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Abstract 

From a design point of view, a robust simplified limit load solution is the one which is 

consistently lower bound, yet provides a better estimate compared to the classical lower bound 

limit load. The robustness is determined by its proximity to the exact limit load. There are 

several limit load multipliers such as multiplier µm ′′  (Seshadri and Indermohan, 2004), multiplier 

m'' (Simha and Adibi-Asl, 2012), two bar multiplier (Seshadri and Adibi-Asl, 2007), and 

multiplier  (Seshadri and Hossain, 2009) which provides reasonable estimates of limit loads. 

However their nature of bounds has not been examined. In this thesis limit load bounds for these 

multipliers have been investigated. Finally, the nature of bounds of all the limit load multipliers 

in the literature are summarized, where bounds are either already established or will be addressed 

in this thesis. 

 

The lower bound estimate of the multiplier µm ′′  relies on the exact distribution of plastic flow 

parameter. It is found that for an approximate distribution of flow parameter, µm ′′  is either upper 

bound or its bounds are not obvious. Since the exact distribution of plastic flow parameter is only 

available from the limit state stress distribution, the multiplier µm ′′  could not be established as a 

lower bound based on the linear elastic analysis.  

  

Simha and Adibi-Asl (2012) proposed an inequality relation (m''< µm ′′ ) for lower bound m''. It is 

concluded that the inequality (m''< µm ′′ ) could not guarantee a lower bound m'', when µm ′′  is 

estimated from an approximate distribution of plastic flow parameter.  

 

In order to investigate limit load bounds of the two bar solution, reference two bar multiplier 

(which gives bounding limit load over the other two bar configurations) is first identified by 

performing general two bar analysis. Since a mechanical component or structure can be 

represented by a suitable multi bar model, a general multi bar analysis is then performed. It is 

found that the reference two bar multiplier bounds the limit load solution of multi bar models. A 

correction factor has also been introduced to the reference two bar solution in order to eliminate 

any possibility of overestimation of limit loads using reference two bar multiplier. Hence the 
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proposed estimate of reference two bar solution provides lower bound limit load. However limit 

load estimation using this multiplier at times could be conservative (although offers much better 

accuracy than classical lower bound) compared to the exact limit load.  

 

The  multiplier which offers better accuracy than the two bar multiplier is also established as 

a lower bound by investigating exact solution trajectory, utilizing the constraint map 

construction. Also, it is found that the  multiplier bounds the limit load solution of multi bar 

models, which confirms the lower bound nature of the  multiplier. A guideline is proposed to 

obtain sufficiently accurate lower bound limit load based on a single linear elastic analysis.  

 

In terms of elastic modulus adjustment procedure (EMAP), classical lower bound limit load 

multiplier is susceptible to oscillations with iterations, when sharp modulus adjustments are 

performed thereby raising convergence issues. On the other hand, more gentle element modulus 

adjustments turn out to be computationally expensive. In this thesis, the mα-tangent multiplier is 

used in conjunction with the elastic modulus adjustment procedure for limit load determination. 

The lower boundedness of the mα-tangent multiplier for any iteration is ensured by incorporating 

reference volume and peak stress corrections. By the virtue of the faster convergence feature, the 

mα
T
-multiplier permits gentler modulus adjustments, and at the same time estimates sufficiently 

accurate lower bound limit load within a relatively small number of elastic iterations. This 

minimizes the convergence difficulties usually encountered in EMAP.  

 

Simplified techniques on the basis of linear elastic finite element analysis (FEA) assumes elastic-

perfectly-plastic material model. However, due to strain hardening, a component or a structure 

can store supplementary strain energy and carry additional load. In this thesis, an iterative elastic 

modulus adjustment scheme is developed for strain hardening material model, utilizing the 

“strain energy density” theory. The proposed algorithm is then programmed into repeated linear 

elastic FEA and implemented to a number of practical components. Moreover, the procedure for 

elastic modulus adjustment to achieve limit state and elastic-plastic state are explained in 

parallel, to demonstrate their similarity and diversity. 

T
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Chapter 1: Introduction 

1.1 General Background 

The primary objective in designing a mechanical component or structure is to ensure its ability to 

perform the intended function at minimum capital and operational cost. Therefore it is important 

to design components by taking into account all failure modes that the component could 

experience. It is also necessary to periodically assess the “integrity” of mechanical components, 

and structures in operation thereby establishing an estimate of the remaining life of critical 

components. 

 

Among the various modes that may govern the failure of a component, plastic collapse is one of 

the most important, since it would lead to gross plastic deformation. Load which causes cross-

sectional plasticity in structures resulting in uncontained plastic flow is termed as limit load. 

Limit load analysis provides a measure of the reserve strength that exists in mechanical and 

structural components. As well, knowledge of the limit load is necessary for obtaining the 

reference stress [2], which is used extensively in the United Kingdom [33] [34] in integrity 

assessment and fracture evaluations. 

 

Conventionally, limit loads are determined either analytically or by using the numerical methods. 

Analytical methods are mostly used in conjunction with lower and upper bound theorems in 

plasticity, and application of these methods is generally limited to simple geometric 

configurations. Numerical methods such as inelastic finite element analysis, on the other hand, 

are applicable to a wide range of practical components and structures. The most frequently used 

numerical approach to obtain a limit load is to perform a nonlinear elastic-plastic finite element 
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analysis with no strain hardening. However inelastic FEA has some limitations. The difficulties 

arise mainly from the need to carry out analyses in an iterative and incremental form. Since this 

method always operates at the convergence limit, it tends to be relatively inefficient, i.e. many 

steps are required to obtain a good estimate of the limit load. Moreover the enormous 

computational time required for the analysis is expensive and produces a large amount of output 

data that has to be interpreted properly in order to make practical sense. For complex shakedown 

analysis, inelastic analysis remains an expensive choice, especially for combined loading.  

 

An independent verification of a detailed nonlinear FEA results is also essential in order to avoid 

having erroneous results due to numerical errors.  

 

As per the ASME design-by-analysis approach ([1] [11]), primary stresses are to be kept below 

their corresponding allowable values in order to avoid plastic collapse. However, for complex 

geometric configurations primary stress classification from a linear elastic stress distribution is 

not always straightforward.    

 

Structural integrity assessment in an operating plant is practiced at three levels. Level 1 

assessment procedures provide conservative screening criteria that can be used with a minimum 

quantity of inspection data or information about the component. Level 2 is intended for use by 

facilities or plant engineers, although some owner-operator organizations consider it more 

suitable for a central engineering evaluation. Level 3 assessments require sophisticated analysis 

by experts, where advanced computational procedures are often carried out. Level 2 Fitness-for-

Service evaluations are often made in an engineering plant environment with the availability of 
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limited resources and often demands time critical solutions. In this situation implementation of a 

simplified methodology makes much sense in order to evaluate remaining strength of an in-

service component. Clearly an inelastic solution is not an option for this kind of situation. 

 

The above considerations create the need for the development of alternate lower bound limit load 

approximation techniques. Simplified limit load approximations have been employed for limit 

load estimation on the basis of linear elastic finite element analysis (FEA). However from a 

design point of view, a robust limit load solution is required, which is a lower bound, yet 

provides a better estimate of limit load compared to the classical lower bound limit load. 

Therefore developing better approximation techniques, examining the bounding nature of several 

simplified approximations and their systematic implementation are the main aim of this thesis. 

 

It should be pointed here that throughout the thesis the terms ‘limit load bounds’ and ‘bounding 

nature’ of a limit load solution are used interchangeably, which specifies whether a limit load 

multiplier is consistently lower bound, consistently upper bound or its bound is not clear.  

 

1.2 Lower Bound Limit Load  

Structures can withstand loads beyond the elastic limit of structural materials, and with plastic 

design, advantage can be taken of the reserve strength that exists beyond the initial yielding. For 

statically indeterminate structures especially those with large indeterminacy, the reserve strength 

can be significant. Therefore knowledge of limit loads of components and structures becomes 

useful to a designer, since it enables the determination of the reserve strength and also addresses 

the mode of failure associated with load-controlled effects.  
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Lower bound limit loads are especially relevant from a design point of view since they provide a 

guaranteed margin of safety against load controlled plastic failure modes, or the related primary 

stress limits contained in the design codes ([1] [11]). Lower bound limit load guarantees that the 

stress distribution throughout the component or structure is in equilibrium internally, balances 

the external loads and at the same time does not violate the yield condition.  

 

1.3 Need for Simplified Approximations  

Simplified limit load approximations can be employed as an alternative limit load estimation 

method on the basis of linear elastic finite element analysis (FEA). This approach utilizes the 

“bounding theorems in plasticity”, in conjunction with the linear elastic analysis.  

 

The simplified methods rely on statically admissible stress and kinematically admissible strain 

rate fields obtained from linear elastic FEA. For real-world geometries, it is convenient to 

estimate the limit load utilizing statically admissible stress and kinematically admissible strain 

fields. Simplified methods can be based on iterative finite element elastic analyses that involves 

modification to the element elastic modulus in successive iterations. Also it is possible to 

compute limit load by utilizing a single linear elastic stress field (no iterations). No matter what 

the approach is, the objective is to obtain an economic limit load solution which is neither 

overestimated nor overly conservative. Since the ultimate goal is to achieve an economic but safe 

estimate of limit load, it is important to understand the bounding nature of several simplified 

approximation techniques and their systematic implementation.  
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Even beyond limit state, membrane action and post-yield strain hardening effect enable the 

structure to withstand increased loads prior to ultimate collapse. Therefore, designers are also 

interested in the development of simplified formulations that can account for strain hardening 

and in-plane membrane action, in order to capture the post yield behavior of a component or 

structure.  

 

Simplified approximation techniques are ideally suited for performing a preliminary analysis, 

design or qualification of components so that the safety margin of a component or structure can 

be assessed. These methods can also be used for identifying critical locations; as well as 

estimating the inelastic effects. Simplified methods are sometimes the only recourse to an 

independent verification of the results of a detailed nonlinear analysis of a complex geometric 

configuration.  

 

1.4 Objectives of Research 

The primary set of objectives of the proposed research work is as follows: 

 

1. Examine the limit load bounds of several simplified limit load approximations, for which 

bounds have not been established and suggest guideline for a lower bound estimate. There are 

several limit load multipliers such as multiplier  [13], multiplier m'' [14], two bar multiplier 

[10], and multiplier  [12] which provide reasonable estimates of limit loads. However their 

bounds have not been examined. In this thesis limit load bounds for these multipliers have been 

investigated. Finally, limit load bounds of all the limit load multipliers in the literature are 

summarized, where bounds are either already established or will be addressed in this thesis. 

µm ′′

T
mα
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2. Develop an elastic modulus adjustment scheme for elastic-perfectly-plastic material model, 

which reduces the convergence difficulties usually encountered in EMAP for complex 

component configurations. The mα-tangent multiplier is used in conjunction with the elastic 

modulus adjustment procedure in order to eliminate the convergence difficulties and estimate 

sufficiently accurate lower bound limit load within a relatively small number of elastic iterations. 

 

3. Provide guidelines for calculating lower bound limit loads based on a single linear elastic 

analysis. Essential correction factors are introduced to some of the limit load multipliers in order 

to eliminate the possibility of overestimation/underestimation of limit load.  

 

4. Develop an iterative elastic modulus adjustment scheme for strain hardening material model, 

utilizing the “strain energy density” theory. The proposed algorithm is then programmed into 

repeated linear elastic FEA and implemented to a number of practical components. Moreover, 

the procedure for elastic modulus adjustment to achieve limit state and elastic-plastic state are 

explained in parallel, to demonstrate their similarity and diversity. 
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1.5 Scope of Research 

From a design point of view, lower bound limit loads provide a guaranteed margin of safety 

against load controlled plastic failure modes. The improvement of the accuracy of lower bound 

limit load estimation towards the exact limit load has great engineering value. Estimation of 

lower bound limit load by using simplified methods is of considerable interest due to its 

simplicity and cost effectiveness. There are several simplified limit load multipliers in literature 

which provide reasonable estimates of limit loads. However their bounds have not been 

established. Examining the bounds of several simplified limit load approximation techniques and 

suggest guideline for accurate lower bound offers a significant scope of research.  

 

During elastic modulus adjustment procedure (EMAP), lower bound limit load multipliers are 

susceptible to oscillations with iterations, when sharp modulus adjustments are performed 

thereby raising convergence issues. On the other hand, a more gentle element modulus 

adjustments turn out to be computationally expensive. There is a scope of developing an EMAP 

scheme, which minimizes the convergence difficulties usually encountered and at the same time 

can estimate sufficiently accurate limit load within a few linear elastic iterations.  

 

Simplified limit load analysis techniques assume elastic-perfectly-plastic material model. Due to 

strain hardening, a component or a structure can store supplementary strain energy and hence 

carry additional load. Therefore development of elastic modulus adjustment scheme for strain 

hardening material model has significant engineering and economic value. 
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1.6 Organization of the Thesis 

This thesis is composed of eight chapters. The first chapter addresses the significance of lower 

bound limit load approximations and the advantage of using simplified techniques for 

mechanical component and structure design. The objectives and scope of the proposed research 

work are also presented in this chapter.  

 

The theoretical aspects pertaining to the research reported in this thesis are explained in Chapter 

2. The bounding theorems in plasticity are explained in this chapter. The extended variational 

theorem proposed by Mura and co-workers [30] is introduced and several limit load multipliers, 

which set the basis for the current thesis, have been re-derived. The concept of reference stress is 

discussed and the relationship between reference stress and limit load is highlighted. The concept 

of reference volume is discussed in an attempt to isolate the regions in the structures that most 

likely do not participate in plastic collapse.  

 

Chapter 3 discusses the upper and lower bound multipliers, basic construction of the constraint 

map, exact solution locus as well as robust limit load approximations. This chapter also deals 

with the limit load bounds for the multiplier  [13] and multiplier m'' [14]. Finally a list of 

limit load multipliers available in the literature and their bounds (either established previously or 

established in this thesis) are summarized in Chapter 3. Basically chapter 3 gives the essence of 

this thesis and directs to necessary elaborations provided in the subsequent chapters. 

 

Chapter 4 presents the general two bar analysis to achieve the reference two bar multiplier. The 

generalized two-bar analysis eliminates the equal two bar area assumption previously considered 

µm ′′
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in the literature [10]. A transformation parameter is obtained from the reference two bar model 

which scales up Mura’s overly conservative lower bound multiplier to a multiplier with 

improved accuracy. Since a general mechanical component can be represented by a suitable 

multi bar model in terms of limit load estimation, the bounding nature of reference two bar 

model over multi bar structures is also discussed in this chapter. 

 

Chapter 5 discusses theoretical evolution of the mα-tangent method [12] and establishes this 

method as a robust lower bound. Reference volume correction is proposed in order ensure lower 

bound mα-tangent solution for practical components and structures. This chapter also provides a 

systematic guideline for elastic modulus adjustment scheme, which reduces the convergence 

difficulties usually encountered in EMAP for complex geometric configurations. This guideline 

is then implemented to a complex three dimensional complex grillage FE model.  

 

In chapter 6, a correction factor has been introduced to the reference two bar multiplier 

(developed in Chapter 4), in order to eliminate any possibility of overestimation of limit loads 

using this multiplier. In addition, a guideline for appropriate incorporation of reference volume 

and peak stress correction to the mα
T
 multiplier (discussed in Chapter 5) is provided in chapter 6. 

It is essential to incorporate the reference volume and peak stress corrections judiciously on a 

component basis, in order to achieve reasonable lower bound estimation of mα
T
 multiplier based 

on single linear elastic analysis. These methods are then implemented to a number of practical 

mechanical components based on a linear elastic analysis.   

 



 10

Chapter 7 presents an elastic modulus adjustment scheme for strain hardening material model. 

This involves development of EMAP formulation for bilinear hardening and Ramberg–Osgood 

material model, followed by the development of an algorithm which can be programmed into 

repeated linear elastic analyses. The procedure for elastic modulus adjustment to achieve limit 

state and elastic-plastic state are explained in parallel, to demonstrate their similarity and 

diversity.  

 

Chapter 8 summarizes and concludes the findings of the present research work. The chapter also 

presents the original contributions to this thesis along with some guidelines for future work. 

   

Appendix A documents the derivation of analytical limit load solution for several beam 

configurations.  

 

Appendix B documents the detailed derivation of the mα-method. This includes some unique 

algebraic manipulations which have not been documented in any previous works.  

 

Appendix C discusses the modeling strategy of components with cracks, for the purpose of limit 

load estimation based on a linear elastic analysis.   
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Chapter 2: Theoretical Background 

2.1 Introduction 

The theoretical aspects relevant to the simplified limit load approximations are presented here. 

Simplified methods are originally based on established classical theorems which enable 

determination of lower bounds and upper bounds for the collapse load. The true collapse load is 

always larger than or equal to the lower bound collapse load and is always smaller than, or equal 

to the upper bound collapse load. The collapse load is thus bracketed between the upper and 

lower bounds.  

 

Alternate formulations for lower and upper bound theorems that were based on extended 

variational concepts were first proposed by Mura and coworkers [5] [30]. By making use of 

“statically admissible” stress distributions and “kinematically admissible” strain distributions, 

and invoking the notion of integral mean of yield, pseudoelastic distributions of stress that 

exceeded yield were utilized for determining the upper and lower bound limit loads.  

 

The classical bounding theorems and variational concepts of plasticity can be utilized in 

conjunction with contemporary computational tools in order to achieve robust and rapid limit 

load estimates. In this thesis, the bounding nature of simplified limit load approximations (which 

are based on the classical and variational theorems) are studied in terms of iterative linear elastic 

analysis as well as single linear elastic analysis. A review of the theoretical aspects relevant to 

the development of this thesis is presented here.  
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2.2 Bounding Theorems in Plasticity 

The main objective of the limit load analysis is to estimate the load at the impending plastic limit 

state of a body. However, for complicated problems it may be difficult to find the exact limit 

load. Therefore, based on the extremum principles of limit load analysis, the bounding theorem 

is employed to estimate the limit load directly, without considering the entire loading history. 

There are two approaches for establishing approximate values: the equilibrium approach for 

lower bound estimates, and the geometry approach for upper bound estimates. In the classical 

limit load analysis, material nonlinearity is included by assuming perfectly plastic material 

model, while the geometric nonlinearity is not taken into account. 

 

2.2.1 Lower Bound Theorem 

A stress field defined throughout a continuum is called statically admissible for the given loads if 

in addition to satisfying the yield conditions, it represents a state of equilibrium under the given 

loads. Such a stress field is safe if at each point of the field, the state of stress is represented by a 

point inside the yield surface.  

  

The statement of the classical lower bound theorem is as follows [3]:  

“If any stress distribution throughout the structure can be found, which is everywhere in 

equilibrium internally and balances the external loads and at the same time does not violate the 

yield condition, those loads will be carried safely by the structure”  

 

Therefore, the load estimated by the lower bound theorem will be less than, or at most equal to, 

the exact limit load and can be used for designing mechanical components and structures. In the 
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lower bound theorem, the equilibrium equations (statically admissible stress field) and yield 

condition are satisfied without considering the mode of deformation of the structure.  

 

2.2.2 Upper Bound Theorem 

A strain rate field defined throughout a continuum is called kinematically admissible for the 

given conditions of support, if it is derived from a velocity field which is compatible with the 

conditions of support and certain continuity conditions. Such a strain field is unsafe for given 

loads, if the total rate of energy dissipated is less than the rate at which the given loads do work 

on the generating velocities.  

 

The upper bound theorem states that [3]: 

“If an estimate of the plastic collapse load of a structure is made by equating the internal rate of 

dissipation of energy to the rate at which the external forces do work in any postulated 

mechanism of deformation of body, the estimate will be either high or correct”. 

