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Abstract 
         

        Experiments were conducted to measure the heat transfer characteristics of non-

boiling two-phase segmented flow in a solar thermal collector. The solar thermal 

collector was manufactured to have a serpentine flow path (residential serpentine deign) 

and the diameter of collector pipe was 0.0109 m.  

 

        The working fluids used in the experiments were water, ethylene glycol and air. 

Single phase water was examined first, and the results were used as a basis for 

comparison for the water-air two-phase flow results. Two-phase experiments using 

ethylene glycol-air and single phase ethylene glycol were then conducted. The flow 

rates of the water-air and ethylene glycol-air phases were varied between a range of 

values during each experiment and the system pressure and temperatures were recorded 

at each combination of flow rates. 

 

        The experimental data was used to calculate the number of variables, such as the 

heat transfer rate Q , temperature difference between the entrance and exit of the solar 

thermal collector T , average bulk temperature 
bT , the time required for raising the 

temperature inside the tank from 25℃ to 70℃, and the energy gained from the tank E

. It has been shown that the heat transfer enhancement of two-phase flow system was 

better than the single phase flow system. 

 

      Several experiments were conducted to study the effects of liquid void fraction l . 

The effect of liquid void fraction showed that the heat transfer rate was highest in all 

experiments when the liquid void fraction was 0.5, while the heat transfer rate was at 

its lowest value when the liquid void fraction was 0.79. The effect of void fraction was 

found to be a controlling factor due to its impact on liquid slug length, which in turn 

affects the heat transfer rate. Finally, the four two-phase experiments were compared 

with single phase flow experiment. The result illustrated that the two-phase flow system 

was better than the single phase flow system.   
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Chapter  1 

  

Introduction 
 

1.1 General  

This thesis uses a solar collector and aims to design a two-phase solar heater by 

employing the theoretical principles of gas-liquid segmented slug flow with a constant 

heat flux. Various experimental studies reveal gas bubbles in the flow stream increases 

the quantity of heat transferred to the experimenting fluid. If heat transfer is increased, 

less time is required to heat the fluid. No current devices exist that use gas-liquid 

segmented plug flow for solar water heaters; and this thesis aims to prove the 

applicability of this concept. Experiments are conducted by the developing single phase 

flow as a base and compared with two-phase flow. The main aim of this thesis is to 

improve the performance and heat transfer rate. The system also shows additional 

improvement in the performance coefficient of the base, suggesting a potential for 

various commercial applications. Some of the benefits for consumers include a 

reduction in energy consumption, and heating time, as well as availability for a limited 

quantity of sunlight. Increasing costs and environmental degradation increase in 

concerns of typical energy generation. Hot water consumption is a demanding 

residential applications. If we efficiently harness solar energy to provide a more 

effective method to supplement either electrical or gas fired water heating, it will 

provide significant economic and environmental protection. The system can also reduce 

fossil fuel consumption, and reduce public demands on electrical grids.  

 

1.2 Two-Phase Flow 

Two-phase flow mainly occurs in a system that consists of two phases (typically gas-

liquid) with a meniscus that separates the phases. Two-phase flow is not only restricted 

to gas-liquid flows but can also refer to solid-gas, solid-liquid, and liquid-liquid flows. 

The two-phase flows possess numerous applications that mainly occur in different 

chemical, petroleum, bio-medical, refrigeration and air-conditioning systems, among 



2 

 

 

others. The fluid system might be either macro-scale, mini-scale, or micro-scale 

depending upon the application. Recently, two-phase flows have been reported to have 

many uses in microfluidic systems including MEMS (micro electromechanical 

systems), LOC (lab-on-chip) devices and Nano fluidic systems. Numerous researches 

have also been conducted over the last sixty years, on two-phase flow. Initially research 

typically focused on macro-scale flows, however, recent researches has focused on both 

micro-scale and mini-scale flows.  

 

         A wide range of different models have been established both analytically and 

theoretically for predicting pressure drop in two-phase frictional and transport 

characteristics. These parameters are importance to many engineers who are working 

with such two-phase flow systems. Furthermore, the models used for two-phase flow 

can be further categorized into two unique classes: homogenous flow models and 

separated flow models. The homogenous flow model firstly employs effective fluid 

properties determined from the important properties of both phases currently in the 

flow. Major properties such as viscosity and density are mainly determined via effective 

property models, followed by frictional pressure drop, and then the transport 

characteristics are calculated by using equations for calculating single phase flow. 

Typically, a homogenous flow model can be referred to as a zero-slip flow model. 

Whereas, a separated flow model mainly tries to show that both phases possess unique 

thermophysical properties and have different velocities. 

 

1.3 Flow-Pattern Definitions and Classifications 

The most fundamental difference between the single-phase flows and gas-liquid          

two-phase is the presence of flow patterns and flow regimes in the case of two-phase 

flow. Flow pattern basically refers to the overall geometrical configuration of both gas 

and the liquid phases in the pipe. When gas and liquid simultaneously flows in a pipe, 

the two phases can actively distribute themselves in a variety of different flow 

configurations. The flow configurations are significantly different from each other in 

interface spatial distribution due to different flow characteristics, velocity and the 

holdup distributions. 

All existing patterns of flow in any two-phase flow system are highly dependent on 

the following variables: 
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 Operational parameters that include gas and liquid flow rates. 

 Physical properties associated with the two phases, including gas and liquid 

densities, surface tension and viscosities. 

  Geometrical variables, such as pipe diameter and inclination angle. 

Flow pattern determination is an important problem, specifically in analysis of two-

phase flow. Major design variables associated with the flow strongly depend on the 

existing flow pattern. The design variables include gradient, pressure, heat, mass-

transfer coefficients, liquid holdup, residence-time distribution, and chemical reaction. 

 

1.3.1 Horizontal and Near-Horizontal Flow 

Flow patterns that are horizontal and near-horizontal can be classified as stratified flow 

(for both stratified-smooth and stratified-wavy), annular flow, dispersed-bubble flow 

and intermittent flow (including both the slug flow and elongated-bubble flow). Gas-

liquid flow regimes in horizontal pipes are illustrated in Fig. 1.1. 

 
 

 

Figure 1.1: Gas-Liquid Flow Regimes in Horizontal Pipes (Ove Bratland, 2010) 

 

 

1.3.1.1 Stratified Flow (ST) 

This flow pattern mainly occurs at relatively lower gas and liquid-flow rates. The two 

phases get separated from the force of gravity, where the liquid-phase typically flows 
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at the pipe’s bottom, while the gas-phase flows at the top. A Stratified-flow pattern is 

also sub-classified as stratified-smooth or stratified-wavy. 

 

1.3.1.2 Intermittent Flow (I) 

Intermittent flow is mainly characterized by the alternative flow of liquid and gas. Either 

plugs or slugs filling the entire cross-sectional area of the pipe, are separated by gas 

pockets containing a highly stratified liquid layer that flows along the entire bottom of 

the pipe. The mechanism of its flow follows that of a fast moving liquid slug that 

overrides the much more slowly moving liquid film that is placed ahead of it.  

 

1.3.1.3 Annular Flow (A) 

 Annular flow occurs at a relatively high gas-flow rate. The gas-phase flows at the center 

and might contain entrained droplets of liquid. The liquid flows specifically in the form 

of a very thin film present around the pipe wall.  

 

1.3.1.4 Dispersed-Bubble Flow (DB) 

At considerably high liquid-flow rates, the liquid-phase typically occurs in nearly a 

continuous-phase which the entire gas-phase is dispersed in the form of discrete 

bubbles. The transition to this flow pattern can be defined with the help of a condition 

in which the bubbles are suspended first in the liquid or gas pockets, which typically 

touches the very top of the pipes, and are eventually destroyed.  

1.3.2 Vertical and Sharply Inclined Flow 

For a range of inclination angles, the stratified regime disappears and is replaced by 

churn flow. The flow patterns are usually more symmetric around the pipe and less 

affected by the force of gravity. Gas-liquid flow regimes in vertical pipes are illustrated 

in Fig. 1.2. 
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Figure 1.2: Gas-Liquid Flow Regimes in Vertical pipes (Ove Bratland, 2010) 

 

1.3.2.1 Bubble Flow 

In bubble flow, the gas-phase is dispersed into much smaller discrete bubbles that move 

upward in a zigzag motion as well as in a constant liquid-phase. The distribution of 

bubbles is nearly homogeneous via the pipe cross section.  

 

1.3.2.2 Slug Flow 

Slug flow in vertical pipes is very symmetric around the pipe axis. The majority of the 

gas-phase is located in a much larger bullet-shaped pocket, known as the Taylor-bubble 

and has a diameter approximately equal to the pipe diameter. The flow consists of 

successive Taylor-bubbles as well as liquid slugs filling the pipe’s cross section.  

 

1.3.2.3 Churn Flow 

Churn flow is characterized by a highly oscillatory motion of the liquid-phase. Churn 

flow is similar to slug flow, with no clear or strict boundaries between the two phases. 

Typically, this occurs at much higher gas-flow rates, where the liquid slugs fill the entire 

pipe and, are much shorter and frothier.  

 

1.3.2.4 Annular Flow 

Similar to horizontal flow, this type of flow is characterized by a fast-moving gas center 

having entrained liquid droplets and a much slower-moving liquid that flows around the 

entire pipe wall.  
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1.3.2.5  Dispersed-Bubble Flow  

Similar to horizontal flow, dispersed-bubble flow in vertical and highly inclined pipes 

occurs at a relatively higher liquid-flow rate. The overall gas-phase is dispersed as 

discrete bubbles in the continuous liquid-phase.  

 

1.4 Segmented Flow  

Two-phase segmented flow has been extensively examined over the last ten years. It is 

characterized by splitting the entire fluid stream into a consecutive series of shorter 

plugs. One phase is the carrier or base fluid, while the second phase is the segmenting 

media or dispersed phase. Additionally, many previous researchers referred segmented 

gas-liquid flow as Taylor plug flow. The main reason is the work of Taylor (1961) who 

examined plug flows from an understanding of both the film thickness and deposition 

at the wall. Plug flow (Taylor flow) is the earliest form of segmented flow patterns; 

however, because surface tension is a non-dominant factor in macro-scale studies, it is 

almost impossible to create a steady train for the plugs with a thin liquid film.  

Within liquid plugs of any segmented flow, the internal circulations will rise due to 

solid-liquid, gas-liquid, or liquid-liquid interfaces. These thermal enhancements mainly 

occur in segmented flows because of two mechanisms. One of mechanism is the internal 

circulations present within the liquid plugs and the other mechanism typically resulted 

from an increased velocity that was experienced by the liquid plugs, due to reduced 

liquid fraction, usually for a constant flow rate of mass. Furthermore, the latter was 

determined to be impossible by Muzychka et al. (2009), who used heat transfer theory. 

This leaves just the internal circulation mechanism for explaining the thermal 

enhancement that result from segmented flow. 

 

1.5 Solar Water Heating Systems 

Solar water heaters have been used since the 1800s. However, the main difference 

between early solar water heaters and modern versions is in the configuration modern 

systems, where the solar heaters are placed on a roof. Solar water heaters are 

environmentally friendly and help reduce energy bills (Staff and Campbell, 1978). Solar 

heaters come in different configurations and variations in terms of cost, design, 
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performance. Many systems also have auxiliary systems such as electricity or gas 

heaters.  

 

1.5.1 Types of Solar Water Heating Systems 

Currently, there are two major types of solar heating system configurations available, 

including natural and forced circulation. Natural circulation systems are simple and the 

overall cost of manufacturing is quite low. However, these systems are suitable only for 

warm climates since freezing occurs in colder climates. Forced circulation systems are 

more suitable for climates that are below freezing temperatures (Goswani et al, 2000). 

Natural circulation systems are also called thermosyphon systems. A typical schematic 

for this type of system is illustrated in Fig. 1.3  

 

 

 

 

 

 

 

 

 

Figure 1.3: Schematic Diagram of Natural Circulation System (Goswani et al, 2000) 

 

There is a wide range of disadvantages associated with thermosyphon solar heating 

systems since they are relatively taller units which makes them visibly intrusive on 

buildings and they are prone to damage in windy conditions. The overall design 

typically incorporates a cold water storage tank installed on the top. 

 

  1.5.1.1 Open and Closed Systems 

Natural and forced circulation can be further categorized. In an open system, an open 

container is installed at the highest point to absorb volumetric expansion of the liquid 

that is caused by changes in temperature. The pressure in open systems is maintained at 

the static pressure associated with the liquid column. Closed (sealed) systems are 

typically designed for operating at a higher pressure (1.5-10 bar), which affects physical 
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properties, including the liquid’s evaporation temperature. Closed systems need 

additional safety devices (German Solar Energy Society, 2007). 

 

1.5.1.2  Direct and Indirect systems   

Direct systems typically operate with water that continuously circulates from the solar 

heating storage tank to the main collector. Direct solar systems can be installed in 

different configurations. The system is typically connected to a separate pre-heater or 

can be linked to a combined cylinder having dedicated solar water storage unit. 

Additionally, this system can be connected to an already existing hot water vessel 

having a traditional heat source (German Solar Energy Society, 2007). An indirect 

system possesses two entirely separate circuits: the solar and the cold mains water 

circuits. This type of system is most commonly used in the UK. The system typically 

involves transferring heat from the fluid that passes through the main solar collector. 

This system also has the advantage of preventing contaminants from entering via 

incoming cold mains can diminish the efficiency of the solar collector (CIBSE, 2007). 

 

  1.5.1.3 Integrated Collector Storage Systems (Passive) 

Integrated collector storage (ICS) systems employ hot water storage as a part of the 

solar collector, with the surface of the solar storage tank employed as an absorber. To 

improve stratification the hot water is drawn from the tank’s top and cold water enters 

the tank’s bottom on the opposite side. The major disadvantage associated with ICS 

systems is related to high thermal losses due to the high surface area of the solar storage 

tank that cannot be insulated thermally since it is used for absorption. In ICS systems, 

the water temperature substantially drops during the night, particularly during the winter 

(Soteris A. Kalogirou, 2003). 

 

1.6 Solar Energy Collectors 

Solar energy collectors have similarities to heat exchangers and can transform energy 

from one form to another, i.e. solar radiation into thermal energy. The main component 

allowing the exchange or transfer of energy is the solar collector. The solar collector 

absorbs radiation and converts it into heat. The heat is transferred to a fluid, either water 

or a glycol mixture, and flows through the collector (Kalogirou, 2004). The energy 

collected from the process is transferred from the fluid or to a solar water heating storage 
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tank. Two ways that solar collectors can be mounted are stationary or tracking. For 

mounting the collector in a stationary position, analysis are needed at the design stage 

for the optimum inclination of the solar panels for both location and usage. The solar 

collectors remain fixed to this tilt angle throughout the year. In a tracking system, the 

solar collector’s inclination will change with the sun’s angle to receive the optimum 

amount of solar radiation (Kalogirou, 2004). 
 

1.6.1 Flat Plate Collectors 

Flat plate collectors are typically manufactured in two different forms. Solar collectors 

using liquids with no glazing are manufactured with a black absorbent polymer coating 

in the absence of any insulated backing. The manufacturing cost for these are low, 

however, one major disadvantage is they have high heat losses, making them highly 

inefficient and are not suitable for low temperature installations (Sabonnadiere, 2009). 

 

 

Figure 1.4: Flat Plat Collector (Solar Server, 2011) 
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Figure 1.5: Flat Plate Collector Exploded View (Sabonnadiere, 2009) 

 

Another type of flat plate solar collectors employs glazing (Fig. 1.4 & 1.5) and uses an 

absorber plate to absorb solar radiation and heats copper tubes containing a transfer 

liquid (Sabonnadiere, 2009). The entire side of the casing and underside of the absorber 

plate remains heavily insulated to reduce conduction losses during operation. The liquid 

tubes are welded to the main absorbing plate and can also be manufactured as part of 

the plate. These tubes are later connected at the ends large diameter header tubes 

(Kalogirou, 2004). 

In order to receive the maximum amount of solar radiation per unit area, a tracking 

collector should be used. For both maximum efficiency and energy extraction, a solar 

collector should be aligned perpendicular to solar radiation.  

 

1.6.2  Collector Performance 

Collector performance can be characterized by two experimentally determined 

constants:  

• conversion factor: the solar collector efficiency when the ambient air 

temperature is equal to the collector temperature.  

• heat loss coefficient: the mean heat loss of the solar collector per aperture area 

for any measured temperature difference between the collectors and ambient 

air temperature. 

