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Abstract

In human society, where different backgrounds, cultures and objectives coexist,

norms help predict, control and coordinate individual behavior. Similarly, norms have

been used in multi-agent systems to describe ideal behaviour for software agents. In

spite of this, agents are still expected behave autonomously, due to the leeway allowed

by norms as soft constraints on individual behavior. Existing work dealing with norm

identification in multi-agent systems generally assumes that agents are fully aware of

all norms, either at design time or as a result of communication with other agents.

Similarly, work examining the impact of norms in agent decision-making proposes

strategies that assume agents have complete knowledge of normative states.

This thesis proposes that agents do not have complete knowledge about norma-

tive states; consequently, it is the agents’ duty to identify norms. To this end, we

propose an agent architecture and algorithms for identifying dynamic permission and

prohibition norms in open multi-agent systems. Using Event Calculus, we propose

a formal representation of norms and a normative practical reasoning mechanism.

Other studies assume that the normative states that are neither identified prohibited

nor obliged are permitted. Central to our proposal is that a normative state can be

unknown if it is not explicitly identified as prohibited, obliged or permitted. This

allows us to integrate permission norms into our proposed normative practical rea-

soning mechanism. Thus, the contribution of this thesis is a set of techniques and

algorithms that allow agents to join and function in a society regulated by (possibly

unknown) norms, while minimizing behaviour that violates such norms.
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Chapter 1

Introduction

The rapid development of information technology has created the problem of finding

new system software paradigms that can cope with the pace and nature of this devel-

opment. For example, writing computer programs for fixed tasks is no longer suitable

in light of the large, distributed, complex and dynamic environments in which such

programs must function. For such systems, where features like parallelism, robust-

ness, scalability and simpler programming are needed, multi-agent systems offer a

solution (Stone and Veloso, 2000).

Predefined rules that govern how a system or an agent behave are not adequate

mechanisms especially in complex and dynamic environments. In such systems, norms

have been used as a standard changeable specification of desirable agent behaviour.

For more than a decade the norm concept has been utilized in multi-agent systems

(Hollander and Wu, 2011). In this thesis, we study two sub-fields in normative multi-

agent systems: norm identification and normative practical reasoning.
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Before going into our research, we provide an introduction to the field of multi-

agent systems in Section 1.1. In Section 1.2, we explain the motivation for our work

and summarize our contributions to the field. We end this chapter outlining the main

objectives of this thesis in Section 1.3.

1.1 Multi-agent systems

According to Wooldridge (2002), agents are software components situated so that

they can observe the environment as well as make decisions and perform actions that

affect the environment and their own or other agents’ internal states. Software agents

are distinguished from traditional software programs by the following properties:

1. Autonomy: autonomous agents have control over their internal states and be-

haviour and can operate without direct intervention from human or other agents.

2. Perceptiveness: agents are able to perceive the changes that may happen in the

environment and react to those changes in a timely fashion.

3. Proactivity: agents do not simply act in response to their environment, but

introduce goal-directed behaviours by taking initiatives.

4. Social interactivity: agents can communicate with each other using some kind

of agent communication language. Based on the context, agents may compete,

cooperate or negotiate.

According to (Hayzelden et al., 1999; Wooldridge and Jennings, 1994) agent

architecture is a fundamental characteristic of an agent which helps it to present ef-

fective behaviour in a dynamic and open environment. Basically, agent architecture

2



describes agent’s modules and how these modules work together. Agent architectures

have been classified into reactive, proactive, hybrid architectures. Reactive architec-

ture is one of the simplest architecture concentrates on reactivity based on behavioral

rules. A behavioral rule is triggered as a response to inputs. These kinds of archi-

tectures have a limited representation of the environment and use limited reasoning.

They focus on a quick response to the detected environment’s changes. Deliberative

architectures are based on long-term planning of actions and symbolic reasoning and

they have a richer representation of the environment. Actions in deliberative architec-

tures are taken based on logical reasoning. In spite of the usefulness and expressive

power of these kinds of architectures in many domains, they are still limited to com-

putational intractability. Researchers suggested that neither reactive nor deliberative

architecture is suitable to build a software agent (Wooldridge and Jennings, 1994).

Hybrid architecture came as a balance between the reactive and deliberative architec-

ture. BDI (beliefs, desires and intentions) architecture (Bratman, 1987) is a hybrid

architecture based on mental states in deciding its actions (see Section 2.2).

A group of interacting agents form a multi-agent system. Multi-agent systems

form a promising software paradigm for building open information systems, mainly be-

cause of the possibility of using multi-agent systems protocols that coordinate agents

interoperability (Wooldridge, 2002). A closed multi-agent system is composed of ho-

mogeneous agents where agents have identical design and are programmed to achieve

common objectives. In such systems, agents can exchange information and services

without difficulties, where specific interactions can be hard-coded at design time (Del-

larocas and Klein, 2001; Dignum et al., 2005). In contrast, an open multi-agent system

is a complex system, meaning that it is composed of several heterogeneous agents that

can have joint or self-interested objectives. Furthermore, agents in open multi-agent
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systems may be designed by different owners, and agents may join and leave the sys-

tem autonomously (Huynh et al., 2006). Research on multi-agent systems is devoted

to taming such complexity and to nurturing coordination among agents, while at the

same time preserving agents’ autonomy.

Researchers in multi-agent systems adopt concepts from several disciplines. For

example, concepts from philosophy such as human behaviours are characterized based

on a model of human beliefs, desires and intentions (Bratman, 1987). Explicitly rep-

resenting these mental states in agent architecture produces agents whose behaviours

are affected by the adopted beliefs, desires and intentions (see Section 2.2). Another

example is the concept of norms from social science. Norms govern the behaviours

of individuals in a society (Jones and Sergot, 1993). Accordingly, researchers in

multi-agent systems adopt the concept of norm to imitate the collective behaviours

of human society.

1.2 Motivation and contribution

In a multi-agent society regulated by norms, agents may join the society in order to

achieve their own objectives. When agents exhibit undesirable behaviours such as

ignoring or violating the norms of the joined society, such behaviours may result in

the loss of resources (time, money, scores, etc.) from the perspective of an individual

agent. To avoid such behaviours, agents need to know the norms of the joined societies

and to take them into consideration during their practical reasoning.

Several models have been proposed to implement dynamic norm awareness be-

haviour. Boman (1999) assumes that norms are established by a social authority or

4



a legislator, while others state that norms could emerge from the society or be nego-

tiated among agents (see for example Boella and Van Der Torre, 2007b; Andrighetto

et al., 2008; Campenńı et al., 2009). While many researchers agree that agents need

to infer norms in certain environments (Savarimuthu, 2011; Andrighetto et al., 2010;

Mahmoud et al., 2012b,a; Oren and Meneguzzi, 2013; Savarimuthu et al., 2013), there

is no consensus with respect to the approach for norm identification.

Once agents learn norms, the question becomes how norms affect agent decision-

making. For that purpose, several models study the impact of norms in agents’

practical reasoning (e.g., Kollingbaum, 2005; Meneguzzi and Luck, 2009; Oren et al.,

2011; Alechina et al., 2012; Criado et al., 2011; Balke et al., 2012; Panagiotidi and

Vázquez-Salceda, 2012; Meneguzzi et al., 2012). These models of normative practical

reasoning all assume that an agent has complete knowledge about the normative states

of a system. Accordingly, they assume that whatever is not prohibited is permitted.

However, this is not necessarily true, particularly in uncertain environments and

situations with newcomer agents; in such cases, for example, if an agent does not

know whether action A is prohibited, it does not necessarily know that action A is

permitted in the environment.

The decision making model underlying the BDI agent is known as practical rea-

soning. Practical reasoning is the reasoning directed towards actions. While there

has been work focusing on normative practical reasoning and on norm identification,

we are not aware of any work that has studied these two problems together. Study-

ing these two problems separately results in a gap between the expressive power of

norms at the norm identification level and at the normative practical reasoning level.

Researchers who work in normative practical reasoning assume that agents already

know norms beforehand. Therefore, they have more flexibility in forming their view
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of norms and adding details to the representation of norms.

To be more realistic, we relax the assumption that norms are known beforehand.

To do this we delegate the duty of detecting norms to the agent itself. In our view,

it is the duty of the agent to detect norms and adapt its own behaviour to comply

with such norms. Consequently, the expressive power of norms that results from

the norm identification process should be compatible with norm representations that

are used in the practical reasoning process. In other words, the normative reasoning

process should be based on the expressivity of the underlying norms. Further, because

norms are determined by the capabilities of the norm identification process, normative

practical reasoning and the norm identification should not be studied separately.

In our work we suppose that the multi-agent society is already established; it has

norms, agents and norm enforcement authority. Agents and the norm enforcement

authority are aware of the prevailing norms. Our agent (the newcomer agent) who

joins the system is not aware of the prevailing norms. In our experiments, we suppose

that all agents are in the recognizer agent’s vicinity.

In order to incorporate norms into an agent’s practical reasoning, norms need to

be represented in a formal way. Agents need to know the effects of their actions, taking

norms into account. Since event calculus (Kowalski and Sergot, 1989) is concerned

with reasoning about actions and their effects, it is a suitable language for representing

norms. In addition to the simplicity of representing concepts in event calculus, the

resulting representation is written in Horn clauses (Horn, 1951), which in turn are

directly executable in logic programming languages such as Prolog or Jason.

To summarize, our model makes the following contributions:
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• We set a framework to establish building a BDI-agent able to identify norms

and use them in its normative practical reasoning.

• We propose an agent architecture and mechanisms for detecting new and re-

pealed norms in an open multi-agent society.

• We extend classical event calculus to propose a formal representation of obliga-

tion, prohibition and permission norms.

• Using event calculus, we propose a mechanism to take norms into account during

agents’ practical reasoning.

• We introduce the idea of inferring permission norms by observing regular (non-

sanction) events.

• We propose the idea of utilizing permission norms in detecting repealed prohi-

bition norms and in enhancing BDI-agent practical reasoning.

This thesis differs from the earlier work in four important ways:

1. Our norm identification mechanism identifies permission norms. Identifying

permission norms is significant since it gives agents the ability to discover re-

pealed prohibition norms, hence, identifying changeable norms. For example,

using a traffic system analogy, an agent A does not remove the prohibition

against running red lights until it reclassifies the norm as a permission norm

through observing that several incidents of running red lights occur without

punishment.

2. In our norm identification mechanism, we avoid the need to communicate with

other agents using the concept of norm. Instead we use the Foundation for
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Intelligent Physical Agents (FIPA)’s Contract Net Interaction Protocol (FIPA,

2002b). As a result we avoid direct communications about norms with other

agents, and we avoid transmitting potentially misleading information obtained

from other agents in open multi-agent societies.

3. In our agent practical reasoning mechanism, we assume that agents do not know

norms beforehand. It is the agents’ duty to infer the norms within a society.

This assumption has at least two consequences:

(a) The expressive power of norms should be compatible with the type of

norms that can be inferred. Therefore, we take norm identification into

account when we design the normative practical reasoning mechanism.

(b) Agents do not have a complete knowledge about the normative states of

a system (what is prohibited, permitted or obligatory). This could be

for several reasons, such as imperfection of the norm identification mech-

anism or because norms by their nature are changeable. As a result, our

proposed normative practical reasoning mechanism can operate in envi-

ronments where there is uncertainty about normative states.

Our agent practical reasoning mechanism not only reasons about current actions

that an agent is about to perform, but also reasons about the combination of

current actions and previously performed actions.

4. Since most researchers adopt the Sealing Principle (Royakkers, 1997), which

states that “whatever is not prohibited is permitted”, permission norms have

not been fully exploited in normative reasoning. The sealing principle is sound

if agents have complete knowledge about the normative states of a particular

system so they can always determine whether some action is prohibited or per-
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mitted. However, in this thesis we assume that agents do not have complete

knowledge, so some actions will be known as either prohibited, obliged, or per-

mitted, whereas the status of others will be unknown. As we relax the sealing

principle assumption, we argue that permission norms have a significant role in

normative agents’ practical reasoning.

1.3 Objectives and organization

The main objective of this thesis is to establish a framework and define algorithms

for creating a BDI agent capable of joining and functioning in a society regulated by

(possibly unknown) norms, while minimizing behaviour that violates norms.

To achieve this objective, the following research questions are investigated:

1. How are new norms and repealed norms identified in open multi-agent societies?

2. What mechanisms do agents need in order to change their behaviour to avoid

norm violation?

This thesis is organized as follows: First we provide an overview of norm and

norm representation, and a background of the technologies we use in our work (Chap-

ter 2). In Chapters 3 and 4, we present an agent architecture together with algorithms

for identifying prohibition and permission norms in open multi-agent systems. In the

next two chapters (5 and 6) we propose a formal representation of norms and a mech-

anism for integrating norms into BDI-agent practical reasoning. First we propose

representations for prohibition and obligation norms and demonstrate how agents are

able to find and follow best plans among applicable plans. Then we propose a rep-
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resentation for permission norms and demonstrate how agents are able to choose the

safest plan from possible best plans. Finally, we summarize our work in Chapter 7.

1.4 Resulting publications

The work in this thesis has generated several peer-reviewed publications. These are

listed below with reference to their associated chapters. I am the main author for all

of these publications, and I made the major intellectual and practical contribution to

all work that is reported in this thesis.

As a result of our work in this thesis, we have the following publications:

In Chapters 3 and 4, we present an agent architecture and algorithms for identifying

prohibition and permission norms in open multi-agent systems. These Chapters con-

sist of three published papers; Alrawagfeh et al. (2011a) published in a peer-reviewed

conference, the 7th Conference of the European Social Simulation Association (ESSA

2011). Alrawagfeh et al. (2011b) published in a peer-reviewed workshop, the Agent-

Directed Simulation workshop (ADS) at the Society for Computer Simulation Inter-

national (SCS 2011), and a journal paper (Alrawagfeh et al., 2011c) published in

the International Journal of Agent Technologies and Systems (IJATS @ IGI Global)

Volume 3: 2011.

In Chapters 5 and 6, we propose a formal representation of norms and a mech-

anism for integrating norms into BDI-agent practical reasoning. These Chapters

consist of two published papers; (Alrawagfeh, 2013) was published in the Springer

LNCS proceedings of a peer-reviewed conference, the 16th International Conference

on Principles and Practice of Multi-agent Systems (PRIMA 2013). Alrawagfeh and
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Meneguzzi (2015) will appear in the Springer LNCS proceedings of a peer-reviewed

workshop, the 17th International Workshop on Coordination, Organizations, Institu-

tions and Norms (COIN) at Autonomous Agents and Multi-agent Systems (AAMAS)

conference.

In the next page, we list all of the citation information from the publications

resulting from this thesis.
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Alrawagfeh, W. (2013). Norm representation and reasoning: A formalization in event

calculus. In Boella, G., Elkind, E., Savarimuthu, B., Dignum, F., and Purvis, M.,

editors, PRIMA 2013: Principles and Practice of Multi-Agent Systems, volume

8291 of Lecture Notes in Computer Science, pages 5–20, Berlin, Germany. Springer

[Chapters 5 and 6].
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Chapter 2

Background

This chapter presents our view of norm and an introduction to the belief, desire

and intention (BDI) agent (Bratman, 1987), in addition to three technologies we

use in this thesis. The first is event calculus (EC) (Kowalski and Sergot, 1989),

a logical framework for representing and reasoning about actions and their effects.

As we study the effects of agent’s actions in the presence of norms, event calculus

is a suitable formalism for our work. In addition to the simplicity of representing

concepts in event calculus, the resulting representation is written in Horn clauses,

which in turn are directly executable in logic programming languages such as Prolog

or Jason (Bordini and Hübner, 2006).

The second technology we use is Jason, a BDI-based agent programming lan-

guage. Jason is one of the most popular and active agent BDI programming lan-

guages in multi-agent systems. As Jason uses logic programming constructs that

allow Prolog-like logical rules in agents definition, it complies with our need of imple-

menting our event calculus formalisms.
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JADE is the third technology we use in our work. JADE platform (Bellifem-

ine et al., 2007) provides an infrastructure for multi-agent systems development. It

maintains ready-to-use agents communications through message passing. As part of

our work in norm identification requires agents to communicate with other agents,

JADE is a suitable choice for that.

In the following section we present our view of norm. In Section 2.2 we present

an overview of BDI agent. JADE technology is presented in Section 2.3. In Section

2.4 we present a brief introduction of Event Calculus.

2.1 What is a norm?

The concept of norm has been used by previous researchers to denote a way to co-

ordinate, regulate, control and predict agent behaviour in open multi-agent systems

(Shoham and Tennenholtz, 1995; Verhagen, 2000; Boella et al., 2009). Due to the use

of norm in different disciplines, there are several conceptions of norm.

According to López (2003), “norms prescribe how agents ought to behave in spe-

cific situations, and they can make the performance of a system more effective by

constraining the behaviour of its components”. So this definition sees norm as a

behaviour description. While Savarimuthu and Cranefield (2009) see norms as be-

havioural expectations: “norms are expectations of an agent about the behaviour of

other agents in the society”. Ostrom (2014) defines norms as “shared understandings

about actions that are obligatory, permitted, or forbidden”. Ostrom sheds the light

on the fact that norms should be shared among agents. According to Boella et al.

(2006) norm is a “principle of right action binding upon the members of a group and
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serving to guide, control, or regulate proper and acceptable behavior”. Regardless of

various definitions of norms, norms have been used as behaviour constraints to regu-

late and coordinate heterogeneous agents’ behaviour as well as to foster cooperation

and minimize conflicts among agents (Boella and Van Der Torre, 2007a).

Norms describe the standard behaviour of agents, i.e., what an agent should

not do (prohibition), what it has to do (obligation) and what it is allowed to but

does not have to do (permission). Norms are often described using deontic logic

(von Wright, 1968), which studies the relationship between prohibitions, obligations

and permissions, as well as norm violation and fulfillment (Boella et al., 2006). The

idea of normative multi-agent systems revolves around maintaining a global desirable

behaviour of multi-agent systems while preserving agents’ autonomy. A normative

multi-agent system has thus been defined as:

A multi-agent system organized by means of mechanisms to represent,

communicate, distribute, detect, create, modify, and enforce norms, and

mechanisms to deliberate about norms and detect norm violation and

fulfillment (Boella et al., 2008).

Norms have been integrated into multi-agent systems to describe standard ideal

behaviour and to enforce agents’ coordination in environments where a centralized

mechanism to enforce behaviour is not available. Researchers have studied methods

of using norms to regulate and predict agents’ behaviours as well as methods of en-

forcing agents to comply with the norms without limiting agents’ autonomy (Dignum,

1999; Meneguzzi and Luck, 2009; Panagiotidi and Vázquez-Salceda, 2012). For this

purpose, two methods have been used, regimentation and enforcement (Grossi et al.,

2007). Agents in the regimentation approach must comply with and can not vio-
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late norms (Esteva et al., 2001). This approach drastically limits agents’ autonomy

and decreases the richness of behaviour in normative multi-agent systems. In the

enforcement approach, which this thesis adopts, agents have the choice to respect or

violate norms. Basically, their choices have consequences, which are determined by

the enforcement regime. A sanction might be applied to agents who violate a norm

as a means of enforcement. Issuing sanctions to violator agents is an incentive for

agents to comply with norms. The objective of such enforcement is to produce stable

and predictable behaviour in the overall system (Castelfranchi, 2003).