 

In processes such as metal forming and metal cutting, it is necessary to determine the load that is 

capable of performing the given operation. Determination of limit loads using the upper bound 

theorem ensures that the limit load estimates obtained can cause “plastic flow” in the component.  
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2.3 Extended Variational Theorems of Limit Load Analysis 

Mura’s variational formulation circumvents the requirement for a statically admissible stress 

field not to lie outside the yield surface in a lower bound analysis, and in an upper bound 

analysis the stress associated with a kinematically admissible stain-rate field in calculating the 

plastic dissipation should lie on the yield surface. In the variational approach proposed by Mura 

et al. [30] [5], such a requirement was eliminated and replaced by the concept of ‘‘integral mean 

of yield’’. They showed that the safety factor ‘m’ (the limit load multiplier) can be obtained from 

the following functional, F. i.e. 

 
( ) [ ]dVsfdVssmF

V

ij

V

ijij ∫∫ +−




 +−= 2002
)()(

2

1
ϕδµδφδδµ  

(2.1) 

In the above equation,  and  refers to quantities associated with a statically admissible 

stress state. The quantities 
ijs , m, μ and  correspond to a state of impending plastic flow for 

which the von-Mises yield criterion is given by, 

 
2

2

1
)( ksssf ijijij −=  (2.2) 

where ‘k’ is the yield limit in shear and  
3

2

2 y
k

σ
= .  

The ‘‘integral mean of yield’’ [5], can be expressed as: 

 [ ] 0)()( 2000 =+∫ dVsf
V

ij ϕµ  (2.3) 

where  
00 ≥µ   

0

ijs  is a statically admissible deviatoric stress tensor close to an impending plastic collapse state 

and hence corresponds to an applied traction m
0
P. μ0

 is a flow parameter and 0ϕ  is a point 

0ϕ 0

ijs

φ
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function that takes on a value of zero at yield, and remains positive below yield. If 
~
0

ijs  is a 

statically admissible stress distribution corresponding to an applied traction P, then m
0

~
0

ijs  would 

correspond to m
0
P. It is therefore clear that 

 
~
000

ijij sms =  (2.4) 

Mura and co-workers [5] have also shown that m
0
, 0µ  and 0ϕ  can be determined from the 

following functional, 

 [ ]dVsfmF
V

ij∫ +−= 20000 )()( ϕµ  (2.5) 

Since δµµµ +=0 , Eq.(2.3) can be written as: 

 [ ] [ ]dVsfdVsf
V

ij

V

ij ∫∫ +=+− 200200 )()()()( ϕµϕδµ  (2.6) 

Now Eq.(2.6) can be substituted into Eq.(2.1) which can be re-written as: 

 
( ) [ ]dVsfdVssmF
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V

ijij ∫∫ ++
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

 +−= 2002
)()(

2

1
ϕµδφδδµ  

(2.7) 

Since the second term on the right hand side of the Eq.(2.7) is always a positive quantity, 

utilizing the concept of ‘‘integral mean of yield’’ (from Eq.(2.3)) in Eq.(2.5), the functional 

given in Eq.(2.7) and Eq.(2.5) can be related by an inequality as: 

 dVsfmm ij

V

])()([ 2000 ϕµ ++≤ ∫

 

(2.8) 

The above inequality in Eq.(2.8) holds if the expression is written in the following form: 

 [ ] dVsfmm
V

ij ∫++≤ µϕ 2000 )()(max

 

(2.9) 
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Mura et al. [5] scaled the virtual velocity field such that the work done on the structure is unity 

and presented an expression for the exact multiplier as: 
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 (2.10) 

Substituting Eq.(2.10) into Eq.(2.9), the expression can be re-written as: 

 

(2.11) 

Conversely, multiplying the second term of the inequality (shown in Eq.(2.8)) by ‘m’ and 

dividing by the expression for it from Eq.(2.10), Eq.(2.8) can be re-written as [13]: 
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As mentioned above, m
0
, 0µ  and 0ϕ  can be determined by rendering the functional given in 

Eq.(2.5) stationary, leading to the following set of equations: 

0
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=
∂

∂

m

F
; 0

0
=

∂

∂

µ
F
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0

=
∂

∂
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 (2.13) 

The von-Mises equivalence for statically admissible stress state can be expressed as: 
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Quantities associated with a statically admissible stress state and the quantities correspond to a 

state of impending plastic flow can be related as: 

 

ijijij sss δ+=0  

δσσσ +=0  

mmm δ+=0  

δϕϕϕ +=0  

δµµµ +=0  

(2.16) 

Where the superscript ‘‘0’’ refers to quantities associated with a statically admissible stress state. 

The quantities , σ, m, μ and  correspond to a state of impending plastic flow. 

 

Now combining Eq.(2.4), Eq.(2.15) and Eq.(2.14), then substituting into Eq.(2.5), 
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Applying Eq.(2.13) in conjunction with Eq.(2.17), we can get Eq.(2.18), Eq.(2.19), and Eq.(2.20) 

respectively. i.e. 
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Letting 00 =ϕ , Seshadri and Mangalaramanan [6] proposed an expression for the upper bound 

multiplier m
0

 from Eq.(2.19) as: 
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(2.21) 

Eq.(2.21) implies that the calculation of m
0
 is based on the total volume assuming the parameter 

0µ  is constant throughout the structure.  

 

Pan and Seshadri [7] derived an expression for m
0
 directly from the ‘‘integral mean of yield’’ 

that allows for a variation of the flow parameter, 0µ . The expression for ‘‘integral mean of 

yield’’ given in Eq.(2.3) can be re-written as (combining Eq.(2.4), Eq.(2.15) and Eq.(2.14)): 
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Letting 00 =ϕ , Pan and Seshadri [7] proposed an expression for the upper bound multiplier m
0
 

(named as 0

2m ) from Eq.(2.22)  as: 
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(2.23) 

For the initial linear elastic analysis, . Compared to m
0
, the multiplier  converge 

more rapidly to the exact value with successive elastic FEA iterations as discussed in the later 

part of this thesis. 

 

In terms of linear elastic analysis, statically admissible stress state 0σ  is considered as the von 

Mises equivalent elastic stress field eqσ . Therefore from this point onward, the statically 

admissible stress 0σ  will be represented as eqσ  throughout the thesis.  

 

Moreover volume ‘V’ in the above expressions implies the total volume of the structure in a 

finite element discretization scheme. If plastic collapse occurs over a localized region of the 

structure, m
0
 will be significantly overestimated. To overcome this problem, Seshadri and 

Mangalaramanan [6] introduced the concept of reference volume to identify the kinematically 

active volume. From this point onward throughout the thesis, the total volume of the structure 

will be represented as VT and the reference volume will be represented as VR. 

 

 

 

00

2 mm = 0

2m
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2.4 Reference Stress Concept 

On the basis of energy dissipation considerations, “reference stress” is the stress level at which 

the average energy dissipation rate in uniaxial tensile test can be equated to the dissipation rate in 

a component or a structure made of that material under a system of loads [28]. Calladine and 

Drucker [28] proposed the “theorem of nesting surfaces” and obtained an expression for 

“reference stress”. The reference stress obtained could be used for approximate estimation of 

limit load, although such estimate is upper bound in nature.  

 

The dissipation rate in a component or a structure under a system of loads can be equated to the 

average dissipation rate at the "reference stress state," 

i.e. ∫=
V

eqeqrefref dVV εσεσ  (2.24) 

Using equivalent stresses and strains to represent the three-dimensional stress-states, and 

stipulating that steady state creep is of the form n
Bσε = , 

  (2.25) 

from which the reference stress can be obtained as: 

  (2.26) 

Calladine and Drucker [29] stated that this functional is strictly monotonically increasing with 

the exponent n. It is bounded below by the result of n=1 (elastic) and above by the limiting 

functional as ∞→n  (perfectly plastic).  
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For a two bar structure shown in Figure 2.1, the following analytical example is developed in 

this thesis in order to clarify the above concept:  

The two-bar model is under the load P; therefore the bars are subjected to axial loading only. 

Stresses in bar 1 and 2 can be expressed as (considering isotropic material property), i.e. 

 

 

 

(2.27) 

 

 Figure 2.1 Two bar model  

 

Therefore the expression for reference stress for a two bar structure can be written as, 

  (2.28) 
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Substituting the above equation by the two bar stress terms,  

  (2.29) 

For n=1 (elastic): 

 
 

(2.30) 

For ∞→n  (perfectly-plastic): 

Expanding Eq.(2.29) in series and neglecting the higher order terms, 

 
 

(2.31) 

Figure 2.2 shows the reference stress variation with exponent n for a particular set of two bar 

parameters. The reference stress is monotonically increasing with exponent n and for any value 

of n it satisfies Eq.(2.32). 
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 Figure 2.2 Reference stress variation in a two bar structure  

 

With respect to Eq.(2.32), nref |σ  is enveloped above by 1| =nrefσ  and below by the limit surface 

)(lim ref
n

σ
∞→

, which is the yield surface. 

 

For general linear elastic analysis (n=1), the reference stress expression (Eq.(2.26)) is used in the 

form,  
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Comparing Eq.(2.33) with Eq.(2.21) implies that the denominator of Eq.(2.21) is essentially the 

reference stress estimate.  The estimation of multiplier m
0
 being an upper bound thus makes 

sense, since the reference stress has been derived on the basis of the energy dissipation 

consideration.  
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2.5 Reference Volume Concept 

When plastic flow occurs over a localized region of the mechanical component or structure, the 

remaining regions do not participate in inelastic action and may remain rigid or elastic at the 

limit state. Therefore only a portion of the total volume carries the external loads at the limit 

state. The volume that actively participates in plastic action is called kinematically active volume 

or reference volume and the remaining regions are called kinematically inactive volume or dead 

volume. 

 

When the primary load is carried by a localized region, it causes significant reduction in load 

carrying capacity of the total component or structure. Therefore,  will be significantly 

overestimated if it is calculated based on the total volume VT.  

 

Consider a component subjected to arbitrary loading condition, as shown in Figure 2.3. The 

component is divided into two regions: (1) reference volume (VR), which is kinematically active 

volume; and (2) the dead volume (VD), which is kinematically inactive volume. If VT is the total 

volume of the mechanical component or structure, 

                                            ( )  (2.34) 

 

0m

TDR VVV =+ TR VV ≤
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 Figure 2.3 Kinematically active and inactive volume  

 

Therefore it is important to incorporate the proper reference volume corrections in the limit load 

approximation techniques, when they have explicit dependency on the multiplier m
0
. 

 

2.6 Linear Elastic Analysis Approach for Limit Load Approximation  

The linear elastic analysis deals with the behavior of solid deformable bodies, which are able to 

recover their original shape upon the removal of the applied loads. The elastic analysis of a 

mechanical component or structure essentially involves the determination of the statically 

admissible and kinematically admissible stress and strain fields, which satisfies the equilibrium, 

compatibility as well as constitutive relationships.   

 

Analytical linear elastic solutions are limited to simple geometries and loading conditions in 

terms of calculating limit loads. Therefore, numerical methods are required for the general 

mechanical component and structure configurations. Elastic Modulus Adjustment Procedure 
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(EMAP) [6] is an example of a numerical method which involves iterative linear elastic analysis. 

The aim of EMAP is to generate inelastic-like stress redistribution by modifying the local elastic 

moduli during iterative linear elastic analysis. An arbitrary load set with the original material 

elastic modulus is applied in the first iteration of elastic FEA. Subsequently, the elastic modulus 

of each element is modified in each successive iteration by following: 

 i
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where q is the elastic modulus adjustment parameter, and the superscript “i” is the iteration 

number (i=1 for the initial elastic analysis).  

 

Eq.(2.35) describes how the elastic modulus at a location is updated from the th
i  to the th

i )1( +  

elastic iteration. In order to simulate the plastic incompressibility condition, Poisson’s ratio is 

usually chosen close to 0.5.   Therefore by specifying spatial variations in the elastic modulus, 

numerous sets of statically admissible and kinematically admissible stress and strain distributions 

are generated, and limit loads for practical components can be obtained.  

 

Simplified limit load approximations can also be made based on a typical single linear elastic 

analysis. In this approach, an arbitrary load set with the original material elastic modulus is 

applied on the FE model and a linear elastic analysis is performed. The upper and lower bound 

limit load solution are then obtained from the statically admissible and kinematically admissible 

stress and strain distribution. These two solutions are then systematically combined together in 

order to achieve a lower bound limit load solution with acceptable accuracy. It should be 

mentioned here that single linear elastic run is nothing but the first iteration of EMAP. 
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2.7 Closure 

Statically admissible and kinematically admissible stress and strain distributions can be obtained 

by performing a single linear elastic analysis or a series of linear elastic FEA in conjunction with 

systematic elastic modulus adjustments. Robust concepts of extended variational theorems in 

plasticity, reference stress, load control and lower bound limit load theorem can be conveniently 

coupled with the linear elastic analysis for obtaining limit load estimates. The extended lower 

bound theorem of Mura et al. introduces new ideas such as integral mean of yield. Researchers 

have investigated this method further and proposed improved limit load estimates. However their 

bounds have not been investigated. Improved limit load approximations based on Mura’s 

variational formulation and their nature of bounds are discussed in the next chapter.  
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Chapter 3: Simplified Limit Load Multipliers and their Bounds 

3.1 Introduction 

Limit load multiplier scales the applied loads proportionally to the level where the structure 

reaches its limit state. Consider a component or structure made of an elastic–perfectly-plastic 

material that is in equilibrium with the applied surface traction PApplied. It is assumed that the 

surface traction is applied as proportional loading. When the load ‘ AppliedmP ’ is applied, the body 

will be in a state of impending limit state. The exact limit load multiplier (m) or the safety factor 

can then be expressed as:  

 
PRIMARY

y

Applied

Limit

P

P
m

σ

σ
==  (3.1) 

Here 
PRIMARYσ  is the primary stress, which ensures equilibrium with externally applied loads.  

 

In traditional limit load analysis, the applied load is incremented in steps until a non-convergence 

occurs due to the lack of equilibrium condition. The corresponding load is considered as the limit 

load. On contrary, simplified methods attempt to estimate primary stress (which maintains 

equilibrium with the externally applied loads) from the linear elastic stress distribution. With 

respect to Eq. (3.1), the primary stress is proportional to the applied load and the limit load is 

proportional to the yield strength of a material. It should be noted here that for a simplified limit 

load multiplier, the denominator of its expression represents an estimate of primary stress when 

it is re-arranged according to Eq. (3.1). 
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Lower bound estimates of the limit load multiplier can provide margin of safety against load 

controlled plastic failure modes. As per the ASME Code guideline [11], yield limit is taken as 1.5 

times the allowable strength (which is typically yield strength/1.5) under the design loading 

condition. Also a factor of safety of 1.5 is to be applied to the calculated limit load multiplier (m) 

as per the code requirement. 

 

Several estimates of the limit load multipliers can be obtained on the basis of linear elastic 

analysis. This chapter discusses the upper and lower bound multipliers and the construction of 

the constraint map. Several limit load multipliers which have explicit dependency on the upper 

bound multiplier m
0
 and lower bound multiplier mL, their bounds can be established utilizing the 

constraint map.  

 

This chapter also deals with the limit load bounds for the multiplier  (Seshadri and 

Indermohan [13]) and m'' (Simha and Adibi-asl [14]). An expression for the multiplier  is 

proposed in a form which enables parametric examination of its estimate based on the possible 

approximations of the plastic flow parameter distribution.  

 

Subsequently a list of limit load multipliers available in the literature and their bounds (either 

established previously or addressed in this thesis) are summarized in this chapter. Basically this 

chapter gives the essence of the thesis and directs to necessary elaborations provided in the later 

chapters. 

 

 

µm ′′

µm′′
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3.2 Classical Lower Bound - Multiplier mL 

The lower bound multiplier, mL, can be directly obtained by invoking the lower-bound theorem 

of plasticity. Assume that some stress distribution throughout the component or structure can be 

found, which is everywhere in equilibrium internally, balances the external loads and at the same 

time does not violate the yield condition. Then the corresponding applied loads will be less than, 

or at most equal to, the exact limit load; and will be carried safely by a sufficiently ductile 

material.  

 

The estimated stress distribution does not violate the yield condition if the material yield strength 

is considered equal to the maximum equivalent stress ( )
maxeqσ , anywhere in the structure. If yσ  

is the yield strength of the elastic-plastic material, then the classical lower-bound multiplier (mL) 

can be expressed as: 

 ( )
max

y

eq

Lm
σ

σ
=

 
(3.2) 

Proof of the lower bound theorem can be found in the books by Calladine [3] and Lubliner [4].  
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3.3 Upper Bound Solution - Multiplier m
0 

As discussed in Chapter 2, Seshadri and Mangalaramanan [6] proposed an expression for the 

upper bound multiplier m
0

, by assuming that the flow parameter  for any statically admissible 

stress state will be a constant throughout the structure. The expression given in Eq.(2.21) can be 

re-written as: 
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(3.3) 

The denominator of Eq.(3.3) refers to the "reference stress" ( ). In chapter 2,  has been 

derived on the basis of energy dissipation considerations, therefore 0
m  would correspond to an 

upper bound limit load. 

 

Pan and Seshadri [7] proposed an improved expression for evaluating  (named as ), 

based on the “integral mean of yield” criterion (detail derivation is provided in Chapter 2). It is 

based on the idea that  is a distributed parameter that characterizes the degree of plastic flow 

at a given location and can be expressed as (see Eq.(2.23)): 
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(3.4) 

With respect to Eq.(3.4) the super-scripted variable 0µ  is a flow parameter distribution, 

associated with any statically admissible stress state.  
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On the basis of deformation theory of plasticity, the flow rule can be expressed as: 

 
''

ijij µσε =  (3.5) 

The above expression relates the stress and strain deviators using a scalar parameter μ, known as 

actual plastic flow parameter. Therefore the distribution of actual flow parameter (μ) can be 

defined as [7]: 

 
SE

1

2

3

2

3
==

σ
ε

µ  (3.6) 

where 
''

2

3
ijijσσσ =  is the effective stress and 

''

3

2
ijijεεε =  is the effective strain and ES is the 

secant modulus of an element.  

 

Now that the super-scripted variable 0µ  associated with any statically admissible stress state, it 

is also a function of the secant modulus of every element in a given elastic FEA scheme, i.e., 

 
SE

C
=0µ  (3.7) 

where C is a constant whose value depends on the specific geometric configuration and loading 

pattern. As the stress distribution approaches the limit-type distribution, the distribution of the 

plastic flow parameter 0µ  will get closer to the distribution of actual flow parameter μ.  

i.e., 
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In terms of linear elastic stress distribution, Es is assumed as the ratio of equivalent stress and 

equivalent strain. Therefore the above expression can be written as: 

i.e., 


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(3.9) 

For the initial linear elastic analysis, 00

2 mm = , therefore the upper bound multiplier is denoted 

simply as  0
m when single linear elastic analysis is employed.   
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3.4 Concept of the Constraint Map 

The constraint map [8] is a plot where the classical lower bound multiplier (mL) and the upper 

bound multiplier (m
0
) are set to be the extreme bounds, in order to identify the exact solution 

region for any component or structure. The constraint map also represents a primary stress state, 

which corresponds to the limit state.  

 

3.4.1 Construction of the Constraint Map 

When the exact solution (m) is assumed to be coincide with the lower bound multiplier (mL), 

then  

i.e., Lmm =  (3.10) 

Eq.(3.10) can be rewritten in the following form, 

 
Lm

m

m

m
00

=  (3.11) 

Defining 
m

m
R

0
0 = and 

Lm

m
0

=ζ , the above equation can be expressed as:  

 ζ=0
R  (3.12) 

Conversely, when the exact solution (m) is assumed to be coincide with the upper bound 

multiplier (m
0
), then  

 0
mm =  (3.13) 

Eq.(3.13) can be rewritten in the following form, 

 10 =R  (3.14) 
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The constraint map is a plot of R
0 

versus ζ, where Eq.(3.12) represents the line with a slope of 

1tan
0

=
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

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
=

ζ
θ

d

dR
 and Eq.(3.14) represents the horizontal axis 










=








= 0tan

0

ζ
θ

d

dR
, as shown 

in Figure 3.1. The exact multiplier for a mechanical component or a structure lies between 

 and  line. 

