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Abstract

Icebreakers equipped with azimuth thrusters are becoming more common due to

the tremendous operational benefits they provide. Despite the operational experience

that exists, little is understood about the ability to break or clear ice using propeller

wake.

Naval architects who wish to design vessels to exploit this phenomenon currently

have no verified methods of determining the effectiveness of their design decisions.

Hence, it is extremely difficult to justify novel icebreaker design concepts where the

mission profile includes breaking ice with propeller wake.

This thesis explores the technical feasibility of using the panel method to model

the hydrodynamic characteristics of the wake such that it could be applied to the

problem of breaking and clearing ice using the wake from propellers. The scope of

the research includes coupled vortex particle methods to overcome the difficulties

encountered with panel methods.
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î, ĵ, k̂ Unit cartesian coordinate vectors in global coordinate frame

~K (~r) Vortex particle vorticity kernel

n̂ Unit normal vector to boundary surface (pointing into fluid domain)

P Pressure

Q (ρ) Vortex particle regularization function

~r Position vector in global reference frame

S Boundary Surface

S ′ Boundary surface excluding singularity

~T Location of panel nodes in global coordinates

~U Fluid velocity

~V Velocity of rigid body

V Fluid domain

Subscripts

∞ Far field

c Panel centroid

B Propeller

b Body panel element

f Fluid domain

G Propeller’s centre of gravity

I Ice

k Vortex particle

l, u Lower and upper wake boundary surfaces

p, q Points on boundary surface

q′ Mirror of point q about plane defined by z = 0

xii



v Wake panel element within a strip w

W Wake

w Strip of wake panel elements

x,y,z Cartesian coordinates in global coordinate frame

xiii



Chapter 1

Introduction

In the last 20 years, icebreaking operations have been revolutionized by the intro-

duction of azimuth thrusters. Propeller wake is extremely powerful and thus has the

ability to break sea ice. Azimuth thrusters have enabled new types of icebreaking op-

erations by allowing the propellers to be continuously rotated. Hence, the wake can

be intentionally directed towards the ice to provide efficient icebreaking operations.

This new type of icebreaking has brought many practical benefits to a variety

of marine operations. Despite the large number of icebreakers currently equipped

with azimuth thrusters, and the operational benefits that are being realized, there is

little known about the efficiency of breaking and clearing ice using propeller wake.

Only limited full scale data has been collected, and the only known published data is

from the full scale trials of the MSV Fennica and MSV Botnica [32, 42]. Martin has

developed a semi-empirical model based on these results in addition to unpublished

data [35]. Additionally, Ferrieri has performed a systematic series of model tests to

estimate the ability of propeller wake to clear ice floes [13].
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This work has been motivated by previous work of the author [35] and the desire

to use approaches that more accurately reflect the physical nature of the problem.

The purpose of this thesis is to assess the technical feasibility of using the panel

method to predict the hydrodynamic characteristics of the wake such that it could be

applied to the problem of breaking and clearing ice using the wake from propellers.

The panel method was selected for this work for two reasons:

• It is considered highly desirable to avoid a grid in the fluid domain, as re-

quired by CFD methods, due to the complex geometry of the propeller. The

discretization of a grid in the fluid domain would need to be redeveloped each

time step due to the relative motion between the propeller and ice surfaces.

The panel method overcomes this complexity by allowing the grid to be limited

to the surface of the bodies. The grids can be created for each body in a body

fixed coordinate system and related to a global coordinate system based on the

bodies’ position and orientation.

• The panel method has seen widespread use in propeller design applications.

Hence, an extension of the panel method would allow design features to be in-

corporated directly into the model. Approaches that do not explicitly model

the propeller may not adequately capture the influence of the propeller design.

Hence, this approach would provide designers a better understanding of the in-

fluence of design choices on the operational capabilities associated with breaking

ice using the wake.

Chapter 2 provides background to the motivation for this work. Azimuth ice-

breakers are introduced both in terms of their operational benefits and current design
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challenges. Some full scale data are presented that highlight the future application of

this work, and emphasize some of the phenomenon that a successful approach should

be capable of explaining. The history of panel methods is also briefly presented in

this chapter.

Chapter 3 describes the theory used in the development of the propeller panel

method. The theory is then expanded into a numerical approach in Chapter 4. The

chapter ends by summarizing the fundamental challenges encountered while attempt-

ing to model the downstream propeller wake. Chapter 5 introduces Vortex Particle

Methods as an alternative approach to model the propeller wake, and explains how

it has been coupled to the panel method developed in Chapters 3 and 4.

Finally, Chapter 6 presents some numerical examples demonstrating the capabil-

ities of the numerical model that has been developed for this work. The examples

include basic validation using a sphere and a vortex ring. More complex examples

using wings are then presented. Finally, the model is applied to a B-Series propeller.

This is followed by a discussion of the challenges encountered and potential solution

in Chapter 7. The thesis is then concluded and recommendations are presented for

further developing the approach established by this work.
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Chapter 2

Background

2.1 Azimuth Icebreakers

The use of azimuth thrusters in ice can be traced back as far the terminal tugs Aulis,

Kari, and Esko built for Neste Oil in Finland during the 1980’s [49]. However, it was

not until the construction of the MSV Fennica in 1993 that azimuth thrusters were

first introduced on icebreakers [32]. At the time, the full range of benefits that azimuth

thrusters brought to various operations were not recognized. Although observed to a

limited extent during the ice model tests, it was not until the full-scale trials of the

Fennica in 1993 that the potential of the propeller wake as a means of icebreaking was

fully realized. Since the construction of the Fennica, the operational benefits of using

azimuth thrusters have become more widely understood. This has resulted in more

icebreakers being designed and built with azimuth thrusters. These icebreakers have

varied in their missions; ranging from escort vessels, offshore support vessels, and

science vessels. Some recent icebreakers equipped with azimuthal thrusters include
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the MSV Botnica, USCG Great Lakes Icebreaker Mackinaw, SCF Sakhalin, MV

Pacific Enterprise, and most recently the RV Sikuliaq. There are also a number of

ice capable tugs designed with azimuth thrusters including Neste Oil’s terminal tug

Ahti, and Sakhalin Energy’s terminal tug Svitzer Sakhalin (and sisterships), to name

just a few.

The author has had the opportunity to witness the application of propeller wake

on icebreaking first hand on a variety of occasions:

• MSV Fennica – Gulf of Bothnia (2007)

• Terminal tug Ahti – Espoo Finland (2007)

• Svitzer Sakhalin – Sakhalin (2007)

• Pacific Endeavour – Sakhalin (2007)

• MSV Fennica – Fram Strait (2009)

• RV Sikuliaq – Bering Sea (2015)

Much of the information presented here is based upon these experiences.

2.2 Operational Benefits of Azimuth Icebreakers

The major advantage of utilizing azimuth thrusters is the ability to break and clear

ice using the propeller wake, while orientating the wake in a variety of directions. This

allows for entirely new approaches to icebreaking compared to traditional propulsion

arrangements, where it was not possible to direct the wake, other than to a very
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limited extent by the rudder. This new ability has improved the efficiency of certain

operations, and has even enabled operations never before possible.

One significant benefit of azimuth thrusters on icebreakers is increased manoeu-

vrability. Not only can azimuth thrusters provide increased turning moment, but also

the ability to break ice with the wake allows azimuth icebreakers to be turned on the

spot, even in the presence of ice. By orientating the wake outboard, a large enough

area of ice can be broken such that the vessel can turn around in the area of open

water created.

Another benefit is the ability to orient the wake outboard while icebreaking. This

technique allows the wake to break ice to the sides of the vessel, while still maintaining

forward progress. This has the effect of creating a channel wider than the icebreaker,

while also leaving fewer floes in the channel [32]. This has practical applications in a

variety of fields. Escort operations can use this technique to reduce resistance on the

escorted vessel. During the ice trials of the RV Sikuliaq, this technique was used to

tow fishnets in thin first year ice.

A similar technique is to clear ice behind the vessel while maintaining station

in moving sea ice. This is performed by using high power and orienting the wake

far enough outboard that the net forward thrust allows the vessel to counteract the

ice drift. This technique has been used as a means of actively managing sea ice for

offshore facilities [22].

Yet another means of utilizing the propeller wake is to clear an area of around the

vessel. A CTD sensor was deployed in a wide variety of ice conditions over the side

of the Sikuliaq during its ice trials, by orienting the thrusters such that the ice was

broken around that side of the vessel.
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Figure 2.1: RV Sikuliaq Clearing Ice for Deployment of CTD.

2.3 Full Scale Data

Although there have been a number of icebreakers designed with azimuth thrusters,

there is a limited amount of published data on the ability of propeller wake to break

ice. This section summarizes the full scale data that has been previously published,

as well as data collected by the author during informal field trials in 2007 (not yet

published).

The only published full scale data known to the author are for the MSV Fennica

and MSV Botnica [32, 42]. Both vessels were developed in Finland as multipurpose

icebreakers, intended for escort operations in the Baltic during the winter and off-

shore operations during the summer. Fennica is equipped with ducted Aquamaster

thrusters, which are configured in the pushing configuration, while Botnica has open

Azipod thrusters configured in the pulling orientation. General particulars for both

vessels are given in Table 2.1.

Figure 2.2 shows a comparison of the ability of both vessels to break ice using
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Fennica Botnica

Length O.A. 116 m 96.7 m

Beam MLD. 26.0 m 24.0 m

Draft (Icebreaking) 7.0 m 7.2 m

Propulsion Power 2 x 7.5 MW 2 x 5.0 MW

Aquamaster Azipod

Open Propellers Ducted Propellers

Table 2.1: General Particulars of MSV Fennica and MSV Botnica [42]

Figure 2.2: Icebreaking Performance with Wake of Fennica and Botnica [42]

the propeller wake. Fennica is capable of breaking ice up to approximately 85 m

away from the side of the hull (total width of about 200 m or 7.5 times the ships

breadth) in 55 cm of ice with the thrusters orientated outboard. Due to the pulling
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configuration and the position of the thrusters, Botnica is unable to use high powers

with the thrusters orientated outboard. The differences between these vessels indicate

that the variations in thruster design and placement have a considerable impact on

the capabilities of the ship.

During the winter of 2007, the author had an opportunity to witness and record

the propeller wake breaking ice on both the MSV Fennica and the terminal tug Ahti

[33, 34]. Ahti is operated by Neste Oil in Porvoo Finland. General particulars are

provided in Table 2.2.

Ahti

Length O.A. 33.5 m

Beam MLD. 12.8 m

Draft Max. 4.9 m

Main Engine 2 x 2350 kW

Table 2.2: Ahti General Particulars

Both vessels were tested in approximately 30 cm of level ice. During these tests,

Ahti was capable of breaking approximately 70 m of ice away from the side of hull

at approximately 90% power. The Fennica was able to break ice 170 m away from

the side of the hull with full power. With only 25% of the total power, the Fennica

was still capable of breaking the ice, with the extent reduced to 90 m from the side

of the hull. Although the total power applied by the Fennica was less than Ahti, it

was still capable of breaking more ice, in comparable conditions. This indicates that

other factors such as the placement, orientation, and size of the propellers likely have
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a role to play in the icebreaking capability.

During the trials, the ice appeared to break in a downward manner, with the

broken ice pieces being pushed under the ice sheet. This implies that the breaking

is a result of reduced hydrodynamic pressure due to accelerated flow under the ice

sheet. The wake is also extremely turbulent, as can be observed at the surface. The

role of turbulence on the icebreaking is currently unknown.

The importance of orientation was verified during the Ahti trials by heeling the

vessel 5◦. This resulted in the propellers being oriented such that the wake was

directed towards the surface as opposed to being horizontal. Although no noticeable

improvements were made to the total amount of ice broken, the time required to

break the ice was reduced by a factor of approximately 2.5.

Another factor that made a significant difference in the time required to break

the ice was allowing the operator to oscillate the thrusters back and forth around the

drive’s axis of rotation. This resulted in a more turbulent wake that had the influence

of reducing the time required to break the ice.

Both trials performed with the Ahti and Fennica demonstrated that the time

required for the ice to break is influenced by the power applied. Lower power settings

resulted in a longer delay between the time the power was applied and the time the

ice initially broke. It is hypothesized that the delay is a result of the increased time

required to accelerate the water under the ice, resulting in longer time to reduce the

pressure to the critical point required for the ice to break.
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2.4 Design Challenges for Azimuth Icebreakers

Depending on the operational mission of each vessel, the specifics of how azimuth

thrusters have been incorporated has varied. Differences between icebreakers equipped

with azimuth thrusters have included:

• Propeller design including size, number of blades, pitch, and other propeller

geometry

• Propeller operating conditions including power and shaft speed

• Placement on the hull including submergence, mounting angles, and shafting

angles

• Nozzled versus open propellers,

• Direct diesel versus electrical driven,

• Z-Drive units versus podded propellers, and

• Pushing versus pulling (tractor) thrusters.

While the work that has been performed previously provides some insight into the

operational benefits of existing vessels, there is insufficient knowledge in the physical

mechanics to establish the benefits and compromises of the various design choices.

Empirical models based on a limited set of full scale data cannot be extrapolated to

new vessels with different design configurations with any degree of confidence.

Model scale testing (such as those performed by Ferrieri [13]) provides a partial

solution, but are difficult to interpret due to lack of calibration with full scale data.

11



Without a thorough understanding of the hydrodynamics and ice mechanics involved,

scaling relationships cannot be developed to allow interpretation of ice model tests to

full scale conditions.

A more thorough understanding of the underlying physical phenomenon is needed

to predict how well new azimuth icebreakers will be able to fulfill operational roles.

Until such time that this phenomenon can be accurately predicted by industry, it is

difficult to justify novel concept designs like the Natural Breaker Drillship proposed

by Keinonen [23].

