

Equivalence Relations of Synchronous Schemes

BY BRANISLAV CIROVIC

A thesis submitted to the School of Graduate Studies in

partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Memorial University of Newfoundland

April 2000

St. John's Newfoundland

Abstract

Synchronous systems are single purpose multiprocessor computing machines, which

provide a realistic model of computation capturing the concepts of pipelining, par­

"llelism and interconnection. The synta."{ of a synchronous system is specified by

the synchronous scheme, which is in fact a directed, labelled, edgc--weighted multi·

g'dph. The vertices and their labels represent functional elements (the combinational

logic) with some operation symbols associated with them, wbile the edges represent

interconnations between functional elements. Each edge is ""eighted and tbe non­

negative integer weight (register count) is the number of registers (cloc:ked memory)

placed along the interconnection between t\\'O functional elements. These notions a1·

lowed the introduction of transformations useful for the design and optimization of

synchronous systems: retiming and slowdown.

Two synchronous systems are strongly equivalent if they have the salllc stepwise

b~havior under all intcrpretations. Retiming a functional element in a synchronous

S~'StCIli means shifting one layer of registers from one side of the functional element

to the other. Retiming equivalence is obtained as the reRexh-e and transitive closure

of this primitive retiming relation. Slowdoum is defined as follows: for any system

G = W, E, w) and any positive integer c. the c-.slow system cG = (\t', E, ttl) is the

oue obtained by multiplying all the register counts in G by c. Slowdoum equivalena:

is obtained as the symmetric and transitive closure of this primith'e slowdown re­

lation. Strong retiming equivalence is the join of two basic equivalence relations on

synchronous systems, namely strong equivalence and retiming equivalence. SlowdotlJ1l

retiming equivalence is the join of retiming and slowdown equivalence. Strong .slow­

d01JJ1l retiming equivalence is the join of strong, slowdown and retirning equivalence.

It is PrD\-ed that both slowdown retiming and strong slowdown retiming equivalence

of synchronous systems (schemes), are decidable.

According to (Leiserson and Saxe, 19833, 1983b I, synchrooous systems S and $f

are equivalent if for e\-ery sufficiently old configuration c of 5, there exists a con­

figuration c of S such that when S staned in configuration c and S started in

configuration C, the two systems exhibit tbe same behavior. It is proved that t....-o

synchronous systems (schemes) are Leiserson equivalent if and only if they are strong

retiming equivalent.

The semantics of synchronous systems can be specified by algebraic structures

called feedback throries. Synchronous schemes and feedback theories have been a.x­

iomatized equationally in [Bartha, 198il. Here we extend the existing set of a.xioms

in order to capture strong retiming equivalence.

One of the fundamental features of synchronous systems is synchrony, tbat is,

the computation of the network is synchronized by a global (basic) clock. Other.

slower clocks can be defined in tenos of boolean-valued Rows. In order to describe

the behavior of schemes with multiple regular clocks, we extend the existing algebra

of schemes to include multiclocked schemes. and study tbe general idea of Leiserson

equivalence in the framework of this algebra.

iii

Contents

Abstract

List of Figures and Tables

Acknowledgments

1 Introduction

2 Preliminaries

2.1 Systolic Arrays

2.2 The Structure of Systolic Arrays.

2.3 Synchronous Systems

2.-& Flowchart and Synchronous Schemes

ii

iv

vi

12

19

Equivalence Relations of Synchronous Schemes and

their Decision Problems 27

3.1 Slowdown Retiming Equivalence. 27

3.2 Decidability of Slowdown Retiming Equivalcna! 29

3.3 Strong Slowdown Retiming Equivalence. 34

3..& Decidability of Strong Slowdown Retiming Equivalence . 35

4 Leiserson's Equivalence vs. Strong Retiming Equivalence 40

5 Retimiog Identities 50

5.1 The Algebra of Synchronous Schemes•••.

5.2 Equational Axiomatization of Synchronous Schemes .

6 The Algebra of Multic10clred Schemes

6.1 The LUSTRE Programming Language.

6.2 The Algebra or Schemes with Multiple Regular Clocks

Conclusion

References

Index

50

53

62

62

6i

80

82

65

List of Figures and Tables

Figure

2.1 :\Iesh-connected systolic arrays .

Page

2.2 Geometry for the inner product step processor.

2.3 :\Iultiplication of a \'eCtor by a band matri,< with p = 2 and q = 3

2.-1 The linearly connected systolic array for the matri'(vector multiplica·

tion problem in Figure 2.3 .

2.5 The first seven pulsations of the linear systolic array in Figure 2.-l .

2.6 The difference between ~'Ioore and Mealy automata .

2.7 Semi-systolic array and its communication graph. 10

2.8 (a) The communication graph G l of a synchronous system 51 15

(b) Retiming transformation. 15

2.9 Slowdown transformation. I j

2.10 The constraint graph G1 - 1 of a synchronous system SI in Figure

2.8{a)

2.11 The systolic system S~ obtained from the 2·slow synchronous system

S. by retiming .

2.12 Flowchan scheme .

2.13 The tree representation of a tenn

18

18

22

22

2.14 Unfolding the f10wchan scheme Z2

2.15 The difference bet...."e(!n flowchart and synchronous schemes. 24

2.16 Synchronous scheme S and its (infinite) unfolding tree T(S) 25

2.1; Unfolding as the strong behavior oLschemes 26

3.1 Example of two slowdown retiming equivalent schemes 32

3.2 Retiming equivalent schemes after appropriate slowdown transformat-

~ ~

3.3 The proof or Theorem 3.4.3 in a diagram . 36

iv

3.4 E:ICample or two strong slowdown tetiming equivalent schemes 37

3.5 Construction or product or ft(utr(S(» and fl(utr(~» 38

3.6 Scheme Ii as a product of /1(u/,(5,)) aDd /1(.1'(50)) . 38

3. j Schemes H l and H2 are slowdown retiming equivalent . 38

3.8 Schemes c\H\ and C2H2 are retiming equivalent 39

·tt E."<ample or two Leiserson equh-alent schemes. .&0

.&.2 Tmnslation or a tree by the finite state top-down tree transducer .&4

5.1 The interpretation or operations . 50

5.2 The interpretation or constants

5.3 17 E E(p, q) as an atomic scheme.

5..1 Examples or mappings lL'p(q)(n,p) and J#s

5.5 Retiming identity

5.6 Proor or identity R. in a diagram .

5. j Identit~· R. alone is not sufficient to capture the retiming equivalence

relation or synchronous schemes· counterexample .

5.8 Congruence 4l(R) as the retiming equivalell~ relation.

5.9 Proor or Theorem 5.2.4 in a diagram

5.10 The axiom C ror n =3, I =2 alld p = q = 1

6.1 Ground schemes belong to 6J.(E) .

Table

6.1 Boolean clocks and flows .

6.2 The "pretJioU3~ operator

6.3 The "followed by" operator.

6..& Sampling and interpolating.

6.5 The behavior or (V,2), (V'l,2) and (V3,2) during 6rst ele'fen pulsat4

ions

51

52

52

54

55

50

56

60

61

76

Page

63

66

66

67

74

Acknowledgements

First of all, I would like to express my deep and sincere gratitude to my supervisor,

Or. MiklOs Bartha for his willingness and determination to supervise my work for

more than three years, for his encouragement, e:tpertise, understanding and patience.

It was he who led me through the beautiful world of theoretical computer science and

taught me to express my ideas in an organized and precise language of mathematics.

r would like to thank the other members of my comittee, Dr. Krishnamurthy

Vidyasankar. Dr. Paul Gillard and Dr. Anthony Middleton for their assistance and

the services they provided.

I would also like to thank Dr. Nicolas Halbwachs from IMAG Research Lab,

Grenoble, who generously provided the LUSTRE compiler and related tools.

The Deparment of Computer Science at Memorial University of Newfoundland

has not only prO\,jded thearm and stimulative environment for my research but

has also gi,·en me the opportunity to teach several undergraduate courses, which 1

appreciate \'I~ry much.

I am grateful to Memorial Unh-ersity of Newfoundland Graduate School and the

Department of Computer Scienu at Memorial University of Newfoundland for pro­

,'iding me with the financial assistance. I rerognize that this research ""Quid not have

been possible without that support.

vi

1 Introduction

The increasing demands of speed and performance in modern signal and image pro­

cessing applications necessitate a revolutionary super-computing technology. Ac­

cording to [Kung, 1988], sequential systems will be inadequate for future real-time

processing systems and the additional computational capability available through

VLSI concurrent processors will become a necessity. [0 most real-time digital signal

processing applications. general-purpose parallel computers cannot offer satisfactory

processing speed due to severe system overheads. TherC£ore, special-purpose array

processors will become the only appealing alternative. SynchronQUJ systems arc such

lIIultiprocessor structures which provide a realistic model of computation capturing

the concepts of pipelining, parallelism and interconnection. Tne~' are single purpose

macnines wnich directly implement as low-cost hardware devices a wide variety of

algorithms, such as filtering, convolution, matrix operations, sorting etc.

The concept of a synchronous system [Leiserson and Saxe, 1983a] was derived

from the concept of a systo/ic system [Kung and Leiserson. 19781 which has turned

out to be one of the most attractive current concepts in massive paralle! computing.

In recent years many systolic systems have been designed, some of them manufac­

tured; transformation methodologies for the design and optimization of systolic sys-.

tems have been developed and yet tne rigorous mathematical foundation of a theory

of synchronous systems has been missing. Important equivalence relation.s of syn·

chronous systems such as Slowdown retiming and strong slowdown retiming still lack

decision algorithms. Some of the fundamental concepts, like Leiserson's definition of

equivalency of synchronous systems are still informal and operational.

:\. more sophisticated model of synchronous systems'as introduced in [Bartha.

1987]. In that model the graph of a synchronous system becomes a flowchart scheme

in the sense of [Elgot, 1975], with tbe only difference that all edges are weighted and

fe\'crsed. For this reason, such graphs are called 3ynchronoU3 schemes. With that

approach it becomes possible to study synchronous systems in an exact algebraic

(and/or category theoretical) framework, adopting the sophisticated techniques and

constructions developed for flowchart schemes and iteration theories.

This thesis addresses the problems stated above, which, to the best of our knowl·

edge, are unsolved so far. The thesis is organized as follows: in Chapter 2 we intro­

duce the concepts of systolic arrays, synchronous systems, flowchart and synchronous

schemes, and gi\'C a short summary of tbe most important definitions and results in

the field. In Chapter 3 we define the slowdown retiming and strong slowdown retiming

equivalence relations of synchronous systems and show that both relations arc decid­

able. In Chapter .& we compare Leiserson's definition of equi\'alency of synchronous

systems with strong retiming equivalence of synchronous schemes, and show them

to be identical. Chapter 5 deals with the equational axiomatization of synchronous

schemes. The goal is to define the retiming identity, which together with the feedback

tneary identities captures the strong retiming equivalence of synchronous schemes.

Finally, in Chapter 6 we introduce the generalized algebra of multiclocked schemes

which is intended to describe tne behavior of synchronous schemes with multiple

clocks motivated by the clock analysis of the Synchronous Dataflow Programming

Language LUSTRE.

2 Preliminaries

2.1 Systolic Arrays

In [Kung and Leiserson, 19781 the authors proposed multiprocessor structures called

systolic arrays (systems), which provide a realistic model of computation, capturing

the concepts of pipelining, parallelism and interconnection. The goal was to design

multiprOC6SOr machines which have simple and regular communication paths, employ

pij.)Clining and can be implemented directly as low-cost hardware devices. Systolic

systems are not general purpose computing machines. A systolic computing system is

a subsystem that perfomlS its computatKJns on behal£ of a hou which can be viewed

as a Turing-equivalent machine that provides input and recei~ output from the

systolic syStem. Kung 119881 defined a systolic anay as roll~"S:

DEFINITION 2.1 .-\ systolic array is a computing network possessing the following

features:

• Synchrony The data are rythmically computed (timed by a global clock) and

passed through the network.

• Modularity and Regularity The array consists of modular processing units

with homogeneous interconnections. ~'foreover, the computing network can be

extended indefinitely.

• Spatial locality and temporollocality The array manifests a locally commu­

nicative interconnection structure, Le., spatial locality. There is at least one

uniHime delay alloted so that signal transactions from one node to the next

can be completed, i.e., temporal locality.

• Pipelinability (O(n) executiOlHime speedup) The array e..'Chibits a linear rote

pipelinabiJity, i.e., it sbould achielo-e an O(n) speedup in terms of processing

ratc, where n is the number of processing elements. The efficiency of the array

is measured by the following:

Ts
speedup factor = r;

where Ts is the processing time in a single processor, and Tp is the processing

time in the array processor.

.-\ systolic device is typically composed of many interconnected processors. Two

processors that comrninicate must have a data path between them and free global

communication is disallowed. The farthest a datum can travel in unit time is from one

processor to an adjacent processor(s). Figure 2.1 illustrates several mesh-connected

network configurations.

D---D-O-D
(a) linearly connected

(b) orthogonillly connected
(llLIAC IV)

(c)hexagonallyconnect!d

Figure 2.1: Mesh-connect!CI systolic arrays.

Many algorithms such as filtering, convolution, matrL,< operations and sorting can

be implemented as systolic arrays. The following example (from [Kung and Leiserson,

1978]) demonstrates matnx·vector multiplication in a linear systolic array_

EXAMPLE 2.L

Consider the problem ormultiplyinga matri.'t A = (Oi;) with a \"ector x = (XI' .. ,X..)T.

The elements in the product y = (Yl' .. ,y..)T can be computed by tbe following

Yl O.

y~+1 yr + Qi.l:X,l:,

Yi = y!!+1

The single operation common to all the computations for matrL't vector multipli­

cation is the inner product step, C =C+.4·8. Processor which implements the inner

product step has three registers R.<t, RB and Re. Each register has two connections,

one rOT input and one ror output. Figure 2.2 shows the geometry for this processor.

Figur! 2.2: Geometry for th! inner product step processor.

Suppose A is n x n band matrLx with band width w =p +q - 1. (See Figure 2.3

for the case when p = 2 and q =3.) Then the above reccurenees can be evaluated by

pipelining tbe Xi and Yi through a systolic array consisting or w linearly connected

processors which compute the inner product step y =y+.4·x. The linearly connected

systolic array roc the band matmA-ector multiplication problem in Figure 2.3 bas four

inner product step processors. See Figure 2.4.

al\ at'2 x, y,

q a'21 an a'23 x, !12

a31 an a3J a34 x, y,

~'2 a4] a44 0.\5 x, y,

0,u 0Sol OMll&l x, y,

a.. x, Yo

A

Figure 2.3: Multjplic~tion of 01 lIector by 01 ~nd mOluix with p == 2 ~nc1 q == 3.

a" ""
a" a"

a" a"

a" a"
"

a" a"
,<

a"
T

• • , I

1JD[l[J /h"---

Figure 2.4: The line~r1y connected systolic ~r~y fOf the mOitrix vector
multipliation problem in Filure 2.3.

The general scheme of computation can be vie"'OO as follows. The Yi which are

initially zero, are pumped to the left while Xi are pumped to the right and the ail are

marching down. All the moves are synchronized.

Figure 2.5 illustrates the first 5e\'en pulsations of the systolic array. Obser\-e

that at any gh-en time alternate processors are idle. Indeed. by coalescing pairs of

adjacent processors, it is possible to use wj2 processors in the network for a general

band matrix with band width w.

Pt P2 P3 N

:c;,.= 0 e1lttl'S the fourth proces-

Pulse
Number

Configuration Comments

Figure 2.5: The first seven pulsations of the linear systolic ,may in Figure 2.4.

We now specify the operation of the S}'Stolic array more precisely. Assume that

the pr~rs are numbered by integers 1,2, ... w from the left end pr0ces50r to the

right end processor. Each processor has three registers RA• RB and Re. which hold

entries in A. x and y, respectively. Initially, all registers contain zeros.

Each pulsation of the systolic array consists of the following operations, but for odd

numbered pulses only odd numbered processors are activated and for even numbered

pulses onl~' e\"en numbered processors are acth'3.ted.

• Shift

1. R.. gelS a new element in the band of matrix A.

2. Rz gets the contents of register Hz from the left neighboring node. (The

Rz in processor PI gets a new component of x.

3, 14 gets the contents of register l4 from the right neighboring node. (Pro­

cessor Pl outputs its l4 contents and the R, in processor UJ gets zero.)

• Multiply and Add

Lsing the inner product step ptoCfSSOr the three shift operations in step 1 can

be done simultaneously, and each pulsation of the systolic array takes a unit of time.

Suppose the bandwidth of A is w = p +q - 1. It is readily seen that after w units of

time the components of the product y = Ax are pumped out from the left processor

at the rate of one output e\-ery tv."O units of time. Therefore, using tbe proposed

systolic network all the n components of 'I can be computed in 2n + w time units.

as compared to the O(wn) time needed for a sequential algorithm on a uniprocessor

computer.

2.2 The Structure of Systolic Arrays

Processors in a systnlic system are composed of a constant number of Moon automata.