 

 Figure 3.1 Constraint map showing relative magnitudes of different multipliers (θ in radian)  

 

The origin of the constraint map (R0
=1, ζ=1) represents a primary stress state, which also 

corresponds to a limit state. For a particular component or structure, ζ signifies the degree of 

stress concentration or “kinematic redundancy” in its linear elastic stress distribution, due to the 

presence of varying proportion of secondary and peak stresses.  
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3.4.2 The Exact Multiplier, m 

As discussed above, the constraint map enables identification of a region where the exact 

solution (as shown in Figure 3.1) for any mechanical component and structure is located. The 

general expression of exact limit load multiplier, m (which is not known a priori) can now be 

expressed as: 

( ) θζ tan11
0

0 −+==
m

m
R  (3.15) 

In the above equation, 
Lm

m
0

=ζ . In this expression tanθ could be any value between 1tan0 ≤≤ θ . 

In Figure 3.1 ‘m’ is represented by ‘initial point’. A detail description of exact solution locus is 

given in Section 5.6. 

 

For a component or structure, m
0
 and mL are available from the linear elastic stress distribution, 

leaving  being the only unknown towards the evaluation of the exact multiplier.  

 

Setting 1tan =θ  in Eq.(3.15) leads to the equation m=mL, and specifying 0tan =θ  results in the 

equation, m=m
0
. Specifying an appropriate value of θtan  which is less than 1 but greater than 0, 

could narrow down the region where exact solution could be located. Once an appropriate value 

of θtan  could be specified for Eq.(3.15), it will give more accurate lower bound limit load 

solution compared to the classical lower bound mL, for any practical mechanical component or 

structure.  

 

In this thesis it is established that the exact multiplier ‘m’ for a component or a structure lies 

between the lines having slope of  and . A detailed description is 

provided in Chapter 5. 

θtan
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3.5 Mura’s Extended Lower Bound - Multiplier m'  

As discussed in Chapter 2, Mura’s extended variational principle [30] [5] leads to a lower bound 

multiplier (m') and can be expressed as (see Eq.(2.11)): 
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(3.16) 

Specifying 00 =ϕ  Eq.(3.16) can be expressed as: 
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(3.17) 

Using uniaxial equivalents for multiaxial stress states, Eq.(3.17) can be written in a form that is 

suitable for an FEA scheme [6], i.e., 
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The expression of m′ by normalizing with the exact multiplier m can be represented as, 

 
2

0

1

2

ζ+
=′

R
R  (3.19) 

where
m

m
R

′
=′ , 

Lm

m
0

=ζ  and 
m

m
R

0
0 =  

In the constraint map, R′=1 trajectory (m=m′ trajectory) can be represented by plotting the 

relationship given in Eq.(3.20) as shown in Figure 3.1.  
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2
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0 ζ+

=
′

=
m

m
R  (3.20) 

In order to obtain the slope of the tangent line for the curve at any ζ  location, differentiate 

Eq.(3.20) with respect toζ . The slope of the tangent line at limit state ( mmmm L =′==0 ) can 

be obtained as,  

 1

1

0
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







=ζ
ζd

dR
 (3.21) 

This is the slope of the ζ=0
R  line (Eq.(3.12)) as discussed earlier. Therefore ζ=0

R  line is 

tangent to the curve defined by Eq.(3.20), at limit state. Hence the trajectory of classical lower 

bound multiplier always lies below the Mura’s lower bound trajectory with the exception at limit 

state (at limit state mmL
′= ), as shown in Figure 3.1. This proves that for any value of ζ, 

Lmm <′ , except ζ=1. 

 

3.6 Variational Limit Load Multiplier µm ′′  

Letting , in Eq.(2.12) Seshadri and Indermohan [13] derived the multiplier mμ'' as:  

 

where 

 

 

(3.22) 

Here m is the exact limit load multiplier.  

As shown in Chapter 2, the von Mises yield function  for any element can be expressed as:  
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  (3.23) 

The exact distribution of plastic flow parameter μ can only be determined from the limit state 

stress distribution. In order to achieve an approximate distribution of μ from a linear elastic stress 

distribution, following approximation is proposed.  

 

3.6.1 Approximate Distribution of Plastic Flow Parameter 

The secant modulus (also known as effective modulus of elasticity in inelastic state) Es of 

various elements in a finite element discretization scheme was specified by Pan and Seshadri [7] 

(as discussed in Section 3.3), in order to simulate the distributed effect of the plastic flow 

parameter. The general expression for the distribution of plastic flow parameter across elements 

proposed by Pan and Seshadri can be represented as (shown in Figure 3.2): 

  (3.24) 

 

 Figure 3.2 Schematic of the stress-strain relationship [15]  
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With respect to Figure 3.2, Eo is the linear elastic modulus and Es is the Secant Modulus of an 

element.  

 

A general relation between the linear elastic modulus (elastic state) and the Secant Modulus 

(inelastic state) can be expressed as [15]: 

  (3.25) 

Now, substituting Eq.(3.24) by Es, the general expression for the flow parameter distribution is 

proposed as follows: 

 

 

(3.26) 

As illustrated in Figure 3.2, in order to bring point A (which represents the equivalent stress and 

strain calculated from elastic solution) to the yield surface level, q would be dependent on the 

local constraint (the constraint in each part of a component or structure). Depending on the value 

of 'q', several approximations of μ (based on Eq.(3.26)) could be made. The accurate value of q 

(q=qexact) will vary for different geometric configurations and is not known a priori.  

 

Notch stress strain conversion (NSSC) rules [15] are widely used to estimate nonlinear and 

history-dependent stress-strain behavior of the notch components or structures. NSSC rules 

provide an approximate formula to relate local elastic-plastic stress and strain at the notch root to 

those predicted elastically. In Eq.(3.26), q=1 refers to the linear NSSC rule, which assumes that 

the strains for pseudo elastic and inelastic states are same (shown in Figure 3.2). This rule gives 

a better estimation for plane strain compared with the plane stress condition [17]. On the other 
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hand, q=2 refers to the Neuber rule [16] (shown in Figure 3.2), which assumes that the 

redistribution of elastic stress to inelastic state occurs along the Neuber’s hyperbola. Studies 

revealed that  generally overestimate the local inelastic strain and stress [18][19]. 

Therefore q ≥ 2 usually gives higher assurance of lower bound limit load. 

 

As per equivalent strain energy density (ESED) rule [20],  can also 

be used in Eq.(3.26). In this approach, the value of 'q' varies in element basis. 

 

3.6.2 Limit Load Bounds for Multiplier µm ′′  

Based on the above discussion, the proposed µ  from Eq.(3.26)  and )(
0

ijsf  from Eq.(3.23) can 

be substituted into Eq.(3.22) and the modified expression for mμ'' is proposed as shown in 

Eq.(3.27). This expression enables parametric examination of mμ'' multiplier estimate based on 

the possible approximations of the plastic flow parameter distribution, by varying the value of 

‘q’ in Eq.(3.27).  
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With respect to Eq.(3.27), an approximate flow parameter distribution obtained on the basis of 

single linear elastic analysis gives an estimate of  for which its bounds are not obvious. For 

example when q=0 is specified in Eq.(3.27), Gμ becomes zero, leading to mμ''=m
0
. For any other 

values of q, the nature of the bounds for the multiplier mμ'' is not obvious.  

 

It is found that, the multiplier mμ'' decreases with increasing of q, as shown in Figure 3.3 

(starting from mμ''=m
0

 when q=0). Therefore for a particular value of q=qexact the multiplier 

mμ''=m. However the value of qexact is not known a priori for a particular component or structure. 

It should be mentioned here that  generally overestimate the local inelastic strain and 

stress [18][19]. Therefore q ≥ 2 usually gives higher assurance of lower bound limit load. 

 

 Figure 3.3 Variation of µm ′′  with q  

 

3.6.3 Analytical Examples 

The estimates of multiplier µm ′′  is examined using the analytical solution of different beam 

configurations. Detailed analytical derivations are provided in Appendix A.  
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3.6.3.1 Rectangular Beam Analysis 

Assuming the beam of unit width (w), thickness (t) and yield strength (σy) shown in Figure 3.4, 

consider the elastic stress field under bending moment (M), and the axial stress as a function of 

height from the neutral axis, y. For this configuration, the estimates of limit load multipliers are 

presented in Table 3.1. Detailed derivations are given in Appendix A.1.  

Table 3.1 Limit load multipliers for a rectangular beam 

    
 

(when q=1) 

 

(when q=2) 

   0.8 0.93 0.83 

 

With respect to Figure 3.4,  decreases from m
0
 to mL with increasing q, as shown in a 

normalized form. For this particular example, exact solution corresponds to q=0.5.  

 

 

 Figure 3.4 Variation of  with q for a rectangular beam  
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3.6.3.2 Thin Circular Pipe Analysis 

Assuming the pipe radius (r) and yield strength (σy) shown in Figure 3.5, consider the elastic 

stress field under bending moment (M), and the axial stress as a function of angular position in 

the cross-section, θ. For this configuration, the estimates of limit load multipliers are presented in 

Table 3.2.  

 

 Figure 3.5 Variation of  with q for a thin circular pipe  

 

Table 3.2 Limit load multipliers for a thin circular pipe 

    
 

(when q=1) 

 

(when q=2) 

   0.82 0.95 0.89 

 

Figure 3.5 shows how  decreases from m
0
 to mL with increasing of q, in a normalized form. 

For this particular example, exact solution corresponds to q=0.7. 
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As seen in the above examples, the value of q=qexact is not known a priori for a particular 

component or structure. This implies that the bounds of mμ′′ based on the approximate 

distribution of μ is not definitive. On contrary, exact distribution of flow parameter is not 

available based on linear elastic analysis.  

 

 

3.7 Limit Load Bounds for Multiplier m'' 

Since the exact distribution of the plastic flow parameter μ is not known (as discussed above), it 

can be eliminated by applying the Cauchy–Schwartz inequality [8] both in the numerator and 

denominator of Eq(3.22). i.e. 

 

 

 
(3.28) 

and  
(3.29) 

Substituting Eq.(3.28) and Eq.(3.29) into Eq.(3.22), leads to the following expression for G, 

which replaces Gμ.  
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(3.30) 

The use of Cauchy–Schwartz inequality above renders the quantity m'' independent of μ but it is 

not necessarily a lower bound. Comparing Eq.(3.30) and Eq.(3.22), a general expression of lower 

bound criterion for m'', can be expressed as: 
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µ

µ

GG

mm

≥⇒

′′≤′′
 (3.31) 

The multiplier m'' is a lower bound provided, µGG ≥  where Gμ has to be evaluated on the basis 

of the plastic flow parameter distribution at limit state. However the distribution of plastic flow 

parameter at limit state is not known from a single linear elastic analysis as discussed earlier.  

 

 Simha and Adibi-asl [14] approximated a distribution of the flow parameter μ, in order to 

estimate µm ′′  and suggested to use this µm ′′  in Eq.(3.31) for a lower bound check of m''. Their 

approximation of μ is shown below. Incidentally their approximation of μ work out to be q=1 in 

Eq.(3.26). Therefore their approximation of μ assumes that the equivalent plastic strain is equal 

to the equivalent elastic strain (as discussed in section 3.6.1), which could be at times a non-

conservative assumption. 

 

 
(3.32) 

 

Now for the sake of discussion, if µm ′′  could be achieved based on the exact flow parameter 

distribution, then there is no need to apply Cauchy–Schwartz inequality [8] on the µm ′′

formulation at all in order to obtain m''-multiplier. Conversely, using an approximate value of 

µm ′′  in Eq.(3.31) cannot guarantee that m''-multiplier will be lower bound. Hence the bounds for 

the multiplier m'' cannot be defined. The estimates of multiplier m'' for several beam 

configurations are given in Table 3.1 and Table 3.2. 
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3.8 Robust Limit Load Approximations 

From a design point of view, a robust limit load approximation is the one which is consistently 

lower bound for any practical components or structures. At the same time its magnitude is larger 

than the classical solution and close to exact limit load solution.  

 

Although the multiplier m' is a lower bound, its estimate is always lower than or equal to the 

classical lower bound solution. Therefore its estimation does not have any practical significance.  

 

For multiplier µm ′′  and m'', their bounds are not obviously lower bound based on linear elastic 

analysis as investigated in this chapter.  

 

The bounds of limit load multipliers which has explicit dependency on the multiplier m
0
 and mL, 

can be investigated using the constraint map. The two bar multiplier [10] and multiplier  

[12] has explicit dependency on the multiplier m
0
 and mL. These estimates are found to be 

sufficiently accurate in the literature although their bounds have not been investigated. There is a 

scope of investigating the bounds of these multipliers.   

 

Seshadri and Adibi-Asl [10] assumed a two-bar configuration of equal cross-sectional area and 

proposed the two bar multiplier. In chapter 4 this assumption is eliminated by performing a 

generalized two bar analysis and reference two bar multiplier is re-evaluated. Subsequently 

reference two bar multiplier is established as a lower bound multiplier. A guideline for lower 

bound two bar multiplier estimate for practical components and structures is proposed in Chapter 

6. 

T
mα



 48

Chapter 5 investigates the limit load bounds for the multiplier 
T

mα  
and establish this multiplier 

as a lower bound. A guideline for accurate lower bound limit load based on EMAP is proposed 

in Chapter 5. A guideline for improving the accuracy of lower bound 
T

mα multiplier during 

single linear elastic analysis is proposed in Chapter 6. 

 

A summary of limit load bounds for several limit load multipliers available in the literature (for 

which bounds are either already established in the literature or will be addressed in the 

subsequent chapters of this thesis) are presented in Table 3.3. The relative magnitudes of some 

of the following multipliers can also be viewed from the constraint map as shown in Figure 5.1. 
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Table 3.3 Summary of limit load bounds for several multipliers 

Limit Load Multiplier Nature of Bounds Remarks 

Multiplier, m Exact solution 
Usually not known from linear elastic 

analysis 

Multiplier, m
0
 Upper bound m ≤ m

0 
[8] 

Multiplier, m2
0
 Upper bound m ≤ m2

0≤ m
0 

[8] 

Classical multiplier, mU Upper bound m ≤ mU ≤ m2
0
 [8] 

Classical multiplier, mL Lower bound mL≤ m [3] [4] 

Mura’s multiplier, m′ Lower bound m′≤ mL≤ m [8] 

Suggested estimate of two bar 

multiplier (mTBM) in this 

thesis 

Lower bound 

mL ≤ mTBM ≤ mα
T
 ≤ m 

mTBM offers much better accuracy than 

mL 

Suggested estimate of mαααα
T
 

multiplier in this thesis 
Lower bound 

mL ≤ mα
T
 ≤ m 

mα
T
 is more accurate than mTBM 

Multiplier mα [6] Lower bound mL ≤ mα ≤ mα
T≤ m 

Multiplier mµµµµ′′′′′′′′ 
Bounds could not 

be established  

Exact distribution of plastic flow 

parameter is not available from linear 

elastic analysis.   

Multiplier m′′ 
Bounds could not 

be established  

Exact distribution of plastic flow 

parameter is not available from linear 

elastic analysis.   
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3.9 Discussion and Conclusion 

A summary of the simplified limit load approximation techniques which sets the stage for the 

development of this thesis are discussed. The construction of the constraint map is presented 

mathematically, which was originally conceptualized by Reinhardt and Seshadri [8] as a 

constraint plot.  

 

NSSC rules are introduced into the expression of plastic flow parameter distribution proposed by 

Pan and Seshadri [7]. A general expression of plastic flow parameter distribution is proposed in a 

form which enables parametric examination of the possible approximations of the plastic flow 

parameter based on a linear elastic analysis.  

 

Limit load bounds for the multiplier µm ′′  and m'' have also been investigated. The lower bound 

estimate of the multiplier  relies on the exact distribution of plastic flow parameter. It is 

shown that for an approximate distribution of flow parameter, µm ′′  is either an upper bound or its 

bounds are not obvious. Simha and Adibi-Asl [14] proposed an inequality relation (m''< ) for 

lower bound m''. It is concluded that the inequality (m''< ) cannot guarantee a lower bound 

m'', when  is estimated from an approximate distribution of plastic flow parameter. 

 

A list of limit load multipliers available in the literature and their bounds are summarized. Limit 

load bounds for the two bar multiplier and multiplier 
T

mα as well as their systematic 

implementation will be addressed in the following chapters of this thesis.   

µm ′′

µm ′′

µm ′′

µm ′′
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Chapter 4: Lower Bound Estimate of the Two Bar Multiplier 

4.1 Introduction 

In a mechanical component configuration, load-controlled stresses are statically determinate in 

that they are induced in order to preserve equilibrium with externally applied forces and 

moments. Deformation-controlled stresses on the other hand are induced as a result of statically 

indeterminate actions. When widespread inelastic action occurs, the statically indeterminate 

stresses undergo redistribution throughout the component and become statically determinate after 

the onset of yielding.  

 

In the above context the two bar [10] structure is the simplest structure in which stress 

redistribution phenomena occurs after the onset of yielding. Limit loads for mechanical 

components and structures can be determined, by invoking the concept of equivalence of “static 

indeterminacy,” which relates a component configuration to the “reference two-bar structure”. 

Reference two bar structure is the one which provides the bounding limit load estimate over any 

two bar configurations. 

 

Seshadri and Adibi-Asl [10] first introduced the concept of equivalence of “static indeterminacy” 

to relate a mechanical component (in which two or more plastic hinges form during the plastic 

collapse) to a two-bar structure. The idea was to represent a mechanical component by an 

equivalent reference two bar structure, in order to achieve a limit load solution for the 

component. However, the two bar model proposed by Seshadri and Adibi-Asl [10] assumed 

equal cross-sectional area of the bars. As a result the nature of bounds for the limit load solution 
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is not obvious. There is a scope for developing a general two bar formulation for variable areas, 

and identify the reference two bar configuration. 

 

In this chapter, effort has been directed to developing the general two bar solution. General two 

bar analysis enables identification of the reference two bar model, which bounds other two bar 

configurations in terms of limit load estimation.  

 

A general mechanical component or structure forms multiple plastic hinges during its plastic 

collapse mechanism. In this sense it is equivalent to a multi bar structure of similar collapse 

mechanism. . In this chapter, a general multi bar model is developed and the nature of bounds of 

the reference two bar multiplier over the general multi bar model is investigated.  Based on the 

investigation, the two bar multiplier is established as a potential lower bound solution. 
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4.2 The Two Bar Structure 

Consider a two-bar structure of length L1 and L2 with the cross-sectional area A1 and A2 

respectively, rigidly attached to a horizontal bar under a tension load of P. The basic equations 

for the two-bar structure shown in Figure 4.1(c) assuming equal cross-sectional area (A1=A2) 

are: 

Equilibrium equation:  

Strain-displacement relationship:  and  

Compatibility equation:  

Constitutive relationship:  and  

 

where (σ1,ε1,δ1,E1) and (σ2,ε2,δ2,E2) are the stress, strain, displacement and elastic modulus  for 

bar1 and bar2 respectively. 

 

 

4.3 Plastic Collapse of Components and Structures 

A component or structure can be visualized to be made up of finite number of sections across the 

thickness, throughout its length. Every section is a potential plastic hinge location. As the applied 

load increases, sequential plastic hinges form until local or global plastic flow occurs.  

