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Abstract

Spectrum scarcity is an obstacle to deploy emerging high speed wireless services that

require more frequency spectrum. Cognitive radio (CR) appears as a promising solution

for the spectral congestion by allowing spectrum sharing between primary and secondary

users in which optimum utilization of the available spectrum is achieved. Efficient coex-

istence between different users requires full knowledge of the activities in the spectrum

of interest. Spectrum awareness is the terminology used to describe the techniques that

detect the presence of signals in certain frequency bands, as well as identify the main pa-

rameters of such signals, e.g., modulation scheme. These two tasks are commonly referred

by the terms spectrum sensing and signal identification, respectively.

Blind signal identification was initially used by military applications, such as radio

surveillance and electronic warfare, and has recently been extended to civilian applica-

tions. This problem becomes more challenging in multiple-input multiple-output (MIMO)

scenarios due to the diverse transmission schemes that can be employed, e.g., spatial multi-

plexing (SM) and space-time block codes (STBCs). A large number of studies have been

carried out for developing blind signal identification algorithms in single-input single-

output (SISO) scenarios, including identification of the modulation format and recogni-

tion of single-carrier (SC) versus multicarrier transmissions. However, the problem of

signal identification for MIMO systems remains at an incipient stage. In this dissertation,

we develop novel algorithms to blindly identify the MIMO transmission scheme of the

received signal.
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More specifically, in Chapters 2 and 3, we address the problem of identifying STBCs

for the SC transmission. Unlike most of the work done to date, we show that STBC iden-

tification can be performed using a single receive antenna. Four algorithms are proposed

in Chapter 2 to identify SM and Alamouti STBC. Then, the idea is extended to include

additional STBCs in Chapter 3. The proposed algorithms show improved performance

when compared with other algorithms in the literature. Moreover, neither modulation

identification nor channel and noise power estimation are required by these algorithms.

In Chapter 4 we investigate the identification of SM and Alamouti coded orthogo-

nal frequency division multiplexing (OFDM) signals. A new discriminating feature and

a novel decision criterion are developed. The proposed algorithm outperforms the algo-

rithms in the literature with the advantages of requiring neither modulation identification

nor channel and noise power estimation, and being more robust to the carrier frequency

offset impairment.

Furthermore, in Chapter 5, the problem of identifying SM and Alamouti SC frequency

division multiple access (SC-FDMA) signals is studied when the receiver is equipped

with a single antenna. To the best of our knowledge, this is the first work devoted to

the identification of MIMO SC-FDMA signals. The theoretical performance analysis of

the proposed algorithm is presented. Simulation results show the agreement between

theoretical and simulation findings. The proposed algorithm requires neither modulation

identification nor channel and noise power estimation.

Finally, conclusions are drawn and possible extensions to signal identification in MIMO

scenarios are discussed in Chapter 6.
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Chapter 1

Introduction and Overview

1.1 Background

Wireless technologies have evolved remarkably since Guglielmo Marconi first demon-

strated the radio’s ability to provide continuous contact with ships sailing in the English

channel in 1897. New theories and applications of wireless technologies have been de-

veloped by thousands of scientists and engineers throughout the world ever since. Wire-

less communications can be regarded as the most important development that has an

extremely wide range of applications: from TV remote control and cordless phones to

cellular phones and satellite-based systems. It has changed people’s life style in every

respect. Especially during the last decade, the mobile radio communications industry

has grown at an exponential rate, fueled by the digital and radio frequency (RF) circuit

design, fabrication and integration techniques and more computing power in electronic

chips. This trend will continue with an even greater pace in the future.

In wireless communications, the radio spectrum is a scarce resource due to the cease-

less demands of spectrum by new applications and services [1]. Cognitive radio (CR)

has arisen as a promising solution to the spectral scarcity problem by introducing op-

1



portunistic usage of the frequency bands that are not heavily utilized by the primary/

incumbent radios [1–3]. CR can be considered to be an adaptive communication system,

which has the capability to learn from the surrounding environment and adapt its pa-

rameters accordingly. The basic features of CR are intelligence, adaptability, learning,

accuracy, reconfigurability, and reliability [4]. Due to the CR ability to autonomously

detect and react to the changes in the environment, spectrum sensing and awareness is a

fundamental component in the CR architecture [5, 6]. This is not simply the problem of

deciding whether there is an available frequency band to use or not, but also of blindly

(non-data-aided) identifying the signal type of the radios transmitting in the frequency

bands adjacent to the available band. This enables the CR to design a transmission

strategy that minimizes interference to and from those radios. Since different signals are

able to tolerate different amounts of interference, the signal type of other radios sharing

the environment has to be identified. Blind signal identification has other important ap-

plications in electronic warfare, spectrum monitoring, radio surveillance, and parameter

configuration in software-defined radios [7, 8].

Signal identification for single-input single-output (SISO) and single-input multiple-

output (SIMO) systems has been intensively investigated in the existing literature. Mod-

ulation identification has been considered in [9–16], whereas discrimination between single

carrier (SC) and orthogonal frequency division multiplexing (OFDM) signals has been in-

vestigated in [17–21], and detection of the number of sources transmitting in the frequency

band of interest has been considered in [22–27].

Due to the increasing complexity and diversity of techniques used in digital wireless

communications both in civilian and military communications, methods employed in sig-

nal identification need to be constantly extended and improved to include newly emerging

transmission techniques. Each emerging transmission method presents new parameters

to identify and new challenges to overcome. The multiple-input multiple-output (MIMO)
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systems, which have become popular in the last decade, represent such an example.

The main difference between the MIMO systems and conventional SISO systems is

that the former employs multiple antennas for transmission and reception. This is done

by either multiplexing the data symbols to multiple transmit antennas or introducing

redundancy to the signal by employing space-time codes. These two approaches allow

MIMO systems to achieve a distinct advantage when compared with SISO systems in

terms of data rates and robustness in fading environments, respectively.

With the deployment of the MIMO technology [28, 29], new and challenging signal

identification problems have emerged, which do not exist for single antenna systems, such

as the identification of the space-time block code (STBC) and detection of the number

of transmit antennas employed in the MIMO transmission. Furthermore, existing mod-

ulation identification algorithms developed with the assumption of single antenna trans-

mission cannot be directly applied when multiple transmit antennas are used. Hence,

the modulation identification problem needs to be completely reconsidered for MIMO

systems. Research efforts on signal identification for MIMO signals, which have found

considerable interest in the last couple of years, have been concentrating on these three

particular problems [30–53]. Throughout this dissertation, we focus on the STBC identi-

fication for different transmission systems.

The work devoted to STBC identification can be divided into two categories: likelihood-

based (LB) [30] and feature-based (FB) [31–45] algorithms. Both approaches have been

investigated for the identification of STBC for SC systems [30–42], whereas only FB meth-

ods have been employed for the identification of STBC for OFDM systems [43–45]. The

basic idea of the LB algorithms is to calculate the likelihood function of the received sig-

nal, and then employ the maximum likelihood (ML) criterion to make a decision. In case

of the FB algorithms, the space-time redundancy induced in the transmit signal by the

space-time coding operation is exploited to identify STBCs with different code lengths.
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(Second-order) 
[45] 

STBC Identification 

Fig. 1.1: Summary of the existing STBC identification algorithms for SC and OFDM
systems. Here, SOS and CoP refer to the second-order statistics and code parameter
algorithms, respectively.

Various features have been considered for discriminating between different STBCs, such

as second- [31–34,43,44], and both second- and fourth-order [35] signal statistics, as well

as second- [36–39,45] and fourth-order [40] signal cyclic statistics. A summary of existing

STBC identification algorithms for the SC and OFDM systems is provided in Fig. 1.1,

and more details are presented in the next two sections of this chapter.
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1.2 STBC identification for SC systems

1.2.1 Likelihood-based algorithms

The authors in [30] propose three LB approaches for STBC identification assuming a

frequency-flat block fading channel: the optimal algorithm in the sense of maximizing the

average probability of correct identification, its second-order statistics (SOS) approxima-

tion, and the code parameter (CoP) algorithm.

The STBC Ĉ is recognized at the receive-side among a set ΘC of STBC candidates

with equal a priori probabilities as

Ĉ = arg max
C∈ΘC

log(Λ[Y|C,H,M, σ2
w]), (1.1)

where log(Λ[Y|C,H,M, σ2
w]) is the log-likelihood function of the Nr ×K matrix Y cor-

responding to the received signal, conditioned on the transmitted STBC C, the Nr ×Nt

channel matrix H, the modulationM, and the noise power σ2
w at the receiver, with Nr,

K, and Nt denoting the number of receive antennas, the number of received samples,

and the number of transmit antennas, respectively. The log-likelihood function in (1.1) is

calculated by averaging over the data symbols considered as independent and identically

distributed (i.i.d.) variables drawn from the alphabet corresponding to the constellation

points of modulationM; thus, the algorithm is referred to as the average likelihood ratio

test (ALRT).

The ALRT algorithm requires knowledge of the channel matrix H, the modulationM,

and the noise power at the receiver σ2
w, as well as perfect timing, block, and frequency syn-

chronization, which makes it impractical. In addition, it suffers from high computational

complexity. On the other hand, it provides an optimal solution in the sense of maximizing

the average probability of correct identification and represents an upper bound for the

STBC identification performance.
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In the SOS algorithm, the received symbols are modeled as i.i.d. Gaussian variables,

with zero-mean and covariance ΨC,H, σ2
w
, regardless of the modulation type. Accordingly,

the log-likelihood function is expressed as log(Λ[Y|ΨC,H, σ2
w
]), and Ĉ is selected as the

STBC candidate which maximizes this function. When compared with the optimal algo-

rithm, SOS has reduced complexity. The algorithm can be extended to the blind context

by estimating the unknown parameters H and σ2
w under the hypothesis that the STBC

C is transmitted. Then, the STBC Ĉ is chosen as the one for which the log-likelihood

function with the associated estimated parameters is maximum. Several techniques are

reported in the literature for estimating H and σ2
w for various STBCs [54, 55]. Appar-

ently, the estimation accuracy affects the performance of the blind SOS algorithm and

the computational complexity increases (depending on the estimation method).

In the CoP algorithm, a parameterized likelihood function is constructed using the

STBC parameters, i.e., code length, L, and number of transmitted symbols for each

block, Ns, and knowledge of the modulation and channel is not required. This algorithm

is suitable for STBCs with different parameters, i.e., different code lengths or different

numbers of symbols per space-time block. For example, SM (Nt = 2) and AL-STBC can

be differentiated by their respective code length. On the other hand, if two codes have the

same code length, they can be identified if they have a different numbers of symbols per

space-time block. In this case, the parameterized log-likelihood function can be written as

a function ofNs and L, i.e., log(Λ[Y|ΨNs, L]), where ΨNs, L is the parameterized covariance

matrix of the received sequence [30]. Finally, the STBC Ĉ is chosen as the one that

maximizes log(Λ[Y|ΨNs, L]). The CoP algorithm has less computational complexity when

compared with the optimal and SOS algorithms.

All LB algorithms presented above require timing, block, and frequency synchroniza-

tion. Furthermore, both SOS (blind) and CoP algorithms require that the number of

receive antennas satisfies Nr ≥ Ns/L; thus, these algorithms cannot be employed in
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receivers with a single antenna.

1.2.2 Feature-based algorithms

The FB STBC identification algorithms found in the literature mainly exploit the space-

time redundancy induced in the transmit signal to identify STBCs with different code

lengths. This inherent property of the STBC coded signals is employed by several al-

gorithms, which can be categorized into three distinct subcategories: signal statistics-

based [31–35], signal cyclic statistics-based [36–40], and goodness of fit-based [41,42] algo-

rithms. A brief presentation of these algorithms is provided as follows.

Signal statistics-based algorithms

A second-order/ zero-conjugate space-time correlation is used in [31] and [32] to pro-

vide a feature for STBC identification. The zero-conjugate is used, as the encoding ma-

trices of STBCs other than SM already contain conjugation. It has been shown that the

Frobenius norm of the space-time second-order correlation matrix exhibits peaks whose

positions depend on the STBC. Detecting the presence of a peak at a certain delay is

formulated as a binary hypothesis testing problem, i.e., there exists no peak under hy-

pothesis H0, while a peak is present under hypothesis H1. In [31], the decision whether

a peak is present or not is made based on the minimum distance between the theoretical

and estimated features. In [32], such a decision is made by comparing the feature estimate

with a threshold corresponding to a certain probability of false alarm, which is defined

as the probability to decide that a peak exists, when it does not. The main drawback of

the algorithms in [31] and [32] is that they require multiple receive antennas Nr ≥ Nt; in

practical applications, size, power, and cost constraints on the intelligent radio receivers

may favor single receive antenna solutions for STBC identification.

The identification features in [32] are employed in [33], where the correlations at several

7



delays are considered and feature vectors are formed accordingly. Based on these vectors,

a support vector machine (SVM) is trained to identify various STBCs. The algorithm

in [33] shows better performance when compared with those in [31] and [32], as the

identification process relies on feature vectors containing multiple features corresponding

to different delays. Note that the algorithm in [33] has the same limitation on the number

of receive antennas as [31] and [32], i.e., Nr ≥ Nt.

Furthermore, a second-order/ zero-conjugate cross-correlation between the signals re-

ceived with two different antennas is exploited as an identification feature in [34] under

frequency-selective channel conditions. The authors show that for AL-STBC, the cross-

correlation exhibits peaks at delays related to the symbol duration and the multiple

propagation paths, whereas no peaks are present for SM. The decision is made on the

maximum of the estimated cross-correlations for all pairs of receive antennas by compar-

ing the maximum cross-correlation with a threshold corresponding to a certain probability

of false alarm. Apparently, this algorithm requires at least two receive antennas, and it

cannot be used with single antenna receivers.

As previously discussed, second-order statistics of the signal cannot provide an identi-

fication feature when a single antenna is available at the receive-side; in such a case, the

authors in [35] resort to fourth-order statistics for STBC signal identification.

In [35], the vector of the received samples is re-arranged to form specific two-rows and

four-rows matrices. The authors show that at zero-delay, the second-order/ one-conjugate

and the fourth-order/ two-conjugate statistics of these matrices provide suitable features

for STBC identification. The statistics are mapped into a high dimensional space using

a trained SVM to identify the candidate STBCs.

Signal cyclic statistics-based algorithms

Cyclic statistics-based features are proposed in [36–40] for STBC identification. The

second-order/ zero-conjugate cyclic cross-correlation (CC) of the signals received by two
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antennas is used in [36–38] for STBC identification. It was shown that this CC exhibits

peaks at cycle frequencies (CFs) and delays depending on the transmitted STBC. No

CFs exist for SM, while CFs equal multiple integers of 1
ρL

are exhibited by other STBCs,

with ρ an integer representing the oversampling factor. Detecting the presence of peaks

at a single CF is done by using the cyclostationarity test developed by Dandawate and

Giannakis in [56], while the test proposed in [57] can be used to detect the presence of

peaks at multiple CFs.

In [39], the second-order/ zero-conjugate and second-order/ one-conjugate CCs of the

Nt components of the transmit signal vector are employed for STBC identification. Since

the choice of the discriminating features is based on the CCs of the transmit signal vector,

its reconstruction is required at the receive-side prior to estimating the features. As such,

the estimation of the number of transmit antennas is performed first, for which the authors

apply the Gaussian minimum description length algorithm [22]. This knowledge leads to

a reduction in the number of the STBC candidates, since only the codes characterized

by the estimated Nt need to be considered for identification. Subsequently, the joint

approximate diagonalization of eigen-matrices algorithm [58] is employed to separate the

Nt transmit signals, from which the CCs are estimated. The decision on the STBC is

made by detecting the existence of CFs at specific delays, based on the cyclostationarity

test in [56]. The algorithm in [39] has the capability of identifying a large pool of STBCs,

including codes with the same code length. However, it suffers from higher computational

complexity when compared with other signal cyclic statistics-based algorithms due to the

pre-processing steps required for the reconstruction of the transmit signals.

The previously presented second-order CCs are not suitable for receivers equipped

with a single antenna. For this case, the fourth-order/ two-conjugate cyclic cumulant at

CF 1
2ρ and delay vector [0, 0, ρ, ρ] is employed to identify SM and AL-STBC [40], with

the decision criterion based on the cyclostationarity test in [56]. The algorithm in [40]
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was investigated under AWGN channel conditions; for practical fading channels, this

algorithm does not provide an adequate performance.

Goodness of fit-based algorithms

A non-parametric goodness of fit test is adopted in [41, 42] to identify STBCs with

a single receive antenna. In [41], the identification of SM and AL-STBC is done by

constructing two vectors from the received sequence. The authors show that such vectors

are i.i.d. with the same distribution for SM, whereas this does not hold for AL-STBC.

The Kolmogorov-Smirnov test is employed to measure the distance between the empirical

cumulative distributions of the two sequences, and thus, to decide whether SM or AL-

STBC is present. The main advantage of this approach is that it is robust to time and

frequency offsets. The method was extended in [42] to include additional STBCs; however,

a larger observation period is required to obtain a good performance when compared with

the identification of SM and AL-STBC.

1.3 STBC identification for OFDM systems

The problem of STBC identification for OFDM systems is investigated in [43–45], by

following the FB approach. Features based on the second-order/ zero-conjugate cross-

correlation are employed in [43, 44], while the second-order/ zero-conjugate cyclic cross-

correlation is used in [45]. Note that the cross-correlation functions are estimated between

the signal components received by different antenna pairs (Nr ≥ 2). It should be noted

that the inverse fast Fourier transform (IFFT) block in the MIMO-OFDM transmitter [59]

makes the problem of STBC-OFDM signal identification more challenging when compared

with the case of the SC systems [43–45].

The authors in [43, 44] propose a second-order/ zero-conjugates cross-correlation be-

tween the signals received by two antennas, Nr = 2. The idea is to calculate the cross-
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correlation between the two received signals on each subcarrier. The authors show that

the proposed cross-correlation exhibits at least two peaks on two subcarriers separated

by N/2, with N as the number of subcarriers; on the other hand, no peaks exist in case

of SM [43]. The decision about the presence of such discriminating peaks is made by

comparing the maximum of the cross-correlations with a threshold corresponding to a

desired probability of false alarm. The idea is extended in [44] to include other STBCs

with different code lengths. The main drawback of this approach is that it requires a

large observation time and suffers from high sensitivity to frequency offset.

In [45], an approach based on the second-order/ zero-conjugate cyclic cross-correlation

is proposed to identify SM and AL-STBC by using different antennas (Nr ≥ 2). The

cyclostationarity test proposed in [56] is employed as a decision criterion. This algorithm

is applicable for OFDM signals with a reduced number of subcarriers and has the same

disadvantage of sensitivity to frequency offset as the algorithms in [43] and [44].

1.4 Motivation and Outline

Motivation:

Based on the aforementioned discussion, the following observations can be made:

• Most of the STBC identification algorithms require multiple antennas at the receive-

side. Since this requirement cannot always be met due to size and cost limitations,

solutions for STBC blind identification when a single receive antenna is available

are of interest.

• The existing STBC identification algorithms for the OFDM system require a large

observation period and suffer from high sensitivity to frequency offset.

• While STBC identification has been investigated for both SC and OFDM systems,
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there is no work in the literature devoted to study this problem for the SC-FDMA

systems.

Motivated by the aforementioned observations, in this thesis we have addressed the

following research problems:

Research problems:

• P1- Developing STBC identification algorithms for SC signals with a single receive

antenna.

• P2- Developing an identification algorithm for STBC-OFDM signals which requires

shorter observation period, and hence is less sensitive to the frequency offset.

• P3- Developing an algorithm to identify STBC SC-FDMA signals.

Thesis structure:

Chapters 2 and 3 address P1, i.e., we propose algorithms to blindly identify STBCs

when a single receive antenna is available. In particular, identification of SM and Alamouti

STBCs are considered in Chapter 2, where the fourth-order moment and the discrete

Fourier transform of the fourth-order lag product (FOLP) are used as discriminating

features. For the former, an optimal algorithm is proposed by employing the likelihood

ratio test (LRT) to maximize the average probability of correct identification; however,

it requires knowledge of several parameters, e.g., channel coefficients and noise power.

Three FOLP-based algorithms, named FOLP-A, -B, and -C, are then proposed to relax

such requirements. It was shown that the FOLP-C algorithm is robust to frequency offset

when compared with the other proposed algorithms. Therefore, this algorithm is extended

to include additional STBCs in Chapter 3. The proposed algorithms show an improved

performance when compared with algorithms in the literature.
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Chapter 4 addresses P2, by considering the problem of identifying SM and Alamouti

coded OFDM signals with multiple receive antennas. A new discriminating feature, based

on the cross-correlation between the sequences received by two antennas, is developed. A

decision criterion based on the statistic of the feature estimate is proposed. Simulation

results show the superiority of the proposed algorithm over the other two algorithms found

in the literature. The proposed algorithm achieves a very good performance with a short

observation period and is less sensitive to the frequency offset impairment.

Chapter 5 addresses P3, by investigating the identification of STBC SC-FDMA signals

for the first time in the literature. Considering a single receive antenna, we propose a

discriminating feature based on a fourth-order statistic of the received sequence to blindly

identify SM and Alamouti SC-FDMA signals. A constant false alarm decision criterion

is developed based on the statistical properties of the feature estimate. Moreover, the

theoretical performance analysis of the proposed identification algorithm is presented.

Simulation results show the validity of the proposed algorithm and a very good agreement

with the theoretical findings.

1.5 Contributions

This dissertation presents the following novel contributions to the STBC identification:

• We propose novel algorithms to identify SM and Alamouti STBCs for SC systems

with a single receive antenna. More specifically, fourth-order statistics are employed

as discriminating features, and four algorithms are proposed. It was shown that

the first algorithm is optimal; however, it requires knowledge of the transmission

parameters. The other algorithms do not have such a requirement. It is also shown

that one of these algorithms is robust to the frequency offset impairment.
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• We extend the algorithm which is more robust to model mismatches to a larger pool

of STBCs.

• We develop a new cross-correlation that provides a discriminating feature to identify

SM and Alamouti-coded OFDM signals. A novel decision criterion is also provided.

Accordingly, a new identification algorithm is developed based on the proposed

cross-correlation and decision criterion. This algorithm has the advantages of re-

quiring neither modulation identification nor channel and noise power estimation.

