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Abstract

Approximate inelastic strain estimation is of great use in several types of applications.
Besides classical nonlinear FEA. robust techniques such as Neuber's rule, EGLOSS, etc..
are available for this purpose. These robust techniques are applicable for small loads just
above the initial yield. These methods find secant modulus based on unbalanced local
element energy. They do not account for change in the yield boundary while computing

secant modulus. Several i secant i were to update the

secant stiffness directly in FEA based on nonlinear schemes. The present study explores
simple and systematic methods for determining inelastic effects based on line search and
direct secant modulus. The main concept of these methods is the minimization of the
total residual energy after first linear FEA. A line search with the displacements due to

the unbalanced forces spreads the yield zone considerably closer to the actual state.

The present study izes important ies of available i based on the

Newton-Raphson and secant schemes (traditional as well as robust). Seven different
possible altematives for robust estimation of inelastic strain based on line search are
examined. Two schemes based on Neuber's rule are examined. These are compared
with full nonlinear analysis and EGLOSS, etc. The schemes are applied to study the
problems of simply supported beam, propped cantilever, fixed beam (all with UDL),
bending of rectangular plate with irregular boundary, simple truss, stretching of a plate

with a hole, thick cylinder with internal pressure, thick cylinder with a circumferential



notch, and torisherical shell. The problems were studied for load ranging from just above
initial yield to nearly limit loads. The studies indicate that the line search techniques
significantly improve the predictions as compared to those made by existing robust
techniques. Recommendations based on these results have been made. Two alteratives
have been found to be good for general bending and stretching type problems. Another

altemnative has been found to be good for strain concentration problems.
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Nomenclature

All notations are defined in the text when used first. The following is only a list of some

frequently used symbols.

Symbols

>

representative area over which the equivalent stress acts for any
element k

strain-displacement matrix

condition number for updating stiffness matrix

original Young's modulus

initial Young's modulus (same as Eo)

second Young's modulus

modified equilibrium Young's modulus

modulus at iteration {

reduced Young's modulus
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error quantity defined as the inner product of the residual force
vector after the ing and the ing di
increment along the secant direction

MM a s ND O
£ 2 § =

ER error quantity defined as the self inner product of the residual force
vector after the accelerating process

F restoring force

5 function value at point ;

J, Jjacobian at iteration i

1 unit matrix

Al arc-length

K, an approximate stiffness matrix

K, diagonal triangular matrix

K, lower triangular matrix

‘K tangent stiffness

K, global tangent stiffness matrix

K tangent stiffness at equilibrium configuraticns

°K original stiffness matrix

xiii
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global constant stiffness matrix

global implicit secant stiffness matrix
applied load

global residual force vector at iteration i
global residual force vector

reference force value

residual force

external load increment

residual or load di between two
iterations such as i and i-1

element stress intensity

code allowable stress

displacements after first linear elastic analysis
displacements at iteration {

displacements after line search

incremental displacements

improved incremental displacements
reference displacement value

volume of the structure

work done

scalar quantity

Euclidean norm
unknown diagonal matrix of co-efficient at iteration i
line search parameter

obtained from minimizing E,"

obtained from izing E;'
displacement changes between two successive iterations, e., g,
iandi-1
load factor
Poisson’s ratio
strain in micron units (10)
degree of mult-axiality and follow up
total potential at iteration i
equivalent strains after first linear elastic analysis
equivalent element strain
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equivalent element strain after first linear elastic analysis
equivalent element strain after second linear elastic analysis
equivalent strain for iteration i
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plastic strain

force tolerance
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equivalent stresses after first linear elastic analysis
arbitrary stress in the modulus softening process
equivalent element stress

equivalent element stress after first linear elastic analysis
equivalent element stress after second linear elastic analysis
equivalent stress for iteration i

additional equivalent stress

principal stresses (i = 1, 2, 3)

stress after line search

yield stress

modified yield stress

hydrostatic stress
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line search
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FE Finite Element

FEA Finite Element Analysis
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MNR Modified Newton-Raphson
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NR Newton-Raphson

NFEA-2itr Nonlinear Finite Element Analysis - within two iterations
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Chapter 1

Introduction

1.1  General Background

Inelastic strain determination in structures and structural components has been a topic of

interest to in i problems. The importance of
investigating the inelastic effects of various types of structures for adequate design is
being recognized to an increasing extent. In some cases, the behavior is significantly
nonlinear at even relatively small loading and for other structures the influence of the

geometry changes due to plastic strain on the response of the structure can not be

neglected. Economy of costs, ensuring safety and durability of
structure are needed of a good design. In certain designs, extensive testing is carried out
in order to assess accurately the response of the structure considered. However, reliable
test data is often very expensive and hence the need for parametric studies has increased
the emphasis on theoretical nonlinear analysis. If appropriate analysis techniques are
available, expensive testing and accumulation of data can be reduced significantly and a

better understanding of the structural behavior can be obtained.

