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Abstract

The main purpose of this thesis is to develop and analyze iterations arising from domain

decomposition methods for equidistributing meshes. Adaptive methods are powerful tech-

niques to obtain the efficient numerical solution of physical boundary value problems

(BVPs) which arise from science and engineering. If a solution of a BVP has sharp changes,

equidistributed mesh can give a reasonable solution for the BVP with a fixed number of

mesh points. Our concern is to solve the involved nonlinear mesh BVP using optimized

domain decomposition approaches and efficiently provide a nonuniform coordinate for the

original boundary value problem. We derive an implicit solution on each subdomain from

the optimized Schwarz method for the mesh BVP, and then introduce an interface iteration

from the Robin transmission condition, which is a nonlinear iteration. Using the theory of

M -functions we provide an alternate analysis of the optimized Schwarz method on two sub-

domains and extend this result to an arbitrary number of subdomains. M -function theory

guarantees that these iterations will converge monotonically under some restriction on p,

where p is the Robin parameter. The iteration can be computed by nonlinear (block) Gauss

Jacobi or Gauss Seidel methods. We conclude our study with numerical experiments.
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Chapter 1

Introduction

Adaptive mesh methods are powerful techniques to obtain the efficient numerical solution

of physical partial differential equations (PDEs) which arise from science and engineer-

ing. In this study r-refinement is considered for the mesh adaptation. For time dependent

problems this is known as a moving mesh method. To obtain the best possible solution

r-refinement relocates mesh nodes and keeps the number of mesh nodes fixed. The equidis-

tribution principle (EP) is a standard way to generate mesh adaptation for physical PDEs.

The equidistribution principle was first introduced by de Boor in [1]. In the last decade,

EP has been generalized for multidimensional mesh adaptation in [2, 3, 4, 5]. Nowadays,

EP plays an indispensable role for mesh adaptation in space and time. Suppose we are

given a positive measureM(x, u) of the error (which is known as a mesh density or monitor

function) in the solution u(x) over the physical domain. The general idea of EP is that the

integral of the monitor function (or, the error in the solution) is equally distributed over all

mesh elements. It is expected the error in the computed solution will be large where M is

large. Essentially EP concentrates mesh points in these regions.

We would like to solve a steady state boundary value problem on an equidistributing

1



Chapter 1. Introduction

mesh. Let us consider a general steady state boundary value problem

L{u} = 0 u(0) = a, u(1) = b, (1.1)

where L is a spatial differential operator. When the BVP has a “difficult” solution, using

a uniform mesh will not give us an accurate and efficient result. We transform the phys-

ical problem in the non-uniform x-coordinate to new computational uniform ξ-coordinate

within the domain ξ ∈ Ωc = [0, 1], where x(0) = 0 and x(1) = 1. We choose a mesh

transformation x = x(ξ), and wish to use a uniform mesh

ξi =
i

N
, i = 0, 1, ..., N.

Consider a positive measure M(x, u) of the error or difficulty in the solution u(x), where

x ∈ Ωp, the physical domain, and ξ ∈ Ωc, the computational domain. Our goal is to apply

the EP to perform a mesh adaptation in space. The equidistribution principle requires
∫ xi

xi−1

M(x̃, u)dx̃ ≡ 1

N

∫ 1

0

M(x̃, u)dx̃.

This implies that

∫ x(ξi)

0

M(x̃, u)dx̃ =
i

N
θ ≡ ξiθ, (1.2)

where θ =
∫ 1

0
M(x̃, u)dx̃ is the total error in the solution. Then 1

N
θ is the average error

in the solution. The portion of M is equally distributed, so the error is equally distributed.

Essentially M is large where the error of the computed solution is large. The continuous

version of equation (1.2) is
∫ x(ξ)

0

M(x̃, u)dx̃ = ξ

∫ 1

0

M(x̃, u)dx̃.

Differentiating both sides of this equation with respect to ξ, we obtain

M(x(ξ), u)
d

dξ
x(ξ) =

∫ 1

0

M(x̃, u)dx̃.

2



Chapter 1. Introduction

Again differentiating both sides of this equation with respect to ξ gives us

d

dξ

(
M(x(ξ), u)

d

dξ
x(ξ)

)
= 0

with the boundary conditions x(0) = 0 and x(1) = 1. The equidistributing mesh trans-

formation can be obtained by solving this nonlinear BVP for the mesh transformation

x(ξ) : Ωc → Ωp.

Therefore, we have to solve the coupled system,

L{u} = 0 u(0) = a, u(1) = b, (1.3)

d

dξ

(
M
(
x(ξ), u

) d
dξ
x(ξ)

)
= 0 x(0) = 0, x(1) = 1. (1.4)

The mesh generation problem itself is a two-point nonlinear BVP (1.4), and it depends on

the physical solution u which is an unknown of the original PDE. The mesh is determined

by solving a mesh equation which is coupled to the physical PDE of interest. Solving this

resulting coupled system of equations, namely the physical PDE and the mesh BVP, gives

the required physical solution on that mesh. Recent reviews of grid generation by moving

mesh methods can be found in [6, 7, 8], and grid generation for the CFD problems can

be found [9, 10, 11, 12, 13], and for the meteorology problems see [14, 15, 16, 17, 18].

Computational solution of physical PDEs based on equdistribution meshes can be found in

[2, 19, 20, 21].

This coupled system (1.3-1.4) can be solved in two ways, simultaneously or alternately,

see more detail in [7]. For the simultaneous procedure, the coupled system is considered

as one large system. The main advantage of the simultaneous procedure is that standard

ordinary differential equation (ODE) solvers can be used to solve the system of ODEs. The

simultaneous solution however, involves a nonlinear coupling between the mesh and the

physical solution, which is a major drawback.

3



Chapter 1. Introduction

In the alternating solution procedure a mesh xn+1 at the new level is generated from the

mesh and the physical solution (xn, un) at the current level, and then we obtain the physical

solution un+1 at the new level. The advantages of the alternating procedure are: the grid

generation part can be coded separately then incorporated with the physical part; we can

efficiently solve each piece and as a result the solution is not tightly coupled with mesh.

This is basic concept of the MP procedure, where M is stands for the mesh BVP and P is

stands for physical PDE. Hence, in the MP procedure the mesh BVP is integrated followed

by integration of the physical PDE. The simultaneous solution procedure is mainly used

for one-dimensional problems and alternate solution procedure has been applied for the

multidimensional problems [7].

In addition, we would like to take advantage of parallel computing environments to

solve the mesh BVP. Domain Decomposition (DD) approaches are ideally suited for par-

allel computation. DD methods follow a divide-and-conquer rule: partition a domain

into overlapping or nonoverlapping subdomains and solve subdomain problems in a par-

allel or alternating approach. Composing the subdomain solutions we obtain a global

solution for the problem. In steady case, DD has been applied for nonlinear PDEs in

[22, 23, 24, 25, 26, 27]. We show the subdomain problems are well-defined; that is, a

solution exists and is unique, for the mesh BVP in Section 2.2.1.

In this thesis we solve the mesh equation using well-known parallel Schwarz and op-

timized Schwarz methods. The parallel Schwarz method (PSM) is based on Dirichlet

condition at the boundaries. Overlap between two consecutive subdomains is needed to

ensure convergence. The convergence rate is very slow when the overlap size is small.

Lions [28] first discovered an algorithm to change the Dirichlet transmission condition,

and new types of conditions to obtain a convergent nonoverlapping iteration. Recently,

Japhet [29] analyzed optimized Schwarz methods on a model problem using a Fourier

analysis. The optimized Schwarz method (OSM) is based on Robin boundary condition,

4



Chapter 1. Introduction

and gives convergence results without overlap between subdomains. The combination of

mesh equidistribution and a DD approach gives us a parallel mesh adaptation method. This

combination of mesh equidistribution and DD has previously been presented in the papers

[30, 31, 32, 33]. Also some results of Chapter 2 have previously been published by Gander

and Haynes in [8].

The purpose of this study is to analyze nonlinear iterations related to optimized Robin

transmission conditions for the mesh equation in a nonoverlapping domain decomposition

approach. We show that the subdomain BVPs for OSM for arbitrary number of subdomains

is well-posed in section 3.1.4. We derive an implicit solution for each subdomain and

then introduce an interface iteration from the transmission conditions using the implicit

formula on each subdomain. This gives a nonlinear iteration. Gander and Haynes in [8]

have previously studied the iteration for the two subdomain case for OSM using Global

Peaceman-Rachford theorem from [34, p 387]. We would like to analyze the nonlinear

iteration for an arbitrary number of subdomains arising from OSM. An important tool in

our analysis is the theory of M -functions.

An iteration process xn+1 = Bxn + b
′ , n = 0, 1, ... for the linear system Ax = b

is convergent if a norm condition ||B|| < 1 is satisfied. Strong spectral properties for

the iteration matrix B are needed to obtain a stronger convergence result. The well-known

iterative methods, Gauss Jacobi and Gauss Seidel iterations, converge to the unique solution

from any initial guess for the linear system, if A is symmetric and positive definite or an

M -matrix. Now we are interested in understanding conditions which guarantee stronger

convergence for a nonlinear system Fx = b. Bers [35] was the first to generalize and

analyze Gauss Jacobi and Gauss Seidel iterations for the solution of nonlinear system of

equations that arise from discrete nonlinear elliptic BVPs. In particular, the requirement

that A is symmetric and positive definite in linear case has been extended to the nonlinear

case by Schechter [36]. If the mapping F : D ∈ Rn → Rn defining the nonlinear system

5



Chapter 1. Introduction

is a continuous, symmetric, and has an uniformly positive definite (Frechet) derivative on

all of Rn then the nonlinear system has a unique solution in Rn for any given b ∈ Rn, and

the nonlinear Gauss Seidel iteration converges to a unique solution, for any initial guess

in Rn [36]. A generalization of the M -matrix condition for linear systems to particular

nonlinear systems has been given by Bers [35], Birkhoff and Kellogg [37], Ortega and

Rheinboldt [38, 39], and Porsching [40]. In 1969, Ortega [41] introduced M -functions on

Rn, which contains as special cases all linear mappings induced by M-matrices. If F is

a continuous M -function from Rn onto itself then the Gauss Seidel and the Gauss Jacobi

iteration converge globally for any b ∈ Rn.

The general idea in this thesis is to study the nonlinear system that arises by applying

OSM to the mesh BVP (1.4). our goal is to find well-posed and convergent iterations to

solve this system efficiently. We can prove this system is well-posed using M -function

theory under some restriction on p, where p is the parameter used in the Robin transmis-

sion condition. Supersolutions and subsolutions are also needed. The iteration can then be

computed by nonlinear (block) Gauss-Jacobi or Gauss-Seidel methods. M -function the-

ory guarantees the iterations will converge monotonically under some restriction on p. In

Section 3.2, we analyze the nonlinear interface iteration (or, recurrence relation) for two

subdomains, and in Section 3.3 we analyze for three subdomains. Based on the theory of

M -functions we will present new convergence results for our iterations in Chapter 3.

An outline of the thesis spread over the five chapters is as follows. Chapter 1 (this

chapter) gives the objectives and scope of the thesis, relevant literature survey, introduces

the equidistribution principle (EP), and gives the model problem. In Chapter 2 we discuss

moving mesh methods as determined by the EP. We discuss how mesh equations are de-

rived from the EP for steady state problem in a single spatial dimension, and then describe

some existing solution methods for the mesh BVP. We describe domain decomposition pre-

liminaries for the nonlinear BVPs: parallel Schwarz for an arbitrary number of subdomains

6



Chapter 1. Introduction

and optimized Schwarz methods for two subdomains. In Chapter 3, certain basic theorems

involving M -functions, in particular the convergence of the Gauss-Seidel and Jacobi pro-

cesses for such mappings, are described. Also, we study optimized Schwarz method for

many subdomains and analyze the resulting nonlinear iteration using the ideas of subsolu-

tion, supersolution and M -function theory. Chapter 4 is devoted to the numerical results.

The final chapter is Chapter 5, which includes some important comments and provides

several useful conclusions of the present research work and future research directions.

7



Chapter 2

Solution Methods for Mesh BVP via the

Equidistribution Principle

This chapter is devoted to introduce solution methods for the mesh BVP that arise from

the equidistribution principle, which was introduced in Chapter 1. When a steady state

BVP has a “difficult” solution, a uniform mesh can not provide us accurate and efficient

results. It is required to transform the physical nonuniform x-coordinate to a new com-

putational ξ-coordinate by applying the equidistribution principle. Solving the resulting

coupled system of equations, namely the original problem and the mesh partial differential

equation (MPDE), is a challenging task in parallel. We consider solving the involved mesh

nonlinear boundary value problem using single domain and parallel domain decomposition

approaches, which provide an efficient nonuniform coordinate for the original problem.

2.1 Single Domain Solution for the Mesh BVP

We have introduced the mesh equation using the EP in Chapter 1. We wish to solve the

mesh equation on the computational domain Ωc. If u is given, then from (1.4) an equidis-

8



Chapter 2. Solution Methods for Mesh BVP via the Equidistribution Principle

tributing mesh transformation x(ξ) : Ωc → Ωp is determined by solving the BVP

d

dξ

(
M(x)

d

dξ
x

)
= 0 x(0) = 0, x(1) = 1. (2.1)

To discretize the mesh BVP (2.1) we use a staggered mesh with either the midpoint or

trapezoidal rules, then solve the resulting system by Newton’s method. In addition, we

verify the order of the discretization error, rate of convergence of Newton’s method, and

provide a comparison between the midpoint and trapezoidal rules.

2.1.1 Discretization of the Mesh Equation

To discretize the mesh BVP (2.1) on the computational domain we use a staggered mesh.

Let us consider

w(ξ, x) =M(x)
d

dξ
x,

then equation (2.1) becomes
dw

dξ
= 0. (2.2)

Let xj approximate x(ξj), where ξj = jh, j = 0, 1, ..., N + 1, h = 1
N+1

, x0 = 0 and

xN+1 = 1. Now we discretize using a short difference, approximating w(ξ, x) at ξj+ 1
2

and

ξj− 1
2

by

wj+ 1
2
=M(xj+ 1

2
)
(xj+1 − xj

h

)

and

wj− 1
2
=M(xj− 1

2
)
(xj − xj−1

h

)
.

Using the approximation for w at the midpoints and equation (2.2), we obtain

1

h

[
wj+ 1

2
− wj− 1

2

]
= 0,

which implies

M(xj+ 1
2
)(xj+1 − xj)−M(xj− 1

2
)(xj − xj−1) = 0, (2.3)

9



Chapter 2. Solution Methods for Mesh BVP via the Equidistribution Principle

for j = 1, ..., N and x0 = 0 and xN+1 = 1.

We now can apply trapezoidal rule or midpoint technique to approximate M(xj+ 1
2
) and

M(xj− 1
2
). For the trapezoidal case, the short averages M at points xj+ 1

2
and xj− 1

2
are

M(xj+ 1
2
) ≈ M(xj+1) +M(xj)

2

and

M(xj− 1
2
) ≈ M(xj) +M(xj−1)

2
.

So the equation (2.3) becomes
(
M(xj+1) +M(xj)

)
(xj+1 − xj)−

(
M(xj) +M(xj−1)

)
(xj − xj−1) = 0,

j = 1, 2, ..., N,

(2.4)

with the boundary conditions x0 = 0 and xN+1 = 1. This is a nonlinear system of algebraic

equations.

For the midpoint case, at point xj+ 1
2

and xj− 1
2
, M can be approximated as

M(xj+ 1
2
) =M

(xj+1 + xj
2

)

and

M(xj− 1
2
) =M

(xj + xj−1

2

)
.

So the equation (2.3) becomes

M
(xj+1 + xj

2

)
(xj+1 − xj)−M

(xj + xj−1

2

)
(xj − xj−1) = 0

j = 1, 2, ..., N,

(2.5)

with the boundary conditions x0 = 0 and xN+1 = 1. This is a nonlinear system of equations

using the staggered mesh and the midpoint formula.

We can solve both systems by fixed point iteration or Newton’s method. To demonstrate

the approach we will use Newton’s method. This system can be written as

G(x) = 0.

10
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Newton’s method is given by

xn+1 = xn −
(
∂G

∂x
(xn)

)−1

G(xn), n = 0, 1, ... (2.6)

where x0 is an initial guess and the Jacobian is

∂G

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂G1

∂x1

∂G1

∂x2
. . . ∂G1

∂xN

∂G2

∂x1

∂G2

∂x2
. . . ∂G2

∂xN

...
...

...

∂GN

∂x1

∂GN

∂x2
. . . ∂GN

∂xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We require the Jacobian matrix ∂G
∂x

for every iteration for Newton’s method. To get a better

form of Newton’s method, we first rewrite equation (2.6) as

xn+1 − xn = −
(
∂G

∂x
(xn)

)−1

G(xn), n = 0, 1, ....

and rearrange to obtain
(
∂G

∂x
(xn)

)
(xn+1 − xn) = −G(xn), n = 0, 1, ....

This implies that
(
∂G

∂x
(xn)

)
δ = −G(xn), n = 0, 1, ...

where δ = xn+1 − xn. The next iteration is obtained by xn+1 = xn + δ. This is a better

form because we avoid the explicit calculation of the Jacobian.

Example 1 Consider a two-point nonlinear boundary value problem

d

dξ

(
(x2 + 1)

d

dξ
x

)
= 0, x(0) = 0, x(1) = 1.

HereM(x) = x2+1 > 0 in the given domain. Now discretizing this BVP using a staggered

mesh and the Trapezoidal rule gives

Gj ≡
(
M(xj+1) +M(xj)

)
(xj+1 − xj)−

(
M(xj) +M(xj−1)

)
(xj − xj−1) = 0,

j = 1, 2, ..., N,

11
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where M(xj) = x2j + 1 and the boundary conditions x0 = 0 and xN+1 = 1. We will solve

this nonlinear system of equation using Newton’s method. Let this system be

G(x) = 0.

Due to the structure of this system, the Jacobian for this problem is

∂G

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂G1

∂x1

∂G1

∂x2
0 . . . 0

∂G2

∂x1

∂G2

∂x2

∂G2

∂x3
. . . 0

...
...

...
...

0 0 . . . ∂GN

∂xN−1

∂GN

∂xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Where, we obtain for the first point

G1 =M
(x2 + x1

2

)
(x2 − x1)−M

(x1 + x0
2

)
(x1 − x0).

Differentiating G1 with respect to x1 and x2, we have

∂G1

∂x1
=
1

2
M

′
(x2 + x1

2

)
(x2 − x1)−M

(x2 + x1
2

)1
2
M

′
(x1 + x0

2

)
(x1 − x0)−M

(x1 + x0
2

)

and

∂G1

∂x2
=
1

2
M

′
(x2 + x1

2

)
(x2 − x1) +M

(x2 + x1
2

)
.

Similarly, we can evaluate the ∂Gj

∂xj−1
, ∂Gj

∂xj
and ∂Gj

∂xj+1
entries of Jacobian matrix for jth point,

here j = 2, ..., N − 1. For the last endpoint we obtain

GN =M
(xN+1 + xN

2

)
(xN+1 − xN)−M

(xN + xN−1

2

)
(xN − xN−1).

Differentiating GN with respect to xN−1 and xN , we have

∂GN

∂xN−1

=− 1

2
M

′
(xN + xN−1

2

)
(xN − xN−1) +M

(xN + xN−1

2

)
,

12
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and

∂GN

∂xN
=
1

2
M

′
(xN+1 + xN

2

)
(xN+1 − xN)−M

(xN+1 + xN
2

)
−

1

2
M

′
(xN + xN−1

2

)
(xN − xN−1)−M

(xN + xN−1

2

)
.

Likewise, we can obtain the structure of Jacobian for midpoint approach using a similar

approach.

We now show the order of the discretization error is O(h2), the rate of convergence of

the Newton’s method is quadratic and we provide a comparison between the midpoint and

trapezoidal rules in Section 2.1.2.

2.1.2 Brief Numerical Results

2.1.2.1 Order of Discretization Error

We choose different value of step sizes and compute the error for the discretization for the

mesh BVP. Assume the global error with step size h is e = chq, where c is a constant, and

q is the order of the method. Now we take log of both sides of e = chq, then we obtain

log(e) = log(c) + q log(h),

which is the equation of a straight line with slope q. We want to find the value of q.

Figure 2.1 also shows the order of discretization error of two point nonlinear mesh

BVP. We discretized the BVP using a staggered mesh and midpoint formula with a monitor

function M(x) = x2 + 1. The slope of the artificial red line is 2, we compare slope of the

artificial line to the computed line. We chose various value of step sizes h and compare

of the error e for the discretization. We see the computed (blue) error line for midpoint is

parallel to the red line and, hence, the order of discretization is q = 2, which is written as

O(h2).

13
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Figure 2.1: Order of discretization using midpoint and trapezoidal rule for the mesh BVP

with the Dirichlet boundary conditions.

Figure 2.1 also shows a comparison between midpoint formula and the trapezoidal rules

with the discretization error of nonlinear mesh BVP. We compare slope of the red line to

the computed lines. The blue error line represents for the staggered mesh and the midpoint

formula, and the black error line represents for the the staggered mesh and the trapezoidal

rule. We can see the midpoint formula gives us a better result for the nonlinear mesh BVP,

because the midpoint formula gives less error than the trapezoidal rule.

2.1.2.2 Rate of Convergence for Newton’s Method

We want to compute the rate of convergence for Newton’s method. First, we compute the

numerical solution x̂ for a fixed h and a Newton tolerance of 10−12, then we calculate the

error for each Newton step using ê(k) = ||x̂− x(k)||, where x(k) is the numerical solution at

the k-th Newton step. We assume ê(k+1) = c(ê(k))r, where c is a constant, and r is the rate

of convergence. Now taking log both sides of ê(k+1) = c(ê(k))r, we obtain

log(ê(k+1)) = log(c) + r log(ê(k)),

14
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Figure 2.2: Rate of convergence of Newton’s method for the mesh BVP with the Dirichlet

boundary conditions.

which is the equation of a straight line with slope r. We want to find the value of r.

Figure 2.2 illustrates the rate of convergence for Newton’s method for Example 1. The

slope of the red line is 2, and the blue line is a computed line. The two lines are parallel

in this figure. Therefore, the rate of convergence for Newton’s method is quadratic as

expected.

2.2 Domain Decomposition Methods for the Mesh BVP

The mesh equation via the EP has been introduced in Chapter 1, and an equidistributing

mesh transformation x(ξ) : Ωc → Ωp is determined by solving the BVP (2.1). Before

presenting the parallel domain decomposition methods for (2.1) we introduce some pre-

liminary results.

2.2.1 Domain Decomposition Preliminaries

In sections 2.2.2 and 2.2.3 domain decomposition methods are discussed for the solution

of (2.1) with Dirichlet and Robin boundary conditions. We begin by considering (2.1) on

15
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an arbitrary subdomain ξ ∈ (a, b) ⊂ Ωc = (0, 1) with Dirichlet boundary conditions

d

dξ

(
M(x)

d

dξ
x

)
= 0, x(a) = ζa, x(b) = ζb. (2.7)

This will be the subdomain problem for the nonlinear Schwarz algorithms of Sections 2.2.2

and 2.2.3. Throughout this study we consider a mesh density function M(x), as

M(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M(0) when x < 0

M(1) when x > 1

M(x) othewise,

and assume M(x) is bounded away from 0 to ∞, i.e., there exists m̌ and m̂ such that

0 < m̌ ≤M(x) ≤ m̂ <∞ for all x. (2.8)

We are interested in showing that the subdomain problem is well-defined; this means

the solution exists and has a unique solution. To help in this regard we use Lemmas 2.1−2.3

from Gander and Haynes [8], which we quote below as Lemmas 2.2.1 - 2.2.3.

Lemma 2.2.1 If M is differentiable and bounded away from 0 to ∞, i.e., satisfies (2.8),

then the BVP (2.7) has a unique solution given implicitly by

∫ x(ξ)

ζa

M(x̃)dx̃ =
ξ − a

b− a

∫ ζb

ζa

M(x̃)dx̃, for ξ ∈ (a, b). (2.9)

Proof. Integrating the differential equation (2.7) we obtain

M(x̃)
dx̃

dξ
= C

where C is an arbitrary constant. Again integrating from a to ξ we have

∫ x(ξ)

ζa

M(x̃)dx̃ = C(ξ − a), for ξ ∈ (a, b), (2.10)

16
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where the boundary condition at ξ = a is satisfied, and the constant C is chosen to satisfy

the Dirichlet boundary condition at ξ = b . We now want to calculate C using the Dirichlet

boundary condition x(b) = ζb. We obtain
∫ ζb

ζa

M(x̃)dx̃ = C(b− a),

this gives

C =
1

b− a

∫ ζb

ζa

M(x̃)dx̃.

Substituting the value of C into (2.10), we arrive at the required implicit formula (2.9), that

any solution of (2.7) satisfies the implicit representation.

We now want to show that there is a x(ξ) satisfying the (2.9) implicit representation of

the BVP (2.7). The mesh transformation x(ξ) is the solution θ, of

G(θ) = ξ − a

b− a

∫ ζb

ζa

M(x̃)dx̃, (2.11)

where G(θ) is defined as G(θ) ≡
∫ θ

ζa
M(x̃)dx̃. G is continuous since M is differentiable,

and G is uniformly monotonic because differentiating G with respect to θ we obtain

dG
dθ

=M(θ) ≥ m̌ > 0.

Hence, by the implicit function theorem [42], there is a unique continuously differentiable

solution to (2.11) and (2.9).

Corollary 2.2.1.1 Under the assumptions of Lemma 2.2.1, for any ξ ∈ (0, 1), the solution

x(ξ) which solves (2.1) satisfies the equation
∫ x(ξ)

0

M(x̃)dx̃ = ξ

∫ 1

0

M(x̃)dx̃.

The analysis of the optimized Schwarz methods in Section 2.2.3 will require the solu-

tion of boundary value problems of the form

d

dξ

(
M(x)

d

dξ
x

)
= 0, x(0) = 0, M(x)xξ + px|b = ζb, (2.12)

where p and ζb are constants and b ∈ (0, 1) is fixed.

17
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Lemma 2.2.2 Under the assumptions of Lemma 2.2.1, the BVP (2.12) has a unique solu-

tion for all p > 0 given implicitly by

∫ x(ξ)

0

M(x̃)dx̃ =
(
ζb − px(b)

)
ξ, for ξ ∈ (0, b). (2.13)

Proof. The differential equation in (2.13) and boundary condition at ξ = 0 is satisfied by

∫ x(ξ)

0

M(x̃)dx̃ = Cξ, for ξ ∈ (a, b), (2.14)

where the constant C is chosen to satisfy the boundary condition at ξ = b. Now using the

Robin boundary condition M(x)xξ + px|b = ζb, we obtain

M(x)
dx

dξ
+ px|b = C + px(b),

imposing the boundary condition at ξ = b gives

ζb = C + px(b),

which implies that

C = ζb − px(b).

Substituting the value of C into (2.14), we arrive at the implicit representation (2.13), that

any solution of (2.12) satisfies the implicit representation.

We now want to show that there is a x(ξ) satisfying the implicit representation (2.13)

of the BVP (2.12). We first study the existence and uniqueness at the boundary ξ = b. Now

evaluating at ξ = b, the boundary value x(b) is the solution θ, of

∫ θ

0

M(x̃)dx̃ =
(
ζb − pθ

)
b,

or

G(θ) = bζb (2.15)

18
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where G(θ) is defined as

G(θ) ≡
∫ θ

0

M(x̃)dx̃+ pbθ.

G is continuous since M is differentiable from the assumptions of Lemma 2.2.1, and G is

uniformly monotonic because there exists a constant Gc > 0 such that

dG
dθ

=M(θ) + bp ≥ Gc.

Therefore, by the inverse function theorem (2.15) has a unique solution θ, which means

(2.15) has a unique solution x(b) at ξ = b. We already know G̃(θ) =
∫ θ

0
M(x̃)dx̃ is contin-

uous and uniformly monotonic since dG̃
dθ

= M(θ) ≥ m̌ > 0 and hence has a continuously

differentiable inverse by the inverse function theorem. Therefore the unique solution x(ξ),

for ξ ∈ (0, b), follows by considering (2.13) for the now specified x(b).

We will also be interested in solutions of Robin problems of the form

d

dξ

(
M(x)

d

dξ
x

)
= 0 M(x)xξ − px|a = ζb, x(1) = 1, (2.16)

where p and ζa are constants and a ∈ (0, 1) is fixed. Notice the change of sign in the

boundary condition at ξ = a.

Lemma 2.2.3 Under the assumptions of Lemma 2.2.1, the BVP (2.16) has a unique solu-

tion for all p > 0 given implicitly by
∫ 1

x(ξ)

M(x̃)dx̃ =
(
ζa + px(a)

)
(1− ξ), for ξ ∈ (a, 1). (2.17)

Proof. The differential equation in (2.16) and boundary condition at ξ = 1 are satisfied by
∫ 1

x(ξ)

M(x̃)dx̃ = C(1− ξ), for ξ ∈ (a, b), (2.18)

where C is chosen to satisfy the boundary condition at ξ = a. Now using the Robin

boundary condition M(x)xξ − px|a = ζa, we obtain

M(x)
dx

dξ
− px|a = C − px(a).
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Imposing the boundary condition at ξ = a gives

ζa = C − px(a),

which implies

C = ζa + px(a).

Substituting the value of C into (2.18), we arrive at the implicit representation (2.17), that

any solution of (2.16) satisfies the implicit representation.

We now want to show that there is a x(ξ) satisfying the implicit representation (2.17) of

the BVP (2.16). We first study the existence and uniqueness at the boundary ξ = a. Now

evaluating at ξ = a, the boundary value x(a) is the solution θ, of
∫ 1

θ

M(x̃)dx̃ =
(
ζa + pθ

)
(1− a),

or

G(θ) = (1− a)ζa, (2.19)

where G(θ) is defined as

G(θ) ≡
∫ 1

θ

M(x̃)dx̃− (1− a)pθ.

G is continuous since M is differentiable from the assumptions of Lemma 2.2.1, and G is

uniformly monotonic because there exists a constant Gc > 0 such that

dG
dθ

= −M(θ)− (1− a)p ≤ Gc < 0.

Therefore, by the inverse function theorem (2.19) has a unique solution θ, which means

(2.19) has a unique solution x(a) at ξ = a. We already know G̃(θ) =
∫ 1

θ
M(x̃)dx̃ is

continuous and uniformly monotonic since dG̃
dθ

= −M(θ) ≤ −m̌ < 0 and has a continu-

ously differentiable inverse. Therefore, the unique solution x(ξ), for ξ ∈ (a, 1), follows by

considering (2.17) for the now specified x(a).
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Finally, we will also be interested in solutions of Robin problems of the form

d

dξ

(
M(x)

d

dξ
x

)
= 0 M(x)xξ − px|a = ζa, M(x)xξ + px|b = ζb, (2.20)

where p, ζa and ζb are constants and a, b ∈ (0, 1) are fixed with a < b.

Lemma 2.2.4 Under the assumptions of Lemma 2.2.1, the BVP (2.20) has a unique solu-

tion for all p > 0 given implicitly by
∫ x(ξ)

x(a)

M(x̃)dx̃ =
(
ζb − px(b)

)
(ξ − a), for ξ ∈ (a, 1), (2.21)

where x(b) = −x(a) + 1
p
(ζb − ζa).

