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Abstract 

Regulations and design codes for ships and offshore structures operating in ice infested 

waters consider only stationary loads for hull structural design.  This implies that the effects 

of movement of a load along the hull are negligible.  Real hull structures most often 

experience operational ice loads in a way that would be better modelled as a moving load. 

Previous work (Quinton 2008) predicted a significant decrease in the structural capacity of 

a steel grillage (hull) structure subjected to moving loads that cause plastic damage, when 

compared with similar stationary loads.  In particular, the previous work predicted a 

decrease in the structural capacity of both hull plating and hull frames.  For hull frames, it 

was noticed that plastic buckling of the frame webs occurred at a much lower load level for 

moving loads, than for stationary loads. 

This thesis explores the effects of moving loads causing plastic damage on hull structures 

using experiments and subsequent numerical models.  The results of this work identify a 

loss of hull structural capacity directly attributable to plastic damage caused by lateral load 

movement for both plates and frames.  It explores the structural response phenomena 

underlying the observed capacity loses.  In particular, this thesis presents:  results of 

laboratory experiments carried out using a novel moving load apparatus involving steel and 

ice indenters acting on steel plates and frames; a discussion of the design and capabilities 

of the novel moving load apparatus; a discussion of the structural response phenomena 

present during moving loads based on a calibrated numerical model of the moving load 

experiments; and general guidelines for conducting numerical models of moving loads. 
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List of Symbols, Nomenclature or Abbreviations 

Plastic buckling The plastic structural mechanism through which a frame’s 

web predominantly deforms in the vicinity of a moving load 

causing plastic damage. 

Design load A design load is the load applied to a hull that is meant to be 

representative of the largest expected environmental load to 

be encountered in the hull’s service life.  The design load is 

usually prescribed by a regulatory body. 

Elastic deformation Response of a hull as it deforms within its elastic region.  This 

type of deformation is temporary (i.e. completely 

recoverable) and no permanent damage occurs. 

Environmental load For the purposes of this thesis, an environmental load is any 

load that a hull may be subject to through normal operation 

in its design environment. 

Frame The framing of a grillage structure provides stiffness to the 

plating and serves to transmit environmental loads shed from 

the plating to the primary hull structure.  The stiffness is 

provided by a stiffener.  When analysing a frame, it is 

common to include a portion of the plating adjacent to the 

stiffener; thus a frame consists of the stiffener and part of the 
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adjacent plating.  Each of the four structures show in the 

following figure are frames. 

   

Horizontal load This term refers to a lateral load as measured during the 

moving load experiments.  As motion in the lateral direction 

was applied with a hydraulic ram orientated perpendicular to 

gravity, the terms lateral load and horizontal load are 

sometimes used interchangeably throughout this thesis. 

Hourglassing Hourglassing is a nonphysical, zero energy mode of vibration 

for underintegrated shell and solid finite elements.  It 

produces zero strain and no stress. 

Hull For the purposes of this thesis, a hull is the exterior load 

bearing structure of a ship/offshore-structure which is 

comprised of a steel grillage that is designed to withstand 

environmental loads such that the hull remains intact and the 

ship/offshore-structure remains operational. 

Grillage A grillage is a structure consisting of contiguous plates 

supported by underlying frames.  The plating sheds load to 

the underlying framing, which sheds load to the primary hull 

structure.  
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Lateral direction Any direction aligned with the plane of the hull plating.  

Please note:  during the moving load experiments, the term 

lateral implies the direction aligned with the long axis of the 

specimen’s plating.  Throughout this thesis, the terms lateral 

and horizontal are used synonymously, as the horizontal 

direction in the moving load experiments corresponds with 

the lateral direction of the hull plating. 

Lateral load A load aligned with any direction in the plane of the hull 

plating.  Please note:  during the moving load experiments, 

any reference to a lateral load implies load in the direction 

aligned with the long axis of the specimen’s plating.  As 

motion in the lateral direction was applied with a hydraulic 

ram orientated perpendicular to gravity, the terms lateral load 

and horizontal load are sometimes used interchangeably 

throughout this thesis. 

Moving load Any hull load (e.g. design load or accidental overload) that 

includes lateral motion along hull’s exterior (i.e. plating).  

The term moving load does not relate to the magnitude of the 

load; it refers only to location with respect to time. 

Moving load capacity The structural capacity of a hull to withstand a moving load. 
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Moving load effects For the purposes of this thesis, this term refers to the 

phenomena associated with the reduction in structural 

capacity of a hull plate or frame attributed to the lateral 

movement of a load causing plastic hull damage, compared 

with the structural capacity for a stationary load of equal 

magnitude.  Further when considering a frame, it also 

includes the early onset (compared with stationary loads) of 

plastic buckling in a frame’s web. 

Normal direction The direction perpendicular to the hull plating in its 

undeformed condition. Throughout this thesis, the terms 

normal and vertical are used synonymously, as the vertical 

direction in the moving load experiments corresponds with 

the normal direction of the hull plating. 

Normal load A load acting perpendicular to the hull plating in its 

undeformed condition.  Please note:  during the moving load 

experiments, motion in the normal direction was applied with 

a hydraulic ram orientated vertically (i.e. aligned with 

gravity), and the terms normal load and vertical load may be 

used interchangeably throughout this thesis. 

Plastic damage Permanent (i.e. non-recoverable) hull structure deformation 

resulting from plastic deformation. 
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Plastic deformation Response of a hull as it deforms past its elastic threshold (i.e. 

non-recoverable deformation resulting in plastic damage). 

Plate The plate (or plating) of a grillage structure comprises the 

exterior of a hull and consists of a series of welded contiguous 

thin shells supported by underlying frames.  The plating is 

required to remain intact in order to prevent the ingress of 

water or, if it is adjacent to a tank, the outflow of the contents 

of the tank.  A plate is illustrated in the figure given in the 

definition of frame above. 

Pseudo-elastic response For the purposes of this thesis, pseudo-elastic response refers 

to a type of hull structural response resulting from a moving 

load that causes very low levels of plastic damage (in the 

vicinity of the load), where the hull structure grossly behaves 

as if no permanent damage occurs. 

Stationary load Any hull load that acts upon a single location on the hull.  

Design loads, as presently defined by classification and 

regulatory rules, are stationary loads.  The term stationary 

load does not relate to the magnitude of the load; it refers only 

to location with respect to time.  Any analysis of a hull 

structure that ignores the history of the lateral position of a 

load with respect to time assumes the load to be a stationary 

load. 
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Stationary load capacity The structural capacity of a hull to withstand a stationary 

load (e.g. the structural capacity of a hull to withstand a 

design load).  Any analysis of a hull structure that ignores the 

history of the lateral position of a load with respect to time is 

implicitly determining the stationary load capacity. 

Stiffener For the purposes of this thesis, a stiffener provides stiffness 

to a plating, and consists of a web, and usually a flange as 

well.  A stiffener is illustrated in the figure given in the 

definition of frame above. 

Three Hinge Collapse A clamped beam or plate supporting a distributed load has 

the highest stresses present at the supports.  If the load large 

enough, the stresses will be above the yield strength of the 

beam/plate material.  If elastic/perfectly-plastic stress-strain 

behaviour is assumed, plastic hinges will form at these 

locations (i.e. one plastic hinge at each of the supports).  

Subsequently, if the load is large enough, another plastic 

hinge will form at the centre of the beam/plate.  Once three 

hinges exist, the structure can no longer support itself and 

collapses (theoretically). 

Ultimate limit state This term generally refers to the practice of designing a 

structure so that its design point is the onset of some 

theoretical structural collapse mechanism (e.g. three-hinge 
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collapse for fixed beam that is free to pull in).  It is important 

to note that setting the design point at a theoretical point of 

collapse is generally conservative as the theory itself is 

generally conservative.  I.e. the practical point of collapse 

generally requires a far greater energy input due to ignored 

energy storage mechanisms in the theory. 

Vertical load This term refers to a normal load as measured in the moving 

load experiments. During the moving load experiments, 

normal loads were applied with a hydraulic ram orientated in 

the vertical direction (i.e. aligned with gravity) and the terms 

normal load and vertical load may be used interchangeably 

throughout this thesis. 

Web A web is the portion of a stiffener (or also a frame) that 

consists of a thin shell affixed to the plating so as to maximize 

bending stiffness (e.g. perpendicular to plating in the case of 

wall sided ship).  A web is illustrated in the figure given in 

the definition of frame above. 
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Chapter 1 Introduction 

All current regulations and design codes for icebreaking/ice-strengthened ships and 

offshore structures consider only stationary loads for hull structural design.  This implies 

that the effects of movement of a load along the hull are negligible.  It is well known that 

ice loads are most often applied – particularly to ship hulls – in a way that would be better 

modelled as a moving load. 

(Quinton 2008), using a calibrated numerical model, found that there were no appreciable 

effects of load movement for moving loads inciting an elastic hull response; but when the 

moving loads caused plastic damage, the effects were dramatic – the structural capacities 

of both plate and frame hull structures were predicted to be significantly less than for a 

stationary load of equal magnitude applied at the same location. 

This thesis tests the hypothesis that the structural capacity of a hull subject to a moving 

load causing plastic damage is significantly less than when subject to a stationary, but 

otherwise equivalent, load.  This hypothesis is investigated using a combination of novel 

laboratory experiments and corresponding calibrated numerical models. 

1.1 A Note on Capacity 

The capacity of a structure is a function of the condition under which it is loaded.  It is 

improper to say that the capacity of a structure is a single value, without specifying the load 

condition associated with that capacity; however, given that current regulations and design 

codes for Arctic ships and offshore structures consider only stationary design loads, we 

tend to think of a hull as having a particular structural capacity (i.e. the capacity to withstand 
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the stationary design load).  The term reduced structural capacity is used throughout this 

thesis when referring to the effects of load movement for loads causing plastic damage.  

Whenever this term is used herein, it may be assumed to be referring to a comparison with 

the structural capacity of the same structure subject to a stationary load of equivalent 

magnitude. 

1.2 Background 

A reduced structural capacity to moving loads that cause plastic damage was predicted in 

(Quinton 2008), where a numerical model calibrated against laboratory experiments on a 

full-scale IACS PC6 classed steel grillage (see Figure 1.1) under stationary loading (Daley, 

Hermanski 2008a, 2008b) was extrapolated to investigate moving loads.  Moving loads are 

loads that act not only normal to the hull, but at the same time translate laterally along the 

hull’s surface.  In particular, the previous work predicted a decrease in the structural 

capacity of both hull plating (see Figure 1.2) and hull frames (see Figure 1.3) compared to 

the stationary loading condition.  For hull frames, it was further noticed that plastic 

buckling of the frame webs (see Figure 1.4) occurred at a much lower load level for moving 

loads, than for stationary loads.  These behaviours will be collectively referred to as moving 

load effects throughout this thesis. 
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Figure 1.1:  IACS PC6 grillage model from Quinton (2008) – plating (green) and stiffener 
webs (yellow) are transparent to show indenter (brown). 

 

Figure 1.2:  Normal force versus lateral displacement (data from Quinton (2008)) of a 
moving 2 cm imposed indentation on the plating of the grillage shown in Figure 1.1 – the 
initial drop in normal force occurs once lateral motion of the load commences. 
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Figure 1.3:  Normal force versus lateral displacement (data from Quinton (2008)) of a 
moving 2 cm imposed indentation on the central frame of the grillage shown in Figure 1.1 
– the initial drop in normal force occurs once lateral motion of the load commences. 

 

 

Figure 1.4:  IACS PC6 grillage model from Quinton (2008) – this fringe plot of y-direction 
displacement illustrates the plastic buckling of the central frame under a 2 cm moving 
indentation. 
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A review of the publically available literature on the subject of moving loads on ship hulls 

reveals that the research has concentrated on the tearing response of hull plating in collision 

and grounding scenarios (see Chapter 2.2).  There is very little treatment of the scenario 

where a moving load causes plastic damage that does not result in puncture and subsequent 

tearing of the hull steel.  The most notable of this work is the numerical and analytical work 

of Hong and his co-authors (Hong 2008, Hong, Amdahl 2012).  They numerically 

investigated the response of a ship hull’s double-bottom to sliding loads during grounding 

on a shoal (which is defined as a large seabed surface) and developed a simplified semi-

empirical method for predicting the structural response (see Chapter 2.2.4.2). 

The scenario of moving loads causing plastic damage without hull tearing is important for 

ships and offshore structures operating in ice, as these vessels are generally designed or 

classed to withstand a certain level of ice load, and rarely (even under accidental overload) 

experience hull fracture, puncture or tearing of the hull plating1; although such vessels are 

regularly dented.  This scenario is also important for non-ice-strengthened ships that 

encounter ice, as these ships are much more likely to experience plastic damage during ice 

impacts. 

The investigation of moving loads causing plastic damage is particularly relevant at this 

point given two recent developments:  1. the recent shift in design practice of Arctic going 

ships and offshore structures towards ultimate limit states design, and 2. the recent increase 

in Arctic activity. 

                                                 
1 No references are provided here as this contention is explored in more detail below.  
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On March 1, 2008, the International Association of Classification Society’s (IACS) Unified 

Rules for Polar Class (IACS 2011) came into effect.  This new international standard 

precipitated a shift in the design of Arctic going ships from an elastic design regime to 

ultimate limit states design.  The ultimate limit state design point for these rules is the 

theoretical onset of three-hinge collapse for both plating and framing2 (Daley 2002, Daley, 

Kendrick et al. 2001).  Given the plastic design point, it is reasonable to expect some plastic 

hull damage in today’s polar class vessels upon sustaining their hull design load. 

The recent increase in Arctic activity is important because of increased activity:  raises the 

probability of occurrence of accidental loads (i.e. loads greater than the design load); and 

it increases the likelihood of non-ice-classed ships venturing into ice infested waters.  The 

latter is due to the lack of support infrastructure in most Arctic areas.  It is conceivable that 

an incident (e.g. search and rescue, oil spill cleanup, etc…) in the Arctic may require the 

support of non-ice-strengthened ships.  Therefore, there is a need to understand the effect 

of moving loads causing plastic damage on these vessels. 

Despite the move to recognize the onset of plasticity as a design point, the design load for 

all present day standards (classification society rules3, government regulations4, and 

international guidelines5) is a stationary load, and therefore does not consider any possible 

effects of the lateral movement of the load on the hull structure.  If the lateral movement of 

a load does in fact significantly reduce the plastic structural capacity (as is shown in this 

                                                 
2 This is a slight oversimplification, but sufficiently valid for the present discussion. 
3 For example American Bureau of Shipping:  Steel Vessel Rules 2015 – Part 6, and others. 
4 For example the Canadian Arctic Shipping Pollution Prevention Regulations (ASPPR). 
5 For example the International Association of Classification Societies (IACS): e.g. Requirements Concerning 
Polar Class; and International Organization for Standardization (ISO):  e.g. ISO 19906. 
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thesis), then it is important to consider this in the design of icebreaking ships, and especially 

when deciding whether to send a non-ice-classed ship into ice infested waters. 

1.3 Applicability of Moving Load Effects 

To further qualify the need for examination of these moving load effects, their scope of 

consequences should be discussed.  Quinton (2008), as well as experiments presented in 

this thesis, verify the implicit assumption in existing design standards that there is no 

reduction in hull structural capacity due to lateral load movement of loads that only lead to 

elastic deformations.  That is, any movement of these lower level loads may be safely 

ignored (i.e. at any instant in time, they may be treated as stationary loads).  Further, 

Quinton (2008) predicted that the effect of lateral movement of loads inciting a pseudo-

elastic hull response is minimal; and may also be treated as stationary loads.  Pseudo-elastic 

hull response occurs when a moving load incites minimal localized plastic damage, and the 

hull structure grossly behaves as if it had remained elastic (which the vast majority of it 

does).  Further, additional work by (Quinton, Daley et al. 2013, and unpublished) suggest 

that the effects of lateral movement of the design load (which should not lead to significant 

plastic deformation) for all IACS polar class structures (i.e. PC1-7) – while not insignificant 

– is not detrimental.  As discussed above, the design point for IACS hull structures is the 

onset of three-hinge collapse.  This is based on a theory that ignores many practically 

occurring energy sinks (e.g. strain hardening and plastic membrane stress).  This “builds 

in” a high degree of conservatism, not only against three-hinge collapse, but against large 

structural deformations at the design load.  Please note, this work regarding movement of 
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the IACS design load is preliminary, and requires more study before any solid conclusions 

can be drawn. 

The above suggests that the effects of moving loads on IACS polar class ships are not 

particularly significant up to the theoretical initial onset of three-hinge collapse (i.e. the 

design point).  The question, then, is “When are the effects of moving loads significant?”  

They are significant in accidental overload scenarios.  As will be shown below, moving 

load laboratory experiments indicate that an indentation of just 5% of the frame spacing is 

enough to incite a significant loss in capacity of the hull structure due to lateral load 

movement.  This number is not an upper boundary, but represents the smallest indentation 

carried out in the experiments.  Determination of the specific point where moving load 

effects become significant was not within the scope of these experiments, however prior 

numerical simulations (Quinton 2008) suggest that these effects become significant at an 

indentation of 1.5-2% of the frame spacing for both plates and frames; discounting the 

mitigating effect of strain-rate. 

1.4 Methodology 

In order to investigate moving load effects (as defined above) with a higher degree of 

confidence than that provided by the purely numerical previous studies, it was decided to 

conduct a series of laboratory experiments.  These experiments would provide insight into 

conditions leading to moving load effects, conditions that mitigate moving load effects, and 

provide a basis for further calibrated numerical investigations. 
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1.5 Thesis Organization 

This thesis is organized into the following chapters: 

1. Introduction – Introduces the topic of moving loads causing plastic damage, and 

discusses the need to investigate the effects of load movement on the structural 

capacity of ship hulls subjected to ice loads and accidental loads. 

2. Literature Review – Identifies the literature pertaining directly to moving ice loads 

causing plastic damage, discusses the background information, identifies the 

knowledge gaps, and identifies the current state-of-the-art techniques for modeling 

similar scenarios. 

3. Moving Load Experiments – Discusses the design and capabilities of the novel 

moving load apparatus, as well as the experimental test regime. 

4. Experimental Results – Presents the results and discussion of the experiments 

described in Chapter 3. 

5. Numerical Simulations – Uses three representative experimental cases (i.e. ¼” 

plate, ½” plate and frame) to calibrate a numerical model of moving loads causing 

plastic damage to plates and frames.  Begins with a discussion of the design of 

experiments analysis used to determine certain material and physical parameters 

that were unknown during the experiments and were required for the numerical 

models.  Discusses the calibration of the numerical models.  Finishes with 

guidelines for numerically modeling moving loads on hull structures. 

6. Overall Conclusions, Novel Contributions and Recommendations for Future Work. 
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Finally, the Appendices include specifications for all of the experimental apparatus 

employed in this research (Appendix A and Appendix B), plots of all recorded 

experimental data for each experiment (Appendix C), and the code for the custom data 

analysis software employed during this research (Appendix D). 
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Chapter 2 Literature Review 

Other than limited work by (Quinton 2008, Quinton, Daley et al. 2010, 2012, Quinton, 

Daley et al. 2013), there is no publically available literature on moving ice loads on the 

hulls of ships and offshore structures.  What follows is a review of the relevant parent topics 

that contribute to the subject of moving ice loads on the hulls of ships and offshore 

structures.  These topics are: ice, collision and grounding loads, moving loads, progressive 

damage, and strain rate and temperature effects. 

2.1 Ice 

One of the goals of this research is to observe the behaviour of ice as it is permanently 

damaging a structure during a moving load scenario.  Another goal is to determine if lateral 

movement (i.e. sliding of the ice along the hull) changes the behaviour of the ice, relative 

to the case of no lateral movement, when there is no permanent deformation.  In order to 

observe any phenomena unique to moving load scenarios, it was necessary to conduct a 

general review of the existing literature on ice behaviour.  The following general review 

provides the background necessary to design and conduct the novel laboratory experiments 

involving ice presented in this thesis.  Further, the last section “Numerical modeling of ice” 

will provide background information for future work. 

2.1.1 Introduction 

Glaciology (the study of ice) is a wide field.  To narrow the scope of the review of relevant 

literature, a description of the ice used in the experiments presented in this thesis is given 

here.  The ice used in the moving load experiments was laboratory scale, pure freshwater 



12 
 

granular ice.  This type of ice is similar to glacial ice in that both have fine (small) grain 

sizes with randomly oriented c-axes.  Additionally both have entrapped bubbles, however 

the bubbles in glacial ice are usually subject to compression from the surrounding ice, 

whereas the bubbles in laboratory ice are not; or are compressed to a much lesser degree.  

This is because glacial ice is formed from compressed snow.  The characteristics of glacial 

ice have been summarized in Gagnon and Gammon (1995a, 1995b, 1997).  The durations 

of time the laboratory ice samples were under load covers from approximately one second 

to one-hundred fifty seconds (i.e. two and a half minutes).  The durations of these tests have 

implications on the response of the ice samples from both a continuum mechanics and a 

fracture mechanics point of view; as will be discussed below.  Depending on the 

experiment, the behaviour exhibited by the ice samples was either primarily crushing (i.e. 

tiny fractures coupled with comminution of the crushed ice), or crushing with large 

fractures and spalls. 

In 1988, Sanderson published a very highly regarded book (Sanderson 1988) on the state-

of-the-art of ice mechanics.  This literature review, relies heavily on his work in describing 

the relevant literature up to 1988, but supplements his presentation as necessary with newer 

works.  Other relevant summary type works are Hobbs (1974), Petrenko and Whitworth 

(1999), and Schulson and Duval (2009).  The first two deal with the physics of ice as a 

general material.  The later deals specifically with the creep and fracture of ice. 

2.1.2 Ice mechanics 

At laboratory scale, the mechanical properties of pure freshwater ice are well understood, 

and once corrections for brine inclusions are made, the results of experiments performed 



13 
 

with freshwater ice provide good estimates for the behaviour of sea ice (Sanderson 1988).  

There are many facets of ice that make it very hard to classify from an engineering 

standpoint.  Ice creeps at all stresses and shows no yield point (Sanderson 1988).  From a 

mechanical perspective relevant to icebreaking, it behaves as both a continuum prior to 

fracture and as discontinuous media after fracture.  Ice is extremely brittle at high strain 

rates and fractures readily under these conditions (Sanderson 1988).  To further complicate 

the matter, ice exhibits a scale effect (Dempsey, Defranco et al. 1999, Dempsey, Adamson 

et al. 1999, Mulmule, Dempsey 1999) that can be explained by brittle fracture mechanics 

and leads to relatively higher failure loads at smaller scales.  Thus if operational ice loads 

were extrapolated from laboratory experiments without considering the scale effects, then 

the extrapolated loads would be far higher than for actual operational scale ice.   

2.1.2.1 Continuum mechanics 

Ice may be classified as columnar or granular based on the shape and orientation of its 

grains.  In order to be treated as a continuum, the grain size of an ice sample must be small 

compared with its dimensions.  This topic is discussed in Chapter 2.1.3. 

Columnar ice will not be discussed, as the laboratory ice cone samples used in this research 

are composed of granular ice; which has randomly oriented c-axes and therefore exhibits 

isotropic material properties.  When stressed, ice will initially deform in three distinct and 

simultaneous ways:  immediate elastic strain, transient time-dependent delayed elastic 

strain (i.e. primary creep), and time-dependent non-linear viscous creep strain (i.e. 

secondary creep) (Sanderson 1988).  The constitutive laws for this behaviour for granular 

ice may be found in Jacka (1984).  As time progresses past the instant of applied load, the 



14 
 

primary creep ceases and the secondary creep strain continues to increase.  After sufficient 

time, secondary creep gives way to tertiary creep.  

The immediate elastic strain component follows Hooke's Law, with an elastic modulus of 

approximately 9.5 GPa, and is not strongly dependent on temperature or grain size; but is 

strongly dependent on porosity (Sanderson 1988).  Poisson's ratio is reported in Sanderson's 

book to be 0.33 ± 0.03.  The primary creep strain component commences immediately and 

decreases at a variable rate.  Primary creep is elastic and recoverable; given enough time 

upon release of the load (Sanderson 1988).  The secondary creep strain component begins 

to dominate as the primary creep strain-rate approaches zero, and can be viewed as a 

minimum creep-rate in the transition from primary creep to tertiary creep (Sanderson 1988).  

Sanderson reports this type of creep to be independent of grain size.  The beginning of the 

tertiary creep strain stage is marked by an increase in strain-rate after the minimum strain-

rate of the secondary creep stage. 

2.1.2.2 Fracture mechanics 

In addition to the above continuum mechanics, once ice reaches a sufficient stress, strain-

rate, or strain level, it fractures (Sanderson 1988).  Currier and Schulson (1982) show that 

the fracture strength, 𝜎𝜎𝑓𝑓, decreases with increasing grain size, 𝑑𝑑; at least for aggregates 

slowly strained (10−6 s−1) at high temperatures (− 10°C or 0.96 𝑇𝑇𝑚𝑚).  Their analysis suggests 

that the strength is controlled by the propagation, in a brittle manner, of micro-cracks 

nucleated through dislocation pile-ups at grain boundaries.  It is important to distinguish 

between crack nucleation and propagation.  Micro-cracks may nucleate under a given load, 

or they may pre-exist before a load was applied to the ice.  The ice will not fail unless the 
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load level is sufficient to cause the cracks to propagate (Sanderson 1988).  Two types of 

fracture have been reported by Sanderson:  nucleation-controlled and propagation-

controlled.  The former occurs when the applied load induces the nucleation of cracks that 

are large enough to immediately propagate.  The latter occurs when the nucleated (or pre-

existing) cracks are too small to immediately propagate, and propagation requires an 

increased load (Sanderson 1988). 

The fracture behaviour of ice for pure tension and pure compression cases are different; 

compression incites stable crack propagation, while tension crack propagation is unstable 

(Sanderson 1988).  For the moving ice load scenario, the stress state is complex (i.e. not 

pure compression or tension) due to the motion of the load. 

Much theoretical work on ice fracture, fracture toughness, and the applicability of linear 

elastic fracture mechanics to laboratory experiments has been done by Dempsey et al. 

(1999, 1999) and Mulmule and Dempsey (1999). 

2.1.2.3 Combined continuum and fracture mechanics 

Dutta, Cole, Schulson and Sodhi (2004) performed high strain-rate compressive tests on 

laboratory grown columnar ice.  They tested at two temperatures, -10°C and -40°C, and 

varied strain-rate between 10 and 15 s-1, with an additional control strain rate at 3x10-4 s-1.  

They observed that most failures occurred by splitting; and final failure by collapse of the 

columns during the passage of the stress wave6.  They found that most failures occurred at 

around 1000 micro strain, and that failure begins with a crack, followed by progressive 

                                                 
6 They used Hopkinson pressure bar tests for the high strain rate tests. 
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failure with multiple peaks in the stress time history.  They noted that the initial fracture 

was brittle in nature, but that final failure was affected by the time it took for the ejection 

of the failed ice fragments; thereby giving the appearance of visco-elastic failure.  Similar 

findings are found in Mulmule and Dempsey (1999).  While these findings are for columnar 

ice, and not the granular ice used in the experiments presented herein, it is expected that 

the final failure load of granular ice is also time-dependent. 

Gagnon (1998, 1999) analysed the video data from the Hobson's Choice ice island medium-

scale indenter tests of May, 1990.  He found that the forward motion of the indenter 

coincided with spall events (where large chunks of intact ice would break away from the 

contact area) and that "hard blue zones" of relatively intact ice supported the load in 

between spall events.  He reported that this repetition of increasing load supported by the 

hard zones, and subsequent load release through spalling events, is the basis for the 

sawtooth load-time histories observed. 

2.1.3 Scale 

The works of Dempsey et al. (1999, 1999) and Mulmule and Dempsey (1999) show that 

the scale of the ice affects its structural behaviour (and therefore its developed loads) 

through how it fractures.  They suggest that for laboratory scale experiments, experimenters 

often give little or no thought to the size of the sample compared with its grain size.  Further 

they show that the nominal tensile strength of ice decreases with increasing test specimen 

size.  Linear elastic fracture mechanics (LEFM) suggests that the decrease should be on the 

scale of 1/√𝐿𝐿.  This has been shown to be too large for smaller scale specimens, but larger 

samples tend toward this limit. 
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2.1.4 Confinement 

Confinement exists when crushed ice at the contact interface is prevented from being 

extruded, and escaping the contact zone.  This can occur when a small indenter is crushed 

in to a large piece of ice, or when the geometric shape of the structure confines the ice at 

the contact interface.  The latter is of concern for these experiments.  For the case of a 

moving ice cone indenter inducing plastic damage in a steel plate, it is conceivable that the 

steel plate would deform around the ice cone, applying a confining pressure. 

Confinement of ice at the crushing interface can increase contact pressures by preventing 

flaking and spalling of the intact ice (Croasdale 2001).  Because the crushed ice is prevented 

from leaving the contact zone, it exerts a confining pressure on the adjacent intact ice.  This 

confining pressure tends to prevent cracks from propagating in the solid ice, and therefore 

prevents spalls (or flakes) from breaking off.  This serves to increase the overall load at the 

contact interface. 

Kim (2014) studied the effect of crushing ice into non-planar surfaces.  In particular, he 

crushed ice cones into a concave conical shaped surface (receptacle), as well as a concave 

wedge.  He determined that circumferential confinement from the conical surface caused 

an increase in overall load, while the confinement effects of crushing into the concave 

wedge were negligible.  He explains that while the crushed ice appeared to be partially 

confined by the wedge, it was able to escape easily via each of the unconfined sides. These 

results are of particular importance to the moving ice cone experiments involving plastic 

deformation of steel plates in this research. 
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2.1.5 Numerical modeling of ice 

Ice-structure interaction is a highly non-linear transient dynamic problem.  Ice exhibits a 

myriad of behaviours, including:  creep; elasticity; plasticity; crushing; fracture (spalling); 

extrusion/comminution of crushed/spalled material; melting/re-freezing; and cohesion.  To 

date, it has not been possible, to capture all of these behaviours in a single omnibus 

numerical ice model.  Creep, elasticity and plasticity are fairly easy to model using either 

implicit or explicit finite element codes, however these behaviours are only dominant at 

very low to low rates of strain.  Melting/refreezing and cohesion are difficult to model 

numerically, but again these behaviours generally do not dominate the interaction of ice 

with ship hull structures.  The remaining behaviours - i.e. crushing, spalling, and 

extrusion/comminution - generally do dominate, and are difficult to model numerically.  

These mechanisms are highly non-linear transient dynamic processes, which are not suited 

for modeling in an implicit finite element simulation environment.  Furthermore, ice-

structure interactions often occur over very short periods of time (e.g. bow-shoulder 

impacts).  Such scenarios are better suited to explicit finite element codes. 

Various aspects of ice-structure interaction have been numerically modeled, with good 

results.  These include:  impact with glacial ice, flexural failure, hail impacts, and 

application of recorded ice pressure data directly to structures.  To date, there is no 

numerical ice model that can incorporate all salient features of ice-structure interaction 

simultaneously. 

Gagnon and Derradji-Aouat (2006) proposed a finite element model composed of solid 

elements in order to simulate impacts between ships and glacial ice.  It was implemented 
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in LS-Dyna® (Livermore Software Technology Corp.) and requires that the ice be modeled 

using solid finite elements that employ a crushable-foam material model.  Ice loads are 

transmitted to a separate finite element mesh (e.g. grillage structure) via a contact 

algorithm.  The material model inputs were derived by Gagnon based on measured field 

(Gagnon, Cumming et al. 2008) and laboratory experiments involving ice tank model tests 

and ice crushing experiments (Gagnon 2004a, 2004b, 2004c).  This model does not involve 

spalling, but handles crushing and produces the high and low pressure zones observed in 

ice crushing experiments.  This model was later extended by Gagnon (2011) to include 

predefined spall events. 

Derradji-Aouat (2005) developed a novel failure criterion and employed element erosion 

(i.e. deletion of an element when it reaches a certain failure strain).  This method was used 

successfully to model ice fracture for ice covers exhibiting flexural response to imposed 

loads.  It involves modelling the ice cover with solid elements that are far smaller than 

would normally be practical, therefore when the failure strain in a very small element is 

exceeded, it erodes (i.e. disappears), instigating crack propagation.  The elements need to 

be small so that the mass loss due to the disappearing elements is negligible.  A major 

downside is the time it takes to solve the model, as the time step size in an explicit 

simulation is directly proportional to the size of the smallest elements. 

Likely the most complete numerical material model implemented in commercial finite 

element codes today is that of Carney et al (2006).  This model was developed by NASA 

in response to the Columbia shuttle crash of 2003, implemented in LS-Dyna, and used to 

assess hail impacts on shuttles (i.e. high strain rates).  The hail was modeled as an Eulerian 
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(ALE) body which impacted a Lagrangian structure.  Others (Anghileri, Castelletti et al. 

2007, Keegan, Nash,D.,Stack,M. 2013) have used this material model in smoothed particle 

hydrodynamics (SPH) simulations of hail impacts.  These models do not incorporate ice 

fracture. 

Quinton, Daley and Gagnon (2012) proposed a method for applying real-time/real-space 

variable pressures to finite element models, called the 4D Pressure Method.  This method 

was subsequently used (Quinton, Daley et al. 2013) to apply ice loads recorded during the 

1982-86 USCGS Polar Sea ice trails (Daley, St. John et al. 1990, Minnick, St. John 1990), 

to IACS URI (IACS 2011) polar classed ship structures.  It is worth noting that the pressure 

data garnered from laboratory experiments or field trials should be applied in the context 

in which it was recorded.  For example, if the hull structure in a field trial responded 

elastically to an ice pressure event, then any post-yield behaviour observed in a numerical 

model resulting from application of that field trial pressure event should be viewed with 

skepticism, as the effect of plastic deformation on ice-structure interaction pressures is as 

yet unknown, and would not be captured in the field trial data. 

The 4D Pressure Method is a novel, non-contact loading method that may be used in 

explicit finite element analyses to apply ice pressure loads that vary in both time, and 3-

dimensional space.  The required input for this method is of the form of �𝑥𝑥,∆𝑥𝑥,𝑦𝑦,∆𝑦𝑦,𝑃𝑃(𝑡𝑡)�.  

𝑃𝑃(𝑡𝑡) is the magnitude of the pressure at time, 𝑡𝑡; 𝑥𝑥 and 𝑦𝑦 pinpoint the location of 𝑃𝑃(𝑡𝑡) on a 

given surface; and ∆𝑥𝑥 and ∆𝑦𝑦 define the pressure's spatial extent. 
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2.2 Collision (or Allision) and Grounding Loads 

The goal of this section of the literature review is to ascertain the state of the art for 

understanding/modeling collision and grounding events; theoretically, analytically and 

numerically.  This literature was reviewed in order to better understand the behaviours 

observed in the experiments and numerical models conducted for this thesis, and facilitates 

the numerical modeling work through providing an understanding of the state-of-the-art 

techniques employed in other similar analyses. 

2.2.1 Introduction 

Collision generally refers to the collision of a ship with another ship7, or with another 

structure (e.g. a pier).  Grounding generally refers to a sliding impact with a submerged 

object (e.g. a rock) or a sloping sea bed.  Much research has been done to predict the 

outcome of ship collisions/groundings; particularly regarding oil tankers and oil outflow 

since the Exxon Valdez oil spill in Alaska in March 23, 1989 resulting in the U.S. Oil 

Pollution Act (1990) and the subsequent International Maritime Organisation (IMO) 

regulations.  Paik (1995, 2003, 2007), Pedersen (1995, 2000), Simonsen (1997a, 1997b, 

2000), Kitamura (1997, 2002), Brown (2002b, 2002a), Sajdak (2004), and Zhang (2002) 

have all recently contributed to the current state-of-the-art of the mechanics and modeling 

of collision and grounding. 

                                                 
7 The term allision is used if one of the ships is stationary. 
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2.2.2 Collision physics 

Analysis of the physics of ship impact/collision is usually divided into two parts:  external 

mechanics and internal mechanics (Pedersen 1995).  External mechanics deal with the rigid 

body motion of the ship during impact, as well as the hydrodynamic pressures over its 

wetted surface.  Internal mechanics encompass the ship’s structural response during an 

impact/collision and subsequent deformation.  External and internal collision mechanics 

can be treated separately or coupled, depending on the analysis.  The research presented 

herein entirely neglects external mechanics, and concentrates solely on the structural 

response (internal mechanics) to moving ice loads.  The reasons for this are twofold:   

1. The experimental moving load apparatus developed for this study does not 

account for external mechanics. 

2. Explicit inclusion of the external mechanics would unnecessarily complicate the 

development of the numerical model at this point in the research.  Including them 

could viably be part of a larger, subsequent analysis that explicitly accounts for 

external mechanics, or implicitly includes them through modification of the 

moving load magnitude and direction (or some other means (e.g. the 4D Pressure 

Method (Quinton, Daley et al. 2012))). 

When considering the impact of a ship with an object, internal collision mechanics usually 

consider the structural response of the ship in terms of shell membrane tension; shell 

rupture; web frame bending; shear and compression loads; yield strength; failure-strain; 

friction; and crushing and tearing of decks, bottoms, and stringers.  Literature suggests that 

plastic bending of the shell plating is considered negligible, and that it is safe to assume 
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that plastic membrane tension is the primary mechanism of shell energy absorption and is 

the first mechanism that takes place in a collision (i.e. before bending/buckling of 

transverse web stiffeners) (Brown 2002a).  Plastic shell membrane tension actually 

accounts for the greatest fraction of all structural energy absorption during a collision 

(Kitamura 1997).  It should be noted that these results are based on ships that are not ice-

strengthened.  Plastic bending may play more of a role for ice strengthened ships, because 

the plating thickness is generally much greater, and the frame span much smaller.  For the 

majority of the experiments presented herein, the plastic bending component is not 

insignificant. 

2.2.3 Methods for assessment of collision and grounding of ships 

To date, four main methods are used to assess the collision and grounding of ships (Wang, 

Ji et al. 2006); they are:  simple formulae, simple analytical models, simplified finite 

element models (FEM), and nonlinear FEM.  Simple formulae involve hand calculations 

and are used to estimate the initial energy absorption.  Simple analytical models utilise 

more complex calculations, but offer more accurate energy and load predictions.  

Simplified FEM provide relatively fast energy and load predictions and are applicable in 

situations where computing power is limited, or where the problem is extremely large (e.g. 

simulation of a ship-ship collision where both ships are entirely modeled, and they are both 

deformable).  Nonlinear FEM are the norm for collision analyses (Wang, Ji et al. 2006), 

and they represent the most accurate methods of predicting collision energy, loads, and 

stresses.  They also have the ability to model structural and material failure. 
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2.2.4 Types of collision loads 

For the purposes of this thesis, collision and grounding loads may be broadly classified into 

two categories:  those that cause hull rupture (e.g. tearing through hull plating) and those 

that do not.  This research is concerned only with the latter type – non-rupturing loads – as 

ice-strengthened ships and offshore structures are expected to survive impacts with ice 

(within their operational capacity) without tearing of the hull plating.  To support this 

concentration on plastic deformation, Hänninen (2004), in his statistical analysis of 

damages to ships in ice in the Baltic Sea for the 2002-2003 winter shipping season, suggests 

that "The most typical hull ice damage is that where the ship plating has a permanent 

deformation" (p. 32) and that "Most of the fractures were located on the bow area. These 

ships were already initially in bad condition (a lot of corrosion, abrasion and denting) or 

there was inadequate ice strengthening" (p. 33).  While these statements only represent 

Baltic Sea statistics for a single shipping season, it is not a stretch to assume that they may 

be generally extrapolated to all ice-strengthened ships and offshore structures.  The 

following sections discuss the relevance of each type of load to the topic of this thesis, as 

well as the state-of-the-art where applicable. 

2.2.4.1 Rupture-type loads 

Hull rupture occurs when the impactor (e.g. another ship or a rock) penetrates the ship’s 

hull.  There is a wealth of literature available on rupture type loads; good reviews of which 

are presented in MSL Engineering Ltd. (2000) and Paik et al (2003).  Analytical, empirical 

and numerical techniques have been used with great success to predict the behaviour of 

ship hulls in collision and grounding scenarios.  With one notable exception (discussed 



25 
 

below), all of these methods involve rupture and tearing of the hull plating, and are thus 

not applicable to this research. 

The pioneering method for estimating the damage to a ship structure in a 

collision/grounding incident is Minorsky’s method (1959).  This empirical method relates 

the kinetic energy of a ship lost during a collision with the volume of indentation for the 

side of the ship.  This method was successively developed and expanded upon by others.  

One of the drawbacks of the Minorsky based methods is that they assume hull rupture, and 

therefore fail to model low energy impacts well.  This is because they do not account for 

the membrane stresses developed in the hull plating prior to rupture (MSL Engineering Ltd. 

2000).  Work by Rosenblatt and McDermott (discussed in the next section) addresses this 

shortcoming and provides a method for dealing with low energy impacts (i.e. non-rupturing 

loads). 

These rupture-type methods are not applicable to the subject of this research and hence will 

not be discussed further. 

2.2.4.2 Non-rupture type loads 

The work of Rosenblatt (1975) and McDermott (1974) address the shortcomings of the 

Minorsky method regarding its inability to assess hull behaviour for low energy impacts; 

i.e. non-rupturing impacts where membrane stresses in the hull plating are significant.  In 

the development of their method, they consider many different ship collision scenarios 

including rigid bow, non-rigid bow, and normal and oblique collisions.  They introduced 

the concept of progressive plastic deformation, which McDermott defines as “… plastic 

deformation of backup structure, together with plastic membrane stretching of side shell 



26 
 

structure, until the ductility of the side shell is exhausted, rather than by an initial cutting 

of the struck ship’s side and subsequent tearing and/or shearing of shell and bow plating.”  

Note:  this progressive plastic deformation is not to be confused with the concept of 

progressive damage presented in (Quinton 2008) and discussed in Chapter 2.4.  The major 

downfall regarding application of this method to this research is that it does not consider 

the case where the load is moving laterally along the hull, and thus does not address moving 

load effects. 

The works of Hong (2008) and Hong and Amdahl (2012) do investigate a scenario 

involving a moving load causing plastic damage.  It is important to note that these works 

are based on numerical models, and the majority of the work is significantly different than 

that presented in this thesis.  They investigated the behaviour of a double-hull structure; 

which is significantly different in both form and structural response from the single-hull 

structures investigated in this work.  Hong (2008) numerically investigated the scenario 

where a ship’s double bottom is subjected to a moving load causing plastic damage from a 

grounding incident with a shoal (which is defined as a large subsea contact surface).  The 

numerical indenter used in the simulations was a truncated pyramid.  Hong identified three 

important structural responses:  deformation of longitudinal girders, deformation of 

transverse floors, and deformation of hull plating.  The numerical behaviour observed in 

the longitudinal girders is significantly different than that predicted in Quinton (2008), and 

is characterised by a repetitive deformation pattern in which the web is crushed both 

horizontally and vertically such that it attains a sinusoidal out-of-plane deformation (with 

the sine wave switching from one side of the web to the other).  Later, Hong and Amdahl 
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(2012) provided a simplified semi-empirical method for predicting the behaviour of Hong’s 

three structural responses.  One area that is comparable with this work is their semi-

empirical simplified method for predicting the response of hull plating to their grounding 

scenario (Hong, Amdahl 2012).  A comparison of the experimental results of this research 

with their simplified method is beyond the scope of this thesis, however this exercise is 

recommended for future work (see Chapter 6.2). 

2.3 Moving Loads 

Moving loads, as their name suggest, vary in both time and space.  They are loads that act 

not only normal to the hull, but at the same time translate laterally along the hull’s surface.  

Regarding, non-rupture type moving loads, further sub-classification is necessary:  moving 

loads inciting an elastic response, and moving loads inciting an inelastic (or plastic) 

response. 

As the focus of this research is on non-rupture type loads, any subsequent reference to 

moving loads may be assumed to be referring to this load type. 

The study of moving loads seems to have begun in the mid-nineteenth century with the 

advent of wrought iron railway bridges.  The failure, resulting in casualties, of the Dee 

Bridge on May 24, 1847 (Walker, Simmons 1847) - less than a year after it was completed 

in September of 1846 - on the Chester and Holyhead railway in the United Kingdom 

sparked an investigation into the principles of the application of iron to railway structures 

(Wrottesley, Willis et al. 1849).  Timoshenko (1953) reports that there were two schools of 

thought on the effects of a moving load on a beam:  "that a load moving with high speed 
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acts like a suddenly applied load and may produce deflections larger than those 

corresponding to static action," and "that at very high speeds there was insufficient time for 

the load to drop through the distance of the expected dynamical deflection."  Experiments 

were carried out where a loaded carriage passed over steel rails and the resulting deflection 

was measured (Appendix B, Wrottesley, Willis et al. 1849).  It was found that the dynamic 

deflection was up to three times greater than the static deflection at higher speeds; and that 

the greater the speed, the worse the effect (Timoshenko 1953).  One of the experimenters, 

Willis, developed an analytical theory for a moving load on an elastic beam where the mass 

of the beam was considered small compared to the mass of the load (Appendix B, 

Wrottesley, Willis et al. 1849). 

From there, other authors developed analytical models for the various permutations of load 

type (e.g. massless, sprung, patch, harmonic, etc...), structure type (elastic beam, elastic 

infinite plate, rigid-plastic plate, etc...), and so on.  A highly cited compendium on the 

subject of moving loads is Frýba's Vibration of Solids and Structures under Moving Loads 

(1999).  In it may be found the majority of the work done to date on the subject, including 

an analytical model of a rigid-plastic beam subject to a moving load. 

Quinton (2008) reported a numerical model that showed moving loads causing progressive 

plastic damage aligned with stiffeners ("T" shaped beams), caused the web of the stiffeners 

to buckle plastically at a much lower load than for stationary loads.   

One of the items not covered in Frýba (1999) is the inelastic theory of a moving load on 

plate.  Sokol-Supel (1985) has made an attempt to develop the theory for rigid-plastic plates 

under a concentrated moving load.  In this work only the plastic-bending response of plates 
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is considered; plastic membrane response is ignored.  This choice would likely be valid for 

thick plates, however the theory developed does not consider the damage in the wake of 

the moving concentrated load (see Figure 2.1). This implies that the damaged material on 

the trailing side of the moving load (shown in red in Figure 2.2) instantaneously recovers 

to an elastic undamaged state.  This formulation is the reason that the author claims that a 

rigid-plastic plate can sustain a larger moving load than a quasi-static (or stationary) load; 

and that the higher the speed (up to some critical speed), the larger the sustainable load 

before plastic collapse.  Evidence that this work has been validated was not presented in 

the paper. 

 

Figure 2.1.  Example concentrated moving load on a rigid-plastic plate where damage due 
to the passage of the load is ignored. 
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Figure 2.2.  Example concentrated moving load on a rigid-plastic plate showing line of 
damage in red. 

These findings are in conflict with the results of the numerical model presented in Quinton 

(2008), where it is shown that moving loads causing plastic damage incite a reduced 

structural capacity when compared with stationary loads. 

2.4 Progressive Damage 

Given a moving load, progressive damage is the idea that any contiguous plastic strain that 

was caused by the moving load at an earlier point in time (i.e. at a different location), affects 

the structure's response to the load at the present time.  In this regard, during the impact of 

a hull structure with ice, progressive damage occurs after the initial ice impact and can be 

viewed as plastic structural damage due to the scoring/raking action of ice as it scrapes 

along the hull.  This type of structural interaction generally happens in the vicinity of the 

waterline or below.  Waterline damage may result from collision with pack ice, glacial ice 

of various size (from growler to iceberg), or level-ice during ice-channel navigation 
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(assisted or unassisted).  Damage below the waterline may occur from collision with glacial 

ice, ridge ramming, or if a ship strikes a submerged ice ridge (e.g. anchor ice8). 

Progressive damage is similar to raking damage9; however, the tearing and subsequent 

curling of the hull steel (see Zhang (2002)) is not treated because ice-strengthened ships 

are expected to survive such impacts (within their operational capacity) without tearing of 

the hull plating.  Progressive damage occurs when there is enough compliance in the ice, 

or the structure, or both to extend the damage past the point of collision; provided that the 

geometry of the impacted area allows for the sliding of the ice along the hull. 

2.5 Strain Rate and Temperature Effects 

In addition to exploring moving load effects, it was decided to investigate related 

phenomena that may play a role in mitigating the loss in structural capacity (when 

compared with stationary loads).  These phenomena are material effects related to strain-

rate and temperature.  These factors are known to influence the strength of steel, but are 

not explicitly included in current design practice for icebreaking ships; although both 

factors may be evident in real-life ice loading scenarios. 