2.5 Background of Panel Method

The original panel method was developed by Hess and Smith for use in the aerospace

industry [18]. Since then, it has been widely applied to wing-body problems for

aircraft [39, 54, 36, 2, 1]. In the marine sector, the panel method has been applied

to a variety of problems including to, but not limited to, seakeeping and propeller

design [16, 24, 28, 19, 27, 47, 62, 45, 26].

Greeley and Kerwin applied the panel method to propeller designs to overcome

limitations associated with lifting line methods, which were the commonly accepted

method of the time [16]. The original method by Greeley and Kerwin was applied

to steady state problems. The method relied heavily on model scale experiments to

define the specifics of the wake geometry.

Lee further developed the panel method by considering different formulations of

the panel method to improve the numerical stability [28]. Lee also applied an iterative

Kutta condition to ensure continuity of the pressure at the trailing edge. Hsin applied
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panel methods to solve the problem of propellers in unsteady flow [19]. Pyo developed

an improved wake alignment scheme by aligning the wake with the three dimensional

flow, allowing the concentration of vorticity near the tip to be successfully modelled,

and reducing the reliance on model scale data [47]. Recent work has largely focused

on developing higher order methods such as the application of B-Splines [26].

The research performed to date has resulted in several variations of the panel

method. Some of these codes, such as OpenProp, are available [57]. However, up

until recently, these codes have not been designed for computation of the bollard

condition, in which the azimuth thrusters are typically used when breaking ice. In

addition, as the codes that have been developed are focused on the propeller design,

the emphasizes of these codes have been on modelling the near field wake, with the

far field wake being considered only to the extent that it influences the near field.

A panel method has therefore been developed specifically for this work. The next

two chapters provide details related to the specific panel method implemented for the

current work.
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Chapter 3

Panel Method Theory

The panel method has been selected as a starting point into the investigation for a

suitable model to predict the icebreaking with wake phenomenon. Panel methods

have been frequently applied to marine propellers and are capable of modelling a

wide range of propeller geometry including open and ducted propellers [16, 24, 28,

25, 27, 19, 62]. Panel methods have the additional advantage that they do not require

the fluid domain to be divided into a grid. This feature makes them well suited to

complex geometries. Panel methods can also be highly efficient as computation is not

required in parts of the fluid domain not influenced by the propeller wake.

The panel method is a specific application of the more general boundary element

method [6, 3, 7]. Boundary element methods require that the problem be expressed

in boundary integral form, which uniquely relates the solution within the domain, to

an integral over the domain’s surface. The problem is therefore reduced from a 3D

problem over the fluid domain to a 2D problem over the fluid boundary. The solution

within the fluid domain can then be recovered once the solution on the boundaries is
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determined.

The solution to the boundary element method requires identifying a suitable

boundary integral form of the problem. The solution on the surface can then be

determined by applying suitable boundary conditions. Once the solution on the

boundary surface is known, it can then be used to determine the physical parameters

of interest within the domain. This chapter is devoted to developing a boundary

integral equation for lifting surfaces which can be used for developing a numerical

method.

3.1 Problem Statement

3.1.1 Governing Equations for Potential Flow

The boundary element method can only be applied to problems that can be expressed

in the boundary integral form. In hydrodynamics, this is possible if the fluid is

assumed to be inviscid, incompressible, and irrotational. Under these assumptions,

the fluid is said to obey potential flow theory.

Given that the fluid is assumed to follow potential theory, there exists a potential

function, Φ, such that the fluid velocity is the gradient of the potential, as given in

Equation 3.1. Substituting the potential into the Continuity Equation (Equation 3.2)

yields the Laplace Equation (Equation 3.3), which is the governing equation for the

panel method.

~Uf = ∇Φ (3.1)

∇ · ~Uf = 0 (3.2)
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∇2Φ = 0 (3.3)

The boundary element method requires the clear definition of the problem domain

in terms of the domain’s boundaries. For the lifting bodies, the domain is defined as

the fluid around the body as shown in Figure 3.1. For the current work, the problem

is defined in a right handed global coordinate system, fixed at the bottom of the ice

surface.

The wake surface allows for the exclusion of the vortices that are known to exist

behind a lifting body. By excluding this region from the domain, the assumption of

irrotational flow is valid even for lifting surfaces.

The fluid is enclosed by the boundary S, which is divided into four parts.

S := {SB, SI , SW , S∞} (3.4)

where,

SB is the body surface,

SI is the ice surface,

SW is the surface of the region enclosing the wake,

S∞ is the far field, represented by a sphere, located at infinity.

3.1.2 Boundary Conditions

To uniquely qualify the problem, boundary conditions are required on all the surfaces

of the domain. This section addresses the boundary conditions on each of the four

surfaces defined by Equation 3.4.

As the propeller and ice surfaces are rigid bodies, the boundary condition is such

that the flux through the bodies’ surfaces must be zero (Neumann Boundary Con-
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Figure 3.1: Problem Domain

dition). In order for the flux to be zero, the normal component of the fluid velocity

must be equal to the normal velocity of the surface. The boundary condition on the

rigid surfaces is therefore given as:

n̂ · ~Uf = n̂ · ~VB (3.5)

n̂ · ∇Φ = n̂ · ~VB (3.6)

where,

~Uf - Fluid velocity at the surface

n̂ - Unit normal vector

~VB - Local velocity of a point on the surface

The propeller is allowed to both translate and rotate. Hence, the velocity of a

point on the propeller surface is given by:

~VB = ~VG + ~ΩB × ~rG (3.7)
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where,

~VG - Velocity of the propeller’s centre of gravity

~ΩB - Rotational velocity of the propeller

~rG - Position vector a point on the propeller relative to the centre of gravity.

Consider the case of a level ice sheet. The bottom of the ice surface can taken

to be a horizontal plane that is fixed in space, hence, the vertical component of the

velocity should be zero on the ice surface.

k̂ · ~VI = k̂ · ∇ΦI = 0 (3.8)

Far away from the propeller, the flow should not be disturbed. For the sake of

generality, the fluid far from the propeller is assumed to be a uniform inflow. The

limit of the potential far away from the propeller should therefore be the potential of

a steady uniform inflow stream. This is represented by the scalar potential function

defined by Equation 3.9. For the specific case of a stationary propeller, the inflow is

zero, indicating that the far field potential, Φ∞, is zero.

lim
~r→∞

Φ = Φ∞ (3.9)

Following the work of Lee [28], the vorticity is assumed to be contained in an

infinitely thin volume. Hence, the wake has zero thickness, such that the upper and

lower and wake surfaces coincide. For the wake surfaces to represent the vortices shed

from the trailing edge, they must be freely convected with the fluid flow. The fluid

velocity should therefore be tangential to the wake surface and the pressure difference

across the wake surface must be zero.
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3.2 Boundary Integral Equation

As required by the boundary element method, the governing equations must be writ-

ten in the boundary integral form. This is done by applying the divergence theorem

to the velocity potential, which converts a three dimensional volume integral into a

surface integral as follows:

∫

V

∇ · ~F dV = −

∫

S

n̂ · ~F dS (3.10)

In the above equation, n̂ is defined as the inward normal vector. Note that the

inward normal vector is defined as the vector pointing into the fluid domain (i.e.

outwards of the propeller body).

To apply the divergence theorem to the boundary element problem, we first start

by letting ~F = G∇Φ, where G is a scalar function. The divergence theorem then can

be written as:
∫

V

∇Φ · ∇G + Φ∇2G dV = −

∫

S

Φn̂ · ∇G dS (3.11)

We then define ~F = Φ ∇G. Using this new definition of ~F in the divergence

theorem, we obtain the following expression:

∫

V

∇Φ · ∇G +G∇2Φ dV = −

∫

S

Gn̂ · ∇Φ dS (3.12)

By combining equations 3.11 and 3.12, and recalling from Equation 3.3 that

∇2Φ = 0, we can obtain the following expression:

∫

V

Φ∇2G dV =

∫

S

Gn̂ · ∇Φ− Φn̂ · ∇G dS (3.13)

The above equation forms the basis for converting the three dimensional fluid flow

problem into a two dimensional boundary element problem.
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3.3 Green’s Function

Up to this point, the function G has been an arbitrary scalar function. To eliminate

the volume integral, and relate the surface integral to the solution within the fluid

domain, G is chosen such that:

∇2G = δ(~rpq) (3.14)

where ~rpq is the vector between points p and q in the fluid domain

~rpq = (xp − xq )̂i+ (yp − yq)ĵ + (zp − zq)k̂

Given the above definition, Equation 3.13 can be rewritten as given below. Hence,

the potential anywhere in the fluid domain is related to the solution on the boundaries.

Φp =

∫

S

Gn̂ · ∇Φ− Φn̂ · ∇G dS (3.15)

Furthermore, the function G is chosen as to satisfy the far field boundary condi-

tions. This requires that G be chosen such that the following condition is satisfied:

∫

S∞

Gn̂ · ∇Φ− Φn̂ · ∇GdS = −Φ∞ (3.16)

Using this additional constraint, Equation 3.15 can be rewritten to exclude the

integral over the far field and the ice surface.

Φp =

∫

SB∩SI∩SW

Gn̂ · ∇Φ dS −

∫

SB∩SI∩SW

Φn̂ · ∇G dS + Φ∞ (3.17)

To satisfy the above conditions, the function G is given by the three dimensional

Green’s Function (Equation 3.18).

G = −
1

4π|~rpq|
(3.18)
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For the case of the level ice sheet, the Green’s function can be modified to eliminate

the integral over the ice surface, by fulfilling the boundary condition expressed in

Equation 3.8. To fulfill the wake boundary condition, the function G is split into two

parts. The first part is given by the Green’s function, while the second part represents

the velocity induced by a virtual panel, which is mirrored across the ice surface. This

virtual panel serves to cancel out the vertical velocity components. The numeric form

of the function G is given by Equation 3.19.

G = −
1

4π

(

1

|~rpq|
+

1

|~rpq′|

)

(3.19)

where,

~rpq′ = (xp − xq )̂i+ (yp − yq)ĵ + (zp + zq)ĵ

With the above definition of the Green’s function, Equation 3.20 can be further

simplified to eliminate the influence of the ice sheet. In the case of arbitrary ice

surfaces, as is the case with rough ice or icebergs, this simplification cannot be made.

To simplify the notation, only the case of a non-uniform ice sheet is considered

and the surface SB is taken to be the combined body and ice surfaces. Hence, Equa-

tion 3.20 is used to represent both scenarios with the choice of G and SB taken as

required depending on the exact context of the problem.

Φp =

∫

SB∩SW

Gn̂ · ∇Φ dS −

∫

SB∩SW

Φn̂ · ∇G dS + Φ∞ (3.20)

3.4 Wake Surface

The wake surface represents the volume of fluid containing the vorticity generated by

the propeller. The wake surface therefore consists of both an upper and lower side
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such that SW := {Sl ∩ Su}, and is bounded by the trailing edge of the propeller and

the far field. The vorticity is assumed to be contained in an infinitely thin layer of

fluid such that Sl approaches Su. As Sl → Su:

lim
Sl→Su

n̂l = −n̂u (3.21)

lim
Sl→Su

Gl = Gu (3.22)

lim
Sl→Su

∇Φl = ∇Φu (3.23)

Using the above limits, Equation 3.20 can be evaluated over the wake surface as

follows:

∫

SW

Gn̂ · ∇Φ dS =

∫

Su

Gun̂u · ∇Φu dS +

∫

Sl

Gln̂l · ∇Φl dS

=

∫

Su

Gun̂u · ∇Φu dS −

∫

Su

Gln̂u · ∇Φl dS

=

∫

Su

n̂u · (Gu∇Φu −Gl∇Φl) dS

= 0 (3.24)

∫

SW

Φn̂ · ∇G dS =

∫

Su

Φun̂u · ∇Gu dS +

∫

Sl

Φln̂l · ∇Gl dS

=

∫

Su

Φun̂u · ∇Gu dS −

∫

Su

Φln̂u · ∇Gu dS

=

∫

Su

(Φu − Φl) n̂u · ∇Gu dS (3.25)

The potential differential across the wake represents the circulation generate by

the propeller blades and is defined by the symbol Γ. Using the above equations, the

surface integral in Equation 3.20 can be further simplified.

Φp =

∫

SB

Gn̂ · ∇Φ dS −

∫

SB

Φn̂ · ∇G dS + Φ∞ − ΦW (3.26)
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where,

ΦW =

∫

Su

Γn̂u · ∇Gu dS (3.27)

Γ = Φu − Φl (3.28)

3.5 Limit for a Point on the Body Surface

Up to this point, the point P has been assumed to fall within the domain volume

V . Due to the definition of the Greens Function, G, Equation 3.26 is singular when

the point lies on the body surface (~rp = ~rq). In order to provide a useful set of

equations, the point P must be allowed to fall on the body’s surface, SB. To remove

the singularity, the body’s surface is subdivided into two parts defined by SB :=

{S ′
B ∩ Σ}, as shown in Figure 3.2.

• S ′
B - The original surface SB excluding the point P .

• Σ - A hemisphere of radius ǫ centred at P .

Figure 3.2: Removal of Singularity on the Body Surface.
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The limit as ǫ tends to zero is then evaluated to achieve a boundary element

equation that can be applied to a point on the bodies surface.

Φp =

∫

S′

B
∩Σ

Gn̂ · ∇Φ dS −

∫

S′

B
∩Σ

Φn̂ · ∇G dS − ΦW + Φ∞ (3.29)

∫

Σ

Gn̂ · ∇Φ dS = − lim
ǫ→0

∫

Σ

n̂ · ∇Φ

4πr
dS

= − lim
ǫ→0

2πǫ2

4πǫ
n̂ · ∇Φ

= 0 (3.30)

∫

Σ

Φn̂ · ∇G dS = − lim
ǫ→0

∫

Σ

Φ

4π
n̂∇

1

r
dS

= − lim
ǫ→0

∫

Σ

Φ

4πr

n̂ · ~r

r3
dS

= − lim
ǫ→0

∫

Σ

Φ

4πr2
dS

= −Φp lim
ǫ→0

2πǫ2

4πǫ2

= −
1

2
Φp (3.31)

Using the above results, Equation 3.26 can be expressed as the integral over the

surface S ′
B, which represents the surface SB with an infinitesimal point around P

excluded from the surface.

