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Abstract

Ring foundations are often adopted for large and tall structures to resist lateral loads
and to increase the stability against overturning. They have been used worldwide under
various il ication towers, liquid storage tanks. bridges

and offshore However, the iour of these ions has not been well

understood. An accepted method for estimating the bearing capacity is not available.

In the design of ring i very crude simpli ions have to be made. Therefore,
developing a rational and practical procedure for estimating the bearing capacity of
ring foundations is of great importance.

This thesis presents research on the bearing capacity of ring footings on a dense sand
under vertical loads. The effects of footing size, ring radii ratio and load eccentricity

have been i i by means of if ing, the method of
and the finite element technique. To support the research, triaxial and oedometer
compression tests have been conducted to determine the soil friction angles, in situ
stress ratios, and plastic and elastic behaviour of the sand. The peak and critical state
friction angles of the sand from triaxial tests are reduced by 4° to 5° with a log-cycle
increase of confining pressure.

Over 40 centrifuge tests of ring footings have been conducted at acceleration levels
from 10 to 160 gravities. High quality sand test samples with density index of 90% were

prepared using a d ped raining The i model footings with a
constant area of 15 cm? and with ring radii ratios from 0 to 0.9 were tested under load
eccentricity ratios from 0 to 0.375. Test results indicate that the bearing capacity is
significantly affected by footing size, ring radii ratio and load eccentricity. It is found
that The bearing capacity of circular footings increases linearly with footing diameter
in a double-log scale diagram. The bearing capacity of a vertically loaded ring footing
can be expressed in terms of a bearing capacity ratio (B,), a reduction factor (R.) and

i



the bearing capacity of an axially loaded circular footing with the same area. Test
results show that the value of B, is related only to the ring radii ratio (n), independent
of footing size; when n is from 0 to 0.35, B, increases slightly with n. Further increase
of n beyond 0.35 results in significant decrease of B,. The value of R, decreases with
load eccentricity and is independent of ring radii ratio. The procedure presented for
evaluating the bearing capacity of ring foundations is very practical.

Circular footings under axi: i ditions have been analyzed by the method

of characteristics to further study the effect of footing size on bearing capacity. In the
analysis, the soil friction angle can be variable or assumed to be constant. The bearing
capacities calculated also increase linearly with footing diameter in a double-log scale
diagram and are close to the centrifuge test results. The compatibility of bearing
capacities obtained from both variable and constant friction angle analysis provides a
basis for the FE analysis using an equivalent constant friction angle for each footing.
The FE technique has been applied to circular and ring footings on the dense sand
under axial vertical loads. In the analysis, a footing is represented by a rigid body
consisting of rigid surface elements. Interface elements are used to model the interaction

between the footing and soil. The elasto-plastic behaviour of soil is simulated by

the Drucker-Prager/Cap itutive model. C d with i test data, the
analytical results regarding the effect of footing size and ring radii ratio on bearing
capacity are satisfz ‘When with i data, the FE technique

is very useful for analysis of very large foundations or for cases when experimental data
are not available or difficult to obtain.
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Chapter 1

Introduction

1.1 Background and Previous Research

Ring foundations are often used for large and tall structures to resist lateral loads
and to increase the stability against overturning. They have been applied worldwide
for various structures, including liquid storage tanks (Bhushan and Boniadi. 1988),
tower structures (Clark, 1972; and Daspupta and Sengupta, 1989) and radar stations
(Veletsos and Tang, 1987). Many important structures in the world have been built on

ring i In the ion of the Nor land Strait Crossing between

Prince Edward Island and mainland Canada, ring-shaped piers with outside diameter
of 22 m and inside diameter of 14 m have been adopted (Kosar et al., 1994). The
Manifold gravity platform MCP-01 in the North Sea resting on dense sand has a ring
foundation of 101 m in diameter (Lacasse and Olsen, 1988). In Kuwait City, a 370 m
high telecommunication tower is founded on a 55 m diameter ring foundation resting
on dense calcareous sand (Brenner et al., 1990; Al-Sanad et al., 1993). The Leaning
Tower of Pisa also has a ring foundation of 19.58 m in outside diameter and 4.50 m
in inside diameter (Mitchell et al., 1977). In Canada, a large number of agricultural
silos for storing crops have been built on ring foundations providing increased stability
against failure (Bozozuk, 1974; Bozozuk, 1979a,b; Lo and Becker, 1979; Morin and



Table 1.1: Settlement influence factor w(n) of Egorov (1965)

n 0 0.2 0.4 0.6 0.8 0.9 0.95

w(n) 1.0 1.0 1.02 1.04 1.14 1.20 1.30

Bozozuk, 1983; and Morin and Gervais, 1985).

Egorov (1965) presents a method for calculating the settlement and reaction pres-
sure of a rigid ring footing resting on elastic foundation under an axially symmetrical
load. The settlement, s, is expressed as

5= 220D n) wy

in which P is the load applied, E is the elastic modulus, v is the Poisson’s ratio, D is
the outside diameter of the ring, w(n) is an influence factor related to the ring radii
ratio, n, defined as the ratio of the inside diameter to the outside diameter of the
ring. The variation of w(n) is listed in Table 1.1. It is shown that the settlements of
circular and ring foundations are in the same order when n is within 0 to 0.60. After
Egorov (1965), the behaviour of ring foundations on elastic media has been analyzed in
many ways. Using the finite element method, Milovic (1973, 1982), Bowles (1977) and
Kathroli et al. (1982) have studied the behaviour of ring footings on elastic foundations.
Other elastic analyses of ring foundations have also been carried out by Bowles (1975),
and Tassoulas and Kausel (1984). In the analysis of a ring footing on a layer of
finite thickness, Madhav (1980) derived the allowable bearing capacity by utilizing the
ultimate bearing capacity of a circular footing and the elastic settlement of circular and
ring footings. In another analysis, Madhav and Karmarkar (1982) introduced a very

di for estimating the elasto-plasti 1

simple method with
of ring foundation on cohesive soil. It is shown that for the same contacting pressure,

2



the settlement of ring footings is smaller than that of circular footings.

In situ loading tests of small scale ring plates on dense. cemented calcareous sands
have been carried out by Al-Sanad et al. (1993) and Ismael (1996). Using a set of
plates with the same outside diameter of 0.6 m and different ring radii ratios. defined
by Equation (1.2), of 0, 0.25, 0.5 and 0.75, Ismael (1996) has found that under applied

pressure the it of the plates with i ing ring radii ratio. while

the ultimate bearing capacity of ring plates is close to that of the solid circular plate.

In spite of the continued effort in the i igation of ring

a rational method for evaluating the bearing capacity of ring foundations is not avail-
able. In the design of ring foundations, simplifications have to be made. For instance,
in the stability analysis of the aforementioned North Sea platform (Lacasse and Olsen,
1988) using Brinch-Hansen’s method of limiting equilibrium, the ring-shaped base was
d by 4 ind d lar base the external loads were dis-

tributed so that the 4 bases mobilize the same safety factor and the total 4 base system
was in equilibrium with the external loads. A similar procedure has been followed in
the stability analysis of the ring-shaped piers of the Northumberland Strait Crossing
(Kosar et al., 1994). Therefore, conducting research on the bearing capacity of ring

found and ing a practical for engineering design are of great

importance.
1.2 Scope of This Study

For a ring footing resting on soil, as shown in Figure 1.1, the ring radii ratio, n, is
defined as

n= (1.2)

Ola

where d is the inside diameter of the ring footing and D is the outside diameter. The



Figure 1.1: Geometry and load pattern of ring footing
area, A, can be expressed as
A= E(D’-d’) = ;D’(l —n?) (1.3)

When the vertical load Q and moment M applied to the ring footing are increased,
the footing will eventually fail. The vertical load Q and moment M in Figure 1.1 can
be replaced by an eccentric vertical load, P, which has the same magnitude as Q but
locates from the center of the footing by a distance, e, calculated by

(14)

where e is called load eccentricity. When e=0, the footing is under axial loading
conditions otherwise it is under eccentric loading conditions.

The purpose of this study is to provide a practical procedure for evaluating the
bearing capacity of ring footings on the surface of a dense sand subjected to vertical
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axial and eccentric loads. The behaviour of ring footings under various combinations
of footing diameter D, ring radii ratio n, vertical load Q and moment M will be

by i and ical analyses.

1.3 Methodology

The bearing capacity of foundations can be by I y i or
field testing. In addition, various bearing capacity theories have been developed. In the
past decades, the centrifuge test technique has been utilized to determine the bearing
capacity of dati Itis ially efficient to i ij the effect of foundation

size. The limit equilibrium method assumes failure surfaces and seeks an approximate
solution of failure loads; the method of characteristics is used for solving the equilibrium
equations with the Coulomb yield criterion in the uncontained plastic zone under a
footing; the upper-bound method derives the failure load by equating the external

work done to the internal work dissi in a ki i issible velocity field.

These three numerical methods, assuming a rigid-perfect plasticity soil response, have
been widely used in the development of classical bearing capacity theories. However,
they can only be adopted in the cases of simple boundary and loading conditions. The
finite element technique can model the elasto-plastic response of soil and can be applied
to various boundary and loading conditions.

In this work, centrifuge tests of axially and eccentrically loaded ring footings on a
dense sand are conducted to investigate the influence of footing size, ring shape and
loading pattern on bearing capacity. The method of characteristics is employed for ax-
ially loaded circular footings to further study the footing size effect. The finite element
approach is adopted for ring footings under axial loading conditions. A procedure for
evaluating the bearing capacity of ring footings under vertical loads is developed.



Chapter 2

Fundamentals of Bearing Capacity:
A Review

Foundations can be classified as shallow foundations (footings) and deep. founda-

tions. The design of a shallow ion must take int i the

of tolerable deformation and safety against failure. The soil supporting the foundation
should not undergo significant shear failure. During the performance of the foundation,
the loading from superstructures should limit the corresponding displacement of the
foundation to tolerable levels. The all bearing capacity of a foundation may be

controlled by either the ultimate bearing capacity or the deformation.

This study deals primarily with the problem of ultimate bearing capacity; the
term “bearing capacity” used herein refers to the ultimate bearing capacity. This
chapter presents the theories and experimental observations of bearing capacity, most
of which relate to strip footings under plane strain conditions. A good understanding
of the behaviour of strip footings is essential to conducting this research on the bearing

capacity of ring footings.
2.1 Failure Modes of Soil

A foundati j to an i vertical loading tends to penetrate into the




soil supporting it. When the loading is increased to such a value that the penetration
is out of control or it exceeds an allowable value, the foundation is said to have failed.
The behaviour of foundations indicates that the failure of foundations is usually due
to insufficient shear strength of the soil. The three principal modes of such failure are
general shear failure, local shear failure and punching shear failure (Vesic, 1973; and
De Beer, 1987).

In the case of general shear failure, there usually exists a continuous slip failure
surface from one edge of the footing to the ground surface. When the load applied to
the foundation is increased to the failure load, the failure of the soil supporting the

In strain-

foundation is sudden and ic under st

controlled conditions, a decrease of load with i i 1 of the found

can be observed after failure. The penetration of the foundation causes lateral and
upward expulsion of soil and the soil adjacent to the foundation tends to heave. The
ultimate bearing capacity (g.) of this kind of failure is the maximum unit load applied.

In contrast to general shear failure, the punching shear failure is characterized by a
failure pattern that is not distinct. The i due to the

and shear di ion of the soil i di beneath the ion and the soil outside

the immediate foundation is relatively less affected. The penetration increases as the
loading is increased and there is no peak load.

Local shear failure is a traositional mode between general failure and punching
failure. The failure pattern consists of a wedge and slip surfaces and is clearly defined
only immediately beneath the foundation. There is a visible bulging of the soil adjacent
to the foundation. The slip surfaces end in the soil mass; only under the condition of

a ial vertical of the ion may they appear at the ground

surface. Using the load-settlement curve, the ultimate load can be determined at a
point at which the slope of the curve first reaches a steady, minimum value (Vesic,



1973).
The failure mode of a foundation depends upon a number of factors, particularly

stress state, ion geometry and loading conditions.

upon the soil
A strip footing on the surface of a very dense sand or stiff clay will fail in general shear.
In contrast. this footing on the surface of a loose sand will fail in punching shear.
However, soil compressibility alone can not determine the failure mode. For instance.
the footing mentioned above on a dense sand may fail in punching shear if it is placed
at a great depth (Vesic, 1963) or if it is subjected to a transient or dynamic load (Selig
and McKee, 1961; and Vesic et. al, 1965). A footing resting on a saturated normally
consolidated clay may fail in general shear if the loading is so rapid that no drainage
of the clay can occur, while it will fail in punching shear if it is loaded so slow that
the clay is sheared under drained condition. The failure mode depends also upon the

shape and di ion of foundati By i ing the di ion of a footing, the

failure mode tends to move from general shear failure to punching shear failure (De
Beer, 1987). Figure 2.1 presents the failure mode of foundations on sand, which is
influenced by sand density, foundation dimension and depth.

There are no reliable numerical criteria for predicting the failure mode of soil sup-
porting foundations. Vesic (1965, 1973) has proposed a rigidity index, I, for evaluating
the relative compressibility of soil, expressed as

G

= cromnd @1

I

where G is the shear modulus of soil, ¢ is the cohesion, g is the overburden pressure

and ¢ is the friction angle. This rigidity index is associated with the assumption that

the soil is of elastic-ideal icity. To take into i ion the average volumetric

strain in the plastic zone (A), it is suggested (Vesic, 1973) that I, is replaced by a
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Figure 2.1: Effect of relative depth of foundation (D;/B") and density of sand on failure
mode (after Vesic, 1973: B* = B for square or circular footings; B* = 2BL/(B + L)
for rectangular footings)

reduced rigidity index, I, defined as

_ I
==17Ia 2

It is related to the stress level in the soil and the character of loading. A high value
of I, (e.g. over 250) implies that the soil is relatively incompressible while when I, is
small than 10, the compressibility of the soil is high. In practice it is inconvenient to
use I, to evaluate the failure mode of soil, because it is difficult to estimate the value

of the average volumetric strain A in the plastic zone.
2.2 Basic Methods for Bearing Capacity

Stability problems of soil mechanics deal with the conditions of ultimate failure
of a soil mass, such as bearing capacity of foundations, stability of slopes and earth
pressure on retaining walls. These problems are often solved by applying the theory of

9



perfect plasticity. The main methods using rigid-perfect plasticity for bearing capacity
problems are the method of characteristics, limit equilibrium method and limit analysis
method. In the cases of elasto-plastic responses and under some loading conditions.
the finite element method is usually applied.

2.2.1 Limit analysis method

A valid complete solution in mechanics of a soil mass requires three conditions:

stress equilibri i i ionships and ibility ions of
strains and displacements. To simplify the procedure of analysis, limit analysis method
has been developed to bound the collapse load without carrying out full elasto-plastic
analysis. The soil stress-strain relationship is idealized with rigid-perfect plasticity.
Using this method, the lower and upper bounds of the collapse load may be obtained.

Upper-bound method:

An assumed velocity field (deformation mode) of a soil mass which satisfies: (1) the
velocity boundary conditions; and (2) the strain and velocity compatibility conditions,
is termed a kinematically admissible velocity field. The loads, determined by equating
the external rate of work to the internal work rate of dissipation in a kinematically
admissible velocity field, are not less than the actual collapse load. This upper-bound
theorem states that if a kinematically admissible velocity field can be found, the uncon-
tained plastic flow must impend or have taken place previously. Using the upper-bound
technique, the stress distribution need not be in equilibrium.

Chen (1975) presents upper-bound solutions of a strip footing on a general c-¢-y
soil using the Prandtl hanism and the Hill hani; In the Prandtl h
there is only one rigid wedge-shaped zone immediately under the footing while the Hill
mechanism has two symmetrical rigid wedge-shaped zones. The Prandtl mechanism
assumes that no sliding occurs between the footing and the soil; it does not take into

10



account the effect of the footing base roughness. Solutions by the Prandtl mechanism
are rigorous upper bounds for perfectly rough to perfectly smooth footings. For footings
with small base friction. a better upper bound can be obtained using the Hill mechanism
which permits sliding between footing base and soil and takes into account the energy
dissipation due to the sliding. The analysis indicates that when both the soil internal
friction angle (¢) and the friction angle between soil and footing base (4) are greater
than 15° , the Prandtl mechanism yields better (smaller) upper bound solutions: at
smaller § values, the Hill mechanism is better. When ¢ is no more than 15°, the Hill
mechanism may control both smooth and rough footings. For a surface footing on a
weightless soil, the Prandt! mechanism and the Hill mechanism (§ = 0) yield the same
bearing capacity factor N.. The bearing capacity factor N due to soil cohesion and
the factor N, due to surcharge derived by Chen (1975) are identical to those obtained
by Prandtl (1921) and Reissner (1924) respectively when the footing base is assumed
to be perfectly rough. For a surface footing on cohesionless soil, the bearing capacity
factor N, by Hill mechanism (smooth base) is only about one half of that by Prandtl

which is in with the i | results of (1955).

Lower-bound method:

‘The assumed stress distribution of a soil mass which satisfies: (1) the equilibrium
equation; (2) the stress boundary conditions; and (3) nowhere violates the yield crite-
rion, is termed a statically admissible stress field. The loads determined from such a
stress field are not greater than the actual collapse load. This lower-bound theorem
states that if a statically admissible stress field can be found, the uncontained plastic

flow will not occur at a lower load. The I bound i only gives

tion to equilibrium and yield. It does not consider the soil kinematics. Although Chen
(1975) presents some lower-bound solutions of bearing capacity problems, the use of
the lower-bound technique for bearing capacity evaluation in engineering practice is

1



limited.
2.2.2 Limit equilibrium method

Terzaghi (1943). Taylor (1948) and Meyerhof (1951) present many examples of limit
method for obtaining the solutions of stability This method is an

and g lv assumes failure surfaces of various simple shapes:
plane, circular or logspiral. With the assumption of failure surface, the approximate
solution of a stability problem can be obtained by finding the most critical position of
the failure surface and by finding an overall equilibrium of stress resultants of the soil
mass inside the failure surface.

Using this method, the overall force equilibrium conditions are satisfied across the
failure surface. It is not required that the stress distributions inside and outside the
failure surface are in equilibrium or satisfy the yield condition. Meanwhile, although
this technique assumes failure surface and seeks a least answer, it does not necessarily
satisfy all the requirements of the upper-bound theorem. Therefore, the solution ob-
tained using the limit equilibrium method is not ily a lower bound or an upper

bound.
2.2.3 Method of characteristics

In the study of soil plasticity, the method of characteristics (slip-line method) is

introduced to obtain a set of diffe i ions of plastic equilibrium and
them to curvilinear coordinates (Sokolovskii, 1960; and Chen, 1975). At the instant of
di plastic flow, ilibri yield dition (3 lly Coulomb

criterion) and stress boundary conditions are satisfied and a set of differential equa-

tions of plastic ilibrium can be blished to i i the stresses in the soil.

For i this set of ions is d to curvilinear coordinates whose




directions at every point in the plastic zones coincide with the directions of slip plane.
Using this method, many researchers obtained closed form solutions of some bearing
capacity problems of footings on weightless soils, when at least one family of the slip-
lines are straight (Chen, 1975). To take into account the soil weight, Sokolovskii (1965)

adopted a finite diffe imation of the slip-li ions and solved a number

of bearing capacity problems.
In the method of istics, the i ionship of rigid-perfect plas-

ticity is assumed. The equilibrium, yield criterion and stress boundary conditions are
satisfied only in the plastic zones. The stress field in the plastic zones determined from
slip-line equations is termed partial stress field. The stress distribution outside this
partial stress field region is not defined. The bearing capacity of a footing obtained

from the method of istics is not. ily a I bound or an upper-bound

solution.
2.2.4 Finite element method

The aforementioned methods for bearing capacity can only be used in the cases of
rigid-perfect plasticity under some simple boundary and loading conditions. To take
into account the elasto-plastic response of soils and to solve bearing capacity problems
of general boundary conditions and loading patterns, the finite element method has
been employed (Chen, 1975; Christian, 1977; Griffith, 1982; and Britto and Gunn,
1987). The most important aspect in using finite element method to solve bearing
capacity problems is to choose a rational constitutive model of soil.

2.3 Terzaghi’s Bearing Capacity Theory

Terzaghi (1943) defined a shallow strip footing as one whose width, B, is equal to
or greater than the embedment depth, D;. With this condition, the shear resistance
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Figure 2.2: Bearing capacity failure in soil under a rigid strip footing

of the overburden soil located above the level of the footing base can be neglected and
the overburden soil is replaced by an equivalent surcharge equal to

q=7Dy (2.3)

where 1 is the unit weight of the soil. The error of this assumption is on the safe side.

The failure pattern of this footing is shown in Figure 2.2. The failure zone under
the footing can be divided into three parts: (1) a wedge-shaped zone acd beneath the
footing; (2) two radial shear zones adf and cde; and (3) two passive Rankine zones
afh and ceg. Terzaghi (1943) indicates that the angle ¥ of the wedge adc in Figure
2 depends on the roughness of the footing base; for a perfectly smooth base which
eliminates completely the friction and adhesion between the base and the soil, the
value of ¥ is equal to 45° + ¢/2; for a rough base, ¥ can be assumed equal to the angle
of internal friction of the soil, ¢.

Assuming ¥=¢ and the soil is perfectly rigid-plastic (general shear failure), the
bearing capacity can be estimated using plasticity theory. The problem is solved in
two steps: (1) assuming the soil is weightless to derive the bearing capacity due to soil
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cohesion (c) and surcharge (g); and (2) assuming the footing is resting on the surface
of a cohesionless soil (c=0, ¢g=0) to derive the bearing capacity due to the weight of
the soil. The total bearing capacity is supposed to be the sum of the two cases.

For a weightless soil (y=0), failure of the soil occurs along the surface of de,g, in
Figure 2.2. The curve de; is a logarithmic spiral whose center is at point c, expressed
as

r = refune (24)
where 7, represents the length of cd. The shape of the curve de; is related only to the
value of ¢. For ¢=0, it becomes an arc of a circle. Using limit equilibrium method,

the bearing capacity due to ¢ and g is expressed as
Qeq =cNc + N, (2.3)

where
N = (N;—1)cot & (2.6)
(23x/4-¢/2) tane
~ 2co?(x/A+ 0/2)
When ¢=0, ¢=0 and 7 is greater than zero, the failure surface is approximately
along de;g;. The bearing capacity due to the soil weight is determined by

N, (2.7)

1
@ =37BN, (2.8)
in which
=L ian g
Ny = gtang( 5T - 1) (29)

where Kp, is the coefficient of passive earth pressure.

When the values of ¢, g and 1y are greater than zero, the failure surface is along deg.
The ultimate bearing capacity, gu, due to ¢, ¢ and 7 is supposed to be the sum of g,
and g,, expressed as

Gu=cNe+aNy+ %7BN., (2.10)

15



where the bearing capacity factors N., N, and N, are determined using Equations
(2.6). (2.7) and (2.9) respectively. It can be seen that g, increases with footing width
B.

There exists an obvious error associated with Equation (2.10). As shown in Figure
2.2, the ultimate bearing capacity g, due to ¢, ¢ and 7 corresponds to the failure
surface deg while the bearing capacities g, due to c and q and ¢, due to 7 correspond
to de;g; and deygy respectively. Terzaghi (1943) realized that the bearing capacity
associated with the failure surface deg is greater than that determined by Equation
(2.10). However, the difference is less than 10 per cent and the error is on the safe side.

Equation (2.10) can be modified for the estimation of bearing capacity of circular
and square footings. Based on experimental data it is assumed that for square footing

Gu = 1.3¢N, + gN, +0.4yBN, (2.11)

and for circular footing
qu = 1.3¢N, + qN, + 0.3yDN, (2.12)

where B is the width of the square footing, D represents the diameter of the circular

footing.
2.4 Development of Bearing Capacity Theories
In the past 50 years, the well known expression
Gu=cNet gy + 11BN, (213)

termed as Terzaghi’s equation has been widely accepted as a basic formula for the
estimation of bearing capacity. It has been demonstrated that the bearing capacity

derived by superposition is conservative and the error is not more than 20% (Hansen,
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1970; and Bolton and Lau, 1993). For cohesionless soils, Lundgren and Mortensen
(1953) have proposed that the actual bearing capacity should be

1
= p(YDsNy + 537BN;) 214)

where ;>1 is a superposition factor related to footing depth. For surface (D;=0) and
very deep footings, z=1. Hansen and Christensen (1969) and Tan (1990) show that the
maximum value of u of up to 1.2 occurs when B/(B + Dy) is approximately between
0.6 and 0.8.

Experimental data (Vesic, 1973) indicate that the value of v in Figure 2.2 is approx-
imately equal to 45°+6/2 rather than equal to ¢ as suggested by Terzaghi (1943). With
the assumption of ¥=45°+¢/2, Vesic (1973) recommends to use the bearing capacity
factors

Ne=(N,—1)cot o (2.15)
Ny = e**® tan?(45° + g) (2.16)
N, =2(N, +1)tané (217)

where N, and N, are the rigorous solutions for weightless soil by Prandtl (1921) and
Reissner(1924) respectively, while IV, is the numerical estimation by Caquot and Kerisel
(1953) with an error on the safe side (less than 10%).

In the literature there are a variety of proposed solutions to the problem shown in
Figure 2.2. Many researchers agree that the values of N and ¥, can be represented by
Equations (2.15) and (2.16) respectively (Meyerhof, 1963; Vesic, 1973; De Beer, 1987;
and Das, 1990). The variations in the N,-values are, however, substantial. A closed
analytical solution of N, has not yet been found. The values of N, by Meyerhof (1963)
and Hansen (1970) are derived respectively from

Ny = (N, —1)tan(1.49) (218)
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N, =1.5(N, - 1)tan o (2.19)
where N, is defined by Equation (2.16). It should be mentioned herein that the Prandtl-
Reissner and Caquot-Kerisel factors given by Equations (2.15), (2.16) and (2.17) are
considered to be most reliable (Vesic, 1973). The variations of some important bearing
capacity factors with soil friction angle (¢) are listed in Table 2.1.