 

A typical statically indeterminate mechanical component or structure releases static 

indeterminacies through the sequential formation of plastic hinges eventually resulting in a 

collapse mechanism. If a plastic collapse mechanism corresponding to two hinges for a beam 

structure (Figure 4.1(b)) where σ1 and σ2 are the elastic equivalent stresses (σ1 ≥ σ2) at the plastic 

hinge locations of the beam (Figure 4.1(a)), then it is sufficient to satisfy equilibrium against the 
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externally applied surface traction P. As the external load is increased, plastic hinge first forms at 

the location with stress  and then at the location with stress . When plastic collapse 

mechanism corresponds to two hinges, it can be represented by a two bar model as shown in 

Figure 4.1. For a multi bar structure, plastic hinge will form in a numerically decreasing order of 

stress until a local or global collapse mechanism can be identified. In this context, a general 

mechanical component can be represented by a suitable multi bar model.  

 

 

(a) Indeterminate beam under uniformly distributed load, (b) Plastic hinge formation and 

Collapse Mechanism (c) Two bar structure 

Figure 4.1 Relating an indeterminate beam to a two-bar structure 

 

1σ 2σ
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σy1,  E1 
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A2, L2 

σy2, E2 

 

P 

 L2> L1 

A1=A 

A2=nA 

θ2 

θ1 

Xc 

Plastic 

Hinge 1 

Plastic 

Hinge 2 

 

(a) 

(b) 
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Mechanical components which generate multiple hinges can also be represented by a reference 

two bar structure in terms of achieving lower bound limit load solutions.  

 

By definition, reference two bar structure provides the bounding limit load estimate over all 

other two bar configurations. Therefore in order to ensure appropriate equivalency, the reference 

two bar structure needs to be identified by performing a general two bar analysis. In the 

following section, reference two bar structure has been identified on the basis of general two bar 

analysis.  

 

4.4 General Two-Bar Analysis 

As discussed earlier (in Section 2.4), the geometric configuration of a two bar model is function 

of length of the bars as well as their cross-sectional areas. Under the applied load P acting on the 

rigid connection (as shown in Figure 4.1); stresses in bar 1 and 2 can be expressed as:  

 

P
LALA

L

2211

1
1

//

/1

+
=σ  

P
LALA

L

2211

2
2

//

/1

+
=σ  

(4.1) 

 

For the above two-bar structure, the classical lower bound multiplier can be expressed as, 

 ( ) 1max
σ

σ

σ

σ y

eq

y

Lm ==  
(4.2) 

The upper bound 0
m for a homogeneous two bar structure can be obtained as, 

 
2

2

21

2

1

210

VV
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ref

y

σσ
σ

σ

σ

+

+
==  

(4.3) 

 

Here V1=A1L1 and V2=A2L2.  
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Substituting Eq.(4.1) into Eq.(4.2) and Eq.(4.3) respectively, when A1= A and A2= nA, 

 

)()( 2121

21

0 nLLLnL
PLL

A
m

y ++=
σ

 

PL

LnLA
m

y

L

2

21 )( +
=

σ
 

(4.4) 

Hence,  
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When n=1, Eq.(4.5) can be re-written as, 

 
1

2

L

o

L

L

m

m
==ζ  

(4.6)  

Yielding initially occurs in the bar with a smaller ratio of yield strength over stress. After the 

load is increased, the other bar yields and the configuration reaches its limit state. From 

equilibrium consideration, the exact limit load multiplier for homogeneous two bar structure 

(mTBM) can be obtained as (when A1= A and A2= nA).  i.e, 

 
P

nA
PPm

y

LTBM

)1(
/

+
==

σ
 (4.7)  

Therefore the ratio of  
TBM

o

m

m
 can be obtained as, 

 
)1(21

2121
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Re-arranging Eq.(4.5) and Eq.(4.8), and substituting them by ζ , 

 2

2
1

ζ

ζ
ζ

+

+
=

n

n

m

m

L

o

 (4.9)   
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nn

m

m

TBM

o

+

++

=
1

1
2

2

ζ
ζ

 
(4.10)  

Eq.(4.10) can be referred to the family of two bar multiplier.  

 

4.5 Identification of the Reference Two Bar Model 

Limit load of a particular two bar structure is unique depending on the length ratio and area ratio 

of its bars. The constraint map of general two bar configurations can be obtained by plotting 

Eq.(4.10) against ζ for several values of n. Figure 4.2 is a similar plot, where Eq.(4.10) has been 

plotted for 0≤n≤1. Each point on a two bar trajectory (in Figure 4.2) is a limit load solution for a 

particular two bar configuration, having a particular length ratio (ζ) and area ratio (n). Based on 

the plot as shown in Figure 4.2, it is evident that, as the value of n decreases, the trajectory tends 

to approach towards m=m
0
 trajectory and for n=0, the trajectory aligns with the horizontal axis 

(can also be shown in Eq.(4.10)). Therefore the trajectory for n=1, bounds the two bar family (in 

terms of limit load solution) and hence considered as the reference two bar structure.  
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 Figure 4.2 Two-bar trajectories for different values of ‘n’  

 

Based on the general two bar analysis, Eq. (4.10) can be expressed in the form, 

 ( ) ( )ζβζϕ fn
m

m
n

TBM

o

== ,  (4.11)  

where ( )
ζ
ζ

ζ
2

1
2+

=f  and 1≤nβ .   

βn=1 implies n=1 in Eq.(4.11) (equal cross-sectional area of the bars). Now substituting 

Eq.(4.11) by Mura’s lower bound expression (Eq.(3.20)), i.e., 
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Since βn≤1, therefore it is shown that the reference two bar model (βn=1) provides bounding 

limit load solution over all the other two bar configurations. This also confirms that the two bar 
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model of equal cross-sectional area pointed out by Seshadri and Adibi-Asl [10] is indeed the 

reference two bar structure.  

 

4.6 Relating Mechanical Component to Reference Two Bar Model 

As discussed earlier, the general expression for the reference two bar multiplier can be obtained 

by considering βn=1 in Eq.(4.12) (implying equal cross-sectional area of the bars). The 

expression for reference two bar multiplier is shown below: 

i.e. 








 +
=⇒

′=

ζ
ζ

ζ

2

1 2

0
m

m

mm

TBM

TBM

 (4.13) 

Limit loads for practical mechanical components and structures can be determined, by using the 

concept of equivalence of “static indeterminacy,” which relates a component configuration to the 

“reference two-bar structure”. As an example, the value of 
Lm

m
0

=ζ  for the indeterminate beam 

(typically obtained from linear elastic FEA) shown in Figure 4.1(a) represents the length ratio of 

the equivalent reference two bar structure. 

 

Based on the linear elastic analysis, mL and m
0
 are known for a mechanical component or 

structure. Now 
Lm

m
0

=ζ  for the component implies the length ratio of the equivalent reference 

two bar structure.  Therefore once mL and m
0
 are obtained for a mechanical component based on 

linear elastic analysis (typically by performing a linear elastic finite element analysis), the two 

bar limit load multiplier (mTBM) estimate for that particular component can be achieved from 

Eq.(4.13).  
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4.7 Reference TBM - An Estimate Beyond Mura’s Lower Bound  

The extended variational form of Mura and coworkers provides a guaranteed lower bound 

solution, which is however overly conservative compared to the exact limit load. When Mura’s 

lower bound solution is scaled by 
L

o

m

m
=ζ , it points to the reference two bar solution as evident 

from Eq.(4.13). The quality of the estimate is investigated in Chapter 6 by analyzing a 

number of mechanical components and structures.  

 

4.8 Bounding Nature of Reference TBM - Multi Bar Structures 

The occurrence of a single plastic hinge across the thickness of a component is indicative of a 

load controlled membrane mode of collapse. This situation can be represented by a one bar 

model. The presence of a pair of plastic hinges is indicative of a load-controlled membrane plus 

bending mode of plastic collapse and can be represented by the two bar model. General 

mechanical components often generate more than two plastic hinges and can be represented by a 

suitable multi bar model. Multiple numbers of hinge formations can also be expressed in terms of 

the reference two-bar structure, if it gives bounding limit load estimate over the multi bar 

models. In this section, general multi bar model has been established and it is shown that the 

multi bar solutions are bounded by the reference two bar solution.  

 

 

 

 

 

 

ζm′
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4.8.1 Three Bar Model 

Under the applied load P acting on the rigid connection; stresses in bar 1, 2 and 3 (having same 

cross-sectional area) can be expressed as (considering isotropic homogeneous material property), 

i.e.  
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(4.14)  

For the above three bar structure, the classical lower bound multiplier can be expressed as, 
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The upper bound 0
m for a homogeneous three bar structure can be obtained as, 
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(4.17) 

 

Now considering L1=L, L2=ηL1, L3=xηL2. where L3>L2>L1.  

i.e. η>1 and xη>1 or we can say x>1/η 

Therefore, 

 L1=L, L2=ηL, L3=xη2
L  
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From equilibrium consideration, the exact limit load multiplier for homogeneous three bar 

structure can be obtained as: 
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Now Eq.(4.16) and Eq.(4.17) can be written as: 
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Considering the bars are related by the same proportion, we can use x=1 in the above equations. 

Therefore, 
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Substituting Eq.(4.22) into Eq.(4.21) 
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Based on the three bar analysis, the trajectory for the three bar model can be established in the 

constraint map by plotting Eq.(4.23) againstζ , as shown later in Figure 4.5. 

 

4.8.2 Four Bar Model   

Under the applied load P acting on the rigid connection; stresses in bar 1, 2, 3 and 4 can be 

expressed as (considering isotropic homogeneous material property), i.e.  
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For the above four bar structure, the classical lower bound multiplier can be expressed as, 
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The upper bound 0
m for a homogeneous four bar structure can be obtained as, 
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Hence 
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Now considering L1=L, L2=ηL1, L3=xηL2 and L4=yηL3 where L4>L3>L2>L1.  

i.e. x>1 and xη>1 and yη>1 
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Therefore, 

 L1=L, L2= η L, L3=xη 2
L, L4=yη 3

L (4.28) 

From equilibrium consideration, the exact limit load multiplier for homogeneous four bar 

structure can be obtained as: 
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Now considering the bars are related by the same proportion, we can use x=y=1 in the above 

equations.  

Therefore, 
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Substituting Eq.(4.31) into Eq.(4.30) 
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Based on the four bar analysis, the trajectory for the four bar model can be established in the 

constraint map by plotting Eq.(4.32) againstζ , as shown later in Figure 4.5. 

 

4.8.3 General Multi Bar Model  

Number of plastic hinges formed in a mechanical component can be represented by a suitable 

multi bar model as shown in Figure 4.3. Based on the analysis shown in Section 4.8.1 and 4.8.2, 

the general expression for a multi bar model can be represented as: 

where 
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where n is the number of bars in the multi bar model and η is the length ratio between the bars.  

 

 Figure 4.3 Multi bar model  
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Based on the general multi bar expression presented in Eq.(4.33), multi bar solution for any 

number of bars are readily available. For example for a five bar structure substituting Eq. (4.33) 

by n=5 will give the five bar solution as shown in Table 4.1. Some of the multi bar solutions are 

tabulated in Table 4.1.  

Table 4.1 
m

m0

 ratio for the multi bar model 

Model Description 
m
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As a demonstrative example let us consider a fixed-fixed beam as shown in Figure 4.4. For this 

beam, plastic collapse mechanism involves formation of three plastic hinges. Therefore plastic 

collapse mechanism of a fixed-fixed beam corresponds to an equivalent three bar structure. 
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(a) Beam geometry 

 

 

 (b) Finite element model segment (plane stress with thickness) 

Figure 4.4 Fixed end beam geometry 

 

 

A fixed end beam with length, L = 508 mm; height, h = 25.4 mm and width, w=25.4 mm is 

modeled. The modulus of elasticity of the material is 206.85 GPa and yield strength is 206.85 

MPa. The beam is subjected to uniformly distributed load of 1 MPa. The model is meshed using 

PLANE82 elements in ANSYS [21] and width is taken by plane stress with thickness (TK) real 

constant input. Mesh convergence study is performed to verify the sensitivity of the multipliers 

with respect to the mesh density. Based on linear elastic analysis m
0
 and mL are evaluated (from 

from Eq.(3.3) and Eq. (3.2) respectively) and based on inelastic finite element analysis mNFEA is 

evaluated as shown in Table 4.2. Inelastic finite element analysis is performed as per guideline 

provided in Section 5.6. Analytical limit load solution (
Analyticalm ) is also documented. It is 

evident from Table 4.2 that a three bar model gives sufficiently accurate limit load solution for a 

fixed-fixed beam on the basis of single linear elastic analysis. 
Analyticalm

m
0

 vs 
Lm

m
0

 is plotted in the 

constraint map as a point shown in Figure 4.5, which lies close to the three bar trajectory.  

 

w 

L 

h 
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Table 4.2 Limit load multipliers for fixed end beam 

m
0
 mL ζ=m

0 
/ mL 








 ++
=

ζ
ζζ

3

1 2

0

_

m
m barThree

 
m

NFEA
 Analyticalm  

3.937 0.875 4.498 2.065 2.154 2.069 

 

4.8.4 Limit Load Bounds for Reference TBM 

Figure 4.5 shows the constraint map, where several multi bar expressions are plotted against ζ . 

It is evident that as the number of bars increase, the limit load capacity increases. In this context, 

reference two bar solution (mTBM) bounds limit load solution of other multi bar models as shown 

in Figure 4.5.  

i.e. barnbarFourbarThreeTBM mmmm ___ .......... ≤≤≤   

 

 Figure 4.5 The constraint map showing multi bar solutions  
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Now referring back to the inequality relationship shown in Eq.(2.11), the inequality expression 

can be re-written as: 

mm ≤′  (4.34) 

With respect to general two bar solution shown in Eq.(4.12) and general multi bar solutions 

(shown in Table 4.1) it can be concluded that ζm′  is the bounding limit load solution for multi 

bar structures. Therefore when the transformation parameter ζ  is introduced into Mura’s 

inequality, the quantity still satisfies the inequality for multi bar structures. i.e. 

mm ≤′ζ  (4.35) 

In Eq.(4.35) ‘m’ signifies the exact limit load solution for any multi bar structures.  

 

General mechanical components can be represented by a suitable multi bar model. Hence general 

mechanical components forming two or more two plastic hinges can be represented by the 

reference two bar model and lower bound limit load solution can be anticipated.   
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4.9 Discussion and Conclusion  

The reference two bar model is developed on the basis of the generalized two-bar analysis which 

eliminates the assumption previously considered in the literature [10]. A transformation 

parameter has been obtained from the reference two bar model which scales up Mura’s overly 

conservative lower bound multiplier to a multiplier with improved accuracy.  

 

A general mechanical component can be represented by a suitable multi bar model. Since the 

reference two bar solution (mTBM) bounds the limit load solution of other multi bar models, the 

multiplier mTBM is a potential lower bound solution.  

 

Although the reference two bar structure is identified on the basis of the general two bar analysis, 

the shape of a cross-section has not been taken into account. A number of beam cross-sections 

have been studied in Chapter 6 in order to investigate the shape effect. A guideline for lower 

bound two bar multiplier is then proposed for practical mechanical components or structures. 

  



 71

 Chapter 5: Lower Bound Estimate of the -Multiplier 

5.1 Introduction 

The constraint map identifies the region (as shown in Figure 3.1) bounded by the classical lower 

bound multiplier (m=mL line) and the upper bound multiplier m
0
 (m=m

0
 line). Exact limit load 

solution for any practical component or structure is located in this region. It is possible to narrow 

down the exact solution region further. This can be achieved by specifying an appropriate 

trajectory in the constraint map, which has a slope (θ) less than the slope of the m=mL line (as 

shown in Figure 3.1). In this chapter, it is established that a straight line with a slope of 









−=

2

1
1tanθ  (as shown in Figure 3.1) is such a trajectory and hence the limit load estimates 

based on this specified line is a lower bound. The exact multiplier ‘m’ for any component or 

structure therefore lies between the lines having slope of  and tanθ=0 shown in 

Figure 3.1. The line is tangent to the m=mα trajectory [8] (as shown in Figure 5.1) and known as 

the m=mα
T
 line, originally proposed by Seshadri and Hossain [12]. However its limit load 

bounds have not been investigated previously.  

 

The classical lower bound multiplier is expected to converge to the exact limit load during the 

redistribution of stresses based on EMAP. However, the use of classical lower bound multiplier 

requires a number of linear elastic analyses to converge. Restricting the number of iterations to a 

single elastic analysis or a few iterative elastic analyses could lead to overly conservative result. 

In this chapter, the mα
T
 multiplier is used in conjunction with the EMAP, in order to minimize 

the convergence difficulties usually encountered in traditional EMAP and obtain an accurate 

estimate of lower bound limit load.  

T
mα









−=

2

1
1tanθ
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5.2 The mα-Tangent Method 

The -tangent method was proposed by Seshadri and Hossain [12] which is an extension of 

the -method [6]. The following section summarizes the development of the mα-tangent 

method. 

 

Mura’s extended lower bound multiplier m' is a function of m
0
 and mL, which can be regarded as 

a surface in a three dimensional space with the two independent variables m
0
 and mL. In reality, 

m
0
 and mL are derived from the stress distributions in a body, and are therefore strictly not 

independent. Differentiation of the Mura’s extended lower bound formula (Eq.(3.18)) leads to 

the expression of the mα multiplier. i.e. 

  
(5.1) 

Written in terms of finite differences, the above equation becomes: 

  
(5.2) 

This equation is a polynomial of second degree in mα. It can be solved for mα to achieve the 

following expression:  
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  (5.3) 

The detailed steps of the mα-multiplier derivation is provided in Appendix B. 

 

Choosing the larger of the two roots above, the expression for mα, normalized by the exact value 

of the multiplier m (unknown), can be represented as: 

  (5.4) 

Here, , and . 

The slope of the tangent line at the origin (1,1) of the Rα=1 curve can be obtained by 

differentiating the above equation with respect to ζ, i.e. . The equation corresponding 

to the tangent line can be obtained as: 

  (5.5) 

Comparing with Eq.(3.15),  is the slope of the m=mα
T
 line as shown in Figure 

3.1. The expression for the -multiplier can be written as: 
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5.3 Reference TBM vs 
T

mα formulation 

Reference two bar model gives the bounding limit load solution over any multi bar models as 

discussed in Chapter 4. With respect to Figure 5.1 it is evident that the m=mα
T
 line bounds the 

two bar trajectory (m=mTBM) within the range of . Therefore the 
T

mα -multiplier is a 

lower bound estimate within the range of .  

 

As shown in Figure 5.1, the intersection of the m=mα
T
 line and the two bar trajectory work out to 

be 1=ζ  and 21 + . Beyond , these two trajectories diverge.  The divergence of the 

m=mα
T
 line from the two bar trajectory can be postulated as the requirement for reference 

volume and peak stress corrections. The postulation is based on the intuitive assumption that the 

reference two bar trajectory represents primary plus secondary plus peak stresses, while the 

m=mα
T
 line represents primary plus secondary stresses. The idea is that for practical components 

which collapse by formation of two plastic hinge, ζ is usually less than 1+√2. Therefore any 

increase in ζ beyond 1+√2, is postulated to be the presence of kinematically inactive volume 

and/or peak stress. Reference volume and peak stress corrections are required to eliminate the 

possibility of overestimation/underestimation of limit load using the -multiplier.   

 

Peak stress correction is assumed to occur when , and the implied trajectory is 

horizontal (BB'' in Figure 5.1). The vertical drop B'B (when ∆ζ=0) implies the reference volume 

correction. The combined effect of reference volume and peak stress correction ( ( )
fR

T
Vm ζα ,  in 

Figure 5.1(b)) increases the slope of the m=mα
T
 line (i.e. tanθ>1-1/√2) beyond ζ>1+√2. 