Researchers have studied different research lines in normative multi-agent sys-

tems, such as the emergence of norms, norm enforcement and norm adoption. Some

researchers assume that agents already know the norms of their societies at design

time (Conte and Castelfranchi, 1995). Others assume that norms are assigned by

a leader or a legislator (Boman, 1999). Assuming that the norms of a society are

subject to change or even disappear, agents need a mechanism to infer these changes.

Similarly, when an agent joins a new society, it requires a mechanism to infer the

norms of the joined society.

2.1.1 Our view of norms

In this thesis we study three types of norms: permission, prohibition and obligation.

Our definition of norms follows Anderson’s reductionist view (Anderson, 1958), which

states that norm violation is necessarily followed by a sanction (Soeteman, 2001). This

view is rational because if there is no punishment for norm violation, then agents do

not adhere to norms, which in turn decreases the importance of the norm concept.

Punishment may have several forms, such as paying a fine, reducing privileges, feeling
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shame, expulsion from society, etc. Informally, we define norms as follows (for a formal

representation see Chapter 5):

• Prohibition norm

In a particular context, if the occurrence of a sequence of actions (or world

state) is subject to punishment, then this sequence of actions (or world state)

is prohibited in that context.

• Obligation norm

If the nonoccurrence of a prescribed sequence of actions (or world state) in a

particular context is followed by punishment, then this sequence of actions (or

world state) is obligated in that context. The fulfillment of this sequence of

actions (or world state) might also be subject to a reward.

• Permission norm

In a particular context, if the occurrence of a sequence of actions (or world state)

is not subject to punishment, then this sequence of actions (or world state) is

permitted in that context.

In this thesis, we assume the following properties for norms:

1. Norms are soft constraints on actions or states of affairs; in order to preserve

agents’ autonomy, agents have the choice respecting or violating norms.

2. The violation of a norm may be subject to punishment, while compliance with

a norm may be subject to reward.

3. Norms are shared among the individuals of a society; they are a kind of mutual

agreement among these individuals with respect to how members of the society
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should behave.

4. Norms are subject to change and can vanish altogether. Norms are not fixed;

it is possible for norms to lose their importance and disappear from a society,

such that actions that were once prohibited become permitted. There is also

the possibility for new norms to emerge.

Norm in our view is composed of the following parts:

• D is the deontic type which refers to obliged, prohibited or permitted behaviour.

• C is the optional norm’s context. The specified sequence of actions is obliged,

prohibited or permitted if C is a logical consequence of the agent’s belief base.

When C is absent, it means that the norm is applicable under any circumstance.

C is composed of two possible components β and α; β consists of holdsAt (see

Section 2.4) predicates that describe a particular world state, while α is an EC

formula that represents a sequence of actions.

• Seq is a sequence of action(s) that agents are not supposed to perform, have

to perform or may perform in case of prohibition, obligation, or permission

respectively. Note that Seq is different than α, since α is part of the context

condition (actions that trigger norm activation) whereas Seq is the object of

the norm’s deontic type (actions that are forbidden, obliged or permitted).

• S is the sanction that will be applied if the norm has been violated or unfulfilled.

• R is the reward that agents may get if they fulfill an obligation norm.

Punishment and rewards may have different forms such as feelings of shame or

anxiety, greeting, respect and reputation. In this work we simplify the view of S and
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R to a scalar integer number.

2.2 BDI agents

Beliefs, Desires and Intentions (BDI; Bratman, 1987) is one of the most widely studied

architectures to implement practical reasoning in multi-agent systems. The BDI ar-

chitecture came as a balancing reactive and deliberative architecture for goal-oriented

agents (Bratman et al., 1988). The BDI architecture is also widely used in the def-

inition of agent programming languages, such as the AgentSpeak(L) programming

language (Rao, 1996), arguably the most widely studied of this kind of programming

language.

According to Bratman (1987), a folk-psychological theory of human agency and

decision-making is centered around three mental components: beliefs, desires and

intentions. For example, this morning I have a desire to attend a public talk at

Memorial University. There are three possible plans to go from my home to the

university: taking the bus, biking, or walking. I believe that today is a nice and

sunny day. I also believe that walking is a very healthy habit. When I choose and

commit to walk, then the plan of walking to the university becomes my intention.

Hence, the result of my mental states, belief, desire and intention, is the plan of

walking from home to the university.

Similarly, agents can be designed to include beliefs, desires and intentions (or

BDIs) and their behaviour will also be affected by these mental states (Cohen and

Levesque, 1990; Rao and Georgeff, 1995). In this case, beliefs describe information

about the environment. Agents capture their belief through perceiving the environ-
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ment and through communications with other agents. An agent’s beliefs are evaluated

from the agent’s point of view; an agent’s belief is changeable and it is not necessary

to be a knowledge about the environment. Desires are the states of affairs an agent

wants to bring about. Agents may have several desires, which may be conflict desires,

so they need to deliberate to decide which desires to achieve. When agents commit

to pursue one desire it becomes the agent’s intention. Bratman et al. (1988) differ-

entiate present-directed intention and future-directed intention. The former directly

produces behaviour, whereas the later makes the agent planning for a particular be-

haviour and adopt or drop other intentions. Most works on BDI-agent concerned

with the later sense of intention where the committed plans to fulfill desires represent

the intentions (Cohen and Levesque, 1990).

The BDI agent architecture is based on a practical reasoning process which in-

cludes two stages, deliberation and means-end reasoning. During deliberation, agents

determine the states of affairs they want to achieve. Then, in the means-ends rea-

soning stage, agents determine how they will achieve the determined states of affairs.

The results of the latter stage are then implemented by plans (Wooldridge, 2002).

For example, after a process of deliberation, I decided to achieve the desire of “going

to the university”. Then, during the means-ends reasoning stage, I chose the plan

(taking the bus, biking, or walking) that best allowed me to fulfill my desire.

After Bratman introduced the theory of BDI to describe human behaviours,

Rao and Georgeff (1995) adopted the theory for a more formal model suitable to

multi-agent systems research. They designed a practical reasoning architecture based

on the BDI concept. This architecture is called the Procedural Reasoning System

(PRS). The PRS architecture is shown in Figure 2.1; the Figure illustrates the four

main components of the PRS: beliefs, desires, intentions and plan library. A plan
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specifies a sequence of actions or sub-goals for achieving a particular desire. These four

components are controlled by the interpreter which is responsible about belief update,

generating new desires, choosing from those desires some intentions and selecting

actions to be performed on the basis of current intention.

Most historical and current BDI systems are based on PRS (Braubach et al., 2003;

Bellifemine et al., 2007). PRS reduces the abstract schema of desires and intentions

to a more concrete concept of goals and plans. While making slight modifications to

the original concepts of mental states, the most significant variation is defining goals

as a consistent set of desires that can be achieved simultaneously. As a result of this

modification, the effort of complex goal deliberation is avoided.

In spite of the dominant interest in PRS and BDI agents, there were no precise or

specific description of their behaviour. That leads to various implementations for the

BDI architecture, such as dMARS (d’Inverno et al., 1998), Jadex (Braubach et al.,

2003), AgentSpeak (Rao, 1996) and Jason (Bordini and Hübner, 2006). Currently,

Jason is the most active and dominant implementation of BDI architecture; next we

give an overview of Jason.

2.2.1 Jason

Jason (Bordini and Hübner, 2006) is a Java-based interpreter for an extended ver-

sion of AgentSpeak(L) (d’Inverno et al., 1998). Agents in Jason use belief-bases

that express information about the environment in which agents are situated. They

also use logic programming constructs that, unlike traditional AgentSpeak(L), allow

Prolog-like logical rules in the agent definition.
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Figure 2.1: BDI Agent architecture PRS (taken from d’Inverno et al., 1998) with
permission from the publisher

Since we use the AgentSpeak(L) notation throughout this thesis, we briefly re-

view the syntax of Jason. The most basic syntax element in Jason is a predicate,

which is represented by alphanumeric strings starting with a lower case character. A

predicate represents a fact about the world and may be evaluated as either true or

false. Predicates with arity greater than zero have a number of terms. Terms are

similar to predicates but they represent objects in the domain and can be either func-

tions (terms with arity greater than zero), constants (representing specific objects in

the domain) or variables. Variable notation follows the Prolog standard and starts

with an upper case letter or the underscore sign, representing an unnamed variable.

The basic components of a Jason agent are Beliefs, Goals and Plans. Beliefs

represent the agent’s knowledge about the environment, other agents or the agent

itself. A Jason agent stores the properties of the environment that it believes to be

true. Each Jason agent has a belief-base in the form of a collection of literals, as

in traditional logic programming. The information in the belief-base is represented

as a predicate, for example clear(table), which expresses a particular property of
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an environment, in this case, nothing on the table. The “+” and “-” symbols are

used to represent changes in the belief-base, denoting belief addition and deletion

respectively.

The second basic component, known as Goals, expresses properties of the envi-

ronment that the agent wishes to achieve. Goals are the initiatives that make the

agent operate and try to change the environment to a state in which the agent be-

lieves the goals are true. There are two types of goals defined in AgentSpeak(L):

achievement goals, which are represented by literals prefixed with “!”, and test goals,

which are represented by literals prefixed by “?”.

Normally, Jason agents have at least one plan to fulfill each goal. Each plan has

three parts: triggering-event, context and body. The events that may initiate the

execution of a plan are called triggering-events. Triggering-events could be addition

(+) or deletion (-) of goals or beliefs. Goals and beliefs updates serve as triggers

to the execution of hierarchical plans contained in a plan library. In a plan, the

triggering-event part is separated from the context part by the symbol “:”. The

symbol “<-” separates the context and the body. In rules, the symbol “:-” separates

a rule’s left- and right-hand sides. The symbols “&” and “|” indicate a conjunction

and a disjunction operator respectively. The syntax for a plan in Jason looks like the

following

Triggering-event: Context <- body.

Consider the following Jason plan:

+clear(Block1): clear(Block2) <- !on(Block1,Block2).
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This plan states that if the agent perceives that Block1 becomes clear, and if Block2

is clear, then it intends to achieve the goal of putting Block1 on Block2.

Jason agent architecture and its reasoning cycle illustrated in Figure 2.2. For

more details on how Jason interpreter functions, we refer the reader to Bordini et al.

(2007). When an event occurs, it is unified with each plan’s triggering-event in the

plan library. The plans that have unified triggering-event are called relevant plans.

The context part of each of the relevant plans is checked against the agent belief base.

The relevant plans whose contexts are logical consequences of the current belief base

are called applicable plans. The body of a plan is formed of actions, sub-goals or

internal action. Example of internal action is .send(-,-,-), which is used for agents

communication. A plan is selected from the applicable plans and added to the agent

intentions set.

Figure 2.2: The Jason reasoning cycle (taken from Bordini et al., 2007) with permis-
sion from the publisher

Example 2.2.1. As a simple example using Jason, consider an automated parking
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lot which has three agents: agent1 receives orders from customers and assigns goals

to be achieved by agent2 and agent3. Agent2 is responsible for taking cars from the

entrance of the parking lot and parking them inside the lot, while agent3 is responsible

for taking cars out of the parking lot. To simplify the example explanation, suppose

that the capacity of the parking lot is three. The Jason code for the three agents is

given below (note that we have annotated each plan with a label so that we can refer

to them in the text below).

agent1

Beliefs

...

Plans

+parkIn(X)<-.send(agent2,achieve,park(X)). (p1)

+parkOut(X)<-.send(agent3,achieve,leave(X)). (p2)

Plan p1 tells agent2 to park car X in the parking lot. Plan p2 tells agent3 to

take car X out of the parking lot. Those plans are triggered when agent1 receives

or perceives a request from a customer to park or retrieve a car. By receiving the

request, the predicate parkIn(X) or parkOut(X) is added to agent’s belief-base. The

body of each plan in agent1 above is a message of three arguments: the message

receiver (agent2 in case of plan p1), the type of the message (“achieve” in case of

plan p1 and p2, which means that a goal is sent to the receiver), and the goal that

the sender wishes to achieve (!park(X) and !leave(X) in case of plans p1 and p2

respectively).

agent2
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Beliefs

empty(1).

empty(2).

empty(3).

Plans

+!park(X) : not full <- ?empty(Y);!driveTo(X,Y);

.send(agent3,tell,parkingAt(X,Y)); (p1)

.send(agent3,tell,weHave(X)); -empty(Y).

-!park(X)<- +full;.print("sorry the parking is full"). (p2)

+!driveTo(X,Y)<- .print("the car",X,"is parking at", Y). (p3)

-!driveTo(X,Y)<-.print("Error, please contact the operator"). (p4)

As the belief-base of agent2 expresses, three spaces are available for park-

ing. Once agent2 receives an order from agent1 to achieve a goal (let us say

!park(car1)), the predicate park(car1) is unified with the triggering part of plan

p1 and car1 is unified with X. Based on the context of plan p1, the plan is only

executed if the parking lot is not full. The purpose of the test goal ?empty(Y) is to

find an empty slot which will be unified with the variable Y. After this, the sub-goal

!driveTo(car1,1) is added to be executed. Plan p3 is triggered when the sub-goal

is achieved and agent2 sends a message to agent3 telling it car1 has been parked at

slot 1. As a result agent3 will add the predicate parkingAt(car1,1) to its belief-
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base. The last step of plan p1 is -empty(Y), which will delete the predicate empty(1)

from the belief-base of agent2. Any action failure in the plan causes the whole plan

to fail. Plan p2 is called a failure plan and is triggered only if plan p1 fails. Plan P4

is triggered only if plan p3 fails.

agent3

Beliefs

parkingAt(car1,1).

Plans

+!leave(X) : true <- ?parkingAt(X,Y); !driveOut(X); (p1)

+empty(Y); .send(agent1,tell,empty(Y)).

-!leave(X): not parkingAt(X,Y)<- (p2)

.print("sorry car ",X," does not exist").

+!driveOut(X) <- !driveTo(X,out). (p3)

+!driveTo(X,out)<-.print("The car ",X, " is out"). (p4)

-!driveTo(X,out)<-.print("please contact the operator"). (p5).

When agent3 receives a message from agent1 asking it to retrieve car1 from

parking (!leave(car1)), plan p1 is triggered. Using the test goal ?parkingAt(X,Y),

the parking slot of car1 is determined. If the test goal ?parkingAt(X,Y) fails, agent3

looks for an implemented plan for ?parkingAt(X,Y). If there is no such plan, then

plan p1 fails. By achieving the goal +!driveTo(X,out), car X is going to be driven
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to the position out. Plan P5 is a failure plan it is called only when plan p4 fails.

2.3 JADE

JADE (Java Agent DEvelopment framework) (Bellifemine et al., 2007) is a software

platform that provides basic infrastructure for building multi-agent systems. It is

one of the most popular agent-oriented middleware programs in use today. Building

multi-agent systems on top of JADE, which provides the domain-independent infras-

tructure, helps the developers to focus on the business logic of their systems instead of

dealing with the specification of agents’ communications and interoperability. Agents’

communications on JADE platform comply with the FIPA specifications.

JADE platform is composed of agent containers that can be distributed over the

network. A container is a Java process which provides the needed services for hosting

and executing agents. One special container called main container forms the starting

point of the platform; all other containers need to register with the main container.

The main container manages the container table (CT) which registers the addresses

of all other containers in the platform.

Each container manages the global agent descriptor table (GADT) which regis-

ters all agents that exist in the platform including their current state and location.

Each container maintains a local agent descriptor table (LADT), which is a cash of

GADT. When an agent wants to message another agent, it looks for the receiver

address in LADT. If it could not find it then it looks in GADT. Figure 2.3 illustrates

the main elements of JADE platform.
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The main container host two special agents: agent management system (AMS)

and directory facilitator (DF), which are automatically started once JADE is launched.

The roles of these agents are specified by the FIPA agent management system stan-

dards (FIPA, 2004). Every agent in the system should register with the AMS agent.

AMS supervises the whole platform. It forms the contact point for all agents’ com-

munications in addition to managing agents’ life cycle. All JADE agents need the

DF agent to register their services or to look for other agents’ services.

Figure 2.3: JADE platform architecture (taken from Bellifemine et al., 2007) with
permission from the publisher

2.4 Event calculus

Event calculus (EC) is a logical framework which uses predicates and axioms to

represent and reason about actions and their effects. EC was originally proposed in

logic programming (Kowalski and Sergot, 1989) with the purpose of affirming that

as a result of executing an action, a particular property is initialized to be true at a

specific time-point and that no action occurs later to terminate this property.

EC can be used as a foundation for different reasoning tasks like deductive,

abductive and inductive reasoning (Shanahan, 1999). In case of deductive reasoning,

the narrative events (which events happened and when) and the effects of actions
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(what actions do) are given, while the result (what is true) is sought. Figure 2.4

depicts how EC operates. In abductive reasoning, the sequence of actions that lead

some properties to be true are sought. Referring to Figure 2.4, (what actions do) and

(what is true when), are given in the case of abductive reasoning and (what happens)

is required. In the case of inductive reasoning, (what happens when) and (what is true

when) are given, and (what actions do) is required.

Figure 2.4: How event calculus functions (taken from Shanahan, 1999) with permis-
sion from the publisher

The basic idea of EC is that a particular fluent is turned to be true at a particular

time-point as a result of performing a particular action or a sequence of actions, and

in the meantime no action occurred to terminate that fluent. The basic ingredients

of EC are Actions A, Fluents F, Time-points T, a set of domain independent axioms

and a set of domain dependent axioms that describe the desired model.

A fluent is a property whose values are subject to change at different points in

time. Fluents in EC are reified, which means they are not formalized by predicates but

by functions. One of the basic EC predicates is HoldsAt, which takes two arguments:

Fluent and Time-point. Consider the predicate HoldsAt(on(book,table),t) which

means that the book is on the table at time t. Note that HoldsAt is a predicate and

on is a function.
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Referring to Figure 2.4, usually the narrative part (What happens when) is rep-

resented by the predicate happens which takes two arguments: Action and Time-

point. The effect of the actions (What actions do) is represented by the predicates

initiates and terminates, both of which take three arguments: Action, Fluent and

Time-point. The set of domain independent axioms below and the set of predicates

shown in Table 2.1 represent the language of basic EC.

EC1: clipped(T1,F,T2)←

∃ A,T[happens(A,T) & T1≤T & T< T2 & terminates(A,F,T)

This states that fluent F is terminated by the occurrence of action A between

time T1 and T2.

EC2: declipped(T1,F,T2)←

∃ A,T[happens(A,T) & T1≤T & T<T2 & initiates(A,F,T)

This states that fluent F is initiated by the occurrence of action A between time

T1 and T2.

EC3: holdsAt(F,T2)← happens(A,T1) & initiates(A,F,T1) &

T1<T2 & ¬clipped(T1,F,T2)

This states that fluent F holds at time T2 if action A occurs at time T1 and F has

not terminated between T2 and T1.

