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Abstract

Crack detec m in cylindrical rotor shafts is an important area for research. Crack
detection in cylindrical rotor shaft is a difficult task because the changes observed in the
vibration characteristics of the shafts, even in the presence of large-sized cracks are very
small. Early entification of the presence of cracks becomes essential to prevent sudden
failures of rc  ting shafts. The problem of detecting cracks in shafts cannot be solved
analytically  thout making many assumptions. Therefore, extensive experimental and
numerical ar  ysis is required, using modal testing and appropriate numerical techniques
such as the Finite Element Method (FEM), for the identification of cracking in rotor

shafts.

In this study experimental and numerical investigations were carried out to identify the
presence of a crack in a cylindrical overhanging rotor shaft with a propeller attached to
the free end of the rotor. The rotor shaft was supported on a test frame using two
supports. The rotor shaft had a cantilevered portion carrying the propell  The rotor shaft

was supported using ball bearings that were attached to the two test frame supports.

In the experimental study, cracks of different depths were created on the shaft at the

position of the maximum bending moment. The shaft’s vibration responses for lateral and
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torsional vibrations were measured using an accelerometer, and shear strain gages fixed
at three different locations, respectively. The response parameters of the shaft were then

obtained usii  the modal analysis software, LMS Test Lab™

. These experimental results
were used t validate the numerical results obtained from a finite element analysis

(ANSYS) using the beam element, BEAM4, and the three-dimensional iso-parametric

elements (element types 186 and 187).

A finite element model for the shaft and its supports was created using the beam element
“BEAM4” available in the ANSYS software package to simulate the 'namic response
of un-cracked and cracked shafts. In this study, a linear “three-to six- spring” model was
used to represent the elastic deformation effects of each of the two ball bearings,
supporting the shaft, over the frame supports. The number, nature and stiffness values of
these spring constants were determined to obtain the best agreement between the
experimental and numerical results for the uncracked shaft. The stress intensity effects

caused by the existence of cracks were simulated using a short beam element.

Subsequently a numerical study was performed using finite element models for the un-
cracked and the cracked shafts (with varying crack depths) which were created using 3-D
1so-parametric elements (element types 186 and 187), available in the ANSYS FEM
program. The open crack was embedded in the shaft and the mesh generation was
suitably modified to incorporate the stress intensity effects present at the crack tip. The
impedance and mobility frequency response functions were used to identify the crack

depth in the shaft system. Impedance and mobility were measured and simulated



numerically in the vertical direction for the resonant frequencies and anti-resonant
frequencies. The results indicated that the use of the rate of change of 1 quencies, modal
amplitudes (of displacements, velocities and accelerations) as a functi | of crack depth
ratio can successfully predict the presence of cracks in the shaft for cracks having depth
to diameter ratio greater than 0.2. The results also showed that the rate of change of the
frequency of torsional vibration can be used successfully to predict the presence of cracks

of smaller depth ratio.

Using the terminology existing in the literature, the approach developed in this study will
provide a sound and robust procedure for a third level of damage assessment (wherein the

crack depth is determined) by using vibration techniques.
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the crack depth is more than 50% of the shaft diameter, it is very difficult to detect the
presence of any crack in a rotating shaft with the use of methodologies used for crack
detection in beam-type of structures. Hence early identification of crack existence

becomes essential to prevent sudden failures in rotating shafts.

According to Wauer (1990) and Dimarogonas (1996), the vibrational behaviour of
cracked shafts has received considerable attention during the last four decades. The
diagnosis of these cracked shafts remains problematic. Sometimes, it is difficult to find
differences between successive states of vibration, even if the crack is medium sized.
Thus, it 1s of the utmost importance to discover the identifiable specific characteristics of

the cracked shaft at the earlier possible instance.

There are two stages in crack development: crack initiation, and crack ropagation. The
former is caused by mechanical stress raisers, such as sharp keyways, abrupt cross-
sectional changes, heavy shrink fits, dents and grooves, and/or metallurgical factors, such
as flaws, fretting and forging. The latter stage, namely, crack propagation, can accelerate
the growth rate under different conditions such as operating faults generated during
sustained surging in compressors, negative sequence current or grounding faults in
generators and coupled turbines, the presence of residual stresses in the rotor material,
thermal stresses, and environmental conditions such as the presence of a corrosive
medium. Also, from the physical morphology of a cracked rotor, cracks can be classified
based on their geometries and orientation as follows: cracks perpendicular to the shaft

axis are known as transverse cracks; cracks parallel to the shaft axis are known as







elements such as gears, pulleys, flywheels, cranks, and sprockets. Most rotor shafts are
made for transmitting the torque to output elements. Keys, splines, setscrews, pins, press
or shrink fits, and tapered fits are common torque-transfer elements. Usually rotor shafts
are manufactured from cold-drawn or hot-rolled, and low carbon steels. The
manufacturing process depends on the use of the rotor shaft used. Low carbon steel may
be used to manufacture low strength shafts, while high strength shafts are made using

heat treated medium or high carbon steel.

Rotor shafts have many engineering applications. Marine drive shaft as shown in Figures
1.1 and 1.2 (Nautic, 2012; Rolls-Royce plc, 2012), and power plant shafts as shown in
Figure 1.3 (Doosan, 2012)) are some of these applications. These shafts operate in harsh
conditions and are subjected to high stresses. As a result of these stresses, defects develop
and may cause deterioration in performance of the equipment leading ultimately to full
system damage. The early prediction may help in preventing of major damage to humans

and structures.

In the present study, the aim is to model a typical rotor shaft. Experimental and
analytical approaches are used to detect the presence of cracks. The scope of the present
study can be summarized as follows: (i) To carry out an experimental investigation to
identify the presence of transverse cracks on a shaft, having a cantilever overhang; (ii) To
correlate the above experimental results through numerical analysis using ANSYS finite
clement software; and (iii) To define parameters for the detection of the crack occurrence

in the shaft-propeller-bearing system.







1.3 OQOutline of the thesis

The thesis contains two major components:

(i) An experimental study of the vibration of rotor shafts. Modal analysis software,

LMS Test Lab™; has been used to analyze the results.

(i1) A numerical analysis for the vibrations of both un-cracked & | cracked shafts

modeled using a finite element procedure (ANSYS).
The thesis is organized as follows:

Chapter 1 provides a brief introduction of vibrational concepts, the vibrational behaviour
of cracked shafts, types of cracks, types of vibrations, the scope of work, and the

objectives of this study as well as the outline of the thesis.

Chapter 2 presents a review of experimental and numerical studies available in the
literature dealing with the effects of different types of cracks on the lateral and torsional

vibrations of rotor shafts.

Chapter 3 describes the details for fabricating a shaft-propeller-bearing test rig, the
experimental setup, test equipment, their calibration, basic testing procedures and

experimental results obtained.

Details of numerical modeling of the uncracked and cracked rotor aft system with
bearings, propellers and frame supports for lateral and torsional vibrations using beam
elements are given in Chapter 4. The numerical and experimental results are compared

and discussed in this chapter.



Crack detection in shafts using lateral and torsional vibration measurements and

numerical analyses are described in Chapter 5. Modeling of shaft-bearing-support system
is carried out using ANSYS Workbench and three-dimensional solid elements. Mesh
convergence study, modelling of contact behaviour, materials used, analyses and

comparison of numerical/experimental results are also given in this chapter.

Chapter 6 presents the crack detection procedure in shafts using mechanical impedance

measurements. This chapter includes the following sections:

(i) The relationship between input and output of the dynamic response of a rotating

shafft,

(i1) Computing the mechanical impedance for multi-degree-of-freedom systems;

(111)Presentation and discussion of the results and reporting of salient findings.

Finally, Chapter 7 contains conclusions and recommendations for future study. It
summarizes the findings from the experimental and numerical investigations carried out

in this study. It also highlights the salient findings from this research investigation.



Chapter 2

Literature Review

2.1 Introduction

The appearance of transverse cracks in overhanging shafts having propellers carries with
it a greater risk of sudden collapse. Even though the presence of a crack may not lead to
sudden failure, it will affect considerably its dynamic behaviour. In the last four decades,
many numerical and experimental studies have been carried out to identify the effects of
different type of cracks, such as transverse, longitudinal, slant, breathing cracks and
notches. In these studies the researchers have used various methods to identify crack
presence in structures, viz., (i) Traditional vibration-based methods using modal testing
and numerical analysis and others using conventional neural networks wavelet and fuzzy
logic procedures; and (i1) Non-traditional methods based on ultrasor : guided waves,
structural intensity, magnetic induction, radio frequency identification tag, acoustic
intensity and acoustic Laser-Doppler Vibrometer (Sabnavis et al. 200¢  However, these
non-traditional methods are only applicable to specific situations where e crack location
is known in an approximate manner. Therefore, researchers have sought better and more
efficient procedures for crack detection and identification through vibration analysis,
whether using Fast Fourier Transform (FFT) methods, time domain responses or other

nonlinear estimation of dynamic response.

The reviewed literature is classified into two categories; viz., (i) Experimental approach;

and (ii) Analytical approach. The experimental approach is classified into two



subsections, viz., modal testing and non-destructive test methods. The analytical
approaches are used to simulate the behaviour of the structural model with the damage
present and to correlate the experimentally observed vibration signature. This approach
has been classified into four subsections: detection and monitoring of cracks using
mechanical impedance, investigation through the finite element approach, analysis
through nonlinear dynamics of cracked rotors, and crack detection methods through

several other techniques.

2.2 Experimental Approach

2.2.1 Introduction

[t has been observed that experimental studies have been preferred more than numerical
ones while carrying out crack detection and identifications. Several variables and system
characteristics such as natural frequencies, mode shapes, and damping ratios are changed
under the presence of a crack. These dynamic characteristics are often measured through

experimental modal analysis and are the focus of vibration based crack assessment.

2.2.2 Crack Detection and Modal Testing

Many researchers have used modal testing in different applications to detect material
defects and to extract the frequencies, damping and mode shapes of the tested system.
Over the past six decades the experimental modal analyses have focused on two
approaches, viz., (1) Those methods based on frequency and damping estimation using

(FFT) methods; and (ii) Those based on time-domain complex exponential methods



utilizing polynomial functions (Allemang, 1990). In both the approaches, the procedures

start with the consideration of the basic matrix vibration equation given by
[M i)+ [l + K Jix) = {0} @.1)

where [M], [C] and [K] are the system mass, damping and stiffness matrices, ¥, X and
{x} are the system response parameters (viz., accelerations, velocities and

displacements), and {f} the forcing functions causing the system motion.

Frequency response function procedures use the solution approach given by

{X (0)} = [H (0)] {F (w)} (2.2)

where {X (o)} is the output, {F(w)} is the input and [H(®)] is the matrix of frequency

response functions.

The time-domain complex exponential approaches use Laplace transform approaches

using impulse response functions and can be expressed as

[AT[X(s)] = [B] {F(s)} (2.3)

where [A] represents the system matrices in the Laplace domain, X(s) represents the
system response in the Laplace domain, [B] represents the forcing function matrices in
the Laplace domain and {F(s)} is the forcing function in the Laplace domain. Most of
the other procedures developed for vibration analysis can be traced to these two
approaches. based on frequency domain (FFT) procedures, or time domain impulse

response function using Laplace transform procedures.
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In the following sections some of the modal testing experimental studies carried out on

cracked beams and rotor shafts are reviewed to highlight the different approaches used

for the purpose.

2.2.2.1 Beam

Rytter (1993) studied vibration based inspection to measure dynamic characteristics of
the beam and identify the location and the size of the damage that can occur in the
structure. He has carried out an extensive survey of the studies carried out on crack
detection and identification. He  used short beam elements in his study and he
mentioned that this model has been used before [Kirsmer, (1944), Thomson, (1949) and
Petroski, (1981)] but either gives a general solution to the problem. He implemented and

tested these and other models using simulation as well as experimental results.

Doebling, et al. (1996) reviewed literature on the damage identification and health
monitoring of structural and mechanical systems from changes in their vibration
characteristics. He was mainly concerned with the structural damage and the procedures
used to measure structural vibration response. Additionally, he reviewed the majority of
the experimental studies carried out earlier and was considering only the problem of
linear damage detection. Also he succinctly reviewed the historical development of the
damage-identification methods and applications. In this report, the author mentioned that
the modal frequencies, mode shapes and measured flexibility coefficients were used in
the analysis technique in many of the articles. Some articles also used property matrices

in detection of nonlinear response and damage detection. He summarized the types of
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civil engineering structures that have received considerable attention in the literature such

as beams, trusses, plates, shells, bridges, offshore platforms, aerospace structures and
composite structures. In general, the scope of this report could be summarized as follows:
(1) Methods that used the change in modal properties to identify the changes that occur in
the mechanical properties; (ii) Some application techniques that could help to solve some
intricate engineering problems; and (iii) Presentation of some recommendations for future

studies.

Schwarz and Richardson (1999) reviewed some of the important articles related to modal
testing during the past 30 years. They covered three aspects in this paper, viz., frequency
response function measurement techniques, sources of excitation, and methods to extract
modal parameters directly from a set of FRF measurements (frequency, damping, and
mode shape). Frequencies, damping and mode shapes were estimated. Also they stated
that the mode shapes were obtained from peak values of the imaginary part of the FRF
when they used displacement and acceleration FRFs; also mode shape components were

obtained from peak values of the real part of the FRF when they used velocity FRF.

Owolabi (2001, 2003) carried out an experimental study to investigate the presence of a
crack on two types of aluminum beams, viz., those with fixed-fixed and simply supported
boundary conditions. He developed methodologies to detect crack location and size. He
used modal testing technique (STAR structural analysis) and applied a sinusoidal force at
a particular point (sine sweep method) on the structure (close to the center of the model)

to measure the first three natural frequencies and the changes in slopes of the mode
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shapes as well as the acceleration frequency responses at seven different location on each
beam with different crack depth ratios, which are the ratios of the depths of the crack to
the diameter of the shaft, (varied from 10% to 70%). He compared these results with the
previous theoretical work carried out by Yang, et al. (2000) and found a good agreement.
He mentioned that this technique could be used as a diagnostic tool to identify cracks in

beams.

Downer (2010) used the modal testing and design of experiments approach to extract the
frequencies, mode shapes and damping ratio. He also determined the effect of various
structural factors on a measured response and related the modal frequencies to these
structural parameters (defect size and location). He used two types of beams, viz., a
cantilever beam (clamped-free) and a real prototype beam (Electric transmission tower
wooden poles). He used two types of non-destructive test methods to detect hidden
internal defects and the strength of the poles. Additionally from the experimental work he
created regression models of multiple modal frequencies of the beam by using the theory
of the design of experiments. The author mentioned that once the regression models were
acquired it can be easily used to detect defects in the poles. Finite element analysis also
was carried out to validate his experimental work. One of the best results in this research
1s the capability to predict the maximum stress of specimens by using regression models

instead of commercial ultrasonic NDT equipment.

Elshafey et al. (2011) used modal test technique and presented their damage model on the

basis of detailed experimental investigations. They used a steel beam fixed at one end and
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hinged at the other to identify the occurrence and location of structural damage by using
the change in the mode shapes. The vibration frequencies and mode shapes as well as
FRF (Frequency Response Function) function were used. They reported that better results
for identifying the structural damage were obtained when they used the results of second

mode.

Fayyadh and Abdul Razak (2011) applied a mode shape weighting function method to
detect cracks on a steel beam based on the change of natural frequencies, mode shape,
and stiffness. Weighting function method could be estimated based on the area under the
curve of the mode shapes which represented the change in the bending stiffness EI They
used modal testing technique to obtain modal parameters for un-cracked and cracked
steel beam. At the mid-span of steel beam (75mm width and 180mm depth) different
depths of cuts were made (2, 5, 10, and 20 mm with a constant width of 2 mm). Twelve
accelerometers with a sensitivity of 100 mV/g and a force transducer at a fixed point
were used to pick up the responses and excitation of the beam, respectively. Additionally,
they obtained modal frequencies, damping, frequency response functions for the first four
mode shapes and predicted the presence of a crack. They concluded that the mode shapes
one and three were more sensitive than mode shapes two and four to detect crack on the
beam. He also observed that the weighting function method does not have the sensitivity

of the crack detection algorithms for identifying natural frequencies or mode shapes.
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2.2.2.2 Rotor shaft

Wauer (1990) reviewed literature on the dynamics of cracked rotors. He covered papers
related the dynamics of cracked rotors published since 1944. In this review he also
covered studies used for modeling of the cracked part of the structure as well as

diagnostic techniques procedures that were available to detect crack on the structures.

Thompson (1991) used smooth and notched shafts of aluminum 2024-T351 for his
experimental work. The main objective of his work was to study the growth of a surface
crack by using experimental and analytical studies (3D-FEA). In both cases, he used
smooth shafts and fillet notched shafts. These shafts were subjected to constant amplitude
tensile and torsional loads. He focused on the small crack growth rate, and evaluated the
effect of this crack on the fatigue life by applying the linear elastic fracture mechanics
(LEFM) prediction technique and accounted for small crack deviations from LEFM
behaviour. Also, he studied the effect of shear lip growth on the surface crack under the
effect of a fillet notch and a torsional load. He mentioned that most crack shapes
considered in circular shafts were straight, semi-elliptical fronted cracks. From this
experimental study, he determined that if the surface crack’s length was greater than 0.02
inches, the fatigue life predictions were perfect for all cases. But when larger cracks were
used in the notched-torsional case, the prediction results from finite element models were
not reliable. Also, he determined that the LEFM is acceptable to predict surface crack

growth rates in torsion if it is used at low loads with long growing cracks.
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Hamidi et al. (1992) developed two mathematical models (using three-dimensional stress
intensity factors at the crack region) to determine the bending natural frequencies of a
rotor. They used natural frequencies, mode shapes and frequency response functions to
identify the presence of a crack. The analytical methods were compared with the results
of experimental measurements. The following conclusions were made: (i) When crack
depth was more than 30% of the shaft radius, the rate of change of natural frequencies
was very high; and (ii) The speed of rotating shaft did not affect the values of natural

frequencies; this was probably due to the fact that the stiffness of the shafts were not

reduced significantly by the rotating speed effects on the shaft.

Wang et al (1992) stated that the natural frequencies of systems with many complicated
coupling mechanisms were difficult to predict. Therefore, it was necessary to perform a
certain number of tests on these mechanical subsystems to determine the probable
vibration problems in design. Moreover a study of both torsional and translational
motions of a rotating drive shaft was important in understanding the problems associated
with dynamic behaviour. However, it is not easy to measure the vibration when the shaft
was rotating (on-line). The authors mentioned several conventional methods for
measuring torsional vibration by using slip rings, accelerometers, and strain gauges on
the rotating shaft. In addition, they also mentioned an up-and-coming popular method by
using non-contact transducers. In their work, the authors used a special measurement
system which included: (1) Sensors, probes and light sources (optical module). Also, the
optical module contained a source of light, lens, and branches of fibre cable; (2) A data

acquisition/transmission module; and (3) A data analysis software package. In the paper,
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the torsional measurement system was designed simultaneously to measure both torsional

and translational motions at certain points along the rotating shaft.

Munoz et al. (1997) applied a modal testing procedure to detect a crack on an off-line
rotor. The changes in rotor shaft frequencies gave a good indication of the presence of
cracks. They stated that the method can be used to detect cracks of areas greater than
2.5% of the rotor cross-sectional area; but this claim seems to be rather exaggerated from

other studies published on the same subject.

Dorfman and Trubelja (1999) used a simplified model of the Turbine Generator system to
examine the influence of cracks in the shaft. This model showed the relationship between
the shaft excitation forces which represented input to the model and the shaft torsional
vibration response which represented the output. This ratio (output to the input) is known
as the transfer function. The transfer function is basically dependent on the mass,
stiffness, and damping of the shaft. They found that a properly designed data acquisition
monitoring system, such as Structural Integrity Associate’s Transient Torsional Vibration
Monitor System (SI-TTVMS), would give a good signal and detect rotor faults before

failure.

