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ABSTRACT 

In this study, Ag+-imprinted thiourea/glutaraldehyde grafted O-carboxymethyl 

chitosan (ITG-OCMC) beads and Ag+-imprinted glutaraldehyde-crosslinked chitosan 

(IGCC) gel beads were synthesized to selectively adsorb Ag+ from bimetallic aqueous 

solutions containing the same molar concentration of Ag+ and Cu2+. Surface imprinting 

technology has been applied to achieve extremely high selectivity for Ag+ on the 

prepared sorbents by generating recognizable binding sites. For the ITG-OCMC beads, 

experimental results indicated that high degree of carboxymethylation and low level of 

crosslinking would help to achieve higher uptake capacity of Ag+. The maximum uptake 

of Ag+ was found to be 156.32 mg g-1 at 40.0 °C with an initial Ag+ concentration of 

160.50 mg L-1 and the biosorbent dosage of 1.0000 g L-1. Langmuir isotherm and 

Lagergren’s pseudo-second-order kinetics can be used to describe the sorption process of 

Ag+. Analyses from FTIR and XPS confirmed that selective adsorption of Ag+ took place 

on the surfaces of ITG-OCMC beads by chelation through >C=S, amine, carboxyl and 

hydroxyl groups. For the IGCC beads, the maximum uptake of Ag+ by the ion-imprinted 

chitosan beads was found to be 89.200 mg g-1 at 25.0 °C with an initial Ag+ concentration 

of 352.95 mg L-1 and the biosorbent dosage of 1.0000 g L-1. The adsorption equilibrium 

and kinetics of Ag+ by IGCC beads can be better described by Langmuir isotherm and the 

intraparticle diffusion model. FTIR and XPS analyses suggested that amine functional 

groups involve the binding of Ag+ via complexation at higher solution pH (3.0 ≤ pH ≤ 5.0) 

and ion exchange at lower solution pH (1.0 ≤ pH <3.0). 
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Chapter 1 Introduction and Overview 

 

1.1. INTRODUCTION 

Chitosan, which is the N-deacetylated derivative of chitin, has drawn much 

commercial attention. Different from synthetic polymers, chitosan, as a natural polymer, 

presents excellent biodegradability and biocompatibility (Kumar, 2000). Together with 

its nontoxicity, chitosan has been intensively utilized in biomedical field, for example, 

drug delivery (Agnihotri et al., 2004; Bhattarai et al., 2010; Nagpal et al., 2010; Park et 

al., 2010; Riva et al., 2011), tissue engineering (Madihally and Matthew, 1999; Suh and 

Matthew, 2000; Di Martino et al., 2005; Kim et al., 2008), ophthalmology (Felt et al., 

1999; Kumar, 2000; Peptu et al., 2010), wound dressing (Kumar et al., 2004; Yudanova 

and Reshetov, 2006; Muzzarelli et al., 2007; Xie et al., 2008; Pillai et al., 2009). 

Chitosan, compared to other natural polymers, presents a large capacity for chelating 

transition metals due to its free amino functional groups (Muzzarelli, 1973). The 

chelating property of chitosan makes it a good candidate as a biosorbent for 

recovering metal ions from industrial metal-bearing effluents (Veglio and beolchini, 

1997; Guibal et al., 1998; Wu et al., 2001; Babel and Kumiawan, 2003; Gerente et al., 

2007). 

Chitosan in its original form is not suitable for practical use as a metal sorbent 

because it is soluble in dilute aqueous acids and many industrial metal-bearing 

wastewater and effluents tend to be acidic. Chemical modifications of chitosan are 
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therefore essential to improve its chemical stability, mechanical strength and 

adsorption capacity under acidic environment. In general, chitosan can be modified by 

utilizing the reactivity of the primary amino group and the primary and secondary 

hydroxyl groups through crosslinking, grafting of new functional groups, and 

acetylation (Wang and Chen, 2014). The crosslinking of chitosan usually utilizes 

bi/polyfunctional crosslinking agents such as glutaraldehyde, ethylene glycol 

diglycidyl ether, tripolyphosphate, and epichlorohydrin (Sureshkumar et al., 2010). 

Although the chemical stability and mechanical strength of chitosan can be enhanced 

remarkably, the metal uptake capacity of chitosan sorbent is significantly decreased 

after crosslinking. Grafting new functional groups (such as amino, carboxylic, 

phosphate groups, and sulfur-containing compounds) onto chitosan, and hence 

increasing the density of sorption site, is widely explored to increase the sorption 

capacity of metal ions (Varma et al., 2004; Jayakumar et al., 2005). Recently, 

ion-imprinted chitosan with target metal as template has also been developed to 

increase the selectivity of the sorbent to work in wastewater containing multi-metal 

ions (Sun et al., 2006). 

So far, chitosan based biosorbents have been extensively applied to remove toxic 

heavy metals, such as lead (Jin and Bai, 2002; Yan and Bai, 2005), mercury (Jeon and 

Park, 2005; Li et al., 2005), copper (Chu, 2002; Ngah et al., 2004; Li and Bai, 2005), or 

to recover precious metals, for example, gold (Wan Ngah and Liang, 1999; Arrascue et 

al., 2003; Fujiwara et al., 2007; Ramesh et al., 2008), platinum (Guibal et al., 1999; 
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Fujiwara et al., 2007; Ramesh et al., 2008), and palladium (Chassary et al., 2005) from 

wastewater. 

Silver is a noble metal that has been widely employed in the photographic and 

electrical industries for many years. It is known to be released to the environment 

through its industrial applications, leading to possible exposure to aquatic organisms 

(Pedroso, et al., 2007). The removal or recovery of silver ions using chitosan based 

sorbents has not been thoroughly investigated. Therefore, the recovery of silver from 

industrial wastewater and effluents using low-cost and high-capacity chitosan based 

biosorbents has great scientific value (Wen et al., 2002; Mack et al., 2007). 

As a result, selective biosorption of silver ions from aqueous solution using 

chitosan-based biosorbents was selected as the topic of current study. 

 

1.2. LITERATURE REVIEW 

1.2.1. Biosorption 

As defined by G. M. Gadd, biosorption is a physicochemical and metabolically 

independent process which can remove organic and inorganic substances from 

solutions by biological material with different mechanisms, namely absorption, 

adsorption, ion exchange, surface complexation and precipitation (Gadd, 2009). 

Biosorption research, which was originally focused on metal uptake from aqueous 

solutions, has expanded to particulates and colloids as well as inorganic and organic 

compounds including dyes, fluoride, phthalates, and pharmaceuticals (Chiou and Li, 
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2003; Chen et al., 2007; Ma et al., 2007; Fomina and Gadd, 2014). However, most of 

the research still concentrates on the removal of metal ions. Several conventional 

technologies have been applied to metal recovery, including chemical precipitation 

(Kunda, 1983; Ivanova et al., 1999), ion exchange (Cooley, 1981; Atluri and Raghavan, 

1988), cementation (Gerhartz, 2003; Aktas, 2008), evaporation (Volesky, 2001), 

electrowinning (Chatelut et al., 2000; Juarez and Dutra, 2000; Gerhartz, 2003), and 

reverse osmosis (Jeppesen et al., 2009; Koseoglu and Kitis, 2009). As listed in Table 

1.1, each technology mentioned above has its disadvantages that limit its applications. 

In summary, their applications have been limited due to high capital cost, incomplete 

recovery or high consumption of reagents and energy. Compared with these traditional 

approaches for metal recovery, biosorption is regarded as a cost-effective and 

eco-friendly technology, especially for trace amounts of metal in solutions (Sud et al., 

2008; Farooq, 2010). Although great efforts have been made to prepare biosorbents for 

wastewater treatment, there has been little or no successful application on an industrial 

scale. According to Fomina and Gadd (2014), the main reasons for the unsuccessful 

commercial application are the low technology readiness level, such as poor 

understanding of the mechanisms, kinetics and thermodynamics of the process, and the 

questionable stability and predictability of the biosorption process, especially when 

compared with ion exchange resins, which provide fidelity and predictability. As a 

result, biosorbent preparation is crucial for exploring the fundamentals and 

commercialization of biosorption technology. 



   

5 

 

Table 1.1 Advantages and disadvantages of traditional metal recovery methods 

Method Advantages Disadvantages 

Chemical Precipitation Simple 

Cheap 

For high concentration only 

Separation required 

Generates sludge 

Ion Exchange Effective 

Easy recovery 

Sensitive to particles 

Expensive 

Cementation Cheap Relatively low efficiency 

Refinery of targeted metal is expensive 

Electrowinning Effective at high 
concentration 
only 

Second treatment is required 

Incomplete removal 

Evaporation Pure effluent Expensive 

Generates sludge 

Reverse Osmosis Pure effluent Expensive 

High pressure required 

 

1.2.1.1. Evaluation of biosorbents 

There are several widely used criteria for sorbent screening: capacity, selectivity, 

regenerability, mass transfer kinetics, and cost (Knaebel, n.d.). It is unlikely that a 

biosorbent can satisfy all these aspects, so certain attributes will be given more weight 

when evaluating a particular kind of biosorbent. 
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Capacity (qe) is the amount of metal ions sequestered per unit mass of sorbents, 

which can be defined as follows: 

𝑞𝑒 =
𝐶𝑖−𝐶𝑒

𝑚
× 𝑣                                                        Eq. (1-1) 

where Ci and Ce are the initial and equilibrium concentrations of metal ions, v is 

the volume and m is the dry weight of the biosorbent. Capacity is an important criterion 

for screening biosorbents, which characterizes the performance at a high residual 

concentration. The capacity, also known as the maximum sorption uptake value, 

depends on the initial concentration of the solution, temperature of the environment 

and the amount of biosorbent used. 

Selectivity is another important criterion for evaluating the performance of 

biosorbents, especially for multi-metallic biosorption, which is a common phenomenon 

in wastewater and industrial effluents. The simplest definition of selectivity is the ratio 

of the capacity of one component to that of another at a given concentration; in other 

words, a biosorbent with high selectivity will uptake as much of the interested 

component while uptake as little of any other component. As almost all kinds of 

wastewater and industrial effluents contain more than one component, the selectivity is 

even more important than the capacity. However, most of the research in the area of 

biosorption focuses on the sorption of a monometallic system, pursuing higher capacity 

without competitive sorption. But the presence of co-existing metal ions will affect the 

selectively uptake of the targeted metal ions. Usually, the co-existing metal ions 

compete with the targeted metal ions for binding sites and thus lower the uptake of the 
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biosorbent (Mack et al., 2007). Therefore, the investigation of the selective biosorption 

of a specific metal ion from multi-metallic environments is more important and 

valuable. Simultaneously, the involvement of co-existing metal ions in addition to the 

targeted metal ion will dramatically increase the difficulty in explaining the mechanism, 

kinetics and thermodynamics of the process. Investigation using a binary system is a 

compromising solution, which obtains all uptake data under competitive sorption while 

keeping the interpretation of the mechanism, kinetics and thermodynamics of the 

process practicable. 

Regenerability is an ignored aspect that has not been addressed in many 

publications. However, industrial applications need the biosorbent to operate in 

sequential cycles with uniform performance. As a result, regenerability is as important 

as selectivity, especially for biosorbents prepared for industrial applications. 

Regenerability is the comprehensive evaluation of the retained fraction of the original 

capacity and the time and energy required for the regeneration. Cyclic biosorption 

application needs the bindings between adsorbents and adsorbates to be relatively weak. 

In other words, the heat of adsorption, which provides a measure of required energy for 

regeneration, should be low. The capacity of biosorbents will show a gradual decay 

after sequential cycles, due to the aging and poisoning of the biosorbent. 

Mass transfer kinetics is important because it dominates the cycle time of the 

biosorption process. Ideally, biosorbents should uptake the targeted component as fast 

as possible, which means that the cycle time must be short, to make the biosorbent 
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efficient. 

Cost, obviously, is another important aspect. Cost-effective biosorbents demand 

cheap and easily acquired raw materials, simple modification, low operation cost, 

better regenerability, and fewer reagents and energy consumption during the whole 

process. 

1.2.1.2. Raw material of biosorbents 

Major source categories for biosorbents have been summarized as follows (Park et 

al., 2010): 

 Bacteria: gram-positive and gram-negative bacteria, cyanobacteria 

 Fungi: molds, mushrooms and yeasts 

 Algae: micro-algae, macro-algae such as, brown and red seaweeds 

 Industrial waste: activated and anaerobic sludge, waste from fermentation, 

food or beverage industries 

 Agricultural waste: Fruit or vegetable wastes, rice straws, soybean hulls 

 Biomass residues: plant residues, sawdust, tree bark, weeds 

 Other biomaterial: chitin, chitosan, cellulose, alginate 

 

Among the large biomass resource pools, chitosan (from chitin) has been chosen 

to be the starting material in this study, because it has proved to be an efficient metal 

scavenger due to the presence of reactive amino and hydroxyl groups. Moreover, 

chitosan is a wise choice as the starting material for biosorbent preparation for a coastal 
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province like Newfoundland and Labrador, as it can be acquired from shellfish waste 

from the food processing industry. 