It is very important to correctly assess the ¢ value of soils. There exist difficulties
in selecting a representative value of ¢ for the computation of the ultimate bearing
capacity. Soils supporting strip footings are essentially in plane strain conditions. The
& value is, however, usually determined by triaxial tests. Bishop (1961, 1966) found
that the ¢ value of a sand in plane strain tests is approximately 10% greater than
that found in triaxial compression tests. Although the bearing capacity factor N, of
Terzaghi (1943) is considered to be conservative when ¢ is determined by triaxial test-
ing, it becomes vative when ¢ is ined by plain strain testing (Chen.

1975). Meyerhof (1963) and Hansen (1970) suggest that a ¢ value which is 10% greater
than that obtained from triaxial tests should be used for the bearing capacity of strip
footings. For a rectangular footing with width of B and length of L, Meyerhof (1963)
suggests using

¢=(11- 0.1%)@, (2:20)
where @, is the angle of internal friction found in triaxial testing.

Another argument is that in reality the shear failure of the footing in Figure 2.2
is the phenomenon of progressive rupture (Muhs, 1965; and Chen, 1975). The slip
line adeg begins at point a and develops gradually to point g. Therefore when shear
failure occurs the soil at g is just mobilized to its peak strength while the strength of
the soil at @ may be as low as the strength at critical state. In addition, the stress
levels at different locations of the failure surface are different. To take into account the
curvature of Mohr’s envelope, it is suggested that the value of ¢ corresponding to the
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Table 2.1: Bearing capacity factors

@ N, N, N, N, N,
(degree) | Prandtl Reissner | Caquot et al. Meyerhof Hansen
(1921)  (1924) (1953) (1963)  (1970)
Eq.(215) Eq.(2.16) | Eq.(217) Eq.(2.18) Eq.(2.19)
0 5.14 1.00 0.00 0.00 0.00
2 5.63 1.20 0.15 0.01 0.01
4 6.19 143 0.34 0.04 0.05
6 6.81 1.72 0.57 0.11 0.11
8 7.53 2.06 0.86 0.21 0.22
10 8.35 2.47 1.22 0.37 0.39
12 9.28 297 1.69 0.60 0.63
14 10.37 3.59 2.29 0.92 0.97
16 11.63 4.34 3.06 1.37 143
18 13.10 5.26 4.07 2.00 2.08
20 14.83 6.40 5.39 2.87 2.95
21 15.82 707 6.20 3.42 3.50
22 16.88 7.82 713 4.07 413
23 18.05 8.66 8.20 4.82 4.88
24 19.32 9.60 9.44 5.72 5.75
25 20.72 10.66 10.88 6.77 6.76
26 22.25 11.85 12.54 8.00 7.94
27 23.94 13.20 1447 9.46 9.32
28 25.80 1472 16.72 11.19 10.94
29 27.86 16.44 19.34 13.24 12.84
30 30.14 18.40 22.40 15.67 15.07
31 32.67 20.63 25.99 18.56 17.69
32 35.49 23.18 30.21 22.03 20.79
33 38.64 26.09 35.19 26.17 24.44
34 42.16 29.44 41.06 31.15 28.77
35 46.12 33.30 48.03 37.15 33.92
36 50.59 37.75 56.31 44.43 40.05
37 55.63 42.92 66.19 53.27 47.38
38 61.35 48.93 78.02 64.07 56.17
39 67.87 55.96 92.25 77.33 66.76
40 75.31 64.20 109.4 93.69 79.54
42 93.71 85.37 155.5 139.3 114.0
44 118.4 115.3 2246 2114 165.6
45 133.9 1349 2717 262.7 2008
46 152.1 158.5 330.3 328.7 2446
48 199.3 222.3 496.0 526.5 368.7
50 266.9 319.1 762.9 873.9 568.6




mean value of normal stress (o) along the failure surface should be used. Meyerhof

(1950) suggests that

=%
Om = 10 (2.21)

while the value of oy, proposed by De Beer (1965a) is

a.,.="":3"(1-nno) (222)

in which g represents the overburden pressure.
Equation (2.13) is for the evaluation of uitimate bearing capacity of strip footings
under vertical loading, ignoring the shear resistance of overburden soil. To take into

account the infl of the loading inclination, the shear strength of overburden soil
and the footing shape, Meyerhof (1963) and Hansen (1970) introduce a general bearing
capacity equation expressed as

i .
Gu = cNescdcic + gNySedgiq + 57BN, 3,dy1, (2.23)

where s, s,, s, are shape factors; d., d,, d, are depth factors; and i, i, i, are
load inclination factors. The bearing capacity factors N and N, are determined by

Equatis (15) and (16) respectively while N, may be the solution of Caquot and
Kerisel of Equation (17) or it may be the ions of other hers as described
above.

The shape factors of rectangular foundations have been found by Meyerhof (1963)
and De Beer (1970). Meyerhof’s shape factors are given by

- B N'
se=1+7 3 (2.24)
o= 5e (2.25)
sy=1— 0.4-51Z (2.26)

where L represents the length of rectangular foundations.
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The depth factors have been proposed by Meyerhof (1963) and Hansen (1970). For

shallow foundations, Hansen’s depth factors are

do= 1+o.4%’ (2.27)
4,=1+2can¢(1-ain¢)’% (2.28)
d,=1 (2.29)

The load inclination factors have been derived by Hansen (1970), Meyerhof (1963).
and Hanna and Meyerhof (1981). The factors proposed by Meyerhof (1963) are ex-
pressed by

o= (1 - %)2 (2.30)
fg=1, (2.31)
iy = (1 = g)z (2.32)

where 3 is the inclination angle of load with respect to the vertical.
For a vertically loaded strip or circular footing resting on the surface of cohesionless
soils, the bearing capacity is expressed as

1
t= 31BN, (233)

where B represents the width of a strip footing or the diameter of a circular footing,
and s, is a shape factor. For a strip footing, s,=1. Terzaghi (1943) and Vesic (1973,
1975) proposed that s,=0.6 for circular footings. Using the method of characteristics,
Tan (1990) obtained s,=0.63 when ¢=30° is used for the circular footing and ¢=33°
(10% increase) for the strip footing. When ¢=30° is used for both footings, 5,=1.04.

It is stressed that s, is not constant with ¢.
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2.5 Factors Affecting Bearing Capacity

2.5.1 Soil compressibility and footing scale

The aforementioned analyses of bearing capacity of foundations assume that soils
are of rigid-perfect plasticity and general failure occurs. This assumption can only be
most reasonably applied to dense sands or stiff clays. There is no rational method for
computing the bearing capacity in the two other failure modes. To utilize the bearing
capacity equation and factors in general shear failure for the evaluation of bearing
capacity in local shear and punching shear modes, Terzaghi (1943) proposes to use
reduced strength parameters ¢* and c* defined by

¢ =tan G ang) @34

;c (2.35)

instead of ¢ and c. Although this approach is not always on the safe side (Vesic and

c

Johnson, 1963), the reduction of ¢ of sand in the case of local or punch shear failure
may be too conservative (Vesic, 1973). In addition, it leads to a jump in bearing
capacity on transition from local failure to general failure.

Based on test results of small footings on sands, Vesic (1973) suggests that for the
evaluation of bearing capacity of sand in local and punching shear failures, the value
of ¢" should be expressed as

¢" = tan™'(I tan¢) (2.36)
in which
I.=0.67+ Ip — 0.751% (2.37)
where Ip is density index in the range 0 < Ip < 0.67.

Studies of De Beer (1965a) and Vesic (1965) indicate that the average shear strength

mobilization along the failure surface of soil ing a shallow d
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with footing size. The decrease of the mobilized strength is due to the curvature of
Mohr’s strength envelope (Meyerhof, 1950; and De Beer, 1965a) and the progressive
rupture along the failure surface (De Beer, 1965b; and Muhs, 1965). The relative
compressibility of soils increases with footing size. Vesic (1969) shows that the values
of N, of large footings may be much lower than those conventionally assumed and
postulates that the bearing capacity of large surface footings could not be greater than
that of deep footings on the same soil. This postulate suggests that very large footings

should fail exclusively in punching shear mode.
2.5.2 Roughness of footing base

The failure pattern of soil supporting foundations relates to the roughness of the
bases of the foundations (Terzaghi, 1943; and Meyerhof, 1955). It has been argued that
the Prandtl mechanism requires perfectly rough foundation base; for smooth founda-
tions, the Hill mechanism should be used. According to theoretical analyses and small
scale footing tests, Meyerhof (1955) concludes that the bearing capacity of a perfectly
smooth foundation on the surface of a sand is only one half of that of a rough founda-
tion. Vesic (1973) indicates, however, that it is i ible to i
a two-wedge failure pattern suggested by Meyerhof (1955); the two-wedge pattern is
fictitious and should not be used in bearing capacity evaluation. In reality there is no
perfectly smooth footing used in any test. Upper-bound analysis of Chen (1975) shows

that for a strip footing resting on a cohesionless soil with an internal friction angle (¢)
greater than 18°, when the friction angle between the footing base and soil (4) is greater
than 15°, the bearing capacity obtained using the Prandtl mechanism is smaller (more
reasonable) than that using the Hill i In i ing practice fc

bases are usually rough (Meyerhof, 1955). For ically loaded foundati the base
roughness has little influence on the bearing capacity (Vesic, 1973).
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2.5.3 Rate of loading

The preceding analysis of bearing capacity assumes that foundations are loaded so
slowly that no viscous or inertia effects occur. Under these conditions, the bearing
capacity may be affected by the rate of loading only due to the rate of drainage of
excess pore pressure. However, the bearing capacity of foundations subjected to high-
rate loading may be affected by the viscous, drainage and inertia effects induced in
the soil supporting the foundations. Under impact loads, a foundation on both dense
sand and stiff clay will fail in punching shear mode (Vesic et. al, 1965); the effect
of soil inertia is similar to that of overburden pressure. Vesic (1973) indicates that
foundations on stiff clay show an increase of bearing capacity with the rate of loading
from static to impact loading conditions, while the bearing capacity of foundations on
dense sand decreases first with loading rate to a minimum value and then increases
with loading rate. The data of De Beer (1987) shows that for a footing with a width
of 100 mm resting on a dense sand, the bearing capacity reaches the lowest value and
does not change much when the loading rate is 0.01 to 1 mm per second.

2.6 Bearing Capacity in Practice

The aforementioned theories employ soil strength parameters for evaluating the
bearing capacity by using the Equation (2.13) or a more general formula as given by
Equation (2.23). In addition to the selection of soil strength parameters, the difference
in the estimated bearing capacity usually results from the method for calculating N,,
because it is widely recognized that the bearing capacity factors N, and N, should be
calculated using Equation (2.15) and (2.16). Canadian Geotechnical Society (1992)
has proposed using the bearing capacity factor N, of Hansen (1970) as expressed by
Equation (2.19). In this case, a factor of safety of 3 should be selected for determining
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the allowable bearing capacity.

In practice, the bearing capacity of in situ soils is often derived from the results of
field tests. The methods recommended by the Canadian Geotechnical Society (1992)
for the evaluation of bearing capacity from the data of standard penetration tests
(SPT), static cone penetration tests (CPT). pressuremeter tests and vane shear tests
are described as follows.

The bearing capacity of a footing on sand can be estimated by means of the SPT
blow count, N, defined as the required number of blows of a 63.5 kg weight having a free
fall of 760 mm for driving a standardized split sampler 51 mm in diameter a distance of

300 mm into soil, after an initial ion of 150 mm. (1956) has

the formulas for the allowable bearing capacity, ga, of shallow strip footings as

=12NKs, B<12m (2.38)
0.3+ B\?
% =8NK, (T) . B>12m (2.39)

where g, is in kPa, B is footing width in meter and K is a depth coefficient given by
it g DL
Ka=1+3} (2.40)

in which Dy is the embedment depth. It should be cautious against using SPT blow
count for bearing capacity evaluation, because the SPT results are subject to many
errors. The correlation between the SPT blow count and soil friction angle is very
poor. It is considered that the SPT data are not suitable for the bearing capacity of
cohesive soils.

In simple cases, the allowable bearing capacity of commonly used shallow footings
with an embedment depth of about 1 m can be roughly estimated from cone penetration
test (CPT) results using

22 =0.1¢. (2.41)
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where g is the cone tip resistance. Meyerhof (1956) presents a more detailed procedure
for the bearing capacity from CPT data by considering the influence of footing width
and depth. The allowable bearing capacity is about 1 to 10% of the cone tip resistance.
Generally, CPT data are considered more reliable than SPT results. However, it is
difficult to use CPT results for evaluating the bearing capacity of dense or mixed soil
deposits.

The bearing capacity of foundations on clays is controlled by short-term stability

conditions. The bearing capacity of dations can be di ined using
vane shear results by

da=Bim(l +o.z%)(x +022) 44 (2.42)

where B is the width of foundations, L is the length, g is the overburden pressure at
the foundation level, 7, is the undrained shear strength measured from in situ vane
shear tests, and u is a strength reduction factor. The value of u given by Bjerrum
(1973) is related to soil plasticity index (Ip). For Ip=20, u is approximately 1.0; for
Ip=80, p is reduced to about 0.65.

The results of the Menard pressuremeter tests (Menard, 1965) can be used to es-
timate the bearing capacity of shallow foundations on soils. The bearing capacity is
expressed as

9 =Ky(p—po) +4¢ (2.43)
where p; is the pressuremeter limit pressure at which the volume tends to increase

rapidly with pressure , p, is the total hori: pressure at the fe ion level, K, is

a capacity coefficient and g is the pressure at foundation level. To obtain

the allowable bearing capacity, a factor of safety of at least 3 should be applied to the

term Ky(p; —po) called the net limit pressure. The capacity factor K, is related to the
width, length and depth of foundations and the type of soil. For shallow strip footings,
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K, ranges from 0.8 to about 1.5, increasing with soil strength and the value of a depth
factor Dy/B.
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Chapter 3

Soil Properties and Behaviour

This work presents a research on the bearing capacity of ring foundations on a dense
sand. The behaviour and ies of the sand described in this chapter are used in the

centrifuge modelling and numerical analysis of the ring footings in subsequent chapters.

Triaxial i ion, direct shear, and other conventional
lab tests are cond: tod ine the soil ing the physical
friction angles, icity and elasticity, in situ stress conditions, and friction

against an aluminum surface. Because the sand used in various tests and numerical
analysis in this study is dry (drained conditions), all stress parameters used in this

thesis refer to effective stresses.
3.1 Physical Properties

The soil used in this study was a clean silica sand named glass sand purchased

from Shaw Resources in Nova Scotia. Cq ional lab y tests were to

determine the physical properties. The sand with little fines had a specific gravity of
2.66, a maximum void ratio of 1.06, 2 minimum void ratio of 0.65, 2 mean grain size of
0.22 mm, an effective grain size of 0.14 mm and a uniformity coefficient of 1.69. The
main physical properties of the sand are summarized in Table 3.1 and the grain size
distribution is shown in Figure 3.1.



With a mean grain size of 0.22 mm and a uniformity coefficient of 1.69. the soil is

considered as a uniformly-graded medium sand.

Table 3.1: Soil physical properties

Parameter name: Unit Parameter value
Specific gravity, G,: 1 2.66

dry unit weight, Yamas: kN/m® 15.8

dry unit weight, Yamin: kN/m® 12.7

void ratio, emas: 1 1.06

void ratio, emin: 1 0.65
Mean grain size, dso: mm 0.22
Effective grain size, djo: mm 0.14
Uniformity coefficient, C,: 1 1.69

3.2 In situ Stress and Elasticity

3.2.1 In situ stresses

In a soil, which has not experienced lateral (horizontal) strain, the ratio of lateral
stress, o, to vertical stress, o,, is defined as the coefficient of earth pressure at rest,

K,, expressed as
K,=2 (3.1)

Ov
K, is related to soil physical properties (Andrawes and El-Sohby, 1973) and stress
history (Brooker and Ireland, 1965; and Mayne and Kulhawy, 1982). Laboratory
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Figure 3.1: Grain size distribution of sand

investigations indicate that K, of soils remains constant during loading and increases
during ing with i i idation ratio (OCR). A widely accepted

empirical relationship between K, and the internal friction angle of soil proposed by
Mayne and Kulhawy (1982) is

K, = (1 —sin¢)(OCR)"** (32)

where ¢ is the peak friction angle. A difficulty in using this equation is how to properly
select the peak friction angle (¢), because it decreases with stress level.

The in situ lateral stress of soil can be measured in the laboratory using triaxial
cells or modified oedometer rings (Ofer, 1981). In this study an oedometer ring (Zhu
et al., 1995) was used. The oedometer ring had an inside diameter of 61.3 mm, an
outside diameter of 94.0 mm and a height of 70.0 mm. The thickness of the thin wall

was 1.5 mm. Strain gauges were cemented on the thin wall to measure the hoop strain
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of the ring caused by the lateral stress in the sand. Dry sand samples in the cedometer
were prepared using a raining technique resulting in a density index (Ip) of 90% (see
chapter 4 for details).

The measured in situ lateral stress of the sand during loading and unloading are
shown in Figure 3.2(a). The relationship between the vertical stress and the lateral
stress is approximately linear during loading and the K, in Figure 3.2(b) remains a
constant value of 0.42. During unloading, the value of K, increases with decreasing
vertical stress. The value of K, is about 2.7 when the vertical stress is reduced from
800 to 33 kPa. The K, value of 0.42 during loading will be used to determine the
initial stress conditions of soil for finite element analysis of ring foundations described
in chapter 6.

3.2.2 Soil elastic moduli

The elastic moduli of soil can be described by Poisson’s ratio (v) and Young's

modulus (E) or bulk modulus (K). Their relationship is in the form of
E=301-2)K (3.3)

Under K, conditions, the value of Poisson’s ratio during initial loading can be
derived using (Britto and Gunn, 1987)

=Ko
T1+K,

The measured K, value of 0.42 results in »=0.30 for the dense sand.

v (3.4)

For the sand under K, conditions, both the vertical stress, o,, and the lateral stress,
O, are principal stresses. The mean principal stress is given by
1
p=3(0y +204) (3.5)

The volumetric strain is
e =61 (3.6)
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in which ¢, is the vertical strain.

Table 3.2: Stress and strain in sand under K, conditions

Vertical stress | Lateral stress princt‘::::ln stress | Volumetric strain
9y (kPa) o» (kPa) p (kPa) & (%)
0 0.0 0.0 0.0
100 42.8 61.9 0.132
33 24.1 27.1 0.110
300 126 184 0.277
167 96.3 120 0.256
800 339 493 0.517
433 256 315 0.476
1600 661 974 0.764
1067 562 730 0.717

In order to measure the elastic modulus E or K, a sand sample in the oedometer ring

with a density index of 90% was vertically loaded, unloaded and reloaded several times

at different stress levels, while lateral stress and vertical deformation were measured.

The vertical loading sequence was from 0, 100, 33, 300, 167, 800, 433, 1600 to 1067
kPa. During each loading or unloading, the load was increased or reduced in steps.

The measured stresses and strains are listed in Table 3.2.

During each unloading, the change of strain is considered to be solely elastic. The
bulk modulus can be obtained by
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Figure 3.3: Elastic bulk modulus (K) versus mean principal stress (p)

ic strain incre-

where dp is the mean principal stress i and Je¢ is the
ment during unloading.

Using Equation (3.7) and the data in Table 3.2, the calculated bulk modulus. K.
increases with the level of principal stress which is the value of p immediately before
unloading. When the values of p are 61.9, 184, 493 and 974 kPa, the values of K
are 158, 305, 434 and 519 MPa respectively. As shown in Figure 3.3, the relationship
between elastic bulk modulus, K, and mean principal stress, p, can be expressed as

K =289p"% (3.8)
and using Equation (3.3), the Young’s modulus is given by
E =347p"% (3.9)

where p is in kPa, K and E are in MPa.



The elastic shear modulus (G) of soils is expressed in terms of Young’s modulus
and Poisson’s ratio as

G (3.10)

B
2(1+v)
Using Equation (3.9) and »=0.30, the shear modulus of the dense sand in the
present study is given by
G =13.3p"% (3.11)
where p is in kPa and G is in MPa.
An empirical equation proposed by Hardin and Richart (1963) for estimating the

shear modulus of sands is
(297 — :)’p,,_s

G =327
l1+e

(3.12)

where e is the void ratio of sands, p is in kPa and G is in MPa.
For the sand in this study, using the initial void ratio of 0.69 corresponding to
I1p=90%, Equation (3.12) becomes

G =10.1p°° (3.13)

The values of G calculated using Equations (3.11) and (3.13) are given in Figure
3.4. The value of G obtained in the present study is close to that estimated by the
empirical equation of Hardin and Richart (1963).

3.3 Triaxial Behaviour

Triaxial tests are often carried out for the ination of soil strength

especially for measuring the friction angle (¢). Compared with direct shear box testing,
triaxial testing has the following advantages: (1) the drainage conditions can be well
controlled according to test purpose; (2) pore water pressure can be monitored in
undrained tests; (3) volume change can be measured in drained tests; (4) back pressure
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can be applied on soil samples to increase the degree of saturation; and (3) the stress
and strain in a soil sample is more uniform and failure may occur in any plane depending
on stress conditions.

In drained compression testing, the cell pressure (o3) is the minor principal stress;
the axial stress (1) is the major principal stress. The mean principal stress (p) and

the deviator stress (g) are in the form of
1
p= 5(01 +203) (3.14)

g=0,—03 (3.15)

For this work, triaxial tests of the silica sand described above were conducted under
drained conditions, at cell pressures of up to 2500 kPa. Sand samples, with a density
index of approximately 90%, were prepared using a raining technique similar to that
described in Chapter 4. The height of the sand samples was typically 85 mm and the

36



diameter was about 38 mm. The axial loading rate of each sample was 1 mm per

minute.

3.3.1 Stress and strain

In the triaxial ion tests the i ionship and the
ic behaviour are on cell pressure, as typically shown in Figure 3.5.

For the curve when g3=100 kPa, point M corresponds to the peak shear strength while
point C to the critical state strength. The critical state is a condition under which the
soil will continue to deform without further change in stresses and volume (Roscoe et
al., 1958; Schofield and Wroth, 1968; and Woods, 1990). It can be seen from Figure

3.5(a) that the deviator stress ratio

L _%-a (3.16)

of different samples at a given axial strain decreases with increasing cell pressure.
The strain required to reach the peak strength as well as the critical state strength
increases with stress level. Figure 3.5(b) indicates that the dilation of the sand during
shearing decreases significantly with cell pressure. At a high pressure of 03=2500 kPa,

the dilatant b iour of the sand is
3.3.2 Soil friction angles

For each sample of the dense sand under drained triaxial compression shearing, the
shear stress increases with strain until a peak strength is reached. After the peak value,
the shear stress decreases with shear strain. With the further increase of shear strain,
the soil will reach the critical state where the shear stress keeps constant. For the sand
sample with 03=100 kPa as shown in Figure 3.5, the peak friction angle (¢maz) and the
critical state friction angle (¢.,) can be derived using the stress parameters at points
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M and C respectively. The friction angles obtained from test data of sand samples at
cell pressures from 25 to 2500 kPa are given in Figure 3.6.

The peak friction angle decreases with stress level, which is in accordance with the
test data reported by Meyerhof (1950), De Beer (1965a), Ladd et al. (1977) and Bolton
(1986). When the cell pressure is increased from 25 to 2500 kPa, the peak friction
angle is reduced from approximately 46.9 to 37.3°. This means that the Mohr'’s failure
envelope is a curve rather than a straight line. Similar to the test results of Chu (1995),
the critical state friction angle shown in Figure 3.6 also decreases with stress. The peak
friction angle is expressed as

Omaz = 53.6 — 4.78log,q 03 (3.17)
while the critical state friction angle is
$es = 45.8 — 4.09log, 03 (3.18)
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in which @me: and 6, are in degrees; the cell pressure. o3 is in kPa.
The difference between the peak friction angle and the critical state friction angle
can be written as
60 = Gmaz — Pes = 7.8 — 0.691l0go 73 (3.19)
which decreases slightly with stress level.
The peak and critical state friction angles can also be expressed in term of mean
stress (s) as
maz = 57.0 — 5.29l0gye (3.20)
G = 47.8 — 4.4210g19 s (3:21)
in which the mean stress, s, is in kPa and is in the form of

a= %‘.’2 (3.22)

The results indicate that the friction angle of the dense sand decreases linearly with
stress in a semi-log scale diagram. For a log-cycle increase of stress, the soil friction

angle is reduced by about 5 degrees.
3.3.3 Plastic volumetric strain

A sand sample with density index of 90% was isotropically compressed in the tri-

axial cell under drained ditions to observe the vol ic behavi At isotropic

compression conditions, the mean principal stress is
p=0s (3.23)
where o3 is the cell pressure.
The sample was compressed from 10 kPa to 2500 kPa while the volume change was
measured. The relationship between the plastic volumetric strain €2 obtained and the
mean principal stress is shown in Figure 3.7. The plastic volumetric strain at a given
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pressure can be obtained by subtracting the elastic strain from the total volumetric
strain measured. That is
g=6-¢ (3.24)
where &, is the total volumetric strain measured, and & is the elastic volumetric strain
corresponding to pressure p, given by
&=

(3.25)
in which the bulk modulus K can be calculated using Equation (3.8).