                                                 
8 Anchor ice is defined as "submerged ice attached or anchored to the bottom, irrespective of the nature of its 
formation" (WMO/IOC 2004). 
9 Raking damage is commonly understood to refer to the damage resulting from a grounding incident when a 
ship traveling at a non-trivial speed strikes a rock, resulting in damage in the form of torn and curled hull 
steel. 
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2.5.1 Temperature effects 

It is generally accepted that a reduction in temperature is associated with a slight increase 

in the yield strength of steel.  It is desired to see if this yield strength increase has a 

noticeable mitigating effect on moving load effects. 

2.5.2 Strain-rate effects 

It is well known that the material properties of steel (and many other metals10) are generally 

highly sensitive to strain-rate (Jones 1983).  The physics of why strain rate influences yield 

strength is a subject of materials science, and is beyond the scope of this literature review.  

The practical function of strain-rate effects are best summarized in the following quote 

from “Metallic materials – Tensile testing at high strain rates – Part 2:  Servo-hydraulic and 

other test systems” (ISO 26203-2 2011): 

The deformation behaviour of many technical materials shows a positive strain-rate 
effect up to ductile failure, i.e. with increasing strain rate, an increase of yield stress 
and strain to failure can be observed. 

The generally accepted method for accounting for strain-rate effects in analytical and 

numerical models is through the use of an empirical regression equation; with parameters 

determined by laboratory material tests at various known strain-rates.  Published empirical 

parameters for various specific alloys and grades are available in literature.  Two of the 

most common models used in accounting for strain-rate effects are the Cowper-Symonds 

(Jones 1983) and the Johnson-Cook models (Johnson, Cook 1983). 

                                                 
10 With the notable general exception of aluminum. 
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The Cowper-Symonds model (Equation [1]) explicitly accounts for strain and strain rate: 

 
𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑜𝑜 �1 + �

𝜀𝜀̇
𝐶𝐶
�
1
𝑝𝑝
� [1] 

where: 𝜎𝜎𝑦𝑦  is the yield stress 

  𝜎𝜎𝑜𝑜  is the initial yield strength (i.e. static value)  

  𝜀𝜀̇ = �𝜀𝜀�̇�𝑖𝑖𝑖𝜀𝜀�̇�𝑖𝑖𝑖 is strain rate 

  𝑝𝑝,𝐶𝐶  are constants 

In addition to strain and strain-rate, the Johnson-Cook model (Equation [2]) explicitly 

accounts for temperature: 

 𝜎𝜎𝑦𝑦 = �𝐴𝐴 + 𝐵𝐵𝜀𝜀�̅�𝑝𝑛𝑛�(1 + 𝑐𝑐 ln 𝜀𝜀̇∗)(1− 𝑇𝑇∗𝑚𝑚) [2] 

 where: 𝜎𝜎𝑦𝑦  is the von Mises flow (i.e. yield) stress 

  𝜀𝜀�̅�𝑝  is the equivalent plastic strain 

  𝜀𝜀̇∗ = �̇�𝜀
�̇�𝜀𝑜𝑜

  is the dimensionless plastic strain rate for 𝜀𝜀�̇�𝑜 = 1.0𝑠𝑠−1 

  𝑇𝑇∗ = 𝑇𝑇−𝑇𝑇𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟
𝑇𝑇𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

 is the homologous temperature 

  𝐴𝐴,𝐵𝐵, 𝑐𝑐,𝑛𝑛,𝑚𝑚  are constants 

These strain-rate models are implemented in LS-Dyna and thus provide a method for their 

inclusion in numerical models.  

2.6 Literature Review Summary 

This chapter summarizes the literature relevant to the subject of moving loads causing 

plastic damage.  The lack of literature on the subject of moving ice loads on ship structures 
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is apparent, and the present international movement toward the plastic design of ship 

structures necessitates a need to understand how moving load effects associated with non-

rupture type moving loads causing plastic damage affect our notions of ship structural 

capacity.  
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Chapter 3 Moving Load Experiments 

3.1 Research Approach 

Quinton (2008) predicted that the structural capacities of steel plates and frames are 

significantly less for moving loads causing plastic damage than for similar stationary loads.  

In particular, it was predicted that the onset of plastic buckling in a frame’s web would 

occur at a much lower load magnitude for moving loads than for stationary loads. 

Given the lack of available literature on experiments involving moving loads causing 

plastic damage (without hull tearing), coupled with the detrimental effects predicted in 

Quinton (2008), it was decided to test, using laboratory experiments, whether or not these 

moving load effects exist in reality.  If indeed they did exist (which is shown in this thesis), 

then it was desired to develop a simple method for numerically modeling these effects for 

future design and analysis exercises. 

3.2 Scope and Objectives 

The scope and objectives of the laboratory experiments were to: 

• Investigate the existence of moving load effects, as predicted in Quinton (2008); 

• Investigate the structural response of plates and frames to a rigid moving load; 

• Investigate the structural response of plates to a deformable moving load (i.e. ice); 

• Investigate the influence of indentation depth, indentation speed, lateral location, 

temperature, and plate thickness on moving load effects; 
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• Investigate the effects of lateral load movement and indentation speed coupled with 

elastic structural deformation on the behaviour of ice; 

• Investigate the effects of lateral load movement and indentation speed coupled with 

plastic structural deformation on the behaviour of ice; 

• Provide suitable data for the calibration of numerical models to be employed in 

further investigation of moving load effects. 

Many of these objectives involve determining the structural capacity (i.e. structural 

response to a particular load scenario).  This is accomplished through the accurate 

measurement of applied load and resulting structural displacement, as well as through 

various forms of image capture. 

3.3 A Note on Directions 

Throughout this thesis, when referring to a ship’s hull, the term normal refers to the 

direction perpendicular to the undeformed orientation of the hull plating (regardless of the 

state of deformation of the plating).  Similarly, the term lateral generally refers to any 

direction in the plane of the undeformed orientation of the hull plating; but when referring 

to the experiments or numerical models presented in Chapters 3, 4, and 5, it specifically 

means motion in the direction of the long axis of the specimens’ plating (see Chapter 3.6 

for descriptions of the test specimens).  These directions (normal shown with a green arrow 

and lateral shown with a red arrow) are illustrated with respect to undeformed (left) and 

deformed (right) longitudinally framed sections of a hull structure in Figure 3.1.   
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Figure 3.1:  Longitudinally framed hull sections showing normal (green arrow) and lateral 
(red arrow) directions in undeformed (left) and deformed (right) states.  This figure 
illustrates that the normal direction always refers to the original (i.e. undeformed) normal 
direction, despite hull deformation. 

Additionally (see Figure 3.2), the normal direction corresponds with the vertical direction 

in the laboratory experiments (i.e. opposite to gravity), and the lateral direction corresponds 

with the direction of motion of the horizontal ram (which is orthogonal with the vertical 

direction).  The terms normal and vertical, are used interchangeably throughout this thesis, 

as are lateral and horizontal. 
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Figure 3.2:  Partial schematic of the moving load apparatus showing the horizontal ram, 
and the directions of motion*. 

 

3.4 Design, Capabilities and Operation of the Moving Load Apparatus 

Given that the main objective of the study was to explore the problem of moving loads 

experimentally, and as there was no evidence in the literature of any previous lab scale 

experimental work on the subject of moving loads on plate structures, it was necessary to 

devise a novel experimental apparatus in order to carry out the investigation.  This section 

discusses the design, capabilities and operation of the moving load apparatus.  This moving 

load apparatus was designed to meet the research objectives identified in Chapter 3.2. 

*Note:  motion in the normal direction corresponds with motion in the vertical direction for 
the moving load apparatus, and similarly, motion in the lateral direction corresponds with 
motion in the horizontal direction. 
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3.4.1 Incorporating existing infrastructure 

The moving load apparatus was designed to take advantage of relevant existing facilities 

available at Memorial University of Newfoundland.  Specifically, it was desired to utilise 

the cold room and the MTS test frame contained therein.  Incorporating the former allowed 

for control and variation of the ambient temperature during the experiments; and the latter 

provided an ideal instrument with which to precisely apply and measure loads.  The MTS 

test frame is ideal because it is a self-reacting frame (i.e. it does not transmit any force to 

its surroundings) and it is capable of applying and measuring up to 500 kN (110 kip) in a 

manner precise enough to perform uniaxial material tests.  Further, in its existing 

configuration it was able to record five data channels at up to 4096 Hz each; which again, 

was ideal for these experiments.  The specifications for the MTS test frame and its relevant 

components are given in Appendices A1 through A5. 

3.4.2 Introduction to the moving load apparatus 

Figure 3.3 shows the moving load apparatus and highlights its main parts.  With reference 

to this figure, a high level description of the apparatus and operational procedure is as 

follows:  a test sample is bolted to the bottom of the carriage, which provides fixed 

boundary conditions for the sample; an indenter is mounted on the swing-arm; the vertical 

ram (which is part of the MTS test machine) pushes on a bearing attached to the swing arm 

underneath the indenter; this causes the swing arm to rotate slightly as the vertical 

displacement of the indenter increases (note the maximum angle of rotation of the swing 

arm for the moving load experiments was 3.4°; starting at -1.7° and sweeping through 0° 

(horizontal) to +1.7°); the swing arm and bearing are necessary to release the vertical ram 



40 
 

from any horizontal load generated during the test; the indenter makes contact with the test 

specimen and continues to apply load to the test specimen either through force or 

displacement control; subsequent to the vertical motion (or simultaneous with it, depending 

on the nature of the test) the vertical ram (not shown in Figure 3.3) pushes the carriage 

attached to the linear roller rail system using displacement control (force control is not 

possible); the carriage (and with it the test specimen) move horizontally along the rails, 

causing the indenter to impart a lateral load on the test specimen; the test is over when the 

motions of the vertical and horizontal rams cease. 

The various parts of the moving load apparatus and their functions are discussed in greater 

detail below. 
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Figure 3.3:  Moving load apparatus schematic highlighting the carriage, roller rail system, 
swing arm, indenter, vertical ram, MTS test frame and support structure. 
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A picture of the actual moving load apparatus housed in a cold room is given in Figure 3.4. 

 

Figure 3.4:  Moving load apparatus housed in a cold room. 

3.4.3 Design of the moving load apparatus 

Referring to Figure 3.5, the moving load apparatus consists of a carriage suspended by a 

linear roller-rail system (specifications given in Appendix A8) that is actuated by a 

horizontal hydraulic ram (specifications given in Appendix A9); and relies on an MTS® 

test frame to provide vertical load and vertical load resistance.   
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Figure 3.5:  Components of moving load apparatus. 

It should be noted that while the moving load apparatus was commissioned expressly for 

these experiments, it was decided to make the apparatus as general as possible in its 

functionality in order to accommodate many different types of experiments that involve 

loads on structures in two orthogonal directions11.  To this end the load capacity of the 

moving load apparatus matches that of the MTS test frame (i.e. application of the full force 

capability of the MTS test frame will not damage the apparatus) and the various 

components of the apparatus have been designed to be modular.  Specifically, the indenter 

                                                 
11 Indeed this apparatus was used soon after these moving load experiments by other researchers to study the 
effects of ice collision and adhesion on concrete surfaces (Tijsen, Bruneau et al. 2015).   
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(i.e. the body inducing load on the test specimen) may be replaced with anything that 

geometrically fits on the apparatus; and the carriage, while inherently versatile in its own 

right, may also be replaced with anything that geometrically fits; or may be adapted to suit 

another purpose (as with the work of Tijsen et al (2015)). 

3.4.3.1 Vertical load 

Vertical load originates from the vertically orientated 500 kN (110 kip) hydraulic ram 

(specifications given in Appendix A2) mounted in the MTS test frame’s base.  Referring to 

Figure 3.6, the load passes through the MTS load cell (specifications given in Appendix 

A4), an attached hardened plate12, the swing-arm bearing, the swing-arm indenter mount, 

the steel wheel indenter, the test specimen, the carriage, the linear roller-rail system, the 

rail supports and into the MTS test frame’s crosshead.  The crosshead is attached to the 

base of the MTS test frame via the MTS frame supports, which completes the self-reacting 

vertical load loop.  In this configuration, the vertical hydraulic ram stroke is approximately 

75 mm (3 in.). 

                                                 
12 The plate was hardened to an estimated hardness of 55-58 on the Rockwell scale.  This was done to 
minimize any indentation into the plate under load by the swing arm roller bearing in contact with it, and 
therefore minimize any transmission of horizontal load to the vertical ram. 
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Figure 3.6:  Moving load apparatus:  vertically loaded components. 



46 
 

3.4.3.2 Horizontal load 

Horizontal load originates from the 225 kN (50 kip) horizontally orientated ram 

(specifications given in Appendix A9), which has a stroke of approximately 1.2 m (48 in.).  

For the following description of the horizontal load members, please refer to Figure 3.7.  

The ram’s base is connected to a baseplate, which is also connected to the rail-supports 

(yellow).  The ram’s head is connected to the carriage.  Horizontal load is primarily resisted 

by the indenter (when it is in contact with the test specimen), which is attached to the end 

of the swing-arm.  This resisted load is transmitted through the swing-arm, through the 

horizontal load cells (specifications given in Appendix A6), and into a heavy “leg” structure 

that is attached to the aforementioned baseplate.  This structure alone is self-reacting, 

however it is too flexible; as there is a significant moment about the baseplate generated by 

the point of action of the swing-arm load on the leg.  This moment is resisted, on either side 

of the carriage, by a truss member that connects the end of the leg to the rail mount; forming 

a truss structure.  While the apparatus will work with the swing-arm in compression, it was 

designed such that the swing-arm is placed in tension under load movement.  This pulls the 

swing-arm so that it does not try to “wander”.  Further, the horizontal hydraulic ram is 

orientated so that it’s maximum force and speed places the swing-arm in tension. 
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Figure 3.7:  Moving load apparatus:  horizontally loaded components (closest rail support, 
rail and linear bearings not shown for clarity). 

3.4.3.3 General structure 

The remaining frame structure (see Figure 3.8) supports and aligns the components 

described in 3.4.3.1 and 3.4.3.2.  As each of the vertical and horizontal load systems 

described above are self-reacting, the remaining frame structure simply supports the 

apparatus weight.  The points of alignment exist to allow the longitudinal axes of the swing-

arm and the carriage to be aligned. 
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Figure 3.8:  Remaining general structure. 

3.5 Indenters 

As the objective was to study the problem at a fundamental level it was decided to start 

with a simple scenario in which only the structure was subject to deformation. Thus it was 

necessary to examine the response of plates and frames to a “rigid” load; that is, an indenter 

that does not appreciably deform during its interaction with a structure.  Later as a more 
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complex case, the effects on plates, frames and the ice itself, for moving loads involving 

ice (instead of a rigid indenter) were examined. 

3.5.1 Steel wheel indenter 

As mentioned above, an indenter that would not appreciably deform under load (i.e. is 

essentially rigid) was required for these experiments.  Further, as moving load effects are 

not well understood, it was decided to conduct these experiments in this first instance 

without sliding friction between the rigid indenter and the specimen plating. 

A rigid indenter was created from QT100 steel13 in the shape of a 10.16 cm (4 in.) thick 

segment of a 25.4 cm (10 in.) diameter sphere cut about the sphere’s centreline.  It was 

made frictionless by mounting it on a shaft supported by two pillow-block bearings. 

 

Figure 3.9:  Rigid indenter (left) mounted on pillow-block bearings (blue) (right). 

                                                 
13 690 MPa (100 ksi) yield strength. 
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3.5.2 Ice indenter 

Bruneau et al. (2012) devised a standard method for the production of 25 cm (9.84 in.) 

diameter ice cones (see Figure 3.10) for laboratory testing of ship collisions with ice.  This 

method has evolved with time.  For example, ice chips are now made with a special purpose 

device, instead of an ice auger.  The updated procedure is presented in Manuel (2012).  It 

was decided to adhere to the evolved standard for the experiments described herein.  All 

experiments used ice cones shaved to a base angle of 30°. 

 

Figure 3.10:  Ice cone sample: (top) showing ice and steel ice holder and (bottom) showing 
relevant dimensions of ice (yellow) and ice holder (grey). 

As can be seen in Figures 3.10, 3.11, and 3.12 the ice cone samples are contained by a steel 

ice holder consisting of a vertical ring containing the ice and a horizontal ring.  When 
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affixed to the moving load apparatus, the horizontal ring is bolted to another round steel 

plate which is fixed to the swing arm of the moving load apparatus. 

Because of the nature of the moving load apparatus, the difference in the height of the rigid 

indenter and the ice indenter required that the ice samples be placed on a stilt so that the tip 

of the ice cone was at the same elevation as the top of the rigid indenter.  The stilt is shown 

under the ice indenter in Figure 3.11.  Figures 3.11 and 3.12 show examples of actual ice 

indenters before and after testing (respectively). 

 

Figure 3.11:  Example ice cone indenter mounted to swing-arm (red) using a stilt (box 
shaped object between swing arm and ice cone indenter) prior to a test. 
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Figure 3.12:  Example ice cone indenter after test – crushed surface (truncating surface of 
the ice cone) and extruded ice (snow like substance on the surface of the ice cone and 
indenter) are apparent. 

As mentioned below, these ice cones were seeded with ice chips of approximately 4-10 mm 

(0.157-0.394 in.).  This implies a specimen size to grain size ratio of approximately 20 to 

60; accounting for slight growth of grains during freezing.  According to Dempsey (1991), 

the crack size and unbroken ligament size of a fracture specimen must be around 12 times 

the average grain size so that homogeneity requirements are satisfied.  The dimensions of 

these samples generally agree with this recommendation. 

A summary of the process used in creating and shaping the ice cone indenters is as follows:  

Type I regent water (ASTM14 D1193, ISO15 3696, and CLSI®-CLRW16 standards), which 

is distilled and multi-stage filtered water, is deaerated and chilled to just above freezing.  

                                                 
14 American Society for Testing and Materials 
15 International Organization for Standardization 
16 Clinical and Laboratory Standards Institute-Clinical Laboratory Reagent Water 
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Commercial ice cubes are pulverised and sieved to exclude ice chips smaller than 4.0 mm 

(0.157 in.).  The largest chips are approximately 10 mm (0.394 in.).  Plastic buckets are 

placed over the rim of steel ice holders (shown in Figure 3.13) creating a water-tight seal.  

They are then placed in slots in a specially designed chest freezer lid and insulating rings 

are placed around the buckets’ sides.  The buckets are first filled with the ice chips, followed 

by the chilled water.  The mixture is then stirred to remove any entrapped air, and 

compacted to ensure that ice chips are not floating above the bottom of the bucket.  An 

insulated lid is placed over the slot.  The bottom of the bucket is left uninsulated as this 

allows controlled, directional freezing of the ice chip slurry.  Freezing from the bottom 

toward the top is necessary to avoid residual stresses in the ice arising from boundary 

confinement due to the expansion of the ice during the freezing process; as well as the 

large-scale and inhomogeneous entrapment of air.  As the top of the bucket is unconfined, 

the ice is free to expand upwards.  When the mixture is frozen (approximately 2-3 days) 

the ice-holder/buckets are removed from the freezer slots, the insulation is removed, and 

the buckets are taken off the ice holders.  Care must be taken during this process so as not 

to crack the ice samples.  The ice sample is then placed on a special purpose turntable (see 

Figure 3.14) that allows precise shaping of the ice sample into a cone of the required cone 

angle.  The blade on the device shaves ice from the ice sample as the turn table turn the ice.  

The actuator moves the blade about the blade arm pivot point.  Shaping is finished once the 

blade reaches the predetermined, calibrated angle markings (e.g. 30°). 
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Figure 3.13:  Cross-section of apparatus to control freezing of ice indenters. 

 

Figure 3.14:  Special purpose ice-shaping turntable. 
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The ice specimen holders were bolted down when installed on the moving load apparatus 

so that they could not translate or rotate relative to the swing-arm. 

3.6 Plate and Frame Test Specimens 

One of the defined objectives was to examine the effects of moving loads causing plastic 

damage on both plates and frames.  It was further desired to maximize the scale of the 

structure, so as to take full advantage of the load capabilities of the MTS test frame.  To 

this end, the author conducted preliminary numerical modelling to determine the 

appropriate thicknesses for the plate and frame scantlings.  It was desired to deform the 

plate in the normal direction by 5 cm (1.97 in.), as Quinton (2008) predicted that this was 

well into the level of plastic damage that would induce the moving load effects.  It was 

predicted that the MTS machine could withstand the load generated by a 5 cm (1.97 in.) 

deflection into a 12.7 mm (0.5 in.) thick steel plate with a 350 MPa yield strength; where 

the plate dimensions were as large as would fit between the MTS crosshead legs and be 

practical to manipulate with a long stroke hydraulic ram.  This contributed significantly to 

the design condition for the entire moving load apparatus. 

3.6.1 Frames 

The frame test specimens consist of three essential components:  the plating, the stiffener 

and the stiffener end plates (shown in Figure 3.15).  The plating is analogous to the external 

plate on the hull of a ship.  The stiffener is welded to the plate to provide support against 

normal and in-plane plate loads.  The stiffener end plates have no direct analog with an 

actual hull structure and exist only to provide a means with which to fix the end of the 

stiffener to the carriage in order to provide a fixed boundary condition. 
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Figure 3.15:  Frame test specimen showing plating, stiffener and stiffener end plates. 

The frame test specimen scantlings contributed significantly to the design of the carriage, 

as the carriage depth (vertical direction) had to accommodate both the height of the frame 

and the frame’s deformation resulting from a 5 cm (1.97 in.) indentation.  Correspondingly, 

the height of the frame web was essentially driven by design of the carriage because of the 

trade-off between the thickness of the steel plate used to construct the carriage, and the 

overall depth of the carriage.  To explain, it was necessary to ensure that the carriage was 

stiff enough to provide a rigid boundary condition to the test specimens.  To this end it was 

decided to limit the overall deflection of the carriage side walls to 1 mm (0.039 in.) under 

maximum vertical load.  The side-wall deflection depended on the overall height of the 

carriage, the thickness of the steel comprising the side-walls, and the design of the internal 

reinforcing structure.  The iterative design process, including numerous preliminary 

numerical simulations, produced the following frame scantlings (see Figures 3.16 and 

3.17):  the plate is 6.35 mm (1/4 in.) thick and has dimensions 550 mm (21.65 in.) by 1650 

mm (64.96 in.); the attached stiffener is a “T-stiffener” with web dimensions of 101.6x6.35 



57 
 

mm (4x1/4 in.), and face flat dimensions of 76.2x6.35 mm (3x1/4 in).  The stiffener end 

plates are 228.6 mm (9 in.) wide, by 152.4 mm (6 in.) tall by 25.4 mm (1 in.) thick.  All 

components are fillet welded at all component interfaces, with one exception:  the stiffener 

end plates are only welded on three sides where they join to the plating.  It was necessary 

to omit the long weld on the side adjacent to the carriage as otherwise the weld would 

interfere with the carriage wall.  

 

Figure 3.16:  End view of frame test specimen (units are inches; bracketed units are mm). 
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Figure 3.17:  Plan view of frame test specimen (units are inches; bracketed units are mm). 

 

Figure 3.18:  Side view of frames test specimen showing omitted welds. 

The supporting edge of the carriage incorporates a combination of a sandwich ring, a 

keyway and bolts (see Figure 3.19) to provide a “fixed-fixed” boundary condition for the 

plate (i.e. motion in all translational and rotational degrees of freedom (DOF) is restricted).  

Therefore the portion of the plating sandwiched between the sandwich plate and the 

carriage does not partake in the overall plate behaviour.  Thus the effective plating 

dimensions do not consider the area of the sandwich ring.  The effective plating dimensions 

are therefore 400 mm (15.75 in.) by 1500 mm (59.06 in.).  End conditions for the stiffener 
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were essentially fixed-fixed as the stiffener end plates were bolted to the carriage in such a 

way as to resist translation and rotation in all DOF.  It should be noted that in order to fit 

the frame test specimen into the carriage, there must necessarily be a small gap between 

the stiffener end plates and the ends of the carriage.  This gap was nominally less than 1 

mm (0.039 in.). 

3.6.1.1 Frame test specimen installation procedure 

A frame test specimen is installed on the carriage (please refer to Figure 3.19) by lifting it 

up into the carriage so that the threaded studs pass through the corresponding holes in the 

test specimen plating.  Bolts are then inserted through the holes in the end of the carriage 

and screwed into the corresponding threaded holes in the test specimen’s frame end plates.  

Next, the sandwich ring is installed snug against the test specimen’s plating and several 

nuts are installed to hold it in place.  Next the keystock in inserted into the keyways that 

are cut in both the bottom of the carriage support edge and the top of the test specimen’s 

plating.  Inserting the keystock has the added benefit of precisely aligning the test specimen 

with the carriage.  Once the keystock is in place, the remaining nuts are installed and all 

nuts are torqued to 325 Nm (240 ft-lbf).  The lug nut torque was chosen such that the 

frictional force between the test specimen plating and the bottom of the carriage would be 

sufficient to resist any lateral slippage of the test specimen plating when loaded.  It was 

later decided to add the keyways and keystock for the same purpose.  In order to ensure 

minimum slippage, the keystock was used, and the lug nuts were torqued to specification 

for every test using the torqueing pattern shown in Figure 3.20.  This “three ahead, two 

back” method insured that the plate was free to flatten out progressively as the lug nuts 
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were tightened, thus avoiding locked in stresses between the bolts.  Also, it insured that all 

lug nuts were torqued twice.  This was necessary as lug nuts would appear to loosen slightly 

as their neighbours were tightened. 

 

Figure 3.19:  Exploded view of how frame test specimens are installed on the test carriage. 
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Figure 3.20:  Lug nut torqueing pattern. 

3.6.2 Plates 

The plate test specimens (see Figure 3.21) are similar to the frame test specimens except:  

that they do not have attached stiffeners (and therefore do not need the stiffener end plates); 

they were tested in three thicknesses:  12.7 mm (1/2 in.), 6.35 mm (1/4 in.) and 3.175 mm 

(1/8 in.)17; and the keyway depths were different for each thickness.  The bolt holes and 

keyway locations are identical to the frame test specimens. 

                                                 
17 There were only two 3.175 mm (1/8 in.) plate specimens tested, and those used ice indenters. 
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Figure 3.21:  ¼” plate test specimen –bolt holes and keyways are apparent. 

The boundary conditions of these plates are identical to those of the plating of the framed 

specimens.  Regarding the keyway depths the ¼” (6.35 mm) plates had the same keyway 

depth machined into them as the frame test specimens; that is 1/8” (3.175 mm), or half the 

thickness of the plate; and the ½” plates had a ¼” (6.35 mm) keyway depth.  The 1/8” 

(3.175 mm) were too thin to machine keyways into them, and therefore the boundary 

conditions relied solely on frictional force generated by the lug nuts/bolts (as described in 

3.6.1.1). 

Because the effective dimensions of these plates are 𝑏𝑏 = 400 mm (15.75 in.) by 𝑎𝑎 = 1500 

mm (59.06 in.), their length to width ratio is 𝑎𝑎 𝑏𝑏⁄ = 3.75.  According to Hughes and 

Caldwell (Hughes, Paik et al. 2010), a plate may be considered a long plate if its 𝑎𝑎 𝑏𝑏 ≥ 3⁄  

and it is simply supported; or if its 𝑎𝑎 𝑏𝑏 > 2⁄  and it is clamped.  Since these plates are 

clamped, they are well into the long plate range.  Long plates undergo cylindrical (1D) 

bending for the central portion, 𝑏𝑏, away from either end.  Although there are end effects, 



63 
 

the long plate assumption allows the central portion of the plate to be analysed as if it was 

an infinitely long plate. 

3.6.2.1 Plate test specimen installation procedure 

Installation of the plate specimens on the moving load apparatus is identical to that for the 

frame specimens (described in 3.6.1.1) except that no bolts are used through the carriage 

ends as there are no stiffener end plates on the plate specimens. 

3.7 Data Acquisition 

Sensor and visual data was acquired during each test, or shortly after. Each of these is 

described in the sections following.  Data was recorded via the MTS test frames internal 

data acquisition system, various imaging technologies, and a 3D spatial digitizer. 

3.7.1.1 MTS data channels 

As mentioned above, the MTS test frame was configured with five general purpose 

digital/analog conditioned data recording channels.  These were employed as follows: 

1. MTS linear variable differential transducer (LVDT) – analog signal recorded at 

2048 Hz (4096 Hz for experiments involving ice).  Recorded the displacement of 

the MTS hydraulic ram (and hence the displacement of the indenter in the test 

specimen plating’s normal direction).  See Appendix A5 for specifications. 

2. MTS load cell – Model:  661.21E-01 – digital signal recorded at 2048 Hz (4096 Hz 

for experiments involving ice).  Recorded the load applied in the test specimens 

plating’s normal direction.  See Appendix A4 for specifications. 
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3. Tovey load cell 1 – Model:  SW20-50K – digital signal recorded at 2048 Hz (4096 

Hz for experiments involving ice).  Recorded, in combination with Tovey load cell 

2, part of the lateral load resulting from the horizontal motion of the test specimens.  

Together, both load cells recorded the entire horizontal load.  See Appendix A6 for 

specifications. 

4. Tovey load cell 2 - Model:  SW20-50K – digital signal recorded at 2048 Hz (4096 

Hz for experiments involving ice).  Recorded, in combination with Tovey load cell 

1, part of the lateral load resulting from the horizontal motion of the test specimens.  

Together, both load cells recorded the entire horizontal load.  See Appendix A6 for 

specifications. 

5. Horizontal Linear Position Transducer (yo-yo pot) – digital signal recorded at 2048 

Hz (4096 Hz for experiments involving ice).  Recorded the horizontal displacement 

of the test carriage (and hence the test specimens).  See Appendix A7 for 

specifications. 

3.7.1.2 Imaging technologies 

Four different imaging technologies were employed for these experiments:  a digital high-

speed camera, four conventional digital video cameras, two digital thermal imaging 

cameras, and Fujifilm Prescale pressure measurement film. 

1. High-speed digital camera – Brand:  MegaSpeed® Model:  MS55K black and white 

imaging.  See Appendix B1 for specifications.  The high-speed camera was used 

for the experiments involving ice only, to record the behaviour of the ice.  As the 

camera has limited memory with which to store video, the frame-rate at which 
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videos were taken depended on the duration of the test.  Shorter duration tests were 

recorded at a higher frame rate than longer duration tests. 

2. Four conventional digital video cameras were used:  two GoPro Hero 2® cameras 

(see Appendix B2 for specifications), one GoPro Hero 3® camera (see Appendix 

B2 for specifications), and a Canon® EOS60D digital SLR camera (see Appendix 

B3 for specifications).  The GoPro Hero 2 cameras are small, battery powered high-

definition cameras with an extremely wide-angle lens (up to 170°).  The GoPro 

Hero 3 camera is similar to the GoPro Hero 2 cameras, except it is a slightly newer 

version.  The placement of the GoPro Hero cameras depended on the experiment.  

For experiments involving the rigid indenter, all three were placed inside the 

carriage to record the deformation of the specimen.  For experiments involving ice, 

one GoPro Hero camera was placed outside the carriage, mounted to the swing-arm 

and pointed at the ice sample; recording its behaviour.  12VDC LED light strips 

were placed inside the carriage to provide ambient light for the GoPro Hero 

cameras.  All GoPro Hero videos were shot in 1080p resolution at 30 frames per 

second.  The GoPro Hero 2 videos were shot at a 127° field of view, and the GoPro 

Hero 3 videos at 170° field of view.  The Canon DSLR camera records 

uncompressed high-definition video and in most cases was used to film the test from 

a location that had the most general view.  All Canon videos were recorded at 1080p 

at 30 frames per second at various fields of view. 

3. Two thermal cameras were used:  a FLIR® Ax5 model suitable for laboratory 

testing and a FLIR T450sc handheld model (see Appendix B4 for specifications for 

both).  The Ax5 model was placed inside the carriage for the experiments involving 
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plate specimens.  There was no room to place it in the carriage with the frame test 

specimens.  The T450sc model was used for the experiments involving ice, to record 

the thermal behaviour of the ice. 

4. The Fujifilm PrescaleTM pressure measurement film (see Appendix B5 for 

specifications) is a special film used to determine the magnitude of static pressure 

developed between two mating surfaces.  It consists of tiny glass beads that break 

under pressure, releasing a chemical that reacts with the film to dye the vicinity red.  

The shade of red in a particular area of the film is indicative of the pressure at that 

location.  The shades are calibrated to specific pressure ranges.  After an 

experiment, the film is optically scanned, and software converts the red shades to 

numeric values.  Pressure film is available to measure different ranges of pressure.  

As ice is capable of generating pressure over a very wide range, three levels of 

pressure film (i.e. low, medium and high) were employed simultaneously in a 

layered fashion between the ice cone indenter and a ½ in. moving steel plate.  The 

low pressure film measured the range of 2.5-10 MPa; medium 10-50 MPa; and high 

50-100 MPa.  This layering technique was developed and tested by Kim et al (2012) 

and was subsequently used in several studies, including Ulan-Kvitberg (2012), Kim 

(2014) and Kim et al (2014).  This pressure measurement technique will not give a 

time-history of pressure, rather it will record the maximum pressures exerted on it. 
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3.7.1.3 Spatial digitizing technology 

A Microscribe®, model G2LX, which is a 3D spatial digitizer was used to record the 

location of specific points on the loaded surface of the test specimen’s plating.  Centre-

punched points at predefined locations on each specimen were measured before and after 

each test.  Specifications for the Microscribe are given in Appendix B6. 

3.7.2 Control equipment 

One other important apparatus were used in these experiments:  the hydraulic control table 

for the horizontal hydraulic ram.  The table consisted of a pressure compensated flow 

control valve that allowed the speed of the horizontal ram’s motion to be controlled.  Prior 

to each test, trials were performed to set the valve position so that the required horizontal 

ram speed was attained during the experiment. 

It is worth mentioning here that subsequent to these experiments, the table controlling the 

horizontal ram was replaced by computerized electronic servo-control similar to that 

controlling the MTS® vertical ram.  It is now possible to program the desired speed and 

displacement profile directly using a computer. 

3.8 Methodology 

As part of the study objectives and given that there have been no previous experiments of 

this nature, these experiments were kept as simple as possible.  The factors considered are: 

• Sample type 

• Load path 

• Load type 
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• Indenter type 

• Normal indentation depth 

• Normal loading / indentation rate 

• Lateral indenter starting location 

• Lateral travel length 

• Lateral travel speed 

• Temperature 

• Friction 

3.8.1 Sample type 

Regarding plates, it was desired to examine cases where the bending response of the plate 

was significant (i.e. thick plates) as well as cases where the membrane stresses were more 

significant (thin plates).  After preliminary numerical analyses coupled with overall design 

of the moving load apparatus, it was decided to choose 6.35 mm (1/4 in.) and 12.7 mm (1/2 

in.) plate thicknesses for testing with the rigid indenter.  12.7 mm (1/2 in.) and 3.175 mm 

(1/8 in.) plates were tested with the ice cone indenters). 

Regarding frames, choice of stiffener and attached plating scantlings was a combination of 

the design of the moving load apparatus (as there was a space restriction in the direction of 

the height of the frame) and maximizing frame height.  A reasonable frame height solution 

was attained and subsequent numerical simulations were performed to determine suitable 

dimensions for the remaining scantlings, to suit the load/displacement capacity of the 

moving load apparatus.  It was decided to construct the frames entirely from 6.35 mm (1/4 

in.) plate. 
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3.8.2 Load path 

In real ship-icebreaking scenarios, the path through space of a moving load varies greatly 

with respect to contact with a ship’s hull.  It is complex due to the local and global response 

of both the ship and ice feature. 

For these experiments, the simplest load path for the steel wheel indenter is to break the 

load path into three phases:  normal loading phase, lateral motion phase, and unloading 

phase.  The normal loading phase consists of load only in the normal direction, without any 

lateral motion of the indenter.  The lateral motion phase consists of holding the vertical 

load (from the first phase) steady, and moving the indenter laterally along the plating of the 

test specimen.  Once the lateral motion from the second phase ceases, the unloading phase 

consists of removing the vertical load (applied in the first phase). 

While it could be argued that the simplest load path for the steel wheel indenter would be 

applicable to the ice indenter as well, it was desired to investigate the effects of load motion 

on the crushing behaviour of ice.  The simplest load path to accomplish this consists of two 

phases.  The first phase consists of simultaneous displacement control in the normal and 

lateral directions; where the velocities have to be coupled such that the normal and lateral 

displacements of the indenter will reach their maximum extent simultaneously.  The second 

phase is the unloading phase; similar to above. 

It should be noted that an investigation of the effect of varying load path was conducted 

numerically and described in Chapter 5.5. 
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3.8.3 Load type 

The majority of the experiments were performed using displacement control; that is, the 

position of the base of the indenter in space was controlled at all times, and the resulting 

load was variable.  It was desired to examine moving load behaviour using force control as 

well; that is, the force applied by the indenter on the test specimen was controlled at all 

times, and the resulting displacement was variable.  Three force controlled experiments 

were performed using the steel wheel indenter.  No force controlled experiments were 

performed using ice cone indenters, as force control with ice is more difficult to achieve 

than displacement control (due to the load drops associated with spalling events), and 

achieving force control was outside the scope of these preliminary moving ice load 

experiments. 

3.8.4 Indenter type 

As previously discussed, two types of indenters were used:  a steel wheel indenter and an 

ice cone indenter.  The steel wheel indenter allowed the experimentation on the plate and 

frame test specimens without regard for the behaviour of the indenter; thus the response of 

the plates and frames were essentially decoupled from the indenter.  The ice indenter’s 

deformation was coupled with the deformation of the plates.  Please see Chapters 3.5.1 and 

3.5.2 for further discussion. 

3.8.5 Normal indentation depth 

The depth of the indentation into the plating (normal direction) impacts the response of the 

test specimen.  Small indentations induce an elastic response while larger indentations 

induce a plastic response.  Plastic response may be a combination of several types of plastic 
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behaviours (e.g. plastic bending response only, or plastic bending and plastic membrane 

responses). 

For the experiments involving the steel wheel indenter, the highest level of plastic damage 

that was practical to achieve was generally applied to the test specimens.  The “practicality” 

was a function of how difficult the damaged test specimen was to remove from the test 

apparatus after the test was completed, and whether the edges of the steel wheel indenter 

scored the plate or not.  Too much plastic damage meant that the test specimens had to be 

cut and pried off the carriage.  This added considerably to the time required to perform a 

single test, and risked damaging some of the more sensitive equipment housed inside the 

test carriage (e.g. thermal camera).  Additionally, it was not desirable to have the edges of 

the steel wheel indenter score the plating, as this introduced structural effects that were 

beyond the scope of this study.  Despite these limitations it was generally practical to indent 

the plating to the following extent of the plating’s width: 10% for the ¼” plates; 7.5% for 

the ½” plates; and 6.25% for the frames. 

Three tests were conducted on ¼” plates, using the steel wheel indenter, where the 

indentation in the normal direction was reduced to 5% of the plate width in order to examine 

the plate behaviour at lower levels of plastic damage. 

For experiments involving ice cones, indentation depth became a function of the behaviour 

of the ice (instead of the behaviour of only the test specimen, as for the steel wheel 

experiments).  As the ice cones are contained within a steel ring, they may be subject to 

confinement effects as the crushed surface of the ice approaches the top of the vertical steel 

ring.  These confinement effects are artificial in the sense that they are a function of the 
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necessity for the ice cones to be held in place in order to conduct laboratory testing; and 

not necessarily present for real-world ice loads.  Artificial confinement tends to strengthen 

the ice when compared with unconfined ice loads.  It was desired to minimize these 

confinement effects, so a limit was placed on displacement of the base of the ice cone 

indenter such that the maximum possible distance from the tip of the undamaged ice cone 

to the deepest crushed surface was 3.0 cm (1.18 in.).  This depth is approximately half the 

total height of the ice cone (above the top of the ring of the ice holder), experience has 

shown that this level of indentation generally does not promote confinement effects from 

the ice holder. 

3.8.6 Normal loading / indentation rate 

For the three force controlled experiments, the loading rate was somewhat arbitrarily 

chosen to be 10 kN/s (1 long-ton/s).  As only one rate was used, loading rate was essentially 

not a variable for these three tests. The choice of 10 kN/s allowed the tests to be conducted 

in a reasonable timeframe (up to 3 minutes for the ¼” plate). 

For the remaining displacement-controlled experiments, indentation rate was a variable.  

Indentation rate directly impacts the strain-rate experienced by each test specimen during 

the application of the load.  As discussed above, strain-rate affects the general behaviour of 

the test specimens, and therefore it was desirable to examine the effects of strain-rate on 

moving loads causing plastic damage.  Two levels of indentation rate were used as shown 

in Table 3.1.  The “Fastest Possible” entry is a function of the fact that the speed of the 

MTS (vertical) hydraulic ram is a function of the resistance of the structure it is pushing 
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on, as well as the demand on the pump18 supplying hydraulic oil to the ram.  As the 

hydraulic supply pump was shared between this apparatus, and other high-demand 

applications (e.g. wave-maker in a tow-tank) that may have been operating simultaneously, 

it was impossible to set an upper limit in advance of the experiments. 

Table 3.1:  Indentation Rates for displacement-controlled experiments. 

Indenter Low Level High Level
Steel Wheel 1 mm/s Fastest Possible
Ice Cone 0.25 mm/s 10 mm/s  

For the experiments utilising the ice cone indenters, indentation rate not only affected the 

behaviour of the test specimen, it also affected the ice cone’s behaviour.  As discussed in 

Chapter 2, ice is sensitive to strain-rate in various ways.  Dillenburg (2012) has shown that 

the low level of 0.25 mm/s (0.00984 in./s) for these scale ice cones corresponds to a rate at 

which ductile response will dominate the ice behaviour.  At this rate creep effects are 

minimal and large spalling events are not common.  The high rate of 10 mm/s (0.394 in./s) 

corresponds with ice behaviour that exhibits both crushing and large spalling events.  As 

well, because the load path for these tests requires that this speed be coupled with the lateral 

travel speed, 10 mm/s corresponds with the maximum speed possible from the horizontal 

hydraulic ram19 so that the normal and lateral indenter motions cease at the desired location. 

                                                 
18The hydraulic pump was pressure-compensated such that high demand did not affect the pressure; only the 
flow-rate.  
19 Unlike the vertical hydraulic ram, it is possible to reliably predict the maximum speed of the horizontal 
hydraulic ram in this case as it is loaded at only a fraction of its load capacity. 
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3.8.7 Lateral indenter starting location 

Lateral indenter starting location is the position of the point of contact of the indenter (i.e. 

the top of the steel wheel or the tip of the ice cone) with respect to the test specimen’s 

plating.  As the response of plates and frames vary with position relative to their extents, 

lateral starting location is important.  It was desired to examine their behaviour when the 

load was initially applied at the centre of the plating, and when it was applied near one 

longitudinal end.  With reference to the test regime shown in Table 3.2, “Centre” implies 

that the tip of the indenter was initially placed at a point half-way along the length and 

width of the plate.  “20 cm from End” implies that the tip was initially placed 20 cm (7.87 

in.) from the end of the plate along the longitudinal centreline.  “Absolute End” is similar 

to the above, except that that the tip was placed as close to the end of the plate as the 

apparatus would allow; that is, 13.5 cm (5.31 in.). 

The “20 cm from End” level was chosen to allow the steel wheel to indent the plate without 

interfering with the sandwich plate or carriage.  It was not necessary to account for this 

interference with the ice cone experiments as the load path allowed the starting position to 

be at the absolute end of the test specimen. 

3.8.8 Lateral travel length 

Lateral travel length is less of a variable and more of a consequence of the lateral starting 

position.  However, it is important to account for the travel distance explicitly when 

examining moving load effects.  There were two levels of lateral travel length:  a low level 

of approximately 550 mm (21.65 in.), and a high level of approximately 1100 mm (43.3 

in.).  The low level corresponds to the distance between the centre starting position and the 



75 
 

“20 cm from End” position.  The high level corresponds to the distance between the “20 

cm from End” lateral starting position and the position symmetrically opposite to it.  It is 

important to distinguish lateral end position as symmetrically opposite to the start position 

because it allows direct comparison of the stationary capacity of the test specimen with the 

moving load capacity at essentially the same position (due to symmetry). 

3.8.9 Lateral travel speed 

Lateral travel speed is analogous to the “normal indentation rate” variable; that is, it is the 

lateral speed at which the indenter moves along the plating. 

For all experiments except three, there were two levels for this variable:  a low value of 10 

mm/s (0.394 in./s) and a high value of 185 mm/s (7.28 in./s).  185 mm/s is the maximum 

speed of the horizontal hydraulic ram. 

The three experiments where the high value was not 185 mm/s were “one-off” ice cone 

tests, and are explained below. 

It should be noted that force control in the lateral (i.e. horizontal ram) direction is not 

presently possible with this apparatus because of the presence of two load cells measuring 

lateral load and inability of the control software to sum them to form a feedback signal on 

which to base the force control. 

3.8.10 Temperature 

As temperature is known to affect the behaviour of steel, it was desired to conduct 

experiments at two ambient temperatures:  room-temperature of 20°C and -10°C.  Room-

temperature was chosen because of its facility, and because it allows results of these tests 



76 
 

to be compared with other laboratory tests.  -10°C was chosen for a number of reasons:  1. 

it is a good approximation for average Arctic conditions as cold Arctic air temperatures are 

tempered by -2°C Arctic sea water adjacent to a ship’s hull; 2. it provides a 30°C 

temperature difference from room-temperature, which is significant; 3. -10 °C is a common 

temperature at which many laboratory ice behaviour experiments have been carried out 

(allowing for future comparison); and 4. much of the equipment used in the moving load 

apparatus is only rated to function down to -10°C. 

3.8.11 Friction 

While sliding friction was practically eliminated for the rigid wheel indenter (by placing it 

on a shaft supported by pillow block bearings), this was not possible for the ice cone 

indenters.  Note: the low-pressure film – which is the type of pressure film (in the stack of 

three layers of pressure film) adjacent to the ice – is composed of two thin polyester sheets. 

3.9 Test regime 

The test regime for these experiments is given in Table 3.2.  This schedule of experiments 

allows exploration of each of the above variables at their high and low values.  Time and 

resources restraints contributed to the lack of repetition for each run; with the exception of 

two experiments involving moving ice loads on an elastic plate, where one repetition each 

was performed (shown as green rows in Table 3.2).  Note that the orange rows in Table 3.2 

indicate tests in which Fujifilm PrescaleTM pressure film was used to get an indication of 

the maximum pressures present during the experiment. 