1.2.1.3. Modification of biosorbents 

In order to increase the specific surface area and accelerate the mass transfer, 

powders are the most widely used form of biosorbents, but from the industrial 

application point of view, powder form is not suitable to be packed in a column because 

it may cause clogging problems, huge pressure drops, or serious hydrodynamic 

limitations (Wang and Chen, 2014). Among the various forms of biosorbents, namely 

powder, beads, resin, etc., gel beads are considered the best form of sorbents for 

recovering metal ions from aqueous solutions (Guibal, 2004). Therefore, 

immobilization is necessary for practical implementations. 

The ideal commercial biosorbents will also need to have high capacity, selectivity, 

and stability, which means modifications are necessary. A number of physical and 

chemical technologies have been applied for the modifications of biosorbents. Physical 

modification methods, including autoclaving, steam, thermal drying, lyophilization, 

cutting, grinding, and so on, are considered as simple, inexpensive, but less effective 

approaches (Park et al., 2010). Among the chemical modification technologies, several 

technologies have been proven to be effective, such as crosslinking, imprinting, and 

grafting of certain functional groups. 

In order to increase the chemical stability and mechanical strength of sorbent 

beads, crosslinking is necessary, because crosslinking can form chemical bonding 
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between carbon chains. However, certain functional groups on the carbon chains of 

chitosan, which serve as effective adsorption sites for target metals, will inevitably be 

involved in this process. As a result, crosslinking may decrease the capacity of prepared 

sorbents, as some of the adsorption sites are occupied (Wan Ngah and Fatinathan, 2010). 

Different kinds of crosslinking agents have been successfully used for crosslinking 

chitosan, such as formaldehyde, glutaraldehyde, ethylene glycol diglycidyl ether 

(EDGE), and epichlorohydrin (ECH) ethylene-diaminetetraacetic acid (EDTA) (Wan 

Ngah et al., 2002; Repo et al., 2010; Wan Ngah and Fatinathan, 2010; Monier, 2012). 

Among these crosslinking agents, glutaraldehyde and formaldehyde are the simplest to 

crosslink and are the most widely used, easy to get, and relatively cheap reagents. As a 

result, glutaraldehyde and formaldehyde have been chosen to be the crosslinking agents 

for comparison in this study. Possible reaction schemes of formaldehyde crosslinked 

chitosan and glutaraldehyde crosslinked chitosan can be found in Figure 1.1 and 

Figure 1.2, respectively. 

Surface imprinting technology has drawn much attention to generate recognition 

sites, and has been successfully used to prepare metal ion imprinted materials through 

the use of various templates (Fan et al., 2011; Branger et al., 2013). The coordination 

between the imprinted ions and the monomers can be based on non-covalent 

interactions, such as hydrogen bonds, electrostatic interactions, hydrophobic effects, 

Van der Waals forces, etcetera, or reversible covalent bonds (Rao et al., 2006). The 

successful applications of imprinting technology to prepare biosorbents for metal ions 
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biosorption are shown in Table 1.2. 

 

 
Figure 1.1. Possible reaction of the crosslinking of chitosan with formaldehyde. 

 

 
Figure 1.2. Possible reaction of the crosslinking of chitosan with glutaraldehyde. 
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Table 1.2 Applications of imprinting technology to enhance sorption capacity for a 
variety of adsorbents 
 

Element Biosorbent 

Capacity 
w/o 

imprinting 
mg g-1 

Reference 

Ag Magnetic thiourea-chitosan 496.8 /265.68 Fan et al., 2011 

Ag Chitosan based solid 

particles 

9.6 /1.97 Hou et al., 2015 

Ag Chitosan based hollow 

particles 

14.2/2.1 Hou et al., 2015 

Ag Chitosan based single hole 

hollow particles 

19.8 /7.9 Hou et al., 2015 

Ag Chitosan based Janus 

hollow particles 

13.6 /3.2 Hou et al., 2015 

Ag Chitosan hydrogel 11.43 /8.66 Song et al., 2012 

As Chitosan resin 2.16 /1.62 Liu et al., 2012 

Cd Chitosan resin 132.63 /86.55 Liu et al., 2011 

Cu Chitosan Schiff’s base 20.96 /12.19 Chen et al., 2011 

Cu N-succinyl-chitosan 133.98/117.48 Sun et al., 2007 

Hg Chitosan thioglyceraldehyde 

Schiff’s base 

137.13 /77.51 Monier & Abdel-Latif, 

2013 

Ni Chitosan microparticles 29.94 /19.07 Chen et al., 2011 
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Ni Chitosan coated mycelium 86.5 /56.2 Su et al., 2006 

Ni Chitosan resin 50.9 /25.9 Tan et al., 2001 

Pb Chitosan microparticles 74.59 /51.8 Chen et al., 2011 

Pb Carboxymethyl chitosan 430.98 /31.08 Sun et al., 2006 

Zn Chitosan microparticles 14.41 /9.82 Chen et al., 2011 

Zn Carboxymethyl chitosan 133.62 /27.51 Sun & Wang, 2006 

 

1.2.2. Applications of chitosan based biosorbents 

As described by M. Rinaudo (2006), when the degree of deacetylation of chitin 

reaches 50%, chitin turns into chitosan which is soluble in aqueous acidic solutions. 

Degree of acetylation of chitosan and molecular weight are two important 

characteristics for chitosan. As shown in Figure 1.1, chitosan contains free amino and 

hydroxyl groups. The -NH2 groups at the C-2 position and the –OH groups at the C-3 

and C-6 positions are reported to be involved in modification reactions and the 

chelation of metal ions. Not only the amount of these functional groups, but also the 

distribution of them will affect the chelation of metal ions (Kurita et al., 1979). 

As the only pseudonatural cationic polymer, the possibility of using chitosan as 

the starting material for biosorbent preparation has been extensively investigated. 

Chitosan based biosorbents have been widely used for the removal/recovery of heavy 

metals and precious metals. 

 



   

14 

 

 

Figure 1.3. Chemical structure of chitin (a) and chitosan (b) repeat units, and the 

structure of partially acetylated chitosan (c). 

Note: DA is the average degree of acetylation. 

 

1.2.2.1 Biosorption of metal ions using chitosan based biosorbents 

Table 1.3 summarizes the research results of the biosorption of metal ions other 

than Ag+ and Cu2+ using chitosan based biosorbents. The results indicate that grafting 

is an effective approach to minimize the capacity degradation of biosorbents due to 

crosslinking (Donia et al., 2008). Certain functional groups, which are favourable to 

selectively adsorb target metals, can be introduced to the carbon chain to increase both 

the capacity and selectivity. Carboxymethylation has been proved to be efficient to 

enhance the capacity and selectivity of precious metal (Hon and Tang, 2000; Chen and 

Park, 2003; Choong and Wolfgang, 2003). 
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Table 1.3 Application of biosorption of metal ions using chitosan based biosorbents 

Element Capacity 
mg g-1 Modification Reference 

As(V) 1.37 - Gerente et al., 2010 

As(III) 70 Molybdate impregnated Dambies et al., 2002 

As(V) 230 Molybdate impregnated Dambies et al., 2002 

As(V) 97.37 Glutaraldehyde crosslinked 

Molybdate oxoanions 

Elwakeel, 2014 

As(III) 94 Zerovalent iron Gupta et al., 2012 

As(V) 119 Zerovalent iron Gupta et al., 2012 

Au 453.1 Sodium tripolyphosphate 

crooslinked 

Donia et al., 2013 

Au 33.9 N-carboxymethylation Wan Ngah & Liang, 1999 

Au 1639.04 Carboxymethylation 

Grafting sulfur groups 

Glutaraldehyde crosslinked 

Wang et al., 2012 

Cd 85.47 - Sankararamakrishnan et al., 

2007 

Cd 357.14 Grafting xanthate group Sankararamakrishnan et al., 

2007 

Cd 168.6 Glutaraldehyde crosslinked Dzul Erosa et al., 2001 

Hg 181.8 EGDE crosslinked Li et al., 2005 
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Hg 322.6 Polyacrylamide grafted 

EGDE crosslinked 

Li et al., 2005 

Hg 539.59 Ethylenediamine aminated 

Epichlorohydrine crosslinked 

Zhou et al., 2010 

Hg 461.36 Ethylenediamine aminated 

Glutaraldehyde crosslinked 

Jeon & Holl, 2003 

Pb 34.98 NaOH immobilized Wan Ngah & Fatinathan, 2010 

Pb 370.63 Triethylene-tetramine grafted Kuang et al., 2013 

Pb 79.2 Microfludic, Pb(II) imprinted 

Glutaraldehyde crosslinked 

Lu et al., 2013 

Pt 171 Ethylenediamine aminated 

Glutaraldehyde crosslinked 

Zhou et al., 2010 

Pt 129.9 Thiourea grafted 

Epichlorohydrin crosslinked 

Zhou et al., 2009 

Pd 138 Ethylenediamine aminated 

Glutaraldehyde crosslinked 

Zhou et al., 2010 

Pd 112.4 Thiourea grafted 

Epichlorohydrin crosslinked 

Zhou et al., 2009 

 

1.2.2.2 Biosorption of Cu2+ using chitosan based biosorbents 

As the binary solution containing the same mole concentration of Ag+ and Cu2+ is 
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chosen to perform all sorption tests, the mechanisms of Cu2+ biosorption onto chitosan 

based biosorbents are crucial. 

Poly(vinyl alcohol) blended chitosan beads were prepared by Wan Ngah et al. 

(2004), and the highest uptake of Cu2+ was found to be 47.85 mg g-1. Hydroxyl and 

amine groups are reported to be the functional groups which were involved during the 

adsorption. 

Chitosan-cellulose hydrogel beads were successfully developed by Li and Bai. 

(2005). The highest uptake of Cu2+ was 53.2 mg mL-1 of wet resin at neutral pH. FTIR 

and XPS results indicated that N atoms in chitosan were the main binding sites for 

Cu2+ to form surface complexes. 

Wang et al. (2014) prepared Cu2+-imprinted chitosan hydrogel was prepared by 

UV-initiated simultaneous free radical/cationic hybrid polymerization. The highest 

uptake of Cu2+ was found to be 40.64 mg g-1. The Cu2+ adsorption was mainly 

interacted with the amide and ether groups. 

Glutaraldehyde and epichlorohydrin crosslinked chitosan were obtained by Vieira 

et al. (2011). XPS results indicated that glutaraldehyde crosslinking occurred 

preferentially on amino groups while epichlorohydrin crosslinking favourably took 

place on hydroxyl groups. Metallic copper was only found after adsorption on 

glutaraldehyde-crosslinked chitosan. 

Ethylenediamine modified ethylene glycol diglycidyl ether crosslinked chitosan 

resin was prepared by Elwakeel et al. (2013). The highest uptake of Ag+ was found to 
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be 146.88 mg g-1 at 25 °C . However, the selectivity of the prepared sorbent was not 

reported. 

In summary, the adsorption of Cu2+ onto chitosan based biosorbents mainly 

occurred on N and O atoms of chitosan. Therefore, the adsorption of Ag+ and Cu2+ 

onto chitosan based biosorbents is competitive. As a result, sulfur group grafting and 

Ag+-imprinting were essential to increase the selectivity of chitosan based biosorbents 

towards Ag+. 

1.2.3. Silver Recovery 

Regarding toxicity, heavy metals, for example copper, lead and mercury, are 

considered more toxic to the environment. On the other hand, from the economic value 

perspective, silver is not as expensive as other precious metals, such as gold and 

platinum. As a result, more research interests have been leaned towards the recovery or 

treatment of metals such as lead, mercury, gold, and platinum, and the number of 

publications about silver is relatively low. Silver has been widely used in 

mircroelectronic devices (Hsu and Wu, 2007; Park et al., 2008), antibacterial materials 

(Morones et al., 2005; Martinez-Castanon et al., 2008), catalytic materials (Shiraishi 

and Toshima, 1999), sensor materials (Mcfarland and Van Duyne, 2003), and especially 

photographic materials, due to its superior malleability, ductility, electrical conductivity, 

antimicrobial activity, thermal conductivity and photosensitivity (Sneha et al., 2010). 

As a result, significant amounts of silver have been discharged in the wastewater from 

such industries. In addition, mining effluents also contain appreciable amounts of silver, 
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since silver is usually distributed with relatively low content in massive base metal ores. 

As a matter of fact, since 2005, world silver demand, which steadily increases by 

around 2-2.5% annually, has exceeded production (Butterman and Hilliard, 2005; 

GMSF, 2011). About 18-20% of the world’s silver demand is supplied by recycling 

photographic wastes. From the toxicity point of view, silver ions in wastewater are not 

as harmless as people usually thought. Actually, silver ions are more toxic for fish than 

copper or mercury (Ratte, 1999; Wood et al., 1999; Lee et al., 2005; Hiriart-Baer et al., 

2006), and the accumulation of silver ions in organisms (including humans) can cause 

numerous diseases and disorders (Rosenman et al., 1979; US Environmental Protection 

Agency, 1985; Rosenman et al., 1987). In summary, it is essential to efficiently and 

economically recover silver from industrial wastewater and effluents. 

