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Abstract

From a design point of view, a robust simplified limit load solution is the one which is
consistently lower bound, yet provides a better estimate compared to the classical lower bound
limit load. The robustness is determined by its proximity to the exact limit load. There are
several limit load multipliers such as multiplier m (Seshadri and Indermohan, 2004), multiplier
m'" (Simha and Adibi-Asl, 2012), two bar multiplier (Seshadri and Adibi-Asl, 2007), and
multiplier m," (Seshadri and Hossain, 2009) which provides reasonable estimates of limit loads.
However their nature of bounds has not been examined. In this thesis limit load bounds for these
multipliers have been investigated. Finally, the nature of bounds of all the limit load multipliers

in the literature are summarized, where bounds are either already established or will be addressed

in this thesis.

”

The lower bound estimate of the multiplier m relies on the exact distribution of plastic flow

parameter. It is found that for an approximate distribution of flow parameter, m; is either upper

bound or its bounds are not obvious. Since the exact distribution of plastic flow parameter is only

available from the limit state stress distribution, the multiplier m; could not be established as a

lower bound based on the linear elastic analysis.

Simha and Adibi-Asl (2012) proposed an inequality relation (m"<m/ ) for lower bound m". It is
concluded that the inequality (m"<m’ ) could not guarantee a lower bound m", when m} is

estimated from an approximate distribution of plastic flow parameter.

In order to investigate limit load bounds of the two bar solution, reference two bar multiplier
(which gives bounding limit load over the other two bar configurations) is first identified by
performing general two bar analysis. Since a mechanical component or structure can be
represented by a suitable multi bar model, a general multi bar analysis is then performed. It is
found that the reference two bar multiplier bounds the limit load solution of multi bar models. A
correction factor has also been introduced to the reference two bar solution in order to eliminate

any possibility of overestimation of limit loads using reference two bar multiplier. Hence the
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proposed estimate of reference two bar solution provides lower bound limit load. However limit
load estimation using this multiplier at times could be conservative (although offers much better

accuracy than classical lower bound) compared to the exact limit load.

The maT multiplier which offers better accuracy than the two bar multiplier is also established as
a lower bound by investigating exact solution trajectory, utilizing the constraint map

construction. Also, it is found that the m," multiplier bounds the limit load solution of multi bar

models, which confirms the lower bound nature of the maT multiplier. A guideline is proposed to

obtain sufficiently accurate lower bound limit load based on a single linear elastic analysis.

In terms of elastic modulus adjustment procedure (EMAP), classical lower bound limit load
multiplier is susceptible to oscillations with iterations, when sharp modulus adjustments are
performed thereby raising convergence issues. On the other hand, more gentle element modulus
adjustments turn out to be computationally expensive. In this thesis, the m,-tangent multiplier is
used in conjunction with the elastic modulus adjustment procedure for limit load determination.
The lower boundedness of the m,-tangent multiplier for any iteration is ensured by incorporating
reference volume and peak stress corrections. By the virtue of the faster convergence feature, the
m,"-multiplier permits gentler modulus adjustments, and at the same time estimates sufficiently
accurate lower bound limit load within a relatively small number of elastic iterations. This

minimizes the convergence difficulties usually encountered in EMAP.

Simplified techniques on the basis of linear elastic finite element analysis (FEA) assumes elastic-
perfectly-plastic material model. However, due to strain hardening, a component or a structure
can store supplementary strain energy and carry additional load. In this thesis, an iterative elastic
modulus adjustment scheme is developed for strain hardening material model, utilizing the
“strain energy density” theory. The proposed algorithm is then programmed into repeated linear
elastic FEA and implemented to a number of practical components. Moreover, the procedure for
elastic modulus adjustment to achieve limit state and elastic-plastic state are explained in

parallel, to demonstrate their similarity and diversity.
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Chapter 1: Introduction

1.1 General Background

The primary objective in designing a mechanical component or structure is to ensure its ability to
perform the intended function at minimum capital and operational cost. Therefore it is important
to design components by taking into account all failure modes that the component could
experience. It is also necessary to periodically assess the “integrity” of mechanical components,
and structures in operation thereby establishing an estimate of the remaining life of critical

components.

Among the various modes that may govern the failure of a component, plastic collapse is one of
the most important, since it would lead to gross plastic deformation. Load which causes cross-
sectional plasticity in structures resulting in uncontained plastic flow is termed as limit load.
Limit load analysis provides a measure of the reserve strength that exists in mechanical and
structural components. As well, knowledge of the limit load is necessary for obtaining the
reference stress [2], which is used extensively in the United Kingdom [33] [34] in integrity

assessment and fracture evaluations.

Conventionally, limit loads are determined either analytically or by using the numerical methods.
Analytical methods are mostly used in conjunction with lower and upper bound theorems in
plasticity, and application of these methods is generally limited to simple geometric
configurations. Numerical methods such as inelastic finite element analysis, on the other hand,
are applicable to a wide range of practical components and structures. The most frequently used

numerical approach to obtain a limit load is to perform a nonlinear elastic-plastic finite element



analysis with no strain hardening. However inelastic FEA has some limitations. The difficulties
arise mainly from the need to carry out analyses in an iterative and incremental form. Since this
method always operates at the convergence limit, it tends to be relatively inefficient, i.e. many
steps are required to obtain a good estimate of the limit load. Moreover the enormous
computational time required for the analysis is expensive and produces a large amount of output
data that has to be interpreted properly in order to make practical sense. For complex shakedown

analysis, inelastic analysis remains an expensive choice, especially for combined loading.

An independent verification of a detailed nonlinear FEA results is also essential in order to avoid

having erroneous results due to numerical errors.

As per the ASME design-by-analysis approach ([1] [11]), primary stresses are to be kept below
their corresponding allowable values in order to avoid plastic collapse. However, for complex
geometric configurations primary stress classification from a linear elastic stress distribution is

not always straightforward.

Structural integrity assessment in an operating plant is practiced at three levels. Level 1
assessment procedures provide conservative screening criteria that can be used with a minimum
quantity of inspection data or information about the component. Level 2 is intended for use by
facilities or plant engineers, although some owner-operator organizations consider it more
suitable for a central engineering evaluation. Level 3 assessments require sophisticated analysis
by experts, where advanced computational procedures are often carried out. Level 2 Fitness-for-

Service evaluations are often made in an engineering plant environment with the availability of



limited resources and often demands time critical solutions. In this situation implementation of a
simplified methodology makes much sense in order to evaluate remaining strength of an in-

service component. Clearly an inelastic solution is not an option for this kind of situation.

The above considerations create the need for the development of alternate lower bound limit load
approximation techniques. Simplified limit load approximations have been employed for limit
load estimation on the basis of linear elastic finite element analysis (FEA). However from a
design point of view, a robust limit load solution is required, which is a lower bound, yet
provides a better estimate of limit load compared to the classical lower bound limit load.
Therefore developing better approximation techniques, examining the bounding nature of several

simplified approximations and their systematic implementation are the main aim of this thesis.

It should be pointed here that throughout the thesis the terms ‘limit load bounds’ and ‘bounding
nature’ of a limit load solution are used interchangeably, which specifies whether a limit load

multiplier is consistently lower bound, consistently upper bound or its bound is not clear.

1.2 Lower Bound Limit Load

Structures can withstand loads beyond the elastic limit of structural materials, and with plastic
design, advantage can be taken of the reserve strength that exists beyond the initial yielding. For
statically indeterminate structures especially those with large indeterminacy, the reserve strength
can be significant. Therefore knowledge of limit loads of components and structures becomes
useful to a designer, since it enables the determination of the reserve strength and also addresses

the mode of failure associated with load-controlled effects.



Lower bound limit loads are especially relevant from a design point of view since they provide a
guaranteed margin of safety against load controlled plastic failure modes, or the related primary
stress limits contained in the design codes ([1] [11]). Lower bound limit load guarantees that the
stress distribution throughout the component or structure is in equilibrium internally, balances

the external loads and at the same time does not violate the yield condition.

1.3 Need for Simplified Approximations
Simplified limit load approximations can be employed as an alternative limit load estimation
method on the basis of linear elastic finite element analysis (FEA). This approach utilizes the

“bounding theorems in plasticity”, in conjunction with the linear elastic analysis.

The simplified methods rely on statically admissible stress and kinematically admissible strain
rate fields obtained from linear elastic FEA. For real-world geometries, it is convenient to
estimate the limit load utilizing statically admissible stress and kinematically admissible strain
fields. Simplified methods can be based on iterative finite element elastic analyses that involves
modification to the element elastic modulus in successive iterations. Also it is possible to
compute limit load by utilizing a single linear elastic stress field (no iterations). No matter what
the approach is, the objective is to obtain an economic limit load solution which is neither
overestimated nor overly conservative. Since the ultimate goal is to achieve an economic but safe
estimate of limit load, it is important to understand the bounding nature of several simplified

approximation techniques and their systematic implementation.



Even beyond limit state, membrane action and post-yield strain hardening effect enable the
structure to withstand increased loads prior to ultimate collapse. Therefore, designers are also
interested in the development of simplified formulations that can account for strain hardening
and in-plane membrane action, in order to capture the post yield behavior of a component or

structure.

Simplified approximation techniques are ideally suited for performing a preliminary analysis,
design or qualification of components so that the safety margin of a component or structure can
be assessed. These methods can also be used for identifying critical locations; as well as
estimating the inelastic effects. Simplified methods are sometimes the only recourse to an
independent verification of the results of a detailed nonlinear analysis of a complex geometric

configuration.

1.4 Objectives of Research

The primary set of objectives of the proposed research work is as follows:

1. Examine the limit load bounds of several simplified limit load approximations, for which
bounds have not been established and suggest guideline for a lower bound estimate. There are

several limit load multipliers such as multiplier m; [13], multiplier m" [14], two bar multiplier

[10], and multiplier maT [12] which provide reasonable estimates of limit loads. However their

bounds have not been examined. In this thesis limit load bounds for these multipliers have been
investigated. Finally, limit load bounds of all the limit load multipliers in the literature are

summarized, where bounds are either already established or will be addressed in this thesis.



2. Develop an elastic modulus adjustment scheme for elastic-perfectly-plastic material model,
which reduces the convergence difficulties usually encountered in EMAP for complex
component configurations. The m,-tangent multiplier is used in conjunction with the elastic
modulus adjustment procedure in order to eliminate the convergence difficulties and estimate

sufficiently accurate lower bound limit load within a relatively small number of elastic iterations.

3. Provide guidelines for calculating lower bound limit loads based on a single linear elastic
analysis. Essential correction factors are introduced to some of the limit load multipliers in order

to eliminate the possibility of overestimation/underestimation of limit load.

4. Develop an iterative elastic modulus adjustment scheme for strain hardening material model,
utilizing the “strain energy density” theory. The proposed algorithm is then programmed into
repeated linear elastic FEA and implemented to a number of practical components. Moreover,
the procedure for elastic modulus adjustment to achieve limit state and elastic-plastic state are

explained in parallel, to demonstrate their similarity and diversity.



1.5 Scope of Research

From a design point of view, lower bound limit loads provide a guaranteed margin of safety
against load controlled plastic failure modes. The improvement of the accuracy of lower bound
limit load estimation towards the exact limit load has great engineering value. Estimation of
lower bound limit load by using simplified methods is of considerable interest due to its
simplicity and cost effectiveness. There are several simplified limit load multipliers in literature
which provide reasonable estimates of limit loads. However their bounds have not been
established. Examining the bounds of several simplified limit load approximation techniques and

suggest guideline for accurate lower bound offers a significant scope of research.

During elastic modulus adjustment procedure (EMAP), lower bound limit load multipliers are
susceptible to oscillations with iterations, when sharp modulus adjustments are performed
thereby raising convergence issues. On the other hand, a more gentle element modulus
adjustments turn out to be computationally expensive. There is a scope of developing an EMAP
scheme, which minimizes the convergence difficulties usually encountered and at the same time

can estimate sufficiently accurate limit load within a few linear elastic iterations.

Simplified limit load analysis techniques assume elastic-perfectly-plastic material model. Due to
strain hardening, a component or a structure can store supplementary strain energy and hence
carry additional load. Therefore development of elastic modulus adjustment scheme for strain

hardening material model has significant engineering and economic value.



1.6 Organization of the Thesis

This thesis is composed of eight chapters. The first chapter addresses the significance of lower
bound limit load approximations and the advantage of using simplified techniques for
mechanical component and structure design. The objectives and scope of the proposed research

work are also presented in this chapter.

The theoretical aspects pertaining to the research reported in this thesis are explained in Chapter
2. The bounding theorems in plasticity are explained in this chapter. The extended variational
theorem proposed by Mura and co-workers [30] is introduced and several limit load multipliers,
which set the basis for the current thesis, have been re-derived. The concept of reference stress is
discussed and the relationship between reference stress and limit load is highlighted. The concept
of reference volume is discussed in an attempt to isolate the regions in the structures that most

likely do not participate in plastic collapse.

Chapter 3 discusses the upper and lower bound multipliers, basic construction of the constraint
map, exact solution locus as well as robust limit load approximations. This chapter also deals
with the limit load bounds for the multiplier m; [13] and multiplier m" [14]. Finally a list of
limit load multipliers available in the literature and their bounds (either established previously or

established in this thesis) are summarized in Chapter 3. Basically chapter 3 gives the essence of

this thesis and directs to necessary elaborations provided in the subsequent chapters.

Chapter 4 presents the general two bar analysis to achieve the reference two bar multiplier. The

generalized two-bar analysis eliminates the equal two bar area assumption previously considered



in the literature [10]. A transformation parameter is obtained from the reference two bar model
which scales up Mura’s overly conservative lower bound multiplier to a multiplier with
improved accuracy. Since a general mechanical component can be represented by a suitable
multi bar model in terms of limit load estimation, the bounding nature of reference two bar

model over multi bar structures is also discussed in this chapter.

Chapter 5 discusses theoretical evolution of the m,-tangent method [12] and establishes this
method as a robust lower bound. Reference volume correction is proposed in order ensure lower
bound m,-tangent solution for practical components and structures. This chapter also provides a
systematic guideline for elastic modulus adjustment scheme, which reduces the convergence
difficulties usually encountered in EMAP for complex geometric configurations. This guideline

is then implemented to a complex three dimensional complex grillage FE model.

In chapter 6, a correction factor has been introduced to the reference two bar multiplier
(developed in Chapter 4), in order to eliminate any possibility of overestimation of limit loads
using this multiplier. In addition, a guideline for appropriate incorporation of reference volume
and peak stress correction to the m, multiplier (discussed in Chapter 5) is provided in chapter 6.
It is essential to incorporate the reference volume and peak stress corrections judiciously on a
component basis, in order to achieve reasonable lower bound estimation of my multiplier based
on single linear elastic analysis. These methods are then implemented to a number of practical

mechanical components based on a linear elastic analysis.



Chapter 7 presents an elastic modulus adjustment scheme for strain hardening material model.
This involves development of EMAP formulation for bilinear hardening and Ramberg—Osgood
material model, followed by the development of an algorithm which can be programmed into
repeated linear elastic analyses. The procedure for elastic modulus adjustment to achieve limit
state and elastic-plastic state are explained in parallel, to demonstrate their similarity and

diversity.

Chapter 8 summarizes and concludes the findings of the present research work. The chapter also

presents the original contributions to this thesis along with some guidelines for future work.

Appendix A documents the derivation of analytical limit load solution for several beam

configurations.

Appendix B documents the detailed derivation of the m,-method. This includes some unique

algebraic manipulations which have not been documented in any previous works.

Appendix C discusses the modeling strategy of components with cracks, for the purpose of limit

load estimation based on a linear elastic analysis.
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Chapter 2: Theoretical Background

2.1 Introduction

The theoretical aspects relevant to the simplified limit load approximations are presented here.
Simplified methods are originally based on established classical theorems which enable
determination of lower bounds and upper bounds for the collapse load. The true collapse load is
always larger than or equal to the lower bound collapse load and is always smaller than, or equal
to the upper bound collapse load. The collapse load is thus bracketed between the upper and

lower bounds.

Alternate formulations for lower and upper bound theorems that were based on extended
variational concepts were first proposed by Mura and coworkers [5] [30]. By making use of
“statically admissible” stress distributions and “kinematically admissible” strain distributions,
and invoking the notion of integral mean of yield, pseudoelastic distributions of stress that

exceeded yield were utilized for determining the upper and lower bound limit loads.

The classical bounding theorems and variational concepts of plasticity can be utilized in
conjunction with contemporary computational tools in order to achieve robust and rapid limit
load estimates. In this thesis, the bounding nature of simplified limit load approximations (which
are based on the classical and variational theorems) are studied in terms of iterative linear elastic
analysis as well as single linear elastic analysis. A review of the theoretical aspects relevant to

the development of this thesis is presented here.

11



2.2 Bounding Theorems in Plasticity

The main objective of the limit load analysis is to estimate the load at the impending plastic limit
state of a body. However, for complicated problems it may be difficult to find the exact limit
load. Therefore, based on the extremum principles of limit load analysis, the bounding theorem
is employed to estimate the limit load directly, without considering the entire loading history.
There are two approaches for establishing approximate values: the equilibrium approach for
lower bound estimates, and the geometry approach for upper bound estimates. In the classical
limit load analysis, material nonlinearity is included by assuming perfectly plastic material

model, while the geometric nonlinearity is not taken into account.

2.2.1 Lower Bound Theorem

A stress field defined throughout a continuum is called statically admissible for the given loads if
in addition to satisfying the yield conditions, it represents a state of equilibrium under the given
loads. Such a stress field is safe if at each point of the field, the state of stress is represented by a

point inside the yield surface.

The statement of the classical lower bound theorem is as follows [3]:
“If any stress distribution throughout the structure can be found, which is everywhere in
equilibrium internally and balances the external loads and at the same time does not violate the

vield condition, those loads will be carried safely by the structure”

Therefore, the load estimated by the lower bound theorem will be less than, or at most equal to,

the exact limit load and can be used for designing mechanical components and structures. In the

12



lower bound theorem, the equilibrium equations (statically admissible stress field) and yield

condition are satisfied without considering the mode of deformation of the structure.

2.2.2 Upper Bound Theorem

A strain rate field defined throughout a continuum is called kinematically admissible for the
given conditions of support, if it is derived from a velocity field which is compatible with the
conditions of support and certain continuity conditions. Such a strain field is unsafe for given
loads, if the total rate of energy dissipated is less than the rate at which the given loads do work

on the generating velocities.

The upper bound theorem states that [3]:
“If an estimate of the plastic collapse load of a structure is made by equating the internal rate of
dissipation of energy to the rate at which the external forces do work in any postulated

mechanism of deformation of body, the estimate will be either high or correct”.

In processes such as metal forming and metal cutting, it is necessary to determine the load that is

capable of performing the given operation. Determination of limit loads using the upper bound

theorem ensures that the limit load estimates obtained can cause “plastic flow” in the component.

13



2.3 Extended Variational Theorems of Limit Load Analysis

Mura’s variational formulation circumvents the requirement for a statically admissible stress
field not to lie outside the yield surface in a lower bound analysis, and in an upper bound
analysis the stress associated with a kinematically admissible stain-rate field in calculating the
plastic dissipation should lie on the yield surface. In the variational approach proposed by Mura
et al. [30] [5], such a requirement was eliminated and replaced by the concept of ‘‘integral mean
of yield”’. They showed that the safety factor ‘m’ (the limit load multiplier) can be obtained from

the following functional, F. i.e.

F= m—jﬂ{%é&ij&ij + (5¢)2}dv [ aulr )+ @2 lav 1)

In the above equation, ¢° and sf; refers to quantities associated with a statically admissible
stress state. The quantities s,, m, u and ¢ correspond to a state of impending plastic flow for

which the von-Mises yield criterion is given by,

1
Flsy) =555 =K 2.2)

2
(O
where ‘k’ is the yield limit in shear and k° = ?’

