM is extended to intersect the new line representing
the modified yield stress at point F' as shown in Fig. 4.1. The strain at point F' gives the

approximate equivalent strain including the plastic effects.
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Fig. 4.1: LSM1 (Point F) and LSM2 (Point F') - Inelastic Strain Predictions
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4.24 LSM3

At the end of the line search. we obtain an approximate estimate of equivalent strain.
Using this strain, we can obtain an elastic stress by multiplying it with the Young's
modulus. Let this strain and the corresponding pseudo linear elastic stress denote the
point D' in Fig. 4.2. The line D'M 1s extended to the point F on the yield stress line. As
before, the strain at point F is assumed to give an approximate equivalent strain
including the plastic effects. Note that the point F in this analysis is not the same as the

F in LSMI procedure (Fig. 4.1).

4.2.5 LSM4

In this approach, the analysis is the same as in LSM3. The line D'M is extended to the
lowered yield stress line (similar to that in LSM2) as shown in Fig. 4.2. The intersection
is at F" which gives an approximate estimate of inelastic strain. Note that the point F in

this analysis is not the same as the F"in LSM2 procedure (Fig. 4.1).

4.2.6 LSM5

In this approach, an initial elastic analysis (1, €.1). a line search (o, €1) and a second
linear analysis (Gcz, €.2) are carried out as described above for the previous methods.

An approximate estimate of inelastic strain (€) is evaluated using
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4.29)

This is a simple extrapolation of a new strain based on the two elastic analyses [Adluri
2001]. It assumes that a second line search would increase the strain in the production of
the ratios of strain energy in the two analyses. Instead of conducting a second line search,

this equation is used to extrapolate the strain.

4.2.7 LSM6

In this procedure, the same analyses as described in LSM2 are carried out. A modified
yield stress instead of Eq. 4.2-8 after second elastic analysis can be computed by

modifying the yield stress level as below:

o, =20,-0, (4.2-10)

This equation reflects a simple modification to compensate for the local strain energy
loss in secant modification to the modulus [Adluri, 2001]. This is similar to that used by

€q.3.3-8. That equation is based on pseudo-equilibrium of the local element.

Similar to others, the line DM is extended to intersect the new line representing the
modified yield stress (defined by Eq. 4.2-10) at point F' as shown in Fig. 4.3. The strain
at point F" is explored for the approximate equivalent strain including the plastic effects.

Note that the point F' in this analysis is not the same as the F' in LSM2 and LSM4
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procedures. It must be noted that sometimes. the effective yield stress level could be

higher than the yield stress level.

4.2.8 LSM7

In this procedure, the same analyses as described in LSM4 are carried out. A modified
yield stress is evaluated using Eq. 4.2-10 (as in LSM6) in stead of Eq. 4.2-8. As in the
case of LSM4, the line D'M is extended to intersect the new line representing the
modified yield stress at point F' as shown in Fig. 4.2. The strain at point F' gives the
approximate equivalent strain including the plastic effects. It must be noted that the

points F and the effective stress level in LSM4 and LSM7 are not the same.

4.3 Proced Based on ions to Neuber’s Rule

The usefulness of Neuber's rule is explored in this study. The rule is not traditionally
used to carry out iterative nonlinear analyses. But the simple concept of the rule can be
extended to carry out progressive refinement of the initial analysis results. In the
procedure used here, an initial analysis is carried out as usual (shown as point D in Fig.

4.4). For all the points above yield limit, the modulii are changed using

“.3-1)




This is the same as Eq. 3.3-1. For points that remain elastic, the original modulus is

retained. Besides, an effective vield stress is obtained as defined in Eq. 4.2-8 above.

A second linear analysis is carried out using the modulii modified as appropriate. The

result is represented by point M in Fig. 4.4.

Two combinations (based on Neuber's rule) to evaluate equivalent strains after second

linear FEA are explored here. These are named as N1 and N2.

4.3.1 N1 Approach

In this procedure, an initial elastic analysis and a second linear analysis are carried out as
described above. The stress-strain points D (from the first pseudo-elastic analysis) and M
(from the second pseudo-elastic analysis) are joined together as shown in Fig. 44. The
point F is found at the intersection of DM and the yield stress line AC. The strain at point

F is assumed to be an approximate equivalent strain including the plastic effects.

4.3.2 N2 Approach

In this approach, the analysis is the same as in N1. The approximate relaxation line DM
is extended to the modified yield stress line (defined in Eq. 4.2-8) as shown in Fig. 4.4.
The intersection of DM and the modified yield stress line (point F') is considered as the
approximation to the inelastic strain. Note that the point F' in this analysis is not the

same as the F' in LSM2, LSM4, LAM6 and LSM7 procedures.
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It must be noted that several other of i are possible.

All those will have some physical justification. All of them are However,
at least some of them will be robust in the sense that they will predict reasonably accurate

strains with a relatively small effort and can absorb imperfections in data measurement.

The methods are loosely based on ideas from previous research. They include Neuber's
rule, EGLOSS extensions to compute modified yield stress, line search to estimate the

increase in yield boundary beyond that predicted by the initial linear analysis, etc. The

who ped the above i did not choose to make the
combinations -especially the use of line search with robust techniques. It can be argued

that the use or non-use of special i depends on the i of the analysis.

For example, a quick estimate of strain can be obtained using simple Neuber's rule and
nothing else. A much better estimation can be obtained using LSM1. But this would
involve additional cost of line search. Regular nonlinear finite element analysis itself can
benefit by using the techniques of robust methods to accelerate the analysis and or to
check the accuracy of the iterative updates. The present study is attempt at exploring

some of these possibilities.

All the combinations (except LSMS5 and LSM6) described above are compared with the

nonlinear FEA and summarized in Chapter 5.

1



Chapter 5§

Numerical Examples

5.1 Introduction

In the previous Chapter, a number of alternative procedures have been outlined. These
are robust techniques largely based on line search to minimize the work done by updated

forces on the di due to initial unbalanced forces. In addition,

these techniques use ideas developed in other methods such as Neuber, EGLOSS, etc. To
demonstrate the applicability of the proposed robust techniques to the solution of

practical problems, a variety of sample analyses have been carried out.

The objective of this Chapter is to present the comparison of equivalent inelastic strain

for material 1 y evaluated by the proposed methods with those of
detailed inelastic FEA and theoretical results, where available. The relative merits of the

different alternatives are discussed.

The problems are modeled by using ANSYS Finite Element software (Release 5.5)

[ANSYS, 1998]. F ded i i elements (PLANE42) are used

for FE modeling for two-dimensional problems. PLANEA42 has two degrees of freedom
at each node. Elements of this kind have proven to be very effective and efficient in

linear as well as general nonlinear continuum mechanics formulations. LINKI and



SOLID45 element types are used for truss and plate problems. respectively.
LINKI is a two-noded element with two degrees of freedom at each node. SOLID4S is

eight-noded solid element with three degrees of freedom at each node. The materials

used in the modeling are to be isotropic and el perfectly

plastic. Wherever relevant, the models have been refined to obtain mesh convergence.

ANSYS FE software does not perform line searches after the first linear elastic analysis.
The algorithm used by ANSYS seems to need at least two analyses to establish search
directions and meaningful updates. However, basic line search can always be carried out
irrespective of the condition of the analysis -although in some cases, line search may not
show significant change in the yield boundary. In order to carry out the line search

outside the purview of ANSYS. a set of procedures reflecting the basic ideas of line

search have been ped. These are purely for the ease of
carrying out line search and do not in any way influence the effectiveness (or the lack
there of) of the methods being discussed. If one were to program these methods directly,
these extra procedures need not be resorted to. All these extra procedures have been
programmed using the ANSYS Design Parametric Language (ADPL) provided with the
ANSYS package [ANSYS, 1998]. The language is somewhat similar to Fortran and can
be easily understood. Sample macros involving the extra programming are included in
Appendix A. It lists input files for the analysis of simply supported beam under
uniformly distributed load (UDL). The input files of linear and nonlinear analyses are
listed in Appendix B. The macros to perform the necessary elastic modulus changes and

post-processor routines for EGLOSS and N2 methods are listed in Appendix C. It must

13



be pointed out that the equivalent strain values obtained from ANSYS do not include the
Poisson’s ratio factor. Therefore, elastic and plastic equivalent strain values obtained
using ANSYS commands [ANSYS. 1998]. respectively must be divided by (1+v) in
order to get the correct elastic and plastic equivalent strains. Details are given in

Appendix D.

5.2 Beams with UDL

Beams form an important class of structural components since they are commonly used
in many kinds of applications. Several times during the life of a beam the load is
expected to increase beyond the initial yield there by creating accumulation of plastic
strain. In the present work. three beams with different end conditions subjected to UDL
are selected to carry out the equivalent inelastic strain predictions. All three beams have
the same dimensions and properties. The beams have a span of 508 mm (20 in.), depth of
254 mm (1 in.) and unit thickness. Although the dimensions are odd. this problem has
been selected for analysis since it was used by previous researchers [Raghavan, 1998;

Seshadri and Femando, 1992].

All beams are modeled as two-dimensional problems. Therefore, these beams are
assumed to have unit width in the direction normal to the paper. The material of all
beams has a yield stress of 206.85 MPa (30 ksi) and a Young's modulus of 206, 850 MPa

(30, 000 ksi). The Poisson’s ratio is taken as 0.3.



It is known that individual robust techniques are good for certain load levels. Most are
applicable for low levels of plastic strains since the relaxation locus is relatively straight

line. In this study, different load levels ranging from just above yield to nearly limit

loads have been considered to ascertain the of the various i under

consideration.

2.1 Simply Supported Beam

This is a determinate beam. Elastic results for the beam are known from elementary
texts. A theoretical nonlinear analysis (detail analysis is given in Appendix E) has also

been carried out for this beam.

The FE model of the beam has 60 equal divisions along the beam span and 10 equal
divisions along the depth. PLANE42 clements of ANSYS are selected. The finite
element mesh and the boundary conditions are shown in Figs. 5.1a and b. The beam
model has zero displacement in X and Y directions at the mid side node of left support.
At the right support, the mid side node is restrained in the Y direction. Despite the aspect
ratio of the elements seems to be very high, the mesh has been used to carry out an elastic
analysis and a detailed inelastic analysis, because the results of both the analyses are in
excellent agreement with the theoretical analysis as shown in Table 5.1. Thus, the model
can be used to test the effectiveness of the different possible techniques proposed in

Chapter 4.
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Extreme fibers of mid-span constitute the critical zone where yielding begins. The beam
remains elastic when the load is less than the yield load. When the applied load equals
the yield load, the extreme fibers of the section at mid-span start to yield. When the load
is increased beyond the yield load. the maximum moment at mid-span exceeds the yield
moment, thus spreading the yield boundary both in the length direction and depth
direction. This spreading of the yield zone continues until the entire section at mid-span
is yielded. The limit load for the problem is 1034.4 kPa (150 psi). The theoretical load at
the first onset of yielding at extreme fiber is 689.6 kPa (100 psi). Different load stages
(shown in Table 5.1) between the yield and limit load are considered to compare the
different proposed techniques with the exact analysis and nonlinear FEA. These loads

are chosen itrarily to the i ity of the proposed techniques at

different load levels. The input files of linear elastic and nonlinear analyses are given in

Appendices B.1.1 and B.1.2, respectively.

The highest strain is identified at mid-span corresponding to element number 300 or 310.
Since ANSYS gives one strain per element, this strain is taken to be at the centre of the
element. At a load of 827.5 kPa (120 psi, 20% higher than the yield load and 40% of the
interval between yield and ultimate loads), the predictions made by LSMI, LSM3,
LSM4, LSM7 and N1 are in excellent agreement with those of the nonlinear analysis
(less than 0.5% below). The EGLOSS, N2 and LSM2 give strains more than 5%
(conservative) above the nonlinear analysis results. At a load of 896.5 kPa (130 psi, 30%
higher than the yield load), LSM1, LSM3, LSM4 and LSM7 show errors well below 2%

while the others are relatively acceptable. Even at load stage of 965.4 kPa (140 psi), the
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strain prediction given by LSM1. LSM3, LSM4 and LSM7 is 8 to 9%. The prediction by
the EGLOSS and N2 show marginaily higher error. As the load level increases the error
also increases, because at larger load levels, the discrepancy between the initial analysis
yield zone size and the actual yield size is very significant. This discrepancy increases

with increase in loading.

It must be pointed out that the EGLOSS and N2 errors change signs. Near the load levels
where the error trends change signs, the error may seem to be very low. Thus, it must be
noted that a low error level only at a particular load does not necessarily indicate the
effectiveness of a certain method. At the same load level, LSM2 and N1 show more than
20% error. Similar trends with increased error continue at a load of 1000 kPa (145 psi
close to the limit load). It is noted that at every load stage, the techniques based on line
searches (LSM1, LSM3, LSM4 and LSM?7) give better estimation though unconservative,
compared to the EGLOSS. N1 and N2 methods. The remaining line search techniques
such as LSM2 were not as good as the rest of the line search techniques. For comparison
purposes, the full nonlinear analysis (Newton-Raphson) with line search option has been
employed by restricting the analysis to two iterations. The results are reported in the
Table above against NFEA-2itr. The results show zero error for load case 1. However,
for subsequent load cases, the error is significantly high. The zero error in load case 1 is
probably due to the fact that the error trend is changing sign (from negative to the

positive) at that particular load.
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‘Table 5.1: Simply Supported Beam with UDL -Inelastic Strain Prediction at Different Loads

*Load Case | *Load Case 2 *Load Case 3 *Load Case 4
Methods
Strain | Errorl | Eror2 | Strain | Ermrorl | Emor2 | Strain | Errorl | Error2 | Strain | Emorl | Emor2
LSM | 11562 | 0.28 0.43 13934 | 1.36 1.99 | 1813.7 | 8.85 9.7 2174.7 | 2291 | 23.28
LSM 2 12188 | -5.11 | -4.95 | 1588.1 | -12.41 | -11.70 | 2439.2 | -22.62 | -21.43 | 3298.5 | -16.91 | -16.36
LSM 3 1156.2 | 0.29 0.43 1393.5 1.35 198 | 18139 | 881 9.68 | 2161.7 | 23.38 | 23.73
LSM 4 1155.8 0.32 0.46 1389.9 1.61 223 | 18069 | 9.16 10.04 | 2165.1 | 23.26 | 23.61
LSM7 1156.2 0.28 0.43 1393.7 1.34 197 | 18142 | 8.79 9.67 | 2161.8 23.73
N1 11552 | 037 0.52 1331 5.78 6.38 | 1506.7 | 24.25 | 24.98 | 1617.7 | 42.66 | 4292
N2 1225.1 | -5.65 | -5.49 | 1468.8 | -3.97 | -3.31 [ 17029 | 1439 | 15.21 | 1857.6 | 34.16 | 34.46
E-GLOSS 12306 | -6.13 | -597 | 14922 | -562 | -4.95 | 1753.7 | 11.83 | 12,68 | 19253 | 31.76 | 32.07
NFEA-2itr 11594 | 0.00 0.5 | 13351 | 549 6.09 |1673.1| 1588 | 16.70 | 1805.7 | 36.00 | 36.30
Nonlinear FEA | 1159.5 0.14 | 14127 0.63 | 1989.1 096 | 28214 0.46
Exact Analysis | 1161.2 1421.7 2008.5 2834.6
*Load Case Load (Pa) B
1 827.5 (120 psi) 1.815
2 896.5 (130 psi) 2.62
3 965.4 (140 psi) 3.89
4 1000.0(145 psi) 4.673

Note: Al strains

Ervors are in percent (%). Errorl and Error2 are in comparison with nonlincar FEA and exact analysis, respectively.

indicated above are in micro-strain units.
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The techniques LSMS and LSM6 were also examined for various problems. Generally
their results are not as good as those of the other line search techniques listed in the

Tables in this Chapter.

Representative results for LSM1 and EGLOSS are plotted in Fig. 5.1c. It must be noted
that the three curves shown appear to be ‘close” to each other. However, the appearance
is somewhat deceptive. The error must be looked as the difference in strain for a
particular stress level. To illustrate the point. three strain lines are drawn for the three

curves at load case 4. The difference indicated by these three vertical lines must be

to the effecti of a particular method.

5.2.2 Propped Cantilever Beam with UDL

The propped cantilever beam has the left end built-in and the other end simply supported.
It is subjected to a distributed load. With increasing load the first plastic hinge forms at
the built-in support and the structure subsequently becomes determinate. As the load is
increased further, an additional plastic hinge forms in the span leading to the collapse of
the structure. The limit load for the problem is 1551 kPa (225 psi). The load at the first
onset of yielding is 793 kPa (115 psi) as per ANSYS. As in the case of simply supported

beam with UDL, different loads (ranging between the yield and limit loads) are

to evaluate the effecti of different ‘The input files of linear

elastic and nonlinear analyses are given in Appendices B.2.1 and B.2.2, respectively.

The results for different methods are presented in Table 5.2.