EC4: ¬holdsAt(F,T2)← happens(A,T1) & terminates(A,F,T1) &

T1<T2 & ¬declipped(T1,F,T2)
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This states that fluent F does not hold at time T2, while action A terminates flu-

ent F at time T1 and no action occurred between time T1 and T2 to re-initiate fluent F.

EC5: holdsAt(F,T2)← holdsAt(F,T1) & T1<T2 & ¬clipped(T1,F,T2)

EC6: ¬holdsAt(F,T2)← ¬ holdsAt(F,T1) & T1<T2 & ¬declipped(T1,F,T2)

EC5 and EC6 axiomatize the persistence of fluents; that is, they state that the

value of fluents are changed only via the occurrence of actions that may initiate or

terminate fluents.

The definition of the predicates happens, initiates and terminates are defined

according to the domain we deal with. Consider the following example taken from

(Miller and Shanahan, 1999).

Example 2.4.1. A robot can go inside and outside a room through a door. The

door can be locked and unlocked using an electric key. In this scenario we have three

fluents and three actions. The fluents are Inside (the robot exists inside the room),

HasKey (the robot is holding the key) and Locked (the door is locked). The actions

are Insert (insert the key in the door); GoThrough (the robot passes though the

door); and Pickup (the robot picks up the key). The occurrence of Insert makes

the door locked if it is unlocked or unlocked if it is locked. If GoThrough is performed

when the robot is inside the room then the robot’s status becomes outside the room

and vice versa. When the robot performs Pickup, the robot picks up the key and the

fluent HasKey becomes true.

Consider the following domain-dependent axioms for the example above:
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R1: initiates(Pickup,HasKey,T)

R2: initiates(Insert,Locked,T)←

¬holdsAt(Locked,T) & holdsAt(HasKey,T)

R3: initiates(GoThrough,Inside,T)←

¬holdsAt(Locked,T) & ¬holdsAt(Inside,T)

R4: initiates(GoThrough,Inside,T)

¬holdsAt(Locked,T) & holdsAt(Inside,T)

R5: initiates(Insert,Locked,T)←

holdsAt(Locked,T) & holdsAt(HasKey,T)

Initially, the door is closed and the robot is inside the room at time 0 and the

following actions have been performed:

• happens(Pickup,2)

• happens(Insert,4)

• happens(GoThrough,6)

Using the domain independent axioms (EC1,...,EC6), the domain dependent ax-

ioms (R1,...,R5) and the sequence of actions that occurred, we can affirm that the

robot is no longer inside the room at time 8, i.e., ¬holdsAt(Inside,8), see Figure

2.5 which illustrates this scenario.

EC is distinguished by its simplicity in describing concepts, and it easily allows
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Figure 2.5: The flow of the robot’s actions and their effects

Table 2.1: The predicates of event calculus

Predicate Meaning

happens(A,T) Action A occurs at time T

holdsAt(F,T) Fluent F is true at time T

terminate(A,F,T) Occurrence of action A at time T will make
fluent F false after time T

initiates(A,F,T) Occurrence of action A at time T will make
fluent F true after time T

initiallyp(F) Fluent F holds from time 0

clipped(T,F,Tn) Fluent F is terminated between time T and Tn

<, >, ≤, ≥ Standard order relation for time

the implementation of concept specifications since it is described in a logic program-

ming format. Therefore, EC has been used for representing different concepts in

multi-agent systems (see Artikis et al., 2005; Fornara and Colombetti, 2009).
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Chapter 3

Identifying Norms in Open

Multi-agent Societies

From the perspective of individual agents, it is important to know which behaviours

are acceptable or unacceptable in a particular society. Identifying norms helps agents

to adapt their plans for achieving their goals (Andrighetto et al., 2008).

When a new agent joins a software agent society, it needs to figure out the norms

applied in this society to avoid potential punishments that may result from norms

violation. One way to address this problem is by inferring prohibition norm based

on observing sanction events (Savarimuthu et al., 2011). Under this approach, there

are two possibilities: (1) the newcomer agent can act immediately, without knowing

the prohibition norms, and can be sanctioned as a result; (2) the agent can wait

to observe other agents being sanctioned due to the violation of prohibition norms,

and then infer the prohibition norms in the process. As a result the newcomer agent

could lose resources by acting recklessly without knowing the norms and hence be
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sanctioned, or waste time by waiting for the occurrence of sanction events.

By utilizing permission norms, both of these possibilities can be avoided. Our

recognizer agent (the newcomer) does not have to wait for observing sanction events

in order to act in the joined society, but it can infer permission norms by observing

regular events. As a result, the newcomer agent operates in the society in due course.

As new norms can emerge and known norms can disappear, norm identification

algorithms should be able to identify these changes. Savarimuthu (2011) is one of

the first researchers to address this problem by observing special sanction events

occurring among agents to recognize prohibition norms. According to Savarimuthu’s

approach, if a particular identified prohibition norm is not detected by his algorithm

for a particular time, then this norm is revoked from the agent’s belief base. We argue

that this approach can mistakenly revoke prohibition norms if those norms have not

been violated for a particular time. For example, using a traffic system analogy, an

agent A removes the prohibition norm of running red lights if it does not observe

other agents running the red lights for a particular time. As an alternative approach,

we utilize permission norms for detecting the repealed norms and we compare the

two approaches.

Accordingly, we introduce the idea of recognizing permission norms inferred by

observing regular (non-sanction) events. We present the drawbacks of the known

Verification Component (VC), which is part of the norm identification approach pre-

sented by Savarimuthu et al. (2010b), and present a modification that makes agents

able to dynamically identify norm changes that occur in a society and function in

open multi-agent societies.

To summarize, identifying permission norms for multi-agent systems is significant
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at least for two reasons. It helps agents to detect the changes that may occur for

prohibition norms (i.e., agents detect that a particular prohibition norm is no longer

prohibited when it is identified as permitted), and it helps agents to prefer actions

that are known as permitted over actions that are not known to be either permitted

or prohibited.

In this chapter we propose an agent architecture and algorithms for inferring pro-

hibition and permission norms. Our proposed architecture identifies and recognizes

changes in norms that can occur or evolve in multi-agent systems. This architecture

is based on observing both sanctioned and non-sanctioned events. Using JADE (see

Section 2.3), the software agent development environment, we construct a restaurant

interaction scenario to test our architecture and algorithms. We use this scenario

to demonstrate how dynamic permission and prohibition norms can be identified.

Regular actions are basic actions performed to achieve a particular goal. Usually

regular actions are defined at design time. Hence, each agent knows what actions it

can perform beforehand. A sanction action represents a penalty an agent receives

for violating a norm. A police agent play the role of social authority by monitoring

violations and applying sanctions.

This chapter is structured as follows. In Section 3.1, an overview of the proposed

architecture is presented. The algorithms for norm identification are presented in

Section 3.2. A proposed modification on the VC is given in Section 3.3. In Section

3.4, we demonstrate the limitations of the VC used by Savarimuthu et al. (2010b)

and address these limitations by proposing a modified verification component (MVC).

We also extend the dynamic verification component (DVC) presented in Section 3.3

by proposing the modified dynamic verification component (MDVC), which allows

an agent to infer newly adopted and dropped norms in open multi-agent societies
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(Section 3.5). We show that MDVC preserves the consistency among norms before

adopting an identified norm. We summarize the chapter in Section 3.6.

3.1 Overview of the architecture of norm identifi-

cation

The purpose of the proposed architecture and algorithms is to recognize and dynam-

ically infer two types of norms in multi-agent systems: permission and prohibition.

We assume that our agent is able to observe the communication and the inter-

actions that occur among the individuals of a society. We also assume that our agent

is able to distinguish between regular and sanction events. The architecture of our

agent maintains a queue for each agent in its vicinity and stores other agents’ activi-

ties in their corresponding queue. The actions are stored in the queue from right to

left, with the rightmost action being the recently added. Agents are considered to

be in our agent’s vicinity if their performed events are observable by our agent (the

recognizer agent).

Based on the observed data, the recognizer agent applies two algorithms, one

for identifying permission norms and the other for identifying prohibition norms.

Our proposed architecture maintains consistency among permission and prohibition

norms. Therefore, the recognizer agent does not have a sequence of events which is

identified as prohibited and permitted at the same time.

Our proposed architecture for norm identification is composed of storage com-

ponents (depicted by cylinder shapes) and processing components (depicted by rect-
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angular shapes). There are three storage components: event base, prohibition norm

base and permission norm base. Figure 3.1 illustrates the architecture components,

which are described in detail below.

Figure 3.1: Our proposed internal recognizer agent architecture for identifying per-
mission and prohibition norms

Prohibition Norm Base (ProhNrmBase): stores the prohibition norms of a

society. Its contents are acquired by our prohibition norm identification algorithm.

Permission Norm Base (PermNrmBase): stores the permission norms of a

society. As with the prohibition norm base, its contents are acquired by the permission

norms identification algorithm.

Event Base (EventBase): maintains a queue for each observable agent. Any

agent’s observable events are saved in the corresponding agent’s queue in EventBase.

EventBase is composed of queues, where each queue stores the events that are per-

formed by a particular agent. The events are stored in the queue according to the

order in which they occur.
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There are four processing components: events recognizer, prohibition norm rec-

ognizer, permission norm recognizer, and norm verification. These are described in

detail below.

Events Recognizer Component: observes the events that occur in the society.

We assume that this component is able to distinguish between regular and sanction

events. The perceived events are saved in the EventBase, particularly in the queue

that is associated with the agent that performs those events. These data are used for

norm identification processes.

Prohibition Norms Recognizer Component: is responsible for identifying

the set of selected candidate prohibition norms (SCPhN) based on event observations.

The algorithm for identifying prohibition norms is triggered every time the events

recognizer component perceives a number of special events (sanction events) equal to

a threshold, SanThresh.

Permission Norms Recognizer component: finds the set of selected can-

didate permission norms (SCPmN) based on observing regular events. The algorithm

for permission norm identification is triggered every time a queue has a number of

consecutive regular events equal to a threshold, RegThresh.

Norms Verification Component (VC) (Savarimuthu et al., 2011): is applied

to each candidate norm. In the agent performing norm identification, the VC selects

other agents and asks them whether the selected candidate norm is an actual norm.
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3.2 Norm Identification Algorithms

In this section we present algorithms for norm identification and describe how these

algorithms work with the architecture components discussed in Section 3.1.

3.2.1 Event recognizer

Our recognizer agent continuously perceives other agents’ events and stores them

in the queues that are associated with the agents that performed the events. These

queues form EventBase of the recognizer agent. The actions in each queue represent a

sequence of actions. Algorithm 1 determines when the norm identification algorithms

are triggered. Every time the SancNum (the number of observed sanction events) is

greater than or equal to SanThresh, the prohibition norm recognizer algorithm is

triggered (Lines 5 and 6), where SanThresh represents the number of sanction events

required to trigger the prohibition norm recognizer algorithm. The permission norm

recognizer algorithm is triggered when RegNum (the number of consecutive regular

events)in a particular queue equals RegThresh, (Lines 8 and 9) while no sanction

event occurs in that queue. RegThresh represents the number of observed consec-

utive regular events required to call the permission norm recognizer algorithm. In

our experiments RegThresh is equal to QueueSize, where QueueSize represents the

number of observable events that the recognizer agent can hold for an observed agent.
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Algorithm 1 Main algorithm

1: function EventsRecognizer

2: while true do
3: Perceive events α
4: Add α to the corresponding agents’ queue in the EventBase
5: if SancNum ≥ SanThresh then
6: ProhNrmIdent(EventBase) /*Algorithm 2*/
7: SancNum ← 0
8: end if
9: if SancNum = 0 & RegNum ≥ RegThresh then

10: PermNrmIdent(EventBase) /*Algorithm 3*/
11: RegNum ← 0
12: end if
13: end while
14: end function

3.2.2 Prohibition norm recognizer

The purpose of this algorithm is to construct a set of candidate prohibition norms

by processing EventBase. We define a collection as a group of objects that might be

unordered or duplicated. We define candidate prohibition norms collection (CPhNC) as

a collection of sequences of actions. Out of the constructed CPhNC, a set of candidate

norms is selected, called the selected candidate prohibition norms (SCPhN) set. The

candidate norms with a frequency greater than a particular threshold (SelectThresh)

are selected from CPhNC and stored in SCPhN. To explain how our agent infers prohi-

bition norms, consider the example given below.

Let the recognizer agent have two agents, A and B, in its vicinity, where agents

are in the vicinity of the recognizer agent if it can observe their actions. Let the queue

size be equal to four (i.e., it can save up to four actions). Assume that SanThresh and

SelectThresh equal one. Suppose that the sequences of actions that are performed

by agents A and B, which are stored in their corresponding queues in the recognizer
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agent’s architecture, are as follows:

Agent A’s queue = (E2, E2, E3, S).

Agent B’s queue = (E3, E2, S, E1).

This means that our agent made the following observations: after agent A performed

action E2, E2 and E3 it received a sanction S, where E represents a regular event

and S represents a sanction event. The prohibition norm recognizer algorithm (Al-

gorithm 2) aims to find the sequence of actions (prohibition norm) that might be the

reason behind issuing the sanction event S. The process in this algorithm is composed

of three steps:

Step 1: for each queue, all the sub-sequences of the sequence of regular actions

are formed as explained below (see Algorithm 2, Line 5), where findSubSeq() is a

function that returns all the sub-sequences of a giving sequence.

(a) The sub-sequences events that result from agent A’s queue (Line 5) are stored in

CPhNC:

CPhNC = [(E2), (E2), (E3), (E2,E2), (E2,E3), (E2,E3), (E2,E2,E3)]

(b) The sequence of events that causes the sanction event (the prohibition norm)

should be one of the sub-sequences above. In Line 6, the repeated sequences are

eliminated from CPhNC using the remRepeated(Col) function that removes the

duplication from collection Col. Hence the contents of CPhNC become

CPhNC = [(E2), (E3), (E2,E2), (E2,E3), (E2,E2,E3)]

(c) Similarly, the result of finding all the sub-sequences of the sequence events per-

formed by agent B are:
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[(E3), (E2), (E3,E2)]

(d) All the sub-sequences that result from each queue are added to CPhNC. The can-

didate prohibition norms collection for the example above is:

CPhNC = [(E2), (E3), (E2,E2), (E2,E3), (E2,E2,E3), (E3), (E2), (E3,E2)]

Step 2: the candidate prohibition norms with a frequency greater than SelectThresh

(in our experiment, this is a frequency >1) are selected from CPhNC and stored in

SCPhN (Algorithm 2, Line 10). freq(X,Col) is the function that returns the number

of times object X appeared in a collection Col. Hence the contents of SCPhN become

SCPhN = {(E2), (E3)}

Step 3: in Line 11, the SCPhN set is passed to the verification component, Algo-

rithm 4, which verifies whether the selected candidate prohibition norms are actual

norms in the society.

Algorithm 2 Prohibition norm identification algorithm

1: function ProhNrmIdent(EventBase)
2: for all Q ∈ EventBase do
3: for all S event in Q do
4: SeqReg ← the sequence of regular events that precede S
5: Col ← findSubSeq(SeqReg)

6: Col ← remRepeated(Col)

7: CPhNC ← CPhNC ∪ Col

8: end for
9: end for

10: SCPhN ← ∀ x ∈ CPhNC where freq(x,CPhNC)>SelectThresh
11: ProhNrmVerifi(SCPhN) /*Algorithm 4*/
12: end function
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3.2.3 Permission norm recognizer

The permission norm recognizer algorithm recognizes sequences of actions that the

agents perform without causing a sanction (permission norms). The idea here is to

find patterns of actions that occurs without causing a sanction. A repeated pattern

of actions in EventBase that occurs without a sanction event gives an indication that

the pattern does not cause punishment. Consequently it is identified as a candidate

permission norm. We define the candidate permission norm collection (CPmNC) as a

collection of objects that might be unordered or duplicated.

Permission norm identification algorithm (Algorithm 3) is only triggered when

at least one queue has no sanction event and the number of regular events hits the

regular events threshold. In this case, even if other queues can have sanction events,

Algorithm 3 can use those queues to identify permission norms. If a recognizer agent

observes the following actions: E1, S, E2 and E4, it can utilize this data to identify

permission norms, because it is possible that E2 and E4 are permitted (as they

appear after the sanction event S and they are not followed by another sanction

event). Therefore, SeqReg that appears in Algorithm 3 contains the sequence of

regular events that is not followed by a sanction event.

There are three steps in this component (see Algorithm 3). To illustrate, let

us again consider the example given in Section 3.2.2, repeated here for convenience.

Let the recognizer agent have two agents, A and B, in its vicinity. Agents are in the

vicinity of the recognizer agent if it can observe their actions. Let the queue size

be equal to four (i.e., it can save up to four actions). Assume that SanThresh and

SelectThresh equal one. This time, suppose that the sequences of actions that are

performed by agents A and B are as follows:
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Agent A’s queue = (E2,E2,E3,E4).

Agent B’s queue = (E3,S,E4,E1).

Step 1: as in the previous section, for each queue all the sub-sequences of the se-

quence of regular actions are constructed as explained below (Algorithm 3, Line 4).

The result of finding all the sub-sequences of agent A’s queue are:

[(E2), (E2), (E3), (E4), (E2,E2), (E2,E3), (E2,E4), (E2,E3), (E2,E4),

(E3,E4), (E2,E2,E3), (E2,E2,E4), (E2,E3,E4), (E2,E3,E4), (E2,E2,E3,E4)]

In the permission norm identification process, the duplicated sub-sequences are not

deleted. No deletion occurs because, in a sequence in which no sanction event occurs,

repeated sub-sequences indicate that this repeated sub-sequence might be permitted.

The result of finding all sub-sequences of the actions performed by agent B is:

[(E4), (E1), (E4,E1)].

The sub-sequences from the queues of agent A and B that are repeated more than

SelectThresh times (which is set to 1 here) are added to the CPmNC. For the example

above, we have:

CPmNC = [(E2), (E2,E3), (E2,E4), (E2,E3,E4)].

Nothing is added from agent B’s sub-sequences since there are no repeated sub-

sequences.

Step 2: in Line 6, the duplicated sub-sequences are removed from CPmNC and the

resulting version of CPmNC is added to SCPmN set:

SCPmN = {(E2), (E2,E3), (E2,E4), (E2,E3,E4)}

Step 3: in Line 9, SCPmN is passed to the verification component, which verifies

whether the SCPmNs are accepted as actual permission norms.
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The function findSubSeq(SeqReg) finds all the sub-sequences of a given se-

quence, which is equal to 2k − 1, where k is the length of the given sequence. The

time complexity of Algorithms 2 and 3 is O(n∗2m), where n is the number of observed

agents and m is the number of consecutive regular actions. However, m is relatively

small number, in our experiments m ≤ 8. This is a reasonable value because the

sanction event usually will not be far away from the violated actions.