The ‘‘integral mean of yield’’ [5], can be expressed as:

Julrs+ylav =0 23)

where 10 >0
s;’. is a statically admissible deviatoric stress tensor close to an impending plastic collapse state

and hence corresponds to an applied traction m’P. 1’ is a flow parameter and p" 1is a point
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function that takes on a value of zero at yield, and remains positive below yield. If s is a

statically admissible stress distribution corresponding to an applied traction P, then mosf]? would

correspond to m”P. It is therefore clear that

5O =m° 5O (2.4)

Mura and co-workers [5] have also shown that m’, 4° and ¢° can be determined from the

following functional,
F=m®—[1'[f(s)+ (@) Jav @5)
\4
Since u° = u + du , Eq.(2.3) can be written as:

~[aulr s+ @ Jav = [ ulr s9)+ @) |av 2.6)
\% |4
Now Eq.(2.6) can be substituted into Eq.(2.1) which can be re-written as:

2.
F=m-| u{%ési,ésg+(6¢)2}dV+ [ulrs+ @y lav 7

Since the second term on the right hand side of the Eq.(2.7) is always a positive quantity,
utilizing the concept of ‘‘integral mean of yield”’ (from Eq.(2.3)) in Eq.(2.5), the functional

given in Eq.(2.7) and Eq.(2.5) can be related by an inequality as:

m® <me+ [Ulf(s)+(9°)1dV 2.8)

The above inequality in Eq.(2.8) holds if the expression is written in the following form:

m® < m+max[f (s9) +(p*)* ][ v 2.9)
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Mura et al. [5] scaled the virtual velocity field such that the work done on the structure is unity

and presented an expression for the exact multiplier as:

m =2k’ [ udv
\%

(2.10)
m

2k?

:>judV=

Substituting Eq.(2.10) into Eq.(2.9), the expression can be re-written as:

0
’ m

0 02 Sm
max[(f(s;)+(¢")] (2.11)
i 2k?

Conversely, multiplying the second term of the inequality (shown in Eq.(2.8)) by ‘m’ and

dividing by the expression for it from Eq.(2.10), Eq.(2.8) can be re-written as [13]:

0
m
”
m, = <m

[urfsH+@*iav

21 [ pdv

L+ (2.12)

As mentioned above, m’, #° and ¢° can be determined by rendering the functional given in

Eq.(2.5) stationary, leading to the following set of equations:

OF oF oF
el SO P 2.13)

The von-Mises equivalence for statically admissible stress state can be expressed as:

1
f(s))= Esgsg —k* (2.14)
- 0\2
and lop @) (2.15)
27 3
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Quantities associated with a statically admissible stress state and the quantities correspond to a

state of impending plastic flow can be related as:

0 _
s,.j—s,.j+5sij

c’=0 +d0

m’ =m+ om (2.16)
9" =9+0p
u’ =+ du

Where the superscript ‘0’ refers to quantities associated with a statically admissible stress state.

The quantities s, o, m, yand ¢ correspond to a state of impending plastic flow.

Now combining Eq.(2.4), Eq.(2.15) and Eq.(2.14), then substituting into Eq.(2.5),

02, 042 2 2.17)
F=m0—jﬂ0{(m)%)—%+((po)z}dV

Applying Eq.(2.13) in conjunction with Eq.(2.17), we can get Eq.(2.18), Eq.(2.19), and Eq.(2.20)

respectively. i.e.

2 m® k)2 (2.18)
aaFozl_J'luol: (m l(O') }dvzo
m \4
=>m’ = !
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] T ) |av =0
] {;—«o"f}dv @.19)
:>m0 =|- 042
I{(a) }dv
N3
aFO =2¢"=0
Y (2.20)
= ¢’ =0

Letting ¢° = 0, Seshadri and Mangalaramanan [6] proposed an expression for the upper bound

multiplier m’ from Eq.(2.19) as:

J 2.21)

Eq.(2.21) implies that the calculation of m is based on the total volume assuming the parameter

u° 1is constant throughout the structure.

Pan and Seshadri [7] derived an expression for m" directly from the ‘integral mean of yield”’

that allows for a variation of the flow parameter, 4°. The expression for ‘‘integral mean of

yield’” given in Eq.(2.3) can be re-written as (combining Eq.(2.4), Eq.(2.15) and Eq.(2.14)):

0)2, _0\2 2
jﬂ“ (m)%—%+((po)2 dv =0 (2.22)

Vv

18



Letting ¢° = 0, Pan and Seshadri [7] proposed an expression for the upper bound multiplier m’

(named as m) ) from Eq.(2.22) as:

mj = -
Ju@"yav
v (2.23)
jﬂo dav

1%

For the initial linear elastic analysis, m20 =m" . Compared to m’, the multiplier m] converge

more rapidly to the exact value with successive elastic FEA iterations as discussed in the later

part of this thesis.

In terms of linear elastic analysis, statically admissible stress state ¢° is considered as the von

Mises equivalent elastic stress field o, . Therefore from this point onward, the statically

admissible stress o will be represented as o, , throughout the thesis.

Moreover volume ‘V’ in the above expressions implies the total volume of the structure in a
finite element discretization scheme. If plastic collapse occurs over a localized region of the
structure, m" will be significantly overestimated. To overcome this problem, Seshadri and
Mangalaramanan [6] introduced the concept of reference volume to identify the kinematically
active volume. From this point onward throughout the thesis, the total volume of the structure

will be represented as V7 and the reference volume will be represented as V.
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2.4 Reference Stress Concept

On the basis of energy dissipation considerations, “reference stress” is the stress level at which
the average energy dissipation rate in uniaxial tensile test can be equated to the dissipation rate in
a component or a structure made of that material under a system of loads [28]. Calladine and
Drucker [28] proposed the “theorem of nesting surfaces” and obtained an expression for
“reference stress”. The reference stress obtained could be used for approximate estimation of

limit load, although such estimate is upper bound in nature.

The dissipation rate in a component or a structure under a system of loads can be equated to the

average dissipation rate at the "reference stress state,"

ie. Orof €tV = I O g€V (2.24)

Vv

Using equivalent stresses and strains to represent the three-dimensional stress-states, and

stipulating that steady state creep is of the form € = Bo”,
n+lys _ n+l
O-ref V= Io-eq av (225)
\4

from which the reference stress can be obtained as:

1
n+l

o, = {i | a;;dv} (2.26)
V \%4

N
Calladine and Drucker [29] stated that this functional is strictly monotonically increasing with
the exponent n. It is bounded below by the result of n=1 (elastic) and above by the limiting

functional as n — oo (perfectly plastic).
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For a two bar structure shown in Figure 2.1, the following analytical example is developed in

this thesis in order to clarify the above concept:

The two-bar model is under the load P; therefore the bars are subjected to axial loading only.

Stresses in bar 1 and 2 can be expressed as (considering isotropic material property), i.e.

3 1/L,
AL +A L,
(2.27)
1/L
o, = 2 P
AL +A /L,
N
Ao L
Al’ Ll 1 2 2, L2
o, E Ly>L, Oy, E>
’ A>A,
E1= E2
v P
Figure 2.1 Two bar model
Therefore the expression for reference stress for a two bar structure can be written as,
1 n+l n+l n_l'_
G =——lo,"V, +0,", (2.28)
v
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Substituting the above equation by the two bar stress terms,

1 {VZ ] n+l
il Ln+1
P [ "jl“j 142 (2.29)
14 ntl é + ﬁ Ll V1
Ll L2 Ln+l
For n=1 (elastic):
I
c - P VW VP
ref V% é_i_i Lf Li (230)
Ll L2
For n — oo (perfectly-plastic):
Expanding Eq.(2.29) in series and neglecting the higher order terms,
P
AL (2.31)
Ll L2

Figure 2.2 shows the reference stress variation with exponent n for a particular set of two bar
parameters. The reference stress is monotonically increasing with exponent n and for any value

of n it satisfies Eq.(2.32).

O-reflnzl S O-refln S lijg(o-ref) (232)
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Figure 2.2 Reference stress variation in a two bar structure

With respect to Eq.(2.32), o

refln

is enveloped above by o, and below by the limit surface

lim (o, ) » Which is the yield surface.

For general linear elastic analysis (n=1), the reference stress expression (Eq.(2.26)) is used in the

form,

o = (2.33)

Comparing Eq.(2.33) with Eq.(2.21) implies that the denominator of Eq.(2.21) is essentially the
reference stress estimate. The estimation of multiplier m° being an upper bound thus makes
sense, since the reference stress has been derived on the basis of the energy dissipation

consideration.
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2.5 Reference Volume Concept

When plastic flow occurs over a localized region of the mechanical component or structure, the
remaining regions do not participate in inelastic action and may remain rigid or elastic at the
limit state. Therefore only a portion of the total volume carries the external loads at the limit
state. The volume that actively participates in plastic action is called kinematically active volume
or reference volume and the remaining regions are called kinematically inactive volume or dead

volume.

When the primary load is carried by a localized region, it causes significant reduction in load

carrying capacity of the total component or structure. Therefore, m’ will be significantly

overestimated if it is calculated based on the total volume V7.

Consider a component subjected to arbitrary loading condition, as shown in Figure 2.3. The
component is divided into two regions: (1) reference volume (V), which is kinematically active
volume; and (2) the dead volume (Vp), which is kinematically inactive volume. If V7 is the total

volume of the mechanical component or structure,

Ve +Vp =V (Ve sVp) (2.34)
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Figure 2.3 Kinematically active and inactive volume

Therefore it is important to incorporate the proper reference volume corrections in the limit load

approximation techniques, when they have explicit dependency on the multiplier m’.

2.6 Linear Elastic Analysis Approach for Limit Load Approximation

The linear elastic analysis deals with the behavior of solid deformable bodies, which are able to
recover their original shape upon the removal of the applied loads. The elastic analysis of a
mechanical component or structure essentially involves the determination of the statically
admissible and kinematically admissible stress and strain fields, which satisfies the equilibrium,

compatibility as well as constitutive relationships.

Analytical linear elastic solutions are limited to simple geometries and loading conditions in
terms of calculating limit loads. Therefore, numerical methods are required for the general

mechanical component and structure configurations. Elastic Modulus Adjustment Procedure
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(EMAP) [6] is an example of a numerical method which involves iterative linear elastic analysis.
The aim of EMAP is to generate inelastic-like stress redistribution by modifying the local elastic
moduli during iterative linear elastic analysis. An arbitrary load set with the original material
elastic modulus is applied in the first iteration of elastic FEA. Subsequently, the elastic modulus

of each element is modified in each successive iteration by following:

i q

. (o2 .
EM =| | E (2.35)

i
Geq

(X344
l

where ¢ is the elastic modulus adjustment parameter, and the superscript is the iteration

number (i=1 for the initial elastic analysis).

Eq.(2.35) describes how the elastic modulus at a location is updated from the i” to the (i +1)"

elastic iteration. In order to simulate the plastic incompressibility condition, Poisson’s ratio is
usually chosen close to 0.5. Therefore by specifying spatial variations in the elastic modulus,
numerous sets of statically admissible and kinematically admissible stress and strain distributions

are generated, and limit loads for practical components can be obtained.

Simplified limit load approximations can also be made based on a typical single linear elastic
analysis. In this approach, an arbitrary load set with the original material elastic modulus is
applied on the FE model and a linear elastic analysis is performed. The upper and lower bound
limit load solution are then obtained from the statically admissible and kinematically admissible
stress and strain distribution. These two solutions are then systematically combined together in
order to achieve a lower bound limit load solution with acceptable accuracy. It should be

mentioned here that single linear elastic run is nothing but the first iteration of EMAP.
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2.7 Closure

Statically admissible and kinematically admissible stress and strain distributions can be obtained
by performing a single linear elastic analysis or a series of linear elastic FEA in conjunction with
systematic elastic modulus adjustments. Robust concepts of extended variational theorems in
plasticity, reference stress, load control and lower bound limit load theorem can be conveniently
coupled with the linear elastic analysis for obtaining limit load estimates. The extended lower
bound theorem of Mura et al. introduces new ideas such as integral mean of yield. Researchers
have investigated this method further and proposed improved limit load estimates. However their
bounds have not been investigated. Improved limit load approximations based on Mura’s

variational formulation and their nature of bounds are discussed in the next chapter.
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Chapter 3: Simplified Limit Load Multipliers and their Bounds

3.1 Introduction

Limit load multiplier scales the applied loads proportionally to the level where the structure
reaches its limit state. Consider a component or structure made of an elastic—perfectly-plastic
material that is in equilibrium with the applied surface traction Pappiieq. It 1S assumed that the

surface traction is applied as proportional loading. When the load ‘mP, ..’ is applied, the body

pplied
will be in a state of impending limit state. The exact limit load multiplier (m) or the safety factor
can then be expressed as:

_ PLimit _ O-y
m= = (3.1)

P Applied O privary

Here o is the primary stress, which ensures equilibrium with externally applied loads.

PRIMARY
In traditional limit load analysis, the applied load is incremented in steps until a non-convergence
occurs due to the lack of equilibrium condition. The corresponding load is considered as the limit
load. On contrary, simplified methods attempt to estimate primary stress (which maintains
equilibrium with the externally applied loads) from the linear elastic stress distribution. With
respect to Eq. (3.1), the primary stress is proportional to the applied load and the limit load is
proportional to the yield strength of a material. It should be noted here that for a simplified limit
load multiplier, the denominator of its expression represents an estimate of primary stress when

it is re-arranged according to Eq. (3.1).
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Lower bound estimates of the limit load multiplier can provide margin of safety against load
controlled plastic failure modes. As per the ASME Code guideline [11], yield limit is taken as 1.5
times the allowable strength (which is typically yield strength/1.5) under the design loading
condition. Also a factor of safety of 1.5 is to be applied to the calculated limit load multiplier (m)

as per the code requirement.

Several estimates of the limit load multipliers can be obtained on the basis of linear elastic
analysis. This chapter discusses the upper and lower bound multipliers and the construction of
the constraint map. Several limit load multipliers which have explicit dependency on the upper
bound multiplier m° and lower bound multiplier m;, their bounds can be established utilizing the

constraint map.

This chapter also deals with the limit load bounds for the multiplier mz (Seshadri and

Indermohan [13]) and m" (Simha and Adibi-asl [14]). An expression for the multiplier m; is

proposed in a form which enables parametric examination of its estimate based on the possible

approximations of the plastic flow parameter distribution.

Subsequently a list of limit load multipliers available in the literature and their bounds (either
established previously or addressed in this thesis) are summarized in this chapter. Basically this
chapter gives the essence of the thesis and directs to necessary elaborations provided in the later

chapters.
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3.2 Classical Lower Bound - Multiplier m;,

The lower bound multiplier, m;, can be directly obtained by invoking the lower-bound theorem
of plasticity. Assume that some stress distribution throughout the component or structure can be
found, which is everywhere in equilibrium internally, balances the external loads and at the same
time does not violate the yield condition. Then the corresponding applied loads will be less than,
or at most equal to, the exact limit load; and will be carried safely by a sufficiently ductile

material.

The estimated stress distribution does not violate the yield condition if the material yield strength

is considered equal to the maximum equivalent stress (oeq )max , anywhere in the structure. If o,

is the yield strength of the elastic-plastic material, then the classical lower-bound multiplier ()
can be expressed as:

g,

"y 7_?0&, - (3.2)

Proof of the lower bound theorem can be found in the books by Calladine [3] and Lubliner [4].

30



3.3 Upper Bound Solution - Multiplier m’

As discussed in Chapter 2, Seshadri and Mangalaramanan [6] proposed an expression for the
upper bound multiplier m’ by assuming that the flow parameter 4° for any statically admissible

stress state will be a constant throughout the structure. The expression given in Eq.(2.21) can be

re-written as:

(3.3)

The denominator of Eq.(3.3) refers to the "reference stress” (o, ). In chapter 2, o,,, has been

ref
derived on the basis of energy dissipation considerations, therefore m° would correspond to an

upper bound limit load.

Pan and Seshadri [7] proposed an improved expression for evaluating m” (named as mzo ),

based on the “integral mean of yield” criterion (detail derivation is provided in Chapter 2). It is

(

based on the idea that m° is a distributed parameter that characterizes the degree of plastic flow

at a given location and can be expressed as (see Eq.(2.23)):

(o)
0__ y
1712 =

[#,)av
Vr

3.4)
_[,u“ av

Vr

With respect to Eq.(3.4) the super-scripted variable 4° is a flow parameter distribution,

associated with any statically admissible stress state.
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On the basis of deformation theory of plasticity, the flow rule can be expressed as:

€; = MO, (3.5)
The above expression relates the stress and strain deviators using a scalar parameter x, known as
actual plastic flow parameter. Therefore the distribution of actual flow parameter () can be

defined as [7]:

SECT YA (3.6)

_ 3 . . _ 2 . : .
where O = Eo-ijo-ij is the effective stress and € = Egijgij is the effective strain and Ej is the

secant modulus of an element.

Now that the super-scripted variable 4° associated with any statically admissible stress state, it

is also a function of the secant modulus of every element in a given elastic FEA scheme, i.e.,

H =E_s (3.7)

where C is a constant whose value depends on the specific geometric configuration and loading
pattern. As the stress distribution approaches the limit-type distribution, the distribution of the

plastic flow parameter 4 ° will get closer to the distribution of actual flow parameter .

0 _
m, =~ =

ie., v, Es (3.8)
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In terms of linear elastic stress distribution, Ej is assumed as the ratio of equivalent stress and

equivalent strain. Therefore the above expression can be written as:

0_
my == -

i.e., (3.9)

For the initial linear elastic analysis, mzo =m" , therefore the upper bound multiplier is denoted

simply as m”when single linear elastic analysis is employed.
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3.4 Concept of the Constraint Map

The constraint map [8] is a plot where the classical lower bound multiplier (m;) and the upper
bound multiplier (m”) are set to be the extreme bounds, in order to identify the exact solution
region for any component or structure. The constraint map also represents a primary stress state,

which corresponds to the limit state.

3.4.1 Construction of the Constraint Map
When the exact solution (m) is assumed to be coincide with the lower bound multiplier (my),

then

i.e., m=m; (310)

Eq.(3.10) can be rewritten in the following form,

m’ _m”
oom (3.11)
0 0
Defining R° =" and { = m—, the above equation can be expressed as:
m m,
R =¢ (3.12)

Conversely, when the exact solution (m) is assumed to be coincide with the upper bound
multiplier (mo), then

m=m’ (3.13)
Eq.(3.13) can be rewritten in the following form,

R’ =1 (3.14)
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The constraint map is a plot of R’ versus ¢, where Eq.(3.12) represents the line with a slope of

dR® _ _ dR’
tan 8 = a7 =1 and Eq.(3.14) represents the horizontal axis | tanf = il =0 |, as shown

in Figure 3.1. The exact multiplier for a mechanical component or a structure lies between

R’ =1 and R® = ¢ line.

g
S
[<70)
=
mzm' m; <
s S
S <
V
I S
% =
Initial Point
Exact Solution Locus

O=nHd _—— =" :
===\ 0 \O=tan!(I-IN2) | 0

1.0 *

1.0

C=m%m,

Figure 3.1 Constraint map showing relative magnitudes of different multipliers (€ in radian)
The origin of the constraint map (R°=/, {=1I) represents a primary stress state, which also
corresponds to a limit state. For a particular component or structure, { signifies the degree of

stress concentration or “kinematic redundancy” in its linear elastic stress distribution, due to the

presence of varying proportion of secondary and peak stresses.
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3.4.2 The Exact Multiplier, m

As discussed above, the constraint map enables identification of a region where the exact
solution (as shown in Figure 3.1) for any mechanical component and structure is located. The
general expression of exact limit load multiplier, m (which is not known a priori) can now be

expressed as:

R’ zm—=1+(§’—1)tan9 (3.15)

In the above equation, { = ™ In this expression fanf could be any value between 0<tanf<I1.
my

In Figure 3.1 ‘m’ is represented by ‘initial point’. A detail description of exact solution locus is

given in Section 5.6.

0 . . . . .
For a component or structure, m~ and my, are available from the linear elastic stress distribution,

leaving tand being the only unknown towards the evaluation of the exact multiplier.

Setting tand=1 in Eq.(3.15) leads to the equation m=m,, and specifying tand=0 results in the
equation, m=m". Specifying an appropriate value of tanf which is less than 1 but greater than 0,
could narrow down the region where exact solution could be located. Once an appropriate value
of tanf could be specified for Eq.(3.15), it will give more accurate lower bound limit load
solution compared to the classical lower bound m;, for any practical mechanical component or

structure.

