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Abstract 

            A three-dimensional finite volume coast ocean model (FVCOM) is applied to 

understand better the wind forced oceanic responses over the Newfoundland Shelf 

including its embayments, especially during hurricane events. The hurricane-ocean model 

is applied over the Newfoundland Shelf to examine the mechanism that results in the 

significant coastal sea level rise and sea surface temperature drop. Model is coupled with 

Holland hurricane wind model to represent well the fast moving hurricanes. Hurricane 

induced coastal trapped waves are found through the analysis of tide-gauge sea level and 

currents. Turbulent mixing is the dominant process causing the sea surface temperature 

(SST) drop. The model is further applied to investigate the different oceanic response 

during Hurricane Igor (2010) and Hurricane Leslie (2012) on Placentia Bay. The model 

results agree reasonably well with field observations on sea level, near-surface currents 

and sea surface temperature (SST). The two hurricanes feature significant different tracks, 

radius and maximum sustainable wind, causing opposite shifts in inner bay circulation. 

The peak storm surge is significantly influenced by local atmospheric forcing during 

Leslie, but predominately due to remote forcing during Igor. Baroclinicity is important for 

the hurricane-induced inertial oscillation in the near-surface currents. The barotropic 

simulation results in a significant underestimate of the near-surface currents, including the 

inertial oscillation. FVCOM is finally applied off Eastern Newfoundland to study the 

circulation and hydrographic variability in 2000 and 2001. The model results along the 

eastern Newfoundland coast agree reasonably well with observations of sea level and 

currents. The model surface circulation patterns and temperature distributions in Trinity 
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Bay in spring and summer reveal seasonal differences along the coast. Summer 

circulation shows significant upwelling along the western side of the bay, together with 

the emergence of two eddies in the bay. The generation of these eddies reveals the 

importance of nonlinear dynamics. The stratification along the Newfoundland coast 

shows the spatial differences and the seasonal and inter-annual change of stratification 

due to the wind stress and heat flux. 
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1. Introduction  

 

1.1  Newfoundland Shelf and Its Embayments 

The Newfoundland Shelf is located in the Northwest Atlantic, including the Grand 

Banks, Placentia Bay, Bonavista Bay, Trinity Bay, Conception Bay and other important 

coastal embayments. The ocean circulation and hydrography of the Newfoundland Shelf 

is strongly influenced by the Labrador Current, the North Atlantic Current, surface heat 

flux and ice formation and melting (Loder et al., 1998). Wind stress, atmospheric pressure 

perturbation and net freshwater flux at the sea surface also affect the circulation and 

hydrography in this region. With the interaction between the cold, fresh Labrador Current 

and warm, salty North Atlantic Current waters, there are stronger seasonal variations in 

temperature and salinity over the Newfoundland Shelf than the Labrador Shelf. The 

relatively shallow Newfoundland Shelf plays an important role in the seasonal heat flux 

budget, resulting in significant marine ecosystem fluctuations (Bradbury et al., 2000). 

The Grand Banks of Newfoundland, which is the largest component of the 

Newfoundland Shelf, covers the region with a horizontal dimension of about nearly 500 

km of longitude and 600 km of latitude. The Bank is separated from the coast by the 

Avalon Channel (Fig.1-1). The average depth of the bank is around 80 m. The mean 

circulation is weak around 0.05 m/s on the central bank (Han et al., 2008), but strong 

around 0.3 m/s during wind events such as hurricanes (Ma et al., 2015). The strong winds 

result in significant vertical mixing over the bank and lead to sudden change in sea 

surface temperature by C6o  (Han et al., 2012a). The equator-ward flowing shelf-edge 

Labrador Current meets the polar-ward receded North Atlantic Current at the tail of the 
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Grand Banks. The inshore Labrador Current flows through the Avalon Channel into 

Placentia Bay and onto the southwestern Newfoundland Shelf (Han et al., 2008, 2011).  

Placentia Bay is located in the south Newfoundland (See Fig. 1-1 PB) and is 

bordered by the Burin Peninsula to the west and the Avalon Peninsula to the east. The 

mouth of the bay extends over 100 km towards the head of the bay, with a deep basin in 

the central bay. The mean circulation is anti-clockwise and driven by the inshore 

Labrador Current that flows through Avalon Channel (Hart et al., 1999; Schillinger et al., 

2000; Bradbury et al., 2000). deYoung et al. (1993b) demonstrated the importance of 

wind to circulation in coastal embayments such as Placentia Bay. They also suggested 

that non-local forcing should be taken into account in bay studies. During summer, 

upwelling events exist along the head and western side of the bay. 

Trinity Bay is one of several large embayments along the east coast of 

Newfoundland (See Fig. 1-1 TB). The bay is 30 km wide at the mouth and extends 70 km 

from the mouth to the head of bay. The mean circulation pattern is suggested by Tittensor 

et al. (2002, a and b) with eddies existing at the centre of the bay, a clear inflow at the 

northwestern mouth of bay and an outflow at the southeastern mouth of bay. Floating sea 

ice from the northern Labrador Shelf frequently flows into the bay during winter and 

therefore the melting ice could keep cold and fresh surface water until summer. 

Predominant westerly winds during summer cause upwelling along the western side of 

the bay and downwelling along its eastern side (Yao, 
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1986).

 

Fig. 1-1: Map showing the topography of Newfoundland Shelf. SBI is the Strait of Belle 

Isle. PB is the Placentia Bay and TB is the Trinity Bay. AC is the Avalon Channel. The 

grey lines are 200, 1000 and 3000m.  

 

1.2  Oceanographic Study over the Newfoundland Shelf and Its Limitation 

 

Over the past two decades, efforts based on in situ observations have been made on 

the Newfoundland Shelf to better understand the circulation and hydrography variability 

(Colbourne et al., 1997), and even to monitor the short time scale wind response. Four 

tide gauge stations are located along the Newfoundland coast. They are located at 
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Bonavista, St. John’s, Argentia and St. Lawrence from north to south along the coast (see 

Fig. 1-1). The St. John’s tide gauge station is located inside the harbor and the dataset 

collected at this station can be traced back to 1935. Station 27 (see Fig. 1-1) is located at 

o55.47 N and o59.52 W (8 km southeast to St. John’s), with a water depth of 176 m. This 

station is unique due to its long historical record tracing back to 1946 for vertical 

hydrographic profiles, together with biological and chemical data as well. Since the late 

1990s, temperature and salinity data at Station 27 have regularly been collected by the 

Northwest Atlantic Fisheries Centre through the Atlantic Zone Monitoring Program 

(AZMP) of Fisheries and Oceans Canada (www.Meds-sdmm.dfo-mpo.gc.ca/isdm-

gdsi.azmp-pmza/index-egn.html). The AZMP program also collects hydrographic data 

along the Bonavista and Flemish Cap transects over the Newfoundland Shelf.    

   The surface circulation and its wind forced response of coastal embayment are of 

interest because of the convergence or divergence of the flow due to the wind set up and 

the influence of low-frequency travelling continental shelf wave (de Young et al., 1993a). 

As early as 1987, observational monitoring inside the embayments on the Newfoundland 

Shelf started. Weak tides and weak mean flows were found in Conception Bay by Aggett 

et al. (1987) and deYoung and Sanderson (1995). Since then, Hart et al. (1999) and 

Scillinger et al. (2000) documented the observed mooring stations in 1998 and 1999 

summer in Placentia Bay to examine the mean circulation pattern and monitor the real-

time hydrographic variation at different depths. Recently, extensive efforts have been 

made to understand the physical, chemical and biological processes of Placentia Bay for 

example through the Smart Bay Project launched by the Marine Institute of Memorial 

http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi.azmp-pmza/index-egn.html
http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi.azmp-pmza/index-egn.html
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University in early 2000s (http://www.smartbay.ca/). The Smart Bay Project regularly 

collects oceanographic data at three fixed stations located inside Placentia Bay. In 2001 

and 2002, Tittensor et al., (2002a and b) analyzed the observational data on the circulation 

and hydrography in Trinity Bay. The ADCP and mooring data suggest small scale 

circulation inside of the bay, together with the non-linear advection and the significant 

summer upwelling at the western side of bay. 

There have been a number of numerical studies on ocean dynamics over the 

Newfoundland Shelf and its embayments including Placentia Bay and Trinity Bay, e.g., 

Hannah et al.’s (1995) linear models for the Grand Banks circulation, Tang et al.’s (1996) 

diagnostic modeling for the Labrador Shelf, Sheng and Thompson’s (1996) diagnostic 

calculation of summer surface circulation. Greenberg and Petrie (1988) simulated 

barotropic mean circulation in the Grand Banks region with a numerical model, and 

showed notable discrepancies between observed and modeled flows. Greatbatch et al. 

(1996) applied a barotropic, shallow-water model of the North Atlantic to investigate the 

synoptic sea level variability. Han (2005) investigated the barotropic wind-driven 

circulation over the Newfoundland and Labrador shelf using a three-dimensional finite 

element model and demonstrated the importance of wind-driven transport over the 

Newfoundland Shelf. Han et al. (2008) examined the seasonal variability of the Labrador 

Current and shelf circulation off Newfoundland using a semi-prognostic model. Han et al. 

(2011) improved the model performance in reproducing the seasonal variation of currents 

and transport over Newfoundland Shelf. Urrego-Blanco and Sheng (2012) simulated the 

seasonal and inter-annual variability over the eastern Canadian continental shelf by 

applying the spectral nudging method. Wu et al. (2012) examined the seasonal and annual 



6 

 

 

mean variation on the Labrador Current currents and its freshwater transport. Ma et al. 

(2012) applied a finite volume model over Placentia Bay to reproduce the circulation and 

hydrography variability in 1999. These modelling studies provide us the basic knowledge 

of circulation and hydrograph over Newfoundland Shelf. 

1.3 Hurricanes induced response over the Newfoundland Shelf 

Given the increase of global sea-surface temperature, both the total number of 

tropical cyclones and the proportion of intense tropical cyclones have increased notably 

since 1970 (Webster et al., 2005; Emanuel, 2005). Hurricane-induced storm surges may 

be aggravated by accelerated sea-level rise (Han et al., 2015). Theoretical explanations on 

the oceanic responses to a moving storm have been provided (Greatbatch, 1983; Gill, 

1984), focusing on the inertial oscillation in the wake of a storm. Gill (1984) argued that a 

pumping mechanism forcing vertical motions was induced by the localized of 

convergence and divergence when storm passed. This vertical motion was impacted by 

the initial stratification and the parameterization of the storms. Greatbatch (1983) found 

that the rapid transition from the maximum of downwelling to the maximum of upwelling 

were associated with the along-track advection; while the displacement of the maximum 

response to the right with the cross-track advection. Modelling studies of hurricanes 

impacts on storm surge in the coastal waters have been quite frequent over the past 

decade. (e.g. Resio and Westerink, 2008; Shen et al., 2006; Weisberg and Zheng, 2006a, 

b; Westerink, 2008). Storm surge calculation was the primary purpose for these numerical 

simulations. Insights into surge mechanism were also examined in numerical 

experiments. Weisberg and Zheng (2006 a, b; 2008) and Rego and Li (2010) investigated 

the coastal inundation and surge propagation along a coastal embayment. Xie et al. (2004) 
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discussed inundation algorithms and flooding velocities using the Princeton Ocean Model 

forced by an idealized Category-3 hurricane. Shen et al. (2006) simulated Hurricane 

Floyd's storm tide of September 1999 in Chesapeake Bay, with a substantial dataset for 

validation and concluded that water levels inside the bay can be explained by the 

superposition of the surge propagated into the bay and that generated by local wind 

forcing.   

Hurricanes or tropical storms pass across the Newfoundland Shelf occasionally 

from August to October, resulting in strong near-surface current and storm surge along 

with significant drops in sea surface temperature (hereafter SST) and enhancement of 

vertical mixing, e.g. Han et al. (2012a). Han et al. (2012a) showed a sharp sea surface 

temperature decrease around 6 Co  from buoy observations under Hurricane Igor. The 

occurrence of a phytoplankton bloom over the Grand Banks was attributed to the mixed-

layer deepening and upwelling associated with the strong wind stress curl. With the same 

hurricane, Han et al. (2012b) also found that the storm surge along the East 

Newfoundland coast was associated with a continental shelf wave generated. However, 

monitoring both spatial and temporal effects of hurricanes and tropical storms is limited. 

We can overcome this gap through the application of ocean modelling with reconstructed 

winds from a hurricane wind model. As such we can improve our understanding of the 

physical and biological response to extreme weather events in such under-observed 

regions. 

Numerical simulation of ocean’s responses to spatially uniform wind or hurricanes 

winds over the Newfoundland Shelf has been initiated since 1980s. Yao (1986) examined 
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the responses of currents to the wind in Trinity Bay. deYoung and Tang (1990) discussed 

and simulated baroclinic near-inertial currents on the Grand Banks induced by a storm 

using a two-layer idealized model. Using a linear barotropic model, Tang et al. (1997) 

investigated four types of wave motions for an idealized moving storm off Newfoundland 

and Labrador. Mercer et al. (2002) modelled the barotropic response to a storm, 

explaining the mechanism for coastal sea level change associated with a fast moving 

storm passing over the Grand Banks. However, previous modelling studies during 

hurricanes were based on an idealized storm and were from a barotropic perspective. To 

understand both the barotropic and baroclinic response a fully prognostic and baroclinic 

ocean model under realistic atmospheric forcing is required. 

             

1.4 Objective 

The goal of this thesis is to develop a three-dimensional baroclinic ocean model that 

can better simulate seasonal evolution from spring to fall and oceanic responses during 

storms and explain physical mechanisms on the oceanic responses to winds. To 

accomplish this goal, three steps are performed. The objectives of the first step are to 

simulate a hurricane event over the Newfoundland Shelf including the storm-induced 

surge and SST decreasing and to examine mechanisms of these oceanic responses by 

developing a three-dimensional (3D) high resolution ocean model. The model domain 

covers the Newfoundland Shelf and the southern Labrador Shelf. The second step of the 

study, focusing on Placentia Bay is to examine the different responses during Hurricanes 

Igor in 2010 and Hurricanes Leslie in 2012. The objective of this study is to explain 

mechanisms for significant sea level rise and for hurricane-induced inertial oscillation. 
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The final step is to reproduce the seasonal sea level and temperature variability in Trinity 

Bay and over the adjacent eastern Newfoundland Shelf. The objectives of the final step 

are to examine the evolution of hydrography and surface circulation in response to 

seasonal wind events and to understand underlying mechanisms.   

 

1.5 Outline of Thesis 
 

As opposed to a traditional thesis format, this thesis is composed of three journal 

articles (one published, two submitted). Some materials in the articles may have been 

presented in the introduction. Each article has its own reference list, with a separate 

reference list for the entire thesis. The original research papers of this thesis appear in 

Chapters 3, 4 and 5. Chapter 2 describes the basic equations of the circulation model and 

its boundary conditions at surface and bottom. Chapter 6 provides a summary and 

concludes with thoughts for future work. 
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2. Hydrodynamic Equations  

 

2.1 Basic Equation 

 

The numerical model used for this study is an unstructured grid, finite-volume, 

three-dimensional, primitive equation, finite-volume coastal ocean model (FVCOM; 

Chen et al., 2003). In general, two numerical methods are used in ocean modelling. One is 

the finite-difference method (Blumberg and Mellor 1987; Blumberg 1994) and the other 

is finite-element method (Lynch and Naimie 1993; Naimie 1996). The finite difference 

approach is computationally more efficient, but is less capable of resolving the 

complicated coastal boundary. Using a triangular mesh, the finite element method can 

more easily and most accurately fit the irregular coastaline. This method, however, had 

difficulty to conserve mass and momentum. The finite volume method integrates the 

momentum and tracers through individual unit control volumes and is solved numerically 

by flux through the volume boundaries to guarantee the conservation of mass and 

momentum.  
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FVCOM (version 3.1.4) is a generalized coordinate, free surface, hydrostatic model. 

It uses time splitting method for computational efficiency including the internal mode and 

external mode. External mode is constrained by its Courant-Friedriches-Levy (CFL) 

condition.  A second order accuracy, fourth order Runge-Kutta time stepping scheme is 

used for the external time integration, while the first order Euler time stepping scheme is 

selected for the internal time integration.  A second order accurate upwind scheme is used 

for the spatial flux calculation for momentum and tracer values (Kobayashi et al., 1999; 

Hubbard, 1999). For a more accurate estimation of sea level, currents, and the salt and 

temperature flux, velocity variables are placed at centroids, while all scalar variables are 

placed at nodes.  

The basic equations are presented in a terrain following, generalized coordinate 

system in order to obtain a smooth representation of irregular variable bottom topography. 

The coordinate transformation is defined as ),,,(
^^

tryxgg   where x and y are defined as 

the eastward and northward axes, and r varies from -1 at the bottom to 0 at the surface. r 

can be specified as a sigma, hybrid or more generalized function. An example for a hybrid 

coordinate is shown in Fig. 2-1. 
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Fig. 2-1: An example of a hybrid coordinate consisting of σ- and s-coordinates. The 

dashed line indicates a transition location of two coordinates at which all layers are 

uniformly divided in the vertical. (FVCOM manual, 2011) 

Under this coordinate system, the momentum and continuity equations are given 

as (2-1) - (2-3), where ,,vu  are the eastward, northward and upward velocity, mK  is the 

vertical eddy viscosity, and   is the potential density; and thermodynamic equations are 

as (2-4)-(2-6), where T and S are the temperature and salinity, hK  is the vertical 

diffusivity and 
^

H is the heat source term. 
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where mA  and hA  are the horizontal eddy and thermal diffusion coefficients, 

respectively.  

 

2.2 Vertically Integrated Equation (External mode) 

The vertically integrated equation (2-10 to 2-12) illustrates the external mode based 

on the mode splitting method (Madala and Piacsek, 1977). The external mode is for the 

fast moving motion, while the internal mode is responsible for the slow moving motion. 