Adewusi (2000) conducted an experimental study on a rotor shaft with a transverse
surface crack. In his study, he investigated the influences of a propagating and non-
propagating crack with and without transverse load on the dynamic response of rotor
shafts. That investigation gave some relevant information that can be used to detect the

crack in a rotating shaft. In the experimental setup, he used simply supported and
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overhanging shafts. He divided the results of this study into two categories, viz.,

conventional analysis and wavelet analysis results. These two parts were further
categorized under: start-up data (Bode plots and frequency cascades) and steady state
data (Frequency waterfalls and orbits). Surface notch and surface slot of pre-defined
depth were the two types of transverse crack shapes that were considered. The depths of
cracks used varied between Imm and 4mm (10% and 40% of the shaft diameter). The
dynamic response of the rotating shaft had very little change when the depth of crack was
less than 3mm. Therefore, the author focused his attention only on two crack depths of
sizes, 30% and 40% of the shaft diameter. From experimental studies, he concluded that
there was a difference in the critical speed of the un-cracked shaft between horizontal and
vertical directions. For a simply supported shaft, he found that by increasing resonance
bandwidth and decreasing shaft stiffness the critical/resonance speed will be decreased.
The percentage of increase in this case was greater than that due to the crack alone. For a
shaft with an overhang and from start-up results he found that the critical speed of the
cracked shaft (3mm notch) increased when compared with an un-cracked shaft. The
critical speed of the cracked shaft (4mm notch) decreased with and without crack
propagation. Also, the resonance bandwidth increased in the vertical direction due to a

side load.

Zakhezin and Malysheva (2001) used a numerical Finite Element based crack detection
technique and modal tests on a single span shaft. They included system damping in their
model and calculated the system’s eigen-values and eigen-vectors up to a frequency of

1.100 Hz. These values were calculated for a rotor with and without cracks at varying
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locations and depths. The method was tested and results verified to indicate the good

quality of results obtained.

Adewusi and Al-bedoor (2002) applied neural networks techniques to detect the
inception of cracks on rotors. They carried out experimental studies on a rotor (overhung
arrangement and simply supported arrangement) with and without a propagating crack. In
this study, a two neuron network was used to detect the propagating crack and a three

neuron network to detect the propagating and non-propagating cracks.

Gounaris and Papadopoulos (2002) performed experiments to identify the crack location
and size using a cracked circular rotor shaft. This shaft was modeled as a Timoshenko
beam and the gyroscopic effect and the axial vibration were considered. Also they
considered the case where a transverse crack that remained always opens during the
rotation of the shaft. The shaft was excited at one end and the response was measured at
the other end. The main idea was to measure the changes that occur in coupling of
vibration (bending and axial) due to the effect of transverse surface crack when the shaft

was rotating.

Bieryla et al (2005) carried out a survey of problems due to shaft-cracking since 1974.
This work was purely experimental, and the aim of his work was to detect the capability
of torsional vibration signature analysis which could be used as a diagnostic tool for shaft
crack monitoring in rotating drive shafts. By using ultrasonic measurement and a
continuous cyclic fatigue load a small crack (notch) on the shaft was measured. Also

during the investigation, the shaft was subjected to the effect of fatigue cycling and the
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signature of the torsional vibration was measured. For the torsional vibration test, they
used a cracked shaft mounted on bearings and rotated by a motor. The authors fabricated
a laboratory test rig containing the shaft with four fatigue crack depths (0%, 37%, 52%,
and 64% of shaft diameter). They concluded that the change of natural frequency was a
good indicator to show that something was impairing the shaft's condition. The
experiments showed that the torsional rigidity decreased with crack growth. The first
torsional natural frequency decreased nonlinearly due to crack depth. These values of
natural frequencies changed within the range of 0.1 to 0.2 Hz. Therefore, this method can
be used to monitor and diagnose the shaft online to prevent failure due to crack growth.
Also, they mentioned that there was a sensitive relationship between the torsional

frequency as a function of crack growth and location of the crack.

Garrett et al (2005) presented an experimental study on rotor shafts. The first part of the
study was implemented on a real shaft to investigate the effect of torsional vibrations and
to explore the range of fatigue crack growth in a rotating shaft while carrying out a
laboratory test. The experimental work explained some changes in the value of torsional
natural frequency. These changes could be denoted by the extent of the fatigue crack on
the shaft. The second part of the study was carried out for two locations of the crack, one
in the middle and the other at the end of the shaft. From this study, the authors concluded
the following: (i) The torsional natural frequencies were not always apparent and it could
have an effect on crack sensitivity in modes; (ii) The torsional finite element modeling
was simpler and more straightforward than the lateral modeling; (iii) The natural

frequencies were not the same at all locations along the shaft due to the growth of a
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crack; (iv) The torsional modes were more sensitive to small crack growth than the other
modes; and (v) For the crack at the center of the shaft, the changes occurred in modes
one and four: mode one showed the natural frequency drop of 10 Hz and mode four
decreased by 60 Hz. The other modes did not change with crack depth. For the crack at

the end, modes eight and thirteen were the best indicators to monitor.

Cho et al. (2006) measured the torsional wave in a rotating shaft by using a noncontact
method (magnetostrictive patches and a solenoid). In this work, two problems were
noticed during the vibration experiment, viz., (i) How to produce sufficient power to
generate torsional waves; and (ii) How to guarantee that there was no interference from
the shaft rotational motion. Magnetostrictive patches were fastened to the shaft axis for
measuring the torsional motion. Furthermore, the configuration of an arrayed patch was
employed for frequency localization and sufficient power generation. In their paper, they
assumed that the effect of the lateral vibrations was negligible because it was very small
compared to the torsional motion measured by the magnetostrictive strips. In addition,
the authors used the transduction method to detect a perimeter crack in a rotating shaft as
well as to estimate the damage location (with small error) and compare them with the

exact crack size and location.

Pennachi and Vania (2008) presented the results of an experimental study concerning the
diagnosis of a crack during the load coupling of a gas turbine; they compared the
experimental and analytical results of the shaft vibration using the model of the rotating

shaft of a 100MW power plant. The authors stated that the load coupling affected the
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propagation of cracks. Also the propagation of the crack increased due to the presence of

differences between the hot dynamic alignment and the cold static alignment.

Ganeriwala et al. (2011) presented experimental results obtained for a wind turbine under
the influence of different cracks. A modal testing technique was used. Two single wind
turbine blades (4 feet long and made from fibreglass) were used, one was an un-cracked
blade and the second was a cracked blade. On the cracked blade there were two cracks,
one located along an edge of the blade (5in, 10in, and 20 in deep edge crack) and the
other on the surface of the blade (1.3in, 2.6in, and 3.9in deep surface crack). Thirteen
accelerometers and an impact hammer were used to obtain modal frequencies, damping,
frequency response functions and mode shapes, for both cases; these results were used to
predict the presence of the crack. From modal testing they found some modes of the
blade to be significantly affected by the presence of a crack. The modal parameters were
significantly affected by the longer depth of crack. In this study, the following
conclusions were made: (i) The modal parameters of modes 3 to 8 showed significant
changes due to the presence of edge cracks (ii) Significant changes in the modal
parameters of modes 1 and 2 were observed under the influence of edge or surface
cracks; (iii) Lower frequency modes did not indicate the presence of localized blade
cracks than higher frequency modes; and (iv) Mode shapes showed significant changes

due to the presence of edge crack rather than surface crack.

Saravanan and Sekhar (2012) used experimental and analytical procedures for monitoring

the rotor-bearing system to examine the presence of a transverse breathing crack; they
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used the concept of operational deflection shape and used kurtosis of vibration to detect
time history. Also the shape and amplitude of kurtosis curve based on the experimental
results were used to detect cracks on the shaft. In the experiments, a single crack and two
cracks were used. The length and the diameter of the shaft were 800mm and 16mm
respectively. The shaft was supported on two ball bearings and the disc (disc mass =
0.656 kg) was mounted at the center of this shaft. The breathing crack was located in the
middle of the shaft and the shaft was divided into 20 elements to measure the shape of the
operational deflection. They used rotational laser vibrometer to measure the vibration
response at different locations on the rotating shaft. The authors found that the changes
that occur in the kurtosis were significant when the crack was located close to the
bearings while it was small when the crack location was closer to the middle. They
reported that the use of kurtosis results were useful for identifying cracks during

detection and monitoring purposes.

2.3 Analytical and Numerical Approaches

Many researchers have used analytical and numerical techniques to detect the presence of
fissures and cracks in the rotor shafts. The focus of these methods is to detect the changes
that occur in the vibration characteristics of the system due to the presence of cracks. The
following system characteristics are considered in these approaches, viz., frequencies,
mode shapes and damping ratios. These parameters were commensurate with the physical
properties of the system such as mass, damping and stiffness. Any changes in these
properties due to damage in turn affected these parameters. These approaches could be

classified into two categories: non-mode! and model-based approaches. Non-model
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methods detect cracks in a direct manner, by determining the value of natural
frequencies, mode shapes, damping ratios, stiffness, and flexibility matrices or the
variables derived from these quantities. The model-based approaches defined the second
category in which the selections of parameters were known to define the model of the
structure under the given assumptions. As a result of the changes that occurred in the
values of these parameters, the damages that occurred in the structure could be
determined and identified. Commonly, finite element models were used in this case (Liu,

2004).

In this review, the analytical and numerical approaches are classified into four
subsections: investigation through the finite element approach, analysis through nonlinear
dynamics of cracked rotors, detection and monitoring of cracks using mechanical

impedance, and crack detection methods through several other techniques.

2.3.1 The Finite Element (FE) Approach

Sekhar and Srinivas (2003) used shell elements with 4 nodes using the CQUADA4
elements available in commercial finite element analysis software NASTRAN and
FEMAP to model hollow cracked composite shafts, fabricated using stacking sequences
of boron-epoxy, carbon-epoxy and graphite-epoxy materials. The finite element
formulation was based on first order shear deformation theory. They created a crack on
the shaft by using Boolean operations. Spring elements were used to represent the effects
of the bearings. They have stated that the stacking sequences such as 90/0/90/0 and

90//90/0/0 produced a higher frequency than other sequences of stacking. They also
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found that for all the three materials used in their study, the eigen-frequencies decreased

with increases in crack depth.

Kisa and Gurel (2006) used the combination of finite element method and synthesis
method (substructure technique) to analyze beams which had a circular cross-sectional
area and non-propagating open cracks. Natural frequencies and mode shapes of a beam
with more than one crack could be easily determined by using this method. The
substructure technique was used to reduce the non-linear behaviour of the overall
structures to a number of linearly displaced segments; thus, the analytical or numerical
results could be easily found. This method was applied here for the first time with more
than one crack on a beam that had a circular cross-sectional shape. Three types of
applications were given in the paper to calculate the natural frequencies and mode shapes
of a beam having varying depth of cracks and crack locations. The first example was that
of a cantilever beam with a single crack. The natural frequency of the cracked beam was
found to be lower than that of un-cracked beam and this frequency decreased with an
increase in crack depth. Also, they reported that when the crack was closer to the fixed
end it had a larger effect on the basic natural frequency than the case where a crack was
closer to the free end. The second example was that of a cantilever beam with three
cracks. They assumed that the cracks were of the same depth. From the results, it was
shown that the reduction of the first frequency was higher when the cracks were closer to
the fixed end while the second and third natural frequencies were higher when the cracks
were closer to the midpoint. The first natural frequency remained constant when the

cracks were closer to the free end. The second and third natural frequencies, when the
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stationary parts were rigid and discs were axisymmetric; the effects of inertia and the

gyroscopic motion of the rotating parts were also considered; all material damping was
assumed to be linear; the dynamic forces were either constant or changing with respect to
time. This work was implemented on the rotor system RK 4 containing depths of cracks

as follows: 0%, 10%, 30%, and 50% of the rotor diameter.
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From numerical results, they concluded that the crack in the shaft directly affected the
lateral vibration of the shaft when the shaft rotational speed was close to the secondary
resonance. From experimental measurements, the stiffness of the shaft, its vibrational
responses, and the trajectories of the centre of the shaft were measured. They found from
the analytical results, that the crack in the shaft directly affected the lateral vibration of

the shaft when the rotational speed was near the secondary resonance.

Lissenden et al. (2007) implemented experimental and analytical methods to model crack

propagation and to determine the natural frequencies and mode shapes for a line shaft
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system. The shaft was modeled for both straight and semi-elliptical surface cracks under

the effects of quasi-static and dynamic bending loads. Also they predicted the effect of a
crack on stiffness by using 3-D finite element model. This model was created and
analyzed by using the ANSYS software. It treated the un-cracked and cracked cases by
keeping sets of nodes joined together to represent un-cracked case and decoupled to
create the crack. From the three approaches they used, they found, no significant decrease
in torsional stiffness for quasi-static loading, while a gradual decrease in torsional
stiffness and natural frequency for dynamic tests. Additionally, from the results of 3-D
FEM, the model indicated that the first torsional natural frequency was directly

proportional to the crack depth propagation.

Li et al. (2008) used FE-based simulation (through ANSYS) to model the dynamic
characteristics of a faulty multi-span rotor system. This system was connected together
by axial membrane coupling, considering each span to be elastic and supporting a rigid
rotor at the free end. They examined in detail the bending-torsion coupling vibration of a
single-span rotor and the whole rotor system; they analyzed four cases for the occurrence
of cracks and rubbing faults (crack location was in the middle of the span and the crack
depths were 0.0, 0.2D, 0.4D, and 0.6D, where D is the diameter of the rotor). They
examined viz., (i) The nonlinear dynamic characteristics, (i1) Responses of the rotor
system, (ii1) The influences of membrane coupling, and (iv) Effect of gearing on the rotor
system. They concluded that detailed examination of both coupling and gear response

would help one to properly diagnose the cracks occurring in the rotor-system.

28




Ramesh and Sekhar (2008) investigated the detection of two cracks using different
configurations of a rotor-bearing system. Finite Element model of a simple rotor-bearing
system was used in this study. The authors used continuous wavelet transformation
(CWT) to detect a crack, but they found no qualitative difference between a single-crack
and a two-crack system. So, the identification of multiple cracks became difficult using
CWT of the transient response. This problem was then solved using the concept of the
Operational Deflection Shape (ODS). The ODS indicated the displacement of the rotor
along its length at a particular speed (generally operating speed). But this technique of
ODS used for the cracked and un-cracked systems, was not be sufficient to detect the
cracks when the crack depths are very small. Therefore, a new approach, called the Slope
Deviation Curve (SDC) or the Amplitude Deviation Curve (ADC), was introduced; this
curve was generated from the ODS by a simple transformation. Thus, online detection of
crack parameters by this method was reported to be an effective tool, even in the

detection of small cracks at around 10% from the depth of crack to shaft diameter.

Sudhakar and Sekhar (2010) presented a modified model-based analysis technique and
used modified least squares minimization algorithm to reduce the errors in the identified
fault parameters. The idea of this method was to model the fault as an equivalent load
that will be generated on the cracked rotor-bearing system; the equivalent loads were
calculated using measured vibration responses at all degrees of freedom of the system.
The difference between this equivalent load and the theoretical model fault load was
minimized by least squares algorithm. Also they used finite element method to validate

theoretical results. They reported that their method was effective in identifying a crack
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even when the vibrations were measured with 4 degree-of-freedom (DOF) (or, 8, 16, 20,
or 24 DOF) systems. They found the method to be very sensitive to the mode shapes and

location of the crack.

2.3.2 Nonlinear Dynamics of a Cracked Rotor

Yang and Suh (2005) mentioned the reasons that cause the non-linearity in rotating
machines: Surface cracks, fluid-film bearings, squeeze-film dampers, nonlinear springs,
and clearances in rolling element bearings. In their paper, an enhanced focus on
investigating the crack and fluid film pressure induced non-linear responses by using the
fundamental concept of instantaneous frequency was made. The instantaneous frequency
was defined as the temporal gradient of phase. Two plain journal bearings, a four-disc,
system modeled with 15 nodes, and a 60-degree-of-freedom were used for their model.
Their conclusions were as follows: (i) At low rotating speeds the transverse surface
cracks had a strong effect, and at high speeds the bearing film force effect was dominant;
(i1) The breathing crack depended on the rotation and vibration amplitude as well as the
direction of the shaft deflection; (iii) At high speeds, the crack breathing had a significant
effect on the rotor dynamic responses, basically supporting the non-linear behaviour of
shaft; (iv) They found the rotational speed and relative crack depth to be the main reasons
for variation in bearing clearance on dynamic responses of the rotor model system; (v)
The vibration amplitude decreased when the bearing clearance was decreased, but when
the surface area of the crack increased, the vibration amplitude increased; and (vi) The
authors stated that the system became more complicated if many sources of non-linearity

were considered.
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Sinou and Lees (2007) analyzed the non-linear dynamic response of an on-line rotating
shaft, shown in Figure 2.2, to predict the influence of a breathing transverse crack. Also
they investigated the development of the orbit of the cracked rotor at half and one-third of
the first critical speed. They used Harmonic Balance Method to obtain shaft response

parameters by considering the effects of different crack depths and locations.

Figure 2.2 Rotor System And Crack Model Cross-Section.

Jian-bin et al. (2012) investigated the presence of fatigue fracture, in diesel engine
crankshafts using dynamic monitoring and detection procedures. They used the metal
magnetic memory detection methodology and monitored on-line the changes in engine
crankshaft characteristics. They tested a diesel engine generating an acceleration of 295G
and a multi-function electromagnetic detector to detect the presence of stress
concentration areas. They used two detecting points of the crack on the crankshaft and

used magnetic memory tester to examine the effects of the following parameters: (i)
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Various stress concentration areas; (ii) Different engine speeds and their effects on

changes in magnetic memory signals; and (iii) Measured changes that occurred in
between the two detection points due to change in the temperature of crankcase. The
authors found no effect in the magnetic memory signal values due to the change of
engine speed and temperature, when the temperature was below 500°C; whereas the

change of the inertial loads had clear effects on the vibration response.

2.3.3 Detection and Monitoring of Cracks Using Mechanical Impedance

Manley (1941) mentioned that the concept of mechanical impedance had been used since
1939 for monitoring vibration of shafts. It was used for the analysis of vibrational
problems in engine systems. In his paper, the resonant frequencies were determined by
developing damped linear systems. The theory behind this states that the resonant
frequencies of vibrating systems (axial vibration) were not affected if the damping forces
were small. The author stated that the method of impedance could be applied to the case

of torsional vibration of shafts.

Kane and McGoldrick (1949) discussed the longitudinal vibrations of marine propulsion-
shafting systems. Their purpose was to: (i) Estimate the longitudinal critical speeds, and
(1) Calculate with more precision which elements were critically affecting the
longitudinal vibration. This study was mainly concerned with the types of vibrations that
occur in the electric-drive propulsion system of a marine vessel. It was concluded that the
longitudinal vibrations were less affected than the torsional vibrations. The vibratory

system was limited to the rotating elements in the torsional vibrations. The longitudinal
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vibrations, however, were affected by the machinery masses and their foundations. The
authors used three methods to estimate the natural frequency: the fixed end
approximation method, the two body approximation method, and the mechanical
impedance method. The natural frequency for the fixed end approximation method was

estimated by using this formula

(2.5)
K - 4 (2.6)
where f was frequency in cycles per second, A the cross section area in m’, / the

equivalent length of shaft, m, the total mass of propeller and virtual mass of surrounding

water, m mass of shaft, Fy flexibility factor depending on thrust bearing foundation

stiffness, and k  the shaft stiffness.

The natural frequency for the two body approximation method was estimated by solving

the positive roots of @ in the equation
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where @ was the circular frequency in rad/sec, k; the static spring constant of the shaft, &,

the effective stiffness spring constant of the combined gear, thrust bearing, and turbine



foundations, m; the total mass of propeller and virtual mass of surrounding water, m, the

total mass of turbines, wet condenser, gears, one fourth the mass of machinery

foundations, and one half the mass of the shaft.

The natural frequency for the third method was estimated by using the mechanical
impedance method. The two models that were applied in this method consisted of the
mass of the propeller and the virtual mass of the surrounding water m,, the fixed

machinery masses m,, and the gear masses m,. Figure 2.3 shows these models.

The authors concluded that the paper provided guidance for deciding whether the thrust
bearing, mounting, machinery foundations, and propeller clearances need to be included
in the rotor modelling procedure. Also, they found an agreement between the computed

values of natural frequencies for all the models, as well as for the experimental results.
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Figure 2.3 Marine Propulsion-Shafting Systems; a) Modeling 1 and b) Modeling 2
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Chenea (1952) used the concept of impedance to analyze an elastic bar, a tapered and
stepped shaft, and a string in longitudinal, torsional and lateral oscillations, respectively.
He applied the models as continuous systems, and considered both the free and forced
vibration. He assumed that the cross-sectional area of an elastic bar changed gradually
and that there was internal and external damping in the system. The model consisted of a
spring connected with damping in a series and then connected to another damping in
parallel. By the same technique, he used this model for torsional oscillation. In both

cases, he found the natural frequencies of the systems.