Algorithm 3 Permission norm identification algorithm

1: function PermNrmIdent(EventBase)
2: for all Q ∈ EventBase do
3: SeqReg ← the sequence of regular events in Q that is not followed by a

sanction event
4: Col ← findSubSeq(SeqReg)

5: CPmNC ← ∀ x ∈ Col where freq(x,Col)>SelectThresh
6: CPmNC ← remRepeated(CPmNC)

7: end for
8: SCPmN ← CPmNC

9: PerNrmVerifi(SCPmN) /*Algorithm 5*/
10: end function

3.2.4 Norm verification component (VC)

We replicate Savarimuthu et al. (2011)’s VC as a prelude to our contributions. We

argue that the original VC is not suitable for open multi-agent systems, in addition

to the fact that it does not deal with permission norm (VC for permission norm is

our addition). The norm VC is based on asking other agents whether the candidate

norm is known as an actual norm. The agents respond based on their experience in

the society. To avoid accepting false information, several agents are asked and the

majority answer is taken. Figure 3.2 illustrates this process. The NumofWiseAgents

parameter keeps the number of agents which the recognizer agent will ask. In our
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work, the recognizer agent selects the agents that are to be queried randomly.

Figure 3.2: The verification component (VC). The recognizer agent picks a candidate
norm (CN) from the candidate norms base and asks three agents whether CN is a
norm or not. If the majority answer is affirmative, then CN is stored as an identified
norm.

There are two execution scenarios based on the type of norms we intend to

verify. For prohibition norms, the recognizer agent asks whether a selected candidate

prohibition norm is a prohibition norm or not. If the majority of the answers are

positive, the selected candidate norm is added to the recognizer agent’s prohibition

norm base; otherwise, the candidate norm is rejected (see Algorithm 4).

In the case of permission norms, the recognizer agent asks whether a selected

candidate permission norm is known as a permission norm or not. If the majority

of the answers are positive, then the candidate permission norm is added to the

recognizer agent’s permission norm base; otherwise, the candidate norm is rejected

(see Algorithm 5).
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Algorithm 4 Prohibition norms verification algorithm

1: function ProhNrmVerifi(SCPhN)
2: Select NumofWiseAgents agents
3: for all α ∈ SCPhN do
4: Ask NumofWiseAgents agents whether α is a prohibition norm.
5: if the majority answer is Yes then
6: ProhNrmBase← ProhNrmBase ∪ α

7: end if
8: end for
9: end function

Algorithm 5 Permission norms verification algorithm

1: function PerNrmVerifi(SCPmN)
2: Select NumofWiseAgents agents
3: for all α ∈ SCPmN do
4: Ask NumofWiseAgents agents whether α is a permission norm.
5: if the majority answer is Yes then
6: PermNrmBase← PermNrmBase ∪ α

7: end if
8: end for
9: end function

3.3 The dynamic verification component (DVC)

Sometimes, new norms emerge or disappear from a society. Therefore, agents need

a way not only to discover these potential changes but also to keep the norm base

in a consistent state. Hence, we present the dynamic verification component (DVC)

which is a modification of the VC.

The DVC allows an agent to infer new emerged and repealed norms online. It is

composed of two steps. In the first step, the recognizer agent selects agents randomly

and asks them to verify whether the selected candidate norm is an actual norm in the

society. In the second step, the recognizer agent decides whether to accept or reject

the verified norm. This decision is taken based on the majority answer of the selected
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agents, as discussed in Section 3.2.4. The DVC attempts to preserve consistency

among norms before adopting an identified norm. There are two main scenarios for

the DVC.

First scenario: in the case of verifying a candidate prohibition norm (Algorithm

6), if the majority answer is positive (yes, it is a prohibition norm), then the candidate

prohibition norm is compared with the permission norms (Lines 6 - 10). If it does

not equal any permission norm, then the candidate prohibition norm is stored in

the prohibition norm base (Line 11). If the candidate prohibition norm equals a

permission norm, then that permission norm is deleted from the permission norm

base before the candidate prohibition norm is added to the prohibition norm base

(Line 8).

Second scenario: in the case of verifying a candidate permission norm (Algorithm

7), if the majority answer is positive (yes, it is a permission norm), then the candidate

permission norm is compared with the prohibition norms (Lines 6 - 10). If it does

not equal any of the prohibition norms, it is stored in the permission norm base

(Line 11). If it equals a prohibition norm then that prohibition norm is deleted from

the prohibition norm base before the candidate permission norm is added to the

permission norm base (Line 8).

Consequently, the recognizer agent maintains the consistency among the permis-

sion and prohibition norms, never having a sequence of events defined as prohibition

norm and permission norm simultaneously.
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Algorithm 6 Dynamic prohibition norms verification algorithm

1: function DynProhNrmVerifi(SCPhN)
2: Randomly select NumofWiseAgents agents
3: for all α ∈ SCPhN do
4: Ask NumofWiseAgents agents whether α is a prohibition norm.
5: if the majority answer is Yes then
6: for all Pn ∈ PermNrmBase do /*where Pn is a permission norm*/
7: if Pn =α then
8: PermNrmBase ← PermNrmBase \ Pn
9: end if

10: end for
11: ProhNrmBase ← ProhNrmBase ∪ α

12: end if
13: end for
14: end function

Algorithm 7 Dynamic permission norms verification algorithm

1: function DynPerNrmVerifi(SCPmN)
2: Randomly select NumofWiseAgents agents
3: for all α ∈ SCPmN do
4: Ask NumofWiseAgents agents whether α is a permission norm.
5: if the majority answer is Yes then
6: for all Fn ∈ ProhNrmBase do /*where Fn is a prohibition norm*/
7: if Fn = α then
8: ProhNrmBase ← ProhNrmBase \ Fn
9: end if

10: end for
11: PermNrmBase ← PermNrmBase ∪ α

12: end if
13: end for
14: end function
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3.4 The modified verification component (MVC)

In open multi-agent systems, agents can have different internal architectures. Thus,

our agent may communicate with agents that do not necessarily know the concept of

norm. Further, because agents in open multi-agent systems are not always owned by

the same owner, they may have different goals and objectives. Consequently, agents in

open multi-agent systems are more likely to be self-interested and unreliable (Huynh

et al., 2006).

The VC mechanism has some drawbacks when it is used in open multi-agent

societies, especially those societies that are heterogeneous in the sense that agents

can have different architectures, possibly created by different designers (Grossi, 2007;

Koeppen and Lopez-Sanchez, 2010). Generally, the limitations fall into two cate-

gories: agents with no concept of norm and agents with different and contradicting

objectives.

In the first case, there are some agents in open multi-agent systems that do not

understand or are not aware of the concept of norm, or they might use a different

terminology for norm. This means that using the VC and asking those agents whether

a particular candidate norm is actually a norm becomes a futile exercise.

In the second case, open multi-agent systems contain agents that are owned by

different stakeholders (see Huynh et al., 2006). Consequently, each agent or group of

agents may have its own objectives, possibly in conflict with other agents. Accord-

ingly, we need to allow for the possibility of a competitive atmosphere appearing in

such systems. Competitive agents might deliberately give misleading or false informa-

tion. Even if an agent wants to be honest and give a true response, the VC mechanism
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may encourage the selected agent to give a deceptive or dishonest response.

To explain this point, consider the following example. Suppose that a recognizer

agent called Fan asks an agent called Thermo the following question: “Am I allowed

to open the window?” (or “Is the opening-window sequence of events prohibited?”).

From these kinds of questions, agent Thermo could deduce that agent Fan wants to

open the window. If this act (opening-window) complies with the objectives of agent

Thermo, then it might respond that this act is not prohibited, even though it is. As

a result, Thermo can accomplish its objective while deflecting the punishment to the

Fan agent. In other words, Thermo’s response will conform with its objectives instead

of conforming with the society’s norms.

As a result, the VC is not suitable for open multi-agent societies. To overcome the

limitations of the VC discussed above, we propose modified verification component

(MVC) so that instead of the recognizer agent asking agents whether a candidate

norm (sequence of actions) is a norm or not, the recognizer agent asks other agents

whether they can perform a sequence of actions on its behalf. By using this type of

question, agents avoid explicit communication about the norm concept.

The idea of a more general VC comes from the fact that all agents, regardless of

their architectures, designers, owners or types, must exhibit some behaviours in order

to participate in a society, even though their internal architecture may be unknown.

In this work, we assume that agents communicate using the Foundation for Intelligent

Physical Agents (FIPA)’s Agent Communication Language (ACL)(FIPA, 2002a). We

also assume that agents have the capability to perform acts that are relevant to a

particular society. However, agents do not have to provide information about their

internal states, such as what norms they believe.

53



Our MVC implementation is modeled using the standard FIPA’s Contract Net

Interaction Protocol (FIPA, 2002b). The recognizer agent represents the initiator

who sends the call for proposal (CFP) communicative acts. In our approach, the

recognizer agent does not need to accept any proposals, since it does not need the

action to be performed. It needs just to know if other agents will accept to do the

action which is prescribed in the CFP. As Figure 3.3 illustrates, the MVC is composed

of two steps.

Figure 3.3: The modified verification component (MVC). The recognizer agent picks
a candidate norm (CN) from the candidate norms. It then sends a call for proposal
(CFP), to perform CN, to a particular number of agents. If the majority response is
affirmative, then CN is stored as an identified norm.

Step 1: Selecting agents to be asked. Particular agents are selected in order

to send them a CFP (Algorithm 8, Line 2). We define NumofWiseAgents to keep

the number of agents that the recognizer agent is going to ask. The CFP requests a

proposal for performing a sequence of events (which is effectively the candidate norm).

Selecting more than one agent with respect to the same sequence of events mimics the

approach of the original VC (Savarimuthu et al., 2010a) by attempting to mitigate
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misleading information. There are different possible strategies for selecting which

agents to ask. Agents can be selected based on some measure of trust or reputation,

they can be preferentially selected because of their long-term participation in a society

(and hence being more acclimated to norms), or, as in the case of our experiments,

the agents can be selected randomly.

Step 2: Contacting the selected agents. The recognizer agent sends a CFP

to the selected agents (Algorithm 8, Line 4). The decision to accept the selected

candidate norm is based on the majority response to the CFP. In the case of candi-

date prohibition norm verification, if the recognizer agent receives negative proposals

(e.g., “refuse”) from the majority of the selected agents, then the candidate prohibi-

tion norm will be identified as a prohibition norm; otherwise, no norm is identified

(Algorithm 8, Lines 5-9). In the case of candidate permission norm verification, if

the recognizer agent receives affirmative proposals from the majority of the selected

agents, then the candidate permission norm will be identified as a permission norm;

otherwise, no norm is identified (Algorithm 9, Lines 5-9).

To illustrate the MVC, consider a book-trading-system that is composed of seller,

buyer and shipper agents. Suppose that the recognizer agent wants to verify that buy-

ing the book “Big-River-Big-Sea-Untold-stories-of-1949” is permitted. The recognizer

agent will send a CFP to the buyer agents asking them to submit their proposals for

buying the book. Using FIPA’s SL content language (FIPA, 2002c), one of FIPA’s

possible communicative acts, the CFP reads as follows:

(cfp

:sender (agent-identifier :name RecoginzerAgent)

:receiver (set (agent-identifier :name Buyer))
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:content

“((action (set (agent-identifier :name Buyer)

(Buy Book Big-River-Big-Sea-Untold-stories-of-1949))

))”

:ontology Book-Trading

:language fipa-sl)

The incentive for the asked agents to reply to the recognizer agent’s CFP comes

from the semantic of the Contract Net interaction protocol. When the asked agents

receive CFP, and they can perform the embedded sequence of actions in the CFP,

they reply to the verifier agent with their acceptance to do the task and their benefits

they want in return. In all cases the verifier agent replies by reject proposal, because

it was just inquiring and it was never intending for other agents to follow-through

with the action. According to the Contract Net interaction protocol, asked agents

will reply with refuse or propose. However, for some reason if the asked agents ignore

the sent CFP then the verifier agent ignores the candidate norm (see Algorithm 8

line 8 and Algorithm 9 line 8).

3.5 The modified dynamic verification component

(MDVC)

Since norms are subject to change, agents need to be able to adopt new norms or

repeal existing ones. In order to allow the VC to dynamically infer and recognize

the evolution of society’s norms, we proposed an alternate version of the VC called
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Algorithm 8 Modified prohibition norm verification

1: function MoProhNrmVerifi(SCPhN)
2: Select NumofWiseAgents agents
3: for all α ∈ SCPhN do
4: Send CFP to the selected agents. /*the content of the CFP is the sequence

of actions α*/
5: if the majority proposals were negative then
6: ProhNrmBase← ProhNrmBase ∪ α

7: else
8: do nothing
9: end if

10: end for
11: end function

Algorithm 9 Modified permission norm verification

1: function MoPerNrmVerifi(SCPmN)
2: Select NumofWiseAgents agents
3: for all α ∈ SCPmN do
4: Send CFP to the selected agents. /*the content of the CFP is the sequence

of events (α)*/
5: if the majority proposals were affirmative then
6: PermNrmBase← PermNrmBase ∪ α

7: else
8: do nothing
9: end if

10: end for
11: end function
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Algorithm 10 Modified dynamic prohibition norms verification

1: function MoDynProhNrmVerifi(SCPhN)
2: Select NumofWiseAgents agents
3: for all α ∈ SCPhN do
4: Send CFP to NumofWiseAgents agents.

/*the content of the CFP is the sequence of actions (α)*/
5: if the majority proposals are negative then
6: for all Pn ∈ PermNrmBase do /*where Pn is a permission norm*/
7: if Pn = α then
8: PermNrmBase ← PermNrmBase \ Pn
9: end if

10: end for
11: ProhNrmBase← ProhNrmBase ∪ α

12: else
13: do nothing
14: end if
15: end for
16: end function

Algorithm 11 Modified dynamic permission norms verification

1: function MoDynPerNrmVerifi(SCPmN)
2: Select NumofWiseAgents agents
3: for all α ∈ SCPmN do
4: Send CFP to NumofWiseAgents agents.

/*the content of the CFP is the sequence of actions (α)*/
5: if the majority proposals were affirmative then
6: for all Fn ∈ ProhNrmBase do /*where Fn is a prohibition norm*/
7: if Fn = α then
8: ProhNrmBase ← ProhNrmBase \ Fn
9: end if

10: end for
11: PermNrmBase← PermNrmBase ∪ α

12: else
13: do nothing
14: end if
15: end for
16: end function

58



the dynamic verification component (DVC) (see Section 3.3). This alternate version

enables the consistency between prohibition and permission norms to be preserved.

In this section, we apply a further modification to the DVC, much like the mod-

ification presented to the VC in Section 3.4. Let us call the new resulting component

the modified dynamic verification component (MDVC). Similar to the MVC, in the

MDVC, the recognizer agent sends to a particular number of agents a CFP to perform

a sequence of actions which forms a candidate norm.

In the case of verifying a candidate prohibition norm, if the majority of the re-

ceived proposals are negative, then the candidate prohibition norm is matched against

the permission norms (Algorithm 10, Lines 5-14). If it does not match, the candi-

date prohibition norm is stored in ProhNrmBase (Algorithm 10, Line 11). However, if

the candidate prohibition norm matches a permission norm, the matched permission

norm is deleted from PermNrmBase and the candidate prohibition norm is added to

ProhNrmBase (Algorithm 10, Lines 7-9).

In the case of verifying a candidate permission norm, if the majority of the

received proposals are affirmative, the candidate permission norm is matched against

the prohibition norms (see Algorithm 11, Lines 5-14). If it does not match any of the

prohibition norms, then it is stored in PermNrmBase. If it matches a prohibition norm

then the matched prohibition norm is deleted from ProhNrmBase and the candidate

permission norm is added to PermNrmBase (Algorithm 11, Lines 7-11). Therefore, the

recognizer agent will not have an action defined as a prohibition and as a permission

norm at the same time. As a result of the operations of the DVC, the recognizer

agent maintains consistency among the permission and prohibition norms.
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3.6 Summary

In this chapter we developed an agent architecture and algorithms to identify prohibi-

tion and permission norms. We presented the DVC, a modification on the known VC

(Savarimuthu et al., 2010b) as a way of identifying the changes that may happen in

a society’s norms. We address the limitations of the VC proposed when it is used in

open multi-agent societies by proposing modifications to overcome these limitations.

Identifying permission norm along with prohibition norm helps the recognizer

agent not only to identify new norms but also to identify the norms’ changes. Iden-

tifying a society’s norms in general helps agents to predict and regulate agents’ be-

haviours, in addition to their role in goal formation and plan adoption. Permission

norm identification, in particular, helps newcomer agents to detect the repealed pro-

hibited norms and to interact with the society even if they have not yet inferred the

prohibition norms. As a result, the agent does not waste time waiting for sanction

events to occur, and it does not lose its resources or utilities by acting recklessly

without knowing the norms and risking sanctions. Hence, the agent can match the

event it wants to execute with the permission norm base and then execute it without

worrying about sanctions or violating the society’s norms.

For convenience, in the next chapter we present the experiment results of our

work and the comparison results of our work with one of the most popular approaches

in norm identification.
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Chapter 4

Experiment results for norm

identification

4.1 Experimental setup

In this chapter we describe a restaurant scenario and discuss the results obtained by

implementing our proposed architecture and algorithms. We have three main sets of

experiments: one to show that our proposed agent architecture and algorithms are

able to identify repealed and new permission and prohibition norms. In the second

set of experiments, we demonstrate the significance of permission norms in detecting

the repealed prohibition norm by comparing our approach with Savarimuthu et al.

(2010a) approach. In the other set of experiments, we compare the VC as described

in (Savarimuthu et al., 2010a) to our proposed MVC. Then, we test our proposed

MDVC in a scenario involving norms change.
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Java JDK 1.6.0 within JADE-3.7 (Bellifemine et al., 2007) software agent devel-

opment environment is used to build a restaurant interaction scenario as an example.

Our experiments are based on a society of 22 agents. The parameters are set in the

experiments as follows:

• QueueSize: 8 events.

• RegThresh: 8 regular events.

• SanThresh: 1 sanction events.

• NumofWiseAgents: 3 agents are selected randomly.

We selected a queue size of 8 events based on several experiments with queues

of various sizes (256, 128, 64, 32, 16 and 8). Increasing the size of the queue for

this scenario does not give more information for the recognizer agent to identify the

prohibition norms, unless the norms are composed of more than 8 events.

Our agent observes other agents’ events and store them in their corresponding

queues. The first added event leaves the queue if the queue is full when the most

recently observed event needs to be added. In our experiments, the recognizer agent

maintains a queue for each agent in the joined society. The number of events that the

recognizer agent is able to store depends on the size of the queue which itself depends

on the characteristics of the system being modeled. If the society has norms that are

composed of n actions, then the size of the queue should be at least n+1 in order to

show the sanction event.

The RegThresh parameter was chosen to equal the queue size. This way, when the

queue is full of regular events, the permission norm identification algorithm is called.
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The prohibition norm identification algorithm is called every time the recognizer agent

observes a sanction event. Because of this, we set the SanThresh parameter to one.

Our restaurant society consists of customer agents and a restaurant supervisor

agent. The restaurant has the following events: Reserving, Eating, Dropping, Paying,

Smoking, Tipping, Yelling, and Leaving. The supervisor agent is the police agent in

the restaurant and plays the norm enforcement role. Any customer who violates the

norms of the restaurant is sanctioned by the supervisor agent. We assume that the

supervisor agent is already aware of the prohibition norms of the society, which could

be one event or a sequence of events.