A robust and simple method for estimating inelastic effects aids design procedures in
becoming more rational and economical. Besides, inelastic analysis provides reserve

strength estimations that are available beyond the elastic limit. This reserve strength is



for statically i with high Nonlinear FEA

to determine inelastic response is frequently used in engineering problems. This requires
a significant computational effort. It produces a large amount of output data that has to
be interpreted properly to make practical sense. Although cost of computation is coming
down significantly, it must be noted that more and more problems are being analyzed for
nonlinear effects and hence. these factors create a need for the development of simplified
techniques for inelastic analysis. Simplified techniques also serve as checks to verify the
effectiveness of full-scale nonlinear analyses. Besides, many simplified techniques

possess a robustness that is not often present in full-scale nonlinear analyses.

1.2 Necessity for the Robust Techniques

The Finite Element Analysis (FEA) of structures has proven to be very effective in linear
analysis. With regard to nonlinear analysis, FEA is based on the extensions of linear
analyses. In nonlinear analysis, stability and accuracy are a great deal more difficult to
obtain than in linear analysis and depend on various factors. An important aspect is the

use of 2 i ion and an effective FE discretization.

The most difficult and inescapable stage in FEA is to solve the resulting system of
simultaneous equilibrium equations. This problem becomes very difficult and costly if
these equations are nonlinear. The use of nonlinear elasto-plastic stress-strain
relationships makes the analysis more complicated when compared to linear elastic
analysis. A second aspect is the use of material models, which represent the actual

materials under field conditions. Specific attention needs to be given to the



implementation of the material model such that it does not introduce instabilities into the

solution.

The determination of the most effective approach to a general nonlinear analysis is at
present largely a matter of experience on the part of the analyst. In numerical analysis,
the accuracy of the results obtained for a system of nonlinear algebraic equations also
depends very much on the type of the solution method employed. The most important
aspects in FEA are the appropriate finite element model selection and the corresponding
interpretation of the results. Generally, incremental step by step solutions where the
variables are updated incrementally for each load step thus tracing the full solution path
are preferred regardless of which method is used. If complete solution path is not
determined, for the particular case of material unloading, it is assumed that the response
of the system cannot be evaluated properly. It is also essential in each load step to get
good accuracy satisfying all FE equations; otherwise, errors can be significant. An
expected solution of nonlinear FE equations mostly depends on the number of
incremental load steps. But for a large problem, small incremental steps can result in
high costs of analysis. On the other hand, larger load steps might require more iterations
since the convergence process might be too slow. Performing equilibrium iterations to
obtain proper results is necessary if large or moderately large load steps are used. Thus it
is important for engineers to understand the general behavior of nonlinear analytical

procedures to control the cost and accuracy of analyses.



Inelastic FEA has become a versatile tool of carrying out elastic-plastic analysis after the

advancement of high-speed For g FEA, many

packages are available. It is a general method and could be applied for most engineering
problems. A variety of element types and modeling techniques allows good simulation of
the problems. Nevertheless inelastic FEA has some inherent drawbacks as well.
Applying a detailed inelastic analysis is often questionable due to convergence

and the time Therefore, a detailed nonlinear analysis may not

be always significant in situations where great accuracy is not important. Moreover, the
accuracy of FEA is affected by the simplifying assumptions while modeling the
problems. This clearly shows the need of developing robust techniques. In the present
context, robustness means the ability to provide acceptable results on the basis of
conceptual insight and economy of computational effort. Such robust techniques are
simple, reliable, and could be based on linear elastic analyses. They are capable of
predicting inelastic effects. They are relatively insensitive to errors in material models
and other such data collection problems. For performing a preliminary analysis to assess
the feasibility of a structure, robust approximates are ideally suited. It can be used to
identify critical locations and to approximate the response. Besides, they provide a good

alternative estimate to verify full nonlinear analyses results.

1.3  Objectives

The following are the objectives of the present study:
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. Survey the conventional numerical nonlinear solution techniques (Secant and

Tangent methods such as Newton-Raphson) and approximate methods (robust

methods based on direct secant modulus such as Neuber's rule, EGLOSS, etc.).