On (1967) used experimental and analytical procedures for determining mechanical
impedance and to find its effects on the dynamic response. He developed the concept of
mechanical impedance in terms of point and transfer impedance parameters. He
developed two DOF (degree-of-freedom) and three DOF lumped mass models, for
theoretically representing, complex aerospace structures, as large inter-connected matrix
systems. He compared his theoretical results with experimental results on such aerospace
structures and found them to be reasonably good. He mentioned that this approach could

be extended to many systems subjected to steady state, transient and random excitations.

Bamnios and Trochidis (1995) investigated the influence of a transverse open crack on
the mechanical impedance experimentally and analytically. Cantilever beams were used
to obtain the change of the mechanical impedance at different locations and sizes of the

crack under the effect of longitudinal and bending vibrations. From vibration results they
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found that the changes of mechanical impedance were more in the lateral directions than

in the longitudinal direction.

Prabhakar et al. (2001) investigated the influence of a transverse surface crack for open
and breathing cases (depending on the rotor deflection) and shaft carrying a disk at the
center. They used FEM analysis to show this influence on the mechanical impedance of
the rotor-bearing system. They attempted to use the concept of mobility to detect the
crack by using different crack parameters and force locations. They found that the
mechanical impedance changed and was sensitive to the presence of the crack; it
decreased (for an open crack) as the crack depth increased, and the decreases were
greater when the location of the crack moved toward the disk. In breathing crack the
mechanical impedance increased as the crack depth increased. The mechanical
impedance sensitivity was more apparent in the breathing crack. Additionally, when the
rotating frequency of the shaft for the breathing crack was doubled the sudden change in
mechanical impedance was easily observed. For a breathing crack, the mechanical
impedance was sensitive to low or high crack depths, even if the crack depth ratio was
less than 0.1 (ratio between crack depth and shaft diameter). Finally, the authors
recommended that the measurements of mechanical impedance could be used as a good

indicator for the detection of the presence of cracks.

[ 1nios et al. (2002) carried out analytical and experimental studies on cracked beams to
investigate the effect of a transverse open crack on the mechanical impedance under

various boundary conditions. They used a spring connecting the two segments of the
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cantilever beam as a model of the crack. The beam had a uniform rectangular cross-
section and the crack was assumed open and to be of uniform depth. Additionally,

bending vibrations were considered and the bending spring constant Ky was given by:
Kr=1/c & c=(5.346w/ED*J (a/w) (2.8)

where, w was the depth of the beam, E the modulus of elasticity of the beam, I the area
moment of inertia for the beam cross-section and J (a/w) is the dimensionless local

compliance function. It can be expressed as

Jalw)=1.8624(alw)*-3.95(a/w)*+16.37(alw)*-37.226(alw)’+76 81 (a/w)’-

126.9(alw) +172(alw)-43.97 (alw) +66.56(alw)"° (2.9)

They found that the impedance and natural frequencies were affected by the presence of a
crack, as well as by its size and location. Also, the natural frequencies of the cracked
beam reduced when compared with the un-cracked beam. As seen from the reported
numerical results, the crack had a strong effect on the mechanical impedance and this
effect depended on the crack’s location. The changes of the mechanical impedance and
the natural frequencies could be used as indicators for the presence of a crack. There was

agreement between analytical and experimental studies in all cases.

Prabhakar et al. (2002) investigated experimentally the influence of a transverse surface
crack on the mechanical impedance of a rotor bearing system. This system consisted of
rigid disks, distributed parameter finite shaft elements, and discrete bearings. The

experimental work was done to validate their previous numerical analysis results. They
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tried to use the concept of mobility for detecting and monitoring the crack using different

crack parameters and force locations. The authors did this experiment for an un-cracked
and a cracked shaft. They used different depths (20% and 40% of diameter) to represent
the crack depth) at the location. Also, they measured the mobility in two directions,
horizontal and vertical, at the bearing locations. This measurement was taken at different
rotor speeds. They found that the mobility was directly proportional to the depth of the
crack, as well as to the rate of change of mobility at the rotating frequency. Moreover,
since the crack depth was assumed to grow vertically, the rate of change of mobility in
the vertical direction was greater than that in the horizontal direction. There was
considerable agreement between experimental results and numerical simulations.
Therefore, the authors suggested using this method to detect the crack, and monitoring in

a rotor-bearing system.

2.3.4 Crack Detection Methods using Other Techniques

Crack initiation and fatigue failure are the consequence of large cycles of high amplitude
stresses. Torsional vibrations of rotors represented one of the main reasons for fatigue
failure in shaft. The types of failures, the singular data acquisition requirements, and
monitoring torsional vibration were discussed by Larry et al. (1999). The turbine
generator had components such as retaining rings, shaft cracks, and blade root cracks
which could cause sudden fail in generator. In this paper, the authors used a simplified
model of the turbine generator system to detect, analyze and safely shutdown the turbine
generator. This model showed the relationship between the shaft excitation forces, which

represented input to the model, and the shaft torsional vibration response, which



represented the output. This ratio (output to the input) is known as the transfer function.
The transfer function was basically dependent on the mass, stiffness, and damping of the
shaft. The authors addressed the issues concerning data acquisition, measurements, and
data analysis. A high-speed personal computer was used to measure and calculate the
torsional frequency. Measurements were used for recording and analyzing instantaneous
time history. Lab View was the commonly used software for analysis of data. Their
conclusion from metallurgical test data and fracture mechanics analysis showed that the
turbine would fail due to crack initiation and crack growth in about 6 months due to the
sporadic nature of the forcing excitation. Also the availability of a data acquisition
monitoring system, such as Structural Integrity Associate’s Transient Torsional Vibration
Monitor System (SI-TTVMS) would provide a good signal and detection system before

rotor failure occurred.

Zhinong et al. (2006) presented bi-spectrum analysis to the fault diagnosis of the rotor
crack based on blind identification. They used this approach to investigate the bi-
spectrum characteristics of experimental rotor with cracks of different depths and
locations. They considered four cases, one for a non-cracked rotor and the other for
cracked rotors with different crack depths and locations. Additionally, two sensors were
used, one mounted near the bearing block and the other mounted near the mass rotor
plate. All the data collected from different rotors were measured at the same point and at
the same speed. They concluded that this method was a powerful one for the diagnosis of
rotor cracks, and that the experimental work provided quite useful and sufficient data on

this topic. Also, it was concluded that the highest vibration amplitude of the 2x
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(parametric bispectrum) occurred when the crack was closer to the span center. This

method would present a suitable method for field application.

2.4 Summary

A comprehensive review of the existing literature on the dynamic behaviour of un-
cracked and cracked shafts has been presented. Many crack detection techniques have
been developed and used in the past few decades. In general these techniques could be
classifieds: (i) Based on frequency changes [Rutter (1993), Sabnavis et al. (2004) and
Kumar and Rastogi (2009)]; (ii) Based on mode shape changes [Wauer, (1990) and
Sabnavis et al., (2004)]; (iii) Based on mechanical impedance changes [Kane and
McGoldrick, (1949)]; (iv) Based on stress fluctuations [Kumar and Rastogi, (2009)]; (v)
Closeness of the rotational speed to the secondary resonance [Ferfecki and Ondrouch,
(2007)]; (vi) Peaks in vibration amplitudes and unstable vibrations [ Wauer, (1990)]; (vii)
Changes of stiffness due to a crack [Wauer, (1990)]; (viii) Histogram signature analysis
technique [Wauer, (1990)]; (ix) Neural networks [Sabnavis et al., (2004)]; (x) Non-
contacting transducers [Wang et al., (1992)]; and (xii) Least squares identification
method in the frequency domain [Kumar and Rastogi, (2009)]. Most of the above studies
have focused on large size cracks. Generally rotor shafts fail due to high-cycle fatigue.
Therefore early detection of cracks is more important than detecting cracks of larger
depths at later stages. Few studies have focused on small sized cracks which will be
needed to prevent sudden failures in rotor shafts. In the present study attention is focused
on determining parameters that will lead to procedures to the small crack size in rotor

shafts.
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The changes in mechanical impedance have been used since 1939 for determining
problems in engine systems. Only a few studies have been reported on the use of
mechanical impedances to identify cracks in shafts: moreover all of these studies have
been on single span determinate shafts. Hence in the present study an indeterminate
overhanging shaft has been used. In this study cracking in a shaft will be investigated
experimentally and numerically and analyzed when subjected to the effect of torsional
and lateral vibrations. Also the mechanical impedance techniques will be extended to
identify the natural frequencies of indeterminate marine propulsion-shafting systems
bearing a propeller and subjected to lateral vibrations; as well the procedure will be used

to detect the changes that occur due to the presence of cracks in rotor shafts.
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Chapter 3

Fabrication of Experimental Model and Test Setup

3.1 Introduction

Experimental fabrication and testing of the cracked and un-cracked rotor shaft models
were made to identify the transverse crack existence in the structural laboratory of
Memorial University. In order to investigate the behaviour of un-cracked and cracked
shafts, three separate models were fabricated and tested for different crack depths (from
0% to 70% of diameter). LMS data acquisition system, accelerometers, impact hammer
and strain gages experimental setup were used for measuring the cracked and un-cracked
shaft response parameters under lateral and torsional vibrations. In the experimental
study, cracks of different depths were located at the (un-cracked) maximum bending
moment position. Shaft response parameters for lateral (using an accelerometer) and
torsional (using shear strain gages fixed at three different locations) vibrations were
obtained using the modal analysis software, LMS Test Lab™. The experimental results
were used to validate the numerical results (given in the subsequent chapters) obtained
using Finite element formulation. The open crack was made in the rotor shaft using a

steel saw blade which made the saw cut to be slat ended rather than sharp edged.

This chapter is organized as follows, viz., (i) Details of the experimental setup in the
laboratory with associated instrumentation; (ii) Test procedures, calibration and
measurements; (iil) Off-line experimental modal testing and analysis of cracked

structures; and (iv) experimental results, discussion and summary.




3.2 Fabrication of Test Frame

The rotor shaft test frame shown in Figures 3.1 and 3.2 was made of steel and supported
on two bearings. The length of this shaft was 1.22 m and of diameter of 0.015875 m; the
propeller with blades (as shown in Figure 3.3) was made from bronze and had a weight of
1.5687 kg, and was fixed to the overhanging end of the supported span (see Figure 3.1).
An aluminum arm, which had a weight of 0.356 kg and length of 30 cm, as shown in
Figure 3.4, was used to apply various magnitudes of impact torque at various locations of
shaft. During modal tests the rotor shaft, with the overhang, was locked (or fixed) to the
bearing support # 1, using a fixed Aluminum plate as shown in Figures 3.1 and 3.2. All
these parts were joined together by welding the test frame supports to the huge bottom

steel plate support.

3.3 Shaft-Propeller Test Rig and Experimental Setup

The assembled rotor shaft-bearing-propeller system test rig is shown in Figure 3.5. It was
designed and developed to investigate the vibration on characteristics of the uncracked
and cracked shaft using modal testing. The main objective of this experimental study was

to study the effect of cracks on the lateral and torsional vibrations of a shaft.










0.01m .

rd— 0.038m —ﬂ

—

jJ4——— 0.066m
fot————— p.OS-Im —|
0.024m
S-S —— - S §
0.076m —_,] g

0.01931n

LJLU“S‘“

NN
SN

Alemotial University

Uper part of an for applving

impact torgue support

. 0 3im -
-t -
. 0.076m .
00118 | =
ol <
S
Y =3 4
¥ -
0.015m
L 003 . I l
U g 0-08Em o R 0.008im
. vosEm n
o, 0.10m -
o " 10.195m .
e ) —
. 0.215%m
- s -
T 235m -
1 —— = =
- ~e=0om T . Isometric
o 0.285m -
-4 -
0.0%1m Front view
= -
= 0.0278%m L
o Lol -
o 0.015m
y -1
N emorial University:
I vl | |4
- Lower part of a1ma for applying
Top view 4 x Q§ 0.005 1 uapact tvrque support

3.3.1 Test rig description
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Figure 3.4 Fabrication Diagrams of the Upper and Lower Parts of Torque Applying Arm

The rotor shaft model used in the experiments consists of a motor driven rotor-propeller
system (initially, the test was fabricated to carry out on-line vibration measurements

while the shaft was rotating). The motor was connected to the rotor shaft through a jaw




coupling shown in Figure 3.6. The rotor shaft was made of steel and had a supported span
length of 0.97 m and diameter (average) of 0.015875 m; the propeller was overhanging at
one end of the supported span (see Figure 3.7). The measured diameter values at
different points for the three rotor shafts are given in Table 3.1. Young’s modulus of
elasticity was taken as E = 200 GPa and material density was taken as 7870 kg/m’. The
shaft was supported on two bearings as shown in Figures 3.7. These bearings of type
5967k81 (McMaster-Carr Ball bearing, 2011) consisted of two mounted bearings having
greased fittings and deep-grooved ball-bearing inserts and two set screws used to fix the
shaft to the bearings, as shown in Figure 3.8. Experimental program were carried out to
identify the shaft characteristics (natural frequencies, damping and mode shapes) with
and without the presence of the crack. Manually-made saw cuts (0.65 mm wide) of

different depths ratios (from 0% to 70% ratio) were made at a distance of 0.02 m to the

right of bearing support 2, as shown in Figure 3.9.

Table 3-1 The Measured Diametral Values for the Three Rotor Shafts

Rotor shaft diameter at various locations, m
Shaft * * * * *
Dl D2 D3 D4 DS Daverage
Shaft # | 0.01589 0.01589 0.01588 0.01588 0.01589 | 0.015886
Shaft#2 | 0.01586 0.01587 0.01587 0.01586 0.01586 | 0.015864
Shaft#3 | 0.01587 0.01594 0.01591 0.01588 0.01589 | 0.015898

*

1,2, 3,4 and 5 are locations along the length of the rotor shaft.
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Figure 3.9 The Saw-Cut Crack at the Right of the Bearing Number 2

3.3.2 Test Instrumentation System and Methodology

The test instrumentation system used to measure the two types of vibrations, viz., lateral
and torsional modes of a rotor shaft system, is shown in Figure 3.5. For the experimental
portion of the study, the Engineering Innovation [LMS Test Lab "™ as shown in Figure
3.10 (a)] software package with two measurement channels was used. The first input
channel recorded the time history output from the modal hammer used in the study,
shown in Figure 3.10 (b). The number designation of the impact hammer type is 8206-
002 and the maximum force (non-destructive) that it can deliver is 4448N. Three tips can
be used with the impact hammer, viz., Aluminum tip, Plastic tip and rubber tip. The
maximum forces that can be delivered by each tip are given respectively as 350, 275 and
25 N, for Aluminum, plastic and rubber tips [calibration Chart for impact hammer,
(2009)]. In this study, plastic tip (DB-3991-002) material was used for bending modal
tests. The second channel recorded the time history output from the accelerometer device

shown in Figure 3.10(c). Figure 3.10 (d) and (e) show the experimental setup used to
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measure the torsional vibration of the rotor shaft. In the torsional vibration measurement

system three strain gages were fixed at three locations, one placed near the bearing
support 1, the second placed at the middle of the supported span, and the last one placed
near propeller as shown in the Figure 3.10 (d). An aluminum arm, shown in Figure 3.10
(f) was used to apply impact torque at certain location of shaft. Five data acquisition
channels shown in [Figure 3.10 (e)] were used to acquire the data (in a multi-blexel
manner), viz., three for torsional strain measuring gages, one for accelerometer channel,
and the fifth for impact load with a maximum mass of 22kg. Also data acquisition system
signals received from the strain gauges were transmitted to a PCI6024E data acquisition
card. The excitation voltage used in the setup was 10 Volts. The corresponding range for
the torque was +2 N.m as measurable by the strain gauges. There was no filter applied to
the signal during the data collection. The Lab view'™ software was used to record the
data during the experiments. The gain factor applied to the signals coming from the data

acquisition card was 200.
The following instrumentation was used for recording and measuring:

a) Impact hammer for use in delivering impulse forces to the test shaft structures.
One impact hammer moved to many points (14 points).

b) One accelerometer for measuring the rotor shaft accelerations for model analysis.

c) LMS Test-Lab setup and software for recording and determining the natural
frequencies, damping, and mode shapes of the shaft using modal analysis based

on frequency response function (FRF).
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3.3.3 Calibrations for Torque Measurement

The calibration of the test setup was produced before the start of experiments. In this
investigation, calibrations were preformed only during the experimental study when
measurements were made for torsional motion using five (multiplexed) data acquisition
channels, viz., three for torque gages, one accelerometer (* 4g’s) channel, and the fifth
for impact load using the weights hung from aluminum arm used for torsional loading.

The summarized steps for torsional calibrations are given below, viz.,

(1)  Use Lab view software;

(ii)) Read voltage readout from software for the strain gauges;

(iii) Apply load to shaft by using impact hammer, and compute the torque
applied for different increments of load;

(iv) Plot load vs. strain ( converted using the sensitivity of the strain gauges)

(v) Using Microsoft Excel to get linear a equationy = mx +b

(vi) Input formula into software and Check software by loading shaft.

3.4 Test Procedure and Measurements

The experimental work carried out in this study was an off-line experimental modal
analysis since on-line modal testing could not be properly done. The test procedure,
measurements and analysis made in the experimental study can be separated into two
parts: (i) off-line, experimental modal analysis using LMS Test Lab ™ to find vertical

and horizontal transverse vibrations using an accelerometer; and (i1) off-line,

experimental modal analysis using strain gage to determine the torsional frequency. In
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both cases, dynamic signals containing inherent natural frequencies, damping factor, and

mode shapes were recorded and analyzed to correlate with the results obtained from

numerical methods.

3.4.1 Off-line Experimental Transverse Vibration Modal Analysis

Modal analysis deals with the measurement and consequent analysis of the dynamic
response of the rotor shaft structure. It was used in this study off-line to predict and
identify dynamic characteristics of the rotor shaft structure before carrying out the second
part of experimental (on-line) study, in a subsequent study. Since it was very difficult to
obtain take vibration measurements when a shaft was rotating unless one had equipment
for remote transmission and acquisition of data from the rotating and vibrating shaft, only

off-line dynamic measurements were made.

In this part, an impact hammer was used at several locations (14 points) as shown in the
Figure 3.11 (a) and (b) to excite the structure. At each location the impact force was
applied (through the modal impact hammer) five times in the transverse directions. Each
time the modal analysis was carried out and the dynamic response parameters from each
set of five measurements were added and averaged to give the response parameters at that
point. The accelerometer was located at a fixed place (point 9) and the direction of arrow
given in the accelerometer would indicate the direction of vibration, whether vertical or
horizontal. The accelerometer and impact hammer responses were transmitted to the

personal computer which contained the LMS modal analysis software to analyze these
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Figure 3.15 shows the experimental setup used to measure torsional vibration of the
cylindrical shaft. In the torsional vibration measurement system three strain gages were
fixed at three locations, one placed near the bearing support 1, the second placed at the
middle of the supported span, and the last one placed near the propeller (in the
overhanging end) as shown in the Figure 3.15 (a). Two sets of Suzette type (K-XY3X)
model strain gauges with connection cables (4-wire circuit), fixed at three locations, were
used. They were assembled in half bridge configurations. These sets of strain gauges
were mounted 180° apart on the circumference of the shaft (along the neutral axis of the
un-cracked beam) at a given longitudinal location. The manner in which they were
oriented enabled the measurement of torsional strains while any incidental strains due to
beam bending would cancel each other. Figures 3.15 (c¢) and (d) show the sets of strain
gauges used during modal tests and locations along the shaft. An aluminum arm was used
to apply various magnitudes of impact torque at various locations of shaft. Five
(multiplexed) data acquisition channels were used, viz., three for torque gages, one
accelerometer (¥ 4g’s) channel (which were multi-plexed), and the fifth one for impact

load with the modal hammer.