Proof. Integrating the differential equation (2.20), we obtain

M(x̃)
dx̃

dξ
= C, for ξ ∈ (a, b), (2.22)

again integrating from a to ξ, we have
∫ x(ξ)

x(a)

M(x̃)dx̃ = C(ξ − a), for ξ ∈ (a, b),

where C is chosen to satisfy the Robin type boundary conditions at ξ = a and ξ = b. Using

the relation C = M(x)xξ from (2.22), the Robin type boundary conditions at ξ = a and

ξ = b can be written as

C − px(a) = ζa at ξ = a (2.23)

and

C + px(b) = ζb at ξ = b. (2.24)

Subtracting (2.23) from (2.24) we obtain

x(b) =
1

p
(ζb − ζa)− x(a). (2.25)

From (2.24) we have

C = ζb − px(b).
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Substituting the value of C, we obtain
∫ x(ξ)

x(a)

M(x̃)dx̃ =
(
ζb − px(b)

)
(ξ − a), for ξ ∈ (a, 1),

where x(b) is given in (2.25). Hence we arrive at the implicit representation (2.21), that

any solution of (2.20) satisfies the implicit representation.

We now want to show that there is a x(ξ) satisfying the implicit representation (2.21) of

the BVP (2.20). We first study the existence and uniqueness at the boundaries. Evaluating

at ξ = b and substituting the value of x(a) = 1
p
(ζb − ζa)− x(b), we have that x(b) satisfies

∫ x(b)

1
p
(ζb−ζa)−x(b)

M(x̃)dx̃ =
(
ζb − px(b)

)
(b− a). (2.26)

Hence the boundary value x(b) is the solution θ of
∫ θ

1
p
(ζb−ζa)−θ

M(x̃)dx̃ =
(
ζb − pθ

)
(b− a)

or

G(θ) = (b− a)ζb (2.27)

where G(θ) is defined as

G(θ) ≡
∫ θ

1
p
(ζb−ζa)−θ

M(x̃)dx̃+ (b− a)pθ.

Under the assumptions of Lemma 2.1, G is continuous. Moreover, G is uniformly mono-

tonic; i.e., there exists a constant Gp > 0 such that

dG
dθ

=M(θ)−M
(
− θ +

1

p
(ζb − ζa)

)
(−1) + (b− a)p

=M(θ) +M
(
− θ +

1

p
(ζb − ζa)

)
+ (b− a)p ≥ Gp > 0.

Hence, (2.27) has a unique solution θ, which means (2.20) has a unique solution x(b)

at ξ = b. By the relation (2.25) gives a unique solution x(a) at ξ = b . The unique,

continuously differentiable solution x(ξ), for ξ ∈ (a, b), follows by considering (2.21) for

the now specified x(b) and noting that the map G̃(θ) =
∫ θ

1
p
(ζb−ζa)−θ

M(x̃)dx̃ is continuous

and uniformly monotonic, and hence, has a continuously differentiable inverse.
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2.2.2 Parallel Classical Schwarz Method

In the modern world, parallel computing environments have been used for solving com-

plex scientific problems to reduce the computation time and improve the accuracy of the

solution. We would like to take advantage of parallel computing environments for mesh

generation. Domain decomposition (DD) methods are popular methods and seem ideally

suited for parallel computation. In this section, we will discuss classical, parallel Schwarz

iterations to solve the mesh BVP.

2.2.2.1 Parallel Classical Schwarz Method for Two Subdomains

We decompose the domain Ωc = (0, 1) into two overlapping subdomains Ω1 = (0, β) and

Ω2 = (α, 1) with α < β,

ξ

0 1α

βΩ1

Ω2

Figure 2.3: Decomposition into two overlapping subdomains.

and consider the iteration

(M(xn1 )x
n
1 ,ξ )ξ = 0, ξ ∈ Ω1, (M(xn2 )x

n
2 ,ξ )ξ = 0, ξ ∈ Ω2,

xn1 (0) = 0, xn2 (α) = xn−1
1 (α),

xn1 (β) = xn−1
2 (β), xn2 (1) = 1.

(2.28)

We can solve these BVP completely independently and simultaneously. Initially, we chose

arbitrary data along the artificial interfaces ξ = α and ξ = β. After the first iteration, they

will communicate and swap the boundary data and then repeat. Now we wish to quote

some useful results, Lemma 3.1 and Theorem 3.2 from Gander and Haynes [8], which we

quote below as our Lemma 2.2.5 and Theorem 2.2.6.
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Lemma 2.2.5 Under the assumptions of Lemma 2.2.1, the subdomain solutions on Ω1 and

Ω2 of (2.28) are given implicitly by the formulas
∫ xn

1 (ξ)

0

M(x̃)dx̃ =
ξ

β

∫ xn−1
2 (β)

0

M(x̃)dx̃ (2.29)

and ∫ 1

xn
2 (ξ)

M(x̃)dx̃ =
1− ξ

1− α

∫ 1

xn−1
1 (α)

M(x̃)dx̃. (2.30)

Proof. Simply compare the subdomain problems in (2.28) with (2.7) and use the implicit

representation of the solution in (2.9).

We will use the infinity norm defined for any function f : (a, b) → R by ||f ||∞ :=

supx∈(a,b) |f(x)|.

Theorem 2.2.6 Under the assumptions of Lemma 2.2.1, the overlapping (β > α) parallel

Schwarz iteration (2.28) converges for any starting values x01(α), x
0
2(β). Moreover, we

have the linear convergence estimates

||x− x2n+1
1 ||∞ ≤ ρn

m̂

m̌
|x(β)− x02(β)|, ||x− x2n+1

2 ||∞ ≤ ρn
m̂

m̌
|x(α)− x02(α)|, (2.31)

with contraction factor ρ := α
β
1−β
1−α

< 1.

Proof. Consider C :=
∫ 1

0
M(x̃)dx̃, using Lemma 2.2.5 we can obtain

∫ xn
1 (α)

0

M(x̃)dx̃ =
α

β

∫ xn−1
2 (β)

0

M(x̃)dx̃

=
α

β

(∫ 1

0

M(x̃)dx̃−
∫ 1

xn−1
2 (β)

M(x̃)dx̃
)

=
α

β

(
C − 1− β

1− α

∫ 1

xn−2
1 (β)

M(x̃)dx̃
)

=
α

β

(
C − 1− β

1− α

(
C −

∫ xn−2
1 (α)

0

M(x̃)dx̃
))

=
α

β
C − α

β

(1− β

1− α

)(
C −

∫ xn−2
1 (α)

0

M(x̃)dx̃
)

=
α

β

(β − α

1− α

)
C +

α

β

(1− β

1− α

)∫ xn−2
1 (α)

0

M(x̃)dx̃, (2.32)
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where the third equality follows from (2.30) evaluated at ξ = β with n replaced by n − 1.

Now defining Kn
1 =

∫ xn
1 (α)

0
M(x̃)dx̃, we can obtain a linear fixed point iteration from

(2.32)

Kn
1 =

α

β

(β − α

1− α

)
C +

α

β

(1− β

1− α

)
Kn−2

1

=
α

β

(β − α

1− α

)
C + ρKn−2

1 (2.33)

where ρ := α
β

(
β−α
1−α

)
is the contraction factor of the iteration. Clearly ρ < 1, therefore the

iteration will converge to a limit point K∗
1 = limn→∞

∫ xn
1 (α)

0
M(x̃)dx̃, and K∗

1 will satisfy

K∗
1 =

α

β

(β − α

1− α

)
C +

α

β

(1− β

1− α

)
K∗

1 ,

or
1

β

(β − α

1− α

)
K∗

1 =
α

β

(β − α

1− α

)
C,

which implies

K∗
1 = αC. (2.34)

Similarly, defining Kn
2 =

∫ xn
2 (α)

0
M(x̃)dx̃, we can obtain a linear fixed point iteration for

the second subdomain

Kn
2 =

(β − α

1− α

)
C +

(1− β

1− α

)
Kn−2

2

=
α

β

(β − α

1− α

)
C + ρKn−2

2 , (2.35)

where ρ is the same contraction factor as above. This iteration will also converge to a limit

point K∗
2 = limn→∞

∫ xn
2 (α)

0
M(x̃)dx̃, and K∗

2 will satisfy

K∗
2 =

(β − α

1− α

)
C +

α

β

(1− β

1− α

)
K∗

2

or

K∗
2 = βC. (2.36)
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We can obtain from (2.34) and (2.36)

lim
n→∞

∫ xn
1 (α)

0

M(x̃)dx̃ = α

∫ 1

0

M(x̃)dx̃ and lim
n→∞

∫ xn
2 (α)

0

M(x̃)dx̃ = β

∫ 1

0

M(x̃)dx̃.

The monodomain solution x also satisfies

α

∫ 1

0

M(x̃)dx̃ =

∫ x(α)

0

M(x̃)dx̃ and β

∫ 1

0

M(x̃)dx̃ =

∫ x(β)

0

M(x̃)dx̃.

Therefore we have convergence to the correct limit as given below

lim
n→∞

∫ xn
1 (α)

0

M(x̃)dx̃ =

∫ x(α)

0

M(x̃)dx̃ and lim
n→∞

∫ xn
2 (β)

0

M(x̃)dx̃ =

∫ x(β)

0

M(x̃)dx̃.

Now it remains to prove the convergence estimate in the L∞ norm. Subtracting (2.29) and

(2.30) from the equivalent expression for x(ξ) we have

∫ x(ξ)

x2n+1
1 (ξ)

M(x̃)dx̃ =
ξ

β

∫ x(β)

x2n
1 (β)

M(x̃)dx̃ (2.37)

and ∫ x(ξ)

x2n+1
2 (ξ)

M(x̃)dx̃ =
1− ξ

1− α

∫ x(α)

x2n
2 (α)

M(x̃)dx̃. (2.38)

Subtracting equation (2.33) from (2.34) and likewise subtracting (2.35) from (2.36) and

using induction we obtain

∫ x(α)

x2n
1 (α)

M(x̃)dx̃ = ρn
∫ x(α)

x0
1(α)

M(x̃)dx̃ (2.39)

and ∫ x(β)

x2n
2 (β)

M(x̃)dx̃ = ρn
∫ x(β)

x0
2(β)

M(x̃)dx̃. (2.40)

Now combining (2.40) with (2.37) and (2.39) with (2.38), we obtain

∫ x(ξ)

x2n+1
1 (ξ)

M(x̃)dx̃ =
ξ

β
ρn
∫ x(α)

x0
1(β)

M(x̃)dx̃ (2.41)

and ∫ x(ξ)

x2n+1
2 (ξ)

M(x̃)dx̃ =
1− ξ

1− α
ρn
∫ x(α)

x0
2(ξ)

M(x̃)dx̃. (2.42)
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For any a, b ∈ R, we have, by the boundedness of M , that there exist m̌ and m̂ such that

0 < m̌ ≤M(x) ≤ m̂ <∞.

Integrating over a to b and taking the absolute value of each term, we obtain

m̌|b− a| ≤
⏐⏐⏐
∫ b

a

M(x̃)dx̃
⏐⏐⏐ ≤ m̂|b− a|. (2.43)

Convergence in the interior is obtained by taking the modulus of (2.41) and using the

boundedness of M . For all ξ ∈ [0, β],

m̌
⏐⏐⏐x(ξ)− x2n+1

1 (ξ)
⏐⏐⏐ ≤ ξ

β
ρnm̂

⏐⏐⏐x(β)− x01(β)
⏐⏐⏐

which implies

⏐⏐⏐x(ξ)− x2n+1
1 (ξ)

⏐⏐⏐ ≤ ξ

β
ρn
m̂

m̌

⏐⏐⏐x(β)− x01(β)
⏐⏐⏐. (2.44)

Similarly, for all ξ ∈ [α, 1] from (2.42),

⏐⏐⏐x(ξ)− x2n+1
2 (ξ)

⏐⏐⏐ ≤ 1− ξ

1− α
ρn
m̂

m̌

⏐⏐⏐x(α)− x02(α)
⏐⏐⏐. (2.45)

Taking the supremum both sides, we obtain from (2.44)

supξ∈[0,β]

⏐⏐⏐x(ξ)− x2n+1
1 (ξ)

⏐⏐⏐ ≤ supξ∈[0,β]

(
ξ

β
ρn
m̂

m̌

⏐⏐⏐x(β)− x02(β)
⏐⏐⏐
)

which can be written as

||x(ξ)− x2n+1
1 (ξ)||∞ ≤ ρn

m̂

m̌
|x(β)− x02(β)|.

Similarly, taking the supremum of both sides on from (2.45)

||x(ξ)− x2n+1
2 (ξ)||∞ ≤ ρn

m̂

m̌
|x(α)− x01(α)|.

Which is the required estimate in (2.31).
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We wish to present numerical results for convergence of the parallel Schwarz iteration

if the overlap increases between the subdomains. Figure 2.4 shows the convergence his-

tory of the parallel Schwarz iteration (2.28) for varying amounts of overlap between the

subdomains. The horizontal axis represents number of iterations and the vertical axis rep-

resents log of absolute value of DD error. Here the DD error is the infinite norm of the

difference between the single domain numerical solution and the DD solution. We plot the
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Figure 2.4: Convergence histories for parallel Schwarz iteration for different overlap on

two subdomains with M(x) = x2 + 1. DD error vs iterations on first subdomain (left) and

right subdomain (right).

DD error at every second iterations. This figure illustrates that the convergence rate of the

DD iteration improves as the overlap increases. The parallel classical Schwarz method is

very slow, because it only passes Dirichlet information. This method would not converge

without overlap. As a result, we are interested to build a more sophisticated transmission

condition at the interface without overlap in Section 2.2.3. We will now discuss the parallel

classical Schwarz on multiple subdomains in the next section.
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2.2.2.2 Parallel Classical Schwarz Method for Many Subdomains

In this section we would like to extend the parallel nonlinear and classical Schwarz algo-

rithm presented in previous section, from two subdomains to m > 2 overlapping subdo-

mains. Figure 2.5 shows the decomposition of the domain into m subdomains. On the ith

ξ

0

α1

1

βm

α2

α3

αi

αi+1

αm−1

αmβ1

β2

βi−1

βi

βm−2

βm−1

Ω1

Ω2 Ωi Ωm−1

Ωm

Figure 2.5: Decomposition into overlapping arbitrary number of subdomains.

subdomain, Ωi = (αi, βi), i = 1, 2, ...,m, αi, βi ∈ [0, 1], the boundary value problem can

be written as

(M(x1)x1,ξ )ξ = 0, xi(αi) = xi−1(αi), xi(βi) = xi+1(βi)

where α1 = 0, x0(α1) = 0, βm = 1, and xm+1(βm) = 1. In addition we require that βi ≤

αi+2 for i = 1, 2, ...,m − 2, so that there is no overlap between nonadjacent subdomains.

We obtain the subdomain solution xi(ξ) on Ωi = (αi, βi) by solving the ith subdomain

BVP, and composing the subdomain solutions xi(ξ).

The nonlinear parallel classical Schwarz iteration can be presented as: for n = 1, 2, ...,

solve

(M(xni )x
n
i ,ξ )ξ = 0, xni (αi) = xn−1

i−1 (αi), xni (βi) = xn−1
i+1 (βi) (2.46)

for i = 1, 2, ...,m, where xn1 (α1) ≡ 0 and xnm+1(βm) ≡ 1 for convenience.

This problem is studied in Gander and Haynes [8] and we quote this result in Theorem

2.2.7 below.

Theorem 2.2.7 Under the assumptions of Lemma 2.2.1 and the restrictions on the parti-

tioning of Ωc detailed above, the classical Schwarz iteration (2.46) converges globally on
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an arbitrary number of subdomains.

We wish to present a numerical experiment for the convergence of the parallel Schwarz

algorithm as the number of subdomains increases. In Figure 2.6, we illustrate the conver-

gence history of the classical parallel Schwartz iteration (2.46) for different numbers of

subdomains. We plot the DD error (the infinite norm of the difference between the single
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Figure 2.6: Convergence histories for parallel Schwarz iteration for different number of

subdomains with M(x) = x2 + 1. DD error vs iterations for 2 to 6 subdomains .

domain solution and subdomain solution) at every second iteration. This figure shows the

convergence rate of the DD iteration reduces as the number of subdomains increases. This

problem has been addressed in Devin Grant’s B.Sc. honour’s thesis [43] using a coarse

correction. In the next section we will introduce the optimized Schwarz method for two

subdomains.

2.2.3 Parallel Optimized Schwarz Method

The parallel classical Schwarz algorithm converges slowly and the convergence rate de-

pends on the size of the overlap. If the overlap increases then the DD iteration converges
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more quickly but it is more expensive. The parallel classical Schwarz algorithm would

not converge without overlap. Another way to improve convergence without overlap is to

consider an alternative transmission conditions at the subdomain interfaces. In this section,

we will consider nonoverlapping domain decomposition by developing a nonlinear Robin

type transmission condition.

2.2.3.1 Parallel Optimized Schwarz Method for Two Subdomains

We decompose the domain Ωc = [0, 1] into two nonoverlapping subdomains Ω1 = [0, α]

and Ω2 = [α, 1] as in Figure 3.1,

ξ

0 1α

Ω1

Ω2

Figure 2.7: Decomposition into two nonoverlapping subdomains

and consider the parallel iteration for n = 1, 2, ...

(M(xn1 )x
n
1 , ξ)ξ = 0, ξ ∈ Ω1,

xn1 (0) = 0,

M(xn1 )∂ξx
n
1 + pxn1 |α =M(xn−1

2 )∂ξx
n−1
2 + pxn−1

2 |α,

(2.47)

and
(M(xn2 )x

n
2 , ξ)ξ = 0, ξ ∈ Ω2,

M(xn2 )∂ξx
n
2 − pxn2 |α =M(xn−1

1 )∂ξx
n−1
1 − pxn−1

1 |α,

xn2 (1) = 1.

(2.48)

Where the parameter p > 0 in the nonlinear Robin transmission conditions can be chosen

to improve convergence. A good value of p in the transmission conditions gives quick

convergence, as shown in Figure 2.8.
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Lemma 2.2.8 Under the assumptions of Lemmas 2.2.2 and 2.2.3, the subdomain solutions

on Ω1 and Ω2 of (2.47 - 2.48) are given implicitly by the formulas
∫ xn

1 (ξ)

0

M(x̃)dx̃ = R1(x
n
1 (α))ξ and

∫ 1

xn
2 (ξ)

M(x̃)dx̃ = R3(x
n
2 (α))(1− ξ), (2.49)

where the operators R1 and R3 are given by

R1(x) =
1

α

∫ x

0

M(x̃)dx̃ and R3(y) =
1

1− α

∫ 1

y

M(x̃)dx̃. (2.50)

The Robin conditions at the interface force the operator values to satisfy the recurrence

relations:

R1(x
n
1 (α1)) + pxn1 (α1) = R3(x

n−1
2 (α1)) + pxn−1

2 (α1) (2.51)

and

R3(x
n
2 (α))− pxn2 (α) = R1(x

n−1
1 (α))− pxn−1

1 (α). (2.52)

Proof. For the first subdomain we integrate the nonlinear differential equation (2.47) with

respect to ξ to obtain ∫ xn
1 (ξ)

0

M(xn1 )dx
n
1 = C1ξ, ξ ∈ Ω1. (2.53)

Evaluating at ξ = α we have
∫ xn

1 (α1)

0

M(xn1 )dx
n
1 = C1α,

which implies

C1 = R1(x
n
1 (α)),

where R1(x) = 1
α

∫ x

0
M(x̃)dx̃. Substituting the value of C1 into (2.53) we arrive at the

implicit representation for the first subdomain.

Similarly, integrate the nonlinear differential equation (2.48) with respect to ξ for the

second subdomain, we obtain
∫ 1

xn
2 (ξ)

M(xn2 )dx
n
2 = C2(1− ξ), ξ ∈ Ω2. (2.54)
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Evaluating at ξ = α we have
∫ 1

xn
2 (α)

M(xn2 )dx
n
2 = C2(1− α),

which gives

C2 = R3(x
n
2 (α)),

where R3(y) = 1
1−α

∫ 1

y
M(x̃)dx̃. Substituting the value of C2 into (2.54) we arrive the

implicit representation for the second subdomain on Ω2.

Finally, we obtain the recurrence relations (2.51) and (2.52) by using the operators R1

and R3 to write the transmission conditions (2.47-2.48) at ξ = α.

The operators R1 and R3 defined in (2.50) are continuous and uniformly monotonic (in-

creasing), since

R
′

1(x) =
1

α1

M(x) ≥ 1

α1

m̌ > 0 and −R
′

3(y) =
1

α1

M(y) ≥ 1

1− α2

m̌ > 0, (2.55)

M is bounded way from 0 and ∞, as defined in (2.8). We now want to show that the

iteration (2.51 - 2.52) is of the Peaceman-Rachford type; see textbook [34], and the discus-

sion of nonlinear Peaceman-Rachford iteration in [44, 45]. This gives us a way to prove

convergence of our iterations.

To derive a nonlinear Peaceman-Rachford iterations from our recurrence relations for

the two subdomains, rewrite equations (2.51) at iteration n+ 1 and (2.52) as

pxn+1
1 (α) +R1(x

n+1
1 (α)) = pxn2 (α) +R3(x

n
2 (α))

pxn2 (α)−R3(x
n
2 (α)) = pxn−1

1 (α)−R1(x
n−1
1 (α))

⎫
⎪⎬
⎪⎭
. (2.56)

The iteration (2.56) can be written as

px̃n+1 +Hx̃n+1 = pỹn − V ỹn

pỹn + V ỹn = px̃n−1 −Hx̃n−1

⎫
⎪⎬
⎪⎭
, (2.57)

33



Chapter 2. Solution Methods for Mesh BVP via the Equidistribution Principle

where,

H =
[
R1(x)

]
, V =

[
−R3(y)

]
, x = x1(α) and y = x2(α). (2.58)

We now present the global Peaceman-Rachford Theorem from Ortega and Rheinboldt

[34] as Theorem 2.2.9.

Theorem 2.2.9 (Global Peaceman-Rachford Theorem) Assume that the mappingsH, V :

Rn → Rn are monotone and that at least one of them is uniformly monotone. Assume fur-

ther that on each compact set of Rn both H and V are Lipschitz continuous. Then the

equation Hx+ V x = 0 has a unique solution x∗, and for any x0 ∈ Rn and any p > 0, the

sequence {xk} of (2.57) is well-defined and converges to x∗.

To apply Theorem 2.2.9, we need to show H and V are monotone and at least one of them

is uniformly monotone. To show H and V are monotone we will follow Theorem 2.2.10

(from [34]) below.

Theorem 2.2.10 Let B : D ⊂ Rn → Rn be continuously differentiable on an open convex

set D0 ⊂ D. Then

(a) F is monotone on D0 if and only if F
′
(x) is positive semidefinite for all x ∈ D0

(b) If F
′
(x) is positive definite for all x ∈ D0, then F is strictly monotone on D0.

(c) F is uniformly monotone on D0 if and only if there is a γ > 0 so that hTF
′
h ≥ γhTh

for all x ∈ D0, h ∈ Rn.

Theorem 2.2.10 gives us a way to prove monotonicity, strict monotonicity and uniform

monotonicity. We want to verify H and V are monotone using the above theorem. To do

this H ′ and V ′ need to be positive semidefinite or positive definite. Indeed, we will show

that both H and V are uniformly monotone.
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Lemma 2.2.11 H and V are uniformly monotone, where H and V are defined in (2.58).

Proof. Differentiating H with respect to x, we obtain

H
′
=

[
∂R1

∂x

]
.

Trivially, H ′ is symmetric and ∂R1

∂x
= 1

α1
M(x) ≥ m̌

α1
. So

hTH
′
h ≥ m̌

α1

hTh = γhTh for all h,

where γ = m̌
α1
> 0. Hence H is uniformly monotone by Theorem 2.2.10.

Similarly, differentiating V with respect to y and we have

V
′
=

[
− ∂R3(y)

∂y

]
.

Here V ′ is also symmetric and ∂R3

∂y
= 1

1−α1
M(y) ≥ m̌

1−α1
. So

vTV
′
v ≥ m̌

α1

vTv = γvTv for all v,

where γ = m̌
1−α1

> 0. Hence V is uniformly monotone by Theorem 2.2.10.

Theorem 2.2.12 The system (2.57) is well-defined and the iteration (2.56) converges to the

unique solution for any p > 0.

Proof. The assumptions of the Global Peaceman-Rachford Theorem 2.2.9 have been ver-

ified in Lemma 2.2.11. Hence, we conclude that the system (2.57) is well-defined and

iteration (2.56) converges to the unique solution for any p > 0 by the Global Peaceman-

Rachford Theorem 2.2.9.

Theorem 2.2.13 Under the assumptions of Lemma 2.2.1, the iteration (2.51) - (2.51) con-

verges globally to the exact solution x(α) for all p > 0. Moreover, we have the linear
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convergence estimate

||x− x2n1 ||∞ ≤ m̂

m̌
.
p+ 1

α
m̂

p+ 1
α
m̌
ρnrobin|x(α)− x01(α)|,

||x− x2n2 ||∞ ≤ m̂

m̌
.
p+ 1

1−α
m̂

p+ 1
1−α

m̌
ρnrobin|x(α)− x02(α)|,

where an estimate on the contraction factor is

ρrobin =

√p2 + m̂2

(1−α)2
− 2p m̌

(1−α)2

p2 + m̂2

(1−α)2
+ 2p m̌

(1−α)2

.

√p2 + m̂2

(α)2
− 2p m̌

α2

p2 + m̂2

α2 + 2p m̌
α2

. (2.59)

Proof. The convergence was established in Theorem 2.2.12. here we explicitly prove that

the maps involved lead to the required contractions. These calculation are done generally

in [34].

The iterations (2.56) can be written as

(
pI +R1

)
xn+1
1 (α) =

(
pI +R3)x

n
2 (α), (2.60)

(
pI −R3

)
xn2 (α) =

(
pI −R1

)
xn−1
1 (α), (2.61)

where I is the identity operator. The operators R1 and R3 are continuous and uniformly

monotonic (increasing) from (2.55). Moreover, since p > 0, then pI −R3 and pI +R1 are

also continuous, uniformly monotonic and thus, invertible. Which implies that xn2 (α) and

xn+1
1 (α) are well defined.

Now eliminating xn2 (α) from (2.60-2.61), we obtain

(
pI +R1

)
xn+1
1 (α) =

(
pI +R3

)(
pI −R3

)−1(
pI −R1

)
xn−1
1 (α)

xn+1
1 (α) =

(
pI +R1

)−1(
pI +R3

)(
pI −R3

)−1(
pI −R1

)
xn−1
1 (α),

which gives us a recursion formula

xn+1
1 (α) ≡ Gxn−1

1 (α),

where

G =
(
pI +R1

)−1(
pI +R3

)(
pI −R3

)−1(
pI −R1

)
.
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G can be written as

G = (pI +R1)
−1G2G1(pI +R1),

where

G1 =
(
pI −R1

)(
pI +R1

)−1 and G2 =
(
pI +R3

)(
pI −R3

)−1
,

which implies

xn+1
1 (α) ≡ (pI +R1)

−1G2G1(pI +R1)x
n−1
1 (α). (2.62)

Assume D ⊂ R is a compact set. For x, y ∈ D, x ̸= y, we set u = (pI + R1)
−1x and

v = (pI +R1)
−1y. Then the map G1 satisfies

[ ||G1x− G1y||
||x− y||

]2
=

(G1x− G1y,G1x− G1y)

(x− y, x− y)

=

(
(pI −R1)u− (pI −R1)v, (pI −R1)u− (pI −R1)v

)

(
(pI +R1)u− (pI +R1)v, (pI +R1)u− (pI +R1)v

)

=

(
p(u− v) + (R1(v)−R1(u)), p(u− v) + (R1(v)−R1(u))

)

(
p(u− v) + (R1(u)−R1(v)), p(v − u) + (R1(u)−R1(v))

)

=
p2||u− v||2 + 2p

(
(u− v), R1(v)−R1(u)

)
+ ||R1(v)−R1(u)||2

p2||u− v||2 + 2p
(
(u− v), R1(u)−R1(v)

)
+ ||R1(u)−R1(v)||2

=
p2||v − u||2 − 2p(v − u)T

(
R1(v)−R1(u)

)
+ ||R1(v)−R1(u)||2

p2||u− v||2 + 2p(u− v)T
(
R1(u)−R1(v)

)
+ ||R1(u)−R1(v)||2

=
p2||v − u||2 − 2p(v − u)T

(
R1(v)−R1(u)

)
+ ||R1(v)−R1(u)||2

p2||u− v||2 + 2p(u− v)T
(
R1(u)−R1(v)

)
+ ||R1(u)−R1(v)||2

≤ (p2 − 2p)||v − u||2 + ||R1(v)−R1(u)||2
(p2 + 2p)||u− v||2 + ||R1(u)−R1(v)||2

=
p2 − 2p+ L

p2 + 2p+ L
< 1,

where L is the Lipschitz constant of R1. Hence G1 is a contraction for all p > 0.

Similarly, we set u = (pI − R3)
−1x and v = (pI − R3)

−1y then G3 is a contraction

for all p > 0, since the operator R3(x) uniformly monotone and Lipschitz. To show this
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mapping G3 satisfies

[ ||G3x− G3y||
||x− y||

]2
=

(G3x− G3y,G3x− G3y)

(x− y, x− y)

=

(
p(u− v) + (R3(u)−R3(v)), p(u− v) + (R3(u)−R3(v))

)

(
p(u− v) + (R3(v)−R3(u)), p(u− v) + (R3(v)−R3(u))

)

=
p2||u− v||2 + 2p

(
(u− v), R3(u)−R3(v)

)
+ ||R3(u)−R3(v)||2

p2||u− v||2 + 2p
(
(u− v), R3(v)−R3(u)

)
+ ||R3(v)−R3(u)||2

=
p2||u− v||2 + 2p(u− v)T

(
R3(u)−R3(v)

)
+ ||R3(u)−R3(v)||2

p2||u− v||2 + 2p(v − u)T
(
R3(u)−R3(v)

)
+ ||R3(u)−R3(v)||2

=
p2||u− v||2 + 2p(u− v)T

(
R3(u)−R3(v)

)
+ ||R3(u)−R3(v)||2

p2||u− v||2 − 2p(u− v)T
(
R3(u)−R3(v)

)
+ ||R3(u)−R3(v)||2

≤ (p2 − 2p)||v − u||2 + ||R3(u)−R3(v)||2
(p2 + 2p)||u− v||2 + ||R3(u)−R3(v)||2

, since R
′

3(ξ) is negative

=
p2 − 2p+ L

p2 + 2p+ L
< 1.

Thus G1 and G3 are strict contractions for all p > 0. Hence, the iteration (2.62) written as

(pI +R1)x
n+1
1 (α) = G2G1(pI +R1)x

n−1
1 (α), or zn+1(α) = G2G1z

n−1(α),

where zn(α) = (pI + R1)x
n(α). The iteration zn(α) = G2G1z

n−2(α), with z0(α) =

(pI + R1)x
0(α), will converge. Since, G = (pI + R1)G2G1(pI + R1) and z2n(α) =

(pI + R1)x
2n(α), then x2n1 (α) also converge globally for any x01(α) to some limit x∗1(α).

