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Abstract

Synchronous systems are single purpose multi i his which

provide a realistic model of computation capturing the concepts of pipelining, par-
allelism and interconnection. The syntax of a synchronous system is specified by
the synchronous scheme, which is in fact a directed, labelled, edge-weighted multi-
graph. The vertices and their labels functional elements (the binational

Iognc) with some operation symbols associated with them, while the edges represent
tions between functional elements. Each edge is weighted and the non-
negative integer weight (register count) is the number of registers (clocked memory)

placed along the i ion between two functional elements. These notions al-

lowed the introduction of transformations useful for the design and optimization of
synchronous systems: retiming and slowdown.

Two synchronous systems are strongly equivalent if they have the same stepwise

behavior under all inter i Retiming a functional element in a synch

system means shifting one layer of registers from one side of the functional element
to the other. Retiming equivalence is obtained as the reflexive and transitive closure
of this primitive retiming relation. Slowdown is defined as follows: for any system
G = (V.E,w) and any positive integer c, the c-slow system ¢G = (V. E, ') is the
one obtained by muitiplying all the register counts in G by c. Slowdown equivalence
is obtained as the symmetric and transitive closure of this primitive slowdown re-
lation. Strong retiming equivalence is the join of two basic equivalence relations on
synchronous systems, namely strong equivalence and retiming equivalence. Slowdown
retiming equivalence is the join of retiming and slowdown equivalence. Strong slow-

down retiming equivalence is the join of strong, slowds and retiming equival

It is proved that both slowdown retiming and strong slowdown retiming equivalence
cbsynch systems (sch aze decidabl

According to [ Leiserson and Saxe, 1983a, 1983b ], synchronous systems S and S'




are equivalent if for every sufficiently old configuration ¢ of S, there exists a con-
figuration ¢’ of S’ such that when S started in configuration ¢ and S’ started in
configuration ¢, the two systems exhibit the same behavior. It is proved that two

synch systems (sch \!

are Lei:

if and only if they are strong
retiming equivalent.

The semantics of synchronous systems can be specified by algebraic structures
called feedback theories. Synchronous schemes and feedback theories have been ax-
iomatized equationally in [Bartha, 1987]. Here we extend the existing set of axioms
in order to capture strong retiming equivalence.

One of the fund: | features of synch systems is synchrony, that is,
the computation of the network is synchronized by a global (basic) clock. Other,
slower clocks can be defined in terms of boolean-valued flows. In order to describe

the behavior of schemes with multiple regular clocks, we extend the existing algebra
of schemes to include multiclocked schemes. and study the general idea of Leiserson

equivalence in the framework of this algebra.
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1 Introduction

The increasing demands of speed and performance in modern signal and image pro-

cessing licati a luti 'y supt hnology. Ac-
cording to [Kung, 1988], sequential systems will be inadequate for future real-time

processing systems and the additional ional bili ilable through
g/

VLSI concurrent processors will become a necessity. In most real-time digital signal

g l-purpose parallel cannot offer sati y

processing speed due to severe system overheads. Therefore, special-purpose array

processors will become the only appealing alternative. Synch systems are such

multiprocessor structures which provide a realistic model of computation capturing

the concepts of pi g, and i ction. They are single purpose

i

which directly impl as low-cost h devices a wide variety of
algorithms, such as filtering, convolution, matrix operations, sorting etc.

The concept of a synchronous system [Leiserson and Saxe, 1983a] was derived
from the concept of a systolic system [Kung and Leiserson, 1978] which has turned
out to be one of the most attractive current concepts in massive parallel computing.
In recent years many systolic systems have been designed, some of them manufac-
tured; transformation methodologies for the design and optimization of systolic sys-
tems have been developed and yet the rigorous mathematical foundation of a theory
of synchronous systems has been missing. Important equivalence relations of syn-
chronous systems such as slowdown retiming and strong slowdown retiming still lack
decision algorithms. Some of the fundamental concepts, like Leiserson’s definition of

equivalency of synchronous systems are still informal and operational.

A more sophi: 1 model of synch systems was introduced in [Bartha,

1987]. In that model the graph of a synchronous system becomes a flowchart scheme
in the sense of [Elgot, 1975], with the only difference that all edges are weighted and

reversed. For this reeson, such graphs are called synchronous schemes. With that



approach it becomes possible to study synchronous systems in an exact algebraic
(and/or category theoretical) framework, adopting the sophisticated techniques and
constructions developed for flowchart schemes and iteration theories.

This thesis addresses the problems stated above, which, to the best of our knowl-
edge, are unsolved so far. The thesis is organized as follows: in Chapter 2 we intro-
duce the concepts of systolic arrays, synchronous systems, flowchart and synchronous
schemes, and give a short summary of the most important definitions and results in
the field. In Chapter 3 we define the slowdown retiming and strong slowdown retiming

qui e relations of synch

systems and show that both relations are decid-

1 b

able. In Chapter 4 we compare Leiserson's ition of equi of sy

systems with strong retiming equivalence of synchronous schemes, and show them

to be identical. Chapter 5 deals with the ional axi ization of h

schemes. The goal is to define the retiming identity, which together with the feedback
theory identities captures the strong retiming equivalence of synchronous schemes.

Finally, in Chapter 6 we i luce the lized algebra of multiclocked schemes

which is intended to describe the behavior of synchronous schemes with multiple

Dataflow P

clocks motivated by the clock analysis of the Sy

Language LUSTRE.



2 Preliminaries

2.1 Systolic Arrays

In [Kung and Leiserson, 1978] the authors d i called

systolic arrays (systems), which provide a realistic model of computation, capturing

the concepts of pi

and i ion. The goal was to design

multiprocessor machines which have simple and regular communication paths, employ

lining and can be i d directly as low-cost hardware devices. Systolic
systems are not general purpose hil A systolic ing system is
a subsy that its ions on behalf of a host which can be viewed

as a Turing-equivalent machine that provides input and receives output from the
systolic system. Kung [1988] defined a systolic array as follows:

DEFINITION 2.1 A systolic array is a computing network possessing the following

features:

@ Synchrony The data are rythmically computed (timed by a global clock) and
passed through the network.

Modularity and Regularity ~The array consists of modular processing units
with h i i M the ing network can be
extended indefinitely.

Spatial locality and temporal locality ~The array manifests a locally commu-
nicative interconnection structure, i.e., spatial locality. There is at least one
unit-time delay alloted so that signal transactions from one node to the next

can be completed, i.e., temporal locality.
® Pipelinability (O(n) ion-ti dup) The array exhibits a linear rate
pipelinability, i.e., it should achieve an O(n) speedup in terms of processing




rate, where n is the number of processing elements. The efficiency of the array

is measured by the following:
T
speedup factor = =5
Tp
where T is the processing time in a single processor, and Tp is the processing
time in the array processor.

A systolic device is typically d of many i Two

processors that comminicate must have a data path between them and free global
communication is disallowed. The farthest a datum can travel in unit time is from one
processor to an adjacent processor(s). Figure 2.1 illustrates several mesh-connected

network configurations.

(a) linearly connected

(b) orthoganally connected
(ILLIAC IV)

(c) hexagonally connected
Figure 2.1: Mesh-connected systolic arrays.

Many algorithms such as filtering, convolution, matrix operations and sorting can

be implemented as systolic arrays. The following example (from [ Kung and Leiserson,

1978]) d matrix-vector multiplication in a linear systolic array.



EXAMPLE 2.1

Consider the problem of multiplying a matrix A = (a;;) with a vector x = (z,,....z,)".

The elements in the product y = (yi,...,4.)" can be computed by the following

reccurences
uo=0
k-
A
= 1
w =yt

The single operation common to all the computations for matrix vector multipli-
cation is the inner product step, C = C+A- B. Processor which implements the inner
product step has three registers R4, Rg and Re. Each register has two connections,

one for input and one for output. Figure 2.2 shows the geometry for this processor.

o
[~]

Figure 2.2: Geometry for the inner product step processor.

Suppose A is n x n band matrix with band width w =p+ q — 1. (See Figure 2.3
for the case when p =2 and g = 3.) Then the above reccurences can be evaluated by
pipelining the z; and y; through a systolic array consisting of w linearly connected
processors which compute the inner product step y = y+4-z. The linearly connected
systolic array for the band matrix-vector multiplication problem in Figure 2.3 has four
inner product step processors. See Figure 2.4.
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Figure 2.3: Multiplication of a vector by a band matrix with p = 2 and ¢ = 3.
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Figure 2.4: The linearly connected systolic array for the matrix vector
multiplication problem in Figure 2.3.

The general scheme of computation can be viewed as follows. The y; which are
initially zero, are pumped to the left while z; are pumped to the right and the a;; are
marching down. All the moves are synchronized.

6



Figure 2.5 illustrates the first seven pulsations of the systolic array. Observe
that at any given time alternate processors are idle. Indeed, by coalescing pairs of
adjacent processors, it is possible to use w/2 processors in the network for a general
band matrix with band width w.

Pulse Configuration Comments
Number

e DI e
sor.
1z, enters the first processor while
w1 is moved left one place. (From
1 now on z; and y, keep moving
right and left, respectively.)

ayy enters the second

r processor
where y; is updated by y; +ayzi.
n=aus.

a2 and ayy enter the first and third
processors, respectively.

=ans +ans

anzy.

1l

1 is pumped out.
= anzy +ants.
w=auzi.

92 =Ty +anzy +axnsa.
1 = audy +anl.

y2 is pumped out.
¥ =au +ani; +ani;.
94 =apTa

o

Figure 2.5: The first seven pulsations of the linear systolic array in Figure 2.4.

We now specify the operation of the systolic array more precisely. Assume that
the processors are numbered by integers 1,2, ..., w from the left end processor to the
right end processor. Each processor has three registers Ry, Rp and Rc, which hold
entries in A, x and y, respectively. Initially, all registers contain zeros.



Each pulsation of the systolic array consists of the following operations, but for odd
numbered pulses only odd numbered processors are activated and for even numbered

pulses only even are

o Shift

1. R, gets a new element in the band of matrix A.

2. R. gets the contents of register R, from the left neighboring node. (The

R in processor P1 gets a new component of x.

3. R, gets the contents of register R, from the right neighboring node. (Pro-

cessor P1 outputs its R, contents and the R, in processor w gets zero.)
o Multiply and Add
R,=R,+Ry-R:

Using the inner product step processor the three shift operations in step 1 can

be done simul ly, and each pulsation of the systolic array takes a unit of time.
Suppose the bandwidth of A is w = p+¢ — 1. It is readily seen that after w units of
time the components of the product y = Ax are pumped out from the left processor
at the rate of one output every two units of time. Therefore, using the proposed

systolic network all the n components of y can be computed in 2n + w time units,

as compared to the O(wn) time needed for a ial algorithm on a

computer.

2.2 The Structure of Systolic Arrays

Processors in a systolic system are composed of a constant number of Moore autorata.
Recall that a finite state Moore automaton is defined as a six-tuple A = (S,1,¢,p, 48, \),
where S is a finite set, [, p, g are nonnegative integers; 4 : 9 — S is the state
transition function, and A : $*9 — SP is the output function. Considering A as

an ordinary automaton, then S' is the set of states, S? and S” are the input and

8



output alphabet, respectively. The dard hical ion of A is given in

Figure 2.6(a), where the triangles symbolize the [ state (regi and

f=(3.)) : §%% = 57 is the combinational logic. This type of automaton has the
property that its outputs are dependent upon its state but not upon its inputs.

4 4
1
7 ,
1
I -
P P
(a) Moore automaton (b) Mealy automaton

Figure 2.6: The difference between Moore and Mealy automata

In this mathematical model. time can be regarded as independent variable which
takes on integer values and is a count of the number of clock cycles or state changes.
The states S'(t + 1) and outputs S?(t + 1) of a Moore automaton at time ¢ + 1 are

uniquely determined by its states S'(t) and its inputs S%(t) at time ¢ by

S'(t+1)
SP(t+1)

4(8'(8), 5%(1)
A(SH(t), 59(t))

[

A Mealy automaton is similarly defined as a six-tuple A = (S,/,q,p,d, \), where all
is the same as in Moore automata except that the output at time ¢ is dependent on

input at time ¢, that is

Se+1) = §(S'(t),5%(t)
SP(t+1) = AS'(t),SU(t+1))

9



The standard hical ion of Mealy is shown in Figure 2.6(b).
In both automata the state is clocked through registers, but since the input signals
are allowed to propagate through to the output unconstrained, a change in the signal
on an input can affect the output without an intervening clock tick. When Mealy
machines are connected in series, signals ripple through the combinational logic of
several machines between clock ticks. If the signals feed back on themselves before
being stopped by a register, they can latch or oscilate. Even if the problems associated
with feedback have been precluded, the settling of combinational logic can make the
clock period long in systems with rippling logic. Systolic systems contain only Moore

automata, while Semisystolic systems may contain both Moore and Mealy automata.

The exclusion of Mealy that the clock period does not grow
with system size, and makes the number of clock ticks be a measure of time that is
largely independent of system size.

A systolic system can be simply viewed as a set of interconnected Moore automata.
The structure of such a system S(n) is given by a communication graph G = (V. E)
of n interconnected automata where the vertices in V" represent the automata and

the edges in E represent i ions between the The

weights of edges in systolic systems are strictly positive, while the weights of edges
in semisystolic systems may be zero. An example of a semisystolic system and its

communication graph is shown in Figure 2.7.

Figure 2.7: Semi-systolic array and its communication graph.
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The automata operate synchronously by means of a common clock, and time in the
system is measured as the number of clock cycles. All the automata in V" are Moore
automata (Moore and Mealy in the case of semisystolic system) with the exception
of one called the host which can be viewed as a Turing equivalent machine that
provides input to and receives output from the system. Based on the communication
graph. the neighborhood of an automaton v € V' is the set of automata with which

it communicates:
N()={w|(v,w)€E or (w,v)€E}.