Incorporation of peak stress correction ( ( )
fT

T
Vm ζα ,  in Figure 5.1(b)) alone reduces the slope 

21 +≤ζ

21+≤ζ

21+>ζ

T
mα

00 ≈∆m
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of the m=mα
T
 line (i.e. tanθ<1-1/√2) beyond ζ>1+√2. Incorporation of these corrections into the 

-multiplier formulation is presented in Section 5.8 and an example to demonstrate the 

concept is illustrated in Section 5.4. 

 
(a) The constraint map showing reference volume correction Δm

o
 and peak stress correction Δζ 

 
(b) Deviation from m=mα

T
 line due to reference volume and peak stress correction 

 

 Figure 5.1 Approximation of reference volume and peak stress correction  
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5.4 Illustrative Example - Reference Volume and Peak Stress Correction  

During local collapse, plastic action is confined to a sub-region of the total volume, as discussed 

in Chapter 2 (Section 2.5). Hence, the magnitude of the multiplier ( 0
m ) would depend on the 

sub-volume, VR (reference volume), where 

 ( )∑
=

∆=
α

1k

kR VV , and N<α  (5.7) 

Here N is the total number of elements.  

As an illustrative example, cylinder under internal pressure (Figure 5.2(a)) is considered using 

plane strain consideration. The cylinder model is meshed using eight noded isoparametric 

quadrilateral elements (Plane82) using symmetric boundary condition. An internal axial crack is 

present on the inner bore of the cylinder. The crack region (Figure 5.2(a)) is meshed using eight 

singular elements around the crack tip. The crack is modeled by applying no constraints along 

the crack length, thus providing the crack tip node at a certain distance away from the inner 

radius. 

 

With reference to Figure 5.2(a), VR=VT for a cylinder without defect. If a defect is developed in 

service, the reference volume is still VR=VT. No reference volume corrections ( 0
m∆  in Figure 

5.1) are required due to defect although blunting of peak stress ( ζ∆ in Figure 5.1) is required. 

With reference to Figure 5.2(b), when blunting of the crack occurs, the peak stress drops, with 

only primary and secondary stress remains.  

 

When the primary load is carried by a localized region (VR<VT), it causes significant reduction in 

load carrying capacity of the total component or structure. Kinematically inactive volume usually 
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appears due to concentrated loading. The vertical drop B'B in Figure 5.1 (when ∆ζ=0) implies 

the reference volume correction. If there is ambiguity in deciding whether VR<VT while 

analyzing a component, it is conservative to incorporate the reference volume correction.  

 

Incorporation of reference volume and peak stress corrections into the -multiplier 

formulation is presented in Section 5.8. 

    

(i) Model without defect (ii) Model with axial crack 

(a) Cylinder Geometry 

 

(b) Structure with crack (refer to Figure 5.1) 

 Figure 5.2 Blunting of peak stresses  
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5.5 The 
T

mα -multiplier - A Lower Bound Estimate 

With respect to Figure 5.3, stresses are purely primary (limit state), and therefore load-controlled 

at the origin (1,1). The exact solution locus (shown in Figure 5.3) proceeds toward the origin 

with a continuous reduction in the magnitudes of 
Lm

m
0

 and 
m

m0

.   

 

The exact solution locus (limit load estimation based on inelastic FEA or closed-form analytical 

solutions are considered as exact solution) is not known when elastic analysis based 

computations are carried out.  However, the shape of the exact solution locus/trajectory (on the 

constraint map) could be inferred as follows:  

(a) the trajectory starts out almost horizontally.  

(b) as ζ  approaches 1.0, the trajectory would coincide with the limiting slope of the m=mα
T
 

line; and  

(c) for 1.0 < ζ < ζi, the trajectory blends with the two extremes mentioned above.  

The exact solution locus is always below the m=mα
T
 line for ζ>1.0, and satisfies the conditions:  

  (5.8) 

Therefore, we can expect 
T

mα  to be a lower bound during iterative linear elastic analysis 

(EMAP), provided m
0
 is modified for reference volume. Basically the first EMAP iteration is 

nothing but the single linear elastic analysis.  
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Figure 5.3 Bounds for 
T

mα  on the constraint map 

 

5.6 Exact Solution Locus - 3D Grillage Analysis Example 

In order to confirm the shape of the exact solution locus for practical components as discussed 

above, a 3D grillage model is modeled and analyzed. The grillage model, as shown in Figure 

5.4, is a 6756 mm long plate, stiffened in longitudinal and transverse directions. The transverse 

frame ends, and the two longitudinal ends of the grillage are fixed. The length of transverse 

members is 2260 mm and the span between the transverse members is 2000 mm. A uniform 

pressure of 5 MPa is applied as transverse load on the plate bottom. The modulus of elasticity of 

the material is 207 GPa and yield strength is 315 MPa. Rest of the model dimensions are shown 

in Figure 5.4. Shell181 [21] element is chosen due to its suitability to model thin to moderately 

thick shell structures. 
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 Figure 5.4 Grillage model (dimensions in mm)  

 

Inelastic finite element analysis is performed using an elastic-perfectly-plastic material model. In 

order to achieve limit state, load is incremented in steps and a solution for each load step is found 

successively (until equilibrium and compatibility conditions are satisfied). Within each load step, 

a large number of sub-steps are used in order to ensure the gradual increase of load applied in 

that step. The iterative scheme of Newton-Raphson is used for solving simultaneous non-linear 

equations. Solution enhancement features like bisection (to decide whether or not to reduce the 

present time step) and automatic load stepping (to estimate the next time-step size) are also used 

as permitted by the selected iterative scheme. The inelastic finite element analysis gives the 

value of limit load multiplier mNFEA = 0.105. 

 

Transverse 

Member 

Side View 
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In order to plot 
NFEAm

m
0

 vs 
Lm

m
0

 in the constraint map as shown in Figure 5.5(b), iterative elastic 

analysis is also performed and m
0
 (m2

0
) and mL are achieved as shown in Figure 5.5(a). Iterative 

linear elastic analysis is performed based on EMAP as discussed in Chapter 2 (Section 2.6) using 

q = 0.1 and algorithm in Figure 5.8 is followed. It should be noted here that during EMAP, m
0
 is 

evaluated based on Eq(3.9), which is essentially m2
0
. 

 

With respect to Figure 5.5(b) it is evident that the exact solution locus (m=mNFEA) for grillage 

model starts out almost horizontally satisfying the conditions given in Eq.(5.8). This locus lies 

below the m = mα
T
 line as shown in Figure 5.5(b). Therefore for this grillage model the mα

T
 

multiplier provides lower bound estimate of limit load.  

 

(a) Variation of limit load multipliers with iterations for grillage model 
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(b) Constraint trajectory map showing exact solution locus for grillage model 

 Figure 5.5 Results for grillage model  

 

5.7 Bounding Nature of mα
T
 -Multiplier - Multi Bar Analysis 

A general mechanical component can be represented by a suitable multi bar model where 

collapse occurs by formation of multiple plastic hinges. In this section, the relative position of 

several multi bar trajectories and the m=mα
T
 line are compared as shown in Figure 5.6. Each 

point on a multi bar trajectory is an exact limit load solution for a particular multi bar 

configuration. The objective is to plot a vast number of exact limit load solutions of multi bar 

structures (as derived in section 4.8) in the constraint map and show that the mα-tangent 

multiplier solution is lower bound. This gives a higher confidence on the mα-tangent multiplier as 

a lower bound solution for practical components and structures.  
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With respect to Figure 5.6, multi bar trajectories are bounded by the m=mα
T
 line within the 

region where 21+≤ζ . Therefore the mα
T
 multiplier provides lower bound solution for any 

multi bar configurations when . This implies that for well-designed components or 

structures (as represented by a suitable multi bar model), the mα-tangent method is expected to 

provide lower bound solutions with acceptable accuracy.  

 

Beyond 21 +>ζ most of the multi bar trajectories are bounded by the m=mα
T
 line within the 

practical range of 
Lm

m
0

=ζ  as shown in Figure 5.6. However the two bar trajectory diverge out 

from the mα-tangent line (m=mα
T
 line) when . Since in a well-designed component ζ 

usually does not exceed 1+√2, the divergence of the m=mα
T
 line from the two bar trajectory 

(when ) is considered as the requirement for reference volume and peak stress 

corrections (discussed in Section 5.3 and 5.4). Reference volume and peak stress corrections are 

required to eliminate the possibility of overestimation/underestimation of limit load using the 

-multiplier. 

 

Therefore it can be concluded that the exact limit load solution for practical components and 

structures are located within the region where 







−≤≤

2

1
1tan0 θ  as shown in Figure 5.6. 

Hence the 
T

mα -multiplier gives reasonable estimate of lower bound limit load, providing the 

reference volume and peak stress corrections are incorporated appropriately.  
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T
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 Figure 5.6 Relative magnitude of 
T

mα solution over multi bar solutions   

 

5.8 Evaluation of the Multiplier 
T

mα  

In order to ensure lower bound estimate of the multiplier , it is also important to incorporate 

reference volume and peak stress corrections appropriately. Therefore, the following two cases 

are considered in the  formulation: 

 

5.8.1 Multiplier 
T

mα : 21 +≤ζ  

This case refers to properly sized mechanical/pressure components with gentle geometric 

transitions. The implication is that the entire volume participates in the plastic action.  Therefore, 

for these structures,  lies in between  and Eq.(5.6)  is directly used to evaluate 

the multiplier . Note that m
0
 in Eq.(5.6) has to be calculated based on the total volume (VT) . 
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5.8.2 Multiplier 
T

mα : 21 +>ζ  

This case applies to components that develop flaws or cracks during service, or to components 

with sharp notches. Components having some sort of discontinuity or concentrated load over a 

certain region also fall into this category. These components may possess significant amount of 

peak stress and/or kinematically inactive volume.  

 

With respect to Figure 5.1, B'B'' is assumed to be the peak stress relaxation. This relaxation can 

be viewed as a drop B'B vertically representing the inactive volume (VD) and the peak stress 

blunting BB''. Based on Figure 5.1, the multiplier m
0
(VR) can be evaluated by the expression: 

  
(5.9) 

Based on Figure 5.1, the peak stress correction [12] can be determined by the expression: 

                               

(5.10) 

The following root of Eq.(5.10) gives the final value of the variable ζ 

  (5.11) 
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Using m
0
(VR) and ζf from Eq.(5.9) and Eq.(5.11) respectively, the expression for the multiplier 

 for the region of  can be evaluated as: 

 
 

(5.12) 

The -tangent method presented above provides lower bound estimates for the limit loads. The 

estimates of the values of the upper bound multiplier  and the classical lower bound 

multiplier  are obtained from the statically admissible and kinematically admissible strain 

distributions and -multiplier is calculated, depending on the value of .  

 

5.9 Combining EMAP with the mα-tangent method 

The rate of convergence of a lower bound limit load multiplier towards the exact solution 

depends on the elastic modulus adjustment parameter (q) as well as the accuracy of the lower 

bound multiplier. Smaller modulus adjustment parameter (usually q<0.5 [25]) enables smoother 

multiplier variation with iterations although requires a large number of iterations before 

convergence is achieved. On contrary, a larger ‘q’ value results inconsistent variation in 

multipliers with iterations [25] and as a result convergence might not be achieved. Since the mα-

tangent multiplier is a better estimate of lower bound, it converges to the exact solution faster, 

even if a smaller ‘q’ value is chosen. In this section an algorithm is proposed to calculate 

accurate estimates of limit loads, by using the mα-tangent multiplier in conjunction with EMAP. 

The procedure ensures sufficiently accurate limit loads within a reasonable number of iterations. 

It should be noted here that during EMAP, m
0
 is evaluated based on Eq(3.9), which is essentially 

m2
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. 
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5.9.1 Implicit Reference Volume and Peak Stress Correction in EMAP 

During EMAP, infinitesimal changes to the element elastic modulus of the various elements 

during the second and subsequent linear elastic FEA would result in a corresponding change in 

the value of multipliers m
0
 and mL. This change in magnitude implies to the implicit reference 

volume and peak stress correction.  

 

The upper bound multiplier reduces due to element modulus adjustment in subsequent linear 

elastic iterations as shown in Figure 5.7 while approaching the final solution. It can be assumed 

that, in every iteration,  is split into a constant value and a variable portion that vanishes with 

iterations. Hence, 

  (5.13) 

where  is the constant part and ∆m which vanishes after a certain number of linear elastic 

iterations. It is observed that the vanishing part represents the zone that is not participating in the 

plastic action.  
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 Figure 5.7 Variation of  (m2
0
) during EMAP Iterations  

 

Similarly, classical lower bound multiplier also converges towards the exact limit load solution 

in subsequent linear elastic iterations due to successive peak stress corrections. In other words, 

the reference volume and peak stresses are implicitly corrected in subsequent iterations due to 

modulus adjustments. However, a large number of iterations may be anticipated for the 

convergence (both for m2
0
 and mL) to the exact solution, especially for three dimensional FEA 

models.  
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5.9.2 Proposed EMAP Algorithm and Its Features 

Figure 5.8 shows the proposed EMAP flow diagram for estimating the  multiplier in 

successive linear elastic iterations. This algorithm systematically adjusts the elastic modulus of 

different elements in a finite element discretization scheme. It also utilizes the proposed  

multiplier expression from Eq.(5.12) in case of  in order to ensure lower bound 

solution in all the iterations. For , Eq.(5.6) is used for the  multiplier evaluation. 

During EMAP, m
0
 is evaluated based on Eq(3.9), which is essentially m2

0
. Therefore ζi is 

evaluated as 

iL

i
m

m








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0

2ζ . 

 

T
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 Figure 5.8 EMAP flow diagram for estimating limit load (m

0
 from Eq(3.9), which is m2

0
)  
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The magnitude of a limit load multiplier with iterations, and its rate of convergence towards the 

exact solution, depends on the elastic modulus adjustment parameter (q). Smaller modulus 

adjustment parameter enables smoother multiplier variation with iterations. However, the 

convergence of upper and classical lower bound multipliers require a larger number of iterations 

to reach convergence when a small ‘q’ value is chosen (as shown in Figure 5.5(a)). The 

following features of the proposed algorithm ensure converged lower bound solutions, and 

eliminate the usually experienced convergence difficulties involved in EMAP: 

 

(a) Convergence is considered to be achieved when the variation of the  multiplier at a given 

iteration becomes negligible.  

 

(b) The  multiplier converges to the limit load corresponding to nonlinear FEA within a 

number of iterations, even for a very small modulus adjustment parameter (‘q’ value). From the 

3D grillage model example it is evident that when  multiplier achieves convergence, the other 

multipliers (specifically m
0
 and mL) are still far from a converged state (shown in Figure 5.5(a)).  

 

(c) The multiplier converges from the lower bound side as shown in Figure 5.5(a); hence its 

value at any iteration is conservative. For well-designed pressure components, it is expected that 

the multiplier from initial elastic analysis will be sufficiently accurate.  

 

(d) The selection of elastic modulus adjustment parameter (q) depends on the kinematic 

redundancies present in the component. If a particular value of ‘q’ is suitable for a component of 

T
mα

T
mα

T
mα

T
mα

T
mα
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certain redundancy, it is expected to work for components with lesser redundancy. In this 

algorithm, a considerably smaller modulus adjustment parameter is suggested (close to q = 0.1) 

for EMAP in order to ensure proper convergence. In order to simulate the plastic 

incompressibility condition, Poisson’s ratio is chosen to be 0.47.  

 

5.10 Discussion and Conclusion  

A comparison to the multi bar models shows that the mα-tangent multiplier is expected to provide 

reasonable lower bound estimate of limit load for practical components and structures, providing 

the reference volume and peak stress corrections are incorporated appropriately. Moreover, by 

investigating the shape of the exact solution locus on the constraint map it is concluded that the 

exact solution locus always lies below the m=mα
T
 line for ζ>1.0. This signifies that the mα

T
-

multiplier is a lower bound solution during the iterative elastic runs as well. 

 

The proposed algorithm incorporates the reference volume corrections and hence ensures lower 

bound solutions in all iterations. The algorithm maintains consistent trend of limit load 

multipliers with iterations even for complex three dimensional geometric models.  Moreover it 

also ensures relatively rapid computation of limit loads by utilizing the faster convergence 

feature of the 
T

mα  multiplier.  

 

The initial linear elastic run of EMAP is nothing but the typical linear elastic analysis. The initial 

linear elastic run provides lower bound limit load estimate and the accuracy of lower bound 

solution improves during the EMAP iterations. In terms of design qualification, sometimes it is 

important to estimate lower bound limit load with better accuracy, especially when the analyst 
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cannot afford any kind of conservatism. In this sense the EMAP iterations can be terminated as 

soon as the acceptance criteria for design load are satisfied against the 
T

mα -multiplier solution.  

 

While performing iterative linear elastic analysis of a component, it is convenient to apply all the 

corrections into the -multiplier formulation as a conservative approach. Since EMAP 

redistributes the stresses in subsequent analysis, the conservatism is adjusted during iterations. 

However this conservatism could be an issue when the multiplier needs to be estimated based on 

single linear elastic analysis (when a quick and inexpensive calculation is required). Therefore a 

guideline for appropriate incorporation of reference volume and peak stress correction is 

addressed in chapter 6 which is essential to achieve reasonable estimate of mα
T
 multiplier based 

on single linear elastic analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

T
mα



 94

Chapter 6: Robust Limit Loads Based on Single Linear Elastic Analysis 

6.1 Introduction 

As per ASME design philosophy ([1] [11]), the primary membrane, primary local membrane and 

primary bending stress obtained from a linear elastic analysis has to be limited by the 

corresponding ASME allowable limit for the purpose of design qualification. However if the 

stress limits are not met, limit analysis can show that the design is qualified. In this context if the 

limit load can be estimated from the existing linear elastic stress analysis, then it will save the 

expense to set-up and perform a detailed inelastic analysis. Single linear elastic analysis based 

techniques are also attractive whenever a quick and inexpensive calculation is required (e.g. 

Level 2 FFS type assessment). 

 

In terms of limit load estimation, a general mechanical component is equivalent to a suitable 

multi bar model. Since the reference two bar solution (mTBM) bounds the limit load solution of 

other multi bar models (discussed in Chapter 4), the multiplier mTBM is a potential lower bound 

solution. In Chapter 4 reference two bar model has been identified based on the generalized two 

bar analysis. Generalized two bar configuration implies variable two bar area and length ratio. 

However the shape of a cross-section has not been taken into account. The shape of a cross-

section is essential to consider during bending. Therefore in order to eliminate any possibility of 

overestimation of limit load using two bar multiplier (mTBM), a correction factor is introduced 

into the two bar formulation. A guideline is proposed to obtain lower bound two bar multiplier 

for practical mechanical components and structures based on linear elastic analysis.  
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As discussed in Chapter 5, it is important to incorporate reference volume and peak stress 

corrections into the mα
T
 multiplier formulation in order to achieve lower bound limit load. While 

performing iterative linear elastic analysis of a component, it is convenient to apply all the 

corrections. Since the convergence is eventually achieved in subsequent elastic iterations, 

therefore the possibility of conservatism due to the above mentioned corrections is adjusted. 

However in order to achieve robust estimate of mα
T
 multiplier based on linear elastic analysis, it 

is essential to apply these corrections judiciously on a component basis. In this chapter a 

guideline is proposed to obtain robust mα
T
 multiplier based on single linear elastic analysis.  

 

The above mentioned methods are then applied to a number of practical components and 

structures. Results are compared with the inelastic FEA results and/or available analytical 

solutions.  
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6.2 Guideline for Lower Bound mTBM Multiplier Based on Single Linear Elastic FEA 

The reference two bar structure is identified on the basis of the general two bar analysis which 

considers variable bar length and variable area. The shape of the beam cross-section is essential 

to consider while calculating limit load. With respect to Table 6.2, it is evident that the exact 

limit load of rectangular beam cross-section (having shape factor S=1.5) corresponds to the 

reference two bar limit load solution (m′ζ). The shape factor of rectangular beam section (S=1.5) 

is widely considered in the ASME code [11], which implies that the two bar model is consistent 

with the ASME code design consideration.  