In the earlier tests and numerical analyses, neither ANSYS software package (2010), used
in analysis, nor the LMS Test Lab "™ system was able to indicate the presence of the first
torsional frequency in the shaft-propeller system. The probable reasons for this were
determined as follows: (i) The elastic spring support provided at frame support locations
1 and 2, did not permit the torsional rotations at these support locations; (ii) The BEAM4

type of beam element did not give the first torsional mode due to the improper lumped
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mass values used for torsional motions (in ANSYS 2010, Section 3.12.7); probably
higher order beam elements (such as BEAM188 or BEAMI189, having warping as an
additional degree of freedom) could have given the first torsional frequency (this was not
attempted since the use of warping as another variable, along with the available six
degree-of-freedoms at a point, looked superfluous for the shaft vibration); and (ii1) The
LMS Test Lab™ did not give the torsional mode since the accelerometer used (for
getting the modal amplitudes) measured only the bending motions, and as well the LMS
software used in the study did not attempt to extract the torsional vibration features from
the monitored vibration signals. Hence a different procedure had to be devised to
determine the torsional frequency(s) of the shaft-propeller system. For the analytical
portion of the investigation to calculate the natural frequency of torsional vibration, the
rotational stiffness of the shaft and mass moment of inertia of a propeller (in addition to
the aluminum plate used for generating sudden impact torsional moments in the shaft)
about the axis of rotation had to be determined. Figure 3.16 shows a standard trifilar
suspension arrangement that was used to determine the platform and propeller properties.
This trifilar suspension structure was a circular, stiff, plywood platform attached and
hooked to a hanger via very stiff ropes. The three ropes were attached on the top to keep
platform suspension as flat as possible. Also in this experiment, a stop watch was used to

record the period of torsional oscillations.
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Now, the torsional natural frequency , of the cylindrical shaft (with the propeller and

the torsion impact device) was calculated by using the formula:

wn = (Ky/J7) %3 (3.3)
Ks=1,G/L, (3.4)

p = nd"/32 (3.5)
G =E/(2(1+ v)) (3.6)
Jshate= (0.5) Mr* (3.7)
It = Tshate T Joropetier + Jpiate (3.8)

where K, was the torsional stiffness of the shaft, Jr total polar mass moment of inertia for
shaft, propeller and plate, I, the polar area moment of inertia of the shaft, L the length of
shaft, G the shear modulus of the shaft, E modulus of elasticity, v the Poisson ratio of
shaft material, Jsaq polar mass moment of inertia for shaft, M mass of shaft, r the shaft
radius, Jppener polar mass moment of inertia for propeller, and Jj4 polar mass moment

of inertia for the plate used for torsional impact.

3.5 Experimental Results

In this part, modal parameters such as natural frequencies, modal damping, and mode
shapes for lateral vibration were extracted for the cracked and un-cracked rotor shafts.

These results are presented in the following subsection.
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3.5.1 Measured Natural Frequencies and Mode Shapes for Lateral Vibration

As mentioned above LMS Test Lab"™ was used to measure the lateral vibration (vertical
and horizontal) and to extract the mode shapes, in the experimental studies. Each part of
the experiment was repeated three times (along with the five averages needed by the
software) and the only the average results are reported in this work. The rest of the results
obtained are reviewed in detail in Appendix A. Tables 3.2 (a), (b) and (c¢) summarize the
results obtained for the first four transverse frequencies measured (for the three shafts)
from the experiments on un-cracked and cracked rotor shafts. These experimental were
done for the three different rotor shaft-bearing systems, viz., designated as shaft # 1, shaft
# 2 and shaft # 3. The three shafts were of almost of the same diameter (measured

average values were 0.01588 m, 0.01586 m, 0.01589 m respectively).

Figures 3.17 to 3.20 give the averaged experimental data of the four vertical and
horizontal mode shapes, for various crack depth ratios for shaft # 2 (results for the other
two shafts, viz., shaft # 1 and shaft # 3, are presented in appendix B). Since only vertical
frequencies were of concern, we considered only Figures 3.17(a), 3.18(a) and 3.19(a). It
is seen from these three figures that the identifier of the mode shape change due to crack
during its early stages of growth is shown better by the third mode shape than the other
two mode shapes; hence the crack presence can be best detected by monitoring the third
vertical bending mode of the rotor shaft. It should also be noticed that the changes in
mode shapes shown in Figure 3.19 (a) (for the third mode) are higher than the frequency

changes shown in Figure 3.17 (a). This can be appreciated if it can be noticed that this

66




case (third mode) is similar to the case of a fixed-simply supported case (or a cantilever

case), where the crack occurs around the fixed edge (bearing 2).

Table 3-2 (a) Experimental Values of the Natural Frequencies for Various Crack Depth-
Ratios, V - Vertical and H — Horizontal. (Shaft #1)

Crack depth ratios

Frequency 0.0% 10% 20% 30%
v H \ H \ H v H
First 34.768 41344 34.417 41.544 34.119 41.182 34.325 41.196
Second 76.78167 78.279 76.413 78.57567 | 76.05867 78.31 75.205 78.02033
Third 190.634 199.089 190.757 197.944 189.998 197.769 189.865 197.829
Fourth 365.8 335.241 364.3547 335.2313 362.3233 335.7223 365.426 336.0583
First natural 43716 43213 42.826 42628
frequency for torsion

Frequency 40% 50% 60% 70%
\ H \' H \' H \' H
First 33.80933 | 41.09267 | 33.79633 40.815 32.64033 | 40.52267 30.60033 39.84867
Second 7548633 | 77.35933 | 74.19133 | 76.54333 | 72.79567 76.23 67.299 7495233
Third 189.449 197.708 188.0927 197.1897 186.1117 196.4363 178.986 195.956
Fourth 358.8217 | 3354333 355.349 333.2633 | 345.0703 331.14 327.8163 321.8417
First natural
N . 42292 41.864 41.723 41.497
frequency for torsion
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Table 3-2 (b) Experimental Values of the Natural Frequencies for Various Crack Depth-

Ratios, V- Vertical and H — Horizontal (Shaft # 2).

Crack depth ratios
n.noz. | 10% 20% 30%
Frequency |— N
v H v H v H \% H
First 36.395 42.980 36.315 42.959 36.262 42.904 36.212 4291
Second 75.975 80.034 76.056 79.985 75.852 79.903 75617 79.309
Third 196.119 199.544 195.849 199.462 195.667 199.503 195.398 199.424
Fourth 367.423 369.148 366.861 368.992 366.391 368.896 365.457 368.605
Crack depth ratios
Frequency 40% 50% 60% 70%
\ H v H v H \ H
First
2702723 4277933 35.791 42.70067 35.21133 4223533 33.98633 41.728
Second
74.99833 79.09533 74.20733 79.09067 72.38067 79.03467 69.24733 77.91233
Third
194.5687 199.3333 193.421 199.0703 190.7537 198.4617 185.5763 197.3003
Fourth
362.876 367.6683 359.1237 366.059 349.9673 362.3057 333.337 354.9043

Table 3-2 (¢) Experimental Values of the Natural Frequencies for Various Crack Depth-

Ratios, V - Vertical and H — Horizontal (Shaft # 3).

Crack depth ratios
0.0% 10% 20% 30%
Frequency
\Y H \Y% H \Y H \Y H
First 33.855 40.629 33.774 40.656 33.751 40.615 33.736 40.550
Second 74.614 79.914 74.593 79.809 74.487 79.844 74.215 79.826
Third 192.190 197.813 191.962 197.817 191.742 197.771 191.298 197.652
Fourth 352.959 355.931 353.392 355628 352.642 355.313 349.39 353.132
Crack depth ratios
Frequency 40% 50% 60% 70%
Vv H 4 H \ H \ H
First
33.54967 40.47867 33.335 40.339 32.80367 40.03433 31.67467 39.535
Second
| 73.44333 79.603 oheen Teoann Bl X X) 78.92633 67.54433 77.9527
Third
190.0337 197.4143 188.644 197.0687 185.412 196.3743 180.0857 195.0663
Fourth
344.4017 350.252 339.052 347.5507 328.8137 343.1973 315.164 336.204
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3.5.2 Rate of Change of Bending Frequencies with Respect to Crack Depth Ratio

Figure 3.21 shows the changes that occur in the experimental frequencies as the crack
depth ratios change from 0 to 70% (with second order curve fit). In addition, Figure 3.22
shows the rate of change of frequencies as a function of crack depth ratios. In Figure
3.21, the changes that occur in frequencies are less than 2% till the crack depth ratio
becomes larger than 50%. In contrast, when the rate of change of frequencies of a
function of crack depth ratio is considered the presence of crack can be seen even from
the crack depth ratio of 20%. This is similar to an earlier observation made by Hamidi et
al. (1992) that the crack presence was observable from a crack depth ratio of 0.3, when
the rate of change frequencies were considered. Hence the rate of change in bending
frequencies for shaft # 2 (shown in Figure 3.22) becomes a better indicator of crack
presence. When the rates of frequency change (with respect to crack depth ratio) are
plotted as a function of crack depth ratio it is observed that between 20% and 30% crack
depth ratio, the variation in rate of change of frequency is found to be 3% to 4%. Instead
if frequency changes were used as the crack indicator, the changes between 20% and
30% crack depth ratio is around 0.5% to 1.0%; this is much less than that shown by the
rate of change of frequency (with respect to crack depth). The results of the other shafts,

viz., shaft # 1 and shaft # 3, are presented in appendix C.
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probably due to the inherent property variation and the different support and bearing
stiffnesses provided. Also the third mode shape could be used as a good indicator of the
presence of a crack in the shaft. This seems to give much higher variations in mode

shapes than the frequency changes that occur due to the presence of the crack.

Analysis of experimental results shows that it is possible to detect the presence of a crack.
These results showed that it was possible to detect a crack, around the crack depth ratio
of 20% (or larger), when the rates of frequency change (as a function of crack depth
ratio) were plotted as a function of crack depth ratio (between 20% and 30% crack depth
ratios, the rate of change variation was found to be 3% to 4%). Instead if frequency
changes were used as the crack indicator, then the changes were much smaller (between
20% and 30% crack depth ratios, the change in frequency ratio was around 0.5% to 1.0%)

than that shown by the rate of change of frequency (with respect to crack depth).

For torsional vibration, monitoring the first torsional frequency [with regards to its rate of
change (with respect to crack depth ratio)] gave a much better indication of the crack
presence (at a 10% crack depth ratio, the rate of change of frequency was around 10%)
than the monitoring of bending frequencies for its rate of change with respect to crack
depth ratio (at a 10% crack depth ratio, the rate of change of bending frequency was

around 1%).

These experimental results will be used later for the crack identification procedure

presented in the subsequent chapters.
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determined (using trial and error method) to achieve the best agreement between un-
cracked experimental and numerical results. Since the BEAM4 elements did not include
the stress intensity effects present in cracks, an equivalent crack effect, as described by
Petroski (1981) and Rytter (1993) with the use of a short beam element, was used in the

present study to include the stress intensity effects in cracks.

4.2 Theory and Modeling of the Bearing Support

One transverse open crack was considered to be present in the shaft in this study. The un-
cracked shaft, shown in Figure 3.7, was modeled by replacing the bearing support effects
by linear translational and rotational springs shown in Figure 4.1. The actual bearing
support used in the experimental study is shown in Figure 3.8 (b) (see McMaster-Carr,
2011). In the ball bearing used during these experiments, the flange of the housing
bearing was fixed to the steel support frame; the inner ball bearing was fixed to the
cylindrical shaft by tightening two screws positioned at 90° to one another. The elasticity
of these bearing connections of the test frame supports, and the cylindrical shaft, were
replaced by orthogonal linear springs, located at the positions of the two orthogonal tight
screws as shown in Figure 4.1. Hence the linear spring supports at right angles, used in
this study, represent the elastic effects of these tight screws of the cylindrical shaft (along
with the flange mount and inner bearing and support frame). on the vibration frequencies
of the shaft. Figures 4.1 (a;) to (e;) show the five models used for modeling the ball
bearing and test frame supports used in the study. viz., six, eight, ten and twelve springs,

respectively.
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From the results obtained (shown later in this chapter ) it was observed that none of these
five numerical models were fully sufficient to represent exactly the bearing support
effects, but they did reasonably represent the effects of the bearing supports; as such they
gave reasonably good results when compared with the measured experimental results. For
each spring support location the restoring forces increased or decreased depending on the
deformations at that location, which in turn depended on the elastic effects of the rotor
shaft bearing and the test frame support at the same location. The best model that gave
results very close to the experiment was identified in the subsequent computations given

in a later section.
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Figure 4.1 Finite Element Model for Cylindrical Shaft and Bearings: (al) and (a2) Six
Translational Springs Modeling; (b1) and (b2) Four Translational and Two Rotational
Springs Modeling ;(c1) and (¢2) Eight Translational Springs Modeling; (d1) and (d2)
Eight Translational Springs and Two Rotational Springs Modelling; and (e1) and (e2)

Twelve Translational Springs Modelling.
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4.3 Description of the Numerical Model in ANSYS using Beam4 Element

In the present investigation, the general aim was to identify the dynamic system
characteristics when the damage (crack) was present in the shaft. As mentioned above,
the experimental investigations were carried out for a crack, only at one location, for
three separate rotor shafts. In the numerical study, two finite element models were used;
one was the un-cracked shaft and the other representing the cracked shaft with seven
crack depths. The crack was located at the maximum bending moment position, viz., on
the right of bearing support 2, as shown in Figure 4.2. Commercial ANSYS software
(Appendix D.1 shows the ANSYS codes that were used in this chapter) was used to
determine the dynamic characteristics so as to correlate with the experimental results. In
the finite element model the shaft was continuous over two spans (having an overhanging
span for propeller) with ball-bearing supports. A schematic sketch of the rotor shaft is
shown in Figure 4.3. Its right end (carrying the propeller as a concentrated mass) was
free, while the left one was clamped. The length and the diameter of the shaft were as
given earlier, i.e., 1220 mm and 15.87 mm, respectively. The moment of inertia of the un-
cracked cross section was / = 3.217 x 10” m* and the polar moment of inertia for each
element was J,= 6.434 x 10° m* The Young’s modulus was E = 2 x 10'' N/m?, Poisson’s
ratio was 0.3, shear modulus of elasticity was G = 7.69 x 10'° N/m” and the density was p
= 7667 kg/m’. Beam element (type 4) was used to model the shaft used for numerical
analysis through ANSYS. This element is a uniaxial element with torsion, bending, shear
tension, and compression capabilities. The element had six degrees of freedom at each

node: axial, transverse and rotational motions are shown with numbering of its local
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Figure 4.4 Degrees of Freedom Numbering for a Three-Dimensional Shaft Element

(©
Figure 4.5 Sketch of the Moment of Inertia of: (a) Circle; (b) Circular Segment; and (¢)

Semi-Circle
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4.4 Results from ANSYS - Beam4 and Discussions

In this part of the study the findings from results obtained experimentally and
numerically are presented and discussed. For experimental and numerical studies, one
crack position and various crack ratios (from 0% to 70% ratio) were examined. From a
detailed comparison of numerical results, obtained for six, eight, ten and twelve springs
modeling, with the experimental results for the uncracked rotor shaft, it was found that
the six springs [shown in Figure 4.2 (b), with some area of contact near the screw contact
of the inner bearing with the cylindrical shaft] model gave the smallest difference
between the numerical and experimental frequency results (for six, eight and ten springs
modeling the results are presented in Appendix D.2). Hence the model with six springs
[Figure 4.1 (b)] was used as the proper model for subsequent studies; it was also observed
from the ANSYS numerical results (using BEAM4 shaft elements) that the output did not
contain any first mode torsional frequency component; it did contain a higher mode
torsional frequency at 652.0 Hz (which could not be the correct lowest frequency value).
The reason for this absence is that the support springs used did not permit the free
torsional motion at the test frame supports 1 and 2 required for comparing torsional
frequencies.). Table 4.1 shows the comparison of the first eight natural frequencies (four
vertical and four horizontal) between the experimental and numerical values (uncracked
and cracked), for the case of six springs [see Figure 4.1 (b)]. In this part of the study only
one element, having a width of 0.65mm (equal to the width of the saw-cut crack), was
used to represent the crack; and all the other elements, around the crack region were also

similar to (but wider than) this element. It can be seen from Table 4.1 that the
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Figure 4.6 Schematic Diagram of: (a) One Element Representing Crack Effect; and (b) A

Wider Element Representing the Crack Effect
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Table 4-1 Experimental and Numerical Values of the Natural Frequencies for Various

Crack Depth-Ratios (Uncorrected Numerical Values Shown within Brackets and

Corrected Numerical Results are Shown with the Asterisk); V-Vertical and H-

Horizontal.
Crack depth ratios
0.0% 10% 20% 30%
Frequency
\Y H \Y% H A H \ H

34.134 43.633 34.125 43.515 33.816 43.363 33.778 43.343
First (34.338) (43.858) (34.337) (43.855) (34.337) (43.849) (34.336) (43.844)
34.338" 43.858" 34262 43.550" 34.286" 43.046 34.176 42,570

76.703 78.792 76.657 78.806 76.483 78.424 76.195 78.382
Second (78.269) (80.436) (78.265) (80.425) (78.266) (80.408) (78.260) (80.392)
78.269° 80.436" 77.889" 79.481" 77.953" 78.054" 76.835° 77.398"

191.652 199.499 191.491 199.204 191.256 199.069 190.859 199.006
Third (190.42) (196.13) (190.42) (196.12) (190.42) (196.10) (190.41) (196.08)
190.42° 196.13" 189.99° 195.04" 190.05" 193.47° 189.42° 192.17

367.563 383.139 367.282 379.423 365.883 379.213 365.752 379.109
Fourth (366.26) (382.40) (366.26) (382.39) (366.26) (382.36) (366.26) (382.33)
366.26° 382.40° 365.94 380.85" 366.03" 378.62° 365.55" 376.84"

Crack depth ratios
Frequency 0% 50% 0% 70%
v H v H % H v H

33.556 43.185 33.145 42.947 32.774 42.862 31.286 42.069

First (34.334) (43.841) (34.329) (43.841) (34.320) (43.841) (34.300) (43.837)
33.964° 42.9647 33.563" 42.300° 32.762° 42.274° 30.964" 41.962°

75.572 78.298 74.553 78.214 73.401 77.644 69.774 75.896
Second (78.248) (80.384) (78.228) (80.382) (78.186) (80.381) (78.088) (80.370)
76.240° 76.412" 74.743" 76.151" 71.921° 76.059° 67.206 75.361"

190.076 198.671 188.763 198.299 187.240 197.993 182.790 194.457
Third (190.40) (196.07) (190.38) (196.07) (190.33) (196.06) (190.22) (196.05)
188.34° 191.55" 186.58" 191.46" 183.81° 191.37" 179.66" 190.66°

363.809 378.435 359.989 377565 355.839 376.664 343.971 373.689
Fourth (366.25) (382.32) (366.23) (382.32) (366.19) (382.32) (366.10) (382.30)
364.68° 376.03" 363.21° 37598 360.84° 375.92 357.25° 375.03"

These numerical results plotted in Figure 4.7 were correlated by comparing them with the

experimental results. The first three natural frequencies were calculated for several values

of the crack depth ratios [0, 0.1, 0.2, 0.3. 0.4, 0.5, 0.6, and 0.7] and for the presence of

crack represented by different (twenty-nine) short shaft element lengths [0.65 (case 10).

6.65 (case 13), 12.65 (I5). 18.65 (17), 24.65 (19), 30.65 (111). 36.65 (113), 42.65 (115),

54.65 (119). 60.65 (121), 66.65 (123). 72.65 (125), and 84.65 (case 129)] mm. Figures 4.7

(a), (b). and (c) show the numerical and experimental results for the first. second and
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are for those given by the short shaft element Num. V. 1, - Itis clear from this table that

the modeling of a cracked location by an equivalent short shaft element has considerably
reduced the percentage differences, between the numerical and experimental values, and

keeps the numerical values close to experimental values.

Figures 4.8 (a), (b), (c) and (d) show the comparison of changes that occurred in the
experimental (shaft # 2) and numerical (using Beam4) frequencies as the crack depth
ratios changed from 0 to 70% (with second order curve fit). As observed earlier by
Hamidi et .al. (1992), the rate of change in bending natural frequencies (shown in Figure
4.8) become noticeable for all cases when the crack depth ratio becomes greater than
20% and in some cases Figures 4.8 (a) and (b) when the crack depth ratio becomes
greater than 10%, indicating that the rates of change in natural frequencies (with respect

to crack depth ratio) seem to be a better indicator of crack presence.
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Experimental and Numerical Values of First Natural Frequencies
Ratio Vs Crack Length
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Experimental and Numerical Values of Second Natural Frequencies
Ratio Vs Crack Length
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Experimental and Numerical Values of I'hird Natural Frequencies
Ratio Vs Crack Length
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Figure 4.7 Experimental and Numerical Values of Non-Dimensionalized Vertical Natural
Frequencies vs Crack Depth Ratios (a) First Natural Frequency (b) Second Natural
Frequency; and (c) Third Natural Frequency
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frequencies. Considering the bending of the first three modes the bending curve shapes

are similar for vertical bending modes I and III near the position of crack, where the
support spring model of Figure 4.1 b, seems to work very well. For the III vertical

bending mode, the support spring modal of Figure 4.1 a, may give better results.