• We study, for the first time in the literature, the identification of MIMO SC-FDMA

signals. More specifically, we investigate the identification of SM and Alamouti

SC-FDMA signals when a single antenna is employed at the receive-side. We also

provide the theoretical performance analysis for the proposed signal identification

algorithm. This algorithm requires neither modulation identification nor channel

and noise power estimation. Moreover, it is robust to spatially correlated fading.

• We set up various simulation experiments to investigate the performance of the pro-

posed algorithms under diverse scenarios, e.g., when signals are affected by spatially

correlated fading, Doppler frequency, and timing and frequency offsets.

• We provide comparisons with the existing STBC identification algorithms for dif-

ferent scenarios and show the superiority of our proposed algorithms over most of

the algorithms in the literature.
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Chapter 2

Fourth-Order Statistics for Blind

Classification of Spatial Multiplexing

and Alamouti Space-Time Block

Code Signals

2.1 Abstract

Blind signal classification, a major task of intelligent receivers, has important civilian and

military applications. This problem becomes more challenging in multi-antenna scenarios

due to the diverse transmission schemes that can be employed, e.g., spatial multiplex-

ing (SM) and space-time block codes (STBCs). This paper presents a class of novel

algorithms for blind classification of SM and Alamouti STBC (AL-STBC) transmissions.

Unlike the prior art, we show that signal classification can be performed using a single

receive antenna by taking advantage of the space-time redundancy. The first proposed

algorithm relies on the fourth-order moment as a discriminating feature and employs the
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likelihood ratio test for achieving maximum average probability of correct classification.

This requires knowledge of the channel coefficients, modulation type, and noise power.

To avoid this drawback, three algorithms have been further developed. Their common

idea is that the discrete Fourier transform of the fourth-order lag product exhibits peaks

at certain frequencies for the AL-STBC signals, but not for the SM signals, and thus,

provides the basis of a useful discriminating feature for signal classification. The effec-

tiveness of these algorithms has been demonstrated in extensive simulation experiments,

where a Nakagami-m fading channel and the presence of timing and frequency offsets are

assumed.

2.2 Introduction

Blind signal classification, an important task of intelligent receivers, finds applications in

both military and commercial communications, such as electronic warfare, radio surveil-

lance, civilian spectrum monitoring, and cognitive radio systems [1–7]. For example, the

strategies employed by cognitive radio systems to opportunistically exploit the available

spectrum require knowledge of signals in the environment to evaluate the likelihood of

interfering with them [4–7].

Most previous work on blind signal classification has focused on single-input single-

output scenarios [8–16]. However, the advent and rapid adoption of multiple-input

multiple-output techniques adds a further level of complexity. These multiple antenna

systems introduce new and challenging signal classification problems, such as estimation

of the number of transmit antennas and the space-time code. Signal classification in

the context of multiple antenna systems has been addressed by a relatively small num-

ber of papers [17–26]. The problems considered by these papers included the estimation

of the number of transmit antennas [17, 18], modulation classification [19, 20], and the
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classification of linear space-time block codes (STBCs) [21–26].

Regarding STBC classification algorithms, they can be divided in two general cate-

gories: likelihood-based [21] and feature-based [22–26]. Likelihood-based algorithms cal-

culate the likelihood function of the received signal, and employ the maximum likelihood

criterion to make a decision [21]. These algorithms require channel estimation, time,

block, and frequency synchronization, and knowledge of the modulation format, while

they suffer from high computational complexity. In [22, 23], the space-time second-order

correlation function is used as a discriminating signal feature, with the decision being

made by comparing the feature with a threshold [22] or based on the minimum distance

between the theoretical and estimated features [23]. Signal cyclostationarity-based fea-

tures are used in [24–26], with the decision made based on a cyclostationarity test. Most

of the previous research [22–25] require multiple receive antennas. However, in many

practical applications, size, power, and cost constraints on the receivers may favor single

receive antenna solutions for STBC classification.

In this work, the goal is to investigate the classification capability of a radio equipped

with a single receive antenna. Given the assumption that either spatial multiplexing (SM)

or Alamouti (AL) STBC is used by the received signal, it is shown that the fourth-order

moment (FOM) and the discrete Fourier transform (DFT) of a fourth-order lag prod-

uct (FOLP) can be efficiently used to blindly classify these signals1. Based on this result,

four classification algorithms are proposed. The first algorithm is FOM-based and employs

the likelihood ratio test (LRT) for decision making. Unfortunately, its practical imple-

mentation is complicated by the requirement for knowledge of the channel coefficients,

modulation type, and noise power. To avoid this requirement, we propose three further

algorithms which are based on the DFT of the FOLP and are referred to as FOLP-based
1Note that the second-order signal statistics can be employed as discriminating features with multiple

receive antennas [22–25]. Hence, the direct extension of a fourth-order statistic-based algorithm to
multiple receive antennas makes little sense.
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algorithms. Furthermore, we investigate the performance of the proposed algorithms in

the presence of diverse model mismatches, such as timing and frequency offsets, Doppler

frequency, and spatially correlated fading.

The rest of this paper is organized as follows: Section 2.3 introduces the system

model. Sections 2.4 and 2.5 develop the FOM and FOLP-based classification algorithms,

respectively. Simulation results are presented in Section 2.6. Finally, conclusions are

drawn in Section 2.7.

2.3 System Model

We consider a wireless communication system which employs linear space-time block cod-

ing with multiple transmit antennas. Each block of Ns modulated symbols is encoded to

generate Nt parallel signal sequences of length L. These sequences are transmitted simul-

taneously with Nt antennas in L consecutive time periods [27,28]. We denote the bth block

of Ns complex symbols to be transmitted by the column vector Xb = [xb,0, ..., xb,Ns−1]T ,

with the superscript T denoting transposition. The data symbols are assumed to be-

long to an M -point signal constellation and consist of independent and identically dis-

tributed random variables with zero mean and second-order statistics2 E {|x|2} = 1 and

E {x2} = E {(x∗)2} = 0. Here, E{.} and ∗ denote statistical expectation and complex

conjugate operations, respectively. Further, we denote the Nt×L space-time coding ma-

trix and the (l+1)th column of this matrix by G(Xb) and Gl(Xb), 0 ≤ l < L, respectively.

For SM, a block of Ns = Nt symbols is transmitted simultaneously via the Nt antennas

in a single time period (L = 1), with the coding matrix given as [27]
2Results for the fourth-order statistics of SM and AL-STBC, given in Sections 2.4 and 2.5, are obtained

under the assumption that E
[
x2] = E

[
(x∗)2] = 0; this corresponds to M -ary phase-shift-keying (PSK)

and quadrature amplitude modulation (QAM) constellations with M ≥ 4 [8].
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GSM(Xb) = [xb,0, ..., xb,Nt−1]T . (2.1)

For the AL-STBC, a block of two symbols (Ns = 2) is transmitted via two antennas

(Nt = 2) in two consecutive time periods (L = 2), with the coding matrix given as [29]

GAL(Xb) =

 xb,0 −x∗b,1

xb,1 x∗b,0

 , (2.2)

where the rows and columns correspond to the transmit antennas and time periods,

respectively.

We consider a receiver with a single antenna, and assume that the length and time

alignment of the STBC blocks are unknown. Without loss of generality, we assume that

the first received symbol, denoted by r(0), intercepts the (k1 + 1)th column, 0 ≤ k1 < L,

of the bth transmitted block, denoted by Gk1(Xb). Under these assumptions, the kth

intercepted symbol, r(k), k ≥ 0, is expressed as [22]

r(k) = HS(k) + w(k), (2.3)

where S(k) = Gp(Xq), with p = (k + k1) mod L, q = b + (k + k1) div L, and z mod L

and z div L denoting respectively the remainder and the quotient of the division z/L,

w(k) represents the complex additive white Gaussian noise (AWGN) with zero-mean and

variance σ2
w, and H = [h0, ..., hNt−1] is the vector of the fading channel coefficients, which

are considered to be constant over the observation period.

The objective is to blindly classify the SM and AL-STBC from K received symbols,

r(k), 0 ≤ k ≤ K − 1, when Nt = 2 and a single receive antenna is available. This is

formulated as a binary hypothesis testing problem: under hypothesis H0, the decision

that SM is received is made, while the AL-STBC is selected under hypothesis H1.
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Since lower-order statistics do not provide discriminating signal features for the SM

and AL-STBC with M -ary PSK and QAM, M ≥ 4, we resort to fourth-order statistics.

Next, we show how the FOM and FOLP of the received signal can be exploited in the

four proposed classification algorithms.

2.4 FOM-based Algorithm

The first algorithm relies on the fourth-order moment of the received signal, and ap-

plies the LRT to obtain the maximum average probability of correct classification. More

specifically, we employ the fourth-order/ zero-conjugate (4,0) moment at a delay-vector

[0, 0, 1, 1], defined as [30]

mr,4,0 = E
{
r2(k)r2(k + 1)

}
. (2.4)

Note that for simplicity, the delay-vector is not specified in the moment notation.

Theoretical values of this moment are subsequently derived, and the LRT is formulated

based on the moment sample estimate distribution.

By using (2.1)-(2.3), the second-order statistics of data symbols, and the independence

of the symbol and noise sequences, the respective expressions for mr,4,0 of the SM and

AL-STBC can be obtained as,

mSM
r,4,0 = 0, and mAL

r,4,0 = h2
0h

2
1cx,4,2, (2.5)

where h0 and h1 are the channel coefficients, and cx,4,2 = E {|x|4}−2(E {|x|2})2 represents

the (4,2) cumulant corresponding to the signal constellation.

In practice, we estimatemr,4,0 based on K observed symbols (equal here to the number

of samples) as [30],
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Table 2.1: Moment and cumulant values for various signal constellations.

QPSK 8-PSK 16-QAM 64-QAM
mx,2,1 = cx,2,1 1 1 1 1

mx,4,2 1 1 1.32 1.38
cx,4,2 -1 -1 -0.68 -0.619
mx,6,3 1 1 1.96 2.2
cx,6,3 4 4 2.08 1.7972

m̂r,4,0 = 1
K

K−1∑
k=0

r2(k)r2(k + 1). (2.6)

Following the same procedure as [31], the sample estimate can be shown to be unbiased

and asymptotically Gaussian distributed. Furthermore, by applying some mathematical

manipulations to (2.1)-(2.3), and (2.6), we obtain the respective expressions for the vari-

ance of m̂r,4,0 for the SM and AL-STBC given by

σ2
SM = 1

K
{16|h0|4|h1|4 + (mx,4,2)2(|h0|4 + |h1|4)2 + 8mx,4,2(|h0|6|h1|2 + |h0|2|h1|6)

+4σ8
w + 8σ6

w(|h0|2 + |h1|2) + 40σ4
w|h0|2|h1|2 + 32σ2

w(|h0|4|h1|2 + |h0|2|h1|4)

+18mx,4,2σ
4
w(|h0|4 + |h1|4) +8mx,4,2σ

2
w(|h0|6 + |h0|4|h1|2 + |h0|2|h1|4 + |h1|6)} .

(2.7)

σ2
AL = 1

K
{(mx,4,2)2(|h0|8 + |h1|8) + 4(mx,6,3 +mx,4,2)(|h0|6|h1|2 + |h0|2|h1|6) + 4σ8

w

+8σ6
w(|h0|2 + |h1|2) + 8mx,4,2σ

2
w(|h0|6 + |h1|6) + 2mx,4,2σ

4
w(5|h0|4 + 8|h0|2|h1|2 + 5|h1|4)

+4σ2
w(mx,6,3 + 5mx,4,2 + 4)(|h0|4|h1|2 + |h0|2|h1|4) + 8σ4

w(|h0|4 + 3|h0|2|h1|2 + |h1|4)}.
(2.8)

where mx,α,β = E{xα−β(x∗)β} represents the (α, β) moment corresponding to the signal

constellation. Examples of moments and cumulants corresponding to different signal

constellations are provided in Table 2.1, for α = 2, 4, 6, and diverse βs [8].

Based on the statistical properties of the fourth-order moment sample estimate, m̂r,4,0,
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it is straightforward to write the following expressions for the probability density functions

conditional on the hypothesis H0 (SM signal) and H1 (AL-STBC signal), respectively as

p (m̂r,4,0 |H0 )= 1
πσ2

SM
exp

(
− |m̂r,4,0|2

σ2
SM

)
, (2.9)

and

p (m̂r,4,0 |H1 )= 1
πσ2

AL
exp

(
− |m̂r,4,0 − h2

0h
2
1cx,4,2|

2

σ2
AL

)
. (2.10)

Under the assumption of equally likely hypotheses and after simple mathematical

manipulations, the LRT becomes

|m̂r,4,0|2

σ2
SM

− |m̂r,4,0 − h2
0h

2
1cx,4,2|

2

σ2
AL

H1
≷
H0

ln σ
2
AL
σ2

SM
. (2.11)

The distributions of m̂r,4,0 conditional on hypothesis H0 and H1, given in (2.9) and

(2.10), can be used to analytically determine the probability of correct classification for

SM and AL-STBC signals, respectively. From statistical communication theory [32], it

follows that

P (λ = ξ|ξ, h0, h1) = 1−Q
 |h2

0h
2
1cx,4,2|√
2σ2

ξ

 , ξ ∈ {SM, AL} , (2.12)

where λ is the estimated signal type, P (λ = ξ|ξ, h0, h1), ξ ∈ {SM, AL}, is the probability

of correct classification of ξ conditional on the channel coefficients, and Q(.) is the Q-

function, defined as Q(x) =
∫∞
x

1√
2πe
− t

2
2 dt [32]. Furthermore, the probability of correct

classification, P (λ = ξ|ξ), can be obtained by averaging (2.12) over the channel coefficients

h0 and h1 as,

P (λ = ξ|ξ) = 1−
∞∫
0

∞∫
0

Q

γ2
0γ

2
1 |cx,4,2|√
2σ2

ξ

 p (γ0) p (γ1) dγ0dγ1, (2.13)

where γi represents the magnitude of hi, i = 0, 1. Note that, according to (2.7) and (2.8),
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σ2
ξ is a function of γ0 and γ1. As there is no closed-form solution for (2.13), we used the

trapezoidal numerical method described in [33] to solve the integration.

The FOM-based algorithm employs the LRT for achieving a maximum average prob-

ability of correct classification [34],

Pc = 1
2

∑
ξ∈{SM, AL}

P (λ = ξ|ξ) . (2.14)

However, this requires knowledge of the channel coefficients, modulation type, and noise

power. Given perfect estimates of such parameters, this result represents a performance

upper bound that is useful for evaluating the performance of other proposed algorithms.

The FOM-based algorithm is summarized below.

The FOM-based algorithm
Required signal pre-processing: Blind carrier frequency and timing synchronization, blind
classification of the modulation type, blind estimation of the channel coefficients, and estima-
tion of the noise power.
Input: The observed symbols r(k), k = 0, 1, ...,K − 1, modulation type, channel coefficients,
frequency and timing information, and noise power.
- Compute the reference FOM of AL as h2

0h
2
1cx,4,2.

- Estimate the FOM of the received signal using (2.6).
- Compute σ2

SM using (2.7).
- Compute σ2

AL using (2.8).

if |m̂r,4,0|
2

σ2
SM

− |m̂r,4,0−h
2
0h

2
1cx,4,2|

2

σ2
AL

> ln σ2
AL
σ2

SM
then

- AL-STBC is declared present (H1 true).
else

- SM is declared present (H0 true).
end if

2.5 FOLP-based Algorithms

Based on the DFT of the FOLP at delay-vector [0,0,1,1], three classification algorithms

for the SM and AL-STBC are developed. The main advantage of these algorithms is that

they do not require knowledge of the channel coefficients, modulation type, and noise
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Fig. 2.1: Illustration of events =1 and =2 when (a) r(0) corresponds to the beginning
of the AL-STBC block, (b) r(0) does not correspond to the beginning of the AL-STBC
block. Solid lines are used to delimitate symbols which do not belong to the same block
and dashed lines to delimitate symbols which belong to the same block.

power.

Consider the sequence y = [y(0), y(1), ..., y(K − 1)] , with y(k) = r2(k)r2(k + 1), k =

0, 1, ..., K − 1. Since a random variable can be expressed as the sum of its mean and

another zero-mean random variable which represents the deviation from the mean [35],

y(k) can be written for the SM and AL-STBC respectively as,

ySM(k) = E{ySM(k)}+ ψSM(k), (2.15)

and

yAL(k) = E{yAL(k)}+ ψAL(k), (2.16)

where E{yξ(k)} is the mean of yξ(k), and ψξ(k) is its deviation from the mean, ξ ∈

{SM, AL}.
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Based on (2.2)-(2.5), one can easily show that E{yAL(k)} equals 2h2
0h

2
1cx,4,2 when r(k)

and r(k + 1) belong to the same transmitted data block (event =1), and zero when they

do not (event =2). The difference between events =1 and =2 is illustrated in Fig. 2.1.

Apparently, under the event =1, E{yAL(k)} is a constant, C = 2h2
0h

2
1cx,4,2, which depends

on the modulation type and channel coefficients. Further, ψAL(k) can be considered as a

noise component that hides the presence of C if yAL(k) is received. Furthermore, based

on (2.1), (2.3)-(2.5), it is easy to show that E{ySM(k)} = 0; thus, ψSM(k) can be seen as

a noise component which hides the absence of C if ySM(k) is received. In the absence of

such noise components, i.e., ψSM(k) = ψAL(k) = 0, the FOLP sequence for the AL-STBC

code would be either [C, 0, C, 0, C, 0, C, ...] or [0, C, 0, C, 0, C, 0, ...], depending on whether

or not r(0) and r(1) correspond to the same data block, and the FOLP sequence for

SM would be [0, 0, 0, 0, 0, 0, ...]. The following discussion shows how this property can be

exploited as a feature for distinguishing between the SM and AL-STBC in the frequency

domain.

Let Y = [Y (0), Y (1), ..., Y (K − 1)] denote the K-point DFT3 of y, with

Y (n) = 1√
K

K−1∑
k=0

y(k)e−j2πkn/K , n = 0, 1, ..., K − 1. (2.17)

By replacing (2.15) and (2.16) in (2.17), it follows that

Y SM(n) = ΨSM(n), n = 0, 1, ..., K − 1, (2.18)

and

Y AL(n) =


E + ΨAL(n), n = 0, K/2,

ΨAL(n), otherwise,
(2.19)

where ΨSM(n) and ΨAL(n) represent the DFT of ψSM(k) and ψAL(k), respectively. E =
3Note that, without loss of generality, K is assumed to be even.
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√
K
2 C if r(0) and r(1) belong to the same transmitted data block, and E = ±K−2

2
√
K
C ≈

±
√
K
2 C otherwise; the plus sign corresponds to n = 0 and the minus sign to n = K/2.

Clearly, (2.18) and (2.19) indicate that |Y (n)| does not exhibit peaks for SM, but it does

for the AL-STBC at n = 0, K/2.

From (2.17), Y (n) is composed of a large number of contributions when K is large.

Consequently, the central limit theorem indicates that Y (n) should have a Gaussian dis-

tribution when K tends to infinity. A closer look at (2.17) and (2.18) reveals that the

asymptotic distribution of Y (n), n = 0, · · ·K − 1, for SM is Gaussian with zero mean.

In addition, further consideration of (2.17) and (2.19) indicates that the asymptotic dis-

tribution of Y (n) for the AL-STBC is also Gaussian with zero mean at n = 0, · · ·K − 1,

n 6= 0, K/2, and non-zero mean, E , at n = 0, K/2.

The following subsections describe the development of the decision criteria that form

the basis of the three proposed FOLP-based classification algorithms.

2.5.1 FOLP-A classification algorithm

The basic idea of the FOLP-A classification algorithm is to test for the existence of peaks

in |Y (n)|, either at n = 0 or n = K/2, as follows. We define n1 as the value of n that

maximize |Y (n)|,

n1 = arg max
n
|Y (n)|, n = 0, 1, ..., K − 1. (2.20)

If n1 ∈ {0, K/2}, the AL-STBC is declared present (H1 true); otherwise, SM is de-

clared present (H0 true). A summary of the proposed FOLP-A algorithm is provided

below.
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The FOLP-A algorithm
Required signal pre-processing: Blind carrier frequency and timing synchronization.
Input: The observed symbols r(k), k = 0, 1, ...,K−1, and frequency and timing information.
- Compute the fourth-order lag product y(k) = r2(k)r2(k + 1).
- Compute Y (n) using (2.17).
- n1 = arg maxn |Y (n)|, n = 0, 1, ...,K − 1.
if n1 ∈ {0,K/2} then

- AL-STBC is declared present (H1 true).
else

- SM is declared present (H0 true).
end if

2.5.2 FOLP-B classification algorithm

The FOLP-B classification algorithm exploits the statistical properties of |Y (n)|, n =

0, · · · , K − 1, to decide whether |Y (n)| exhibits a peak either at n = 0 or n = K/2.

Note that E depends on the modulation format and the channel coefficients, which are

unknown at the receiver; as such, the statistics of Y (n = 0) and Y (n = K/2) for the

Alamouti code are unknown, as well. The basic idea behind this algorithm is to set a

threshold, ε, to achieve a given probability of false alarm4, Pfa. As a consequence, if

either |Y (n = 0)| or |Y (n = K/2)| is greater than ε, the AL-STBC is declared present

(H1 true); if not, SM is declared present (H0 true). The problem is to set this threshold

to yield the desired value of Pfa. Since the distributions of Y (n = 0) and Y (n = K/2) for

the SM are Gaussian with zero mean, the distributions of |Y (n = 0)| and |Y (n = K/2)|

are Rayleigh. Accordingly, the probability of false alarm, Pfa, can be expressed as

Pfa =
∞∫
ε

2x
Ω e

−x2
Ω dx, (2.21)

where Ω represents the second-order moment which characterizes the Rayleigh distribu-

tion. Hence, ε can be calculated as
4The probability of false alarm is defined as the probability of incorrectly deciding that a statistically

significant peak is present.
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Fig. 2.2: Distribution of |Y (n)|, n 6= 0, K/2, for the AL-STBC with QPSK modulation
and K = 2048, at SNR=20 dB over Nakagami-m channel, m = 3.