∫

S′

B

Gn̂ · ∇Φ dS −

∫

S′

B

Φn̂ · ∇G dS −

∫

Su

Γn̂u · ∇Gu dS + Φ∞ =



























Φp p ∈ V

1

2
Φp p ∈ S

0 p 6∈ V ∩ p 6∈ S

(3.32)
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3.6 Internal Potential

The above equation could be used directly to develop the panel method. However, to

further simplify the problem, we continue following the work of Lee by introducing a

fictious potential flow inside the body, Φi [28]. Equation 3.15 is then applied to the

internal potential following the methodology outlined above. However, as the poten-

tial is defined internal to the body (external to the fluid), we obtain Equation 3.33.

Hence, the presence of the internal potential does not influence the solution to the

original problem.

0 =

∫

S′

B

Gn̂ · ∇Φi dS −

∫

S′

B

Φin̂ · ∇G dS (3.33)

Subtracting 3.33 from 3.32 gives (for P ∈ S):

1

2
Φp =

∫

S′

B

Gn̂ · ∇ (Φ− Φi) dS −

∫

S′

B

(Φ− Φi) n̂ · ∇G dS − ΦW + Φ∞ (3.34)

The dipole and source strengths are then defined as:

µ = Φ− Φi (3.35)

σ = n̂ · ∇(Φ− Φi) = n̂ ·
(

~VB −∇Φi

)

(3.36)

Using the above definitions, the boundary integral equation can be written as:

∫

S′

B

Gσ dS −

∫

S′

B

µn̂ · ∇G dS −

∫

Su

Γn̂u · ∇Gu dS + Φ∞ =



























Φp p ∈ V

1

2
Φp p ∈ S

0 p 6∈ V ∩ p 6∈ S

(3.37)
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As the internal potential, Φi, does not influence the solution of the problem, the

choice of internal potential is arbitrary. However, the choice of internal potential

influences the resulting numerical approach. Lee developed and compared a variety

of panel methods depending on the choice of internal potentials [28]. For the panel

method developed in Chapter 4, the internal potential is set to zero, Φi = 0, such

that the dipole strength is the fluid velocity potential and the source strength is the

fluid velocity normal to the body.

3.7 Body Pressures

Before Equation 3.37 can be solved for the fluid potentials on the body surface, the

circulation, Γ, must be related to the surface potentials, Φ. This is done through the

wake surface boundary conditions. In order to ensure that the pressure is continu-

ous across the wake, the Kutta condition must be satisfied, which requires that the

pressure be continuous across the trailing edge. It is therefore necessary to be able to

compute the pressures on the surface of the body. The pressure on the body surface

is determined following the work of Willis [59]. Further details on the pressure in

potential flow can be found in the works of Segletes and Walters [53].

The pressures are determined based on Bernoulli’s equation for unsteady, irrota-

tional flow.

−
∇P

ρ
=

∂~Uf

∂t
+ ~Uf · ∇~Uf (3.38)

In regions with zero vorticity, this is equivalent to Equation 3.39.

−
∇P

ρ
=

∂~Uf

∂t
+

1

2
∇

∣

∣

∣

~Uf

∣

∣

∣

2

(3.39)
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Using the definition of the velocity given in Equation 3.1, the above can be ex-

pressed in terms the fluid potential:

∇P

ρ
+∇

∂Φ

∂t
+

1

2
∇ |∇Φ|2 = 0 (3.40)

The above expression can be integrated along a streamline from a point in the

far field to a point on the body. This produces the familiar version of the Bernoulli

equation for unsteady, irrotational flow.

P − P∞

ρ
+

∂Φ

∂t
+

1

2
|∇Φ|2 = 0 (3.41)

The above equation is given in a Eulerian reference frame. As the point of interest

is on a body in motion, the time derivatives must be converted to a Lagrangian refer-

ence frame using the material derivative. The Eulerian time derivative can therefore

be substituted with the convective time derivative.

DΦ

Dt
=

∂Φ

∂t
+ ~VB · ∇Φ (3.42)

P − P∞

ρ
+

(

DΦ

Dt
− ~VB · ∇Φ

)

+
1

2
|∇Φ|2 = 0 (3.43)

The pressure at a point in the far field, P∞, can be evaluated using Equation 3.43.

Substituting the result back into Equation 3.43 yields the final form of the Bernoulli

equation:

P = ρ

[

~VB · ~Uf −
1

2

∣

∣

∣

~Uf

∣

∣

∣

2

+
1

2

∣

∣

∣

~U∞

∣

∣

∣

2

−
DΦ

Dt

]

(3.44)

In the current work, the propeller is assumed to be operating at a steady state.

As such, the problem is steady in a Lagrangian sense, such that the potential on any

given panel does not change with time. Hence, the time derivative in Equation 3.44

is taken as zero. The non-steady case can be recovered by including the time rate of

change of the solution.
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3.8 Summary

This chapter has presented the fundamental theory required to develop a panel

method for lifting surfaces. The solution to the problem consists of solving the bound-

ary element integral given by Equation 3.37 for the unknown dipole strengths, µ, on

the body surface. Once the dipole strengths, and hence the body potentials, are

known the velocities in the fluid domain, and hence near the ice surface, can be

computed by taking the gradient of the boundary element integral. Once the fluid

velocities have been determined, the Bernoulli equation (Equation 3.44) can be used

to determine the fluid pressures.

The wake circulation must be chosen to satisfy the Kutta condition, which requires

that the pressure differential across the wake is zero. The wake must also be aligned

with the fluid flow as required by the boundary conditions.

As there are no general closed form solutions for these equations, a numerical

approach is required. The numerical approach used for this work is described in the

next chapter.
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Chapter 4

Panel Method Implementation

In order to solve the boundary integral equation developed in Chapter 3, a numerical

approach is required. A panel method code applicable to lifting surfaces has been

implemented to solve the numerical problem. This chapter describes the approach

used in the code developed for this work.

The premise of the numerical approach is to divide the body and wake surfaces

into discrete panels, each representing a portion of the surface. The surface integrals

are then replaced by a summation of integrals computed over each surface panel, as

discussed in Section 4.1. The integral over each surface can be solved analytically by

assuming a simplified geometry and potential distribution for each panel, as discussed

in Section 4.2. This allows the integral equation to be replaced with a matrix equation,

which can be solved using a variety of computational techniques.

Once the surface potentials are known, the velocities both on the surfaces as well as

within the fluid domain are required. Velocities in the fluid domain can be determined

analytically by taking the gradient of the boundary integral equation. However, the
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velocity on the surfaces requires special consideration. This is discussed further in

Section 4.3.

Complications arise due to the unknown circulation, Γ, and the geometry of the

wake. The unknown circulation must be related to surface potentials using the Kutta

condition. This is discussed further in Section 4.4. The Kutta condition ensures that

there is no pressure jump across the wake as required by the boundary conditions.

This generates an additional set of equations, which must be solved simultaneously

with the boundary element equations.

The location of the wake surfaces is not known a priori, as it must be aligned with

the unknown fluid flow. Rather, the geometry of the wake surfaces must be solved

iteratively as part of the computational scheme. The typical approach is to first solve

the problem using a pre-specified geometry. The wake geometry is then aligned with

the flow and a new solution is determined. This is repeated until the wake is suitably

aligned to the flow. This is discussed further in Section 4.5.

4.1 Discretization of Boundary Element Integral

The numerical solution to the boundary element problem consists of solving Equa-

tion 3.37 for the unknown dipole strengths, µ, and wake circulations, Γ. To discretize

the boundary element integral the propeller surface is divided into Nb discrete surface

panels.

The wake surface is divided into Nw strips of panels, one for each edge of the

body defined to be wake shedding. Each strip consists of Nv panels such that the

wake geometry can be approximated by discrete panels. Each panel in a given strip
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is associated a circulation value, which is constant along the length of the wake strip.

The integrals are then replaced with the summation of integrals over each surface

panel. In the current method, the potential has been taken as constant over each

panel. This allows the potential, as well as the normal velocity term, to be taken

outside of the integrals as expressed below.

1

2
Φp =

Nb
∑

q

∫

Sq

Gσq dS −

Nb
∑

q 6=p

∫

Sq

µq~nq · ∇G dS

−

Nw
∑

w

Nv
∑

v

∫

Sw

Γw~nv · ∇G dS + φ∞ (4.1)

=

Nb
∑

q

σq

∫

Sq

G dS −

Nb
∑

q 6=p

µq

∫

Sq

~nq · ∇G dS

−

Nw
∑

w

Γw

Nv
∑

v

∫

Sv

~nv · ∇G dS + φ∞ (4.2)

=

Nb
∑

q

σqGpq −

Nb
∑

q 6=p

µqH
′
pq −

Nw
∑

w

ΓwWpw + φ∞ (4.3)

Gpq =

∫

Sq

G dS (4.4)

H ′
pq =

∫

Sq

~nq · ∇G dS (4.5)

Wpw =
Nv
∑

v

∫

Sv

~nv · ∇G dS (4.6)

The coefficients Gpq and H ′
pq represent the influence of a panel at point q on a

panel at point p, while Wpw represents the influence of the wth wake strip on the panel

p. These coefficients are therefore referred to as influence coefficients.

Noting that µp = Φp lies both on the left hand side of Equation 4.3 and within the

summation on the right hand side, Equation 4.3 can be further simplified by moving

31



Φp within the summation.

Nb
∑

q

σqGpq =

Nb
∑

q

µqHpq +
Nw
∑

w

ΓwWpw + φ∞ (4.7)

Hpq =











H ′
pq p 6= q

1

2
p = q

(4.8)

These equations can be written in matrix form as:

Ḡσ̃ = H̄µ̃+ W̄oΓ̃ + φ̃∞ (4.9)

The above equations are to be solved for the unknown vector quantities µ̃ and Γ̃.

The matrices Ḡ and H̄ depend only on the geometry of the body surface and will be

discussed in Section 4.2. The vector σ̃ depends only on the boundary conditions as

given by Equation 3.36. The matrix W̃o depends on the location of the wake, which

will be discussed in Section 4.5.

4.2 Body Discretization

4.2.1 Geometry

The body geometry is to be discretized into individual panels. To simply the integrals

in Equations 4.4 to 4.6, the panels have been taken as planar surfaces, referred to as

Flat Panels, as shown in Figure 4.1. More complex geometries have been considered

by others that account for curvature in the panels [19, 26]. Flat panels have been

chosen for this work due to their simplicity.

The panel discretization used for this work follows similar conventions as those

used in VSAERO [36]. Panels consist of either three or four coplanar nodes. For the
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purpose of the discussion below, a panel is assumed to consist of four nodes. This

does not result in any loss of generality as panels with three nodes can be easily

obtained by using the same coordinates for two consecutive nodes. When creating

four sided panels from points that lie on the body, the coordinates are not generally

coplanar. The actual panel nodes must therefore be determined by projecting the

body coordinates onto a plane.

Figure 4.1: Geometry of a Flat Panel.

The plane of the panel is defined based on its normal vector, n̂ and the panel’s

centroid, ~rc. The centroid is calculated as the average of all non-duplicated nodes

supplied by the user, ~Ti where i ∈ {0, 1, 2, 3}, according to Equation 4.10. The

normal vector to the panel is calculated as the cross product of the diagonal vectors.

The direction of the normal vector is based on the order of the nodes. To be consistent

with the theory developed in Chapter 3, the order of the nodes must be taken in a

counter-clockwise order such that when applying the right hand rule, the normal
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points out of the body (i.e. into the fluid). The magnitude of the normal vector is

also used to calculate the area of the panel, which will be required when evaluating

the surface integrals in Section 4.2.2.

~rc =
1

Nn

∑

~Ti (4.10)

n̂ =
~d1 × ~d2
∣

∣

∣

~d1 × ~d2

∣

∣

∣

(4.11)

A =
1

2

∣

∣

∣

~d1 × ~d2

∣

∣

∣
(4.12)

~d1 = ~T2 − ~T0 (4.13)

~d2 = ~T3 − ~T1 (4.14)

The panel nodes are determined as the projection of the user supplied coordinates

on the plane given by n̂ and Rc. The projection is performed by defining two in plane

coordinate vectors, l̂ and m̂. m̂ is defined as the vector extending from the centroid

to the midpoint between nodes 2 and 3. l̂ is then defined to be perpendicular to both

m̂ and n̂.

~ri =
〈(

~Ti − ~rc

)

· l̂,
(

~Ti − ~rc

)

· m̂, 0
〉

(4.15)

m̂ =

1

2

(

~T2 + ~T3

)

− ~rc
∣

∣

∣

1

2

(

~T2 + ~T3

)

− ~rc

∣

∣

∣

(4.16)

l̂ = m̂× n̂ (4.17)
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4.2.2 Evaluation of the Boundary Element Integrals

4.2.2.1 Exact Formulation

The solution to the boundary element integrals in Equations 4.4, 4.5, and 4.6 are

required in addition to their gradients. The formulations used have been adapted

from Hess [18], Morino [39], and Maskew [36].

The influence of G is evaluated by considering the influence of the panel to be the

superposition of the influence from each side. Based on this formulation, the influence

coefficients are calculated for each side and summed. The calculation is performed in

the panels’ local coordinate system, 〈ξ, η, ζ〉, centred at the panel’s centroid.