Recall that a finite state Moore automaton is defined as a six-tuple.4 = (S,I,q, p, 15, '\l,

wher!' S is a finite set, I, p, q are nonnegati\-e integers; Ii ; ~+q ~ $I is the state

transition function, and ,\ : ~+q -t S' is the output function. Considering.4 as

an ordinary automaton, then $I is the set of states, S' and S' are the input and

output alphabet, respectively. The standard graphical representation of A is gi"'en in

Figure 2.6(a), where the triangles symbolize the I state components (registers), and

f = (6.),) : ,Sf+-' -+ ~+, is the combinational logic. This type of automaton has the

property that its outputs are dependent upon its state but not upon its inputs.

(~) Moen ~utom~ton (b) Muly ~L1lom~ton

Figure 2.6: The difference bet'Neefl MOln ~nd Mealy ~utom~U

In this mathematical model. time can be regarded as independent variable which

takes on integer values and is a count of the number of clock cycles or state changes.

The states S'(t + I) and outputs 5'(t + 1) of a Moore automaton at time t + 1 are

ulliquely determined by its states 5 f(t) and its inputs 5'(t) at time t by

S'('+ I)

S'(I+ 1)

'(S'('),S'(I))

'\(S'('),S'(I))

A Mealy automaton is similarly defined as a six-tuple A = (5,1, q, p, 6,),), where all

is the sallie as in Moore automata e.'(tept that the output at time t is dependent on

input at time t, tbat is

5'('+1)

5'(' + 1)

'(5'('),S'(1))

'\(5'('),5'(.+ I))

The standard graphical representation of Mealy automaton is shown in Figure 2.6(b).

In both automata the state is docked through registers, but since the input signals

are allowed to propagate through to the output unconstrained, a change in the signal

on an input can affcet the output without an intervening clock tick. When Mealy

machines are connected in series, signals ripple through the combinational logic of

several machines bet\\'een clock ticks, [£ the signals feed back on themselves before

being stopped by a register, they can latch or oscilate, EV1!n if the problems associated

with feedback ha\'e been precluded, the settling of combinational logic can make the

clock period long in systems with rippling logic, Systolic systems contain only ~Ioore

autollutta, while Semisystolic systems may contain hath Moore and ~lealy automata.

The exclusion of ~'Iealy automata guarantees that the clock period docs not grow

with system size. and makes the number of clock ticks be a measure of time that is

largely independent of system size.

A s)'stolic system can be simply viewed as a set of interconnected Moore automata.

The structure of such a system S(n) is given by a commun"ication graph G =(F. E)

of It interconnected automata where the vertices in l/ represent the automata and

the l..'tIges in £ represent represent interconnections between the automata. The

weights of edges in systolic systems are strictly positive, while the weights of edges

in scmisystolic systems may be zero. An example of a semisystolic system and its

communication graph is shown in Figure 2.;.

Figure 2.7: Semi-systolic anly ilnd its communiation I~ph.

10

The automata operate s)'nchronously b:y means ofa common clock, and hme in the

system is measured as the number of clock cycles. All the automata in ,... are Moore

automata (~'Ioore and Mealy in tbe case of semisystol.ic system) with the exception

of one called the host which can be viewed as a Turing equivalent machine that

provides input to and receives output from the s)'stem. Based on the communication

graph. the neighborhood of an automaton 1I E V is the set of automata with which

it communicates:

N(v) = (w I ("w) E E vr (w,') E E}.

For S(n) to be systolic, it is further required that the Moore machines be small

ill the following sense. There must exist constants C" C1, C3 and C4 such that for all

II and all v E V - {host},

• I~ I ::; CI The !lumber o£statcs of each Moore (~·Iealy) automaton is bounded.

• Is: I $ C'l The number of input symbols is bounded

• IS: I $ CJ The number of output symbols is bounded

• IN(u) [.:5 CI. The number of neighbors of each automaton is bounded, Le.. the

communication graph has bounded degree.

The "smallness'" conditions help ensure that the number of clock cycles is a good

measure of time in the systolic model. .-\ problem arises, however, when the time

required to propagate a signal between machines becomes longer than the time re-­

quired for the longest combinational-logic delay through a machine. The period of

the clock must be at least as long as the longest propagation delay between machines,

which means that the independence of the clock period from system size will not

be realized for SystCffill with long interconnections. Systolic arrays, which ha\'C only

nearest-neighbor connections.. are especially attracth-e for YLSI becal:Se propagation

delay is insignificant.

11

2.3 Synchronous Systems

The systolic design methodology manages communication costs effecth'eh' because

the only communication permitted during a clock cycle is betll,een a processing ele­

ment and its neighbors in the communication graph of the system. This constraint is

in direct contrast with, for example, the propagation of a carry signal which ripples

down the length of an adder. Such combinational rippling and global control such as

broadcasting are forbidden in systolic designs. Global communication is more easily

dcscribL'd in terms of rippling logic. In a systolic s)'Stem the effect of broadcasting

must be achieved by multiple local communications. The primal)' reason for intro­

ducing the concept of a SynchronolJs SYI/tern was the design issue. [0 [Leiserson and

Sa-xc, 1983aI the autnors demonstrated now a synchronous system can be designed

with rippling logic, and then converted through Systolic Conversion Theorem to a

systolic implementation that is functionally equivalent to the original system· the

principal difference being the shorter clock period of the systolic implementation .

..\. synchronous system can be modelled as a finite. rooted, edge-weighted, directed

multigraph G = (\I: E. till, w). The \"ertires ~. of the graph model the functional

elements {combinational logic) of the system. E\'t!ry functional element is assumed

to have a fi."(ed primitive operation associated with it. These operations are designed

to manipulate some simple data in the common algebraic sense. Each \'ertex tI E V

is weighted with its numerical propagation delay d(v). A distinguished root \'ertex

till. called the host, is included to represent the interface with the external world,

and it is given zero propagation delay. The directed edges E of the graph model

interconnections between functional elements. Each edge e in E is a triple of the form

(u, v, w), whereu and v are (possibly identical) vertices of G connecting an output of

some functional element to an input of some functional element and w =w(e) is the

nonnegath't! integer weight of the edge. The weight (register count) is the number

of registers (clocked memory) along the interconnection bet....-een the two functional

elements. [f e is an edge in the graph that goes from vene.'t u to \'ene.'t V, we shall

12

use the notation u -4 tl. For a grapb G, we shall view a path p in G as a sequence of

vertices and edges. If a path p starts at \~nex u and ends at a \'ertex tI, \\~ use tbe

notation u !- u. .\ simple path contains no vertex twice, and therefore tbe number

of vertices exceeds the number of edges by e..,,<actly one, We extend the register count

function 1lI in a natural way from single edges to arbitrary paths. For any path

p = Uo ...!4 Ul .!.4 ., ,~ Vk, we define the path weight as the sum of the weights of

the edges of the path: .-.
wI'= Lw(e;),.,

Similarly. propagation delay function d can be extended to simple paths. For any

simple path p = L'o ~ VI .!.4 ...~ Uk, we define the paih riday as the sum of the

delays of the \'ertices of the path: .
d'=Ld('il

i::O

In order that a graph G =(V, E. Vii, w) has \\~lI-defined physical meaning as a circuit,

we plare the following restriction on propagation delays d(v) and register counts w(e):

D. The propagation delay d(v) i.! nonntgatiue for mch ver1u u E \....

W. In any diT!£ted cycle of G, there iJ some edge wilh strictly positive rtgi.!tu count

We define a synchronow -,ystem as a system that satisfies conditions D and W.

The reason for including condition W is that whene\~ran edge e between two vertices

II alld U has zero weight, a signal entering vertex u can ripple unhindered through

vertex u and subsequently through vertex v. If the rippling can feed back upon it­

self, problems of asynchronous latching, oscilation and race conditions can arise. By

prohibiting zer~\\~ight cycles, condition W prevents these problems from occur1ng,

provided that the system clock runs slowly enough to allow the outputs ofall the func­

tional elements to settle between each tVtU consecuth~ ticks. The following definitions

are adopted from {Leiserson and Sax:e, 1983a, 1983b I.

13

DEFINITION 2.2 A synchronous system is systolic if for each edge (u, v, w) in the

comminication graph of S, the weight w is strictly greater than zero.

DEFINITION 2.3 .-\ configuration of a system is some assignment of values to all its

registers. With each clock tick, the system maps the current configuration into a new

configuration. If the weight of an edge happens to be zero, no register impedes tne

propagation of a signal along the corresponding interconnection.

DEFINITION 2.4 Let c be a configuration of a synchronous system 5 and let c be

a configuration of a synchronous system 5'. The system 5 started in configuration c

has the same behauior as the system S' staned in configuration t! if for any sequence

of inputs to the system from the host, the two systems produce the same sequence of

outputs to the host.

DEFINITION 2.5 let 5 and 5' be synchronous systems. Suppose that for every

sufficiently old (:ollfiguration C of 5, tnere exists a configuration r! of 5' such that when

S is started in configuration c and 5' is started in configuration C, the two systems

exnibit the same behavior. Then system 5' can simulate 5. If two synchronous

systems can simulate each other, then they aloe equivalent.

Two synchronous systems are strongly equivalent, or, in other words, ha....e the

sallie strong bthamor if they ha\l~ the same behavior under all interpretations. The

interpretation of a functional element labeled with (J from some alphabet E, with p

input channels and q output channels, is a mapping~" .. [)If --t 0', where the set D

consists of certain data elements.

DEFINITION 2.6 For any synchronous circuit G, the minimum feasible clock period

4'(G) is the maximum amount of propagation delay through which allY signal must

ripple between clock ticks. Condition W guarantees that the clock period is well

defined by the equation ~(G) = ma.'C{d(p) I w(P) = O}.

These notions allowed the introduction of transformations useful for the design and

the optimization of synchronous systems: rdiming and slowdown..

14

Retiming transformations can alter the computations carried out in one clock cycle

of the system by relocating registers, that is, shirting one layer of registers from one

side of a functional element to the other. Tu systems are retiming equivalent if they

can be joined by a sequence of such primiti"e retiming steps. Retiming is important

technique which can be used to optimize clocked circuitS by relocating registers so as

to reduce combinational rippling.

Consider the communication graph G I in Figure 2.8(a). Suppose, for instanCf:,

that each ,·ertex has a propagation delay of 3 esec. Then the clock period of 51 must

be at least 9 esec • the time for a signal to propagate from V3 through 1J6 to (/$.

I

(a) The communication ~ph 0, of a synchronous systtm 8,.

(b) The communication graph G2 of a system ~,which is equivalent to the system

8, from Figure 2.8(01). as viawd from the host. Intemany, tht two systtms differ
in that vertex ~ lap by ont cIodt tick in 8, with resptCt to 8-l.

FilUre 2.8: Rttiming transformation.

15

Rctiming the \"ertex IJ3 in G l , that is, decreasing the number of registers by one

on all incoming edges and increasing the number of registers by one on all outgoing

edges. results in a communication graph G2 of a synchronous system ~ in Figure

2.8(b) which is. intuitively, equivalent to 51 but with a shorter clock period· 6 esec.

Formally. retiming transformation is defined as follows: let 5 be a syncbronous

system. \/(G) the set of venices of the underlying graph G and R a function from

\ '(G) into the set of all integers. We say that R is a legal retiming vector if for

every edge (u, u, w) in G the value w +R(v) - R(u) is nonnegative and R(host) =O.

.-\.pplying R to 5 simply means replacing the weight w(e) of each edge e : u -+ u by

w'(e) ~ w(e) + R(,) - R(u).

In our example. the legal retiming vector R which takes 51 illto 52 is:

R(host, Ull tI2, tIJ, v~, Us, lJ6, V7) = {O. 0, 0. -1,0,0,0, O}.

The impact of retiming on the beha\'ior of synchronous systems is expressed b)'

the so called Retiming Lemma in [Leiserson and Saxe. 19833 I:

LEMMA 2.1 (Retiming Lemma) let S be asynchronous system with communication

graph G. and let R be a function that maps each ,-ertex u of G to an integer and the

host to zero. Suppose that for every edge (u, u, w) in G the \'3.lue w + R(lI) - R(u) is

nonnegati'-e. let S' be the system obtained by replacing every edge e = (1.1, lJ,w) in

5 \\lith r! = (1.1, V, W + R(v) - R(u)). Then the systems 5 and 5' are equivalent.

Slowdoum is defined as follows: for any circuit G = (1/, E, w) and any positi\'c

integer c. the c-slow circuit cG = (V, E, 10') is the circuit obtained by multiplying

all the register counts in G by c. That is, w'(e) = cw(e) for every edge e E E. All

the data flow in cG is slowed down by a factor of c, so that cG performs the same

computations as G, but takes c times as many clock ticks and communicates with the

host only on every rfll clock tick. In fact, r.<; acts as a set of e independent versions

of G, communicating with the host in round·robin fashion. For e.'<aDI.ple, the 2·slow

circuit ~ of 5\ is shown in Figure 2.9.

16

Figure 2.9: Slowdown transformation. The communication graph G3 = 201of a system
S, obtained by multiplyina all the rq;ister counts in 0 1from Figure 2.8{a) by 2. All the
data Row in S3 is s£owecl down by a faetcw of 2. so that ~ performs the same computa­
tions as SI. but taka 2 times as many dock ticks and communicates with the I'Iost only

on every second tick.

The impact of slowdown on the behavior of synchronous systems is the following:

the main adventage of c-slow circuits is that they can be retimed to have shorter clock

periods than any retimed version of the originaL For many applications, throughput is

the issue. and multiple, interleaved streams of computation can be effectively utilized.

A c·slow circuit that is systolic offers maximum throughput. Another interesting

observation is that not e\-ery synchronous system can be retimed to get an equivalent

systolic system. According to SY5tolic Convemon Theorem [Leiserson and Sue,

1983a I, s)'ndtronous system S with communication graph G can be retimed to systolic

system S' if the am5traint graph G - 1, which is the graph obtained from G by

replacing every edge (u, 11, w) with (u. 11, w - 1) has no cycles of negative weight.

However, for any synchronous system tbat cannot be directly retimed to get a systolic

system, there might be a slowdown transformation such that, after this transformation

is applied. one gets a synchronous system that can be retimed to get an equi\-alent

systolic system. It can be proved that such slowdown transformation is possible only

if the underlying automaton is Moore automaton. Retiming \-ector R(tI) is defined

for every \-ertex II as theeight of the wrtat poth from II to h05t in G - 1. Consider

thp. Mn~traint gr~ph G: - 1 in Figure 2.10 of a synaronous system 51' Sin~ G1 - 1

17

contains a cycle host -+ Ul -+ vr -+ host of negative weight, 51 cannot be directly

fctimed to get an equivalent systolic system.

Figure 2.10: The constraint graph GI - I of a synchronous
system SI in Figure 2.8(01).

On the other hand. the constraint graph G3 - 1 = 2G l - 1 does not have cycles of

negative weight. Consequently. there exists a legal retiming vector which transforms

synchronous system 53 into systolic system S~ in Figure 2.11:

Figure 2.11: The systolic system S{ obtained from the 2-slow
synchronous system S3 by retiming.

18

2.4 Flowchart and Synchronous Schemes

Two major objections must be made about the model of synchronous system pre­

sellted in the previous subsection:

[11 According to Definition 2.1, a synchronous system is an infinite edge-weighted

directed rnultigraph represented by its finite aproximations that must be regular in

a certain sense. Therefore the single finite graph G should be called a finite system

only. or rather a scheme.

[2J The mulligraph representation of a synchronous scheme is inadequate in the sense

that it does not relate the t....u endpoints of a given edge to designated labelled input­

output "ports" of the corresponding vertices. This question is clearly imponant,

because i/o ports of the functional elements (processors) behave differently in general.

Also, it is advantageous to replace the host by a fixed (finite) number of input-output

channels as distinguished vertices, thus avoiding the unnecessary constraint that those

cycles cI05ed only by the host should (:ontain an edge with positive weight.

These two criticisms suggest re<:onsidering synchronous systems in tile frame­

work of Elgot's {1975 J ~-eI1·known model of monadic computations (flowchart algo­

rithms). This standpoint motivated the definition of synchrnnow flowchart schemt3

in {Bartha, 19871 or simply synchrnnou..! scheme. Since synchronous scbemes are

defined in terms of flowchart schemes we introduce the fundamental definitions and

properties of flowchart schemes that will play an important role in the sequel.

DEFINITION 2.7 :\ signature or ranked alphabet is a set r:, whose elements are called

operation JY11Ibols, together with a mapping ar : I: -+ N, called the onty Junction,

assigning to each operation symbol a natural number, called its finite amy. If the

operation symbols are grouped into subsets according to their arity: E" = {O' E 1: I
arlO') = n}, then the signature I: is uniquely determined by tbe family (E" I n E N).

19

A realization of an n-ary operation symbol in a set .-t is an n-ary operation on .-t.

Gi\"en a signature E, a E-algebrn .-l is a pair '3 = (A., E") consisting of a set .-t, called

the carner of ..I., and a family E" = «(1" I (1 E 'E) of realizations (1" of operation

symbols (1 from ~.

DEFINITION 2.8 A !:.-flowchart scheme (FE-scheme) F is a finite directed graph

augmented by the following data.

(I) A subset X ~ F of vertices of outdegree O. The elements of X are called exits

of F.

(2) .-\ labeling function, by ",'hich e\"ery none:<it vertex I) is assigned a symbol (1 E r:
in such a way that the rank of (1 equals the outdegree of v.