3.4 Friction between Sand and Footings

3.4.1 Test device

‘The proper estimation of friction between soils and construction materials is impor-

tant in soil-structure interaction problems such as piles, footings and retaining walls.
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Figure 3.8: Direct shear apparatus for surface friction

Based on experimental results, Potyondy (1961) suggests that skin friction between

soils and ials can be d in a sum of the cohesion and the

normal stress-dependent component, similar to the Coulomb failure envelope of soils.
In the measurement of the skin friction, the direct shear apparatus has been widely
adopted (Potyondy, 1961; Feda, 1976; and Al-Hussaini and Perry, 1978). In addition,
ring torsion apparatus has also been used (Yoshimi and Kishida, 1981), in order to
overcome the disadvantages of direct shear such as the iform distri-

butions of shear strain and stress over the contact surface.

A direct shear box, shown in Figure 3.8, was used in this study to measure the
friction between the aluminum footings used in centrifuge tests and the dry silica sand
with a density index of 90%. The sand samples had a diameter of 63.3 mm and a height
of 20 mm. Shear force to the sample was applied by horizontally pushing the upper
part of the shear box containing sand, while the lower part of the shear box holding
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Figure 3.9: Shear stress (7) versus displacement (x)

the i i was ionl: The hori: | shearing rate of the samples

was 0.2 mm per minute.
3.4.2 Shear stress and displacement

It is observed that during shearing of each sample, shear stress increased with shear
displacement when the vertical load was kept constant by applying a dead load of steel
weights. When the displacement is increased to certain extent, slip between the sand
surface and the aluminum surface occurs. Figure 3.9 shows the relationships between
the average shear stress (7) along the shear surface and shear displacement (x) of
4 samples at normal (vertical) stresses of 110, 205, 299 and 411 kPa. It is seen that
the pattern of shear stress-displacement changes with vertical stress. In the range of
a small displacement, the 4 curves follow the same path. After the initial stage, they
begin to diverge when the di isi d. The shear di: required
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to reach failure (slip) increases with stress level.
3.4.3 Coefficient of skin friction

The relationship between vertical stress and shear stress at failure in Figure 3.10 is
linear. The coefficient of the skin friction is defined in terms of shear

stress at failure () and vertical stress (o) as

=X
w=1 (3.26)

The data in Figure 3.10 result in u4;=0.53. This is equivalent to a friction angle of
28° between the sand and the aluminum surface. Yoshima and Kishida (1981) state
that the coefficient of friction between sand and steel surfaces of various roughness is
typically from 0.3 to 0.7.



Chapter 4

Centrifuge Modelling of Ring
Footings

4.1 Background and Principle

4.1.1 Introduction

Coulomb’s model for soils is widely ized by ical engil and re-
searchers. The model treats soils as essentially frictional materials and reveals that

the shear failure of soils is pressure-level dependent. This model is fundamental for
developing the criteria of soil failure in modern soil mechanics. As a result frictional
materials like soils are often termed Coulomb materials.

The geotechnical centrifuge technique has been aimed at dealing with the stress
dependent behaviour of soils. In model tests of earth retaining structures, slopes and
foundations, the scale of the model is a very important factor influencing the results.
Large scale field tests are usually difficult or even impossible to perform and they
are costly. Laboratory tests, on the other hand, are easy to operate and the test
conditions can be well controlled (Mikasa and Takada, 1973). However, under normal
gravity, the stress level in small scale models due to self-weight is much less than that in
the prototype. Therefore the stress-strain behaviour and the patterns of deformations

will be quite different in the two cases. For model tests concerning soil strength, a
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key issue is to achieve the stress similarity between the model and the prototype. An

In ift delling, the

efficient way to do this is to use the
self-weight stress distribution of the model can be simulated by applying a centrifugal
acceleration to simulate the stress conditions in the prototype.

In 1868, Edouard Phillips, an engineer in France, presented the idea of centrifuge
modelling and its possible use in bridge engineering (Craig, 1989). In the 1930's. re-
searchers in the United States and the former Soviet Union adopted this technique
to geotechnical engineering (Rowe, 1975). A paper in 1936 (Craig, 1989) related to

work was by Pok kii and Fiodorov on the first International
Confe on Soil ics and F ion Engineering (ICSMFE). Papers regard-
ing centrifuge tests presented to the 7th ICSMFE held in Mexico in 1969 and to the 8th
ICSMFE in Moscow in 1973 brought wide ization of centrifuge ing as an
effective research tool. In the 1960's and 70's, i 1 of the

for i ications was made at the University of Manchester and

the University of Cambrige in the United Kingdom (Rowe, 1975; Schofield. 1980).
There are currently about 80 geotechnical centrifuge facilities in the USA, United
Kingdom, Russia, France, Japan, Canada, China and some other countries. The cen-
trifuge technique has been effectively used for studies of soil consolidations (Kimura

et al., 1985), earth retaining heherbina, 1988), embank (Lee and
Schofield, 1988; Feng and Hu, 1988), foundations (Kutter et al., 1988), cone penetra-
tion tests (Ferguson and Ko, 1985) and soil liquefaction potential (Hushmand et al.,
1988).

4.1.2 Principle and scaling law
In centrifuge testing, acceleration is applied to the soil model by spinning the model

in a centrifuge normally in a horizontal plane at a prescribed angular velocity. As
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Figure 4.1: Principle of centrifuge modelling

illustrated in Figure 4.1, at a centrifuge radius r, the acceleration, a, that the model
experiences is
a=ru? (4.1)

where w is the angular velocity of the centrifuge.

For a 1/N scale soil model j to a i ion of N times of

gravitational acceleration (g), that is
a=Ng (4.2)

the self-weight stress distribution in this model is similar to that of the soil prototype
under gravitational acceleration, as shown in Figure 4.2. In this case, the acceleration
scale is given by

Om

—=N (4.3)
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where subscripts m and p model and pi P ively. The
scale is
Lm _ 1
= 4.4
L, N (44)

where L is geometric dimension. If the same material is used in the model and the
prototype, the soil unit weight scale is

Im
==N 4.5
" (4.5)

where 7 is unit weight. The i ique aims at ining the same

behaviour of a small-scale soil model as that of a large-scale prototype. A summary of
the scaling laws after Lee (1985) is presented in Table 4.1.

4.1.3 Effectiveness and accuracy of centrifuge modelling

A model test is designed to investigate the behaviour of a prototype. It is usu-
ally inevitable that the prototype can not be exactly and accurately modelled. The
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Table 4.1: Scaling laws in centrifuge tests

Scale factor
P Modelled (Prototype : Model at Ng)
i 1: N
Model di : YN
Soil density £
Soil unit weight 1:N
Force 1: 1YN?
Stress 1:1
Strain 1:1
ket YN
Void ratio t:1
Degree of 1:1
Time (Inertial events) 1: 1N
Time (Consolidation and diffusion) : 1/N?
Time (Viscous flow) 1:1
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fundamental considerations for the design of models are that (1) all significant effects
should be modelled in similarity; (2) all effects not modelled in similarity should be
and (3) any unk infl should be revealed by experimental resuits.

In centrifuge tests, there also exist inaccuracies and errors. The main scale effects and
errors involved in centrifuge modelling are discussed as follows.

Acceleration field

The major i ion in i tests is the similarity of self-weight vertical
stress between the model and the prototype. As illustrated in Figure 4.1. the radial
acceleration field in the centrifuge model is not uniform; the acceleration increases lin-
early with the centrifuge radius. In contrast to the linear increase of vertical stress with
depth in the prototype as shown in Figure 4.3, the slight variation of the acceleration
results in a nonlinear change of vertical stress (in radial direction in the centrifuge) in
the model, expressed as

Oum = /"“ puwPrdr = pwlz(r + lz) (4.6)
re 2

where p is the density of the model material, z is the depth and r, is the centrifuge

radius at the top surface of the model. The stress distribution in the prototype is

O = pgNz 4.7

In order to minimize the difference of stress between the model and the prototype,
Schofield (1980) employed a rule that the under-stress ratio at the top portion of the
model should be equal to the over-stressed ratio at the bottom. Under this rule, the
vertical stress in the model is exact at two-thirds depth of interest in the model. The

angular velocity, w, during the operation of centrifuge test should be calculated using
N %h)w’ (48)
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Vertical stress

Figure 4.3: Vertical stress with depth in prototype and centrifuge model

where h is the depth of interest in the model. In this case, the maximum error of stress
in the model can be estimated by
R, = % (4.9)
where . is the centrifuge radius at one-third depth of the model. For A/r.<0.1, the
stress error is less than 1.7%.
In addition to the slight variation of acceleration with depth in a centrifuge model,

there is a change of ion in the hori: | plane. The h

in the plane is

ap = u.; (4.10)
where a, is the vertical acceleration, r is the centrifuge radius at the center of the plane
and b represents the distance from the center of the plane. The horizontal acceleration,
which is in the direction against the center of the model, may be significant if there is a
large area of activity. One way to elimi the infl of the
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is to shape the surface of a model to take consideration of the radius nature of the
acceleration. This is, however, not the usual way in reality. A good practice is to
make major test events take place in the central part of a model where the horizontal
acceleration is small.

Another factor causing error is the so-called Coriolis acceleration in the horizontal
direction due to the vertical movement of a particle in a model. The Coriolis accelera-
tion is represented by

a. = 2wy (4.11)
where v is the vertical velocity of the particle relative to the model. Coriolis effect may

be signi in the i ing of some dynamic events.

The effect of earth gravity in some centrifuges has been discussed in detail by
Phillips (1995). For fixed and ined platform i the resultant

is inclined to the platform at n:1, where n is the centrifuge acceleration. For the swing-

ing platform i the resultant ion is always normal to the platform

surface, provided the hinge is frictionless.

Scale effect:

In centrifuge tests, a prototype of 5 m in size may be simulated, for instance, by a
model of 0.5 m at 10 g or a model of 0.05 m at 100 g. It is important that a proper
scale factor should be selected to obtain reliable results at a low cost. In practice, the
scale factor should be kept as low as possible, subjected to the limitation of the size
of the model due to payload capacity and the dimension of the centrifuge. The results
from a small model will be more sensitive to the presence of instrumentation and the
manner of model preparation. The selection of model size should also take into account
the effect of soil particle size.

The effecti: of i ing of an event and the appropriateness of a
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scale factor in centrifuge modelling can be verified using the technique of modelling of
models (Schofield, 1980). To check the validity of using the model test results for the

of a pi ype behavi two model tests with different dimensions, namely

L, and L,, are repeated at two different acceleration levels of a; and a; respectively.

If the product of dimension times acceleration is identical, that is
aly =aly (412)
the same phenomenon is expected in the two tests when the models are well established.

Soil particle size:

In geotechnical centrifuge tests, the size of soil particles is not modelled in similarity.
It is commonly questioned if there is anything wrong when the particle size is not
reduced by a scale factor of N. If the similarity law were employed for particle size, a
clay in a model at 100 g would be representing a fine sand. This is obviously flawed

because the in and bil i of a clay are quite different from
that of a fine sand.

Therefore the size of particles is a parameter which can not normally be scaled down
for similarity. The same material is often used in the centrifuge model as the prototype.
In the selection of the scale factor, the value of the ratio of a major dimension, /m, of
the model to the mean particle size, ds, of soil should be large enough to eliminate
the effect of particle size on test results. The particle size effect has been discussed by
a number of researchers and some critical values of //dso are listed in Table 4.2.

4.1.4 Testing of foundations in centrifuge

In the past, due to the high cost and the difficulty of controlling testing conditions
of large scale in-situ tests, most of the tests for bearing capacity of foundations were
carried out in laboratories at normal gravity conditions or in fields using small bearing
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Table 4.2: Critical ratio of model dimension and particle size

fe Critical l,,/dso | Type of research
Mikasa & Takada Strip footings
(1973) 25 on sand

Circular footing
Ovesen (1979) 15 on sand
Gemperline & Ko Strip footings
(1984) 25 on sand slope
Phillips (1995) 30 General summary
Fuglsang & Oveson
(1988) 30 Footing on sand
plates. These small-scale tests have played i roles in the d of

bearing capacity theories (Terzaghi, 1943; Meyerhof, 1951; De Beer, 1965a; and Vesic,
1973). It is realized, however, that the bearing capacity factor N, of footings on
sand decreases with footing size, partly due to the fact that the internal friction angle
of soils decreases with stress level (De Beer, 1965a; Kutter et al, 1988; and Lau,
1988). Therefore, bearing capacity tests modelling large-scale foundations become very

in engineering practice. Centri ique is i to be an efficient

method for ing largs le foundations in the y under well
test conditions. In the past, this technique has been widely used for bearing capacity
studies (Kimura et al, 1985; Pu and Ko, 1988; and Bakir and Gainier, 1994). The
work of some researchers is briefly introduced below.

Aiban and Znidarcic (1991):

In this work, 30g centrifuge tests were carried on a dense silica sand (/p=88%,
dso=0.18 mm, C,=1.7) to examine the effect of load eccentricity and inclination and
initial embedment of footing under plane strain conditions. Sand was glued to the
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bottom to simulate rough base conditions. Grooves in the footing were made so that
rotation of the footing is possible. The sand was pluviated using a hopper from a
height of about 760 mm. It was observed that under vertical central loading, 2 major
sliding wedge was formed and the failure surfaces were not symmetrical in both sides.
Increase in load icity or inclinati both the width and depth of the

failure zone.
The effect of initial embedment was examined by the tests. For obtaining :V; and

N,, it is important to correct for settlement at peak load using a normalized form

L —D%N, +1n, (413)

where B is footing width, Dy is depth and s 1 The
test results are in good agreement with the theoretical values of Vesic (1975), Meyerhof
(1963) and Hansen (1970), with the best agreement with Meyerhof’s results.

Under eccentric loading, tests were conducted with e/B values of 1/12, 1/6 and 1/4.
The results indicate that the effective width method does not represent the behaviour
of the footing. A better agreement is achieved using the Meyerhof’s reduction factor
method. The factor which fits the results is expressed as

Re=1-(e/B)* (4.14)

The results also indicate that assuming a linear distribution of pressure is a good
approximation for footings under eccentric loading.

Bakir and Garnier (1994):
Sand density is the most important factor affecting footing test results. Therefore,

an ive study of the h ity of pluvi. samples using an automatic raining
hopper was performed. In addition, handling of sand may cause a decrease of ¢; care
must be taken in re-using the same material in successive samples.
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For dense sand, the peak load is the ultimate bearing capacity corresponding to a
settlement of s,; s,/B increases with N,. The link between the loading device and the
footing must be rigorously controlled, especially when the test results are compared
with numerical calculations. To allow the footing to move horizontally and rotate freely
so as to avoid moment and eccentricity of the load, two ball links were used. one was

on the footing and the other was on the top of the loading rod.

Corte et al. (1988):

Three laboratories were involved in a test program to evaluate the variability of
centrifuge test results. The reference tests were axially loaded circular shallow footings
on a saturated silica sand (dso=0.17 mm, C,=1.47); the footing with diameter of 56.6
mm was tested at 28.2g when Ip=86%. A thin layer of sand was glued onto the base
so that the base was rough. The loading was so slow that no excess pore pressure was
generated. It is found that loading rate did not have a large effect on results. The main

cause of the resulting scatter appears to be the i ions in the layering

Specimen preparation and density control are very important. The influence of other
factors, such as footing size, loading rate and proximity of boundaries, may be masked
by a small difference in density. CPT tests appear highly desirable to assess the model

state.

Gainier and Canepa (1991):

For the i i sand, 24 ifuge tests at 14.5g of shallow foun-
dations 50 mm square were performed, up to an embedment depth of D;=2B. Loads
were applied by shifting a mass. There was a ball joint at the top of the footing for
loading. When 0<D;/B<0.5, there is a large increase in bearing capacity with Dy,
followed by a slower increase up to Dy/B=2. The effect of lateral friction of embedded
foundations was investigated when Dy/B=2. The tip bearing capacity and the lateral
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friction were It is d that the increase of total bearing

capacity in the case of rough footings is due to the lateral friction.

James and Shi (1988):

Centrifuge tests were performed on a dry coarse sand to study the behaviour of
spud-can type footings under vertical, horizontal and moment loads. The footing with
a small cone tip was 700mm in diameter. A horizontal load was applied above the
footing surface at a given height. The sand was poured from a hopper. The sample
density indixes (Ip) were 95.4% and 46.2%. The loading system consisted of one main
Jjack for vertical load and two sub-jacks for horizontal load. The tests were conducted at
60 g and were stress controlled. By means of yield locus, the influence of horizontal load

on the vertical bearing capacity may be ibed by a simple

Kimura et al. (1985):
The work presents the research of Tokyo Institute of Technology Soil Mechanics
group on shallow foundations in dense sand. Tests were conducted to explain De Beer's

scale effect and to investigate the effects of base soil

and soil slopes. Radiographs were used to detect the slip surfaces. Progressive failure
is associated with wider footings, which is the main scale effect. A smooth footing
yielded two symmetrical wedges and smaller bearing capacity. A simple expression
for predicting the embedment effect is deduced. The results indicate that the bear-
ing capacity was virtually not affected by particle sizes in these three groups of test
conditions.

For De Beer’s scale effect, tests were performed for rough footings with widths (B)
of 20, 30 and 40mm, depth (Dy) of 0, 0.5B and 1.0B and accelerations of 1, 10, 20 and
40g. The bearing capacity factor is defined by

= _Gmes
L (4.15)
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and a parameter

8= L (4.16)
where gmar and By denote the bearing capacity and width in prototype scale, E, is
the Young’s modulus of the parent rock of the sand (De Beer, 1965a). Test results
show that N,, decreases with 3 and that De Beer’s scale effect becomes less marked
with a decrease of Ip. The mechanism of the scale effect can be explained by the
observed shear strain distribution at the four stages of the footing settlement. For
smaller footings, the shear strain along the slip surface at failure is smaller.

Meyerhof (1951) extended the two-wedge failure mechanism of Hill (1950) and sug-
gested that the bearing capacity of a smooth footing be one half that of a rough
footing. Test results of this study confirm that smooth footing does yield two sym-
metrical wedges and yield smaller bearing capacity. However the difference becomes

smaller as width increases.

Okamura et al. (1997):

Centrifuge tests using a circular footing and rectangular footings with various aspect
ratio (L/B) values from 1.0 to 7.5 were conducted on a dense sand with relative density
of 85%. The acceleration levels were from 15 to 100 gravities, resulting in prototype
footing dimensions of up to 3.0 m. The results show that the normalized bearing
capacity decreases with footing size but increases with aspect ratio. It was found
that the shape factor, s,, of rectangular footings increases with both aspect ratio and
footing width. The finite element analysis carried out assuming elasto-perfect plasticity
indicates that the soil friction angle (¢) from triaxial test is valid for calculating the
bearing capacity of circular footings.

Oveson (1975):
The tests of footings on sands were done at University of Florida. The centrifuge
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had a radius of 1m and could hold a soil mass of 28 kg and produce an acceleration of
85g. The load was applied by mercury fed into a load container. The diameters of the
circular footings were 1.57cm, 2.47cm and 4.12cm while N values were 79. 51 and 30
respectively. The results of this study as well as of Mikasa and Takada (1973) indicate
that (1) A footing on sand with length scale 1/NV, and subjected to acceleration Nyg
yields the same bearing capacity as a footing on sand with length scale 1/N, and
subjected to acceleration Nyg, at least for 1 < Ny/N, < 3; (2) The ¢ value is not a

constant, it decreases with increasing stress level.

Pu and Ko (1988):

These tests were to investigate the influence of footing size, shape and depth
and sand density on bearing capacity. There were three aluminum footings: square
(2.54x2.54 cm), strip (2.54x15.24 cm) and rectangular (2.54x7.62 cm). The sand had
parameters as: dsp of 0.39 mm, C, of 1.68, Ip of 41 to 92% and ¢ of 33.2 to 38.5°.

For the strip footing on the surface of dense sand, the failure modes were gen-
eral shear at 25g, local shear at 50g and punching shear at 75g. For the dense sand
(Ip=92%) at 25g, a surface strip footing failed in general shear while the square and
the rectangular footings failed in local shear or punching. The bearing capacity is
proportional to the depth. The summary of the influence of sand density, acceleration
and depth on failure mode indicates that the credibility of small model tests at 1g

conditions becomes questionable.

Tan (1990):

Conical and spud model footings of 28.3 mm in diameter were tested on sand
at an acceleration of 56.6 gravities to investigate the effect of footing roughness and
cone angle on bearing capacity. The test results indicate that the increase in footing
roughness is to increase the bearing capacity, especially when the footing roughness
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becomes greater. Within a particular value of cone angle between (25° to 45°). the
increase of cone angle will decrease the bearing capacity of semi-rough footings: this
effect is not significant for rough footings. Further increase in cone angle beyond this
particular value tends to increase the bearing capacity for both semi-rough and rough

footings.
Ueno et al. (1994):
The ani ic initial stress condition is usually by K,. In the tests.

the centrifuge radius was 1.18 m. The dry sand was pluviated from a height of 0.9
m. The initial density index was about 81%. The steel circular footing was 30 mm in
diameter and 40 mm in thickness. The footing was solidly fixed to the jack driven by a
motor. The settlement of sand surface was measured to obtain void ratio change. The
test results show that a noticeable void ratio change due to centrifuge acceleration was

observed. It is observed that the bearing capacity increases with increasing K,.

4.2 Preparation of Sand Samples

4.2.1 Introduction

Sand samples for centrifuge tests can be prepared by tamping or raining (pluvia-
tion). The tamping technique often results in nonuniform density sample (Corte et al.,
1988; and Phillips, 1995). High quality samples are essential to obtain reliable test re-
sults of bearing capacity of footings on sands, because a slight variation in sand density
will cause a significant change in the bearing capacity (Corte et al., 1988). Therefore,
the raining method was used for this work in preparation of dry sand samples for cen-
trifuge modelling. This techni was also d for the small sample preparation

for the triaxial and lateral stress tests introduced in Chapter 3.
Almost half a century ago Kolb ki (1948a, b) i duced the raining method

for preparing sand samples. Since then this technique has been widely used. A review of
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the development of this method has been presented by Eid (1987). The raining method
not only provides reasonably homogeneous samples with desired density but also closely
simulates the fabric of in situ soils formed by sedimentation. Other advantages of the
raining method are its simplicity, its flexibility and the fact that it can be employed
for making large or small samples with equal effectiveness. The principle of the raining
technique is schematically shown in Figure 4.4.

The basic equipment consists of a sand container above the shutter, a diffuser and
a sand collector. The shutter has distributed holes and the diffuser usually consists of
two or more sieves. The sand falling through the shutter is dispersed by the diffuser
and is evenly distributed on the surface of the sand in the sand collector. As discussed
by Rad and Tumay (1987), factors affecting the density of rained sand include depo-
sition intensity, falling height, diffuser sieve size and the shutter-hole pattern. The
deposition intensity, defined as the weight of sand rained per unit area per unit time, is
a dominating factor. The influence of falling height, the diffuser sieve size and shutter-
hole pattern is limited under certain conditions selected. The influence of the distance
between the diffuser sieves, the distance between the shutter and the diffuser, and the
sand height in the top container on sand density is relatively negligible.

The sand rainers described by Eid (1987) and Rad and Tumay (1987) were used for
relative small sample preparation; the sand was rained over the whole area of the sand
collector in the same time. In this study, as the tub for holding the sand samples was
as large as 1180 mm in length and 940 mm in width, constructing a rainer covering the
whole tub was difficult. The raining technique in this work was a modified one from
those by the i above.

4.2.2 Equipment

As shown by the photograph in Figure 4.5, the equipment for preparing the cen-
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sieves

Figure 4.4: Principle of raining technique
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trifuge sand model by raining consisted of a sand hopper, a plastic bucket with holes on
the bottom and three sieves attached to the bottom of the bucket. The hopper could
hold sand of up to 0.11 m®. The bottom of the plastic bucket is used as a shutter. Dif-
ferent patterns of holes of the shutter were tried in tests in order to obtain designated
sand density of about 90%. The selected pattern of the holes is shown in Figure 4.6.
There were 19 holes distributed on the shutter. The diameter of the holes was 4.2 mm.
The shutter porosity, defined as the ratio of the total area of the holes to the area of
raining, was 0.84%.

The three sieves under the shutter were used as a diffuser. In a downward sequence.
they were No. 10, No. 14 and No. 18 standard sieves with apertures of 2.00, 1.40 and
1.00 mm respectively. The diameter of the sieves was 200 mm. The height between the
shutter and the top sieve was 100 mm and the distance between two adjacent sieves was
50 mm. To achieve the best diffusing result, each two adjacent sieves were turned 45°
horizontally with each other as suggested by Eid (1987) and Rad and Tumay (1987).

The shutter and the sieves were positioned horizontally parallel during sand raining.
4.2.3 Preparing sand samples

As indicated by Rad and Tumay (1987), the density of rained sand decreases sig-

ificantly with i ds ion i ity. For the selected shutter-hole pattern in
Figure 4.6, the rate of sand falling through shutter was 1.95 kilograms per minute. As
the diameter of the sieves was 200 mm, the deposition intensity of the sand was about
0.103 g/cm?® per second. At this deposition intensity, the density of sand increased
with falling height between the bottom sieve and the surface of the rained sand, as
shown in Figure 4.7. The data in the figure were obtained when a circular container
250 in diameter and 310 mm in height and a density cup 100 cm® in volume were used
as sand collectors. It can be seen that when the falling height is small the sand density
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Figure 4.5: Equipment for raining sand
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Figure 4.6: Shutter-hole pattern for raining sand
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Figure 4.7: Sand density versus falling height

increases with falling height. When the falling height is greater than 30 cm, the density
index reaches a constant value of approximately 90%. This tendency is in accordance
with the observation of Rad and Tumay (1987). Accordingly, the falling height was
kept at a constant value of 50 cm to obtain dense sand samples in the containers for
centrifuge tests with a density index of about 90%.