Table 4-2 Differences between Numerically and Experimentally Obtained Frequencies,

for Various Crack Depth-Ratios for the Equivalent Shaft Length Modeling (Values

within Brackets before Correction).

f . Crack depth ratios
Frequency N0 10% 20% 30% 40% 50% 60% 70%
v \% \" \' \% \% \' \%

First 0.59% 0.40% 1.39% 1.18% 1.22% 1.26% 0.04% 1.03%
(0.59%) | (0.62%) | (1.54%) | (1.65%) | (2.32%) | (3.57%) | (4.72%) | (8.79%)

2.00% 1.61% 1.92% 0.84% 0.88% 0.25% 2.02% 3.68%

Second

] (2.00%) | (2.09%) | (2.33%) | (2.71%) | (3.42%) | (4.93%) | (6.52%) | (11.92%)

. 0.64% 0.78% 0.63% 0.75% 091% 1.16% 1.83% 1.71%

| Third

(0.64%) | (0.56%) | (0.44%) | (0.24%) | (0.17%) | (0.86%) | (1.65%) | (4.06%)

Using the experimental mode shapes shown in the previous chapter in the Figures 3.17 to
3.20, the effective bending lengths (between points of contra-flexures) can be taken as
((1/~=, 1, ) for the first mode, ((;,2).,) for the second mode and (,, /> 7)) for the
third mode, where [ is the length between the two bearing supports. Taking 1, to be
equal to 0.97m (from Figure 3.7, which gives the actual span length between the two test
frame supports), the effective bending lengths for the first three frequencies were
obtained as 0.686m, 0.485m and 0.343m, respectively. This led to (effective crack length
/effective bending length for the mode) ratios of 1/12.55 for first bending mode, 1/15.83
for second bending mode and 1/13.91 for third bending mode. Hence the ratio of 1/12 to
1/16 seems to give a better fit for the equivalent short length shaft ratio (= effective crack

length/ effective bending length) for the different modes. The fourth mode shape (shown
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in Figure 3.20) was not considered in the analysis owing to the following reasons, viz., (i)
The node over the bearing support seems to have shifted outside its proper location,
probably due to the curve fitting procedure; (ii) Measurements were made only at
fourteen locations along the length of the shaft, and this has not provided enough plotting
points to give the proper modal shape curve; and (iii) The presence of a crack seems to be
indicated for all curves and thereafter appreciable change seems to occur in the plots

(also see Appendix B).

The value of 1/12 to 1/16 for the equivalent short length shaft ratio can be given an
alternate interpretation which will enable this ratio to be utilized in the first level crack
identification scheme for shaft. When a shaft cracks, the average wave velocity in the

cracked portion and the un-cracked portion should be the same. Hence

AL/At = T/T. (4.3)

where AL is the effective crack length, At is the time taken by the considered bending
wave (first record or third frequency) to cover the distance AL, L is the wave length of
the considered wave ( equal to twice the effective bending length) and T is the period of

the considered wave in the cracked case. Rearranging Eqn. (4.3),

AT = AL/L = AL/2L .4 (4.4)
Hence,
AL/Ler = 2 (AUT,) (4.5)
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4.5 Summary

In this chapter, results were obtained from the finite element software program ANSYS
13, using the beam element, BEAM4, for the numerical prediction of the dynamic
response of un-cracked and cracked shafts. Five support spring models were developed to
represent the ball bearing and from support effect, viz., six, eight and twelve springs. It is
seen that the rotor shaft with six support springs, shown in Figure 4.1 (b), gives the best
agreement between experimental and numerical results. This is due to the fact that this
model closely represents the elasticity effects that exist between the two tight screws that
connect the inner bearing to the cylindrical shaft and elasticity of the support provided by

the two frame supports 1 and 2.

When the crack was modeled by a very slender beam element the experimental values
shows comparatively larger changes for the crack present in the shaft; whereas the
numerical analysis results showed almost no changes, as the crack depth increased from 0
to 70%. The numerical analysis seemed to be insensitive to the presence of the crack in
this modelling. This was due to the fact that the flexibility introduced in the experimental
model by the presence of a crack was much higher than that provided by the single
slender finite element used to represent the crack effect in the numerical model. To
improve the numerical results, the model shown in Figure 4.6 (b) (a wider element) was
used to represent the crack effect. The results obtained with this wider “crack width”

modal were much closer to the experimental results.
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From the modeling of a crack, in a cracked shaft, by an equivalent short beam, the best fit

for the length of a short rotor shaft element for first natural frequency was about 54.65
mm, while the best fit for second and third natural frequencies were between 30.65mm
and 24.65mm, respectively. This gave an approximate ratio (= effective crack length/
effective bending length for the mode) of 1/12 to 1/16 for different modes. This also
seems to be corroborated by the digitized time interval requirements for accuracy in
finite-difference related numerical integration. The above relationship could be used as a

first level inspection scheme for determining the presence of cracking in a rotating shaft.
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Chapter 5

Crack Detection in Rotor Shafts Using Vibration Measurements and Numerical

Analyses using Three-Dimensional Isoperimetric Elements
5.1 Introduction

Cracking of cylindrical shafts is an important area for research, since the changes
observed in their vibration characteristics even during large-sized cracking are much
smaller than those observed for rectangular beams; hence early identification of crack
existence becomes essential to prevent sudden failures in rotating shafts. In this chapter
numerical investigations (3-D) were carried out to identify the presence of a crack in a
cylindrical overhanging shaft with a propeller at the free end. Three-dimensional iso-
parametric elements (element types 186 and 187) available in the ANSYS FEM program
were used in the analysis to model the rotor shaft and the embedded crack. The open
crack was embedded in the rotor shaft and the mesh generation was suitably modified to

incorporate the stress intensity effects present at the crack tip.

Instead of the beam elements used in the earlier numerical study reported in Chapter 4,
the study reported herein used 3-D iso-parametric elements (20-noded, 15-noded, 12-
noded and 10-noded) for modeling the shaft, bearings, supports, propeller, torque loading
arm and other accessories. Moreover in the earlier study only support springs were used
to represent the elastic effects of bearings, supports and other attachments present in the
cylindrical shaft system. Hence in the present chapter a detailed modeling of the bearing

connections to the shaft, as well as to the supporting frames, were done to properly
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include the total effect of the support elasticity. This detailed modeling of the shaft-
propeller system using FEM procedures has given extensive insights into the behavior of
the shaft-propeller system including the overall shaft behavior, the support bending, the

local bending of the propeller blades, and the presence of combined modes.

Vibratory responses of the un-cracked and cracked shaft were obtained numerically using
the finite element method and were compared with the results obtained from
experimental testing. Finite element results were used to generate numerical frequency
response functions that were used to detect the crack occurrence in the shaft propeller-

bearings system and to compare the numerical results with experimental results.

5.2 Modeling of Rotor Shaft-Bearing-Propeller System with ANSYS Workbench

The shaft was supported over two roller bearings supported on two fixed steel supports;
the fixed steel supports were fixed-welded to the large steel base plate as shown in Figure
5.1 (a). The steel base plate was fixed to the table at bottom. The bearing model used for
the present study was the Flange Mounted McMaster-Carr Ball bearing (5967k81) shown
in Figure 5.1 (McMaster-Carr, 2011) shown in Figure 5.1 (b). It contained two main
parts, viz., the inner and outer housing bearing surfaces connected together through some
balls, and two tight screws that connected the shaft to the inner bearing, as shown in

Figure 5.1 (c).
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78580 nodes for the un-cracked shaft. For the cracked shaft the same mesh was used with

refinement of the mesh around the crack front giving a much higher number of elements

and nodes for the vibrating system. The mesh around the crack region is shown in Figure

5.3 (b).

Table 5-1 Numerical Values of the Natural Frequencies for Various Crack Depth-Ratios,

V - Vertical and H - Horizontal.

Crack depth ratios
Freauenc 0.0% 10% 20% 30%
quency v H v H v H v H
First 35577 | 41.182 | 35594 | 41.113 | 35551 | 41.173 | 35471 | 41.107
Second | 75247 | 78245 | 75.113 | 78.102 | 75.021 | 78.017 | 74933 | 78.129
Third 187.880 | 19922 | 187.51 | 19897 | 18743 | 198.82 187.4 199.4
Fourth 360.1 38149 | 35872 | 38075 | 358.99 | 380.58 | 362.09 | 383.3
First
natural 43453 | 43422 | 43011 | 4292 | 43453 | 43422 | 43111 | 42.92
frequency
for torsion
Crack depth ratios
Freauenc 40% 50% 60% 70%
quency v H v H v H Y H
First 35402 | 41575 | 34922 | 41.002 | 3423 | 40497 | 33.706 | 40.583
Second 7427 77997 | 7348 | 7779 | 71832 | 76594 | 69.705 | 76.879
Third 186.4 198.66 | 185.56 | 198.76 | 18336 | 197.05 | 179.87 | 196.46
Fourth 379.14 | 360.66 | 360.66 | 38083 | 341.77 | 376.87 | 33883 | 366.55
First
natural 42739 | 42599 | 42353 | 41877 | 42739 | 42.509 | 42.353 | 41.877
frequency
for torsion

5.2.3 Contact Behaviour

In ANSYS workbench the contact between two bodies were represented by two contact

surfaces. one specified as a contact surface and the other as a target surface. The contact

between these bodies can be represented by one of the following types, viz., bonded,

106




frictional, frictionless, rough, and no separation. Bonded contact means that the two

bodies were integral with one another and act as a single body. Frictional contact applies
only to surfaces in contact and the value of friction varies from a low value to a high
value (only positive values were permitted). Rough contact represents the surfaces which
have a very large friction coefficient between the contacting bodies. In the present shaft-
propeller system, all the three types of contact have been used. It can be explained as
follows: (i) The parts which were bonded together are, viz., two tight screws to inner
bearing and to shaft, housing bearing to inner connection (a part that is made to fill the
space between the bearing surfaces and the steel supports, to avoid unwanted zero
modes), housing bearing to balls, shaft to small nut, shaft to big nut, shaft to fixed
aluminum, propeller to small nut, small nut to big nut, and fixed aluminum to support 1;
(i1) The parts which had frictional contacts were, viz., aluminum arm to shaft (friction
coefficient is 0.2), aluminum arm to propeller (friction coefficient is 0.1), inner
connection to support (friction coefficient is 0.001), and shaft to propeller (friction
coefficient is 0.1); and (iii) The parts which had frictionless contacts were, viz., housing
bearing to inner bearing, balls to inner bearing, balls to inner connections, inner bearing
to inner connections, inner bearing to shaft, inner connections to shaft, fixed aluminum
to support 1 and shaft to support 1. The frictional coefficient became important in
determining the correct torsional frequency since the propeller was not welded to the
shaft, but joined rigidly through a slotted keyway system. The frictional coefficients that

gave frequencies close to the experimental values were used to get the correct numerical
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frequency values. The same consideration was used in identifying the frictional

coefficient for the torque arm.

5.2.4 Materials

The shaft-bearing-system model contained different type of materials. As mentioned in
the previous section the model had several interconnecting parts such as shaft, propeller,
bearings, nuts, tight screws, aluminum arm, fixed aluminum, support, and inner

connection. The material properties of these parts used in the analysis are summarized in

Table 5.2.
Table 5-2 Material Properties Used in the Numerical Modal
Type Material DL)['NZ ellz:/l(t)i((j::']tl}tjs O}Ea P?ll’sso Bulk Modulus Pa Shear ]I\J/iliodulus
Kg/m ratio
shaft Steel 7850 2e+l1 0.3 1.67et+11 7.69¢+10
Propeller Bronze 8800 I.14e+11 0.34 F.19e+11 4.25e+10
Support steel 7850 2etl] 03 1.67e+11 7.69¢+10
Housing bearing Gray cast iron 7200 1.1e+11 0.28 8.33¢+10 4.29¢+10
Inner hearing Structural steel 7850 2e+l] 03 [.67e+11 7.69e+09
Fixed alumin-um Aluminum Alloy 2770 7.te+10 0.33 6.96e+10 2.67e+10
Aluminum arm Aluminum Alloy 2770 7.1e+10 0.33 6.96e+10 2.67e+10
Inner connection | Artificial polyethylene 50 1.1e+05 042 2.29¢+05 38732

Tight screws steel 7850 2¢+11 03 1.67¢+11 7.6%9¢+10
S"""L:'t‘d big stecl 7850 2e+11 03 1.67et11 7.69¢+10
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5.3 Presentation of the Results and Discussion

In this part, results obtained from the finite element software program (using ANSYS
workbench 13) and from experimental program are presented. The twenty frequencies
obtained from a prior study and the mode shapes obtained are given in Table 5.3 and
Figures 5.4 and 5.5 (also see Appendix F). It can be seen from Figure 5.4, that the lower
propeller blade frequencies are clustered between the third and fourth vertical bending
frequencies. In addition it can also be seen that the support bends due to shaft vibration as
shown for the modes shapes of frequency 343.95 Hz and 424.85 Hz. In order to relate
them to the earlier experimental results, only the eight lowest bending frequencies (four
vertical and four horizontal) and mode shapes of the un-cracked and cracked shafts will
be highlighted hereafter. For experimental and numerical studies, one crack position and

various crack ratios (from 0% to 70% ratio) were examined.

Table 5.3 shows the results of the first eight natural bending frequencies (four vertical
and four horizontal); it also gives the computed torsional frequency. These experiments
were repeated for three different shaft-bearing systems, viz., shaft No. 1, shaft No.2 and
shaft No. 3. The three shafts were of almost of the same diameter (average measured
diameter values were 0.01588 m, 0.01586 m, 0.01589 m, respectively). For each crack
depth three independent tests were carried out and the results processed through the LMS
Test Lab system. Then the results were added and averaged (see Appendix A) to get the

final results reported herein.
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Table 5-3 Experimental and Numerical Values of the Natural Frequencies (Hz) for

Various Crack Depth-Ratios (V - Vertical and H - Horizontal and Torsional).

Crack depth ratios
Frequency 0.0% 10% 20% 30%
\Y H \ H v H \% H
Exp. Shaft 1 34.768 41344 34.417 41.544 34.119 41.182 34325 41.196
First Exp. Shaft 2 36.395 42.980 36.315 42.959 36.262 42.904 36.212 42.91
Exp. Shaft 3 33.855 40.629 33.774 40.656 33.751 40.615 33.736 40.550
Num. Comp. 35577 41.182 35.594 41,113 35.551 41.173 35.471 41.107
Exp.Shafi 1* [ 76.78167 78.279 76.413 78.57567 | 76.05867 78.31 75.205 78.02033
Second Exp. Shafi 2 75975 80.034 76.056 79.985 75.852 79.903 75.617 79.309
T R 3 74.614 79.914 74.593 79.809 74.487 79.844 74.215 79.826
INuLL L uimp. 75.247 78.245 75.113 78.102 75.021 78.017 74.933 78.129
T Shafi 1 190.634 199.089 190.757 197.944 189.998 197.769 189.865 197.829
Third cap. Shaft 2 196.119 199.544 195.849 199.462 195.667 199.503 195.398 199.424
Exp. Shaft 3 192.190 197.813 191.962 197.817 191.742 197.771 191.298 197.652
Num. Comp. 187.880 199.22 187.51 198.97 187.43 198.82 187.4 199.4
Exp. Shaft 1 365.8 335241 | 364.3547 | 3352313 | 362.3233 | 335.7223 | 365.426 | 336.0583
Fourth Exp. Shaft 2 367.423 369.148 366.861 368.992 366.391 368.896 365.457 368.605
Exp. Shaft 3 352.959 355.931 353.392 355628 352.642 355315 349.39 353.132
Num. Comp. 360.1 381.49 358.72 380.75 358.99 380.58 362.09 383.3
First Exp. Shaft 1 43.716 43213 42.826 42.628
natural
frequency
for torsion Num. Comp. 43453 43422 13111 42.92
Crack depth ratios
Frequency 0.40% 50% 60% 70%
\' H \% H \% H v H
Exp. Shaft 1 * | 33.80933 | 41.09267 | 33.79633 40.815 32.64033 | 40.52267 | 30.60033 | 39.84867
First Exp. Shaft 2 36.02723 | 42.77933 35.791 42.70067 | 35.21133 | 42.23533 | 33.98633 41.728
Exp. Shaft 3 33.54967 | 40.47867 33.335 40.339 32.80367 | 40.03433 | 31.67467 39.535
Num. Comp. 35.402 41,575 Tronn 41.002 3423 40.497 33.706 40.583
Exp. Shaft 1 i 75.48633 | 77.35933 | Tw.17100 | 76.54333 | 72.79567 76.23 67.299 74.95233
Second Exp. Shaft 2 : 74.99833 | 79.09533 | 74.20733 | 79.09067 | 72.38067 | 79.03467 | 69.24733 | 77.91233
Exp. Shaft 3 7344333 79.603 72.554 79.372 70.73833 | 78.92633 | 67.54433 77.9527
Num. Comp. 74.27 77.997 73.48 77.79 71.832 76.594 69.705 76.879
Exp. Shaft | i 189.449 197.708 188.0927 197.1897 | 186.1117 | 196.4363 178.986 195.956
Third Exp. Shaft 2 : 194.5687 199.3333 193.421 199.0703 190.7537 | 198.4617 185.5763 | 197.3003
Exp. Shaft 3 190.0337 197.4143 188.644 197.0687 185.412 196.3743 180.0857 | 195.0663
Num. Comp. 186 .4 198.66 185.56 198.76 183.36 197.05 179.87 196.46
Exp. Shaft 1~ 358.8217 | 335.4333 355.349 333.2633 | 345.0703 331.14 327.8163 | 321.8417
Fourth Exp. Shaft 2 j 362.876 367.6683 | 359.1237 366.059 349.9673 | 362.3057 333.337 354.9043
Exp. Shaft 3 344.4017 350.252 339.052 347.5507 | 328.8137 | 343.1973 315.164 336.204
Num. Comp. 379.14 360.66 360.66 380.83 341.77 376 .87 338.83 366.55
First Exp. Shaft 1 42.292 41.864 41.723 41.497
natural
frequency
fortorsion | \ym Comp. 42.739 42.599 42.353 41.877

* Average of three independent measurements
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digitization rate of the experiments, that the accuracy of frequency measurements was
around 0.25 Hz. This is in correspondence with the limitations in the ANSYS software
for FRF computations where the minimum frequency difference that could be achieved
was 0.25 Hz. Hence the measured changes would reflect these limitations in the changes

that occur in measuring the successive cracks profiles used in the study.

Figure 5.5 and 5.6 shows the mode shapes comparison for first eight natural frequencies
of (four vertical and four horizontal) experimental and numerical analyses for un-cracked
shaft (for cracked shaft the results are presented in Appendix E). As could be observed
from the plots shown in Figures 5.5 and 5.6, the experimental measurements closely
correspond with the numerical computations. In the numerical computations the local
propeller blade responses were observed to lie between the 3" and 4™ vertical bending
frequencies. In addition the support bending vibrations were observed to be above the 4

horizontal bending frequency (also for rotor shaft-support-propeller bending, see Figures

F.1to F.7 in Appendix F).

Figure 5.7 shows the changes that occur in the experimental bending and torsional
frequencies as the crack depth ratios change from 0 to 70% (cubic curve fit). It can be
seen that the frequency changes become appreciable only when the crack depth ratio is
more than 50%. This would lead to a precipitous cracking of the shaft unless it is noticed
in a timely manner. Hence another type of measure is required to detect the presence of
cracking damage in cylindrical shafts. When the rate of change of frequency is plotted as

a function of crack depth ratio, as shown in Figure 5.8 (a) — (d) (also the Appendix C
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Figure 5.9 shows the vertical bending responses of the system under test (impact

excitation) and the corresponding response functions (acceleration FRFs, velocity FRFs,
displacement FRFs) for experimental and numerical results for shaft # 1 ( the results were
almost similar for shaft # 1 and shaft # 3, which are presented in Appendix G). Frequency
response functions for various crack depth ratios (from 0% to 70% ratio) were obtained
for all cases. All figures illustrate the frequency shifts that occur due to the increased
cracking in the shaft. It is also observed for all cases (experimental and numerical),
reasonable agreements exist between numerical and experimental results. It can be seen
from these figures, that the acceleration, velocity and displacement response functions
(ARFs, VRFs and DRFs) can also be used as another tool for crack identification. Figure
5.10 shows individual comparisons for all cases (intact ARFs, VRFs and DRFs; cracked
10% ARFs, VRFs and DRFs; cracked 20% ARFs, VRFs and DRFs; cracked 30% ARFs,
VRFs and DRFs; cracked 40% ARFs, VRFs and DRFs; cracked 50% ARFs, VRFs and
DRFs; cracked 60% ARFs, VRFs and DRFs; and cracked 70% ARFs, VRFs and DRFs.)
for vertical bending response functions of experimental and numerical computations. It
can be seen more clearly that the shifts of acceleration, velocity and displacement
response peaks are dependent on the change in natural frequencies and are directly
proportional to the severities of the crack. The results are presented here for shaft # 2

while the rest of results, shaft # 1 and shaft # 3 are presented in Appendix H.