The FE model of this beam has 100 equal divisions along the beam span and 10 equal
divisions along the depth. PLANE42 elements of ANSYS are used. The finite element
mesh and the boundary conditions are shown in Figs. 5.2a and b. The beam model has
zero displacement in X and Y directions at the each node of left support. At the right
support, the bottom node (if the middle node is taken, the response does not change
significantly) is restrained in the Y direction. The mesh has been used to carry out an
elastic analysis, NFEA-2itr (nonlinear response obtained after two iterations) and a

detailed inelastic analysis.

‘The highest strain is identified at the built-in support corresponding to element number 1.
At each load stage except at the lower end, the EGLOSS method gives slightly better
predictions than the other methods, even when the load is significant. This is in spite of
the fact that the EGLOSS method is developed for low load levels. At the load of

896.5 kPa (130 psi), LSM1, LSM3, LSM7, N1 and NFEA-2itr give good results
compared to other techniques. LSM2 gives good prediction at high loads. However, this
seems to be due to the fact that the error trend for this method changed sign and hence
momentarily seems to be better. Representative results for LSM1 and EGLOSS are

plotted in Fig. 5.2c.
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Table 5.2: Propped Cantilever Beam with UDL -Inelastic Strain Prediction at Different loads

*Load Case | *Load Case 2 *Load Case 3 *Load Case 4
Methods
Strain () | Error (%) | Strain (u) | Error (%) | Strain () Error (%) Strain () | Error (%)
LSM1 1297.3 2.89 1508.4 529 2486.8 19.55 2930.5 26.86
LSM2 1438.6 -7.68 17409 -9.30 3321.7 -7.447 4003.8 0.078
LSM 3 1298.5 279 1509.3 523 2469.8 20.11 28804 28.11
LSM 4 1288.5 3.54 1498.6 5.90 2475.3 1993 2895.1 21.75
LSM7 1299.7 2.70 15103 5.17 24699 20.10 2881.1 28.09
NI 12742 4.62 1440.1 9.57 2011.6 3493 22711 43.32
N2 1401.2 -4.88 1662.5 -4.38 23721 2327 2721.8 3207
E-GLOSS 1419.7 -6.27 1656.4 -4.00 2551.7 17.26 2989.1 2540
NFEA-2iwr 1323.4 094 1438.4 9.68 2204.3 28.7 2665.1 3349
Nonlincar FEA 13393 1592.7 3091.5 4007.0
*Load Case Load (kPa) [
1 896.5 (130 psi) 22
2 965.4 (140 psi) 2.545
3 1172.3 (170 psi) 3.6283
4 I24l.3(|80rii) 3.9
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5.2.3 Fixed-Fixed Beam with UDL

A fixed-fixed beam has been analyzed for the same properties as those for the two other
beams described above. At a load of 1230.6 kPa (178.5 psi). the extreme fibers at the end
supports start to yield. The spreading of the yielding zone continues in to the span and
along the depth with increasing load and first plastic hinge is formed at the supports. As
the load is increased further. an additional plastic hinge forms at the middle of the span
leading to collapse. The limit load for the problem is 2221 kPa (322 psi). The results of
different methods at different load stages between the yield and limit loads are presented

in Table 5.

The FE model of this beam has 60 equal divisions along the beam span and 10 equal
divisions along the depth. PLANE42 elements of ANSYS are used. The beam model
has zero displacement in X and Y directions at the each node of left and right supports.
The mesh has been used to carry out an elastic analysis, NEFA-2itr and a detailed
inelastic analysis. The input files of linear elastic and nonlinear analyses are given in

Appendices B.3.1 and B.3.2, respectively.

The highest local strain is identified at the built-in support corresponding to the element
number 1. In prediction of critical strain at low load, all line search methods except
LSM2 give good comparison with nonlinear FEA. As in the case of propped cantilever

beam, LSM2 is somewhat inconsistent.
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Table 5.3: Fixed-Fixed Beam -Inelastic Strain Prediction at Different Loads

*Load Case 1 *Load Case 2 *Load Case 3 *Load Case 4
Methods
Strain 30 | Fror (%) | Suain o | Ervor (%) | Stain () | Eror (%) | Strain () | Ervor (%)
LSM1 1148.2 161 14025 294 23309 1S 39559 3161
LSM2 1227.6 -5.19 1577.3 -9.14 3219.8 6102.5 -5.50
LSM3 1149.1 1.54 1404.5 2.81 23311 1151 3894.1 32.67
LSM 4 11429 2.06 1390.1 3.81 2323.0 .81 3907.2 3245
LSM7 1149.8 1.47 14006.6 2.66 23313 11.50 3894.5 32.67
N1 11359 2.66 1355.3 6.22 1827.1 30.64 2562.9 55.7
N2 12029 -3.07 1507.0 -4.28 21313 19.09 3140.0 45.71
E-GLOSS 1207.2 -3.44 1536.2 -6.29 2256.1 14.35 3468.9 40.02
NFEA-2itr 1162.6 0.37 1359.4 593 2011.09 23.65 3015.7 47.86
Nonlinear FEA 1167.1 1445.2 2634.3 5784.3
*Load Case Load (MPa) B
1 1.31 (190 psi) 1.835
2 1.45 (210 psi) 2.605
3 1.73 (250 psi) 4.156
4 2.00(290 psi) 5.8055
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At a load of 1724 kPa (250 psi). the errors in the EGLOSS, NI, N2 and NFEA-2itr
(except at low load level) methods are quite significant while LSM1, LSM3, LSM4 and
LSM7 are reasonable. At a load of 2000 kPa (290 psi), the trends continue.
Representative results for LSM1 and EGLOSS are plotted in Fig. 5.3a. It has been noted
that in all three beams, at load just above the yield load level, NFEA-2itr shows excellent
agreement with a detailed nonlinear analysis compared to the other methods described

above. But at higher loads. this excellency is dissipated quickly.

5.3 Simple Multi-Bar Truss

In the previous section, three cases of a beam have been explored. The predominant
mode of non-linearity is due to bending. In this section. a simple truss with six members

arranged parallel to each other is selected to apply the different analytical procedures.

In trusses of this kind, the failure is by the direct yielding of entire members.
Compression failure by buckling is excluded by design. Such ‘multi-bar’ structures are
popularly used to study the effectiveness of inelastic analysis procedures, e.g., Chen
[1996] and Seshadri [1991]. It is customary to take two or three bars parallel to each
other to carry out such analyses. In the present case, a truss with six bars is taken. This

was used by Adluri [2001] to the limit load
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Table 5.4: Simple Multi-Bar Truss -Inelastic Strain Prediction at Different Loads

*Load Case | *Load Case 2 *Load Case 3 *Load Case 4
Methods
Strain Error (%) Strain Ervor (%) Strain Error (%) Strain Error (%)
LSM 1 1.318 2.65 2.189 8.00 2.488 8.57 2997
LSM 2 1.802 -33.06 3.189 -34.00 3.601 4.562
LSM 3 12717 573 2016 15.25 2729
LSM 4 1.286 5.01 2,058 13.49 2787
L.SM7 1.277 5.67 2,024 1493 2739
N1 1.276 577 2.002 13.32 2,629
N2 1.464 -8.11 2.662 -11.88 3.465
E-GLOSS 1.128 16.67 2871 -20.62 -24.49 3.9360
NFEA-2itr 1.384 -2.20 2436 -2.39 -245 3.138
Nonlinear FEA 1.354 2379 3.109
Exact Analysis 1.354 2,379 3.109
*Load Case P1 P2 P3 [
] 1.5 2.25 L5 3.43634
2 1.8 %7 1.8 2.98711
3 1.9 2.85 1.9 2.96013
4 2 3 2 3.58684
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This truss is unlike regular truss like structures in the sense that it exhibits sudden
stiffening during iterative secant analysis where as it does not exhibit sudden stiffening in

an exact analysis.

If the parameters are changed slightly. even the exact analysis indicates sudden stiffening.
Traditionally, problems with sudden stiffening are cumbersome to deal with. The
configuration of truss and the dimensions of the members are shown in Fig. 5.4a. The

yield stress of the material is assumed to be 1 and the Young's modulus is also taken as 1.

In FE modeling for the truss, LINK1 is used. LINKI is a two-noded element with two
degrees of freedom at each node. The input file of nonlinear analysis is given in
Appendix B.4.1. The loads shown in Table 5.4 are applied arbitrarily and the equivalent

inelastic strains are evaluated.

Both exact analysis and inelastic FEA are carried out for this problem. Both these show
identical results. The results of the analyses are shown in Table 5.4. Member | first
yields in the initial analysis and 1s considered as a cntical member for equivalent inelastic
strain approximation. At all load levels (including close to the limit load), LSM1 and
NFEA-2itr give good prediction. Since the full nonlinear analysis for this problem
converges in three iterations, NFEA-2itr (after two nonlinear iterations) gives very good
estimates. At each load stage, N2 overestimates the strain but is reasonably good. LSM2
is consistently too high in its predictions at all load stages. The prediction made by N1

and EGLOSS methods is also not quite acceptable. LSM3, LSM4 and LSM7 show
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results that are slightly il but are 2 P! results for LSM1

and EGLOSS are plotted in Fig. 5.4b.

5.4 Plate with a Central Hole under Uniform Tension

A flat plate of length 76.2 mm and width 38.1 mm with a central hole of radius 6.375 mm
(Fig. 5.52) is solved for equivalent inelastic strain prediction based on the GLOSS
method by Raghavan [1998]. Babu and Iyer [1998] have taken the same problem for
inelastic analysis of components using a modulus adjustment scheme called MARS.
Seshadri [1991] had earlier solved that problem for showing the effectiveness of GLOSS
analysis. Chen [1992] used it for an accelerated method 1n elastic-plastic finite element
computation. They used a umform pressure of 200 MPa applied to the plate. In the
present study, four different loud cases are used. The yield stress of the material is
363.2 MPa and the Young's modulus is 72, 368 MPa. The Poisson’s ratio is assumed to

be equal 10 0.3.

In FE modeling, the key points are defined along the edges of the plate. The key points
are connected by line in Cartesian and Cylindrical coordinates. The mesh is made denser
near the hole. The corresponding key points define areas and AMESH command

performs the automatic meshing. Due to symmetry, only one quarter of the plate is

modeled.  F ded i i i element (PLANEA2) is used.
Symmetric boundary conditions are given for the relevant edges. The model is shown in

Figs. 5.5b and c. The input files of linear elastic and nonlinear analyses are given in



Appendices B.5.1 and B.5.2. respectively. The results for different methods are

presented in Table 5.5.

Pttt

| ——R6375mm

76.2 mm

EREEREERER

38.1 mm

Fig. 5.5a: Plate with a Circular Hole
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Fig. 5.5b: Finite Element Model -

Fig. 5.5¢: Detail near the hole
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After first linear elastic FEA. the highest critical strain is found near the hole region. The
pressure at the first onset of yielding is 106.4 MPa. The limit load for this problem is
2423 MPa. At low load levels. EGLOSS shows excellent results in comparison to other
methods. Similarly, NFEA-2ir is also acceptably good at low loads. For higher loads
such as a load of 220 MPa, the EGLOSS method fails since the modified modulii become
negative. At a load of 210 MPa. the EGLOSS method gives a high error like other
methods except LSM2. The LSM2 method gives surprisingly excellent results at all load
levels for this strain concentration type problem. However, it must be noted that the
method does not give consistently good results for other types of problems (e.g., beams).
The other line search techniques although not as good as LSM2, give consistent trends.

Representative results for LSM2 and EGLOSS are plotted in Fig. 5.5d.

5.5 Thick Cylinder with a Circumferential Notch

A thick cylinder of length 228.6 mm (9 in), inner diameter 812.8 mm (32 in.) and outer
diameter 1270 mm (50 in.) with a circumferential notch radius of 25.4 mm (1 in.) on the
inside surface under interal is considered. The cylinder is subjected to plane strain
condition. Different load stages under plane strain condition are considered to compare
the line search techniques. The material has a yield stress of 200 MPa (29 ksi) and a
Young's modulus of 190, 000 MPa (27, 500 ksi). The Poisson’s ratio is 0.3. Raghavan
[1998], and Seshadri and Kizhatil [1993] solved this problem for equivalent inelastic

strain estimation based on the GLOSS method.
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L 229

Note:  Figures not to scale
All dimensions in mm

Fig. 5.6a: Thick Cylinder with a Circumferential Notch
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Part of the cylinder is modeled under axisymmetry condition. The mesh chosen is finer

near the ci notch. element PLANE42 with

axisymmetric option is used. Symmetric boundary conditions are given for the relevant

edges. The model is shown in Figs. 5.5b and c. The input files of linear elastic and

nonlinear analyses are given in Appendices B.6.1 and B.6.2. respectively. The results for

different methods are presented in Table 5.5.

The pressure at the first onset of yielding is 60.7 MPa (8.8 ksi) and the limit load is
175 MPa (25.4 ksi) as per ANSYS. Table 5.6 shows the equivalent inelastic strain
predictions obtained by different methods for various loading stages. It can be seen that
the EGLOSS method over predicts the equivalent inelastic strain at each load stage, while
N2 gives over estimation at low load stages but is not as conservative as the EGLOSS
method. Even at higher load, the error obtained by N2 is found to be no more than five

percent. Methods LSM2

2 (based on Neuber's rule) and NFEA-2itr are in very good
agreement with nonlinear FEA. LSMI and LSM3 give consistent equivalent inelastic
strain trends as the error increases with increasing load. The estimation given by the
EGLOSS method at low load levels is a little better than that of LSM1 but not as much as
that by the modified Neuber method (N2) and LSM2. At a load of 96.5 MPa (14 ksi), the
EGLOSS method shows nearly 5% higher error than that obtained by LSML.
Considering higher load stages, LSMI has shown better prediction than the EGLOSS
method. The overall predictions obtained by NFEA-2itr at all load levels are also

acceptable. Representative results for LSM2 and EGLOSS are plotted in Fig. 5.6d.
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5.6 Bending of Rectangular Plate with Partial Fixity

A rectangular plate 382 mm (15 in.) long. 254 mm (10 in.) wide and 12.7 mm (0.5 in.)
thick has been selected to carry out nonlinear strain prediction. The plate is subjected to
uniform lateral pressure throughout. The plate is partially fixed and partially simply
supported as shown in Fig. 5.71. Plutes are widely used as important structural
components such as flat heads of pressure components. internals of pressure vessels, heat
exchangers, and a variety of building structure applications. The complex boundary
conditions have been chosen ntentionally for this problem to investigate the versatility

and of the under ion, since analytical solutions for such

configurations are difficult to obtain. For instance, the complex geometry along with the
boundary conditions can cause shear interactions thus rendering an analytical

elastic-plastic analysis intractable.

The plate material has a yield stress of 206.85 MPa (30 ksi) and a Young's modulus of
206, 850 MPa (30, 000 ksi). The Poisson’s ratio is 0.3. These properties are the same as

those for the beam type problems described earlier.

This problem has no symmetry. It is modeled as a three-dimensional solid using
SOLID45 clements of ANSYS. These are eight-noded solid elements with three degrees

of freedom ut cuch node. The FE model is shown in Fig. 5.7b.



84.7 mm

i
b3
3
£
L)
3

om | 127mm 127 mm
Note: (1) Figures not to scale
(2) Plate subjected to uniform pressure

(3) wem  Fixed supported edge
WY  Simply supported edge
—  Freeedge

Fig. 5.7a: Rectangular Plate Partially Fixed, Partially Free and Partially Supported
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Due to the complexity of boundary conditions, before first linear elastic FEA. it is
difficult to say where the critical strain occurs. Twelve equal divisions along the length
and width are considered to model the plate. The thickness is divided into 5 divisions.
Displacements at each fixed node are restrained in all X, Y and Z directions. At simply
supported nodes. only Y direction is restrained. The input listings of linear elastic and
nonlinear analyses are given in Appendices B.7.1 and B.7.2. respectively.
Mangalaramanan [1997] and Bolur [2002] have studied this problem for limit load
behavior. Note that the problem could have been solved using plate-bending elements as

well.

The limit load for the problem is 3483 kPa (505 psi) [Mangalaramanan, 1997]. The load
at the first onset of yielding is 1547 kPa (224.3 psi) as per ANSYS. Different load stages
between the yield and limit load are selected to compare the different line search
techniques with the nonlinear FEA. These load levels are 1862 kPa (270 psi), 2068.5 kPa

(300 psi). 2206.7 kPa (320 psi) and 3103 kPa (450 psi).