Table 3.2:  Test Regime* - green rows indicate that the run is a repeat, and orange rows 
indicate that pressure film was used to record the maximum pressures. 
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Sample 
Type

Run Type
Indenter 
Type

Location
Vertical 
Indentation

Vertical 
Speed

Horizontal 
Travel

Horizontal 
Speed

1/4" In-Along-Out Steel Centre 4 cm 1 mm/s 55+ cm 10 mm/s
1/4" In-Along-Out Steel 20 cm from end 4 cm 1 mm/s 110+ cm 10 mm/s
1/4" In-Along-Out Steel Centre 4 cm Fastest 55+ cm Fastest
1/2" In-Along-Out Steel Centre 3 cm 1 mm/s 55+ cm 10 mm/s
1/2" In-Along-Out Steel 20 cm from end 3 cm 1 mm/s 110+ cm 10 mm/s
1/2" In-Along-Out Steel Centre 3 cm Fastest 55+ cm Fastest
Frame In-Along-Out Steel Centre 2.5 cm 1 mm/s 55+ cm 10 mm/s
Frame In-Along-Out Steel 20 cm from end 2.5 cm 1 mm/s 110+ cm 10 mm/s
Frame In-Along-Out Steel Centre 2.5 cm Fastest 55+ cm Fastest

Sample 
Type

Run Type
Indenter 
Type

Location
Vertical 
Indentation

Vertical 
Speed

Horizontal 
Travel

Horizontal 
Speed

1/4" In-Along-Out Steel Centre 4 cm 1 mm/s 55+ cm 10 mm/s
1/4" In-Along-Out Steel 20 cm from end 4 cm 1 mm/s 110+ cm 10 mm/s
1/4" In-Along-Out Steel Centre 4 cm Fastest 55+ cm Fastest
1/4" In-Along-Out Steel Centre 2 cm 1 mm/s 55+ cm 10 mm/s
1/4" In-Along-Out Steel 20 cm from end 2 cm 1 mm/s 110+ cm 10 mm/s
1/4" In-Along-Out Steel Centre 2 cm Fastest 55+ cm Fastest
1/2" In-Along-Out Steel Centre 3 cm 1 mm/s 55+ cm 10 mm/s
1/2" In-Along-Out Steel 20 cm from end 3 cm 1 mm/s To End 10 mm/s
1/2" In-Along-Out Steel Centre 3 cm Fastest 55+ cm Fastest
Frame In-Along-Out Steel Centre 2.5 cm 1 mm/s 55+ cm 10 mm/s
Frame In-Along-Out Steel 20 cm from end 2.5 cm 1 mm/s 110+ cm 10 mm/s
Frame In-Along-Out Steel Centre 2.5 cm Fastest 55+ cm Fastest
1/4" In&Along-Out Steel 20 cm from end 125 kN 10 kN/s 110+ cm 10 mm/s
1/2" In&Along-Out Steel 20 cm from end 250 kN 10 kN/s 110+ cm 10 mm/s
Frame In&Along-Out Steel 20 cm from end 250 kN 10 kN/s 110+ cm 10 mm/s

Sample 
Type

Run Type
Indenter 
Type

Location
Vertical 
Indentation

Vertical 
Speed

Horizontal 
Travel

Horizontal 
Speed

1/2" In&Along-Out Ice Cone Absolute End 3 cm 0.25 mm/s 110+ cm 10 mm/s
1/2" In&Along-Out Ice Cone Absolute End 3 cm 0.25 mm/s 110+ cm 10 mm/s
1/2" In&Along-Out Ice Cone Absolute End 3 cm 0.25 mm/s 110+ cm 10 mm/s
1/2" In&Along-Out Ice Cone Absolute End 3 cm 3.5 mm/s 90+ cm 100 mm/s
1/2" In&Along-Out Ice Cone Absolute End 3 cm 3.5 mm/s 90+ cm 100 mm/s
1/2" In&Along-Out Ice Cone Absolute End 3 cm 83.0 mm/s 110+ cm 83.0 mm/s
1/2" In&Along-Out Ice Cone Absolute End 3 cm 0.25 mm/s 110+ cm 10 mm/s
1/2" In&Along-Out Ice Cone Absolute End 3 cm 0.25 mm/s 110+ cm 10 mm/s

Sample 
Type

Run Type
Indenter 
Type

Location
Vertical 
Indentation

Vertical 
Speed

Horizontal 
Travel

Horizontal 
Speed

1/8" In&Along-Out Ice Cone Absolute End 3 cm 0.25 mm/s 110+ cm 10 mm/s
1/8" In&Along-Out Ice Cone Absolute End 6.4 cm 10 mm/s 110+ cm Fastest

     

-10 °C Tests

Room Temperature Tests

Elastic Plate Response Ice Tests (-10°C)

Plastic Plate Response Ice Tests (-10°C)

 

*Note:  Regarding “Run Type”:  “In-Along-Out” refers to the sequential application of motions; 
“In&Along-Out” refers to the In (normal) and Along (lateral) motions occurring simultaneously. 
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3.10 Experimental Procedure 

3.10.1 General procedure 

For all experiments, the general procedure was: 

1. Activate the carriage’s internal cameras and LED lights. 

2. Install the test specimen. 

3. Get initial external plating geometry using the Microscribe. 

4. Calibrate horizontal hydraulic ram speed. 

5. Check MTS test frame cross head position and adjust as necessary. 

6. Exercise hydraulic rams for 10 minutes to bring hydraulic system up to operating 

temperature. 

7. If ice cone test, install new ice cone. 

8. Update test log with experiment details. 

9. Move horizontal hydraulic ram to starting position. 

10. Bring vertical ram up to touch the specimen’s plating. 

11. Set data acquisition rate (2048 Hz for rigid indenter tests; 4096 for ice indenter 

tests). 

12. Set vertical hydraulic ram “load” displacement profile. 

13. Set vertical hydraulic ram “unload” displacement profile. 
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14. Activate other video (e.g. high-speed, conventional or thermal). 

15. Do test. 

16. Take post-test (i.e. unloaded/deformed state) specimen plating Microscribe points. 

17. Take post-test pictures and in the case of ice-cone tests, measurements of the 

deformed ice cone. 

18. Remove the test specimen. 
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Chapter 4 Experimental Results 

The actual experiment parameters (e.g. normal indenter speed, lateral displacement, etc…) 

are presented in groups of related tests below.  Tables 4.1 through 4.5 provide a summary 

of the test parameters for each of the experiment groups, which respectively are:  room-

temperature tests with steel wheel indenter; -10°C tests with steel wheel indenter; -10°C 

force controlled tests with steel wheel indenter; -10°C ice cone tests on an elastically 

deforming plate; and -10°C ice cone tests on plastically deforming plates. 

Results of the experiments relevant to the subject of this thesis are presented in the 

following subsections.  Please note that the datatips (i.e. boxes showing the values of some 

of the points on the curves in the figures) may obscure part of the curves in the figures.  

Every attempt was made to minimize this, however it was unavoidable in some cases.  All 

data recorded for each experiment are given in Appendix C, and are presented unobscured. 

Table 4.1:  Actual experiment parameters for room-temperature tests with steel wheel 
indenter. 

Sample Date Sample 
Type

Run Type Indenter 
Type

Location 
[mm]

Vertical 
Indentation 

[mm]

Vertical 
Speed 
[mm/s]

Horizontal 
Travel 
[mm]

Horizontal 
Speed 

[mm/s]
Notes

MovingLoad10 March 27, 
10:15am

1/4" In-Along-Out Steel 0 40.0 1.00 569.1 10.02 Stationary & slow 4 cm 
moving load

MovingLoad11 March 27, 
4:10pm

1/4" In-Along-Out Steel -550 40.0 1.00 1120.4 9.60 Stationary & slow 4 cm 
moving load

MovingLoad9 March 26, 
3:40pm

1/4" In-Along-Out Steel 0 40.0 83.75 593.0 186.40 Stationary & fast 4 cm 
moving load

MovingLoad7 March 25, 
4:40pm

1/2" In-Along-Out Steel 0 30.0 1.00 573.7 8.64 Stationary & slow 3 cm 
moving load

MovingLoad8 March 26, 
12:00pm

1/2" In-Along-Out Steel -550 30.0 1.00 1121.2 9.86 Stationary & slow 3 cm 
moving load

MovingLoad6 March 24, 
2:10pm

1/2" In-Along-Out Steel 0 30.0 71.69 589.8 185.64 Stationary & fast 3 cm 
moving load

MovingLoad15 April 2, 
3:00pm

Frame In-Along-Out Steel 0 25.0 1.00 564.3 8.79 Stationary & slow 2.5 
cm moving load

MovingLoad16 April 3, 
2:45pm

Frame In-Along-Out Steel -550 25.0 1.00 1114.4 9.52 Stationary & slow 2.5 
cm moving load

MovingLoad14 April 1, 
3:55pm

Frame In-Along-Out Steel 0 25.0 71.03 602.0 185.06 Stationary & fast 2.5 cm 
moving load

Room Temperature Tests
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Table 4.2:  Actual experiment parameters for -10°C tests with steel wheel indenter. 

Sample Date Sample 
Type

Run Type Indenter 
Type

Location 
[mm]

Vertical 
Indentation 

[mm]

Vertical 
Speed 
[mm/s]

Horizontal 
Travel 
[mm]

Horizontal 
Speed 

[mm/s]
Notes

MovingLoad18 April 7, 
3:50pm

1/4" In-Along-
Out

Steel 0 40.0 1.00 562.3 10.32 Stationary & slow 4 
cm moving load

MovingLoad19 April 8, 
3:00pm

1/4" In-Along-
Out

Steel -550 40.0 1.00 1107.4 10.25 Stationary & slow 4 
cm moving load

MovingLoad17 April 4, 
4:25pm

1/4" In-Along-
Out

Steel 0 40.0 84.01 595.9 185.92 Stationary & fast 4 
cm moving load

MovingLoad24 April 15, 
2:55pm

1/4" In-Along-
Out

Steel 0 20.0 1.00 567.3 11.27 Stationary & slow 2 
cm moving load

MovingLoad25 April 16, 
12:00pm

1/4" In-Along-
Out

Steel -550 20.0 1.00 1106.4 11.09 Stationary & slow 2 
cm moving load

MovingLoad23 April 15, 
11:20am

1/4" In-Along-
Out

Steel 0 20.0 91.81 594.8 188.96 Stationary & fast 2 
cm moving load

MovingLoad20 April 9, 
1:20pm

1/2" In-Along-
Out

Steel 0 30.0 1.00 558.7 9.05 Stationary & slow 3 
cm moving load

MovingLoad21 April 10, 
1:00pm

1/2" In-Along-
Out

Steel -550 30.0 1.00 1106.6 9.14 Stationary & slow 3 
cm moving load

MovingLoad22 April 14, 
1:20pm

1/2" In-Along-
Out

Steel 0 30.0 67.90 597.1 186.46 Stationary & fast 3 
cm moving load

MovingLoad27 April 22, 
2:15pm

Frame In-Along-
Out

Steel 0 25.0 1.00 565.2 8.06 Stationary & slow 
2.5 cm moving load

MovingLoad28 April 23, 
4:15pm

Frame In-Along-
Out

Steel -550 25.0 1.00 1111.9 8.62 Stationary & slow 
2.5 cm moving load

MovingLoad26 April 16, 
4:10pm

Frame In-Along-
Out

Steel 0 25.0 69.02 593.5 178.07 Stationary & fast 
2.5 cm moving load

-10° Tests

 

Table 4.3:  Actual experiment parameters for -10°C force controlled tests with steel wheel 
indenter. 

Sample Date Sample 
Type

Run Type Indenter 
Type

Location 
[mm]

Vertical 
Force 
[kN]

Vertical 
Rate 
[N/s]

Horizontal 
Travel 
[mm]

Horizontal 
Speed 

[mm/s]
Notes

MovingLoad
36

May 1, 3:50pm 1/4" In&Along-
Out

Steel -550 125 10356 1111.4 9.33 Force 
Controlled

MovingLoad
29

April 24, 
12:10pm

1/2" In&Along-
Out

Steel -550 250 10029 1117.3 8.78 Force 
Controlled

MovingLoad
37

May 5, 3:00pm Frame In&Along-
Out

Steel -550 250 9976 1116.8 8.70 Force 
Controlled

Force Controlled -10 °C Tests
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Table 4.4:  Actual experiment parameters for -10°C tests with ice cone indenter and elastic 
plate response. 

Sample Date Sample 
Type

Run Type Indenter 
Type

Location 
[mm]

Vertical 
Indentation 

[mm]

Vertical 
Speed 
[mm/s]

Horizontal 
Travel 
[mm]

Horizontal 
Speed 

[mm/s]
Notes

MovingLoad30 April 25, 
1:00pm

1/2" In&Along-
Out

Ice Cone -550 30.0 0.25 1121.3 10.91 constant ramp

MovingLoad31 April 28, 
11:45pm

1/2" In&Along-
Out

Ice Cone -550 30.0 0.25 1100.2 10.64 constant ramp

MovingLoad32
April 28, 
3:30pm 1/2"

In&Along-
Out Ice Cone -550 30.0 0.25 1105.3 10.76

constant ramp - 
With Pressure 

Film

MovingLoad33
April 29, 
12:00pm 1/2"

In&Along-
Out Ice Cone -615 30.0 3.50 950.1 96.60

constant ramp - 
With Pressure 

Film

MovingLoad34 April 29, 
2:40pm

1/2" In&Along-
Out

Ice Cone -615 30.0 3.50 915.5 97.02 constant ramp

MovingLoad35
April 29, 
4:00pm 1/2"

In&Along-
Out Ice Cone -615 30.0 83.23 1197.7 83.03

constant ramp 
then hold - With 

Pressure Film

MovingLoad38 May 14, 
2:45pm

1/2" In&Along-
Out

Ice Cone -615 30.0 0.25 1215.3 10.55 constant ramp

MovingLoad39 May 16, 
10:50pm

1/2" In&Along-
Out

Ice Cone -615 30.0 0.25 1215.8 10.42 constant ramp

Elastic Plate Response Ice Tests (-10°C)

 

Table 4.5:  Actual experiment parameters for -10°C tests with ice cone indenter and plastic 
plate response. 

Sample Date Sample 
Type

Run Type Indenter 
Type

Location 
[mm]

Vertical 
Indentation 

[mm]

Vertical 
Speed 
[mm/s]

Horizontal 
Travel 
[mm]

Horizontal 
Speed 

[mm/s]
Notes

MovingLoad40 May 16, 
2:45pm

1/8" In&Along-
Out

Ice Cone -615 30.0 0.25 1215.8 10.44 constant 
ramp

MovingLoad41 May 20, 
12:00pm

1/8" In&Along-
Out

Ice Cone -615 64.0 10.01 1147.2 186.85 constant 
ramp

    

Plastic Plate Response Ice Tests (-10°C)

 

It should be noted that all data manipulation, analysis and plotting was performed using a 

custom Matlab® script.  The script a screenshot of its associated graphical user interface 

are provided in Appendix D. 
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4.1 ¼” Plates with Steel Wheel Indenter at Room-temperature  

Three displacement-controlled experiments were performed on 6.35 mm (1/4 in.) plate test 

specimens at room-temperature using the steel wheel indenter.  All plates were indented 4 

cm (1.575 in.) in the normal direction.  Table 4.1 lists the actual experimental parameters 

for these experiments.  Two of the experiments have the indenter starting at the “Centre” 

of the plate (i.e. half-way along the plate in the longitudinal direction) and the other has the 

starting position 20 cm (7.874 in.) from one end; this latter position is referred to as the 

“End” position.  For all three experiments, the lateral travel of the indenter passes the 

opposite “End” mark on the far side of the plate.  The two “Centre” tests are conducted at 

different speeds (i.e. vertical and horizontal ram speeds).  This allows for investigation of 

strain-rate effects, and their mitigating potential on moving load effects.  The “End” test is 

conducted at the same speed as the slower “Centre” test.  This allows direct comparison of 

the “stationary capacity” and “moving load capacity” of the “End” and “Centre” positions. 

Figures 4.1 and 4.2 and Table 4.6 present the experimental results relevant to this 

discussion.  All data collected for these experiments is presented in Appendix C1.1. 
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Figure 4.1:  Normal (vertical) force versus lateral (horizontal) displacement for rigid 
indenter acting on room-temperature ¼” plates. 

Table 4.6:  ¼” plate normal (vertical) force capacity results at room-temperature. 

Experiment Speed 

End 
"Stationary 
Capacity" 

[kN] 

End 
"Moving 

Capacity" 
[kN] 

Centre 
"Stationary 
Capacity" 

[kN] 

Centre 
"Moving 

Capacity" 
[kN] 

Centre Slow N/A 150.7 210.6 N/A 
Centre Fast N/A 157.6 222.9 N/A 

End Slow 238.1 147.1 N/A 125.9 
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Figure 4.2:  Lateral (horizontal) force versus lateral (horizontal) displacement for rigid 
indenter acting on room-temperature ¼” plates. 

4.1.1 Moving load capacity vs. stationary capacity 

Figure 4.1 shows the normal reaction force of the ¼” plates versus lateral displacement of 

the steel wheel indenter.  Note that 0 mm on the “Horizontal Displacement” axis aligns 

with the geometric centre of the test specimen, and is the start location for all “Centre” 

experiments.  The -550 mm position is the start location for all “End” experiments.  Table 

4.6 lists the key results from these experiments. 

Figure 4.1 shows three highlighted values at 0 mm horizontal displacement.  They are:  the 

“slow” “normal stationary capacity” of 210.6 kN; the “fast” “normal stationary capacity” 

of 222.9 kN, and the “slow” “normal moving capacity” of 125.9 kN.  Both of the “slow” 

capacities can be compared directly as they occur at the same lateral location.  The “slow” 

“normal stationary capacity”, 210.6 kN, represents the structural capacity of the plate to a 

stationary normal indentation of 4 cm.  The “slow” “normal moving capacity”, 125.9 kN, 
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represents the normal structural capacity of the plate to a laterally moving indentation of 4 

cm.  These results show that the “normal moving capacity” is just 60% of the “normal 

stationary capacity”.  Regarding strain-rate effects, the strain-rates for the stationary and 

moving loads at the “Centre” location may not have been identical, but the strain-rate for 

the moving load would likely have been higher due to two components of motion versus 

the stationary load’s one.  This implies that any difference in the tests due to strain-rate 

effects would only serve to increase the “moving capacity”, and thus mitigate the associated 

capacity loss. 

The normal direction capacity loss may be assessed at the “End” position, using only the 

“slow End” experiment.  Symmetry in the plate and the loading condition implies that the 

location symmetrically opposite the indenter’s starting position (about the short axis of the 

plate) would give an identical structural response as the starting position to the same load.  

Therefore the “End” “normal stationary capacity” is the response at the “End” starting 

location, and the “End” “normal moving capacity” is the response at the symmetrically 

opposite point (i.e. +550 mm).  The “End” “normal stationary capacity” is 238.1 kN, and 

the “End” “normal moving capacity” is 147.1 kN (i.e. 62% of the “normal stationary 

capacity”). 

4.1.2 Strain-rate mitigation effects 

Regarding Figure 4.1 and comparing the “slow” normal “stationary capacity”, 210.6 kN, 

and the “fast” normal “stationary capacity”, 222.9 kN, at the plate’s centre shows an 

increase in normal “stationary capacity” of 5.8% due most likely to the difference in loading 
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rate (i.e. strain-rate effects).  It is possible however that this difference may be experimental 

error due primarily to different material properties of the test specimens.  

A similar comparison may be made for the lateral force curves (see Figure 4.2).  As there 

is no lateral force during the “stationary load” for the “slow centre” and “fast centre” 

experiments, this entire plot presents the lateral “moving capacity” for each test.  We can 

compare the “fast centre” and “slow centre” curves at any location along their length to 

determine the increase in structural capacity in the lateral direction due to strain-rate effects.  

Choosing the “End” position as a convenient location shows that the “slow moving 

capacity” for this location is 35.4 kN and the “fast moving capacity” is 37.9 kN; an increase 

of 7%.  Further examination shows this to be a constant increase over the length of both 

curves.  Again, it is possible that this increase is due, at least in part, to slightly different 

material properties between the plate specimens. 

4.1.3 Further discussion 

Regarding Table 4.6, the End “Moving Capacity”’ values for both of the “slow” tests 

should be equal.  Instead they are 147.1 kN for the “End” case and 150.7 kN for the 

“Centre” case (a difference of 2.5%).  To explain this discrepancy, we first look at the 

minimum moving load over the length of the plate for case. 

As will be seen in all following plate experiments, the minimum “moving load” capacity 

was observed to occur over the central portion of the plate.  This is the portion of the plate 

not subject to “end effects”; or equivalently, is the section of the plate that may be treated 

as an “infinitely long plate”.  Further, the “moving load capacity” for this “infinite plate” 

portion is essentially constant (along the longitudinal centreline) when compared with the 
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magnitude of the initial “stationary capacity” and the “End” region “moving load capacity”.  

This allows direct comparison between the minimum moving loads for each case.  The 

“Centre” case’s minimum moving load is 127.6 kN; the “End” case’s is 124.7 kN.  As with 

the “End” location, the minimum “moving load” capacity of the “Centre” case is 2.3% 

higher than the end case.  This implies that the difference between the two experiments is 

relatively constant.  There are two potential reasons for this offset:  experimental error in 

the form of lateral travel speed (i.e. rate-effects) and slight differences in material 

properties.  The former is unlikely as the “Centre” case was travelling laterally only 0.4 

mm/s faster than the “End” case and it is unlikely that a 0.4mm/s difference is large enough 

by itself to cause this discrepancy.  The latter is always a possibility; and can affect the 

former as well, but the difference can mainly be considered to be within the resolution of 

the experiment.  Additionally, experimental error may play a role as lateral displacement 

was measured with a string-pot.  These devices are subject to several shortcomings. 

Specifically, any misalignment between the string and the carriage rails induces an error 

that increases with increasing string length.  As the lateral displacement for the “Centre” 

experiment was 550 mm, and 1100 mm for the “End” experiment, any error in these 

readings due to string misalignment would be double for the “End” experiment.  Further, 

given that the slope of the curve in the far location of both experiments is rapidly increasing, 

any error in this region is magnified when extracting a corresponding force value. 

Also, regarding Figure 4.2, the lateral “moving capacity” at the “End” location for both 

“slow” experiments should be equal.  As with the normal stationary capacity, these too are 

offset by 2.2%; and likely for the same reasons. 
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Some decaying vibration is evident in the lateral force results for the “fast centre” 

experiment shown in Figure 4.2.  This is due to a mismatch in the length of both arms of 

the “swing arm” (shown in Figure 4.3) resulting in a slight misalignment of the steel wheel 

indenter with the longitudinal axis of the plate.  This misalignment was noticed partway 

through experiments and was subsequently corrected.  It does not appear that this 

misalignment affected the “Total Horizontal Force” measured by the two load cells together 

– and tests were performed to verify this – however the ratio of load sharing between the 

two load cells was affected, and for the higher speed tests, some vibration was induced. 

Finally, Figure 4.4 shows the “slow centre” case (blue line) and the “slow end” case plotted 

twice (red and green lines).  The green line shows the “End” case at its proper starting 

location of -550 mm.  The red line, shows the “End” case translated 550 mm forward.  This 

arrangement of “End” case curves makes it easy to compare the lateral moving capacity of 

the start and finish of the “End” case with the start and finish of the “Centre” case.  It is 

interesting to note that for this room-temperature ¼” plate, the lateral location of the starting 

position seems independent of the lateral moving capacity response; as the blue and red 

lines agree very well at their start, and the blue and green lines agree very well at their end. 
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Figure 4.3:  Moving load apparatus components:  left – “Swing arm” (red) attached to load 
cells (black); right – swing arm shown with steel wheel indenter shown mounted to moving 
load apparatus. 

 

Figure 4.4:  Lateral (horizontal) moving load capacities of “slow centre” and “slow end” 
¼” plate cases – “slow end” case (green) shown again translated by +550 mm (red). 

4.2 ½” Plates with Steel Wheel Indenter at Room-temperature  

Three experiments were performed on 12.7 mm (1/2 in.) plate test specimens at room-

temperature using the steel wheel indenter.  All plates were indented 3 cm (1.181 in.) in the 
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normal direction.  The rest of the experimental parameters are the same as other 

displacement-controlled steel wheel indenter tests, and are given in Table 4.1 and discussed 

in the first paragraph of Chapter 4.1. 

Figures 4.5 and 4.6 and  

Table 5.14 present the experimental results relevant to this discussion.  All data collected 

for these experiments is presented in Appendix C1.2. 

 

 

Figure 4.5:  Normal (vertical) force versus lateral (horizontal) displacement for room-
temperature ½” plates. 
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Table 4.7:  ½” plate normal (vertical) force capacity results at room-temperature. 

Experiment Speed 

End 
"Stationary 
Capacity" 

[kN] 

End 
"Moving 

Capacity" 
[kN] 

Centre 
"Stationary 
Capacity" 

[kN] 

Centre 
"Moving 

Capacity" 
[kN] 

Centre Slow N/A 271.6 352.2 N/A 
Centre Fast N/A 275.3 359.7 N/A 

End Slow 375.0 268.6 N/A 243.4 
 

 

Figure 4.6:  Lateral (horizontal) force versus lateral (horizontal) displacement for room-
temperature ½” plates. 

4.2.1 “Moving load capacity” vs. “stationary capacity” 

Figure 4.5 shows the normal reaction force of the ½” plates versus lateral displacement of 

the steel wheel indenter.    
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Table 4.7 lists the key results from these experiments.  At the “Centre” position, the “slow” 

“stationary capacity” is 352.2 kN for a stationary indentation of 3 cm.  The “slow” “moving 

capacity” for a 3 cm indentation at this location is 243.4 kN.  Therefore, the “moving 

capacity” at the “Centre” position is 69% of the “stationary capacity”.  As with the ¼” 

plates, any difference in the tests due to differences in strain-rate would likely only serve 

to increase the “moving capacity”, and thus mitigate any capacity loss due to load 

movement. 

Regarding the “End” position, the “stationary capacity” is 375.0 kN, and the “moving 

capacity” is 268.6 kN; therefore the “moving capacity” is 72% of the “stationary capacity”. 

4.2.2 Strain-rate mitigation effects 

Regarding Figure 4.5 and comparing the “slow” normal “stationary capacity”, 352.2 kN, 

and the “fast” normal “stationary capacity”, 359.7 kN, at the plate’s centre shows an 

increase in “stationary capacity” of 2.1%.  This is likely due primarily to strain-rate effects, 

but may be experimental error.  This increase is not as dramatic as for the ¼” plate case.  If 

in fact this slight increase is due to strain-rate effects, this lower increase (versus the ¼” 

plate case) makes sense, because the normal velocity for the “fast” case was lower for the 

½” plate than for the ¼” plate; and therefore the strain-rate effects would not be as 

significant.  From Table 4.1 we can see that the normal (i.e. vertical) speed for the ¼” “fast” 

case (i.e. MovingLoad9) is 83.75 mm/s, and the corresponding value for the ½” plate test 

(i.e. MovingLoad6) is 71.69 mm/s.  This is a difference of 12 mm/s (or 12%).  This 

difference is present because the load on the MTS vertical ram was much higher for the ½” 

plate experiments than the ¼” plate experiments, and the hydraulic supply pump could not 
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produce the same flow-rate20.  Another factor is that membrane stretching played much less 

of a role for the ½” plate case than for the ¼” plate case.  Membrane stresses tend to involve 

the whole plate, meaning that a much greater area is under strain, and therefore subject to 

strain-rate effects.  With bending stresses being much more important in this thicker ½” 

plate, there was substantially less membrane stretching, and therefore less area subject to 

strain-rate effects.   

From Figure 4.6 we can see that the strain-rate related mitigation of capacity loss for the 

lateral “moving capacity” at the “End” position (see similar discussion above for the ¼” 

plate) is 3.2%; as the “moving capacity” for the “fast” case is 62.13 kN, and 60.21 kN for 

the “slow” case.  This value is lower than the 7% observed above for the comparable ¼” 

plates.  From Table 4.1 we can see that the lateral (i.e. horizontal) travel speeds are nearly 

identical at 186.4 mm/s for the ¼” plate and 185.64 mm/s for the ½” plate.  The difference 

between the two cases is likely still explained by a difference in strain-rate; although it is 

within the realm of experimental error.  The ¼” plate normal indentation was 4 cm, and the 

½” plate normal indentation was 3 cm.  So as strain requires a 2nd order tensor of type (1, 

1) to describe its state in three dimensions, so too does strain-rate. As the normal indentation 

was 1 cm greater for the ¼” plate case, the strain-rate was necessarily greater too; despite 

the fact that the indenter was travelling at the same lateral speed.  In other words, if the 

normal indentation for both cases had been the same, the strain-rates would have been 

similar.  

                                                 
20 There may also have been additional demand on the hydraulic supply pump from an external source. 



95 
 

4.2.3 Further discussion 

Aside from the issues regarding flow-rate from the hydraulic supply pump discussed above 

in this section, similar issues arose for these ½” plate tests as for the ¼” plate tests above.  

The discussion of these issues is the same and the reader is referred to Chapter 4.1.3. 

Regarding Figure 4.7, as with the ¼” plate case above, the lateral moving load response 

seems to be independent of the lateral starting location as the start and end of the “slow 

end” case matches the start and end of the “slow centre” case very well. 

 

 

Figure 4.7:  Lateral (horizontal) moving load capacities of “slow centre” and “slow end” 
½” plate cases with red line translated by +550 mm. 

4.3 Frames with Steel Wheel Indenter at Room-temperature  

Three experiments were performed on “frame” test specimens at room-temperature using 

the steel wheel indenter.  All frames were indented 2.5 cm (0.984 in.) in the normal 
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direction.  The rest of the experimental parameters are the same as other displacement-

controlled steel wheel indenter tests, and are given Table 4.1 and discussed in the first 

paragraph of Chapter 4.1. 

 

Figures 4.8 and 4.9 and Table 4.8 present the experimental results relevant to this 

discussion.  All data collected for these experiments is presented in Appendix C1.3. 

A comment should be made at this point on the potential for error in these frame 

experiments versus the previous plate experiments.  There are more sources of 

error/variability for the frame experiments due to one or more of the following 

possibilities:  slight geometric and material inconsistencies in the welding used to attach 

the stiffener to the plating; the fact that load movement incites plastic buckling and post-

buckling behaviours in the stiffener web; and the compliant end conditions for the 

stiffener web.  As mentioned previously, a small gap (slightly less than 1 mm) is present 

between the stiffener end plates and the carriage ends, when the frame specimen is 

installed in the carriage.  This gap is practically necessary, as it allows the frame test 

specimens to be installed in the carriage.  The stiffener end plates are subsequently 

bolted to the carriage ends, but the gap is not completely closed.  When the stiffener 

goes into compression during the experiment, the stiffener’s end condition is not truly 

“fixed” until there is enough deformation of the stiffener such that the stiffener end plate 

contacts the carriage end.  Even then, the stiffener end plate is capable of losing contact 

with the carriage end given the proper conditions. 
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Figure 4.8:  Normal (vertical) force versus lateral (horizontal) displacement for room-
temperature frames. 

Table 4.8:  Frame normal (vertical) force capacity results at room-temperature. 

Experiment Speed 
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[kN] 
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Centre 
"Stationary 
Capacity" 

[kN] 

Centre 
"Moving 

Capacity" 
[kN] 

Centre Slow N/A 278.0 305.7 N/A 
Centre Fast N/A 268.2 321.4 N/A 

End Slow 395.4 274.8 N/A 258.6 
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Figure 4.9:  Lateral (horizontal) force versus lateral (horizontal) displacement for room-
temperature frames. 

 

Figure 4.10:  Magnification of Figure 4.9. 
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4.3.1 “Moving load capacity” vs. “stationary capacity” 

Figure 4.8 shows the normal reaction force of the frames versus lateral displacement of the 

steel wheel indenter.  Table 4.8 lists the key results from these experiments.  At the “Centre” 

position, the “slow” “stationary capacity” is 305.7 kN for a stationary indentation of 2.5 

cm.  The “slow” “moving capacity” for a 2.5 cm indentation at this location is 258.6 kN.  

Therefore, the “moving capacity” at the “Centre” position is 85% of the “stationary 

capacity”.  As with the other cases explored above, any difference in the tests due to 

differences in strain-rate likely would only serve to increase the “moving capacity”, and 

thus mitigate any capacity loss due to load movement. 

Regarding the “End” position, the “stationary capacity” is 395.4 kN, and the “moving 

capacity” is 274.8 kN; therefore the “moving capacity” is 69% of the “stationary capacity”. 

4.3.2 Strain-rate mitigation effects 

Regarding Figure 4.8 and comparing the “slow” normal “stationary capacity”, 305.7 kN, 

and the “fast” normal “stationary capacity”, 321.4 kN, at the plate’s centre shows an 

increase in “stationary capacity” of 5.1% due most likely to strain-rate effects.  Similar to 

the ½” plate case above, the normal indenter speed was approximately 12.72 mm/s less 

than the ¼” case, and the lateral indenter speed was identical at 185.06 mm/s, however the 

increase in structural capacity due to strain-rate effects is of a similar magnitude with the 

¼” case.  As the plating of the frame was ¼” plate, membrane stresses most likely played 

a similar role.  Further, the frame has a much more complex geometry than a simple plate 

and there is more steel in the vicinity of the load that is also subject to strain-rate effects.  

It is likely that had the normal ram velocity been equal to the ¼” plate case, the increase in 
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normal “stationary capacity” due to strain-rate effects would have been larger, due to the 

extra steel in the vicinity of the indenter. 

When evaluating the strain-rate effect on the lateral “moving capacity” of the test 

specimens, the “End” position has been chosen thus far, for the point of interrogation.  This 

has been a somewhat arbitrary choice as the relative difference between the “slow” and 

“fast” lateral force curves is fairly constant throughout the various test specimen types.  

From Figure 4.9 we can see that at the “End” position (i.e. 550 mm), an unusual decrease 

is evident for the “fast” curve.  The other curves exhibit local anomalies similar to this at 

other locations, but in general the curves tend to be scaled versions of each other (which 

agrees with the above findings).  For this reason, the “end position” is not used to evaluate 

the strain-rate effects on the lateral “moving capacity” for these experiments.  Instead, 450 

mm is used as the three curves are free of these “anomalies” at this point. 

From Figure 4.10, the lateral “moving capacity” for the “fast” case is 75.18 kN, and 96.72 

kN for the “slow centre” case; which is a 7.8% increase.  As with the normal direction 

strain-rate related effects, this value is comparable with the increase observed in the ¼” 

plate case above.  

4.3.3 Further discussion 

These three experiments exhibit both expected and unexpected behaviours.  As expected, 

the “fast centre” normal “stationary capacity” is higher than the “slow centre” normal 

“stationary capacity”; further, the “slow end” normal “stationary capacity” is larger than 

both (see Figure 4.8).  This behaviour is consistent with the other experiments.  

Additionally as expected, the “slow end” and “slow centre” normal force curves agree fairly 
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well with each other from about 30 mm to 550 mm horizontal displacement (which is the 

“moving load” portion where the indenter is in similar locations for both experiments). 

It is unexpected that the normal “moving load capacity” for the “fast centre” is lower than 

the “slow centre” curve for the locations between 30 mm and 550 mm.  This is anomalous 

because strain-rate effects would be expected to increase this capacity for the “fast centre” 

case.  Indeed, Figure 4.9 shows that the lateral force for the “fast centre” case is higher than 

both the “slow centre” and “slow end” cases; as expected.  It is believed that subsequent to 

the commencement of lateral motion for MovingLoad14 (i.e. the “fast centre” case), 

something anomalous occurred during the experiment.  As no experimental repetitions 

were performed, it is difficult to say for certain that this was experimental error. 

It was additionally unexpected that the lateral “moving capacity” (see Figure 4.9) was 

consistently higher for the “slow end” case than for the “slow centre” case.  At the “End” 

location, the “slow centre” “moving capacity” is 69.72 kN, and the “slow end” “moving 

capacity” is 72.66 kN; a difference of 4.2%.  This is a much greater offset than observed 

for the ¼” and ½” plate experiments.  Like the other experiments, it was expected that the 

portions of curves between approximately 100 mm and 550 mm would be very similar.  

Please note, that it is not expected that the curves be identical between 0 mm and 

somewhere up to 100 mm because this section would include the transient development of 

plastic buckling in the stiffener’s web for the “Centre” case, while it would already be well 

developed at 0 mm for the “End” case.  As the normal and lateral indenter speeds were 

nearly identical for both experiments, the difference is not attributable to strain-rate effects 

as they relate to indenter speed.  Further, because the frame specimens were constructed 



102 
 

(requiring a jig), and not simply cut-out using a computer controlled water-jet, it is possible 

that the two framed specimens (ML14 and ML15) were slightly different in their 

manufacturing and/or material properties.  Indeed, the frame specimen used in the 

MovingLoad14 experiment was the only one that did not have the “bevels” in the stiffener 

end plates.  It was subsequent to testing this frame specimen that it was decided to add 

“bevels” to the stiffener end plates to aid in installing and removing the frame specimens.  

It is extremely likely that the lack of these bevels increased the stiffness of the boundary 

conditions of the stiffener portion of the frame, leading to the anomalous results.  This 

conjecture is supported by finding from the numerical model (Chapter 5.4.1) where it is 

discovered that stiffer boundary conditions cause a greater decrease in a structures capacity 

to sustain moving loads. 

As with the above ¼” and ½” plate cases, Figure 4.11 suggests that lateral moving load 

capacity is independent of starting location.  While the blue and green curves to not match 

up as well as the other specimen types, this is not surprising for these frame tests as other 

unexpected behaviours occurred as described above. 
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Figure 4.11:  Lateral (horizontal) moving load capacities of “slow centre” and “slow end” 
frame cases with red line translated by +550 mm. 

4.4 ¼” Plates with Steel Wheel Indenter at -10°C:  2 cm Indentation 

Three experiments were performed on ¼” plate test specimens at -10°C using the steel 

wheel indenter at an indentation of 2.0 cm (0.787 in.) in the normal direction.  The reason 

these tests were performed was to probe the lower bound of when “moving load effects” 

begin.  The rest of the experimental parameters are the same as other displacement-

controlled steel wheel indenter tests, and are given Table 4.2 and discussed in the first 

paragraph of Chapter 4.1. 

Figures 4.12 and 4.13 and Table 4.9 present the experimental results relevant to this 

discussion.  All data collected for these experiments is presented in Appendix C2.1. 
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Figure 4.12:  Normal (vertical) force versus lateral (horizontal) displacement for -10°C ¼” 
plates:  2 cm indentation. 

Table 4.9:  ¼” plate normal (vertical) force capacity results at -10°C: 2 cm indentation. 

Experiment Speed 

End 
"Stationary 
Capacity" 

[kN] 

End 
"Moving 

Capacity" 
[kN] 

Centre 
"Stationary 
Capacity" 

[kN] 

Centre 
"Moving 

Capacity" 
[kN] 

Centre Slow N/A 66.62 87.69 N/A 
Centre Fast N/A 70.74 93.39 N/A 

End Slow 97.78 63.33 N/A 54.16 
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Figure 4.13:  Lateral (horizontal) force versus lateral (horizontal) displacement for -10°C 
¼” plates:  2 cm indentation. 

4.4.1  “Moving load capacity” vs. “stationary capacity” 

Figure 4.12 shows the normal reaction force of the frames versus lateral displacement of 

the steel wheel indenter.  Table 4.9 lists the key results from these experiments.  At the 

“Centre” position, the “slow” “stationary capacity” is 87.69 kN for a stationary indentation 

of 2.0 cm.  The “slow” “moving capacity” for a 2.0 cm indentation at this location is 54.16 

kN.  Therefore, the “moving capacity” at the “Centre” position is 62% of the “stationary 

capacity”.  As with the other cases explored above, any difference in the tests due to 

differences in strain-rate would only serve to increase the “moving capacity”, and thus 

mitigate any capacity loss due to load movement. 

Regarding the “End” position, the “stationary capacity” is 97.78 kN, and the “moving 

capacity” is 63.33 kN; therefore the “moving capacity” is 65% of the “stationary capacity”. 
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4.4.2 Strain-rate mitigation effects 

Regarding Figure 4.12 and comparing the “slow” normal “stationary capacity”, 87.69 kN, 

and the “fast” normal “stationary capacity”, 93.39 kN, at the plate’s centre shows an 

increase in “stationary capacity” of 6.5% due most likely to strain-rate effects.  As the 

overall load for these 2 cm indentations into ¼” plates is much lower than the other 

experiments, the normal indenter speed (i.e. vertical ram speed) was slightly higher than 

for the other tests, at 91.81 mm/s.  This greater speed is likely the greatest contributor to 

these experiments having the highest “rate-effects gain” for the centre position. 

From Figure 4.13 we can see that at the “End” position, the lateral “moving capacity” of 

the “slow centre” curve is 9.628 kN, and the “fast centre” curve is 10.36 kN.  This is a 7.6% 

gain due to strain-rate effects for the lateral “moving load capacity”. 

4.4.3 Further discussion 

It is evident from these experiments that “moving load effects” are just as significant at in 

indentation of 5% of the frame spacing (i.e. 2 cm) as they are for 10% (see next section) 

for ¼” plates. 

Unexpectedly, the “End” case showed a lower “moving load capacity” throughout the 

entire test for both normal and lateral loads.  As detailed above, it was expected that the 

moving load capacities for both normal and lateral force would be similar between 100 mm 

and 550 mm displacement. 

Like the other experiments above, Figure 4.14 shows that the lateral moving capacity is 

independent of the starting location, at the starting location.  Unlike the other experiments 
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above (except the room-temperature frame experiments), the behaviour of the “slow 

centre” and “slow end” curves do not match near the “End” position.  As will be seen below, 

this behaviour is not consistent with the other -10°C plate experiments.  It is unclear at this 

point what caused this behaviour. 

 

Figure 4.14:  Lateral (horizontal) moving load capacities of “slow centre” and “slow end” 
¼” plate cases: 2 cm indentation with red line translated by +550 mm. 

4.5 ¼” Plates with Steel Wheel Indenter at -10°C:  4 cm Indentation 

Three more experiments were performed on ¼” plate test specimens at -10°C using the 

steel wheel indenter; this time at an indentation equal to that of the ¼” plate room-

temperature experiments:  4.0 cm (1.575 in.).  The rest of the experimental parameters are 

the same as other displacement-controlled steel wheel indenter tests, and are given in Table 

4.2 and discussed in the first paragraph of Chapter 4.1. 
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Figures 4.15 and 4.16 and Table 4.10 present the experimental results relevant to this 

discussion.  All data collected for these experiments is presented in Appendix C2.2. 

 

Figure 4.15:  Normal (vertical) force versus lateral (horizontal) displacement for -10°C ¼” 
plates:  4 cm indentation. 

Table 4.10:  ¼” plate normal (vertical) force capacity results at -10°C: 4 cm indentation. 
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Centre Slow N/A 149.1 208.0 N/A 
Centre Fast N/A 161.7 221.3 N/A 

End Slow 235.9 154.5 N/A 125.5 
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Figure 4.16:  Lateral (horizontal) force versus lateral (horizontal) displacement for -10°C 
¼” plates:  4 cm indentation. 

4.5.1  “Moving load capacity” vs. “stationary capacity” 

Figure 4.15 shows the normal reaction force of the frames versus lateral displacement of 

the steel wheel indenter.  Table 4.10 lists the key results from these experiments.  At the 

“Centre” position, the “slow” “stationary capacity” is 208.0 kN for a stationary indentation 

of 4.0 cm.  The “slow” “moving capacity” for a 4.0 cm indentation at this location is 125.5 

kN.  Therefore, the “moving capacity” at the “Centre” position is 60% of the “stationary 

capacity”.  As with the other cases explored above, any difference in the tests due to 

differences in strain-rate would only serve to increase the “moving capacity”, and thus 

mitigate any capacity loss due to load movement. 

Regarding the “End” position, the “stationary capacity” is 235.9 kN, and the “moving 

capacity” is 154.5 kN; therefore the “moving capacity” is 65% of the “stationary capacity”. 
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4.5.2 Strain-rate mitigation effects 

Regarding Figure 4.15 and comparing the “slow” normal “stationary capacity”, 208.0 kN, 

and the “fast” normal “stationary capacity”, 221.3 kN, at the plate’s centre shows an 

increase in “stationary capacity” of 6.4% due primarily to strain-rate effects.  The rate-

effect gain from the similar room-temperature tests presented above is 5.9%.  As the normal 

and lateral indenter velocities are nearly identical for both the room-temperature and cold 

experiments, the only significant difference between the two is a temperature difference of 

approximately 30°C.  It is possible that the slight increase in normal rate-effects gain is due 

to the stiffening effect lower temperatures have on steel material properties; however the 

difference is practically negligible.  

From Figure 4.16 we can see that at the “End” position, the lateral “moving capacity” of 

the “slow centre” curve is 34.78 kN, and the “fast centre” curve is 38.93 kN.  This is a 12% 

gain due to strain-rate effects for the lateral “moving load capacity”.  As with the normal 

direction, this represents a small increase over the similar room-temperature experiments. 

4.5.3 Further discussion 

These experiments generally behaved as expected, except that – similar to above – the 

“slow end” case produced “moving load” results that were slightly less than the “slow 

centre” case. 

Regarding Figure 4.17 below, as with the above plate experiments (excepting the 2 cm ¼” 

experiments) this plot supports the theory that the lateral moving load is independent of the 

starting location. 
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Figure 4.17:  Lateral (horizontal) moving load capacities of “slow centre” and “slow end” 
¼” plate cases: 4 cm indentation with red line translated by +550 mm. 

4.6 ½” Plates with Steel Wheel Indenter at -10°C 

Three experiments were performed on 12.7 mm (1/2 in.) plate test specimens at -10°C using 

the steel wheel indenter.  All plates were indented 3 cm (1.181 in.) in the normal direction.  

The rest of the experimental parameters are the same as other displacement-controlled steel 

wheel indenter tests, and are given Table 4.2 and discussed in the first paragraph of Chapter 

4.1. 

Figures 4.18 and 4.19 and Table 4.11 present the experimental results relevant to this 

discussion.  All data collected for these experiments are presented in Appendix C2.3. 
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Figure 4.18:  Normal (vertical) force versus lateral (horizontal) displacement for -10°C ½” 
plates. 

Table 4.11:  ½” plate normal (vertical) force capacity results at -10°C. 
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Centre Slow N/A 149.1 208.0 N/A 
Centre Fast N/A 161.7 221.3 N/A 

End Slow 235.9 154.5 N/A 125.5 
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Figure 4.19:  Lateral (horizontal) force versus lateral (horizontal) displacement for -10°C 
½” plates. 

4.6.1  “Moving load capacity” vs. “stationary capacity” 

Figure 4.18 shows the normal reaction force of the frames versus lateral displacement of 

the steel wheel indenter.  Table 4.11 lists the key results from these experiments.  At the 

“Centre” position, the “slow” “stationary capacity” is 355.9 kN for a stationary indentation 

of 3.0 cm.  The “slow” “moving capacity” for a 3.0 cm indentation at this location is 243.7 

kN.  Therefore, the “moving capacity” at the “Centre” position is 68% of the “stationary 

capacity”.  As with the other cases explored above, any difference in the tests due to 

differences in strain-rate would only serve to increase the “moving capacity”, and thus 

mitigate any capacity loss due to load movement. 

At the “End” position, the normal “stationary capacity” is 376.0 kN, and the “moving 

capacity” is 270.4 kN; therefore the normal “moving capacity” is 72% of the “stationary 

capacity”. 
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4.6.2 Strain-rate mitigation effects 

Regarding Figure 4.18 and comparing the “slow” normal “stationary capacity”, 355.9 kN, 

and the “fast” normal “stationary capacity”, 372.4 kN, at the plate’s centre shows an 

increase in “stationary capacity” of 4.6% due primarily to strain-rate effects.   

From Figure 4.19 we can see that at the “End” position, the lateral “moving capacity” of 

the “slow centre” curve is 60.81 kN, and the “fast centre” curve is 64.24 kN.  This is a 5.6% 

gain due to strain-rate effects for the lateral “moving load capacity”. 

4.6.3 Further discussion 

These experiments generally behaved as expected, except that – similar to above – the 

“slow end” case produced “moving load” results that were slightly less than the “slow 

centre” case. 

Regarding Figure 4.20 below, as with the above plate experiments (excepting the 2 cm ¼” 

experiments) this plot supports the theory that the lateral moving load is independent of the 

starting location. 
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Figure 4.20:  Lateral (horizontal) moving load capacities of “slow centre” and “slow end” 
½” plate cases with red line translated by +550 mm. 
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rest of the experimental parameters are the same as other displacement-controlled steel 
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Figure 4.21:  Normal (vertical) force versus lateral (horizontal) displacement for -10°C 
frames. 

Table 4.12:  Frame normal (vertical) force capacity results at -10°C. 
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Figure 4.22:  Lateral (horizontal) force versus lateral (horizontal) displacement for -10°C 
frames. 

4.7.1 “Moving Load Capacity” vs. “Stationary Capacity” 

Figure 4.21 shows the normal reaction force of the frames versus lateral displacement of 

the steel wheel indenter.  Table 4.12 lists the key results from these experiments.  At the 

“Centre” position, the “slow” “stationary capacity” is 311.2 kN for a stationary indentation 

of 2.5 cm.  The “slow” “moving capacity” for a 2.5 cm indentation at this location is 254.4 

kN.  Therefore, the normal “moving capacity” at the “Centre” position is 82% of the 

“stationary capacity”.  As with the other cases explored above, any difference in the tests 

due to differences in strain-rate would only serve to increase the “moving capacity”, and 

thus mitigate any capacity loss due to load movement. 

Regarding the “End” position, the normal “stationary capacity” is 370.7 kN, and the 

“moving capacity” is 265.1 kN; therefore the “moving capacity” is 72% of the “stationary 

capacity”. 
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4.7.2 Strain-rate mitigation effects 

Regarding Figure 4.21 and comparing the “slow” normal “stationary capacity”, 311.2 kN, 

and the “fast” normal “stationary capacity”, 326.5 kN, at the plate’s centre shows an 

increase in “stationary capacity” of 4.9% due primarily to strain-rate effects.  Similar to the 

½” plate case above, the normal indenter speed was approximately 12.72 mm/s less than 

the ¼” case, and the lateral indenter speed was nearly identical at 185.06 mm/s, however 

the increase in structural capacity due to strain-rate effects is of a similar magnitude with 

the ¼” case.  As the plating of the frame was ¼” plate, membrane stresses played a similar 

role.  Further, the frame has a much more complex geometry than a simple plate and there 

is more steel in the vicinity of the load subject to strain-rate effects.  It is likely that, had 

the normal ram velocity been equal to the ¼” plate case, the increase in normal “stationary 

capacity” due to strain-rate effects would have been larger, due to the extra steel in the 

vicinity of the indenter. 