. Develop ining the ideas of

and direct secant methods for inelastic strain estimations. These ideas can include

line searches, relaxation locus, etc.

. Apply the possible alternatives to a variety of problems at different loading

situations and compare the results with those obtained by inelastic FEA and the

other robust methods.

. Investigate other possible approximate techniques such as those based on

Neuber's rule.

Based on the ination of possible ives,

strategies to obtain approximate and yet robust estimates of inelastic strains.

The Scope of the Present Study

Chapter | gives an introduction about the importance of nonlinear analysis. The cost and

time posed by nonlinear FEA and the need for the robust methods of determining

inelastic effects are very briefly explained. The objectives and the scope of present study

are also presented.



In Chapter 2. material behaviors such as i i . ative.
uniaxial stress-strain curve, plastic stress-strain relationship, and different types of
yielding criteria are described. The nonlinear solution algorithms pertaining to the
elasto-plastic problems are also described. The concept of combining incremental and

iterative methods has been studied.

A review of nonlinear solution methods based on secant methods is presented in
Chapter 3. Always using conventional methods (e.g., nonlinear FEA) are not suitable for
feasibility study as well as the preliminary stages of design. Although these solution
methods give the best representation of structural plasticity, obtaining solution may not
be easy. Some approximate methods but robust methods (EGLOSS, etc.) based on direct
secant techniques (elastic modulii adjustment techniques) have been studied. The

usefulness of Neuber's rule for nonlinear evaluations is also discussed.

Seven alternatives (LSM1 to LSM?7) based on line search, direct estimation of secant
modulii and relaxation line projections are studied in Chapter4. In addition, two
combinations (N1 and N2) based on extensions of Neuber's rule for determining the

inelastic strains have been studied.

All these alternatives are applied to a variety of numerical examples in Chapter 5. They
include beams, truss, plate with hole, cylinder with notch, bending of plate, thick-walled
cylinder and torispherical head etc. They include problems with general bending and

stretching as well as problems having strain concentration. Results obtained either by the



robust techniques currently in use such as EGLOSS or the detailed inelastic FEA are

compared with those obtained by possible selected alternatives.

In Chapter 6, conclusions and recommendations with a brief summary are discussed. The
Appendices contain the input files and ANSYS 5.5 macros written using ADPL that are
necessary for solving the numerical examples. An exact analysis for the bending of a

simply supported beam with UDL is listed in Appendix E.



Chapter 2

Literature Review

2.1 Introduction

In numerical analysis, the accuracy of results obtained for the nonlinear simultaneous
equations depends very much on the type of solution methods employed. The nonlinear

solution i of si i quations that arise in the static analysis

of structures and the overall effectiveness of an analysis of numerical procedures used for
the solution depends on problem involved as well. In obtaining accuracy, the finite
element model could be a significant factor. In the FEA, an accuracy of the analysis can,
in general, be improved if a more refined mesh is used. However, this means the cost of
the analysis. Therefore, in practice, an analyst tends to employ larger and larger finite
element systems (i.e., load steps) to approximate the actual structure. But the fact is that

and j by the user might be required to assure a stable

and accurate solution. In general, a nonlinear static FEA is most effectively performed

using incremental formulation combined with iterative procedure where the variables are

updated either i y ponding to ive load steps) or iteratively. In
such a solution it is important that the governing finite element equations are satisfied in
each load step. The equilibrium solution could result in many load steps that render the

analysis of a large finite element prohibitively expensive. In fact, its practical feasibility



depends on the algorithms available for the solution of the resulting system of equations.
Because of requirements that large system be solved, much research effort has gone into
optimizing the equation solution algorithms. In the present Chapter, some of popular and

related solution methods are outlined.

2.2 Need for Nonlinear Analysis

All phenomena in continuum mechanics are naturally nonlinear. Although using linear
formulation is convenient in practice of solving many engineering problems, sometimes,
nonlinear analysis is required in order to describe their behavior adequately [Elsawaf,
1979]. Attempts were made to solve such type of problems during the first half of the
past century. Series approximations have been applied for solving problems with simple
boundary conditions and idealized loading. Closed form solutions are seldom possible

because of the ity of the g

are being employed for such cases and many important problems can be solved for
practical purposes using digital computers. Among the techniques used, the finite

element method has proved to be the best in dealing with complicated problems,

with complex and loading

The main di between the ical theory of i ics and that

of the finite element method lies in the fact that the former establishes the behavior of an
infinitesimal element. By allowing the dimensions of this infinitesimal element to

approach zero, partial differential equations can be derived to describe the behavior of the



whole domain. Such equations must be integrated over the domain to establish the
solution. On the contrary, the finite element method studies the properties of an element
of finite dimensions. Integration is replaced by a finite summation, resulting in a system
of algebraic equations [Logan. 1992]. On solving these, the behavior of the whole

domain is known.

