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Abstract 

The fish processing industry generates a significant amount of fish byproducts that could 

either be an important source of energy, food, or industrial feedstock. Fish oils are made 

up of several lipid classes. These lipids contain long-chain omega-3 polyunsaturated fatty 

acids; PUFA, (mostly eicosapentaenoic acid (EPA: C20:5 n-3), and docosahexaenoic acid 

(DHA: C22:6 n-3)) and other lipid classes. The traditional market for the nutritional 

lipids in the fish oil has been the food industry. However, significant infrastructure for the 

strict quality control systems is required for food grade oils. Therefore, the process of 

extracting the high nutritional oils is energy intensive. Further, the location and 

infrastructure limit the feasibility due to processing requirement, storage and/or 

transportation issue. For biofuel implementation, the processes to extract and refine fish 

oil are less energy intensive than the processes for nutritional quality oils and do not 

require the stringent product specifications and approval process as in the food and 

pharmaceutical industry. There have been significant advances in developing inexpensive 

and robust methods for fuel extraction and upgrading processes.  

Supercritical fluid extraction process using carbon dioxide (SC-CO2) under moderate 

conditions is promising for quality fish oil production. This process produces oil with low 

impurities compared to other processes. The specific research objectives include: (1) 

Overview and background information on Atlantic Canada fish processing plants (2) 

Review of (state of art) fish oil extraction processes including physical, chemical and 

biological processes. (3) Fuel oil characterization of fish oil and fish oil blends with 

petroleum distillate. This section evaluates thermal stability, rheological, and heating 
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values, of crude fish oil and blend with heavy petroleum distillate. (4) Solubility 

determination of fish oil in SC-CO2; the SFE extraction process (optimize the SFE 

process conditions to maximize fish oil yield under the least intensive conditions, 

pressures, temperatures and CO2 consumption); and mathematical model to predict oil 

extraction rate as a function of process conditions. (5) Fuel oil quality evaluation as a 

function of extraction methods. (6) Life cycle assessment (LCA) of different extraction 

processes (modified fishmeal process (MFM), SC-CO2, and soxhlet processes) of fish oil 

from salmon wastes. The environmental burdens and potential impacts by each extraction 

process were quantified through the LCA.  

In the characterization phase of this study, the thermal and rheological properties of 

unrefined salmon oil, bunker fuel oil and their blends have been analyzed. The feasibility 

of using unblended and/or blends of fish oil in conventional heaters/boilers/engines are 

determined by these properties. The MFM oils, the bunker fuel oil and their blends 

behaved as a shear thinning non-Newtonian fluid that can be described by the power-law 

model.  

The supercritical carbon dioxide extraction (SC-CO2) was effective at pressures of 15, 25, 

and 35 MPa, temperatures of 313, 333 and 353 K, and CO2 flow rates of 0.18-0.48 kg/hr. 

The process is solubility controlled and the yields at 35 MPa, temperatures of 313, 333 

and 353 K, and CO2 flow rates of 0.18 kg/hr were approximately 39, 46 and 41 (wt.%). 

The mathematical model (Goto et al. 1993) using the best fit of theoretical extraction 

curve correlated the experimental data satisfactorily with average absolute deviation, 

AAD (%) ranged from 2.4 to 10.6 %. Unlike the MFM oil, the SC-CO2 oil is more 
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viscous homogenous oil which behaved as a Newtonian fluid. Physco-chemical, 

compositional and thermal characterization indicated SC-CO2 oil contains fewer 

impurities than the MFM and soxhlet process oils. 

From the LCA results, the MFM method has the lowest overall environmental impact 

compared to the soxhlet and SC-CO2 methods. The soxhlet extraction method, due to the 

use of solvent (hexane), has the greatest impacts on all of the four damage categories 

(human health, ecosystem quality, climate change and resources). The SC-CO2 requires 

more energy to produce 1 kg fish oil (2 folds more than the MFM and 3 folds more than 

the soxhlet methods). However, the SC-CO2 produces higher quality oil than the other 

two processes and the process impact on the environment is moderate relative to the 

MFM and soxhlet processes. 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

ACKNOWLEDGEMENT 

Glory be to Allah (SWT) who from His infinitesimal mercy showers His bless and mercy 

upon me, protect and guide me from the beginning of this project till the very end.  

 

I am indebted to my lovely wife and daughter, Mrs. Yusrah Adeoti and Ismat Adeoti for 

their perpetual support, encouragement and love. You two are a constant source of joy. 

 

My sincere gratitude goes to my supervisor, Dr. Kelly Hawboldt and I would like to 

thank Dr. Yan Zhang and Dr. Robert Helleur of my supervisory committee, and Dr. 

Francesca Kerton of chemistry for their perpetual support, advice and encouragement 

throughout the course of my research. 

I would also like to thank the Faculty of Engineering and Applied Science, Memorial 

University of Newfoundland, and acknowledge the funding provided by the Government 

of Newfoundland and Labrador (Green Fund) and, NSERC (Natural Science and 

Engineering Research Council of Canada). 

 

 

 

 

 

 



vi 

 

 
 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGEMENT .................................................................................................. v 

TABLE OF CONTENTS ................................................................................................... vi 

LIST OF TABLES ........................................................................................................... xiii 

LIST OF FIGURES .......................................................................................................... xv 

CHAPTER 1 

INTRODUCTION AND OVERVIEW. ............................................................................. 1 

CHAPTER 2 

LITERATURE REVIEW ................................................................................................... 8 

A REVIEW OF LIPID EXTRACTION FROM FISH PROCESSING BY-PRODUCT  

FOR USE AS A BIOFUEL ................................................................................................ 9 

2.0 INTRODUCTION ...................................................................................................... 11 

2.1 EXTRACTION OF OIL FROM FISH WASTE FOR FUEL OIL APPLICATION .. 14 

2.2 FISHMEAL OPERATIONS FOR MEAL AND OIL PRODUCTIONS ................... 17 

2.2.1 OIL EXTRACTION PROCESSES. ..................................................................... 18 

2.2.2 PHYSICAL METHOD ........................................................................................ 19 

2.2.2.1 OIL PRODUCTION FROM FISHMEAL PROCESS .................................. 19 



vii 

 

2.2.3 CHEMICAL METHODS ..................................................................................... 21 

2.2.3.1 SOLVENT EXTRACTION .......................................................................... 21 

2.2.3.2 BLIGH AND DYER (B&D) ......................................................................... 22 

2.2.3.3 SOXHLET METHOD ................................................................................... 25 

2.2.3.4 ACCELERATED SOLVENT EXTRACTION (ASE) ................................. 26 

2.2.3.5 MICROWAVE ASSISTED EXTRACTION (MAE) ................................... 27 

2.2.3.6 ACID-ALKALI-AIDED EXTRACTION ..................................................... 28 

2.2.3.7 SUPERCRITICAL FLUID EXTRACTION (SCFE) .................................... 29 

2.2.3.8 MEMBRANE COUPLED SC-CO2 EXTRACTION. ................................... 34 

2.2.4 BIOLOGICAL PROCESSES .............................................................................. 34 

2.2.4.1 HYDROLYSIS .............................................................................................. 34 

2.2.4.2 FERMENTATION ........................................................................................ 36 

2.3.0 SUMMARY AND CONCLUSION. .................................................................... 39 

CHAPTER 3 

THERMAL AND FLOW PROPERTIES OF FISH OIL BLENDS WITH BUNKER 

FUEL OIL ......................................................................................................................... 49 

3.1 INTRODUCTION ...................................................................................................... 54 

3.2. MATERIALS AND METHODS ............................................................................... 55 

3.2.1. SAMPLE PREPARATION ................................................................................ 55 



viii 

 

3.2.2. THERMO GRAVIMETRIC ANALYSIS (TGA) .............................................. 56 

3.2.3. CALORIFIC VALUE/HIGH HEATING VALUE (HHV) ................................ 56 

3.2.4 FLASH POINT TESTING ................................................................................... 57 

3.2.5. MELTING POINTS AND ENTHALPY ............................................................ 57 

3.2.6. RHEOLOGICAL PROPERTIES ........................................................................ 58 

3.3 RESULT AND DISCUSION ..................................................................................... 59 

3.3.1 THERMAL ANALYSIS (TGA) .......................................................................... 59 

3.3.2 CALORIFIC VALUE/HIGH HEATING VALUE (HHV) ................................. 64 

3.3.3 FLASH POINT TESTING ................................................................................... 66 

3.3.4. MELTING POINTS AND ENTHALPY ............................................................ 67 

3.3.5. RHEOLOGICAL PROPERTIES ........................................................................ 71 

3.4 SUMMARY AND CONCLUSION. .......................................................................... 77 

CHAPTER 4 

SOLUBILITY MEASUREMENT, EXPERIMENTAL AND MASS TRANSFER  

MODELING OF SALMON PROCESSING WASTE USING SC-CO2 .......................... 82 

4.1 INTRODUCTION ...................................................................................................... 87 

4.2 MATHEMATICAL MODELING .............................................................................. 92 

4.3 MATERIALS AND METHODS .............................................................................. 100 

4.3.1 SOLUBILITY DETERMINATION .................................................................. 101 



ix 

 

4.3.2 SUPERCRITICAL FLUID EXTRACTION (SFE) ........................................... 102 

4.3.3 MODEL PARAMETERS ESTIMATION ......................................................... 103 

4.4 RESULTS AND DISCUSSION ............................................................................... 106 

4.4.1 SOLUBILITY OF FISH OIL ............................................................................. 106 

4.4.2 DYNAMIC BEHAVIOR OF EXTRACTION OF FISH OIL ........................... 110 

4.4.3. GOTO ET AL. MODEL COMPARED WITH EXPERIMENTAL DATA FROM 

THIS WORK. .............................................................................................................. 111 

4.4.4. EFFECT OF OPERATING PARAMETERS ON EXTRACTION YIELD ..... 112 

4.4.4.1. EFFECT OF TEMPERATURE ON CUMULATIVE EXTRACTION 

YIELD. .................................................................................................................... 112 

4.4.4.2. EFFECT OF PRESSURE ON CUMULATIVE EXTRACTION YIELD. 113 

4.4.4.3. EFFECT OF SOLVENT MASS FLOW RATE ON CUMULATIVE 

EXTRACTION YIELD. .......................................................................................... 116 

4.4.4.4. PREDICTED EFFECT OF PARTICLE SIZE ON CUMULATIVE 

EXTRACTION YIELD. .......................................................................................... 117 

4.5 CONCLUSION ..................................................................................................... 118 

CHAPTER 5 

COMPARISON OF BIOFUEL QUALITY OF WASTE DERIVED OILS AS A FUNCT- 

ION OF OIL EXTRACTION METHODS ..................................................................... 128 



x 

 

5.1 INTRODUCTION. ................................................................................................... 133 

5.2 MATERIALS AND METHODS .............................................................................. 135 

5.2.1 OIL RECOVERY METHODS .......................................................................... 135 

5.2.2 LIPID AND FATTY ACID COMPOSITION ANALYSIS .............................. 135 

5.2.3. THERMO GRAVIMETRIC ANALYSIS (TGA) ............................................ 136 

5.2.4. CALORIFIC VALUE/HIGH HEATING VALUE (HHV) .............................. 137 

5.2.5. MELTING POINTS AND ENTHALPY .......................................................... 137 

5.2.6. DYNAMIC VISCOSITY USING THE BROOKFIELD RHEOMETER ........ 137 

5.2.7. WATER AND SEDIMENTS, MOISTURE CONTENT, FFA/ACID VALUE, 

PEROXIDE VALUE, AND DENSITY. ..................................................................... 138 

5.3 RESULT AND DISCUSSION. ................................................................................ 139 

5.3.1. PERCENTAGE RECOVERY .......................................................................... 139 

5.3.2. LIPID COMPOSITION .................................................................................... 141 

5.3.2.1 EFFECT OF LIPID COMPOSITIONS OIL QUALITY ............................ 143 

5.3.3. FATTY ACID COMPOSITION ....................................................................... 144 

5.3.4. THERMAL ANALYSIS (TGA) ....................................................................... 146 

5.3.5. CALORIFIC VALUE/HIGH HEATING VALUE (HHV) .............................. 147 

5.3.6. MELTING POINT ............................................................................................ 148 

5.3.7. RHEOLOGICAL PROPERTIES ...................................................................... 150 



xi 

 

5.3.8 WATER AND SEDIMENT, MOISTURE, FFA, PEROXIDE VALUE, 

DENSITY AND KINEMATIC  

VISCOSITY ................................................................................................................ 153 

5.4 CONCLUSION ......................................................................................................... 155 

 

CHAPTER 6 

LIFE CYCLE ANANLYSIS (LCA) COMPARISON OF FISH OIL EXTRACTION  

METHODS ..................................................................................................................... 163 

6.1 INTRODUCTION .................................................................................................... 163 

6.2 SCOPE, PURPOSE AND SYSTEM BOUNDARY. ............................................... 166 

6.2.1 METHODOLOGY ............................................................................................. 167 

6.2.2 LIFE CYCLE INVENTORY (LCI) ................................................................... 170 

6.2.3 MATERIALS AND EXPERIMENTAL METHODS ....................................... 175 

6.3 ENVIRONMENTAL IMPACT ASSESSMENT ..................................................... 175 

6.3.1. CHARACTERIZATION .................................................................................. 175 

6.3.2. DAMAGE ASSESSMENT ............................................................................... 176 

6.3.3. NORMALIZATION. ........................................................................................ 177 

6.3.4. SINGLE SCORE ............................................................................................... 179 

6.3.5 QUALITY ASSESSMENT ............................................................................... 180 



xii 

 

6.4 CONCLUSION ..................................................................................................... 182 

CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS ........................................................... 189 

7.1 SUMMARY AND CONCLUSION ......................................................................... 189 

7.1.1 LITERATURE REVIEW ................................................................................... 190 

7.1.2 CHARACTERIZATION OF FISH OIL AND BLENDS .................................. 191 

7.1.3 SFE AND MASS TRANSFER MODELING .................................................... 192 

7.1.4 QUALITY EVALUATION ............................................................................... 193 

7.1.5 LIFE CYCLE ANALYSIS (LCA) ..................................................................... 194 

7.1.2 RECOMMENDATIONS ................................................................................... 195 

 

 

 

 

 

 

 

 

 



xiii 

 

LIST OF TABLES 

TABLE 2.1: SPECIES OF FISH CAUGHT FOR FISH OIL AND FISHMEAL 

PRODUCTION ................................................................................................................. 16 

TABLE 2.2: FISH TRIMMINGS (OFF-CUTS) AND OTHER NON-FISH SPECIES 

USED OR COULD BE USED FOR FISH OIL AND FISHMEAL PRODUCTION ...... 17 

TABLE 2.3: TOTAL, NEUTRAL, AND POLAR LIPIDS FROM HIGH-FAT BEEF 

USING DIFFERENT SOLVENT EXTRACTION METHOD (G KG
-1

 FRESH WEIGHT 

OF BEEF) MODIFIED FROM TANAMATI ET AL. [32] ............................................. 25 

TABLE 2.4: COMPARISON BETWEEN SOLVENT EXTRACTION PROCESSES, 

MERITS AND DEMERITS ............................................................................................. 34 

TABLE 3.1: DATA SUMMARY COMPARING DECOMPOSITION TEMPERATURE 

OF THE OILS ................................................................................................................... 62 

TABLE 3.2: HEATING VALUE OF UNREFINED FISH OIL AND BLENDS ............ 66 

TABLE 3.3A: MELTING POINTS ONSET TEMPERATURE AND ENTHALPY OF 

THE OILS ......................................................................................................................... 70 

TABLE 3.3B: FATTY ACID COMPOSITION OF WASTE FISH OIL AND 

UNREFINED SALMON OIL .......................................................................................... 70 

TABLE 3.4A: FLOW BEHAVIOR INDEX, CONSISTENCY INDEX, APPARENT 

VISCOSITY, FROM POWER LAW EQUATION FITTING OF WASTE FISH OIL, 

UNREFINED SALMON OIL, RFO AND COD OIL ...................................................... 74 



xiv 

 

TABLE 3.4B: FLOW BEHAVIOR INDEX, CONSISTENCY INDEX, APPARENT 

VISCOSITY, FROM POWER LAW EQUATION FITTING OF BLENDS OF WASTE 

FISH OIL AND UNREFINED SALMON OIL WITH RFO. .......................................... 75 

TABLE 3.5: THE ACTIVATION ENERGY EA OF THE RAW OILS AND THEIR 

BLENDS ........................................................................................................................... 76 

TABLE 4.1: EXAMPLES OF EXPERIMENTAL AND MODELING WORK ON 

SUPERCRITICAL EXTRACTION ................................................................................. 90 

TABLE 4.2A: SALMON OIL SOLUBILITY AS COMPARED TO THE SOLUBILITY 

OF OTHER FISH AND VEGETABLE OILS ............................................................... 108 

TABLE 4.2B: CORRELATION CONSTANTS OF THIS WORK COMPARE TO 

LITERATURE VALUES ............................................................................................... 109 

TABLE 4.3: EXPERIMENTAL CONDITIONS AND THE MODEL PROCESS 

PARAMETERS AT VARIOUS FOR FISH OIL EXTRACTION ................................ 114 

TABLE 5.1: LIPID COMPOSITION IN EXTRACTED OIL AS A FUNCTION OF 

EXTRACTION METHOD ............................................................................................. 143 

TABLE 5.2: FATTY ACID COMPOSITIONS OF OILS EXTRACTED OIL AS A 

FUNCTION OF EXTRACTION METHODS ............................................................... 145 

TABLE 5.3: SOME SALMON OIL PROPERTIES AS FUNCTION OF EXTRACTION 

METHODS ..................................................................................................................... 148 



xv 

 

TABLE 5.4: FLOW BEHAVIOR INDEX, CONSISTENCY INDEX, AND 

ACTIVATION ENERGY OF SALMON OILS AS A FUNCTION OF EXTRACTION 

METHODS ..................................................................................................................... 152 

TABLE 6.1: STUDIES ON ALTERNATIVE OPTIONS FOR PETROLEUM FUELS163 

TABLE 6.2: SOME STUDIES ON LCA OF BIOFUEL AND BIODIESEL PROCESSES

......................................................................................................................................... 165 

TABLE 6.3A: MATERIAL (KG) INVENTORIES OF EXTRACTION PROCESSES 170 

TABLE 6.3B: ENERGY (KJ) INVENTORIES OF EXTRACTION PROCESSES ..... 171 

TABLE 6.4A: OIL QUALITY AS A FUNCTION OF EXTRACTION METHODS ... 181 

TABLE 6.4B: PROCESS QUALITY RATING ............................................................. 182 

 

 

 

 

LIST OF FIGURES 

FIGURE 1.1: ATLANTIC CANADA. ............................................................................... 2 

FIGURE 2.1: BASIC STAGES OF FISHMEAL AND FISH OIL PRODUCTION AT A 

LARGE -SCALE FISHMEAL PLANT. MODIFIED FROM BIMBO AP [16] ............. 20 



xvi 

 

FIGURE 2.2: FLOW PROCESS FOR TYPICAL HYDROLYSIS. MODIFIED FROM 

BIMBO AP [16] ................................................................................................................ 37 

FIGURE 2.3: FLOW PROCESS FOR TYPICAL FERMENTATION.  MODIFIED 

FROM BIMBO AP [16] ................................................................................................... 39 

FIGURE 3.1A: THERMAL DEGRADATION OF THE RESIDUAL FUEL OIL, 

UNREFINED SALMON OIL AND WASTE FISH OIL UNDER NITROGEN  AND 

AIR ATMOSPHERE. ....................................................................................................... 63 

FIGURE 3.1B: THERMAL DEGRADATION OF BLENDS SB20, SB50, SB80 OF 

UNREFINED SALMON OIL WITH RESIDUAL FUEL OIL UNDER NITROGEN  

AND AIR ATMOSPHERE. ............................................................................................. 63 

FIGURE 3.1C: THERMAL DEGRADATION OF BLENDS WB20,WB50,WB80 OF 

WASTE FISH OIL WITH RESIDUAL FUEL OIL UNDER NITROGEN  AND AIR 

ATMOSPHERE. ............................................................................................................... 64 

FIGURE 3.2A: DCS THERMOGRAPH OF THE WASTE FISH FISH OIL ................. 68 

FIGURE 3.2B: DCS THERMOGRAPH OF UNREFINE SALMON OIL ...................... 69 

FIGURE 3.3: CHANGE IN APPARENT VISCOSITY WITH SHEAR RATE AT 60 
O
C 

FOR WASTE FISH OIL, UNREFINED SALMON OIL, RFO AND THEIR 50% (V/V) 

BLENDS. RFO-RESIDUAL FUEL OIL; WB50-50 % (V/V) WASTE FISH OIL 

BLEND WITH RFO; SB50-50 % (V/V) UNREFINED SALMON OIL BLEND WITH          

RFO. .................................................................................................................................. 73 



xvii 

 

FIGURE 4.3: SALMON OIL SOLUBILITY AS A FUNCTION OF TEMPERATURE 

(K) AND PRESSURE (MPA) ........................................................................................ 107 

FIGURE 4.4: TYPICAL EXTRACTIVE CURVE OF EXPERIMENTAL DATA AT 

0.18 KG/HR., 25 MPA AND 353 K. .............................................................................. 111 

FIGURE 4.5: EFFECT OF TEMPERATURE (313 – 353 K) ON EXTRACTION YIELD 

AT 0.18 KG/HR AND 35 MPA. .................................................................................... 113 

FIGURE 4.6: EFFECT OF PRESSURE (15 – 35 MPA) ON EXTRACTION YIELD AT 

0.18 KG/HR AND 333 K................................................................................................ 115 

FIGURE 4.7: EFFECT OF SOLVENT MASS FLOW RATE ON EXTRACTION 

YIELD AT 313 K AND 35MPA. ................................................................................... 117 

FIGURE 4.8: PREDICTED EFFECT OF PARTICLE SIZE ON EXTRACTION YIELD 

AT P = 35 MPA, T = 353 K AND MASS FLOW RATE 0.18 KG/HR. ........................ 118 

FIGURE 5.1: EXTRACTION YIELD AT P = 35 MPA AND T = 313 K AND 

SOLVENT MASS FLOW RATE OF 0.18 – 0.48 KG/HR. ........................................... 141 

FIGURE 5.3: THERMAL DEGRADATION OF THE CRUDE SALMON OIL 

RECOVERED BY SC-CO2 AND MFM METHODS IN NITROGEN ATMOSPHERE.

......................................................................................................................................... 147 

FIGURE 5.4: DCS THERMOGRAPH OF THE CRUDE SALMON OIL EXTRACTED 

USING SC-CO2 AND MFM METHODS. ..................................................................... 149 

FIGURE 5.5: CHANGE IN APPARENT VISCOSITY WITH SHEAR RATE AT 20, 40 

AND 60 
O
C FOR SALMON OILS FROM MFM AND SC-CO2 METHODS. ............. 151 



xviii 

 

FIGURE 6.1: LCA PROCESS BOUNDARY ................................................................ 167 

FIGURE 6.3A: SC-CO2 EXTRACTION PROCESS FLOW DIAGRAM ..................... 172 

FIGURE 6.3B: SOXHLET EXTRACTION PROCESS FLOW DIAGRAM ................ 173 

FIGURE 6.3C: MFM EXTRACTION PROCESS FLOW DIAGRAM ..................... 174 



1 

 

CHAPTER 1 

1.0 INTRODUCTION AND OVERVIEW. 

The Canadian fish processing industry is one of the major seafood and marine product 

exporters, with approximately 75 % fish products exported to over 80 countries. Atlantic 

Canada (Fig.1.1) was about 40,000 km of coastline which comprises four provinces 

including Newfoundland and Labrador, New Brunswick, Prince Edward Island and Nova 

Scotia. In 2011, the total sea fisheries landed in Canada was 850,533 metric tons with 

703,905 metric tons (82.76%) from the Atlantic Region [1]. Before the final sale, 

approximately 70% of the fish landed is processed [2] resulting in a considerable 

percentage (20 – 80% wt) of fish waste depending on the processing extent and fish type 

[3]. Fish discards may include the heads, frames, trimmings, fins, skin and viscera. Some 

of the by-products are used while the main bulk is considered waste and dumped into the 

sea or landfilled, creating both disposal and pollution problems [2]. In Atlantic Canada, 

fish processing industries generate approximately 418,000 tons of fish wastes annually 

[3]. Newfoundland and Labrador (NL) processing plants (excluding seal processing 

plants and fish meal plants) generate fish wastes in the amount of 35,000 tons annually 

[3], which are disposed into the oceans. The most commonly processed species are 

capelin, herring, mackerel, seal and farmed salmanoids [4]. The disposal of fish waste in 

the ocean leads to considerable oxygen shortage in the water due to activities of the 

aerobic bacteria on the organic matter in the presence of oxygen. 
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Figure 1.1: Atlantic Canada. (Sourced from Goggle) 

 

Fish waste also causes overloads of nitrogen, phosphorous and ammonia, which can lead 

to pH changes and increased water turbidity, which can also lead to the decomposition of 

algae [1]. Fish processing waste contains valuable by-products which may include; fish 

oil (ω-3 fatty acids), proteins and amino acids, chitosan, chitin, collagen and gelatin, 

cosmetics, natural pigments, enzymes, animal feed, and soil fertilizers [1,5]. In areas of 

intense fish processing, these by-products are further processed into fishmeal where the 

byproduct is waste fish oil. 

The fish oil fatty acids (PUFA; DHA and EPA) are known for their significant roles in 

human health and nutrition such as prevention and treatment of coronary heart disease, 

blood platelet aggregation, hypertension, arthritis, abnormal cholesterol levels, mental 

illness and autoimmune disorders [6,7]. Fish oil are also a rich source of vitamins 
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including vitamin A, D, E and K, which are soluble content of the oil and need to be 

extracted for human consumption due to their significant roles in human health and 

metabolism. On an annual basis, EPA demand is about 125 tonnes in Japan and demand 

is much greater world-wide for nutritional supplement [6]. PUFA occurs as 

triacylglycerides (TAG) in fish oil at levels between 10 and 25 % and resulting market 

growth has necessitated much interest in PUFA extraction and the concentrating method 

from natural sources [7].  

However, due to degradation or low quality, waste derived fish oils are not suitable for 

edible oils and could serve as a possible low grade fuel. The fish oils when compared to 

petroleum based fuels have the advantage of lower toxicity, higher biodegradation rates 

(reducing impact on soil and water if spilled), no sulfur, and a higher flash point [8, 9, 10, 

11]. The extraction of fish oil (edible and non-edible) can be done through several 

methods using physical, chemical and biological approaches. The properties which make 

fish oil a replacement/blend option to petroleum fuel distillates include high 

calorific/heating value, biodegradability, and comparable combustion efficiency. 

However, using unrefined fish oil in engines can cause operational issues due to 

composition/property differences between crude fish oil and conventional diesel fuel. 