In preparing the soil models, a container (tub) was put on a pallet cart. The cart
could be moved on the ground horizontally in any direction. It can also be used to
lift and lower the soil tub vertically in a range of about 11 cm. During raining, the
rainer (hopper, shutter and diffuser) was fixed in place. The falling height was kept
about 50 cm. By moving the tub on the pallet cart horizontally, sand was rained into
the tub layer by layer of which the thickness was about 10 mm each. When the sand
level in the tub was arising, the tub was being lowered using the pallet cart to keep
the constant falling height of 50 cm. A thin string hung from the side of the diffuser to
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about 20 mm from the sand surface in the tub was used to control the falling height.

‘When the sand rained in tub was about 20 mm thicker than required, the raining of
sand was stopped. The extra sand was removed by a vacuum cleaner. Vacuuming was
applied to the sand through a small tube about 12 mm in diameter guided by two cross
beams positioned on the tub. The vacuum tube was flattened at the end in order that
the sand surface was smooth after the vacuuming. The thickness of the sand samples
was from 250 mm to 300 mm.

For a sample of about 430 kilograms in weight, it usually took 4 hours raining the

sand. The total time for ing a sample, i i i ion, sand

raining and sample surface treatment by vacuuming was 7 to 9 hours.
4.2.4 Verification of sample quality

The density of the samples rained in the tubs was estimated by weighing the sand
and by measuring the volume of the samples. The density index of the dry sand
samples ranged from 88% to 91%, while the average density index was 90%. It has
been evaluated that the error caused in weighing the sand and calculating the volume
of the samples for the density estimation was less than 1%. This means that the raining

devel for this i igation is effective and reliable. The repeatability of

obtaining uniform and dense sand samples is very good.

The quality of the sand samples was also verified by cone penetration testing (CPT)
during centrifuge flight. Typical cone tip resistances in centrifuge at 40 g and 100 g
are shown in Figure 4.8. CPT is a technique for the of soil ies by

pushing an instrumented cone into soils at a constant rate. The main applications of
CPT are to determine the soil profile and identify soils and to evaluate soil engineering
parameters. In some cases, CPTs may be accompanied by borings to achieve more reli-
able test results. The CPT can provide i of ground
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Figure 4.8: Cone tip resistance of sand in centrifuge at 40 and 100 gravities



it also causes disturbance of soil layers associated with boring and sampling. The
CPT technique has been widely used in research and engineering practice. Because
of the complex changes of stress, strain and pore pressure during the cone penetra-
tion test, it is difficult to make a comprehensive theoretical analysis. In engineering
practice, the analysis of CPT is highly empirical (Meigh, 1987).

CPT data can be used for estimation of the relative density of normally consol-
idated sand (Jamiolkowski, 1985) and i sand (Sch 1975).
sand strength (Durgunoglu and Mitchell, 1975) and other parameters (Meigh. 1987).

Also, extensive investigations have been carried out for determining the properties of
clays using CPT, including undrained shear strength of normally consolidated clays
(Lunne and Kleven, 1981) and i clays (Marsland and Qi

1982), and deformability of clays (Meigh, 1987). In addition, CPT has also been used

for the estimation of pile bearing capacity (Meigh, 1987), for the control of ground

(Juilie and Sh , 1983) and for the determination of liquefaction
potential of sand layers (Zhou, 1980). Centrifuge cone penetration tests have been
conducted by a number of researchers (Corte et al., 1988, 1991; and Lin, 1995). The
CPT technique is an effective way to measure the strength of sand in centrifuge flight.
Ferguson and Ko (1985) used centrifuge CPT data to determine the internal friction
angle of sand.

The cone ion tests during ifuge flight for this study were conducted
using a cone devel by C-CORE (Cunard, 1993). This

apparatus is capable of moving at a constant speed to different positions along a fixed
direction through a horizontal driving system. It is fixed on the top of the tub at the
required position before the centrifuge testing is started. The penetrometer used has a
cross-sectional area of 1.0 cm? with an apex angle of 60°. It measures tip resistance, g,

through strain gauges mounted behind the cone tip. During centrifuge flight, the cone

69



penetrometer was pushed vertically into the sand at a rate of 3 mm per second and the
response of the strain gauges was recorded by the data acquisition system. Movement
of the cone during the test can be observed through the camera mounted inside the

swinging basket.
In this study, the CPT ique is used to ine the quality (uniformity) of

sand samples prepared by the raining method. Cone penetration tests in centrifuge
from 10 g to 160 g were conducted. For each sand sample, two cone tests were conducted
at different locations. It has been observed that the tip resistances of the two tests for
each sample are virtually identical. The cone penetration data, as typically shown in
Figure 4.8 indicate that the density of the samples were very uniform.

4.3 Test Program and Procedure
4.3.1 Centrifuge facilities

The footing tests for this study were undertaken in C-CORE Centrifuge Centre

located at ial University of The centre houses an Acutronic
680-2 centrifuge made in France. The centrifuge can carry masses of up to 22,000
kilograms to 100 gravities or 650 kilograms to 200 gravities. The maximum centrifugal
rotational speed is 189 r.p.m. while the maximum acceleration at an effective radius

of 5.0 m is 200 gravities. The data acquisition system can provide 78 channels for data

of electrical signals from during tests. Figure 4.9 shows a view
of the C-CORE i ifuge. The ifications of the i are listed
in Table 4.3.

4.3.2 Test program

The tests were for footings on the surface of dense sand (/p=90%). Most of the
centrifuge tests were conducted using a set of model ring footings with a constant area
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Figure 4.9: C-CORE geotechnical centrifuge
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Table 4.3: C-CORE centrifuge specification

Machine Acutronic 680-2
Platform radius 55m
Nominal radius 50m
A range 10-200 g
A accuracy 0.5%
speed 189 rpm
Payload at 100 g 22000 kg
Payload at 200 g 650 kg
Platform width llm
Platform depth 14m
Container height 1lm
usable height 1.5 m
78
Fluid joints 6
Installed power 800 kVA
Maximum imbalance 100 kN




of 15 cm?; when the ring radii ratio were 0. 0.2, 0.35, 0.5, 0.7, 0.8 and 0.9. the outside
diameters of the model rings were 43.7, 44.6, 46.7, 50.5, 61.2, 72.8 and 100.3 mm
respectively. Table 4.4 shows the tests of ring (and circular) footings conducted under
axial load conditions. Test No. Al to A23 were for the examination of variation of
bearing capacity of constant area footings with ring radii ratio at different acceleration
levels (namely 10, 40, 100 and 160 gravities). Test No. A24 to No. A27 were for
the study of modelling of models. Test No. A28 to A30, together with Al, A8, A13.
Al8, A24 and A25 were for the investigation of the effect of footing size on bearing
capacity. In Table 4.4, A, is the area of the model footings, D, is the outside diameter
of the model footings, n is the ring radii ratio and D, represents the outside diameter
of the prototype footings. It can be seen that the maximum outside diameters of the
prototype footings modelled are 7.0, 7.1, 7.5, 8.1, 9.8 and 11.6 m when the ring radii
ratio of the constant area footings are 0, 0.2, 0.35, 0.5, 0.7 and 0.8 respectively. The
bearing capacity of each footing obtained from centrifuge test is also given on the table.

In addition to the axially loaded footing tests aforementioned, 15 tests of footings
under eccentric loading listed in Table 4.5 were carried out at an acceleration level
of 100 g, numbered E1 to E15. The model footings also had a constant area of 15
cm?. The tests were divided into 5 groups with ring radii ratio of 0, 0.35, 0.5, 0.7
and 0.9 respectively. The eccentricity of loading, e, represents the distance between
the centre of a footing and the point where the concentrated vertical load was applied.
The loading eccentricity ratio is defined as a ratio of the eccentricity (e) to the outside

diameter of a ring footing (D), written as

re =% (417)

For different ring footings, tests were conducted at eccentricity ratios of 0, 0.075, 0.15,
0.25 and 0.375 to investigate the effect on bearing capacity.



Table 4.4: Tests of ring footings under axial loading

No. | Am (cm?) | D (mm) | n | Gravity (g) | D, (m) | gu (kPa)
Al 15 43.7 0 10 0.437 820
A2 46 0.2 0.446 930
A3 46.7 0.35 0.467 1000
A4 50.5 0.3 0.505 820
A5 61.2 0.7 0.612 650
A6 72.8 0.8 0.728 570
A7 100.3 0.9 1.003 470
A8 15 437 0 40 1.748 2260
A9 46.7 0.35 1.868 2650
Al0 50.5 0.5 2.020 2350
All 61.2 0.7 2.448 1740
Al2 100.3 0.9 4.006 1170
Al13 15 437 0 100 4.37 4250
Al4 46.7 035 4.67 4700
Al5 50.3 0.5 5.05 4190
Al6 61.2 0.7 6.12 3320
Al7 100.3 0.9 10.03 2160
Al18 15 43.7 0 160 6.99 6150
Al19 46 0.2 7.14 6710
A20 46.7 0.35 747 6890
A21 50.5 03 8.08 5780
A22 61.2 0.7 9.79 4350
A23 72.8 0.8 11.6 3660
A24| 4418 75.0 0 20 1.50 1960
A25| 11.04 375 0 40 1.50 1920
A2 | 3314 75.0 0.5 20 1.50 1340
A27 8.28 37.5 0.5 40 1.50 1310
A28 15 43.7 0 1 0.0437 160
A29| 4418 75.0 0 1 0.075 220
A30 3.14 20.0 0 10 0.200 480
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4.3.3 Test and pr e

The equipment for the footing tests in centrifuge includes soil containers, load cells
for measuring the load applied on the footing, load actuator and the supporting parts.
and for ing footing di and the ion of soil during

testing. The test setup is shown by the photograph on Figure 4.10.

Two tubs were used in the centrifuge tests as soil containers: an aluminum rectan-
gular tub and a steel circular tub. The rectangular tub was 1180 mm in length, 940
mm in width and 400 mm in depth. The circular tub had a diameter of 900 mm and
a depth of 500 mm. The tubs were stiff enough that the soil samples contained were
considered at K, conditions.

The vertical load on the footing was applied by a 10 kN actuator. Two load cells
made of 6061-T6 aluminum were manufactured and used. Their load capacities were
8 kN and 15 kN. The smaller load cell was used for tests at low gravities while the
other was used at high gravities. The model footings listed in Table 4.4 and 4.5 were
also made of aluminum. The footings were vertically loaded at a rate of 0.1 mm per
second. A steel ball was positioned on the footing to transfer load from the load cell
so that the footing could rotate during loading. Three linear displacement transducers
(LDTs) were used at three points on the footing to measure the vertical and rotational
displacements of the footing. In addition, two other LDTs were used to monitor the
settlement of the surface of the sand samples during centrifuge flight and testing. For
each tub of sand sample, a maximum number of 9 footing tests could be carried out.
In order to reduce the influence of repeated centrifuge flights on tests results, each
sample was cyclically accelerated between 10 g and the required test acceleration 3
times before the first footing test was conducted. During test, signals from the load
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Table 4.5: Tests of eccentrically loaded ring footings at 100 gravities

Test No. | A (cm?) | Dn(mm) | n | e/Dm | Dy (m) | gu (kPa)
A13 15 437 o |o 437 | 4250
El 0.075 3250
E2 0.15 2600
E3 0.25 2250
E4 0375 1690
Al4 15 467 | 035(0 467 | 4700
E5 0.075 3760
E6 0.375 1820
Als 15 505 | 05 [0 505 | 4190
E7 0.075 3100
E8 0.15 2450
E9 0.375 1610
Al6 15 612 | 0.7 |0 612 | 3320
EI10 0.15 2220
Ell 0.375 1330
A7 15 1003 | 09 |0 100 | 2160
E12 0.075 1650
E13 0.15 1430
El4 0.25 1130
El5 0.375 940

%




Figure 4.10: Equipment for footing tests in centrifuge



cell and the LDTs were sampled at a frequency of 5 Hz by a personal computer data
acquisition system.
4.3.4 Model test verification

In order to check the validity of the centrifuge modelling of footings, the principle

of modeling of models, as i duced i is employed. To model the models,

two groups of tests have been carried out: (a) the ring radii ratio (n) was equal to
zero; and (b) n was 0.5. There are two tests in each group; the first test was conducted
when the centrifuge acceleration, a, was 20g and the footing outside diameter, D, was
75.0mm, while the second test was carried out when a was 40g and D was 37.5mm.
The relationships between the loading and the relative settlement of the footings are
shown in Figure 4.11, where s represents the vertical settlement of the footings. In
Figure 4.11(a), the bearing capacities of the two circular footings (n=0) are virtually
identical, the difference between the relative settlements is also very small; the relative
settlements are 10 to 15 percent when the vertical load s reach the maximum values.
In Figure 4.11(b), the peak vertical loads (bearing capacities) of the two ring footings
with a ring radii ratio (n) of 0.5 are approximately the same. Before the peak loads,
the relative settlements of the two footings are very close. After the peak loads, the
difference between the relative settlements becomes greater, while the behavior of the
footings after the peak loads is considered less important.

The results in Figure 4.11 indicate the validity of centrifuge modeling of the bearing
capacity of the circular and ring footings. The relative settlements of the footings can
also be well modeled, especially before the peak loads.
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Figure 4.11: Modelling of model footings




4.4 Effect of Footing Size

4.4.1 Load, settlement and failure mode

There are three failure modes of soil supporting foundations: general shear failure.
local shear failure and punching shear failure (Vesic, 1973). In the case of general shear
failure, there usually exists a continuous failure surface from one edge of the footing
to the ground surface. The ultimate bearing capacity (¢.) is the peak load applied.
In contrast, the punching shear failure is characterized by a failure pattern that is not
obvious. The f i due to the ion of the soil i diately
beneath the i The ion i as the loading is increased and

there is no peak load. Local shear failure is a transitional mode between general failure
and punching failure. There is a visible bulging of the soil adjacent to the foundation.
The failure surfaces usually end in the soil. The failure mode of a foundation depends
upon soil compressibility, foundation size and depth. By increasing the dimension of
a footing on dense sand, the failure mode tends to move from general shear failure to
punching shear failure.

Figure 4.12 shows the normalized pressure with the relative settlement of 2 model
footing 43.7 mm in diameter tested at accelerations of 1, 10, 40 and 160g, corresponding
to prototype footing diameters of 0.044, 0.44, 1.75 and 7.0 m respectively. In the figure,
s represents the settlement of the footings, and the loading ratio, R,, is given by

= 7’,5 (4.18)
in which p is the averaged pressure applied, 7 is the unit weight of soil and D represents
the diameter of circular footings.

It is obvious that the failure mode of the 0.044 m footing is general shear; the load
reaches the maximum at a relative settlement of about 7%. It was observed that the
failure surface of approximately 18 cm in diameter in the centrifuge model extended
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Figure 4.12: Normalized pressure (R,) versus relative settlement (s/D) of circular
footings

to the surface of the soil. For the 0.44 m footing, the load reaches the peak value at
a relative settlement of 10%; in the centrifuge model, there was a visible but not very
obvious failure surface of about 20 cm in diameter around the footing at the top of
the soil. The failure mode of this footing is also general shear failure. For the 1.75 m
footing, the load becomes relatively constant after a relative settlement of about 12%.
A failure surface was not observed in the centrifuge model, but an obvious bulging of
soil around the footing was seen. The failure mode in this case is approaching local
shear failure. For the 7.0 m footing, the loads increase with settlement; there are no
peak loads; the failure mode is local shear failure. There was soil heave in the centrifuge
model but the range was difficult to identify. The increase of footing diameter leads
the failure pattern to change from general shear mode to local shear mode.

It is seen from Figure 4.12 that when the footing diameters are 0.044, 0.44, 1.75 and
7.0 m, the normalized footing pressures (R,) at failure are approximately 240, 120, 80
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and 60 respectively, decreasing with footing size. The slope of the curves before failure
decreases with footing dimension. This means that the relative compressibility of soil is
increased by the increase of footing size. It can also be seen that the relative settlement
(s/D) at which the failure load is reached increases with footing size. When D changes
from 0.044 to 7.0 m, the relative settlement at failure load is increased from about 7
to 15%.

Comparison of the footing test results in Figure 4.12 and the data of triaxial tests
of the same sand in Figure 3.5 will provide a further understanding of the failure mode
feature. In the triaxial tests, the sand dilated significantly during shearing at low stress
level. At high confining pressure of 2500kPa, the dilation phenomenon disappeared.
Both the relative compressibility of the sand and the strain at peak load increase with
stress level. For the small footing, since the stress level in the soil is low, the movement
and heave of soil around the footing is caused by both the dilation of soil during
shearing and the expulsion of soil due to the penetration of the footing. Because of the
high dilatancy and the low strain at failure of dense sand at low stress, the strength
mobilization at points A, B and C in Figure 4.13 along the failure surface of a small
footing is more uniform and the footing fails in general failure mode. The increase of
footing size results in the increase of stress level in the soil. The dilation of the soil
becomes smaller and the strain at failure becomes higher. To mobilize the strength
along the failure surface in the soil, larger displacement of the footing is required and
failure mode becomes less general. It should be emphasized that the volume change of
soil under footings must also be an important factor affecting the failure mode.

4.4.2 Bearing capacity of circular footings

The well known Terzaghi’s equation, accepted widely as a basic formula for the
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Figure 4.13: Failure pattern of foundation
bearing capacity of strip foundations, is given by
4= cNe+-qNg + 29BN, (4.19)
where g, is the ultimate bearing capacity, c is soil cohesion, g is overburden pressure,
7 is soil unit weight, B is the width of foundations, and N, N, and N, are bearing
capacity factors. In the literature there are a variety of bearing capacity theories. While
the bearing capacity factors N and N, proposed by Prandtl (1921) and Reissner (1924)
are widely accepted, the variation in N, is substantial (Terzaghi, 1943; Caquot and
Kerisel, 1953; Meyerhof, 1963; and Hansen, 1970). For strip foundations resting on the
surface of cohesionless soil, Equation (4.19) becomes
1

%= 37BNy (4.20)
and for circular foundations, the bearing capacity is expressed by (Terzaghi, 1943)

9y =0.37DN, (4.21)
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where D is the diameter of a circular foundation. In using the equations mentioned
above it is usually assumed that the value of /V, is constant and independent of footing
size. For a constant /V,, the bearing capacity expressed by Equations (4.19) to (4.21)

linearly with fc

Experimental data collected by De Beer (1965a), however, show that the bearing

capacity factor N with ion size. Centrifuge test results (Clark, 1998:
Zhu et al., 1996; and Kusakabe et al., 1991) indicate that the bearing capacity increases
in proportion with foundation size when plotted on a log-log scale diagram. This
suggests that N, decreases linearly with footing size on a double-log scale diagram.
Studies of the effect of footing size by De Beer (1965a) and Vesic (1965) suggest that
the average shear strength mobilization along the failure surface of soil supporting a
shallow foundation decreases with footing size. The decrease of the mobilized strength
is due to the curvature of Mohr’s strength envelope (Meyerhof, 1950; and De Beer,
1965a) and the progressive rupture along the failure surface (De Beer, 1965b: and
Muhs, 1965). The relative compressibility of soils increases with footing size.

To illustrate the effect of footing size on bearing capacity, test results of 9 circular
footings (n=0) listed in Table 4.4 are analyzed herein. For the footings tested, the
prototype diameters are 0.044, 0.075, 0.20, 0.44, 1.50, 1.50, 1.75, 4.37 and 7.0 m;
the bearing capacities are 160, 220, 480, 820, 1920, 1960, 2260, 4250 and 6150 kPa
accordingly. The relationship between the bearing capacity and footing diameter is
shown in Figure 4.14 and can be expressed by the equation of

qu = 1480D°7™ (4.22)

in which g, is in kPa and D is in meters. The figure also presents the centrifuge test
data of Kusakabe et al. (1991). Their values are smaller than those of the present
study. This may be due to the fact that their experiments were carried out in sand at
a lower density index of 82%.
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Using Equation (4.21) and (4.22) and the test data in Figure 4.14, the calculated
values of bearing capacity factor N, of the sand with a unit weight of y = 15.4 kN/m®
are given in Figure 4.15. The relationship between N, and D is

N, =320D7°% (4.23)

in which D is in meter. It can be seen that the value of N, decreases significantly with
D, due mainly to the decrease of soil friction angle (¢) with increasing stress level and
the phenomenon of progressive failure of soil.

In Figure 3.6, both the peak friction angle (¢ms=) and the critical state friction angle
(¢bes) of the sand from triaxial shearing decrease with stress level. Their relationships
with the mean stress

g %(v, w3) (4.24)
are given by Equations (3.22) and (3.23), respectively.

With the increase of footing size, the stress level in the soil supporting the footing
increases. The stress level increase leads to a decrease of soil friction angle and the
bearing capacity factor V, will be reduced. In order to take into account the curvature
of the Mohr's envelope of failure, Meyerhof (1950) and De Beer (1965a) suggest that
the value of ¢ corresponding to the mean normal stress along the failure surface should
be used. For surface footings, Meyerhof (1950) suggests

=%
o= (4.25)

where oy, is the mean normal stress along the failure surface. Using the above equation
and the relationship among om, oy and o3 in the diagram of Mohr's envelope, the
average value of s along the failure surface can be given roughly by

. %(a, g ‘h(l_*’l“ﬂ (4.26)

where ¢ is the average mobilized friction angle.
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Table 4.6: Effect of footing size on values of average mobilized friction angle (¢)

D (m) 0.1 0.2 0.5 1.0 2.0 5.0 10.0

gu (kPa) 282 465 899 | 1480 | 2440 | 4720 | 7770

Omaz (degree) | 47.5 | 46.5 | 45.1 | 440 | 429 | 415 | 405

Ocs (degree) 404 | 395 | 383 | 374 | 364 | 352 | 343

A rough quantitative evaluation of the effect of footing size on bearing capacity is
shown in Table 4.6. When the diameter of a footing is given, the bearing capacity
gy can be calculated by Equation (4.22). Then using Equation (3.22) and (3.23) for
friction angles, together with Equation (4.26) for estimating the mean stress level along
the failure surface, the average ¢mar and ¢, corresponding to the mean stress level
can be obtained, as in Table 4.6. When the footing diameter increases from 0.1 m to
10.0 m, the value of the mobilized peak friction angle (@me:) decreases from 47.5° to
40.5° while the critical state friction angle (¢.,) decreases from 40.4° to 34.3°. This is
due to the increase of stress level in the soil. For a log-cycle increase of footing size,
the friction angle of the sand is reduced by about 3 to 3.5°. This reduction of ¢ will
lead to a decrease of N, by about 50%, if the theories for NV, as listed in Table 2.1 are
adopted. Therefore, the selection of the value of ¢ according to footing size (or stress
level) is critical to evaluate the bearing capacity in practice.

In addition to stress level in soil, the phenomenon of progressive failure should also
significantly affect the bearing capacity. In the classic bearing theories (Terzaghi, 1943;
Meyerhof, 1950; and Sokolovski, 1960), in which soil is assumed to be rigid-perfectly
plastic, the mobilization of shear strength along the failure surface is uniform. The soil
elements at points A, B, and C (Figure 4.13) fail si when the
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collapses. In reality, because soil is elasto-plastic. the failure of soil along the failure
surface is a progressive process (Muhs, 1965; and De Beer, 1965b). The failure surface
begins at point A and develops gradually to point C. The mobilization of shear strength
is not uniform. When the foundation fails, the soil at C is just mobilized to its peak
strength while the strength of the soil at A may be as low as the critical state strength.
The average strength mobilization should be between the peak and the critical state
values. The influence of progressive failure on the bearing capacity depends on the
deformation before failure and will be more prominent when the settlement is large.
When the size of a footing is given and the mean stress level has been estimated, the
difference between the values of bearing capacity from @me- and é., will be very large.

It should be mentioned herein that the values of ¢mer and @, in Table 4.6 are
only rough estimations. The purpose of the quantitative analysis above is intended
to provide a clearer understanding of the influence of footing size and stress level on
bearing capacity. In engineering practice, the engineer must be very careful to select
soil strength parameter ¢. The error caused by improper selection of ¢ in estimating
the bearing capacity may be very serious.

It is difficult to conduct bearing capacity tests of very large foundations. As seen in
Figure 4.14, the bearing capacity increases with foundation size. Conducting bearing
capacity tests for very large foundations is also very costly. To the best knowledge of
the author, only a few test results of ultimate bearing capacity of foundations with
dimensions over 7 m are available in the literature. If Equation (4.22) obtained from
the test data in Figure 4.14 is used for very large footings, the roughly estimated
bearing capacities will be 7.8, 12.8, 17.1 and 24.7 MPa when the footing diameters are
10, 20, 30 and 50 m respectively. Therefore, for conducting bearing capacity test of
a foundation with a dimension of over, say, 20 m: (1) It is difficult to apply and/or
react the huge load to cause the foundation to fail, even in a centrifuge at 160g; (2)
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Because of the high pressure in the soil under the foundation. soil particles will be
crushed (Hardin, 1985; and Lade and Yamamuro, 1996) and will behave differently:
(3) As the failure mode tends to move from general shear failure to punching shear
failure with the increase of foundation size, the relative settlement of foundations at
failure increases with foundation size. For very large foundations, the ultimate bearing

capacity may not be a problem; the settlement may control the design.
4.5 Axially Loaded Ring Footings

The geometry of a ring footing (Figure 1.1) can be defined by the outside diameter
(D) and the inside diameter (d), or by the outside diameter and the ring radii ratio (n).
Therefore, the behaviour of the footing depends on the combination of its geometric

parameters D and n and the value of vertical load, Q.
4.5.1 Load and settlement

In order to study the bearing capacity of ring footings, centrifuge tests at accelera-
tions of 10, 40, 100 and 160g were conducted using 7 model rings with a constant area
of 15.0 cm?. The ring radii ratios (n) were 0, 0.2, 0.35, 0.5, 0.7, 0.8 and 0.9, and the
outside diameters of the model footings were 43.7, 44.6, 46.7, 50.5, 61.2, 72.8 and 100.3
mm respectively. For n=0, the prototype diameters (D) of the circular footings were
0.44, 1.75, 4.37 and 7.0 m when the centrifuge accelerations were 10, 40, 100 and 160g
respectively. Figures 4.16 to 4.19 present the relationships between the load and the
settlement of the constant area footings with various n tested at the aforementioned
acceleration levels.