1.2.3.1. Biosorption of silver 

Table 1.4 summarizes the research results of the biosorption of silver using 

biosorbents other than chitosan based sorbents. The uptake of Ag+ varies greatly, and 

the highest capacity among the listed biosorbents is 420 mg g-1 of Sargassum natans. 

 

Table 1.4 Application of silver biosorption of various bioadsorbents 

Biosorbent 
 

Capacity 
mg/g 

Reference 
 

Aspergillus niger 98.75 Akthar et al., 1995 

Neurospora crassa 68.25 Akthar et al., 1995 

Fusarium oxysporium 57.50 Akthar et al., 1995 
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Saccharomyces cerevisiae 60.05 Simmons and Singleton, 1996 

Chlorella vulgaris 56.7 Cordery et al., 1994 

Calcium alginate 52 Torres et al., 2005 

Bacillus cereus 91.75 Li et al., 2010 

Myxococcus xanthus 47.52 Merroun et al., 2010 

Streptomyces rimosus 63 Bakhti and Selatnia, 2008 

Tremella sp. UFMG-Y07 38.2 Gomes et al., 1999 

Candida guilliermondii UFMG-Y22 36.6 Gomes et al., 1999 

Candida Guilliermondii UFMG-Y23 46.0 Gomes et al., 1999 

Rhodotorula mucilaginosa UFMG-Y27 19.3 Gomes et al., 1999 

Aureobasidium pullulans UFMG-Y28 18.3 Gomes et al., 1999 

Geotrichum sp. UFMG-Y33 35.7 Gomes et al., 1999 

Paecilomyces lilacinus 101.0 Ou et al., 2011 

Valonia tannin 97.08 Yurtsever and Sengil, 2012 

C. cladosporioides Strain 1 0.6 Pethkar et al., 2001 

C. cladosporioides Strain 2 0.12 Pethkar et al., 2001 

Strains BP 7/26 144 Tsezos et al., 1995 

Strains BP 7/15 131 Tsezos et al., 1995 

Strains CH 34 86 Tsezos et al., 1995 

Strains ER 121 117 Tsezos et al., 1995 

Strains AS 302 115 Tsezos et al., 1995 



   

21 

 

Strains MB 127 115 Tsezos et al., 1995 

Rhizopus arrhizus 54 Tobin et al., 1984 

Saccharomyfces cerevisae 40 Volesky, 1990 

Bacillus subtilis 90 Volesky, 1990 

Sargassum natans 420 Volesky, 1990 

Chondrus crispus 98 Volesky, 1990 

Chlorella vulgaris 115 Volesky, 1990 

 

1.2.3.2. Biosorption of silver ions from monometallic solutions using chitosan based 

biosorbents 

Although chitosan has proved to be a promising raw material for biosorbent 

preparation, only few publications have been dedicated to the biosorption of silver 

using chitosan based sorbents. Some of the researches have obtained rather good 

results of capacity, but the lack of the discussion of selectivity makes these researches 

less applicable. 

Di-secondary amine types of crosslinked chitosan dibenzo-1-c-6 were prepared by 

Yi et al. (2003), and the highest uptake of Ag+ was found to be 103.68 mg g-1 at pH 6.0 

and at room temperature with an initial Ag+ concentration of 0.5 mmol L-1. However, a 

monometallic solution containing Ag+ alone was used in this study, and the mechanism 

of the process was not discussed. 

Ag+-imprinted epichlorohydrin-crosslinked mycelium-chitosan beads were 
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established by Huo et al. (2009). The highest uptake of Ag+ was found to be 199.2 mg 

g-1 at pH 7.0, with the initial Ag+ concentration of 1200 mg L-1 and the biosorbent 

dosage of 3.0 g L-1. Although the uptake appears to be promising, the result was not 

completely satisfying because a single Ag+ solution alone was used in this study and no 

mechanism was proposed. 

Ethylenediamine modified ethylene glycol diglycidyl ether crosslinked chitosan 

resin was prepared by Elwakeel et al. (2013). The highest uptake of Ag+ was found to 

be 146.88 mg g-1 at 25 °C . But this study did not discuss the selectivity of the prepared 

sorbent. 

Thiourea/glutaraldehyde grafted magnetic chitosan resin was prepared by Donia 

et al. (2007). The highest uptake of Ag+, which was obtained at 30 °C and pH 6.9 with 

the initial concentration of 6 mmol L-1, was 226.8 mg g-1. Although a relatively high 

capacity was obtained, selectivity was undiscussed. 

1.2.3.3. Biosorption of silver ions from bimetallic solutions using chitosan based 

biosorbents 

Ethylenediamine type chitosan resin was successfully developed by Katarina et al. 

(2006). The highest uptake of Ag+ was 39.96 mg mL-1 of wet resin at pH 5.0. But the 

result cannot be used to compare with other references, as mg g-1 is the most generally 

used unit to describe the capacity and the density of the wet resin was not provided. 

Although the study was conducted with a bimetallic solution containing Ag+ and Cu2+, 

and a possible biosorption mechanism was also presented, the selectivity of the sorbent 
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was unsatisfactory, as the molar ratio of adsorbed Ag+ and Cu2+ was 2:1. 

Ag+-imprinted epichlorihydrin-crosslinked chitosan was obtained by Song et al. 

(2012). The highest uptake of Ag+ was found to be around 120 mg g-1 at natural pH and 

the biosorbent dosage of 0.4 g L-1. Although the selectivity was not acceptable, this 

study does provide a theory that a higher imprint ratio may lead to better selectivity. 

Tripolyphosphate crosslinked alkalized chitosan beads were synthesized by Mao 

et al. (2015). The highest uptake of Ag+ was 82.9 mg g-1 at room temperature with an 

initial concentration of both Ag+ and Cu2+ being 2.0 mmol L-1 and the sorbent dosage 

of 1.0 g L-1, the uptake of Cu2+ in the sample condition was 15.5 mg g-1. The result of 

this study is good and the discussion of possible mechanisms was involved. But the 

capacity of the prepared sorbents, compared with the results of other publications, 

need to be improved in order to compete with other researches, and the selectivity of 

the sorbent was unsatisfactory, as the molar ratio of adsorbed Ag+ and Cu2+ was around 

3:1. Furthermore, another disadvantage of this study is that less than 40% of Ag+ was 

adsorbed on the biosorbent. 

In summary, some attention has been paid to biosorption of silver using chitosan 

based biosorbents, but a thorough study which includes all aspects above mentioned is 

necessary. 

 

1.3. CURRENT WORK 

Despite the large number of studies dedicated to the sorption of metal ions by 
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modified chitosan, most of them have been focused on the evaluation of sorption 

performances and only a few of them aim at gaining a better understanding of 

sorption mechanisms. Moreover, the majority of studies in biosorption area deal with 

the sorption of monometallic system, but research on competitive adsorption from 

bimetallic or multi-metallic environment is not sufficient. The main topic of the 

present study is to prepare the modified chitosan biosorbents using crosslinking and 

ion-imprinting techniques to recover silver ions from the aqueous solution containing 

silver and copper ions. The objectives of this study are to: 

 Prepare chitosan based biosorbents to effectively and selectively recover 

silver ions from binary metallic systems 

 Evaluate the performance of biosorbents prepared under different conditions 

 Determine the optimal condition for uptaking silver ions 

 Identify the sorption kinetics and equilibrium for the uptake of silver ions 

 Explore the possible mechanism for the selectively uptake of silver ions 

 

The scopes of this study are listed as follows: 

 Preparation of chitosan based biosorbents for the selective adsorption of Ag+ 

from bimetallic solutions 

 Effects of initial pH, initial metal concentration, contact time and 

temperature on selective sorption of silver ions from the bimetallic solution 

were studied to determine the optimal condition for the uptake of silver ions 

 Different kinetics and isotherm models have been used to describe the 
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selectively uptake of silver ions on the prepared sorbent 

 FTIR and XPS analyses have been applied to verify the selective sorption 

mechanism of silver ions 

 

The highlighted portion of this study includes: 

 Two types of chitosan based biosorbents showed high uptake capacity and 

extremely good selectivity to Ag+ from bimetallic solutions containing the 

same mole concentration of Ag+ and Cu2+ 

 Imprinting technology, simultaneously with crosslinking, grafting (for 

ITG-OCMC beads only), has been successfully applied to the sorbent 

preparation procedure to enhance the selectivity towards Ag+, and the results 

indicated that the effect of the application of imprinting technology was 

significant 

 The generated chitosan based sorbent beads have relatively consistent shape 

and size, which make the prepared beads possible to be used in column test 

of a larger scale 

 Many batch experiments and characterization tests provided plenty of 

experimental data to sum up reasonable inferences of biosorption 

mechanism 

 The generated chitosan based sorbent beads have relatively consistent shape 

and size, which make the prepared beads possible to be used in column test 

of a larger scale. 
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In this thesis, Chapter 1 introduced the background, reviewed the recent research 

development on the modification methods of biomass for biosorbents, chitosan-based 

biosorbents and their applications as well as biosorption of silver, and offered the 

outline of current study. Chapter 2 is the co-authorship statement, which stated the 

contribution of each co-author to the paper. Chapter 3 mainly discussed the 

biosorption of silver from bimetallic solutions using the silver ion-imprinted chitosan 

gel beads. Experimental study of the selective sorption of silver ions using the newly 

synthesized ion-imprinted thiourea-glutaraldehyde crosslinked O-carboxymethyl 

chitosan beads was presented in Chapter 4. Major conclusions of this study were 

summarized and the recommendations for future work were proposed in Chapter 5. 
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Chapter 3 

Ion-Imprinted Chitosan Gel Beads for Selective Adsorption of Ag+ 

from Aqueous Solutions 

 

In this chapter, ion-imprinted glutaraldehyde-crosslinked chitosan beads have 

been introduced. The objective of this routine is to prepare a chitosan based biosorbent 

with only essential modifications, but still has satisfying capacity and selectivity. The 

main purpose is to provide an applicable but relatively affordable sorbent, which means 

simplified modifications and minimized dosage of chemical reagents. 

The following contents are the same as the manuscript published on Carbohydrate 

Polymers (Volume 130, 5 October 2015, Pages 206-212), except that the removal of 

the line numbers to maintain the uniform format of the thesis. 
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3.1. INTRODUCTION 

Chitosan is a cationic polysaccharide obtained by partial deacetylation of chitin, 

the major component of crustacean shells (López-León et al., 2005). Chitosan and its 

derivatives have been used as antimicrobial agents, biosorbents and polymers for 

controlled drug release due to their excellent biodegradability, nontoxicity and 

adsorption properties (Ravi Kumar, 2000; Ghaemy & Naseri, 2012). The presence of 

amino groups makes chitosan an efficient metal scavenger, capable of retaining metal 

ions from wastewater (Niu & Voleskey, 2006; Kyzas et al., 2009; Machado et al., 2009; 

Wan Ngah & Fatinathan, 2010; Vijayaraghavan et al., 2011; Monier, 2012; Zhang et al., 

2015). Nevertheless, the poor stability of chitosan in aqueous acidic media restricts its 

application as a biosorbent, as many industrial effluents tend to be acidic. Chemical 

modifications of chitosan are thereby essential to improve its chemical stability, 

mechanical strength and adsorption capacity in acidic media. 

Cross-linking has been extensively employed to enhance the chemical stability 

and mechanical strength of chitosan under acidic environment, but the cross-linked 

chitosan (in the form of gel beads) usually shows significantly reduced adsorption 

capacity because of the consumption of the amine groups during the cross-linking 

reaction (Guibal, 2004; Li et al., 2005; Wan Ngah & Fatinathan, 2010). Moreover, 

biosorption of industrial effluents is usually carried out under multi-metal ion 

environment where good selectivity of the biosorbents towards target metal ions is also 

required. To improve the uptake capacity and sorption selectivity, ion imprinting 

technology was combined with cross-linking to synthesize the ion-imprinted chitosan 

beads in the presence of metal ions as templates (Rao et al., 2006; Fan et al., 2011; Liu 

et al., 2012).  The conception of ion-imprinted polymers (IIPs) is very similar to the 
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molecularly imprinted polymers (MIPs) by changing the template molecule into a 

metal ion. Imprinting of metal templates is typically achieved by the reduction of 

receptor mobility through various ways such as bulk polymerization, precipitation 

polymerization, and suspension polymerization (Branger et al., 2013; Puniredd et al., 

2015). Ion imprinting technology is very efficient in generating recognition sites and 

has been successfully applied to different polymers, for example, chitosan (Tao et al., 

2013), poly(ethylene terephthalate), polyazomethine amides (Monier & Abdel-Latif, 

2013) for the selective uptake of different kinds of metal ions, such as Ag, Cu, Hg, As, 

Pb, Cd, Ni, Zn and Co (Li et al., 2005; Chen et al., 2011; Fan et al., 2011; Murugesan et 

al., 2011; Liu et al., 2012; Nishad et al., 2012; Monier & Abdel-Latif, 2013). 