Crude fish oil contains a variety of impurities such as free fatty acids, primary oxidation 

products, minerals, pigments, moisture, phospholipids, and insoluble impurities that 

reduce the oil quality. The level of the impurities present in the oil depends on the fish oil 

extraction method. A series of refining processes are normally used to remove these 

impurities, such as degumming, deodorization, bleaching, and neutralization. However, 
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the operating costs associated with these refining steps and loss of oil quality during 

processing added to the overall cost of the process. Careful selection of the initial 

extraction process can produce oils that contain fewer impurities and thus reduce the need 

for further processing of the oil. There are several challenges with this type of work, 

predominantly in the heterogeneity of the waste material as fish species and degree of 

fish processing varies based on location and season. Currently, most researchers focus on 

refining and conversion of crude bio-oils (plant and animal) to biodiesel using chemical, 

thermal, and enzymatic processes. There is limited literature comparing oil extraction 

processes from fish or fish waste as a function of extraction processes. The fuel 

properties of fish oil and petroleum fuel blends have not been studied in detail. In 

addition, the overall feasibility of extraction processes of oil from waste has not been 

studied. To address these and other issues related to fish oil extraction from fish waste, 

the following studies are required; various extraction processes of lipid/oil from fish 

residues, quality of oil derived as function of extraction processes, characterization of fish 

oil blends with mineral base fuels, and the environmental impacts of the extraction 

processes. 

In this research, physical, chemical and biological extraction processes were reviewed 

and based on the review three processes compared; a modified fishmeal process, the 

traditional soxhlet extraction process, and supercritical extraction using carbon dioxide. 

The thesis consists of a series of manuscripts either published, revised for publication, in 

review processes or to be submitted for publication.  
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 Chapter 2 has been published in the Biomass & Bioenergy Journal and the 

manuscript provides the review of literature on the current state of art on fish oil 

extraction from fish. The chapter (chapter 2) describes the oil extraction methods 

available and proposed the effects of each method on lipid and protein products.  

 Chapter 3 describes the MFM process and characterization studies on the blend of 

fish oil with mineral oil (heavy petroleum distillate). The manuscript has been re-

submitted to the Fuel Journal after revision.  

 Chapter 4 is divided into three sections: determination of fish oil solubility in SC-

CO2; optimization of the SFE extraction; and development of a mass transfer 

model to predict oil extraction as a function of process conditions. The manuscript 

from chapter 4 has been revised based on reviewers’ comments and re-submitted 

to The Journal of Supercritical Fluids for publication.  

 Chapter 5 has been accepted to the Fuel Journal and summarizes the evaluation 

of quality of the oil extracted using the three proposed extraction methods. The oil 

quality was compared based on lipid compositions, physico-chemical, thermal, 

rheological, and chemical properties.  

 Chapter 6 compares the extraction processing using life cycle analysis (LCA). 

The energy, material and resources consumptions of the extraction methods were 

analyzed using SimaPro 7.   

 Chapter 7 contains summary, conclusions, and recommendations.  
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Abstract 

Fish processing facilities generate a significant amount of fish by-products that could be 

an important source of energy, food, or industrial feedstock. While fish oil is a natural 

source of omega-3 polyunsaturated fatty acids (mostly eicosapentaenoic acid (EPA), and 

docosahexaenoic acid (DHA)) used in nutritional supplements, the ability to extract, 

refine, and get to market of these oils may be challenging at processing facilities where 

there is limited infrastructure and plants are remotely located. Under these conditions, 

extraction of oil from fish by-product for use as an in-house or regional fuel may be both 

economically and environmentally be a more sustainable approach. Processes to extract 

and refine fish oil for fuel are less energy intensive than the processes for nutritional 

quality oils and do not require the stringent product specifications and approval process 

as in the food and pharmaceutical industry. Unlike food crops, extraction of oil from fish 

residue does not negatively impact food production. This paper presents an overview of 

developments made in fish oil extraction methodologies including physical, chemical and 

biological processes.  

A version of this paper has been published in the Biomass and Bioenergy Journal. The 

lead author is Ibraheem Adeoti and co-author is Dr. Kelly Hawboldt. Mr. Ibraheem 

Adeoti wrote the paper and performed all literature searches required for background 

information while Dr. Hawboldt provided technical guidance and editing of the 

manuscript. 

 



10 

 

Nomenclature 

ASE  Accelerated solvent extraction 

B&D   Bligh and Dyer 

CO2  Carbon dioxide 

DHA   Docosahexaenoic acid  

EPA   Eicosapentaenoic acid  

FAME  Fatty acid methyl ester  

FFA   Free fatty acid 

HPLC   High-performance liquid chromatography  

MAE  Microwave assisted extraction 

Mt   Million tonne 

PAHs  Polycyclic aromatic hydrocarbons  

PCBs  Polychlorinated biphenyls  

PUFA  Polyunsaturated fatty acid  

SC-CO2   Supercritical carbon-dioxide 

SCFE   Supercritical fluid extraction 

SFA   Saturated fatty acid  

TAG   Triacyglycerol 

TG  Triglycerides 
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2.0 Introduction 

Fish oils are a rich source of polyunsaturated fatty acid (PUFA), in particular the n-3 

series cis-5, 8, 11, 14, 17-eicosapentaenoic acid (EPA) and cis-4, 7, 10, 13, 16, 19-

docosahexaenoic acid (DHA). These fatty acids are used in the prevention and treatment 

of coronary heart disease, blood platelet aggregation, hypertension, arthritis, abnormal 

cholesterol levels, mental illness and autoimmune disorders [1,2]. Fish oils are also a rich 

source of vitamins including vitamin A, D, E and K [3]. Polyunsaturated fatty acid 

(PUFA) occurs as triglycerides (TG) in fish oil with a mass fraction between 10 % and 25 

% [2].  

Several methods have been used to concentrate PUFA in marine oils achieving different 

levels of recovery. Without initial hydrolysis, concentration of up to 30 % EPA and DHA 

can be achieved using solvent fractionation, winterization, and molecular distillation [2]. 

However, higher levels of concentration (65 % to 80 %) are achievable with combination 

of either esterification or hydrolysis with methods such as supercritical fluid extraction, 

urea complexation, and molecular distillation. Recoveries of above 90 % PUFA have 

been attained using high-performance liquid chromatography (HPLC) [2]. A number of 

processes have also been reported to concentrate PUFA with less or no saturated fatty 

acid (SFA) such as low temperature crystallization, distillation, and enzymatic 

enrichment [4]. 

Bio-oils from biomass are increasingly being used either as stand-alone or in blends with 

petroleum based fuels. Bio-oils composition and thermal and physical properties are a 

function of the feedstock and the degree of processing of the crude bio-oil. The most 
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common application is biodiesel, which when derived from animal and plant matter 

consists of fatty acid methyl ester (FAME). When derived from virgin crops, the high 

value of these crops requires tens of millions of liters of biodiesel to be produced 

annually for an industrial plant to remain economical [5]. In addition, the food versus 

energy debate and other environmental concerns over cultivation and conversions can 

limit the choice of crops for energy over food [6]. Boyd et al. [5] also reported that 

biodiesel manufacturing from bio-oils is not only economically more attractive than 

virgin crops but also results in environmental benefits. Therefore, attention has been 

shifted to recycled yellow and brown greases from foodservice establishments, fish oils 

from the fish farming and processing industries, and rendered animal fats from the 

agricultural industries. 

Properties that make fish oil a replacement/blend option to petroleum fuel distillates are 

high calorific/heating value, biodegradability, and comparable combustion efficiency. 

However, using unrefined fish oil in engines can pose some problems due to poor flow 

properties especially at low temperature, lower lubricity, higher viscosity, and higher 

acidity compared to conventional diesel fuel [7]. This is because unrefined fish oil 

contains impurities such as free fatty acids, primary oxidation products, minerals, 

pigments, moisture, and phospholipids [8]. The presence and/or quantity of impurities 

depend on the fish oil recovery method [8]. Hence, careful selection of the initial 

extraction process can produce oils that contain fewer impurities and thus reduce the need 

for further processing of the oil. 
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Several refining processes are normally required to improve fish oil quality such as 

degumming, deodorization, bleaching, and neutralization. Various studies have studied 

the use of fish oil as fuel oil for convectional combustors or diesel engines [9,10]. 

Engines that use low quality fuels are of particular interest. For instance, boilers and 

furnaces that use low quality fuels such as Bunker “A” and “C” grade fuels can typically 

accommodate volume fraction of 20 % -100 % blends of fish oil and therefore adding 

emusifiers to the fish oil or refining through transesterification or other biodiesel 

processing are not required; hence, cost of using biofuel is significantly reduced [9]. 

Other advantages of using fish oil include CO2 or GHG emission reduction, renewability, 

non-toxic fuel, and safe handling operations.  

Operations involving fish processing generate considerable quantities of edible and 

inedible by-products. A percentage of the total catch of fish is discarded as processing 

leftovers such as heads, frames, trimmings, fins, skin and viscera. The bulk of which is 

considered residue and dumped, creating both disposal and pollution problems [11]. 

More complete utilization is achieved by conversion of leftovers into fishmeal and fish 

oils. Fishmeal plants produce fish oil as a major by-product. [6]. Fish oil recovered from 

fishmeal residue varies considerably (between a mass fraction of 1.4 % and 40.1 %) 

depending on the species, tissue [2] and season. By-product oil from fish processing and 

fishmeal plants could therefore be an important source of biofuel.  Fish oil (edible and 

non-edible) can be recovered through several methods. Typically the recovery method 

selected attempts to minimize oil decomposition or denaturization of the products. The 

most common process employed in fish oil production is wet reduction, which enables 
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recovery of a high volume of fish oil and may require subsequent refining steps in order 

to make the fish oil edible [12]. Other conventional fish oil recovery processes include 

hydraulic pressing, vacuum distillation, urea crystallization, hexane/solvent extraction, 

and conventional crystallization. Each of these processes incorporate either high 

temperatures and/or the use of flammable or toxic solvents, which could result in loss of 

functional properties, denaturization of fish protein, and deterioration of oil quality and 

nutrition value (e.g. PUFA oxidation)  [13-15]. In addition, the focus of these processes is 

typically recovery for edible, pharmaceutical or industrial application which must meet 

regulatory standards. 

2.1 Extraction of oil from fish waste for fuel oil application 

The fishmeal process is the most common source of fish oil, as oil is generated as a by-

product in the fishmeal production. The fishmeal can be produced from fish caught 

specifically for fishmeal and fish oil such as menhaden, anchovy, capelin and sardines; 

incidental or by-catch from another fishery; and fish by-products regarded as off cuts 

from edible fisheries which include cuttings from filleting operations, fish cannery 

residue, roe fishery residue and, more recently, surimi processing by-product [16,17]. The 

nature and volume of residue from fish processing depends on the processing procedures, 

fish species and fish conditions, harvest season, nature of final products etc... [18]. Global 

fish production has been reported to be about 140 Mt with 63 Mt of fish processing by-

product generated annually across the globe [19]. Pelagic fish form the core source of 

fishmeal and fish oil production and are also essential ingredients in fish feed used in 
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farming carnivorous species such as salmon and trout [17]. Other types of fish operations, 

such as fish filleting operations result in off cuts (offal) which are sourced from the 

skeletons, heads, trimmings, and viscera, and also lead to residue which can be up to 50 

% of total mass of the raw material [17,20]. The solid by-product has approximately the 

same protein as the fish flesh [20]; meanwhile, the whole fish is the preference for meal 

and oil production due to high ash and phosphorus content of fish processing residue 

[17]. Tables 2.1 and 2.2 summarize the major fish raw materials involved in production 

of marine oils and their sources. 

Table 2.1: Species of Fish Caught for Fish oil and fishmeal production 

Species Country 

Anchovy 

Peru, Chile, South Africa, Namibia, Mexico, 

Morocco 

Jack (Horse) Mackerel Peru, Chile, China, Vanuatu 

Capelin Norway, Iceland, Russian Federation 

Menhaden USA: Atlantic and Gulf of Mexico 

Blue Whiting Norway, UK, Russian Federation, Ireland 

Sand eel Denmark, Norway, Faroe Islands 

Norway Pout Denmark, Norway, Faroe Islands 

Sprat  Denmark, Russian Federations 

FAO statistics database [55] compiled and cited by Bimbo AP [16] 
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Table 2.2: Fish Trimmings (off-cuts) and other non-fish species used or could be            

used for fish oil and fishmeal production 
Species Country 

Dogfish Canada, USA 

Salmon, Farmed Canada, Norway, UK, Ireland, China, Faroe Islands, Australia 

Salmon, Wild Canada, USA - Alaska, Japan, Russian Federation 

White Fish Spp. Canada, USA - Alaska, UK, Chile 

Catfish spp. USA, Vietnam 

Tuna Spp. 

Thailand, Japan, USA, Australia, South Korea, China, France, 

Ecuador,  Maldives Islands and many others 

Pollock USA-Alaska, Russia 

Sardine/Pilchard Peru, Chile, South Africa, Namibia, Japan, Spain, Mexico 

Atlantic Herring  Canada, Iceland, Norway, Denmark, UK, Faroe Islands, Sweden, 

Ireland. 

Mackerel Spp. UK, Peru, Chile, South Africa, Ireland, Norway, Denmark, Spain, 

Namibia, Russian Federation, China, Thailand 

Horse Mackerel 

Angola, Mauritania, Morocco, Namibia, South Africa, Turkey, 

France, Ireland, Latvia, Lithuania, Netherlands, Norway, Russian 

Federation, Spain, Ukraine, New-Zealand 

Hoki (Blue 

Grenadier) 

 

 

Australia, New-Zealand 
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Non-Fish Species 

Krill Norway, Poland, Ukraine, Japan, South Korea 

Squid 

Argentina, Chile, Peru, USA, Japan, China, South Korea, Russian 

Federation, France, Portugal, Spain, UK, Morocco, Mexico, Hong 

Kong, Taiwan, Ghana, Mauritania, South Africa, Senegal, Tunisia, 

Falkaland Islands, Indonesia, Malaysia, Philippines, Thailand, New-

Zealand.  

Single-Cell 

Organisms 

USA, Japan, Australia, Canada, USA (Hawaii), Israel, India 

FAO statistics database [55] compiled and cited by Bimbo AP [16] 

2.2 Fishmeal Operations for meal and oil productions 

Fishmeal and fish oil are very broad generic terms often used for aquatic animal products 

derived through processing whole fish and/or fish/shellfish by-product [21]. Fishmeal 

plants for commercial production of edible fats and oils vary according to the type of raw 

materials. The principal fishmeal and oil processing is typically wet reduction or wet 

pressing [16,17]. The process starts with cooking to coagulate the fish protein and release 

bound water and oil, followed by pressing to squeeze out liquids (press water) from 

solids (press cake). The press water is desludged to further remove any solid particles 

followed by centrifugation of the liquid (press water) to separate oil from water [16,17]. 

There are also several processes that can be used to convert whole fish and/or fish residue 

into fishmeal and oil; they include wet rendering, hydrolysis, silage production (also 
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called autolysis), dry rendering and solvent extraction [16]. Figure 2.1 outlines the basic 

stages of fishmeal and oil production in a large scale fishmeal plant. 

2.2.1 Oil Extraction Processes. 

Fish oil extraction processes can be classified into three categories: physical, biological 

and chemical. Physical extraction processes include homogenizing, heating, pressing and 

filtering [6], also regarded as wet rendering [16]. The majority of the fish oil producing 

factories worldwide employs the wet rendering process as outlined in Figure 2.1. 

Biological processes include enzymatic oil extractions and silage production through the 

use of enzymes from fish viscera residue (autolysis) or enzymes from other sources 

(hydrolysis) [16]. Chemical solvent extraction is another well-established process to 

extract fish oil using organic solvents, however, the use of toxic solvents results in 

protein denaturization and loss of functional properties [15,22]. Supercritical fluid 

extraction technology (SCFE) has also been proposed in the extraction of compounds 

from natural sources [23] including oil recovery from seeds/biomass, raw fish and/or fish 

by-products [24]. SC- CO2 for oil recovery is an attractive option as it is a non-toxic, non-

flammable, inexpensive and clean solvent [15,25].  
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Figure 2.1: Basic Stages of Fishmeal and Fish oil Production at a Large -Scale Fishmeal 

Plant. Modified from Bimbo AP [16] 

 

2.2.2 Physical Method 

2.2.2.1 Oil Production from Fishmeal Process  

The basic processing steps involved in the extraction of marine oils include 

cooking/heating or rendering, pressing, drying and milling. The cooking step is designed 

to rupture the fat cells for release of oils and pressing or centrifugation to separate liquids 
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(water, soluble protein and oil) from mass (solid cake) [6,21,26-28]. The raw materials, 

referred to as ''offal'', are gradually collected in pits/tank until there is a sufficient quantity 

for the fishmeal operation. The offal with large pieces is crushed (hashed) by machine 

prior to cooking [29]. Cooking coagulates the protein, ruptures the fat deposits and 

liberates oil and physico-chemically bound water. The cooking step also prepares 

materials for subsequent operations in various processing units. Most conventional 

heating methods use a steam cooker with a heated rotary screw, which conveys materials 

for continuous heating operation. Fish protein coagulation occurs at about 75   but 

cooking is typically in the temperature range of 95   - 100   for duration of (15 - 20) 

minutes [28]. Direct and indirect cookers (steam heated jacket, e.g. jacketed kettle) are 

also used.  

The pressing operation removes as much liquid (''press liquor'') as possible from the solid 

(''press cake''). The press cake is dried and milled to produce fishmeal. The pressing stage 

is also important for oil yield improvement, and chemicals such as formaldehyde or 

calcium chloride are sometimes used in pressing operation. However the addition can 

either reduce the oil nutrition value and/or increase residual chloride in the meal 

[6,26,28]. Press liquor consists of water, oil and solid particles. Oil content is in direct 

proportion to lipid content of the raw materials and separation of the three different 

fractions is accomplished through centrifuges. Separation efficiency depends on both 

centrifuge design and its mode of operation. Adequate temperature control is also 

required for effective centrifugation (about 60  ). The fishmeal and fish oil continues in 

separate lines after this process step.  
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Edible oils for human consumption require a refining/polishing step, which may include 

degumming, alkali refining, bleaching and deodorization as well as antioxidant addition. 

Impurities and other degraded/denaturized materials such as protein, suspended 

mucilaginous and colloid-like matters, oxidation products of fatty acids, vitamins, sterols, 

hydrocarbons, pigments, phospholipids, mono- and di-acylglycerols, and free fatty acids 

are removed from the oil. Polishing is also usually facilitated using hot water to extract 

impurities from the oils to ensure stability during storage. Marine oils processing steps 

are basically similar to those of vegetable oils; however, vegetable oil is more uniform 

with respect to composition than that of marine oils [26,28].  

2.2.3 Chemical Methods 

2.2.3.1 Solvent Extraction 

Solvent extraction is the traditional lipid extraction method. Oils are highly soluble in 

organic solvents such as hexane, benzene, cyclohexane, acetone and chloroform. Organic 

solvents rupture plant cell walls [30] or disrupt the interaction forces between lipids and 

tissue matrix [31] and extract the oil. Factors to be considered in choosing an organic 

solvent include preferential solubility of the compound of interest, low boiling point for 

easy recovery, economics, toxicity, availability, and re-usability. Hexane is one of the 

few solvents with such qualities and used in large scale extraction [30]. There are various 

forms of lipids in tissue matrix. The simple lipids exist as part of large aggregates in 

storage and are readily extractable. The complex lipids usually exist as a constituent of 

membranes in close association with protein and polysaccharides therefore, due to 

interaction with these compounds; it is not extracted as easily [31].  
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Lipid solubility depends on the relative strength of interactions between the solvent and 

either the hydrophobic or hydrophilic constituents of the molecules. Low polarity lipid 

groups such as triacylglycerol (TAG) or cholesterol esters are readily soluble in organic 

solvents such as hexane, cyclohexane or toluene and higher polarity solvents like 

chloroform or ethers. In contrast, TAG and cholesterol esters tend to be insoluble in polar 

solvents such as alcohols (particularly methanol) [31]. Efficient lipid extraction requires 

total solvent penetration into lipid storage and matching polarity of the targeted 

compounds. It is therefore imperative that the solvents make physical contact with lipids 

and as such, mechanical disruption of the cell is required prior to solvent addition through 

grinding/homogenization in case of animal tissue.   

2.2.3.2 Bligh and Dyer (B&D) 

The traditional Bligh and Dyer (B&D) method is considered one of the best for polar 

lipid extraction from fish tissue and serves as a benchmark for comparison between other 

solvent extraction methods [11,30,31]. The B&D method is an adaptation (in terms of 

solvent volumes) of the Folch procedures [31] and procedures for optimum lipid 

extraction as reported in the literature [11,31]. The B&D method uses polar and non-

polar solvents (e.g. chloroform, methanol and water) mixtures in specific ratios for total 

lipid extraction from muscles such as fish tissue. Norziah et al. [11] reported that the 

mixture ratios of chloroform/methanol/water of 4:2:1 and 2:4:1 gave higher total lipid 

yield. In a study by Tanamati et al. [32] nine methods were used to extract fat from 

ground beef and the authors determined that B&D methods provided the best yields. The 

solvents are required to penetrate into the fat cells and extract the lipid from the cell 
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membrane and muscles including the phospholipids materials [11,31]. Drawbacks of this 

method include the generation of large quantities of waste solvents in case of large scale 

application, making solvent recycling costly and raising safety concerns about handling 

organic solvents. Product contamination with the organic solvent has limited this 

application in food processing [30] and EU regulations in the use of chlorinated solvent 

have increased the cost of solvent disposal. As such, attempts have been made to modify 

the B&D method using non-chlorinated solvents but this has proved to be less successful 

compared to B&D method which is still widely used [31]. Table 2.3 illustrates different 

modifications to B&D method for lipid extraction. 
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Table 2.3: Total, Neutral, and Polar Lipids from High-Fat Beef using different solvent extraction 

method (g kg
-1

 fresh weight of beef) modified from Tanamati et al. [32] 

Method Solvents 

Total 

Lipids TAG Other 

Polar 

lipids 

Folch et al. [56]  Chloroform/methanol 208±9 186.8±0.4 15.3±0.4 5.3±0.3 

Bligh and Dyer [57] Chloroform/methanol 201±4 181.7±9 13.9±0.3 5.2±0.3 

Undeland et al. [58]  Chloroform/methanol 197.3±0.2 180±0.3 12.2±0.2 5.1±0.2 

Smedes [59]  Cyclohexane/propan-2-ol 184±5 167.3±0.2 12.2±0.3 4.2±0.2 

Hara and Radin [60] n-Hexane/ propan-2-ol 185.4±0.5 169.3±0.3 11.4±0.4 4.6±0.2 

Croon and Wallim 

[61]  

Hydrochloric acid/diethylether/  

petroleum-ether 
185±3 166.8±0.3 13.4±0.4 4.8±0.2 

Cunniff [62] 
Ammonia/methanol/ 

diethylether/  petroleum ether 
182.2±0.2 165.1±0.2 12.8±0.1 4.2±0.3 

Burton et al. [63]  n-Hexane/ethanol/n-heptane 165.4±0.2 151.0±0.2 10.8±0.1 3.6±0.3 

Cunniff [62]  Petroleum ether 161±7 151.4±0.2 7.1±0.2 2.4±0.2 
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2.2.3.3 Soxhlet Method  

The principle is based on solid - liquid extraction (leaching), and has been the standard 

method for over a century [33]. Non polar solvents such as hexane, ethyl acetate or 

petroleum ether are used for lipid extraction. Extraction is through repeated washing or 

percolation of fresh organic solvent under reflux from a distillation flask. Extraction 

efficiency for different compound classes is highly dependent on the properties of organic 

solvent. This method under normal circumstances effectively determines TAG content 

but the extraction of phospholipids is incomplete.  The advantages of the conventional 

soxhlet method include: sample phase is repeatedly brought into contact with fresh 

solvent ensuring complete extraction; heat applied to distillation flask is extended to the 

extraction cavity to some extent, hence, keeping the system's temperature relatively high, 

filtration of the extract is not required after extraction; and sample throughput can be 

increased by performing several parallel extractions simultaneously [31,33,34]. However, 

drawbacks include time required for extraction, environmental concerns over the 

generation of large amounts of organic wastes, which are costly to dispose of, and this 

method is not readily automated [31,33,34]. 

Furthermore, the method is appropriate for small scale extractions and has not been used 

in commercial or industrial scale application. Modifications to this method have focused 

on shortening the extraction time, the use of auxiliary forms of energy and automating the 

extraction apparatus [33] and include: high pressure soxhlet extraction, microwave-

assited soxhlet extraction, ultrasound-assisted soxhlet extraction, automated soxhlet 

extraction, and focused microwave-assisted soxhlet extraction [33,34]. Automated and 
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microwave assisted soxhlet extraction has been applied commercially to environmental 

and food applications [33]. Rubio-Rodriguez et al. [25] compares soxhlet extraction to 

supercritical CO2 extraction of lipids (Table 2.4). The overall total fatty acid extracted by 

supercritical CO2 extraction is higher than that extracted by soxhlet extraction method, 

and since large scale application of this process (soxhlet extraction) for high volume of 

oil recovery is limited, supercritical CO2 extraction may be a feasible alternative for 

biofuel production.  

2.2.3.4 Accelerated Solvent Extraction (ASE) 

Many organic solvents used for extraction boil at a relatively low temperature. This limits 

soxhlet extraction or automated soxhlet extraction, as the maximum temperature would 

be the solvent's boiling point. At higher pressures, the higher temperature can be achieved 

without boiling off solvent [30]. Accelerated Solvent Extraction (ASE) does not require 

the manual steps involved in preparing samples for analysis, has an increased 

reproducibility, and accelerates the process significantly. ASE was developed for the 

extraction of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons 

(PAHs) from solids [35].  Compared to other methods, there are fewer reported studies. 

However, in the last decade, ASE was used in lipid isolation from plant and animal 

tissue, egg-containing foods and dairy products [36]. Dodds et al. [36] also demonstrated 

the application of ASE for lipid extraction from fish tissue on a small scale using various 

organic solvents for extraction. Although, these studies have established ASE as a viable 

lipid recovery method, research and development in large scale recovery and feasibility is 

still required. High volume lipid recovery has been rarely reported with this process and 
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therefore, oil quality for biofuel application remains to be pursued. Also, environmental 

concern as per high volume of residual solvent will most likely be among the major 

constraints.  

2.2.3.5 Microwave assisted extraction (MAE) 

Microwave assisted extraction (MAE) utilizes microwave energy to heat solvents in 

contact with the solid matrix to extract compounds of interest from sample into solvent. 

Literature on MAE applied to lipid extractions are limited, but indicate improved lipid 

yields and reproducibility; however, this process is still required to be tested on a wide 

range of sample matrices [37]. MAE is considered superior to traditional solvent 

extraction with advantages of lower temperature, higher extraction rates, automation, and 

possibility of simultaneously extracting different types of samples [38].  

MAE is based on the principle that the microwave heating system is very selective, and 

loses very little heat to the surroundings. The direct heating affects polar solvents and/or 

materials, so when used on samples, the moisture content of cells is reduced. This results 

in the generation of a significant amount of pressure which ruptures tissue cell 

membranes (animal cell) or walls (plant cell) releasing the cellular material [30]. A 

laboratory scale study by Ramalhsa et al. [37] for fish fat extraction extracted total lipid 

content similar to or higher than that of traditional extraction methods with 

reproducibility.  