4πGpq =

∫

Sq

G dS

=
n

∑

i=1

[RijQij − ζpJij] (4.18)

4π∇Gpq =

∫

Sq

∇G dS

=

n
∑

i=1

Qij
(ηj − ηi)

dij
ξ̂ −Qij

(ξj − ξi)

dij
η̂ + Jij ζ̂ (4.19)

4πHpq = n̂q · ∇Gpq = Jij (4.20)

4π∇Hpq =
(|~ri|+ |~rj|)~ri × ~rj

|~ri||~rj| (|~ri||~rj|+ ~ri~rj)
(4.21)
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Rij =
(ηj − ηi)(ξp − ξi)− (ξj − ξi)(ηp − ηi)

dij
(4.22)

Qij = log

[

|~ri|+ |~rj|+ dij
|~ri|+ |~rj| − dij

]

(4.23)

tan (Jij) =
Rij |ζp| (|~rj|sj − |~ri|si)

|~ri||~rj|R2

ij + sisjζ2p
(4.24)

|~ri| =
√

(x− ξi)2 + (y − ηi)2 + z2 (4.25)

dij =
√

(ξj − ξi)2 + (ηj − ηi)2 (4.26)

si =
(ξi − ξp)(ξj − ξi)

dij
+

(ηi − ηp)(ηj − ηi)

dij
(4.27)

sj =
(ξj − ξp)(ξj − ξi)

dij
+

(ηj − ηp)(ηj − ηi)

dij
(4.28)

where,

〈ξp, ηp, ζp〉 - Coordinate of the field point, p

〈ξi, ηi〉 - Coordinate of the panel node, i

n - Number of nodes on the panel

~ri - The vector from node i, to the field point, p

j - The panel node next to node i, j = (i+ 1) mod n

In the specific case of the level ice sheet, the influence coefficients are first com-

puted by considering only the component of GO = − 1

4π|~rpq|
. The contribution of GH

is determined by computing the influence of panel q on point p′ (p mirrored across

the xy plane), and then reflecting the solution back across the plane.

4.2.2.2 Multipole Expansion

The computation of the influence coefficients is computationally expensive, and must

be computed for a large number of field points. Hence, an approximate solution that
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is more computationally efficient is desirable to speed up the calculations. This can

be achieved by noting that far away from the panel the exact geometry has little

effect on the influence coefficients.

Provided the field point is located far away from the panel, the position vector,

~rpq, can be approximated as a constant over the surface of the panel. With this

approximation, the above integrals can be simplified. The approximated solutions to

Equations 4.18 to 4.21 are given in Equations 4.29 to 4.32.

Gpq ≈
−Aq

4π|~rpq|
(4.29)

∇Gpq ≈
Aq

4π|~rpq|3
~rpq (4.30)

Hpq ≈
Aq

4π| ~rpq|3
(n̂ · ~rpq) (4.31)

∇Hpq ≈ −
Aq

4π|~rpq|5
(

3 (n̂ · ~rpq)~rpq − |~rpq|
2n̂
)

(4.32)

where, Aq is the area of the panel q.

This simplified solution can be used without introducing significant errors when

the field point is sufficiently far away from the panel. In the current implementation,

the cutoff distance can be entered as a multiple of the panel size. The size of the

panel is the average of the distance between the centroid and the midpoint of the four

edges.

The influence of the multipole assumption on the accuracy of the source and dipole

influence coefficients is shown in Figure 4.2. The absolute error in the coefficients has

been plotted as a function of the distance between the panel centroid and the field

point, normalized by the panel size. The results are for a square panel and a field

point located along the panel’s normal vector. The results show that for a cutoff

distance of 10 times the size of the panel, the absolute error is less than 10−4. This
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cutoff value has been used in all calculations performed in this work.

Figure 4.2: Accuracy of Multiple Expansion Formulation

4.3 Fluid Velocities

4.3.1 Off Body Fluid Velocity

The fluid velocity for points off the body can be computed directly by taking the

gradient of Equation 3.32. Following Section 4.1, the body surface integrals are

discretized and replaced with integrals over the flat panels with constant potentials.

This produces a matrix equation for the fluid velocities based on the known potentials

and circulations. The gradients of the influence matrices have already been presented
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in Section 4.2.2.

~Uf = ∇Φ =

∫

S′

B

σ∇G dS −

∫

S′

B

µ∇ (n̂ · ∇G) dS

−

∫

SW

Γ∇ (n̂ · ∇Gu) dS + U∞ (4.33)

∇Φ =

Np
∑

p

σp∇Gpq −

Np
∑

p

µp∇Hpq −

Nk
∑

k

ΓkWkp + U∞ (4.34)

4.3.2 On Body Velocity Field

Due to the singularities on the surface, the above formulation cannot be used to

evaluate the velocities at the surface. Therefore, the velocity field on the body’s

surface is determined through numerical differentiation of the potential values. The

method adopted is a variant of that used by Maskew [36].

Once the potentials on the surface are known the surface gradients in the directions

of the panels, ~tip, can be computed using Equation 4.35. For a four sided panel

connected to adjacent panels on all four sides, Equation 4.35 represents four equations.

An additional equation can be obtained by considering the no-flux boundary condition

given by Equation 3.6. In total, this yields five equations for the three unknown

velocity components, Ux, Uy, and Uz. As the system is over determined, the velocity

is determined using the method of least squares.

~tip

|~tip|
· ~U =

Φq − Φp

|~tip|+ |~tjq|
(4.35)

where,

Φp - The potential of panel p.

Φq - The potential of the neighbouring panel p.
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i - The edge of panel p adjacent to panel q.

j - The edge of panel q adjacent to panel p.

~tip - The vector from the centroid of panel p to the midpoint of the edge i

~tjq - The vector from the centroid of panel q to the midpoint of the edge j

Only two non-collinear neighbours must be considered to determine the fluid ve-

locity, hence, the above approach is still valid for triangular panels. Special consid-

eration is also given to panels at the trailing edge, so that the numerical gradient is

not computed across the sharp corner at the trailing edge.

4.4 Kutta Condition

4.4.1 Pressure Kutta Condition

The boundary element integral in Equation 4.9 requires the solution of Nb potentials

(one for each panel) and Nw circulations. As the matrix equations only represent Nb

equations, the solution is under-determined and additional constraints are required to

obtain a unique solution. The additional constraints are determined by considering

the pressure at the trailing edge of the propeller as proposed by Lee [28]. Lee proposed

that the difference in pressure between the upper and lower panels forming the trailing

edge should be equal in order to fulfill the Kutta condition.

Lee [28] proposed a pressure kutta condition that iteratively solves for the un-

known circulations, Γ, required to eliminate the pressure difference across the trailing

edge. The solution consists of solving for Equation 4.36, where the function f rep-

resents the boundary value problem represented by Equation 4.9 and the Bernoulli
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equation from Section 3.7.

∆Pte = f (Γ) (4.36)

The problem is solved using a multidimensional root finding algorithm based on

the Newton-Raphson method [46]. The iterative solution requires that the boundary

element problem be solved with an assumed value for the circulation. The pressure

difference is then computed across each segment of the trailing edge. The solution

is then recomputed using small changes in the circulation for each segment in order

to determine the Jacobian. A new estimate of the circulation is then determined

using the Newton-Raphson method. This process is then repeated until the pressure

difference is within an acceptable tolerance.

4.4.2 Morino Kutta Condition

Although the method above provides an accurate representation of the Kutta condi-

tion, it requires an initial estimate. Therefore, an approximate solution is desired to

use as a starting point to the iterative algorithm. A Kutta condition was proposed

by Morino [38] based upon the definition of the circulation as the potential differ-

ence across the wake, as given in Equation 3.28. By relating the potential difference

across the wake to the potential of the panels adjacent to the leading edge, Equa-

tion 4.9 can be written to eliminate the circulation from the right hand side of the

equations, as given in the equations below. The wake influence matrix, W̄ , represents

the matrix W̄o rearranged such that the influence terms are applied to the potentials

corresponding to the upper and lower panels connected to the trailing edge.
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Γ = Φu − Φl = µu − µl (4.37)

W̄oΓ̃ = W̄ µ̃ (4.38)

Ḡσ̃ =
(

H̄ + W̄
)

µ̃+ φ̃∞ (4.39)

It should be noted that the solution to Equation 4.37 only represents the exact

solution in the case of two dimensional flows. For bodies with significant cross flows,

such as is the case for low aspect ratio airfoils such as propellers, Equation 4.39 leads

to significant differences in pressure at the tip of the lifting surface [28].

Equation 4.39 is therefore used to provide an initial estimate of the circulation, ig-

noring any three dimensional influences. By eliminating the circulation, Equation 4.39

can be solved for the dipole strengths, µ, which in turn can be used to generate the

first estimate of the circulation, Γ, using Equation 4.37. This initial estimate for the

circulation is then refined based on the iterative method discussed in Section 4.4.1.

4.5 Wake Geometry

In order for there to be no velocity component normal to the wake panels, the position

of the wake must be aligned with the local velocity. This problem has been addressed

by other researchers [16, 24, 28, 47, 14]. The model developed by Greeley et al.

[16, 24, 28] consists of defining the radial position of the wake vortices from data

obtained from model scale experiments. These vortices are then wrapped around a

cylinder at a specified pitch angle to generate the wake panels. The wake far from

the propeller is approximated using various alternative analytical schemes instead of
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being modelled by wake panels [16, 28]. The wake alignment scheme used consists of

varying the pitch of the wake based on the induced velocities. This does not provide

an exact solution as the radial velocity components are not accounted for in the

alignment scheme.

Pyo [47] developed an approach for arbitrarily aligning the wake in three dimen-

sion, which has been successfully used by others [14, 45, 48, 55]. Pyo’s model consisted

of evaluating the velocity at each wake panel and adjusting the position of the wake

according to the local velocity field.

This approach was attempted for the current work, using flat, constant strength

panels. Due to the fact that the velocities are ill-defined on the corners of the panels,

and that flat panels are not suitable for modelling the highly curved surface near the

tips, such a method was not feasible using the current approach. To accurately model

wake roll-up a rigorous numerical scheme is required.

Pyo’s method was capable of overcoming these challenges by utilizing hyperboloid

panels, as well as bi-quadratic strength panels to achieve the level of a numerical

stability required to achieve wake roll-up. However, the complexity of modelling the

wake is expected to increase the further downstream from the propeller the problem

is being computed. The assumption of an infinitely thin wake sheet far downstream

is also expected to influence the accuracy of this approach. Pyo’s work focused on

modelling the performance of the propeller, and was therefore only concerned with

the wake close to the propeller.

In addition, the alignment of wake panels is expected to be poorly suited to

modelling the interaction of the wake with objects downstream of the propeller as the

panelized wake must be deformed such that it does not penetrate the ice.
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Due to the challenges of aligning a panelized wake with the complex flow down-

stream of the propeller interacting with an object, this approach was deemed to be

unsuited to the current application. Hence, the panel method as presented in this

chapter has been disqualified as a suitable method of predicting the ice breaking and

clearing phenomenon.

The next section discusses an alternative wake representation that has been ex-

plored to overcome the limitation of the panel method.
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Chapter 5

Vortex Particle Method

Vortex particle methods have been identified as an alternative method of overcoming

the challenges encountered with the three dimensional wake alignment scheme in the

panel method. Cottet [11] provides a thorough analysis of the field of vortex particle

methods, while Winckelmans [61] provides an excellent overview.

The vortex particle method has been a relatively new approach utilized by the

aeronautics industry. The vortex particle methods have been applied to helicopter

rotors by Opoku et al. followed by He et al. [43, 17]. Willis used the vortex particle

method for the computation of wakes of fixed wing aircraft [59]. The most recent

application has been by Calabretta, who approximated an aircraft propeller by an

actuator disc to compute the influence of the propeller wake flowing over the down-

stream wing [8]. There is no known attempt to apply vortex particle methods to

a marine propeller. In each of the cases above, vortex particle methods have been

applied in combination with a panel method. This approach will be followed here.

The vortex particle method is capable of modelling the vorticity of the fluid di-
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rectly instead of using dipole panels as was the case in the panel method. This

requires a different set of governing equations than was presented in Chapter 3. The

governing equations, followed by the boundary conditions as they apply to the vortex

particle method, are presented in Section 5.1. This section ends with a discussion of

the application of the Bernoulli equation in the vortex particle method.

Analogous to the panel method, in order to develop a numerical method, the

vorticity must be discretized into elements. Using the vortex particle method, the

vorticity in the wake is represented by a cloud of particles. Each particle contributes to

the overall fluid velocity in proportion to its associated circulation. The discretization

of vorticity into vortex particles is the foundation of the vortex particle method, which

is presented in Section 5.2.

In the vortex particle method the wake alignment is performed by modelling the

evolution of individual vortices. As the vortices are convected downstream with the

fluid flow, wake alignment is automatically achieved. The shedding of vortex particles

from the trailing edge and their subsequent evolution downstream is discussed in

Section 5.3. As strict connectivity between particles within the wake is not required,

the numerical complexity of maintaining a well behaved wake sheet (as is required in

the panel method) is eliminated.
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5.1 Theory

5.1.1 Governing Equations

As vortex particles model the vorticity within the fluid domain, the assumption of

irrotational flow required for the panel method can be lifted. The definition of fluid

velocity as a potential gradient (Equation 5.1) is therefore no longer applicable. Fol-

lowing the work of Willis [56, 59], the velocity field is divided into an irrotational

(curl-free) vector field and a rotational (divergence-free) vector field using Helmholtz

decomposition (Equation 5.1). The irrotational velocity field is represented by the

scalar potential function, Φ, while the rotational component of the flow is represented

by the vector potential function, ~Ψ.

~U = ~UΦ + ~UΨ

= ∇Φ +∇× ~Ψ (5.1)

As will be shown in this chapter, the decomposition of the problem into irrotational

and rotational velocity components allows the problem to be solved by a superposition

of the panel method and vortex particle method. The vector velocity potential is

used to represent the vorticity in the wake, while the scalar potential represents the

influence of the rigid surfaces.

The vorticity is defined as the curl of the velocity field. Applying this definition to

the velocity defined in Equation 5.1, yields a relationship between the vorticity and

the vector potential. Due to the vector velocity field being divergence free (∇·~Ψ = 0),

the curl of the velocity field is given as the negative of the Laplacian of the vector

potential. The irrotational potential field does not contribute the total vorticity,
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which is consistent with the requirement for potential flow to be irrotational.