ε =
√
−Ω ln (Pfa). (2.22)

In practice, an estimate of Ω is employed, which is obtained as

Ω̂ = 1
K − 2

 K−1∑
n=0,n 6=0,K/2

|Y (n)|2
 . (2.23)

Note that |Y (0)| and |Y (K/2)| are excluded, as these have a different distribution if the

AL-STBC is present (hypothesis H1).

Fig. 2.2 presents the distribution of |Y (n)| with n 6= 0, K/2 for the AL-STBC with

quadrature PSK (QPSK) modulation, K = 2048, and 20 dB signal-to-noise ratio (SNR).

We also show the theoretical Rayleigh distribution with Ω = Ω̂. Since the simulation

and theoretical results are in reasonable agreement, the assumption that |Y (n)| with

n 6= 0, K/2 has a Rayleigh distribution is validated. Similar results are obtained for∣∣∣Y SM(n)
∣∣∣, but are not shown due to space considerations. Furthermore, Fig. 2.3 depicts
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Fig. 2.3: |Y (n)| for the AL-STBC with QPSK modulation and K = 2048, at SNR = 20
dB over Nakagami-m channel, m = 3.

|Y (n)| for the AL-STBC as a function of n, along with the threshold ε associated to the

probability of false alarm Pfa = 10−2. Note that the value of |Y (n)| is greater than ε for

n = 0, K/2, as expected. A summary of the proposed FOLP-B is provided below.

The FOLP-B algorithm
Required signal pre-processing: Blind carrier frequency and timing synchronization.
Input: The observed symbols r(k), k = 0, 1, ...,K−1, and frequency and timing information.
- Compute the fourth-order lag product y(k) = r2(k)r2(k + 1).
- Compute Y (n) using (2.17).
- Estimate Ω using (2.23).
- Compute ε using (2.22) based on the target Pfa.
if |Y (0)| or |Y (K/2)| ≥ ε then

- AL-STBC is declared present (H1 true).
else

- SM is declared present (H0 true).
end if
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2.5.3 FOLP-C classification algorithm

The basic idea of the FOLP-C classification algorithm is to measure the distance between

the positions of the two most prominent peaks in |Y (n)|; this equals K/2 for the AL-

STBC, whereas it does not for SM. We define n1 as in (2.20), and n2 as

n2 = arg max
n
|Y (n)|, n = 0, 1, ..., K − 1, n 6= n1. (2.24)

If |n1 − n2| = K/2, then the AL-STBC is declared present (H1 true); otherwise, SM

is declared present (H0 true).

A summary of the proposed FOLP-C algorithm is provided below.

The FOLP-C algorithm
Required signal pre-processing: Timing synchronization.
Input: The observed symbols r(k), k = 0, 1, ...,K − 1 and timing information.
- Compute the fourth-order lag product y(k) = r2(k)r2(k + 1).
- Compute Y (n) using (2.17).
- n1 = arg maxn |Y (n)|, n = 0, 1, ...,K − 1.
- n2 = arg maxn |Y (n)|, n = 0, 1, ...,K − 1, n 6= n1.
if |n1 − n2| = K/2 then

- AL-STBC is declared present (H1 true).
else

- SM is declared present (H0 true).
end if

2.6 Simulation Results

2.6.1 Simulation setup

The performance of the proposed algorithms was evaluated using Monte Carlo simulations

with 1000 trials employed for each scenario. Unless otherwise indicated, QPSK modula-

tion was used, K = 1024, Pfa = 10−2 for the FOLP-B classification algorithm, and the

received signal was affected by AWGN with variance σ2
w and a frequency-flat Nakagami-m
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Fig. 2.4: Probability of correct classification, P (λ = ξ|ξ), ξ ∈ {SM, AL}, versus SNR for
different Nakagami-m fading channels, for the FOM-based classification algorithm with
QPSK modulation and K = 1024.

fading channel [36], with m = 3, and E {|h2
i |} = 1, i = 0, 1. Under the assumption of

unit variance constellations, the SNR was defined as 10 log10(Nt/σ
2
w). Two performance

measures, the probability of correct classification, P (λ = ξ|ξ), ξ ∈ {SM, AL}, and the

average probability of correct classification, given in (2.14), were used.

2.6.2 Performance evaluation

Fig. 2.4 shows the analytical and simulation results for the probability of correct classi-

fication achieved with the FOM-based classification algorithm over Nakagami-m fading

channel for m = 3 and 1. Note that the simulation and theoretical results are in very

good agreement. The performance deteriorates as the effect of the channel increases. The

explanation is that the increase in the variance of h0 and h1 with decreasing m leads to

an increase in the variance of m̂r,4,0 and contributes to erroneous decisions.

The probability of correct classification for the three proposed FOLP-based classifi-
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cation algorithms over Nakagami-m fading channel, m = 3 and 1, is presented in Fig.

2.5. Note that for all FOLP-based algorithms, the channel parameter m and SNR af-

fect the probability of correct classification for the AL-STBC, P (λ = AL|AL), but do

not for SM. In general, the noise components and the channel coefficients control the

peaks that appear in |Y AL(n)| at n = 0, K/2, as can be seen from (2.19). For the SM,

Y SM(n), n = 0, 1, ..., K − 1, can be shown to be statistically independent and identically

distributed. Accordingly, the peak of |Y SM(n)| can occur at any position n with the

same probability, i.e., P (|Y (0)| = max |Y (n)|) = P (|Y (K/2)| = max |Y (n)|) = 1/K,

regardless of the channel parameter m and noise power. Recall that, for the FOLP-A

algorithm, SM is not declared present if the maximum occurs either at n = 0 or K/2.

Hence, P (λ = SM|SM) = 1− 2/K and this approaches one for large K. For the FOLP-C

algorithm, SM is not declared present if |n1 − n2| = K/2, with n1 and n2 defined by

(2.20) and (2.24), respectively. In this case, P (λ = SM|SM) = (K − 2)/(K − 1), which
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Table 2.2: Computational cost of the proposed algorithms and those in [21] and [26].

Classification algorithm Computational cost Number of flops for
(flops) K = 1024, M = 4,

ρ = 4, and W = 100
Optimal likelihood [21] 240KM2 3,932,160
Cyclostionarity [26] 18ρK + 5ρK log2 ρK + 27W 322,188

FOM 20K + 233 20,713
FOLP-A 22K + 5K log2K 73,728
FOLP-B 22K + 5K log2K 73,728
FOLP-C 23K + 5K log2K 74,752

also approaches one for large K. On the other hand, for the FOLP-B classification algo-

rithm, the probability of correctly classifying SM is predetermined by the probability of

false alarm, i.e., P (λ = SM|SM) = 1 − 2Pfa, which is independent of SNR and m. It is

noteworthy that the results of this analysis agree with simulation findings shown in Fig.

2.5.

2.6.3 Performance comparison

Fig. 2.6 compares the average probability of correct classification, Pc, achieved by the pro-

posed algorithms, the optimal likelihood-based algorithm in [21], and the cyclostionarity-

based algorithm in [26]. An oversampling factor ρ = 4 and a window size W = 100 are

used with the algorithm in [26]. Pfa = 10−2 for both FOLP-B classification algorithm and

the algorithm in [26]. As expected, the algorithm in [21] provides the best performance,

as it exploits the full probability density function of the received signal5. Furthermore,

the FOM-based classification algorithm outperforms the FOLP-based algorithms, since

it uses the LRT to make the decision. On the other hand, the algorithm in [26] has the

lowest performance, as accurate estimation of the fourth-order cyclic cumulant requires a

relatively large observation period. For example, we observed that the values obtained for
5However, it is well known that this approach heavily relies on pre-processing, is sensitive to model

mismatches, and is computationally complex.
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Fig. 2.6: Performance comparison of the proposed algorithms and the ones in [21] and
[26] over Nakagami-m fading channel, m = 3, with QPSK modulation, K = 1024.

Pc showed a strong dependence on K, ranging from Pc = 0.96 for K = 4096 to Pc = 0.86

for K = 1024 at SNR= 20 dB.

Additionally, the computational cost measured by the required number of floating

point operations (flops) [37] is provided in Table 2.2 for the proposed algorithms and

those described in [21] and [26]. As can be seen, the FOM-based algorithm has the lowest

computational cost followed by the FOLP-based algorithms. The computational cost of

the algorithms in [21] and [26] is considerably higher.

2.6.4 Effect of the number of observed samples

Fig. 2.7 illustrates the effect of the number of received samples, K, on the average prob-

ability of correct classification, Pc, for the proposed classification algorithms at SNR=10

dB. Note that the performance improves with increasing K. This can be explained as

follows. For the FOM-based classification algorithm, the estimate of the fourth-order

moment improves as K increases, thus improving the probability of correct classification.
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Fig. 2.7: The effect of K on the average probability of correct classification, Pc, for the
proposed algorithms over Nakagami-m channel, m = 3, with QPSK modulation at SNR
= 10 dB. Pfa = 10−2 for the FOLP-B classification algorithm.

On the other hand, for the FOLP-based classification algorithms, the noise contributions

that affect the peaks in |Y AL(n)| at n = 0, K/2 decrease with increasing K, thus improv-

ing the classification performance for the AL-STBC. The SM classification performance

approaches unity for sufficiently large K for the FOLP-A and FOLP-C algorithms, but is

relatively insensitive to K for the FOLP-B algorithm. Overall, the classification perfor-

mance improves with increasing K. Furthermore, Fig. 2.7 indicates that low values of K

have a particularly adverse effect on the FOLP-C algorithm. The explanation is that the

FOLP-C algorithm requires the detection of two peaks (see (2.20) and (2.24)) to classify

the AL-STBC with, whereas the detection of either of the two peaks is sufficient for the

FOLP-A and FOLP-B algorithms.
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sification, Pc, for the proposed algorithms over the Nakagami-m channel, m = 3, with
K = 2048 at SNR = 10 dB. Pfa = 10−2 for the FOLP-B classification algorithm.

2.6.5 Effect of the modulation type

Fig. 2.8 depicts the effect of the modulation type on the average probability of correct

classification, Pc, for the proposed algorithms at SNR=10 dB, and K = 2048. The

explanation for the dependence of the classification performance on the modulation type

is as follows. According to Section 2.4, the performance of the FOM-based algorithm is

determined by the Euclidean distance between zero and h2
0h

2
1cx,4,2, with the classification

performance improving as the distance increases. This distance does not depend on theM -

PSK constellation, i.e., cx,4,2 is independent ofM , whereas for theM -QAM constellations,

it decreases as M increases. For the FOLP-based algorithms, classification of SM is

not affected by the modulation type (this can be seen from the previous discussion on

P (λ = SM|SM)). On the other hand, classification of the AL-STBC is independent of

M for the M -PSK constellations, whereas this depends on M for M -QAM constellations.

This is because the peaks in |Y AL(n)| at n = 0, K/2 depend on cx,4,2.
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2.6.6 Effect of the frequency offset

Fig. 2.9 presents the effect of the frequency offset normalized with respect to the data rate,

∆f , on the average probability of correct classification, Pc, for the proposed algorithms

at SNR=10 dB and K = 2048. These results show that the FOM-based classification

algorithm is sensitive to ∆f . This behavior is consistent with the analysis in the Ap-

pendix, where it is shown that a frequency offset affects the FOM of the AL-STBC signal.

The performance of the FOLP-A and FOLP-B algorithms is also affected by ∆f . The

explanation is that ∆f introduces a shift in the peaks in
∣∣∣Y AL(n)

∣∣∣, n = 0, K/2, except for

the cases where ∆f is an integer multiple of 1/8 (see Appendix for the proof), and the

decision criteria rely on the presence of a peak either at n = 0 or n = K/2. On the other

hand, the performance of the FOLP-C algorithm is relatively insensitive to the frequency

offset. This is because the decision criterion depends on the distance between the peak

positions, which is unaffected by ∆f (see Appendix for the proof). Nevertheless, some

performance degradation results when the shifted positions are misaligned with the DFT

bins, since the peak values are attenuated (see Appendix for the proof).

2.6.7 Effect of the timing offset

The previous analysis assumed perfect timing synchronization. Here we evaluate the

performance of the proposed algorithms in the presence of a timing offset, 0 ≤ µ < 1.

For the case of rectangular pulse shaping, after the matched filtering, the timing offset, µ,

translates into a two path channel [1− µ, µ] [11]. Fig. 2.10 shows the performance of the

proposed algorithms as a function of µ at SNR=10 dB and K = 2048. The FOLP-based

algorithms display much less sensitivity to timing offsets than the FOM-based algorithm.
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2.6.8 Effect of the spatially correlated fading

Independent fading was considered in the previous analysis. Here we show the effect

of correlated fading on the classification performance. Correlated Nakagami-m fading

was generated using correlated complex-valued Gaussian variables ([38], p. 25), the in-

verse cumulative distribution function (cdf) method [36], and an approximation of the

Nakagami-m inverse cdf [36]. Fig. 2.11 shows the average probability of correct classifi-

cation, Pc, of the FOM-based and FOLP-C algorithms versus the correlation coefficient

between h0 and h1, ν, over Nakagami-m fading with m = 3 and 1, for the QPSK modula-

tion at SNR=10 dB and K = 2048. Note that the performance improves as ν increases,

especially at lower values of m 6. This can be explained as follows. We recall that, for the

AL-STBC, |mr,4,0|, which controls the performance of the FOM-based algorithm, and the

absolute value of the DFT peak, |E|, which controls the performance of the FOLP-based

algorithms, are proportional to |h2
0h

2
1| (as shown in (2.5) and Section IV). For SM, these

two parameters are zero valued if the noise contributions are neglected. The question

arises how the spatial correlation between the two channels affects |h2
0h

2
1|. Fig. 2.12,

which shows E {|h0|2|h1|2} as a function of ν for different values of m, helps us to answer

this question. Note that since h0 and h1 change their values randomly from one real-

ization to another, we resort to the statistical mean value, E {|h0|2|h1|2}, instead of the

instantaneous value, |h2
0h

2
1| . It is obvious from Fig. 2.12 that E {|h0|2|h1|2} is an increas-

ing function of ν. This explains why the classification performance improves with ν for

m = 1, as shown in Fig. 2.11. However, for m = 3, there is not much improvement in

the classification performance. This is because the classification performance at ν = 0 is

high enough and E {|h0|2|h1|2} increases slowly with ν. This agrees with the fact that in

the case of no fading (m tends to infinity), E {|h0|2|h1|2} is essentially independent of ν.
6Similar results are obtained for the FOLP-A and FOLP-B algorithms; however, these results were

omitted due to space considerations.
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Fig. 2.13: The effect of the Doppler frequency on the average probability of correct
identification, Pc, for the proposed identification algorithms over Nakagami-m fading
channel, m = 3, with QPSK modulation and K = 1024 at SNR=10 dB.

2.6.9 Effect of the Doppler frequency

The previous analysis assumed constant channel coefficients over the observation period.

Here we consider the effect of the Doppler frequency on the performance of the proposed

algorithms. Fig. 2.13 shows the average probability of correct classification, Pc, for the

FOM- and FOLP-based algorithms versus the Doppler frequency magnitude normalized

to the data rate, |fd|, at SNR= 10 dB and K = 1024. These results show good robustness

for |fd| < 10−4.

2.6.10 Effect of the probability of false alarm

Fig. 2.14 presents the effect of the probability of false alarm, Pfa, on the probability of

correct classification, P (λ = ξ|ξ), ξ ∈ {SM, AL}, for the FOLP-B classification algorithm.

It is noted that the AL-STBC classification performance improves as Pfa increases. An

increase in the Pfa leads to a reduction in the threshold value, and, hence, |Y (0)| or
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Fig. 2.14: The effect of Pfa on the probability of correct classification, P (λ = ξ|ξ),
ξ ∈ {SM, AL}, for the FOLP-B classification algorithm over Nakagami-m channel,m = 3,
with QPSK modulation and K = 1024.

|Y (K/2)| ≥ ε are more easily satisfied, thus leading to a better performance. On the

other hand, the SM classification performance decreases with an increase in Pfa, as P (λ =

SM|SM) = 1− 2Pfa. Therefore, the value of Pfa is chosen as a trade-off between the SM

and AL-STBC classification performances.

2.7 Conclusion

The classification of spatial multiplexing (SM) and Alamouti space-time block code (AL-

STBC) signals was investigated in this paper. It was shown that a fourth-order moment

(FOM) and the discrete Fourier transform (DFT) of a fourth-order lag product (FOLP)

can be used as discriminating signal features. Based on these results, four novel classifi-

cation algorithms were proposed. The first algorithm employs the FOM of the received

signal as a discriminating feature and the likelihood ratio test (LRT) to make a decision.

Analytical results for the algorithm classification performance were derived. However, the
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practical implementation of this algorithm is complicated by the need for channel estima-

tion, modulation classification, and noise power estimation. To relax these requirements,

we proposed three algorithms based on the DFT of the received signal FOLP, namely

FOLP-A, FOLP-B, and FOLP-C. The influence of model mismatches (e.g., frequency and

timing offsets, Doppler frequency, and spatially correlated fading) on the performance of

the proposed algorithms was also investigated. Unlike the FOM-based, FOLP-A, and

FOLP-B algorithms, FOLP-C is robust with respect to frequency offsets. Furthermore,

the FOLP-based algorithms have lower sensitivity to the timing offset when compared to

the FOM-based algorithm. The proposed algorithms are tolerant to a Doppler frequency

whose magnitude, normalized with respect to the data rate, is lower than 10−4. Also,

their performance can benefit from spatially correlated fading. As part of future work,

we plan to extend the proposed classification algorithms to a larger pool of STBCs.

Appendix

Effect of the frequency offset on the discriminating

signal features

The effects of a frequency offset on the proposed discriminating signal features have been

determined. In the presence of such an offset, the received signal, r′(k) is

r′(k) = r(k)e−j(2π∆fk), k = 0, 1, ..., K − 1, (2.25)

where r(k) is given in (3) and ∆f represents the frequency offset normalized to the data

rate.
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Effect on the FOM-based feature

In the presence of a frequency offset, the estimated fourth-order moment, m̂r′,4,0, is given

by

m̂r′,4,0 = 1
K

K−1∑
k=0

r′2(k)r′2(k + 1)

= e−j(4π∆f)
[

1
K

K−1∑
k=0

r2(k)r2(k + 1)e−j(8π∆fk)
]
. (2.26)

The discrete-time Fourier transform of the sequence y(k) = r2(k)r2(k + 1), k =

0, 1, ..., K − 1, can be computed as,

Y(f) =
K−1∑
k=0

r2(k)r2(k + 1)e−j(2πfk), 0 ≤ f ≤ 1. (2.27)

From (2.26) and (2.27), it is clear that m̂r′,4,0 = e−j(4π∆f)
[

1
K
Y(4∆f)

]
. If K → ∞, the

noise components ψSM(k) and ψAL(k) in (2.15) and (2.16) vanish, with the result that

Y(f) = K(h2
0h

2
1cx,4,2)[δ(f) +δ(f − 1/2)] for the AL STBC, while Y(f) = 0 for the SM.

Under such conditions, it follows that, for the AL STBC, m̂r′,4,0 = mr′,4,0 = mr,4,0 =

h2
0h

2
1cx,4,2 if ∆f = 0, m̂r′,4,0 = mr′,4,0 = −jh2

0h
2
1cx,4,2 if ∆f = 0.125, and m̂r′,4,0 = 0

otherwise, whereas for the SM m̂r′,4,0 = mr′,4,0 = mr,4,0 = 0 regardless of ∆f . As such,

the classification of AL STBC is affected by ∆f .

Effect on the FOLP-based feature

The FOLP in the presence of the frequency offset can be calculated as,
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y′(k) = r′2(k)r′2(k + 1)

= e−j(4π∆f)r2(k)r2(k + 1)e−j(8π∆fk), k = 0, 1, ..., K − 1.

(2.28)

Taking the K-point DFT of (2.28) yields

Y ′(n) = 1√
K

K−1∑
k=0

y′(k)e−j(2πkn/K)

= e−j(4π∆f)
[

1
K

K−1∑
k=0

r2(k)r2(k + 1)e−j2πk(n+4K∆f)/K
]
.

(2.29)

Since the decision is taken according to |Y ′(n)|, the term e−j(4π∆f) has no effect. By using

the shift property of the DFT, we obtain

|Y ′(n)| = A(n)|Y (n+ d4K∆fc)|, (2.30)

where d.c denotes the rounding function and A(n) represents an attenuation factor, which

can be calculated as,

A(n) = 1
|Y (n)|

∣∣∣∣∣ 1√
K

K−1∑
k=0

y(k)e−j2πk(n+[d4K∆fc−4K∆f ])/K
∣∣∣∣∣ . (2.31)

Examination of (2.30) shows that the peaks |Y (0)| and |Y (K/2)| for the AL STBC are

shifted by d4K∆fc and their magnitudes are scaled by A(0) and A(K/2), respectively. If

∆f is an integer multiple of 1/8, it is straightforward to show that the peaks are circularly

shifted by K/2, with the result that their positions are unchanged. Furthermore, note
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that A(n) equals one if ∆f is an integer multiple of 1/4K; otherwise, A(n) is less than

one.
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Chapter 3

An Efficient Algorithm for

Space-Time Block Code

Classification

3.1 Abstract

This paper proposes a novel and efficient algorithm for space-time block code (STBC) clas-

sification, when a single antenna is employed at the receiver. The algorithm exploits the

discriminating features provided by the discrete Fourier transform (DFT) of the fourth-

order lag products (FOLPs) of the received signal. It does not require estimation of the

channel, signal-to-noise ratio (SNR), and modulation of the transmitted signal. Computer

simulations are conducted to evaluate the performance of the proposed algorithm. The

results show the validity of the algorithm, its robustness to carrier frequency offset, and

low sensitivity to timing offset.
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3.2 Introduction

Blind classification of communication signals plays a pivotal role in both civilian and

military applications, e.g., parameter configuration in software-defined radio, spectrum

awareness in cognitive radio, and spectrum monitoring and surveillance [1–3].