For S(n) to be systolic, it is further required that the Moore machines be small
in the following sense. There must exist constants ¢, ¢, ¢z and ¢, such that for all
nand all v € V' — {host},

o | SL| < ¢; The number of states of each Moore (Mealy) automaton is bounded,
e |S?|<c; The number of input symbols is bounded
® | 57| <e; The number of output symbols is bounded

® | N(v)| < ¢y The number of neighbors of each automaton is bounded. i.e.. the
communication graph has bounded degree.

The “smallness” conditions help ensure that the number of clock cycles is a good
measure of time in the systolic model. A problem arises, however, when the time
required to propagate a signal between machines becomes longer than the time re-
quired for the longest combinational-logic delay through a machine. The period of
the clock must be at least as long as the longest propagation delay between machines,
which means that the independence of the clock period from system size will not

be realized for systems with long interconnections. Systolic arrays, which have only

t-neighb. ions, are iall for VLSI because propagation
delay is insignificant.



2.3 Synchronous Systems

The systolic design manages ication costs effectively because

the only communication permitted during a clock cycle is between a processing ele-
ment and its neighbors in the communication graph of the system. This constraint is
in direct contrast with, for example, the propagation of a carry signal which ripples
down the length of an adder. Such combinational rippling and global control such as
broadcasting are forbidden in systolic designs. Global communication is more easily
described in terms of rippling logic. In a systolic system the effect of broadcasting
must be achieved by multiple local communications. The primary reason for intro-
ducing the concept of a Synchronous System was the design issue. In [ Leiserson and
Saxe, 1983a] the authors demonstrated how a synchronous system can be designed

with rippling logic, and then converted through Systolic Conversion Theorem to a

systolic i

that is functionally to the original system - the
principal difference being the shorter clock period of the systolic implementation.

A synchronous system can be modelled as a finite, rooted, edge-weighted, directed
multigraph G = (V. E. v, w). The vertices V' of the graph model the functional

elements (combinational Ioglc) of the system. Every functional element is assumed

to have a fixed primiti iated with it. These operations are designed
to manipulate some simple data in the common algebraic sense. Each vertex v € V'

is weighted with its ical ion delay d(v). A distinguished root vertex

vy, called the host, is included to represent the interface with the external world,
and it is given zero propagation delay. The directed edges E of the graph model

between functional el ts. Each edge e in E is a triple of the form

(u, v, w), where u and v are (possibly identical) vertices of G connecting an output of
some functional element to an input of some functional element and w = w(e) is the
nonnegative integer weight of the edge. The weight (register count) is the number
of registers (clocked memory) along the interconnection between the two functional
elements. If e is an edge in the graph that goes from vertex u to vertex v, we shall

12



use the notation « < v. For a graph G, we shall view a path p in G as a sequence of
vertices and edges. If a path p starts at vertex u and ends at a vertex v, we use the
notation u = v. A simple path contains no vertex twice, and therefore the number
of vertices exceeds the number of edges by exactly one. We extend the register count
function w in a natural way from single edges to arbitrary paths. For any path
p=rvo <% v <5 - 2y, we define the path weight as the sum of the weights of
the edges of the path:

k~1
w, = z w(e;)
=0

Similarly. propagation delay function d can be extended to simple paths. For any
simple path p = vg =% v, =5 --- %=} 4, we define the path delay as the sum of the
delays of the vertices of the path:
k
dy =Y d(v)
=0
In order that a graph G = (V, E, vy, w) has well-defined physical meaning as a circuit,

we place the following restriction on propagation delays d(v) and register counts w(e):

D. The p ion delay d(v) is ive for each vertezv € V.
W. In any directed cycle of G, there is some edge with strictly positive register count.

We define a synchronous system as a system that satisfies conditions D and W.
The reason for including condition W is that whenever an edge e between two vertices
u and v has zero weight, a signal entering vertex u can ripple unhindered through
vertex u and subsequently through vertex v. If the rippling can feed back upon it-

self, probl of asynch latching, oscilation and race conditions can arise. By

prohibiting zero-weight cycles, condition W prevents these problems from occuring,
provided that the system clock runs slowly enough to allow the outputs of all the func-
tional elements to settle between each two ive ticks. The following defini

are adopted from [Leiserson and Saxe, 1983a, 1983b].

13



DEFINITION 2.2 A synchronous system is systolic if for each edge (u,v,w) in the
comminication graph of S, the weight w is strictly greater than zero.

DEFINITION 2.3 A configuration of a system is some assignment of values to all its
registers. With each clock tick, the system maps the current configuration into a new
configuration. If the weight of an edge happens to be zero, no register impedes the

propagation of a signal along the corresponding interconnection.

DEFINITION 2.4 Let ¢ be a configuration of a synchronous system S and let ¢ be
a configuration of a synchronous system S’. The system S started in configuration ¢
has the same behavior as the system S started in configuration ¢ if for any sequence
of inputs to the system from the host, the two systems produce the same sequence of

outputs to the host.

DEFINITION 2.5 Let S and S’ be synchronous systems. Suppose that for every
sufficiently old configuration c of S, there exists a configuration ¢ of ' such that when
S is started in configuration c and S’ is started in configuration ¢/, the two systems
exhibit the same behavior. Then system S’ can simulate S. If two synchronous
systems can simulate each other, then they ace equivalent.

Two synchronous systems are strongly equivalent, or, in other words, have the
same strong behavior if they have the same behavior under all interpretations. The
interpretation of a functional element labeled with o from some alphabet T, with p
input channels and g output channels, is a mapping ¢, : DY — DP, where the set D

consists of certain data elements.

DEFINITION 2.6 For any synchronous circuit G, the minimum feasible clock period
®(G) is the maximum amount of propagation delay through which any signal must
ripple between clock ticks. Condition W guarantees that the clock period is well
defined by the equation ®(G) = max{d(p) | w(p) = 0}.

These notions allowed the introduction of transformations useful for the design and
the optimization of synchronous systems: retiming and slowdown.

14



can alter the ions carried out in one clock cycle
of the system by relocating registers, that is, shifting one layer of registers from one
side of a functional element to the other. Two systems are retiming equivalent if they
can be joined by a sequence of such primitive retiming steps. Retiming is important
technique which can be used to optimize clocked circuits by relocating registers so as
to reduce combinational rippling.

Consider the communication graph G, in Figure 2.8(a). Suppose, for instance.
that each vertex has a propagation delay of 3 esec. Then the clock period of S; must

be at least 9 esec - the time for a signal to propagate from vy through vg to vs.

(b) The communication graph G of a system S, which is equivalent to the system
S, from Figure 2.8(a), as viewed from the host. Internally, the two systems differ
in that vertex v; lags by one clock tick in S, with respect to S.

Figure 2.8: Retiming transformation.
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Retiming the vertex vs in Gy, that is, decreasing the number of registers by one
on all incoming edges and increasing the number of registers by one on all outgoing
edges. results in a communication graph G, of a synchronous system S, in Figure
2.8(b) which is. intuitively, equivalent to S, but with a shorter clock period - 6 esec.

Formally. retiming transformation is defined as follows: let S be a synchronous
system. V'(G) the set of vertices of the underlying graph G and R a function from
1’(G) into the set of all integers. We say that R is a legal retiming vector if for
every edge (u,v,w) in G the value w + R(v) — R(u) is nonnegative and R(host) = 0.
Applying R to S simply means replacing the weight w(e) of each edge e : u — v by
w'(e) = w(e) + R(v) — R(u).

In our example. the legal retiming vector R which takes S, into S, is:
R(host, vy, v, v3, vy, s, U5, v7) = {0,0,0,-1,0,0,0,0}.

The impact of retiming on the behavior of synchronous systems is expressed by
the so called Retiming Lemma in [ Leiserson and Saxe, 1983a|:

LEMMA 2.1 (Retiming Lemma) Let S be a synch system with

graph G. and let R be a function that maps each vertex v of G to an integer and the
host to zero. Suppose that for every edge (u,v. w) in G the value w + R(v) — R(u) is
nonnegative. Let S” be the system obtained by replacing every edge e = (u,v,w) in
S with € = (u, v, w + R(v) — R(u)). Then the systems S and S' are equivalent.

Slowdoun is defined as follows: for any circuit G = (V, E, w) and any positive
integer c. the c-slow circuit ¢G = (V, E,u') is the circuit obtained by multiplying
all the register counts in G by c. That is, w'(e) = cw(e) for every edge e € E. All
the data flow in ¢G is slowed down by a factor of ¢, so that ¢G performs the same
computations as G, but takes ¢ times as many clock ticks and communicates with the
host only on every c¢** clock tick. In fact, ¢G acts as a set of c independent versions
of G. communicating with the host in round-robin fashion. For example, the 2-slow
circuit S; of S, is shown in Figure 2.9.
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Figure 2.9: Slowdown transformation. The communication graph G3 = 2G| of a system

83 obtained by multiplying all the register counts in G, from Figure 2.8(a) by 2. All the

data flow in S; is slowed down by a factor of 2, so that S; performs the same computa-

tions as S|, but takes 2 times as many clock ticks and communicates with the host only
on every second tick.

The impact of slowdown on the behavior of synchronous systems is the following:
the main adventage of c-slow circuits is that they can be retimed to have shorter clock

periods than any retimed version of the original. For many applications, throughput is

the issue, and multiple, interl, d streams of ion can be effectively utilized.
p

A cslow circuit that is systolic offers i h Another i

observation is that not every synchronous system can be retimed to get an equivalent
systolic system. According to Systolic Conversion Theorem [Leiserson and Saxe,
1983a ], sy system S with ication graph G can be retimed to systolic
system S' if the constraint graph G — 1, which is the graph obtained from G by

replacing every edge (u,v,w) with (u,v,w — 1) has no cycles of negative weight.

However, for any synchronous system that cannot be directly retimed to get a systolic
system, there might be a slowdown transformation such that, after this transformation
is applied. one gets a synchronous system that can be retimed to get an equivalent
systolic system. It can be proved that such slowdown transformation is possible only
if the underlying is Moore Retiming vector R(v) is defined
for every vertex v as the weight of the shortest path from v to host in G — 1. Consider

the constraint graph G; — 1 in Figure 2.10 of a synchronous system S;. Since G, - 1
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contains a cycle host — v; — v; — host of negative weight, S, cannot be directly

retimed to get an equivalent systolic system.

Figure 2.10: The constraint graph G; — 1 of a synchronous
system S in Figure 2.8(a).

On the other hand, the constraint graph G; — 1 = 2G| — 1 does not have cycles of
negative weight. Consequently. there exists a legal retiming vector which transforms

synchronous system Sj into systolic system S, in Figure 2.11:

R(host, vy, va, v3, v, vs, V6, v7) = {0,2,2,1,4,3,2,1}.

Figure 2.11: The systolic system S; obtained from the 2-slow
synchronous system Ss by retiming.
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2.4 Flowchart and Synchronous Schemes

Two major objections must be made about the model of synchronous system pre-

sented in the previous subsection:

(1] According to Definition 2.1, a synchronous system is an infinite edge-weighted

directed

1 by its finite imations that must be regular in
a certain sense. Therefore the single finite graph G should be called a finite system

only. or rather a scheme.

[2] The multi ion of a synch scheme is inad in the sense

that it does not relate the two endpoints of a given edge to designated labelled input-
output “ports” of the corresponding vertices. This question is clearly important,
because i/o ports of the functional elements (processors) behave differently in general.
Also, it is advantageous to replace the host by a fixed (finite) number of input-output
channels as distinguished vertices, thus avoiding the unnecessary constraint that those

cycles closed only by the host should contain an edge with positive weight.

These two criticisms suggest idering synch systems in the frame-
work of Elgot’s [ 1975 ] well-known model of monadic computations (flowchart algo-
rithms). This dpoi i i the definition of synchronous flowchart schemes

in [Bartha, 1987] or simply synchronous scheme. Since synchronous schemes are

defined in terms of flowchart schemes we introduce the fu | definitions and

properties of flowchart schemes that will play an important role in the sequel.

DEFINITION 2.7 A signature or ranked alphabet is a set £, whose elements are called
operation symbols, together with a mapping ar : £ — N, called the arity function,
assigning to each operation symbol a natural number, called its finite arity. If the
operation symbols are grouped into subsets according to their arity: £, = {c € £ |
ar(c) = n}, then the si ¥ is uniquely ined by the family (£, | n € N).




A realization of an n-ary operation symbol in a set A is an n-ary operation on A.
Given a signature T, a -algebra A is a pair A = (4, £4) consisting of a set 4, called
the carrier of 4, and a family 4 = (¢ | o € ) of realizations ' of operation

symbols o from .

DEFINITION 2.8 A I-flowchart scheme (FE-scheme) F is a finite directed graph

augmented by the following data.

(1) A subset X C F of vertices of outdegree 0. The elements of X are called exits
of F.

(2) A labeling function, by which every nonexit vertex v is assigned a symbol 0 € £

in such a way that the rank of o equals the outdegree of v.

(3) For each vertex u, a linear order of the set of edges leading out of u. By the
notation u —; v we shall indicate that the target of the i** edge leaving u is

vertex v.

(4) A begin function, which maps some finite set B into the set of vertices of F.

The begin function specifies a set of marked entries into F.

For simplicity, the marking set B above will be identified with the set [n] = {1..... n}.
Similarly. the exit vertices will be labeled by the numbers in [p] = {1.....p}. An
n-entry and p-exit FE-scheme F is denoted F:n —»p. f F:n s pandG:p—ogq
are FE-schemes, then one can form their composite F - G : n — g by identifying the
exits of F with the entries of G in a natural way, assuming that F and G are disjoint
graphs. This kind of composition gives rise to a category with all nonnegative integers
as objects and with all FE-schemes as morphisms. The category obtained in this way

is known as the horizontal structure of flowchart schemes.

The vertical structure of FE-schemes [Bloom and Esik, 1993] is the category Flg.
constructed as the coproduct (disjoint union) of the categories Flg(n,p), n.p € N
defined below.



