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Abstract

A nested sampling design and multivariate analyses were used to examine the community

5O'UCture and ipalial distribution of macrofauna on muddy substrates in Placentia Bay.

Newfoundland and the adjacent shelf. The goal was to detennine how macrofaunal

communities are related to water column (e.g., surface productivily) and sediment

characteristics (e.g., carbon and nitrogen content). Box core samples were collected at 10

sites (June & July of 1998) that were distributed from the head of the bay through the

Eastern and Western Channels to the edge of the continental shelf. This is the first

comprehensive study of Placentia Bay infauna and it is divided into thrli.!e main

components. Chapter I examines broad-scale patterns in community composition,

diversity and abundance along an inshore/offshore gradient. Results indicate that the bay

contains distinct inshore and offshore regions and benthic patterns are largely influenced

by surface oceanography. Chapter 2 focuses on finer-scale patt~ of distribution and

abundanc:o: within the inshore region of the bay and reveals spatial patterns that were not

evident in the analyses ofbroad-scal~ pan~ in the previous chapter. Sediment-related

factors and depth were imponant in explaining variation in inshore benthic palterns.

Thus, contrasting the results of these two chapters suggests that different variables

structure these communities at different scales. Because little biological sampling for

benthos has been undertaken in this area, Chapter 3 provides a guide to the polychaetes.

which are the dominant group of infauna in the study. Digital photographs of the key

characteristics used to identify each species are provided to help bridge identification

guides developed for other areas.
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(atroductioa aad Ovuview

Declines in fisheries (e.g. Williams 1998) and renewed interest in marine biodiversity

(e.g. Norse 1993; Snelgrove et al. 1997) have created the imponance of generating

marine species inventories and gaining a beller ecosystem·level understanding of marine

systems. In general, the marine envirorunent surrounding Newfoundland has been poorly

sampled. despite of its economic imponance to the province. Although commercial taxa

have received considerable anention (e.g. Lawson and Rose 1999; Bradbury et al. 2000).

infonnation concerning other ecosystem components. such as benthic communities, is

limited to a handful of studies (e.g. Nesis 1%5; Caner et al. 1979; Houston and Haedrich

1984; Kennedy 1985; Schneider et al. 1987; Gilkinson et al. 1998; Prena 1999).

The concept of marine infaunal communities has grown out of initial studies by Petersen

(\913) and over the years, benthic patterns of community composition and diversity have

been shown to be influenced by a variety of physical and biological factors. Examples of

such factors include sediment composition and organic content (Gray 1974; Rhoads

1974), water column production (Davis and Payne 1984; Grebmeier et al. 1988; Ambrose

and Renaud 1995), disturbance (Rhoads and Young 1970; Woodin 1978), predation and

competition (Peterson 1979; Wilson 1989). depth (Houston and Haedrich 1984) and

bottom currents (Buttnan 1987; Snelgrove and Butman 1994). However, the relative

imponance of these factors in regulating community patterns can vary with spatial scale

(Menge and Olson 1990) and the critical variables and scales are not well understood

(1osefson and Conley 1997). In general. broad patterns (kilometres-1000's kIn) in



distribution and abundance are thought to be influenced by large-scale differences in

temperature, salinity, depth, surface production, topography, sediment dynamics and

circulation. By contrast, smaller-scale patterns (miJIimctres--tens of metres) are usually

regulated by a complexity of smaller·scale physical processes and biological interactions

(Snelgrove 1999).

The present work is the benthic component of a larger study on spatial and temporal

variability in the Placentia Bay ecosystem (e.g. lawson and Rose 1999; Robichaud and

Rose 1999; Bradbury et al. 2000). The availability of complementary data on surface

oceanography from these related studies provides an opportunity to study bemhic patterns

of diversity and abundance in relation to a suite of relatively large-scale oceanographic

variables, that are expensive and time consuming to collecl, and therefore are often

unavailable for most benthic studies.

This study describes the community structure and spatial distribution of sedimentary

macrofauna on muddy sediments of Placentia Bay and the adjacent shelf in relation to

environmental variables and is divided into three main components. Chapter I examines

how water column characteristics, such as surface production (chi a), and sediment

characteristics, such as carbon and nitrogen content, influence broad-scale panerns of

community compostion, diversity and abundance along an inshore/offshore gradient that

extends from the head of the bay to the continental shelf. Although coupling between

benthic and pelagic communities has most commonly been shown to occur at much



larger scales than that of the Placentia Bay and shelf area (e.g. Mills 1975; Rowe 1981;

Ambrose and Renaud 1995), multiple surveys of Placentia Bay indicate strong spatial

variation in phytoplankton and zooplankton communilin (Snelgrove eI aI., unpublished

data), suggesting variation in swface oceanography. Thus. it is hypolhesised that if

sediment composition and depth are similar among sites. then faunal patterns will be

influenced by swface production. Chapter 2 focuses on finer-scale patterns ofdistribution

and abundance wilhin the inner bay lhat may be masked by the greater variability in the

analysis of broad-scale patterns presented in the previous chapter. Because greater

decoupling between benthic and pelagic communities is expected at smaller scales. it is

predicted that sediment-related ractors such as grain size. sedimentary organic and

nitrogen content will be important in influencing pattern. In the lhird Chapter.

documentation is provided to aid in identification of polyt:haetc species sampled within

Placentia Bay and on lhe shelf. Digital photographs are included oflhc key characteristics

used to identify each species along with references to identification guides that are useful

to the Placentia Bay am.
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Cbapler 1. Does surfac:e ouaaoarapby iaOueace fau.al p.neras ia c:o.sl.1 aad sbelf

sedlmeatary commuDllies oa Ibe soulb coast or Newfouadl••d?

1.1Ialrod.c:IioD

Marine benthic infanal communities are characteristically patchy in distribution of

abundance and diversity (e.g. Volchaert 1987; Morrisey et al. 1992). This patchiness has

been long recognised (Petersen 1913; Jones 1950) and the causes of patchiness have been

examined in a number of studies that have shown that infaunal communities are

influenced by a variety of environmental and biological factors. Examples of such factors

include sediment composition and organic content (Gray 1974; Rhoads 1974), water

column production (Davis and Payne 1984; Grebmeier et al. 1988; Ambrose and Renaud

1995). disturbance (Rhoads and Young 1970; Woodin 1978), predation and competition

(Peterson 1979; Wilson 1989), depth (Houston and Haedrich 1984) and bottom currents

that bring food and new recruits to the community (Butman 1987; Snelgrove and Butman

1994).

Although many factors have been shown to be related to patterns of composition and

diversity. it has proven difficult to detennine which of these variables are most important

in creating and maintaining struClUre within benthic communities. This difficulty is

mainly because of the co-variation ofenvirorunental factors and the extreme patchiness

of infauna (Whitlatch 1980). Moreover. the lack of appropriate spatial replication of

samples within slUdy sites can confound interpretation of pattern (Morrisey et al. 1992),



which prevents valid comparisons of abundance and diversity between different sites at

larger scales. It has been suggested by Morrisey et al. (1992) that this problem of

confounding can be overcome by the use of nested sampling designs.

There is little doubt that many different processes can potentially influence diversity and

local patterns of community composition. However, the relative importance of these

factors in regulating pattems can vary with spatial scale (Menge and Olson 1990) and the

critical variables and scales are not well understood (Josefson and Conley 1997). In

general, broad patterns (kilometres-1000's kIn) in distribution and abundance are

influenced by larger-scale (lO's-IOO's km) oceanographic features such as temperature.

salinity, depth, surface production, topography and circulation and it is these processes

that set the stage for smaller-scale «I Ian) physical processes and biological interactions

to operate and define smaller-scale (millimetres-tens of metres) patterns in distribution

and abundance (for review ofsmalJer-scale processes see Chapter 2).

Temperature, salinity and depth often delimit broad distributions in terms of

physiological constraints (Snelgrove 1999). Many species have specific tolerances to

these variables that are related to osmotic balance and enzyme function. Circulation

patterns can influence benthic communities in many ways. Most importantly they modify

other water colwnn processes such as near·bonom flow, which largely detennines

sediment type and food supply to the benthos. Circulation also affects larval supply to

benthic habitats because larval supply to benthic habitats is thought to be passive over
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broad scales (Butman 1987; Bradbury and Snelgrove 2001). However. the link between

larval supply and benthic pattern is a subject of much debate (Snelgrove and Butman

1994; 61afsson et al. 1994). Circulation is also closely linked to topographic fealW'es

such as islands and banks. which can create enhanced larval retention through eddies

(Lobel and Robinson 1986; Tremblay et al. 1994). Topography may also influence larval

transport and survival in highly productive areas associated with upwelling. Benthic

communities that occur below the photic zone are dependant on sinking water column

production as a major food source and lbus. the quality and quantity of sinking organic

matter to the sea-bed is likely to be a very important factor in influencing benthic

community structure, biomass and metabolism (Mills 1975; Jorgensen 1983; Smetacek

1984). Central to this linkage. is the role of herbivory and how decoupling between

herbivory and primary production can result in greater export of production to the bottom

as a result oflowered zooplankton grazing rates (Ambrose and Renaud 1995).

Most benthic-pelagic coupling studies have examined infaunal response to organic matter

input (i.e., phytodetritus) using methods involving oxygen or carbon dioxide exchange

(Smith et al. 1983; Witbaard et al. 2000; Duineveld et al. 2000), heat or nutrient release

(Smith et aI. 1983) or changes of ATP-biomass (Crazen et al. 1998). Such measures are

only useful as indicators of the response of the entire sedimentary community and do not

differentiate between various infaunal groups and individuals. Limited attention has been

given to specific infaunal groups and studies that have focused on bacteria (Lochte and

Turley 1988; pfannkuche 1993), meiofauna (Gooday et al. 1996; Pfannkuche 1993) or
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macrofauna (Grebmeier et at. 1988; Long and Lewis 1987; Pfarmkuche 1993; Ambrose

and Renaud 1995) have shown a variety of community responses to the input of organic

malter.

Macrofaunal studies have often found a positive relationship between benthic abundance

and biomass and enhanced flux oforganic carbon to the sea-bed (Davies and Payne 1984;

Elmgren 1978). Others have linked water column production to benthic biomass and

abundance. For example, Grebmeier et al. (1988) found a significantly greater mean

benthic biomass in the highly productive Bering Shelf-Anadyr Water. on the shelf of the

northern Bering and Chukchi Sea than in less productive Alaska Coastal Water. CIN

ratios for the Bering Shelf·Anadyr Water were low, suggesting a higher quality. nitrogen

rich marine carbon supply than in the nonhern Bering and Chukchi Sea where higher CIN

ratios indicated lower quality carbon in the sediments. In the Nonheast Water Polynya on

the northeast Greenland continental shelf. Ambrose and Renaud (1995) found benthic

pigment concentration was the most imponant predictor of infaunal density and

polychaete biomass. Benthic pigment concentrations were strongly related to

concentrations of water column pigments, suggesting that water column productivity was

closely linked to flux to the bottom and was subsequently transmitted to fauna.

Data on relatively broad-scale (lOO's of Ian) oceanographic variables do not exist for

most benthic studies. and their collection can be expensive and time conswning. The

present work is pan of a larger study that has focused on the Placentia Bay «osystem.
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with panicular emphasis on cod and other commercial taxa (e.g. Lawson and Rose 1999;

Robichaud and Rose 1999; Bradbury et al. 2000). Thus, the availability of

complementary data on surface oceanography provides an opponunity to study benthic

patterns of diversity and abundance in relation to a suite of relatively large-scale

oceanographic variables. Although studies that have linked surface production to benthic

biomass and abundance are typically at larger scales than the Placentia Bay study,

multiple surveys of Placentia Bay indicate strong spatial variation in phytoplankton and

zooplankton communities (Snelgrove. unpublished data). suggesting variation in surface

oceanography.

The present study describes the community structure and spatial distribution of

sedimentary macrofauna on muddy substrates in Placentia Bay. Newfoundland and the

adjacent shelf environment in relation to environmental variables. Specifically, wafer

column characteristics. such as surface production (chi a) and sediment characteristics,

such as carbon and nitrogen content, are examined to detennine how they influence

infaunaJ community composition and diversity along an inshore/offshore gradient lhat

extends from the head of Placentia Bay to the edge of the continental shelf. It is

hypothesized that if sediment composition and depth are similar among sites. then faunal

patterns ofdiversity and abundance will be related to surface production.



1.2 Materials aDd Metbods

1.2.1 Study Site

Placentia Bay is a large embayment on the south coast of Newfoundland (Fig. \.\),

measuring -132 kin long (orienled NNE-SSW) and 100 km wide at its southerlydirecled

mouth. which links it to the adjacent shelf environment. Bouom deptlts range from

shallow areas, including those created by several banks, 10 holes greater than 200 m in

depth. The inner piU1 of the bay is divided longitudinally into three channels by several

islands. These channels join just south of the islands 10 fonn the large outer bay that

opens onto the shelf. Circulation patterns within the bay are characterised by nonherly

flow on the eastern side and southerly flow on the western side (see Bradbury et al.

2000).

1.2.2 Sampling Design

lnfaunal box core samples were collected in June and July 1998 from ten sites that were

distributed from the head of the bay, through the Eastern and Western Channels, to the

edge of the continental shelf (Fig. 1.1). One site was located at the head. of the Bay (6

replicates per site), five in the ifUler bay (6 replicates per site), another was located in the

outer bay (3 replicates), and the remaining three were located offshore, along a transect

across the continental shelf (2-3 replicates per site) toward the shelf edge. lnitial sile

selection was primarily based upon similarity in sediment composition (muddy areas) as

detennined by examining local chans and a geological map constructed by Stehman



(1976). For most stations, depth was similar (x-184-232 m) although two sites were

more extreme in range (x-67 m and 286 m respectivly).

A nested, hierarchical sampling design was used where each of a series of successively

smaller spatial scales was nested within larger scales (Morrisey et al. 1992). Two

sampling areas were nested within each of 3 subsites, nested within each site (Fig. 1.2).

Subsite locations were randomly chosen within a 500 m radius of the approximate center

of each site. This panem was achieved by generating random compass bearings and

distances between 0-360 0 and 0-500 m respectively. These values were then used to

calculate subsite co-ordinates (i.e., latitude md longitude) originating from the initial

center of each site. Thus, each subsite location extended in a random direction at a

random distance from the original site. Sampling locations were randomly chosen 'Nithin

a 100 m radius of each subsite location as outlined above, except that map co-ordinates

were obtained relative to the subsite co-ordinates. This approach produced 3 5ubsites x 2

sampling sites for a total of6 replicates per site. All 6 replicates were collected from sites

in the inner bay however, because of ship time conD'aints only 2·3 replicates wen:

collected from Sites located between the outer bay and shelf edge. In some instances

alternate sampling sites were randomly generated, using the same method described

above, because bonom substrate at some of the initial sites was not appropriate for the

sampling gear.
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1.2.3 lnfaunal Sampling

The box corer was subdivided into six subcores that were each 10 em " 10 em wide and

30 em deep. This design allowed several variables to be sampled simultaneously. Four of

the subcores were processed through a 500 Ilm screen to evaluate the macrofaunal

community. another subcore was processed through a 100 Ilm screen to sample for

recently settled individuals (not reponed here), and the surface (-I cm) of the siltth

subcore was used for CHN and grain size analysis. Because macrofauna generally present

occur within the top 6-8 cm of sediment and are usually concentrated in the well

oltygenated top 3 cm, subcOfeS for macrofaunal analysis were sectioned into 0-3 cm and

3-10 cm venical incremenls; this strategy facilitated processing later. Macrofaunal

samples were initially preserved in 4% buffered formalin and then promptly transferred

to 70% ethanol with rose bengal. Organisms were enumerated and identified 10 species

where possible.

1.2.4 Environmental Dala

Vertical casls for salinity and temperature were collected with a Seabird 25 CTD

concurrently with box core samples at I of the replicate sampling areas at each site within

the inner bay. outer bay and shelf edge and at 2 of the 3 siles on the shelf(Sl and S~). The

depth at each replicate sampling area within each site was recorded. Mixed-layer

temperatures and salinities were determined by averaging the upper 40 m from each

profile, and bottom temperatures and salinities were taken from approximately 5 m above

the bottom. Chlorophyll a samples were collected from a grid of stations throughoUI
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Placentia Bay during June and August 1998 and analysed by methods outlined by

Brndbury et at. (2000). Chlorophyll measurements for April, July and September were

taken from satellite imagery of sea surface color (SeaWiFS, Sea-viewing Wide Field of

View Sensor, see http://dfnmr.mar.dfo-mpo.gc.calscience/oceanlseawifslseawifs_l.hunl).

Distances of each site from the nearest shoreline and from the head of the bay were

detennined using the program Mapinfo.

1.2.5 Sedimenl Analyses

For grain size analysis, a 50:50 water/peroxide solution was added to each sediment

sample, and heated 10 3000C to remove organics. Samples were Ihen placed in a drying

oven at 200"C prior 10 resuspension and disaggregation using 0.1 % calgon solution and a

magnetic slirrer. Following this treatment, samples were wet sieved through a 63 ~m

sieve into a bucket which separated them into a coarse (sand) and fine fraction (silt and

clay). The coarse fraction was re-sieved through nested sieves (350, 250,177,125,88,

and 62.5 ~m). Dry weighls were then calculaled.

The fme fraction was left to settle for 24-48 h, after which a 50-60 ml subsample was

obtained for sedigraph analysis (5100 Particle Size Analyser). The sedigraph collects data

on sedimentation velocity of settling particles by measuring the concentration of particles

remaining in suspension as a funClion of time. For this analysis, the particle size ranged

from 62.5 to 0.49 ~m. Percentages of sand, silt and clay at each site were then calculated

for this dala. For CHN analysis, frozen samples were thawed, transferred 10 small vials,
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and freeze dried at --60 °C prior to analysis in a Perkin Elmer Model 2400. Sediment

samples were not treated with acid to remove carbonate because sediment samples from

other Newfoundland Bays (e.g. Conception Bay) have shown that carbonate

concentrations are not high and do not affect carbon values (E. Hatfield. Memorial

University, personal communication).

1.2.6 Data Analyses

The four subcores used to evaluate the macrofaunal community were not considered to be

independant replicates because they were not completely separated from each other (no

spacing between cores) and thus were considered to be one large core for community

composition analysis. This pooling yielded six replicate samples (each with 400 cm!

surface area) at each site within the bay. with fewer replicates in the outer bay and shelf.