Ultrasonic-assisted solvent extraction has also been used for accelerated extraction of 

phenolic compounds from plant matrices. This process is considered effective compared 

to other conventional extraction methods as it allows cell disruption to permit phenolic 
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molecule interactions with solvents at a reasonably low temperature [39]. Since the 

microwave heat energy directly affects and reduces the polar and/or water content of fat 

cells, the overall effect on oil recovery might be a lower water content which would favor 

biofuel applications. 

2.2.3.6 Acid-Alkali-aided Extraction 

Fish protein isolate and fish oil are produced when using alkali or acid to digest the 

muscle protein. This method was suggested as a replacement for the surimi process (fish-

paste making process) but it is now used for protein recovery from fish by-products. If 

the oil content of the fish residue is high, fish oil would also be produced [16]. The acid 

digestion method involves hydrolysis of muscle sample to release complex and/or bound 

fatty materials, thereby permitting total fat extraction using appropriate solvents [31]. As 

described by Xiao [31], the sample is hydrolyzed, fat is extracted using diethyl and 

petroleum ether solvents, the solvent is evaporated off, followed by the methylation of 

extracted fats. The drawback of this method is that non-lipid compounds are extracted 

along with lipids, leading to over-estimation of total fat in food samples. Acid hydrolysis 

is also considered an extremely aggressive method, which produce chemically degraded 

extracts unsuitable for fatty acid profiling [31]. This method might not be suitable for oil 

extraction for biofuel purposes as non-lipid compounds are extracted along with lipids. 

The implication on biofuel applications might be poor flow and combustion properties 

coupled with an increased knocking tendency while used in combustion engines.  
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2.2.3.7 Supercritical Fluid Extraction (SCFE) 

Supercritical fluid extraction (SCFE) has been used to extract high-value products from 

plant tissue (e.g. micro algae) [13,30], and from animal tissue (e.g. fish by-products) 

[12,14,15,25,40]. SCFE also offers the benefits of being free of potentially toxic solvents, 

faster extraction and separation, and a safe/low thermal process for thermal sensitive 

products [30]. At supercritical conditions, fluids have gas-like viscosities and liquid-like 

densities, enhancing the solvation and flow properties [30]. SCFE also has the advantage 

of process flexibility due to the ability to modify solvent power or selectivity of the 

supercritical fluid. Several compounds have been studied for SCFE application such as 

carbon dioxide, hexane, pentane, butane, nitrous oxide, sulphur-hexafloride and 

florinated hydrocarbons [23].  

Carbon dioxide (CO2) is the most popular SCFE solvent as it is: readily available at low 

cost, low toxicity, non-flammable, high diffusivity with tune-able solvent power, and 

offers a potential use of greenhouse gas. In addition, CO2 is a gas at ambient conditions 

making it very simple to separate solvent from the solute. CO2 also has mild critical 

conditions (Tc = 303.9 K, Pc = 7.38 MPa) relative to other solvents [12,13,23-25,41].  

Four major factors controlling supercritical CO2 extraction (SC-CO2) are pressure, 

temperature, CO2 flow rate, and extraction time [30]. Esquivel et al. [42] extracted 

Sardine oil at 12.6 MPa and 18 MPa, and 313 K and 321 K using SC-CO2. The rate of 

sardine extraction was sensitive to temperature and pressure, and the sardine oil loading 

in CO2 increased with increasing pressure and decreased with increasing temperature. 
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In general, the main limitation of supercritical CO2 extraction is its low polarity. 

Supercritical CO2 is a good solvent for non-polar (lipophilic) compounds; hence, it has 

low affinity for polar compounds. Heavy metal extraction along with oil is also 

reportedly almost impossible [12]. This property is beneficial for using oil product in 

biofuel application. In order to extend the solvent polarity, employing polar modifiers 

(co-solvents) to change the solvent polarity and to increase its solvation power towards 

the compound of interest has been suggested. The addition of a relatively small 

percentage of alcohol, e.g. (mass fraction of 1 % - 10 %) methanol to carbon dioxide, has 

reportedly expanded the solvents extraction range to include more polar analytes 

[14,23,24]. The addition of ethanol to supercritical CO2 (mass fraction of 10 % - 15 %) 

has also been reported by Mercer and Armenta [30] to increase its polarity and to change 

its viscosity. The resulting effect is an increase in solvating power of CO2, and the 

extraction requires low temperature and pressure. Catchpole et al. [43] determined that 

fish oil solubility increased exponentially with the addition of a mass fraction of 12 % of 

ethanol to CO2 leading to better recovery as compared to pure CO2 at the same 

temperature and pressure. In this regard, more polar lipids would have been extracted 

along with the oil.  

In the context of using the raw extracted oil as biofuel or blend of oil, the presence of 

polar lipids such as phospholipids and glycolipids could decrease the oil quality and/or 

flow properties, hence, addition of co-solvents may not be desired. In addition, the co-

solvent is liquid at room temperature and atmospheric pressure and would be extracted 
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along with compound of interest; therefore, subsequent processing for solvent removal 

will be required [23].  

Supercritical CO2 extraction is sensitive to the water bound in the sample matrix. The 

water in a sample matrix reduces contact time between solvent and solute. The moisture 

acts as a barrier against CO2 diffusion into the sample, and the diffusion of lipids out of 

the cells, hence, freeze drying of the sample is required prior to SCFE [30]. Dunford et al. 

[14] investigated the effect of water presence in the sample on extraction of Atlantic 

mackerel oil using supercritical CO2. Feedstock with a mass fraction of 10.2 % water 

content treated with SC-CO2 resulted in higher oil yields (2.7 g) compared to those with a 

mass fraction of 26.0 % and 64.0 % water content with 2.5 g and 0.3 g yields 

respectively. Given that fish processing by-products will contain high water levels this 

will impact the recovery of the oil and therefore pretreatment process may be required.  

SCFE has been widely used in food and natural products extraction, for process 

development, and to extract targeted (bioactive or valuable) compounds from different 

matrices [12,14,15,24,25]. There is little data on the feasibility of the industrial scale 

application of the SCFE process. Sahena et al. [15] (Table 3) compares fatty acid profiles 

of fish oil extracted using SC-CO2 with different modifications and soxhlet extraction. 

The variation of fatty acid profiles with regards to different extraction process can be 

deduced therein. Due to the high selectivity SC-CO2 extraction preferentially extracting 

more saturated fatty acids (a mass fraction of 21.09 %) compared to the modified SC-

CO2 and soxhlet extraction processes (extracted a mass fraction of between 18.20 % and 
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18.87 %). In contrast, the modified SC-CO2 and soxhlet extraction processes extract more 

polyunsaturated fatty acids (a mass fraction of between 59.59 % and 60.53 %) than the 

SC-CO2 extraction (extracted a mass fraction of 56.32 %). High content of 

polyunsaturated fatty acid species could be advantageous to thermal and cold flow 

properties of fuel oil, as oil with a high degree of unsaturated fatty acid has a low melting 

point compared to oil with higher degree of saturated fatty acid which melts at a higher 

temperature [44,45]. The disadvantage of having more polyunsaturated fatty acids in fuel 

oils is the increased rate of oxidation when compared to the saturated species. Lin and Li 

[46] reported that biodiesel with polyunsaturated fatty acids with double bonds of more 

than three are susceptible to deterioration, thus causing precipitation in the combustion 

chamber of the combustion engine. 

SC-CO2 is highly selective towards non-polar compounds, therefore, heavy metal 

extraction (e.g Cd, Hg, Pb and As) along with fish oil will be negligible compared to 

other processes. This fact is corroborated by Rubio-Rodriguez et al. [12]. Table 2.4 

summarizes the advantages and disadvantages of various solvent extraction methods. 

Selection of any of the processes will be based on cost consideration, environmental 

impact, and analyte selectivity. 
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Table 2.4: Comparison between solvent extraction processes, merits and demerits 

Method Solvents Advantages  Disadvantages  

Bligh and Dyer  Methanol, 

chloroform, and 

water 

Simple and standard method.  

Well established.  

Determines total lipids. 

Direct analysis of samples with no 

pre-drying. 

Adverse effects of chloroform on the environment 

(EU regulation controlling chlorinated solvents). 

 Laborious (requires filtration etc…) 

Soxhlet method Organic solvents  

(e.g. hexane, toluene, 

acetone, petroleum  

ether, cyclohexane)  

It's simple. 

 Not very labor intensive.  

Can be operated with non-

chlorinated solvents. 

 Lipids can be further used. 

Lower yields than Bligh & Dyer method. 

Extractable lipids are determined not total lipids.  

Large amount of solvents needed. 

Special equipment required. 

Results are very much operationally dependent 

(Solvent composition, extraction time cycles). 

Conditions are difficult to control 

 (Continuous flow of solvents). 

 Time consuming. 

Accelerated 

solvent extraction 

(ASE)     

Dichloromethane 

/hexane,  

Not very labor intensive. 

 Lipids can be further used. Method 

takes out environmental 

contaminants (e.g. PCBs, dioxins, 

pesticides). 

 Expensive.  

 Not all lipids extracted.  

 Various mixtures of solvents. 

 High temperature and pressures required. 

 Drying of samples required.  

Supercritical 

fluid extraction 

(SFE) 

                 CO2 Rapid.  

Requires no organic solvent  

Lipids can be used for further 

analysis. 

Very expensive equipment. 

 Complex equipment. 

Supply of CO2 needed. 
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2.2.3.8 Membrane coupled SC-CO2 extraction. 

Sarrade et al. [47] attempted coupling an SC-CO2 extraction process with a membrane 

system (nanofiltration) for separation of CO2 from the resulting mixture. In 1998, the 

authors [48] coupled nanofiltration tubular membranes resistant enough to endure the 

supercritical conditions. The goal of coupled process is to extract triglycerides directly 

from fish oil. The process further separated the product into two parts: the short-chained 

(lowest molecular weight) triglycerides as permeate and the long chained (heaviest 

molecular weight) triglycerides as the retentate i.e. EPA and DHA. A modification of this 

process was proposed in 2002 to enhance the extraction process in lowering the energy 

required for CO2 recycling and to purify the low molecular weight compounds [49]. 

Considering the fact that resulting products from this innovation are of high level of 

purity and separation, its application would be required in areas where high purity 

products and high level of separation is required, such as food processing, biotechnology, 

cosmetic and pharmaceutical industries. Hence, for the purpose of biofuel application 

where fractionation of triglycerides is not required, this process might not be useful. 

2.2.4 Biological Processes 

2.2.4.1 Hydrolysis 

Fish protein concentrate is produced in the fish processing industry using enzymatic 

hydrolysis (Figure 2.2). Silage is the autolysate or fish digest recovered using internal 

enzymes (enzymes from fish viscera) and acid for stability. This process is referred to as 

autolysis. If exogenous enzymes are used (enzymes from other sources) the process is 
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called hydrolysis. Acid addition inhibits and destroys the bacteria enabling internal (fish) 

enzymes to digest the fish muscle [16,50]. Hydrolysis can also be carried out chemically 

under alkaline or acidic conditions. Raw materials with low lipid content result in a 

process where no oil is produced as by-products [50], whereas, lipid-protein emulsions 

can be formed with high lipid content feedstock and thus reduce the oil yield [6] and 

quality. Generally, autolysis of fish muscle is usually performed to produce fish silage. 

The process forms an aqueous solution rich in small peptides and amino acids, and the 

enzymes promote the release of oil [22]. The disadvantage of autolysis is time 

consumption, which reduces hydrolysates quality and it is difficult to control the process 

since internal digestive enzymes are required [6,22,51]. 

The use of exogenous enzymes (enzymes from other sources) makes hydrolysis process 

highly controllable with reduced residence time [22,51]. Enzymes can be sourced from 

either animal, vegetable or microbial to accelerate the breakdown of proteins into smaller 

units (peptides) [16,52]. Enzymatic hydrolysis using commercial low cost and food grade 

protease provides an attractive alternative as the process is carried out under mild 

conditions for short period of time.  Commercial protease has been used to produce oil 

from marine by-products, resulting in improved yields as compared to yields achieved 

from cooking processes [4]. However, product deteriorates due to favorable conditions 

for hydrolysis of free fatty acid (FFA) and oil-water emulsion resulting in high FFA 

content which might not be suitable for biofuel application. 
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Figure 2.2: Flow process for typical hydrolysis.  Modified from Bimbo AP [16] 

2.2.4.2 Fermentation 

Fermentation is a biological process which produces silage and oil when minced fish 

material is mixed with a carbohydrate sources (e.g. sugar or molasses) or organic acids 
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(e.g. lactic acid) and bacteria [6,50]. Biological fish ensilage has been shown to have a 

good nutritional value relative to acid fish silage [53]. Biological ensilage is preferable; 

especially in tropical regions due to adequate supply of carbohydrate sources and low 

cost [53]. The success of the fermentation process depends on lactic acid generated by 

micro-organisms, which must be sufficient enough to lower the process pH to around 4.5 

[6,53], and remain stable during storage to prevent growth of bacteria [53]. The lipid 

oxidation of oil produced during fermentation was studied by de Lurdes et al. [53] and it 

was determined that oils obtained from silage with added formaldehydes had a 

substantially higher peroxide value than oils from biological silage. Figure 2.3 is an 

outline of a typical biological fermentation process. Oil released from the fish materials 

during fermentation is separated by centrifugation [6]. Oil with high levels of 

polyunsaturated fatty acids (PUFA) makes the silage prone to oxidation, rendering the 

feed unpalatable and/or unsafe for livestock. Fermentation using lactic acid has beneficial 

effects on lipids in fish silage as it stabilizes the oil and improves quality for animal feed 

[53] Fermentation is a promising recovery process due to its possible energy saving, low 

cost and recovery of better nutritional value products.  
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Figure 2.3: Flow process for typical fermentation.  Modified from Bimbo AP [16] 
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2.3.0 Summary and conclusions. 

The recovery of oil from fish by-product for use as a fuel can be a sustainable cost 

effective strategy for conventional combustors, boiler engines, or in-house use. The oil 

product does not need to meet high purity standards associated with edible oils but must 

balance fuel quality with costs, process complexity and be robust enough to handle 

different types and quality of fish residue. This review focuses on various extraction 

processes for lipid/oil from fish residues which could be used for bio-fuel application. 

The fishmeal and physical processes are typically used to produce fishmeal with crude 

fish oil as a by-product. The quality of oil by-product from these processes can be good 

enough for biofuel application, for instance, fuel oil for convectional combustors or diesel 

engines that use low quality fuels (e.g boilers and furnaces). The oil may also require 

subsequent refining steps in order to make it edible. However, the intensity of the process 

with respect to temperature (prolonged or repeated heating or cooking period) can 

degrade oil quality. High energy input required for cooking, pressing and centrifugation 

may lead to high production costs for this process.    

The chemical processes result in high yields of total lipid. However, solvent extraction 

systems may also extract non lipid material which can negatively impact oil quality. The 

commercial scale application of these processes can be problematic due to large volumes 

of residual solvent, and degraded product quality due to toxic solvent. The majority of 

solvent extraction processes (for example B&D, Soxhlet, MAE, and ASE processes) were 
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developed for lipid analysis and therefore impractical for extraction of fuel grade quality 

oils.  

SC-CO2, although limited in large scale application, can reduce the environmental 

impacts and safety issues involved in conventional solvent extraction processes. 

Theoretically, it can achieve a high quality product recovery as the process would 

produce a high quality fuel oil with minimal impurities; however, the viability of large 

scale production is limited. The costs and infrastructure associated with the required high 

pressures and pre-treatment (drying) have not been assessed. The quality of oil recovered 

by SC-CO2 for use as a stand-alone low grade fuel oil and/or blends of bio-fuel for 

combustion engine applications is an area requiring further investigation. 

Biological processes are used on a larger scale for protein concentrate and can lead to 

high volume oil production.  The processes are environmentally friendly and safe; they 

require low temperature and/or low or reduced energy input. However the product 

deteriorate due to long residence times, and favorable conditions for hydrolysis of FFA 

and oil-water emulsion therefore further downstream processing is also required. Costly 

enzymes and limited process control are among other factors that hinders its application. 
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Abstract 

The thermal, flow, and heating properties of unrefined fish oils (anchovy-sardine oil 

derived from fish processing waste, and unrefined salmon oil derived from salmon 

discards) blended with bunker ‘A’ oil (a common heating oil) were investigated. The 

rheological properties of the blends were examined and modeled using an Arrhenius 

equation approach. The onset of thermal degradation of waste fish oil, salmon oil and 

bunker ‘A’ oil were 187  , 229    and 75   respectively and complete decomposition 

of the oils occurred between 500 and 550    The flow behavior index of the oil/blend 

samples was less than one, which indicated that the fish oil/blend exhibited non-

Newtonian fluid behavior. More so, all samples showed decreasing viscosity with 

increasing shear rate indicating that the samples and their blends exhibited a shear-

thinning non-Newtonian behavior. The average heating value of anchovy-sardine oil, 

unrefined salmon oil and bunker fuel oil were 38.69, 39.51 and 43.36 MJkg
-1

 

respectively. The energy barrier to flow and viscosity of the blends decreased with 

increasing quantity of fish oils in fish-bunker mixture. 

 

This paper has been published in the Fuel journal. Ibraheem Adeoti is the lead author and 

the co-authors are Marina Santos and Dr. Kelly Hawboldt. Mr. Adeoti's contributions to 
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Nomenclature 

A   frequency factor (Pa.s) 

B100  100% biodiesel 

CO   carbon monoxide emission 

DHA   docosahexaenoic acid  

DSC   differential scanning calorimeter 

Ea   activation energy (kJ mol
-1

) 

EPA  eicosapentaenoic acid 

GHG   Greenhouse gas 

HHV  higher heating values (MJ/kg) 

K   consistency index (Pa.s
n
)  

k   reaction rate constant 

MUFA  monounsaturated  

n  flow behavior index (dimensionless unit) 

OCN  ocean nutrition Canada 

PUFA  polyunsaturated fatty acid 

R   gas constant (8.314 J mol
-1

 K
-1

) 

RFO  residual fuel oil (bunker fuel oil) 

SB20  20% (v/v) unrefined salmon oil in 80% (v/v) bunker fuel oil 

SB50  50% (v/v) unrefined salmon oil in 50% (v/v) bunker fuel oil  

SB80  80% (v/v) unrefined salmon oil in 20% (v/v) bunker fuel oil 
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SFA  saturated fatty acid 

SSE  sum of square errors   

T   temperature (K) 

TGA   thermogravimetric analysis  

WB20  20% (v/v) waste fish oil in 80% (v/v) bunker fuel oil 

WB50  50% (v/v) waste fish oil in 50% (v/v) bunker fuel oil  

WB80  80% (v/v) waste fish oil in 20% (v/v) bunker fuel oil 

  H  enthalpy (kJ/kg) 

    Shear stress (Pa.s)   

     Shear rate (s
-1

) 

ω-3  omega -3 
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3.1 Introduction 

Fish processing facilities generate a significant amount of fish by-products that could be 

source of energy, food, or industrial chemicals. While fish oil is a natural source of 

omega-3 polyunsaturated fatty acids (mostly eicosapentaenoic acid (EPA), and 

docosahexaenoic acid (DHA)) used in nutritional supplements, monetizing these oils may 

be challenging at processing facilities where there is limited infrastructure and plants are 

remotely located. Under these conditions, extraction of oil from fish by-product for use as 

an in-house or regional fuel may be both an economically and environmentally more 

sustainable approach. Processes to extract and refine fish oil for fuel are less energy 

intensive than those used for nutritional quality oil extraction/refining due to higher 

product quality standards required to meet nutritional regulations. Further, extraction of 

oil from waste (fish residue) for biofuels does not negatively impact food production [1]. 

Biofuels are gaining more attention due to availability, renewability and other advantages 

such as, net greenhouse gas (GHG) reduction, improved combustion, biodegradability 

and low toxicity [2]. Studies have proposed using fish oil and/or blending with petroleum 

based fuels as an alternative fuel oil for convectional combustors or diesel engines [3,4]. 

Fish oil has been used as fuel oil in power/heat generation as these systems can tolerate 

lower fuel quality than diesel engines [4]. Bunker fuel oils (No.2 to No.6) [5,6] are heavy 

petroleum distillates and are viscous, lower-grade fuel oil used to produce electricity, to 

fire boilers and blast furnaces in industry (notably the pulp and paper industry), and to 

power large marine and other vessels. Bunker fuels contain sulphur resulting in sulphur 
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dioxide as well as other contaminant emissions (due to the high molecular weight of the 

fuel) [7]. Blending fuel oils with unrefined fish oils could reduce emissions associated 

with this equipment particularly sulphur dioxide. An investigation by Preto et al., [4] 

reported that fish oil blends with No.6 and No.2 fuel oils burn well in conventional 

furnaces resulting in lower overall pollutant emission. The fish oil also reduced the 

viscosity of the fuels through blending [3]. While this work is promising, in order to use 

blends of fish oil and petroleum effectively, knowledge of thermal stability, rheological 

properties, enthalpy and other cold flow properties of the blends is required. There is 

limited literature on the properties of heavy oil-fish oil blends. A comparison of the 

quality of fish oil compared to the petroleum based fuels was done using 

thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) among 

other methods [8-10]. Operations related to the mass transfer and liquid flow, such as 

pumping, storage and handling, are addressed with rheological knowledge of the fluid 

[8]. There are few published studies on the thermal stability and rheological properties of 

fish oil [8-10] and less on blends of fish oil and/waste fish oils with heavy petroleum oils.  

The objective of this work is to evaluate thermal stability, rheological, and heating value, 

of unrefined salmon oil, waste fish oil, and blends with bunker fuel oil.  

3.2. Materials and Methods 

3.2.1. Sample preparation 

Fresh salmon waste (head, gut, trimming and frame) were obtained from the Centre for 

Aquaculture and Seafood Development (CASD), Memorial University of Newfoundland 

(MUN). The waste was stored at -40 
o
C. As part of the oil removal process, the waste was 
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thawed, ground to 1-4 mm and heated in a hot water bath at 80 
o
C for 10 to 15 minutes. 

The heated waste was transferred into eight 50mL centrifuge tubes and centrifuged in an 

Eppendorf centrifuge 5810 (Eppendorf AG 22331, Hamburg-Germany) at 3850rpm for 9 

minutes. The fish oil was separated by decantation and stored again at -40  . The same 

oil recovery method was used to recover oil from Atlantic cod, herring and mackerel. 

Bunker fuel oil and waste fish oil were supplied by St. Francis Xavier University, Nova 

Scotia. The waste fish oil is a by-product of Ocean Nutrition Canada Ltd. (ONC). 

Omega-3 fatty acids are extracted/concentrated from anchovy (95 – 99 %) and sardine (1-

5 %) oil imported from Peru, off the coast of South America. The waste fish oil ‘as is’ 

was stored in the freezer at -40   until used while the bunker fuel oil kept in cold room 

at temperature between 0 and 4    

3.2.2. Thermogravimetric analysis (TGA) 

The thermal stability of the unrefined salmon oil, and waste fish oil and their blends with 

the bunker fuel was conducted using the Thermo-gravimetric Analyzer (Model Q500, TA 

Instruments Inc.). Approximately 0.8 - 1.2 mg of oil/blend sample was loaded into the 

furnace. The TA instrument was manually programmed to heat up the sample from 

ambient temperature condition to 800  under N2/air atmosphere at the ramping rate of 

5  /min. Sample weight change was automatically acquired every second and the data 

were analyzed and plotted using the TA Universal Analyzer Software.  

3.2.3. Calorific value/High heating value (HHV) 

The calorific value of a fuel is the thermal energy liberated per unit mass of fuel during a 

complete combustion reaction till the products of combustion are cooled back to the 
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initial temperature of the combustible materials [11]. Calorific value is a measure of the 

energy content in a fuel. The 1108 oxygen bomb calorimeter (Parr Instrument Company) 

was used to determine the HHV of the unrefined salmon and waste fish oils and the 

blends of each with bunker fuel oil according to ASTM D2015 standard method. Oxygen 

– bomb vessel was pressurized to approximately 3 MPa with an oxygen container. The 

bomb was ignited automatically after the jacket and a bucket temperature equilibrated to 

the desired temperature.  

3.2.4 Flash point testing 

The flash point of a fuel oil is the lowest temperature, corrected to atmospheric pressure, 

at which application of a naked/test flame cause the fuel-vapor to ignite under specific 

conditions of test [11]. The flash point of the oils and their blends were measured by 

Pensky-Martens closed cup apparatus (K16200 – Koehler Instrument Company Inc.). The 

flashpoints were determined in accordance with ASTM D93. The apparatus is equipped 

with closed cup to which the sample is fed and heated at a controlled rate. An ignition 

source was introduced and the temperature at which the heated oil flashes was recorded 

as the flash point.  

3.2.5. Melting points and enthalpy 

Melting points were determined in a METTLER TOLEDO DSC-1 (Differential Scanning 

Calorimeter) with Julabo intercooler and TA Universal Analyzer Software. 

Approximately 5-10 mg of sample was cooled to -60 
o
C and heating to 40 

o
C at 5 

o
C/min. 

The thermogram plots containing normalized heat flow with temperature were integrated 

to obtain peak onset and areas. The average melting points of unrefined salmon oil and 
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waste fish oil were analyzed and recorded. The thermograph peak was used to determine 

the enthalpy ( H) of the samples using the TA Universal Analyzer Software. 

3.2.6. Rheological properties 

The apparent viscosity of the fish oils and their blends with bunker fuel oil were 

measured using a Brookfield DV-III Ultra Programmable rheometer equipped with a 

small sample adapter and spindle (SC4-18/13RP). The temperature of the sample was 

kept constant by connecting a circulating water bath (NESLAB EX series) to a water 

jacket of the small sample adapter. Measurements were taken at 20, 30, 40, 50 and 60   

in (Pa.s) by changing the spindle rotation speed from 10 rpm at intervals of 10 until the 

torque exceeded 100%. The power law (Eq.1) was used to analyze the flow behavior of 

all raw samples and their blends. 

               (1) 

Where   = shear stress (Pa.s),   = shear rate (s
-1

), K = consistency index (Pa.s
n
) and n is 

the flow behavior index (dimensionless unit) [8,10,12]. Taking the logarithm of both 

sides of Eq.(1) yields a straight line plot of log   versus log   with intercept (log K) and 

slope n. The effect of temperature on apparent viscosity is outlined in Eq. (2) [8,10,13]. 

k = A exp
(-Ea/RT)

         (2) 

Where k is the reaction rate constant, A is the frequency factor, Ea is the activation energy 

(J/mol), R is the gas constant (8.314 J/mol.K), and T is the temperature (K). The natural 

logarithm (ln) of apparent viscosity versus inverse of temperature (1/T) was plotted for 

each data set and with the slope of the straight line used to calculate Ea, and A as the 

intercept. 
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Statistical Analysis 

The experiments were conducted in triplicates. Mean and standard deviation were 

calculated using Microsoft Excel 2007 (Window 8 Edition, Microsoft Corporation, 

USA). Analysis of variance (ANOVA) at alpha level of 0.05 was performed using the 

statistical tool in Microsoft Excel. Average of three measurements plus/minus standard 

deviation was given in tables where applicable. 