In spite of the complex boundary conditions, at low loads all methods show good
estimation of inclastic strain. All methods including NFEA-2itr (nonlinear results after
two iterations) show good results even at moderately large loads such as 1106 kPa
(320 psi). The EGLOSS method predicts negative modulii at higher load of 3103 kPa
(450 psi) and thus fails. Surprisingly, LSM2 shows a remarkable consistency throughout

the load increase. Representative results for LSM1 and EGLOSS are plotted in Fig. 5.
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Fig. 5.7b: Finite Element Model - Rectangular Plate with Partial Fixity
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5.7 Thick Cylinder Subjected to Internal Pressure

A considerable amount of research over the decades has been devoted to the design of
thick-walled cylinder. In this section. cne of the benchmark problems of this kind is
selected. Many researchers used this problem for a variety of purposes. It has an inner
radius of 76.2 mm (3 in.) and an outer radius of 228.6 mm (9 in.) shown in Fig. 5.8a.
Different internal pressures are considered to evaluate the proposed methods. The
material has a yield stress of 206.85 MPa (30 ksi), Young's modulus of 206, 850 MPa
(30,000 ksi) and a Poisson's ratio of 0.3. The thick-walled cylinder is solved using
axisymmetric PLANE-42 elements. Since the problem is axisymmetric, only a small

section is modeled.

R 228.6 mm

Fig. 5.8a: Thick-Walled Cylinder Subjected to Internal Pressure



It is advisable to use a finer mesh near the inner surface to evaluate inelastic effects.
However, for simplicity, the mesh is made uniform through out. The FE modeling of this
problem (with and without boundary conditions) is shown in Figs. 5.7b, c and d. The
restrains have been applied along the radial direction. The input listings of linear elastic

and nonlinear analyses are given in Appendices B.8.1 and B.8.2, respectively.

The limit load for this problem is 261.6 MPa (37.9 ksi) and the load at the first onset of
yielding is 108.4 MPa (15.7 ksi) as per ANSYS. Critical strain after the first linear FEA
is found at the inner radius. None of the methods have given good results at high load
stages. At the lower load of 138 MPa (20 ksi), the error in LSM1, LSM3, LSM4, LSM7
and NFEA-2itr have been found to be less than 6%. while the errors in the EGLOSS and
N2 methods are quite high. The EGLOSS and N2 methods to evaluate equivalent
inelastic strain for this problem are not very good even at low loads. The evaluation
obtained by LSM2 is also not acceptable. All methods over predict the strain for this
problem. The predictions obtained by LSM3, LSM7. N1 and NFEA-2itr at all load
stages are perhaps better than those of the rest. Except at higher load level, nonlinear
analysis after two iterations (NFEA-2itr) shows better prediction for this problem. This
behaviour of NFEA-2itr is similar to that in the case of a truss. The behaviour of trusses
and thick cylinders have several similarities which might explain the reasons for the
performance of NFEA-2itr. As in the case of the flat plate with a hole, for the thick
cylinder problem too the EGLOSS method predicts negative modulii at higher loads and

thus fails. Representative results for LSM1 and EGLOSS are plotted in Fig. 5.8e.
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5.8 Torispherical Head under Uniform Internal Pressure

T heads are an i class of problems and a significant amount of
research has been devoted them. Drucker and Shield [1959). Mangalaramanan [1997]
among others had carried out approximate analyses of torispherical heads. For the
present study, a wall thickness of 25.4 mm is used. The ratio of the average diameter of
the torispherical head to the thickness is taken to be equal to 300. The yield stress of the
material is assumed to be 206.85 MPa and Young's modulus is 206, $50 MPa. The

Poisson’s ratio is 0.3.

Due to symmetry, a quarter model is selected. F ded

elements (PLANE42) used in the FE modeling of other problems described above are
used for this problem under axisymmetric condition as well. Six divisions along the
thickness are considered. Pressures are applied inside the surface with proper boundary
conditions indicated in Figs. 5.9a. b and c. The input files of linear elastic and nonlinear

analyses are given in Appendices B.9.1 and B.9.2, respectively.

The pressure at the first onset of vielding is 533.4 kPa and the limit pressure is 858 kPa as
per ANSYS. At higher load stages. the local strain prediction given by N1, N2 and
EGLOSS methods is not acceptable in comparison to that of the nonlinear FEA.
Prediction obtained by LSM1, LSM3. LSM4 and LSM7 at euch stage is not bad. They
are especially good at low loads although the structure is quite complex. LSM2 is not

acceptable, as it gives a huge error even at low loads.
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At a high load of 800 kPa, the estimation given by LSM1 is quite reasonable with a 12%
error where as the EGLOSS gives more than 29%. NFEA-itr gives good prediction at
high load (750 kPa). However, this seems to be due to the fact that the error trend
changed sign and hence momentarily gave a better result. Representative results for

LSMI and EGLOSS are plotted in Fig. 5.9d.

5.9 Summary

To generalize the proposed techniques. various conf ions of structural

with different loading categorics and boundary conditions have been solved. The results
are compared with those of nonlinear FEA. For the same problem, ditferent load stages
are investigated because one method can show its best performance for certain load stage
but may not be that good for other load stages. Several times in the analysis, individual
methods showed error trends that change signs. When the sign change occurs, the error
may appear to be very small. However. this is not reflective of the effectiveness of that
method. Therefore, to generalize the conclusions, it is necessary to investigate the

methods for a variety of load stages.

In general, it has been observed that LSM1 and LSM7 are the best in comparison with
nonlinear FEA at almost all load levels. LSM2 is not acceptable for any problems except
those with significant strain concentration such as plates with holes and notch problems.
For those cases, LSM2 is better than any other methods studies above. The EGLOSS

method is said to be specifically good for low load levels. It is a simple technique and



requires less effort than the line search techniques. However. in general it shows
considerably more error than the line search techniques LSMI and LSM?7 for regular
problems and LSM2 for strain concentration problems. It has zlso been seen that
NFEA-2itr (response obtained by nonlinear analysis after two itcrations when full
Newton-Raphson along with line search option as per ANSYS are applied) shows

excellent agreement for those load levels just above the yield.

It must be noted that the EGLOSS method is acceptable at low load levels while it

becomes unacceptable at higher load stages. [n certain cases, the method fails because of
the creation of negative moditied modulii. For thick cylinders. the error by EGLOSS and

N2 is quite high even at low load level. while LSMI1 and LSM7 show reasonably good

in and are Even for such problems as the irregular
plate and the torispherical head, the overall prediction obtained by LSM1, and LSM7 is
acceptable at almost all load levels. In addition to these. as mentioned earlier, LSMS and
LSMBS have also been studied for the above problems. They show somewhat inconsistent
error trends and hence are not reported here in detail. They are not consistently better

than LSM7 or LSM1.



Chapter 6

Conclusions and Recommendations

6.1 Summary

Approximate inelastic strain estimation is of great use in several types of applications.
Besides classical nonlinear FEA. robust techniques such as Neuber’s rule. EGLOSS, etc..
are available for this purpose. These robust techniques are applicable for small loads just
above the initial yield. These methods find secant modulus based on unbalanced local
element energy. They do not account for change in the yield boundary while computing

secant modulus. Several i secant were ped to update the

secant stiffness directly in FEA based nonlinear schemes. The present study explores

simple and sy for robust ination of inelastic strains based on

line search and direct secant modulus. The main concept of these methods is the
minimization of the energy due to residual force vector acting on a pseudo displacement
after first linear FEA. A line search with the displacements due to the unbalanced forces

spreads the yield zone considerably close to the actual state.

In this study, different i solution (iterative, or

combination of both, etc.) have been reviewed. Incremental procedures are adopted

using stiffness matrix with updating rdinates and initial di using a



number of load steps. and operations are predetermined as a series of linear problems.
Errors are likely to accumulate after several steps unless very fine steps are adopted. The
solution may therefore, diverge considerably from the true response. The accuracy is
improved by applying equilibrium corrections. Pure iterative procedures (without
increments) are generally assumed to have converged when the unbalanced load becomes
acceptably small. judged by the Euclidean norm. The total load is applied at a time and
equilibium is restored by iteration. Most practical procedures implement a mixed
scheme combining the features of both pure iteration and pure incremental procedures.
The most popular of such schemes is the well-known Newton-Raphson method. Since in
its pure form. it involves updating of stiffness matrix in every iteration of each step, a
modified Newton-Raphson method is often used to reduce the number of matrix updates.
The conventional incremental procedure is a single iteration of its modified version

wherein the unbalanced forces in the previous load increment are neglected.

Secant type methods (e.g.. Quasi-Newton) are also very popular since the matrix updates
avoid the difficulties associated with the finding of a tangent. However. in general, they
are somewhat slower than an optimal Newton strategy (such as Full Newton-Raphson).
They become competitive when the cost of Jacobian evaluation is significantly larger
than that of the residual vector calculation. In all these, strong nonlinearities could lead
to an ill-conditioned iteration matrix. However, for complex material nonlinearities,
secant type methods (e.g.. BFGS) are preferable. To reduce the iteration numbers
significantly, a line search can be applied. Although these were originally developed for

secant methods, they can be extended to almost all other types of methods. This line



search has a cost associated with it. but most of the time. it makes the analysis
considerably more efficient and effective by reducing the total number of iterations

substantially.

Full nonlinear FEA is not always suitable or necessary in several practical cases.
Although full nonlinear analysis gives the best representation of structural plasticity.
obtaining the solution may be difficult. The process could lead numerical convergence
problems and undetectable errors and even to solution instabilities. Thus. it requires the

analysis be restarted with necessary modifications made to the geometry. applied loading

or the 2 criteria. Besides. the accuracy of the solution
obtained depends on the size of load increments taken and the degree of non-linearity of
the problem involved. Consequently. there is no guarantee of a numerical solution.
Therefore. it is very desirable to have the means for obtaining easy. approximate and yet

robust estimates of nonlinear strains.

Such methods will be useful for initial design or feasibility study where several repeated
analyses are needed. They are also useful for quick estimating critical strains without the
elaborate analytical evaluations for the entire structure. They can also be used as

independent checks for full nonlinear analyses results.

Several such i have been ped. Most i methods involve elastic

modulii adjt i that redistril pseudo-el; stresses. They have some

advantages over conventional nonlinear methods. These methods are fast and efficient.

Besides, they are based on a series of linear analyses, and hence avoid convergence



difficulties. However, caution must be exercised while using those methods (EGLOSS.
Neuber’s Rule. energy density approach. etc.). The EGLOSS method predicts strain
reasonably well only at low load levels. On the other hand. Neuber's rule predicts
inelastic strains reasonably well for certain applications (e.g.. plane stress problems). In
plane strain situations, Neuber's rule has been widely reported to overestimate the
inelastic strain while energy density approach underestimates them. This could lead to

significant errors in fatigue life predictions.

This study is aimed at studying different possibilities and developing a simple set of
methods for evaluating the inelastic strain largely based on line search and direct secant
method. Line search is concemed with the difference between the size of the plastic zone
indicated by the initial elastic analysis and the actual plastic zone. Seven possible
techniques (LSM1 to LSM?7) are explored to estimate this. They can be applied to most
load levels. These techniques involve carrying out an elastic analysis on the original
structure for a given loading and boundary conditions. The difference between the
applied load and the intemal forces corresponding to the reduced stress level constitutes
an unbalanced force vector. This unbalanced force needs to be redistributed to the
remainder of the structure in order to establish equilibrium with the help of a line search.
Using line search, the yield boundary as indicated by the initial analysis can be expanded
through redistribution. Previously described robust techniques have not recognized the
utility of the line search or its variants in estimating the inelastic zone size. After the line
search is cammied out, for all elements with equivalent stress exceeding yield stress. the

new secant modulus is estimated. After the line search and the estimation of a secant
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modulus. a second linear elastic analysis is carried out. The elastic properties of all other

elements where the secant modulus is not used are left unchanged in the second FEA.

The results of the first analysis and the second analysis are used to project an
approximate relaxation line and hence. a nonlinear strain estimate. For such projections.

several of ions are possible. All those (i.e.. geometric

combinations) will have some physical justification. All of them are approximate.
However. at least some of them will be robust in the sense that they will predict
reasonably accurate strains with a relatively small effort and can absorb imperfections in

data Such proj are not by tradi nonlinear FEA

based on Newton or Quasi-Newton techniques. However. such projections are used
routinely during the estimation of primary stress for mechanical design. EGLOSS and
other such methods are based on them. The individual researchers who developed these
techniques did not make the combination of line search and geometric projections for
relaxation lines. On the basis of first and second analyses. the approximation relaxation

locus can be obtained.

Proposed method LSM1 computes the approximate strain at the intersection point of the
relaxation locus with the yield stress after the second analysis. Instead of yield stress, a
modified yield stress is explored in the LSM2. At the end of the line search, an
approximate estimate of equivalent strain can be obtained. Multiplying this strain with
the Young's modulus, an elastic stress can be obtained. On this pseudo stress stain point.

a relaxation locus can be obtained. The same procedures as in the cases of LSM1 and



LSM2 are repeated to approximate the equivalent strain including the plastic effects in
the LSM3 and LSM4. respectively. An approximate estimate of inelastic strain can be
obtained at the end of the line search by multiplying a factor. This method is named as
LSMS5. Another different effective yield stress (akin to EGLOSS) after second elastic
analysis can be computed. The same procedures as in the cases of LSM2 and LSM+ are
followed to approximate the inelastic strains in the LSM6 and LSM7 (where new

effective yield stress level is used). respectively.

The usefulness of Neuber's rule is also explored in this study. This rule is not
traditionally used to carry out iterative nonlinear analyses. But the simple concept of the
rule can be extended to carry out progressive refinement of the initial analysis results. A
second linear analysis is carried out using the modulii modified by Neuber's rule after
first linear elastic analysis. An effective yield stress can also be obtained. Two
combinations (named as N1 and N2) to evaluate inelastic strains after second linear FEA
are explored here. The same procedures as in the cases of LSM1 and LSM2 are repeated

in N1 and N2 approaches (where different modified yield level is used), respectively.

All these proposed schemes are applied to study several example problems. They include
bending beams (simply supported beam, propped cantilever, fixed beam -all with UDL),
bending of rectangular plate (with irregular boundary), simple truss, stretching of a plate
with a hole. thick cylinder with intemal pressure, thick cylinder with a circumferential

notch, and a torispherical shell. These problems were studied for loads ranging from just



above initial yield to nearly limit loads. All results were compared with those obtained

by EGLOSS and nonlinear FEA.

6.2

Conclusions

Based on the present study. the following conclusions can be drawn.

v

v

IS

. Secant type and Newton-Raphson based tangent methods are available for

nonlinear FEA. All of them are based on incremental iterative procedures and are
prone to numerical problems. Their accuracy depends on the size of load
increments taken and the degree of non-linearity of the problem involved. All of

them update the stiffness matrix directly.

. Line search significantly reduces the number of iterations. Although the line

search involves some extra cost, the analysis becomes significantly more efficient

and effective.

. Robust techniques such as EGLOSS are dependent on direct estimation of secant

modulus (as opposed to secant stiffness). They also use relaxation line
projections to approximate the inelastic strain. They are reasonably effective at
loads just above the yield level. They are very cost effective and are not prone to

numerical convergence difficulties.

. In this study, seven possible techniques (LSM1 to LSM7) based on line search,

direct estimation of secant modulus. relaxation line projections are studied. In



wu

o

~

addition. two combinations (NI and N2) based on extensions of Neuber’s rule
have been studied. All these were applied to a variety of numerical examples.
They include beams. truss. plate with hole. cylinder with notch. bending of plate.
thick cylinder and torispherical head. etc. They include problems with general

bending and stretching as well as problems having strain concentration.

. LSMI and LSM?7 have been found to give generally similar results and are quite

good in giving a robust estimation of inelastic strain for general problems such as

bending and They give y better results than other
approximate methods (including EGLOSS. etc.) for all load levels. They are also
better than full nonlinear analysis (with line search) restricted to two iterations.
LSMI is a little better at higher load levels while LSM7 is slightly better at lower

load levels.

. LSM2 has been found to be the best for strain type

problems and maintains an overall consistency in predicting inelastic effects at
different load levels. For plate with a central hole, the error for this method is less
than 2% throughout (even at 90% of limit load). In these particular types of
problems, LSM1 and LSM7 have been also found to be reasonable but not as

good as LSM2.

. All other methods (LSM3, LSM4, LSMS, LSM6, N1, and N2) give trends that are

not consistent. While they may be good at certain loads and for certain problems.

general trends are difficult to establish.
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6.3

8. As can be expected. methods based on line search (LSMI/LSM7 or LSM2)

consistently fared better than other methods that do not use the line search.

©

It must be noted that some of the techniques examined show very low error for
certain load levels. This occurs where the error trends change signs. Thus. a low
error level only at a particular load does not necessarily indicate the effectiveness

of a certain method.

-

. It has been noticed that at larger load levels. using EGLOSS modifications.
Young's modulus could become negative thus rendering the method inapplicable.
At low load levels just above the yield. EGLOSS has been found to give
reasonably good estimations. At larger loads. the discrepancy between the initial
analysis yield zone size and the actual yield zone is very significant. This
discrepancy increases with increase in loading except in the case of sudden
stiffening. Hence. the inelastic strains are not estimated accurately and the error
in the estimation increases with increase in the load level. Generally, the
compensation obtained by modifying the modulus of elasticity of the yieided

elements from the first linear elastic FEA is not enough.