[t is essential to point out two limitations in all the numerical computations reported
above: (1) It can be seen from the curves given in Figures 5.9 and 5.10 respectively, in

this study there is an extra frequency observable (around 35.0 to 45.0 Hz) in the
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experimental results, which is not observed in the numerical computations. This extra

frequency was determined to be due to the presence of the effect of torsional rotation
(especially at the fixed end near support 1) in the measurement of vertical displacements.
In the numerical computations, the torsional and bending frequencies (as well as their
response functions) could not be computed in a single numerical computation for the
indeterminate shaft. It had to be computed in two separate computations where the shaft
was permitted to either bend or rotate freely (over the support 2 near the overhang) by the
provision of zero friction (boundary condition for torsion) at the support near the
overhang; this led to two different systems. The torsional frequencies were obtained
correctly, when zero friction was provided at bearing support 2 and the bending
frequencies were correctly obtained when friction of bearing # 2 was greater than zero (>
10"); and (ii) Also in the numerical computation for response functions the desired
accuracy for computations could not be achieved with the provided computer memory
size in the computing system. The accuracy with which the researcher could obtain
response results was 0.25Hz (one could solve results up to 1000 steps for the frequency
range of zero to 250Hz). These two restrictions prevented better comparison to be

obtained between experimental and numerical results.
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Figure 5.11 (a), (c) and (e) shows the changes that occur in the vertical amplitude
response and the slope (of amplitude response) for resonant frequencies (experimental
results) as the crack depth ratio increases from 0.0 to 0.7. Plots of the two other shafts are
presented in Appendix I.1 and I.2. Figure 5.11 (a) shows the changes that occur in
acceleration vertical amplitude response vs. crack depth ratio. It is observed from this
figure that the identifier of the mode shape change due to crack is shown better by the
first mode shape than the second mode; the crack presence can be identified above a
crack depth ratio of 0.2. Similarly, Figure 5.11 (c¢) shows the changes that occur in
velocity amplitude vs. crack depth ratio. In this figure the second mode gives a much
better indication for the presence of crack than the first mode. Once again the crack
presence can be identified beyond a crack depth ratio of 0.2. Also Figure 5.11 (e) shows
the changes that occur in displacement amplitude response vs. crack depth ratio. These
responses look like acceleration amplitude responses but may be less sensitive for crack.

It can be seen from Figures 5.11 (a) to () that the identification of crack can be observed

with much better sensitivity from the velocity amplitude responses shown in Figure 5.10

(¢) and (d) (since the variation is much higher for velocity). In this case the crack can be
identified after 0.2. Figure 5.11 (b), (d) and (f) show the slope of the modal amplitudes
for acceleration, velocity and displacement responses, respectively vs. crack depth ratio.
Figure 5.11 (b) and (d) show that beyond the crack depth ratio of 0.2, presence of the

crack can be easily identified.

Figure 5.12 (a) to (f) show the changes that occur in the amplitude and the slope (of

amplitudes) for anti-resonant frequencies (experimental results) as the crack depth ratio
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increases from 0.0 to 0.7. Figures 5.12 (a) and (¢) show the changes that occur in
acceleration amplitudes and displacement amplitudes vs. crack depth ratio, respectively.
It is observed from the two figures that the crack can be identified after a crack depth
ratio of 0.4; mode shape change due to crack is shown better by the third mode amplitude
shape than the first mode amplitude shape. By comparing these anti-resonant figures and

the previous ones, it is clear that the resonant frequency gives a much better indicator for

the crack presence than the anti-resonant frequency. On the other hand Figure 5.12 (c) for

first mode gives a very good indicator for the crack presence than all other figures; hence
the changes that occur in velocity amplitudes vs. crack depth ratio is much better than
acceleration or displacement amplitudes. Figure 5.12 (b), (d) and (f) show the slope of the
anti-resonant modal amplitude for acceleration, velocity and displacement, respectively
vs. crack depth ratio. Figure 5.12 (b) shows that beyond a crack depth ratio of 0.3,
presence of the crack could be identified; and the third mode seems to be better than first
mode. Whereas Figure 5.12 (d) gives better results [than Figure 5.12 (b)] since it can

sense the crack presence even from an earlier stage of crack (when crack depth ratio is >

0.0) for both modes. For all crack cases are presented in Appendix 1.3 and 1.4,
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Figure 5.13 shows experimental and numerical comparison for first and second modes for
acceleration, velocity and displacement amplitudes. It can be observed from the
amplitude curves of Figure 5.13 that the amplitude ratios of all the modes increase for the
resonant frequencies as the crack depths ratio increases. The trend of agreement between
experimental and numerical values is very good, especially for all the first modes;
however only a small change occurs in amplitudes values at all the second modes. Also
it can be seen from numerical acceleration results that it gives a much better indication of
the crack presence for mode 2 even from the beginning stages of the crack but the
sensitivity seems to be much higher for velocity amplitude ratios (also see Figures [.5 and

[.6 in Appendix I.)

Figure 5.14 shows the slope of the first and second experimental and numerical modal
amplitudes. These figures show that velocity and displacement slopes give a much better
indication of the crack presence than the slope of acceleration. It can be observed from
Figure 5.13 (b) and (c) that the crack is present even from beginning stages (since the
sensitivity at lower crack depths is much higher) while Figure 5.13 (a) shows a definite
presence of the crack beyond a crack depth ratio of 0.2 (also see Figures 1.7 and 1.8 in

Appendix I).

Figure 5.15 (a) to (c¢) show the changes that occur in the resonant frequencies
(experimental and numerical results) as the crack depth ratio increases from 0.0 to 0.7.
Figure 5.15 (a) shows the changes that occur in the non-dimensional frequency ratios

(Ocracked/@un-cracked) for the first four vertical bending frequencies as the crack depth ratio
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increases. It is observed that the changes in non-dimensional frequency ratios are not

appreciable for a crack depth ratio less than 0.5 (in this range the non-dimensional
frequency ratio is greater than 0.98). This crack depth ratio is quite large for crack
detection since the structure may tend to fail catastrophically beyond this crack depth.
Hence for these types of shafts, we need to obtain another type of measure that could
indicate the crack presence much earlier. Figure 5.15 (b) shows the relationships that
exist between experimental measurements and numerical computations of non-
dimensional frequency ratios for all crack depths (for different modes). At lower crack
depth ratios (<0.4) the relationship is almost linear; as crack depth ratio increases beyond
this, the relationship tends to become slightly nonlinear. This seems to imply that the
nonlinear effect on the resonant frequencies is marginal at crack depth ratios are less than
0.4; even beyond this crack depth ratio the nonlinear effect is not significant (also see

Figures J.1 and J.2 in Appendix J).

Considering the results presented for amplitude measurement in Figures 5.11 to 5.14, it
appears that measurements and comparisons made at resonant frequencies seem to be
more reliable for both amplitude measurements and its slope than those at anti-resonant
frequencies. Moreover sensitivity of prediction seems to be better for slopes of
normalized amplitude vs. crack depth ratio than that for normalized amplitude ratio vs.
crack depth ratio [since it could be observed from Figure 5.11 that change in normalized
amplitude ratios vary from 1.0 to 1.2 (for first mode) between a crack depth ratio of 0.0 to
0.4; whereas the change in slopes is much higher, varying from 0.0 to 5.0 (for first mode)

between a crack depth ratio of 0.2 to 0.5]. Also the velocity amplitude comparisons secem
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to give much better results than the acceleration and displacement amplitude

comparisons. In addition the use of results at the second resonant frequency seems to be

much superior to that at first frequency.

A better crack detection method is obtained when the slope of the frequency ratio vs.
crack depth ratio curve is plotted against the crack depth ratio, as shown in Figure 5.15
(c¢). The whole process of determining the slope of the non-dimensional curve vs. crack
depth ratio was cast in a mathematical format. First the curves shown in Figure 5.15 (a)
were curve-fitted and the algebraic equations that relate very closely the non-dimensional
frequency ratio (y) to crack depth ratio (x = d/D) was determined for all the four modes.
Then these equations were differentiated with respect to crack depth ratio (= x) to obtain
the slope equation for the curve. These relationships are indicated in Table 5.4, given
below. From the slope curves shown in Figure 5.15 (c), it can be observed that when the
crack depth ratio is greater than 0.2 to 0.25, one can definitely say that there is a well-
defined crack that is present in the structure (for both experimental and numerical
results). Thus this gives a better indicator of crack presence in the rotor shaft.
Incidentally, the mathematical equations given in Table 5.4 can also be used to estimate
the unknown crack depth ratio, if the different experimental frequency ratios are known

for different modes.
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Table 5-4 Mathematical Equations Obtained for the Frequency Ratio Curve and Its Slope
as a Function of Crack Depth-Ratio [Y = (Qcracked/Qun-Cracked); X = (D/D)]

Mode # Non-dimensional frequency ratio curve Slope of non-dlmecrLsrl\c/)enal frequency ratio
Mode 1 y1=-0.519x3 + 0.330x2 - 0.070x + 1.000 dy/dx = -1.557x"2+0.66x-0.07
Mode 2 ¥2--0.555x3 + 0.280x2 - 0.050x + 1.000 dy,/dx = -1.665x"2+0.56x-0.05
Mode 3 y3--0.387x3 + 0.229x2 - 0.046x + 1.000 dyy/dx = -1.161x"2+0.458X-0.046
Mode 4 ¥4--0.656x3 + 0.371x2 - 0.070x + 1.000 dy,/dx = -1.968x"2+0.742x-0.070

In a similar manner, the relationships that exist between the non-dimensional anti-
resonant frequencies and crack depth ratio are shown in Figure 5.15(a), (b) and (c). Anti-
resonant frequency is the frequency at which the mechanical impedance of the shaft has
the largest magnitude (or the mobility has the lowest magnitude). The results are similar
to that at resonant frequencies; but the sensitivities seem to be better for anti-resonant
frequencies as indicated earlier by (Afolabi, 1987). See Figures J.3 and J.4 in Appendix J

for shaft # 1 and Shaft # 3.

Comparing the results shown in Figures 5.15 and 5.16 for the change in frequency ratios
as a function of crack depth ratios at resonant and anti-resonant frequencies, respectively,
sensitivity of measurements seem to be better for the first resonant and first anti-resonant
frequencies than that for the higher frequencies. Also use of slopes of the plots seems to
be the most efficient method for detecting the crack presence in the rotating shaft much
carly. Moreover the use of the results shown in Figure 5.11 to 5.16, would give a better
procedure for carrying out a first level robust crack measurement and prediction

procedure for rotor shafts.
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5.4 Summary

In this chapter numerical investigations (using 3-D elements) are carried out to identify
the presence of a crack in a cylindrical overhanging rotor shaft with a propeller at the free
end. The three-dimensional iso-parametric elements (element types 186 and 187)
available in the ANSYS FEM program were utilized for this purpose; the open crack was
embedded in the shaft and the mesh generation was suitably modified to incorporate the

stress intensity effects present at the crack tip.

The propeller-bearing-shaft system has been holistically modeled using FE procedure
with the actual in-situ profiles for the propeller, bearings, supports and torque loading
aluminum arm. Also vibration analysis for experimental results has been successfully
correlated with the finite element results. These results show that it is possible to detect

the crack presence beyond the crack depth ratio of 20%.

The following are some of the highlights of results obtained from this chapter: When the
rates of changes of bending or torsional frequencies were plotted as a function of crack
depth ratio, 1t was possible to detect the presence of crack in a rotor shaft above a crack
depth ratio of 0.2. This will be a very good procedure for detecting the presence of a
crack in the rotor shaft; the examination of the change of torsional frequencies of a
rotating shaft was able to predict the presence of obtained crack even from its beginning
stages. This conclusion has to be firmed up by additional experimental and numerical

results on a number of shaft configurations.







Chapter 6

Crack Detection in Shafts Using Mechanical Impedance from Experimental

Measurements and Numerical Computations

6.1 Introduction

In this chapter, we will describe the analytical investigations which were carried out
using an overhanging cylindrical shaft carrying a propeller at the cantilever end, in order
to identify the crack existence in shafts using the mechanical impedance approach. Also
the earlier experimental study given in Chapter 3, used the modal analysis software, LMS
Test Lab™, for measuring and analyzing the response results from un-cracked and
cracked shafts. The main objective of the part of experimental study reported in this
chapter was to examine the effect of cracks on the lateral vibrations of a shaft using
mechanical impedance measurements.In the numerical study, both the un-cracked and the
cracked shafts (with varying crack depths) were modeled using a finite element
procedure. 3-D iso-parametric elements (element types 186 and 187), available in the
ANSYS FEM program, were utilized to model the system. The impedance and the
previously obtained velocity frequency response functions were used to identify the crack
depth in the rotor shaft system. Impedance and mobility were measured and simulated
numerically in the vertical direction for the resonant frequencies and anti-resonant
frequencies. The experimental results were used to validate the numerical results. From

these results crack identification parameters were determined.
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6.2 Definition of Mechanical Impedance

Mechanical impedance is defined as the structure’s capability to resist motion when it is
subjected to the effect of a given force. Mechanical impedance represents the relationship
between forces and velocities acting on a given structure. Some researchers preferred to
use the inverse of the mechanical impedance, the mobility (or admittance). The
mechanical impedance can be expressed as a function of the forcing frequency o, it is
highly dependent on the frequency. The peak of the impedance occurs when the system

has almost a zero velocity response, this occurs at the resonance frequencies.

The mechanical impedance at a point of the structure can be analytically defined as the
ratio of the harmonic force, F (w), to the velocity response V (®) of that point on the
structure. If the value of the harmonic response is V (), then the impedance, 7 (®)

(Tapio and Jukka, 1989) is given by
Z (0)=F (0)/V (®) (6.1)

6.3 Mechanical Impedance and Multi-Degree-of-Freedom Systems

The matrix equation for the motion of a multi-degree-of-freedom system can be

expressed as

[nﬂ{}u)}+[c{5((r)}+[k]{/\’(t)}={F ) (6.2)

where [m], [c] and [k] are the mass, damping, and stiffness matrices of the system,

respectively. X(t) is the response of the system in terms of the system displacement and
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F(t) is the external force vector applied to the system. Expressing equation (6.2) in a

summation form (On, 1967)

d dx
ZZl[mﬂﬂE+caﬂ +kap Idt:IE —fa(l),'“a— 12,...,N. (63)

where N, a, and P represent the degrees of freedom of the system and coordinates,

respectively. The Fourier transform of Equation (6.3) leads to,

4 Ko
Zﬁ:l iwm,, +¢ 5 +—— V(W)= F (W), --a=12.. N
6.4)

where Vg(w)is the Fourier transform of the velocity (= dx/dt) response and Fo(w) is the
Fourier transform of the excitation force. If the term within the bracket can be expressed

as,

w

; ko,
Z (W)= [iwmaﬂ +Cyp +_]
(6.5

which characterizes the frequency dependent properties of the system, then Eqn. (6.4)

may be expressed as

ZV, =F
zz“ s = (6.6)
In a proper matrix format, eqn. (6.6) can be rewritten as

lZaﬁHVﬂ} :{Ez} (6.7)
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In eqn. (6.7), Zgp is termed the point impedance parameter of the system (when a = f).
When a # B it is termed as the transfer impedance parameter. Equation (6.7) gives results
in terms of the mechanical impedances of the vibrating system. Once the impedances (or
its inverse, mobility) are known, the corresponding complements of dynamic stiffness (or
displacements) and apparent mass (or accelerations) can be obtained by the use of proper

numerical integration or differentiation of the impedance functions.

6.4 Relationship between Input and Output in the Dynamic Response of a Rotating
Shaft

This section illustrates the relationship that exists between the input and output obtained
from a vibrating system (in this case, a rotating shaft). The relationship can be expressed
by the block diagram given in Figure 6.1, which relates the input and the output of a
structural system in a direct manner. The inverse of the relationship shown in Figure 6.1
is shown in Figure 6.2 (Schwarz & Richardson, 1999). In the direct (or forward) manner,
the relationship between the input and output shown in Figure 6.1 can be expressed as

H 4 ptacomen (@) 1/ X (o)

Hyp (@) | =511V (@) HF (@)} (6.8)
Hacﬂ/cmlmn ((l)) 1/ A((l))

In the indirect (or inverse) manner, the input and output shown in Figure 6.2 can be

expressed as

my H displacement ((l)) X (CU)
mv H!’L’Iou/_\' ((l)) = V((U) {l / F((l))} (69)

my H(IL'L'I(,’I‘(III{)II (a)) A(a))
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The transfer functions Hyisp. () are called receptance (or dynamic compliance) function
for displacement or, mobility function for velocities or accelerance function for ‘
accelerations. The inverse transfer functions, iny Haisp. (W) are called dynamic stiffness (for
displacement input) or mechanical impedance (for velocity input) or apparent mass (for
acceleration input) functions. The LMS system gave the real and imagery components of
the accelerance data of the tested rotor shaft; using the Matlab provisions the velocity and
displacement information were obtained. Similarly the inverses of the above functions ’

were obtained by using Matlab provisions. ’

The characteristic features of these matrix functions can be suitably utilized to monitor ‘
and detect cracks (or damages) in structures. If the system frequencies are very low (in
the case of massive structures), better sensitivity will be obtained for monitoring and
detection by the use of displacement response function Hgis, (W) or its inverse iny Haisp.
(w). If the frequencies are in the intermediate range, the use of velocity response function
Hyel (w) or its inverse iny Hye (w) (or mechanical impedance) will give better sensitivity
for monitoring cracks (or damages) in the structural system. For higher frequencies (in
the case of very stiff structures) the use of acceleration-related response functions Hye.
(w) or its inverse iny Hacor, (W) (or apparent mass) will give better sensitivity in monitoring
cracks (or damages) in the structural system. In the present study, attention will be
focused more on deriving information from velocity-related impedance response

functions.
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Input force

F (w)

Transfer function

Output response

H displacement ((1))
H velocity ((0)

H acceleration ((0)

Figure 6.1 Block Diagram for Input-Output Relationship in Frequency Domain

Input response

Displacement
Velocity

Acceleration

Transfer function

i H displacement (w)

nv H velocity ((D)

inv H acceleration ((0)

>
Displacement
Velocity
Acceleration
Output force
>
F (o)

Figure 6.2 Block Diagram for the Inverse Input-Output Relationship in Frequency

Domain

6.5 Presentation of Results and Discussion

Figure 6.3 shows the velocity responses of the system under applied force (impact

excitation) indicating the experimental and numerical computation for velocity FRFs. All

figures illustrate the frequency shifts that occur due to the increased cracking in the shaft.

It is also observed that for all cases (experimental and numerical), reasonable agreements

exist between numerical and experimental results. It can be seen from these figures, that

the velocity response functions (VRFs) can also be used as a good tool for crack
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identification. Also Figure 6.4 shows individual comparisons for some cases (intact
VRFs, cracked 10% VRFs, cracked 20% VRFs, cracked 30% VRFs, cracked 40% VRFs,
cracked 50% VRFs, cracked 60% VRFs, and cracked 70% VRFs.) for response functions
of experimental and numerical computations. It can be seen more clearly that the shift of
velocity response peaks is dependent on the change in natural frequencies and is directly

proportional to the severity of the crack.

It is essential to point out two limitations in all the numerical computations reported: (i) It
can be seen from the curves given in Figure 6.3 that the experimental results show an
additional frequency which is not seen in the numerical computations. This additional
frequency was determined to be due to the presence of a torsional frequency in the
measurement of vertical displacements. In the numerical computations, the torsional and
bending frequencies (as well as their response functions) could not be ¢ wuted = a
single numerical computation for the indeterminate shaft. Torsional and bending
vibrations were calculated separately where, the shaft was permitted to either bend or
rotate freely (over the support near the overhang) by the provision of zero friction
(boundary condition for torsion) at the support near the overhang. The torsional
frequencies were obtained correctly, when zero friction was provided at the bearing
located at support # 2; and (ii) This approach was used also because of the limited
capacity of the computing system. The accuracy with which the researcher could obtain
response results was 0.25Hz (one could solve results up to 1000 steps for the frequency
range of zero to 250Hz). These two restrictions prevented better comparison to be

obtained between experimental and numerical computations.