Furthermore, since z2n+1(α) = (pI + R1)x
2n+1(α), then the odd iteration x2n+1

1 (α) con-

verges to the same limit. Similarly, the sequence xn2 (α) converges globally to a limit point

x∗2(α). Obviously, the limit of (2.51) and (2.52) must be satisfied by the points x∗1(α) and

x∗2(α). Adding the limits of (2.51) and (2.52) we have x∗1(α) = x∗2(α) =: x∗(α). Now

subtracting (2.52) from (2.51) and the limit point x∗(α) will satisfy

R1

(
x∗(α)

)
= R3

(
x∗(α)

)
.
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This equation can be written as
∫ x∗(α)

0

M(x̃)dx̃ =
α

1− α

(
C −

∫ x∗(α)

0

M(x̃)dx̃

)

where C =
∫ 1

0
M(x̃)dx̃. This implies that

∫ x∗(α)

0

M(x̃)dx̃ = αC. (2.63)

Now we want to show x∗(α) = x(α), where x(ξ) is the global solution of the mesh BVP

2.1. From Corollary 2.2.1.1, for any ξ ∈ (0, 1), the solution x(ξ) satisfies the equation
∫ x(ξ)

0

M(x̃)dx̃ = ξ

∫ 1

0

M(x̃)dx̃.

Evaluating at ξ = α we have
∫ x(α)

0

M(x̃)dx̃ = α

∫ 1

0

M(x̃)dx̃. (2.64)

Hence we conclude x∗(α) = x(α) from (2.63) and (2.64).

The contraction factor, ρnrobin, for zn(α), can be found by computing the Lipschitz con-

stant of the operator G2G1. The product of the Lipschitz constants of G1 and G2 is the

Lipschitz constant of G2G1. Suppose L and L̃ are the Lipschitz constants for (pI +R1)
−1

and (pI +R1), respectively, then the convergence rate of xn1 (α) is related to ρnrobin, by;

|x∗(α)− x2n1 (α)| ≤ L|z∗(α)z2n1 (α)|

≤ Lρnrobin|z∗(α)− x01(α)|

≤ LL̃ρnrobin|x∗(α)− x01(α)|.

We can find that L = (p+ 1
α
m̌)

−1 and L̃ = p+ 1
α
m̂. This together with the estimate

|x2n1 (ξ)− x(ξ)| ≤ m̌

m̂
|x(α)− x2n1 (α)|,

gives

|x2n1 (ξ)− x(ξ)| ≤ m̌

m̂
.
p+ 1

α
m̂

p+ 1
α
m̌
ρnrobin|x(α)− x01(α)|.

Similarly, the estimate on subdomain two follows.
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We now wish to present a numerical experiment for convergence of the optimized

Schwarz algorithm for different values of p. The convergence history of the optimized

parallel Schwartz iteration (2.47-2.47) with M(x) = 1 + x2 for different values of p is

illustrated in Figure 2.8. We plot the DD error (the infinite norm of the difference between

the single domain solution and subdomain solution) at every second iteration. We observed

that the blue line gives less error in this figure, and the value of p is around 3. A good value

of p in the transmission conditions gives quick convergence.
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Figure 2.8: Convergence histories for parallel optimized Schwarz iteration for value of

p with M(x) = x2 + 1. The first subdomain results shows on the left and the second

subdomain on the right.

In this chapter, we have introduced solution methods for the mesh generation problem.

To discretize the mesh BVP a staggered mesh and the midpoint technique has been used

and we solved the system by Newton’s method. We analyzed the mesh problem for two

subdomains using Parallel and optimized Schwarz method. In the next chapter we will

analyze the mesh problem for the parallel optimized Schwarz method on many subdomains.
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Chapter 3

Optimized Schwarz Method for an

Arbitrary Number of Subdomains

This chapter is concerned with the optimized Schwarz method for an arbitrary number

of subdomains. We analyze nonlinear interface iterations that arises from the optimized

Schwarz method for equidistributing meshes using the theory of M -functions. The inter-

face iterations will converge monotonically under some restriction on p, where p is used in

the nonlinear Robin transmission conditions, and p can be chosen to improve convergence.

3.1 General Description

In the previous chapter, we discussed optimized Schwarz methods with nonlinear Robin

transition conditions for two subdomains. We would like to extend the parallel nonlinear

optimized Schwarz algorithm from two subdomains toN > 2 nonoverlapping subdomains.

We derive an implicit interface iteration from the nonlinear Robin type transmission con-

ditions for the optimized Schwarz iteration for an arbitrary number of subdomain. The

optimized Schwarz iteration for the two subdomain case has been studied previously in
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Gander and Haynes [8]. Here, we will analyze the two subdomain case in a different way,

using the theory of M -functions. Then we will to extend this analysis to three and then an

arbitrary number of subdomains.

In this chapter, we will use the theory of M -functions and notions of isotone and anti-

tone maps. We begin by introducing some basic definitions in the next section.

3.1.1 Basic Definitions

Consider a nonlinear system of equations Fx = b, where F : D ∈ Rn → Rn is given by

Fx ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f1(x1, x2, ..., xn)

f2(x1, x2, ..., xn)

...

fn(x1, x2, ..., xn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.1)

Throughout this thesis, the natural partial ordering (component-wise) on the n-dimensional

real linear space Rn is defined by

x ≤ y, x, y ∈ Rn if and only if xi ≤ yi for i ∈ N = {1, 2, ..., n},

and ei denotes the ith standard basis vector in Rn, where i = 1, 2, ..., n. We now begin

by defining monotone, isotone and antitone mappings and then diagonally isotone, and off

diagonally antitone mappings. These definitions come from [34, 46, 47, 48].

Definition 3.1.1 A mapping F : D ⊂ Rn → Rn is said to be monotone on D0 ⊂ D if

(Fx− Fy)T (x− y) ≥ 0, ∀x, y ∈ D0.

F is strictly monotone on D0 if (Fx− Fy)T (x− y) > 0 holds whenever x ̸= y, and F is

uniformly monotone if there exists a constant γ > 0, such that

(Fx− Fy)T (x− y) ≥ γ(x− y)T (x− y), ∀x, y ∈ D0.
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Definition 3.1.2 A mapping F : D ⊂ Rn → Rn is said to be isotone (antitone) on D if

x ≤ y implies F (x) ≤ F (y)
(
F (x) ≥ F (y)

)
, for all x, y ∈ D. F is strictly isotone (strictly

antitone) on D if x < y implies F (x) < F (y)
(
F (x) > F (y)

)
.

For example, suppose f(x) : D ⊂ R → R is differentiable, then f is isotone and strictly

isotone if df
dx

≥ 0 and df
dx
> 0 respectively. Similarly, when df

dx
≤ 0 and df

dx
< 0 then f is

antitone and strictly antitone respectively.

Definition 3.1.3 For any fixed x ∈ Rn the n2 functions

ϕij := t ∈ R1 → R1, ϕij := fi(x+ tej), i, j ∈ N

are the link-functions of F at x. The associate network ΩF = {N,∧F} of F consists of

the set of nodes N = 1, 2, ..., n and the links

∧F = {(i, j) ∈ N ×N | i ̸= j, ϕij not constant for some x ∈ Rn}.

A link (i, j) ∈ ∧F is permanent if ϕij is not constant for any x ∈ Rn.

Definition 3.1.4 A (directed) path from i to j is a sequence of links in ∧F of the form (i, j1),

(j1, j2) ,..., (jk, j), and the network is connected if any two nodes are connected by some

path.

Definition 3.1.5 A mapping F : D ⊂ Rn → Rn is said to be diagonally isotone, if for any

x ∈ D, the n functions fi(x + tei), i = 1, 2, ..., n, are isotone when x + tei ∈ D. If the

n2 − n functions fi(x + tej), i ̸= j, i, j = 1, 2, ..., n, are antitone when x + tei ∈ D, then

F is called off-diagonally antitone.

Definition 3.1.6 Suppose F : D ⊂ Rn → Rn is off-diagonally antitone. If the function

t → fi(x + tej) is strictly antitone then a link (i, j) is strict. A path i  j exists if there

exists a sequence of strict links (i, j1), (i, j2), ..., (jk, j).
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The following converse notion of isotonicity on partially ordered topological spaces was

introduced by Collatz [49].

Definition 3.1.7 A mapping F : D ⊂ Rn → Rn is said to be inverse isotone on D if

F (x) ≤ F (y) implies x ≤ y, for any x, y ∈ D.

The following notion of an M -function was originally introduced by Ortega and developed

by Rheinboldt [34].

Definition 3.1.8 A mapping F : D ⊂ Rn → Rn is said to be anM -function if F is inverse

isotone and off-diagonally antitone.

3.1.2 Iterative Methods

We will now describe, nonlinear Jacobi, nonlinear Gauss-Seidel, nonlinear Successive

Over-Relaxation, and the corresponding block iterative methods to solve a nonlinear sys-

tems Fx = b.

The basic step of the nonlinear Jacobi iteration is given as :

For k = 0, 1, ...
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for i = 1, 2, ..., n

solve fi(x
k
1, ..., x

k
i−1, xi, x

k
i+1, ..., x

k
n) = bi for xi

and set xk+1
i = xi.

It is clear that the components of xk are used to compute all the components xk+1
i of xk+1

in nonlinear Jacobi iteration. The components xk+1
1 , ..., xk+1

i−1 of xk+1 for i > 1 have al-

ready been computed and are expected to be better approximations to the actual solutions

x1, ..., xi−1 than xk1, ..., x
k
i−1.
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The nonlinear Gauss-Seidel iterative method is obtained by

For k = 0, 1, ...
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for i = 1, 2, ..., n

solve fi(x
k+1
1 , ..., xk+1

i−1 , xi, x
k
i+1, ..., x

k
n) = bi for xi

and set xk+1
i = xi, i = 1, 2, ....n.

If we set xk+1
i = xki + ω(xi − xki ), for all values of ω, we obtain a nonlinear Successive

Over-Relaxation (SOR) method, where ω is a relaxation parameter. Hence the nonlinear

SOR iterative method is obtained by

For k = 0, 1, ...
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for i = 1, 2, ..., n

solve fi(x
k+1
1 , ..., xk+1

i−1 , xi, x
k
i+1, ..., x

k
n) = bi for xi

and set xk+1
i = xki + ω(xi − xki ).

(3.2)

Now we are going to introduce the corresponding block processes for a nonlinear sys-

tem. Assume n1 + n2 + ...+ nq = n, nj ≥ 1, q ≥ 1, let us consider Rn as a product-space

Rn1 ×Rn2 × ...×Rnq and we define Pi : Rn → Rni , i = 1, 2, ..., q to be the corresponding

natural projections. Then, for any x ∈ Rn we partition x as x = (x1, x2, ..., xq) where

xi = Pix, i = 1, 2, ..., q, and, likewise, we can define block-components F i := Rn → Rnj

of any mapping F := Rn → Rn by F ix = PiFx, i = 1, 2, ..., q.

The block Gauss-Jacobi iteration can be defined to solve for the partition xi ∈ Rn of
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the system (3.1) as

For k = 0, 1, ...
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for i = 1, 2, ..., nq

solve F i
(
(x1)k, ..., (xi−1)k, xi, (xi+1)k, ..., (xnq)k

)
= bi for xi

and set (xi)k+1 = xi.

Similarly, the block Gauss-Seidel iteration can be defined for the partition xi ∈ Rn as

For k = 0, 1, ...
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

for i = 1, 2, ..., nq

solve F i
(
(x1)k+1, ..., (xi−1)k+1, xi, (xi+1)k, ..., (xnq)k

)
= bi for xi

and set (xi)k+1 = xi.

(3.3)

3.1.3 Fourier-Motzkin Elimination

We now wish to describe the Fourier-Motzkin elimination method to solve a system of

linear inequalities. This description is primarily based on the article by Bradley and Wahi

[50] and book by Dantzig and Thapa [51]. The Fourier-Motzkin Elimination method has

been used for solving linear programming problems. It was proposed by Fourier [52] and

reintroduced by Motzkin [53]. This elimination method is a useful part of our analysis.

Consider a system of linear inequalities
n∑

j=1

aijxj ≤ bi, i = 1, 2, ...,m. (3.4)

We can rewrite this system as a matrix form

Ax ≤ b

where the dimension of the matrix is m × n. We wish to know whether or not the system

(3.4) is feasible; a feasible solution is a solution that satisfies all inequalities in (3.4), and
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the set of all possible solutions is known as feasible region, or solution space. If the system

(3.4) is feasible, then we want to determine a particular feasible vector.

The Fourier-Motzkin elimination process eliminates the variable xk by:

1. According to the coefficient of xk we partition the m inequalities into three groups

I−, I+, and I0, depending on the sign of the coefficient. The groups are defined

below:

I− = {r : ark < 0}

I+ = {s : ask > 0}

I0 = {t : atk = 0}

2. Eliminate xk, and obtain the resulting system of linear inequalities as shown below:

(a) The inequalities in the set I− for every component r ∈ I− can be written as

1

ark

(
br −

n∑

j ̸=k

arjxj
)
≤ xk.

(b) The inequalities in the set I+ for every component s ∈ I+ can be written as

xk ≤
1

ask

(
bs −

n∑

j ̸=k

asjxj
)
.

(c) The inequalities in I0 can be written as

n∑

j ̸=k

atjxj ≤ bt for t ∈ I0.

3. To have compatible inequalities, for every r ∈ I− and s ∈ I+ we require

1

ark

(
br −

n∑

j ̸=k

arjxj
)
≤ 1

ask

(
bs −

n∑

j ̸=k

asjxj
)
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Therefore, the equivalent system of inequalities with xk eliminated are

n∑

j ̸=k

(asj
ask

− arj
ark

)
xj ≤

( bs
ask

− br
ark

)
, ∀r ∈ I− and ∀s ∈ I+

n∑

j ̸=k

atjxj ≤ bt, ∀t ∈ I0.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

In general this system will be larger than the original. This new system of inequalities is a

reduced system. In this system, xk does not appear in any of the inequalities. The process

is repeated on remaining variables, and finally, we derive a system of inequalities with a

single unknown variable. The reduced system is feasible if and only if the original system

(3.4) is feasible. We observe that each inequality in the reduced system is a nonnegative

combination of inequalities in (3.4). If we start with a system Ax ≤ b and eliminate all

variables sequentially, we will arrive at a system of inequalities of the form 0 ≤ b
′
i, i =

1, ...,m
′ . If no b′i is negative, then the final system is feasible and we can work backward

to obtain a feasible solution to the original system.

3.1.4 Parallel Optimized Schwarz Method for Many Subdomains

We decompose the computational domain Ωc = (0, 1) into m ∈ R nonoverlapping sub-

domains Ω1 = (0, α1), Ω2 = (α1, α2), Ωi = (αi−1, αi), and Ωm = (αm−1, 1), where

αi−1 < αi, i = 2, 3, ...,m, so there is no overlap between consecutive subdomains; see

Figure 3.1.

ξ

0

α0

1

αmα2 αi αm−1α1 αi−1 αm−2Ω1

Ω2 Ωi Ωm−1

Ωm

Figure 3.1: Decomposition into non-overlapping arbitrary number of subdomains.
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Consider the parallel iteration

(M(xn1 )x
n
1 ,ξ )ξ = 0, ξ ∈ Ω1,

xn1 (0) = 0,

M(xn1 )∂ξx
n
1 + pxn1 |α1 =M(xn−1

2 )∂ξx
n−1
2 + pxn−1

2 |α1 ,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

(M(xni )x
n
i ,ξ )ξ = 0, ξ ∈ Ωi,

M(xni )∂ξx
n
i − pxni |αi−1

=M(xn−1
i−1 )∂ξx

n−1
i−1 − pxn−1

i−1 |αi−1
,

M(xni )∂ξx
n
i + pxni |αi

=M(xn−1
i+1 )∂ξx

n−1
i+1 + pxn−1

i+1 |αi
,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.6)

i = 2, 3, ...,m− 1,

and

(M(xnm)x
n
m,ξ )ξ = 0, ξ ∈ Ωm,

M(xnm)∂ξx
n
m − pxnm|αm−1 =M(xn−1

m−1)∂ξx
n−1
m−1 − pxn−1

m−1|αm−1 ,

xnm(1) = 1.

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.7)

We observe that on the 1st andmth subdomains the nonlinear BVP has a Dirichlet and a

Robin boundary condition, and on the inner ith subdomain the BVP has a Robin boundary

condition at both boundaries for i = 2, 3, ...,m− 1. Theorem 3.1.1 tells us the subdomains

problems are well-posed.

Theorem 3.1.1 The iteration (3.5-3.7) is well-posed, that is, xni (ξ) exists and is unique for

i = 1, 2, ...,m.

Proof. Simply using Lemma 2.2.2 and Lemma 2.2.3 we conclude the 1st and mth sub-

domains BVPs (3.5) and (3.7) are well-posed. Similarly, the ith subdomain problem is

well-posed using Lemma 2.2.4.

In Theorem 3.1.1, we have seen the iteration (3.5-3.7) is well-posed, that is the iterates
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exist and are unique. To help us study the convergence of the iteration we now derive an

implicit solution on each subdomain.

Lemma 3.1.2 The subdomain solutions on Ωi, i = 1, 2, ...,m, of (3.5 - 3.7) are given

implicitly by the formulae

∫ xn
1 (ξ)

0

M(x̃)dx̃ = R1

(
xn1 (α1)

)
ξ, (3.8)

∫ xn
i (ξ)

xn
i (αi−1)

M(x̃)dx̃ = Ri

(
xni (αi−1), x

n
i (αi)

)
(ξ − αi−1), i = 2, 3, ...,m− 1, (3.9)

∫ 1

xn
m(ξ)

M(x̃)dx̃ = Rm

(
xnm(αm−1)

)
(1− ξ), (3.10)

where the operators R1, Ri and Rm are given by

R1(x) =
1

α1

∫ x

0

M(x̃)dx̃, (3.11)

Ri(x, y) =
1

αi − αi−1

∫ y

x

M(x̃)dx̃, i = 2, 3, ...,m− 1, (3.12)

and

Rm(x) =
1

1− αm−1

∫ 1

x

M(x̃)dx̃. (3.13)

Proof. For the 1st subdomain we integrate the nonlinear differential equation (3.5) with

respect to ξ to obtain

M(xn1 )x
n
1 ,ξ = C1, ξ ∈ Ω1. (3.14)

where C1 is an arbitrary constant. Integrating from 0 to ξ we have

∫ xn
1 (ξ)

0

M(xn1 )dx
n
1 = C1ξ, ξ ∈ Ω1. (3.15)

Evaluating at ξ = α1 we find

∫ xn
1 (α1)

0

M(xn1 )dx
n
1 = C1α1,
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which implies

C1 = R1(x
n
1 (α1)),

where R1(x) = 1
α1

∫ x

0
M(x̃)dx̃. Substituting the value of C1 into (3.15), we arrive the

implicit representation (3.8) for the 1st subdomain on Ω1.

Secondly, for the ith subdomain we integrate the nonlinear differential equation (3.6)

with respect to ξ to get

M(xni )x
n
i ,ξ = Ci, for ξ ∈ Ωi, i = 2, 3, ...,m− 1, (3.16)

where Ci is an arbitrary constant (on each subdomain). Integrating from αi−1 to ξ gives
∫ xn

i (ξ)

xn
i (αi−1)

M(xni )dx
n
i = Ci(ξ − αi−1), ξ ∈ Ωi. (3.17)

Evaluating at ξ = αi we find

∫ xn
i (αi)

xn
i (αi−1)

M(xni )dx
n
i = Ci(αi − αi−1),

which implies

Ci = Ri

(
xni (αi), x

n
i (αi−1)

)
,

where Ri(y, z) = 1
αi−αi−1

∫ z

y
M(x̃)dx̃. Substituting the value of Ci into (3.17), we arrive

the implicit representation (3.9) for the ith subdomain on Ωi.

Finally, for the m-th subdomain we integrate the nonlinear differential equation (3.7)

with respect to ξ to obtain

M(xnm)x
n
m,ξ = Cm, ξ ∈ Ωm. (3.18)

where Cm is an arbitrary constant. Integrating from ξ to 1 we have
∫ 1

xn
m(ξ)

M(xnm)dx
n
m = Cm(1− ξ), ξ ∈ Ωm. (3.19)
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Evaluating at ξ = αm−1 we have

∫ 1

xn
m(αm−1)

M(xnm)dx
n
m = Cm(1− αi−1),

which gives

Cm = Rm(x
n
m(αm−1)),

where Rm(w) = 1
1−αm−1

∫ 1

w
M(x̃)dx̃. Substituting the value of Cm into (3.19) we arrive

the implicit representation (3.10) for the mth subdomain on Ωm,

Since we know the implicit solutions on each subdomain by the Lemma 3.1.2, we can

build iterations at the interfaces for an arbitrary number of subdomains. We derive parrallel

and alternating interface iterations. The parallel interface iteration is given by Lemma 3.1.3,

and the alternating interface iteration can found in Lemma 3.1.4. The following convention

will sometimes be used in this thesis,

R1(x) = R1(0, x) and Rm(y) = Rm(y, 1).

Lemma 3.1.3 (Parallel interface iteration) The Robin conditions at the interfaces in the

parallel optimized Schwarz iteration (3.5-3.7) force the operator values to satisfy the re-

currence relations:

R1

(
xn1 (α1)

)
+ pxn1 (α1) = R2

(
xn−1
2 (α1), x

n−1
2 (α2)

)
+ pxn−1

2 (α1),

Ri

(
xni (αi−1), x

n
i (αi)

)
− pxni (αi−1) = Ri−1

(
xn−1
i−1 (αi−2), x

n−1
i−1 (αi−1)

)
− pxn−1

i−1 (αi−1)

Ri

(
xni (αi−1), x

n
i (αi)

)
+ pxni (αi) = Ri+1

(
xn−1
i+1 (αi), x

n−1
i+1 (αi+1)

)
+ pxn−1

i+1 (αi)

⎫
⎪⎬
⎪⎭

i = 2, 3, ...,m− 1,

Rm

(
xnm(αm−1)

)
− pxnm(αm−1) = Rm−1

(
xn−1
m−1(αm−2), x

n−1
m−1(αm−1)

)
− pxn−1

m−1(αm−1),

(3.20)
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where R1, Ri, and Rm are defined in equations (3.11)-(3.13), and xn1 (α0) = 0 and

xnm(αm) = 1.

Proof. From equations (3.14), (3.16) and (3.18) we have

M(xn1 )x
n
1 ,ξ = R1

(
xn1 (α1)

)
, ξ ∈ Ω1,

M(xni )x
n
i ,ξ = Ri

(
xni (αi), x

n
i (αi−1)

)
, ξ ∈ Ωi, i = 2, ...,m,

M(xnm)x
n
m,ξ = R3

(
xnm(αm−1)

)
, ξ ∈ Ωm.

(3.21)

Substituting the relations in (3.21) into the transmission conditions (3.5- 3.7) we obtain the

recurrence relations in (3.20) .

We can also obtain a sequential alternating iteration.

Lemma 3.1.4 (Alternating interface iteration) The Robin conditions at the interfaces in

the alternating Schwarz iteration force the operator values to satisfy the sequential recur-

rence relations:

R1

(
xn+m−1
1 (α1)

)
+ pxn+m−1

1 (α1) = R2

(
xn+m−2
2 (α1), x

n+m−2
2 (α2)

)
+ pxn+m−2

2 (α1),

Ri

(
xn+m−i
i (αi−1), x

n+m−i
i (αi)

)
− pxn+m−i

i (αi−1) =Ri−1

(
xn+m−i−1
i−1 (αi−2), x

n+m−i−1
i−1 (αi−1)

)

− pxn+m−i−1
i−1 (αi−1)

Ri

(
xn+m−i
i (αi−1), x

n+m−i
i (αi)

)
+ pxn+m−i

i (αi) =Ri+1

(
xn+m−i−1
i+1 (αi), x

n+m−i−1
i+1 (αi+1)

)

+ pxn+m−i−1
i+1 (αi)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

i = 2, 3, ...,m− 1,

Rm

(
xnm(αm−1)

)
− pxnm(αm−1) = Rm−1

(
xn−1
m−2(αm−2), x

n−1
m−1(αm−1)

)
− pxn−1

m−1(αm−1),

(3.22)

where R1,Ri and Rm are defined in equations (3.11)-(3.13).

We now want to study recurrence relations (3.20) and (3.22) in the following section.

These are nonlinear iterations and the continuous subdomain DD iterations are equivalent to
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the discrete interface iterations. We will show theses nonlinear iterations are well-posed and

convergent under suitable restrictions. In following Section 3.2 we analyze the interface

iterations (or recurrence relation) for two subdomains.

3.2 An Interface Iteration for Two Subdomains

We decompose the computational domain Ωc = (0, 1) into two nonoverlapping subdomains

Ω1 = (0, α1), and Ω2 = (α1, 1) as shown in Figure 3.2.

✲ ξ| ||
α1 10

✲✛ Ω1

✲✛
Ω2

Figure 3.2: Decomposition into two nonoverlapping subdomains.

The parallel version of interface iteration on two subdomains are given from Lemma 3.1.3

as

R1(x
n
1 (α1)) + pxn1 (α1) = R3(x

n−1
2 (α1)) + pxn−1

2 (α1), (3.23)

R3(x
n
2 (α1))− pxn2 (α1) = R1(x

n−1
1 (α1))− pxn−1

1 (α1). (3.24)

Similarly, the alternating version of interface iteration for two subdomains from Lemma

3.1.4 gives us

R1(x
n+1
1 (α1)) + pxn+1

1 (α1) = R3(x
n
2 (α1)) + pxn2 (α1), (3.25)

R3(x
n
2 (α1))− pxn2 (α1) = R1(x

n−1
1 (α1))− pxn−1

1 (α1). (3.26)

The operators R1 and R3 are given by

R1(x) =
1

α

∫ x

0

M(x̃)dx̃ and R3(w) =
1

1− α

∫ 1

w

M(x̃)dx̃. (3.27)
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We are interested in the questions of existence and uniqueness of (3.23-3.24) and (3.25-

3.26) for the two subdomain case. The two subdomains case has been studied in Gander

and Haynes [8], using the Peaceman-Rachford theorem, see section 2.2.3. Here we will

show existence and uniqueness (well-posedness) in a different way. We wish to know if

the system is well-posed for a given right-hand side of (3.23-3.24) and (3.25-3.26). Do

solutions exist for the system? Are they unique? How to compute them? To show exis-

tences and uniqueness we will use Lemma 3.2.2 below. Lemma 3.2.2 has been proven by

Intermediate Value Theorem, which we quote as Theorem 3.2.1 from Burden and Faires

[54].

Theorem 3.2.1 (Intermediate Value Theorem) Suppose that f : [a, b] → R is continu-

ous on [a, b], and µ ∈ R is any number between f(a) and f(b) then there exists a point

c ∈ (a, b) such that f(c) = µ.

To show existence and uniqueness of the solution of (3.23-3.26) we can use Lemma 3.2.2.

Lemma 3.2.2 Assume f : R → R is continuous, uniformly monotonic increasing (de-

creasing) and

lim
x→∞

f(x) = ∞(−∞) and lim
x→−∞

f(x) = −∞(∞) (3.28)

then the equation f(x) = b has a unique solution for any b ∈ R.

Proof. First we want to show the solution exists for the equation f(x) = b on R. f is

continuous by assumption.

Assume f is monotonic increasing on all of R. Since limx→−∞ f(x) = −∞ there exists

a a so that f(a) < b. And since limx→∞ f(x) = ∞ there exists a c so that f(c) > b. By the

Intermediate value theorem there exists x̂ ∈ (a, c) such that f(x̂) = b. The case where f is

monotonic decreasing is handled similarly.
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We now want to prove f(x) = b has an unique solution. Assume the solution of

f(x) = b is not unique. Suppose x′ , and x′′ are two solutions of this system with x′ ̸= x
′′

with

f(x
′
) = b and f(x

′′
) = b.

If x′
< x

′′ , then since f is monotonic increasing f(x′
) < f(x

′′
), which implies b < b,

which is a contradiction. Similarly, if x′
> x

′′ , then f(x′
) > f(x

′′
), which implies b > b.

Which is again a contradiction, hence x′
= x

′′ . Therefore f(x) = b has an unique solution

if f uniformly monotonic increasing. The case where f is monotonic decreasing is handled

similarly.

3.2.1 Well-posedness of the Two Subdomain Iteration for a Given Right-

Hand Side

We want to show the iterations (3.23 - 3.24) and (3.25 - 3.26) are well-defined for given

right-hand side. Using Lemma 3.2.2 we will show that solution of the system (3.23 - 3.24)

and (3.25 - 3.26) exists for each n. To do this for the parallel iteration we suppose that

right-hand side of (3.23) and (3.24) are given. Let ζ1 = R3(x
n−1
2 (α1)) + pxn−1

2 (α1) and

ζ2 = −R1(x
n−1
2 (α1)) + pxn−1

2 (α1) then (3.23) and (3.24) becomes

R1(x
n
1 (α1)) + pxn1 (α1) = ζ1 (3.29)

and

−R3(x
n
2 (α1)) + pxn2 (α1) = ζ2. (3.30)

In equation (3.29) and (3.30) we seek x and y that are solutions of

R1(x) + px = ζ1 (3.31)

−R3(y) + py = ζ2. (3.32)
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For the alternating iteration we suppose that right-hand side of (3.25) and (3.26) are

given. Assume ζ1 = R3(x
n
2 (α1)) + pxn2 (α1) and ζ2 = −R1(x

n−1
2 (α1)) + pxn−1

2 (α1) then

(3.25) and (3.26) becomes

R1(x
n+1
1 (α1)) + pxn+1

1 (α1) = ζ1 (3.33)

and

−R3(x
n
2 (α1)) + pxn2 (α1) = ζ2. (3.34)

In equation (3.33) and (3.34) we seek x and y that are solutions of

R1(x) + px = ζ1 (3.35)

−R3(y) + py = ζ2. (3.36)

We wish to show the existence of x and y solving (3.35-3.36). This is equivalent to solving

f1(x) ≡ R1(x) + px = ζ1

f2(y) ≡ −R3(y) + py = ζ2.

⎫
⎪⎬
⎪⎭

(3.37)

This gives a system of the form Fu = b, where F = (f1, f2)
T and b = (ζ1, ζ2)

T . It is clear

that f1 and f2 are continuous. We notice that ζ1 for parallel case in (3.29) and for alternating

case in (3.33) are slightly different, but F has the same form. The parallel iteration (3.29-

3.30) is a Gauss-Jacobi iteration for (3.37). To show the solution exists and is unique we

apply Lemma 3.2.2.

Theorem 3.2.3 The equations (3.33) and (3.34) have unique solutions for xn+1
1 (α1) and

xn2 (α1) for any p > 0.

Proof. The operatorsR1(x) and −R3(y) are continuous and uniformly monotonic (increas-

ing) since

R
′

1(x) =
1

α1

M(x) ≥ 1

α1

m̌ > 0 and −R
′

3(y) =
1

α1

M(y) ≥ 1

1− α2

m̌ > 0.
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Therefore f1(x) and f2(x) are continuous and uniformly monotonic. Taking limits of f1(x)

and f2(x) we obtain

lim
x→∞

f1(x) = ∞ and lim
x→−∞

f1(x) = −∞.

And similarly, limy→∞ f2(y) = ∞ and limy→−∞ f2(y) = −∞. These properties and

Lemma 3.2.2 give us existence and uniqueness of solution to equations (3.33) and (3.34).

Theorem 3.2.3 says that the system (3.29-3.30) and (3.33-3.34) are well-posed for each it-

eration n for a given right-hand side. Therefore theoretically we can solve the system (3.33-

3.34) and (3.33-3.34) for each iteration n for the given right-hand side. Now the question is

how do we actually compute xn1 (α1) in (3.29) and xn2 (α1) from (3.30) for parallel iteration,

and xn+1
1 (α1) in (3.33) and xn2 (α1) from (3.34) for alternating iteration? In practice we

can compute them using root-finding methods, for example using Matlab’s fsolve without

any restriction on p. In Theorem 3.2.5 we show that a fixed point iteration converges when

applied to parallel iteration (3.29) and (3.30), in a similar manner for alternating iteration

(3.33) and (3.34). To prove Theorem 3.2.5 we will need the standard Fixed-Point Theorem

(from Burden and Faires [54]), which we will quote as Theorem 3.2.4. First we introduce

the definition of fixed point.