Recommendations

It has been found that the proposed techniques (LSM1, LSM2 and LSM?7) based on line

search provide good estimates of inelastic strain for a given load and geometry. Further

research in this area would be worthwhile. As LSM2 gives good approximations only for
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strain ion type problems. ion of li could be an area worth

pursuing.  Further research in nonlinear conventional techniques to extend these

and i of line after iteration could improve

conventional methods.
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Appendix A

ANSYS Files for Proposed Techniques

All ANSYS input and commands listing for the problems discussed in Chapter 5 are
provided in the follwoing Appendices. As mentioned earlier in Chapter 5. ANSYS FE
software does not perform line searches after the first linear elastic analysis. The
algorithm used by ANSYS seems to need at least two analyses to establish search
directions and meaningful updates. However. basic line search can always be carried out
irrespective of the condition of the analysis. In order to carry out the line search outside

the purview of ANSYS, a set of procedures reflecting the basic ideas of line search

have been These d are purely for the ease of carrying

out line search outside ANSYS and do not in any way influence the effectiveness (or the
fack there of) of the methods being discussed. If one were to program these methods
directly. these extra procedures need not be resorted to. All these extra procedures have
been programmed using the ANSYS Design Parametric Language (ADPL) provided with
the ANSYS package [ANSYS, 1998]. The language is somewhat similar to Fortran and
can be easily understood. Sample macros involving the extra programming are included
in this Appendix. If one were to use another software package, say, ABAQUS, the
system of procedures would change. Most of the procedures reported below would not

be required if the particular software package is equipped with commands to supply the



decomposed matrix (or the matric inverse) or is programmed to carryout the line search

after the first linear analysis.

A complete set of analysis files for the simply supported beam with UDL has been listed
in the present appendix. Similar files for other problems are not listed since they are

similar to those listed here except for the modeling input.

In the following. section A.1 lists the input data to perform the first linear elastic analysis.
It stores stresses and strains as output in the file “stress_strain_l". A file "d_val' is
created to calculate nodal displacements for a duplicate analysis. Section A.2 lists a
duplicate input data. The unbalanced forces at the nodes are output to the file "f_vall-
f_valn’ for further processing. The applied nodal displacements in a different format are
also restored in the file *d_vall’ for a link file to be used in section A4. Listing A.3 gives
the nodal displacements due to the unbalanced loads wnitten in the file “f_vall-f_valn’.
Section A4 lists a simple fortran routine to compute line search parameter B. This
routine and the APDL listing in AS are run repetedly till the parameter B is determined.
Section A.5 has a listing for nonlinear analysis to find out the equivalent balance forces
(complied in the file *f_vali’) for an applied displacement field (complied in the file
*d_sum’) obtained by using the current value of the line search parameter . After the
line search has converged, modification of the Young's modulus is curried out and the
input file to carry out linear elastic analysis is listed in A.6. After running A.6, line

search stresses and strains are stored in the file "stress_strain_ls’. A second linear elastic
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FEA with modified modulii is carried out using the listing in A.7. It stores the stresses

and strains after the second linear analysis in the file “stress_strain_2".

As mentioned above. this pattern of procedures is similar to all the example problems.

A.l First Linear Elastic Analysis

/oaich
/utle, simply supported beam with udl

! set basic material constants

*set, ym. 30e06 ! Young's modulus
*set, ys, 30e03 ! yield stress
*set, poisson, 0.3 ! Poisson’s ratio

! set basic geometric inputs

*set. In, 20 ! beam span

*set. dt, 1 ! beam depth

*set, ndivl, 60 ! no of divisions along beam span

*set. ndiv2, 10 ! no of divisions along beam depth
*set. pr, 120 ! applied udl on the beam surface

! enter preprocessor
Iprep?

! define analysis type as “static’ and

! element type as “four-noded isoparametric” element
antype, 0

et, 1,42

! add elastic material properties
mp, ex, 1, ym
mp, nuxy, 1, poisson

key, 1,3.0

! start modeling and defining keypoints
k. L

k2 In
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! start meshing
amesh. all

! add boundary conditions at left support
nsel. s, loc. x. 0

nsel, r, loc. y. dv2

d.all, ux

d. all, uy

! add boundary conditions at right support
nsel. s, loc. x. In

nsel, r. loc, y. dv2

d.all, uy

! add ud! on the beam surface
nsel. s, loc, y. dt

sf. all. pres. pr

nsel. all

! end of modeling, and exit preprocessor
fini

! enter solution routine
Isolu

antype, 0
time, pr
outress, all, all
suve

! start solving
solve
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! end of solving, and exit solution routine
fini

! enter post-processor

Ipostl

set, 1
! create element tables for equivalent stresses and strains

ctable, eqvst. s. eqv
etable, estm. epel. eqv

! get maximum element number as ‘max 1"
*get. max1. elem. 0, num. max

! create arrays as "dummy!’ and "dummy2’
*dim, dummyl. array. max L
*dim. dummy2. array, max |

! open a file as “stress_strain_1" and

! store first linear stresses and strains in corresponding arrays
*cfopen, stress_strain_{

*do, kk. 1, max1

*get, sig, elem, kk, etab, eqvst

*get, epsl, elem, Kk, etab, estrn

*set, dummy [ (kk), sig

*set, dummy2(kk), epsl/( 1+poisson)
*vmask, dummy L(kk)

*vmusk, dummy2(kK)

*vwrite, kk, dummy1(kk), dummy2(kk)
(3x, 8.1, 2x,e15.8, 2x. e15.8)

~enddo

*cfclos

fini

! get maximum node number as ‘max2’
*get, max2, node, 0, num, max

! create arrays as “"dummy3’ and “dummy4’
*dim, dummy3, array, max2

*dim, dummy4, array, max2

! set material number as ‘mnum’
*set, mnum, |
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! open a file as "d_val" and store nodal displacements
*cfopen. d_val

*do, kk 1, max2

*get, dl, node,

*set, dummy3(kk), d1

*set, dummyd(kk), d2

*cfwrite, d, mnum, ux. dummy3(kk)
*cfwrite. d. mnum, uy. dummy-(kk)
*set, mnum, mnum+1

*enddo

*cfclos

fini

A.2 Calculation of Unbalanced Nodal Forces

foarch

Htitle, calculation of unbalanced nodal forces

! set the same basic material constants and geometric inputs
*set. ym, 30e06

*set. ys, 30¢03

*set, poisson, 0.3

*set. In, 20

*set, dt, |

*set, ndivl, 60

*set, ndiv2, 10

! enter preprocessor
Iprep?

! define analysis type as "static’ and

! element type as “four-noded isoparametric” element
antype, 0

et, 1,42

! define elastic material properties
mp, ex, I, ym
mp, nuxy. I, poisson

key. 1.3,0



! start modeling
! define keypoints
2

! define areas
a4 1,23

! start meshing
amesh, all

! select all nodes of the model and

! apply equivalent nodal displacements instead of ud!
nsel, all

finp. d_val

nsel, all

! end of modeling, and exit preprocessor
fini

! enter solution routine
Isolu

antype, 0
outress. all, all
save

! start solving
solve

! end of solving, and exit solution routine
fini

! enter post-processor
Ipostl

set, |

186



! get maximum node number as ‘max 1’
*get, max L. node. 0, num. max

! create arrays as ‘dummyl’, "dummy2’. etc.
*dim, dummyl, array, max|
*dim, dummy2, array, max1
*dim, dummy3. array. max|
*dim. dummy4. array. max1

! set material number as “mnum’
*set. mnum, |

!open a file as "d_vall” and

! store applied nodal displacements in a different format
*cfopen, d_vall

*do. kk, . max1

*get, dl. node. kk. u, x

*get, d2, node, kk, u. y

*set, dummy L(kk). d1

*set, dummy2(kk). d2

*cfwrite. |, mnum, dummy L (kk)
*cfwrite, 2.mnum, dummy2(kk)
*set, mnum, mnum+|

*enddo

*cfclos

fini

! set material number as ‘mnum’
*set, mnum, |

! open afile as *f_vall’ and

! store nodal forces (reaction forces) in a different format
*cfopen, f_vall

*do, kK, 1, max1

*get, al, node, kk, rf, fx

*get, a2, node, kk, f, fy

*set, dummy3(kk), al

*set, dummy4(kk), a2

*cfwrite, |, mnum, dummy3(kk)
*cfwrite, 2, mnum, dummy-(kk)
*set, mnum, mnum+1

*enddo

*cfclos

save
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! start another inelastic analysis

! enter preprocessor
IprepT

! the same model and applied displacements are restored
resume

! define inelastic properties
tb, bkin. L. |
thdata. 1.ys, 0

! nonlinear solver options
autots. on

Insrch. on

nropt, full, , off

nenv, 1

! end of modeling, and exit preprocessor
fini

! enter solution routine
Isolu

antype. 0
outress. all. all
save

! start solving
solve

! end of solveing, and exit solution routine
fini

! enter post-pocessor
Ipostl

set, last

! get maximum node number as ‘max2’
*get, max2, node, 0, num, max

! create arrays as ‘dummy5” and ‘dummy6’
*dim, dummys3, array, max2
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*dim. dummy6. array. max2

! set material number as ‘mnum’
*set. mnum, |

! open as file as *f_valn’ and

! store balanced nodal forces in a differernt format
=cfopen, f_valn

*do. kk, l.max2

*get, a3. node. kk. rf. fx

*get, a4, node. kk, y
*set, dummyS5(kk), a3

*set, dummy6(kk), a4

*cfwrite, |, mnum, dummy3(kk)
*cfwrite, 2, mnum, dummy6(kk)
*sel, maum, maum-+1

*enddo

*cfclos

save

fini

! set material number as ‘mnum’
*set, mnum, |

! open a file as *f_vall-f_valn’ and store unbalanced nodal forces

*cfopen. f_vall-f_valn
*do, kk, 1, max2

*cfwrite, f, mnum, fx, dummy3(kk)-dummy5(kk)
*cfwrite, f, mnum, fy, dummy-(kk)-dummy6(kk)
*set. mnum, mnum+ 1

*enddo

*cfclos

fini

A3 C ion of Nodal Displ:

batch

fitle, of nodal di due to

! set the same basic constants and inputs
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*set. ym. 30e06
*set. ys. 30¢03
*set. poisson, 0.3
*set. In. 20

*set, dt, |

*set. ndiv1, 60
*set, ndiv2, 10

! enter preprocessor
IprepT

! define analysis and element type
antype, 0
et, L, plane42

! define elastic material properties
mp, ex. L, ym
mp. nuxy, L. poisson

key. 1.3.0

! start modeling

! define keypoints

k.1

k.2.In
2 In, dt

L 4.0, dt

devide lines
2,

'
1
1
15
e

L
2
3.4
4, ndxv7

! define areas
a,4,1,2,3

! start meshing
amesh, all

! add boundary conditions at left support
nsel, s, loc, x, 0

nsel, r, loc, y, dv/2

d. all, ux

d. all, uy



! add boundary conditions at right support
nsel, s. loc, x, In

nsel, r. loc, y, dv2

d, all, uy

! select all nodes of the model and
! apply unbalanced nodal forces
nsel, all

Jinp, f_vall-f_valn

nsel, all

! end of modeling. and exit preprocessor
fini

! enter solution routine
Isolu

antype, 0
outress, all, all
save

! start solving
solve

! end of solving and exit solution routine
fini

! enter post-processor
/Ipostl

set, |

! get maximum node number as “max 1’
*get, max |, node, 0, num, max

! create arrays as ‘dummyl’ and ‘dummy2’
*dim, dummyl, array, max!|
*dim, dummy2, array, max1

! set material number as ‘mnum’
*set, maum, 1

! open a file as “del_d’ and

! store displacements due to unbalanced forces
*cfopen, del_d
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*do. kk. 1. max1

L k. u. y
*set. dummyl(kk). d1

=set. dummy2(kk). d2

*cfwnte. 1. mnum, dummy [(kk)
“cfwnite. 2. mnum. dummy2(kk)
*sel. mnum, mnum+1

“enddo

“cfclos

fini

A4 Calculation of Line Search Parameter 3

* obtain the applied force at each dof as a vector: forcel

* obtain the balanced force sustained by the updated displacement: force_i
* obtain the due to initial force disp_d

* find the error energy

* change B value and find the error energy again

* repeat the process to minimize the error

* character*80 fname
dimension errorval(100), betaval(100). changeval(100)

* the following is to prepare post-processing data
* the same file will also be used after rewinding
* to create a file containing segments of input for the reanalysis

* output file containing post processing data

all’)
‘del _d')
‘d_sum’)
beta’)
vall)
'f_vali’)

open (unit=06,file:
open (unit=07 file:
open (unit=08,fi
open (unit=09.file:
0,file:
L file:
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error = 0.0
* error is the residual energy

beta_tol = 0.01
* tolerance for convergence of residual energy

"

node_dof
* node_dof is the number of degrees of freedom per node

read (09,*) nodes, no_trials
* nodes is total number of nodes
* no_trials is the number of trial iteration carried out
* to find the value of beta. initially the file beta will
~ have initial trial beta value as zero. i.e..
* the beta file will have an input that looks like
* ‘number of nodes', 0
if ( no_trials .ne. 0) then
read (09,*) (errorval(i), betaval(i). changeval(i), i=1, no_trials)
do 200 i = |, node_dof*nodes
read (07,*) idir_d, n_d, disp_d
read (10,*) idirl, nl, forcel
read (11,*) idir_i. ni, force_i
error = error + disp_d * (force_i - forcel)
200 continue
change = -100.0*(errorval(no_trials)-error)/errorval(no_trials)

if ( abs(change) .le. beta_tol .and. no_trials .ne. 1 ) then

write (05,300) beta_tol
300 format("beta value converged with a tolerance of ", F6.4)

stop
end if

write (05,360)
360 format (1x.," trial# error value beta  %change ")
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write (05.370)(i. errorval(i). betaval(i). changeval(i). i=1. no_trials)
format (1x.3x,12.3x,E13.3.2x,F6.3.2x.F9.3)

o
]
=]

write (05.380) error. change
format (1x."the current values of error and change ratio are”,
/9x.E13.3.2x.6x.2x.F9.3/)

38

3

else

error = 10000000000.0
change = 100000000.0

end if

write (05.400)
400 format(lx,"please type in the next guess for beta: "S)

read (05,%) beta

no_trials = no_trials+1
errorval(no_trials) = error
betaval(no_trials) = beta
changeval(no_trials)= change

close(unit=09)
open (unit=09,file="beta’)

write (09,*) nodes, no_trials
write (09,420)(errorval(i), betaval(i). changeval(i), i=1, no_trials)
420 format (1x,E13. F15.3)

* the following is to prepare a file containing total displacements
* of input for the reanalysis

* this utilizes the post-processing data files created earlier

* and the beta value calculated above

rewind(unit=06)
rewind(unit=07)

do 1000 i = 1, node_dof*nodes
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read (06.*) idirectionl. nl. displ
read (07.*) idirection2. n2. disp2

disp = displ + beta * disp2
if (idirectionl .eq. 1) then

write (08.510) nl. disp

510 format (d."4."ux.'e18.9)

=)

else

write (08,520) nl. disp
520 format ('d.",[4."uy,'¢18.9)

end if

1000 continue

close (unit=06)
close (unit=07)
close (unit=08)
close (unit=09)
close (unit=10)
close (unit=11)

stop
end

A5 Calculation of Balanced Nodal Forces
/oatch

Hitle, calculation of balanced nodal forces corresponding nodal displacements

! set the basic material and geometric constants and inputs
*set, ym, 30e06

*set, ys, 30e03

*set, poisson, 0.3

*set, In, 20



*set.dt, |
*set. ndivl. 60
*set. ndiv2, 10

! enter preprocessor
Iprep?

! define analysis and element type
ant
et. 1. plane42

! define material properties
mp. ex. L. ym
mp, nuxy, L, poisson

! define nonlinear properties
tb. bkin, [, 1
tbdata, Lys, 0

key. 1.3.0

! start modeling by defining keypoints
k.1

! devide suitable lines
I 1.2, ndivl

2,4,1.23

! start meshing
amesh, all

! select all nodes and

! apply corresponding nodal displacements
nsel, all

/inp, d_sum

nsel, all



! nonlinear solver options
autots, on

Insrch, on

nropt. full. . off

ncnv. |

! end of modeling, and exit preprocessor
fini

! enter solution routine
Isolu

antype., 0
outress, all. all
save

! begin solving
solve

! end of solving, and exit solution routine
fini

! enter post-processor
Ipostl

set. |

! get total node number as “max1’
*get, max1, node, 0, num, max

! create arrays as "dummy!’and "dummy2”
*dim, dummyl, array, max!
*dim, dummy?2, array. max|

! set material number
*set, mnum, |

! open afile as ‘f_vali* and

! store balanced nodal forces in a different format for line search
*cfopen, f_vali

*do, kk, 1, max1

*get, al, node. kk. rf, fx

*get, a2, node, kk, rf, fy

*set, dummyI(kk), al

*set, dummy2(kk), a2
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*cfwrite, 1. mnum. dummyl(kk)
*cfwrite. 2. mnum, dummy2(kk)
*set. mnum, mnum+1

*enddo

*cfclos

save

fini

A6 Modification of Young’s Modulus
loarch

fitle, modification of Young's modulus after line search

! set the same basic constants and inputs
*set, ym, 30¢06

*set, ys, 30e03

*set. poisson, 0.3

*set, In, 20

*set. dt, |

*set. ndivl. 60

*set. ndiv2, 10

! enter preprocessor
Iprep?

