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Abstract

Forward modelling of traveltimes from an inner core model with elliptical velocity
dependence was performed, followed by inverse modelling based on both isotropic
and elliptically anisotropic (transverse isotropic) traveltimes. The Kolmogorov-
Smirnov (KS) test and Bayesian Information Criterion (BIC) were used for estab-
lishing model preference.

BIC is a more robust method for studying anisotropy. If we start with an
anisotropic model and a large variance of error (+4%), with enough sampling of
the anisotropy, even in the case of relatively few traveltime measurements BIC
is able to choose correctly the more complicated model as the preferred source
model.

It was determined that the KS test is unsuitable for studying inner core anisotropy;,
but may be useful for studying anisotropy in exploration geophysical methods such

as vertical seismic profiling.
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Chapter 1

Introduction and Historical

Background

1.1 Introduction

It is commonly thought in the geophysical community that the inner core of the
Earth is anisotropic [11,21]. However, measurements of body waves and the Earth’s
normal modes can be affected by many different regions as the waves travel through
the Earth, making it difficult to reliably determine if, in fact, the inner core is
anisotropic. The problem to be addressed is twofold; firstly, if the inner core is
indeed anisotropic, can it be determined, and secondly—if so—to quantify the
accuracy of measurement needed to determine anisotropy. More specifically, the
purpose is to quantify the criteria necessary to give a preference to either an
isotropic or transversely isotropic model.

This problem was approached in two steps: a forward problem, and an inverse
problem. The forward problem was addressed by creating an approximate model
of average properties of the inner core based on the Preliminary Reference Earth
Model (PREM) created by Dzieworiski and Anderson in 1981 [9]. An elliptical ve-

locity function was used to approximate transversely isotropic inner core velocities.



Traveltime calculations complete the forward model. The inverse model calculates
velocity and traveltime values from the forward model traveltimes. Two statisti-
cal tests, the Kolmogorov-Smirnov (KS) test, and Bayesian Information Criterion
(BIC) were used to assess if there is sufficient information to accept a transversely

isotropic model as the cause of variation in measurements.

1.2 Discovery of the Earth’s core

There have been many theories throughout history regarding the structure of the
Earth; this section is an overview of the scientific research described in the article
Discovery of the Farth’s core by Stephen Brush [5]. Earth’s core theories have
included speculation of the presence of a completely solid, liquid, or gaseous core.
The concept that the Earth has a liquid outer core within a solid shell, and a
solid inner core can be traced as far back as the 17th century to Edmund Halley’s
paper An Account of the Cause of the Change of the Variation of the Magnetical
Needle; With an Hypothesis of the Structure of the Internal parts of the Farth:
as it was proposed to the Royal Society in one of their late Meetings [10]. Halley
theorized a magnetic inner core and outer shell to explain variations in magnetic
needle observations. However, the scientific community was quite divided about
the structure of the Earth until the 20th century. Therefore, it can be said that
neither the outer core nor the inner core were discovered prior to the 20th century.

In the late 19th and early 20th century, many geophysicists were trying to
determine the structure of the Earth through the new science of seismology. A
Russian geophysicist, Leonid Leybenzon, was the first to publish a paper in 1910,
showing that seismic velocities suggest a fluid core. Unfortunately, this article was
unknown outside of Russia until after 1950. Oldham, Wiechert, and Gutenberg
contributed significantly to the discovery of the Earth’s core, but it is Harold

Jeffreys who must be credited with the discovery of the core due to his success in



convincing the scientific community:.
In 1925, Gutenberg published a monograph describing six methods of finding

the rigidity of the Earth:

1. Ocean tides.

2. Displacement of the vertical by solar and lunar attraction.
3. Effect of the Earth’s deformation on gravity.

4. Chandler wobble.

5. Speed of seismic waves.

6. dependence of theoretical stability on rigidity at the centre.

This work demonstrated that all criteria, except for speed of seismic waves and
apparent inability of the core to transmit shear waves, led to a conclusion of a high
rigidity of the core. Gutenberg therefore argued that the apparent inability of the
core to transmit shear waves must be explained by a phenomenon other than the
core being liquid.

In June 1926, Jeffreys published a paper The Rigidity of the Farth’s Central
Core. In this paper, Jeffreys showed that the average rigidity of the Earth was
much smaller than the rigidity of the mantle, meaning the Earth must have a
core with a very low rigidity. In order to agree with the Chandler wobble and
tidal observations, Jeffreys showed that the change of state from solid to liquid
happened at the same time as the change in chemical composition from stone to
iron. Jeffreys successfully demonstrated that all evidence mentioned by Gutenberg
could be explained by a fluid core model. It is important to note that the S wave
shadow zone was not the determining factor in the discovery of fluidity of the
Earth’s core; rather, it was one of many pieces of evidence that were needed.

Interestingly enough, it was the seismological shadow zone for arcual distances

of 105° to 142° that lead Inge Lehmann, a Danish seismologist, to suggest that



the Earth has an inner core. The shadow zone is created by the refraction of
waves as they travel through the Earth; waves that just miss striking the Earth’s
core are refracted up to 105°, and waves that enter the Earth’s core are refracted
downward in the slower medium making the lowest angle of emergence and focal
point of 142°. Any waves found at arcual angles slightly greater than 105°, or
slightly less than 142° were attributed to diffraction and the mantle-core interface.
Studying compressional waves with less than the focal point of 142° led Lehmann
to propose that the Earth had an inner core of radius 0.2205 R (approximately 1400
km) reflecting the P waves. While there were disagreements amongst geophysicists
about the transition between the outer and inner core and their velocity differences,
it was quickly agreed upon by the geophysical community that there was indeed
an inner core. Solidity of the inner core was theorized in 1940 by Francis Birch,
however, confirmation of the solidity of the inner core was based on cumulative

work by many geophysicists over three decades [5].



Chapter 2

Hookean solids and anisotropy

1A Hookean solid is represented by a fourth-rank tensor that linearly relates stress

and strain:

3 3
045 = chijk€€k€7 Zaj € {17273}7

k=1 (=1

where o;; is the stress tensor, c;jrs is the elasticity tensor, and ej is the strain
tensor. The Hookean solid defined by the elasticity tensor, ¢;jie, and mass density
can be used as a model for physical materials in quantitative seismology. The
elasticity tensor representing a solid can exhibit different symmetries, which can be
representative of different material properties. There are eight symmetry classes of
Hookean solids [3,6]. The relationships among the symmetry classes are shown in
Figure 2.1. Due to the partial ordering of the symmetry classes, not all are directly
relatable. Each symmetry class is characterized by its symmetry group, which
consists of orthogonal transformations of R? that preserve tensor c. The largest
group is the group of all orthogonal transformations, O(3), which determines the
isotropic symmetry class. The symmetry groups of other classes are subgroups of
0(3).

In studying anisotropy of the inner core, two symmetry classes were used:

isotropic and transversely isotropic. The isotropic elasticity class has the highest

IThis section is based on Chapters 5, 6, 8, and 9 from Waves and Rays in Elastic Continua [17]



Isotropic

Cubic Transversely isotropic

Trigonal Tetragonal

Orthotropic

Monoclinic

Generally anisotropic

Figure 2.1: Relations among symmetry classes. Arrows show the relations between
the subgroups of symmetries, with lower forms of symmetry at the bottom and
higher forms of symmetry at the top. From Waves and Rays in Elastic Continua
p.176 [17] .

form of symmetry and its two independent parameters can be represented in a

matrix as?,
Ch Ch—2Cy Cii—2Cy 0 0 0
Cii —2Cu Cn Ci1—2Cy 0 0 O
Cih —2Cu Ci —2Cu Cn 0O 0 O
Ciso =
0 0 0 Cu O 0
0 0 0 0 Cu O
0 0 0 0 0 Cuy

The transversely isotropic elasticity class is highly symmetric and, as illustrated

in Figure 2.1, can be considered a step below isotropy, shared with the cubic

2The relation between the two-index, C,,,, and four-index, ¢ijkl, notation is provided by
Voigt’s formula, e.g. Waves and Rays in Elastic Continua p.95 [17)



elasticity class. In its natural coordinate system, a transversely isotropic tensor
has rotational invariance about one axis. Its five independent parameters can be

expressed in matrix form as

Cnn Cip Ci3 0

Cip Cyy Ci3 0

Ciz Ci3 Gz 0
0 0 0 Cyu

0
0
0
Crr =
0

o o o O

0 0 0 0 Cu 0

Cni—C
0 0 0 0 0 &uCw

2.1 Isotropic velocity

The velocity of a P wave in isotropic media is

v = ﬂ, (2.1)
p

where wave velocity v is equal to ray velocity V' due to the independence of isotropic

velocity with respect to direction.

2.2 Transversely isotropic velocity

In transversely isotropic media, wavefront velocities and ray velocities vary with
direction. Wavefront velocity is the velocity of wavefront propagation, and ray
velocity is the velocity of propagation along the ray path. Ray velocities vary
with ray angle, the angle between the axis of symmetry and the tangent to the
direction of ray propagation. Wave velocities are a function of wavefront angle,
the angle between the axis of symmetry and the normal vector to the direction of
wave propagation. Only at directions when the wavefront normal vector and the

ray tangent vector are equal to each other does the ray velocity equal the wave



velocity; therefore, only in directions parallel and perpendicular to the symmetry

axis does v = V.