3.3 Result and discusion 

3.3.1 Thermal analysis (TGA) 

Table 3.1 outlines the TGA results of raw fish oils and blends from this study and 

published studies. Included in this table are species data obtained in previous studies in 

our lab (herring and mackerel and Northern cod). The TGA analyzes the thermal stability 

by relating changes to its physicochemical properties to weight changes as a function of 

temperature [14]. The thermal behavior of bunker fuel oil, unrefined salmon oil and 

waste fish oil were studied under a nitrogen atmosphere between 0 °C and 800 °C (Fig. 

3.1a). The weight of the bunker fuel oil starts to decrease from 50 °C – 100 °C which is 

likely due to vaporization of lighter fractions of the bunker fuel oil. The rate of weight 

loss is rapid between 100°C - 250 °C likely a result of decomposition of lighter 

components of the oil [8]. From 250 °C to approximately 350 °C, the  weight loss rate 

decreases may be due impurities such as waxes, pigments and complex metallic 

compounds etc., which can be present in heavier fuel oil fractions [15].  The second rapid 

decomposition occurs between 375 °C and 450 °C. The oil was not completely 

decomposed at 500 °C and soot, ash, and other thermally recalcitrant substances 
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remained. The weight fraction of the soot/ash mixture was 12.3 wt. %. The onset weight 

loss temperature of waste fish oil and unrefined salmon oil starts at 187 °C and 229 °C 

respectively. Between 200 °C and 450 °C, the rate of weight loss of the waste fish oil 

increased rapidly with temperature (Fig. 3.1a). The total weight loss in this region is 

approximately 95 wt. %. Unrefined salmon oil did not decompose as rapidly in this 

range. Sathivel et al., Wiedermann and Chiou et al., [10,16,17], determined unprocessed 

salmon oil contains phospholipids, metals, minerals, free fatty acids, peroxides and their 

degraded products in the oil. These impurities absorb heat, slowing the decomposition of 

the oil [10,16] as such refined edible oils (waste fish oil) undergo more weight loss than 

unrefined edible oils [10]. In the temperature range from 350 °C-450 °C the salmon oil 

degrades rapidly (approximately 90 wt. %) and approximately 0.6 wt. % recalcitrant 

materials remained. 

The waste fish oil exhibited higher volatility than the unrefined salmon oil. This is likely 

due to the removal of edible components of the oil (such as omega-3, omega-6, EPA, 

DHA etc…) by ONC prior to testing. The unrefined salmon oil composition is richer in 

long chain polyunsaturated fatty acids that are more susceptible to oxidation. Thermal 

polymerization reactions occur in edible oils in temperature range from 200 °C to 300 °C 

in inert or nitrogen environment [18,19], which was observed in the TG curve of 

unrefined salmon oil (Fig.3.1a). The average boiling point of edible oils ranges from 200 

-250 °C depending on the type of oil as such weight loss at approximately 250 °C and 

below is considered vaporization. 
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Table 3.1: Data summary comparing decomposition temperature of the oils 

  

Decomposition 

Onset temperature 

ºC 

Rapid decomposition 

temperature range ºC 

Final 

decomposition 

temperature 

ºC 

Oil Types N2 Air  N2 Air N2 Air   

Waste fish oil 187 187 200 - 450 200 - 450 464 537 

Unrefined 

Salmon Oil 
229 229 300 - 450 300 - 475 476 659 

Herring 175 

 

325 - 425 

 

475 

 Mackerel 75 

 

275 - 425 

 

475 

 Northern Cod 250 

 

350 - 450 

 

475 

 SB20
a
  58 

 

125 - 450 

 

475 

 SB50
a
  100 

 

175 - 450 

 

475 

 SB80
a
  125 

 

325 - 450 

 

475 

 RFO
b
  50 

 

100 - 420 

 

450 

 WB20
c
 75 

 

150 - 450 

 

450 

 WB50
c
  75 

 

150 - 450 

 

450 

 WB80
c
  100 

 

200 - 450 

 

450 

 Salmon 

biodiesel [19]  
140 –  214 - 217 –  360 –  

Unrefined 

salmon oil [19] 
220 –  403 - 440 –  480 –  

Unrefined 

Pollock oil [12] 
–  180 –  200 - 450 –  535 

 Unrefined Red 

Salmon oil [11] 
–  180 –  200 - 450 –  533 

Unrefined Pink 

Salmon oil [11] 
–  210 –  200 - 450 –  668 

a
 SB20, SB50, SB80 = 20, 50 and 80 % (v/v) unrefined salmon oil blend with RFO  

b 
RFO = Residual fuel oil 

c
 WB20, WB50, WB80 = 20, 50 and 80 % (v/v) unrefined salmon oil blend with RFO 
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Figure 3.1a: Thermal degradation of the residual fuel oil, unrefined Salmon oil and waste 

fish oil under nitrogen  and air atmosphere. 
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Figure 3.1b: Thermal degradation of blends SB20, SB50, SB80 of unrefined Salmon oil 

with residual fuel oil under nitrogen  and air atmosphere. 

 

Figure 3.1c: Thermal degradation of blends WB20,WB50,WB80 of waste fish oil with 

residual fuel oil under nitrogen  and air atmosphere. 
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portion (residue) decreases with increasing fish oil content; SB20, SB50 and SB80 oil 

blends at 475 °C were 10.08, 5.50 and 3.37 wt. % respectively. 

Similar trends were observed with waste fish oil blends WB20, WB50 and WB80 (Fig. 

3.1c). A steep slope was observed between 75 °C and 425 °C, representing a rapid 

decomposition, more than 90 wt. %.  A crossover point is also observed at approximately 

375 °C (Fig. 3.1c), where the effect of impurities in the fish oil again may be slowing 

thermal decomposition as discussed previously. The mass fraction of undecomposed 

residuals of WB20, WB50 and WB80 oil blends at 475 °C were 9.28, 6.99 and 3.14 wt. 

% respectively. 

3.3.2 Calorific value/High heating value (HHV) 

The higher heating values (HHVs) and flash points are outlined in Table 3.2. The HHV 

of the waste fish oil and unrefined salmon oil are 38.69 MJ/kg and 39.51MJ/kg 

respectively. A theoretical calculation of HHV of fish oil is difficult due to the 

heterogeneous nature of the oil (polar to non-polar organics, variation by species etc…) 

[20]. However, if one assumes approximately 70-80 wt. % TAG and the balance 

phospholipids and fatty acids the HHV is approximately 38 MJ/kg, within the range of 

this study.  The HHV of bunker fuel oil (43.36 MJ/kg) is in the range of biodiesel (39 

MJ/kg to 43.33 MJ/kg) reported by Sivaramakrishnan et al. [11] and slightly lower than 

that of petroleum diesel (49.65 MJ/kg). The HHVs of the waste fish oil blends decreases 

as the ratio of waste fish oil increases (e.g. HHV-WB20 > HHV-WB50 > HHV-WB80). 

A similar trend is exhibited by the unrefined salmon oil blends with bunker fuel oil.  
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Table 3.2: Heating value of unrefined fish oil and blends 

Samples HHV (MJ/kg) Flash point (ºC) 

Waste fish oil  38.69 203.5 

SB20
a 

43.43 

 SB50
a 

41.33 144 

SB80
a 

40.46 

 Unrefined Salmon oil 39.51 208.5 

WB20
c 

42.19 

 WB50
c 

41.20 145 

WB80
c 

39.44 

 RFO
b 

43.36 130 

Cod oil 39.62 212.5 

Mackerel 39.42 

 Herring 39.71   

a
 SB20, SB50, SB80 = 20, 50 and 80 % (v/v) unrefined salmon oil blend with RFO  

b 
RFO = Residual fuel oil 

c
 WB20, WB50, WB80 = 20, 50 and 80 % (v/v) waste fish oil blend with RFO 

 

3.3.3 Flash point testing  

The flash point is an indicator of the flammability of compounds [21] and critical in 

developing safe handling, storage and use procedures. Biodiesel has a relatively high 

flash point, above 150 °C [22], while mineral diesel flashes between 55 °C and 66 °C 

[22]. CHRIS-hazardous chemical data [23] reported fish oil flash point at 215.56 °C, 

while Behcet [24] reported 216 °C and fish oil biodiesel to be 155°C. Detwiler and 
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Markley [25] determined that the flash, smoke and fire point of biological oils (e.g. 

soybean oil) varied considerably with the degree of refining, especially the removal of 

free fatty acids, and also with the mode of extraction. The flash point of the bunker fuel 

oil in this work is 130 °C, well below the flash point of the waste fish oil and the 

unrefined salmon oil of 203.5 °C and 208.5 °C respectively (Table 3.2). Detwiler and 

Markley [25] tested lightly processed Menhaden, light-deodorized fish oil, and kettle-

refined-deodorized fish oil tested and obtained flash points of 302 °C, 298 °C, and 279 °C 

respectively. The flash points of the blends WB50 and SB50 are 145 °C and 144 °C 

respectively, lower than the flash points of unblended waste fish oil and unrefined salmon 

oil but slightly higher than the unblended RFO oil flash point. The blends flash points are 

of lower values than that of pure (B100) biodiesel but high enough from a safety 

perspective to be safely stored and transported at ambient temperatures in temperate 

regions. The lower flash points reported in this work may be due to the presence of free 

fatty acids in both fish oil (i.e 14.5 % and 6.6 % FFA of waste fish oil and unrefined 

salmon oil respectively). This is in agreement with Detwiler and Markley [25].  

3.3.4. Melting points and enthalpy 

The DSC thermograms (Figure 3.2a and 3.2b) show two broad endothermic peaks for the 

waste fish oil and the unrefined salmon oil respectively. The melting point of waste fish 

oil ranged from -21.07 to 20.25
 o

C, whereas the melting point of unrefined salmon oil 

ranged from -34.69 to 16.95 °C (Table 3.3a). The negative melting points of the oils were 

attributed to the presence of triacylglycerol which contain unsaturated fatty acids 

[8,10,26]. The higher degree of unsaturated fatty acids in fish oil result in melting at 
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lower temperatures, conversely, a higher degree of saturated fatty acids in fish oil result 

in high melting temperatures [8]. The ratios of polyunsaturated to saturated fatty acids in 

both waste fish oil and unrefined salmon oil are greater than unity (Table 3.3b).  

 
Figure 3.2a: DCS thermograph of the waste fish fish oil 
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Figure 3.2b: DCS thermograph of unrefined salmon oil 
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Ton = Onset melting temperature; Toff = Offset melting temperature 

 

Table 3.3b: Fatty acid composition of waste fish oil and unrefined salmon oil 

  (wt %) from total 

Component Waste fish oil Unrefined salmon oil 

Bacterial 1.82 ± 0.05 1.11 ± 0.04 

Saturated fatty acids 21.76 ± 1.55 20.58 ± 0.08 

MUFA
d 

21.64 ± 0.20 49.51 ± 0.02 

PUFA
e 

55.57 ± 1.35 29.41 ± 0.07 

PUFA/SFA
f 

2.56 ± 0.25 1.43 ± 0.01 

ω-3
g 
 ratio 47.57 ± 1.07 11.58 ± 0.01 

DHA/EPA
h
 ratio 0.76 ± 0.02 0.71 ± 0.01 

d
MUFA = monounsaturated; 

e
PUFA = polyunsaturated fatty acid; 

f
SFA = saturated fatty acid; 

h
DHA = docosahexaenoic acid;  

h
EPA = eicosapentaenoic acid; 

g
ω-3 = omega -3 

The value of enthalpy reported for unrefined salmon in this work is lower compared to 

the 58.7 kJ/kg reported by [10], and 40 kJ/kg and 39 kJ/kg for red and pink salmon 

Table 3.3a: Melting points onset temperature and enthalpy of the oils 

Sample Ton (
o
C)  Toff (

o
C) Peak(

o
C) Enthalpy(kJ/kg) 

Waste Oil -21.07 ± 2.21 20.25 ± 0.44 -9.98 ± 0.60 51.80 ± 2.53 

Unrefined 

salmon Oil 
-34.69 ± 0.46 16.06 ± 0.54 - 6.0 ± 0.08 33.43 ± 2.16 

Herring  -18.37 ± 1.17 16.25 ± 0.40 -3.48 ± 2.63 52.92 ± 2.54 

Mackerel -29.31 ± 1.97 20.07 ± 0.15 -9.98 ± 0.45  53.6 ± 2.77 

Northern Cod  -21.85 ± 1.51 12.16 ± 0.11 -15.58 ± 1.02 41.45 ± 1.12 
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respectively reported by [9]. The value disparities could be attributed to different in 

origin, harvesting season, and extraction method and quality of raw materials. 

3.3.5. Rheological properties  

The change in apparent viscosity with the shear rate with temperature was investigated. 

Results are summarized for unrefined salmon oil and the waste fish oil at the maximum 

temperature studied (60 
o
C), in Fig.3.3.  At 60 

o
C the waste fish oil viscosity decreased 

from 0.059 Pa.s to approximately 0.0154 Pa.s when the shear rate was increased from 13 

s
-1

 to 106 s
-1

 and remained constant after. At 60 
o
C the drop was from 0.0605 Pa.s to 

0.0197 Pa.s for unrefined salmon oil when the shear rate was increased from 13 s
-1

 to 106 

s
-1

 and then stabilized. Bunker fuel oil viscosity decreased from 0.1268 Pa.s to 0.0639 

Pa.s and remained stable when the shear rate was increased from 13 s
-1

 to 92.4 s
-1

. In the 

case of blends WB50 and WB50, the viscosity decreased from 0.082 Pa.s and 0.099 Pa.s 

to approximately 0.0303 Pa.s and 0.0352 Pa.s respectively, when the shear stress was 

increased from 13 s
-1

 to 66 s
-1

 and then stabilized. The effect of both waste fish oil and 

the unrefined salmon at 50 % (v/v) lowered the viscosity at 60 
o
C (Fig.3.3). 

The decrease in viscosity with increasing shear rate indicated that the samples and their 

blends exhibited a shear-thinning non-Newtonian behavior which is in agreement with 

our previous work [20]. 

The flow behavior index (n) shows that the raw samples behave pseudoplastically (i.e 

n<1). The power law parameters are given in Table 3.4a and 3.4b. The flow behavior 

index (n) of waste fish oil and unrefined salmon oil at 20
 o

C are approximately 0.8 and 

0.9 respectively, indicating non-Newtonian behavior [8,10]. These values are similar to 
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those reported for unpurified salmon oil by [8], and unrefined pollock oil by [10]. The n 

values were less than unity indicating that these products are pseudoplastic materials at 

all temperatures and blend concentrations studied. The coefficients (R
2
) obtained were 

very close to unity, confirming that the power law model is suitable in describing flow. In 

practice, specific additives are added to viscous material to achieve pseudoplastic flow 

behavior. This behavior is beneficial to fuel flow through pipes and hoses as stress forces 

applied through pumps reduce fuel viscosity. The stronger the shear force applied to the 

pseudoplastic material, the greater the thinning effect and reduction in viscosity [27]. The 

pseudoplasticity of the raw samples and blends increases with temperature and 

concentration of fish oil in bunker fuel oil (Table 3.4a and 3.4b). The consistency 

coefficient, k, decreases with increases in temperature over the range of waste fish oil and 

unrefined salmon oil concentrations. This shows consistency with viscosity behavior and 

indicated that viscosity values decrease with increase in temperature at all fish oil 

concentrations in bunker fuel oil.  

In eq. (2) the activation energy, Ea, (kJ/mol) represents the energy barrier to flow 

[8,10,13,28]. The frequency factor or viscosity coefficient at a reference temperature, A, 

(Pa.s) and Ea values were determined using a best fit line equation with least sum of 

square errors (SSE). The magnitude of the temperature effect on bunker fuel oil varied 

with fish oil concentration as shown by the Ea values in Table 3.5. In general, the higher 

the activation energy, the more sensitive the viscosity will be to temperature [28]. As 

shown in Table 3.5, the Ea decreased from 47.18 kJ/mol at 20 % (v/v) waste fish oil 

blend to 44.68 kJ/mol at 50 % (v/v) waste fish oil blend and to 35.75 kJ/mol of waste fish 
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oil at 80 % (v/v) waste fish oil blend. A similar trend was observed with unrefined 

salmon oil from 47.6kJ/mol at 20 % (v/v) to 35.37 kJ/mol at 50 % (v/v) and to 28.69 

kJ/mol at 80 % (v/v). This is an indication that the temperature effect on viscosity is more 

dominant at lower fish oil blends. 

Figure 3.3: Change in apparent viscosity with shear rate at 60 
o
C for waste fish oil, 

unrefined salmon oil, RFO and their 50% (v/v) blends. RFO-residual fuel oil; WB50-50 

% (v/v) waste fish oil blend with RFO; SB50-50 % (v/v) unrefined salmon oil blend with 

RFO. 
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Table 3.4a: Flow behavior index, consistency index, apparent viscosity, from power law equation fitting of waste 

fish oil, unrefined salmon oil, RFO and cod oil 

Sample T (
o
C) Viscosty (Pa.s) n-values K- values R

2
 

Waste fish 

oil 

20 0.1436 ± 0.001 0.81 ± 0.000 0.48 ± 0.000 0.995   

30 0.0646 ± 0.0002 0.71 ± 0.001 0.39 ± 0.007 0.998   

40 0.0166 ± 0.0001 0.79 ± 0.002 0.27 ± 0.001 0.996   

50 0.0125 ± 0.0000 0.53 ± 0.003 0.28 ± 0.008 0.996   

60 0.0089 ± 0.0000 0.48 ± 0.004 0.29 ± 0.011 0.988   

      

Unrefined 

Salmon 

oil 

20 0.0576 ± 0.0004 0.89 ± 0.007 0.04 ± 0.014 1.000  
30 0.0376 ± 0.0000 0.79 ± 0.006       --- 0.999  
40 0.0246 ± 0.0002 0.69 ± 0.003 0.07 ± 0.004 0.998  
50 0.0169 ± 0.0001 0.50 ± 0.002 0.40 ± 0.000 0.992  
60 0.0127 ± 0.0002 0.53 ± 0.007 0.28 ± 0.012 0.996  

      

RFO
b 

40 0.1448 ± 0.0073 0.72 ± 0.04 0.64 ± 0.060 0.998 

50 0.0711 ± 0.0003 0.54 ± 0.01 0.74 ± 0.020 1.000 

60 0.0483 ± 0.0014 0.55 ± 0.02 0.61 ± 0.040 0.989 

      

Cod 

20 0.05061 ± 0.0040 0.56 ± 0.007 0.57 ± 0.012 0.993  

30 0.03471 ± 0.0040 0.56 ± 0.044 0.47 ± 0.084 0.997  

40 0.02199 ± 0.0010 0.47 ± 0.000 0.56 ± 0.003 0.987  

50 0.01703 ± 0.0000 0.50 ± 0.003 0.44 ± 0.005 0.988  

60 0.01298 ± 0.0000 0.50 ± 0.034 0.36 ± 0.089 0.997  
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Table 3.4b: Flow behavior index, consistency index, apparent viscosity, from power law equation fitting of blends 

of waste fish oil and unrefined salmon oil with RFO. 

    Waste fish oil blends   Unrefined salmon oil blends 

Parameter T (
o
C) 

WB20
c 

WB50
c 

WB80
c 

  
SB20

a 
SB50

a 
SB80

a 

n-index 

20 

  

0.8±0.000 

   

0.6±0.025 

30 0.8 ± 0.022 0.7 ± 0.000 0.6 ± 0.007 

  

0.6 ± 0.012 0.4 ± 0.016 

40 0.7 ± 0.006 0.5 ± 0.032 0.5 ± 0.010 

 

0.7 ± 0.001 0.5 ± 0.002 0.5±0.005 

50 0.6 ± 0.009 0.5 ± 0.001 0.5 ± 0.014 

 

0.5 ± 0.001 0.4 ± 0.009 0.4 ± 0.017 

60 0.5 ± 0.002 0.5 ± 0.011 0.5 ± 0.013 

 

0.4 ± 0.001 0.4 ± 0.006 0.5 ± 0.002 

         

Viscosity 

(Pa.s) 

20 

  

0.13 ± 0.0002 

   

0.07 ± 0.005 

30 0.16 ± 0.0080 0.07 ± 0.0009 0.05 ± 0.0011 

  

0.07 ± 0.000 0.04 ± 0.001 

40 0.08 ± 0.0010 0.04 ± 0.0014 0.03 ± 0.0002 

 

0.09 ± 0.001 0.04 ± 0.000 0.03 ± 0.000 

50 0.04 ± 0.0010 0.02 ± 0.0000 0.02 ± 0.0002 

 

0.05 ± 0.000 0.03 ± 0.000 0.02 ± 0.001 

60 0.03 ± 0.0001 0.02 ± 0.0002 0.01 ± 0.0002 

 

0.03 ± 0.000 0.02 ± 0.000 0.02 ± 0.000 

         

K-values 

20 

  

0.43 ± 0.000 

   

0.68 ± 0.054 

30 0.47 ± 0.016 0.45 ± 0.005 0.55 ± 0.002 

  

0.64 ± 0.019 0.82 ± 0.030 

40 0.53 ± 0.008 0.52 ± 0.060 0.53 ± 0.023 

 

0.58 ± 0.003 0.68 ± 0.003 0.64 ± 0.011 

50 0.55 ± 0.016 0.59 ± 0.001 0.43 ± 0.030 

 

0.69 ± 0.003 0.65 ± 0.019 0.61 ± 0.031 

60 0.58 ± 0.004 0.45 ± 0.020 0.41 ± 0.029 

 

0.73 ± 0.008 0.59 ± 0.008 0.49 ± 0.000 
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Table 3.5: The activation energy Ea of the raw oils and their blends 

Sample Ea (kJ mol
-1

) A(Pa.S) 

Waste fish oil 58.884 ± 0.4497  4.01x10
-12

 
 

Unrefined salmon oil 31.036 ± 0.5661 1.69 x10
-7 

 

Cod oil 31.421 ± 1.3886  1.49x10
-7 

 

SB20
a 

47.592 ± 2.0188 1.14 x10
-9

  

SB50
a 

35.372 ± 0.0682 5.28 x10
-8 

 

SB80
a 

28.688 ± 2.6761 6.14 x10
-7 

 

RFO
b 

47.662 ± 2.0358 1.7x 10
-9

  

WB20
c 

47.178 ± 2.3633 1.29 x10
-9 

 

WB50
c 

44.667 ± 0.1581 1.2 x10
-9 

 

WB80
c 

35.749 ± 0.7977 4.3 x10
-8 
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3.4 Summary and conclusion. 

In this work the thermal and rheological properties of waste fish oil, unrefined salmon oil, 

bunker fuel oil and their blends have been analyzed. The feasibility of using unblended 

and/or blends of fish oil in conventional heaters/boilers/engines are determined by these 

properties. The fish oil, bunker fuel oil and their blends behaved as a shear thinning fluid 

and could be described by the power-law model. For bunker fuel oil /fish oil blends an 

increase in fish oil resulted in an increase in pseudo-plasticity of the blend. The activation 

energy decreased with increasing concentration of fish oil in blends.  

Based on these results and previous studies in our lab [20], the blending of fish oil and 

bunker fuel oil fuel could potentially be used in home heating oil, steam/hot water - 

boilers, and marine fuels. The flash point of the blends is high enough for safe handling, 

transportation and storage. The fish oil/ bunker fuel oil blends have a lower heating value 

than the petroleum based fuel and therefore the ratio of fish oil: petroleum fuel must be 

considered. At high concentration of waste fish oils in the blends, the activation energy 

(flow barrier), Ea, becomes smaller and therefore exhibits good flow properties, which 

may be beneficial to applications in colder regions. The data on the rheological properties 

of the blends could be used as a tool in determining applications, storage and handling 

methods of the blends. Blending fish oils (biofuel) with the bunker fuel oil (petroleum 

based fuel oil) also minimize CO emission [3,29]; hence, this application may lessen the 

environmental concerns over emission properties of bunker fuel oil as fuel. 
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Abstract 

The method of extraction of oil for fuel from fish waste will determine the quality and 

applicability of the fuel. In this study, supercritical carbon dioxide extraction (SC-CO2) 

was studied as a method to recover oil from salmon waste. Experiments at pressures of 

15, 25, and 35 MPa, temperatures of 313, 333 and 353 K, and CO2 flow rates of 0.18–

0.48 kg/hr were conducted and the yield compared. The yields at 35 MPa, temperatures 

of 313, 333 and 353 K, and CO2 flow rates of 0.18 kg/hr were approximately 39, 46 and 

41 (wt.%). A process model based on intra-particle diffusion (De) and external mass 

transfer of fish oil (kf) is presented for the supercritical extraction process. The adsorption 

equilibrium constant (K) is determined by fitting the theoretical extraction curve to the 

experimental data. The model using the best fit of theoretical extraction curve correlated 

the experimental data satisfactorily with AAD (%) ranged from 2.4 to 10.6 %. 

The experimental and the mathematical model of SC-CO2 extraction has been published 

in the journal of Supercritical Fluids. Mr. Ibraheem Adeoti is the lead author and Dr. 

Kelly Hawboldt is co-author. Mr. Adeoti's contributions to this paper include the 

following: 

 Wrote the paper 

 Performed all the laboratory testing and analyses (except where noted) 

 Conducted all data processing and interpretation of results 

 Performed all literature searches required for background information 

Dr. Hawboldt provided technical guidance and editing of the manuscript. 
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Nomenclature 

Abbreviations 

AAD  Average absolute deviation 

CASD  Center for aquaculture and seafood development 

CO2  Carbon dioxide 

DHA   Docosahexaenoic acid  

EPA   Eicosapentaenoic acid  

EOS  equation of states 

SCE  Supercritical carbondioxide extraction 

SC-CO2   Supercritical carbondioxide 

SFE   Supercritical fluid extraction 

Symbols 

pa    Specific surface area (m
-1

) 

A constant defined by eq. (25) (-) 

b constant defined by eq. (26) (-) 

Ab bed cross sectional area (m
2
) 

c constant defined by eq. (27) (-) 

fc  solute concentration in the solvent phase (kg/m
3
) 

pc   solute concentration within the particle pore (kg/m
3
)  cp 

psc  solute concentration in pore space at the particle surface (kg/m
3
)   

 sc   solute concentration in the particle (kg/m
3
)   
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0c  solute concentration in the pore phase at t = 0 (kg/m
3
)   

0sc  solute concentration in the solid phase at t = 0 (kg/m
3
)  

0fc  total solute concentration (kg/m3) 

pd   particle diameter or thickness of the slab (m) 

Dab binary diffusion coefficient (m
2
/s) 

De effective intraparticle diffusion coefficient (m
2
/s) 

F cumulative fraction of solute extracted (-) 

ka  adsorption rate constant (1/s) 

fk   external mass transfer coefficient (m/s) 

kg  global mass transfer coefficient (m/s) 

K  adsorption equilibrium constant (-) 

L length of the bed (m) 

2
QCO  CO2 volumetric flow rate (m

3
/s) 

r radial position in spherical particle (m) 

R radius of spherical particle (m) 

t time (s) 

Us superficial velocity (m/s) 

x dimensionless solute concentration in effluent (-) 

x0 initial solute mass ratio in the solid phase (-) 

xp dimensionless solute concentration in pore (-) 

xs dimensionless solute concentration in solid phase (-) 
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y solute mass ratio in the fluid phase (kg/kg) 

z bed length coordinate (m) 

  bed void fraction (-) 

  particle porosity (-) 

  dimensionless mass transfer coefficient (-) 

  dimensionless time (-) 

 s solid density without void fraction of the solid matrix (kg/m
3
) 

2CO  CO2 density (kg/m
3
) 

  total bed volume (m
3
)/volumetric flow rate (s) 

   particle geometry factor 

   particle geometry parameter  
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4.1 Introduction 

Supercritical fluid extraction (SFE) is an alternative to conventional separation processes 

in the recovery of essential oils from plants and animal tissue. SFE using CO2 (SC-CO2) 

typically results in a high purity product and free of toxic solvent compared to 

conventional solvent extraction processes [1-3]. SC-CO2 has a high organic diffusivity, is 

a relatively inexpensive solvent, and is nonflammable. In the SFE process the fluid is at 

its critical temperature and pressure, where it exhibits gas like viscosities and liquid like 

densities. Several investigators have explored SFE using carbon dioxide (CO2) for the 

extraction of edible/nutraceutical oils from plant and animal products (e.g. peach almond 

seed [4,5], sunflower seed [6,7], canola [8], spearmint leaf [9], sesame seed [10], 

peppermint [11], aromatic plant [12], vetiver root [13], hazelnut [3], ginger [14], and fish 

[15-21]).  