(3) F'or each vertex u. a linear order of the set of edges leading OUt of fl. By the

notation II -l-j U we shall indicate that the target of the jUt etIge leaving It is

\'crtex u.

(4) A begin function, which maps some finite set 8 into the set of vertices of F.

The begin function specifies a set of marked entries into F.

Forsimplicity, the marking set 8 abo\"e will be identified with the set [n] = {In}.

Similarly. the e.tit \-enices will be labeled by tbe numbers in [pi = {I, . .. p}. An

n..entry and ~exit F~-scbeme F is denoted F : n -l- p. If F : n -l- p and G : p -l- q

are F'~·schemes, then one can form their composite F· G : n -l- q by identifying the

exits of F with the entries of G in a natural way, assuming that F and G are disjoint

graphs. This kind ofcomposition gives rise to a category with all nonnegative integers

as objects and with. all n>schemes as morphisms. The category obtained in this way

is known as the horizontal structure of ftowchart schemes.

The \"ertical structure of F'E-schemes [BkIom and Esik, 1993 J is the category FIE:

constructed as the coproduct (disjoint union) of the categories Fldn, p), n, pEN

defined below.

20

• For each pair (n,p) € N x N, Fldn, p) has as objects all n:·schemes n -+ p.

• A morphism F -+ F' bet",-een Fl:'schemes F, F' : n -+ p is a mapping 0 from

the set of \l!rtices of F into that of F' which preserves:

1. the sequence of entry and e..xit \l!rtices;

2. the labeling of the bo.'~es;

3. the edges in the sense that if u -'ti IJ holds in F. then o(u) -+, o(lJ) will

hold in F'.

• Composition of morphisms is defined in Flr(n, p) as that of mappings, and the

identity morphisms are the identity maps.

Sometimes it is useful to consider an FE-scheme F : n -+ p as a separate partial

algebraic structure O\'er the set of \'ertices of F [Gratzer, 19681. [n this structure

there are n constants, namely the entry \l!rtices of F. Furthennore, for each a € ~

there are q unaf}' operations (a, i), i € (qJ if q ~ 1. one unary operation (0",0) if

q = O. If j ~ 1. then the operation (0, i) is defined on vertex u of F if and only if u is

labeled by o. and in that case (o.ll(u) is the unique vertex v for which u -+i v. The

operation (0",0) is interpreted as if there was a loop around each \-ertex labeled by the

constant s~'mbol 0, i.e. (0.0) is an appropriate restriction of the identity function.

).:0 operation is defined on the set of exit \-ertices.

A strong congruence relation of F (as a partial algebra) b~' which the exit vertices

form singleton groups is called a scheme congruence of F. Clearly, every scheme

morphism 0" : F -+ F' indur.es a scheme congruence 9 on F. By the homomorphism

theorem, if Q is onto then F/8 ~ F', where the isomorphism and the factor scheme

F/9 hall! their usual algebraic meaning (Gratzer, 19681. In tbe sequel we shall not

distinguish bet\\-een isomorphic rr:'schemes.

let" be a \l!rtex of an FE-scheme F ; 11 -+ p. Starting from v, F can be unfolded

into a possibly infinite E.tree T(F, v). R.ecaJ.1 from [Bloom and Esik. 19931 tbat an

21

infinite E-tree has all of its nodes labeled by the symbols of E in such a way tbat

the number of descendents of each node u is equal to the arity of the symbol labeling

u. The branches of the tree T(F, v) correspond to maximal ",-alb in F starting

from v, where a ma:omal walk is one that ends at a \'trtex of outdegree zero or it

proceeds to the infinity. The walk is allowed to return to itself arbitr:uy many times.

The nodes of T(F, v), being copies of the \'ertices of F, are labeled either by the

symbols of L or by the variable symbols Xl •.. ,X, chosen from the fi:<ed "'llriable set

X = {Xt, . . ,xn, .. .}, in the c~ of exit vertices.

EXAMPLE 2.2 Consider the ftoY.'Chart scheme in figure 2.12.

begin

Figure 2.12: Flowchart scheme.

Syntactical description of F can be gi\'en by the equation y = r(O'(y),xd. The tenn

on the right-hand side has the tree repff'SeDtation shown in Figure 2.13.

Rgure 2.13: The tree representation of a term.

Solving the equation means replacing y by r(O'(y),XI) as many times as possible. The

process results in the infinite labelled tree shown in Figure 2.14.

Figure 2.14: Unfoklinl the Rowchart: scheme..

22

For two \-ertices fl, tI of F, we say that u and tI have the same strong behavior if

T{F. u) = T(F, u), Unfolding F starting from each entry vertex simultaneousl:!,' yields

an n-tuple of trees, which is called the .strong behavior of F, denoted T(F). By

definition, if 9 is a scheme congruence of F and u == u(9), then u and u have tbe

same strong behavior. Consequently, if Q : F -+- F' is a morphism in FIt, then

T(F) ~ T(F').

All FE-scheme is called acceuible if every noncxit vertex of F can be reached from

at least one entry vertex by a directed path. In the algebraic setting F is accessible

ir. with the exception of the exit vertices, F is generated by its constants. For an

accessible FE-scheme F, define the equivalence JJp on the set of vertices of F in the

following way:

u" '(UF) ;[T(F, uJ =T(F, 'I·

Obviously, I~F is a scheme congruence, and it is the largest among all the scheme

congruences of F. The scheme FIJJF is therefore called minimal.

Let G be a graph and denote by V(G) the set of vertices ofG. A subset S ~ V(G)

is .strongly connectrd if for e\'ery u, u E S tbere exists a directed path in G from u to

u going through \'Crtiees of S only..-\ strong component of G is a strongly connected

subset S which is ma.'timal in the sense that if S' is strongly connected and 5 ~ S'.

then S = 5'. An n-entry FE-scbeme F is tree-reducible if F is accessible and the

graph obtained from F by deleting its exit vertices and contracting each of its strong

components into a single vertex consists of n disjoint trees. E\1!ry accessible Ft­

scheme F can be unfolded into a tree-reducible scheme by finite means. To this end,

it is sufficient to unfold the partial order of the strong components of F with its exit

vertices deleted into a set of disjoint trees. The resulting tree-reducible Ft·scbemc

will be denoted by utr(F). Tbe unfolding detennines a morphism utr(F) -+ F in the

category Fl~>

DEFINlTIQN 2.9 A .synchronOU.5 .scheme 5 (SE-scheme for short) consists of a finite

underlying FE-scheme, denoted /1(5), and a weight function by which every edJ/:e of

23

S is assigned a nonnegative integer. We assume that the direction of an edge Ie in S

is the opposite of the direction of the same edge in 11(5).

let us point out the semantical differences between flowchart and synchronous

schcmes. A flowchart scheme of sort p -t q is interpreted as a flowchart algorithm

called monadic camputation [Elgot, 19751 with p entries and q exits. Accordingly, the

flow of information in the flowchart scheme follows the direction of the arrow bety."Cen

p and q. For. e.umple the scheme! : 2 -t I should be interpreted as a join of two

different paths in the flowchart. In a logical circuit. ho.....e\-er, the meaning of £ is a

branch: thllS, in this case the information flows in the opposite direction. Reasoning

from the point of view of category theory, the difference is the following. Concerning

Itowchart schemes, thc object n in the theory T is treated as the nth copowcr of the

object 1 (n = E~"l I), while in the case of synchronous schemes n would rather be

the nth powler of 1 (n = n:=, 1), as in the original definition of algebraic theories in (

la\\"\"ere. 1963]. See also Figure 2.15. Howc\-er. if we followed the product formalism,

then the sort of a mapping ip] -t (q] would confusingly become q -t p. Therefore, we

rather adhere to the coproduct formalism and express the product·like (functional)

scmantics only by designing our schemes in an upside-down fashion.

A Pi
(Oi) AowchOlrt scheme

F;D -+2D
(b) Synch«Nlousscheme

S; D~ -+ D

Figure 2.15: The difference between flowchart and synchronous schemes.

The category Syu~ of SE-scbemes consists of tbe following. Tbe objects are all

accessible SE·schemes. A morphism S -t S' in Syu~ is a morphism II(S) -+ 11(S')

in Fl~ tbat preserves the weight or the edges. Accordingly, a scheme congruence of

S is one of Il(S) tbat is compatible with the weip;ht function.

24

Categories TFlt and TSynt are full subcategories of FIr: and Synr: respecti\"ely,

determined by the subset of tree-reducible scbemes.

We define the signature Ev as E U {V}, where V is a unary operation symbol

(register). With any SE-scheme 5 \\"e then associate the FEv-scheme flv(S), which

is obtained from fl(S) by replacing every edge e in it by a chain of n V-labeled

\"Crtices. \\'here n is the weight of e. As in the case of FI:'schemes, \\"e include the

infinite unfoldings of SE·scbemes in SYD:t. Obvious details of this procedure are

omitted. See Figure 2.16.

S
ic

T(S)

9

~
9 9

I I
J 9

A A
'V .l'l 'V 'V

I I I
9 J 9

/\ /\/\
'V 'V 'V II 'V 'V

Figure. 2.16: Synchronous scheme. S ~nd its (infinite) unfolding trH T(S).

The importance of the concept of tree unfolding is that it captures tne strong

behavior of synchronous (flowchart) schemes. Two schemes can be syntactically dif.

ferent and yet exhibit the same strong behavior as snown in Figure 2.17.

Transformations of rctiming and slowdown are defined for synchronous schemes in

the same ...:ay as for synchronous systems.

[f R is a legal retiming vector for Sand S' is the scheme obtained by applying R

to S, then we shall write R: S 5'. Retiming count \-ectors thus define a category

on the set of SE-schemes as objects. The composition of tv.-o arrows R and Jr is

R+ Fr a!l.d the identities arc the zero ..-octets U.

25

If c is a positi,'e integer such that SO = cS, i.e" SO is obtained from S by c.

slowdown. then 'A'll shall write c : S -t S'. Slowdown transformations also define a

catego~' on the set of SE.schemes as objects. The composition of two arrows c, and

C2 is CtC2 and the identities are designated by c = 1.

S, S, TIS,) T(S,)

~
/ /
I I
'J 'J

I I
9 9
1 I
/ /
I I
'J 'J

1 I
9 9
I I

Filure 2.17: Schemes 5, and S:i while difl'~ent represent the same computational

process. They can be unfolded into the same trft T(Sd :: T(S:z).

The following Definition and Lemma are adopted from (Bartha, 19941.

DEFINITION 2.10 The relation of strong retiming equivaleTIC:e 011 the set Syn,£ is

the smallest equivalence relation containing --+, and --+., where --+, denotes the

bina~' relation induced by reduction (unfolding) and --+r denotes the binary relation

induced by retiming transformation. Strong retiming equivalence is denoted by"'.

LEMMA 2.11 '" =+--, 0 "'. 0--+,

FACT: The relation of strong retiming equivalence is decidable for synchronous sche­

mes IBanha, 19941.

26

3 Equivalence Relations of Synchronous Schemes
and their Decision Problems

In this section we introduce the equivalences of slowdown retiming and suang slow·

down retiming as the join of slowdown equivalence and rttiming equi\'3lence, and the

join of these two plus strong equivalence, respectively. on the set orS~:'schemes. Con·

cerning slowdown, -+.tl will stand for the partial order induced on Synr; by slowdown

constants. \\re shall use tlte pteorders defined by the categories Fh: and SyOt as sim·

pie binary relations over the sets Fir:. and Synr:. of all finite accessible FE-schemes

and SE-schemes, respectively. In both cases, this preorder will be denoted by -+,.

Concerning retiming,~ will stand for the equivalence relation induced on Synr. by

legal retiming countectors.

3.1 Slowdown Retiming Equivalence

DEFINITION 3.1.1 The relation of slowdown retiming equivalence on the set 5yn!:

is the smallest equivalence relation containing ----tIl and ""~.

Siowdo\\'n retiming equivalence of synchronous schemes will be denoted by ""SR.

The relations ""d = (-+" U 4--d)O (symmetric and transitive closure) and -~ are

called slowdown equivalena and retiming equivalence, respectively. In order to decide

the relation ""SR we are going to prove the following equation:

(L)

Equation (1) says that if two SE·schemes 51 and s" are slowdo\\'tl fetimingequivaleot,

then they can be slowed down into appropriate schemes ~ and S; that are already

rctiming equivalent.

27

PROOF. Let 5, P and Q be SE--schemes sucb tbat 5 -r P and P -+.., Q. Then

there exist a legal retiming \-ector R : S ~ P and a positi\"e integer c such that Q

is the c-slow scheme cP obtained by multiplying all the register counts in P by c.

Scheme 5 can be slowed down by multiplying all the register counts in 5 by c, i.e.,

5 -+.1 cS = Pl' Define a legal miming vector R\ as Rl(v) = cR(v) for all vertices v

in PI- We claim that R, takes PI to Q. Indeed, for any edge u~ u in S, the weight

wR:(e) of the corresponding edge in P after retiming R is defined by the equation

WR(') = w(.) + R(.) - R(u)

The slowdown c: P ~ Q transforms wn:(e) into

cw.(.) = cw(.) +cR(.) - cRtu)

in Q. On the other hand, for any edge u~ u in 5, slowdown transforms w(e) into

cw(e) in Pit and retiming Rl takes this number to

CWRl(e) cw(e) + R\(u) - R.(u)

cw(.) + cRt.) - cR(u) •

LEMMA 3.1.3 t--.., 0 -+.., ~ -+.., 0 t--.o/

PROOF. Let S. P and Q be SI:-scbemes such that P -+.0/ Sand P -+,1 Q. Then

there exist positi\1:~ integers CI and C2 such that Sand Q are c-slow schemes CIP and

c~P obtained by multiplying all the register counts in S by c\ and c, respecti\-ely.

Then the following diagram commutes

c~_O1
0

Q---pc,

28

LEMMA 3.1.4 --+., 0 t--Il ~ +--u o--+Il

PROOF. Let S, P and Q be SI:'scbemes such that S --+Il P and Q ---;'Il P. Then

there exist positive integers CL and c, such tbat P = CIS = c,Q. Let e be an edge

in P. Then wp(e) = cLwS(e) = c,wQ(e) and lan(".'I~lw5(e) =~wQ(e), wbere

Icm(cL,c,) is the lmst common multiple ofc, and c,. Therefore, there e.~ists scheme P

such that S = ~P' and Q = kmt:~)p', Le., the following diagram commutes:

~

~-·l·
Q--c-,-P

PROOF. Follows directly from Lemmas 3.1.3 and 3.1A.•

COROLLARY 3.1.6 -SR = ---;'.10 -r 0 +--.0/

PROOF. It is sufficient to prO':e that the relation p =---;'Il 0 -r 0 +--., is transithl!.

We have

~ --+M 0 -. 0 ---;'01 0 +--.1 0 -r 0 +--0/ (by Lemma 3.1.3)

~ --+" 0 --+,1 0 -. 0 -. 0 +--.1 0 t--,I (by Lemma 3.1.2)p.
3.2 Decidability of Slowdown Retiming Equivalence

PROPOSITION 3.2.1 The relations -.1 and -r aTe decidable.

PROOF. For any twoSE-schemes S and S', S -0/ S ifand only if there exists scheme

p ll.llc1l that S ---4.0: P and S'~.l P, i.e. there emt positivemt~ c and t! such

29

that cw{e) = c'w'(e') for all edges e in 5 and corresponding edges e' in 5'. Therefore,

in order to decide -Jl it is sufficient to verify that the ratio~ is the same for aJi

corresponding edges e, e'.

As to the relation - .. recall from I~'Iurata, 19771 that a fundamental circuit of

a directed graph is a cycle of the corresponding undirected graph. Let 5 and 5' be

two S1:-schemes witheight functions wand uI, and assume that 5 and 5' share a

common underlying graph G. For every fundamental circuit z of this graph, let us

fix a cyclic order of the \'ertices of z in order to distinguish a positive and a negative

direction of the edges belonging to::. For every edge e E z, let sign:(e) = 1(-1) if

the dire<:tion of e is positive (respectivcly, negative) with respect to thc given order.

LEMMA 3.2.2 We claim that Sand S' are retiming equivalent, i.e. there e:ri.!t! a

legal rehmillg count vector taJ.ing 5 to 51 if and only if:

(I) For every fundamental circuit: of G

L ';gn,(,) . wI') =L ';gn,(,) . w'(,)
~E: d::

(2) AU simple paths from an ent~· to an e:tit verte..'(ha\'l! the same weight.

where by simple path \\'e mean an alternating sequence of \'ertiees and edges

Va ~ 11\ ...!4 ...~ Ill' in which no vertex is repeated.

By [:\-Iurata, 1977. Theorem 11. (1) is necessary and sufficient for the existence of a

fCtiming \-ector R that satisfies the condition of being legal, except that R(v) need

not be zero fot all exit vertices. Suppose that such an R exists, and let p be a simple

path composed of vertices and edges Vo ~ VI ...!4 ...~ Vl, where '110 is an entry

and Ul is an exit vertex. Then we have:

l-l l-I

w'(p) = L w'(,,) = L(w(,,) + R(v.+O) - R(v.))
.:0 i;Q

~ w(,.) + ~(R(V;+.) - R(v.)) =w(p) + R(v.l - R(..).