Since a fast moving gravity wave exists in the ocean, sea level should be computed for 

the external mode. Because sea level is proportional to the gradient of the water transport, 
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it can be computed using the vertically integrated equations. Then the 3D internal model 

equations can be solved for a given sea level.  
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where xG  and  yG  are defined as      
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and the horizontal diffusion terms are approximately given by    
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The overbar “-“denote the vertical integration.  u and v  are vertical averaged eastward 

and northward velocity. sx  and  bx  are the surface and bottom stress. 

 Equation (2-10), (2-11), and (2-12) are the continuity and momentum equations 

expressed in the generalized terrain-following coordinate system. The right hand side of 

the momentum equations contains the barotropic, inverse barometer effect, baroclinic, 

wind stress, horizontal diffusion and dispersion terms separately.  

   

 2.3 Horizontal Mixing Coefficient  

The horizontal mixing coefficient in FVCOM can be selected as a constant value or 

following the Smagorinsky eddy parameterization method (Smagorinsky, 1963). The 

diffusion coefficient of momentum and tracer value can be expressed by (2-21) using the 

Smagorinsky horizontal diffusion scheme.  
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where C is a constant parameter from 0.1 to 0.2 and   is the area of the individual 

momentum control volume or the tracer control volume.  

The vertical turbulent model can be referred to each paper in Section 3, 4 and 5. 
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 2.4 Velocity and Temperature Boundary Treatment at the Surface and Bottom 
 

 a) Surface and bottom currents boundary condition are as follows 
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where sx , sy , uvuCdbx

22  , and vvuCdby

22   are the x and y components of 

surface wind and bottom stresses. HD . The drag coefficient dC in FVCOM is 

determined by matching a logarithmic layer to the model at a height abz  above the 

bottom. ]0025.0,
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
 , where 4.0 is von Karman’s constant and oz  is 

the bottom roughness parameter (Chen et al., 2004). 

 A zero normal velocity was specified at the land boundary.  

 b) Surface and bottom condition for temperature 

The surface and bottom boundary conditions for temperature are  
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 where ),,( tyxQn  is the surface net heat flux and ),,,( tyxSW   is the short wave flux 

incident at the sea surface.   is the slope of the bottom bathymetry, and n is the 

horizontal coordinate (Pedlosky 1974; Chen et al., 2004). 
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Knowledge of the distribution of solar radiation in the upper ocean is important for 

modeling physical processes. To simulate the heat flux penetration process, Kraus (1972) 

first suggested an absorption profile for short wave radiation as a close simulation. This 

penetration procedure of the shortwave radiation can be expressed as an exponential 

equation involving two attenuation lengths. However, this assumption yields a poor 

approximation in the upper ocean. Based on the observations, downward radiation effects 

upon the upper ocean in conjunction with wind stress conditions have been improved by 

(Simpson 1981, a, b). Based on their conclusion, Chen et al., 2003 suggested that this 

approach leads to a more accurate prediction of near surface temperature. The shortwave 

profile scheme used in the present study is given by (2-23). 
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where SW is the shortwave radiation, R is the ratio of the red component of the 

electromagnetic radiation in the total shortwave radiation and a and b are attenuation 

lengths for longer and short (blue-green) wavelength components of the shortwave 

irradiation.    

3.0 Changes to the Code 

 Surface salinity is restored to the monthly mean climatology. A correction term 

has been added into the salinity equation as follows. 
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where cS  is the monthly mean salinity and RT  is the restoring time scale.  
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Connecting Text 

The first research article addressed the first step, describing the oceanic response 

over Grand Banks to Hurricane Igor. 

The core of the hurricane ocean model was to construct the hurricane wind field 

that can well resolve the hourly wind including its magnitude change. Holland’s hurricane 

model is usually considered in constructing the hurricane wind field, keeping the 

maximum sustainable wind and minimum center air pressure. Simulated results were 

compared against observations based on tide-gauge, mooring, and satellite data. The 

physical mechanics resulting in the high sea level surge at St. John’s were further 

examined. The coast trapped wave was found and the travelling wave speed was 

calculated based on coastal elevation and vertical averaged current. The mechanisms in 

producing salient sea surface temperature drop over Grand Banks were investigated.  

This research paper has been written with the intention of being submitted to the 

Journal of Geophysical Research.  
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3.1 Abstract 

                      A three-dimensional (3-D) baroclinic finite-volume ocean model (FVCOM) 

was developed to examine the oceanic response to Hurricane Igor over the Grand Banks 

of Newfoundland. Hurricane Igor generated a storm surge of almost 1 m at St. John’s and 

about 0.7 m at three nearby coastal tide gauge stations (Bonavista, Argentia and St. 

Lawrence).  The surge magnitude from the 3-D baroclinic model agrees approximately 

with tide-gauge observations at all four stations, slightly better than that from an 

alternative 3-D barotropic case. The sudden drop of sea surface temperature caused by the 

storm, approximately C6o  as observed by buoys, is well simulated by the baroclinic 

model with a k-ε turbulence closure. A sensitivity case with the Mellor-Yamada 

turbulence closure significantly underestimates sea surface cooling. The model solution 

shows that the largest surge occurred between Bonavista and St. John’s. Further analysis 

suggests the generation of a free continental shelf wave after the storm made landfall, 

with the peak surge propagating from St. John’s to St. Lawrence. The storm-induced sea 

surface cooling is mainly associated with turbulent mixing.  
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Fig. 3-1: Hurricane Igor track (black thick line) and bathymetry (200 m, 1000 m and 3000 

m) over Newfoundland shelf. Tide-gauge stations (red triangles) include St. John’s, 

Bonavista (BN), Argentia (AR) and St. Lawrence (SL).  Locations of buoys are depicted 

in black squares. Current buoy location is blue square. TB and CB indicate the Trinity 

Bay and Conception Bay, separately. CR is the Cape Race. AC is the Avalon Channel. 

Red square is the location where the model current and sea level are shown in Fig. 3-13. 

3.2 Introduction         

The Grand Banks of Newfoundland, located in the northwest of Atlantic Ocean, 

extend nearly 500 km wide and 600 km long of the mid-latitude. Situated southeast of 

Newfoundland, the Banks are separated from it by the Avalon Channel (Fig. 3-1). With 
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the influence of different water masses, the cold fresh Labrador Current and the warm 

salty Gulf Stream, the shallow Grand Banks play an important role in regional climate 

variability and marine ecosystem function. 

Occasionally from August to October, hurricanes or tropical storms passing by the 

Banks result in a storm surge, along with drops in sea surface temperature (SST) and 

enhancement in vertical mixing. In Sep-21, 2010, Hurricane Igor, the most intense 

hurricane in Newfoundland in recent decades [Pasch and Kimberlain, 2011], hit this area, 

crossed over the Newfoundland Shelf, heading north into the Labrador Sea. The SST 

observed at a buoy on the Grand Banks showed a sharp decrease of 6 Co [Han et al., 

2012a]. Two strong storm surges were captured at the St. John’s tide gauge station with a 

time difference of 11 hours [Han et al., 2012b]. The occurrence of a phytoplankton bloom 

over the Banks was thought to be attributed to the mixed-layer deepening and upwelling 

associated with the strong wind [Han et al., 2012a].  

Historically, scientists have used observations to explore the physical mechanisms 

of the oceanic response over the Newfoundland Shelf to the storm forcing. With wavelet 

and cross-wavelet analyses, Thiebaut and Vennell [2010] analyzed a fast continental shelf 

wave with data observed from six tide-gauges located along the Newfoundland coastal 

under hurricanes. Han et al. [2012a] used satellite altimetry and tide-gauge data studied 

storm surges off Newfoundland caused by Hurricane Igor. They found that the storm 

surge was associated with a continental shelf wave generated by Hurricane Igor. 

However, monitoring both spatially and temporally the effects of hurricanes and tropical 

storms over the Grand Banks are limited, because there are few direct observations. 
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Therefore, ocean modelling has become increasingly important to improve our 

understanding of the physical and biological response to extreme weather events in such 

under-observed regions.  

Modelling studies of hurricane impacts on storm surge and upper ocean’s 

responses in the coastal waters have been quite frequent over the past decade. [e.g. Resio 

and Westerink, 2008; Shen et al., 2006; Weisberg and Zheng, 2006a,b; Westerink et al., 

2008]. Weisberg and Zheng [2006 a,b; 2008] and Rego and Li [2010] investigated the 

coastal inundation and surge propagation along a coastal embayment. Xie et al. [2004] 

discussed inundation algorithms and flooding velocities using the Princeton Ocean Model 

forced by an idealized Category-3 hurricane. Shen et al. [2006] simulated Hurricane 

Floyd's storm tide of September 1999 in Chesapeake Bay, with a substantial dataset for 

validation and concluded that water levels inside the bay can be explained by the 

superposition of offshore surge propagation into the bay and local wind forcing. Focusing 

on the Newfoundland Shelf, deYoung and Tang [1990] discussed and regenerated 

baroclinic near-inertial currents on the Grand Banks induced by a storm using a two layer 

idealized model. Using a linear barotropic model, Tang et al. [1997] investigated the four 

types of wave motions with a barotropic response for an idealized moving storm off 

Newfoundland and Labrador. Mercer et al. [2002] modelled the barotropic response to a 

storm, determining the mechanism for a storm-generated wave effect on coastal sea level 

associated with a fast moving storm passing over the Grand Banks. However, these 

modelling studies were based on an idealized storm case and focused on an idealized 

barotropic perspective. Sheng et al. [2006] modelled upper ocean response to Hurricane 

Juan over the Scotian Shelf using a three-dimensional (3-D) baroclinic model. The sea 
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surface cooling was reproduced reasonably well but the storm surge was not. 

Most of the above studies are based on either two-dimensional (2-D) depth 

averaged model or a 3-D barotropic model. Weisberg and Zheng [2008] showed an 

improvement of storm surge simulation by their 3-D barotropic model over a 2-D depth-

averaged model in the Tampa Bay, Florida.  From our knowledge, studies on coastal 

ocean’s response to hurricanes based on 3-D baroclinic models are limited. In this study, 

we will apply a state-of-the-art finite-volume coastal ocean model [FVCOM, Chen et al., 

2003] to understand the baroclinic ocean responses to Hurricane Igor over the Grand 

Banks. Our main objectives are (1) to establish a 3-D high resolution baroclinic ocean 

model that can realistically simulate storm-induced oceanic responses and (2) to 

investigate features of storm surge, sea surface cooling and mixed-layer deepening and 

impacts of baroclinicity and turbulence parameterization. In section 3.3, we will describe 

the model setup, boundary conditions, forcing data, initial conditions and solution 

procedure. Section 3.4 will present comparisons between the model and observations and 

further describe circulation and hydrography. Section 3.5 discusses the mechanisms 

underlying coastal sea level propagation and sea surface cooling associated with the 

storm. Finally, in section 3.6, we will present the summary and conclusions. 

  

3.3 Circulation models, forcing, initial and open boundary conditions 

3.3.1 FVCOM (3.1) Ocean Circulation Model and Mesh 

The FVCOM model [Chen et al., 2003] used in this study combines the 

advantages of horizontal grid flexibility and computational efficiency. Thus, this model is 

highly suitable for the present study area with an irregular complex coastal-line, reaching 
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from shallow waters to the steep topography of the shelf break. A hybrid s-coordinate is 

chosen to better resolve the surface isopycnal layers and bottom topography.  To account 

for the effect of atmospheric pressure on sea level, an atmospheric pressure gradient term 

is added into the momentum equation. A k-ε second-order turbulence model from the 

General Ocean Turbulence Model (GOTM; available at http://www.gotm.net) is also 

included with this model. No normal flow to solid boundaries is applied at the lateral 

boundaries. 

The storm surge effect is forced directly by wind stress and atmospheric pressure, 

but also is influenced by the continental shelf geometry and bathymetry. Thus, any storm 

simulation should include a domain large enough to contain the meteorological forcing 

fields and remote effects through coastally trapped wave propagation. The current model 

domain covers the southern Labrador Shelf including the Grand Banks, Newfoundland 

Shelf and the adjacent deep ocean (Fig.3-1). With 33,863 unequally spaced nodes and 

64,480 elements, the horizontal resolution is typical 5 km over the shelf and 1-2 km along 

the coast and shelf edge (Fig.3-2). Vertically, 41 levels are non-uniformly distributed with 

a transition depth of 80 m. Model uses uniform coordinate when water depth is less than 

80 m. The first layer depth is within 1 m of the surface both for the shelf areas and the 

deep ocean. We use topography from the Canadian Hydrographic Service for the shelf 

part and etopo5 for the deeper ocean (www.ngdc.noaa.gov). The bathymetry has been 

smoothed to minimize the pressure gradient errors [Mellor et al., 1993] with a volume 

conserving technique within each triangle. This technique limits the depth difference for 

three vertices at each triangle [Foreman et al., 2009]. On the basis of Courant-Friedrichs-
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Levy (CFL) numerical stability condition, model equations are solved with an integration 

time step of 1 s for the external mode and the internal time is 10 s. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3-2: Mesh with 33863 nodes over Newfoundland Shelf and Grand Banks. The 

resolution is around 1-2 km along the coastal and shelf edge. The Shelf and Banks are 

covered by 5 km unstructured triangular.   
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3.3.2 Forcing and Hurricane Igor Wind Model 

The model is forced by winds, heat fluxes and air pressure at the sea surface. We 

used spatially variable wind stress, air pressure, relative humidity, cloud cover, air 

temperature, dew point temperature and short-wave heat flux from NOAA/OAR/ESRL 

PSD, Boulder, Colorado, USA, (www.esrl.noaa.gov/psd) over the entire computational 

domain. The North American Regional Reanalysis (NARR) project is an extension of the 

NCEP Global Reanalysis which is run over the North American Region. The NARR 

model uses the very high resolution NCEP Eta Model (32 km/45 layer) together with the 

Regional Data Assimilation System (RDAS), with output 8 times daily. The heat flux 

data were calculated from MATLAB code including different functions to calculate the 

long-wave radiation, latent heat flux and sensible heat flux. A revised equation from Li et 

al. [2006] was used to calculate the albedo, including the white cap effect [Monahan and 

MacNiocaill, 1986], while the formulas from the Tropical Ocean and the Global 

Atmospheric Program (TOGA)-Coupled Ocean Atmospheric Response Experiment 

(COARE) [Fairall et al., 1996] was used to calculate the sensible and latent heat fluxes. 

The formulation of Fung et al. [1984] was used to estimate longwave radiation based on 

the sea surface temperature from monthly-mean temperature [Geshelin et al., 1999] and 

air temperature, dew point temperature, cloud cover and wind speed.  

Usually, the wind field from the NARR dataset do not represent well the 

maximum sustainable wind of a storm. A more effective way to create hurricane winds in 

storm surge modelling [e.g. Peng et al., 2006a, b; Weisberg and Zheng, 2008] is to 

reconstruct the wind field by fitting the analytical cyclone model from Holland [1980]. 
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The radial distribution of wind relative to the storm centre and the maximum wind speed 

are specified such that:      
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where r is the radial distance from the hurricane centre, HV is the axisymmetric 1-minute 

sustained wind speed as a function of the radius r , a  is the air density 

( 3/15.1 mkg ), ampP  and MCP  are the ambient and minimum central atmospheric 

pressures, respectively, e  is the natural base logarithm, RMW  is the radius of maximum 

winds, maxV  is the maximum sustained wind speed, and B  determines the shape of the 

storm wind filed, 5.20.1  B . We use a constant value of 1.1 for B . A practical and 

approximate way of converting VH to the 10-m winds is to multiply a constant factor 

[Phadke et al., 2003]. Instead, here we used another approximate approach, i.e., fitting the 

Holland model directly to 10-m wind data. The wind representation was determined from 

the NOAA Igor tracking report [Pasch and Kimberlain, 2011] and three-hourly 

forecasting data (www.nhc.noaa.gov/archive/2010/IGOR.shtml). The report provides 

storm centre location, pressure, maximum 10-m wind speed, and forecasting data 

including the 64 knot wind radius in four directions (NE, NW, SE, SW) every three hours. 

Based on the above equations (1) and (2), we calculated the maximum wind radius in 

each direction using the 64 knot wind radius data with the center location provided by the 

Igor summary [Pasch and Kimberlain, 2011]. Then, the averaged maximum wind radial 
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distance in four directions was treated as the RMW to construct the horizontal wind 

fields, neglecting asymmetry. The RMW and Vmax are further interpolated linearly to 

provide values every one hour. Then 1-minute axisymmetric winds are generated every 

one hour.  The axisymmetric wind is rotated for an inflow angle. The inflow angle was 

difficult to determine precisely. A common practice is to apply a constant inflow angle. 

Tang et al. [1997] used o35  as the inflow angle suggesting that it was too large near the 

storm centre. Zhang and Uhlhorn [2012] estimated the averaged inflow angle to be 

o2.26.22   for the 10-m wind based on observations. In the current study, we selected 

o25  as the inflow angle based on these two studies. The 1-minute sustained winds are 

also converted to 10-minute winds by multiplying a factor of 0.89 as a sensitivity case. 

Fig. 3-3 compares reconstructed 1-minute wind speeds from different B values with 1-

minute observations at St. John’s and Bonavista. The winds with B=1.1 have overall best 

agreement with observations.     

 The 1-minute (baseline) and 10-minute sustained winds from the hurricane model 

are further blended with the NARR winds: hurricane model winds within one RMW, 

NARR winds outside 4 RMW, and distance-based linear transition between the former 

and the latter between one and four RMWs. 

Wind stress is computed every one hour by: 

 wwads C VV


   

where a  is the air density, wV


 is the blended wind velocity, and dC , a drag coefficient 

dependent on wind speed, is given in the default setting of FVCOM:  
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Fig. 3-3: Comparison of 1-minute sustained wind speeds reconstructed from the hurricane 

model using different B values with observations at St. John’s, Bonavista and Argentia.    