These solar collector constants are mainly determined in reference to predefined 

conditions (such as angle of incidence, global radiation intensity, wind velocity, air 

temperature, etc.) (Fanniger, 2012). Furthermore, the heat balance of a collector should 

also possess three different components, absorbed heat – lost heat = removed heat by 
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the transferring fluid. A heat loss coefficient for solar collector is (Sen, 2008) heat loss 

coefficient = (absorbed heat – lost heat) / incident solar radiation. 

1.7 Research Objectives 

The main aim of this thesis is to examine the potential and applicability of heat transfer 

enhancement of uniformly segmented fluid streams. This requires a highly and 

controllable two-phase segmented plug flow to the solar thermal water heating system, 

that is optimized the research also compare the thermal water heating system with a 

benchmark, single-phase system. Two- phase flow at different sizes of liquid length and 

sizes of air plug length are also examined.  

 

1.8 Outline 

The remainder of thesis is organized as follows. Chapter 1 gives an introduction on the 

concept of using non-boiling two-phase segmented flow as a working fluid. The flow 

pattern definitions and classifications are presented. Solar water heaters and the types 

of solar water heaters are illustrated as well. The descriptions of research objectives are 

introduced. Chapter 2 provides a literature review of works addressing related topics. 

Chapter 3 shows the mechanism of heat transfer enhancement, system configuration, 

and components of the experiments. Chapter 4 illustrates the experimental results for 

the segmented flow used in the solar thermal collector. Chapter 5 provides a conclusion 

of the current study and recommendations for future studies 
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Chapter 2  

Literature Review 

 

2.1 Introduction 

This chapter presents experimental and numerical research on two-phase flows as well 

as on the two-phase, with a focus on two-phase segmented flow. Improvements needed 

to implement frictional pressure drop and a transport correlation are developed through 

extensive research and are organized chronologically. 

 

2.2 Literature Review 

In 1949, Lockhart and Martinlli studied two-phase flow with air and liquids that flowed 

inside pipes having different diameters. The diameters of the pipes ranged from 0.0586 

inches to 1.017 inches, and the liquids included kerosene, benzene, water and oils. Four 

different types of isothermal two-phase and two-component flow were identified, 

namely the turbulent liquid-turbulent gas, turbulent liquid-laminar gas, laminar liquid-

turbulent gas, as well as laminar liquid-laminar gas. Lockhart and Martinelli (1949) 

correlated both the two-phase pressure drop that resulted from all four flow mechanisms 

into the following Martinelli parameter X  
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Equation (2.1) is related to X by the ratio of both single pressure drops, similar to both 

individually flowing in the pipe. Lockhart and Martinelli (1949) presented their 

graphical correlation for each of the flow mechanisms that were identified. The 

Lockhart-Martinelli plots can be used for determining the two-phase flow 

characteristics for liquid, as well as gaseous phases with Eq. (2.2) and (2.3): 
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When the flow multiplier for the phase is determined, the frictional pressure of two-

phase eventually drops and can also be calculated by using Eq. (2.2) or (2.3). Lockhart 

and Martinelli (1949) additionally demonstrated that the liquid fraction, 𝛼𝑙, along with 

the void fraction, 𝛼𝑔 can also be correlated to the Martinelli parameter, X. However, the 

overall design of the equations was done to predict a drop in two-phase pressure and 

that only a graphical correlation was given. 

        Additionally, Taylor (1961) conducted experiments to examine plug flow, 

primarily film thickness or fluid deposition at the tube wall. The fluids that were used 

consisted of glycerin with a strong sucrose solution (i.e. golden syrup) which was 

further diluted with distilled water to make the viscosity 28 poise at 20℃. Glass tubes 

having a 2 mm and 3 mm internal diameters and lengths of approximately 1.22 m were 

used for the testing sections. A gas bubble was then released into the test section and 

the total amount of film that was left after the bubble was then measured. 

The results of Taylor’s (1961) experiments were graphically presented by plotting the 

parameter, m (liquid that was left in the tube) against the capillary number. The 

experiments were conducted over a much broader range of the capillary number, 0 < Ca 

< 2.0. It was concluded that when the capillary number gradually increases the liquid 

film also increases. This relationship is not linear. At relatively higher values of the 

capillary number (i.e. Ca > 0.56) the parameter m would eventually reach a limiting 

value (m≈ 0.5). After Taylor’s (1961) study, various other researchers began to refer to 

segmented gas-liquid flow as Taylor plug flow. One of the most important 

characteristics identified by Taylor (1961) was the presence of circulation pair zones,   

within the liquid plugs. Additionally, these zones were caused by the presence of either 

liquid/gas or liquid/liquid interfaces. These circulations affected the overall flow in a 

manner that promotes the radial transport of both heat and mass, as well as boundary 

layer renewal, mainly due to the fresh fluid that was being transported to the liquid 

plug’s leading edge.  
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Oliver and Wright (1964) studied a series of different measurements for investigating 

the overall effect of plug flow on both heat transfer and friction in laminar flow. They 

concluded that the internal circulation significantly increases the heat transfer 

coefficient and, therefore, Graetz-Leveque theory and Shah and London (1978) cannot 

be applied to plug flow. Furthermore, the experiments consisted of both single and two-

phase flow in 0.25 inch test sections of varying lengths (3 to 4 feet). Additionally, the 

liquids that were used in this experiment were 56.5% glycerol, 88% glycerol, 0.75% 

sodium carboxymethylcellulose (SCMC), 1.5% SCMC, and 0.5% polyox, in water and 

2% of celacol solution. The gas was air. 

The experimental results were represented graphically with Nusselt number and Graetz 

number, as well as  the ratio of two-phase flow to single phase flow of Nusselt number 

and void fraction.  Lastly, Oliver and Wright (1964) stated that the overall effect of void 

fraction was independent of the plug length, however, circulation effects are highest 

with plugs. A simplified model for a two-phase plug flow heat transfer coefficient was 

based on the experimental data. A modification of the Graetz-Leveque model was later 

developed: 
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Where 𝑁𝑢𝑇𝑃 is two-phase Nusselt number, 𝑁𝑢𝑆𝑃 is single-phase Nusselt number and 

𝑅𝐿 is Liquid holdup. 

Hughmark (1965) established a correlation mainly for estimating hold-up (void 

fraction) in the horizontal slug flow. He based this correlation on a relationship of 

bubble velocity and the liquid slug Reynolds number. Additionally, the bubble velocity 

during slug flow was reported by Hughmark (1965): 
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Where 𝑄𝑙 is flow rate for liquid phase, 𝑄𝑔 is flow rate for gas phase, A is cross section 

area and 𝐾2 denotes a function of the liquid Reynolds number that remains constant at 

0.22 when the Reynolds number is greater than 400,000,which is within the turbulent 

regime for the liquid phase. Additionally, Hughmark (1965) presented the liquid 

Reynolds number as: 
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  (2.6) 

Where 𝑅𝑒𝑙 is Reynolds number for liquid phase, 𝜌𝑙 is density for liquid phase and 𝜇𝑙 

is dynamic viscosity for liquid phase. 

Hughmark (1965) also developed a much simpler model for slug flow heat transfer 

that was dependent on the momentum-heat transfer analogy for turbulent flow. The 

Graetz-Leveque equation used for laminar flow. The simplified model is: 
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Where D is diameter, ℎ𝑇𝑃 is heat transfer coefficient for two-phase, 𝐾𝑙 is thermal 

conductivity, 𝐶𝑃 is specific heat and L is channel length. 

Hughmark (1965) also compared (Eq. (2.7) with experimental data from Oliver and 

Wright (1964). The average absolute deviation the experimental data model is 

approximetly 8.4%. 

Chisholm (1967) established an equation to predict drop in two-phase frictional 

pressure:  

 2
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C

X X
      (2.8) 

Where ∅𝑙 is liquid two-phase flow multiplier, X is Lockhart-Martinelli and C is 

Chisholm constant. 

Equation (2.8) relates the two-phase multiplier for liquid to the Martinelli parameter 

along, as well as mass quality. The Constant, C, is based on different types of flow, 

summarized in Table 2.1. 

Table 2.1: Values of Chisholm Constant 

Turbulent – Turbulent Flow C = 20 

Laminar – Turbulent  Flow C = 12 

Turbulent – Laminar Flow C = 10 

Laminar – Laminar Flow C = 5 

 

Oliver Hoon (1968) tested isothermal flow of both Newtonian and non-Newtonian 

pseudoplatic fluids in slug flow and concluded that the circulation or streamline 

deflection is present within the liquid slugs, and is dependent on the thickness of the 
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liquid film. Both slug flow and annular flow were studied in a 0.25 inch glass testing 

section. To measure the void fraction, quick-close valves were adjusted both before and 

after the test section. The quick-close valves were closed simultaneously and the trapped 

liquid was drained and then measured. A camera was mounted on a movable platform 

to photograph the slugs. Graphite particles were introduced as tracer particles. Oliver 

and Hoon (1968) also determined that the entire streamline pattern in Newtonian slug 

flow was characterized by circulation and streamline deflections were observed only 

with  non-Newtonian slug flow. The experimental data was compared to Lockhart and 

Martinelli’s (1968) plots and agreed well for Newtonian fluids, however, non-

Newtonian were far below the calculated values. Oliver and Hoon (1968) plotted the 

results of the experiments by Graetz number against the Nusselt number: 
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Where Gz is Graetz number, 𝑅𝑒𝑇𝑃 is two-phase of Reynolds number, Pr is Prandtl 

number and 𝜌𝑙 is density for liquid phase. 

Horvath et al. (1973) conducted experiments to measure the radial transport in 

homogenous flow, as well as two-phase slug flow. They used an opened tubular, 

heterogeneous enzyme reactor, with 60 cm length and 2.32 mm internal diameter. The 

substrate solution was working fluid. The length to diameter ratio (𝐿 𝐷⁄ ) of this entire 

setup was 260. Experiments for homogenous flow were conducted for measuring the 

radial mass transport ratio to substrate solution. An average Nusselt number for single 

phase flow was calculated with Eq. (2.11). The logarithmic mean concentration 𝐶𝑙𝑛 was 

calculated with Eq. (2.12) 

 ln   J Nu D Lc   (2.11) 
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Horvath et al. (1973) then experimented with two-phase plug flow and again measured 

the entire radial mass transport. The average Nusselt number for two-phase plug flow 

was calculated by using an altered version of Eq. (2.11) : 
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   lnJ=Nu D π L 1-ε c   (2.13) 

The new variable,𝜀, introduced in Eq. (2.13) represents the void fraction (typically 

expressed as ∝𝑔in a two-phase). It was determined that when radial transport in plug 

flow is compared to single phase flow, the Nusselt number increases significantly. 

Horvath et al. (1973) also conducted experiments on homogenous and  two-phase slug 

flow in case of a coiled reactor. The rate of reaction and average Nusselt number was 

calculated. The Nusselt number is dependent on the ratio of tube diameter to coiled 

diameter: 
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Where𝐷𝑡,𝐷𝑐and 𝑅∗ represent the tube diameter, coil diameter, and coiled aspect ratio, 

respectively.  

Horvath et al. (1973) determined for low Reynolds numbers and low void fractions, the 

coiling could produce 80% to 100% increase the average Nusselt number. The 

experimental data was presented in a plot of average Nusselt number and dimensionless 

plug length, for both coiled and non-coiled experiments.  

Vrentas et al. (1978) studied characteristics associated with a plug flow field with solid 

spheres in a liquid tube. The experimental study was one of the first published studies 

on solid-liquid slug flow. Furthermore, Vrentas et al. (1978) showed that an increase in 

pressure drop across the entire tube in liquid slugs of every size also resulted in a highly 

elevated power requirement. Hence, both liquid film thickness and slug length should 

be selected to optimize the entire system of solid-liquid slug flow. Provisions for 

recycling and maintenance of the spheres is not factor in gas-liquid systems. 

Different theoretical assumptions were made by Vrentas et al (1978) to ensure the 

analysis of solid-liquid slug flow was comparable to calculations on velocity and 

temperature fields for cylindrical cavities with a uniform translating wall. The Nusselt 

number was defined for an ideal heat exchanger as:  
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Where J is the overall  rate of reaction, 𝑁𝑢̅̅ ̅̅  is average Nusselt number, 𝑐𝑙𝑛 is logarithmic 

mean concentration, 𝑇𝑎 represents the dimensionless average temperature of the fluid. 

Vrentas et al. (1978) employed a horizontal heat exchanger with a gear pump for 
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different experiments. The ratio of length to diameter (𝐿 𝐷⁄ ) was 128. Dow corning 

silicone oil was the working fluid. Two grades, 100 cSt and 1000 cSt, were selected. 

Stainless steel spheres were introduced on consistent intervals. The spheres and fluid 

flowed in a 0.95 cm ID tube and less than a 0.0025 cm clearance was present between 

the spheres and tube wall. A reciprocating piston was transfered the spheres between 

the exit and entrance of the heat exchanger. Freon TF vapor (CC𝐼2F-CCI𝐹2) maintained 

a steady wall temperature while it condensed. The fluid’s exit temperature was not 

reliable when the experimental data was collected; thus, the heat transfer coefficient 

that was reported by Vrentas et al. (1978) was based on heat flows that were deduced 

from measured condensation rates. 

Vrentas et al. (1978) represented their experimental data graphically by plotting the 

Peclet number versus Nusselt number for a range of different dimensionless plug 

lengths, in the form: 
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Muzychka and Yovanovich (2004) established a generalized model to the heat transfer 

coefficient in the combined region of entry of various non-circular ducts. The model 

was created by a combination of the solution with a model developed initially for Graetz 

flow. The model developed for Graetz flow was developed by a combination of a model 

that was designed for fully developed flow with Leveque approximation. The flow 

model is: 
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Where 𝑓 is fanning friction factor, 𝜀 is aspect ratio and 𝛾 is shape factor. 

Where 𝑐1 = 3.24 for uniform wall temperature (UWT) and 𝑐1 = 3.86 for uniform wall 

flux. The 𝛾 parameter is based on channel geometry, with the upper and lower bounds 

are fixed at 1/10 and 3/10, respectively. A Leveque approximation for a thermal 

boundary layer was developed near wall and the velocity profile is linear: 
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Where 𝑐2 is one for various local conditions and is 3/2 for average conditions. The 𝜁 

variable represents the dimensionless parameters that are dependent on specific 

arbitrary length scales, and 𝑐3 is approximately 0.427 for different UWT conditions and 

0.517 for UWF conditions. Muzychka and Yovanovich (2004) combined Eqs. (2.17) 

and (2.18) by employing an asymptotic correlation method introduced by Churchill and 

Usagi (1972). The model represents the Graetz flow: 
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 Values for various constants in Eq. (2.19) are summarized a table presented by 

Muzychka and Yovanovich (2004). The generalized model to predict a heat transfer 

coefficient for a combined entry region was later established by combining Eq. (2.19) 

with a flat plate solution. Hence, by applying an asymptotic correlation a general model 

was developed: 
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  (2.20) 

The parameter m in Eq. (2.20) is a function of the Prandtl number: 

 
1

3m=2.27+1.65Pr   (2.21) 

The generalized model is valid for 0.1 < Pr < ∞, 0 < 𝑧∗ < ∞,  uniform wall temperature 

and uniform wall flux, as well as for local and average Nusselt numbers. Muzychka and 

Yovanovich (2004) made a comparison of the model to available data found that the 

model clearly agreed within ± 15% for the majority of non-circular ducts. 