Definition 3.2.1 A fixed point for a system x = g(x) is a point x∗ such that x∗ = g(x∗).

Theorem 3.2.4 (Fixed-Point Iteration) Suppose g(x) and g
′
(x) are continuous on a re-

gion that contains a fixed point. If the starting point is chosen sufficiently close to the fixed

point and there exists a positive constant 0 < ε < 1 such that

|g′
(x)| ≤ ε < 1 for all x,

then the iteration xk+1 = g(xk), k = 0, 1, 2, ..., converges to the fixed point x = x∗.
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Proof. See [54, page 173] for a proof of this theorem.

Theorem 3.2.5 Assume (3.31) or (3.32) is written in the form x = g(x). Then sequence

xk+1 = g(xk), k > 0 converges locally to the unique fixed point in R if p > max{ m̂
α1
, m̂
1−α1

},

where m̂ is defined in (2.8).

Proof. Equation (3.31) can be written as

x =
1

p
(−R1(x) + ζ1) ≡ g(x), (3.38)

where g(x) = 1
p

(
− R1(x) + ζ1

)
. Clearly g(x) is continuous and differentiable on R since

the operator −R1(x) is differentiable. Now differentiate g(x) with respect to x we have

g
′
(x) =

1

p

d

dx

(
−R1(x) + ζ1

)

=
1

p

d

dx

(
− 1

α1

∫ x

0

M(x)dx+ ζ1
)

= − 1

pα1

M(x).

Taking the absolute value of both sides we obtain

|g′
(x)| = 1

pα1

|M(x)|,

Hence, if m̂
α1

< p holds then |g′
(x)| < 1. The assumptions of Theorem 3.2.4 have been

verified, so we conclude the sequence xk+1 = g(xk), k = 0, 1, ..., will converge to the

unique fixed point in R if m̂
α1
< p.

Similarly, equation (3.32) can be written as

x =
1

p
(R3(x) + ζ2) ≡ h(x), (3.39)

Clearly h(x) is continuous and differentiable on R since the operator R3(x) is differen-
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tiable. Now differentiate h(x) with respect to x we have

h
′
(x) =

1

p

d

dx

(
R3(x) + ζ2

)

=
1

p

d

dx

( 1

1− α1

∫ 1

x

M(x)dx+ ζ2
)

= − 1

p(1− α1)
M(x).

Taking the absolute value of both sides we obtain

|h′
(x)| = 1

p(1− α1)
|M(x)|.

Thus, if m̂
1−α1

< p then |h′
(x)| < 1. The assumptions of Theorem 3.2.4 has been verified,

thus the sequence xk+1 = h(xk), k = 0, 1, ..., will converge to the unique fixed point in R

if m̂
1−α1

< p. Therefore (3.38) and (3.39) converge if max{ m̂
α1
, m̂
1−α1

} < p.

A similar argument follows for the alternating iteration (3.35) and (3.36).

Alternatively, the iterates for two subdomains can be computed by the bisection method

[54]. The bisection technique is basically based on the Intermediate Value Theorem 3.2.1 .

Theorem 3.2.6 (Bisection Method) Assume f(x) = 0, and f is continuous on the closed

interval [a, b] with f(a)f(b) < 0 then there exist some x∗ ∈ (a, b) such that f(x∗) = 0.

Moreover, the bisection method will converge to x∗.

Proof. Since f is a continuous on the closed interval [a, b], with f(a) and f(b) of opposite

sign; then by the Intermediate Value Theorem 3.2.1 there exist some x∗ ∈ (a, b) such that

f(x∗) = 0.

The convergence of bisection method can be seen in reference [55].

Theorem 3.2.7 The bisection algorithm applied to the equations (3.31) or (3.32) will con-

verge for any p > 0.
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Proof. Equation (3.31) can be written as f1(x) = 0 where f1(x) = R1(x)+px−ζ1. Taking

the limit of f1(x), we obtain limx→∞ f1(x) = ∞ and limx→−∞ f1(x) = −∞, since R1

is continuous and uniformly monotonic increasing. f1 is also continuous. This implies

there exist at least two points a, b ∈ R, with f1(a) and f1(b) of opposite sign and hence

there exists some x∗ ∈ (a, b) such that f1(x∗) = 0. Hence by Theorem 3.2.6 the bisection

method will converge.

Again equation (3.32) gives f2(y) = 0 where f2(y) = −R3(y) + py − ζ2. Taking

the limit of f2(y), we obtain limy→∞ f2(y) = ∞ and limy→−∞ f2(y) = −∞, as R3 is

continuous and uniformly monotonic decreasing. Also f2 is continuous. This implies there

exist at least two points a, b ∈ R, with f2(a) and f2(b) of opposite sign and hence there

exists some y∗ ∈ (a, b) such that f2(y∗) = 0. Hence by Theorem 3.2.6 the bisection method

will converge.

Similar argument follows for the alternating iterations (3.35) and (3.36).

We will show that the whole system is well-posed in the next section.

3.2.2 Well-posedness of the Two Subdomain Iteration for Whole Sys-

tem

We now study existence of the whole system and then uniqueness of the whole system for

the parallel two subdomain iteration.

Existence of solution for the Whole System

We now want to show that the whole system (3.23-3.24) is well-posed. The recurrence

relations for two subdomains (3.23- 3.24) can be re-written as

R1(x
n
1 (α1)) + pxn1 (α1)−R3(x

n−1
2 (α1))− pxn−1

2 (α1) = 0 (3.40)

−R3(x
n
2 (α1))− pxn2 (α1) +R1(x

n−1
1 (α1))− pxn−1

1 (α1) = 0. (3.41)
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The iteration (3.40 -3.41) is a nonlinear Jacobi iteration for the system of equations

R1(x)−R3(y) + px− py = 0

−R3(y) +R1(x) + py − px = 0

⎫
⎪⎬
⎪⎭
. (3.42)

We denote the system (3.42) as F (x, y) = b, where F = (f1, f2)
T , 0 = (0, 0)T and

f1(x, y) ≡ R1(x)−R3(y) + px− py = 0

f2(x, y) ≡ R1(x)−R3(y)− px+ py = 0

⎫
⎪⎬
⎪⎭
. (3.43)

We want to show that the whole system (3.43) is well-posed, that there is a unique so-

lution of (3.43). To help in this regard we use Theorem 13.5.2 from Ortega and Rheinboldt

[34], which we quote below as our Theorem 3.2.8. We first introduce two useful symbols

↑ and ↓ that we use in the theorem below. The condition

xk ≤ xk+1, k = 0, 1, ..., and lim
k→∞

xk = x∗

is denoted by xk ↑ x∗ when k → ∞. Similarly,

xk ≥ xk+1, k = 0, 1, ..., and lim
k→∞

xk = x∗

is denoted by xk ↓ x∗ when k → ∞.

Theorem 3.2.8 Let F : Rn → Rn be continuous, off-diagonally antitone, and strictly

diagonally isotone, and suppose that for some b ∈ Rn there exists points x0, y0 ∈ Rn such

that

x0 ≤ y0, F (x0) ≤ b ≤ F (y0).

Then, for any ω ∈ (0, 1], the successive over relaxation (SOR) iterates {yk} and {xk} given

by the nonlinear SOR process (in Section 3.1.2) and starting from y0 and x0, respectively,

are uniquely defined and satisfy

xk ↑ x∗, yk ↓ y∗, k → ∞, x∗ ≤ y∗, Fx∗ = Fy∗ = b. (3.44)

The corresponding result holds for the Jacobi iteration.
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The vectors x0 and y0 are called a subsolution and a supersolution of Fu = b. Theorem

3.2.8 says that, if any continuous system is off-diagonally antitone, strictly diagonally iso-

tone and there exists a supersolution and subsolution then the solution exists (but is not

necessarily unique) and the theorem also gives us a way to solve the system. If the nonlin-

ear SOR (or Jacobi) iteration starts from a subsolution or a supersolution then the iterations

will converge to x∗ or y∗.

Now we will verify the assumptions of Theorem 3.2.8 to show that solution of the

system (3.43) exists. To verify the assumptions of Theorem 3.2.8, we start with Lemma

3.2.9.

Lemma 3.2.9 Consider the system F (x, y) = 0 from (3.43) and the operators R1 and R3

as defined in (3.27). Assume M satisfies property (2.8), then F : R2 → R2 is continuous,

strictly diagonally isotone, and if p > max{ m̂
α1
, m̂
1−α1

} then F is off-diagonally antitone.

Proof. Clearly f1 and f2 are continuous. Now we show the system is strictly diagonally

isotone. To show this, we differentiate f1 and f2 with respect to x and y respectively. We

have

∂f1
∂x

=
∂R1

∂x
+ p =

1

α1

M(x) + p > 0

and

∂f2
∂y

= −∂R1

∂y
+ p =

1

1− α1

M(y) + p > 0.

This tells us f1 and f2 are strictly isotone with respect to x and y respectively. Therefore,

F is strictly diagonally isotone.

We now will show that system is off-diagonally antitone. To show this, we differentiate

f1 with respect to y to obtain

∂f1
∂y

= −∂R3

∂y
− p =

1

1− α1

M(y)− p.
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If m̂
1−α1

< p, then f1 is antitone with respect to y. Now differentiate f2 with respect to x to

obtain
∂f2
∂x

= −∂R1

∂x
− p =

1

α1

M(x)− p.

If m̂
α1

< p, then f2 is antitone with respect to x. Given the assumption on M(x) in (2.8),

hence p needs to be greater than max{ m̂
α1
, m̂
1−α2

}. Therefore, F is off-diagonally antitone if

p > max{ m̂
α1
, m̂
1−α1

}.

To find a supersolution and a subsolution of the system (3.43), we derive an upper and

lower bound of the operator R1(x) when x ≥ 0, and the operator R3(y) when y ≤ 1 in

following lemma.

Lemma 3.2.10 If x ≥ 0 then R1(x) satisfies

1

α1

m̌x ≤ R1(x) ≤
1

α1

m̂x. (3.45)

If y ≤ 1 then R3(y) satisfies

1

1− α1

m̌(1− y) ≤R3(y) ≤
1

1− α1

m̂(1− y) (3.46)

Proof. Assume x ≥ 0. We integrate both sides of m̌ ≤ M(x) ≤ m̂ from 0 to x and

multiply by 1
α1

to obtain

1

α1

∫ x

0

m̌dx̃ ≤ 1

α1

∫ x

0

M(x)dx̃ ≤ 1

α1

∫ x

0

m̂dx̃.

Using the definition of R1(x) we find the lower and upper bound as

1

α1

m̌x ≤ R1(x) ≤
1

α1

m̂x.

Similarly, assume y ≤ 1. We integrate from y to 1 both sides of m̌ ≤ M(x) ≤ m̂ and

multiply by 1
1−α1

. This gives

1

1− α1

∫ 1

y

m̌dx̃ ≤ 1

1− α1

∫ 1

y

M(x)dx̃ ≤ 1

1− α1

∫ 1

y0

m̂dx̃.
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Using the definition of R3(y) we have the lower and upper bound

1

1− α1

m̌(1− y) ≤ R3(y) ≤
1

1− α1

m̂(1− y).

These lower and upper bounds of R1 and R3 will be useful to prove the existence of a

supersolution and subsolution in Lemma 3.2.11.

Lemma 3.2.11 If p > max{ m̂
α1
, m̂
1−α1

} then there exists a supersolution and a subsolution

for F (x, y) = 0 as defined in (3.43).

Proof. We want to show that for 0 = (0, 0) ∈ R2, there exists (x̌, y̌), (x̂, ŷ) ∈ R2, such that

(x̌, y̌) ≤ (x̂, ŷ), and

F (x̌, y̌) ≤ 0 ≤ F (x̂, ŷ). (3.47)

That is we require

R1(x̌)−R3(y̌) + px̌− py̌ ≤ 0 ≤ R1(x̂)−R3(ŷ) + px̂− pŷ

R1(x̌)−R3(y̌)− px̌+ py̌ ≤ 0 ≤ R1(x̂)−R3(ŷ)− px̂+ pŷ

⎫
⎪⎬
⎪⎭
. (3.48)

We find the region of subsolution and supersolution for this system using two different ap-

proaches as given below.

First approach: The inequalities for the subsolution are

R1(x̌)−R3(y̌) + px̌− py̌ ≤ 0

R1(x̌)−R3(y̌)− px̌+ py̌ ≤ 0

⎫
⎪⎬
⎪⎭
. (3.49)

Now using the Lemma 3.2.10, (3.49) holds if

m̂

α1

x̌− m̌

1− α1

(1− y̌) + px̌− py̌ ≤ 0

m̂

α1

x̌− m̌

1− α1

(1− y̌)− px̌+ py̌ ≤ 0

x̌ ≥ 0 and y̌ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.
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This gives us ( m̂
α1

+ p
)
x̌+

( m̌

1− α1

− p
)
y̌ − m̌

1− α1

≤ 0

( m̂
α1

− p
)
x̌+

( m̌

1− α1

+ p
)
y̌ − m̌

1− α1

≤ 0

x̌ ≥ 0 and y̌ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.50)

If m̂
α1
< p then we obtain the inequalities

y̌ ≥
(

p+ m̂
α1

p− m̌
1−α1

)
x̌+

m̌

m̌− p(1− α1)

y̌ ≤
(

p− m̂
α1

p+ m̌
1−α1

)
x̌+

m̌

m̌+ p(1− α1)

x̌ ≥ 0 and y̌ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.51)

Hence if m̂
α1
< p then we obtain the subsolution regions from inequalities (3.51) as shown

x̌

ŷ

y̌ = 1

(0, m̌
m̌−p(1−α1)

)

(0, m̌
m̌+p(1−α1)

)

(
m̌α1

m̌α1+m̂(1−α1)
, m̌α1

m̌α1+m̂(1−α1)

)

Figure 3.3: Subsolution region of the two subdomain iteration for whole system if m̂
α1
< p.

in Figure 3.3. So the subsolution regions exists if m̂
α1
< p.

Similarly, we find a region of supersolutions for our system. The inequalities for the
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supersolution are

R1(x̂)−R3(ŷ) + px̂− pŷ ≥ 0

R1(x̂)−R3(ŷ)− px̂+ pŷ ≥ 0

⎫
⎪⎬
⎪⎭
. (3.52)

Using the Lemma 3.2.10, (3.52) holds if

m̌

α1

x̂− m̂

1− α1

(1− ŷ) + px̂− pŷ ≥ 0

m̌

α1

x̂− m̂

1− α1

(1− ŷ)− px̂+ pŷ ≥ 0

x̂ ≥ 0 and ŷ ≤ 1.

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

This implies ( m̌
α1

+ p
)
x̂+

( m̂

1− α1

− p
)
ŷ − m̂

1− α1

≥ 0

( m̌
α1

− p
)
x̂+

( m̂

1− α1

+ p
)
ŷ − m̂

1− α1

≥ 0

x̂ ≥ 0 and ŷ ≤ 1.

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.53)

If m̂
1−α1

< p this gives us the inequalities

x̂

ŷ

ŷ = 1

(
m̂α1

m̂α1+m̌(1−α1)
, m̂α1

m̂α1+m̌(1−α1)

)

Figure 3.4: Supersolution region of the two subdomain iteration for whole system if m̂
1−α1

<

p.
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ŷ ≤
(

p+ m̌
α1

p− m̂
1−α1

)
x̂+

m̂

m̂− p(1− α1)

ŷ ≥
(

p− m̌
α1

p+ m̂
1−α1

)
x̂+

m̂

m̂+ p(1− α1)

x̂ ≥ 0 and ŷ ≤ 1.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.54)

Hence if m̂
1−α1

< p then we obtain the subsolution regions from inequalities (3.54) as shown

in Figure 3.4. So the subsolution regions exists if m̂
1−α1

< p.

Therefore, we can conclude that supersolution and subsolution exist for the system

(3.25-3.26) if p > max{ m̂
α1
, m̂
1−α1

}.

Second approach: We now try to show the existence of a subsolution using Fourier-

Motzkin elimination. The inequalities for the subsolution from (3.50) can be written as

(
p+

m̂

α1

)
x̌−

(
p− m̌

1− α1

)
y̌ − m̌

1− α1

≤ 0

−
(
p− m̂

α1

)
x̌+

(
p+

m̌

1− α1

)
y̌ − m̌

1− α1

≤ 0

−x̌ ≤ 0 and y̌ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.55)

Now we first eliminate the variable x̌. To do this we choose p > max{ m̂
α1
, m̂
1−α1

} then p− m̂
α1

and p− m̌
1−α1

are positive, now partition the inequalities in (3.55) into three groups, I−, I+

and I0, according to the coefficient of x̌: whether it is negative or positive respectively:

I− :

⎧
⎪⎨
⎪⎩

−
(
p− m̂

α1

)
x̌+

(
p+ m̌

1−α1

)
y̌ − m̌

1−α1
≤ 0

−x̌ ≤ 0,

I+ :
(
p+ m̂

α1

)
x̌−

(
p− m̌

1−α1

)
y̌ − m̌

1−α1
≤ 0,

I0 : y̌ ≤ 1.

We now make the coefficient of x̌ for the inequalities in I− to be −1, and coefficient of x̌
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for the inequalities in I+ to be +1, this gives

I− :

⎧
⎪⎨
⎪⎩

−x̌+
(

p+ m̌
1−α1

p− m̂
α1

)
y̌ −

(
m̌

1−α1

p− m̂
α1

)
≤ 0

−x̌ ≤ 0,

and

I+ : x̌−
(

p− m̌
1−α1

p+ m̂
α1

)
y̌ −

(
m̌

1−α1

p+ m̂
α1

)
≤ 0.

Isolating the variable x̌ in each group gives

I− :

⎧
⎪⎨
⎪⎩

(
p+ m̌

1−α1

p− m̂
α1

)
y̌ −

(
m̌

1−α1

p− m̂
α1

)
≤ x̌

0 ≤ x̌,

and

I+ : x̌ ≤
(

p− m̌
1−α1

p+ m̂
α1

)
y̌ +

(
m̌

1−α1

p+ m̂
α1

)
.

This implies that
⎧
⎪⎨
⎪⎩

(
p+ m̌

1−α1

p− m̂
α1

)
y̌ −

(
m̌

1−α1

p− m̂
α1

)

0

⎫
⎪⎬
⎪⎭

≤ x̌ ≤
{(

p− m̌
1−α1

p+ m̂
α1

)
y̌ +

( m̌
1−α1

p+ m̂
α1

)}
. (3.56)

Now eliminating x̌ from (3.56) we obtain
⎧
⎪⎪⎨
⎪⎪⎩

(
p+ m̌

1−α1

p− m̂
α1

)
y̌ −

(
m̌

1−α1

p− m̂
α1

)
≤

(
p− m̌

1−α1

p+ m̂
α1

)
y̌ +

(
m̌

1−α1

p+ m̂
α1

)

0 ≤
(

p− m̌
1−α1

p+ m̂
α1

)
y̌ +

(
m̌

1−α1

p+ m̂
α1

)
,

this implies ⎧
⎪⎪⎨
⎪⎪⎩

(
p+ m̌

1−α1

p− m̂
α1

− p− m̌
1−α1

p+ m̂
α1

)
y̌ ≤

(
m̌

1−α1

p+ m̂
α1

+
m̌

1−α1

p− m̂
α1

)

−
(

p− m̌
1−α1

p+ m̂
α1

)
y̌ ≤

(
m̌

1−α1

p+ m̂
α1

)
.

We rewrite these inequalities as
⎧
⎪⎪⎨
⎪⎪⎩

(
2p( m̂

α1
+ m̌

1−α1
)

(p− m̂
α1

)(p+ m̂
α1

)

)
y̌ ≤ 2p

(
m̌

1−α1

)
(
p− m̂

α1

)(
p+ m̂

α1

)

−
(
p− m̌

1−α1

)
y̌ ≤ m̌

1−α1
,
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which implies ⎧
⎪⎨
⎪⎩

(
m̂
α1

+ m̌
1−α1

)
y̌ ≤ m̌

1−α1

(
m̌

1−α1
− p
)
y̌ ≤ m̌

1−α1
.

This gives us ⎧
⎪⎨
⎪⎩

[
m̂(1− α1) + m̌α1

]
y̌ ≤ m̌α1

−
[
p(1− α1)− m̌

]
y̌ ≤ m̌.

(3.57)

Therefore, including I0 we obtain

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
m̂(1− α1) + m̌α1

]
y̌ ≤ m̌α1

−
[
p(1− α1)− m̌

]
y̌ ≤ m̌

y̌ ≤ 1.

(3.58)

Rearranging this system we arrive at the requirement

{
− m̌

p(1− α1)− m̌

}
≤ y̌ ≤

⎧
⎪⎨
⎪⎩

m̌α1

m̂(1−α1)+m̌α1

1

⎫
⎪⎬
⎪⎭
, (3.59)

and eliminating y̌ gives

⎧
⎪⎨
⎪⎩

− m̌
p(1−α1)−m̌

≤ m̌α1

m̂(1−α1)+m̌α1

− m̌
p(1−α1)−m̌

≤ 1.
(3.60)

Hence we observe the resulting system (3.60) does not involve the variable x̌, and the value

of the expression of the left hand sides of (3.60) is negative and right sides is positive if

p > max{ m̂
α1
, m̂
1−α1

}. Hence the inequalities (3.60) are always true, so the resulting system

(3.60) is feasible for p > max{ m̂
α1
, m̂
1−α1

}. Hence, the original system (3.55) is feasible if

p > max{ m̂
α1
, m̂
1−α1

}. Therefore we can find a subsolution from inequalities (3.55).

Similarly, we will find a supersolution. The inequalities for the supersolution from
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(3.53) are (
p+

m̌

α1

)
x̂−

(
p− m̂

1− α1

)
ŷ − m̂

1− α1

≥ 0

−
(
p− m̌

α1

)
x̂+

(
p+

m̂

1− α1

)
ŷ − m̂

1− α1

≥ 0

x̂ ≥ 0 and − ŷ ≥ −1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.61)

Since p > max{ m̂
α1
, m̂
1−α1

} then p− m̌
α1

and p− m̂
1−α1

are positive. Partition the inequalities

in (3.61) into two groups, I− and I+, according to the coefficient of x̂:

I− : −
(
p− m̌

α1

)
x̂+

(
p+ m̂

1−α1

)
ŷ − m̂

1−α1
≥ 0,

I+ :

⎧
⎪⎨
⎪⎩

(
p+ m̌

α1

)
x̂−

(
p− m̂

1−α1

)
ŷ − m̂

1−α1
≥ 0

x̂ ≥ 0,

I0 : −ŷ ≥ −1.

We now make the coefficient of x̌ for the inequalities in I− to be −1, and coefficient of x̌

for the inequalities in I+ to be +1, this gives

I− : −x̂+
(

p+ m̂
1−α1

p− m̌
α1

)
ŷ −

(
m̂

1−α1

p− m̌
α1

)
≥ 0,

and

I+ :

⎧
⎪⎨
⎪⎩

x̂−
(

p− m̂
1−α1

p+ m̌
α1

)
ŷ −

(
m̂

1−α1

p+ m̂
α1

)
≥ 0

x̂ ≥ 0.

Isolating the variable x̂ in each group we have

I− :

(
p+ m̂

1−α1

p− m̌
α1

)
ŷ −

(
m̂

1−α1

p− m̌
α1

)
≥ x̂,

and

I+ :

⎧
⎪⎨
⎪⎩

x̂ ≥
(

p− m̂
1−α1

p+ m̌
α1

)
ŷ +

(
m̂

1−α1

p+ m̂
α1

)

x̂ ≥ 0,

which implies that
⎧
⎪⎨
⎪⎩

(
p− m̂

1−α1

p+ m̌
α1

)
ŷ +

(
m̂

1−α1

p+ m̂
α1

)

0

⎫
⎪⎬
⎪⎭

≤ x̂ ≤
{(

p+ m̂
1−α1

p− m̌
α1

)
ŷ −

( m̂
1−α1

p− m̌
α1

)}
. (3.62)
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Now eliminating x̂ from (3.62) we obtain the requirement
⎧
⎪⎪⎨
⎪⎪⎩

(
p− m̂

1−α1

p+ m̌
α1

)
ŷ +

(
m̂

1−α1

p+ m̂
α1

)
≤

(
p+ m̂

1−α1

p− m̌
α1

)
ŷ −

(
m̂

1−α1

p− m̌
α1

)

0 ≤
(

p+ m̂
1−α1

p− m̌
α1

)
ŷ −

(
m̂

1−α1

p− m̌
α1

)
,

which gives ⎧
⎪⎪⎨
⎪⎪⎩

(
−2p( m̌

α1
+ m̂

1−α1
)

(p+ m̌
α1

)(p− m̌
α1

)

)
ŷ ≤ −2p( m̂

1−α1
)

(p+ m̌
α1

)(p− m̌
α1

)

−
(

p+ m̂
1−α1

p− m̌
α1

)
ŷ ≤ −

(
m̂

1−α1

p− m̌
α1

)
.

We can rewrite these inequalities as
⎧
⎪⎨
⎪⎩

(
m̌
α1

+ m̂
1−α1

)
ŷ ≥ m̂

1−α1

(
p+ m̂

1−α1

)
ŷ ≥

(
m̂

1−α1

)
,

which implies ⎧
⎪⎨
⎪⎩

[
m̌(1− α1) + m̂α1

]
ŷ ≥ m̂α1

[
p(1− α1) + m̂

]
ŷ ≥ m̂.

Therefore, adding the inequalities from I0 we have
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
m̌(1− α1) + m̂α1

]
ŷ ≥ m̂α1

[
p(1− α1) + m̂

]
ŷ ≥ m̂

−ŷ ≥ −1.

(3.63)

Rearranging this system we obtain
⎧
⎪⎨
⎪⎩

m̂α1

m̌(1−α1)+m̂α1

m̂
p(1−α1)+m̂

⎫
⎪⎬
⎪⎭

≤ ŷ ≤ {1} ,

and eliminating ŷ gives us ⎧
⎪⎨
⎪⎩

m̂α1

m̌(1−α1)+m̂α1
≤ 1

m̂
p(1−α1)+m̂

≤ 1.
(3.64)

Hence we observe the resulting system (3.63) does not involve the variable x̂, and the

value of the expression of the left hand sides of (3.64) is less then 1 if p > max{ m̂
α1
, m̂
1−α1

}.
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Thus the inequalities (3.60) are always true, so the resulting system (3.64) is feasible for

p > max{ m̂
α1
, m̂
1−α1

}. Therefore we obtain a supersolution form the inequalities (3.61).

Hence we have obtain a supersolution and a subsolution for the system (3.25-3.26) if p >

max{ m̂
α1
, m̂
1−α1

}.

Example 1 To illustrate the subsolution and supersolution, let us consider a monitor func-

tion

M(x) = 1 + β1 exp
(x−x0) +β2 exp

(x−xn) (3.65)

where β1 = 10, β2 = 5, x0 = 0 and xn = 1. The lower-bound is m̌ = 12.83939

and the upper-bound is m̂ = 33.18282 on interval [0, 1]. We need to show F (x̌, y̌) ≤ 0

when x̌, y̌ is chosen from the subsolution region, on the other hand, if x̂ and ŷ are chosen

from supersolution region then F (x̂, ŷ) ≥ 0. We choose some points on the boundaries

of super and subsolution region and choose p = 68 that satisfies the condition on p that

p > max{ m̂
α1
, m̂
1−α1

}.

A notation BLsub in Table 3.1 is used for the boundary lines of the subsolution region,

and BLsup in Table 3.2 is used for the boundary lines of the supsolution region. Numerical

Table 3.1: Subsolution for two subdomains optimized Schwarz interface iteration for p =

68 with M(x) = 1 + β1 exp
x+β2 exp

(x−1).

x̌ y̌ on BLsub f1(x̌, y̌) f2(x̌, y̌) y̌ on BLsub f1(x̌, y̌) f2(x̌, y̌)

0.00 -0.606760 -17.008048 -99.527343 0.274115 -53.310956 -16.031270

0.05 -0.448014 -19.012292 -86.742260 0.274988 -48.627310 -18.028988

0.10 -0.289269 -20.954291 -73.894932 0.275860 -43.881395 -19.964437

0.15 -0.130524 -22.830853 -60.982169 0.276732 -39.070020 -21.834427

0.20 0.028221 -24.629106 -47.991095 0.277605 -34.189830 -23.635601

0.25 0.186966 -25.933173 -34.505835 0.278477 -29.237298 -25.364432

73



Chapter 3. Optimized Schwarz Method for an Arbitrary Number of Subdomains

results in Table 3.1 shows that the function value are negative in columns 3, 4, 6, and 7,

hence subsolution exists if we chose any value from the shaded region in Figure 3.3.

Table 3.2: Supersolution for two-subdomain optimized Schwarz interface iteration for p =

68 with M(x) = 1 + β1 exp
x+β2 exp

(x−1).

x̌ y̌ on BLsup f1(x̌, y̌) f2(x̌, y̌) y̌ on BLsup f1(x̌, y̌) f2(x̌, y̌)

0.83 0.762867 22.786543 13.656455 0.755344 22.902502 12.749245

0.86 0.804714 25.948373 18.429477 0.764793 26.511094 13.562917

0.89 0.846561 29.253301 23.345597 0.774242 30.174593 14.431495

0.94 0.916306 35.094537 31.872153 0.789990 36.406746 16.005447

0.97 0.958153 38.808523 37.197331 0.799440 40.224503 17.028284

1.00 1.000000 42.686842 42.686842 0.808889 44.103184 18.112044

Similarly, the numerical results in Table 3.2 shows that the function values are positive

in columns 3, 4, 6, and 7, so supersolution exists if we choose any value from the shaded

region in Figure 3.4.

Theorem 3.2.12 Solutions of the system (3.43) exists if p > max{ m̂
α1
, m̂
1−α1

}.

Proof. The assumptions of Theorem 3.2.8 have been verified in Lemmas 3.2.9 and 3.2.11.

Hence the system has a solution.

Now we arrive at the following result.

Theorem 3.2.13 If p > max{ m̂
α1
, m̂
1−α1

} then the nonlinear Gauss Jacobi iteration (3.40-

3.41) for Fu = b defined in (3.43) will converge to a solution if the iteration starts at a

supersolution or a subsolution.
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Proof. The assumptions of Theorem 3.2.8 have been verified in Lemmas 3.2.9 and 3.2.11.

Theorem 3.2.8 guarantees that if the iteration starts at a supersolution or a subsolution then

the nonlinear Gauss Jacobi iteration (3.40-3.41) will converge to a solution.

Note, the Theorem 3.2.13 also guarantee the convergence of nonlinear Gauss Seidel (SOR,

ω = 1) for system (3.43).

Uniqueness of the Whole System for Two Subdomain Iteration

The following lemmas are useful to show that the system (3.43) has a unique solution.

Lemma 3.2.14 Consider a system F (x) = b. If F is an M -function, then F is inverse

isotone and if the solution exists, it is unique for a given right-hand side b.

Proof. Inverse isotonicity of F holds by definition of anM -function, as given in Definition

3.1.8. Assume x∗ and y∗ are two solutions of F (x) = b, we have F (x∗) = F (y∗) = b.

Since F (x∗) ≤ F (y∗), then the inverse isotonicity of F gives us x∗ ≤ y∗. On the other

hand, we have F (y∗) ≤ F (x∗) which implies y∗ ≤ x∗. Therefore, x∗ = y∗, hence the

solution is unique.