In this thesis it is established that the exact multiplier ‘m’ for a component or a structure lies

between the lines having slope of tané?:(l—%j and tanf=0. A detailed description is

2

provided in Chapter 5.
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3.5 Mura’s Extended Lower Bound - Multiplier m'
As discussed in Chapter 2, Mura’s extended variational principle [30] [5] leads to a lower bound

multiplier (") and can be expressed as (see Eq.(2.11)):

0

’ m
mo= 0 2( )2 2 <m
m O (%
max m)on,). ——2 +(¢")?
| 3 3 (3.16)
+ 2 .
3%

(m°)’

O'i (3.17)
(O-eq )rznax

Using uniaxial equivalents for multiaxial stress states, Eq.(3.17) can be written in a form that is

1+

suitable for an FEA scheme [6], i.e.,

0
, 2m

1+[m°j2 (3.18)

my
The expression of m' by normalizing with the exact multiplier m can be represented as,

2R’

K= (3.19)

0 0

’
m m m
whereR'=—, { =— and R" = —
m m, m

In the constraint map, R'=] trajectory (m=m' trajectory) can be represented by plotting the

relationship given in Eq.(3.20) as shown in Figure 3.1.
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m® 1+ 2
RO =70 (3.20)

m

In order to obtain the slope of the tangent line for the curve at any ¢ location, differentiate
Eq.(3.20) with respect to ¢ . The slope of the tangent line at limit state (m° = m, = m’=m) can

be obtained as,

(dRoj .
i), (3.21)

This is the slope of the R° = ¢ line (Eq.(3.12)) as discussed earlier. Therefore R° = ¢ line is

tangent to the curve defined by Eq.(3.20), at limit state. Hence the trajectory of classical lower
bound multiplier always lies below the Mura’s lower bound trajectory with the exception at limit

state (at limit state m, =m’), as shown in Figure 3.1. This proves that for any value of (,

m’ <m, ,except (=1.

3.6 Variational Limit Load Multiplier

Letting ¢° = 0, in Eq.(2.12) Seshadri and Indermohan [13] derived the multiplier m," as:

0
” m

m, = <m
“ 1+G,
sV (3.22)
where o ‘;[ﬂf( ,,)
“ 265 J.IudV

VT
Here m is the exact limit load multiplier.

As shown in Chapter 2, the von Mises yield function f (sg ) for any element can be expressed as:
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£(s) =%[(m°% y —Gyz] (3.23)

The exact distribution of plastic flow parameter x4 can only be determined from the limit state
stress distribution. In order to achieve an approximate distribution of x« from a linear elastic stress

distribution, following approximation is proposed.

3.6.1 Approximate Distribution of Plastic Flow Parameter

The secant modulus (also known as effective modulus of elasticity in inelastic state) E; of
various elements in a finite element discretization scheme was specified by Pan and Seshadri [7]
(as discussed in Section 3.3), in order to simulate the distributed effect of the plastic flow
parameter. The general expression for the distribution of plastic flow parameter across elements

proposed by Pan and Seshadri can be represented as (shown in Figure 3.2):

3
H=3TF (3.24)

Net)be(
Rul

P €

Eeq Eeq

Figure 3.2 Schematic of the stress-strain relationship [15]
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With respect to Figure 3.2, E, is the linear elastic modulus and E; is the Secant Modulus of an

element.

A general relation between the linear elastic modulus (elastic state) and the Secant Modulus

(inelastic state) can be expressed as [15]:

o K
=l E (3.25)

eq
Now, substituting Eq.(3.24) by E;, the general expression for the flow parameter distribution is

proposed as follows:

2 (%JQE,, (3.26)

As illustrated in Figure 3.2, in order to bring point A (which represents the equivalent stress and
strain calculated from elastic solution) to the yield surface level, g would be dependent on the
local constraint (the constraint in each part of a component or structure). Depending on the value
of 'q', several approximations of u (based on Eq.(3.26)) could be made. The accurate value of ¢

(g=4exacr) Will vary for different geometric configurations and is not known a priori.

Notch stress strain conversion (NSSC) rules [15] are widely used to estimate nonlinear and
history-dependent stress-strain behavior of the notch components or structures. NSSC rules
provide an approximate formula to relate local elastic-plastic stress and strain at the notch root to
those predicted elastically. In Eq.(3.26), g=1 refers to the linear NSSC rule, which assumes that
the strains for pseudo elastic and inelastic states are same (shown in Figure 3.2). This rule gives

a better estimation for plane strain compared with the plane stress condition [17]. On the other
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hand, ¢g=2 refers to the Neuber rule [16] (shown in Figure 3.2), which assumes that the
redistribution of elastic stress to inelastic state occurs along the Neuber’s hyperbola. Studies

revealed that g >2 generally overestimate the local inelastic strain and stress [18][19].

Therefore g > 2 usually gives higher assurance of lower bound limit load.

2 2
eq + O-_V O-L’fl

2 2
As per equivalent strain energy density (ESED) rule [20], ¢ = ln[LJ/ln[ % J can also
c

be used in Eq.(3.26). In this approach, the value of ‘¢’ varies in element basis.

3.6.2 Limit Load Bounds for Multiplier ./,

Based on the above discussion, the proposed x from Eq.(3.26) and f (sg.) from Eq.(3.23) can

be substituted into Eq.(3.22) and the modified expression for m," is proposed as shown in
Eq.(3.27). This expression enables parametric examination of m,"” multiplier estimate based on
the possible approximations of the plastic flow parameter distribution, by varying the value of

‘¢’ in Bq.(3.27).

(3.27)
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With respect to Eq.(3.27), an approximate flow parameter distribution obtained on the basis of
single linear elastic analysis gives an estimate of m; for which its bounds are not obvious. For

example when ¢=0 is specified in Eq.(3.27), G, becomes zero, leading to mu”=m0. For any other

values of ¢, the nature of the bounds for the multiplier m1," is not obvious.

It is found that, the multiplier m," decreases with increasing of ¢, as shown in Figure 3.3
starting from m,"=m  when ¢g=0). erefore for a particular value of g=¢...; the multiplier
(starting fi » % wh q=0). Theref f particul 1 f g=q th Itipl

m,,"'=m. However the value of g 1s not known a priori for a particular component or structure.

It should be mentioned here that g =2 generally overestimate the local inelastic strain and

stress [18][19]. Therefore g > 2 usually gives higher assurance of lower bound limit load.

mj-
q=0 q='QL’.wct

Figure 3.3 Variation of m/, with g

3.6.3 Analytical Examples

”

The estimates of multiplier m;,

is examined using the analytical solution of different beam
configurations. Detailed analytical derivations are provided in Appendix A.
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3.6.3.1 Rectangular Beam Analysis

Assuming the beam of unit width (w), thickness (¢) and yield strength (o,) shown in Figure 3.4,
consider the elastic stress field under bending moment (M), and the axial stress as a function of
height from the neutral axis, y. For this configuration, the estimates of limit load multipliers are
presented in Table 3.1. Detailed derivations are given in Appendix A.1.

Table 3.1 Limit load multipliers for a rectangular beam

m’ m’
” u u
0 m mn . .
m L m m m
m

(when g=1) | (when g=2)

1 o,

1 1
l 2 0.8 0.93 0.83
NI2 M 6 M |4 M

With respect to Figure 3.4, m; decreases from m’ to my with increasing ¢, as shown in a

normalized form. For this particular example, exact solution corresponds to g=0.5.

1.2

1.1 ~

0.9 +

m,"/m

0.8

0.7 4

0.6 -

0-5 T T T T T T T T T T T T T
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7
q

Figure 3.4 Variation of m; with g for a rectangular beam
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3.6.3.2 Thin Circular Pipe Analysis

Assuming the pipe radius (r) and yield strength (o,) shown in Figure 3.5, consider the elastic
stress field under bending moment (M), and the axial stress as a function of angular position in
the cross-section, 6. For this configuration, the estimates of limit load multipliers are presented in

Table 3.2.

1.2
1.1 '\
1

0.9 1

m%m

11
m, '/m

0.8 m/m

L 4

0.7 1

T
| [ 2\
p M _M ]
h ; ) U ) __Iigm
2 3 6

0.5 T T T T
0 1 7 8 9 10

Figure 3.5 Variation of m; with ¢ for a thin circular pipe

Table 3.2 Limit load multipliers for a thin circular pipe

X
3
3

(when g=1) | (when g=2)

V2o xr’t | ot | 4ot
M M M

0.82 0.95 0.89

Figure 3.5 shows how m: decreases from m’ to m; with increasing of ¢, in a normalized form.

For this particular example, exact solution corresponds to g=0.7.
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As seen in the above examples, the value of g=¢.u 1s not known a priori for a particular
component or structure. This implies that the bounds of m,"” based on the approximate
distribution of u is not definitive. On contrary, exact distribution of flow parameter is not

available based on linear elastic analysis.

3.7 Limit Load Bounds for Multiplier m'’
Since the exact distribution of the plastic flow parameter u is not known (as discussed above), it
can be eliminated by applying the Cauchy—Schwartz inequality [8] both in the numerator and

denominator of Eq(3.22). i.e.

and IWVS\/I”W\/I v (3.29)

Vr Vr Vr

Substituting Eq.(3.28) and Eq.(3.29) into Eq.(3.22), leads to the following expression for G,

which replaces G,.

{ - ]2 (3.30)
j m® | —1] dv
(o2

where

The use of Cauchy—Schwartz inequality above renders the quantity m" independent of y but it is
not necessarily a lower bound. Comparing Eq.(3.30) and Eq.(3.22), a general expression of lower

bound criterion for m", can be expressed as:
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—~G>G (3.31)
The multiplier m" is a lower bound provided, G > G, where G, has to be evaluated on the basis

of the plastic flow parameter distribution at limit state. However the distribution of plastic flow

parameter at limit state is not known from a single linear elastic analysis as discussed earlier.

Simha and Adibi-asl [14] approximated a distribution of the flow parameter x, in order to

estimate m, and suggested to use this m; in Eq.(3.31) for a lower bound check of m". Their

approximation of u is shown below. Incidentally their approximation of ¢ work out to be g=1 in
Eq.(3.26). Therefore their approximation of x assumes that the equivalent plastic strain is equal
to the equivalent elastic strain (as discussed in section 3.6.1), which could be at times a non-

conservative assumption.

(3.32)

Now for the sake of discussion, if m; could be achieved based on the exact flow parameter
distribution, then there is no need to apply Cauchy—Schwartz inequality [8] on the m}

formulation at all in order to obtain m"-multiplier. Conversely, using an approximate value of

”

m;, in Eq.(3.31) cannot guarantee that m"-multiplier will be lower bound. Hence the bounds for

the multiplier m"” cannot be defined. The estimates of multiplier m" for several beam

configurations are given in Table 3.1 and Table 3.2.
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3.8 Robust Limit Load Approximations
From a design point of view, a robust limit load approximation is the one which is consistently
lower bound for any practical components or structures. At the same time its magnitude is larger

than the classical solution and close to exact limit load solution.

Although the multiplier m’ is a lower bound, its estimate is always lower than or equal to the
classical lower bound solution. Therefore its estimation does not have any practical significance.

d

For multiplier m; and m", their bounds are not obviously lower bound based on linear elastic

analysis as investigated in this chapter.

The bounds of limit load multipliers which has explicit dependency on the multiplier m" and my,
can be investigated using the constraint map. The two bar multiplier [10] and multiplier maT

[12] has explicit dependency on the multiplier m° and m;. These estimates are found to be
sufficiently accurate in the literature although their bounds have not been investigated. There is a

scope of investigating the bounds of these multipliers.

Seshadri and Adibi-Asl [10] assumed a two-bar configuration of equal cross-sectional area and
proposed the two bar multiplier. In chapter 4 this assumption is eliminated by performing a
generalized two bar analysis and reference two bar multiplier is re-evaluated. Subsequently
reference two bar multiplier is established as a lower bound multiplier. A guideline for lower
bound two bar multiplier estimate for practical components and structures is proposed in Chapter

6.
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Chapter 5 investigates the limit load bounds for the multiplier maT and establish this multiplier
as a lower bound. A guideline for accurate lower bound limit load based on EMAP is proposed
in Chapter 5. A guideline for improving the accuracy of lower bound m " multiplier during

single linear elastic analysis is proposed in Chapter 6.

A summary of limit load bounds for several limit load multipliers available in the literature (for
which bounds are either already established in the literature or will be addressed in the
subsequent chapters of this thesis) are presented in Table 3.3. The relative magnitudes of some

of the following multipliers can also be viewed from the constraint map as shown in Figure 5.1.
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Table 3.3 Summary of limit load bounds for several multipliers

Limit Load Multiplier

Nature of Bounds

Remarks

Multiplier, m

Exact solution

Usually not known from linear elastic

analysis
Multiplier, m’ Upper bound m <m”[8]
Multiplier, m;° Upper bound m <m’<m[8]
Classical multiplier, my Upper bound m<my< I’HQO [8]

Classical multiplier, m;,

Lower bound

my<m[3] [4]

Mura’s multiplier, m'

Lower bound

m'<Smyp<m[8]

Suggested estimate of two bar
multiplier (m7p)) in this
thesis

Lower bound

T
mLSmTBMSma <m

mypy offers much better accuracy than
mp,

Suggested estimate of m '
multiplier in this thesis

Lower bound

T
mp <mg <m

T.
meg 1s more accurate than mzgy

Multiplier m [6]

Lower bound

mp <mg _<maT_<m

Multiplier m,”

Bounds could not
be established

Exact distribution of plastic flow
parameter is not available from linear
elastic analysis.

Multiplier m "’

Bounds could not
be established

Exact distribution of plastic flow
parameter is not available from linear
elastic analysis.
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3.9 Discussion and Conclusion

A summary of the simplified limit load approximation techniques which sets the stage for the
development of this thesis are discussed. The construction of the constraint map is presented
mathematically, which was originally conceptualized by Reinhardt and Seshadri [8] as a

constraint plot.

NSSC rules are introduced into the expression of plastic flow parameter distribution proposed by
Pan and Seshadri [7]. A general expression of plastic flow parameter distribution is proposed in a
form which enables parametric examination of the possible approximations of the plastic flow

parameter based on a linear elastic analysis.

”

Limit load bounds for the multiplier m; and m" have also been investigated. The lower bound
estimate of the multiplier m; relies on the exact distribution of plastic flow parameter. It is
shown that for an approximate distribution of flow parameter, m; is either an upper bound or its
bounds are not obvious. Simha and Adibi-Asl [14] proposed an inequality relation (m''< m;) for
lower bound m". It is concluded that the inequality (m''< m;) cannot guarantee a lower bound

”

m", when m, is estimated from an approximate distribution of plastic flow parameter.

A list of limit load multipliers available in the literature and their bounds are summarized. Limit

load bounds for the two bar multiplier and multiplier m," as well as their systematic

implementation will be addressed in the following chapters of this thesis.
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Chapter 4: Lower Bound Estimate of the Two Bar Multiplier

4.1 Introduction

In a mechanical component configuration, load-controlled stresses are statically determinate in
that they are induced in order to preserve equilibrium with externally applied forces and
moments. Deformation-controlled stresses on the other hand are induced as a result of statically
indeterminate actions. When widespread inelastic action occurs, the statically indeterminate
stresses undergo redistribution throughout the component and become statically determinate after

the onset of yielding.

In the above context the two bar [10] structure is the simplest structure in which stress
redistribution phenomena occurs after the onset of yielding. Limit loads for mechanical
components and structures can be determined, by invoking the concept of equivalence of “static
indeterminacy,” which relates a component configuration to the “reference two-bar structure”.
Reference two bar structure is the one which provides the bounding limit load estimate over any

two bar configurations.

Seshadri and Adibi-Asl [10] first introduced the concept of equivalence of “static indeterminacy”
to relate a mechanical component (in which two or more plastic hinges form during the plastic
collapse) to a two-bar structure. The idea was to represent a mechanical component by an
equivalent reference two bar structure, in order to achieve a limit load solution for the
component. However, the two bar model proposed by Seshadri and Adibi-Asl [10] assumed

equal cross-sectional area of the bars. As a result the nature of bounds for the limit load solution
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is not obvious. There is a scope for developing a general two bar formulation for variable areas,

and identify the reference two bar configuration.

In this chapter, effort has been directed to developing the general two bar solution. General two
bar analysis enables identification of the reference two bar model, which bounds other two bar

configurations in terms of limit load estimation.

A general mechanical component or structure forms multiple plastic hinges during its plastic
collapse mechanism. In this sense it is equivalent to a multi bar structure of similar collapse
mechanism. . In this chapter, a general multi bar model is developed and the nature of bounds of
the reference two bar multiplier over the general multi bar model is investigated. Based on the

investigation, the two bar multiplier is established as a potential lower bound solution.
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4.2 The Two Bar Structure

Consider a two-bar structure of length L; and L, with the cross-sectional area A; and A,
respectively, rigidly attached to a horizontal bar under a tension load of P. The basic equations
for the two-bar structure shown in Figure 4.1(c) assuming equal cross-sectional area (A;=A;)

are:

Equilibrium equation: 0,+0,=—
Strain-displacement relationship: & =—"and £, =—2>
1 2
Compatibility equation: 0, =0,
- o o, o,
Constitutive relationship: & =—and & =—
E, E,

where (0,,€,,0,E;) and (02,62,02,E>) are the stress, strain, displacement and elastic modulus for

barl and bar2 respectively.

4.3 Plastic Collapse of Components and Structures
A component or structure can be visualized to be made up of finite number of sections across the
thickness, throughout its length. Every section is a potential plastic hinge location. As the applied

load increases, sequential plastic hinges form until local or global plastic flow occurs.

A typical statically indeterminate mechanical component or structure releases static
indeterminacies through the sequential formation of plastic hinges eventually resulting in a
collapse mechanism. If a plastic collapse mechanism corresponding to two hinges for a beam
structure (Figure 4.1(b)) where ¢; and o, are the elastic equivalent stresses (g; > o) at the plastic

hinge locations of the beam (Figure 4.1(a)), then it is sufficient to satisfy equilibrium against the
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externally applied surface traction P. As the external load is increased, plastic hinge first forms at

the location with stress o, and then at the location with stress o,. When plastic collapse

mechanism corresponds to two hinges, it can be represented by a two bar model as shown in
Figure 4.1. For a multi bar structure, plastic hinge will form in a numerically decreasing order of
stress until a local or global collapse mechanism can be identified. In this context, a general

mechanical component can be represented by a suitable multi bar model.

F4

o
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© Ay, Ly 1 2 4, Lz
o, E L>L, Oy, B>
A]=A
A2=I’lA

VP

(a) Indeterminate beam under uniformly distributed load, (b) Plastic hinge formation and
Collapse Mechanism (¢) Two bar structure

Figure 4.1 Relating an indeterminate beam to a two-bar structure
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Mechanical components which generate multiple hinges can also be represented by a reference

two bar structure in terms of achieving lower bound limit load solutions.

By definition, reference two bar structure provides the bounding limit load estimate over all
other two bar configurations. Therefore in order to ensure appropriate equivalency, the reference
two bar structure needs to be identified by performing a general two bar analysis. In the
following section, reference two bar structure has been identified on the basis of general two bar

analysis.

4.4 General Two-Bar Analysis
As discussed earlier (in Section 2.4), the geometric configuration of a two bar model is function
of length of the bars as well as their cross-sectional areas. Under the applied load P acting on the

rigid connection (as shown in Figure 4.1); stresses in bar 1 and 2 can be expressed as:

1/L
0= ! P
L +A /L,

4.1

__ v,
AlL+A /L,

0,

For the above two-bar structure, the classical lower bound multiplier can be expressed as,

o, o,

mL - (O_eq jmax - O_l (4.2)

The upper bound m"for a homogeneous two bar structure can be obtained as,

o O g [V @3)
o, \oV,+o.V,

Here V] :A]L] and V2:A2L2.

55



Substituting Eq.(4.1) into Eq.(4.2) and Eq.(4.3) respectively, when A= A and A,=nA,

0 ayA
m = nlL, + L L +nL
\/EP\/( L+ Ly)/(L, +nL,)
4.4)
0 A(nL, +Ly)
TP

Hence,

\/7 J(L, +nL,) (4.5)

(nL +L,)

When n=1, Eq.(4.5) can be re-written as,

=L, (4.6)

Yielding initially occurs in the bar with a smaller ratio of yield strength over stress. After the
load is increased, the other bar yields and the configuration reaches its limit state. From
equilibrium consideration, the exact limit load multiplier for homogeneous two bar structure

(mrpy) can be obtained as (when A;= A and A,=nA). i.e,

o A(l+n)
mTBM :PL/P:}T (47)

o

Therefore the ratio of can be obtained as,

m TBM

m’ \/nLl +L, \/Ll +nL,

Mgy B \/Z\/l:(l +n) (4.8)
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Re-arranging Eq.(4.5) and Eq.(4.8), and substituting them by

m’ ;1H+n§2

m

e )

— [ 1
n+§2 n+—2
m’ { (4.10)

Mgy 1+n

Eq.(4.10) can be referred to the family of two bar multiplier.