Biosorption is a physicochemical and metabolically-independent process, 

involving different sorption mechanisms (Fomina & Gadd, 2014; Won et al., 2014). It 

is important to unearth the real sorption mechanism because it enables the possibility 

for further improving the biosorption performance (e.g., capacity, selectivity and 

adsorption rate). To date, the binding mechanism of metal ions to chitosan based 

sorbents is not yet fully understood. Various processes such as electrostatic attraction, 

ion exchange, and complexation/chelation are discussed as the potential mechanisms 

(Guibal, 2004). Electrostatic attraction arises when sorbent surfaces are charged with 

different signs of metal ions. Metal uptake through biosorption also takes place due to 

the exchange of protons with metal ions when the solution pH ranges between 2 to 4 

(Donia et al., 2007; Quignard et al., 2010; Chen et al., 2011). Complexation/chelation 

is based on coordination chemistry, which refers to the ability of metal ions to interact 

or enter into coordinate bonding with other ions or ligands (Guibal, 2004). X-ray 

photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy 



   

51 

 

are extensively utilized to provide insight into the metal binding process at the 

molecular level (Dambies et al., 2001; Lim et al., 2008). 

In this study, the silver ion-imprinted chitosan gel beads were prepared to 

selectively adsorb Ag+ from bimetallic solutions containing equal moles of Ag+ and 

Cu2+. Characterization of the imprinted sorbent, effects of initial pH, initial metal 

concentration and contacting time on the selective adsorption of Ag+ were 

investigated. The adsorption isotherm and kinetic parameters were also determined by 

tuning various models with the experimental measurement. Finally the selective 

adsorption mechanism of Ag+ by the synthesized gel beads was elucidated via FTIR in 

combination with XPS analyses. Silver is a very important industrial metal, it is 

usually distributed with low contents in copper ores. Appreciable amounts of Ag+ and 

Cu2+ coexist in the mining wastewater. Development of a cost-effective biosorption 

process to recover silver from dilute waste solutions is important from both economic 

and environmental perspectives. 

 

3.2. MATERIALS AND METHODS 

3.2.1. Materials 

Chitosan with 80 meshes, 91.03% degree of deacetylation and molecular weight in 

the range of 100-300 kDa was purchased from Fisher Scientific. Acetic acid, sodium 

hydroxide, formaldehyde, glutaraldehyde, acetone, sulphuric acid, thiourea, silver 

nitrate and copper nitrate were purchased from Fisher Scientific as well and used 

without further purification. The deionized water was generated from Milli-Q water 

purification system in the lab. 
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3.2.2. Preparation of the Ag+-imprinted chitosan gel beads 

The Ag+-imprinted chitosan gel beads were prepared in four major steps, 

including immobilization of chitosan beads, Ag+ template imprinting, cross-linking and 

removal of the template. In this study, glutaraldehyde and formaldehyde, the commonly 

used fixatives were selected as the cross-linking agents. In both cases, chitosan is 

crosslinked by the Schiff base mechanism, in which the aldehyde groups react with the 

primary amine groups of chitosan, leading to the formation of imine bonds (Wan Ngah 

& Fatinathan, 2008). The only difference lies in the imine bond is stabilized in case of 

glutaraldehyde crosslinking, whereas the imine bond is further reduced to the C-N bond 

(amine) via hydrogenation during the formaldehyde crosslinking of chitosan (Singh et 

al., 2006). 

To investigate the effectiveness of the ion-imprinted in enhancing the selectivity 

and capacity of sorbents, chitosan gel beads without Ag+ imprinting were also prepared 

for comparison. 

3.2.2.1. Preparation of Chitosan Beads 

5.000 wt% chitosan beads, 1.2~1.5 mm in diameter, were prepared using the 

methods described by Wan Ngah and co-workers (Wan Ngah & Fatinathan, 2008). 

5.0000 g of chitosan powder was dissolved in 100.0 mL of 5 wt% acetic acid; the 

mixture was left overnight to obtain a homogeneous chitosan solution before being 

added dropwise into 500.0 mL of 0.5000 M NaOH solution. The NaOH solution was 

under a continuous stirring at 150 rpm for 24 h to coagulate spherical chitosan beads 

and to neutralize the acetic acid within the beads. The chitosan beads were filtered, 
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rinsed with deionized water, and then stored in deionized water for use. 

3.2.2.2 Imprinting 

Wet chitosan beads were added into 200.0 mL of 10.00 mmol L-1 silver nitrate 

solution, shaking at 150 rpm for 48 h. The beads were filtered and excess Ag+ was 

removed by rinsing with deionized water, and then stored in deionized water for use. 

3.2.2.3 Cross-linking 

Different amounts of cross-linking agent solutions were added dropwise into 

flasks containing 1.0000 g of Ag+-imprinted chitosan beads and 100.0 mL deionized 

water. The cross-linking reaction lasted 24 h with constant shaking at 150 rpm. The 

synthesized chitosan gel beads were filtered and washed in sequence with dilute sodium 

hydroxide, deionized water, and finally acetone. The beads were air dried for 48 h to 

remove the acetone and then stored in deionized water. 

3.2.2.4 Removal of the template  

Water solution containing 3.500 wt% of thiourea and 0.07500 vol% of H2SO4 was 

used to remove the template Ag+ from the synthesized chitosan gel beads. The mixture 

was under constant shaking at 150 rpm for 24 h. After desorption, the regenerated beads 

were filtered and rinsed with deionized water, air-dried for 48 h and finally stored in 

sealed bottles until use. 

3.2.3. Batch Sorption Experiments 

Bimetallic solutions containing equal moles of Ag+ and Cu2+ ions were prepared 

from the standard 100.0 mmol L-1 silver nitrate and copper nitrate solutions for all the 
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sorption experiments. The effects of pH (1.0 – 5.0), sorbents prepared under different 

conditions, initial metal concentration (0.2500 – 3.300 mmol L-1 each metal ion) and 

contact time (1 – 48 h) on selective adsorption of Ag+ were investigated. The 

experiments were performed at 25.0 °C by mixing 100.0 mg synthesized chitosan gel 

beads with 100.0 mL (150.0 mL for kinetic experiment) of bimetallic solutions in 

250.0 mL Erlenmeyer flasks under the constant shaking at 150 rpm. Samples of 3.0 

mL solution were collected at the end of experiments and filtered for concentration 

measurement by ICP-OES. The amount of adsorption, qi (mg g-1) for of each metal ion 

(i = Ag+ or Cu2+) was calculated by Eq.3-1 listed as below: 

W
Vcc

q eii
i

)( ,0, 
                                            Eq. (3-1) 

where ci,0 and ci,e (mg/L) are the initial and final concentrations of metal ion i in 

the solution; V (L) is the volume of bimetallic solution and W (g) is the weight of the dry 

sorbent. 

Bimetallic solution with initial concentration of 1.000 mmol/L for each metal ion 

was used for the kinetic experiment. Samples of 3.0 mL solution were withdrawn at the 

scheduled time interval and filtered for later concentration measurement by ICP-OES. 

The uptake of Ag+ and Cu2+ at different sampling points can be calculated by Eq. 3-2.  
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where qi,j (mg/g) is the amount of metal ion i adsorbed at sampling point j (j ≥ 1); 

ci,j (mg/L) is the concentration of metal ion i in the aqueous solution at sampling point j; 

V and Vs (L) are the initial solution volume and the sampling volume respectively; W (g) 

is the weight of the dry sorbent. 
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3.2.4. Analytical methods 

The pH value of sample solutions was measured by an Accumet pH meter, AB 15+ 

(Fisher Scientific, Canada). Perkin Elmer Optima 5300DV (Perkin Elmer, Canada) 

inductively coupled plasma optical emission spectrometer (ICP-OES) was used to 

determine the concentration of metal ions. Standard solutions containing 0.00, 0.01, 

0.10, 1.00 and 10.00 mg/L Ag+ and Cu2+ in 2% HNO3 were used to get the calibration 

curves. Yttrium (10.00 mg/L) was used as an internal standard. Sample solutions were 

diluted 20 times with 2% HNO3 solution for the ICP-OES measurement. Analysis on 

Ag+ was conducted at wavelengths of 338.290 nm, 328.068 nm and 243.774 nm, 

analysis on Cu2+ was performed at wavelengths of 327.393 nm, 324.755 nm and 

224.698 nm. Reported values were the mean of three consecutive replicate 

measurements and were corrected for dilution. 

The Fourier transform infrared (FTIR) spectra of Ag+-imprinted chitosan gel 

beads before and after metal uptake were recorded by a Tensor 27 FTIR spectrometer 

(Bruker, Germany). All samples were prepared as KBr pellets and scanned in the 

wavenumber range of 400-4000 cm-1 at room temperature. X-ray photoelectron spectra 

of IGCC beads were obtained on an AXIS 165 X-ray photoelectron spectrometer 

(Kratos Analytical, USA) with Al Kα X-ray source.  

 

3.3. RESULTS AND DISCUSSION 

3.3.1. Sorbent Screening  

The adsorption performance of the chitosan gel beads prepared under different 

conditions is summarized in Table 3.1. Results from Table 3.1 reveal that cross-linked 



   

56 

 

chitosan beads with or without Ag+-imprinting both show the extremely good 

selectivity towards Ag+, indicating that Cu2+ is not capable of competing with Ag+ for 

the available amine binding sites. The main cause is that Cu2+ is more electropositive 

than Ag+ and more electron-donoting atoms need to be involved in binding Cu2+, 

making Cu2+ inferior to Ag+ in the competition of binding sites. In addition, gel beads 

prepared with Ag+-imprinting have much higher uptake capacities than those without 

Ag+-imprinting. This is because that Ag+-imprinting of chitosan before crosslinking 

protects some amine groups, the primary binding sites of metal ions from crosslinking, 

leading to an increased number of binding sites and thus a higher Ag+ uptake capacity. 

Results from Table 3.1 also indicate that degree of crosslinking shows divergent 

influences on the amount of Ag+ uptake by sorbents prepared with and without 

ion-imprinting. It is clearly seen that regardless of the type of crosslinking agents low 

degree of crosslinking helped to obtain high capacity sorbents when ion-imprinting was 

not applied during sorbent preparation. This is reasonable as more binding sites on 

chitosan are preserved at lower degree of crosslinking. Nonetheless, in case of 

ion-imprinting, the amount of Ag+ uptake increases with the increasing crosslinking 

with both glutaraldehyde and formaldehyde. This result indicates that the increased 

amount of crosslinking agents made the reactions between Ag+ bound chitosan and 

crosslinking agents more complete and the volumetric density of Ag+ bound sites 

increased. Therefore, after removal of the template Ag+ ions, an improvement of 

volumetric sorption capacity was obtained for the prepared gel beads. 

In this study, gel beads cross-linked with formaldehyde and glutaradehyde 

demonstrate very close sorption performance. Because formaldehyde is more toxic, 
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glutaraldehyde was selected as the cross-linking agent to synthesize the Ag+-imprinted 

chitosan gel beads. The highest selective uptake of Ag+ (46.30 mg g-1) occurred when 2: 

1 molar ratio of the aldehyde groups of glutaraldehyde to the amino groups of chitosan 

(No.1 in Table 3.1) was used. Thereby, the Ag+-imprinted glutaraldehyde cross-linked 

chitosan (IGCC) beads prepared under this condition was chosen for further 

experimental investigation. 

 

Table 3.1. Adsorption* of Ag+ and Cu2+ on chitosan gel beads prepared under different 

conditions 

No. Cross-linking agent n(CHO):n(NH2) † 
Imprinted 

or Not 
qAg 

mg g-1 
qCu 

mg g-1 
1 CH2(CH2CHO)2 2:1 Y 46.30 0.72 

2 CH2(CH2CHO)2 2:1 N 19.15 0.93 

3 CH2(CH2CHO)2 1:1 Y 36.86 0.19 

4 CH2(CH2CHO)2 1:1 N 21.70 0.76 

5 CH2O 0.22:1 Y 44.54 0.74 

6 CH2O 0.22:1 N 15.05 1.19 

7 CH2O 0.11:1 Y 41.65 0.81 

8 CH2O 0.11:1 N 20.75 1.08 

Note: * Batch sorption experiment for sorbents screening was performed for 24 h. 

 † The molar ratio of CHO:NH2 was selected based on the values reported in 

the literature (Wan Ngah & Fatinathan, 2008; Du et al., 2009). 