Thus, by the Lemma 3.2.14, to show uniqueness it is sufficient to show our F is an M -

function. To do this we use Theorem 5.1 from Rheinboldt [47], which we quote below as

our Theorem 3.2.15.

Theorem 3.2.15 Let F : Rn → Rn be off-diagonally antitone, and suppose that there

exists a diagonal M -function H : D ⊂ Rn → Rn such that F (Rn) ⊂ D and that, for any

x ∈ Rn, the function

Q : R1 → Rn qi(t) =
n∑

j=1

hj(fj(x+ tei)), i = 1, ..., n, (3.66)

75



Chapter 3. Optimized Schwarz Method for an Arbitrary Number of Subdomains

is isotone. Let

ϕ : R1 → Rn, ϕi(t), i = 1, ..., n,

ψ : R1 → Rn, ψi(t), i = 1, ..., n

be isotone mappings such that ψ + ϕ is strictly isotone, and assume that for every node i

in the associate network ΩF ( see Definition 3.1.3) there exists a node l = l(i), which is

strictly connected to i and for which there is strict isotonicity either of ϕi or of qi for any

x ∈ R. Then

F̂ : Rn → Rn, f̂i(t) = ϕi(xi) + ψj(fj(x+ tei)), i = 1, ..., n,

is an M -function.

If ϕ = 0 and ψ = I , we have in this theorem a result about the mapping F itself.

Theorem 3.2.15 gives us a way to prove F is anM -function: if F is off-diagonally antitone

and qi is isotone for every i with hj(y) = y. In the following Theorem 3.2.16, we will show

that F in system (3.43) is an M -function if p is big enough.

Theorem 3.2.16 If p > max{ m̂
α1
, m̂
1−α1

} then F as defined in (3.43) is an M -function.

Proof. We have F is off-diagonally antitone, if p > max{ m̂
α1
, m̂
1−α1

} from Lemma 3.2.9. If

we can show qi is isotone for every i, then we are done. Now we will build the functions

qi(t) using the f1(x, y) and f2(x, y) as defined in (3.43). From the theorem statement

qi(t) =
2∑

j=1

fj(X + tei), 1 ≤ i ≤ 2, ei ∈ R2 (ith standard basis vector).

Specifically,

q1(t) = f1(x+ t, y) + f2(x+ t, y) = 2R1(x+ t)− 2R3(y)

and

q2(t) = f1(x, y + t) + f2(x, , y + t) = 2R1(x)− 2R3(y + t).
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Now differentiating q1 and q2, we have dq1
dt

= 2
α1
M(t) > 0 and dq2

dt
= 2

1−α1
M(t) > 0,

since M(x) is bounded away from 0 to ∞ for all x. Therefore, the functions qi are strictly

isotone. Hence, F is an M -function if p > max{ m̂
α1
, m̂
1−α1

}.

So we arrive at the following uniqueness result.

Theorem 3.2.17 Let F (x, y) = b be a system defined in (3.43). This system has an unique

solution if p > max{ m̂
α1
, m̂
1−α1

}.

Proof. Theorem 3.2.16 guarantees F is an M -function if p > max{ m̂
α1
, m̂
1−α1

}. Then

uniqueness follows from Lemma 3.2.14.

Remark: Uniqueness was shown in Theorem 3.2.17. Hence, Theorem 3.2.13 guarantees

convergence of nonlinear Jacobi to the unique solution.

Theorem 3.2.18 The nonlinear Jacobi iteration (3.40-3.41) converges to the unique solu-

tion of (3.43) starting from a supersolution or subsolution if p > max{ m̂
α1
, m̂
1−α1

}.

Proof. Theorem 3.2.13 has already shown convergence to a solution from a supersolution

or subsolution initial guess. Uniqueness was shown in Theorem 3.2.17, hence convergence

to the unique solution from a supersolution or subsolution follows.

Note, the Theorem 3.2.13 also guarantee the convergence of nonlinear Gauss Seidel (SOR,

ω = 1) for system (3.43). We have shown convergence to the unique solution of (3.43),

using a nonlinear Jacobi iteration (3.40-3.41) starting from a supersolution or subsolution.

Now we want to generalize this result of convergence for any initial guess. Theorem 3.2.19

below (which is Theorem 13.5.9 from Ortega and Rheinboldt [47]), guarantees convergence

from any start value if F is a continuous and onto M function.

Theorem 3.2.19 Let F : Rn → Rn be continuous M -function from Rn onto itself. Then

for any b ∈ Rn, any starting point x0 ∈ Rn, and any ω ∈ (0, 1], the SOR iteration (3.2), as

well as the Jacobi iteration, converges to the unique solution x∗ of Fu = b.
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Hence, for any initial guess, the SOR and nonlinear Jacobi iteration for a continuous

system will converge to the unique solution if the system F is an onto (or surjective) M -

function. The next lemma gives us a way to prove surjectivity.

Lemma 3.2.20 Let F : Rn → Rn be continuous, off-diagonally antitone, and strictly

isotone. Assume F (x) = b has a supersolution and a subsolution for any b ∈ Rn. Then F

is onto.

Proof. To prove F is onto, we need to show F is continuous, off-diagonally antitone,

strictly isotone, and F (x) = b has a solution for any b ∈ Rn. If F (x) = b has a subso-

lution or supersolution for any b ∈ Rn, then there existence of a solution is guaranteed by

Theorem 3.2.8.

Lemma 3.2.21 Let F (x, y) = b be the system (3.43), where b ∈ R2, then F is onto if

p > max{ m̂
α1
, m̂
1−α1

}.

Proof. F is continuous, strictly isotone, and off-diagonally antitone if p > max{ m̂
α1
, m̂
1−α1

}

from Lemma 3.2.9. Now we want to show that for any b = (b1, b2) ∈ R2, there exists

(x̌, y̌), (x̂, ŷ) ∈ R2, such that (x̌, y̌) ≤ (x̂, ŷ), and

F (x̌, y̌) ≤ b ≤ F (x̂, ŷ).

That is we require

R1(x̌)−R3(y̌) + px̌− py̌ ≤ b1 ≤ R1(x̂)−R3(ŷ) + px̂− pŷ

R1(x̌)−R3(y̌)− px̌+ py̌ ≤ b2 ≤ R1(x̂)−R3(ŷ)− px̂+ pŷ

⎫
⎪⎬
⎪⎭
. (3.67)

We now will find the region for subsolutions and supersolutions of our system. The in-

equalities for the subsolution are

R1(x̌)−R3(y̌) + px̌− py̌ ≤ b1

R1(x̌)−R3(y̌)− px̌+ py̌ ≤ b2

⎫
⎪⎬
⎪⎭
. (3.68)
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To show that the subsolution exists for any b1 and b2, we assume x̌ ≤ 0 and y̌ ≤ 1 then we

obtain

R1(x̌) =
1

α1

∫ x̌

0

m̌dx =
m̌

α1

x̌

and
1

1− α1

m̌(1− y̌) ≤ R3(y̌) ≤
1

1− α1

m̂(1− y̌).

Using these values of R1(x̌) and R3(y̌) in (3.68) holds if

m̌

α1

x̌− m̌

1− α1

(1− y̌) + px̌− py̌ ≤ b1

m̌

α1

x̌− m̌

1− α1

(1− y̌)− px̌+ py̌ ≤ b2

with x̌ ≤ 0 and y̌ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

which implies ( m̌
α1

+ p
)
x̌+

( m̌

1− α1

− p
)
y̌ − m̌

1− α1

≤ b1

( m̌
α1

− p
)
x̌+

( m̌

1− α1

+ p
)
y̌ − m̌

1− α1

≤ b2

with x̌ ≤ 0 and y̌ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.69)

If m̂
α1
< p then we obtain following inequalities

y̌ ≥
(

p+ m̌
α1

p− m̌
1−α1

)
x̌+

m̌+ b1(1− α1)

m̌− p(1− α1)

y̌ ≤
(

p− m̌
α1

p+ m̌
1−α1

)
x̌+

m̌+ b2(1− α1)

m̌+ p(1− α1)

with x̌ ≤ 0 and y̌ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.70)

There are the four cases depending on the values of b1 and b2 as shown in Figure 3.5. We

now obtain the subsolution regions from inequalities (3.70) as shown in Figure 3.5 when b1

and b2 satisfy strict inequalities. The existence of a subsolution region is also guaranteed

when b1 and b2 equals m̂
1−α1

. Hence the subsolution regions exists for any values of b1 and

b2 if m̂
1−α1

< p.
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x̌

y̌

y̌ = 1

(
0, m̂+b1(1−α1)

m̂−p(1−α1)

)

(
0, m̂+b2(1−α1)

m̂+p(1−α1)

)

(a) m̂
1−α1

< b1, m̂
1−α1

< b2

x̌

y̌

y̌ = 1

(
0, m̂+b1(1−α1)

m̂−p(1−α1)

)

(
0, m̂+b2(1−α1)

m̂+p(1−α1)

)

(b) m̂
1−α1

> b1, m̂
1−α1

< b2

x̌

y̌

y̌ = 1

(
0, m̂+b1(1−α1)

m̌−p(1−α1)

)

(
0, m̌+b2(1−α1)

m̌+p(1−α1)

)

(c) m̂
1−α1

< b1, m̂
1−α1

> b2

x̌

y̌

y̌ = 1
(
0, m̂+b1(1−α1)

m̌−p(1−α1)

)

(
0, m̌+b2(1−α1)

m̌+p(1−α1)

)

(d) m̂
1−α1

> b1, m̂
1−α1

> b2

Figure 3.5: Subsolution region of the two subdomain iteration if m̂
1−α1

< p with x̌ ≤ 0 and

x̌ ≤ 1.

Similarly, we will find a supersolution region for our system. The inequalities for the

supersolution are

R1(x̂)−R3(ŷ) + px̂− pŷ ≥ b1

R1(x̂)−R3(ŷ)− px̂+ pŷ ≥ b2

⎫
⎪⎬
⎪⎭
. (3.71)
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We wish to find a supersolution for any b1 and b2. Consider x̂ ≥ 0 and ŷ ≥ 1 then we

obtain
m̌

α1

x̂ ≤ R1(x̂) ≤
m̂

α1

x̂

and

R3(ŷ) =
1

1− α1

∫ 1

ŷ

m̂dx =
m̂

α1

(1− ŷ).

Using these values of R1(x̂) and R3(ŷ) in (3.71) holds if

m̂

α1

x̂− m̂

1− α1

(1− ŷ) + px̂− pŷ ≥ b1

m̂

α1

x̂− m̂

1− α1

(1− ŷ)− px̂+ pŷ ≥ b2

with x̂ ≥ 0 and ŷ ≥ 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Rewriting this system gives
( m̂
α1

+ p
)
x̂+

( m̂

1− α1

− p
)
ŷ − m̂

1− α1

≥ b1

( m̂
α1

− p
)
x̂+

( m̂

1− α1

+ p
)
ŷ − m̂

1− α1

≥ b2

with x̂ ≥ 0 and ŷ ≥ 1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.72)

If m̂
1−α1

< p then we obtain

ŷ ≤
(

p+ m̂
α1

p− m̂
1−α1

)
x̂+

m̂+ b1(1− α1)

m̂− p(1− α1)

ŷ ≥
(

p− m̂
α1

p+ m̂
1−α1

)
x̂+

m̂+ b2(1− α1)

m̂+ p(1− α1)

with x̂ ≥ 0 and ŷ ≥ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.73)

There are the four cases depending on the values of b1 and b2 as shown in Figure 3.6.

We now obtain the supersolution regions from inequalities (3.73) as shown in Figure 3.6

when b1 and b2 satisfy strict inequalities. The existence of a supersolution region is also

guaranteed when b1 and b2 equals m̂
1−α1

. Hence the supersolution regions exists for any b1

and b2, if m̂
1−α1

< p.
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x̂

ŷ

ŷ = 1

(
0, m̂+b1(1−α1)

m̂−p(1−α1)

)

(
0, m̂+b2(1−α1)

m̂+p(1−α1)

)

(a) m̂
1−α1

< b1, m̂
1−α1

< b2

x̂

ŷ

ŷ = 1

(
0, m̂+b1(1−α1)

m̂−p(1−α1)

)

(
0, m̂+b2(1−α1)

m̂+p(1−α1)

)

(b) m̂
1−α1

> b1 and m̂
1−α1

< b2

x̂

ŷ

ŷ = 1

(
0, m̂+b1(1−α1)

m̂−p(1−α1)

)
(
0, m̂+b2(1−α1)

m̂+p(1−α1)

)

(c) m̂
1−α1

< b1 and m̂
1−α1

> b2

x̂

ŷ

ŷ = 1

(
0, m̂+b1(1−α1)

m̂−p(1−α1)

)

(
0, m̂+b2(1−α1)

m̂+p(1−α1)

)

(d) m̂
1−α1

> b1 and m̂
1−α1

> b2

Figure 3.6: Supersolution region for the two subdomain iteration if m̂
1−α1

< p with x̂ ≥ 0

and ŷ ≥ 1.

Hence, we can conclude that supersolution and subsolution exists for the system (3.25-

3.26) if p > max{ m̂
α1
, m̂
1−α1

}. Therefore we can conclude F is surjective (or onto) from

Lemma 3.2.20.

Theorem 3.2.22 Iteration (3.40) or (3.41) converge to the unique solution for any initial
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guess if p > max{ m̂
α1
, m̂
1−α1

}.

Proof. The assumptions of Theorem 3.2.19 have been verified in Theorem 3.2.16 and

Lemma 3.2.21 if p > max{ m̂
α1
, m̂
1−α1

}. Hence the SOR and nonlinear Jacobi iteration

converge to the unique solution from any initial guess.

We proved that our iteration converges without conditions on p in Theorem 2.2.13 using

the Global Peaceman-Rachford Theorem 2.2.9. Here we get a condition on p. The general

question is why this happened? If we start with a supersolution or subsolution then the M

function criterion guarantees convergence will be monotonic. Global Peaceman-Rachford

does not guarantee monotonicity. Monotonicity is a stronger requirement, which places a

restriction on p.

3.2.3 Alternative Approach to Show Well-posedness for the Two Sub-

domains Iteration

The iteration (3.40 -3.41) is a nonlinear Jacobi iteration for the system of equations

R1(x)−R3(y) + px− py = 0

−R3(y) +R1(x) + py − px = 0.

Adding the equations in system (3.42) we obtain

R1(x) = R3(y), (3.74)

and subtracting the second equation from the first equation in system (3.42) gives us

x = y. (3.75)

Substituting the value of y from equation (3.75) in equation (3.75) we obtain

R1(x) = R3(x),
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which is equivalent to

1

α1

∫ x

0

M(x)dx =
1

1− α1

∫ 1

x

M(x)dx. (3.76)

We now want to know if equation (3.76) has a unique solution? Let
∫ 1

0
M(x)dx = C. Then

from (3.76) we obtain

1

α1

∫ x

0

M(x)dx =
1

1− α1

(
C −

∫ x

0

M(x)dx
)
, (3.77)

this can be written as
1

α1(1− α1)

∫ x

0

M(x)dx =
1

1− α1

C,

or
1

α1

∫ x

0

M(x)dx = C,

which implies

R1(x) = C. (3.78)

Since R1(x) is continuous and uniformly monotonic increasing, it is onto, and hence, a

unique solution exists for equation (3.78).

Similarly, we have from (3.76)

1

1− α1

∫ 1

x

M(x)dx =
1

α1

(
C −

∫ 1

x

M(x)dx
)
.

This gives us
1

α1(1− α1)

∫ 1

x

M(x)dx =
1

α1

C,

or
1

1− α1

∫ 1

x

M(x)dx = C.

This is equivalent to

R3(x) = C. (3.79)

Since R3(x) is continuous and uniformly monotonic decreasing, it is onto and therefore, a

unique solution exists for equation (3.79).
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3.3 An Interface Iteration for Three Subdomains

We decompose the computational domain Ωc = (0, 1) into three nonoverlapping subdo-

mains Ω1 = (0, α1), Ω2 = (α1, α2), and Ω3 = (α2, 1). The parallel version of interface

✲ ξ| | | |
0 α1 α2 1

✲✛
Ω1

✲✛ Ω2

✲✛
Ω3

Figure 3.7: Decomposition into three nonoverlapping subdomains

iteration from (3.20) on three subdomains is given by

R1(x
n
1 (α1)) + pxn1 (α1) = R2(x

n−1
2 (α1), x

n−1
2 (α2)) + pxn−1

2 (α1) (3.80)

R2(x
n
2 (α1), x

n
2 (α2))− pxn2 (α1) = R1(x

n−1
1 (α1))− pxn−1

1 (α1)

R2(x
n
2 (α1), x

n
2 (α2)) + pxn2 (α2) = R3(x

n−1
3 (α2)) + pxn−1

3 (α2)

⎫
⎪⎬
⎪⎭

(3.81)

and

R3(x
n
3 (α2))− pxn3 (α2) = R2(x

n−1
2 (α1), x

n−1
2 (α2))− pxn−1

2 (α2). (3.82)

The operators R1, R2 and R3 are given by

R1(x) =
1

α1

∫ x

0

M(x̃)dx̃

R2(y, z) =
1

α2 − α1

∫ z

y

M(x̃)dx̃

and R3(w) =
1

1− α2

∫ 1

w

M(x̃)dx̃.

(3.83)

We are interested in the following questions: Is the system (3.80-3.82) well-posed? Can we

solve for xn1 (α1), xn2 (α1), xn2 (α2), and xn3 (α2) for the parallel iteration? How to compute

them? Does iteration (3.80-3.82) converge?

In the next section we wise to prove the iteration (3.80-3.82) is well-posed and give a

way of solving the equations for given right-hand side.
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3.3.1 Well-posedness of the Three Subdomain Iteration for a Given

Right-Hand Side

To prove the iteration (3.80-3.82) is well defined for a given right-hand side, let ζ1 =

R2(x
n−1
2 (α1), x

n−1
2 (α2))+px

n−1
2 (α1), ζ2 = R1(x

n−1
1 (α1))−pxn−1

1 (α1), ζ3 = R3(x
n−1
3 (α2))+

pxn−1
3 (α2), and ζ4 = −R2(x

n−1
2 (α1), x

n−1
2 (α2)) + pxn−1

2 (α2), then the system (3.80-3.82)

becomes

R1(x
n
1 (α1)) + pxn1 (α1) = ζ1,

R2(x
n
2 (α1), x

n
2 (α2))− pxn2 (α1) = ζ2

R2(x
n
2 (α1), x

n
2 (α2)) + pxn2 (α2) = ζ3

⎫
⎪⎬
⎪⎭

[Inner subdomain iteration]

R3(x
n
3 (α2))− pxn3 (α2) = ζ4.

(3.84)

We wish to consider existence and uniqueness of solutions for the system

R1(x) + px = ζ1,

−R2(y, z) + py = ζ2

R2(y, z) + pz = ζ3

⎫
⎪⎬
⎪⎭

[Coupled system]

−R3(w) + pw = ζ4.

(3.85)

The first and the last equations arise from the boundary subdomains of system (3.85),

and they are separated and independent. However, the coupled equations of the system

(3.85) arise from the inner subdomain. We first study boundary subdomains then we ana-

lyze the inner subdomain.

To show the boundary subdomain equations are well defined we take first and last equa-

tions from the system (3.85). This gives

R1(x) + px = ζ1

−R3(w) + pw = ζ4.
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We wish to consider the existence and uniqueness of solutions for these equations. This is

equivalent to solving

f1(x) ≡ R1(x) + px = ζ1 (3.86)

f2(w) ≡ −R3(w) + pw = ζ4. (3.87)

This gives a decoupled system of the form F (x,w) = b, where F = (f1, f2)
T and b =

(ζ1, ζ4). To show the solution exists and is unique we apply Lemma 3.2.2.

Theorem 3.3.1 The equations (3.86) and (3.87) have unique solutions for any p > 0.

Proof. The system (3.86-3.87) is the equivalent system of (3.33 - 3.34), thus Theorem 3.2.3

gives us existence and uniqueness of solution for the equations (3.86-3.87).

We now wish to show the inner subdomain system is well defined. The coupled equa-

tions can be written as

−R2(y, z) + py = ζ2

R2(y, z) + pz = ζ3

⎫
⎪⎬
⎪⎭
. (3.88)

We wish to show the existence of y and z solving (3.88). This is equivalent to solving

F (y, z) = b, where F = (f1, f2)
T , b = (ζ2, ζ3)

T and

f1(y, z) ≡ −R2(y, z) + py = ζ2 (3.89)

f2(y, z) ≡ R2(y, z) + pz = ζ3. (3.90)

To show the solutions exists for this system we will apply Theorem 3.2.8.

Lemma 3.3.2 Consider the coupled (inner) system F (y, z) = b from (3.88) and the op-

erator R2 as defined in (3.83). Then F is continuous, strictly diagonally isotone and off-

diagonally antitone.
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Proof. The operator R2 is continuous and strictly increasing in z with y fixed and strictly

decreasing in y with z fixed. Thus F is continuous. Now we want to show that this coupled

system is strictly diagonally isotone. To show this we differentiate f1 with respect to y to

obtain

∂f1
∂y

= −∂R2

∂y
+ p =

1

α2 − α1

M(y) + p > 0.

This tells us f1 is strictly isotone with respect to y. We differentiate f2 with respect to z,

we have

∂f2
∂z

=
∂R2

∂z
+ p =

1

α2 − α1

M(z) + p > 0.

This implies that f2 is strictly isotone with respect to z. Therefore, F is strictly diagonally

isotone.

We will show that the system (3.88) is off-diagonally antitone. To show this, we differ-

entiate f1 with respect to z, we get

∂f1
∂z

= −∂R2

∂z
= − 1

α2 − α1

M(z) < 0,

which implies f1 is antitone with respect to z. We differentiate f2 with respect to y, we

have

∂f2
∂y

=
∂R2

∂y
= − 1

α2 − α1

M(y) < 0.

This implies that f2 is antitone with respect to y. Therefore, F is off-diagonally antitone.

We wish to derive an upper and lower bound of the operator R2 using the definition of

R2 and bounds on M in following lemma.
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Lemma 3.3.3 If y ≤ z then R2(y, z) satisfies

1

α2 − α1

m̌(z − y) ≤ R2(y, z) ≤
1

α2 − α1

m̂(z − y), (3.91)

and − 1

α2 − α1

m̂(z − y) ≤ −R2(y, z) ≤ − 1

α2 − α1

m̌(z − y). (3.92)

If y ≥ z then R2(y, z) satisfies

1

α2 − α1

m̌(y − z) ≤ −R2(y, z) ≤
1

α2 − α1

m̂(y − z). (3.93)

and − 1

α2 − α1

m̂(y − z) ≤ R2(y, z) ≤ − 1

α2 − α1

m̌(y − z) (3.94)

Proof. We now use the definition of R2 and bounds on M to derive an inequality to bound

the operator R2(y, z) when y ≤ z.

Assume y ≤ z then we wish to find upper and lower bounds on R2(y, z). To do this

we integrate both sides of m̌ ≤ M(x) ≤ m̂ from y to z and multiply by 1
α2−α1

, with

α2 − α1 > 0. This gives

1

α2 − α1

∫ z

y

m̌dx ≤ 1

α2 − α1

∫ z

y

M(x)dx ≤ 1

α2 − α1

∫ z

y

m̂dx,

Using the definition of R2 we have

1

α2 − α1

m̌(z − y) ≤ R2(y, z) ≤
1

α2 − α1

m̂(z − y).

Multiplying both sides of this inequality by −1, we find

− 1

α2 − α1

m̂(z − y) ≤ −R2(y, z) ≤ − 1

α2 − α1

m̌(z − y).

Hence we obtain a upper and lower bound the operator R2(y, z) as required when y ≤ z.

Similarly, if y ≥ z, then we want to bound the operator R2(y, z). We integrate both

sides of m̌ ≤M(x) ≤ m̂ from z to y and multiply by 1
α2−α1

. This gives us

1

α2 − α1

∫ y

z

m̌dx ≤ 1

α2 − α1

∫ y

z

M(x)dx ≤ 1

α2 − α1

∫ z

y

m̂dx
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Using the definition of R2 we find

1

α2 − α1

m̌(y − z) ≤ R2(z, y) ≤
1

α2 − α1

m̂(y − z),

which is equivalent to

1

α2 − α1

m̌(y − z) ≤ −R2(y, z) ≤
1

α2 − α1

m̂(y − z). (3.95)

Multiply both sides of this inequality by −1, we have

− 1

α2 − α1

m̂(y − z) ≤ R2(y, z) ≤ − 1

α2 − α1

m̌(y − z). (3.96)

Therefore we get upper and lower bounds on the operator R2(y, z) as required for y ≥

z.

These upper and lower bounds ofR2 will be useful to prove the existence of a supersolution

and subsolution in Lemma 3.3.4.

Lemma 3.3.4 For any given b ∈ R2, there exists a supersolution and subsolution for the

system F (x, y) = b from (3.88).

Proof. We want to show that for any b ∈ R2, there exists x̌, ŷ ∈ R2, such that x̌ ≤ ŷ,

where x̌ = (x̌1, x̌2) and ŷ = (ŷ1, ŷ2), and

F (x̌1, x̌2) ≤ b ≤ F (ŷ1, ŷ2).

That is we require

−R2(x̌1, x̌2) + px̌1 ≤ b1 ≤ −R2(ŷ1, ŷ2) + pŷ1,

R2(x̌1, x̌2) + px̌2 ≤ b2 ≤ R2(ŷ1, ŷ2) + pŷ2.

⎫
⎪⎬
⎪⎭
. (3.97)

We find the region for subsolution and supersolution satisfying (3.97) using two different

approaches as given below.

90



Chapter 3. Optimized Schwarz Method for an Arbitrary Number of Subdomains

First approach: To find a subsolution, we have to satisfy the

−R2(x̌1, x̌2) + px̌1 ≤ b1

R2(x̌1, x̌2) + px̌2 ≤ b2

⎫
⎪⎬
⎪⎭
. (3.98)

There are two cases: x̌1 can satisfy x̌1 ≤ x̌2 or x̌1 ≥ x̌2. Let us first consider

x̌1 ≤ x̌2. (3.99)

Using Lemma 3.3.3 the system (3.98) holds if

− 1

α2 − α1

m̌(x̌2 − x̌1) + px̌1 ≤ b1

1

α2 − α1

m̂(x̌2 − x̌1) + px̌2 ≤ b2

⎫
⎪⎪⎬
⎪⎪⎭
. (3.100)

Hence if x̌1 ≤ x̌2 then the inequalities for the subsolution are

x̌2 ≥
m̌+ (α2 − α1)p

m̌
x̌1 −

(α2 − α1)b1
m̌

x̌2 ≤
m̂

m̂+ (α2 − α1)p
x̌1 +

(α2 − α1)b2
m̂+ (α2 − α1)p

⎫
⎪⎪⎬
⎪⎪⎭
. (3.101)

There are the four cases depending on the sign of b1 and b2 as shown in Figure 3.8. If

x̌1 ≤ x̌2 then we obtain the subsolution regions from inequalities (3.101) as shown in

Figure 3.8 when b1 and b2 satisfy strict inequalities. The existence of a subsolution region

is also guaranteed when b1 and b2 equals 0. Hence the subsolution exists for all b1 and b2 if

x̌1 ≤ x̌2.

Let us consider the case when

x̌1 ≥ x̌2.

Using Lemma 3.3.3 the system (3.98) holds if

1

α2 − α1

m̂(x̌1 − x̌2) + px̌1 ≤ b1

− 1

α2 − α1

m̌(x̌1 − x̌2) + px̌2 ≤ b2

⎫
⎪⎪⎬
⎪⎪⎭
. (3.102)
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x̌1

x̌2

− (α2−α1)b1
m̌

(α2−α1)b2
(α2−α1)p+m̂

(a) b1 > 0 and b2 > 0

x̌1

x̌2

− (α2−α1)b1
m̌

(α2−α1)b2
(α2−α1)p+m̂

(b) b1 > 0 and b2 < 0

x̌1

x̌2

− (α2−α1)b1
m̌

(α2−α1)b2
(α2−α1)p+m̂

(c) b1 < 0 and b2 < 0

x̌1

x̌2

− (α2−α1)b1
m̌ (α2−α1)b2

(α2−α1)p+m̂

(d) b1 < 0 and b2 > 0

Figure 3.8: Subsolution region for the coupled (inner) system in the three subdomain iter-

ation when x̌1 ≤ x̌2.

Hence if x̌1 ≥ x̌2 then the inequalities for the subsolution are

x̌2 ≥
m̂+ (α2 − α1)p

m̂
x̌1 −

(α2 − α1)b1
m̂

x̌2 ≤
m̌

m̌+ (α2 − α1)p
x̌1 +

(α2 − α1)b2
m̌+ (α2 − α1)p

⎫
⎪⎪⎬
⎪⎪⎭
. (3.103)

These are the four cases depending on the sign of b1 or b2 as shown in Figure 3.9. If
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x̌1

x̌2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(a) b1 > 0 and b2 > 0

x̌1

x̌2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(b) b1 > 0 and b2 < 0

x̌1

x̌2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(c) b1 < 0 and b2 < 0

x̌1

x̌2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(d) b1 < 0 and b2 > 0

Figure 3.9: Subsolution region for the coupled (inner) system in the three subdomain iter-

ation when x̌1 ≥ x̌2.

x̌1 ≥ x̌2 then we obtain the subsolution regions from inequalities (3.103) as shown in

Figure 3.9 when b1 and b2 satisfy strict inequalities. The existence of a subsolution region

is also guaranteed when b1 and b2 equals 0. Hence if x̌1 ≥ x̌2 then solution sets exist for

the subsolution for all b1 and b2. Therefore, the subsolution exists for the coupled system.
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Similarly, to find the supersolution, we have to satisfy

b1 ≤ −R2(ŷ1, ŷ2) + pŷ1,

b2 ≤ R2(ŷ1, ŷ2) + pŷ2

⎫
⎪⎬
⎪⎭
. (3.104)

There are two cases for supersolution: ŷ1 can satisfy ŷ1 ≤ ŷ2 or ŷ1 ≥ ŷ2. Let us first

consider ŷ1 ≤ ŷ2. Using Lemma 3.3.3 the system (3.104) holds if

b1 ≤ − 1

α2 − α1

m̂(ŷ2 − ŷ1) + pŷ1

b2 ≤
1

α2 − α1

m̌(ŷ2 − ŷ1) + pŷ2

⎫
⎪⎪⎬
⎪⎪⎭
. (3.105)

Hence the inequalities for the supersolution are

ŷ2 ≤
m̂+ (α2 − α1)p

m̂
ŷ1 −

(α2 − α1)b1
m̂

ŷ2 ≥
m̌

m̌+ (α2 − α1)p
ŷ1 +

(α2 − α1)b2
m̌+ (α2 − α1)p

⎫
⎪⎪⎬
⎪⎪⎭
, (3.106)

when ŷ1 ≤ ŷ2. These are the four cases depending on the sign of b1 and b2 as shown

in Figure 3.10. If ŷ1 ≥ ŷ2 then we obtain the supersolution regions from inequalities

(3.106) as shown in Figure 3.10 when b1 and b2 satisfy strict inequalities. The existence

of a supersolution region is also guaranteed when b1 and b2 equals 0. Hence supersolution

region exists for all b1 and b2 when ŷ1 ≤ ŷ2 .