Shannon-Weiner diversity, richness, evenness and density (total macrofauna) were

compared at each site by ploning means and 95% confidence intervals. To determine

whether there was a significant difference in these measures between inshore and

offshore areas of the bay, an independent samples t-test was perfonned. Homogeneity of

variance tests indicated that with the exception of species evenness. no data

transfonnation was necessary. Species evenness data was root transfonned. however.

after transformation homogeneity tests still indicated unequal variance and therefore a

non-parametric test (Mann~Whitney U) was used. Comparisons were made of the

distribution of macrofauna among vertical fractions (i.e.• percentage of total macrofauna

in Q..3 fraction compared to the 3-10 fraction). A t~test was also performed on root
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transformed data to determine if there was a significant difference in macrofaunal

abundance among the 3·10 venical fraction between different areas of the bay. Average

densities of the dominant taxa were compared at each site by ploning means and 9:5%

confidence intervals for replicate samples. Dominant taxa were defined as the four most

abundant taxa in terms ofindividuals'400 cm-2 at each site.

Community composition was compared among sites using CNESS (Chord Distance

Normalised Expected S~ies Shared) as described by Trueblood et al. (1994). CNESS is

an extension of Orloci's (1978) chord distance and Grassle and Smith's (1976) NESS

(Normalised Expected Species Shared). CNESS is a faunal index that produces a

dissimilarity matrix from a sample x species matrix, and is based upon the number of

expected species shared in a random draw of /I individuals from two samples. This

particular index was chosen because it is sensitive 10 rare as well as abundant species.

Distribution panerns were clustered using unweighted, pair-group mean average soning

of CNESS dissimilarities (COMPAH 9O-E.D. Gallagher). To provide a more complex

and informative presentation of the data, a metric scaling of CNESS was performed in

Matlab (programs written by E.D. Gallagher).

The metric scaling of CNESS convens the sample-by-species matrix to a normalised

hypergeometric probability matrix, (H), which des.;:ribes the probability of sampling each

species in each sample with a random draw of ten individuals. This hypergeometric

matrix is then analysed by principal components (PCA-H). The first two scores from
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PCA-H provide a two dimensional metric scaling of CNESS distances among samples

representing the best least-squares fit for the data. This plot is very similar to that

produced by non·melric multidimensional scaling (NMOS), (Trueblood et al. \994;

Snelgrove et al., submitted), however, the advantage of metric scaling is that CNESS

distances among samples arc preserved. The species that contribute to CNESS variation

among samples can then be displayed in a Gabriel Euclidean distance biplot overlay

(Gabriel 1971; Ter Braak 1983), where the length and angle of species vectors indicate

the contribution of the species to the PCA-H axes.

Determining which species drive pattern from the biplots alone is somewhat subjective

because biplots capture within-site as well as between-site variation. In order to provide a

more objective interpretation, discriminant function analysis (SPSS 8.0) was also

perfonned. with site grouping designated. as factor. The site groupings were obtained from

the PCA-H analysis. This analysis was not used for formal hypothesis testing, and

instead it was used as a relative yardstick 10 evaluate which species were responsible for

between-site differences that were observed in the PCA-H plots. Taxa with a p-value less

than 0.05 were used as a screening criterion and were designated as most important. The

percentage of total individuals conlributed by each of these species was calculated using

the same site groupings determined in the discriminant function analysis. Stacked bar

graphs were then consbUcted for those species that made up at least So/" of the lotal

density at anyone site.
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PCA (principal Components Analysis) detennined differences among the to sampling

sites based on environmental variables. including abiotic and biotic water column

variables and sediment-related measures (SPSS 8.0). Prior to analysis. variables were

converted to standardised Z-scores with a mean of zero and standard deviation of one;

this standardisation reduces the degree to which anyone variable with a larger mean

value sways the result. For the majority of environmental variables. individual data

values were only collected for 2 or 3 of the replicate sampling locations at each site.

Therefore. replication of environmental variables was not as great as it was for species

data. however. given the close proximity of replicates within each site, variation for most

of these variables was observed to be small. Correlation analysis was conducted between

the environmental variables and dominant biotic variables (i.e.• diversily. abundance.

evenness and species richness). To account for error due 10 the large number of contrasts

the Dunn-Sidak method was used to adjust the p-value, resultingin a critical p-value of

0.0002. A multiple regression with adjusted F ratios and p-values was also run separately

with diversity, richness and density as the dependant variable(s) and environmental

variables as the independent variables. Since many of the environmental variables in this

study are interelated. only 9 were used in this analysis including depth. % organic carbon.

mixed layer temperature, bonom lemperature. bottom salinity. mixed layer salinity.

distance from the head of the bay, Chi a in June and % very-fine to medium silt.

Chlorophyll a in June was selected because benthic samples were collccted in July and

very-fine to medium silt was conunon among sites. A plot of best fits and residuals

showed trends that defied the assumptions for this analysis.
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1.3.1 Overview: Placentia Bay lnfauna

A total 15,120 individuals were collected from 10 stations encompassing 118 differenl

species of molluscs.. cc:hinodmns. crustaceans, polychaetes, cnidarians, hemichordates.,

nemerteans, scaphopods and sipunculids. Many species were present in low abtmdance

and at few sites; of the 118 taxa. 35 were present al only one site. A. complete list of taxa

and their abundance is found in appendix 3.1. Polychaetes were the most abundant group,

comprising 88% of the total infauna collected. Bivalves and amphipods constituted 4'10

and 2% respectively. The dominant raxa in Placentia Bay (Figs. 1.3 A and B) included

eleven different polychaeres, a bivalve (Thyasiro sp.), Nemertea spp., and an amphipod.

The single most abundant species was the polychaete Cossura longocirrata. which

comprised 54% of the total infauna (63'10 of polychaetes). The polychaetes, Prionospio

stnfUtrupi (8% of total infauna), Dorvilleidae spp. (together 3% of total infauna), and

Nephrys neotenD (3% oftOlaI infauna) were the next most abundant taxa.

A comparison of the distribution of macrofauna among vertical fraclions revealed thaI the

majority of individuals (>70-/.) were found in the top 0-3 cm of sediment, however,

significantly fewer organisms (n-47, 1=6.58 p=<O.OOI) were found in the 3-10 portion of

samples from the head and inner bay (inshore), (51:-23.0 individuals'400 cmol, se=4.2,

0=36) than those from the outer bay and shelf (offshore), (;(-11002 individuaIS'400 cmol,

se=-19.9. 0=11), (fig. 1.4).
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1.3.2 Species Abundance and Diversity

C. longocifTQta was the most abundant species overall, with average densities ranging

from 33-50 individuals'400 cm>~ , (Fig. LJ A); it was most abundant in the Eastern

Channel, lower Western Channel (W!, southern ponion of Western Channel) and, outer

bay. P. steenstrupi, N. neotena, Dorvilleidae spp., Nemenea spp., Clraetozone setosa, and

Lumbrineris spp. were present al each site but abundances differed greatly> P. steen.Jtrupi

(3·132 individuals'400 cm'~) and N. neotena (0.33.38 individuals'400 em>!) were most

abundant in the outer bay and on the shelf (Sl and S~), with lower densities at the head of

the bay, inner bay (channel sites) and at the shelf edge (Fig. t.3 A). Capitellidae spp. (0

27 individuals'400 em'~), C. setosa (1-26 individuals'400 cm>~) and Nemenea spp. (1-17

individuals'400 em>!) were greater in abundance in the area between the outer bay and the

shelf edge compared to the head and inner pan of the bay (Fig. L3 B). Dorvilleidae spp.

(0.33-38 individuals·400 em>~) densities were higher in the Eastem Channel and lower

Western Channel (Wl), eompared to other areas (Fig. L3 A), and Lumbrineris spp. (0.50

42 individua1s'400 em.}) were mOSl abundant in the oUler bay (Fig. L3 A). T7ryasira $p.

(0-14 individuals'400 em-~) was most abundant in the Central Channel. lower Western

Channel (W2) and in the oUler bay (Fig. L3 B). Gyp/is sp. (0-14 individuals·400 cm'~)

was present at all sites, except the shelf edge, and was abundant at the head, inner and

outer parts of the bay (Fig. 1.3 B). Pectinaria granu/ata (0-41 individu.lls·4QO em>!) was

found al very low densities in the inner and outer bay, however it, was the second most

abundant taxon at the head of the bay (fig. 1.3 A). Byblis gaimardi (0-35 individuals'400

cm-~) and Nereimyra punctata (0-23 individuals'400 cm'~) were only encountered at three

2J



sites. Both species were present at the head of the bay but B. gaimardi was most abundant

at S2 and N. pUnClala was most abundant in the upper Eastern Channel (El, northern

ponion of Eastern Channel), (Fig. 1.3 A and B respectively). Aricidea quadrilobata (0-31

individuals'400 crn·2) was only encountered at the edge of the continental shelf. where it

was the second most abundant taxon (Fig. 1.3 A).

Overall density was relatively high. ranging between 2717 and 17. 72S individuals m'l ,

(Fig. LS). The highest densities were observed in the outer bay, whereas the lowest

densities were found at the head of the bay, in the Central Channel and in the upper

Western Channel (WI)' Shannon diversity indices for Placentia Bay and the adjacent

shelf ranged from very low to moderate (1.3-3.1), (Fig. 1.6). Diversity was lowest in the

Eastern Channel, lower Western Channel (WI) and 51 and was greatest at the shelf edge.

Species richness ranged from 18 to 4S taxa per sample (Fig. 1.7) and evenness varied

betWeen 0.42 and 0.82 (Fig. 1.8).

1.3.3 Cluster & PCA·H Analysis

At a dissimilarity of66%, cluster analysis of infaunal cores showed six somewhat distinct

groups. These included the head (H), Central Channel (C). outer bay (0), combined

Eastern and Western Channels (El A2 and WIA2), shelf sites (51 and 52) and shelf edge

(53). (fig. 1.9). There was evidence of further substructure within the inner bay samples

that will be discussed in Chapter 2.
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PCA·H analysis showed a less ambiguous grouping of sites (Fig. 1.10), with distinct

communities at the head of the bay (H), in the Central Channel (C) and at the edge of the

continental shelf (S). The Eastern and Westmt Channels fonned a grouping (with the

exception of a few Western Channel samples), and the outer bay (0) and shelf sites (SI

and S2) fonned another grouping. Thus. the inner bay channel samples (E. a 1 & WI a l)

were generally similar to one another and the outer bay samples were more similar to

those collected from the shelf. Moreover, unlike the pattern observed for the inner bay,

the individual sites from the outer bay (0, SI. 52) were distinct from one another, and the

shelf edge site (5J) was distinct from each of these. Thus, benthic composition is

continually changing and becoming more distinct spatially with increased distance from

the inner bay. The first PCA-H axis suggests an inshore/offshore trend in community

differences, whereas the second axis describes differences in communities located within

the inner pan of the bay.

Gabriel biplots indicate that the polychaetcs C. longocirrQtQ and an unidentified

dorvilleid played a greater role in the community structure within the inner pan of the

bay, whereas Capitellidae spp. and P. steefUtrupi played a greater role on the shelf and at

the shelf edge (Fig. 1.10). C. longocirrQIQ makes up 27.5%. 51%,67% and 4()O/i of total

densities at the head of the bay, Central Channel, combined EasternlWestem Channels

and outer bay/shelf respectively (Fig. 1.11 A). On average it comprised less than 10010 of

the total density at the shelf edge. The outer bay/shelf is also dominated by P. steenstrupi,

which comprises an average of 22.5% of total densities (Fig. 1.11 A). Dorvilleidac spp.
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attained their highest density in the inner bay (channel sites) whereas capitellid

polychaetcs densitics were highest at the head (6% of total density) of the bay and at the

shelf edge (6.5% of total density). (Fig. 1.11 A and B). At the head of the bay, the

polychaete P. granulata was important. comprising 25% of total densities (Fig. 1.11 A).

1.3.4 Discriminant Function Analysis:

Discriminant function analysis, conducted on the above site groupings, found the same

taxa to be important in describing the observed patterns. however, it also identified forty

others as being important. Of these, five polychaetes including Chaetozone serosa. N.

neotena, A. quadrilobara. Terebel/ides stroemi, and an unidentified Paraonid along with

several nemerteans and the bivalve, Thyasira sp.• were relatively abundant (species with

densities ~5% of the total density at anyone site), (Fig. 1.11 B). Nemertea spp. and

Thyasira sp. were important in the Central Channel, where densities were elevated

compared to other areas. No single species dominated at the shelf edge, however, A.

quadrilobata was unique to this area and the highest densities of Paraonidae sp.• C.

setosa and T. stroemi were encountered here. Thirty-three rare taxa (species with

densities <5% of total density) were also found to differ between these different sites

(Table 1.1). These included 18 polychaetcs. 5 gastropods. 4 amphipods, 2 bivalvcs, 2

echinodenns. tanaids and cumaceans.
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1.3.5 Environmental Data

On average, tolal organic carbon present in the sediments ranged between 1.0-8.0"11.

(C'mg-I), (Table 1.2) and a 1·lest showed that carbon was significantly higher (n=43 ,

t=7.0, p=<O.OOI) in sediments within the inner bay (xin'lIon!=6.6, se=O.22, n=33)

compared 10 the outer bay and shelf (Xoffihoro=2.0, se=O.61, n=IO). CIN ratios remained

relatively low and constant in the inner bay (x=8.8, s.d=O.30, n=33) compared to the

outer bay and shelf (x=8.3, s.d=O.36, n=8), and were much higher at the shelf edge

(;<=19.4, s.d=1.42, n=2); (Table 1.2). Grain size analysis indicated that sediment in the

inner bay was dominated by clay and very fine to medium silt sized particles, whereas

samples collected between the outer bay and shelf edge contained higher amounts of

coarse silt 10 very fine sand (Table 1.2). Mixed layer temperatures were between 9.0

10.1 °C in the inner bay and between 6.0 and 9.2°C in the outer bay, shelf and shelf edge.

Bottom temperatures in the inner bay were low and ranged from -0.32 to ·0.81 °C. with

the exception of the head of the bay which was 3.43°C. Outer bay and shelf bottom

temperature ranged between -0.41 and _O.66°C but was much higher at the shelf edge

(7.0°C), (Table 1.3). Chi a extractions showed that chlorophyll a concentrations were

high at the head of the bay (June and August) and in the Weslern Channel (August) and

ranged from 0.23 I1g'I'1 to 1.2 I1g'I'1 (Table 1.3). These spatial and temporal patterns in

chlorophyll a were similar to the distribution observed at the sea surface in SeaWifS

images for the time period (http, dfomr.mar.dfo-

mpo.gc.calscienceloceanlseawifslseawifs_l.html).
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Spatial pattern in PCA analysis of sampling sites based upon the environmental data

showed some similar spatia) groupings to those observed in the PCA·H analysis of

species data. Factors I and 2 account for 50 and 23% of the variance in the data

respectively (Fig.I.12 A and B). Factor I clearly separates the head and inner bay

samples, with positive factor loadings, from outer bay and shelf samples, which have

negative factor loadings. Factor 2 separates the shelf edge samples from the outer bay and

remaining shelf samples. There is also some evidence that the head of the bay is different

from the inner bay samples. Unlike the PCA·H analysis ofspecics data, the center of the

bay site groups with the rest of the inner bay and therefore is more similar to the inner

bay than the outer bay and shelf in tenns of environmental variables. Factor I has

positive loadings for productivity-related variables (average elmg, chi a, average N/mg),

abiotic water column variables (mixed layer temperature) and fine sediment (average clay

to very fine to medium silt) and negative loadings for average CIN. medium sediment

(average coarse silt to medium sand), abiotic water column variables (average depth,

mixed layer and bottom salinity and bottom temperature) and distance from head of bay

and shoreline. Factor 2 is heavily weighted positively for bottom temperature and average

CIN. Factor loadings are summarised in Table 1.4. Correlation analysis showed that

chlorophyll a (April, July and August) were significantly correlated positively with

sediment organic carbon (Appendix 1.1). Although not significant. sediment organic

carbon was negatively correlated with abundance and species richness and positively

correlated with diversity. In addition. mixed layer temperature was significantly

correlated with both chlorophyll a (April and July) and organic carbon (Appendix 1.1).
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Mulliple regression analysis showed that all of lite overall models developed to predict

infaunal denisty, species richness and diversity were significant. Sediment organic carbon

was shown to be the most important predictor of infaunal density with a significantly

negative relationship (Table 1.6). Sediment organic carbon, mixed layer temperature and

salinity were significant predictors of species richness (Table 1.7). Organic carbon was

negatively related to species richness. No single environmental variable was important in

predicting diversity (Table 1.8).

1.3.6/nshoreJoffshore: Species Diversity and Abundance

Because multivariate analyses suggested an inshore/offshore difference. where the outer

bay was more similar in terms of species composition and environmental variables to the

shelf samples. these samples were grouped as offshore. and the inner bay and head of the

bay as inshore for diversity comparisons. Although there was some varibility in diversity

among inshore and offshore sites a Hest indicated that inshore diversity was significantly

less than offshore (Table 1.5). Species richness was found 10 be significantly higher in the

offshore samples than in the inshore (Table 1.5) however, it should be noted that species

richness was highly variable within lite offshore. Despite some overlap. density was also

significantly higher offshore than inshore (Table 1.5). A Mann·Whibley test showed no

significant difference in species evenness between the inshore and offshore regions of the

bay at the 0.05 level (n=47, inshore mean rank=22.53. offshore mean rank=28.82 • Mann

Whibley U= 145.00 and p""o.I 83).Although the statistical power of non-parametric tests

is weaker than for parametric tests. the result was consistant with a t·test comparison.
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1.4 Di5cassio.

1.4. I Introduction

Benthic ecologists have long apprttiated the fact that marine sedimentary communitites

are patchily distributed (petersen 1913; Jones 1950). Much research has focused on

addressing why this spatial variation exists and what facto~ are most important in

maintaining stnlcture within these communities. Nonetheless. this question is still largely

unanswered and remains at the fOldront of benthic ecological resean::h. sedimentary

macrofauna play an essential role in the dynamics of marine systems (Mills 1975;

Snelgrove 1999), and recent ecological studies have stressed the vital need to unde~tand

the dynamic processes structuring these communities (e.g. Osolinish 1990; Snelgrove et

al. 1997). This study describes the community structure and spatial distribution of

sedimentary macrofauna on muddy substrates in Placentia Bay and the adjacent shelf

environmenL Specifically it examines how water column and sediment characteristics

influence infaunal conununities along an inshore/offshore: gradient.

1.4.2 Spatial pattenu: Species and Environmental Data

Cluster analysis of box core samples combined with ordination suggests that changes in

community composition may be related to broad-scale differences in the bay's

oceanography. Distinguishable communities occur at the head of the bay. Central

Channel and on the continental shelf. Sites within the Eastern and Western Channels are

generally similar to one another whereas those from the outer bay to the continental shelf

arc continually changing with increased distance from the inner bay. One of the most
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interesting observations from these analyses was that the outer bay site is more similar in

tenns ofspecies ccmposition 10 the shelf; suggesling an inshore/offshore difference (with

the inner bay and head of the bay collectively the inshore and the oUler bay and shelf as

offshore). However, more sites within the ouler bay should to be sampled to be confident

that all areas of the outer bay are more similar to the shelf.