2.3 Causes of Non-linearity

Non-linearity arises in problems from several sources, which can be grouped into three

principal categories:

Changing Status

Some structural features exhibit status-dependent non-linearity. For instance, a tension
cable is either slack or tout: a roller support is either in contact or not in contact. Status
changes are directly related to load, or determined by some external causes. Situations
where contact occurs are common to many different nonlinear applications, and are a

distinctive and important subset to the category of changing-status non-linearity.

Geometric Non-linearity

When a structure i large it its changing
causes the structure to respond non-linearly. Basically, large deflections or rotations

characterize geometric non-linearity.



Material Non-linearity

Nonlinear stress-strain relationships are the most common cause of nonlinear structural

behavior. Many factors influence material stress-strain properties. including load history

(as in elasto-pl i itions (such as and the

amount of time that a load is applied (as in creep response).

2.4 Behavior of Materials: Conservative and Non-Conservative

When all energy put into a system by external loads is recovered if the loads are
removed, the system can be said to be conservative. If some energy is dissipated by the
system due to plastic deformation, the system is non-conservative. An analysis of a
conservative system is path-independent. Loads usually can be applied in any order and

in any number of increments without affecting the end results. Conversely, an analysis of

a ive system is path- The actual load response history of the
system must be followed closely to obtain accurate results. Path dependent problems
usually require that loads be applied slowly by using many sub-steps to the final load
value. In the present work only proportional loading paths are considered. The work can

be extended to non-proportional loads, if required.

2.5 Material Stress-Strain Curve

A typical stress-strain diagram for steal is shown in Fig. 2.1. The straight portion of the

curve OA is the elastic range, and point A is the yield point that demarcates the linear and
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Fig. 2.1: Uniaxial Material Stress-Strain Curve



the nonlinear range of the behavior. On further increasing of load. the stress-strain curve
follows the nonlinear path AB. Since the deformation continues the stress required also

increases showing the resistance of the material to further plastic deformation.

The stress required to produce this further plastic deformation is usually referred to as the
flow stress. Stress and strain are no longer proportional, therefore there is a need to
characterize plastic behavior through more appropriate constitute equations. [f the
material unloads from stressed up to point B, the unloading path is considered to be linear
and parallel to the loading OA. The total strain is comprised of two parts. The portion

DE is the recoverable elastic and the portion OD is the irrecoverable plastic strains.

2.6 Theories of Failure

As the loading is increased, a point is eventually reached at which changes in geometry
are no longer reversible. The beginning of nonlinear behavior is thus marked. The extent
of the inelastic deformation preceding fracture is very much dependent upon the material
involved. From the viewpoint of design, it is imperative that some practical guidelines be
available to predict yielding under the condition of stress, as they are likely to exist in
service. To meet this need and to understand the basis of material failure, a number of
theories has been developed. Some of them are briefly outlined below [Ugural and

Fenster, 1987; Shames and Cozzarelli, 1992].



According to the maximum principal stress theory (Rankine (1802-1872)), material fails
by yielding when the maximum principal stress exceeds the tensile yield stress or the

minimum principal stress exceeds the compressive yield stress.

According to the maximum shear stress theory (Tresca), yielding starts when maximum
shear stress in the material equals the maximum shear stress at yielding in a simple

tensile test.

In a multiaxial stress state (if 0, > 0, > &, ). the maximum shearing stress 7, is

o, -0y (26-1)

Therefore, yielding begins when
o,-0,=0, (26-2)

According to the maximum principal strain theory (St. Venant (1797-1866)). a material
fails by yielding when the maximum principal strain exceeds the tensile yield strain or
when the minimum principal strain exceeds the compressive yield strain. This theory has

been applied with success in the design of thick-walled cylinders.

The von Mises Criterion was proposed by Huber (1904) and further developed by von
Mises (1913) and Hencky (1925). According to this theory, failure by yielding occurs
when the distortion energy per unit volume in a state of combined stress becomes equal

to that associated with yielding in a simple tension test.



\~0.) +(0.-0.) +(0,-0,) (26-3)

This theory finds i i support in i involving ductile

materials and plane stress. For this reason, it is commonly used in design.