2.2.1 Wavefront velocity

Quasi P wave wavefront velocity in transversely isotropic media is

— 2 —
qu(n) _ \/<C33 Cll>n5 + 011 + 044 \/Z’ (22)

2p

where A, the discriminant, is

2
A = |:(011 — 033)713 — 011 — C44j| —4 [033044n§

2
— |:2013C44 - 011033 + 0123:| ng <1 — n§) + 011044 <1 - n§) :| s

and ng is the orientation of the wavefront normal n with respect to the rotation-
symmetry axis (x3).
Taking the x3 axis to be the axis of symmetry, the wavefront velocity traveling

along the axis of symmetry corresponds to ng = 1, which results in

033

&8 _ vy 2.3
p (2.3)

V, =

and the wavefront velocity traveling perpendicular to the axis of symmetry, which

corresponds to ng = 0, is

Cll

“1 vy, (2.4)
p

Ve =

2.2.2 Ray velocity

In general, there is not a closed-form expression for ray velocities in transversely
isotropic media. Calculating ray velocity as a function of ray angle is computa-

tionally intensive.



Ray velocity as a function of wavefront angle and wavefront velocity can be

shown to be,

V(o) = \/ o+ | 252] (25)

and the ray angle as a function of wavefront angle and velocity can be shown to

be,
tanﬁ—i—%%
tan9: — A -
1— tand Juv
v 09

Traveltime measurements between a point source and point receiver correspond to
ray velocities, not wavefront velocity.
A closed form ray velocity expression is known only for an elliptical velocity

dependence, namely,

V(@):VZ\/ 1+ tan?(0) ’ (2.6)

1+ ()2 tan®(6)
where V' (0) is the ray velocity in the direction 6 measured from the vertical (sym-
metry) axis, V, is the ray velocity in the vertical direction, and V, is the horizontal

ray velocity.

2.3 Anisotropic parameters

To completely describe an isotropic Hookean solid only two elasticity parameters
are required, C7; and Cs3. Also, due to the rotation invariance of isotropy no
parameters are required for orientation in three dimensions. A total of seven
parameters are needed to describe a transversely isotropic Hookean solid; five
elasticity parameters, Ciy, Cha, Ci3, C33, Cy, and two parameters for orientation
such as Euler angles.

P waves in isotropic Hookean solids require one elasticity parameter, C; for
description. Quasi P waves in transversely isotropic Hookean solids require four
elasticity parameters for description, C1y, Cs3, C'3, and Cyy, along with one param-

eter for orientation; ng in expression (2.2). The elliptical velocity expression needs



two elasticity parameters for description, Cy; and Cs3, where V, = /Cs3/p and
V., = +/C11/p, and one for orientation; 6 in expression (2.6).

10



Chapter 3

Inner core anisotropy

Two types of seismological data are used for studying the inner core; body waves,
and normal modes. Body waves at short periods ranging in frequency between
0.5 Hz - 1.5 Hz with a dominant frequency of 1 Hz are observed from earthquakes
of magnitude my, 5.5 or greater [4]. Normal modes are standing waves that are
created from very large scale earthquakes; they are very low frequency events,
with frequencies less than 10 mHz. They are sensitive to velocity, attenuation,
and density, providing the clearest data to tell us about the density of the inner
core [4].

There have been many papers published on anisotropy of the inner core since
1986. The earliest theories suggested that the inner core displayed cylindrical
anisotropy with a symmetry axis aligned with the axis of rotation [15] [26]. The
transversely isotropic symmetry class is sometimes referred to as cylindrical anisotropy,
because the way the magnitude of velocity varies with ray angle can be geometri-
cally thought of as a cylinder.

A second theory is that of hemispherical variations, with the eastern hemisphere
largely isotropic, and the western hemisphere being strongly anisotropic [19] [21]. A
third theory is of an innermost inner core [11] [22] displaying a different anisotropy

from the upper layer.

11



Currently, some of the most compelling research [8] shows that the outer 60-
80 kilometres of the inner core is isotropic with the inner part displaying 3-4%
anisotropy and hemispherical variation of the anisotropy. A possible source of
the anisotropy could be iron crystal alignment, believed to be of the hexagonally
close-packed crystal system with some positioned during solidification and others

from deformation.

3.1 Anisotropy of the Inner core from body waves

The 1986 paper by Morelli, Dziewoniski, and Woodhouse Anisotropy of the inner
core inferred from PKIKP traveltimes [15] was the first paper to introduce the
concept of inner core anisotropy. Using PKP and PKIKP traveltimes for distances
of 110° to 180° from Bulletins of the International Seismological Centre from 1964
to 1982, subsets of data were created and examined leading the authors to suggest
an anisotropy with a cylindrical symmetry aligned with the axis of rotation.

There are many types of body waves theorized to be present in the inner core.
Compressional waves that are believed to be present in the inner core are PKIKP,
PKIIKP, pPKIKP, pPKIIKP, sPKIKP, sPKIIKP, SKIKP, and more exotic inner
core phases. There are also many shear phases believed to be present in the inner
core such as PKJKP, SKJKS, SKJKP, pPKJKP, etcetera. For a review of the
naming convention associated with body-wave phases, see Appendix A.

Aside from PKIKP body waves, inner core phases are very difficult to observe.
As of late 2014 there have only been three verified observations of inner core
shear waves by fluid inner core synthetic tests, although more unverified accounts
have been suggested. Exotic inner core waves are very low amplitude, and in the
case of shear waves, can be highly attenuated; they are difficult to observe in single
seismograms. The use of stacking and synthetic seismograms are needed to observe

these lower amplitude body waves [23].
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3.2 Anisotropy of the Inner core from normal
modes

In the same issue of Geophysical Research Letters that featured Anisotropy of the
inner core inferred from PKIKP traveltimes, there was a paper by Woodhouse,
Giardini, and Li, published Ewvidence for inner core anisotropy from free oscilla-
tions [26]. This paper examined anomalous splitting of free oscillations, ruling
out mantle and outer core heterogeneity as the source of the split modes. It is
argued that the only possible source for the observed splitting of normal modes
comes from an inner core anisotropy. Examining the special case of cylindrical
anisotropy with the symmetry axis aligned with the axis of rotation, they show
that observations can closely be matched with modelled data. They note that
cylindrical anisotropy does not match higher degree split modes and that there is
likely a better model of inner core anisotropy than cylindrical anisotropy to fit the

observations.
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Chapter 4

Modelling

In order to study the accuracy and number of measurements required to deter-
mine anisotropy in a spherical body with properties similar to the inner core,
several models were constructed. The three most interesting cases are presented
in this thesis. The physical properties of the models were based on values from
the Preliminary Reference Earth Model (PREM). A description of PREM is given
in Appendix E.

The anisotropic gP velocity within a transversely isotropic body was approxi-

mated using the elliptical velocity function (expression 2.6),

V() =Vz\/ 1 + tan?(0)

1+ (“f—;)z tan2(0) ’

where V' (0) is the ray velocity in the direction § measured from the vertical (sym-
metry) axis, V, is the ray velocity in the vertical direction, and V, is the horizontal
ray velocity. The average inner core velocity, Vio(x), taken from PREM (see
Table E1) was used as the ray velocity in the horizontal direction,

1 b

;:j
b—a J,

V., Vie(z)dx, (4.1)

where, b, the normalized radius of the inner core, is 1221.5/6371 km, and a, the

14



centre of the Earth is zero. The vertical ray velocity (V) was set as 5% faster than
the horizontal velocity.

The model created represents an anisotropy on the scale of 5%; this is similar
to values suggested to be reasonable by Duess, 2014 [8]. The use of the elliptical
velocity function in the modelling serves several purposes, but the main reason is
lack of information about mechanical properties of the inner core. Without the
ability to measure the elasticity parameters C'13 and C)yy, and due to their indepen-
dence, the complete form of the quasi-P wave velocity expression (expression (2.2))
was unusable.

Measurements of mechanical properties and anisotropy of iron crystals or sim-
ilar metals of various packing phases possibly present in the inner core have been
performed, however, there is large variability of measurements with pressure and
temperature [1,13,18]. It was shown by Backus [2] that by the small scale prop-
erties do not reflect the measurements of anisotropy in long waveforms; therefore,
it was decided that attempting to use iron crystal mechanical properties to create
an effective medium for the inner core was beyond the scope of this project.

The use of the elliptical velocity function expression 2.6 to represent qP ray
velocities eliminates some computational difficulties; there is not a closed form
equation for ¢ P rays in transversely isotropic media. There is a closed form equa-
tion for ¢ P wavefront velocities and relations between wavefront and ray velocities,
expression 2.5; therefore, ray velocity can be calculated through a difficult com-
putational process. The elliptical velocity approximation, however, simplifies the
computational process. It is important to note that, in general, variation in ¢P
waves or rays with angle in transversely isotropic media do not follow an elliptical
pattern, but given assumptions and estimations already present in the modelling,
and the similarity between a general transversely isotropic wavefront and its ellip-

tical counterpart, it is a reasonable approximation.

15



The physical properties for the considered transversely isotropic body are
V,=11.76km/s, V, =11.2km/s,

and the radius is » = 1200 km. Traveltime calculations are performed by setting
hypothetical source and receiver locations on the circumference. In reality, it is
impossible to set up sources and receivers on the circumference of the inner core,
however, this approach is similar to the concept of layer stripping. We assume that
we can successfully resolve the contributions to traveltime measurements from the
surface through to the Inner core boundary; hencethe only properties we are trying

to resolve come from the inner core itself.