Fish processing facilities generate a significant amount of fish by-products that could be 

an important source of energy, food, or industrial feedstock. While fish oil is a natural 

source of omega-3 polyunsaturated fatty acids (mostly eicosapentaenoic acid (EPA), and 

docosahexaenoic acid (DHA)) used in nutritional supplements, the ability to extract, 

refine, and get to market may be challenging at processing facilities where there is 

limited infrastructure and plants are remotely located. Further, regulatory roadblocks of 

using oil from waste in food/drugs may be an issue. Under these conditions, extraction of 

oil from fish by-product for use as an in-house or as a regional fuel may be more 

sustainable. Processes to extract and refine fish oil for fuel are less energy intensive than 

the processes for nutritional quality oils and do not require the stringent product 
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specifications and approval process as in the food and pharmaceutical industry [22]. 

Unlike food crops, extraction of oil from fish residue does not negatively impact food 

production [22]. Fish oils from fish wastes are increasingly being used either as stand-

alone or in blends with petroleum based fuels. The bio-oil composition and thermal and 

physical properties are a function of the feedstock and the degree of processing of the 

crude bio-oil. 

Mathematical modelling of separation processes is critical in predicting process behavior, 

design of the process, and subsequent scale up [16,23]. In large scale SFE processes the 

solute concentration profiles in the solid and fluid phase are difficult to measure due to 

cost and the issues associated with sampling continuously in a high pressure system [23]. 

A process model based on experimental data could be used as a tool in scale-up and 

optimization of a SC-CO2 process.  Several models have been proposed for the SFE of 

fixed bed of solid substrate based on empirical kinetic equations [24-26]. The advantages 

of kinetic models are their simplicity and ability to describe the kinetics of an extraction 

profile very precisely. Kinetic studies have been used in the SFE of biomass [8,27-29]. 

del Valle et al., [24] presented a review of kinetic and equilibrium models of SFE 

processes. For scale up and design purposes, the kinetic models are not adequate as they 

fail to provide the description of underlying mass transfer phenomena and in these cases 

mass balance models can be used [24,26,30]. Many researchers have investigated mass 

balance models for SFE of a solute from fixed bed of solid substrate and del Valle et al., 

[24] provides a comprehensive review. Studies relevant to this work are summarized in 

Table 4.1. As Table 4.1 shows, there is little work on the extraction of oil and lipids from 
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animal muscle. In our laboratory, we are investigating SFE using CO2 to extract fish oil 

from fish processing waste. There are several challenges with this type of work, 

predominantly in the heterogeneity of the waste material as fish species and degree of 

fish processing varies based on location and season. In Newfoundland and Labrador, 

salmon (Salmo salar Linnaeus) is harvested and processed. The high oil content and 

proximity to waste feedstock made this an ideal feedstock for our study. Offal (heads, 

trimmings and frames) discarded during peeling; cutting and evisceration processes were 

obtained from local industries. This study is part of an ongoing research on alternative 

fish oil extraction methods beneficial for biofuel application [22], low grade biofuel 

process optimization [51], comparison of biofuel quality as a function of oil extraction 

methods (currently under review - Fuel Journal), characterization of biofuel blends with 

petroleum fractions (currently under review - Fuel Journal), and life cycle analysis (LCA) 

of various extraction processes studied (currently being done). 

This research study is divided into three folds: (1) fish oil solubility in SC-CO2 was 

determined in the equilibrium experiment; (2) the SFE extraction process using CO2 

(optimize the SFE process conditions to maximize oil yield under the least intensive 

conditions; pressures, temperatures and CO2 consumption); and (3) we developed a 

model predicting oil extraction as a function of process conditions. 

 

 



89 

 

Table 4.1: Examples of experimental and modeling work on supercritical extraction  

Reference Substrate Solute Model name 

[12] Aromatic plants volatile oil 

Grosso et al., and Coelho et al, 

model 

[11] Peppermint leave Peppermint oil Goto model 

[31] Black Pepper Piperine 
a
IE mass transfer model 

[32] Black Pepper Piperine Sovova model 

[33] Black Pepper Piperine Sovova model 

[9] Spearmint leaf Carvone and Limonene 
b
IBC-Diff model 

[34] Neem seeds Nimbin Goto Model 

[35] Nutmeg seed Nutmeg oil 
c
BIC model 

[36] Nutmeg seed Nutmeg oil 
d
SC/ADPF model 

[37] Carqueja plant Essential oil Sovova model 

[8] Canola seed Canola oil 

Unsteady state mass  transfer 

model 

[38] 

Sage seed, Celery seed, Coriander 

seed Essential oils 
e
IMTC model 

[39] Sage seed,  Essential oils 
g
LDF/PMMS model 

[14] Ginger root Ginger oil 
f
SC model 

[40] Lavender flower Essential oil 
f
SC/PF model 

[41] Clove buds Essential oil 
gh

LDF/ADPF model 

[42] Clove buds and Vetiver root Essential oil Sovova model 

[43] Orange flower  Orange flower extract 
j
LDF/PF model 

[7] Sunflower seed Essential oil Kinetic model  

[44] Sunflower seed Essential oil Desorption model 

[45] pennyroyal leaves Essential oil 
gh

LDF/ADPF 
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[46] Marigold, fennel and chamomile Essential oil Micro scale model 

[47]  Plane tree leaf Mannitol 

Axial dispersion/ Freundlich 

isotherm 

[13] Vetiver root Essential oil Axial dispersion 

Animal/animal products  

[48] Egg yolk Lipids Goto model 

[16] Mackerel Fish oil 
a
IE/diffusion model 

[19] Trout powder Fatty acids Diffusion model 

[49] Cow brain Cholesterol Fick's diffusion model 

[17] Sardine Lipids N/A 

[21] Mackerel Essential oil N/A 

[50] Pigskin Fat N/A 
a
IE-internal +external mass transfer; 

b
IBC-Diff-intact and broken cell diffusion; 

c
BIC-broken and intact cell; 

d
SC/ADPF-

shrinking core/adsorption-desorption plug flow; 
e
IMTC-internal mass transfer control; 

f
SC/PF-shrinking core/plug flow; 

g
LDF/PMMS-linear driving force/perfectly mixed multi-stages; 

h
ADPF-Adsorption-desorption plug flow; 

j
LDF/PF-linear 

driving force/plug flow. 
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4.2 Mathematical modeling 

Freeze-dried salmon offal is made up of protein, bone meal, and moisture and a lipid-oil 

mixture. The lipid-oil mixtures are the extractable components and can be treated as a 

single (pseudo-solute) substance. The general mass transfer equations for the SFE 

processes proposed by Akgerman et al. [52], de Valle et al., [24] and de Valle et al. [53] 

are similar to mass transport operations involving solid-fluid processes, such as 

adsorption, desorption, and leaching. The models comprise of two differential solute 

mass balances on the solvent and solid phases. It also incorporates local equilibrium 

adsorption that describes the relationship between solute and solid [34]. The extraction 

model in this work is based on the model first developed by Goto et al. [11] for the 

prediction of essential oil extraction from peppermint leaves. Duford et al. [16] used the 

Goto et al. model to determine the cumulative fraction of edible oil from Atlantic 

mackerel at different moisture content and Mongkholkhajornsilp et al. [34] also used the 

model proposed by Goto et al. for the correlation of nimbin extraction from neem seeds. 

Rai et al. [25] compared Goto et al. model with models proposed by Reverchon, Marrone, 

Sovova and Goodarznia.  The local adsorption equilibrium model proposed by Goto et al. 

[8] was found most suitable for our process as it addresses intra-particle diffusion and 

external mass transfer of SFE in a fixed solid bed. 

The fixed bed of salmon offal particle containing the oil is defined as the stationary 

(solid) phase with flowing SC-CO2 as the mobile (fluid) phase, with assumptions that: 

(i) the solid particle is porous,  

(ii) axial and radial dispersions are negligible, 
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(iii) the process is isobaric and isothermal,  

(iv) local equilibrium adsorption exists between solute and solid in pores of fish 

particle,  

(v) solute interaction in the fluid or solid phase is negligible,  

(vi) the SC-CO2 physical properties (such as viscosity and density) are constant. 

The solute concentration, cf, in the fluid phase in a packed bed depends on the rate of 

mass transfer from particles along the length of the bed, the fluid flow rate, and extent of 

mixing. Eq. (1) is obtained by taking a mass balance around an element    of bed length 

as shown in Fig.4.1 [24]. The differential solute mass balance for the SC-CO2 

surrounding the fish particle in the packed bed is given as:     

 (1 ) ( )
f f

p f ps f

t

c c
U a k c c

z
 
 

   
 

      (1) 

Where fc and psc are solute (oil) concentration in the bulk SC-CO2 phase and in the pore 

at the particle surface respectively and fk  is the external mass transfer coefficient of the 

particle, pa  is the specific surface area of the particle and is defined as the elemental, the 

bed packing characteristics, and solid substrate particle internal structure.  
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z z + Δz

z = 0 z = L

Bed void fraction α

Solid
 

part
icl

e

Particle void fraction β

dp

cps

cp

Cf, in (t) Cf, out (t)

Us Ab C Us Ab C

-Ab Dax dc/dz -Ab Dax dc/dz

Figure 4.1: Flow diagram for fish waste packed bed extraction vessel showing finite 

difference volume element, the bed packing characteristics, and fish waste particle 

internal structure. 

 

p

p

a
d


 .   is a factor that depends on particle geometry ( is 2 for very thin slab), and 

pd  is thickness of the slab assumed in this research.  

Initial conditions are: 

0 0fc at z            (2a) 

0 0;0fc at t z L            (2b) 

Boundary conditions are: 

0
fc

at z L
z


 


         (3a) 
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; 0
f

ax f

c
D Uc at z for all t

z


 


       (3b) 

The differential solute mass balance in the solid phase is:  

2

2
(1 )

p p s
c c c

De
t r t

 
  

  
  

        (4) 

Where pc  and sc are the solute concentration in pores within particle and at the solid 

phase of particle respectively.   

Initial conditions are: 

0 0,0pc c at t r R            (5a) 

0 0,0s sc c at t r R             (5b) 

Boundary conditions are: 

(c ),
p

f f ps

c
De k c at r R for all t

r


  


      (6a) 

0, 0
pc

at r for all t
r


 


        (6b) 

0 0 0(1 )f p sc c c            (6c) 

Where De is the effective intra-particle diffusion coefficient and dp is the thickness of 

thin slab particle. The linear driving force (LDF) approximation for mass transfer from 

substrate to the SC-CO2 is assumed to be valid when the residual solute concentration 

profile in the partially extracted solid substrate is approximately parabolic. The LDF 

approximation (Eq. 7a) was then used to combine internal and external mass process as 

[25,34,52]:  
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2

15
( )

f e
f ps

c D
c c

t R


 


         (7a) 

2

15
(1 )( ) (1 )(f p f ps ps f

De
k a c c c c

R
      )      (7b) 

Under these conditions the global mass transfer coefficient kg, accounts for both the 

internal and external mass transfer resistances, and is given by: 

1

f

g

k
k

Bi







          (8) 

Where kg is global (overall) mass transfer coefficient,  is the particle geometry 

parameter ( =10 for spheres and 6 for thin slabs), and Bi is dimensionless Biot number 

and is given as: 

f pk d
Bi

De
           (9) 

The local extraction rate, which is equivalent to the desorption rate, is assumed to be 

reversible and linear in terms of adsorption rate constant ka and the adsorption 

equilibrium constant K 

 cs s
a p

c c
k

t K

  
  

  
         (10) 

Average intra-particle and solid concentration are determined using the parabolic profile 

given as  

2

2 0

1
4 ( )

2

R

p pc r c r dr
R




          (11) 

2

2 0

1
4 ( )

2

R

s sc r c r dr
R




          (12) 
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In terms of average intra-particle concentration pc , the differential mass balance equations 

(1) and (4) can be reduced to  

(1 )(c )
f f

g p p f

dc c
k a c

dt
 


           (13)

(c c ) (1 )
p s

g p f p

dc dc
k a

dt dt
            (14) 

cs s
a p

dc c
k

t K

 
  

  
         (15) 

The average residual solute concentration in the solid in terms of instantaneous 

equilibrium in the pore space is given by: 

c s
p

c

K
           (16) 

The total initial equilibrium solute concentration exiting the solid phase at equilibrium is 

given by: 

0 ,0(1 ) sc c
K




 
   
 

         (17) 

Equations (13) and (14) become: 

(1 )f f s
g p f

dc c c
k a c

dt K



 

 
   

 
       (18)

(1 )

g ps s
f

k adc c
c

dt K

K




 
  
     
 

       (19) 
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The model equations can be further transformed into dimensionless forms: x0 = 
  

  
,

0

x
p

p

c

c
 ,

0

x s
s

c

c
 , 

t



 , g pk a  . Equations (18) and (19) in terms of dimensionless 

variables become: 

 
xx (1 ) x

xsd

d K

 

  

  
   

 
        (20) 

x x
x

(1 )

s sd

d K

K






 
  
     
 

       (21) 

Initial conditions are: 

x 0 0at             (22a) 

1
x 0

(1 )
s at

K






 
 

  
 

        (22b) 

Equation (20) and (21) are the dimensionless ODE for the solute concentration in the 

bulk fluid and solid phase respectively. They are used with initial conditions (22a) and 

(22b). These equations are simplified using Laplace transform to obtain an analytical 

solution of the model in terms of the dimensionless solute concentration in the bulk fluid 

phase given by equation (23), as: 

1 2x( ) [exp( ) exp( )]A             (23) 

where, 

2

1

4

2

b b c


  
 , 

2

2

4

2

b b c


  
       (24) 
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1 2

(1 )

[ (1 ) K] ( )
A

 

    




  
        (25) 

(1 ) 1

(1 )
b

K

  

   


  

 
       (26) 

[ (1 ) ]
c

K



  


 
         (27) 

The cumulative fraction of solute extracted up to dimensionless time   is given by: 

1 2

0
1 2

exp( ) 1 exp( ) 11
( ) x

(1 ) (1 )

A
F d

    
 

   

  
   

   
    (28) 

Equation (28) gives the extraction yield and combined with experimental data to 

determine the constants defined by equations (24), (25), (26), and (27). When the mass 

transfer resistance is negligible, that is,  = , equation (28) reduces to: 

 
( ) 1 exp

(1 ) (1 )
F

K




   

  
   

     
      (29) 

The mass ratio of the solute in the fluid phase as a function of time can be determined by: 

2

1 2

x
( ) (1 ) exp expi s

CO

t t
y t A

K


  

  

      
        
      

    (30) 

where 2

0

x
CO i

i

y

c


   

The mass of extract at the bed outlet at any time t can be determined by: 

2 20
( ) (t)Q

t

CO COm t y dt          (31) 

Combining equations (24) and (25) into equation (31) becomes 



99 

 

20 1 2

1 2

1 1
( ) (1 ) x Q exp 1 1 exps CO

t t
m t A

K


    

   

         
             
         

 (32) 

 

4.3 Materials and methods 

The feedstock was a by-product of the fish industry; specifically the offcuts (offal) from 

farmed salmon (Salmo salar Linnaeus), (harvested during winter season 2013) from 

Cooke aquaculture, and provided by the Centre for Aquaculture and Seafood 

Development (CASD). The offal consisted of salmon heads, trimmings, and frames, 

discarded during peeling, cutting and evisceration processes in the fish plant. The by-

product collected ‘as is’ was frozen at -40 °C and kept frozen until the experiments were 

performed. The sample was crushed (using a Hobart grinder manufacturing Co. Ltd. Don 

Mills, Ontario Canada) to (5–10 mm equivalent diameter) substrate suitable for freeze 

drying. The crushed sample was freeze dried at 0.133 bar vacuum and -47 °C for 24 

hours. The dried samples were blended using a Ninja professional blender (NJ-600 series 

1000W Euro-Pro Ninja
®

 USA ) to produce fine particles range of 125 to 710 µm with 

average particle diameter of 418 µm. Supercritical grade carbon dioxide (4.8 - 99.99%) 

was provided by Praxair Co., Canada. The obtained grounded sample contained 

approximately 7- 10.03 % (wt. %) moisture content, 42.6 - 52.8 % (wt. %) fish oil, and 

21.6 - 23.8% protein. The total fraction of oil was determined by solvent (soxhlet) 

extraction using hexane.  

Soxhlet extraction was used as a comparison to determine the total oil content of the 

sample as a baseline. Five grams of freeze dried samples were treated with 150 cm
3
 of 



100 

 

hexane for 8 hours using (Pyrex glass soxhlet apparatus). The extracted oil was 

evaporated under vacuum at 65 °C using a rotary evaporator and then dried in the oven at 

40 °C for 1.5 hours and cooled in desiccators before reweighing. 

The experimental setup for the solubility and the supercritical fluid extraction (SFE) 

process is shown in Fig. 4.2. The SFE apparatus consisted of Teledyne Isco Syringe 

pump D-series (model 260D, Teledyne Isco Inc., USA) fitted with a cooling jacket to 

cool the CO2 and equipped with a reservoir to store or deliver liquid CO2. The CO2 was 

cooled with a cooling jacket attached to the syringe pump.  

 

4.3.1 Solubility determination 

The solubility of fish oil in SC-CO2 was measured by loading crude fish oil adhered to 

silica beads (with an average diameter of 3 mm) into the extraction vessel (Penn 

Manufacturing Inc., 10,000 Psig @194℉, USA), and the vessel connected to SFE fluid 

delivery system (Fig.4.2). The extraction vessel and delivery tubes were wrapped with 

heating tape (Omega Engineering, Inc., USA; model HTWC101-010) to keep the system 

at the specified temperature. The solubility was performed at temperatures ranging from 

313 to 353 K and pressures from 15 to 35 MPa. The liquid CO2 was compressed to the 

desired pressure and then pumped to the extractor. Once the specified temperature and 

pressure were achieved, the heated flow-restriction valve was closed and this marked the 

start of solubility. All experiments were performed in triplicate and conducted with an 

equilibrium time of 2 hours, as determined in the preliminary tests. After 2 hours the 

flow-restriction was opened and oil was recovered in a collector. The cumulative mass of 
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CO2 used in extraction was determined by the gas flow meter and totalizer. The solubility 

was determined in each case from the slope of weight of oil collected (g) versus total 

weight (g) of CO2 that passed through the pressure column. The same approach was used 

to determine the solubility of waste-based oil except that the freeze dried waste was 

loaded into the vessel instead of crude oil and silica beads.  

4.3.2 Supercritical fluid extraction (SFE) 

In each experimental run, 5-8 g of sample (dry basis) was loaded into a 13.6 cm
3
 

extraction vessel (I.D. - 1.974 x 10
-2

 m, height – 4.46 x 10
-2

 m, Penn Manufacturing Inc., 

10,000 Psig @194℉, USA), and the vessel connected to SFE fluid delivery system. The 

extraction vessel and delivery tubes were wrapped with heating tape (Omega 

Engineering, Inc., USA; model HTWC101-010) to keep the system at the specified 

temperature. The extractions were performed at temperatures ranging from 40 to 80 °C 

and pressures from 15 to 35 MPa. The liquid CO2 was compressed to the desired pressure 

and then continuously pumped to the extractor at the specified flow (0.18-0.48 kg/hr). 

Once the specified temperature and pressure were achieved, the heated flow-restriction 

valve was opened and this marked the start of extraction. The exiting fluid stream with 

fish oil flowed at a constant flow rate, and was depressurized in a collector. The tubing 

and separator were washed with hexane at the end of each run to collect all extracted oil 

not recovered during the experiment. The cumulative mass of CO2 used in extraction was 

determined by the gas flow meter and totalizer – XFM series (Aalborg Instruments & 

Controls, Inc. USA). The collected extracts were weighed at the end of each experiment, 

and stored in a freezer at -30 °C. Each experiment was carried out for 120 minutes and 
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sampled at 15 minute time intervals. The solubility of fish oil in SC-CO2 was determined 

from a plot of extraction yield versus total CO2 usage.  

 CO2

Chiller

Extraction Vessel

Reservoir

P

Pressure

 device

  

Collection bottle

F

Flow meter 

and totalizer

T
F

Heater

Syringe pump

Restriction valve

Dry CO2

Heater

 Figure 4.2: Schematic diagram of experimental apparatus (supercritical CO2 

experimental setup). 

 

The experiments were conducted in triplicates. Mean and standard deviation were 

calculated using Microsoft Excel 2007 (Window 8 Edition, Microsoft Corporation, 

USA). Analysis of variance (ANOVA) at alpha level of 0.05 was performed using the 

statistical tool in Microsoft Excel. Average of three measurements plus/minus standard 

deviation was given in tables where applicable.  
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4.3.3 Model parameters estimation 

The total oil concentration in the waste ( sc ) was determined using Soxhlet extraction. 

The physical properties of SC-CO2 such as density ρ and viscosity μ under the operating 

conditions are determined using the NIST database [54].  The binary diffusion coefficient 

of fish oil-CO2 was estimated as a function of reduced temperature and density, 

molecular weight (M=885.4g/mol), and molar volume at the critical point using the 

Catchpole and King [55] as;   

2

3
12 5.152 ( 0.4510) , 1 2.5c r r r

R
D D T

X
 



         (33) 

Where   

  

0.5 0.75
7 1

2/3
4.30 10 c

c

v c

M T
D x






 = 4.937 x 10
-8

 (for CO2)    (34) 

2
1/3

2

1

0.5

1

2

1

1

c

c

V

V
X

M

M

  
   
   
 
 

 

          (35) 

The correction factor R is defined as the ratio of binary to self-diffusion coefficients as 

follows: 

0.17

1.0 0.1, 2

0.664 0.1, 2 10

R X

R X X

  

   
       (36a) 

Therefore simplified equation for the diffusion coefficient correlation can be given as; 

2

7 3
12 2.544 10 ( 0.4510)c r r

R
D x D T

X




        (36b) 
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Dc is the self-diffusion coefficient of CO2 at the critical point (4.9368 x 10
-8

 m
2
/s), Tr is 

the reduced temperature, Tc is the CO2 critical temperature, v  is diffusion volumes,  ρr is 

the reduced density, Vc is the molar volume at the critical point, M is the molar mass, 

subscript 1 refers to CO2, and subscript 2 refers to triolein.  The mass transfer coefficient, 

kf, is obtained using the equation due to Wakao and Kaguei [56]: 

0.6 0.32 1.1ReSh Sc           (37) 

where 

12

p fd k
Sh

D
           (38) 

1

12 1

Sc
D




            (39)  

1

1

Re
p sd U 


           (40) 

The effective intra-particle diffusion coefficient was estimated using 2

12eD D 

[11,25,34]. The superficial velocity, Us, was estimated from the ratio of solvent 

volumetric flow rate to the bed cross sectional area. The fish cake porosity  , was 

determined using a mercury porosimeter (Micromeritics Instrument Corporation, Auto-

pore IV). The bed void fraction   was estimated from the volume of fish cake and bulk 

volume of bed. 
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4.4 Results and discussion 

4.4.1 Solubility of fish oil 

The solubility data of salmon oil in carbon dioxide measured at 313 – 353 K and 15 – 35 

MPa were presented in Table 4.2a in comparison with the solubility of other fish and 

vegetable oils. The results show that the solubility of the fish oil increased with 

increasing pressure at constant temperature (Fig. 4.3) and the effect of temperature on 

fish oil solubility is less significant than the effect of pressure. For example, increase in 

pressure from 25 to 35 MPa increased the solubility by 10 %, 67% and 210 % at 313, 333 

and 353 K respectively. At lower pressure (P ≤ 20MPa) the effect of solvent density 

dominated the fish oil solubility (Table 4.2a). When the temperature was increased from 

313 to 353 K at 15 MPa, the fish oil solubility decreased from 17 to 8 g oil/kg CO2. At 

pressure above 20 MPa, the effect of pressure dominated the effect of solvent density. 

The highest value for salmon solubility found in this study was 48.0 g oil/kg CO2 at 35 

MPa and 353 K. Catchpole et al.  [57] reported the same value for squalene oil at 30 MPa 

and 333 K, and Suares et al. [58] reported 51 g oil/kg CO2 for seed oil at 35 MPa and 

333K (Table 4.2a).  

The solubility values recorded in this study are in agreement with trend reported for 

squalene by Catchpole et al. [57], and for seed oil reported by Suares et al. [58]. The 

solubility data were correlated using Chrastil [59] equation as follows; 

lnS = k ln   + 
 

 
 + b             (41) 

Where S is the solute solubility (g oil/kg CO2), T is temperature (K),   is the density of 

pure SC-CO2 (kg/m
3
), and    b and k are adjustable constants that can be evaluated from 
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experimental data. The linear regression of the experimental data yields the equation (42) 

as follows; 

lnS = 3.142 ln   - 
      

 
 – 7.18               (42) 

Equation (42) is consistent with those correlated by Catchpole et al. [57], Soares et al. 

[58], and Gucülu -Ustundagˇ and Temelli [60] (Table 4.2b). 