~ω = ∇× ~U = −∇2~Ψ (5.2)

The governing equations for an inviscid, incompressible fluid are the Euler equa-

tions, given by Equation 5.3. To obtain a form which is useful for vortex particle

methods, the curl of the Euler equations is taken in order to obtain the vorticity

evolution equation given by Equation 5.4. The vorticity equations define how the

vorticity changes with time as a result of gradients in the velocity field. This equa-

tion will form the basis for the wake evolution in Section 5.3.2.

∂~U

∂t
+ ~U · ∇~U = −

∇P

ρ
(5.3)

Dω

Dt
=

∂ω

∂t
+ ~U · ∇~ω = ~ω · ∇~U (5.4)

To determine the solution for the scalar potential, the Helmholtz decomposition

definition of the velocity (Equation 5.1) is substituted into the Continuity equation

(Equation 3.2). As the divergence of the rotational velocity component is zero, the

result is the Laplace Equation for the scalar potential (Equation 3.3).

∇ · ~U = ∇2Φ = 0 (5.5)

As the scalar potential is governed by the same boundary element integral as

used in the panel method, it can be solved using the panel method developed in

Chapter 4. However, due to the influence of the vorticity, the boundary conditions

must be reformulated.
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5.1.2 Boundary Conditions

The same physical form of the boundary conditions as in Chapter 3 apply to the vortex

particle method. However, due to the contribution of the vector velocity potential,

~Ψ, the final form of the boundary conditions must be modified to account for the

presence of the vorticity.

For rigid surfaces, the no-flux boundary condition is still applied (Equation 3.6),

but with the fluid velocity given by Equation 5.1. With the new definition of the

velocity, the no-flux boundary condition is expressed as in Equation 5.6. Hence,

the source strength given by Equation 3.36 must be modified. The modified source

strength when using the vortex particle method is given by Equation 5.7.

n̂ · ∇Φ + n̂ · ∇ × ~Ψ = n̂ · ~VB (5.6)

σ = n̂ ·
(

~VB − ~UΨ

)

(5.7)

Far away from the body, the fluid velocity remains undisturbed. Following the

assumptions from Chapter 3, the influence of the scalar potential field approaches

that of a free stream at infinity. This implies that the rotational field generated by

the wake must be zero far away from the wake, while the free stream velocity is the

gradient of the scalar field.

lim
~r→∞

~UΨ = 0 (5.8)

5.1.3 Body Pressures

Given the presence of the vorticity, the computation of fluid and body pressures must

also be modified to account for the vorticity field. Again, following the work of Willis
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[59], the Bernoulli equation is applied to the regions with zero vorticity, which includes

the entire domain except the localized points represented by vortex particles.

−
∇P

ρ
=

∂~Uf

∂t
+

1

2
∇

∣

∣

∣

~Uf

∣

∣

∣

2

(5.9)

The same approach is followed as in Chapter 3, with the exception that the

Helmholtz decomposition of the velocity is used. Hence, the pressure gradient is

expressed in terms of the scalar and vector potentials:

−
∇P

ρ
= ∇

∂Φ

∂t
+

∂(∇× ~Ψ)

∂t
+

1

2
∇

∣

∣

∣
∇Φ +∇× ~Ψ

∣

∣

∣

2

(5.10)

The above equation can be integrated along a streamline from a point in the far

field (~r → ∞) to a point on the body surface.

−
P

ρ
=

∂Φ

∂t
+

∫ ~rp

∞

∂(∇× ~Ψ)

∂t
d ~C +

1

2

∣

∣

∣
∇Φ +∇× ~Ψ

∣

∣

∣

2

−
1

2

∣

∣

∣

~U∞

∣

∣

∣

2

(5.11)

As before, the above time derivatives are converted from a Eulerian reference to

a Lagrangian reference frame using the material derivative. After substituting the

material derivatives and integrating the convective terms, the Bernoulli equation can

be rewritten as given in Equation 5.15.

DΦ

Dt
=

∂Φ

∂t
+ ~VB · ∇Φ (5.12)

D(∇× ~Ψ)

Dt
=

∂(∇× ~Ψ)

∂t
+ ~VB · ∇(∇× ~Ψ) (5.13)

P

ρ
=

1

2

∣

∣U2

∞

∣

∣+ ~VB ·
(

∇Φ +∇× ~Ψ
)

−
1

2

∣

∣

∣
∇Φ +∇× ~Ψ

∣

∣

∣

2

−
DΦ

Dt
−

∫ ~rp

∞

D(∇× ~Ψ)

Dt
d~C

(5.14)
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P

ρ
= ~VB · ~Uf −

1

2

∣

∣

∣

~Uf

∣

∣

∣

2

+
1

2

∣

∣U2

∞

∣

∣−
DΦ

Dt
−

∫ ~rp

∞

D(∇× ~Ψ)

Dt
d~C (5.15)

Equation 5.15 is the same as given in Chapter 3 for the panel method, with the

additional influence of the velocity of the vortex particles. This equation can be

evaluated for a given set of vortex particles and surface potentials, with the exception

of the last term. This term represents the dynamic pressure resulting from the change

in the vorticity. Willis [59] noted that this term can be solved by defining the internal

potential, Φi, introduced in Chapter 3, such that the velocity induced by the internal

potential at the body surface equals the velocity induced by the vortex particles. In

this case, the gradient of the internal potential represents the velocity contribution

of the vortex particles. Once the internal potential is known, the integral term can

be replaced with:
∫ ~rp

∞

D(∇× ~Ψ)

Dt
d~C =

DΦi

Dt
(5.16)

As stated previously, this work considers only the steady pressure terms. How-

ever, for the propeller-ice interaction problem, the unsteady terms are expected to be

significant and should be considered at a later date.

5.2 Vorticity Representation

5.2.1 Vortex Particles

Up to this point, no consideration has been given to the specifics of the vector po-

tential, ~Ψ. To obtain a Lagrangian numerical method, the vorticity throughout the

fluid domain is assumed to be concentrated at discrete points referred to as vortex
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particles. Outside of the vortex particles, the fluid is irrotational. The vortex particle

representation of the vorticity is given by Winckelmans [60, 61]. The vorticity at

a point in the fluid domain is given by Equation 5.17. The strength of the vortex

particles is related to the local circulation and the volume of fluid represented by the

vortex particle.

~ωp (~rp) =
∑

k

~αkδ (~rp − ~rk) (5.17)

where,

~ωp - Circulation at the point ~rp

~rp - The position of point p in the fluid domain

~rk - The position of vortex particle k

~αk - The strength of the vortex particle k

The vector potential is then determined from the vortex particle definition using

the relationship from Equation 5.2. Once the vector potential is obtained, the rota-

tional velocity component can then be determined by taking the curl of the vector

potential.

~Ψp = −
∑

k

~αk

4π|~rpk|
(5.18)

~Up = ∇× ~Ψp = −
∑

k

~rpk
4π|~rpk|

× ~αk (5.19)

5.2.2 Vorticity Kernels

The velocity given by Equation 5.19 is singular at the vortex particle, and produces

very high velocities near the vortex. This causes an unrealistic representation of the

fluid velocity near the vortex particle, which in turn leads to numerical instabilities
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when convecting the vortex particles. Regularized representations of the vorticity are

used to eliminate the artificially high velocity in the vicinity of the vortex [61]. This

is done by introducing the concept of the Vorticity Kernel. Using a vorticity kernel,

Equation 5.19 can be written as:

~Up =
∑

k

~K(~rpk)× ~αk (5.20)

~K(~r) = −
~r

4π|~r|3
(5.21)

The vorticity kernel, ~K(~r), given in Equation 5.21 is known as the Biot-Savart

kernel. To obtain a regularized vortex particle method, the Biot-Savart kernel is

replaced by alternative representations of the vorticity. Bhagwat and Leishman [5]

provide a summary of 2D vortex representations while Winckelmans and Leonard [61]

provide several 2D and 3D regularized kernels. The general representation of a 3D

regularized kernel is:

~K(~r) = −
~r

4πQ
(

|~r|
rc

)

r3c

(5.22)

The parameter rc is known as the core radius. Winckelmans [60] noted that

the influence of the core radius significantly influences the stability of the numerical

method. To ensure that the method is numerically stable, the vortex particles must

remain sufficiently overlapping throughout the simulation. To ensure that this criteria

is met, Winckelmans recommended the core radius be set at 1.3 times the typical

distance between vortex particles.

The function Q(ρ) is the regularization function. Winckelmans and Leonard [61]

provide several 3D regularization functions. The simplest choice of regularization

function is the low order algebraic smoothing, which results in the Rosenhead-Moore
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representation of a vortex [29, 31, 50]. Winckelmans [60] suggested the use of a High

Order Algebraic kernel due to the fact that closed form analytical diagnostics can

be developed that allow the numerical method to be monitored for stability. The

regularization function for both are given below. Only the high order algebraic kernel

has been used in the current method.

Low Order Algebraic Kernel

Q (ρ) =
1

(ρ2 + 1)3/2
(5.23)

High Order Algebraic Kernel

Q (ρ) =
ρ2 + 5/2

(ρ2 + 1)5/2
(5.24)

Figure 5.1 compares the high order algebraic kernel to the Biot-Savart kernel

for various values of the core radius. The fluid velocity for the Biot-Savart kernel

approaches infinity close to the vortex particle. For the regularized vortex kernel, the

velocity reaches a maximum at about half the core radius from the vortex particle.

Below this, the velocity drops to zero at the vortex particle. Outside of the vortex

core, the velocity approaches that of the Biot-Savart kernel.

5.3 Wake Vorticity Representation

5.3.1 Vortex Particle Generation

In the panel method, the wake vorticity is represented as a sheet of dipole panels. The

vortex particle method replaces the dipole representation of the wake with vortex par-

ticles. Willis [59] used the fact that these representations are analytically equivalent,
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Figure 5.1: Influence of Core Size on Vorticity Kernel.

to develop a numerical method that represented the wake through a combination of

panels and vortex particles. Dipole panels are used to represent the near field wake

(closest to the body); while in the far field, the dipole panels are replaced by their

equivalent vortex particle representation.

This approach allows the benefits of both wake representations to be utilized. The

use of dipole panels in the near field allows more accurate computation of pressure

at the leading edge and allows the circulation to be related to the Kutta condition as

presented in Section 4.4. In the far field wake, vortex particles are used in place of

panels to allow for a computationally simpler wake evolution scheme.

The approach used in this work is similar to that of Willis [59]. The process of
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generating vortex particles is shown in Figure 5.2. Secondly, the buffer wake is created

based on a prescribed geometry. Next, the body position is updated each time step

according to its linear and rotational velocities, while the wake panels of the buffer

wake are convected with the free stream velocity (note that the induced velocities are

ignored for the buffer wake). Next, a new row of buffer wake panels are generated

between the previous set of wake panels and the trailing edge of the body. Finally,

the last row of wake panels is converted to the numerically equivalent set of vortex

particles.

The justification of replacing the vortex panel representation of the wake with

vortex particles is based on the numerical equivalency of a dipole and vortex particles.

The velocity induced by a vortex panel is equivalent to a ring vortex around the

edge of the panel [28]. By considering each side of the panel separately, each can

be replaced by a vortex particle with strengths proportional to the length of the

panel side as shown in Figure 5.3. The strength of each vortex particle is given by

Equation 5.25. For panels sharing a common boundary, the circulation from both

panels can be represented using a single vortex particle. The strength of the vortex

particle is proportional to the difference in circulation between adjacent panels.

~α = Γ
(

~Ri − ~Rj

)

(5.25)
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Figure 5.2: Generation of Vortex Particles.
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Figure 5.3: Location of Equivalent Set of Vortex Particles for a Dipole Panel.
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5.3.2 Vortex Evolution

To update the wake, a time stepping algorithm is required. Each time step, the po-

sition and strength of each vortex particle is updated based on evolution equations

for position and circulation. The positions of the vortex particles are updated based

on the local fluid velocity, while the strength of each particle is updated to account

for the stretching of the vorticity as given by Equation 5.4. This is analogous to

the deformation of the geometry of wake panels in the panel method. Three differ-

ent schemes are possible to solve the vorticity equations: the classical scheme, the

transpose scheme, or the mixed scheme [60]. Although each is analytically equivalent,

they represent different numerical approaches. Winckelmans recommended the use

of transpose scheme as it is the only one which conserves the total vorticity, hence,

it has been adopted for this work. The evolution equations for the transpose scheme

are given by:

d

dt
~xp(t) = ~Uf (~x

p(t), t) (5.26)

d

dt
~αp(t) =

(

~αp(t) · ∇T
)

~Uf (~x
p(t), t) (5.27)

Winckelmans provides a closed form analytical solution for the stretching term

for High Order Algebraic kernels [60]. However, as discussed by Calabretta [8], in a

mixed panel and vortex particle method, both evolution equations must account for

the presence of the panels. The position evolution equation depends on the local fluid

velocity, while the strength evolution depends on the gradient of the fluid velocity.

The fluid velocity used in the evolution equations must be the total velocity given as

the superposition of the velocity contribution from the panels and the vortex particles

based on the Helmholtz decomposition. Calabretta has provided analytical solutions
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for the velocity gradient due to constant strength source and dipole panels, as well

as their multipole expansions [8]. These gradients must be superimposed with the

gradients from the vortex particles for use in Equation 5.27.

5.3.3 Local Particle Refinement

As the particles are convected with the fluid velocity they will tend to concentrate

in areas with negative velocity gradients and space out in areas with positive gradi-

ents. This creates an uneven distribution of particles within the wake, and leads to

areas of the wake where particle cores no longer overlap, which is required for a well

formed vortex particle method. Velocity gradients will also cause vortex particles

to stretch according to Equation 5.27. As a vortex particle stretches, it increases in

strength. As the vortex particles are discrete representations of a continuous vortex,

the stretching artificially concentrates vortices at a single point. Cottet provides a

thorough discussion of the issues associated with nonuniform spatial distributions of

particles in Lagrangian methods [11].