! set analysis type as ‘static’ and
! element type as “four-noded isoparametric (plane42)’ element

antype. 0
et 1,42

! set material properties
mp, ex, 1, ym

mp, nuxy, L, poisson
key, 1.3.0

! start modeling by setting keypoint

k.2, In
k.3, In, dt
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k. 4.0.dt

! devide lines suitable for meshing
11,2, ndivl
1.2,3. ndiv2
134, ndivl
L4, 1 ndiv2

! define areas
a4, 1.2.3

! start meshing
amesh, all

!'select all nodes and

! apply the nodal displacement (obtained by line search)
nsel, all

finp. d_sum

nsel, all

! end of modeling and exit preprocessor

fini

! enter solution routine
Isolu

antype, 0
outress, all, all

save

! start solving
solve

!end of solving, and exit solution routine
fini

! enter post-processor
Ipostl

set,
! create tables as ‘eqvst’ and ‘estrn’
etable, eqvst, s, eqv

ctable, estrn, epel, eqv

! get total element number as “max 1’
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*get. max1. elem, 0, num., max

! create arrays as "dummy1” and ‘dummy2’
*dim. dummy|, array, max1
*dim, dummy2, array. max!|

! open a file as “stress_strain_Is" and

! store the stresses and strains in corresponding arrays (after line search)
*cfopen, stress_strain_ls

*do. kk, 1, max|

*get, sig, elem, kk. etab. eqvst

*get. epsl, elem, kk, etab. estrn

*set. dummy I (kk), sig

*set, dummy2(kk). epsl/(1+poisson)
*vmask, dummy L(kk)

*vmask, dummy2(kk)

*vwrite, kk, dummy1(kk), dummy2(kk)
(3x.f8.1,2x, e15.8, 2x. el5.8)

*enddo

*cfclos

fini

! select all elements of the model
esel. all

! set material number as ‘mnum’
*set, mnum, |

1 open a file as 'ym_val’ and update the Young’s modulii
*cfopen, ym_val

*do, kk, 1, max1

*if, dummyl(kk), ge. ys, then

*set, esec, ys/dummy2(kk)

*else

*set, esec, ym

*endif

*cfwrite, mp, ex, mnum, esec
*cfwrite, mp, nuxy, mnum, poisson
*set, mnum, maum+1

*enddo

*cfelos

fini



! select all elements of the model
esel. all

! set material number as ‘mnum’
“set. mnum. |

! open a file as "ym_mod" und modify material properties
*cfopen. ym_mod

*do. kK, 1. max1

*cfwrite, mat. mnum

*cfwnte. emodif. kk

*sel. mnum. mnum+1

*enddo

*cfclos

fini

A.7 Second Linear Elastic Analysis
/fbatch
Ttitle, simply supported beam with ud!

! set the same material constants and geometric inputs
*set, ym. 30e06

*set, ys, 30e03

*set. poisson. 0.3

=set. In, 20

Fset. dt, |

*set, ndivl, 60

*set. ndiv2. 10

=set, pr, 120

! enter preprocessor
Iprep?

! define analysis type as ‘static’ and

! element type as ‘four-noded isoparametric(plane42)’ element
antype, 0

et 1,42

key, 1,3,0
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! start modeling and defining keypoints

! start meshing
amesh, all

! add boundary conditions at left support
nsel, s, loc, x. 0

nsel. r, loc, y, dv2

d. all, ux

d. all, uy

! add boundary conditions at night support
nsel. s, loc. x. In

nsel. r. loc. y. dv2

d.all.uy

! apply udl on the beam

nsel, s, loc, y, dt

sf. all. pres, pr

nsel, all

! add modified material properties (Young's modulii)
finp, ym_val

/inp, ym_mod

! end of modeling, and exit preprocessor
fini

! enter solution routine
Isolu

antype, 0



outress, all. all
save
! start solving
solve

! end of solving and exit solution routine
fini

! enter post-processor

Ipostl

set. |

! define element tables as "eqvst’ and “estrn’

etable, eqvst. s. eqv
etable, estm. epel. eqv

! get maximum element number as ‘max 1’
t. max L, elem, 0, count

! create arrays as ‘dummy!’ and "dummy2’
*dim, dummyl, array, max1
*dim, dummy?2, array, max |

! open a file as “stress_strain_2" and

! store the second elastic stresses and strains in corresponding arrays
*cfopen, stress_strain_2

*do, kk, I, max 1l

*get, sig, elem, Kk, etab, eqvst

*get, epsl, elem, kk, etab, estm

*set, dummyl(kk), sig

*set, dummy2(kk), epsl/(1+poisson)
*vmask, dummy 1 (kk)

*vmask, dummy2(kk)

*vwrite, kk, dummy 1 (kk), dummy2(kk)
(3x, 8.1, 2x, e15.8, 2x, e15.8)

*enddo

*cfclos

fini
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Appendix B

ANSYS Files for Linear and Nonlinear Analyses

ANSYS input and command listings for the analysis of all the problems discussed in
Chapter 5 are provided in this Appendix. The listing includes files for linear elastic and
nonlinear analyses. To perform EGLOSS and N2 unalyses. macros (‘e_gloss’ and
‘e_neuber’) are called in linear elastic analysis. The listings below have appropriate
comments at the end to carryout EGLOSS, and N2. It should be noted that prediction of
inelastic strain based on N1 method is approximated by collecting data (the first and
second linear elastic analyses results) performed in "e_neuber’ macro. The macros
“e_gloss' and “e_neuber’ are listed in Appendix C. The nonlinear equivalent (von Mises)

stresses and strains are stored in the file “stress_strain_nl"

B.1  Simply Supported Beam with UDL

B.1.1 Linear Elastic Analysis

Ibatch
Jtitle, simply supported beam subjected to udl

! set basic material constants

*set, ym, 30e06 ! Young's modulus
*set, ys, 30e03 ! yield stress
*set, poisson, 0.3 ! Poisson’s ratio

! set basic geometricinputs
*set, In, 20 ! beam span



*set. dt, 1 ! beam depth

*set. ndivl, 60 ! no of divisions along the beam span
*set, ndiv2, 10 ! no of divisions along the beam depth
*set, pr. 120 ! applied udl on the beam surface

! enter preprocessor

Iprep?

! define analysis type as “static’ and

! element type as “four-noded isoparametric (plance42)” for the model

antype, 0
et, 1,42

! define elastic material properties
mp.ex, I, ym
mp, nuxy, L. poisson

key, 1,3.0

! start modeling by detining keypoints

! devide lines suitable for meshing
1. 1,2, ndivl
1, 2,3, ndiv2
1,3
14,

! define area and meshing
a4,1,2,3

! start modeling
amesh, all

! apply boundary conditions at left support
nsel, s, loc, x, 0

nsel, r, loc, y, dv2

d, all, ux

d, all, uy

! apply boundary conditions at right support
nsel, s, loc, x, In
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nsel, r. loc. y, dv2
d. all, uy

1 apply udl

nsel. s. loc, y, dt
sf, all, pres. pr
nsel, all

tend of modeling. and exit preprocessor
fini

! enter solution routine
Isolu

antype, 0

time. pr

outress, all

save

! start solving
solve

! end of solving, and exit solution routine
fini

! call the input listing of macro (e_neuber) for N2 analysis
finp. e_neuber

! call the input listing of macro (e_gloss) for EGLOSS analysis
! /inp, e_gloss

exit

B.1.2 Nonlinear Analysis

/batch

Ititle, simply supported beam subjected to udl

! set basic material constants

*set, ym, 30e06 ! Young's modulus
*set, ys, 30e03 ! yield stress
*set, poisson, 0.3 ! Poisson’s ratio



! define Poisson’s ratio in case of inelastic strain calculation

*set. poi, 0.5

! set basic geometric inputs
*set. In. 20

*set. dt, |

*set, ndiv1, 60

*set, ndiv2. 10

*set, pr. 120

! enter preprocessor
Iprep?

! beam span

! beam depth

! no of divisions along beam span
! no of divisions along beam depth
! applied udl on the beam surface

! define analysis type as “static’ analysis and
! element type as “four- noded isoparametric (plane42)'for the model

antype, 0
et, .42

! add elastic material properties

mp. ex, 1, ym
mp. nuxy. L. poisson

! add material nonlinear properties

tb, bkin, [, 1
tbdata, 1, ys, 0

key, 1.3.0

! start modeling
! define keypoints

! devide lines suitable for meshing

L 1,2, ndivl
1, 2,3, ndiv2
1.3, 4, ndivl
1.4, 1, ndiv2

! define area
a4 1,23

! start meshing
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amesh, all

! add boundary conditions at left support
nsel. s, loc, x. 0

nsel. r. loc. y. du2

d.all. ux

d.all, uy

! add boundary conditions at right support
nsel. s, loc. x. In

nsel. r. loc, y. du2

doalluy

! apply loads
nsel, s. loc. v, dt
sf, all. pres, pr
nsel. all

! nonlinear solver options
autots, on

nsubst, 20

Insrch, on

nropt, full. . off

neav, 1

! end of modeling. and exit preprocessor
fini
! enter solution routine

/solu

antype, 0
time, pr
outress, all, all
save

! start solving
solve

! end of solution and exit solution routine
fini

! enter post-processor
/Ipostl
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set, last

! create element tables for equivalent stresses and strains
etable, eqvst. s, eqv

etable, estm. epel. eqv

etable. pstrn. eppl. eqv

etable, eqvstm, epto. eqv

! get maximum element number as ‘max1”
max1. elem, 0. count

! define arrays as "dummyl’. "dummy2’ etc.
*dim. dummy|. array. max1
*dim, dummy2, array. max |
*dim, dummy3, array, max [
*dim, dummy4, array, max|
*dim, dummys3. array, max [

! open a file as “stress_strain_nl" and

! store stresses and strains in corresponding arrays
*cfopen, stress_strain_nl

*do, kk, I, max1

. sig, elem, kK, etab, eqvst

"uel epsp, elem, kk. etab, pstm
*get, epst, elem, kk. etab, eqvstm

dummyl(kk)=sig
dummy2(kk)=epsl/(1+poisson)
dummy3(kk)=epsp/(L+poi)
dummy+(kk)=dummy2(kk)+dummy3(kk)
dummy5(kk)=epst

*vmask, dummy L (kk)
*vmask, dummy?2(kk)
*vmask, dummy3(kk)
*vmask, dummy4(kk)
*vmask, dummy5(kk)

*vwrite, kk, dummyl (kk), dummy2(kk), dummy3(kk), dummy4(kk).dummy5(kk)
(3x.18.1,2x,e15.8, 2x, e15.8, 2x. €15.8, 2x. e15.8, 2x, e15.8)

*enddo

*cfclos

fini



exit

B.2 Propped Cantilever Beam - Uniformly Distributed Loads
B.2.1 Linear Elastic Analysis

/batch

hitle. propped cantilever beam subjected to udl

! set basic material constants and geometric inputs

*set, ym, 30e06 ! Young's modulus

*set, ys. 30e03 ! yield stress

*set, poisson. 0.3 ! Poisson’s ratio

*set, In, 20 ! beam length

*set, ht, | ! beam depth

*set, pr, 170 ! applied loads

! set element size parameters

*set, ndivl, 100 ' no of divisions along length
*set, ndiv2, 10 ! no of divisions along depth
! enter preprocessor

Iprep7

! define anlysis type as “static’ and
!element type as “four-noded isoparametric (plane42)’ element for the model
antype, 0

et 1,42

! add elastic material properties
mp, ex, 1, ym
mp, nuxy, 1, poisson

! start modeling
! define keypoints
k1




define line divisions
. 2. ndivl

. 3. ndiv2
.+ ndivl
L1

'
L
L
L
L ndiv2

e

! start meshing
amesh, all

! add boundary conditions at left support
nsel. s. loc, x, 0

d.all, all, 0

nsel, all

! add boundary conditions at right support
nsel. s, loc, x. In

nsel, r, loc. y. 0

d, all,uy, 0

nsel, all

! apply udl on the surface
nsel, s. loc, y. ht

sf, all, pres, pr

nsel, all

! end of modeing, and exit preprocessor
fini

! enter solution module
/solu

antype, 0
time, pr
outress, all, all
save

! start solving
solve

! end of solution and exit solution module
fini



! call the input listing of macro (e_neuber) for N2 analysis
finp, e_neuber

! call the input listing of macro (e_gloss) for EGLOSS analysis
! /inp, e_gloss

exit
B.2.2 Nonlinear Analysis

Toatch

/title. propped cantilever beam subjected to udl

! set basic matenal constants

*set. ym, 30e06 ! Young's modulus
*set, ys, 30e03 ! vield stress
*set., poisson. 0.3 ! Poisson’s ratio

! define Poisson’s ratio in case of inelastic strain calculation
*set. poi, 0.5

! set basic geometic inputs

*set, In, 20 ! beam span

*set, ht, | ! beam depth

*set. pr. 150 ! applied udl on the beam surface
*set, ndiv1, 100 ! no of division along the beam span
*set. ndiv2, 10 ! no of divisions along the beam depth
! enter preprocessor

IprepT

t analysis type as “static” and

lement type as “four-noded isoparametric plane42’ element
antype, 0

et, 1,42

! add elastic material properties
mp, ex, |, ym
mp, nuxy, |, poisson

! add nonlinear properties
tb, bkin, 1. 1

...



tbdata. 1. ys, 0

! start modeling
1 define keypoints
[

. ndivl
. ndiv2
. ndivl
. ndiv2

! define area
a4 1,23

! start meshing
amesh, all

! add boundary conditions at left support
nsel. s, loc. x. 0

d, all, all, 0

nsel, all

! add boundary conditions at right support
nsel, s, loc. x, In

nsel, r, loc, y, 0

d.all. uy, 0

nsel, all

! apply udl on the beam surface
nsel, s, loc, y, ht

sf, all, pres, pr

nsel, all

! add nonlinear solver options
autots, on

nsubst, 20

Insrch, on

nropt, full, , off

ncny, 1

! end of modeling, and exit preprocessor



fini

! enter solution module
/solu

antype. 0
time. pr
outress. all. all
save

Istart solving
solve

! end of solution and exit solution module
fini

! enter post-processor
/postl

set, last

! create element tables as “eqvst’, “estrn’, pstrn” and “eqvstrn’
etable, eqvst, s, eqv

etable, estrn, epel, eqv

etable, pstm. eppl. eqv

etable, eqvstmn, epto, eqv

! get maximum element number as ‘max1’
*get, max|1, elem, 0, count

! create arrays as ‘dummy1’, dummy?2’ etc.
*dim, dummyl, array, max1
*dim, dummy2, array, max1
*dim, dummy3, array, max1
*dim, dummy4, array, max 1
*dim, dummys5, array, max 1

! open a file as ‘stress_strain_nl" and

! store inelastic stresses and strains in corresponding arrays
*cfopen, stress_strain_nl

*do, kk, 1, max1

*get, sig, elem, kk, etab, eqvst

*get, epsl, elem, kk, etab, estm

*get, epsp, elem, K, etab, pstm

*get, epst, elem, kk, etab, eqvstm



dummyl(kk)=sig

dummy2(kk)=epsl/( 1 +poisson)

dummy3(kk)=epsp/(1+poi)
dummy4(kk)=dummy2(kk)+dummy3(kk)

dummyS(kk)=epst

*vmask. dummy 1(kk)

=vmask, dummy2(kk)

*vmask. dummy3(kk)

*vmask, dummy-(kk)

*vmask. dummy4(kk)

*vwrite, kk. dummy | (kk). dummy2(kk). dummy3(kk). dummy-(kk). dummy5(kk)
(3x.18.1.2x. e15.8, 2x.e15.8. 2x. e15.8. 2x. e15.8. 2x. el5.8)
*enddo

*cfclos

fini

exit

B.3  Fixed- Fixed Beam under UDL
B.3.1 Linear Elastic Analysis

/oatch

/title, fixed-fixed beam with udl

! set basic material constants

*set, ym, 30e06 ‘oung’s modulus
*set, ys, 30e03 ! yield strength
*set, poisson, 0.3 ! Poisson’s ratio

! set basic geometric inputs

*set, In, 20 ! beam length

*set,dt, | ! beamn depth

*set, ndivl, 60 ! no of divisions along length
*set, ndiv2, 10 ! no of divisions along depth
*set, pr, 190 ! udl on the beam surface