 

Figure 4.3: Salmon oil solubility as a function of temperature (K) and pressure (MPa) 
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Table 4.2a: Salmon oil solubility as compared to the solubility of other fish and vegetable oils 

  
This work  Catchpole et al.[57] Soares et al. [58] 

 Solubility (g oil/kg CO2) 

Temperature 

(K) 

Pressure 

(MPa) 

Salmon oil in 

waste 
Crude salmon oil  Squalene 

cod 

liver 

oil 

Spiny 

dogfish 

Orange 

roughy 

oil 

Babassu oil Ucuuba oil 

313 

15.0 2.69 ± 0.07 17.72 ± 1.76 

      20.0 

 

18.90 ± 2.1 

 

3.66 

  

20.9 ±  2.10 11.0 ±  0.93 

22.5 

   

4.79 

    25.0 5.93 ± 0.05 21.29 ± 2.71 

 

5.94 

  

30.9 ±  0.42 18.1 ±  0.58 

30.0 
 

21.58 ±  2.79 

 
 

  

43.5 ±  2.16 24.6 ±  0.67 

35.0 10.63 ± 0.04 23.10 ±  3.25 

    

51.4 ±  3.47 32. 7 ±  2.01 

325 

10.0 

  

0.27 

     15.0 

  

10.63 

     17.5 

  

17.38 

     20.0 

  

23.84 

     22.5 

  

30.12 

     

333 

15.0 1.62 ± 0.01 11.78 ± 1.17 

      20.0 

 

22.98 ±  1.00  

 

1.6 1.4 5.7 9.8 ± 0.09 7.4 ± 0.00  

22.5 

  

27.05 2.54 2.02 

   25.0 6.11 ± 0.22 27.10 ±  2.12 34.65 3.92 2.95 

 

21.2 ± 1.16 14.3 ± 0.82 

26.0 

     

12.21 

  27.5 

  

43 5.27 4.09 

   30.0 

 

30.41 ±  3.11 47.7 7.08 5.4 17.1 39.7 ± 0.69 24.6 ± 1.05 

35.0 12.49 ± 0.13 35.07 ±  4.62 

    

50.9 ± 1.89 38.0 ± 1.32 

353 

15.0 1.05 ± 0.62 8.00 ± 2.26 

      20.0 
 

20.34 ± 1.70 

    

4.8 ± 1.05 3.17 ± 0.70 

25.0 4.46 ± 0.62 31.87 ±  1.95 

    

12.5 ± 0.47 8.65 ± 0.29 

30.0 
 

39.48 ±  3.80 

    

29.1 ± 0.48 18.9 ± 1.47 

35.0 10.84 ± 0.31 48.67 ±  3.22         46.3 ± 1.44 36 ± 4.89 
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Table 4.2b: Correlation constants of this work compare to literature values 

Solute T (K) 
K± Standard 

error 

a± Standard 

error  

b± Standard 

error 
R2 Reference 

Samon oil  313-353 3.142 ± 0.2 -3520.2 -7.1839 0.998 This work  

Squalene 314 - 333 7.3 ± 0.2 -4131.0 -33.0  0.9996 [60] 

 

(Babbasu) 
313-353 8.4049 -3419.8 -49.546 

 
[58] 

Squalene 313 - 333 6.54 -3936.6 -28.28   [57] 
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4.4.2 Dynamic behavior of extraction of fish oil 

Fig.4.4 outlines the typical extractive curve (total extracted fish oil (g) versus total SC-

CO2 passed through the column (g)). The initial straight line indicates a constant rate of 

fish oil extraction.  During the constant rate period, the external surfaces of the solid 

particles are likely covered with oil and the SC-CO2 is close to saturation; therefore, fish 

oil extraction at this initial period is solubility controlled. This is followed by a transition 

period, during which the rate of extraction falls rapidly likely due to depletion of the layer 

of oil on the fish particle surface. At this point, the oil extraction rate is mass transfer 

controlled. The oil diffusion rate from the interior to the surface of the particles is low 

compared to the initial mass transfer rate. Lee et al. [8] reported similar trend for seeds oil 

at all extraction conditions tested where the initial constant extraction rate is 

characterized by solvent saturation, and is followed by a transition period, during which 

the extraction rate falls rapidly.   
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Figure 4.4: Typical extractive curve of experimental data at 0.18 kg/hr., 25 MPa and 353 

K. 

4.4.3. Goto et al. model compared with experimental data from this work. 

Experimental data was compared with predictions from the tuned Goto et al. model. The 

errors were quantified by average absolute deviation, (AAD) % as defined below. 

AAD (%) = 
 

 
∑  

                        

             

 

   
   x 100    (43) 

Where N is the number of data points,               and            are the data obtained 

from experiments and model equations respectively. The AAD between the estimated 

cumulative extraction yields and experimental data are presented in Table 4.3. The AAD 
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for the fit ranged between 2.40 to 10.60 % indicating good match. The model was tested 

using a regression analysis of the data. The regression coefficient was 0.99. The 

probability was tested at 95 % confidence level and P-value <0.005 in both cumulative 

fraction and % yield, which indicate an insignificant deviation between the Goto et al. 

model and experimental results.  

4.4.4. Effect of operating parameters on extraction yield 

The effects of temperature, pressure and solvent flow rate on the calculated cumulative 

extraction yield as compared with experimental data are investigated in this section.  

4.4.4.1. Effect of temperature on cumulative extraction yield. 

Fig. 4.5 summarizes extraction at 313 - 353 K, 35 MPa and 0.18 kg/hr. At constant 

pressure, the cumulative extraction yield (F) increases with increasing temperature up to 

333 k and drops thereafter. The plot of cumulative extraction yield (F) against time (t) 

represents the yield of fish oil at these conditions. As temperature increases, the solubility 

of oil in SC-CO2 increases (Table 4.2 and Fig 4.3) due to the increase in oil vapour 

pressure. Güçlü-Üstündag and Temelli [61] reported at constant pressure, any increase in 

the temperature decreases the solvent density and increases the solute vapor pressure. 

From the analysis of Table 4.3, the estimated mass transfer coefficient (kf) increases 

slightly with temperature (from 3.68 x 10
-5

 m/s at 313K to 5.56 x 10
-5

 m/s at 353K) as a 

result of increase in molecular diffusivity, as also reported by Rai et al. [25]. Similarly, 

the effective diffusivity (De) and the adsorption equilibrium (K) increase with increasing 

temperature. Thus the rate of mass transfer of solute to bulk solvent phase increases with 

increase in temperature.  
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Figure 4.5: Effect of temperature (313 – 353 K) on extraction yield at 0.18 kg/hr and 35 

MPa. 

 

4.4.4.2. Effect of pressure on cumulative extraction yield. 

The effect of an isothermal (333 K) increase in pressure on the cumulative extraction 

yield at 0.18 kg/hr solvent mass flow rate is presented in Fig.4.6. The increase in pressure 

from 15 to 35 MPa resulted in an increased solvent density (from 610 to 860 kgm
-3

; Table 

4.3), which in turn increases the oil solubility rapidly (from 1.62 to 12.49 g oil/kg CO2; 

Table 4.2) and corresponding increase in yield (from 12.7 to 81%; Fig.4.6). High pressure 

has a positive effect on extraction process. Nei et al., [19]. Dunford et al., [16] proposed 

the oil extraction rate from Atlantic mackerel was controlled by solubility limitations 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

O
il

 c
u

m
u

la
ti

v
e 

fr
a

ct
io

n
, 
F

 (
-)

 

Time (min) 

313 K

333 K

353 K

Model, 313 K

Model 333 K

Model 353 K



113 

 

Table 4.3: Experimental conditions and the model process parameters at various for fish oil extraction 

      x10
-9

 x10
-5

 x 10
-7

   x10
-5

   x10
-6

           

T (K) 

P 

(MPa) 

ρ 

(kg/m
3
) 

De 

(m
2
/s) μ (Pa.S) 

Q  

(m
3
/s) 

Re  

(-) 
kf 

(m/s) Bi (-)   kg (m/s)   (s) K (-)  (-) 

AAD 

(%) dp (mm) 

Effect of temperature 

            313 35 905 0.677 10.0 0.552 0.68 3.68 22.65 6.66 246.16 192.4 7.83 3.01 0.4175 

333 35 860 0.803 8.4 0.581 0.81 4.39 23.82 7.89 233.92 257 8.84 5.13 0.4175 

353 35 785 1.02 7.0 0.637 0.97 5.56 22.74 9.99 213.52 306.2 10.22 5.52 0.4175 

Effect of pressure  

            333 15 610 1.44 4.7 0.82 1.45 8.24 23.84 14.29 165.92 3448 11.35 10.60 0.4175 

333 25 785 0.96 6.9 0.637 0.99 5.31 23.11 9.44 213.52 895 9.66 6.60 0.4175 

333 35 860 0.803 8.4 0.581 0.81 4.39 23.82 7.89 233.92 257 8.84 5.10 0.4175 

Effect of flow rate 

            313 35 905 0.677 10.0 0.552 0.68 3.68 22.65 6.66 246.16 192.4 7.83 3.20 0.4175 

313 35 905 0.677 10.0 1.105 1.36 4.80 29.51 6.96 123.08 192.4 4.09 2.40 0.4175 

313 35 905 0.677 10.0 1.470 1.81 5.42 33.32 7.07 92.31 192.4 3.12 3.10 0.4175 

Effect of particle size 

            353 35 785 1.02 7.0 0.637 0.23 15.28 15.03 38.14 213.52 306.2 162.88 

 

0.100 

353 35 785 1.02 7.0 0.637 0.97 5.56 22.74 9.99 213.52 306.2 10.22 4.41 0.4175 

353 35 785 1.02 7.0 0.637 1.66 3.98 27.80 6.07 213.52 306.2 3.65 

 

0.710 

353 35 785 1.02 7.0 0.637 2.33 3.26 32.07 4.40 213.52 306.2 1.88 

 

1.000 

   = 4790.42 m
-1

, average particle diameter dp = 0.418 mm, β = 0.463, α = 0.62, and c0 = 0.487 g/g of fish cake.  
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rather than intra-particle diffusion resistance.  However, as the pressure increases from 15 

to 35 MPa (Table 4.3), the mass transfer coefficient (kf), the effective diffusivity (De) and 

the adsorption equilibrium (K) decreased. Rai et al. [25] reported a decrease in the mass 

transfer coefficients and the effective diffusivity with increased pressure. The authors 

proposed this was due to an increase in the mass transfer resistance with increasing 

pressure which shows a negative effect of pressure on extraction.  Hence, the increased 

cumulative yield observed can be attributed to solubility dominance on the extraction rate 

as the pressure increases at constant temperature.  

 

Figure 4.6: Effect of pressure (15 – 35 MPa) on extraction yield at 0.18 kg/hr and 333 k.  
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4.4.4.3. Effect of solvent mass flow rate on cumulative extraction yield. 

Fig.4.7 shows the effect of solvent mass flow rate on extraction yield at 35 MPa and 313 

K. The cumulative extraction yield, F, increases with an increase in solvent mass flow 

rate. As demonstrated in the extraction curves, the extraction rate increases with solvent 

surface velocity within the fixed bed (Fig.4.7). The extraction curves moves to the left 

along with solvent flow rate, which means that the overall extraction is faster. This is a 

result of a higher mass transfer coefficient which dominates over the reduced residence 

time. This observation can also be explained by the fact that the mass transfer coefficient 

increases with increasing solvent flow rate and thus the solute transferred per unit time to 

bulk liquid phase increases, leading to high extraction yield. The analysis of the estimated 

model parameters presented in Table 4.3 also shows that despite the decreased resident 

time ( ) from 246.16 s to 96.31 s as the CO2 mass flow rate increased from 0.18 to 0.48 

kg/hr, the mass transfer slightly increases from 3.68x10
-5

 to 5.42 x10
-5

 m/s. This is also 

true for the dimensionless Reynolds number (Re) which also increased from 0.68 to 1.81. 

The increased mass transfer is likely due to better mixing due to increased turbulence. 
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Figure 4.7: Effect of solvent mass flow rate on extraction yield at 313 K and 35MPa. 
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yield is shown in Fig.4.8. As particle size increases the cumulative extraction yield 

decreases. The grinding process increases surface area and may disrupt the fat cell 

membrane, reducing mass transfer resistance, leaving the oil more accessible to the 

solvent. Furthermore, the intra-particle diffusion path and diffusion time become shorter 

for smaller particle sizes, causing an increase in the rate of diffusion, thus increase oil 

extraction yield. This effect may be stronger with smaller particle sizes as observed in 
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Fig.4.8. Similar observation trends were also noted in literature with vegetable and seed 

oils [10,25,34]. 

 

Figure 4.8: Predicted effect of particle size on extraction yield at P = 35 MPa, T = 353 K 

and mass flow rate 0.18 kg/hr. 
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hours experimental runs. The effect of pressure has a more significant increase in 

extraction yield compared to temperature and solvent flow rate. Decreasing particle size 

increases extraction yield. Comparison between experimental data and Goto et al. model 

produced a good match with AAD (%) ranged from 2.4 to 10.6 % indicating the model 

could be used for scale-up and design. Extraction of oil from fish waste could provide the 

fish plants or region with a source of locally produced bio-fuel. If the SFE process was 

paired with a process (such as a power plant or fish harvester) producing waste CO2 this 

could enhance the economics of the process. This is the first stage of a study; the overall 

goal of the work is to determine the sustainability of SFE of fish oil from waste using a 

life cycle assessment approach. In particular we will evaluate the balance between high 

pressures and temperatures (which favor oil extraction) and the costs associated with 

these processes. For instance, extracting an extra 1% of oil may not be justified if there 

are significant costs associated with a high pressure or temperature.  
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Abstract 

Fish derived bio-oils have similar properties to petroleum-derived fuel oils and therefore 

the potential to be an alternative energy source. The quality of bio-oil as a fuel is 

determined by the quality of the feedstock and processing conditions. Fish oil may have 

poor cold flow properties due to the heterogeneity of the lipid composition. Different oil 

extraction methods produce different levels of homogeneity with respect to lipids. In this 

study, oil was extracted from fish waste via three different processes; modified fishmeal 

(MFM), supercritical extraction using carbon dioxide (SC-CO2), and soxhlet extraction. 

The quality of oils extracted (composition, thermal degradation, physicochemical, and 

flow properties) were compared. The SC-CO2 extracted 91% and the MFM extracted 71 

% of the total oil contained in the fish waste. The SC-CO2 oil is more than 86 wt % 

triglycerides, representing more homogeneous oil than the MFM at 70wt% and soxhlet at 

66 wt %. The free fatty acid (FFA) of SC-CO2 oil is lower than MFM and soxhlet oil, 

making it a better feedstock for biodiesel production. Polar lipids were most abundant in 

the soxhlet oil at 22.98 wt %, followed by the MFM oil at 18.35 wt % and SC-CO2 oil at 

7.39 wt %.  The MFM oil exhibited a shear-thinning non-Newtonian behavior, while the 

SC-CO2 oil was Newtonian. Overall, the oil from SC-CO2 showed better fuel properties, 

particularly as a blend and/or replacement for heating oil, than the MFM and soxhlet oil 

and the process has the potential for a lower environmental footprint. 
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Nomenclature 

ALC  Alcohol(s) 

ASTM   American Society for Testing and Materials  

AMPL  Acetone mobile polar lipid(s) 

ANOVA Analysis of variance 

AOCS  American Oil Chemists' Society 

CASD  Centre for Aquaculture and Seafood Development  

DAG  Diacylglycerol(s) 

DHA   Docosahexaenoic acid(s)  

DSC  Differential scanning calorimeter  

EE   Ethyl ester(s) 

EPA  Eicosapentaenoic acid(s) 

GC-FID Gas chromatography with flame ionization detection 

GE  Glycerol ether(s)  

EK   Ethyl ketone(s) 

FAME  Fatty acid methyl ester(s) 

FFA  Free fatty acid(s) 

HC  Hydrocarbon(s) 

HHV  High heating value 

HPLC   High performance liquid chromatography 

ID  Internal diameter 

ME  Methyl esters(s) 
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MFM  Modified fishmeal 

MK  Methyl ketone(s) 

MUFA  Monounsaturated fatty acid(s) 

MUN  Memorial University of Newfoundland 

PL   Phospholipid(s) 

PUFA  Polyunsaturated fatty acid(s) 

SC-CO2 Supercritical carbon dioxide 

SFA  Saturated fatty acid(s) 

SFE  Supercritical fluid extraction 

SE   Steryl ester(s)   

ST  Sterol(s) 

TAG  Triacylglycerol 

TGA  Thermo-gravimetric analysis 

TLC-FID Thin-layer chromatography with flame ionization detection  
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5.1 Introduction. 

Fish processing operations generate considerable quantities of edible and inedible by-

products. Approximately 45 wt % of the total catch of fish is discarded as processing 

byproduct including heads, frames, trimmings, fins, skin and viscera (gut, liver, etc…) 

[1]. Fish oil recovered from fish residue varies considerably (between a mass fraction of 

1.4 % and 40.1 %) depending on the species, tissue [2] and season.  There is an 

increasing interest in obtaining edible fish oil from fish by-products in order to satisfy the 

demand of omega-3 enriched products. However, waste fish oils can have a low-value 

application (fuel oil/ biodiesel) when the content of omega 3 fatty acids (EPA and/or 

DHA) or when the yield after the refining process are low [3]. Various studies have 

investigated waste fish oil as fuel for conventional combustors or diesel engines  [4-7]. 

Fish oils have similar properties to petroleum-derived fuel oils such as calorific/heating 

value and combustion efficiency [5,8-10]. When compared to petroleum based fuels, 

biofuels have the advantage of lower toxicity, higher biodegradation rates (reducing 

impact in soil and water if spilled), no sulfur, and a higher flash point [5,8,11,12]. The 

quality of bio-oil as a fuel is determined by the quality of the feedstock and the 

processing conditions, which need to be carefully managed to obtain a high quality fuel 

[8,13]. Atabani et al. [14] showed biodiesel quality is a function of feedstock fatty acid 

composition, production, and refining method(s). Studies have demonstrated crude fish 

oil has poor cold flow properties such as lower lubricity and viscosity, and higher acidity 

compared to conventional diesel fuel [12]. This is because unrefined fish oil contains 

impurities such as free fatty acids (FFA), primary oxidation products, minerals, pigments, 
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moisture, and phospholipids [15]. High FFA and/or phospholipid levels reduce fish oil 

fuel quality and additional refining processes are required such as neutralization and 

degumming. Phospholipids polymerize due to heat and form deposits that clog injectors, 

valves, build up on the combustion chamber walls and cylinder surfaces in engines 

[13,16]. Sediments may clog fuel filters and pumps [13,17]. As a result of poor storage 

conditions of feedstock, the hydrolysis of triglycerides in the presence of water leads to 

high FFA and results in low oil stability during storage [18] and corrosion during use 

[13,18]. Water in fuel oil decreases the heating value, impedes ignition and slows down 

flame propagation [13].  

The presence and/or quantity of impurities are highly dependent on the fish oil extraction 

method [15]. Fish oil (edible and non-edible) can be recovered through several methods. 

The wet reduction process is one of most common process employed in high volume fish 

oil production but may require subsequent refining steps in order to improve the fish oil 

quality [19]. Other conventional fish oil recovery processes use either high temperatures 

and/or flammable or toxic solvents, which could result in loss of functional properties and 

deterioration of oil quality [8,20-22]. Supercritical fluid extraction (SFE) has been 

proposed in the extraction of high quality compounds from natural sources [23] including 

oil recovery from seeds/biomass, whole fish and/or fish by-products [24]. SC-CO2 for oil 

recovery is an attractive option as it is a non-toxic, non-flammable, inexpensive and clean 

solvent [8,22-25].  

The objective of this study is to investigate the quality of oil extracted from fish waste 

using SC-CO2 process compared to conventional processes. Salmon oil extracted from 
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fish processing waste via three different methods; SC-CO2, soxhlet, and modified 

fishmeal (MFM) was compared. Chemical composition, rheological or flow properties 

and thermal stability were compared to determine their feasibility as a fuel oil.  

5.2 Materials and methods 

The materials were previously discussed in section 2.0 of chapter 3 and section 3.0 of 

chapter 4. 

5.2.1 Oil recovery methods 

The detailed methodology for modified fishmeal extraction method (MFM) was 

described in section 2.0 of chapter 3, soxhlet extraction method in section 3.0 of chapter 4 

and the supercritical carbon dioxide extraction method (SC-CO2) in section 3.2 of 

chapter 4.   

5.2.2 Lipid and fatty acid composition analysis 

The lipid composition of oil was determined by thin-layer chromatography with flame 

ionization detection analysis (TLC/FID) as described in Parrish [27] and Deibel et al. 

[28]. Approximately 1 g of oil was extracted with 8 mL of chloroform, 4 mL of 

methanol, 4 mL of 2:1 chloroform: methanol, and 2 mL of chloroform extracted water in 

the first wash, and 6 mL of chloroform in 2-3 additional washes. The extracted lipids 

were diluted in chloroform and the solutions were analyzed for composition of fourteen 

lipid classes in the TLC/FID (Mark VI Iatroscan with silica coated chromarods). The 

lipid classes were straight chain hydrocarbons (HC), steryl esters (SE), ethyl esters (EE), 

methyl esters (ME), ethyl ketones (EK), methyl ketones (MK), glycerol ethers (GE), 

triacylglycerols (TAG), free fatty acids (FFA), alcohols (ALC), sterols (ST), 
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diacylglycerols (DAG), acetone mobile polar lipids (AMPL), and phospholipids (PL). 

The results were expressed in percentage weight of each lipid class in the extracted 

solution by including the dilution factor.  

Fatty acid composition analysis: 

To derivatise the lipid, 250 μL extracted lipid from each samples injected into cleaned 

glass vials and 0.5 mL of hexane and 1mL of 14% BF3/ methanol were added. Glass 

vials were sealed with teflon tapes, vortexed for 30 s, sonicated for 4 min and oven 

heated for 1.5 hours at 85 °C. After heating, 0.5 mL of chloroform extracted water and 

1.5 mL of hexane were added. The upper organic layer (FAME) was transferred to glass 

vials and concentrated to 1 mL. Fatty acids were analyzed on a GC/FID (HP 6890) 

equipped with an autosampler (7683) and a column ZB wax+ (length = 30 m, ID = 0.32 

μm, Phenomenex, U.S.A).  The final column temperature set at 220 °C and H2 carrier gas 

flowing at 2 mL/min. Peaks were identified using retention times from standards 

purchased from Supelco, 37 component FAME mix (product number 47885-U), bacterial 

fatty acid ester mix (product number 47080-U), polyunsaturated fatty acid (PUFA) 1 

(product number 47033) and PUFA 3 (product number 47085-U). The quantitative 

standard (product number GLC490) was purchased from Nu-Chek Prep, Inc. 

Chromatogram peaks were integrated using the Varian Galaxie Chromatography Data 

System (version 1.9.3.2).  

5.2.3. Thermo Gravimetric Analysis (TGA) 

The thermal stability of the salmon oils was determined using Thermo-gravimetric 

Analysis – TGA (Model Q500, TA Instruments Inc.). Approximately 0.8 - 1.2 mg of oil 
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sample was loaded into the furnace. The TGA was manually programmed to heat up the 

sample from ambient to 800  under N2/air atmosphere at a ramping rate of 5  /min. 

Sample weight change was automatically acquired every second and the data were 

analyzed and plotted using the TA Universal Analyzer Software.  

5.2.4. Calorific value/High heating value (HHV) 

Calorific value is a measure of the energy content in a fuel. The 1108 oxygen bomb 

calorimeter (Parr Instrument Company) was used to determine the HHV of the salmon 

oils according to ASTM D2015 standard method. Oxygen – bomb vessel was pressurized 

to approximately 3 MPa with an oxygen container. The bomb was ignited automatically 

after the jacket and a bucket temperature equilibrates to the desired values.  

5.2.5. Melting points and enthalpy 

Melting points were determined in a METTLER TOLEDO DSC-1 (Differential Scanning 

Calorimeter) with Julabo intercooler and TA Universal Analyzer Software. 

Approximately 5-10 mg of sample was cooled to -60 
o
 and heating to 40 

o
C at 5 

o
C/min. 

The thermogram plots containing normalized heat flow with temperature were integrated 

to obtain peak onset and areas. The average melting points of the salmon oils was 

analyzed and recorded 

5.2.6. Dynamic viscosity using the Brookfield Rheometer 

The apparent viscosity of the salmon oils were measured using a Brookfield DV-III Ultra 

Programmable rheometer equipped with a small sample adapter and spindle (SC4-

18/13RP). The temperature of the sample was kept constant by connecting a circulating 

water bath (NESLAB EX series) to a water jacket of the small sample adapter. 
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Measurements were taken at 20, 40, and 60   in (Pa.s) by changing the spindle rotation 

speed from 10 rpm at intervals of 10 until the torque exceeded 100%. Kinematic viscosity 

values of the oil samples are estimated using ν = μ / density, where, ν is kinematic 

viscosity of product or oil (cSt), μ is dynamic viscosity of product or oil samples (cP). 

The power law (Eq.1) was used to analyze the flow behavior of all the raw samples and 

their blends. 

               

 (1) 

Where   = shear stress (Pa.s),   = shear rate (s
-1

), K = consistency index (Pa.s
n
) and n is 

the flow behavior index (dimensionless unit) [29-31]. Taking the logarithm of both sides 

of Eq.(1) yielded a straight line plot of log   versus log   with intercept (log K) and slope 

n. The use of Arrhenius relationship to describe the effect of temperature on apparent 

viscosity was through the use of Eq. (2) [30-32]. 

k = A.exp.
(-Ea/RT)

         

 (2) 

Where k is the reaction rate constant, A is the frequency factor, Ea is the activation 

energy (J/mol), R is the gas constant (8.314 J/mol.K), and T is the temperature (K). A plot 

of natural logarithm (ln) of apparent viscosity versus inverse of temperature (1/T) was 

constructed for each of unrefined salmon oil, waste fish oil, and their blends. The slope of 

the straight line, the intercept and the regression coefficient were determined using the 

trend line of the plot. Ea was also calculated from the slope. 
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5.2.7. Water and sediments, moisture content, FFA/acid value, peroxide value, and 

density.  

AOCS official standard method Ca 3d-02 was used to determine water content on the fish 

waste and measures the free water relative to the waste overall mass (gross mass 

including water). AOCS official standard method Ca 2e-84 for moisture content was used 

to determine residual moisture in the freeze dried waste. AOCS official standard method 

Ca 5a-40 was used to determine % FFA, AOCS official standard method Cd 8b-53 for 

peroxide value, and ASTM standard test method D1217-93 using pycnometer for density. 

 

Statistical Analysis 

The experiments were conducted in triplicates. Mean and standard deviation were 

calculated using Microsoft Excel 2007 (Window 8 Edition, Microsoft Corporation, 

USA). Analysis of variance (ANOVA) at alpha level of 0.05 was performed using the 

statistical tool in Microsoft Excel. Average of three measurements plus/minus standard 

deviation was given in tables where applicable.  

5.3 Result and discussion. 

5.3.1. Percentage recovery 

The soxhlet method is standard for oil extraction and was used as a baseline to determine 

the effectiveness of both the MFM and SC-CO2 methods. Previous work [22,33] indicates 

moisture content for SC-CO2 extraction should be less than 10 wt %. If the water content 

is too high it can decrease the extraction efficiency and therefore the ground fish waste 

was freeze dried to 8.50 wt % (dry basis). The freeze dried waste was used for the SC-
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CO2 experiments and as a comparison a freeze dried sample was processed using soxhlet. 