A large number of studies have been carried out for developing blind signal classifica-

tion algorithms in single-input single-output scenarios (see the comprehensive survey [3]

and references therein). Regarding multiple-input multiple-output (MIMO) technology,

which has been recently included in wireless standards such as IEEE 802.11n, IEEE

802.16e, and 3GPP LTE [4], new and challenging signal classification problems have

arisen. These relate to the estimation of the number of transmit antennas, as well as

space-time code and modulation classification. The research on signal classification for

MIMO scenarios is at an incipient stage. Blind estimation of the number of transmit

antennas is investigated in [5, 6], and modulation classification for spatial multiplexing

(SM) in [7–10], while blind classification of linear space-time block codes (STBCs) has

been recently explored in [11–17]. Classification algorithms can be mainly divided into

two categories: likelihood-based [11] and feature-based algorithms [12–17]. Likelihood-

based algorithms calculate the likelihood function of the received signal, and employ the

maximum likelihood criterion for decision making [11]. However, these algorithms re-

quire channel estimation, time, block, and frequency synchronization, and knowledge of

the modulation format. Furthermore, they suffer from high computational complexity.

Second-order statistics are exploited in [12,13], while fourth-order statistics are considered

in [14]. In [15–17], signal cyclostationarity-based features are used. Most of these inves-

tigations assume perfect timing and frequency synchronization [11–16]. Some of these

papers study the classification of SM and Alamouti (AL)-STBC [14–16], whereas others

consider a larger pool of STBCs [11–13,17]. Furthermore, most employ multiple antennas

at the receiver [12,13,16,17]. Since this requirement can not always be met, solutions for
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STBC blind classification when a single receive antenna is available are of interest.

This paper proposes an efficient algorithm for the linear STBC classification, which

exploits features based on the discrete Fourier transform (DFT) of the fourth-order lag

products (FOLPs) of the received signal. The proposed algorithm does not require in-

formation about channel, modulation, and signal-to-noise ratio (SNR). Moreover, it is

robust to carrier frequency offset and requires only a rough estimate of clock timing.

The rest of this paper is organized as follows: Section 3.3 introduces the signal model.

Section 3.4 describes the proposed STBC classification algorithm. Simulation results are

presented in Section 3.5. Finally, concluding remarks are drawn in Section 3.6.

3.3 Signal Model

We consider a wireless communication system which employs linear STBCs with multi-

ple transmit antennas. In such a case, a block of Ns modulated symbols is encoded to

generate Nt parallel signal sequences of length L, to be transmitted simultaneously with

Nt antennas in L consecutive time periods [18]. We denote the bth block of Ns complex

symbols to be transmitted by the column vector Xb = [xb,0, ..., xb,Ns−1]T , with the super-

script T denoting transposition. The symbols are zero-mean independent and identically

distributed (i.i.d) random variables, with values drawn from an alphabet corresponding

to an M -PSK or M -QAM, M ≥ 4, signal constellation. Without loss of generality, we

consider unit variance constellations, i.e., E{|x|2} =1, with E{.} as the statistical expec-

tation. Further, we denote the Nt×L space-time coding matrix and the (l+ 1)th column

of this matrix by G(Xb) and Gl(Xb), 0 ≤ l < L, respectively.

The received signal is assumed to be encoded by one of the following STBCs1: SM [18]

with Nt = 2 and L = 1, AL code [18] with Nt = 2 and L = 2 (orthogonal with rate 1),
1We choose AL and SM as they are the most commonly used in wireless standards [4], and STBC3

and STBC4, as being commonly referred codes [18,19].
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STBC3 [18] with Nt = 3 and L = 4 (orthogonal with rate 3
4), or STBC4 [19] with Nt = 3

and L = 8 (orthogonal with rate 1
2).

For example, the transpose coding matrix of STBC4 is defined as [19]

(GSTBC4(Xb))T =



xb,0 xb,1 xb,2

−xb,1 xb,0 −xb,3

−xb,2 xb,3 xb,0

−xb,3 −xb,2 xb,1

x∗b,0 x∗b,1 x∗b,2

−x∗b,1 x∗b,0 −x∗b,3

−x∗b,2 x∗b,3 x∗b,0

−x∗b,3 −x∗b,2 x∗b,1



, (3.1)

where the rows and columns correspond to the time periods and transmit antennas,

respectively.

We consider a receiver equipped with a single antenna, and assume that the STBC

time alignment and length are unknown, whereas symbol and carrier synchronization are

performed. Later in the paper, we will study the effect of timing and carrier frequency

offsets. Without loss of generality, we assume that the first received symbol, denoted by

r(0), intercepts the (k1 + 1)th column, 0 ≤ k1 < L, of the bth transmitted block, denoted

by Gk1(Xb). Under these assumptions, the kth received symbol, r(k), k ≥ 0, is expressed

as [12]

r(k) = HS(k) + w(k), (3.2)

where S(k) = Gp(Xq), with p = (k + k1) mod L, q = b + (k + k1) div L, and z mod L

and z div L denoting respectively the remainder and the quotient of the division z/L,

H = [h0, ..., hNt−1] represents the vector of the channel coefficients, which characterize the
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paths between the transmit and receive ends, and w(k) represents the complex additive

white Gaussian noise (AWGN) with zero mean and variance σ2
w.

3.4 An efficient classification algorithm

In this section, we show how the DFT of the FOLP of the received signal can be exploited

to blindly classify the STBCs under consideration based on K received symbols, r(k),

0 ≤ k ≤ K − 1, when a single receive antenna is employed.

3.4.1 Discriminating features

The FOLP of the received sequence, {r(k)}K−1
k=0 , at delay vector [0,0,τ ,τ ] is defined as

y(k, τ) = r2(k)r2(k + τ), k = 0, 1, ..., K − 1. (3.3)

Based on the structure of the code matrices, we first consider τ = 4 due to its dis-

criminating property for STBC4, as it is subsequently explained.

Without loss of generality, we assume that the first received symbol, r(0), corresponds

to the start of the STBC block. Later we will show that this assumption will not affect

the performance of the proposed algorithm.

By substituting (3.2) in (3.3) of the FOLP, one can express the FOLPs corresponding

to the considered STBCs as

ySTBC4(k, 4) =


a(k) + ψ1(k) under event =1

ψ2(k) under event =2

(3.4)

and

yξ(k, 4) = ψξ3(k), ξ ∈ {SM,AL, STBC3} , (3.5)
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where =1 is the event that r(k) and r(k + 4) belong to the same transmitted data block,

=2 is the event that they do not, and a(k) = [HS(k)]2 [HS(k + 4)]2. Furthermore, ψ1(k),

ψ2(k), and ψ3(k) represent the remaining signal and AWGN components.

Note that a(k) depends on the channel coefficients and the transmitted data symbols

corresponding to r(k) and r(k + 4) under event =1. For example, one can show that

a(k = bL) is given by

a(bL) = 4(|xb,0|2|xb,1|2h2
0h

2
1 + |xb,0|2|xb,2|2h2

0h
2
2

+|xb,1|2|xb,2|2h2
1h

2
2) + |xb,0|4h4

0

+|xb,1|4h4
1 + |xb,2|4h4

2,

(3.6)

where xb,0, xb,1, and xb,2 are the data symbols transmitted in the first time period of

the bth STBC4 block. Similar expressions can be also obtained for a(k), k 6= bL. It is

noteworthy that a(k) is constant for the M -PSK signals, i.e., it does not depend on the

transmitted symbols, as PSK is a constant envelope modulation. For M -QAM signals,

a(k) can be expressed as a constant, AQAM = E {a(k)}, plus a variable ψ4(k), which

represents the deviation from the mean2. For the convenience of notation, subsequently

we use the constant A ∈ {APSK, AQAM}, which is given by

A = mx,4,2(h4
0 + h4

1 + h4
2) + 4(mx,2,1)2(h2

0h
2
1 + h2

0h
2
2 + h2

1h
2
2), (3.7)

with mx,α,β = E{xα−β(x∗)β} as the (α, β) moment of the points in the signal constella-

tion. Examples of mx,4,2 values are provided in Table 3.1 for various unit variance signal

constellations [3].

In the absence of the noisy components, i.e., ψ1(k) + ψ4(k) = ψ2(k) = ψ3(k) = 0, the

FOLP sequence is
2Generally speaking, a random variable x can be expressed as x = E{x}+ ν, where ν is a zero-mean

random variable which represents the deviation from the mean E{x} [20].
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Table 3.1: Moment values for various signal constellations.

QPSK 8-PSK 16-QAM 64-QAM
mx,2,1 1 1 1 1
mx,4,2 1 1 1.32 1.38

• STBC4: [ A A A A 0 0 0 0 A A A A 0 0 0 0 ...]

and

• STBC3, AL, and SM: [0 0 0 ....].

Thus STBC4 can be recognized by detecting the periodicity of its FOLP at τ = 4, for

which we employ the DFT. Let Y = [Y (0, τ), Y (1, τ), ..., Y (K−1, τ)] denote the K-point

DFT of y, with

Y (n, τ) = 1√
K

K−1∑
k=0

y(k, τ)e−j2πkn/K , n = 0, 1, ..., K − 1. (3.8)

By replacing (3.4) and (3.5) in (3.8), it follows that

Y STBC4(n, 4) =


A(n) + Ψ1(n) n = 0, K8 ,

3K
8 ,

5K
8 ,

7K
8 ,

Ψ1(n) otherwise,

(3.9)

and

Y ξ(n, 4) = Ψ2(n), ξ ∈ {SM, AL, STBC3} , (3.10)

where Ψ1(n) and Ψ2(n) represent the DFT of the noisy components, and A(n) represents

the peak values at n = 0, K8 ,
3K
8 ,

5K
8 ,

7K
8 , which depend on A and K. One can easily show

that A(0) =
√
K
2 A, A(K8 ) = A(7K

8 ) =
√
K
8 A

(
1− i

(
1 +
√

2
))
, and A(3K

8 ) = A(5K
8 ) =

√
K
8 A

(
1 + i

(
1−
√

2
))

.
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Fig. 3.1: |Y STBC4(n, 4)| with QPSK modulation and K = 8192, at SNR=20 dB over
Nakagami-m fading channel, m = 3.

The inspection of (3.9) and (3.10) indicates that |Y (n, 4)| exhibits 5 peaks at n =

0, K8 ,
3K
8 ,

5K
8 ,

7K
8 for STBC4, while it does not for the other codes; thus, this discriminating

feature can be exploited to recognize STBC43. |Y STBC4(n, 4)| is shown as a function of n

in Fig. 3.1. Based on the vector Y (n, 4), we define the vector Z(u, 4),

Z(u, 4) =
3∑
l=0

∣∣∣∣∣Y ( lK4 + u, 4)
∣∣∣∣∣
2

, u = 0, 1, ..., K4 − 1. (3.11)

For STBC4, ZSTBC4(u, 4) exhibits two peaks at u = 0, K8 , where

ZSTBC4(0, 4) = |Y STBC4(0, 4)|2, (3.12)

and
3Note that timing misalignment will introduce a cyclic shift in the FOLP sequence [A A A A 0 0 0 0

A A A A ...], which will affect neither the positions nor the magnitudes of the DFT peaks.
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ZSTBC4(K8 , 4)= |Y STBC4(K8 , 4)|2 + |Y STBC4(3K
8 , 4)|2

+|Y STBC4(5K
8 , 4)|2 + |Y STBC4(7K

8 , 4)|2.
(3.13)

Note that this operation reduces the number of peaks to two for STBC4, while it

strengthens the second peak value. Furthermore, we should note that Z(u, 4) has no

peaks for STBC3, AL, and SM.

Similarly, one can show that for τ = 1 and in the absence of the noisy components,

the FOLP sequence is

• STBC3: [0 B1 B2 0 0 B1 B2 0 ...], with

B1 = 2(mx,4,2 − 2(mx,2,1)2)h2
1h

2
2,

and

B2 = 2(mx,4,2 − 2(mx,2,1)2)h2
0h

2
1.

• AL: [C 0 C 0 C 0...], with

C = 2(mx,4,2 − 2(mx,2,1)2)h2
0h

2
1.

• SM: [0 0 0 ...].

In this case, |Y (n, 1)| exhibits four peaks at n = 0, K
4 ,

K
2 ,

3K
4 for STBC3, and two

peaks at n = 0, K2 for AL.

We further define the vector Z(u, 1) as,

Z(u, 1) =
1∑
l=0

∣∣∣∣∣Y ( lK2 + u, 1)
∣∣∣∣∣
2

, u = 0, 1, ..., K2 − 1. (3.14)

One can show that Z(u, 1) has two peaks at u = 0, K4 for STBC3, where
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ZSTBC3(0, 1) = |Y STBC3(0, 1)|2 + |Y STBC3(K2 , 1)|2, (3.15)

and

ZSTBC3(K4 , 1) = |Y STBC3(K4 , 1)|2 + |Y STBC3(3K
4 , 1)|2. (3.16)

Note that this operation reduces the number of peaks to two for STBC3, and strength-

ens the peak values. Furthermore, it can be easily shown that Z(u, 1) has only one peak

at u = 0 for AL, while it has no peaks for SM.

3.4.2 Decision tree algorithm for STBC classification

STBC classification is formulated as a hypothesis testing problem, i.e., under hypothesis

Hξ, the STBC ξ ∈ {SM, AL, STBC3, STBC4} is selected. The discriminating features

previously described are used with a decision tree classification algorithm, which is pre-

sented in Fig. 3.2.

At node 1, Z(u, 4) is used to discriminate between STBC4 and {SM, AL, STBC3}

based on the existence of the two peaks in Z(u, 4), whose difference in location is K
8 ,

|u1 − u2| =
K

8 , (3.17)

where

u1 = arg max
u

Z(u, 4), (3.18)

and

u2 = arg max
u,u 6=u1

Z(u, 4). (3.19)

At node 2, Z(u, 1) is used to discriminate between STBC3 and {SM, AL} based on

the existence of the two peaks in Z(u, 1), whose difference in location is K
4 . In other

words, if u1 and u2 are the positions of the two maximum values in Z(u, 1), STBC3 is
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Fig. 3.2: Decision tree algorithm for STBC classification.

declared present if

|u1 − u2| =
K

4 . (3.20)

Finally, at node 3, discrimination between AL and SM is performed based on the

peak positions in |Y (n, 1)| [14]. If n1 and n2 are the positions of the maximum values in

|Y (n, 1)|, AL is recognized if

|n1 − n2| =
K

2 . (3.21)

Otherwise, SM is declared present.
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3.5 Simulation results

3.5.1 Simulation setup

Unless otherwise mentioned, the number of observed samples, K, was set to 8192 and

quadrature phase-shift-keying (QPSK) modulation was used. The average probability

of correct classification, i.e, Pc = 4−1∑
ξ∈{SM, AL, STBC3, STBC4} P (ξ|ξ), was employed as

a performance measure. P (ξ|ξ) was estimated from 1000 Monte Carlo trials for each

ξ ∈ {SM, AL, STBC3, STBC4}. The received signal was affected by a frequency-flat

Nakagami-m fading channel [21] with m = 3, unless otherwise mentioned. Furthermore,

AWGN with variance σ2
w was considered. Given a unit variance constellation, the SNR is

defined as 10 log10(Nt/σ
2
w).

3.5.2 Performance evaluation

Fig. 3.3 shows Pc achieved with the proposed algorithm over Nakagami-m fading channel

with m = 1, 3, 10 and ∞. As expected, the performance improves as m increases. For

example, at SNR=10 dB, Pc = 0.9, 0.97, and 0.986 for m = 1, 3, and 10, respectively,

while it reaches 1 for m = ∞. This can be easily explained, as the variance of the

channel coefficients increases for lower m values, which strongly affects the value of the

discriminating peaks; thus, leading to erroneous decisions.

3.5.3 Effect of the number of observed samples

Fig. 3.4 illustrates the effect of the number of received samples on Pc. The performance

enhances by increasing K, as the peak values are proportional to
√
K. Moreover, in-

creasing K leads to a reduction of the effect of the noisy components. Note that, as

the proposed algorithm depends on fourth-order statistics, a large number of observed

samples is required for accurate estimation of the discriminating feature.
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Fig. 3.3: Average probability of correct classification, Pc, versus SNR with QPSK modu-
lation and K = 8192 for diverse Nakagami-m fading channels.
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Fig. 3.4: Effect of the number of received samples, K, on Pc with QPSK modulation over
Nakagami-m fading channel, m = 3.
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Fig. 3.5: Effect of the modulation type on Pc with K = 8192 over Nakagami-m fading
channel, m = 3.

3.5.4 Effect of modulation type

Fig. 3.5 shows the effect of the modulation type on Pc; a better performance is achieved

for M -PSK signals when compared with M -QAM signals. The explanation is that a(k)

is constant for M -PSK, whereas it is not for M -QAM. This yields an increase in the

variance of the noisy components as M increases, leading to performance degradation.

3.5.5 Effect of frequency offset

The previous analysis assumed carrier frequency synchronization. Here we evaluate the

performance of the proposed algorithm in the presence of a carrier frequency offset. Fig.

3.6 presents the effect of the frequency offset normalized to the data rate, ∆f , on Pc.

It can be noticed that the performance does not depend on ∆f . This is because ∆f

introduces a shift in the position of the peaks, and thus, it has no effect on the decision

made on the difference between these positions. Hence, the algorithm is robust to carrier

frequency offset.
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Fig. 3.6: Effect of the frequency offset on Pc with QPSK modulation and K = 8192 over
Nakagami-m fading channel, m = 3.

3.5.6 Effect of timing offset

The previous analysis additionally assumed perfect timing synchronization. Here we show

the performance of the proposed algorithm in the presence of a timing offset normalized

to the sampling period, 0 ≤ µ < 1. For the case of rectangular pulse shaping, after the

matched filtering, the timing offset µ translates into a two path channel [1 − µ, µ] [12].

Fig. 3.7 shows Pc for µ = 0, 0.2, 0.3 and 0.4. The performance slightly decreases for

µ = 0.2 and 0.3, while it reduces more for µ = 0.4.

3.5.7 Effect of the spatially correlated fading

Independent fading was considered in the previous analysis. Here we evaluate the clas-

sification performance under spatial correlation fading environment. Spatially correlated

Nakagami-m fading with correlation coefficient ρ, 0 ≤ ρ ≤ 1, is generated using corre-

lated complex-valued Gaussian variables ([22], p. 25), the inverse cumulative distribution
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Fig. 3.7: Effect of the timing offset on Pc with QPSK modulation and K = 8192 over
Nakagami-m fading channel, m = 3.

function (cdf) method [21], and an approximation of the Nakagami-m inverse cdf [21].

Fig. 3.8 shows the effect of the spatial correlation between transmitted antennas on the

Pc for ρ = 0, 0.5, and 1. Note that a similar performance is obtained for ρ = 0 and 0.5,

while the performance slightly improves for ρ = 1. This is because the performance is

basically controlled by the absolute values of the DFT peaks, which are proportional to

(|hi|2|hj|2), i, j = 0, 1, 2, i 6= j, and E {|hi|2|hj|2} is a slowly increasing function of ρ [14].

3.5.8 Performance comparison

Fig. 3.9 compares Pc obtained with the proposed algorithm, the optimal likelihood-based

algorithm in [11], and the second-order correlation-based algorithm in [12]. Note that the

former requires estimation of the channel coefficients, noise power, and modulation type,

and results are shown for perfect estimates of these parameters. As expected, under such

a scenario, it provides the best performance. On the other hand, the proposed algorithm

has no such requirements, which makes it suitable for practical applications. Moreover,
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Fig. 3.8: Effect of the spatial correlation between transmitted antennas on Pc with QPSK
modulation and K = 8192 over Nakagami-m fading channel, m = 3.

the computational cost measured by the required number of floating point operations

(flops) [23] for the proposed algorithm is 47K + 10K log2K, which is significantly lower

than K(240M2 + 640M3 + 1652M4) for the likelihood-based algorithm. For example,

with QPSK modulation and K = 8192, the proposed algorithm needs only 1.45 × 106

flops, whereas the likelihood-based algorithm requires 3.83× 109 flops. Furthermore, the

proposed algorithm greatly outperforms the algorithm in [12], which achieves a Pc = 0.5

even for high SNR. This can be explained as the second-order correlation provides a

discriminating feature for SM and STBC4 only. For AL and STBC3, it equals zero,

leading to the mis-classification of these codes as they are considered as SM.

3.6 Conclusion

This paper proposed an algorithm for blind classification of space-time block codes (STBCs)

using a single receive antenna. It was shown that the discrete Fourier transform (DFT)
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Fig. 3.9: Performance comparison of the proposed algorithm, the optimal likelihood-based
algorithm in [11], and the second-order correlation-based algorithm in [12] with QPSK
modulation and K = 8192 over Nakagami-m fading channel, m = 3.

of the fourth-order lag products (FOLPs) of the received signal provides a discriminating

signal feature; a decision tree classification algorithm was developed based on this fea-

ture. The algorithm performance was evaluated through simulations in terms of average

probability of correct classification. The results indicated the validity of the algorithm,

with the advantages that it does not require channel estimation, is robust to carrier fre-

quency offset, and exhibits a low sensitivity to timing offset. Moreover, it can benefit

from spatially correlated fading.
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Chapter 4

Blind Identification of SM and

Alamouti STBC-OFDM Signals

4.1 Abstract

This paper proposes an efficient identification algorithm for spatial multiplexing (SM)

and Alamouti (AL) coded orthogonal frequency division multiplexing (OFDM) signals.

The cross-correlation between the received signals from different antennas is exploited

to provide a discriminating feature to identify SM-OFDM and AL-OFDM signals. The

proposed algorithm requires neither estimation of the channel coefficients and noise power,

nor the modulation of the transmitted signal. Moreover, it does not need space-time

block code (STBC) or OFDM block synchronization. The effectiveness of the proposed

algorithm is demonstrated through extensive simulation experiments in the presence of

diverse transmission impairments, such as time and frequency offsets, Doppler frequency,

and spatially correlated fading.
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4.2 Introduction

Blind signal identification plays an important role in various military and commercial

applications, including electronic warfare, radio surveillance, software defined radio, and

spectrum awareness in cognitive radio [1–3]. For example, in software defined radio the

transmitter provides a flexible architecture, in which the same hardware can be used

for different transmission parameters, e.g., modulation format, coding rate, and antenna

configuration. Accordingly, algorithms are required at the receive-side to blindly estimate

these signal parameters [3].