4.5 Identification of the Reference Two Bar Model

Limit load of a particular two bar structure is unique depending on the length ratio and area ratio
of its bars. The constraint map of general two bar configurations can be obtained by plotting
Eq.(4.10) against { for several values of n. Figure 4.2 is a similar plot, where Eq.(4.10) has been
plotted for 0<n<I. Each point on a two bar trajectory (in Figure 4.2) is a limit load solution for a
particular two bar configuration, having a particular length ratio ({) and area ratio (n). Based on
the plot as shown in Figure 4.2, it is evident that, as the value of n decreases, the trajectory tends
to approach towards m=m" trajectory and for n=0, the trajectory aligns with the horizontal axis
(can also be shown in Eq.(4.10)). Therefore the trajectory for n=1, bounds the two bar family (in

terms of limit load solution) and hence considered as the reference two bar structure.
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Figure 4.2 Two-bar trajectories for different values of ‘n’

Based on the general two bar analysis, Eq. (4.10) can be expressed in the form,

o

mm =o(l.n)=p,1({) 4.11)
where ()= 1-;5:2 and g, <1.

pn=1 implies n=1 in Eq.(4.11) (equal cross-sectional area of the bars). Now substituting

Eq.(4.11) by Mura’s lower bound expression (Eq.(3.20)), i.e.,

- =
’ 4.12)
_mg

= mTBM - ﬁ
n

Since f,<I, therefore it is shown that the reference two bar model (f,=1) provides bounding
limit load solution over all the other two bar configurations. This also confirms that the two bar
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model of equal cross-sectional area pointed out by Seshadri and Adibi-Asl [10] is indeed the

reference two bar structure.

4.6 Relating Mechanical Component to Reference Two Bar Model
As discussed earlier, the general expression for the reference two bar multiplier can be obtained
by considering f,=1 in Eq.(4.12) (implying equal cross-sectional area of the bars). The

expression for reference two bar multiplier is shown below:

Mgy = m';

0
m

i.e. = Mgy = W (4.13)
)

Limit loads for practical mechanical components and structures can be determined, by using the

concept of equivalence of “static indeterminacy,” which relates a component configuration to the

0
“reference two-bar structure”. As an example, the value of { = ™ _ for the indeterminate beam
m;

(typically obtained from linear elastic FEA) shown in Figure 4.1(a) represents the length ratio of

the equivalent reference two bar structure.

. . . 0 .
Based on the linear elastic analysis, m; and m are known for a mechanical component or

0

structure. Now ¢ =™ for the component implies the length ratio of the equivalent reference

my

two bar structure. Therefore once my and m’ are obtained for a mechanical component based on
linear elastic analysis (typically by performing a linear elastic finite element analysis), the two
bar limit load multiplier (m7py) estimate for that particular component can be achieved from

Eq.(4.13).
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4.7 Reference TBM - An Estimate Beyond Mura’s Lower Bound
The extended variational form of Mura and coworkers provides a guaranteed lower bound

solution, which is however overly conservative compared to the exact limit load. When Mura’s

o

lower bound solution is scaled by { = , it points to the reference two bar solution as evident

L
from Eq.(4.13). The quality of the m’{ estimate is investigated in Chapter 6 by analyzing a

number of mechanical components and structures.

4.8 Bounding Nature of Reference TBM - Multi Bar Structures

The occurrence of a single plastic hinge across the thickness of a component is indicative of a
load controlled membrane mode of collapse. This situation can be represented by a one bar
model. The presence of a pair of plastic hinges is indicative of a load-controlled membrane plus
bending mode of plastic collapse and can be represented by the two bar model. General
mechanical components often generate more than two plastic hinges and can be represented by a
suitable multi bar model. Multiple numbers of hinge formations can also be expressed in terms of
the reference two-bar structure, if it gives bounding limit load estimate over the multi bar
models. In this section, general multi bar model has been established and it is shown that the

multi bar solutions are bounded by the reference two bar solution.
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4.8.1 Three Bar Model
Under the applied load P acting on the rigid connection; stresses in bar 1, 2 and 3 (having same

cross-sectional area) can be expressed as (considering isotropic homogeneous material property),

ie.

o - /L,

VAL +A L+ AL,
1/L

o, = ; P (4.14)

AL +A L +A /L, :

1/L

o, 3

AL +A /L +A/L,
For the above three bar structure, the classical lower bound multiplier can be expressed as,

o, A(L,L, +L,L,+L|L,)

my, = LLP (4.15)

The upper bound m’ for a homogeneous three bar structure can be obtained as,

’w:aﬁ¢gg+gg+gg¢g+g+g (4.16)
JLL,L, P
m’ AL +L,+L\LL, (4.17)
Hence {=—=

m,  \JL,L,+ L L +LLJL
Now considering L;=L, L,=nL;, L3=xnL,. where L;>L,>L,;.
i.e. #>1 and xy>1 or we can say x>1/y

Therefore,

Li=L, Ly=nL, Ly=xn’L
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From equilibrium consideration, the exact limit load multiplier for homogeneous three bar

structure can be obtained as:

30,A (4.18)

y

P

mThree?bar = PL /

Now Eq.(4.16) and Eq.(4.17) can be written as:

0

m 1 2 1 1 (4.19)
—_—= ?/1+x77+x77 I+ —+—

mThree _bar X 77 X 77

2 1 1
Vi+xnp+xn® 1+—+—; (4.20)

_m xn xn
g“—mL— 11
I+—+—
xn o xn

Considering the bars are related by the same proportion, we can use x=1 in the above equations.

m° 1\/72/ 1 1
——=—\I+n+p° [1+—+—
mThree?bar 3 77 772 (421)

m"° _l[1+77+772}

mThree _bar 3

Therefore,

=

g I 1 (4.22)

={=n

Substituting Eq.(4.22) into Eq.(4.21)

(4.23)

W

m’ :l{1+§+§2}
¢

mThree _bar
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Based on the three bar analysis, the trajectory for the three bar model can be established in the

constraint map by plotting Eq.(4.23) against ", as shown later in Figure 4.5.

4.8.2 Four Bar Model
Under the applied load P acting on the rigid connection; stresses in bar 1, 2, 3 and 4 can be

expressed as (considering isotropic homogeneous material property), i.e.

1/L,
o, = P
AlL+A /L +A /L +A, /L,
1/L
o, = 2 P
AlL+A L +A L +A L,
(4.24)
1/L
o, = L, P
AlL+A /L +A /L, +A, /L,
1/L
o, = /L, P
AL +A L +A /L +A, /L,
For the above four bar structure, the classical lower bound multiplier can be expressed as,
O AL LL, + LL L+ LLL, +LLL)
m, = (4.25)

LLL,P

The upper bound m"for a homogeneous four bar structure can be obtained as,

:aﬁ¢ggg+ggg+ggg+ggg¢g+g+g+g

0

m
JLL,L,L, P (4.26)
me JL + L, + L+ L,\JLL,L,
Hence §= (4.27)

m, JLLyL, + LLL, + L LL, +LLL[L
Now considering L;=L, L,=nL;, L3=xnL, and Ly=ynL; where L,>L;>L,>L;.

i.e. x>1 and x»y>1 and yn>1
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Therefore,
Ly=L, L=y L, Ly=xy °L, Ly=yn °L (4.28)
From equilibrium consideration, the exact limit load multiplier for homogeneous four bar

structure can be obtained as:

40'yA
P

mFour?bar = PL /P = (429)

Now considering the bars are related by the same proportion, we can use x=y=1/ in the above
equations.

Therefore,

0

LA %1/1+77+772 +773\/1+l+i+i3

mFour?bar 77 772 77
m° 1| 1+n+n°+n’ (4.30)
= =— 3
mFour_har 4 775
m°®  l+n+n*+n’
é/:—:
Moo ettt
n 772 773 4.31)
3
=>{=n
Substituting Eq.(4.31) into Eq.(4.30)
2 4
m’ 1|1+ +3+
1 (4.32)

mF{)ur_ bar é’
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Based on the four bar analysis, the trajectory for the four bar model can be established in the

constraint map by plotting Eq.(4.32) against ", as shown later in Figure 4.5.

4.8.3 General Multi Bar Model
Number of plastic hinges formed in a mechanical component can be represented by a suitable
multi bar model as shown in Figure 4.3. Based on the analysis shown in Section 4.8.1 and 4.8.2,

the general expression for a multi bar model can be represented as:

2 4 6 8 10
m’ A+ L+
mn_bar I’l;
where (4.33)

0 n—1

m n-1

; = = 77 2
m

L

where 7 is the number of bars in the multi bar model and # is the length ratio between the bars.

\
E——

Figure 4.3 Multi bar model
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Based on the general multi bar expression presented in Eq.(4.33), multi bar solution for any
number of bars are readily available. For example for a five bar structure substituting Eq. (4.33)
by n=5 will give the five bar solution as shown in Table 4.1. Some of the multi bar solutions are

tabulated in Table 4.1.

0
Table 4.1 7" ratio for the multi bar model

m
.. mo .
Model Description — ratio 4
m
2 i o 8 10
' bar Model 1+§n—l+é’n—1+§n—l+é’n—l+§n—l ...... +§2 77%
ng
Two bar Model 1+¢? 1
2
(n=2) 2L d
Three bar Model 1+{+{° .
(n=3) 3¢
2 4
Four bar Model 1+3 483+ 3
(n=4) n?
4g
1 3
Five bar Model 1+024+8+82 4872 n?
(n=5) 5¢
2 4 6 3
Six bar Model 1+5+85+05+05+ 2 5
(n=6) n’
68
I 2 4 )
Seven bar Model 1483483+ 8+ + 87+ 87 7’
(n=7) T

As a demonstrative example let us consider a fixed-fixed beam as shown in Figure 4.4. For this
beam, plastic collapse mechanism involves formation of three plastic hinges. Therefore plastic

collapse mechanism of a fixed-fixed beam corresponds to an equivalent three bar structure.
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(a) Beam geometry

(b) Finite element model segment (plane stress with thickness)

Figure 4.4 Fixed end beam geometry

A fixed end beam with length, L = 508 mm; height, h = 25.4 mm and width, w=25.4 mm is
modeled. The modulus of elasticity of the material is 206.85 GPa and yield strength is 206.85
MPa. The beam is subjected to uniformly distributed load of 1 MPa. The model is meshed using
PLANES?2 elements in ANSYS [21] and width is taken by plane stress with thickness (TK) real
constant input. Mesh convergence study is performed to verify the sensitivity of the multipliers
with respect to the mesh density. Based on linear elastic analysis m” and m; are evaluated (from
from Eq.(3.3) and Eq. (3.2) respectively) and based on inelastic finite element analysis myrg4 1S
evaluated as shown in Table 4.2. Inelastic finite element analysis is performed as per guideline
provided in Section 5.6. Analytical limit load solution (m,,,.., ) is also documented. It is

evident from Table 4.2 that a three bar model gives sufficiently accurate limit load solution for a

0 0

fixed-fixed beam on the basis of single linear elastic analysis. S e s plotted in the

m Analytical mL

constraint map as a point shown in Figure 4.5, which lies close to the three bar trajectory.
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Table 4.2 Limit load multipliers for fixed end beam

0

m
0 0 mThree?bar - o NFEA
m my, sz /mL |:]~ + é, + g :| m mAnalytical

3¢

3.93710.875 | 4.498 2.065 2.154 | 2.069

4.8.4 Limit Load Bounds for Reference TBM

Figure 4.5 shows the constraint map, where several multi bar expressions are plotted against ¢ .

It is evident that as the number of bars increase, the limit load capacity increases. In this context,
reference two bar solution (m7gy,) bounds limit load solution of other multi bar models as shown

in Figure 4.5.

1.€. mTBM S mThree_har S mFour_har """"" S mn_bar

—— m=mL —— 2 bar
— 3 bar —4bar
— Sbar —6bar
51| —— 7bar —— 8 bar
—— 9 bar =@==Fixed Beam
g 4 RO= (line
S
S represents m=mj
1
) .
x5 Fixed End Beam

Solution

O=mn/4

| . — RO=1 line represents m=m’
1 ) 1+N2 4 5 6
(=m%m;

Figure 4.5 The constraint map showing multi bar solutions
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Now referring back to the inequality relationship shown in Eq.(2.11), the inequality expression

can be re-written as:

/

msm (4.34)
With respect to general two bar solution shown in Eq.(4.12) and general multi bar solutions

(shown in Table 4.1) it can be concluded that m’{ is the bounding limit load solution for multi
bar structures. Therefore when the transformation parameter ¢ is introduced into Mura’s
inequality, the quantity still satisfies the inequality for multi bar structures. i.e.

me < m (4.35)

In Eq.(4.35) ‘m’ signifies the exact limit load solution for any multi bar structures.
General mechanical components can be represented by a suitable multi bar model. Hence general

mechanical components forming two or more two plastic hinges can be represented by the

reference two bar model and lower bound limit load solution can be anticipated.
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4.9 Discussion and Conclusion

The reference two bar model is developed on the basis of the generalized two-bar analysis which
eliminates the assumption previously considered in the literature [10]. A transformation
parameter has been obtained from the reference two bar model which scales up Mura’s overly

conservative lower bound multiplier to a multiplier with improved accuracy.

A general mechanical component can be represented by a suitable multi bar model. Since the
reference two bar solution (m7gy) bounds the limit load solution of other multi bar models, the

multiplier mypy is a potential lower bound solution.

Although the reference two bar structure is identified on the basis of the general two bar analysis,
the shape of a cross-section has not been taken into account. A number of beam cross-sections
have been studied in Chapter 6 in order to investigate the shape effect. A guideline for lower

bound two bar multiplier is then proposed for practical mechanical components or structures.
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Chapter 5: Lower Bound Estimate of the ' -Multiplier

5.1 Introduction

The constraint map identifies the region (as shown in Figure 3.1) bounded by the classical lower
bound multiplier (m=m; line) and the upper bound multiplier m’ (m=m’ line). Exact limit load
solution for any practical component or structure is located in this region. It is possible to narrow
down the exact solution region further. This can be achieved by specifying an appropriate
trajectory in the constraint map, which has a slope (6) less than the slope of the m=m, line (as

shown in Figure 3.1). In this chapter, it is established that a straight line with a slope of

1
tan @ = (1 ——j (as shown in Figure 3.1) is such a trajectory and hence the limit load estimates

B

based on this specified line is a lower bound. The exact multiplier ‘m’ for any component or

structure therefore lies between the lines having slope of tan @ = (1 —Lj and tan6=0 shown in

V2

Figure 3.1. The line is tangent to the m=m, trajectory [8] (as shown in Figure 5.1) and known as
the m=m, line, originally proposed by Seshadri and Hossain [12]. However its limit load

bounds have not been investigated previously.

The classical lower bound multiplier is expected to converge to the exact limit load during the
redistribution of stresses based on EMAP. However, the use of classical lower bound multiplier
requires a number of linear elastic analyses to converge. Restricting the number of iterations to a
single elastic analysis or a few iterative elastic analyses could lead to overly conservative result.
In this chapter, the maT multiplier is used in conjunction with the EMAP, in order to minimize
the convergence difficulties usually encountered in traditional EMAP and obtain an accurate

estimate of lower bound limit load.
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5.2 The m,-Tangent Method

The m, -tangent method was proposed by Seshadri and Hossain [12] which is an extension of
the m, -method [6]. The following section summarizes the development of the m,-tangent

method.

Mura’s extended lower bound multiplier m' is a function of m" and my, which can be regarded as
a surface in a three dimensional space with the two independent variables m° and m;. In reality,
m° and my, are derived from the stress distributions in a body, and are therefore strictly not
independent. Differentiation of the Mura’s extended lower bound formula (Eq.(3.18)) leads to

the expression of the m, multiplier. i.e.

dm' om' j dm’ om' m,

fe ey

d mio ai d "LO ©-1)
m; m, mg m,

Written in terms of finite differences, the above equation becomes:

" 2
- — .
m
m'- 2—Lz(m0 ma)_4 (m ) Z(L_Lj
2 2
m’ m’ M Ma
I+ — m, |1+ —
mL mL

This equation is a polynomial of second degree in m,. It can be solved for m, to achieve the

5.2)

following expression:
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() vt (2] 0] -

The detailed steps of the m,-multiplier derivation is provided in Appendix B.

Choosing the larger of the two roots above, the expression for m,, normalized by the exact value

of the multiplier m (unknown), can be represented as:

(5.4)

o o 28 FVEC 1P 142 - O -1+42)
" (& +2-V5)¢ +2+5)

0 0
m m m

Here,R,=—%, R®="—and {=—.
m m m,

The slope of the tangent line at the origin (1,1) of the R,=1 curve can be obtained by

0

¢

differentiating the above equation with respect to  i.e. [ j . The equation corresponding
¢=l

to the tangent line can be obtained as:

- 1+(;—1)[1—%j (5.5)

Comparing with Eq.(3.15), tan@ = (1—Lj is the slope of the m=m,’ line as shown in Figure

V2

3.1. The expression for the m " -multiplier can be written as:

0
T m

1+ (;-1)(1-\%} (5.6)
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5.3 Reference TBM vs m ' formulation

Reference two bar model gives the bounding limit load solution over any multi bar models as

discussed in Chapter 4. With respect to Figure 5.1 it is evident that the m=m,’ line bounds the

two bar trajectory (m=mzpy) within the range of ¢ <1++/2. Therefore the m " -multiplier is a

lower bound estimate within the range of ¢ <1+ J2.

As shown in Figure 5.1, the intersection of the m:maT line and the two bar trajectory work out to
be =1 and 1++/2.Beyond ¢ > 14+/2 , these two trajectories diverge. The divergence of the
m=m,  line from the two bar trajectory can be postulated as the requirement for reference
volume and peak stress corrections. The postulation is based on the intuitive assumption that the
reference two bar trajectory represents primary plus secondary plus peak stresses, while the
m=m,’ line represents primary plus secondary stresses. The idea is that for practical components
which collapse by formation of two plastic hinge, { is usually less than 14+V2. Therefore any
increase in ¢ beyond 1+V2, is postulated to be the presence of kinematically inactive volume

and/or peak stress. Reference volume and peak stress corrections are required to eliminate the

possibility of overestimation/underestimation of limit load using the m " -multiplier.

Peak stress correction is assumed to occur when Am°® =0, and the implied trajectory is

horizontal (BB" in Figure 5.1). The vertical drop B'B (when A{=0) implies the reference volume

correction. The combined effect of reference volume and peak stress correction (1, (VR, 4 f) in
Figure 5.1(b)) increases the slope of the m=mg line (i.e. tanf>1 —]/\Q) beyond {>1+ V2.

Incorporation of peak stress correction (maT (VT N4 f) in Figure 5.1(b)) alone reduces the slope
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of the m=my, line (i.e. tan0<1-1/v2) beyond C>1+\/2. Incorporation of these corrections into the
maT -multiplier formulation is presented in Section 5.8 and an example to demonstrate the

concept is illustrated in Section 5.4.

A

0
m
0
R’ ="—
m

(a) The constraint map showing reference volume correction 4m” and peak stress correction 4¢

maT(VR’gf)SmaT(VT’g)SmaT(VT’gf)

;] Eq(.12) Eq.(5.6) Eq.(6.5)

g

Il

% m=m V()
3 m=maT(VR,€f)

; \
i 7
i i

m=m, VT’Cf)
5

! 21023 ) 6

.. T+ .
(b) Deviation from m=m, line due to reference volume and peak stress correction

Figure 5.1 Approximation of reference volume and peak stress correction
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5.4 Illustrative Example - Reference Volume and Peak Stress Correction
During local collapse, plastic action is confined to a sub-region of the total volume, as discussed
in Chapter 2 (Section 2.5). Hence, the magnitude of the multiplier (m") would depend on the

sub-volume, Vj (reference volume), where

V,=Y(AV,),and @< N (5.7)

k=1
Here N is the total number of elements.

As an illustrative example, cylinder under internal pressure (Figure 5.2(a)) is considered using
plane strain consideration. The cylinder model is meshed using eight noded isoparametric
quadrilateral elements (Plane82) using symmetric boundary condition. An internal axial crack is
present on the inner bore of the cylinder. The crack region (Figure 5.2(a)) is meshed using eight
singular elements around the crack tip. The crack is modeled by applying no constraints along
the crack length, thus providing the crack tip node at a certain distance away from the inner

radius.