4.1 Case 1: Full sampling of ray angles

The first case examined was created to test how sampling of a wide range of ray
angles and numerous traveltime measurements with little errors present in the
data allow for distinguishing between isotropic and transversely isotropic models.
The model was constructed with the source located on the axis of symmetry and
receivers located at arcual distances ranging from 10° to 180° incrementally by 10°
arcual distance. This corresponds to sampling of ray angles (6) between 0-85° as

shown in Figure 4.1.

4.2 Case 2: Data Scarcity - Near-horizontal ray
angles

The second case examined was used to study the effects of data sparsity in resolving
anisotropy. If sampling near horizontal ray angles, there is the greatest difference

between the isotropic and transversely isotropic velocities based on the modelling

16



Figure 4.1: Case 1: Source and receiver locations. The source is shown as a black
square and the receivers are shown as blue circles. The ray angle () is measured
from the axis of symmetry (vertical axis) as shown for one ray path.

parameters. The source is set on the horizontal axis (axis perpendicular to the
axis of symmetry) and the six receivers have ray angles varying from 75° to ap-

proximately 100° as seen in Figure 4.2. Table 4.2 displays the distances between

source and receivers, ray angles, and velocities used in the forward modelling.

4.3 Case 3: Data Scarcity - Intermediate ray an-
gles

The third examined case was used to study the effects of data sparsity if the ray
angles are at intermediate values, and therefore, a large variation of velocities in

the case. The source was set at 50° arcual distance from the horizontal axis and

17



Receiver Distance Ray Angle | Velocity
Number (km) (Degree) (km/s)

1 209.174 85 11.2040
2 416.756 80 11.2157
3 621.166 75 11.2350
4 820.848 70 11.2614
) 1014.28 65 11.2942
6 1200.00 60 11.3325
7 1376.58 55 11.3753
8 1542.69 50 11.4215
9 1697.06 45 11.4698
10 1838.51 40 11.5186
11 1965.96 35 11.5666
12 2078.46 30 11.6122
13 2175.14 25 11.6538
14 2255.26 20 11.6901

15 2318.22 15 11.7198
16 2363.54 10 11.7419
17 2390.87 5 11.7554
18 2400.00 0 11.76 00

Table 4.1: Distances between source and receivers, ray angles, and velocities used
in Case 1, where receiver 1 is the top receiver and receiver 18 is the bottom receiver.

Receiver Distance Ray Angle | Velocity
Number (km) (Degree) (km/s)
1 2363.54 99.9227 11.2155
2 2390.87 94.9244 11.2038
3 2400.00 90 11.2000
4 2390.87 85 11.2040
> 2363.54 80 11.2157
6 2318.22 75 11.2350

Table 4.2: Distances between source and receivers, ray angles, and velocities used
in Case 2, where receiver 1 is the top receiver and receiver 6 is the bottom receiver.

the six receivers were set so that the ray angles varied from 35° to 60° as shown in
Figure 4.3. Table 4.3 displays the distances, ray angles, and velocities used in the
forward modelling. While the range of ray angles is the same as Case 2 (& 25°),

the distances and velocities vary more significantly in Case 3.

18



Figure 4.2: Case 2: Source and receiver locations. The source is shown as a black
square and the receivers are shown as blue circles. The ray paths shown highlight
the low variation in ray angle measured from the vertical axis.

Receiver Distance Ray Angle | Velocity
Number (km) (Degree) (km/s)

1 2255.26 60 11.3325
2 2318.22 55 11.3753
3 2363.54 50 11.4215
4 2390.87 45 11.4698
> 2400.00 40 11.5186
6 2390.87 35 11.5666

Table 4.3: Distances between source and receivers, ray angles, and velocities used
in Case 3, where receiver 1 is the top receiver and receiver 6 is the bottom receiver.

4.4 Forward problem

For the cases under consideration, the forward problem of traveltime calculations

was addressed. For this, the distances between the source and receivers and the

19



Figure 4.3: Case 3: Source and receiver locations. The source is shown as a black
square and the receivers are shown as blue circles. The ray paths shown highlight
the low variation in ray angle measured from the vertical axis.

ray angles were computed for each of the three cases. Then, traveltimes with
random normally distributed errors were calculated for each receiver position. The
errors present in the traveltime values represent possible errors that could occur
from inability to fully resolve contributions from outer layers of the Earth, errors
in traveltime picking, and measurement inaccuracies. The number of traveltime
measurements and percentage of random errors allowed into the data is displayed
in Table 4.4. Case 1 has more traveltime measurements than Case 2 or Case 3
because it examines an ideal sampling case, while Cases 2 and 3 examine more

realistic cases of dealing with data scarcity.
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Traveltime
Measure- Errors
ments
Case 1 10 +1%
Case 2 3 +4%
Case 3 3 +4%

Table 4.4: Number of traveltime measurements and percentage of randomly nor-
mally distributed error allowed into the traveltime measurements per case.

4.5 Inverse problem

Two statistical tests were used for examining the inverse problem: the KS test,
and BIC, explained in appendices B and D, respectively. Different approaches
were required to prepare the data for the KS test and BIC. The KS test required
the calculation of isotropic traveltime results at the receiver locations, and the
BIC required an attempt to fit an isotropic and an elliptic velocity function to the
traveltime results generated from the forward problem.

The initial steps of the inverse problem, preparing data for BIC and the KS
test, were the same. An average of the traveltime calculations from the forward

problem were calculated for each receiver,

where n is the number of traveltime measurements. Throughout this averaging it
was assumed that the average of the random normally distributed errors present
in the data remains normally distributed throughout the averaging process.

Two minimization functions were created to obtain the elliptically dependant

velocity parameters, V, and V,, and the isotropic velocity, Vjs,. The elliptical-
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velocity minimization function is

FVa V) =D |t — ’ , (4.2)
i—1 Vz 14‘r/tan2(9i)
1+(72) tan?(0;)

where t;, D; and 6; are known, and V,, and V, are calculated to minimize the value

of f(V,,V,) through the Mathematica NMinimize function. The elliptical velocity

function has three parameters, V,, V, and 6. However, due to the fact that in

homogeneous media rays are straight, the ray angles are known, and optimization
is not required for 6.

Similarly, the isotropic velocity minimization function is
n D,
J(Viso) = Z i — V.

=1

, (4.3)

where the function is minimized following the same procedure. With the values of
Viso, V> and V, computed, BIC can be used to test if there is sufficient information
to accept a more complicated, transversely isotropic model, as opposed to the
simpler, isotropic model.

The KS test works by comparing two data sets to determine the likelihood
that errors caused the observed difference between datasets, as opposed to the
datasets being derived from separate distributions. In order to test if there was
sufficient information to determine if the model was better explained by isotropy or
transverse isotropy, isotropic traveltimes needed to be calculated for each receiver
position.

In order to calculate isotropic traveltimes to compare to the forward modelled
traveltimes with errors present in the data, the errors in the transversely isotropic

traveltimes had to be examined. This was done by calculating the standard devi-
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ation of each receiver’s traveltime values,

With the standard deviation calculated, isotropic traveltimes were then determined
using the distances and ray angles already calculated for the forward models, along
with the minimized isotropic velocity and random normally distributed errors of
up to plus or minus three times the standard deviation. Allowing up to three
times the standard deviation as errors in the traveltime calculations was done
because approximately 99.7% of the data assuming normal distribution falls within
three standard deviations of the average value. This approach also allowed for
examination of how the ability to predict errors in the data affects our ability to
choose models. An equal number of isotropic and transversely isotropic traveltimes
were calculated for each receiver position, and then isotropic and transversely
isotropic traveltimes were compared using the KS test.

The Mathematica code for both the forward and inverse modelling for Case 1
is shown in Appendix F. Modifications of the code presented are easily done for

Case 2 and Case 3.
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Chapter 5

Results

In this section, the results of forward and inverse modelling are presented for each
case. Firstly the forward modelled and isotropic traveltimes are compared, along
with the range of errors allowed for the isotropic traveltimes. The KS test results
are presented, where a p-value of greater than 0.05 is interpreted as differences
in the data set originating from errors present in the data, rather than inherently
different models. Secondly, the minimization velocity parameters and the outputs
of the BIC are presented. The lower value of BIC is interpreted to be the preferred
model. Due to the prior knowledge that the models are different, when isotropy is
picked from the KS test or BIC, the interpretation is that there has been insufficient

sampling or too much error present in the data.

5.1 Case 1: Full sampling results

The isotropic velocity parameters and elliptically dependant velocity parameters

calculated from the minimization functions are

Vieo = 11.6348 km /s

24



and

V. = 11.7556 km /s, V, = 11.2075 km/s,

respectively. The results of the transversely isotropic minimization are close to the
input values of the forward model. Errors allowed into the isotropic traveltimes are
shown in Table 5.1. The errors that were calculated from the forward model are
greater than the errors introduced into the forward model. The larger errors are
due to sample size; with few measurements the errors calculated can be strongly

influenced by outsider values.