1.4.3 Species Composition and Abundance

Community analyses showed that species composition palterns varied among different

areas of Placentia Bay. C. longocirrata and Dorvilleidae spp. were important componenls

of the community strucwe inshore where they were most abundant. Sediments inshore

were primarily composed of clay and high amounls of organic carbon, and studies have

found C. longoci"oto to be typically abundant on muddy to silt substrates in organically

enriched areas (Blake and Hilbig 1994; Volckaert 1987). Dorvilleids can be found in all

sublittoral environments, including heavily polluted areas (Fauchald and Jumars 1979).

Several species of capitellids and P. sreenstnlpi played a greater role offshore where

densities were higher and abundante of C. longoci"ata was reduced. P. steenstrupi is a

eurybathic species and is one of the numerically dominant polychaeles found on the

Grand Banks (Hulcheson et al. 1981) east of Newfoundland and in Nain Bay, labrador

(Bousfield 1981). P. granulata was a dominant member of the infaunal community at the

shallow site at the head of the bay, where sediments contained elevated amounts of fine

sand compared to other inshore siles. P. granulata is usually found on sandy substrales at

shallow 10 subliltoral depths. Abundances of this species were highly variable in this area
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and a large proportion of juveniles in the early stages of tube building were present. P.

granulata displays remarkable selectivity in grain size when tube building (PockJington,

unpublished) and high variability in fine sand deposits at this site may explain variability

in abundance.

Grain size offshore consisted of a larger proportion ofcoarse silt to medium sand. Seven

polychaete species were shared between the head of the bay and the offshore. which are

both areas with coarse sediments and all of these species including S. armiger, P.

plllnlosa (Hughes et al. 1972), Spiofilicornis (Appy et al. 1980). Syllides longocirrala. G.

maculata (pocklinglon, unpublished) are usually found on coarse sediments. Snelgrove

and Butman (1994) have argued that sediment grain size may often be a surrogate for

correlated variables such as larval supply. In this system. however, discontinuity in

benthic pattern with larval supply (the complete absence or single occurrence of the

above species from the iMer bay sites with finer sediments even though they are present

at the head of the bay as well as offshore where sediments are coarser) suggests that grain

size or organic content is important.

A. quodrilobata was only found at lhe shelf edge where bottom temperature was higher

than any other area, which is most likely a result of intrusion of Gulf Stream water.

Sediments also contained the largest proportion of fine sand. A. qllodrilobato typically

inhabits muddy sand, and Placentia Bay is towards its most northern limit. The highest



densities of C. serosa, T. srroemj and an unidentified paraonid species were also found at

the shelf edge.

The communities within Placentia Bay were very different from that found by Kennedy

et al. (1985) and Scheibe (unpublished thesis) in nearby Conception Bay, Newfoundland,

even though both bays contained polychaete dominated assemblages with species

characteristic of coastal areas in eastern Canada. In shallow areas (62·75 m)

predominantly composed of silt, Kennedy found Maldane sarsi to be the most abundant

polychaete, making up 55% of all annelids collected. M. sarsi builds tubes of mud and

silt and has been encountered at great depths on the Newfoundland slope and rise

(Pocklington, unpublished data). In Placentia Bay, M. sarsi was not encountered and

species assemblages were dominated by C. longodrrara (63% of polychaetes), which

was not encountered in Kennedy's study. C. longocirrma is a burrower common in deep

slope and abyssal muds (Appy et a!. 1980), although it is also known from organic rich

areas as discussed earlier. N puncrata (5% of po!ychaetes), Nephrys indsa (4% of

polychaetes) and G. maculara (4% of polycnaetes) were found to be the next most

abundant and relatively widespread species in Conception Bay and of these, only N.

punctata was among the dominant taxa in Placentia Bay. At areas of similar depth and

substrate type as Placentia Bay, Scheibe (1991) found M. sarsj, P. steensrrupi,

Lumbrineris latreilli, Spiophanes wigleyi, C. serosa, E. longa, Yoldia hyperborea to be

among the four most dominant species at anyone site. M. sarsi, S. wigleyi, and N. ineisa

were not sampled in Placentia Bay and although the others were present, only C. serosa
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was among the dominants; other species accounted for less than l% of the tota! infauna.

Moreover, C. Jongocirroto was sO.8% oftota! infaun.al abundance.

It is likely that high amounts of organic carbon within Placentia Bay sediments

(51:........:6.5%) playa role in influencing the macrofaunal assemblages. Many of the

common species in Placentia Bay are typically abundant in organic rich areas. For

example, Rygg (1985) showed C. longocirroto and C. $etOSQ in Norwegian fjords to be

very tolerant to pollution. C. $('tO$O was also found to occur along a pollution gradient in

organically enriched Oslofjord (Mira and Gray 1981) and P. ste('nstrupi occurred in

relatively high numbers after pollution abatement on the Atlantic coast of Nova Scotia

Canso Strait (pocklington, unpublished). N. neoteno was the dominant species found in

the Miramichi River where the sediments contained a high amount of wood pulp and was

also present in the Bay of Chaleur (Belledune Harbor) at an area previously used as a

dwnp site (pocldinglon. unpublished). It is important to note that such findings are not

limited to pollution studies. In St. Margaret's Bay, Nova Scotia (Volchaert 1987), where

organic-carbon content in sediments rivalled those of Placentia Bay (x-4.I), C.

Jongocirroto was the most abundant species present and A. neotenus, A. quadriJobato, E.

incaJor, P. slunstrupi were among the numerically dominant species. In a Spitsbergen

fjord, Kendall (l994) found C. Jongocirrota and C. setosa to be among the characteristic

species found at a shallow site that appeared to be influenced by seasonal sediment

deposition from an adjacent stream. High amounts of organic carbon in Placentia Bay

sediments may be a result of high rates of sedimentation or slowed degradation oforganic
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material due to cold temperatura: (pomeroy and Deibel 1986), and low oxygen

concentrations below the first rew centimetres of sediment (discussed below). In contrast,

organic carbon in Conception Bay was much lower (~-1.1 %: Kennedy 1985) than in

Placentia Bay, and or the thr« dominant taxa in Conceplion Bay thai were not

encountered in Placentia Bay, M. sani and N incisQ have been described as sensitive or

non-tolerantto organic pollution (Mirza and Gray 1981: M.sQni; Pearson eI al. 1983: N.

incisQ). Although Placentia Bay and Conception Bay differ in terms or oceanographic

influences (i.e., the amount of influence each receives from the Labrador Current and

Gulf Stream), broad-scale oceanography is unlikely to be imponant in this case because

both or these species are commonly found around the coast of Nova Scolia as well as

nonh ofConception Bay to the eastern Arctic.

1.4.4 Species Richnas. Evenness and Diw.Nity

Areas with nighest levels of surface chlorophyll in Placentia Bay were also shown to

contain correspondingly high amounts of sedimentary organic carbon, namely the head of

the bay (June and August) and the inshore compared to offshore. The inshore contained

significantly higher amounts of sedimentary carbon and species riCMess and diversity

were generally lower. Low levels of diversity inshore were largely due 10 the dominance

of the polychaete C. /ongoci"QtQ, which far outnwnbered any other talton. Cenain

polychaetes are noted for their opponunistic response to organic enrichment in shallow

waters where they are more numerous and dominate the community (Pearson and

Rosenberg 1918; Levin et aJ. 1996), and C. longoci"QtQ has been described by Olsgard
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and Hasle (1993) as a t)"pical opportunistic species. On the continental slope ofT Cape

Haneras, where there is an unusually high influx of organic carbon, a similar situation

occWTed. Infauna! assemblages were found to be strikingly different from other locations

along the U.S. Atlantic coast (Blake and Hilbig 1994), C. fongoc:irrara was one of the

dominant species, and infaunal assemblages were characterized by lower species

richness, and diversity (Blake et al. 1997; Blake and Gt2SSle 1994). Although organic

carbon peaked at the head of Placentia Bay, species richness was similar throughout the

inshore. One explanation for this similarity is that variation in organic carbon between the

head of the bay and lhe remainder of the inshore sites may nOI have been great enough to

cause variation in species richness. However, lower density of C. longodrrata at the head

of the bay resulled in higher species evenness and greater diversity.

Species richness and diversity are often compared between different studies to examine

community structure in different areas and environments. However, such measures can

be influenced by a variety of artificially imposed factors such as the type of sampling

gear, sampling effon and the degree of taxooomic resolution, which limits their

usefulness and should be interpreted with caution. For example, Stewan et al. (198S)

found macrofaunal diversity at most sampling stations in the Canadian eastern arctic had

a moderate Shannon-Wiener diversity ranging from 3.6S to 4.96 whereas in Placentia

Bay diversity at most sites ranged from 1.31 to 2.4g. In the arctic study, up to ten Van

Veen Grab samples (O.lm·2) were collected at each station and samples were sieved

through a 0.42 mm screen. It is very difficult to detennine how much of this variation in



divenity is due to differences in sampling and processing procedures or if the arctic

generally does have a higher diversity of macrofauna than Placentia Bay. In the Gulf of

Sc. Lawrence, Long and Lewis (1985) found diversity to be very low ranging from 0.75

to 1.29, however, in their study Shannon·Wiener diversity was calculated at the family

level which may help explain why diversity was so low and prevents valid comparisons

with other studies where this calculation is done at the species level.

1.4.5 Infaunal Density

There is evidence in support of a deeper living fauna offshore, where significantly more

organisms were found in the 3-10 cm core portion compared to inshore. This may be a

result of reduced oxygen concentrations below the first few centimetres of sediment of

inshore cores. Sedimentary organic cuban content inshore was very high, ranging on

average from 4.8 to 9.1%. ValdCThaug and Gray (1984) reported that relatively high

values of 4J)-/e were typical for areas ~civing high sewage input into an enclosed area.

High organic-carbon in sediments has been associated with reduced pore·water oxygen

content (Levin and Gage 1998) and oxygen deficiency, which can result in accwnulalion

of hydrogen sulfide as a result of intense degradation of cwganic carbon. Both of these

variables can limit the abundance and biomass of macrofaunal communities (Lopez

Jumar 1981; Levin et all99I). Sevml observations suggest that low pore water oxygen

was an important factor in Placentia Bay. Inshore cores smelled strongly of hydrogen

sulphide and were noticeably black. directly below the lop 2.5-3.0 em of sediment,

however, blacialess was not encountered until much deeper in the offshore cores.
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Despite the presence of hydrogen sulfide at deplh in cores, macrofaunal densities inshore

(271110 12,600 individuals'm'l ) were high compared to olher muddy, coastal areas at

similar depths. Long and lewis (1981) found macrofaunal densities in lhe Gulf of St.

Lawrence to 1>.: very low, ranging belween 330 individuals'm-l and 3425 individuals·m·l

and densities were 20 10 31 times higher in Placentia Bay compared to those found in

nearby Conception Bay (I00,.am sieve: 134.8 to 331.6 individuals'm-l
), (Schiebe,

unpublished thesis). In contrast, density in Nain Bay, Labrador was 11,200 individuals'm'

1 (sec Mills 1975), which corresponds 10 some of the higher densities observed in

Placentia Bay. High densities of macrofauna in Placentia Bay were not unexpected, given

that Placentia Bay is known to be a relatively produclive area. low CIN ratios (x=8.9)

for this area indicate that relatively fresh (Banse 1914) and easily degradable (Parsons et

al. 1977) organic material from the plankton reaches the benthos; CrN ratios have been

commonly used in studies to indicate food quality in the benthic environment (Mills

1915; Grebmeier et aL 1988; Levin et al. 1(91). Much higher ratios (e.g. values between

14 and 30) are expected for lower quality refractory or terrestrial sources (Godell 1972).

Freshwater sources entering Placentia Bay are small, and supply of allochthonous

particulate material is likely of little influence, however, there was some evidence of

terrestrial debris at the head of the bay (discussed in greater detail in Chapter 2). Low

CIN ratios, along with the observation that areas with highest levels of surface

chlorophyll also were shown to have correspondingly high amounts of sedimentary

organic-carbon, suggests that water column productivity is received on the bottom (e.g.

Ambrose and Renaud 1995), and not advected out of the bay before it reaches the bottom.

38



Surface chlorophyll concentrations were also found to be significantly correlated with

organic carbon in the sediments. Within the inshore. surface production (chi a) was

greatest at the head of the bay where sedimentary organic carbon content also peaked.

Surface production (chi a) and organic carbon were also greater inshore than offshore.

A number of studies, typically at larger scales than Placentia Bay study. have linked

surface production to benthic biomass and or abundance (Grebmieir et al. 1988; Ambrose

and Renaud 1995). A positive relationship has been found between benthic

biomass/abundance and surface production (chi a). (Ambrose and Renaud 1995).

However. when all areas Placentia Bay were considered. a negative relationship was

found between surface chlorophyll and abundance. A significantly negative relationship

was also found between organic carbon and abundance, and organic carbon was shown to

be the most important predictor of infaunal abundance. Abundance was significantly

higher in the less productive offshore and within the inshore some of the lowest densities

were found at the head of the bay. Ambrose and Renaud (1995) noted some decoupling

of surface production and benthic biomass in the Southern Trough of Greenlands'

Northeast Water Polynya. where no relationship was found between water column and

benthic pigment concentrations (chi a and phaeopigments) and benthic biomass/density

was lower than in areas where a positive relationship existed between these variables.

This decoupling was attributed to zooplankton grazing. Decoupling was probably not the

mechanism in Placentia Bay because areas with highest levels of surface chlorophyll
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were also shown to have correspondingly high amounts of relatively fresh sedimentary

organic-carbon, and this relationship was statistically significant.

The negative relationship found between surface production and infaunal abundance in

Placentia Bay is likely a resull of two confounding factors. Within the inshore. relatively

low densities at three sites greatly reduced mean density. Organic carbon was higher at

these sites and low densities may be a result of lower oxygen concentrations within the

first few centimetres of sediment or poorer food quality (variation inshore will be

discussed in detail in chapter 2). Densities at one site in the outer bay, localed near

Oderin Bank, were much greater than at any other site, which greatly increased mean

density offshore. Oderin Bank is known to be a relatively productive area with

considerable upwelling. Upwelling areas have been associated with high macrofaunal

abundance (Levin and Gage 1998), except when hypoxia confounds the pattern (Sanders

1969; Levin et al. 1997). When the three sites with similar low density inshore and the

site at Oderin Bank were removed. mean density inshore (x=518 individuals·4OOcm·z)

was greater than offshore (x=3S4 individuals·4OOcm·z), supponing a positive relationship

between surface production and abundance.

I.SSlImmary

Spatial patlerns of community composition and environmental variation indicate that

Placentia Bay can be broadly divided into an inshore and offshore region. The head of the

bay and continental shelf were distinct, inner bay sites were generally similar, whereas
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offshore sites were highly variable. Greater mixed layer temperalW'es, higher surface

production (chi a), and large amounts ofrelalively fresh organic carbon characterized Ihe

inshore ponion of the bay. High levels of organic carbon inshore influenced the

macrofaunal assemblages. and many of the common species are known to be abundant in

organic rich areas elsewhere. corresponding to somewhal reduced species richness. and

diversity. Generally speaking. high amounlS of organic carbon in Placentia Bay

sediments may be a result of high rates of sedimenlalion or slowed degradation oforganic

malenal resulting from cold lemperatures and potentially low oxygen concentrations

below the first few centimetres of sediment. Low diversity was caused by dominance of

e. /ongocirrata. an opponunistic species capable of establishing high densilies in

sediments with high amounts of organic carbon. Offshore. lower organic carbon

corresponded to somewhal greater species richness. and diversity and reduced densities

oCe. /ongocirrata.

Different variables appear to opperate at diffetenl scales. AI smaller scales (e.g. head of

the bay and within the offshore). grain size was particularly important even Ihough areas

of high surface ptoduction (chi a) had correspondingly elevated amounts of organic

carbon. It is likely that variation in organic carbon between the head of the bay and Ihe

remainder of the inshore siles may not have been great enough to cause variation in

species richness. In lenns ofabundance panems. some of the lowest densities were found

al the head of the bay. and significantly higher densilies were found in the less productive

offshore. This pattern suggested a negative relationship between surface production and
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abundance. Most benthic pelagic coupling studies have found a positive relationship

between benthic abundance and biomass and enhanced flux of organic carbon 10 the sea

bed (Davies and Payne 1984; Elmgren 1978; Ambrose and Renaud 1995) and closer

inspection revealed that this negative relationship was likely confounded by low

abundance patterns at three sites within the inshore (discussed in chapter 2), along with

elevated densities offshore at Odenn Bank. In conclusion broad-scale patterns (inshore vs

offshore) of community composition and abundance in Placentia Bay are largely

influenced by surface oceanography as seen by the importance of surface water

characteristics and sedimentary carbon (which tracts surface production).
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Table 1.1. Results of discriminant function analysis. Rare species with densities <5% al
any of the site groupings presented as prescnt (+) or absent (-). Groupings based on those
obtained in PCA·H analysis

Tn> Head Ct.lraI EUlen" O.ter" Shelf
ella..el Westen Sltelf edle

ell••Dels
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Table 1.3. Summary ofsite environmental variables with 95% confidence intCf\lals for mixed layer temperaturc. bouom
temperaturc, mixed layer salinity and boUom salinity where applicablc.

s•• ....~ Dltl.lKe MI.C'II BOliO", Mlltd ....- Chi. e... e... e... ctrh..... t1ud Tentp. Temp. S.llnlly Slliftlty ..., J ..III July AIII"ll .....
,.J '.J ,'C) lOC, I"" "", (t1"'1 (t1&111 (t1~) 4""" ,....,.., .., .., ..,

lIead(JI) 600 12000 ... J.' 31.8 32.2 lO G.<t6 1.00 0.76 1.62
CIIllfIIIC) 1000 2_ '.S ...l 32.0 32.7 '0 o.2S J.OO 0.39 I."Wtsl(W,) '000 2JOOO '.7 ".l 31.9 32.1 10 O.lS 1.00 0.64 1.68
Wtsl(W,) 1000 .lOOO .., .... 31.9 32.8 \0 0.26 '.00 0.26 1.02
EaJl(E I ) 2500 1000 10.1 ".7 31.8 32.8 lO 1.28 1.00 0.23 1.57
East (E,) JOOO 29000 '.1 .... 31.9 32.8 lO OJ7 J.OO 0.S8 1.66
Outer (0) 23000 74000 ..• .0.1 32.1 32.9 • 0.13 0.6S 0.23 1.75
Shtlf(SI) <2000 132000 6.0.0.0 .0.4.0.0 32.2.0.0 33.0.0.0 1 0.19 0.6S 0.01 1.00
ShtlqS,) OSOOO 186000 6.4.0.0 .o.StO.O 32.4JO.0 33.0.0.0 7 0.10 0.6S 0.01 1.00
ShelfedeS ooסס20 316000 '.2 7.0 32.11 32.8 lO 0.10 0.6S 0.01 1.00



Table 1.4. Factor loadings for the peA ofenvironmental variables. Heavily weighted
loadings (+1. 0.70) arc shown in bold.

aA ril( 1
alune( )

lui 1
Au l( )

tember( ))

nas t 0

m-sand medium sand :>35Q..250
f-sand rmesand<25Q..125 ml
v-fine sand ve fine sand <125-62.5 )
,-5(11 ,cane sill <62.5-3 1 m
v·(·rned silt ve fine to medium silt <3 1- 3.9
tla <3.9-0 ml
Ablotk water columa

lit th!site)
It ML mixedl" rte raMeoCI
Ie BT mte rarnreoCl
salini MLCmixedla rsalini %oj

salini BT bonom salini %0

Dlltaace
distancesbore distanteftomshorelinem
distaneebeadba distancefromheadofba m

"
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I 2

.al!! 531

.558 .449

.587 ·.014

.9!!I 064

.8041 .Ql5

.656 -.284

.907 .166
_.213 .947

-.565 ·.112
-639 .737
·.8S1 -.234
•.554 -.651
ASJ -.075
.829 .287

-242 -.133
.7!1J .548
-.217 ....
-.162 .487
-.677 -.377

-.742 .655
-.a!ll .516



Table 1.5. T·tests for differences in diversity, species richness. and abundance between
the inshore and offshore regions of Placentia Bay ("'=().OS & ... indicates a significant
difference).