From Figure 4.22 we can see that the strain-rate related mitigation of capacity loss for the 

lateral “moving capacity” at the “End” position (see similar discussion above for the other 

cases above) is 7.6%; as the “moving capacity” for the “fast” case is 83.99 kN, and 78.05 

kN for the “slow centre” case.  As with the normal direction strain-rate related effects, this 

value is comparable with the increase observed in the ¼” plate case above.  It should be 

noted that the relative difference between the “End” “moving capacities” of the “slow 

centre” case, at 78.05 kN, and the “slow end” case, at 80.99 kN is higher at 3.8% than for 

the ¼” and ½” plate experiments above.  Observing both curves (i.e. MovingLoad27 and 

MovingLoad28) in Figure 4.22 shows that overall they agree fairly well from the centre of 
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the plate onwards, however they occasionally diverge by up to 9%, and cross each other 

twice.  Not only is the frame more complex geometrically than a plate, it is subject to much 

more manufacturing in the form of welding.  The discrepancies between these two curves 

are likely primarily a function slight manufacturing differences between the two samples. 

4.7.3 Further discussion 

These tests exhibited similar issues to those presented above, with the exception of a greater 

disagreement between the “End” position values of both “slow” lateral force vs. horizontal 

displacement curves. 

Regarding Figure 4.23 below, as with the above frame experiments, this plot does not 

support the theory that the lateral moving load is independent of the starting location, as 

the lateral moving capacity at the “End” starting location is not similar to that at the 

“Centre” starting location. 

 

Figure 4.23:  Lateral (horizontal) moving load capacities of “slow centre” and “slow end” 
frame cases with red line translated by +550 mm. 
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4.8 Force controlled Experiments at -10°C 

To investigate whether “moving load effects” are present for force- (or load-) controlled 

scenarios, three experiments were conducted; one on each of the three test specimen types:  

¼” plate, ½” plate, and frame.  The steel wheel indenter was used for all three tests.  Normal 

force on the test specimen’s plating was prescribed, and normal displacement was 

measured.  As lateral force control was not possible with the moving load apparatus, lateral 

displacement control was utilised to apply lateral motion during the experiments. 

The hypothesis for these three experiments is:  If normal force drops upon commencement 

of lateral load displacement for normal displacement controlled experiments, then under 

normal force control, the normal displacement should increase. 

The first experiment was conducted on a ¼” plate specimen.  Based on the above normal 

displacement controlled experiments on ¼” plates, a load of 125 kN was selected for this 

test.  A load rate of 10 kN/s was also used.  The load path was like the other tests:  stationary 

load, followed by lateral motion while holding the stationary load, followed by unloading.  

The lateral speed was equal to the “slow” experiments discussed above, and the indenter 

starting position was at the “End” (i.e. -550 mm).  A summary of the experimental 

parameters is given in Table 4.3. 

The second experiment was conducted on a ½” plate specimen.  Based on the above normal 

displacement controlled experiments on ½” plates, a load of 250 kN was selected for this 

test.  All other experimental parameters are identical to the force controlled ¼” plate 

experiment, and are given in Table 4.3. 
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The third experiment was conducted on a frame specimen.  Based on the above normal 

displacement controlled experiments on frames, a load of 250 kN was selected for this test.  

All other experimental parameters are identical to the force controlled ¼” plate experiment 

above, and are given in Table 4.3. 

4.8.1 Results 

Plots of normal displacement versus horizontal displacement for all three experiments are 

given in Figures 4.24 through 4.26.  Plots of lateral force versus horizontal displacement 

are given in Figures 4.27 through 4.29.  All other experimental data is provided in Appendix 

C2.5.  

Figure 4.24 shows the indenter’s normal (i.e. vertical ram) displacement versus indenter 

horizontal displacement for the ¼” plate force controlled experiment.  During the stationary 

load portion of the experiment, a 125 kN normal load induced a 25.1 mm indentation in the 

¼” plate.  Immediately upon commencement of lateral indenter motion the normal 

displacement began to increase, until it reached its maximum, 39.5 mm (an increase of 57% 

the original value), near the centre of the plate (as expected). 
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Figure 4.24:  Normal (vertical) displacement vs. lateral (horizontal) displacement for a 
force controlled ¼” plate experiment at -10°C. 

Figure 4.25 shows the indenter’s normal (i.e. vertical ram) displacement versus indenter 

horizontal displacement for the ½” plate force controlled experiment.  During the stationary 

load portion of the experiment, a 250 kN normal load induced a 20.6 mm indentation in the 

½” plate.  Immediately upon commencement of lateral indenter motion the normal 

displacement began to increase, until it reached its maximum, 30.5 mm (an increase of 48% 

the original value), near the centre of the plate (as expected). 
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Figure 4.25:  Normal (vertical) displacement vs. lateral (horizontal) displacement for a 
force controlled ½” plate experiment at -10°C. 

Figure 4.26 shows the indenter’s normal (i.e. vertical ram) displacement versus indenter 

horizontal displacement for the frame force controlled experiment.  During the stationary 

load portion of the experiment, a 250 kN normal load induced a 12.9 mm indentation in the 

frame.  Immediately upon commencement of lateral indenter motion the normal 

displacement began to increase, until it reached its maximum, 23.4 mm (an increase of 81% 

the original value), near the centre of the plate (as expected). 
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Figure 4.26:  Normal (vertical) displacement vs. lateral (horizontal) displacement for a 
force controlled frame experiment at -10°C. 

Figures 4.27 through 4.29 show the lateral force versus horizontal displacement plot for the 

force controlled frame experiments.  Their overall shape is similar to their corresponding 
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Figure 4.27:  Lateral (horizontal) force vs. lateral (horizontal) displacement for force 
controlled ¼” plate. 

 

Figure 4.28:  Lateral (horizontal) force vs. lateral (horizontal) displacement for force 

controlled ½” plate. 
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Figure 4.29:  Lateral (horizontal) force vs. lateral (horizontal) displacement for force 
controlled frame. 

The structural behaviour observed in these experiments was exactly as predicted, showing 

that “moving load effects” are equally present under force control. 
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was primarily responsible for the load-deflection behaviour of the frame.  As would be 
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event that does not occur in frames for similar stationary loads.  This suggests that it is not 

such an efficient design for resisting moving loads. 

4.9 Ice Cone Tests 

The ice cone experiments were divided into two major groups:  ice inciting an elastic plate 

response (referred to from this point on as elastic structural ice tests), and ice inciting a 

plastic plate response (referred to from now on as plastic structural ice tests.  Regarding 

the elastic structural ice tests, they are further subdivided into two groups:  tests involving 

Fujifilm PrescaleTM pressure film and tests that do not (i.e. ice directly acting on steel plate). 

Please note, the elastic structural ice tests involving the pressure film were conducted in a 

joint effort with Hyunwook Kim, and are the subject of another paper (Kim, Quinton 2015).  

As such, only the relevant differences due to sliding friction between these and the elastic 

structural ice tests without the pressure film will be discussed here.  The data for all ice 

cone tests are given in Appendix C3. 

4.9.1 Load path 

As discussed in 3.8.2, the load path for all ice cone indenter tests involves simultaneous 

vertical and lateral motions.  This load path was chosen to allow any potential changes in 

the behaviour of the ice cones resulting from lateral load movement to develop while the 

ice was being crushed (instead of crushing vertically, followed by lateral motion; as with 

the rigid wheel indenter). 
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4.9.2 Elastic structural ice tests without pressure film 

For these experiments, a ½” thick steel plate was the crushing surface.  The plate was 

mounted on the carriage of the moving load apparatus, similar to the procedure for the rigid 

wheel indenter experiments, except that it was not removed after each ice cone indenter 

test.  This is because the ½” steel plate remained elastic during each test, and was 

subsequently reused. 

4.9.2.1 Slow – MovingLoad30 and MovingLoad31 

Note:  MovingLoad31 is a repetition of MovingLoad30. 

Starting position: End 

Lateral travel:  1100 mm 

Lateral speed:  10 mm/s 

Vertical Travel: 30 mm 

Vertical speed: 0.25 mm/s 

These are “slow” speed tests.  The vertical indentation is at a rate where steady state 

crushing without the dramatic drops in load associated with large spalling (i.e. flaking) 

events should occur. 

One of the interesting phenomena that appeared during these ice cone on elastic plate 

experiments was a “chattering”, or “stick-slip” phenomenon that began partway through 

each “slow” test and decreased in frequency as the load increased.  This stick-slip 

phenomena is evident in Figures 4.30 and 4.31, and in Figure 4.32.  For MovingLoad30 the 

“chatter” begins at about time = 60 [s]; and for MovingLoad31 at about time = 70 [s].  
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Figure 4.30 is a plot of the normal force versus time, and Figure 4.31 is a plot of lateral 

force versus time.  Despite the fact that the two curves in Figure 4.30 are significantly 

different in their load response, the onset of this “stick-slip” phenomena occurs at about the 

same vertical load level of about 20 [kN] (4.5 [kip]).  The curves in Figure 4.31 are more 

alike, and the “chatter” begins at a horizontal load level of about 1 [kN] (0.25 [kip]).  Figure 

4.32 plots the normal and lateral forces versus time for both MovingLoad30 and 

MovingLoad31 on the same scale.  It is apparent from this figure that the amplitude of force 

vibration of the “chatter” is comparable in all cases, however inspection of the lateral force 

versus normal force curve for MovingLoad30 found in Figure 4.33 shows that the 

frequency of vibration is significantly higher for the normal direction than for the lateral 

direction.  Similar results are observed for MovingLoad31. 

It presently unknown whether this “stick-slip” phenomena is a result of a misalignment in 

the swing arm, which may have caused the response, or if this is a behaviour associated 

with moving ice loads.  It is unlikely that this chatter is the result of a “lock-in” phenomena 

that is a result of some resonant mode of vibration of the moving load apparatus.  This is 

because the frequency of vibration in both the horizontal and vertical directions decreases 

with time.  This is discussed more in the following section, where evidence appears that 

supports the “stick-slip” phenomenon as being inherent to slow moving ice loads. 

The vertical forces developed by the moving ice indenters were compared with similar 

cones crushing against a “rigid” surface.  Dillenburg (2012) reported values for an 

indentation speed of 0.3 mm/s in the range of 67-80 kN.  The vertical force results (taking 
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the mean of the “chatter”) for both ML30 (i.e. 62.5 kN) and ML31 (i.e. 46 kN) are below 

this range. 

Regarding friction, for MovingLoad30 the maximum horizontal force is 20 times less than 

the maximum vertical force; indicating a friction factor of 0.05 for the highest load.  A plot 

of Total Horizontal Force divided by Vertical Force is given in Figure 4.34.  For 

MovingLoad31, the maximum friction factor is approximately 0.07 (see Figure 4.35). 

 

Figure 4.30:  Normal (vertical) force versus time for “slow” experiments ML30 and ML31 
(ice cone on elastic plate) showing “chatter” phenomenon at about a 20 kN load level. 
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Figure 4.31:  Lateral (horizontal) force versus time for “slow” experiments ML30 and 
ML31 (ice cone on elastic plate) showing “chatter” phenomenon at about a 1 kN load level. 

 

Figure 4.32:  Normal (vertical) and lateral (horizontal) force versus time for “slow” 
experiments MovingLoad30 and MovingLoad31. 
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Figure 4.33:  Magnification of part of the lateral (horizontal) force versus normal (vertical) 
force for ML30. 

 

Figure 4.34:  Friction factor for “slow” experiment ML30 (i.e. Total Horizontal Force 
divided by Vertical Force). 
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Figure 4.35:  Friction factor for “slow” experiment ML31 (i.e. Total Horizontal Force 
divided by Vertical Force). 
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• For both ML30 and ML31, a “grid” like imprint is visible on the crushed surface of 

the ice cone.  This is the result of the ice conforming to the surface texture of the 

steel plate on which it was crushed.   

 

Figure 4.36:  Photograph of the ice cone indenter for “slow” experiment ML30 after the 
test – magnified section shows dark “deposits”. 
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4.9.2.2 Slow – MovingLoad38 and MovingLoad39 

Starting position: Absolute End 

Lateral travel:  900 mm 

Lateral speed:  1200 mm/s 

Vertical Travel: 30 mm 

Vertical speed: 0.25 mm/s 

These are more “slow” speed tests.  They are essentially identical to the above 

MovingLoad30 and MovingLoad31 tests, except that they have a slightly different starting 

point.  These tests start 65 mm closer to the short edge of the plate, and therefore experience 

a slightly different structural stiffness at the start of the experiment.  It may be argued that 

as the force is small, and because the plate is a “long plate” that there is practically little 

difference in stiffness of the crushing surface by the time any appreciable load arises.  This 

is likely the case, and comparisons with the previous two tests will be made.  

Like the previous two tests, these tests also exhibit the “chatter” noted above; evident in 

Figures 4.37 and 4.38.  This time however, the onset of chatter happens much earlier in the 

test (for both tests); at a vertical force value of approximately 5 [kN] (1.12 [kip]).  A major 

difference between these tests and the previous two tests is that the swing arm was realigned 

prior to these two tests; in order to fix a prior misalignment.  Misalignment of the swing 

arm for the previous two tests, may have acted to stabilize this “chatter” vibration in the 

previous tests, and the removal of that misalignment may have freed the “chatter” to start 

at a lower load for these two tests.  More work is needed to ascertain the origins of this 
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“chatter” (including a comparison of the frequency at which the servo-motor that controls 

the flow of oil to the vertical hydraulic ram with the chatter frequencies). 

Figure 4.37 is a plot of the normal force versus time, and Figure 4.38 is a plot of lateral 

force versus time.  The normal force curves in Figure 4.37 agree very well until about time 

= 80 [s], when a large spall event occurs in MovingLoad39.  It should be noted that the 

drop in load at time  = 120 [s] is due to the vertical motion of the indenter ceasing prior to 

the horizontal motion. 

As above, the normal force values for these tests were compared with similar results 

reported in Dillenburg (2012) (i.e. 67-80 kN).  The peak force for MovingLoad38, 76 kN 

(taking the mean of the “chatter”), falls within this range.  The peak force for 

MovingingLoad39, 56 kN (taking the mean of the “chatter”), is below this range.  These 

values are higher than the results of the previous two tests (considering that MovingLoad39 

experienced a spall event that the others did not). 

The average friction values for MovingLoad38 and MovingLoad39 are 0.06 and 0.07 

respectively; as seen in Figures 4.39 and 4.40. 
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Figure 4.37:  Normal (vertical) force versus time for “slow” experiments ML38 and ML39 
(ice cone on elastic plate) showing “chatter” phenomenon beginning at 5 [kN] for ML38 
and 9 [kN] for ML39. 

 

Figure 4.38:  Lateral (horizontal) force versus time for “slow” experiments ML38 and 
ML39 (ice cone on elastic plate) showing “chatter” phenomenon beginning at <0.5 [kN]. 
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Figure 4.39:  Friction factor for “slow” experiment ML38 (i.e. Total Horizontal Force 
divided by Vertical Force). 

 

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

 

 

X: 123.6
Y: 0.06225

Time [s]

D
iv

is
io

n 
of

 T
ot

al
 H

or
iz

on
ta

l F
or

ce
 a

nd
 V

er
tic

al
 F

or
ce

Division of Total Horizontal Force and Vertical Force vs. Time

MovingLoad38 - Ice Elastic Plate 4 Slow - Division of Total Horizontal Force and Vertical Force

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

 

 

X: 125
Y: 0.07146

Time [s]

D
iv

is
io

n 
of

 T
ot

al
 H

or
iz

on
ta

l F
or

ce
 a

nd
 V

er
tic

al
 F

or
ce

Division of Total Horizontal Force and Vertical Force vs. Time

MovingLoad39 - Ice Elastic Plate 5 Slow - Division of Total Horizontal Force and Vertical Force



139 
 

Figure 4.40:  Friction factor for “slow” experiment ML39 (i.e. Total Horizontal Force 
divided by Vertical Force). 

4.9.2.3 Fast – MovingLoad34 

Starting position: Absolute End 

Lateral travel:  900 mm 

Lateral speed:  100 mm/s 

Vertical Travel: 30 mm 

Vertical speed: 3.5 mm/s 

This is a “high” speed test.  The vertical indentation is at a rate where large spalling (i.e. 

flaking) events should occur, inducing a saw-tooth load response in the ice.  Indeed this is 

the case as can be seen for the vertical force in Figure 4.41 and the horizontal force in 

Figure 4.42.  “The chattering” was not evident in this test, suggesting that it is alleviated 

by successive large spalling events. 

Dillenburg (2012) reported values, for similar cones crushed against a rigid surface at a 

speed of 100 mm/s, in the range of 18-32 kN.  The vertical force results for ML34 (i.e. 43.7 

kN) are well beyond this range. 

Regarding friction, for MovingLoad34 the average friction coefficient was 0.03, as can be 

seen in Figure 4.43. 
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Figure 4.41:  Normal (vertical) force versus time for “fast” experiment ML34 (ice cone on 
elastic plate) showing sawtooth loading. 

 

Figure 4.42:  Lateral (horizontal) force versus time for “fast” experiment ML34 (ice cone 
on elastic plate) showing sawtooth loading. 
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Figure 4.43:  Friction factor for “fast” experiment ML34 (i.e. Total Horizontal Force 
divided by Vertical Force). 

4.9.3 Elastic structural ice tests with pressure film 

As mentioned above, a detailed account of these experiments will be published by Kim, H. 

and Quinton, B. in the near future.  What follows is a summary of the friction coefficients 

for moving ice loads on an elastic steel plate with an ice-polyester sliding interface, given 

in Table 4.13.  Figures 4.44, 4.45, and 4.46 show the friction factor (i.e. Total Horizontal 

Force divided by Vertical Force) curves for MovingLoad experiments 32, 33, and 35. 

  

0 1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time [s]

D
iv

is
io

n 
of

 T
ot

al
 H

or
iz

on
ta

l F
or

ce
 a

nd
 V

er
tic

al
 F

or
ce

Division of Total Horizontal Force and Vertical Force vs. Time

 

 

MovingLoad34 - Ice Elastic Plate 3 Medium - Division of Total Horizontal Force and Vertical Force



142 
 

Table 4.13:  Friction coefficients for moving ice load on elastic steel plate with ice-
polyester sliding interface. 

ML32 slow-elastic-pressure film polyester 0.02 
ML33 fast-elastic-pressure film polyester 0.03 

ML35 
pseudo in-along-elastic-
pressure film polyester 0.04 

 

4.9.3.1 Slow – MovingLoad32 

Starting position: End 

Lateral travel:  1100 mm 

Lateral speed:  10 mm/s 

Vertical Travel: 30 mm 

Vertical speed: 0.25 mm/s 

Notes:  With pressure film. 

MovingLoad32 is similar to MovingLoad experiments 30 and 31, except with the use of 

pressure film. 
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Figure 4.44:  Friction factor for “slow” “pressure film” experiment ML32 (i.e. Total 
Horizontal Force divided by Vertical Force). 

4.9.3.2 Slow – MovingLoad33 

Starting position: Absolute End 

Lateral travel:  1100 mm 

Lateral speed:  10 mm/s 

Vertical Travel: 30 mm 

Vertical speed: 0.25 mm/s 

Notes:  With pressure film. 

MovingLoad33 is similar to experiments MovingLoad34, except with the use of pressure 

film.  Note in determining the friction factor, the average value was calculated. 
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Figure 4.45:  Friction factor for “fast” “pressure film” experiment ML33 (i.e. Total 
Horizontal Force divided by Vertical Force). 

4.9.3.3 Slow – MovingLoad35 

Starting position: Absolute End 

Lateral travel:  1200 mm 

Lateral speed:  83 mm/s 

Vertical Travel: 30 mm 

Vertical speed: 83 mm/s 

Notes:  With pressure film. 

MovingLoad35 is a unique ice cone indenter test.  No attempt was made to have the vertical 
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within 0.4 [s] and the horizontal motion continues for 14 [s].  This provides a load path 

very similar to the sequential load path used in the rigid wheel indenter tests. 

 

Figure 4.46:  Friction factor for “pseudo in-along load path” “pressure film” experiment 
ML35 (i.e. Total Horizontal Force divided by Vertical Force). 

4.9.4 Plastic structural ice tests 

Two tests were done where moving ice cone indenters induced a plastic response in 1/8 in. 

steel plates. 

4.9.4.1 Slow – MovingLoad40 

Starting position: Absolute End 

Lateral travel:  1200 mm 

Lateral speed:  10 mm/s 

Vertical Travel: 30 mm 
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Vertical speed: 0.25 mm/s 

This test is similar to MovingLoad38 and MovingLoad39, except it is performed on a 1/8 

in. thick plate (instead of a ½ in. thick plate).  This test was a first attempt at plastically 

damaging a steel plate with a moving ice cone indenter.  Unfortunately, the vertical travel 

of 30 mm was not enough to incite much plastic damage as, due to the plate deformation, 

the depth of crushing into the ice cone was much less than 30 mm (see Figure 4.47). 

The “chatter” phenomenon is evident for this test, beginning at a normal (vertical) force 

level of 5 [kN] (1.12 [kip]) and a lateral (horizontal) force of 0.5 [kN] (0.11 [kip]) (see 

Figures 4.48 and 4.49). 

Comparison of the normal (vertical) peak force level for this experiment, 20 kN (4.5 [kip]) 

(taking the mean of the “chatter”), with similar results from Dillenburg (2012) (i.e. 67-80 

kN) shows that this force level is very low.  This is to be expected because the deformation 

in the plate accounted for much of the 30 mm vertical travel imposed on the ice cone during 

the test.  Assuming that this experiment fits with Dillenburg’s dataset, a peak vertical force 

of 20 kN would correspond with an indentation of approximately 14 mm on a rigid surface. 
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Figure 4.47:  Picture of ice cone indenter for experiment MovingLoad40 after the test was 
completed – the crushed surface of the ice cone is visible as the dark spot at the apex of the 
cone. 

The friction factor, 0.19, for this experiment was extremely high compared with the elastic 

structural ice tests.  This is undoubtedly due to the excessive deformation of this plate in 

comparison. 
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Figure 4.48:  Normal (vertical) force versus time for “slow” experiment ML40 (ice cone 
on plastic plate) showing “chatter” phenomenon beginning at 5 [kN]. 

 

Figure 4.49:  Lateral (horizontal) force versus time for “slow” experiment ML40 (ice cone 
on plastic plate) showing “chatter” phenomenon beginning at 0.5 [kN]. 
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Figure 4.50:  Friction factor for “slow” “plastic” experiment ML40 (i.e. Total Horizontal 
Force divided by Vertical Force). 

4.9.4.2 Fast – MovingLoad41 

Starting position: Absolute End 
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Vertical speed: 10.0 mm/s 

The vertical and horizontal speeds for this test were increased from the previous test.  At 

10 mm/s vertical indentation rate, we would expect to see large spall events and sudden 

drops in load.  Based on experience from the previous test, a vertical travel of 64 mm was 

chosen.  This value maximizes the ice crushing while minimizing artificial confinement 

from the ice holder (crushed ice cone shown in Figure 4.51). 
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Figure 4.51:  Picture of ice cone indenter for experiment MovingLoad41 after the test was 
completed – the crushed surface of the ice cone resembles the shape the plastically 
deformed plate on which it was acting. 

As with the fast elastic plate test above (MovingLoad34) the “chatter” phenomenon was 

not present for this fast experiment. 

Regarding peak normal and lateral forces (see Figures 4.52 and 4.53 respectively), the peak 

normal force is 59 [kN] (13.2 [kip]) and the peak lateral force is 6.8 [kN] (1.5 [kip]).  If the 

assumption is made that that this experiment fits with Dillenburg’s (2012) dataset, this 

would correspond with an indentation of somewhere between 35-45 mm on a rigid surface.  

This may not be a good assumption due to the level of plastic deformation present in the 

plate.  It is undetermined at this point whether confinement from the plastically deformed 

plate was a factor, or not.  It is likely however, based on Kim’s (2014) experiments of 



151 
 

crushing ice cones into concave wedge shaped crushing surfaces, that confinement is not a 

significant factor due to the lateral movement of the ice cone indenter.  As the ice cone 

indenter plastically damages the plate, it is essentially creating an elongating wedge shape.  

The difference between this case and Kim’s case is that the wedge on the leading side of 

the moving ice load is not open (i.e. crushed ice may not freely escape this way).  The only 

viable route for crushed ice to escape is on the trailing side of the ice cone indenter.  Further 

study is required to see if this scenario contributes to the confinement of crushed ice at 

contact interface. 

 

Figure 4.52:  Normal (vertical) force versus time for “fast” experiment ML40 (ice cone on 
plastic plate). 
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Figure 4.53:  Lateral (horizontal) force versus time for “fast” experiment ML40 (ice cone 
on plastic plate). 

Regarding the friction factor, the average of the data shown in Figure 4.54 yields a friction 

factor of 0.17.  This is very high, and like the previous experiment incorporates the effects 

of gross plastic deformation of the sliding surface (i.e. it is not purely the result of surface 

friction, but arises mostly from the action of the ice “plowing” through the steel in the 

lateral direction). 

0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

6000

7000

Time [s]

H
or

iz
on

ta
l F

or
ce

 T
ot

al
 [N

]

Total Horizontal Force vs. Time

 

 
MovingLoad41 - Ice Plastic 1/8" Fast - Total Horizontal Force



153 
 

 

Figure 4.54:  Friction factor for “fast” “plastic” experiment ML41 (i.e. Total Horizontal 
Force divided by Vertical Force). 

4.9.5 Results of moving ice cone indenter tests 

These experiments represent the first tests involving a moving ice cone acting on 

elastically, and plastically, deforming plates.  This section presents a cursory overview of 

the collected data. 

There is not enough evidence from the present study to say whether or not there is an 

appreciable effect, due to load movement, on the behaviour of ice acting on an elastic plate.  

Of the four slow speed “elastic plate response” tests (i.e. MovingLoad tests 30, 31, 38, and 

39), only the vertical force for MovingLoad39 was comparable in magnitude to similar 

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

X: 6.128
Y: 0.1724

Time [s]

D
iv

is
io

n 
of

 T
ot

al
 H

or
iz

on
ta

l F
or

ce
 a

nd
 V

er
tic

al
 F

or
ce

Division of Total Horizontal Force and Vertical Force vs. Time

MovingLoad41 - Ice Plastic 1/8" Fast - Division of Total Horizontal Force and Vertical Force



154 
 

published data (Dillenburg 2012) for stationary ice loads on a rigid surface.  The other three 

tests showed lower magnitudes.  The vertical force for the single fast speed “elastic plate 

response” ice cone test (MovingLoad34) was higher than Dillenburg’s results.  More study 

is required before anything definitive can be determined. 

Regarding moving ice loads on plastically deforming plates, it is also not possible with this 

limited data set to make any sort of generalisation.  One of the key issues with making use 

of the data from these experiments is determining how much of the imposed deflections on 

the ice cone holder go into deforming the plate, and how much go into deforming the ice.  

Without this data, it is impossible to benchmark the ice load against published stationary 

ice loads (e.g. Dillenburg (2012)), and it is also not possible to quantify the extent of the 

effect of ice load lateral movement on plate structural capacity.  Another key issue is 

determining the effect of confinement due to plastic deformation.  A new confinement 

scenario, similar to Kim’s (2014) concave wedge, has been identified, and requires further 

investigation. 

A “chatter” (or “stick-slip”) phenomenon was observed in the “slow” experiments for both 

the elastically and plastically deforming plates.  It is not clear whether this is a phenomenon 

of moving ice loads in general, or if it is a spurious effect of the test apparatus.  The data 

suggests the former.  This phenomenon, if valid, is worth investigation due to the amplitude 

and frequency ranges of the vibrations experienced by the moving load apparatus, which 

could be potentially dangerous to the integrity of hull structures at larger scale. 

Regarding friction, the following table, Table 4.14, summarizes the calculated friction 

coefficients for each of the experiments. 
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Table 4.14:  Summary of friction coefficients for moving ice indenter experiments. 

Test Category Material 
Max. Friction 
Coefficient 

ML30 slow - elastic steel 0.05 
ML31 slow - elastic steel 0.07 
ML38 slow - elastic steel 0.06 
ML39 slow - elastic steel 0.07 
ML34 fast - elastic steel 0.03 
ML40 slow - plastic steel 0.19 
ML41 fast - plastic steel 0.17 
ML32 slow-elastic-pressure film polyester 0.02 
ML33 fast-elastic-pressure film polyester 0.03 

ML35 
Pseudo in-along-elastic-pressure 
film polyester 0.04 

 

4.10 Summary of Results and Discussion 

Generally, the moving load experiments went well and the moving load apparatus behaved 

as it was designed to do.  The results of one experiment in particular are questionable:  

MovingLoad14.  This is a “fast” frame experiment conducted at room-temperature.  

Expectations based on the rest of the “fast” experiments indicate that the moving load 

capacity for this experiment should have been higher than the corresponding “slow” 

experiments.  There is one particular difference between this experiment and the rest of the 

frame experiments that could explain this discrepancy.  The frame specimen used in the 

MovingLoad14 experiment was the only one that did not have the “bevels” in the stiffener 

end plates.  It is extremely likely that the lack of these bevels increased the stiffness of the 

boundary conditions of the stiffener portion of the frame, leading to the anomalous results.  

This conjecture is supported by findings from the numerical model (Chapter 5.4.1) where 
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it is discovered that stiffer boundary conditions cause a greater decrease in a structures 

capacity to sustain moving loads. 

Also, the ice cone tests are summarized in Chapter 4.9.54.9.5, and are not repeated in this 

section. 

4.10.1 Capacity loss and strain-rate effects gains 

The moving load experiments show definitively that a significant structural capacity loss 

exists for plates and frames subject to moving loads causing plastic damage, versus similar 

stationary loads.    
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Table 4.15 summarizes this percentage capacity loss for the moving load experiments, as 

well as the capacity gains associated with the fast experiments – most likely due to strain-

rate effects – in the normal and lateral directions.  The moving load capacity losses are 

significant, ranging from 14% to 40% depending on the scenario.  The strain-rate effects 

capacity gains range from 2.1% to 6.5% in the normal direction, and 3.2% to 7.8% in the 

lateral direction. 
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Table 4.15:  Summary of moving load % capacity loss and strain-rate effects % capacity 
gains for the plate and frame specimens. 

Centre End Centre End Centre End Centre End Centre End Centre End Centre End
Normal 
Capacity Loss 
at Starting 
Location

38% 35% 40% 38% 40% 35% 31% 28% 32% 28% 15% 31% 18% 28%

Normal Rate-
effects Gain at 
Starting 
Location

6.5% N/A 5.8% N/A 6.4% N/A 2.1% N/A 4.6% N/A 5.1% N/A 4.9% N/A

Lateral Moving 
Rate-effects 
Gain at End 
Location

7.6% N/A 7.0% N/A 7.6% N/A 3.2% N/A 5.6% N/A 7.8% N/A 7.6% N/A

2.5 cm

20°C -10°C

3 cm

1/2 Plate

20°C -10°C-10°C

4 cm

20°C -10°C

2 cm

Starting Location

Indentation

Temperature

Specimen Type
1/4 Plate Frame

 

4.10.2 Force controlled experiments 

In addition to verification that moving load effects exist for displacement-controlled 

scenarios, these experiments confirmed their existence for force controlled scenarios too. 

As would be expected by comparison with their displacement-controlled counterparts, 

when a force causing plastic damage is held constant and lateral motion begins, the 

indentation made by the initial stationary load increases dramatically.  The percentage 

increase in indentation for each specimen type is given in   
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Table 4.16. 
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Table 4.16:  Increase in plate and frame indentation for force controlled moving load 
experiments. 

1/4" Plate 1/2" Plate Frame
Indentation increase 57% 48% 81%

Specimen Type

 

Regarding the lateral moving load capacity during the force controlled experiments, it is 

worth noting that the overall shape of the lateral moving load response curve is similar to 

the corresponding displacement-controlled experiments, except that the force rises over a 

longer lateral displacement (and hence time).  With the displacement-controlled curves the 

force rises much more quickly. 

The force controlled frame experiment provided surprising results as the moving load 

indentation was 181% of the stationary indentation.  This suggests that a T-stiffener is not 

a very efficient design for resisting moving loads. 

4.10.3 Verification of early onset of plastic buckling 

Quinton (2008) predicted that plastic buckling behaviour would occur in the web of a ship’s 

frame at a much lower load for moving loads causing plastic damage than for stationary 

loads.  This has been verified through the use of cameras mounted inside the specimen test 

carriage.  Figures 4.55 and 4.56 are frames from a video; the former is a side view of the 

frame’s web under full stationary load.  No evidence of plastic buckling is present.  Figure 

4.56 shows the frame later in time, after the moving load has passed.  While the distortion 

from the fish-eye lens make it difficult to discern, a severely buckled shape is evident on 

the left side of the figure in the stiffener’s web, above the weld. 



161 
 

 

Figure 4.55:  Fish-eye lens side view of frame’s web under full stationary load. 

 

Figure 4.56:  Side view of frame’s web under moving load. 
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4.10.4 Effect of temperature 

Table 4.17 presents the percentage difference in structural capacity at -10°C versus room-

temperature (a difference of approximately 30°C).  There is no apparent benefit or loss 

overall, as the data is scattered about 0%; and excepting the frame specimen, only ranging 

up to approximately ±5%.  The frame specimen appeared to benefit from a 12% increase 

in lateral structural capacity at the “End” position, but this value is an outlier and should be 

viewed with caution.  Further, this value was calculated from comparison with the 

MovingLoad14 frame experiment, which has been identified above as likely having 

different boundary conditions than the rest of the experiments.  

Table 4.17:  Temperature effects gains relative to room-temperature for all three test 
specimen types. 

1/4 Plate 1/2 Plate Frame 1/4 Plate 1/2 Plate Frame 1/4 Plate 1/2 Plate Frame
Normal Stationary 
at -550 mm

N/A N/A N/A N/A N/A N/A -1% 0% -6%

Normal Stationary 
at 0 mm

-1% 1% 2% -1% 4% 2% N/A N/A N/A

Normal Moving at 
0 mm

N/A N/A N/A N/A N/A N/A 0% 0% -2%

Normal Moving at 
550 mm

3% 0% -5% 3% 4% 3% 1% 1% -4%

Lateral Moving at 
550 mm

2% 1% 12% 3% 3% 12% 0% 1% 11%

Temperature Effects Gains Relative to Room Temperature

Slow Centre Fast Centre Slow End
Run Type

Specimen Type Specimen Type Specimen Type

 

4.10.5 Effect of starting location on lateral moving load capacity 

With the notable exceptions of the frame experiments and, to a lesser extent the -10°C 2 

cm indentation ¼” plate experiments, the lateral moving load capacity appears to be 

independent of the lateral indenter starting location for the ¼” plates and ½” plates. 
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4.11 Experiment Conclusions 

Large structural capacity losses (i.e. moving load effects) were shown to exist for both 

controlled normal displacements and controlled normal forces causing plastic damage in 

plates and frames.  This implies that moving load effects have very real consequences for 

hull structures, and that the design and analyses of the hulls of ships and offshore structures 

operating in conditions where they could be damaged plastically should explicitly account 

for moving load effects.  

Strain-rate was shown to provide limiting mitigating effects against this capacity loss.  This 

lends weight to the argument that strain-rate effects should be explicitly accounted for in 

the design and analyses of the hulls of ships and offshore structures. 

A temperature differential of 30°C (between room-temperature and -10°C) appears to have 

little to no effect on the behaviour of plates or frames concerning moving load effects.  

Therefore, this suggests that changes in the yield strength and post-yield strength of hull 

steels due to changes in temperature are slight and need not be explicitly considered in the 

design and analyses of the hulls of ships and offshore structures.  Note:  this conclusion 

does not consider notch toughness or transition temperature. 

Regarding the ice cone experiments, the most definitive result is the evidence of “chatter” 

(also known as “stick-slip” phenomenon) present in all slow speed tests.  This phenomenon 

consisted of oscillations in both the horizontal and vertical planes.   

The frequency of each appeared to decrease with increasing load magnitude.  Aside from 

this result, there is not enough evidence provided by the limited number of experiments 
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conducted to make any generalizations about the effect of lateral movement on the 

behaviour of ice.  Vertical force results for the slow speed ice cone experiments involving 

elastic plate response were generally below comparable published values (as described 

above), while the single fast test was well above.  Due to the variability inherent in ice 

loads, this data is not conclusive, and many more experiments are required in order to detect 

any trends.  Regarding the experiments involving ice cones acting on plastically deforming 

plates, it was not possible to measure the deflection of the plates during the experiment.  

This makes it impossible to determine the relative deformation of the ice and the plate, 

compared with the imposed displacement on the ice cone holder.  More experiments of this 

type are needed (with measurement of the deflection of the plate under load at various 

locations), so that the effects of load movement on both the ice, as well as the plastically 

deforming structure may be ascertained. 

Results of the room temperature experiments on plates and frames are used in the following 

chapter to develop a numerical model with which to further study/predict moving load 

effects on hull structures. 
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Chapter 5 Numerical Simulations 

Numerical simulations of three of the moving load experiments (geometries shown in 

Figure 5.1) were performed for the purposes of validating that the observed experimental 

effects can be simulated using the finite element method, as well as to provide insight into 

the phenomena leading to the loss of structural capacity observed for moving loads causing 

plastic damage versus similar stationary loads.  One simulation was performed for each of 

the three specimen types:  ¼” plate, ½” plate and frame.  The “slow” tests were used to 

benchmark the simulation cases so that the influence of strain-rate effects would be 

minimized (and thus yield strength becomes a constant, instead of a variable).  At this stage 

in the research, neglecting strain-rate effects greatly simplifies the validation of the 

numerical simulations. 

5.1 Scope and Objectives 

The scope and objectives of the numerical simulations were to: 

• Create and calibrate (using data from the experiments) a numerical model with 

which to replicate the room-temperature moving load experiments; 

• Investigate the structural behaviour underlying the moving load effects; 

• In particular, investigate the very early onset of plastic buckling of frame webs; 

• Develop a robust bottom-up modeling strategy that can easily be replicated in order 

to assess/investigate moving load effects. 
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Figure 5.1:  Plot of final numerical model geometries for the ¼” and ½” plate cases (top 
left) and for the frame case (top right).  Also shown, underneath, are renders of the physical 
specimens these numerical models represent.  

5.2 Methodology 

The objective of these simulations is to employ simple, standard and robust finite element 

techniques in order to adequately reproduce the behaviour observed in the moving load 

experiments discussed above.  This methodology implies that solution times are minimized, 

and that the method is transferrable across similar finite element packages.  This 

methodology is essentially a “bottom-up” approach21.  As will be shown below, past 

experience with similar simulations and trial-and-error were used to optimize the 

simulations.  Complexity was added only as necessary to capture the general behaviours 

                                                 
21 Here the term “bottom-up” refers to the process of adding complexity to the numerical model.  Approach 
starts off with the most basic assumptions, and adds complexity as is needed in order to capture the behaviour 
of the experiments. 
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observed in the experiments.  The following modelling approach was not developed 

without context however; as many numerical simulations were conducted during the design 

of the moving load apparatus in which it was often necessary to model components of the 

apparatus at a high level of detail.  One example of this is the carriage, which was modeled 

entirely including a frame test specimen, bolted connections, the sandwich ring, and the 

rigid indenter.  The experience gained from this and other detailed design simulations 

implicitly guided the numerical simulations presented herein. 

 

Figure 5.2:  Transparent view of design simulation of carriage, framed sample, bolted 
connections, sandwich ring, and rigid indenter. 
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Figure 5.3:  Mesh for simulation shown in Figure 5.2. 

5.2.1 Finite element code capability requirements 

Given that the moving load experiments exhibit highly nonlinear structural behaviour, 

contact between two bodies and generally transient behaviour, a transient finite element 

code with nonlinear geometric, material, and constraint capabilities was required for these 

simulations.  Further, due to the large degree of deformation attained in the moving load 

experiments, it was decided to employ explicit time integration.  LS-Dyna® was favoured 

for these simulations because it was originally created to solve highly nonlinear, transient 

dynamic finite element analyses using explicit time integration, and it incorporates 

extremely robust contact algorithms.  Further, LS-Dyna is highly scalable on distributed 

memory computing platforms.  This is a very attractive feature if one has access to a high 

performance computing (HPC) cluster, as the solution times of simulations are greatly 

reduced while the potential for numerical modelling accuracy through added detail and 
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enhanced ability to “fine-tune” is greatly increased.  The author was able to use Memorial 

University of Newfoundland’s STePS2 HPC cluster to leverage this capability in LS-Dyna. 

5.2.2 Indenter motion 

In order to benchmark these numerical models against the moving load experiments, it was 

decided to extract the indenter motions from the appropriate experiments and import them 

directly in the simulations as discussed in Chapter 5.3.9. 

5.2.3 DOE determination of undefined variables 

Three variables important to the successful numerical simulation of the moving load 

experiments were unknown:  yield strength, tangent modulus, and the vertical compliance 

of the moving load apparatus.  Regarding yield strength and tangent modulus, the type of 

steel used in the fabrication of the test specimens was known, and therefore the minimum 

values acceptable for that steel grade was known; however while the minimum values may 

be appropriate for design simulations, they are not accurate enough for accurate post-

experiment analyses.  Regarding the vertical compliance of the moving load apparatus, it 

is not possible to accurately determine this value after the experiments have been 

concluded. 

The main purpose of this response surface analysis was to ascertain appropriate values for 

the yield strength, the tangent modulus and the moving load apparatus’s vertical 

compliance.  Interaction effects between these three factors are not explored. 

As the response of the test specimens was assumed to be dependent on these three 

unknowns, and the three unknowns were assumed to interact, a design of experiments 
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(DOE) (Montgomery 2008) central-composite response surface method (RSM) (Myers, 

Montgomery et al. 2009) was used to estimate their values and determine their overall 

impact on the response of the test specimens. 

The central-composite response surface method was chosen because it excels at 

determining factor levels that simultaneously satisfy a set of desired specifications, as well 

as exploring the effect of changes in the factor levels over specified ranges.  This is the type 

of optimization required as the desired specifications are the results of the moving load 

experiments, and the factor ranges are either known, or able to be estimated.  It also 

provides guidance on the relative importance of each factor to the responses examined. 

5.2.3.1 Factors level determination 

The documentation that accompanied the steel used in all three test specimen types 

specified that the steel grade was “44W/50W”.  This is not a single steel grade, but two 

separate steel grades:  44W(300W) and 50W(350W).  The terms in brackets are the SI 

grade names, while the terms outside the brackets are the Imperial grade names).  Both of 

these steel types comply with the Canadian Standard CSA G40.21 and have nominal 

material properties given in Table 5.1. 

Table 5.1:  Material Properties of 44W and 40W steels. 

Mechanical Properties 44W/300W: Mechanical Properties 50W/350W: 
Tensile: 448 to 586 MPa [65 to 85 ksi] Tensile: 448 to 655 MPa [65 to 95 ksi] 
Minimum Yield: 303 MPa [44 ksi] Minimum Yield: 345 MPa [50 ksi] 
Elongation: 20% min in 8” 23% min in 2” Elongation: 19% min in 8” 22% min in 2” 

Source: www.chapelsteel.com 
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These properties provide the ranges for the yield strength and tangent modulus factors.  

Regarding yield strength, the values given in Table 5.1 are guaranteed minimums.  In 

practice, the values are likely to be very much higher.  As it is not known whether the steel 

plate is 44W or 50W, the yield strength range’s minimum was selected to be lesser of the 

two steel types: 300 MPa (44 ksi).  The maximum was chosen to be 448 MPa (65 ksi) as 

this spans the range of both steels up to their guaranteed minimum tensile strength. 

The ranges for the tangent modulus were initially determined via the following method.  

Tangent modulus may be defined with the following equation: 

 𝐸𝐸𝑡𝑡 =
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜎𝜎𝑦𝑦
𝜀𝜀𝑓𝑓 − 𝜀𝜀𝑦𝑦

 [ 3 ] 

where: 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the true tensile strength 

 𝜎𝜎𝑦𝑦 is the yield strength 

 𝜀𝜀𝑓𝑓 is the failure strain 

 𝜀𝜀𝑦𝑦 is the yield strain 

Note:  use of the failure strain, 𝜀𝜀𝑓𝑓, from Table 5.1 does not imply that material fracture was 

modeled in these simulations.  This value was only used to define 𝐸𝐸𝑡𝑡 for the strain hardening 

portion of the material curve.  As no failure strain was input into the numerical model, 

infinite plastic strains are theoretically possible. 

The minimum and maximum true tensile strengths were taken from Table 5.1, and are 

respectively 448 MPa (65 ksi) and 655 MPa (95 ksi).  For the purposes of this analysis, the 

minimum elongation is assumed to be the failure strain, and is assumed to occur at the true 
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tensile strength.  This value was chosen to be 20%.  The yield strain is a function of the 

following equation: 

 𝜀𝜀𝑦𝑦 =
𝜎𝜎𝑦𝑦
𝐸𝐸

 [ 4 ] 

where: 𝐸𝐸 is Young’s modulus and is assumed at 207 GPa 

Therefore the minimum tangent modulus is given by: 

 𝐸𝐸𝑡𝑡,𝑚𝑚𝑖𝑖𝑡𝑡 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡,𝑟𝑟𝑚𝑚𝑛𝑛−𝜎𝜎𝑦𝑦,𝑟𝑟𝑚𝑚𝑚𝑚

𝜀𝜀𝑓𝑓−�
𝜎𝜎𝑦𝑦
𝐸𝐸 �

= 448−448

0.20−� 303
207000�

= 0 MPa [ 5 ] 

This minimum value of 0 is unrealistic; therefore the next highest value was substituted: 

 𝐸𝐸𝑡𝑡,𝑚𝑚𝑖𝑖𝑡𝑡 =
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑖𝑖𝑡𝑡 − 𝜎𝜎𝑦𝑦,𝑚𝑚𝑖𝑖𝑡𝑡

𝜀𝜀𝑓𝑓 − �
𝜎𝜎𝑦𝑦
𝐸𝐸 �

=
448 − 303

0.20 − � 303
207000�

= 730 [ 6 ] 

The maximum tangent modulus is given by: 

 𝐸𝐸𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡,𝑟𝑟𝑚𝑚𝑚𝑚−𝜎𝜎𝑦𝑦,𝑟𝑟𝑚𝑚𝑛𝑛

𝜀𝜀𝑓𝑓−�
𝜎𝜎𝑦𝑦
𝐸𝐸 �

= 655−303

0.20−� 303
207000�

= 1773 MPa [ 7 ] 

Subsequent analysis with values from Equations [ 6 ] and [ 7 ] did not yield satisfactory 

results.  Therefore the range was modified to 𝐸𝐸𝑡𝑡,𝑚𝑚𝑖𝑖𝑡𝑡 = 585 MPa and 𝐸𝐸𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 = 976 MPa. 

Regarding compliance of the moving load apparatus in the normal direction, this was the 

subject of a numerical sensitivity analysis, from which it was determined a valid range 

would be 1.0E-8 mm/N to 2.5E-8 mm/N.  As will be discussed below, the normal 

compliance was implemented using four discrete linear springs in parallel, therefore the 

spring constant range for each individual spring was 1.0E7 N/mm to 2.5E7 N/mm.  All 

factor levels are summarized in Table 5.2. 
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Table 5.2:  Response surface factor level summary. 

Yield low Etan low Spring Rate per spring low
303 MPa 585 MPa 1.0E7 N/mm
Yield high Etan high Spring Rate per spring high
448 MPa 976 MPa 2.5E7 N/mm  

5.2.3.2 Responses measured 

In order to quantify the influence of the above factors, four responses were monitored.  

They are:  peak normal stationary load, normal moving load at centre of plate, lateral 

moving load at centre of plate, and peak lateral moving load.  Examples of the former two 

responses are shown in Figure 5.4 and the latter two responses in Figure 5.5. 

 

Figure 5.4:  Normal direction load response measuring points. 
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Figure 5.5:  Lateral direction load response measuring points. 

5.2.3.3 RSM design summary 

For a normal central composite RSM analysis with three factors, there would be nineteen 
runs.  Five centre-point runs and fourteen others.  As the results for this RSM analysis 
come from a deterministic computer program, the centre point will always have the same 
response; therefore it is unnecessary to repeat the centre run.  This brings the total number 
runs to fifteen.    
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Table 5.3 lists the factor levels for all fifteen runs. 
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Table 5.3:  RSM factor levels and runs for all three specimen types. 

Std. Run Run
Factor 1:  

Yield
Factor 2:  

Etan
Factor 3:  k

4 1 448.0 976.0 10000000
5 2 303.0 585.0 25000000
7 3 303.0 976.0 25000000
10 4 497.4 780.5 17500000
13 5 375.5 780.5 4886500
9 6 253.6 780.5 17500000
8 7 448.0 976.0 25000000
6 8 448.0 585.0 25000000
12 9 375.5 1109.3 17500000
3 10 303.0 976.0 10000000
2 11 448.0 585.0 10000000
1 12 303.0 585.0 10000000
14 13 375.5 780.5 30113000
15 14 375.5 780.5 17500000
11 15 375.5 451.7 17500000  

5.2.3.4 ½” plate specimen DOE analysis and predictions 

The results for the ½” plate case are given in   
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Table 5.4 and the design summary is given in Table 5.5. 
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Table 5.4:  RSM run results for ½” plate case. 