Receiver Errors Receiver Errors
Number Number

1 +1.79915% | 10 +1.5368%
2 +1.69682% | 11 +1.4781%
3 40.944957% 12 +1.08094%
4 +1.37367% | 13 +2.13532%
5 +1.72387% | 14 +1.75678%
6 +1.61903% | 15 +1.45677%
7 +2.37716% | 16 +1.6914%
8 +2.16731% | 17 +2.05096%
9 +1.60246% | 18 +1.50989%

Table 5.1: Amount of random normally distributed traveltime errors allowed into
isotropic traveltime measurements.

Receiver Receiver

Number p-value Number p-value

1 0.0000108251 | 10 0.000216502
2 0.0000108251 | 11 0.00205677
3 0.0000108251 | 12 0.0123406
4 0.0000108251 | 13 0.167821

5 0.0000108251 | 14 0.417524

6 0.0000108251 | 15 0.417524

7 0.0000108251 | 16 0.417524

8 0.0000108251 | 17 0.167821

9 0.0000108251 | 18 0.417524

Table 5.2: Results of Kolmogorov-Smirnov test for Case 1.

The traveltime values calculated from the elliptical velocity forward modelling
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and isotropic inverse modelling are displayed in Figure 5.1. It is apparent that as
the ray angle decreases, the similarity between isotropic and transversely isotropic
traveltimes increases. Based on the velocities input into the forward model and
isotropic model it makes sense that there is an increase in traveltime similarity
with a decrease in ray angle. The results of the KS test comparing the isotropic
traveltimes and transversely isotropic traveltimes are shown in Table 5.2. Based
on the information available for the KS test, 0.0123406 is the minimum p-value
that can be calculated for Case 1. The majority of the KS test p-values predict
that the traveltimes calculated from the forward modelling do not come from an
isotropic model; however, as the ray angle decreases, the similarity between the
isotropic velocity and the elliptical velocity increases, thereby making the KS test
predict that the forward modelled traveltimes are isotropic at low ray angles.

The calculated velocity parameters result in BIC values,
BIC(Iso) =9.21709

and

BIC(TI) = —59.5079.

In this case, BIC clearly chooses the elliptical velocity dependence model as the

preferred model.

5.2 Case 2: Data Scarcity - Near-horizontal ray
angles results

The second case examined has ray paths that are near perpendicular to the axis

of symmetry. Minimization of the forward modelled traveltimes resulted in

Viso = 11.2775km/s
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Figure 5.1: Histograms of Case 1 traveltime results.

Isotropic traveltimes are

shown in yellow and transversely isotropic traveltimes are shown in blue. Receiver
positions increase from left to right and top to bottom, with receiver 1 being at
the top left and receiver 18 being at the bottom right.

for the isotropic velocity, and

V., = 11.3126 km/s, V, = 11.2772km/s,

for the elliptical velocity parameters. The calculated V, is smaller than the V,

from the forward model. The range of random errors allowed into the isotropic

traveltimes are displayed in Table 5.3. The errors predicted from the forward
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model are significantly larger than the errors introduced into the forward model.

Table 5.3:

Receiver Errors Receiver Errors
Number Number

1 +6.26028% 4 +11.5545%
2 +13.143% 5 +9.4062%
3 4+10.4336% 6 +10.8732%

Range of random normally distributed errors allowed into Case 2
isotropic traveltime results.

Three traveltimes were calculated for each receiver; traveltime results are shown

in Figure 5.2. The forward modelled traveltimes tend to be similar to the isotropic

traveltimes; overall, half of the forward modelled traveltimes are faster than the

isotropic traveltimes. Examining the variation between the isotropic and ellipti-

cally velocity dependant traveltimes, it appears that the variations are caused by

random errors. This makes sense because the input isotropic velocity value is quite

close to the minimized horizontal velocity value, and the ray paths being sampled

are near horizontal. The KS test results displayed in Table 5.4 show that there

is not sufficient information to distinguish the two models. Therefore, isotropy

would be picked as the most likely source model.

Receiver Receiver

Number p-value Number p-value
1 0.1 4 1

2 0.6 5 0.6

3 0.6 6 0.6

Table 5.4: Results of Kolmogorov-Smirnov test for Case 2.

The BIC results of the minimized functions are

and

BIC(Is0) = 18.7867

BIC(TI) = 22.3601 .
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Figure 5.2: Scatter plots of Case 2 traveltime results. Isotropic traveltimes are
shown in yellow and transversely isotropic traveltimes are shown in blue. Receiver
positions increase from left to right and top to bottom, with receiver 1 being at
the top left and receiver 6 being at the bottom right. The Y-axis shows traveltime
in seconds.

BIC chooses the isotropic model as the preferred source model based on the infor-
mation available. The BIC values are close together, so a great deal of confidence

cannot be placed in the results.

5.3 Case 3: Data Scarcity - Intermediate ray an-
gle results

The minimization results for Case 3 resulted in an isotropic velocity of

Viso = 11.3854 km /s,

29



and elliptical velocity parameters of

V, =11.4412km/s, V, = 11.2739 km/s.

Compared to the velocities put into the forward model, the isotropic velocity is low.
It is, however, intermediate between the calculated V, and V, from the elliptical
velocity minimization. With the exception of the first and fifth receivers, the
amount of random normally distributed errors allowed (see Table 5.5) into the

isotropic traveltime calculations were less than allowed into the forward model.

Receiver Errors Receiver Errors
Number Number

1 +7.25447% 4 +1.85968%
2 +3.18143% 5 +4.91204%
3 +1.37901% 6 +2.56807%

Table 5.5: Range of random normally distributed errors allowed into Case 3
isotropic traveltime results.

The traveltimes calculated for the forward and inverse problems for Case 3
are displayed in Figure 5.3. Comparing the three traveltimes calculated at each
receiver it is noticeable that as the ray angle decreases, and thereby the rays become
more vertical there is a change in traveltime relationships between the forward
modelled traveltimes and the isotropic traveltimes; the majority of the isotropic
traveltimes calculated for the first four receivers are smaller than the forward
modelled traveltimes, and the relationship reverses for the last two receivers. The
results of the KS test shown in Table 5.6 show that there is not enough information
to distinguish between models, meaning that based on the information we have,
it should be interpreted that the forward modelled data came from an isotropic
model.

The calculated parameters resulted in BIC outputs of

BIC(Iso) = 710.157
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Figure 5.3: Scatter plots of Case 3 traveltime results. Isotropic traveltimes are
shown in yellow and transversely isotropic traveltimes are shown in blue. Receiver
positions increase from left to right and top to bottom, with receiver 1 being at
the top left and receiver 6 being at the bottom right. The Y-axis shows traveltime
in seconds.

and

BIC(TI) = 682.705.

BIC favours the elliptical velocity model as the better model out of the two that
were compared. This means that while there does not appear to be enough in-
formation to distinguish between models at specific receiver locations through the
KS test, overall, there is sufficient sampling to choose the more complicated model

with BIC.
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Receiver Receiver

Number p-value Number p-value
1 0.6 4 0.1

2 0.1 5 1

3 0.1 6 1

Table 5.6: Results of Kolmogorov-Smirnov test for Case 3.
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Chapter 6

Discussion

As expected, with more measurements and decreasing error, the ability to resolve
the underlying source of the measurements increases. This is well demonstrated
when comparing all three cases. Case 1 had the smallest errors introduced into the
data and the most traveltime measurements; this provided far more confidence in
choosing transverse isotropy as the preferred model when using BIC. For Case 3
BIC also chose elliptical anisotropy as the preferred source model, while for Case 2
isotropy was preferred as the source model.

Examining the input velocities for Case 2, as shown in Table 4.2 there is little
variation in the velocities and distances for source-receiver pairs in the forward
model. This lack of variation is due to the symmetry of the model. Both Case 2
and Case 3 have a 25° range of ray angles; however, unlike Case 2, Case 3 sampling
does not cross a symmetry axis, resulting in a larger variation of velocities. This
larger variation in velocities results in BIC being able to correctly choose the
elliptical model as the the preferred model.

There were not enough traveltimes calculated in Case 2 or Case 3 for the KS
test to be useful. The KS test increases in efficiency with more data points; three
measurements are not enough to be able to compare data sets accurately. When

dealing with statistical tests such as the KS test it is important to recognize the
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central limit theorem described in Appendix C. The relevance of the theorem to
this study is that with few samples, and errors present in the samples, the overall
distribution can be affected by outlying values; however, with increased sampling,
the distribution tends to become approximately normally distributed. In frequency
based statistical tests such as BIC and the KS test this is very relevant. The ten
traveltimes for each receiver location in Case 1 is still low by frequency based
standards.

Examining Case 1, the low errors combined with the greater number of trav-
eltime measurements allowed the KS test to be used effectively. The majority
of the KS test results showed a p-value of less than 5%, meaning the difference
between the data sets likely did not come from errors in the data, and the case is
likely not isotropic. As the ray angle increased the KS test results increased the
likelihood that the models were isotropic. Examining the forward model veloci-
ties and the isotropic velocity, it would be expected that the largest similarities
between the datasets would be found near receiver 12 or 13. The KS test results
and the traveltime histograms show increasing similarity between data sets as the
ray angle increases. This increase in similarity could be used to infer possible ori-
entation of the symmetry axis; however, with increased number of measurements
this relationship could change.