In our experiments, Dropping, Smoking or Yelling are defined as prohibition

norms. Customer agents are able to execute any event in the restaurant as many

times as they want, and they are sanctioned if they violate the restaurant society’s

norms.

4.2 Experiment set 1 - Newcomer agent scenario

The aim of this experiment is to show that our proposed architecture and algorithms

are able to infer changeable prohibition and permission norms. In this scenario, when

a newcomer agent joins the restaurant society and before he acts in the society, he will

try to infer the norms that govern the joined society. We assume that the society has

some disobedient customer agents who sometimes violate the norms. The restaurant

society in this experiment consists of one supervisor agent, one recognizer agent and

twenty customer agents which continuously performed random events. Note that we

ignore the semantic problems in the events that a customer agent may perform. For
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example, in our scenarios the customer may Eat, Reserve, Leave, Eat and then Pay,

in an order that is not semantically rational.

The results of the experiment, shown in Figures 4.1 and 4.2, demonstrate that

the newcomer agent (the recognizer agent) is able to recognize and identify the soci-

ety’s prohibition norms (Dropping (D), Smoking (S), Yelling (Y)) and some of the

permission norms. We further see that the success of norm identification increases as

the events executed in the society increase.

Figure 4.1: Prohibition norms change identification

After the recognizer agent has identified the prohibition norms, the norms of the

restaurant society are changed. A new prohibition norm, Tipping, is adopted and a

known prohibition norm, Dropping, is repealed. The supervisor agent and the other

customer agents are aware of this change. Our recognizer agent needs to detect this

change.

The results in Figures 4.1 and 4.2 demonstrate how the recognizer agent, who ap-

plies our proposed architecture and uses the DVC algorithm, can identify the changed
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Figure 4.2: Permission norms change identification

norms. As we see in Figure 4.1, at event 77.7, the new adopted norm, Tipping, is

identified before identifying that the prohibition norm, Dropping, is repealed. Thus,

at event 77.7, the recognizer agent has four prohibition norms while the society has

only three. At event 140, the recognizer agent identifies that the prohibition norm,

Dropping, has been repealed.

In Figure 4.2, as a result of adopting the norm Tipping, the number of permis-

sion norms is decreased at event 83.9. The number of permission norms is affected

by the identification of prohibition norms. Hence, at event 83.9, the recognizer agent

loses some permission norms. Figure 4.2 shows that the number of identified permis-

sion norms increases as the number of executed events increase. At event 140, the

recognizer agent identifies that the prohibition norm, Dropping, has been repealed.

Consequently it identifies more permission norms.
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4.3 Experiment set 2 - Newcomer agent scenario

The aim of this experiment is to demonstrate the significance of using permission

norms in detecting the repealed prohibition norms. We compare our approach which

utilizes the permission norm for detecting the repealed prohibition norm with Savarimuthu

et al. (2010a) approach. According to Savarimuthu, a prohibition norm is repealed if

that prohibition norm has not been detected as a prohibition norm for a particular

time. In contrast, our approach detects that a prohibition norm is repealed only if

it is identified as a permission norm. The problem with the former approach is that

if a particular prohibition norm has not been violated for a particular time then this

norm will not be inferred by the norm identification algorithm; as a result it will be

repealed from the agent belief base even if the norm still exists in the society.

In this scenario we compare two agents: one that utilizes the permission norm

and another that uses only the prohibition norm. The supervisor agent and the

other customer agents are aware of the society norms, which are (Dropping, Smoking,

Yelling).

In Savarimuthu et al. (2010a)’s approach the period of time during which the

agent needs to wait before repealing a prohibition norm in case no violation recorded

for that norm, plays a crucial role in norm identification. Let us call this period

calmTime. In our experiments, setting calmTime to 10 means that if the prohibition

norm identification algorithm is triggered 10 times and a prohibition norm has not

been inferred then that prohibition norm is repealed from the agent belief base.

Figures 4.3 through 4.5 show the comparison results between the two approaches;

our approach is the one with permission norm and the other approach is the one
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without permission norm. At event 45, a new prohibition norm, Tipping, is adopted

and a known prohibition norm, Dropping, is repealed. The supervisor agent and

the other customer agents are aware of this change. We choose event 45 to change

the norms since we find based on experiments 44.6 events in average are enough for

both agents to infer the three prohibited norms. Figure 4.3 shows the result when

calmTime equal to 10. We notice from the Figure that the agent that does not use

permission norm falls in the trap of mistakenly repealing prohibition norms. Figures

4.4 and 4.5, which use calmTime values of 25 and 50, respectively, show that as we

increase the calmTime the falling in that trap is decreased. However, as we increase

the calmTime the agent needs to observe more events to detect a repealed norm (see

Figure 4.5). In contrast, the agent that utilizes the permission norm to detect the

repealed norm is required to observe fewer events; also he does not suffer from the

trap of mistakenly revoking a prohibition norm.

Figure 4.3: Detecting norm changes using permission norm with calmTime = 10.
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Figure 4.4: Detecting norm changes using permission norm with calmTime = 25.

4.4 Experiment set 3 - Newcomer agent scenario

As a complement to comparing our norm identification approach with Savarimuthu

et al. (2010a), in this experiment we show that the VC is not adequate for heteroge-

neous multi-agent systems. Therefore, we compare it with our proposed MVC and

MDVC.

In this experiment setup, the customer agents form a heterogeneous society.

Based on the heterogeneity in the society, it is possible that some agents are not

aware of the concept of norm. The restaurant society in this experiment consists of

two groups of customer agents, one supervisor agent and our recognizer agent. The

first customer group consists of ten agents who are aware of the concept of norm.

The second group of ten agents has a different internal architecture and the agents

are not aware of the concept of norm. In this scenario we assume that agents use the

FIPA’s Agent Communication Language (ACL).

In these experiments, we compare the VC and the MVC relative to the efficiency
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Figure 4.5: Detecting norm changes using permission norm with calmTime = 50.

of inferring prohibition norms. The component that infers norms using the smaller

number of observed events is considered to be more efficient.

In this scenario, 50% of the customers do not have a concept of norm. This

affects the VC and the MVC differently. When the VC is applied, selected agents

are asked about norms directly. This means that only 50% of the agents are capable

of replying (since the other 50% do not have a concept of norm). Even worse, if

we assume that some agents might not cooperate with the recognizer agent’s inquiry

then the probability of receiving answers from the customer agents might be less

than 50%. In contrast, when the MVC is applied, selected agents are asked about

behaviours instead of norms. Hence 100% of the agents are able to reply, regardless of

whether they are aware of the concept of norm or not. Using CFP for communication

encourages other agents to reply since they expect a benefit by performing the task.

The experiment was repeated ten times. In each execution, the number of ob-

served events required to identify norms was recorded. The average number of ob-

served events was then calculated for the ten executions. The experiment results show
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Figure 4.6: Verification component (VC) for prohibition norm identification. After
the observer agent witnessed 46.63 events (in average), it inferred one prohibition
norm. It inferred another at event 95.00, and at 165.50 it had inferred the last
prohibition norm in the society.

that the newcomer agent infers all restaurant prohibition norms (Dropping, Smoking,

Yelling) by event 165.5 (on average) when the VC is applied (see Figure 4.6) and by

event 43.4 (on average) when the MVC is applied (see Figure 4.7). Figure 4.8 shows

that the MVC needs fewer events to infer the prohibition norms than the VC.

Testing the MDVC begins after the newcomer agent has identified all prohibition

norms in the restaurant society. After event 44, the restaurant supervisor changes the

society’s norms, by adopting a new prohibition norm, Tipping, and repealing another

prohibition norm, Smoking.

The experiments described in Figures 4.9 and 4.10 express the results of iden-

tifying the changed norms for the customer agent who uses the MDVC. As we see

in Figure 4.9, at event 62, the newly adopted norm Tipping is identified before the

repealing of Smoking is identified. At event 92, the recognizer agent identifies the re-

pealed prohibition norm Smoking and loses the prohibition norm Dropping. At event
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Figure 4.7: Modified verification component (MVC) for prohibition norm identifi-
cation. The observer agent inferred one prohibition norm after 17.60 events were
observed. It inferred another at event 31.80 and at 43.4 it had inferred the last
prohibition norm in the society.

110, Dropping is again identified as a prohibition norm. Indeed, this point shows how

the MVDC preserves consistency among norms. In Figures 4.9 and 4.10 at events

92 and 110, we see that as the number of identified prohibition norms decreases, the

number of identified permission norms increases, and vice versa.

4.5 Experiment discussion

In this chapter we present the experiment results of our work in dynamic norm iden-

tification and we compare our work with Savarimuthu et al. (2010a), one of the most

popular work in norm identification. To demonstrate our work, we create a restaurant

society scenario using JADE software agent development framework, and apply our

proposed architecture and algorithms. We show how our proposed work can infer

the changes that might occur to the norms of a society online. In the second set

of experiments, we show the significance role of permission norms in detecting the
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Figure 4.8: Norm identification comparison. The verification component (VC) needs
more events than the modified verification component (MVC) in order to infer the
society norms.

repealed prohibition norms. In the last set of the experiments, we demonstrate that

the MVC can identify norms in open multi-agent societies, even if all agents in the

society are not aware of the concept of norm. This overcomes one limitation of the

VC, in which the probability of failure in identifying norms increases as the number

of agents who are not aware of the concept of norm increases. We also show how

the MDVC is able to identify and dynamically infer changes that can occur to the

norms of an open multi-agent society. Our agent with this mechanism, however, fails

to choose the best behaviour to achieve its objectives and avoid norms violation. In

the next chapter, we overcome this limitation by developing a mechanism for that

purpose.
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Figure 4.9: Prohibition norm change identification using MDVC, D, S, Y and T
represent Dropping, Smoking, Yelling and Tipping, respectively. When 44 events
were perceived, there was no change to the prohibition norm base. After event 44 the
restaurant norms are changed by revoking S and adopting T. At event 62 the agent
infers the extra norm T. At event 92, the agent detects the revoked prohibition norm
S. This means that the agent adopts the new norm T before revoking the old one S.

Figure 4.10: Permission norm change identification using MDVC. The number of
permission norms is decreased by increasing the number of prohibition norms, as seen
at event 92 and 110. Also the figure shows that the number of identified permission
norms is increased by increasing the number of executed events.
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Chapter 5

Norm Representation and

Reasoning: A Formalization in

Event Calculus

In open multi-agent systems, heterogeneous agents are designed by various people.

Agents enter and leave the system while acting autonomously towards self-interested

goals (Ramchurn et al., 2004). In such environments, norms play an important role

for regulating and predicting an agent’s behaviour.

Electronic Institutions (Esteva et al., 2001) is an approach which assumes that

agents always comply with and follow the norms. Although this makes their behaviour

more predictable and coordinated, this drastically decreases agents’ flexibility and

autonomy. Among self-interested agents, their highest priority is achieving their own

goals. Therefore they should not mindlessly obey norms unless they benefit from

such obedience. Thus, most researchers in normative multi-agent systems adopt an
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alternative view in which norms are considered as soft constraints and agents have

the choice to comply with or to violate norms (Aldewereld et al., 2007).

Similar to human societies, agents that violate norms are subject to sanctions.

Sanctions have been used as a norm enforcement tool to urge agents to respect norms

and keep the system stable (Castelfranchi, 2003). Thus we need agents to be able to

adapt their behaviour according to their society’s norms to avoid potential punish-

ments. We face at least two challenges in building such agents. The first challenge

is determining how agents know the prevalent norms. The second is creating an

application-independent mechanism to help agents consider dynamic norms in their

practical reasoning. This is required because norms are subject to change or emerge

at runtime and because agents can travel to different societies that have different

norms.

In order to address these two challenges, we need to design reasoning mechanisms

able to identify dynamic norms as well as consider these norms during an agent’s

practical reasoning. In Chapter 3, we address the former challenge. In this chapter,

we are concerned with the latter challenge, and focus on reasoning mechanisms for

flexible norm compliance.

Here we are not concerned with modeling normative environments or describing

the behaviour of multi-agent systems. Rather, we are concerned with the impact of

norms on an individual agent’s behaviours at runtime. We propose a norm’s formal

representation using event calculus (EC) and an application-independent mechanism

for reasoning about the effects of norms on an agent’s behaviour. The mechanism

we develop in this Chapter allows an agent to choose the set of best plans among

multiple applicable plans, and choose the safest plan among the best plans. Where
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we define the best plan as the plan with the highest positive utility for that agent,

and safest plan as the plan that complies with the maximum number of permission

norms.

The remainder of this chapter is organized as follows. We first present the limi-

tations of classical EC and propose a modification to mitigate these limitations (Sec-

tion 5.1). We then propose a formal representation of norm (Section 5.2). In 5.3

we propose a normative reasoning mechanism. We discuss the significance of using

the permission norm in normative reasoning mechanism in Section 5.4. Our norma-

tive reasoning mechanism using the permission norm presented in (Section 5.5). We

conclude the chapter with a summary (Section 5.6).

5.1 Representing delayed or immediate effects in

event calculus

Suppose that in a particular trading system, if an agent orders an item from system

x, it will receive the item after two days, but if the order is from system y then it

will receive it after three days. To represent this using EC, order(Item,System) is

an action to order an item from a system and received(Item) is a fluent indicating

whether the item is received or not. To represent that using EC we have:

initiates(order(item,x),received(item),T1) and

initiates(order(item,y),received(item),T1).

Both representations mean that the item will be received after the order is set. How-

ever, EC fails to represent the delay of the effects of the actions. In other words, the

representation above does not reveal the difference between the effects of the actions.
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One of the basic predicates of EC is initiates(A,F,T), which states that the

occurrence of action A at time T leads fluent F to be true at the next time step after

T. This effectively means that the norm starting time point is after T. However, this

is not always the case. Indeed, there are at least two other possibilities:

1. The action’s effects may take place at the time of the action’s occurrence. Hence,

a fluent becomes true at the same time as the action occurred (e.g., once you

enter a library it is prohibited to speak loudly) (Hashmi et al., 2014).

2. The action’s effects may take place a while after the action occurred. Hence,

a fluent becomes true at time greater than the time of the action’s occurrence

(e.g., while it is prohibited to use cell phones in an airplane, this norm is not in

force as soon as the passenger enters the airplane, but rather after the passenger

puts his handbag in the cabinet and sits down).

In order to be able to represent the additional cases, we replace the EC predicate

initiates(A,F,T) with the predicate initiatesAt(A,F,T1,T2), which states that

the occurrence of action A at time T1 will make fluent F true at T2.

The same argument applies for the EC predicate terminates(A,F,T), but here

action A triggers fluent F to be false. We replace this predicate with

terminatesAt(A,F,T1,T2), which states that the occurrence of action A at time T1

will make fluent F false at time T2. Consequently, we need to modify basic EC axioms

(see Section 2.4). The extended axioms important to our work are as follows:

EC1′:clipped(T1,F,T3)←

happens(A,T2) & terminatesAt(A,F,T2,T3) & T1<T2 & T2≤T3
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This states that fluent F is terminated by the occurrence of action A between

times T1 and T3.

EC3′:holdsAt(F,T2)← happens(A,T1) & initiatesAt(A,F,T1,T2) &

T1≤T2 & ¬clipped(T1,F,T2)

This states that fluent F holds at time T2 if action A occurred at time T1, fluent

F became true at time T2, and F has not been terminated between T1 and T2.

We further define the predicate between(A,T1,T2). This states that action A

occurred after time T1 and before T2. We use this predicate to formally represent

norms.

5.2 Norm representation

In order to employ norms in an agent’s practical reasoning, a formal representation

is needed. Our view of norms follows Anderson’s reduction view (Anderson, 1958)

which states that norm violation is necessarily followed by a sanction (Soeteman,

2001). We use sanctions and rewards events as flags to refer to norm-violation and

norm-compliance. Thus, in our norm representation we define fluents to represent

those flags. Using EC, we represent norms as a sequence of actions that make fluents

true. We make the pivot of our norm representation to be the fluents (sanctions and

rewards). This is because our agent’s decision to comply or violate norms is based on

sanctions and rewards. The punishment or reward represents an incentive for agents

to change their behaviours. For this purpose we introduce the following fluents:
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fPun(Nid,S) is a fluent which becomes true if the prohibition norm Nid is vio-

lated. The sanction of the violation is S. Nid is a unique number of prohibition norm,

where S is an integer representing the sanction value.

oPun(Nid,S) is a fluent which becomes true if the obligation norm Nid has

not been fulfilled. The punishment issued for this violation is S. Nid is a norm

identification number and S is the punishment value.

oRew(Nid,R) is a fluent which becomes true if the obligation norm Nid has been

fulfilled. The variable R refers to the reward value.

Sanctions and rewards play a fundamental role in representing norms. A sanction

refers to a norm violation event, and a reward refers to an obligation norm fulfillment.

Using the above three fluents fPun(Nid,S), oPun(Nid,S) and oRew(Nid,R), we can

now formally define prohibition and obligation norms.

5.2.1 Definition of prohibition norm

Following our view of norms Section 2.1.1, the formal definition for prohibition norms

is as follows:

initiatesAt(An,fPun(Nid,S),Tn,Tn+1):- C, happens(A1,T1) & · · · &

happens(An,Tn) & T1<T2< & · · · & <Tn.

This representation of prohibition norm contains the following parts. D, the

deontic type, is a prohibition norm; on the left hand side of the definition we use

the fPun fluent which refers to a prohibition norm violation state. C is the norm’s
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context. Seq is a sequence of actions, A1,A2,· · · ,An, that is prohibited. S is the

sanction value which will be applied on the violator agent. R is empty for prohibition

norm.

Our prohibition norm representation states that: if actions A1, · · · ,An occurred

at time T1, · · · ,Tn respectively, and the context C was a logical consequence from

the agent’s belief base, then the sanction that might be applied on the actor after Tn

is S. If the order of actions is not important in a norm, then we omit the dependencies

among T1,T2, · · · ,Tn-1. However T1,T2, · · · ,Tn-1 should be less than Tn. For

example, if performing actions X, Y and Z in any order is prohibited then we do not

need to specify which action occurs before or after which action.

5.2.2 Definition of obligation norm

Following our view of norms Section 2.1.1, we can now give below the formal definition

for obligation norm.

Let α be a sequence of actions, possibly empty, and Seq be a sequence of pre-

scribed actions that is supposed to be performed by an agent. An obligation norm

violation occurs if in a particular context (which α is a part of), Seq does not occur.

Fluent oPun(Nid,S) becomes true if the obligation norm Nid is violated. The obliga-

tion norm fulfillment occurs when the Seq occurs in that context. Fluent oRew(Nid,S)

becomes true if the obligation norm Nid is fulfilled.

We represent obligation norms by two rules. The first of these rules is as follows:

initiatesAt(Ai,oPun(Nid,S),Ti,Tn+1):- β & happens(A1,T1) & · · · &
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happens(Ai,Ti) & · · · & ¬happens(Aj,Tj) | · · · | ¬happens(An,Tn)

& T1< & · · · & <Ti< & · · · & <Tj< & · · · & <Tn.