Kreutzer et al. (2005) wanted to established a pressure drop model for segmented flow 

that could be used in capillaries, with considering both the plug and bubble length. The 

plug length is determined with data from experimental pressure drop data. Experiments 

were conducted with the capillary tube having an internal diameter of 2.3 mm. An inlet 

was constructed a tapered channel as well as a hypodermic needle, allowing both the 

liquid plug and bubble length to vary. The segmented flows consisted of air-decane, air-

water, and air-tetradecane were examined. Gas and liquid superficial velocities varied 
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from 0.04 m/s to 0.3 m/s. Kreutzer et al. (2005) also found experimentally and 

numerically that for plug flow with Re >> 1, extra pressure terms can use the capillary 

number to Reynolds number ratio (Ca/Re). The model is represented as: 
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 Kreutze et al. (2005) numerically modeled plug flow by employing the CFD code 

FIDAP. Comparing numerical and experimental data, a correlation was developed by 

replacing the value 0.17 in Eq. (2.22) by 0.07. The difference between experimental and 

numerical data was not attributed to experimental error and was explained in terms of 

the Marangoni effect caused by impurities in the experimental fluids. When Eq. (2.22) 

is used for modeling single phase flow, 𝐿𝑠
∗  approaches infinity. The model reduces to 

Hagen-Poiseuille flow for  laminar flow: 
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Lakehal et al. (2006) studied flow simulations of computational microfluidics to 

examine heat transfer in smaller tubes. The simulations were used the CMFD code 

TransA𝑇𝑐 that was developed at ASCOMP. Three flow patterns were studied, at 

different flow rates, in a 1 mm internal diameter pipe and included: slug flow, bubbly 

flow and bubbly-train slug. A uniform wall temperature was maintained and the effects 

of flow pattern on heat transfer were analyzed. The wall temperature was maintained at 

340 K and the inflow temperature at 300 K. 

The results obtained from Lokehal et al. (2006) show that the rate of heat removal in 

two-phase flow is much higher than single phase flow. A model for heat transfer in the 

two-phase slug flow is: 
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Where 𝑁𝑢𝑤 represents the single phase Nusselt number, which is 3.67 for a uniform 

wall temperature and 4.36 for uniform wall flux condition. The variable C in Eq. (2.24) 

is the model constant with a value of 0.022. The model is valid for segmented flow in 

micro-scale devices with L ≈  0 mm and Pr > 1. Lakehal et al. (2006) described the 

model (Eq. (2.24)) as being a guideline for engineers for different designing purposes. 
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Yu et al. (2007) used experimental and numerical methods to examine a bubble shape, 

size formation mechanisms during segmented flow in micro-channels. Mechanisms 

were investigated for varied flow rates, mixer geometries, and capillary numbers. Yu et 

al. (2007) also examined two mixer geometries. Among these, one was typically a cross-

shaped mixer with a channel that was perpendicular to one main channel and the other 

was a converging mixer and the liquid inlets were 45̊ to the main channel. All channels 

had a square cross-section, with a 125 𝜇𝑚 and 250 𝜇𝑚 side length. The fluids included 

air, sucrose solution (viscosity of 30 cP), glucose solution (viscosity of 60 cP), and a 

mineral oil (viscosity of around 75 cP). The simulations were conducted with the Lattice 

Boltzmann method (LBM). One of the biggest advantages of this method for two-phase 

flows is the main phase separation spontaneously took place in either the non-ideal fluid 

or between two specific immiscible fluid components and did not require interface 

tracking. The simulations were conducted 600 grid points, but to reduce simulation 

time, 300 grid points were used for the short channels. Yu et al. (2007) also presented 

experimental and LBM simulation results that were visually depicted as pictures for 

different combinations of flow rate and capillary number. The main combinations 

included Ca = 0.007 and 𝑄𝑔: 𝑄𝑙 = 1: 1, Ca = 0.035 and 𝑄𝑔: 𝑄𝑙 = 1: 4, and Ca = 0.017 

with 𝑄𝑔: 𝑄𝑙 = 1: 2. The differences observed between the two mixer geometries were 

visually depicted. It was reported that the ratio of larger gas to liquid flow rate 

eventually leads to much longer gas bubbles. Maintaining the same ratio of flow rate 

while decreasing the capillary number implies that by changing fluids it could 

eventually yield a much longer gas bubble. The mixer geometry possessed effects on 

both bubble length and the spacing between bubbles. Converging channel geometry 

creates much longer liquid plugs between gas bubbles at Ca = 0.035 with 𝑄𝑔: 𝑄𝑙 = 1: 4, 

however, the oval bubble size was reported to be very similar in both the cases.  

Mohseni and Baird (2007) later studied electro-wetting on dielectric (EWOD) as a 

driving force that can be used for a relatively new method to cool digitized heat transfer 

(DHT) micro devices. The EWOD is used to transport droplets of highly electrically 

and thermally conductive liquid metal alloys by applying an electric field normal to the 

entire direction of flow. The EWOD force is generated by lining the micro-channel both 

with the electrodes and sequentially firing to slug the leading edge continuously 

between the grounded electrodes. Mohseni and Baird (2007) also stated that this is one 
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of the best ways of generating two-phase segment flow of different liquid metal alloys 

and can lead to orders of higher magnitudes of thermal conductivities when compared 

to non-metallic liquids, including water and oils. The liquid metal alloy for the Galinstan 

was suggested to be the best candidate for a EWOD micro-cooling device as it was 

inexpensive, non-toxic, readily available, and is 65 times less thermal resistant than 

water. Mohseni and Baird (2007) derived simplified equations for various EWOD 

applications: 

 
2cV H

=
24μ L

dropu   (2.25) 

Where 𝑢𝑑𝑟𝑜𝑝 is average bulk velocity of the experimented droplet, c is capacitance per 

unit area, V is voltage, H is for height of the channel and L is channel length. The simple 

expressions for different characteristics of heat transfer for both uniform wall 

temperature and uniform wall flux conditions were also presented. For UWT conditions, 

the expression for heat transfer is: 

  l w iq = ρ nV H W c T -T   (2.26) 

Where n denotes the droplet ratio, W is channel width, and 𝜌𝑙 is density for liquid metal 

alloys. In UWF conditions, an additional expression for the outlet temperature is: 

 
o i

l

qw
T = +T

ρ nVHWc
  (2.27) 

Awad and Muzychka (2007) established a simpler expression for both the upper and 

lower bounds for the frictional pressure gradient in two-phase in both the mini-channels 

as well as the micro-channels. For the lower bounds, which were typically based on the 

Ali et al. (1993) correlation derived for laminar-laminar flow, the following Eq was 

developed (2.28): 

 
  gl l

2

f,lower l g l
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              

  (2.28) 

The upper bound was based on the Chisholm correlation derived for laminar-laminar 

flow: 
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  (2.29) 
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Awad and Muzychka (2007) also developed an average or mean bound that was based 

on the arithmetic mean of both the lower and upper bounds 
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  (2.30) 

The mean model (Eq. (2.30)) is equivalent to the Chisholm correlation, with C = 2.5.  

Fries et al. (2008) studied segmented flow in a rectangular micro-channel with laser 

induced fluorescence (LIF) as well as confocal laser scanning microscopy (LSM). The 

microfluidic channel was 2 m in length and had a height and width of 200 ± 2 𝜇𝑚.           

The fluids included water, ethanol, and glycerol in their respective aqueous solutions at 

various concentrations, nitrogen was also used. Fries et al. (2008) changed the flow 

rates from around 20 - 60 𝜇𝐿/𝑚𝑖𝑛 a liquid phase to 30 - 100 𝜇𝐿/𝑚𝑖𝑛 mainly for the 

gaseous phase. The superficial velocities for all these flow rates were 0.008 – 0.025 m/s 

in the liquid phase and 0.013 – 0.042 m/s for the gaseous phase. The liquid plug length, 

pressure drop, gas bubble length, and film thickness over the range of superficial 

velocities were comprehensively examined. 

Fries et al. (2008) lastly reported that during analysis of the liquid plug lengths, a full 

channel length was observed as having a constant plug length, excluding ethanol. It was 

also found that the plug length increases with an increasing superficial liquid velocity 

at a continuous gas flow rate. When the length of the gas bubble was examined, the 

bubbles elongated because of the pressure drop. The length of the gas bubble was 

graphically plotted versus the length of the reactor for ethanol-nitrogen. It was found 

that the length of the gas bubble was dependent on the pressure and for a constant 

superficial gas velocity of 0.042 m/s, an increase was seen in the overall liquid flow 

rate, which resulted in a decrease in the length of the gas bubble.  

The Kreutzer et al. (2005) model initially under-predicted the obtained data. The main 

reason was Kreutzer et al. (2005) initially examined circular channels, but Fries et al. 

(2008) worked on rectangular channels. Fries et al. (2008) compared the pressure drop 

data to three already existing models that were based on the theory of Lockhart and 

Martinelli (1949). The three models were the Chisholm (1967) model, Lee and Lee 

(2001) model, and Mishima (1996) model. It was found that good agreements were 

made with models that were based on micro-channels, but models that were developed 

for a macro-scale over-predicted the pressure drop measurements. 
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Fries et al. (2008) then measured the film thickness with LSM. The results for these 

film thickness measurements were graphically compared with correlations that were 

derived from past literature and included those proposed by Kreutzer et al (2005), 

Bretherton (1961) and Kolb and Cerro (1991). It was reported that for a higher capillary 

number, the gas bubbles would elongate and the related measurements became more 

comparable to past literature. For much smaller capillary numbers (Ca < 0.001), the 

corner film thickness was almost independent from the Capillary number. It was 

confirmed that if Ca < 0.01, no significant changes could be observed in the film 

thickness that reduced the capillary number. This also agreed with the initial 

measurements of Kolb and Cerro (1991). 

Narayanon and Lakehal (2008) analyzed both the Nusselt number and pressure drop for 

bubble and plug flow via simulations that were conducted with a CMFD code 

TransA𝑇𝑐, which was established at the ASCOMP. The simulations were performed 

under axisymmetric conditions for single and two-phase flows with zero-gravity down-

flow and up-flow configurations. Furthermore, the simulations were compared to 

experimental data of Chen et al. (2002). 

Narayanan and Lakehal (2008) reported that for overall bubbly flow, an average Nusselt 

number of 10.7 was obtained for all three cases with different orientations with respect 

to gravity. For plug flows, an average Nusselt number of 15 was obtained, but a 

discernible trend was present with respect to gravity orientation. In addition, the down-

flow case had a 4% higher average Nusselt number when compared to the case of zero-

gravity. The results were graphically presented by plotting the local Nusselt number 

with the dimensionless channel length. For overall bubbly flow, the local Nusselt 

number changed smoothly with a maximum at the gas bubble center, where the liquid 

layer was squeezed. For overall plug flow, the local Nusselt number’s maximum value 

occurred at the rear end, where the gap between the interfaces and wall was very small. 

Orientation with respect to gravity is also played an important role in shifting the 

location of breakup upstream for up-flow and resulted in a much larger breakup 

frequency. Nusselt numbers were obtained of similar magnitudes as those from Monde 

and Mitsutake (1995) and Ua-Arayaporn et al. (2005). The average Nusselt numbers 

from the experiments of Narayanan and Lakehal’s (2008) simulations transported 3 to 
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4 times more heat than single phase flows. Narayanan and Lakehal (2008) also proposed 

a simplified model for Nusselt number that can be used for practical applications: 

 

4

0.4 5
LSCPr PewNu Nu   (2.31) 

Where 𝑁𝑢𝑤  is the Nusselt number for completely developed single phase flow, with a 

value of 3.67 for uniform wall temperature and 4.36 for uniform wall flux. The constant 

C is 0.022.  

Muzychka and Awad (2008) presented three different methods for two-phase flow 

modeling in both mini-channels and micro-channels. The first method was a series of 

effective property models that were used for homogenous flows and consisted of 

various models for density, viscosity, fanning friction factor and Reynolds number. The 

second method was a new asymptotic model that was used for two-phase frictional 

multipliers. It was developed by using an initial asymptotic analysis method introduced 

by Churchill and Usagi (1972). The asymptotic model is: 
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  (2.33) 

Where P has a value minimizing the root mean square (RMS) error between the model 

predictions and the published data. The third method presented by Muzychka and Awad 

(2008) to model two-phase flow in mini-channels and micro-channels, was a rational 

bounds model used for the two-phase frictional pressure gradient. The model was 

established by Awad and Muzychka (2007) and was previously detailed in this literature 

review. The effective and efficient property models for viscosity were compared to 

published data of Ungar and Cornwell (1992), Tran et al. (2000), Cavallini et al. (2005), 

and Field and Hrujak (2007). The effective viscosity model that best predicted the 

experimental data was the Maxwell Eucken II model, which had the lowest RMS error 

of only (16.7% ):  
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Both the asymptotic models and the mean bounds model developed by Muzychka and 

Awad (2008) (Eqs. (2.32), (2.33) and (2.30)) were compared to published data by 

plotting two-phase flow multipliers against the Martinelli parameter X.  

Muzychka et al. (2009) in the following years reviewed the problems of classic Graetz 

flow, as well as heat transfer characteristics. Two different models were developed 

using the asymptotic characteristics associated with plug and Poiseulle flows that could 

be used for constant wall boundary conditions. The models were created using the 

asymptotic correlation method of Churchill-Usagi for developing thermal Graetz flow. 

For the slug flow, a dimensionless heat transfer model was given by Eq. (2.35). The 

Poiseulle flow model mainly for dimensionless heat transfer was given by Eq. (2.36): 
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  (2.36) 

In both Eqs. (2.35) and (2.36), 𝑞∗ represents dimensionless heat transfer and 𝐿∗ the 

dimensionless length. Muzychka et al. (2009) used Eqs. (2.35) and (2.36), as well as 

heat transfer theory to prove that the best and only way in which thermal enhancement 

could be achieved is if a desired change is made in the local velocity profile through 

segmentation. It showed that the circulations in liquid plugs were the only mechanism 

that causes heat transfer enhancement: 
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  (2.37) 
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D

L /D
L =

Pe
  (2.38) 

Muzychka et al. (2009) compared the Eqs. (2.37) and (2.38) to the already published 

data. A comparison was graphically developed by plotting dimensionless heat transfer 

against the dimensionless length. The data was initially produced by Oliver and Young 

Hoom (1968), Horvath (1973), Narayanan and Lakehal (2008) and Prothero and Burton 

(1961). The plots indicated that a much better scaling of the dimensionless data was 
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obtained whenever the true wetted surface area and plug lengths were considered. 

Muzychka et al. (2009) proposed a definite model to predict heat transfer for segmented 

flow of laminar gas-liquid on wetted surface areas: 
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  (2.39) 

Where 𝐿𝑠
∗ denotes the dimensionless plug length: 
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  (2.40) 

Walsh et al. (2009) investigated segmented flow under uniform wall heat flux 

conditions. They conducted several experiments to test segmented flow, in a heated 

section of a different stainless steel tube (2 m in length and 1.5 mm internal diameter). 

The temperature measurements were taken with four k-type thermocouples and a FLIR 

systems (IR) camera. Walsh et al. (2009) also presented a plot of time that averaged the 

mean wall temperature rise with the overall distance from the tube’s entrance, for single 

phase flow and three segmented flows with ratios of slug length to a diameter of 1.6, 

5.7, and 14.3. The generalized trends for shorter slugs provided augmented heat transfer 

over the entire testing section. Moderate length slugs could also result in the degradation 

of overall heat transfer rates within entrance regions, and improve heat transfer in fully 

developed regions. Longer length slugs could result in degrading heat transfer rates 

throughout the entire system. The study was on heat transfer rates for segmented flows 

with entrance region details. 

Walsh et al. (2009) presented a plot for the local Nusselt number that was normalized 

by the liquid wetted region against the inverse of the Graetz parameter 𝐺𝑧. The final 

plot showed the slug flow could eventually degrade heat transfer within the entire 

entrance region, however, it would typically augment heat transfer within the 

completely developed region. Walsh et al. (2009) established a model for predicting the 

local Nusselt number in segmented flows that already consisted of various deriving 

expressions for the developing and completely developed regions. The entrance region 

asymptote was derived by taking exact mean values between both plug and Poiseulle 

flow limits: 
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A completely developed flow limit was derived by adding the enhancement because of 

slug flow to the Poiseulle flow limit: 
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Walsh et al. (2009) combined two different asymptotic limits in Eq. (2.41) and (2.42) 

by utilizing the asymptotic correlation method of Churchill-Usagi. The model 

developed is: 
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  (2.43) 

Where the parameter n had a value of 10 and the model was in excellent agreement 

experimental data. Walsh et al.’s (2009) findings help in providing a much greater 

understanding of the overall physics associated with segmented flow. 
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Chapter 3 

Methodology 

3.1  Introduction 

This chapter presents the mechanism of heat transfer enhancement and heat transfer 

coefficients in internal flow. The pressure drop that occurs in the pipe and basic relations 

in two-phase flow are illustrated. The system configuration and apparatus is used to set 

up the experiment are presented as well.  

 

3.2 Mechanism of Heat Transfer Enhancement 

The factors that enhance heat transfer rate in the two-phase flows of non-boiling are: 

internal circulations present in the slugs that increase radial heat transfer rate, and an 

increased slug velocity. Muzychka et al. (2011) demonstrated the first one to be valid, 

and argued that by increasing the main convective heat transfer coefficient, (denoted as 

h), greater heat transfer cannot be achieved due to the segmented flow having a 

considerably smaller contact area than the single phase flow. Fig. 3.1 illustrates the 

internal circulations that are caused by the shear forces in moving plugs. 