Numerous studies have addressed the problem of blind signal identification in single-

input single-output scenarios. These include identification of the modulation format [4–8],

single- versus multi-carrier transmissions [9], the type of multi-carrier technique [10, 11],

and channel encoders [12–14], as well as blind parameter estimation [9, 15]. Recently,

multiple-input multiple-output (MIMO) technology has been adopted by different wireless

standards, such as IEEE 802.11n, IEEE 802.16e, and 3GPP LTE [16]. However, the

study of MIMO signal identification is at an early stage. For example, estimation of the

number of transmit antennas has been investigated in [17, 18], modulation identification

in [19–21], and space-time block code (STBC) identification in [22–27]. All these studies

considered single-carrier transmission over frequency-flat fading. However, in practice

high data rate applications necessitate transmissions over frequency-selective channels;

hence, the assumption of frequency-flat fading is not practically accepted. Additionally,

the orthogonal frequency division multiplexing (OFDM) technique has been adopted as

the main transmission scheme over frequency-selective fading channels [16]. Therefore,

investigating the problem of MIMO-OFDM signal identification becomes a practically

required challenge. Recently, this problem has been explored in [28–31]: modulation

identification for spatial multiplexing (SM)-OFDM was studied in [28] and STBC-OFDM

signal identification was considered in [29–31], with the latter being relevant for our work.
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The identification algorithm proposed in [29, 30] requires a large observation period to

achieve a good identification performance and suffers from high sensitivity to frequency

offset. In addition to these drawbacks, the algorithm in [31] is applicable only for a

reduced number of OFDM subcarriers.

In this paper, we propose an efficient algorithm to blindly identify Alamouti (AL)-

OFDM and SM-OFDM signals1. A novel cross-correlation is defined for the received

sequences with re-arranged blocks, which provides a powerful discriminating feature. Ad-

ditionally, a novel criterion of decision is developed based on the statistical properties

of the feature estimate. The proposed algorithm does not require information about the

channel, modulation format, noise power, or timing synchronization. Moreover, it has the

advantage of providing a good identification performance with a short observation period

and for various numbers of OFDM subcarriers, as well as of being relatively robust to the

frequency offset.

The rest of this paper is organized as follows. Section 4.3 introduces the system

model. Section 4.4 describes the proposed identification algorithm. Simulation results

are presented in Section 4.5. Finally, concluding remarks are drawn in Section 4.6.

4.3 System Model

We consider a MIMO-OFDM system with two transmit antennas, which employs either an

AL or SM encoder, as shown in Fig. 4.1 [32]. The data symbols, which are randomly and

independently drawn from an M -point constellation, M ≥ 4, are considered as blocks of

length N . These are fed to the encoder, whose output is [ c
(0)
2b+0 c

(0)
2b+1; c

(1)
2b+0 c

(1)
2b+1 ] for

AL-OFDM and [ c
(0)
b+0; c

(1)
b+0 ] for SM-OFDM. The notation c

(f)
Ub+u = [c(f)

Ub+u(0), ..., c(f)
Ub+u(N−

1Note that we assume that the received signal is either AL-OFDM or SM-OFDM. The AL and SM
STBCs are considered, as they are commonly used in various wireless standards, such as IEEE 802.11n,
IEEE 802.16e, and 3GPP LTE [16].
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(1)
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(1)
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s(0)

s(1)
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encoder

IFFT

IFFT

Add CP

Add CP

Fig. 4.1: Block diagram of a MIMO-OFDM transmitter [32].

1)] is used to represent the (Ub + u)th data block of N symbols from the fth antenna,

f = 0, 1, with b as the STBC block index, U as the length of the STBC block (U = 2 for

AL and U = 1 for SM), and u as the slot index within an STBC block, u = 0, 1, ..., U − 1.

For AL-OFDM, the data blocks have the property that [29]: c
(1)
2b+1 = (c(0)

2b+0)∗ and

c
(0)
2b+1 = −(c(1)

2b+0)∗, where ∗ denotes complex conjugate.

Each block c
(f)
Ub+u is input to an N -point inverse fast Fourier transform (N -IFFT),

leading to the time-domain block g
(f)
Ub+u = [g(f)

Ub+u(0), g(f)
Ub+u(1), ..., g(f)

Ub+u(N − 1)]. Then,

a cyclic prefix of length ν is added, with the resulting OFDM block written as g̃
(f)
Ub+u =

[g̃(f)
Ub+u(0), ..., g̃(f)

Ub+u(ν), g̃(f)
Ub+u(ν +1), ..., g̃(f)

Ub+u(N + ν − 1)] = [g(f)
Ub+u(N − ν), ..., g(f)

Ub+u(0),

g
(f)
Ub+u(1), ..., g(f)

Ub+u(N − 1)]. Accordingly, the time-domain samples of the OFDM block

can be expressed as

g̃
(f)
Ub+u(n) = 1√

N

∑N−1
p=0 c

(f)
Ub+u(p)e

j2πp(n−ν)
N ,

n = 0, 1, .., N + ν − 1.
(4.1)

With the transmit sequence from the fth antenna as s(f) =
[
...g̃

(f)
−1 , g̃

(f)
0 , g̃

(f)
1 , g̃

(f)
2 , ...

]
,

whose kth element is denoted by s(f)(k), the kth received sample at the ith receive an-

tenna, i = 0, 1, ..., Nr − 1, can be expressed as [29]
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r(i)(k) =
1∑

f=0

Lh−1∑
l=0

hfi(l)s(f)(k − l) + w(i)(k), (4.2)

where Lh is the number of propagation paths, hfi(l) is the channel coefficient correspond-

ing to the lth path between the transmit antenna f and the receive antenna i, and w(i)(k)

represents the complex additive white Gaussian noise (AWGN) at the ith receive antenna,

with zero mean and variance σ2
w.

4.4 Proposed algorithm

In this section, we investigate the second-order cross-correlation as a discriminating fea-

ture for AL-OFDM and SM-OFDM signal identification. Initially, we consider the Nr = 2

case, for which we explore the cross-correlation between {r(0)(k)} and {r(1)(k)} and de-

velop a new decision criterion based on the statistical properties of the feature estimate.

Then, we extend the analysis to the case of Nr > 2.

4.4.1 Cross-correlation properties (Nr = 2)

First, the cross-correlation properties for AL-OFDM and SM-OFDM signals are analyzed

at the transmit-side, and then the analysis is extended to the receive-side.

Transmit-side

Let us form the sequence s(f,τ), whose components are given by s(f,τ)(k) = s(f)(k+ τ),

τ = 0, 1, ..., N + ν − 1. This is further divided into consecutive (N + ν)-length blocks,

i.e., s(f,τ) = [...g̃(f,τ)
−1 , g̃

(f,τ)
0 , g̃

(f,τ)
1 , ..., g̃

(f,τ)
q−1 , g̃

(f,τ)
q , g̃

(f,τ)
q+1 , ...], as it is graphically illustrated

in Fig. 4.2.

Proposition 1. For the AL-OFDM signal, the samples of the (N + ν)-length blocks of

the newly formed sequence s(f,τ) exhibits the following properties:
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g̃
(f)
q−1 g̃(f)

q g̃
(f)
q+1

N + ν

N + ν

τ

g̃
(f,τ)
q−1

g̃(f,τ)
q g̃

(f,τ)
q+1

s(f)

s(f,τ)

Fig. 4.2: Illustration of the relation between the s(f) and s(f,τ) sequences. Solid lines are
used to delimitate the OFDM blocks of s(f), while dashed lines show the (N + ν)-length
blocks of s(f,τ).

• τ = 0 :

g̃
(0,0)
2b+0(n) = g̃

(1,0)∗
2b+1 (mod(−(n− ν), N) + ν),

n = 0, 1, ..., N + ν − 1,

(4.3a)

• τ = N/2 :

g̃
(0,N2 )
2b+0 (n) = g̃

(1,N2 )∗
2b+1 (mod(−(n− ν), N) + ν),

n = 0, 1, ..., ν,

(4.3b)

• τ = N/2 + ν :

g̃
(0,N2 +ν)
2b−1 (n) = g̃

(1,N2 +ν)∗
2b+0 (mod(−(n− ν), N) + ν),

n = N
2 ,

N
2 + 1, ..., N2 + 2ν.

(4.3c)

Such properties do not hold for any other values of τ and n. Additionally, these are

not valid for the SM-OFDM signal.

Proof: See Appendix.

Illustrative examples for Proposition 1 are provided in Fig. 4.3 for the AL-OFDM

signal with N = 4, ν = N
4 = 1, τ = 0, τ = 2 (= N

2 ), and τ = 3 (= N
2 + ν). Note that
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n mod(−(n− ν), N) + ν

1

4

2

3

2

1

2

0

3

4

g
(0)
2b+0(3) g

(0)
2b+0(0) g

(0)
2b+0(1) g

(0)
2b+0(2) g

(0)
2b+0(3)︸ ︷︷ ︸

︷ ︸︸ ︷
g
(1)∗
2b+0(1) g

(1)∗
2b+0(0) g

(1)∗
2b+0(3) g

(1)∗
2b+0(2) g

(1)∗
2b+0(1)

n = 0 1 2 3 4

N = 4ν = 1

n = 0 1 2 3 4

g
(0)
2b+0(1) g

(0)
2b+0(2)︸ ︷︷ ︸ g

(0)
2b+0(3)

g
(1)∗
2b+0(3)

︷ ︸︸ ︷
g
(1)∗
2b+0(2) g

(1)∗
2b+0(1)

g̃
(0,0)
2b+0

g̃
(1,0)
2b+1

g̃
(0,2)
2b+0

g̃
(1,2)
2b+1

τ = 0

τ = N
2 = 2

n = 0 1 2 3 4

g
(0)
2b+0(3) g

(0)
2b+0(0) g

(0)
2b+0(1)︸ ︷︷ ︸

︷ ︸︸ ︷
g
(1)∗
2b+0(1) g

(1)∗
2b+0(0) g

(1)∗
2b+0(3)

g̃
(0,3)
2b−1

g̃
(1,3)
2b+0

τ = N
2 + ν = 3

Fig. 4.3: Illustration of the cross-correlation between the (N + ν)-length blocks, with
N = 4 and ν = 1, and for τ = 0, N2 ,

N
2 + ν.
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the vector components are written based on (4.23)-(4.29), given in the appendix, and

by taking into account the relationship between g̃
(f)
2b+u and g

(f)
2b+u. The uncorrelated and

correlated samples are indicated by using ’×’ and braces, respectively.

Based on results of Proposition 1, we define the following cross-correlation

Rg(τ) = E
{

g̃(0,τ)
q

[
ḡ

(1,τ)
q+1

]T}
, lim

NB→∞

1
NB

NB−1∑
q=0

g̃(0,τ)
q

[
ḡ

(1,τ)
q+1

]T
,

(4.4)

where E{.} indicates the statistical expectation over the block, ḡ
(1,τ)
q+1 is an (N + ν)-length

block with components ḡ(1,τ)
q+1 (p) = g̃

(1,τ)
q+1 (mod(−(p − ν), N) + ν), p = 0, 1, ..., N + ν − 1,

the superscript T denotes matrix transpose, and NB is the number of blocks.

By using Proposition 1, one can easily see that for τ = 0, 1, ..., N + ν − 1, the cross-

correlation for AL-OFDM and SM-OFDM signals is respectively given by

RAL
g (τ) =



1
2(N + ν)σ2

d, τ = 0,
1
2(ν + 1)σ2

d, τ = N
2 ,

1
2(2ν + 1)σ2

d, τ = N
2 + ν,

0, otherwise,

(4.5)

and

RSM
g (τ) = 0, (4.6)

where σ2
d is the variance of the modulated symbols2. Note that the factor 1

2 in (4.5) is due

to the fact that correlation exists only between the (N + ν)-length blocks which belong

to the same AL block. According to (4.5) and (4.6), Rg(τ) provides a feature for the

identification of the AL-OFDM and SM-OFDM signals.

2Note that based on the Parseval’s theorem, the variance of the modulated symbols is equal to the
variance of the samples in the block g

(f)
Ub+u at the output of the IFFT.
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Fig. 4.4: |R̂a(τ)| with QPSK modulation, N = 512, ν = N/4, and NB = 100, at SNR
= 10 dB over multipath Rayleigh fading channel, Lh = 4, for (a) AL-OFDM and (b)
SM-OFDM signals.

Receive-side

Without loss of generality, we assume that the first intercepted sample corresponds to

the start of an OFDM block; later in the paper, we will relax this assumption. Let

us define the sequence r(i,τ), whose components are given by r(i,τ)(k) = r(i)(k + τ),

τ = 0, 1, ..., N + ν − 1, and further divide it into (N + ν)-length3 blocks, i.e., r(i,τ) =

[...,a(i,τ)
−1 ,a

(i,τ)
0 ,a

(i,τ)
1 , ...], where a(i,τ)

q = [a(i,τ)
q (0), ..., a(i,τ)

q (N + ν − 1)], with a(i,τ)
q (p) =

r(i,τ)(q(N + ν) + p), p = 0, 1, ..., N + ν − 1.

By using (4.2), the definition of the correlation in (4.4), (4.5), and (4.6), and taking

into account the independence between the transmitted data symbols, noise, and channel

coefficients, for τ = 0, 1, ..., N + ν − 1 it is straightforward to show that
3We assume that the OFDM block length is known. Different algorithms in the literature, e.g., [33],

can be combined with the proposed algorithm to blindly estimate the OFDM block length.
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RAL
a (τ) = E

{
ã(0,τ)
q

[
ā

(1,τ)
q+1

]T}

=



σ2
d

2 (N + ν)Ξ(τ), τ = 0, 1, ..., Lh − 1,

σ2
d

2 (ν + 1)Ξ(τ − N
2 ), τ = N

2 ,
N
2 + 1, ...,

N
2 + Lh − 1,

σ2
d

2 (2ν + 1)Ξ(τ − N
2 − ν), τ = N

2 + ν, N2 + ν + 1,

..., N2 + ν + Lh − 1,

0, otherwise,

(4.7)

and

RSM
a (τ) = 0, (4.8)

where Ξ(τ) = ∑Lh−1
l,l′=0(h00(l)h11(l′)− h10(l)h01(l′))δ(2τ − l − l′).

Fig. 4.4 shows the absolute value of the estimated cross-correlation, |R̂a(τ)|, τ =

0, 1, ..., N + ν − 1, for both AL-OFDM and SM-OFDM signals with QPSK modulation,

N = 512, ν = N/4, and NB = 100 over multipath Rayleigh fading channel with Lh = 4 at

SNR=10 dB. Note that the limited observation period results in non-zero, but statistically

non-significant values for |RAL
a (τ)| and |RSM

a (τ)| at the null positions. The existence of

the statistically significant peaks in |RAL
a (τ)| will be used as a discriminating feature to

identify AL-OFDM and SM-OFDM signals. It is worthy to mention that the first received

sample does not have to correspond to the start of an OFDM block. In such a case, the

peaks in Fig. 4.4 (a) will be cyclically shifted by the number of samples corresponding

to the delay between the first received sample and the start of the first received OFDM

block, which does not affect the discriminating feature.
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4.4.2 Discriminating feature and decision criterion (Nr = 2 case)

The identification of AL-OFDM and SM-OFDM signals relies on detecting whether sta-

tistically significant peaks are present or not in |R̂a(τ)|, τ = 0, 1, ..., N + ν − 1. This can

be formulated as a binary hypothesis testing problem, where under hypothesis H0 (no

peaks are detected) SM-OFDM is decided to be the received signal, whereas AL-OFDM

signal is selected under hypothesis H1 (peaks are detected). Here we propose a statistical

test to detect the peak presence.

Without loss of generality, we assume that the number of observed samples, K, cor-

responds to an integer number of OFDM blocks, NB = K
N+ν

4. In this case, Ra(τ) can be

estimated as

R̂a(τ) = 1
NB

NB−1∑
q=0

a(0,τ)
q

[
ā

(1,τ)
q+1

]T
. (4.9)

Following [34], R̂a(τ) can be represented as

R̂a(τ) = Ra(τ) + ψ(τ), (4.10)

where ψ(τ) is a zero-mean random variable representing the estimation error, which van-

ishes asymptotically (NB → ∞). As shown in (4.7), under the assumption that the

first received sample corresponds to the start of an OFDM block, RAL
a (τ) exhibits Lh

peaks around τ = 0, N2 , and
N
2 + ν. In general, if the first received sample corresponds

to the τ0th point in the OFDM block, the peaks in RAL
a (τ) will be around τ = τ0,

τ = τ1 = mod(τ0 + N
2 , N + ν), and τ = τ2 = mod(τ0 + N

2 + ν,N + ν).

4If this not the case, zeros can be added after the observed samples to ensure this relation. Ad-
ditionally, it is worth noting that the number of received blocks used for signal identification, NB , is
finite.
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Based on (4.7), (4.10) can be written for the AL-OFDM signal as

R̂AL
a (τ) = RAL

a (τ) + ψAL(τ), (4.11)

where RAL
a (τ) is non-zero for τ ∈ Ω0, Ω0 = {τ0, τ0 + 1, ..., τ0 +Lh− 1}∪{τ1, τ1 + 1, ..., τ1 +

Lh − 1} ∪ {τ2, τ2 + 1, ..., τ2 + Lh − 1}.

Furthermore, based on (4.8), (4.10) can be written for the SM-OFDM signal as

R̂SM
a (τ) = ψSM(τ), ∀τ = 0, 1, ..., N + ν − 1. (4.12)

As such, if Ra(τ) 6= 0 5 for at least one value of τ , the AL-OFDM signal is declared

present (H1 is true); otherwise, the SM-OFDM signal is declared present (H0 is true).

The proposed statistical test detects the presence of the non-zero value of Ra(τ) as follows.

For τ = 0, 1, ..., N + ν − 1, we define τp as the value of τ that maximizes |R̂a(τ)|,

τp = arg max
τ
|R̂a(τ)|. (4.13)

Based on the results provided in (4.7), one can notice that for the AL-OFDM signal,

τp will take values in the set {τ0, τ0 + 1, ..., τ0 + Lh − 1}. Depending on the τp value

within this range, in order to eliminate all possible peak positions, we consider the set

Ωp = {τp−Lh+1, ..., τp, ..., τp+Lh−1} ∪{τp1−Lh+1, ..., τp1, ..., τp1 +Lh−1}∪{τp2−Lh+

1, ..., τp2, ..., τp2 +Lh−1}, with τp1 = mod(τp+ N
2 , N+ν) and τp2 = mod(τp+ N

2 +ν,N+ν).

As such, Ra(τ) = 0 for both AL-OFDM and SM-OFDM signals for the delay range

τ /∈ Ωp, τ = 0, 1, ..., N + ν − 1. This result will be used in the definition of the test

statistic to avoid the statistically significant peaks.

When the SM-OFDM signal is received (under hypothesis H0), R̂a(τ) = ψ(τ) has

an asymptotic complex Gaussian distribution with zero-mean and variance σ2 [34, 35].
5Henceforth, the superscript AL or SM is dropped in the cross-correlation, as this is not known at

the receive-side.
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Therefore, the normalized cross-correlation,
√

2
σ2 R̂a(τ), asymptotically follows a complex

Gaussian distribution with zero-mean and variance equal to 2. Based on that, we define

the function F(τ) as

F(τ) = 2|R̂a(τ)|2
1

N+ν−Ωp

∑
τ ′ /∈Ωp
|R̂a(τ ′)|2

, (4.14)

where Ωp is the cardinality of the set Ωp.6 Note that the denominator in (4.14) is an

estimate of the variance of R̂a(τ) under hypothesis H0, which converges to σ2 when N

goes to infinity. As such, F(τ) has an asymptotic chi-square distribution with two degrees

of freedom under hypothesis H0 [36]. Accordingly, we define the test statistic Υ as

Υ = maxF(τ), τ = 0, 1, ..., N + ν − 1. (4.15)

Then we set a threshold, η, to yield a desired probability of false alarm, Pfa, i.e.,

Pfa = P (H1|H0) = P (Υ ≥ η). Using the expression of the cumulative distribution

function (CDF) of the chi-square distribution with two degrees of freedom [36], we can

find that

P (Υ < η) = (1− e
−η
2 )(N+ν). (4.16)

Since Pfa = 1− P (Υ < η), the threshold, η, can be calculated for a given Pfa as

η = −2 ln(1− (1− Pfa)
1

N+ν ). (4.17)

Finally, if Υ ≥ η, the AL-OFDM signal is decided to be received; otherwise, the

SM-OFDM signal is selected. A summary of the proposed identification algorithm is

given below.
6Note that in a practical implementation of the algorithm, knowledge of Lh is not required; a rea-

sonably large value is considered. However, this is significantly low when compared to N + ν and does
not affect the algorithm performance.
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Summary of the proposed identification algorithm (Nr = 2)
Required signal pre-processing: Estimation of the OFDM block length (N + ν).
Input: The observed K samples from two receive antennas

{
r(0)(k)

}K−1

k=0
and

{
r(1)(k)

}K−1

k=0
.

- Estimate the cross-correlation Ra(τ), τ = 0, 1, ..., N + ν − 1, using (4.9).
- Compute Υ using (4.14) and (4.15).
- Compute η using (4.17) based on the target Pfa.
if Υ ≥ η then

- the AL-OFDM signal is declared present (H1 true).
else

- the SM-OFDM signal is declared present (H0 true).
end if

4.4.3 Discriminating feature and decision criterion (Nr > 2 case)

In the previous section we considered two receive antennas (Nr = 2); here, we gener-

alize the proposed identification algorithm to Nr > 2. Basically, the cross-correlations

between each pair of the receive antennas will be combined to improve the discriminating

feature. Similar to (4.9), the cross-correlation between the ith and jth receive antennas,

R̂a,i,j(τ), i = 0, 1, ..., Nr − 2, j = i+ 1, i+ 2, ..., Nr − 1, can be estimated as

R̂a,i,j(τ) = 1
NB

NB−1∑
q=0

a(i,τ)
q

[
ā

(j,τ)
q+1

]T
. (4.18)

For each pair of receive antennas, the function Fi,j(τ), τ = 0, 1, ..., N + ν − 1, is

calculated as

Fi,j(τ) = 2|R̂a,i,j(τ)|2
1

N+ν−Ωp,i,j

∑
τ /∈Ωp,i,j

|R̂a,i,j(τ)|2
, (4.19)

and the functions for all pairs of receive antennas are combined as

Fc(τ) =
Nr−2∑
i=0

Nr−1∑
j=i+1

Fi,j(τ). (4.20)
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Accordingly, the test statistic is defined as

Υ = maxFc(τ). (4.21)

As Fi,j(τ) has an asymptotic chi-square distribution with two degrees of freedom under

hypothesis H0, Fc(τ) asymptotically follows the chi-square distribution with 2Nc degrees

of freedom, where Nc = Nr(Nr−1)
2 is the number of pairs of the receive antennas. Hence,

for a certain Pfa = P (H1|H0) = P (Υ ≥ η) we set the threshold based on the CDF of this

chi-square distribution, i.e.,

(1− Pfa)
1

N+ν = γ(Nc, η/2)
(Nc − 1)! , (4.22)

where γ(�, �) is the lower incomplete Gamma function [37]. Note that for Nr = 2, the

threshold, η, in (4.22) can be expressed as in (4.17). On the other hand, for Nr > 2,

the threshold η cannot be expressed in a closed form; in such cases, this is numerically

calculated for a certain Pfa using the bisection method [38].