At an acceleration of 10g, each curve in Figure 4.16 has a peak load; all the footings
at various values of n have failed in general shear. The failure load increases when n
changes from 0 to 0.35. After the maximum value at n=0.35, the failure load decreases.
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Figure 4.16: Load versus settlement of ring footings of 15 cm? in area at 10 gravities

It is also seen that the settlement required to reach the failure load decreases with
increasing ring radii ratio. The failure mode becomes more and more general when the
value of n is increased. Those features of the influence of n on the behaviour of load.
settlement and failure mode are also observed at acceleration levels of 40, 100 and 160g
as shown in Figure 4.17 to 4.19.

The failure mode is also affected by the level of acceleration (or footing size). For
the circular footings (n=0), the failure mode of the footing at 10g was general shear;
for the footings at 40, 100 and 160g, the failure mode is considered local shear failure.
For n=0.2, the footing at 10g fails in general shear (there is a peak load) while the
footing at 160g is in local shear failure. When the value of n is from 0.35 to 0.9, all
the footings are in general shear failure mode, regardless of the acceleration level. At
each value of n, the failure mode is more general for a footing at a smaller acceleration
level.
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Figure 4.18: Load versus settlement of ring footings of 15 cm? in area at 100 gravities
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Figure 4.19: Load versus settlement of ring footings of 15 cm? in area at 160 gravities
4.5.2 Bearing capacity with ring radii ratio

The bearing capacity of the ring footings with a constant area of 15 cm? at different
acceleration levels are shown in Figure 4.20. It is observed that the bearing capacity
increases with acceleration level (footing size). At each acceleration level, the bearing
capacity increases with ring radii ratio until n reaches a value of approximately 0.35.
After this point, the bearing capacity decreases with n. It is noted that the bearing
capacity of a ring footing with n=0.9 is about one half of that of a circular footing
with the same area.

The increase of bearing capacity in small n cases is believed to be due to the effect
of soil arching under the center part of a footing. When n is very small, the footing
with the soil in the center region behaves like a solid footing with a size equivalent
to the outside diameter of the ring footing. Hence the bearing capacity is increased.
With the increase of the ring radii ratio, the effect of arching is reduced and finally
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Table 4.7: Bearing capacity ratio of constant area ring footings

Ring radii

ratio, n 0 /02 /03|04 [05]|06)07)08] 09
Bearing capacity

ratio, B, 1.0)1.11]1.15|1.13|1.02 ] 0.90 | 0.77 | 0.64 | 0.52

disappeared when n is increased to a certain extent. Therefore, the bearing capacity
becomes smaller.

The bearing capacity of a ring footing can be represented by a bearing capacity
ratio, By, defined as

B, :_" (4.27)

where g, is the bearing capacity of a ring footing and gy is the bearing capacity of a
circular footing with the same area. For a circular footing (n=0), B,=1.

Values of B, of constant area ring footings plotted against ring radii ratio are
presented in Figure 4.21. They are also listed in Table 4.7 for convenience of use. It

is observed that the variation of B, at different acceleration levels is very small. This

suggests that B, is ind of level (or pi ype size of fc

The bearing capacity ratio has a maximum value of about 1.15 (average) when n is
approximately 0.35. At n=0.9, B, is about 0.52. Using the curve shown in Figure
4.21, the B, value can be estimated according to the n value of a ring footing. The
bearing capacity of a ring footing can thus be calculated using Equation (4.27), once the
bearing capacity of the circular footing with the same area is known. This procedure
for estimating the bearing capacity of ring footings is practical because the bearing
capacity of circular footings can be obtained using generally accepted experimental
data and theories available in the literature.



4.6 Eccentrically Loaded Ring Footings
4.6.1 Background and theory

For a strip footing subjected to a vertical load with an eccentricity of e. when
the pressure distribution is assumed to be linear, the maximum and minimum normal

pressures on the footing (Das, 1990) are in the forms of
=2 (14.%
Prec=F (1 * E) (4.28)

ma=3(-5) m
where B is the footing width, Q is the load applied on a unit length, and e is load
eccentricity.

It is noticed that when e is equal to B/6, pmin becomes zero. When e is greater than
B/6, pmin will be negative. There will be a separation between the footing and the soil
because soil cannot take significant tension. In such a case, the maximum pressure is
calculated from

P 3(?‘?2‘) (4.30)
and ppmyn is assumed to be zero in the area where pm, obtained using Equation (4.29)
is negative.

The bearing capacity of an eccentrically loaded strip footing can be estimated by a
so-called effective width method (Meyerhof, 1953). The effective width of the footing
is

B =B-2 (4.31)
Using B’ instead of B in Equation (2.23), the bearing capacity of the footing can be
obtained (in calculating d., d, and d,,, B should be used). Theoretical and experimental

studies indicate that this method for taking into account load eccentricity is on the



safe side for bearing capacity estimation (Vesic, 1975). However, the effective width
method is widely accepted in practice.
Another way to account for the icity is to use Mey s ion factor

method. The bearing capacity reduction factor (R,) is defined as

R.= ;_" (4.32)

where g, is the averaged bearing capacity of an eccentrically loaded footing, and gy, is
the bearing capacity of the same footing under axial loading. The relationship between
R, and eccentricity (e) can be expressed as

R.=1-(e/B)" (433

where B represents the width of a strip footing or the diameter of a circular footing; m
is a constant having a value of about 0.5. For a strip footing on a dense sand, Aiban
and Znidarcic (1991) obtained m=0.42. It can be deduced that the effective width
method is equivalent to a reduction factor method when the value of R. is equal to
(1-2¢/B). The reduction factor method is more suitable to fit experimental data. It

will be used in the following analysis.
4.6.2 Loading and settlement

When a footing on soil is loaded eccentrically, the footing will develop a vertical
displacement (s) at the loading point and a rotation angle (8), as shown in Figure 4.22.
With the eccentric loading of the footing, the rotation angle is expected to increase.

Figures A.1 to A.20 in Appendix A show the the average vertical loading pressure
and the rotation angle with settlement of eccentrically as well as axially loaded ring
footings with a constant area of 15cm?, tested in centrifuge at 100 gravities. It can be
seen that all the axially loaded footings (e=0) with ring radii ratios (n) of 0, 0.35, 0.5,
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Figure 4.22: D« ion pattern of i loaded footing

0.7 and 0.9 have not rotated during loading; the rotation angles are about zero. The
footings were penetrated into sand without rotation.

For the footings with eccentricity ratios (e/D) of 0.075, 0.15, 0.25 and 0.375, the
rotation angles increase with the penetration of the footings into sand. For most of the
footings, the rate of the increase of rotation angle is increased after the points where the
failure loads are approached. It can be seen that the footing rotation angle at failure
increases slightly with eccentricity. For n=0, the rotation angles are about 6, 7, 7 and
10 degrees when the eccentricity ratios are 0.075, 0.15, 0.25 and 0.375 respectively. The
effect of ring radii ratio on the rotation angle is more significant. The average rotation
angles at failure loads are roughly 8, 6, 3, 2 and 1 degrees for the footings with ring
radii ratios of 0, 0.35, 0.5, 0.7 and 0.9 respectively. When the value of n is greater than
0.5, the rotation angle of eccentrically loaded ring footings at failure is small.

The infl: of icity on the i ip between the average vertical loading
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Figure 4.23: Load and settlement of eccentrically loaded footings (n=0)

and the settlement is presented in Figure 4.23 to 4.25 when the ring radii ratios are
0, 0.5 and 0.9. It can be seen that for each n value, the vertical bearing capacity of

footings ignil with i i icity. In Figure 4.23 where n=0,
the slope of the loading-settlement curves is reduced when the eccentricity is increased
from 0 to 0.375, while the bearing capacity has changed from approximately 4250 to
1700 kPa. The settlement required to reach the failure load decreases from about 6 to
3 mm. With the increase of eccentricity, the failure mode moves towards general shear
failure.

In Figure 4.24 when n=0.5, the loading: curves i follow the
sample path at the initial stage of loading. They begin to diverge when failure occurs.
The settlements at failure decrease from about 4 to 2 mm when the eccentricity ratio
(e/D) is increased from 0 to 0.375. In Figure 4.25 for n=0.9, the loading-settlement
pattern is also different. For e/D=0.075, 0.15, 0.25 and 0.375, the footings fail at a
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Figure 4.24: Load and settlement of eccentrically loaded footings (n=0.5)

Figure 4.25: Load and settlement of eccentrically loaded footings (n=0.9)
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same settlement of about 0.7 mm, while the footing with e/ D=0 fails at a settlement

of about 1.7 mm. The loading: pattern is i by the icity of
loads and the ring radii ratio of footings.

4.6.3 Bearing ity with icity

Figures 4.23 to 4.25 indicate that the bearing capacity of ring footings decreases
with increasing ring radii ratio and i ing loading icity. The variations of

bearing capacities of 20 footings listed in Table 4.5 with eccentricity at ring radii ratios
of 0, 0.35, 0.5, 0.7 and 0.9 are presented in Figure 4.26. Analysis of the data in this
figure indicates that the relationship of the bearing capacity and the eccentricity of the
ring footings can be well expressed using the reduction factor method. The bearing
capacity ion factor (R.) using E ion (4.32) at different values of

ring radii ratio (n) is shown in Figure 4.27. It can be seen that the relationship between
the reduction factor and the loading eccentricity ratio (¢/D) is independent of n. By
linear regression of the data in the figure, the reduction factor can be written as

R.=1-(e/D)**® (4.34)

for all footings with different ring radii ratio, where D represents the outside diameter
of a ring footing (a circular footing is treated as a special ring footing with n=0). As
seen in Figure 4.27, the reduction factor for the ring footings is slightly greater than
that obtained by Aiban and Znidarcic (1995) for strip footings.

Using the bearing capacity ratio (B,), the reduction factor (R.), the bearing ca-
pacity of an eccentrically loaded footing on the dense sand with a given ring radii ratio
(n) can be evaluated. Using Equation (4.32), the bearing capacity of an eccentrically
loaded footing is given by

9u = Requo (4.35)
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Figure 4.27: Bearing capacity reduction factor (R.) versus eccentricity ratio (e/D) of
constant area ring footings

where R, is the ion factor by Equation (4.34) with a given (¢/D); quo

is the bearing capacity of the ring footing under axial loading, which is given, using
Equation (4.27), by

Guo = Bruc (4.36)
A combination of the above two ions yields the bearing capacity of an eccentrically
loaded ring footing as

Gy = ReBrquc (4.37)

in which the bearing capacity ratio (B;), depending on the value of n, is shown in
Figure 4.21; g,. is the bearing capacity of an axially loaded circular footing with the
same area, which can be obtained using Equation (4.22). The procedure for estimating
the bearing capacity of a ring footing under eccentric loads using R., B, and g, is very

convenient and practical.
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4.7 Concluding Remarks

This chapter has i duced the and principle of
for i ication. The ifuge test equi and have been
A raining technique for the ion of sand samples has been developed

and used in tests, resulting in a density index of 90%. The quality of sand samples has

been itored by ifuge cone ion tests. Over 40 footing tests in centrifuge

with accelerations of up to 160 gravities have been conducted to investigate the effect
of footing size, ring radii ratio and loading eccentricity on bearing capacity. Model
tests have been verified using the principle of modelling of models.

For circular footings, the bearing capacity increases linearly with prototype footing
size in a double-log scale diagram. For a tested footing with a prototype diameter of 7.0
m, the measured bearing capacity is as high as 6150 kPa. It is found that the bearing
capacity factor IV, decreases with footing size, due to the effect of progressive failure
and the reduction of soil friction angle with stress level. When the footing diameter is
increased from 0.1 to 10 m, the estimated value of N, is reduced from about 610 to 170.

of average
soil friction angle is approximately 3 to 3.5°. It is observed that with the increase of

For a log-cycle increase of footing size, the

footing size, the failure mode of footings tends to move from general shear failure to
local shear failure.

Constant area ring footings, with ring radii ratios of 0, 0.2, 0.35, 0.5, 0.7, 0.8 and
0.9, have been tested in centrifuge at accelerations of 10, 40, 100 and 160 gravities.
For the axially loaded footings, the bearing capacity increases with prototype footing
size. At a certain acceleration level, the bearing capacity increase slightly with ring
radii ratio (n) when n is from 0 to about 0.35, due to the arching effect of soil under
the footing. When n is greater than 0.35, the bearing capacity decreases significantly



with the ring radii ratio. For a footing with n=0.9, the bearing capacity is about 52%
of that of a circular footing with the same area. It is shown that the bearing of a ring
footing can be related to the bearing capacity of a corresponding circular footing with
the same area by using a bearing capacity ratio (B,). The value of B, is related only
to the ring radii ratio, independent of footing size. Using the bearing capacity ratio.
it is very convenient to estimate the bearing capacity of a ring footing, because the
bearing capacity of a circular footing can be obtained using the available experimental
data and bearing capacity theories.

For the eccentrically loaded footings, the bearing capacity decreases with loading
eccentricity. It is shown that the bearing capacity of an eccentrically loaded ring footing
can be expressed in terms of a reduction factor and the bearing capacity of the footing
under axial loading. The bearing capacity reduction factor (R.) has been obtained by
analyzing the test data of footings loaded with eccentricities of 0, 0.075, 0.15, 0.25 and
0.375 at various ring radii ratios. It is found that the value of R, is related only to
loading eccentricity, independent of the ring radii ratio of footings.

It is shown that the bearing capacity of an eccentrically loaded ring footing can be
estimated using a reduction factor (R.), a bearing capacity ratio (B,) and the bearing
capacity of an axially loaded circular footing. This procedure is very practical. The
centrifuge test results are considered very satisfactory.
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Chapter 5

Analysis of Footing Size Effect
using Method of Characteristics

5.1 Introduction

Using the method of characteristics (slip-line method) for bearing capacity, equi-
librium equations with yield condition (usually Mohr-Coulomb criterion) and stress
boundary conditions are satisfied in the soil domain of uncontained plastic flow near a

footing. A set of diffe i ions of plastic equilibrium is i to investi-

gate the stresses in the soil at the instant of impending failure. The equations can be
solved by finite difference approximation. The bearing capacity obtained is the average
vertical pressure acting on the footing.

Sokolovskii (1960) used the method of characteristics for the solution of bearing

capacity of a strip footing. Shield (1955) ded this ique for an

footing on a Tresca material. Cox et al. (1961) applied it for a smooth, rigid footing
on weightless Mohr-Coulomb materials. Cox (1962) used this technique for a circular
footing on soils with weight, by putting ¢ = c + 0, tan ¢ (o, is the atmospheric pres-
sure) and introducing a dis i G = yB/(2c"). The average bearing

capacity pressure is a function of both G and ¢. The solution of Cox (1962) can di-
rectly account for the soil cohesion, self-weight and surcharge without superposition.
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The unusual assumption of applying the atmospheric pressure as a surcharge to the
soil surface may be due to the misunderstanding of the principle of effective stress.
However, the formulation for the solution is mathematically correct.

Larkin (1968) presents a detailed formulation of the method of characteristics for
the bearing capacity of very shallow circular and strip footings, in which the frictional
effect of the soil above the footing base has been taken into account. The stress vari-
ables are normalized by 0.5B7 and the co-ordinates by 0.5B for both plane strain and
axisymmetric cases. Since the footings are assumed to be frictionless, the character-
istics lines are extended to the footing bases. The failure pattern is similar to Hill's
mechanism. The values of N, of a surface strip footing are 15.7 and 87 when the ¢
is equal to 30° and 40° respectively. The calculated bearing capacity of footings on
cohesionless soils is very sensitive to the embedment depth. For a circular footing, an
embedment depth of 0.09 to 0.13 of the footing diameter will result in a bearing ca-
pacity increase of 100%. However, the calculated results of Graham and Stuart (1971)
show a much smaller increase of bearing capacity with depth. They considered that
neglecting the shear resistance of sand above the footing base would not cause a signif-
icant error for very shallow footings. Analysis of Hansen and Christensen (1969) also
showed an increase of bearing capacity with depth, but not as large as that indicated
by Larkin (1968).

When a footing base is rough (§=¢), experimental evidence (Biarez et al., 1961;
Gorbunov-Possadov, 1965; Ko and Davidson, 1973) shows that there is a wedge-shaped
rigid (elastic) zone of soil under the footing. In the characteristics analysis, Graham
and Stuart (1971) define the rigid wedge after Terzaghi (1943); the edge of the wedge is
straight and inclined at ¢ to the horizontal. The results agree with those of Meyerhof
(1955). When ¢=35°, the value of N, is 54.7. A similar rigid wedge is also assumed
by Graham and Hoven (1986) in their footing analysis using a critical state model.
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For a rough strip footing, Lundgren and Mortensen (1953) present the solution
of N, using 2 one-wedge failure mechanism. The o-line bounding the rigid wedge is
tangential to the base at the footing edge. For ¢=30°, the calculated N, is 14.8. A
similar rigid wedge was assumed by Gorbunov-Possadov (1965) and an N, value of 192
was derived for ¢=40°. The failure mechanism of Lundgren and Mortensen (1953) has
been employed by Hansen (1970) to derive the formula for N, as expressed by Equation
(2.19).

Based on the principle presented by Lundgren and Mortensen (1953). Hansen and
Christensen (1969) investigated the effect of base friction on N, for surface strip foot-
ings. The value of N, increases with base friction angle (d); for a certain ¢, N, of a
smooth footing (& = 0) is half of N, of a fully rough footing (6 = ¢). When ¢ = 30°,
N, is 15 for a rough footing. For ¢ < 45°, if § > 20° a footing can be assumed to be
rough for deriving N,.

A more recent investigation of the bearing capacity of strip and circular footings
using the method of characteristics was carried out by Bolton and Lau (1993). For
a rough footing, a trapped rigid wedge underneath the footing is assumed; the wedge
angle with the horizontal footing base is taken as (7/4 + ¢/2). With this assumption,
the resultant stress at the tip of the wedge is always vertical and symmetry at the
centerline is conserved. For ¢=30°, the value of N, is 23.6 for a strip footing and is
31.9 for a circular footing. N, is higher for circular footings than for strip footings
when ¢ > 20°. For smooth footings, N, of circular footings is greater when ¢ is greater
than 33°.

The method of characteristics can obtain the combined bearing capacity factor N,,
due to the contributions of surcharge (g) and soil weight. For a strip footing, N,, can

be expressed as
Gu Ny + N,
Nyg=—re 2977 %
T 057B(1+9) 1+7 61
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where

gt (52)

0.57B

A finite surcharge must be applied in analysis for Mohr-Coulomb material with
no cohesion (Graham, 1968; and Lau, 1988), because the condition of zero surcharge
causes some difficulties at the singularity at the footing edge (Graham and Hoven.
1986). The computation for N, is started by assuming a constant surcharge at the
footing base level. As described by Graham and Stuart (1971), a solution for N, is
obtained by increasing the footing size until the surcharge has no significant effect on
the calculated bearing capacity. It is shown that when § is smaller than 0.001, N,
converges to N, (Graham and Stuart, 1971; Bolton and Lau, 1993). In contrast, N, is
obtained for § values exceeding 1000.

This chapter presents a study of the effect of footing size on the bearing capacity of
circular footings on a dense sand using the method of characteristics. The analysis will
be carried out using both variable friction angles and an equivalent constant friction

angle for each footing.
5.2 Governing Equations and Formulation
5.2.1 Basic equations

In the case of axisymmetry about the z-axis in an r-z-8 coordinate system, the
stress components are o, 04, 0: and 7,.. The circumferential stress o is a principal

stress. The other two principal stresses (compression is positive) are

1= 500 +0) + [ o = o) + AL 53
0= 3(0r +02) = [ (o0 — o+ 722 59

Haar and Von Karman assumed that gy is equal to one of the other two principal
stresses (Chen, 1975). This assumption is safe (Lau, 1988). Cox et al. (1961) pointed
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out that the Haar and Von Karman hypothesis is quite general and applicable. The
value of oy is herein taken equal to the smaller principal stress, that is

gg=03< 01 (3.3)

The Coulomb yield criterion and the two equilibrium equations are given by

0y — 03 = 2ccos o + (o) +03)sing (5.6)
o,  O7e: g, —0g _ _
=t T =0 (5.7
81, Bo: Tex _

ot tmT =y (5.8)

in which m = 1 is for circular footing and m = 0 is for strip footing. Equations
(5.5)-(5.8) provide four equations for the four unknown stresses so that the problem is
statically determinate.

Using the Coulomb yield criterion and Haar and Von Karman hypothesis, the four
stresses are expressed as (Tan, 1990)

o, =o(1 —sindcos2¥) — o, (5.9)
o, = o(1l+singcos2¢) — o (5.10)
Tz = osin@sin 2y (5.11)
o =03 =0(l —sing) — o (5.12)

where ¥ is the inclination of the direction of o, from the z-axis, as shown in Figure
5.1; o and o, are defined by

PG (P (5.13)
.= ﬁ (5.14)

Differentiating Equations (5.9)-(5.12) yields
%:(1—m¢m2¢);—d+bsin¢sin2¢g (5.15)
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Figure 5.1: Direction of principal stresses

aal =(1 +su:0c052w]— - ersmaﬁsmw:?E
t = sin @sin 2W§ + 20 sin ¢ cos Zwﬂ

a"’n it i e 5 EM
a—z—suwsmwaz +2¢sm¢cos2wa

the above ions into the two

system of governing equations in terms of r, z, o and ¥,
(l—mocnsw);i-kménnw;-ksmdmwa
2 (] -
+20sm¢cos2wa +m;sm¢(l —cos2y) =0
p g o 00 i o . 4
smésuﬂw;+2¢sm¢m2w¥+(l+sm¢cos2w)5

= wm¢mzw% +m%sin¢sin2w =9
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These are two nonlinear differential equations. Under given stress boundary conditions,
the equations can be solved for bearing capacity using finite difference techniques.

In Equations (5.19) and (5.20), o and ¥ are functions of r and z. Therefore, the
variation equations of ¢ and ¥ can also be expressed as

80, 90 .
do = ZZdr + 2dz (5.21)
O, -

dv = ZFdr + ZXaz (5.22)

Equations (5.19)-(3.22) can be written in matrix form as
Az=b (5.23)

where matrixes 4, z and b are in the forms

1—singcos2y 20sinésin2¥  singsin2y 20'sin ¢ cos2¢

. singsin2¢ 20sinécos2y 1+singcos2y —2osin@sin2y -
A= dr 0 dz 0 @2
0 dr 0 dz
30 /or
_ | ov/or =
2=\ o/0z (525)
8y/dz
—msin¢(1 — cos2v)a/r
— m(sin ésin 2 .
s v m(smz,sm Y)o/r (5.26)
dy

As these equations are hyperbolic, the solution for z is not unique; the determinant of
A is zero. By using detA = 0, two families of characteristic lines can be obtained as
a-characteristics:

dr =

ae tan(y +1) (5.27)
[B-characteristics:

dr

Z =t =) (529)
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where n=w/4—¢/2.
Along the two families of istics, the i i (3.19) and (5.20)

become two ordinary differential equations, which can be obtained by replacing a col-
umn of 4 by b and setting the determinant to zero (Tan, 1990). Therefore the rela-

tionships of o and % along the characteristics are expressed as

do + 20 tan édv + mg [sin 6dr + tan é(sin 6 — 1)dz] = 7(dz — tanodr)  (5.29)
along an a-characteristics; and

do — 20 tan ¢dv +m§ [sin édr — tan 6(sin 6 — 1)dz] = 7(dz + tanodr)  (5.30)
along a (-characteristics.
5.2.2 Computation procedure

For the convenience of computation as adopted by Larkin (1968), the variables o,

r and z are normalized as

(5.31)

where 7 is soil unit weight, B represents the width of a strip footing or the diameter
of a circular footing.
In Figure 5.2, if the variables 7, Z;, 6; and ¥; at point i and 7}, Z;, &; and ¥; at point

Jj are known, the variables 7, Z, & and ¥ at point w can be approximately determined

using Equations (5.27)-(5.30). Equations (5.27) and (5.28) can be rewritten as
F—fi=(2-Z)tan(¥; +7) (5:32)
7 -7 = (z-5)tan(v; — ) (5.33)

and Equations (5.29) and (5.30) can be rewritten as

G —&;+25; tan (Y — %) = Z — 5 — tan §(F — 7)
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vz

(5.34)

(3.35)
From Equations (5.32) and (5.33), the variables 7 and Z at point w can be approx-
imately determined as

(% — %) tan(¥: + n) tan(y; —n) — 7 tan(y; —n) +7; tan(¥i +n)

- 5.36)
4 tan(v; +7) — tan(%; — 1) )
Ztan(yi+n) — Ztan(y; —n) —Fi+7;

= 5.37)
tan(¥: +n) — tan(y; —n) &80

and Equation (5.34) and (5.35) can be solved for & and ¥ as
g 2005 000 (5.38)

Gi +3;

¥ et (5.39)

= 2@ +5;)tane
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where the a, and a, are as

a = % — tan ¢(F — 7;) + i(1 + 2¢; tan @)

D} i o b e o .
- mm[sm (7 — 7;) + tan é(siné — 1)(Z — )] (5.40)
@, = Z — Z; + tan ¢(7 — 7;) + 35(1 — 2¢; tan @)

L T s - o<
- '"Tr,“""(' — ;) —tand(sino — 1)(Z - 5)] (5.41)
Because the characteristics are usually curved, the solution can be improved using
iteration technique by putting ¥; = (¥ + ¥;)/2 and ¥; = (¥ + ¥;)/2 in calculating 7
and Z. By repeating the process, ¢ and & will converge to ¥, and &, as the number

of iterations increases (Sokolovskii, 1960).