2.7 Basic Stress-Strain Relationships

Consider an element subjected to a general state of stresses 0, >0, >0, where 1,2, 3
indicate the principal directions. The principal stresses in any three-dimensional stress
system can be written in the summation of &, the hydrostatic stress or the mean of the
three principal stress values and o , the deviatoric stress. The hydrostatic or the mean

stress for the uniaxial case is given by

5:%:% @71

Therefore, the deviatoric stresses are obtained as

2 = 1 o 1
a'=a,-7=30.. o. ‘-a=—-3v,. ﬂ,=6,-d=-sﬂ| 272

or, 2.7-3)

Similarly, the deviatoric strains can also be defined. For volume constancy, the sum of

strains must be zero.



Symmetry in the uniaxial case leads to

L= (2.74)
& &

and a comparison with Eq. 2.7-3 shows that
L -5 5 - constant @7-5)
o, o, o

Eq. 2.7-5 can be manipulated to give the following equations [Ugural and Fenster, 1987]

(2.7-6)

E =— .77

inwhich &, and €, indicate the effective stress and strain, respectively.
According to von Mises theory, the effective stress connects the uniaxial yield stress to
the general state of stress at a point given by

=L{o-0.f +(0:-0,) +(oy -0, (2.7-8)




emt—{a-ef+le.-ef +le,-4 @79
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For loading situations in which the components of stress do not increase continuously, the
incremental theory must be used. Upon these circumstances. the total strain theory or the
deformational theory can not describe the complete plastic behavior of the material. The
incremental theory offers another approach. treating not the total strain associated with a

state of stress but rather the increment of strain.

2.8 Solution Algorithms for Nonlinear Problems

In the finite element idealization, the whole (continuous) body is divided into a finite
number of sub regions called finite element, which interconnect at node. The solution

function over each element is assumed in terms of the generalized nodal variables, which

are usually the function itself and its . Using this
function with an appropriate variational principle or the governing differential equations
the element matrices are obtained. Finally, a system of algebraic equation is solved, in

order to obtain the unknown nodal variables.

Based on any of the well-k 1ati inci in solid ics, a variety of

finite element models has been established. At present, the displacement model is most
widely used because of simplicity and easy to program. The principle of minimum of
potential energy is used to construct the load-nodal variable equations for the

model. The di functions are assumed over each element so that




compatibility within each element and across inter-element boundaries is assured. A
displacement model of a nonlinear finite element problems demands the simultaneously
satisfaction of the global stiffness equation. In this model. the equilibrium equations are

required to solve, namely:
r
AR=R-[Boav=0 @8-
v

where. R and AR are the applied (external) and the generalized residual or unbalanced
force vectors, respectively. B is the derivative matrix defining strain-displacement
relationship and o is the stress vector based on strain energy per unit undeformed

volume.

These solution techniques are quite general and are entirely and directly applicable to ail
those analyses that lead to symmetric coefficient matrices. Two types of solution
techniques such as direct and iterative are available. In direct (incremental) solution
techniques, the equilibrium equations are solved using a number of load steps and
operations are predetermined in an exact manner. In such techniques, the elasto-plastic
problem is dealt as a series of linear analyses. The load vector is broken into a number of
smaller but finite increments. The structure is assumed to respond linearly within each
step and the response is obtained without iteration. The stiffness (in secant methods) or
tangent matrix (in Newton-Raphson schemes) is evaluated at the beginning of each step

and assumes constant for the whole increment. The final solution obtained by the



of the i i due to each load increment. Errors are

likely to accumulate after several steps unless very fine steps are adopted.

Otherwise, the solution may diverge considerably from the true response. The accuracy

can be improved by applying equilibrium corrections.

Iterations are used when an iterative technique is employed. In such technique, the whole
load is applied on the structure and equilibrium is restored by iteration. Either the
stiffness or tangent matrix is reformed at every iteration (e.g., Full Newton -Raphson
method) or held constant for several iterations (e.g., modified Newton-Raphson). An
iterative procedure can be assumed to have converged when the unbalanced load

becomes acceptably small. The Euclidean norm or some other property of the vector

judges the It may also be to devise mixed iteration
schemes combining the features of both techniques. Currently, most of the finite element
packages are based on a step-by-step load incrementation and a corresponding iteration

procedure.