With reference to Figure 5.2(a), Vz=V; for a cylinder without defect. If a defect is developed in
service, the reference volume is still Vg=V7. No reference volume corrections (A’ in Figure
5.1) are required due to defect although blunting of peak stress (A in Figure 5.1) is required.
With reference to Figure 5.2(b), when blunting of the crack occurs, the peak stress drops, with

only primary and secondary stress remains.

When the primary load is carried by a localized region (Vg<V7y), it causes significant reduction in

load carrying capacity of the total component or structure. Kinematically inactive volume usually
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appears due to concentrated loading. The vertical drop B'B in Figure 5.1 (when A{=0) implies
the reference volume correction. If there is ambiguity in deciding whether Vix<Vy while

analyzing a component, it is conservative to incorporate the reference volume correction.

. . . T . g
Incorporation of reference volume and peak stress corrections into the m," -multiplier

formulation is presented in Section 5.8.

(i) Model without defect (ii) Model with axial crack
(a) Cylinder Geometry

y AC;

B T e - T T  w
7 g
é PEAK STRESSES i BLUNTING OF PEAK 2 ;
7 STRESSES o
& a

L~ g

SECONDARY STRESSES

SECONDARY STRESSES

PRIMARY STRESSES PRIMARY STRESSES

v

v

(b) Structure with crack (refer to Figure 5.1)

Figure 5.2 Blunting of peak stresses
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5.5 The m " -multiplier - A Lower Bound Estimate

With respect to Figure 5.3, stresses are purely primary (limit state), and therefore load-controlled

at the origin (1,1). The exact solution locus (shown in Figure 5.3) proceeds toward the origin

0 0
with a continuous reduction in the magnitudes of — and —.

m; m

The exact solution locus (limit load estimation based on inelastic FEA or closed-form analytical
solutions are considered as exact solution) is not known when elastic analysis based
computations are carried out. However, the shape of the exact solution locus/trajectory (on the
constraint map) could be inferred as follows:

(a) the trajectory starts out almost horizontally.

(b) as ¢ approaches 1.0, the trajectory would coincide with the limiting slope of the m=m,"
line; and

(c) for 1.0 < { < (; the trajectory blends with the two extremes mentioned above.

The exact solution locus is always below the m=m, line for {>1.0, and satisfies the conditions:

DR’ <(R? =1)
dR’
(iif) ‘ii;o <0

(i)

Therefore, we can expect m,’ to be a lower bound during iterative linear elastic analysis

(EMAP), provided m” is modified for reference volume. Basically the first EMAP iteration is

nothing but the single linear elastic analysis.
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Figure 5.3 Bounds for m "

on the constraint map

5.6 Exact Solution Locus - 3D Grillage Analysis Example

In order to confirm the shape of the exact solution locus for practical components as discussed
above, a 3D grillage model is modeled and analyzed. The grillage model, as shown in Figure
5.4, is a 6756 mm long plate, stiffened in longitudinal and transverse directions. The transverse
frame ends, and the two longitudinal ends of the grillage are fixed. The length of transverse
members is 2260 mm and the span between the transverse members is 2000 mm. A uniform
pressure of 5 MPa is applied as transverse load on the plate bottom. The modulus of elasticity of
the material is 207 GPa and yield strength is 315 MPa. Rest of the model dimensions are shown

in Figure 5.4. Shell181 [21] element is chosen due to its suitability to model thin to moderately

thick shell structures.
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Transverse
Member

.

Side View

Figure 5.4 Grillage model (dimensions in mm)

Inelastic finite element analysis is performed using an elastic-perfectly-plastic material model. In
order to achieve limit state, load is incremented in steps and a solution for each load step is found
successively (until equilibrium and compatibility conditions are satisfied). Within each load step,
a large number of sub-steps are used in order to ensure the gradual increase of load applied in
that step. The iterative scheme of Newton-Raphson is used for solving simultaneous non-linear
equations. Solution enhancement features like bisection (to decide whether or not to reduce the
present time step) and automatic load stepping (to estimate the next time-step size) are also used
as permitted by the selected iterative scheme. The inelastic finite element analysis gives the

value of limit load multiplier mypga = 0.105.

80



0 0
vs — in the constraint map as shown in Figure 5.5(b), iterative elastic
MyrEa ny,

In order to plot

analysis is also performed and m” (m>”) and my, are achieved as shown in Figure 5.5(a). Iterative
linear elastic analysis is performed based on EMAP as discussed in Chapter 2 (Section 2.6) using
g = 0.1 and algorithm in Figure 5.8 is followed. It should be noted here that during EMAP, m’ is

evaluated based on Eq(3.9), which is essentially my’.

With respect to Figure 5.5(b) it is evident that the exact solution locus (m=myrgs) for grillage
model starts out almost horizontally satisfying the conditions given in Eq.(5.8). This locus lies
below the m = m," line as shown in Figure 5.5(b). Therefore for this grillage model the m,"

multiplier provides lower bound estimate of limit load.

0.25
0.2 4
3
~0.15
a
.9
=
~—
S 01
2 q
0.05 A
m=my
0 T T T
1 6 11 16 21
Iterations, i

(a) Variation of limit load multipliers with iterations for grillage model
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(b) Constraint trajectory map showing exact solution locus for grillage model

Figure 5.5 Results for grillage model

5.7 Bounding Nature of m,’ -Multiplier - Multi Bar Analysis

A general mechanical component can be represented by a suitable multi bar model where
collapse occurs by formation of multiple plastic hinges. In this section, the relative position of
several multi bar trajectories and the m:maT line are compared as shown in Figure 5.6. Each
point on a multi bar trajectory is an exact limit load solution for a particular multi bar
configuration. The objective is to plot a vast number of exact limit load solutions of multi bar
structures (as derived in section 4.8) in the constraint map and show that the m,-tangent
multiplier solution is lower bound. This gives a higher confidence on the m,-tangent multiplier as

a lower bound solution for practical components and structures.
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With respect to Figure 5.6, multi bar trajectories are bounded by the m=m,’ line within the
region where ¢ < 1++/2. Therefore the m,’ multiplier provides lower bound solution for any

multi bar configurations when ¢ < 1++/2. This implies that for well-designed components or

structures (as represented by a suitable multi bar model), the m,-tangent method is expected to

provide lower bound solutions with acceptable accuracy.

Beyond ¢ >1+ V2 most of the multi bar trajectories are bounded by the m=m,’ line within the

0
practical range of ¢ =—— as shown in Figure 5.6. However the two bar trajectory diverge out
my

from the m,-tangent line (m=m,’' line) when ¢ >1+ J2 . Since in a well-designed component ¢
usually does not exceed I+\/2, the divergence of the m:maT line from the two bar trajectory

(when ¢ >1+4+/2 ) is considered as the requirement for reference volume and peak stress

corrections (discussed in Section 5.3 and 5.4). Reference volume and peak stress corrections are

required to eliminate the possibility of overestimation/underestimation of limit load using the

m," -multiplier.

Therefore it can be concluded that the exact limit load solution for practical components and

1
structures are located within the region where 0 < tan@ < (1——2j as shown in Figure 5.6.

Hence the m," -multiplier gives reasonable estimate of lower bound limit load, providing the

reference volume and peak stress corrections are incorporated appropriately.
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Figure 5.6 Relative magnitude of m " solution over multi bar solutions

5.8 Evaluation of the Multiplier "

In order to ensure lower bound estimate of the multiplier maT , it is also important to incorporate
reference volume and peak stress corrections appropriately. Therefore, the following two cases

. . T .
are considered in the m " formulation:

5.8.1 Multiplier m," : {<1++/2

This case refers to properly sized mechanical/pressure components with gentle geometric

transitions. The implication is that the entire volume participates in the plastic action. Therefore,
for these structures, ¢ lies in between 1< ¢ <1++/2 and Eq.(5.6) is directly used to evaluate

the multiplier maT. Note that m” in Eq.(5.6) has to be calculated based on the total volume (V7) .
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5.8.2 Multiplier m," : {>1+2

This case applies to components that develop flaws or cracks during service, or to components
with sharp notches. Components having some sort of discontinuity or concentrated load over a
certain region also fall into this category. These components may possess significant amount of

peak stress and/or kinematically inactive volume.

With respect to Figure 5.1, B'B" is assumed to be the peak stress relaxation. This relaxation can
be viewed as a drop B'B vertically representing the inactive volume (Vp) and the peak stress

blunting BB". Based on Figure 5.1, the multiplier m’(V) can be evaluated by the expression:

1
. 1+(1—J(;—1)
o, >(R—jm ¥2) o 59)
RB' (1‘*‘; ) '

20
Based on Figure 5.1, the peak stress correction [12] can be determined by the expression:
1 -
w61 j
R). 1+¢,° 1+¢,°
28,

(5.10)

The following root of Eq.(5.10) gives the final value of the variable {

¢, {H[l—%}((—l)}\/{H[l—%j(:—l)}z -1 G5.11)
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Using m°(Vg) and {r from Eq.(5.9) and Eq.(5.11) respectively, the expression for the multiplier

m," for the region of ¢>1++/2 can be evaluated as:

m’(Vy)

1
T+ (=), =D (-12)

m, (V)=

The m, -tangent method presented above provides lower bound estimates for the limit loads. The

estimates of the values of the upper bound multiplier m°’ and the classical lower bound

multiplier m, are obtained from the statically admissible and kinematically admissible strain

distributions and m " -multiplier is calculated, depending on the value of ¢

5.9 Combining EMAP with the m,-tangent method

The rate of convergence of a lower bound limit load multiplier towards the exact solution
depends on the elastic modulus adjustment parameter (¢) as well as the accuracy of the lower
bound multiplier. Smaller modulus adjustment parameter (usually g<0.5 [25]) enables smoother
multiplier variation with iterations although requires a large number of iterations before
convergence is achieved. On contrary, a larger ‘g’ value results inconsistent variation in
multipliers with iterations [25] and as a result convergence might not be achieved. Since the m,-
tangent multiplier is a better estimate of lower bound, it converges to the exact solution faster,
even if a smaller ‘g’ value is chosen. In this section an algorithm is proposed to calculate
accurate estimates of limit loads, by using the m,-tangent multiplier in conjunction with EMAP.
The procedure ensures sufficiently accurate limit loads within a reasonable number of iterations.
It should be noted here that during EMAP, m" is evaluated based on Eq(3.9), which is essentially

0
my .

86



5.9.1 Implicit Reference Volume and Peak Stress Correction in EMAP

During EMAP, infinitesimal changes to the element elastic modulus of the various elements
during the second and subsequent linear elastic FEA would result in a corresponding change in
the value of multipliers m” and my. This change in magnitude implies to the implicit reference

volume and peak stress correction.

The upper bound multiplier reduces due to element modulus adjustment in subsequent linear

elastic iterations as shown in Figure 5.7 while approaching the final solution. It can be assumed

that, in every iteration, m’ is split into a constant value and a variable portion that vanishes with

iterations. Hence,

m®(Vp)=m’(Vy)+Am (5.13)
where m°(V,) is the constant part and Am which vanishes after a certain number of linear elastic

iterations. It is observed that the vanishing part represents the zone that is not participating in the

plastic action.
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Figure 5.7 Variation of m° (m,") during EMAP Iterations

Similarly, classical lower bound multiplier also converges towards the exact limit load solution
in subsequent linear elastic iterations due to successive peak stress corrections. In other words,
the reference volume and peak stresses are implicitly corrected in subsequent iterations due to
modulus adjustments. However, a large number of iterations may be anticipated for the
convergence (both for mgo and my) to the exact solution, especially for three dimensional FEA

models.
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5.9.2 Proposed EMAP Algorithm and Its Features
Figure 5.8 shows the proposed EMAP flow diagram for estimating the m, multiplier in
successive linear elastic iterations. This algorithm systematically adjusts the elastic modulus of

different elements in a finite element discretization scheme. It also utilizes the proposed m,
multiplier expression from Eq.(5.12) in case of (. >1++/2 in order to ensure lower bound

solution in all the iterations. For ¢, < 1++/2 , Eq.(5.6) is used for the m’ multiplier evaluation.

During EMAP, m’ is evaluated based on Eq(3.9), which is essentially mgo. Therefore ¢ is

0
evaluated as ¢, = (&j .

my
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Figure 5.8 EMAP flow diagram for estimating limit load (mO from Eq(3.9), which is my")
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The magnitude of a limit load multiplier with iterations, and its rate of convergence towards the
exact solution, depends on the elastic modulus adjustment parameter (¢). Smaller modulus
adjustment parameter enables smoother multiplier variation with iterations. However, the
convergence of upper and classical lower bound multipliers require a larger number of iterations
to reach convergence when a small ‘g’ value is chosen (as shown in Figure 5.5(a)). The
following features of the proposed algorithm ensure converged lower bound solutions, and

eliminate the usually experienced convergence difficulties involved in EMAP:

(a) Convergence is considered to be achieved when the variation of the m., multiplier at a given

iteration becomes negligible.

(b) The m multiplier converges to the limit load corresponding to nonlinear FEA within a
number of iterations, even for a very small modulus adjustment parameter (‘q’ value). From the
3D grillage model example it is evident that when »z. multiplier achieves convergence, the other

multipliers (specifically m” and my) are still far from a converged state (shown in Figure 5.5(a)).

(c) The mg multiplier converges from the lower bound side as shown in Figure 5.5(a); hence its
value at any iteration is conservative. For well-designed pressure components, it is expected that

the m. multiplier from initial elastic analysis will be sufficiently accurate.

(d) The selection of elastic modulus adjustment parameter (¢) depends on the kinematic

redundancies present in the component. If a particular value of ‘g’ is suitable for a component of
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certain redundancy, it is expected to work for components with lesser redundancy. In this
algorithm, a considerably smaller modulus adjustment parameter is suggested (close to g = 0.1)
for EMAP in order to ensure proper convergence. In order to simulate the plastic

incompressibility condition, Poisson’s ratio is chosen to be 0.47.

5.10 Discussion and Conclusion

A comparison to the multi bar models shows that the m,-tangent multiplier is expected to provide

reasonable lower bound estimate of limit load for practical components and structures, providing

the reference volume and peak stress corrections are incorporated appropriately. Moreover, by

investigating the shape of the exact solution locus on the constraint map it is concluded that the
T

exact solution locus always lies below the m=m,’ line for (>1.0. This signifies that the m,, -

multiplier is a lower bound solution during the iterative elastic runs as well.

The proposed algorithm incorporates the reference volume corrections and hence ensures lower
bound solutions in all iterations. The algorithm maintains consistent trend of limit load
multipliers with iterations even for complex three dimensional geometric models. Moreover it

also ensures relatively rapid computation of limit loads by utilizing the faster convergence

feature of the m,” multiplier.

The initial linear elastic run of EMAP is nothing but the typical linear elastic analysis. The initial
linear elastic run provides lower bound limit load estimate and the accuracy of lower bound
solution improves during the EMAP iterations. In terms of design qualification, sometimes it is

important to estimate lower bound limit load with better accuracy, especially when the analyst
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cannot afford any kind of conservatism. In this sense the EMAP iterations can be terminated as

soon as the acceptance criteria for design load are satisfied against the m," -multiplier solution.

While performing iterative linear elastic analysis of a component, it is convenient to apply all the
corrections into the m, -multiplier formulation as a conservative approach. Since EMAP
redistributes the stresses in subsequent analysis, the conservatism is adjusted during iterations.
However this conservatism could be an issue when the multiplier needs to be estimated based on
single linear elastic analysis (when a quick and inexpensive calculation is required). Therefore a
guideline for appropriate incorporation of reference volume and peak stress correction is
addressed in chapter 6 which is essential to achieve reasonable estimate of m, multiplier based

on single linear elastic analysis.
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Chapter 6: Robust Limit Loads Based on Single Linear Elastic Analysis

6.1 Introduction

As per ASME design philosophy ([1] [11]), the primary membrane, primary local membrane and
primary bending stress obtained from a linear elastic analysis has to be limited by the
corresponding ASME allowable limit for the purpose of design qualification. However if the
stress limits are not met, limit analysis can show that the design is qualified. In this context if the
limit load can be estimated from the existing linear elastic stress analysis, then it will save the
expense to set-up and perform a detailed inelastic analysis. Single linear elastic analysis based
techniques are also attractive whenever a quick and inexpensive calculation is required (e.g.

Level 2 FFS type assessment).

In terms of limit load estimation, a general mechanical component is equivalent to a suitable
multi bar model. Since the reference two bar solution (m7g) bounds the limit load solution of
other multi bar models (discussed in Chapter 4), the multiplier mypy is a potential lower bound
solution. In Chapter 4 reference two bar model has been identified based on the generalized two
bar analysis. Generalized two bar configuration implies variable two bar area and length ratio.
However the shape of a cross-section has not been taken into account. The shape of a cross-
section is essential to consider during bending. Therefore in order to eliminate any possibility of
overestimation of limit load using two bar multiplier (myzpy), a correction factor is introduced
into the two bar formulation. A guideline is proposed to obtain lower bound two bar multiplier

for practical mechanical components and structures based on linear elastic analysis.
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As discussed in Chapter 5, it is important to incorporate reference volume and peak stress
corrections into the maT multiplier formulation in order to achieve lower bound limit load. While
performing iterative linear elastic analysis of a component, it is convenient to apply all the
corrections. Since the convergence is eventually achieved in subsequent elastic iterations,
therefore the possibility of conservatism due to the above mentioned corrections is adjusted.
However in order to achieve robust estimate of m,’ multiplier based on linear elastic analysis, it
is essential to apply these corrections judiciously on a component basis. In this chapter a

guideline is proposed to obtain robust m,’ multiplier based on single linear elastic analysis.

The above mentioned methods are then applied to a number of practical components and

structures. Results are compared with the inelastic FEA results and/or available analytical

solutions.
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6.2 Guideline for Lower Bound m7g); Multiplier Based on Single Linear Elastic FEA

The reference two bar structure is identified on the basis of the general two bar analysis which
considers variable bar length and variable area. The shape of the beam cross-section is essential
to consider while calculating limit load. With respect to Table 6.2, it is evident that the exact
limit load of rectangular beam cross-section (having shape factor S=1.5) corresponds to the
reference two bar limit load solution (m'(). The shape factor of rectangular beam section (S=1.5)
is widely considered in the ASME code [11], which implies that the two bar model is consistent

with the ASME code design consideration.

For beam cross-sections having shape factor greater than 1.5 (e.g. solid circular section in Table
6.2 has a shape factor of 1.70), reference two bar model gives lower bound solution. On contrary
beam sections having shape factor less than 1.5, reference two bar limit load could be an
overestimation (e.g. thin circular pipe section in Table 6.2 has a shape factor of 1.27). Therefore
in order to eliminate any possibility of overestimation of limit load for general mechanical
components using two bar multiplier, a correction factor ‘e’ has been introduced into the two bar

formulation as described below.

1

As discussed earlier, the m=m," line having a slope of tangz(l_ ], provides an improved

estimate of lower bound limit load. Since the reference two bar trajectory lies below the m,-
tangent line within the range of /<(<I/ +\2 (Figure 6.1), the reference two bar multiplier could
lead to an upper bound estimate within this range. However it can be seen that the maximum
possible error in the reference two bar estimation is e,,,,=5.83 percent, which occurs at { =1.5

(Figure 6.2). For any other value of { within the range of /<(</ +12, the error will be less.
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Figure 6.2 Error in the myzg) multiplier estimate in comparison to the my! multiplier
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The error estimation shown in Figure 6.2 is calculated as follows:

With respect to Figure 6.3, at a particular  location, (R’), will be greater than or equal to (R’)a

where ‘b’ and ‘a’ are points located on the m:maT line and reference TBM (m=mzpy) trajectory

respectively (for the range 1<(<I+\2). Therefore the error estimate (e%) for the reference two

bar multiplier within this range can be expressed as:

2
(k°), =122
2¢
1
R°), =1+(l-1)1-—
(®)=1+(=1f 1
AR = (R"), - (R"),
0
e=7—v%100
1 1+¢°
-
1+¢7?
2¢
142
m=my
2.0 - .
S i
ﬁ ;
x E m= m,’
1.5 A | m= Mrpy i /
: 1d
bi Ve
10 a" E m=m?
1.0 LS emOm, 20 1+\2

Figure 6.3 Reference TBM error estimation from constraint map
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Now that the error estimation is obtained, a guideline is presented as follows in order to obtain
lower bound estimate of two bar multiplier (m7py) based on linear elastic analysis. Table 6.1

summarizes the guideline.