This representation contains the following parts. D, the deontic type, is an obli-

gation norm; this is so defined because we use the oPun fluent in the left-hand side

of the definition, which refers to an obligation norm violation state. C is the norm’s

context, composed of β and α, where β represents the world’s states of the context

and α = A1,A2,· · · ,Ai. Seq is a sequence of actions (Aj,Aj+1,· · · ,An) that is obliged

to be performed. S is the sanction value which will be applied on the violator agent.

The first rule states that, if a part of the context C (β) is a logical conse-

quence from the agent belief base, and a (possibly empty) sequence of actions, α,

A1,A2,· · · ,Ai occurs at time T1,T2,· · · ,Ti respectively, and a sequence of actions

(Seq) Aj,Aj+1,· · · ,An does not occur at Tj,Tj+1,· · · ,Tn, then the sanction that

may be applied after Tn is S.

In addition to the first rule we need the following rule only if the obligation norm

fulfillment is subject to a reward.

initiatesAt(An,oRew(Nid,R),Ti,Tn+1):- β & happens(A1,T1)& · · ·&

happens(Ai,Ti) & · · ·& happens(Aj,Tj) & · · · & happens(An,Tn)

& T1< & · · · & <Ti< & · · · & <Tj< & · · · & <Tn.

This second rule states that, if a part of the context C (β) is entailed from the

agent’s belief base, and a (possibly empty) sequence of actions (α) A1,A2,· · · ,Ai oc-

curs at time T1,T2,· · · ,Ti, and a sequence of actions (Seq) Aj,Aj+1,· · · ,An occurs

at Tj,Tj+1,· · · ,Tn, then the reward that might be granted after Tn is R.
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We will illustrate the operation of these rules with two examples.

Example 5.2.1. In a particular auction, if an agent bids and wins, then within 24

hours it should pay for the item and fill a survey. If the agent does this, it will receive

a discount code of $5 on its next purchase; otherwise, the agent will be added to the

auction’s black list.

In this example a violation occurs if the agent performs the action “bid” but

does not perform the actions “pay” or “fill-survey”. The context C is composed of:

α = happens(bid,T1) and β = holdsAt(win,T2).

The obliged sequence of actions (Seq) is:

happens(pay,T3) | happens(fill-survey,T4)

such that T1<T2<T3<T4.

Assume that, for our agent, the punishment value is equivalent to $10. This obli-

gation norm is then represented as follows:

initiatesAt(bid,oPun(1,$10),T1,T4):- happens(bid,T1)

& holdsAt(win,T2) & ¬happens(pay,T3) | ¬happens(fill-survey,T4)

& T1<T2 & T2<T3 & T3<T4.

initiatesAt(bid,oRew(1,$5),T1,T4):- happens(bid,T1)

& holdsAt(win,T2) & happens(pay,T3) & happens(fill-survey,T4)

& T1<T2 & T2<T3 & T3<T4.

As we can tell from the example above, norms can be composed of several ac-
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tions, which are pay and then fill-survey. In this example the order of the actions

is important; however, if the order of the actions is not important we omit the depen-

dencies among the times of the occurrence actions. In the next example, we consider a

situation in which no actions are given in the norm’s context, and, because no reward

is given, only one rule is required to define the norm.

Example 5.2.2. In a particular society, the obligation norm is “At Christmas you

should call your parents, visit them and give them a gift. Otherwise they will feel

disappointed”. Here, Christmas is the norm’s context. The person should do three

actions to fulfill this obligation norm: “call”, “visit” and “give”. The punishment of

violating this norm is parents’ disappointment.

In this example, the actions part of the context (α) is empty (in this case the

first argument of the predicate initiatesAt is not used), where

Seq = ¬happens(call,T1) | ¬happens(visit,T2) | ¬happens(give,T3)

such that T1<T2<T3.

Assuming that there are no rewards of this norm’s fulfillment, then we only need

one rule to represent the norm:

initiatesAt(A,oPun(normID, disappointed),T0,T3):-

holdsAt(christmas,T1) & ¬happens(call,T1) | ¬happens(visit,T2) |

¬happens(give,T3) & T1<T2 & T2<T3.
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5.3 Our normative reasoning mechanism

In this section we present a mechanism that allows our agent to adapt its behaviours

according to the norms of a society. In the context of the BDI architecture (see

Section 2.2), after the applicable plans are selected, our mechanism utilizes the plans

and finds the best one to add to the agent’s intention set. In Figure 5.1, an overview

of the basic BDI interpreter is illustrated as white boxes while our proposed additions

are presented as grey boxes.

Our normative reasoning mechanism not only checks whether a plan respects

the norms or not, but also takes the agent’s history into consideration. For example,

an agent can have two plans, P1 and P2, each respecting norms. However, it is

possible that performing P1 followed by P2 can violate norms if P1 has one or more

actions that, when combined with one or more actions from P2, violates norms. Our

mechanism handles this by enabling the agent to discover such potential violations.

For example, suppose that the sanction of running a red light three times is the

suspension of a driver’s license. If there is no mechanism to take an agent’s past

actions into consideration (e.g., how many times it has run a red light before), the

agent should never predict that he will incur a sanction by running a red light.

Figure 5.1: Reasoning process flow.
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In Section 5.2 we presented how we formalize prohibition and obligation norm

using EC. In the following, we prepare for the necessary definitions and axioms for

our normative reasoning mechanism.

We introduce the following fluent that states whether a plan has more profits

than losses. The fluent help(Plan) will be true if the rewards outweigh the punish-

ments of performing Plan. The punishments value comes from violating prohibition

norms or from failing to fulfill obligation norms (stored in the variables Losses1 and

Losses2 respectively). The rewards value comes from achieving the goal associated

with Plan (stored in variable Points in helpful-rule described below) and fulfill-

ing obligation norms (stored in the variable Wins in helpful-rule). We define the

predicate goalpreference(G,Points) to describe the preference of achieving goal

G, where Points is an integer number that refers to the importance of G. The goal

importance is determined according to the agent’s designed objectives.

The default value of our defined fluents is false; their values might be changed

after our mechanism does a reasoning about a particular plan. Hence, we need to

reset those fluent to the default values after each checking for each plan. In order

to terminate fluents, a domain-independent special event * is used as a wild card

variable to denote any action. It refers to the fact that the associated fluents become

false. For that purpose we define the following domain-independent axioms using

the EC framework. Our agents implement these axioms in their normative reasoning

mechanism:

• EC1′ & EC3′ (see section 5.1)

• Ax1: between(A,T1,T2) :- happens(A,T) & T1 <T & T <T2
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• Ax2: terminatesAt(*,help(P),T1,T2):- happens(*,T1) & T1<T2

• Ax3: terminatesAt(*,fPun(I,S),T1,T2):- happens(*,T1) & T1<T2

• Ax4: terminatesAt(*,oPun(I,S),T1,T2):- happens(*,T1) & T1<T2

• Ax5: terminatesAt(*,oRew(I,S),T1,T2):- happens(*,T1) & T1<T2

These axioms allow agents to find a potential norm violation/fulfillment that can

result from executing the current plan. If we also want the agent to be able to find the

potential norm’s violation/fulfillment resulting from the combination of actions of the

current and the previous plan, we need to add another happens(*,T2) predicate to

the right-hand side of Ax2 through Ax5. Here, the * action monitors the end point of

those fluents that are mentioned in the axioms above. For example, Ax2 now becomes

terminatesAt(*,help(P),T1,T3):- happens(*,T1) & happens(*,T2) & T1<T2

& T2<T3.

The same addition should be added to Ax3 through Ax5.

In addition to the above domain independent axioms, we introduce the following

rule, which we have called helpful-rule.

helpful-rule:

initiatesAt(_,help(Plan),T1,T2):-

.findall(V1,holdsAt(oRew(,V1),T2+1),Wins) &

.findall(V2,holdsAt(fPun(_,V2), T2), Losses1) &

.findall(V3,holdsAt(oPun(_,V3), T2), Losses2) &

goalpreference(G,Points) &

86



(Points + sum(Wins)- sum(Losses1) - sum(Losses2)) > 0

Using helpful-rule, the agent determines whether a plan is helpful. The righ-

hand side of this rule becomes true when the left-hand side finds that all the rewards

that can result from executing the current plan (the plan under test) are more than

the punishment that can result from executing the same plan. The agent asserts

the actions of a plan into a temporary belief base, which is a copy of the agent’s

belief base, using the happens predicate in order to simulate that these actions have

occurred, (see Algorithm 12, line 4, and Algorithm 13).

Generally, predicate .findall(V,holdsAt(p(_,V),_),Set) (as in Prolog and

Jason (see Section 2.2.1)) obtains all the values of V where fluent P is true. V represents

the value of a punishment if p is fPun or oPun, or a reward if p is oRew. Variable

Set unifies with the set of V values. Finally, Wins obtains the rewards that may be

granted if Plan is executed and Losses1 and Losses2 unify with the sanctions that

can result from executing the plan which an agent is checking.

Before the agent makes the decision of intending/committing a plan, it uses

Algorithms 12 and 13 and the helpful-rule to find the most profitable plan. We

define Bel as the belief base that represents the agent’s knowledge about the society

along with the society’s norms represented in EC. TempBel is a copy of Bel. We also

define Ω to refer to EC1′, EC3′, Ax1, Ax2, Ax3, Ax4, Ax5, helpful-rule, TempBel and

Bel.

The input of Algorithm 12 is Π, the set of applicable plans. In Line 2, we define

UtilSet as an empty set. This set will be used to store the plans associated with

their utility. In Line 4, each applicable plan is sent to Algorithm 13 and the result is
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stored in TempBel.

In Algorithm 13, Line 2, the agent finds the sequence of actions of a plan using

act(π) function, which is a function that returns the sequence of actions of a given

plan π. The agent asserts the actions of plan π using the predicate happens, starting

from time T, which represents the current time. Note that the added actions have

not occurred yet. By adding these actions to the agent’s TempBel belief base, the

agent pretends that he has performed the actions in order to detect if the current

plan π is helpful (has positive utility) or not. Plan π is helpful if the predicate

holdsAt(help(π),T) is deduced from TempBel belief base; hence, the total value of

all rewards is more than the total value of all losses.

In line 6 of Algorithm 12, after holdsAt(help(π),T) is deduced, the vari-

ables Points, Wins, Losses1 and Losses2 are unified with a set of values based on

.findall() predicate which finds all norms violations and fulfillment (see helpful-rule

above). In lines 7 and 8, the plan’s utilities are computed and saved in the UtilSet.

In line 11, function findMaxUti() returns the plan of maximum utility. This plan is

then ready for execution by adding it to the agent’s intentions.

When the intended plan is executed, the happens predicate for each executed

action is added to the agent’s belief base Bel. If the last action is asserted at time

Tn then predicate happens(*,Tn+1) is asserted. The purpose of this addition is to

terminate the fluents help, fPun, oPun and oRew after Tn. In this manner, we prevent

an agent from receiving an additional sanction or reward for a past norm’s violation

or fulfillment that was already sanctioned or rewarded respectively. However, our

mechanism can discover the violation/fulfillment that results from combining the

current plan with past executed plan by modifying the axioms Ax2 through Ax5 (as
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we stated at the beginning of this section).

Algorithm 12 Find the best plan

1: function FindBestPl(Π)
2: UtilSet ← {}
3: for all π ∈ Π do
4: TempBel ← InsertAc(π,Bel)
5: T ← current time
6: if Ω |= holdsAt(help(π),T) then
7: utility(π)← Points + sum(Wins) - sum(Losses1) - sum(Losses2)
8: UtilSet ← UtilSet ∪ utility(π)
9: end if

10: end for
11: BestPlan ← findMaxUti{UtilSet}
12: return BestPlan
13: end function

Algorithm 13 Add plan’s actions to agent’s temporary belief base

1: function InsertAc(π,B)
2: X ← act(π)

X = (A1, A2, · · · , An) | Ai is an action of plan π

3: T ← current time
4: for i← 1, n do
5: B ← B ∪ happens(Ai,T)
6: T ← T + 1
7: end for
8: return B
9: end function

5.4 Utilizing Permission Norms in BDI Normative

Practical Reasoning

Considerable effort has been put into formalizing norms and utilizing them in agents’

decision making (see López, 2003; Conte et al., 1999; Meneguzzi and Luck, 2009).
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Most of this work focuses on prohibition and obligation norms (see Section 7.1.2).

While these norms might be sufficient for agents with a complete knowledge of the

norms in their system, we argue that these are not enough for agents with an incom-

plete knowledge of norms. This incomplete knowledge can originate for several rea-

sons, including deficient norm identification techniques, changing or emerging norms,

etc.

In this section, we argue that permission norms are fundamental for modeling

unknown normative states, and we propose a formal representation for these norms in

event calculus (EC). Using a simple mineral mining scenario implemented in Jason, a

popular agent programming language, we show how to use this formal representation

in agent normative practical reasoning.

5.4.1 Why permission norms?

A substantial amount of recent work focuses on normative practical reasoning using

a variety of mechanisms. Panagiotidi and Vázquez-Salceda (2012) focus on planning

based normative reasoning, in which agents form goals from norms. Criado et al.

(2010) develop an agent architecture that reasons about the agent objectives based

on norms. Meneguzzi et al. (2012) develop a mechanism to steer existing agent

behaviour towards norm achievement while executing plans to achieve agent goals.

In these efforts, only obligation and prohibition norms are considered in norma-

tive agent decision-making, with the unstated assumption that agents are completely

aware of all norms (Kollingbaum, 2005; Meneguzzi and Luck, 2009; Oren et al., 2011;

Alechina et al., 2012). In these systems, agents check whether performing a particular
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behaviour complies with obligations or violate prohibitions, making compromises in

order to perform norm compliant behaviours. Consequently, processing permission

norms is often ignored in agents’ practical reasoning. This design choice seems to stem

from the adoption of the Sealing Principle: “whatever is not prohibited is permitted”

(Royakkers, 1997).

The sealing principle is sound if agents have complete knowledge about the nor-

mative states of a particular system, enabling them to determine whether some action

violates a norm or not 100% of the time. Such a clear-cut division of the state-space

is illustrated in Figure 5.2, which depicts an agent’s complete knowledge of a sys-

tem’s normative states in accordance with the sealing principle. In this illustration,

all states are identified by agents as prohibited (F) or obliged (O) and all states

that aren’t prohibited or obliged are identified as permitted (P). In this case, explicit

reasoning about permission norms is not required since permission norms simply rep-

resent the absence of prohibition. Royakkers (1997) refers to this kind of permission

(i.e., one that is not enacted by an authority) as weak permission.

However, a different division of the state-space is possible. In an alternative

system, agents can have an incomplete knowledge about normative states, and the

status of actions that are not known as prohibited, obliged, or permitted, is unknown.

Thus, in normative terms, world states can be either obliged, prohibited, permitted, or

unknown. This division of the state space is illustrated in Figure 5.3, which depicts an

agent’s incomplete knowledge about a system’s normative states. In the illustration,

agents know some states as prohibited (F), obliged (O), or permitted (P), and the

rest of the state space is unknown (U).

By adding permission norms to the reasoning mechanism, the agent will be able to
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reason about preferences for behaviours that are known as permitted over behaviours

that are unknown. For example, consider the situation in which an agent needs to

navigate from A to B and there are two paths X and Y. If the agent identifies that

taking path Y is permitted and taking X is unknown, then a rational agent should

take path Y rather than X (assuming X and Y have the same cost).

Consequently, we add the idea of utilizing permission norms in the agents’ practi-

cal reasoning; we present a formal representation for permission norms and integrate

this into a normative reasoning mechanism that also reasons about prohibition and

obligation norms. We assume that agents have a mechanism to discover norms as

agents explore the state-space (see Chapter 3).

Figure 5.2: An agent’s complete knowledge of the norms within a system. F represents
prohibition states, O represents obliged states, and P represents permission states. P
in the shape containing O refers to the implicit permission norm

5.4.2 Permission norm representation

In this section, we follow the norm representation presented in Section 5.2 and we

expand on it by adding the permission norm to the formalization.
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Figure 5.3: An agent’s incomplete knowledge of the norms within a system. F repre-
sents prohibition states, O obliged states, P permission states, and U unknown states.
P in the shape containing O refers to the implicit permission norm

In Section 5.2, three fluents are defined, one for prohibition norms (fPun(Nid,S))

and two for obligation norms: (oPun(Nid,S) and oRew(Nid,R)). If fluent fPun(Nid,S)

becomes true, this means a prohibition norm has been violated. If oPun(Nid,S) be-

comes true, an obligation norm has been violated. On the other hand, if oRew(Nid,R)

becomes true, an obligation norm has been fulfilled. In other words, these fluents work

like flags that get raised if a prohibition is violated or an obligation norm is either

fulfilled or violated. Such an approach is untenable for defining a fluent for permis-

sion norms. Regardless of whether the agents act according to a permission norm or

not, there is no sanction or reward involved and so the fluent cannot be defined mak-

ing reference to these things. Instead, of relying on sanctions or rewards to choose

between plans, we want an agent to be able to select a plan based on the number

of permitted actions involved. Plan X is then preferred over plan Y if X has more

permitted actions than Y. For that purpose, we define the following fluent.

pRew(Nid,1) is a fluent which becomes true if a permitted sequence of actions

has been performed, where Nid is the norm identification number (unique number

for each permission norm). The second argument of the fluent is used to count the
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number of permission norms if a plan is performed.

Informally, we define a permission norm as follows:

Permission norm

In a particular context, if the occurrence of a sequence of actions (or world state) is

not subject to punishment, then this sequence of actions (or world state) is permitted

in that context.

We use fluent pRew(Nid,1) in the representation of permission norms:

initiatesAt(An,pRew(Nid,1),Tn,Tn+1):- C, happens(A1,T1) & · · · &

happens(An,Tn) & T1 <T2< & · · · <Tn.

This representation contains the following parts (for an overview of our view of

norms, see Section 2.1.1). D, the deontic type, is permission; in the left-hand side of

the definition we use the pRew fluent which refers to performing a sequence of actions

that is permitted. The second argument of the fluent pRew equals one in order to

count the number of times a plan complies with permission norms. C is the norm’s

context. Seq is a sequence of actions, A1,A2,· · · ,An, that an agent is permitted to

perform.

This representation states that, if the context C, entailed from the agent belief

base, and the sequence of actions A1,A2,· · · ,An occur at time T1,T2,· · · ,Tn respec-

tively, then, after time Tn, the fluent pRew(Nid,1) becomes true. We illustrate this

representation using a blocks-world scenario in the example below.

Example 5.4.1. Suppose we have three coloured blocks, red, blue and green, and

the following situation: on(red,blue), on(blue,table) and on(green,table). If
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we have a permission norm that states “it is permitted to put green on red if red is

not on the table”, then this permission norm is represented as follows:

initiatesAt(on(green,red),pRew(Nid,1),T1,T2):-

¬holdsAt(on(red,table),T1) & happens(on(green,red),T1) & T1<T2.