2.8.1 The Newton-Raphson Method

The most frequently used iterative schemes in the FEA are the Newton-Raphson (NR)
schemes [Kao, 1974; Bathe, 1996]. Such Newton-Raphson schemes are based on the
tangential stiffness matrix and can be applied as an incrementally or iteratively or both.
After each load increment or iteration, the tangent stiffness matrix is reformed. At each

iteration, the NR evaluates the load. The dif between the




restoring force and the applied load gives the unbalanced load. A linear solution is

with the load. The load is luated until the

convergence is satisfied.

The coefficient matrix is updated and a new solution is obtained. At each sub step. a
number of equilibrium iterations may be performed to obtain a converged solution. This

iteration continues until the problem converges.

In this method, the converged solution «, for the particular load step is known. The
solution for the next load step or iteration is required. The updated tangent matrix 'K,

and the restoring load F, are ing to the ion of known

solution u,. The incremental displacement Au, and the next approximation of u,,, are

evaluated by

‘K,Au, =R-F, 282

=u, +0u, 283)

Uy

Repeating Egs. 2.8-2 to 2.8-3 and updating of tangent stiffness matrix at each iteration
gives converged solution. The solution obtained at converged would correspond to
applied load level. The final solution would be in equilibrium such that the resorting load

F, (computed from the current stress state) would equal the applied load R (or at least



Fo

Fig. 2.2: Basic Newton-Raphson Scheme - Single DOF System



within some tolerance). This procedure is also known as Full Newton-Raphson (FNR)

procedure. Iterative solution (for one DOF system) is depicted graphically in Fig. 2.2

Usually, the Newton-Raphson methods are used according to their original definition in

which the load i is i The i of load step size in

advance requires a lot of intuition, nevertheless the final convergence failure in the
neighborhood of critical points can not be avoided (Ramm. 1982]. Without additional
modifications the solution procedure is not able to trace the structural response beyond
critical points. Although post critical states are usually not tolerated in the design of a

structure the knowledge of this range allows a much better judgement of the structure.

2.8.2 The Initial Stiffness Method

In the Full Newton-Raphson (FNR) schemes, re-calculating and factorizing tangent
stiffness matrix at every iteration are expensive and laborious. The expense of these
re-calculating and factorizing many times the coefficient matrix defined in Eq. 2.8-2 can
be avoided. Only the stiffness matrix needs to be formulated corresponding to a
linearization of the response about the initial configuration of the finite element system

[Zienkiewicz, et al., 1969].

The initial stiffness matrix °K is applied in Eq. 2.8-2 and operates on the equilibrium

equations given below

°KAu, =R-F, (2.84)



Fig. 2.3: Initial Stiffness Method - Single DOF System



This process may lead to a very slow 2 for si linearity. Even the
solution may diverge (Schmidt, 1977). This occurs particularly when the system stiffens

during the response.

To prevent divergence of the solution for slowly stiffening problems and meet the
convergence early, it may be effective to use the modified Newton-Raphson procedure

described below.

2.8.3 The Modified Newton-Raphson Method

In a modified form of Newton-Raphson method, the tangent stiffness is held constant for
several iterations before updating is required. Evaluating and factoring a new tangent
stiffness matrix at each iteration is expensive and time consuming. In practice,
depending on the non-linearity present in the analysis, to evaluate a new tangent stiffness
at a centain time, can be more efficient. The choice of load steps when the stiffness
matrix should be updated depends on the degree of non-linearity in the system response
and the of the solution also depends on the specific problem

involved. For small load increment, matrix updating at every iteration appears
unnecessary. Establishing new tangent stiffness “K (where, 7 indicates an accepted
equilibrium configurations for tangent stiffness 'K) only at the beginning of each load
step modifies the FNR procedure. This reduces the computing time considerably

involving fewer tangent stiffness ions than the FNR Of course, the

modified Newton-Raphson method (MNR) procedure requires much more iterations in a



i

Fo

Fig. 2.4: Modified Newton-Raphson Scheme - Single DOF System



load step compared to the FNR procedure. The most powerful procedure for reaching

convergence is definitely the FNR but if the MNR p is employed, the

solution cost may be reduced significantly. Therefore, practically. both solution options

can also be very valuable.

The procedure followed in such method is exactly the same as in the case of the FNR

procedure except no reformulation of tangent stiffness at each iteration.
In such cases, Eq. 2.8-2 can be replaced by

*KAu,=R~-F, (28-5)

2.8.4 Alpha-Constant Stiffness Method

An improved value Au, of incremental displacement Au, obtained in the FNR schemes

could be evaluated as [Nayak and Zienkiewicz, 1972]
Au, =,Au, (2.8-6)
where, @, is an unknown diagonal matrix of coefficients.