For the above reasons, it is occasionally necessary to refine the locations and

strengths of the vortex particles. Various grid based approaches have been proposed

in the literature and are discussed by Cottet [11]. These methods generally work by

using the vortex particles to compute the circulation at fixed locations corresponding

to a grid in the fluid domain. New vortex particles are then created at the grid

nodes, which replace the original vortex particles. The replacement of vortex particles

ensures that vortex particles remain evenly spaced while adequately representing the

original fluid circulation.

60



As discussed in the introduction, methods based on creating grids in the fluid

domain are not well suited to the propeller application due to the complexities of

developing a suitable grid. In addition, grid based methods would have a tendency

to alter the location of the particles close to the body’s trailing edge, influencing the

accuracy of the Kutta condition.

As the goal of this work was to develop a numerical method that does not required

a grid in the fluid domain, a particle refinement scheme that is not dependent on

the construction of a grid is desirable. Mansfield proposed such an approach that

was based on tracking the total distortion of each vortex particle by stretching three

initially orthogonal vectors according to the evolution equations [20]. Once either one

of the vectors was stretched past an acceptable limit, the vortex particle is split into

two particles along the direction of the distortion. By appropriately setting the length

of the initial vectors, and comparing these to the particle core size, the particles can

be split in such a way as to maintain particle overlap, without requiring knowledge

of adjacent particles or using a grid.

Mansfield noted that the splitting algorithm has the effect of generating a large

number of vortex particles. Hence, he also suggested a method for combining vortex

particles which are sufficiently close together. Cottet notes that the scale that can be

resolved by the vortex particle method is related to the core radius that is selected

and not the spacing between particles [11]. Hence, combining particles as proposed

by Mansfield does not influence the resolution of the results, but serves to reduce the

number of particles and reduces the computation effort.
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5.4 Summary

In the current implementation, the near field wake is modelled using dipole panels as

discussed in Chapter 4. Currently, the geometry of the near field wake is specified a

priori and no attempt is made to align the near field wake with the local fluid velocity.

The strength of the dipole circulations is calculated using the iterative pressure kutta

scheme.

In the far field, vortex particles are used in place of dipole panels. Each time

step, a new panel is constructed near the trailing edge and the previous panel is

converted into vortex particles based on the numerical equivalency between a dipole

panel and a ring vortex. Each vortex particle has a strength that is related to the size

of the vortex panel and the circulation calculated using the Kutta condition from the

previous time step. The vortex particles are then updated using the RK3 algorithm

used by Calabretta [8].

Using an approach based on a combined vortex particle and panel method, the

challenges associated with convecting and maintaining a well-defined wake are over-

come. The next chapter presents some validation cases and uses them to highlight

the benefits and challenges of the combined panel and vortex particle method.
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Chapter 6

Results

This chapter presents several validation cases. The first case is the simple solution of

the flow around a sphere. This serves to verify that the basic panel method portion of

the code is functioning as expected, including the computation of influence coefficients

and the numerical velocity gradient. The second validation case is the evolution of a

vortex ring. This example uses only the vortex particle method, without the coupling

to the panel method, thus, the results serve to verify the evolution of vortex particles.

The next two cases are for wings of differing geometries. The first case is a

rectangular wing with a known two dimensional solution. By increasing the aspect

ratio of the wing, one can compare the results at the midspan to the analytical

solution. This serves to validate the kutta condition. The second wing is a circular

profile, which has been commonly used for verification by other researchers. The

circular wing adds complexity over the rectangular wing due to the more complex

geometry and the significant influence of the wake rollup on the midspan.

The method is then applied to a marine propeller operating in the bollard condi-

63



tion. This case is more challenging than the wings due to the rotational motion and

the presence of multiple blades.

6.1 Panel Method Verification

The sphere was chosen for verification of the panel method as it has a known analytical

solution. The solution for the potential flow around a sphere is based on the potential

due to a single dipole aligned with the inflow, and located at the centre of the sphere.

For a dipole located at the origin with a uniform inflow velocity aligned with the

x-axis, the velocity potential is given by Equation 6.1. The strength of the dipole

can be determining by applying the appropriate boundary conditions such that the

velocity at the stagnation point is zero. The resulting potential for a sphere of radius,

R, in a uniform inflow aligned with the x-axis, U, is given by Equation 6.1. On the

body of the sphere, the velocity potential can be seen to be linear with respect to the

horizontal position and independent of either the transverse or vertical directions.

Φ = Ux+
µx

4πr3
(6.1)

Φ = Ux

[

1 +
1

2

(

R

r

)3
]

(6.2)

Based on the potential around the sphere, other physical values can be determined.

The velocities in each component can be determined by differentiating the velocity

potential with respect to the appropriate direction. The velocities in each of the

principle Cartesian directions are given in Equation 6.3 through Equation 6.5. It

can be shown from the equation that a zero velocity is recovered when using the

coordinates of either stagnation point. Also, the maximum velocity occurs on the y-z
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plane and has a value of 1.5 times the free stream velocity.

Vx = U

{

1 +
1

2

(

R

r

)3

− 1.5
(x

r

)2
(

R

r

)3
}

(6.3)

Vy = −U
(xy

r2

)

(

R

r

)3

(6.4)

Vz = −U
(xz

r2

)

(

R

r

)3

(6.5)

Furthermore, the pressure on the surface of the sphere can be determined using

Bernoulli’s Equation for steady potential flow. Substituting the velocity equations

into the Bernoulli’s Equation and non-dimensionalizing using the pressure coefficient,

a simple expression can be determined for the non-dimensional pressure on the body’s

surface (Equation 6.6). Based on this equation, it can be seen that the pressure

coefficient on the body of the sphere ranges from unity to -1.25. Values less than zero

indicate that the velocity is accelerating around the body creating a drop in pressure.

Positive values indicate a decelerated fluid flow and hence an increase in pressure.

Cp =
P

1

2
ρU2

= 1− 2.25 sin2 θ (6.6)

The numerical results of the panel method have been computed for a sphere

consisting of 400 panels (Figure 6.1). The results have been compared against the

analytical results in Figure 6.2. The results show that the numerical model provides

excellent correlations with the analytical results. This verifies that the fundamen-

tal panel method functions as expected, including the influence coefficients and the

numerical velocity gradient on the surface.
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Figure 6.1: Panel Arrangement of the Sphere
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Figure 6.2: Comparison of Panel Numerical Results for Sphere with Radius R=5 and

Uniform Inflow U=1
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6.2 Vortex Particle Method Verification

To verify the vortex particle method, the single inviscid ring vortex problem presented

by Winckelmans has been replicated [60]. The viscous version of this problem has

also been used for verification by Calabretta [8]. The reader is referred to the work

of Calabretta for the details of the particle discretization and strength assignment,

which is not repeated here.

To be consistent with the work of Calabretta and Winckelmans, a vortex ring of

radius of R = 1 was used. The vortex was discretized into Nφ = 80 circumferential

sections, each consisting of 81 vortex particles, corresponding to four radial sets of

particles (nc = 4). The core radius was set to 0.100. For this particular application,

the axisymmetric nature of the problem is utilized to minimize the computational

effort.

The diagnostics developed by Winkelmans [60] at the beginning of the simulation

are shown in Table 6.1. The results are similar to those obtained by bothWinckelmans

and Calabretta [8, 60]. The linear impulse, I, is slightly higher than that obtained by

Winckelmans, but closer than that obtained by Calabretta. Both energy diagnostics,

E and Ef , are significantly closer to Winckelmans. As noted by Calabretta, the

equation for exact enstrophy, ǫ, provided by Winckelmans appears to have an error, so

no value is obtained. The approximate enstrophy, ǫf , is only slightly higher than both

Winckelmans and Calabretta. Overall, the initial diagnostics are considered within

an acceptable range. Calabretta provides some possible reasons for the differences

that do exist.

The vorticity after 3.5 seconds is plotted for one section of the vortex ring in Fig-
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Table 6.1: Comparison of the Initial Diagnostics for the Vortex Ring Problem

Winckelmans [60] Calabretta [8] Current Method

nc 4 4 4

N 6,480 6,480 6,480

I(0) 3.214 3.133 3.274

E(0) 1.0476 1.0128 1.0407

Ef(0) 1.0476 1.0129 1.0408

ǫ(0) 61.35 N/A N/A

ǫf(0) 62.38 63.38 63.52

ure 6.3. The vorticity shows slight differences from that presented by Winckelmans

[60]. However, the overall nature of the vortex ring and the magnitudes of the vor-

ticity are similar. The results are considered sufficiently close to those presented by

Winckelmans for the present purpose. Hence, it can be concluded that the evolution

of the vortex particles has been verified.
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Figure 6.3: Comparison of Vortex Ring Vorticity with Winckelmans [60]

Note: Location and orientation of vortex rings differ

6.3 Rectangular Wing

The next case that has been selected for verification is that of a rectangular wing.

This case has been selected to ensure the accuracy of the Kutta condition. The wing

profile selected is a Van de Vooren symmetric profile. The geometry of the profile as

well as the exact solution for a 2D flow over the foil is presented by Dragos [12].

To allow the comparison of the 3D solution with the exact 2D solution, various

aspect ratio wings have been selected. First, a wing of aspect ratio 5 (10 units tip

to tip, with a chord length of 2 units) has been modelled as shown in Figure 6.4.

The wing has been discretized into 21 span wise panels and 20 chord wise panels.

Linear spacing is used in the span wise direction, while cosine spacing is used in the

chord wise direction to provide adequately small spacing near the tip and trailing
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edge with a reasonable number of panels. The solution has been allowed to run for

25 seconds in 0.5 second time steps. The resulting velocities on three sections are

shown in Figure 6.5. The middle section shows reasonable correspondence with the

exact 2D solution given the finite aspect ratio of the wing. Sections closer to the tip

show higher discrepancy due to the increased crossflow on the wing. The difference

between the velocity on the top and bottom of the wing near the trailing edge is zero

for all sections. The verifies that the pressure Kutta Condition has been correctly

implemented.

To determine convergence with the exact solution, wings of aspect ratios 10, 20 and

40 were also used for verification. These wings were developed by adding additional

panels for each section without changing the panel size, hence increasing the wing

length. This requires more panels for higher aspect ratio wings. The horizontal

and vertical velocity components, along with the velocity magnitudes for the middle

section are shown in Figure 6.6 for all aspect ratios. The results show that the solution

converges at an aspect ratio of around 20. The solutions for higher aspect ratio wings

are closer to the exact solution than the lower aspect ratio wing, but fail to model

the peak pressure. This is likely a result of the low number of panels at the leading

edge combined with the curvature of the wing, reducing the accuracy of numerical

gradient used to compute the velocities.
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Figure 6.4: Van de Vooren Wing Geometry (AR = 5)
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Figure 6.5: Fluid Velocity at Different Section for Van de Vooren Wing (AR = 5)
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Figure 6.6: Fluid Velocity at Mid Section (y = 0) for Van de Vooren Wing
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6.4 Circular Wing

A circular wing with unit radius is modelled to ensure that the method is capable of

accurately modelling cases with strong cross flows. Initial attempts at modelling the

circular wing using rectangular spacing failed to converge due to the complexity of

modelling the flow around the tip. To rectify this problem, a blade orthogonal grid as

used by Pyo was implemented [47]. This grid produces panels that are less distorted

near the tip, improving the numerical stability of the method.

Two profiles have also been considered. First, a simple elliptical profile has been

considered. Secondly a NACA 0010 profile has been modelled following the work of

Kim [26]. The geometry of the circular wing with elliptical profile for thickness to

diameter ratio, e, of 0.05 is shown in Figure 6.7.

Figure 6.7: Geometry of Circular Wing with Thickness Ratio of e = 0.05
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The calculation was run for 5 seconds at time steps of 0.1 seconds. To verify

that the results were suitably converged, a time series of circulation has been plotted

in Figure 6.8 for the NACA 0010 section. The results show that the model is both

stable, as well as suitably converged on the solution after 50 time steps.

The location of the vortex particles after 5 seconds is shown Figure 6.9, along with

cross sections of the fluid vorticity, computed based on the vortex particle strengths

and locations. The tip vortex has caused the particles to rollup near the edges of

the wake. In addition, the starting vortex created at the beginning of the problem

due to the impulsive start has caused the far end of the wake to roll up. Although

the wake would continue to evolve with additional time steps, the influence of the

starting vortex on the wing is sufficiently small after 50 time steps, and the solution

near the wing has reached a steady state.

To verify that the Kutta Condition is converging on the correct results, the cir-

culation, Γ, determined from the model is compared to that of the exact solution for

the section lift coefficient determined by Jordan [21] for a flat circular plate. The

section lift coefficient (Equation 6.7) can be related to the circulation through the

Kutta–Joukowski theorem (Equation 6.8).

cl =
l

1

2
ρU2

∞s
(6.7)

l = ρU∞Γ (6.8)

Γ = 1

2
clU∞s (6.9)

where, cl is the section lift coefficient,

l is the section lift,

ρ is the fluid density,
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U∞ is the free stream velocity,

s is the chord length,

Γ is the circulation.

The results are plotted in Figure 6.11 for an elliptical wing section with various

thickness coefficient, e, as well as for a NACA 0010 section. The results for the thin

elliptical cross section as well as the NACA 0010 section show good correspondence

with the circulation near the middle of the wing. Close the wing tips, the circulation is

higher than the solution given by Jordan. Ramsey obtained a similar solution using a

panel representation of the wake with rollup [48]. Ramsey accredited the differences

between Jordan’s analytical solution and the numerical results to the wake rollup.