5.3 Boundary Conditions
5.3.1 Smooth footings

The boundary conditions for the method of characteristics are related to the rough-
ness of the footing bases. A perfectly smooth footing as shown in Figure 5.3, fails in
Hill mechanism. As there is no horizontal shear stress between the footing and the soil,
the vertical stress in soil along the footing base is a major principal stress (the angle
between the z-axis and the direction of the major principal stress ¥=0). The zone oba
is called an active zone. In Zone acd, the horizontal stress is a major principal stress; it
is called a passive zone. Along soil surface the stress boundary conditions are known,
and

o=t (5.42)
where the normalized surcharge is expressed by

q (5.43)

-
0598
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Figure 5.3: Failure pattern and failure zones of smooth footings

Between the passive zone and the active zone, there is a fan zone abe. The three
zones share the same point, a, termed a singularity point at which the stress field makes
the transitions between the extreme cases. At point a which is treated as a degenerate
of a B-characteristics, ¥ is 90° for the passive zone and is 180° for the active zone: the
rotation angle of principal stresses in the fan zone at the singularity is © = 90°. Bolton
and Lau (1993) introduces at this point an exponential stress increase with rotation
angle. Before rotation starting from the passive zone, ¥ and & are known. When the
principal stress at a rotates by a value of 8, the boundary conditions become

ve=v+0 (5.49)

5y =Ge?™2¢ (5.45)

The problem can be solved using the known parameters ¥, &, ¥ and Z along the
soil surface ad, and the known ¢ and Z along the footing base. Starting from the soil

surface ad with known stress boundary conditions, the stress field within obcd can be
determined. The line ad is divided into several equally spaced points. The position of
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point d can be adjusted during iteration until the S-characteristic starting at d finally
finishes at o with a required accuracy. When the variables at points along oa are known,
the bearing pressure o, can be obtained using Mohr’s circle as

0. = 0.57B5(1 +sin ) (5.46)
The mean bearing capacity g, of the footing can be determined by integrating o-
numerically over the whole footing base. Lau (1988) carried out the analysis of strip

and circular footings using a mesh of 96 - istics and 220 istics and

a rotation step in the fan zone of 3°.
5.3.2 Rough footings

In reality footings are usually rough and the failure pattern is not so simple. If the
friction angle (§) between soil and base is fully mobilized and the problem is solved by
a direct extension of smooth footing solution, the characteristics will curve back along
the footing base. For a fully mobilized §, the angle between the direction of the major
principal stress and the normal of the footing base, I’ is given by (Graham and Stuart,
1971; and Tan, 1990)

r=0s [s +arcsin (:‘f:)] (5.47)

The main problem in this method results from the fact that symmetry at the centerline
is violated, because the principal stress at the centerline is not vertical.

‘When no slip occurs between a rough footing base and soil, a wider rigid (elastic)
wedge-zone extended to the edge of the footing can be assumed in analysis, as shown
in Figure 5.4. The wedge surface is assumed to be perfectly rough; the friction angle
with soil is =¢. Using the equation above, the angle between the direction of the
major principal stress and the normal of the footing base is given by

¢,=I’—a=45'+§-a (5.48)
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Figure 5.4: Rigid wedge and failure zones of rough footings

Graham and Stuart (1971) suggests that the wedge angle « is equal to soil friction
angle ¢ for bearing capacity of footings. The calculated values of V, agree closely with
those obtained by Hansen and Christensen (1969). However, this approach also violates

the symmetry criterion at the wedge tip. To elimi; the error of Y y at
the tip, Bolton and Lau (1993) assumes a=45°+¢/2 for strip and circular footings, so
that the major principal stress at every point on the edge is vertical and symmetry is
conserved at the tip. The wedge surface mobilizes ¢ and acts as the last characteristic
in the marching solutions. However, this assumption of Prandtl failure mechanism
is strictly correct only for footings on weightless material. The calculation results of
Bolton and Lau (1993) indicate that the value of NN, increases from smooth footing to
rough footing by a factor of about 3 for strip footings and about 4 for circular footings.

A method for rough strip footings, in which the rigid wedge as shown in Figure
5.5 is naturally bounded by a-characteristics and symmetry is conserved at the tip,
has been presented by Lundgren and Mortensen (1953) and later used by Hansen and
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Figure 5.5: Failure pattern of rough footing with wedge bounded by a-characteristics

Christensen (1969), Steenfelt (1977) and Bonding (1977). Tan (1990) also used this
technique for strip and circular footings with variable roughness. As shown in the
figure, the shape of the wedge is related to the relative magnitude of surcharge and the
friction mobilized between the soil and footing base. When the surcharge is high and
no slip occurs between footing base and soil, the first a-line (ac) to the last a-line all
pass through the singularity point a; the mobilized friction angle § at point a can be
assumed to be equal to or less than ¢. Lundgren and Mortensen (1953) found that for
$=30°, all the a-lines pass through a only when yB/q is less than 11.4.

For very shallow footings with low surcharge, slip may occur near footing edges.
The rigid wedge zone becomes smaller. In this case, only the first a-line (ac) passes
through the singularity point a; all other a-lines to the left of ac reach the base at some
distances from the footing edge. The size of the wedge is reduced with decreasing &.
When the footing is perfectly rough (§=¢), all a-lines leaving the footing are tangential
to the base. When § is less than ¢, the a-lines are no longer tangential to the base;
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from a to g along the base near the edge, the angle between the direction of the major
principal stress and the normal of the base is T, given by Equation (5.47). The rotation
angle of principal stress in the fan zone at the singularity is

©=90"+T (5.49)

For 6 = ¢, I = 45° + ¢/2, © = 135° + ¢/2. For $=6=30°, the results of Lundgren and
Mortensen (1953) have given ag=0.104(0.5B).

5.3.3 Boundary conditions of analysis

In this study, the friction angle between the glass sand and the aluminum footings
is about 28° (see Chapter 3). This value is much higher than the value of friction angle
required for a rough footing, which is about 15° to 20° (Hansen and Christian, 1969;
and Chen, 1975). Therefore, the footings in this analysis are all assumed to be rough,
which will fail in Prandt] mechanism. An rigid wedge failure mechanism is used in the
analysis.

Graham and Stuart (1971) assumed that the wedge angle is a=. Bolton and Lau
(1993) used @ = 45° + ¢/2 so that symmetry is conserved at the wedge tip. The
assumption of Bolton and Lau is only appropriate for N, at very large surcharge; the
values of N, are much higher than those reported in the literature. It is desirable to
combine the techniques adopted by Graham and Stuart (1971) and Bolton and Lau
(1993). One way to do this is to use the logarithmic curve acb in Figure 5.6 as the
boundary of the rigid zone. The inclination angle of the curve is ¢ at the footing edge
and is 45° + @/2 at the tip. It is demonstrated, however, that with the increase of
stress level from points a to b through c, the a-lines starting after the point ¢ at some
place between a and b will extend into the rigid zone. This would result in error in the
analysis. In order to eliminate the error and to simplify the analysis, an rigid wedge
is formed by linking points a and b using a straight line. The wedge angle « for this
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Figure 5.6: Assumed rigid wedge of rough footings in analysis

Table 5.1: Soil friction angle ¢ and wedge angle a

¢ 30 35 40 45 50

a 486 515 544 581 60.9

work, as shown in Figure 5.6, is related to soil friction angle. The relationship between
« and ¢ is listed in Table 5.1 and is also shown graphically in Figure 5.7.

5.4 Implementation of Analysis
5.4.1 Consideration of variable ¢
It is well recognized that the Mohr’s failure envelope of sand is usually curved

(Hill, 1950) and the soil friction angle decreases with mean effective principal stress.
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Figure 5.7: Wedge angle o versus soil friction angle ¢

During drained shearing, soil may dilate or contract depending on the initial density
and stress level (Rowe, 1962, 1969; De Josselin de Jong, 1976). Bolton (1986) suggests
that for a sand under drained conditions, the peak secant triaxial friction angle ¢ can
be expressed as

¢=¢,—klns (5.50)
in which

5=l +a) (551)
where ¢, and k are soil constants. Bolton and Lau (1993) used ¢ = 30° in the highly
stressed region and ¢ = 57° near the soil surface.

Bolton (1986) assumes that the critical state friction angle (¢,) is a function of soil

mineralogy and independent of stress level. The triaxial results presented in Chapter 3
and the data given by Chu (1995) suggest that both the peak friction angle and critical
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state friction angle of sands decrease with confining pressure. According to the resuits
given in Chapter 3 of the triaxial compression tests of the dense glass sand (/p=90%)
under drained conditions, the variation of the peak friction angle with stress level is
given by Equation (3.20). The triaxial test results indicate that the peak friction angle
of the sand dropped from about 46.9 to 37.3° when the confining pressure is increased
from 25 to 2500 kPa.

As adopted by Graham and Stuart (1971) and Graham and Hoven (1986), o is

d as a stress d dent variable in the ch istics analysis of this study
and the value of ¢ is updated according to stress level during computation. The
same g are used as for the cases of constant ¢. During

Iculation, the value of ¢ ds to the average stress level at the two previously

known points and the new point.

5.4.2 Impl ion of computati

A code in the C ing | has been developed in a UNIX system

to implement the analysis of the bearing capacity of circular and strip footings. The
analysis starts from the soil surface where the stress conditions are known, and then
advances to the passive zone, the fan zone, the active zone and the wedge surface,
which are shown in Figure 5.4. The bearing capacity obtained for a footing is the
average vertical pressure acting on the wedge surface. In the analysis, the following
parameters are inputed to the program:

(1). The number of B-ch istics lines i ing the si ity point is 101

for all analyses. The mesh is equally spaced along the soil surface. The number of
a-characteristics lines in the fan zone is also 101.

(2). For each point during iteration, the convergence criterion of stress is ds/s =
0.0001.



Table 5.2: Comparison of N, of rough strip footings

¢ (degree) 30 35 40 45
N, (this study) 19.4 40.8 88.9 203
N, (Larkin, 1968) 15.7 | 408 87 -
N, (Hansen, 1970) 157 | 339 | 795 | 201
N, (Graham & Stuart, 1971) |~ 54.7 - -
N, (Bolton & Lau, 1993) 23.6 - 121 | 324

(3). N, is obtained by applying a surcharge § =q/(0.5yB) = 0.001, in order to
simulate a surface footing; N, is derived by applying §=1000.

(4). The friction angle (¢) in the soil domain of analysis is related to stress level
using Equation (3.20) obtained from triaxial tests. For the calculation of a new point,
¢ is corresponding to the average stress level of the new point and the two known
points. At the soil surface, the maximum friction angle is ¢=57°. In highly stressed
regions, the lower limit of the friction angle is assumed to be 30°.

(5). The wedge angle a shown in Figure 5.6 is determined using a ¢ value corre-
sponding to the mean stress level of points along the wedge surface. At the beginning
of analysis, an initial value of the wedge angle  is assumed. Iteration was continued
until the accuracy of « is less than or equal to 0.01°.

The program is verified for strip footings under constant ¢ conditions. The values
of N, obtained for this study are compared with those in the literature, as shown in
Table 5.2. It can be seen that the N, values of this study are reasonable compared

with others; they are especially close to those of Hansen (1970) and Larkin (1968). It
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is obvious that the N, values obtained by Bolton and Lau (1993) are much higher than
those of other researchers. The program has also been checked by calculating the value
of N, when the wedge angle is defined by a=45° + ¢/2. For 6=30°, the calculated N,
is 18.1, which is very close to the exact solution of 18.4 derived by Reissner (1924).

5.5 Analytical Results of Circular Footings

5.5.1 Bearing capacity from variable friction angle ¢

Analysis of circular footings on the surface of the dense sand with a dry unit weight
of 15.4 kN/cm® has been carried out using the method of characteristics described
above. The stress-dependent peak ¢ value, calculated by Equation (3.20) is used in
the analysis. When the footing diameter increases from 0.1 m to 10 m, the calculated
bearing capacity (g) is increased from 292 to 6740 kPa; The bearing capacity factor
N, is reduced from 632 to 146, due to the decrease of soil friction angle with stress
level. With the increase of footing size, the wedge angle a is decreased from 57.9° to
52.2°.

The i ip between the calcul bearing capacity and footing diameter is
illustrated in Figure 5.8. It is seen that the bearing capacity increases linearly with
footing diameter in the double-log plot. The calculated bearing capacity (g.) can be
expressed in terms of footing diameter (D) as

gu = 1400D°% (5.52)
where g, is in kPa and D is in meters. To make a comparison, the bearing capacity
from centrifuge tests given by Equation (4.22) is also shown in the figure, as represented

by the dotted line. The bearing capacity calculated by the method of characteristics
is very close to that obtained from i tests. The diffe i ing with

footing size, are 1.4, 5.4 and 11.7% when the footing diameters are 0.1, 1.0 and 10.0 m
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Figure 5.8: Calculated bearing capacity of circular footings
respectively.
5.5.2 Bearing capacity from equivalent friction angle ¢,

The analysis above shows that when a variable ¢ corresponding to different stress
level is used, the bearing capacity of footings can be well modelled by the method

of ch istics. It is, however, desirable that an i friction angle ¢, of 2
footing with a certain dimension can be found so that the bearing capacity can be
calculated using the constant ¢.,. Meyerhof (1950) and De Beer (1965a) suggest that
eq should correspond to the mean value of normal stress along the failure surface (gm)-
Meyerhof (1950) has proposed that

om= (5.53)
where g, is the bearing capacity. Using the above equation and Mohr’s circle, the value
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Figure 5.9: Equivalent friction angle ., versus footing diameter

of s corresponding to @, can be calculated by

s=Ttm Bl + a0’ dy) +l";“2 bed) (5:54)
Then ¢, can be obtained using Equation (3.20) by iteration. At the beginning of
analysis, an initial bearing capacity of a footing is assumed to calculate the value of
@eq and then a new bearing capacity can be obtained. Using the updated bearing
capacity, the process of calculation can be repeated until a prescribed accuracy of
bearing capacity of 0.1% is reached.

The calculated equivalent friction angle (¢.,) and the bearing capacity (que,) from
$eq are shown in Figure 5.9 and 5.10. When the footing diameter increases from 0.1 to
10 m, @¢q is decreased from 47.5 to 40.8°; for a log-cycle increase of footing size, ¢.q is
reduced by about 3.5°.

The calculated bearing capacity (gue) in Figure 5.10 from equivalent friction angle
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Figure 5.10: Bearing capacity from equivalent friction angle ¢,
®eq, Which is constant for a certain footing, increases linearly with footing diameter in
a double-log diagram. The relationship is written as
Queq = 1400D°7 (5.55)

where gue, is in kPa and D is in meter. It can be seen from the figure that the bearing
capacity calculated from ¢qusmg:he method of characteristics is very close to that
obtained from ift The dif are 7.6, 5.4 and 3.2% when the

footing diameters are 0.1, 1.0 and 10.0 m respectively.

5.6 Summary

This chapter presents the basic equations and formulation of the method of char-
acteristics for the bearing capacity of foundations. A detailed discussion regarding
the effect of b itions on the failure hanism and bearing capacity of
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foundations is presented. Analysis has been carried out to investigate the size effect
of circular footings. A rigid wedge under a rough footing is assumed for analysis. The
wedge angle a can be derived from a soil friction angle corresponding to the average
stress level along the wedge surface. The effect of footing size on bearing capacity
due to the stress dependence of soil friction angle has been well modelled. A program
written in the C programming language has been developed to implement the analysis.

The effect of footing size on bearing capacity can be modelled by taking into con-
sideration the stress dependence of soil friction angle. During calculation for a point.
the value of ¢ corresponding to the average stress level of the two previously known
points and the new point is used. The peak friction angle of the sand obtained from
triaxial tests is used. The calculated bearing capacity of circular footings increases
linearly with footing diameter in a double-log scale diagram. It is very close to the
bearing capacity obtained from centrifuge tests. The wedge angle is reduced by the
increase of footing size, due to the decrease of soil friction angle with stress level.

The bearing capacity can also be estimated using a constant friction angle ¢, for
each footing corresponding to the mean normal stress along the failure surface. The
mean normal stress can be related to the bearing capacity using Meyerhof’s formula.
Using the friction angle ¢.,, the effect of footing size on bearing capacity can also
be well simulated. This procedure provides a basis for the finite element analysis of
bearing capacity using a constant friction angle for each footing, as presented in the
next chapter.
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Chapter 6

Finite Element Analysis of Axially
Loaded Ring Footings

6.1 Introduction
6.1.1 Finite element method
The finite element (FE) method, originally developed in the 1940s in structural

engineering (Hrennikoff, 1941; and McHenry, 1943), is a numerical method for solv-

ing engi and ical such as | analysis, heat transfer,

fluid flow and electro-magnetic potential. The finite element technique has been used

and

in geotechnical engineering for various purposes, i
tion of soils, and i earth ini and

analysis (Desai and Christian, 1977). For many problems in which the analytical solu-
tions are not available, the finite element technique can be employed for dealing with
of ies, loads and ials. For

the displacement (or stiffness) method is usually adopted. The procedure of the fi-
nite analysis mainly includes discretizing the body into small finite elements, defining
the strain-displacement and stress-strain relationships according to the selected dis-
placement function and material properties, deriving the element stiffness matrix and

the element i to obtain global equations, introducing




boundary conditions and solving the equations for unknowns.
For nonlinear elasto-plastic materials like soils, of which the solution is load path

dependent, an incremental method is tial for the solution of the finite element

equations. The load is divided into a number of small increments and the solution at

the end of an i is the ion of the ions of all previous i

Using this method, the complete load-displacement history can be defined.
The equilibri i of the i analysis can be derived by applying

the principle of virtual work, which is stated as follows (Logan, 1992):

“If a defc ble body in ilibrium is subjected to arbitrary virtual (imag-

with a il ion of the body, the

inary)
virtual work of external forces is equal to the virtual strain energy of the internal
stresses.”
For a finite element with a volume of V and a surface of S, the matrix of the displace-
ment functions ({}) is related to the matrix of nodal displacements ({d}) by
¥} =[N{d} (6.1)
where matrix [NV] represents the shape functions. The strain matrix ({c}) and stress
matrix ({o}) are expressed as
{e} =[Bl{d} (6.2)
{o} = [Di{e} (6.3)
in which [D] is a material stiffness matrix, [B] is a matrix derived from [N].
The internal virtual strain energy of a finite element is
oU = jv {6} {o}dv (6.4)
and the external work is in the form of

oW = (6d)™(P} + [ {60} (T}as + | (w}T(X}av ©5)
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where {5d} is the vector of virtual nodal displacements, {5w} is the vector of virtual
displacement functions, {P} is the nodal load matrix, {T'} is the matrix surface forces
and {X} is the matrix of body forces.

Combining the above equations and using the principle of virtual work expressed

6U = 6W (6.6)
yield

[ (GaHBIT(DIaV{d} = {6y (P} + {6} [ (NI (T}dS + {6d) [ N (X}av

(6.7)
That is
[kl{d} = (P} + (£} + {5} ©3)
in which
Kl = [ (B DIBIV (69)
(£} = [vT{TYas ©.10)
{(# = [ IV (X}av ©.11)

Equation (6.8) is the equilibrium equation of the finite element. It can be assem-
bled to the global equilibrium equations of the problem. By introducing boundary
conditions the equations may be solved for unknowns. For the foundation analysis in

the present study, due to the of soil i ity, large soil di ion and
i boundary diti the global ilibri ions should be solved
by incremental procedure. A general purpose finite element computer code ABAQUS

will be used to implement the analysis.
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6.1.2 Modelling of foundations

The finite element method associated with soil plasticity theories has been used to
investigate the bearing capacity of foundations on cohesive soils (Davidson and Chen,
1976; Zienkiewicz et al., 1975; Zienkiewicz et al., 1978). Relative few finite element
solutions of bearing capacity of cohesionless soils are available.

Griffiths (1982) carried out finite element analysis of strip footings on frictional ma-
terials, separately assessing N due to soil cohesion ¢, N, due to overburden pressure
g and N, of cohesionless soil with weight. The Mohr-Coulomb failure criterion with a
flow rule of zero plastic volumetric strain was employed. The elastic modulus E=2x10°
kPa and Poisson’s ratio ¥=0.35 were used. Perfect plasticity was implemented using
the visco-plastic technique (Zienkiewicz and Cormeau, 1972, 1974). Eight-node quadri-
lateral, isoparametric elements were adopted. A footing was modelled by applying a
prescribed vertical displacement on nodes of soil contacting with the footing. For a
smooth footing (6=0) the nodes could freely move horizontally; for a rough footing
(8 > ) horizontal restraints to the nodes were added. This simplicity can avoid the
convergence problem associated with the use of interface elements (Griffiths, 1982).

The results presented by Griffiths (1982) suggest that the finite element method
can be used with confidence to estimate the bearing capacity factors N. and N,. Good
results of N, have been obtained. The dependence of N, on footing roughness is
confirmed. The calculated values of N, decrease with footing size, which is thought to
be due partly to the non-linear stress distribution beneath the footing. In computing
N,, convergence was very slow using the displacement control technique, due to the

shear concentration at the footing edge. The rate d with i
¢. A ¢ value of 35° seemed to be the limit to obtain a reasonable N, using the raw
visco-plastic technique.

Desai (1968, 1971) and Desai and Reese (1970) performed finite element analyses
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of bearing capacity of footings on clays. A footing was modelled by either a uniform
pressure or a rigid displacement. The finite element method has given satisfactory
results for predicting the stresses and deformations of footings. It is shown that the
average bearing pressure obtained by applying a uniform pressure is very close to that
by applying a rigid displacement. Griffiths (1982) indicated that applying a uniform
pressure on the surface of cohesionless soil is unrealistic because the soil at the footing
edge can not sustain normal stress. In such a case, the pressure at the edge must be
zero. Analysis of strip loads on elasto-plastic soil was also carried out by Hoeg et al.
(1968).

Christian (1977) also introduced the use of finite element technique for bearing

capacity. It is stated that in using the i for soil

solution accuracy and cost depend on many factors such as the number of elements,
element type and the size of load increments. It is concluded that reducing the size of
load increments can obtain the most benefit. The most popularly used isoparametric
elements are good for nonfrictional materials. They may result in much greater ultimate
loads than those estimated by bearing capacity theory.

Chen (1975) presented an example of finite element analysis of a rigid strip footing
on a c-¢ weightless soil using the Drucker-Prager elasto-perfectly-plastic model. The
effects of mesh size and displacement increment size are studied. It is found that the
finest mesh results in softest response (smallest load). The smallest increment size of
loading yields lowest bearing pressure.

In summary, effort in using the finite element method for the bearing capacity of
foundations has been made in the past decades. Compared with other methods such
as the characteristics analysis and the limit equilibrium approach, the finite element
technique for bearing capacity is far from mature and its application is limited. It
s that satisfactory results have been obtained only for foundations on cohesive
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soils. For foundations on sands, very few good data have been reported. It is believed
that the difficulty results from the complexity of soil behaviour, rather than due to the
finite element technique itself or the capacity of today’s computers. The bottleneck
in the finite element application to bearing capacity problems is how to select proper

constitutive models for soils.
6.2 Soil Plasticity and Incremental Modelling

The stress-strain constitutive relation of soil is complicated because of the follow-

ing features of soils: (1) The stress-strai ionship is nonlinear; even at very low

strain, plastic deformation occurs. (2) Soils are frictional materials; the strength and

stress-strain relation are pressure dependent. (3) Soils exhibit volumetric change when
sheared; during drained shearing, a ‘loose’ soil tends to contract and a ‘dense’ soil tends
to dilate.

The strain of a soil includes two parts: elastic strain and plastic strain. A constitu-
tive model describing the elasto-plastic response of the soil must include four aspects:
(1) the elastic deformation behaviour; (2) a yield surface in the stress space within
which the soil deforms elastically; (3) a plastic potential defining the mode of plastic
deformation when the soil is yielding; and (4) a ing rule describing the i

of the yield surface during plastic deformation. The increment of plastic strain during
yielding is normal to the plastic potential. When the plastic potential is identical to

the yield surface, the flow rule is termed
For a soil, the total increment of strain matrix ({de}) is the sum of increment of

elastic strain matrix ({de*}) and the increment of plastic strain matrix ({de?}), that is

{de} = {de"} + {de”} (6.12)



The yield surface is assumed to be

flo.x)=0 (6.13)
and the plastic potential is

9(0,6) =0 (6.14)
where o represents the stresses, x is a ibing the hards rule and &

is a soil parameter. The increment of plastic strain is given by the flow rule as
(H)=A{Z—Z}, A0 (6.15)

The increment of stress matrix ({do}) is related to the increment of elastic strain
matrix by

{do} = [D7] {de°} (6.16)
where [D?] is the elastic stiffness matrix. Using Equation (6.12) and (6.15), the above
equation is expressed as

(4o} = 10 - 01 { 22} 617
Differentiation of Equation (6.13) results in
d/={ } (do}+-—-d~ 0 (6.18)
The hardening parameter (k) is a function of plastic strain. Therefore,

wofgfe-Eg

Combination of the above three equations yields

{-‘} [D*] {de}
g e
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By substituting the above equation to Equation (6.17), the relationship between

stress increment and the strain increment can be obtained in the form of
{do} = [D?] {de} (6.21)

where the elasto-plastic stiffness matrix ([D®?)) is
T
(D {5} {3} D1
(D) = [D°] - —M—T (6.22)
Y o- () (%)
What is discussed above is a general procedure for the elasto-plastic incremental
analysis. A particular model, Cam-clay, will be introduced in the following for a further

and a better ing of the elasto-plastic behaviour of soil.
The Cam-clay model was originally proposed by Roscoe and Schofield (1963) for
describing the elasto-plastic behaviour of clay. A modified version was presented by

Roscoe and Burland (1968) and discussed in detail by Wood (1990). The model includes
an elastic theory, a yield surface, a flow rule and a hardening law. The parameters for
the model can be determined by triaxial compression tests. Cam-clay is widely recog-
nized in both practice and academic circles because of its simplicity and satisfactory

accuracy compared with more realistic models. A good comprehension of Cam-clay, a

ic model, is very b ial to und ding fund: I soil behaviour and
the feature of other particular models for soil.