There are several extensions of this project that could be undertaken to fur-
ther study information to establish preference between isotropic and transversely
isotropic models. Cases presented in this thesis are just single realizations of the
case; with random errors present, outcomes could vary with computation. Study-
ing the results of many realizations of the case (perhaps even hundreds or thou-
sands) could provide insight into the robustness of the statistical tests with the
given errors. Modifications of the code could be performed to be representative of
vertical seismic profile (VSP) measurements to study applicability to exploration

seismology. Additional layering could be introduced into the cases to account for
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other seismological zones. Removal of assumptions used in this thesis may provide

a more robust model of the inner core.
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Chapter 7

Concluding Remarks

The purpose of this study was not to determine whether or not the inner core
is anisotropic, but to examine the information required to answer that question.
More specifically, the purpose was to quantify the criteria necessary to give a
preference to either the isotropic or transversely isotropic model. This was done
by examining body-wave traveltime measurements representative of isotropic and
transversely isotropic Inner core cases, in the context of errors and sparsity of data.

The more parameters a model has, the more precisely it can be made to fit a
data set. The isotropic P wave velocity has one parameter, V. The elliptically
dependant velocity expression has three parameters, V,, V, and . While only two
parameters are optimized because # in a homogeneous medium is predetermined
by the source and receiver locations, the penalty term used in BIC is still based
on three parameters. Hence, the elliptical velocity model can be made to fit any
data set better than the isotropic model. However, this does not mean that the
physical body is represented better by an elliptically dependant velocity model.
Errors in the data, possibly due to measurement inaccuracy or model inaccuracy,
are also accommodated better by a higher-parameter model.

To avoid a hasty and perhaps faulty choice of a model, it is essential to use a

criterion that takes these issues into account. Penalties are required for introducing
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extra parameters to a model. The penalties introduced by the KS test are related
to the number of data points collected, meaning that with insufficient sampling
it will not allow a more complicated model to be chosen. BIC directly penalizes
additional parameters, with each additional parameter adding to the value of BIC,
and the preferred model is the one with the lowest value of BIC.

The cases presented shows that the KS test may not be a suitable statistical test
for determining inner core anisotropy due to the unrepeatability of measurements.
This does not rule out the applicability of the KS test in studying anisotropy
through other geophysical methods. For example, the KS test would be appli-
cable for studying anisotropy through walk-away vertical seismic profiling, where
repeatability and number of measurements are not an issue. BIC tests the overall
distribution of measurements for a continuum, whereas the KS test only evaluates
variation along a single ray path.

BIC is a more robust method for studying anisotropy in the context of the
inner core. Despite relatively few traveltime measurements and a large variance of
error allowed into the data, £4%, enough sampling allows us to detect change of
velocity with direction, and BIC is able to correctly choose the more complicated
model as the preferred source model.

Both BIC and the KS test may be used to study anisotropy, however, BIC is

more applicable for both global seismology and exploration seismology.
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Appendix A

Seismic wave phases

A standard seismic phase listing was created by an International Association of
Seismology and Physics of the Earth’s Interior (IASPEI) working group that was
created in 2001 and ratified in 2003 [4]. Below is a partial listing of seismic phase
nomenclature that is important when studying the inner core of the Earth. Upper

case denotes a refracted wave, and lower case denotes a reflected wave.!

P — longitudinal (P) wave that has travelled through Earth’s crust and man-

tle

K — longitudinal (P) wave that has travelled through Earth’s outer core

I — longitudinal (P) wave that has travelled through Earth’s inner core

e S — transverse (S) wave that has travelled through Earth’s crust and mantle

J — transverse (S) wave that has travelled through Earth’s inner core

i — longitudinal (P) wave that has reflected off Earth’s inner core - outer core

boundary

There are many waves for studying the inner core, two of the simplest waves

to observe are the PKIKP wave and the PKiKP wave. The PKIKP wave is a

For a full listing of seismic wave phases see The IASPEI Standard Seismic Phase List [4]
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wave that has traveled through the crust and mantle, then the outer core, then
the inner core, then the outer core again and through the mantle and crust again.
The PKiKP wave, read left to right, travels initially through the crust and mantle,
then the outer core, then reflects off the inner core - outer core boundary, travels

back through the outer core, and then though the mantle and crust again.
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Appendix B

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is a nonparametric statistical test that can
be used to measure the similarity between datasets. It is a goodness-of-fit test
that can be used for any statistical distribution. It can be used to test for the
distribution of a dataset, or test the similarity between two datasets.

To use the KS test to test the similarity between datasets, the cumulative
distribution functions for both datasets need to be computed, and the maximum

difference between them needs to be calculated, namely,
d =sup |F () — Fon(x)],

where, F.,(z), is the cumulative distribution function, and sup is the supremum
function. The D-Statistic then needs to be calculated. The D-Statistic is based

on the number of samples being compared,

where D,, is the D-Statistic, ny is the the number of data points in data set one,
and ns is the number of data points in data set two. If d is less than the D-statistic

the null-hypothesis that the data comes from the same population is rejected [7].
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A p-value is often calculated with the KS test as another means of testing the
null hypothesis. The p-value is the probability of observing the d value or a d value
with even greater evidence against the null hypothesis, even if the null hypothesis
is true [14],

p= Pr(D, <d).

A p-value of 5% is often used as the threshold for rejection of the null hypothesis;
however, this is an arbitrary cut off, and other thresholds can be used. A p-value
threshold of 5% means that based on the data available to the KS test, we reject
the null hypothesis that the data comes from the same population if there is a 5%
or less probability of a greater variance in data being due to random errors in the

data.
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Appendix C

Central Limit Theorem

The Central Limit Theorem was proposed by Abraham de Moivre, a French math-
ematician who in 1733 published an article using normal distribution to approx-
imate the number of “heads” resulting from tosses of a fair coin. It was later
rediscovered by Pierre-Simon Laplace and published in his 1812 work Théorie An-
alytique des Probabilités. It was not until the turn of the 20th century that the
Central Limit Theorem took the form that we know today as generalized by the
Russian mathematician Aleksandr Lyapunov [20].

The theorem states that the sum of a sufficiently large number of indepen-
dent random variables is approximately normally distributed. Mathematically the

theorem for any real numbers a and b is

Xi+Xo+--+ X, —
lim P<a§ B T e gb) = ®(b) — (a),
n—00 ()'\/ﬁ
where X7, ..., X, is a sequence of independent random variables, u = E(X) is the

expected value of X, 0 = (X)) is the standard deviation and ®(x) is the standard

normal distribution function defined by

1 Tl
O(x) = \/—2_7T/ eV dy,



meaning the standardized variable (X; + X5+ -+ X,, — nu)/o/n is approxi-

mately normally distributed [20].
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Appendix D

Bayesian Information Criterion

Choosing an appropriate model to represent a set of data can be a very difficult
task. Models with more parameters fit measurements better than models with
fewer parameters; however, in accordance with the concept of Occam’s Razor,
we must pick the simplest model to represent our data. BIC can be used for
model selection amongst a finite set of models; it provides a way to test if there is
justification for choosing a more complicated model over a simpler model.

BIC is a modification of the Akaike Information Criterion (AIC) that was
proposed by Gideon Schwarz in the 1978 paper Estimating the dimension of a
model in which he provided a Bayesian argument for its adoption [16]. The BIC

of a model can be expressed as
BIC = —21In(L) + k1n(n),

where L is the maximum likelihood function for the model, n is the number of data
points and k is the number of free parameters to be estimated [25]. The maximum
likelihood in the case of a function that is normally distributed is [24]

(2m) /2

L:—exp{—
O—?’L

(i — u)z]’
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where

and

The model with the lowest BIC is considered the most appropriate model given

the information available. Compared with the AIC,

AIC = —2In(L) + 2k,

For n > 8 the BIC penalty, k1n(n), is greater than the AIC penalty, 2k. Therefore,
relative to AIC, BIC tends to favour simpler models, that is, models with fewer

parameters. [12].
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Appendix E

Preliminary Reference Earth

Model

PREM was created by Dziewonski and Anderson in 1981 [9] as a reference model
of the Earth, representative of both body waves and normal mode observations.
PREM was created using three subsets of data: Astronomic-geodetic data, Free os-
cillation and long-period surface wave data, and Body-wave data. These three sub-
sets made up an extremely large data set encompassing about 1000 normal mode
periods, 500 summary traveltime observations,100 normal mode seismic quality
factor (Q) values, and 12 years of International Seismological Centre (ISC) obser-
vations totalling 1.75 x 10° P and S wave traveltime observations. Q values and
density of the Earth’s interior were obtained from mass and moment of inertia
inversion.

PREM is a mathematical model of the Earth, meaning that while it does a
good job of approximating the structure of the Earth, at no point does the model
truly reflect the structure of the Earth; one of the accuracy problems of the model
is the extreme anisotropy exhibited in the Earth’s crust. In order to account for
the anisotropy and inhomogeneity, a weighted average was used to define the upper

100 km of the Earth. Another important assumption made was that Q, which is
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the attenuation factor, is independent of frequency.

In PREM, there are nine regions recognized in the Earth’s structure:
1. Ocean layer.
2. Upper and lower crust.

3. Region above the low-velocity zone (LID), the main part of the seismic litho-

sphere.
4. Low velocity zone (LVZ).
5. Region between low velocity zone and 400 km discontinuity.
6. Transition zone spanning the region between 400 and 670 km discontinuities.
7. Lower mantle.
8. Outer core.
9. Inner core.