® For each pair (n,p) € N x N, Flg(n, p) has as objects all FE-schemes n — p.

o A morphism F — F' between FEZ-schemes F, F' : n — p is a mapping a from

the set of vertices of F into that of F" which preserves:

-

the sequence of entry and exit vertices;

o

the labeling of the boxes:

@

. the edges in the sense that if u —; v holds in F. then a(u) —; a(v) will
hold in F'.

o Composition of morphisms is defined in Flg(n, p) as that of mappings, and the

identity morphisms are the identity maps.

Sometimes it is useful to consider an FE-scheme F : n — p as a separate partial
algebraic structure over the set of vertices of F [Gritzer, 1968]. In this structure
there are n constants, namely the entry vertices of F. Furthermore, for each o € T,
there are ¢ unary operations (0.i).i € [g] if ¢ > 1. one unary operation (,0) if
¢ =0. Ifi > L. then the operation (g, ) is defined on vertex u of F if and only if u is
labeled by o. and in that case (o.)() is the unique vertex v for which u —; v. The
operation (o, 0) is interpreted as if there was a loop around each vertex labeled by the
constant symbol ¢. i.e. (0.0) is an appropriate restriction of the identity function.
No operation is defined on the set of exit vertices.

A strong congruence relation of F (as a partial algebra) by which the exit vertices
form singleton groups is called a scheme congruence of F. Clearly, every scheme
morphism a : F — F” induces a scheme congruence 6 on F. By the homomorphism
theorem, if & is onto then F/6 = F', where the isomorphism and the factor scheme
F/8 have their usual algebraic meaning [Gritzer, 1968]. In the sequel we shall not

fstinguish between isomorphic FS-sch

Let v be a vertex of an FE-scheme F : n — p. Starting from v, F can be unfolded
into a possibly infinite E-tree T'(F.v). Recall from [Bloom and Esik, 193] that an
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infinite T-tree has all of its nodes labeled by the symbols of £ in such a way that
the number of descendents of each node u is equal to the arity of the symbol labeling
u. The branches of the tree T(F,v) correspond to maximal walks in F starting
from v, where a maximal walk is one that ends at a vertex of outdegree zero or it
proceeds to the infinity. The walk is allowed to return to itself arbitrary many times.
The nodes of T(F,v), being copies of the vertices of F, are labeled either by the
symbols of T or by the variable symbols z,....,z, chosen from the fixed variable set

X ={z1,....2n,...}, in the case of exit vertices.

ExaMPLE 2.2 Consider the flowchart scheme in Figure 2.12.

begin

Figure 2.12: Flowchart scheme.

Syntactical description of F can be given by the equation y = r(o(y),z,). The term

on the right-hand side has the tree representation shown in Figure 2.13.

Figure 2.13: The tree representation of a term.

Solving the equation means replacing y by 7(o(y), z,) as many times as possible. The

process results in the infinite labelled tree shown in Figure 2.14.

o =
Figure 2.14: Unfolding the flowchart scheme.
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For two vertices u, v of F, we say that u and v have the same strong behavior if
T(F.u) = T(F.v). Unfolding F starting from each entry vertex simultaneously vields
an n-tuple of trees, which is called the strong behavior of F, denoted T(F). By
definition, if 8 is a scheme congruence of F and u = v(f), then u and v have the
same strong behavior. Consequently, if @ : F — F' is a morphism in Flg, then
T(F) =T(F).

An FE-scheme is called accessible if every nonexit vertex of F can be reached from
at least one entry vertex by a directed path. In the algebraic setting F is accessible
if. with the exception of the exit vertices, F is generated by its constants. For an
accessible FE-scheme F, define the equivalence pr on the set of vertices of F in the
following way:

u=uv(pp) if T(F u)=T(Fu).

Obviously. ¢ is a scheme congruence, and it is the largest among all the scheme
congruences of F. The scheme F/uF is therefore called minimal.

Let G be a graph and denote by V(G) the set of vertices of G. A subset S C V/(G)
is strongly connected if for every u,v € S there exists a directed path in G from u to
v going through vertices of S only. A strong component of G is a strongly connected
subset S which is maximal in the sense that if S’ is strongly connected and S C §'.
then S = S'. An n-entry FE-scheme F is tree-reducible if F is accessible and the
graph obtained from F by deleting its exit vertices and contracting each of its strong
components into a single vertex consists of n disjoint trees. Every accessible FL-
scheme F can be unfolded into a tree-reducible scheme by finite means. To this end,
it is sufficient to unfold the partial order of the strong components of F' with its exit
vertices deleted into a set of disjoint trees. The resulting tree-reducible FE-scheme
will be denoted by utr(F). The unfolding determines a morphism utr(F) — F in the
category Fls.

DEFINITION 2.9 A synchronous scheme S (SE-scheme for short) consists of a finite
underlying FE-scheme, denoted fI(S), and a weight function by which every edge of
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S is assigned a nonnegative integer. We assume that the direction of an edge e in §
is the opposite of the direction of the same edge in fI(S).

Let us point out the semantical differences between flowchart and synchronous
schemes. A flowchart scheme of sort p — ¢ is interpreted as a flowchart algorithm
called monadic computation [ Elgot, 1975 ] with p entries and ¢ exits. Accordingly, the
flow of information in the flowchart scheme follows the direction of the arrow between
p and q. For, example the scheme = : 2 — 1 should be interpreted as a join of two
different paths in the flowchart. In a logical circuit. however, the meaning of = is a
branch: thus, in this case the information flows in the opposite direction. Reasoning
from the point of view of category theory, the difference is the following. Concerning
flowchart schemes, the object n in the theory T is treated as the nth copower of the
object 1 (n = 37, 1). while in the case of synchronous schemes n would rather be
the nth power of 1 (n =[], 1). as in the original definition of algebraic theories in [
Lawvere. 1963]. See also Figure 2.15. However, if we followed the product formalism,
then the sort of a mapping [p| — [¢] would confusingly become q — p. Therefore, we
rather adhere to the coproduct formalism and express the product-like (functional)

semantics only by designing our schemes in an upside-down fashion.

9

(a) Flowchart scheme (b) Synchronous scheme
F:D-2D S:D*=D
Figure 2.15: The difference between flowchart and synchronous schemes.

The category Syny of SZ-schemes consists of the following. The objects are all
accessible SE-schemes. A morphism S — S in Syng is a morphism fI(S) — fI(S")
in Flg that preserves the weight of the edges. Accordingly, a scheme congruence of
S is one of fI(S) that is compatible with the weight function.
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Categories TFlz and TSyng are full subcategories of Fls and Syng respectively,
determined by the subset of tree-reducible schemes.

We define the signature Ty as £ U {V}, where V is a unary operation symbol
(register). With any SE-scheme S we then associate the FEg-scheme flg(S), which
is obtained from fI(S) by replacing every edge e in it by a chain of n V-labeled
vertices. where n is the weight of e. As in the case of FZ-schemes, we include the
infinite unfoldings of ST-schemes in Syng. Obvious details of this procedure are
omitted. See Figure 2.16.

S T(S)

Figure 2.16: Synchronous scheme S and its (infinite) unfolding tree T(S).

The importance of the concept of tree unfolding is that it captures the strong
behavior of synchronous (flowchart) schemes. Two schemes can be syntactically dif-

ferent and yet exhibit the same strong behavior as shown in Figure 2.17.

Transformations of retiming and slowd are defined for synch schemes in
the same way as for synchronous systems.

If R is a legal retiming vector for S and S’ is the scheme obtained by applying R
to S. then we shall write R : § — S’. Retiming count vectors thus define a category
on the set of SE-schemes as objects. The composition of two arrows R and R is

R+ R and the identitics are the zero vectors 0.
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If ¢ is a positive integer such that S' = ¢S, i.e., §' is obtained from S by ¢-
slowdown. then we shall write ¢ : S — S'. Slowdown transformations also define a
category on the set of SE-schemes as objects. The composition of two arrows ¢; and

3 is cc; and the identities are designated by ¢ = 1.

S 52 T(S)  T(S)
f !
[9] (9] | l
& 3 v v
| |
i i
f f
| |
v v
| |
9 9
! !

Figure 2.17: Schemes S\ and S; while different represent the same computational
process. They can be unfolded into the same tree T'(S;) = T'(S>).

The following Definition and Lemma are adopted from [Bartha, 1994].

DEFINITION 2.10 The relation of strong retiming equivalence on the set Syng is
the smallest equivalence relation containing —, and —,, where —, denotes the
binary relation induced by reduction (unfolding) and —, denotes the binary relation

induced by retiming transformation. Strong retiming equivalence is denoted by ~.
LEMMA 2.11 ~=¢—,0~, 0 —,

FAcCT: The relation of strong retiming equival is decidable for h sche-
mes [Bartha, 1994].




3 Equivalence Relations of Synchronous Schemes
and their Decision Problems

In this section we introduce the equival of d retiming and strong slow-
down retiming as the join of slowdown equivalence and retiming equivalence, and the
join of these two plus strong equivalence, respectively, on the set of SE-schemes. Con-
cerning slowdown, —; will stand for the partial order induced on Syng by slowdown
constants. We shall use the preorders defined by the categories Flg and Syny as sim-
ple binary relations over the sets Flz and Syny of all finite accessible FE-schemes
and SE-schemes, respectively. In both cases, this preorder will be denoted by —,.
Concerning retiming, ~, will stand for the equivalence relation induced on Syny by

legal retiming count vectors.

3.1 Slowdown Retiming Equivalence

DEFINITION 3.1.1 The relation of slowdoun retiming equivalence on the set Syny

is the smallest equivalence relation containing — and ~,.

retiming equival of h schemes will be denoted by ~sg.
The relations ~y = (—, U ¢—g)* (symmetric and transitive closure) and ~, are
called slowdown equivalence and retiming equivalence, respectively. In order to decide

the relation ~sg we are going to prove the following equation:
SR T O ~p O gl . (1)
Equation (1) says that if two SE-schemes S| and S, are slowdown retiming equivalent,

then they can be slowed down into appropriate schemes S| and S} that are already

retiming equivalent.

LEMMA 3.1.2 ~0—y C —¥40n~,
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PROOF. Let S, P and Q be SE-schemes such that S ~, P and P —y Q. Then
there exist a legal retiming vector R : S — P and a positive integer ¢ such that Q
is the c-slow scheme cP obtained by multiplying all the register counts in P by c.
Scheme S can be slowed down by multiplying all the register counts in S by ¢, i.e.,
S —4 ¢S = Py. Define a legal retiming vector Ry as R,(v) = cR(v) for all vertices v
in P;. We claim that R, takes P, to Q. Indeed, for any edge u — v in S, the weight

wr(e) of the corresponding edge in P after retiming R is defined by the equation
we(e) = w(e) + R(v) - R(u)
The slowdown ¢ : P — Q transforms wg(e) into
cwg(e) = cw(e) + cR(v) — cR(u)

in Q. On the other hand, for any edge u — v in S, slowdown transforms w(e) into

cw(e) in Py, and retiming R, takes this number to

cur () = cule) + Ri(v) - Ri(u)

= cw(e) +cR(v) —cR(u) B
LEMMA 3.1.3 ¢—g40—y C© —q0¢—y

PROOF. Let S. P and Q be SE-schemes such that P —s,; S and P —, Q. Then
there exist positive integers ¢, and c; such that S and Q are c-slow schemes c¢; P and
c,P obtained by multiplying all the register counts in S by ¢ and c; respectively.
Then the following diagram commutes

c

P S
o c2
Q P

=1
since S=eP, Q=gPand S =P =ciP=c;Q=P. B
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LEMMA 3.14 —g40¢—y C ¢—g0—3y

PROOF. Let S, P and Q be SE-schemes such that S —y P and @ —, P. Then
there exist positive integers ¢, and ¢, such that P = ¢, = c,Q. Let e be an edge
in P. Then wp(e) = ciws(e) = cowgle) and Ei—ws(e) = 2 —wqle), where
lem(cy, ¢,) is the least common multiple of ¢, and c,. Therefore, there exists scheme P’
such that § = @;"P’ and Q = %P‘. i.e., the following diagram commutes:
lemler.e2)
p—=t—s

lem(eyca) e,

)

Q

P

C2

since P =S = ¢ Maglp = glmasip =0 =p. @
COROLLARY 3.1.5 ~y = ¢—y0—y = —3q0é—y
PROOF. Follows directly from Lemmas 3.1.3 and 3.1.4. B
COROLLARY 3.1.6 ~sp = —340~y 06—y

PRrOOF. It is sufficient to prove that the relation p = — © ~, 0 ¢—; is transitive.

We have

pop 3 O~ 04—y O —3y O~y O b—y

n

—,10~p 0 —3, 0 ¢—4 0~y 0é—y (by Lemma 3.1.3)

n

—51 O =¥,y 0~ 0~y 0 &—y 0 ¢—yg (by Lemma 3.1.2)

p A

"

3.2 Decidability of Slowdown Retiming Equivalence
PROPOSITION 3.2.1 The relations ~y and ~, are decidable.

PROOF. For any two SE-schemes S and S'. S ~ S if and only if there exists scheme
P such that § —; P and §' —; P, ie. there exist positive integers ¢ and ¢ such
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that cw(e) = duw'(¢’) for all edges € in S and corresponding edges €’ in S’. Therefore,

in order to decide ~, it is sufficient to verify that the ratio :f:), is the same for all

corresponding edges e. €',

As to the relation ~,, recall from [Murata, 1977] that a fundamental circuit of
a directed graph is a cycle of the corresponding undirected graph. Let S and S’ be
two SE-schemes with weight functions w and ', and assume that S and S’ share a
common underlying graph G. For everv fundamental circuit z of this graph, let us
fix a cyclic order of the vertices of = in order to distinguish a positive and a negative
direction of the edges belonging to z. For every edge € € z, let sign.(e) = 1(-1) if

the direction of e is positive (respectively, negative) with respect to the given order.