 

 

3.3.3 Initial and Boundary Conditions 

The model sea level and velocity were initialized from zero. The initial 

temperature and salinity conditions were generated from the historical monthly-mean 

temperature and salinity data [Geshelin et al., 1999] at standard z-levels. The model 
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reaches an approximate dynamic equilibrium after running for 15 days based on the 

experiments. The model was integrated for 15 days with the July climatological condition 

and restarted from 1 August to 15 October 2010. The results from 1 September to 15 

October were analysed to examine the Igor influence over the upper ocean.  

  Tidal heights for the five major semi-diurnal ( 2M , 2S and 2N ) and diurnal ( 1K  

and 1O ) constituents based on Han et al. [2010] were specified along the open 

boundaries. Non-tidal sea level at the lateral open boundaries was obtained from the 

climatological monthly-mean solution of Han et al. [2008] and specified. The inverse 

barometric effect was adjusted at the open boundary [Jones and Davies, 2004; Sheng et 

al., 2006]. The temperature and salinity along the open boundaries were interpolated from 

Geshelin et al.’s [1999] o6/1  by o6/1  climatological, monthly-mean fields at each time 

step. 

 

3.3.4. Model Validation 

             Besides commonly used correlation coefficient and root-mean-square difference, 

another quantitative index was used to evaluate the model sea level and sea surface 

temperature. This index was introduced by Willmott [1981] and used by others [e.g., Liu 

et al., 2009]. The index is defined as:  

 2|)||(|/1 ooomMSEWS   

Where m and o represent the modelled and observed variables respectively and  o is 

the mean value of observed variable. The MSE  includes the mean bias, standard deviation 

error and the cross-correlation error and represents in the following formula.  

 2)( omMSE . WS=1 means the exact agreement, and the value closer to 1is in 
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better agreement. 

3.4 Model Validation 

3.4.1 Tidal and Non-tidal Sea Level 

Harmonic constants of leading 2M , 2S , 2N , 1K  and 1O  constituents derived from 

the coastal tide gauges and bottom pressure gauges were obtained from Han et al. [2010]. 

Harmonic analysis including these five constituents and major over-tides ( 4M , 6M , 4MS ) 

was applied to the model solution from September 1 to October 15, 2010. For the five 

tidal constituents, the RMS error between observed data and model solution was 3.5 cm 

in amplitude and 8.3 o in phase compared with 2.4 cm and 14.2 o  from Han et al. [2011]. 

The horizontal distributions (not shown) of five constituents are consistent with previous 

study and detailed description and figures could be found on Han et al. [2011]. Observed 

hourly sea levels were obtained from the Canadian Tides and Water Levels Data Archive 

(www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/twl-mne/index-eng.htm) at St. John’s, 

Bonavista, Argentia, and St. Lawrence (Fig. 3-1) for 2010. Harmonic analysis with 35 

tidal constituents (including the aforementioned 8 constituents) was applied to detide tide-

gauge data [Pawlowicz et al., 2002]. The detided tide-gauge data were compared with the 

model solution.  

http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/twl-mne/index-eng.htm
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Fig. 3-4: Hourly sea level anomalies from tide-gauge observations (red), 3-D baroclinic 

baseline model (BC-1, blue), 3-D barotropic case (BT-1, green) and 10-minute sustained 

hurricane winds case (BC-10, black dash).  Vertical black dash line indicates the time of 

highest peak in St. John’s. 

 

      The results of hourly non-tidal sea level were shown in Fig. 3-4 (blue and red 

line), with the model mean sea level adjusted to match the observed relative to the chart 

datum over the period from day 264 to day 270. The inverse barometer effect was 

included. Simulated results agree well with observed water levels in these stations with a 

correlation coefficient above 0.9, including both storm-induced and other variability. 

During Hurricane Igor, sea level at these four stations, with the exception of Bonavista, 

showed two peaks. The first peak at St. John’s was on year day 264, 15:30pm when the 
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storm centre made landfall near Cape Race (see Fig. 3-1), while the second one at this 

station was on year day 265, 02:30am when the storm centre travelled further north, about 

530 km northeast from St. John’s (Fig. 3-4). The second peak at St. Lawrence was 6-8 

hours later.  

The averaged RMS differences between the observed and simulated hourly values 

were averaged to be around 10 cm at the four tide-gauge stations,. which nevertheless was 

relatively small compared to an average surge magnitude of 80 cm (Table 3-1). The 

averaged Willmott Score stayed as high as 0.90. The differences for the peak amplitude 

and timing were shown in Table 2. On average, the absolute amplitude difference was 8 

cm (less than 10% of the average surge magnitude) and the time lags were 1.3 hour. Even 

though the model slightly over- or under-estimated the peak surge, it did capture the local 

surge’s evolution and well reproduced the low frequency sea level before and after the 

storm very well. 

 

 

 

Table 3-1: validation statistics between model and observed non-tidal sea level anomalies 

(cm). BC-1 is baseline 3-D baroclinic model, BT is 3-D barotropic case, and BC-10 is 10 

min sustainable wind case. 

Tide-gauge 

Station 

RMS Difference (cm) Willmott Score (WS) 

BC-1 BC-10 BT-1 BC-1 BC-10 BT-1 

St. John’s 9.5 10.5 10.2 0.91 0.88 0.90 

Bonavista 9.1 9.9 9.2 0.90 0.87 0.90 

Argentia 12.4 11.7 13.0 0.87 0.86 0.86 

St. Lawrence 10.6 12.2 11.3 0.91 0.86 0.90 

Mean 

Absolute 

10.4 11.1 10.9 0.90 0.87 0.89 
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Table 3-2: Storm surge peak statistics (model minus observations) for the highest peak. 

BC-1 is baseline 3-D baroclinic model, BT is 3-D barotropic case, and BC-10 is 10 min 

sustainable wind case. 

Tide-gauge 

Station 

Observed Peak 

surge (cm) 

Peak Difference (cm) Peak Lag (hour) 

BC-1 BC-10 BT-1 BC-1 BC-10 BT-

1 

St. John’s 94 -6 -18 -15 2 2 2 

Bonavista 79 -12 -10 -8 2 2 2 

Argentia  85 12 -3 8 2 2 2 

St. Lawrence 75 2 -13 -2 0 0 1 

Mean Absolute  83 8 11 8 1.5 1.5 1.8 

 

 

The model results at Argentia and St. Lawrence also show strong oscillations at a 

period of about 5 h (Fig. 3-4). Placentia Bay has a longitudinal length of 130 km and an 

average depth of 125 m [Ma et al., 2012]. By treating it as horizontally triangular the 

natural oscillation period is estimated to be 5.4 h [detailed formula can be found in the 

Handbook of Coastal and Ocean Engineering (edited by Y. C. Kim), World scientific 

Publ., Singapoure, 2009]. Thus the strong short-period oscillations are probably 

associated with storm-induced seiche. It is possible that tide gauges did not capture the 

seiche well because of their locations. 

On year day 265, 02:40am, Jason-2 had a pass across the Grand Banks when the 

sea level was close to the second peak at St. John’s.  Simulated sea level anomalies along 

the track were interpolated and compared with satellite observations from Han et al. 

[2012b] (Fig. 3-5). Over the central Grand Banks ( N5.45N42 oo  ), computed sea level 

captured the observation well. A sea level dip was found between o5.44 N to o5.45 N both 

in the observation and the model results. However, a large difference between the 

observed and simulated sea level anomalies exist inshore (Fig. 3-5b) due to the model 

delay of the peak at St. John’s (Table 3-2). After two hours, the model inshore elevation 
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anomaly reached 0.6 m. 

 
Fig. 3-5: (a) Jason-2 satellite ground track (Red) and (b) sea level anomalies between 

model and satellite observations. Black thick line in (a) is the storm track. AP stands for 

Avalon Peninsula. Red triangles depict the location of tide gauge stations. 

3.4.2 Sea Surface Temperature  

The simulated sea surface temperatures in the baseline run were compared with 

buoy measurements (Fig. 3-6 blue and red line, respectively). One buoy (C44251) was 

deployed inshore and the other two were located along the shelf edge in the southern part 

of the Grand Banks (Fig. 3-1). When the storm passed over, the sea surface temperature 

dropped by around 6 Co . The simulated temperature changes from the baseline case agree 

well with those observed. The MY-2.5 case does less well than the other two cases in 

simulating the observed SST cooling in the three stations. The correlation coefficients 

from day 264 to 270 between observed and baseline run were all above 0.9. The averaged 

RMS error between the observed and simulated temperature stayed around 1.6 Co . The 
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averaged Willmott Score was 0.83, indicating good agreement for both mean temperature 

and variability. The hurricane induced averaged temperature drop from the model was 

comparable to the observed temperature drop within 1 Co  . By comparing the 

temperature before and after the storm, we found that the surface temperature did not 

return to the original level after the storm (Fig. 3-6). In general, the net heat flux at the 

surface becomes weak for this region in late September. Therefore it is unlikely for the 

sea surface temperature to recover following passage of the storm. Sheng et al. [2006] 

simulated sea surface cooling of 3.5 Co  over the Scotian Shelf during Hurricane Juan. 

Wada [2005] reproduced sea surface cooling of 4 Co  south of Japan during Typhoon Rex.    

 
Fig. 3-6. Hourly sea surface temperature from observation (red), baseline model with k-ε 

turbulence closure (blue), sensitivity case with MY2.5 (green), and sensitivity case with 

10-minute sustained hurricane winds (black dash)  at C44140 (a), C44138 (b) and 

C44251(c). Vertical black dash line indicates the landfall time. 
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Table 3-3: Sea surface temperature comparison between model and observations at buoy 

locations. 

Buoy 

Number 

RMS Difference 

( Co ) 

Willmott Score (WS) Temperature Decrease ( Co ) 

Obs Model 

k

-1 

k

-10 
MY

2.5-

1 

k

-1 
k

-10 

MY

2.5-

1 

 k

-1 
k

-10 

MY2.

5-1 

C44140 0.9 1.1 4.2 0.92 0.81 0.35 6.3 4.2 2.7 1.8 

C44138 2.4 2.4 6.0 0.67 0.66 0.29 6.3 5.2 4.0 1.8 

C44251 1.4 0.6 2.0 0.89 0.97 0.78 5.2 7.5 5.6 2.9 

Mean 

Absolute  

1.6 1.4 4.1 0.83 0.81 0.47 5.9 5.6 4.1 2.2 

 

 

3.4.3 Horizontal Temperature Distribution and Mixed Layer Depth 

Fig. 3-7 shows the eight-day averaged horizontal sea surface temperature 

distribution from the baseline case and from satellite remote sensing data 

[pathfinder.nodc.noaa.gov; Casey et al., 2010]. As indicated, Fig. 3-7 (a, b) were the 

averaged sea surface temperature from 14 September to 21 September and from 22 

September to 29 September. The satellite sea surface temperature was shown for the same 

time period. Before the storm, the satellite surface temperature showed an evident north-

south gradient over the Grand Banks. The temperature was high, up to 20 Co  in the south 

and low to 12 Co  in the north. After the passage of the storm, the satellite surface 

temperature dropped significantly, by around 6 Co over the Grand Banks but held a 

similar north-south gradient. Compared with the satellite temperature, similar spatial 

patterns before and after storm were clearly found from the model solutions. A large 
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discrepancy between model results and satellite observations exist over the southern 

Grand Banks after the storm passed by. The model temperature is 14 Co  while the 

satellite temperature is 11 Co . The averaged mixed layer depth (the criterion is based on 

density difference to surface is 0.125) around coastal buoy (C44251), calculated based on 

the model results (Fig. 3-8), showed that the mixed layer deepened substantially 

following the passage of the storm, increasing from 17 m before the storm to around 27 m 

afterwards.     

 

 
Fig. 3-7: Eight-day averaged model sea surface temperature from Sep-14 to Sep-21 (a) 

and Sep-22 to Sep-29 (b) and satellite sea surface temperature Sep-14 to Sep-21 (c) and 

Sep-22 to Sep-29 (d). Black line is the Igor track and the black dots are the buoy 

locations. 
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Fig. 3-8: Model mixed-layer depth averaged over an area (from 53 to 54 Wo  and from 46 

to 46.5 No ) near the inshore buoy location. Black dash line indicates the landfall time. 

 

 

3.4.4 Surface Current  

Surface currents were compared with observations at a station located in the 

mouth of Placentia Bay where observed surface currents (0.5 m below the sea surface) are 

available. Half-hourly data were extracted from the Smart Bay Project 

(www.smartbay.ca). Data from August 1 to December 31, 2012 were de-tided for the 5 

major constituents and 30 other minor constituents [Pawlowicz et al., 2002] and smoothed 

with a 3-hour low pass filter (Fig. 3-9). In general, model calculated currents compare 

reasonably well with buoy observations especially during Hurricane Igor. From year day 

http://www.smartbay.ca/
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264 to 266, surface current significantly increased to around 0.6 m/s and the direction 

changed suddenly from positive to negative (positive is eastward and northward). The 

peak currents were reached at year day 264, 19:55 when the storm center moved to the 

northeast of Trinity Bay. Significant inertial oscillations were generated at a period of 

about 17 h. Detailed statistics were calculated between the observed and model currents. 

The RMS differences between the model and observation are 15 cm/s and 15 cm/s in the 

eastward and northward components, respectively. Therefore, the model simulated the 

variability of surface current reasonably, especially during Hurricane Igor.  

 

 

Fig. 3-9: Hourly surface currents at a location (see Fig. 3-1) in the outer Placentia Bay. 

Blue line is the model surface current while red line is the observed. Black dash line 

indicates the landfall time. 
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3.5 Discussion 

3.5.1 Sensitivity simulations without stratification, with Mellor-Yamada turbulence 

closure, or with 10-minute sustained wind forcing 

Weisberg and Zheng [2008] found the importance of using a 3-D barotropic model 

instead of a 2-D depth-averaged one for storm surge in Tampa Bay, Florida. They 

attributed the 20% underestimation of surge in the 2-D model to the overestimation of 

bottom stress. Here we extend their work to examine the difference between our baseline 

3-D baroclinic model and an alternative 3-D barotropic (BT-3D) while keeping wind 

forcing and sea level open boundary conditions the same. The results are shown in Fig. 3-

4, with detailed statistics in Table 3-1 and 3-2. The 3-D barotropic model is essentially as 

good as the baroclinic model in terms of the RMS difference and Willmott Score (Table 

3-1). The statistics for the peak storm surge shows slightly lower skills of the 3-D 

baroclinic model. The barotropic model underestimate the observed surge to a greater 

degree than the baroclinic model, especially at St John’s. This difference may be 

attributable to the increased bottom current (Fig. 3-10) and thus bottom stress in the 

barotropic model. The storm surge, as a temporal and spatial integral of the surface slope, 

depends strongly on the bottom stress and thus bottom current [Weisberg and Zheng, 

2008].  

              The default turbulence closure for the vertical eddy viscosity/diffusivity in the 

FVCOM is the 2.5-level Mellor-Yamada turbulence model (MY2.5). Han et al. [2011] 

reported that the heat flux could not penetrate deep enough when the MY-2.5 was used in 

an FVCOM simulation of the seasonal circulation over the Grand Banks. As a result, the 
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model mixed layer depth was too shallow in summer. Thus, we used a second-order k-ε 

model in GOTM for our baseline simulation. Here we compare the model SST during 

Hurricane Igor from the k-ε and MY2.5 turbulence closures, respectively.  Table 3-3 and 

Fig. 3-6 clearly show that the model SST change from the k-ε closure agrees well with 

observations, but those from the MY2.5 closure do not.  

 
Fig. 3-10: Bottom current speed from the baseline baroclinic model (BC-1) and the 

sensitivity barotropic case (BT-1), averaged over an area from 52 to 53 Wo  and from 47 

to 49 No  in the vicinity of St. John’s.  

 

 Like in some previous studies [Morey et al., 2006; Weisberg and zheng, 2008], we 

used 1-minute sustained hurricane winds as the forcing for the baseline simulation as 

shown in the preceding section. As a comparison the results from a sensitivity run forced 

by the 10-minute sustained hurricane winds were also provided here. Overall, the 

sensitivity case has larger RMS differences and lower Willmott Score than the baseline 
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case (Table 3-1) against tide-gauge sea level variations.  It underestimates the peak storm 

surge at all tide-gauge stations (Fig. 3-4, Table 3-2). The sensitivity case has essentially 

the same RMS differences and the Willmott Score against buoy-observed SST (Table 3-

3). The sensitivity case agrees better with observed SST decrease at the nearshore buoy 

location, but underestimates sea surface cooling at the two offshore buoy locations (Table 

3-3, Fig. 3-6). 

3.5.2 Sea Level and Continental Shelf Wave 

Fig. 3-11a showed the surface circulation pattern and sea level distribution at 

12:00pm on Sep-21(year day 264), when the storm centre was located at the shelf edge, 

south of Newfoundland. The winds at this time pushed the water from the southern Grand 

Banks to the coast. Combined with the inverse barometric effect, a surge was formed at 

St. John’s, Argentia and St. Lawrence when the storm centre moved close to the Avalon 

Peninsula (Fig. 3-1) and made landfall. As the storm centre passed the Avalon Peninsula 

and moved offshore, the coastal sea level along the southern coast receded and the winds 

pushed the water away from the coast towards the outer Grand Banks (Fig. 3-11b). These 

changes are also seen in the hourly tide gauge data (Fig. 3-4). As the storm travelled 

farther north, at 02:00-03:00 on Sep-22 (year day 265) (Fig. 3-9 c and d), the direct storm 

effects over the Grand Banks became weaker. However, we still observed a significant 

second surge peak at St. John’s at 02:40 on Sep-22, and at St. Lawrence several hours 

later. 

Both model solution and observation data revealed a stronger second peak at St. John’s. 

In contrast there was only one peak at Bonavista. The source for the second peak can be 

traced to the higher sea level in Trinity and Conception Bay (Fig. 3-11d). This sea level 
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setup propagated equator-ward along the coast, and caused the second peak surge at St. 