Defining Au; as the improved displacement change corresponding to force AR, the

approximate relation is expressed as

‘Kaw, = ("K=K)Au, =-AR (287



where. “K="K-'K is a function of displacements and the degree of non-linearity of the

problem at any stage.

Pre-multiplying the above equation by K™ and inserting Eq. 2.8-2.

@, Au~"K™ ‘K Au, ="K"'AR , = Au, (2.8-8)

Loads

Fig. 2.5: Alpha - Constant Method-Accelerated Itcration



The approximation to the second term by taking the previous &,_, is

Qu, = du] =@ u,

Thus writing,

A=K ‘Ka,,du,

or/ and

@, - 1)Au="K" ‘Ka_, Au,
3 , -

which defines the matrix @, for the k™ diagonal term results in

with the restriction that when Au' =0, & =1

289

(2.8-10)

28-11)

(2.8-12)

This allows an improved value to be used i iately and the new

correction is calculated from Eq. 2.8-6.

2.8.5 Self-Correcting Incremental Procedure

Stricklin, et al. [1971] first proposed this form and Stebbins [1971] studied it again. The

procedure has proven itself to be stable and accurate upon proper selection of Z



[Massett, etal., 1971]. The advantages are best realized for problems of highly nonlinear

behavior and for systems with many degrees of freedom.

Derivative of equilibrium equations of Ku = AR - F (where K = structural stiffness

matrix. u = i i AR = ized forces due to applied external

loads and F = column matrix of pseudo forces due to non-linearity) with respect to the

scalar multiplier A yields

Ki=R-F (2.8-13)
or,

(K+kyi=R (2.8-14)
where, F(u) = k(i) k =dF, [du,

A common solution procedure is by an Euler forward difference, which results in the

solution p The solution tends to drift away from the true

solution unless very small load increments are taken where Z is a scalar quantity.

AR+ZAR =0 (2.8-15)

It is notable that even if AR becomes nonzero the solution tends to reduce the

unbalanced loads AR exponentially to zero and is thus called a self-correcting procedure.



For Z =1/AA, the procedure reduces to the incremental approach with a one step NR

method.

2.8.6 Variable Step Incremental Procedure

Simplicity is the main attraction of the incremental approach and easy to incorporate in a
computer program. But in basic form of the incremental approach. it gives rise to an
appreciable drift error. Methods that have been presented in this section to reduce this
error tend. The one-step NR corrector of Hommeister, et al. (1970) and the
mid-increment procedure [Roberts and Ashwell, 1971] among of others are very effective
at improving the accuracy of the basic incremental technique. However, these improved
methods do not possess an accurate estimate of the discretization errors. Thomas [1973]
presented an algorithm that does have such an estimate and suggested for use where the

varying step size might prove profitable.

In this algorithm, the nonlinear problem of structural analysis is transformed into a first

order ordinary differential equation such as

‘K(u)du=dAR (2.8-16)

In the limit as dA4 approaches zero, the first order ordinary equation can be written as

K™ w)R 8-17)



The extrapolation method such as Bulirsch and Stoer method (1966) can be used to solve
the above equations. Two separate estimates of displacements are given at every other
load increment. These values are averaged before the algorithm is repeated with a new

starting point as shown in Fig. 2.6.

i

Displacements

Fig. 2.6: Basic Steps - Bulirsch and Stoer Method

The basic steps of Bulirsch and Stoer method to be followed are listed below.

u =u, +di{ K@)} R

iy =u, #2740 KGO R

31



=u,, +di{ K@, )} 'R

(2.8-18)

collapse load ion is an important i in a nonlinear FEA. The
structural response becomes increasingly nonlinear as the load increases. At certain point

the collapse load is reached. In order to calculate the response for collapse mechanism,

initially relatively larger i are empl . But at the ing of collapse
mechanism, the load increment needs to be small. However, there is a difficulty of
traversing the collapse point. At that point the stiffness becomes singular (i.c., the slope
of the load-dispiacement response curve is zero) and beyond that point a special solution
procedure that allows for a decrease in load and an increase in displacement must be used

to calculate the ensuing response. In this approach, when iteration in the load

space is the equation becomes
Ku, = (2, +04)R-F,, (2.8-19)
Both i i Au, and load multiplier A4, are the The

additional equation required for solution is

f(a4,.8u) = 0 (2.8-20)



Several constraint equations of this form have been proposed e.g.. the tangent constant
arc-length [Risks, 1979] and the spherical constant are-length [Crisfield, 1981 and
Ramm, 1981-82]. Bathe and Dvorkin [1983] considered two different constraints
depending on the response and load level: the spherical constraint arc-length and a

constant increment of external work.