LEMMA 3.2.2  We claim that S and S' are retiming equivalent, i.e. there erists a

legal retiming count vector taking S to S’ if and only if:

(1) For every fundamental circuit z of G
3 sign.(e) - wle) = Y signs(e) - w'(e)
e e

(2) All simple paths from an entry to an exit vertex have the same weight.
where by simple path we mean an alternating sequence of vertices and edges

o0 =2 vy =5 -+ %5}y, in which no vertex is repeated.
By [Murata, 1977, Theorem 1], (1) is necessary and sufficient for the existence of a
retiming vector R that satisfies the condition of being legal, except that R(v) need
not be zero for all exit vertices. Suppose that such an R exists, and let p be a simple
path composed of vertices and edges vy —2 v, <=4 - -+ 22 g, where vg is an entry

and v is an exit vertex. Then we have:

k=1 k-1

wip) = Y wle) =Y (wle) + R(vin) - R(w))
=0 i=0
k-1 k-1

3 wle) + Y- (R(sisa) — R(w)) = w(p) + Rue) ~ Rlxo)-
=0

=0
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Then w(p) = w(p') if and only if R(z) = R(ve). Obviously, one of R(v;) and R(vg)
can be chosen freely, so that the condition R(vg) = R(v) is equivalent to saying that
assignment R(vg) = R(ve) =0 is possible. W

COROLLARY 3.2.3 Let S and S' be synchronous schemes such that S ~, S'. Then

for any directed cycle ¢ in S and S', we have w(c) = w'(c).
PRrOOF. Follows immediately from Lemma 3.2.2 (2). ®

If S and S are tree-reducible schemes, the relation ~, is yet simpler to decide.
Since every fundamental circuit must remain in some strong component, in condition
(1), it suffices to check that every directed cycle of a common underlying graph G
has the same total weight by the weight functions of Sand S’. @

THEOREM 3.2.4 The relation of slowdoun retiming equival is decidable for syn-

chronous schemes.

PROOF. Let G and G’ be SE-schemes. By Corollary 3.1.6, G and G’ are slowdown
retiming equivalent if and only if there exist SZ-schemes S and S’ such that G — S,
G' —, S and S ~, S'. Since S = ¢,G and §' = ¢,G'. we must have ¢,G ~, c;,G',
i.e. there exists a legal retiming vector R such that, according to Lemma 3.2.2, all

fundamental circuits = and simple entry-to-exit paths p have the same total weight.
)

In other words, the ratios 2. and 22 must be the same, where w and w’ are weight

w'(p)
functions of G and G' respectively.

According to the argument above, one can decide the slowdown retiming equiva-

lence of G and G’ by the following algorithm.

Algorithm A.

Compute w(z;) and w'(2;) for every fundamental circuit 2;,1 < i < n and w(p;) and
' (p;) for every simple entry-to-exit path p;, 1 < j < min G and G', respectively, and
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check the ratios 2L and %2} Then, G and G' are slowdown retiming equivalent
w'(x) w'(p,)

if and only if these ratios are the same forall 1 <i<nand1<j<m. B

Let us briefly discuss the complexity of Algorithm A. It is easy to see that the
expensive part of Algorithm A is the finding of all fundamental circuits and entry
to exit paths. Johnson's algorithm [Johnson, 1975| for finding all the elementary
circuits of a directed graph has a time bound of O(| (n+e€)(c+1)|) on any graph with
n vertices. e edges and c elementary ciruits. In order to find all entry-to-exit paths the
Floyd-Warshall algorithm might be used. It is well known that the Floyd-Warshall

algorithm runs in O(| V() time on any graph with vertex set V.

ExaMpLE 3.1 Consider the schemes in Fig. 3.1.

S Sz

Figure 3.1.

Schemes Sy and S, are not retiming equivalent since both directed cycles and both
entry-to-exit paths have different total weights. In order to decide the slowdown
retiming equivalence relation for the given schemes it suffices to solve the following
system of linear equations:



quwi(z) =
awi(z) =
e (p) =
aquwy(p) =

cawn(z1)
caws(z)
cawa(p)
2w (pa)

where =, is the directed cycle vy — vy = vs = v; 2 is the directed cycle v, — v; —

vy = vy = vs — vy; py is the entry-to-exit path vy — v; = vy — v5 = oc; and py is

the entry-to-exit path vy — v, = v3 = ocy with wy(z,) = 3, wa(2)) =2, wy(z2) =6,

wy(z2) =4, wi(p) =3, wa(p) = 2, wi(p2) = 3 and wy(p,) = 2. Since

walz) _  walz)

Yu(z) " Pz

=

QWL(PI) .

walp) _ 2
wipa) 3

wy(p) _

=]

the solution exists, ¢, = 2, ¢; = 3. By multiplying all the registers counts in S, and

S by ¢ and c. respectively. one gets schemes S| and Sj. See Figure 3.2.

5’|=25|

Figure 3.2.

It is trivial to check that schemes S} and S; are retiming equivalent. Consequently,
original schemes S, and S, are slowdown retiming equivalent.
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3.3 Strong Slowdown Retiming Equival

DEeFINITION 3.3.1 The relation of strong slowdown retiming equivalence on the set

Syng is the smallest equivalence relation containing —y, —, and ~,.

Strong retiming of synch schemes will be denoted

by ~ssg. The relation ~, = (—, U «—,)* (symmetric and transitive closure) is

called strong equivale For the definitions of slowde and retiming equivalence
see Definition 3.1.1. In order to decide the relation ~gsz we are going to prove the

following equation
NSSR = =3 0 —Hy 0 ~p 06—y O —Fg = —, 0 ~NgRO —, (2)

Equation (2) says that if two accessible SE-schemes S, and S, are strong slowdown
retiming equivalent. then they can be unfolded into appropriate schemes S| and S

that are already slowdown retiming equivalent.
LEMMA 3.3.2 —,0—y C —rg0—3,

PROOF. Let S. U and S’ be SE-schemes such that § —, U and U —, §'. Then
there exist a scheme morphism a : § — U and a positive integer c such that S’ is a
c-slow scheme cU obtained by multiplying all the register counts in U by c. Then the
following diagram commutes

U

g

LEMMA 3.3.3 ~,0¢—, C ¢—,o0~, [Bartha, 1994]

PROOF. Let S. §' and U be SZ-schemes such that S ~, U and S' —, U. Then there

exists a legal retiming connt veetor R : S — [7 and a scheme morphism o : &' — U,
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Since fI(U) = fI(S), S can be unfolded into a scheme U’ for which fI(U") = fI(S")
and a : U" — S. For every vertex v of U’, define R'(v) = R(a(v)). It is now easy to
check that the retiming R’ takes U" to S'. B

COROLLARY 3.3.4 ~gsp = ¢—, 0 —3, 0~y 0 —y 0 —,

PROOF. It is sufficient to prove that the relation p = ¢—, 0 — 0 ~; 0 ¢—y 0 —,
is transitive. Observe that —, 0 ¢—, C ¢—, 0 —, and —y 0 ¢—, C —,

© —. because the category Syn has all pullbacks and pushouts [MacLane, 1971].
By applying Lemmas 3.3.2, 3.3.3, 3.1.3 and 3.1.2 we have:

POP = &—,0—3 0~ 06— O —H 04— 0 —P O~ Oé—y0—d

in

40 =3O~ O ¢— O —, 0 —H, 0 —Hy 0~y Oé—y0—P

n

a0 A O 06— 0 &— O — gt O — 3,08 0 &—4 0 —,

n

40 =3, O —, O~ O é—y O —H O~y O —H 06—y O —3

n

g 0 = O — O~ O —Hf O 4 O~y O —H 0 b—y O —

n

0 =30 —, 0 =3 O~y O, O é—y O —3, 06—y 0 —

n

06—, 0 O —3 0~ Oy 06—y O é—y0—d 0 —3

p B

Repeating the proof of Corollary 3.3.4 working in the subset TSyng of tree reducible

SE-schemes. we obtain the following result.

COROLLARY 3.3.5 ~gssg = UlF 0 ¢—, 0 —3y 0~y 0 —y 0 —3, 0 utr™", where

the relation —, is restricted to the subset of tree-reducible schemes.

3.4 Decidability of Strong Slowd Retiming Equival
PRroPOSITION 3.4.1 The relations ~y.~, and ~, are decidable.

PROOF. See Proposition 3.2.1 and Proposition 5.2 [Bartha, 1994]. @
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THEOREM 3.4.2 Let F and F' be tree-reducible SE-schemes such that F ~gp F',
and assume that 0 is a tree-preserving scheme congruence of F. Then F/8 ~sg F'[6.
provided that 8 is a scheme congruence of F', too.

PRrOOF. Since slowd f ions preserve the 8. Theorem 6.2.5
{Bartha, 1994] directly applies. W

THEOREM 3.4.3  The relation of strong slowdown retiming equival is decidabl

for synchronous schemes.

PROOF. Let G and G’ be strong sl retiming equivalent SE-sch . By
Corollary 3.3.5 there exist some schemes F and F' such that F —, utr(G), F' —,
utr(G') and F ~gp F'. See Figure 3.3a. Thus in the category TSyns there are
morphisms F — utr(G) and F’ — utr(G'), which determine two morphisms fI(F) —
fl(utr(G)) and fI(F') — fl(utr(G')) in TFlg. Let 6 and ¢' denote the scheme
congruences of fI(F) induced by these two morphisms.

F ~sp F' /l(F)=|ﬂ(F’)
utr(G) utr(G') fl(utr(G)) fl(utr(G"))
a) b)

Figure 3.3: The proof of Theorem 3.4.3 in a diagram.

Now construct the product of fl(utr(G)) and fl(utr(G')) as a tree-reducible FE-
scheme H. Then there exists a morphism fI(F) — H that makes the diagram of Figure
3.3b commute. For the scheme congruence 8 induced by this morphism, we thus have
8 C ¢ and 8 C &, On the other hand, ¢ and ¢’ arc also SE-scheme congruences of F
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and F". respectively, for which F/¢ = utr(G) and F'/¢' = utr(G'). It follows that 6,
too, is an ST-scheme congruence of both F and F'. Theorem 3.4.2 then implies that
H=F/8~sg F'[0=H'

According to the argument above, one can decide the slowdown retiming equiva-
lence of G and G’ by the following algorithm.
Algorithm B.

Step 1. See if fI(G) ~, fl(G'). If not. then G and G' are not strong slowdown
retiming equivalent. Otherwise go to Step 2.

Step 2. Construct schemes H and H', which are the unfoldings of G and G’ to the
extent determined by the product of fl(utr(G)) and fl(utr(G')) in TFlg, and test

whether H and H' are slowdown retiming equivalent.

The schemes G and G’ are strong slowdown retiming equivalent if and only if the
result of the test performed in Step 2 of Algorithm B is positive. @

ExaMPLE 3.2 Consider the schemes in Fig. 3.4.

Figure 3.4

Since fI(S,) ~, fI(S;) we construct the product H of fl(utr(S,)) and fl(utr(Sy)) as
follows:
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[1] The set of vertices V() = V'(S,) x V(S,) with the restriction that (u, v) € V'(H)
if and only if T(Sy,u) = T(S,,v), for some u € V(S,) and v € V(S,). This
restriction implies that u and v have the same label in S; and S, respectively.
This common label becomes the label of vertex (u.v) in the product scheme.

[2] The entry (exit) vertices of H are those pairs consisting of an entry (exit) vertex

in S; and the corresponding vertex in Sa.
(3] (ur,v1) = (ug, va) in Hif uy —=; up in S; and v, —; v in Sp.

[4] Make the scheme H ible by deleting ible vertices.

Observe that Sy = utr(S)) and S, = utr(S,). We have

fl(utr(S))) Fllutr(Sy))

m E’
= ra

Figure 3.5: Construction of product of fl(utr(S))) and fl(utr(S,)).

That is

Figure 3.6: Scheme Hl as a product of fl(utr(S,)) and fl(utr(S2)).
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Now we construct schemes H, and H,, which are the unfoldings of S, and S, to the
extent determined by the product scheme H.

Figure 3.7: Schemes H, and H- are slowdown retiming equivalent.
It is trivial to verify that the slowdown constants are ¢, = 2 and ¢; = 1. Hence

o Hy cH,

Figure 3.8: Schemes ¢\ H; and c; H; are retiming equivalent.

Therefore. schemes S; and S, are strong slowdown retiming equivalent.

Let us briefly discuss the complexity of Algorithm B. The product scheme H can
be constructed in O(|V2|). In order to construct schemes H; and H, one has to
insert V nodes into the product scheme H with reversed flow. This can be done
starting from the exit vertices of H; and H, and following the unfolding trees T'(S,)
and T(S;) in O(| V). At this point one has to decide whether or not H, and H, are
slowdown retiming equivalent. Algorithm A from Section 3.2, whose complexity is
O(1V3]) applies.
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4 Leiserson’s Equivalence vs.
Strong Retiming Equivalence

In this section the object of study is the relationship between Leiserson's (intuitive)

definition of equival of synch systems (Definition 2.5) and strong retmining

equivalence of synchronous schemes introduced in [ Bartha, 1994].

We assume that the initial contents of the registers associated with the weights is
L (undefined datum).

EXAMPLE 4.1 Synchronous systems in Figure 4.1 are equivalent in the sense of

Leiserson, that is S; and S; can simulate each other.

Figure 4.1.

The first three pulsations of the synchronous scheme S, are:
n=rp=rg=41

Input: z;

Output: g(L, 1)

n=ry=g(L.1).r=f(L.z)



Input: z,

Output: g(f(L, z1).9(L, 1))

ri=ry=g(f(L.z1).9(L. 1)), r2 = f(g(L, 1), z2)

Input: z3

Output: g(f(g(L, L), z2), 9(f(L,21), 9(L, L))

ro=ry=g(f(g(L, L),z2), 9(f(L,21), 9(L, L)), r2 = f(g(f(L, 1), 9(L, L)), z3)

The first three pulsations of the synchronous scheme S, are:
n=r=rg=rp=1

Input: z,

Output: L

rp=ry=rn=g9(f(L.z), L), n=1

Input: z,

Output: g(f(L.z1), L)
re=ry=ry=g(f(L 22), g(f(L,21), L)), 1o = g(f(L,21), L)
Input: z3

Output: g(f(L.z2).9(f(L, 1), L))
ra=ry=ry=g(f(9(f(L.21), L), 23), g(f (L, 22), 9(f(L.71). L)),
ri=g(f(L, ). 9(f(L.21), 1))

To demonstrate that S, can simulate Sy, let S, proceed one cycle from its initial
configuration, then set ry = g(L,1) and r; = ry = ry = g(f(L,21),9(L, 1)) in
S,. From then on, for any sequence of inputs z,z3, . .. scheme S, exhibits the same
behavior as scheme §,.