4.4.4 Computational complexity

The computational complexity of the proposed algorithm is measured by the required

number of floating point operations (flops) [39], which can be easily found to be equal to

Nc(6NB(N + ν)2 + (2NB + 4)(N + ν)). For example, with N = 256, ν = N
4 , Nr = 2,

and NB = 100, the proposed algorithm requires 61,505,280 flops. Practically speaking,

a microprocessor with 79.992 Giga-flops7 can perform the calculations needed for the

proposed algorithm in approximately 769 µsec.
7[online], available: http://download.intel.com/support/processors/corei7/sb/core_i7-900_d.pdf

94



4.5 Simulation results

4.5.1 Simulation setup

The identification performance of the proposed algorithm was evaluated using Monte

Carlo simulations with 1000 trials for each signal type. The OFDM signals are generated

based on the IEEE 802.11e standard, with a useful OFDM block duration of 91.4 µsec

and a subcarrier spacing of 10.94 kHz. Unless otherwise mentioned, the modulation was

QPSK, the number of OFDM subcarriers N = 256 (2.5 MHz double-sided bandwidth),

the cyclic prefix ν = N/4, the number of observed OFDM blocks NB = 100, the number of

receive antennas Nr = 2, and the probability of false alarm Pfa = 10−3. Furthermore, the

received signal was affected by a frequency selective Rayleigh fading channel8 consisting

of Lh = 4 statistically independent taps, with an exponential power delay profile [40],

σ2(l) = exp(−l/5), where l = 0, ..., Lh − 1. A Butterworth filter was used at the receive-

side to remove the out-of-band noise, and the SNR was considered at the output of this

filter. The average probability of correct identification, Pc = 0.5(P (λ = AL|AL) +P (λ =

SM|SM)), was employed as a performance measure, where λ is the estimated signal type.

4.5.2 Performance evaluation

Fig. 4.5 shows the performance of the proposed algorithm in comparison with that in [29]

for different numbers of OFDM subcarriers, N . Apparently, the proposed algorithm

outperforms the algorithm in [29], which basically fails; the reason is that the latter

requires a large number of OFDM blocks to estimate the discriminating feature, e.g.,

simulation results show that NB = 10, 000 is needed to reach Pc ≈ 1 at SNR = -4 dB.

In terms of computational complexity, the algorithm in [29] requires (N +ν)(8NB +4)
8While a Rayleigh fading channel is considered here, it is worth noting that a similar performance

is achieved under multipath Nakagami-m fading conditions, as the distribution of the test statistic is
similar under diverse channel conditions, as shown by simulations.
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Fig. 4.5: Performance comparison between the proposed algorithm and the one in [29] for
various numbers of OFDM subcarriers, N , with NB = 100.

flops. If we compare the complexity of this algorithm and the proposed algorithm for given

values of NB, N , ν, and Nr, the algorithm in [29] is less computationally demanding. For

example, for NB = 100, N = 256, ν = N/4, and Nr = 2, the former requires 257,280

flops, while the latter needs 61,505,280 flops. However, such a complexity comparison

is not fair due to the difference in performance (as discussed above, based on results in

Fig. 4.5). If we consider the NB values for which the algorithms reach Pc ≈ 1 at a given

SNR, along with the fact that the time to make a decision consists of both observation

and computing times, then it can be easily found that the algorithm in [29] requires a

longer time for decision. For example, when a microprocessor with 79.992 Giga-flops is

employed for computation, the algorithm in [29] needs 1.1428 sec to make a decision with

Pc ≈ 1 at SNR= -4 dB (NB = 10, 000), whereas the proposed algorithm requires only

12.194 msec (NB = 100).

Furthermore, it can be observed from Fig. 4.5 that the identification performance of

the proposed algorithm significantly improves by increasing N . This is because the peak
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Fig. 4.6: The effect of the number of OFDM blocks, NB, on the average probability of
correct identification, Pc.

values in |RAL
a (τ)| are significantly enhanced, i.e., |RAL

a (τ)| is proportional to (N + ν)

as can be noticed from (4.7). This reflects on the discriminating feature and leads to

identification performance improvement.

4.5.3 Effect of the number of OFDM blocks

Fig. 4.6 shows the effect of the number of OFDM blocks, NB, on the average probability

of correct identification, Pc. A comparison with the algorithm in [29] for NB = 400 is

also included. As expected, increasing NB enhances the performance of the proposed

algorithm, as it leads to a better estimate of the cross-correlation, R̂a(τ). Note that the

proposed algorithm provides an excellent performance (Pc ≈ 1) at SNR = 0 dB and with

a small number of blocks, NB = 50, whereas the algorithm in [29] does not achieve a good

performance even for NB = 400.
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Fig. 4.7: The effect of the cyclic prefix length, ν, on the average probability of correct
identification, Pc.

4.5.4 Effect of the cyclic prefix length

Fig. 4.7 shows the average probability of correct identification, Pc, for ν = N/4, N/16,

and N/32. One can notice that the performance slightly improves by increasing ν; this

is because under the H1 hypothesis (the AL-OFDM signal), the peak values in |R̂AL
a (τ)|

slightly increase with ν. It is worth noting that the improvement obtained by increasing

N is more significant, as was seen in Fig. 4.5.

4.5.5 Effect of the number of receive antennas

Fig. 4.8 illustrates the effect of the number of receive antennas, Nr, on the average

probability of correct identification, Pc. It can be seen that the identification performance

is improved by increasing Nr. For example, with Nr = 5, an excellent performance is

obtained at SNR = −10 dB, when compared with SNR = −2 dB for Nr = 2. However,

the computational complexity increases by a factor of 10, according to results presented

in Section 4.4.4.
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Fig. 4.8: The effect of the number of receive antennas, Nr, on the average probability of
correct identification, Pc.

4.5.6 Effect of the modulation format

Fig. 4.9 presents the effect of the modulation format on the average probability of correct

identification, Pc. Clearly, it does not affect the performance of the proposed algorithm,

as the peak values in |RAL
a (τ)| do not depend on the modulation format, according to

(4.7).

4.5.7 Effect of the timing offset

Perfect timing synchronization was assumed in the previous study. Here we evaluate the

performance of the proposed algorithm in the presence of a timing offset. As mentioned

in Section 4.4, a timing offset equal to a multiple integer of the sampling period leads to

a shift in the positions of the |RAL
a (τ)| peaks by an amount corresponding to that offset;

consequently, this does not affect the discriminating feature. On the other hand, when

the timing offset is a fraction of the sampling period, its effect is modeled as a two path

channel [1− µ, µ], where 0 ≤ µ < 1 is the normalized timing offset [22]. Fig. 4.10 shows
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Fig. 4.9: The effect of the modulation format on the average probability of correct iden-
tification, Pc.

the average probability of correct identification, Pc, for µ = 0, 0.2, and 0.5. The results

indicate that while the performance slightly decreases at lower SNRs, it is not affected at

higher SNRs. This can be explained, as the effect of µ can be considered as an additional

noise component that affects the discriminating peaks in |RAL
a (m)|. At higher SNRs,

the discriminating peaks are strong enough, and the effect of such noise component is

negligible.

4.5.8 Effect of the frequency offset

Fig. 4.11 presents the effect of the frequency offset normalized to the subcarrier spac-

ing, ∆f , on the average probability of correct identification, Pc, at SNR = 0 dB and

for different values of N and NB. Note that as the OFDM block duration is constant

regardless of N (see Section 1.5.1), the observation period increases with NB, which leads

to an increased effect of the frequency offset on the performance. It is worth noting that

a reduced number of OFDM blocks is required to achieve a good performance for a larger
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Fig. 4.10: The effect of the timing offset on the average probability of correct identification,
Pc.

number of subcarriers, which results in a lower sensitivity to the frequency offset. Results

in Fig. 4.11 show a good robustness for ∆f < 10−2 when N = 2048 and NB = 6.

4.5.9 Effect of the Doppler frequency

The previous analysis assumed constant channel coefficients over the observation period.

Here, we consider the effect of the Doppler frequency on the performance of the proposed

algorithm. Fig. 4.12 shows the average probability of correct identification, Pc, versus

the absolute value of the Doppler frequency normalized to the sampling rate, |fd|, at SNR

= 0 dB and NB = 50 and 100. The results show a good robustness for |fd| < 10−4.

4.5.10 Effect of the spatially correlated fading

In the previous study, independent fading was considered. Here, we show the effect of the

spatially correlated fading on the performance of the proposed algorithm. Fig. 4.13 shows

the average probability of correct identification of the proposed algorithm, Pc, versus the
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spatial correlation coefficient, ρ, at SNR = −4 dB and 0 dB. As shown in (4.7), the

channel coefficients affect the peak values in |R̂AL
a (τ)| by the factor |∑Lh−1

l,l′=0(h00(l)h11(l′)−

h10(l)h01(l′))|. At high values of ρ, h00(l) ≈ h01(l) and h11(l′) ≈ h10(l′), l, l′ = 0, 1, ..., Lh−

1. As such, the discriminating peaks vanish and the identification performance degrades9.

As expected, the performance is more affected by spatially correlated fading at lower

SNR.

4.6 Conclusion

The identification of the AL-OFDM and SM-OFDM signals has been investigated in

this paper. A new cross-correlation was developed, which provides an efficient feature

for signal identification. Based on the statistical properties of the feature estimate, a
9It is worth noting that the same performance is obtained if the spatially correlated fading occurs at

the transmit-side; in this case h00(l) ≈ h10(l) and h11(l′) ≈ h01(l′), l, l′ = 0, 1, ..., Lh − 1, at high values
of the correlation coefficient.
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novel criterion of decision was introduced. The proposed identification algorithm, which

employs the aforementioned discriminating feature and decision criterion, provides an

improved performance when compared with the previous work in the literature, at lower

SNR and with reduced observation period. The algorithm has the advantages that it does

not require channel and noise power estimation, modulation identification or timing syn-

chronization. Furthermore, it exhibits a relatively low sensitivity to spatially correlated

fading and frequency offset.

Appendix

Proof of Proposition 1

For the AL-OFDM signal, by using the definition of the (N+ν)-length blocks in the s(f,τ)

sequence (see Fig. 4.2 for the graphical illustration), one can easily express the samples

of g̃
(0,τ)
2b+0 and g̃

(1,τ)
2b+1 respectively as

g̃
(0,τ)
2b+0(n) =



g̃
(0)
2b+0(n+ τ), n = 0, 1, ...,

N + ν − τ − 1,

g̃
(0)
2b+1(n+ τ −N − ν), n = N + ν − τ,

..., N + ν − 1,

(4.23)

and

g̃
(1,τ)
2b+1(n′) =



g̃
(1)
2b+1(n′ + τ), n′ = 0, 1, ...,

N + ν − τ − 1,

g̃
(1)
2(b+1)(n′ + τ −N − ν), n′ = N + ν − τ,

..., N + ν − 1.

(4.24)
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Based on (4.1), for the case of τ = 0, it can be written that

g̃
(0,0)
2b+0(n) = g̃

(0)
2b+0(n) = 1√

N

∑N−1
p=0 c

(0)
2b+0(p)e

j2πp(n−ν)
N ,

n = 0, 1, .., N + ν − 1,
(4.25)

and
g̃

(1,0)
2b+1(n′) = g̃

(1)
2b+1(n′) = 1√

N

∑N−1
p=0 c

(1)
2b+1(p)e

j2πp(n′−ν)
N ,

n′ = 0, 1, .., N + ν − 1.
(4.26)

For AL-OFDM signal, one can show that c(1)
2b+1(p) = (c(0)

2b+0(p))∗, p = 0, 1, ..., N − 1.

By taking the complex conjugate of (4.26), it is straightforward that

g̃
(1,0)∗
2b+1 (n′) = 1√

N

∑N−1
p=0 c

(0)
2b+0(p)e

−j2πp(n′−ν)
N ,

n′ = 0, 1, .., N + ν − 1.
(4.27)

It is easy to see that g̃(0,0)
2b+0(n) = g̃

(1,0)∗
2b+1 (n′), n, n′ = 0, 1, ..., N + ν − 1 only when

n′ − ν = mod(−(n − ν), N). A few examples are given as follows: n = 0, n′ = 2ν;

n = ν, n′ = ν; n = ν + 1, n′ = N + ν − 1; and n = N + ν − 1, n′ = ν + 1. Hence, one can

notice that n+n′ = 2ν for n = 0, 1, ..., ν, and n+n′ = N + 2ν for n = ν+ 1, ..., N +ν−1.

This leads to the result shown in (4.3a).

For τ > 0, it is straightforward that g̃
(0,τ)
2b+0 and g̃

(1,τ)
2b+1 belong to the (same) bth AL

block for n, n′ = 0, 1, ..., N + ν − τ − 1. Moreover, based on the aforementioned results

regarding n and n′, one can see that g̃(0,τ)
2b+0(n) = g̃

(1,τ)∗
2b+1 (n′ = mod(−(n − ν), N) + ν) if n

and τ satisfy n + n′ = 2ν,N + 2ν and n + n′ + 2τ = 2ν,N + 2ν. If n + n′ = 2ν and

n + n′ + 2τ = N + 2ν, then τ = N/2, n = 0, 1, ..., ν. This directly leads to the result

in (4.3b). On the other hand, if n + n′ = n + n′ + 2τ (either equal to 2ν or N + 2ν),

then τ = 0, n = 0, 1, ..., N + ν − 1; this leads to the case of τ = 0 discussed above.

Furthermore, if n + n′ = N + 2ν and n + n′ + 2τ = 2ν, then τ = −N/2, which is out of

range (0 ≤ τ < N + ν).
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Moreover, also for the AL-OFDM signal, one can similarly express the samples of g̃
(0,τ)
2b−1

and g̃
(1,τ)
2b+0 respectively as

g̃
(0,τ)
2b−1(n) =



g̃
(0)
2b−1(n+ τ), n = 0, 1, ...,

N + ν − τ − 1,

g̃
(0)
2b+0(n+ τ −N − ν), n = N + ν − τ,

..., N + ν − 1,

(4.28)

and

g̃
(1,τ)
2b (n′) =



g̃
(1)
2b+0(n′ + τ), n′ = 0, 1, ...,

N + ν − τ − 1,

g̃
(1)
2b+1(n′ + τ −N − ν), n′ = N + ν − τ,

..., N + ν − 1.

(4.29)

Accordingly, g̃(0,τ)
2b−1(n) and g̃

(1,τ)
2b+0(n′) belong to the (same) bth AL block for n, n′ =

N + ν − τ, ..., N + ν − 1. Following the same aforementioned analysis, one can prove

results given in (4.3c).

References

[1] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modula-

tion classification techniques: Classical approaches and new trends,” IET Commun.,

vol. 1, pp. 137–156, Apr. 2007.

106



[2] D. Cabric, “Addressing feasibility of cognitive radios,” IEEE Signal Process. Mag.,

vol. 25, pp. 85–93, Nov. 2008.

[3] J. L. Xu, W. Su, and M. Zhou, “Software-defined radio equipped with rapid modu-

lation recognition,” IEEE Trans. Veh. Technol., vol. 59, pp. 1659–1667, May 2010.

[4] H.-C. Wu, M. Saquib, and Z. Yun, “Novel automatic modulation classification using

cumulant features for communications via multipath channels,” IEEE Trans. Wire-

less Commun., vol. 7, pp. 3098–3105, Aug. 2008.

[5] W. Su, “Feature space analysis of modulation classification using very high-order

statistics,” IEEE Commun. Lett., vol. 17, pp. 1688–1691, Sep. 2013.

[6] W. Su, J. L. Xu, and M. Zhou, “Real-time modulation classification based on maxi-

mum likelihood,” IEEE Commun. Lett., vol. 12, pp. 801–803, Nov. 2008.

[7] O. A. Dobre, M. Oner, S. Rajan, and R. Inkol, “Cyclostationarity-based robust

algorithms for QAM signal identification,” IEEE Commun. Lett., vol. 16, pp. 12–15,

Jan. 2012.

[8] D. Grimaldi, S. Rapuano, and L. De Vito, “An automatic digital modulation classifier

for measurement on telecommunication networks,” IEEE Trans. Instrum. Meas.,

vol. 56, pp. 1711–1720, Oct. 2007.

[9] Q. Zhang, O. A. Dobre, Y. A. Eldemerdash, S. Rajan, and R. Inkol, “Second-order

cyclostationarity of BT-SCLD signals: Theoretical developments and applications to

signal classification and blind parameter estimation,” IEEE Trans. Wireless Com-

mun., vol. 12, pp. 1501–1511, Apr. 2013.

[10] A. Bouzegzi, P. Ciblat, and P. Jallon, “New algorithms for blind recognition of OFDM

based systems,” Elsevier Signal Processing, vol. 90, pp. 900–913, Mar. 2010.

107



[11] A. Al-Habashna, O. A. Dobre, R. Venkatesan, and D. C. Popescu, “Second-order cy-

clostationarity of mobile WiMAX and LTE OFDM signals and application to spec-

trum awareness in cognitive radio systems,” IEEE J. Sel. Topics Signal Process.,

vol. 6, pp. 26–42, Feb. 2012.

[12] T. Xia and H.-C. Wu , “Blind identification of nonbinary LDPC codes using average

LLR of syndrome a posteriori probability,” IEEE Commun. Lett., vol. 17, pp. 1301–

1304, Jul. 2013.

[13] ——, “Novel blind identification of LDPC codes using average LLR of syndrome a

posteriori probability,” IEEE Trans. Signal Process., vol. 62, pp. 632–640, Feb. 2014.

[14] ——, “Joint blind frame synchronization and encoder identification for low-density

parity-check codes,” IEEE Commun. Lett., vol. 18, pp. 352–355, Feb. 2014.

[15] H.-C. Wu, X. Huang, and D. Xu, “Pilot-free dynamic phase and amplitude estima-

tions for wireless ICI self-cancellation coded OFDM systems,” IEEE Trans. Broad-

cast., vol. 51, pp. 94–105, Mar. 2005.

[16] L. Korowajczuk, LTE, WiMAX and WLAN Network Design, Optimization and Per-

formance Analysis. Wiley, 2011.

[17] M. Shi, Y. Bar-Ness, and W. Su, “Adaptive estimation of the number of transmit

antennas,” in Proc. IEEE MILCOM, 2007, pp. 1–5.

[18] O. Somekh, O. Simeone, Y. Bar-Ness, and W. Su, “Detecting the number of transmit

antennas with unauthorized or cognitive receivers in MIMO systems,” in Proc. IEEE

MILCOM, 2007, pp. 1–5.

108



[19] K. Hassan, I. Dayoub, W. Hamouda, C. N. Nzeza, and M. Berbineau, “Blind digi-

tal modulation identification for spatially-correlated MIMO systems,” IEEE Trans.

Wireless Commun., vol. 11, pp. 683–693, Feb. 2012.

[20] V. Choqueuse, S. Azou, K. Yao, and G. Burel, “ Blind modulation recognition for

MIMO systems,” J. Military Technical Academy Review, vol. XIX, pp. 183–196,

Jun. 2009.

[21] M. S. Mühlhaus, M. Öner, O. A. Dobre, and F. K. Jondral, “A low complexity mod-

ulation classification algorithm for MIMO systems,” IEEE Commun. Lett., vol. 17,

pp. 1881–1884, Oct. 2013.

[22] V. Choqueuse, K. Yao, L. Collin, and G. Burel, “Hierarchical space-time block code

recognition using correlation matrices,” IEEE Trans. Wireless Commun., vol. 7, pp.

3526–3534, Sep. 2008.

[23] V. Choqueuse, M. Marazin, L. Collin, K. C. Yao, and G. Burel, “Blind recognition

of linear space–time block codes: A likelihood-based approach,” IEEE Trans. Signal

Process., vol. 58, pp. 1290–1299, Mar. 2010.

[24] M. Marey, O. A. Dobre, and R. Inkol, “Classification of space-time block codes based

on second-order cyclostationarity with transmission impairments,” IEEE Trans.

Wireless Commun., vol. 11, pp. 2574–2584, Jul. 2012.

[25] M. Luo, L. Gan, and L. Li, “Blind recognition of space-time block code using corre-

lation matrices in a high dimensional feature space,” J. Inf. Comput. Sci, vol. 9, pp.

1469–1476, Jun. 2012.

[26] G. Qian, L. Li, M. Luo, H. Liao, and H. Zhang, “Blind recognition of space-time

block code in MISO system,” EURASIP JWCN, vol. 1, pp. 164–176, Jun. 2013.

109



[27] Y. A. Eldemerdash, M. Marey, O. A. Dobre, G. Karagiannidis, and R. Inkol, “Fourth-

order statistics for blind classification of spatial multiplexing and Alamouti space-

time block code signals,” IEEE Trans. Commun., vol. 61, pp. 2420–2431, Jun. 2013.

[28] H. Agirman-Tosun, Y. Liu, A. M. Haimovich, O. Simeone, W. Su, J. Dabin, and

E. Kanterakis, “Modulation classification of MIMO-OFDM signals by independent

component analysis and support vector machines,” in Proc. IEEE ASILOMAR, 2011,

pp. 1903–1907.

[29] M. Marey, O. A. Dobre, and R. Inkol, “Novel algorithm for stbc-ofdm identification

in cognitive radios,” in Proc. IEEE ICC. IEEE, 2013, pp. 2770–2774.

[30] ——, “Blind STBC identification for multiple-antenna OFDM systems,” IEEE Trans.

Commun., vol. 62, pp. 1554–1567, May 2014.