30

Then w(p) =w(p') if and onl)' if R(Vo) =R(v~J. Obviously, one of R(Vo) and R(lItl

can be dUlSen freely, so that the condition R(I:tl) =R(vt) is equivalent to saying that

assignment R(vo) =R(vt) = 0 is possible.•

COROLLARY 3.2.3 Let Sand 5' be synchronous schemes such that 5r S. Then

for any directed cycle c in 5 and 5', we have w(c) = w'(c).

PROOF. Follows immediately from Lemma 3.2.2 (2).•

If 5 and 5' are tree-reducible schemes, the relationr is yet simpler to decide.

Since every fundamental cireuit must remain in some strong component, in condition

(I), it suffices to check that C\-ery directed cycle of a common underlying graph a
has the same total weight b)' the "''eight functions of 5 and S'. •

THEOREM 3.2,4 The relation of "lowdown retiming equivalence i" decidable for syn-

chro11QUS ilcliemes.

PROOF. Let G and G1 be SE·schemes. By Corollary 3.1.6, G and a are slowdown

retiming equivalent if and only if there exist SE-schemes 5 and S' such that a ----joM S,

G' ----joJl S' and S ""r 5'. Since 5 = clG and S' = c,a. we must have cia ""r c,O',

Le. there e.'(ists a legal tetiming \'eCtor R such that, acoJrding to Lemma 3.2.2. all

fundamental circuits: and simple entf)·-to-e:c:it paths P ba'r"C the same total weight.

In other ...,ords, the ratios~ and~ must be the same, where wand uI are "'-eight

functions of a and G' respectively.

According to the argument above, one can decide the slowdown retiming equiva­

lence of G and G' by the following algorithm.

Algoritbm A.

Compute W(Zi) and uI(Zi) for e\'l~ry fundamental circuit Z;,I :s i :s "and w(pj) and

w'(Pi) fore'r"Cry simpleeDtry·to-exit path Pi' 1:S j:S m in G and G', respecti\"Cly, and

31

check the ratios~ and ~. Then, G and G' are slowdown retiming equivalent

if and onh' if these ratios are the same for all .I :$ i :s n and .I :$ j :$ m. •

Let us briefly discuss the comple..'tity of Algorithm .-\. It is easy to see tbat the

expensive part of Algorithm A is the finding of all fundamental circuits and ent~·

to exit paths. Johnson's algorithm [Johnson, 19751 for finding all tbe elementary

circuits ofa directed graph has a time bound ofO(t(n+e)(c+ 1)1) on any graph with

r1 \'ertices. e edges and c elementary ciruits. In order to find all entry-to-exit paths the

floyd-\Varshall algorithm might be used. It is well known that the floyd-Warshall

algorithm rUlls in 0(1 \;:'Il time on any graph with vertex set V.

EXAMPLE: 3.1 Consider the schemes in Fig. 3.1.

s, 50,

Figure 3.1.

Schemes 5\ and 52 are not retiming equivalent since both directed cycles and both

entry·to-e.'Cit paths bave different tOlal weights. In order 10 decide the slowdown

retirning equhoaJence relation for the given schemes it suffices to solve the following

system of linear equations:

CIWt(=d

CIWI(Z'l)

CIWt(PI)

CtWI(P2)

C'lW2(ZI)

C'lW2(Z'l)

C'lW2(P!l

c,w,(p,)

where =1 is the directed cycle VI -+ V;z -+ VS -+ VI; =1 is the directed cycle Vt -+ U'l-+

1:,1 -+ 1:4 -+ U5 -+ VI; PI is the entry-to-exit path Uo -+ VI -+ 112 -+ (,'5 -+ OCt and P2 is

the cntl'}'-to-exit path Uo -+ VI -+ V3 -+ OCt with WdZl) =3, W2(z!l =2, WI(.:2) =6,

W1(=1) =4. wdpd =3, w,(pd =2, wdP2) =3 and W2(P'l) =2, Since

w,(z,) w,(z,) w,(p,) w,(p,) 2
CI =C2 wl(':d = C1 Wl(.Z'l) =C2~ = C1 WdP'lJ =C13

the solution exists. Cl = 2, C2 = 3. By multiplying all the registers counts in SI and

SJ b~' Cl and Ct. respectively. one gets schemes ~ and 51. See Figure 3.2.

Figure 3.2.

It is trhial to check tbat schemes ~ and oS; are retiming equivalent. Consequently,

original !rltp.m~ S: "ott '~ "ff' ~Inwl'\o'llffi retiming equivalent.

33

3.3 Strong Slowdown Retiming Equivalence

DEFINITION 3.3.1 The relation of strong slowdoum retiming equivalma on the set

Syn!: is the smallest equivaleoce relation containing ~dl --+. andr.

Strong slowdown retiming equivalence or synchronous schemes will be denoted

bY""'ssR. The relation -, = (--+. U +--,)' (symmetric and transitive closure) is

called strong fl/1Jivalena:. for the definitions of slowdown and retiming equivalence

sec Definition 3.1.1. In order to decide the relation ""'SSR. we are going to pro\'c the

£ollowing equation

""'SSR = +--, 0 --+.1 0 -r 0 f--JI 0 --+. = +--, 0 ""SR 0 -t. (2)

Equation (2) says that if two accessible SE-schemes 51 and 51 are strong slowdown

rctiming equh-cllent. then they can be unfolded into appropriate schemes 5; and S;
that arc already slowdown retiming equivalent.

PROOF. Let S. U and S' be SE.schemes such that S --t, U and U ----tsl 5'. Then

there exist a scheme morphism 0 : 5 -+ U and a positi\-"e integer c such that 5' is a

c·slow scheme cU obtained by lIIultiplying all the register counts in U by c. Then the

following diagram commutes

cl-·),
U'--o--S'

LEMMA3.3.3 O~. ~ +-.0""'. [Bartba, 1994]

PROOF. Let 5, S' and U be SE·schemes such that S -. U aod S' ----to U. Theo there

p~'{i...t... a I~I f'f'I,iming ('OIlR~ \'{'('tQr R: S 4' (f and a schetrn? morphi!m a: S' ~ U.

J4

Since fl(U) = fl(S), 5 can be unfolded into a scheme U' for which fl(U') = II(S)

and Q: U' -+ S. For e\'ery \"erte:c: v of if, define R'(v) = R(a{v)). It is now easy to

check that the retiming R' takes U' to 5'. •

COROLLARY 3.3.4 -SSR = +--, 0 ---+,10 -r 0 +--,1 0--+,

PROOF. It is sufficient to prove that the relation p = +--. 0 --+,1 0 _. 0 +--.1 0--+.

is transitive. Observe that --+. 0 +--, ~ +--, 0 --+, and --+.1 0 +--, ~ +--,

0--+.0/. because the category Syn!: has all pullbacks and pushouts [MacLane, 19i1l.

By applying Lemmas 3.3.2, 3.3.3, 3.1.3 and 3.1.2 \\"e have:

po p +--. 0 --+~ 0 _. 0 +--,1 0 --+, 0 +--, 0 --+,t 0 -r 0 ~.I 0--+,

~ +--,0 --+,1 0 0 +--, 0 ~,I 0 --+.1 0 --+, 0 _. 0 +--,1 0 --+.

p.
Repeating the proof orCorollal1' 3.3.-1 \\'orking in the subset TSyn!:. of tree reducible

SE-schemes. we obtain the following result.

COROLLARY 3.3.5 -SSR = utr 0 +--, 0 --+,1 0 -. 0 ~Jl 0 --+, 0 utr- t , whf!1'e

the relation --+.is reJtricte.d to the Sltbset of tree-reducible schemes.

3.4 Decidability of Strong Slowdown Retiming Equivalence

PROPOSITION 3.4.1 The relations#, and are decidable.

PROOF. See Proposition 3.2.1 and Proposition 5.2 [Banha., 1994]. •

THEOREM 3.4.2 Let F Qnd F' be t~-retlucible SE-"chemt.1.ruch thQ~ FSR £I,

and as.sume th(J~ 9 is a tru·pruennny "chmte congruence of F. Then F/8SR £'/8,

prouided that 8 is a "cherne congruena of £', too.

PROOF. Since slowdown transformations presen'e the congruence 8. Theorem 6.2.5

[Bartha. 19941 directly applies. •

THEOREM 3.-1.3 The relaUon of "trong .slowdown retiming equivalence is decidable

for synchronotL! "cherne&.

PROOF. Let G and G' be strong slowdown retiming equivalent SE-schemes. By

Corollary 3.3.5 there exist some schemes F and F' such that F ---t~ utr(G), F' ---t,

utr(G') and FSR F'. See figure 3.3a. Thus in the category TSynr: there are

morphisms F -+ Iltr(G) and F' -+ atT{G'), which determine two morphisms fl(F) -+

fl(atr(G)) and fl(£') -+ fl(utr(G')) in TFI!:. Let dJ and Ib' denote the scheme

congruences of fl(F) induced by these tWO morphisms.

aj b)

Figure 3.3: The proof of Theorem 3.4.3 in a diagram.

~ow construct tbe product of fl(u~r(G)) and fl(utr(G')) as a tree-reducible n:­
scheme H. Then tbereexist5 a morpbismfl(F) -+ fI that makes tbediagram of figure

3.3b commute. For the scheme congruence 8 induced by this morphism, we thus ha\'e

~ ~ ¢> lmd ~ t; C'. Ott the other bI:.d, ¢ and ¢' arc also S!:-scbeme congruences of F

36

and P, respectively, for which Flo = WT(G) and F'N' = utT(C). It follows that 8,

too, is an Sr-scheme congruence of both F and F'. Theorem 3.4.2 then implies that

H ~Flo-sR rIO = H'.

.-\ccording to the argument above, one can decide the slowdown retiming equiva­

lence of G and (J by the following algorithm.

Algoritbm B.

Step 1. See if j/(G) -. fl{G'). If not, thell G and a are not strong slowdown

retiming equivalent. Otherwise go to Step 2.

Step 2. Construct schemes Hand H'. which are the unfoldings of G and G' to the

extent determined by the product of j/(utr(G)) and jl(utr(G')) in TFh:, and test

whether Hand H' arc slowdown retiming equivalent.

The schemes G and G' are strong slowdown retiming equivalent if and only if the

result of the test performed in Step 2 of Algorithm B is positi\'e.•

EXAMPLE 3.2 Consider the schemes in Fig. 3.4.

Figure 3.4

Since jl(St) -~ jl(Sz) we construct the product Hof jl{utr(Sa)) and fl(utr(Sz)) as

foUaM:

37

(11 Tbeset ohertices V(H) =V(51)xV(~) with the restriction \hat (u, v) E V(H)

if and only if T(51, u) = T(~, v), for some u E ""(51) and II E V(~). This

restriction implies that tI and v have the same label in 5 t and Sz respectively.

This common label becomes the label nf venex (tI,ll) in the product scheme.

[21 The entry (exit) vertices of Ii are tbose pairs consisting of an entry (exit) \·ertex

in 51 and the corresponding vertex in 52.

\-1 I ~'lake the scheme Ii accessible by deleting lion-accessible Yenices.

Observe that 51 = IJtr(Sl) and 81 = IJtr(5:z). We have

f/(utr(S,))

~m_
~rn

f/(utr(S,))

~0
rn~ ~

Figure 3.5: Construction of product of jl(ulr(Sd) 'Inc! jl{utr(~)).

That is

Figure 3.6: Scheme Ii as 01 product of fl(utT(51)) 'Inc! fl(utr(~)).

38

Now we construct schemes Ht and H2 , which are the unfoldings of 51 and ~ to the

extent determined by the product scheme if.

H, H,

Figure 3.7: Schemes HI and H2 are slowdown retiming equiva~t.

It is trivial to verify that the slowdown constants are Cl = 2 and C2 = 1. Hence

clHI

_.fR
LP~

Figure 3.8: Schemes CI HI and ezH2 are retiming equivalent.

Therefore. schemes 51 and ~ are strong slowdown retiming equivalent.

Let us briefly discuss the complexity of Algorithm B. The product scheme Hcan

be constructed in 0(1\-,21). In order to construct schemes HI and H2 one has to

insert V nodes into the product scheme if with reversed flow. This can be done

starting from the exit \'ertkes of HI and H2 and following the unfolding trees T(Sll

and T{~) in 0(1 VI). At this point one bas to decide wbetber or DOt HI and H2 are

slowdown retiming equivalent. Algorithm A from Section 3.2, whose comple.'tity is

O(W3!)apptie5.

39

4 Leiserson's Equivalence vs.
Strong Retiming Equivalence

In this section the object of study is the relationship between Leiserson's (intuitive)

definition of equivalency of synchronous systems (Definition 2.5) and strong retmining

equivalence of Ilynchronous schemes introduced in [Bartha, 1994).

We assume that the initial contents of the registers associated with the weights is

.1 (undefined datum).

EXAMPLE 4.1 Synchronous systems in figure -1.1 are equivalent in the sense of

Leiserson, that is 5\ and S, can simulate each. other.

5,

Figure 4.1.

5,

The first three pulsations of the synchronous scheme 51 are:

Input: :rl

Output: 9(.1.1.)

r\ = r3 = 9(.1, .1), r2 =!{l., zll

40

Input: I,
Output, 9(/(1.. <,). 9(1., 1.))

" =', =9(/(J.,I,),9(J..J.), " ~ 1(9(1., J.),I,)

Input: XJ

Outpu" 9(/(9(1.,1.), I,), 9(/(1., I,), 9(1., 1.)))

" ~ " = 9(/(9(1., 1.), <,I, 9(/(1., I,), 9(1., 1.)))'" = 1(9(/(1., I,), 9(1., 1.)), I,)

The first three pulsations of the synchronous scheme 52 are:

Input: XI

Output: .1

r, = rJ = r~ = g(f(.1,rd,.1), rl =.1

Input: X,

Outpu" gU(J., <,), 1.)

" ~" = '. ~ 9(/(J.,I,),9(/(J.,<,), 1.)), " = 9(/(J.,I,), 1.)

Input: XJ

OUlpU" 9(/(1.. <,I, 9(/(1., I,), 1.))

" =', ='. =9(/(9(/(J.,I,),J.),I'),9(/(J..I'),9(/(J.,I,),J.))),

" = 9(/(1.,<'),9(/(1.,<,), 1.))

To demonstrate that 5, can simulate 5 11 let 51 proceed one cycle from its initial

configuration, then set rl = g(.1,.1) and r'l = rJ = r~ = y(f(.1,XI),g(.1,.1)) in

5,. From then on, for any sequence of inputs X'l, X3, .. scheme 5'2 exhibits the same

behavior as scheme 51'

Similarl)', after the first cycle of 5.!, define rl =.1, r2 = !(.1,XI) and r3 =.1 in 51'

Then, for any sequence of inputs X',XJ, .. scheme 51 will e.'tbibit the same behavior

as scheme~.

41

Let t· ={YI, .. I Y.., .. .} be a fixed set of variables. For a ranked alphabet E, Tr;

will denote the set of finite E-trees. If S is any set of \'ariable symbols then TdS)

denotes the set of E-trees over 5, tbat is TdS) = Tr;(SJ' where E(S) is the ranked

alphabet obtained from E by adding all the elements of S as variables of rank 0 to it.

DEfINITION 4.3 A finite state top-down tree transducer M [Engel£riet, 19751 is a

quintuple (E, j" Q, QIl, R), where

~ is a ranked alphabet (of input symbols),

j, is a ranked alphabet (of output .symbols),

Q is a finite set of states, such that Q n (E U~) =0,

Q~ is a subset of Q (of de.rignattd initial state.s), and

R is a finite set (of rules) such that R C; (Q x E) x T:l,(Q x V).

A rule of R will be written in the form 0 -+ p, where 0 = (q, 0") with q E Q, q E ~ ..

and p E T.:l,(Q x F). In this rule, however, ollly the vdriables Yl, ., ,y,. are allowed to

occur at the leaves of tree p. To emphasize this restriction, the above TIlle will rather

be specified as

(1)

[ntuith'ely, the transducer ' ..orks as follows, [t starts processing an input tree t E Tr:

at its root in any of tbe designated initial states. Processing a node tI labelled by

0" E!:,. is carried out by finit finding a rule of the form (l), then replacing tI by tbe

tree p and continue processing the n subtrees under tI in states ql' .. ,q,., attaching

them to the leaves of p labelled by qlYIt ,. ,q..y,u respecti\'ely. Note that the rules

are allowed to be nondeterministic. The relation R C; Tr; X T:l, induced by iH will be

denoted by 9t(M) [Engelfriet. 19751, i,e., two trees t l and t2 are related with respect

to 9t(M) if M maps II into 12 •

In our transducers we shall all()\\' the input tree to be infinite, which makes the

processing of tbe tree also infinite, but stilll\'ell-defined. :\Ioreover, \\'e shall augment

42

the input alphabet I: by the variable symbols X = {XI, .. ,In, ... } of rank O.

DEFINITION 4.4 For a fixed n E N, the finite state top--down transducer Tn is defined

by the following data

Input and output alphabet are the same: Ev

Q = (-n,nlo

Q, = (O);

R is the set of rules defined below

(1) jO'(YIt··. ,Yt) -+ V1(0'((i+l)Yb .. , (i+l)y,,)) for 0' E P:v)", 1~ 0, i+l ::; n

(2) iV(utl -+ (j - L)YI

(3) Ox; -+ Li, for i E N.