6.2.1 Multiplier mpy: ¢ <1++2
Well-designed components with gentle geometric transitions under uniform load distribution are

usually within this { range. At first the estimate of m'( is calculated as per Eq.(4.13). Then the

estimate of m’;[l_lgo) will provide lower bound limit load for practical components and

structures. Here ‘e’ percent error estimate calculated based on Eq.(6.4). Table 6.1 summarizes

the guideline.

The proposed lower bound two bar multiplier estimate for the component category of ¢ <1++/2

is basically a modification of the two bar multiplier developed by Seshadri and Adibi-Asl [10].

6.2.2 Multiplier mrpy: {>1+ V2

The reference two bar solution (m7gy) bounds the limit load solution of other multi bar models,
i.e. the multiplier mypy is a potential lower bound solution. With respect to Figure 6.1, the
relative position of the m=myggy trajectory and m=m, line signifies that for any value of
I>1+ V2, m'{ < m,". Therefore correction factor based on the above mentioned error estimate is
not applicable. Hence mygy = m'C will provide lower bound estimate of limit load for this {

range. Table 6.1 summarizes the guideline.
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Table 6.1 Guideline for lower bound limit load multiplier based on single linear elastic FEA

Component
Category

H(E="0)

Description

Multiplier
mg'

Multiplier mrpm

£<1+42

Well-designed components
with gentle geometric
transitions

0

m
1 n/{[l
I+1-——)(¢ -1

0= D

§>1+\5

Components with stress
concentrations. In the
absence of stress
concentrations  would be
less than 7+V?2

0
m

b

V2

I+(1-—=)(¢, —1)

>1+442

** Components undergoing
local plastic action along
with stress concentrations

m"(Vy)

1
1+(1—7)(§f =D

7

Evaluat

ion Details

B | jVT (a;)zdv

o

v

A

[Eq.(3.3)]

g,

m, :(—ro_
€q /max

[Eq.(3.2)]

mO (VR) =

1
1+[1-— | -1
e

(1+¢*)

2
[Eq.(5.9)]

[Eq.(5.11)]

bl e

0
, 2m

m =
1+¢7

[Eq.(3.18)]

o t-a %

|

x100

" 1+¢7
2¢

[Eq.(6.4)]

*m? and my is calculated from the linear elastic stress distribution of a component or structure.

** If there is ambiguity in deciding whether Vx<Vy; while analyzing a component, it is

conservative to incorporate the reference volume correction. m’ and m’(Vy) signify the

calculation of multiplier m’ based on total volume and reference volume respectively.
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6.3 Guideline for Lower Bound m,’ Multiplier Based on Single Linear Elastic FEA
As established in Chapter 5, for component category ¢<1++/2, the mg -multiplier estimate

proposed by Seshadri and Hossain [12] is a lower bound and hence can be used without any

modification.

If a defect is developed in a component during service, there will be existence of peak stress in
its linear elastic stress distribution resulting ' >1++/2 . Removal of the peak stress does not affect
the “overall equilibrium” of the component and the corresponding stress-distribution. In other
words, blunting of peak stress is assumed to occur when Am° = 0, and the implied trajectory is
horizontal (BB" in Figure 5.1). Hence the reference volume is still Vz=V7 . Therefore no
reference volume corrections ( Ar’ in Figure 5.1) are required due to defect although blunting of

peak stress (A¢ in Figure 5.1) is required.

On contrary, there could be local plastic action in a component along with stress concentrations
(when Vg<V7y). In this situation, { is greater than 1+V?2 and reference volume correction is also
required. The vertical drop B'B in Figure 5.1 (when A{=0) implies the reference volume

correction.

Seshadri and Hossain [12] introduced the peak stress correction (described in Chapter 5) into the
mg' multiplier formulation. However this solution could be an upper bound when primary load is

carried by a localized region (i.e. Vg<Vy). Therefore it is essential to introduce the reference
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volume correction (proposed in Chapter 5) into the m,’ multiplier formulation along with the

peak stress correction.

In order to achieve robust estimate of m, multiplier based on single linear elastic analysis (for
component category {>1++/2), it is essential to apply reference volume and peak stress
corrections judiciously on a component basis. In this section a guideline is proposed to obtain
robust m,’ multiplier based on linear elastic analysis. Table 6.1 summarizes the guideline and a
number of practical components have been analyzed in Section 6.4 and 6.5 based on the
guideline. It should be noted that, if there is ambiguity in deciding whether Viy<V; while

analyzing a component, it is conservative to incorporate the reference volume correction.

6.3.1 Multiplier m,": £ <1+~2 (well-designed components with gentle geometric transitions)

This case refers to properly sized mechanical/pressure components with gentle geometric

transitions (as discussed in Section 5.8.1). The implication is that Vg = V7. The value of »,°and

0
¢ = ™ _ can be determined from statically admissible distributions, obtained using a linear elastic
m

FEA. Hence Eq.(5.6) is directly used to evaluate the multiplier maT. Table 6.1 summarizes the

guideline.
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6.3.2 Multiplier m,: £ >1++/2 (components with stress concentrations)
This case refers to well-designed mechanical/pressure components as described in Section 6.3.1
that develop cracks/flaws during service. In the absence of the cracks/flaws ¢ <1++/2, but the

defects introduce stress concentrations. For this case,

0
m

1 (6.5)
— =1
S -D

where {r can be calculated using Eq.(5.11). Table 6.1 summarizes the guideline

T
m —

I+1-

6.3.3 Multiplier m,": ¢ >1+~2 (local plastic action along with stress concentrations)

The large stress and strain fields are essentially introduced by cracks and flaws and kinematically
inactive volume appears due to concentrated loading. In the absence of defects, there are
negligible stresses. For this case Eq.(5.12) is used to obtain the m,’ multiplier, where m"(Vg) and
(s can be calculated using Eq.(5.9) and Eq.(5.11) respectively. Table 6.1 summarizes the

guideline
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6.4 Analytical Examples

In this section, limit load for several beam configurations subjected to an applied moment (M)
has been computed based on the linear elastic stress distribution. For beams of various cross-
sections, limit load calculations using the mzpy and maT multiplier are found to be in good
agreement with the exact analytical solutions. Results are summarized in Table 6.2. Detailed

description of calculation is provided in Appendix A for several beam configurations.

Table 6.2 Limit load multipliers for several beam configurations

]]:légg Rectangular beam of unit | Solid circular beam | Circular pipe of thickness
Multiplier width and thickness ‘¢’ of diameter ‘d’ ‘¢’ and nominal radius ‘r’
Shape factor 1.50 16 _ 1.70 4. 1.27
) 3 T
) o, onxd’ V2o mrit
Ji2m 16M M
m ot o,xd’ o,xr't
L oM 30M M
¢ \3 2 \2
' o, oxd’ Zﬁfmyrzt
43m 40M M
m o1’ o,d’ 4o,r't
aM oM M
’"7; 1 0.94 1.05
e 1—180j 0.95 0.91 0.99
m T
a 0.95 091 0.99
m

0
Note: In Table 6.2 ‘e’ is the percent error as shown in Figure 6.2. For a particular { = M this

my

can also be calculated based on Eq.(6.4).

104




6.5 Numerical Examples

In this section, limit load estimates are determined for a number of mechanical/pressure
components. All the problems are modeled using the ANSYS [21] software and the Poission’s
ratio is considered as v=0.3. Mesh convergence studies have been performed to verify the
sensitivity of the multipliers with respect to the mesh density. For each component the mypgy and
m," multiplier are calculated as per guideline provided in Table 6.1 based on a single linear
elastic analysis. Numerical examples are chosen in a way to encompass the lower bound limit
load calculation methodology summarized in Table 6.1. Results are compared with the inelastic
finite element results as well as available analytical solutions. Inelastic finite element analysis is
performed as per guideline provided in Section 5.6. A relative estimate of computational time
required for each method (simplified linear elastic method, EMAP and inelastic FEA) can be

found in [35].
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6.5.1 Thick Walled Cylinder

A cylinder under internal pressure of 50 MPa (Figure 6.4) is analyzed using plane strain
conditions. The inner radius of the cylinder is 65 mm, and the outer radius is 90 mm. The
modulus of elasticity is specified as 200 GPa and the yield strength is assumed to be 300 MPa.
The geometry is modeled using eight noded isoparametric quadrilateral elements (Plane82) with

symmetric consideration.

9

Figure 6.4 Finite element model of the thick walled cylinder
From the initial linear elastic analysis it is found that {'is less than 1+V2 (Table 6.3). Hence thick
walled cylinder under uniform pressure is in the category of well-designed component having no
stress concentrations as well as no kinematically inactive volume. The multiplier m,! and mrgy
are evaluated as per the guideline provided in Table 6.1 and results are summarized in Table
6.3. Then an inelastic finite element analysis is performed, which gives a limit load multiplier of
myrea= 2.254. The multiplier mypgy and m,! are lower bound when compared with the multiplier

myrea. The analytical limit load solution gives an estimate of 2.260.

Table 6.3 Limit load multipliers for thick walled cylinder

0

0 m

m’ my, é,:mio = 2m e% - _€ m’ = . .
Eq.(3.3) | Eq.(3.2) m, 1+¢* | Eq.(6.4) TEM 100 1+ (l_ﬁ)@_l) NFEA
2.264 1.708 1.325 1.642 5.32 2.061 2.067 2.254
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6.5.2 Torispherical head

A torispherical head (Figure 6.5) with average diameter D=2000 mm, normalized spherical cap
radius R, / D = 0.8, normalized knuckle radius of R, /D =0.12 and normalized thickness of
t/D=1/40, subjected to an internal pressure of 5 MPa is examined here. The modulus of

elasticity is specified as 262GPa and the yield strength is assumed to be 262 MPa. The geometry

is modeled using Plane82 elements with axisymmetric consideration.

Figure 6.5 Axisymmetric finite element model of the torispherical head

Since (=2.172 is less than 1+V2, therefore the structure does not collapse locally. The multiplier
m,’ and mggy are evaluated and results are summarized in Table 6.4 along with the inelastic
FEA results. Based on the lower bound analytical approximation proposed by Drucker and
Shield [22], the limit load multiplier for the torispherical head is 2.360. As shown in Table 6.4,

the multiplier m,! and mygy, are lower bound when compared with the inelastic FEA results.

Table 6.4 Limit load multipliers for torispherical head

0
I e I B (e R vl I
Eq.(3.3) | Eq.(3.2) m, 1+¢? | Eq.(64) | 7™ 100 I+(-)¢ =D NFEA
2912 | 1340 |2.172 1.018 2.051 2.166 2.167 2.790
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6.5.3 Reinforced Axisymmetric Nozzle

A reinforced axisymmetric cylindrical nozzle on a hemispherical head (Figure 6.6), subjected to
an internal pressure of 24.1 MPa is analyzed here. The inner radius of the head is R=914.4 mm,
and the nominal wall thickness is t=82.6 mm. Inside radius of the nozzle is r=136.5 mm and the
nominal wall thickness is t,=25.4 mm. The required minimum wall thickness of the head and the
nozzle is t,=76.8 mm and t,=24.3 mm, respectively. The geometric transitions of the
reinforcement are modeled with fillet radius, r;=10.3 mm, r,=83.3 mm and r;=115.2 mm. Other
dimensions include reinforcement thickness 7=54.6 mm and the angle of reinforcement, =45°.
The reinforcement is bounded by the reinforcement-zone boundary, specified by circle of radius
L,=143.5 mm. The modulus of elasticity is specified as 262 GPa, and the yield strength is
assumed to be 262 MPa. The geometry is modeled using eight-noded isoparametric quadrilateral

elements (Plane82) with axisymmetric consideration.

-
—_
ek

Figure 6.6 Finite element model of the reinforced axisymmetric nozzle
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Similar to thick walled cylinder and torispherical head, reinforced axisymmetric nozzle is a well

designed pressure component with smooth geometric transition. Therefore this should be under

the category of { is less than 1+V2. The multiplier m,. and mypy are evaluated as per the

guideline provided in Table 6.1 and results are summarized in Table 6.5. Then an inelastic finite

element analysis is performed, which gives a limit load multiplier of mypra= 1.872. The

multiplier myp) and m," are lower bound when compared with the multiplier mypga.

Table 6.5 Limit load multipliers for reinforced axisymmetric cylindrical nozzle

0

m0 my, ;zmio ’_ 2m° e% :mrg(l_ij mz=+ "
Eq.(3.3) | Eq.(3.2) m, 1+¢7 | Eq64) | "™ 100 =g -n | T
1.891 | 1.120 | 1.689 0.982 5.37 1.569 1.574 1.872
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6.5.4 Plate with a Hole

Consider a thin plate with a hole (Figure 6.7) with the following dimensions: plate width,
W=150 mm; length, L=300 mm; and hole radius, d=40 mm. It is subjected to a tensile load of
100MPa. The modulus of elasticity is specified as 150 GPa and the yield strength is assumed to
be 150 MPa. Due to symmetry in geometry and loading, only a quarter of the plate is modeled
using eight noded isoparametric quadrilateral elements (Plane82) with plane stress consideration.

Making reference to the dimensions of the plate with hole, the collapse load multiplier may be
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Figure 6.7 Finite element model of the plate with a hole

Plate with a hole is a uniaxial tensile problem, where stress concentration is due to the presence
of the hole. From the initial linear elastic analysis it is found that  is greater than /+V2. Since

the stress distribution is uniform at every cross-section, ¢ >1+ J2 is attributed to the existence

of peak stress. Therefore this requires peak stress correction based on Eq.(6.5) for m, multiplier

evaluation. On the other hand for this range of {, no error estimate is required for mypy
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evaluation. Then an inelastic finite element analysis is performed, which gives a limit load

multiplier of mypra= 1.099. Results are summarized in Table 6.6.

Table 6.6 Limit load multipliers for plate with a hole

0
0 0 0 T m
m my, _m ’_ 2m o & m, =——-"
Eq.(3) | Eq.32) | © m, | Taxgr | T | Eq5an) 1+(1—%>(§/. _qy | MrEA
1416 | 0.527 | 2.687 0.345 0.926 2.604 0.963 1.099
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6.5.5 Compact Tension (CT) Specimen

A Compact Tension Specimen (Figure 6.8) with a width W=100mm, height H=125mm,
thickness t=3mm and crack length a=46mm is subjected to a tensile load of P=5kN. The
modulus of elasticity is specified as 206.85 GPa and the yield strength is assumed to be 206.85
MPa. Due to symmetry, only a half of the plate is modeled with plane stress consideration. The
compact test specimen is subjected to concentrated load and contains stress concentration ahead

of crack tip.

The linear elastic stress distribution around a crack configuration can be captured by using
singular elements around the crack tip. Therefore the finite element model is developed using
eight noded isoparametric quadrilateral elements (Plane82), with eight singularity elements
around the crack-tip. However limit load solution based on a linear elastic stress distribution
requires further treatment of singularity elements, when the solution technique has explicit
dependency on the maximum stress at the crack tip (i.e. classical lower bound limit load solution
(my) 1s explicitly dependent on the maximum equivalent stress of the entire stress distribution).
This is due to the recognition that a crack tip configuration induces very high peak stress, which
is localized and gets redistributed along with the secondary stress. Proper elastic modulus
modification of singular elements around the crack tip in a finite element discretization can
reduce the magnitude of stress gradient to a minimum and hence the effect of peak stresses
becomes small. The stress concentration at the crack tip can be blunted by modifying the elastic
modulus of the singularity elements as Es=E/3, while performing single linear elastic analysis.

The rationale for this modulus reduction is proposed by Adibi-Asl and Seshadri [23]. A brief
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description of singularity elements and their appropriate softening process is provided in

Appendix B.
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Figure 6.8 Finite element model of compact tension specimen

From the initial linear elastic analysis it is found that (" is greater than / +\2 (Table 6.7). There
are two possibilities which might cause ¢ >1++/2 even after singularity element softening.

1. There might be some peak stress left at the crack tip which requires further blunting.

ii. Kinematically inactive volume is existing due to concentrated loading.

Hence this problem fits under the category which requires further peak stress correction as well
as dead volume correction while evaluating the m,’ multiplier. On the other hand for this range
of {, no error estimate is required for myzpy evaluation. An inelastic finite element analysis is

performed, which gives a limit load multiplier of mygea= 1.330. Results are summarized in

Table 6.7.
Table 6.7 Limit load multipliers for compact tension specimen
0
0 0 0 0 m (VR)
m m; _m’ | 2m o m(Ve) G mh=— R
Eq.(3.3) | Eq.(3.2) ¢ m, | " T e | T T S| Eq(5.9) | Eq(5.11) 1+(1—%)<§f _1) | MNEEA
2.595 0.494 5.257 0.181 0.953 2.141 4.259 1.095 1.330
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6.5.6 Large Grillage

A large grillage model described in Section 5.6 is analyzed here based on single linear elastic
analysis. Since {=5.781 is greater than / +\2 (Table 6.8), therefore peak stress correction and/or
reference volume correction are required. This is a complex geometry and there is ambiguity in
deciding whether Vx<V; Therefore conservatively it is considered that reference volume
correction is appropriate along with the peak stress correction, while evaluating m, multiplier.
On the other hand for this range of {, no error estimate is required for mypy evaluation. An
inelastic finite element analysis is performed, which gives the limit load multiplier mypgs =0.105.

Results are summarized in Table 6.8.

Table 6.8 Limit load multipliers for large grillage

0
0 0 0 0 m°(V,)
m my, _m ,_2m | W) & . S L VR
Eq.(3.3) | Eq.(3.2) ¢ m, | " Taxgr | S| Eq(5.9) | Eq(5.11) 1+<1—%)<§, _1) | MNEEA
0.198 | 0.034 | 5.781 0.012 0.067 0.160 | 4.583 0.078 0.105
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6.6 Discussion and Conclusion

For component category ¢ <1++/2, a correction factor is introduced into the two bar formulation
in order to eliminate any possibility of its overestimation. For component category ¢>1++/2, the
two bar multiplier estimate proposed by Seshadri and Adibi-Asl [10] is shown to be a lower

bound (in Chapter 4) and hence is used without any modification. Therefore the suggested two

bar multiplier calculation guideline ensures lower bound limit load solution.

For component category ¢ <1++2, the m, -multiplier estimate proposed by Seshadri and
Hossain [12] is shown to be a lower bound (in Chapter 5) and hence is used without any
modification. For component category ¢'>1++/2, incorporation of reference volume and peak

stress correction suggested in this chapter ensures lower bound m, multiplier with acceptable
accuracy based on single linear elastic analysis. Therefore the suggested m, multiplier

calculation guideline ensures lower bound limit load solution.

The multiplier myzgy and m,! estimates lower bound limit loads based on a single linear elastic
analysis as shown in Section 6.4 and 6.5. However their estimates could be conservative while
analyzing structures with higher degree of indeterminacy as evident from Figure 5.6 (e.g. a large
grillage model, for which a four bar model shown in Table 4.1 would provide more accurate
estimate of limit load). In this context, the my! multiplier estimates are more accurate compared
to the multiplier mypy. It should be noted here that the multiplier mygy offers much better

accuracy than classical lower bound solution.
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Chapter 7: EMAP for Strain Hardening Material Model

7.1 Introduction

Inelastic FEA is the most frequently used approach to obtain the detail structural response and is
an economic alternative to full scale experimental test. However, it is always essential to have an
alternate solution tool available, in order to validate the results of a traditional elastic-plastic

analysis.

Iterative elastic modulus adjustment scheme can establish inelastic-like stress and strain field by
modifying the local elastic modulus of elements of an FE model in repeated linear elastic FEA.
Modulus adjustment approaches are different depending on the type of stress fields anticipated.
According to Adibi-Asl and Reinhardt [24], EMAP can be categorized into two classes: (i) “Full
EMAP” which involves simultaneous element softening and hardening in order to obtain the
limit state stress field. (i) “Partial EMAP” in which the modification is performed only in the

elements having a stress level higher than the yield strength.

In the stress-strain curve, once the yield strength is exceeded, plasticity occurs. In the initial
portion of plastic region, the rise in curve is due to the presence of strain hardening feature in the
material. The partial EMAP scheme previously developed for elastic-perfectly-plastic material
model [24] can be extended to strain hardening material model in order to achieve inelastic-like

stress and strain field under strain hardening action.