3.3.2. Characterization of IGCC beads  

Fig. 3.1 shows the FTIR spectra of chitosan powder and IGCC beads. The 

characteristic peaks of chitosan powder are: 3448.59 cm-1 corresponding to –NH and –

OH stretching vibration; 1653.94 cm-1 due to –NH deformation vibration; 1154.29 cm-1 
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for –CN stretching vibration and 1078.83 cm-1 due to stretching vibration of –C-OH (Li 

& Bai, 2005). Structural changes of IGCC beads before metal uptake were confirmed 

from their FTIR spectra. The –NH and –OH stretching vibration peak was shifted to 

3440.44 cm-1 in the spectrum of IGCC, -NH deformation vibration peak was shifted to 

1631.50 cm-1,  as a results of the amino and hydroxyl groups of chitosan being 

substituted. Peak at 1078.83 cm-1 only shifted for 2.63 cm-1 to 1081.46 cm-1, which may 

be considered as insignificant variations. Together with the peak shift from 1154.29 

cm-1 to 1164.48 cm-1, the cross-linking reaction could be confirmed to have taken 

placed on –C-NH2 (Tsezos, et al., 1996). 

XPS was also used to characterize the surfaces of IGCC beads. The XPS survey 

spectrum of IGCC beads before metal uptake is shown in Fig. 3.2. Binding energy (BE) 

peaks at 285.4 eV for C 1s, 531.8 eV for O 1s and 401.0 eV for N 1s are clearly visible, 

among which the O 1s peak at 531.8 eV is assigned to O=C, indicating glutaraldehyde 

was grafted onto chitosan. The peak at 167.8 eV is assigned to S atom in -SOx 

(contaminated S) due to the use of sulfuric acid in removing the template Ag+ from 

IGCC beads. 
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Fig. 3.1. IR spectra of chitosan, and IGCC beads before and after metal uptake 

 

 

Fig. 3.2. XPS survey spectrum of IGCC beads  
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3.3.3. Effect of pH  

The effect of the initial solution pH on the uptake of Ag+ and Cu2+ by the IGCC 

gel beads was studied and the results are illustrated in Fig. 3.3. The uptake of Cu2+ by 

IGCC beads was very low over the entire pH range, with the highest uptake of 1.7 mg 

g-1 sorbent at pH 1.0. The uptake of Ag+ demonstrates a “V” shaped curve, with the 

adsorption amount of Ag+ being the lowest at pH 3.0. In the pH range of 1.0 - 3.0, most 

of the free amine groups of IGCC beads are protonated, the uptake of Ag+ decreases 

with the reducing number of protonated amine groups, indicating that Ag+ was bound to 

IGCC through the exchange of protons. However, at pH > 3.0, the uptake of Ag+ 

increases with the increasing solution pH, suggesting the binding of Ag+ to sorption 

sites is mainly through complexation interaction because the number of free amine 

groups increases synchronously with the solution pH. Compared with the uptake of Ag+ 

at pH 1.0, the adsorption amount of Ag+ at pH 5.0 is slightly (≈1.0 %) lower. However, 

the pH of the bimetallic solution containing equal moles of Ag+ and Cu2+ is close to 5.0, 

and as such, further sorption tests were conducted without adjusting the pH of the 

bimetallic solution. 

 

Fig. 3.3. Effect of pH on the uptakes of Ag+ and Cu2+ 
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3.3.4. Adsorption kinetics of Ag+ 

The effect of contact time on the selective sorption of Ag+ was demonstrated in Fig. 

3.4. As Cu2+ is scarcely (< 2.0 mg g-1 sorbent) adsorbed by the IGCC beads, kinetic and 

isotherm studies of Cu2+ adsorption were not presented hereinafter. Results from Fig. 

3.4 demonstrate adsorption of Ag+ by IGCC beads in general is quite slow. IGCC 

binding of Ag+ kept on increasing and adsorption equilibrium was not completely 

achieved after 48 h due to the low mass transfer rate of metal ions in the IGCC gel 

beads.  

Several adsorption kinetic models can be applied to interpret the adsorption 

kinetics and the rate limiting step during adsorption. The pseudo-first and -second 

order equations are mainly applied in the biosorption with sharing or exchange of 

electrons between functional groups and metal ions (Ho, 2006). The intraparticle 

diffusion model which highlights the importance of mass transfer in the hydrogel 

beads has also been successfully applied to describe the sorption kinetics of metal 

ions (Wan Ngah, & Fatinathan, 2010). In addition, Elovich equation (Chien & Clayton, 

1980) which assumes the adsorption occurred on the heterogeneous surface usually 

provides accurate explanations of the slow biosorption kinetics. All the four rate 

equations were employed to quantify the time effect on the uptake of Ag+ by the IGCC 

beads. The rate equations of the four different models are listed below. 

Pseudo-first order equation: 

))exp(1( 1tkqq et                                          Eq. (3-3) 

Pseudo-second order equation: 
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                                               Eq. (3-4) 

The intraparticle diffusion model: 

2/1tkq mt                                                  Eq. (3-5) 

And the Elovich rate equation: 

tqt ln)/1()ln()/1(                                    Eq. (3-6) 

where qe and qt (mg/g) are the amounts of Ag+ adsorbed by IGCC at equilibrium 

and at time t, respectively, and k1 (h−1) is the rate constant of pseudo-first order kinetic 

model; k2 (g mg-1 h−1) is the rate constant of second-order kinetic model; km (mg g-1 

h-0.5) is the intraparticle diffusion constant; while α (mg g-1 h-1) and β (g mg-1) are the 

initial adsorption and desorption rate constants for Elovich rate equation, respectively. 

The kinetic parameters for the different rate equations were determined by linear 

and nonlinear curve fittings using MATLAB R2012a and the results are listed in Table 

3.2. The measured kinetic data and the model predicted kinetic results are compared 

and illustrated in Fig. 3.4. It was found that pseudo-first order and intraparticle 

diffusion models gave better correlations than the pseudo-second order and Elovich 

rate equations for the sorption of Ag+.  
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Fig. 3.4. Adsorption kinetics of Ag+ at 25.0°C with initial concentrations of 1.0000 

mmol L-1 
 

Table 3.2 Kinetic parameters for Ag+ adsorption on IGCC beads 

Kinetic Equation Rate Parameters  
Pseudo-first order 

k1 h-1 6.20×10-2 
qe mg g-1 61.74 
R2 0.934 

Pseudo-second order 
k2 g mg-1 h-1 8.0×10-4 
qe mg g-1 77.64 
R2 0.910 

Intraparticle diffusion  
km g mg-1 h-0.5 8.887 
R2 0.984 

Elovich 
α mg g-1 h-1 21.61 
β g mg-1 8.44×10-2 
R2 0.894 
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3.3.5. Adsorption isotherm of Ag+ 

The effect of initial concentration on the adsorption equilibrium of Ag+ was 

demonstrated in Fig. 3.5. It is observed that equilibrium uptake capacity of Ag+ 

increases when the initial concentration of Ag+ raised from 0.2000 to 3.300 mmol L-1; 

the uptake capacity remain constant when the initial concentration is higher than 3.300 

mmol L-1.  

 
Fig. 3.5.  Adsorption isotherm of Ag+ at 25.0 °C 

 

Langmuir and Freundlich isotherm models (Ruthven, 1984) given in Eqs.3-7 and 

3-8 were used in this study to explicate the adsorption equilibrium of Ag+ on IGCC 

beads. 

e

es
e bc

bcq
q




1
                                               Eq. (3-7) 

n
eFe cKq /1                                                 Eq. (3-8) 

where qe (mg g-1) is the amount of Ag+ adsorbed at equilibrium, ce (mg L-1) is the 
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equilibrium concentration of Ag+ in solution, qs (mg g-1) is the maximum biosorption 

capacity, b is the sorption equilibrium constant, KF is a constant indicative of the 

adsorption capacity of the sorbent, and 1/n is a measure of adsorption intensity.  

Similarly, MATLAB R2012a was used to determine the isotherm parameters of 

Langmuir and Freundlich models and the obtained model parameters are listed in Table 

3.3. Both models provide accurate sorption equilibrium of Ag+, well in agreement with 

the measured data as illustrated in Fig. 3.5. Results from Table 3.3 and Fig. 3.5 indicate 

that Langmuir isotherm delineates the experimental data better than Freundlich model. 

Both Langmuir and Freundlich models are favourable type of isotherm, indicating that 

IGCC beads are very effective in retaining Ag+ from dilute solutions. 

 

Table 3.3 Isotherm parameters for Ag+ adsorption on IGCC beads 

T 
K 

Langmuir Freundlich 
b 

L mg-1
 

qs 
mg g-1 R2 KF n R2 

298.15 1.23×10-2 119.25 0.977 6.573 2.078 0.902 

 

3.3.6. Selective sorption mechanism  

To disclose the potential selective sorption mechanism, FTIR analysis of IGCC 

beads after metal uptake was carried out and results can be found in Figs. 3.1. The IR 

spectrum of IGCC after metal uptake is almost identical to that before adsorption, 

which indicates that the chemical structure of IGCC beads was not significantly 

changed after adsorption of Ag+ ions. But a reduction in the peak intensity was 

observed between 1000 cm-1 and 1300 cm-1, which can be assigned to –NH deformation 
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vibration and stretching vibration of –C-OH (Baroni et al., 2008). In addition, peak 

shift of the –NH and –OH stretching vibration from 3440.44 cm-1 to 3434.32 cm-1 

suggests the binding of Ag+ to amine and hydroxyl groups. 

XPS analysis of the IGCC beads after metal uptake was also conducted to examine 

the selective adsorption mechanism. The survey spectrum shown in Fig. 3.6 indicates 

the presence of carbon, oxygen, nitrogen, and silver. The photoemission bands Ag3d, 

Ag3p1, and Ag3p3 showed that a significant amount of Ag has been adsorbed. 

Furthermore, based on the high resolution spectra, the doublet of Ag3d in Fig. 3.7a is 

assigned to compounds formed between N and Ag. The BE shift is only 0.2 eV after 

metal uptake (Fig. 3.7b) although the intensity of the peak increases significantly. This 

result suggests that a significant amount of Ag+ is bound to the sites which are 

previously occupied by the template Ag+. 

 

Fig. 3.6. XPS survey spectrum of IGCC beads after metal sorption 
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Fig. 3.7. Fitted high-resolution photoemission spectra of Ag 3d, and N1s before (a), (c) 

and after (b), (d) metal uptake for IGCC beads. Label: (•) recorded signals; (—) 

Voigt-type fitted curves; and (- -) deconvoluted regions from the fitted curves. 

 

High resolution XPS spectra of N 1s of the sorbent before and after metal uptake 

are compared in Figs. 3.7c-3.7d. Two BE peaks at 398.8 and 400.9 eV are visible for N 

1s spectrum before sorption. According to Moulder et al., (Moulder et al., 1992), N 1s 

peak at 398.8 eV was assigned to free amine group (–NH2) and C=N-C whereas the 

higher BE peak at 400.9 eV was assigned to the protonated amine group (-NH3
+). After 

metal adsorption, N 1s peak at 398.8 eV shifted to 398.9 eV, indicating the formation of 
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R-NH2Ag+ complexes, in which the lone pair electrons from the N atoms interacted 

with the Ag+, and hence the electron cloud density of the nitrogen atom was reduced, 

resulting in a slightly higher BE peak. XPS results of IGCC before and after metal 

uptake disclose that amine group provides the primary binding sites for Ag+. 

 

3.4. CONCLUSIONS  

The selective biosorption of Ag+ from equal molar Ag+ and Cu2+ solutions was 

investigated using Ag+-imprinted glutaraldehyde cross-linked chitosan (IGCC) beads. 

Results indicated that IGCC gel beads provide superb selectivity towards Ag+ over the 

entire pH range (1.0 ≤ pH ≤ 5.0) studied, regardless of the initial metal ion 

concentration. The maximum uptake of Ag+ is 89.200 mg g-1sorbent at 25.0 °C. 

Although favourable isotherm type was observed for the sorption process of Ag+ on the 

imprinted sorbent, the sorption rate of Ag+ was slow. Further analyses from FTIR and 

XPS revealed that amine functional groups contribute to the binding of Ag+ via 

complexation at higher solution pH (3.0 ≤ pH ≤ 5.0) and ion exchange at lower 

solution pH (1.0 ≤ pH <3.0). 
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Chapter 4 

Selective Adsorption of Ag+ by Ion-Imprinted O-Carboxymethyl 

Chitosan Beads Grafted with Thiourea-Glutaraldehyde 

 

In this chapter, ion-imprinted thiourea-glutaraldehyde-grafted O-carboxymethyl 

chitosan beads have been introduced. The objective of this routine is to obtain a 

chitosan based biosorbent which has relatively high capacity, selectivity, and 

reusability. A novel technique which combines the metal ion-imprinting, grafting and 

crosslinking was applied to achieve the goal in this study. 