Std. Run Run
Factor 1:  

Yield
Factor 2:  

Etan
Factor 3:  k

Response 
1:  Ns

Response 
2:  Nm

Response 
3:  Ls

Response 
4:  Lm

4 1 448.0 976.0 10000000 336000 252000 43800 52500
5 2 303.0 585.0 25000000 308000 200000 42900 50100
7 3 303.0 976.0 25000000 317000 209000 44200 51900

10 4 497.4 780.5 17500000 416000 295000 54300 65900
13 5 375.5 780.5 4886500 232000 188000 29400 34800
9 6 253.6 780.5 17500000 261000 173000 36900 43200
8 7 448.0 976.0 25000000 420000 287000 35900 67800
6 8 448.0 585.0 25000000 413000 278000 55100 66500

12 9 375.5 1109.3 17500000 351000 244000 47600 57200
3 10 303.0 976.0 10000000 267000 191000 37000 43500
2 11 448.0 585.0 10000000 332000 246000 43500 52100
1 12 303.0 585.0 10000000 261000 184000 36200 42700

14 13 375.5 780.5 30113000 377000 247000 51500 60900
15 14 375.5 780.5 17500000 345000 237000 46800 56300
11 15 375.5 451.7 17500000 330000 219000 45000 53500  

Table 5.5:  RSM Design Summary for ½” plate case. 

Study Type Response Surface Runs 15
Design Type Central Composite Blocks No Blocks
Design Model Quadratic

Factor Name Units Type Subtype Minimum Maximum Mean Std. Dev.
A Yield MPa Numeric Continuous 254 497 376 72
B ETan MPa Numeric Continuous 452 1109 781 193
C k N/m Numeric Continuous 4886500 30113000 17499967 7407468

Response Name Units Obs Analysis Minimum Maximum Mean Std. Dev. Ratio Trans Model
R1 Peak V Stationary MPa 15 Polynomial 232000 420000 331067 59179 2 None RQuadratic
R2 V mid H MPa 15 Polynomial 173000 295000 230000 38881 2 None RQuadratic
R3 H mid H MPa 15 Polynomial 29400 55100 43340 7277 2 None RLinear
R4 H end H MPa 15 Polynomial 34800 67800 53260 9607 2 None RQuadratic  

An analysis of variance (ANOVA) for the Peak Normal Stationary Load response suggests 

that the model is significant (F value is 175.23), and that Factors A, C, AC and C2 are 

significant (see Table 5.5 to relate factor letter code to factor name); implying the response 

is non-linear.  Please note that while factor B, tangent modulus, was not considered 

significant, it was not removed from the response surface model; so the subsequent 
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optimization of the factor levels to attain the desired responses still depends on B for the 

peak normal stationary capacity. 

ANOVA for the Normal Moving Load response suggests that the model is significant (F 

value is 204.10), and that Factors A, C, AC and C2 are significant; implying the response 

is non-linear.  It is interesting to note that tangent modulus is not considered a significant 

factor for the stationary normal load. 

ANOVA for the Lateral Moving Load response suggests that the model is significant (F 

value is 6.42), and that Factors A and C, are significant; implying the response is linear.  It 

is interesting to note that tangent modulus is not considered a significant factor for the 

stationary normal load. 

ANOVA for the Lateral Peak Moving Load response suggests that the model is significant 

(F value is 204.10), and that Factors A, C, AC and C2 are significant; implying the response 

is non-linear.  As with the peak stationary capacity, tangent modulus was not significant, 

but not removed from the optimization. 

Optimizing the factor levels for the experimental response value results provides the 
predictions shown in   
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Table 5.6. 
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Table 5.6:  DOE optimized factors for experimental response values for ½” plate case. 

Response Experimental Result
Peak Stationary Normal Load 352000
Moving Normal Load 249000
Moving Lateral Load 47900
Peak Moving Lateral Load 64100
Factor Optimized Value
Yield Strength 433
Etan 585
k 1.42E+07  

5.2.3.5 ¼” plate specimen DOE analysis and predictions 

The run results for the ¼” plate case are given in Table 5.7 and the design summary is 
given in   
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Table 5.8. 

Table 5.7:  RSM run results for ¼” plate case. 

Std. Run Run
Factor 1:  

Yield
Factor 2:  

Etan
Factor 3:  k

Response 
1:  Ns

Response 
2:  Nm

Response 
3:  Ls

Response 
4:  Lm

12 1 375.5 1109.3 17500000 265000 142000 36100 41200
1 2 303 585 10000000 200000 107000 28000 31800
11 3 375.5 451.7 17500000 253000 133000 34200 39500
10 4 497.4299802 780.5 17500000 321000 175000 43100 49400
7 5 303 976 25000000 231000 120000 31200 35800
5 6 303 585 25000000 223000 113000 30200 34500
15 7 375.5 780.5 17500000 259000 154000 35100 40300
6 8 448 585 25000000 306000 161000 40600 47100
14 9 375.5 780.5 30113000 274000 141000 36400 42100
8 10 448 976 25000000 314000 167000 41600 48100
4 11 448 976 10000000 271000 171000 37600 42700
2 12 448 585 10000000 265000 165000 36800 41900
9 13 253.5700198 780.5 17500000 191000 110000 26200 29900
3 14 303 976 10000000 206000 125000 29000 32700
13 15 375.5 780.5 4886600 197000 118000 28700 32500  
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Table 5.8:  RSM Design Summary for ¼” plate case. 

Study Type Response Surface Runs 15
Design Type Central Composite Blocks No Blocks
Design Model Quadratic Build Tim  2

Factor Name Units Type Subtype Minimum Maximum Mean Std. Dev.
A Yield MPa Numeric Continuous 254 497 376 72
B ETan MPa Numeric Continuous 452 1109 781 193
C k N/m Numeric Continuous 4886600 30113000 17499973 7407456

Response Name Units Obs Analysis Minimum Maximum Mean Std. Dev. Ratio Trans Model
R1 Peak V Stationary MPa 15 Polynomial 191000 321000 251733 42763 2 None RQuadratic
R2 V mid H MPa 15 Polynomial 107000 175000 140133 23991 2 None RQuadratic
R3 H mid H MPa 15 Polynomial 26200 43100 34320 5258 2 None RQuadratic
R4 H end H MPa 15 Polynomial 29900 49400 39300 6215 2 None RQuadratic  

An analysis of variance (ANOVA) for the Peak Normal Stationary Load response 
suggests that the model is significant (F value is 264.18), and that Factors A, B, C, AC 
and C2 are significant (see   
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Table 5.8 to relate factor letter code to factor name); implying the response is non-linear. 

ANOVA for the Normal Moving Load response suggests that the model is significant (F 

value is 33.83), and that Factors A, C, AC and C2 are significant; implying the response is 

non-linear.  Like the ½” plate case, it is interesting to note that tangent modulus is not 

considered a significant factor for the stationary normal load.  Despite its apparent 

insignificance, tangent modulus (factor B) was not excluded from the response surface fit 

of the data. 

ANOVA for the Lateral Moving Load response suggests that the model is significant (F 

value is 251.12).  Unlike the ½” plate case where only Factors A and C are significant, 

Factors A, B, C, AC and C2 are significant for the ¼” plate case; implying the response is 

non-linear.  It should be pointed out that while the tangent modulus was not a significant 

factor for the normal moving load response, the RSM model predicts that it is significant 

for the lateral moving load response. 

ANOVA for the Lateral Peak Moving Load response suggests that the model is significant 

(F value is 313.53), and that Factors A, B, C, AC and C2 are significant; implying the 

response is non-linear. 

Optimizing the factor levels for the experimental response value results provides the 

predictions shown in Table 5.9.  It should be noted that the vertical spring rate predicted is 

less than the low factor level; therefore the RSM model is extrapolating this value. 

Table 5.9:  DOE optimized factors for experimental response values for ¼” plate case. 
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Response Experimental Result
Peak Stationary Normal Load 211000
Moving Normal Load 128000
Moving Lateral Load 27500
Peak Moving Lateral Load 37000
Factor Optimized Value
Yield Strength 378.8
Etan 585
k 6.3380E+06  

5.2.3.6 Frame specimen DOE analysis and predictions 

The run results for the frame case are given in   
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Table 5.10 and the design summary is given in Table 5.11. 
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Table 5.10:  RSM run results for frame case. 

Std. Run Run
Factor 1:  

Yield
Factor 2:  

Etan
Factor 3:  k

Response 
1:  Ns

Response 
2:  Nm

Response 
3:  Ls

Response 
4:  Lm

4 1 448 976 1.00E+07 292000 227000 50500 65400
5 2 303 585 2.50E+07 258000 160000 45900 51900
7 3 303 976 2.50E+07 265000 177000 49300 57500
10 4 497.43 780.5 1.75E+07 347000 240000 59600 75500
13 5 375.5 780.5 4.89E+06 214000 193000 34100 47100
9 6 253.57 780.5 1.75E+07 227000 147000 41800 48000
8 7 448 976 2.50E+07 344000 234000 59300 74000
6 8 448 585 2.50E+07 343000 217000 59500 68300
12 9 375.5 1109.3 1.75E+07 295000 208000 51800 66300
3 10 303 976 1.00E+07 234000 171000 43300 54600
2 11 448 585 1.00E+07 289000 211000 50600 64200
1 12 303 585 1.00E+07 230000 156000 40100 49900
14 13 375.5 780.5 3.01E+07 314000 199000 55000 63600
15 14 375.5 780.5 1.75E+07 291000 196000 51400 62800
11 15 375.5 451.71 1.75E+07 282000 195000 49400 60000*  

*  This value was estimated because the simulation failed to run to completion as the 451.71 
MPa tangent modulus level caused an instability. 

Table 5.11:  RSM Design Summary for frame case. 

Study Type Response Surface Runs 15
Design Type Central Composite Blocks No Blocks
Design Model Quadratic

Factor Name Units Type Subtype Minimum Maximum Mean Std. Dev.
A Yield MPa Numeric Continuous 254 497 376 72
B ETan MPa Numeric Continuous 452 1109 781 193
C k N/m Numeric Continuous 4886500 30113000 17499967 7407468

Response Name Units Obs Analysis Minimum Maximum Mean Std. Dev. Ratio Trans Model
R1 Peak V Stationary MPa 15 Polynomial 214000 347000 281667 43698 2 None RQuadratic
R2 V mid H MPa 15 Polynomial 147000 240000 195400 28595 2 None Linear
R3 H mid H MPa 15 Polynomial 34100 59600 49440 7443 2 None RQuadratic
R4 H end H MPa 15 Polynomial 47100 75500 60607 8946 2 None RQuadratic  

An analysis of variance (ANOVA) for the Peak Normal Stationary Load response suggests 

that the model is significant (F value is 154.86), and that Factors A, C, AC and C2 are 

significant (see Table 5.11 to relate factor letter code to factor name); implying the response 

is non-linear.  It is interesting to note that tangent modulus is not considered significant 

with respect to normal peak stationary capacity. 
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ANOVA for the Normal Moving Load response suggests that the model is significant (F 

value is 253.75), and that Factors A, B, and C are significant; implying the response is 

linear.  It is interesting to note that tangent modulus is considered a significant factor for 

the stationary normal load for the frames; where it was not for either of the plate cases.  

Figure 5.6 shows the results for four simulations where tangent modulus was varied 

between 1.0 GPa to 2.0 GPa.  As predicted by the RSM, there is a much more pronounced 

effect on the normal moving load capacity than on the normal peak stationary capacity. 

 

Figure 5.6:  Normal Capacity for a Frame with varying tangent modulus. 

ANOVA for the Lateral Moving Load response suggests that the model is significant (F 

value is 42.45), and that Factors A, C, and C2, are significant; implying the response is non-

linear.  Tangent modulus is not significant here (but left in the response optimization 

model). 
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ANOVA for the Lateral Peak Moving Load response suggests that the model is significant 

(F value is 58.73), and that Factors A, B, C, and C2 are significant; implying the response 

is non-linear. 

It should be noted that the factor optimization for the frame case required extrapolation for 

all response variables except peak normal stationary capacity.  Optimizing the factor levels 

for the experimental response value results provides the predictions shown in Table 5.12. 

Table 5.12:  DOE optimized factors for experimental response values for frame case. 

Response Experimental Result
Peak Stationary Normal Load 306000
Moving Normal Load* 272000
Moving Lateral Load* 60100
Peak Moving Lateral Load* 80300
Factor Optimized Value
Yield Strength 378.8
Etan 976
k 2.5800E+07  

* These responses required extrapolation during the optimization. 

As the steel used in the ¼” plate test specimens is the same steel used in the frame 

specimens, the RSM optimization for the frame case used 378.8 MPa as a target value for 

the yield strength factor (i.e. the value from the results of the ¼” RSM optimization).  

According to the two RSM models, the tangent modulus was more significant for the frame 

specimen than for the ¼” plate specimen, so it was not subject to a targeted value. 

5.2.3.7 A note about vertical compliance 

The vertical compliance factor, implemented as a linear spring in the numerical model, is 

meant to account for the fact that the experimental moving load apparatus is not perfectly 
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rigid.  The outcome of the RSM DOE analyses yielded three different spring constants; one 

for each of the ¼” plate, ½” plate and frame cases.  These values were 6.338 [MN/m] for 

the ¼” plate, 15.8 [MN/m] for the ½” plate, and 14.2 [MN/m] for the frame.  One might 

expect that this value should be constant; implying a linear vertical compliance.  Linearity 

may not be a good assumption in this case, as there are many nonlinearities in the physical 

system.  Some examples are:  a slight gap between the MTS crosshead and the beams 

supporting the linear roller-rail system; a small leak in the hydraulic system operating the 

locks keeping the MTS crosshead in place; and the fact that the hydraulic pump was 

powering more than just the moving load apparatus.  Additionally, the magnitude of force 

applied to the ¼” plates was significantly less than that applied to both the ½” plates and 

frames.  If the vertical spring constant was indeed nonlinear (as the DOE analysis suggests) 

than the fact that it is higher for the ½” plate and frame cases, than for the ¼” plate case, is 

plausible. 

5.3 Numerical Model 

The following sections describe the required inputs with which to numerically model 

moving loads, as well as the factors and decisions leading up to their implementation. 

5.3.1 Precision 

All simulations were solved in single precision.  The level of precision refers to either 

single or double floating-point format.  LS-Dyna recommends using single precision for 

structural simulations of this type.  It was verified for these simulations that there was no 

significant change in the results when the simulations were solved in double precision. 
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5.3.2 Geometry modeled 

Given the rigidity of the moving load apparatus’s carriage and vertical load supporting 

structure, initial application of the bottom-up approach implies that only the geometry of 

the test specimens and the rigid indenter need be modeled; as the test specimen would 

absorb the vast majority of the energy put into the system by the hydraulic rams. 

5.3.2.1 Test specimen geometries 

Initially, the geometries shown in Figures 5.7 and 5.8 were simulated.  Note the plating is 

divided into two sections.  The green section is the part that is free to deform while the 

yellow part is clamped between the moving load apparatus’s sandwich ring and carriage, 

and is restrained horizontally by the bolt holes. 

 

Figure 5.7:  Transparent view of geometry for plate test specimens:  plate and rigid indenter. 
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Figure 5.8:  Transparent view of frame test specimen geometry:  plate, “T” stiffener and 
rigid indenter. 

Trial-and-error showed that there was negligible difference in the results if the yellow 

portion of the plating was omitted (for both plate and frame test specimens); and instead 

the edges of the green section were fixed on all degrees of freedom.  Additionally, for the 

framed specimens, it was determined that it was not necessary to model the portion of the 

plate under the stiffener end plates (shown in Figure 5.9).  The stiffener end plates existed 

to provide boundary conditions for the stiffener during the moving load experiments, and 

it was unnecessary to model the plating underneath them as that portion of the plate was 

also fixed by the stiffener end plates. 
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Figure 5.9:  Framed specimen geometry shown with stiffener end plates. 

Figures 5.10 and 5.11 show the final geometries for each specimen type.  Because the test 

specimens’ plating was modeled with shell elements, plate thickness is a parameter of the 

shell element and therefore this thickness is not reflected in the geometry.  This allows the 

same geometry to be used for plate test specimens of all thicknesses. 
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Figure 5.10:  Final plate test specimen geometry (shown transparent). 

 

 

Figure 5.11:  Final frame test specimen geometry (shown transparent). 
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5.3.2.2 Indenter geometry 

The steel wheel indenter used in the moving load experiments is a 10.16 cm (4 in.) wide 

section of a 25.4 cm (10 in.) diameter sphere centred on the sphere’s equator.  To get the 

geometry for these simulations, a hollow sphere (i.e. a shell) of these dimensions was 

modeled in a CAD (computer aided design) program, then the appropriate sections were 

trimmed away leaving the desired 10.16 cm (4 in.) section (see Figure 5.12). 

 

Figure 5.12:  Indenter:  hollow sphere section (dimensions in inches). 

The largest indentation normal to the plating for any of the moving load experiments was 

4 cm (1.575 in.).  Also, because the moving load experiments involving the rigid indenter 

were frictionless, and sliding friction was not modeled in these simulations, it was not 

necessary to complicate these simulations by having the indenter spin about its centreline.  
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Instead a wedge of the indenter 5 cm (2 in.) in depth was trimmed out and used as the steel 

wheel indenter geometry (see Figure 5.13). 

 

Figure 5.13:  Indenter:  final geometry (dimensions in inches). 

5.3.3 Boundary conditions 

The following sections present a description of the boundary conditions employed in the 

numerical simulations carried out for this thesis, as well as guidance for simulations outside 

their scope. 

As discussed below, the simulations in this thesis exclusively employ shell elements for the 

deformable structure.  During the development of these “final” simulations, trial 

simulations were carried out where the stiffener end plates were explicitly modeled; using 

solid elements.  While it was determined that modeling the stiffener end plates was 

unnecessary for the final simulations, it was discovered that mating shell and solid elements 

is not trivial.  As it is likely that combinations of shell and solid elements might be used for 

various reasons when modeling ship structures, guidance, based on the experience of this 

work, is provided in this section for interfacing solid and shell elements. 
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5.3.3.1 Evolution by trial-and-error and final boundary conditions 

From initial trial-and-error numerical simulations, it was discovered that the “bottom-up” 

assumption that most of the energy would be absorbed by the test specimen was not valid.  

With the initially fixed boundary conditions in the vertical (i.e. normal) direction the 

stationary loads were too high, and the moving loads were too low.  This is a significant 

result that implies that the normal boundary stiffness has a significant result on the moving 

load behaviour of a plate or frame.  It is believed that a small but noticeable amount of 

energy was being directed into recoverable elastic deformation of the vertical supporting 

structure and the hydraulics system; or in other words, the moving load apparatus has a 

noticeable compliance in the vertical (i.e. normal) direction. 

It was decided to numerically model this recoverable vertical compliance using discrete 

linear springs.  To accomplish this, the nodes on the boundaries of the plating were 

converted into a “constrained nodal rigid body” (CNRB); implying that they move together 

as a rigid body, and that their positions relative to each other are fixed.  The horizontal (x- 

and y-direction) translations and all rotations were then fixed; while vertical translation was 

left free.  Four discrete linear springs (one at each corner of the plating) were then applied.  

The spring constant was deduced by a design of experiments (DOE) central-composite 

response surface analysis (along with other factors) as outlined in Chapter 5.2.3.  Figure 

5.14 depicts the CNRB boundary (brown) with attached linear springs (blue) for a plate 

specimen.  Please note, the lines connecting all nodes to one node in particular are 

inconsequential to the behaviour of the nodes as a system and exist as part of how the nodal 

rigid body is defined internally in LS-Dyna. 
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Figure 5.14:  Plan view of plating boundary conditions (half of plate specimen shown). 

5.3.3.2 Indenter boundary conditions 

The rigid wheel indenter’s motion is restricted in the y-direction, and in rotations about x, 

y, and z.  Its translation in the x and z directions are prescribed as outlined in Chapter 5.3.9.  

Contact between the test specimen’s plating and the indenter is detected as detailed below.  

The fact that the rigid wheel indenter is restricted in rotation is inconsequential from the 

viewpoint of interface forces because friction is not included in the contact interface 

definition.  The two bodies slide past each other without friction. 

5.3.3.3 Guidance on interfacing solid and shell elements 

As discussed in section 5.3.3, the stiffener end plates were modeled during the evolution of 

these numerical models.  Although they are not present in the final numerical models, this 

section details a method for mating solid and shell elements, and a rudimentary method to 

include welds between them. 
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The “T” stiffener and plating were modeled using shell elements and the stiffener end plates 

were modeled with solid elements.  Defining connections between solid elements and shell 

elements is not trivial as thickness is a parameter for two dimensional shell elements, while 

it is explicitly geometrically defined for three dimensional solid elements.  There are at 

least two methods to connect shell elements to solid elements in LS-Dyna:  implementation 

of the *CONSTRAINED_SHELL_TO_SOLID card, or through the use of constrained 

nodal rigid bodies (CNRB).  The latter method was chosen for these simulations due to its 

efficacy in this case.  Essentially, given a body comprised of shell elements that shares an 

edge interface with a body comprised of solid elements, but without coincident nodes (i.e. 

the meshes are not connected; which is the recommended situation) both of the above 

methods allow the nodes at the interface to be “tied” such that motion of a shell node at the 

interface will induce motion in nodes of the solid body that fall within the thickness 

parameter of the shell element.  Figure 5.15 depicts the connection of the stiffener flange 

(blue shell elements) and the stiffener web (red shell elements) to the stiffener end plate 

(brown solid elements) using a CNRB (yellow). 

It should be noted that a shell element’s “reference surface” must be considered when 

mating solid and shell elements.  The reference surface for the web’s shell elements (red) 

lies half way along their “thickness” (i.e. zero reference surface offset).  As such, the neutral 

axes of these shells coincide with their “reference surface”.  Unlike the web, the reference 

surface for the flange’s shell elements is offset to the negative vertical extent of the shell 

“thickness”, implying that the shell’s neutral axes are half their thickness above their 

reference surfaces.  The reference surfaces were chose this way so that the “thicknesses” 
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of the perpendicular shells do not overlap (see Figure 5.16).  These offsets are important 

for how the shell-to-solid interfaces are defined.  Figure 5.15 shows that the nodes of the 

flange (blue) have been tied to the horizontally adjacent solid element nodes of the stiffener 

end plate, as well as the solid element nodes one shell thickness above.  The nodes of the 

web have been tied to adjacent solid element nodes within half the shell thickness to either 

side of the shell.  

 

Figure 5.15:  Internal “shell to solid” CNRB connection (yellow). 



201 
 

 

Figure 5.16:  Shell reference surfaces (black) with zero offset (left) and with full offset to 
one side (upper right “flange”). 

The nodes of the plating are attached to the stiffener end plates in a similar manner.  The 

reference surface for the plating shell elements are offset away from the stiffener web (i.e. 

negative z-direction).  Rather than have overlapping plate and solid elements, and to 

facilitate the shell to solid transition, it was decided to extend the stiffener end plate material 

through the plating (see Figures 5.17 and 5.18).  The resulting structure is no different than 

the experimental test specimens as the same volume of steel is present; and it responds in 

the same way. 
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Figure 5.17:  Plating showing cut-out for stiffener end plate. 

 

 

Figure 5.18:  Internal connection for plating and stiffener end plate. 
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Additionally, it was a simple matter to capture the weld toe between the stiffener end plates 

and the plating by including extra elements at the appropriate locations in the CNRB 

definition.  Figure 5.19 depicts a CNRB (blue) that joins the solid elements of the stiffener 

end plate to the shell elements of the plating.  The nodes immediately adjacent to the solid-

shell interface nodes were positioned at the location on the plate where the weld toe would 

be.  These nodes were included in the CNRB definition, and thus the weld geometry was 

included in the model as a rigid body. 

 

Figure 5.19:  CNRB (blue) with added nodes to simulate rigid weld geometry. 

5.3.3.4 Summary of boundary conditions 

Tables 5.13 and 5.14 summarize the global and internal finite element boundary conditions, 

respectively.  Please note that these tables reflect the final numerical model boundary 
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conditions, as presented in Chapters 5.3.3.1 and 5.3.3.2.  Boundary conditions described in 

Chapter 5.3.3.3 were not included in the final numerical model. 

Table 5.13:  Summary of global finite element boundary conditions. 

Part X-Translation Y-Translation Z-Translation X-Rotation Y-Rotation Z-Rotation

Plate CNRB CNRB
Vertical Linear 

Springs
CNRB CNRB CNRB

Stiffener 
Ends

CNRB CNRB Free CNRB CNRB CNRB

Rigid 
Indenter

Prescribed 
Motion

Fixed
Prescribed 

Motion
Fixed Fixed Fixed

 

Table 5.14:  Summary of internal connections between finite element parts. 

Part Connections Plating Stiffener Web Stiffener Flange
Plating - Continuous Mesh Continuous Mesh
Stiffener Web Continuous Mesh - Continuous Mesh
Stiffener Flange Continuous Mesh Continuous Mesh -  

5.3.4 Finite element meshes 

Shell elements were used exclusively to model the test specimens.  Solid elements were 

used for the steel wheel indenter mesh.  Solid elements are not recommended for modeling 

plates or frames for several reasons.  Reduced integration solid elements do not capture 

plate bending properly unless there are at least five layers of solid elements through-

thickness.  Implementing a minimum of five solid element layers through-thickness either 

leads to solid elements that are much thinner in one direction, and hence not well formed; 

or excessively small, well-formed solid elements.  Either way, the single small dimension 

will drastically decrease the simulation’s stable time-step size.  This coupled with the added 

expense of utilising solid elements leads to excessively long run times with little to no 
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benefit in accuracy over shell elements.  Fully-integrated solid elements would alleviate 

this bending problem somewhat (e.g. only two to three layers may be required), but these 

element types suffer from shear and/or volumetric locking as Poisson’s ratio nears the 

incompressible limit (i.e. 0.5), limiting their effective use to linear-elastic or small-strain 

plastic problems.   

Beam elements are not recommended for modelling moving loads causing plastic damage 

either.  A possible application for beam elements may be to model the stiffener attached to 

the plating for the frame test specimens.  This is not recommended for this purpose where 

large deformations occur, because beam elements generally do not incorporate membrane 

stretching; which plays an important role not only in the plating, but also in the frame’s 

stiffener. 

5.3.4.1 Plate specimen mesh 

The finite element mesh for the plating of both plate sample types (¼” and ½” plates) is 

shown in Figure 5.20.  The geometry is meshed entirely with 12,255 quadrilateral shell 

elements, which have an average edge length of 7 mm (0.276 in.).   
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Figure 5.20:  Final shell element mesh for plate sample types. 

For the ¼” plates (6.35 mm thick), the average shell element edge length is approximately 

7.5 mm (0.3 in.).  This implies a very fine mesh.  The same mesh was used for the ½” plates 

(12.7 mm thickness); which implies an extremely fine mesh.  Caution is advised when using 

elements with edge lengths less than their thickness for two reasons:  1. Depending on the 

shell formulation used, this may violate the formulation of the shell element and impact the 

bending response of the shell; and 2. when used with automatic contact algorithms in LS-

Dyna, the program will assume the larger of either the element edge length, or the thickness 

to be the contact thickness.  In this case, contact between bodies will occur too soon unless 

a specific contact thickness is explicitly defined.  The contact thickness was explicitly set 

for these numerical simulations by defining the plate with a PART_CONTACT card and 

setting the contact thickness with option OPTT, in Card 2. 
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Shell sensitivity study 

The shell element formulation used in these simulations is LS-Dyna’s default:  type 2 – 

Belytschko-Lin-Tsay.  Shell element formulation was the subject of an extensive sensitivity 

study, where all of LS-Dyna’s compatible shell element types were trialed to correctly 

model the behaviour of the web of the framed specimens under moving loads.  The other 

shell formulations investigated were type 1 – Hughes-Liu shells, type 16 – Fully Integrated 

shells, type 10 – Belytschko-Wong-Chiang shells, type 8 – Belytschko-Leviathan shells, 

type 6 – selectively reduced (S/R) Hughes-Liu shells, type 25 – Belytschko-Lin-Tsay shells 

with thickness stretch, and type 26 -  Fully Integrated with thickness stretch.  The criteria 

for selecting the best shell element type was (in descending order of importance):  structural 

behaviour compared with the results of the moving load experiments, energy ratio, and 

solution time.    Energy ratio is defined by the following equation: 

 
𝐸𝐸.𝑅𝑅. =

𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡
𝐸𝐸𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡0 + 𝑊𝑊𝑡𝑡𝑚𝑚𝑡𝑡

=
𝐸𝐸𝑘𝑘𝑖𝑖𝑡𝑡 + 𝐸𝐸𝑖𝑖𝑡𝑡𝑡𝑡 + 𝐸𝐸𝑡𝑡𝑖𝑖 + 𝐸𝐸𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑑𝑑𝑚𝑚𝑚𝑚𝑝𝑝 + 𝐸𝐸ℎ𝑔𝑔

𝐸𝐸𝑘𝑘𝑖𝑖𝑡𝑡0 + 𝐸𝐸𝑖𝑖𝑡𝑡𝑡𝑡0 + 𝑊𝑊𝑡𝑡𝑚𝑚𝑡𝑡
  [ 8 ] 

where: 𝐸𝐸𝑘𝑘𝑖𝑖𝑡𝑡 is the kinetic energy 

 𝐸𝐸𝑖𝑖𝑡𝑡𝑡𝑡 is the internal energy 

 𝐸𝐸𝑡𝑡𝑖𝑖 is the sliding interface energy (including friction) 

 𝐸𝐸𝑟𝑟𝑟𝑟is the rigid wall energy 

 𝐸𝐸𝑑𝑑𝑚𝑚𝑚𝑚𝑝𝑝 is the damping energy 

 𝐸𝐸ℎ𝑔𝑔 is the hourglass energy 

 𝐸𝐸𝑘𝑘𝑖𝑖𝑡𝑡0  is the initial kinetic energy (i.e. at time 𝑡𝑡 = 0) 

 Eint0  is the initial internal energy (i.e. at time t = 0) 
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 𝑊𝑊𝑡𝑡𝑚𝑚𝑡𝑡 is the external work 

This ratio should be close to 1, and variations away from unity may indicate various 

problems (including contact issues, hourglassing, etc…).  Simulation time is the length of 

real time it takes for a simulation to run to completion.  The various shell element 

formulations model various behaviours and treat some behaviours in different ways; and 

therefore require different numbers of calculations (per timestep) to implement.   

In addition to the various shell element formulations, various shell control parameters were 

also part of the sensitivity study, specifically:  warping stiffness, shell thinning, full iterative 

plasticity, various numbers of through thickness integration points, and through thickness 

integration method (Gaussian versus Lobatto).  Shell thinning may be modeled explicitly 

as a shell undergoes membrane stretching.  Shell thinning was found to have no benefit for 

these simulations.  Full iterative plasticity refers to how the stress-strain curve is utilised 

during plastic deformation.  It is particularly effective at utilising noisy experimental stress-

strain curves, but had no appreciable benefit for a standard bilinear material model.  On the 

surface, this option would appear to be a material option, however is only applicable to 

shell elements in LS-Dyna.  The number of through thickness integration points (NIP) 

directly affects the accuracy of the shell results as strains are assumed to be linear through 

the shell thickness.  No benefit was found from adding more than 5 NIP in these 

simulations.  There are two options for through thickness integration method:  Gaussian 

and Lobatto.  The former places the outermost integrations at the location relative to the 

shells outer surface as given in Table 5.15.  Lobatto integration places the outermost 

integration points at the shell surface.  Lobatto integration was tried for these simulations, 



209 
 

but negatively affected the structural behaviour.  Gaussian integration was subsequently 

used in the final simulations. 

Table 5.15: Relative position of outermost point for Gaussian integration for shell elements. 

Midplane (0.0)
2 NIP 0.5774
3 NIP 0.7746
4 NIP 0.8611
5 NIP 0.9062

Outer Surface (1.0000)

Outermost Point

 

The CONTROL_SHELL option CNTCO, which is meant to account for shell reference 

surface offsets in the treatment of contact between bodies, caused some very strange 

behaviour in these models, and its use was abandoned (LS-Dyna version 971R7.1.1 was 

used for these simulations). 

In summary shell elements with the following attributes were selected for these numerical 

simulations: 

Table 5.16:  Summary of shell element attributes. 

Attribute Value
Type Belytschko-Lin-Tsay

Shear Factor 5/6
Through Thickness Integration Points 5

Through Thickness Integration Method Gaussian
Shell Thinning No

Warping Stiffness Yes
Projection method for warping stiffness Full  
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5.3.4.2 Framed specimen meshes 

The parameters of the mesh for the framed specimen are identical to those of the plate 

specimen meshes except that are 17,168 quadrilateral, and 24 degenerate triangular shells.  

The framed specimen mesh is shown in Figure 5.21. 

 

Figure 5.21:  Final framed specimen mesh. 

5.3.4.3 Indenter mesh 

While the indenter geometry is a surface (as defined in 5.3.2) it was desired to have the 

indenter meshed with solid elements, as solid to shell contact is more robust than shell to 

shell contact (Hallquist 2006, ANSYS Inc. 2011).  Shell to shell contact is slightly more 

complicated than shell to solid contact because shell thickness is considered in the contact 

algorithm employed.  The contact interface has to be inferred from two “pseudo” surfaces 

for shell to shell contact, instead of one “pseudo” surface and one geometric surface for the 

case of shell to solid contact.  Any error in detection of the nodes near the contact surface 
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can lead to penetration of nodes through the contact surface.  This can be a problem for 

rigid shells, which would be the case for these simulations if shells were used for the 

indenter mesh. 

In order to mesh the indenter with solid elements, the surface geometry was temporarily 

meshed with shell elements, and these shells were then extruded into solid elements (and 

the shells subsequently deleted).  The extrusion distance was equal to the average edge 

length of the shell elements (see Figure 5.22). 

 

Figure 5.22:  Rigid indenter mesh. 

An average element edge length of 2 mm (0.079 in.) was chosen, as it is smaller than the 

average edge length of the mesh of the plating, and it captures the curvature of the steel 

wheel indenter very well.  Further, increasing mesh density for rigid bodies is usually 

recommended by LS-Dyna, as it not only improves the discretization of the bodies shape, 

it improves the inertial properties of the rigid body as well. 
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5.3.4.4 Mesh convergence study 

A mesh convergence study identifies the ideal point between simulation efficiency and 

accuracy.  Several mesh sizes were examined:  5 mm, 7 mm, and 10 mm edge lengths.  

They all converged to a similar solution for the plate samples, but the 7 mm mesh was 

found to be optimal for the framed samples as it took considerably less time to run the 

simulations to completion. 

5.3.5 Material model 

The bottom up modelling approach, implies that the simplest material models that capture 

the required phenomena be initially chosen.  They are PLASTIC_KINEMATIC (Mat_3) 

(Hallquist 2006, LSTC 2014) and MAT_RIGID (Mat_20) (Hallquist 2006, LSTC 2014).  

Mat_3 was used to model the deformable structure and Mat_20 was used to model the rigid 

indenter. 

The Mat_3 material is properly titled Elastic Plastic with Kinematic Hardening.  It is 

capable of modelling bilinear elasto-plastic behaviour; including strain-rate effects and 

element failure (in the form of element erosion at a specified strain).  The inputs for Mat_3 

are:  density, Young’s modulus, Poisson’s ratio, yield strength, tangent modulus, beta, 𝐶𝐶, 

𝑝𝑝, failure strain, and rate effects formulation.  Density, Young’s modulus, Poisson’s ratio, 

and yield strength need no explanation.  Tangent modulus is slope of the plastic hardening 

curve.  Beta is the value defining the ratio between completely kinematic hardening (i.e. 

migration of the centre of the yield surface with a fixed yield radius), 1.0, and completely 

isotropic hardening (i.e. fixed centre of yield surface with yield radius as a function of 

plastic strain), 0.0.  A sensitivity study showed that a beta value of 1.0 provided the best 
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results for these numerical simulations. 𝐶𝐶 and 𝑝𝑝 are the Cowper-Symonds parameters used 

in implementing strain-rate effects as discussed in Chapter 2.5.2.  Strain-rate effects were 

not included in these simulations as they were deemed not to be a factor for the “slow” 

moving load experiments utilised in the benchmarking of these models.  Failure strain is 

simply a finite strain at which an element disappears (including its mass) from the 

simulation.  Failure strain was not employed in these simulations.  Finally rate effects 

formulation is a switch that defines whether the Cowper-Symonds model uses the “total 

strain-rate” (i.e. including elastic strain-rate), 0.0, or the “plastic strain-rate” (excluding the 

elastic strain-rate), 1.0.  A sensitivity study showed that the structural response for these 

simulations was more accurate when the plastic strain-rate was used (i.e. VP=1). 

Mat_3 is commonly used for modeling metals that may (or may not) exhibit kinematic 

hardening as it is a very mature and efficient material model. 

The Mat_20 rigid material model is a convenient way of turning a part into a rigid body.  

Rigid bodies are extremely efficient because rigid elements are bypassed in the element 

solving, and no storage is allocated for saving their history variables (Hallquist 2006).  

Inputs for Mat_20 include inertia properties, Young’s Modulus, and Poisson’s ratio.  The 

latter two inputs are used for determining sliding interface parameters for contact with other 

bodies.  Another convenience of using Mat_20 is that it allows for explicit definition of the 

degrees of freedom (DOF) for the rigid body.  The user can choose a local or global 

coordinate system and is able to restrict all 6 DOF independently.  Mat_20 was used to 

model the steel wheel indenter because the steel wheel indenter itself was designed to 

approximate a rigid body. 
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5.3.5.1 Material constants 

The exact material properties are not known for the steel used in these moving load 

experiments.  The type of steel is known, and therefore the normal range of material 

properties for this class of steel is known.  A significant hurdle in benchmarking these 

numerical models was determination of the proper material constants.  This was 

accomplished – in tandem with determining the vertical compliance of the moving load 

apparatus – by employing design of experiments.  A “central-composite” “response surface 

analysis” with three factors was employed, as described in Chapter 5.2.3. 

The inputs for these material models are given in Tables 5.18 and 5.17. 

Table 5.17:  Plastic-kinematic material model inputs by specimen type. 

Density
Young's 
Modulus

Poisson's 
Ratio

Density
Young's 
Modulus

Poisson's 
Ratio

7850 kg/m2 207 GPa 0.3 7850 kg/m2 207 GPa 0.3
Yield 

Strength
Tangent 

Modulous
Beta

Yield 
Strength

Tangent 
Modulous

Beta

379
plate:  585
frame:  976

1 433 585 1

C p
Failure 
Strain

C p
Failure 
Strain

0 0 0 0 0 0
VP VP
1 1

Mat_3 Plastic Kinematic

1/4" Plate and Frame 1/2" Plate
Specimen Type
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Table 5.18:  Rigid material model inputs. 

Mat_20
Density Young's Modulus Poisson's Ratio

7850 kg/m2 207 GPa 0.3
Global/Local Translations Fixed Rotations Fixed

Global y x,y,z

Rigid Material

 

5.3.6 Section definitions 

Element formulations, element constants and certain controlling parameters for the various 

elements are input using SECTION cards.   

The SECTION_SHELL cards used required the following inputs:  ELFORM, SHRF, 
NIP, thickness, and NLOC.  ELFORM defines the shell element formulation used in the 
simulation.  ELFORM=2 (i.e. Belytschko-Lin-Tsay) was used for all simulations.  SHRF 
is the “shear correction factor” and is set at the LS-Dyna recommended value of 5/6 for 
all simulations.  NIP is the number of through-thickness integration points (as discussed 
in Chapter 5.3.4.1), and it is set at 5 for all simulations.  Thickness is the plate thickness 
of the various test specimens (and web and flange thicknesses for the framed specimens).  
It is set appropriately as defined in   
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Table 5.19.  NLOC defined the position of the shell element reference surface with 
respect to its mid-plane as discussed in 5.3.3.3.  It is set to 0 (i.e. at the mid-plane) for the 
two plate specimens, and set as defined in   
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Table 5.19 for the framed specimen. 
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Table 5.19:  Inputs for SECTION_SHELL cards. 

ELFORM SHRF NIP Thickness NLOC
2 5/6 5 0.00635 0

ELFORM SHRF NIP Thickness NLOC
2 5/6 5 0.0127 0

ELFORM SHRF NIP Thickness
2 5/6 5 0.00635

NLOC Web NLOC Flange NLOC Plate
0 1 -1

1/4" Plate Specimen Section Parameters

1/2" Plate Specimen Section Parameters

Frame Specimen Section Parameters

 

5.3.7 Part definition 

LS- Dyna applies element parameters and material models to elements by collecting them 

into groups called parts.  There is very little restriction on how parts may be defined; in 

fact to separate bodies may be the same part.  It was convenient to define two parts in the 

plate simulations:  the plate and the rigid indenter.  For the frame simulations, the parts are:  

the plate, the web, the flange (note that the web and flange together are defined in this thesis 

as the stiffener), and the rigid indenter. 

It should be pointed out that the CNRBs discussed above are also considered parts in LS-

Dyna. 

Specifically a part definition combines an element formulation, element properties (as 

defined in a SECTION card (discussed below)) and a material model (as defined in a MAT 

card (discussed above)); and other cards that are not relevant to these simulations.  Each 

element, in its definition, is tied to a part, thus inheriting the parameters defined in the 

SECTION and MAT cards.  
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5.3.8 Contact 

The contact algorithms are very robust in LS-Dyna are very little effort was spent fine 

tuning the contact.  The contact algorithm employed was 

AUTOMATIC_SINGLE_SURFACE, which is a penalty contact formulation with 

automatic contact surface detection22.  When using this contact card, it is necessary to 

employ another card in order to extract the contact force.  The 

FORCE_TRANSDUCER_PENALTY card was employed for this purpose.  This card does 

not affect the contact in any way, it simply measures the forces on the master and slave 

surfaces. 

5.3.8.1 Penalty method 

The penalty method expressly makes use of slave node penetration into the master surface.  

The penalty method consists of identifying the slave nodes that penetrate the master surface 

and placing discrete springs normal to the surface between the master surface and slave 

nodes (Hallquist 2006).  A given spring exerts a force on its slave node that is proportional 

to the slave node’s penetration through the master surface (Hallquist 2006).  Each spring’s 

modulus is unique and depends on the bulk moduli of the slave and master surfaces.  Drastic 

differences in material bulk moduli at the interface can cause problems and several 

algorithms are available to address these issues; however, for these simulations, both the 

test specimens and the indenter are composed of similar steel; negating the need to employ 

other than the standard algorithm.  Because of this, the standard algorithm provides spring 

                                                 
22 As discussed above, this automatic contact detection breaks down when the shell element edge length is 
smaller than its thickness. 
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moduli approximately equal to the material moduli at the contact interface.  An added 

benefit of having approximately equal spring and material moduli is that the explicit time 

step is not affected by the contact algorithm (Hallquist 2006). 

Further explanation of the penalty method is necessary.  The time steps of explicit structural 

simulations are sufficiently small (on the order of 10-6 seconds for these simulations) such 

that the slave node penetration for each time step is also very small.  During a single time 

step, the relative position of the slave and master surfaces are calculated without 

considering contact between them.  The contact algorithm is then employed (Belytschko, 

Liu et al. 2000) and if a contact interface is found, slave nodes that penetrate the master 

surface are “pushed” back to the surface by a force equal to the nodal penetration times the 

interface spring modulus. 

Some of the major benefits of using the penalty method include:  little to no excitement of 

hourglassing; exact conservation of momentum without imposing impact and release 

conditions; and no special treatment of intersecting interfaces is required (Hallquist 2006). 

5.3.8.2 Element grouping 

For these simulations, the shell elements that were expected to come into contact with the 

indenter were grouped into a SET_SEGMENT, which is a collection of “faces”; each 

defined by the nodes of the element that was selected23.  The top faces of the solid elements 

on the rigid indenter were grouped into another SET_SEGMENT.  The contact algorithm 

                                                 
23 Allowing an entire shell element, or just a single face of a solid element to be addressed. 
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was then instructed to only consider contact between the “faces” in these sets.  This step 

was not necessary, but was done to make the simulations more efficient. 

5.3.8.3 SOFT parameter 

A parameter available in the CONTACT cards is SOFT.  SOFT=1 is the penalty 

formulation, SOFT=1 is a soft constraint formulation, and SOFT=2 is segment-based 

contact (LSTC 2014).  SOFT=1 is available to treat potential problems when bodies having 

dissimilar elastic bulk moduli come into contact (LSTC 2014), and is sometimes otherwise 

recommended.  SOFT=2 is an alternate option for general shell to solid contact (LSTC 

2014).  A sensitivity study was conducted across these three values and it was determined 

that SOFT=1 provided the best results. 

5.3.9 Loading 

The rigid wheel indenter’s motion was prescribed in the normal and lateral directions for 

each simulation.  The curves describing these motions were extracted from the 

experimental results.  The experimental data was recorded at 2048 Hz.  This was filtered at 

256Hz and input directly into the simulations. 

BOUNDARY_PRESCRIBED_MOTION_RIGID cards were used to move the rigid wheel 

indenter according to the paths described in the curves drawn from the experiments. 

5.3.10 Hourglassing 

Hourglassing is a nonphysical, zero energy mode of vibration for underintegrated shell and 

solid finite elements.  It produces zero strain and no stress.  Hourglassing was not an issue 
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for these simulations and thus required no special attention.  The hourglassing energy was 

typically less than 2% of the total energy. 

5.3.11 Solution controls 

Solution controls modify the default behaviour of LS-Dyna.  For these numerical models, 

four solution controls were utilized:  CONTROL_ACCURACY, CONTROL_ENERGY, 

CONTROL_SHELL, and CONTROL_TERMINATION. 

CONTROL_ACCURACY may be used to improve the accuracy of the simulations 

calculations (LSTC 2014).  For these simulations, the INN option was invoked for all shell 

and solid element (i.e. INN=4).  INN is an acronym for invariant node numbering, and it is 

used to realign the local element coordinate system (which is defined by the node input 

order (and the shell normal vector for shells) for irregularly shaped elements in the event 

that the node number in is permuted during the simulation (LSTC 2014). 

CONTROL_ENERGY defines the types of energies computed and included in the energy 

balance (see Equation [ 8 ]).  For these simulations, all types of energy were computed; 

they are:  hourglass energy, Stonewall energy (default), sliding interface energy (default if 

contact is employed), and Rayleigh energy (damping energy). 

CONTROL_SHELL was used to modify the default behaviour of the shell elements.  

Specifically, the options ESORT, BWC, and PROJ were invoked.  ESORT=1 improves the 

behaviour of degenerate triangular elements by automatically switching them to more 

suitable triangular shell formulations (LSTC 2014).  BWC and PROJ are used in 

conjunction with the Belytschko-Lin-Tsay shell element formulation to invoke “warping 
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stiffness”.  Most shell formulations undergoing warping (akin to beam torsion) are too soft, 

and require additional, and somewhat expensive, calculations to properly respond 

(Hallquist 2006, LSTC 2014).  BWC=1 invokes the Belytschko-Won-Chiang warping 

stiffness calculations, and PROJ=1 invokes the “full projection method” instead of the 

default “drill projection method”; which is inappropriate for highly warped shells (LSTC 

2014). 

CONTROL_TERMINATION defines the point in simulation time that the simulation of 

the problem terminates.  This value changes depending on the simulation time required by 

each simulation. 

5.3.12 Output of Results 

Results are recorded in LS-Dyna via two databases:  an ASCII database and a binary 

database.  The output frequency (i.e. the amount of simulation time between output of 

results) may be specified separately for each database.  Results from the ASCII database 

may be plotted versus time, or cross-plotted against other results.  Results from the binary 

database may also be plotted thus; however, it also contains information that may be plotted 

in fringe plots overlaying the elements in the numerical model.  The latter implies that it 

requires significantly more data storage than the ACSII database, especially because nearly 

all types of data calculated are stored in there.  For the purposes of these simulations data 

was stored in the binary database at 40 Hz.  The ASCII database was used to store specific 

data (contact force, global statistics, rigid body data, etc…) at higher resolution of 1000 

Hz. 
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Additionally the SHGE option in the DATABASE_EXTENT_BINARY card was invoked.  

This option outputs shell hourglass energy into the binary database, allowing for fringe 

plots to be created. 