See Figures K.1.1, K.1.2, K.1.3 and K.1.4 in Appendix K for shaft # 1 and Shaft # 3.
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VRF Amplitude [(m/s)/N]

Figure 6.3 Responses of the System for; a) Experimental; and b) Numerical
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Figures 6.5 and 6.6 give the experimental and numerical plots obtained by LMS Test
Laboratory software and ANSYS Workbench software, respectively. The plots show the
mechanical impedances of a cylindrical rotor shaft-propeller-bearing system obtained for
vertical vibrations. Figure 6.5 shows the computed mechanical impedances of the
cylindrical shaft for the various crack depth ratios (0.0 to 0.7). The impedance values
peak when the cylindrical rotor shaft system has almost a zero velocity response. These
impedance peaks are obtained at what are traditionally called as anti-resonant frequencies
(where the velocity responses are almost zero) of the vibrating system. In this case the
experimental anti-resonant frequencies for the un-cracked experimental rotor shaft are
located at 49.51 Hz and 207.5 Hz for the first and third anti-resonances (the second anti-
resonance was missing); the corresponding numerical values were 39.0 Hz and 194.0 Hz
(the large differences are due to the difficulties in modeling and the limitations in the
provided computational memory size). In contrast the impedance values are almost zero
at the resonant frequencies. The near-zero anti-resonance frequency observed in the
experimental results [see Figure 6.5 (a)] are probably due to the vibration of the

foundation support to which the steel base plate of the experimental test setup is attached.

Figure 6.7 shows experimental and numerical changes in impedance and mobility for
intact and 70% crack depths. Impedance and mobility were measured and simulated in
the vertical direction. It can be observed from the mobility curves of Figure 6.7 (a) that
the amplitudes of all the mobility carves increase for the resonant frequencies for
increasing crack depths. In contrast, the amplitudes of impedance at all the experimental

anti-resonant frequencies either decrease (at the first anti-resonance) or increase (at the
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third anti-resonance) as crack depth increases. This trend seems to be reversal for the
numerically computed impedances. At the first anti-resonant frequency the impedance
amplitude seems to increase as the crack depth increases; whereas at the third anti-
resonant frequency, the impedance amplitude seems to decrease as the crack depth
increases. This difference between experimental and numerical computations may once
again be attributed to the difficulty in combining bending and torsional motions of the
rotor shaft. The trend of agreement between experimental and numerical values is very
good; however only a small change occurs in mobility amplitudes at the first resonant

frequency.
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Figure 6.5 Change of the Impedances with Crack Depth for both Experimental and

Numerical Results for Shaft # 2
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Figure 6.7 (a) Changes in the Mobility between Intact and 70% Crack Depth Ratio for

Experimental and Numerical Results for Shaft # 2
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Figure 6.8 (a) shows the plot of the torsional frequency ratio and crack depth ratio for
experimental and numerical analysis. It shows that the change in the frequency ratio gives
a much better indication of the crack presence even from the beginning stages of the
crack. Figure 6.8 (b) shows the slope of the torsional frequency ratio for first
experimental and numerical mode. Figure 6.8 (b) shows that beyond a crack depth ratio
of 0.2 (for torsion), it shows a definitive presence of the crack. More studies need to be
carried out to confirm this conclusion in a definite manner (only one shaft — shaft # 1 was

strain-gaged to measure the torsional frequency).

Figure 6.9 gives the experimental impedance amplitude ratio [(maximum impedance
amplitude at zero crack)/ (maximum impedance amplitude at different crack depths)]
plots and slope of impedance as a function of crack depth ratio at resonant frequency. It is
seen from Figures 6.9 (a) and (b) that the identifier of the mode shape change due to
crack 1s shown better by the second mode shape than the first mode. In addition, the crack
presence is indicated from the beginning when the impedance amplitude is used as the
crack indicator, as seen in Figure 6.9 (a). It should also be noticed that the changes in
second mode amplitudes shown in Figure 6.9 (b) are higher than that for the second
model amplitude shown in Figure 6.9 (a); it is also much higher than the frequency ratio
changes shown in Figures 5.14, 5.15 and 6.8. Consequently the use of impedance
amplitudes seems to give more sensitive indications regarding the presence and severity
of crack. Also from Figure 6.9 (b) the definitive presence of a crack is indicated beyond a
crack depth ratio of 0.25 or more. The results are presented here for shaft # 2 while the

rest of results, shaft # 1 and shaft # 3 are presented in Appendix L.
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Figure 6.8 Comparison of Experimental and Numerical Results for: a) Experimental and
Numerical Torsional Frequency Ratio versus Crack Depth Ratio; and b) Experimental

and Numerical Torsional Slope of the Frequency Ratio for First Mode.
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6.6 Summary

In this chapter, the results of analytical investigations which were carried out, on an
overhanging cylindrical rotor shaft carrying a propeller at the cantilever end, in order to
identify the crack existence in shafts using the mechanical impedance approach are

reported.

In the numerical study, both the un-cracked and the cracked shafts (with varying crack
depths) were modeled by finite element procedure. 3-D iso-parametric elements (element
types 186 and 187), available in the ANSYS FEM program, were utilized to model the
system. The impedance and velocity frequency response functions were used to identify
the crack depth in the shaft system. Impedance and mobility were measured and
simulated in the vertical direction for the resonant frequencies and anti-resonant

frequencies.

Impedance and mobility were measured and simulated in the vertical direction. The
amplitudes of all the mobility curves increase for the resonant frequencies for increasing
crack depth. In contrast, the amplitudes of impedance at all the anti-resonant frequencies
either decrease (at the first anti-resonance) or increase (at the third anti-resonance). The
trend of agreement between experimental and numerical values is very good; however
only a small change occurs in mobility at the first response frequency. The use of
impedance amplitudes seems to give more sensitive indications regarding the presence

and severity of a crack. When impedance amplitudes at non-resonant frequencies are
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plotted as a function of crack depth ratios, it can be seen that the crack presence is

indicated even from the beginning of the crack shown [Figure 6.9 (a)].

A better crack detection measure is obtained when the slope of the frequency ratio vs.
crack depth ratio curve is plotted against the crack depth ratio. In this case it can be
observed that when the crack depth ratio is greater than 0.2 to 0.25, one can definitely say
that there is a well-defined crack that is existing in the structure from the large changes

that occur in the slopes of the curves (for both experimental and numerical results.

The torsional frequency ratio vs. crack depth ratio for experimental and numerical
analysis shows that the change in the frequency ratio gives a much better indication of the

crack presence even from the beginning stages of the crack.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The present study consisted of two main parts: an experimental program and a numerical
analysis to develop a methodology that can be used to identify the existence of cracks on
a cylindrical rotor shaft with a cantilevered span. A testing rig was designed and
fabricated to investigate the characteristics of the vibrating un-cracked and cracked shafts
using modal testing techniques. The finite element analysis was performed using the

software program ANSYS.

The experimental program consisted of two components. In the first, an off-line,
experimental modal analysis was performed to determine the vertical and horizontal
transverse vibrations of the shaft using a software package, LMS Test Lab ™. The
second component used an off-line, experimental modal analysis technique to study the
torsional vibration of the rotor shaft system. In both cases, dynamic characteristics such
as natural frequencies, damping factor, and mode shapes were recorded and determined
to correlate with the analytical and numerical method results. These experiments were
repeated for three different rotor shaft-bearing systems the shafts were labelled, shaft No.
1, shaft No.2 and shaft No. 3. The three shafts had almost the same diameter (measured
average values were 0.01588 m. 0.01586 m, 0.01589 m respectively). For each crack

depth three separate tests were carried out and the results processed through the LMS
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Test Lab system. Then the results were added and averaged to get the final result reported

herein.

In the numerical part, investigations were carried out to identify the existence of
transverse cracks on the shaft using lateral and torsional vibrations, The effects of having
cracks with different depths were investigated numerically, and the results interpreted to
give better understanding of the shaft’s vibratory behaviour. Two different numerical
models were used in the numerical computations. Following the earlier literature, the
beam element, BEAM4, available in ANSYS finite element program was used for the
numerical prediction of the dynamic response of un-cracked and cracked shafts as well as
to verify the experimental results. In this part, a linear “three to six springs” model was
used to represent the effects of each of the two ball bearings, supporting the shaft, over
the (fixed) end and the other support near the cantilever end. These spring constants were
determined to achieve the best agreement between un-cracked experimental and
numerical results. Whereas in the second part, 3-D iso-parametric elements (20-noded,
15-noded, 12-noded and 10-noded) were used for modeling the shaft, bearings, supports,
propeller, torque loading arm and the other components of the test rig. This provided a
detailed modeling of the bearing connections to the shaft, as well as to the supporting
frames. This detailed modeling of the shaft-propeller system using FEM procedures has
given extensive insights into the behavior of the shaft-propeller system including the
overall shaft behavior, the support bending, the local bending of the propeller blades. and
the presence of combined modes. Vibration responses of an un-cracked and cracked shaft

were obtained numerically using the finite element method and related to the
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experimental results. Finite element results were used to generate numerical frequency

response functions that were used to detect the crack occurrence in the rotor shaft

propeller-bearings system and to compare the numerical results with experimental results.
The following contributions and conclusions have been made from the previous study:

1. In this study, five spring models were developed to represent the ball-bearing
support effect, namely, six, eight, and twelve springs. It was seen that bearings
with six springs, shown in Figure 4.2 (b), gave the best agreement between
experimental and numerical results. This was due to the fact that that this model
closely represented the elasticity effects that exist between the two tight screws
that connect the inner bearing to the cylindrical shaft and the elasticity of the
support provided by the two frame supports | and 2.

2. Even though the shaft was uniformly cylindrical, the values of the experimental
and numerical natural frequencies for vertical and horizontal transverse vibrations
were not the same for all the different pairs of (vertical and horizontal) modes.
This was primarily due to the difference in behaviour of the supporting system
such as bearings and frame supports in the vertical and horizontal directions.
Consequently the difference in modeling the two orthogonal bearing support
contacts by linear springs became very important so as to make the numerical
values closer to the measured experimental values; this has to be done very

carefully.
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3. From the modeling of a crack, in a cracked shaft, by an equivalent short beam, the

best fit for the length of a shaft element for first natural frequency was about
54.65mm while the best fit for second and third natural frequencies was between
30.65mm and 24.65 mm, respectively. This gave an approximate ratio (effective
crack length/effective bending length for the mode) of 1/12 to 1/16 for different
modes. This also seemed to be corroborated by the digitized time interval
requirements for accuracy in finite-difference-related numerical integration. The
above relationship could be used as a first-level inspection scheme for
determining the presence of cracking in a rotating shaft.

The third-mode shape of this beam bending model could be used as a good
indicator of the presence of a crack on the shaft. This gave a much higher
variation in mode shapes than the changes in frequencies that occur due to the
presence of the crack.

Vibration analysis for experimental results was successful in detecting the
presence of a crack. These results showed that it was possible to detect a crack,
around the crack depth ratio of 20% and beyond, when the rates of frequency
change (as a function of crack depth ratio) were plotted as a function of crack
depth ratio (between 20% and 30% crack depth ratios, the rate of change variation
was found to be 3% to 4%). This is an improvement on the conclusions made by
Hamidi et al (1992) where he stated that it was possible to detect cracks in rotor
shafts beyond crack depth ratio of 0.3 to 0,35. However, if frequency changes

were used as the crack indicator, then the changes were much smaller (between
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10.

20% and 30% crack depth ratios, the change in frequency ratio was around 0.5%
to 1.0%) than that shown by the rate of change of frequency (with respect to crack
depth).

The first torsional frequency gave a much better indication of the crack presence
than the bending frequencies. The rate of change of frequency as a function of
crack-to-depth ratio was higher for torsional frequency than bending frequency.
For example, at 10 percent crack-to-depth ratio, the rates of change were 10
percent and 1 percent for torsional and bending cases, respectively.

When the rates of changes of bending or torsional frequencies were plotted as a
function of crack depth ratio, it was possible to detect the presence of crack in a
rotating shaft above a crack depth ratio of 0.2. This will be a very good procedure
for detecting the presence of a crack on the rotating shaft.

Using the change of torsional frequencies of a rotating shaft one is able to predict
the presence of obtained crack in its early stages of development. This conclusion
has to be further investigated by additional experimental and numerical results on
a number of shaft configurations.

The changes in the vibrational amplitudes of the rotating shaft can be used as
good indices for detecting cracks having depth ratio greater than 0.2.

[t was concluded that the rate of change of the velocity amplitude (or its inverse:
impedance amplitude) can be used as a predictive tool for crack presence in the

frequency range considered in this thesis.
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1.

12.

13.

14.

15.

The curve-fitted equations obtained for the variations of modal frequencies and
modal amplitudes, as well the derivatives of the above equations, gave a very
good predictive method for the identification of an existing crack in the shaft.

The linearity of results of the experimental measurements and the numerical
predictions indicated that the nonlinear effects of the crack did not show up until
the crack-depth ratio exceeded 0.40. Nonlinearity effects were not appreciable in
the range of crack-depth ratios between 0.4 and 0.6.

There is a good agreement between the experimental and numerical results. Both
the experimental and numerical results show that the frequencies of the cracked
shaft decreased as the crack depth increased.

Impedance and mobility were measured and simulated in the vertical direction. It
was found that the amplitudes of the mobility curves, measured at resonant
frequencies, increased with increasing crack depth. In contrast, the amplitudes of
impedance measured at all the anti-resonant frequencies either decreased (at the
first anti-resonance) or increased (at the third anti-resonance) as the crack depth
increased. The trend of agreement between experimental and numerical values
was very good; however only a small change occurred in mobility at the first
response frequency. The use of impedance amplitudes seems to give more
sensitive indications regarding the presence and severity of crack.

Changes occurred in the non-dimensional frequency ratios (®cracked/ ®@un-cracked) for
the first four vertical bending frequencies as the crack depth ratio increased. It

was observed that the changes in non-dimensional frequency ratios were not
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18.

19.

appreciable for a crack depth ratio less than 0.5 (in this range the non-dimensional
frequency ratio was greater than 0.98). This frequency ratio was very large
compared to the crack depth ratio for crack detection since the structure may tend

to fail catastrophically beyond this crack depth.

. At lower crack depth ratios (<0.4) the relationship between experimental and

numerical non-dimensional frequencies was almost linear; as crack depth
increased beyond this, the frequency ratio tended to become slightly nonlinear.
This seemed to imply that the nonlinear effect on the resonant frequencies was
marginal at crack depth ratios less than 0.4; even beyond this crack depth ratio the

effect was not significant.

. A better crack detection measure was obtained when the slope of the frequency

ratio vs. crack depth ratio curve was plotted against the crack depth ratio. In this
case it can be observed that when the crack depth ratio was greater than 0.2 to

0.25, one can definitely say that there was a well-defined crack that was existing

in the structure from the large changes that occurred in the slopes of the curves

(for both experimental and numerical results).

Conclusions derived for anti-resonant frequencies were almost similar to the ones
that were made for the resonant frequencies.

The torsional frequency ratio vs. crack depth ratio for experimental and numerical
analysis showed that the change in the frequency ratio gave a much better

indication of the crack presence even from the beginning stages of the crack.




7.2 Recommendations

For any time-limited graduate study, it is difficult to claim that the study has covered all

the relevant areas of the investigation pertinent to this research. In order to complete this

work, the following suggestions are recommended for future research:

a)

b)

As mentioned in the experimental work, only 14 points were used on the
circular shaft to measure the lateral vibration by using LMS software and
computer system. In order to ensure that there were enough points to get the
best mode shapes, should be increased the measurement points. Moreover the
moving of the crack location to different points of the beam would have given
a crack prediction methodology for the overhanging shaft.

Also for measured lateral vibration only two simultaneous channels of data
acquisition were used (accelerometer and impact hammer). In order to ensure
more accurate measurements of the dynamic response of the cylindrical rotor
shaft more simultaneous channels should be used.

As mentioned earlier the LMS device in the structural Lab in Memorial
University was used only for measuring the lateral vibrations. In general the
LMS software can be used to measure the torsional vibrations also but due to
funding issues additional extension to measure the torsional vibration were not
possible. The author recommends the purchase of this software addition to

LMS device to measure torsional vibration in the future studies.
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d)

g)

During torsional and strain gage modal tests only one shaft was used. For this
part of experimental study, more experimental measurements are needed to
confirm the very significant findings reported in this report.

The beam element, BEAM4, available in ANSYS finite element program was
used for the numerical prediction of the dynamic response of un-cracked and
cracked shafts as well as to verify the experimental results. Five spring models
were developed to represent the ball bearing support effect, viz., six, eight and
twelve springs. Consequently, better results would be obtained in future
studies if other spring models containing the effect of damping were used.
Also in the numerical computation for response functions the desired accuracy
for computations could not be achieved with the provided computer memory
size in the computing system. The accuracy with which the researcher could
obtain response results was 0.25Hz (one could solve results up to 1000 steps
for the frequency range of zero to 250Hz). If it is possible to avoid these two
restrictions (for the student research by providing on-line extra accessing
computer memory space) better comparison can be obtained between
experimental and numerical results.

In the 3D modal testing and analysis, studies could be extended to include
different type of bearings instead of ball bearings alone; different type of
crack shapes also instead of vertical crack alone could be used to find the

results of lateral and torsional vibrations.
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h) A better computational model which would combine the bending and torsional

vibrations motion for an indeterminate multi-span rotor system would provide

a better computational asset for these studies.




Bibliography

Adewusi, S. and Al-Bedoor, B. 2002, “Detection of Propagating Cracks in Rotors Using
Neural Networks,” American Society of Mechanical Engineers, Pressure Vessels and

piping Division, Vancouver, Canada, Vol. 447, pp. 71-78.

Adewusi, S., 2000, “Detection of a Transverse Crack in a Rotating Shaft Using Wavelet
Transform”, Ph.D. Thesis, Submitted to The Department of Mechanical Engineering,

University of Petroleum & Minerals, Saudi Arabia.

Afolabi, D., 1987, “An anti-resonance technique for detecting structural damage,”
Proceedings of Fifth International Model Analysis Conference. London, Vol. 1, pp. 491-

495.

Allemang, R., J., 1990, “Vibrations: Experimental Modal Analysis,” UC-SDRL-CN-20-
263-692, Department of Mechanical, Industrial and Nuclear Engineering, University of

Cincinnati, Ohio, pp. 18 —21.

Bachschmid, N., Pennacchi, P., and Tanzi, E., “Torsional Behavior of Cracked Rotors,"

IMECHE Conference Transactions, Swansea, Wales, Issn 1356-1448, pp. 553-562.

Bamnios, G. and Trochidis, A., 1995, “Mechanical Impedance of a Cracked Cantilever
Beam,” Acoustical Society of America Vol. 97, No. 6. Bamnios, Y., Douka, E., and
Trochidis, A., 2002, “Crack Identification in Beam Structures Using Mechanical

Impedance,” Journal of Sound And Vibration, Vol. 256, No. 2, pp. 287-297.

167



Bieryla, D., Trethewey, M., Lissenden, C. M. Lebold, and Maynard, K., 2005, "Shaft
Crack Monitoring Via Torsional Vibration Analysis; Part 1 - Laboratory Tests," 23nd

International Modal Analysis Conference, Orlando, FL, USA.

Calibration chart for impact hammer, Type 8206-002, Bruel & Kjaer Calibration system
No: 150157.1 and is traceable to the national institute of standards and Technology, USA

and Physikalisch-Technische Bundesanstalt, Germany. 2009.

Chandrupatla, T., Belegundu, A., 2002, “Introduction to Finite Elements in Engineering,”

Third Edition, Prentice Hall, Upper Saddle River, New Jersey, pp. 240 and 244.

Chen,Y., 1996, “Crack Detection in Plated T- Joints through Vibration Techniques,"
Ph.D. Thesis, Faculty of Engineering and Applied Science Memorial University of

Newfoundland, St John's, Canada, 165p.