Similarly, after the first cycle of S, define ry = L. ro = f(L,z)andr3 = Lin §,.
Then. for any sequence of inputs £, I3, ... scheme S, will exhibit the same behavior
as scheme S,.
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Let ¥ = {y1,.--.Un,-..} be a fixed set of variables. For a ranked alphabet T, Tz
will denote the set of finite E-trees. If S is any set of variable symbols then Tx(S)
denotes the set of T-trees over S, that is Tx(S) = Tys), where I(S) is the ranked

alphabet obtained from £ by adding all the elements of S as variables of rank 0 to it.

DEFINITION 4.3 A finite state top-down tree transducer M [ Engelfriet, 1975] is a
quintuple (£. A, Q, Qq, R), where

T isa ranked alphabet (of input symbols),

A isa ranked alphabet (of output symbols),

Q s a finite set of states, such that QN (SUA) =0,

Qu is a subset of Q (of designated initial states), and

R is a finite set (of rules) such that RC (Q x T) x Ta(Q x Y).

b

A rule of R will be written in the form a — p, where a = (q,0) withg€Q, 0 € £,
and p € Ts(Q x ). In this rule, however, only the variables yy,. .., y, are allowed to
occur at the leaves of tree p. To emphasize this restriction, the above rule will rather
be specified as
9015+ Yn) — PQY1, - - Gnn) 0]
Intuitively, the transducer works as follows. It starts processing an input tree t € Ty
at its root in any of the designated initial states. Processing a node v labelled by
o € T, is carried out by first finding a rule of the form (1), then replacing v by the
tree p and continue processing the n subtrees under v in states g, ..., gy, attaching
them to the leaves of p labelled by qy,,...,qnyn, respectively. Note that the rules
are allowed to be nondeterministic. The relation R C Ts x Ty induced by M will be
denoted by R(M) [Engelfriet, 1975], i.e., two trees ¢; and ¢, are related with respect
to R(M) if M maps ¢, into t,.
In our transducers we shall allow the input tree to be infinite, which makes the
processing of the tree also infinite, but still well-defined. Moreover, we shall augment
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the input alphabet ¥ by the variable symbols X = {z),...,2,,...} of rank 0.

DEFINITION 4.4 For a fixed n € N, the finite state top-down transducer 7;, is defined
by the following data

Input and output alphabet are the same: Ty
Q=[-n.n]:

Qu= {0}

R is the set of rules defined below

(1) io(yr,- .., y) = VHo((i+ Dy, ..., (i+ i) for o € (So)e, L > 0,i+l < n
(2) V() = (i~
(3) 0z; = z;, fori e N.

EXaMmPLE 4.2 The finite state top-down tree transducer T; can translate the tree
Vh(V fVz,, VgV fV1,) into VVA(fVzy, gV fV1,) as follows (see also Figure 4.2):

OVA(VfVz,, VgV fVz)) = VOh(VfVz,VgVfVr,) rule (1)

= VVIA(VfVz,,VgVfVz;) rule (1)
= VVh(1VfVz,,1VgV[Vz,) rule (1)
= VVA(0fVz,.00VfVz;)  rules (2),(2)
= VVA(fOVz,,90VfVz;)  rules (1),(1)
= VVh(fV0z,gV0fVz,) rules (1),(1)
= VVA(fVz,,9Vf0Vz,) rules (3),(1)
= VVh(fVz,,gVfV0z,) rule (1)
= VVh(fVz,,gVfVz,) rule (3)

X ={z,..., Zn,...} is a set of variable symbols, then T7¢&°(X) denotes the set
of (infinite) -trees over X. An infinite tree t € TX(X) is called regular if it has
a finite number of different subtrees. Obviously, ¢ is regular if and only if it can be

obtained as the unfolding of an appropriate FE-scheme F, ic. ¢t = T(F).
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DEFINITION 4.5 Two regular infinite trees t,, t; € T (X) are retiming equivalent,
in notation t, ~ t,, if there exist SE-schemes Sy, S, such that t, = T(S)), to = T(S,)
and S; ~ S,.

‘THEOREM 4.6 The relation of retiming equivalence on regular infinite Lo-trees can
be characterized as:
~=URT)
n>0

PROOF SKETCH. (=) Let t; = T'(S)) and t, = T(S,) for some strong retiming
equivalent ST-schemes Sy and S,. Then S; and S, can be unfolded into schemes
S} and S that are already retiming equivalent, that is, there exists a legal retiming
vector R taking S| into Sj. The number of states [~n, n] of the finite state top-down
tree transducer T, which takes ¢, into ¢, is determined by the maximum absolute
value of R(v), i.e., n = max{|R(v)|| v € V(5))}.

(=) Let t, = T(S)) and ¢, = T(S;) for some synchronous schemes S; and S,, and
let 7, be a finite state top-down tree transducer which maps ¢, into ¢, with the
following feature: non V nodes are additionally labeled with the state in which they
are processed. We will denote the resulting tree as [t,. It is obvious that transducer
T, forces the common underlying flowchart scheme structure on both schemes S, and
Sy. Let H denote the product of fl(utr(S))) and fl(utr(S,)). Construct schemes H,
and H,, which are the unfoldings of S, and S, determined by the product scheme H as
follows: reverse the flow of H and, starting from its exit vertices, insert V nodes into
it following the structure of ¢, and t; respectively. Now. starting from exit vertices
of H and following the structure of It,, label non V nodes in H, with labels from
corresponding nodes in (t;. Since 7, maps ¢, into ¢, the corresponding nodes in H,
and [t; have the same labels and these labels determine the legal retiming vector

which maps H, into Hj. Therefore, S, and S, are strong retiming equivalent. W

45



The following is the example where it is not possible to translate one tree into another
using the finite state top-down tree transducer T, for any n € N. Notice the difference

between the number of V nodes along the corresponding paths.

EXAMPLE 4.3 The input tree is VA(V fVz,, VgV fVz,) and the goal output tree is
WV [V, VgV [Vr,).

OVA(V fVz,, VoV Va2 (~1)h(V [V, VgV fVrs) rule (2)
h((=1)VfVz,,(-1)VgV[Vz,) rule (1)
R(V(=1)fVz,, V(=1)gV fVz2) rule (1),(1)
h(Vf(~1)Vz,,Vg(=1)VfVz,) rule (1),(1)
h(VfV(-1)z;,VgV(-1)fVz,) rule (1),(1)
h(VfV(-1)z,. VgV f(~1)Vz,) crash, rule (1)
h(VfV(=1)z(, VgV fV(=1)zs) crash, rule (1)
h(VfV(=1)z1, VgV fV(~1)z2) crash

Lrreeiel

DEFINITION 4.7 We define the finite state top-down tree transducer O, which takes
as input ¢ € T (.X) such that ¢t = T(S) for some SE-scheme S, and translates it into
the output of scheme S at the n®* clock tick, assuming an initial configuration with

L’s assigned to all registers, as follows:

T =To(X)
A=Xu{l}uf{z'|i>21l,zeX}
Q={01,....n—1}
Qu={n-1}

R is the set of rules defined below
(1) io(yr.-..,yn) = o(iyy,... iys) foro €T,
(2) V)= (@-y ifix1
(3) 0V(m) - L

() iz; >z forieN
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Notice that O, is deterministic. The variable symbol =} stands for the input arriving
from input channel j in the the i** clock cycle.

If the starting configuration c is different, then introduce unary symbols of the
form (V,p), where p € Ty is a finite tree representing the contents of a register

according to c¢. Modify the above rules (2) and (3) as:

(2)iV,p)(yr) = (=D ifi>1
() (V. p)w) = p

Call this transducer O,(c), where c is the starting configuration.

Let Ha(t) denote the net output height of an infinite tree t € Tg3(X) in the
n'* step, i.e. the height of O,(t), and let Hy(c)(t) denote the total output height
of an infinite tree t € T2 (X) in the n' step starting in configuration c, i.e. the
height of Oy (c)(t). Note: Hy(c)(t) — Hn(t) < ke for a fixed bound k. depending on

configuration c.

LEMMA 4.8 Let S and S' be Leiserson equivalent SE-schemes Then S and S’ are

strong retiming equivalent.

PROOF. Recall the definition of Leiserson equival (Definition 2.5). Assume, by

way of contradiction, that S and S’ are Leiserson equivalent, but S = S'. Then

1) fUT(9)) = FUT(S")
(2 T(S)=T(S).

Condition (1) is necessary for two schemes to be Leiserson equivalent. For if fI(T(S))
# fU(T(S")) then, no matter what the configurations of S and S’ are, they will never
exhibit the same behavior, that is. produce the same sequence of outputs for the same
sequence of inputs.

By virtue of Lemma 3.2.2 and Lemma 2.11 (characterization of strong retiming equiv-

alence), (2) can only happen if
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(i) There exists a finite branch in fI(T(S)) leading to variable z} such that the
corresponding branches in T'(S) and T(S’) have a different number of registers along
them; or
(ii) There exists an infinite branch in fI(T(S)) such that the absolute difference of
the number of registers along the corresponding branches in T(S) and T(S') is oo,
ie., limy o | Ha(T(S)) — Ha(T(S") | = 0c.

If (i) is the case, then it is easy to see that the input zj will always appear in

different clock cycles in the output sequences of S and S’. Therefore the equation
On(c)(T(S)) = Oa(c)(T(S")

will not hold for every n > 0, no matter how the configurations c and ¢’ are chosen.

This contradicts the hypothesis that S and S’ are Leiserson equivalent.

In case (ii). ding to our hypothesis. there exist ions ¢ and ¢ for §

and S’ respectively, such that
On(e)(T(S)) = Ou(¢)(T(S")

for all n > 0. Therefore H,(c)(T(S)) = Ha(c)(T(S")). On the other hand, by

assumption we also have:

lim | Ho(T(S) =~ Ha(T(S) | = 0.
This is a contradiction since there exists a fixed bound k. such that H,(c)(t)—H,(t) <
k. for all infinite trees ¢ € T3, (X). @
LEMMA 4.9 Let Sy and S, be strong retiming equivalent SE-schemes. Then S, and
S, are Leiserson equivalent.

PROOF. According to Lemma 2.11, there exist SE-schemes S} and S; such that S; and
S are strongly equivalent for i = 1,2, and S} ~, S;. By definition, if two SE-schemes
are strongly equivalent, then they are Leiserson equivalent. On the other hand,

Lemma 2.1 (Retiming Lemma) assures that S| and S} are Leiserson equivalent. W
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THEOREM 4.10  Two synchronous schemes Sy end S, are Leiserson equivalent if

and only if they are strong retiming equivalent.

PRrOOF. Follows directly from Lemmas 4.8 and 4.9. W
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4 Retiming Identities

4.1 The Algebra of Synchronous Schemes

It was observed in [Elgot and Shepardson, 1979] that flowchart schemes can be
treated as morphisms in a strict monoidal category [MacLane, 1971] over the set
of objects N = {0,1,2,...}. Arnold and Dauchet [1978, 1979] reformulated these
categories as N x N sorted algebras called magmoids. In a magmoid M, we have an
underlying set M (p, q) corresponding to each pair (p, q) of nonnegative integers, and

the basic operations are the following:

o Composition: maps M(p,q) x M(q,r) into M(p,r) for each triple p,q,r € N,
denoted by -. See Figure 5.1(a).

® Sum: maps M(p1.q,) X M(pa,qe) into M(py + pa, qu + go) for every choice of
the nonnegative integers p|, p2, q, g2, denoted by +. See Figure 5.1(b).

® Feedback: maps M(1+p, L +q) into M(p, q) for each pair (p,q) € Nx N, denoted
by . See Figure 5.1(c). The application of 1 creates triangles (boxes of sort

1 — 1) which represent registers.

qu ('r]

48 P2
(a) Composition. (b) Sum. (c) Feedback.
fi-fipor fithip+poate tfip—q

Figure 5.1: The interpretation of operations.
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There are two constants in M, 0 and 1, standing for the identity arrows 1y and
1;, respectively. By the strict monoidal property, 1, (p > 1) then corresponds to
the element 3°?_ 1 in M(p,p). We use the notation p for 3"7_, 1, and adopt the
categorical terminology f : p — ¢ to mean that f is an element (morphism) of
sort (p.q) in M. The operations and constants are subject to the obvious identities
ML, .... M5 below.

The magmoid operations are, however, not sufficient to express even the most

v schemes, i.e., i For this reason, some further constants are to

be introduced. Usually the constants 7 for all p € Nand i € [p] = {1,2,....p}
are chosen. The constant 7 : 1 — p represents the mapping [1] — [ p] which sends
1 to i. This choice is natural, because the semantics of flowchart schemes is defined
in algebraic theories [ Lawvere, 1963], and the constants , are included in the type
of the coresponding N x N sorted algebras. However, regarding the pure syntax of
schemes only, the choice of the constants 7 is not the simplest one. Indeed, every
mapping can be expressed by the help of the transposition z : 2 — 2, the join (or
branch) = : 2 — 1, and the zero 0, : 0 — 1 using the magmoid operations. These
constants are also natural for us, even from the semantic point of view. because we
consider schemes to be logical circuits. In this case the constants z. < and 0, are

interpreted as the simplest switching elements in the circuits, see Figure 5.2.

icy icy, ey
1: O - X 5 0: empty; & A v O @
ocy

icy
oc; ‘ocy oc,  ocy
Figure 5.2: The interpretation of constants.