The following contents are the same as the manuscript published on Chemical 

Engineering Journal (Volume 264, 15 March 2015, Pages 56-65), except that the 

format of the references has been modified to maintain the uniform format of the thesis. 
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4.1. INDRODUCTION 

Biosorption, which was defined by most researchers as a passive and 

metabolically-independent process, has been recognized as an effective method for the 

removal or concentration of metals from solutions (Volesky, 2007; Gadd, 2009; Das, 

2010; Kotrba, 2011). Biosorbents prepared from agricultural wastes, industrial wastes, 

and natural residues have been widely used to retain/remove heavy metals from 

wastewater due to their biodegradable, biocompatible, renewable and nontoxic nature 

(Volesky and Holan, 1995). Among the huge biomass resource pool, chitosan, a 

biopolymer obtained from the deacetylation of chitin, has been identified as an 

efficient metal scavenger due to the presence of reactive amino groups. Grafting new 

functional groups on the chitosan backbone was also reported to be efficient in 

increasing either the sorption capacity or sorption selectivity for the target metal 

(Guibal, 2004; Fan et al., 2011). However, the dissolution of chitosan in dilute acid 

has limited its application as a sorbent, as many industrial effluents tend to be acidic. 

Moreover, powder form of chitosan is not suitable to be packed in a column for 

applications at preparative scale because they may cause clogging problems, a huge 

pressure drop or serious hydrodynamic limitations. Gel beads are regarded as the best 

form of biopolymer based sorbents for metal uptake from aqueous solution (Guibal, 

2004). It is therefore of uttermost importance to physically or chemically modify 

chitosan powders for practical implementations. 

Crosslinking has long been used to improve the chemical resistance of chitosan in 

acidic media, but when amino groups are involved in chemical crosslinking process, the 

uptake capacity of chitosan decreases (Wan Ngah and Fatinathan, 2010). To improve 
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the capacity, grafting of certain function groups is necessary before crosslinking (Donia 

et al., 2008). Carboxymethyl chitosan (CMC), which has amino group, carboxyl group, 

and hydroxyl groups at C-2 and C-3 position, can enhance the sorption capacity with 

various metal ions (Hon and Tang, 2000; Chen and Park, 2003; Choong and Wolfgang, 

2003), and the preparation procedure is considered to be simple and efficient. Precious 

metal ions have a preference for complexion with ligands with more electronegative 

donor atoms, such as N and S, based on the theory of hard and soft acids and bases 

(HSAB) theory defined by Pearson (Zhou et al., 2009). Thiourea contains both N and S 

groups; therefore, thiourea modification of CMC has the potential to increase the 

uptake capacity towards precious metals (Guibal et al., 2001; Chen et al., 2005).  

Surface imprinting technology has attracted much attention in generating 

recognition sites, and has been successfully applied to prepare metal ion imprinted 

polymers through the use of various templates (Fan et al., 2011; Branger et al., 2013). 

The coordination between the imprint ions and the monomers can be based on 

non-covalent interactions, such as hydrogen bonds, electrostatic interactions, 

hydrophobic effects, Van der Waals forces, etc., or reversible covalent bonds (Rao et 

al., 2006). This technology has been successfully applied to different polymeric 

materials, such as chitosan (Chen et al., 2011), poly(ethylene terephthalate) and 

polyazomethine amides (Monier and Abdel-Latif, 2013) for the uptake of different 

kinds of target metal ions, such as Ag, Cu, Hg, As, Pb, Cd, Ni, Zn and Mn (Li et al., 

2005; Guan et al., 2008; Chen et al., 2011; Fan et al., 2011; Murugesan et al., 2011; 

Liu et al., 2012; Monier and Abdel-Latif, 2013).  

So far, most of the studies in biosorption area focused on the sorption of 

monometallic system. A major complication in the application of biosorption to 
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industrial conditions is the presence of other metal ions in the wastewater to be treated. 

The effect of the co-existing metal ions on the selective adsorption of the meal of 

interest may be different under different scenarios. Usually, the co-existing metals ions 

compete with the metal ion of interest for binding sites and thus lower the specificity of 

the biosorbent (Mack et al., 2007). However, it is also reported that the presence of a 

hard acid had no effect on the biosorption of a soft acid (Tsezos et al., 1996). Usually, a 

variety of metal ions coexists in industrial effluents; study the selective biosorption of a 

specific metal ion from multi-metal ion environment is more important and valuable. 

A novel technique which combines the metal ion-imprinting and crosslinking 

was applied to synthesize the Ag+-imprinted thiourea/glutaraldehyde modified 

O-carboxymethyl chitosan (ITG-OCMC) beads in this study. The newly synthesized 

beads were used to selectively adsorb Ag+ from a bimetallic solution containing equal 

moles of Ag+ and Cu2+. Silver and copper are very important industrial metals, 

extensively used in the fields of aerospace, electroplating and electrical industries due 

to their excellent malleability and extremely high electrical conductivity. Silver has 

been found to be widely distributed with low contents in copper ores. Appreciable 

amounts of Ag+ and Cu2+ coexist in wastewater from mining and mineral processing. 

Development of novel and cost-effective technology to isolate Ag+ and Cu2+ from 

dilute aqueous solutions is important from both economic and environmental 

perspectives. 

In the current study, optimal conditions for the sorbent preparation has been 

determined by varying the amount of carboxymethylation agent, the amount of 

Schiff’s base agent and the use of imprinting technology. Effects of initial pH, initial 

concentration, contact time and temperature on selective sorption of Ag+ from 
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bimetallic solution were also studied. Different kinetics and isotherm models have 

been used to describe the selectively Ag+ uptake on the prepared sorbent. FTIR and 

XPS analyses have been applied to disclose the selective sorption mechanism of Ag+. 

The reusability of the prepared sorbent was also investigated. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Materials 

Chitosan with 80 mesh, 91.03% degree of deacetylation and average molecular 

weight of 2 × 105 g mol-1 was purchased from Fisher Scientific. Acetic acid, sodium 

hydroxide, monochloroacetic acid, isopropanol, ethanol, hydrochloric acid, thiourea, 

glutaraldehyde, acetone, silver nitrate, sulfuric acid, copper nitrate were purchased 

from Fisher Scientific as well and used without further purification. The deionized 

water, generated from Milli-Q water purification system was used as the solvent for 

solution preparation. As one of the primary objectives of this study is to explore the 

selective sorption mechanism of bimetal ions, the use of natural water or wastewater in 

solution preparation makes the investigation of sorption mechanism much more 

difficult due to the presence of all types of impurities. 

4.2.2. Preparation of ITG-OCMC beads 

Four major steps, including carboxymethylation of chitosan beads, surface silver 

imprinting, crosslinking with thiourea/glutaraldehyde and regeneration of the imprinted 

biosorbent were involved in synthesizing the novel ITG-OCMC beads. The 

thiourea/glutaraldehyde grafted CMC beads without surface imprinting (TG-OCMC) 

were also prepared for comparison. 
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4.2.2.1. Preparation of OCMC Beads 

5.000 wt% chitosan beads, 1.2~1.5 mm in diameter, were prepared using the 

methods described by Wan Ngah and co-workers (Wan Ngah and Fatinathan, 2008). 

Two types of OCMC beads were obtained by O-carboxymethylating chitosan beads 

with varying amounts (Table 4.1) of 37.50 wt% monochloroacetic acid/isopropanol 

solution. In this process, wet chitosan beads (containing 5.0000 g dry basis of chitosan) 

were first immersed in 100.0 mL of 1.690 mol L-1 NaOH solution to swell and alkalize 

for 12 h. Monochloroacetic acid/isopropanol solution was then added drop-wise into 

the flask containing alkalized chitosan beads over 30 min. The reaction lasted 4 hours at 

room temperature and was stopped by adding 200.0 mL of 70% ethanol. The mixture 

was filtrated to remove the solvent and the acquired Na salt OCMC beads were rinsed 

with 70% ethanol. The H-form OCMC beads were prepared by suspending the Na salt 

OCMC beads into a solvent consisting of 100.0 mL of anhydrous ethanol and 50.0 mL 

of 37% hydrochloric acid for 1 h. H-form OCMC beads were stored in 70% ethanol 

after filtration and rinsing. 

4.2.2.2 Surface imprinting 

Wet H-form OCMC beads were added into 200.0 mL of 10.00 mmol L-1 silver 

nitrate ethanol solution, shaking at 150 rpm for 24 h. The beads were filtered and excess 

Ag+ was removed by rinsing with 70% ethanol, and then stored in 70% ethanol for use. 

4.2.2.3 Crosslinking 

1.5000 g of thiourea was dissolved in 30.0 mL of deionized water. The thiourea 

solution was then mixed with 8.5 mL of 50.00 wt% glutaraldehyde in a flask. The 
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mixture was heated in an incubator to 50 °C, shaking at 150 rpm for 3 h. Different 

amounts (Table 4.1) of Ag+-imprinted OCMC beads and 70.0 mL ethanol were mixed 

with the prepared thiourea/glutaraldehyde solution and heated to 70 °C, shaking at 150 

rpm for 8 h. The ITG-OCMC beads were then filtered and washed with dilute sodium 

hydroxide, deionized water, and finally acetone. The beads were air dried for 48 h to 

remove the acetone then stored in deionized water. 

4.2.2.4 Desorption of ITG-OCMC beads 

Water solution containing 3.500 wt% of thiourea and 0.07500 vol% of H2SO4 was 

used to remove the template Ag+ from the prepared ITG-OCMC beads. The mixture 

was under constant shaking at 150 rpm for 24 h. After desorption, the regenerated 

ITG-OCMC beads were filtered and rinsed with deionized water, then air-dried for 24 h 

and finally stored in sealed bottles until use. 

4.2.3. Adsorption Experiments 

To study the pH effect on the selective sorption of Ag+ by the prepared 

ITG-OCMC beads, 100.0 mL bimetallic solutions containing 1.000 mmol L-1 AgNO3 

and 1.000 mmol L-1 Cu(NO3)2 with different pH values were prepared and mixed with 

100.00 mg ITG-OCMC sorbent under constant shaking at 150 rpm for 24 h at room 

temperature. After filtration, the filtrates were analyzed by ICP-OES to determine the 

residual concentrations of metal ions in the solutions. The amount of adsorption, qi (mg 

g-1) for of each metal ion (i= Ag+ or Cu2+) can be calculated by Eq. (4-1). 

W
Vcc

q eii
i

)( ,0, 
  Eq. (4-1) 

where ci,0 and ci,e (mg L-1) are the initial and final concentrations of metal ions in 
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the solution; V (L) is the volume of bimetallic solution and W (g) is the weight of the dry 

biosorbent. 

Experimental investigation on the sorption kinetics was carried out batchwise at 

25 °C for 48 h. 100.0 mL bimetallic solutions with an initial concentration of 0.5, 1.000, 

1.500 and 2.000 mmol L-1 for each metal ion were fully mixed with 100.00 mg 

ITG-OCMC sorbent and shaken at 150 rpm in the incubator. Samples of 5.0 mL 

solution were taken at scheduled time interval and filtered for later concentration 

measurement by ICP-OES.  

Adsorption isotherms were studied at temperatures of 10, 25 and 40.0 °C 

respectively.  The initial metal concentration varies from 0.2500 mmol L-1 to 2.000 

mmol L-1 for each metal ion. The liquid and solid phases were assumed to reach 

equilibrium after 48 h of sorption experiments. 

Metal-saturated ITG-OCMC beads were desorbed using dilute sulphuric water 

solution (0.07500 vol%) containing 3.500 wt% thiourea. The regenerated beads were 

used in the next cycle of adsorption experiments. In total 5-cycles of 

adsorption-desorption experiments were performed at room temperature. 

4.2.4. Analytical methods 

The pH value of sample solutions was measured by an Accumet pH meter, AB 15+ 

(Fisher Scientific, Canada). Perkin Elmer Optima 5300DV (Perkin Elmer, Canada) 

inductively coupled plasma optical emission spectrometer (ICP-OES) was used to 

determine the concentration of metal ions. The Fourier transform infrared (FTIR) 

spectra of ITG-OCMC beads before and after metal uptake were recorded by a Tensor 

27 FTIR spectrometer (Bruker, Germany). All samples were prepared as KBr pellets 
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and scanned in the wavenumber range of 400-4000 cm-1 at room temperature. X-ray 

photoelectron spectra of ITG-OCMC beads were obtained on an AXIS 165 X-ray 

photoelectron spectrometer (Kratos Analytical, USA) with Al Kα X-ray source. 

To ensure the accuracy and consistency of the experimental data, all experiments 

were strictly carried out following the methods mentioned above and instructions of 

all equipment, all data were collected at designed time point, and all samples were 

tested by trained technicians. 

 

4.3. RESULTS AND DISCUSSION 

4.3.1. Sorbent screening  

Adsorptions of Ag+ and Cu2+ on biosorbents prepared under different conditions 

are summarized in Table 4.1. Sorbents prepared with Ag+-imprinting (ITG-OCMC 

beads) have much higher uptake capacities than those without Ag+-imprinting 

(TG-OCMC beads), while all the prepared biosorbents show superb selectivity towards 

Ag+ and the presence of Cu2+ in competitive adsorption environment did not seem to 

affect the uptake of Ag+. Results from Table 4.1 also indicate that the degree of 

carboxymethylation substitution and the amount of crosslinking agent used for the 

synthesis of ITG-OCMC beads significantly affect the selective uptake capacity of Ag+. 