The subdivision of PREM into nine regions was done to allow a modular con-
struction of the model. Different modules combined to create the whole Earth
model allows for changing particular features of a module without having to change
all the features in the model. This allows for the creation of a model that has an
anisotropic upper mantle, caused mostly by large amounts of anisotropic miner-
als olivine and pyroxene, while keeping the remaining zones of the Earth model

isotropic. PREM values are displayed in tables E.1, and E.2.
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) Radius Density Vavg
Region | (1m) g/em®) | Y2 () G
13.0885 11.2622
Inner Core | 0-1221.5 2838122 | —6.364022 11.1842
12.5815 11.0487
1221.5- —1.2638x —4.0362z
Outer Core | 5105 0 3642622 | +4.802322 | 02993
—5.52812% | —13.57322°
7.9565 15.3891
Lower 3480.0- —6.4761x —5.3181z 13.6984
Mantle 3630.0 +5.5283x% | +5.524222 :
—3.08072% | —2.551423
7.9565 24.9520
3630.0- —6.4761x —40.4673x
5600.0 +5.528322 | +51.4832x2 12.4752
—3.08072% | —26.641923
7.9565 29.2766
5600.0- —6.4761x —23.6027x
5701.0 +5.528322 | +5.524222 10.9085
—3.08072% | —2.551423
Transition | 5701.0- 5.3197 19.0957 10.2120
zone 5771.0 —1.4836x —9.8672x '
5771.0- 11.2494 39.7027
5971.0 —&.0298z% —32.6166x
5971.0- 7.1089 20.3926
6151.0 —3.8045x —12.2569x 9.6464

Table E.1: PREM model values of density and P wave velocities up to transversely
isotopic region; average velocities calculated using expression (4.1). The variable
x is the normalized radius, where = r/a, r is the radius, and a = 6371km.
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V7 6151.0- 2.2910 Vpy 0.8317
6291.0 4+0.6924x +7.2180x%
Vg 3.5908
+4.6172x
LID 6291.0- 2.6910 Vpy 0.8317
6346.6 +0.6924x +7.2180x
Vg 3.5908
+4.6172x
6346.6-
Crust 6356.0 2.900 6.800 6.800
6368.0-
Ocean 6371.0 1.020 1.450 1.450
IOSZGZE’E_”OX' 4.1875
V7 +3.9382x

Table E.2: Transversely isotropic region of PREM model and isotropic approxi-
mation
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Appendix F

Mathematica Code

The Mathematica code included was used to generate Model 1. Changing the
source location, the receivers being used, the errors introduced into the forward
model, and the number of traveltime measurements modifies the code for models
2 and 3. This code could also be easily modified to be representative of a VSP by

changing the velocity properties, along with sources and receivers.

Code

Remove[“Global*”]

Set Source and Receiver locations at positions measured from vertical
axis.

Calculate ray angle and distance between source and receivers

Sx:=N[1200Cos[Degree90]]
Sy:=N[1200Sin[Degree90]]
S:={Sx, Sy}
R1x:=N[1200Cos[Degree100]];
R1y:=N[1200Sin[1007/180]];
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D1:=4/(Sx — R1x)? + (Sy — Rly)>;
Al:=Abs[Sy — Rly]
thl:=ArcCos[A1/D1]
R1:={R1x,Rly}
R2x:=N[1200Cos[1107/180]];
R2y:=N[1200Sin[1107/180]];
D2:=4/(Sx — R2x)2 + (Sy — R2y)?;
A2:=Abs[Sy — R2y]
th2:=ArcCos[A2/D2];

R2:={R2x, R2y};
R3x:=N[1200Cos[1207/180]];

R3y:=N[1200Sin[1207/180]];
D3:=4/(Sx — R3x)? + (Sy — R3y)?;
A3:=Abs[Sy — R3y]
th3:=ArcCos[A3/D3];

R3:={R3x, R3y}:
R4x:=N[1200Cos[1307/180]];

Rdy:=N[1200Sin[130r/180]];
D4:=4/(Sx — R4x)2 + (Sy — Rdy)?;
A4:=Abs[Sy — Rdy]
th4:=ArcCos[A4/D4];

R4:={R4x, Rdy};
R5x:=N[1200Cos[1407/180]);
R5y:=N[1200Sin[140/180]];
D5:=4/(Sx — R5x)2 + (Sy — Rby)?;
R5:={R5x, R5y};

A5:=Abs[Sy — R5y]
th5:=ArcCos[A5/D5|;
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R6x:=N[1200Cos[1507/180]];
R6y:=N[1200Sin[150/180]];
D6:=/(Sx — R6x)2 + (Sy — R6y)Z;
R6:={R6x, R6y};

A6:=Abs[Sy — R6y]
th6:=ArcCos[A6/D6];

R7x:=N[1200Cos[1607/180]];
R7y:=N[1200Sin[1607/180]];
D7:=,/(Sx — R7x)? + (Sy — R7y)%
R7:={R7x, R7y};

AT7:=Abs[Sy — RT7y]
th7:=ArcCos[A7/DT7];
R8x:=N[1200Cos[1707/180]);
R8y:=N{[1200Sin[1707/180]];
D8:=4/(Sx — R8x)2 + (Sy — R8y)?;
R8:={R8x, R8y};

A8:=Abs[Sy — R8y]
th8:=ArcCos[A8/D8;
R9x:=N[1200Cos[1807/180]];

R9y:=N[1200Sin[180x/180]];
D9:=,/(Sx — R9x)? + (Sy — R9y)?;
R9:={R9x, R9y};

A9:=Abs[Sy — R9y]
th9:=ArcCos[A9/D9);
R10x:=N[1200Cos[190x/180]];

R10y:=N[1200Sin[190/180]];
D10:=4/(Sx — R10x)2 + (Sy — R10y)?2;
R10:={R10x, R10y};




A10:=Abs[Sy — R10y]
th10:=ArcCos[A10/D10];
R11x:=N[1200Cos[2007/180]];
R11y:=N[1200Sin[2007/180]];
D11:=,/(Sx — R11x)? + (Sy — R1ly)Z%
R11:={R11x, Rlly};

Al11:=Abs[Sy — R11y]
th11:=ArcCos[A11/D11]
R12x:=N[1200Cos[2107/180]];
R12y:=N[1200Sin[2107/180]];

D12:=4/(Sx — R12x)2 + (Sy — R12y)?;
R12:={R12x,R12y};

A12:=Abs[Sy — R12y]
th12:=ArcCos[A12/D12];
R13x:=N[1200Cos[2207 /180]];
R13y:=N[1200Sin[2207 /180]];
D13:=,/(Sx — R13x)? + (Sy — R13y)?;
R13:={R13x,R13y};

A13:=Abs[Sy — R13y]
th13:=ArcCos[A13/D13];
R14x:=N[1200Cos[2307 /180]];

R14y:=N[1200Sin[2307/180]];
D14:=,/(Sx — R14x)? + (Sy — R14y)Z;
R14:={R14x, R14y};

Al14 = Abs[Sy — R14y]
th14:=ArcCos[A14/D14];

2119.25
R15x:=N[1200Cos[2407/180]];
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R15y:=N[1200Sin[2407 /180]];
D15:=4/(Sx — R15x)2 + (Sy — R15y)?;
R15:={R15x, R15y};

A15:=Abs[Sy — R15y]
th15:=ArcCos[A15/D15];
R16x:=N[1200Cos[2507 /180]];

R16y:=N[1200Sin[250/180]];
D16:=4/(Sx — R16x)? + (Sy — R16y)?;
R16:={R16x, R16y};

A16:=Abs[Sy — R16y]
th16:=ArcCos[A16/D16];

R17x:=N[1200Cos[260/180]];
R17y:=N[1200Sin[2607 /180]];
D17:=,/(Sx — R17x)? + (Sy — R17y)?%;
R17:={R17x,R17y};

A17:=Abs[Sy — R17y]

th17:=ArcCos[A17/D17];
R18x:=N[1200Cos[270m/180]];
R18y:=N[1200Sin[270m /180]];
D18:=4/(Sx — R18x)? + (Sy — R18y)?;
R18:={R18x, R18y};

A18:=Abs[Sy — R18y]
th18:=ArcCos[A18/D18];

Plot source and receivers to insure no errors in locations

ListPlot[{S, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18},
AspectRatio — 1, PlotRange — {{1300,—1300}, {1300, —1300}}, AxesOrigin — {0, 0}]
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Calculate Elliptical Velocity

— (1+(Tan[0])?)
V[o):=Vz \/—Q—H O
Vx:=11.2

Vz:=11.2 + 11.2(0.05)