! entet preprocessor
Iprep7

! define analysis type as ‘static’ and

! element type as ‘four-noded isoparametric (plane42)’ element for the model
antype, 0

et. [ 42

! add elastic material properties
mp, ex. L. ym
mp. nuxy, 1, poisson

! start modeling
! define keypoints
k1

efine line segments suitable for meshing

de
1
2.3,
3.
4

! define area
a4, 1,23

! start meshing
amesh, all

! add boundary conditions
nsel, s. loc, x, 0

d.all,all, 0

nsel, all

nsel, s, loc, x, In
d,all,all, 0

nsel, all

! add uniformly distributed loads
nsel, s, loc, y, dt

sf, all, pres. pr

nsel, all

!end of modeling, and exit preprocessor



fini

! enter solution module
/Isolu

antype. 0

time, pr

outress. all, all

save

! start solving
solve

! end of solving, and exit solution module
fini

! call the input listing of macro (e_neuber) for N2 analysis
/inp, e_neuber

! call the input listing of macro (e_gloss) for EGLOSS analysis
1 finp, e_gloss

exit

B.3.2 Nonlinear Analysis

Ibatch

Hitle, fixed-fixed beam subjected to udl

! set basic constants as material properties

*set, ym, 30e06 ! Young's modulus
*set, ys, 30e03 ! yield stress
*set, poisson, 0.3 ! Poisson’s ratio

! define Poisson’s ratio in case of inelastic strain calculation
*set, poi, 0.5

! set basic inputs as geometric properties

*set, In, 20 ! beam length
*set, dt, | ! beam depth
*set, ndivl, 60 ! no of divisions along length



*set, ndiv2. 10 ! no of divisions along depth
*set. pr. 190 ! udl on beam

! enter preprocessor
IprepT

! define “static’ type analysis and

! *four-noded isoparametric (palne42)’ element type for the model
antype. 0

et 1,42

! add elastic material properties
mp.ex. L. ym
mp, nuxy. L, poisson

! define material nonlinear properties
th. bkin, I, |
tbdata, 1. ys, 0

! start modeling
! define keypoints

! define line segments for meshing

! define area
441,23

! start meshing
amesh, all

! add boundary conditions at left support
nsel,s, loc, x, 0

d, all,all, 0

nsel, all

! add boundary conditions at right support
nsel, s, loc, x, In



d.all. all.0
nsel. all

1 apply loads
nsel, s. loc. y. dt
sf. all. pres. pr
nsel. all

! add nonlinear solver options
autots. on

nsubst, 20

Insrch. on

nropt, full. . off

nenv. 1

! end of modeling, and exit preprocessor
fini

! enter solution module
/solu

antype, 0
time, pr
outress, all, all
save

! start solving
solve

! end of solving and exit solution module
fini

! enter post-processor
Ipostl

set, last

! create element tables as “eqvst’, ‘estm’, "pstm’, and “eqvstm’
etable, eqvst, s, eqv

etable, estm, epel, eqv

etable, pstm, eppl, eqv

etable, eqvstrn, epto, eqv

! get maximun element number as ‘max 1"
*get, max 1, elem, 0, num, max



! create arrays as ‘dummyl’. dummy2’ etc.
*dim, dummyl, array, max 1
*dim, dummy2, array, max |
*dim, dummy3, array, max [
*dim, dummy4, array, max |
*dim, dummy3. array. max

!open a file as “stress_strain_nl" and

! store the inelastic stresses and strains in corresponding arrays
*cfopen, stress_strain_n|

*do. kk. 1. max1

*get, sig, elem, KKk, etab, eqvst

*get, epsl, elem. kk. etab. estrn

*get, epsp. elem, Kk, etab, pstm

*get, epst, elem, kk, etab, eqvstrn

dummy 1(kk)=sig
dummy2(kk)=epsl/(1+poisson)
dummy3(kk)=epsp/(1+poi)
dummy4(kk)=dummy2(kk)+dummy3(kk)
dummy5(kk)=epst

*vmask, dummyI(kk)
*vmask, dummy2(kk)
*vmask, dummy3(kk)
*vmask, dummy4(kk)
*vmask, dummy3(kk)

*vwrtie, kk, dummy1(kk), dummy2(kk), dummy3(kk), dummy(kk). dummy5(kk)
(3x.18.1, 2x.el5.8, 2x. e15.8, 2x, e15.8, 2x, 15.8, 2x, e15.8)

*enddo

*cfcloss

fini

exit
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B.4  Simple Multibar Truss

B.4.1 Nonlinear Analysis

For the simple truss. linear analysis was carried out mannually. The nonlinear analysis
can also be accried out mannually. However. for comparison purposes. ANSYS has been
used and the input file is given below.

/batch

/title. simple multibar truss problem

! set Young's modulus and yield stress

*set, ym. | ! Young's modulus
*set. ys, | ! yield stress

! enter preprocessor

Iprep?

! set analysis type as “static’
antype. 0

! add stress-strain curve

th, bkin, 1, 1

thdata, 1, ys, 0

! define element type as “link1’ and Young's modulus as ‘ym"
et, 1, linkl

mp, ex, I, ym

! start modeling by defining member areas
Gl3
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2

n.5,0, -
n.6,0.-6
! create elements corresponding member areas and nodes
real. |

e.3.4

real. 3

e. 2.4

real. |

e l.5

real, 2

e. 4.6

real, 3

(e 81

real. |

e.5.6

! add boundary conditions

! apply forces on the truss
f.4.fy.-2

! enter solution module
Isolu

! nonlinear solver options
autots, on

nsubst, 20

Insrch, on

nropt, full, , off

nenv, |

outress. all, all
save

m



! start solving
solve

! end of solving and exit solution module
fini

! enter post-processor
Ipostl

set. last

! create element tables as “astr’. aestm’ and “apstm’
etable. astr. Is. |

etable. aestrn, lepel. |

etable, apstrn. leppl,

! get maximum element number as ‘max 1’
*get, max1, elem, 0. num, max

! create arrays as “dummy 1, ‘dummy2" etc.
*dim. dummyl. array. max 1
*dim, dummy?2. array, max 1
*dim. dummy3. array, max1
*dim, dummyd. array, max |

! open a file as “stress_strain_nl and

! store the inelastic stresses and strains in corresponding arrays
*cfopen. stress_strain_nl

*do. kk. 1, maxl

*get, sigl, elem, kk, etab, astr

*get. epslonl 1, elem, kk, etab. aestm

*get, epslonpl. elem, kk. etab. apstm

*set, dummy I (kk), sigl

*set, dummy2(kk), epslonl |

*set, dummy3(kk), epslonpl

*set, dummy<(kk), dummy2(kk)+dummy3(kk)
*vmask, dummy(kk)

*vmask, dummy2(kk)

*vmask. dummy3(kk)

*vmask, dummy4(kk)

*vwrite, kk, dummy(kk), dummy2(kk), dummy3(kk), dummy-(kk)
(3x, 8.1, 2x, e15.8, 2x, €15.8, 2x, e15.8, 2x, e15.8)

bt



“enddo
*cfclos
fini

exit

B.5  Plate with a Central Hole
B.5.1 Linear Elastic Analysis
Tbatch

/title, plate with a central hole subjected to uniform tension

! set basic material constants and geometric parameters

*set. ys. 3632¢05 ! yield strength
*set. ym. 72368¢06 ! Young's modulus
*set, poisson. 0.3 ! Poisson’s ratio
*set, r, 6375¢-06 ! central hole radius
*set. w. 1905e-05 ! plate width

*set, d, 38le-04 ! plate depth

*set. pr, -220¢06 ! applied pressure

! enter preprocessor

Iprep?

! define analysis type as "static’ and

! element type as “four-noded isoparametric (plane42)’ element for the model
antype, 0

et. 1,42

! define elastic material properties
mp, ex, I, ym
mp, nuxy, , poisson

! start modeling
! define keypoints and corresponding line segments for meshing
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! start meshing
amesh, all

! apply boundary conditions at the edges
csys, 0

nsel, s, loc. y, 0

d. all, uy. 0

nsel, all

nsel, s, loc, x, 0
d,all, ux, 0
nsel, all

! apply pressures
nsel, s, loc, y, d
sf, all, pres, pr
nsel, all

! end of modeling, and exit preprocessor
fini



! enter solution module
solu

antype. 0
time. pr
outress. all. all
save

! start solving
solve

! end of solving. and exit solution module
fini

! call the input listing of macro (e_neuber) for N2 analysis
/inp, e_neuber

! call the input listing of macro (e_gloss) for EGLOSS analysis
! finp. e_gloss

exit
B.5.2  Nonlinear Analysis

foatch

Hutle, plate with a central hole subjected to uniform tension

! set basic constants and inputs for material and geometric parameters

*set, ys, 3632¢05 ! yield stress
*set, ym, 72368¢06 ! Young's modulus
*set, poisson, 0.3 ! Poisson’s ratio
*set. 1, 6375e-06 ! central hole radius
*set, w, 1905¢-05 ! plate width

*set, d, 381e-04 ! plate depth

*set, pr, -220e06 ! applied pressure

! define Poisson’s ratio in case of inelastic strain calculation
*set, poi. 0.5

! enter preprocessor
Iprep7

5



! define analysis type as “static’ and

! element type as “four-noded isoparametric (plane42)’ element for the model
antype. 0

et. 1. plane42

! define elastic matenal properties
mp, ex. L. ym
mp. nuxy, 1. poisson

! define plastic properties
tb, bkin, 1. 1
thdata, 1. ys. 0

! start modeling
! define keypoints and line segments

b §



2.3,7.8.4

! start meshing
amesh, all

! add boundary conditions at the edges
csys, 0

nsel. s, loc. y, 0

a4

nsel, s. loc. x.0
d.all.ux. 0
nall

! apply pressures
nsel. s, loc. y.d
sf, all. pres. pr
nall

1 add nonlinear solver options
autots, on

nsubst, 20

Insrch, on

nropt. full. . off

nenv, |

! end of modeling, and exit preprocessor
fini

! enter solution module
/solu

antype. 0
time, pr
outress, all, all
save

! start solving
solve

! end of solving, and exit solution module

fini

! enter post-processor
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Ipostl
set. last

! create element tables as “eqvst’. ‘estrn’. “pstm’ and ‘eqvstm’
etable. eqvst. s. eqv

etable, estrn. epel. eqv

etable. pstmn. eppl. eqv

etable. eqvstm. epto. eqv

! get maximum element number as “max1”
. max1. elem. 0. num. max

! create arrays as ‘dummyl’. "dummy2’ etc.
*dim, dummy1. array, max|
*dim. dummy?2. array. max |
*dim, dummy3, array, max |
*dim. dummy4, array, max |
*dim. dummy3, array, max |

! open a file as “stress_strain_nl" and

! store the inelastic stresses and strains in corresponding arrays
*cfopen, stress_strain_nl

*do, kk, 1. max1

*get, sig. elem, Kk, etab, eqvst

'ch epst. elem. k. etab, eqvstm

dummyl(kk)=sig
dummy2(kk)=epsl/(1+poisson)
dummy3(kk)=epsp/(1+poi)
dummy4(kk)=dummy2(kk)+dummy3(kk)
dummy5(kk)=epst

*vmask, dummy I (kk)
*vmask, dummy2(kk)
*vmask. dummy3(kk)
*vmask. dummy4(kk)
*vmask, dummy5(kk)

*vwrtie, kk. dummy1(kk), dummy2(kk), dummy3(kk), dummy4(kk), dummy5(kk)
.8)

L 2x,el5 x.el5.8, 2x, el5.8,

*cfcloss

2



fini

exit

B.6  Thick Cylinder with a Circumferential Notch

B.6.1 Linear Elastic Analysis
Toutch

Hitile, thick cylinder with a circumferential notch subjected to internal pressure

! set basic material constants

*set, ym, 275e05 ! Young's modulus
*set. ys, 29¢03 ! vield strength
*set, poisson, 0.3 ! Poisson’s ratio

! set basic geometric inputs

*set. ri, 16 ! inner radius

*set, ro. 25 ! outer radius

*set, m. | ! notch radius

*set. rin, ri+m

*set. In. 9 ! cylinder length

*set, pr, 14000 ! applied pressure
p pplied p

! enter preprocessor

Iprep7

! define analysis type as “static’ and element type as
! *four-noded isoparmetric (plane42) element under plane strain condition
antype, 0

e 1,42,,.1

! define elastic material properties
mp, ex, |, ym
mp. nuxy. 1, poisson

! start modeling and define keypoints and
! line segments corresponding local coordinate system

K, 1, rin
k, 2. ro
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2.10.10
ro. In

L
3.

-_'o

03 o5

I
k.
L
k.4.n.
1.3.4.
k. 5. n.
1.5.4.10.10

local. 1. L.a
K. 6.m. 45

! define areas
a,1.2.3.6
2.6.3.4.5

! start meshing
amesh, all

! add boundary conditions at the edges
nsel, s, loc. y, In

d.all.uy. 0

nall

nsel. s, loc. y, 0
d. all,uy. 0
nall

! apply pressures
nsel, s, loc. x, i
sf, all, pres, pr
nall

csys, 11

nsel, s, loc, x, m
sf. all, pres, pr
nall

! end of modeling, and exit preprocessor
fini



! enter solution module
/solu

antype. 0

time. pr

outress. all. all

save

! stant solving
solve

! end of solution. and exit solution module
fini

! call the input listing of macro (e_neuber) for N2 analysis
/inp. e_neuber

! call the input listing of macro (e_gloss) for EGLOSS unalysis
! /inp, e_gloss

exit

B.6.2  Nonlinear Analysis
/baich

Ititle, thick cylinder with a circumferential notch subjected to intemal pressure

! define basic material constants and geometric inputs

*set, ym, 275¢05 ! Young's modulus
*set, ys, 29¢03 ! yield strength
*set. poisson, 0.3 ! Poisson’s ratio
*set, ri, 16 ! inner radius
*set, ro, 25 ! outer radius
*set.m, 1 ! notch radius
*set, i, ri+m

*set.In, 9 ! cylinder length
*set, pr, 14000 ! applied pressure
! define Poisson ratio in case of inelastic strain calculation
*set, poi, 0.5

! enter preprocessor

m



Iprep7

! define analysis type as “static” and

! element type as “four-noded isoparametric” element under plane strain condition
antype. 0

et 142, .1

! define material properties
mp.ex. I, ym
mp. nuxy, 1. poisson

! add material nonlinear properties
tb, bkin, L. 1
thdata, 1. ys. 0

! start modeling
! define keypoints and line segments

! start meshing
amesh, all

! add boundary conditions at the specific edges
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nsel. s. loc. y. In
d.all,uy.0
nall

nsel. s. loc. y. 0
d.all,uy.0
nall

! apply pressures
nsel. s, loc, x, ri
sf. all. pres. pr
nal

csys, 11

nsel, s, loc. x. m
st all. pres, pr
nall

! nonlinear solving options
autots, on

nsubst, 20

Insrch, on

nropt, full, , off

nenv, 1

! end of modeling, and exit preprocessor
fini

! enter solution module
/solu

antype. 0
time, pr
outress, all, all
save

! start solving
solve

! end of solution, and exit solution module
fini

! enter post-processor
/postl
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set. last

! create element tables as ‘eqvst’
etable. eqvst. s. eqv

etable, estrn. epel, eqv

ctable, pstrn, eppl. eqv

etable, eqvstrn, epto. eqv

estm’, “pstrn’ and “eqvstrn’

! get maximum element number as “max1"
*get. max1, elem, 0, count

! create arrays as ‘dummy |’ dummy2’ etc.
*dim. dummy . array, max1
*dim, dummy2, array. max |
*dim, dummy3, array, max |
*dim, dummy4, array, max|
*dim. dummyS5. array, max1

! open a file as “stress_strain_nl" and

! store inelastic stresses and strains in corresponding arrays
*cfopen, stress_strain_nl

*do, kk. 1. max1

*get, sig, elem, Kk, etab, eqvst

*get, epsl, elem, Kk, etab, estm

*get, epsp, elem, Kk, etab, pstrn

*get, epst, elem, kk, etab, eqvstmn

dummy 1 (kk)=sig
dummy2(kk)=epsl/(1+poisson)
dummy3(kk)=epsp/(1+poi)
dummy-(kk)=dummy2(kk)+dummy3(kk)
dummy5(kk)=epst

*vmask, dummy1(kk)
*vmask, dummy2(kk)
*vmask, dummy3(kk)
*vmask, dummy4(kk)
*vmask, dummy3(kk)

*vwrite, kk, dummy1(kk), dummy2(kk), dummy3(kk), dummy4(kk), dummy5(kk)
(3x. 8.1, 2x, e15.8, 2x, e15.8, 2x. e15.8, 2x. e15.8, 2x. €15.8)

*enddo

*cfclos

fini



exit

B.7  Bending of Rectangular Plate with Partially Fixity
B.7.1 Linear Elastic Analysis
/batch

Iitle, bending of a rectangular plate subjected to uniform pressure

! set basic constants and inputs for material and geometric properties

*set, ys, 30e03 ! yield strength
*set, ym, 30e06 ! Young's modulus
*set, poisson, 0.3 ! Poisson’s ratio
*set, thik, ! plate thickness
*set, leng, ! plate length