The highest selective adsorption of Ag+ (79.65 mg g-1) occurred when a molar ratio of 

amino group of chitosan to carboxymethylation agent to crosslinking agent of 6:15:16 

(No.1 in Table 4.1) is used. Thus, the ITG-OCMC beads prepared under this condition 

have been chosen for further experiments. 
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Table 4.1. Adsorption of Ag+ and Cu2+ on sorbents prepared under different conditions 

No. Mole ratio of  
amine : acid 

Mole ratio of amine : 
crosslinking agent 

Imprinted or 
Not 

qAg 
mg g-1 

qCu 

mg g-1 

1 2:5 3:8 Y 79.65 0.37 

2 2:5 3:8 N 43.91 0.49 

3 2:5 3:16 Y 39.19 0.26 

4 2:5 3:16 N 35.00 0.10 

5 4:5 3:8 Y 44.59 0.50 

6 4:5 3:8 N 32.53 1.25 

7 4:5 3:16 Y 47.00 0.82 

8 4:5 3:16 N 38.08 0.61 

Note: Batch sorption tests were carried out at T=25.0 °C with solutions containing 1.000 
mmol L-1 of AgNO3 and 1.000 mmol L-1 Cu(NO3)2 initially ( pH≈4.8),  shaking at 150 
rpm for 24 hours. 

 

When comparing the sorbent performance, it is observed that Ag+-imprinting 

helps to remarkably enhance the uptake capacity of Ag+ regardless of the degree of 

carboxymethylation substitution and level of crosslinking. However, such 

improvement is more significant when higher degree of carboxymethylation and lower 

level of crosslinking were combined. In addition, higher degree of carboxymethylation 

favours the binding of Ag+ if low level of crosslinking was applied. On the contrary, 

uptake capacity of Ag+ slightly increases with lower degree of carboxymethylation 

when high level of crosslinking was applied. This might due to the introduction of new 

binding sites provided by Schiff base. 
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4.3.2. Characterization of ITG-OCMC beads  

Fig. 4.1 shows the IR spectra of chitosan powder, the prepared TG- and 

ITG-OCMC beads. The characteristic peaks of chitosan powder are: 3449 cm-1 

corresponding to –NH and –OH stretching vibration; 1654 cm-1 due to –NH 

deformation vibration; 1154 cm-1 for –CN stretching vibration and 1079 cm-1 due to 

stretching vibration of –C-OH. Structure changes of TG- and ITG-OCMC beads were 

confirmed from their IR spectra. The –NH and –OH stretching vibration peak was 

completely shifted to two peaks at 3567 cm-1 and 3147cm-1 in the spectrum of 

TG-OCMC as the results of amino and hydroxyl groups of chitosan being substituted. 

Peak at 1079 cm-1 was shifted to 1060 cm-1 for TG-OCMC and 1103 cm-1 for 

ITG-OCMC. Together with the disappearance of the peak around 1154cm-1, the 

carboxymethylation reaction could be confirmed to have taken placed on –C-OH 

(Wang et al., 2010). The new bands near 1629 cm-1 and 1544 cm-1 are assigned to 

stretching vibrations of C=N of Schiff base moiety and C-N of thiourea moiety (Donia 

et al., 2008),  indicating the successful crosslinking of O-CMC with a polymeric Schiff 

base of thiourea/glutaraldehyde on the –C-NH2.  

Compared with TG-OCMC, the peak shift at 3449 cm-1 was minor for 

ITG-OCMC beads, which implies more amino and hydroxyl groups are remained due 

to Ag+-imprinting. Because of the incomplete removal of template Ag+ during sorbent 

preparation, a new band at 618 cm-1, which is assigned to stretching frequencies of 

metal-N bonds, suggests the formation of silver complex during the sorbent synthesis 

(Kuamr Naik et al., 2014). 
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Figure 4.1. IR spectra of chitosan powder, TG- and ITG-OCMC beads 

 

 

Figure 4.2. XPS survey spectrum of ITG-OCMC beads  
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XPS was also used to characterize the surfaces of ITG-OCMC beads. The XPS 

survey spectrum of ITG-OCMC beads (before metal uptake) is shown in Fig. 4.2. 

Coupled with the binding energy (BE) peak at 284.6 eV for C 1s, 533 eV for O 1s and 

399.7 eV for N 1s as well as the S 2p peak with a BE around 166 eV are clearly visible, 

indicating the carboxymethylating agent and Schiff base agent were immobilized on the 

surface of chitosan. 

4.3.3. Selective sorption mechanism of Ag+ 

Results from Table 4.1 indicate that thiourea/glutaraldehyde grafted CMC beads 

with or without Ag+-imprinting all show the extremely good selectivity towards Ag+ 

over Cu2+. It is therefore reasonable to conclude that biosorption of Ag+ and Cu2+ take 

place at different sorption sites through different binding mechanisms. The amine 

group in chitosan is considered to be the most important feature in the adsorption of 

metal ions especially in transition metals (Rhazi et al., 2002; Guibal, 2004; Guibal et al., 

2014). Several studies reported that Cu2+ is bound with amine groups of chitosan via 

inter- or intramolecular complexation (Schlick, 1986; Rhazi et al., 2002). According to 

Domard, chitosan forms a complex, with the structure close to CuNH2(OH)2 below pH 

6.1 (Domard, 1987). However, carboxymethylating and thiourea/glutaraldehyde 

grafting of chitosan consume both –OH and –NH2 groups, which reduces the available 

binding sites for Cu2+. As a result, Cu2+ adsorption through surface complexation with 

ITG-OCMC or TG-OCMC beads was greatly hindered.  

Selective uptake mechanism of Ag+ over Cu2+ can also be found from the 

molecular structure of TG- and ITG-OCMC beads. As the Shiff base crosslinker has a 

relatively long carbon chain, the distance between different chains of OCMC is too long 
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to form chelations. Particularly, Cu2+ is more electropositive than Ag+, more 

electron-donating atoms need to be involved to bind Cu2+ via chelation. However, Ag+ 

can easily bind to the surfaces of beads through chelation with free amino and hydroxyl 

groups. 

 

 

Figure 4.3. IR spectra (a) and expanded spectra (b) of ITG-OCMC beads before and 
after metal uptake. 
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The major functional groups involved in Ag+ uptake were believed to be >C=S, 

-NH2, –COOH and -OH groups on the sorbent surfaces. According to the theory of hard 

and soft acids and bases (HSAB) defined by Pearson, >C=S group has a high affinity 

towards Ag+ (Won et al., 2014). The IR band shift from 1377 cm-1 to 1385 cm-1 shown 

in Fig. 4.3 confirms that sulphur groups contribute significantly to the uptake of Ag+ on 

sorbent surface. Carboxyl group on ITG-OCMC plays a very important role in 

selective uptake of Ag+ in this case, which can be confirmed by comparing the 

sorption performances of beads No. 1-4 in Table 4.1. The improved uptake capacity at 

a higher degree of carboxymethylation of –CH2OH group proved the involvement of 

–COOH group in Ag+ uptake. The evidence from IR spectra of ITG-OCMC beads 

(Fig. 4.3b) before and after Ag+ and Cu2+ adsorption supports the involvement of 

carboxyl group in Ag+ uptake. Bands at 1544 cm−1 and 1406 cm-1 on the IR spectrum 

of beads before sorption are due to the asymmetrical and symmetric C=O stretching of 

-COOH group (Choong and Wolfgang, 2003; Zhou et al., 2009). Band at 1385 cm-1 in 

the IR spectrum of ITG-OCMC after metal uptake is the combined effect of band shifts 

at 1406 cm-1 and 1377 cm-1. 

 
Figure 4.4. XPS survey spectrum of ITG-OCMC beads after metal sorption 
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To examine the selective adsorption mechanism, XPS analysis of the ITG-OCMC 

beads after metal uptake was conducted. The survey spectrum shown in Fig. 4.4 

indicates the presence of carbon, oxygen, nitrogen, sulphur and silver. The 

photoemission bands Ag3d, Ag3p1, and Ag3p3 showed a significant amount of Ag+ 

has been adsorbed. Further, based on the high resolution spectra, the doublet of Ag3d in 

Fig. 4.5a is assigned to compounds formed between S and Ag. The BE shift is only 0.1 

eV after metal uptake (Fig. 4.5b) although the intensity of the peak increases 

significantly. This result suggests that a significant amount of Ag+ is bound to the sites 

which are previously occupied by the template Ag+. 

High resolution XPS spectra of N 1s and S 2p of the sorbent before and after metal 

uptake are compared in Figs. 4.5c-4.5f. Two BE peaks at 399.3 and 401.5 eV are visible 

for N 1s spectrum before sorption. The N atom has two chemical states in ITG-OCMC 

beads before adsorption, which are C-NH2 and C=N-C in the network. The N atom in 

C=N-C group has more negative charge than the one in the primary amine. As a result, 

the peaks at 399.3 and 401.5 were attributed to C=N-C and C-NH2, respectively. After 

metal uptake, peak of C-NH2 shifted to higher binding energy while peak of C=N-C at 

401.5 eV remained the same. The band shift of N 1s spectrum after metal uptake 

indicates that the association of Ag+ to primary amine group leads to a decrease of the 

electron cloud density of the nitrogen atom and the C=N-C group is not much involved 

in silver binding. 

Four peaks are observed from the high resolution S 2p spectrum before metal 

sorption. Peak at 168.0 eV is assigned to the sulfur atoms in -SOx (contaminated S). The 

unresolved peaks at 163.4 and 162.1 eV correspond to the sulfur bound to Ag+ 
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(Bootharaju and Pradeep, 2011). The peak at 161.1 eV is contributed to the sulfur in 

the >C=S group (XPS database chemical shift). The appearance of the peaks at 163.4 

and 162.1 eV in the spectrum before sorption indicates that desorption of imprinted Ag+ 

was incomplete. Significant band shift at 161.1 eV was observed from the spectrum of 

S 2p after sorption. The peak shift at 161.1 eV to higher BE leads to an increased 

intensity of the peak at 162.1 eV, which proves the involvement of >C=S group in Ag+ 

binding. The O1s XPS spectrum of ITG-OCMC beads before and after metal sorption 

only shows a slight shift towards the higher BE, indicating that O atoms were also 

involved in Ag+ adsorption. The electron density of O atom which acts as the electron 

donor, decreases during the sorption process. 
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Figure 4.5. Fitted high-resolution photoemission spectra of Ag 3d, N1s and S 2p 
before (a), (c), (e) and after (b), (d), (f) metal uptake for ITG-OCMC beads. Label: (•) 
recorded signals; (—) Voigt-type fitted curves; and (- -) deconvoluted regions from 
the fitted curves. 

 

4.3.4. Effect of pH  

Results of Ag+ and Cu2+ uptake by the ITG-OCMC beads at different initial pH are 

shown in Fig. 4.6. The uptake capacity of metal ions increases as the initial pH of the 

bimetallic solution increases from 1.0 to 6.0. Reduced uptake capacity of ITG-OCMC 

beads at lower pH may be due to the protonation of the amino groups in low pH 

environment, which results in the reduction of number of binding sites available for the 

adsorption of both Ag+ and Cu2+. The differences of uptake capacity of the ITG-OCMC 

beads at pH 4.0, 5.0 and 6.0 are less than 4%, which can be considered as insignificant 

variations. As the pH of the bimetallic solution containing 1.000 mmol L-1 AgNO3 and 

1.000 mmol L-1 Cu(NO3)2 is around 5.0, further sorption tests were conducted without 

adjusting the pH of the bimetallic solution. Abolishing pH adjustment means less 

chemical were consumed during the sorption test, which is better both environmentally 

and economically. 
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Figure 4.6. Effect of pH on the uptakes of Ag+ and Cu2+ 

 

Figure 4.7. Effect of contact time on the uptakes of Ag+ and Cu2+  
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4.3.5. Adsorption kinetics of Ag+ 

The effect of contact time on the biosorption of Ag+ and Cu2+ is demonstrated in 

Fig. 4.7. The kinetic curve shows that adsorption of Ag+ was rapid for the first 4 hours. 

After that the sorption of Ag+ became slower. Due to the low mass transfer rate of Ag+ 

in the pores of ITG-OCMC beads, adsorption equilibrium was almost reached after 48 

hours. No significant sorption of Cu2+ was observed during this study. 

In order to evaluate the kinetic mechanism that controls the biosorption process, 

pseudo-first-order (Largergren, 1898) and pseudo-second-order (Ho, 2006) equations 

were employed to interpret the experimental data. As Cu2+ is scarcely adsorbed by the 

ITG-OCMC beads, kinetic rate constants for the Cu2+ uptake were not incorporated in 

this study. The pseudo-first-order equation is in the form of, 

)exp1( 1tk
et qq 

                                         Eq. (4-2) 

where k1 (h-1) is the pseudo-first-order biosorption rate constant, qt (mg g-1) is the 

amount adsorbed at time t (h), and qe (mg g-1) is the amount adsorbed at equilibrium. 