John’s, Argentia and St. Lawrence.  To quantify the effect of sea level setup within the 

two bays, a numerical experiment without them was carried out to examine their impacts 

on the storm surge magnitude. To do so, the two bay areas were covered with land. The 

model results without the two bays showed that the second peak at St. John’s decreased 

by 5 cm, but still stronger than the peak at Bonavista. This experiment suggests that the 

existence of the two bays had some effects on the surge magnitude at St. John’s. 

However, the dominant reason to generate the stronger second peak at St. John’s is 

attributed to inshore Ekman setup when the storm centre was located northeast of St. 

John’s.    
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Fig. 3-11: Model surface circulation and sea level distribution at (a) 12:00 on Sep-21 (day 

264); (b) 17:00 on Sep-21; (c) 02:00 on Sep-22 (day 265) and (d) 03:00 on Sep-22. Black 

thick line is the Hurricane Igor track. Red spots are the storm center at the corresponding 

time. 
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Fig. 3-12: Temporal evolution of the sea surface elevation (SSE) from the model after the 

second peak at St. John’s at (a) 03:00, (b) 05:00, (c) 07:00 and (d) 09:00 on September 22 

(day 265). 

 

Another important feature associated with the storm is the generation and 

propagation of coastally-trapped waves. For example, Morey et al. [2006] attributed an 
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anomalously high storm surge along the Florida coast of Apalachee Bay during Hurricane 

Dennis to a topographic Rossby wave. Han et al., [2012b] suggested the generation of a 

continental shelf wave when Hurricane Igor passed over the Grand Banks. The 

propagation of a shelf waves excited by the storm can also be seen from the storm-

induced sea surface elevation (Fig. 3-12a).  The surface elevation anomaly (Fig. 3-12a) 

showed a relatively high sea level anomaly in Trinity Bay and Conception Bay at 03:00 

on Sep-22 (year day 265). The model showed that this anomaly propagated southward 

and arrived at St. John’s around at 05:00 on Sep-22 (Fig.3-12b). However, the tide-gauge 

observation at St. John’s indicated this high anomaly around, 02:30 on Sep-22.  This 

demonstrated the delay of two hours in the calculated sea level. At about, 09:00 on Sep-

22, the high anomaly left the Placentia Bay to farther west.  

To further quantify the storm induced shelf wave we analysed the observed and 

simulated sea levels at Bonavista, St. John’s and St. Lawrence. The time period is from 

01:30 September 23 to 01:30 September 27, 2010, the same as that used in Han et al. 

[2012b]. Observed post-storm sea level indicates that the dominant period of oscillation is 

48 hours or 0.5 cycle per day (cpd) at St. John’s. A similar oscillation was also found at St. 

Lawrence, but not at Bonavista. Sea level at St. Lawrence lags that at St. John’s by 7-8 

hours. The propagation speed of sea level is estimated to be 14-16 m/s (Fig. 3-13a), 

consistent with previous results for the Canadian Atlantic shelves based on the numerical 

model and sea level observations [Tang et al., 1998; Sheng et al., 2006; Thiebaut and 

Vennell, 2010; Han et al., 2012b]. Han et al. [2012b] estimated the first-mode shelf-wave 

speed to be ~10 m/s from St. John’s to Argentia. In contrast, the barotropic Kelvin wave 

speed is estimated to be about 30 m/s by assuming an averaged water depth of 100 m 
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along the eastern Newfoundland coast. Therefore we argue the post-storm sea level 

propagation is associated with the first-mode continental shelf wave. Compared with the 

observations, our model results show similar wave characteristics both in the time lag as 

well as the wave propagation speed and dominant frequency (Fig. 3-14). Some difference 

was observed at St. Lawrence where the model frequency was 0.7 cpd.  

 
Fig. 3-13: (a) Lagged correlation coefficients (open circles: significantly different from 

zero at the 99% confidence level; cross: insignificant) between the tide-gauge sea level 

anomalies at St. John’s and St. Lawrence, with the latter lagging the former. (b) Power 

spectral density of the tide-gauge sea level anomalies at St. John’s, Bonavista and St. 

Lawrence. 
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Fig. 3-14: (a) Lagged correlation coefficients (open circles: significantly different from 

zero at the 99% confidence level; cross: insignificant) between the model sea level 

anomalies at St. John’s and St. Lawrence, with the latter lagging the former. (b) Power 

spectral density of the model sea level anomalies at St. John’s, Bonavista and St. 

Lawrence. 

 

Overall, the simulated sea level agrees well with observations in the sub-inertial 

band. After separating the high- and low-frequency signals of sea level at St. John’s 

bounded by the inertial frequency, we found that the correlation coefficient between 

observed and model results was 0.8 for the sub-inertial band; but insignificant for the 

other band. Similarly, Bonavista and St. Lawrence stations had high correlation in the 

sub-inertial frequency. Thus, the model and observed sea level difference is mainly in the 

high-frequency band above the inertial frequency, which is in part associated with 
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uncertainty in representing the storm high frequency wind forcing.     

By analysing the time series of model depth-averaged current at a location off St. 

Lawrence (Fig. 3-1), the storm-induced free-wave oscillations were also examined. The 

magnitude of the depth-averaged horizontal current speed at this location reached 20 cm/s 

during the storm period (Fig. 3-15). The oscillation had a dominant period of about 0.7 

cpd (Fig. 3-15b), consistent with that of the sea level oscillation at the same location (Fig. 

3-13d).  

 
Fig. 3-15: (a) Vertically averaged current at a location indicated in Fig. 1 and (b) its power 

spectral density of the total current speed. (c) Sea level anomaly and (d) Power spectral 

density. 

 

 

 



53 

 

 

3.5.3 Entrainment and Upwelling 

Price [1981] and Wada [2005] suggest the sea surface cooling during the hurricane 

is primarily caused by entrainment and upwelling. These papers also introduce two non-

dimensional numbers: the Burger Number and the Rossby number, to demonstrate the 

evolution of storm effects on surface cooling. Here, we follow their definition for the 

Burger number (B):  

2

max

'

2

4 Rf

hg
B l                                                                                                                   (3-3) 

where 'g is the reduced gravity and lh is the mixed layer depth after cooling. The Burger 

number represents the scale of turbulent mixing. We first determine the mixed-layer 

depth. The difference between the mixed–layer density and that in the rest of water 

column is used to calculate the reduced gravity. Instead of the Rossby number, we 

introduce an Ekman Pumping Index (E):  
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curl
E
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 )(


                                                                                                                  (3-4) 

where HU is the storm translation speed.  We calculated the Burger number and the 

Ekman Pumping Index from the model results at the inshore buoy location (C44251, Fig. 

3-1).  

When the storm centre was approaching to Newfoundland in the morning of Sep. 

21, the ocean was well stratified, with a large Burger number (Fig. 3-16a). One to two 

hours before landfall, the Ekman upwelling effect started to pump colder water from 

subsurface. The turbulent mixing also picked up. Thus the density difference between the 

mixed layer and the lower water column decreased and the Burger number began to fall. 

At 15:00, the turbulent mixing and upwelling effects reached sea surface and SST started 
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to fall.  The Ekman upwelling weakened at 16:00 (Fig. 3-16b). The SST fell by about 

2 Co  from 15:00 to 17:00. While the Burger number continued to fall, the SST fall paused 

for 2-3 hours. Afterwards, SST fell again together with the Burger number. The SST 

adjustment ended at 03:00 on September 22, while the Burger number did not end until 

five hours later. 

Although the Burger number and Ekman pumping index show when turbulent 

entrainment and Ekman upwelling take place, they do not provide information on their 

relative importance. The two processes both contribute to sea surface cooling but their 

influences on the mixed-layer depth are opposite. The former deepens it and the latter 

uplifts it.  We have calculated the Ekman pumping velocity and cumulative distance for 

an area around the buoy location (Fig. 3-16c and d). The net cumulative distance is 

estimated to be 5 m. With the simulated mixed-layer deepening of about 8 m, the 

turbulent entrainment deepened the mixed-layer by 13 m. Therefore, the turbulent 

entrainment is the dominant process over the Ekman upwelling in inducing the sea 

surface cooling, consistent with Sheng et al. (2006). 
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Fig. 3-16: Time series of (a) the Burger Number B, (b) the Ekman Pumping Index E, (c) 

Ekman upwelling velocity W and (d) Cumulative upwelling distance D. The right axis in 

(a) and (b) indicates the sea surface temperature (SST). Location of C44251 can be seen 

in Fig. 3-1. 

 

 

3.6 Conclusion 

A 3-D, baroclinic, finite-volume ocean model was developed to study the upper 

ocean responses to Hurricane Igor over the Grand Banks of Newfoundland. 

Reconstructed hurricane winds were applied to force this ocean model to explore the 

dynamics of mid-latitude coastal waters.  

The 3-D baroclinic ocean model reproduced the sea surface elevation before and 



56 

 

 

after the storm reasonably well. Especially, the two surges generated by the passage of 

Hurricane Igor were well captured. Both the model and observations showed two surges 

at St. John’s, Argentia and St. Lawrence. The first surge was attributed to the direct local 

wind forcing and the second one was the result of the equator-ward propagating 

continental shelf wave generated by the storm. Compared with hourly observations, the 

model sea surface elevation had an RMS error of 10 cm on average from day 264 to 270. 

The model tends to underestimate storm surge magnitude at St. John’s and Bonavista, but 

overestimate them at Argentia and St. Lawrence. For the highest surges, the average 

model-observation magnitude difference was 8 cm, with a model time lag within 1.3 hour. 

Sea level at the three stations was separated into high- and low-frequency components 

bounded by the inertial frequency for further analysis, which indicates poor and good 

agreement with observations for the former and latter, respectively. In the future, by 

applying the observed hourly and high-resolution wind data in the hurricane model [Rego 

and Li, 2010], we should improve the reconstructed local winds so that the ocean model 

could generate more accurate high-frequency sea level.   

The model surface temperatures were compared with observations at three buoy 

stations over the Grand Banks. Both model and observation showed a significant decrease 

about 6 Co  in the sea surface temperature. The RMS difference between the model and 

observation from day 264 to day 270 was about 1.6 Co . Furthermore, the calculated 

horizontal distribution of the sea surface temperature was compared with satellite 

observations. The model reproduced well the southward increase of temperature observed 

before the storm and the sharp decrease afterwards.  
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The model near sea surface current was compared with observations at a point 

located in the outer Placentia Bay.  The correlation coefficient between the model and 

observations was 0.7. The model was able to generate the observed variability of surface 

currents. In particular when the storm passed over Newfoundland, the calculated surface 

currents well captured the strong southwestward flow of 0.7 m/s.  

The storm induced shelf wave was examined by analysing the sea level at tide-

gauge stations and currents at a point far away from the storm centre to prevent direct 

storm wind effects. Both observation and model results showed a propagation speed of 

14-16 m/s and 0.5-0.7 CPD, consistent with the continental shelf-wave estimation from 

Han et al., [2012b]. We further analyzed the vertically averaged currents in the outer 

Placentia Bay. The results highly support those from sea level data. The storm excited 

waves propagate equatorward along the Newfoundland coast. These waves can not only 

be observed from the sea surface elevation field but also from the horizontal currents.   

An examination of Burger number and Ekman pumping parameters indicates that 

the entrainment due to turbulent mixing is the dominant process to cause the salient drop 

in SST. Upwelling associated with the wind stress curl plays a small supplementary role 

only.  

The present study provides new insights into simulating ocean’s response to 

hurricanes. It is found that a 3-D baroclinic model simulates storm surge slightly better 

than an alternative 3-D barotropic model. The difference may be attributed to smaller 

bottom current and thus friction in the 3-D baroclinic model. It is shown that sea surface 

cooling is well simulated with a k-ε turbulence closure, but is significantly 

underestimated with the commonly used MY2.5 closure.  
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Connecting Text 

 

The second article addressed the second objective. It mainly focused on the 

Placentia Bay, Newfoundland to further investigate the oceanic response to two different 

hurricanes (Hurricane Igor in 2010 and Hurricane Leslie in 2012). Resolution including 

the inner bay was refined to 50 m. Hurricane Igor (2010) and Hurricane Leslie (2012) 

were selected as two hurricanes with different tracks, maximum sustainable wind and 

landfall points. This article also discussed the significantly influence by local atmospheric 

forcing during Hurricane Igor and Hurricane Leslie. Baroclinicity was also demonstrated 

in this article as an important portion in producing the hurricane-induced near-inertial 

oscillation. 

This article has been written with the intention of being submitted to Ocean 

Modelling. 
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4.1 Abstract 

A three-dimensional, baroclinic, finite-volume coast ocean model (FVCOM) is used 

to examine the hurricane induced responses in Placentia Bay, Newfoundland. Two 

hurricanes chosen are Hurricane Igor (2010) and Hurricane Leslie (2012), both of which 

made landfall within 100 km of the mouth of the bay. The model results agree reasonably 

well with field observations on sea level, near-surface currents and sea surface 

temperature (SST). Two hurricanes feature significant different tracks, radius and 

maximum sustainable wind, causing the opposite shifts in inner bay circulation. 

Hurricane Igor overwhelms the mean inflow into the inner bay and shifts the currents to 

outflow. Hurricane Leslie reinforces the inflow into the head of bay. The peak storm 

surge is significantly influenced by local atmospheric forcing during Leslie, but 

predominately due to remote forcing during Igor. Baroclinicity is important for the 

hurricane-induced inertial oscillation in the near-surface currents. The barotropic 

simulation results in a significant underestimate of the near-surface currents, including the 

inertial oscillation.  

4.2 Introduction 

Placentia Bay is located in the southern Newfoundland, bordered by the Burin 

Peninsula to the west and the Avalon Peninsula to the east. It supports important fisheries, 

especially for Atlantic Cod, which has received considerable interest recently because of 

its ecological sensitivity and economic importance (Bradbury et al., 2000). In summer, 

Placentia Bay features coastal upwelling on the western side of the bay due to the 

westerly upwelling favourable wind. In situ observations in the Placentia Bay region by 
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Hart et al. (1999) and Shillinger et al. (2000) revealed the mean circulation together with 

seasonal current variability and hydrographic changes. The circulation of the outer bay is 

cyclonic (Hart et al., 1999), a result confirmed by many modelling studies (Greenberg and 

Petrie, 1988; Tang et al., 1996; Han, 2005; Han et al., 2008; Han et al., 2010; Han et al., 

2011; Ma et al., 2012). Ma et al. (2012) applied a robust prognostic high resolution model 

on Placentia Bay. They reproduced the mean circulation and modelled the spring-summer 

seasonal hydrographic variability in 1999. Smart Bay, a project funded by Marine 

Institute of Memorial University, deployed three mooring stations over Placentia Bay to 

provide the real-time near surface current, temperature data. Occasionally hit by tropical 

storms during late summer, the oceanic response of the Grand Banks (which is outside 

Placentia Bay) to a moving hurricane is characterized by a rise in sea level, a decrease in 

sea surface temperature and a surface phytoplankton bloom (Han et al., 2012a). However, 

it is unclear what and how different responses are during different storms in Placentia Bay. 

In recent years, Placentia Bay was hit by two hurricanes, Hurricane Igor in 2010, 

considered to be the most intense hurricane to Newfoundland in recent years (Pasch and 

Kimberlain, 2011), and Leslie in 2012. Both hurricanes made landfall in southern 

Newfoundland (Table 4-1). Hurricanes tracks were almost parallel to each other and 

45 o northeast towards the coast (Fig. 4-1). Igor made landfall to the east of Placentia Bay, 

classified as an eastern-type storm based on the landfall location, while Leslie’s landfall 

was on the western side of Placentia Bay as a western-type storm. The storm translation 

speed intensifies winds on the right side of storm, resulting in asymmetry. Leslie had its 

right side facing Placentia Bay and the landfall point is at the mouth of bay (Table 4-1). 
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The eastern-type storm like Igor had the bay on its left side. The different tracks and 

landfall locations could lead to significantly different oceanic responses over Placentia 

Bay. Observed tide gauge records revealed different sea level responses along the coast. 

The sea level response observed at Argentia during Leslie is surprisingly stronger than 

that during Igor, 116 cm compared with 86 cm; even though Igor was more intense than 

Leslie (Table 4-1). Han et al. (2012b) analysed the water level peaks during Igor, 

suggesting a non-local effect to the sea level rise. These authors also attributed the sea 

level rise at St. John’s and Argentia to continental shelf wave propagation. Therefore, our 

first goal is to apply the numerical method, examining the different oceanic response to 

hurricane Igor and Leslie, and further investigating the effect of local and non-local 

forcing on storm surges. de Young et al., (1993) also demonstrated the non-local effect of 

Kelvin wave propagation into Conception Bay from neighbouring Trinity Bay, 

Newfoundland. They also point out the strong coupled baroclinic and topographic 

response of Newfoundland coastal bays to winds. Thus, the second part of this work will 

focus on the baroclinic oceanic response to the wind during hurricane event. 
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Table 4-1: Some comparative aspects of Hurricane Igor and Leslie. 

Name Hurricane Igor Hurricane Leslie 

Date under Effect September 21-22, 2010 September 11-12, 2012 

Landfall location Burin Penninsula, 

Newfoundland(East) 

Cape Race, Newfoundland 

(South) 

Maximum Sustainable 

Wind  

40km/h 35 km/h 

Minimum Centre 

Pressure 

950 mb 968 mb 

Storm surge at Argentia 0.86 m 1.16  m 

Storm surge at St. 