EXAMPLE 4.2 The finite state top-down tree transducer 7i can translate the tree

Vh(VI'ilxl, 'ilg'il I'ilx2) into 'il'ilh(f'ilXI,gV f'ilx2) as follows (see also Figure ,1.2):

O'Jh('J f'Jx" 'Jg'J f'Jx,) => 'JOh('J f'Jx, 'Jg'J f'Jx,) rule (1)

'J'Jlh('J f'Jx" 'Jg'J f'Jx,) rule (1)

'J'Jh(l'Jf'Jx" l'Jg'J f'Jx,1 rule (1)

'J'Jh(Of'Jx"Og'J f'Jx,) rules (2),(2)

'J'Jh(JO'Jx" gO'J f'Jx,) rules (1),(1)

=> 'J'Jh(J'JOx" g'JOf'Jx,) rules (1),(1)

'J'Jh(J'Jx"g'JfO'Jx,) rules (3),(1)

=> 'J'Jh(J'Jx"g'J f'JOx,) rule (1)

=> 'J'Jh(J'Jx"g'J f'Jx,) rule (3)

If X = {XI Xn , •. } is a set of variable symbols, then Tl'(X) denotes tbe set

of (infinite) E.trees over X. An infinite tree t E 1?(X) is called regular if it bas

a finite number of different subtrees. Obviously, t is regular if and only if it can be

obtained:LS the unfolding of an appropriate F!:-schcme F, i.e. t = T(F).

43

0 V V V v
I I I I Iv 0 v v v
I I I I I
h ~ h (1) 1 (1) h (2),(2) h (1),(1)

A A = I = A=A=
v v v V h 1 1 0 0

f
I I I A I I } I
9 f 9 v v v v 9

I I
f

I I I I Iv v v v 9 f 9 v v
I I [I I I I I£,

f
x,

f
v v v v x,

fI } I
fv v x, x, v

I I I I£, x, V V x,

I Ix, x,

v v v v v
I I I I I
v v v v v
I I I I I
h (1).(1) h (3).(1) h (1) h (3) hA=A=A=A=A

1919/9 I) Ig
I I I I I I I I I I
o 0 V V V V V V V V

I I I I I I I I I I
TTl I x, f x, f x, f
Zl f x\ f 0 V V

I I I I I
V V V 0 ~

I I I I
Xz %2 %2 X2

Fipre4.2.

44

DEFINITION 4.5 Two regular infinite trees t l , t2 E ~(X) are retiming equivalent,

in notation t l '" t2, if there exist SI:'schemes $\> $1 such that tl = T(5a), t2= T($2)

and 51 '" 52-

THEOREM 4.6 The relation of retiming equivalence on regular infiniteI:v-trees can

be characterized as:

~ = U!l\('I;j·
I\~O

PROOF SKETCH. (=» Let t l = T(SI) and t2 = T{S2) for some strong retiming

e<luivalent SI:-schemes 51 and 51· Then 51 and 52 can be unfolded into schemes

S; and S~ that are already retiming equivalent, that is, there exists a legal retiming

vector R taking 5; into S~. The number of states [-n, 01 of the finite state top-down

tree transducer T.. which takes t l into t"l is determined by the m3.''Cimum absolute

value of R(u), i.e.. n = ma..,,<{[R(v) II v E V(5tl}_

(<=) Let t l = T(51) and t"l = T(5.l) for some synchronous schemes 51 and 52, and

let r:. be a finite state top-down tree transducer which maps t l into t2 with the

following feature: non V nodes are additionally labeled with the state in which they

are processed. We will denote the resulting tree as ttl- It is obvious that transducer

1,: forces the common underlying flowchart scheme structure on both schemes 51 and

52. Let Hdenote the product of fl(utr(5d) and fl(utr(52)). Construct schemes HI

and "-]" which are the unfoldings of 51 and 52 determined by the product scheme Has

follows: reverse the flow of Ii and, starting from its exit vertices, insert 'il nodes into

it following the structure of t l and t2 respectively_ Now. starting from exit vertices

of HI and follo\\;og the structure of ttl> label non 'il nodes in HI with labels from

corresponding nodes in ttt. Since r.: maps t 1 into t2, the corresponding nodes in HI

and ttt have the same labels and these labels determine the legal retiming vector

which maps H t into H2- Therefore, St and 52 are strong retiming equivalent.•

45

The rollowing is the example where it is not possible to translate one tree into another

using the finite state top-down tree transducer 'Tn ror any n E N. Notice the difference

between the number or V' nodes along the corresponding paths.

EXAMPLE 4.3 The input tree is Vh(V/Vx" 'VgV'/VX2) and the goal output tree is

!I(V/V.!l, V9V/V:r2}'

OVh(VIV,,, VgVIV,,) (-I)h{V/V", VgV/Vx,)

=> h({-I)V/Vx"(-l)VgV/Vx,)

h(V{-1)/Vx" V(-1)gVIVx,)

=> h(V/{-I)Vx" Vg(-I)V/V,,)

h(V/V(-I)x" VgV(-I)/Vx,)

h(VIV(-I)x" VgV1(-I)Vx,)

h(VIV(-I)x" VgVIV(-l)x,)

h(VIV(-I)x" VgVIV(-1)x,)

rule (2)

rule (1)

rule (1).(1)

rule (1),(1)

rule (1),(1)

crash, rule (1)

crash. rule (1)

crash

DEFINITION .t.7 We define the finite state top-down tree transducer On which takes

as input t E~(X) such that t = T(S) ror some Sr:'scheme 5, and translates it into

the output or scheme S at the nIh clock tick, assuming an initial configuration with

.L's assigned to all registers, as rollows:

~ =~v(X)

~=~U{1.}u{x' Ii ~ I,XE X}

Q={O,I, n-l}

Q,={n-I}

R is the set or rules defined below

(1) iq(Yl.. ·. Yn) --t a(iYh .. , iYn) for (f E En

(2) iV'(yd -+ (i - l)YI i£ j ~ 1

(3) OV(gd 1.

(4) iXj --t xt for i E N.

46

Notice that On is deterministic. The variable symbol xj stands for the input arriving

from input channel j in the the jill clock cycle.

If the starting configuration c is different, then introduce unary symbols of the

form (V,p), where p E Tl:: is a finite tree representing the contents of a register

according to e. ~Iodify the abovc rules (2) and (3) as:

(2')i(V,p)(y,)--+(i-l)y, iri~l

(3') O(V,p)(y,) --+ P

Call this transducer On(e), where c is the starting configuration.

Lct HnO} denote the net output height of an infinite tree t E ~(X) in the

nih step, i.e. the height of O,,(t), and let H,,(c)(t) denote the total output height

of an infinite tree t E ~(X) in the nih step starting in configuration e, i.e. the

height of O,,(e)(t). :'-iote: H,,(eHt) - Hn(t) ~ kc for a fixed bound kc depcnding on

configuration c.

LEMMA 4.8 Let 5 and 5' be LeiserSDn equivalent SE-schemes Then 5 and 5' are

strong retiming equivalent.

PROOF. Recall the definition of Leiserson equivalency (Definition 2.5). Assume. by

way of contradiction, that 5 and S' are Leiserson equivalent, but 5 "" 5'. Then

(1) f/(T(S)) = f/(T(S'))

(2) T(S) ~ T(S'),

Condition (1) is necessary for two schemes to be Leiserson equivalent. For if fl(T(5))

-# fl(T(5')) then, no matter what the configurations of 5 and S' are, they will never

exhibit the same behavior, that is. produce the same sequence ofoutputs for the same

sequence of inputs.

By virtue of Lemma 3.2.2 and Lemma 2.11 (characterization ofstrong retimingequiv­

alence), (2) can only happen if

47

(i) There e.'tist5 a finite branch in jl(T(5)) leading to variable z} such that the

corresponding branches in T(S) and T(S') have a different number of registers along

them; or

(ii) There e."<ists an infinite branch in jl(T(S)) such that the absolute difference of

the number of registers along the corresponding branches in T(S) and T(S') is 00,

Le.. Hm._ I H.(T(S)) - H.(T(S')) I ~ 00.

rr (i) is the case, then it is easy to see that the input ~ will always appear in

different clock cycles in the output sequences of 5 and S'. Therefore the equation

O.(e)(T(S)) = O.(e')(T(S'))

will not hold for every n ;::: 0, no matter how the configurations c and d are chosen.

This contradicts the hypothesis that S and $I are Leiserson equi\<llent.

In case (ii). according to our hypothesis. there exist configurations c and d for 5

and S' respecti\"(~ly. such that

O.(e)(T(S)) ~ O.(e')(T(S'))

for all n ;::: O. Therefore H..(c)(T(S)) = H,,(c')(T{S)). On the other hand, by

assumption we also have:

!~ I H.(T(S)) - H.(T(S')) I = 00.

This is a contradictton since there erists a bed bound k,such that Hn(c)(t)-Hn(t) ~

k, for all infinite trees t E ~(X).•

LEMMA 4.9 Let S\ and 52 be strong retiming equivalent SE-schemes. Then SI and

52 are Leiserson equivalent.

PROOF. According to Lemma 2.11, there e.'tist SE-schemes 5~ and S; sucb that Si and

S: are strongly equivalent (or i =1,2, and ~ -, 5;. By definition, if two SE-schemes

are strongly equivalent, then tbey are Leisersoo equivalent. 00 the other hand,

T....mm;l 2.1 (Rp.t1min!l (nnrna) a..c:sures that Sj and S; a.re Leisersol!. equivalent. •

THEOREM 4.10 Two synchronous schemes 51 and 5z are Leiserson equivalent if

and only if they are strong retiming equivalent.

PROOF. Follows directly from Lemmas 4.8 and 4.9.•

49

4 Retiming Identities

4.1 The Algebra of Synchronous Schemes

It was observed in [Elgot and Shepardson, 19791 that flowchart schemes can be

treated as morphisms in a strict monoidal category [MacLane, 19711 over the set

of objects N = {O,I,2, ...}. Arnold and Dauchet [1978,19791 reformulated these

categories as N x N sorted algebras called magmoids. In a magmoid M, we have an

underlying set i'v/(p, q) corresponding to each pair (p, q) of nonnegative integers, and

the basic operations are the following:

• CompositioTl: maps i\tJ(p,q) x M(q,r) into I\-I(p,r) for each triple p,q,r E N,

denoted by". See Figure 5.1(a).

• Sum: maps iH(Pl,ql) x M(P2, Ih) into M(Pl + /J'l,qL + rn) for every choice of

the nonnegative integers PhP'J.,qI!Q2, denoted by +. See figure 5.I(b).

• Feedback: maps ."'/(I+p, l+q) into M{p,q) for each pair (p,q) E Nx N, denoted

by t. See Figure 5.1(c). The application of t crootes triangles (boxes of sort

1 -; 1) which represent registers.

c

'--~:IOO .rrQ..
• f,. ---U--U--" --~--
~-- ._-- --; PI P2 P

P

(.) Composition.

It· h: p -t-r

(b) 5,m.

II +h :Pt +1'2 -tql +1/2

Figu~ 5.1: Tnt int~tationof operations.

50

(c) Feedb.ck.

tf' P"" q

There are t....,o constants in iH, 0 and I, standing for the identity anows 10 and

1" respecti\'ely. By the strict monoidal property, 1, (p ~ 1) then corresponds to

the element E~=I 1 in ."'[(P, pl. We use the notation p for L~=, I, and adopt the

categorical terminology / : p -+ q to mean that / is an element (morphism) of

sort (P, q) in M. The operations and constants are subject to the obvious identities

~I1. M5 below.

The magmoid operations are, however, not sufficient to express even the most

dcmentary schemes, i.e., mappings. For this reason. some further constants are to

be introduced. Usually the constants 1r~ for all pEN and i E [p I = {1,2, ... p}

are chosen. The constant 1f~ : 1 -+ P represents the mapping [1J -+ (p I which sends

1 to i. This choice is natural, because the semantics of flowchart schemes is defined

ill algebraic theories [law\'crc, 1963\, and the constants ;r~ are included in the type

of the coresponding N x N sorted algebras. However, regarding the pure synta."(of

schemes only, the choice of the constants 1f~ is not the simplest onc. Indeed. e\·cry

mapping can be expressed by the help of the transpo8ition :r : 2 -+ 2, the join (or

branch) '- : 2 -+ 1. and the :ero Ol : 0 -+ 1 using the magmoid operations. These

constants are also natural for us, even from tbe semantic point of view. because we

consider schemes to be logical circuits. In this case the constants I, £ and 0, are

interpreted as the simplest switching elements in the circuits, see Figure 5.2.

9
1: A;

DC,

Figure 5.2: The interpretation of constants.

(n accordance 'Ilo'ith [Bartha, 19871, S denotes the type consisting of the oper·

ations " + and t and constants 0, 1, x, e and 0" and D is the subtype of S nOt

containing t. This way we have defined the S·a1gebra S£(E), "'here Sf(E)(P,q) is the

51

set of all S!:·schemes of sort p --t q over a doubly ranked alphabet E. Recall that

~ = p:(p,q} I (p,q) E N x N} where the sets E(p,q) are pairwise (Iisjoint. With each

a(p, q) E E(p, q) we associate an atomic SE-scheme with p + q + 1 vertices (2p + 2q

pons) shown in Figure 5.3.

Figure 5.3: a E E(p,q) as an atomic scheme.

The following mappings will play an important role in the sequel:

• Ek : k --+ I is the unique one of its sort.

• wp(q) :p.q --+q. For any p.qE N. wp(q) takes a numberofthc form (j -I) '(1+1

(j E [pl,i E [q!) to i. See Figure 5.4a.

• lI:(n,p) : p' n --+ n· p is the permutation (sometimes called a perfect shuffle)

which rearranges p blocks of length n into n blocks of length p, i.e., ",(n,p) takes

(j - 1)· rI + i (j E [pI, i E [rLl) to (i - 1)· P + j. See Figure 5.4b.

• .8#s. If ,8 : r --t r is any permutation and II is a sequence (nt: .. ,nr) of

nonnegative integers with n = L:~=l ni, then i3#s : n --t n is the block by block

performance of ,8 on s, i.e, i3#s sends j + L~=l nit where j E [n.l:+ll to the

number y + j, where y is the sum of numbers ni such that J3(i) < {3(k + 1). See

Figure SAc.

a) mapping W2(3) b) mapping ,.;:(3,2) c) mapping x#{2,2)

Figure 5.4: Examples of mappings 'Wp(q), ,.;:(n,p) and fJ#s.

52

4_2 Equational Axiomatization of Synchronous Schemes

The syntactical and semantical features of synchronous systems can be com-eniently

separated.. The syntax is specified by a synchronous scheme. The semantics is tben

specified by an algebra. which associates a !i.'(ed operation with each operation symbol.

The set of identities Sf has been developed in {Bartha, 19871. In this section we

augment SF with a new uiom R, intended to capture the retiming equivalence of

synchronous schemes and develop the system of identities F~T to serve as a basis of

identities of feedback theories being the semantics of synchronous schemes. The first

set of identities towards the a.xiomatization of schemes is MG:

1. ~'IG = {MI. .., M5} is the set of magmoid identities, where

Ml: f· (9' hI = (f . y) . h if f : p -+ q, 9 : q ~ r, h : r -+ s;

~12: f + (9 + h) = (f + 9) +h if f PI --+ qt, 9 : P1 -+ th. h : P3 -+ '13;

~14, !+O=O+!=!if!,p->q;

~15: (!I'gd +(17 '92):=: (It + h) ·(91 +9'1) if Ii: Pi ~ Qi,9i: qi -+ ri,i:=: 1,2.

2_ DF = MG u {P, D1, 02, DJ}, wh,,,

P, J. + h = x#(p"",) - (f, +!,) -%#(q"q,) if /;' p; -> q;,i = 1,2_

P is the block permutation a.xiom introduced by Elgot and Shepherdson 11980 I.
This axiom postulates a .!ymmetry {MacLane, 19711 for the strict mORoidal category

determined by the uioms MG.

01, «+1)-<=(1+<)-"

02: X·E=~j

DJ, (1+0,)-.=1.

3. SF = DF U (SI, S2, .., S9), whore

51: Hil +12) = tIL +fz if II; 1+Pl-+ 1+QI,h:P2 -+fl2;

S2, 1'((x + p). f) =1'(/· (x +q)) if f' 2 +p 2+q,

S3, 1(/ ·(1 +g)) = (tf)'g if f' 1 +p l +q,g,q "

S4, t((l+g)·f)=g tfiff'1+q 1H,g'p q,

55: t1 = 0:

56: £.1. = .1+.1, where 1. = if";

So, t(/'«+q)) = t'((<+p)'f) if f' 1+p 2+q,

58: 01 • V = 0, where V = tx;

59: t(c:· V'n) = 1. 'fin E N, where V" denotes the n-fold composite of V.

-I. RF = SF u R. where

R; tl'l (f '(9+'11)) = flL({g+p:!l' J) if f :Pt +pz -+ql +rn and g. ql -+Pl'

For the interpretation of axiom R see Figure 5.5.

q, '"

Figure 5.5: Retiming identity.