5.4 Validation Simulations 

The following sub-sections compare the numerical simulations of the “warm slow centre” 

experiments for each of the three specimen types:  ¼” plate, ½” plate and frame.  These 

experiments took in excess of 120 seconds to run.  This is a considerable amount of time 

to simulate using explicit time integration.  As strain-rate effects are assumed to be 

negligible, time has been scaled by a factor of 1/20 for these numerical simulations.  Despite 

this, inertial effects are assumed to be negligible because the accelerations are still quite 

low, at 0.0133 m/s2 in the normal direction and 0.171 m/s2 in the lateral direction. 

5.4.1 ¼” Plate simulation validation 

Using the numerical modelling techniques discussed above and the material constants 

determined from the RSM analysis (Chapter 5.3.5.1) a simulation of MovingLoad10 was 

carried out (see Appendix C1.1.3 for plots of all experimental data collected for 

MovingLoad10).  Figures 5.23 and 5.25 plot the normal and lateral reaction forces 

respectively, for both the numerical simulation and the experiment.  The agreement 

between the simulation and the experimental results is very good for the normal reaction 

force, except near the end of the simulation.  This discrepancy near the end is likely due to 

strain-rate effects; which were not modeled in the simulation, but of course were present in 

the experiments.  To explain, imagine the indent is at the “Centre” location.  At this location 

the plate behaves as if it is an “infinite plate”.  As the indenter moves laterally, the 



225 
 

indentation is dragged along with it, and there is nothing restricting the plate on the leading 

side of the indenter from lifting in advance of the indenter getting there.  As the indenter 

nears the end of the plate, the end fixed boundary condition now prevents the plate ahead 

of the indenter from lifting, but the normal indentation does not change.  This implies that 

the plate near the end is stretching faster than the plate at the centre; and thus strain-rate 

effects would cause increasing structural capacity as the indenter neared the end of the 

plate.  It is also possible that the difference between the “ideal” fixed boundary condition 

in the numerical model and the “practical” fixed boundary condition in the experiment 

plays a role. 

 

Figure 5.23:  Numerical and experimental normal force results for ¼” plate specimen. 

Further, regarding the capacity loss immediately after the indenter begins lateral motion 

(i.e. at time=2 seconds) and the subsequent moving load capacity, it is apparent that the 

fixity in the normal direction has a dramatic effect on the prediction of these quantities.  

Figure 5.24 presents the same results as in Figure 5.23, except it also presents the normal 



226 
 

force results for a similar simulation without normal direction compliance (i.e. the plate is 

fixed in the normal direction).  From this figure we can see that the initial stationary 

capacity of the fixed plate is much higher than for the compliant plate.  This is to be 

expected.  What is unexpected is that drop in normal moving load capacity for the fixed 

case is much larger than for the compliant case.  This is an important result for two reasons.  

First, it is counter intuitive.  Generally, increasing the stiffness of a structure increases its 

capacity (for stationary loads).  The opposite is true, in the normal direction, for moving 

loads.  The other reason this result is important is that in design and analysis simulations, 

it is common to fix ship structures at the boundaries.  Of course this is a valid method for 

standard analysis of ship structures, but when designing for, or analysing moving loads, a 

careful estimate of the normal compliance of the structure should be made; otherwise actual 

moving load capacity of the structure will be underestimated.  The only change in the lateral 

moving load response to normal fixity is in increase in capacity. 
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Figure 5.24:  Numerical and experimental normal force results for ¼” plate specimens with 
and without normal direction compliance. 

The lateral force results shown in Figure 5.25 do not appear to agree as well as the normal 

results; however scale must be considered.  At time=3 seconds, the simulation predicts a 

normal capacity of 1.22E5 [N], while the experimental capacity is 1.28E5 [N]; a difference 

of approximately 5%.  At time=3 seconds, the simulation (over) predicts a lateral force of 

3.05E4 [N], while the experimental value is 2.75E4 [N]; a difference of approximately 

10%.  The difference in prediction accuracy in both cases most likely has to do with the 

value chosen for the tangent modulus of steel for these simulations.  The RSM model for 

this case (see section 5.2.3.5) predicted that the tangent modulus was not significant for the 

normal moving load response, but that it was for the lateral moving load response.  This 

suggests that any error in the value of the tangent modulus would not impact the normal 

moving load response prediction, but would for the lateral. 
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Figure 5.25:  Numerical and experimental lateral force results for ¼” plate specimen. 

5.4.2 ½” Plate simulation validation 

Using the numerical modelling techniques discussed above and the material constants 

determined from the RSM analysis (Chapter 5.3.5.1) a simulation of MovingLoad7 was 

carried out (see Appendix C1.2.3 for plots of all experimental data collected for 

MovingLoad7).  Figures 5.26 and 5.28 plot the normal and lateral reaction forces 

respectively, for both the numerical simulation and the experiment.  The agreement 

between the simulation and the experimental results is very good throughout the simulation.  

This lends weight to the hypothesis that strain-rate effects are the reason for the increase in 

capacity observed near the end for the ¼” plate experimental results discussed above.  As 

in the ½” plate moving load experiments (see section 4.2.2) it is likely a comparable lack 

of membrane stretching and a lesser indentation that contribute to the reduced strain-rate 

effects in this case. 
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Figure 5.26:  Numerical and experimental normal force results for ½” plate specimen. 

Similar to the discussion above for the fixity of the ¼” plate, Figure 5.27 presents the same 

results as in Figure 5.26, except it also presents the normal force results the fixed case. 

Similar behaviour regarding in increased drop in structural capacity for the fixed simulation 

is evident. 
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Figure 5.27:  Numerical and experimental normal force results for ½” plate specimens with 
and without normal direction compliance. 

The lateral force results shown in Figure 5.28 agree very well too, except again near the 

end where either strain-rate effects become evident, and/or the “ideal” boundary condition 

in the numerical model restricts the structural response more than the “practical” 

experimental boundary condition. 
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Figure 5.28:  Numerical and experimental lateral force results for ½” plate specimen. 

5.4.3 Frame simulation validation 

Using the numerical modelling techniques discussed above and the material constants 

determined from the RSM analysis (Chapter 5.3.5.1) a simulation of MovingLoad15 was 

carried out (see Appendix C1.3.3 for plots of all experimental data collected for 

MovingLoad15).  Figures 5.29 and 5.31 plot the normal and lateral reaction forces 

respectively, for both the numerical simulation and the experiment.  The results agree fairly 

well during the stationary load, but as soon as the lateral motion begins, the simulation 

under-predicts the normal moving load capacity.  Based on the RSM analysis, it would 

seem that this is the result of either a poor choice for tangent modulus, or that a more 

sophisticated plastic model is required.  It is more likely however that the experimental 

boundary conditions for the stiffener (as provided by the stiffener end plate and its 

connection to the carriage via bolts) were far from the ideal “fixed” case assumed in the 
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numerical model (please refer to Chapter 4.3 for a discussion of the experimental stiffener 

boundary conditions). 

 

Figure 5.29:  Numerical and experimental normal force results for frame specimen. 

Similar to the discussion above for the vertical fixity of the ¼” and ½” plates, Figure 5.30 

presents the same results as in Figure 5.29, except it also presents the normal force results 

of the fixed case. 

Similar behaviour regarding in increased peak stationary load and increased drop in 

structural capacity for the fixed simulation is evident. 
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Figure 5.30:  Numerical and experimental normal force results for frame specimens with 
and without normal direction compliance. 

The lateral force results shown in Figure 5.31 agree well initially, but as the lateral motion 

progresses, the frame’s web plastically buckles too much compared with the experiment, 

and so lateral capacity of the frame is under-predicted by the simulation.  Figure 5.32 

depicts the frame numerical model and shows the location and extent of the plastic buckling 

of the frame’s web. 
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Figure 5.31:  Numerical and experimental lateral force results for frame specimen. 

 

 

Figure 5.32:  y-displacement fringe plot of frame numerical model illustrating plastic 
buckling. 
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5.5 A First Investigation of Indenter Path 

As load path (see Chapter 3.8.2) was not a variable in these experiments, a preliminary 

examination of the effect of simultaneous vertical (normal) and horizontal (lateral) 

indentation was carried out numerically.  It was hypothesised that the sequential “in-along-

out” path of the rigid indenter in the experiments would incite the weakest structural 

response, because membrane stretching of the plating had already been maximized by the 

time the horizontal motion began.  The goal of these simulations is to ascertain if moving 

load effects exist for load paths causing increasing membrane response (i.e. simultaneous 

vertical and horizontal indentation). 

5.5.1 Model parameters 

For this study, the calibrated ¼” plate numerical model presented in Chapter 5.4.1 was 

utilised.  Two new simulations were conducted with the following load path parameters (all 

other parameters are identical to Chapter 5.4.1, including the starting position of the rigid 

wheel indenter): 

Simulation 1 – Shallow load path: 

• Indenter vertical motion:  0 [cm] (0 [in.]) at time = 0 [s] increasing steadily to 40 

[cm] (15.75 [in.]) at time=2 [s]. 

• Indenter horizontal motion:  “End” position at time = 0 [s] increasing steadily to the 

“Centre” position at time = 2 [s].  This represents a total horizontal travel distance 

of 55.0 [cm] (21.65 [in.]). 
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• The simultaneous vertical and horizontal displacements create a load path that is 

36° from horizontal (i.e. atan(40/55)). 

Figure 5.33 shows a time sequence depicting the path of the indenter. 

 

Figure 5.33:  Visualization of load path for “shallow” simulation.  Indenter moves 
simultaneously in normal and lateral directions, starting at the end position and finishing at 
the centre of the plate. 

Simulation 2 – steep load path: 

• Indenter vertical motion:  0 [cm] (0 [in.]) at time = 0 [s] increasing steadily to 40 

[cm] (15.75 [in.]) at time=2 [s]. 

• Indenter horizontal motion:  “Quarter” position24 at time = 0 [s] increasing steadily 

to the “Centre” position at time = 2 [s].  This represents a total horizontal travel 

distance of 27.5 [cm] (10.83 [in.]). 

• The simultaneous vertical and horizontal displacements create a load path that is 

55° from horizontal (i.e. atan(40/27.5)). 

Figure 5.34 shows a time sequence depicting the path of the indenter. 

 

Figure 5.34:  Visualization of load path for “steep” simulation.  Indenter moves 
simultaneously in normal and lateral directions, starting at the quarter position and finishing 
at the centre of the plate. 

                                                 
24 The “quarter” position is half way between the “End” position and the “Centre” position. 
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Chapter 5.4.1 calibration simulation – in-along-out load path: 

• Indenter vertical motion:  0 [cm] (0 [in.]) at time = 0 [s] increasing steadily to 40 

[cm] (15.75 [in.]) at time=2 [s]. 

• Indenter horizontal motion:  “Centre” position at time = 0 [s]; remaining stationary 

at “Centre” position until time = 2 [s]; increasing steadily and achieving “End” 

position at time = 4.9 [s].  This represents a total horizontal travel distance of 55.0 

[cm] (21.65 [in.]). 

• The simultaneous vertical and horizontal displacements create a load path that is 

vertical (i.e. stationary portion), and then horizontal (i.e. moving portion). 

Figure 5.35 shows a time sequence depicting the path of the indenter. 

 

Figure 5.35:  Visualization of load path for “steep” simulation.  Indenter first moves in 
normal direction only, and then in the lateral direction only; starting at the “centre” position 
and finishing at the “end” position. 

5.5.2 Results 

The results of these two simulations were compared with the “in-along-out” simulation 

results from Chapter 5.4.1, as well as the experiment that Chapter 5.4.1 is based on.  Figure 

5.36 summarized the load paths for each of the three simulations. 
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Figure 5.36:  Plot of load paths for each of the three “load path” simulations.  The vertical 
axis is normal displacement, the horizontal axis is lateral displacement. 

Figure 5.37 shows the normal (vertical) force versus time for the load path simulations.  

The experiment results of ML10, on which the ¼” numerical model calibration is based, is 

shown as curve A (red).  The calibration simulation from Chapter 5.4.1 are shown as curve 

B (green).  The steep simulation result (Simulation 2) is shown as curve C (blue) and the 

shallow simulation result (Simulation1) is curve D (cyan).  What this graph indicates with 

respect to load path is not immediately obvious.  Regarding curves A and B, the uncoupled 

(i.e. sequential) vertical and horizontal vertical force results are very obvious.  At time = 0 

[s], the rigid wheel indenter begins to move vertically (and the “Centre” plate location), 

and at time = 2 [s], the vertical motion has stopped (after travelling 40 cm).  This peak value 

(point A1 in Figure 5.37) of 212 [kN] (47.66 [kip]) represents the stationary load capacity 

at the “Centre” location.  At time = 2 [s], the horizontal motion these curves begins.  Shortly 

after, at approximately time = 3 [s], the normal force reached a local minimum (point A2 

in Figure 5.37) of 122 [kN] (27.43 [kip]) for the numerical simulation (or 128 [kN] (28.87 
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[kip] for the experiment) due to moving load effects.  This is a reduction of approximately 

42%.  Because these plates are “long plates”, and this minimum value occurs far from the 

boundary of the plate, this minimum value is representative of the moving load capacity at 

the “Centre” location for this load path.  At time = 2 [s] for curve C, the steep simulation, 

the indenter has finished its simultaneous vertical and horizontal motion at the “Centre” 

location; therefore point C1, with value 154 [kN] (34.62 [kip]), represents the moving load 

capacity at the “Centre” for the 55° load path.  Similarly, point D1, with value 137 [kN] 

(30.8 [kip]), represents the moving load capacity at the “Centre” position for the 36° load 

path. 

Table 5.20 summarizes these results, and shows the capacity reduction for this ¼” plate as 

a function of load path. 

 

Figure 5.37:  Normal (vertical) force results versus time for load path simulations – (A-red) 
experiment results of ML10, (B-green) ¼” plate numerical model calibration results from 
Chapter 5.4.1 for experiment ML10, (C-blue) steep simulation results, (D-cyan) shallow 
simulation results. 
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Table 5.20:  Summary of effect of load path on normal force for ¼” plate. 

Run Load Path 

Stationary 
Capacity 

[kN] 

Moving 
Load 

Capacity 
[kN] 

Capacity 
Reduction 

Experiment 
vertical then 

horizontal 

212 

122 42% 
Calibration 
Experiment 

vertical then 
horizontal 128 40% 

Steep Simulation 55° 154 27% 
Shallow Simulation 36° 137 35% 

 

Figure 5.38 is similar to Figure 5.37, except that resultant force is plotted (instead of normal 

force).  Similar behaviour is observed, and analogous results are given in Table 5.21.  It is 

obvious from comparing the capacity between the normal and resultant loads that lateral 

(horizontal) force plays a negligible role in moving load effects in this case. 

 

Figure 5.38:  Resultant force results versus time for load path simulations – (A-red) 
experiment results of ML10, (B-green) ¼” plate numerical model calibration results from 
Chapter 5.4.1 for experiment ML10, (C-blue) steep simulation results, (D-cyan) shallow 
simulation results. 
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Table 5.21:  Summary of effect of load path on resultant force for ¼” plate. 

Run Load Path 

Stationary 
Capacity 

[kN] 

Moving 
Load 

Capacity 
[kN] 

Capacity 
Reduction 

Experiment 
vertical then 

horizontal 

212 

131 38% 
Calibration 
Experiment 

vertical then 
horizontal 126 41% 

Steep Simulation 55° 156 26% 
Shallow Simulation 36° 139 34% 

 

5.6 Guidelines for Modeling Moving Loads on Hull Structures 

As shown in Chapter 5.4, the numerical modelling method outlined in this section works 

very well for modeling moving loads causing plastic damage on hull plating.  It appears to 

be not so accurate for modelling moving load effects on frames, where it tends to 

underestimate the stiffener capacity (at least compared with the experimental results of this 

research).  It is unclear whether the greatest error regarding the response of frames lies with 

the experimental stiffener boundary conditions (as discussed in Chapter 4.3), or with this 

numerical modelling method.  Further work is required to better understand this 

discrepancy. 

For clarity and simplicity, the following modelling guidelines are condensed from the 

above: 

FE Code: Non-linear with explicit time integration. 

Floating-point precision: Single precision is generally sufficient. 

Geometry: Depends the structure being modeled. 
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Mesh: Shell elements with warping stiffness and five through-

thickness integration points.  Solid elements and beam 

elements are not recommended. 

 Care should be taken regarding the shell reference surface 

offset from the mid-plane. 

 Care should be taken if shell edge length is less than shell 

thickness. 

Boundary Conditions: Depends on the structure being modeled; however care 

should be taken regarding the fixity in the direction normal 

to the hull plating.  Zero compliance in the normal direction 

will lead to underestimating the structures moving load 

capacity. 

 Care should be taken when mating shell and solid elements.  

Constrained nodal rigid bodies are sufficient. 

Material Model: A bilinear kinematic elasto-plastic material model is 

sufficient for thick plates.  Thinner plates exhibiting plastic 

membrane stretching and frames in general may require a 

more sophisticated plasticity model. 

 Strain-rate effects may (and should) be included. 

 Rigid material is sufficient if ignoring behaviour of 

impacting object. 



243 
 

Contact: Penalty formulation is sufficient.  Caution:  the effect of 

friction on moving loads causing plastic damage is 

presently unknown.  SOFT=1 is sufficient. 

Load: Depends on the situation being modelled. 

Solution Controls: Invariant node numbering for all elements is sufficient. 

These guidelines were determined based on a “bottom-up” approach (i.e. only get as 

complicated as necessary) coupled with sensitivity analyses, past experience, and 

validation against experiments. 

5.7 Discussion of Numerical Simulations 

The previous section, 5.6 Guidelines for Modeling Moving Loads on Hull Structures 

effectively summarizes and discusses the numerical modelling methodology. 

Regarding the RSM analysis of the three specimen types, yield strength and vertical 

compliance were always significant factors.  Tangent modulus was shown not to be 

significant for any of the ½” responses, and the validation simulation for this specimen type 

is very good.  Tangent modulus was a factor in many cases for the ¼” and frame specimens.  

It is hypothesized that this is because plastic membrane stretching was more significant in 

these specimens, and the tangent modulus directly impacts this behaviour.   

Membrane effects are not so important for the ½” plate specimens.  As the validation was 

the best for the ½” plate model, it is possible that the tangent modulus was a significant 

factor in the other validation tests.  This may be a function of the simple bilinear material 
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model employed.  Future work is required to determine if better results are attainable for 

situations involving membrane stretching using a more sophisticated (i.e. multilinear) 

plasticity model. 

Regarding the validation simulations in Chapter 5.4, the numerical models of the plate 

experiments captured the moving load effects very well.  One area for improvement is the 

response of the model as the indenter nears the plates fixed boundary.  It is likely that this 

discrepancy is due to the combination of a lack of including strain rate effects, and the 

difference between the lateral compliance of the fixed boundary condition with that of the 

“practical” experimental boundary.  The validation of the frame experiments was not as 

successful.  The peak stationary load was modeled well, but the post plastic buckling 

behaviour was not.  This is likely due to an insufficient model of post-yield constitutive 

behaviour, coupled with a lack of modeling the compliance in the stiffener boundary 

conditions; a compliance that was present in experiments out of practical necessity.  As 

discussed in Chapter 4.3, a gap between the stiffener end plate and the carriage wall was 

practically necessary in order to enable the test specimens to be installed in the carriage. 

5.8 Numerical Modeling Conclusions 

Moving load effects on plates may be successfully modeled using the approach outlined in 

Chapter 5.6.  The use of this method for moving loads on frames may under-predict the 

post moving load induced plastic buckling capacity.  It is undetermined at this point how 

much of a role the complexity of the material model has in the post-buckling behaviour of 

the frame’s web, and it is also unclear at this point how the end conditions of the frame 

affect this behaviour. 
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It appears that a simple bilinear plasticity model may not be sufficient to describe moving 

load effects in general.  In particular, plastic membrane stretching and plastic buckling 

behaviour of the stiffener webs were not modeled adequately.  Further work is required to 

determine if a more sophisticated plasticity model would yield better results. 

The response surface method provided important insights into the significant factors for 

modeling moving loads on plates and frames.  For ½” plates, the significant factors are 

yield strength, boundary compliance and the interaction of the two.  For ¼” plates, the 

significant factors are the same as for ½” plates, except the in the case of lateral response 

to moving loads, tangent modulus became significant.  For frames, yield strength, tangent 

modulus and boundary compliance were all important. 

Finally, when modeling moving load effects the stiffness of the boundary plays a very 

important role.  If the boundary is non-compliant (i.e. ideally fixed) in the vicinity of the 

moving load, then the structural capacity loss associated with movement of the load will be 

over-predicted.  It is critical to either have the boundary conditions far from the moving 

load (this can be expensive for complicated numerical models) or to add compliance (which 

can be difficult to estimate). 
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Chapter 6 Overall Conclusions, Novel Contributions and 

Recommendations for Future Work 

The scope and objectives this research as defined above (Chapters 3.2 and Error! 

Reference source not found.) were accomplished and discussed in this thesis.  The moving 

load effects as predicted in Quinton (2008) were found to exist in the laboratory through 

experimentation involving a novel moving load apparatus designed by the author.  The 

structural response of plates and frames subject to rigid moving loads causing plastic 

damage, as well as plates subject to moving ice loads inciting both elastic and plastic 

structural responses were investigated.  The effects of moderate strain rate and temperature 

changes were also investigated.  From the perspective of ice, these experiments are a first 

attempt to investigate the effects of load movement and plastic structural damage on the ice 

load, and the first publication of experimental friction factors for moving ice loads causing 

plastic damage. 

A numerical model for moving load effects on hull structures was created and calibrated 

against these experiments.  The significant factors – yield strength, tangent modulus and 

boundary compliance – required to model the various responses to moving load effects 

were identified, and a bottom-up modeling strategy that can easily be replicated in order to 

assess/investigate moving load effects on plates was created. 

The single largest uncertainty of this research is the degree of fixity of the stiffener 

boundary conditions for the frame test specimens.  The necessary gap between the stiffener 

end plates and the carriage wall (discussed in Chapter 4.3) gave rise to a complex boundary 

condition which:  was compliant up to the point where the stiffener end plate contacted the 
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carriage wall; was essentially non-compliant (i.e. fixed) while the contact was maintained; 

but compliant again if the contact was broken (as would be the case if the stiffener attained 

a significant state of membrane tension).  It is believed that this gap contributed to the 

unexplained behaviour in the experiments, and the inability to reproduce the frame test 

experiments numerically. 

In summary, the effects of moving loads causing plastic damage to hull plating and framing 

were clearly demonstrated through experimental work, and with numerical simulations.  It 

has been established that a moving load causes increased plastic damage both in lateral 

extent (from the motion) and in depth, due to a loss of structural capacity (over what would 

be expected from a similar stationary load) that effectively arises from the previous 

(upstream) damage. Thus for designs or analyses where the extent of plastic damage is a 

consideration and a moving load is a likely scenario, it is inadequate to analyse the situation 

as a simple stationary load.  The numerical modeling guidelines presented in Chapter 6 may 

be used to aid in numerical analyses of hull plating subject to moving loads. 

6.1 Novel Contributions 

• The author was unable to identify any literature pertaining to experiments of 

moving loads causing plastic hull damage without hull tearing.  As such, the 

following two items are novel contributions: 

o Novel experimental apparatus for conducting moving load experiments (see 

Chapter 0). 
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o Definitive experiments demonstrating “reduced structural capacity” for 

force- and displacement-controlled moving loads on plates and frames (see 

Chapter 4). 

• The author was unable to identify any literature pertaining to experiments of 

moving ice loads causing both elastic and plastic damage.  As such, the following 

two items are novel contributions: 

o First investigation of moving ice loads inciting both elastic and plastic 

structural responses in plates (see Chapter 4.9). 

o First publication of ice-steel friction factors for plastically deforming plates 

subject to moving ice loads (4.9.5). 

• Simplified “bottom-up” numerical modeling methodology for simulation of moving 

loads on ship structures (see Chapter 5.6). 

• Discovery of parameters important for the design and analysis structures against 

moving load effects (see Chapter 5.7). 

• First investigation of the effects of indenter path on moving load effects (see 

Chapter 5.5). 

• Results of the moving load experiments invalidate Sokol-Supel’s (1985) theory of 

moving loads on rigid-plastic plates. 

• Recommendations for future work on the subject of moving loads causing plastic 

damage (see Chapter 6.2). 
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6.2 Recommendations for Further Work 

Further work is possible on many of the aspects of the research presented herein; in 

particular on the following topics: 

• Friction:  friction was not explicitly a factor in the rigid indenter moving load 

experiments.  In a real collision involving an indenter sliding along a hull, friction 

will be present.  It is expected that friction will play a major role in the behaviour 

of the hull structure to moving loads causing plastic damage. 

• Due to lack of time and resources, no attempt was made to isolate the point at which 

(i.e. load level) a moving load begins to incite moving load effects in the hull 

structure.  Determination of this point is an important design consideration, and may 

shed further light on the structural phenomena responsible for moving load effects. 

• An attempt to create a numerical model of the moving load experiments involving 

the ice indenters was not made in this research.  This data is available and should 

be used to calibrate such a numerical model. 

• A limited design of experiments analysis was conducted in this research in order to 

identify values for some parameters for which little or no data was available.  This 

analysis proved useful in the subsequent analysis of the behaviour of moving loads 

causing plastic damage.  A much more detailed design of experiments analysis on 

the subject is possible, and should be performed. 

• A simple bilinear strain-hardening material model was used in the numerical model 

for this research.  It is likely that this material model was insufficient to capture 
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plastic membrane behaviour of thin plates as well as post plastic buckling behaviour 

of frame webs.  A more appropriate material model should be employed. 

• Only standard 4-node shell elements were used for the numerical models in this 

research.  Due to the level of mesh refinement necessary to capture the geometric 

behaviour of frame webs during plastic buckling, the shell element edge length was 

close to its thickness.  A more appropriate element for this case may be a thick shell 

element.  The author has re-run several simulations presented in this thesis using 

thick shell elements, and the results are very promising.  Further investigation as to 

their applicability in modeling moving load effects should be conducted. 

• Regarding the “chatter” or “stick-slip” phenomenon observed some of the moving 

ice cone indenter tests, more work needs to be done to ascertain whether or not it is 

a phenomenon of moving ice loads, or was simply a spurious effect of the test 

apparatus.  Due to the magnitude and frequency of vibrations experienced by the 

moving load apparatus, this could be a potentially dangerous loading condition at 

larger scale. 

• Further experimentation involving lateral movement of ice cones acting on 

plastically deforming structures, in order to ascertain any structural capacity loss 

due to moving ice loads. 

• Regarding the confinement of ice, the experiments presented in this thesis involving 

the plastic deformation of plates with moving ice indenters has uncovered a scenario 

where the ice is confined essentially for 270° around the contact surface, but free to 

escape out the remaining 90°.  This case is similar to Kim’s (2014) concave wedge, 
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except with one of the open sides of the wedge closed off.  Further work is required 

to determine the effect of this scenario on the confinement of ice at the contact 

surface. 

• The results of the experiments involving moving loads on plates should be 

compared with the predictions of Hong and Amdahl’s (2012) simplified semi-

empirical method for sliding loads on plates. 
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Appendix A1 – MTS Test Frame Specifications 

Test frame model 311.21 
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Appendix A2 – MTS Vertical Hydraulic Ram Specifications 

Model:  244.41 
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Appendix A3 – MTS Flextest GT Specifications 
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Appendix A4 – MTS Load Cell Specifications 
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Appendix A5 – MTS LVDT Specifications 

The MTS test frame uses a modified version of the 0219 model highlighted on the following 

pages. 
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Appendix A6 – Horizontal Load Cell Specifications 

Two Tovey Engineering SW20 50K shear web load cells were used. 
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Appendix A7 – Horizontal Linear Position Transducer Specifications 

Celesco 
P/N: PT101-0075-111-2120 
Range: 1905mm 
Sen: .5 mV/V/mm  
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Appendix A8 – Linear Roller-Rail System Specifications 

Note:  The following two pages are the specifications for the eight roller-bearings used on 
the carriage. 
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The following page is the specifications for the two 2800mm long linear rails. 
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Appendix A9 – Horizontal Hydraulic Cylinder Specifications 

 

Note:  Model HYS 40MAL48-10 was used. 
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Appendix A10 – Indenter Bearing Specifications 
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Appendix A11 – Steel Mill Certifications for Carriage Steel and W-Beams 
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 – Other Apparatus Specifications 
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Appendix B1 – High-speed Camera Specifications 

Model:  MS55K 

• The MS55K camera is a mid-level high speed camera. 

• Typical uses are medium speed applications from 25 fps to 3000 fps. 

• Maximum image size is 1280 x 1020 with recording speeds of over 1000 fps at this 

resolution. 

• Minimum image size is 32 x 8. 

• Maximum camera speed is 100,000 fps 

• On board memory storage. 

o Does not stream the high speed image files back to the PC. 

o Saves the high speed image file inside the camera’s RAM, operator then 

downloads the image file to their PC. 

• Sends back real time, pre-view images when the camera is recording via a gigabit 

Ethernet connection through a CAT 6 cable. 

• Can be used in a “stand alone” application without a PC connection. 

Please note:  the above specifications were taken from MegaSpeed’s website for the 

MS55K model camera on November 17, 2014. 

http://www.megaspeed.ca/index.php?option=com_content&view=article&id=10&Itemid

=9 

http://www.megaspeed.ca/index.php?option=com_content&view=article&id=10&Itemid=9
http://www.megaspeed.ca/index.php?option=com_content&view=article&id=10&Itemid=9
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Appendix B2 – GoPro HD Hero 2 & Hero 3 Specifications 

FEATURES HD HERO 2 

PHOTO – FEATURES + FOV 

MEGAPIXELS 5 MP 

MODES Single 
3 photos in 1 sec 
Time Lapse every 1, 2, 10, 30, 60 
Self-Timer   

VIDEO – RESOLUTION + FOV 

1080p 1920×1080 
wide (127º) FOV  
30fps 

960p 1280×960 
FOV Wide (170º) 
30fps 

720p 1280×720 
Wide (170º) FOV 
30fps 
60fps 

WVGA 848×480 
Wide (170º) FOV 
60fps 

USABILITY 

Inputs Component port, Composite port, USB, 
SD, HERO Port 

Battery Life (in 720p/60 mode) 2.5 hrs 

Simultaneous record + charge when plugged into 
USB power source 

yes 
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FEATURES HERO 3

 Optics + Lens
Ultra-sharp ƒ/2.8 - 6 element lens, Ultra wide angle with 
reduced distortion

 Megapixels  5MP
Photo
Burst Photo
Time Lapse

30, 25 fps
Medium FOV
30, 25 fps
Ultra Wide FOV
60, 50, 30, 25 fps
Ultra Wide FOV
60, 50 fps
Ultra Wide FOV

 Megapixels + FOV  5MP (Wide)
 Time Lapse Intervals  0.5, 1, 2, 5, 10, 30, 60 seconds
 Burst Photo (Frames/sec)  3/1

 Wi-Fi Built-in  Yes
 Looping Video  Yes
 High Video Bitrate Capture 
(H.264) 
Mode dependent, highest 
bitrates supported in Protune

 Mono Mic, AAC 
compression w/ AGC  No

Inputs
Micro-HDMI port, mini USB, microSD, HERO Port, 
composite A/V (via adapter, optional accessory), 3.5mm 
stereo mic (via adapter, optional accessory) 

Battery 1050mAh rechargeable lithium-ion 

 PHOTO FEATURES

 PHOTO SPECS

 ADVANCED FEATURES

 AUDIO SPECS

 USABILITY

 Modes

1080p (16:9) 

960P (16:9)

720P (16:9)

WVGA (16:9)

 Up to 15/Mbs

VIDEO FEATURES + FOV 
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Appendix B3 – Canon EOS60D Specifications 

• Megapixel CMOS sensor and DIGIC 4 Imaging Processor. 

• ISO 100 – 6400. 

• Improved EOS HD Video mode. 

• Enhanced iFCL 63-zone, Dual-layer metering system; and 9-point AF system 

utilizing a high-precision, f/2.8 cross-type centre point. 

• Compatibility with SD/SDHC/SDXC memory cards. 

• Compatible with the full line of Canon EF and EF-S lenses. 

See:  http://www.canon.ca/inetCA/en/products/method/gp/pid/4714#_030 for more details. 

http://www.canon.ca/inetCA/en/products/method/gp/pid/4714%23_030
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Appendix B4 – Flir Thermal Cameras Specifications 

Model:  Ax5-A35sc 
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Model: T450sc 
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Appendix B5 – Fujifilm PrescaleTM Pressure Film 

Specifications and Operational Environment 

Accuracy: ±10% or less (measured by densitometer at 23°C,65% RH) 

Recommended service temperature: 20°C∼35°C( 68 °F∼ 95°F ）* 

Recommended service humidity: 35% RH ∼ 80% RH** 

Thickness: mono-sheet type(S): 100µm 

two-sheet type(W):100µm x2 

For more information please visit: 

http://www.fujifilm.com/products/prescale/prescalefilm/#specifications  

http://www.fujifilm.com/products/prescale/prescalefilm/%23specifications
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Appendix B6 – Microscribe Specifications 

Model:  Microscribe G2LX 
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 – Moving Load Experimental Results Plots 

Notes: 

1. The following data plots were created using a custom data analysis and plotting 

script written by the author in Matlab®.  The script and its associated graphical user 

interface are presented in Appendix D. 

2. For all figures including “Horizontal Displacement”:  horizontal displacement was 

zeroed at the indenter’s starting position for each experiment.  Therefore any plot 

showing multiple experiments may show data with different x-origins plotted 

together.  Specifically the starting positions of the “Centre” and “End” experiments 

are 550 mm apart, therefore the x-origin for an “End” experiment is 550 mm less 

than the x-origin for a “Centre” experiments.  Plots with both “End” and “Centre” 

experiments involving “Horizontal Displacement” should be viewed as if the “End” 

curves are 550 mm less than shown. 

 

3. The descriptors used in the legends of the following plots are defined as follows: 

Warm  Specimen at room-temperature (20°C (68°F) nominal) 

Cold Specimen temperature -10 °C (14°F) nominal 

Slow Nominal Vertical Indentation Rate of 1 mm/s (0.039 in./s); 

Nominal Horizontal Travel Rate of 10 mm/s (0.394 in./s) 
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Fast Maximum Possible Vertical Indentation Rate and Maximum 

Possible Horizontal Travel Rate 

Centre Indenter starting point at geometric centre of plating, horizontal 

travel over rest of plate along longitudinal centreline. 

Full-Length Indenter starting point 25 cm (9.84 in.) from end of plate along 

longitudinal centreline, horizontal travel over rest of plate along 

longitudinal centreline to opposite end. 

Force-Ctrl Force Control – Signifies that experiment was carried out by 

controlling the force applied by the vertical hydraulic ram. 

Ice Uses ice cone indenter (not steel wheel indenter) 

Elastic With respect to experiments using the ice cone indenter, “Elastic” 

implies that the test specimen was not permanently damaged by the 

ice. 

 

Plastic With respect to experiments using the ice cone indenter, “Plastic” 

implies that the test specimen was permanently damaged by the ice. 
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Appendix C1 – Room-temperature Tests 
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 – Quarter Inch Plate – 4 cm (1.575 in.) Indentation 
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Appendix C1.1.1 – Summary Plots for Experiments ML 9, 10 and 

11. 
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Appendix C1.1.2 – MovingLoad9 

March 26, 2014 at ~3:40 p.m. 
 
Run #:   4 
Run Type:  Fast 
Room-temperature: ~20°C 
Sample Type:  1/4" 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre 
HSpeed:  Fastest 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: -2.20 mm 
VSpeed:  Fastest 
V Travel:  40 mm 
 
Indentation 1:  ~30 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad09 
 
Plots: 
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Appendix C1.1.3 – MovingLoad10 

March 27, 2014 at ~10:15 a.m. 
 
Run #    5 
Run Type:   Slow 
Room-temperature:  ~20°C 
Sample Type:   1/4" 
Test Type:   In-Along-Out Centre to End 
 
HStarting Point:  Centre 
HSpeed:   ~10 mm/s 
H Travel:   Centre to End (55+ cm) 
 
Vstarting Point:   -2.29 mm 
VSpeed:   1.0mm/s 
V Travel:   40 mm 
 
Notes: 
Indentation 1:  ~40 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad10 
 
Plots: 
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Appendix C1.1.4 – MovingLoad11 

March 27, 2014 at ~4:10 p.m. 
 
Run #   6 
Run Type:    Slow & Full length 
Room-temperature: ~20°C 
Sample Type:  1/4" 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End 
HSpeed:  10mm/s nominal 
H Travel:  End to End (110+ cm) 
 
Vstarting Point:  mm 
VSpeed:  1.0mm/s (Nominal) 
V Travel:  40 mm 
 
Notes: 
 
Indentation 1:  ~40 mm, In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad11 
 
Plots: 
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 – Half Inch Plate – 3 cm (1.181 in) Indentation 



326 
 

Appendix C1.2.1 – Summary Plots for Experiments ML 6, 7 and 8 
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Appendix C1.2.2 – MovingLoad6 

March 25, 2014 at ~2:10 p.m. 
 
Run #:   1 
Run Type:  Fast 
Room-temperature  ~20°C 
Sample Type:   1/2" 
Test Type:    In-Along-Out Centre to End 
 
HStarting Point: Centre 
HSpeed:  Fastest Possible 
H Travel:    Centre to End 
 
Vstarting Point:   8.855 mm 
VSpeed:    Fastest Possible 
V Travel:    30 mm 
 
Indentation 1:  ~30 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad06 
 
Note:  Microscribe not bolted to table (bolted for run 3 onwards). 
 
 
Plots: 
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Appendix C1.2.3 – MovingLoad7 

March 25, 2014 at ~4:40 p.m. 
 
Run #:   2 
Run Type:  Slow 
Room-temperature  ~20°C 
Sample Type:   1/2" 
Test Type:    In-Along-Out Centre to End 
 
HStarting Point: Centre 
HSpeed:  10 mm/s (Nominal) 
H Travel:    Centre to End 
 
Vstarting Point:   -8.7 mm 
VSpeed:    1.0mm/s (Nominal) 
V Travel:    30 mm 
 
Indentation 1:  ~30 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad07 
 
Note:  Microscribe not bolted to table (bolted for run 3 onwards). 
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Appendix C1.2.4 – MovingLoad8 

March 26, 2014 at ~12:00 p.m. 
 
Run #:   3 
Run Type:  Full Length – Slow 
Room-temperature  ~20°C 
Sample Type:   1/2" 
Test Type:    In-Along-Out End to End 
 
HStarting Point: End (20 cm from Edge) 
HSpeed:  10 mm/s Nominal 
H Travel:    End to End (110+ cm) 
 
Vstarting Point:    mm 
VSpeed:    1.0mm/s (Nominal) 
V Travel:    30 mm 
 
Indentation 1:  ~30 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad08 
 
Note: 
Bolted Microscribe to table for more accurate readings. 
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 – Frame – 2.5 cm (0.984 in.) Indentation 
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Appendix C1.3.1 – Summary Plots for Experiments ML 14, 15 and 

16 
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Appendix C1.3.2 – MovingLoad14 

April 1, 2014 at ~3:55 p.m. 
 
Run #   7 
Run Type:  Fast 
Room-temperature: ~20°C 
Sample Type:  Frame 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre 
HSpeed:  100.0 mm/s (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 3.63 mm 
VSpeed:  Max (Nominal) 
V Travel:  25 mm 
V Stopping Point: -21.37 mm 
 
Notes: 
 
Indentation 1:  ~25 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad14. 
 
Plots: 
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Appendix C1.3.3 – MovingLoad15 

April 2, 2014 at ~3:00 p.m. 
 
Run #   8 
Run Type:  Slow 
Room-temperature: ~20°C 
Sample Type:  Frame 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre 
HSpeed:  1.0 mm/s (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 3.51 mm 
VSpeed:  10 mm/s (Nominal) 
V Travel:  25 mm 
V Stopping Point: -21.49 mm 
 
Notes: 
Accidentally indented ~2mm into plate at centre before test.  ~30kN (no big deal). 
Centre is at 2.7 mm from last centre (for some reason, probably the yoyo pot). 
 
Indentation 1:  ~25 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad15 
 
Plots: 
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Appendix C1.3.4 – MovingLoad16 

 
April 3, 2014 at ~2:45 p.m. 
 
Run #   9 
Run Type:  Full Length – Slow 
Room-temperature: ~20°C 
Sample Type:  Frame 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.7 cm (-55 cm nominal)) 
HSpeed:  10 mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 3.36 mm 
VSpeed:  1.0 mm/s (Nominal) 
V Travel:  25 mm 
V Stopping Point: -21.64 mm 
 
Notes: 
HDisp Offset:  -613.3 mm 
Indentation 1:  ~25 mm, In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad16 
 
Plots: 
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Appendix C2 – -10°C (14° F) Tests 
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 – Quarter Inch Plate – 2 cm (0.787 in.) Indentation 
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Appendix C2.1.1 – Summary Plots for Experiments ML 17, 18 and 

19 
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Appendix C2.1.2 – MovingLoad17 

 
April 4, 2014 at ~4:25 p.m. 
 
Run #   10 
Run Type:  Fast 
Room-temperature: -10°C 
Sample Type:  1/4" Plate 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (0 cm nominal) 
HSpeed:  Fastest mm/s (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 2.25 mm 
VSpeed:  100.0 mm/s (nominal) 
V Travel:  40 mm 
V Stopping Point: -37.75 mm 
 
Notes: 
Indentation 1:  ~40 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad17 
 
Plots: 
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Appendix C2.1.3 – MovingLoad18 

April 7, 2014 at 3:50 p.m. 
 
Run #   11 
Run Type:  Slow 
Room-temperature: -10°C 
Sample Type:  1/4" Plate 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (+.50 cm (0 cm nominal)) 
HOffset(from -613.3 mm): 0.41 cm 
HSpeed:  ~11 mm/s (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 2.40 mm 
VSpeed:  1.0 mm/s (nominal) 
V Travel:  40 mm 
V Stopping Point: -37.6 mm 
 
Notes: 
Indentation 1:  ~40 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad18 
 
Plots: 
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Appendix C2.1.4 – MovingLoad19 

April 8, 2014 at ~3:00 p.m. 
 
Run #   12 
Run Type:  Full Length – Slow  
Room-temperature: -10°C 
Sample Type:  1/4" Plate 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.19 cm (-55 cm nominal)) 
HSpeed:  ~10 mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 3.15 mm 
VSpeed:  1.0 mm/s (nominal) 
V Travel:  40 mm 
V Stopping Point: -36.85 mm 
 
Notes: 
Indentation 1:  ~40 mm, In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad19 
 
Plots: 
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 – Quarter Inch Plate – 4 cm Indentation 
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Appendix C2.2.1 – Summary Plots for Experiments ML 23, 24 and 

25 
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Appendix C2.2.2 – Fast – Movin1gLoad23 

April 15, 2014 at ~11:20 a.m. 
 
Run #   16 
Room-temperature: -10°C 
Sample Type:  1/4" Plate 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (0.62 cm (0 cm nominal)) 
HSpeed:  Fastest mm/s  
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 2.5 mm 
VSpeed:  Fastest mm/s 
V Travel:  20 mm 
V Stopping Point: -17.5 mm 
 
Notes: 
May be slightly damaged on far end by accidental drop on steel wheel indenter before 
test. 
Indentation 1:  ~20 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad23 
With Thermal Video 
No Microscribe Tests for this sample. 
 
Plots: 
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Appendix C2.2.3 – MovingLoad24 

April 15, 2014 at ~2:55 p.m. 
 
Run #   17 
Run Type:  Slow 
Room-temperature: -10°C 
Sample Type:  1/4" Plate 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (0.0 (0 cm nominal)) 
HSpeed:  10 mm/s (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 2.45 mm 
VSpeed:  1.0 mm/s (nominal) 
V Travel:  20 mm 
V Stopping Point: -17.55 mm 
 
Notes: 
Indentation 1:  ~20 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad24 
With Thermal Video 
 
Plots: 
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Appendix C2.2.4 – Full Length – Slow - MovingLoad25 

April 16, 2014 at 12:00p.m 
 
Run #   18 
Room-temperature: -9.4°C (Started measuring with thermocouple) 
Sample Type:  1/4" Plate 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.69 (-55 cm nominal)) 
HSpeed:  10mm/s (nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 3.05 mm 
VSpeed:  1.0 mm/s (nominal) 
V Travel:  20 mm 
V Stopping Point: -16.95 mm 
 
Notes: 
Indentation 1:  ~20 mm, In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad25 
With Thermal Video 
 
Plots: 
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 – Half Inch Plate – 3 cm Indentation 
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Appendix C2.3.1 – Summary Plots for Experiments ML 20, 21 and 

22 
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Appendix C2.3.2 – MovingLoad20 

April 9, 2014 at ~1:15 p.m. 
 
Run #   13 
Run Type:  Slow 
Room-temperature: -10°C 
Sample Type:  1/2" Plate 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (.46 cm (0 cm nominal)) 
HSpeed:  ~10 mm/s (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 8.90 mm 
VSpeed:  1.0 mm/s (nominal) 
V Travel:  30 mm 
V Stopping Point: -21.1 mm 
 
Notes: 
Indentation 1:  ~30 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad20 
 
Plots: 
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Appendix C2.3.1 – MovingLoad21 

April 10, 2014 at ~1:00 p.m. 
 
Run #   14 
Run Type:  Full Length – Slow 
Room-temperature: -10°C 
Sample Type:  1/2" Plate 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.21 cm (-55 cm nominal)) 
HSpeed:  10 mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 9.6 mm 
VSpeed:  1.0 mm/s (Nominal) 
V Travel:  30 mm 
V Stopping Point: -20.4 mm 
 
Notes: 

- Indentation 1:  ~30 mm, In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad21 

- Temperature varied between -8.5°C and -7.8°C due to just entering defrost mode.  
Steel probably colder than air temperature. 

 
Plots: 
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Appendix C2.3.2 – MovingLoad22 

April 14, 2014 at ~1:20 p.m. 
 
Run #   15 
Run Type:  Fast 
Room-temperature: -10°C 
Sample Type:  1/2" Plate 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (0.5 cm (0 cm nominal)) 
HSpeed:  Fastest (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 8.91 mm 
VSpeed:  Fastest mm/s (nominal) 
V Travel:  30 mm 
V Stopping Point: -21.09 mm 
 
Notes: 
Indentation 1:  ~30 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad22 
 
Plots: 
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 – Frame – 2.5 cm Indentation 
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Appendix C2.4.1 – Summary Plots for Experiments ML 26, 27 and 

28 
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Appendix C2.4.2 – MovingLoad26 

April 16, 2014 at 4:10p.m. 
 
Run #   19 
Run Type:  Fast 
Room-temperature: -9.6°C (Measured with thermocouple) 
Sample Type:  Frame 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (0.70 cm (0 cm nominal)) 
HSpeed:  Fastest 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 4.01 mm 
VSpeed:  Fastest (nominal) 
V Travel:  25 mm 
V Stopping Point: -20.99 mm 
 
Notes: 
Indentation 1:  ~25 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad26 
With Thermal Video 
 
Plots: 
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Appendix C2.4.3 – MovingLoad27 

April 22, 2014 at ~2:15 a.m. 
 
Run #   20 
Run Type:  Slow 
Room-temperature: -9.8°C (Measured with thermocouple) 
Sample Type:  Frame 
Test Type:  In-Along-Out Centre to End 
 
HStarting Point: Centre (0.27 cm (0 cm nominal)) 
HSpeed:  10 mm/s (Nominal) 
H Travel:  Centre to End (55+ cm) 
 
Vstarting Point: 4.25 mm 
VSpeed:  1.0 mm/s (Nominal) 
V Travel:  25 mm 
V Stopping Point: -20.75  mm 
 
Notes: 
Indentation 1:  ~25 mm, In-Along-Out - Centre to End 
Data from Indentation 1 saved as MovingLoad27 
With Thermal Video 
 
Plots: 
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Appendix C2.4.4 – MovingLoad28 

April 23, 2014 at ~4:15p.m. 
 
Run #   21 
Run Type:  Full Length – Slow 
Room-temperature: -9.7°C (Measured with thermocouple) 
Sample Type:  Frame 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.44 cm (-55 cm nominal)) 
HSpeed:  10mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 4.26 mm 
VSpeed:  1.0 mm/s (nominal) 
V Travel:  25 mm 
V Stopping Point: -20.74  mm 
 
Notes: 
Indentation 1:  ~25 mm, In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad28 
With Thermal Video 
 
Plots: 
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 – Force Controlled Tests 
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Appendix C2.5.1 – Summary Plots for Experiments ML 29, 36 and 

37 
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Appendix C2.5.2 – Force Controlled – MovingLoad29 

April 24, 2014 at ~12:10p.m. 
 