In the MFM process, the oil is extracted from water laden waste through a series of 

heating and centrifuging. In this comparison, the fresh ground fish waste moisture content 

was 59.32 wt % (wet basis). A second set of soxhlet experiments were performed on this 

“wet” waste to determine the maximum oil extraction possible under “wet” conditions. 

The Soxhlet method extracted 53 g of oil ± 0.73/100 g of dry fish waste while the SC-

CO2 process extracted 48.14 g of oil ± 1.06/100 g of dry fish waste or 91 wt% of the 

maximum oil. For the fresh ground fish waste, the Soxhlet extracted 28.37 g of oil 

± 1.20/100 g of fish waste (wet basis), while the MFM extracted 20.70 g of oil 

± 2.76/100 g of fish waste (wet basis), or 71 wt%. On a percentage basis, the SC-CO2 is 

able to recover more of the oil compared to the MFM. The maximum recovery was 

achieved at CO2 mass flow rate of 0.36 kg/hr, 333 K, and 35 MPa (Fig. 5.1).  The SC-

CO2 oil recovery is in agreement with Rubio-Rodríguez et al. [25] who reported 96 wt % 

recovery of oil from hake offcuts.  
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Figure 5.1: Extraction yield at P = 35 MPa and T = 313 K and solvent mass flow rate of 

0.18 – 0.48 kg/hr. 

 

5.3.2. Lipid composition 

The lipid class compositions as a percentage of total lipids, for the oils extracted are 

summarized in Table 5.1. The major lipid classes are TAG, AMPL, PL, and FFA. TAG is 

the dominant lipid at 86.16 wt % in SC-CO2 oil, 70.5 wt% in the MFM oil, and 65 wt% 

in the soxhlet oil. SC-CO2 leads to higher purity oil due to the use of a non-oxidation 

(inert) atmosphere and mild temperatures involved, which prevent the oxidation of the 

polyunsaturated fatty acids [19]. SC-CO2 is highly selective towards low polarity lipid 

compounds (TAG) while the co-extraction of polar impurities is limited [8,19]. This 

resulted in more homogeneous chemical composition in SC-CO2 oil compared to MFM 

and soxhlet oils (Table 5.1). The high level of polar lipid classes in the MFM oil was 
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attributed to mixing of the aqueous phase (phase containing high polarity lipids) with oil 

at high temperature. Since phospholipids are soluble in oil at high temperature [13], polar 

lipids dissolved in the oil. In the soxhlet extraction method, the sample is repeatedly 

brought into contact with fresh solvent ensuring complete extraction [8] leading to the 

recovery of all lipids (polar and nonpolar lipids).  

The highest FFA (8.43 ± 0.95 wt %) was measured in MFM derived oil, followed by 

soxhlet (7.60 ± 0.06 wt %) and the SC-CO2 methods (2.17 ± 0.94 wt %). The hydrolysis 

of TAG in presence of excess water and high temperature in the MFM process may lead 

to high FFA content [13,34]. The FFA is produced due to hydrolysis of TAG. The 

oxidation of PUFA led to hydro-peroxides, secondary (aldehydes, etc.) and tertiary 

(acids, etc.) oxidation products. The low FFA yield by SC-CO2 could be due to extraction 

conditions (i.e. inert atmosphere, low moisture, and mild temperature), which prevent the 

oxidation and/or hydrolysis of the TAG containing polyunsaturated fatty acids. This 

impacts further processing the oil to a biodiesel, as high FFA (>5%) require pre-treatment 

prior to transesterification [18]. 
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Table 5.1: Lipid composition in extracted oil as a function of extraction method 

 

 

 

 

 

 

 

 

 

 

5.3.2.1 Effect of lipid compositions oil quality 

The TAG lipid class is the main constituent and the most important compound for 

biofuels. TAG can be converted to biodiesel (fatty acid methyl esters/FAME). Sidibe et 

al. reported that the nature of fatty acids in TAG largely determines the oil’s ability to 

combust properly in an engine [16]. High polar lipids (AMPL +PL) are generally 

undesirable in the oil due to reactivity [16,26]. Phospholipids are component of biomass 

cell walls/membranes and their concentration in oil largely depends on the extraction 

methods [13,16].  

The degradation of TAG, as a result of extraction or storage conditions, give rise to 

increased FFA, which in turn lead to higher oil acidity [13,18,34]. Oil acidity is 

responsible for damage to engine delivery lines, further degradation to fuel oil and 

% Lipid Composition SC-CO2 MFM Soxhlet  

Hydrocarbons (HC) 1.78 ± 1.12 0.25 ± 0.04 2.63 ± 0.80 

Ethyl Esters (EE) 

 

1.98 ± 1.14 0.00 ± 0.00 0.00 ± 0.00 

Triacylglycerols (TAG) 86.16 ± 6.73 70.48 ± 2.09 65.64 ± 5.72 

Free Fatty Acids (FFA) 2.17 ± 0.94 8.43 ± 0.95 7.60 ± 0.06 

Sterols (ST) 

 

0.00 ± 0.00 0.00 ± 0.00 1.17 ± 1.64 

AMP- Lipids (AMPL) 3.98 ± 0.22 10.43 ± 0.22 4.11 ± 0.36 

Phospholipids (PL) 3.41 ± 0.14 7.92 ± 1.70 18.87 ± 5.18 

Others 1.70 ± 0.03 2.74 ± 0.01 0.09 ± 0.06 
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corrosion. The SC-CO2 method recovered the highest TAG content and minimal amounts 

of PL, AMPL, and FFA. As such, this oil would likely have fewer performance problems 

when used in conventional boilers/engines. In addition, in conversion to biodiesel, the 

TAG should be maximized to maximize FAME. 

5.3.3. Fatty acid composition 

Fatty acid compositions of lipids are summarized in Table 5.2. The major fatty extracted 

by each methods were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid 

(C18:0), oleic acid (C18:1n-9), vaccenic acid (C18:1n-7), linoleic acid (C18:2n-6), EPA 

(C20:5n-3) and DHA (C22:6n-3). The fatty acid class compositions were in good 

agreement with composition for farmed Atlantic salmon effluents reported by Jayasinghe 

and Hawboldt [35], and there was no significant compositional difference between 

methods (P > 0.05). 

The degree of saturated fatty acids (SFA) versus unsaturated fatty acids determined oil 

specific qualities. For example, Sidibe et al. [16] determined saturated oils (high SFA 

content) show better combustion properties such as shorter evaporation time, shorter 

ignition delay, and fewer deposits than the unsaturated oils and combustion quality 

increases with degree of saturation. However, saturated oils are more viscous at elevated 

temperatures than the unsaturated counterpart [8,16,36,37], which could result in poor 

flow properties.   

Unsaturated fatty acids have a higher tendency to oxidize during storage resulting in 

impurities and poor combustion quality. Polyunsaturated fatty acids (PUFA) can 

polymerize and/or oxidize into gums, sediments or other deposits. The double bonds in 
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PUFA make oils more liquid than saturated fatty acids and lowers the oil melting 

temperature [8,16,36]. 

Table 5.2: Fatty acid compositions of oils extracted oil as a function of extraction 

methods 

  This work (Salmon oil) [20]                  [20] 

Fatty acids SC-CO2 MFM Soxhlet SC-CO2 Hexanes 

14:0 1.99 ± 0.01 2.68 ± 0.06 2.09 ± 0.11 4.28 3.66 

16:0 14.65 ± 0.08 14.02 ± 0.77 14.88 ± 0.09  11.73 10.98 

16:1n-7 5.52 ± 0.04 6.92 ± 0.11 5.63 ± 0.14 0.06 0.33 

18:0 4.05 ± 0.01 4.07 ± 0.13 3.81 ± 0.14 2.93 2.04 

18:1n-9 35.26 ± 0.12 31.44 ± 1.64 35.35 ± 1.49 4.62 4.38 

18:1n-7 2.87 ±0 .04 3.48 ± 0.06 2.36 ± 0.28 0.83 0.78 

18:2n-6 16.14 ± 0.04 15.36 ± 0.51 15.81 ± 0.28 13.55 13.61 

18:3n-6 0.55 ± 0.01 0.26 ± 0.05 0.55 ± 0.03 

  18:3n-3 1.82 ± 0.01 1.22 ± 0.06 1.80 ± 0.11 1.59 1.72 

18:4n-3 0.66 ± 0.01 0.56 ± 0.09 0.64 ± 0.06 

  20:1n-9 1.98 ± 0.01 2.11 ± 0.25 1.98 ± 0.14 0.04 0.12 

20:2n-6 0.85 ± 0.01 0.77 ± 0.05 0.80 ± 0.01 

  20:3n-6 0.70 ± 0.12 0.37 ± 0.05 0.60 ± 0.01 

  20:4n-6 0.60 ± 0.01 0.72 ± 0.05 0.61 ± 0.05 2.15 3.22 

20:5n-3 2.98 ± 0.02 4.52 ± 0.73 2.82 ± 0.25 11.91 12.22 

22:1n-11 1.03 ± 0.02 1.42 ± 0.29 1.09 ± 0.12 

  22:1n-9 0.27 ± 0.02 0.29 ± 0.06 0.22 ± 0.03 

  22:4n-6 0.08 ± 0.07 0.16 ± 0.02 0.19 ± 0.07 2.15 3.22 

22:5n-3 1.15 ± 0.01 1.66 ± 0.09 1.16 ± 0.12 2.01 2.21 

22:6n-3 2.98 ± 0.02 3.49 ± 0.67 2.94 ± 0.30 13.15 13.86 

24:1 0.12 ± 0.01 0.20 ± 0.02 0.25 ± 0.02 

  Sums 96.22 ± 0.68 95.18 ± 5.82 95.58 ± 3.88 

  Other 3.78 ± 0.08  5.81 ± 0.43 4.42 ± 0.17 

  SFA  21.20 ± 0.08 21.43 ± 0.86 19.96 ± 2.31 21.09 18.87 

MUFA 48.14 ± 0.10 47.36 ± 1.95 49.78 ± 3.72 7.70 7.80 

PUFA 30.33 ± 0.17 31.71 ± 1.31 29.88 ± 1.41 56.32 59.59 

P/S ratio 1.43 1.48 1.50   

SFA-saturated fatty acid; MUFA-monounsaturated fatty acid; PUFA-polyunsaturated 

fatty acid; MFM – Modified fishmeal method, P/S – ration of PUFA to SFA. 
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5.3.4. Thermal analysis (TGA) 

TGA analyzes the thermal stability by relating oil physicochemical properties to weight 

changes as a function of temperature [38]. The thermal behavior of salmon oil was 

studied under nitrogen atmosphere between 0 °C and 800 °C (Fig.5.3). The onset weight 

loss temperature of fish oils from both methods starts at approximately 225 °C which is 

in agreement with 220 °C reported by Araujo et al. [39]. Between 367 °C and 497°C, the 

rate of weight loss increased rapidly with temperature. The MFM oil shows some 

resistance to thermal degradation compared SC-CO2 oil, this is due to 

impurities/undesired products levels in the MFM oil compared to the SC-CO2 oil. 

Sathivel et al., Wiedermann and Chiou et al. [30,40,41], proposed the impurities in crude 

fish or vegetable oils absorb heat, slowing the decomposition of the oil [30,40]. The total 

weight loss between 367 °C and 497 °C is approximately 90 wt. %. After 500 °C, 0.07 

and 0.36 wt. % recalcitrant materials remained as residue in the SC-CO2 and MFM oil 

respectively, verifying the higher purity of the SC-CO2 compared to the MFM oil. 

Thermal polymerization reactions in edible oils occur in temperature between 200 °C and 

300 °C in inert or nitrogen environment [39,42] but was not detected in this work 

(Fig.5.3).  
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Figure 5.3: Thermal degradation of the crude Salmon oil recovered by SC-CO2 and MFM 

methods in nitrogen atmosphere. 

 

5.3.5. Calorific value/High heating value (HHV) 

The high heating values (HHVs) of the oil are outlined in Table 5.3. The HHV are 

approximately 40, 39 and 38 MJ/kg for the SC-CO2, soxhlet, and MFM extracted oil 

respectively. The difference in HHV of the SC-CO2 and MFM oil may be due to lower 

moisture content of SC-CO2 oil. The HHV of the salmon oil is in the range of seed oil 

based biodiesel (39 MJ/kg to 43.33 MJ/kg) reported by Sivaramakrishnan et al. [43] and 

lower than that of petroleum diesel (49.65 MJ/kg). The values from this study are also 

very close to HHV for vegetable oils between 36 and 40 MJ/kg reported by Blin et al. 

[13]. 
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Table 5.3: Some salmon oil properties as function of extraction methods 

Method SC-CO2  MFM Soxhlet 

Recovery (%) 48.14  ± 1.06 20.70  ± 2.76 52.84 ± 1.26 

HHV (MJ/kg) 39.58 ± 0.03 38.41 ± 0.10 39.49 ± 0.12 

FFA (%) 0.83 ± 0.05 7.32 ± 1.9 

 Peroxide Value 4.34 ± 0.56 5.60 ± 0.38 

 Sediment (%) 0.00 0.95 ± 0.1 

 Free water (%) 0.00 1.02  ±  0.1 

 Moisture (%) 0.134  ± 0.002 0.24  ± 0.02 0.005  ± 0.003 

Temperature ( ) Kinematic viscosity (cSt) 

 20 6.72 ± 0.03 5.90 ± 0.04 

 40 3.22 ± 0.00 2.53 ± 0.02 

 60 1.80 ± 0.00 1.31 ± 0.02 

 

 

Density (kg/m
3
) 

 20 919 996 

 40 905 991 

 60 892 985   

 

5.3.6. Melting point  

The DSC thermograms (Fig. 5.4) show two broad endothermic peaks for the crude 

salmon oil extracted using SC-CO2 and MFM processes. The melting point of salmon oil 

in both methods ranged from -48.10   2.21 to 17.25    
1.87 °C and both freeze at 

approximately -12.36 °C. The negative melting points of the oils were attributed to the 
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presence of triacylglycerol which contain unsaturated fatty acids [30,31,36]. The higher 

degree of unsaturated fatty acids in fish oil results in melting at lower temperatures [31]. 

The thermogram peaks for the oils were not sharp due to the presence of impurities such 

as phospholipids, free fatty acids, aldehydes, particulate matters, ketones, water, and 

pigments. These impurities result in a melting behavior typical of pure fatty acids [31,36]. 

The similarity in melting points of oils from both methods is a reflection of their 

comparable fatty acid composition (i.e. similar proportions of SFA, MUFA, and PUFA 

between the oils from the three methods) (Table 5.2). 

 

Figure 5.4: DCS thermograph of the crude salmon oil extracted using SC-CO2 and MFM 

methods. 
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5.3.7. Rheological properties  

The apparent viscosity as a function of shear rate and temperature was investigated (Fig. 

5.5).  At 60 
o
C the MFM derived oil viscosity decreased from 65.1 cP to approximately 

17.1 cP as shear rate was increased from 13 s
-1

 to 172 s
-1

 and remained constant after. 

The same trend was observed for MFM derived oil at 40   and 20   (Fig.5.5). At 60 
o
C, 

the shear rate had little impact on the SC-CO2 oil viscosity. A similar trend was observed 

at 40   and 20  . The decrease in viscosity with increasing shear rate indicates that the 

MFM oil exhibited shear-thinning non-Newtonian behavior which is in agreement with 

our previous work [26]. Sathivel et al. [44] determined crude fish oils contain soluble 

impurities such as phospholipids, FFA, peroxides and their degraded products that are 

highly interactive with oils and lead to formation of an aggregated colloidal, which often 

shows shear-thinning behavior [44]. In the case of SC-CO2 extracted salmon oil, the 

viscosity is almost constant at all temperatures studied indicating Newtonian behavior. 

Sathivel et al. [44] showed the change in catfish oil from shear-thinning Newtonian 

behavior (before refining) to Newtonian behavior (after refining e.g. degumming, 

neutralization, bleaching, and deodorization). Each refining stages removes impurities, 

minerals complexed by phospholipids, and other unwanted polar compounds. The SC-

CO2 oil contains less than 10 % impurities and over 85 wt % TAG (Table 5.1).  
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Figure 5.5: Change in apparent viscosity with shear rate at 20, 40 and 60 

o
C for salmon 

oils from MFM and SC-CO2 methods.  

 

Closer observation of the flow behavior index (n) shows that MFM extracted oil behaves 

pseudoplastically (i.e n < 1). The power law parameters were given in Table 5.4. The 

flow behavior index (n) ranges between 0.53 and 0.89, indicating non-Newtonian 

behavior [30,31]. These values are similar to those reported for unpurified salmon oil by 

Huang and Sathivel [31], and unrefined Pollock oil by Sathivel et al. [30]. In practice, 

specific additives are added to viscous material to achieve pseudoplastic flow behavior. 

This behavior is beneficial to fuel flow through pipes and hoses as stress forces applied 

through pumps reduce fuel viscosity. The stronger the shear force subjected to the 

pseudoplastic material, the higher the thinning effect and the higher the reduction in 

viscosity [45], hence, the better the flow properties. The flow index (n) of the SC-CO2 
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extracted salmon oil is very close to unity (i.e. n > 0.90), indicating that the oil, like diesel 

fuel oil and other mineral oils, is Newtonian in nature.  

Table 5.4: Flow behavior index, consistency index, and activation energy of salmon 

oils as a function of extraction methods 

  SC-CO2 oil MFM oil 

T (   Flow index (n) K R
2 

Flow index (n) K R
2
 

20 
0.9915 ± 0.00 0.6284 ± 0.01 1.0000 0.89 ± 0.01 0.04 ± 0.01 1 

40 
0.9914 ± 0.01 0.2980 ± 0.01 1.0000 0.69 ± 0.00 0.07 ± 0.00 0.998 

60 
0.9977 ± 0.00 0.1589 ± 0.00 0.9999 0.53 ± 0.01 0.28 ± 0.01 0.996 

 

                  SC-CO2 oil            R
2
        MFM oil      R

2
 

Ea (kJ/mol) 
27.4 ± 0.1 0.998   31.04 ± 0.6 0.998 

A (x 10
-8

) 
8.21  ± 0.3 0.998   1.69 ± 0.4 0.998 

 

In eq. (2) the activation energy, Ea, (kJ/mol) represents the energy barrier to flow [30-

32,46]. The frequency factor or viscosity coefficient at a reference temperature, A, (Pa.s) 

and Ea values were determined. In general, the higher the activation energy, the more 

sensitive the viscosity will be to temperature [46]. As shown in table 4, the Ea for the SC-

CO2 oil is lower (27.40 kJ/mol) compared to the MFM oil (31 kJ/mol). This indicated 

that the temperature effect on viscosity is more dominant in MFM extracted oil than SC-

CO2 extracted oil. This property reflects the heterogeneous nature of MFM oil compared 

to SC-CO2 oil.  
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5.3.8 Water and sediment, moisture, FFA, peroxide value, density and kinematic 

viscosity 

The free water, sediment and moisture content of oil are presented in Table 5.3. Free 

water and sediment were not detected in the SC-CO2 oil. Approximately 1.0 and 1.2 wt % 

free water and sediment respectively were detected in the MFM oil. The moisture content 

is lower (0.13 wt %) in the SC-CO2 oil compared to the MFM oil (0.24 wt %). The water 

removal through freeze-drying is a contributing factor for the low moisture in the SC-

CO2 oil. As the SC-CO2 process is solubility driven the resulting oil is sediment free. 

Generally, the MFM process largely depends on centrifuge efficiency for good separation 

between the oil, water and sediment. Water in the oil can hydrolyze the TAG leading to 

acidic oil. Water also impacts fuel filter cartridges and during combustion can cause 

cavitation at the piston head [13].  

The SC-CO2 oil FFA and PV levels were lower compared to the MFM oil. Lower values 

of FFA and PV indicate less degradation. High FFA and PV value of oil lowers its 

quality as a fuel oil. The oil densities at 20, 40, and 60 
o
C are outlined in Table 5.3. The 

SC-CO2 oil density is lower than the MFM extracted oil at all temperatures studied. The 

higher percentage impurities in the MFM oil may be responsible for denser oil. The 

density of SC-CO2 oil agrees with red (900 kg/m
3
) and pink salmon (810 kg/m

3
) oils [37]. 

Compared to petroleum fuel oil distillates, the densities are close to No.6 fuel oil (985 

kg/m
3
), DMC marine distillate fuel (920 kg/m

3
) and marine residual fuels (960-1010 

kg/m
3
) [4]. The kinematic viscosity of the oil extracted from both SC-CO2 and MFM 
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processes ranges between 1.3 and 6.7 cSt. These values are within diesel fuel standard 

ASTM D396, 2–3.6 cSt and 5.8–26.4 cSt at 38 °C for grade No. 2-D (diesel) and grade 

No. 4-D (medium distillate) respectively [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Conclusion 
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This study has demonstrated the effect of extraction methods on chemical composition, 

thermal, physicochemical, and flow properties of salmon waste derived oil. A comparison 

of the oil by SC-CO2 to oil from the MFM and soxhlet methods shows that SC-CO2 

produces higher purity oil. The SC-CO2 recovered more oil (91 wt %) from the waste 

compared to MFM (71wt %). There is significant difference (P<0.05) in TAG recovery 

between SC-CO2 oil (86 wt %), MFM (70 wt %), and soxhlet (66 wt %) oils. The SC-

CO2 limits the extraction of high polar compounds (PL and AMPL) which are 

undesirable in crude bio-oil when used as a as fuel or biodiesel feedstock. In addition, the 

SC-CO2 oil is lower in FFA compared to MFM and soxhlet. High FFA content in fuel oil 

results in high acidity that leads to corrosion and engine inefficiency and intensifies the 

biodiesel conversion process. 

The MFM oil exhibited a shear-thinning non-Newtonian flow behavior, hence, has better 

flow properties than SC-CO2 oil which exhibited Newtonian behavior. However, the flow 

behavior is as a result of impurities such as FFA, primary oxidation products, minerals, 

pigments, moisture, and phospholipids.  

The SC-CO2 oil quality would require minimal or no further refining steps for fuel use 

however the process is energy intensive therefore energy costs must be balanced against 

higher oil quality and other environmental benefits. The MFM and soxhlet oils are of 

lower quality due to impurities and further refining steps (such as degumming, 

neutralization, bleaching, and deodorization) will be required to improve the oil’s quality 

leading to additional cost. This will be of particular concern when for any upgrading to 
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biodiesel, as impurities in the oils require pretreatment prior to the transesterification 

process.  
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CHAPTER 6 

LIFE CYCLE ANANLYSIS (LCA) COMPARISON OF FISH OIL 

EXTRACTION METHODS  

6.1 Introduction 
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In the area of sustainable energy substitutes, biofuel has been proposed as a replacement 

for fossil fuels. A number of biomass sources have been proposed as feedstock for 

biofuels and a brief summary is outlined in Table 6.1.  

Table 6.1: Studies on alternative options for petroleum fuels 

Feedstock Study Reference 

Salmon oil Biodiesel production [9]  

Fish oil and fish oil 

biodiesel 

Comparative study with 

mineral fuel 
[10] 

Fish oil biodiesel 
Performance and emission 

evaluation 
[11] 

Vegetable oil Biodiesel production [12] 

Fish oil 
Alternative Fuel for 

Conventional Combustors 
[13] 

Fish oil  Low-Grade Fuel [14] 

Marine oils 

Biodiesel/marine diesel 

blends on  stationary 

diesel engine 

[15] 

Soap stock of marine fish 
Fuel properties of 

biodiesel 
[16] 

Marine fish wastes 

Engine performance and 

emission characteristics of 

fish-oil biodiesel  

[17] 

Waste cooking oil  Biodiesel Production [18] 

Rubber seed oil Biodiesel production from  [19] 

Waste fish oil  Renewable fuel in Iran [20] 

The quality of the biofuel are influenced by the quality of the feedstock, the method of 

extraction [1-3] and the processing conditions, which need to be carefully managed to 

obtain a high quality fuel. Atabani et al. [4] showed that biodiesel quality is a function of 

feedstock fatty acid composition, production, and refining method(s). Biofuels from fish 

waste has been proposed as a possible low quality fuel oil or as a source for biodiesel 
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production [9, 10, 14, 15 and 20]. Fish oil is also extracted for edible oils. In remote 

locations or fish plants with limited infrastructure the extraction of edible oils may not be 

possible due to distance to market, regulatory requirements for storage and transport, 

among other factors. Fish oil extraction methods can be physical, biological and chemical 

and various methods are summarized in a previous review [3]. Physical extraction, also 

known as wet reduction, is the most widely used fish oil recovery process and includes 

basic unit operations such as grinding, heating, pressing, and separation [3,5]. The 

enzymes are employed to accelerate the process of breaking the proteins into smaller 

groups, enhancing oil extraction in biological extraction, while solvent extraction uses 

chemicals or solvents for oil extraction. Supercritical fluid extraction (SFE) process using 

carbon dioxide (SC-CO2) is advantageous compared to conventional extraction processes 

due to high quality of oils, reduced environmental impacts, mild extracting temperature, 

etc. This method minimizes the oxidation of the oil (which reduces fuel quality and 

ability to refine to biodiesel) and extracts low polar lipid substances [6]. However, an 

environmental assessment of this process for extraction of oil for fuel from fish waste 

relative to conventional methods has not been done. 

Life cycle assessments (LCA) are an environmental assessment tool used in the 

quantification of environmental burdens and potential impacts associated with the whole 

life cycle of a product, process, or activity [7,8]. A LCA can assess the efficiency, 

environmental impacts and cost benefits of products and processes. Many researchers 

have studied LCA of biofuel products and processes (Table 6.2), however, the LCA on 

oil extraction/recovery processes is less well studied. The purpose of this work is to carry 
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out the LCA of different extraction processes (modified fishmeal process (MFM), SC-

CO2, and soxhlet extraction methods) of fish oil from processing plant waste. The 

material and energy requirements from each process during extraction were estimated 

using a process simulator (Aspen Plus
®
) and published data and input into SimaPro 7 for 

LCA. 

Table 6.2: Some studies on LCA of biofuel and biodiesel processes 

Study Reference 

LCA of the biofuel production process from 

sunflower oil, rapeseed oil and soybean oil 
[21] 

LCA of biodiesel production from waste cooking oil  [22] 

LCA on microalgae biodiesel production  [23] 

LC cost and sensitivity analysis of palm biodiesel 

production 
[24] 

LCA of Jatropha biodiesel production  [8] 

LCA of soybean biodiesel production [25] 

LCA of palm biodiesel: Revealing facts and benefits 

for sustainability 
[26] 

LCA energy, environment and economic assessment 

of soybean-based biodiesel as an alternative 

automotive fuel in China 

[27] 

LCA studies comparing biodiesel synthesized by 

conventional and supercritical methanol methods 
[28] 

Carbon cycle for rapeseed oil biodiesel fuels [29]  

Life cycle model of alternative fuel vehicles: 

emissions, energy, and cost trade-offs 
[30] 

 

6.2 Scope, purpose and system boundary. 
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The scope of the LCA includes the energy consumption and material emissions (Fig.6.1) 

of the proposed fish oil extraction processes. Fish waste can vary; in the study we 

considered a comprehensive waste composition (heads, guts, trimmings, and frames). The 

crude fish oil extracted is the final product. As the study is focused on comparing 

extraction methods, the emissions associated with fish oil as a fuel were not included; 

however the quality of the oil for fuel use as a function extraction method will be 

evaluated. The LCA of un-recycled fish waste has been previously studied in our lab [34] 

therefore, not included in the current research. The process boundary included the 

materials, energy, and process effluents (Fig.6.1). The functional unit used for inventory 

analysis is per 1 kg of crude fish oil (product).  
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Figure 6.1: LCA process boundary 

6.2.1 Methodology 

LCAs are used to link life cycle inventory (LCI) results to environmental impacts. In 

Sigma Pro the method used to link LCI results is ''IMPACT 2002+''. In this method, the 

LCI results are first linked to 14 midpoint categories, which are in turn linked to four 
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damage categories. The term “midpoint” is used to indicate that in the overall impact 

pathway, the midpoint represents an intermediate point between the LCI results and the 

end point (damages). The 14 categories are outlined in Figure 6.2 [31]. The damage 

categories take the midpoint categories and further classify them into an impact on the 

environment or damage. The Impact 2002 method further converts the qualitative damage 

to a quantified damage. The quantification is done by multiplying the damage factor 

(characterization factor) with the inventory data [31].  