Biotic I.short Offshore T·tesls
V.ri.blts 11=36 11=11 ....7

x s. x se I p value
DiversitvH' 1.76 0.10 2.39 0.16 3.06 ·0.004
Species Richness 24.17 0.90 38.73 3.18 6.15 *0.001
Abundance #/m·· 282.19 33.38 451.00 63.63 2.42 *0.020
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Table 1.6. Multiple regression of environmental variables with density (#/m-2
). The

overall model is significant (p--o.OO9) with df(total)=18 and F=3.99. Environmental
variable(s) that contributed significantly to the model are shown in bold.

Envlronmenlal Standardized p-values
Variables RqrtSslon

Coefficients
V-f-med-silt 0.176 0.599
D th 0.727 0.188
Salin~ML 0.921 0.686
Temnerature ML 0.909 0.109
TemDel'3.tureBT -0.798 0.359
Salini BT ·1.494 0.221
Distance fr. headba -0.160 0.934
Chloro h II a June ·0.146 0.662
e;. a;;;;; ·1.770 0.00<
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Table 1.7. Multiple regression of environmental variables with species richness. The
overall model is significant (p=O.OOI) with dfftotal)=18 and F=6.43. Environmental
variable(s) that contributed significantly to the model are shown in bold.

EDvlroBme.tal Staadardiud ~v.IQes

Variables Rearessio.
Coefficleats

V·f·med·silt 0.032 0.907
th -1.590 0.558

S.UDitv ML 0.265 0.0%7
TcmMralure ML 1.319 0.010
TemDeratureBT 4.587 0.064
SaJinit BT ·1.412 0.065
Distance fro headba ·\.949 0.131
Chloro hila June -2.517 0.847
%CJml!' 0.054 0.003

S8



Table 1.8. Multiple regression of environmental variables with diversity H'. The overall
model was significant (p=O.021) with dfttotal)=18 and F=3.25. None of the
environmental variables contributed significantly to the model.

EDvlroDmeDt.1 S•••dudlzed p-valucs
V.riables RrcressioD

CoefficieDts
V·f·med-silt -0.369 0.311

th 0.316 0.593
Salinit ML ·.070 0.903

ML 0.065 0.910
BT \.740 0.480

-0.600 0.518
Distance fro headba -0.873 0.498
Chloro h II a JUi.e -0.531 0.797
%C/m ·0.065 0.855
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55.2 54.0

Figure 1.1. Chart of Placentia Bay and location of sampling sites. Capital leiters
indicate sampling sites. H denotes head of bay, C denotes Central Channel, E[ and Ez
are upper and lower Eastern Channel. WI and W1 are Western Channel, 0 is OUler
bay, Sl and S, are shelf, and S} is the edge of the shelf. Arrows on the right indicate
different pans aCthe bay including the head. and inner bay (collectively the inshore),
and the outer bay and shelf (collectively the offshore). Inset shows Placentia Bay in
relation to Newfoundland.



Figure 1.2. NeSled hierarchical sampling design where a series of successively
smaller spatial scales is nested within the scale above: distance between-site locations
(lO's to lOO's of Ian), radial distance between subsites :s:500 m, and radial distance
between sampling areas :s: 100 m.
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Figure 1.3. A. Plot showing mean densities and 95% confidence intervals of dominant
taxa, withn=6 (Head.CenlIa.l. WeSl!. West 2. East I. and East 2); n""2 (Shclfl)and
n-3 (Outer. Shelf2 and Shelf)). Note. scale on y-axis differs among taxa.
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Figure 1.5. Plot showing means and 95"-Q confidence intervals for total density of
macrofauna at each site, with n=6 (Head, Central, West I, West 2, East I, and East 2);
n=2 (Shelf I) and n=3 (Outer, Shelf2 and Shelf3).
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Figure 1.7. Plot showing means and 95% confidence intervals for the species richness
present at each sile, with n=6 (Head, Central, West I, West 2, East I, and EasI2): n=2
(Shelf I) and n"'3 (Outer, Shelf2 and Shelf).

67



1.0r:-'D-:...~,.-------r::O::ff.-:-b-D"-----'
0.'
0.1
0.7

1.0

0.3

0..

0.3

1.2

0.1
O.O~ '-- ----'

~ :; ~
-

!i:l l ~ ! !5 .:l .:l <5

Site

Figure 1.8. Plot showing means and 95% confidence intervals for species evenness at
each sileo A value of 1.0 indicates the same number of individuals for each species
are present. with 0-6 (Head, Central, Wesl I, Wc:st 2, East I, and East 2); 0"'2 (Shelf
I) and n=3 (Ouler, Shelf2 and Shelf3).
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Figure 1.10. PCA·H metric scaling ordinalion in two dimensions of box core spatial
patterns based on CNESS (NESSm = to individuals). The firsllwo axes explain 24%
and 14% aCthe variance in the data respectively. Species vectors (Gabriel Euclidean
distance biplot) have been overlaid on community ordination to show which species
conuibute to CNESS variation among samples and therefore drive spatial patterns.
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Figure 1.11 Slacked bar graphs showing the percentaac of lotal individuals contributed
by each species to the sile groupings. A. Includes species thai were identified as
important by Gabriel biplols. B. Additional species designated as important by
discriminant function analysis. Site groupings confonn 10 those obtained from the
PCA·H analysis and only those species making up at least SOlo aClhe total density al
anyone site are included. Proportions were determined by pooling the replicates ....ith
each grouping. NOle that scales on the y.axis differ for A and B.
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Clliapter 2: Fadon iofluadog paneras la dlstribatioa, abuadante ud divenity of
sedimeatary matrorauaa i. deep, muddy ~Iments of lashon Plateatill Bay,
Newfoundlaod

2.1 Introd.ttlon

Detlines in fisheries (e.g. Williams 1998), recent interest in marine biodiversity (e.g.

Norse 1993; Snelgrove et al. 1997) and increasing pressure from scientists to design and

implement marine reserves (e.g. Botsford et al. 1997) have stressed the need to generate

marine species inventories and gain a better ecosystem level understanding of marine

systems. In general the marine environment surrounding Newfoundland has been poorly

sampled, in spite of its importance to the province. Although commercial taxa have

received considerable attention, other ecosystem components. including the benthos, have

received only limited attention (e.g. Nesis 1965; Caner et al. 1979; Houston and Haedrich

1984; Kennedy 1985; Schneideret al. 1987; Gilkinson et al. 1998; Prena 1999).

The present work is a subset of the benthic component of a larger study on spatial and

temporal variability in the Placentia Bay ecosystem (e.g. Lawson and Rose 1999;

Robichaud and Rose 1999: Bradbury et al. 2000) that provides a unique opportunity to

link pelagic processes 10 benthic community structure. Placentia Bay is an economically

important area and contains a (sporadically) reopened cod fishery. an oil refinery and a

large transhipment facility. This, along with the fact thai few studies on benthic

communities have been conducted within Placentia Bay (e.g. Dooley 1991; Swiss and

Osborn 1976; Chapter I), provide strong motivation for benthic research.
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Chapter I provided the first comprehensive study on sedimentary macrofauna on muddy

substrates in Placentia Bay, Newfoundland and the adjacent shelf envirorunent. It showed

that many of the common species were typically abundant in organic rich areas, and

based on community composition and environmental variation, there are distinct inshore

and offshore regions. Alhough. there was some evidence of further substructure inshore,

communities in inner bay areas were shown to be similar to one another. relative to the

strong inshore and offshore differences. The goal of the present chapter is to examine

inshore panems in greater detail.

Physical and biological factors both influence benthic pattern in sedimentary

communities (Chapter I). However, the relative imponance of these factors in regulating

community patterns can vary with spatial scale (Menge and Olson 1990). In general,

broad patterns in distribution and abundance are influenced by large-scale differences in

temperature, salinity, depth, surface production, topography, sediment dynamics and

circulation. In recent years, the coupling between pelagic and benthic systems has

received increased attention (Graf 1992). Although it is well accepted that benthic

communities are fueled by sinking water column production from the overlying water

column (e.g. Grebmeier el al 1988; Ambrose and Renaud 1995), coupling between

benthic and pelagic communities in tenns of critical variables and scales arc not well

understood. (Josefson and Conley 1997).
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Surface productivity has been shown to be most important in influencing broad-scale

panems in community structure, usually at much larger scales than that observed betWeen

the inshore and offshore regions of Placentia Bay (e.g. Rowe 1981; Mills 1975; Ambrose

and Renaud 1995), and decoupling is expected at smaller scales but in Chapter I surface

production was indeed imponant in differentiating inshore/offshore areas. At smaller

scales however, other variables may be important.

In general, smaller-scale patlems are usually regulated by a complexity of smaller-scale

physical processes and biological interactions (Snelgrove 1999). Macrofaunal patterns of

diversity and abundance have been related to several sediment characteristics including

grain size, sorting and organic content (Rhoads and Young 1970; Gray 1974; Grebmeier

el al 1989). Hughes et al. (1972) used multivariate techniques to show that sediment

characteristics accounted for 46% of the variance in the frequency of occurance of

polychaete and echinoderms in St. Margaret's Bay, Nova Scolia. The role of predators in

subtidal areas has produced ambiguous results (e.g. Blegvad 1928; Virnstein 1977;

Peterson 1979; Ambrose 1984; Holland et al. 1980) and the driving forces in regulating

community structure in these areas are not as clear. In general, studies suggest that

competition is probably not a major structuring forte but predation may be important (see

Peterson 1979).

This chapter focusses on spatial patterns within the inshore region of the bay and

examines which factors (i.e., water column productivity-related variables and sediment
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characteristics) are important in influencing inshore patterns of community composition,

diversity and abundance. This fineNcaie analysis has the potential to reveal spalial

patterns within the inshore thai were nol evident in the analyses ofbroad-scale patterns. It

is hypothesized that the factors which influence benthic patterns are scale dependent.

Specifically, water column produclivity-related variables, which were importanl in

influencing broad-scale patterns between the inshore and offshore areas discussed in

chapleT I, are nOI imponanl in explaining the distribulion and abundance of macrofauna

among inshore sites, where variability in water column parameters is limited. Instead.

sediment-related factors such as grain size, sedimentary organic carbon and nitrogen will

be important.

2,1 Mat~rials ..d MHhocls

2.1.1 SludySite

Placentia Bay is a large embayment on the south coast of Newfoundland that is divided

into three main regions including the head of the bay, iMeT bay (collectively the in~re)

and the outer bay (Fig. 2.1). The innet'" part of the bay is divided longitudinally into three

channels by several islands and is characterised by northerly flow on the eastern side and

southerly flow on the Western side (see Bradbury et aI. (2000». A more complete

description of the bay is given in Chapler I.
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2.2.2 Sampling Design

Infaunal box core samples were collected during July of 1998 from six inshore sites

distributed among the head of the bay, Central Channel and the Eastern and Western

Channels (Fig. 2.1). Initial site selection was primarily based upon similarity in sediment

composition (muddy areas) as de!ennined by examining local charts and a geological

map constructed by Stehman (1976). For most staticns, deplh was similar (x=21Q-225

m) although two sites were more extreme in range (x=67 m and 286 m respectively),

(Table 2.1). A nested. hierarchical sampling design was used where each of a series of

successively smaller spatial scales was nested within Ihe scale above (Morrisey et al.

1992; Chapter t), for a lotal of six replicates per site.

2.2.3 lnfaunal Sampling

The box corer was subdivided into six subcores (10 em x to em width and 30 cm deep).

Four subcores were processed through a 500 ~m screen for macrofauna, another was

processed through a 100 ~m sieve (not reported here), and the sixth subcore was used for

CHN and grain size analysis. Subcores for macrofaunal analysis were sectioned into 0-3

em and 3-10 cm vertical increments and fixed in 4% butTered formalin prior 10 being

transferred 10 70% ethanol with rose bengal. Organisms were enumerated and idenlified

to the lowest taxonomic level (usually species) possible.
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2.2.4 Environmental Data

Vertical casts for salinity, temperature and depth were collected with a SeaBird 25 CTD

at 1 of the 6 replicate box core sampling areas at each site. Temperature and salinity for

April were obtained from a complementary study in the same area (Bradbury el al. 2000).

From these data. mixed layer and bottom temperature and salinity were determined as

described in Chapter I. Chlorophyll a samples were collected from a grid of stations

throughout Placentia Bay during June and August 1998 (Bradbury et al. 2000). Surface

chlorophyll measurements for April, July and September were taken from SeaWiFs (Sea

viewing wide field of view sensor) images, (http://dfomr.mar.dfo·

mpo.gc.calscienccJoceaniseawifsiscawifs_l.html). A brief summary of procedures for

CHN and grain size analysis are outlined in Chapter I.

2.2.5 Data Analysis

The four subcores used to evaluate the macrofaunal community were pooled for

community composition analysis to yield six replicate samples (each with 400 cm2

surface area) at each site in the inner bay. Shannon-Weiner diversity, richness, evenness

and density (total macrofauna) were compared by plotting means and 95% confidence

intervals for each site. Average densities of the most dominant taxa (defined as the six

most abundant taxa at each site) were compared in a similar way. ANaVA was also

performed for density, species richness, diversity and evenness [0 determine if there was

a significant difference among the the PCA·H site groupings, Tukey's tests were used to

determine which sites differed. Homogeneity of variance tests indicated that no
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transfonnation of data was necessary for density. however, tests for diversity, species

richness and evenness indicated unequal variance even after data transfonnation.

Therefore. a non-parametric tesl (Mann-Whitney) was employed for these three

Community composition among sites was analyzed using CNESS (Chord-Distance

Nonnalized Expecled Species Shared) as described by Trueblood et al. (1994). CNESS is

a faunal index Ihat is based upon the number of expected speties shared in a random

draw of n individuals from two samples. Distribution pal1ems were clustered using

unweighted, pair-group mean average soning of CNESS dissimilarities (COMPAH 90

E.D. Gallagher). To provide a more complex and infonnative presentation of the data, a

metric scaling ofCNESS (see Chapter I) was perfonned in Matlab (programs written by

E.D. Gallagher), and Gabriel Euclidean distance biplols (Gabriel 1971; ter Braak 1983)

were overlaid to indicate the relative imponance of individual species in creating

observed patterns. Only those species that contribuled more than 5% to CNESS variation

were displayed in Ihe biplols. The percentage of total individuals contributed by each of

Ihese species to site groupings was calculated and displayed as stacked bar graphs. A

multivariate ANOVA and Tukey lest was also perfonned for each of these species to

detennine if Ihere was a significant difference in abundance among the three PCA·H site

groupings. With the exception of Pectinaria granulata. homogeneity of variance lests

indicated Ihat no transfonnation of dala was necessary. Dala for P. gron/li010 was root
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transfonned, however, a homogeneity of variance lest indicated that variance was

unequal and therefore a non-parametric lest (Mann-Whitney) was used.

Determining which species drive panems from biplots alone is somewhat subjective

because biplols capture within-site as well as between·site variation. To provide a more

objective interpretation, discriminant function analysis (SPSS 8.0) was also perfonned

with site designated as factor (site groupings were obtained from Principal Components

Analysis of Hypergeometric Probabilities (PCA-H) axes I and 2). This analysis was nOI

used for fonnal hypothesis testing and p-values were not reported. Instead p-values of

0.05 were used as a screening criterion to evaluate which species were responsible for the

between·site differences that were observed in the PeA-H plots. As with CNESS, the

percentage of total individuals contributed by each species was calculated, using Ihe same

site groupings detennined in the discriminant function analysis, and displayed as Slacked

bar graphs (only those species that made up at least I% of the total density at anyone site

were included).

PeA (principal Components Analysis) of standardized data (see Chapter 1) detennined

differences among sampling sites based on abiotic and biotic water column variables and

sediment-related measures (SPSS 8.0). For the majority of environmental variables. data

values were onJy collected from I of the 6 replicate sampling locations at each site (with

the exception of the upper Eastern. Channel which only had data for 2 replicate localions).

Thus, replication of environmental variables was not as great as it was for species data,
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however, given the close proximity of replicates within each site. variation for the most

of lhese variables was observed to be small (Chaper 1). A mulliple regression with

adjusted F ratios and p-values was also run separately wilh diversity. species richness.

and density as the dependant variable and environmental variables as the independants.

Because many of the environmental variables in this study are interrelated. only 10 were

used in !his analysis including depth, % organic carbon. mixed layer temperature (July),

mixed layer salinity (July), distance from the head of the bay. Chi a concentrations in

June. ichlhyoplankton concentrations in June and very fine to medium sill (see Chapter

I). lchthyoplankton was included as a measure of secondary production in the absence of

a complete zooplankton data set. The choice of June sampling for ichthyoplankton and

surface chlorophyll was based on it being the closest sampling time to the July benthos

sampling period. A plot of best fits and residuals showed no trends that defied the

assumptions for this analysis.