Run #   22 
Run Type:  Force Control - Half Inch Plate - Full Length 
Room-temperature: -9.5°C (Measured with thermocouple) 
Sample Type:  1/2" Plate 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.42 cm (-55 cm nominal)) 
HSpeed:  10mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 9.49 mm 
VSpeed:  10 kN/s 
V Force Target: 250 kN 
V Disp Limit:  -35  mm 
 
Notes: 
Force 1:  250 kN In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad29 
With Two Thermal Video Cameras 
 
Plots: 
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Appendix C2.5.3 – Force Controlled – MovingLoad36 

May 1, 2014 at ~3:50p.m. 
 
Run #   24 
Run Type:  Force Control - Quarter Inch Plate - Full Length 
Room-temperature: -9.3°C (Measured with thermocouple) 
Sample Type:  1/4" Plate 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.21 cm (-55 cm nominal)) 
HSpeed:  10mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 3.1 mm 
VSpeed:  10 kN/s (Nominal) 
V Force Target: 125 kN 
V Disp Limit:  -50  mm 
 
Notes: 
Force 1:  125 kN In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad36 
With Two Thermal Video Cameras 
 
Plots: 
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Appendix C2.5.4 – Force Controlled – MovingLoad37 

May 5, 2014 at ~3:00p.m. 
 
Run #   25 
Run Type:  Frame - Force Controlled - Full Length 
Room-temperature: -9.9°C (Measured with thermocouple) 
Sample Type:  Frame 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.61 cm (-55 cm nominal)) 
HSpeed:  10mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: 3.35 mm 
VSpeed:  10 kN/s 
V Force Target: 250 kN 
V Disp Limit:  -40  mm 
 
Notes:  
Force 1:  250 kN In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad37 
With one Thermal Video Cameras 
 
Plots: 
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Appendix C3 – Ice Cone Tests 
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 – Ice Cone Tests Inducing Frictionless Elastic Plate 

Response 

Acknowledgment:  The experiments conducted in this section (Appendix C3.1) were a 
joint effort between Hyunwook Kim and myself.  Pressure film was overlaid on the 
elastic plate test specimen, which did not move relative to the plate.  The pressure film 
recorded the aggregate pressure between the ice cone and the plate as the ice cone moved 
laterally along the plate.  The pressures recorded during these experiments are not 
included in this thesis, and are as yet unpublished. 
 
In addition to recording the ice pressure, the pressure film was very smooth, and 
essentially provided a frictionless surface for the ice to slide along.  The results in this 
appendix may be thought of as practically frictionless, and provide a basis for comparison 
with the ice cone tests in the following appendix (Appendix C3.2), which are the analog 
of these tests, but without the pressure film (and hence with normal ice-steel friction). 
 
It should further be noted that the longitudinal extent pressure film did not cover the 
entire plate for each test, therefore there is a “frictionless section” while the ice is sliding 
along the pressure film; then abruptly returns to a standard ice-steel frictional surface as 
the ice transitions onto the bare steel plate.  This can be observed plainly in the following 
plots as significant “stick-slip” phenomena begins at the point of transition. 



509 
 

Appendix C3.1.1 – Summary Plots for Experiments ML 32, 33, and 

35 
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Appendix C3.1.2 – MovingLoad32 

April 28, 2014 at ~3:30p.m. 
 
Run #    
Run Type:  Ice Cone – Pressure Film 1 
Room-temperature: -8.9°C (Measured with thermocouple) 
Sample Type:  1/2" Plate with Ice 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-54.84 cm (-55 cm nominal)) 
HSpeed:  10mm/s (Nominal) 
H Travel:  End to End (110+ cm) 
 
Vstarting Point: -0.60 mm 
VSpeed:  0.25 mm/s 
V Target:  -30.6 mm 
V Travel:  30.0  mm 
 
Notes: 
Force 1:  3 cm Ice Indentation In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad32 
With Two Thermal Video Cameras and High Speed 
With Pressure Film 
 
Plots: 
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Appendix C3.1.3 – MovingLoad33 

April 29, 2014 at ~12:00p.m. 
 
Run #    
Run Type:  Ice Cone – Pressure Film 2 
Room-temperature: -8.9°C (Measured with thermocouple) 
Sample Type:  1/2" Plate with Ice 
Test Type:  In-Along-Out End to end of pressure film (85 cm) 
 
HStarting Point: End (-61.49 cm (absolute end)) 
HSpeed:  100mm/s (Nominal) 
H Travel:  Abs. End to end of pressure film (85 cm) 
 
Vstarting Point: 0.60 mm 
VSpeed:  3.5 mm/s 
V Target:  -29.4 mm 
V Travel:  30.0  mm 
 
Notes: 
Force 1:  3 cm Ice Indentation In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad33 
With Two Thermal Video Cameras and High Speed 
With Pressure Film 
 
Plots: 
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Appendix C3.1.4 – MovingLoad35 

 
April 29, 2014 at ~4:00p.m. 
 
Run #    
Run Type:  Ice Cone – Pressure Film 3 
Room-temperature: -8.4°C (Measured with thermocouple) 
Sample Type:  1/2" Plate with Ice 
Test Type:  In-Along-Out End to End 
 
HStarting Point: End (-61.49 cm (absolute end)) 
HSpeed:  82.963 mm/s (Nominal) 
H Travel:  Abs. End to end of pressure film (85 cm) 
 
Vstarting Point: 2.43 mm 
VSpeed:  82.963 mm/s 
V Target:  -27.57 mm 
V Travel:  30.0  mm 
 
Notes: 
Force 1:  3 cm Ice Indentation In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad35 
With Two Thermal Video Cameras and High Speed 
With Pressure Film 
 
Plots: 
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 – Ice Cone Tests Inducing Elastic Plate Response 
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Appendix C3.2.1 – Summary Plots for Experiments ML 30, 31, 34, 

38, and 39 
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Appendix C3.2.2 – MovingLoad30 

April 25, 2014 at ~1:00p.m. 
 
Run #    23 
Run Type:   Ice Cone – Elastic Plate 1 
Room-temperature:  -7.6°C (Measured with thermocouple) 
Sample Type:   1/2" Plate with Ice 
Test Type:   In-Along-Out End to End 
 
HStarting Point:  End (-54.84 cm (-55 cm nominal)) 
HSpeed:   10mm/s (Nominal) 
H Travel:   End to End (110+ cm) 
 
Vstarting Point:  -1.45 mm 
VSpeed:   0.25 mm/s 
V Target:   30 mm 
V Travel:   28.55  mm 
 
Notes: 
Force 1:  3 cm Ice Indentation In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad30 
With Two Thermal Video Cameras and High Speed 
 
Plots: 
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Appendix C3.2.3 – MovingLoad31 

April 28, 2014 at ~11:45p.m. 
 
Run #    
Run Type:   Ice Cone – Elastic Plate 2 
Room-temperature:  -9.4°C (Measured with thermocouple) 
Sample Type:   1/2" Plate with Ice 
Test Type:   In-Along-Out End to End 
 
HStarting Point:  End (-54.73 cm (-55 cm nominal)) 
HSpeed:   10mm/s (Nominal) 
H Travel:   End to End (110+ cm) 
 
Vstarting Point:  +0.95 mm 
VSpeed:   0.25 mm/s 
V Target:   30.95 mm 
V Travel:   30.0  mm 
 
Notes: 
Force 1:  3 cm Ice Indentation In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad31 
With Two Thermal Video Cameras and High Speed 
 
Plots: 
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Appendix C3.2.4 – MovingLoad34 

April 29, 2014 at ~2:40p.m. 
 
Run #    
Run Type:   Ice Cone – Elastic Plate 3 
Room-temperature:  -8.9°C (Measured with thermocouple) 
Sample Type:   1/2" Plate with Ice 
Test Type:   In-Along-Out End to roughly centre 
 
HStarting Point:  End (-61.49 cm (absolute end)) 
HSpeed:   100mm/s (Nominal) 
H Travel:   Abs. End to roughly centre 
 
Vstarting Point:  -1.38 mm 
VSpeed:   3.5 mm/s 
V Target:   -31.38 mm 
V Travel:   30.0  mm 
 
Notes: 
Force 1:  3 cm Ice Indentation In-Along-Out - End to roughly centre 
Data from Indentation 1 saved as MovingLoad34 
With Two Thermal Video Cameras and High Speed 
 
Plots: 
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Appendix C3.2.5 – MovingLoad38 

May 14, 2014 at ~2:45p.m. 
 
Run #    elastic 1/2" sample with ice 
Run Type:   Ice Cone – Elastic Plate 4 
Room-temperature:  -9.4°C (Measured with thermocouple) 
Sample Type:   Elastic 1/2" plate (again) 
Test Type:   In-Along-Out End to End 
 
HStarting Point:  End (-61.503 cm (-abs end)) 
HSpeed:   10mm/s (Nominal) 
H Travel:   End to End (110+ cm) 
 
Vstarting Point:  -1.84 mm 
VSpeed:   0.25 mm/s (nominal) 
V Travel:   30 mm 
V Stopping Point:  -31.840  mm 
 
Notes: 
Disp Controlled:  In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad38 
With one Thermal Video Camera and high speed video 
 
Plots: 
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Appendix C3.2.6 – MovingLoad39 

May 16, 2014 at ~10:50a.m. 
 
Run #    elastic 1/2" sample with ice 
Run Type:   Ice Cone – Elastic Plate 5 
Room-temperature:  -10.4°C (Measured with thermocouple) 
Sample Type:   elastic 1/2" plate (again) 
Test Type:   In-Along-Out End to End 
 
HStarting Point:  End (-61.503 cm (-abs end)) 
HSpeed:   10mm/s (Nominal) 
H Travel:   End to End (110+ cm) 
 
Vstarting Point:  -0.496 mm 
VSpeed:   0.25 mm/s (nominal) 
V Travel:   30 mm 
V Stopping Point:  -30.496 mm 
 
Notes: 
Disp Controlled:  In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad39 
With one Thermal Video Camera and high speed video 
 
Plots: 
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 – Ice Cone Tests Inducing Plastic Plate Deformation 
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Appendix C3.3.1 – Summary Plots for Experiments ML 40, 41 and 

42 
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Appendix C3.3.2 – MovingLoad40 

May 16, 2014 at ~2:45p.m. 
 
Run #    1/8" plate with ice (no keystock) 
Run Type:   Ice Cone – Slow – Plastic Plate 1 
Room-temperature:  -9.1°C (Measured with thermocouple) 
Sample Type:   1/8" plate 
Test Type:   In-Along-Out End to End 
 
HStarting Point:  End (-61.503 cm (-abs end)) 
HSpeed:   10mm/s (Nominal) 
H Travel:   End to End (110+ cm) 
 
Vstarting Point:  -11.92 mm 
VSpeed:   0.25 mm/s (nominal) 
V Travel:   30 mm 
V Stopping Point:  -41.9 mm 
 
Notes: 
Disp Controlled:  In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad40 
With one internal Thermal Video Camera and external high speed video 
 
Plots: 
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Appendix C3.3.3 – MovingLoad41 

May 20, 2014 at ~12:00p.m. 
 
Run #    1/8" plate with ice (no keystock) 
Run Type:   Ice Cone – Plastic Plate 2 
Room-temperature:  -9.3°C (Measured with thermocouple) 
Sample Type:   1/8" plate 
Test Type:   In-Along-Out End to End 
 
HStarting Point:  End (-61.503 cm (-abs end)) 
HSpeed:   Fastest 
H Travel:   Abs End to Abs End (110+ cm) 
 
Vstarting Point:  -11.621 mm 
VSpeed:   10 mm/s 
V Travel:   64.383 mm 
V Stopping Point:  -76.0 mm 
 
Notes: 
Disp Controlled:  In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad41 
With one internal Thermal Video Camera and external high speed video 
 
Plots: 
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Appendix C3.3.4 – MovingLoad42 

May 20, 2014 at ~3:25p.m. 
 
Run #    1/4" plate with ice 
Run Type:   Ice Cone – Plastic Plate 3 
Room-temperature:  -9.3°C (Measured with thermocouple) 
Sample Type:   1/4" plate 
Test Type:   In-Along-Out End to End 
 
HStarting Point:  End (-61.503 cm (-abs end)) 
HSpeed:   Fastest 
H Travel:   Abs End to Abs End (110+ cm) 
 
Vstarting Point:  -8.992 mm 
VSpeed:   10 mm/s 
V Travel:   64.383 mm 
V Stopping Point:  -73.375 mm 
 
Notes: 
Disp Controlled:  In-Along-Out - End to End 
Data from Indentation 1 saved as MovingLoad41 
With one internal Thermal Video Camera and external high speed video 
 
Plots: 
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 – Custom Data Analysis and Plotting Script 

As the data for all moving load experiments was recorded at either a 2048Hz or 4096 Hz 

resolution, the data files for the longer duration tests (some well over 100 seconds) were 

very large.  In order to facilitate the analysis of this data, a custom data analysis script and 

accompanying graphical user interface was written in Matlab®.  The following script was 

used to perform all data manipulations, and was used exclusively to interrogate, and create 

the plots for all of the moving load experimental data. 
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function varargout = Moving_Load_Data_Analysis2(varargin) 
%========================================================================== 
% Software License 
% Copyright (c) 2014, Bruce W.T. Quinton 
%  All rights reserved. 
% 
% Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are met: 
% 
% 1. Redistributions of source code must retain the above copyright notice, this 
list of conditions and the following disclaimer. 
% 
% 2. Redistributions in binary form must reproduce the above copyright notice, 
this list of conditions and the following disclaimer in the documentation and/or 
other materials provided with the distribution. 
% 
% 3. Neither the name of the copyright holder nor the names of its contributors 
may be used to endorse or promote products derived from this software without 
specific prior written permission. 
% 
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR 
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
%========================================================================== 
% 
% MOVING_LOAD_DATA_ANALYSIS2 MATLAB code for Moving_Load_Data_Analysis2.fig 
%      MOVING_LOAD_DATA_ANALYSIS2, by itself, creates a new 
MOVING_LOAD_DATA_ANALYSIS2 or raises the existing 
%      singleton*. 
% 
%      H = MOVING_LOAD_DATA_ANALYSIS2 returns the handle to a new 
MOVING_LOAD_DATA_ANALYSIS2 or the handle to 
%      the existing singleton*. 
% 
%      MOVING_LOAD_DATA_ANALYSIS2('CALLBACK',hObject,eventData,handles,...) 
calls the local 
%      function named CALLBACK in MOVING_LOAD_DATA_ANALYSIS2.M with the given 
input arguments. 
% 
%      MOVING_LOAD_DATA_ANALYSIS2('Property','Value',...) creates a new 
MOVING_LOAD_DATA_ANALYSIS2 or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Moving_Load_Data_Analysis2_OpeningFcn gets 
called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Moving_Load_Data_Analysis2_OpeningFcn via 
varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
% Edit the above text to modify the response to help Moving_Load_Data_Analysis2 
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% Last Modified by GUIDE v2.5 15-Dec-2014 19:03:04 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Moving_Load_Data_Analysis2_OpeningFcn, ... 
                   'gui_OutputFcn',  @Moving_Load_Data_Analysis2_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
% --- Executes just before Moving_Load_Data_Analysis2 is made visible. 
function Moving_Load_Data_Analysis2_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output args, see OutputFcn. 
% varargin   command line arguments to Moving_Load_Data_Analysis2 (see VARARGIN) 
movegui(hObject,'northwest') 
% Clear data and reset parameters 
axes(handles.axes1) 
cla reset 
[handles] = initializeGUI(handles); 
% Choose default command line output for Moving_Load_Data_Analysis2 
handles.output = hObject; 
% Update handles structure 
guidata(hObject, handles); 
% UIWAIT makes Moving_Load_Data_Analysis2 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
% --- Outputs from this function are returned to the command line. 
function varargout = Moving_Load_Data_Analysis2_OutputFcn(hObject, eventdata, 
handles) 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
% --- Executes on selection change in x_data_series. 
function x_data_series_Callback(hObject, eventdata, handles) 
% hObject    handle to x_data_series (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns x_data_series 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from x_data_series 
% --- Executes during object creation, after setting all properties. 
function x_data_series_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x_data_series (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in plot_button. 
function plot_button_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_button (see GCBO) 
% Get data series to plot 
[handles] = get_xseries(handles); 
[handles] = get_yseries(handles); 
[handles] = get_y2series(handles); 
%   Set x_sliders ranges 
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[handles] = set_slider_values(handles); 
%    Plot data 
[handles] = plot_data(handles); 
guidata(hObject, handles); 
% -------------------------------------------------------------------- 
function open_datafile_ClickedCallback(hObject, eventdata, handles) 
% hObject    handle to open_datafile (see GCBO) 
%   Clear old data 
if isfield(handles.myvars,'data') == 1 
    handles.myvars=rmfield(handles.myvars,'data'); 
end 
axes(handles.axes1) 
% cla reset               %   Clear axis 
% set(handles.holdon_checkbox,'Value',0); 
%   Change to specimen directory 
cd (handles.myvars.default_dir); 
[handles.myvars.filename, handles.myvars.pathname] = uigetfile('*.dat','Please 
choose a data file...'); 
%   User "Cancel" button condition 
if isequal(handles.myvars.filename,0) 
   disp('User selected Cancel') 
%    return; 
   clear all 
   close all 
else 
   disp(['User selected:  ', fullfile(handles.myvars.pathname, 
handles.myvars.filename)]) 
   % Set Default Filename equal to lowest directory name 
   a=strread(handles.myvars.pathname,'%s','delimiter','\\'); 
   a=a{length(a)}; 
   handles.myvars.specimen_name=a; 
   % Display default filename 
   set(handles.specimen_popupmenu,'Value',43); 
   handles=importDataFcn(handles); 
end 
guidata(hObject, handles); 
% --- Executes on button press in reset_button. 
function reset_button_Callback(hObject, eventdata, handles) 
% hObject    handle to reset_button (see GCBO) 
% Clear data and reset parameters 
[handles] = initializeGUI(handles); 
guidata(hObject,handles); 
% --- Executes on button press in exit_button. 
function exit_button_Callback(hObject, eventdata, handles) 
% hObject    handle to exit_button (see GCBO) 
cd (handles.myvars.program_dir);   % Change to program directory 
clear all                   % Clear all workspace 
close all                   % Close all Figures 
clc                         % Clear Command Window 
% --- Executes on selection change in y_data_series. 
function y_data_series_Callback(hObject, eventdata, handles) 
% hObject    handle to y_data_series (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns y_data_series 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from y_data_series 
% --- Executes during object creation, after setting all properties. 
function y_data_series_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to y_data_series (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in plot_style_checkbox. 
function plot_style_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_style_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of plot_style_checkbox 
% --- Executes on selection change in y2_data_series. 
function y2_data_series_Callback(hObject, eventdata, handles) 
% hObject    handle to y2_data_series (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns y2_data_series 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
y2_data_series 
% --- Executes during object creation, after setting all properties. 
function y2_data_series_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to y2_data_series (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in spec_analysis_button. 
function spec_analysis_button_Callback(hObject, eventdata, handles) 
% hObject    handle to spec_analysis_button (see GCBO) 
if get(handles.use_all_data_checkbox,'Value')==1 
    handles.myvars.templow = 1; 
    handles.myvars.temphigh = size(handles.myvars.xseries,1); 
else 
    [quick_x, quick_y]=ginput(2);                   % Interactive user peak 
selection with mouse 
%     disp(quick_x); 
%     disp(min(handles.myvars.xseries)); 
%     disp(max(handles.myvars.xseries)); 
%     disp(quick_y); 
%     disp(min(handles.myvars.yseries)); 
%     disp(max(handles.myvars.yseries)); 
    if (quick_x(1)<min(handles.myvars.xseries))     % Ensure selection is within 
data boundaries 
        quick_x(1)=min(handles.myvars.xseries); 
    else 
    end 
    if (quick_x(2)>max(handles.myvars.xseries))   % Ensure selection is within 
data boundaries 
        quick_x(2)=max(handles.myvars.xseries); 
    else 
    end 
    handles.myvars.start_x=quick_x(1); 
    handles.myvars.end_x=quick_x(2); 
    [I1 I2] = find (handles.myvars.xseries>=handles.myvars.start_x);  % Find 
matrix coords less than 1st mouse click 
%     min(I1) 
%     handles.myvars.start_x 
%     handles.myvars.xseries(min(I1)) 
    handles.myvars.templow = min(I1);                              % Get matrix 
coords of 1st mouse click 
    [J1 J2] = find (handles.myvars.xseries<=handles.myvars.end_x);    % Find 
matrix coords greater than 2nd mouse click 
%     max(J1) 
%     handles.myvars.end_x 
%     handles.myvars.xseries(max(J1)) 
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    handles.myvars.temphigh = max(J1);                             % Get matrix 
coords of 2nd mouse click 
end 
% Get Quick Stats 
quick_min=min(handles.myvars.yseries(handles.myvars.templow:handles.myvars.temph
igh)); 
I_min=find(handles.myvars.yseries==quick_min); 
quick_x_min=min(handles.myvars.xseries(handles.myvars.templow:handles.myvars.tem
phigh)); 
quick_max=max(handles.myvars.yseries(handles.myvars.templow:handles.myvars.temph
igh)); 
I_max=find(handles.myvars.yseries==quick_max); 
quick_x_max=max(handles.myvars.xseries(handles.myvars.templow:handles.myvars.tem
phigh)); 
quick_mean=mean(handles.myvars.yseries(handles.myvars.templow:handles.myvars.tem
phigh)); 
quick_x_mean=mean(handles.myvars.xseries(handles.myvars.templow:handles.myvars.t
emphigh)); 
quick_y_spread=quick_max-quick_min; 
quick_x_spread=quick_x_max-quick_x_min; 
quick_min_loc=handles.myvars.xseries(I_min); 
quick_max_loc=handles.myvars.xseries(I_max); 
quick_min_time=handles.myvars.xseries_time(I_min); 
quick_max_time=handles.myvars.xseries_time(I_max); 
%   Plot Refline 
if get(handles.refline_checkbox,'Value') == 1 
    h_refline=refline(0,quick_min); 
    set(h_refline,'Color','k','LineWidth',2) 
    handles.myvars.legend_title(end+1)={'Reference Line'}; 
    %   Display Legend 
    if get(handles.legend_checkbox,'Value')==1 
        LEG=legend(gca,handles.myvars.legend_title,'Location','NorthWest'); 
        if get(handles.transparent_legend_checkbox,'Value') == 1 
            set(LEG,'color','none') 
        end 
    end 
end 
% Display Quick Stats 
set(handles.start_time_edit,'String',num2str(round(quick_x_min*100)/100)); 
set(handles.end_time_edit,'String',num2str(round(quick_x_max*100)/100)); 
set(handles.x_mean_edit,'String',num2str(round(quick_x_mean*100)/100)); 
set(handles.x_spread_edit,'String',num2str(round(quick_x_spread*100)/100)); 
set(handles.min_edit,'String',num2str(round(quick_min*100)/100)); 
set(handles.max_edit,'String',num2str(round(quick_max*100)/100)); 
set(handles.mean_edit,'String',num2str(round(quick_mean*100)/100)); 
set(handles.y_spread_edit,'String',num2str(round(quick_y_spread*100)/100)); 
set(handles.miny_xval_edit,'String',num2str(round(quick_min_loc*100)/100)); 
set(handles.maxy_xval_edit,'String',num2str(round(quick_max_loc*100)/100)); 
set(handles.miny_time_edit,'String',num2str(round(quick_min_time*100)/100)); 
set(handles.maxy_time_edit,'String',num2str(round(quick_max_time*100)/100)); 
if get(handles.FFT_checkbox,'Value')==1 
    clear y t 
    y=handles.myvars.yseries(handles.myvars.templow:handles.myvars.temphigh); 
    t=handles.myvars.data.time(handles.myvars.templow:handles.myvars.temphigh); 
    Fs=1/((t(2,1)-t(1,1))); % Sampling Frequency 
    L = length(y);          % Length of signal 
    NFFT = 2^nextpow2(L); % Next power of 2 from length of y 
    Y = fft(y,NFFT)/L; 
    f = Fs/2*linspace(0,1,NFFT/2+1); 
    % Plot single-sided amplitude spectrum. 
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    figure 
    subplot(2,1,1) 
    plot(t,y) 
    title('Data Selection') 
    xlabel('Time [s]') 
    subplot(2,1,2) 
    plot(f,2*abs(Y(1:NFFT/2+1))) 
    title('Single-Sided Amplitude Spectrum of y(t)') 
    xlabel('Frequency (Hz)') 
    ylabel('|Y(f)|') 
end 
% %   Tare data 
% %   Get mouse input for tare region 
% [x, y]=ginput(2);   % Interactive user peak selection with mouse 
% if (x(1)<0)         % Ensure time > 0 
%     x(1)=0; 
% end 
% %   Get indicies of mouse selection and ensure they are inside the mouse 
% %   selection. 
% ind(1)=max(find(handles.myvars.data.time<=x(1)))+1; 
% ind(2)=min(find(handles.myvars.data.time>=x(2)))-1; 
% vdisp_tare=mean(handles.myvars.data.vdisp(ind(1):ind(2))); 
% handles.myvars.data.vdisp=handles.myvars.data.vdisp-vdisp_tare; 
% 
% vforc_tare=mean(handles.myvars.data.vforc(ind(1):ind(2))); 
% handles.myvars.data.vforc=handles.myvars.data.vforc-vforc_tare; 
% 
% hdisp_tare=mean(handles.myvars.data.hdisp(ind(1):ind(2))); 
% handles.myvars.data.hdisp=handles.myvars.data.hdisp-hdisp_tare; 
% 
% hforc1_tare=mean(handles.myvars.data.hforc1(ind(1):ind(2))); 
% handles.myvars.data.hforc1=handles.myvars.data.hforc1-hforc1_tare; 
% 
% hforc2_tare=mean(handles.myvars.data.hforc2(ind(1):ind(2))); 
% handles.myvars.data.hforc2=handles.myvars.data.hforc2-hforc2_tare; 
if get(handles.fit_data_checkbox,'Value')==1 
    fit_curve(handles); 
end 
guidata(hObject,handles); 
function min_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to min_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of min_edit as text 
%        str2double(get(hObject,'String')) returns contents of min_edit as a 
double 
% --- Executes during object creation, after setting all properties. 
function min_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to min_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function max_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to max_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of max_edit as text 
%        str2double(get(hObject,'String')) returns contents of max_edit as a 
double 
% --- Executes during object creation, after setting all properties. 
function max_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to max_edit (see GCBO) 
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% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function mean_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to mean_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of mean_edit as text 
%        str2double(get(hObject,'String')) returns contents of mean_edit as a 
double 
% --- Executes during object creation, after setting all properties. 
function mean_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to mean_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function end_time_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to end_time_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of end_time_edit as text 
%        str2double(get(hObject,'String')) returns contents of end_time_edit as 
a double 
% --- Executes during object creation, after setting all properties. 
function end_time_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to end_time_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function start_time_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to start_time_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of start_time_edit as text 
%        str2double(get(hObject,'String')) returns contents of start_time_edit 
as a double 
% --- Executes during object creation, after setting all properties. 
function start_time_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to start_time_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in plot_sep_window_checkbox. 
function plot_sep_window_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_sep_window_checkbox (see GCBO) 
% if get(hObject,'Value')==1 
%     handles.sep_figure=figure; 
% end 
% if get (hObject,'Value')==0 
%     close(handles.sep_figure) 
% end 
% Hint: get(hObject,'Value') returns toggle state of plot_sep_window_checkbox 
guidata(hObject,handles); 
% --- Executes on button press in holdon_checkbox. 
function holdon_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to holdon_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of holdon_checkbox 
if get(hObject,'Value')==0 
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    if isfield(handles.myvars,'plotcount') == 1 
        handles.myvars=rmfield(handles.myvars,'plotcount'); 
    end 
end 
guidata(hObject,handles); 
% --- Executes on button press in cla_pushbutton. 
function cla_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to cla_pushbutton (see GCBO) 
[handles]=clear_plot(handles); 
guidata(hObject,handles); 
% --- Executes on button press in tare_by_initial_checkbox. 
function tare_by_initial_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to tare_by_initial_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of tare_by_initial_checkbox 
if get(hObject,'Value')==1 
    [handles] = clear_derived_data(handles); 
    [handles] = tare_data(handles); 
    [handles] = create_derived_data(handles); 
elseif get(hObject,'Value')==0 
    [handles] = clear_derived_data(handles); 
    [handles] = untare_data(handles); 
    [handles] = create_derived_data(handles); 
end 
guidata(hObject,handles); 
% --- Executes on button press in use_all_data_checkbox. 
function use_all_data_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to use_all_data_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of use_all_data_checkbox 
if get(hObject,'Value') == 1 
    set(handles.refline_checkbox,'Value',0) 
    set(handles.refline_checkbox,'Enable','off') 
end 
if get(hObject,'Value') == 0 
    set(handles.refline_checkbox,'Enable','on') 
end 
% --- Executes on button press in FFT_checkbox. 
function FFT_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to FFT_checkbox (see GCBO) 
if get(hObject,'Value')==1 
    set(handles.fit_data_checkbox,'Enable','off') 
    set(handles.data_fit_popupmenu,'Enable','off') 
    set(handles.refit_pushbutton,'Enable','off') 
else 
    set(handles.fit_data_checkbox,'Enable','on') 
    set(handles.data_fit_popupmenu,'Enable','on') 
    set(handles.refit_pushbutton,'Enable','on') 
end 
guidata(hObject,handles); 
% Hint: get(hObject,'Value') returns toggle state of FFT_checkbox 
% --- Executes on selection change in curve_operations_popup. 
function curve_operations_popup_Callback(hObject, eventdata, handles) 
% hObject    handle to curve_operations_popup (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns 
curve_operations_popup contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
curve_operations_popup 
oper_val=get(hObject,'Value'); 
oper_str=get(hObject,'String'); 
switch oper_str{oper_val} 
    case 'Addition' 
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        set(handles.curve_operations_curve2,'Enable','on'); 
        set(handles.text16,'String','Curve 1'); 
        set(handles.text17,'String','Curve 2'); 
    case 'Subtraction' 
        set(handles.curve_operations_curve2,'Enable','on'); 
        set(handles.text16,'String','Curve 1'); 
        set(handles.text17,'String','Curve 2'); 
    case 'Division' 
        set(handles.curve_operations_curve2,'Enable','on'); 
        set(handles.text16,'String','Numerator'); 
        set(handles.text17,'String','Denominator'); 
    case '1st Integral' 
        set(handles.curve_operations_curve2,'Enable','on'); 
        set(handles.text16,'String','Integrate'); 
        set(handles.text17,'String','with respect to...'); 
    case '1st Derivative' 
        set(handles.curve_operations_curve2,'Enable','off'); 
        set(handles.text16,'String','Curve 1'); 
        set(handles.text17,'String','Curve 2'); 
    case '2nd Derivative' 
        set(handles.curve_operations_curve2,'Enable','off'); 
        set(handles.text16,'String','Curve 1'); 
        set(handles.text17,'String','Curve 2'); 
end 
guidata(hObject,handles); 
% --- Executes during object creation, after setting all properties. 
function curve_operations_popup_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to curve_operations_popup (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on selection change in curve_operations_curve1. 
function curve_operations_curve1_Callback(hObject, eventdata, handles) 
% hObject    handle to curve_operations_curve1 (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns 
curve_operations_curve1 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
curve_operations_curve1 
% --- Executes during object creation, after setting all properties. 
function curve_operations_curve1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to curve_operations_curve1 (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in curve_operations_button. 
function curve_operations_button_Callback(hObject, eventdata, handles) 
% hObject    handle to curve_operations_button (see GCBO) 
% handle%   Set x series data 
[handles] = get_xseries(handles); 
[handles] = get_yseries(handles); 
[handles] = get_y2series(handles); 
%  The above is unnecessarily necessary... 
curve1_val=get(handles.curve_operations_curve1,'Value'); 
curve1_str=get(handles.curve_operations_curve1,'String'); 
handles.myvars.curve1_title=curve1_str{curve1_val}; 
switch handles.myvars.curve1_title 
    case 'Time' 
        handles.myvars.curve1=handles.myvars.data.time; 
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    case 'Vertical Displacement' 
        handles.myvars.curve1=handles.myvars.data.vdisp; 
    case 'Vertical Velocity' 
        handles.myvars.curve1=handles.myvars.data.vvel; 
    case 'Vertical Acceleration' 
        handles.myvars.curve1=handles.myvars.data.vacc; 
    case 'Vertical Force' 
        handles.myvars.curve1=handles.myvars.data.vforc; 
    case 'Vertical Impulse' 
        handles.myvars.curve1=handles.myvars.data.vimpulse; 
 case 'Vertical Work' 
        handles.myvars.curve1=handles.myvars.data.vwork; 
    case 'Horizontal Displacement' 
        handles.myvars.curve1=handles.myvars.data.hdisp; 
    case 'Horizontal Velocity' 
        handles.myvars.curve1=handles.myvars.data.hvel; 
    case 'Horizontal Acceleration' 
        handles.myvars.curve1=handles.myvars.data.hacc; 
    case 'Horizontal Force 1' 
        handles.myvars.curve1=handles.myvars.data.hforc1; 
    case 'Horizontal Force 2' 
        handles.myvars.curve1=handles.myvars.data.hforc2; 
    case 'Total Horizontal Force' 
        handles.myvars.curve1=handles.myvars.data.hforc_total; 
    case 'Horizontal Impulse' 
        handles.myvars.curve1=handles.myvars.data.himpulse; 
    case 'Horizontal Work' 
        handles.myvars.curve1=handles.myvars.data.hwork; 
    case 'Resultant Displacement' 
        handles.myvars.curve1=handles.myvars.data.resultant_disp; 
    case 'Resultant Force' 
        handles.myvars.curve1=handles.myvars.data.resultant_force; 
    case 'Resultant Force Angle' 
        handles.myvars.curve1=handles.myvars.data.resultant_force_angle; 
end 
curve2_val=get(handles.curve_operations_curve2,'Value'); 
curve2_str=get(handles.curve_operations_curve2,'String'); 
handles.myvars.curve2_title=curve2_str{curve2_val}; 
switch handles.myvars.curve2_title 
    case 'Time' 
        handles.myvars.curve2=handles.myvars.data.time; 
    case 'Vertical Displacement' 
        handles.myvars.curve2=handles.myvars.data.vdisp; 
    case 'Vertical Velocity' 
        handles.myvars.curve2=handles.myvars.data.vvel; 
    case 'Vertical Acceleration' 
        handles.myvars.curve2=handles.myvars.data.vacc; 
    case 'Vertical Force' 
        handles.myvars.curve2=handles.myvars.data.vforc; 
    case 'Vertical Impulse' 
        handles.myvars.curve2=handles.myvars.data.vimpulse; 
 case 'Vertical Work' 
        handles.myvars.curve2=handles.myvars.data.vwork; 
    case 'Horizontal Displacement' 
        handles.myvars.curve2=handles.myvars.data.hdisp; 
    case 'Horizontal Velocity' 
        handles.myvars.curve2=handles.myvars.data.hvel; 
    case 'Horizontal Acceleration' 
        handles.myvars.curve2=handles.myvars.data.hacc; 
    case 'Horizontal Force 1' 
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        handles.myvars.curve2=handles.myvars.data.hforc1; 
    case 'Horizontal Force 2' 
        handles.myvars.curve2=handles.myvars.data.hforc2; 
    case 'Total Horizontal Force' 
        handles.myvars.curve2=handles.myvars.data.hforc_total; 
    case 'Horizontal Impulse' 
        handles.myvars.curve2=handles.myvars.data.himpulse; 
    case 'Horizontal Work' 
        handles.myvars.curve2=handles.myvars.data.hwork; 
    case 'Resultant Displacement' 
        handles.myvars.curve2=handles.myvars.data.resultant_disp; 
    case 'Resultant Force' 
        handles.myvars.curve2=handles.myvars.data.resultant_force; 
    case 'Resultant Force Angle' 
        handles.myvars.curve2=handles.myvars.data.resultant_force_angle; 
end 
oper_val=get(handles.curve_operations_popup,'Value'); 
oper_str=get(handles.curve_operations_popup,'String'); 
handles.myvars.curve0_title=oper_str{oper_val}; 
switch handles.myvars.curve0_title 
    case 'Addition' 
        handles.myvars.yseries=handles.myvars.curve1+handles.myvars.curve2; 
    case 'Subtraction' 
        handles.myvars.yseries=handles.myvars.curve1-handles.myvars.curve2; 
    case 'Division' 
        handles.myvars.yseries=handles.myvars.curve1./handles.myvars.curve2; 
    case '1st Integral' 
        
handles.myvars.yseries=cumtrapz(handles.myvars.curve2,handles.myvars.curve1); 
    case '1st Derivative' 
        
handles.myvars.yseries=diff((handles.myvars.curve1)/(handles.myvars.data.time(2,
1)-handles.myvars.data.time(1,1))); 
        s=size(handles.myvars.data.time); 
        handles.myvars.yseries(s(1))=handles.myvars.yseries(s(1)-1); 
    case '2nd Derivative' 
        diff1=diff((handles.myvars.curve1)/(handles.myvars.data.time(2,1)-
handles.myvars.data.time(1,1))); 
        handles.myvars.yseries=diff((diff1)/(handles.myvars.data.time(2,1)-
handles.myvars.data.time(1,1))); 
        s=size(handles.myvars.data.time); 
        handles.myvars.yseries(s(1)-1)=handles.myvars.yseries(s(1)-2); 
        handles.myvars.yseries(s(1))=handles.myvars.yseries(s(1)-1); 
end 
handles.myvars.xseries=handles.myvars.data.time; 
handles.myvars.xseries_title='Time'; 
handles.myvars.yseries_title=strcat(handles.myvars.curve0_title,{' of 
'},handles.myvars.curve1_title,{' and '},handles.myvars.curve2_title); 
handles.myvars.xlabel='Time [s]'; 
handles.myvars.ylabel=char(handles.myvars.yseries_title); 
[handles] = plot_data(handles); 
guidata(hObject,handles); 
% --- Executes on selection change in curve_operations_curve2. 
function curve_operations_curve2_Callback(hObject, eventdata, handles) 
% hObject    handle to curve_operations_curve2 (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns 
curve_operations_curve2 contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
curve_operations_curve2 
% --- Executes during object creation, after setting all properties. 
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function curve_operations_curve2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to curve_operations_curve2 (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in fit_data_checkbox. 
function fit_data_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to fit_data_checkbox (see GCBO) 
if get(hObject,'Value')==1 
    set(handles.FFT_checkbox,'Enable','off') 
else 
    set(handles.FFT_checkbox,'Enable','on') 
end 
guidata(hObject,handles); 
% Hint: get(hObject,'Value') returns toggle state of fit_data_checkbox 
% --- Executes on selection change in data_fit_popupmenu. 
function data_fit_popupmenu_Callback(hObject, eventdata, handles) 
% hObject    handle to data_fit_popupmenu (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns data_fit_popupmenu 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
data_fit_popupmenu 
% --- Executes during object creation, after setting all properties. 
function data_fit_popupmenu_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to data_fit_popupmenu (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function x_spread_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to x_spread_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x_spread_edit as text 
%        str2double(get(hObject,'String')) returns contents of x_spread_edit as 
a double 
% --- Executes during object creation, after setting all properties. 
function x_spread_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x_spread_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function y_spread_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to y_spread_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of y_spread_edit as text 
%        str2double(get(hObject,'String')) returns contents of y_spread_edit as 
a double 
% --- Executes during object creation, after setting all properties. 
function y_spread_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to y_spread_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function x_mean_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to x_mean_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x_mean_edit as text 
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%        str2double(get(hObject,'String')) returns contents of x_mean_edit as a 
double 
% --- Executes during object creation, after setting all properties. 
function x_mean_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x_mean_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in plot_2nd_axis_pushbutton. 
function plot_2nd_axis_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_2nd_axis_pushbutton (see GCBO) 
%   Check for plot to separate window 
if get(handles.plot_sep_window_checkbox,'Value')==1 
    handles.sep_figure=figure; 
    set(0,'CurrentFigure',handles.sep_figure) 
    set_axes_props(handles) 
else 
    axes(handles.axes1) %   Forces the following plots to handles.axes1 axes 
    cla reset 
end 
[handles] = get_xseries(handles); 
[handles] = get_yseries(handles); 
[handles] = get_y2series(handles); 
[handles] = getPlotTickRanges(handles); 
[hAx,hline1,hline2]=plotyy(handles.myvars.xseries,handles.myvars.yseries,handles
.myvars.xseries,handles.myvars.y2series); 
%   Apply Style 
if get(handles.plot_style_checkbox,'Value') == 1 
    set(hline1,'LineStyle','--') 
    set(hline2,'LineStyle',':') 
end 
%   Set xlimits 
xlim(hAx(1),[min(handles.myvars.xseries) max(handles.myvars.xseries)]); 
xlim(hAx(2),[min(handles.myvars.xseries) max(handles.myvars.xseries)]); 
%   Set ylimits 
set(hAx(1),'YLim',[handles.myvars.yseries_range(1) 
1.025*handles.myvars.yseries_range(2)]); 
set(hAx(2),'YLim',[handles.myvars.y2_series_range(1) 
1.025*handles.myvars.y2_series_range(2)]); 
%   Link both sets of x-axes so they do not show overlapping ticks, 
%   tickmarks, etc... 
linkaxes(hAx,'x'); 
%   Remove extra set of y1-axis tick marks on y2-axis (right-hand side) 
set(hAx(1),'Box','off') 
set(hAx(2),'Box','off') 
%   Replace x-axis on top of plot 
set(hAx(2),'XTickLabel','','XAxisLocation','Top') 
%   Repair yticks 
set(hAx(1),'YTickMode','auto') 
set(hAx(2),'YTickMode','auto') 
%   Set xlabels 
xlabel(handles.myvars.xlabel); 
%   Set y1-ylabel 
ylabel(hAx(1),handles.myvars.ylabel); 
%   Set y2-ylabel 
ylabel(hAx(2),handles.myvars.y2label); 
%   Set plot title 
title(strcat('Combined Plot',' vs. ',handles.xstr{handles.xval})); 