 

For beam cross-sections having shape factor greater than 1.5 (e.g. solid circular section in Table 

6.2 has a shape factor of 1.70), reference two bar model gives lower bound solution. On contrary 

beam sections having shape factor less than 1.5, reference two bar limit load could be an 

overestimation (e.g. thin circular pipe section in Table 6.2 has a shape factor of 1.27). Therefore 

in order to eliminate any possibility of overestimation of limit load for general mechanical 

components using two bar multiplier, a correction factor ‘e’ has been introduced into the two bar 

formulation as described below. 

 

As discussed earlier, the T
mm α=  line having a slope of , provides an improved 

estimate of lower bound limit load. Since the reference two bar trajectory lies below the mα-

tangent line within the range of 1≤ζ≤1+√2 (Figure 6.1), the reference two bar multiplier could 

lead to an upper bound estimate within this range. However it can be seen that the maximum 

possible error in the reference two bar estimation is emax=5.83 percent, which occurs at ζ =1.5 

(Figure 6.2). For any other value of ζ within the range of 1≤ζ≤1+√2, the error will be less.  
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 Figure 6.1 Limit load bounds  

 

 Figure 6.2 Error in the mTBM multiplier estimate in comparison to the mα
T
 multiplier  
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The error estimation shown in Figure 6.2 is calculated as follows: 

With respect to Figure 6.3, at a particular ζ location, (R
0
)b

 
will be greater than or equal to (R

0
)a,

 

where ‘b’ and ‘a’ are points located on the m=mα
T
 line and reference TBM (m=mTBM) trajectory 

respectively (for the range 1≤ζ≤1+√2). Therefore the error estimate (e%) for the reference two 

bar multiplier within this range can be expressed as: 
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(6.4) 

 

Figure 6.3 Reference TBM error estimation from constraint map 
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Now that the error estimation is obtained, a guideline is presented as follows in order to obtain 

lower bound estimate of two bar multiplier (mTBM) based on linear elastic analysis. Table 6.1 

summarizes the guideline.  

 

6.2.1 Multiplier mTBM: 21 +≤ζ  

Well-designed components with gentle geometric transitions under uniform load distribution are 

usually within this ζ range. At first the estimate of m′ζ is calculated as per Eq.(4.13). Then the 

estimate of 






 −′
100

1
e

m ζ  will provide lower bound limit load for practical components and 

structures.  Here ‘e’ percent error estimate calculated based on Eq.(6.4). Table 6.1 summarizes 

the guideline. 

 

The proposed lower bound two bar multiplier estimate for the component category of  

is basically a modification of the two bar multiplier developed by Seshadri and Adibi-Asl [10]. 

 

6.2.2 Multiplier mTBM: 21 +>ζ  

The reference two bar solution (mTBM) bounds the limit load solution of other multi bar models, 

i.e. the multiplier mTBM is a potential lower bound solution. With respect to Figure 6.1, the 

relative position of the m=mTBM trajectory and m=mα
T
 line signifies that for any value of 

21 +>ζ , m′ζ < mα
T
. Therefore correction factor based on the above mentioned error estimate is 

not applicable. Hence mTBM = m′ζ will provide lower bound estimate of limit load for this ζ 

range. Table 6.1 summarizes the guideline. 

 

21 +≤ζ
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Table 6.1 Guideline for lower bound limit load multiplier based on single linear elastic FEA 

Component 

Category 

* (
Lm

m
0

=ζ ) 
Description 

Multiplier 

mα
T
 

Multiplier mTBM 

21 +≤ζ  
Well-designed components 

with gentle geometric 

transitions 
)1)(

2

1
1(1

0

−−+ ζ

m  







 −′
100

1
e

m ζ  

21 +>ζ  

Components with stress 

concentrations. In the 

absence of stress 

concentrations ζ  would be 

less than 1+√2 

)1)(
2

1
1(1

0

−−+ f

m

ζ

 
ζm′  

21 +>ζ  
** Components undergoing 

local plastic action along 

with stress concentrations 
)1)(

2

1
1(1

)(0

−−+ f

RVm

ζ

 
ζm′  

Evaluation Details 
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V
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[Eq.(6.4)] 
 

* m
0
 and mL is calculated from the linear elastic stress distribution of a component or structure.  

** If there is ambiguity in deciding whether VR<VT while analyzing a component, it is 

conservative to incorporate the reference volume correction. m
0
 and m

0
(VR) signify the 

calculation of multiplier m
0
 based on total volume and reference volume respectively. 

( )
max

y

eq
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6.3 Guideline for Lower Bound mα
T
 Multiplier Based on Single Linear Elastic FEA 

As established in Chapter 5, for component category , the mα
T
-multiplier estimate 

proposed by Seshadri and Hossain [12] is a lower bound and hence can be used without any 

modification.  

 

If a defect is developed in a component during service, there will be existence of peak stress in 

its linear elastic stress distribution resulting . Removal of the peak stress does not affect 

the “overall equilibrium” of the component and the corresponding stress-distribution. In other 

words, blunting of peak stress is assumed to occur when 00 ≈∆m , and the implied trajectory is 

horizontal (BB'' in Figure 5.1). Hence the reference volume is still VR=VT. Therefore no 

reference volume corrections (  in Figure 5.1) are required due to defect although blunting of 

peak stress ( in Figure 5.1) is required.  

 

On contrary, there could be local plastic action in a component along with stress concentrations 

(when VR<VT). In this situation, ζ is greater than 1+√2 and reference volume correction is also 

required. The vertical drop B'B in Figure 5.1 (when ∆ζ=0) implies the reference volume 

correction.  

 

Seshadri and Hossain [12] introduced the peak stress correction (described in Chapter 5) into the 

mα
T
 multiplier formulation. However this solution could be an upper bound when primary load is 

carried by a localized region (i.e. VR<VT). Therefore it is essential to introduce the reference 

21+≤ζ

21 +>ζ

0m∆

ζ∆



 102

volume correction (proposed in Chapter 5) into the mα
T
 multiplier formulation along with the 

peak stress correction.  

 

In order to achieve robust estimate of mα
T
 multiplier based on single linear elastic analysis (for 

component category ), it is essential to apply reference volume and peak stress 

corrections judiciously on a component basis. In this section a guideline is proposed to obtain 

robust mα
T
 multiplier based on linear elastic analysis. Table 6.1 summarizes the guideline and a 

number of practical components have been analyzed in Section 6.4 and 6.5 based on the 

guideline. It should be noted that, if there is ambiguity in deciding whether VR<VT while 

analyzing a component, it is conservative to incorporate the reference volume correction.  

 

6.3.1 Multiplier mα
T
: 21 +≤ζ  (well-designed components with gentle geometric transitions) 

This case refers to properly sized mechanical/pressure components with gentle geometric 

transitions (as discussed in Section 5.8.1). The implication is that VR = VT. The value of 0
m and 

Lm

m
0

=ζ  can be determined from statically admissible distributions, obtained using a linear elastic 

FEA. Hence Eq.(5.6)  is directly used to evaluate the multiplier . Table 6.1 summarizes the 

guideline. 

 

21 +>ζ

T
mα
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6.3.2 Multiplier mα
T
: 21 +>ζ  (components with stress concentrations) 

This case refers to well-designed mechanical/pressure components as described in Section 6.3.1 

that develop cracks/flaws during service. In the absence of the cracks/flaws 21 +≤ζ , but the 

defects introduce stress concentrations. For this case, 

 
)1)(

2

1
1(1

0

−−+
=

f

T
m

m

ζ
α  

(6.5) 

where ζf can be calculated using Eq.(5.11). Table 6.1 summarizes the guideline 

   

6.3.3 Multiplier mα
T
: 21 +>ζ  (local plastic action along with stress concentrations) 

The large stress and strain fields are essentially introduced by cracks and flaws and kinematically 

inactive volume appears due to concentrated loading. In the absence of defects, there are 

negligible stresses. For this case Eq.(5.12) is used to obtain the mα
T
 multiplier, where m

0
(VR) and 

ζf can be calculated using Eq.(5.9) and Eq.(5.11) respectively. Table 6.1 summarizes the 

guideline 
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6.4 Analytical Examples 

In this section, limit load for several beam configurations subjected to an applied moment (M) 

has been computed based on the linear elastic stress distribution. For beams of various cross-

sections, limit load calculations using the mTBM and mα
T
 multiplier are found to be in good 

agreement with the exact analytical solutions. Results are summarized in Table 6.2. Detailed 

description of calculation is provided in Appendix A for several beam configurations.  

 

Table 6.2 Limit load multipliers for several beam configurations 

Limit  

Load 

Multiplier 

Rectangular beam of unit 

width and thickness ‘t’ 

Solid circular beam 

of diameter ‘d’ 

Circular pipe of thickness 

‘t’ and nominal radius ‘r’ 

Shape factor 

(S) 
1.50 70.1

3

16
=

π
 27.1

4
=

π
 

m
0
 

   

mL 
   

ζ √3 2 √2  

m′ 
M

ty

34

2σ   
M

try

3

22
2πσ  

m 
   

m

m ζ′  1 0.94 1.05 









−

′

100
1

e

m

m ζ  0.95 0.91 0.99 

m

m
T

α  0.95 0.91 0.99 

 

Note: In Table 6.2 ‘e’ is the percent error as shown in Figure 6.2. For a particular 
Lm

m
0

=ζ , this 

can also be calculated based on Eq.(6.4).  
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6.5 Numerical Examples 

In this section, limit load estimates are determined for a number of mechanical/pressure 

components. All the problems are modeled using the ANSYS [21] software and the Poission’s 

ratio is considered as ν=0.3. Mesh convergence studies have been performed to verify the 

sensitivity of the multipliers with respect to the mesh density. For each component the mTBM and 

mα
T
 multiplier are calculated as per guideline provided in Table 6.1 based on a single linear 

elastic analysis. Numerical examples are chosen in a way to encompass the lower bound limit 

load calculation methodology summarized in Table 6.1. Results are compared with the inelastic 

finite element results as well as available analytical solutions. Inelastic finite element analysis is 

performed as per guideline provided in Section 5.6. A relative estimate of computational time 

required for each method (simplified linear elastic method, EMAP and inelastic FEA) can be 

found in [35].  
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6.5.1 Thick Walled Cylinder 

A cylinder under internal pressure of 50 MPa (Figure 6.4) is analyzed using plane strain 

conditions. The inner radius of the cylinder is 65 mm, and the outer radius is 90 mm. The 

modulus of elasticity is specified as 200 GPa and the yield strength is assumed to be 300 MPa. 

The geometry is modeled using eight noded isoparametric quadrilateral elements (Plane82) with 

symmetric consideration.  

 

 

 Figure 6.4 Finite element model of the thick walled cylinder  

From the initial linear elastic analysis it is found that ζ is less than 1+√2 (Table 6.3). Hence thick 

walled cylinder under uniform pressure is in the category of well-designed component having no 

stress concentrations as well as no kinematically inactive volume. The multiplier mα
T
 and mTBM 

are evaluated as per the guideline provided in Table 6.1 and results are summarized in Table 

6.3. Then an inelastic finite element analysis is performed, which gives a limit load multiplier of 

mNFEA= 2.254. The multiplier mTBM and mα
T
 are lower bound when compared with the multiplier 

mNFEA. The analytical limit load solution gives an estimate of 2.260. 

Table 6.3 Limit load multipliers for thick walled cylinder 
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6.5.2 Torispherical head 

A torispherical head (Figure 6.5) with average diameter D=2000 mm, normalized spherical cap 

radius 8.0/ =DR S
, normalized knuckle radius of 12.0/ =DRK

 and normalized thickness of 

40/1/ =Dt , subjected to an internal pressure of 5 MPa is examined here. The modulus of 

elasticity is specified as 262GPa and the yield strength is assumed to be 262 MPa. The geometry 

is modeled using Plane82 elements with axisymmetric consideration. 

 

 Figure 6.5  Axisymmetric finite element model of the torispherical head  

 

Since ζ=2.172 is less than 1+√2, therefore the structure does not collapse locally. The multiplier 

mα
T
 and mTBM are evaluated and results are summarized in Table 6.4 along with the inelastic 

FEA results. Based on the lower bound analytical approximation proposed by Drucker and 

Shield [22], the limit load multiplier for the torispherical head is 2.360. As shown in Table 6.4, 

the multiplier mα
T
 and mTBM are lower bound when compared with the inelastic FEA results. 

Table 6.4 Limit load multipliers for torispherical head  
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2.912 1.340 2.172 1.018 2.051 2.166 2.167 2.790 
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6.5.3 Reinforced Axisymmetric Nozzle 

A reinforced axisymmetric cylindrical nozzle on a hemispherical head (Figure 6.6), subjected to 

an internal pressure of 24.1 MPa is analyzed here. The inner radius of the head is R=914.4 mm, 

and the nominal wall thickness is t=82.6 mm. Inside radius of the nozzle is r=136.5 mm and the 

nominal wall thickness is tn=25.4 mm. The required minimum wall thickness of the head and the 

nozzle is tr=76.8 mm and tm=24.3 mm, respectively. The geometric transitions of the 

reinforcement are modeled with fillet radius, r1=10.3 mm, r2=83.3 mm and r3=115.2 mm. Other 

dimensions include reinforcement thickness T=54.6 mm and the angle of reinforcement, θ=45
o
. 

The reinforcement is bounded by the reinforcement-zone boundary, specified by circle of radius 

Ln=143.5 mm. The modulus of elasticity is specified as 262 GPa, and the yield strength is 

assumed to be 262 MPa. The geometry is modeled using eight-noded isoparametric quadrilateral 

elements (Plane82) with axisymmetric consideration.  

 

 Figure 6.6 Finite element model of the reinforced axisymmetric nozzle  
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Similar to thick walled cylinder and torispherical head, reinforced axisymmetric nozzle is a well 

designed pressure component with smooth geometric transition. Therefore this should be under 

the category of ζ is less than 1+√2. The multiplier mα
T
 and mTBM are evaluated as per the 

guideline provided in Table 6.1 and results are summarized in Table 6.5. Then an inelastic finite 

element analysis is performed, which gives a limit load multiplier of mNFEA= 1.872. The 

multiplier mTBM and mα
T
 are lower bound when compared with the multiplier mNFEA.  

 

Table 6.5 Limit load multipliers for reinforced axisymmetric cylindrical nozzle 
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6.5.4 Plate with a Hole 

Consider a thin plate with a hole (Figure 6.7) with the following dimensions: plate width, 

W=150 mm; length, L=300 mm; and hole radius, d=40 mm. It is subjected to a tensile load of 

100MPa. The modulus of elasticity is specified as 150 GPa and the yield strength is assumed to 

be 150 MPa. Due to symmetry in geometry and loading, only a quarter of the plate is modeled 

using eight noded isoparametric quadrilateral elements (Plane82) with plane stress consideration. 

Making reference to the dimensions of the plate with hole, the collapse load multiplier may be 

estimated to be 
10.1

2

22
=








 −
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W

dW
yσ

.  

 

 

 Figure 6.7 Finite element model of the plate with a hole  

 

Plate with a hole is a uniaxial tensile problem, where stress concentration is due to the presence 

of the hole. From the initial linear elastic analysis it is found that ζ is greater than 1+√2. Since 

the stress distribution is uniform at every cross-section, 21 +>ζ  is attributed to the existence 

of peak stress. Therefore this requires peak stress correction based on Eq.(6.5) for mα
T
 multiplier 

evaluation. On the other hand for this range of ζ, no error estimate is required for mTBM 
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evaluation. Then an inelastic finite element analysis is performed, which gives a limit load 

multiplier of mNFEA= 1.099. Results are summarized in Table 6.6. 

 

Table 6.6 Limit load multipliers for plate with a hole 
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6.5.5 Compact Tension (CT) Specimen 

A Compact Tension Specimen (Figure 6.8) with a width W=100mm, height H=125mm, 

thickness t=3mm and crack length a=46mm is subjected to a tensile load of P=5kN. The 

modulus of elasticity is specified as 206.85 GPa and the yield strength is assumed to be 206.85 

MPa. Due to symmetry, only a half of the plate is modeled with plane stress consideration. The 

compact test specimen is subjected to concentrated load and contains stress concentration ahead 

of crack tip. 

 

The linear elastic stress distribution around a crack configuration can be captured by using 

singular elements around the crack tip. Therefore the finite element model is developed using 

eight noded isoparametric quadrilateral elements (Plane82), with eight singularity elements 

around the crack-tip. However limit load solution based on a linear elastic stress distribution 

requires further treatment of singularity elements, when the solution technique has explicit 

dependency on the maximum stress at the crack tip (i.e. classical lower bound limit load solution 

(mL) is explicitly dependent on the maximum equivalent stress of the entire stress distribution). 

This is due to the recognition that a crack tip configuration induces very high peak stress, which 

is localized and gets redistributed along with the secondary stress. Proper elastic modulus 

modification of singular elements around the crack tip in a finite element discretization can 

reduce the magnitude of stress gradient to a minimum and hence the effect of peak stresses 

becomes small.  The stress concentration at the crack tip can be blunted by modifying the elastic 

modulus of the singularity elements as Es=E/3, while performing single linear elastic analysis. 

The rationale for this modulus reduction is proposed by Adibi-Asl and Seshadri [23]. A brief 
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description of singularity elements and their appropriate softening process is provided in 

Appendix B.  

 

 Figure 6.8 Finite element model of compact tension specimen  

 

From the initial linear elastic analysis it is found that ζ is greater than 1+√2 (Table 6.7). There 

are two possibilities which might cause 21 +>ζ  even after singularity element softening. 

i. There might be some peak stress left at the crack tip which requires further blunting. 

ii. Kinematically inactive volume is existing due to concentrated loading.  

 

Hence this problem fits under the category which requires further peak stress correction as well 

as dead volume correction while evaluating the mα
T
 multiplier. On the other hand for this range 

of ζ, no error estimate is required for mTBM evaluation. An inelastic finite element analysis is 

performed, which gives a limit load multiplier of mNFEA= 1.330. Results are summarized in 

Table 6.7. 

Table 6.7 Limit load multipliers for compact tension specimen 
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6.5.6 Large Grillage 

A large grillage model described in Section 5.6 is analyzed here based on single linear elastic 

analysis. Since ζ=5.781 is greater than 1+√2 (Table 6.8), therefore peak stress correction and/or 

reference volume correction are required. This is a complex geometry and there is ambiguity in 

deciding whether VR<VT. Therefore conservatively it is considered that reference volume 

correction is appropriate along with the peak stress correction, while evaluating mα
T
 multiplier. 

On the other hand for this range of ζ, no error estimate is required for mTBM evaluation. An 

inelastic finite element analysis is performed, which gives the limit load multiplier mNFEA =0.105. 

Results are summarized in Table 6.8. 

 

Table 6.8 Limit load multipliers for large grillage 
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6.6 Discussion and Conclusion 

For component category , a correction factor is introduced into the two bar formulation 

in order to eliminate any possibility of its overestimation. For component category , the 

two bar multiplier estimate proposed by Seshadri and Adibi-Asl [10] is shown to be a lower 

bound (in Chapter 4) and hence is used without any modification. Therefore the suggested two 

bar multiplier calculation guideline ensures lower bound limit load solution.  

 

For component category , the mα
T
-multiplier estimate proposed by Seshadri and 

Hossain [12] is shown to be a lower bound (in Chapter 5) and hence is used without any 

modification. For component category , incorporation of reference volume and peak 

stress correction suggested in this chapter ensures lower bound mα
T
 multiplier with acceptable 

accuracy based on single linear elastic analysis. Therefore the suggested mα
T
 multiplier 

calculation guideline ensures lower bound limit load solution. 