Lawrence 

0.77 m 0.96 m 

Distant from Landfall 

point to mouth of 

Placentia Bay 

Around 100 km 0 km 

 

 

In this paper, we will describe the first application of a three-dimensional (3-D), 

coastal ocean model (FVCOM, Chen et al., 2004) to Placentia Bay forced by Hurricane 

Igor and Leslie. We will first establish and validate the model against independent 

observational data including mooring and tide-gauge data, to demonstrate the ability of 

the model in capturing the bay characteristics of the oceanic response. We will conduct 

case studies to examine the local and non-local influences and the baroclinic response to 

the hurricanes. The paper is arranged as follows. In section 4.3, we will describe the 

model setup, boundary conditions, forcing data and initial conditions. In section 4.4, we 

will evaluate model against observations. In section 4.5, we will first examine the inner 



68 

 

 

bay circulation during Hurricane Igor and Leslie. Then cases are developed to investigate 

the local forcing and baroclinic influence on reproducing the oceanic response to 

hurricanes. Finally, in section 4.6, we will present the summary and conclusions. 

4.3 Model Configuration 

4.3.1FVCOM model (Version 3.1) 

Combining horizontal grid flexibility and computational efficiency, the FVCOM 

model used in this study integrates independent variables through individual unit control 

volumes. It is solved numerically by flux through the volume boundaries to guarantee the 

horizontal conservation of mass and momentum. A time splitting method is used for 

computational efficiency including an internal mode and an external mode constrained by 

the Courant-Friedriches-Levy (CFL) condition. A sigma coordinate is chosen to better 

resolve the topography. Barometric pressure term is applied in momentum equation. The 

current study use Mellor-Yamada turbulence scheme. Previous work (Weisberg and 

Zheng, 2006; Resio and Westerink, 2008; Rego and Li, 2010; Han et al., 2011; Ma et al., 

2012; Ma et al., 2015) successfully demonstrates the advantage of FVCOM in simulating 

the physical environment around coastal shelf and bay areas.   

4.3.2 Model domain 

The model domain is from 53 Wo to 56 Wo and 45.5 No
 to 47.8 No

 (Fig. 4-1). 

The geometry of the domain features some coastal ocean banks, such as Green Bank and 

Whale Bank which is a part of the Grand Banks and St. Pierre Bank, which forms two 

channels with Green Bank and the Burin Peninsula. The shoreline of the bay has many 

inlets, and is surrounded by relatively steep cliffs. Three large islands are located in the 
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upper Placentia Bay (Fig. 4-1). The centre of the outer bay is 200 m deep, while much of 

the remainder of the outer bay is typically 100 m deep. The average depth of the Bay is 

around 125 m (Ma et al., 2012) although there are several 400 m deep channels that run 

along the longitudinal axis of the inner bay. The model bathymetry is mainly derived 

from the multi-beam bathymetry of the Canadian Hydrographic Service. To minimize the 

pressure gradient errors (Mellor et al., 1993), the bathymetry was smoothed using the 

same method as in Ma et al. (2012). The governing equations of the model are solved on 

an unstructured triangular grid whose spacing is largest (3-5 km) along the open boundary 

and smallest (50 m) along the inner bay coastline (Fig. 4-2).  There are 31 unequally 

spaced levels in the vertical, with a minimum spacing of within 0.2 m near sea surface 

and seabed in order to resolve the shear current and thermodynamic process near surface 

and bottom. The model equations are solved using an integration step of 0.5 s for the 

external mode and an internal to external mode ratio of 10. 
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Fig. 4-1: Map showing model domain including 100 and 200 m depth contours (gray 

lines). Black thick lines are the tracks for Hurricane Igor and Hurricane Leslie. The red 

dots are tide-gauge stations, and the blue dots indicate mooring stations for surface 

temperature and currents. 
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Fig. 4-2:  The horizontal grid used in the numerical model. The grid spacing range from 

50 m around inner Bay to 5 km over the outer Bay.  

 

 

4.3.3 Model Forcing and Initial Conditions 

The model is forced by winds, air pressure and heat fluxes at the sea surface, tidal 

and non-tidal sea levels and temperature and salinity at the lateral open boundaries. Wind 

and air pressure fields from Ma et al. (2015) are interpolated onto the model grids. These 

fields are blended from 3 hour North American Regional Reanalysis (NARR) 
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atmospheric forcing (www.esrl.noaa.gov/psd) and Holland hurricane model (Holland, 

1980). The blending method is described in Ma et al. (2015). To improve the accuracy of 

the wind and air pressure fields, a distance-weighted correction scheme (Shen et al., 2006) 

based on the observational atmospheric data is applied on these atmospheric fields. The 

correction method applies the observed wind speed, direction and air pressure inside the 

Bay area (See Fig. 4-1 for locations of M1, M2, M3, C44251, Argentia and St. Lawrence, 

data are from Environment Canada and Fisheries and Canada) to assimilate the blending 

fields. Heat flux data including net showrtwave, net longwave, latent and sensible flux are 

extracted from NARR dataset (www.esrl.noaa.gov/psd, Mesinger et al., 2006) over the 

entire computational domain. The NARR project is an extension of the NCEP Global 

Reanalysis that is run over North America. The NARR model uses NCEP Eta Model (32 

km/45 layer) together with the Regional Data Assimilation System (RDAS). This dataset 

has output 8 times daily. Net heat flux are calculated from the four flux components and 

mapped to the triangular nodes, as the same way with short wave radiation. 

Five leading semidiurnal and diurnal constituents ( 2M , 2S , 2N , 1K , 1O ) and non-

tidal sea levels at the lateral open boundaries are obtained from a large-scale 

Newfoundland Shelf model (Ma et al., 2015) and specified along the open boundary. The 

temperature and salinity along the open boundaries were specified in the same way. The 

Newfoundland Shelf model demonstrated a good quality of tidal and non-tidal elevation 

compared with observations over the Newfoundland Shelf. The model reasonably 

reproduced the inshore Labrador Current transport in year 2010 and 2012. Results from 

the Newfoundland Shelf model are interpolated to provide the hourly offshore variability. 

http://www.esrl.noaa.gov/psd
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However, to maintain conservation, this condition is used only when the boundary flux is 

directed into the domain.  

The sea level and velocity were initialized with the results of the large-scale 

Newfoundland Shelf model (Ma et al., 2015) throughout the computational domain to 

reduce the spin-up time. The initial temperature and salinity condition was also generated 

from Ma et al. (2015).  

The present model considers the fresh water input from the Piper Holes River in 

the upper bay. The river discharge rate was 29 sm /3
 in 2010 and 19 sm /3

 in 2012, but 

reached above five times of the average discharges when the storms hit the bay.  

The model was run from August 15 to September 30 in 2010 and 2012. Model 

results from September 1 to 30 are compared with observations and used in analysis. 

Based on previous work with this model (Ma et al., 2012), 15 days is long enough to spin 

up the model for realistic forcing of Placentia Bay. 

4.4 Validation 

To evaluate the model solutions qualitatively and quantitatively, we compare the 

model solutions with various measurements. In addition to the correlation coefficient and 

the root-mean-square (RMS) difference, we examine the velocity difference ratio (VDR) 

defined as the ratio of the sum of the squared magnitudes of the vector velocity 

differences to the sum of the squared magnitudes of the observed velocities, that is, 

  22 ||/||VDR oom VVV       (4-1) 
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where mV  is the horizontal model velocity and oV is the horizontal observational velocity, 

Lower VDR  values indicate better agreement, with 0VDR  indicating the exact 

agreement.  

Another measure is the speed difference ratio (SDR) defined as the ratio of the sum of 

the squared speed difference to the sum of the squared magnitudes of the observed 

velocities, that is, 

22
||/|)||(|SDR   oom VVV      (4-2) 

The third index is the correlation coefficient ( R ) between the model and 

observational components. 

4.4.1Evaluation of Tidal Elevation 

The horizontal distribution of 2M  shows an increasing trend in amplitude towards 

the head of bay. For 1K , the amplitude decreases towards the western side of bay, 

consistent with previous model and observation results (Han et al., 2010; Ma et al., 2012). 

Horizontal tidal distribution in detail can be found in Ma et al. (2012). The tidal elevation 

(for location of Argentia and D, see Ma et al. 2012, Fig. 4-1) is compared to observations. 

The detailed statistics are calculated in Table 4-2. The RMS difference of amplitude is 

within 2.5 cm, indicating good agreement in magnitude of tidal elevation and its 

distributions. The RMS difference of phase is within 6 o except 1K . The statistics from Ma 

et al. (2012) is also listed in Table 4-2. The current solution clearly shows the 

improvement in reproducing the diurnal tidal constituents.   
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Table 4-2: Summary and statistics for observed and computed semi-diurnal and diurnal 

tidal elevations at two coastal tide-gauge stations. Observational locations were shown in 

Ma et al. (2012), Fig. 4-1. Both model results are listed for comparison. 

 
2M  2S  2N  1K  1O  

 Ma et 

al.(20

12) 

Curre

nt 

Study 

Ma et 

al.(20

12) 

Curre

nt 

Study 

Ma et 

al.(20

12) 

Curre

nt 

Study 

Ma et 

al.(20

12) 

Curre

nt 

Study 

Ma et 

al.(20

12) 

Curr

ent 

Stud

y 

RMS 

amplitude(

cm) 

2.6 2.5 2.3 1.2 1.4 1.4 2.8 1.0 4.2 1.8 

RMS 

Phase( o ) 

1.9 4.9 4.6 5.8 5.4 2.3 24.4 12.4 3.6 2.4 

 

 

4.4.2Validation of Non-tidal Water Levels  

Hourly model water level at Argentia and St. Lawrence station (see locations in Fig. 

4-1) are compared with tide-gauge observations. Observed water levels are detided with 

the T-Tide toolbox (Pawlowicz et al., 2002). Harmonic analysis including five main tidal 

constituents ( 2M , 2S , 2N , 1K , 1O ) and major over-tides ( 4M , 6M , 4MS ) was applied to 

the model solutions. The inverse barometer effect is applied directly through the model 

momentum equations. It should be noted the observation in 2012 is not available from 

September 8 to 10.  

The model-data comparison is shown in Fig. 4-3 after matching model mean sea 

level to tide-gauge datum. Simulated Igor responses agree well with observed water 
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levels at tide-gauge stations, especially with the water levels retreating after the storm 

landfall and the subsequent high storm surge (Fig. 4-3a and b). Water levels showed the 

first response around September-21 at 13:00 pm when the storm centre approached 

landfall near Cape Race (Southeast corner of the Newfoundland, Fig. 4-1). Around 21 

hours later, another increase in sea level developed on September 22 at 10:00am as the 

storm centre travelled farther north to the central Labrador Sea. The second peak is 

probably associated with continental shelf wave propagation (Han et al., 2012b).  Unlike 

Igor, the water levels associated with Leslie reached their peaks just before the storm 

made landfall on September 11 at 10:45am. Sea level at the tide-gauge stations started 

increasing on September 10, continuously rising until landfall (Fig. 4-3c and d). After 

peaking, sea level started to decrease and fluctuated for four cycles in one day with a 

period of about 5 hours. This fluctuation, presented as a bay seiche, existed in both model 

and observations, but its amplitudes is overestimated by the model. If we treat the bay as 

a triangular and the length is 130 km and with an averaged depth of 125 m (Ma et al., 

2012), the fundamental seiche period is 5.4 h. The difference in amplitude may be 

attributed to poorly resolving the harbour area where the tide-gauge is located. In reality, 

the large seiche amplitude may be prohibited from propagating into harbour area. The sea 

level surge response to Leslie was in part attributed to the Ekman transport induced by 

intensified wind and low air pressure (see Section 4.2 for details). 
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Fig. 4-3:  Time series of sea level anomalies at (a) Argentia and (b) St. Lawrence under 

Hurricane Igor and at (c) Argentia and (d) St. Lawrence under Hurricane Leslie. Black 

dashed line indicates the landfall time at September-21, 15:00, 2010 and September-11, 

10:45, 2012. 

 

Quantitative comparisons are also calculated between the model results and 

observations (Table 4-3). By using the RMS difference and correlation, statistics are 

estimated to determine the model’s ability to reproduce the sea level under hurricane 

forcing. The averaged RMS difference and correlation between the observed and 

modelled sea level is 0.15 m and 0.74, demonstrating reasonable agreement in terms of 

magnitude and variability. To evaluate the performance of the model in producing the 
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hurricanes induced sea level rising, the sea level surge difference and its time lag are 

calculated. On average, the amplitude difference is 0.09 m and the time lags are 0.6 hour. 

Even though the model underestimated the peak surge at St. Lawrence under Igor, it did 

well capture the local evolution of the storm surge. 

Table 4-3: Statistics for observed and modelled sea level anomalies at Argentia and St. 

Lawrence. See Fig. 4-1 for location. (Model-Observation) 

 Argentia  St. Lawrence 

 Hurricane 

Igor  

Hurricane 

Leslie 

Hurricane 

Igor  

Hurricane 

Leslie 

RMS difference (m) 0.15 0.21 0.11 0.14 

Correlation 0.69 0.67 0.82 0.76 

Surge difference (m) -0.06 0.06 -0.17 0.05 

Surge time lag (hour) 1 -0.5 0.5 -0.5 

 

4.4.3Evaluation of Non-tidal Surface Current 

Model currents are validated with the moored buoy data from the Smart Bay 

Project (http://www.smartatlantic.ca/PlacentiaBay/). Current data at 0.5 m below surface 

were recorded by every 0.5 hour at three different locations since 2006 (See locations M1, 

M2 and M3 in Fig. 4-1). M1 is located at the head of bay and M3 is near the mouth of bay 

(Fig. 4-1). M2 is in the eastern deep channel connecting from the outer bay to the inner 

bay, and is also close to Argentia. Currents at these different sites are likely to have quite 

different dynamical characteristics (Fig. 4-4 and Fig. 4-5). The surface current at M1 is 

relatively weak due to its location near the head of bay and its reduced influence from 

outside of the bay, especially during hurricanes (Fig. 4-5 a and b). At M3, currents 
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fluctuate at a frequency of 15 hours as Igor and Leslie passed by, suggesting a wind 

induced near inertial oscillation. Igor and Leslie lead to an opposite near-surface response 

at M3 at the time of storm landfall, with strong southwestward currents under Igor but 

northeastward currents under Leslie. Model and observed data during the simulation time 

have mean velocity of 0.21 m/s at M2 under Hurricane Igor. Currents at M2 also show 

large shifts in magnitude and direction during Igor, from weak northeastward to strong 

southwestward and then back to weak northeastward, due to the surface Ekman flow (Fig. 

4-4). The maximum southwestward current reaches 0.6 m/s. During Leslie, the near 

surface currents at M2 were intensified to be northeastward. The model did reasonably at 

capturing the observational variability and magnitude, especially during the hurricane, 

though with the overestimation of near inertial oscillation at M3 under Igor. The spatial 

difference of near-surface currents at these three locations depends largely on the coastal 

geometry and the Rossby number, with strong inertial oscillation at M3 compared with 

weak magnitude at M1 and M2. 
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Fig. 4-4: Time series of observed (red) and modelled (blue) (a) eastward (U) and (b) 

northward (V) surface currents at M2 and (c) U and (d) V for M3 under Hurricane Igor. 

Black dashed line indicates the time of Sepember-21, 15:00 when Igor made landfall on 

Newfoundland Island. 
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Fig. 4-5: Time series of observed (red) and modelled (blue) (a) eastward (U) and (b) 

northward (V) surface currents at M1, (c) U and (d) V at M2, (e) U and (f) V at M3 under 

Hurricane Leslie. Black dashed line indicates the time of Sepember-11, 10:45 when Leslie 

made landfall on southern of Newfoundland Island. 

 

Quantitative statistics are calculated between the model and observed results (Table 

4-4). Data were unavailable at M1 during Hurricane Igor and at M2 during Leslie. The 

averaged correlation coefficients for each direction component are 0.4, with somewhat 

better comparison during Leslie. The SDR values are generally smaller than 0.5 except 

for M1, indicating the well captured magnitude and variability for observed surface 

current. The VDR values, accounting for both speed and direction, are generally greater 
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than SDR. All VDR estimates except for M1 indicate fair agreement between model and 

observations. The poor VDR value at M1 is primarily due to the weak current magnitude.       

 

Table 4-4: Current statistics: Eastward (U) and Northward (V) VDR and SDR at near 

surface for M1, M2 and M3. See Fig. 4-1 for the locations of M1, M2 and M3. 

 Hurricane Igor Hurricane Leslie  

 VDR SDR Correlation VDR SDR Correlation 

   U V   U V 

M1 - - - - 3.2 1.0 0.25 0.12 

M2 0.8 0.3 0.68 0.57 - - - - 

M3 1.0 0.3 0.44 0.18 0.9 0.3 0.35 0.35 

 

 

4.4.4Comparison of Sea Surface Temperature (SST)  

Fig. 6 presents the time series of surface temperature at M2, M3 and C44251 based 

on observations and model results for Hurricanes Igor and Leslie. The observed sea 

surface temperature at C44251 shows a sharp drop of C6o  during Igor (Fig. 4-6b), in 

response to the strong vertical mixing. Inside the bay at M3, the model sea surface 

temperature has a C3o  decrease from September 21 to 23 (Fig. 4-6a), comparable to 

observation but with underestimated magnitude. Unlike Igor, the response to Hurricane 

Leslie shows rapid changes in surface temperature, with a C1o  drop in sea surface 

temperature at M2 and M3 as the storm passes by (Fig,. 4-6c, d). Simulated surface 

temperature under Leslie reproduced well the observed temperature drop timing, but 
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overestimated the change. The over- and under-estimation of magnitude are perhaps 

associated with limitation in heat flux input data over Placentia Bay.   

 
Fig. 4-6: Time series of observed (red) and modelled (blue) sea surface temperature (SST) 

at (a) M3 and (b) C44251 under Hurricane Igor; and SST at (c) M3 and (d) M2 under 

Hurricane Leslie. Black dashed line indicates the landfall time at September-21, 15:00, 

2010 and September-11, 10:45, 2012. 

 

The RMS difference and correlation are calculated to quantify the model 

performance (Table 4-5). The RMS differences are within C2o  in the middle bay and 

outer bay, except at M3 where the model underestimates the pre-hurricane ocean 
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temperature by about C2o , indicating reasonable comparison between the model and 

observation.  