[31] E. Karami and O. A. Dobre, “Identification of SM-OFDM and AL-OFDM signals

based on their second-order cyclostationarity,” IEEE Trans. Veh. Technol., vol. 64,

pp. 942–953, Mar. 2015.

[32] Y. G. Li, J. H. Winters, and N. R. Sollenberger, “MIMO-OFDM for wireless commu-

nications: signal detection with enhanced channel estimation,” IEEE Trans. Com-

mun., vol. 50, pp. 1471–1477, Sep. 2002.

[33] A. Punchihewa, V. K. Bhargava, and C. Despins, “Blind estimation of OFDM pa-

rameters in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 10, pp.

733–738, Mar. 2011.

[34] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory . Pren-

tice Hall, 1993.

110



[35] D. R. Brillinger, Time Series: Data Analysis and Theory. Society for Industrial and

Applied Mathematics, 2001.

[36] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes.

McGraw-Hill, 2001.

[37] M. K. Simon, Probability Distributions Involving Gaussian Random Variables: A

Handbook for Engineers and Scientists. Springer, 2007.

[38] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Springer, 2002.

[39] D. Watkins, Fundamentals of Matrix Computations. Wiley, 2002.

[40] M. Patzold, A. Szczepanski, and N. Youssef, “Methods for modeling of specified and

measured multipath power-delay profiles,” IEEE Trans. Veh. Technol., vol. 51, pp.

978–988, Sep. 2002.

111



Chapter 5

On The Identification of SM and

Alamouti Coded SC-FDMA Signals:

A Statistical-Based Approach

5.1 Abstract

In this paper, we investigate the identification of spatial multiplexing (SM) and Alamouti

(AL) space-time block code (STBC) with single carrier frequency division multiple access

(SC-FDMA) signals. A discriminating feature is provided based on a fourth-order statistic

of the received signal. A constant false alarm decision criterion is developed based on the

statistical properties of the feature estimate. Furthermore, the theoretical performance

analysis of the proposed identification algorithm is presented. The algorithm does not

require channel or noise power estimation, modulation classification, and block synchro-

nization. Extensive simulation results show the validity of the proposed algorithm, as

well as a very good agreement with the theoretical analysis.
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5.2 Introduction

With the extensive growth in wireless communication services, the available spectrum

has become increasingly crowded, and limiting the interference as well as maximizing

the capacity in wireless networks represents a challenge for network designers. In this

context, intelligent radios appear as a promising solution for managing the interference

and capacity problems in crowded wireless networks. Such radios have the capability of

adapting the transmission parameters according to the existing signals in the spectrum to

achieve minimum interference, and thus, to increase the capacity [1]. Signal identification

is considered as the core of intelligent radios and represents the process of determining

main parameters describing the structure of the received signals, such as transmission

scheme, modulation type, and number of transmit antennas. Signal identification has

been initially employed for military applications, such as radio surveillance and electronic

warfare. Recently, it has been considered also for several commercial applications, such

as software-defined radio and spectrum awareness in cognitive radio [2–5].

Extensive studies have been devoted to signal identification problems for single-input

single-output (SISO) scenarios [6–12]. However, with the rapid adoption of the multiple-

input multiple-output (MIMO) technology, additional signal identification problems have

been introduced, such as estimation of the number of transmit antennas and identifica-

tion of the space-time block codes (STBCs). Moreover, existing algorithms for modulation

identification in SISO scenarios cannot be employed for signals transmitted with multiple

antennas, and new algorithms are required. Investigation of MIMO signal identification

is at an early stage; modulation identification has been addressed in [13–16], estimation

of the number of transmit antennas in [17–20], and STBC identification in [21–27]. Most

of these studies considered single carrier transmissions over frequency-flat fading chan-

nels [13–15, 17–19, 21–24], which is not practically valid for high data rate applications.

A few recent works studied orthogonal frequency division multiplexing (OFDM) signals
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over frequency-selective fading channels [16, 20, 25–27]. For STBC identification, the al-

gorithms developed for OFDM signals [25–27] assumed intelligent radios equipped with

multiple receive antennas, which is not always a practical case due to power, cost, and

size limitations. Second-order statistics were employed as discriminating features.

To the best of the authors’ knowledge, there exists no study in the literature for

the identification of single carrier frequency division multiple access (SC-FDMA) signals

transmitted with multiple antennas. SC-FDMA represents an alternative to OFDM, being

used in uplink LTE and LTE-A [28].

This paper fills in the gap regarding the identification of STBC for SC-FDMA signals.

We propose a fourth-order statistic-based algorithm to identify spatial multiplexing (SM)

and Alamouti (AL) STBC for SC-FDMA signals when the receiver is equipped with

a single antenna. A theoretical analysis of the identification performance is performed

and a closed form expression for the probability of correct identification is obtained.

The proposed algorithm provides a good identification performance without requiring

STBC/SC-FDMA block synchronization or knowledge of the modulation, channel, and

noise power. Furthermore, it has the advantage of being robust to spatially correlated

fading.

The rest of this paper is organized as follows. The system model is introduced in

Section 5.3, and the properties of AL and SM SC-FDMA signals, leading to the discrim-

inating feature, are presented in Section 5.4. The proposed identification algorithm is

described in Section 5.5, and the corresponding theoretical performance analysis is given

in Section 5.6. Finally, simulation results are reported in Section 5.7, and conclusions are

drawn in Section 5.8.
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Fig. 5.1: Block diagram of an AL/ SM SC-FDMA transmitter equipped with two antennas
[29].

5.3 System model

The block diagram of a transmitter using either AL or SM SC-FDMA signals and equipped

with two antennas is shown in Fig. 5.1. The modulated data symbols, which are randomly

and independently generated from an Ω-point constellation, Ω > 4, are considered as a

stream of M -length blocks, i.e., the ith data block is di = [di(0), ..., di(M − 1)]. Each

block is input to anM -point fast Fourier transform (FFT) leading to a stream ofM -length

blocks representing the frequency-domain symbols corresponding to the modulated data

blocks, Di = [Di(0), ..., Di(M − 1)]. Each two consecutive frequency-domain blocks, i.e.,

with i = 2b, 2b + 1, are encoded using a space-time coding matrix which is respectively

defined for AL and SM STBCs as

G(AL) ([D2b+0,D2b+1]) =

 D2b+0 −D∗
2b+1

D2b+1 D∗
2b+0

 =

 C
(0)
2b+0 C

(0)
2b+1

C
(1)
2b+0 C

(1)
2b+1

 , (5.1)

and

G(SM) ([D2b+0,D2b+1]) =

 D2b+0

D2b+1

 =

 C
(0)
2b+0

C
(1)
2b+0

 , (5.2)

where C
(f)
Ub+u represents the (Ub + u)th block of length M transmitted from the fth
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antenna, f = 0, 1, b is an integer denoting the STBC block index, U is the length of the

STBC (U = 2 for AL and U = 1 for SM), u is the slot index within the bth STBC block,

u = 0, 1, ..., U − 1, and * denotes the complex conjugate.

For each transmit branch, a distributed subcarrier mapping is used to assign the M

symbols within the block C
(f)
Ub+u to N subcarriers, N > M . Note that N = λM , with

λ as an integer representing the expansion factor, and the unoccupied subcarriers are

set to zero [28]. The mapped block C̃
(f)
Ub+u is converted into a time-domain sequence

c̃
(f)
Ub+u = [c̃(f)

Ub+u(0), ..., c̃(f)
Ub+u(N − 1)] using an N -point inverse FFT (IFFT). Then, the

cyclic prefix of length ν is added to the block c̃
(f)
Ub+u by appending the last ν samples as

a prefix, leading to s
(f)
Ub+u = [c̃(f)

Ub+u(N − ν), ..., c̃(f)
Ub+u(N − 1), c̃(f)

Ub+u(0), ..., c̃(f)
Ub+u(N − 1)],

with components expressed as

s
(f)
Ub+u(n) = 1√

N

N−1∑
p=0

C̃
(f)
Ub+u(p)e

j2πp(n−ν)
N , n = 0, 1, .., N + ν − 1. (5.3)

Accordingly, the transmitted sequence from the fth antenna can be expressed as

x(f) = [s(f)
0 , s

(f)
1 , s

(f)
2 ...]. We consider a receiver equipped with a single antenna, where

the kth sample can be expressed as

y(k) = hxT
k + w(k), (5.4)

where the superscript T denotes transpose, h = [h0(0), h0(1), ..., h0(Lh−1), h1(0), ..., h1(Lh−

1)], xk = [x(0)(k), x(0)(k − 1), ..., x(0)(k − Lh − 1), x(1)(k), ..., x(1)(k − Lh − 1)], with Lh as

the number of propagation paths, hf (l) as the channel coefficient corresponding to the

lth path between the transmit antenna f and the receive antenna, l = 0, 1, ..., Lh − 1,

and x(f)(k− l) as the (k− l)th element of the sequence transmitted via the fth antenna,

and w(k) represents the zero-mean complex additive white Gaussian noise (AWGN) with

variance σ2
w.
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5.4 Properities of AL and SM SC-FDMA signals and

discriminating feature

In this section, we first introduce properties exhibited by the AL and SM SC-FDMA

signals, which we then employ to obtain the feature for their identification.

Property 1. For the distributed subcarrier mapping, the time-domain samples

c̃
(f)
Ub+u(v), v = 0, 1, ..., N − 1, corresponding to DUb+u (AL and SM) and D∗

Ub+u (AL)

are respectively expressed as

c̃
(f)
Ub+u(v = m+ aM) = 1√

λ
dUb+u(m), m = 0, 1, ...,M − 1, a = 0, 1, ..., λ− 1, (5.5)

and

c̃
(f)
Ub+u(v = m+ aM) = 1√

λ
d∗Ub+u(mod(−m,M)), m = 0, 1, ...,M − 1, a = 0, 1, ..., λ− 1,

(5.6)

where mod is the modulo operation.

Proof: See Appendix A.

In other words, the transmitted symbols from each antenna belong to the Ω-point

constellation, scaled by a factor of 1√
λ
; it should be noted that this also holds after adding

the cyclic prefix.

Property 2. Based on the structure of the AL coding matrix and by following [27],

one can easily show for the AL SC-FDMA signal that

s
(0)
2b+0(n) = s

(1)∗
2b+1(mod(−(n− ν), N) + ν), ∀n = 0, 1, ..., N + ν − 1. (5.7)
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Property 3. Let x(f,τ) denote the sequence with components x(f,τ)(k) = x(f)(k + τ),

τ = 0, 1, ..., N + ν − 1. This is split into consecutive (N + ν)-length blocks, i.e., x(f,τ) =

[s(f,τ)
0 , s

(f,τ)
1 , ..., s

(f,τ)
i−1 , s

(f,τ)
i , s

(f,τ)
i+1 , ...].

By using Property 1 and Property 2, and following the analysis in [27], for the AL

SC-FDMA signal, it can be shown that the components of s
(0,τ)
i and s

(1,τ)
i+1 satisfy1

s
(0,τ)
i (n) = s

(1,τ)∗
i+1 (mod(−(n− ν), N) + ν), (5.8)

if and only if

• τ = 0, i = 2b, and n = 0, 1, ..., N + ν − 1,

• τ = N/4, i = 2b, and n = 0, 1, ..., ν, n = N/4 + ν + 1, ..., 3N/4 + ν − 1,

• τ = N/2, i = 2b, and n = 0, 1, ..., ν,

• τ = N/2 + ν, i = 2b− 1, and n = N
2 ,

N
2 + 1, ..., N2 + 2ν,

• τ = 3N/4, i = 2b, and n = 0, 1, ..., ν,

• τ = 3N/4 + ν, i = 2b− 1, and n = N/4, ..., 3N/4 + 2ν.

Proof: See Appendix B.

Fig. 5.2 illustrates Property 3 while also using Properties 1 and 2, by showing an

example for τ = N/4, with N = 8 and ν = 1. The correlated samples are indicated

through braces, whereas "•" is employed for components of data blocks other than di.

With a single receive antenna, it can be easily shown that the second-order statis-

tics cannot provide discriminating features, and thus, one needs to resort to fourth-order
1Henceforth, λ = 2 is considered; note that this is a typical value, as larger values of λ result in

reduced spectral efficiency [29]. A brief discussion on λ > 2 is provided in Appendix B.
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× 1√
λ

di(1) di(2)︸ ︷︷ ︸ di(3) di(0) di(1) di(2) di(3)︸ ︷︷ ︸

d∗i (3)
︷ ︸︸ ︷
d∗i (2) d∗i (1) d∗i (0)

︷ ︸︸ ︷
d∗i (3) d∗i (2) d∗i (1)

s
(0,N4 )

i=2b+0

s
(1,N4 )

i+1=2b+1

n = 0 1 2 3 4 5 6 7 8

× 1√
λ

Fig. 5.2: Illustrative example for Property 3 when τ = N
4 , with N = 8 and ν = 1.

statistics.2 We first introduce the proposed fourth-order statistic of the transmitted se-

quence, and then the one of the received sequence.

We define the fourth-order statistic of the transmitted sequence as

As(τ) = E
{[

s
(0,τ)
i ◦ s

(0,τ)
i

] [
s̄

(1,τ)
i+1 ◦ s̄

(1,τ)
i+1

]T}
, (5.9)

where s̄
(1,τ)
i+1 = [s̄(1,τ)

i+1 (0), ..., s̄(1,τ)
i+1 (N+ν−1)], with s̄(1,τ)

i+1 (n) = s
(1,τ)
i+1 (mod(−(n−ν), N)+ν),

n = 0, 1, ..., N + ν − 1, and E and ◦ denote the statistical expectation and the Hadmard

product, respectively.

Based on (5.3), Property 1, and Property 3, one can show that
2It is worth noting that one should start investigating the lowest order statistic as discriminating

feature [4]; due to the summetry of the signal constellation, the first and third order statistics are zero.
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AAL
s (τ) =



κd,4,2
4 (N + ν), τ = 0,

κd,4,2
4 (N2 + ν), τ = N

4 ,

κd,4,2
4 (ν + 1), τ = N

2 ,

κd,4,2
4 (2ν + 1), τ = N

2 + ν,

κd,4,2
4 (ν + 1), τ = 3N

4 ,

κd,4,2
4 (N2 + 2ν + 1), τ = 3N

4 + ν,

0 otherwise,

(5.10)

where κd,4,2 represents the (4,2) cumulant [2] of the modulated data symbols.3 From Fig.

5.2, one can see the correlation between N/2 + ν = 5 components of s
(0,τ)
i and s

(1,τ)
i+1 for

τ = N/4, with N = 8 and ν = 1.

On the other hand, due to the fact that the transmitted SM SC-FDMA blocks from

the two antennas are independent, it can be easily shown that

ASM
s (τ) = 0, ∀τ = 0, 1, ..., N + ν − 1. (5.11)

At the receive-side, the following assumptions and definitions are first introduced:

1. Without loss of generality we assume that the first intercepted sample corresponds

to the start of an SC-FDMA block, and the total number of received samples is a

multiple integer of the SC-FDMA block length, i.e., K = NB(N + ν), where NB is

the number of received SC-FDMA blocks. This assumption will be relaxed later in

the paper.

2. Define the vector y(τ) with y(τ)(k) = y(k + τ), τ = 0, 1, ..., N + ν − 1. This vec-

tor is then divided into consecutive blocks each of length (N + ν), i.e., y(τ) =
3Note that when ν = N/4, the fourth-order statistic at τ = 3N/4 is given by the summation of the

fourth and fifth branches in (5.10).
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[r(τ)
0 , r

(τ)
1 , r

(τ)
2 , ..., r

(τ)
NB−1], where r

(τ)
i = [r(τ)

i (0), ..., r(τ)
i (N + ν − 1)], with r

(τ)
i (n) =

y(τ)(n+ i(N + ν)), n = 0, 1, ..., N + ν − 1, i = 0, 1, ..., NB − 1.

3. Define the fourth-order statistic

Ar(τ) = E
{[

r
(τ)
i ◦ r

(τ)
i

] [
r̄

(τ)
i+1 ◦ r̄

(τ)
i+1

]T}
, (5.12)

where r̄
(τ)
i+1 = [r̄(τ)

i+1(0), ..., r̄(τ)
i+1(N+ν−1)], with r̄(τ)

i+1(n) = r
(τ)
i+1(mod(−(n−ν), N)+ν),

n = 0, 1, ..., N + ν − 1.

By using (5.4), (5.8), and (5.10), one can express Ar(τ) for the AL SC-FDMA signal

as

AAL
r (τ) =



(N + ν)Ψ(τ), τ = 0, 1, ..., Lh − 1,

(N2 + ν)Ψ(τ − N
4 ), τ = N

4 ,
N
4 + 1, ..., N4 + Lh − 1,

(ν + 1)Ψ(τ − N
2 ), τ = N

2 ,
N
2 + 1, ..., N2 + Lh − 1,

(2ν + 1)Ψ(τ − N
2 − ν), τ = N

2 + ν, N2 + ν + 1, ..., N2 + ν + Lh − 1,

(ν + 1)Ψ(τ − 3N
4 ), τ = 3N

4 ,
3N
4 + 1, ..., 3N

4 + Lh − 1,

(N2 + 2ν + 1)Ψ(τ − 3N
4 − ν), τ = 3N

4 + ν, 3N
4 + ν + 1, ..., 3N

4 + ν + Lh − 1,

0 otherwise,
(5.13)

where Ψ(τ) = κd,4,2
4

∑Lh−1
l,l′=0(h2

0(l)h2
1(l′))δ(2τ − l − l′).

On the other hand, due to the fact that the transmitted SM SC-FDMA blocks from

the two antennas are independent, it can be easily shown that

ASM
r (τ) = 0, ∀τ = 0, 1, ..., N + ν − 1. (5.14)

121



0 100 200 300 400 500
0

10

20

30

40

50

60

70

τ

|Â
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Fig. 5.3: |ÂAL
r (τ)| with QPSK modulation, N = 512, λ = 2, ν = N/8, and NB = 4000

at SNR= 25 dB over multipath Rayleigh fading channel, Lh = 3, for the AL SC-FDMA
signal.

Fig. 5.3 shows the magnitude of the estimated fourth-order statistic, |ÂAL
r (τ)|, with

N = 512, M = N/2, ν = N/8, NB = 4000, and quadrature phase-shift-keying (QPSK)

modulation over multipath Rayleigh fading channel with Lh = 3 at SNR= 25 dB. Appar-

ently, the results match with the theoretical findings discussed above.

It is worth noting that if the first received sample does not correspond to the start of an

SC-FDMA block, the discriminating peaks shown in Fig. 5.3 will be shifted with the delay

between the first received sample and the start of the next SC-FDMA block. Indeed, this

shift does not affect the identification performance, as the statistically significant peaks

still exist.
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5.5 Proposed identification algorithm

5.5.1 Proposed algorithm

Based on the aforementioned discussion, the presence of significant peaks in |ÂAL
r (τ)|

provides a discriminating feature that can be employed to identify AL and SM SC-FDMA

signals. Here we propose a statistical test to detect the peak presence in |Âr(τ)|,4 and

develop the identification algorithm accordingly.

The fourth-order statistic defined in (5.12) can be estimated as

Âr(τ) = 1
NB

NB−1∑
i=0

[
r

(τ)
i ◦ r

(τ)
i

] [
r̄

(τ)
i+1 ◦ r̄

(τ)
i+1

]T
. (5.15)

By following [30,31], this can be expressed as

Âr(τ) = Ar(τ) + ε(τ), (5.16)

where the estimation error ε(τ) has an asymptotic zero-mean complex Gaussian distribu-

tion with variance σ2
ε .

Based on (5.13) and (5.14), the identification process can be formulated as a binary

hypothesis testing problem:

Hypothesis H0 : ∀τ = 0, 1, ..., N + ν − 1, Âr(τ) = ε(τ), and the

SM SC-FDMA signal is decided to be received,

and
Hypothesis H1 : For at least one value of τ = 0, 1, ..., N + ν − 1

Âr(τ) = Ar(τ) + ε(τ), and the

AL SC-FDMA signal is decided to be received.

4The superscript AL is dropped, as one does not know if the received signal is AL or SM.
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We define the test function G(τ) as

G(τ) = 2|Âr(τ)|2

1
N+ν

N+ν−1∑
τ ′=0

|Â′r(τ ′)|2
, τ = 0, 1, ..., N + ν − 1, (5.17)

with

Â′r(τ ′) = 1
NB

NB−1∑
i=0

[
r

(τ ′)
i ◦ r

(τ ′)
i

] [
r̄

(τ ′)
i+4 ◦ r̄

(τ ′)
i+4

]T
. (5.18)

Note that the denominator in (5.17) is an estimate of σ2
ε regardless of the transmitted

signal (there are no statistically significant peaks). Also, for the AL SC-FDMA signal,

the peak positions in G(τ) are the same as in A(τ). Moreover, under hypothesis H0,

Âr(τ) = ε(τ) has an asymptotic zero-mean complex Gaussian distribution with variance

σ2
ε . Accordingly, and considering the denominator of (5.17) as a constant, σ2

ε , G(τ) has an

asymptotic central chi-square distribution with the degree of freedom equal to two [32].

We further define the test statistic Γ as

Γ = max
τ=0,1,...,N+ν−1

G(τ). (5.19)

By using the fact that the cumulative distribution function (CDF) of the maximum

value Γ is the product of the CDFs of G(τ), τ = 0, 1, ..., N + ν − 1 [32], we can set a

threshold, γ corresponding to a certain probability of false alarm, Pf = P (Γ > γ|H0), i.e.,

1− Pf = (1− e
−γ
2 )(N+ν). (5.20)

Then, the threshold can be calculated as

γ = −2 ln(1− (1− Pf )
1

N+ν ). (5.21)
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5.5.2 Computational complexity

The required number of floating point operations (flops) [33] is employed as a measure of

the computational complexity of the proposed algorithm. It can be easily found that the

proposed algorithm requires 36NB(N+ν)2 +4(N+ν)(NB+2) flops. As an example, with

N = 512, ν = N/8, and NB = 1000, it can be seen that 1.19× 1010 flops are required. As

such, the calculations needed for the proposed algorithm can be done in approximately

6.36 msec if a microprocessor with 1.87 Tera-flops5 is used.

5.6 Theoretical Performance analysis

The identification process is done by comparing the test statistic, Γ, with a threshold, γ.