The model is described in a three dimensional space, as shown in Figure 6.1, con-
sisting of two effective stress invariants (p and g) and the specific volume of soil defined
as

v=1+e (6.23)
where e is soil void ratio. The mean principal stress p and the deviator stress g are
expressed as

=31 +0r+0s) (6:24)
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Figure 6.1: Cam-clay: (a) Yield locus and critical state line (CSL); (b) Normal com-
pression line (NCL), unloading-reloading line (URL) and critical state line



o= L -+ - + -] (625)
where 0y, 07 and o3 are the major, intermediate and minor effective principal stresses
respectively.

An important embodyment in Cam-clay is the critical state line (Schofield and
Wroth, 1968), which is the locus of shear failure points. At critical state, a soil develops
shear deformation without change in stress and volumetric strain, that is

%=%=%=o (6.26)
where &, represents the deviator (shear) strain.

The critical state line (CSL) in the p-g space is taken as a straight line through the
origin. The relationship between the mean principal stress p and deviator stress g at
critical state is

I_m (6.27)
P

where M is a strength parameter, representing the slope of the critical state line.
As shown in Figure 6.1(b), the increment of elastic volumetric strain (¢}) along the

unloading-reloading line is given by
L]

8et = k— 6.28

= "op (6:28)

where dp is the increment of p, and  is the slope of unloading-reloading line (URL) in
the Inp-v space. For finite element analyses the increment of elastic deviator strain is
assumed to be

oq

=22 (6.29)

in which dq is the increment of g, and G is the elastic shear modulus of soil. In analysis,
a constant Poisson’s ratio can be assumed (Britto and Gunn, 1987; and Wood, 1990).



The current yield surface of Cam-clay is an ellipse on the p-g space. The equation
of the ellipse is
f=q"~Mp(p,—p) =0 (6.30)
where p, is the preconsolidation pressure of isotropic normal compression, which con-
trols the size of the yield surface; M is the slope of the critical state line. Another form
of the equation for the yield locus is
M

P
L 6.31
P MI+n? 6:31)
in which the stress ratio 7 is in the form of
q
=2 6.32
=5 (6.32)

At critical state, n=M and p=p,/2.
In Cam-clay, the flow rule is assumed to be associated; the soil obeys the normality
condition. The plastic potential is identical to the yield surface, expressed as

9=f=¢~Mplp.~p) =0 (6.33)

where g is plastic potential. The vector of plastic strain increments is in the direction
outward normal to the yield surface. Therefore,

ik _dg/op _ MP - -

och ~ dg/oq 2n
where d¢} is the increment of plastic volumetric strain, é} is the increment of plastic
deviator strain.

The size of the yield loci is controlled by p, at a constant shape factor M. The soil
hardening is related to isotropic compression. The change of yield loci is supposed to
be related to plastic strain increments, that is

= %:55; + g"?:se: (6.35)
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Figure 6.1(b) suggests that the specific volume of soil under isotropic normal com-
pression is

v=N-Alnp, (6.36)

where N is the specific volume when p,=1, A is the slope of the isotropic normal com-

pression line (NCL) in the Inp-v space. Then, the increment of the plastic volumetric

strain is given by

(6.37)

(6.38)

(6.39)

This means that the hardening of soil depends only on plastic volumetric strain, inde-
pendent of plastic shear strain.

Cam-clay has been adopted in computer codes for finite element analysis of geotech-
nical problems (Britto and Gunn, 1987; and Hibbitt et al,, 1994). The model is con-
sidered to be suitable for describing the elasto-plastic behaviour of clays, especially for
normally i or lightly idated clays. For sands, plastic deformation

is due mainly to the deviator stress; high mean principal stress is required to produce

plastic ion in isotropic ion (Tatuoka and Ishihara, 1974;
Lade and Duncan, 1975; Poorooshasb et al., 1967; and Wood, 1990). For granular
materials like sands, the Drucker-Prager model can be employed.

6.3 Modified Drucker-Prager/Cap Model

‘The Drucker-Prager model (extended Von Mises criterion) was originally proposed
by Drucker and Prager (1952). The modified Drucker-Prager/Cap model in ABAQUS
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Figure 6.2: Yield surfaces of modified Drucker-Prager/Cap model

(Hibbitt et al., 1994) will be used for the analysis of foundations on sand in this study.
The purposes of adding the cap yielding surface to the extended Drucker-Prager model
are to provide a plastic hardening mechanism and to control the volumetric dilation
when the soil yields during shearing. The flow rule is associated in the cap region (fc)
and nonassociated in the shear failure region (f,) and transition region (f:), as shown
in Figure 6.2. The Drucker-Prager shear failure segment is a perfectly plastic yield
surface, on which the plastic flow results in volumetric dilation that causes the cap
yield surface to soften.

6.3.1 Failure surface

The shear failure surface of the Modified Drucker-Prager/Cap model (Hibbitt et
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Figure 6.3: Yield Surfaces of the ABAQUS Drucker-Prager model in the 7-Plane

al., 1994) is a straight line in the p-t space defined by
fi=t—ptanf-d=0 (6.40)
in which
1 1 1y (r\*
t-;q[l+f+(l—E) (E)] (6.41)
i 3
r=[5291 ~ 02 - o0)(202 - 3~ 1) (203 ~ o1 — )] (642)

where 3, d and K are soil parameters, p is the mean principal stress and g is the
deviator stress.

In Equations (6.40) and (6.41), B is the friction angle of soil in the t-p plane. K
controls the dependence of the yield surface on the intermediate principal stress. K =1
implies that the yield surface is the von Mises circle in the 7-plane, as shown in Figure
6.3. The convexity of yield surface requires K > 0.778.
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It is known that the Mohr-Coulomb strength cand ¢ are i

of the intermediate principal stress (02). It can be assumed that the value of ¢ de-
termined from triaxial compression test is equal to that from triaxial extension test
(Sutherland and Mesdare, 1969). However, the Drucker-Prager parameters 3, K and d
are influenced by ;. To use c and ¢ to determine the value of 8 and K, it is preferable
to make the Mohr-Coulomb model and the Drucker-Prager model provide the same
failure ition in triaxial ion and ion. Hibbitt et al. (1994) deduced

that to match the response of triaxial compression and extension, the Drucker-Prager

Pparameters are given by

an e = 7725 (6.43)
_3—sing
Ke=35sme fea)
and
_ _6Bcoso
or =3 sne (645)
where B, K- and d, B, K and d ively under triaxial conditi

The three equations above provide the Drucker-Prager model parameters which
match the Mohr-Coulomb model in triaxial compression and extension. Because K, >
0.78 is required for the convexity of yield surface, Equation (6.44) implies ¢ < 22°.
Therefore, if ¢ is significantly greater that 22°, this approach may yield a poor Drucker-
Prager match of the Mohr-Coulomb parameters.

As described in chapter 3, the values of ¢ of the dense sand are typically between 32°
and 47°, depending on st
model for those high triaxial ¢ values, the failure surface f of the sand determined by

level. In this study, in order to adapt the Drucker-Prager

the calculated B, and K, as shown in Figure 6.4, is replaced by an equivalent yield
failure surface fn defined by 4, and K,,. The rule for defining f, is that the distance
between points @ and b in triaxial compression is equal to the distance between points
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Figure 6.4: Modification of Drucker-Prager yield surface

c and d. Using this rule, 4, is given by

tanf, =

et B ":(, '("'d—" (6.46)

K2+
KZ+2
with

dy = dir (6.47)
where p is the mean principal stress in soil. When d,. is zero or very small, the above
equation for 5, can be expressed as

2 +2

tan g, = K" 5 tan e (6.48)
where 0.78 < K,, < 1.0. For K,,=1,
tan g, = Kot 2ang, (6.49)

in which f,,, K., and d,, are modified Drucker-Prager parameters for triaxial matching.
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For plane strain problems such as strip foundations, the Drucker-Prager model
parameters should be matched to provide the same flow and failure response as Mohr-
Coulomb model. It is known that the value of friction angle (¢) is about 10% higher
under plane strain conditions than under triaxial conditions. That is

Op = (1+§)der (6.50)

where £ is about 10% (Bishop, 1961, 1966; Meyerhof, 1963; and Hansen, 1970).

Under plane strain conditions, the Drucker-Prager model parameters §, K and d
are represented by Gy, Ky and dy respectively. Assuming Kn=1 which means t=g,
Hibbitt et al. (1994) demonstrated that Sy and dy are related to Mohr-Coulomb
parameters ¢ and ¢, by

. tanB/3(8 —tan?y) .
L S ey e (6.51)
3(9 - tan? )

Py e (6.52)

ccosdp =
where ¥ is the dilation angle in the p-t plane as shown in Figure 6.2. For associated

flow (4 = By), this yields

_ _3singn i

B 3 +sin? 6 (o3

dp _ _3coséy (6.54)
c 3+ sin? g )

and for nondilatant flow (1 = 0), it can be derived that
tan By = V3sin ¢ (6.55)
% = V3cos dpt (6.56)
For the Drucker-Prager/Cap model, % under shear failure conditions is typically be-
tween 0 to 3. By averaging the values of tan §, and dy for associated flow and nondila-
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Table 6.1: Drucker-Prager parameters converted from c and ¢ (for K, =Ku=1)

Triaxial matching Plane strain matching
Friction angle (der = &) (9 = 1.19)

0 (degree) |G, (degree) | di,/c | Bu (degree) | du/c

20 34.12 212 32.68 139

25 40.09 211 38.18 151

30 45.12 2.08 42.66 1.42

35 49.32 2.03 46.30 132

40 52.83 195 49.24 120

45 55.76 185 51.60 1.08

50 58.20 1.73 53.49 0.95
tant flow using the four ions above, the il it ions of the Drucker-

Prager parameters for plane strain matching can be obtained from
tan gy = Y3500n (1+ - 218 ) (6:57)
;[ +sin® ¢p

d?" = -——‘ﬁ?“ (1 & ¥ ey +\ﬁz¢_‘) (6.58)

The Drucker-Prager model parameters derived from c and ¢ under triaxial condition
(€=0) and plane strain condition (€=0.1) are listed in Table 6.1.

In ring foundation analysis, soil under a circular footing (ring radii ratio n=0) is
in a condition close to triaxial testing (Okamura et al., 1997); the Drucker-Prager 3,
K and d can be approximated by 8., K, and d,,. The results of centrifuge tests
presented in Chapter 4 indicate that the behaviour of a ring footing is similar to a
circular footing when the ring radii ratio is within 0.35. When n is increased to 0.9,
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the soil under the footing can be considered under plane strain conditions and Gy, dy
and Ky =1 are used in analysis. Therefore, the values of § and d when K'=1 for a ring

footing with a radii ratio n can be obtained as

B = Bir — anlBir = B1) (6.59)
d =d,, — an(d,, — dy) (6.60)

where
o= { 1.82(n — 0.35) 5;;513?«09 (661)

In analysis, when the value of d is small, the load increment required may be too
small; with the increase of d, the yield stress may be too low and the cap may be in
tension space and a fatal error may occur. Reducing the value of R (see Sections 6.3.2
and 6.3.3) will improve the conditions. When d is too small, convergence may not
be guaranteed. In analysis, a relatively small ¢ value is used for each footings. The
value of soil cohesion c used is assumed to be proportional to footing dimension. For

a circular footing 1 m in diameter, c is assumed to be equal to 5 kPa, in order that

the bearing capacity is not signif Iy i d and the of the analysis
is ensured.

6.3.2 Yield surface

The yield surface of a soil element is a boundary in the stress space within which
the soil behaves elastically; an increment of stress from the yield surface may lead to a

plastic deformation depending on the flow rule. A ly, the plastic di

may result in a change of the yield surface and a new yield surface may be formed,
depending on the hardening law. The current yield surface of a soil is related to the
(effective) stress history of the soil.
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The vield surface of the modified Drucker-Prager/Cap model in the p-t space con-
sists of a straight line and a curved cap. The straight line is a Drucker-Prager shear
failure segment defined by Equation (6.40). This failure segment is a perfectly plas-
tic yield surface without hardening or softening. Plastic flow on the failure segment
results in plastic volumentric increase which only causes the cap to soften. The cap
vield surface, which hardens or softens as a function of plastic volumetric strain, is of

elliptical shape written as

— R(d +pstan ) =0 (6.62)

and the transition yield surface is expressed as

2
fo= \J(P—P.)L(- [c- (1—%) (d+p,t.anﬂ)] —a(d+p.tanB) =0 (6.63)

in which R is a soil parameter which controls the shape of the cap, « is a small number
for defining the transition yield surface. The parameter p, is in the form of

ps— Rd

“1+Rtans (654}

Pa

where the isotropic compression yield stress, p;, defines the hardening law, which will
be discussed later in the following section.

Hibbitt et al. (1994) suggests that an o value between 0.01 and 0.05 should be
used. Preliminary computational results indicate that the loading capacity of a footing
is not significantly affected by the value of a. Therefore, an a value of 0.03 is selected
in the analysis, as suggested by ABAQUS manuals. The loading capacity decreases
slightly with R, which varies typically from 0 to 1. For the dense sand in this study,
an R value of 0.5 is adopted.



Figure 6.5: Plastic potential of modified Drucker-Prager/Cap model

6.3.3 Flow rule and hardening law

To define the flow rule of a soil, a plastic potential (surface) is used to indicate the
direction of the plastic strain vector on the yield surface. The plastic strain vector is
perpendicular to the plastic potential. When the strain vector is also perpendicular
to the yield surface, the flow rule is termed associated. Otherwise, it is nonassociated.
For associated flow rule, the yield surface can be used as a plastic potential.

The surfaces of plastic potential of the modified Drucker-Prager/Cap model are
shown in Figure 6.5. On the cap yield surface, the plastic potential is associated, and
is given by
(6.65)

On the shear failure surface and the transition yield surface, the plastic potential is
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nonassociated, defined by

3
9= \JEp—p.)'-mﬂ!“r ['_—(1 +a_‘amsﬁ)] (6.66)

Therefore, g. and g, form a continuous and smooth potential surface. It should be

mentioned that the nonassociated plastic flow implies that the soil stiffness matrix is
not symmetric.

In the analysis, when the stress state of an element is outside the initially defined
cap yield surface, ABAQUS will adjust the cap position so that the stress state lies on
the yield surface.

The hardening law is defined by a piecewise relationship between the isotropic
compression yield stress (py) and the volumetric plastic strain (¢2), as shown in Figure
3.7. This relationship is obtained in isotropic triaxial compression test. In analysis,
the initial volumetric plastic strain (¢3) employed is corresponding to the initial stress
state when the analysis begins. It defines the cap yield surface at the start of analysis.

6.4 Finite Element Technique

This section introduces some basic techniques used in the analysis of the ring foot-
ings. The main ideas presented here come from the ABAQUS manuals (Hibbitt et al.,
1994).

6.4.1 Element selection and isop ic fi 1
In ABAQUS (Hibbitt et al., 1994), the axi ic elements are in
an r-z di system. i ion is used in order to exactly rep-

resent rigid body modes and homogeneous deformation modes, which is necessary for
convergence to the exact solution when the mesh is refined. All the elements are in-
tegrated numerically and the virtual work integral is replaced by a summation at the

150



integration points. The integration can be “full” or “reduced”. For full integration, the
number of i ion points is sufficient to exactly i the virtual work. For the

reduced integration, the number of integration points is sufficient to exactly integrate
the strain field contributions which are one order less than the order of interpolation;
the higher-order contributions to the strain field will be ignored.

In reduced integration elements, the strains and stresses are calculated at locations

which provide optimal accuracy. In addition, the reduced number of integration points

CPU time. A disad of this is that it may admit deformation
modes causing no straining at the i ion points. These gy modes cause
a named i and result in i solution. This problem

is particularly severe in first-order quadrilateral and hexahedra elements.
The isoparametric elements include quadrilaterals in two dimensions for plane and
and “brick” (hexahedra) in three di ions. Non-i ic

elements such as wedge elements are only be used for awkward parts of the mesh.
Standard first-order elements are of constant strains. Although first-order isoparamet-
ric elements can provide more than constant strain response, the higher-order content
is usually not accurate and has little value. The second-order elements are of linear
strains. For elliptic problems such as elasticity analysis, in which smoothness of so-
lutions is assured, the second-order elements usually provide higher solution accuracy
per degree of freedom.

For ici such as the ion analysis in the present study, when

the solution approaches the limit loads, the plasticity modes usually tend towards

and localizations arise. These di inuities in the gradient field

hyperbolic
should be well modelled. For a given number of nodes, the first-order elements are

likely to be the best, as they provide the most | ions at which some of
the solution gradient can be discontinuous (the element edges). Therefore first-order
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Figure 6.6: Isoparametric element

elements are preferred in such a case (Hibbitt et al., 1994, Nagtegall et al., 1974; and

Nagtegaal and De Jong, 1981).
In this study, 4-node first-order quadrilateral elements of soil are chosen for the

axisymmetric analysis. In the analysis, i ic il lation and full i

are used. The isoparametric element is shown in Figure 6.6. The isoparametric element
coordinates are g and h, ranging from -1 to +1 in an element. The interpolation
function of the first-order quadrilaterals is

u= 0= g1 = A+ 31+ )1~ A
+§(1 o)1+ hug+ %(1 — )1+ h)ug (6.67)
6.4.2 Interaction between soil and footings

In order to model the i ion between the defc ble soil and the relatively
stiff aluminum footing, interface elements are used. The footing is idealized as a rigid
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Figure 6.7: Node ordering of interface element INTER2A.

body; the surface of the footing contacting the soil is treated as a rigid surface and is
represented by rigid surface elements. For the surface of the soil contacting the footing,
the interface elements use the nodes corresponding to the discretized soil domain.
For each 4-node interface element (INTER2A), there are 2 nodes on each side of the
contacting surfaces of the soil and the footing. The two integration points are located
at the two ends. The node ordering of the interface elements is shown in Figure 6.7.
A rigid body representing a footing has a master reference node common to all of the
rigid surface element nodes. The nodes for defining the rigid surface elements are slave
nodes, on which kinematic constraints such as boundary conditions cannot be applied,
but to which other elements can be connected. For the reference node, transitional and
rotational degrees of freedom are allowed. Kinematic constraints controlling the over
all motion of the rigid body must be defined at the reference node. Point loads can be
applied to both the reference node and the rigid surface element nodes. Distributed
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Figure 6.8: Contact pressure-clearance relationship for interface elements

loads can be applied to the rigid surface elements. The reference node can be used for
nodal output.

For the interface elements between the rigid surface and the soil, a finite-sliding
formulation is adopted. This formulation allows for separation and relative finite dis-
placement. These elements satisfy the it of ilibri and inuity of
displacement in the normal contact direction and are able to transmit tangential shear

stress and normal pressure stress. When the normal stress is reduced to zero, the
surfaces begin to separate, as illustrated in Figure 6.8. Separated surfaces come into
contact when the clearance becomes zero.

The tangential shear stress is coupled with the normal stress by the effect of friction
between the two surfaces. The standard Coulomb friction model is used to define the
shear response. Using this friction model, the contact surfaces do not slide as long as



the equivalent shear stress is less than the critical shear stress (), or
Tq =T+ <7 (6.68)
where 7, and 7 is the shear stresses in direction 1 and 2 respectively. The critical shear
stress is related to the normal stress by
Ter = 1440 (6.69)
where o, is the normal stress and y; is the coefficient of friction of the interface.
For isotropic friction, the direction of the frictional slip is identical to the direction
of the shear stress, expressed by

s e (6.70)
T Yea

where 4 is the slip rate in direction i (i = 1 or 2), and 4. is the equivalent slip rate
given by
+9 (6.711)

A stiffness method is used to implement the friction theory. The condition of no
relative motion is approximately modelled by stiff elastic behaviour. No relative motion

exists until frictional slip occurs. A larger value of the stiffness will more reasonably

model the actual problem. As shown in Figure 6.9, the elastic stiffness is defined so
that the relative motion (elastic slip) from the point of zero shear stress is bounded by
the allowable maximum elastic slip (7.) after which frictional slip occurs. The elastic
slip is selected according to the value of a characteristic element length (%) calculated
by ABAQUS from the whole model. The maximum elastic slip is chosen as a small
fraction (Fy) of [;. A better approximation can be achieved with a smaller value of Fy,
at the expense of a slower convergence rate of the solution. As suggested by Hibbitt et
al. (1994), a default Fy value of 0.005 is selected in the analysis.
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Figure 6.9: Friction model of interface elements

6.4.3 Nonli luti hni

The finite element models for the foundation analysis are nonlinear and involve

many thousands of variables. The equilibri i may be ly

as

F¥uM)=0 (6.72)
where F¥ is the force component conjugate to the N** variable and u™ represents
value of the M** variable.

ABAQUS provides Newton’s method and Quasi-Newton’s method for solving the
nonlinear problem of Equation (6.72) by developing a series of increments (Hibbitt et
al., 1994). Because the nonassociated flow rule is used in the elasto-plastic Drucker-
Prager/Cap model for the soil, the stiffness matrix of the problem is not symmetric.
Therefore, the Quasi-Newton’s method, which requires that the Jacobian matrix should

156



be symmetric and not change greatly from one iteration to the next, can not be used.
The (standard) Newton’s method is adopted as a numerical technique for solving the
hrough the history of interest.

In the Newton's method, when an approximate solution of u} has been obtained
after an iteration i, if ¢, is the difference between this approximate solution and the

exact solution, Equation (6.72) can be written as
FNu +clfy) =0 (6.73)

Expanding this equation in a Taylor series about the approximate solution u? vields

aF™ FFY
FY) + o () + gorgug (e + ... =0 (6.74)

If uM is a close approximation to the solution, each ¢, will be small. Therefore, the
above equation can be substituted by

KNP, =-F (6.75)
where
FY = FNu}) (6.76)
and
QF~
K = Sl (6.77)

is the Jacobian matrix. In this way, the next approximation to the solution is
ulfy =u} +clf, (6.78)

and the iteration can be repeated to reach a required accuracy.
The advantage of this method is its quadrati rate when g

is ensured. However, Newton's method is expensive, because the Jacobian must be
formed and solved at each iteration. Another major disadvantage of this method is
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that the calculation of the Jacobian matrix may be a problem, because in some cases

it is difficult to obtain the form of the matrix ically. To ensure
all entries in F¥ and c, must be sufficiently small. In ABAQUS, the magnitude of

the i can be ically. The time step is controlled based on

the maximum force residuals following each iteration. By comparing the consecutive
values of the force residuals, ABAQUS can determine whether convergence is likely. If

convergence is unlikely in a ble number of i i the load i will

6.5 Implementation of Analysis
6.5.1 Introduction to ABAQUS

The finite element analysis of footings is carried out using a general purpose finite
element program, ABAQUS, which runs as a batch application (Hibbitt et al., 1994).
The input file indicates options required and gives data corresponding to these options.
ABAQUS data consist of model data and history data. Model data define a finite ele-
ment model including the elements, nodes, element properties and material behaviour;
history data indicate the sequence of events and loads applied to the model. The pro-
gram can be used to conduct various types of analyses, including static and dynamic
stress-displacement analysis, heat transfer and thermal stress analysis, coupled pore
fluid flow and stress analysis and mass diffusion analysis. In ABAQUS, a basic concept
is that a problem history can be divided into steps. A step is any phase of the history:
a thermal transient or a dynamic transient. In static stress analysis, a step just means
an analysis of a load change from one magnitude to another. In each step, a procedure
for defining the type of analysis (i.e., static or dynamic stress analysis) can be chosen,
and loading itions and boundary itions can be given. The procedure can be
changed from step to step to provide the user great flexibility in performing analyses.
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An analysis process may include different steps. Each new step will start the analysis
from the final state of the last step.

‘The element library in ABAQUS provides various choices of element types: solid

I its, interface el rigid elements, infinite elements, membrane

elements, beam elements, elbow elements, hydrostatic fluid elements, shell elements
and other special purpose elements. In an analysis, any meaningful combination of
elements can be used to make up the model. In the foundation analysis of this study,
solid elements are used in the soil domain, rigid elements are adopted to represent the
foundation, and interface elements are employed to model the friction between soil and
foundation.

ABAQUS provides a broad range of material behaviour: elasticity, plasticity, ther-
mal properties, hydrostatic fluid and pore fluid flow properties, mass diffusion and other
material properties. The material library provides both linear and nonlinear, isotropic
and anisotropic material models. The properties related to a material are specified in
a data block. A name is given to the material specified in order to reference it when
corresponding element properties are defined. Some material data can be defined as
functions of independent variables such as temperature and stress.