2.JRtsalts

2.3.1 Overview: Inshore Macrofauna

A total of 10, IS9 individuals were collected from 6 inshore stations encompassing 6S

taxa (level of identification varies). Polychaetes were the most abWldant group sampled.

comprising 87% (by number) of the total infauna collected, followed by bivalves !hat

comprised 4.6%. Dominant taxa included representatives from four phyla including

Polychaeta (II species/taxa). Bivalvia (3 species), Scaphopoda (I species) and Cnidaria

(l taxon). (Fig. 2.2 A & B). The majority of dominant taxa were relatively widespread,
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occurring at all sites. however. the single most abundant spedes was the polychaete

Cossura /ongocirrata which comprised 63% of total infauna. The next most abundant

taxa included the polychaetes Prionospio steenstrupi (4% oftotal infauna). P. granulala

(2.5% of total infauna). Gyptis sp. (2.2% of total infauna). Nepthys neotena (2.2% of total

infauna). Lumbrineris spp. (1.9% of total infauna) and Chaetozone serosa (1.6% of total

infauna).

2.3.2 Species diversity and Abundance

C. longocirrara was the most abundant species present at each site, attaining densities as

high as 655 individuals'400 em·:. (Fig. 2.2 B). Its greatest densities were observed in

Eastern Channel and lower Western Channel (W2. southern portion ofWestern Channel),

(268-341 individuals'4QO cm·2
) and relatively lower densities were present at the head of

the bay, Central Channel and upper Western Channel (WI, northern portion of Westem

Channel), (54-70 individuals'(400 em>z). Similar patterns in abundance were observed for

Lumbrineris spp. (0.50-15.0 individuals·400 em·I ). Dorvellidae spp. (1.83-37.5

individuals'400 em-I) and Gypris sp. (3.5-9.3 individuals'400 em·I). (Fig. 2.2 A.).

Nereimyra punctata (0-23.0 individuals·400 em·2) and P. granulara (0-40.67

individuals'400 em·2) were absent from most areas. however, very high densities were

present at the head of the bay (Fig. 2.2 B). For the remainder of the dominant taxa, mean

density generally peaked at one site inshore. and was relatively constant elsewhere (Fig.

2.2 A & B). For example. abundance of Capitellidae spp. (0-9.17 individuals'400 em·I ),

Aricidea no/ani (0.50-7.83 individuals·{400 cm-:), and Macoma calcarea (0.50-8.83
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individuals'400 cm·2
) were highest at the head of the bay and abundance of N. neotena

(4.5-10.33 individuals'400 cm·2
) and Thyasira sp. (1.10.33 individuals'400 cm'~) were

highest in the Central Channel. C setosa (2.83-8.33 individuals'400 cm·2
) and P.

steenstmpi (2.83-29.50 individuals·400 cm·2
) anained their greatest abundance in the

lower Western Channel (W2) whereas abundances of NUCIIlana pernula (0-4.17

individuals'400 cm'~) and AmaJis enrale (0-4.5 individuals'400 cm·2
) were grealest in the

upperWestem Channel (WI).

Shannon diversity indices for Placentia Bay were moderately low (xc:1.76), (Fig. 2.3).

Species richness ranged from 33 to 12 taxa per sample and average values ranged from

17 to 29 taxa per site (Fig. 2.4). A Mann-Whitney test indicated that diversity was

significantly different among the three site groupings established by the PCA-H axes I

and 2 (i.e., head of bay vs Central ChanneVupper Western Channel group; head of the

bay vs lower Western ChanneVEaslern Channel group; Central ChanneVupper Western

Channel group vs lower Western ChanneVEastern Channel group), (Table 2.8). A Mann

Whitney test also indicated that species richness significantly differed among these three

site groupings (Table 2.8). Evenness values ranged from 0.47 10 0.76. A Mann·Whitney

test indicated that evenness was significantly different between the head of the bay and

upper Western ChanneVEastern Channel as well as belWeen the Central ChanneVupper

Western Channel group and the lower Western ChanneVEastem Channel group (Table

2.8). The contrast between the head of the bay and the Central ChanneVupper Western

Channel group was ambiguous because the parametric and non.parametric tests gave a
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conflicting result. Infaunal densities ranged between 2,716.67 and 12,600.00

individuaJs'mo2 (Fig. 2.6). ANQVA p.values indicated that total density was significantly

different among the three site groupings indicated by the PCA·H (axes I and 2), (n=36,

F=14.52. p=<O.OOOI). A Tukey test showed significant differences between all three

groups

2.3.3 Cluster & PCA-H Analysis

At a dissimilarity level of73% cluster analysis of infaunal cores showed three relatively

distinct geographic groups, although there were several oUlliers. These groups included

the head of the bay, Central Channel (with the exception of two samples from the

nonhem portion of the Western Channel) and combined Eastern and Western Channels

(Fig. 2.7). PCA-H axes I and 2 indicated similar groupings and accounted for 27% and

19% of the variation in the data respectively (Fig. 2.8). The community at the head of the

bay (H) was distinct. The Central Channel (C) and most samples from the upper Western

Channel (WI) grouped together, and samples from the Eastern Channel (E l (northern

portion of Eastern Cahnnel) & E2 (southern portion of Easlern Channel) and lower

Western Channel (W2) formed another group. Gabriel biplots for axes I and 2 indicate

that the polychaete C. longocirrara and Dorvilleidae spp. played a grealer role in the

community sttuctw-e in the Eastemllower Western Channel group. C. {ongocirrata made

up 28% of the 10lal abundance at the head of the bay, SOOIo in the combined CentraVupper

Western Channels, and 72% in the combined Eastern/lower Western Channels.

Dorvilleidae comprises <5% of each group (Fig. 2.9). ANQVA p-values indicated thai
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abundance of C. longoci"uta was significantly different among the three site groupings

indicated by the PCA-H (axes I and 2), (n=36, F=23.08, p=O.OOO). A Tukey test showed

significanl differences between the Eastern/lower Weslern Channel group and head of the

bay as well as between the Eastern/lower Western Channel group and the Central

ChanneUupper Western Channel group. ANOVA p-values also indicated that abundance

of Dorvilleidae spp. differed significantly between the PCA-H groups (n=36, F=13.90,

p=O.OOO) and a Tukey lest showed this difference to be significant for the same groups as

C. longoci"ata. Capitellid polychaete densilies were highest at the head of the bay (5%

of lotal density) and combined CentraUupper Western Channels (2% of total abundance).

ANOVA p-values indicated that abundance of Capitellidae spp. also differed

significantly between the PCA-H groups (n=36, F=7.32, p=O.012). A Tukey test showed

significant differences between the head of the bay and the Eastemllower Weslern

Channel group as well as between the head of the bay and Central ChanneUupper

Western Channel group. P. granulata was important at the head of the bay (20% of IotaI

abundance) and the bivalve 11lyasira sp. was important in the Central ChanneUupper

Western Channel (5% of total abundance). However, ANOVA for 11lyasiru sp. showed

mat differences in abundances between these groups were not significant (n~36, F=2.5,

p:O.098).

PCA-H axes I and 3 (27% and 10% of the variation respeclively) showed evidence of

further substructure within the bay, indicating differences between communities in the

Eastern and lower Western Channel (Fig. 2.10). As in PeA-H axes I and 2, distinct
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communities were also located at the head of the bay and combined Central and upper

Western Channels. Gabriel biplot5 for axes I and 3 (Fig. 2.10), indicate that C.

longoci"ata is more imponant in the Eastern Channel where it is abundant (74% of lotal

abundance) whereas Dorvilleidae was more important in the Western Channel (7% of

lolal abundance) where it attained its greatest numbers (Fig. 2.11). P. sreensrrupi played

an important role in the community structure at the head of the bay (7% of total

abundance) and in the Western Channel (6% of tOlal abundance) whereas P. granulata

and Capitellidae sp. were both imponant at the head of the bay.

2.3.4 Discriminant Function Analysis

Discriminant function analysis conducted on the site groupings indicated by PCA-H axes

I and 2. showed the same taxa to be important along with twenty others. Seven of these

were relatively common (species with densities >1% of total abundance) including four

polychaetes (Ma/dane glebifex. Syl/ides longocirrata. A. nolani, Lysilla loveni), two

bivalves (M. calcarea, and N. pernula). and a Scaphopod (A. ema/e). (Fig. 2.12). M.

glebife:c and Sy//ides longoci"ata were important at the head of the bay. where they

made up 2.0 and 2.7% of the total density respectively. Although A. no/ani. and M.

calcarea were present at all three areas. they were more imponant at the head of the bay

where they occurred in greatest abundance (4.0 and 4.4% of total density respectively). In

the combined Central and upper Western Channels N. pernll/a (2.4% of total density). L.

loveni (I.O% of total density) and A. entale (2.3% of tOlal density) were important. The

remainder of taxa identified in the discriminant function analysis were less abundant
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(species with densities <1% of total density) and included 6 polychaetes, 1 bivalve, 2

amphipods, I scaphlopod, I hernichordale, tanaids and actiniarians (Table 2.2).

In comparing the Eastern and lower Western Channels, C. setosa, Thyasira sp., L. loveni,

Lumbrineris spp. and A. nolani occurred in higher density in the Western Channel,

whereas Yoldia sp., and M. calcarea were more abundant in the Eastern Channel (Table

2.3). In addition, N. punctala and Retusa obtusa were not present in the lower Western

Channel samples and Spllaerodoropsis minuta was not found in the Eastern Channel.

1.3.5 Environmemal Data

On average, total organic carbon present in inshore sediments was high, ranging between

4.83 and 8.07 % (C'mg- I
), (Table 2.4) with higher amounts at the head of the bay,

(x::8.07 C' mg·1) upper Western Channel, (;1=7.82 C'mg-I) and Central Channel (1<=6.57

Comg· l
) compared to other areas. Average nitrogen ranged between 0.61 and 1.33 N·mg· l

and was also higher at the head of Ihe bay (x=1.33 N'mg-\ upper Western Channel

(x=l.1S N'mg' l ) and Central Channel (x=O.91 N·mg· l
) relative [0 other sites. CIN ratios

were relatively low and constant (5<"8.51-9.23%) throughout the inshore. Grain size in

inshore sediments was dominated by clay (x=33.8-SS.0%) and medium 10 fine silt

(5(=41.6-60.4%), (Table 2.4). Clay content was greatest in the upper Western Channel

samples, whereas medium [0 fine silt content was greatest at the upper Eastern Channel.

Elevated amounts ofcoarse silt were present in the Central Channel (x=IO.4%) and lower

Western Channel (x'"'8.2%). The low~ Western Channel also contained elevated
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amounts of fine sand (xc 2.6o/.). COanier sediments were present at the head of the bay,

which contained higher amounts of coarse sill (x=II.O%), very fine sand (x=3.9%) and

fine sand (x=3.90Io) compared to other areas sampled. Mixed-layer temperatures did not

vary greatly betWeen sites and ranged between 0.3 and OSC in April and between 9.1

and 1O.1"C in July. (Table 2.5). Bottom temperature in July ranged between -0.3 and

0.8°C, with the exception of the head of the bay which was much wanner (3.4°C). Mixed

layer salinity (31.9·32.1%0) and bottom salinity (32.2·32.8%0) were relatively constant

throughout the inshore (Table 2.5). Chi a extractions suggested that concentrations were

spatially consistent throughout the inner bay in April (-10 ,£Ig·r l) and July (-1,£1g·r l)

whereas in June they ranged between 0.25 and 1.28 ,£Ig·r l and were higher in the upper

Eastern Channel (Table 2.5). In August, concentrations ranged between 0.23·0.76 .u::g·rl

and were elevated at the head of the bay (0.76 .u::g·rl) and in the upper Western Channel

(0.64 ,£Ig·r1
). Concentrations in September (1.02-1.68 .u::g.\"I) were also elevated at these

sites (1.62 and 1.68 .u::g·r l respectively) as well as in the lower Eastern Channel (\.66

.ug·rl). These temporal and spatial patterns in chlorophyll a were similar to the

distribution in SeaWiFS (Sea-viewing wide field of view sensor), surface images for the

same time frame (http://dfomr.mar.dfo·mpo.gc.calscienceloceanlseawifslseawifs_l.html).

Total ichthyoplankton concentrations were higher at the head aCme bay (10,958'1000 m'

J) than in the channels during April. (Table 2.5), Concentrations in June were also highest

at the head of me bay (7222'1000 m·J ) as well as in the upper Eastern Channel

(7052'1000 m·J), whereas August concentrations were higher in the lower Eastern

Channel (10,206'1000 m·J
) relative to other parts of me bay.
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PeA analysis of sampling sites based on the environmental data showed similar spatial

groupings to those observed in the PCA-H analysis of species data for axes I and 2.

Factor I and 2 accounted for 39.2 and 20.8% of the variance in the data respectively (Fig.

2.13 A and 2.13 B). Factor 1 separated the head orthe bay samples wilh positive loadings

from the remainder orthe inner bay samples. Factor I also separated the Central Channel

and upper Western Channel samples from the lower Western and lower Eastern Channel

samples which had more negative factor loadings. Factor 2 separated the upper Eastern

Channel samples from the rest of the inshore samples. factor I had positive loadings for

productivity-related variables (chi a, ichthyoplankton concentrations (April & June).

sediment C'mg and N'mg), abiotic water column variables (mixed layer and bottom

temperature), and coarse sediment. Negative loadings were observed for average elN,

fine sediment (clay to medium silt), abiotic water column variables (mixed layer and

bottom salinity), ichthyoplankton concentration (September), and distance from the head

of lhe bay and shoreline. Factor I was heavily weighted positively for N/mg, bottom

temperature (July), ichthyoplankton concentration (April and June) and negatively for

CJN ratio, depth, mixed layer salinity, bottom salinity in July and distance from the head

of the bay. factor two was heavily weighted positively for ichthyoplanlcton concentration

(August) and negatively for chi a (June), very fine to medium silt, and mixed layer

temperature and salinity. Factor loadings are summarized in Table 2.6.

Because water column and productivity-related variables are often decoupled from

benthic communities. a SC(:ond PeA analysis was done where only sediment-related
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variables and depth were included. Spatial patterns were similar to those described above

(Fig. 2.14). Factors 1 and 2 accounted for 35.7 and 24.0% of the variability in the data.

Factor 1 largely separated the head of the bay samples with high positive loadings from

the remainder of the inner bay samples, which fonned two groups along this axis,

including the combined Central and upper Westem Channel samples and combined lower

Western and Eastern Channel samples. Factor 2 separated the upper Eastem Channel

samples from the remainder of the inner bay samples. Factor 1 had positive loadings for

organic carbon, nitrogen, and grain size (clay and coarse silt to medium sand), and

negative loadings for CIN and depth. Factor 1 was heavily weighted positively for

organic carbon and nitrogen content and negatively for depth. By contrast, Factor 2 was

heavily weighted positively for clay content and negatively for very-fine.medium silt

content. Factor loadings are summarized in Table 2.7. Multiple regression analysis of

species richness and environmental variables showed that the overall model developed to

predict species richness was not significant (F=OA53, p=O.858, n=17). Overall models

developed to predict infaunal diversity and density were significant. Depth and distance

from the head of the bay were shown to be the most imponant predictors of diversity.

Depth had a significant negative relationship whereas distance from the head of Ihe bay

had a significant positive relationship (Table 2.9). Depth was a significantly positive

predictor of infaunal density (Table 2.10).
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1.4 DiKussioD

In general, the marine environment surrounding Newfoundland has been poorly sampled

and benthic communities in particular have been studied in only a few instances, (e.g.

Nesis 1965; Carter et al. 1979; Hutcheson et al. 1981; Houston and Haedrich 1984;

Schneider et at. 1987; Gilkinson et al. 1998; Prena 1999), despite their essential role in

the dynamics of marine ecosystems (Mills 1975; Snelgrove 1999). Chapter I described

the community slnlcture and spatial distribution of sedimentary macrofauna on muddy

substrates in Placentia Bay Newfoundland and the adjacent shelf environment, and found

that many of the dominant species in Placentia Bay are characteristic of organic rich

areas. Community composition and environmental variation indicated that the bay can be

broadly divided into inshore and offshore regions. Community composition and benthic

patterns in diversity and abundance at broad scales (i.e., between the inshore and

offshore) were shown to be largely influenced by surface oceanography, as seen by the

importance of surface water characters and sedimentary carbon. Although communities

in the inner bay were shown to be generally homogeneous relative to offshore sites, there

was some evidence of further subslnlcture inshore. This chapter describes these spatial

patterns and examines which factors (i.e., water column and sediment characteristics) are

imponant in influencing inshore patterns of community composition, diversity and

abundance.

Cluster and PCA-H analysis of species data from box core samples collected within the

inshore region of the bay revealed spatial patterns that were not evident in the analyses of

93



broad-scale patterns in Chapter I. Discernable communities occurred at the head of the

bay (H), combined CentraUupper Western Channels (C and WI samples formed a

cluster), and combined Eastern/lower Western Channels (EI, E2 and W2 samples formed

another cluster). Spatial patterns in PCA analysis of sediment-related variables and depth

were similar to those observed for the benthic species data (pCA·H) with the exception of

the upper Eastern Channel samples differed from all other samples and accounted for

35.7 and 24% of the variance in the data. PCA analysis of water column productivity.

related variables bore no resemblance to benthic patterns. Thus, abiotic and biotic water

column variables are not as imponant as sediment-related factors and depth in explaining

the distribution and abundance of macrofauna inshore. a very different finding than that

described for larger-scale inshore/offshore patterns presented in Chapter I.

Community analyses showed that species composition patterns differed among different

areas inshore and many of these patterns can be related to grain size. The polychaete, P.

grallu!ala, was a dominant member of the community at the shallow site at the head of

the bay, whereas within the inner bay it was either completely absent or present in

extremely low numbers. The head of the bay was the shallowest site sampled and

contained coarse sediments with higher amounts of coarse silt [0 fine sand, which is

consistent with what is known about the biology of this species. P. grallu!ala is usually

found on sandy substrates at shallow to sublittoral depths. It is a burrowing, selective

deposit-feeder, (Fauchald and Iwnars 1979) that displays remarkable selectivity in grain

size when building its conical tube (Pocklington, unpublished). Several other polychaete
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species, important in distinguishing the head of the bay site from the inner bay sites, have

also been found on coarseJsandy sedimenlS, including Maldanidae (i.e., M. glebifex),

(pocklington, unpublished), Goniada maculata, A. nolani, S. longocirrata (Pocklington,

unpublished) and Spio jilicornis (Appy et aI. 1980). Of these, G. maculata, S. jilicornis

and S. longoci"ata were also associated with coarser sediments offshore (Chapter 2).

Capitellidae spp. were important at the head of the bay, Central Channel and in the

Western Channel, however, densities were higher on coarse sediments at the head of the

bay, Central Channel. and lower Westem Channel compared to the remainder of the sites.

This is consistent with observations in chapter I, which showed that Capitellidae spp.

densities were higher offshore where sediments consisted of a larger proponion ofcoarse

silt to medium sand compared to inshore.

Thyasira sp., an opponunistic, deposit·feeding bivalve, was most abundant in the Central

Channel, and was a key taxon in describing Central Channel community structure.