656 
 

%   Include Legend 
if get(handles.inclspecattr,'Value')==1 
    val_1=get(handles.specimen_popupmenu,'Value'); 
    if get(handles.run_no_checkbox,'Value') == 0 
        legend_title(1)={char(strcat(handles.myvars.specimen_attr(val_1-1,2),{' 
- '},handles.myvars.yseries_title))}; 
        legend_title(2)={char(strcat(handles.myvars.specimen_attr(val_1-1,2),{' 
- '},handles.myvars.y2series_title))}; 
    else 
        legend_title(1)={char(strcat(handles.myvars.specimen_name,{' - 
'},handles.myvars.specimen_attr(val_1-1,2),{' - 
'},handles.myvars.yseries_title))}; 
        legend_title(2)={char(strcat(handles.myvars.specimen_name,{' - 
'},handles.myvars.specimen_attr(val_1-1,2),{' - 
'},handles.myvars.y2series_title))}; 
    end 
else 
    if get(handles.run_no_checkbox,'Value') == 0 
        legend_title(1)={char(handles.myvars.yseries_title)}; 
        legend_title(2)={char(handles.myvars.y2series_title)}; 
    else 
        legend_title(1)={char(strcat(handles.myvars.specimen_name,{' - 
'},handles.myvars.yseries_title))}; 
        legend_title(2)={char(strcat(handles.myvars.specimen_name,{' - 
'},handles.myvars.y2series_title))}; 
    end 
end 
if get(handles.legend_checkbox,'Value')==1 
    LEG=legend([legend_title(1) legend_title(2)],'Location','NorthWest'); 
    if get(handles.transparent_legend_checkbox,'Value') == 1 
        set(LEG,'color','none') 
    end 
end 
guidata(hObject,handles); 
function [handles] = get_xseries(handles) 
%   Reset handles.myvars.xseries_time 
handles.myvars.xseries_time=handles.myvars.data.time; 
%   Set x series data 
handles.xval=get(handles.x_data_series,'Value'); 
handles.xstr=get(handles.x_data_series,'String'); 
%   Set x Series Title 
handles.myvars.xseries_title=handles.xstr{handles.xval}; 
switch handles.myvars.xseries_title 
    case 'Time' 
        handles.myvars.xseries=handles.myvars.data.time; 
        handles.myvars.xlabel='Time [s]'; 
    case 'Vertical Displacement' 
        handles.myvars.xseries=handles.myvars.data.vdisp; 
        handles.myvars.xlabel='Vertical Displacement [mm]'; 
    case 'Vertical Velocity' 
        handles.myvars.xseries=handles.myvars.data.vvel; 
        handles.myvars.xlabel='Vertical Velocity [mm/s]'; 
    case 'Vertical Acceleration' 
        handles.myvars.xseries=handles.myvars.data.vacc; 
        handles.myvars.xlabel='Vertical Acceleration [mm/s^2]'; 
    case 'Vertical Force' 
        handles.myvars.xseries=handles.myvars.data.vforc; 
        handles.myvars.xlabel='Vertical Force [N]'; 
    case 'Vertical Impulse' 
        handles.myvars.xseries=handles.myvars.data.vimpulse; 
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        handles.myvars.xlabel='Vertical Impulse [Ns]'; 
    case 'Vertical Work' 
        handles.myvars.xseries=handles.myvars.data.vwork; 
        handles.myvars.xlabel='Vertical Work [Nmm]'; 
    case 'Horizontal Displacement' 
        handles.myvars.xseries=handles.myvars.data.hdisp; 
        handles.myvars.xlabel='Horizontal Displacement [mm]'; 
    case 'Horizontal Velocity' 
        handles.myvars.xseries=handles.myvars.data.hvel; 
        handles.myvars.xlabel='Horizontal Velocity [mm/s]'; 
    case 'Horizontal Acceleration' 
        handles.myvars.xseries=handles.myvars.data.hacc; 
        handles.myvars.xlabel='Horizontal Displacement [mm/s^2]'; 
    case 'Horizontal Force 1' 
        handles.myvars.xseries=handles.myvars.data.hforc1; 
        handles.myvars.xlabel='Horizontal Force 1 [N]'; 
    case 'Horizontal Force 2' 
        handles.myvars.xseries=handles.myvars.data.hforc2; 
        handles.myvars.xlabel='Horizontal Force 2 [N]'; 
    case 'Total Horizontal Force' 
        handles.myvars.xseries=handles.myvars.data.hforc_total; 
        handles.myvars.xlabel='Horizontal Force Total [N]'; 
 case 'Horizontal Imuplse' 
        handles.myvars.xseries=handles.myvars.data.himpulse; 
        handles.myvars.xlabel='Horizontal Impulse [Ns]'; 
    case 'Horizontal Work' 
        handles.myvars.xseries=handles.myvars.data.hwork; 
        handles.myvars.xlabel='Horizontal Work [Nmm]'; 
    case 'Resultant Displacement' 
        handles.myvars.xseries=handles.myvars.data.resultant_disp; 
        handles.myvars.xlabel='Resultant Displacement [mm]'; 
    case 'Resultant Force' 
        handles.myvars.xseries=handles.myvars.data.resultant_force; 
        handles.myvars.xlabel='Resultant Force [N]'; 
    case 'Resultant Force Angle' 
        handles.myvars.xseries=handles.myvars.data.resultant_force_angle; 
        handles.myvars.xlabel='Degrees'; 
end 
function [handles] = get_yseries(handles) 
%   Set y series data 
handles.yval=get(handles.y_data_series,'Value'); 
handles.ystr=get(handles.y_data_series,'String'); 
%   Set y Series Title 
handles.myvars.yseries_title=handles.ystr{handles.yval}; 
switch handles.myvars.yseries_title 
    case 'Time' 
        handles.myvars.yseries=handles.myvars.data.time; 
        handles.myvars.ylabel='Time [s]'; 
    case 'Vertical Displacement' 
        handles.myvars.yseries=handles.myvars.data.vdisp; 
        handles.myvars.ylabel='Vertical Displacement [mm]'; 
    case 'Vertical Velocity' 
        handles.myvars.yseries=handles.myvars.data.vvel; 
        handles.myvars.ylabel='Vertical Velocity [mm/s]'; 
    case 'Vertical Acceleration' 
        handles.myvars.yseries=handles.myvars.data.vacc; 
        handles.myvars.ylabel='Vertical Acceleration [mm/s^2]'; 
    case 'Vertical Force' 
        handles.myvars.yseries=handles.myvars.data.vforc; 
        handles.myvars.ylabel='Vertical Force [N]'; 
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    case 'Vertical Impulse' 
        handles.myvars.yseries=handles.myvars.data.vimpulse; 
        handles.myvars.ylabel='Vertical Impulse [Ns]'; 
    case 'Vertical Work' 
        handles.myvars.yseries=handles.myvars.data.vwork; 
        handles.myvars.ylabel='Vertical Work [Nmm]'; 
    case 'Horizontal Displacement' 
        handles.myvars.yseries=handles.myvars.data.hdisp; 
        handles.myvars.ylabel='Horizontal Displacement [mm]'; 
    case 'Horizontal Velocity' 
        handles.myvars.yseries=handles.myvars.data.hvel; 
        handles.myvars.ylabel='Horizontal Velocity [mm/s]'; 
    case 'Horizontal Acceleration' 
        handles.myvars.yseries=handles.myvars.data.hacc; 
        handles.myvars.ylabel='Horizontal Displacement [mm/s^2]'; 
    case 'Horizontal Force 1' 
        handles.myvars.yseries=handles.myvars.data.hforc1; 
        handles.myvars.ylabel='Horizontal Force 1 [N]'; 
    case 'Horizontal Force 2' 
        handles.myvars.yseries=handles.myvars.data.hforc2; 
        handles.myvars.ylabel='Horizontal Force 2 [N]'; 
    case 'Total Horizontal Force' 
        handles.myvars.yseries=handles.myvars.data.hforc_total; 
        handles.myvars.ylabel='Horizontal Force Total [N]'; 
 case 'Horizontal Imuplse' 
        handles.myvars.yseries=handles.myvars.data.himpulse; 
        handles.myvars.ylabel='Horizontal Impulse [Ns]'; 
    case 'Horizontal Work' 
        handles.myvars.yseries=handles.myvars.data.hwork; 
        handles.myvars.ylabel='Horizontal Work [Nmm]'; 
    case 'Resultant Displacement' 
        handles.myvars.yseries=handles.myvars.data.resultant_disp; 
        handles.myvars.ylabel='Resultant Displacement [mm]'; 
    case 'Resultant Force' 
        handles.myvars.yseries=handles.myvars.data.resultant_force; 
        handles.myvars.ylabel='Resultant Force [N]'; 
    case 'Resultant Force Angle' 
        handles.myvars.yseries=handles.myvars.data.resultant_force_angle; 
        handles.myvars.ylabel='Degrees'; 
end 
function [handles] = get_y2series(handles) 
%   Set y2 series data 
handles.y2val=get(handles.y2_data_series,'Value'); 
handles.y2str=get(handles.y2_data_series,'String'); 
%   Set y2 Series Title 
handles.myvars.y2series_title=handles.y2str{handles.y2val}; 
switch handles.myvars.y2series_title 
    case 'Time' 
        handles.myvars.y2series=handles.myvars.data.time; 
        handles.myvars.y2label='Time [s]'; 
    case 'Vertical Displacement' 
        handles.myvars.y2series=handles.myvars.data.vdisp; 
        handles.myvars.y2label='Vertical Displacement [mm]'; 
    case 'Vertical Velocity' 
        handles.myvars.y2series=handles.myvars.data.vvel; 
        handles.myvars.y2label='Vertical Velocity [mm/s]'; 
    case 'Vertical Acceleration' 
        handles.myvars.y2series=handles.myvars.data.vacc; 
        handles.myvars.y2label='Vertical Acceleration [mm/s^2]'; 
    case 'Vertical Force' 
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        handles.myvars.y2series=handles.myvars.data.vforc; 
        handles.myvars.y2label='Vertical Force [N]'; 
    case 'Vertical Impulse' 
        handles.myvars.y2series=handles.myvars.data.vimpulse; 
        handles.myvars.y2label='Vertical Impulse [Ns]'; 
    case 'Vertical Work' 
        handles.myvars.y2series=handles.myvars.data.vwork; 
        handles.myvars.y2label='Vertical Work [Nmm]'; 
    case 'Horizontal Displacement' 
        handles.myvars.y2series=handles.myvars.data.hdisp; 
        handles.myvars.y2label='Horizontal Displacement [mm]'; 
    case 'Horizontal Velocity' 
        handles.myvars.y2series=handles.myvars.data.hvel; 
        handles.myvars.y2label='Horizontal Velocity [mm/s]'; 
    case 'Horizontal Acceleration' 
        handles.myvars.y2series=handles.myvars.data.hacc; 
        handles.myvars.y2label='Horizontal Displacement [mm/s^2]'; 
    case 'Horizontal Force 1' 
        handles.myvars.y2series=handles.myvars.data.hforc1; 
        handles.myvars.y2label='Horizontal Force 1 [N]'; 
    case 'Horizontal Force 2' 
        handles.myvars.y2series=handles.myvars.data.hforc2; 
        handles.myvars.y2label='Horizontal Force 2 [N]'; 
    case 'Total Horizontal Force' 
        handles.myvars.y2series=handles.myvars.data.hforc_total; 
        handles.myvars.y2label='Horizontal Force Total [N]'; 
 case 'Horizontal Imuplse' 
        handles.myvars.y2series=handles.myvars.data.himpulse; 
        handles.myvars.y2label='Horizontal Impulse [Ns]'; 
    case 'Horizontal Work' 
        handles.myvars.y2series=handles.myvars.data.hwork; 
        handles.myvars.y2label='Horizontal Work [Nmm]'; 
    case 'Resultant Displacement' 
        handles.myvars.y2series=handles.myvars.data.resultant_disp; 
        handles.myvars.y2label='Resultant Displacement [mm]'; 
    case 'Resultant Force' 
        handles.myvars.y2series=handles.myvars.data.resultant_force; 
        handles.myvars.y2label='Resultant Force [N]'; 
    case 'Resultant Force Angle' 
        handles.myvars.y2series=handles.myvars.data.resultant_force_angle; 
        handles.myvars.y2label='Degrees'; 
end 
% -------------------------------------------------------------------- 
function uipushtool2_ClickedCallback(hObject, eventdata, handles) 
% hObject    handle to uipushtool2 (see GCBO) 
% --- Executes on button press in refit_pushbutton. 
function refit_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to refit_pushbutton (see GCBO) 
fit_curve(handles); 
guidata(hObject,handles); 
function fit_curve(handles) 
if get(handles.fit_data_checkbox,'Value')==1 
    clear x y 
    y=handles.myvars.yseries(handles.myvars.templow:handles.myvars.temphigh); 
    x=handles.myvars.xseries(handles.myvars.templow:handles.myvars.temphigh); 
    data_fit_val=get(handles.data_fit_popupmenu,'Value'); 
    data_fit_str=get(handles.data_fit_popupmenu,'String'); 
    switch data_fit_str{data_fit_val} 
        case 'linear' 
            fit_type='poly1'; 
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        case 'quadratic' 
            fit_type='poly2'; 
        case 'cubic' 
            fit_type='poly3'; 
        case 'exp1' 
            fit_type='exp1'; 
        case 'exp2' 
            fit_type='exp2'; 
        case 'power1' 
            fit_type='power1'; 
        case 'power2' 
            fit_type='power2'; 
        case 'poly4' 
            fit_type='poly4'; 
        case 'poly5' 
            fit_type='poly5'; 
    end 
    [curve1, gof1]=fit(x,y,fit_type); 
    %   Plot Fit 
    axes(handles.axes1) %   Forces the following plots to handles.axes1 axes 
    plot(curve1,x,y) 
    LEG=legend('Location','NorthWest'); 
    if get(handles.transparent_legend_checkbox,'Value') == 1 
        set(LEG,'color','none') 
    end 
    covals=coeffvalues(curve1); 
    rsquared=gof1.rsquare; 
    switch data_fit_str{data_fit_val} 
        case 'linear' 
            eq=strcat('Y',{' '},'=',{' '},num2str(covals(1)),'x +',{' 
'},num2str(covals(2)),'\newlineR^2',{' '},'=',{' '},num2str(rsquared)); 
        case 'quadratic' 
            eq=strcat('Y',{' '},'=',{' '},num2str(covals(1)),'x^2 +',{' 
'},num2str(covals(2)),'x +',{' '},num2str(covals(3)),'\newlineR^2',{' '},'=',{' 
'},num2str(rsquared)); 
        case 'cubic' 
            eq=strcat('Y',{' '},'=',{' '},num2str(covals(1)),'x^3 +',{' 
'},num2str(covals(2)),'x^2 +',{' '},num2str(covals(3)),'x +',{' 
'},num2str(covals(4)),'\newlineR^2',{' '},'=',{' '},num2str(rsquared)); 
        case 'exp1' 
            eq=strcat('Y',{' '},'=',{' 
'},num2str(covals(1)),'*exp^',strcat('{',num2str(covals(2)),'*x}'),'\newlineR^2'
,{' '},'=',{' '},num2str(rsquared)); 
        case 'exp2' 
            eq=strcat('Y',{' '},'=',{' 
'},num2str(covals(1)),'*exp^',strcat('{',num2str(covals(2)),'*x}'),{' 
'},num2str(covals(3)),'*exp^',strcat('{',num2str(covals(4)),'*x}'),'\newlineR^2'
,{' '},'=',{' '},num2str(rsquared)); 
        case 'power1' 
            eq=strcat('Y',{' '},'=',{' 
'},num2str(covals(1)),'*x^',strcat('{',num2str(covals(2)),'}'),'\newlineR^2',{' 
'},'=',{' '},num2str(rsquared)); 
        case 'power2' 
            eq=strcat('Y',{' '},'=',{' 
'},num2str(covals(1)),'*x^',strcat('{',num2str(covals(2)),'}'),{' '},'+',{' 
'},num2str(covals(3)),'\newlineR^2',{' '},'=',{' '},num2str(rsquared)); 
        case 'poly4' 
            eq=strcat('Y',{' '},'=',{' '},num2str(covals(1)),'x^4 +',{' 
'},num2str(covals(2)),'x^3 +',{' '},num2str(covals(3)),'x^2 +',{' 
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'},num2str(covals(4)),'x +',{' '},num2str(covals(5)),'\newlineR^2',{' '},'=',{' 
'},num2str(rsquared)); 
        case 'poly5' 
            eq=strcat('Y',{' '},'=',{' '},num2str(covals(1)),'x^5 +',{' 
'},num2str(covals(2)),'x^4 +',{' '},num2str(covals(3)),'x^3 +',{' 
'},num2str(covals(4)),'x^2 +',{' '},num2str(covals(5)),'x +',{' 
'},num2str(covals(6)),'\newlineR^2',{' '},'=',{' '},num2str(rsquared)); 
    end 
end 
text(handles.myvars.start_x+(handles.myvars.end_x-
handles.myvars.start_x)*.1,min(y)+(max(y)-min(y))*.9,eq); 
function [handles] = create_derived_data(handles) 
    % Create derived data 
    
%===============================================================================
===== 
    % Get Total Horizontal Force 
    
handles.myvars.data.hforc_total=handles.myvars.data.hforc1+handles.myvars.data.h
forc2; 
    % Get Resultant Displacement 
    handles.myvars.data.resultant_disp=sqrt(handles.myvars.data.vdisp.^2 + 
handles.myvars.data.hdisp.^2); 
    % Get Resultant Force and Angle 
    handles.myvars.data.resultant_force=sqrt(handles.myvars.data.vforc.^2 + 
handles.myvars.data.hforc_total.^2); 
%     
handles.myvars.data.resultant_force_angle=atand(handles.myvars.data.vforc./handl
es.myvars.data.hforc_total); 
    
handles.myvars.data.resultant_force_angle=atan2d(handles.myvars.data.vforc,handl
es.myvars.data.hforc_total); 
    % Derive Data 
        % Integrate Data 
    
handles.myvars.data.vimpulse=cumtrapz(handles.myvars.data.time,handles.myvars.da
ta.vforc); 
    
handles.myvars.data.vwork=cumtrapz(handles.myvars.data.vdisp,handles.myvars.data
.vforc); 
    
handles.myvars.data.himpulse=cumtrapz(handles.myvars.data.time,handles.myvars.da
ta.hforc_total); 
    
handles.myvars.data.hwork=cumtrapz(handles.myvars.data.hdisp,handles.myvars.data
.hforc_total); 
        % Differentiate Data 
            % Vertical Velocity 
    
handles.myvars.data.vvel=diff((handles.myvars.data.vdisp)/(handles.myvars.data.t
ime(2,1)-handles.myvars.data.time(1,1))); 
    s=size(handles.myvars.data.time); 
    handles.myvars.data.vvel(s(1))=handles.myvars.data.vvel(s(1)-1); 
            % Horizontal Velocity 
    
handles.myvars.data.hvel=diff((handles.myvars.data.hdisp)/(handles.myvars.data.t
ime(2,1)-handles.myvars.data.time(1,1))); 
    s=size(handles.myvars.data.time); 
    handles.myvars.data.hvel(s(1))=handles.myvars.data.hvel(s(1)-1); 
    % 2nd Derivative of Data 
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        % Vertical Acceleration 
    diff1=diff((handles.myvars.data.vdisp)/(handles.myvars.data.time(2,1)-
handles.myvars.data.time(1,1))); 
    handles.myvars.data.vacc=diff((diff1)/(handles.myvars.data.time(2,1)-
handles.myvars.data.time(1,1))); 
    s=size(handles.myvars.data.time); 
    handles.myvars.data.vacc(s(1)-1)=handles.myvars.data.vacc(s(1)-2); 
    handles.myvars.data.vacc(s(1))=handles.myvars.data.vacc(s(1)-1); 
        % Horizontal Acceleration 
    diff1=diff((handles.myvars.data.hdisp)/(handles.myvars.data.time(2,1)-
handles.myvars.data.time(1,1))); 
    handles.myvars.data.hacc=diff((diff1)/(handles.myvars.data.time(2,1)-
handles.myvars.data.time(1,1))); 
    s=size(handles.myvars.data.time); 
    handles.myvars.data.hacc(s(1)-1)=handles.myvars.data.hacc(s(1)-2); 
    handles.myvars.data.hacc(s(1))=handles.myvars.data.hacc(s(1)-1); 
    
%===============================================================================
===== 
function [handles] = clear_derived_data(handles) 
% Clear derived data 
if isfield(handles.myvars.data,'vwork') == 1 
    
%===============================================================================
===== 
    % Clear  Total Horizontal Force 
    handles.myvars.data=rmfield(handles.myvars.data,'hforc_total'); 
    % Get Resultant Force and Angle 
    handles.myvars.data=rmfield(handles.myvars.data,'resultant_disp'); 
    % Get Resultant Force and Angle 
    handles.myvars.data=rmfield(handles.myvars.data,'resultant_force'); 
    handles.myvars.data=rmfield(handles.myvars.data,'resultant_force_angle'); 
    % Derived Data 
     % Integrated Data 
    handles.myvars.data=rmfield(handles.myvars.data,'vimpulse'); 
    handles.myvars.data=rmfield(handles.myvars.data,'vwork'); 
    handles.myvars.data=rmfield(handles.myvars.data,'himpulse'); 
    handles.myvars.data=rmfield(handles.myvars.data,'hwork'); 
    % Differentiated Data 
     % Vertical Velocity 
    handles.myvars.data=rmfield(handles.myvars.data,'vvel'); 
     % Horizontal Velocity 
    handles.myvars.data=rmfield(handles.myvars.data,'hvel'); 
    % 2nd Derivative of Data 
     % Vertical Acceleration 
    handles.myvars.data=rmfield(handles.myvars.data,'vacc'); 
     % Horizontal Acceleration 
    handles.myvars.data=rmfield(handles.myvars.data,'hacc'); 
    
%===============================================================================
===== 
else 
end 
function [handles] = tare_data(handles) 
    handles.myvars.data.time=handles.myvars.data.time-
handles.myvars.data.timetare; 
    handles.myvars.data.vdisp=handles.myvars.data.vdisp-
handles.myvars.data.vdisptare; 
    handles.myvars.data.vforc=handles.myvars.data.vforc-
handles.myvars.data.vforctare; 
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    handles.myvars.data.hdisp=handles.myvars.data.hdisp-
handles.myvars.data.hdisptare; 
    handles.myvars.data.hforc1=handles.myvars.data.hforc1-
handles.myvars.data.hforc1tare; 
    handles.myvars.data.hforc2=handles.myvars.data.hforc2-
handles.myvars.data.hforc2tare; 
function [handles] = untare_data(handles) 
    
handles.myvars.data.time=handles.myvars.data.time+handles.myvars.data.timetare; 
    
handles.myvars.data.vdisp=handles.myvars.data.vdisp+handles.myvars.data.vdisptar
e; 
    
handles.myvars.data.vforc=handles.myvars.data.vforc+handles.myvars.data.vforctar
e; 
    
handles.myvars.data.hdisp=handles.myvars.data.hdisp+handles.myvars.data.hdisptar
e; 
    
handles.myvars.data.hforc1=handles.myvars.data.hforc1+handles.myvars.data.hforc1
tare; 
    
handles.myvars.data.hforc2=handles.myvars.data.hforc2+handles.myvars.data.hforc2
tare; 
function set_axes_props(handles) 
    % Change default axes fonts. 
    set(handles.sep_figure,'DefaultAxesFontName', 'Times New Roman') 
    set(handles.sep_figure,'DefaultAxesFontSize', 12) 
    % Change default text fonts. 
    set(handles.sep_figure,'DefaultTextFontname', 'Times New Roman') 
    set(handles.sep_figure,'DefaultTextFontSize', 12) 
    % Set up figure for paper printing 
    set(handles.sep_figure,'PaperUnits','centimeters') 
    xSize=16; 
    ySize=8; 
    xLeft=(21.6-xSize)/2; 
    yTop=(27.9-ySize)/2; 
    set(handles.sep_figure,'PaperPosition',[xLeft yTop xSize ySize]) 
    set(handles.sep_figure,'Position',[450 450 xSize*50 ySize*50]) 
    xAxisPos=1.5/xSize; 
    yAxisPos=1.0/ySize; 
    xAxisWidth=(xSize-3)/xSize; 
    yAxisHeight=(ySize-1.75)/ySize; 
    axes('position',[xAxisPos yAxisPos xAxisWidth yAxisHeight]) 
% --- Executes on button press in save_as_mat. 
function save_as_mat_Callback(hObject, eventdata, handles) 
% hObject    handle to save_as_mat (see GCBO) 
fname=fullfile(handles.myvars.pathname,strcat(handles.myvars.specimen_name,'.mat
')); 
save_data=handles.myvars.data; 
f = fieldnames(save_data); 
v = struct2cell(save_data); 
for i=1:size(f,1) 
    f(i)=strcat(cellstr(f(i)),'_',handles.myvars.specimen_name); 
end 
save_data = cell2struct(v,f); 
disp(save_data) 
save(fname, '-struct', 'save_data'); 
% --- Executes on button press in plot3_checkbox. 
function plot3_checkbox_Callback(hObject, eventdata, handles) 
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% hObject    handle to plot3_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of plot3_checkbox 
if get(hObject,'Value')==1 
    set(handles.text23,'String','Applicate (z)') 
    set(handles.plot_button,'String','Plot 3D') 
%     set(handles.plot_style_checkbox,'Value',0); 
%     set(handles.plot_style_checkbox,'Enable','off'); 
else 
    set(handles.text23,'String','2nd Ordinate (y2)') 
    set(handles.plot_button,'String','Plot') 
%     set(handles.plot_style_checkbox,'Enable','on'); 
end 
guidata(hObject,handles); 
% --- Executes on selection change in specimen_popupmenu. 
function specimen_popupmenu_Callback(hObject, eventdata, handles) 
% hObject    handle to specimen_popupmenu (see GCBO) 
% Hints: contents = cellstr(get(hObject,'String')) returns specimen_popupmenu 
contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 
specimen_popupmenu 
if get(handles.x_origin_checkbox,'Value') == 1 
    set(handles.x_origin_checkbox,'Value',0) 
end 
%   Clear old data 
if isfield(handles.myvars,'data') == 1 
    handles.myvars=rmfield(handles.myvars,'data'); 
end 
axes(handles.axes1) 
% cla reset               %   Clear axis 
% set(handles.holdon_checkbox,'Value',0); 
%   Change to specimen directory 
cd (handles.myvars.default_dir); 
oper_val=get(hObject,'Value'); 
oper_str=get(hObject,'String'); 
handles.myvars.specimen_name=oper_str{oper_val}; 
handles.myvars.pathname=fullfile(handles.myvars.default_dir,handles.myvars.speci
men_name); 
handles.myvars.filename='specimen.dat'; 
handles=importDataFcn(handles); 
guidata(hObject, handles); 
% --- Executes during object creation, after setting all properties. 
function specimen_popupmenu_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to specimen_popupmenu (see GCBO) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function [handles] = importDataFcn(handles) 
% Function to import data from specimen.dat files 
try 
    % Import ASCII data from the data file specimen.dat 
    
datatemp=importdata(fullfile(handles.myvars.pathname,handles.myvars.filename)); 
    % Place data in a struct 
    handles.myvars.data.time=datatemp.data(:,1); 
    handles.myvars.data.vdisp=datatemp.data(:,2); 
    handles.myvars.data.vforc=datatemp.data(:,3); 
    handles.myvars.data.hdisp=datatemp.data(:,4); 
    handles.myvars.data.hforc1=datatemp.data(:,5); 
    handles.myvars.data.hforc2=datatemp.data(:,6); 
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    clear datatemp; 
    % Catch Error in data import 
catch err 
    % Display Error Message in Input Dir Edit Box 
    set(handles.specimen_popupmenu,'String','Problem'); 
    errordlg('Either an internal error has occurred or the specimen.dat file is 
missing or there is a problem with the specimen.dat file in this directory.  
Please check them and try again.','Input Error'); 
    rethrow(err); 
end 
%======================================================================== 
% Manipulate raw imported data 
%======================================================================== 
% Make vforc and vdisp positive 
handles.myvars.data.vdisp=-1.*handles.myvars.data.vdisp; 
handles.myvars.data.vforc=-1.*handles.myvars.data.vforc; 
% Extract initial values 
handles.myvars.data.timetare=handles.myvars.data.time(1,1); 
handles.myvars.data.vdisptare=handles.myvars.data.vdisp(1,1); 
handles.myvars.data.vforctare=handles.myvars.data.vforc(1,1); 
handles.myvars.data.hdisptare=handles.myvars.data.hdisp(1,1); 
handles.myvars.data.hforc1tare=handles.myvars.data.hforc1(1,1); 
handles.myvars.data.hforc2tare=handles.myvars.data.hforc2(1,1); 
%   Display Data Sampling Rate 
handles.myvars.data_sampling_rate=round(1/(handles.myvars.data.time(2,1)-
handles.myvars.data.time(1,1))); 
set(handles.sample_rate_statictext,'String',num2str(handles.myvars.data_sampling
_rate)); 
% Check for tare data 
if get(handles.tare_by_initial_checkbox,'Value')==1 
    [handles] = clear_derived_data(handles); 
    [handles] = tare_data(handles); 
    [handles] = create_derived_data(handles); 
else 
    % Create Derived Data 
    [handles] = clear_derived_data(handles); 
    [handles] = create_derived_data(handles); 
end 
%======================================================================== 
%   Change to program directory 
cd (handles.myvars.program_dir); 
function [handles] = plot_data(handles) 
%   Check for existing plotcount 
test_plotcount=isfield(handles.myvars,'plotcount'); 
if test_plotcount==0 
    handles.myvars.plotcount=0; 
end 
if get(handles.holdon_checkbox,'Value')==0 
    [handles]=clear_plot(handles); 
end 
[handles] = getPlotTickRanges(handles); 
%   Plot Data 
if get(handles.plot_sep_window_checkbox,'Value')==1 
    handles.sep_figure=figure; 
    set(0,'CurrentFigure',handles.sep_figure) 
    set_axes_props(handles) 
else 
    axes(handles.axes1) %   Forces the following plots to handles.axes1 axes 
end 
%   Check for "hold on" 



666 
 

if get(handles.holdon_checkbox,'Value')==1 && test_plotcount==0 
    hold on 
    handles.myvars.plotcount=0; 
elseif get(handles.holdon_checkbox,'Value')==1 && test_plotcount~=0 
    hold on 
    handles.myvars.plotcount=handles.myvars.plotcount+1; 
else 
    hold off 
    cla reset 
    set(handles.holdon_checkbox,'Value',0); 
    handles.myvars.plotcount=0; 
end 
if handles.myvars.plotcount==0 || get(handles.holdon_checkbox,'Value')==0 
    line_color='b'; 
    line_style='--'; 
    line_width=1; 
elseif handles.myvars.plotcount==1 
    line_color='r'; 
    line_style='-.'; 
    line_width=1; 
elseif handles.myvars.plotcount==2 
    line_color='g'; 
    line_style='-'; 
    line_width=1; 
elseif handles.myvars.plotcount==3 
    line_color='k'; 
    line_style=':'; 
    line_width=1; 
elseif handles.myvars.plotcount==4 
    line_color='m'; 
    line_style='--'; 
    line_width=2; 
elseif handles.myvars.plotcount==5 
    line_color='c'; 
    line_style='-.'; 
    line_width=2; 
else 
    line_color='y'; 
    line_style=':'; 
    line_width=2; 
end 
if get(handles.plot3_checkbox,'Value')==0 
    if get(handles.plot_style_checkbox,'Value')==1 
        
plot(handles.myvars.xseries,handles.myvars.yseries,strcat(line_color,line_style)
,strcat('LineWidth'),line_width); 
    else 
        
plot(handles.myvars.xseries,handles.myvars.yseries,line_color,strcat('LineWidth'
),line_width); 
    end 
else 
    if get(handles.plot_style_checkbox,'Value')==1 
        
plot3(handles.myvars.xseries,handles.myvars.yseries,handles.myvars.y2series,strc
at(line_color,line_style),strcat('LineWidth'),line_width); 
    else 
        
plot3(handles.myvars.xseries,handles.myvars.yseries,handles.myvars.y2series,strc
at('LineWidth'),line_width); 
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    end 
end 
%   Set xlimits 
xlim([handles.myvars.xseries_range(1) handles.myvars.xseries_range(2)]); 
%   Set ylimits 
ylim([handles.myvars.yseries_range(1) 1.025*handles.myvars.yseries_range(2)]); 
%   Set zlimits 
zlim([handles.myvars.y2_series_range(1) 
1.025*handles.myvars.y2_series_range(2)]); 
%   Set xlabels 
xlabel(handles.myvars.xlabel); 
%   Set ylabels 
ylabel(handles.myvars.ylabel); 
%   Set zlabels 
zlabel(handles.myvars.y2label); 
%   Set plot title 
% title(strcat(handles.myvars.specimen_name,{':  
'},handles.myvars.yseries_title,{' vs. '},handles.myvars.xseries_title)); 
% title(strcat(handles.myvars.ylabel,{' vs. '},handles.myvars.xlabel)); 
title(strcat(handles.myvars.yseries_title,{' vs. 
'},handles.myvars.xseries_title)); 
%   Include Legend 
if get(handles.inclspecattr,'Value')==1 
    val_1=get(handles.specimen_popupmenu,'Value'); 
    if get(handles.run_no_checkbox,'Value') == 0 
        
handles.myvars.legend_title(handles.myvars.plotcount+1)={char(strcat(handles.myv
ars.specimen_attr(val_1-1,2),{' - '},handles.myvars.yseries_title))}; 
    else 
        
handles.myvars.legend_title(handles.myvars.plotcount+1)={char(strcat(handles.myv
ars.specimen_name,{' - '},handles.myvars.specimen_attr(val_1-1,2),{' - 
'},handles.myvars.yseries_title))}; 
    end 
else 
    if get(handles.run_no_checkbox,'Value') == 0 
        
handles.myvars.legend_title(handles.myvars.plotcount+1)={char(handles.myvars.yse
ries_title)}; 
    else 
        
handles.myvars.legend_title(handles.myvars.plotcount+1)={char(strcat(handles.myv
ars.specimen_name,{' - '},handles.myvars.yseries_title))}; 
    end 
end 
%   Display Legend 
if get(handles.legend_checkbox,'Value')==1 
    LEG=legend(gca,handles.myvars.legend_title{:},'Location','NorthWest'); 
    if get(handles.transparent_legend_checkbox,'Value') == 1 
        set(LEG,'color','none') 
    end 
end 
% --- Executes on button press in raise_existing_plot_button. 
function raise_existing_plot_button_Callback(hObject, eventdata, handles) 
% hObject    handle to raise_existing_plot_button (see GCBO) 
%   Remove legend to avoid problem raising figure 
if get(handles.legend_checkbox,'Value')==1 
    legend('off') 
end 
h1 = findobj(gcf,'type','axes'); % Find the axes object in the GUI 
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h2=figure; 
s = copyobj(h1,h2); % Copy axes object h into figure f1 
set(gcf,'PaperUnits','centimeters') 
set(gcf,'PaperPosition',[2.80000000000000,9.95000000000000,16,8]) 
set(gcf,'Position',[450,450,800,400]) 
set(gca,'FontName','Times New Roman') 
set(gca,'Units','normalized') 
set(gca,'OuterPosition',[-
0.0425403225806452,0.0150000000000000,1.04838709677419,0.963144171779141]) 
set(gca,'Position',[0.0937500000000000,0.125000000000000,0.812500000000000,0.781
250000000000]) 
set(findall(gcf,'type','text'),'FontName','Times New Roman') 
%   Reapply Legend 
if get(handles.legend_checkbox,'Value')==1 
    LEG=legend(gca,handles.myvars.legend_title{:},'Location','Best'); 
    if get(handles.transparent_legend_checkbox,'Value') == 1 
        set(LEG,'color','none') 
    end 
    LEG_text=findobj(LEG,'type','text'); 
    %set(LEG_text,'FontSize',10); 
end 
% --- Executes on button press in legend_checkbox. 
function legend_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to legend_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of legend_checkbox 
if get(hObject,'Value') == 1 
    set(handles.transparent_legend_checkbox,'Enable','on') 
    set(handles.inclspecattr,'Enable','on') 
    set(handles.run_no_checkbox,'Enable','on') 
else 
    set(handles.transparent_legend_checkbox,'Enable','off') 
    set(handles.inclspecattr,'Enable','off') 
    set(handles.run_no_checkbox,'Enable','off') 
end 
guidata(hObject, handles); 
function [handles] = clear_plot(handles) 
axes(handles.axes1) 
zoom off 
cla 
reset(handles.axes1) 
if isfield(handles.myvars,'plotcount') 
    handles.myvars=rmfield(handles.myvars,'plotcount'); 
end 
if isfield(handles.myvars,'xseries_range') 
    handles.myvars=rmfield(handles.myvars,'xseries_range'); 
    handles.myvars=rmfield(handles.myvars,'yseries_range'); 
    handles.myvars=rmfield(handles.myvars,'y2_series_range'); 
end 
if isfield(handles.myvars,'legend_title') 
    handles.myvars=rmfield(handles.myvars,'legend_title'); 
end 
legend('off'); 
% set(handles.holdon_checkbox,'Value',0); 
function [handles] = set_slider_values(handles) 
data_range=size(handles.myvars.xseries); 
set(handles.x1_index_slider,'Min',1); 
set(handles.x1_index_slider,'Max',data_range(1)); 
set(handles.x1_index_slider,'Value',1); 
set(handles.x2_index_slider,'Min',1); 
set(handles.x2_index_slider,'Max',data_range(1)); 
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set(handles.x2_index_slider,'Value',data_range(1)); 
set(handles.x1min_slider_edit,'String',num2str(get(handles.x1_index_slider,'Min'
))); 
set(handles.x1max_slider_edit,'String',num2str(get(handles.x1_index_slider,'Max'
))); 
set(handles.x1val_slider_edit,'String',num2str(get(handles.x1_index_slider,'Valu
e'))); 
set(handles.x2min_slider_edit,'String',num2str(get(handles.x2_index_slider,'Min'
))); 
set(handles.x2max_slider_edit,'String',num2str(get(handles.x2_index_slider,'Max'
))); 
set(handles.x2val_slider_edit,'String',num2str(get(handles.x2_index_slider,'Valu
e'))); 
% --- Executes on button press in inclspecattr. 
function inclspecattr_Callback(hObject, eventdata, handles) 
% hObject    handle to inclspecattr (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of inclspecattr 
% --- Executes on button press in refine_plot_pushbutton. 
function refine_plot_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to refine_plot_pushbutton (see GCBO) 
if get(handles.refine_by_sliders_checkbox,'Value')==0 
    [quick_x, quick_y]=ginput(2);                   % Interactive user peak 
selection with mouse 
    if (quick_x(1)<min(handles.myvars.xseries))     % Ensure selection is within 
data boundaries 
        quick_x(1)=min(handles.myvars.xseries); 
    else 
    end 
    if (quick_x(2)>max(handles.myvars.xseries))   % Ensure selection is within 
data boundaries 
        quick_x(2)=max(handles.myvars.xseries); 
    else 
    end 
    handles.myvars.start_x=quick_x(1); 
    handles.myvars.end_x=quick_x(2); 
    [I1 I2] = find (handles.myvars.xseries>=handles.myvars.start_x);  % Find 
matrix coords less than 1st mouse click 
    handles.myvars.templow = min(I1);                              % Get matrix 
coords of 1st mouse click 
    [J1 J2] = find (handles.myvars.xseries<=handles.myvars.end_x);    % Find 
matrix coords greater than 2nd mouse click 
    handles.myvars.temphigh = max(J1);                             % Get matrix 
coords of 2nd mouse click 
else 
    
handles.myvars.templow=floor(str2num(get(handles.x1val_slider_edit,'String'))) 
    
handles.myvars.temphigh=floor(str2num(get(handles.x2val_slider_edit,'String'))) 
end 
handles.myvars.xseries=handles.myvars.xseries(handles.myvars.templow:handles.myv
ars.temphigh); 
handles.myvars.yseries=handles.myvars.yseries(handles.myvars.templow:handles.myv
ars.temphigh); 
%   Create dummy time to match handles.myvars.xseries indices 
handles.myvars.xseries_time=handles.myvars.data.time(handles.myvars.templow:hand
les.myvars.temphigh); 
[handles] = set_slider_values(handles); 
[handles] = plot_data(handles); 
guidata(hObject, handles); 
% --- Executes on slider movement. 
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function x1_index_slider_Callback(hObject, eventdata, handles) 
% hObject    handle to x1_index_slider (see GCBO) 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
set(handles.x1val_slider_edit,'String',floor(get(hObject,'Value'))); 
% --- Executes during object creation, after setting all properties. 
function x1_index_slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x1_index_slider (see GCBO) 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
% --- Executes on slider movement. 
function x2_index_slider_Callback(hObject, eventdata, handles) 
% hObject    handle to x2_index_slider (see GCBO) 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
set(handles.x2val_slider_edit,'String',floor(get(hObject,'Value'))); 
% --- Executes during object creation, after setting all properties. 
function x2_index_slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x2_index_slider (see GCBO) 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
% --- Executes on button press in refine_by_sliders_checkbox. 
function refine_by_sliders_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to refine_by_sliders_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of refine_by_sliders_checkbox 
function x1min_slider_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to x1min_slider_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x1min_slider_edit as text 
%        str2double(get(hObject,'String')) returns contents of x1min_slider_edit 
as a double 
set(handles.x1_index_slider,'Min',round(str2num(get(hObject,'String')))); 
% --- Executes during object creation, after setting all properties. 
function x1min_slider_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x1min_slider_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function x1max_slider_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to x1max_slider_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x1max_slider_edit as text 
%        str2double(get(hObject,'String')) returns contents of x1max_slider_edit 
as a double 
set(handles.x1_index_slider,'Max',round(str2num(get(hObject,'String')))); 
% --- Executes during object creation, after setting all properties. 
function x1max_slider_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x1max_slider_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function x1val_slider_edit_Callback(hObject, eventdata, handles) 
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% hObject    handle to x1val_slider_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x1val_slider_edit as text 
%        str2double(get(hObject,'String')) returns contents of x1val_slider_edit 
as a double 
set(handles.x1_index_slider,'Value',round(str2num(get(hObject,'String')))); 
% --- Executes during object creation, after setting all properties. 
function x1val_slider_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x1val_slider_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function x2min_slider_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to x2min_slider_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x2min_slider_edit as text 
%        str2double(get(hObject,'String')) returns contents of x2min_slider_edit 
as a double 
set(handles.x2_index_slider,'Min',round(str2num(get(hObject,'String')))); 
% --- Executes during object creation, after setting all properties. 
function x2min_slider_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x2min_slider_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function x2max_slider_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to x2max_slider_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x2max_slider_edit as text 
%        str2double(get(hObject,'String')) returns contents of x2max_slider_edit 
as a double 
set(handles.x2_index_slider,'Max',round(str2num(get(hObject,'String')))); 
% --- Executes during object creation, after setting all properties. 
function x2max_slider_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x2max_slider_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function x2val_slider_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to x2val_slider_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of x2val_slider_edit as text 
%        str2double(get(hObject,'String')) returns contents of x2val_slider_edit 
as a double 
set(handles.x2_index_slider,'Value',round(str2num(get(hObject,'String')))); 
% --- Executes during object creation, after setting all properties. 
function x2val_slider_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x2val_slider_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function miny_xval_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to miny_xval_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of miny_xval_edit as text 
%        str2double(get(hObject,'String')) returns contents of miny_xval_edit as 
a double 
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% --- Executes during object creation, after setting all properties. 
function miny_xval_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to miny_xval_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function maxy_xval_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to maxy_xval_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of maxy_xval_edit as text 
%        str2double(get(hObject,'String')) returns contents of maxy_xval_edit as 
a double 
% --- Executes during object creation, after setting all properties. 
function maxy_xval_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to maxy_xval_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function miny_time_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to miny_time_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of miny_time_edit as text 
%        str2double(get(hObject,'String')) returns contents of miny_time_edit as 
a double 
% --- Executes during object creation, after setting all properties. 
function miny_time_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to miny_time_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function maxy_time_edit_Callback(hObject, eventdata, handles) 
% hObject    handle to maxy_time_edit (see GCBO) 
% Hints: get(hObject,'String') returns contents of maxy_time_edit as text 
%        str2double(get(hObject,'String')) returns contents of maxy_time_edit as 
a double 
% --- Executes during object creation, after setting all properties. 
function maxy_time_edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to maxy_time_edit (see GCBO) 
% Hint: edit controls usually have a white background on Windows. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in transparent_legend_checkbox. 
function transparent_legend_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to transparent_legend_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of transparent_legend_checkbox 
function [handles] = getPlotTickRanges(handles) 
% Set plot tick ranges 
x_range_temp(1)=min(handles.myvars.xseries); 
x_range_temp(2)=max(handles.myvars.xseries); 
y_range_temp(1)=min(handles.myvars.yseries); 
y_range_temp(2)=max(handles.myvars.yseries); 
y2_range_temp(1)=min(handles.myvars.y2series); 
y2_range_temp(2)=max(handles.myvars.y2series); 
test_seriesRange=isfield(handles.myvars,'xseries_range'); 
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if test_seriesRange==0 
    handles.myvars.xseries_range=x_range_temp; 
    handles.myvars.yseries_range=y_range_temp; 
    handles.myvars.y2_series_range=y2_range_temp; 
else 
    if handles.myvars.xseries_range(1) > x_range_temp(1) 
        handles.myvars.xseries_range(1) = x_range_temp(1); 
    end 
    if handles.myvars.xseries_range(2) < x_range_temp(2) 
        handles.myvars.xseries_range(2) = x_range_temp(2); 
    end 
    if handles.myvars.yseries_range(1) > y_range_temp(1) 
        handles.myvars.yseries_range(1) = y_range_temp(1); 
    end 
    if handles.myvars.yseries_range(2) < y_range_temp(2) 
        handles.myvars.yseries_range(2) = y_range_temp(2); 
    end 
    if handles.myvars.y2_series_range(1) > y2_range_temp(1) 
        handles.myvars.y2_series_range(1) = y2_range_temp(1); 
    end 
    if handles.myvars.y2_series_range(2) < y2_range_temp(2) 
        handles.myvars.y2_series_range(2) = y2_range_temp(2); 
    end 
end 
% --- Executes on button press in run_no_checkbox. 
function run_no_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to run_no_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of run_no_checkbox 
function [handles] = initializeGUI(handles) 
% Clear data and reset parameters 
if isfield(handles,'myvars') == 1 
    handles=rmfield(handles,'myvars'); 
end 
axes(handles.axes1) 
cla reset 
set(handles.specimen_popupmenu,'Value',1); 
set(handles.tare_by_initial_checkbox,'Value',1); 
set(handles.x_data_series,'Value',1); 
set(handles.y_data_series,'Value',5); 
set(handles.y2_data_series,'Value',8); 
set(handles.plot_style_checkbox,'Value',0); 
set(handles.plot_sep_window_checkbox,'Value',0); 
set(handles.holdon_checkbox,'Value',0); 
set(handles.legend_checkbox,'Value',1); 
set(handles.inclspecattr,'Value',1); 
set(handles.transparent_legend_checkbox,'Value',1); 
set(handles.run_no_checkbox,'Value',1); 
set(handles.plot3_checkbox,'Value',0); 
set(handles.refine_by_sliders_checkbox,'Value',0); 
set(handles.curve_operations_popup,'Value',2); 
set(handles.curve_operations_curve1,'Value',11); 
set(handles.curve_operations_curve2,'Value',12); 
set(handles.FFT_checkbox,'Value',0); 
set(handles.fit_data_checkbox,'Value',0); 
set(handles.use_all_data_checkbox,'Value',1); 
set(handles.refline_checkbox,'Value',0); 
set(handles.x1min_slider_edit,'String','----'); 
set(handles.x1max_slider_edit,'String','----'); 
set(handles.x1val_slider_edit,'String','----'); 
set(handles.x2min_slider_edit,'String','----'); 
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set(handles.x2max_slider_edit,'String','----'); 
set(handles.x2val_slider_edit,'String','----'); 
set(handles.sample_rate_statictext,'String','----'); 
set(handles.x_origin_checkbox,'Value',0); 
handles.myvars.variables={ 
    'Time' 
    'Vertical Displacement' 
    'Vertical Velocity' 
    'Vertical Acceleration' 
    'Vertical Force' 
    'Vertical Impulse' 
    'Vertical Work' 
    'Horizontal Displacement' 
    'Horizontal Velocity' 
    'Horizontal Acceleration' 
    'Horizontal Force 1' 
    'Horizontal Force 2' 
    'Total Horizontal Force' 
    'Horizontal Imuplse' 
    'Horizontal Work' 
    'Resultant Displacement' 
    'Resultant Force' 
    'Resultant Force Angle' 
    }; 
set(handles.x_data_series,'String',handles.myvars.variables); 
set(handles.y_data_series,'String',handles.myvars.variables); 
set(handles.y2_data_series,'String',handles.myvars.variables); 
set(handles.curve_operations_curve1,'String',handles.myvars.variables); 
set(handles.curve_operations_curve2,'String',handles.myvars.variables); 
%   Set program and default specimen directories 
handles.myvars.program_dir=pwd; 
handles.myvars.default_dir='E:\MyDataDrive\2 - PhD Research\ColdRm-
MovingLoadApparatus\Experiments\MTSData\'; 
% handles.myvars.default_dir='R:\Work\bruceq-svn-repo\MovingLoads\ColdRm-
MovingLoadApparatus\Experiments\MTSData'; 
%   Create Specimen Attributes table 
handles.myvars.specimen_attr={ 
    'MovingLoad01' , 'Initialization-Test' 
    'MovingLoad02' , 'Initialization-Test' 
    'MovingLoad03' , 'Initialization-Test' 
    'MovingLoad04' , 'Initialization-Test' 
    'MovingLoad05' , 'Initialization-Test' 
    'MovingLoad06' , 'Warm Fast Centre' 
    'MovingLoad07' , 'Warm Slow Centre' 
    'MovingLoad08' , 'Warm Slow Full-Length' 
    'MovingLoad09' , 'Warm Fast Centre' 
    'MovingLoad10' , 'Warm Slow Centre' 
    'MovingLoad11' , 'Warm Slow Full-Length' 
    'MovingLoad12' , 'Initialization-Test' 
    'MovingLoad14' , 'Warm Fast Centre' 
    'MovingLoad15' , 'Warm Slow Centre' 
    'MovingLoad16' , 'Warm Slow Full-Length' 
    'MovingLoad17' , 'Cold Fast Centre' 
    'MovingLoad18' , 'Cold Slow Centre' 
    'MovingLoad19' , 'Cold Slow Full-Length' 
    'MovingLoad20' , 'Cold Slow Centre' 
    'MovingLoad21' , 'Cold Slow Full-Length' 
    'MovingLoad22' , 'Cold Fast Centre' 
    'MovingLoad23' , 'Cold Fast Centre' 
    'MovingLoad24' , 'Cold Slow Centre' 
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    'MovingLoad25' , 'Cold Slow Full-Length' 
    'MovingLoad26' , 'Cold Fast Centre' 
    'MovingLoad27' , 'Cold Slow Centre' 
    'MovingLoad28' , 'Cold Slow Full-Length' 
    'MovingLoad29' , '1/2" Plate Cold Force-Ctrl Full-Length' 
    'MovingLoad30' , 'Ice Elastic Plate 1 Slow' 
    'MovingLoad31' , 'Ice Elastic Plate 2 Slow' 
    'MovingLoad32' , 'Ice Elastic Slow w/ Pressure Film' 
    'MovingLoad33' , 'Ice Elastic Medium w/ Pressure Film' 
    'MovingLoad34' , 'Ice Elastic Plate 3 Medium' 
    'MovingLoad35' , 'Ice Elastic Fast w/ Pressure Film' 
    'MovingLoad36' , '1/4" Plate Cold Force-Ctrl Full-Length' 
    'MovingLoad37' , 'Frame Cold Force-Ctrl Full-Length' 
    'MovingLoad38' , 'Ice Elastic Plate 4 Slow' 
    'MovingLoad39' , 'Ice Elastic Plate 5 Slow' 
    'MovingLoad40' , 'Ice Plastic 1/8" Slow' 
    'MovingLoad41' , 'Ice Plastic 1/8" Fast' 
    'MovingLoad42' , 'Ice Plastic 1/4" Fast' 
    'Other' , 'Other' 
    }; 
% --- Executes on button press in pushbutton20. 
function pushbutton20_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton20 (see GCBO) 
handles.sep_figure=figure; 
set_axes_props(handles) 
hold all; 
plot(handles.myvars.data.time, handles.myvars.data.hforc_total,'b--') 
plot(handles.myvars.data.time, handles.myvars.data.hforc1,'r-.') 
plot(handles.myvars.data.time, handles.myvars.data.hforc2,'g-') 
plot(handles.myvars.data.time, handles.myvars.data.hforc1-
handles.myvars.data.hforc2,'k:') 
xlim([min(handles.myvars.data.time) max(handles.myvars.data.time)]); 
ylim([min(handles.myvars.data.hforc_total) 
max(handles.myvars.data.hforc_total)]); 
%   Include Legend 
if get(handles.inclspecattr,'Value')==1 
    val_1=get(handles.specimen_popupmenu,'Value'); 
    if get(handles.run_no_checkbox,'Value') == 0 
        legend_prepend={char(strcat(handles.myvars.specimen_attr(val_1-1,2),{' - 
'}))}; 
    else 
        legend_prepend={char(strcat(handles.myvars.specimen_name,{' - 
'},handles.myvars.specimen_attr(val_1-1,2),{' - '}))}; 
    end 
else 
    if get(handles.run_no_checkbox,'Value') == 0 
        legend_prepend=''; 
    else 
        legend_prepend={char(strcat(handles.myvars.specimen_name,{' - '}))}; 
    end 
end 
title('Horizontal Force vs. Time') 
xlabel('Time [s]') 
ylabel('Horizontal Force [N]') 
legend_title(1)={char(strcat(legend_prepend, 'Total Horizontal Force'))}; 
legend_title(end+1)={char(strcat(legend_prepend, 'Horizontal Force 1'))}; 
legend_title(end+1)={char(strcat(legend_prepend, 'Horizontal Force 2'))}; 
legend_title(end+1)={char([legend_prepend 'Horizontal Force 1 minus Horizontal 
Force 2'])}; 
%   Display Legend 
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if get(handles.legend_checkbox,'Value')==1 
    LEG=legend(gca,legend_title,'Location','NorthWest'); 
    set(LEG,'FontSize',9) 
    if get(handles.transparent_legend_checkbox,'Value') == 1 
        set(LEG,'color','none') 
    end 
end 
% --- Executes on button press in refline_checkbox. 
function refline_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to refline_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of refline_checkbox 
if get(handles.use_all_data_checkbox,'Value') == 1 
    set(hObject,'Value',0) 
    set(hObject,'Enable','off') 
else 
    set(hObject,'Enable','on') 
end 
% --- Executes on button press in x_origin_checkbox. 
function x_origin_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to x_origin_checkbox (see GCBO) 
% Hint: get(hObject,'Value') returns toggle state of x_origin_checkbox 
if get(hObject,'Value') == 1 
    handles.myvars.data.hdisp=handles.myvars.data.hdisp-550; 
end 
if get(hObject,'Value') == 0 
    handles.myvars.data.hdisp=handles.myvars.data.hdisp+550; 
end 
guidata(hObject, handles); 
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