5.5 Normative reasoning mechanism using permis-

sion norm

In order to develop our current normative reasoning mechanism, we leverage the

normative reasoning mechanism presented in Section 5.3, which utilizes prohibition

and obligation norms to find the best plan. We define the best plan for an agent as

a plan of maximum utility for that agent (taking prohibition and obligation norms

into consideration). In the context of BDI agents, the best plan is found among the

applicable plans.

Our extension in this section is to utilize permission norms in order to find the

safest plan among the set of best plans. If the agent finds more than one plan with

the same maximum utilities, these plans are stored in set BestSet. We define the set

of safest plans SafestPl as the subset of BestSet which contains these plans that

comply with the highest number of permission norms.

We argue that using permission norms in practical reasoning within a normative

system is important for at least two reasons. First, if it is the agents’ duty to infer

norms, the norm identification mechanism can miss some norms. Second, norms are
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not fixed; they may change, emerge or vanish. Hence, presuming that “whatever is

not prohibited is permitted” is not adequate since it does not account for such missing

norms.

We illustrate this argument with the following scenario. Suppose that an agent

wants to achieve a goal G and there are several plans for achieving G. Out of those

plans the agent finds that BestSet has two plans, P1 and P2, of maximum utility

subject to prohibition and obligation norms. Suppose that P1 has some prohibited

action(s) but because of the agent’s incomplete knowledge, the agent does not know

that. As a result, the agent may mistakenly presume the action(s) are permitted.

However, if the agent maintains the permission norms as it does the prohibition and

obligation norms, then it can compare P1 and P2 to see which plan complies with

the most permitted actions. Thus, it can determine which plan is the safest.

In Figure 5.4, the basic BDI interpreter overview is illustrated using white boxes

and our proposed additions are presented using grey boxes. To deal with dynamic

norms, the norm identification process needs to be integrated with the normative rea-

soning strategy in order to update an agent’s belief base about repealed and emerged

norms online.

Figure 5.4: An extended BDI Reasoning processes flow
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The execution of Plan makes fluent help(Plan) true if it results in more rewards

than punishments (based on helpful-rule rule presented in Section 5.3, repeated

below for convenience).

helpful-rule:

initiatesAt(_,help(Plan),T1,T2):-

.findall(V1,holdsAt(oRew(,V1),T2+1),Wins) &

.findall(V2,holdsAt(fPun(_,V2), T2), Losses1) &

.findall(V3,holdsAt(oPun(_,V3), T2), Losses2) &

goalpreference(G,Points) &

(Points + sum(Wins)- sum(Losses1) - sum(Losses2)) > 0

To utilize permission norms in the normative reasoning mechanism, we define

safe(Plan) fluent which will be true if the execution of Plan complies with one or

more permitted norms (based on the safe-rule below). If we have two plans with

equal utility, then the plan that complies with more permitted norms is the safest.

This is because the actions that are unknown might be prohibited. For each permis-

sion norm, a particular plan complies with, 1 is added to the set Count. Hence, the

number of permission norms which a plan complies with is equal to the summation

of Count’s elements.

safe-rule:

initiatesAt(K,safe(Plan),T1,T2):-

.findall(V1,holdsAt(pRew(_,1),T2),Count).
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We define the following domain-independent axioms using the EC framework.

Our agents implement these axioms in their normative reasoning mechanism:

• EC1′ & EC3′ (see Section 5.1)

• Ax1: between(A,T1,T2) :- happens(A, T) & T1 <T & T <T2

• Ax2: terminatesAt(*,help(P),T1,T2):- happens(*,T1) & T1<T2

• Ax3: terminatesAt(*,safe(P),T1,T2):- happens(*,T1) & T1<T2

• Ax4: terminatesAt(*,fPun(I,S),T1,T2):- happens(*,T1) & T1<T2

• Ax5: terminatesAt(*,oPun(I,S),T1,T2):- happens(*,T1) & T1<T2

• Ax6: terminatesAt(*,oRew(I,S),T1,T2):- happens(*,T1) & T1<T2

• Ax7: terminatesAt(*,pRew(I,S),T1,T2):- happens(*,T1) & T1<T2

These axioms help agents find a potential norm violation/fulfillment that can

result from executing the current plan. For more details of using these axioms and

the special event * please see Section 5.3.

Using the above domain-independent axioms, helpful-rule and safe-rule, the

agent is able to find the set of best plans (BestSet) among the applicable plans, and

out of the best plans the agent is able to find the safest plan.

After helpful-rule, the agent uses safe-rule to obtain the number of permis-

sion norms that a plan complies with. By using the .findall(V,holdsAt(pRew(_-

,1),_),Count) predicate, the agent obtains all the values of V where fluent pRew is

true, and adds them to the set Count. Note that the variable V is always unified with
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the second argument of the fluent pRew(_,1), which is always equal to one. Hence,

the elements of the set Count are all ones and the cardinality of the set Count is equal

to the number of permission norms that are complied with if Plan is executed.

Algorithm 14 Find Safest Plan

1: function FindSafestPl(Π)
2: UtilSet, BestSet, SafeSet ← {}
3: for all π ∈ Π do
4: TempBel ← InsertAc(π,Bel)
5: T ← current time
6: if Ω′ |= holdsAt(help(π),T) then
7: utility(π)← Points + sum(Wins) - sum(Losses1) - sum(Losses2)
8: UtilSet ← UtilSet ∪ utility(π)
9: end if

10: end for
11: BestSet ← BestSet ∪ findMaxSetUti{UtilSet}
12: for all π ∈ BestSet do
13: TempBel ← InsertAc(π,Bel)
14: T ← current time
15: if Ω′ |= holdsAt(safe(π),T) then
16: preference(π) ← sum(Count)
17: SafeSet ← SafeSet ∪ preference(π)
18: end if
19: end for
20: SafestPlan← findMaxUti{SafeSet} /*max{SafeSet} returns the plan of max-

imum preference value (the one that complies with more permission norms)*/
21: return SafestPlan
22: end function

In Algorithm 14, Line 2 we define three empty sets: UtilSet to store a set of

plans with their utilities, BestSet which is used to store the best plans with their

utilities and SafeSet which stores the best plans with their number of times they

comply with permission norms. As shown in Algorithm 14, Line 4 and Algorithm 13,

the predicates happens, (see Table 2.1), are added starting from time T, the current

time. The actions specified in predicate happens have not occurred yet. By adding the
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plan’s actions, the agent simulates that it has executed the actions in order to reason

about whether the current plan π is helpful or not. In Algorithm 14, Lines 6 and 15,

Ω′ refers to EC1′, EC3′, Ax1, Ax2, Ax3, Ax4, Ax5, Ax6, Ax7, helpful-rule, safe-rule

and TempBel. In Line 6, plan π is helpful if the predicate holdsAt(help(π),T) is

deduced from TempBel belief base. If that is the case, the rewards outweigh losses

and the plan of maximum utility is then added to the best plan set BestSet. The

set BestSet will thus have the plans of maximum utilities. As a result of firing the

helpful-rule, the variables Points, Wins, Losses1 and Losses2 are unified with

a set of values based on .findall() predicate which finds all norms violations and

fulfillment. In Line 11, the function findMaxSetUti() finds the set of plans of highest

utility out of the UtilSet and store them in the BestSet.

As we see in Algorithm 14, Lines 12-21, the safest plan is found in BestSet. At

Line 15, if the predicate holdsAt(safe(π),T) is deduced from the TempBel belief

base, this implies that there is at least one permission norm being complied with as a

result of executing plan π. In case of executing a plan, the number of times permission

norms are complied with is equal to the summation of Count set. Plans associated

with its summation of Count are added to the SafeSet set (see Algorithm 14, Line

17). In Line 20, out of the SafeSet set, the plan of maximum preference value is

selected as the safest plan using the function findMaxUti(), which returns the plan

of maximum preferences. The safest plan will be ready for execution by adding it to

the intentions.

After choosing and performing a plan π, the happens predicate for each action of

an executed plan π will be added to the Bel belief base. Predicate happens(*,Tn+1)

is added to the belief base after executing the last action of the chosen plan. The

purpose of adding the special event * is to terminate the fluents help, safe, fPun,
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oPun, oRew and pRew after Tn+1. This termination is important in order to prevent

our agent from re-detecting a past violation. In other words, agents should not be

sanctioned more than one time for the same violation. However, we do want to

detect violations/fulfillments that may result from combining the current plan and

the previous executed plan, which our mechanism is able to do.

5.6 Summary

Our extension to the classical EC allows for a formal representation of obligation

and prohibition norms that can be composed of several actions. It also provides a

mechanism to reason about AgentSpeak plans, taking into consideration the society’s

norms and the agent’s past actions. For norm representation, we introduce three

fluents: fPun to refer to prohibition norm violation, oPun to refer to obligation norm

violation and oRew for obligation norm fulfillment.

Our proposed norm representation is able to represent norms that are composed

of several actions along with the norm’s context. Our proposed normative reasoning

mechanism helps our agent to choose the most profitable plan. It takes into con-

sideration the potential violation/fulfillment with the current plan and the potential

violation/fulfillment that may result from the combination of the agent’s past actions

and the actions of the current plan. The most profitable plan is the plan with the

highest utility. Therefore, our agent might choose anti-social plan, a plan that violates

some norms but have utilities more than losses.

We present a formal representation of permission norm and integrate it into our

normative reasoning mechanism based on event calculus. In addition to prohibition
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and obligation norms, we design a mechanism that takes permissions into considera-

tion to reason about the “safest” plans to execute. Such safety refers to minimizing

uncertainty when an agent operates in environments with no guarantee of full knowl-

edge of norms.

To demonstrate the operationalization, in the next chapter we describe our ex-

periments testing the proposed mechanisms and present their results.
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Chapter 6

Experiment results for normative

reasoning

6.1 Experimental setup

In this chapter, we build a gold and silver mining society where gold and silver

pieces are scattered in a grid-like territory along with agents who want to collect the

scattered pieces into their respective ores depots (one for silver and one for gold).

Once the gold and silver have been collected, the game is over and the performance

of the competitor agents is compared. The competitor agent is associated with a goal

and is engaged in this society. We assume that there is a set of norms which govern

the society and we assume the norms are already identified and represented in the

belief base.

In this society the possible actions which agents can perform are pick(_), drop(_-
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,_) and moveto(_,_). The two competitive agents have one continuous goal,

!collect(gold). The importance of achieving this goal is specified by the predicate

goalpreference(collect(gold),10). Hence, the value of the importance of achiev-

ing the goal !collect(gold) is 10. In this chapter, we have two sets of experiments:

one to show that our agent is able to utilize our reasoning mechanism and choose the

best available behaviour (the behaviour of highest utility) in the presence of norms.

In the second set of experiments we demonstrate the significance of permission norm

in practical normative reasoning. We implemented our normative reasoning mecha-

nisms in Java JDK 1.6.0 within Jason 1.3.4. The experiment was executed ten times

and the average taken.

6.2 Experiment set 1 - Gold and silver mining so-

ciety

In this scenario, the society has 20 gold ores and 20 silver ores, and five agents. One

agent, called OurAgent, is equipped with our normative reasoning mechanism, and a

different agent, who we will refer to as OtherAgent, randomly chooses a plan from the

applicable plans. The remaining three agents do not have direct roles in our current

comparison but exist in the society to reflect the fact that other agents are sharing

the society. If the two agents under comparison spend a long time in the reasoning

process, then the other agents can move ahead and collect all or most of the ores.

We add OurAgent and OtherAgent to this society to achieve their goals, taking

into consideration the society’s norms. Both agents are equipped with the the plan

library and norms presented below.
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Plan Library:

@plan1-1, the agent collects gold to the silver depot.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(silver_depotX, silver_depotY);

drop(gold,silver_depot).

@plan1-2, the agent collects gold to the gold depot.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(gold_depotX,gold_depotY); drop(gold,gold_depot).

@plan1-3, the agent collects gold and silver to their depots.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(gold_depotX,gold_depotY); drop(gold,gold_depot);

!find(silver,X1,Y1); pick(silver);

moveto(silver_depotX,silver_depotY); drop(silver,silver_depot).

@plan1-4, the agent collects two gold ores to the gold depot.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(gold_depotX,gold_depotY); drop(gold,gold_depot);

!find(gold,X1,Y1); moveto(X1,Y1); pick(gold);

moveto(gold_depotX,gold_depotY); drop(gold,gold_depot).

We suppose that the mineral mining society have the norms given below:
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Prohibition Norms:

It is prohibited to drop gold in the silver depot. The sanction value is 5.

initiatesAt(drop(gold,silver_depot), fPun(1,5),T1,T2):-

happens(drop(gold,silver_depot),T1) & T1≤T2.

It is prohibited to drop silver in the gold depot. The sanction value is 15.

initiatesAt (drop(silver,gold_depot), fPun(2,15),T1,T2):-

happens(drop(silver,gold_depot),T1) & T1≤T2.

It is prohibited to carry more than one gold piece at the same time. The sanction

value is 10.

initiatesAt(pick(gold), fPun(3,10),T1,T2):-

happens(pick(gold),T1) & happens(pick(gold),T2) &

T1<T2 & ¬between(drop(gold,_),T1,T2).

Obligation Norms:

It is obligatory to collect silver immediately after collecting gold. The sanction

value is 20. The reward for adhering is 10.

initiatesAt(pick(gold),oPun(1,20),T1,T4):-
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happens(pick(gold),T1) & happens(drop(gold,_),T2) &

happens(pick(gold),T3) & ¬between(pick(silver),T2,T3) &

T1<T2 & T2<T3 & T3≤T4.

initiatesAt(pick(gold),oRew(1,10),T1,T4):-

happens(pick(gold),T1) & happens(drop(gold,_),T2) &

happens(pick(gold),T3) & between(pick(silver),T2,T3) &

T1<T2 & T2<T3 & T3≤T4.

In Figure 6.1, the experiment results show that our proposed normative reason-

ing mechanism allows OurAgent to achieve his continuous goal as well as maximize

his accumulative utilities. In contrast to OtherAgent, the accumulative utilities of

OurAgent are higher because OurAgent uses our mechanism and always chooses the

plan of the highest utility. As we see at the x-axis, the two agents under comparison

collected a total of just 11 ores of gold and silver, out of 40. This is because the

other three agents did not rely on the plan library, but just collected any piece they

found. Figure 6.1 shows the result when the agent’s past actions are not included in

our normative reasoning mechanism. Based on the prohibition and obligation norms

that OurAgent is aware of, plan1-3 is the one which OurAgent chooses.

Figure 6.2 shows the result when the agent’s history is taken into consideration.

In this experiment, the agent does not look far back in its history; only one performed

plan is included. As Figure 6.2 shows that as long as OtherAgent collects ores it loses

utility because it does not have a mechanism to guide him to avoid the plans that

violate norms. This experiment was repeated ten times and the average results were

recorded.
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Figure 6.1: Performance comparison of OurAgent and OtherAgent.

Figure 6.2: Performance comparison of OurAgent and OtherAgent (past actions in-
cluded).

6.3 Experiment set 2 - Gold and silver mining so-

ciety

In this scenario we change in the experiment setup in order to be suitable to test the

significance of utilizing permission norm in agent practical normative reasoning.

In this experiments, we have three agents: a monitor agent which is able to

observe other agents’ actions and is also able to issue sanctions or rewards, and two

other competitor agents. The two agents compete to collect 10 gold ores and 10 silver
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ores. In this experiment the potential violation/fulfillment that can result from the

current plan and the previously executed plan are taken into consideration.

There is a set of norms which govern this society. We assume that agents do

not know all the norms. The first agent uses prohibition and obligation norms in

its practical reasoning. The second agent uses prohibition, obligation and permission

norms. These two agents are both aware of the same prohibition and obligation

norms and are in competition with each other. The third agent is the monitor agent.

Let us call the first agent the best-agent, the second the best-safest-agent, and the

third the monitor-agent. The best-agent uses Algorithm 12 presented in Chapter 5

in its practical reasoning. The best-safest-agent uses Algorithm 14. The norms are

represented using EC. The monitor-agent uses the axioms Ax1 to Ax7 to check if a

violation/fulfillment occurred. The two agents have the following plans for achieving

their goals (!collect(gold)).

@plan1-1, the agent collects gold to the silver depot.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(silver_depotX, silver_depotY);

drop(gold,silver_depot).

@plan1-2, the agent collects gold to the gold depot.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(gold_depotX,gold_depotY); drop(gold,gold_depot).

@plan1-3, the agent collects gold and silver to their depots.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);
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pick(gold); moveto(gold_depotX,gold_depotY); drop(gold,gold_depot);

!find(silver,X1,Y1); pick(silver);

moveto(silver_depotX,silver_depotY); drop(silver,silver_depot).

@plan1-4, the agent collects two gold ores to the gold depot.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(gold_depotX,gold_depotY); drop(gold,gold_depot);

!find(gold,X1,Y1); moveto(X1,Y1); pick(gold);

moveto(gold_depotX,gold_depotY); drop(gold,gold_depot).

@plan1-5 the agent collects gold and silver and deposits them in the gold depot.

+!collect(gold): free ← !find(gold,X,Y); moveto(X,Y);

pick(gold); moveto(gold_depotX,gold_depotY); drop(gold,gold_depot);

!find(silver,X1,Y1); pick(silver); moveto(gold_depotX,gold_depotY);

drop(silver,gold_depot).

There are a set of prohibition, obligation and permission norms that govern this

society. The prohibition and obligation norms given below are known for the three

agents:

It is prohibited to drop gold in the silver depot. The sanction value is 5.

initiatesAt(drop(gold,silverDepot),fPun(1,5),T1,T2):-

happens(drop(gold,silverDepot),T1) & T1 ≤ T2.

It is prohibited to carry more than one gold piece at a time. The sanction value

is 10
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initiatesAt(pick(gold),fPun(3,10),T1,T3):-

happens(pick(gold),T1) & happens(pick(gold),T2) &

¬between(drop(gold,-),T1,T2) & T1<T2 & T2≤T3.

It is obligatory to collect silver immediately after collecting gold. The sanction

value is 10. The reward of adhering is 10.

initiatesAt(pick(gold),oPun(1,10),T1,T4):-

happens(pick(gold),T1) & happens(drop(gold,-),T2) &

happens(pick(gold),T3) & ¬between(pick(silver),T2,T3) &

T1<T2 & T2<T3 & T3≤T4.

initiatesAt(pick(gold),oRew(1,10),T1,T4):-

happens(pick(gold),T1) & happens(drop(gold,-),T2) &

happens(pick(gold),T3) & between(pick(silver),T2,T3) &

T1<T2 & T2<T3 & T3≤T4.

In addition to the previous norms best-safest-agent is aware of the following

permission norms:

It is permitted to drop gold in gold depot.

initiatesAt(drop(gold,goldDepot),pRew(1,1),T1,T2):-

happens(drop(gold,goldDepot),T1) & T1≤T2.

It is permitted to drop silver in silver depot.

initiatesAt(drop(silver,silverDepot),pRew(2,1),T1,T2):-

happens(drop(silver,silverDepot),T1) & T1≤T2.
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The monitor-agent aware of one further prohibition norm that is unknown to

other agents:

It is prohibited to drop silver in the gold depot. The sanction value is 15.

initiatesAt(drop(silver,goldDepot),fPun(1,15),T1,T2):-

happens(drop(silver,goldDepot),T1) & T1≤T2.