 

The multiplier mTBM and mα
T
 estimates lower bound limit loads based on a single linear elastic 

analysis as shown in Section 6.4 and 6.5. However their estimates could be conservative while 

analyzing structures with higher degree of indeterminacy as evident from Figure 5.6 (e.g. a large 

grillage model, for which a four bar model shown in Table 4.1 would provide more accurate 

estimate of limit load). In this context, the mα
T
 multiplier estimates are more accurate compared 

to the multiplier mTBM. It should be noted here that the multiplier mTBM offers much better 

accuracy than classical lower bound solution.   

21+≤ζ

21+>ζ

21+≤ζ

21+>ζ
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Chapter 7: EMAP for Strain Hardening Material Model  

7.1 Introduction 

Inelastic FEA is the most frequently used approach to obtain the detail structural response and is 

an economic alternative to full scale experimental test. However, it is always essential to have an 

alternate solution tool available, in order to validate the results of a traditional elastic-plastic 

analysis.  

 

Iterative elastic modulus adjustment scheme can establish inelastic-like stress and strain field by 

modifying the local elastic modulus of elements of an FE model in repeated linear elastic FEA. 

Modulus adjustment approaches are different depending on the type of stress fields anticipated. 

According to Adibi-Asl and Reinhardt [24], EMAP can be categorized into two classes: (i) “Full 

EMAP” which involves simultaneous element softening and hardening in order to obtain the 

limit state stress field. (ii) “Partial EMAP” in which the modification is performed only in the 

elements having a stress level higher than the yield strength.  

 

In the stress-strain curve, once the yield strength is exceeded, plasticity occurs. In the initial 

portion of plastic region, the rise in curve is due to the presence of strain hardening feature in the 

material. The partial EMAP scheme previously developed for elastic-perfectly-plastic material 

model [24] can be extended to strain hardening material model in order to achieve inelastic-like 

stress and strain field under strain hardening action.  

 

In this chapter, an elastic modulus adjustment scheme for strain hardening material model is 

developed. The algorithm is programmed into repeated linear elastic analysis in order to capture 
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the post yield behavior of a component or structure. The proposed algorithm is then applied to 

numerical examples and results are compared to traditional inelastic finite element results.  

 

7.2 EMAP Categories 

EMAP establishes inelastic-like stress and strain field by approximating incompressible plastic 

flow. Numerous sets of statically admissible and kinematically admissible distributions can be 

generated in this manner. However, modulus adjustment approaches are different depending on 

the type of stress fields anticipated. Full EMAP modifies the elastic modulus of all elements and 

is used to achieve the limit state. On the other hand in partial EMAP the modification is 

performed only for the elements having stress level higher than the yield strength. Therefore this 

is essentially an element softening process. Both full and partial EMAP are based on iterative 

linear elastic analysis, where elastic modulus and Poisson’s ratio are the only material properties 

used for the structural analysis. In the following section, the procedure for elastic modulus 

adjustment to achieve limit state and elastic-plastic state are explained in parallel, to demonstrate 

their similarity and diversity.  

 

7.2.1 Full EMAP 

The full EMAP is used to estimate the limit load / primary stress and correspond to inelastic 

finite element limit load analysis considering elastic-perfectly-plastic material model. There are 

several approaches that employ modification of the local elastic modulus of material in 

successive iterations, in order to achieve inelastic-like stress distributions based on linear elastic 

analysis. The EMAP suggested in chapter 5 is indeed a full EMAP approach, which considers a 

constant value of ‘q’ (known as modulus adjustment parameter). As discusser earlier, a relatively 
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smaller value of ‘q’ ensures consistent variations of limit load multipliers with iterations, 

(especially for those multipliers having explicit dependency on classical lower bound). Adibi-Asl 

et. al., [25] developed a relationship between modified modulus and the initial modulus, based 

on Elastic Strain Energy Density (ESED) concept [20], from elastic-perfectly-plastic material 

model, where modulus adjustment parameter varies in element basis. By equating the area of two 

shaded region in Figure 7.1, the relationship between modified modulus and the initial modulus 

can be established as follows: 
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 Figure 7.1 Schematic of the ESED method  

 

As illustrated in Figure 7.1, when the elastic stress in each element is brought to the reference 

stress level in subsequent linear elastic iterations, the stress distribution in the structure will 

eventually reach to the stress distribution during plastic collapse and multipliers obtained from 
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this stress field will estimate the limit load.  Eq.(7.1) can be used to modify the elastic modulus 

of each element in successive linear elastic iterations where refσ  is the reference stress in each 

iteration. The only difference between the approach proposed by Adibi-Asl et. al., [25] and the 

proposed method in Chapter 5 is that, Adibi-Asl et. al., [25] considered a variable modulus 

adjustment parameter (q), which varies in element basis, while the proposed method in this thesis 

considers a fixed relatively smaller value of ‘q’ (q=0.1). A fixed small modulus adjustment 

parameter (q) enables smooth convergence towards the exact limit load solution with iterations, 

while variable ‘q’ [25] might cause oscillations, resulting a non-convergence (particularly for 

complex three dimensional FE models). This issue is specifically true for the multipliers having 

explicit dependency on the classical lower bound multiplier. 

 

7.2.2 Partial EMAP 

The aim of partial EMAP (partial modification) is to simulate the stress and strain distribution 

during inelastic action. In this method, the modification of elastic modulus only takes place in 

elements having equivalent stress higher than yield strength. Reference stress is considered to be 

equal to the yield strength of the material. Therefore reference stress term 
refσ  in Eq.(7.1) needs 

to be substituted by the yield strength 
yσ  in order to predict inelastic stress and strain fields for 

elastic-perfectly-plastic material model. As mentioned in [24], peak and secondary stresses 

usually do not cause significant inelastic deformations. Therefore, the strains obtained from 

linear elastic analysis can be used to estimate the plastic strains with acceptable accuracy. 
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The partial EMAP scheme for elastic-perfectly-plastic material model [24] can be extended to 

strain hardening material model in order to achieve inelastic-like stress and strain field under the 

strain hardening action. 

 

7.3 Strain Hardening Material Model 

A typical form of strain hardening material model can be represented by the following equation: 

 ( )σσε ,yf=  (7.2) 

where yσ  is the yield strength and (σ ,ε ) is the stress-strain state at any point on the material 

model. 

 

 Typical strain hardening curves are bilinear hardening and Ramberg–Osgood material models. 

Bilinear hardening material model can be represented by line segments with slopes related to the 

elastic modulus (E) and tangent modulus (Et). This is the simplest representation of strain 

hardened material properties. On the other hand, Ramberg–Osgood material model is closer to 

actual material properties. In this model the strain hardening behavior of any ductile material is 

specified by a dimensionless material constant (α), and a strain hardening exponent (n) [27]. 

 

Due to strain hardening, a component or a structure can store supplementary strain energy and 

hence carries additional load during the inelastic deformation. The inherent strength due to strain 

hardening can be specified into EMAP algorithm in order to simulate the stress and strain 

distribution during the inelastic action. 
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7.4 Proposed Partial EMAP for Strain Hardening Model 

In this section, the partial EMAP scheme for elastic-perfectly-plastic material model is extended 

to strain hardening material model in order to achieve inelastic-like stress and strain field under 

the strain hardening action. Mathematical model for modulus adjustment is developed for 

bilinear and Ramberg-Osgood strain hardening material model. 

 

7.4.1 Partial EMAP for Bilinear Hardening Material Model 

A schematic plot of a bilinear material model is shown in Figure 7.2(a). With respect to Figure 

7.2(a), point ‘a’ represents the pseudo elastic stress. Therefore the element has to be softened in 

such a way that the stress and strain at ‘a’ is projected to its actual location ‘a
'
’. This can be 

achieved by equating the strain energy of shaded elastic region with that of shaded inelastic 

region as shown in Figure 7.2(a). 
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(a) Bilinear Hardening Model (b) Ramberg–Osgood Model 

 Figure 7.2 Schematic of the strain hardening material model  

Let,  
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Substituting Eq. (7.4) and Eq.(7.5) into Eq. (7.3), 
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In Eq.(7.6), A=1 indicates elastic-perfectly-plastic and 1>A  indicates elastic-strain-hardening 

material model.  
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From Figure 7.2(a), stress-strain relationship for the strain hardening zone can be expressed as, 
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Substituting A from Eq. (7.8) into Eq. (7.6),  
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Eq.(7.9) has three explicit solutions for 
1+iE  and out of them one is the actual solution and the 

other two are trivial. Therefore the expression for modified elastic modulus can be written as: 
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Substituting 0=tE  into Eq.(7.10), it is reduced to Eq.(7.6) for A=1 (elastic-perfectly-plastic). 

Therefore in addition to Eq.(7.7), stress and strain can also be related in terms of Hooke’s law 

based on 
1+

=
i

p

eqp
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σ
ε  where 

1+iE  can be calculated from Eq.(7.10). 

 

Once the elastic stress for any element is obtained where 
y

e

eq σσ > , its modulus is reduced based 

on Eq.(7.10) and the next elastic analysis is performed using the new modulus (E2 as per Figure 

7.3). However, not all element stresses come onto the strain hardening curve with this modulus 

adjustment. This indicates further requirement of modulus adjustment in subsequent iterations. In 
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order to make subsequent modulus adjustments, yσ of Eq.(7.10) has to be replaced by a variable 

term i

yσ  in subsequent iterations, which can be computed using the following equation: 
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Therefore for 2≥i , Eq.(7.10) can be re-written as, 
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7.4.2 Partial EMAP for Ramberg–Osgood Material Model 

A schematic plot of Ramberg–Osgood material model is shown in Figure 7.2 (b). By equating 

the strain energy of elastic shaded region with that of inelastic shaded region as shown in Figure 

7.2(b), the following relationship can be achieved: 
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Ramberg–Osgood material model can be written as: 
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where α  is the dimensionless material constant and n is the strain hardening exponent. 

Substituting Eq. (7.13) by Eq. (7.14) and after integration it becomes, 
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In order to calculate p

eqσ , the following relationship needs to be solved: 
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Solving Eq.(7.16) for p

eqσ , 
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Substituting Eq. (7.17) into Eq. (7.15):  
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This is the implicit expression for adjusted modulus Ei+1. For a particular value of strain 

hardening exponent n, Ei+1 can be achieved in explicit form.  
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7.5 Finite Element Implementation  

The flow diagram for the strain hardening EMAP is shown in Figure 7.3 which transforms e

eqσ  

to its actual level p

eqσ  in successive linear elastic iterations. The flow diagram is described in 

terms of bilinear strain hardening material model, which can be extended for the Ramberg–

Osgood material model as well. In this section the general procedure is outlined as follows: 

 

• The first linear elastic finite element analysis is carried out for the FE model with the 

prescribed loading and boundary conditions. For the first linear elastic analysis, the 

elastic modulus is the elastic property as obtained from the material specification.  

  

• For elements having stress level higher than the yield strength (i.e. ( ) y

i

k

e

eq σσ > ), elastic 

modulus adjustment is made based on  Eq.(7.10) and second linear elastic analysis is 

performed.  

 

• For subsequent iterations, an element modulus adjustment is made if the element stress 

level ( )i
k

e

eqσ  is higher than ( )
k

i

yσ , where ( )
k

i

yσ  is calculated based on Eq.(7.11). The linear 

elastic iteration continues until the condition ( ) ( )
k

i

y

i

k

e

eq σσ ≤  satisfies in element basis.  

 

It should be noted here that, for elements having stress level less than the yield strength, elastic 

modulus adjustment is not performed during the partial EMAP.  
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 Figure 7.3 Partial EMAP flow diagram  
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7.6 Numerical Examples 

In this section, modulus adjustment scheme for bilinear hardening material model is 

implemented into components: i) under axial loading, and ii) under transverse loading. 

Geometries are modeled using ANSYS [21]. Strain hardening effect is incorporated into linear 

elastic analysis on the basis of EMAP flow diagram given in Figure 7.3.  In case of nonlinear 

analysis, both small and large deflection nonlinear analysis is performed considering elastic-

perfectly-plastic as well as bilinear hardening material model.  

 

7.6.1 Plate with a Hole 

Consider a thin plate with a hole (Figure 7.4) with the following dimensions: plate width, 

W=150 mm; length, L=300 mm; and hole radius, r=20 mm. Material properties are as follows: 

yield strength, 
yσ =355 MPa; elastic modulus, E=207 GPa; tangent modulus Et = 2GPa and 

Poisson’s ratio, ν  =0.47. A two dimensional plane stress FEA model is developed using 8-

noded plane82 element [21] with one quarter of the plate modeled due to symmetry (Figure 

7.4(b)). Results are compared with small deflection nonlinear analysis. 
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Geometry Finite element mesh (plane stress) 

 Figure 7.4 Plate with a hole  

 

 

Figure 7.5 shows the load-deflection plot for the plate using elastic-perfectly-plastic as well as 

elastic-strain-hardening material model, obtained from nonlinear elastic-plastic analysis. It is 

evident from the figure that, in case of elastic-perfectly-plastic material model, the component 

does not exhibit any reserved capacity and limit load obtained from full EMAP (shown in Figure 

7.5) is essentially the maximum load up to which load-deflection curve progresses. In the case of 

a strain hardening model, load-deflection curve exhibits the reserved capacity as evident from 

Figure 7.5.  

 W 

 2r 

L 

 P 
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 Figure 7.5 Load-deflection curve for plate with a hole  

 

In order to investigate how the stress and strain reaches to its intended convergence, the element 

of maximum stress is studied. Figure 7.6 and Figure 7.7 shows the convergence of elastic stress 

and strain to their actual value in subsequent linear elastic analysis. In this case the applied load 

(P = 283 MPa) is higher than the limit load.  This loading causes a very high peak stress in the 

maximum stress element. From Figure 7.6 it is evident that, for a particular element, the 

computed i

yσ  and elastic stress i

eqσ  eventually reaches to the actual p

eqσ  stress level and becomes 

constant. Similarly, elastic strain also converges towards the actual plastic strain as shown in 

Figure 7.7.  
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 Figure 7.6 Variation of stress with iterations  

 

 

  Figure 7.7 Variation of strain with iterations  

 

Figure 7.8 shows the comparison of stress-strain plot obtained from two different analyses. In 

the case of elastic analysis, the flow chart given in Figure 7.3 is iterated for different load 

increments and for each load step; normalized stress and strain are plotted in Figure 7.8. It is 

evident that results obtained from proposed method are in well agreement with the small 

deflection nonlinear FEA results. Figure 7.9 is basically the extension of load-deflection plot 
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shown in Figure 7.5. It is evident from the figure that for a particular load step, calculated 

deflections from the proposed technique are in good agreement with the deflections obtained 

from nonlinear FEA.  

 

  Figure 7.8 Normalized stress-strain plot  

 

  Figure 7.9 Comparison of load-deflection behavior  
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7.6.2 Stiffened Plate Subjected to Transverse Loading 

A stiffened plate model considers a stiffener with the attached shell plate as a representative of 

the entire structure. Length of the model is taken 2.5 m and other dimensions are shown in 

Figure 7.10. Symmetric boundary conditions are applied along the length of the plate to simulate 

the support provided by the neighboring structure. Shorter ends are fixed to simulate the support 

provided by the continuing frame and transverse members. Elastic modulus of the material is 207 

GPa, tangent modulus is 2 GPa and yield strength is 355 MPa. A three dimensional FEA model 

is developed using 4-noded shell181 element. Results are compared with small deflection as well 

as large deflection nonlinear analysis results.  

     

(a) Side view (b) Finite element model segment 

Figure 7.10 Single stiffened plate (dimensions in mm) 

 

Figure 7.11 shows the comparison of load-deflection behavior obtained from different analyses. 

An arbitrary node is chosen from the node set connecting the web with the plate and nodal 

deflection is plotted against the corresponding load increment. Results obtained from the 

proposed methodology are in good agreement with the small deflection nonlinear FEA results as 

shown in Figure 7.11.  It should be mentioned here that geometric nonlinearity effect increases 

the post yield reserved capacity of the structure. As the geometric nonlinearity effect is not 
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considered into the suggested method, it yields conservative load-deflection curve (follows the 

small deflection nonlinear FEA result) compared to that obtained from large deflection nonlinear 

analysis as shown in Figure 7.11.  

 

 

  Figure 7.11 Comparison of load-deflection behavior  
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7.7 Applications 

The proposed technique can be implemented for the estimation of stress-strain at the notch root 

of a component having strain hardening feature, which is useful for FCI (fatigue crack initiation) 

prediction and can be utilized as an independent verification tool for the available techniques. 

Similar investigation was carried out previously by Adibi-Asl and Seshadri [15] for elastic-

perfectly-plastic material model. The proposed method can be utilized to obtain the plastic 

response of a structure beyond its yield point, which provides an idea about the reserved capacity 

of the structure against environmental/accidental loads. The method can also be implemented to 

identify the boundary between shakedown and ratcheting when the structure experiences strain 

hardening effect (similar solution was reported by Adibi-Asl and Reinhardt [24] for elastic-

perfectly-plastic material model). This is a non-cyclic approach and hence can offer as an 

alternative to cyclic elastic-plastic analysis. Pressure vessel components described in the 

literature (for example: cylinders, pressure vessel support skirts, nozzles, frames etc), and other 

steel structures (for example: plates, beams, shells, stiffeners, grillages etc) can be suitably 

analyzed by the proposed method. As the degrees of freedom of FE model increases, the method 

offers better economic value compared to nonlinear FEA, in terms of computational time, effort 

and computer storage space.  
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7.8 Discussion and Conclusion 

In this chapter, mathematical formulation for elastic modulus adjustment procedure has been 

developed for strain hardening material model. These formulations are then integrated to the 

linear elastic analysis and an algorithm has been proposed to capture the post yield behavior.  

 

In order to obtain the load deflection behavior on the basis of proposed method, applied load has 

to be incremented and strain hardening EMAP algorithm (Figure 7.3) has to be iterated for each 

load increment. The proposed method achieves inelastic stress and strain convergence by 

systematic modulus adjustment in subsequent iterations while the inelastic FEA achieves 

convergence through the achievement of equilibrium and compatibility condition at a particular 

load increment. Therefore, although the proposed methodology approximates the inelastic 

distribution with sufficient accuracy, there are slight deviations in results due to the difference in 

underlying algorithm.  

 

The method has shown good agreement with small deflection nonlinear FEA results and thus can 

be used as a suitable tool for structural analyses, when large deflection is not an occurrence. The 

proposed method can be extended further to incorporate the in-plane membrane effect and 

geometric nonlinearity effect into the mathematical formulation.  
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Chapter 8: Conclusions and Future Research 

8.1 Summary and Conclusions 

This thesis is dedicated to the examination of the bounds of several limit load approximations, 

and subsequently suggests procedures and guidelines for robust limit load approximations. These 

methods can be employed for estimating primary stress and limit loads and hence can be utilized 

as an analysis tool for design as well as integrity assessment of practical components and 

structures. Simplified approximations are also attractive for Level 2 Fitness-for-service (FFS) 

evaluations. Level 2 is intended for use by facilities or plant engineers in an engineering plant 

environment with the availability of limited analysis capabilities. The following section 

summarizes the key conclusions drawn from this thesis:  

 

The lower bound estimate of the multiplier  relies on the exact distribution of plastic flow 

parameter. It is found that for an approximate distribution of flow parameter, µm ′′  is either upper 

bound or its bounds are not obvious. Since the exact distribution of plastic flow parameter is only 

available from the limit state stress distribution, the multiplier µm ′′  could not be established as a 

lower bound based on a single linear elastic analysis.  

  

Simha and Adibi-Asl [14] proposed an inequality relation (m''< ) for lower bound m''. It is 

concluded that the inequality (m''< ) cannot guarantee a lower bound m'', when  is 

estimated from an approximate distribution of plastic flow parameter. 