 

 

Figure 3.1: Internal Liquid Plug Circulation (a) Hydrophobic Surface (b) Hydrophilic 

Surface (Muzychka, 2011) 

 

The internal circulations caused inside liquid slugs circulate liquid from the center to 

the upper wall, where heat transfer can occur. This provides an efficient renewal 

mechanism to the thermal boundary layer and causes an increased heat transfer rate. 

Diffusion, however, is not important to the entire process; hence, the boundary layer 
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continues to grow until and unless the circulation eye receives the generated heat. 

Examples of uniformly segmented two-phase flows are shown in Fig. 3.2 

 

 

Figure 3.2: Gas-Liquid Slug Flows for Different Slug Lengths (Muzychka, 2011) 

 

3.3 Heat Transfer Coefficients in Internal Flow  

Similar to both externally forced and natural convection, the coefficient of heat transfer 

can also be defined for internal flow. Unlike various external flows in which the 

temperature of free stream remains constant (𝑇∞), the main temperature difference 

between both the moving stream and wall does not stay constant over the entire length 

of either the duct or channel. In duct or channel flow, the temperature difference 

between walls and fluid can be characterized in several ways, such as 

 Wall to Bulk Mean, 𝑇𝑤−𝑇𝑚 

 Wall to inlet, 𝑇𝑤−𝑇𝑖 

 Mean wall to inlet, 𝑇̅𝑤 − 𝑇𝑖 

The most accurate characterization should depend on the application. In single fluid 

system like heat sinks, one of the best and simplest approaches is using the temperature 

difference of wall to inlet. However, in two fluid systems, such as heat exchangers, one 

of the better choices is employing the temperature difference of wall to bulk. The most 

commonly used reference temperature for defining the coefficient of heat transfer in 

internal flow can traditionally be explained in the context of bulk temperature: 

 
ρcpwTdA

Tm=
ρcpwdA




  (3.1) 
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However, for both constant specific heat as well as density, the equation takes the 

following form: 

 
1

Tm= wTdA
wA

   (3.2) 

Total heat flux 𝑞𝑧, can be directly related to the coefficient of local heat transfer 

(denoted by ℎ𝑧) by of a definite characteristic temperature difference existing in the 

overall local flow: 

  z z w mq =h T -T   (3.3) 

Where 𝑇𝑤 − 𝑇𝑚 is used for the temperature difference between the local wall and bulk. 

In cases where a duct has a prescribed wall has a constant temperature, the overall heat 

flux differs because of the changes occurring in the entire bulk temperature. In cases 

where the duct has a prescribed wall flux remaining constant, the overall wall 

temperature also varies. Hence, in these different applications, the following equation 

applies: 

  w w,z mq =hz T -T   (3.4) 

In integrated analysis, employing the mean wall temperature in flux-related problems 

and mean flux for specified temperature. One can also define a dimensionless local and 

mean heat transfer coefficient or Nusselt number for constant wall temperature and the 

constant heat flux of wall. The overall heat transfer rate is non-dimensionalized with 

the Nusselt number and can be defined as: 

 
 w m

q h
Nu = =

K T -T K
  (3.5) 

Where ℓ is used to represent a length scale that is related to the entire duct geometry. 

The heat transfer coefficient is an important variable for heat transfer. Furthermore, it 

is also unfortunate that many overuse and misuse this highly significant parameter. The 

above equation shows a highly unnatural approach to non-dimensionalizing the 

associated heat flux, since the temperature scale of wall to bulk fails in naturally 

appearing in the main solution for either the temperature field or the heat flux. Both the 

local as well as averaged heat fluxes can be simply obtained in this particular manner. 

The temperature difference of wall to bulk undoubtedly holds a strong place in those 

problems that are involved with the heat exchangers; however, single fluid devices 
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including heat sinks and many other microfluidic devices where heat transfer typically 

occurs from a single fluid are not necessary. 

3.3.1 Constant Wall Temperature   (𝑻𝒘 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕) 

        When the entire wall of the duct is uniformly maintained to have a constant wall 

temperature 𝑇𝑤, the following equations can be derived based on the mean fluid 

temperature of wall to bulk: 
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  (3.6) 
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This definition is useful in the entire boundary layer region, for developing asymptotic 

solutions. To calculate the Nusselt number, we integrate along the duct length: 

L

0

1
Nu = Nu dz

L 
                                               (3.8) 

It is often easier to employ heat exchanger theory for an isothermal wall to obtain the 

mean Nusselt number, defined in terms of temperature difference of wall to bulk: 

 m i

i m p
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  (3.9) 

The left side of the equation can further be written in terms of significant dimensionless 

mean temperature of bulk: 
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Or 
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  (3.11) 

By introducing the thermal duct length, 𝐿∗ =
𝐿

ℓ𝑅𝑒𝐷ℎ𝑃𝑟
 ,  that is dimensionless and ℓ being 

an arbitrary length scale, we get: 
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  (3.12) 

If h is defined on the basis of temperature difference of wall to bulk fluid, then this 

requires the log mean of temperature difference: 
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  (3.13) 

Where  𝑇𝑜 represents the outlet bulk temperature: 

 Q = h A ΔTln   (3.14) 

The mean Nusselt number becomes equivalent to: 

 
q

Nu =
K ΔTln

  (3.15) 

Where 𝑞̅= 
𝑄

𝐴
  represents the average heat flux. For a Nusselt that is defined on the basis 

of the temperature difference of wall to inlet, we still use (𝑇𝑤 − 𝑇𝑖), i.e., 
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Equation (3.6) can be expressed dimensionlessly: 
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  (3.18) 

Equation (3.18) can be used in different applications to calculate the overall heat 

transfer rate on the basis of wall to inlet temperature differences. 

 

3.3.2 Constant Heat Flux (𝒒𝒘 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕) 

In many applications, especially when involving electric resistance heating, it might be 

more practical to employ a constant boundary condition for heat flux. By maintaining a 

constant flux at the wall, 𝑞𝑤, the Nusselt number can be defined as: 

 
 w,z m

qw
Nu =

K T -T
  (3.19) 

Or 

 
 w,z i

qw
Nu =

K T -T
  (3.20) 
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In the thermal boundary region, using a uniform and constant heat flux, the local Nusselt 

number can be used to assume the wall to bulk fluid temperature increase and the entire 

wall temperature distribution: 

 
w,z m

qw
T =T +

KNu
  (3.21) 

Where 𝑇𝑚 is found by a enthalpy balance: 

 
*w w

m i i 2

p

q Pz q K
T =T + =T +z

mC A P

 
 
 

  (3.22) 

Where, by considering the overall expression mainly for the relationship with 𝑁𝑢 the 

local wall or the wall to bulk temperature difference can be determined. In case of single 

fluid heat exchanger, the dimensionless wall temperature: 

 
 w,z i

w

T -T K
ΔT =

qw
  (3.23) 

3.4 Basic Relations in Two-Phase Flows 

In this section, common equations to analyses the experimental data of two phase flows 

are presented:    

3.4.1  Mass Flow Rate 

Mass flow rate (𝑚)̇  is the mass of a substance passing per unit of time. In the 

experiment, the two phases flow are water, glycol, and air. The mass flow of two phases 

is: 

 total lm = m + mg   (3.24) 

Where 𝑚̇ is the total mass flow rate for water and gas, 𝑚𝑙̇  is the mass flow rate of liquid, 

and 𝑚𝑔̇  is for gas. The mass flow rate can also be defined as: 

 
totalm =ρQ= UA   (3.25) 

Where  𝑄̇ is the volume flow rate, 𝜌 is the mass density of the flowing fluid, 𝑈 is denotes 

the flow velocity of various mass elements, and a denotes the cross-sectional vector 

area.                                                                                                                

3.4.2 Mass Flux 

 The mass flux (G) is the rate of mass flow per unit area. Mass flux can be defined as: 
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m ρUA

G= = =ρU
A A

  (3.26) 

The combined mass flux of two-phase flow can now be defined as: 

 
total l gG G G    (3.27) 

3.4.3 Mass Fraction 

The mass fraction (x) is the ratio of one fluids mass flow rate to the total mass flow rate 

of the entire mixture ( 𝑚𝑡𝑜𝑡𝑎𝑙). The mass fraction can be defined as: 

 l l

total l g

m m
x= =

m m +m
  (3.28) 

Thus, when x is 0, only 𝑚𝑔̇   is present. However, when x equals 1, 𝑚𝑙̇  is present.  

 

3.4.4 Void Fraction 

 The void fraction ( 𝛼) is parameter for characterizing two-phase flow. It is important 

to determine several important parameters, including two-phase density and two-phase 

viscosity. It is also used in several models to predict flow pattern transitions, heat 

transfer, and pressure drop. There are three different expressions used for determing 

void fraction, shown below: 

 
g

Chordal

g l

L

L L
 


  (3.29) 

Where  𝐿𝑔 is the length of air phase, and 𝐿𝑙 is length of liquid phase. Also, 

 
-

-

g

c s

g l

A

A A
    (3.30) 

Where 𝐴𝑔 the cross-sectional area of the air is phase and 𝐴𝑙 is the cross-sectional area 

of the channel in liquid phase. Also, 

 
g

Vol

g l

V
α =

V +V
  (3.31) 

Where  𝑉𝑔 is the volume of the channel with air and 𝑉𝑙 is the channel volume with liquid. 

Three cases for void fraction are presented in Fig. 3.3 
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Figure 3.3: Geometry of Void Fraction 

 

 The volume of fractions for each of phase is employed for finding the phase velocities: 

 
 

1 1 1
1

1

U Q A G
u = = =

1-α 1-α ρ 1-α
  (3.32) 

 2 2
2

U GQ A
u = = =

α α α
  (3.33) 

The definition for the slip ratio can be represented by: 

 
 22

1 1

Q 1-αu
S= =

u Q α
  (3.34) 

The slip ratio considering both mass fluxes and mass quality is: 

 
 

 
12

1 2

ρ x 1-αu
S= =

u ρ 1-x
  (3.35) 

The expressions for the volume fraction as a function of slip ratio is: 

 
 1 2
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1+S Q Q
  (3.36) 
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  (3.37) 



37 

 

 

3.4.5 Volumetric Flux 

The volumetric flux (represented by j) is the total rate of volume flowing across a unit 

area and the volumetric flux is:  

 
Q UA

j= = =U
A A

  (3.38) 

 

The total volumetric flux of both liquid and air becomes is:   

 

l g

total l g

Q +Q
j = =U +U

A
  (3.39) 

The volumetric quality (𝛽) is defined in a similar manner to that of the mass quality, 

however, it uses the specific component of volumetric flow rates instead of mass flow 

rates and can be represented numerically by: 

 
g

l g

Q
β=

Q +Q
  (3.40) 

3.5 Pressure Drop 

The pressure drop for any fluid is caused by variation in potential energy and kinetic 

energy, as well as friction present on the walls of the flow channel. Two-phase pressure 

drops for flows inside tubes are the sum of three different contributions including the 

static pressure drop, Δ𝑃𝑠𝑡𝑎𝑡𝑖𝑐 , frictional pressure drop, Δ𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 , and momentum 

pressure drop, Δ𝑃𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 : 

 total friction static momentumΔP =ΔP +ΔP +ΔP   (3.41) 

or 

   2

w m

m

dP P d 1
- = τ +ρ gsin θ +G

dz A dz ρ

 
 
 

  (3.42) 

Static pressure drop for a homogenous two-phase fluid is: 

  static mΔP =ρ g H sin θ   (3.43) 

Where H shows vertical height, 𝜃 is angle with respect to horizontal position, g is 

gravitational force, and 𝜌𝑚 is mean density of both phases. The mean density for both 

phases can be calculated by either void fraction, solid fraction or liquid fraction of the 

dispersed phase. The mean density of the two-phases (both liquid and air) is: 
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  m l gρ = 1-α ρ +αρ   (3.44) 

The mean density for liquid and air depends on the mass fraction:  

 

-1

m

l g

1-x x
ρ = -

ρ ρ

 
 
  

  (3.45) 

Where 𝜌𝑙 is for density of liquid and  𝜌𝑔 is density of air. The momentum pressure 

gradient per unit length of tube is: 

 
2

momentum

m

d 1
ΔP =G

dz ρ

 
 
 

  (3.46) 

The problematic term is the frictional pressure drop, which is expressed as an function 

two-phase (liquid and air) friction factor (𝑓) and for steady flow a channel with a cross-

sectional area expressed as: 

 m m
friction w

i

2fρ UPL
ΔP = τ =

A D
  (3.47) 

Where L represents the length of the channel, and 𝐷𝑖 represents the internal diameter of 

the tube. The friction factor can be expressed as: 

 
0.25

0.079
f =

Re
  (3.48) 

Where 

 m m i

m

ρ U D
Re=

μ
  (3.49) 

Where  𝜇𝑚 represents the total mixture viscosity for both phases. It has different 

formulas which are dependent on the application, i.e. liquid-liquid, gas-liquid and solid-

liquid mixtures. Common formulas in gas-liquid are the Cicchitti, McAdams and the 

Dukler models. 

 McAdams Model: 

 

-1

m

m g

1-x x
μ = +

μ μ

 
 
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  (3.50) 

 Cicchitti Model: 

  m l gμ = 1-x μ +xμ   (3.51) 
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 Dukler Model: 

   gm l

m l g

μμ μ
= 1-x +x

ρ ρ ρ

 
 
  

  (3.52) 

For horizontal tube, no change is observed in static head, i.e. θ = 0 and H= 0; hence, 

Δ𝑝𝑠𝑡𝑎𝑡𝑖𝑐 is equal to zero. For adiabatic flow, if x = constant, then,  ∆𝑝𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 is equal 

to zero. The two-phase pressure drop for a horizontal tube can be defined as: 

 
2

m m
total friction w

i

2fρ UPL
ΔP =ΔP = τ =

A D
  (3.53) 

Where  sin(𝜃) is equal to 1, suggesting the tube is present in a vertical position; hence, 

the drop in momentum pressure is the change in kinetic energy of flow and can be 

expressed as: 
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  (3.54) 

Where 𝐺𝑡𝑜𝑡𝑎𝑙 is the total mass flux, both 𝑥𝑜 and 𝑥𝑖 represent the outlet and inlet of mass 

friction, and 𝛼𝑜 and 𝛼𝑖 represent the outlet and inlet of volume friction.  

 

3.6  Dimensionless Parameters 

Dimensionless numbers are commonly employed for placing two-phase flow data into 

efficient and convenient forms. These include Laplace, Reynolds, Capillary, E𝑜̈tv𝑜̈s, 

Bond, Weber, Nusselt, Froude and Prandtl numbers. 

 

3.6.1 Reynolds Number 

Reynolds number (Re) is basically a dimensionless quantity for predicting similar flow 

patterns but in different fluid flow conditions. The Reynolds number is the total ratio of 

inertial forces to viscous forces and, is useful for quantifying the relative significance 

of these two forces. Reynolds number can be expressed as: 

 
ρUD

Re=
μ

  (3.55) 

Where 𝑈 represents the velocity of the object relative to flowing fluid, D is diameter of 

the tube, 𝜇 is dynamic viscosity and 𝜌 is fluid density.  
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3.6.2 Capillary Number 

The capillary number (Ca) represents the relative effect of various viscous forces and 

the surface tension that acts across an interface between a liquid and gas, or between 

two immiscible liquids: 

 lμ U
Ca=

σ
  (3.56) 

Where 𝜇 represents the dynamic viscosity of flowing liquid, ∪ represents the 

characteristic velocity and 𝜎 represents either surface or interfacial tension between two 

different phases. 

 

3.6.3 E𝒐̈tv𝒐̈s Number 

E𝑜̈tv𝑜̈s number (Eo) is a dimensionless number used for characterizing the overall 

shape of bubbles and drops moving in a fluid. The E𝑜̈tv𝑜̈s number can be expressed as: 

 
 22

l ggL ρ -ρΔρgL
Eo = =

σ ρ
  (3.57) 

Where ∆𝜌 is the difference in density of two-phase flow (𝜌𝑙 − 𝜌𝑔), L represents the 

characteristic length, 𝜎 is the surface tension and g is gravity.  

3.6.4 Bond Number 

The Bond number is a measure of surface tension forces compared to body forces. A 

higher Bond number shows that the entire system is unaffected by surface tension 

effects and a lower number shows that surface tension greatly dominates.  The Bond 

number can be expressed as: 

 
   2 22

l g l gaL ρ -ρ gL ρ -ρΔρaL
Bo= = =

σ σ σ
  (3.58) 

 

3.6.5 Laplace Number 

The Laplace number (La) represents a ratio of surface tension to momentum-transport 

inside a fluid and can be represented by: 

 
 2

l g

σ
La=

gL ρ -ρ
  (3.59) 
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Where ∆𝜌 represents the difference in density of two-phase flow (𝜌𝑙 − 𝜌𝑔), g represents 

gravitational force, L is the characteristic length, and 𝜎 is the surface tension. 