Velocity for each ray angle calculated

V1:=V[thi];
V2:=V[th2];
V3:=V[th3];
V4:=V[th4];
V5:=V|[th5];
V6:=V[th6];
V7:=V[th7];
V8:=V[th8];
V9:=V[th9];
V10:=V[th10];
V11:=V[th11];
V12:=V[th12];
V13:=V[th13];
V14:=V[th14];
V15:=V[th15];
V16:=V[th16];
V17:=V[th17];
V18:=V[th18];
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Elliptical traveltimes

traveltime function with random errors

t1[i]:=D1/V1 + (D1/V1) * RandomReal[{—0.01,0.01}];
t2[i]:=D2/V2 + (D2/V2) * RandomReal[{—0.01,0.01}];
t3[i]:=D3/V3 + (D3/V3) * RandomReal[{—0.01,0.01}];
t4[i]:=D4/V4 + (D4/V4) * RandomReal[{—0.01,0.01}];
t5[i-]:=D5/V5 + (D5/V5) * RandomReal[{—0.01,0.01}];
t6[i_]:=D6/V6 + (D6/V6) * RandomReal[{—0.01,0.01}];
t7[i.]:=D7/V7 + (D7/V7) * RandomReal[{—0.01,0.01}];
t8[i]:=D8/V8 + (D8/V8) * RandomReal[{—0.01,0.01}];
t9[i_]:=D9/V9 + (D9/V9) * RandomReal[{—0.01,0.01}];
t10[i_]:=D10/V10 + (D10/V10) * RandomReal[{—0.01,0.01};
t11[i]:=D11/V11 + (D11/V11) * RandomReal[{—0.01,0.01}];
t12[i]:=D12/V12 + (D12/V12) * RandomReal[{—0.01, 0.01}];
t13[i]:=D13/V13 + (D13/V13) * RandomReal[{—0.01,0.01}];
t14[i_]:=D14/V14 + (D14/V14) * RandomReal[{—0.01,0.01}];
t15[i.]:=D15/V15 + (D15/V15) * RandomReal[{—0.01,0.01};
t16[i_]:=D16/V16 + (D16/V16) * RandomReal[{—0.01,0.01}];
t17[i]:=D17/V17 + (D17/V17) x RandomReal[{—0.01,0.01}];
t18[i_]:=D18/V18 + (D18/V18) * RandomReal[{—0.01,0.01}];

Calculate 10 traveltimes at each receiver location and export calculated

traveltimes to save data

telll:=Table[t1[i], {z, 10}]
tell2:=Table[t2[i], {Z, 10}]
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tell3:=Table[t3[i], {z, 10}]
telld:=Table[t4[i], {7, 10}]
tell5:=Table[t5[i], {z, 10}]
tell6:=Table[t6[i_], {z, 10}]
tell7:=Table[t7[i], {Z, 10}]
tell8:=Table[t8[i_], {, 10}]
tell9:=Table[t9[i_], {2, 10}]
tell10:=Table[t10[i], {, 10}]
tell11:=Table[t11[i], {i, 10}]
tell12:=Table[t12[i], {, 10}]
tell13:=Table[t13[i_], {z, 10}]
tell14:=Table[t14[i], {i, 10}]
tell15:=Table[t15[i], {, 10}]
tell16:=Table[t 16[i.], {i, 10}]
tell17:=Table[t17[i], {, 10}]
tell18:=Table[t18]i_], {z, 10}]

Export[“Filelocation/filename.dat”, telll];

Import traveltimes for each receiver using following scheme

tel:=Flatten[Import[“Filelocation/filename.dat”]|

Calculate average traveltime for each receiver

tml = Mean|tel];
tm2 = Mean|te2];
tm3 = Mean|te3];
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tm4 = Mean][ted];
tm5 = Mean|te5];
tm6 = Mean|te6];
tm7 = Mean|te7];
tm8 = Mean|te8];
tm9 = Mean|te9);
tm10 = Mean|[tel0];
tm11l = Mean[tell];
tm12 = Mean[tel2];
tm13 = Mean[tel3];
tm14 = Mean[tel4];
tm15 = Mean|[tel5];
tm16 = Mean[tel6];
tm17 = Mean|tel7];
tm18 = Mean[tel8];

Calculate error to be introduced into isotropic traveltimes

erl:=3(StandardDeviation[tel]) /Mean|tel]
er2:=3(StandardDeviation[te2]) /Mean|te2]
er3:=3(StandardDeviation[te3]) /Mean|te3]
er4d:=3(StandardDeviation[te4]) /Mean te4]
er5:=3(StandardDeviation[te5]) /Mean[te5]
er6:=3(StandardDeviation[te6]) /Mean|te6]
er7:=3(StandardDeviation[te7]) /Mean[teT7]
er8:=3(StandardDeviation|[te8]) /Mean|te8]
er9:=3(StandardDeviation[te9]) /Mean[te9]
er10:=3(StandardDeviation|[te10]) /Mean[te10]
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erl1:=3(StandardDeviation[te11]) /Mean[tell]

er12:=3(StandardDeviation[te12]) /Mean[te12]

er13:=3(StandardDeviation[te13]) /Mean[tel3]

er14:=3(StandardDeviation[te14]) /Mean[te14]

erl5:=3(StandardDeviation[te15]) /Mean[te15)

erl16:=3(StandardDeviation[te16]) /Mean[te16]

erl7:=3(StandardDeviation[tel7]) /Mean[tel7]

er18:=3(StandardDeviation[te18]) /Mean[te18§]

Elliptical minimization function

STISO[vx_, vz_]:=Abs |tml —

Abs

Abs

Abs

Abs

Abs

Abs

Abs

D1

(1+(Tan[th1])2)

+ Abs |tm2 —

v 1+(32 )% (Tan[th1])2
tm3 — D3 + Abs |tm4 — D4 +
(14(Tan[th3])2) (1-+(Tan[th4))2)
vz vz
1+(¥&)*(Tan[th3])2 1+(¥2)? (Tan[th4])2
tmb — DS + Abs |tm6 — D6 +
(1+(Tan[th5])2) (1+(Tan[th6])?)
1+(¥£)*(Tan]ths5])2 1+(¥2 )% (Tanthe])2
tm7 — D7 + Abs |tm8 — D8 +
(1+(Tan[th7))2) (1+4(Tan[ths])2)
1+(32)? (Tan(th7))? 1+(32 )% (Tan|ths))2
tm9 — D9 + Abs |tm10 — D10
vz (1+(Tan[th9])2) vz (1+(Tan[th10])2)
1+( )2 (Tan[th9))2 1+(32)?(Tan[th10])2
tm1l — bl + Abs [tm12 — Di2
(1+(Tan[th11])2) (1+(Tan[th12])2)
vz vz
| 1+(3)*(Tan[th11))2 | i 1+(32)?(Tan(th12))? |
tml3 — D13 + Abs |tm14 — D14
(1+(Tan[th13])2) (1+(Tan[th14])2)
VZ ewrTTy Py vZ ———
1+(32)*(Tan[th13))2 1+(32 )2 (Tan[th14])2
tm15 — D15 + Abs |tm16 — D16
(1+(Tan[th15])2) (1+(Tan[th16])2)
1+(3 )" (Tan[th15])2 1+(32 ) (Tanth16])2
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Abs |tm17 — D17 + Abs |tm18 — D18

(1+(Tan[th17))2) (1+(Tan[th18])2)
1+(3 )" (Tan[th17))2 1+(32 ) (Tan[th18])2

STI = NMinimize[STISO[vx, vz], {vx < vz,13 > vz > 10.5}, {vx, vz}, MaxIterations — 1000]
{3.55361, {vx — 11.2075,vz — 11.7556}}

Isotropic velocity minimization function

SX[v_]:=Abs [tm1 — 2] + Abs [tm2 — 2] + Abs [tm3 — 23] + Abs [tm4 — B4] + Abs [tm5 — !
Abs [tm6 — 28] + Abs [tm7 — 27] + Abs [tm8 — B8] + Abs [tm9 — 22] + Abs [tm10 — 219] +

Abs [tmll - %] + Abs [tm12 - %] + Abs [tm13 - %] + Abs [tm14 - %] + Abs [tm15 —

Abs [tm16 - %] + Abs [tm17 - %] + Abs [tm18 — %]
SISO = Minimize[SX[v], v]
{29.4111, {v — 11.6348}}

Isotraveltimes

Input isotropic velocity from minimization

Viso : 11.639842723949194

Create isotropic traveltime function with calculated isotropic velocity

and errors

i1[i]:=D1/Viso + (D1/Viso) * RandomReal[{—er1, er1}];
i2[i]:=D2/Viso + (D2/Viso) * RandomReal[{—er2, er2};
i3[i]:=D3/Viso + (D3/Viso) * RandomReal[{—er3, er3};
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i4[i]:=D4/Viso + (D4/Viso) * RandomReal[{ —er4, er4}];
i5[i]:=D5/Viso + (D5/Viso) * RandomReal[{—er5, er5}];
i6[i]:=D6/Viso + (D6/Viso) * RandomReal[{ —er6, er6}];
i7[i]:=D7/Viso + (D7/Viso) * RandomReal[{—er7, er7}|;
i8[i]:=D8/Viso + (D8/Viso) * RandomReal[{—er8, er8}];
i9[i]:=D9/Viso + (D9/Viso) * RandomReal[{—er9, er9};
i10[i]:=D10/Viso + (D10/Viso) * RandomReal[{—er10, er10}];
i11[i]:=D11/Viso + (D11/Viso) * RandomReal[{—er11, er11}];
i12[i-]:=D12/Viso + (D12/Viso) * RandomReal[{—er12, er12}];
i13[i_]:=D13/Viso + (D13/Viso) * RandomReal[{—er13, er13}];
i14[i_]:=D14/Viso + (D14/Viso) * RandomReal[{—er14, er14}];
i15[i]:=D15/Viso + (D15/Viso) * RandomReal[{—er15, er15}];
i16[i_]:=D16/Viso + (D16/Viso) * RandomReal[{—er16, er16}];
i17[i]:=D17/Viso + (D17/Viso) * RandomReal[{—er17, er17}];
i18[i_]:=D18/Viso + (D18/Viso) * RandomReal[{—er18, er18}];