Table 4-5: Statistics for the comparison between modelled and observed surface 

temperature (SST) at M2 and M3. See Fig. 4-1 for the locations. 

 Hurricane Igor Hurricane Leslie 

 M3 SST C44251 SST M2 SST M3 SST 

RMS difference( Co ) 3.9 1.8 1.9 3.0 

Correlation 0.65 0.87 0.56 0.5 

 

 

4.5 Discussion 

4.5.1 Spatial Pattern of Inner Bay Velocity Fields 

The time sequences of sub-tidal 0-30 m depth-averaged flows related to Hurricane 

Igor are shown in Fig. 7. On September 21, 10:00 am, around 5 hours before the landfall 

of Igor (Fig. 4-7, a), the upper ocean current has an inflow through the eastern side of the 

steep channel into the inner bay, due to the inshore Labrador Current flowing along the 

coast. Three eddies are generated in the east channel, inner bay, and west channel. These 

eddies may contribute to fish egg and larvae retention during late summer (Bradbury et 

al., 2000). After Igor made landfall (Fig. 4-5, b), the hurricane wind overcomes the 

Labrador Current inflow, pushes the surface current toward the southwest and intensifies 

the currents to 0.4 m/s. As Igor moves northeastward onto the Labrador Shelf, the direct 

hurricane influence diminishes and the upper ocean current relaxes (Fig. 4-7, c and d). 
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Fig. 4-7: Vertically averaged current in the top 30 m during Hurricane Igor at (a) 10:00 

and (b) 15:00 on September-21, and at (c) 2:00 and 10:00 on September-22 in 2010. 

 

Fig. 4-8 shows the 0-30m averaged current during Hurricane Leslie. As Leslie 

approaches, the inner bay circulation features the inflow and eddies (Fig. 4-8, a) at the 

same location as for Igor case. Six hours later when Leslie made landfall on the western 

side of Placentia Bay, currents become significantly strong, with combined wind induced 

Ekman inflow and inshore Labrador Current inflow. As Leslie travels farther north, the 

inflow is weaker and the inner bay circulation is counter-clockwise (Fig. 4-8 c and d). 
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Fig. 4-8: Vertically averaged current in the top 30 m during Hurricane Leslie at (a) 10:00 

and (b) 15:00 on September-21, and at (c) 2:00 and 10:00 on September-22 in 2012. 

 

 At the first stage before landfall of the storm, the upper ocean current shows a 

similar response in both cases. Counter-clockwise eddies appear in the upper bay. As the 

hurricanes pass, surface currents in the upper 30m are intensified, with outflow and 

inflow for Igor and Leslie, respectively. Igor cancels the inflow and generates a strong 

outflow from the inner bay. Leslie intensifies the inflow and stimulates a clear anti-

clockwise circulation inside of bay. The different oceanic response is primarily attributed 

to the hurricane tracks and differing landfall positions. Igor passes Placentia Bay on its 

eastern side making landfall 100 km away from Placentia Bay (Fig. 4-1). The Ekman 
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flow from Igor is mostly outflow and pushed away from the eastern coast. Leslie is on the 

western side and the landfall point is at the right side of bay. During the early stages of 

Leslie, the strong southeast wind reinforces the inflow in the upper bay. After Leslie 

moves farther north, the wind turns from the southeast to southwest, contributing to the 

reversed direction of the Ekman flow with the southward surface current on the western 

channel of the inner bay.   

4.5.2 Sea Level Response to local hurricane wind 

Han et al. (2012) stated the observed sea level response to Igor peaked along the 

Placentia Bay coast as the storm center moves farther away. They argued the main surge 

during Igor is primarily associated with remote forcing, from a continental shelf wave. 

Unlike Igor, the sea level response to Leslie increased to the surge point before the storm 

made landfall. Therefore, this storm surge was formed primarily from local forcing. Here, 

we have conducted sensitivity runs to quantify the importance of the local atmospheric 

forcing effect to the main surge. Table 6 shows the percentage of water level changes at 

Argentia and St. Lawrence under Hurricane Igor and Leslie. During Igor, the water level 

without the local forcing increases by about 10%, indicating the dominant role of the 

remote forcing in reproducing the storm surge. While during Leslie, sea level surge 

decreases substantially, with more than half of the original magnitude, showing the 

importance of local atmospheric forcing.  
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Table 4-6: Statistics showing the decreasing of sea level surges at tide-gauge stations in 

case without local forcing. 

 Hurricane Igor Hurricane Leslie 

Tide gauge station Argentia  St. Lawrence Argentia St. 

Lawrence 

Simulated Sea level 

surge (m) 

0.81 0.61 1.21 1.00 

storm surge change in 

percentage (%) without 

local forcing 

15 7 -45 -58 

 

4.5.3 The Importance of Stratification on Near-Surface Velocity 

To examine the influence of stratification on the response to hurricane forcing, a 

homogeneous barotropic case (hereafter referred to as BT) was developed for the domain 

of Placentia Bay. The case is initialized with the same velocity fields as for the baseline 

baroclinic case (referred to BC). In BT, the model is run with spatially uniform 

temperature and salinity over the domain. Same atmospheric forcing is applied at the 

surface.   

Fig. 4-9 shows the 0-30m averaged current from BT at the exact same time as in 

BC (Fig. 4-7). By September 21, 10:00am, the cyclonic inner-bay circulation has already 

been formed, in corresponding to geostrophic pressure gradient. Compared with the BC 

case (Fig. 4-7), a swirl loop current at the head of bay disappeared, suggesting the 

importance of baroclinic instability in forming the small-scale counter-clockwise rotation. 

After Igor made landfall and the wind intensified on September 21, 19:00pm (Fig. 4-9 b), 

the wind-driven current overcame the inshore Labrador Current over the upper layer and 
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carried the water out of the inner bay.  After the storm passed and the strong wind died 

down, the barotropic circulation returned to a state of dynamic rest very quickly, 

primarily due to the fast speed of the barotropic wave (Fig. 4-9 c and d). For Leslie, Fig. 

4-10a shows the overall cyclonic circulation in Placentia Bay before storm. Leslie 

intensified the inflow into the head of bay (Fig. 4-10b). The BC and BT cases clearly 

show the near-surface currents are stronger for the baroclinic case, especially during 

hurricanes.     

 
Fig. 4-9: Vertically averaged current in the top 30 m during Hurricane Igor calculated 

from BT case at (a) 10:00 and (b) 15:00 on September-21, and at (c) 2:00 and 10:00 on 

September-22 in 2010. 
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Fig. 4-10: Vertically averaged current in the top 30 m during Hurricane Leslie calculated 

from BT case at (a) 10:00 and (b) 15:00 on September-21, and at (c) 2:00 and 10:00 on 

September-22 in 2012. 

 

To further examine the baroclinic influence, especially during the storm event, we 

select M2 and M3 near-surface currents as example (Fig. 4-11). Obviously, surface 

currents for the case BT are significantly underestimated in terms of both magnitude and 

variability, especially during Leslie. During Igor (Fig. 4-11 a-d), the currents changed 

drastically at the beginning stage of storm, especially at M3. The maximum currents 

during the storm are well captured in the BC case. During Leslie (Fig. 4-11 e-h), strong 

hurricane wind intensifies the near-surface currents in both cases. Currents in the BC case, 



91 

 

 

however, are much stronger than those for the BT case, especially for the hurricane-

induced inertial oscillation from 12-15 September at M3. The BC case well simulates the 

current variations during Leslie. The above comparison of the near-surface current from 

Igor and Leslie indicates the stratification is a key dynamic factor in reproducing the 

inertial oscillation, while there remain issues to be resolved for improved quantitative 

agreement during Igor. Due to the overestimation of near-surface current during Igor, we 

do see some better comparisons in BT case. A latter experiment shows the improvement 

of the surface current at M3 in Igor by using the k  turbulence scheme. This 

mechanism is consistent with Csanady (1972), Krajcar and Orlic (1995) and Chen and 

Xie (1997).   

To demonstrate the baroclinic effect on the vertical structure of currents, we 

examine the vertical profiles from the BC and BT cases at M2 and M3 (Fig. 4-12). Again, 

we clearly see the model current from the BT case is significantly weaker than that from 

the BC case during the hurricanes. The BC model shows strong increase of the current 

gradient in the vertical in response to the hurricane forcing; while the BT model does not. 
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Fig. 4-11: Time series of near surface currents for case-BC (blue) and case-BT (green) 

compared to the observed near surface currents (Red). Black dashed line indicates the 

landfall time at September-21, 15:00, 2010 and September-11, 10:45, 2012 for Igor and 

Leslie, respectively. The time between two black thick lines is from storm approaching to 

leaving. 
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Fig. 4-12: Vertical profiles of currents at M2 and M3 under Hurricane Igor and Leslie. U 

is the eastward component and V is the northward component. Red squares indicate the 

observed near surface currents. 

  

4.6 Conclusion and Summary 

A three-dimensional finite-volume ocean model was applied to study the upper-

layer responses to two hurricanes in Placentia Bay, Newfoundland. The hurricanes chosen 

for the study are Hurricane Igor (2010) and Hurricane Leslie (2012). Hurricane Igor was 

the more powerful storm, making landfall on the eastern side of bay while Hurricane 

Leslie made landfall at the western side. The two hurricanes feature different tracks, 
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strength, and translation speed, resulting in quite different oceanic responses on sea level 

and upper-layer circulation.  

The finite-volume ocean model reproduced the water level rise before and after 

hurricanes. Especially, the surges generated by the passage of Hurricane Igor were well 

captured. The model sea level showed a good agreement with observations for Hurricane 

Leslie, in spite of over-estimation of the storm-induced inertial oscillation. The model 

near-surface current was compared with observations at three different locations in 

Placentia Bay, two of which are located in the inner bay. The statistics indicate reasonable 

agreement with observation, with 0.5 for an average Speed Difference Ratio. Especially 

during hurricane events, simulated currents well capture the observed currents, in terms of 

magnitude and variability.  

The model reproduced the general cyclonic circulation in Placentia Bay before the 

two hurricanes. The upper 30 m circulation responding to the two hurricanes had opposite 

patterns. Upper-layer currents during Igor had strong outflow out of the inner bay while 

during Leslie strong inflow was observed. Cases without local wind and air pressure were 

examined. The results showed the local atmospheric forcing contributed to the peak storm 

surges by over 50% during Leslie, but insignificantly during Igor, indicating that the local 

forcing may have much more influence in western-type storms than in eastern-type 

storms, depending on the distance from the landfall point to the bay. The remote coastally 

trapped wave contributes more to sea level rise for the Igor-like case.    

An examination of the circulation with and without stratification revealed the 

importance of baroclinicity for the hurricane response in Placentia Bay. The near surface 

currents during the two hurricanes were significantly decreased after removing the 
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stratification. Thus, the local baroclinic effect was essential in reproducing the hurricane-

induced current intensification and inertial oscillation in Placentia Bay. The recovery time 

is much longer for the baroclinic case, due to the reduced propagation speed of the 

baroclinic wave. This also suggests that the baroclinic wave and its propagation are an 

important process in generating the storm-induced surface current. Vertical structures of 

the model currents at the mooring stations show substantially different vertical energy 

distribution between the baroclinic and barotropic cases.  

This paper provides the first local examination of oceanic response to hurricanes 

over Placentia Bay. Physically, this article demonstrates the importance of stratification in 

simulation of wind induced events. The present study also suggests that the sea level 

response to Igor-like storm over Placentia Bay could be estimated from upstream tide-

gauge stations like St. John’s.  The direct response to local wind and air pressure is 

important in storm surge during Leslie-like hurricanes. The results will be of interest to 

local communities for coastal management and marine safety and for applications to 

fisheries oceanography.  
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Connecting Text 

 

 

This third article described the application of three-dimensional finite volume ocean 

model off the Easter Newfoundland including the Trinity Bay. The model was developed 

with high resolution mesh grid with 20 m in the Trinity Bay. The simulation period was 

from spring to late summer for 2000 and 2001. The model results along the eastern 

Newfoundland coast agreed reasonably well with observations of sea level and currents.  

Temperature variations at 2000 and 2001 were well simulated compared with ADCP 

observations and current meter data inside Trinity Bay. This article also described the 

model surface circulation patterns and temperature distributions in Trinity Bay in spring 

and summer. Summer circulation showed significant upwelling along the western side of 

the bay, together with the emergence of two eddies in the bay. The stratification along the 

Newfoundland coast was investigated in this article too. 

This article has been written with the intention of being submitted to Continental 

Shelf Research.
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5.1 Abstract 

           A three-dimensional finite-volume ocean model (FVCOM) is applied off 

Eastern Newfoundland to study the circulation and hydrographic variability in 2000 and 

2001. The model is forced at lateral open boundaries with non-tidal sea level and at the 

surface with hourly wind stress and heat flux. The open boundary temperature, salinity 

and non-tidal sea levels are derived from a large-scale shelf model. The model results 

along the eastern Newfoundland coast agree reasonably well with observations of sea 

level and currents.  The estimated transport associated with the inshore Labrador Current 

is consistent with calculation based on the observations in summer. Temperature 

variations at 2000 and 2001 are well simulated compared with ADCP observations and 

current meter data inside Trinity Bay. The model surface circulation patterns and 

temperature distributions in Trinity Bay in spring and summer reveal seasonal differences 

along the coast. Summer circulation shows significant upwelling along the western side 

of the bay, together with the emergence of two eddies in the bay. The generation of these 

eddies reveals the importance of nonlinear dynamics. The stratification along the 

Newfoundland coast shows the spatial differences and the seasonal and inter-annual 

change of stratification due to the wind stress and heat flux. 

 

5.2 Introduction 

The circulation and its dynamics along the coast can be quite complex and are 

therefore of interest because flow near the coast can be convergent or divergent due to the 

upwelling- or downwelling-favorable wind,  shedding from topography and convection 

from coastal currents (Ferrer and Caballero, 2011; Afargan and Gildor, 2015). Other 



101 

 

 

processes such as internal tidal propagation, coastal upwelling can also be studied. Inside 

a coastal bay, the wind-induced vertical current shear and horizontal baroclinic gradient, 

together with the topography can generate complex dynamic circulation system, resulting 

in spatially different stratification evolution (Ma et al., 2012). Bounding the 

Newfoundland Shelf, the eastern Newfoundland coast together with its embayments is an 

area with highly dynamical circulation and significant topographic slope especially near 

the coast. There are three large embayments in eastern Newfoundland: Bonavista Bay, 

Trinity Bay and Conception Bay from the northern to the southern coast (Fig. 5-1). 

Trinity Bay and Conception Bay feature deep channels over 300 m deep at the centre of 

the bay with steep topographic change onshore. However, the water at the head of two 

bays is shallow around 20 m. Observations have been made at Station 27 and along the 

Bonavista and Flemish Cap transects for many decades by Fisheries and Oceans Canada 

to monitor the hydrographic change and Labrador Current transport variability (Fig. 5-1). 

In situ observations have also been made inside Trinity Bay and Conception Bay to gain 

the knowledge of the seasonal variation of hydrography (Tittensor et al., 2002 a and b; 

Schillinger et al., 2000 a and b; de Young and Sanderson, 1995). The mooring 

deployments in Trinity Bay started in 2001 by Memorial University of Newfoundland. 

The mooring data show persistent summer upwelling events in the bay, together with the 

eddy-like circulation (Tittensor et al., 2002 a and b). The early observational study of the 

physical environment in Conception Bay can be traced back to 1987 and the data 

indicated relative weak tide and weak mean flow (Aggett et al., 1987; de Young and 

Sanderson, 1995).    
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Fig. 5-1: (a) Map showing model domain including 100 and 200 m isobaths (grey line). 

AC is Avalon Channel. BB is the Bonavista Bay and CB is the Conception Bay. (b) 

Trinity Bay, with mooring stations in red squares. 

 

Modeling studies off the eastern Newfoundland coast are mainly focusing on the 

dominant Labrador Current and its seasonal variability of volume transport (Greenberg 

and Petrie, 1988; Tang et al., 1996; Han, 2005; Han et al., 2008; Han et al., 2011). Over 

this area, the inshore Labrador Current flows past Bonavista Bay and has a current 

separation near the mouth of Trinity Bay (Han et al., 2011). One part of the inshore 

branch flows offshore joining the shelf-edge Labrador Current and the remaining current 
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follows the coast on its pathway through Avalon Channel. Davidson et al. (2001) used a 

simple numerical model for Trinity Bay with several sensitivity cases, and their idealized 

results show two anti-cyclonic gyres at the surface in Trinity Bay with the addition of 

nonlinear terms to the model. The circulation in Conception Bay was initialized with a 

simple ocean model by deYoung et al. (1993a). These authors developed a diagnostic 

circulation model for Conception Bay and concluded that the bay has no single dominant 

circulation patterns, indicating highly dynamical circulation, variable wind-forced 

currents. deYoung et al. (1993b) also investigated the wind-forced responses of 

Conception Bay using a reduced-gravity model, showing the influence of neighbouring 

Trinity Bay on the internal response of Conception Bay.  

Previous model results and observations revealed the dominant inshore Labrador 

Current over the eastern Newfoundland coast, together with weak, eddy-like circulation 

inside Trinity Bay and Conception Bay. However, our knowledge of coastal upwelling 

and associated stratification evolution is limited in this area. The wind-driven coastal 

upwelling has been studied in other areas for decades due to its role in forcing biological 

productivity (Smith, 1995; Gan and Allen 2002; Lentz and Chapman, 2004; Ma et al., 

2012; Chen et al., 2012). Thus, in this study, we will describe the application of a 3-D, 

prognostic finite-volume ocean model (FVCOM, Chen et al., 2004) to the eastern 

Newfoundland coast including three embayments. Our first goal is to validate the model 

results as the first time FVCOM application in this area. The main purpose is to examine 

the seasonal variability of temperature and circulation and to investigate the wind induced 

coastal upwelling and associated stratification change. The arrangement of the paper is as 

follows. In section 5.3, we will describe the model setup, boundary conditions, forcing 
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data and initial conditions. In section 5.4, we will evaluate model against observations 

over the east Newfoundland coast including Trinity Bay. In section 5.5, we will examine 

surface bay circulation and the upwelling along the coast, discussing its seasonal and 

spatial change and the evolution of the stratification. Finally, in section 5.6, we will 

present a summary and the conclusions. 