 

The reference two bar model introduces a transformation parameter, which scales up the overly 

conservative estimate of Mura’s lower bound multiplier to a better accuracy. The reference two 

µm ′′

µm ′′

µm ′′ µm ′′
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bar multiplier bounds the limit load solution of multi bar models. A general mechanical 

component can be represented by a suitable multi bar model in terms of limit load estimation. 

Furthermore, the correction factor introduced to the reference two bar solution eliminates any 

possibility of overestimation of limit loads using the reference two bar multiplier. Hence the 

proposed estimate of reference two bar solution provides lower bound limit load. However, 

reference two bar multiplier at times provides conservative results, although its accuracy is far 

better compared to classical lower bound.  

 

The  multiplier which offers better accuracy than the two bar multiplier is also established as 

a lower bound by investigating exact solution trajectory, utilizing the constraint map 

construction. Furthermore, the  multiplier bounds the limit load solution of multi bar models. 

The suggested  multiplier estimate thus gives more accurate lower bound limit loads 

(compared to the two bar solution) using single linear elastic analysis.  

 

The proposed estimate of reference two bar multiplier and the  multiplier can be used (i) to 

obtain lower bound limit load / primary stress of mechanical components and structures, (ii) to 

assess the integrity of components with and without defects, and (iii) to assess the Level 2 FFS 

evaluations of an in-service component. These methods are simple, reliable, cost efficient as well 

as easy to implement based on a single linear elastic analysis. 

 

An elastic modulus adjustment scheme for elastic-perfectly-plastic material model has been 

developed, which reduces the convergence difficulties usually encountered in EMAP for 

complex component configurations. The mα-tangent multiplier is used in conjunction with the 

T
mα

T
mα

T
mα

T
mα
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elastic modulus adjustment procedure for limit load determination. The lower boundedness of 

the mα-tangent multiplier for any iteration is ensured by incorporating reference volume and peak 

stress corrections. By the virtue of the faster convergence feature, the mα
T
-multiplier permits 

gentler modulus adjustments, and at the same time estimates sufficiently accurate lower bound 

limit load within a relatively small number of elastic iterations.  

 

Single linear elastic analysis based techniques are attractive when a quick and inexpensive 

calculation is required (e.g. Level 2 FFS type assessment). If the limit load/primary stress can be 

estimated from a linear elastic stress analysis in order to meet the ASME design qualification 

requirement ([1] [11]), then it will save the expense to set-up and perform a detailed inelastic 

analysis. However when the analyst cannot afford any kind of conservatism, EMAP can be 

utilized to achieve better accuracy. Basically the first EMAP iteration is nothing but the single 

linear elastic analysis.  

 

An elastic modulus adjustment scheme for strain hardening material model has been developed 

and the algorithm is programmed into repeated linear elastic analysis in order to capture the post 

yield behavior of a component or structure. The modulus adjustment scheme results for bilinear 

hardening material model have shown good agreement with small deflection nonlinear FEA 

results. Hence it can be used as a suitable and an alternative technique for elastic-plastic analysis.  

 

The simplified methodologies developed in this thesis are limited to components subjected to 

small deformation.  
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8.2 Original Contributions 

The following are the original contributions of this thesis: 

 

(1-a) NSSC rules [15] are introduced into the expression of plastic flow parameter distribution 

proposed by Pan and Seshadri [7]. A general expression of plastic flow parameter distribution is 

proposed in a form which enables parametric examination of the possible approximations of the 

plastic flow parameter based on a linear elastic analysis.  

 

(1-b) An extended expression for the multiplier  [13] is proposed in a form which enables 

parametric examination of its estimate based on the possible approximations of the plastic flow 

parameter distribution. It is concluded that the limit load bounds of the multiplier  is not 

obvious for an approximate distribution of flow parameter. 

 

(1-c) Since the limit load bounds of the multiplier  is not obvious for an approximate 

distribution of flow parameter, the inequality (m''< µm ′′ ) cannot guarantee a lower bound m'' [14], 

if µm ′′  is estimated based on an approximate distribution of plastic flow parameter. 

 

(2-a) The reference two bar model is developed on the basis of the generalized two-bar analysis. 

The generalized two-bar analysis eliminates the equal two bar area assumption previously 

considered in the literature [10]. 

 

µm′′

µm ′′

µm ′′
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(2-b) A transformation parameter has been obtained from the reference two bar model which 

scales up Mura’s overly conservative lower bound multiplier to a multiplier with improved 

accuracy.  

 

(2-c) Since a mechanical component or structure can be represented by a suitable multi bar 

model, a general expression of the multi bar model has been developed. It is found that the 

reference two bar multiplier bounds the limit load solution of multi bar models. 

 

(2-d) A correction factor is introduced to the reference two bar multiplier in order to eliminate 

any possibility of overestimation of limit loads using the reference two bar multiplier. Therefore 

a lower bound reference two bar multiplier has been achieved. 

 

(2-e) A guideline is proposed to obtain sufficiently accurate lower bound limit load using the two 

bar multiplier, based on a single linear elastic analysis. 

 

(3-a) The mα-tangent multiplier [12] is established as a lower bound on the basis of the constraint 

trajectory map. Moreover it is shown that the mα-tangent multiplier bounds the limit load 

solution of multi bar models. 

 

(3-b) Reference volume correction is proposed in order to ensure lower bound mα-tangent 

solution for practical components and structures. This multiplier is found to be the most robust 

simplified approximation available in the literature.  
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(3-c) The mα-tangent method [12] is used in conjunction with the elastic modulus adjustment 

procedure for determining accurate lower bound limit loads. The lower boundedness of the mα-

tangent multiplier for any iteration is ensured by incorporating reference volume and peak stress 

corrections. By the virtue of the faster convergence feature, the mα
T
-multiplier permits gentler 

modulus adjustments, and at the same time estimates sufficiently accurate lower bound limit load 

within a relatively small number of elastic iterations. The convergence difficulties usually 

encountered in EMAP for limit load estimation have been significantly minimized.  

 

(3-d) A guideline is proposed to obtain sufficiently accurate lower bound limit load (using the 

mα
T
-multiplier) based on a single linear elastic analysis, which involves judicious incorporation 

of reference volume and peak stress correction. 

 

(4-a) Mathematical model of elastic modulus adjustment scheme has been derived for bilinear 

hardening and Ramberg–Osgood material model, utilizing the “strain energy density” theory, in 

order to capture the post yield behavior of a component or structure. 

 

(4-b) The proposed algorithm of iterative elastic modulus adjustment scheme developed for 

strain hardening material model is programmed into repeated linear elastic FEA. 

 

(5) A number of analytical and numerical examples of varying complexity have been worked out 

and the results are compared with conventional analyses techniques. It is found that the 

simplified limit load approximation techniques can be used for analyzing complex problems with 

minimum effort and resources.  
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8.3 Recommendations for Future Research 

Recommendations for future work are as follows: 

 

1. The proposed guideline for the mα-tangent and reference two bar multiplier evaluation method 

can be implemented for the limit load analysis of complex three dimensional finite element 

models (which might include inhomogeneous and anisotropic behavior). A similar 

implementation was carried out by Jain [32] for the design of a pressure vessel manway cover as 

per the ASME Boiler and Pressure Vessel Code guidelines.  

 

2. Implementation of the mα-tangent and reference two bar method as a design tool per API 579 

Fitness-for-Service (Level 2), ASME Section III and Section VIII design-by-analysis guideline. 

 

3. Simplified methods in its current form are only suitable for the integrity assessment of two 

dimensional crack-like flaw models. Application of these methods to the three dimensional flaw 

models would be useful.  

 

4. Fracture parameter like J-integral and ductile fracture stability can be evaluated based on the 

proposed simplified methods.  

 

5. The proposed strain hardening model can be implemented for the estimation of stress-strain at 

the notch root of a component having strain hardening feature, which is useful for FCI (fatigue 

crack initiation) prediction and can be utilized as an independent verification tool for the 
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available techniques. Similar investigation was carried out previously by Adibi-Asl and Seshadri 

[15] for elastic-perfectly-plastic material model. 

 

6. The proposed strain hardening model can be utilized to obtain the plastic response of a 

structure beyond its yield point, which provides an idea about the reserved capacity of the 

structure against environmental/accidental loads.  

 

7. The strain hardening model can also be implemented to identify the boundary between 

shakedown and ratcheting when the structure experiences strain hardening effect (similar 

solution was reported by Adibi-Asl and Reinhardt [24] for elastic-perfectly-plastic material 

model). This is a non-cyclic approach and can be utilized as an alternative to cyclic elastic-

plastic analysis.  

 

8. Simplified methods have already been employed in the Level 2 fitness-for-service (FFS) 

assessments of several tank and vessel geometries. There is a scope of implementing the 

simplified FFS assessment technique to the annular tanks. Recently annular tanks are considered 

as the emergency heat sinks for the high temperature pressure vessel containments. These tanks 

are usually susceptible to environmental corrosion.  
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APPENDICES 

Appendix A: Derivation of Limit Load Solution for Several Beam Configurations 

Beams of various cross-sections have different limit load capacity, as governed by their section 

modulus and shape factor. Limit loads of various beam configurations have been analytically 

obtained and expressed in terms of the reference two bar solution.  

 

A.1 Rectangular Beam 

Regarding the beam in Figure A.1, consider the elastic stress field under bending moment, and 

the axial stress as a function of height from the neutral axis, y. 

 

 Figure A.1 Elastic stress fields for beam under moment loads  

Lower bound limit moment for beam is the yield strength times the beam section modulus,  

i.e.  (A.1) 

Here Z = Section modulus and σy = Yield strength and My = Moment at first yield.  

Lower bound multiplier can be obtained by normalizing Eq.(A.1) with the applied moment M,  

  
(A.2) 
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Similarly, exact limit load multiplier for a beam is the normalized form of plastic moment, 

i.e.  (A.3)  

Here S = Shape factor and MP = Plastic moment.   

Now the upper bound multiplier for a rectangular beam section can be expressed as: 

 

 

(A.4) 

For a rectangular section of unit width, the section properties are: 

  

where t is the thickness of the rectangular beam and I is the moment of inertia. Therefore for a 

rectangular beam the expressions for the above multipliers can be re-written as:  
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Now  for the rectangular beam will stipulate the length ratio of the equivalent reference 

two bar structure. 

i.e.  (A.5) 

Now the expression for Mura’s lower bound multiplier can be expressed as, 

  (A.6) 

The ratio of Mura’s lower bound multiplier and exact multiplier for a rectangular beam can be 

obtained as follows: 

 
 (A.7) 

This clearly shows that once  and m
0
 for a rectangular beam are obtained and substituted 

into the reference two bar multiplier formulation (Eq.(A.7)), it will provide the exact solution for 

the rectangular beam. The expressions of the limit load multipliers for a rectangular beam are 

tabulated below: 
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The multiplier 
T

mα ,  m ′′  and µm ′′  are also presented below for the rectangular beam in a 

normalized form: 
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A.2 Solid Circular Beam  

For a solid circular beam of diameter d, the axial stress can be represented as: 

 
 (A.8) 

Now for a solid circular beam section, the general section properties are:  

  

The upper bound multiplier for a circular beam section, 

 
 

(A.9)  

The expressions of the limit load multipliers for a solid circular beam are tabulated below: 
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A.3 Thin Circular Pipe 

Regarding the circular pipe in Figure A.2, consider the elastic stress field under bending 

moment.  

 

 Figure A.2 Elastic stress fields for circular pipe under moment loads  

 

Here r is the nominal tube radius and t is the tube thickness. Now for a pipe section, the general 

section properties: 

Area Moment of Inertia:                

Elastic Section Modulus:             
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Classical Lower Bound:  (A.10) 

Upper Bound:  (A.11) 

Exact Solution:  (A.12) 

Hence  will stipulate the length ratio of the equivalent reference two bar structure. 

i.e. 

 

(A.13) 

The expression for Mura’s lower bound multiplier can be expressed as: 
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For a thin circular pipe (t<<r), neglecting the higher order terms, the expressions for the limit 

load multipliers are tabulated below: 

 

Table A.3 Limit load multipliers for a thin circular pipe 
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Appendix B: Detail Derivation of the mα-Method 

In this section, Mura’s variational formulation is extended to obtain the mα-multiplier [6]. The 

derivation of the mα-multiplier requires some unique algebraic manipulations which haven’t been 

documented in any previous works. In the following section the step-by-step derivation of the 

mα-multiplier is provided, showing all the algebraic operations, in order to reach the final 

expression.  

The expression for Mura’s lower bound multiplier m′can be expressed as: 

 
 

(B.1) 

From a differentiation of the above equation with respect to , follows the expression:  
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Now differentiating Eq.(B.1) with respect to 0
m  and 

Lm  separately: 

  (B.4) 

  (B.5) 

Substituting Eq.(B.3) by Eq.(B.1),(B.4) and (B.5): 

  (B.6) 

Eq.(B.6) is a second order polynomial of αm  and thus it has two roots. Solving the roots, 
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Assuming positive root as the desired solution, multiply Eq.(B.7) by 

4

1
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Lm
in both numerator 

and denominator. Then the final expression for the mα-multiplier (as shown in Eq.(B.9)) is 

achieved through the following steps:  
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(B.9) 

The above expression (Eq.(B.9)) is used in the literature to represent the multiplier mα.  
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Appendix C: Modeling of Components with Cracks for Simplified Limit Load Analysis 

This section discusses the modeling of components with cracks, for the purpose of limit load 

estimation based on a linear elastic analysis. The linear elastic stress distribution around a crack 

configuration can be captured by using singular elements around crack tip. However limit load 

solution based on a linear elastic stress distribution requires further treatment of singularity 

elements; if the solution technique has explicit dependency on the maximum stress at the crack 

tip (e.g. classical lower bound limit load solution is explicitly dependent on the maximum 

equivalent stress of the entire stress distribution). This is due to the recognition that a crack tip 

configuration induces very high peak stress which is localized and gets redistributed along with 

the secondary stress. Modifying the elastic modulus of singular elements around the crack tip in 

a finite element discretization can reduce the magnitude of stress gradient to a minimum and 

hence the effect of peak stresses becomes small.  Therefore use of singularity elements and their 

proper softening are important modeling considerations during the limit load analysis of cracked 

components, on the basis of linear elastic analysis.  
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C.1. Elastic Stresses Around the Crack Tip 

Consider a crack configuration shown in Figure C.1 for which the stresses at the crack tip can be 

expressed as: 

 
r

K I
yx

π
σσσ

2
max ===  

{ StressPlane

StrainPlanez

→
→= 0

2 maxυσσ  

(C.1) 

 

 

(a) Stress ahead of crack tip (b) Distribution of singularity elements around 

crack tip 

Figure C.1 Crack tip representation 

 

Here KI is the opening mode of fracture. Eq.(C.1) reveals that the cracked structure possess a 

singular stress field that is proportional to 
r

1
. Here r is the distance from the crack tip along the 

crack length. The stress gradient in the vicinity of the crack tip is extremely high. The singularity 

element facilitates the variation of stress and strain as a function of 
r

1
, and hence can represent 

the elastic stress distribution around the crack tip.  
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C.2. The Singular Element 

The singular element is an element where stresses and strains are singular at the crack tip varying 

proportional to 
r

1
, shown in Eq.(C.1). Here r is the distance from the crack tip along the crack 

length. Proper crack-tip displacement, stress and strain fields can be modeled by standard 

quadratic order isoparametric finite elements by moving the element's mid-side node to the 

position one quarter of the way from the crack tip to the far end of the element. Such an element 

introduces a singularity into the mapping between the element's parametric coordinate space and 

Cartesian space, therefore is called singular element. For example, three nodes of a quadratic 

element are joined (Node 1, 7, and 8) and the mid-side nodes are moved to the quarter point 

adjacent to the crack tip node as shown in Figure C.2.  

 

→ 

 

Figure C.2 The singular element. 

 

The effect of moving the side node of a quadratic element to the quarter-point position can be 

best illustrated by a one-dimensional element. A 1-D quadratic order element is shown in Figure 

C.3, where the location of the center node is controlled by the parameter 'α', and the crack tip is 

located at r=0 [31]. 
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(a) Natural Coordinate System of the element (b) The Cartesian space of the element 

Figure C.3 A 1-D quadratic element 

 

Recalling the isoparametric formulation of a 1D quadratic element: 
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(C.2) 

For an isoparametric element, the same approximation is used for the geometry as well as for the 

displacements field variable. Therefore the geometry of the 1-3 edge may be expressed as: 
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By locating the mid-node (node#2) at  
4

2

l
lr == α  and substituting the nodal coordinates with 

respect to Figure C.3: 
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r ξξξ ++−= 1

2

1

4
1 2  (C.4) 

Now solving forξ : 
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l

r
ξ  (C.5) 

 

1 2 3 
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For the isoparametric element the displacement field variable can be expressed as: 
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(C.6) 

where u1, u2 and u3 are the displacements at nodes 1, 2 and 3. Using Eq.(C.5) in Eq.(C.6), 
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(C.7) 

Differentiating yields the following expression for strains in the element: 
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uuu
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321321 +−+−+−==ε  (C.8) 

The three terms in the displacement expression (Eq.(C.7)) consists of a constant value, a linear 

variation in r, and the square root variation of r. This corresponds to the leading terms in the 

expressions for the near crack-tip displacement. Similarly, the expression for the strains 

(Eq.(C.8)) contains a constant term and a singular term that varies as a function of 
r

1
, the form 

of expression given in Eq.(C.1). 
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C.3. Quarter Mid-Side Nodes at Crack Tip with ANSYS  

As discussed in the former sections, it is useful to use a singularity element with quarter mid-side 

nodes in order to capture the stress singularities. In terms of finite element modeling, the first 

row of elements around the crack tip should be singular, as illustrated in Figure C.1 and it is 

convenient to model only one half of the crack region, with symmetry boundary conditions. For 

reasonable results, the first row of elements around the crack tip should have a radius of 

approximately r/8 or smaller, where r is the distance from the crack tip along the crack length. In 

the circumferential direction, roughly one element every 30 or 40 degrees is recommended and 

the crack tip elements must not be distorted. 

 

C.4. Singularity Element Softening for Blunting Peak Stresses  

By softening the elastic modulus of regions around the crack tip (singular elements that surround 

the crack tip in a finite element discretization), the magnitude of stress gradient reaches a 

minimum (shown in Figure C.4) and the effect of peak stresses becomes small. Adibi-Asl and 

Seshadri [23] proposed the following procedure for the relaxation of peak stresses around the 

crack tip, utilizing the singularity element softening approach. 

 

 Considering the principal stress components from Eq.(C.1), von-Mises equivalent stress can be 

computed as: 

 
r

K
A I

eq
π

σ
2

=  (C.9) 

where A=1 represents plane stress and ( )υ21 −=A represents plane strain 

The average stress along the crack orientation in the singularity domain can be calculated as: 
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With respect to Figure C.4, at r=rs the equivalent stress is equal to the reference stress; thus 
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Figure C.4 Elastic stress distribution ahead of the crack tip 

 

Therefore the relationship between the modified elastic modulus (Es) and initial elastic modulus 

(E0) can be written as: 
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(C.12) 

The value of parameter 'q' can be within the range of 21 ≤≤ q . Applying the values of q=1 and 

q=2, the 
0E

Es
 ratio will vary between 0.5 and 0.25 respectively. Based on extensive numerical 
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investigation on different crack configurations, Adibi-Asl and Seshadri [23] proposed 
3

0E
Es =

for modifying singular elements around a crack tip.  

 

Therefore in order to obtain sufficiently accurate estimate of lower bound limit loads for 

components with cracks (based on single linear elastic analysis), the singular elements around 

the crack tip are softened as ,   while all other elements having an elastic modulus of E0. 
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