In this chapter, an elastic modulus adjustment scheme for strain hardening material model is

developed. The algorithm is programmed into repeated linear elastic analysis in order to capture
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the post yield behavior of a component or structure. The proposed algorithm is then applied to

numerical examples and results are compared to traditional inelastic finite element results.

7.2 EMAP Categories

EMAP establishes inelastic-like stress and strain field by approximating incompressible plastic
flow. Numerous sets of statically admissible and kinematically admissible distributions can be
generated in this manner. However, modulus adjustment approaches are different depending on
the type of stress fields anticipated. Full EMAP modifies the elastic modulus of all elements and
is used to achieve the limit state. On the other hand in partial EMAP the modification is
performed only for the elements having stress level higher than the yield strength. Therefore this
is essentially an element softening process. Both full and partial EMAP are based on iterative
linear elastic analysis, where elastic modulus and Poisson’s ratio are the only material properties
used for the structural analysis. In the following section, the procedure for elastic modulus
adjustment to achieve limit state and elastic-plastic state are explained in parallel, to demonstrate

their similarity and diversity.

7.2.1 Full EMAP

The full EMAP is used to estimate the limit load / primary stress and correspond to inelastic
finite element limit load analysis considering elastic-perfectly-plastic material model. There are
several approaches that employ modification of the local elastic modulus of material in
successive iterations, in order to achieve inelastic-like stress distributions based on linear elastic
analysis. The EMAP suggested in chapter 5 is indeed a full EMAP approach, which considers a

constant value of ‘g’ (known as modulus adjustment parameter). As discusser earlier, a relatively

117



smaller value of ‘q’ ensures consistent variations of limit load multipliers with iterations,
(especially for those multipliers having explicit dependency on classical lower bound). Adibi-Asl
et. al., [25] developed a relationship between modified modulus and the initial modulus, based
on Elastic Strain Energy Density (ESED) concept [20], from elastic-perfectly-plastic material
model, where modulus adjustment parameter varies in element basis. By equating the area of two
shaded region in Figure 7.1, the relationship between modified modulus and the initial modulus

can be established as follows:

2

_ ref
=5 F (7.1)
O-eq O-ref

20

i+l

geq Eref 2

Figure 7.1 Schematic of the ESED method

As illustrated in Figure 7.1, when the elastic stress in each element is brought to the reference
stress level in subsequent linear elastic iterations, the stress distribution in the structure will

eventually reach to the stress distribution during plastic collapse and multipliers obtained from
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this stress field will estimate the limit load. Eq.(7.1) can be used to modify the elastic modulus

of each element in successive linear elastic iterations where o . is the reference stress in each

ref
iteration. The only difference between the approach proposed by Adibi-Asl et. al., [25] and the
proposed method in Chapter 5 is that, Adibi-Asl et. al., [25] considered a variable modulus
adjustment parameter (g), which varies in element basis, while the proposed method in this thesis
considers a fixed relatively smaller value of ‘g’ (¢g=0.1). A fixed small modulus adjustment
parameter (g) enables smooth convergence towards the exact limit load solution with iterations,
while variable ‘g’ [25] might cause oscillations, resulting a non-convergence (particularly for
complex three dimensional FE models). This issue is specifically true for the multipliers having

explicit dependency on the classical lower bound multiplier.

7.2.2 Partial EMAP

The aim of partial EMAP (partial modification) is to simulate the stress and strain distribution
during inelastic action. In this method, the modification of elastic modulus only takes place in
elements having equivalent stress higher than yield strength. Reference stress is considered to be

equal to the yield strength of the material. Therefore reference stress term o,,, in Eq.(7.1) needs

(4

to be substituted by the yield strength o in order to predict inelastic stress and strain fields for

elastic-perfectly-plastic material model. As mentioned in [24], peak and secondary stresses
usually do not cause significant inelastic deformations. Therefore, the strains obtained from

linear elastic analysis can be used to estimate the plastic strains with acceptable accuracy.
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The partial EMAP scheme for elastic-perfectly-plastic material model [24] can be extended to
strain hardening material model in order to achieve inelastic-like stress and strain field under the

strain hardening action.

7.3 Strain Hardening Material Model

A typical form of strain hardening material model can be represented by the following equation:

e=flo,.0) (7.2)

where o is the yield strength and (0, €) is the stress-strain state at any point on the material

model.

Typical strain hardening curves are bilinear hardening and Ramberg—Osgood material models.
Bilinear hardening material model can be represented by line segments with slopes related to the
elastic modulus (F) and tangent modulus (E;). This is the simplest representation of strain
hardened material properties. On the other hand, Ramberg—Osgood material model is closer to
actual material properties. In this model the strain hardening behavior of any ductile material is

specified by a dimensionless material constant (), and a strain hardening exponent (n) [27].

Due to strain hardening, a component or a structure can store supplementary strain energy and
hence carries additional load during the inelastic deformation. The inherent strength due to strain
hardening can be specified into EMAP algorithm in order to simulate the stress and strain

distribution during the inelastic action.
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7.4 Proposed Partial EMAP for Strain Hardening Model

In this section, the partial EMAP scheme for elastic-perfectly-plastic material model is extended
to strain hardening material model in order to achieve inelastic-like stress and strain field under
the strain hardening action. Mathematical model for modulus adjustment is developed for

bilinear and Ramberg-Osgood strain hardening material model.

7.4.1 Partial EMAP for Bilinear Hardening Material Model

A schematic plot of a bilinear material model is shown in Figure 7.2(a). With respect to Figure
7.2(a), point ‘a’ represents the pseudo elastic stress. Therefore the element has to be softened in
such a way that the stress and strain at ‘a’ is projected to its actual location ‘a’. This can be
achieved by equating the strain energy of shaded elastic region with that of shaded inelastic

region as shown in Figure 7.2(a).

1, , 1 1
50“"1 £, :50'}, E,+0, (sj; —e},)+5(e;; —€y)(0;; -0,) (7.3)

Here,ofq and €, are stress-strain at point ‘a’. o, and gl are stress-strain at point ‘a’,

respectively.
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i+l

eq eq

(a) Bilinear Hardening Model (b) Ramberg—Osgood Model

Figure 7.2 Schematic of the strain hardening material model

Let,
ae‘; =Ao,
where (A>1)
According to Hooke’s law,
o ¢ o’
gy — y , g:q — eq ,and ge;; — eq
E E

Substituting Eq. (7.4) and Eq.(7.5) into Eq. (7.3),

2
o, A(A+1
o AAD

T L2 2
o, tAo,

£y ¢ £. £y, ¢

(7.4)

(7.5)

(7.6)

In Eq.(7.6), A=1 indicates elastic-perfectly-plastic and A > 1 indicates elastic-strain-hardening

material model.

122



From Figure 7.2(a), stress-strain relationship for the strain hardening zone can be expressed as,

o,=E¢g, -E¢E +0, (7.7)
o) E.. E —E

= q — A — i+1 i t (78)
O-y Ei Ei+1 - Ez

Substituting A from Eq. (7.8) into Eq. (7.6),

2 Ei+l Ei _Ez Ei+l Ei - Et
o, +1
E = ) Ei Ei+1 - Et Ei E El‘ E

i+

= )
l o 2 + Ei+1 Ei B Et o 2 l
“ E E._ —E y
i i+1 t

Eq.(7.9) has three explicit solutions for E,, and out of them one is the actual solution and the

(7.9)

other two are trivial. Therefore the expression for modified elastic modulus can be written as:

o O EE+0E ~EEo] o EEG 20 BB+ E o, 360, B +3E 0, B+, E'Eo ~E Eo;’ (7.10)
T+ quZE; +E:O"2 —G)ZE; M

Substituting E, =0 into Eq.(7.10), it is reduced to Eq.(7.6) for A=1 (elastic-perfectly-plastic).

Therefore in addition to Eq.(7.7), stress and strain can also be related in terms of Hooke’s law

P

based on g = —

i+1

where E,, can be calculated from Eq.(7.10).

Once the elastic stress for any element is obtained where o, >0, its modulus is reduced based

on Eq.(7.10) and the next elastic analysis is performed using the new modulus (E; as per Figure
7.3). However, not all element stresses come onto the strain hardening curve with this modulus

adjustment. This indicates further requirement of modulus adjustment in subsequent iterations. In
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order to make subsequent modulus adjustments, o of Eq.(7.10) has to be replaced by a variable

term ¢, in subsequent iterations, which can be computed using the following equation:

o =t et o 7.11
L ) (7.11)

(where i>2 ando™" =0, )

Therefore for i >2 , Eq.(7.10) can be re-written as,

o /EE+(0\JE’-EE|o \/a EE(0' ) -20: E’E 0 ) +E'(0)) =30 ) E +3E (6! ) E* +0:, E E (0’| -EE 0}

i+ T

O'jqu,, +E, (0'; )2 —(O'i, )ZE

y t

(7.12)

124



7.4.2 Partial EMAP for Ramberg—Osgood Material Model
A schematic plot of Ramberg—Osgood material model is shown in Figure 7.2 (b). By equating
the strain energy of elastic shaded region with that of inelastic shaded region as shown in Figure

7.2(b), the following relationship can be achieved:

I f
SOl € =OlEl [edo
0
(7.13)
2 2 P
o ol %
BT
2Ei i+1 0
Ramberg—Osgood material model can be written as:
oo, ’
e=9 7y O (7.14)
E, E |0,

where « is the dimensionless material constant and n is the strain hardening exponent.

Substituting Eq. (7.13) by Eq. (7.14) and after integration it becomes,

O_p 1+n
a(a | )2( eq ]
‘ 4 » ’ 7.15
(O-eq)z (O-eq)z + (O-eq)z + O-y 0 ( )

2E  E,, 2E E(l+n)

i+1

In order to calculate o7, , the following relationship needs to be solved:

n—1I n—1I
() +| 2B g —g (7.16)
eq o a’E~+1 eq )
Solving Eq.(7.16) for o7,
i
n—1 n—
Ou = [_ o) (E., —E,-)} 1 (7.17)
o Ei+1
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Substituting Eq. (7.17) into Eq. (7.15):

I+n

1 2 1 2 0((0', i+1
(_ O-sil (Ei+1 - Ei)Jn_[ (_ 0-371 (Ei+1 - Ei )Jn_[ ' g, (718)
(O-pq )2 ~ a Ez+l . o Ei+1 . _ 0
2E, E., 2E, E(l+n)

This is the implicit expression for adjusted modulus E;.;. For a particular value of strain

hardening exponent n, E;,; can be achieved in explicit form.
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7.5 Finite Element Implementation

The flow diagram for the strain hardening EMAP is shown in Figure 7.3 which transforms o,
to its actual level o) in successive linear elastic iterations. The flow diagram is described in

terms of bilinear strain hardening material model, which can be extended for the Ramberg—

Osgood material model as well. In this section the general procedure is outlined as follows:

e The first linear elastic finite element analysis is carried out for the FE model with the
prescribed loading and boundary conditions. For the first linear elastic analysis, the

elastic modulus is the elastic property as obtained from the material specification.

e

¢ For elements having stress level higher than the yield strength (i.e. (O'eq );( >0,), elastic

modulus adjustment is made based on Eq.(7.10) and second linear elastic analysis is

performed.

e For subsequent iterations, an element modulus adjustment is made if the element stress

level (O'; )i

X is higher than (o-; )k, where (0'; )k is calculated based on Eq.(7.11). The linear

e

elastic iteration continues until the condition (O'e ”

i ~ o .
)k < (O'; ) . satisfies in element basis.

It should be noted here that, for elements having stress level less than the yield strength, elastic

modulus adjustment is not performed during the partial EMAP.
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i = i+1, Increment pattern

A

'

v
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i+l _ i
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For any element k

it = fEL o), ot = rdor, ) ELECE,)
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(o-jq )k < (aj. )k

(Eq.7.11)

Figure 7.3 Partial EMAP flow diagram
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7.6 Numerical Examples

In this section, modulus adjustment scheme for bilinear hardening material model is
implemented into components: i) under axial loading, and ii) under transverse loading.
Geometries are modeled using ANSYS [21]. Strain hardening effect is incorporated into linear
elastic analysis on the basis of EMAP flow diagram given in Figure 7.3. In case of nonlinear
analysis, both small and large deflection nonlinear analysis is performed considering elastic-

perfectly-plastic as well as bilinear hardening material model.

7.6.1 Plate with a Hole
Consider a thin plate with a hole (Figure 7.4) with the following dimensions: plate width,
W=150 mm; length, L=300 mm; and hole radius, =20 mm. Material properties are as follows:

yield strength, o, =355 MPa; elastic modulus, E=207 GPa; tangent modulus E; = 2GPa and

Poisson’s ratio, v =0.47. A two dimensional plane stress FEA model is developed using 8-
noded plane82 element [21] with one quarter of the plate modeled due to symmetry (Figure

7.4(b)). Results are compared with small deflection nonlinear analysis.
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Geometry Finite element mesh (plane stress)
Figure 7.4 Plate with a hole

Figure 7.5 shows the load-deflection plot for the plate using elastic-perfectly-plastic as well as
elastic-strain-hardening material model, obtained from nonlinear elastic-plastic analysis. It is
evident from the figure that, in case of elastic-perfectly-plastic material model, the component
does not exhibit any reserved capacity and limit load obtained from full EMAP (shown in Figure
7.5) is essentially the maximum load up to which load-deflection curve progresses. In the case of
a strain hardening model, load-deflection curve exhibits the reserved capacity as evident from

Figure 7.5.
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Figure 7.5 Load-deflection curve for plate with a hole

In order to investigate how the stress and strain reaches to its intended convergence, the element
of maximum stress is studied. Figure 7.6 and Figure 7.7 shows the convergence of elastic stress
and strain to their actual value in subsequent linear elastic analysis. In this case the applied load
(P = 283 MPa) is higher than the limit load. This loading causes a very high peak stress in the
maximum stress element. From Figure 7.6 it is evident that, for a particular element, the
computed ¢, and elastic stress o, eventually reaches to the actual o stress level and becomes

constant. Similarly, elastic strain also converges towards the actual plastic strain as shown in

Figure 7.7.
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Figure 7.8 shows the comparison of stress-strain plot obtained from two different analyses. In
the case of elastic analysis, the flow chart given in Figure 7.3 is iterated for different load
increments and for each load step; normalized stress and strain are plotted in Figure 7.8. It is
evident that results obtained from proposed method are in well agreement with the small

deflection nonlinear FEA results. Figure 7.9 is basically the extension of load-deflection plot
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shown in Figure 7.5. It is evident from the figure that for a particular load step, calculated
deflections from the proposed technique are in good agreement with the deflections obtained

from nonlinear FEA.
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Figure 7.8 Normalized stress-strain plot
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7.6.2 Stiffened Plate Subjected to Transverse Loading

A stiffened plate model considers a stiffener with the attached shell plate as a representative of
the entire structure. Length of the model is taken 2.5 m and other dimensions are shown in
Figure 7.10. Symmetric boundary conditions are applied along the length of the plate to simulate
the support provided by the neighboring structure. Shorter ends are fixed to simulate the support
provided by the continuing frame and transverse members. Elastic modulus of the material is 207
GPa, tangent modulus is 2 GPa and yield strength is 355 MPa. A three dimensional FEA model
is developed using 4-noded shell181 element. Results are compared with small deflection as well

as large deflection nonlinear analysis results.

' § 2
[ ]
' 350 -}
(a) Side view (b) Finite element model segment

Figure 7.10 Single stiffened plate (dimensions in mm)

Figure 7.11 shows the comparison of load-deflection behavior obtained from different analyses.
An arbitrary node is chosen from the node set connecting the web with the plate and nodal
deflection is plotted against the corresponding load increment. Results obtained from the
proposed methodology are in good agreement with the small deflection nonlinear FEA results as
shown in Figure 7.11. It should be mentioned here that geometric nonlinearity effect increases

the post yield reserved capacity of the structure. As the geometric nonlinearity effect is not
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considered into the suggested method, it yields conservative load-deflection curve (follows the
small deflection nonlinear FEA result) compared to that obtained from large deflection nonlinear

analysis as shown in Figure 7.11.
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Figure 7.11 Comparison of load-deflection behavior
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7.7 Applications

The proposed technique can be implemented for the estimation of stress-strain at the notch root
of a component having strain hardening feature, which is useful for FCI (fatigue crack initiation)
prediction and can be utilized as an independent verification tool for the available techniques.
Similar investigation was carried out previously by Adibi-Asl and Seshadri [15] for elastic-
perfectly-plastic material model. The proposed method can be utilized to obtain the plastic
response of a structure beyond its yield point, which provides an idea about the reserved capacity
of the structure against environmental/accidental loads. The method can also be implemented to
identify the boundary between shakedown and ratcheting when the structure experiences strain
hardening effect (similar solution was reported by Adibi-Asl and Reinhardt [24] for elastic-
perfectly-plastic material model). This is a non-cyclic approach and hence can offer as an
alternative to cyclic elastic-plastic analysis. Pressure vessel components described in the
literature (for example: cylinders, pressure vessel support skirts, nozzles, frames etc), and other
steel structures (for example: plates, beams, shells, stiffeners, grillages etc) can be suitably
analyzed by the proposed method. As the degrees of freedom of FE model increases, the method
offers better economic value compared to nonlinear FEA, in terms of computational time, effort

and computer storage space.
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7.8 Discussion and Conclusion
In this chapter, mathematical formulation for elastic modulus adjustment procedure has been
developed for strain hardening material model. These formulations are then integrated to the

linear elastic analysis and an algorithm has been proposed to capture the post yield behavior.

In order to obtain the load deflection behavior on the basis of proposed method, applied load has
to be incremented and strain hardening EMAP algorithm (Figure 7.3) has to be iterated for each
load increment. The proposed method achieves inelastic stress and strain convergence by
systematic modulus adjustment in subsequent iterations while the inelastic FEA achieves
convergence through the achievement of equilibrium and compatibility condition at a particular
load increment. Therefore, although the proposed methodology approximates the inelastic
distribution with sufficient accuracy, there are slight deviations in results due to the difference in

underlying algorithm.

The method has shown good agreement with small deflection nonlinear FEA results and thus can
be used as a suitable tool for structural analyses, when large deflection is not an occurrence. The
proposed method can be extended further to incorporate the in-plane membrane effect and

geometric nonlinearity effect into the mathematical formulation.
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Chapter 8: Conclusions and Future Research

8.1 Summary and Conclusions

This thesis is dedicated to the examination of the bounds of several limit load approximations,
and subsequently suggests procedures and guidelines for robust limit load approximations. These
methods can be employed for estimating primary stress and limit loads and hence can be utilized
as an analysis tool for design as well as integrity assessment of practical components and
structures. Simplified approximations are also attractive for Level 2 Fitness-for-service (FFS)
evaluations. Level 2 is intended for use by facilities or plant engineers in an engineering plant
environment with the availability of limited analysis capabilities. The following section

summarizes the key conclusions drawn from this thesis:

”

The lower bound estimate of the multiplier m, relies on the exact distribution of plastic flow
parameter. It is found that for an approximate distribution of flow parameter, m; is either upper

bound or its bounds are not obvious. Since the exact distribution of plastic flow parameter is only

available from the limit state stress distribution, the multiplier mz could not be established as a

lower bound based on a single linear elastic analysis.

Simha and Adibi-Asl [14] proposed an inequality relation (m''< m;) for lower bound m". It is
concluded that the inequality (m''< m;) cannot guarantee a lower bound m', when m; is

estimated from an approximate distribution of plastic flow parameter.

The reference two bar model introduces a transformation parameter, which scales up the overly
conservative estimate of Mura’s lower bound multiplier to a better accuracy. The reference two
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bar multiplier bounds the limit load solution of multi bar models. A general mechanical
component can be represented by a suitable multi bar model in terms of limit load estimation.
Furthermore, the correction factor introduced to the reference two bar solution eliminates any
possibility of overestimation of limit loads using the reference two bar multiplier. Hence the
proposed estimate of reference two bar solution provides lower bound limit load. However,
reference two bar multiplier at times provides conservative results, although its accuracy is far

better compared to classical lower bound.

The maT multiplier which offers better accuracy than the two bar multiplier is also established as
a lower bound by investigating exact solution trajectory, utilizing the constraint map

construction. Furthermore, the maT multiplier bounds the limit load solution of multi bar models.

The suggested maT multiplier estimate thus gives more accurate lower bound limit loads

(compared to the two bar solution) using single linear elastic analysis.