Relatively high densities were also found in the lower Western Channel, where sediment

composition was very similar. Despite the coarser sediments at the head of the bay,

density of this species was as low as that observed for ilU1er bay areas with finer

sediments. A similar situation was observed for M. calcarea, another deposit-feeding

bivalve that was similarly abundant on coarse sedimenlS at the head of the bay and on

finer sediments in the Eastern Channel. These patterns suggest that some factor other than

grain size may be imponant in influencing the distributions of these species. Closer

observation of density patterns revealed that at any given site, with the exception of the
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upper Western Channel, h.igh density of one of these species corresponded to lower

density of the other. In the upper Western Channel, densities of both species were low

and density of another deposit.feeding bivalve, N. ~n1ula, was higher than elsewhere in

the inshore. These patterns suggest that post·settlement processes such. as competition

may be imponam in influencing the relative abundance of these dominant, deposit·

feeding bivalves.

Although Dorvilleidae spp. and C. longoci"ata were present at all sites inshore, they

were imponant components of the community structure in the Eastern and lower Western

Channels, where they were more abundant. Dorvillieds are small, free living polychaelcs

that feed on algae and small invenebrates (Fauchald and Jumars 1979). They can be

found in all sublittoral environments, including heavily polluted areas (Fauchald and

Jwnars 1979). C. longoci"ata is typically abundant on muddy to silt substrates in

organically enriched areas (Blake and Hilbig 1994; Volckaen 1987) and is considered to

be an opportunistic species (Olsgard and Hasle 1993). Given the biology of this species,

it was not unexpected that patterns in abundance showed no consistent relationship with

grain size, however, it was surprising that lower densities were associated with higher

amounts ofsedimentary organic carbon at the head of the bay, Central Channel and upper

Western Channel compared with other areas. Density of Lumbrineris spp., Gyptis sp. and

total macrofauna (discussed later) were also lower at the the head of the bay, Central

Channel and upper Western Channel compared with other areas.
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Although C. /ollgocirrQtQ was identified as being more important in the Eastern and

lower Western Channels compared to other areas, this species played a very important

role in the community structure of the entire inshore region. Moderately low levels of

diversity inshore were largely due to the dominance of this opportunistic species (Chapter

l). C. /ollgocirrQtQ was the most abundant species present at each site and densities were

far greater than for any other species. lower densities of C. fongoci"ata at the head of

the bay, Central Channel and upper Western Channel also resulted in higher spedes

evenness and relatively higher diversity at these three sites. Depth and distance from the

head of the bay were the most significant predictors of species diversity. and diversity

was higher at shallower depths with coarser sediments. Although no one environmental

variable was shown to be important in predicting species richness it is possible that the

coarse component of sedim~nts at the head of the bay created greater panicle diversity

that resulted in greater richness than would otherwise be observed for fine sediments with

high levels of organic carbon (e.g. Etter and Grassle 1992). The upper Westem Channel,

where fine sediments were combined with high organic carbon, also exhibited the lowest

species richness.

Of all the inshon:' sites macrofaunal densities were much lower at the head of the bay,

Central Channel and upper Western Channel (x=3737.S individuals.!: 1077, n=18). Depth

was the most important predictor of infaunal density and density was lower at shallower

depths with greater amowlIs of relatively fresh organic carbon (as indicated by low CIN
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ratios). There are several possible explanations for such a large reduction in densities at

these three sites, however, none are conclusive without further study.

One possible explanation is that lower oxygen concentrations occurred within the first

few centimetres of sediment at these three relatively shallower sites that contained greater

amounts of organic carbon. It is also important to note that bottom temperature, although

not significant, was the next most important predictor of infaunal density and bottom

temperature was relatively higher at these three sites. All of these factors could contribute

to lower oxygen concemrations, however, data on dissolved oxygen concentrations in the

sediment were not collected. Nonetheless, there is little evidence in temiS of species

composition and abundance patterns, or from the vertical distribution of macrofauna, to

suggest that low oxygen conditions OCCUlTed. For example, at the shallow site at the head

of the bay, more organisms were found in the 3-10 core fraction compared to other

inshore sites and this same pattern was observed to a lesser degree for the Central

Channel (Chapter I, fig. 1.4).

Biological interactions such as predation (paine 1966) and competition (Connell 1961)

could contribute to density differences at these sites, however, further research is

necessary to address this possibility. Predation and competition have been shown 10 be

the primary regulating factors structuring rocky intertidal systems, because food and

larval supply often exceed the spatial carrying capacity, resulting in more recruits than

can occupy the space available (Grassle and Grassle 1992). However, studies on the role
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of predators in subtidal areas have produced mixed results (e.g. Blegvad 1928; Vimstein

1977; Peterson 1979; Ambrose 1984; Holland et al. 1980) and the driving forces in

regulating conununity structure in these areas are not as clear. In general, studies suggest

that competition is probably not a major structuring force but predation may be important

(see Peterson 1979). In addition. many of the conunon species in Placentia Bay are

typically abundant in organic rich areas and some have been described as being tolerant

to pollution; thus pollution can not be ruled out as a structuring factor.

The explanation for which there is the most evidence is that the relatively low

macrofaunal densities are a result of poorer food quality. Substantial amounts of

terrestrial debris in the fonn ofwood pulp, twigs and leaves (all very black in color) were

present in samples collected at the head of the bay near Bar Haven, which is near Swift

Current, the only major source of freshwater entering the bay (Willey 1976). Very small

amounts were also noted in samples from the Central and upper Western Channels.

Although CIN ratios for these sites were low and ratios have been commonly used to

indicate food quality to the benthos (Mitis et al. 1975; Grebmeier et al. 1988; Levin et al.

1991), interpreting food quality based solely on CIN ratios requires caution, especially if

detritus is aged. With aging, and thus increased microbial activity, the nitrogen content of

detritus increases and CIN ratios can be low (Tenore et al. 1979; 1982). Microbial growth

and increased nitrogen levels do not necessarily increase the nutritional quality ofdetritus

because the nitrogen present may not be available to the benthos (Tenore 1982). For

example, during aging, non-liable humic ni:rogen from terrestrial sources, rather than



microbial protein, may represent a significant fraction of the observed nitrogen (Odum et

aI. 1979; Rice 1982). The presence of telTestrial debris that is black in color and most

likely not of recent origin, along with substantial reduction in macrofaunal densities at

these three sites, suggests that such a scenario is possible. Sediment CIN ratios in

conjunction with isotopic analyses have been used to assess the origin of sedimenlary

organic matter (Ostrom 1989) and could resolve this question for Placentia Bay.

2.5 Summary

Analyses of community composition and abundance data for the inshore region of

Placentia Bay revealed spatial patterns that were not evident in the analyses of broad

sca!e patterns described in Chapter 1. Communities at the head of the bay, combined

Central and upper Western Channels and combined Eastern and lower Western Channels

could be distinguished in teons of species composition. Several of the key species

detennined to be imponant by Gabriel biplots (ie. Capitellidae spp., Dorvilleidae spp. , C.

/ongoci"ata) were significantly different in abundance among these three areas.

Analyses of sediment-related variables essentially showed the same spatial panerns as

species data, whereas productivity-related variables bore no linkage to benthic patterns.

This finding was not unexpected because decoupting of surface productivity and benthic

patterns is expected at smaller spatial scales (Barry and Dayton 1991). Community

analyses showed that species composition patterns differed among these differenl areas

and that many of these patterns could be related to grain size. This was particularly true

for the shallow site at the head of the bay. This area was characterized by coarse
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sediments consisting of relatively higher proportions ofcoarse silt to fine sand, which are

characteristic of the habitat of several species of polycltaet:es that were important in

distinguishing the bead of the bay site from other areas. Species riehness was greatest at

the shallow site at the head of the bay despite higher amounts of organic carbon in

sediments. Although no one environmental variable was shown to be important in

predicting species richness, it is possible that the coarse component of sediments at the

head of the bay created greater panicle diversity that resulted in greater richness than

would othetWise be observed for fine sediments with high levels of organic carbon.

Species richness was lowest in the upper Western Channel. which was characterized by

fine sediments with high organic carbon. The opponunistic polychaete, C. longocirrata,

played an important role in the community structure of the entire inshore region, where

somewhat low levels ofdiversity were largely due to the dominance of this opponunistic

species. C. Jongodrrata occurred in far greater densities than any other species. lower

densities of C. longocirrota at the head of the bay, Central Channel and upper Western

Channel resulted in higher species evenness and relatively higher diversity at these three

sites. Depth and distance from the head of the bay were the most significant predictors of

species diversity, which was higher at shallower depths with coarser sediments. In tenns

of abwKiance panems, evidence suggests that the quality rather than qualllity of organic

material was important in innuendng macrofaunal densities among inshore sites.

Reduced macrofaunal densities were observed at the head of the bay, Central Channel

and upper Western Channel despite higher amounts of organic carbon than at other sites.

Terrestrial debris was present in samples collected at these three sites, which were in
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close proximity 10 the only major source of freshwater entering the bay (Willey 1976).

Although elN ratios for these sites were low, the nitrogen that was present may have

been unavailable to the benthos (see Tenore 1982). Thus, water column productivity

related variables were not as important as sediment-related factors (i.e., grain size and

quality of organic material) and depth in explaining the distribution and abundance of

macrofauna on muddy substrates within the inshore region of Placentia Bay, which is a

very different finding than for larger-scale spatial patterns between the inshore and

offshore described in Chapler I.
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Table 2.t. Distance·related variables wilh 95% confidence intervals for depth.

Slfe Deplb(m)
DlsI__ INn__

sltore _ ......
Head (H) 67%3.7 600 12000
Centrale) 210.:5.1 1000 26000
West (W,) 214,,2.1 4000 23000
Wesl(W:) 283,,11.7 1000 45000
Easl(E,) 225,,6.7 2500 SOOO

"'<E 217,,6.5 3000 29000
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Table 2.2. Results ofdiscriminant function analysis. Species with densities <I % at any of
the site groupings presented as present (+) or absent (-). Groupings are based on those
obtained in PeA·H analysis.

Ta..

Sp;ofiJi«JnlU
T~llidesJtroftIti

ApiJlobrollcllusl)'pK:us

Ph~nuo plUlJloJo

PltoIoIlonga

Blnlvg
Yoldiasp.

AmDblooda
MonoculodesJp.

Lysianassidae sp.

Myskl

Head Cntral & Uppe:r
Westera C1I•••d
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Table 2.3. General comparison of species abundances in the Eastern and lower Weslem
Channels Ihat were shown to differ in PCA-H axes I and 3 ((+) indicales presem, (0)
indicates absenl and (» indicates greater abundance in one of the channels).

Ta..

Pol chaeta
LysilfD/oveni

Chaetaumesetosa

A.na/ani

LumbrinerUspp.

Sphaerodoropsisminula

Nereimya punClata

Bivalvia
Thyasirosp.

Yaldiasp.

Macomacalcarea

GastroDoda
Rerwaobtusa

Eastera Cbannel Lower Wester.
ChaD.cl
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Table 2.6 Factor loadings for the peA ofenvironmental variables. Heavily weighted
loadings (+1-0.10) are shown in bold.

Variable
Produc::tivl related variables

Om 'Yo/site
chla"WJechlor tlaJune I
chlaau chlor h llaAu Wil I
chi a (chloro h II a ember
N/m °4lsilel
ON carbon/nitro enm
Graia Size Yo
m·sand mediumund>350-250
(-$lind nne sand <250-125 m
v-fine sand ve fine sand <125--62.5
c-sill coarse sill <62.5-31 m)
v-f-rned sill (ve fine 10 medium silt <:31-3.9 )
cia <3.9-0 )
AbloUc:: Water Colum.
d lh thlsile
Ie MLA 'l(mixedla rle
Ie MLJIII mixed!a erIe

ichlh
ichlh

Fac::lon
1 ,

.621 .142

.187 -.941

.673 .323

.437 -.178

.757 .249
-.727 .402

.312 .3SJ

.583 .117
535 .132
.310 .371
-.095 -.751
-.215 .512

-.'169 -.072
.411 .393
.244 -.7.. t
.964 .183
-.918 -.318
-.527 -.71"
_.963 -.213

,,338 -.323
-.731 .511

.955 .108

.803 -.534
•.047 .733



Table 2.7. Factor loadings for the PeA ofsediment variables. Heavily weighted loadings
(+'-0.70) are shown in bold.

Fadon
I ,

.'7l4 .159

.169 .141
-.591 .318
.566 .465
.620 _.195
.484 _.489
.20) -.46)

-.414 -.Ut
.12) .~7

_.1'4 .320
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Table 2.8. Mann-Whitney tests for differences in diversity, species riclmess and evenness
between the site groupings designated by the PCA-H analysis (axes I &2) ofspecies
data, (a=O.OS and significanl differences are shown in bold).

SiteCrolip

Head orBay vs Central Channel

"lIotN:r Western Clwmc:llUOli

n"'18

Maa p- Me.. p-
Ruk value Raak value
15.50 14.00

6:50 <0.001 "'"'7.25 0.010

[venPfSs

HeadofBayvsEastemChannel

"lo_r Weslern Channel fUOUtI

n"30 21.42 10.67 22.08
l'"i":s6 0.002 18.72 0.01]~ <8.001

n~24 21.33 17.58 21.00
Central~lIl1pperWes!ernChannelgroIiP ~ <0.001~ 0.041 ~ <0.001

E;elem ChaMc:U lo_r Western Channel ou
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Table 2.9. Multiple regression of envirorunental variables with species diversity. The
overall model is significant (p=O.OO3) with df{total)=16 and F=8.97. Envirorunenlal
variable(s) thai contribuled significantly to the model are shown in bold.

[nvironme.tal Standardized p-values
Variabla Coefficients
Tom ratureBT Jul 1.204 0.162
Chloro h II a June 1.247 0.089
DeDth -3.424 0.010
%Clme: 0.579 0.265
V~f~med-sill -0.057 0.754
Temperature ML 1.811 0.050
Salimt ML 1.371 0.088
Distaace rr. headb. 2.•4. 0.036
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Table 2.10. Multiple regression of environmental variables with density. The overall
model is significant (p=0.027) with df{total)=16 and F=4.31. Environmental variable(s)
that contributed significantly to the model are shown in bold.

[nviroDme.tal Standa.rdiud p-valuts
Variables CoefficieDts
Temperature BT July) 1.713 0.136
Chlero h llaJune -1.291 0.182
~ tb 3.535 0.035
% elm -0.430 0.534
V-f-med-silt 0.178 0.480
TemoeratureML ·1.114 0.150
Salinit ML ·1.037 0.361
Distance fro headba -1.458 0.246
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46.9 6

55.2 54.0

Figure 2.1. Chart of Placentia Bay and location of sampling siles. Capital
letters indicate sampling siles. H denotes head of bay, C is Central Channel,
El and E2 are upper and lower Eastern Channel, WI and W2 are Western
Channel. Arrows on the right indicate different pans of the bay including the
head, and inner bay (collectively the inshore), and the outer bay which is
considered to be offshore. Inset shows Placentia Bay in relation to
Newfoundland. Depth contour line is 200 m.
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Figure 2.7. Cluster analysis of6 sile (36 box core samples) by 88 species matrix based on CNESS dissimilarity. Capital
letters denote siles sampled and subscript denotes replicate box cores (110 6), HI' HI'" (head arbay replicates 1 and 2
respectively), Ell' EI 1... (upper Eastern Channel replicates I and 2), E2. (lower Eastern Channel rcpHcalc I), WI, (upper
Western Channel replicale I). and W2. (lower Western Channel replicate I) and C1(Central Channel replicate I).
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PeA·H A.b I (27-/.)

Figure 2.8 PCA·H metric scaling ordimllion in twO dimensions of box
core spatial patterns based on CNESS (NESSm z 10 individuals). Species
vectan ofPCA·H ordination (Gabriel Euclidean distance bip[ot) have been
overlaid on community ordination to show which species comribule to
CNESS variation among samples and therefore drive spatial patterns. The
first two axes explain 27% and 19% of the variance in the data
respectively.
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Figure 2.9. Slacked bar graph showing the percentage of total individuals
contributed by each species 10 the site groupings obtained in PCA-H shown
in Figure 2.8. Graph only includes species iliat were identified by Gabriel
biplots. Proportions were determined by pooling the replicates within each
geographic grouping.
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Figure 2.10. PCA·H meaic scaling ordination in two dimensions of box core
spatial patterns based on CNESS (NESSrn=1O individuals). Species vectors of
PCA-H ordination (Gabriel Euclidean distance biplol) have been overlaid on
conununity ordination to show which species contribute 10 CNESS variation
among samples and therefore drive spatial patterns. The first two axes explain
27% and 10'% of the variance in the data respectively. See Figure 2.7 for sile
designations.
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Figure 2.11. Stacked bar graph showing the percentage orIola! individuals
contributed by each species 10 the site groupings obtained in PCA-H shown in
Figure 2.10. Proponions were dClcnnined by pooling the replicates within each
geographic grouping.
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contributed by each species 10 the sile groupings obtained from PCA-H
analysis shown in Figure 2.8. Only includes species designated as imponant
by discriminant function analysis and Ihal make up at least 1% of the IOlal
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Chapter 3. A guide to the polyc.aetes or Place.tia aay, NewrouDdla.d

3.1latroductiH

One of the greatest challenges in completing this study was the accurate identification of

macromvenebrates. and this was especially true for the polychaetes. Information

conceming subtidal benthic communities in Newfoundland (Carter et al. 1979; Houston

and Haedrich 1984; Kennedy 1985; Gilkinson et al. 1998) or the east coast of Canada

(e.g. Wbiteavcs 1901; T~adwell 1948; Bourgel and Messier 1983), for that matter, is

scanl, and taxonomic literature and expenise are largely lacking for Ihis area of the world.

In most cases, several identification keys encompassing a wide range of geographical

areas including the east coast ofCanada, British Columbia, Califomia, and New England

10 Bermuda were used in order to identify a single species.

Polychaeles are an imponant part of sort-sediment communities and it is well established

that they can be dominant in terms of numbers of species, numbers of individuals. and

biomass (Sanders et al. 1965; Hessler and Jumars 1974; Boesch et al. 1977; Knox 1977;

Fauchald and Jumars 1979). In Placentia Bay and the adjacenl shelf, a total of 118

infaunal species were collected and 63 (53%) of these were polychaeles. In tenns of

abundance, polychaetes comprised 88% (by number) of total infauna. It has also been

shown that polychaetes can be important indicators of pollution (Grassle and Grassle

1914; Pearson and Rosenberg 1918) and this, along with growing interest in conservation

and biodiversity of the marine environment. make the proper identification of these

organisms essential.
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This was the first comprehensive study of sedimentary infauna in Placentia Bay. A

complete list of infaunal species collected along with abundances for each site sampled

are given in Appendix 3.1. This final chapter provides a taxonomic summary of species

of Placentia Bay and adjacent shelf. including a list of polychaetes that were collected

and identified to species. the key char.lCteristics that were used to identify them, digital

photographs of some of these key chanc:ters and. a glossary of taxonomic tenns. It is

organised as follows. Species descriptions are organised alphabetically by family and

then by genus. within each family and species are described on a separate pages with

illustrations of the key characters. The infonnation provided is referenced from several

identification keys (e.g. Hartman 1965; Banse and Hobson 1974; Fauchald 1977; Gosner

1978; light 1978; Appy et at. 1980; Hobson and Banse 1981; Pocklington. 1984;

Pocklington. unpublished), and the keys that were most helpful in identifying cach

species are listed at the end of each species description. A glossary of the tenns used for

these descriptions is presented at the end of the descriptions, followed by a shan

discussion of some of the challenges and limitations associated with identifying

polychaetes from this region. Polychaetes that could not be identified to species are not

included in this summary.