54

CLAIM: The (ollo....·ing identity is provable from RF (See also Figure 5.6):

R.:~V'f=f tv for f:p-+q

PROOF.

tv ';! l'(f.(p+q)) J; l'(f·z#(p,q)),.,
~ !,(z#(q,p)·f) J; !'((q+p)'f)

~ I·tV •

Fir;ure 5.6: Proof of tdentity R. in ~ di~r;r~m.

:-iote. however. that identity R. alone is not sufficient to capture the retiming equi\"-

alence of synchronous schemes. Consider 5\ = t(!· I .9) and ~ = f((g + 1) r· f).

See Figure 5.7.

Figure 5.7.

Schemes 5 t and s,. obviously exhibit the same behavior, yet equation 5L =s,. is not

Pf'OWl.h1f! from SF u R*. Thp ('nly a.wm that· interchanges the rom~tion is P7

55

which is not applicable in this case. On the other hand, t(E' f .g) =t(g + 1) .E' f)

follo\\'5 directly from R.

Let Q be a type ofNx N sorted algebras and E be a doubly ranked alphabet. 1f E

is a set of Q.identities, then we denote by J::q(E) tbe variety of all Q-algebras in which

the identities E are valid. If ~ is a Q-algebra, then ~'1(E), or simply ~(E), denotes

the congruence relation of 11 induced by E, i.e., the smallest congruence relation for

which 11/4I(E) (the quotient of 11 by 4t(E)) becomes an algebra in J::q(E).

THEOREM 5.2.1 The congrumce relation ~(R) induced by axiom R in the algebra

Sf(E) is the retiming equivalence relation 01 $ynchronow $cheme$.

PROOF. As retiming equivalence is the smallest equivalence containing the primitive

retiming relation (retiming one box only), and 4t(R) is also an equivalence. it is

sufficient to show that if SE-scheme 5' is obtained from 5 via one primitive retiming

step, then R I- 5 = S' in the algebra Sf(E).

Let S, SO : P -+ q be Sl:'scbemes such that S' is obtained from 5 by retirning a

single box. 5 can be represented as 1"1 ((g+p)-F), F: PI+P -+ q\ +q representing the

~urroundings" and 9: ql -+ PI representing the single box. Then S' =t"l (F·(g+q))

follows from S by a single application of a'dom R. See also Figure 5.8. •

S' S'

11
p

Figurl! 5.8: Con~ ~{R) as ttl!: miminz: ~uivaltttte re!ation.

56

THEOREM 5.2.2 [Bartha, 19871 Sr(L) is/reely generated by E in K:s(SF).

THEOREM 5.2.3 Sr(E)/4a{R) is freely generated by E in A.:s(RF).

PROOF. It is well known that irrree algebra over the equational class or algebras exists

then it is isomorphic to a quotient algcbra or tcrms, where the quotient is taken \vith

respect to the congruence induced by the set or a.xioms (equations). Thererore:

Sf(E) " T·SE/~(SF)

wherc T-SE denotes the term algebra over Land 41(SF) denotes the congruence

relation induced by thc set or axioms SF. Let 4t(R) denote the congruence relation

illducl..>d by the retiming a.xiom R. Then, by the second isomorphism theorem:

Sf(E)/~(R) "(T-SE/~(SF))/~(R) "T.SE/~(SFU (R}).•

[II our a.xiomatic treatment, algebraic theories can be introduced by the help or

iderttities TH = {Tl. T2}, where

Tl: 01 • / = Oq ror /: 1 --+ q

T2, w,(p)· f~ (t,f) .w,(q) [0' f' P'" q

We define the identity Rl as rollows:

THEOREM 5.2.4 In the presence 0/ the theo"} axiom TH it is sufficient to consider

axiom Rt rather than R.

PROOF. We han~ to prove that

is a consequence or SF u TH u {Rl}. The proor is an induction argument on qt. Ir

q\ :: 1 then a.xiom R is or the rorm

iI" (J (g+q;z}) = fll ((9 +1":<). f) = t({g+P'2)' f)

57

that is, R reduces to Rl. Now assume that ql ~ 1 and that the theorem is true for

qt = n_ Then for q. = n + 1 we have

t"U (9+"'))

~ f'1(J ((1 + --+0\ +- -+0. + --+ 1) -wfl(Pd-g+lh))

~ f"(J-((I+ --+Ot+ --+01 + ·-+1) Eg-{w,,(PI)+/h)))
i::t

S;~IG t"l"((w,,(pd+P2)-j-((I+ --+Ot)-g+ --+(Ot+···+1)-g)+/h))

i~ i"'(i"(((l+ --+O\+Ot)-g+ --+(Ot+ ·-+l+Otl

9+p,)·W,,(p,j·j)·(n+(0,+ ,,+0,+1)'9+"'))

iPI(i"(.c#{(l+ --+Ot+Ot)-g+ -·+(0\+- -+1+0d g+p:!)

w,,(p,j·f)«#(O,+ "+0,+1)'9+")+"'))

~ i"{:r#((O\+ --+Ot+1)-g+(I+ --+Ot+Od g+ .. +

1:, t"(((I+ ··+0,) 9+ ··+(Ot + ,,·+1)'9)+1'2)' W,.(PI)· f)

~ t"((I+· -+Ot + .-+01 + ,,+ 1)' w,,(P,)· 9 + 1'2). J)

~ t"«(g+p,).J).

See also Figure 5.9.

58

59

Figure 5.9: Proof of Theorem 5.2.4 in .JI di.JIgram.

Con~rning feedback theories. we introduce tbe well.known commutative identity

!Esik, 19801 in the following alternative way:

C:w.(p)·f'!=f'(f'lp" .. ,p,j)·w.(q) if !:I+p l+q,

for all n E N under every choi~ of mapping PI, .. ,PI : n --t n, where

!. Ip" .. ,,,) = Q(I,n,p)-'· (to!) ·Q(I,n,q)· (t" +n. q)

and a{l, n, m) = (1'1:(2, n)#(l, m)") . (11:(1, n) + n m). See Figure 5.10 for an instance

ofCin thecasen =3,1 =2and p=q= 1.

60

p, '"- -

Figure 5.10: The axiom C fOf n =J.t = 2 and p:=: q = 1.

DEFINITION 5.2.5 We define the strong ret·jming feeJ1back theory FrT as

f,T=SfuTHCu(Rl}

where THe = TH u C.

COROLLARY 5.2.6 Strong retiming equivalence of synchronous schemes can be

characterized as a congruence relation ~(FrT) induced on the set of SE-schemes by

the a:(iom set Fr T.

PROOF. Follows immediately from Theorem 5.2.1 and Definition 5.2.5.•

COROLLARY 5.2.7 The free algebra in K:s{FrT) generated by E has a characteriza­

tion by equivalence classes of infinite Ev-trees according to their retiming equivalence.

PROOF'. Follows immediately (rom the fact that the free algebra in A:s{FT), where

FT = SF u THe is a feedback theory, generated by E has a characterization by

equh.tlence classes of infinite Ev-trees and Theorem 4.6. •

61

5 The Algebra of Multiclocked Schemes

In this chapter we study the general case of muhiclocked synchronous schemes. The

motivation comes from the synchronous data80w programming language LUSTRE

[Halbwachs, Caspi, Ra)'mond and PiJaud, 19911 proposed as a tool for programming

reacti\-1! systems as well as for describing hardware and program l,terification.

5.1 The LUSTRE Programming Language

Readive systems have been defined as computing systems which continuously interact

with a given physical environment, when this environment is unable to synchronize

logically with the system. This class of systems has been proposed [Harel and PoueH

1985. Berr~,' 19891 to distinguish them from trnn"fonnational systems - Le" c1assi·

cal programs whose data are available at their beginning and which provide results

when terminating - and from interactive systems \\'hich interact continuously with

environments that possess synchronization capabilities. The dataftow aspect or Lus·

TRE makes it ver:y close to usual description tools in these domains (block-diagrams,

networks or operators, dynamical samples-systems, ...), and its synchronous inter·

pretation makes it well suited ror handling time in programs.

In LUSTRE, any constant, \"3riable and expression denotes a flow. Le.. a pair

made or a possibly infinite sequence or values and a clock, representing a sequence

or time. .-\. flow takes the n·th value of its sequence or values at the n-th clock tick.

.-\. LUSTRE program describes a network of operators controlled by a global (basic)

clock. When executing, this network receives, at each clock tick, a set of inputs

and calculates the set or outputs. The language is based on the perfect s)'nchrony

hypothesis. which means that all computations or communications take no time and

that the net is supposed to react instantenously and to produce its outputs at the

same time it rteeh-es its inputs. Other, slower docks can be defined in terms of

boolean Bows. The clock defined by a boolean Bow is the sequeoce of times at which

62

the flo"' takes the value true. For e.umple, table 6.1 shows the time scales defined

by the flow C whose clock is the basic clock, flow C t whose clock is defined by C and

flow ~ whose clock is defined by Ct.

basic time scale

Cflow false true true false false true false true

C timescale

C\ flow falst! true tru, tru,

C\ timescale

C2 flow true false true

C1 timescale

TOibie 6.1: BoolcOin clocks Olind flows.

LUSTRE: has only few elementary basic types: boolean, integer, real and one type

constructor: tuple. Complex types can be imported from a host language and handled

as abstract types. Constants are those of basic types and those imponed from the

host language. Corresponding flows ha\'C constant sequences of values and their clock

is the basic one. Variables must be defined with their types and variables which do

not correspond to inputs should be gi\'Cn one and only one definition, in the form of

equations (expressions). The equation "X ::II E;n defines variable I as being identical

to expression E in the sense that E denotes the flow of variables of the same type

elte1,C3, .. and Xi = e; for all j 2: 1 where XllX1,X3,'" denotes the flow X with the

same clock as E.

Usual operators over basic types are available (arithmetic: ... , -, ., I, div, Dod;

boolean not, and, or; relational: "', <, <"', >, >"'; conditional: if then else) and

functions can be imported from the host language. These are called data operators

and only operate on operands sharing tbe same clock.

What follows is the description of the context·free synta.'(of LUSTRE using a

~mp!e va..-1ant of Backus-Naur·Form {BNF}. <Jt:;!~> type style words enclosed in

63

angle brackets are used to denote the syntactic categories and Typevriter type style

words or characters are used to denote reserved words, delimiters or le.'cical elements

of the language. other than identifiers. c denotes the empty string.

<LUSTRE.progrnm> ::= <sequmu_of.nodu>

<~equence.of.nodu>::= <node> I <node><sequence..of_nodes>

<node> ::= node <identifier> «inpuLdecl» returns «outpuLdecl»;
<declamtion..sequence>
let
<block>
tel.

<inpuLded> ::= <variable.list > :<type> I <variuble.liJt>: <type>; <inpuLded> I
«inpuLJed» "hen <variable>8;<variable>8:bo01

<outpuLJed> ::= <inpuLdecl>

<uariuble.liJt> ::= <variable> I <uariable>,<uariableJut>

<type> ::= int I bo01 I rea.l

<declarationJtqUence> ::= E I <declarntion><declamtion..sequern:e>

<dedaration> ::= var <uoriableJut>: <type>;

<block> ::= <command>; I <commaRd>;<block>

<command> ::= <variable> • <e:tpTeSSion> I <tuple> • <expression> I
<as.serCion>

<expression> ::= <comtoRt> I <variable> I <integer.apr> I <boolean..erpr> I
<conditionaLerpr> I <tempoml.erpr> I <node.call>

<cofl.'ltant> ::= <numeral> I <boolean.comtant>

<numeral> ::= <integer> I <real>

<integer> ::= <digit> I <digit><integer>

<real> ::= <integer>.<integer>

<boolean..constant> ::= true I false

<integer.apr> ::= <tenn> I <integer_expr><arithmetie-op><term>

<term> ::= <numerul> I <variable>

<arithmetic.ov> ::= ... I - [• II I div I .0<1

64

<boolean_e:tpr> ::= <boolean_tenn> I not <boolean.e:tpr> I
<boolean_expr>< boolean..op ><boolean_term>

<booleaTLtenn> ::= <boolean.constant> 1<variable> I <comparison>

<boolean..op> ::= and I or I xor

<comparnon> ::= <integer_expr>l<relation><integer~expr>2

<relation> ::= : 1 () 1 ([(: I) 1):

<conditionaf.e:tpr> ::= if <boolean_expr> then <expression>1 else <expression>z

<temporaLexpr> ::= pre <expression> 1 <expression>l -) <expression>z I

<expression>l vben <expression>z 1 current <expression>

<node_call> ::= <-idenbfier>«variableJist»

<assertion> ::= assert <boolean.expT>

<variable> ::= <identifier>

<tuple> ::= <variabldist>

<identifier> ::= <letter> [<identifier><letter> I <identifier><digit>

<digit> ::= 0 1 [9

<letter> ,,: a I 1 z 1 A I ... 1 z

LUSTRE'S specific operators are "temporal" operators pre, -). when and current

which operate specifically on flows. A flow of values from a data domain 0 is a pair

(d, r) where d is a sequence over D and T = [TI, ... , T'II is a clock of d. The basic

data domains consist of finite and infinite sequences of integers and boolean values

extended with the value .1 to represent the absence of a value, which is treated like

an)' other value - in particular, it is not smaller than other values in the domain

ordering. The clock element h, ... ,Till represents a clock that ticks as defined by the

simple clock T\ and bas been sampled using the clocks rz, . .. , Tn. The last element

of tbis sequence Tn is always the basic clock. An element (d, [TI, ... , Tn)) represents

the flow that produces the i·th clement of d at the instant when the i-th tick of T\

appears.

The operator pre is the delay operator. It memorises the last value of a flow and

outputs it when it receives a new value, transforming a sequence ele2 .. with dock

r into thp. !\FqIlPnN> l,,:p:! .. wit.h t.he same dock.

65

Table 6.2 shows the behavior of the pre operator in schematic form.

pre (E) 1. Cl C2 cJ C4 C5 C6 Cr

Table 6.2: The "previown operator.

Tne initialization operator -) maps flows E = (CIC2 ", r) and F = (ili? .. ,r)

to the flow (edzf3 .. , r). The -) operator only gives well·defined output as long as

tne input flows have the same clock. Table 6.3 snows the behavior of the -) operator

in schematic form.

e, e, e, e, e, e, e.
h h t. h t. ft f,

h f, f, fs f, ft f,

Table 6.3: The Mfollowed byn operator.

The expression E vhen B samples \'alucs from E when B is true. Here E and B

lUust be on the same clock and B must be a boolean flow. The clock of the flow

defined by E when B~onsists of tnose instants when B is true. Formally, if E = (e, r)

and B= (b. r), where e = ele2 .. and b = b1bz ... , then E vhen B = (e vhen b, [br!),

where e vhen b is the sequence c"e'2 .. such that the numbers ij are exactly the ones

in increasing order for which bij is true.

The current operator performs up-sampling, or interpolation, of a flow. For

E = (e. [br]), current(E) = (cur(e,b),r), where cur(e,b) is the sequence e' for

which

e' _ {Ci ifb; is true

1 - e:_ l ifb; is false

~ote that, according to the above recursive definition of e', Co =.1, by definitioll. As

to the sequence r,

r_{T
[61

if T is not empty

if T is empty

66

Table 6.4 shows the behavior or tbe vtlen and current operators in schema'ic rorm.

B false true true false false true false true

T~ble 6.4: S~mplinB ~ncIlnterpol~tinB.

LUSTRE program is a finite sequence or nodes which consist or a declaration or

input/output variables and a set or equations defining the output flows. The rollowing

node is the standard example how to define the basic clock counter (COUNTER) and its

application in defining the regular clock which ticks on every third tick or the basic

dock (REGUUR_CLOCK_3).

node COUNTER(vaLioit, val_iocr: int; reset: boo1) returns(n: int);
let

n ,. val_init -) if reset then val_init else preen) + vaLincr;
tel.

node REGULAR_CLOCIC3 () returns (cloclt_3: bool);
var n_3: int;
let

D_3 ,. COUI!ER(l. 1, pre(D_3) '" 3);
cloclt_3 = if (0_3 • t) then true else fdse;

tel.

5.2 The Algebra of Schemes with Multiple Regular Clocks

[n this subsection, motivated by the clock analysis of LUSTRE, we develop the algebra

Sf,(E) or synchronous schemes with multiple regular docks, Le., clocks that tick

every first, second, tbird etc. instant or the basic clock. The arbitrary clocks are

intentionally omitted since tbe issue becomes technically too complex.

DEFINITION 6.1 The algebra 5r,(E) or generalized synchronous schemes consists or:

• Objects: {So n} or sort p ~ q, S p ~ q in Sf(~) and ~ E N.

67

(5, n) stands for generalized scheme. Each input signal is repeated n times and

outputs are read in kn + 1 c:ydes only, where k =0, 1, 2, ..

• Constan'" 1 =(1, 1),I =(I,I),O =(0, 1),< =«, 1),0, =(0,,1)

• Operations:

1. Compo.!ition: (f, m) - (g,n) =(SLOWn,(f)' SLOWm, (g), Ic:m(m,n))

if f: p -+ q.g: q ~ r. where lc:m(m. n} is the least common multiple ofm and n

with tn' =~, n' = \cm~"'l and SLOWc(S) is the c·slow of S.