Now let us consider the case where ŷ1 ≥ ŷ1. Using Lemma 3.3.3 the system (3.104)

holds if

b1 ≤
1

α2 − α1

m̌(ŷ1 − ŷ2) + pŷ1

b2 ≤ − 1

α2 − α1

m̂(ŷ1 − ŷ2) + pŷ2

⎫
⎪⎪⎬
⎪⎪⎭
. (3.107)

Hence, the inequalities for the supersolution are

ŷ2 ≤
m̌+ (α2 − α1)p

m̌
ŷ1 −

(α2 − α1)b1
m̌

ŷ2 ≥
m̂

m̂+ (α2 − α1)p
ŷ1 +

(α2 − α1)b2
m̂+ (α2 − α1)p

⎫
⎪⎪⎬
⎪⎪⎭
. (3.108)
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ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(a) b1 > 0 and b2 > 0

ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(b) b1 > 0 and b2 < 0

ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(c) b1 < 0 and b2 < 0

ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(d) b1 < 0 and b2 > 0

Figure 3.10: Supersolution region for the coupled (inner) system in the three subdomain

iteration when ŷ1 ≤ ŷ2

when ŷ1 ≥ ŷ2. There are the four cases depending on the sign of b1 and b2 as shown

in Figure 3.11. If ŷ1 ≥ ŷ2 then we obtain the supersolution regions from inequalities

(3.108) as shown in Figure 3.11 when b1 and b2 satisfy strict inequalities. The existence

of a supersolution region is also guaranteed when b1 and b2 equals 0. Hence we have a
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ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(a) b1 > 0 and b2 > 0

ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(b) b1 > 0 and b2 < 0

ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(c) b1 < 0 and b2 < 0

ŷ1

ŷ2

− (α2−α1)b1
m̂

(α2−α1)b2
(α2−α1)p+m̌

(d) b1 < 0 and b2 > 0

Figure 3.11: Supersolution region for the coupled (inner) system in the three subdomain

iteration when ŷ1 ≥ ŷ2

supersolution region if ŷ1 ≥ ŷ2, and for all b1 and b2. Then a supersolution exists for the

coupled (inner) system when ŷ1 ≥ ŷ2. As shown in Figures (3.8-3.11), we can conclude

supersolution and subsolution exists for the coupled (inner) system in the three subdomain

iteration for all b1 and b2.
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We observed from Figures 3.8-3.11 that the supersolution is greater then the subsolu-

tion.

Second approach: Here we show the existence of a subsolution and supersolution for

the coupled (inner) system using Fourier-Motzkin elimination. From (3.100) the inequali-

ties for the subsolution are(
p+

m̌

α2 − α1

)
x̌1 −

m̌

α2 − α1

x̌2 ≤ b1

− m̂

α2 − α1

x̌1 + (p+
m̂

α2 − α1

)x̌2 ≤ b2

⎫
⎪⎪⎬
⎪⎪⎭
. (3.109)

We first eliminate the variable x̌1. To do this partition the inequalities (3.109) and x̌1 ≤ x̌2

into two groups I− and I+, according to the coefficient of x̌1. We have

I− : − m̂
α2−α1

x̌1 + (p+ m̂
α2−α1

)x̌2 ≤ b2,

and

I+ :

⎧
⎪⎨
⎪⎩

(
p+ m̌

α2−α1

)
x̌1 − m̌

α2−α1
x̌2 ≤ b1

x̌1 − x̌2 ≤ 0.

We make the coefficient of x̌1 a −1 for the inequalities in I− and the coefficient of x̌1 a +1

for the inequalities in I+ . This gives us

I− : −x̌1 +
(

p+ m̂
α2−α1
m̂

α2−α1

)
x̌2 ≤ b2

m̂
α2−α1

and

I+ :

⎧
⎪⎨
⎪⎩

x̌1 −
(

m̌
α2−α1

p+ m̌
α2−α1

)
x̌2 ≤ b1

p+ m̌
α2−α1

x̌1 − x̌2 ≤ 0.

Isolating the variable x̌1 in each group gives

I− :

(
p+ m̂

α2−α1
m̂

α2−α1

)
x̌2 − b2

m̂
α2−α1

≤ x̌1,

and

I+ :

⎧
⎪⎨
⎪⎩

x̌1 ≤
(

m̌
α2−α1

p+ m̌
α2−α1

)
x̌2 +

b1
p+ m̌

α2−α1

x̌1 ≤ x̌2.
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This implies that

{(
p+ m̂

α2−α1

m̂
α2−α1

)
x̌2 −

b2
m̂

α2−α1

}
≤ x̌1 ≤

⎧
⎪⎨
⎪⎩

(
m̌

α2−α1

p+ m̌
α2−α1

)
x̌2 +

b1
p+ m̌

α2−α1

x̌2

⎫
⎪⎬
⎪⎭
,

and eliminating x̌1 we obtain
(

p+ m̂
α2−α1
m̂

α2−α1

)
x̌2 − b2

m̂
α2−α1

≤
(

m̌
α2−α1

p+ m̌
α2−α1

)
x̌2 +

b1
p+ m̌

α2−α1(
p+ m̂

α2−α1
m̂

α2−α1

)
x̌2 − b2

m̂
α2−α1

≤ x̌2

⎫
⎪⎪⎬
⎪⎪⎭
.

This implies

[
p2 + p

α2−α1
(m̂+ m̌)

]
x̌2 ≤ b2

(
p+ m̌

α2−α1

)
+ m̂b1

α2−α1

px̌2 ≤ b2

⎫
⎪⎬
⎪⎭
.

This equivalent to

x̌2 ≤ b2

(
p+ m̌

α2−α1

)
+

m̂b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

x̌2 ≤ b2
p
.

⎫
⎪⎬
⎪⎭
. (3.110)

The system (3.110) does not involve the variable x̌1, and we can find x̌2 for any value of

b1 and b2, and x̌2 ≤ min
(

b2
p
,
b2

(
p+ m̌

α2−α1

)
+

m̂b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

)
, so this system is feasible. Hence the

original system (3.100) is feasible when x̌1 ≤ x̌2 and for all b1 and b2.

Now let us consider the case when

x̌1 ≥ x̌2. (3.111)

From (3.102) the inequalities for the subsolution are
(
p+

m̌

α2 − α1

)
x̌1 −

m̂

α2 − α1

x̌2 ≤ b1

− m̌

α2 − α1

x̌1 + (p+
m̌

α2 − α1

)x̌2 ≤ b2

⎫
⎪⎪⎬
⎪⎪⎭
.

Now eliminating as above we obtain

[
p2 + p

α2−α1
(m̂+ m̌)

]
x̌2 ≤ b2

(
p+ m̂

α2−α1

)
+ m̌b1

α2−α1

px̌2 ≤ b1

⎫
⎪⎬
⎪⎭
.
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This implies that

x̌2 ≤ b2

(
p+ m̂

α2−α1

)
+

m̌b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

x̌2 ≤ b1
p

⎫
⎪⎬
⎪⎭
. (3.112)

We observe that the system (3.110) does not involve the variable x̌1, and we can find x̌2 for

any value of b1 and b2, and x̌2 ≤ min
(

b1
p
,
b2

(
p+ m̂

α2−α1

)
+

m̌b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

)
, so this system is also fea-

sible. Hence the system (3.102) is feasible when x̌1 ≥ x̌2 and for all b1 and b2. Therefore,

a subsolution exists for the coupled system.

We now repeat for the supersolution for the case ŷ1 ≤ ŷ2. Using (3.105) the inequalities

for the supersolution are
(
p+ m̂

α2−α1

)
ŷ1 − m̂

α2−α1
ŷ2 ≥ b1

− m̌
α2−α1

ŷ1 +

(
p+ m̌

α2−α1

)
ŷ2 ≥ b2

⎫
⎪⎪⎬
⎪⎪⎭
. (3.113)

We now eliminate the variable ŷ1. To do this partition the inequalities (3.113) and ŷ1 ≤ ŷ2

into two groups I− and I+, according to the coefficient of x̌1. This gives

I− :

⎧
⎪⎨
⎪⎩

− m̌
α2−α1

ŷ1 +

(
p+ m̌

α2−α1

)
ŷ2 ≥ b2,

−ŷ1 + ŷ2 ≥ 0.

I+ :

(
p+ m̂

α2−α1

)
ŷ1 − m̂

α2−α1
ŷ2 ≥ b1

Now make the coefficient of ŷ1 a −1 for the inequalities in I− and the coefficient of ŷ1 a

+1 for the inequalities in I+. This gives

I− :

⎧
⎪⎨
⎪⎩

−ŷ1 +
(

p+ m̌
α2−α1
m̌

α2−α1

)
ŷ2 ≥ b2

m̌
α2−α1

−ŷ1 + ŷ2 ≥ 0,

and

I+ : ŷ1 −
(

m̂
α2−α1

p+ m̂
α2−α1

)
ŷ2 ≥ b1

p+ m̂
α2−α1

.
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Isolating the variable ŷ1 in each group gives us

I− :

⎧
⎪⎨
⎪⎩

(
p+ m̌

α2−α1
m̌

α2−α1

)
ŷ2 − b2

m̌
α2−α1

≥ ŷ1

ŷ2 ≥ ŷ1,

and

I+ : ŷ1 ≥
(

m̂
α2−α1

p+ m̂
α2−α1

)
ŷ2 +

b1
p+ m̂

α2−α1

.

This implies that

{(
p+ m̂

α2−α1

m̂
α2−α1

)
ŷ2 +

b1
m̂

α2−α1

}
≤ ŷ1 ≤

⎧
⎪⎨
⎪⎩

(
m̌

α2−α1

p+ m̌
α2−α1

)
ŷ2 − b2

p+ m̌
α2−α1

ŷ2

⎫
⎪⎬
⎪⎭
.

Eliminating ŷ1 we obtain
(

p+ m̂
α2−α1
m̂

α2−α1

)
ŷ2 +

b1
m̂

α2−α1

≤
(

m̌
α2−α1

p+ m̌
α2−α1

)
ŷ2 − b2

p+ m̌
α2−α1(

p+ m̂
α2−α1
m̂

α2−α1

)
ŷ2 +

b1
m̂

α2−α1

≤ ŷ2,

⎫
⎪⎪⎬
⎪⎪⎭
.

This implies

[
p2 + p

α2−α1
(m̂+ m̌)

]
ŷ2 ≤ b2

(
p+ m̂

α2−α1

)
+ m̌b1

α2−α1

pŷ2 ≤ b1

⎫
⎪⎬
⎪⎭
.

This equivalent to

ŷ2
≤b2

(
p+ m̂

α2−α1

)
+

m̌b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

ŷ2 ≤ b1
p

⎫
⎪⎬
⎪⎭
. (3.114)

The system (3.114) does not involve the variable ŷ1, and we can find ŷ2 for any value of

b1 and b2, and x̌2 ≤ min
(

b1
p
,
≤b2

(
p+ m̂

α2−α1

)
+

m̌b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

)
, so this system is feasible. Hence the

original system (3.105) is feasible when ŷ1 ≤ ŷ2 and for all b1 and b2.

Now consider ŷ1 ≥ ŷ2. Using (3.107) the inequalities for the supersolution are
(
p+ m̌

α2−α1

)
ŷ1 − m̌

α2−α1
ŷ2 ≥ b1

− m̂
α2−α1

ŷ1 +

(
p+ m̂

α2−α1

)
ŷ2 ≥ b2

⎫
⎪⎪⎬
⎪⎪⎭
.
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Now eliminating as above we obtain

[
p2 + p

α2−α1
(m̂+ m̌)

]
ŷ2 ≥ b2

(
p+ m̌

α2−α1

)
+ m̂b1

α2−α1

pŷ2 ≥ b2

⎫
⎪⎬
⎪⎭
.

This implies that

ŷ2 ≥ b2

(
p+ m̌

α2−α1

)
+

m̂b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

ŷ2 ≥ b2
p

⎫
⎪⎬
⎪⎭
. (3.115)

We observe that the system (3.115) does not involve the variable ŷ1, and we can find ŷ2

for any value of b1 and b2, and x̌2 ≤ min
(

b2
p
,
b2

(
p+ m̌

α2−α1

)
+

m̂b1
α2−α1

p2+ p
α2−α1

(m̂+m̌)

)
, thus this system is

also feasible. Hence our original system (3.107) is feasible when ŷ1 ≥ ŷ2 and for all b1

and b2. Therefore, supersolution exists for the coupled system. Hence we can conclude

that supersolution and subsolution exists for the coupled system of the three subdomain

iteration for all b1 and b2.

Theorem 3.3.5 Consider the coupled (inner) system F (y, z) = b from (3.88) where the

operator R2 is defined in (3.83). This system has (at least one) solution and moreover

nonlinear SOR (or Jacobi) will converge starting from a supersolution or a subsolution.

Proof. Lemmas 3.3.2 and 3.3.4 show that F is a continuous, off-diagonally antitone, and

strictly diagonally isotone and there exists a supersolution and subsolution. Therefore by

Theorem 3.2.8 a solution exists and nonlinear SOR (or Jacobi) will converge starting from

a supersolution or a subsolution.

Uniqueness for Inner Subdomain Iteration of the Three Subdomains

We are interested in question of uniqueness for the system of (3.88) for a given right-hand

side. We first will show that F defined in system (3.89 - 3.90) is an M -function, and then

we apply Theorem 3.2.15.
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Theorem 3.3.6 Consider the coupled (inner) system F (y, z) = b from (3.88) and the op-

erator R2 is defined in (3.83). F : R2 → R2 is a continuous M -function for all p > 0.

Proof. The system (3.88) can be written as F (y, z) = b, where, b = (0, 0)T and

f1(y, z) = −R2(y, z) + py − ζ2,

f2(y, z) = R2(y, z) + pz − ζ3.

(3.116)

Lemma 3.3.2 proves F is off-diagonally antitone. Using Theorem 3.2.15 we now build the

functions qi(t). Choosing hj = 1 in (3.66), we construct the functions qi(t) as

qi(t) =
2∑

j=1

fj(x+ tei), 1 ≤ i ≤ 2,

where ei denotes the ith standard basis vector in R2. When i = 1, we have

q1(t) = f1(y + t, z) + f2(y + t, z)

= −R2(y + t, z) + p(y + t)− ζ2 +R2(y + t, z) + pz − ζ3

= p(y + t) + pz − ζ2 − ζ3.

Differentiating with respect to t we have

dq1
dt

= p > 0.

Again, when i = 2 then

q2(t) = f1(y, z + t) + f2(y, z + t)

= −R2(y, z + t) + py − ζ2 +R2(y, z + t) + p(z + t)− ζ3

= py + p(z + t)− ζ2 − ζ3.

Differentiate with respect to t we obtain

dq2
dt

= p > 0.

Therefore dq1
dt

and dq2
dt

are strictly positive, hence the functions qi are strictly isotone. There-

fore by Theorem 3.2.15 the coupled system (3.88) defines anM -function for all p > 0.
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Theorem 3.3.7 Consider the coupled (inner) system F (y, z) = b from (3.88) with the

operator R2 is defined in (3.83). This system has a unique solution.

Proof. The assumptions of the Lemma 3.2.14 has been verified by the Lemma 3.3.6. Hence

the system (3.88) has a unique solution.

Lemma 3.3.8 Consider the coupled (inner) system F (y, z) = b from (3.88) where the

operator R2 is defined in (3.83). The function F : R2 → R2 is onto.

Proof. The assumptions of Lemma 3.2.20 has been verified by Lemmas 3.3.2 and 3.3.4.

Hence F is onto by Lemma 3.2.20.

Theorem 3.3.9 Consider the coupled (inner) system F (y, z) = b from (3.88). Nonlinear

Jacobi (or SOR) will converge to the unique solution for any starting value.

Proof. The assumptions of Theorem 3.2.19 has been verified by Theorem 3.3.6 and Lemma

3.3.8. Hence by Theorem 3.2.19 we can conclude the nonlinear Jacobi (or SOR) will

converge to the unique solution for any starting value.

Hence Gauss-Jacobi or Gauss-Seidel iteration for the coupled (inner) system of 3.85 con-

verge to a unique solution by the Theorem 3.3.9. In the next section we will show the whole

three subdomain system is well-posed.

3.3.2 Well-posedness of the Three Subdomain Iteration for Whole Sys-

tem

In this section we wish to study the existence and uniqueness of solutions for the whole sys-

tem (3.80 - 3.82). We rewrite the recurrence relations (3.80 - 3.82) for the three subdomains
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as

R1(x
n
1 (α1))−R2(x

n−1
2 (α1), x

n−1
2 (α2)) + p(xn1 (α1)− xn−1

2 (α1)) = 0

R1(x
n−1
1 (α1))−R2(x

n
2 (α1), x

n
2 (α2)) + p(xn2 (α1)− xn−1

1 (α1)) = 0

−R3(x
n−1
3 (α2)) +R2(x

n
2 (α1), x

n
2 (α2)) + p(xn2 (α2)− xn−1

3 (α2)) = 0

⎫
⎪⎬
⎪⎭

−R3(x
n
3 (α2)) +R2(x

n−1
2 (α1), x

n−1
2 (α2)) + p(xn3 (α2)− xn−1

2 (α2)) = 0.

If the above iteration converges then the limit points must satisfy

R1(x)−R2(y, z) + p(x− y) = 0 (3.117)

R1(x)−R2(y, z) + p(y − x) = 0

−R3(w) +R2(y, z) + p(z − w) = 0

⎫
⎪⎬
⎪⎭

(3.118)

−R3(w) +R2(y, z) + p(w − z) = 0. (3.119)

We wish to show the existence of x, y, z and w solving system (3.117-3.119). This is

equivalent to solving the system

f1(x, y, z, w) ≡ R1(x)−R2(y, z) + p(x− y) = 0

f2(x, y, z, w) ≡ R1(x)−R2(y, z) + p(y − x) = 0

f3(x, y, z, w) ≡ −R3(w) +R2(y, z) + p(z − w) = 0

f4(x, y, z, w) ≡ −R3(w) +R2(y, z) + p(w − z) = 0.

(3.120)

This gives a system of the form F (x, y, z, w) = b, where F = (f1, f2, f3, f4)
T and b =

(0, 0, 0, 0)T .

We wish to show the existence and uniqueness by showing the system (3.120) is a onto

M -function. We now show the Jacobian of (3.120) has a required sign pattern.

Lemma 3.3.10 Consider the system F (x, y, z, w) = b from (3.120). Then F is a continu-

ous, strictly diagonally isotone and if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

} then F is off-diagonally

antitone.
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Proof. It is clear that f1, f2, f3 and f4 are continuous. Now we want to show that system is

strictly diagonally isotone. To show this, we differentiate f1 with respect to x to obtain

∂f1
∂x

=
∂R1

∂x
+ p =

1

α1

M(x) + p > 0.

Differentiating f2 with respect to y to find

∂f2
∂y

= −∂R2

∂y
+ p =

1

α2 − α1

M(y) + p > 0.

Differentiating f3 with respect to z to obtain

∂f3
∂z

=
∂R2

∂z
+ p =

1

α2 − α1

M(z) + p > 0.

And finally differentiate f4 with respect to w to find

∂f4
∂w

=
∂R3

∂w
+ p =

1

1− α2

M(w) + p > 0.

This tells us f1, f2, f3 and f4 are strictly isotone with respect to x, y, z, and w for all p > 0.

Therefore, F is strictly diagonally isotone.

We now will show that the F is off-diagonally antitone. To show this, we differentiate

f1 with respect to y, z, w, we obtain

∂f1
∂y

= −∂R2

∂y
− p =

1

α2 − α1

M(y)− p,

∂f1
∂z

= −∂R2

∂z
= − 1

α2 − α1

M(z),

∂f1
∂w

= 0.

Hence f1 is antitone with respect to y, z and w, if p satisfies p > m̂
α2−α1

. So, f1 is antitone

if p > m̂
α2−α1

.

Now differentiate f2 with respect to x, z and w, we obtain

∂f2
∂x

= −∂R1

∂x
− p =

1

α1

M(x)− p,

∂f2
∂z

= −∂R2

∂z
= − 1

α2 − α1

M(z),

∂f2
∂w

= 0.
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Thus f2 is antitone with respect to x, z and w, if p satisfies m̂
α1
< p .

Differentiating f3 with respect to x, y and w, we have

∂f3
∂x

= 0,

∂f3
∂y

=
∂R2

∂y
= − 1

α2 − α1

M(y),

∂f3
∂w

= −∂R3

∂w
− p =

1

α2 − α1

M(w)− p.

Hence f3 is antitone with respect to x, y and w, if p satisfies p > m̂
1−α2

.

Similarly, differentiate f4 with respect to x, y and z, we obtain

∂f4
∂x

= 0,

∂f4
∂y

= −∂R2

∂y
= − 1

α2 − α1

M(y),

∂f4
∂z

= −∂R2

∂z
− p =

1

α2 − α1

M(z)− p.

Therefore f4 is antitone with respect to x, y and z, if p satisfies p > m̂
α2−α1

.

In conclusion, p needs to be greater than max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

} to satisfy all the above

conditions on p. Hence, F is off-diagonally antitone if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

We now wish to show the function F that arises from the three subdomain system is onto.

To show this the mean value theorem for integrals from [56] is necessary, and the theorem

is stated below.

Theorem 3.3.11 (Mean Value Theorem for Integrals (MVTI)) If f is continuous on a

closed interval [a, b], there exists at least one point c on the interval (a, b) such that

∫ b

a

f(x)dx = f(c)(b− a).

To show F is surjective for we use the flowing idea due to Felix Kwok [57]. We modify

system (3.120) for any right-hand side vector. Then we will show the modified system has
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a supersolution and a subsolution. So, for any right-hand side vector the system the system

(3.120) written as

x1 = 0

R1(x1, y1)−R2(x2, y2) + p(y1 − x2) = ζ1

R1(x1, y1)−R2(x2, y2) + p(x2 − y1) = ζ2

−R3(x3, y3) +R2(x2, y2) + p(y2 − x3) = ζ3

−R3(x3, y3) +R2(x2, y2) + p(x3 − y2) = ζ4,

y3 = 1

(3.121)

where

Ri(xi, yi) =
1

αi − αi−1

∫ yi

xi

M(x)dx, for i = 1, 2, 3, (3.122)

with αi < αi−1, α0 = 0 and α3 = 1.

Adding and subtracting equations from each other except the first and last equations in

the system (3.121) gives

x1 = 0

R1(x1, y1)−R2(x2, y2) = γ1

x2 − y1 = γ2

R2(x2, y2)−R3(x3, y3) = γ3

x3 − y2 = γ4

y3 = 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.123)

where γ1 = ζ1+ζ2
2

, γ2 = ζ2−ζ1
2

, γ3 = ζ3+ζ4
2

and γ4 = ζ4−ζ3
2

. We want to study this equivalent

system to original system. We denote this system as G(x1, y1, x2, y2, x3, y3) = b
′ , where
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G = (g1, g2, g3, g4, g5, g6)
T , b′ = (0, γ1, γ2, γ3, γ4, 1)

T , where

g1(x1, y1, x2, y2, x3, y3) = x1

g2(x1, y1, x2, y2, x3, y3) = R1(x1, y1)−R2(x2, y2)

g3(x1, y1, x2, y2, x3, y3) = x2 − y1

g4(x1, y1, x2, y2, x3, y3) = R2(x2, y2)−R3(x3, y3)

g5(x1, y1, x2, y2, x3, y3) = x3 − y2

g6(x1, y1, x2, y2, x3, y3) = y3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.124)

For any s ∈ R, consider the following recipe:

set x1 = 0 (3.125)

solve R1(x1, y1) = s for y1, (3.126)

set x2 = y1 + γ2 (3.127)

solve R2(x2, y2) = s− γ1 for y2, (3.128)

set x3 = y2 + γ4 (3.129)

solve R3(x3, y3) = s− γ1 − γ3 for y3. (3.130)

Which is derived based on the (3.123). We want to show this recipe is well-defined.

Lemma 3.3.12 For any s ∈ R the recipe (3.125-3.130) is well-defined.

Proof. Clearly x1, x2, and x3 are unique from (3.125), (3.127) and (3.129). We know

Ri(xi, yi), i = 1, 2, 3 are continuous and uniformly monotonically increasing or decreasing

with respect to yi and xi respectively. Since x1 is unique and R1 is monotonic, hence

R1(x1, y1) = s can be solved for y1 uniquely. As well as, we can solve R2(x2, y2) = s−γ1

and R3(x3, y3) = s − γ1 − γ3 for y2 and y3 uniquely. Thus, x1, x2, x3, y1, y2 and y3 are

unique and the recipe (3.125-3.130) is well-defined.
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Lemma 3.3.13 Assume G(x1, y1, x2, y2, x3, y3) = b
′

is the system from (3.123) where b
′
=

(0, γ1, γ2, γ3, γ4, 1) ∈ R6 and the operators are defined in (3.122), then G is onto.

Proof. We need to prove for any b′ = (0, γ1, γ2, γ3, γ4, 1) ∈ R6, there exist points x̌, ŷ ∈

R6, such that x̌ ≤ ŷ, where x̌ = (x̌1, y̌1, x̌2, y̌2, x̌3, y̌3) and ŷ = (x̂1, ŷ1, x̂2, ŷ2, x̂3, ŷ3), and

G(x̌1, y̌1, x̌2, y̌2, x̌3, y̌3) ≤ b
′ ≤ G(x̂1, ŷ1, x̂2, ŷ2, x̂3, ŷ3).

The existence of a solution will then be obtained by continuity. That is we require

x̌1 ≤ 0 ≤ x̂1

R1(x̌1, y̌1)−R2(x̌2, y̌2) ≤ γ1 ≤ R1(x̂1, ŷ1)−R2(x̂2, ŷ2)

x̌2 − y̌1 ≤ γ2 ≤ x̂2 − ŷ1

R2(x̌2, y̌2)−R3(x̌3, y̌3) ≤ γ3 ≤ R2(x̂2, ŷ2)−R3(x̂3, ŷ3)

x̌3 − y̌2 ≤ γ4 ≤ x̂3 − ŷ2

y̌3 ≤ 1 ≤ ŷ3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.131)

We now use the MVTI in (3.126), (3.128) and (3.130). From R1(x1, y1) = s we have
m∗

1

α1−α0
(y1 − x1) = s. Rearranging and substituting x1 = 0 into this equation gives

y1 =
1

m∗
1

(α1 − α0)s.

R2(x2, y2) = s− γ1 can be written as m∗
2

α2−α1
(y2 − x2) = s− γ1 using MVTI. Substituting

x2 = y1 + γ2 and rewriting the resulting equation gives

y2 =
1

m∗
2

(α2 − α1)(s− γ1) + y1 + γ2

=
1

m∗
2

(α2 − α1)(s− γ1) +
1

m∗
1

(α1 − α0)s+ γ2.

Similarly, from R3(x3, y3) = s − γ1 − γ3 we obtain m∗
3

α3−α2
(y3 − x3) = s − γ1 − γ3.

Rearranging and substituting x3 = y2 + γ4 into this equation gives us

y3 =
1

m∗
3

(α3 − α2)(s− γ1 − γ3) + y2 + γ4

=
1

m∗
3

(α3 − α2)(s− γ1 − γ3) +
1

m∗
2

(α2 − α1)(s− γ1) +
1

m∗
1

(α1 − α0)s+ γ2 + γ4.
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Hence we have the resulting system

x1 =0

y1 =
1

m∗
1

(α1 − α0)s

x2 =y1 + γ2

y2 =
1

m∗
2

(α2 − α1)(s− γ1) +
1

m∗
1

(α1 − α0)s+ γ2

x3 =y2 + γ4

y3 =
1

m∗
3

(α3 − α2)(s− γ1 − γ3) +
1

m∗
2

(α2 − α1)(s− γ1) +
1

m∗
1

(α1 − α0)s+ γ2 + γ4,

where m∗
i , i = 1, 2, 3 are values obtained form the MVTI. This is an equivalent system to

(3.125-3.130). If it has an unique solution then so does the system (3.125-3.130). It is clear

that this system has a unique solution.

We now assume (x̌1, y̌1, x̌2, y̌2, x̌3, y̌3) ∈ R6. For a subsolution we require F (x̌1, y̌1,

x̌2, y̌2, x̌3, y̌3) ≤ b . Obviously 1
m∗

i
≤ 1

m̌
for i = 1, 2, 3.

If (α1 − α0)s > 0 then we obtain

y̌1 ≤
1

m̌
(α1 − α0)s.

If in addition (α2 − α1)(s− γ1) > 0 then we have

y̌2 ≤
1

m̌
(α2 − α1)(s− γ1) +

1

m̌
(α1 − α0)s+ γ2,

Similarly if in addition (α3 − α2)(s− γ1 − γ3) > 0 then we find

y̌3 ≤
1

m̌
(α3 − α2)(s− γ1 − γ3) +

1

m̌
(α2 − α1)(s− γ1) +

1

m̌
(α1 − α0)s+ γ2 + γ4.
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Thus the resulting inequalities are

x̌1 = 0

y̌1 ≤
1

m̌
(α1 − α0)s

x̌2 = y1 + γ2

y̌2 ≤
1

m̌
(α2 − α1)(s− γ1) +

1

m̌
(α1 − α0)s+ γ2

x̌3 = y2 + γ4

y̌3 ≤
1

m̌
(α3 − α2)(s− γ1 − γ3) +

1

m̌
(α2 − α1)(s− γ1) +

1

m̌
(α1 − α0)s+ γ2 + γ4.

(3.132)

Again, chose a value š ∈ R, we set x̌1 = 0 and R1(x̌1, y̌1) = š. If š satisfies the

following inequalities

1

m̌
(α1 − α0)š ≤ α1 − α0

1

m̌
(α2 − α1)(š− γ1) + γ2 ≤ α2 − α1

1

m̌
(α3 − α2)(š− γ1 − γ3) + γ4 ≤ α3 − α2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (3.133)

then we obtain from (3.134)

y̌3 ≤ α3 − α2 + α2 − α1 + α1 − α0

= α3 − α0

= 1.

This inequality confirms a subsolution exists. Hence we have a subsolution for (3.123) if š

satisfies the inequalities in (3.133).

Similarly, we assume (x̂1, ŷ1, x̂2, ŷ2, x̂3, ŷ3) ∈ R6. For a supersolutionF (x̂1, ŷ1, x̂2, ŷ2, x̂3, ŷ3) ≥

b needs to be satisfied. Clearly 1
m∗

i
≥ 1

m̂
for i = 1, 2, 3.

If (α1 − α0)s > 0 then we obtain

ŷ1 ≥
1

m̂
(α1 − α0)s.
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If in addition (α2 − α1)(s− γ1) > 0 then we have

ŷ2 ≥
1

m̂
(α2 − α1)(s− γ1) +

1

m̂
(α1 − α0)s+ γ2.

Likewise if (α3 − α2)(s− γ1 − γ3) > 0 then

ŷ3 ≥
1

m̂
(α3 − α2)(s− γ1 − γ3) +

1

m̂
(α2 − α1)(s− γ1) +

1

m̂
(α1 − α0)s+ γ2 + γ4.

Hence we obtain the inequalities

x̂1 = 0

ŷ1 ≥
1

m̂
(α1 − α0)s

x̂2 = y1 + γ2

ŷ2 ≥
1

m̂
(α2 − α1)(s− γ1) +

1

m̂
(α1 − α0)s+ γ2

x̂3 = y2 + γ4

ŷ3 ≥
1

m̂
(α3 − α2)(s− γ1 − γ3) +

1

m̂
(α2 − α1)(s− γ1) +

1

m̂
(α1 − α0)s+ γ2 + γ4.