In accordance with [Bartha, 1987], S denotes the type consisting of the oper-
ations -, + and 1 and constants 0, 1. z, £ and 0;, and D is the subtype of S not
containing 1. This way we have defined the S-algebra Sf(X), where Sf(X)(p, q) is the
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set of all SZ-schemes of sort p — g over a doubly ranked alphabet T. Recall that
T = {Z(p.q) | (p.q) € N x N} where the sets Z(p, ) are pairwise disjoint. With each
a(p.q) € E(p,q) we associate an atomic ST-scheme with p + ¢ + 1 vertices (2p + 2¢

ports) shown in Figure 5.3.

ocy ocp

Figure 5.3: o € £(p.q) as an atomic scheme.

The following mappings will play an important role in the sequel:

:k — 1 is the unique one of its sort.

® wy(q) : p-q— q. For any p.q € N, w,(q) takes a number of the form (j —1) ¢+
(J € [pl,i € [q]) toi. See Figure 5.4a.

® K(n,p) : p-n — n-pis the permutation (sometimes called a perfect shuffie)
which rearranges p blocks of length n into n blocks of length p, i.e., k(n,p) takes
(G=1)-n+i(j€[pli€(n]) to(i—1)-p+j. See Figure 5.4b.

e G#s. If 3 : r — ris any permutation and s is a sequence (n,...,n;) of
nonnegative integers with n = Y, n;, then B#s : n — n is the block by block
performance of 3 on s, i.e, S#s sends j + E;n,-, where j € [ngy] to the

number y + j, where y is the sum of numbers n; such that 8(i) < 8(k +1). See

X

a) mapping w2(3) b) mapping x(3,2) ) mapping z#(2,2)
Figure 5.4: Examples of mappings w,(g). x(n,p) and B#s.

Figure 5.4c.
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42 E ional Axi ization of Synch Sch

The sy ical and ical features of synch systems can be ientl

separated. The syntax is specified by a synchronous scheme. The semantics is then
specified by an algebra. which iates a fixed ion with each ion symbol.
The set of identities SF has been developed in [Bartha, 1987]. In this section we

augment SF with a new axiom R, intended to capture the retiming equivalence of
synchronous schemes and develop the system of identities F, T to serve as a basis of
identities of feedback theories being the semantics of synchronous schemes. The first

set of identities towards the axiomatization of schemes is MG:
L. MG = {ML. ..., M5} is the set of magmoid identities, where
ML: f-(g-h)=(f-9)-hif f:pogg:qarhir—s
M2 f+(g+h) =(f+9)+hif f:p o q.9:p2 @2 h:ps g
M3 p-f=f-q=fiff:pog
Md: f+0=0+f=fiff:pog
Ma: (fr-g)+ (@) =(fi+f) (o +g) if fiipi = qugiigri=12
2. DF = MG U {P, D1, D2, D3}, where
P fi+ fr=zx#(pup)- (o + fi)-z#(@ @) M fipi 2 qi=12.

P is the block permutation axiom introduced by Elgot and Shepherdson [1980].
This axiom postulates a symmetry [ MacLane, 1971] for the strict monoidal category

determined by the axioms MG.
Dl: e+1)-e=(1+¢)-&
D2 z-e=¢

D3: (1+0,)-e=1



3.

i

SF = DF U {S1, S2, ..., S9}, where
SLt(h+h)=th+hiffi:l+p o l+a o2 gy
82 (@ +p)- H)=1(f(z+q)iff:24p 2 2+¢

S t(f-(1+g)=(1f)-gif f:1+p>1l+qg:q—m;
St t{(1+g)-f=g-tfiff:l+go1+ng:p>¢
S5: 11=0;

S6: e+ L =1+ L, where L =t¢;

ST 1(f-(e+q) =12(e+p) - /)i f:1+p=2+¢q

S8: 0,-V =0, where V = 1uz;

S9: f(e- V") = L Vn € N, where V" denotes the n-fold composite of V.
RF = SF U R, where

Rt (f-(9+q@)=1"((g+p)- /)i f:pi+pr > +geand g:qu = pi.

For the interpretation of axiom R see Figure 5.5.

2

Figure 5.5 Retiming identity.
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Cram:  The following identity is provable from RF (See also Figure 5.6):

P q
Re:Y V-f=f-3V for fip—rg
i=l i=l
PROOF.
Yvi € v-pra) £ PURpa)

L tatian)-f) £ 1g+n)- )

Figure 5.6: Proof of identity R« in a diagram.

Note. however. that identity R+ alone is not sufficient to capture the retiming equiv-

alence of synchronous schemes. Consider S, = T(e- f-g) and S, = ((g+1)-=- f).

See Figure 5.7.
S S,
[ ]
[ ]

Figure 5.7.

Schemes Sy and S, obviously exhibit the same behavior, yet equation S; = S, is not
provable from SF U Rs. The only axiom that interchanges the composition is P7
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which is not applicable in this case. On the other hand, t(¢- f-g) =t ((9+1)-=- f)
follows directly from R.

Let Q be a type of Nx N sorted algebras and £ be a doubly ranked alphabet. If E
is a set of Q-identities, then we denote by Kg(E) the variety of all Q-algebras in which
the identities E are valid. If 2 is a Q-algebra, then ®q(E), or simply ®(E), denotes
the congruence relation of 2 induced by E, i.e., the smallest congruence relation for

which 2/®(E) (the quotient of % by ®(E)) becomes an algebra in Kg(E).

THEOREM 5.2.1 The congruence relation ®(R) induced by aziom R in the algebra

1

SE(E) is the retiming relation of synchi schemes.

PROOF. As retiming equival is the smallest equival ining the primitive

retiming relation (retiming one box only), and ®(R) is also an equivalence, it is
sufficient to show that if SE-scheme S is obtained from S via one primitive retiming
step, then R S = §' in the algebra Sf(T).

Let S.5' : p — q be SE-schemes such that S’ is obtained from S by retiming a
single box. S can be represented as 1% ((g+p)- F), F : p;+p — q,+q representing the
“surroundings” and g : g, — p, representing the single box. Then ' =1*' (F-(g+q))
follows from S by a single application of axiom R. See also Figure 5.8. B

Figure 5.8: Congruence ®(R) 25 the ratiming equivalence relation.
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THEOREM 5.2.2 [Bartha, 1987] SE(E) is freely generated by £ in Ks(SF).
THEOREM 5.2.3 Sf(S)/®(R) is freely generated by £ in Ks(RF).

PROOF. It is well known that if free algebra over the equational class of algebras exists
then it is isomorphic to a quotient algebra of terms, where the quotient is taken with

respect to the congruence induced by the set of axioms (equations). Therefore:
Sf(T) = T-ST/$(SF)

where T-ST denotes the term algebra over £ and ®(SF) denotes the congruence
relation induced by the set of axioms SF. Let ®(R) denote the congruence relation

induced by the retiming axiom R. Then, by the second isomorphism theorem:
Sf(S)/®(R) = (T-ST/®(SF))/®(R) = T-ST/®(SFU {R}). B
In our axiomatic treatment, algebraic theories can be introduced by the help of
identities TH = (T1, T2}, where
Tl: 0,-f=0, for f:1—2¢

T2 wlp)-f= (Zf) “wy(g) for fip—rgq

=t
We define the identity R1 as follows:
RL: ™ (f-(g+ @) =t((g+p2) - f) for fip+p—1+ag:l-p

THEOREM 5.2.4 In the presence of the theory aziom TH it is sufficient to consider

aziom R1 rather than R.
PROOF. We have to prove that
R: PH(f-(g+ @) =1"(g+p)-f) for fip+m2ra+@g:a—n

is a consequence of SF U TH U {R1}. The proof is an induction argument on q;. If

q1 =1 then axiom R is of the form
el =1"g+p) - N)=1ts+p)- )
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that is, R reduces to R1. Now assume that g, > 1 and that the theorem is true for

qu = n. Then for g, =n + 1 we have

?(f- 9+ @)

E (#0404 1) w () 9+ 02))

= 1'-(1-<(1+~»+0|+~~~+0x+~-+1)~'}:_‘,:y-(w.,.(p.)+mn

FTEE 40 (g (1) +pa) - S (14400 - g 4+ (04 +1) -0) + )

(L4 0 4 0y) g+ (O e 140))
g+p) wu(p) ) (n+ O+ +00+1) g+ @)

L (4 +0,4+0) g+ + O+ +1+0,)-g+p)
wn () - DEH(O+-+- 40 +1) -9+ 1) +42)

L 0 (O 4+ 0, +1) g+ (L +0,+0) - g+ +
O+ 14+0) -9 +p2) - wq(p) - f - (0 + )

(et 0) g+t O+ + 1) g) + ) wg(p1) - )

T (e Ot O+t ) wy(p)-g+p2) - f)

DF

1 (g+p)-N)M

See also Figure 5.9.

s




STMG

E 1P

el
=

b o

I

o |

39




| B
2 tn_
I Lk

[k
¢

. '
Figure 5.9: Proof of Theorem 5.2.4 in a diagram.

Concerning feedback theories, we i duce the well-k

identity
[Esik, 1980] in the following alternative way:

Cun(p) 1 f =t"(f % (pr,-.om) - walg) i frl+p—=l+g,
for all n € N under every choice of mapping pi,...,p : n — n, where

n L
Fe(pus) = allin,p) - (Zf) -alln,g)- (D.-m-q)

=1 i=1
and a(l.n.m) = (x(2,n)#(l,m)") - (k(l,n) + n - m). See Figure 5.10 for an instance
ofCinthecasen=3,/=2and p=g=1.
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Figure 5.10: The axiom Cforn =3,/ =2andp=q=1.

DEFINITION 5.2.5 We define the strong retiming feedback theory F,T as
F.T=SFUTHCU {R1}

where THC = THU C.
COROLLARY 5.2.6 Strong retiming equivalence of synchronous schemes can be
characterized as a congruence relation ®(F,T) induced on the set of SE-schemes by

the axiom set F,T.
PROOF. Follows immediately from Theorem 5.2.1 and Definition 5.2.5. @

COROLLARY 5.2.7 The free algebra in Ks(F,T) generated by £ has a characteriza-

tion by equivalence classes of infinite Zy-trees according to their retiming equivalence.

PROOF. Follows immediately from the fact that the free algebra in Ks(FT), where
FT = SF U THC is a feedback theory. generated by ¥ has a characterization by

equivalence classes of infinite Lg-trees and Theorem 4.6. B
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5 The Algebra of Multiclocked Schemes

In this chapter we study the general case of multiclocked synchronous schemes. The
motivation comes from the h dataflow ing L LusTRE

[Halbwachs, Caspi, Raymond and Pilaud, 1991] d as a tool for

reactive systems as well as for describing hardware and program verification.

5.1 The LUSTRE Programming Language

Reactive systems have been defined as computing systems which continuously interact

with a given physical envi when this envi is unable to synch
logically with the system. This class of systems has been proposed [Harel and Pnueli
1985. Berry 1989] to distinguish them from transformational systems - i.e., classi-
cal programs whose data are available at their beginning and which provide results
when terminating - and from interactive systems which interact continuously with
that possess sy
TRE makes it very close to usual description tools in these domains (block-diagrams,

The dataflow aspect of Lus-

ks of op dynamical ples-systems, ...), and its synchronous inter-
pretation makes it well suited for handling time in programs.
In LUSTRE. any constant, variable and expression denotes a flow. i.e.. a pair
made of a possibly infinite sequence of values and a clock, representing a sequence
of time. A flow takes the n-th value of its sequence of values at the n-th clock tick.

A LUSTRE program d

a network of lled by a global (basic)
clock. When executing, this network receives, at each clock tick, a set of inputs
and calculates the set of outputs. The language is based on the perfect synchrony
hypothesis, which means that all computations or communications take no time and
that the net is supposed to react instantenously and to produce its outputs at the
same time it receives its inputs. Other, slower clocks can be defined in terms of
boolean flows. The clock defined by a boolean flow is the sequence of times at which
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the flow takes the value true. For example, table 6.1 shows the time scales defined
by the flow C whose clock is the basic clock, flow C, whose clock is defined by C and
flow C, whose clock is defined by C,.

basic time scale | 1 2 3 4 3 6 7 8
C flow | false true true false false true false true

C time scale 1 2 3 4
C, flow false true true true

C; time scale 1 2 3
C; flow true false true

C, time scale 1 2

Table 6.1: Boolean clocks and flows.

LUSTRE has only few elementary basic types: boolean, integer, real and one type
constructor: tuple. Complex types can be imported from a host language and handled
as abstract types. Constants are those of basic types and those imported from the
host language. Corresponding flows have constant sequences of values and their clock
is the basic one. Variables must be defined with their types and variables which do
not correspond to inputs should be given one and only one definition, in the form of
equations (expressions). The equation “X = E;" defines variable X as being identical
to expression E in the sense that E denotes the flow of variables of the same type
ey,€,€3,... and z; = ¢; for all i > 1 where z,,1;,7;3,... denotes the flow X with the
same clock as E.

Usual operators over basic types are available (arithmetic: +, -, , /, div, mod;
boolean not, and, or; relational: =, <, <=, >, >=; conditional: if then else) and
functions can be imported from the host language. These are called data operators
and only operate on operands sharing the same clock.

What follows is the description of the context-free syntax of LUSTRE using a
simple variant of Backus-Naur-Form (BNF). <[talic> type style words enclosed in
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angle brackets are used to denote the syntactic categories and Typewriter type style
words or characters are used to denote reserved words, delimiters or lexical elements
of the language, other than identifiers. = denotes the empty string.

<LUSTRE_program> ::= <sequence_of_nodes>
<sequence_of_nodes> ::= <node> | <node><sequence.of.nodes>
<node> ::= node <identifier> (<input_decl>) returns (<output_decl>);
<declaration_sequence>
let
<block>
tel.