As such, the results obtained for the thin elliptical section and the NACA 0010 are

considered suitable solutions despite not matching the results by Jordan. The wings

using thick elliptical cross sections (e = 0.05 and e = 0.10) show lower circulation

values across the entire length of the wing. This is a direct result of the thickness of

the wing.
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Figure 6.8: Time Series of Circulation for Circulation Wing (e = 0.05)

Figure 6.9: Resulting Wake after 5 seconds (e = 0.05)

Slices show circulation calculated from resulting vortex particles

78



Figure 6.10: Cross Section of Circulation at x = 3.5 after 5 seconds (e = 0.05)

Figure 6.11: Circulation for a Circulation Wing with 5◦ Angle of Attack
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6.5 B4-70 Propeller

The code has been applied to a marine propeller. A B-Series propeller was selected

due to the readily available geometry information [10] as well as published thrust

and torque coefficients for a range of geometries [30]. The selected propeller was four

bladed, with an expanded area ratio of 0.7 (B4-70). The pitch ratio selected was 0.7.

The problem was scaled using a propeller diameter of 1 m and rotational speed of

1 rps.

A blade orthogonal panel arrangement similar to that used for the circular wing

was used to generate the panels on the blades. 10 panels were used in the radial

direction and 8 per side of the blade were used in the chord wise direction, for a total

of 160 panels per blade. The resulting panel arrangement is shown in Figure 6.12.

Figure 6.12: Panelized Geometry of B4-70 Propeller
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In the case of the wing problems discussed above, a short buffer wake consisting

of a single set of panels was used. For the propeller problem, a large buffer wake

consisting of 11 panels has been used, representing half of a propeller revolution. The

buffer wake is created at the beginning of the problem with a fixed pitch. The pitch

is fixed at 0.7 and is not modified throughout the simulation. This acts to move

the generation of vortex particles farther downstream from the panels, eliminating

the close coupling between the panel method used to determine the circulation, and

the vortex particle method. Having the vortex particles shed farther downstream

prevents vortex particles from being generated near the hub surface, where velocities

can become large near the edge of the panels.

The influence of the size of the buffer wake on the circulation at the start of the

simulation is shown in Figure 6.13. The circulations have been calculated at the first

time step, prior to the generation of vortex particles. For buffer wakes with between

2 and 4 panels, the pressure kutta condition does not converge, due to the strong

influence of the starting vortex on the adjacent blade. The strength of the starting

vortex with 11 buffer wake panels is considerably less than with a single panel, and

continues to slowly decrease as more buffer panels are added.

The simulation is advanced using time steps of 0.05 seconds. This produces wake

panels that are approximately 0.157 long near the tip of the propeller. This provides a

maximum distance between vortex particles, which is used as the criteria for selecting

the core radius used in the vortex particle kernel. The core radius is set at a value

of 0.2, giving an overlap ratio of about 1.27 at the tip. Near the root, the overlap

ratio is increased to 4.6 where particles are closer spaced due to the smaller panels

generated by the slower speed close to the centre of rotation.
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Figure 6.13: Influence of Buffer Wake Size on Circulation

Using the above inputs, the simulation becomes unstable after 20 time steps (1

second). The location of the vortex particles after 4, 8, 12 and 16 time steps is shown

in Figure 6.14. Note that after approximately 0.5 seconds, vortex particles have been

convected back towards the propeller. The numerical instability is a result of these

vortex particles interacting with the wake panels. As the velocity is singular near the

panel edges, the problem becomes unstable if a vortex particles comes too close to

the edge.

The behaviour above is a result of the particle refinement algorithm. Splitting of

vortex particles near the root vortex causes vortex particles to be created in areas of

high velocity gradients, which are then convected backwards due to the influence of

82



the root vortex.

The simulation was repeated without the the vortex refinement scheme. In this

case, the simulation remains stable up to time step number 95 (4.75 seconds). The

evolution of the vortex particles up to 4.5 seconds is shown in Figure 6.15. Without

the refinement scheme, vortex particles in the starting vortex are stretched due to

the self-induced velocity. This stretching continues throughout the simulation until

the strength of the vortex particles causes high velocities on neighbouring particles.

This leads to numerical instabilities in the Runge-Kutta solver used to convect the

particles.

Reasons for the numerical instabilities, along with possible solutions to overcome

these challenges are discussed in the next chapter.
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Figure 6.14: Wake evolution using particle refinement scheme

Note: Only one near field wake shown
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Figure 6.15: Wake geometry without refinement scheme after 4.5 seconds

Note: Only one near field wake shown
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Chapter 7

Discussion

7.1 Current Challenges

The results presented in the previous chapter indicate that a coupled panel method

and vortex particle method is sufficient for resolving the lift and modelling the wake

behind a wing. However, the rotation of the propeller, combined with the presence

of wakes from multiple blades adds increased complexity over the wing problem.

The nature of the problem leads to strong velocity gradients in the wake region,

particularly near the propeller hub. These gradients lead to instability in the numeric

methods used for the evolution equations of the vortex particles, which depend both

on the velocity and its gradient.

The particle splitting algorithm suggested by Mansfield [20] is able to successfully

maintain overlap in the wake behind wings, and maintain the physical appearance

expected based on the panelized approach of the panel method. However, the inter-

action between the vortices shed at the root of the propeller blades cause significant
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stretching in this region. The splitting algorithm generates vortex particles near the

centerline of the propeller, which are convected by the root vortex back toward the

propeller. This behaviour causes the algorithm to be very sensitive to the choice of

cut-off values used in the particle refinement scheme.

When applied without particle refinement, the method is able to resolve realistic

behaviour near the hub, as indicated by the flow of particles downstream as expected

based on the induced velocity. However, the lack of splitting algorithm leads to

unrealistic growth of the strength of vortex particles in the starting vortex. This

leads to extremely high velocity gradients in the vicinity of the vortex particles,

which further leads to instability when other vortex particles are sufficiently close.

These challenges arise due to the lack of ability to model the details of the root

vortex at the scale required to capture the behaviour of the flow. According to Cottet

[11], the scale of the flow that can be resolved depends on the core radius selected.

Therefore, in order to obtain sufficient numerical resolution, the core radius must be

reduced, which in turn requires that the spacing of the particles be reduced to achieve

sufficient particle overlap.

In the current method, the spacing of the vortex particles is directly related to

the size of the wake panel in which the vortices are generated. This is required as the

vortices are created from the edges of the panel. The size of the wake panel is in turn

related to the size of both the time step and the propeller panels. Hence, decreasing

the particle spacing requires that both the number of panels used in the propeller

representation is increased and that the time step is reduced.

The ability to reduce the resolution is limited by the numerical efficiency of the

method. Each time step requires the computation of the velocity at the centroid of
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each panel and at each vortex particle. For the convection of the vortex particles

with the Runge-Kutta method, the velocity calculation is required three times for

each vortex particle. The computation time required to compute the velocity also

increases proportionally with the number of panels and vortex particles. The ability

to run the simulation on a consumer grade computer within acceptable time scales

limits the number of the panels and vortex particles, placing practical limits on the

resolution that can be achieved.

7.2 Potential Solutions

Various improvements are possible in order to overcome these challenges. First, im-

provements to the computational efficiency of the velocity are possible. Far field

assumptions have already been applied to reduce the cost of computing the influence

of panels on points far away. Similar methods have been developed to reduce the cost

of velocity calculations for vortex particles [31]. These methods work by grouping

particles into clusters and computing the velocity at points far away from the clus-

ter using approximate formulations. Computational effort is required to develop the

cluster, but the cluster can be reused for a large number points, reducing the overall

computational effort.

Particle clustering techniques would serve to reduce the computational time, al-

lowing the number of panels and particles to be increased while staying within reason-

able computation times. Lindsay reports that the computation time can be reduced

by a factor of 5 to 10 for 50,000 particles depending on the level of acceptable er-

ror [31]. Even with the particle clustering algorithms, the resolution of the vortex
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particle method still depends directly on the number of panels and the size of the

time step. Hence, the particle spacing cannot be reduced without requiring increased

computational costs in all elements of the method.

The second improvement possible is the use of higher order panels methods. This

would eliminate the dependency of the particle resolution on the panel resolution and

time step. Willis used the fact that the fluid vorticity is equal to the gradient of

the dipole strength to generate vortex particles [59]. In the constant panel method,

the dipole strength is non-continuous, which leads to the vorticity being concentrated

at the edge of the dipole panels. Willis used a higher order panel method based on

quadratic basis functions to develop a smooth representation of the dipole strength

on the wake panels. Using this representation, the vortex particles can be generated

at arbitrary locations on the panels. Hence, the location and spacing of the particles

can be generated independent of the size of the panels.

The above result is highly beneficial to the application of rotating bodies. The tip

of the propeller blade moves significantly faster than the root. Hence, for a constant

time step, the distance swept out by the trailing edge is larger at the tip. This leads

to unequal sizing of the wake panels along the span of the blade. In the current

method, this leads to uneven spacing of vortex particles, with particles being more

closely spaced near the root.

A higher order panel method would allow for the spacing of vortex particles to be

selected independent from both the size of the time step and the size of the panels

on the propeller. As the current application is not directly interested in the accuracy

of the solution on the propeller, a low panel resolution could be utilized while still

maintaining a sufficiently high resolution in the wake to resolve the flow near the hub.
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The application of high order panels would have the additional benefit of elim-

inating the singularity that exists at the edge of the constant strength panel. The

singularity at the edge of the constant strength panel leads to high velocities and

velocity gradients at the panel edges. This restricts the location of vortex particles,

which cannot be located near the panels. This is problematic when parts of the body

are downstream of the wake generating edges, such as the hub’s fairing cone. The

use of higher order panel methods may allow for the elimination of the extended near

field wake required in this method to prevent vortex particles from being created on

the hub.

7.3 Future Application to Icebreaking

Provided the above challenges can be overcome, the proposed method can be applied

to the icebreaking problem introduced in Chapter 2. Either additional panels or

the modified Green’s function must be added to account for the ice surface. This

ensures that there is no fluid flow through the ice surface. The pressures can then be

computed using the Bernoulli equation.

To apply the Bernoulli equation, the unsteady terms should be included. This

requires the calculation of the internal potential to obtain the dynamic pressure term

resulting from the vortex particles.

Finally, an ice mechanics model would need to be applied to predict the breaking

phenomenon. The ice sheet acts as a plate on a dynamic foundation. Analytical

solutions for stress in the ice field are available for a circular patch load [37]. The ice

mechanics problem could therefore be solved by superimposing multiple patch loads.
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The patch loads can be obtained directly from the values of pressure computed from

the Bernoulli formula. More complex ice geometries would need more advanced ice

mechanics models to predict breaking.

The model could also be used to predict ice clearing of ice floes or icebergs. The

forces on the ice could be computed by a combination of the pressure, as well as by

utilizing a skin friction coefficient to account for the viscous drag. The total force on

an ice can be determined by numerically integrating the pressures and drag forces.

7.4 Additional Applications

In addition to the application to icebreaking, which formed the original basis for this

thesis, the method proposed has applications in other fields where the downstream

wake from lifting bodies is of interest. In the marine field, the downstream wake from

propellers is of interest in other subject areas. For instance, Liu studied the effect

of downstream propeller wake from DP vessels on the various submerged equipment

used in the offshore industry [44]. Downstream propeller wake can also influence civil

engineering structures [41, 52]. The accuracy of such studies could be improved by

considering the induced rotational velocity induced due to the propeller rotation.

Vortex particle methods have already been applied in the aviation industry to

study the behaviour of aircraft wings [56, 59]. Calabretta also used vortex particle

methods to study the influence of an aircraft engine on the downstream wing [8, 9].

This study used an actuator disk in place of a rotating propeller or turbine. Using

the techniques presented in this thesis, it may be possible to improve upon the work

of Calabretta to account for the induced rotational components of the flow.
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Another area where this work could be applied is to helicopter rotors. Opoku

has already demonstrated the application of vortex particles to helicopter rotors [43].

The application of vortex particles to helicopter rotors allows for the interaction of

the wake with downstream components, including the modelling of ground effect.

A final area where this work could be applied is in energy industry for the mod-

elling of wind turbines. Wind turbines are typically installed in wind farms, where

the influence of a single turbine influences downstream turbines [40]. These influences

can have a significant impact on the power that can be generated. The approach pre-

sented in this thesis could allow for a more accurate representation of the downstream

wake.
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Chapter 8

Conclusions

For this work, a low order three dimensional panel method suitable for application to

lifting surfaces has been developed based on the work of various M.I.T. researchers

[28, 19]. In the current implementation, the geometry of the wake panels must be pre

specified. This limits the applicability of the code as, in general, the wake location is

unknown and must be solved as an integral part of the solution such that the wake

is aligned with the flow.

An attempt has been made at implementing an arbitrary three dimensional wake

alignment scheme based on the work of Pyo [47]. However, this approach was deemed

ill-suited to the current application of interest, which requires that the wake geometry

be modelled far downstream of the propeller, as well as being allowed to interact and

become deformed by the presence of the ice sheet. The development of this approach

was therefore abandoned in favour of alternate approaches.

Vortex particle methods were identified as a potentially viable alternative to panel

methods. Willis and Calabretta have successfully combined vortex particle meth-

93



ods with panel methods to applications in the aeronautics industry [8, 59]. Based

upon these approaches and the work of Winckelmans [60], an inviscid vortex particle

method was developed and coupled with the low order panel method.

The methods were successfully applied to wing problems using rectangular and

circular wings. The results showed good correlation with those presented by other

researchers. In addition, the vortex particle wakes showed realistic behaviour that

was capable of capturing the rollup of the wing tip vortex.

The application to the propeller problem failed to converge and led to numerical

instabilities. This prevented full application to the icebreaking problem identified as

the motivation for this work. The differences between the propeller problem and the

wing problems that were investigated that lead to the challenges encountered are as

follows:

• Since, the rotational motion causes the tip of the propeller to move faster than

sections near the hub, vortex particles shed near the tip of the propeller are

spaced farther apart than vortex particles close to the root. In the current

work, this has been addressed by selecting of the core radius such that sufficient

overlap is available at the tip. This causes a large amount of overlap in the

particles near the root.