 

3.6.6 Weber Number 

The Weber number can be expressed as: 

 
2ρU L

We=
σ

  (3.60) 

Where 𝜌 is fluid density, ∪ is fluide velocity, L represents the characteristic length, and 

𝜎 represents surface tension. 

 

3.6.7 Froude Number 

The Froude number (Fr) represents the ratio of velocity to the gravitational wave 

velocity. The Froude number can be used to determine the resistance of a submerged 

object (partially) that moves through water, and also permits the comparison of various 

other objects of various sizes. The Froude number can be expressed as: 

 
2 2ρU U

Fr= =
ρgD gD

  (3.61) 

3.6.8 Prandtl Number 

The Prandtl number (Pr) is the ratio of momentum diffusivity to thermal diffusivity: 

 
pμC

Pr= =
α K


  (3.62) 

Where 

 
p

K
α=

ρC
  (3.63) 

Where 𝜗  represents the kinematic viscosity, 𝜇 is dynamic viscosity, 𝛼 is thermal 

diffusivity, k is thermal conductivity, 𝑐𝑝 is specific heat, and 𝜌 is density. 

 

3.7 System Configuration 

The system contains several different types of subsystems used for obtaining segmented 

two-phase plug flow. The system configuration is illustrated in Fig 3.4.  
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Figure 3.4: System Configuration 

 

3.7.1 Flat Plate Collector (Residential Serpentine) and Light Table 

A flat plate collector absorbs heat simply by absorbing solar radiation. The components 

of a flat plate collector include solar glass, powder-coated aluminum frame, Al-absorber 

sheet, mineral wool insulation, collector pipe, highly-selective absorber coating, secure 

glass fixing, meander tube (series type), and revolving groove for assembly. (The flat 

plate collector specifications can be found in Appendix A). 

The flat plate collector used in this thesis had a specific cross sectional area and absorber 

area of 2.15 𝑚2 and 2 𝑚2, respectively. The Fig. 3.4 illustrates the solar collector that 

used in research 
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Figure 3.5: Serpentine Design of Flat Plate 

 

 A halogen light (2500 w) is attached at the top of the flat plate collector, with a table, 

to supply a constant heat flux. The components of the light table include: 

 A wooden frame structure, with dimensions of 1.82× 1.09 × 0.11 𝑚  and nine 

legs. The dimensions of each of table leg are 0.23 × 0.04 × 0.04 𝑚. 

 A reflectix is placed inside the wooden frame to reflect the light that reflects 

from the flat plate collector surface. 

 Eight halogen lights simulate the sun in the laboratory. The total supplied power 

is 2500 watts. The light table is illustrated in Fig.3.6 

 

 

        Figure 3.6: Light Table 
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3.7.2 Turbine Flow Meter and Principle of Operation 

 Turbine flow meters measure the specific velocity of liquids, gases and vapors in the 

pipes, including chemicals, hydrocarbons, cryogenic liquids, water, air, and industrial 

gases. The sensor consists of rotor assembly supported on a shaft that is held in place 

by triple tube clusters and by locking nuts within the flowmeter housing. The rotor spins 

on a ceramic ball bearing that is self-lubricated. A magnetic pickup coil is attached to 

the outside of flow meter housing. 

A lower mass rotor design allows a highly rapid dynamic response. The deflector cones 

are used for eliminating the downstream thrust on the rotor. It also allows the dynamic 

positioning and orientation of the rotor to be between the deflector cones. The dynamic 

positioning of the lower mass rotor helps in providing a wide range of capabilities, as 

well as long bearing life compared to traditional turbine flowmeters. Straightening tubes 

of integral flow aim to minimize the overall effects of the upstream flow turbulence. 

Every rotor blade that passes the pickup coil actively generates a strong electrical pulse. 

The overall frequency of these electrical pulses is directly proportional to the overall 

flow rate. Summation of the pulses measures the total liquid volume that passes the 

meter. The total number of electric pulses per unit of the volume is known as the 

calibration factor. The calibration factor is used to calculate the flow rate and the total 

amount of flow.  

 

3.7.3 Centrifugal Pump 

Major applications of centrifugal pumps include booster service, water circulation, 

general purpose pumping, spraying systems, and liquid transfer. Centrifugal pumps are 

used for transporting fluids by converting rotational kinetic energy into hydrodynamic 

energy. Rotational energy typically is from an engine or electric motor. The fluid enters 

the pump impeller along or near the built in rotating axis and is then accelerated by an 

impeller and flows radically into a diffuser (volute chamber). 

 Both the inlet and outlet of the pump is reduced with 0.5 inch barbed hose connections. 

The barbed hose connections connect the outlet of pump with the inlet of 4-way 

connections, and to connect the outlet of the flow mater with the inlet of the pump. A 

XFC2002-0B Micro-Inverter is used to control the pump speed.  
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3.7.4 Fluid Reservoir 

 The reservoir is a domestic water tank. The reservoir has three connections on the top 

and one on the bottom side. One of the three top connections is used for filling the tank, 

the second connection is used for the return line from the solar heating system. A 

temperature sensor and pressure relief valve is also installed at the top. This valve is 

used to protect the tank from explosions that can be caused by reductions in the 

temperature and pressure in the tank. The bottom connection is used for joining the 

main line feeding the pump. The main outlet of the quick connection is connected to the 

flowmeter inlet and the outlet of the flowmeter is connected to pump inlet.  

 

3.7.5   Intermediate Tubing 

PVC tubing is providing the required flexibility and clarity. The dense bore helps to 

maximize the flow rate and reduce sediment build-up. There were two types of 

intermediate tubing used in this experiment, black plastic tubing and clear PVC tubing. 

Black plastic tubing (0.0127 m) is used to connect the reservoir inlet to the pump inlet. 

Clear PVC tubing (0.0127 m)  is used to connect the outlet of the pump to the 4-way 

connection inlet (i), the 4-way connection outlet (i) is connected to ball valve inlet (i), 

ball valve outlet (i) is connected to the flowmater inlet, the flowmater outlet is connect 

to the air injection manifold inlet. Clear PVC tubing (0.0097 m) connects the air 

injection manifold outlet to the solar collector inlet, the solar collector outlet is 

connected to the 4-way connection inlet (ii), the 4-way connection outlet (ii) is 

connected to the ball valve inlet (ii), and the ball valve outlet (ii) is connected to the 

reservoir outlet.   

 

3.7.6 Air Injection System 

The air injection system used in the experiment includes that a compressor, 

microcontroller and air injection manifold. Component configuration of the air injection 

system is illustrated in Fig.3.7.  
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Figure 3.7: Configuration of Air Injection System 

 

3.7.6.1 Compressor and Air Hose  

The compressor used in air injection system is a Campbell-Hausfeld 8 Gallon 

compressor, and has a 125 psi maximum rating with a power of 120v. The air hose has 

two universal quick connections to join the compressor and air injection manifold. The 

diameter of the air hose is 0.0095 m. The compressor specifications are presented in 

Appendix B. 

3.7.6.2 Injection Manifold  

The air injection manifold used in the experiment consists of several components. The 

component configuration is illustrated in Fig. 3.8  

        

Figure 3.8: Injection Manifold 
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Table 3.1: Components of the injection manifold   

Item No. The name of the item (Unit)Inch) 

1 ½" Pneumatic Quick-Connect 

2 ½" NPT Check Valve 

3 ½" Male-1/4" Female-Inch - BSP-Bushing length 15mm Brass Pipe Fitting 

4 ¼" NPT Solenoid Valve 

5 ¼" Brass Male and Male Coupling-NPT 

6 3
8⁄ " Hose Barb 

7 ¼" NPT-T-Junction 

8 ½" Female PipeThread- ¼" Male Pipe Thread Brass Coupling 

9 ½" NPT Check Valve 

10 ½" Hose Barb 
 

3.7.6.3 Solenoid valve 

The solenoid valve used in this thesis is an Omega-Flo 2-Way General Purpose 

Solenoid. The basic components of the solenoid valve are presented in Fig. 3.9. 

 

    Figure 3.9: Solenoid Valve Components 

 

                                Table 3.2 Components of the Solenoid Valve  

 

 

 

 

 

 

 

 

 

Number of Item Name of Item 

1 Valve Body 

2 Inlet Port 

3 Outlet Port 

4 Coil/Solenoid 

5 Coil Windings 

6 Lead Wires 

7 Plunger 

8 Spring 

9 Orifice 

Fig.3.8 Configuration of Injection Manifold 
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3.7.6.4 PIC Controller 

A PIC Microcontroller controls the solenoid valve in the air injection manifold. The 

PIC Microcontroller is considered the most important and most efficient component 

since it can control the total amount of air entering into the Flow-conducted. The PIC 

Microcontroller was connected with two potentiometers control the liquid length, and 

length of air bubbles. 

 

3.7.7 Data Collection Subsystem 

A Keithley 2700 Multimeter is used for data acquisition of pressure, temperature and 

flow rates at several locations in system. T-type probes for temperature are installed in 

three positions throughout the system. One of the T-type probes is installed close to the 

entrance of the solar collector to measure inlet temperature, one is installed at the exit 

of the solar collector to measure outlet temperature, and one is installed inside of tank 

to measure liquid temperature inside the tank. Two Amplified Voltage Output Pressure 

transducers (PX176) measure the inlet and outlet liquid pressure. A EXTECH 382200 

series power supply was used for providing excitation to  Keithley 2700 Multimeter .  

 

3.7.8 Setup and Operation of Experiment 

The domestic water tank has three connections on the top and one on the bottom side. 

One of the three top connections was used for filling the tank, the second connection is 

used for the return line from the solar heating system. A temperature sensor and pressure 

relief valve was also installed at the top. This valve was used to protect the tank from 

explosions that can be caused by reductions in the temperature and pressure in the tank. 

The bottom connection is used for joining the main line feeding the centrifugal pump. 

The main outlet of domestic water tank was connected to inlet  of the centrifugal pump 

by using  black plastic tubing (0.0127 m) and outlet of the centrifugal pump was 

connected to inlet of ball valve (i) by using clear PVC tubing (0.0127 m). The outlet of 

ball valve (i) was connected to inlet of the flowrate by using PVC tubing (0.0127 m). 

The two 4-way connections were used to install two T-type probes for temperature for 

measuring  inlet and outlet temperature from solar thermal collector and two Amplified 

Voltage Output Pressure transducers (PX176)  for measuring inlet and outlet pressure 

from solar thermal collector. These sensors were connected to a Keithley 2700 



49 

 

 

Multimeter. The outlet of flowrate was connected to the inlet of 4-way connections (i) 

by using PVC tubing (0.0127 m). The outlet of 4-way connections (i) was connected  to 

inlet of ball valve (ii) by using PVC tubing (0.0127 m) and outlet of vale (ii) was 

connected to inlet of T-juctution by using PVC tubing (0.0127m). The outlet of t-juction 

connected to entrance of solar thermal collecter by using PVC tubing (0.0097 m). The 

purpose of using t-juction was that  connecting the air injection system with the Flow-

conducted. The air injection system used in the experiment includes that a compressor, 

microcontroller and air injection manifold. The type of compressor used in air injection 

system is a Campbell-Hausfeld 8 Gallon compressor, and had a 125 psi maximum rating 

with a power of 120v. The compressor used to provide the system with air. The air hose 

had two universal quick connections to join the compressor and air injection manifold. 

The diameter of the air hose was 0.0095 m. The air injection manifold used in the 

experiment consists of several components. The component configuration is illustrated 

in Fig. 3.8. The type of solenoid valve used in air injection manifold was an Omega-Flo 

2-Way General Purpose Solenoid. This valve was controlled by using a PIC 

Microcontroller. The PIC Microcontroller is considered the most important and most 

efficient component since it can control the total amount of air entering into the Flow-

conducted. The PIC Microcontroller was connected to two potentiometers control the 

liquid length, and length of air bubbles. During the single-phase experiments, the 

solenoid valve remained close while the experiment was running. However, for the two-

phase flow, the solenoid valve was opening and closing at certain time intervals during 

the experiment. Water and glycol have been used in these experiments for both single 

and two-phase flow. Each experiment ran for 30 minutes, the mass flow rate, inlet and 

outlet pressure and temperature readings were recorded in specified time intervals. 

In the Single-Phase experiment, the liquid (water or Glycol) was pumped to the system 

using the centrifugal pump from the domestic water tank, the liquid then transferred to 

the Ball Valve that was used to switch the liquid on and off. After that, the liquid 

transferred through Flowmeter that recorded the readings of the mass flow rate. In the 

next step, the liquid reached Four-way connection (i) that included two sensors, pressure 

sensor and temperature sensor. These sensors are used to measure and record the 

readings of the Inlet pressure and temperature of the liquid and transfer it to the Data 

Acquisition system. The liquid then passed through the solar thermal collector that was 



50 

 

 

used to heat the liquid using Light Lamps, after that, the liquid outlet from the solar 

thermal collector and went through four-ways connections (ii) that is used to measure 

and record the readings of the outlet pressure and temperature and transfer it to the Data 

Acquisition system. The liquid then return to the domestic water tank to start new cycle 

in the system. 

In the Two-Phase, the liquid  was (water or Glycol) pumped to the system using the 

centrifugal pump from the domestic water tank, the liquid then transferred to the Ball 

Valve that was used to switch the liquid on and off. After that, the liquid transferred 

through Flowmeter that recorded the readings of the liquid velocity. In the next step, 

the liquid reached Four-way connection (i) that included two sensors, pressure sensor 

and temperature sensor. These sensors are used to measure and record the readings of 

the Inlet pressure and temperature of the liquid and transfer it to the Data Acquisition 

system. In the next step the liquid reached T-junction that is used to mix the liquid with 

the air that is generated from Air Injection System. Then, the segmented flow passed 

through the solar thermal collector that was used to heat the liquid using Light Lamps, 

after that, the liquid outlet from the thermal collector and went through four-ways 

connections (ii) that is used to measure and record the readings of the outlet pressure 

and temperature and transfer it to the Data Acquisition system. The liquid then return 

to the domestic water tank to start new cycle in the system. 

 

3.7.9  Fluids 

The working fluids used in all experiments were water, glycol, and air.  

Table 3.3. The properties for water, glycol and air  
 

Parameter (Unit) Value Parameter (Unit) Value 

Cp[Water] (J kg. K⁄ ) 4130 Cp[Glycol] (J kg. K⁄ ) 2428.46 

K[Water] (W m. K⁄ ) 0.59 K[Glycol] (W m. K⁄ ) 0.258 

ρ[Water] (Kg m3⁄ ) 1000 ρ[Glyco] (Kg m3⁄ ) 1115 

σ[Water] (N m⁄ ) 0.073 σ[Glycol] (N m⁄ ) 0.048 

μ[Water] (Pa. s) 0.001 μ[Glycol] (Pa. s) 0.0169 

ρ[Air] (Kg m3⁄ ) 1.18 μ[Air] (Pa. s) 1.81e−5 

DT[Collector] (m) 0.010922 LT[Collector] (m) 18.88 
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Chapter 4 

 

4.1 Introduction 

     In this chapter, the experimental data for single and two-phase flow is presented. 

There are two sets of data for single and two-phase flow. For single-phase flow, the 

working fluid used for the first set was water and glycol for the second set. For two-

phase flow, the working fluid was water-air for the first set and glycol-air for the second 

set. In the first set of data, three experiments are conducted for single and two-phase 

flow with a constant flow rate. The experiments conducted in the second set are four 

experiments for single and two-phase flow with a constant flow rate as well and six 

experiments conducted with different types of liquid void fraction (𝛼𝑙).  

 

4.2. Data analysis 

After the experimental setup was completed several experiments were conducted at 

different flow rates, and experimental data was collected at each flow rate. The 

experimental data was used to calculated several variables, such as the rate of heat 

transfer (𝑄), tank temperature slope, average bulk temperature, time required for raising 

the tank temperature from 𝑇𝑀𝑖𝑛𝑖𝑚𝑢𝑚 to 𝑇𝑚𝑎𝑥𝑖𝑚𝑢𝑚, energy gained by the tank (𝐸̇), and 

enhancement ratio. 