<input_decl>

<variable_list> : <type> | <variable list>: <type>; <input.decl> |
(<input_decl>) when <variable> g ; <variable>p:bool

<output_decl> ::= <input.decl>
<uvariable_list> ::= <variable> | <variable> , <variable_list>
<type> := int | bool | real

< ion_sequence. decl

£ < ion> ion_sequence>

<declaration> :

var <variable_list>: <type>;
<block> ::= <command>; | <command>; <block>

<command> ::= <variable> = <ezpressit | <tuple> = <ezpressi |
<assertion>

<erpression> = <constant> | <variable> | <integer_ezpr> | <boolean_ezpr> |
<conditional_ezpr> | <temporal_ezpr> | <node_call>

<constant> = <numeral> | <boolean_constant>

<integer> | <real>
<digit> | <digit><integer>

= <integer> . <integer>
<boolean_constant> ::= true | false
<integer_ezpr> = <term> | <integer_ezpr><arithmetic_op><term>
<term> == <numeral> | <variable>

<arithmetic_op> =|*|/|div|mod
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<boolean_ezpr> ::= <boolean_term> | not <boolean_ezpr> |
<boolean_ezpr>< boolean_op>< boolean_term>

<boolean_term> ::= <boolean_constant> | <variable> | <comparison>

<boolean_op> ::= and | or | xor

<comparison> = <integer_ezpr>,<relation><integer_ezpr>,

<relation>

=|o|<|<=]>]>=

<conditional_ezpr> ::= if <boolean_ezpr> then <ezpression>, else <ezpression>,

<temporal_expr> ::= pre <ezpression> | <ezpression>| -> <ezpression>; |

<ezpression>| when <ezpression>, | current <ezpression>

<node_call> :

<identifier> (<variable_list>)

<assertion> ::= assert <boolean_expr>

<wvariable> <identifier>

<tuple> ::= <variable_list>

<identifier> ::= <letter> | <identifier><letter> | <identifier ><digit>

<digit> :=0]...|9
<letter> ==a|...|z|A|...|2
LUSTRE's specific op are * I” op pre, ->. when and current

which operate specifically on flows. A flow of values from a data domain D is a pair
(d, 7) where d is a sequence over D and T = [ry,...,7,] is a clock of d. The basic
data domains consist of finite and infinite sequences of integers and boolean values
extended with the value L to represent the absence of a value, which is treated like
any other value - in particular, it is not smaller than other values in the domain
ordering. The clock element [r\,. .., 7,] represents a clock that ticks as defined by the
simple clock 7 and has been sampled using the clocks 73, ..., 7,. The last element
of this sequence 7, is always the basic clock. An element (d, [ry, ..., 7,]) represents
the flow that produces the i-th element of d at the instant when the i-th tick of 7
appears.

The operator pre is the delay operator. [t memorises the last value of a flow and
outputs it when it receives a new value, transforming a sequence e,e; ... with clock

T into the sequence Leyen. .. with the same clock,
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Table 6.2 shows the behavior of the pre operator in schematic form.

Ele; e e3 e e € e e

pre(E) | L e e e e es e er

Table 6.2: The “previous” operator.
The initialization operator -> maps flows E = (e\€;...,7) and F = (fi fo...,7)
to the flow (eifafs..., 7). The => operator only gives well-defined output as long as

the input flows have the same clock. Table 6.3 shows the behavior of the -> operator

in schematic form.

Ele e e e e e e e

Flh h s b ks fs o /s

E>Flee o i i s s i fs
Table 6.3: The “followed by" operator.

The expression E when B samples values from E when B is true. Here E and B
must be on the same clock and B must be a boolean flow. The clock of the flow
defined by E when B consists of those instants when B is true. Formally, if E = (e, 7)
and B = (b, 7), where e = eje;... and b = byby..., then E when B = (e when b, [br]),
where e when b is the sequence e;e;, . .. such that the numbers i; are exactly the ones
in increasing order for which b;, is true.

The current operator performs up-sampling, or interpolation, of a flow. For
E = (e.[br]), current(E) = (cur(e,b),7’), where cur(e,b) is the sequence e’ for
which

e if b; is true
€/_, if b; is false

Note that, according to the above recursive definition of €, e = L, by definition. As
to the sequence 7',
; 7 if 7 is not empty

[6] if 7 is empty
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Table 6.4 shows the behavior of the when and current operators in schematic form.

E| ¢ 23 e3 ey es es er eg

B| false true true false false true false true

Y = E when B e e3 es es

Z=current Y| L e e3 [ ey € es es

Table 6.4: Sampling and Interpolating.

LUSTRE program is a finite sequence of nodes which consist of a declaration of
input/output variables and a set of equations defining the output flows. The following
node is the standard example how to define the basic clock counter (COUNTER) and its
application in defining the regular clock which ticks on every third tick of the basic
clock (REGULAR_CLOCK.3).

node COUNTER(val_init, val_incr: int; reset: bool) returns(n: int);
let

n = val_init -> if reset then val_init else pre(n) + val_incr;
tel.

node REGULAR_CLOCK_3 () returns (clock_3: bool);
var n_3: int;
let

n_3 = COUNTER(1, 1, pre(n_3) = 3);

clock_3 = if (n_3 = 1) then true else false;
tel.

5.2 The Algebra of Schemes with Multiple Regular Clocks

In this subsection, motivated by the clock analysis of LUSTRE, we develop the algebra
St,(E) of synchronous schemes with multiple regular clocks, i.e., clocks that tick
every first, second, third etc. instant of the basic clock. The arbitrary clocks are

intentionally omitted since the issue becomes technically too complex.
DEeFINITION 6.1 The algebra Sf,(X) of generalized synchronous schemes consists of:
© Objects: (S,n)ofsort p—g, S:p—=ginSHT)andne M.
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(S, n) stands for generalized scheme. Each input signal is repeated n times and
outputs are read in kn + 1 cycles only, where k =0,1,2,...

e Constants: 1 =(1,1),z = (z,1),0=(0,1),c = (5,1),0, = (0,,1)
© Operations:

1. Composition: (f.m) - (9,n) = (SLOWy(f) - SLOWym(g), lem(m, n))
if f : p— q.9: q = r. where lem(m, n) is the least common multiple of m and n
with ' = S8 g = lenlma) apg spow,(S) is the c-slow of S.

Sum: (f, m) + (g, n) = (SLOWx(f) + SLOW(g), lem(m, n))
Ef:pi=qu9:p2 =

Lol

Feedback: t(f,n) = (taf,n)
if f: 1+ p— 1+ g, where 1, means feedback with interjecting n registers.
THEOREM 6.2 The algebra Sf,(E) satisfies scheme identities RF.
PROOF.
M1 (f.2)-((9.9)- (h.2)) = ((f.2) - (9.9)) - (h,2)
iff:p—>qg:qor.h:rosandzr.yzeN
(£:2)- ((9.v) - (h,2))
= (}:2) " (SLOWicmipe (9) - SLOW i (), lem(y, 2))
= (SLDWMU) SLoww(snoww(g) -SLOWM(I:)),
lem(z, lem(y, 2)))

= (SLOWiemtsiempy.on (f) * (SLOW emistemy. o (9)  SLOW emeetemg.on (1)),

lem(z, lem(y, 2)))

(sl.ow,(swwlmnmx. \(f)- Sl-owmm_,,_l(y)) SLOW iemdeme.p1.0) ()
lem(lem(z, y), 2))
lclfﬂ(lcm(z. y).2))

= (SLOWicmieme.. (f) - SLOW icmtemiz 0 (9). )+ (h.2)
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= ((£2)-(g:9)- (h,2)

M2 (f.2)+((g.9) + (h,2)) = ((f,2) + (9.9)) + (h,2)
ff:p—q.9: P22 @ h:py3gandz,yzeN

(f,2) + ((g.9) + (h, 2))

(f,2) + (SLOW ey (9) + SLOW ey (h), lem(y, )

(SLOW temesemupuy () + sww%uﬂ(smwﬂ,ﬂ(g) +SLOWiemy o (),
lem(z, lem(y, 2)))

[

(SLOW entesemty (/) + (SLOW et sty (8) + SLOW emts ey (),
lem(z. lem(y, =)))

"

(SLOW(SLOW emtemgz.ppc1 () + SLOW tememee 1.5 (9)) + SLOW temteme .1 (h).
lem(lem(z. ), 2))

(SLOW jemiemienns (F) + SLOW etz (9), M

= ((f2) +(g9) +(h.2)

)+ (h.2)

M3 (p.1)-(fiy)=(fy)-(g.1) and yeNif f:p—gq

(p1)-(f.y) = (sLowy(p)- f.y)
= (p-f9)
= (f-qv)
= (f-sLow,(q),y)
= (fy)-(@1)

M4 (f,2)+(0.1)=(0,1)+(f.z)if f:pqandz €N
(f,2) +(0.1) = (f +sLOW,(0).7)

= (f+0,7)
= (0+f7)
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= (sLow(0) + f),z)
(0,1)+(f,2)

M5 ((fi.21) - (9u,91) + ((f2r72) - (92, 82)) = ((fro21) + (f2: 22)) - (91, 91) + (92, 92))
iffi:pi=angi:q—=r,i=12andz),y,22,p €N

((frr21) - (91, 01)) + ((f2:22) - (92, 12))

(SLOWk:mu ey (1) - SLOW ez, 1 (91), lem(z, 1)) +

(SLOWM(fz) swwm(gz) lem(z2, y2))

(SLOWIcmnm:m:. Jemiezuz) (SLOkau an(fi) - SLDWI:M: lemeeyay) (91) +

SLOW gttt (LW oy () SLOW ik 02,
el & "

lem(lem(zy, 1), lem(zz, y2)))

((SLOW temytems, sy emteg i) (f) 'SLOW@w(m)) #

(SLOWMWU?) . SLOWM%M(ML

lem{lem(z1, ), lem(z2, 32))) '

((SLOW teamgtemes, cplemini (f1) + SLOW temgieme eqlemiyan (f2)) -

(SLOW et oo (91) + SLOW et e 92).

lem(lem(z, 22, lem(y, 32))) ‘

(SLOWIcm(km(:m,::LIcm(! a2 (SLOchmu e (fi) +5L0chmu lemey ) (f2)) *

SLOW iememgz, L:.i & .,(snowmu_(gxhsww“ml 42 (92)),
il "

lem(lem(zy, 72), lem(y1, 32)))

(SLOchmu g 1(f|)+5b0WIcmu e (fo2): lem(zy, 72)) -

(SLOWmmr. i (91)+SL0W1=m< a2 (92), lem(yy, y2))

((froz) + (fz,h)) ((91,0) + (92, ¥2))

P (fuz) +(farz2) = z#((p1, 1), (P2, 1)) - (2 22) + (fis m)) - 2 (02, 1), (0, 1))
if firpp—=g,i=12and z,,z, €N
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(fr.z1) + (f2.72)
= (sr.owm(,ﬁ)+sr.ow.‘..;,:u.>,(/g),lcm(z..zz))
= (I#(plrh)‘ > (SLOWIa_m:’*m(fz)’*s'-Ong_m_:l,._.ﬂ(fl)) - z#(g2, @1), lem(zy, 72))
= (Z#((Phl)-(lh-l))'(Sl-owméhm(fz)*'
Swww(h)) - 2#((g2, 1) (@1,1)), lem(zy, 22))
= I#((Phl)‘v(hx 1)« ((fayz2) + (fr 7)) - #((q2 1), (91, 1))

D1 ((z.1) +(L,1))- (&, 1) = ((1.1) + (&, 1)) - (&, 1)
Follows directly from SF and the definition of constants.
D2 (z.1)-(s.1) =(e.1)
Follows directly from SF and the definition of constants.
D3 ((1,1) +(0,,1)) - (s 1) = (1,1)
Follows directly from SF and the definition of constants.
S1 t((fi.1) + (fo. 22)) = T (fr,21) + (f2.22)
iff:l+p=21+q.fa:pp2qandr .z €N
H(fz1) + (fa22))
= T(SLOWiemiey cz) (i) + SLOW icmie ey (f2), lem(z, 72))
5 5
= (Nem(zr.z2) (SLOWiemeey e2) (f1) + SLOW ieme, ey (f2)), lem(z1, 72))
@ B

= ((Tiem(zn 22) SLOW lemsy.ep) (f1)) + SLOW iem o) (f2), lem(21, 22))

(T2 foz) + (f2. 72)
= tfun) +(fa12)

S2 12(((z.1) + (p.1) - (f.¢) =1 ((f.9) - (=, 1) + (g, 1))
iff:2+p—>2+qandceN



(= 1) + (2.1)) - (f,)
t((z+p)- (f,0)

1*((sLow(z) + sLowe(p)) - f.c)
(t:((z+p)- f,0)

(12(f - (z +4)).0)

1(f - (sLowe(z) + SLOWc(g)). )
2((f,0) - ((=.1) + (¢, 1))

[

[

83 1((f.2)-((L1) +(9,2)) =1(f,2) - (9:2)
iff:l+p—1+q9:q—randr,zeN

T(f.2) - ((1,1) +(9,2))
{(f.z) - (SLOW:(1) + ), 2))

T (SLOW iemge.ey (f) * (SLOWz:(1) + SLOW ieme 1 (9)), lem(z, 2))

(Meme) (SLOW gmiey (f) - (1 + SLOW iemie. (9))). lem(z, 2))
(Tieme) SLOW itz () - SLOW ieme 0 (9). lem(z, 2))
(1:£.2)-(9.2)

t(f.2)-(9.2) ‘

S4 t(((1.1) +(g.9) - (£,2)) = (g.9) - 1(f,3)
iff:1+q—>1+r,g:p—>qgandy,zeN

(L1 +(9) - (£,2)

T((sLowy(1) +g,y) - (£.2))

T((sLowye(1) + Smwg’m(!)) * SLOW ey (f), lem(y, 2))
(et 2){(1 + SLOW iy 1 (9)) - SLOW iemgp (f)). lem(y, 2))

(SLOWicmiy.o1 (9) - (T icmiy11SLOW temeans (£)), lem(y, 2))