The spherical constant arc-length is in general used in the response of regions far from

critical points and incremental equation mentioned above becomes

A)+ (&) (2.8-21)

where, Al is the arc length for the step and # is a normalizing factor.

The scheme of constant increment of external work W based on the history of iterations
in the previous incremental steps is used near the critical points. In this case, the

incremental equation becomes

(/1 +% AL JR’Au, =W (2.8-22a)
and for i=234,......
(/1,4 Ly, )R'Au, -0 @822)

To solve the governing equations, this incremental equation can be rewritten as



AR

Loads

Fo

Displacements

Fig. 2.7: Spherical Constant Arc-Length Criterion

Fo

Loads

y —

A’/—w

Displacements

Fig. 2.8: Constant Increment of External Work Criterion



‘KA, = A_R-F,_, (28-23)
‘KAu=R (28-24)

Therefore,
Au, = Au, +Ad A (2.8-25)

Employing the spherical constant arc length criterion, the next load multiplier and
displacements are evaluated. The load multiplier A4, is determined from the quadratic

equation given by the combination of Eqgs. 2.8-21 and 2.8-26 to0 2.8-27.
A=A, 404 (2.8-26)
+Au, + AL Au (28-21)

The load multiplier A4, is directly calculated using external work criterion from Eq.

2.8-22 and the values A4, for i =2,3,4,...... are obtained from

R™Au,

pv -
R™Au

(2.8-28)

A complete solution algorithm based on the above method must of course also contain a
special scheme to start the incremental solution and iterating when divergence is

imminent and then restart itself with new iterative parameters. Complete solution



methods with these ingredients are very valuable and are in common use for the structural

collapse analysis.

In some nonlinear static analyses in the case of Newton-Raphson method, the tangent
stiffiess matrix may become singular (or non-unique), causing severe convergence
difficulties. Such occurrences include nonlinear buckling analyses in which the structure
either collapses completely or ‘snaps through' to another stable configuration. The
arc-length method causes the Newton-Raphson equilibrium iterations to converge along

an arc, thereby often preventing divergence.

2.8.8 Classical Gauss-Seidel Method

Clough and Wilson applied the Gauss-Seidel method in the early applications of the FEA.
An initial estimate «, for the displacement is assumed. The number of iterations required
depends on the quality of the starting estimate «, and on the conditioning of the stiffness

matrix. After an initial estimate. the iterative equation to evaluate the solution is

=K;'(R-K, u.,-Klu) (2.8-29)

where, K, and K, are the diagonal and lower triangular matrices, respectively.

To increase the convergence rate, an over relaxation J can be used. In such cases, the

equation mentioned above becomes

36



. =u +BK;(R-K u_ ~Kou -Klu) (2:8-30)

2.8.9 Conjugate Gradient Method

The conjugate gradient algorithm of Hestenes and Stiefel (1952) is one of the most
effective and simple iterative techniques for solving equilibrium equations [Bathe, 1996]

The algorithm based on the idea of minimizing total potential given as

M= %u{Ku, -u'R (2.8-31)

The aim is to improve di: ., ing to decrease total
potential (i.e., for [T, <[1,) in each iteration. Like the classical Gauss-Seidal method,
the starting displacement «, is chosen and calculated the residual or unbalanced force

AR, based on the formula

AR, = R-Ku, (2.8-32)

If the residual force AR, equals to zero, quit that evaluation for next independent load
otherwise, the values of «,,,, AR, and p,,, are calculated based on the equations given
by

U, =u,+a,p, (2.8-33)

AR, =AR -2, K p, (2.8-34)



P =8R_+B,p, (2.835)

ARTAR
== (2.8-36)
p Kp
AR[ AR, 5
=l 2.8-37
A ARTAR, 4 )

The iteration continues until the convergence achieves.

2.8.10 Improved Iteration Strategy

The computational self-correcting method proposed by Haisler and Stricklin [1971] was
rather cumbersome. Batoz and Dhatt (1979] modified the self-correcting method and

proposed a simpler procedure discussed below.

In this method, incremental displacements Ax, and Au, due to AR, unbalanced load and

AR, , an extemal load i pectively, are as
Au,='K" AR (2.8-38)
Au ='K™ AR, (2.8-39)

The actual external load increment to be applied is AR, such that that displacement

increment satisfies the specified displacement limit. The value of & is easy to calculate

from
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