The rate of heat transfer in the collector is calculated by Eq. (4.1): 

 

  -p o iQ mc T T   (4.1) 

 

Where 𝑚̇ is the mass flow rate of the working fluid, 𝑐𝑝 is the specific heat of the working 

fluid, 𝑇𝑜 is the outlet temperature of the working fluid from the solar thermal collector, 

and 𝑇𝑖 is the inlet temperature of the working fluid to the solar collector. 

The slope of the tank temperature is calculated by using Eq. (4.2): 
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  (4.2) 

Where 𝑇𝑓 is the tank temperature at the final point in the experimental data, 𝑇𝑠 is the 

tank temperature at the starting point of the experiment, tf is time at the final point in 

the experimental data, and 𝑡𝑠 is time at the starting point of the experiment. 
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The average bulk temperature of the solar thermal collector is given as Eq. (4.3): 

 

 
2

o i
Bulk

T T
T


   (4.3) 

Where 𝑇𝑜 is the outlet temperature of the working fluid from the solar thermal collector, 

and Ti is the inlet temperature to the solar thermal collector. 

The time required for heating the temperature of the tank from 𝑇𝑚𝑖𝑛 to 𝑇𝑚𝑎𝑥 can be 

calculated by using Eq. (4.4): 

 

 max min-
R
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T T
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The average heat transfer rate into the tank during each experiment is calculated by 

using Eq. (4.5): 

 
p

T
E c V

t






  (4.5) 

 

Where 𝜌 is the density of the working fluid, 𝑐𝑝is the specific heat of the working fluid,  

V is the volume of the working fluid inside the tank, and 
∆𝑇

∆𝑡
 is the slope of the tank 

temperature rise. 

Also, the enhancement ratio of two-phase flow is defined as the ratio between the rate 

of heat transfer for two-phase flow and the rate of heat transfer for single-phase flow at 

a constant flow rate. The enhancement ratio of two-phase flow is calculated by Eq. (4.6): 

 Two-Phase
Two-Phase

Single-Phase

Q
Enhancement =

Q
  (4.6) 

 

4.3 Single and Two-Phase Flow in a Solar Collector with Water 

The first experiment is conducted with a flow rate of 1.562 L/min.  As illustrated in Fig. 

4.1-a, the outlet temperature increases considerably from 25℃ to 30℃ between 0 s to 

101 s and between 101 s to 1152 s the outlet temperature rises slowly from 30℃ to 32℃ 

for two-phase flow. For single-phase flow, the outlet temperature increases suddenly, 

from 19.9℃ to 21.9℃ between 0 s and 80 s, and from 80 s to 1152 s the outlet 

temperature increases slightly from 21.9℃ to 24.0℃. The sudden increase in outlet 

temperature that occurs in both cases, single and two-phase flow, at the beginning of 
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the experiment was due to the experiment stabilization. The inlet temperature in both 

cases remains constant. The difference between outlet and inlet temperature (∆𝑇) in 

both cases also remains constant during the experiment, except at the beginning when 

the experiment is not stable. The reason is that the amount of heat transmitted from the 

surface of absorption to the fluid during the flat plate collector is constant. Fig 4.1-b 

shows that the temperature difference for two-phase flow (∆𝑇𝑇𝑃) is higher than the 

temperature difference for single-phase (∆𝑇𝑆𝑃), with an average value of 8.38℃ and 

8.36℃ for two and single-phase flow, respectively. The difference between temperature 

in both single and two phase-flow (∆𝑇𝑡𝑜𝑡𝑎𝑙) is approximately 0.02℃. Fig. 4.1-c 

illustrates that the heat transfer rate (𝑄𝑇𝑃) increases dramatically, from 126.0 W to 

786.8 W between 0 s to 121 s, and from 121 s to 1152 s the heat transfer rate increases 

from 786.8 W to 924.2 W for two-phase flow. For single-phase flow, there is a 

substantial increase in the heat transfer rate (𝑄𝑆𝑃)  from 521.9 W to 753.2 W between 

0 s to 80 s, while between 80 s to 1152 s the heat transfer rate rises slightly, from 753.2 

W to 896.7 W. As illustrated in Fig 4.1-c, the heat transfer rate (𝑄𝑇𝑃) for two-phase 

flow is higher than the heat transfer rate (𝑄𝑆𝑃) for single-phase flow, with an average 

value of 920.02 W and 883.17 W for two-phase and single-phase, respectively. The 

difference between the heat transfer rate (∆𝑄) in both single and two-phase flow is 

approximately 36.85 W. The heat transfer enhancement of two-phase flow is approxia.  
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 Fig.4.1. Thermal effectiveness at 1.552(L/min) for (a) inlet and outlet temperature, (b)       

temperature difference, and (c) heat transfer rate 
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The flow rate used in the second experiment is 2.062 L/min. Fig. 4.2-a shows the 

relationship between the inlet and outlet temperature. The outlet temperature increases 

gently from 26℃  to 28.1℃ between 0 s to 1173.0 s for two-phase flow. For single-

phase flow, there is a sudden increase in outlet temperature at the start the experiment, 

from 19.6℃ to 20.8℃, between 0 s to 40.4 s. From 40.4 s to 1173.0 s the outlet 

temperature increases gradually from 20.8℃ to 24.8℃. Between 0 s to 1173.0 s, the 

inlet temperature is relatively stable during the experiment for two-phase flow, with a 

value of 20.8℃, while there is a gradual increase in inlet temperature, from 15.8℃ to 

18.5℃, between 0 s to 1173.0 s, for single-phase flow. Part (a) also shows that the 

difference between inlet and outlet temperature remains approximately unchanged in 

both cases of single and two-phase flow during the experiment, with average values of 

7.19℃ and 6.311℃ for two and single-phase flow, respectively. The cause is the heat 

transferred from the flat plate collector to the fluid that is passing through the collector 

at a constant rate. The relationship between the temperature differences in single and 

two-phase flow, with the time when the flow rate is 2.062 L/min is shown in Fig. 4.2-

b. During the period between 0 s to 1173.0 s there is a gradual increase in temperature 

difference from 6℃ to 7.2℃  for two-phase flow. For single-phase, the temperature 

difference increases considerably, from 3.4℃ to 5.7℃, between 0 s and 121 s while 

there is a small increase in the temperature difference from 5.7℃ to 6.4℃ over the 

period between 121 s and 1173.0 s. Furthermore, the temperature difference for two-

phase flow is higher than the temperature difference for single-phase flow, with an 

average value of 7.19℃ and 6.31℃ for two and single-phase flow and the difference 

between temperature difference in both cases (∆𝑇𝑡𝑜𝑡𝑎𝑙) is approximately 0.88℃. As can 

be noted from the relationship with the heat transfer rate, there is a gradual increase in 

the heat transfer rate from 854 W to 1030 W between 0 s to 1173.0 s for two-phase 

flow. For single-phase flow, there is a significant increase in the heat transfer rate, from 

546 W to 807.3 W between 0 s and 121 s and from 121 s to 1173 s, the heat transfer 

rate rises slightly from 807.3 W to 903.4 W, although the heat transfer rate for two-

phase flow is higher than in single-phase flow, with an average value of 1020.0 W and 

898.24 W for two and single-phase flow, respectively. Also, Fig. 4.2-c shows that the 

difference between the heat transfer rate (∆𝑄) in both cases, single and two-phase flow, 

is approximately 121.8 W. The heat transfer enhancement of two-phase flow is 1.14. 
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Fig. 4.3-a in the third experiment, when the flow rate is 2.516 (L/min), illustrates the 

transient relationship between inlet and outlet temperature for single and two-phase 

flow. The outlet temperature increases slowly from 27.7℃ to 28.7℃ for two-phase flow 

between 0 s and 890 s and the inlet temperature is relatively stable during the 

experiment, with an average of 23.15℃. The outlet temperature for single-phase shows 

the same behavior for two-phase flow, and there is a small increase in outlet 

temperature, from 23.4℃ to 25.2℃ between 0 s to 890 s, while the inlet temperature for 

single-phase flow remains approximately unchanged during the experiment, with a 

value of 19.9℃. Furthermore, as can be seen from Part (a), the difference between inlet 

and outlet temperature (∆𝑇) in single and two-phase flow is relatively constant during 

the experiment, with a value of 5.4 and 5℃  for two-phase and single-phase, 

respectively. The heat transferred from absorber to fluid with a constant rate during the 

solar collector and the difference between temperature difference in single and two-

phase flow (∆𝑇𝑡𝑜𝑡𝑎𝑙) is approximately 0.4℃. Fig. 4.3-b shows that from 0 s to 890 s 

there is a gradual increase in the temperature difference for two-phase flow from 4.6℃  

to 5.5℃. There is a sudden increase in the temperature difference for single-phase from 

3.8℃  to 4.5℃, between 0 s and 101 s, while from 101 s to 889.7 s the temperature 
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Fig.4.2. Thermal effectiveness at 2.062 (L/min) for (a) inlet and outlet 

temperature, (b) temperature difference, and (c) heat transfer rate 



58 

 

 

difference rises gradually from 4.5℃ to 5.1℃. Also, Part (b) illustrates that the 

temperature difference for two-phase flow is higher than that the temperature difference 

for single-phase flow, with a value of 5.4℃ and 5.0℃ for two-phase and single-phase 

flow, respectively. Fig. 4.3-c shows the relationship between the heat transfer rate in 

both cases, single and two-phase flow, and time when the flow rate is 2.516 L/min. 

From 0 s to 890 s, the heat transfer rate increases from 791.8 W to 949.5 W for two-

phase flow. For single-phase flow, there is a significant increase in the heat transfer rate 

from 662.4 W to 798.6 W between 0 s to 121 s and from 121 s to 889.7 s the heat 

transfer rate rises slightly from 798.6 W to 889.4 W. Part (c) also shows that the heat 

transfer rate for two-phase flow is higher than the heat transfer rate for single-phase 

flow, with an average value of 937.16 W and 881.63 W for two-phase flow and single-

phase flow, respectively. Also, the difference between the heat transfer rate in both 

cases(∆𝑄), single and two-phase flow, is approximately constant during the 

experiment, with a value of 55.52 W. The heat transfer enhancement of two-phase flow 

is 1.06.  

As illustrated in Figs. 4.1-4.3 the two-phase flow system is better than the single-phase 

flow system. This is because of the two major effects in the further enhancement of the 

heat transfer rate in the two-phase flows of non-boiling: the internal circulations present 

in the slugs that eventually lead towards a much greater radial rate of heat transfer, as 

well as an increased slug velocity.   
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Fig.4.3. Thermal effectiveness at 2.516 (L/min) for (a) inlet and outlet 

temperature, (b) temperature difference, and (c) heat transfer rate 
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Table 4.1: Summary of results for single-phase (water) and two-phase flow (water-air) 

experiments. 

 

 

4.4 Single and Two-phase Flow in a Solar Collector with Glycol 

Four experiments are conducted by using glycol for single-phase and glycol-air for two-

phase flow with a constant flow rate in each case, single and two-phase flow, with an 

average flow rate of 0.6, 1.7, 2.1, and 3 L/min.  

The first experiment is conducted when the flow rate is 0.653 (L/min) and Fig. 4.4-a 

illustrates the relationship between the inlet and outlet temperature in both cases with 

time. The outlet temperature increases considerably from 44.8℃  to 49.5℃ for single-

phase flow between 0 s and 152 s and from 152 s to 1763 s the outlet temperature rises 

slightly, from 49.5℃ to 57℃. For two-phase flow, the outlet temperature increases 

suddenly from 30.5℃ to 33.6℃ between 0 s to 121.3 s and there is a gradual increase 

in outlet temperature from 33.6℃ to 45℃, between 121 s to 1760 s. The inlet 

temperature for single-phase remains constant between 0 s to 395.3 s, with a value of 

40.9℃ and there is a small increase in the inlet temperature from 40.9℃ to 

48.5℃ between 395.3 s and 1763 s. For two-phase flow, the inlet temperature remains 

approximately constant from 0 s to 395.3 s, with a value of 23. 1℃, while from 395.3 s 

to 1760 s there is a slight increase in inlet temperature from 23.1℃ to 35.1℃. Part (a) 

shows that the difference between inlet and outlet temperature in both cases, single and 

two-phase, is approximately constant, with a value of 10.06℃ and 9.22℃  for two-phase 

and single-phase, respectively. Therefore, the heat is transferred from the absorber to 

the fluid with a constant rate when the fluid is passing through the solar collector. Fig. 

4.4-b illustrates the relationship between the temperature difference (∆𝑇) in single and 

Test 
Type of 

Experiment 
𝑸̇ 

(L/min) 

𝒎̇ 

(kg/s) 
∆𝐓𝐜 (℃) 𝑸𝒄 (W) 𝑬𝒏𝒉𝑻𝒘𝒐−𝑷𝒉𝒂𝒔𝒆 𝑬𝒏𝒉𝑻𝒘𝒐−𝑷𝒉𝒂𝒔𝒆% 

1a Single-Phase 1.527 0.0255 8.36 883.17 
1.04 4.2 

1b Two-Phase 1.595 0.0266 8.38 920.02 

2a Single-Phase 2.068 0.0344 6.31 898.24 
1.14 13.6 

2b Two-Phase 2.057 0.0343 7.19 1020.01 

3a Single-Phase 2.559 0.0426 5.01 881.63 
1.06 6.3 

3b Two-Phase 2.473 0.0411 5.41 937.16 
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two-phase flow and time when the flow rate is 0.653 L/min. There are three regions that 

can be seen in Part (b). The first region shows that from 0 s to 394 s the temperature 

difference increases considerably from 7.7℃ to 11.9℃  for two-phase flow and from 

4.1℃ to 9.9℃ for single-phase flow. The temperature difference is at its highest level, 

with a value of 11.95℃ at 424 s for two-phase flow and 9.94℃ at 395 s for single-phase 

flow. From 455 s to 1760 s, there is a gradual decrease in the temperature difference 

from 11.82℃ to 9.89℃ for two-phase flow and from 425 s to 1763 s, the temperature 

difference decreases slowly from 9.89℃ to 9.06℃ for single-phase flow. The decline 

that occurred in the third region is due to the loss that occurred in the non-insulated 

pipe. Part (b) shows that the temperature difference for two-phase flow is higher than 

the temperature difference for single-phase flow, with a value of 10.06℃ and 9.22℃ for 

two-phase and single-phase flow, respectively. Also, the difference between 

temperature difference for two and single-phase flow (∆𝑇𝑡𝑜𝑎𝑡𝑎) is approximately 

1.09℃. The relationship between the heat transfer rate in single and two-phase with time 

can be seen in Fig. 4.4-c. It shows that there is a sudden increase in the heat transfer rate 

from 225.2 W to 348.1 W between 0 s and 394.5 s for two-phase flow. The same 

behavior can be seen in the case of single-phase flow, a sudden increase in the heat 

transfer rate from 121.80 W to 290.4 W, between 0 s and 364 s due to the fact that the 

experiment is taking time to become stable. The heat transfer rate reaches a peak of 

350.5 W at 424 s for two-phase flow and 291 W at 359 s for single-phase flow. After 

this point, the heat transfer rate decreases gradually in both cases, from 346.6 W to 

290.0 W between 455 s and 1760 s for two-phase flow and from 289.9 W to 265.7 W 

between 425 s and 1763 s for single-phase flow.  The reason for this is the loss that 

occurred in the non-insulated pipe. Fig. 4.4-c illustrates that the heat transfer rate for the 

two-phase flow is higher than for the single-phase flow, with an average of 295.04 W 

and 270.25 W for two-phase and single-phase flow, respectively. The difference 

between the heat transfer rate in single and two-phase flow is approximately 24.79 

watts. Also, the heat transfer enhancement of two-phase flow is 1.10.  The temperature 

of the tank (𝑇𝑇𝑎𝑛𝑘) increases gently with time in both cases, but the temperature of the 

tank is increased more quickly for two-phase flow than single-phase flow, which leads 

to the tank temperature slope for two-phase flow (
∆𝑇

∆𝑡
)

𝑇𝑃
 being higher than the tank 
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temperature slope for the single-phase flow(
∆𝑇

∆𝑡
)

𝑆𝑃
, with a value of 34.7 

℃

ℎ
  and 23.1 

℃

ℎ
  

for two-phase flow and single-phase flow, respectively. Thus, the number of hours 

required for raising the tank temperature from 25℃ to 70℃  for two-phase flow is 

approximately one hour and eighteen minutes and for single-phase flow it is two hours. 