Calculate 10 traveltimes for each receiver location

tisol:=Table[il[i], {2, 10}]
tiso2:=Table[i2[i-], {¢, 10}]
tiso3:=Table[i3[i], {, 10}]
tisod:=Table[i4[i], {7, 10}]
tiso5:=Table[i5[i], {2, 10}]
tiso6:=Table[i6[i], {, 10}]
tiso7:=Table[i7[i], {7, 10}]
tiso8:=Table[i8[i], {, 10}]
tiso9:=Table[i9[i_], {7, 10}]
tiso10:=Table[i10[i_], {¢, 10}]
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tisol1:=Table[ill[i], {7, 10}]
tiso12:=Table[i12[i], {4, 10}]
tiso13:=Table[i13[i], {2, 10}]
tiso14:=Table[i14[i], {7, 10}]
tiso15:=Table[il5[i], {z, 10}]
tiso16:=Table[i16[i-], {z, 10}]
tiso17:=Table[i17[i], {i, 10}]
tiso18:=Table[i18[i_], {z, 10}]

Export isotropic traveltimes to save values using following template for

each receiver

Export[“Filelocation/filename.dat”, tisol];

Import isotropic traveltimes for each receiver using following scheme

til:=Flatten[Import[“Filelocation/filename.dat” ]

KS Test

KolmogorovSmirnovTest[til, tel, “TestDataTable”|
Statistic P-Value

Kolmogorov-Smirnov | 1. 0.0000108251
KolmogorovSmirnovTest[ti2, te2, “TestDataTable”]

Statistic P-Value

Kolmogorov-Smirnov | 1. 0.0000108251
KolmogorovSmirnovTest[ti3, te3, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov | 1. 0.0000108251
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KolmogorovSmirnovTest[ti4, te4, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

1. 0.0000108251

KolmogorovSmirnovTest[ti5, te5, “TestDataTable”]

Statistic P-Value

Kolmogorov-Smirnov

1. 0.0000108251

KolmogorovSmirnovTest[ti6, te6, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

1. 0.0000108251

KolmogorovSmirnovTest[ti7, te7, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

1. 0.0000108251

KolmogorovSmirnovTest[ti8, te8, “TestDataTable”]

Statistic P-Value

Kolmogorov-Smirnov

1. 0.0000108251

KolmogorovSmirnovTest[ti9, te9, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

1. 0.0000108251

KolmogorovSmirnovTest[ti10, tel0, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

0.9 0.000216502

KolmogorovSmirnovTest[till, tell, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

0.8 0.00205677

KolmogorovSmirnovTest[ti12, tel2, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

0.7 0.0123406

KolmogorovSmirnovTest[ti13, tel3, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov

0.5 0.167821

KolmogorovSmirnovTest[ti14, tel4, “TestDataTable”|
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Statistic P-Value

Kolmogorov-Smirnov | 0.4 0.417524
KolmogorovSmirnovTest[ti15, tel5, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov | 0.4 0.417524
KolmogorovSmirnovTest[ti16, te1l6, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov | 0.4 0.417524
KolmogorovSmirnovTest[ti17, tel7, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov | 0.5 0.167821
KolmogorovSmirnovTest[t118, tel8, “TestDataTable”|

Statistic P-Value

Kolmogorov-Smirnov | 0.4 0.417524
BIC Input velocities
vzi:=11.755596638891543
vxi:=11.207450704709764
vi:=11.634841192501593
Liklihood calculations
pTl:=
D1 D2 D3
tml — vzi (1+(Tan[th1])2) + tm2 — vzi (1+(Tan[th2])2) + tm3 — vzi (1+(Tan[th3])2)
1+(V—V§ii)2(Tan[thl])2 1+(“;—§)2(Tan[th2])2 1+(Y—vﬂr)2('l‘an[th3])2
D4 D5
tm4 — ) + tmb — e + tm6—
\/ 1+(V—v;liv)2(Ta.n[th4])2 \/1+(3,—=‘})2(Tm[th5])2
D6 D7 D8

vai [+ (Tan(the))?) +tm7 - vgi [ (F(Tan(th7))2) + tm8 — vai [ (H(Tanths])2) +

\/1+(%i=)2('rm[th6])2 \/1+(§—;i)2('rm[th7])2 \/1.,,(3_:11)2(“,,[&8])2
tm9 — 1o + tm10 — Do + tmll—

(1+(Tan[th9])2)
1+(Vﬁ2i)2('rm[th9])2

vzi \/

(1+(Tan[th10])2)
1+(%§)2(Tan[tmo])2

vzv
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D11
(1+(Tan[th11])2)

VZi\/ 1+(%ir)2(Tan[thll])2

D13

(1+(Tan[th13])2)

vzi
\/1+(%§)2(Tan[tma])2
D15
(1+(Tan[th15])2)

VZi\/ 1+(%ir)2('ran[th15])2

D17
(1+(Tan[th17])2)

vzi
\/1+(V—V;})Z(Tan[th17])2

D1

+tml2 —

+tml4 —

+ tml6 —

+ tml8 —

D12

(1+(Tan[th12])2)

VZiJ1+(v—v:lir)2(Tan[th12])2

D14

(1+(Tan[th14])2)

VZi\/1+( ) (Tan[th14])2

D16

(1+(Tan[th16])2)

VZiJH(V—V;}r(Tm[cme])?

D18

(1+(Tan[th18])2)

vzi
7
JH("—V;‘;) (Tan[th18])2

zTI:= | tml —

(1+(Tan[thl])2)

vzi\/1+( vzi ) (Tan[thl])2

D3
(1+(Tan[th3])2)

vzi
\/ 1+(3—;})2(Tan[ch31)2

D5
(1+(Tan[th5])2)

vzi
\/ 1+(3—;})2(Tan[ch51)2

(1+(Tan[th7])2)

Ve \/1+("z‘) (Tan[th7))2

D9
(1+(Tan[thg])2)

vzi
\/ 1+("—v;})2('ran[ch9])2

(.
\
(
\
(
\
(.
\
(

tmll — D11

(1+(Tan[th11])2)

\ vz.\/1+("21) (Tan[th11])2
tm13 — Di3

(1+(Tan[th13])2)

\ VZi\/1+("—v;lir)2(Tan[th13])2
tml15 — D15

(1+(Tan[th15])2)

vzi
\/1+(3—;})2(m[th15])2

\
( D17

tml7 — (1+(Tan[th17])2)

\ v ‘\/1+( vai ) (Tan[th17])2
oTl:=,/(zT1)/18

— pTI

_|_
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\
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2
D2
+ | tm2 - vzi (1+(Tan[th2])2)
\/1+( )(Ta.n[th2])2
tm4 — D4

+ tml13—

+ tml15—

+ tml7—

/s

vzi
\/ 1+(“:—fnir)2(Tan[th4])2

(1+(Tan[th4])2)

D6

tm6 —

vzi
\/ 1+(“:—fnir)2(Ta.n[th6])2

(1+(Tan[th6])2)

Ve \/1+( Vz') (Tan(ths])2

tml0 —

(l+(Tm[th8])2)

D10

\ vz.\/1+( ) (Tan[th10])2

tml2 —

(1+(Tan[th10])2)

D12

(1+(Tan[th12])2)

vzi
\/ 1+("—v;i)2('rm[tmz])2

D14

(1+(Tan[th14])2)

VZi\/l+(“:—)zﬂir)2(Tan[thl4])2

D16

(1+(Tan[th16])2)

vzl
\/ 1+(Y_vg.)2('ran[tms])2

D18

(1+(Tan[th18])2)

‘\/1+( vzi ) (Tan[th18])2

2

,uTI) +
2

,uTI) +
2

2

— pTl

— pTI

— uTI

— pTI

— uTI

— pTI

_|_



(2m)~18/2 _,T1/20TI2
LTI: Te

pl:=

(tml — B! + tm2 — 22 4 tm3 — 23 4 tmd4 — 24 4 tm5 — 22 + tm6 — B¢ + tm7 — BF + tm8 — 28

tm9 — 22 + tm10 — 210 4 tm11 — B 4 tm12 — 212 4 tm13 — D13 4 tm14 — DM 4 ¢m15-

D_1.5+tm16—D—l.ﬁ+tm17—D—1.7+tm18—D—1.8)/18

al:= (tml — 2L — u0)? 4 (tm2 — 22 — ul)® + (tm3 — 23 — 1) + (tmd — 28 — pu1)? +
(tm5 — pl)? + (tm6 — 28 — u1)® 4 (¢m7 — 2 — puI)® + (tm8 — B8 — u1)® + (tm9 —
(tm10 — 210 — ;i1)® 4 (tm11 — B2 — puI)* + (¢bm12 — 222 — uI)* + (tm13 — 213 — pu1)* +
(tm14 — 2Y — 41)* 4 (tm15 — 215 — u1)® 4 (bm16 — 216 — u1)* 4 (tm17 — RIT — u1)* 4

(tm18 - % - ,uI)2

ol:=,/(z1) /18

il:= @L‘éﬂ e—71/2012
- ol

BIC calculations

BICI = —2Log[lil] + Log[18]
9.21709

BICTI = —2Log]liTI] + 3Log[18]
—59.5079
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