5.3 Model Configuration 

5.3.1 FVCOM model (Version 3.1) 

Combining two advantages of horizontal grid flexibility and computational 

efficiency, the FVCOM model used in this study integrates independent variables through 

individual unit control volumes. The model is solved numerically by determining the flux 

through the volume boundaries to guarantee the horizontal conservation of mass and 

momentum. A time-splitting method is used for computational efficiency including an 

internal mode and an external mode constrained by its Courant-Friedriches-Levy (CFL) 

condition. For a more accurate estimation of sea level, currents, and salinity and 

temperature fluxes, all variables except currents are placed at nodes, while currents are 

placed at centroids. Previous work (Weisberg and Zheng, 2006; Resio and Westerink, 

2008; Rego and Li, 2010; Han et al., 2011; Ma et al., 2012; Ma et al., 2015) has 

successfully demonstrated the advantage of FVCOM in simulating the physical 

environment around coastal shelf and embayments.  
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5.3.2 Model Domain 

The model domain is from 46.2 No  to 50 No  and 50 Wo to 54 Wo  (Fig. 5-1). 

The domain includes a portion of the Grand Banks on the southern end. Trinity Bay is a 

long (~100 km) and narrow (~30 km at the mouth) bay. The bay is wide compared with 

the internal Rossby radius (~1-10 km) but narrow relative to the external Rossby radius 

(~500 km) (deYoung et al., 1995). The model bathymetry is mainly derived from the 

multi-beam bathymetry of the Canadian Hydrographic Service. To minimize the pressure 

gradient errors (Mellor et al., 1993), the bathymetry has been smoothed with volume 

conserved method (Ma et al., 2012). The governing equations of the model are solved on 

an unstructured triangular grid whose spacing is largest (3-5 km) along the open boundary 

and smallest (50 m) along the coastline of the inner bay (Fig. 5-2).  There are 31 

unequally spaced levels in the vertical, with a minimum spacing of 0.1 m near the sea 

surface and seabed for 100 m water depth in order to resolve the near surface shear 

current and thermodynamic process near surface and bottom. The model equations are 

solved using an integration step of 0.1 s for the external mode and an internal to external 

mode ratio of 10. 
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Fig. 5-2: The horizontal grid used in the numerical model. The grid spacing ranges from 

50 m around coast to 5 km along the open boundary.  

 

 

5.3.3 Model Forcing and Initial Conditions 

The model is forced by hourly winds and heat fluxes at the sea surface and non-tidal 

sea levels, temperature and salinity at the lateral open boundaries. Surface salinity is 

restored to monthly climatology. We use wind speed and direction from local weather 

station at St.John’s from Environment Canada. Heat fluxes, including shortwave 
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radiation, longwave radiation, latent heat flux and sensible heat flux, were calculated 

based on Environment Canada’s meteorological data and the spatially variable sea surface 

temperature from a monthly-mean temperature climatology (Geshelin et al., 1999). The 

surface shortwave heat flux was calculated using the formulations of Curry and Webster 

(1998). A revised equation from Li et al. (2006) was used to calculate the albedo, 

including the white cap effect (Monahan and MacNiocaill, 1986); modified code from the 

Tropical Ocean and the Global Atmospheric Program (TOGA)-Coupled Ocean 

Atmospheric Response Experiment (COARE) (Fairall et al., 1996) was used to calculate 

the sensible and latent heat fluxes. The formulation of Fung et al. (1984) was used to 

estimate longwave radiation based on Geshelin et al.’s (1999) sea surface temperature and 

the observed air temperature, dewpoint temperature, cloud cover and wind speed. Then 

net heat flux was calculated from these four heat flux components. 

Monthly non-tidal sea levels at the lateral open boundaries are obtained from a 

Newfoundland Shelf model (Han et al., 2011). The temperature and salinity along the 

open boundaries are also extracted from the same model. The shelf model output is 

interpolated hourly and specified along the open boundaries. The Newfoundland Shelf 

model reproduced the inshore Labrador transport well.  

The sea level and velocity are initialized from the May climatology case for the 

computational domain to reduce the ramp-up time. The initial temperature and salinity 

condition are generated the same way.  

The model is run from year day 120 to 255 in 2000 and 2001. The model results 

from day 142 to 255 are compared with observed results and used for this analysis. Ma et 

al. (2012) demonstrates that 20 days are enough for spin-up in such a small region. 
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5.4 Validation Metrics 

To evaluate the model solutions quantitatively, we compare the model solutions 

with various measurements. In addition to the root-mean-square (RMS) difference, we 

examine the velocity difference ratio (VDR) defined as the ratio of the sum of the squared 

magnitudes of the vector velocity differences to the sum of the squared magnitudes of the 

observed velocities, that is,  

  22 ||/|| oom VVVVDR                                                                                      (5-1) 

where mV  is the horizontal model velocity and oV is the horizontal observational velocity. 

Lower VDR  values indicate better agreement, with 0VDR  being exact agreement. 

Another is the speed difference ratio (SDR) defined as the ratio of the sum of the squared 

speed difference to the sum of the squared magnitudes of the observed velocities, that is, 

22
||/|)||(|   oom VVVSDR                                                                                 (5-2)                                                   

The third index is 2  defined as followes: 
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)(VAR

o

mo2







                                                                                                    (5-3) 

where VAR is the variance,  is the sea level; o and m represent the observation and 

model.  

The fourth index is the correlation coefficient ( R ) between the model and observational 

components. 
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5.4.1 Validation of Non-tidal Water Levels, Currents and Transport  

Hourly model water levels at the St. John’s station (Fig. 5-1) are compared with 

tide-gauge observations. Observed water level data are detided with the T-tide toolbox 

(Pawlowicz et al., 2002). The comparisons of modelled hourly sea level anomaly (SLA) 

with mean sea level removed are shown in Fig. 5-3. The wind vectors at St. John’s are 

also shown with the sea level variability. Simulated results agree well with observed 

water levels at St. John’s not only for the seasonal variability but also for wind-induced 

high frequency fluctuations. Both modelled and observed sea level anomalies range 

between -0.2 and 0.2 m.  

 

 

Fig. 5-3:  Time series of (a) wind vectors at St. John’s in 2000, (b) sea level anomalies at 

St. John’s in 2000, (c) wind vectors at St. John’s in 2001 and (d) sea level anomalies at St. 

John’s in 2001. Black dashed line indicates the zero. 
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Quantitative comparisons are also made using the hourly time series data (Table 5-

1). By using the RMS difference, correlation and 2 , statistics are calculated to determine 

the model’s ability in reproducing observed sea level. The averaged RMS difference and 

the correlation coefficient between the observed and modelled sea levels are 5.5 cm and 

0.81 respectively, demonstrating good agreement for both magnitude and variability. For 

detailed evaluation of the model performance in producing observational variability, 2  

is calculated. The index 2 is 0.38 and 0.28 in 2000 and 2001, indicating a good overall 

comparison that is better in 2001. 

Table 5-1: Statistics from the comparison between the observed and model non-tidal sea 

level anomalies at the St. John’s station in 2000 and 2001. See Fig. 5-1 for location. 

RMSD: root-mean-square difference.  

 2000 2001 

RMSD(cm) 5.6 5.3 

Correlation 0.82 0.79 

Observed RMS (cm) 9.1 10.0 

2  0.38 0.28 

 

The de-tided vessel-mounted ADCP current data from the Flemish Cap transect on 

July 15-17, 2000 are from Han et al. (2008). The simulated currents are gridded onto the 

same positions as the observational data. There is reasonable agreement between the 

present model results and the ADCP observations, in terms of the spatial distribution 

pattern and the current strength for the southward inshore Labrador Current along the 
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coast (Fig. 5-4). The RMS difference is 6.6 and 7.0 cm/s for the eastward and northward 

components, respectively (Table 5-2). The speed difference ratio (SDR) and the velocity 

difference ratio (VDR) accounting for both the eastward and northward components are 

0.2 and 0.6, suggesting good agreement in velocity magnitude and direction.  The 

transport associated with the inshore Labrador Current was calculated from the coast to 

100 m depth on the Grand Banks side of the Avalon Channel (AC in Fig. 5-1), the same 

segment as in Han et al. (2008). Fig. 5-5 shows the calculated transport for the inshore 

Labrador Current at 2000 and 2001. The mean transport is 0.37 and 0.27 Sv for 2000 and 

2001 respectively, consistent with the estimation of 0.39 Sv (Greenberg and Petrie, 1988) 

based upon summer current meter data. The modelled inshore transport is relatively 

steady from May to September, with occasional strong transport events in September and 

even some reversals (Fig. 5-5).  
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Fig. 5-4: Comparison between the vessel-mounted ADCP data and model currents along 

the Flemish Cap transect on July 15-17, 2000. Only the normal component (in m/s, 

positive northward) is shown.  
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 Table 5-2: Statistics from the comparison between observed and model non-tidal currents 

along the Flemish Cap Transect in July, 2000. See Fig. 5-1 for the transect location. U is 

the eastward current and V is the northward current. 

 U V 

RMS D (cm/s) 7.5 6.4 

Observed 

RMS (cm/s) 

6.3 10.8 

Correlation 0 0.76 

SDR 0.2 

VDR 0.6 

 

 
Fig. 5-5: Time series of the inshore Labrador Current volume transport at the Flemish 

Cap Transect ( N47o ) in (a) 2000 and (b) 2001. The mean transport for the modelling 

period is also depicted (black dashed). 
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5.4.2 Evaluation of Hydrograph at Station 27 

 Station 27 (of Fig. 5-1) is located off St. John’s at o55.47 N and o59.52 W, with a 

water depth of 176 m. Hydrographic data have been collected at Station 27 since 1946. 

Since the late 1990s, temperature and salinity data at Station 27 have regularly been 

collected by the Northwest Atlantic Fisheries Centre through the Atlantic Zone 

Monitoring Program (AZMP) of Fisheries and Oceans Canada (www.Meds-sdmm.dfo-

mpo.gc.ca/isdm-gdsi.azmp-pmza/index-egn.html). The weekly data from May to September 

in 2000 and 2001 are used to evaluate the model. The surface layer temperature has 

strong seasonal variability, increasing from C4o in spring to C14o  by late summer (Fig. 

5-6, a and b). The modelled surface temperature from day 180 to 200 in 2000 shows a 

significant C4o  drop associated with coastal upwelling, which is  not clearly observed 

but consistent with observations available. The observed bottom temperature at Station 27 

shows an increasing trend from C1o  to C2o , primarily due to the accumulated heat flux 

during summer (Fig. 5-6, c and d). The simulated temperature reproduces approximately 

observational temperature at different depths, with an averaged RMS errors of C1.1 o  and 

C3.1 o  in 2000 and 2001, respectively (Table 5-3). 

http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi.azmp-pmza/index-egn.html
http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi.azmp-pmza/index-egn.html
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Fig. 5-6: Observed (red square) and model (blue) temperature at stations 27 for (a) near 

surface in 2000, (b) near surface but in 2001, (c) near bottom in 2000 and (d) near bottom 

but in 2001. 
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Table 5-3: Statistics from the comparison between observed and model temperature at 

Station 27 in 2000 and 2001. See Fig. 5-1 for the location.  

 2000 2001 

 Temperature ( Co ) Temperature ( Co ) 

 RMS difference  Observed RMS RMS difference  Observed RMS 

Surface 

Layer 

1.6 7.5 1.8 7.9 

Middle 

Layer 

0.5 1.1 0.5 1.0 

Bottom 

Layer 

1.3 0.9 1.5 1.2 

 

 

To further evaluate the vertical structure at Station 27, Fig. 5-7 shows the vertical 

temperature profiles in different months in 2000 and 2001. In early summer, the surface 

temperature is cold at around C4o . With intensified heat flux over the summer, the 

surface temperature increases to C14o  by September. The surface temperature in 2001 is 

warmer than that in 2000. Water below 70 m was nearly well mixed with temperature less 

than C0o . The mixed layer depth is generally shallow (within 10 m) both in observation 

and model results, indicating the strong stratification during summer. The simulated 

temperature reasonably reproduces the observed temperature structure. Although the 

model temperature under-estimates the observed temperature at the surface in June and 

over-estimates in September, the model has overall good performance. Statistics for 

vertical profiles in four months are shown in Table 5-4. The averaged RMS difference is 
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C1.1 o and C8.1 o  for 2000 and 2001, respectively. The differences are larger in September 

than in June. 

 
Fig. 5-7: Monthly mean vertical temperature profiles at Station 27 in (a) June, 2000, (b) 

June, 2001, (c) July, 2000, (d) July, 2001, (e) August, 2000, (f) August, 2001, (g) 

September, 2000 and (h) September, 2001. 
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Table 5-4: Statistics from the comparison between observed and model monthly-mean 

vertical temperature profiles at Station 27 in 2000 and 2001. See Fig. 5-1 for the locations.  

 2000 2001 

 Temperature ( Co ) Temperature ( Co ) 

 RMS difference  Observed RMS RMS difference  Observed RMS 

June 0.9 2.6 1.5 2.9 

July 1.0 4.6 1.7 5.5 

August 0.7 6.3 1.8 7.1 

September 1.8 7.7 2.1 7.3 

 

5.4.3 Comparison of hydrograph over Transects 

Fisheries and Oceans Canada also regularly collects hydrographic data along the 

Bonavista and Flemish Cap Transects (of Fig. 5-1). The observed data are from July 15 to 

19. Fig. 5-8 presents the temperature distribution along the Bonavista Transect from the 

model and the observation for 2000 and 2001. There is a sharp thermocline at 30 m, with 

a well mixed surface layer. The model underestimates the mixed-layer depth. Both the 

model and the observations show a cold water layer, nearly C0o , extending from 30 m to 

250 m with relative warm water around C3o  from 250 m to bottom. Fig. 5-9 shows the 

temperature in both years along the Flemish Cap Transect. Modelled temperature shows a 

fair comparison with observations in the vertical, but with an underestimated mixed-layer 

depth. It should be noted that our model results reproduced cold surface temperature 

associated upwelling well near the coast (Fig. 5-9) for this transect, especially in 2000. 
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Fig. 5-8: Observed and model temperature ( Co ) along the Bonavista Transect in 2000 

and 2001.  
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Fig. 5-9: Observed and model temperature ( Co ) distribution along the Flemish Cap 

Transect in July, 2000 and 2001. 

 

We apply statistical analyse to quantify the model performance (Table 5-5). To 

better evaluate the model temperature at different depths, transects were divided into 

three groups, the upper layer from surface to 20 m, the bottom layer within 20 m of the 

bottom, and the rest of the water column as the middle layer. The averaged model-

observation temperature differences for the upper, middle and bottom layers 

are C3.1 o , C1.1 o , C9.0 o and C9.0 o , C7.0 o , C2.1 o along the Bonavista Transect for 

2000 and 2001, indicating a colder temperature at the surface and warmer temperature 

below the surface in the model. The averaged temperatures in the three layers also 
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indicate the cold water at the middle depth of this transect. For the Flemish Cap Transect, 

the model-observed temperature differences are C1.2 o , C6.0 o , C1.0 o and 

C2.2 o , C2.0 o , C2.0 o  for 2000 and 2001, respectively. The model and observed 

temperatures agree well below the upper layer.  

 

Table 5-5: Statistics from the comparison between observed and model temperature along 

Bonavista and Flemish Cap Transect. See Fig. 5-1 for the location.  

 2000 2001 

Bonavista Transect Averaged Temperature ( Co ) Averaged Temperature ( Co ) 

 Model  Observed Model Observed  

Upper Layer (0-20m) 7.3 8.6 6.8 7.7 

Middle Layer  0.9 -0.2 1.0 0.3 

Bottom Layer (20 m within 

bottom)  

2.5 1.6 3.0 1.8 

 2000 2001 

Flemish Cap Transect Averaged Temperature ( Co ) Averaged Temperature ( Co ) 

 Model Observed Model Observed 

Upper Layer 7.6 9.7 7.3 9.5 

Middle Layer  0.6 1.2 0.7 0.9 

Bottom Layer -0.5 -0.4 -0.5 -0.7 
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5.4.4 Temperature in Trinity Bay 

The modelled temperatures in Trinity Bay are evaluated against mooring data 

(Tittensor et al., 2002a) from May 21, 2001 to August 21, 2001. Ten thermistors 

measuring the water temperature were deployed (see Fig. 5-1). The data were sampled 

every 20 min. Both the model and observations are filtered with a 36 hour low-pass filter 

to remove the tidal effect and noise in the observations. Fig. 5-10 shows the comparison 

for the moorings M1, M2 and M5. The water temperature at 20 m is steady in May and 

June. With the increasing net heat flux toward summer, the water temperature at 20 m is 

increasing, with irregular temperature drops and recoveries associated with wind induced 

upwelling events. The water temperature at 50 m shows less variability with relatively 

steady temperature around C0o . The model has weakness in reproducing the temperature 

drop and recover at 20 m at M1 and 21 m at M5. This could be the over-mixing issue in 

MY-2.5 scheme that is documented in Han et al. (2011). An alternative k  scheme can 

be used in the future. Fig. 5-11 shows the water temperature at 20 m and 50 m from M6, 

M8 and M9, together with observations at 33 m and 63 m from M7. Temperature data at 

20m from M6 and M9 are missing due to instrument failure. Water temperatures at 20 m 

and 50 m show the same seasonal change and variability as seen in Fig. 5-10. Water 

temperature at 33 m and 63 m for M7 is steady around C0o . Fig. 5-12 shows the 

temperature comparison at 20m and 50m, but for M10, M11 and M12. Modelled water 

temperature reasonably captures the observed seasonal change, as well as the short-term 

variability. Especially at 20 m for M8 (Fig. 5-10 and 5-12), the model reproduces well the 

temperature decrease and increase between day 210 to 230, from C5o  to C2o then to 



123 

 

 

C10o . Quantitative statistics for temperature are shown in Table 5-6. The RMS 

differences are all within C2o , indicating fair to good agreement with observations for 

temperature. 