The main goal of this chapter is to provide documentation of species identifications as

well as help others in the future who are working in this area. Digital photographs should

also aid with taxonomic tcnninology by providing visual representation that is often

lacking in identification keys.

III



3.2 Family: Ampharetidae

3.2.1 Amphorete ocutlfrons (Grube, 1860)

Key characteristics:

- more than two pairs ofbranchiae (b). (some
missing but can see branchial scars (bs»

- branchiae in 2 groups separated by a space equal
to \·2 branchial bases

• prostomium not pointed (trilobed)

- no large dorsal hooks behind branchiaelgills

- penstomial or buccal tentacles pinnate (use
compound scope to view) and approximately
subequal

- paleae (pi) well developed (l0-30 pairs),
long and slender

- neuropodia cirri (c) of abdominal neuropodia very
long

- teeth ofuncini in 2 rows
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Key characteristics of (A. aculi/rons) continued:

- numerous long and slender anal cirri (ae)

References:
Pocklington, unpublished. Pg, 163 (description) & Pg. 242 (Plate XXVI, Fig. d)
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3.2.2 Amphurelejinmurchicu (S~, 1866)

Key characteristics:

- more than two pairs ofbranchiae (b),
prostomium not pointed

- no large dorsal hooks behind branchiaelgills

- peristomial or buccal tentacles (be) pinnate
(use compound scope) and approximately
subequal

·ffl·., ...-.,
; -;.\

\ ... ' :.; '2,,.

- paleae (PI) present and well developed,
stout, curved with soon offset tip

- capilliform notosetae (no)
on 14 segments, undni (u)
begin on seliger 3

h _
I -.=- .,e._... .- ~-
~..::----

~-pi

13.



Key characteristics (A.jinmarchica) continued:

- 13 abdominal setigen

- pygidum has 2 long anal cirri (ae) and
a number of short papillae (pp)

References:
Pocklington, unpublished Pg. 164 (description) & Pg. 260 (Plate XXVI. Fig. f.
g)
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3.2.3 Ampharete goesi (Malmgren, 1866)

Key characteristics:

- more than two pairs ofbranchiae (broken off
in this specimen but can see branchial scars
(bs», prostomium not pointed

- no large dorsal hooks behind branchiaelgills

- branchial groups separated by a space
approximately equal to one brachial base
diameter

- paJeae (pi) present and well developed,
relatively short, stout, curved at tip
.00 .to,,!,

- peristomial or buccal tentacles
pinnate (use compound scope),
approximately subequal

- capilliform notosetae (no) on 14 or
15 segments. uncini begin on
seliger 3

- 17 abdominal setigers

- cirri (e) on abdominal neuropodia small

- 2 long anal cirri (ae) and papillae (pp) ifpresenl shon

References:
Pocldington, unpublished. Pg. 165 (description) &. Pg. 260 (plate XXVI, Fig. C, g)
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3.2.4 Lysippelabiala (Malmgren, 1866)

Key characteristics:

• more than t~ pairs ofbranchiae (b)

• no large dorsal hooks behind branchiaelgills

• perislOmlal or buccal tentacles smooth (use
compound scope) approXl rnately subequal

• palese (pi) present but scarcely perceptible

- capillifonn notosetae on 16 segments and
begin at segmel1l 3, uncinate setae begin
on segmenl4

• 14 abdominal segments

• 2 long anal cirri (ae)

References:

Pocldington, unpublished. Pg. 169 (description) & Pg 261 (Plate XXVII, fig. b)
Hanman 1965 Pg. 218 (descnpllon)
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3.2.5 Melinna eristata (Sars, 1851)

Key characteristics:

- prostomium not pointed

- more than 2 pairs ofbranchiae
(b)

• transverse dorsal fold (tdf) posterior
to hooks with 10-20 teeth

·2 large dorsal hooks (dh) located
behind gillslbranchiae (retracted
somewhat on this specimen)

- dorsal hooks long with slightly
bem tips

References:
Pocklington, unpublished. Pg.169 (description) & Pg. 261 (Plate XXVII, Fig. c)
Hobson and Banse 1981. Pg. 85 (Fig. 210)
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3.3 Family: Apistobranchidae

3.3.1 Api.tobranchus typicu. (Webster and Benedict,
1887)

Key characteristics:

- prostomium rounded with one pair of long
palps(p)

- thorax is made up of7 setigers with
lanceloate notopodia (no), each with a
adeulum but without notosetae

• neuropodia (ne) with several rows affine
setae

- below the notopodia are interramal cirri (ie)

- postsetal neuropodial lamellae ofsetigers 5-7 form
a subpodal fimbriated flange almost meeting
ventrally

- setigers 8-11 transitional, without interramal cirri

- posterior region with cylindrical nolo- and
neuropodia, paired anal appendages

References:
Hartman 1965. Pg. 145 (description) & Pg. 313 (Plate 27 a-h)
Appy et at 1980. Pg. 22 (Fig. 39 a,b) as A. luJlbergi
Pocklington, unpublished. Pg. 100 (description)
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3.4 Family: Chaelopleridae

3.4.1 Spiochaetopterus typicus Sars 1856

Key characteristics:

- I pair oflong palps (P)

- body with 3 distinct regions including:

- thorax with 9 uniramous setigers

- mid-region of2- JO elongate segments

- posterior region with numerous segments
and biramous parapodia

• setiger 4 with large stout setae
(ms)

References:
Pocklington. unpublished. Pg. 115 (description) & Pg. 247 (plale XIII, Fig. e,t)
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3.5 Family: Cbrysopedtalidae

3.5. t Dysponetus pygameus Levinsen, 1879

Key characteristics:

- small oval shaped species with approximately 15
segments

• eyes absent

- dorsal and ventral cirri present

- parapodia biramous

- notosetae (ns) dark brown and arranged in fan
shaped groups laterally and dorsally

• dorsal cirri large and subulate. equal to or
larger than the notosetae

• prostomium with 3 short elliptical shaped antennae

References:

Pocklington, unpublished. Pg. 25 (description)
Appy et al. 1980. Pg. 26 (Fig. 47)
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3.6 Family: Cirratulidae

3.6.1 Chaetozone setosa Malmgren 1867

Key characteristics:

- body elongate, fusiform in outline

. prostomium conical and pointed

- branchiae (b) numerous (more than six pairs),
found along entire surface

. large grooved tentacular palps (P)
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Key cbaracteristics (C setosa) continued:

- acicular setae or crotchets (cr) present as
well as capillary setae (cs)

- crotchets restricted to posterior segments
and almost encircling body

- epitokous spe<:imens contain long swimming
setae (capillary) which begin at about setiger 18

References:
Appyet aI. 1980. Pg. 28 (Fig. a,b)
Pocklington, unpublished. Pg. I J7 (description) & Pg. 247 (Plate Xlll, Fig. h, i)
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3.7 Family: Cossuridae

3.7.1 Cossura longocirrata (Webster and Benedict 1887)

Key characteristics:

- prostomium without appendages

- single long cirrus (c) present dorsally
on segment four

- without branchiae

References:
Appy et a1. 1980. Pg. 29 (Fig. 52)
Hartman 1965. Pg. 110 (description) &. Pg. 329 (Plate 3S a, b)
Note: most ofPbceotia Bay specimens ",-ere broken intolwo pieces
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3.8 Family: Flabelligeridae

3.8.\ Brada vil/osa (Rathke, 1843)

Key characteristics:

• cephalic cage absent

• body grub-like and mucous cover absent

- 2-5 well developed notosetae (os) per segment

- neuropodia with ''ring'' oflong papillae (pp) and with ]·6 neurosetae (nes),
(amber colored)

- dermal papillae (pp) with filiform tip

References:
Appy et al. J980. Pg. 34 (Fig. 62)
Pocklington, unpublished Pg. J23 (description) & Pg. 249 (platt XV Fig. c.d)
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3.8.2 Pherusa plumosa (MOller, 1776)

Key characteristics:

• body elongate (noc grub like), with
numerous papillae (pp) but without
a mucous cover

- cephalic cage (ee) present

• notosetae capilliform

• neurosetae short. stout, uncinate
and hooked (amber colored)

References:
Pocklington,. unpublished. Pg. 125 (description) & Pg. 242 (plale XVI, Fig. b)
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3.9 Family: Goniadida.

3.9.1 Goniada mJlculaJa Oersted 1843

Key characteristics:

- proslOmium conical and transversely annulated.
also with 4 minute antennae (a)

- chevrons (ch) on proboscis (7-11)

- anterior region with Wliramous parapodia (38-40)

15'
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Key characteristics (G. maculata) continued:

- posterior region with biramous parapodia

- anal cirri (ac)

References:

Appy et al. 1980. Pg. 38 (Fig. 69)
Banse and Hobson 1974. Pg. 81 (Fig. 22 f)
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3.10 Family: Hesionidae

3.10.1 Gyptis sp.

Key characteristics:

- biarticulate oral palps (p)

- prostornium with I median
(rna) and two lateral (Ia)
antennae

- 8 pairs of tentacular cirri (te)



Key characteristics (Gyptis sp.) continued:

- eversible pharynx with circlet: of
papillae (Pp) distally (>100)

- dorsal cirri long, monofiliform; ventral cirri shorter
than neuropodia

References:
Note: these specimens from Placentia Bay are similar to both G. vltrata and
Paragyptis margaretaf!
Pocklington 1984. Pg. 2334-2338. (comparison between G. ~l"ata and P.
morgare/oe)
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3.10.2 Nereimyra panetata (Moller, 1788)

Key characteristics:

- 2 antennae (a), (no median antennae)

- eversible pharynx with circlet of papillae (pp)
«100) distally PP

te

te

- 6 pairs of cirri (tc) on each side

- jaws G) present on pharynx (2 sets
located ventrally)
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Key characteristics (N. punctata) continued:

cirrus broken off

- neuropodia trik>bed

References:
Fauchald 1977 Pg.76
Gosner 1911 Pg. 364 (Fig 11.16 c)
PocldingtOfl, unpublished Pg. 42 (description)
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3.\\ Family: Maldanidae

3.11.\ Maldane giebifex Grube 1860

Key characteristics:

- cephalic plale with large rim

- setiger 1 without anterior collar (co)

- cephalic keel (ck) long and high, shallow lateral
notches (In) on rim f· !

, ~

i'
I

- with pygidial funnel (pI) or plate

- pygidial plate with narrow rim, with
weak lateral incision (Ii)

- ventral rim of pygidial plale denlale
(d)
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Key characteristics (M. glebifex) continued:

- anus (a) dorsal to pygidial plate

- 19setigers

References:
Fauchald 1977 Pg. 40
Hobson and Banse 1981 Pg 74 (Fig. 16 p,q)
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3.12 Family: ephtyidae

3.12.1 Nephtys ciliaJa (MOller, 1776)

Key characteristics:

- branchiae (b) recurved with convex side
toward laterial side of body

- branchiae (b) cirriform and begin
on segment 4-8 and reduced in
posterior segments

- with dorsal (de) and ventral cirri (ve)

- anterior parapodial lamellae
rudimentary

- posterior parapodial lamellae
sub-equal to acicular lobe

References:
Appyet 81 1980 Pg. 48 (Fig. 90)
Pocklington, unpublished Pg 6S (description)

'"

antenorend

posterior end
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3.12.2 Nephtys neo/ena

Key characteristics:

• proSlomium with 4 minute antennae <a>

• eyes on setiger 3 (usually very difficult to see)

- branchiae (b) point inwardly toward lateral side of
body, begin on seliger 5-6

(1-

• single anal cirrus (ac)

References:
Appy et al 1980. Pg. 45 (Fig. 85 a,b) as Ag/aophamus neote"us
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3.13 Family: Opheliidae

3.13.1 Ophe/ina acuminata Oersted, 1843

Key characteristics:

• body elongate (without distinct regions) with a
ventral groove (vg) running the entire length of the
body

- branchiae (b) begin at setiger 2 and aTe present in mid·
region

V8

• anal tube ventrally incised and with papillae (Pp)
around open edges

References:
Appyet aI 1980 Pg. 52 (Fig. 99 a,. b)
Pocklington, unpublished Pg 132 (description) & Pg. 2S1 (plate XVII, Fig. g)
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3.14 Family: Orbiniidae

3.14.1 Se%p/os a,mige, (MOiler, 1776)

Key characteristics:

- prostomium conical

- branchiae (b) begin on segments
9·17

-thoracic setigers 12-20

anterior end

- thoracic neurosetae include hooks

• with 1-2 extra subpodial papillae
on last few thoracic segments (not
shown)

- parapodia without interramal cirri

~
~

References:
Appy et at 1980. Pg. 56 (Fig. 106 a,b)
Pocklington, unpublished. Pg. 93 (description) & Pg. 237 (plate Ill, Fig. i,j)
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3.15 Family: Paraooidae

3.15.1 Aricidea nolani Laubier, 1%7

Key characteristics:

- prostomium with a non-articulated
median antennae (rna)

- median antennae (rna) shon, subu\ate
10 fusiform, reaching to setiger 2

- has up to 30 pairs of branchiae (b)

- modified setae in posterior neuropodia
with long slender spine

References:
Appy et al. 1980. Pg. 58 (Fig. 111) as A. slIecica
Pocklington, unpublished. Pg. 95 (description) & Pg. 238 (pisle IV. Fig. c,d)
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3.15.2 Aricidea quadrilobata Webster and Benedict,
1887

Key characteristics:

- prostomium with a non- articulated
median antennae (rna)

- median antennae (rna) is long and
filiform, reaching to setiger 4-6

- 9-10 pairs of pointed branchiae (b),
beginning on seliger 4

References:
Appyet al. 1980. Pg. 58 (Fig. \10 a-c)
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3.15.3 Tauberia gracilis (Tauber 1879)

Key characteristics:

- median antennae absent

- 7- 17 pairs of strap-like
branchiae (b)

- branchiae begin on setigers
6-7 and 9-14 pairs

- posterior neuropodial setae
capillary and 3-6 hooked
crotchets beginning on setiger 20

References:
Appyetal 1980 Pg.60(Fig. 114a,b)
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3.16 Family: Pectinariidae

3.16.1 Pectinaria grana/ata (Linn.eus, 1767)

Key characteristics:

- cephalic paleae (cp) 7·10 pairs

- scaphal hooks (sh) 6·10 pair, curved or with
distinct shoulder

Smaller specimen ------.

References:
Appy et a1. 1980. Pg. 20 (Fig. 34 a-d) as Cislena grauulota
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3.18 F.mily: Phyllodocid••

3.18.1 Eleone longa (Fabricius, 1780)

Key characteristics:

- 2 pairoftelll8Cular cirri (subequal) on
one segment (nol shown)

• anal cirri (ae) shan and thick almost spherical

- dorsal am (de) longer than ""de (001 spherical), not
much larger than parapodiallobe

References:

Appyetal 1980 Pg.62(Fig.117a,bc)
Danse and Hobson 1974 Pg 40 (Fig. 8d)
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3.18.2 Phyllodoct maca/ala (Linnaeus, 1767)

Key chllnlcteristics:

• 4 pall~ of tentacular elm (te)

- no median antennae

• pr05tomium heart-shaped

• body with brownish spots mid-dorsally

- ventral cirrus (vc) oval not pointed

References:

Hobson and Banse 1974 Pg 47 (Fig. 10 c)
Pod:lington, unpublished Pg 36 (description)
DoOOlIIKAppy 1980.Dtagramsarenot\'ft)'goOO.
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3.18.3 Phyllodoce groenlandica Oersted, 1842

Key characteristics:

·00 median antennae

- prostomium heart-shaped

- tentacular cirri (te) 4 pair

• parapodia dorsal cirrus (de) with lobe below cirrophore

• ventral cirrus (ve) turned downward at tip

References:
Appyet al. 1980 Pg. 66 (Fig 127)
Banse and Hobson 1974 Pg. 45 (Fig. 10 b)
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3.19 Family: Polynoidae

3.19.1 Antinoella sarsi (Kinberg in Malmgren 1866)

Key characteristics:

- lateral antennae (la) inserted ventral to median
antennae (rna), (broken offin this specimen)

- notopodia with notosetae (ns) and acicula

• at least 15 pairs ofelytra (e)

• notosetae (ns) stouter than neurosetae (nes)

• two types of neurosetae (not shown)
(i.e., long capillary tips and stouter with
a slight sub-distal expansion)

References:
Pocklington, unpublished. Pg. 12 (description)
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3.19.2 Arcteobia anticostiensis (Mcintosh, 1874)

Key characteristics:

• fewer than 45 segments

• irregularly banded mid-dorsally

- elytra (e) covers dorsum (this specimen
is missing most of its elytra but can
see elytral attachments (ea)

• elytra with pigmented areas

• prostomium with distinct cephalic
peaks (cps)

- anterior pair of eyes anteroventral

- lateral antennae (Ia) inserted ventral
to median antennae (ma)

• upper notoselae shorter, stouter, with blunt tips; rest
ofnotosetae with capillary tips (not shown)

References:
Appy et aI. 1980. Pg. 49 (Fig. 134 a,b)
Pocklington. unpublished. Pg. 10 (description)



3.19.3 Enipo canadensi5 (McIntosh, 1874)

Key characteristics:

• lateral antennae (la) Inserted ventral to me(llan
antennae (ma)

• prostomium rounded

~\.~·i;- - ., /

..'#.',', -.-
~~-\.. .--;.