*set, wdth, 10 1 plate width

*set, pr, 320 ! applied pressure

! enter preprocessor

IprepT

! define analysis type as "static’ and

! element type as “eight-noded isoparametric (solid45)" solid element
antype, 0

et. L, solid45

! add material properties
mp, ex, L, ym
mp, nuxy, 1, poisson

! start modeling

! define keypoints
k, 1,0,0,0

k, 2, wdth,0,0

k. 3, wdth, thik, 0

k. 4,0, thik, 0
k.5.0.0. leng

k, 6, wdth, 0, leng
k, 7, wdth, thik, leng
k. 8,0, thik, leng

! devide lines suitable for meshing
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w

! define volume
v, 14852376

! start meshing
vmesh, all

! add boundary conditions at the specific edges
nsel. s. loc, x, 0.3333*wdth, 0.66667*wdth
nsel, r., loc, y, 0

nsel, r, loc, z,0

d.all, uy,0

nsel, all

nsel, s, loc, x, wdth

nsel. . loc, z,0,0.33333*leng
d, all. all, 0

nsel, all

nsel. s, loc, x, wdth

nsel, r, loc, z, 0.666667*leng, leng
d.all, all, 0

nsel, all

nsel, s, loc, x, 0

nsel, r, loc, z,0.3333*leng, 0.666667*leng
d, all, all, 0

nsel, all

nsel, s, loc, x, 0, 0.3333*wdth

nsel, r, loc, y, 0
nsel, r, loc, z, leng
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d. all. uy, 0
nsel, all

nsel, s, loc, X, 0.666667*wdth, wdth
nsel,r. loc, v, 0

nsel. r, loc. z. leng

d.all,uy, 0

nsel, all

! apply pressures

nsel, s, loc, y. thik

sf. all, pres. pr

nsel, all

! end of modeling, and exit preprocessor
fini

! enter solution module
/solu

antype, 0
time, pr
outress, all. all
save

! start solving
solve

! end of solving, and exit solution module
fini

! call the input listing of macro (e_neuber) for N2 analysis
/inp. e_neuber

! call the input listing of macro (e_gloss) for EGLOSS analysis
! finp, e_gloss

exit

B.7.2 Nonlinear Analysis

/batch
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Hitle. bending of a rectangular plate subjected to uniform pressure

! set basic constants and inputs for material and geometric properties

*set, ys. 30¢03
*set. ym, 30606
*set, poisson, 0.3
*set, thik, 0.5
*set, leng, 15
*set, wdth, 10
*set, pr. 320

! vield strength

! Young's modulus
! Poisson's ratio

! plate thickness

! plate length

! plate width

! applied pressure

! define Poisson's ratio in case of inelastic strain calculation

*set. poi. 0.5
! enter preprocessor

Iprep?

! define static analysis and eight-noded isoparametric solid element

antype, 0
et, L, solid45

! add elastic material properties
mp. ex, 1, ym
mp. nuxy, 1, poisson

! add nonlinear properties
tb. bkin, 1, 1
tbdata. 1. ys, 0

! start modeling

! define keypoints

k, 1,0.0,0

k, 2, wdth,0,0

k, 3. wdth, thik, 0

k, 4,0, thik, 0
.5.0,0. leng

k, 6, wdth, 0, leng

k, 7, wdth, thik, leng
k. 8,0, thik, leng

'
L
L
1

2, L.2*wdth
4,

devide lines suitable for meshing
I;

L.

2,3,

ww

239



1.4, 3. 1.2*wdth

1.2*wdth

£, 5,
. 4,8, 1.2*wdth
23,7,

L
l
1
1
!
1
1 2*wdth

1 2*wdth

! define volume

v, 1,4,8,52,3.7.6

! start meshing
vmesh, all

1 add boundary conditions at the specific edges
nsel, s. loc, x, 0.3333*wdth, 0.66667*wdth
nsel, 1, loc, y. 0

nsel, r, loc, z.0

d, all, uy, 0

nsel, all

nsel, s, loc, x, wdth

nsel, 1, loc. z, 0, 0.33333*leng
d. all,all.0

nsel, all

nsel, s, loc, x, wdth

nsel, 1, loc, z, 0.666667*leng, leng
d, all,all, 0

nsel, all

nsel, s, loc, x, 0

nsel, r, loc, z, 0.3333*leng, 0.666667*leng
d, all,all, 0

nsel, all

nsel, s, loc, x, 0, 0.3333*wdth
nsel, r, loc, y, 0

nsel. r, loc, z, leng

d, all, uy, 0

nsel, all
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nsel. s. loc. x. 0.666667*wdth. wdth

nsel. all

! apply pressures
nsel. s. loc. y, thik
sf, all. pres. pr
nsel. all

! add nonlinear solver options
autots, on

nsubst. 20

Insrch. on

nropt. full. . off

ncnv. 1

! end of modeling. and exit preprocessor
fini

! enter solution module
Isolu

antype, 0
time. pr
outress, all, all
save

! start solving
solve

! end of solving, and exit solution module
fini

! enter post-processor
Ipostl

set, last

! create element tables as ‘eqvst’. “estrn’, "pstm’ and ‘eqvstm’
etable, eqvst. s, eqv

etable, estm, epel, eqv

etable, pstmn, eppl, eqv

etable, eqvstm, epto, eqv
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! get maximum element number as ‘max1”
*get. max1, elem. 0. count

! define arrays as "dummyl’. "dummy2’ etc.

*dim. dummy4, array, max1

*dim, dummy3. array, max!

! open a file as “stress_strain_nl" and

! store inelastic stresses and strains in corresponding arrays
*cfopen. stress_strain_nl

"do kk, l.maxl

. sig, elem, kk. etab, eqvst

et, epsp. elem, kk, etab. pstm
*get, epst, elem. kk, etab. eqvstm

dummy I (kk)=sig
dummy2(kk)=epsl/(1+poisson)
dummy3(kk)=epsp/( L+poi)
dummy-(kk)=dummy2(kk)+dummy3(kk)
dummy5(kk)=epst

*vmask, dummy 1 (kk)

*vmask, dummy2(kk)

*vmask, dummy3(kk)

*vmask, dummy4(kk)

*vmask, dummy5(kk)

*vwrite, kk. dummy1(kk), dummy2(kk), dummy3(kk), dummy-(kk), dummy5(kk)
(3x, 8.1, 2x, e15.8, 2x, e15.8, 2x, e15.8, 2x, el5.8, 2x,e15.8)

*enddo
*cfclos

B.8  Thick-Walled Cylinder under Internal Pressure

B.8.1 Linear Elastic Analysis
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/batch

/title, a thick-walled cylinder under internal pressure

! set t basic constants and inputs for material and geometric properties

*set. ys, 30e03 ! vield strength

*set, ym, 30e06 ! Young's modulus

*set, poisson, 0.3 ! Poisson's ratio

*set, i; 3 ! inner radius

*set. 0.9 ! outer radius

*set. elno, 90 ! no of elements across the cross-section
*set, th, (ro-ri)/elno ! thickness

*set. pr. 28¢03 ! internal pressure

! enter preprocessor
IprepT

! define analysis type as ‘static' and

! element type as *four noded isoparametric (plune42)' with axisymetric options
antype, 0

e, 1,42,,.1

! add muterial properties
mp. ex, L, ym
mp, nuxy, lpoisson

! start modeling

! create nodes

n Lo

n. elno+l. ro

fill. 1, elno+1

n, elno+2, . th

n, 2*(elno+1), ro, th
fill, elno+2, 2*(elno+1)

! create elements

*do, kk, 1, elno

e, kk, kk+1, elno+kk+2, elno+kk+1
*enddo

! add boundary conditions

d.all,uy, 0
nsel, s, loc, x, A
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! apply uniform internal pressure
sf. all. pres. pr
nsel. all

! end of modeling. and exit preprocessor
fini

! enter solution routine
Isolu

antpe. 0

time. pr

outress, all. all

save

! start solving
solve

! end of solving and solution routine
fini

! call the input listing of macro (e_neuber) for N2 analysis
/inp, e_neuber

! call the input listing of macro (e_gloss) for EGLOSS analysis
! /inp. e_gloss

exit
B.8.2 NonlinearAnalysis
Toatch

/title, a thick-walled cylinder under internal pressure

! set basic material and geometric properties

*set, ys, 30e03 ! vield strength

*set, ym, 30e06 ! Young's modulus

*set, poisson, 0.3 ! Poisson’s ratio

*set,ri, 3 ! inner radius

*set, r0, 9 ! outer radius

*set, elno, 90 ! no of elements across the cross-section
*set, th, (ro-ri)/elno ! thickness

*set, pr, 28e03 ! internal pressure



! define Poisson’s ratio in case of inelastic strain calculation
*set. poi, 0.5

! enter preprocessor
IprepT

! define analysis type as “static” and

! element type as “our-noded isoparametric (plane42)’ with axisymetric options
antype. 0

et. 1.42...1

! add elastic material properties
mp. ex. L. ym
mp. nuxy. L. poisson

! add material nonlinear properties
tb, bkin. 1, 1
thdata, 1, ys. 0

! start modeling
! create nodes
n L
n, elno+1, ro
fill. 1, elno+1
n.elno+2, ni, th
. 2*(elno+1), ro. th
fill, elno+2, 2*(elno+1)

! create elements

*do. kk. I, elno

e, kk. kk+1, elno+kk+2, elno+kk+1
*enddo

! add boundary conditions
d, all, uy, 0
nsel. s, loc. x, i

! apply uniform internal pressure
sf, all, pres, pr
nsel, all

! solver options
autots, on
nsubst, 20
Insrch, on
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nropt. full. off
ncav, |

! end of modeling, and exit preprocessor
fini

! enter solution module
Isolu

antype, 0
time, pr
outress. all. all
save

! start solving
solve

! end of solving. and exit solution module
fini

! ente post-processor
Ipostl

set, last

! create element tables as “eqvst’, "estrn’ “pstrn’ and ‘eqvstrn’
etable, eqvst, s, eqv

etable, estm, epel, eqv

etable, pstrn, eppl, eqv

etable, eqvstm, epto. eqv

! get maximum element number as ‘max 1’
*get, max1, elem, 0, count

! create arrays as "dummyl’, "dummy2’ etc.
*dim, dummy], array, max1
*dim, dummy2, array, max |
*dim, dummy3, array, max [
*dim, dummy4, array, max 1
*dim, dummys3, array, max1

! open a file as “stress_strain_nl" and

! store inelastic stresses and strains in corresponding arrays
*cfopen, stress_strain_nl

*do, kk, 1, max1
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*get, sig, elem, Kk, etab, eqvst
*get, epsl, elem, kK. etab, estm
*get. epsp. elem. Kk, etab, pstm
*get, epst, elem. kK. etab, eqvstm

dummy1(kk)=sig

dummy2(kk)=epsl/(1+poisson)

dummy3(kk)=epsp/(1+poi)
dummy4(kk)=dummy2(kk)+dummy3(kk)

dummyS5(kk)=epst

*vmask. dummy [ (kk)

*vmask. dummy2(kk)

*vmask, dummy3(kk)

*vmask. dummy-(kk)

*vmask, dummyS5(kk)

*vwrite, kk, dummy(kk). dummy2(kk). dummy3(kk), dummy-(kk), dummy5(kk)
(3x, 8.1, 2x, e15.8, 2x. e15.8. 2x, 15.8, 2x, e15.8, 2x, e15.8)
*enddo

*cfclos

fini

exit

B.9  Torispherical Head
B.9.1 Linear Elastic Analysis
/batch

hitle, a torispherical head subjected to uniform pressure

! set basic constants for material properties

*set, pi, 22/7

*set, ym, 20685¢07 ! Young's modulus

*set, ys, 20685e04 ! vield strength

*set, poisson, 0.3 ! Poisson's ratio

! set basic inputs for geometric properties

*set, th, 254e-04 ! wall thickness

*set, rhbyd. 0.80 ! rth/d (rh is a radius of head)
*set, ribyd., 0.12 ! r/d (rt is a radius of torus)
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*set. thbyd. 1/300 ! th/d (d is a cylinder diameter)
*set. pr. 650e03 ! applied pressure

! derived dimensions

*set. phi2. asin ((0.5-rtbyd)/(rhbyd-rtbyd))* 180/pi

*set. phil, 90-phi2

*set. d. th/thbyd ! inside diameter of cylinder
*set. rk, ntbyd*d ! knuckle radius

*set. rh. rhbyd*d ead radius

*set. h th, rh- (th-rk)*cos (phi2*pi/180) ! height of tonispherical head

*set. dist. d/2-rk ! distance from axis to knuckle center
*set, . d/2 ! cylindrical inner radius portion

*set. ro, ri+th ! cylindrical outer radius portion

*set, ht, 1.2*5*sqrt (ro*th) ! height from base to lower knuckle

! element size parameters
*set. ndivl, 6

*set, ndiv2, 70

*set. ndiv3, 30

*set. ndiv4, 120

! enter preprocessor
Iprep?

! define analysis type as “static’ and

! element type as "f¢ oded ic element’ with 3 options
antype. 0

et. 1. plane42, .. 1

! add material properties
mp, ex. 1, ym
mp, nuxy, L, poisson

! start modeling

! define keypoints
k L

k. 2. ro

k. 3.1, ht

k, 4, ro, ht

!'local co-ordinate system for knuckle
local, 11, 1. dist, ht

csys. 11
k. 5, rk, phil



K. 6. rk+th, phil
csys. 0

! local co-ordinate system for head
local, 12. 1, 0. ht+hth-rh

csys, 12
k.7.rh, 90
k. 8. rh+th, 90

! devide lines suitable corresponding coordinate systems

csys, 12
1,5, 7, ndivd
1.6, 8, ndiv4

! define areas according to coordinate systems

csys. 0
612,43
amesh, 1

csys, 11
,3,4,6,5
amesh, 2

csys, 12
2.5.6,8,7
amesh, 3

! apply pressures

csys, 0
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sfl. 5. pres. pr

csys. 11
sfl. 7. pres. pr

csys. 0
csys. 12
sfl, 9. pres. pr

csys. 0
sftran

! add boundary conditions

nsel, . loc. x. 0
d.all.ux. 0
nsel, all

nsel, , loc. y. 0
d.all, uy, 0
nsel. all

! end of modeing, and exit preprocessor
fini

! enter solution module
Isolu

antype. 0
time, pr
outress, all. all
save

! start solving
solve

! end of solving, and exit solution routine
ini

! call the input listing of macro (e_neuber) for N2 analysis
/inp, e_neuber

! call the input listing of macro (e_gloss) for EGLOSS analysis
! /inp, e_gloss

exit



B.9.2 Nonlinear Analysis

/foatch

Hitle. a tonisphenical head subjected to uniform pressure

! set basic matenal constants
*set, pi, 227

*set, ym, 20685¢07

*set, ys. 2068504

*set. poisson. 0.3

! Young's modulus
! yield strength
! Poisson’s ratio

! define Poisson ratio in case of inelastic strain calculation

*set, poi. 0.5

! set basic inputs for geometric properties

*set, th, 254e-04
*set, thbyd, 0.80
*set. rtbyd. 0.12
*set, thbyd. 1/300
*set, pr, 630e03

! derived dimensions

! wall thickness

! rh/d (rh is a radius of head)

! r/d (rtis a radius of torus)
!th/d (d is a cylinder diameter)
! applied pressure

*set, phi2, asin ((0.5-ntbyd)/(rhbyd-rtbyd))* 180/pi

*set, phil, 90-phi2

*set, d. th/thbyd

*set, rk, ntbyd*d

*set, th, thbyd*d

*set, h th, th- (th-rk)*cos (phi2*pi/180)
=set, dist, d/2-rk

*set, . d/2

*set, ro, ri+th

*set, ht, 1.2*5%sqrt (ro*th)

! element size parameters
*set, ndivl, 6

*set, ndiv2, 70

*set, ndiv3, 30

*set, ndiv4, 120

! enter preprocessor
Iprep?