I3



= (99) - (1:£:2)
= (9:9)-1(f:2)
S5 1(1,1)=(0,1)
Follows directly from SF and the definition of constants.
S6 (e,1)-(L,1)=(L,1)+(L,1) where L =t¢
Follows directly from SF and the definition of constants.
ST 1((f.2)- (& ) + (0, 1) = (((e.1) + (2, 1)) - (,2))
iff:1+p—>2+gandzeN
T(fiz)- (&, 1) + (g, 1))
= 1(fix)-(e+49)
= 1(f- (sLow.(e) + sLow:(q)), z)
= 1f-(e+a)2)
= (T:(f-(e+q))2)
= (e +p)- )2
= 1%((sLows(e) +sLOWs(p) - f,z)
= &) +@1)-(f2)
S8 (04,1)-(V,1) =(0,1) where V =tz
Follows directly from SF and the definition of constants.
9 1((e,1)-(V.1)") =(L,1)
where (V,1)" denotes the n-fold composite of (V,1)
Follows directly from SF and the definition of constants.
R 17 ((f,2) - ((9:9) + (@, 1) =17 (((9:9) + (22, 1)) - (£, 2))
ffiptm2a+ngarpadoyeN

3



?U((f.7) - ((9:9) + (@, 1))
= 1t ((f.2) - (g +sLowy(a).y))
% i (Swwk.#,_.(!) & (swwEtm(y) +SLOWzy(q1)), lem(z, y))
= (Nomtza (SLOWiemie (f) - (swwk%u(y) +q.)),lem(z, )
= (Nowza) ((SLOW emte 1 (9) +P2) - SLOW iemie (/). lem(z, )
t* ((swwm_ﬁu(a) +SLOWzy(p2)) - SLOW emieyy (/). lem(z. )
1 ((9.0) + (@2 1)) - (fx)) W

DEFINITION 6.3 We define the L-eqivalence of lized synch schemes as
follows. Let (F,m) and (G, n) be generalized synchronous schemes. Suppose that for
every sufficiently old configuration c of (F. m), there exists a configuration ¢ of (G. n)
such that when (F, m) is started in configuration ¢ with each input signal repeated m
times and (G. n) is started in configuration ¢’ with each input signal repeated n times,
the two schemes exhibit the same behavior, i.e.. the outputs in cycles km + 1 and
kn+1.k=0,1.2,... are the same. Then scheme (G, n) can simulate (F.m). If two
generalized synchronous systems can simulate each other, then they are L-equivalent.

Unfortunately, not all (S, n) schemes are suitable. Consider the following example:

Basicclock| 1 2 3 4 5 6 7 8 9 10 11

Input |2y 7, Zo T, T3 I3 Iy Ty Ts Is Tg

(V,2) Output | L £ X T3 4 z5
(V2,2) Output | L z T Ty Iy Z5
(¥3,2) Output | L 1 I £ T3 T4

Table 6.5: The behavior of (V,2), (V2,2) and (V,2) during first eleven pulsations.
Then
(v.2) = (V.2)

i



(V,2) = (V%2) but
(v.2)-(V,2) =(V%2) # (V°.2)=(V.2)-(V%.2)
where = denotes the L-equivalence relation. In other words, the L-equivalence is not

preserved by all (S, n) schemes. For this reason we introduce the following restriction
to SE,(E).

DEFINITION 6.4 The algebra &f,(E) consists of all (S, n) schemes such that S is

strong retiming equivalent to some appropriate n-slow SZ-scheme S'.

It is now obvious that (V,2) € Gf,(X) since there is no 2-slow scheme which is
Leiserson equivalent to (V,2). On the other hand, (V?,2) € &f,(E) since (V2,2) ~
SLOW»(V) = V2,

THEOREM 6.5 The characteristic function

. ={ 1 i (S,n) € Sh(E)

0 otherwise

is a recursive function.
PROOF. (a) Biaccessible schemes. Recall from [Bloom and Tindel, 1979] that a
flowchart scheme is biaccessible if it is accessible and every vertex is the starting
point of some path whose endpoint is an exit vertex. An SE-scheme S is biaccessible
if the FE-scheme fI(S) is such. In other words, S is biaccessible if it is accessible and
every vertex can be reached from some input channel by a directed path.

Let (S.n) be a biaccessible generalized scheme. If (S,n) € &f,(X) then there
exists SZ-scheme §' such that § ~ nS'. According to Theorem 6.1.5 Bartha, 1994],

S~ nS' & Smaz ~s NS'nas

where Sp,; and S, are SE-schemes such that Rpg: : S = Smaz, Rmes : nS' —

nS,,. and

Rezz(v) = min{w(p) | p is an input path leading to v}

7



is a legal retiming vector. Since Spaz ~s 2S},,z: Smaz IS an n-slow of some SE-scheme
F. ie., Smez = nF. Therefore, in order to decide whether (S,n) € &f,(X) or not,
it is sufficient to compute total weights of all entry-to-exit paths w(p) and directed
cycles w(z) in S, and check ratios @ and ? If these ratios are integers then
(5.n) € 615(X), otherwise (S,n) & 6f(%).

(b) The general case. First of all, observe that ground schemes, i.e., schemes without
input channels, belong to &f,(Z). This is indeed true by Theorem 4.6, since in infinite
trees without variables it is always possible to rearrange the registers (V-nodes) from
any regular pattern to any other regular pattern by using the transformation 7.
See also Figure 6.1. Hence, given generalized scheme (S, n), it is sufficient to isolate

ground subschemes and test only the biaccessible part. @

Figure 6.1: Ground schemes belong to Gfs(Z).
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THEOREM 6.6 The algebra Sf,(Z) is a subalgebra of S,(Z).
PROOF.

1. Composition

Let (F,m),(G,n) € 6f,(X). Then (F,m) ~ mF' and (G,n) ~ nG' for some
appropriate schemes F' and G'. We have:

(F.m)-(G,n) =
(SLOW icmim.n) (F) - SLOW iemim.n) (G), lem(m, n)) ~ SLOWicm(mm) (F' - G')

Hence (F,m) - (G, n) € SL(T).

”

Sum

Let (F.m).(G.n) € Sf,(Z). Then (F,m) ~ mF' and (G,n) ~ nG' for some
appropriate schemes F’ and G'. We have:

(F.m)+(G.n) =

(SLOW temimn) (F) + SLOW temiem) (G), lem(m, 1)) ~ SLOWieqm(om,n) (F" + G')

Hence (F.m) + (G, n) € 6},(T).
3. Feedback

Let (F.m) € 6f(Z). Then (F,m) ~ mF" for some appropriate scheme F'. We
have:

T(F.m) = (tn F.m) ~ SLOWn(1 F")
Hence t(F,m) € 6f,(Z). B
COROLLARY 6.7 &f,(X) satisfies scheme identities RF.
PROOF. Follows directly from Theorem 6.2 and Theorem 6.6. W

DEFINITION 6.8 We define the relation 8, on &f,(L) as follows. Let (F,m),(G.n) €
Sf,(Z). Then:

(F.m) = (G, n)(6L) & SLOW icmim.n) (F) ~ SLOW icmim.ny (G)



‘THEOREM 6.9 The relation O is a congruence relation of Sf,(Z).

PROOF. (a) O is an equivalence relation.

. Reflezivity
Let (F,m) € 6,(S). Since F ~ F we have (F,m) = (F, m)(8y).

. Symmetry
Let (F,m),(G,n) € 6f,(%) and (F,m) = (G,n)(O¢). Then
(F,m) = (G.n)(8r) =

SLOW iemim.n1 (F) ~ SLOW iemim.n) (G) =

21(G) ~ SLOW emimn) (F) =

(G.n) = (F.m)(6L)

w

. Transitivity
Let (F.z),(G.y),(H, z) € 64() and (F,z) = (G.y)(OL). (G,y) = (H,2)(1).
Then
(F.x) = (G.y)(Or) and (G.y) = (H,2)(O) =
SLOW ey (F) ~ SLOW iemie 5, (G) and SLOW iemyy ., (G) ~ SLOW iemy ., (H) =
sr.ow.&"_w(lf) ~ swwk,'M(G) and i '
’ ' SLOW icmiz g1 (G) ~ SLOW iemee s (H) =
smwm%,ﬂ(f‘) ~ smw.m_.,f,,ﬂ(l!) = ’ '
(F.5) = (H.2)(0,) '
(b) ©, satisfies the substitution property.
1. Composition
Let (Fi,my) = (Gy,n)(O1) and (Fa, my) = (G2, n2)(6r). Then
(Fi,my) - (Fa,mg) =
(sLow = (Fy) -SLow = (F), a) =e,

(SLOW icmie (F1) - SLOW iemias { F2). lem(a. b)) =
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(SLOW tem(a sy SLOW < (F}) - smw,ﬂ._.}wswwL(Fz), lem(a, b)) ~

(SLOW ey SLOW £ (G1) - SLOW ke SLOW ¢ (Go), lem(a, b)) =

(SLOW icmiay (G1) - SLOW ey (G2), lem(a, b)) =o,

L

(sLow 1 (G1) - SLOW & (Go), lem(n, na)) = (G, 1u) - (G, ma)

where a = lem(my, my), b= lem(ny, ng), ¢ = lem(my, n,) and d = lem(my, ng).
2. Sum

Let (Fi,my) = (G1,n.)(O1) and (Fy,ms) = (Ga, n2)(61). Then

(Fromy) + (Fymy) =

(SLOW iemea) (F1) + SLOW 2. (F2), @) =e,

(SLOW iemia (F1) + SLOWiemqas) (F2), lem(a, b)) =
™y

(SLOW iemia SLOW < (F1) + SLOW iemus suowml_z(rz). lem(a, b)) ~

(sLow lemio SLOW 2 (G1) + SLOW e SLOW 4 (G), lem(a, b)) =

(SLOW iemia) (G1) + SLOW icmiay (G2), lem(a, b)) =e,
o

(sLOW 2 (G1) +5LOW & (G2),b) = (G, m) +(Gay o)

where a = lem(m, my), b = lem(ny, ny), ¢ = lem(my, ny), and d = lem(ma, ny).

w

. Feedback
Let (F,m) = (G,n)(6). Then
1(F,m) = (tn F,m) =o, SLOW temimm (Tm F, m) ~

SLOWieminn) (TG, 1) Zo, (1aG,n) =1(G,n) W

THEOREM 6.10  Two generalized synchronous schemes (S\,ny) and (Sz,n,) are

L-equivalent if and only if they are O, equivalent.

PROOF. Follows directly from Definition 6.8, Theorem 6.9 and Theorem 4.10. W



Conclusion

The notion of a synchronous system allowed the introduction of transformations useful
for the design and optimization of such systems: slowdown and retiming. Retiming is
important transformation which can be used to optimize clocked circuits by relocating
registers so as to reduce combinational rippling. It has an interesting property that if
two systems can be joined by series of primitive retiming steps, i.e., shifting one layer
of registers from one side of a functional element to the other, then those two systems

exhibit the same behavior, as proved in [Leiserson and Saxe, 1983a]. Concerning

lowd f the main ad of c-slow circuits, i.e, circuits obtained

from the original circuit by multiplying all the register counts by some positive integer
c. is that they can be retimed to have shorter clock periods than any retimed version of
the original. Slowdown transformation does not preserve the equivalence of schemes
in the strictest sense. The c-slow circuits perform the same computation as original
circuit. but take ¢ times as many clock ticks and communicate with the host only on
every cth clock tick. The impact of slowdown on the behavior of synchronous schemes
is the following: not any two synchronous schemes are retiming equivalent. However,
for two synchronous schemes that cannot be directly retimed to each other, there
might be iate slowd i h that, after these transformations

are applied. one gets synchronous schemes that are already retiming equivalent. A

new relation is obtained by taking the join of the retiming and slowdown relations

and is called lown retiming equi One of the ibutions of Chapter 3 is

the proof of the fact that the slowd retiming equi relation is decidable for

synchronous schemes. Two synchronous schemes are said to be strongly equivalent
if they exhibit the same behavior under all interpretations, that is if they can be
unfolded into exactly the same tree. The new equivalence relation can be obtained
as a join of strong and retiming equivalence. In [Bartha, 1994] it was proved that

strong retiming equi relation is decidable for h schemes. The next
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major contribution of Chapter 3 is the proof that the strong slowdown retiming

equivalence relation, which is the join of strong, slowd and retiming equival

is also decidable.
The concept of

1 h n

of sy

systems was i d in [Leiserson
and Saxe, 1983a] in a rather intuitive and informal manner. The most important
contribution of the Thesis is the proof in Chapter 4 that two notions, Leiserson
equivalence and strong retiming equivalence, coincide. The very same notion of the
equivalency of synchronous schemes has also been characterized in terms of finite
state top-down tree transducers.

The syntax of a synchronous scheme is specified by a directed, labelled, edge-
weighted multigraph. The ics of a synch scheme can then be specified
by the algebraic structures called feedback theories. Synchronous schemes have been

axiomatized equationally in [Bartha, 1987] capturing their strong behavior. The

major contribution of Chapter 5 is the introd: ds and the

of retiming i
construction of the feedback theory capturing the strong retiming behavior of syn-
chronous schemes.

The motivation for the results of Chapter 6 stems from two sources: multiphase
clocking (clocking schemes that use more phases and consequently offer more flexi-
bility in adjusting the relative timings of the functional elements) has been left as a
further topic in [ Leiserson and Saxe, 1983a] and the notion of multiple clocks defined
in terms of boolean-valued flows of the h dataflow ing language

LusTRE. The major contribution of Chapter 6 is the construction of the general
algebra of multiclocked schemes. For simplicity, only schemes with multiple regular
clocks, i.e., clocks that tick every first, second, third etc. instant of the basic clock,
have been considered. The arbitrary clocks are intentionally omitted since the issue
becomes too complex technically. Also, the intuitive notion of L-equivalency between
two generalized schemes is introduced and shown to coincide with the formal charac-

terization of O, equivalency.
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