• The wake shedding algorithm places vortex particles close to the hub of the

propeller. The evaluation of the velocity at particles near the hub is therefore

highly influenced by the edges of the panels used to model the hub. Due to

the singularities at the edges of the panels, a buffer wake is required such that

vortex particles are not created until downstream of the hub.
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• The rotational nature of the problem combined with presence of multiple blades

increases the amount of interaction between the vortex particles, particularly at

the blade root. These interactions involve strong velocity gradients that require

a fine resolution in order to resolve.

The last item above was not possible to overcome within the scope of this thesis.

Practical limitations on numerical efficiency restrict the scale that can be resolved

using regularized vortex particles.

This work has demonstrated that panel methods alone are not suited to the com-

putation of the downstream wake field of marine propellers. Although it is possible

to model the wake far enough downstream for the application of propeller design,

there are practical difficulties related to the connectivity of the wake. Vortex par-

ticle methods show promising results for computing the complex flow in the wake

field. However, there are challenges that must be overcome before a fully coupled

panel method and vortex particle code can be applied to the marine propeller prob-

lem. The use of particle clustering algorithms and higher order panel methods are

expected to alleviate many of the challenges faced in the current work. Provided

these challenges can be overcome, combined vortex particle and panel methods are

expected to be a viable technique to predict the breaking of ice using propeller wake.
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Chapter 9

Recommendations

Particle clustering algorithms, that reduce the computational effort of computing

the velocity induced by vortex particles, are required for the practical application of

vortex particle methods. The large number of vortex particles required to model the

fluid flow in the wake of a marine propeller leads to extremely slow computations

when performed directly. This makes even modest calculations unviable on todays

consumer grade computers.

High order panel methods are also recommended for any application requiring

the coupling between vortex particles and panel methods. Flat panels with constant

strength have singularities at the panel edges that cause numerical instability if cal-

culations are required near the edges. However, the largest limitation for the coupled

method is that the generation of vortex particles is restricted to the edges of the wake

panels. High order panels would allow vortex particles to be spaced at even intervals,

hence allowing a more stable method without requiring large numbers of panels.

Once the above improvement are made, the particle refinement scheme requires
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additional attention. Optimum values for the cut-off parameters need to be estab-

lished such that realistic flow behaviour is maintained, while utilizing a minimum

number of vortex particles.

97



Bibliography

[1] Ashby, D. L. Potential flow theory and operation guide for the panel code

pmarc 14. Tech. Rep. TM-1999-209582, NASA, Dec. 1999.

[2] Ashby, D. L., Dudley, M. R., and Iguchi, S. K. Development and vali-

dation of an advanced low-order panel method. Tech. Rep. TM-101024, NASA,

1988.

[3] Banerjee, P. K., and Butterfield, R. Boundary Element Methods in

Engineering Science. McGraw-Hill Book Company (UK) Limited, Maidenhead,

Berkshire, England, 1981.

[4] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Don-

garra, J., Eijkhout, V., Pozo, R., Romine, C., and der Vorst, H. V.

Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-

ods, 2nd edition ed. SIAM, Philadelphia, PA, 1994.

[5] Bhagwat, M. J., and Leishman, J. G. Generalized viscous vortex model for

application to free-vortex wake and aeroacoustic calculations. In AHS Interna-

tional Forum 58 (June 2002), American Helicopter Society.

98



[6] Brebbia, C. A. The boundary element method for engineers. Pentech Press,

London, 1978.

[7] Brebbia, C. A., Telles, J. C. F., and Wrobel, L. C. Boundary Element

Techniques: Theory and Applications in Engineering. Springer-Verlag, Berlin,

Heidelberg, 1984.

[8] Calabretta, J. A Three Dimensional Vortex Particle-Panel Code for Mod-

elling Propeller-Airframe Interaction. PhD thesis, California Polytechnic State

University, June 2010.

[9] Calabretta, J., and McDonald, R. A three dimensional vortex particle-

panel method for modeling propulsion-airframe interaction. In 48th AIAA

Aerospace Sciences Meeting (2010).

[10] Carlton, J. 6 - propeller performance characteristics. In Marine Propellers and

Propulsion (Second Edition), J. Carlton, Ed., second edition ed. Butterworth-

Heinemann, Oxford, 2007, pp. 87 – 135.

[11] Cottet, G.-H., and Koumoutsakos, P. Vortex Methods: Theory and Prac-

tice. Cambridge University Press, 2000.

[12] Dragos, L., and Dinu, A. A direct boundary integral method for the three-

dimensional lifting flow. Computer Methods in Applied Mechanics and Engineer-

ing 127 (1995), 357–370.

99



[13] Ferrieri, J. M., Veitch, B., and Akinturk, A. Experimental study on ice

management through the use of podded propeller wash. In Third International

Symposium on Marine Propulsors (May 2013), pp. 26–33.

[14] Gaggero, S., and Brizzolara, S. Exact modeling of trailing vorticity in

panel method for marine propeller. In 2nd Internation Conference on marine

research and transportation (Ischia, Naples, Italy, June 2007).

[15] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:

Eleemtns of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[16] Greeley, D. S., and Kerwin, J. E. Numerical methods for propeller design

and analysis in steady flow. SNAME Transaction 90 (1982).

[17] He, C., and Zhao, J. Modeling rotor wake dynamics with viscous vortex

particle method. AIAA Journal 47, 4 (April 2006), 902–915.

[18] Hess, J. L., and Smith, A. M. O. Calculation of nonlifting potential flow

about arbitrary three-dimensional bodies. Journal of Ship Research 8, 2 (Sept.

1964), 22–44.

[19] Hsin, C.-Y. Development and Analysis of Panel Methods for Propellers in

Unsteady Flow. PhD thesis, Massachusetts Institute of Technology, Sept. 1990.

[20] John R. Mansfield, O. M. K., and Meneveau, C. Towards lagrangian

large vortex simulation. ESAIM: Proceedings 1 (1996), 49–64.

[21] Jordan, P. F. Exact solutions for lifting surfaces. AIAA Journal 11, 8 (August

1973), 1123–1129.

100



[22] Keinonen, A., and Martin, E. Ice management experience in the sakhalin

offshore with azimuth icebreakers. In Icetech (2008).

[23] Keinonen, A., and Martin, E. Natural breaker drillship / fpso concept for

ice offshore. In Icetech (Banff, Canada, July 2008).

[24] Kerwin, J. E. Marine propellers. Annual Review of Fluid Mechanics 18 (1986),

367–403.

[25] Kerwin, J. E., Kinnas, S. A., Lee, J.-T., and Shih, W.-Z. A surface panel

method for the hydrodynamic analysis of ducted propellers. In Transactions,

vol. 95. SNAME, 1987, pp. 93–122.

[26] Kim, G.-D., Lee, C.-S., and Kerwin, J. E. A b-spline based higher or-

der panel method for analysis of steady flow around marine propellers. Ocean

Engineering 34 (2007), 2045–2060.

[27] Kinnas, S., Hsin, C.-Y., and Keenan, D. A potential based panel method

for the unsteady flow around open and ducted propellers. In Eighteenth Sympo-

sium on Naval Hydrodynamics (1991).

[28] Lee, J.-T. A Potential Based Panel Method for the Analysis of Marine Pro-

pellers in Steady Flow. PhD thesis, Massachusetts Institute of Technology, July

1987.

[29] Leonard, A. Computing three-dimensional incompressible flows with vortex

elements. Annual Review of Fluid Mechanics 17 (1985), 523–559.

101



[30] Lewis, E. V., Ed. Resistance, Propulsion and Vibration, second ed., vol. II

of Principles of Naval Architecture. Society of Naval Architects and Marine

Engineers (SNAME), 1988, ch. 8.

[31] Lindsay, K., and Krasny, R. A particle method and adaptive treecode for

vortex sheet motion in three-dimensional flow. Journal of Computational Physics

172 (2001), 879–907.

[32] Lohi, P., and Savikurki, J. Azimuth thrusters in icebreakers: A revolution-

ary step ahead. In International Shipbuilding Conference (ISC) (St. Petersburg,

Russia, October 1994).

[33] Martin, E. Ahti ice trials - March 4th, 2007. Confidential, AKAC Inc, 2007.

[34] Martin, E. Fennica ice trials – March 7th to 9th, 2007. Confidential, AKAC

Inc, 2007.

[35] Martin, E., Keinonen, A., and Brown, H. Ice management effectiveness

predictions. In Icetech (2008), SNAME.

[36] Maskew, B. Program vsaero theory document: A computer program for cal-

culating nonlinear aerodynamic characteristics of arbitrary configurations. Con-

tract Report 4023, NASA, Sept. 1987.

[37] Michel, B. Ice Mechanics. Les Presses De L’Université Laval, 1978.
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Appendix A

Application Code Details

The program implementation developed for this work has been funded by industry

supporters, which has guided the requirements for the program developed. First,

the code must be able to be ran by private industry, free of commercial restrictions.

Secondly, the code is intended to be run on personal computers. This allows the code

to be assessable without the use of high powered supercomputers.

To achieve the first objective, the panel and vortex particles methods have been

developed from the ground up, with minimal reliance on third party libraries. The

code has been developed using the C++11 programming language, using the GNU

Autotools to coordinate the build process. Object orientated programming techniques

have been used to ensure that the code is modular, allowing for easy interchangeability

of numerical algorithms, which can be configured without modifying the main panel

method code.

All programming and testing has been performed on a 2.4 GHz Intel Core i7

MacBook Pro with 8 GB ram and a 2.93 GHz Intel Core i7 personal computer with 8
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GB ram, running Ubuntu 12.04. Use of multi-threading has been made where possible

to take advantage of the added efficiency available with the multiple core architecture

available on both development systems.

Three libraries have been developed for this work, EHMgeo, EHMsci, and AKACim.

The EHMgeo library has been developed specifically to ease the handling of multi-

ple coordinate systems within the code. Separate coordinate systems are required for

the local panel coordinate system, the propeller fixed co-ordinate system, as well as

the global coordinate system. Tracking the coordinate system of each variable within

the code quickly becomes cumbersome. Using the design pattern presented by Rui-

jters [51], it has been possible to attach coordinate systems to each three dimensional

point and vector. The library automatically keeps track of the coordinate system of

each variable, and implicit handles coordinate system conversions when performing

operations between points and vectors of different coordinate systems. When a point

or vector is required in a specific required coordinate system, the user can request the

conversion into a coordinate system of choice. This library simplifies the overall code

development and eliminates the need to explicitly transform coordinates throughout

the code.

The EHMsci library has been developed to isolate the numerical routines required

throughout this work. The fundamental data structures used by the library are vector

and matrix classes, which allow for the storage of data in a manner suitable for

performing linear algebra calculation. Basic operations such as addition, subtraction,

scalar multiplication, etc., are possible for both data types. The library also has built

in functionality for:
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• Solving system of linear equations,

• Computation of eigen vectors and values,

• Solutions to ordinary differential equations, and

• Root finding of multi-dimensional equations.

The AKACim library is the main library performing panel and vortex panel

method calculations. The library handles the reading of configuration input files

and geometry files, the panel method and vortex particle calculations, and the writ-

ing of outputs. For each application of the code, a separate application is wrote,

which uses the libAKACim library. The code is configurable in the following ways:

• Algorithm Selection - Various panel method algorithms such as the source

method, direct method, morino kutta condition, pressure kutta condition, etc.,

have been programmed as different classes. The choice of panel method is se-

lected by the user of the library.

• Strategy Design Patterns - Various algorithms, such as those in the libEHMsci

library, have been programmed using strategy design pattern [15]. The strategy

design pattern allows the user of the library to customize the panel method by

selecting various numerical algorithms used; including the algorithm to solve

the system of linear equations, and the multi-dimensional root finder used by

the pressure kutta condition.

• Configuration File - The various parameters used in the model are adjusted by

a configuration file, which is loaded at run-time. The configuration file allows
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for the fine tuning of the numerical methods, such as the vortex particle core

radius, size of the time step, length of the buffer wake, number of iterations,

fluid inflow, as well as the scale and position of the propeller or wing body. The

configuration file is in the form of a MS Windows ini file (attribute-value pairs),

which is read using the SimpleIni library, provided under the MIT license.

• Object Geometry - The object geometry is provided in a custom formatted file.

The geometry is provided as an ordered list of points to be used as panel nodes,

followed by a list of panels, given by either three or four nodes. The wake

generating edges are specified as a list of nodes, connected along the trailing

edge of the lifting body. Various algorithms have been generated in Matlab

to generate geometry files based on the type of body and the parameters that

define the object.

To solve the system of linear equations given by Equation 4.9, either the BiCon-

jugate Gradient method (BiCG) [4] or LU Decomposition method [46] is used. The

BiCG method is an iterative method which can compute the solution of dense non-

symmetric matrices. LU Decomposition is an exact method, which is effective at

determining the solution of equations of the form AX = B, for multiple vectors B,

as long as the matrix A remains unchanged. In the case of pressure kutta condition,

Equation 4.9 must be solved at each iteration of the root finding algorithm. At each

iteration, the influence matrices remain unchanged, allowing the LU Decomposition

to remain unchanged, such that the solution can be efficiency computed each time

step with different values for the circulation. In addition, due to the nature of the root

finding algorithm, accurate solutions for the system of linear equations is required for
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small changes in circulation. Hence, the exact solution of the LU Decomposition is

desirable over the BiCG method, which may lead to instabilities in the root find-

ing algorithm if no improvement to the solution is seen due to small changes in the

circulation.

For the pressure kutta condition, it is necessary to solve for the circulation which

produces zero pressure difference along the trailing edge. To achieve this, a multi-

dimensional root finder is required. For this work, Broyden’s Method has been used

[46]. Broyden’s Method is globally convergent and does not require the computation

of the Jacobian matrix (numerical gradient), which is computationally expensive.

The time stepping of the vortex particle method is achieved using an low storage

3rd order Runge-Kutta method [58]. This method was suggested by Calabretta due to

its low storage requirements relative to traditional Runge-Kutta methods along with

the ability to eliminate round-off errors that accumulate over long time simulations

[8]. This method has been adopted for the time stepping of vortex particle locations

and strengths within the vortex particle method.
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