Two values for each agent was recorded: calculated-utility, which results

from the agent’s prediction in case a particular plan is chosen, and real-utility,

which results from the execution of a particular plan. These two values could be

different; for example, if an agent did not know that a particular act was pro-

hibited, then the sanction value of performing this act could not be calculated in

calculated-utility but it would be included in real-utility (the sanction value

would be issued by the monitor agent).

Based on the norms and the five plans above, best-agent and best-safest-agent

find the two best plans, both with utility equal to 20 (plan1_3 and plan1_5). Nei-

ther agent is aware that plan1_5 violates a prohibition that is unknown to them.

Because best-agent has no other information to act upon, it randomly chooses be-

tween plan1_3 and plan1_5, invoking a sanction from monitor-agent if plan1_5 is

selected. However, best-safest-agent selects the plan with more permission norms out

of the best plans; which is plan1_3 in this case. Thus best-safest-agent successfully

avoids receiving a sanction that would have occurred from unknowingly violating a

prohibition norm following plan1_5. Note that in our scenario agents do not get

points for collecting silver.

The results illustrated in Figure 6.3 show that the average utility for goals

achieved by best-safest-agent is greater than the utility of best-agent. This is because
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best-safest-agent is able to integrate permission norms into its normative practical

reasoning. However, best-agent collects more gold and silver ores than best-safest-

agent because, while best-safest-agent is spending more time in the reasoning process

of plan selection, best-agent is able to spend that time mining. Thus, best-agent, com-

pared to best-safest-agent, presents the possibility of a higher reward (e.g., because it

spends more time collecting gold and silver), but it also presents a higher risk, since

it can unknowingly incur sanctions, losing an unknown amount of its reward.

The results in Figure 6.4 show that the real utility (after plan execution) of best-

agent is less than the predicted/calculated utility (before plan execution). This is

because best-agent does not utilize permission norms in its practical reasoning. In

contrast, the real and calculated utilities were identical for best-safest-agent ; hence,

in Figure 6.4 the line for best-safest-agent ’s calculated utility can’t be seen (i.e., it is

underneath the line for best-safest-agent ’s real utility).

Figure 6.3: Average utility of best-safest-agent and best-agent. The average collected
gold and silver ores and the ultimate utilities for best-agent and best-safest-agent.
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Figure 6.4: Calculated and predicted utility for best-safest-agent and best-agent.

6.4 Experiment discussion

To demonstrate the success of our approach, we developed a simple mineral mining

scenario using the Jason BDI interpreter (Bordini et al., 2007). We used our EC

extension as a formal language to represent norms and reason about the best plan that

avoids prohibition and obligation norm’s violations. In the first set of experiments,

OurAgent achieved better results than OtherAgent since our agent was able to reason

about best plan (the plan of highest utility). However, if our agent finds more than

one plan with same highest utility, he needs a mechanism to prefer one over the other,

hence the need for the second set of experiments where we test the significance of the

permission norm.

We demonstrated empirically that when agents have incomplete knowledge about

the norms of a system, then permissions have a significant role in normative practical

reasoning. Using permission norm gives agents the ability to have preference over

plans, i.e., plans containing actions that are known to be permitted over plans that

contain actions whose normative status is unknown.

Experimental results show that using permissions in agent practical reasoning
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provides agents with an extra tool to avoid norm violations, especially when agents

operate in environments with no guarantee of full knowledge of norms. In spite of

the fact that the throughput (i.e. the number of collected ores) of best-safest-agent

is smaller than the throughput of best-agent, who does not use permissions in its

reasoning, the ultimate utility of best-safest-agent is much higher than that of best-

agent (see Figure 6.3). This result implies that agents who do not utilize permission

norms in their practical reasoning can misbehave and violate unknown norms.
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Chapter 7

Summary

Norms have been proposed as a means to configure and organize open multi-agent sys-

tems given their constantly dynamic structure. In this thesis, we studied the problems

of norm identification, norm representation and normative practical reasoning. The

norms that are used in the practical reasoning approach should be compatible with

the norms that are identified by the norm identification algorithms. The importance

of studying these aspects together becomes apparent when agents need to operate in

a society in which norms are not given or predefined for the agents, or in a society

with dynamic or changeable norms. In such systems, agents need to identify norms

and then take them into account during their practical reasoning. Crucially, then,

those norms identified during norm identification should be compatible with the view

of norms during practical reasoning. Despite this, to the best of our knowledge, these

two aspects have never been studied together. In this thesis, we shed light on the

importance of studying these two aspects together and start the first steps toward

achieving this by proposing norm identification approach and normative reasoning
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mechanism.

For our research, we assumed that norms are changeable: new ones can be in-

troduced and old ones repealed. We also assumed that it is the agents’ duty to infer

norms. Having made these assumptions, we needed to further assume that agents

do not have complete knowledge about the normative states of a system. This is

contrary to other earlier proposed normative practical reasoning mechanisms, which

assume that agents have complete knowledge about the normative states.

Our main objective in this thesis is to establish a framework for creating a

BDI agent capable of joining and functioning in a society regulated by (possibly

unknown) norms, while minimizing behaviours that violate norms. To achieve this

objective, we answered our first research question by proposing an agent architecture

and algorithms for identifying permission and prohibition norms based on observation

and communication, and utilizing permission norm in detecting repealed prohibition

norms (Chapters 3 and 4).

Other approaches of norm identification depend on communicating with other

agents using a direct inquiry about norms. However, open multi-agent systems can

have heterogeneous agents; agents that are designed by different users and agents

that can have different internal architectures. Consequently, it is possible that some

of these agents are unaware of the concept of norm or they might use a different

terminology for norm. This makes the direct inquiry about norms unsuitable for

open multi-agent systems. To overcome this limitation, we use the FIPA-CFP and

FIPA’s Contract Net Interaction Protocol (FIPA, 2002b), to allow indirect inquiries

regarding norms (see Alrawagfeh et al., 2011b). Our work in Chapters 3 and 4 enables

agents to dynamically infer new and repealed norms while taking norms’ consistency
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into account.

To achieve our main objective, we answered the second research question in

Chapters 5 and 6. We extend the classical event calculus (Kowalski and Sergot, 1989)

to formalize a representation of norm and propose a mechanism for integrating norm

into BDI agent practical reasoning. We define a rule called helpful-rule which is

used by our mechanism to find the best plan in the agent’s plan library. Our proposed

mechanism increases the flexibility of normative practical reasoning by allowing the

previous actions (an agent’s history) to be considered when evaluating current plans

during the reasoning process. Our mechanism thus enables our agent to discover

the norm violation or fulfillment which can result from a combination of the current

plan actions and the previous executed actions. Also, we proposed a formalization

of permission norms and integrate it into BDI agent practical reasoning. We show

how permission norms are useful in open multi-agent systems if agents do not have

complete knowledge about the system’s normative states.

In dynamic systems, being able to use permission norms is a significant tool

during normative practical reasoning process, where agents can prefer behaviours

that are known as permitted over behaviours that are not known to be permitted,

prohibited or obliged. Thus, we utilized permission norms in both norm identification

and normative practical reasoning.

Our work can be applied to several areas including social robotics, life style and

heart-attack prediction, and offshore petroleum safety:

• Researchers in social robotics aim to create autonomous robots that interact

with humans or other autonomous robots by taking social behaviours into con-
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sideration. Our work can be integrated into a social robot so it can discover the

norms that govern a particular society and adapt its behaviours accordingly.

• The problem of heart-attack predication can be modeled using normative multi-

agent systems. By doing so, our agent plays the role of recommending a par-

ticular life style for a patient. The different life styles are represented as plans.

Each human habit (smoking, drinking coffee, consuming sugar, playing sports,

etc.) that may have an effect on the heart is represented as a norm, and the

patient’s medical history is represented as beliefs. Based on a repository of

human habits that may cause heart attack, the agent identifies the habits of an

individual that may cause him/her to have a heart attack and recommend a life

style which has the least negative effect on the heart.

• In offshore petroleum safety, an agent might play the role of an offshore-petroleum

platform’s manager assistant. For example, when employees need to leave the

platform, our agent advises the manager on which plan is safer to use, the heli-

copter or the boat. Based on several factors (such as temperature, wind speed

and direction, fog, etc.) and using our normative reasoning mechanism, the

agent suggests the best plan to transport the employees. Also the agent may be

trained on the offshore platform to discover the employees’ behaviours during

disasters in order to identify the actions that can delay a potential evacuation

and to recommend evacuation plans to the manager in case of a real disaster.

In general our work can be applied to any system like these above where agents

can have several alternative behaviours that lead to the same outcome, and at the

same time there are actions whose effects vary depending on the situation. Note that

using predefined constraints in such systems is not helpful because of their dynamic
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nature.

7.1 Related work

7.1.1 Norm identification

Taking into consideration that the norms in a society are subject to change or might

even disappear, agents need a mechanism to infer changes in norm status. Agents

may also need to employ a similar mechanism when they join a new society in order to

infer the norms of the joined society. The process by which agents discover unknown

norms is called norm identification. There are several different approaches to norm

identification. We focus on the approaches by Savarimuthu (2011), Andrighetto et al.

(2010), Mahmoud et al. (2012b), Mahmoud et al. (2012a), Oren and Meneguzzi (2013)

and Savarimuthu et al. (2013).

Savarimuthu (2011) introduces the idea of identifying prohibition and obligation

norms by observing both regular events and sanctions (e.g., special events). Accord-

ing to their model, the occurrence of a sanction event indicates the violation of a

prohibition norm. Using data mining algorithms, the researchers identify candidate

prohibitions, that is, sequences of actions that possibly cause sanctions. Candidate

norms are then sent to a verification component to check whether candidate prohi-

bition norms are actual norms. Experimentally, Savarimuthu et al. demonstrate the

validity of their work by showing that their agents have the ability to identify new

norms.

As for changeable or repealed norms, Savarimuthu et al.’s model revokes or

120



deletes a prohibition norm if it has not been detected by the algorithm for a cer-

tain period of time. In contrast, their model identifies a prohibition norm once it has

been violated several times. Problematically, then, in cases where a particular prohi-

bition norm has not been violated for quite some time, the norm might be revoked

by mistake. For example, suppose that in a traffic situation, an agent A is aware of

a norm which states that running a red light is prohibited. In Savarimuthu et al.’s

model, if no agents run a red light during the period of observation (i.e., there is no

norm violation), agent A will wrongly delete that norm from its belief base.

An alternative proposal is offered by Andrighetto et al. (2010), who investigate a

mechanism for new norm identification in an environment simulating complex social

systems. They propose a cognitive agent architecture based on mental representations

which allows norms to influence the behaviour of autonomous agents. Their work is

conditioned on an agent’s ability to recognize an observed or communicated social

input. When a social input arrives, the agent checks to see if it contains a deontic

statement (such as, “You must answer when asked”) or a normative valuation (such

as, “Not answering when asked is impolite”). From this input, a candidate belief

(such as, “One must answer when asked”) is generated and temporarily stored as a

candidate normative belief. At this point, several investigative processes should be

executed on the social input to evaluate whether it is a norm or not. Such processes,

however, have not yet been implemented in Andrighetto et al.’s work.

Mahmoud and colleagues (2012b; 2012a) propose a norm mining approach based

on interaction. Their concept of norms is very general, as they do not deal explicitly

with permission, prohibition or obligation norms. They assume that a visitor agent

joins a society that has a facilitator agent. The latter maintains a log file of histori-

cal records of actions performed by agents. If the visitor agent is not able to access
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the log file, then it communicates both with other agents and with the facilitator.

Alternatively, the visitor agent can make direct observations if the log file and com-

munications are not available. The facilitator then stores the visitors’ interactions to

use as an additional source for norm identification. Using the collected data, visitor

agents then apply data mining algorithms to identify potential norms.

An additional approach to norm identification, by Oren and Meneguzzi (2013),

is based on plan recognition. In their model, norm identification involves a plan

recognizer and a planner. The recognizer agent observes other agents’ actions, and

then identifies other agents’ goals. Subsequently, the planner generates candidate

plans for these goals. The generated plans are then compared with recognized plans

and the avoided or repeatedly visited actions (or states) are identified as norms. Oren

and Meneguzzi also assume that a society has common domain knowledge in the

form of a plan library shared among agents. This assumption narrows the applicable

domains for their approach.

7.1.2 Normative practical reasoning

In this sub-section we discuss the literature dealing with the impact of norms on

autonomous agent reasoning, reviewing several proposals for how norms might be

considered when agents select and execute plans.

Kollingbaum (2005) studies the problem of norm inconsistency that can result

when agents adopt new norms. He proposes a normative agent architecture and

uses a programming language in his investigation of normative practical reasoning.

Kollingbaum’s proposed architecture is more concerned with fulfilling specific norms
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than goals, and is driven by norms instead of mental states (as in traditional BDI

agents).

Another approach of utilizing norms in agent practical reasoning is offered by

Meneguzzi and Luck (2009). Their approach expands the functionality of BDI-based

agents to allow them to change their behaviour in response to newly accepted norms.

In their work, new plans are created in order to comply with obligation norms; con-

versely, plans are suppressed when they violate a prohibition norm (i.e., when they

include at least one action that violates a norm).

We recognize that it is potentially beneficial for an agent to execute a particular

plan even when the plan has an action that violates a norm. For example, a plan

which violates a norm while achieving a goal and fulfilling an obligation may have

rewards that offset the punishment potentially resulting from the norm’s violation.

Hence, our approach takes this point into consideration.

Oren and colleagues (2011) propose a technique for considering norms when

describing how to execute a plan. They define norms as constraints on the values

of variables in descriptions of actions. Their constraint-based norms describe the

manner in which an action should be executed. Our work here differs from their work

in the conception and the definition of norms.

An alternative approach is offered by Alechina et al. (2012), who further develop

the BDI programming language 2APL (Dastani, 2008) to support normative concepts,

including prohibition, obligation, sanction, duration and deadline. An exogenous

organization sends the prohibition and obligation norms to the agent. This means

that agents in Alechina et al.’s (2012) model do not have to detect norms. Similar

to the model of Criado et al. (2011), obligation norms are stored in the agents’ belief
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base as normative goals. These goals are achieved based on priorities that are placed

on sanctioning violations. Prohibition norms are stored in the agent event base.

They define deadlines for executing plans and schedule feasible plans based on those

deadlines. Feasible plans are checked against norms to see if they include an action

that violates a prohibition norm of a priority greater than or equal to the priority

of the plan. If so, the plan is not selected. In contrast, a plan in the method of

Meneguzzi and Luck’s (2009) is not selected if it violates even one norm, regardless of

the sanction value. Alechina et al. provide an alternate approach in their model by

taking the value of the sanction into account; if the violations’ sanction is less than

the goal preference, the plan is selected. However, their model does not take into

account the accumulated sanction values which are expected to result from executing

a plan.

Balke and collegues (2012) propose a methodology for normative reasoning at

run-time. They develop a design-time and run-time institution (normative system)

in the context of BDI agents. They assume that agents can query a special agent, In-

stitutionKeeper, about the normative states. Their agent reasons as follows: the agent

receives percepts from the environment as well as normative percepts from Institu-

tionKeeper. InstitutionKeeper stores the normative state and handles the realization

of all institutional norms. Before an agent executes an action, it asks Institution-

Keeper whether the action is forbidden. Thus, Balke et al.’s agents are dependent

on a special agent in the institution to help their agent with its normative reasoning.

We do not adopt such an approach in our model.

Meneguzzi et al. (2012) propose v-BDI as an extension to the BDI architecture

to enable normative reasoning as well as selecting and customizing plans to ensure

norm compliance. The normative process is applied on the entire plan library. Note,
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however, that the efforts of such a process will be wasted if a plan is irrelevant or

inapplicable. In contrast, we propose that the agent applies normative reasoning only

to applicable plans (i.e., the plan that has context that is logically consequent from

the agent’s current belief base).

Artikis et al. (2005) use event calculus (see Section 2.4) to represent norms,

restricting their attention to norms of obligation and permission. They assume that

any action that is not permitted is prohibited. In contrast, Fornara and Colombetti

(2009) suppose that any action that is neither prohibited nor obliged is permitted.

To be closer to real-world scenarios, in this thesis, we assume that any action that is

not prohibited nor obliged is unknown.

The work in Artikis et al. (2005) and Meneguzzi et al. (2012) do not differentiate

punishment severity, but instead count the number of times a violation occurs. Prob-

lematically, any decision-making based on such a count will not result in a precise

decision. This is because the punishment for one particular violation may be more se-

vere than other punishments. For example the punishment for murder is more severe

than the punishment for shouting in a library or not returning a book.

In this thesis, we extended the classical event calculus to propose a norm rep-

resentation method that is powerful enough to represent more complex norms than

those identified in Alrawagfeh et al. (2011c). Because of this, we are able to build

on Alrawagfeh and colleagues’ (2011a; 2011c) approach to make it possible to add

information such as the world state, the agent’s role, and more detailed context to

representations.

To the best of our knowledge, previous normative reasoning strategies ignore

permission norms and do not take into consideration past agents actions as we do
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here in this thesis. Also, we are not aware of work in norm representation that

explicitly discusses the flexibility of representing norms that are composed of several

actions.

7.2 Limitations and future work

This thesis makes significant contributions to different and complex areas of normative

multi-agent systems, in particular, norm identification, representation and practical

reasoning. To do this, we made certain assumptions in order to focus on the issues

being addressed:

• The events recognizer component is able to distinguish between regular and

special events (sanctions). As future work, our agent might be designed to

observe an event resulting in the loss of money, time, resources, reputation or

respectfulness, etc., and interpret this event as a special event (sanction).

• Norms can be composed of several events. In our experiments, we assumed that

the queue size (where the observed events are stored) is limited to 8 events. If

we deal with a society in which norms are composed of more than 7 events,

then the queue size should be increased. The queue size should be greater than

the number of events that can form the norm.

• The special event should not be issued later than the violation event(s). In

other words, the event(s) which cause the violation and the sanction event

should appear in the queue at the same time.

• Our agent does not have complete knowledge of the joined system’s normative
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states. It is the agent’s duty to detect the norms of the joined society.

While we have provided strong and valuable contributions to the development

of norm identification and normative practical reasoning, there are still a number of

avenues for future work:

1. Expand our agent architecture by creating an automated norms representation

component. This component receives its inputs from the norm identification

algorithms and stores the identified norms in the agent belief base represented

by event calculus.

2. Develop logical rules to infer obligation norms based on prohibition and per-

mission norms.

3. Enhance our agent’s flexibility in reasoning about best plans by giving it the

ability to exchange some plan’s actions, which may violate norms, with other

actions that have the same outcome but do not violate norms.

4. Study the runtime efficiency of our practical normative reasoning mechanism.

It would also be interesting to compare our best-safest-agent with other BDI

norm aware agents in the literature.

5. Find a method for agents to avoid the sanction of norm violation. This would

better represent daily life, in which a violation can be mitigated and a sanction

avoided by performing an extra act (e.g., giving an apology).
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