The energy gained from the tank for two-phase flow (𝐸̇𝑇𝑃)  is higher than for single-

phase flow (𝐸̇𝑆𝑃), with a value of 782.9 W and 512.24 W for two-phase and single-

phase flow, and the difference in energy between single and two-phase flow(∆𝐸̇) is 

approximately 261.66 watts. Fig. 4.4-d shows that the two-phase flow system is better 

than the single-phase flow system. Fig. 4.4-e illustrates the relationship between the 

average bulk temperature (𝑇𝑏
̅̅ ̅) and tank temperature with time in single and two-phase 

flow. In this experiment, it can be seen in Part (e) that the amount of change in average 

bulk temperature is close to the amount of change in temperature inside the tank in both 

cases, single and two-phase flow, except at the beginning period, when the experiment 

is not stable.  
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Fig.4.4. Transient thermal effectiveness at 0.653 (L/min) for (a) inlet and outlet 

temperature, (b) temperature difference, (c) heat transfer rate, (d) temperature 

difference in the tank, and (e) average bulk and tank temperature. 
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Fig. 4.5-a shows the results of the inlet and outlet temperature in single and two-phase 

flow for the experiment conducted when the flow rate is approximately 1.7071 (L/min). 

The outlet temperature for the single-phase flow increases suddenly from 45.6℃ to 

47.6℃ between 0 s to 90 s and between 90 s and 1698 s the outlet temperature increases 

gradually from 47.7℃ to 56℃. For two-phase flow, from 0 s to 1705 s, the outlet 

temperature rises slowly from 27.6℃ to 43℃. The inlet temperature for both cases 

increases gradually from 42.1℃ to 50.8℃ between 0 s and 1698 s for single-phase flow 

and from 23.9℃ to 37.8 ℃ between 0 s to 1705 s. As can be noted from Part (a) the 

difference between the inlet and outlet in both cases remains constant over the 

experiment, with an average value of 5.19℃ and 5.13℃ for two-phase and single-phase 

flow, respectively. As can be noted from Fig. 4.5-b, between 0 s and 121 s, the 

temperature difference increases from 3.7℃ to 4.9℃ for the two-phase flow and 

between 121 s and 761 s the temperature difference increases gradually from 4.9℃ to 

5.4℃. Also, the temperature difference reaches a peak of 5.4℃ at approximately 791 s. 

After that, from 791 s to 1705 s, there is a drop of 0.3℃ in the temperature difference, 

due to the loss that occurs in the non-insulated pipe. For single-phase flow, there is also 

an increase in temperature difference from 3.5℃ to 4.7℃ between 0 s and 91 s and there 

is a slight increase in the temperature difference from 4.7℃  to 5.1℃ between 91 s to 

1674.8 s. Furthermore, the temperature difference for two-phase flow is higher than the 

temperature difference for single-phase flow, with an average value of 5.19℃ and 

5.13℃ for two-phase and single-phase, respectively. Part (b) shows that the difference 

between temperature difference in single and two-phase flow is approximately 0.25℃.  

Illustrated in Fig. 4.5-c is the relationship between the heat transfer rate with time when 

the flow rate is 1.7071 (L/min). Between 0 s and 121 s there is a significant increase in 

the heat transfer rate from 283.7 W to 361.6 W for two-phase flow and gradually from 

361.6 W to 412 W between 121 s and 761 s. Also, the heat transfer rate is at its highest 

level at approximately 791s, with a value of 415 W. After that, between 791s and 1705s, 

there is a slight decrease in the heat transfer rate from 415.1 W to 399.4 W, with a value 

of 21 W. For single-phase flow, there is also a sudden increase in the heat transfer rate 

from 270.3 W to 361.6 W between 0 s and 91 s and between 91 s and 1674.8 s the heat 

transfer rate increases slowly, from 361 W to 397.4 W. Thus, Part (c) shows that the 

heat transfer rate for two-phase flow is higher than the heat transfer rate for single-phase 
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flow, with an average value of 401.06 W and 394.48 W for two-phase and single-phase, 

respectively. The difference between the heat transfer rate in single and two-phase flow 

is approximately 6.58 W.  The heat transfer enhancement of two-phase flow is 1.01. 

The relationship between the tank temperature (𝑇𝑇𝑎𝑛𝑘) and time when the flow rate was 

1.7071 L/min for both cases, single and two-phase flow, can be seen in Fig. 4.4-d. The 

temperature inside the tank increases gradually with time in both cases. Furthermore, 

the tank temperature for two-phase flow is higher than the tank temperature for single-

phase flow and the tank temperature slope for two-phase flow is higher than the tank 

temperature slope for single-phase flow, with a value of 37.6 
℃

ℎ
  and 19.1 

℃

ℎ
  for two-

phase flow and single-phase flow, respectively. Thus, the time required for raising the 

tank temperature from 25℃ to 70℃ when using two-phase flow is approximately one 

hour and eleven minutes, while the time required for raising the tank temperature from 

25℃ to 70℃  when using single-phase flow is two hours and twenty-four minutes. Also, 

the gained energy from the tank is 848.42 W for two-phase flow 430.98 W for single-

phase flow. The difference between the gained energy in both cases is approximately 

417.44 W. This shows that two-phase flow is better than single-phase flow. Fig. 4.5-e 

illustrates the relationship between the average bulk temperature and tank temperature 

with time for single and two-phase flow. For single-phase flow, Part (e) shows that the 

temperature inside the tank is very close to the average bulk temperature. For two-phase 

flow, between 0 s to 1705 s, the average bulk temperature increases gradually with time, 

from 25.7℃ to 40.4℃, while the tank temperature also increases gradually with time, 

from 22.9℃ to 40.4℃, between 0 s to 1674.8 s.  
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The third experiment is also conducted with a constant flow rate, which is at 2.148 

L/min. As can be noted from Fig. 4.6-a, the outlet temperature increases gradually from 

48.1℃   to 57.8℃ for single-phase flow between 0 s and 1759 s and from 0s to 1759s 

the outlet temperature increases gradually with time, from 43.3 ℃ to 54.3℃, for two-

phase flow. Also, from 0 s to 1759 s the inlet temperature rises gradually from 43.3℃ 

to 52.9℃  for single-phase flow and there is a slight increase in inlet temperature from 

39.7℃ to 49.2℃ for two-phase flow between 0 s to 1759 s. Furthermore, it should be 

noted that the difference between the inlet and outlet temperature (∆𝑇) in both cases, 

single and two-phase, is fairly constant during the experiment, with an average value of 

5.28℃ and 4.85℃ for two-phase and single-phase flow, respectively. Also, there is a 

significant increase in temperature difference from 3.6℃  to 4.9℃ for two-phase flow 

between 0 s to 546 s. Between 546 s and 1759 s the temperature difference increases 

with time and the temperature difference for two-phase flow fluctuates widely during 

the experiment. For single-phase flow, from 0 s to 181 s there is a sudden increase in 

temperature difference from 3.7℃ to 4.15℃ and the temperature difference increases 

gradually with time from 4.2℃  to 4.9℃ between 181s and 1759s. Thus, Fig. 4.6-b 
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Fig.4.5. Transient thermal effectiveness at 1.7071 (L/min) for (a) inlet and 

outlet temperature, (b) temperature difference, (c) heat transfer rate, (d) 

temperature difference in the tank, and (e) average bulk and tank temperature. 
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shows that the temperature difference for two-phase flow is higher than the temperature 

difference for single-phase flow, with an average value of 5.28℃ and 4.85℃ for two-

phase and single-phase flow, respectively. Also, the difference between temperature 

difference for both cases (∆𝑇𝑡𝑜𝑡𝑎𝑙) is approximately 1.09℃. Fig. 4.6-c shows the 

relationship between the heat transfer rate with time for single and two-phase flow, and 

that there is a significant increase in the heat transfer rate from 341.3 W and 457.5 W 

for two-phase flow between 0 s and 455 s. From 455 s to 1759 s, the rate of heat transfer 

rises gradually with time and the heat transfer rate went up and down widely during the 

experiment. For single-phase flow, there are dramatic increases in the heat transfer rate 

from 351.2 W to 406.72 W between 0 s and 151, while there is a gradual increase in the 

heat transfer rate from 406.72 W to 465.3 W between 151s and 1759s. Thus, Part (c) 

illustrates that the heat transfer rate for two-phase flow is higher than the heat transfer 

rate for single-phase flow, with an average value of 523.27 W and 459.09 W for two-

phase and single-phase flow, respectively. The difference between the heat transfer rate 

for two and single-phase flow is approximately 64.18 watts. The heat transfer 

enhancement of two-phase flow is 1.14. Also, Fig. 4.6-d illustrates the relationship 

between the tank temperatures in both cases when the flow rate is 2.148 L/min. The 

tank temperature increases gradually with time for single and two-phase flow. The tank 

temperature for two-phase flow is higher than the tank temperature for single-phase 

flow, which causes the tank temperature slope for two-phase flow to be greater than the 

tank temperature slope for single-phase flow, with a value of 22.7
℃

ℎ
  and 17.8

℃

ℎ
  for two-

phase and single-phase flow, respectively. Furthermore, the time required for heating 

the tank temperature from 25℃ to 70℃  for two-phase flow is approximately one hour 

and fifty-four minutes, while the time required for raising the temperature from 25℃ to 

70℃ for single-phase flow is also approximately two hours and thirty minutes. Thus, 

the obtained energy from the tank for two-phase flow is approximately 512.21 W and 

for single-phase flow is approximately 401.65 W. The difference between the obtained 

energy in both cases is 110.56 w. This shows that the two-phase system is better than 

the single-phase system. Fig. 4.6-e illustrates the relationship between the average bulk 

temperature and tank temperature with time for single and two-phase flow. In this 

experiment, it can be seen in Part (e) that the amount of change in average bulk 
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temperature is close to the amount of change in the temperature inside the tank for single 

and two-phase flow. 
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The flow rate in the fourth experiment is 2.987 L/min. Fig. 4.7-a illustrates that there is 

a sudden increase in the outlet temperature for single-phase flow from 57.7℃  to 60.1℃ 

between 0 s and 60 s. From 60 s to 1759 s there is a gradual increase in outlet 

temperature from 60.1℃  to 67.3℃. Between 0 s and 121 s the inlet temperature rises 

significantly from 54.2℃ to 56.7℃ and between 121 s and 1759 s the inlet temperature 

increases gradually from 56.7℃ to 62.9℃. For two-phase flow, there is a gradual 

increase in the outlet temperature from 57.7℃  to 67.3℃ between 0 s and 1759 s and 

from 0 s to 1759.5 s there is a significant increase in inlet temperature from 54.2℃ to 

62.9℃. Part (a) shows that the difference between inlet and outlet temperature (∆𝑇) is 

relatively stable over the experiment, with a value of 4.45℃  and 4.27℃ for two-phase 

and single-phase flow, respectively. Furthermore, Fig. 4.7-b shows that there is a 

strange relationship between temperature difference and time at the beginning of the 

experiment for single-phase flow because the experiment took time to stabilize. This 

period is identified between 0 s and 333 s and after the period the temperature difference 

for single-phase flow increases gradually from 3.8℃ to 4.3℃ between 333 s and 1758 

s. For two-phase flow, from 0 s to 1759 s there is also a gradual increase in temperature 
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Fig.4.6. Transient thermal effectiveness at 1.7071 (L/min) for (a) inlet and 

outlet temperature, (b) temperature difference, (c) heat transfer rate, (d) 

temperature difference in the tank, and (e) average bulk and tank temperature. 
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difference from 3.6℃ to 4.4℃ for two-phase flow. Thus, the temperature difference for 

two-phase flow is higher than the temperature difference for single-phase flow, with an 

average value of 4.45℃ and 4.27℃ for two-phase flow and single-phase flow, 

respectively. The difference between temperature difference in both cases is 

approximately 1.04℃. Fig.4.7-c shows the relationship between the rate of heat transfer 

with the time for single and two-phase flow. Between 0 s and 30 s, the heat transfer rate 

for single-phase flow increases with time and from 30 s to 333 s there is a drop of 72 W 

in the heat transfer rate due to a stabilization period. Between 333 s and 1758 s, there is 

a gradual increase in the heat transfer rate from 503.8 W to 575.3 W. For two-phase 

flow, the heat transfer rate increases gradually from 478.5 W to 592.1 W between 0 s to 

1759 s. Thus, Part (c) illustrates that the heat transfer rate for two-phase flow is higher 

than the heat transfer rate for single-phase flow, with an average value of 604.4 W and 

571.19 W for two-phase and single-phase flow, respectively. The difference between 

the heat transfer rate for single and two-phase is approximately 33.21 W. The heat 

transfer enhancement of two-phase flow is 1.06. Fig. 4.7-d shows the relationship 

between the tank temperature with time for single and two-phase flow. In the period 

between 0 s and 1759 s there is a gradual increase in tank temperature with time in for 

single and two-phase flow. The tank temperature slope for two-phase flow is greater 

than the tank temperature slope for single-phase flow, with a value of 20.5 
℃

ℎ
 and 14.3 

℃

ℎ
  for two-phase and single-phase flow, respectively. The likely cause is that the tank 

temperature for two-phase flow is higher than the tank temperature for single-phase 

flow. Thus, the time required for raising the tank temperature from 25℃ to 70℃ for 

two-phase flow is approximately two hours and eleven minutes and for single-phase 

flow it is also approximately three hours and six minutes. Also, Part (b) shows that the 

obtained energy from the tank for two-phase flow (𝐸̇𝑇𝑃) is higher than the obtained 

energy from the tank for single-phase flow, with a value of 462.57 W and 322.67 W for 

two-phase and single-phase flow, respectively. This shows that the two-phase flow 

system is better than the single-phase flow system. Fig. 4.7-e illustrates the relationship 

between the average bulk temperature and tank temperature with time for single and 

two-phase flow. For single-phase flow, the temperature inside the tank increases 

gradually from 56.3℃ to 66.6℃ from 0 s to 1758.9 s, while the average bulk temperature 
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also rises gradually from 56.3℃ to 65.5℃ between 0 s to 1758.9 s. The temperature 

inside the tank is higher than the average bulk temperature, with an average value of 

63.1℃ and 61.9℃ for the tank and average bulk temperature, respectively. For two-

phase flow, there is a gradual increase in the temperature inside the tank from 56.6℃ to 

66.5℃ between 0 s and 1759.4 s, while the average temperature also increases gradually 

from 55.9℃ to 65.1℃ between 0 s to 1759.4 s. The tank temperature is higher than the 

average bulk temperature, with an average value of 61.6℃ and 60.5℃ for the tank and 

average bulk temperature, respectively.  

 

As illustrated in Figs. 4.4, 4.5, 4.6, and 4.7 the heat transfer rate enhancement of two-

phase flow is better than single-phase flow due to the various internal circulations 

present in the slugs that eventually led towards a much greater radial rate of heat 

transfer, as well as an increased slug velocity.  
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Fig.4.7. Transient thermal effectiveness at 2.987 (L/min) for (a) inlet and outlet 

temperature, (b) temperature difference, (c) heat transfer rate, (d) temperature 

difference in the tank, and (e) average bulk and tank temperature. 
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Table 4.2. Summary of single-phase (glycol) and two-phase flow (glycol-air) 

experiments. 

 

Test 
Type of 

Experiment 

𝑸̇ 

(L/min) 

𝒎̇ 

(kg/s) 
∆𝐓𝐜(℃) 

∆𝐓

∆𝐭
 (

℃

𝐡
) 

𝑸𝒄 

(W) 

𝑬̇𝒕 

(W) 

Time to 

Heat Tank 

(25℃ to 

70℃) 

1a Single-Phase 0.649 0.0121 9.22 23.1 270.96 512.24 2 

1b Two-Phase 0.657 0.0122 10.06 34.7 298.23 782.9 1:18 

2a Single-Phase 1.702 0.0316 5.13 19.1 394.48 430.98 2:24 

2b Two-Phase 1.712 0.0318 5.19 37.6 401.06 848.42 1:12 

3a Single-Phase 2.068 0.0389 4.86 17.8 459.09 401.65 2:30 

3b Two-Phase 2.198 0.0408 5.28 22.7 523.27 512.21 1:54 

4a Single-Phase 2.963 0.0550 4.27 14.3 571.19 322.67 3:06 

4b Two-Phase 3.012 0.0559 4.45 20.5 604.57 462.57 2:12 

 

 

Table 4.3. Experimental heat transfer enhancement of a two-phase flow solar collector 

 

Tes

t 

Type of 

Experimen

t 

𝑸̇ 
(L/min) 

𝒎̇ 

(kg/s) 
∆𝐓𝐜(℃) 

∆𝐓

∆𝐭
 (

℃

𝐡
) 

𝑸𝒄 

(W) 
𝑬𝒏𝒉𝑻𝒘𝒐−𝑷𝒉𝒂𝒔𝒆 %𝑬𝒏𝒉𝑻𝒘𝒐−𝑷𝒉𝒂𝒔𝒆 

1a Single-Phase 
0.64

9 

0.012

1 
9.22 23.1 

270.9

6 
1.10 10 

1b Two-Phase 
0.65

7 

0.012

2 
10.06 34.7 

298.2

3 

2a Single-Phase 
1.70

2 

0.031

6 
5.13 19.1 

394.4

8 
1.01 1.67 

2b Two-Phase 
1.71

2 

0.031

8 
5.19 37.6 

401.0

6 

3a Single-Phase 
2.06

8 

0.038

9 
4.86 17.8 

459.0

9 
1.14 14 

3b Two-Phase 
2.19

8 

0.040

8 
5.28 22.7 

523.2

7 

4a Single-Phase 
2.96

3 

0.055

0 
4.27 14.3 

571.1

9 
1.06 5.8 

4b Two-Phase 
3.01

2 

0.055

9 
4.45 20.5 

604.5

7 
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4.5 Experiments at Variable Liquid Void Fraction 

The four experiments for two-phase flow are conducted with different liquid length (𝐿𝑙) 

and air plug length (𝐿𝑔), as well as one experiment for single-phase. All these 

experiments are also conducted with the same flow rate, which is approximately 1.3 

L/min.  