The inventories through the midpoint category are expressed in unit of a reference 

substance related to the four damage categories. The potential environmental impacts 

associated with the input and output of a process/product is evaluated via the use of 

characterization factors (CFs). 
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Figure 6.2: Impact 2002 + LCA methodology 
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6.2.2 Life Cycle Inventory (LCI) 

The LCI was generated through the energy and material consumed during extraction 

processes (Tables 6.3a and 6.3b).  

 

Table 6.3a: Material (kg) inventories of extraction processes 

Material /energy Methods 

 

SC-CO2 Soxhlet MFM 

Oil out (kg) 1.00 1.00 1.00 

Fish-waste in (kg) 2.25 2.10 4.88 

Fishcake out (kg) 1.26 1.25 1.44 

CO2 in (kg/h)  

  CO2 out (recovered)(kg/h)  

  Hexane in (kg) 

 

33.24 

 Hexane out air (kg) 

 

1.66 

 Hexane recovered (kg) 

 

31.58 

 Water out (kg) 

  

1.95 

Organic matter out (kg) 

  

0.49 

Freeze dry process 

   Fish-waste in (kg) 4.50 4.20 

 Fish-waste out (kg) 2.25 2.10 

 Water out (kg) 2.25 2.10 
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Table 6.3b: Energy (kJ) inventories of extraction processes 

Equipment MFM Soxhlet SC-CO2  

Conveyor  486.30 187.53 203.94 

Grinder/Crusher 482.44 186.04 202.32 

Pump  486.75 187.71 204.13 

Heat exchanger 5582.46 2152.78 2341.15 

Pump 486.75 

  Twin screw press 573.53 

  Vertical centrifuge  1.51 

  Freeze dryer 

 

1202.99 1308.25 

Conveyor  

 

187.53 203.94 

Sub-Cooler   

 

221.21 

 Rotaryvap/Evaporator 

 

20.78 

 Grinder 

 

186.04 202.32 

CO2 Recovery 

  

12958.18 

Total energy input (MJ) 8.10 4.53 17.62 

 

The mass of oil produced per mass of fish waste, chemicals required, and associated 

waste streams for each process were determined from lab and pilot scale experiments 

(Section 3.1 of chapter 5). The process flow diagram for each process is outlined in 

Figures 6.3a – 6.3c and is based on lab and commercial scale data.  
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Figure 6.3a: SC-CO2 extraction process flow diagram 
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Figure 6.3b: Soxhlet extraction process flow diagram 
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Figure 6.3c: MFM extraction process flow diagram 

The energy required for each unit operation, such as pumps, heat exchangers, freeze 

dryers, sub-coolers and vacuum evaporators, were modeled using Aspen Plus
®
. The 

energy input to conveyors, grinder/crusher, screw press and vertical centrifuge were 

estimated using energy equations, while, the energy consumed in CO2 compression and 

recovery was estimated using the energy analysis of supercritical carbon dioxide 

extraction processes from Sievers and Eggers [32], and Smith et al. [33]. The results were 

exported to SimaPro
®
7 to obtain the environmental impact assessment from the use of 

energy and resources in each extraction process. 
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6.2.3 Materials and experimental methods 

The feedstock is a by-product of the fish industry; specifically the offcuts (offal) from 

farmed salmon (Salmo salar Linnaeus), from Cooke aquaculture provided by the Centre 

for Aquaculture and Seafood Development (CASD). The detailed description of materials 

and experimental methods for the fishmeal process can be found in Section 2.1 of chapter 

3, soxhlet extraction method in section 3.0 of chapter 4 and the SC-CO2 in section 3.2 of 

chapter 4.  

6.3 Environmental impact assessment 

6.3.1. Characterization 

Figure 6.4 summarizes the damage characterization as a function of process. Among all 

the extraction processes, only the soxhlet extraction has an impact of over 95% in the 

category of carcinogens, ozone layer depletion, respiratory organics, terrestrial 

ecotoxicity, and mineral extraction. The soxhlet extraction process in general has a high 

impact due to emissions of hexane both in air and water or soil. The MFM process has an 

impact of 92% on the aquatic eutrophication and 75% on aquatic acidification due to 

process water discharge into the ocean and water bodies. This effluent is rich in nitrogen 

compounds and other organics. 

In the categories of aquatic ecotoxicicity, terrestrial acid/nutri and non-renewable energy, 

the soxhlet extraction method has a contribution that is relatively high compared to SC-

CO2 and MFM methods. This impact can also be attributed to the impact of air emissions 

of volatile hydrocarbons (hexane) during the extraction process. 
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Figure 4: Environmental impact characterization of the LCA of extraction processes. 

6.3.2. Damage assessment 

Figure 6.5 outlines the impact assessment, which refers to the categories as ‘harm’ 

instead of the ‘impact’ (as with the characterization). In the category of human health 

(carcinogens and non-carcinogens combined) the soxhlet method contributed the highest 

damage which, in this category, would be attributed to human exposure to n-hexane 

during the process. Hexane is toxic and the most probable route of human exposure to 

hexane is by inhalation and via the skin. The damage caused by the SC-CO2 in the human 

health category is 35% which is mostly emissions due to energy usage (fuel, electricity 

etc.). The damage contribution of the MFM process in this category is the least (13%) 

which is also as a result of emissions from energy usage. Similar damage trends (soxhlet 
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> SC-CO2 > MFM) were observed with the ecosystem quality, climate change, and 

resources. The high damage contributions from the soxhlet method would be attributed to 

the damages effect from both energy consumption and solvent residue. However, the 

higher effect from the SC-CO2 compared to MFM process is a reflection of higher energy 

required (17.62 MJ) to produce 1 kg fish oil in SC-CO2 than (8.10 MJ) in MFM process 

(Table 6.3b). 

 
Figure 6.5: Environmental impacts by categories of damages for all extraction methods. 

6.3.3. Normalization.   

The objective of normalization is to reflect the relative magnitude of each impact 

category of a product or system [31]. Normalization also assesses the impact category 
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method has the highest impact in all categories (human health, ecosystem quality, climate 

change and resources) (Fig.6.6). The overall analysis shows that the soxhlet method uses 

a large amount of resources: chemical, fuel, electricity, etc. The production, 

transportation and storage stages of hexane is possibly the highest contributor as the 

soxhlet method uses the least energy, 4.53 MJ (Table 6.3b). 

Comparing the SC-CO2 and MFM process (Fig.6.6), the SC-CO2 contributed higher 

impacts in all categories (human health, ecosystem quality, climate change and resources) 

than the MFM extraction process, and the impacts by both methods are apparently due to 

energy consumptions. 

 

 
Figure 6: Normalization of impact categories as function of extraction methods. 
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6.3.4. Single score   

When comparing the impact assessment in terms of single score method, the normalized 

and the weighted values of all impact categories were added up (Fig.6.7). According to 

the analysis, the soxhlet extraction method has the highest overall environmental 

impact/score (1.352045 mPt), the SC-CO2 has the second highest (0.722109 mPt) and the 

MFM has the least (0.297142 mPt) (Fig.6.7). The analysis indicates that the oil extraction 

using soxhlet uses large amount of resources (55.41%) such as solvent, fuel, electricity, 

etc. Also, the impact due to human health is relatively high (22.70%) and that of climate 

change is 18.54%. In the case of the total environmental impact of SC-CO2 method, the 

impact due to the human health, climate change and resources are 28.61, 37.39 and 

33.71% respectively. The impact due to the ecosystem quality is negligible (< 1%).  The 

most probable cause of environmental impact in the SC-CO2 process is due to resources 

use (fuel, electricity, etc.).  
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Figure 6.7: Single score of damage assessment for all extraction methods. 
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and sediment content (Table 6.4a) compared to MFM and soxhlet methods. These factors 

make SC-CO2 a higher quality fuel oil for use in heating oil/power applications and 

conversion to a biodiesel. The high impurities and other undesired compounds make the 

MFM oil denser (991 kg/m
3
) than the SC-CO2 (905 kg/m

3
) (detail discussion in Section 

3.7 of chapter 5).  However, the heterogeneity of MFM oil is responsible for its non-

Newtonian and pseudo plasticity (n = 0.69) which translates to better flow properties than 

the more homogenous SC-CO2 oil (n = 0.99). 

Regarding recoverability, the soxhlet method has the highest efficiency (53%) compared 

to SC-CO2 (48%) and MFM (21%). The overall environmental impact of MFM is the 

lowest and so also the recovery efficiency and oil quality hence, the SC-CO2 method 

could be selected over the two methods in order to strike a fair balance between 

environmental impact, recovery efficiency and oil quality.  

Table 6.4a: Oil quality as a function of extraction methods 

Methods  SC-CO2  MFM Soxhlet 

TAG recovery (%) 86 70 66 

Free Fatty Acids (FFA) (%) 2.0 8.0 7.6 

Sediment (%) 0.0 0.95 

 Free water (%) 0.0 1.02 

 Flow index at 40   0.99 0.69 

 Density 40   (kg/m
3
) 905 991 

 Overall recovery (%) 48 21 53 
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Table 6.4b: Process quality rating 

Process 

Human 

health  

Ecosystem 

quality 

Climate 

change Resources 

Fuel 

quality  

MFM 1 1-2 1 1 3 

Soxhlet 

 

3 3 3 2 

SC-CO2 2 1-2 2 2 1 

Notation: Good =1; Fair = 2; Bad = 3 

 

6.4 Conclusion  

In this study, three processes to recover bio-oil from fish wastes were compared via LCA. 

The MFM method has the lowest overall environmental impact compared to the soxhlet 

and SC-CO2 methods. This lower impact of MFM is reflected in the characteristics of all 

impact categories except the aquatic acidification and aquatic eutrophication (Fig.6.4) 

which could be due to process water discharge into oceans. However, the high aquatic 

acidification and aquatic eutrophication reflected a lower damage to the ecosystem 

quality. When considering categories of damage, the soxhlet extraction method, due to 

the use of solvent, has the greatest impacts on all the four categories (human health, 

ecosystem quality, climate change and resources). However, the oil quality produced by 

soxhlet method is higher from a fuel perspective than the MFM method (Table 6.4).  

The SC-CO2 method falls between the soxhlet and MFM in damage in all the four 

categories (human health, ecosystem quality, climate change and resources). This method 

requires more energy (17.62 MJ to produce 1 kg oil) than the MFM and soxhlet methods 

(Table 6.3b). The damage is due to emissions of gases as a result of energy and resources 

usage (fuel, electricity, etc.). The CO2 recovery unit consumes the most energy input 
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(74%) in this process. However, the SC-CO2 method produced the best quality oil of the 

three methods. 
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CONCLUSION AND RECOMMENDATIONS 
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7.1 Summary and Conclusion  

The objective of this research was to investigate different fish oil extraction processes in 

an effort to produce a sustainable biofuel. Physical processing and solvent extraction are 

primary methods for extracting edible and inedible oils in fish processing industry. 

Unpurified fish oil contains a variety of impurities such as free fatty acids, primary 

oxidation products, minerals, pigments, moisture, phospholipids, and insoluble impurities 

that reduce oil’s fuel quality. The amount of these impurities extracted with the oil 

depends on the extraction method. Series of refining processes are normally required 

after extraction (physical processing and solvent extraction) to remove these impurities, 

such as degumming, deodorization, bleaching, and neutralization. However, the operating 

costs associated with these refining steps coupled with loss of oil and the generation of 

chemical waste streams during processing increase the overall cost. The biofuel quality 

can be determined by the quality of the feedstock and the processing conditions, which 

need to be carefully managed to obtain high quality fuel. Three extraction processes 

(soxhlet, MFM and SC-CO2) have been studied and the objectives were to maximize fuel 

quality and minimize environmental and economic costs.  

This thesis is comprised of five sections: 

 Literature review (Chapter 2); 

 Characterization of fish oil and blend with petroleum fraction (Chapter 3); 

 Solubility of fish oil in SC-CO2 and Mass transfer modeling (Chapter 4); 

 Quality evaluations (Chapter 5); 
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 Life cycle analysis (LCA) (Chapter 6). 

7.1.1 Literature Review 

This review focuses on extraction processes. An overview of developments in oil 

extraction processes including physical, chemical and biological processes, which was 

limited in the literature, was presented in this chapter. The waste derived oil for use as a 

fuel can be a sustainable cost effective strategy for conventional combustors, boiler 

engines, remote fish plants, marine vessels or in-house use. The oil product does not need 

to meet high purity standards associated with edible oils but must balance fuel quality 

with costs, process complexity and robust enough to handle different types and quality of 

fish residue.  

The majority of advanced and modified solvent extraction methods are either designed 

for sample analysis or environmental studies. They have not been proven beyond 

laboratory and/or pilot scale. These methods are very high in extraction efficiency but 

major constraints are high environmental impacts (due to solvent residue) and low 

feedstock capacity. Therefore, the solvent extractions are impractical for large scale 

extraction of fuel grade oils.  

The fishmeal processing is environmental friendly and relatively less energy intensive. 

This process has been proven to handle high volume feedstock in commercial scales. 

However, oil product quality is low and could be less stable during storage. Process 

modification to improve oil quality and to reduce further product degradation during 
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processing has been suggested. Nevertheless, this process is simple and has been widely 

used over the years. 

The SC-CO2, although limited in large scale application, can reduce the environmental 

impacts and safety issues associated with conventional solvent extraction processes. 

Quality fuel with minimal impurities can be achieved through this method. However, the 

costs of energy (e.g. CO2 recycling, compression and freeze drying) and infrastructure 

associated with required high pressures need further assessment. More feasibility studies 

are also required to determine whether SC-CO2 is sustainable in commercial scale.  

Biological processes are environmentally friendly and safe. The major problem is that the 

processes required costly enzymes and the process control is very limited. The targeted 

product is protein concentrate. Hydrolysis of FFA and oil-water emulsion usually prevails 

due to long residence time and further downstream processing is also required. Therefore; 

the biological process condition is not suitable for quality fuel oil products. 

 

7.1.2 Characterization of fish oil and blends 

In this chapter the fishmeal process was modified and the quality of oil was improved 

compared to fishmeal process oil. The oil was blended with petroleum distillate (20 – 80 

% wt.) and analyzed for physico-chemical, thermal and rheological properties. These 

analyses determined certain characteristics valuable in understanding biofuel behavior 

during application. The power law effectively described the flow properties of the oil, 

petroleum distillate and their blends as shear thinning fluid. As the fish: petroleum 

distillate mixture ratio increased, the flow property of the blend improves due to 
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decreased activation energy (flow barrier). As proposed in the literature ([2,4] chapter 3), 

the fish oil blend with petroleum distillates minimize CO and Sulphur emission in 

combustion engines therefore, the blend application provides the possibility to 

combat/reduce the environmental impact due to emissions characteristics of heavy 

petroleum distillates.  

 

7.1.3 SFE and mass transfer modeling 

The SC-CO2 extraction method is effective in terms of recovery, quality product and 

environmental impact. The mass transfer rate effectively described the SC-CO2 extraction 

process. For design and scale up purposes the optimum extraction condition and the 

controlling parameters are very important. For instance when external mass transfer is the 

controlling factor, as determined in the first stage of extraction (section 4.1 chapter 4), 

good practice for scale-up would be to keep the solvent to solid ratio constant. So when 

the maximum solubility of the fish oil in the SC-CO2 is maintained, then the extraction 

may be completed using small amount of SC-CO2 possible. A maximum yield is always 

desirable, but as overall oil content of the solid phase decrease, the cost of the extraction 

would increase. In many cases the extraction process in commercial operations is 

considered complete when 90% of the solute has been extracted. Therefore, it would be 

ideal to complete the extraction system when the system is operating in the first stage of 

extraction, which is limited by the solubility of the fish oil in the SC-CO2. Furthermore, 

designing equipment to operate optimally as modeled in this chapter would require 

certain inputs be fixed, such as temperature, pressure, and flow rate, etc. The major 



192 

 

problem then is how to effectively scale-up to larger/commercial scale production. Thus 

appropriate scale-up factors must be determined for the process. However, it may be 

inappropriate to scale up all factors at the same rate as the extraction process may be 

constrained by certain key parameters (e.g. SC-CO2 flow rate, solubility, solid moisture 

content, etc.), and others do not contribute to the desired extraction efficiency/outcome. 

 

7.1.4 Quality evaluation  

The quality of oils from the three different extraction processes (soxhlet, MFM and SC-

CO2) were analyzed. This chapter demonstrated the effect of extraction methods on 

chemical composition, thermal, physicochemical, and flow properties of salmon waste 

derived oils. The solvent extraction method as proposed in chapter 2, is only suitable for 

sample analysis due to low feedstock capacity therefore, the MFM and SC-CO2 were 

major focus. The lipid composition analysis determined the major chemical classes of 

lipids.  

The TAG lipid class is the major constituent and the most important compound useful for 

biofuels. The nature of fatty acid constituents of TAG largely determines the oil’s 

combustion property. TAG can be converted to biodiesel and should be maximized in 

order to maximize biodiesel product. Compounds such as FFA, PL, AMPL, water and 

sediments are undesirable for quality oil and should be eliminated or minimized during 

extraction. In comparison to other methods, the SC-CO2 method recovered the highest 

TAG content and minimized the content of all undesirable compounds. As such, SC-CO2 

oil would have fewer performance problems when considered for biofuel application. 
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The MFM oil exhibited better flow properties than SC-CO2 but of low quality. The MFM 

oil would require further refining steps to attain same level of purity as SC-SCO2 oil and 

would add to the overall process cost.  

 

7.1.5 Life cycle analysis (LCA) 

Increased biofuel production has been proposed as one of the solutions to the need to 

reduce emissions of greenhouse gases ([2,4] chapter 3). Biofuel production and 

implementation has yet to reach its full commercial potential, especially in the 

developing countries. Besides technical barriers, there are several non-technical limiting 

factors which impede the development of biofuel such as feedstock price, production 

cost, fossil fuel price and environmental impacts of production processes. The LCA 

quantified the environmental impacts of three biofuel extraction methods. 

From life cycle analysis results, the most effective extraction method in terms of 

environmental impact is the MFM method. The SC-CO2 is in between the three methods 

studied while the soxhlet method impacted the environment the most. 

The soxhlet method impacted all damage categories and was attributed to hexane use. 

The impact was very high on the resources more than every other damage categories 

(human health, ecosystem quality and climate change).  

Important factors to be considered for suitable process could be safety, costs associated, 

complexity and product quality. An unsafe process would be discouraged irrespective of 

how cheap. Poor product quality may defeat other factors such as cost effectiveness and 

simplicity as more refining steps would be required. 
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7.2.0 Recommendations 

 The major part of this research provided information on a laboratory scale basis. 

The extraction and blending experimental were all performed at laboratory scale; 

further work is required to confirm the results on a pilot or commercial scale. 

Design parameters should be validated at lager scales for design purposes. 

 The optimization of SC-CO2 extraction process in this research was based on one 

factor at a time (OFAT) approach. Further work can focus on a comprehensive 

design of experiment (DOE) to investigate the interaction effect of two or more 

factors. The DOE could determine important parameters for optimum recovery 

conditions and also, the interaction effect of factors such as temperature, pressure, 

SC-CO2 flow rates, particle size etc. could be detected with minimum number of 

experiments.  

 The SC-CO2 provided high quality oil as proven in this research. Further work 

such as stability test and blending with mineral fuel as done on the MFM oil 

(Chapter 3) should also be performed on SC-CO2 oil. Further, given the more 

homogenous nature of SC-CO2 oil, it may blend more effectively with petroleum 

based fuels.  

 The LCA in this work used literature simulated energy and other inputs which 

could be refined with actual data based on larger scale.  
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 Further studies should also focus on extraction process integration into actual 

power plants, central heating systems, marine vessels or fish processing plants.  

 Biological extraction processes such as hydrolysis and fermentation method 

should also be a future subject of study. Fish hydrolysate could find a good use 

(feedstock) in fertilizer and fish farming industries therefore a hydrolysis process 

could be part of fertilizer/animal feed processing steps. 

 The current work does not include cost evaluation of all the processes studied. In 

future studies, the evaluation of the costs associated with each of the extraction 

process is highly recommended in order to determine their economic feasibility. 
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APPENDIX 

APPENDIX I 

Thermogravimetric and rheological analysis of other fish species other than salmon. 

 

Thermal degradation of the Cod oil under nitrogen  and air atmosphere. 
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Thermal degradation of the Herring oil under nitrogen  and air atmosphere. 
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Thermal degradation of the Mackerel oil under nitrogen  and air atmosphere. 
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Change in apparent viscosity with shear rate at 30, 40 and 50 
o
C for Mackerel oils from 

MFM method 
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Change in apparent viscosity with shear rate at 30, 40 and 50 
o
C for Cod oils from MFM 

method 
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APPENDIX II 

Preliminary tests on supercritical CO2 extraction. 

 

Effect of freeze drying time on soxhlet recovery  
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Effect of freeze drying time on SC-CO2 recovery  
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Effect of moisture content on recovery and on oil moisture content 
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APPENDIX III 

SC-CO2 model and experimental data not presented in the manuscript 

 

 

Effect of flow rate at 333K and 35 MPa 
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Percentage yield at 35MPa and 0.18kg/hr compared  
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Solute concentration model (Goto et al. 1993 model) 
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Percentage yield prediction (Goto et al. 1993 model) compared to experimental yield  
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Model yield vs experimental yield 
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Matlab algorithm of Goto model. 

1. Mass fraction (F) as a function of time (t) 

clc; 
clear all; 
De = 1.44289E-09; 
dp = 4.16E-4; 
ap = 7563.82; 
Kf= 0.0000249; 
Bi = (Kf*dp)/De; 
Kg = 5*Kf/(5+Bi); 
Thao =165.92; 
Pha = Kg*ap*Thao; 
C0 = 0.487; 
t = 0; 
i=1; 
dt=2488.8; 
while t<=19910.4; 
Thetha = t/Thao; 
time(i)=t; 
Betha =0.463; 
Alpha = 0.62; 
K=3586; 
C = Pha/((Betha+(1-Betha)*K)*Alpha); 
b = (Pha/(Betha+(1-Betha)*K))+(Pha*(1-Alpha)/Alpha)+1/Alpha; 
Gamma1 = (-b+(b^2-4*C)^0.5)/2; 
Gamma2 = (-b-(b^2-4*C)^0.5)/2; 
A = (Pha*(1-Alpha))/((Betha+(1-Betha)*K)*Alpha*(Gamma1-Gamma2)); 
X(i) = A*(exp(Gamma1*Thetha)-exp(Gamma2*Thetha)); 
%Thetha = time/Thao; 
F1(i) = (A/(1-Alpha))*((exp(Gamma1*Thetha)-1)/Gamma1-

(exp(Gamma2*Thetha)-1)/Gamma2); 
Thethat(i)=Thetha; 
t=t+dt; 
hold on; 
i=i+1; 
end 
hold on; 
plot(Thethat,F1,'*') 
xlabel('time') 
ylabel('Solute Cummulative Fraction') 
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2 Mass percentage yield (y) as a function of time (t) 

clc; 
clear all; 
De = 5.91e-9; 
dp = 6.8e-4; 
ap = 2941.2; 
Kf= 2.9e-6; 
Bi = (Kf*dp)/De; 
Kg = 5*Kf/(5+Bi); 
Thao =104.72; 
Pha = Kg*ap*Thao; 
C0 = 0.487; 
t = 0; 
i=1; 
dt=1570.8; 
while t<=12566.4; 
Thetha = t/Thao; 
time(i)=t; 
Betha =0.463; 
Alpha = 0.62; 
K=45.69; 
C = Pha/((Betha+(1-Betha)*K)*Alpha); 
b = (Pha/(Betha+(1-Betha)*K))+(Pha*(1-Alpha)/Alpha)+1/Alpha; 
Gamma1 = (-b+(b^2-4*C)^0.5)/2; 
Gamma2 = (-b-(b^2-4*C)^0.5)/2; 
A = (Pha*(1-Alpha))/((Betha+(1-Betha)*K)*Alpha*(Gamma1-Gamma2)); 
X(i) = A*(exp(Gamma1*Thetha)-exp(Gamma2*Thetha)); 
DensityCO2 = 770; 
DensityOil = 892; 
y1(i) = (Betha/K+(1-

Betha)).*(X(i).*DensityOil./DensityCO2).*A.*(exp(Gamma1.*Thetha)-

exp(Gamma2.*Thetha)); 
X1(i) = DensityCO2*y1(i)/C0; 
Q = 1.731e-7; 
m(i) = ((Betha/K)+(1-

Betha)).*X1(i).*DensityOil.*Q.*A.*Thao.*(1./Gamma1.*(exp(Gamma1.*Thetha

)-1)+1./Gamma2.*(1-exp(Gamma2.*Thetha))); 
Thethat(i)=Thetha*Thao; 
t=t+dt; 
hold on; 
i=i+1; 
end 
%plot(time/60,m) 
hold on; 
for i=1:length(m) 
F1(i)=sum(m(1:i))*(10000000/15); 
end 
plot(Thethat/60,F1,'*') 
xlabel('time (min)') 
ylabel('Yield (%)') 
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Supercritical CO2 physicochemical properties 

  NIST database (http://webbook.nist.gov/chemistry/fluid/).  

T (K) P (MPa) Viscosity (Pa.S) Density (kg/m3) 

313 

15 0.000068 781 

25 0.000088 875 

35 0.000100 905 

    

333 

15 0.000047 610 

25 0.000069 785 

35 0.000084 860 

    

353 

15 0.000033 430 

25 0.000056 680 

35 0.000070 785 

 

 

Critical properties of Triolein and CO2 (simulated from HYSYS) 

Property Triolein CO2 

Molar mass (kg) 885.4 44.01 

Critical temperature (°C) 680.9 30.95 

Critical pressure (kPa) 360.2 7.37 

Critical mass density (kg/m
3
) 143.1 467.7 

Critical molar density (kg/m
3
) 6.187 0.094 

Critical volume (m
3
/kmol) 3.09 0.0939 

 

 

 