2. Sun" (f, m) + (g, n) = (SLOW",(f) + SLOWm,(g), lcm(m, nl)

if f: PI ~ qhY: P'J 1/2.

if f : 1+ p ~ 1 +q, where t n means feedback with interjecting n registers.

THEOREM 6.2 The aiyebm Sf,(!:} !iati:lfie.s !icherne idenlitie4 RF.

PROOF.

if f: P~ q, g: q ~ r. h. r $ and X.y,:; EN

(f,I)' ((g,y)' (h,II)

(f,x) (SLOW~(9)'SLOW~(h),lc:m(y,:;))

(SLOWkm{~.~m!•.• !!(f)· SLOWlcmk~~;:"ll(SLOW~(9)SLOw~(h)},

lcm(L,lcm(y, I)))

(SLOWlcmr•.I~mrl"Il(f)· (SLOW1c!T!!"~!r .• n(g)· SLOWlcml•.kmc, .• " (h)),

lcm(I,lcm(y,I)))

(SLOW~(SLOW1cm!~Ul.~l(f) SLOW~(g)).SLOWlcnulc":,,.,!.•l(h),

lcm(lcm(I,y),II)

(SLOWk~"';l,.".,,(f). SLOW_"':!,."." (g), Icm(lcm~I' y), II)) . (h, I)

68

~ ((f,%)' (g,.n· (h, ,)

M2 (f,%) + ((g,.) + (h, ,) =((f, %) + (g,.n + (h, ,)

if f :PI -+ qh 9 : P2 -+ /h, h : 1'3 -+ 93 and X, y, zEN

(f,%1 + ((g,.) + (h, ,n
(f. x) + (SLOW~(g) +SLOW~(h),lcm(y,.:;))

(SLOWlcmu.~I"'ll(J) + SLOWlcnv.:~:rt!(SLOW~(9) + SLOW~(h)).

km(%,km(y,,)))

(SLOWIanr.~"..n(J) + (SLOWIanr~'?""'lI(g) + SLOWlcmh'~"'ll(h)),

km(I. km(y, ,)))

(SLOWz:(SLOWkmlk';'j ... I... (J) + SLOWkmck,;,:, .•I.• , (9)) + SLOW~(h),

Icm(lcm(.c.y),z))

(SLOW kmrlcml'"I ... U) + SLOWkmllcml•." .• ,(g), Icm(lcm(x, y), .:))) + (h,:)
• •• x

((f,I) + (g, .1) + (h, 'I

M3 (p,l) (f,y)~(f,y)·(q,llandyEN;ff'p.....

(P, 11· (f,y) (SLOW,(P) f, yl

(p. f,y)

(f .,.)

(f SLOW,(.), y)

(f,y)' (., I)

M4 (f,%) + (0,1) = (0, 1) + (f,%) if f' p and %E N

(f,%) + (0, 1) (f + SLOW,(O),%)

(f +0,%)

(O..j. !,z)

69

(SLOW.(O) + fl.x)

(0,1) + (I,x)

M5 ((I"x,) ' (g"y,)) + ((h,x,) (""",)) = ((I" x,) + (j"x,)) ((g"y,) + (g"",))

((I" x,) ,(g"y,)) + ((j"x,) , ("" y,))

(SLOW~(Jd'SLOW~(91),lcm(xl,Yd)+

(SLOW~(h)' SLOW~(92)' lcm(xt,m))

(SLOWltmllcm(.,.,,!.Icm(""2Jl(SLow~{fd· SLOW!£!!!!.!.w.ll (gl)) +
iern(.,.,() '(r,

SLOWkmllcm(.,.,,),lcm(••.••Il(SLOW~(Iz)·SLOW~(g2))'
icm('t.r~1 '1 '1

lcm(lcm(Xt. Yll, Icm(x2' !h)))

{(SLOWlcmlkllll.!.~!11.Icm{.2.")) (il) . SLOWlcmttcml"",\I.lcrnl.",.ll (gl)) +

(SLOWlcm(lcm(.,.~~I.Jcml''''21l (h) . SLOWlcmllcml."W.lcml"'12l1 (92)),

1cm(lcm(xLI YI),lcm(xz, Y2)))

(SLOWlc,n(km(.!.:~!.km(" .•• n (fl) + SLOWtcmllcml"':r,lcmlrr .•• 1I (h)) .

(SLOWlcmllcml.,.~~I.IcmI".n)l (91) + SLOWkmllcm(., ':r,lcn'hl .•?I,(fh)).

Icm(lcm(xt,x2},lcm(YI,!h)))

(SLOWlcmllcml, •.•• I.lcml!',uJl (5LOWkmlo, .• 21 (/t) +SLOW~ (h)) .
km('I"ll '('1

SLOWlcmllcllll.,.~'I.lcm(!!.•'II(SLOW~(gl)+SLOW~(!h)),
lCmr'I"2l '1 '1

lcm(lcm(Xt, I'l), Icm(Yl! Y2)))

(SLOW~(Jd + SLOWlcml:t2l(hl, Icm(Xl,X2))'

(SLOW~(91) +SLOW~(92),lcm(YllY'l))

(If" x,) + (/"x,)) , ((g"y,) + (g"",))

P (I" x,) + (I" x,) =x#((p"l), (p"I)) , ((I"x,) + If"x,)) , x#((""l),(q" I))

iff;:Pi ~qi, i= 1,2 andz\tx2 E N

70

(SLOW~(fI) + SLOWkml:t.I(!2), Icm(zhx2))

(x#(p"P2) .(SLOW~ (h) + SLOW~(fd) x#(fh, qd, Icm(zh %2))

(x#((p" 1),(",,1))' (SLOW~(h)+

SLOW~(Jd) 'Z#((fh, l),(qll 1)),lcm(xl,I2))

x#((p" I),(p" I)) ((f" x,) + (f"x.)), x#((q" 1), (0,,1))

D1 ((,.1) + (I. I))· (E, I) = ((1, I) + (E, 1))· (E, 1)

Follows directl~· from SF and the definition of constants.

02 (x. 1)· (E. 1) = (E, 1)

Follows directl~· from SF and the definition of constants.

03 ((I, I) + (0" 1))· (E, I) = (I, I)

Follows directly from SF and the definition of constants.

51 t((!<,x.) + (f"x,») =t(f"x,) + (f"x,)

if j: 1+PI--+ I +qloh:P2 --+fh andxt.x2 E N

i(SLOW~(fl) +SLOW~(j,), Icm(xhx2))

(ilcm(:rl~~) (SLOW~ (JI) + SLOWlcm(:J.~'f (j,)), icm(xl' %2)}

((ilcm(:r1.z1)SLOW~(Jl)) +SLOW~(h),lcm(zbx2))

(fz1ft,%I) + (h, X2)

t(!<,x.) + (f"x,)

52 t' (((x, I) + (P, I)) . (f,e)) =t' ((f,e) . ((x, 1) + (0, 1)))

ifj:2+p--+2+qandceN

n

f(((z, I) + (P, I))· (f,e))

f ((z+ p) . (f, e))

f«(SLOW.(Z) + SLOW.(P))· f,e)

(t~«(z+p)'f,e)

(f,(f. (z+ q)),e)

f (f . (SLOW,(Z) + SLOW.(q)), c)

f«(f,e)· «z, I) + (q, I)))

53 t((f.%). ((1.1) + (g,,))) = tU,z)· (g, ,)

if J: I + p 1 + 9,9: q -+ r and X,: E N

t((I,Z)' ((1,1) + (g, 'Ill

t((I, ,,). (sLow,(I) + g), 'II

t(SLOw~{f).(sLowr~(l)+ SLOW~(9)), Icm(x, z)l

(tkm«"' (SLOW~(I) . (1 +SLOW~ (g))), leon(z, ,))

«tlan(z.:ISLOWInru;,.II(J))· SLOW~(g),lcm(:r,=))

(t.f,z)· (g,,)

t(l,z)'(g,,)

54 t((I.I) + (g, g)) . (f, ,)) =(g, g) . tU, ,)

if f: 1+q -+ 1+r, 9 :p-+q and y,zE N

t«((l, I) + (g,g))' (I, ,))

t(sLOw.(I) +g,g). (I. ,))

t(sLOw,,(l) + SLOW""l"'(g)). SLow~(f),lem(g,,))

(t_",((1 +SLOW""l"'(g)). SLOW""l"'(f)), lem(y,,))

(SLOW~",,(g). (tlcm(,-=)SLOW~'''I(J)).lcm(JI.z))

72

Ig,y) . (t,f,')

Ig,y)'W,')

55 t(l, 1) = (0, 1)

Follows directly from SF and thp. definition of constants.

56 1<,1)' l.l, 1) = (.l, I) + (.l, 1) whe".l =t,

Follows directly from SF and the definition of constants.

57 tl(f.x)· 1(', 1) + Iq, 1))) =t'(II',1) + (p, 1)) (f,x))

if f; 1+ P -+ 2 + q and x E N

t((f,x), ((" 1) + Iq, 1)))

t((f,x) I<+q))

t(f (sLOw,ld + SLow,lq)),x)

t(f (<+q),x)

(t,If' (, + q)),x)

(t:((<+p)·f),x)

fl(sLOw,«) + SLow,lp)), f,x)

fl(I<, 1) + Ip, 1)) If,x))

58 (0" 1) 1'1,1) = 10" 1) where V = tx

Follows directly from SF and the definition of constants.

59 t(1', I}· ('1,1)") = (.l, 1)

where (V, l}R denotes the n-fold composite of (V, 1)

Follows directly from SF and the definition of constants.

R t"(If,x)·(lg,y}+lq"l))) = t"(I(y,y) + (p" 1)) If,x))

73

1" ((f,x) «g. y) + (q" 1)))

1" (If, x) -(g + SLOW,(q,), y))

r'1(SLOW~(f). (SLOW~(9) +SLOWrw(q!l),lcm(z,y))

(t'':.*..)(SLOW~{f). (SLOW~(9) +ql)),lcm(x,y))

(t"~~.,)«SLOW~(9)+ P2) .SLOW~ (I)). !cro(z, y))

r'l «SLOW~(9)+ SLOW~~(P2»· sLow~{f),lcm{x, y»

1" «((g,y) + (I'l, 1)) -(f,x)) •

DEFINITION 6.3 We define tne L·eqivalence of generalized synchronous schemes as

follows. Let (F. m) and (0. n) be generalized synchronous schemes. Suppose that for

C\"C[')' sufficiently old configuration c of (F, m), there C,.'tists a configuration d of (G, n)

such that when (F, m) is started in configuration c with each input signal repeated m

times and (G. n) is started in configuration d with each input signal repeated n times,

the two schemes exhibit the same behavior, Le.. the outputs in cycles km + 1 and

1011 + I. k = O. 1. 2•.. are the same. Then scheme (G. n) can simulate (F. m). If two

generalized synchronous systems can simulate each other, then they are L-equivalent.

linrortunately, not all (5, nl schemes are suitable. Consider the rallowing e.umple:

Basic clock I 2 3 4 6 7 8 9 10 11

Input x, x, x, x, x, x, x, x, Xs Xs x,

(V,2) Output .l x, Xs x, " 's

(V',210utput .l x, x-, x, '. 's

(V3,2) Output .l .l x, " x, x,

Table 6.5: The behavior of (V,2). (V2,2) and (V3,2) during first elevtn pulQtions.

Then

(V,2) '" (V,2)

74

(V,2) (V',2) but

(V,2) (V,2)~(V',2) # (V',2) = (V,2) (V',2)

where ~ denotes the L-equivalence relation. In other words, the L-equivaleoce is not

presen"ed by all (5, n) schemes. For this reason lI..e introduce the following restrictioo

to Sf,(E).

DEFINITION 6.4 The algebra 6f.(!:) consists of all (5, nj schemes such that S is

strong retiming equivalent to some appropriate n-slow SE·scheme S'.

It is now obvious that (V, 2) fI. 5f.(E) since there is no 2·s1ow scheme which is

Leiserson equivalent to (V,2). On the other hand, (V2 ,2) E 61,(1:) since (V'l,:?) "'"

SLOW:!(V') = V'l.

THEOREM 6.5 The characteri!tic function

{

I if (5, n) E 61.(EI
«5. n) ~ 0 otherwise

is 4 recumve function.

PROOF. (a) BiaCUMible .scheme.!. ReeaJl from [Bloom aDd Tindel. 19i9] that a

ftowchart scheme is biaccrssibie if it is accessible and every \-utex is the starting

point of some path whose endpoiot is an exit \l~rtex. An SE-scheme S is biaccessible

if the FE-scheme Ii(5) is such. In other words, 5 is biatteSSible if it is accessible and

every vertex can be reached from some input channel by a directed path.

Let (5, Tt) be a biaccessible generalized scbeme. If (5, n) E 6f.(E) then there

exists SE-scheme 5' such that 5 n5'. According to Theorem 6.1.5 {Bartha, 19941,

where 5nuu; and S'mu are SE·schemes such that R.....u : 5 -+ Srruu:, R...- : nS' -+

n5:"- and

R....... (t.) = min{w(p) !p is an input path leading to t'}

75

is a legal retiming vector. Since Smu N, nS:"u' Sm.u: is an n-slow of some SE·scheme

F. i.e., 5",u = nF. Therefore, in order to decide whether (S,n) E 6f.(E) or not,

it is sufficient to compute total weights of all entry-to-exit paths w(p) and directed

cycles w(z) in 5, and check ratios ~ and~. If these ratios are integers then

(5,0) E 5f,(E), othecwise (5,0) ¢ 5f.(E),

(b) The general case. First of all, observe that ground schemes, i.e., schemes without

input channels, belong to 6f.(E). This is indeed true by Theorem 4.6, since in infinite

trees without variables it is always possible to rearrange the registers (V-nodes) from

any regular pattern to any other regular pattern by using the transformation "'.

See also Figure 6.1. Hence, given generalized scheme (8, n), it is sufficient to isolate

ground subschemes and tcst only the biaccessib!e part. •

Figure 6.1: Ground schemes belong to el.(!:).

76

THEOREM 6.6 The algebra 6f.(!:) is 4 3Ubaigebrn oj Sf~(!:).

PROOF.

1. Compo.riaon

Let (F,m),(G,n) E 51.(E). Then (F,m) - mE" and (G,n) - nG' [o"ome

appropriate scnemes rand C'. We nave:

(F,m)· (G.n) ~

(SLOw~(F)'SLOW~(G),lcm(m,n))- SLOW,m,m,I(E" G')

Hen", (F,m) ·(G,n) E 5f.(E).

2. Sum

Let (F.m),(G,n) E 61.(!;). Tnen (F,m) - mF' and (G,n) - nG' for some

appropriate scnemes F' and G'. We nave:

(F.m)+(G.n)=

(SLOW1tm:,..... 1(F) + SLOWkm~...nl (G), Icrn(m, n)} - SLOWkm(m,Il)(F' + G')

Hen", (F,m) +(G,n) E 5f.(E).

3. Feedback

Let (F.m) E 6f.(!:). Then (F, m) - mF' for some appropriate scheme F". We

have:

t(F,m) ~ (tmF.ml - SLOWm(tE")

Hen", f(F, m) E 5f.(E).•

COROLLARY 6.7 6f.(E) satisfies scheme identities RF.

PROOF. Follows directly from Theorem 6.2 and Theorem 6.6. •

DEFINITION G.8 We define tbe relation 81. on 61.(£) as follows. Let (F, m), (G, n) E

5f.(E). Thene

(F, m) '= (G, nHed .. SLOW""!.=' (F) - SLOW""""" (G)

77

THEOREM 6.9 Th~ relation at iJ a congruence relation 0/ Sf,(El.

PROOF. (a) at is an equivaleoce relatioo.

1. R~jfuivity

let (F, m) E 6f.(E). Since F F we bave (F,m) == (F, m)(8Ll.

2. Symm~try

Lot (F,m),(G,n) E 61.(!:) and (F,m) " (G,nH8Ll. Then

(F,m) " (G.nH8Ll'"

SLOW~(F) SLOW~(G)=>

SLOWkmr....., (G) SLOW';,......., (F) =>

(G, n) " (F, mH8d

3. Transitivity

Let (F,x),(G,y),(H,') E 61,(!:) and (F,x) " (G.yH8Ll. (G,y) " (H,,)(8Ll.

Then

(F.x) " (G.yH8Ll and (G.y)" (H,'H8Ll'"

SLOW~(F}.... SLOW~(G) and SLOW¥(G) SLOW~(H) =>

SLOW~(F)"" SLOW~(GI and

SLOW~(G) SLOW~(H) =>

SLow~(F) SLOW~(H) =>

(F,x) " (H.'H8Ll

(b) at satisfies the substitution property.

1. Compo"ition

Lot (F"m.) " (G"n,H8L) and (F"m,) " (G"n,H8Ll. Then

(FII mil· (F'2. m1) =
(SLOW~(Fd .sLOw~(F'2),a) ==6t

(SLOWlaIu&.JoI(F,)· SLOwknwd\(F'2).lcm(a.bll =
~ ----;;;- .