ABAQUS is well designed for result output including both nodal and element data.
It offers a printed data file written during the analysis, containing information of model
definitions, history definitions, and nodal and element output results specified by the
user. ABAQUS also offers a results file and a restart file for postprocessing. The
results file, in either ASCII or binary format, is a computer readable output file. The
restart file may be read by ABAQUS to continue the analysis or may be processed
by ABAQUS/POST to display the results. The program of ABAQUS/POST provides

luding model plotting, deformed shape plotting,

contour line plotting, vector plotting and X-Y plotting. It can be conveniently used
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to display plots interactively or generate hardcopy plots.
6.5.2 Finite element meshes

For circular and ring footings under axial loading, 4-node axisymmetric quadrilat-
eral elements (CAX4) are adopted in the soil domain. Each footing is represented by
a rigid body consisting of 6 two-node rigid surface elements (RAX2) and a reference
node. Between the rigid surface and the soil, 6 interface elements (INTER2A) are
defined to model the interaction between the footing and soil. Each 4-node interface
element shares two nodes with a rigid surface element and other two nodes with a soil
element. The finite element meshes for footings with ring radii ratios of 0, 0.2, 0.35,
0.5, 0.7, 0.8 and 0.9 are shown in Figure B.1 to B.7 in Appendix B, with 336, 368, 432,
400, 392, 324 and 336 soil elements respectively.

In the soil domain of the meshes, the nodes on the left vertical boundary which is
the center line of axisymmetry, can only move in the vertical direction; rotation and

hori 1 are i For nodes on the horizontal line at the bottom of

the meshes, both vertical and horizontal movements are not allowed. For nodes on the

right side boundary, only horizontal movement is restrained.
6.5.3 Loading of footings

‘The initial stresses in soil are the hydrostatic stresses due to gravity. The vertical
stress (1) of a soil element is calculated according to the depth of the element and
the unit weight of the soil. The horizontal stress (o; or o3) can be estimated using
the coefficient of earth pressure at rest (K,), measured using an oedometer ring as
introduced in chapter 3. The initial stresses are applied to the soil elements by a loading
step taking into account the soil body (gravity) force. In the process of loading, the
measured K, value of 0.42 is not directly used. A Poisson’s ratio (v) of 0.30 calculated



from K, using Equation (3.4) is used in the analysis. In this way, the initial stress
state in the soil can be modelled.

In the finite element analysis, a footing is represented by a rigid body consisting of
rigid surface elements and a reference node. The rigid surface elements are connected
with soil elements using interface elements. The nodes of the rigid surface elements are

slave nodes; ki it ints or ions cannot be applied on them.

Boundary conditions of a footing must be defined on the reference node which can also
be used for nodal output of loads and displacements. The reference node is a point
where the load on the footing is applied.

Loading is applied on a footing by giving a prescribed vertical displacement on
the reference node of the rigid body in a number of increments. The magnitude of a
loading (di i is i selected by ABAQUS depending on
the conditions of convergence. To ensure accuracy of analysis, the load is applied in 30

or more increments for each footing.

6.6 Analysis of Circular Footings
6.6.1 Procedure of analysis

Circular footings on the dense sand under axial loads have been analysed using the
FE technique. Because the friction angle of soil decreases with stress level, an equivalent
friction angle has been adopted for each footing. The technique of iteration has been
employed in the finite element analysis. For each footing, an initial bearing capacity
is assumed in order to calculated the mean stress (s) in soil using Equation (5.54).
Using the estimated s, the friction angles at peak and critical state can be obtained
by Equation (3.20) to (3.21); the Young’s modulus can be obtained using Equation
(3.9). After calculating the parameters of Drucker-Prager model by Equation (6.47)
and (6.49), finite element analysis of the footing can be carried out to obtain a new
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bearing capacity. Then the calculated bearing capacity is used to repeat the analysis
until a required accuracy for the bearing capacity is reached. Analysis shows that the
convergency rate of iteration for the bearing capacity is very quick. For an assumed
initial bearing capacity which is about one half of or twice the accurate bearing capacity
of a footing, a bearing capacity with an accuracy of 0.1 percent can be obtained by
repeating the iteration process for 3 or 4 times.

Preliminary analysis indicates that using the peak friction angle in the finite element
analysis leads to an over-estimated bearing capacity when compared with centrifuge
results. This suggests that a friction angle between the peak and critical state friction
angles should be used. The friction angle from triaxial data for FE analysis is expressed
as

b = Ges + Mg(Smas — bes) (6.79)
where m, is a coefficient having a value from 0 to 1, $maz and ¢, are peak and critical
friction angles expressed by Equation (3.20) and (3.21) respectively and are dependent
on stress level. Preliminary analysis of circular footings indicate that to best fit the
centrifuge data, an m, value of 0.5 should be used in the finite element analysis. This
g value of 0.5 has been chosen so that the bearing capacity obtained from the FE
analysis is in accordance with that from the centrifuge tests when the footing diameter
is 1.0 m. A footing of 1.0 m in diameter is considered an intermediate footing in size
in the centrifuge tests and FE analysis.

The initial plastic volumetric strain (£2) in the soil under a footing is estimated
according to a mean principal stress, by using the relationship between the plastic
volumetric strain and mean principal stress as shown in Figure 3.7. This mean principal

stress in the soil is the average value to a depth of three times the footing diameter.
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Figure 6.10: Normalized bearing pressure (R,) versus relative settlement (s/D) of
circular footings from FE analysis

6.6.2 Effect of footing size

Centrifuge test results presented in Chapter 4 show that the bearing capacity of
circular footings increases linearly with footing diameter in a double-log scale diagram.
The failure mode of footings tends to move from general shear failure to local shear
failure when the size of footings is i The effects of ion size on the
behaviour of bearing capacity have been widely discussed (De Beer, 19652; and Vesic,
1973; Clark, 1998).

To investigate the influence of footing size using FE technique, several circular
footings under axial loads have been analyzed. The finite element model used for the
analysis is shown in Figure B.1. The relationships between the normalized bearing

pressure R, expressed in Equation (4.18) and the relative settlement of footings with
diameters of 0.5, 1.0, 2.0, 5.0, 10 and 20 m are presented in Figure 6.10. In the figure,
s represents the settlement of a footing; D is the footing diameter. The normalized
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bearing pressure is in the form of

=2
=3D (6.80)

where p is the averaged pressure acting on the footing, and 7 is soil unit weight.
From Figure 6.10, it can be seen that the normalized bearing pressure decreases
with footing size. When the footing diameter is increased from 0.5 m to 20 m, the
normalized bearing pressure at failure is reduced from approximately 125 to 42; the
relative is i d from i ly 8% to 22%. It can also be seen

that the slope of the curves before failure loads decreases significantly with footing
size. The failure mode of the circular footings tends to move from general shear failure
to local shear failure when the footing diameter is increased.

The behaviour of load and settlement of circular footings from the FE analysis is
very close to that of circular footings in centrifuge tests as seen in Figure 4.12. A major
difference is that in centrifuge tests, there are peak loads for small footings, while in
the FE analysis there is no peak load for all footings.

The bearing capacity obtained from FE analysis is plotted against footing diameter
in Figure 6.11. The values of bearing capacity are 660, 960, 1450, 2300, 4400, 7600
and 13000 kPa when the footing diameters are 0.2, 0.5, 1.0, 2.0, 5.0, 10 and 20 m
respectively. The bearing capacity increases i linearly with
footing diameter in the double-log scale diagram. For comparison, the bearing capacity
tests, d by ion (4.22) is also shown

of circular footings from
in Figure 6.11. It can be seen that the bearing capacity of circular footings from
FE analysis is very close to that obtained from centrifuge tests. The difference is very
small when the footing diameter is greater than 0.5 m. For smaller footings, the bearing
capacity from FE analysis is higher.

The bearing capacity of circular footings of up to 20 m in diameter has been cal-
culated in the FE analysis. In the centrifuge tests described in Chapter 4, the footing
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Figure 6.11: Bearing capacity versus diameter of circular footings

diameter is limited to 7 m. The relationship between the bearing capacity and foot-
ing diameter from centrifuge tests can be extrapolated as shown by the dotted line
in Figure 6.11. The bearing capacity of footing with diameters of 10 m and 20 m is
on the dotted line extrapolated from centrifuge test data. This indicates that when
calibrated with test data, the FE technique developed can be used to estimate the
bearing capacity of large foundations.

‘With the increase of footing size from 0.2 m to 20 m, the bearing capacity obtained
from the FE analysis is increased from 660 kPa to 13,000 kPa, which leads to an
significant increase of stress level in the soil and a decrease of friction angle shown in
Figure 6.12. The equivalent friction angle mobilized is reduced from 42.4° to 36.4°
when the footing diameter increases from 0.2 m to 20 m. For a log-cycle increase of
footing size, the mobilized friction angle of soil in reduced by 3°.
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Figure 6.12: Equivalent friction angle versus footing diameter in FE analysis
6.7 Axially Loaded Ring Footings

The behaviour of ring footings under axial loads has been analyzed using the FE
technique. The meshes for the FE analysis of footings with ring radii ratios of 0, 0.2,
0.35, 0.5, 0.7, 0.8 and 0.9 are shown in Figure B.1 to Figure B.7. To investigate the
effect of footing size, four groups of footings with areas of 0.785, 1.57, 19.6 and 78.5
m? are analyzed. The corresponding circular footing diameters are 1.0, 2.0, 5.0 and 10
m respectively.

6.7.1 Load and settlement

Figure 6.13 presents the relationship between the average pressure applied and the

settlement of two groups of footings, in which s represents the settlement of footings,

and D is the outside diameter. In Figure 6.13(a), the area of the footings is 0.785 m?,
in which the outside footing diameters (D) are 1.0, 1.068, 1.155, 1.400 and 2.294 m



(a): A=0.785 m2 (D=1.0m when n=0)
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Figure 6.13: Load versus settlement of ring footings from FE analysis



when the ring radii ratios are 0, 0.35, 0.5, 0.7 and 0.9 respectively. The load-settlement
relationship is influenced greatly by the ring radii ratio (n). The slope of the curves
before failure loads increases with ring radii ratio. The failure load is maximum when
n=0.35; when n=0 and 0.5, the failure loads are approximately equal; for a ring footing
with n=0.9, the failure bearing pressure is 660 kPa, which is about one half of that
of the circular footing (n=0). When n=0, 0.35 and 0.5, there are no peak loads; the
loads increase slightly with settlements after failure loads. For n=0.7 and 0.9, there
are peak loads; the load is decreased after the failure of footings.

For the larger footings with an area of 19.63 m? in Figure 6.13(b), in which the
footing outside diameters are 5.0, 5.34, 5.77, 7.00, 11.5 m when the ring radii ratios
are 0, 0.35, 0.5, 0.7 and 0.9 respectively, the relationship between load and settlement
is similar to that of the smaller footings in Figure 6.13(a). It is seen that there are
differences between the two groups of footings. In Figure 6.13(b), there is no peak
load for the footing with n=0.7. The decrease of load after failure is more obvious

for the footing with n=0.9. More i ly, the relative (s/D) at failure
becomes greater. The slope of the curves is smaller than that of the footings in Figure
6.13(a). With the increase of footing size, the bearing capacity increases but the failure
mode becomes more and more local.

Compared with the centrifuge test data shown in Figure 4.16 to 4.19, the FE tech-
nique is not very good for modelling the strain ing behaviour of footings after

failure loads. In centrifuge tests, all ring footings with various dimensions have failed
in general shear mode; the failure loads are the peak ones. In the FE modelling, only
footings with large ring radii ratio (n is greater than 0.7) fails in general shear model;
when n is smaller, the failure mode is local shear. However, in both centrifuge tests
and FE analysis, the load-settlement patterns are very similar before failure loads.
Therefore, from the view point of bearing capacity, the results of the FE analysis of

168



2
FE analysis: + Group 1
% Group 2
215
s X Group 3
= © Group 4
g []
g 1
8
> §
g
<
s
3
@05 A
Centrifuge test
o 02 04 06 08 1

Ring radii ratio

Figure 6.14: Bearing capacity ratio (B,) versus ring radii ratio (n) from FE analysis
(Group 1: A=0.785 m?; Group 2: A=1.57 m?; Group 3: A=19.6 m? Group 4: A=78.5
m?)

ring footings are satisfactory.
6.7.2 Bearing capacity

As described in Section 6.6, the values of bearing capacity of circular footings of 1.0,
2.0, 5.0, and 10.0 m in diameter are 1450, 2300, 4400 and 7600 kPa respectively. Four
groups of ring footings with the same areas as these four circular footings have been
analyzed using FE technique to investigate the effect of footing size and ring radii ratio
on bearing capacity. The calculated values of bearing capacity ratio (B;) as given by
Equation (4.27), which is defined as the ratio of the bearing capacity of a ring footing
over the bearing capacity of a circular footing with the same area, are shown in Figure
6.14.

It is seen that at a given n value, the difference of the calculated B, values of the
four groups of footings is very small. This suggests that the footing size has little effect
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on the value of bearing capacity ratio. The B, values from the FE analysis are very
close to those from centrifuge tests. The FE technique adopted is good for calculating
the bearing capacity of ring footings under axial loads.

6.8 Summarizing Remarks

The FE technique has been used for bearing capacity analysis of ring footings on
dense sand under axial loads. In the analysis, a footing is represented by a rigid body
with rigid surface elements. In the soil domain, 4-node axisymmetric elements are
used. Between the footing and soil, interface elements have been adopted. Drucker-
Prager/Cap constitutive model is chosen to simulate the elasto-plastic behaviour of
soil. The analysis has been carried out using a general purpose finite element program,
ABAQUS. The footings were loaded by applying a prescribed vertical displacement in
a number of increments.

The effect of footing size on bearing capacity has been investigated by analyzing
circular footings of 0.2 to 20 m in diameter. The normalized bearing pressure decreases
with footing size. The failure mode of the circular footings tends to move from general
shear to local shear when the footing size is increased. The bearing capacity increases
from 660 to 13000 kPa when the footing diameter is from 0.2 to 20 m. As a result, the
mobilized soil friction angle estimated is reduced from 42.4° to 36.4°, due to the increase
of stress level in soil. The relationship between the calculated bearing capacity and
footing diameter is approximately linear in a double-log scale diagram. The bearing
capacity from FE analysis is very close to that obtained in centrifuge tests. Footings
with ring radi ratios of 0.2, 0.35, 0.5, 0.7, 0.8 and 0.9 have been analyzed to examine the
effect of footing shape and size. The load-settlement pattern and the bearing capacity
behavior of the ring footings analyzed are similar to those observed on centrifuge tests.

In the literature, very few good results of the bearing capacity of foundations on
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sand from finite element analysis have been reported. It is believed that the difficulty
is due to the complexity of soil behaviour. In this study, an attempt has been made to
use the FE technique to investigate the bearing capacity behaviour of ring foundations
on a dense sand. Satisfactory results have been obtained. The parameters of the
Drucker-Prager/Cap constitutive model are chosen according to the triaxial behaviour
and other properties of soil. Some soil are i by ing the

bearing capacities obtained from the FE analysis to those from the centrifuge tests.
The finite element technique is helpful for further understanding of ring foundation
behaviour. It can be very useful when experimental modelling is difficult, such as in

the case of very large foundation analysis. The dure of the FE analysis developed
could be helpful for future research on the behavi of foundati on cohesionl

soils.
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Chapter 7

Summary and Conclusions

7.1 Summary

This thesis presents research on the bearing capacity of ring foundations on a dense
sand by means of centrifuge modelling, the method of characteristics and FE analysis.
The work has summarized the past research on ring foundations and has presented a
comprehensive review of the fundamentals of bearing capacity in order to provide an
insight to the behaviour of foundations. The silica sand used had an effective grain size
(dio) of 0.22 mm and a uniformity coefficient of 1.69. Triaxial tests have been carried
out to determine the the variations of friction angle and plastic volumetric strain of
the sand at a density index of 90%. In situ stresses and elastic moduli were measured
by oedometer compression tests. The friction between the sand and the aluminum
footings used in centrifuge tests was measured using a direct shear device.

Over 40 centrifuge tests of ring footings on the sand have been carried out at
accelerations from 10 to 160 gravities to investigate the effect of footing size, ring radii
ratio and load eccentricity on bearing capacity. The aluminum model footings of 15
cm? in area each have ring radii ratios of 0, 0.2, 0.35, 0.5, 0.7, 0.8 and 0.9. Footings
were loaded vertically at a constant rate of 0.1 mm per second, with load eccentricity

ratios ranging from 0 to 0.375. A steel ball was positioned on each footing to transfer
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load from a load cell so that the footing could rotate during loading. Three linear
displacement transducers were used to measure the vertical displacement and rotation
of footings. Sand samples of up to 430 kg were prepared by a raining technique using
a diffuser consisting of three 200 mm sieves and a shutter with 19 holes, resulting in
a density index of 90%. During the raining of sand, the falling height was kept at 50
cm while the deposition intensity was 0.103 g/cm? per second. Centrifuge model tests
have been verified using the principle of modelling of models. Based on the test results,
a procedure for evaluating the bearing capacity of ring foundations under axial and
eccentric loads has been presented.

‘The bearing capacity of circular footings under axisymmetric conditions has been es-
timated by the method of characteristics (or slip-line method) using the Mohr-Coulomb
yield criterion of soil. The analysis has been carried out to investigate the effect of foot-
ing size on bearing capacity. An elastic wedge under a rough footing has been assumed.
The wedge angle can be derived from the average mobilized friction angle according
to the stress level along the wedge surface. A program written in C has been devel-
oped to implement the analysis. Analyses have been conducted using both a constant
equivalent friction angle and variable friction angle which depends on the stress level
in the soil.

Circular and ring footings under axial loads have been analyzed by the finite element
(FE) technique. A footing is represented by a rigid body consisting of rigid surface
elements. In the soil domain, 4-node axisymmetric element are used. Interface elements
are used to model the interaction between the footing and soil. The elasto-plastic

lati ip of soil is d by the Drucker-Prager/Cap model. The

FE analysis has been conducted on circular footings of 0.2 to 20 m in diameter and
on ring footings of different dimensions and ring radii ratios. The effect of footing size

and shape on bearing capacity has been investigated.
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7.2 Conclusions

According to the results obtained ding to the soil behavi the
modelling and numerical analysis of circular and ring footings, the following conclusions
can be drawn:

1. In triaxial compression tests, both the peak and critical state friction angles of
the silica sand with density index of 90% decrease with stress level. When the cell
pressure is increased from 25 to 2500 kPa, the peak friction angle is reduced from
46.9° to 37.3°, while the critical state friction angle is reduced from 40.1° to 31.9°.
For a log-cycle increase of stress, the friction angles are reduced by 4° to 5°. The
difference between the peak friction angle and the critical state one ranges from 5° to
7°, decreasing with stress level.

2. The coefficient of earth pressure at rest (K,) of the sand measured using an
oedometer ring is 0.42. The value of Poisson’s ratio determined from the value of K,
is 0.30. The measured elastic modulus, which increases with stress, is close to that
proposed by Hardin and Richart (1963).

3. The coefficient of friction between the sand and the aluminum footings, measured
using a direct shear device, is 0.53. This value is equivalent to a friction angle of 28°
between the sand and the footings.

4. Using the raining technique developed, dense uniform sand samples can be
obtained with good repeatability. The method is very effective for preparing large
sand samples.

5. For the circular footings in the centrifuge, the bearing capacity increases linearly
with footing diameter in a double-log scale diagram. For a footing with a prototype
diameter of 7 m, the measured bearing capacity is as high as 6200 kPa. The bearing

capacity factor N, decreases with increasing footing size due to the reduction of soil
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friction angle with stress level and the effect of progressive failure of soil.

6. In centrifuge tests, the bearing capacity of constant area ring footings under
axial loads increases slightly when the ring radii ratio (n) is from 0 to 0.35. When n
is greater than 0.35, the bearing capacity decreases significantly. For a ring footing
with n=0.9, the bearing capacity is about one half of that of the circular footing. Test
results indicate that the bearing capacity of a ring footing can be obtained from the
bearing capacity of a circular footing with the same area using a bearing capacity ratio.
B,. The value of B, is related only to the ring radii ratio, and is independent of footing
size.

7. For eccentrically loaded ring footings in centrifuge, the bearing capacity decreases
with load eccentricity. The bearing capacity of a ring footing under eccentric load can
be expressed in terms of a reduction factor (R.) and the bearing capacity of the footing
under axial load. The value of R, is related only to load eccentricity, and is independent
of ring radii ratio and footing size.

8. The centrifuge test results indicate that the bearing capacity of an eccentrically
loaded ring footing on the sand (g,) can be estimated from the bearing capacity ratio,
B,, the reduction factor, R., and the bearing capacity of an axially loaded circular

footing with the same area (g,). That is
9u = ReBrguc

This procedure for evaluating the bearing capacity of ring footings under vertical loads
is very practical, because the bearing capacity of a circular footing can be obtained
using the generally accepted experimental data and theories available in the literature.

9. The bearing capacity of circular footings can be calculated by the method of char-
acteristics using variable soil friction angle or equivalent constant friction angle. The
bearing capacities calculated also increase approximately linearly with footing dimen-

sion in a double-log scale diagram, and are close to the results obtained in centrifuge
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tests. The method for bearing capacity using an equivalent friction angle provides a
basis for the FE analysis of footings using constant friction angles.

10. In the FE analysis, the bearing capacity of circular footings is increased from
660 to 13000 kPa when the footing diameter is from 0.2 to 20 m. As a result, the
mobilized soil friction angle is reduced from 42.4° to 36.4°, due to the increase of stress
level in soil. The load-settlement pattern and bearing capacity of ring footings obtained
from the FE analysis are very close to those from centrifuge tests.

11. This study presents an attempt at applying the finite element technique for the
bearing capacity of ring foundations on sand. The results from the analysis of circular
and ring footings are sati: It should be i that some soil
for the FE analysis have been determined by comparing the results of FE analysis with
centrifuge test data. The finite element model calibrated with experimental data is
very useful for analysis of very large foundations or for other cases when experimental

results are not available or difficult to obtain.
7.3 Future Research

In this study, centrifuge tests have been carried out to investigate the bearing
capacity behaviour of ring footings on sand under axial and eccentric vertical loads. The
method of characteristics has been employed to study the effect of footing size on the
bearing capacity of circular footings. The FE analysis has been carried out to calculate
the bearing capacity of circular and ring footings under axial loads. Good results have
been obtained. According to the results and experience obtained in this research, it is
recommended that future research on the bearing capacity of ring foundations should
be concentrated on the following.

1. Centri delling of ring ions under inclined or torsional loads should

be because ring foundations are often used for tall structures which are
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subject to horizontal as well as vertical loads.

2. Centrifuge tests may be carried out to investigate the effect of other factors on
the bearing capacity of ring foundations, such as the density of sand, the embedment
depth of foundations and the cohesion of soil. The presently available theories and
experience of strip and circular foundations should be very helpful to guide the design
of the experiment. It is expected that the results of a limited number of tests will be
enough to provide a insight to the influence of those factors.

3. Three dimensional finite element analysis can be carried out for ring foundations
under eccentric and inclined loads. Three dimensional FE analysis will be more difficult
to conduct due to the large number of variables and slower convergence rate in analysis
of foundations under eccentric and inclined loads. The analysis should be focused on
large foundations as they are more practical. For small footings on sand such as one
of 0.1 m in dimension, the FE analysis may be difficult due to the high friction angle

of soil as the stress level is low.
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Appendix A

Load and Displacement of
Eccentrically Loaded Ring Footings

Centrifuge tests of eccentrically loaded circular and ring footings with an area of
15cm? were conducted at an acceleration of 100 gravities, as described in Chapter 4.
The footings are in five groups, with ring radii ratio n = 0, 0.35, 0.5, 0.7 and 0.9

y. The loading icity varies from 0 to 0.375. The load, settlement and

rotation angle of 20 tests conducted at various ring radii ratio and loading eccentricity

are given in Figure A.1 to A.20 as follows.
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Figure A.1: Load and rotation angle versus vertical settlement (n=0, e/ D=0)
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Figure A.2: Load and rotation angle versus vertical settlement (n=0, e/ D=0.075)
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Figure A.3: Load and rotation angle versus vertical settlement (n=0, e/D=0.15)
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Figure A.8: Load and rotation angle versus vertical settlement (n=0.35, e/ D=0.375)
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Figure A.9: Load and rotation angle versus vertical settlement (n=0.5, e/ D=0)
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Figure A.18: Load and rotation angle versus vertical settlement (n=0.9, e/D=0.15)
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Figure A.19: Load and rotation angle versus vertical settlement (n=0.9, e/ D=0.25)
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Figure A.20: Load and rotation angle versus vertical settlement (n=0.9, e/ D=0.375)
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Appendix B

Finite Element Meshes for Axially
Loaded Ring Footings

The finite element meshes for seven circular and ring footings under axisymmetric
conditions with ring radii ratio n=0, 0.2, 0.35, 0.5, 0.7, 0.8 and 0.9 are shown in Figure
B1 to B7 respectively. The meshes have been used in the finite element analysis of the
bearing capacity of ring footings on sand, as presented in Chapter 6. In each figure,

the dashed line on the left side represents the axisymmetric center. At the bottom

of each mesh, both vertical and hori: displ: are ined; at the right

side of the mesh, only horizontal displacement is not allowed.

212



Figure B.1: Finite element mesh for circular footing (n=0)
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Figure B.2: Finite element mesh for ring footing with n=0.2
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Figure B.3: Finite element mesh for ring footing with n=0.35
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Figure B.4: Finite element mesh for ring footing with n=0.5
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Figure B.5: Finite element mesh for ring footing with n=0.7
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Figure B.6: Finite element mesh for ring footing with n=0.8
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Figure B.7: Finite element mesh for ring footing with n=0.9
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