The pseudo-second-order equation can be expressed by, 
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The linear form of pseudo-second-order equation is as below: 
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                                        Eq. (4-4) 

where k2 (g mg-1 h-1) is the pseudo-second-order biosorption rate constant, while 

all the other parameters have the same physical meanings as those in the first order 
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equation. The initial adsorption rate, h (mg g-1 h-1), can also be calculated by Eq. (4-5).                                                                                                                    

2
2 eqkh                                                 Eq. (4-5) 

The kinetic parameters for the rate equations were determined by nonlinear curve 

fitting using Origin8.6 software for pseudo-first-order, and the linear curve fitting for 

pseudo-second-order. The results are shown in Table 4.2. Pseudo-second order model 

gave better correlations than the first-order model for the sorption rate of Ag+ from 

different initial concentration as illustrated in Fig. 4.8. 

 

  

  
 

Figure 4.8. Adsorption kinetics of Ag+ at 25.0 °C with different initial concentrations 
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Table 4.2. Kinetic parameters of the adsorption of Ag+ on ITG-OCMC beads 

Initial 
Concentration 

mmol L-1 

Pseudo-first-order Pseudo-second-order 
k1 

h-1 
qe,   

mg g-1 
R2 k2 

g mg-1 h-1 
qe,  

mg g-1 
h 

mg g-1 h-1 
R2 

0.5 0.409 71.871 0.840 5.820×10-3 80.775 37.994 0.997 

1.0 0.183 97.816 0.900 2.260×10-3 112.994 28.818 0.989 

1.5 0.192 102.869 0.897 2.270×10-3 118.203 31.676 0.991 

2.0 0.242 108.681 0.955 2.430×10-3 124.069 37.411 0.997 

 

4.3.6. Adsorption isotherm of Ag+ 

The effect of temperature on the adsorption equilibrium of Ag+ on the ITG-OCMC 

biosorbent was demonstrated in Fig 4.9a. It is observed that equilibrium uptake 

capacity of Ag+ increases when the temperature is raised from 10.0 to 40.0 °C. This 

result indicated that the binding of Ag+ on ITG-OCMC is endothermic.  

Both Langmuir and Freundlich isotherm models (Ruthven, 1984) were used to 

describe the amount of Ag+ adsorbed and its equilibrium concentration in aqueous 

solution. The Langmuir and Freundlich equations are given in Eqs.(4-6) and (4-7), 

respectively, 

e

es
e bc

bcq
q




1
                                            Eq. (4-6) 

n
eFe cKq /1                                              Eq. (4-7) 

where qe (mg g-1) is the amount of Ag+ adsorbed at equilibrium, ce (mg L-1) is the 

equilibrium concentration of Ag+ in solution, qs (mg g-1) is the maximum biosorption 

capacity, b is the sorption equilibrium constant, KF is a constant indicative of the 
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adsorption capacity of the sorbent, and 1/n is a measure of adsorption intensity. 

  

 

 

Figure 4.9. Adsorption isotherm of Ag+ at different temperatures 

 

Langmuir and Freundlich models can be converted into linear forms as shown in 

Eqs. (4-8) and (4-9) and the isotherm parameters can be determined by linear regression. 

The determined Langmuir and Freundlich isotherm parameters can be found in Table 

4.3. 
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eFe cnKq log/1loglog                                  Eq. (4-9) 
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Table 4.3. Isotherm parameters of the adsorption of Ag+ on ITG-OCMC beads 

T 

K 

Langmuir Freundlich 

b 
L mg-1

 

qs 
mg g-1 R2 KF n R2 

283.15 0.036 138.899 0.976 24.662 3.174 0.974 

298.15 0.027 167.504 0.980 16.766 2.330 0.964 

313.15 0.070 169.205 0.993 68.729 4.837 0.837 

  

Results from Figs. 4.9b-4.9d indicate that Langmuir model represents the 

experimental data better than Freundlich model, especially at high temperature. Both 

Langmuir and Freundlich isotherms are favourable type of isotherm, indicating that 

ITG-OCMC is very effective in retaining Ag+ from dilute solutions. 

The enthalpy, ΔH (kJ mol-1) and entropy, ΔS (kJ mol-1 K-1) change of Ag+ 

adsorption can be derived from the equilibrium constant b in Langmuir isotherm model 

based on the Van’t Hoff equation listed below: 

R
S

RT
Hb 




ln                                         Eq. (4-10) 

where R is the universal gas constant and T is the absolute temperature (K). 

The slope and intercept from linear plot of lnb versus 1/T gave the values of –

ΔH/R and ΔS/R respectively. Gibbs free energy change, ΔG (kJ mol-1) was calculated 

by Eq. (4-11). 

STHG                                          Eq. (4-11) 

Thermodynamic parameters calculated from Eqs. (4-10) and (4-11) were listed in 

Table 4.4. The negative ΔG indicates that Ag+ adsorption by the prepared sorbent is 
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spontaneous and thermodynamically favourable. The positive ΔH proves that the 

adsorption is endothermic in nature. The positive value of ΔS means the entropy 

increases during the adsorption, which has two possible reasons. First, according to 

Ringot et al. (2005) and Zhao et al. (2008), the positive value of ΔS may due to the 

decomposition of the hydration shell surrounding Ag+, as Ag+ usually presents in the 

form of [Ag(H2O)4]+. Second, according to Gupta and Rastogi (2008), the increased 

entropy may also indicate that the randomness at the interface of sorbents and Ag+ 

increases duo to the adsorbed Ag+ on the surface of the sorbents. The results also 

indicate that ǀTΔSǀ > ǀΔHǀ, which means the adsorption of Ag+ is dominated by entropic 

changes rather than the enthalpic changes. 

 

Table 4.4. Thermodynamic parameters of the adsorption of Ag+ on ITG-OCMC beads 

T 
K 

ΔG 
kJ mol-1 

ΔH 
kJ mol-1 

ΔS 
J mol-1 K-1 

TΔS 

kJ mol-1 

283.15 -19.46 

16.922 126.67 

35.848 

298.15 -19.81 37.748 

313.15 -23.26 39.648 

 

4.3.7. Sorbent reusability 

The reusability of ITG-OCMC beads for the uptakes of Ag+ and Cu2+ was 

illustrated in Fig. 4.10. It was revealed that the uptake capacity of Ag+ almost remained 

the same after 5 desorption-biosorption cycles, and the Cu2+ was scarcely adsorbed in 

all five experiments. The results indicated that the prepared sorbent has good durability 

and high efficiency for repeated use. Obviously, more adsorption-desorption cycles 
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should be employed to provide a thorough evaluation on the sorbent reusability 

performance. However, batch mode adsorption-desorption is very time consuming, 

column adsorption test is a better choice for this purpose. 

 

Figure 4.10.  Reusability of ITG-OCMC beads 

 

4.4. CONCLUSIONS  

The selective biosorption of Ag+ from equal molar Ag+ and Cu2+ solutions was 

investigated using a novel synthesized ITG-OCMC sorbent. Results indicated that 

ITG-OCMC sorbent shows superb selectivity towards Ag+ in all ranges of initial 

concentrations and pH values. The maximum uptake of Ag+ is 156.32 mg g-1sorbent at 

40.0 °C. Langmuir isotherm and Lagergren’s Pseudo-second-order rate equation can 

describe the sorption process very well. The reusability of the sorbent was proved to be 
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extremely good. Further analyses from FTIR and XPS confirmed that functional 

groups of >C=S, amine, carboxyl and hydroxyl involve the binding of Ag+ via 

chelation. The adsorptions of Ag+ with extended metal ions, such as Hg+, Ni2+ and Zn2+ 

will be carried out in the next stage of study for a more broad-spectrum applicability of 

the ITG-OCMC sorbent. 
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Chapter 5 Conclusions and Future Work 

 

5.1. SUMMARY OF THE STUDY 

In this study, two different approaches have been applied to prepare 

chitosan-based biosorbents with promising performance: one is to obtain an 

applicable chitosan-based sorbent with only immobilizing, imprinting and 

crosslinking procedures; the other is to prepare a chitosan based sorbent using 

crosslinking, imprinting, and grafting techniques or methods to enhance its capacity 

and selectivity. By applying the design of experiment (DOE) method and statistical 

analysis, optimal sorbent preparation processes were determined for subsequent 

experiments. Sorption performance was investigated and found to be satisfactory. 

Kinetic and isotherm studies were carried out on the prepared sorbents under different 

conditions, and the collected data was simulated by different kinetic and isotherm 

mathematic models. Dominant biosorption mechanisms were revealed based on the 

results of FTIR and XPS analyses. 

 

5.2. RESEARCH ACHIEVEMENT 

The selective biosorption of Ag+ from equal molar Ag+ and Cu2+ solutions was 

investigated using Ag+-imprinted glutaraldehyde crosslinked chitosan (IGCC) and 

Ag+-imprinted thiourea-glutaraldehyde-crosslinked O-carboxymethyl chitosan 
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(ITG-OCMC) beads. Experimental results indicated that both sorbents gave superb 

selectivity towards Ag+ in all ranges of initial concentrations and pH values. The 

maximum uptake of Ag+ is 156.32 mg g-1 sorbent at 40.0 °C  for ITG-OCMC beads 

and 89.200 mg g-1 sorbent at 25.0 °C for IGCC beads. Compared with the results 

listed in Section 2.3, the prepared chitosan based beads show relatively high capacity 

and good selectivity. Langmuir isotherm and Lagergren’s pseudo-second-order rate 

equations can describe the sorption process of ITG-OCMC beads very well, while 

Langmuir isotherm equation and intra-particle diffusion models provide good 

description of the sorption process of Ag+ on IGCC beads. Further analyses of FTIR 

and XPS were used to confirm the functional groups involved in binding, and then 

deduce possible biosorption mechanisms. For the ITG-OCMC beads, >C=S, amine, 

carboxyl and hydroxyl groups were involved in the binding of Ag+ via chelation; for 

the IGCC beads, amine functional groups were involved in the binding of Ag+ via 

complexation at higher solution pH (3.0 ≤ pH ≤ 5.0) and ion exchange at lower 

solution pH (1.0 ≤ pH <3.0). The reusability of the ITG-OCMC beads was also 

investigated, and proved to be very good. 

In summary, one of the achievements of current study is the preparation of two 

different kinds of chitosan-based biosorbents with relatively high capacity and good 

selectivity in bimetallic solutions, the other main achievement is that possible 

mechanisms of the selective sorption process were obtained based on the kinetic, 

thermodynamic and isotherm simulations and the analyses of XPS and FTIR results. 
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5.3. LIMITATIONS OF CURRENT WORK AND CORRESPONDING 

RECOMMENDATIONS FOR FUTURE WORK 

In this study, all sorption tests were executed in bimetallic solutions with Ag+ 

and Cu2+, so the adsorptions of Ag+ in competition with other metal ions, such as Hg2+, 

Ni2+ and Zn2+, should be carried out in the future to verify the broad-spectrum 

applicability of the sorbents because industrial wastewater and effluents contain 

various metal ions. The performance of sorbents in multi-metallic solutions is critical 

for industrial applications. Moreover, only batch experiments have been conducted in 

this study, while continuous column tests are probably a better predictor for the 

industrial applications of a sorbent. In future research, column tests should be carried 

out with various kinds of solutions. Furthermore, deionized water was used to prepare 

all solutions and wash beads and glassware to eliminate contaminants. However, for 

industrial applications, it is impossible to remove all unwanted components before 

column biosorption. As a result, the evaluation of sorbent performance should be 

carried out in solutions prepared with natural water. 

From the sorbent preparation perspective, two aspects may possibly be improved 

in future research. First, only one desorption reagent was used for the removal of 

uptake metal ions from the sorbents, and the combination of thiourea and H2SO4 is 

quite harsh, which may not be suitable for the column test. Even though the 

desorption reagent has been proven to be effective, a simpler milder reagent should be 
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found. In addition, the size and shape of sorbent beads were not uniform, which may 

lead to channelling while being applied to column tests. 

From the sorbent performance perspective, there is one critical disadvantage that 

has to be improved: the adsorption rate. As shown in Chapters 3-4, the adsorption of 

Ag+ using IGCC or ITG-OCMC beads needs more than 48 h to reach the equilibrium, 

the time is too long for these beads to be applicable in industries. The most possible 

reason for this is the structure of these beads. In order to accelerate the adsorption, 

more pores need to be generated on the beads, so the beads can have larger surface 

area. As a result, for future work, adsorbents need to be synthesized with larger 

surface area and better pore distribution. 

In summary, for future work, sorbent performance with multi-matellic solutions 

prepared with natural water in a continuous column setup, as well as the evaluation of 

different desorption reagents, need to be implemented. From the sorbent preparation 

angle alone, a much milder reagent needs to be found, and equipment and operational 

methods need to be improved to acquire sorbent beads with more uniform shape and 

size. 

 