 
Fig. 5-10: Time series of observed (red) and model (blue) temperature (36 h low-pass 

filtered) at 20 m and 50 m for M1, M2 and M5.   
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Fig. 5-11: Time series of observed (red) and model (blue) temperature (36 h low-pass 

filtered) at 50 m for M6, 33 m and 63 m for M7, 20 m and 50 m for M8 and 50 m for M9.   
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Fig. 5-12: Time series of observed (red) and model (blue) temperature (36 h low-pass 

filtered) at 19 m and 49 m for M10, 20 m and 50 m for M11, and 21 m and 51 m for M12.   
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Table 5-6: Statistics from the comparison between the observed and model temperature at 

M1, M2, M5, M6, M7, M8, M9, M10, M11 and M12. See Fig. 5-1b for the locations. 

 Depth (m) RMS difference 

( Co ) 

RMS Observation 

( Co ) 

Correlation 

M1 21.5 1.9 3.6 0.7 

51.5 0.7 0.7 0.5 

M2 23  1.4 1.5 0.5 

53 1.0 1.0 0.3 

M5 21 2.3 2.3 0.7 

51 0.7 0.8 0.5 

M6 50 0.9 0.8 0.1 

M7 33 0.7 0.6 0.1 

63 0.9 1.1 0.03 

M8 20 1.9 4.7 0.7 

50 0.8 0.8 0.5 

M9 50 1.1 0.9 0.5 

M10 19 1.8 3.1 0.5 

49 1.4 1.0 0.2 

M11 20 2.0 4.1 0.7 

50 0.8 0.8 0.4 

M12 21 2.0 3.9 0.5 

51 1.0 0.9 0.1 

 

Vertical temperature profiles at M1, M10 and M11 from model and observations 

are shown in Fig.5-13. Both model results and observations are averaged into monthly 
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means (June and August, 2001). The model results agree well with the observed data. In 

particular, there is good agreement for the evolution of the stratification from June to 

August. In June, the temperature is relatively cold and below C5o , even at  the surface. In 

August, the surface temperature differs among these three sites. Surface temperature at 

M10 is C2o  higher than at M11 and C4o  higher than at M1 due to the coastal upwelling 

on the west side of the bay (see Section 5.5). 

 

 

Fig. 5-13: Observed and model monthly mean vertical temperature profile at M1 in (a) 

June, (b) August, at M11 in (c) June, (d) August, and at M10 in (e) June and (f) 

August.   
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5.5 Circulation, Upwelling and Stratification 

5.5.1 Circulation and Temperature Distribution 

The model reveals two distinct surface circulation modes corresponding to 

difference in the wind direction from May to August for 2000 and 2001 (Fig. 5-14).  

Around day 150, in 2000 and around day 146, in 2001, the surface current was directed 

westward toward the coast in response to the northerly wind (Fig. 5-14a and c). The 

currents were blowing into Trinity Bay. Around day 236, 2000 and day 223, 2001, the 

dominant offshore surface flow was generated by a strong southwesterly wind. The 

circulation pattern for 2001 (Fig. 5-14 b and d) showed two eddies (Section 5.5.2).  

The simulated surface temperatures were consistent with seasonal wind directions. 

The surface salinity was restored to the monthly mean climatology, and so the model 

salinity is not shown here. During May, the eastern Newfoundland coast including Trinity 

Bay was covered with cold water. Upwelling was weak and located on the eastern sides 

Trinity and Conception Bay. In contrast, when the wind turned southwesterly in the 

summer, the wind-induced coastal upwelling pumped low temperature water from a 

deeper layer up to the surface on the western side of Trinity Bay and also at Station 27 off 

St. John’s. A cold water front was clearly formed (Fig. 5-14 b and d).  
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Fig. 5-14: Model surface temperature and currents distribution in Trinity Bay and 

neighbouring areas on (a) Day 150, 2000 with north wind, (b) Day 236,2000 with 

southwest wind, (c) Day 146, 2001 with northwest wind and (d) Day 223, 2001 with 

southwest wind. Three white circles are M11 and M10 in the Trinity Bay and Station 

27.  

 

5.5.2 Dynamics of Surface Eddies 

Our model results show two persistent anti-cyclonic eddies at the surface from 20 July 

to 10 August, 2001, consistent with Davidson et al.’s (2001) model results. The 

mechanism for the eddies inside of the bay can be attributed to the geostrophy near the 

bay coast and wind driven Ekman drift over the gyre interior (Greatbatch and Otterson, 
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1991). The centre of the first eddy is located in the inner Trinity Bay, around 47.91 No  -

53.55 Wo  (Fig. 5-14d) and the centre of the second eddy is towards to the middle of the 

bay (48.15 No , -53.28 Wo ), migrating 5 km towards the eastern shore of bay. The radius 

of the eddy is around 10 km with the maximum eddy current of 0.25 m/s. The mean 

relative vertical vorticity for the inner eddy was estimated to be 2.5e-5 1/s, and the 

vorticity normalized by the local Coriolis parameter f was 0.25. Taking this relative 

vorticity as a measurement of the Rossby number, it follows that the momentum balance 

is not strictly linear and geostropic. Instead, nonlinear effects were dominant. 

5.5.3 Temporal and Spatial Variability of Stratification   

The model simulations provide a detailed representation of the seasonal and spatial 

evolution of stratification during summer of 2000 and 2001. The seasonal development of 

stratification can be affected by the heat flux, with a steady trend from early to late 

summer. Spatially, the wind-driven turbulence can interrupt the strong stratification and 

penetrate more deeply in some areas. 

To assess the strength of stratification quantitatively, the Richardson number (Ri) and 

buoyancy frequency ( N ) are used. The critical Ri is usually taken as 0.25. When Ri 

exceeds 0.25, the turbulence is suppressed. For Ri>1, the stratification is generally 

considered stable (Silva et al., 1999; Galperin et al., 2007). Time series of depth-averaged 

(0-20 m) 2N and Ri values at M10 (on the western side of Trinity Bay), M11( in the 

middle of Trinity Bay) and Station 27 (east of St. John’s) are shown in Fig. 5-15. Both of 

these parameters show the seasonal change in water column stratification and mixing in 

response to solar heating and wind forcing. During May and June extending to day 180, 
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Ri at the two locations inside Trinity Bay is below the critical value of 0.25 most of the 

time and Ri at Station 27 is below 1.0 most of the time. The water column stratification is 

weak and can be frequently disrupted as indicated by the 2N  time series plots. During 

summer from day 180 to 243, 2N time series plots at the three locations show an 

increasing trend corresponding to increased stratification as a result of increasing short-

wave radiation incident at the surface. However, 2N becomes low in response to 

upwelling induced by southwesterly winds. During early fall, the stratification weakens 

again at the three stations.  

 Besides the seasonal change in stratification, the spatial differences and inter-

annual changes in stratification can be seen in Fig. 5-15. For both years (2000 and 2001), 

Ri time series at M11 and M10 drop below 0.25 much more commonly than that at 

Station 27, suggesting stronger upwelling on the western side of Trinity Bay. With the 

same wind stress, the stronger upwelling on the western side could be related to the 

significant bottom slope change along the west coast of Trinity Bay, with around 300 m 

depth deepening within a 10 km horizontal distance. The inter-annual difference exists 

from spring to summer. The Ri time series at M10 clearly shows that stratification is 

weak between day 142 and 160 in 2000, but strong at the same period in 2001.  From day 

160 to 190, the stratification is weak in 2001, but strong in 2000, indicating the scale of 

upwelling event changes year by year. 
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Fig. 5-15: Depth-averaged (0-15 m) buoyancy frequency squared 2N  and Richardson 

number (Ri) at M11, M10 and Station 27 for May-September 2001. In the plots of the 

Ri time series, the two red lines denote Ri=1 and Ri=0.25. 

 

 

5.6 Conclusion and Summary 

A three-dimensional finite-volume ocean model was developed to study the upper 

ocean response to wind off Eastern Newfoundland. The simulation period is from May to 

September, 2000 and 2001. The model results are compared with observations. Overall, 

the model simulated the non-tidal elevation, currents and temperature well.  

The model results are firstly evaluated against the observed non-tidal sea level, with 
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an RMS difference of 5.6 cm. The model reproduced the sea surface elevation well, 

especially for the weekly to seasonal variability. Model currents are reasonable compared 

against ADCP data along the Flemish Cap Transect. The model transport for the inshore 

Labrador Current across the Avalon Channel is 0.32 Sv on average, consistent with 

previous observational estimate.  The model temperature at Station 27 is compared with 

observations at different depths, especially at surface with temperature drop and increase 

corresponding to the upwelling and surface heat flux input. The statistics for different 

layers at Station 27 also indicated reasonable agreement between the model and 

observation, with all RMS differences within C2o . The monthly averaged vertical 

profiles were compared with observations at Station 27, both with well-developed vertical 

structure including the sharp thermocline and cold intermediate layer. Model temperatures 

along the Bonavista and Flemish Cap Transects are in fair comparison with observations, 

in spite of underestimation of the mixed-layer depth. Inside Trinity Bay, model 

temperatures agree reasonably well with measurements.   

The model reproduces well the dominant inshore Labrador Current. The surface 

circulation patterns inside Trinity Bay respond strongly to the wind, with two eddies in a 

10 km radius. These eddies have the Rossby number of 0.25, indicating the importance of 

the non-linear process. Wind-induced upwelling prevails inside Trinity and Conception 

Bay, weak in late spring and strong in summer. The location of upwelling events largely 

depends on the wind direction. The upwelling at Station 27 is also significant during 

summer. Stratification in response to surface heat flux and wind shows significant spatial, 

seasonal and interannual difference in this region.  
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This study reveals dynamical characteristics associated with upwelling and 

stratification off Eastern Newfoundland. It also offers improved understanding of the 

circulation and temperature changes relevant to ongoing biological and fisheries studies. 
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6. Summary and Future Work 

 

This study applies a finite volume ocean model (FVCOM) over the Newfoundland 

Shelf and in coastal embayments. The FVCOM model provided the ability to well-resolve 

the coastal ocean dynamics with high resolution grids near the coast. Three models are 

established to accomplish objectives in Chapter 1.4. 

In Chapter 3, a 3-D, baroclinic, finite-volume ocean model was developed to study 

the upper-ocean responses to Hurricane Igor over the Grand Banks of Newfoundland. 

Reconstructed hurricane winds were applied to force this ocean model. The 3-D 

baroclinic ocean model reproduced the sea surface elevation before and after the storm 

reasonably well. Especially, the two surges generated by the passage of Hurricane Igor 

were well captured. Both the model and observations showed two surges at St. John’s, 

Argentia and St. Lawrence. The first surge was attributed to the direct local wind forcing 

and the second one was the result of the propagating continental shelf wave generated by 

the storm. The model surface temperatures were compared with observations at three 

buoy stations over the Grand Banks. Both model and observation showed a significant 

decrease of 6 Co  in the sea surface temperature. Furthermore, the calculated horizontal 

distribution of the sea surface temperature was compared with satellite observations. The 

model reproduced well the southward increase of temperature observed before the storm 

and the sharp decrease afterwards. The model near sea surface current was compared with 

observations at a point located in the outer Placentia Bay.  The model was able to generate 

the observed variability of surface currents. The storm induced shelf wave was examined 

by analysing the sea level at tide-gauge stations and currents at a point far away from the 



139 

 

 

storm centre to prevent direct storm wind effects. Both observation and model results 

showed a propagation speed of 14-16 m/s and 0.5-0.7 CPD, consistent with the 

continental shelf-wave estimate from Han et al. (2012b). We further analyzed the 

vertically averaged currents in the outer Placentia Bay. The results highly support those 

from sea level data. The storm excited waves propagate equatorward along the 

Newfoundland coast. These waves can not only be observed from the sea surface 

elevation field but also from the horizontal currents. An examination of the Burger 

number and Ekman pumping parameters indicates that the entrainment due to turbulent 

mixing is the dominant process causing the sudden drop in SST. Upwelling associated 

with the wind stress curl plays a small supplementary role only. Results show that a 3-D 

baroclinic model simulates the storm surge slightly better than does an alternative 3-D 

barotropic model. The difference may be attributed to weaken bottom currents and thus 

friction in the 3-D baroclinic model. It is shown that sea surface cooling is well simulated 

with a k-ε turbulence closure, but is significantly underestimated with the commonly used 

MY2.5 closure.  

In Chapter 4, a three-dimensional finite-volume ocean model was applied to study 

the upper-layer responses to two hurricanes in Placentia Bay, Newfoundland. The 

hurricanes chosen for the study are Hurricane Igor (2010) and Hurricane Leslie (2012). 

The two hurricanes feature different tracks, strength, and translation speed, resulting in 

quite different oceanic responses on sea level and upper-layer circulation. The finite-

volume ocean model reproduced the water level rise before and after hurricanes. 

Especially, the surges generated by the passage of Hurricane Igor were captured well. The 

model sea level showed a good agreement with observations for Hurricane Leslie, in spite 
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of over-estimation of the storm-induced inertial oscillation. The model near-surface 

current was compared with observations at three different locations in Placentia Bay, two 

of which are located in the inner bay. Especially during hurricane events, simulated 

currents well capture the observed currents, in terms of magnitude and variability. The 

model reproduced the general cyclonic circulation in Placentia Bay before the two 

hurricanes. The upper 30 m circulation responding to the two hurricanes had opposite 

patterns. Upper-layer currents during Igor had strong outflow out of the inner bay while 

during Leslie strong inflow was observed. Cases without local atmospheric forcing were 

examined. The results showed the local atmospheric forcing contributed to the peak storm 

surges by over 50% during Leslie, but insignificantly during Igor, indicating that the local 

forcing may have much more influence in western-type storms than in eastern-type 

storms, depending on the distance from the landfall point to the bay. The remote coastally 

trapped wave contributes more to sea level rise for the Igor-like case. An examination of 

the circulation with and without stratification revealed the importance of baroclinicity for 

the hurricane response in Placentia Bay. The near surface currents during the two 

hurricanes were significantly decreased after removing the stratification. Thus, the local 

baroclinic effect was essential in reproducing the hurricane-induced current 

intensification and inertial oscillation in Placentia Bay. The recovery time is much longer 

for the baroclinic case, due to the reduced propagation speed of the baroclinic wave. This 

also suggests that the baroclinic wave and its propagation are an important process in 

generating the storm-induced surface current. Vertical structures of the model currents at 

the mooring stations show substantially different vertical energy distribution between the 

baroclinic and barotropic cases.   
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In Chapter 5, a three-dimensional finite-volume ocean model was developed to 

study the upper ocean response to wind off Eastern Newfoundland. The simulation period 

is from May to September, 2000 and 2001. The model results are compared with 

observations. Overall, the model simulated the non-tidal elevation, currents and 

temperature well. The model reproduced the sea surface elevation well, especially for the 

weekly to seasonal variability. Model currents are reasonable compared against ADCP 

data along the Flemish Cap Transect. The model transport for the inshore Labrador 

Current across the Avalon Channel is 0.32 Sv on average, consistent with a previous 

observational estimate (Greenberg and Petrie, 1988).  The model temperature at Station 

27 is compared with observations at different depths, especially at surface with 

temperature drop and increase corresponding to the upwelling and surface heat flux input. 

The monthly averaged vertical profiles were compared with observations at Station 27, 

both with well-developed vertical structure including the sharp thermocline and cold 

intermediate layer. Model temperatures along the Bonavista and Flemish Cap Transects 

are in fair comparison with observations, in spite of underestimation of the mixed-layer 

depth. Inside Trinity Bay, model temperatures agree reasonably well with measurements. 

The model reproduces well the dominant inshore Labrador Current. The surface 

circulation patterns inside Trinity Bay respond strongly to the wind, with two eddies in a 

10 km radius. These eddies have a Rossby number of 0.25, indicating the importance of 

the non-linear process. Wind-induced upwelling prevails inside Trinity and Conception 

Bay, weak in late spring and strong in summer. The location of upwelling events largely 

depends on the wind direction. The upwelling at Station 27 is also significant during 

summer. Stratification in response to surface heat flux and wind shows significant spatial, 



142 

 

 

seasonal and interannual difference in this region. 

This thesis has documented a successful effort at setting up a model framework for 

the Newfoundland Shelf with the finite volume modelling approach and offers new 

insights into modelling oceans’ responses to hurricanes and into coastal dynamics on 

different time scales in coastal embayments such as Placentia Bay and Trinity Bay. 

However, there remain some limitations in the application of this model.  

One improvement could be on the addition of a method to reconstruct the high 

resolution hurricane winds field for application over the Newfoundland Shelf. A more 

accurate wind field could perform better in reproducing the storm surges. In the future, by 

applying the observed hourly and high-resolution wind data in the hurricane model 

(Regio and Li, 2010), the reconstructed local winds should be improved to generate more 

accurate high-frequency sea level. By assimilation of the observed winds in the hurricane 

model, the asymmetry of the hurricanes can be applied to produce the intensified wind 

speed at the right side of the storms. 

The second improvement could be to increase the resolution of the atmospheric 

forcing. The present model uses wind and heat flux data from NARR to force the model.  

The resolution of the atmospheric model results is 32km in space and three hourly time 

step in output. Higher-resolution atmospheric filed can improve the ocean model results 

before and after the storms.  

The last improvement could be the parameterization of the turbulent mixing scheme. 

The model results show the surface cooling with mixed layer depth deepening is sensitive 

to the turbulent mixing scheme. A more accurate turbulent mixing scheme is helpful to 

improve the evolution of stratification during the hurricanes (Marques and Ozgokmen, 
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2014).  
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