Table 4.4. Summary of Experiments at Variable Liquid Void Fraction.  

Test 
Type of 

Experiment 

𝑸̇ 

(L/min) 

𝒎̇ 

(kg/s) 
𝑳𝒍 (cm) 

𝑳𝒈 

(cm) 
𝜶𝒍 

∆𝑻𝒄 

(℃) 

𝑸𝒄 

(W) 

1 Two-Phase 1.368 0.02542 9.7 2.5 0.79 6.38 393.72 

2 Two-Phase 1.306 0.02426 4.7 4.5 0.51 6.96 410.20 

3 Two-Phase 1.369 0.02543 9.7 4.9 0.66 6.68 412.87 

4 Two-Phase 1.331 0.02473 5 5.2 0.5 7.09 425.50 

5 Single-Phase 1.302 0.0242 ………… 0 1 5.91 347.55 

 

 

The liquid void friction (𝛼𝑙) for the first experiment is 0.79 and the flow rate (𝑄̇) is 

1.368 (L/min). Fig. 4.8-a shows the relationship between inlet and outlet temperature 

with time. From 0 s to 60 s, the outlet temperature for two-phase flow increases from 

51.2℃ to 52.8℃, and between 60 s to 1759.6 s there is a gradual increase in outlet 

temperature from 52.8℃ to 60.5℃. Between 0 s and 1759.6 s the inlet temperature rises 

gradually from 46.7℃ to 54.1 ℃. As can be seen from Part (a), the outlet temperature 

is higher than the inlet temperature, with average values of 60.50℃ and 54.12℃ for the 

outlet and inlet temperature, respectively. The difference between inlet and outlet (∆𝑇) 

temperature remains constant during the experiment, with an average value of 6.38℃. 

Fig. 4.8-b illustrates the relationship between the heat transfer rate (𝑄) and the time 

when the liquid void friction is 0.79, with a flow rate of 1.368 L/min. The heat transfer 

rate increases from 278.6 W to 384.6 W between 0 s and 151.6 s. Between 151.6 s to 

1577.7 s, the heat transfer rate rises slowly from 384.6 W to 413 W. Between 1577.7 s 

to 1759.6 s the heat transfer rate goes down, due to the fact that thermal loss occurs in 

the insulated pipe. The rate of heat transfer (𝑄) during the experiment is approximately 

393.72 W. Fig.4.8-c illustrates the transient relationship between average bulk 

temperature (𝑇𝑏
̅̅ ̅) and tank temperature (𝑇𝑇𝑎𝑛𝑘) for two-phase flow, when the liquid 
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void fraction is 0.79 and flow rate is 1.368 L/min. In this experiment, it can be seen in 

Part (c) that the temperature inside the tank rises gradually from 50.2℃ to 57.9℃ 

between 0 s to 1759.6 s, while there is a gradual increase in average bulk temperature 

from 48.9 ℃ to 57.3℃ between 0 s to 1759.6 s. Part (c) illustrates that the tank 

temperature is higher than the average bulk temperature, with an average value of 

54.04℃ and 53.54℃ for the tank and average bulk temperature, respectively. The 

difference between the tank and average bulk temperature is approximately 0.5℃. 
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The flow rate in the second experiment (𝑄̇) is 1.306 L/min and the liquid void fraction 

(𝛼𝑙) is 0.51. Fig. 4.9-a illustrates the transient relationship between inlet and outlet 

temperature. There is a gradual increase in outlet temperature from 56.9℃ to 64.2℃ 

between 0 s to 1766.1 s, and the outlet temperature for two-phase flow increases from 

51.2℃ to 52.8℃ between 60 s to 1759.6 s. The inlet temperature for this experiment 

increases slowly from 51.2℃ to 57.3℃ between 0 s to 17766.1 s. Also, Part (a) shows 

that the outlet temperature is greater than the inlet temperature, with an average value 

of 64.23℃ and 57.27℃ for outlet and inlet temperature, respectively. The temperature 

difference (∆𝑇2) for this experiment is higher than the temperature difference for the 

first experiment(∆𝑇1), with an average value of 6.96℃ and 6.38℃ for the second and 

first experiment, respectively. The temperature difference between the first and second 

experiment is 1.09℃. Fig.4.9-b shows the relationship between the heat transfer rate 

and time when the liquid void fraction is 0.51 and flow rate is 1.306 L/min.  There is a 

gradual increase in the rate of heat transfer from 330.9 W to 410.257 W between 0 s 

and 1766.1 s. The heat transfer rate for this experiment is higher than the heat transfer 

rate for the first experiment, with average values of 410.25 W and 393.72 W for the 

second and first experiment, respectively. Part (b) illustrates the transient relationship 

Fig.4.8. Transient thermal effectiveness for two-phase flow at 1.368 (L/min) 

and liquid void fraction of 0.79 for (a) inlet and outlet temperature, (b) heat 

transfer rate, and  (c) average bulk and tank temperature. 
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between the average bulk temperature and tank temperature when the liquid void 

friction is 0.51 and flow rate is 1.306 L/min. It can be seen in Fig.4.9-c that the 

temperature inside the tank increases gradually from 54.8℃ to 62.4℃ between 0 s to 

1766.1 s. Also, there is a gradual increase in average bulk temperature from 54.1℃ to 

60℃ between 0 s to 1766.1 s. Part (c) illustrates that the tank temperature is higher than 

the average bulk temperature, with an average value of 58.56℃ and 57.46 ℃ for the 

tank and average bulk temperature, respectively. The difference between the tank and 

average bulk temperature is approximately 1.1℃.  
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The third experiment is conducted when the liquid void friction (𝛼𝑙) is 0.66 and flow 

rate is 1.369 L/min. Fig.4.10-a shows the transient relationship between inlet and outlet 

temperature. From 0 s to 30 s, the outlet temperature increases from 58.5℃ to 59.8℃ 

and between 30 s to 1759.5 s there is a gradual increase in outlet temperature from 

59.8℃ to 66.4℃. Between 0 s and 1759.6 s the inlet temperature rises slowly from 

54.9℃ to 59.7℃. As can be seen from Part (a) the difference between inlet and outlet 

(∆𝑇) temperature remains constant during the experiment, with a value of 6.68℃. Fig. 

4.10-b illustrates the relationship between the heat transfer rate and time when the liquid 

void fraction is 0.66 and flow rate is 1.369 L/min.  The heat transfer rate increases from 

222.1 W to 339.8 W between 0 s and 60 s and between 60 s to 1516.8 s the heat transfer 

rate rises slowly from 339.7 W to 428 W. Between 1516.8 s to 1759.4 s the heat transfer 

rate decreases due to the fact that the loss occurs in an insulated pipe. The heat transfer 

rate during the experiment is approximately 412.87 W. Part (b) illustrates the transient 

relationship between average bulk temperature and tank temperature when the liquid 

void fraction is 0.66 and flow rate is 1.369 L/min. It can be seen in Fig. 4.10-c that there 

is a gradual increase in the temperature inside the tank, from 58.7℃ to 64.5℃, between 

0 s to 1759.5 s. Also, there is an increase in average bulk temperature from 56.7 ℃ to 
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Fig.4.9. Transient thermal effectiveness for two-phase flow at 1.306 (L/min) 

and liquid void fraction of 0.51 for (a) inlet and outlet temperature, (b) heat 

transfer rate, and  (c) average bulk and tank temperature. 
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57.6℃ between 0 s to 60 s and between 60 s to 1759.5 s the average bulk temperature 

increases gradually from 57.6℃ to 63.1℃. Part (c) illustrates that the tank temperature 

is higher than the average bulk temperature, with an average value of 61.54℃ and 60.24 

℃ for the tank and average bulk temperature, respectively. The difference between the 

tank and average bulk temperature is approximately 1.3℃. 
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The liquid void fraction (𝛼𝑙) for the fourth experiment is 0.5 and the flow rate is 1.331 

L/min. Fig. 4.11-a shows the transient relationship between inlet and outlet temperature. 

From 0 s to 60 s, the outlet temperature for two-phase flow increases from 60.6℃ to 

62.3℃ and between 60 s to 1759.4 s there is a gradual increase in outlet temperature 

from 62.3℃ to 68.1℃. Between 0 s and 1759.4 s the inlet temperature rises gradually 

from 56.8℃ to 61.1℃. As can be seen from Part (a), the difference between inlet and 

outlet (∆𝑇) temperature remains constant during the experiment, with an average value 

of 7.09℃. Fig. 4.11-b illustrates the relationship between the heat transfer rate and time 

when the liquid void fraction is 0.5 and flow rate is 1.331 L/min.  The heat transfer rate 

increases from 228.6 W to 370.3 W between 0 s and 181.9 s and between 181.9 s to 

1182.9 s the heat transfer rate rises slowly from 370.3 W to 418.54 W. Between 1182.9 

s to 1486.4 s the heat transfer rate decreases from 418.5 W to 403.0 W due to the fact 

that the loss occurs in an insulated pipe. The heat transfer rate starts to increase gradually 

from 403 W to 425.5 W between 1486.4 s to 1759.4 s. Part (b) illustrates that the heat 

transfer rate during the experiment is approximately 425.49 W. Fig. 4.11-c illustrates 

the transient relationship between average bulk temperature and tank temperature when 

the liquid void fraction is 0.5 and flow rate is 1.331 L/min. It can be seen in Part (c) that 
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Fig.4.10. Transient thermal effectiveness for two-phase flow at 1.369 (L/min) 

and liquid void fraction of 0.66 for (a) inlet and outlet temperature, (b) heat 

transfer rate, and  (c) average bulk and tank temperature. 
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the temperature inside the tank increases gradually from 60.8℃ to 66.7℃ between 0 s 

to 1759.5 s. Also, there is an increase in average bulk temperature from 58.7 ℃ to 59.5℃ 

between 0 s to 60, and from 60 s to 1759.5 s the average bulk temperature increases 

gradually from 59.5℃ to 64.6℃. Part (c) illustrates that the tank temperature is higher 

than the average bulk temperature, with an average value of 63.60℃ and 61.91 ℃ for 

the tank and average bulk temperature, respectively. The difference between tank and 

average bulk temperature is approximately 1.69℃.  
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The sixth experiment is single-phase used to compare with the results of the two-phase 

experiments. The flow rate is 1.302 L/min and the liquid void fraction (𝛼𝑙) is 1 unit. As 

can be seen from Table 4.5, the difference between inlet and outlet (∆𝑇) temperature 

remains constant during the experiment, with a value of 5.91℃. As presented in Table 

4.5, the heat transfer rate during the experiment is approximately 347.55 Watts. This 

shows that the two-phase flow system is better than the single-phase flow system.  

 Fig. 4.12 and Fig. 4.13 show the transient relationship between two-phase tank 

temperature at a different flow rate and different liquid void fraction(𝛼𝑙). The tank 

temperature in all experiments increases gradually. The tank temperature increases 

more quickly when the flow rate is 0.657 L/min and slower when the flow rate is 3.012 

L/min. As illustrated in Fig. 4.13, the largest increase in temperature inside the tank 

occurs when the liquid void fraction is 0.79, while the lowest increase in temperature 

occurs when the liquid void fraction is 0.66.  
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Fig.4.11. Transient thermal effectiveness for two-phase flow at 1.331 (L/min) 

and liquid void fraction of 0.5 for (a) inlet and outlet temperature, (b) heat 

transfer rate, and  (c) average bulk and tank temperature. 
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Fig.4.13. Transient tank temperature at different liquid void fractions 
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Chapter 5 

Conclusion and Recommendations 

5.1 Conclusion of Present study 

The present study is used to examine two-phase segmented flow as a working fluid in a 

solar thermal collector. An introduction to this study included the definition and 

applications of two-phase flow, flow patterns in two positions, vertical and horizontal 

positions and types of solar water heating systems. The literature related to two-phase 

segmented flow was presented. The mechanism of heat transfer enhancement and the 

heat transfer coefficient in internal flow were illustrated. Next, the basic relations in 

two-phase flow, important dimensionless numbers, and a pressure drop that occurred in 

the pipe were presented. The system configuration was also shown. Finally, the 

experimental results were presented. 

 

     The results from single-phase flow were compared to two-phase segmented flow. 

The results illustrated that the heat transfer rate and the temperature difference between 

the entrance and exit of the solar thermal collector for two-phase flow were higher than 

for single-phase flow. Also, the experimental results showed that the time required for 

heating the temperature inside the tank from 25℃ to 70℃ for two-phase flow was less 

than for single-phase flow. Also, the obtained energy in the tank for two-phase flow 

was greater than for single-phase flow. Four experiments at equivalent flow rates were 

conducted to examine the effects of liquid void fraction. The results of these 

experiments showed that the heat transfer rate was highest when the liquid length was 

5 cm and air plug length was 5.2 cm. The heat transfer rate was lowest when the liquid 

length was 9.7 cm and air plug length was 2.5 cm.  
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5.2 Recommendations for Future Work 

To improve two-phase segmented flow as a working fluid in solar thermal collectors 

there are some modifications that must be made. 

i)  The size of the tube was a little large, which led to air bubbles not occupying 

the full diameter of the tube. The reason was that the air that entered the flow 

loop was not sufficient, so the effect of gravity was considerable. 

ii) The compressor was adjusted to give maximum output pressure, with a value 

of 125 psi, and then the compressor switched off. The minimum output 

pressure was also adjusted at 75 psi. When the compressor reached this 

value, the compressor began to charge again. The experiment was initiated 

when the maximum output pressure was 152 psi, but after a few minutes the 

pressure inside the compressor decreased and changed the size of the air 

bubbles. It is a good idea to use a compressor that provides the same rate of 

air when the experiments are running. 

iii) The T-type probes used to measure the inlet and outlet temperature should 

be installed closer to the entrance and exit of the solar thermal collector and 

two T-type probes should be added to the experiment, one installed close to 

the tank entrance and a second installed at the tank exit. These T-type probes 

can measure the difference between inlet and outlet tank temperature. 

iv) Several thermocouples should also be installed in the solar collector to 

measure surface temperatures. 

v) Temperature and pressure gauges should be added to the experiment.  

vi) Need to assess the gas heating rate during compression.  

vii) Need to determine thermal losses from uninsulated pipe.  

viii) Need to do outdoor tests in sunny weather. 

ix) Also, the two-phase segmented flow should be tested as a working fluid in 

a solar thermal collector in different orientations, such as horizontal, vertical, 

and angle positions.   
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Appendix A 

Solar Thermal Collector Specification 
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Appendix B 

Compressor Specifications 
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Length 26.25 in 

Width 11.37 in 

Height 27.5 in 

Weight 70 lbs 

SCFM AT 40 PSI 5.5 

SCFM AT 90 PSI 3.8 

Lubrication Oil-Free 

Tank Capacity 8 gal 

Maximum Pressure 150 PSI 

Running HP 1.3 

Style Horizontal 

Voltage 120 V 

Motor Induction 

Power Type Electric 
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Appendix C 

Solenoid Valve Specifications 
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Appendix D 

PIC Microcontroller Code 
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Appendix E 

Measurement Devices Specifications 
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Appendix F 

Turbine Flow Meter Specifications 
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