(3.134)

We now choose a value ŝ ∈ R and set x̂1 = 0 and R1(x̂1, ŷ1) = ŝ. If ŝ satisfies the

following conditions

1

m̂
(α1 − α0)ŝ ≥ α1 − α0

1

m̂
(α2 − α1)(ŝ− γ1) + γ2 ≥ α2 − α1

1

m̂
(α3 − α2)(ŝ− γ1 − γ3) + γ4 ≥ α3 − α2,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (3.135)

then from (3.134) we have

ŷ3 ≥ α3 − α2 + α2 − α1 + α1 − α0

= α3 − α0

= 1.

(3.136)
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And hence, we have a supersolution for (3.123) if ŝ satisfies the inequalities in (3.135). In

conclusion, a supersolution and subsolution exists for the system. Moreover by continuity

there exist s̄ ∈ [š, ŝ], so that y3 = 1, and hence we have solution for (3.123). Thus G is

onto.

Lemma 3.3.14 Consider the system F (x, y, z, w) = b from (3.120) and the operators Ri,

i = 1, 2, 3 as defined in (3.83). The function F : R4 → R4 is onto.

Proof. In Lemma 3.3.13 we show that a system G(x1, y1, x2, y2, x3, y3) = b
′ , which is an

equivalent system to the original system F (x, y, z, w) = b is onto. Hence F is onto.

Theorem 3.3.15 Consider the system F (x, y, z, w) = b from (3.120) and the operators

Ri, i = 1, 2, 3 as defined in (3.83). Then F : R4 → R4 is a continuous onto M -function if

p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

Proof. F is onto from Lemma 3.3.14.

Lemma 3.3.10 proves F is off-diagonally antitone when p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

Now using Theorem 3.2.15 we now build the functions qi(t). Choosing hj = 1 in (3.66),

we construct the functions qi(t) as

qi(t) =
4∑

j=1

fj(X + tei), 1 ≤ i ≤ 4,

where ei denote the ith standard basis vector in R4.

If i = 1, then we obtain

q1(t) = f1(x+ t, y, z, w) + f2(x+ t, y, z, w) + f3(x+ t, y, z, w) + f4(x+ t, y, z, w)

= R1(x+ t)−R2(y, z) + p(x+ t− y) +R1(x+ t)−R2(y, z) + p(y − x− t)−R3(w)

+R2(y, z) + p(z − w)−R3(w) +R2(y, z) + p(w − z)

= 2R1(x+ t)− 2R3(w).
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Differentiating with respect to t we have

dq1
dt

= 2
dR1(x+ t)

dt
=

2

α1

M(t) > 0.

Again when i = 2, then

q2(t) = f1(x, y + t, z, w) + f2(x, y + t, z, w) + f3(x, y + t, z, w) + f4(x, y + t, z, w)

= R1(x)−R2(y + t, z) + p(x− y − t) +R1(x)−R2(y + t, z) + p(y + t− x)−R3(w)

+R2(y + t, z) + p(z − w)−R3(w) +R2(y + t, z) + p(w − z)

= 2R1(x)− 2R3(w).

Differentiating with respect to t we obtain

dq2
dt

= 0.

Similarly if i = 3, then we obtain

q3(t) = f1(x, y, z + t, w) + f2(x, y, z + t, w) + f3(x, y, z + t, w) + f4(x, y, z + t, w)

= R1(x)−R2(y, z + t) + p(x− y) +R1(x)−R2(y, z + t) + p(y − x)−R3(w)

+R2(y, z + t) + p(z + t− w)−R3(w) +R2(y, z + t) + p(w − z − t)

= 2R1(x)− 2R3(w).

Differentiating with respect to t we find

dq3
dt

= 0.

And finally when i = 4, then we have

q4(t) = f1(x, y, z, w + t) + f2(x, y, z, w + t) + f3(x, y, z, w + t) + f4(x, y, z, w + t)

= R1(x)−R2(y, z) + p(x− y) +R1(x)−R2(y, z) + p(y − x)−R3(w + t)

+R2(y, z) + p(z − w − t)−R3(w + t) +R2(y, z) + p(w + t− z)

= 2R1(x)− 2R3(w + t).
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Differentiating with respect to t we find

dq4
dt

=
dR3(w + t)

dt
=

2

1− α2

M(t) > 0.

Therefore dq1
dt

and dq4
dt

are strictly positive, hence the functions q1 and q4 are strictly isotone.

But dq2
dt

and dq3
dt

are not strictly positive, hence the functions q2 and q3 are not strictly isotone.

Therefore we need to show that a path k  i exists for i = 2, 3 where the functions qk are

strictly isotone. Possible paths can be

1 2 1 2 1 3 4 2

1 3 4 3 4 2 4 3

We now try to find out the strict links. From the definition of a strict link we know that if

the function t→ fi(x+ tej) is strictly antitone then a link (i, j) is a strict. We have

∂

∂y
f1(x+ te2) =

∂

∂y
f1(x, y + t, z, w)

=
∂

∂y
[R1(x)−R2(y + t, z) + p(x− y − t)]

=
M(y + t)

α2 − α1

− p,

which implies (1, 2) is strict link if p > m̂
α2−α1

. Similarly we obtain

∂

∂z
f1(x+ te3) = −M(z + t)

α2 − α1

< 0,

∂

∂x
f2(x+ te3) = −M(z + t)

α2 − α1

− p < 0,

∂

∂z
f3(x+ te2) = −M(y + t)

α2 − α1

< 0,

∂

∂w
f3(x+ te4) =

M(w + t)

α2 − α1

− p,

∂

∂y
f4(x+ te2) = −M(y + t)

α2 − α1

< 0,

∂

∂z
f4(x+ te3) =

M(z + t)

α2 − α1

− p.
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Thus (1, 3), (2, 3), (3, 2), and (4, 2) are strict links. Here (3, 4) and (4, 3) will be strict

links if p > m̂
α2−α1

. Hence we have a possible path 1  2 and 4  3 where q1 and q4 are

strictly isotone. So, all assumptions has been satisfied of Theorem 3.2.15. Hence F is an

M -function if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

Theorem 3.3.16 Consider the system F (x, y, z, w) = b from (3.120) and the operatorsRi,

i = 1, 2, 3 as defined in (3.83). This system has a unique solution if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

Proof. The assumptions of Lemma 3.2.14 have been verified by Theorem 3.3.15, hence

system (3.88) has a unique solution.

Theorem 3.3.17 Consider the system F (x, y, z, w) = b from (3.120) and the operators

Ri, i = 1, 2, 3 as defined in (3.83). Nonlinear Jacobi (or SOR) will converge to the unique

solution for any starting value, when p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

} .

Proof. The assumptions of Theorem 3.2.19 has been verified by Theorem 3.3.15 and Lemma

3.3.14 if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}. Hence by the Theorem 3.2.19 we can conclude the

nonlinear Jacobi (or SOR) will converge to the unique solution for any starting value.

Hence Gauss-Jacobi or Gauss-Seidel iterations will converge to a unique solution for

the system (3.120) if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}. Our original parallel iteration (3.80-3.82)

however, is not a nonlinear Gauss-Jacobi or Gauss-Seidel iteration. Instead it is a block

Gauss-Jacobi iteration. Block Gauss-Jacobi and block Gauss-Seidel processes have been

analyzed in Rheinboldt [48].

An implicit iterative process for a nonlinear system Fx = b is given by

G(xn, xn−1) = b, n = 0, 1, 2, .... (3.137)

To analyze iteration of the form (3.137) we first introduce a regular iteration function from

[48].
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Definition 3.3.1 A mapping G : D0 ×D0 ⊂ Rn ×Rn → Rn is a regular iteration function

for F : D ⊂ Rn → Rn on a subset D0 of D if

G(x, x) = Fx, for any x ∈ D0, (3.138)

G(., x) := D0 → Rn, is inverse isotone, for any fixed x ∈ D0,

and G(y, .) := D0 → Rn, is antitone, for any fixed y ∈ D0.

We quote Theorems 3.3.18 and 3.3.19 from Rheinboldt [48]; these theorems gives us a

way to prove the block Gauss-Jacobi and Gauss-Seidel process converge globally.

Theorem 3.3.18 Let F : Rn → Rn be continuous, inverse isotone, and onto (surjective).

Suppose, further, that G : Rn × Rn → Rn is a regular iteration function for F on Rn with

the property that G(., x) : Rn → Rn is surjective for any fixed x ∈ Rn. Then, for any

b ∈ Rn and any initial point x0 ∈ Rn, the process (3.137) converges to a unique solution

x∗ ∈ Rn of Fx = b.

We observed that with

G := Rn × Rn → Rn, (3.139)

PiG(y, x) := F i(y1, ..., yi, xi+1, ..., xn), i = 1, ..., q,

the block Gauss-Seidel process (3.3) assume the general form (3.137). The following result,

Theorem 3.3.19, ensures the applicability of Theorem 3.2.8 and 3.3.18 to the block Gauss-

Seidel iteration (3.3) forM -functions F . Also ifG is a regular iteration function for Fx = b

then Theorem 3.3.19 gives a way to prove G(., x) is onto for any fixed x ∈ Rn when F is

an M−function.

Theorem 3.3.19 Let F := Rn → Rn be an M -function; then the mapping G := Rn ×

Rn → Rn defined by (3.139) is a regular iteration function for F on Rn. If, in addition, F

is continuous and surjective, then G(., x) := Rn → Rn is surjective for any fixed x ∈ Rn.
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Hence we can conclude the global convergence of the block Gauss-Jacobi and Gauss-Seidel

process from Theorems 3.3.18 and 3.3.19 for continuous onto M−functions.

Now back to our original parallel iteration (3.80-3.82) which is a block Gauss-Jacobi

iteration. The theorem below guarantees the parallel iteration converges to the unique so-

lution.

Theorem 3.3.20 Consider the system F (x, y, z, w) = b from (3.120). Nonlinear block

Gauss-Jacobi converge to a unique solution for any starting value if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

Proof. We wish to verify assumptions of Theorem 3.3.18. The assumptions of the Theorem

are that F is continuous, inverse isotone, and surjective, and the regular iteration function

G(., x) is surjective for any fixed x ∈ R4.

Clearly, F is continuous. The surjectivity of F has been verified by the Lemma 3.3.14 if

p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}, and F is an M - function by Theorem 3.3.15. By the definition

of M -function implies that F is inverse isotone. All assumptions of Theorem 3.3.19 have

been verified, thus G(., x) is surjective for any fixed x ∈ R4 by the Theorem 3.3.19.

Hence, the assumptions of Theorem 3.3.18 has been verified so, the nonlinear block

Gauss-Jacobi iteration (or implicit iteration) (3.80-3.82) converges to the unique solution

for any starting value if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

Therefore the block Gauss-Jacobi iterations (3.80-3.82) for the system (3.120) will con-

verge monotonically to a unique solution if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}, since the system is

a onto M -function.

118



Chapter 3. Optimized Schwarz Method for an Arbitrary Number of Subdomains

3.3.3 Alternative Approach to Show the Well-posedness of the Three

Subdomain Iteration

An equivalent system for the interface iteration for three subdomains is given as

R1(x)−R2(y, z) + p(x− y) = 0 (3.140)

R1(x)−R2(y, z) + p(y − x) = 0 (3.141)

−R3(w) +R2(y, z) + p(z − w) = 0 (3.142)

−R3(w) +R2(y, z) + p(w − z) = 0. (3.143)

Adding (3.140) and (3.141), and adding (3.142) and (3.143) we obtain

R1(x) = R2(y, z) and R3(w) = R2(y, z). (3.144)

Now subtracting (3.140) from (3.141), and subtracting (3.142) from (3.143) we have

x = y and z = w. (3.145)

From (3.144) and (3.145) we obtain

R1(x) = R2(x,w) = R3(w).

If we can show that x and w are unique then we are done. We know the operator R1(x)

is uniformly continuous and monotnic increasing, and the operator R3(w) is uniformly

continuous and monotonic deceasing, then from R1(x) = R3(w) we can conclude that x

and w are unique.

3.4 An Interface Iteration for an Arbitrary Number of

Subdomains

We decompose the computational domain Ωc = (0, 1) into an arbitrary number of nonover-

lapping subdomains Ω1 = (α0, α1), Ω2 = (α1, α2), ..., and Ωm = (αm−1, αm), with α0 = 0

119



Chapter 3. Optimized Schwarz Method for an Arbitrary Number of Subdomains

and αm = 1, where αi−1 < αi, i = 2, 3, ...,m, so there is no overlap between consecu-

tive subdomains as shown in Figure 3.1. The parallel version of interface iteration on an

arbitrary number subdomains is given from Lemma 3.1.3 as

R1

(
0, xn1 (α1)

)
+ pxn1 (α1) = R2

(
xn−1
2 (α1), x

n−1
2 (α2)

)
+ pxn−1

2 (α1) (3.146)

Ri

(
xni (αi−1), x

n
i (αi)

)
− pxni (αi−1) = Ri−1

(
xn−1
i−1 (αi−2), x

n−1
i−1 (αi−1)

)
− pxn−1

i−1 (αi−1)

Ri

(
xni (αi−1), x

n
i (αi)

)
+ pxni (αi) = Ri+1

(
xn−1
i+1 (αi), x

n−1
i+1 (αi+1)

)
+ pxn−1

i+1 (αi)

⎫
⎪⎬
⎪⎭

(3.147)

i = 2, 3, ...,m− 1,

and

Rm

(
xnm(αm−1, 1)

)
− pxnm(αm−1) = Rm−1

(
xn−1
m−2(αm−2), x

n−1
m−1(αm−1)

)
− pxn−1

m−1(αm−1)

(3.148)

with x1 = 0, ym = 1, and αi < αi−1, α0 = 0, and αm = 1 where

Ri(xi, yi) =
1

αi − αi−1

∫ yi

xi

M(x)dx, i = 1, 2, ...,m. (3.149)

If the above iteration converges then the limit points must satisfy

R1

(
x1, y1

)
+ py1 = R2

(
x2, y2

)
+ px2,

Ri

(
xi, yi

)
− pxi = Ri−1

(
xi−1, yi−1

)
− pyi−1

Ri

(
xi, yi

)
+ pyi = Ri+1

(
xi+1, xi+1

)
+ pxi+1

⎫
⎪⎬
⎪⎭
,

i = 2, 3, ...,m− 1,

and

Rm

(
xm, ym)

)
− pxm = Rm−1

(
xm−2, ym−1)

)
− pym−1,

Rewriting this system gives us

R1

(
x1, y1

)
−R2

(
x2, y2

)
+ p(y1 − x2) = 0, (3.150)
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Ri−1

(
xi−1, yi−1

)
−Ri

(
xi, yi

)
+ p(xi − yi−1) = 0

Ri

(
xi, yi

)
−Ri+1

(
xi+1, xi+1

)
+ p(yi − xi+1) = 0

⎫
⎪⎬
⎪⎭
, (3.151)

i = 2, 3, ...,m− 1,

and

Rm−1

(
xm−1, ym−1)

)
−Rm

(
xm, ym)

)
+ p(xm − ym−1) = 0. (3.152)

We wish to study the existence of y1, xi, yi, i = 2, ...,m − 1, and xm solving system

(3.150-3.152), where x1 and ym are given. Hence this system has 2m − 2 equations and

2m− 2 unknowns. This is equivalent to solving the system

f1(y1, x2, y2) ≡ R1

(
0, y1

)
−R2

(
x2, y2

)
+ p(y1 − x2) = 0,

f2i−2(xi−1, yi−1, xi, yi) ≡ Ri−1

(
xi−1, yi−1

)
−Ri

(
xi, yi

)
+ p(xi − yi−1) = 0

f2i−1(xi, yi, xi+1, yi+1) ≡ Ri

(
xi, yi

)
−Ri+1

(
xi+1, xi+1

)
+ p(yi − xi+1) = 0

⎫
⎪⎬
⎪⎭
,

i = 2, 3, ...,m− 1,

f2m−2(xm−1, ym−1, xm) ≡ Rm−1

(
xm−1, ym−1)

)
−Rm

(
xm, 1)

)
+ p(xm − ym−1) = 0.

(3.153)

This gives a system of the formF (y1, x2, y2, ..., xm−1, ym−1, xm) = 0, whereF = (f1, f2, ...,

f2m−2)
T and 0 = (0, 0, ..., 0)T .

We wish to show the existence and uniqueness by showing the system (3.153) is a onto

M -function. We now show the Jacobian of (3.153) has a required sign pattern.

Lemma 3.4.1 Consider the system F (y1, x2, y2, ..., xm−1, ym−1, xm) = b from (3.153) with

the operators Ri, i = 1, 2, ...,m as defined in (3.149). The function F : R2m−2 → R2m−2

is continuous, strictly diagonally isotone, and if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−α2

} then F

is off-diagonally antitone.

Proof. The operators Ri(xi, yi) are continuous and strictly increasing in yi with xi fixed

and strictly decreasing in xi with yi fixed. Hence f1, f2, ..., f2m−2 are continuous. Now we
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want to show that system is strictly diagonally isotone. To show this, we differentiate f1

with respect to y1, we find

∂f1
∂y1

=
∂R1

∂y1
+ p =

1

α1 − α0

M(y1) + p > 0.

Differentiating f2i−2 with respect to xi, for i = 2, 3, ...,m− 1, we have

∂f2i−2

∂xi
= −∂Ri

∂xi
+ p =

1

αi − αi−1

M(xi) + p > 0.

Differentiating f2i−1 with respect to yi, for i = 2, 3, ...,m− 1, gives us

∂f2i−1

∂yi
=
∂Ri

∂yi
+ p =

1

αi+1 − αi

M(yi) + p > 0.

And finally differentiating f2m−2 with respect to xm we obtain

∂f(2m− 2)

∂xm
=
∂R2m−2

∂xm
+ p =

1

1− αm−1

M(xm) + p > 0.

This tells us f1, f2, ..., f2m−2 are strictly isotone with respect to y1, xi, and yi, for i =

2, ...,m− 1, and xm respectively for all p > 0. Therefore, F is strictly diagonally isotone.

Now we will show that F is off-diagonally antitone. To show this, we differentiate f1

with respect to xi, yi, for i = 2, ...,m− 1, and xm, we obtain

∂f1
∂x2

= −∂R2

∂x2
− p =

1

α2 − α1

M(x2)− p,

∂f1
∂y2

= −∂R2

∂y2
= − 1

α2 − α1

M(y2),

∂f1
∂xj

= 0 and
∂f1
∂yj

= 0 for j = 3, 4, ...,m− 1,

∂f1
∂xm

= 0.

If p satisfies m̂
α2−α1

< p then f1 is antitone with respect to x2. Already, fi is antitone with

respect to remaining variables (or unknowns). Hence f1 is antitone if p > m̂
α2−α1

.
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Now differentiate f2 with respect to all variables except x2, we obtain

∂f2
∂y1

=
∂R1

∂y1
− p =

1

α1 − α0

M(y1)− p,

∂f2
∂y2

= −∂R2

∂y2
= − 1

α2 − α1

M(y2),

∂f2
∂xj

= 0 and
∂f2
∂yj

= 0 for j = 3, 4, ...,m− 1,

∂f2
∂xm

= 0.

If p satisfies m̂
α1−α0

< p then f2 is antitone with respect to y1, f2 is already antitone with

respect to all other variables as we seen above. Therefore f2 is antitone when p > m̂
α1−α0

.

Differentiating f2i−2 with respect to y1, and xi−1, yi−1, yi, for i = 3, 4, ...,m − 1, and

xm gives us

∂f2i−2

∂y1
= 0,

∂f2i−2

∂xi−1

=
∂Ri−1

∂xi−1

= − 1

αi−1 − αi−2

M(xi−1),

∂f2i−2

∂yi−1

=
∂Ri−1

∂yi−1

− p =
1

αi−1 − αi−2

M(yi−1)− p,

∂f2i−2

∂yi
= −∂Ri

∂yi
= − 1

αi − αi−1

M(yi),

∂f2i−2

∂xm
= 0.

If p satisfies m̂
αi−1−αi−2

< p then f2i−2 is antitone with respect to yi−1. f2i−2 is already

antitone with respect to all other variables as we see above. Therefore f2i−2 is antitone

when p > m̂
αi−1−αi−2

.

Differentiating f2i−1 with respect to y1, and xi,xi+1,yi+1, i = 2, 3, ...,m − 2, and xm,
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gives us

∂f2i−1

∂y1
= 0,

∂f2i−1

∂xi
= −∂Ri

∂xi
= − 1

αi − αi−1

M(xi) < 0,

∂f2i−1

∂xi+1

= −∂Ri+1

∂xi+1

=
1

αi+1 − αi

M(xi+1)− p,

∂f2i−1

∂yi+1

=
∂Ri+1

∂yi+1

= − 1

αi+1 − αi

M(yi+1) < 0,

∂f2i−1

∂xm
= 0.

If p satisfies m̂
αi+1−αi

< p then f2i−1 is antitone with respect to xi+1. f2i−1 is already

antitone with respect to all other variables as we see above. Therefore f2i−1 is antitone

when p > m̂
αi+1−αi

.

Differentiating f2m−3 with respect to all variables except ym−1, we have

∂f2m−3

∂y1
= 0,

∂f2m−3

∂xj
= 0 and

∂f2m−3

∂yj
= 0 for j = 2, 3, ...,m− 2,

∂f2m−3

∂xm−1

=
∂Rm−1

∂xm−1

= − 1

αm−1 − αm−2

M(xm−1) < 0,

∂f2m−3

∂xm
= −∂Rm

∂xm
− p =

1

αm − αm−1

M(xm)− p,

If p satisfies m̂
αm−αm−1

< p then f2m−3 is antitone with respect to xm. f2m−3 is already

antitone with respect to all other variables as we see above. Hence f2m−3 is antitone if

p > m̂
αm−αm−1

.

Similarly, differentiate f2m−2 with respect to all variables except xm, then we obtain

∂f2m−2

∂y1
= 0,

∂f2m−2

∂xj
= 0 and

∂f2m−2

∂yj
= 0 for j = 2, 3, ...,m− 2,

∂f2m−2

∂xm−1

=
∂Rm−1

∂xm−1

= − 1

αm−1 − αm−2

M(xm−1) < 0,

∂f2m−2

∂ym−1

=
∂Rm−1

∂ym−1

− p =
1

αm−1 − αm−2

M(ym−1)− p.
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If p satisfies m̂
αm−1−αm−2

< p then f2m−2 is antitone with respect to xm. f2m−2 is already

antitone with respect to all other variables as we seen above. Hence f2m−2 is antitone if

p > m̂
αm−1−αm−2

.

In conclusion, p need to be greater than max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−αm−1

} to satisfy all

of the above conditions on p. Hence, F is off-diagonally antitone if p > max{ m̂
α1−α0

, m̂
α2−α1

,

..., m̂
αm−αm−1

}.

We now wish to show to show F is surjective, using the flowing idea due to Felix Kwok

[57]. We modify system (3.153) for any right-hand side vector. So, for any right-hand side

vector the system (3.153) written as

x1 = 0,

R1

(
x1, y1

)
−R2

(
x2, y2

)
+ p(y1 − x2) = ζ1,

Ri−1

(
xi−1, yi−1

)
−Ri

(
xi, yi

)
+ p(xi − yi−1) = ζ2i−2

Ri

(
xi, yi

)
−Ri+1

(
xi+1, xi+1

)
+ p(yi − xi+1) = ζ2i−1

⎫
⎪⎬
⎪⎭
, i = 2, 3, ...,m− 1,

Rm−1

(
xm−1, ym−1)

)
−Rm

(
xm, ym)

)
+ p(xm − ym−1) = ζ2m−2,

ym = 1.

(3.154)

where Ri is defined on (3.149). Now adding and subtracting of the equations in system

(3.154) we have

x1 = 0

R1(x1, y1)−R2(x2, y2) = γ1

x2 − y1 = γ2

Ri

(
xi, yi

)
−Ri+1

(
xi+1, xi+1

)
= γ2i−1

xi+1 − yi = γ2i

⎫
⎪⎬
⎪⎭
, i = 2, ...,m− 1,

ym = 1

(3.155)
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where γ2m−1 = ζi+ζi+1

2
, γ2i = ζi+1−ζi

2
, i = 1, 2, ...,m − 1. This system is equivalent

to orginal system. We want to show this system has a supersolution and a subsolution.

We denote this system as G(x1, y1, ..., xm, ym) = b
′ , where F = (g1, g2, ..., g2m)

T , b′ =

(0, γ1, γ2, ..., γ2m−2, 1)
T , where

g1(x1, y1, ..., xm, ym) = x1

g2(x1, y1, ..., xm, ym) = R1(x1, y1)−R2(x2, y2)

g3(x1, y1, ..., xm, ym) = x2 − y1

g2i−2(x1, y1, ..., xm, ym) = Ri

(
xi, yi

)
−Ri+1

(
xi+1, xi+1

)

g2i−1(x1, y1, ..., xm, ym) = xi+1 − yi

⎫
⎪⎬
⎪⎭
, i = 2, ...,m− 1,

g2m−2(x1, y1, ..., xm, ym) = ym.

(3.156)

For any s ∈ R, consider the following recipe:

x1 = 0 (3.157)

solve R1(x1, y1) = s for y1, (3.158)

x2 − y1 = γ2 (3.159)

solve R2(x2, y2) = s− γ1 for y2, (3.160)

xi+1 − yi = γ2i (3.161)

solve Ri+1(xi+1, yi+1) = s−
i∑

j=1

γ2j−1 for yi+1, (3.162)

i = 2, 3, ...,m− 1.

This recipe has been derived based on the system (3.155). We prove this system has solution

exist and is unique in lemma below.

Lemma 3.4.2 For any s ∈ R the recipe (3.157-3.162) is well-defined.
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Proof. From (3.157), (3.159) and (3.161) we have x1, x2, and xi+1 are unique once yi’s are

known. We know that Ri(xi, yj), i = 1, 2, ...,m are continuous and uniformly monotoni-

cally increasing or decreasing with respect to yi and xi respectively. Since R1 is monotonic

and x1 is unique, hence R1(x1, y1) = s can be solved for y1 uniquely. Similarly we can

solve R2(x2, y2) = s − γ1 and Ri+1(xi+1, yi+1) = s −
i∑

j=1

γ2j−1 for y2 and yi+1 uniquely.

Therefore x1, y1, ..., xm, ym are unique and the recipe (3.157-3.162) is well-defined.

Lemma 3.4.3 Assume G(x1, y1, ..., xm, ym) = b
′

is the system from (3.155), where b =

(0, γ1, γ2, ..., γ2m−2, 1) ∈ R2m and the operators Ri, i = 1, 2, ...,m are defined in (3.149).

Then G is onto.

Proof. We wish to show that for any b = (0, γ1, γ2, ..., γ2m−2, 1) ∈ R2m, there exist points

x̌, ŷ ∈ R2m, such that x̌ ≤ ŷ, where x̌ = (x̌1, y̌1, x̌2, y̌2, ..., x̌m, y̌m) and ŷ = (x̂1, ŷ1, x̂2, ŷ2,

..., x̂m, ŷm), and

G(x̌1, y̌1, x̌2, y̌2, ..., x̌m, y̌m) ≤ b
′ ≤ G(x̂1, ŷ1, x̂2, ŷ2, ..., x̂m, ŷm).

The existence of a solution will then be obtained by continuity.

We will apply the MVTI in (3.158), (3.160) and (3.162). The equation R1(x1, y1) = s

can be written as m∗
1

α1−α0
(y1−x1) = s using the MVTI. Substituting x1 = 0 into this equation

and rearranging gives

y1 =
1

m∗
1

(α1 − α0)s.

The equation R2(x2, y2) = s − γ1 can be written as m∗
2

α2−α1
(y2 − x2) = s − γ1 using the

MVTI. Rewriting and substituting x2 = y1 + γ2 into this equation we obtain

y2 = y1 +
1

m∗
2

(α2 − α1)(s− γ1) + γ2.
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Likewise, the equationRi+1(xi+1, yi+1) = s−∑i
j=1 γ2j−1 can be written as m∗

m+1

αi+1−αi
(yi+1−

xi+1) = s −∑i
j=1 γ2j−1. Rearranging and substituting xi+1 = yi + γ2i into this equation,

we have

yi+1 = yi +
1

m∗
i+1

(αi+1 − αi)(s−
i∑

j=1

γ2j−1) + γ2i.

Hence we have the resulting system

x1 =0,

y1 =
1

m∗
1

(α1 − α0)s,

x2 =y1 + γ2,

y2 =
1

m∗
2

(α2 − α1)(s− γ1) + y1 + γ2,

xi+1 =yi + γ2i,

yi+1 =
1

m∗
i+1

(α3 − α2)(s− γ1 − γ3) + yi + γ2i, i = 2, ...,m− 1.

where m∗
i , i = 1, 2, ...,m are values obtained form the MVTI. This is an equivalent system

to (3.157-3.162). If it has an unique solution then so does the system (3.157-3.162).

We now assume (x̌1, y̌1, ..., x̌m, y̌m) ∈ R2m. We need to satisfy F (x̌1, y̌1, ..., x̌m, y̌m) ≤

b for a subsolution. Clearly we have, 1
m∗

j
≥ 1

m̌
, for j = 1, 2, ...,m.

If (α1 − α0)s > 0 then we obtain

y̌1 ≤
1

m̌
(α1 − α0)s.

If in addition (α2 − α1)(s− γ1) > 0 then we have

y̌2 ≤
1

m̌
(α2 − α1)(s− γ1) + y1 + γ2.

Similarly, in addition (αi+1 − αi)(s−
∑i

j=1 γ2j−1) > 0 then we obtain

y̌i+1 ≤
1

m̌
(αi+1 − αi)(s−

i∑

j=1

γ2j−1) + yi + γ2i for i = 2, 3, ...,m− 1.
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Hence we have the system of inequalities

x̌1 = 0

y̌1 ≤
1

m̌
(α1 − α0)s

x̌2 = y1 + γ2

y̌2 ≤
1

m̌
(α2 − α1)(s− γ1) + y1γ2

x̌i+1 = yi + γ2i

y̌i+1 ≤
1

m̌
(αi+1 − αi)(s−

i∑

j=1

γ2j−1) + yi + γ2i, i = 2, ...,m− 1. (3.163)

We now choose š ∈ R, and we set x̌1 = 0 and R1(x̌1, y̌1) = š where š satisfies the

following inequalities

1

m̌
(α1 − α0)š ≤ α1 − α0

1

m̌
(α2 − α1)(š− γ1) + γ2 ≤ α2 − α1

1

m̌
(αi+1 − αi)(s−

i∑

j=1

γ2j−1) + yi + γ2i ≤ αi+1 − αi,

(3.164)

where i = 2, 3, ...,m− 1 then we have from (3.165)

y̌m ≤ αm − αm−1 + ...+ α2 − α1 + α1 − α0

= αm − α0

= 1.

This inequality gives us a confirmation for a subsolution. Hence, we have a subsolution for

(3.155) if š satisfies the inequalities in (3.164).

Similarly, we assume (x̂1, ŷ1, ..., x̂m, ŷm) ∈ R2m, this to be a supersolution we need to

satisfy F (x̂1, ŷ1, ..., x̂m, ŷm) ≥ b. Clearly, we have 1
m∗

j
≥ 1

m̂
, for j = 1, 2, ...,m.

If (α1 − α0)s > 0 then we have

ŷ1 ≥
1

m̂
(α1 − α0)s.
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If in addition (α2 − α1)(s− γ1) > 0 then we find

ŷ2 ≥
1

m̂
(α2 − α1)(s− γ1) + y1 + γ2.