! define analysis type as “static’ and

! inside diameter of cylinder

! knuckle radius

! head radius

! height of torispherical head

! distance from axis to knuckle center
! cylindrical inner radius portion

! cylindrical outer radius portion

! height from base to lower knuckle



! element type as *four noded isoparametric’ element with axisymetric option
antype, 0
et. [,42,,.1

! add material properties
mp, ex, |, ym
mp. nuxy. L. poisson

! add inelastic properties
th, bkin, 1. 1
thdata, 1, ys. 0

! start modeling

! define keypoints
k. Ld

k.2, 0

k,3,r. ht

k.4, ro, ht

! local co-ordinate system for knuckle
local, L1, L. dist, ht

csys, 11

k, 5, rk, phil

K, 6. rk+th. phil
csys. 0

! local co-ordinate system for head
local, 12, 1. 0, ht+hth-rh

csys, 12
k. 7,th, 90
k. 8, rh+th, 90

! devide lines according to coordinate systems
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! define areas according to co-ordinate systems
csys, 0
al2,43

amesh, |

csys, 11

amesh,
! apply pressure

csys. 0
sfl, 5, pres, pr

csys, 11
stl. 7, pres, pr

csys. 0
csys, 12
sfl, 9, pres, pr

csys, 0
sftran

! add boundary conditions
nsel, loc, x, 0

d.all, ux,0

nsel, all

nsel, loc, y, 0

d,all, uy, 0
nsel, all
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! solver options for nonlinear analysis
autots, on

nsubst. 20

Insrch, on

nropt. full. . off

ncnv, 1

! end of modeling. and exit preprocessor
fini

! enter solution module
Isolu

antype. 0
time. pr
outress. all. all
save

! start solving
solve

! end of solving. and exit solution module
fini

! enter post-processor
Ipostl

set, last

! create element tables as “eqvst’, “estm’, "pstm’” and ‘eqvstm’
etable, eqvst, s, eqv

etable, estm, epel. eqv

etable, pstm, eppl, eqv

etable, eqvstm. epto, eqv

! get maximum element number as ‘max1’
*get, max1, elem, 0, count

! create arrays as ‘dummyl’, dummy2’ etc.
*dim, dummyl, array, max |
*dim, dummy2, amay, max |
*dim, dummy3, array, max |
*dim, dummy4, array, max|
*dim, dummys3, array, max |



! open a file as "stress_strain_nl" and

! store inelastic stresses and strains in corresponding arrays
*cfopen, stress_strain_nl

*do. kk. 1. max1

*get, sig. elem, Kk, etab, eqvst

*get, epsl. elem, kk. etab. estrn

*get, epsp, elem. kk, etab. pstm

*get, epst, elem, kk, etab, eqvstrmn

dummy L (kk)=sig
dummy2(kk)=epsl/(1+poisson)
dummy3(kk)=epsp/(1+poi)
dummy4(kk)=dummy2(kk)+dummy3(kk)
dummy5(kk)=epst

*vmask, dummy I (kk)
*vmask. dummy2(kk)
*vmask, dummy3(kk)
*vmask, dummy-(kk)
*vmask, dummy5(kk)

*vwrite, kk, dummy1(kk), dummy2(kk). dammy3(kk). dummyvl(kk), dummy3(kk)
(3x, f8.1. 2x,e15.8. 2x,e15.8. 2x, el5.8 15.8)

*enddo

*cfclos

fini

exit
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Appendix C

Elastic Modulii Softening Macros for EGLOSS, N1 and
N2 Methods

The macros below (‘e_gloss™ for EGLOSS and ‘e_neuber’ for N2) wrtten in ADPL.

perform the post-p g in order to the eq (von Mises) stresses and
strains and the Young's modulus changes after the first linear elastic analysis. The
equivalent first and second linear elastic (von Mises) stresses and strains are stored as
outputs in files ‘stress_strain_l" and ‘stress_strain_2", respectively. The expected
EGLOSS and N2 strains are stored in files "e_gloss_strain' and ‘e_neuber_strain’,
respectively. The macro for N1 is not presented separately here. The macro file for this
will be the same as that for N2. The results are extracted the same way. The geometnc
construction is slightly different for N1 compared to that of N2. This difference in

calculation is taken care of outside the macro using a spread sheet. Therefore. use the

“e_neuber’ macro given below for both N2 and N1.

C.1  Elastic Modulus Softening Macro for EGLOSS Analysis

This file is common to all examples.

L) I-Linear Analysis

/postl



set. 1

! create element tables such as “eqvst’ and “estm’
etable. eqvst, s. eqv
etable. estrn. epel. eqv

! get maximum element number as “max |’
*get, max 1. elem, 0. num, max

! create arrays such as "dummyl” and "dummy2’
*dim, dummy 1. array, max!
*dim, dummy?2, array, max |

! open a file as “stress_strain_| " and store the stresses

! and strains in corresponding arrays
*cfopen. stress_strain_1

*do, kk, 1, max1l

*get, sig, elem, kk. etab, eqvst

*get, epsl, elem, kk. etab, estn

*set, dummy1(kk), sig

*set, dummy?2(kk), epsl/( 1 +poisson)
*vmask, dummy 1(kk)

*vmask, dummy2(kk)

*vwrite, kk, dummy I(kk). dummy2(kk)
(3x.18.1, 2x, el5.8, 2x, e15.8)
*enddo

*cfclos

! select all elements of the model
esel, all

! set material number as *mnum’
*set, mnum, |

! open a file as "'ym_val’ and update the Young's
! modulus based on egloss analysis

*cfopen, ym_val

*do, kk. 1, max1

*if, dummy1(kk), ge, ys, then

*set, esec, (2*ys/dummy I (kk)-1)*ym

*else



*set, esec. ym

*endif

*cfwrite. mp, ex. mnum, esec
*set. mnum, mnum+1
*enddo

*cfclos

fimi

! select all elements of the model
esel. all

! set material number as ‘mnum’
*set. mnum, |

! open a file as "ym_mod' and modify material properties
*cfopen, ym_mod

*do. kk. 1. max1

*cfwrite, mat, mnum

*cfwrite, emodif, kk

*set, mnum, mnum+1{

*enddo

*cfclos

fini

1} [I-Linear Analysis

Iprep?

! the same model created in elastic analysis is restored again
resume

! apply modified modulii

finp, ym_val

/inp, ym_mod

Isolu

antype, 0
time, pr
outress, all, all



save

! start solving
solve
fini

Ipostl
set. 1

! create element tables as "eqvst” and “estm’
etable. eqvst. s. eqv
etable. estrn, epel. eqv

! get maximum element number as ‘max2’
*get, max2, elem, 0, num, max

! create arrays as “dummy3’, ‘dummy+’ etc.
*dim, dummy3, array, max2
*dim, dummy+, array, max2
*dim, dummys3, array, max2

! open a file as “stress_strain_2" and store the
! second linear elastic stresses and strains in corresponding arrays
*cfopen, stress_strain_2

*do. kk, I, max2

*get. sig, elem, kk, etab, eqvst

*get. epsl, elem, kk, etab. estm

*set, dummy3(kk), sig

*set, dummy4(kk), epsl/(1+poisson)

*vmask, dummy3(kk)

*vmask, dummy4(kk)

*vwrite, kk, dummy3(kk). dummy4(kk)
(3x.f8.1,2x, €158, 2x, e15.8)

*enddo

*cfclos

save

fini

! open another file as ‘e_gloss_strain" and store the egloss strain
*cfopen, e_gloss_strain

*do, kk, I, max2

*if, dummy1(kk), ge. ys, then

*set, sig_mod, 2*ys-dummy(kk)
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*set. y5(kk), dummy2(kk)+(ds v2(kk)-d y4(kk))*(sig_mod-
dummy1(kk))/(dummy 1 (kk)-dummy3(kk))

*else

*set. dummy3(kk), dummy4(kk)

*endif

*vmask. dummy5(kk)

=vwrite, kk. dummyS(kk)

(3x.f8.1,2x.el5.8)

*enddo

*cfclos

fini
C.2  Elastic Modulus Softening Macro for N2 Analysis

This file is common to all examples.

/] I-Linear Analysis

Ipostl
set, 1

! create element tables as ‘eqvst’ and “estm’
etable. egvst. s. eqv
ctable, estm, epel, eqv

! get maximum element number as ‘max1”
*get, max1, elem, 0, num, max

! create arrays as ‘dummyl’ and ‘dummy2"
*dim, dummyl, array, max |
*dim, dummy2, array, max |

! open a file as "stress_strain_1" and store the

! first linear elastic stresses and strains in corresponding arrays
*cfopen, stress_strain_|

*do. kk, L, maxl

*get, sig, elem, Kk, etab, eqvst

*get, epsl, elem, kk, etab, estm



*set. dummy I (kk). sig
*set. dummy2(kk), epsl/(1+poisson)
*vmask, dummy I (kk)
*vmask, dummy2(kk)
*vwrite.

*cfclos
save

fini

! select all elements of the model
esel, all

! set material number as ‘mnum’
*set. mnum, 1

! open as file as "ym_val’ and update the Young's
! modulus based on Neuber's rule

*cfopen. ym_val

*do. Kk, 1, max1

*if, dummy1(kk), ge. ys. then

*set, esec, ys*ys/(dummy 1(kk)*dummy2(kk))
*else

*set, esec, ym

*endif

*cfwrite. mp, ex, mnum, esec

*set, mnum, mnum+1

*enddo

*cfclos

save

fini

! select all elements of the model
esel, all

! set material number as ‘mnum’
*set, mnum, |

! open a file as "ym_mod’ and modify the material properties
*cfopen, ym_mod

*do, kk, 1, max1

*cfwrite, mat, mnum
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*cfwnte. emodif. kk
*set. mnum. mnum+1
*enddo

*cfclos

save

fini

! [I-Linear Analysis

IprepT

! the same model created in first elastic analysis is restored again
resume

! apply modified modulii
finp, ym_val
finp, ym_mod

Isolu

antype. 0
time, pr
outress, all, all
save

! start solving
solve
fini

Ipostl
set, 1

! create element tables as “eqvst’ and “estn
etable, eqvst, s, eqv.
etable, estrn, epel, eqv

! get maximum element number as ‘max2’
*get, max2, elem. 0, num, max

! define arrays as "dummy3’, "dummy4’ etc.



*dim, dummy3, array, max2
*dim. dummy4, array, max2
*dim. dummy3, array, max2

! open a file as “stress_strain_2" and store the
! second linear elastic stresses and strains in corresponding arrays
*cfopen, stress_strain_2

*do. kk, 1. max2

*get, sig. elem, kk. etab. eqvst

*get. epsl. elem. kk, etab. estm

*set, dummy3(kk). sig

*set, dummy<(kk), epsl/(1+poisson)
*vmask, dummy3(kk)

*vmask, dummy-(kk)

*vwrite. kk, dummy3(kk). dummy4(kk)
(3x.f8.1. 2x,el15.8. 2x, e15.8)

*enddo

*cfclos

save

! open a file as "e_neuber_strain' and store the strain

*cfopen, e_neuber_strain

*do, kk, I, max2

*if, dummyl(kk). ge. ys. then

*set, ys_mod, ys*ys/(dummy2(kk)*ym)

*set, dummy3(kk), dummy2(kk)+(dummy2(kk)-dummy4(kk))*(ys_mod-
dummy | (kk))/(dummy | (kk)-dummy3(kk))

*else

*set, dummyS(kk), dummy4(kk)

*endif

*vmask, dummy5(kk)

*vwrite. kk, dummy5(kk)

(3x, 8.1, 2x,el5.8)

*enddo

*cfclos

fini
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Appendix D

Equivalent Strain Calculations in ANSYS 5.5

The total equivalent strain is the sum of elastic equivalent strain and the plastic equivalent

strain. The total equivalent strain is given by

1

€,= m (D-1)

The yield criterion determines the stress level at which yielding is imtiated. For
multi-component stresses. this is represented as a function of the individual components
which is interpreted as an equivalent stress. When the equivalent stress is equal to a
matenial yield parameter. the material develops plastic strains. Since the total strain can
be divided into an elastic and plastic pan, plastic part is obtained by substracting the
elastic part from the total strain. For some reason, the equivalent strain values obtained
from ANSYS 5.5 do not consider the Poisson’s ratio factor [ANSYS. 1998]. Therefore,
elastic equivalent strain values obtained using ‘epel. eqv' command of ANSYS 5.5
should be divided by L+v (or, "I+poisson’ in the input file) in order to get the correct
elastic equivalent strain [Raghavan, 1998]. Similarly, plastic equivalent strain values
obtained using ‘eppl. eqv' command (used in nonlinear analysis) sholud be modified

taking into account the fact that the Poisson’s ratio for plastic flow is considered to be



0.5. The ANSYS 5.5 values for this case must be divided by 1.5 (or. “1+poi” in the input

file) in order to get the correct plastic equivalent strain.

The sum of the elastic equivalent strain and the plastic equivalent strain from ANSYS 5.5
(suitably modified as outlined above) gives the required total equivalent strain. In the

ANSYS files. “poisson’ = 0.3 (elastic case) and “poi’ = 0.5 (plastic case), respectively.

It must be noted that. the equivalent strain values obtained from ANSYS 6.0. considers

the Poisson’s ratio factor.



Appendix E

Exact Analysis for the Bending of a
imply Supported Beam

Consider a simply supported beam (shown in Fig. Ela) of span L with a rectangular
cross-section subjected to a load intensity of g, throughout the beam. The beam remains
elastic when the load intensity g, is less than the yield load defined by ¢, =8M /L.
At the yield moment M _, only the extreme fibers yield. At the moment higher than the
yield moment M _, yielding spreads to interior fibers too. This yielding of fibers causes

the change in stress carried by the fibers as bending moment. When the maximum
moment at mid-span and the moment at the section near the mid-span exceeds the yield
moment, thus spreading of the yielding over a length of the beam. The spreading of the
yielded zones continues until the maximum moment at mid-span reaches plastic moment

M. Atthe plastic moment, all fibers are yielded and this yielded zone spreads out over

a length called plastic hinge length.

Consider a rectangular segment of width b and depth /. At the elastic-plastic regime,
the yielded fibers continue to carry the constant yield stress o, while the less stressed
interior elastic fibers take additional stresses induced by the increase in moment. A

partially yielded section with the elastic core depth of 2h, has been shown in Fig. Elc.
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Fig. Ela: Simply Supported Beam with UDL
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Fig. E1b: Yielded Zones over Beam Length
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Fig. Elc: Elastic-Plastic Rectangular Section
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Deflections of the beam are controlled by the elastic core only since the suffness is
supplied by the elastic portion and not by the plastic zones. Assume that after bending
the plane section remains plane and the transverse fiber remains normal to the deflected

axis (i.e.. shear deformation is negligible).

Defining the moment of inertia of entire section /, . the moment of inertia of elastic core
I,. the moment at the initial yielding M, and the moment M at any point x. the

following states for rectangular section under pure bending are obtained.

(E-1)
s
L:s{’i] <1 (E2)
s h
“‘:_v= ’;_) <1 (E-3)
M, %

Neglecting shearing effects. the bending stress o, and strain £, at C (the distance from

neural axis) can be determined by Eqs. E-4 and 5, respectively.

o. =llv£ (E-4)

=2 (E-5)
E



According to the beam theory. if ¥ is the deflection of the neutral axis at any given x.

the moment M, offered by the elastic core is obtained by

(E-6)

or.

(E-T)

At h /h=1/2, the moment at mid-span which is just sufficient to start yielding the

extreme beam fibers is given as

(E-8)

or,

x_ 1 M,
i U (E-9)

In elastic regime (ie. 0<x/L<a/L, where a/L=12(1- [l-M /M) indicates

the elastic span length) the usual beam theory gives

Bl i—[i)- (E-10)
2em, L \L
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Replacing & = x/L and integrate with respect to &

& _ql (e Vs oo Gl i aa
o fle-¢ )d,«»C,—uEI"., (3-29)+C, (E-11)
or.
o e gy s
¥ ZJEI,';(Z §)+Ci+C, (E-12)

Applying boundary condition, e.g.. ¢ =0 givesC,

%L
24El,

(E-13)

g

In the elasto-plastic regime (i.e.a/L<x/L<1/2. where cross section is partiaily

yielded)

(E-14)
Again, replacing ¢ = x/L (where a/L 1/2) gives
&y 20l 0l | T
dE M,  Eh [ P
< Eh‘j;\—zL . JJ—S‘L"“ £1-¢)
ey ",

Integrate with respect to ¢
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,- . ;
LT Py I N P (E-16)
vov )

where.

w=3-3mn M o '(1 g (E-17)
or.

L1

,=;{|x 1+ (u -3)} (E-18)
or.

(E-19)

Applying boundary condition, ... § =1/2 (where u=[3-2M_, /M ) gives the slope

at mid-span which is equal to zero.

C,=-rlns (E-20)

Therefore,

:—=r n(uﬂlu —s) rins =rin|

(E-21)

where,

m



e (E-22)

ol [ M,
o 2t (E-23)
Eh \2M

Again integrate with respect to &

(E-24)

where,

The slope dv/d¢ for elastic and partially plastic portions at & = a/L (where «* =1) must

be equal for compatibility and the constant C, has been found as

[3- :ﬂj(i) (E28)
LAL

(14+4I=5°

C= rInL

m



Therefore, the deflection for elastic zone (i.e.0< x/L<a/L)is

iz %L
24El,

Similarly, the deflection for elastic and partially yielded portions at £ =a/L (where

«* =1) must be equal for compatibility and the constant C, has been found as

1+41

}—".mln[

4 KT
4L [5] (32 _4)er2ul
2L\ L) UL L

For partially yielded zones (i.e.,a/L < & <1/2). the beam deflection is

s
et
MEIL\L

Such analyses can be found in standard references for typical applications. For example,

Chen and Sohal [1995] gave examples for beams, frames, etc.

m
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