78

(SLOW~SLOW~(FI)' SLOW~SLOW ;!;-(F:z), lcm(a,b))

(SLOWlcm;o..lSLOWfi(G t)· SLOW¥SLOW..;-(G:z), Icm(a, b)) =
(SLOWkn:.\o.~l(Gd· SLOW~(G:z),lcm(a,b)) ==et

(SLOW~(Gd . SLOW-.;-(G·l),lcm(nt,1t2)) = (Gll nd' (G2,n2)

where a = Icm(mb m:z), b = lcm(nh rI:z), c = lcm(m(, nd and d = Icm(m2' n2)'

2. Sum

Let (Fhmd == (Gltnd(aLl and (F2,m2) == (G2,fl2)(ac.J Then

(Fltrnd + (F2,m2) =

(SLOWk::::Ol(Fd +sLOw-.q(F2),a) ==St

(SLOWlcn;:::.~l(FI) +SLOW~(F2),lcm(a,b)) =

(SLOWlcm(a.~lSLOW...£.(FI) +SLOWlcmldlSLOW..L(F2),lcm(a,b)) '"'-
.........----"'1 ----r-"'2

(SLOWlcm~dlSLOW;!j(Gl)+ SLOW~SLOW :;(G2), Icm(a,b)) =
(SLOW~(GI) +SLOWlc~(;.~1(G2),lcm(a,b)) ==et

(SLOW ~(Gl) +SLOW-.;-(G2),b) =(Gt.RI) + (G2,n2)

where a = Icm(m[, ffl2), b = lcm(nl' rl:!), c =Icm(mh nd, and d = lcm(m2,n2),

3. Feedback

Let (F, m) =Ie, nHed. Then

i(F,m) = (tmF,m) =6t SLOWlcm~"'.... (t"'F,m)

SLOW~(t"e,n) =s, It"e,n) =t(e,n) •

THEOREM 6.10 Two generalized synchronous schemes (Sh nl) and (82 , n2) are

i.-equivalent if and only if they are at.. equivalent

PROOF, Follows directly from Definition 6.8, Theorem 6.9 and Theorem 4.10.•

79

Conclusion

The notion ofa synchronous system allowed the introduction of transformations useful

for the design and optimization of such systems; slowdown and retiming. Retiming is

important transformation which can be used to optimize clocked circuits by relocating

registers so as to reduce combinational rippling. It has an interesting property that if

two systems can be joined by series of primiti\"C retimillg steps, i.e., shifting one layer

of registers from one side of a functional element to the other, then those two systems

exhibit the same behavior, as proved in [Lciserson and Sa."e, 1983aJ. Concerning

slowdown transformation, the main adventage of c·slow circuits. Le, circuits obtained

from the original circuit by multiplying all the register counts by some positive integer

c. is that they can be rClimed to have shorter dock periods than any retimed version of

the original. Slowdown transformation does not preserve the equivalence of schemes

in the strictest sense. The c-slow circuits perform the same computation as original

circuit. but take c times as many clock ticks and communicate \\'ith the host only on

e,-ery cth clock tick. The impact or slowdown on the behavior of synchronous schemes

is the following: not any two synchronous schemes are retiming equi''alent. However,

for two synchronous schemes that cannot be directly retimed to each other, there

might be appropriate slowdown transformations such that, after these transfonnations

are applied. one gets synchronous schemes that are already retiming equivalent. A

new relation is obtained by taking the join or the retiming and slowdown relations

and is called. slowdown retiming equivalence. One or the contributions of Chapter 3 is

the proof of the fact that the slowdown retiming equivalence relation is decidable for

synchronous schemes. Two synchronous schemes are said to be strongly equivalent

ir they exhibit the same behavior under all interpretations, that is if they can be

unfolded into f!."(actly the same tree. The new equivalence relation can be obtained

as a join or strong and retiming equh'3lence. In [Bartha, 1994] it was proved that

strong retirning equivalence relation is decidable ror synchronous schemes. The nf!."(t

80

major contribution or Chapter 3 is tbe proof tbat the strong slo.....do.....n retiming

equivalence relation, which is the join or strong, slo.....down and retiming equimence,

is also decidable.

The concept or equivalency or synchronous systemsas introduced in [Leiserson

and Saxe, 1983a1 in a rather intuitive and inrormal manner. The most important

contribution or the Thesis is the proor in Chapter" that two notions, Leiserson

equivalence and strong retiming equivalence, coincide. The very same notion or the

equivalency or synchronous schemes has also been characterized in tenns or finite

Slate top-down tree transducers.

The syntax or a synchronous scheme is specified by a directed, labelled, edge­

weightl'<i multigraph. The semantics or a synchronous scheme can then be specified

by the algebraic structures called reedback theories. Synchronous schemes ha\'e been

a.xiomatized equationally in [Bartha, 19871 capturing their strong behavior. The

major contribution or Chapter 5 is tbe introduction or retiming identities and the

construction or the reedback theory capturing the strong retiming behavior or syn­

chronous schemes.

The motivation ror the results or Chapter 6 stems rrom two sourres: multiphase

clocking (clocking schemes that use more phases and consequently offer more ftexi­

bilit~· in adjusting tbe relati\"e timings or the runctional elements) has been lert as a

rurther topic in [leiscrson and Saxe, 1983a1 and the notion or multiple clocks defined

in terms or boolean-valued ftows or the synchronous dataflow programming language

LUSTRE. The major contribution or Chapter 6 is the construction or the general

algebra or multiclocked schemes. For simplicity, only schemes with multiple regular

docks, i.e., clocks that tick every first. second, third etc. instant or the basic clock,

ha\'e been considered. The arbitrary clocks are intentionally omitted since the issue

becomes too complex technically. Also, the intuitive notion or l-equivalency between

to generalized schemes is introduced and shown to coincide with the rormal charac·

terization of 8 L equivalency.

81

References

[11 ARNOLD, A. AND DAUCHt7. M. (1978, 1979), Theeorie des magmoides,

RAlRO In/onn. Thear. Appl. 12,235-257 and 13, 135-154.

[21 BARTHA, M. (1987), An equational axiomatization of systolic systems, Theo­

retical Computer Science, 55, 265-289.

[3) BARTHA, M. (1989), Interpretations ofsynchronous flowchart schemes, in "Pro­

ceedings, ith ConferenC1: on the Fundamentals of Computation Theory, Szeged"

(Edited by J. Csirik, J. Demetrovics and f. Gecseg), Ucture Note.! in Computer

Sclena. 380, 25-34. Springer-Verlag, Berlin.

{~I BARTHA, M. (l992a), foundations of a theory of synchronous systems, Theo·

retiaJl Computer Science, 100, 325-346, Else\'ier.

[51 BARTHA, M. (1992b), An algebraic model of synchronous systems, lnfonnation

and Computation, 97, 97-131.

(61 BARTHA, M. AND GOMBAS, E. (1994), Strong retiming equh-alence of syn­

chronous systems, Technical Repon No. 9404, MUN.

[i] BERRY, G. (1989), Real time programming: Special purpose or general purpose

languages, in IFlP World Computer Congreu, San Francisco.

181 BILSTEIN, J. AND OAMM, W. (1981). To(Hiown tree-transducers for infinite

trees, in "Proceedings, 6th Colloquium on Trees in Algebra and Programming,

Genoa" (Edited. by E. Astesiano and C. BOhm), Lecture Note& in Computer

Science, 112, 9i-131, Springer-Verlag, Berlin.

[91 BLOOM, S. L. AND £511(, Z. (1993), Iteration Theories, The Equational Logic

of Iterative Processes. Springer-Verlag, Berlin.

(10) BLOOM, S. L. AND TINDELL, R. (1979), Algebraic and graph theoretic char­

acterizations of structured ft~-chan schemes, Theoreticoi Computer Sciena, 9,

~286. Elsevier.

82

[Ill ELGOT, C. C. (1975), Monadic computations and iterative algebraic theories,

in ~Logic Colloquium '73, Studies in Logic and tne Foundations of Mathe­

matics" (H. E. Rose and J. C. Shepherdsoo, Eds.), 175-230, North·Holland,

.-\.msterdam.

[12] EtGOT, C. C., BLOOM, S. L. AND TINDELL, R. (1978), On the algebraic

structure of rooted trees, Journal of Computer and System Sciences, 16, 228­

242.

[13] ELGOT, C. C. AND SHEPHERDSON, J. C. (1979), A semantically meaningful!

characterization of reducible flowchart schemes, Theoretical Computer Science,

8(3),325-357.

[141 ELGOT. C. C. AND SHEPHERDSON, .I. C. (1980), An Equational Axiomatiza­

tion of the Algebra of Reducible Flowchart Schemes, IBM Research Report RC

8221.

[15] ENGELFRIET. J. (1975), Bottom·up and Top-down Tree Transformations· A

Comparison, Mathematical Systems Theory, 9(3), 198-231.

[16] ESIK, Z. (1980), Identities in iterative and rational theories, Computational

Ljnguistic.~ and Computer Languages, 14, 183-207.

[17j GRATZER, G. (1968, 1979), Universal Algebra, Springer·Verlag, Berlin.

[181 HALBWACHS, N., CASPI, P., RAYMOND, P. AND PILAUO, D. (1991), The

synchronous dataflow programming language LUSTRE, Proceedings of the IEEE,

79(9), 1305-1320.

119] HAREL, D. AND PNUELI, A. (1985), On the development of reactive systems, in

"Logic and Models of Concurrent Systems", NATO, Advanced Study Institute

on Logics and Models for Verification and Specification of Concurrent Systems,

Springer-Verlag.

[201 JENSEN, T. P. (1995), Clock Analysis of Synchronous Dataflow Programs,

in "Proc. of ACM Symposium on Partial Evaluation and Semantics-Based

Program Manipulation", San Diego CA, 15&-167.

83

1211 JOHNSON, D. B. (1915), Finding all the elementary circuits of a directed graph,

Sl-\M, Journal on Computing, 4(1), n·84.

[22] KUNG. H. T. AND LEISERSON, C. E. (1978), Systolic arrays for VLSI, in

"Sparse Matrix Proceedings", Sl>\M, Philadelphia, 256-282.

123 J KUNG, S. Y. (1988), VLSI array processors, Prentice Hall. Englewood Cliffs,

~.J.

[24] LAWVERE, f. W. (1963), Functional semantics of algebraic theories, Proc.

Nat. Acad. Sci. U.S.A., 50(5), 869-8i2.

(251 LEISERSON, C. E. (1982), Area-efficient VLSI Computation, ACM.MIT Press

Doctoral Dissertation Award Series 1. .-\.CM·MIT, New York.

[26] LEISERSON. C. E. AND S....XE, J. B. (1983a), Optimizing Synchronous Sys­

tems, Journal of VLSI and Computer Sy"tem3, 1(1), 41-67.

Pi! LEISERSON, C. E., ROSE, F. M. AND SAXE, J. B. (l983b), Optimizing

Synchronous Circuitry by Retiming, Proceedings of 3rd Caltech Conference on

VLSI (Edited by Randal Bryant), Computer Science Press, 87·116.

[28] MACLANE. S. (1971), Categories for Working Matbematician, Springer-Verlag,

Berlin.

129 J MURATA. T. (19n), Circuit theoretic analysis and synthesis of marked graphs.

IEEE TraJl.!. on Circuit! and Sy"tems vol. CAS-24 7, 4()0..405.

[30] WRIGHT, J. B., TH....TCHER. J. W., WAGNER, E. G.....ND GOCUEN, J. A.

(1976), Rational algebraic theories and fi:xoo-point solutions, in "Proceedings,

17th IEEE Symposium on Foundations of Computer Science, Houston, Texas."

147·158.

84

Index

Algebra
N x N 50"00, 50
5f.(E) as a subalgebr.> of Sf. IE) of

generalized schemes, 75
1:. 20
Sf(E) of synchronous schemes, 51
Sr~(I:) of generalized schemes, 67
constants, 51
equational class of, 57
frcc, 57
magmoid,50
operations

composition. 50
sum. 50
feedback. 50

partial,21
quotient algebra of terms, 57
of terms, 57
\'ariet~' of, 56

Algebraic theory, 51, 57
Arnold,50
.-l'tiollls (identitie$)

commutative identity C. 60
retiming R, 54
retiming R·, 55
retirning RI, 57
system MG. 53
system OF, 53
system SF, 54
system RF, 54
theory identities TH. 57

Bartha, 1, 19.35,40,47,51,53,57,75
Bloom, 20, 75

Category

Fldn, p) of 80\\'Cbart schemes, 20
Syn~ of synchronous schemes, 24

85

objeets (synchronous vs. flowchart
schemes),24

strict monoidal, 50

Dauchet,50

Equational a.xiomatization of schemes,
2,53

Elgot, 50, 53
Engelfriet, 42
Esik, 20, 60

Feedback theory, 2, 53, 50, 61
FT,61
F,T.61

Flowchart schemes, 1, 2, 19. 20, 22, 24,
25. -15, 50. 51

Graph
communication graph as a structure

of a systolic system. 10
constraint graph, 17
finite, rooted, edge--weighted. direct·

ed multigraph as a model of a
synchronous system, 12

fundamental circuit of a directed
graph, 30

simple path, 13, 30
strongly connected, 23
vertices representing functional et.

ements,12
weights representing registers along

interconnections, 12
Gratzer, 21

Kung, 1,3,4

L-equivalence, 74, 80
Lawvere,51

Leiserson, 1,3, 4, 12, 13, 16, Ii, 40,
47-49,75,80

Lustre - synchronous dataflow program­
ming language, 2, 62-67

MacLane,50
)/Iealv automaton, 9
)'Ion~dic computation (Floy/chart alga..

rithm), 19. 24
)'Ioore automaton. 9
)'lur313.3O

Retiming, 1-1-16, 18, 25
Retiming Lemma, 16. -19

Sa.xe. 1. 12, 13, 17,80
Semisystolic system, 10
Shepardson, 50, 53
Signature (ranked alphabet), 19, 25
Slowdown. 16-18
Slowdown rctiming equivalence, 1, 2.

2i-29
decidabilityof. 29-31

Strong behavior. 1-1, 23
Strong retiming equivalence. 2. -10. -15.

-li-49, 61, 75
Strong slowdown retiming equivalence.

1,2,27,3-1-35
decidability of, 35-39

Svnchrollous schemes, 1. 2. 19, 23-26.
. 27. -10, -15. 49, 50, 53, 56, 61, 80

accessible, 23
atomic,52
biaccessiblc, i5

86

generalized (multiclockcd), 67
ground,76
minimal,23
scheme congruence, 21
strongly equivalent, 14
tree-reducible, 23

Synchronous systems, I, 2, 12-19, 40,
53,80

behavior or, 14
configuration of, 14
equi\'alence. 14
simulation, 14

Svstolic Com'ersion Theorem, 12, 17
S;'Stolic system, 1-8, 10-12, 14. 17, 18

Tindel,75
Tn'.,

E-trees, 21,-12
E",-trees,45
T... set of finite E.trees. 42
rio set of infinite E.trees. -13
~ set of infinite Lv-trees, -15
unfoldings of flowchart schemes, 22
as strong behavior of vcrtiCt!S, 23
unfoldings of synchronous schemes,

25
as strong behavior of schemes, 25
finite state top-down tree transducer

definition of, 42
definition of Oil' 46
definition of 'fn, 43

regular, 43

VLSI,l

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	009_Title Page
	010_Abstract
	011_Abstract iii
	012_Table of Contents
	013_List of Figures and Tables
	014_List of Figures and Tables v
	015_Acknowledgements
	016_1 Introduction
	017_Page 2
	018_2 Preliminaries
	019_Page 4
	020_Page 5
	021_Page 6
	022_Page 7
	023_Page 8
	024_Page 9
	025_Page 10
	026_Page 11
	027_Page 12
	028_Page 13
	029_Page 14
	030_Page 15
	031_Page 16
	032_Page 17
	033_Page 18
	034_Page 19
	035_Page 20
	036_Page 21
	037_Page 22
	038_Page 23
	039_Page 24
	040_Page 25
	041_Page 26
	042_3 Equivalence Relations of Synchronous Schemes and thier Decision Problems
	043_Page 28
	044_Page 29
	045_Page 30
	046_Page 31
	047_Page 32
	048_Page 33
	049_Page 34
	050_Page 35
	051_Page 36
	052_Page 37
	053_Page 38
	054_Page 39
	055_4 Leiserson's Equivalence vs.Strong Retming Equivalence
	056_Page 41
	057_Page 42
	058_Page 43
	059_Page 44
	060_Page 45
	061_Page 46
	062_Page 47
	063_Page 48
	064_Page 49
	065_4 Retiming Identities
	066_Page 51
	067_Page 52
	068_Page 53
	069_Page 54
	070_Page 55
	071_Page 56
	072_Page 57
	073_Page 58
	074_Page 59
	075_Page 60
	076_Page 61
	077_5 Algebra of Multiclocked Schemes
	078_Page 63
	079_Page 64
	080_Page 65
	081_Page 66
	082_Page 67
	083_Page 68
	084_Page 69
	085_Page 70
	086_Page 71
	087_Page 72
	088_Page 73
	089_Page 74
	090_Page 75
	091_Page 76
	092_Page 77
	093_Page 78
	094_Page 79
	095_Conclusion
	096_Page 81
	097_Page 82
	098_Page 83
	099_Page 84
	100_Index
	101_Page 86
	102_Blank Page
	103_Blank Page
	104_Inside Back Cover
	105_Back Cover