The proposed estimate of reference two bar multiplier and the m," multiplier can be used (i) to

obtain lower bound limit load / primary stress of mechanical components and structures, (ii) to
assess the integrity of components with and without defects, and (iii) to assess the Level 2 FFS
evaluations of an in-service component. These methods are simple, reliable, cost efficient as well

as easy to implement based on a single linear elastic analysis.

An elastic modulus adjustment scheme for elastic-perfectly-plastic material model has been
developed, which reduces the convergence difficulties usually encountered in EMAP for

complex component configurations. The m,-tangent multiplier is used in conjunction with the
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elastic modulus adjustment procedure for limit load determination. The lower boundedness of
the m,-tangent multiplier for any iteration is ensured by incorporating reference volume and peak
stress corrections. By the virtue of the faster convergence feature, the m, -multiplier permits
gentler modulus adjustments, and at the same time estimates sufficiently accurate lower bound

limit load within a relatively small number of elastic iterations.

Single linear elastic analysis based techniques are attractive when a quick and inexpensive
calculation is required (e.g. Level 2 FES type assessment). If the limit load/primary stress can be
estimated from a linear elastic stress analysis in order to meet the ASME design qualification
requirement ([1] [11]), then it will save the expense to set-up and perform a detailed inelastic
analysis. However when the analyst cannot afford any kind of conservatism, EMAP can be
utilized to achieve better accuracy. Basically the first EMAP iteration is nothing but the single

linear elastic analysis.

An elastic modulus adjustment scheme for strain hardening material model has been developed
and the algorithm is programmed into repeated linear elastic analysis in order to capture the post
yield behavior of a component or structure. The modulus adjustment scheme results for bilinear
hardening material model have shown good agreement with small deflection nonlinear FEA

results. Hence it can be used as a suitable and an alternative technique for elastic-plastic analysis.

The simplified methodologies developed in this thesis are limited to components subjected to

small deformation.
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8.2 Original Contributions

The following are the original contributions of this thesis:

(1-a) NSSC rules [15] are introduced into the expression of plastic flow parameter distribution
proposed by Pan and Seshadri [7]. A general expression of plastic flow parameter distribution is
proposed in a form which enables parametric examination of the possible approximations of the

plastic flow parameter based on a linear elastic analysis.

(1-b) An extended expression for the multiplier m; [13] is proposed in a form which enables

parametric examination of its estimate based on the possible approximations of the plastic flow

parameter distribution. It is concluded that the limit load bounds of the multiplier m; is not

obvious for an approximate distribution of flow parameter.

(1-c) Since the limit load bounds of the multiplier m; is not obvious for an approximate
distribution of flow parameter, the inequality (m"<m/, ) cannot guarantee a lower bound m" [14],

if m’, 1s estimated based on an approximate distribution of plastic flow parameter.

(2-a) The reference two bar model is developed on the basis of the generalized two-bar analysis.
The generalized two-bar analysis eliminates the equal two bar area assumption previously

considered in the literature [10].

141



(2-b) A transformation parameter has been obtained from the reference two bar model which
scales up Mura’s overly conservative lower bound multiplier to a multiplier with improved

accuracy.

(2-¢) Since a mechanical component or structure can be represented by a suitable multi bar
model, a general expression of the multi bar model has been developed. It is found that the

reference two bar multiplier bounds the limit load solution of multi bar models.

(2-d) A correction factor is introduced to the reference two bar multiplier in order to eliminate
any possibility of overestimation of limit loads using the reference two bar multiplier. Therefore

a lower bound reference two bar multiplier has been achieved.

(2-e) A guideline is proposed to obtain sufficiently accurate lower bound limit load using the two

bar multiplier, based on a single linear elastic analysis.

(3-a) The m,-tangent multiplier [12] is established as a lower bound on the basis of the constraint
trajectory map. Moreover it is shown that the m,-tangent multiplier bounds the limit load

solution of multi bar models.

(3-b) Reference volume correction is proposed in order to ensure lower bound m,-tangent

solution for practical components and structures. This multiplier is found to be the most robust

simplified approximation available in the literature.
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(3-¢c) The m,-tangent method [12] is used in conjunction with the elastic modulus adjustment
procedure for determining accurate lower bound limit loads. The lower boundedness of the m,-
tangent multiplier for any iteration is ensured by incorporating reference volume and peak stress
corrections. By the virtue of the faster convergence feature, the m, -multiplier permits gentler
modulus adjustments, and at the same time estimates sufficiently accurate lower bound limit load
within a relatively small number of elastic iterations. The convergence difficulties usually

encountered in EMAP for limit load estimation have been significantly minimized.

(3-d) A guideline is proposed to obtain sufficiently accurate lower bound limit load (using the
m,"-multiplier) based on a single linear elastic analysis, which involves judicious incorporation

of reference volume and peak stress correction.

(4-a) Mathematical model of elastic modulus adjustment scheme has been derived for bilinear
hardening and Ramberg—Osgood material model, utilizing the “strain energy density” theory, in

order to capture the post yield behavior of a component or structure.

(4-b) The proposed algorithm of iterative elastic modulus adjustment scheme developed for

strain hardening material model is programmed into repeated linear elastic FEA.

(5) A number of analytical and numerical examples of varying complexity have been worked out
and the results are compared with conventional analyses techniques. It is found that the
simplified limit load approximation techniques can be used for analyzing complex problems with

minimum effort and resources.
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8.3 Recommendations for Future Research

Recommendations for future work are as follows:

1. The proposed guideline for the m,-tangent and reference two bar multiplier evaluation method
can be implemented for the limit load analysis of complex three dimensional finite element
models (which might include inhomogeneous and anisotropic behavior). A similar
implementation was carried out by Jain [32] for the design of a pressure vessel manway cover as

per the ASME Boiler and Pressure Vessel Code guidelines.

2. Implementation of the m,-tangent and reference two bar method as a design tool per API 579

Fitness-for-Service (Level 2), ASME Section III and Section VIII design-by-analysis guideline.

3. Simplified methods in its current form are only suitable for the integrity assessment of two
dimensional crack-like flaw models. Application of these methods to the three dimensional flaw

models would be useful.

4. Fracture parameter like J-integral and ductile fracture stability can be evaluated based on the

proposed simplified methods.

5. The proposed strain hardening model can be implemented for the estimation of stress-strain at

the notch root of a component having strain hardening feature, which is useful for FCI (fatigue

crack initiation) prediction and can be utilized as an independent verification tool for the

144



available techniques. Similar investigation was carried out previously by Adibi-Asl and Seshadri

[15] for elastic-perfectly-plastic material model.

6. The proposed strain hardening model can be utilized to obtain the plastic response of a
structure beyond its yield point, which provides an idea about the reserved capacity of the

structure against environmental/accidental loads.

7. The strain hardening model can also be implemented to identify the boundary between
shakedown and ratcheting when the structure experiences strain hardening effect (similar
solution was reported by Adibi-Asl and Reinhardt [24] for elastic-perfectly-plastic material
model). This is a non-cyclic approach and can be utilized as an alternative to cyclic elastic-

plastic analysis.

8. Simplified methods have already been employed in the Level 2 fitness-for-service (FFS)
assessments of several tank and vessel geometries. There is a scope of implementing the
simplified FFS assessment technique to the annular tanks. Recently annular tanks are considered
as the emergency heat sinks for the high temperature pressure vessel containments. These tanks

are usually susceptible to environmental corrosion.
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APPENDICES

Appendix A: Derivation of Limit Load Solution for Several Beam Configurations
Beams of various cross-sections have different limit load capacity, as governed by their section
modulus and shape factor. Limit loads of various beam configurations have been analytically

obtained and expressed in terms of the reference two bar solution.

A.1 Rectangular Beam
Regarding the beam in Figure A.1, consider the elastic stress field under bending moment, and

the axial stress as a function of height from the neutral axis, y.

J /

Figure A.1 Elastic stress fields for beam under moment loads
Lower bound limit moment for beam is the yield strength times the beam section modulus,

ie. M,=0z (A1)

y

Here Z = Section modulus and o, = Yield strength and M, = Moment at first yield.

Lower bound multiplier can be obtained by normalizing Eq.(A.1) with the applied moment M,

M, o0Z (A2)
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Similarly, exact limit load multiplier for a beam is the normalized form of plastic moment,

ie. My =~ = - (A.3)

Here S = Shape factor and Mp = Plastic moment.

Now the upper bound multiplier for a rectangular beam section can be expressed as:

(A4)

where ¢ is the thickness of the rectangular beam and / is the moment of inertia. Therefore for a

rectangular beam the expressions for the above multipliers can be re-written as:

Gyl‘z
" oM

2
o,t

m =
Rect _beam
4M
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o

Now §=m

for the rectangular beam will stipulate the length ratio of the equivalent reference
m L

two bar structure.

1.e. = - \/5 (A.5)

Now the expression for Mura’s lower bound multiplier can be expressed as,

, o1’
BERNEYY (A.6)

The ratio of Mura’s lower bound multiplier and exact multiplier for a rectangular beam can be
obtained as follows:
m’ 1

1
mRe ct _beam \/g ;
(A.7)

_ ’
= mRect_heam =m ;

. m’ . .
This clearly shows that once {=— and m” for a rectangular beam are obtained and substituted
my

into the reference two bar multiplier formulation (Eq.(A.7)), it will provide the exact solution for

the rectangular beam. The expressions of the limit load multipliers for a rectangular beam are

tabulated below:
Table A.1 Limit load multipliers for a rectangular beam
0 mo , T _ m'g
Shape factor, S | m m, | {= m m, M= Mg poam
m, m
ot
3 ot | of ot Ji2m o1’
2 v | e 8 INEY, 1 an :
1+ 1-— |(/3-1)
(-3)
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and m; are also presented below for the rectangular beam in a

. g T
The multiplier m,”, m
normalized form:
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A.2 Solid Circular Beam

For a solid circular beam of diameter d, the axial stress can be represented as:

d .
M—sin@
co=—2 (A.8)
1
Now for a solid circular beam section, the general section properties are:

4 3 3
VA

64 32 6 7z 3z

(A.9)
The expressions of the limit load multipliers for a solid circular beam are tabulated below:
Table A.2 Limit load multipliers for a solid circular beam
Shape 0 _m’ , , _ W
factor, S mn ML ¢= m, m m, M= Mo _cire _pean |~
oxd’

1 3 3 3 3

N e R R LA R
4 1+(1—J(2—1)
V2
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A.3 Thin Circular Pipe

Regarding the circular pipe in Figure A.2, consider the elastic stress field under bending

) AN b

Figure A.2 Elastic stress fields for circular pipe under moment loads

moment.

Here r is the nominal tube radius and ¢ is the tube thickness. Now for a pipe section, the general

section properties:

I=%((2r+t)4—(2r—t)4)

Area Moment of Inertia: :
== 727”31‘(1 + —2]

4r

7==
Elastic Section Modulus: 32 (2r+1)

1 m(ar? +12)

=>7Z=—
2 (2r+1)
o Secti (r+ty-@r-1))
Plastic Section Modulus: Z,= .
z 3 2 2 3

Shape Factor: §= 7;, _ A8r” +24r t+4rt” +2t

2
127zr3(1 + tzj
4r

Therefore the limit load multipliers are:
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The expression for Mura’s lower bound multiplier can be expressed as:
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will stipulate the length ratio of the equivalent reference two bar structure.

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)



For a thin circular pipe (1<<r), neglecting the higher order terms, the expressions for the limit

load multipliers are tabulated below:

Table A.3 Limit load multipliers for a thin circular pipe

Shape 0 ,
factor, mo my, g = n m' maT M = My Cire_ pipe L;

S my m

V20 mrt
2 2 2 Y 2
i ﬁa};r t Oj‘,lf‘t/lr t \2 2\537;3'}1 t {\/[ 401';1” 1.05
1+ 1-—— |2-1)
(3]
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Appendix B: Detail Derivation of the m,-Method
In this section, Mura’s variational formulation is extended to obtain the m,-multiplier [6]. The
derivation of the m,-multiplier requires some unique algebraic manipulations which haven’t been
documented in any previous works. In the following section the step-by-step derivation of the
mg-multiplier is provided, showing all the algebraic operations, in order to reach the final
expression.

The expression for Mura’s lower bound multiplier m can be expressed as:

, 2m
m=———-r
( m’ J (B.1)
I+ —
my
mO
From a differentiation of the above equation with respect to { = ——, follows the expression:
my
’ ’ 0 ’ a L
dm _(adem N om m, (B.2)
dg om’ ) d{ 3 1 1 dd '
mL
In terms of finite differences, the equation becomes,
Am’ = a’”o Am® 4| 2 (Al L (B.3)
om p) R my
mL
where Am'=m'—m
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Now differentiating Eq.(B.1) with respect to m° and m, separately:

=)
(am'j_ 2 m,
om® |~ oNZ N2 B.4)
" 1+('"] (n(’””
my m;
0)? mfo
am/ 4(m )(ij
- (B.5)

0 2
: 1‘('" J
m
Loz_ma_z—Lz(mo_
1+(m j
m;

Eq.(B.6) is a second order polynomial of m_ and thus it has two roots. Solving the roots,

LI
o e (B.6)

2mOmL |:2(m0 )sz + \/4(m0 )4 (mL )2 +m’ (mL )5 - 4(m0 )3 (mL )3 _(mo )5 (mL ):|

o (B.7)
g —(m, )" + 4" (m, )+ )

o ZmOmL[Z(mO )sz - \/4(m0 )4 (mL ) +m" (mL ) - 4(m0 )3 (mL y _(mo )5 (mL )} (B.8)
“ - (mL )4 +4(m0)2 (mL )2 +(m0)4
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4
1
Assuming positive root as the desired solution, multiply Eq.(B.7) by (—J in both numerator
my

and denominator. Then the final expression for the m,-multiplier (as shown in Eq.(B.9)) is

achieved through the following steps:

H"”I T, o T w}

- (mL )4 + 4(m0 )2 (mL )2 +(m0 )4
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sion (Eq.(B.9)) is used in the literature to represent the



Appendix C: Modeling of Components with Cracks for Simplified Limit Load Analysis
This section discusses the modeling of components with cracks, for the purpose of limit load
estimation based on a linear elastic analysis. The linear elastic stress distribution around a crack
configuration can be captured by using singular elements around crack tip. However limit load
solution based on a linear elastic stress distribution requires further treatment of singularity
elements; if the solution technique has explicit dependency on the maximum stress at the crack
tip (e.g. classical lower bound limit load solution is explicitly dependent on the maximum
equivalent stress of the entire stress distribution). This is due to the recognition that a crack tip
configuration induces very high peak stress which is localized and gets redistributed along with
the secondary stress. Modifying the elastic modulus of singular elements around the crack tip in
a finite element discretization can reduce the magnitude of stress gradient to a minimum and
hence the effect of peak stresses becomes small. Therefore use of singularity elements and their
proper softening are important modeling considerations during the limit load analysis of cracked

components, on the basis of linear elastic analysis.
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C.1. Elastic Stresses Around the Crack Tip
Consider a crack configuration shown in Figure C.1 for which the stresses at the crack tip can be

expressed as:

6 =0c.=0c__ = (C.1)

o = {0—>Plane Stress
z = 200, — Plane Strain

(a) Stress ahead of crack tip (b) Distribution of singularity elements around
crack tip
Figure C.1 Crack tip representation

Here K; is the opening mode of fracture. Eq.(C.1) reveals that the cracked structure possess a
singular stress field that is proportional to ﬁ Here r is the distance from the crack tip along the
crack length. The stress gradient in the vicinity of the crack tip is extremely high. The singularity
element facilitates the variation of stress and strain as a function of T, and hence can represent

r

the elastic stress distribution around the crack tip.
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C.2. The Singular Element

The singular element is an element where stresses and strains are singular at the crack tip varying
: 1 . . : :
proportional to \/— , shown in Eq.(C.1). Here r is the distance from the crack tip along the crack
r

length. Proper crack-tip displacement, stress and strain fields can be modeled by standard
quadratic order isoparametric finite elements by moving the element's mid-side node to the
position one quarter of the way from the crack tip to the far end of the element. Such an element
introduces a singularity into the mapping between the element's parametric coordinate space and
Cartesian space, therefore is called singular element. For example, three nodes of a quadratic
element are joined (Node 1, 7, and 8) and the mid-side nodes are moved to the quarter point

adjacent to the crack tip node as shown in Figure C.2.

Figure C.2 The singular element.

The effect of moving the side node of a quadratic element to the quarter-point position can be
best illustrated by a one-dimensional element. A 1-D quadratic order element is shown in Figure
C.3, where the location of the center node is controlled by the parameter 'a’, and the crack tip is

located at ¥=0 [31].
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(a) - (b) 2] |

® © ® | —9 ®
-1 1 |, 3

g

(a) Natural Coordinate System of the element (b) The Cartesian space of the element
Figure C.3 A 1-D quadratic element

Recalling the isoparametric formulation of a 1D quadratic element:

N, =(-¢%) (C2)
N3 :%5(1"‘5)

For an isoparametric element, the same approximation is used for the geometry as well as for the

displacements field variable. Therefore the geometry of the 1-3 edge may be expressed as:

8 1 1
r= YN == E= )+ (1= 82+ £+ E)r (€3)
i=1

By locating the mid-node (node#2) at r, = ol :% and substituting the nodal coordinates with
respect to Figure C.3:

r=(1—§2)§+%§(1+§)l (C.4)

Now solving for ¢ :

E= 2\/5 -1 (C.5)
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For the isoparametric element the displacement field variable can be expressed as:

0= 3N = H1- 1=+l £

(C.6)
1
=u=u,+ 2( )54{ (u1+u3) u2:|52
where u;, u; and u;3 are the displacements at nodes 1, 2 and 3. Using Eq.(C.5) in Eq.(C.6),
1 1 ’
r r
u=1u, +5(u3 _”1)(2\/;_1}{5(”1 + u3)—u2}£2\/;—1J
(C.7
=u=u,+ [—3ul +4u, —u3]\/§+ [2ul —4u, +2u3]§
Differentiating yields the following expression for strains in the element:
du 1 1
== 2[ 3u, + du, — ]\/ﬁ +[2u, — 4u, +2u3]7 (C.8)

The three terms in the displacement expression (Eq.(C.7)) consists of a constant value, a linear
variation in r, and the square root variation of r. This corresponds to the leading terms in the

expressions for the near crack-tip displacement. Similarly, the expression for the strains
. . . . 1
(Eq.(C.8)) contains a constant term and a singular term that varies as a function of T, the form

r

of expression given in Eq.(C.1).
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C.3. Quarter Mid-Side Nodes at Crack Tip with ANSYS

As discussed in the former sections, it is useful to use a singularity element with quarter mid-side
nodes in order to capture the stress singularities. In terms of finite element modeling, the first
row of elements around the crack tip should be singular, as illustrated in Figure C.1 and it is
convenient to model only one half of the crack region, with symmetry boundary conditions. For
reasonable results, the first row of elements around the crack tip should have a radius of
approximately 7/8 or smaller, where r is the distance from the crack tip along the crack length. In
the circumferential direction, roughly one element every 30 or 40 degrees is recommended and

the crack tip elements must not be distorted.

C.4. Singularity Element Softening for Blunting Peak Stresses

By softening the elastic modulus of regions around the crack tip (singular elements that surround
the crack tip in a finite element discretization), the magnitude of stress gradient reaches a
minimum (shown in Figure C.4) and the effect of peak stresses becomes small. Adibi-Asl and
Seshadri [23] proposed the following procedure for the relaxation of peak stresses around the

crack tip, utilizing the singularity element softening approach.

Considering the principal stress components from Eq.(C.1), von-Mises equivalent stress can be

computed as:

! (C.9)

where A=1 represents plane stress and A = (I — 2v ) represents plane strain

The average stress along the crack orientation in the singularity domain can be calculated as:
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e K, (C.10)

(C.11)

Elastic Stress Distribution

Figure C.4 Elastic stress distribution ahead of the crack tip

Therefore the relationship between the modified elastic modulus (E;) and initial elastic modulus

(Ey) can be written as:

(C.12)

The value of parameter ‘¢’ can be within the range of 1< g <2 . Applying the values of g=1 and

E
g=2, the — ratio will vary between 0.5 and 0.25 respectively. Based on extensive numerical
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investigation on different crack configurations, Adibi-Asl and Seshadri [23] proposed E, = %

for modifying singular elements around a crack tip.

Therefore in order to obtain sufficiently accurate estimate of lower bound limit loads for

components with cracks (based on single linear elastic analysis), the singular elements around

the crack tip are softened as E, = —% while all other elements having an elastic modulus of E.
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