,, \

- more than 45 segments.
elyua (e) on anterioc
segments only

- two mid-dorsal nodules (n)
per segment

- elyua occupying lateral
regions only

- at least some notosetae With

slender capillary tips; or
nolosetae more slender than
neurosetae

References:
Hobson and Banse 1974 Pg. 32 (Fig. .5 f) as PoIy"oe
Pocldington, unpublished Pg. 13 (description)
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3.19.4 Nemidla tOTelli (Malmgren, 1865)

Key characteristics:

• laleral antennae (ia) inserted
ventral to median antennae
(is broken olfin this specimen),
(rna)

- prostomium with well
developed, pointed cephalic
peaks (cps) and 4 eyes

- It least 4S segments and elytra
on anterior segments only
(approximately 15 pairs)

• e1ytra (e) smooth and not oompletcly covering
do""m

- notopodia with ootosctae (ns) and acicula

• notosetae (ns) more slender than than
neurosetae (nse), (difficult to see the
difference in this phOlO)

References:
Poddington, unpublished Pg 21 (description)
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3.20 Family: Sabellidae

3.20.1 Euchone incolor Hartman, J%5

Key characteristics:

- uncini not completely encircling the
abdominal segments (not shown)

- possessing long-handled, acicular thoracic
uncini (nol shown)

- collar oblique

- abdomen with more than three setigers

- posterior abdominal segments (last three af
setigers) modified into an anal funnel (at)

- 3-4 pairs of branchial rays (br), each bearing lateral
filaments (If) and tenninating in a long free filiform
lip, no branchial membrane

References:
Hartman 1965. Pg. 231 (description) & Pg. 36\ (plate 51 a-d)
Pocklington, unpublished. Pg. 192 (description) & Pg. 265 (plate XXXI, Fig. p)
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3.21 Family: Scalibregmatidae

3.21.1 Scalibregma inflatum Rathke, 1843

Key characteristics:

- body arenicoliform (not
grub-like) and inflated
anteriorly

- prostomium T-shaped due
to fTontal horns (fh)

• posterior parapodia with
digitiforrn dorsal cirri (de)
and ventral cirri

- with branchiae (b) (appear bushy)

- without acicular spines

References:
Appyet al. 1980. Pg. 78 (Fig. 152)
Pocklington, unpublished. Pg. 128 (description) & Pg. 251 (plate XVll, Fig. a)
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3.22 Family: Spba.rodorida.

3.22.1 Sphaerodoropsis minuta (Webster and Benedict
1887)

Key characteristics:

• body short, cylindrical (grub-like)

• segmentation indistinct except marked
by parapodia

- spherical glandular macrotubercles (rot)
encircle dorsum in transverse rows

- 10-14 spherical and sessile
macrotuberc1es (rot) per setiger

• setae compound

References:

Appy et al. 1980. Pg. 84 (Fig. 163 a,b)
Pocklington, unpublished. Pg. 69 (description)
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3.23 Family: Spiooida.

3.23.1 Polydora caulleryi Mesnil, 1897

Key characteristics:

• paJps (p) long

- setiger 5 (s5) larger than adjacent segments
and contain modified setae (ms)

- modified spines ofsetiger 5 (55) falcate
with bushy lip

- cylindrical hooded hooks begin on setiger 7

- hooded books without constriction on
shaft

References:
Poclclington, unpublished. Pg 104 (description) & Pg. 240 (Plate VI, Fig. a-d)
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3.23.2 Prionospio sleenslrupi Malmgren, 1867

Key characteristics:

• setiger 5 not modified

- 4 pair ofbranchiae (b) that begin on
setiger 2 (only 2 pairs are present on
this specimen)

- the 1- and 4th pair ofbranchiae are pinnate

- neuropodial hooded hooks begin at
setiger 12-17

-anal cirri (ae)

References:
Light 1978. Pg. 88 (Fig. 89 a-d)
Pocklington, unpublished Pg. 108 (description) & Pg. 242 (Plate VIII, fig. d,e,f)
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3.23.3 Spio jilicornis (MOller 1776)

Key characteristics:

- seliger 5 not modified (similar to
adjacent segments)

• branchiae (b) present, begin on seliger I
and present on most segments

• branchiae on setiger 1 approximately
subequal to others

- 4 thick subulate anal cini (ae) surrounding
anus

- neuropodial uncini or crotchets (cr) hooded,
bidentatt, 6-10 beginning on seligen 10-24

.~I ~\

References:
Light 1978. Pg. 45
Pocklington. unpublished. Pg. 110 (description) & Pg. 245 (platt XI, Fig. f)
Hobson and Banse 1981 Pg. 44 (Fig. 6 j)
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3.24 Family: Terebellidae

3.24.1 Artacama proboscidea Malmgren, 1865

Key characteristics:

- large conical proboscis covered with
papillae (pp)

• groups offiliform branchiaeJgills
(b) on segments 2-4

- 17 thoracic setigers

- abdominal parapociia with
rounded leaf- like cirri (e)

References:
Fauchald 1977 Pg. 130
Pocklington, unpublished. Pg. 174 (description) & Pg. 262 (Plate XXVIII a,b)
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3.24.2 Filibranchus roseus Maim 1874

Key characteristics:

• thoracic setae and uncini are first
present from the 6U, segment and
cominue posteriorily through 15
segments

. 1- segment has a pair of large lateral
lobes (11) extending ventrally which
are completely separable medially

- 2 pair ofcirriforrn branchiae (b) and
each pair is inserted on each of the 2nd

and 3n;! segments (only one branchie
is present on this specimen bul
branchial scars (bs) are present)

References:
Hartman 1965 pg. 227
Fauchald 1977 pg. 134
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3.24.3 Lysilla loven; Malmgren, 1866

Key characteristics:

- branchiae absent

- segmentation indistinct

• uncinate neurosetae absent
and abdominal segments
achaetous

- approximately 6 thoracic notopodia (no)

- capilliform notosetae (en) minute (barely
visible)

• thorax with numerous. large epidermal
papillae (pp)

pp

References:
Pocldington, unpublished. Pg. 174 (Subfamily Key) & Pg. 185 (description)
Hobson and Banse 1981. Pg. 91
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3.24.4 Po/ycirrus eximius group (Leidy, 1855)

Key characteristics:

- 16-31 thoracic segmenls bearing notosetae

• uncini (u) begin on segment 7·9

- branchiae absent

- posterior thoracic uncini (u) in 1 row

References:
Pocklington. unpublished. Pg. 174 (Subfamily Key) & Pg. 185 (description)
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3.25 Family: Trichobranchidae

3.25.1 Terebellides stroemiS~ 1835

Key characteristics:

- buccal tentacles (bt)
numerous

- 18 thoracic setiger!

- uncini (u) begin at setiger 6
(in single rows)

- I median branchiae (b) with
4 pectinate lobes

median branchiae

References:
Appy et aI. Pg. 98 (Fig. J94)
Hobson and Banse 1981 Pg. 97 (Fig. 24 c,d)
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3.26 Glossary or poIydtadt cn... Dtflbiliolls an bUfti 0. Appy d aL (1980) ..d

Fa.chld (1979).

Abdomea - posterior portion of body, behind the thorax

Ac"aelolls - without setae

Ac:iculu Hla - thick. projecting setae

Adc.l.m - stoutsupponive setae embedded in each parapodiallobe (ramus)

Aaal cims/clrri - one or more elongate projections from the pygidium

Maalaled - external division of segments. not lnIe segmentation

Mln.at - one: or more elongate projections (sensory in function) located on the

proslomium

Anak':oUrorm - body cylindrical and elongate. tapering toward posterior

Astllgf:ro.s • segments lacking setae, without setae

Blartk_lactd - with two points, used to describe anteMae, palps, and tentacles

BiduuCe - with two prongs or teeth

Bin....s - with two branches. usually used to describe parapodia having both

notopodia (upper division) and neuropodia (lower division)

B....c... - an extension of the body wall which contains many capillary blood vessels

(e.g. a gill)

Braae"'.l rays - array of elongated appendages on the head of sabellids and serpulids

used for feeding and respiration
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Braadiial san - areas where branchiae anach 10 the body, scars left after branchiae

have fallen offor been removed

BlICe" drri - cirri in or around the moulh, sensory rather than feeding

C.piUary Wbt - slender usually long setae tapering to a fine tip

C.pllltfOMll - slender and cylindrical

Ctplllluk: c:aee - numerous long setae enclosing and prolecting Ihe head region

CtpbUc rim - Oange encircling the head

Chevroa - v - shaped chitinized jaw piece at the base of Ihe eversible pharynx in some

goniadids

Cirrl- sensory projeclion, usually slender

Clrriform - slender and cylindrical

Clav.k - club - shaped

Co~.dHiH - setae having a lerminal portion which articulales wit.'l a shaft, jointed

Ktac

Croc~d - small hook

IktIwte - with notches or teeth

Dicltif... - finger - shaped

Don•• cirri - sensory projection. usually slender and cylindrical localed on the

notopodium

Elytu - dorsal scales like those found on scale wonns

Epitoke - modified reproductive stage
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Evenlblf: proboscislpbaryax - part of pharynx being capable of being extended by

turning the inner part outwards

Falcate setae - distally curved, usually blunt setae

Falciger - distally blunt and curved setae

Flllrorm - slender and threadlike

Fro.ta. a.te••ae - antennae situated at anterior end

Fuslrorm - spindal - shaped

Hooded .ook - seta distally covered by a delicate chitinous enveloped or guard

Hook - used to describe stout - shafted, blunt, often distally curved and dentate setae

Lamellae - flanened feshy plates anterior and posterior to the setae

Licule - finger - shaped major process on a parapodium

Lateral- side of body

Lobe - conical process of a parapodium

LOdC- laa.dled - used to describe uncini, with a long basal rod supporting the uncinus

Mooillrorm - headed or beadlike

Neuropocllum - ventrallohe (ramus) ofparapodiurn

Nnrosetae - setae of neuropodium

Notopodlum - dorsal lobe (ramus) ofa parapodium

Nolosetae - setae of natopodium

Paine - strong or broad, usually flanened setae

Palps or Icalacular palps - sensory or food. gathering appencages on the prostomium or

anterior segments (usually paired)
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Papillae - conical dennal structures, nipple like

Pa"podla - foot, paired, lateral appendages eKtending from the body segments. A

parapodium can be biramous or uniramious, consisling of the upper

division called the notopodium and a ventral division called a neuropodium.

Pectl.ate ~ a series of projections arranged like teeth of a comb

Penstomiam - the presegmental region of the body surrounding the mouth

PiDDate - featherlike

Poslsela' - posterior to the setae; used about parapodial lobes or ligules

Prnelal - anterior to the setae

Proslomium - anterionnost, pre· segmental part of the body, sometimes bearing eyes

and antennae; may not be eKtemally recognizable

Pyildium - post - segmental part ofthe body surrounding the anus

Ramus - branch - like structure, used when describing notopodium (dorsal ramus) and

neuropodium (ventral ramus)

RlldlmeDtary - not present or eKtremely reduced, usually used in reference to parapodia

Scapbe - flattened caudal appendage ofPectinariids

Setae - chitinous hair protruding from the body

Stiller - refers to a segment bearing setae

Short - ba.dled - used to describe uncini, without a long rod-shaped support

Simple stille - unjointed setae

S.b--binmolls panpodla - parapodia with neuropodium well developed and

notopodium reduced

'89



Sab-eq••1- same size

Sabulace - awl - shaped, tapering to a fine point

Teatacular cirri - dorsal and/or venlral cirri of parapodia or cephalised segmenls,

often more elongate than those ormore posterior parapodia

Tllorax - anterior region of the body, posterior to the head

Trilobed - with three lobes

Uacial - deeply embedded setae with only its expanded multidentate head protruding

from the body; usually hooked and arranged in rows

VakieataCe - distally entire

Valnmous - with one branch, used to describe parapodia with one lODe, usually the

notopodium is absent

Veacr.l cirri - sensory projection, usually slender and cylindrical located on the

neuropodium

Veatr.1 groove - groove located on ventral side ofOOdy
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3.2:1 DiscuSllo.

This chapter is not intended 10 be used as a "stand alone" taxonomic key and referenced

keys should be used for identification. Indeed, as a general rule it is best to consult more

than one key while idenlifying. All keys have their strengths and weaknesses and using

them in combination can make identification more efficient and accurate. in addition,

keys are usually developed for a specific area, and care must therefore be taken in using

them to identify fauna from other areas because the specimen in question may not be

included in the key, resulting in misidentifications.

The need to incorporate several keys into the identification process was especially

pertinent in this study. The polychaetes of Newfoundland are not well known and no

published key specific to this area exiSIS. Moreover, the influence ofboth the Gulf Stream

and Labrador Current in Placentia Bay results in a unique mixture of arctic and boreal

species, some of which are reported as being at their northern or southern limit. Members

of this assemblage are therefore not usually found together in a single key.

This chapter references several keys. In terms of identifying to the family level, the

family key provided in Appy et al. (1980) along with illustrations and summaries of some

external diagnostic characters of each family provided by Hobson and Banse (1981) and

Banse and Hobson (1974) were very helpful. The species keys developed. by Appy el al.

(1980) were also useful and contained numerous figures making character identification

easy. The greatest limitation of the Appy et al. (1980) key is that it focuses on the Bay of

19'



Fundy area, and therefore does not include many of the species found in Placentia Bay.

This key is therefore especially poor for several families, including Ampharetidae,

Terebellidae, Dorvilleidae, Sigalionidae, and Polynoidae.

Pocklington's unpublished key entitled "The Polychaetes of Eastem Canada including the

Eastern Arctic" is the best representative key for species found in this area. The species

descriptions are detailed and infonnative and include infonnation on the distribution and

ecology ofeach species, which is lacking in most other keys for the region. Although this

reference contains some very useful figures, illustrations are completely lacking for

several families including Polynoidae, Sigalionidae, Phyllodocidae, Hesionidae,

Nephtyidae and Syllidae. An excellent key, was produced by Fauvel (1923; 1927). It has

exceptionally detailed species descriptions and ligures showing setae and jaws which are

usually only described rather than diagramed in the other keys. Because of its level of

detail, however, it is not recommended for anyone new to polychaete taxonomy,

particularly if they are not fluent in French. Penibone (1963) is also a very good

reference.

Several obstacles were encountered in identifying the Placentia Bay polychaetes that are

not uncommon to taxonomy. Specimens were often broken into two or more pieces and

others were missing such diagnostic characters as antennae, palps, and scales. In these

cases it is necessary 10 look for scars wbere these appendages may have been attached,

and examples of which are shown in the digital pholographs provided. Different
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characters are more readily visible at particular angles and lighting regimes. It is also

good practice to lry placing specimens against light and dark backgrounds. The family

Maldanidae was particularly difficult because in order to identify it to the species level,

the anterior and posterior regions must both be present and this was complicated by the

fact that individuals were often broken into several pieces. Members of the family

Dorvilleidae and Syllidae also posed much difficulty because they were very small and

particularly fragile.

Placentia Bay specimens did not always confonn precisely to species descriptions in keys

developed for other areas. For example, several specimens from the family Hesionidae

were similar 10 the species Gyptis villata in that they had a median antennae, but unlike

this species they also contained > I00 papillae on their pharynx as seen in Paragypris

margaretae (see Pocklington 1984 for details on the description of these two species).

Because these specimens could not be classified as either of these two species, they were

only identified to the genus level (Gyptis sp.) It is unknown whether this discrepancy is a

more genera) taxonomic problem or a feature specific to Newfoundland. A similar

situation occurred in the family Paraonidae where a relatively common polychate found

in the inner bay resembled both Aricidea nolani and A. catherinae. It was similar to A

catherinae in that its anterior region was dorsal ventrally flattened giving it a fusifonn

shape, that is a distinctive character in other areas, however, it had setae with an arista or

slender spine that is specific to A. nolani and is described as cylindrical in shape. Because

setae are better -::haracters than body shape, these specimens were identified as A. nolani.
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This same trend in Newfoundland polychaetes, and the need for these and other

differences to be described, has been acknowledged by P. Pocklington (pers.

communication).

Another interesting outcome from this study was that it extended a number of species

ranges. For example, Polycirrus eximius was previously distributed along the New

England Stales. This range was extended northward when reported in Ihe southwestern

and lower Bay of Fundy in the 1980's by Appy et al. (1980) and Peer et al. (1980)

respectively, however, the Placentia Bay record extends its range even further northward.

Aricidea quadrilobata was previously distributed from Nova Scotia to Massachusetts as

well as a record from Nain Bay, Labrador (Bousfield 1981), but this study further extends

its range. Pholof! fonga is considered 10 be an arctic species (Pocklington, unpublished)

and this record, along with a record from the Gulf of SI. Lawrence (Pocklington 1988),

extends its range southward. Lysilla loveni is also considered 10 be an Arctic species, and

until this study was only reported as far south as Ungava Bay (Grainger 1954).
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3.29 S...muy ud Coael.lio.1

It was evident from analysis of spatial pantms of corrununity composition and

environmental varialion that Placenlia Bay contains diSlinct inshore and offshore regions.

lbe inshore region compared 10 the offshore was characterized by greater mixed la~r

temperatures., higher surface production (chi a), and large amounts of relatively fresh

orgar..i.: carbon. The higher levels oforganic carbon inshore reduced species richness and

diversity and !his area contained many species that are known to be abundant in organic

rich areas elsewhere. Differenl variables appeared to operate at different scales. At

smaller scales (e.g. head of the bay and within the offshore), grain size was panicularly

imponant, even though areas of high surface production (chi a) had correspondingly

elevated amounts of organic carbon. Abundance pauems suggested a negative

rela!ionsltip between surface production and abundance, however, it was found that this

relationship was confounded by low abundance panems at~ sites within the inshore

and elevated dC1l5ities al a single site offshore (Oderin Bank) that is known 10 be

productive.

Analyses of panerRS wi!hin the inshore region of the bay in Chapler 2 revealed spatial

pantms that were not evident in the analyses of broad·scale paltems in Chapler I.

Moreover, the results of these two chapters indica!ed that different variables stroclured

these communities at different scales. Water column productivity·related variables, which

were imponant to the larger scalc: inshore/offshore comparisons in Chapter I, were not of
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primary imponance to benthic patterns within Ihe inshore, where sediment-related

factors (i.e., grain size and quality oforganic material) and deplh showed similar spatial

patterns as species data. In terms of abundance patterns, evidence suggcslS the quality,

rather than quantity, of organic material, was important in influencing macrofauna.!

densities among inshore sites. Further study is needed to be conclusive.

Polychaete taxonomy can be very challenging and time consuming, and Chaptet" 3 was

designed to assist others in the future who are working on polychaetes from this area. The

polychaetes of Newfoundland are not well known, and no published key specific to this

area exislS. The polychaetes of Placentia Bay contain a unique mixture of arctic and

boreal species, some of which are reponed as being at their northern or southern limit.

lndeed, this study extendM a nwnber ofspecies ranges. Placentia Bay specimens did not

always confonn precisely to species descriptions in keys developed for other areas and it

is unknown whether this discrepancy is a more general taxonomic problem or a feature

specific to Newfoundland. This same trend in Newfoundland polychaetes, and the need

for these and other differences to be described, has been acknowlMged by P. Pocklington

(pen. communication).
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