Likewise, if in addition (αi+1 − αi)(s−
∑i

j=1 γ2j−1) > 0, for i = 2, 3, ...,m− 1, then

ŷi+1 ≥
1

m̂
(αi+1 − αi)(s−

i∑

j=1

γ2j−1) + yi + γ2i.

Hence we have the resulting system of inequalities

x̂1 = 0

ŷ1 ≥
1

m̂
(α1 − α0)s

x̂2 = y1 + γ2

ŷ2 ≥
1

m̂
(α2 − α1)(s− γ1) + y2 + γ2

x̂i+1 = yi + γ2i

ŷi+1 ≥
1

m̂
(α3 − α2)(s−

i∑

j=1

γ2j−1) + yi + γ2i. i = 2, ...,m− 1. (3.165)

We now choose ŝ ∈ R, and we set x̂1 = 0 and R1(x̂1, ŷ1) = ŝ. If ŝ satisfies the

following inequalities

1

m̂
(α1 − α0)ŝ ≥ α1 − α0

1

m̂
(α2 − α1)(ŝ− γ1) + γ2 ≥ α2 − α1

1

m̂
(αi+1 − αi)(ŝ−

i∑

j=1

γ2j−1) ≥ αi+1 − αi

(3.166)

where i = 2, ...,m− 1, then we have from (3.165)

ŷm ≥ αm − αm−1 + ...+ α2 − α1 + α1 − α0

= αm − α0

= 1.
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This inequality gives us a confirmation of a supersolution. Hence we have a supersolution

of (3.155) if ŝ satisfies the inequalities in (3.166).

Therefore we conclude subsolution and supersolution exists for the system. Moreover

by continuity there exist s̄ ∈ [š, ŝ], so that ym = 1, and hence we have solution for (3.155).

Thus G is onto.

Lemma 3.4.4 Consider the system F (y1, x2, y2, ..., xm−1, ym−1, xm) = b from (3.153) and

the operators Ri, i = 1, 2, ...,m as defined in (3.149). The function F : R2m−2 → R2m−2

is onto.

Proof. In Lemma 3.4.3 we show that a system G(x1, y1, ..., xm, ym) = b
′ , which is an

equivalent system to the original system F (y1, x2, y2, ..., xm−1, ym−1, xm) = b is onto.

Hence F is onto.

Theorem 3.4.5 Assume F (y1, x2, y2, ..., xm−1, ym−1, xm) = b is the system of (3.153) and

the operators Ri, i = 1, 2, ...,m, as defined in (3.149). Then F : R2m−2 → R2m−2 is a

continuous onto M -function if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−α2

}.

Proof. F is onto from Lemma 3.4.4.

Lemma 3.4.1 provesF is off-diagonally antitone when p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−α2

}.

Now using Theorem 3.2.15 we now build the functions qi(t). Choosing hj = 1 in (3.66),

we construct the functions qi(t) as

qi(t) =
2m−2∑

j=1

fj(X + tei), 1 ≤ i ≤ 2m− 2.

Here ei denotes the ith standard basis vector in R2m−2. When i = 1, then

q1(t) = f1(y1 + t, x2, y2) + f2(y1 + t, x2, y2, x3) + ....+ f2m−2(xm−1, ym−1, xm)

= 2R1(0, y1 + t)− 2Rm(xm, 1).
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Differentiating with respect to t we have

dq1
dt

= 2
dR1(y1 + t)

dt

=
2

α1

M(t) > 0.

Again, when i = 2, then

q2(t) = f1(y1, x2 + t, y2) + f2(y1, x2 + t, y2, x3) + ....+ f2m−2(xm−1, ym−1, xm)

= 2R1(0, y1)− 2Rm(xm, 1).

And differentiating with respect to t we find

dq2
dt

= 0.

When i = k, where k = 3, 4, ..., 2m− 3 then

qk(t) = 2R1(0, y1)− 2Rm(xm, 1).

Differentiate with respect to t we have

dqk
dt

= 0.

Finally, if i = 2m− 2, then we obtain

q2m−2(t) = f1(y1, x2, y2) + f2(y1, x2 + t, y2, x3) + ....+ f2m−2(xm−1, ym−1, xm + t)

= 2R1(0, y1)− 2Rm(xm + t, 1).

Differentiating with respect to t we find

dq2m−2

dt
=
dRm(w + t)

dt

=
2

αm − αm−1

M(t) > 0.

Therefore, dq1
dt

and dq2m−2

dt
are strictly positive, hence the functions q1 and q2m−2 are strictly
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isotone. However dqk
dt

, k = 2, ..., 2m − 3 are not strictly positive, and hence the qk is not

strictly isotone. We need to show that, a path k  i exists for i = 2, 3, ..., 2m − 3 where

the functions qk are strictly isotone. Possible paths for the k-th node include

1 2 2 3 ... (k − 1) k

or

(2m− 2) (2m− 3) (2m− 3) (2m− 4) ... k + 1 k.

Notice that the our system has 2m − 2 unknowns, xi is the (2i− 2)th unknown and yi is

the (2i− 1)th unknown for i = 2, 3, ...,m − 1. The first and last unknowns are y1 and xm

respectively.

We know from the definition of strict link that if the function t→ fi(x+ tej) is strictly

antitone then a link (i, j) is strict. We have

∂

∂x2
f1(x+ te2) =

∂

∂x2
f1(y1, x2 + t, y2)

=
∂

∂x2
[R1(y1)−R2(x2 + t, y2) + p(y1 − x2 − t)]

=
M(x2 + t)

α2 − α1

− p

which is less than zero if p is big enough, and hence (1, 2) is a strict link if m̂
α2−α1

< p.

Similarly we obtain for i = 2, ....m− 1,

∂

∂yi
f2i−2(x+ te2i−1) = −M(yi + t)

αi − αi−1

< 0 =⇒ (2i− 2, 2i− 1) is a strict link,

∂

∂xi+1

f2i−1(x+ te2i) = −M(xi+1 + t)

αi − αi−1

< 0 =⇒ (2i− 1, 2i) is a strict link,

∂

∂yi+1

f2i−1(x+ te2i+1) = −M(yi+1 + t)

αi+1 − αi

< 0 =⇒ (2i− 1, 2i+ 1) is a strict link.

And
∂

∂ym−1

f2m−2(x+ te2m−3) =
M(ym + t)

αm−1 − αm−2

− p

which implies (2m − 2, 2m − 3) is a strict link if m̂
αm−1−αm−2

< p. Finally we obtain at

strict links (1, 2), (2, 3), ..., ((k − 1), k) for the path 1 k, and the strict links (k, k + 1),
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(k + 1, k + 2), ..., (2m − 3, 2m − 2) for the path k  (2m − 2), where q1 and q2m−2 are

strictly isotone. All assumptions of Theorem 3.2.15 have been satisfied. Hence F is an

M -function if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−α2

}.

Theorem 3.4.6 Consider the system F (y1, x2, y2, ..., xm−1, ym−1, xm) = b from (3.153)

and the operators Ri, i = 1, 2, ...,m as defined in (3.149). This system has a unique

solution.

Proof. The assumptions of Lemma 3.2.14 have been verified by Theorem 3.4.5, hence

system (3.153) has a unique solution.

Theorem 3.4.7 Consider the system F (y1, x2, y2, ..., xm−1, ym−1, xm) = b from (3.153)

and the operators Ri, i = 1, 2, ...,m as defined in (3.149). Nonlinear Jacobi (or SOR) will

converge to the unique solution for any starting value if

p > max{ m̂

α1 − α0

,
m̂

α2 − α1

, ...,
m̂

αm − αm−1

}.

Proof. The assumptions of Theorem 3.2.19 has been verified by Theorem 3.4.5 and Lemma

3.4.4, if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−αm−1

}. Hence by the Theorem 3.2.19 we can

conclude the nonlinear Jacobi (or SOR) will converge to the unique solution for any starting

value.

Hence Gauss-Jacobi or Gauss-Seidel iterations will converge to a unique solution for

the system (3.153) if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−αm−1

}. Our original parallel iteration

(3.146-3.148), however, is not a nonlinear Gauss-Jacobi or Gauss-Seidel iteration. It is

actually a block Gauss-Jacobi iteration. The theorem below guarantees the parallel iteration

converges to the unique solution.

Theorem 3.4.8 Consider the system F (y1, x2, y2, ..., xm−1, ym−1, xm) = b from (3.153)

and the operators Ri, i = 1, 2, ...,m as defined in (3.149). Nonlinear block Gauss-Jacobi

converge to a unique solution for any starting value if p > max{ m̂
α1
, m̂
α2−α1

, ..., m̂
1−α2

}.
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Proof. We wish to verify assumptions of Theorem 3.3.18. The assumptions of the Theorem

are that F is continuous, inverse isotone, and surjective, and the regular iteration function

G(., x) is surjective for any fixed x ∈ Rm.

Clearly, F is continuous. The surjectivity of F has been verified by the Lemma 3.4.4

if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−αm−1

}, and F is an M - function by Theorem 3.4.5. By

the definition of M -function implies that F is inverse isotone. All assumptions of Theorem

3.3.19 has been verified, thus G(., x) is surjective for any fixed x ∈ Rm by the Theorem

3.3.19.

Hence the assumptions of Theorem 3.3.18 has been verified so, the nonlinear block

Gauss-Jacobi iteration (or implicit iteration) (3.146-3.148) converges to a unique solution

for any starting value if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−αm−1

}.

Therefore the block Gauss-Jacobi iterations (3.146-3.148) for the system (3.153) will

converge monotonically to a unique solution if p > max{ m̂
α1−α0

, m̂
α2−α1

, ..., m̂
αm−αm−1

}, since

the system is a onto M -function.

In this chapter, the tools for nonlinear analysis, such as isotone, antinote, strictly diag-

onally isotone, off-diagonally antitone, inverse isotone, link-function, M−function, sub-

solution, supersolution, and iterative methods has been introduced. We have analyzed the

nonlinear parallel iteration that arisen from optimized Schwarz method for an arbitrary

number of subdomains. In the next chapter we will show numerical results for mesh BVP

using the parallel optimized Schwarz method.
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Numerical Implementation and Results

This chapter focuses on numerical implementation results for the 1−D mesh BVP using the

parallel optimized Schwarz domain decomposition method. We describe how the nonlinear

Robin transmission condition is implemented in the code. Additionally, numerical results

for the implicit interface iteration that arises from the parallel optimized Schwarz iteration

are presented. We show how monotonic convergence is obtained for large values of p.

4.1 Discretization and Implementation of the Robin Con-

ditions

The parallel optimized Schwarz method is based on the Robin transmission condition. In

this section, we describe how to implement the Robin transmission condition for the mesh

equation.
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4.1.1 Discretization of the Mesh BVP with Robin Boundary Condi-

tions

We discretize the mesh BVP using a staggered mesh and the midpoint technique in Chapter

2. Recall the discrete system from (2.5), G(i) is given as

G(i) ≡M
(xj+1 + xj

2

)
(xj+1 − xj)−M

(xj + xj−1

2

)
(xj − xj−1) = 0. (4.1)

In Chapter 2, we studied the second order accuracy of the discretization of the mesh BVP

with Dirichelet Boundary conditions. An optimized Schwarz iteration for every subdomain

problem has Robin boundary conditions at the left, right, or both endpoints. The boundary

conditions are given by

M(x)∂ξx− px|αi
= bl (4.2)

M(x)∂ξx+ px|αi+1
= br (4.3)

where αi < αi+1 and p is the Robin parameter. Assume a subdomain has N mesh points.

To preserve second order accuracy of discretization, we use centered differences with the

“ghost” value technique for imposing the nonlinear Robin transmission condition. Let us

impose the Robin condition at the left endpoint. Discretizing (4.2) by centered differences

gives us

M(x1)
(x2 − x0

2h

)
− px1 = bl

where h is grid spacing and x0 is the “ghost” point. Rearranging this system gives

x0 = x2 +
2h

M(x1)
(px1 + bl).

Assuming x0 is a function of x1 and x2, and differentiating x0 with respect to x1 and x2,

we obtain

∂x0
∂x1

= −2h

(
pM(x1)− (px1 + bl)M

′
(x1)

M(x1)2

)
and

∂x0
∂x2

= 1.
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For the first point, we obtain from (4.1)

G(1) =M
(x2 + x1

2

)
(x2 − x1)−M

(x1 + x0
2

)
(x1 − x0).

Differentiate G(1) with respect to x1 and x2, we have

∂G(1)

∂x1
=
1

2
M

′
(x2 + x1

2

)
(x2 − x1)−M

(x2 + x1
2

)
−

1

2

(
1 +

∂x0
∂x1

)
M

′
(x1 + x0

2

)
(x1 − x0)−

(
1− ∂x0

∂x1

)
M
(x1 + x0

2

)
,

and

∂G(1)

∂x2
=
1

2
M

′
(x2 + x1

2

)
(x2 − x1) +M

(x2 + x1
2

)
−

1

2

∂x0
∂x2

M
′
(x1 + x0

2

)
(x1 − x0) +

∂x0
∂x2

M
(x1 + x0

2

)
.

Substitute the value of ∂x0

∂x1
and ∂x0

∂x2
into these equations we evaluate the first two entries of

Jacobian matrix.

We now wish to impose the Robin condition at the right endpoint. Likewise, discretiz-

ing (4.3) by centered differences we have

M(xN)
(xN+1 − xN−1

2h

)
+ pxN = br

where xN+1 is the “ghost” value. Rearranging this system we obtain

xN+1 = xN−1 +
2h

M(xN)
(br − pxN).

Considering xN+1 as a function of xN−1 and xN , we differentiate xN+1 with respect to

xN−1 and xN to obtain

∂xN+1

∂xN−1

= 1 and
∂xN+1

∂xN
= −2h

(
pM(xN) + (br − pxN)M

′
(xN)

M(xN)2

)
.

For the last endpoint we obtain from (4.1)

G(N) =M
(xN+1 + xN

2

)
(xN+1 − xN)−M

(xN + xN−1

2

)
(xN − xN−1).
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Differentiate G(N) with respect to xN−1 and xN , we have

∂G(N)

∂xN−1

=
1

2

∂xN+1

∂xN−1

M
′
(xN+1 + xN

2

)
(xN+1 − xN) +

∂xN+1

∂xN−1

M
(xN+1 + xN

2

)
−

1

2
M

′
(xN + xN−1

2

)
(xN − xN−1) +

∂xN+1

∂xN−1

M
(xN + xN−1

2

)
,

and

∂G(N)

∂xN
=
1

2

(
1 +

∂xN+1

∂xN

)
M

′
(xN+1 + xN

2

)
(xN+1 − xN)−

(
1− ∂xN+1

∂xN

)
M
(xN+1 + xN

2

)
−

1

2
M

′
(xN + xN−1

2

)
(xN − xN−1)−M

(xN + xN−1

2

)
.

Substituting the value of ∂xN+1

∂xN−1
and ∂xN+1

∂xN−1
into these equations gives the last two entries of

Jacobian matrix.

4.1.2 Implementation of the Robin Conditions

Assume the Robin boundary conditions at αi ∈ (0, 1) are given by

bni,l =M(xni )∂ξx
n
i − pxni |αi

bni,r =M(xni )∂ξx
n
i + pxni |αi

where the first subscript of bni,r and bni,l, indicate the i-th subdomain, and r denotes a bound-

ary condition at the right-boundary of the i-th subdomain and l denotes a boundary con-

dition at the left-boundary of the i-th subdomain. The superscript n denotes the iteration

number.

The Robin transmission conditions at the i-th interface αi is given by

M(xni+1)∂ξx
n
i+1 − pxni+1|αi

=M(xn−1
i )∂ξx

n−1
i − pxn−1

i |αi
,

=
(
bn−1
i,r − pxn−1

i

)
− pxn−1

i |αi

= bn−1
i,r − 2pxn−1

i (αi),
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and

M(xni )∂ξx
n
i + pxni |αi

=M(xn−1
i+1 )∂ξx

n−1
i+1 + pxn−1

i+1 |αi
,

=
(
bn−1
i+1,l + pxn−1

i+1

)
+ pxn−1

i+1 |αi

= bn−1
i+1,l + 2pxn−1

i+1 (αi).

Hence, we may update the interface condition at the i-the interface αi by

bni+1,l = bn−1
i,r − 2pxn−1

i (αi) and bni,r = bn−1
i+1,l + 2pxn−1

i+1 (αi).

The nonlinear mesh BVP with Robin boundary conditions has been discretized above.

We now wish to verify the order of discretization error and rate of convergence of Newton’s

method. We compute the order of accuracy for discretization as discussed in Chapter 2.
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(a) Order of discretization error for the

mesh BVP.
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(b) Rate of convergence of Newton’s
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Figure 4.1: The order of discretization and the rate of convergence of Newton’s method for

the mesh BVP with the Robin boundary conditions and M(x) = 1 + x2.

In Figure 4.1, the slope of the artificial magenta lines are 2, we compare slope of the

artificial lines with the computed lines. We choose various values of step sizes h and

compute the error e for the discretization of the mesh BVP with a monitor functionM(x) =
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1 + x2. The blue line is our computed line for different h in Figure 4.1a. The computed

line is parallel to the artificial magenta line. Hence we find second order accuracy of the

discretization.

In Figure 4.1b the blue line gives the computed error for Newton’s iteration, we compute

the rate of convergence for Newton’s method as we discussed in Chapter 2. It is parallel

to the artificial magenta line. Hence the rate of convergence of the Newton’s method is

quadratic.

4.2 Numerical Results of Optimized Schwarz Iteration

In this section we present some numerical results how the DD iterations converge to the

global solution, and the interface iteration converges monotonically with different monitor

function.

4.2.1 DD Solution for an Arbitrary Number of Subdomains

The optimized Schwarz algorithm is applied to (2.1) with the monitor function M(x) =

1 + x2, and using the parallel iteration iteration (3.5)-(3.7) we obtain plots in Figure 4.2.

The plots illustrates how the DD iterations converge to the global solution for two, three,

and four subdomains. The smooth black lines are the single domain solutions in the figure.

The tolerance for DD iteration is 10−12, a step size h = 0.01 and p = 3 have been used in

the matlab script. After 12, 29, and 53 DD iterations we find desired solution. So, when

the number of subdomains increases then the optimized Schwarz takes more DD iterations

to obtain the required solution. We now want to observe the effect on convergence for the

parallel optimized Schwarz iteration for varying values of p.

Table 4.1 shows the number of DD iterations required for convergence as a function
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(b) Solution on 3-subdomain.
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(c) Solution on 4-subdomain.

Figure 4.2: DD solution for varying numbers of subdomains using OSM for p = 3.

of the number of subdomains (#SD) and the value of p. For each case we use a total of

101 mesh points and distribute these mesh points into each subdomain equally. This table

Table 4.1: The number of DD iterations as a function of the number of subdomains and the

Robin parameter p

❍
❍❍❍

❍❍❍
❍❍❍

#SD

p
0.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

2 73 16 11 12 16 19 22 25 28 31

3 203 51 38 29 20 20 21 28 32 37

4 340 81 66 53 44 36 32 31 30 39

illustrates that the optimal value of p for two, three, and four subdomain optimized Schwarz

iterations are 2.5, 3.5, and 5.5 respectively. Hence, to obtain quick convergence the value

of p needs to be increased with an increase in the number of subdomains.
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4.2.2 An Interface Iteration for Two Subdomains Converges Mono-

tonically

We studied the nonlinear system that arises from the optimized Schwarz iteration for two

subdomains in Theorems 3.2.16 and 3.2.17. We now show the two subdomain nonlin-

ear iteration (3.23-3.24) converges monotonically at the interface under the condition p >

max{ m̂
α1
, m̂
1−α1

} as presented by the theory.

The operators R1 and R3 are implemented in matlab script by

R1(0, y) ≡ R1(y) =
1

α1

∫ y

0

M(x)dx

=
1

αi

×

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(y − 0)m̌ if y < 0,

[adM(y)− adM(0)] if 0 ≤ y ≤ 1,

[adM(1)− adM(0) + (y − 1)m̂] if 1 < y,

and

R3(x, 1) ≡ R3(x) =
1

1− α1

∫ 1

x

M(x)dx

=
1

1− α1

×

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[(0− x)m̌+ adM(1)− adM(0)] if x < 0,

[adM(1)− adM(x)] if 0 ≤ x ≤ 1,

(1− x)m̂ if 1 < x,

where adM(x) is anti-derivative of M(x).

Consider a monitor function

M(x) = 1 + β1 exp
(x−x0) +β2 exp

(x−xn), (4.4)

where β1, β2 are constant. We choose β1 = 10, β2 = 5, x0 = 0, xn = 1, and α1 = 0.5. The

tolerance for consecutive iterations is 10−12. The calculated values of the lower bound and

the upper bound of M(x) are m̌ = 12.8394 and m̂ = 32.1828.
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Table 4.2: The number of DD iterations for two subdomains interface iteration for varying

values of the Robin parameter p with M(x) = 1 + β1 exp
(x−x0) +β2 exp

(x−xn), where

β1 = 10 and β2 = 5.

p 1 5 10 20 30 40 45 46 47 50 60 70 80 90 100 150

#Iter 501 120 60 29 18 11 7 6 8 11 14 18 21 24 27 41

Table 4.2 presents the number of DD iteration required for the two subdomain interface

iteration (3.80-3.82) for varying values of the Robin parameter p. The iteration converges

for all values of p > 0, and the optimal value of p is around 46.

Theorem 3.2.13 guarantees the system is an M−function if p > max{ m̂
α1
, m̂
1−α1

}. In

this case p needs to be larger than

max{ m̂
α1

,
m̂

1− α1

} = max{33.1828
0.5

,
33.1828

1− 0.5
} = 66.3656,

to guarantee the system is an M−function. This value is greater then the optimal value of

p.

Figure 4.3 shows a plot of the numerical solution as a function of iteration number for

xn1 (α1), and xn2 (α1) for the interface nonlinear iteration (3.23-3.24) for p = 10, 30, 46, 67, 100,

and 150. The iteration give monotonic convergence results for p = 46, 67, 100 and 150,

where as for p = 10 and 30 the iteration does not convergence monotonically in Figure

4.3. Hence if p is satisfies the required condition p > max{ m̂
α1
, m̂
1−α1

} in Theorem 3.2.13

then the iteration (3.23-3.24) gives monotonic convergence to the unique solution. It is in-

teresting that the optimal value of p found experimentally is close to the bound on p which

guarantees monotonic convergence.
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(d) p = 67
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(e) p = 100
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(f) p = 150

Figure 4.3: Numerical solutions of the two subdomain interface iteration for p = 10, 30, 67,

and 100 with a monitor function M(x) = 1 + β1 exp
(x−x0) +β2 exp

(x−xn), where β1 = 10

and β2 = 5.
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4.2.3 An Interface Iteration for Three Subdomains with an Easy Mon-

itor Function

We now show the interface iteration (3.80-3.82) for three subdomains converges mono-

tonically under the condition p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}. The operators Ri(xi, yi) in the

iteration (3.80-3.82) are implemented in matlab script as

Ri(xi, yi) =
1

αi − αi−1

∫ yi

xi

M(x)dx

=
1

αi − αi−1

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(yi − xi)m̌ if xi, yi < 0,

[adM(yi)− adM(xi)] if 0 ≤ xi, yi ≤ 1,

[adM(1)− adM(xi) + (yi − 1)m̂] if 0 ≤ xi ≤ 1, 1 < yi,

[(0− xi)m̌+ adM(yi)− adM(0)] if xi < 0, 0 ≤ yi ≤ 1,

[(0− xi)m̌+ adM(1)− adM(0)] if xi < 0, 1 ≤ yi,

(yi − xi)m̂ if 1 < xi, yi,

(4.5)

where adM(x) is anti-derivative of M(x), and αi, αi−1 ∈ (0, 1) with αi−1 < αi. For this

experiment the monitor function M(x) is defined in (4.4), and we choose β1 = 10, β2 = 5,

x0 = 0, xn = 1, α1 =
1
3
, α2 =

2
3

and the tolerance for consecutive iterations is 10−12.

Table 4.3 presents the number of DD iterations required of interface iteration (3.80-

3.82) for the three subdomain for varying values of p. The optimal value of p is 59 (ap-

proximately), and the iteration converges for all values of p > 0.

Theorem 3.2.13 guarantees the system is anM−function if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}.

Now we wish to check this theorem with numerical results. The calculated values of the

lower bound and the upper bound of M(x) are m̌ = 12.83939720 and m̂ = 33.18281828.
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Table 4.3: The number of DD iterations required for three subdomain interface iteration

for varying values of p with M(x) = 1 + β1 exp
(x−x0) +β2 exp

(x−xn), where β1 = 10 and

β2 = 5.

p 1 10 20 40 58 59 60 80 100 150 200 250 300 400 500

#Iter 981 92 44 20 11 9 10 12 18 29 38 48 57 75 93

So p needs to be greater than

max{32.18281828
1/3

,
32.18281828

2/3− 1/3
,
32.18281828

1− 1/3
} = 99.54845485,

to guarantee the system is an M−function. Which is greater then the optimal value of the

Robin parameter.

Figure 4.4 shows a plot of the numerical solution as a function of the iteration number

for xn1 (α1), xn2 (α1), xn2 (α2), and xn3 (α2) for the interface iteration (3.80-3.82) for p =

10, 20, 59, 100, 150, and 200. The iteration gives monotonic convergence results for p =

100, 150 and 200 whereas for p = 10 and 20 the iteration does not converge monotonically

in the figure. If p satisfies the required condition in Theorem 3.2.13 then the iteration

(3.80-3.82) gives monotonic convergence to the required solution. It is interesting that

the optimal value of p found experimentally is close to the bound on p which guarantees

monotonic convergence.
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(b) p = 20
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(c) p = 59
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(d) p = 100
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(e) p = 150
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(f) p = 200

Figure 4.4: Numerical solutions of the three subdomain interface iteration for p = 10, 20,

59, 100, 150, and 200 with a monitor function M(x) = 1 + β1 exp
(x−x0) +β2 exp

(x−xn),

where β1 = 10, and β2 = 5.
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4.2.4 An Interface Iteration for Three Subdomains with a Difficult

Monitor Function

We now presents numerical solutions of interface iteration (3.80-3.82) for three subdomains

for varying values of p, with a difficult monitor function

M(x) = 1 + β1 exp

(
x−x0
ξ1

)
+β2 exp

(
x−xn
ξ2

)
.

For this experiment we choose β1 = 10, β2 = 5, ξ1 = 0.12, ξ2 = 0.1, x0 = 0, xn = 1,

α1 =
1
3
, and α2 =

2
3

and the tolerance for consecutive iterations is 10−12.

In Table 4.4, we show the number of DD iterations required for the three subdomain

interface iteration (3.80-3.82) for varying values of p. The optimal value of the Robin

parameter p is around 60000.

Table 4.4: The number of DD iterations required for the three subdomain interface

iteration for varying values of p with a difficult monitor function M(x) = 1 +

β1 exp

(
x−x0
ξ1

)
+β2 exp

(
x−xn
ξ2

)
, where β1 = 10, β2 = 5, ξ1 = 0.12, and ξ2 = 0.1.

p 500 1000 5000 59000 60000 61000 100000 124826 130000 150000

#Iter 1350 675 135 16 15 16 28 35 37 43

We now wish to check Theorem 3.2.13 with numerical results; if p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}

then the system is an M−function . The calculated values of the lower bound and the up-

per bound of M(x) are m̌ = 11.00022699 and m̂ = 41608.62005375. Thus, p needs to be

greater than

max{41608.62005375
1/3

,
41608.62005375

2/3− 1/3
,
41608.62005375

1− 1/3
} = 124825.86016125,

to guarantee the system is an M−function.
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(a) p = 5000
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(b) p = 10000
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(c) p = 60000
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(d) p = 124826
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(e) p = 130000
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(f) p = 150000

Figure 4.5: Numerical solutions for the three subdomain interface iteration for p = 5000,

10000, 30000, 124826, 130000, and 150000 with a monitor function M(x) = 1 +

β1 exp

(
x−x0
ξ1

)
+β2 exp

(
x−xn
ξ2

)
, where β1 = 10, β2 = 5, ξ1 = 0.12, and ξ2 = 0.1.
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Figure 4.5 gives a plot of the numerical solution for xn1 (α1), xn2 (α1), xn2 (α2), and xn3 (α2)

for the interface nonlinear iteration (3.80-3.82) for p = 5000, 10000, 60000, 124826, 130000,

and 150000. The iteration gives monotonic convergence for p = 60000, 124826, 130000

and 150000, whereas for p = 5000 and 10000 the iteration does not give monotonic con-

verge. It is interesting that the optimal value of p found experimentally is close to the bound

on pwhich guarantees monotonic convergence. Thus if p satisfies p > max{ m̂
α1
, m̂
α2−α1

, m̂
1−α2

}

then the iteration (3.80-3.82) gives monotonic convergence.

In conclusion, these numerical results do agree with the theory. The M -function theory

guarantees that the parallel nonlinear optimized Schwarz iteration will converge mono-

tonically when p > max{ m̂
α1
, m̂
α2−α1

, ..., m̂
1−αm

} for an arbitrary number of subdomains,

where p is used in the nonlinear Robin transmission condition. And these experiments

also suggest that the optimal value of the Robin parameter should be in between 0 to

max{ m̂
α1
, m̂
α2−α1

, ..., m̂
1−αm

}. The M function criteria guarantees convergence will be mono-

tonic. Monotonicity is a stronger requirement which places a restriction on p.
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Chapter 5

Concluding Remarks and Future Work

This chapter includes a summary of this thesis, the important comments and useful conclu-

sions of the present research work and future research directions.

In Chapter 1, we discussed the objectives of the thesis, relevant literature survey, in-

troduced the equidistribution principle (EP), and presented the model problem that arises

from the nonlinear parallel optimized Schwarz iteration. Our concern was to solve the in-

volved nonlinear mesh BVP using parallel optimized domain decomposition approach and

provide a nonuniform coordinate for the original physical PDE of interest.

Chapter 2 focused on moving mesh methods as determined by the EP. We showed

how the mesh equations are derived from the EP for steady state problems in one space

dimension. Additionally, we described some existing solution methods for the mesh BVP.

We presented domain decomposition preliminaries for the nonlinear BVP including parallel

Schwarz for an arbitrary number of subdomains and optimized Schwarz methods.

In Chapter 3, we derived an implicit solution on each subdomain for the optimized

Schwarz iteration for the nonlinear mesh BVP. We introduced an interface iteration from

the transmission condition, which is a nonlinear iteration. The continuous subdomain DD

iteration is equivalent to the discrete interface iteration. Some basic theorems involving
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M -functions, in particular the convergence of the Gauss-Seidel and Jacobi processes for

such mappings was described. Using the theory of M -functions we provided an analysis

of the parallel optimized Schwarz method on two subdomains and extended this result to

an arbitrary number of subdomains. This is the first known analysis of optimized Schwarz

on many subdomains for this class of problems. M -function theory guarantees that these

iterations will converge monotonically when p is greater than max{ m̂
α1
, m̂
α2−α1

, ..., m̂
1−αm

},

where p is the Robin parameter. The iteration was computed by nonlinear (block) Gauss

Jacobi or Gauss Seidel methods.

Chapter 4 focused some numerical results, which confirm the theory from Chapter 3.

The main purpose of this thesis was to develop and analyze nonlinear iterations arising

from an optimized Schwarz domain decomposition method. Numerically we see that the

optimized Schwarz iteration converges for all p > 0. Our theory explains convergence

for p large enough. This gap will be the subject of future work. Also it would be nice to

understand if the transition to monotonic convergence occurs at the optimal value of p.
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