If Γ > γ, then the AL SC-FDMA signal is declared present; otherwise, SM SC-FDMA

is chosen. As the threshold γ is determined according to a constant probability of false

alarm, Pf , the probability of correctly identifying the SM SC-FDMA signal is determined

as

P (ζ = SM|SM) = 1− Pf , (5.22)

where ζ is the estimated signal type.

On the other hand, the probability of correctly identifying the AL SC-FDMA signal

is P (ζ = AL|AL) = P (Γ > γ|H1) = 1 − P (Γ ≤ γ|H1). As Γ is the maximum of G(τ),

P (Γ ≤ γ|H1) is the probability that G(τ) ≤ γ, ∀τ = 0, 1, ..., N+ν−1. Furthermore, under

hypothesisH1, G(τ) has significant peaks around τ = 0, N/4, N/2, N/2+ν, 3N/4, 3N/4+ν

and has nulls at other values of τ . Let Λ be the set of τ values for which G(τ) is non-zero.

According to (5.13), the cardinality of the set Λ is 6Lh; as such, N + ν − 6Lh points

of G(τ), τ /∈ Λ, have an asymptotic central chi-square distribution with two degrees of
5[online], available: http://www.nvidia.ca/object/tesla-servers.html
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freedom, and one can write

P (G(τ) ≤ γ, τ /∈ Λ|H1) = (1− e−γ/2)N+ν−6Lh . (5.23)

For τ ∈ Λ, the corresponding values of G(τ) have a non-central chi-square distribution

with the non-centrality parameter, Pτ , which can be written based on (5.17) as

Pτ = 2|Ar(τ)|2
σ2
ε

. (5.24)

For the PSK modulated data symbols with unit variance constellation,6 σ2
ε is given by

(see Appendix C for the proof)

σ2
ε = N+ν

NB

[
1
λ4 ‖ (h⊗ h)⊗ (h⊗ h) ‖2

F +8σ
2
w

λ3 ‖ (h⊗ h)⊗ h ‖2
F

+20σ
4
w

λ2 ‖ (h⊗ h) ‖2
F +16σ

6
w

λ
‖ h ‖2

F +4σ8
w

]
,

(5.25)

where ⊗ and ‖ · ‖F denote the Kronecker product and the Frobenius norm, respectively.

Based on the CDF of the non-central chi-square distribution with two degrees of

freedom, the probability that G(τ) ≤ γ, τ ∈ Λ, for certain channel coefficients is

P (G(τ) ≤ γ, τ ∈ Λ|H1,h) =
∏
τ∈Λ

(1−Q1(
√
Pτ ,
√
γ)), (5.26)

where Q1(·, ·) is the generalized Marcum Q function [34].

Based on (5.23) and (5.26), the probability of correctly identifying the AL SC-FDMA

signal for certain channel coefficients can be expressed as

P (ζ = AL|AL,h) = 1−
(1− e−γ/2)N+ν−6Lh

∏
τ∈Λ

(1−Q1(
√
Pτ ,
√
γ))

 . (5.27)

6Note that in this case both second-order/ one-conjugate and fourth-order/ two-conjugate moments
are equal to one [2], and a simple analytical expression can be obtained.
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Then, the probability of correctly identifying the AL SC-FDMA signal can be cal-

culated as P (ζ = AL|AL) =
∫

h P (ζ = AL|AL,h)p(h)dh, where p(h) is the probability

density function of h. Finally, the average probability of correct identification represents

the average of P (ζ = AL|AL) and P (ζ = SM|SM) when AL and SM SC-FDMA are

considered to be received with equal probability.

5.7 Simulation results

5.7.1 Simulation setup

The evaluation of the proposed identification algorithm was done by considering the LTE

SC-FDMA signal with a useful duration of 66.66 µsec and subcarrier spacing of 15 kHz.

Unless otherwise mentioned, QPSK modulation, N = 512 (5 MHz double sided band-

width), ν = N/8, λ = 2, NB = 1000, and Pf = 10−3 were used. The received signal

was affected by frequency-selective Rayleigh fading channel with Lh = 3 statistically in-

dependent taps and an exponential power delay profile [35], σ2(l) = exp(−l/5), where

l = 0, ..., Lh − 1. The out-of-band noise was removed at the receive-side with a But-

terworth filter, and the SNR was considered at the output of this filter. The average

probability of correct identification, Pc = 0.5[P (ζ = AL|AL) +P (ζ = SM|SM)], was used

as a measure of the identification performance. This was calculated based on 1000 trials

for each signal.

5.7.2 Effect of the number of subcarriers: Theoretical and sim-

ulation results

Fig. 5.4 shows the analytical and simulation results for the probability of correct iden-

tification achieved with the proposed algorithm for various number of subcarriers, N .
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Fig. 5.4: The effect of the number of subcarriers on the probability of correct identification,
Pc.

In general, the theoretical findings are in a good agreement with the simulation results.

A slight difference between the theoretical and simulation results can be observed for

N = 256 when compared with larger values of N . This is because of the difference be-

tween the estimated variance in the denominator of (5.17) and the actual value shown

in (5.25). Indeed, this difference is decreased by increasing N , as better estimate of the

variance, σ2
ε is achieved in such cases. On the other hand, it can be seen that the identifi-

cation performance significantly improves by increasing N . This is can be easily noticed

from (5.13), as the peak values in AAL
r (τ) are proportional to (N + ν).

5.7.3 Effect of the factor λ and the number of SC-FDMA blocks

Fig. 5.5 presents the average probability of correct identification, Pc, of the proposed

algorithm for various number of SC-FDMA blocks, NB with λ = 2, 4. It can be noticed

that the performance does not depend on λ. This can be explained, as although the
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Fig. 5.5: The effect of the factor λ and the number of SC-FDMA blocks on the average
probability of correct identification, Pc.

magnitudes of statistically discriminating peaks decrease by increasing λ, the noise power

is also decreased to keep the same SNR.7 Furthermore, the performance of the proposed

algorithm improves with NB, as a more accurate estimate of the discriminating peaks

in AAL
r (τ) is achieved. A very good performance of the proposed algorithm (Pc ≈ 1) is

obtained at SNR = 6 dB with NB = 1000, while the same performance can be reached

with NB = 4000 at SNR = 2 dB.

5.7.4 Effect of the modulation format

The effect of the modulation format on the average probability of correct identification,

Pc, is illustrated in Fig. 5.6 with NB = 2000. As can be seen, the same performance is

achieved for the PSK modulations, i.e., QPSK and 8-PSK, while a performance degra-

dation is seen for 16-QAM and 64-QAM modulations. The dependence of the proposed
7Based on Property 1, the transmitted signal power decreases by increasing λ.
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Fig. 5.6: The effect of the modulation format on the average probability of correct iden-
tification, Pc.

algorithm on the modulation format can be explained, as the values of the discriminating

peaks in AAL
r (τ) are directly proportional to κd,4,2. Theoretical values of κd,4,2 are given

in [2] for various unit variance constellations. For example, this equals κd,4,2 = −1 for

QPSK and 8-PSK, and κd,4,2 = −0.68 and κd,4,2 = −0.619 for 16-QAM and 64-QAM,

respectively [2].

5.7.5 Effect of the timing offset

Fig. 5.7 presents the effect of the timing offset on the average probability of correct

identification, Pc. When the timing offset is a fraction of the sampling interval, its effect

is modeled as a two path channel [1 − µ, µ], where 0 ≤ µ < 1 is the normalized timing

offset [22]. Results for µ = 0, 0.25, 0.5 are shown in Fig. 5.7. A slight degradation in

the identification performance is observed at lower SNRs when µ increases. However,

the performance is not affected by the timing offset at higher SNRs. This is because the

effect of timing offset can be modeled as an additional noise component that affects the

130



−4 −2 0 2 4 6 8 10 12 14 16
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR (dB)

P
c

 

 

µ=0

µ=0.25

µ=0.5

Fig. 5.7: The effect of the timing offset on the average probability of correct identification,
Pc.

discriminating peaks in AAL
r (τ); the effect of such a noise component vanishes at high

SNRs. On the other hand, with a timing offset equivalent to multiple integer of the

sampling interval, the discriminating peaks in AAL
r (τ) are shifted by that offset, which

does not affect the performance.

5.7.6 Effect of the frequency offset

Fig. 5.8 shows the average probability of correct identification, Pc, versus the frequency

offset normalized to the subcarrier spacing, ∆f , for NB = 600, 1000 at SNR= 10 dB. Ap-

parently, the proposed algorithm is sensitive to frequency offset. Although the frequency

offset does not affect the identification of SM SC-FDMA, it affects the identification of the

AL SC-FDMA signal, as the discriminating peaks reduce when increasing the frequency

offset. Hence, the algorithm requires carrier frequency recovery.
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Fig. 5.8: The effect of the frequency offset on the average probability of correct identifi-
cation, Pc at SNR=10 dB.

5.7.7 Effect of spatial correlation

Fig. 5.9 depicts the average probability of correct identification, Pc, versus the correlation

coefficient between h0(l), l = 0, 1, ..., Lh − 1 and h1(l′), l′ = 0, 1, ..., Lh − 1 at SNR = 10

dB, 4 dB, and 0 dB. It can be seen that the identification performance is not affected

by spatial correlation. This can be noticed from (5.13) and (5.17), where the spatial

correlation does not change the discriminating peaks.

5.8 Conclusion

The identification of SM SC-FDMA and AL SC-FDMA signals was addressed in this pa-

per for single receive antenna scenarios. A fourth-order statistic of the received signal was

employed as a discriminating feature. It was shown that the proposed statistic exhibits

significant peaks for the AL SC-FDMA signal, while it does not for the SM SC-FDMA

signal. Furthermore, a constant false alarm criterion was developed for decision making.
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Fig. 5.9: The effect of the spatially correlated fading on the average probability of correct
identification, Pc, at SNR=10 dB, 4 dB, and 0 dB.

Analytical results for the identification performance of the proposed algorithm were de-

rived. It was shown that simulation and theoretical findings match. The applicability

of the proposed algorithm was proved through extensive simulations; this does not re-

quire estimation of noise power or channel coefficients, block timing synchronization, and

modulation identification.

Appendix A: Proof of Property 1

The frequency samples after distributed subcarrier mapping, C̃(f)
Ub+u(p), p = 0, 1, ..., N−1,

can be represented as

C̃
(f)
Ub+u(p) =


C

(f)
Ub+u(q), p = qλ, q = 0, 1, ...,M − 1,

0, otherwise.
(5.28)
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After applying the N -point IFFT, the time samples, c̃(f)
Ub+u(v), v = 0, 1, ..., N − 1, can

be expressed as

c̃
(f)
Ub+u(v) = 1√

N

N−1∑
p=0

C̃
(f)
Ub+u(p)e2πjvp/N . (5.29)

Let v = m + aM , m = 0, 1, ...,M − 1, a = 0, 1, ..., λ − 1; by substituting (5.28) into

(5.29), one obtains

c̃
(f)
Ub+u(v) = 1√

λ

1√
M

M−1∑
q=0

C
(f)
Ub+u(q)e2πj(m+aM)q/M . (5.30)

If C
(f)
Ub+u = DUb+u, it is straightforward to find that c̃(f)

Ub+u(v = m+aM) = 1√
λ
dUb+u(m).

On the other hand, if C
(f)
Ub+u = D∗

Ub+u, after some mathematical manipulations, it is easy

to find that c̃(f)
Ub+u(v = m+ aM) = 1√

λ
d∗Ub+u(mod(−m,M)).

Appendix B: Proof of Property 3

Based on the definition of x(f,τ) and the structure of the AL coding matrix, the samples

of the (N + ν)-length blocks transmitted from the two antennas, s
(0,τ)
i and s

(1,τ)
i+1 can be

respectively expressed as

s
(0,τ)
i (n) =


s

(0)
i (n+ τ), n = 0, 1, ..., N + ν − τ − 1,

s
(0)
i+1(n+ τ −N − ν), n = N + ν − τ, ..., N + ν − 1,

(5.31)

and

s
(1,τ)
i+1 (n′) =


s

(1)
i+1(n′ + τ), n′ = 0, 1, ..., N + ν − τ − 1,

s
(1)
i+2(n′ + τ −N − ν), n′ = N + ν − τ, ..., N + ν − 1.

(5.32)
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It can be noticed that s
(0,τ)
i and s

(1,τ)
i+1 belong to the same bth AL block for n, n′ =

0, 1, ..., N + ν− τ − 1 when i = 2b, whereas this occurs for n, n′ = N + ν− τ, ..., N + ν− 1

when i = 2b− 1.

According to [27], Property 3 is valid for the following cases:

• i = 2b, n+ n′ = 2ν or N + 2ν, and n+ n′ + 2τ = 2ν or N + 2ν

• i = 2b− 1, n+ n′ = 2ν or N + 2ν, and n+ n′ + 2τ − 2N − 2ν = 2ν or N + 2ν.

Hence, similar to [27], the cases for τ = 0, N/2, N/2 + ν can be obtained. The

remaining three cases in (5.8), i.e., τ = N/4, 3N/4, and 3N/4 + ν, can be proved as

follows.

For λ = 2, according to Appendix A, the transmitted blocks s
(f)
i=Ub+u corresponding to

Di=Ub+u and D∗
i=Ub+u are respectively given as

1√
λ

di(M − ν), ..., di(M − 1︸ ︷︷ ︸
CP

), di(0), di(1), ..., di(M − 1)︸ ︷︷ ︸
{di(m)}M−1

m=0

, di(0), di(1), ...di(M − 1)︸ ︷︷ ︸
{di(m)}M−1

m=0

 ,
(5.33)

and

1√
λ

d∗i (ν), ..., d∗i (1︸ ︷︷ ︸
CP

), d∗i (0), d∗i (M − 1), ..., d∗i (1)︸ ︷︷ ︸
{d∗i (mod(−m,M))}M−1

m=0

, d∗i (0), d∗i (M − 1), ...d∗i (1)︸ ︷︷ ︸
{d∗i (mod(−m,M))}M−1

m=0

 . (5.34)

Note that there is a repetition of the symbols (twice for λ = 2) in each transmitted

block. By taking this into account and following the analysis in [27], it can be shown that

• When i = 2b, s(0,τ)
i (n) = s

(1,τ)∗
i+1 (n′ = mod(−(n − ν), N) + ν) if n and τ satisfy

n+ n′ = 2ν, N + 2ν and n±N/2 + n′ + 2τ = 2ν, N + ν. Note that the term N/2

appears due to the repetition in the transmitted block (λ = 2). If n + n′ = 2ν and
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n+N/2+n′+2τ = N+2ν, then τ = N/4, n = 0, 1, .., ν, N/4+ν−1, ..., 3N/4+ν−1.

Furthermore, if n + n′ = 2ν and n − N/2 + n′ + 2τ = N + 2ν, then τ = 3N/4,

n = 0, 1, .., ν. For the other cases, one can see that either the value of τ or n is

out of range. For example, if n + n′ = N + 2ν and n + N/2 + n′ + 2τ = 2ν, then

τ = −3N/4, which is out of range.

• When i = 2b − 1, s(0,τ)
i (n) = s

(1,τ)∗
i+1 (n′ = mod(−(n − ν), N) + ν) if n and τ satisfy

n + n′ = 2ν, N + 2ν and n ± N/2 + n′ + 2τ − 2N − 2ν = 2ν, N + 2ν. If both

n + n′ and n + N/2 + n′ + 2τ − 2N − 2ν are either equal to 2ν or N + 2ν, then

τ = 3N/4 + ν, n = N/4, ..., 3N/4 + 2ν. For the other cases, it can be easily shown

that either the value of τ or n is out of range.

It is worth noting that when λ > 2, one can show that a λ time repetition of the

symbols occurs in (5.33) and (5.34). By following the above analysis, it can be shown

that (5.8) holds for more and possibly different values of τ .

Appendix C:

Proof of the variance σ2
ε

The proof for the variance σ2
ε given in (5.25) is provided in this appendix.8 The fourth-

order statistic Ar(τ) when there are no statistically significant peaks can be estimated

as

Â′r(τ) = 1
NB

NB−1∑
i=0

[
r

(τ)
i ◦ r

(τ)
i

] [
r̄

(τ)
i+4 ◦ r̄

(τ)
i+4

]T
. (5.35)

Note that both
[
r

(τ)
i ◦ r

(τ)
i

]
and

[
r̄

(τ)
i+4 ◦ r̄

(τ)
i+4

]
are (N +ν)-length vectors whose compo-

nents are independent and expressed by (y(τ)(k+i(N+ν)))2 and (y(τ)(k+(i+4)(N+ν)))2,
8Through extensive simulations, it was noticed that σ2

ε has similar values for both SM and AL SC-
FDMA signals when τ /∈ Λ; hence, and due to simplicity, the analytical results are obtained for the SM
SC-FDMA signal.

136



k = 0, 1, ..., N + ν − 1, respectively.

According to (5.4), and taking into account that the symbols in the vectors r
(τ)
i and

r
(τ)
i+4 are independent, it can be shown that

σ2
ε = var

[
Â′r(τ)

]
= var

 1
NB

NB−1∑
i=0

[
r

(τ)
i ◦ r

(τ)
i

] [
r̄

(τ)
i+4 ◦ r̄

(τ)
i+4

]T
= var

 1
NB

N+ν−1∑
k=0

NB−1∑
i=0

(
y(τ)(k + i(N + ν))

)2 (
y(τ)(k + (i+ 4)(N + ν))

)2


= N+ν
N2
B

NB−1∑
i=0

var
[(
y(τ)(k + i(N + ν))

)2 (
y(τ)(k + (i+ 4)(N + ν))

)2
]
,

(5.36)

where var[·] denotes the variance of a random variable.

By using that y(τ)(k) = y(k+τ) along with (5.4), it is easy to express
[ (
y(τ)(k + i(N + ν))

)2

(
y(τ)(k + (i+ 4)(N + ν))

)2 ]
, in terms of the channel coefficients, transmitted sequence,

and noise, and after some mathematical manipulations, to obtain the expression in (5.25)

for σ2
ε .
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Chapter 6

Conclusions

In this final chapter, we summarize the contributions presented in the dissertation and

discuss several potential extensions to our work.

6.1 Conclusions

The following conclusions can be drawn from the dissertation:

• For the STBC identification capability of a radio equipped with a single receive

antenna for single carrier (SC) systems, it was shown that the fourth-order moment

(FOM) and the discrete Fourier transform (DFT) of a fourth-order lag product

(FOLP) can be efficiently used to blindly identify spatial multiplexing (SM) and

Alamouti STBCs. Based on this result, four identification algorithms were pro-

posed. The first algorithm is FOM-based and employs the likelihood ratio test

(LRT) for decision-making. Unfortunately, its practical implementation is compli-

cated by the requirement for knowledge of the channel coefficients, modulation, and

noise power. To avoid this requirement, we further proposed three algorithms which

are based on the DFT of the FOLP and are referred to as the FOLP-based algo-
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rithms, named FOLP-A, -B, and -C. Their common idea is that the DFT of the

FOLP exhibits peaks at certain frequencies for the AL-STBC signals, but not for

the SM-STBC signal. Different decision criteria on the presence of such peaks are

used for the three algorithms. In particular, the position of the maximum value

of the DFT of the FOLP, comparison with a threshold that corresponds to a cer-

tain probability of false alarm, and the distance between the two maximum values

of the DFT of the FOLP are employed for the FOLP-A, -B, and -C algorithms,

respectively. We investigated the performance of the proposed algorithms in the

presence of diverse model mismatches, such as spatially correlated fading and time

and frequency offsets. It was shown that the FOLP-C algorithm is more robust to

the frequency offset impairment when compared with the other algorithms. More-

over, the FOLP algorithms have lower sensitivity to timing offset when compared

with the FOM algorithm. A significant performance enhancement is provided by

the proposed algorithms when compared with algorithms in the literature.

• The FOLP-C approach was extended to include more STBCs. The proposed algo-

rithm shows a good performance and robustness to the frequency offset impairment.

• We investigated the problem of STBC identification for OFDM systems with mul-

tiple receive antenna, Nr ≥ 2. It was shown that the second-order cross-correlation

function can be used as a discriminating feature to identify SM-OFDM and AL-

OFDM signals. The proposed algorithm requires neither modulation identification

nor estimation of the channel coefficients and noise power. Further, it outperforms

algorithms in the literature, needs a reduced observation period, and is less sensi-

tive to the frequency offset impairment. Moreover, it has a low sensitivity to timing

offset.

• We addressed the problem of STBC identification for SC-FDMA signals. A fourth-
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order statistic was employed as a discriminating feature, and a novel constant false

alarm decision criterion was developed based on the statistical properties of the

feature estimate. The theoretical performance analysis of the proposed algorithm

was presented. The proposed algorithm achieves a good identification performance

with the advantages of not requiring a priori knowledge of the transmission param-

eters. The proposed algorithm has a low sensitivity to the timing offset, while for

the frequency offset it is more sensitive.

6.2 Possible Directions of Research

As the work on the identification of signals transmitted with multiple antennas is only at

an early stage, there can be different directions to extend our work, which can be briefly

outlined as follows:

• The parameters describing the MIMO signals, e.g., STBC, modulation scheme, and

number of transmit antennas, are identified separately in the literature; it may be

worth exploring the joint identification of STBC with other parameters.

• The work devoted to STBC-OFDM signal identification assumes multiple receive

antennas. Studying such a problem for a single receive antenna scenario would be

of interest.

• Most signal identification approaches proposed for MIMO systems consider generic

signals. As MIMO systems are already adopted in several wireless standards, such

as LTE and LTE-A, exploiting the characteristics imposed by the employed com-

munication standard may provide additional information for the purpose of signal

identification.
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• As new and innovative transmission techniques emerge within the context of MIMO,

the existing MIMO signal identification methodologies would need to be extended

to include those. Spatial modulation [1–3] and filter bank multicarrier (FBMC) [4,5]

are two promising transmission methods that have been drawing considerable inter-

est. Spatial modulation exploits the space dimension in a novel way, by mapping

part of the information bits on the transmit antenna indices. FBMC, on the other

hand, can be considered as a multicarrier transmission methodology that, unlike

OFDM, does not require a cyclic prefix, increasing the spectral efficiency of the

transmission. Both previously mentioned transmission techniques present new chal-

lenges to signal identification, which would need to be addressed, especially since

they are considered for 5G systems.
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