Chenea, P., 1952. “On Application of Impedance Method to Continuous Systems,”

American Society of Mechanical Engineers, pp. 233-236

Cho, S. Han, S. Park, C. and Kim, Y., 2006, “Noncontact Torsional Wave Transduction
in A Rotating Shaft Using Oblique Magnetostrictive Strips,” Journal of Applied Physics,

Vol. 100, No.10, pp. 104903-6.

Das, B., Kassimali, A., and Sami, S., 1994, “Engineering Mechanics Statics,” Richard D.

Irwin, Boston, Massachusetts, Inc., pp. 562-564.

Dimarogonas, A., 1996, “Vibration of Cracked Structures: A State of the Art Review,”

Engineering Fracture Mechanics, Vol. 55, No. 5, pp.831.

168




Doebling, S. W., Farrar, C. R., Prime, M. W., and Shevitz, D. W., 1996, “Damage
Identification and Health Monitoring of Structural and Mechanical Systems from

2

Changes in Their Vibration Characteristics,” Los Alamos National Laboratory is
operated by the University of California for the United States Department of Energy

under contact W-7405-ENG-36, LA — 13070-MS, UC-900, Issued: May 1996.

Doosan, Components in turbines and generators for nuclear and thermal power plants,
(7:20 PM, Saturday August, 25 2012). Dorfman LS., Trubelja M., 1999, “ Torsional
monitoring of turbine-generators for incipient failure detection,” Proceedings of the Sixth

EPRI Steam Turbine/Generator Workshop, St. Louis, Missouri, August 17-20,. pp. 1-6.

Downer, L., 2010, “Detecting Damage in Beams and Structures through Modal
Analysis,”, Master of Engineering thesis, Memorial University, St. John’s, NL, Canada,

262p.

Elshafey, A., Marzouk, H., and Haddara, M., 2011, “Experimental Damage Identification

Using Modified Mode Shape Difference,” Journal of Marine Science, Vol. 10, pp. 1-3.

Fayyadh, M., and AbdulRazak, H., 2011, “Application of weighted average on modal
parameters for damage detection algorithms: Case study on steel beam,” International

Journal of the Physical Sciences, Vol. 6, No. 25, pp. 5912-5921.

Ferfecki, P., and Ondrouch, J., 2007, “Computation of the Steady-State Response of a
Rotor System to the Presence of a Transverse Crack,” Centre of advanced innovation

technologies.

169




Ganeriwala, S. Kanakasabai, V. and Richardson, M., 2011, “Modes Indicate Cracks in
Wind Turbine Blades,” Presented at IMAC XXIX, Jacksonville, FL. Garrett, P., Guindon,
E., Trethewey, M., Lissenden, C., Lebold, M., and Maynard, K., 2005, “Shaft Crack
Monitoring via Torsional Vibration Analysis; Part 2-Field Applications,” 23rd

International Modal Analysis Conference, Orlando, FL, USA.

Gounaris, G., and Papadopoulos, C., 2002, “Crack Identification in Rotating Shafts by
Coupled Response Measurements,” Engineering Fracture Mechanics, Vol. 69, pp. 339-

352.

Hamidi, L., Piaud, J. and Massoud, M., 1992, “A Study of Crack Influence on the Modal
Characteristics of Rotors,” International Conference on Vibrations in Rotating

Machinery, Bath, UK, No. C432/066, pp. 283-288.

Jian-bin, L., Hai-feng, Z., and Di, S., 2012., “ Research for the Crack Dynamic
Monitoring of Crank Shaft of Marine Diesel Engine Based on Magnetic Memory
Technology,” Information Technology Journal, Vol. 11 (4), pp. 516-519. Kane, J., and
McGoldrick, R., 1949, “Longitudinal Vibrations of Marine Propulsion-Shafting

Systems,” Society of Naval Architects and Marine Engineers, Vol. 57, pp. 193-232.

Kisa, M., and Arif, M., 2006, “Modal Analysis of Multi-Cracked Beams with Circular

Cross Section,” Engineering Fracture Mechanics, Vol. 73, No. 8, pp. 963-977.

170



Kumar, C., and Rastogi, V., 2009, “A Brief Review on Dynamics of a Cracked Rotor,”

International Journal of Rotating Machinery. Volume 2009 (2009), Article ID 758108, 6

pages,.

Lahti, T., and Linjama, J., 1989, “Measurement of reflection and impedance in a beam by
the structural intensity technique,” Technical Research Centre of Finland, Research

Reports 625.60.

Larry, S., Dorfman, and Trubelja, M., 1999, “Torsional Monitoring of Turbine-

Generators for Incipient Failure Detection,” Structural Integrity Associates.

Li, X., Yao, H., Ren, Z., and Wen, B., 2008, “Simulation of Dynamic Characteristics of
Faulty Multi-Span Rotor System through FEA,” I5thinternational Congress on Sound

and Vibration, Daejeon, Korea. Vol. 29, No. 2, pp. 250-253.

Lissenden, C., Tissot, S., Trethewey, M., and Maynard, K., 2007, “Torsion Response of a
Cracked Stainless Steel Shaft,” Journal of compilation Blackwell Publishing Ltd. Fatigue

Fracture Engineering Mater Structure, Vol. 30, pp. 734-747.

Liu, D., 2004, “Damage Detection In Mechanical Structures Through Coupled Response
Measurements”, Ph.D. Thesis, Submitted to The Division of Mechanical Engineering,

University of Queensland, Brisbane, Australia.

Manley, R., 1941, “Mechanical Impedance of Damped Vibrating Systems,” Journal of

the Royal Aeronautical Society, Vol. 45, No. 371, pp. 342-348.

171



McMaster-Carr (Princeton, New Jersey, USA) supplies products (including bearings)
used to maintain manufacturing plants and large commercial facilities worldwide. Details

available in www.mcmaster.com website on September 15, 2011.

Nautic, Boat propeller shaft, (7:45 PM, Saturday August, 25 2012). http:/ www.

Nauticexpo.com/boat-manufacturer/propeller-shaft-17046.html

On, F. J., 1967, “Mechanical Impedance Analysis for Lumped Parameter Multi-Degree of
Freedom/Multi-Dimensional Systems,” NASA TN D-3865, spring field, Virginia.
Owolabi, G., M., 2001, “Crack identification Procedures in Beams Using Experimental
Modal Analysis,” Master of Engineering Thesis, Faculty of Engineering and Applied

Science Memorial University of Newfoundland, St John's, Canada, 191p.

Owolabi, G., M., Swamidas, A. S. J. And Seshadri, R., 2003, “Crack detection in beams
using changes in frequencies and amplitudes of frequency response functions,” Journal of
Sound and Vibration, Volume 265, Issue 1, p. 1-22. Pennacchi, P. and Vania, A., 2008,
“Diagnostics of a Crack in a Load Coupling of a Gas Turbine Using the Machine Model
and the Analysis of the Shaft Vibrations,” Mechanical Systems and Signal Processing,
Vol. 22, No. 5, pp. 1157-1178. Petroski, H., J., 1981, “Simple Static and Dynamic
Models for the Cracked Elastic Beams,” International Journal of Fracture, Vol. 17, No.

4, pp. R71-R76.

Ping, H., 1997, “Coupled Axial and Bending Vibrations of a Uniform Beam-Column
with an Oblique Crack,” Ph.D. Thesis, Submitted to the Department of Mechanical

Engineering, University of Washington, United States.

172



Prabhakar, S. Sekhar, A. and Mohanty, A., 2001, “Detection and Monitoring of Cracks

Using Mechanical Impedance of Rotor-Bearing System,” Journal of the Acoustical

Society of America, Vol. 110, No. 5, pp. 2351-2359.

Prabhakar, S., Mohanty, A., and Sekhar, A., 2002 “Crack Detection by Measurement of
Mechanical Impedance of A Rotor-Bearing System,” Acoustical Society of America, Vol.

112, No. 6, pp. 2825-2830.

Ramesh, T. and Sekhar, A. 2008, “Detection of Two Cracks in a Rotor-Bearing System
Using Amplitude Deviation Curve,” Journal of Sound and Vibration, Vol. 314, No. 3,

pp.457-464.

Rao, S., 1995, “Mechanical Vibrations,” Addison Wesley, New York, p. 688.

Rolls-Royce ple, 2012, Hybrid Shaft Generator (HSG) http://www.rolls-royce. com/

marine/ship_design systems/prop_sys/hsg/.

Rytter, A., 1993, “Vibrational Based Inspection of Civil Engineering Structures,” Ph.D.
thesis, Department of Building Technology and Structural Engineering, University of

Aalborg, Aalborg, Denmark.

Sabnavis, G., Gordon, R., Kasarda, M., and Quinn, D., 2004, “Cracked Shaft Detection
and Diagnostics: A Literature Review,” The Shock and Vibration Digest, 36(4), pp. 287-

296.

173



Schwarz, B. & Richardson, M. (1999), “Experimental modal analysis,” CSI Reliability
Week, Orlando, FL, 12p. Sekhar, A., and Srinivas, B., 2003, “Dynamics of Cracked

Composite Shafts,” Journal of Reinforced Plastics and Composites, 22(7), pp. 637-653.

Shen, 1., 1995, “Vibration of Three- Dimensional, Finite, Linear, Elastic Solid Containing

Cracks,” Journal of Applied Mechanics, Vol. 62, No. 2, pp.282-288.

Sinou J. J. and Lees A.W., 2007, “A Non-Linear Study of A Cracked Rotor,” European

Journal of Mechanics and Solids, Vol. 26, pp. 152-170.

Sudhakar, G., and Sekhar, A., 2010, “Model Based Shaft Crack Identification in Rotating
Machinery,” Turbine Technical Conference and Exposition presented by ASME

International Gas Turbine Institute, 6(23812), pp. 473-480.

Thompson, K., 1991, “Fatigue Crack Growth from Surface Flaws in Smooth and Notched
Shafts Subjected to Axial and Torsional Loads,” Ph.D. Thesis, Submitted to The

Department of Mechanical Engineering, University of Stanford, United States.

Wang, P., Davies, P., Starkey, J., and Routson, R., 1992, “A Torsional Vibration
Measurement System,” Transactions on Instrumentation and Measurement, Vol. (41),

No. 6, pp. 661-666.

Wauer, J., 1990, “On the Dynamics of Cracked Rotors: A Literature Survey,” Applied

Mechanics Reviews, Vol. 43(1), pp. 13-17.

174



Yang, B. and Suh, C., 2005, “Non-Linear Characteristics of a Cracked Rotor—Journal
Bearing System”, Proceeding of the Institution of Mechanical Engineers, Part K: Journal

of Multi-Body Dynamics, Vol. 219, No. 1/2005, pp. 87-108.

Yang, X., 2001, “ Vibration Based Crack Analysis and Detection in Beam Using Energy
Method,” Ph.D. Thesis Submitted to Faculty of Engineering, Memorial University, St.

John’s, NL, , pp. 71-74 and 106.

Zakhezin, A., and Malysheva, T., 2001, “Modal Analysis Rotor System for Diagnostic of
the Fatigue Crack,” Condition Monitoring Conference, St. Catherine’s College, Oxford,

UK.

Zhinong, L., Sun, J., Han, J., Chu, F., and He, Y., 2006, “Parametric Bispectrum Analysis

of Cracked Rotor Based on Blind Identification of Time Series Models,” Proceedings of

the 6th World Congress on Intelligent Control and Automation, Dalian, China.

175




APPENDIX

Appendix A — “Measured Natural Frequencies for Lateral Vibration” “Numerical

Values for Beam Type of Modelling Shown within Brackets”

A.1 Measured Natural Frequencies for Lateral Vibration

Table A.1.1 (a) Experimental Values (Shaft # 1) of Natural Frequencies for Various Crack Depth-Ratios

(Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios
0 0.0% 10% 20% 30%
\Y% H \Y% H \Y% H \Y% H
First 349 41.626 34.505 41.546 34.137 41.427 34.32 41.187
s (35.577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
Second 76.8 78.284 76.426 78.204 76.067 78.09 75.838 77.991
(75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 190.617 197.9 190.824 | 197.934 | 190.012 197.82 189.882 197.81
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) | (199.4)
Fourth 365.75 | 338.874 | 364.380 | 335279 | 364.209 | 336.490 | 363.309 | 336.507
! (360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) | (383.3)
First
natural 43.716 43.213 42.826 42.628
frequency (43.453) (43.422) (43.111) (42.92)
for torsion
Crack denth ratios
Frequency 40% 50% 60% 70%
\Y% H \Y% H \Y% H \Y% H
Pirst 33.989 41.036 33.848 40.78 32.647 40.486 30.614 39.849
(35.402) | (41.575) | (34.922) | (41.002) | (34.23) | (40.497) | (33.700) | (40.583)
Second 75.483 76.564 74.191 74.625 72.808 74.376 67.27 74.232
(74.27) | (77.997) | (73.48) | (77.79) | (71.832) | (76.594) | (69.705) | (76.879)
Third 189.431 197.684 | 188.099 | 197.174 | 186.108 | 196.551 | 178.965 194.45
(186.4) | (198.66) | (185.56) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Fourth 358.797 | 335.525 | 355.610 | 332950 | 345.149 | 330.605 | 328.424 | 321.935
(358.3) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
First
natural 42.292 41.864 41.723 41.497
frequency (42.739) (42.599) (42.333) (41.877)
for torsion
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Table A.1.1 (b) Experimental Values of the Natural Frequencies for Various Crack Depth-Ratios for Shaft
# 1 (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios
00 0.0% 10% 20% 30%
\% H \% H \% H \% H
First 34.701 41.374 34.441 41.54} 34.131 41.021 34.322 41.187
(35.577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
76.709 78.268 76.425 78.745 76.067 78.389 73.939 78.008
Second (75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 190.617 | 201.461 | 190.824 | 197.964 | 190.012 | 197.704 189.83 197.83
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) | (199.4)
Fourth 365.75 | 333.187 | 364.380 | 335.041 | 361.451 | 335.152 | 369.66 | 335.276
(360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) | (383.3)
First
natural 43.716 43.213 42.826 42.628
frequency (43.453) (43.422) (43.111) (42.92)
for torsion
Crack depth ratios
Frequency 40% 50% 60% 70%
\% H \% H \% H \% H
First 33.667 41.163 33.848 40.80 32.647 | 40.523 30.614 39.849
(35.402) | (41.375) | (34.922) | (41.002) | (34.23) | (40.497) | (33.706) | (40.583)
Second 75.483 77.761 74.191 77.496 72.808 77.153 67.271 75.308
(74.27) | (77.997) | (73.48) | (77.79) | (71.832) | (76.594) | (69.705) | (76.879)
Third 189.431 | 197.721 | 188.099 | 197.213 | 186.108 | 196.551 | 178.965 194.45
(186.4) | (198.66) | (185.56) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Fourth 358.797 | 335.404 | 355610 | 333.026 | 345.149 | 331.017 | 327.224 | 321.715
(358.3) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
First
natural 42.292 41.864 41.723 41.497
frequency (42.739) (42.599) (42.353) (41.877)
for torsion

177




Table A.1.1 (c) Experimental Values of the Natural Frequencies for Various Crack Depth Ratios for Shaft #

I (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios
10% 20%
v H A% H A% H \Y% H
34.704 41.033 34.306 41.545 34.089 41.098 34.335 41.213
(35.577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
S d 76.836 78.285 76.388 78.778 76.042 78.451 75.838 78.062
econ
(75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 190.668 | 197.905 | 190.624 | 197.934 | 189.969 | 197.782 | 189.882 | 197.849
ir
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) (199.4)
365.9 333.662 | 364.304 | 335374 361.31 335.525 | 363.309 | 336.392
(360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) | (383.3)
First
natural 43.716 43.213 42.826 42.628
frequency (43.453) (43.422) 43.111) (42.92)
for torsion
Crack depth ratios
F 40% 50% 60% 70%
requency
\Y% H \Y% H A% H v H
Fi 33.772 41.079 33.693 40.865 32.627 40.559 30.573 39.848
irst
(35.402) | (41.575) | (34.922) | (41.002) | (34.23) | (40.497) | (33.706) | (40.583)
S g 75.493 77.753 74.192 77.509 72.771 77.161 67.356 75.317
econ
(74.27) | (77.997) | (73.48) | (77.79) | (71.832) | (76.594) | (69.705) | (76.879)
Third 189.485 | 197.719 188.08 | 197.182 | 186.119 | 196.207 | 179.028 | 198.968
ir
(186.4) | (198.66) | (185.56) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Fourtl 358.871 | 335371 | 354.827 | 333.814 | 344913 | 331.798 | 327.801 | 321.875
Fourth
(358.5) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.53)
N 11Dt I
natural 42,292 41.864 41.723 41.497
frequency (42.739) (42.599) (42.333) (41.877)
for torsion
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Table A.1.2 (A) Experimental Values of the Natural Frequencies for Various Crack Depth-Ratios for Shaft

# 2 (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios
0 0.0% 10% 20% 30%
\Y H \Y H \Y H v H
First 36.381 42.962 36.366 42.938 36.283 42918 36.231 42914
(35.577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
Second 75.987 80.049 75.981 79.969 75.838 79.965 75.582 79.887
(75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 196.117 | 199.587 | 195.816 | 199.462 | 195.626 | 199.506 | 195.386 199.382
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) (199.4)
Fourth 367.458 | 369.215 | 366.862 | 369.019 366.35 368.92 | 365.421 368.502
(360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) (383.3)
First
natural 43.716 43.213 42.826 42.628
frequency (43.453) (43.422) (43.111) (42.92)
for torsion
Crack depth ratios
Frequency 40% 50% 60% 70%
\4 H \% H \% H \4 H
First 36.028 42.772 35.782 42.723 35.222 42.207 34.042 41.721
(35.402) | (41.575) | (34.922) | (41.002) | (34.23) | (40.497) | (33.706) | (40.583)
Second 74.931 79.766 74.187 79.375 72.369 79.207 69.258 78.010
(74.27) | (77.997) | (73.48) | (77.79) | (71.832) | (76.594) | (69.705) | (76.879)
Third 194.531 | 199.321 | 193.387 | 199.059 | 190.769 | 198.459 | 185.636 197.291
(186.4) | (198.66) | (185.56) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Fourth 362.804 | 367.671 | 359.056 | 366.089 | 349.926 | 362.248 | 333.436 354.892
(358.5) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
First
natural 42292 41.864 41.723 41.497
frequency (42.739) (42.599) (42.353) (41.877)
for torsion
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Table A.1.2. (b) Experimental Values of the Natural Frequencies for Various Crack Depth-Ratios for Shaft

# 2 (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios

0.0% 10% 20% 30%
Frequency
v H v H v H v H
First 36385 | 43.026 | 36287 | 42976 | 3624 | 42893 | 36204 | 42.891
(35.577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
Second 75.931 | 80.036 | 76.093 | 80.054 | 75.866 | 79.940 | 75.639 | 78.324
© (75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 196.111 | 199.547 | 195.856 | 199.465 | 195.713 | 199.488 | 195391 | 199.426
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) | (199.4)
Fourth 367.403 | 369.194 | 366.881 | 368.976 | 366.41 | 368.847 | 365.443 | 368.653
(360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) | (383.3)
ffe‘asée':f’c‘;rf“olr 43716 43213 42.826 42,628
uerey (43.453) (43.422) 43.111) (42.92)
Crack depth ratios
Frequency 40% 50% 60% 70%
v H v H v 1 v H
First 36041 | 42779 | 35795 | 42.686 | 35216 | 42255 | 33974 | 41.715
(35.402) | (41.575) | (34.922) | (41.002) | (34.23) | (40.497) | (33.706) | (40.583)
Second 75.015 | 78.003 | 74231 | 78561 | 72.395 | 79.001 | 69.247 | 77.875
(74.27) | (77.997) | (73.48) | (77.79) | (71.832) | (76.594) | (69.705) | (76.879)
Thind 194587 | 199333 | 193436 | 199.077 | 190.732 | 198.472 | 185.554 | 197.300
(186.4) | (198.66) | (185.56) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Courth 362.935 | 367.662 | 359.182 | 366.013 | 349.957 | 362.343 | 333306 | 354.891
(358.5) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
ffé“:h':i‘”r{gr 4229 41.864 41723 41497
e (12.739) (42.599) (42.353) (41.877)
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Table A.1.2 (C) Experimental Values of the Natural Frequencies for Various Crack Depth Ratios for Shaft

# 2 (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios
. 0.0% 10% 20% 30%
requency
% H Y% H v H v H
First 36421 | 42953 | 36291 | 42964 | 36264 | 42902 | 36201 | 42.925
(35577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
Second 76.008 | 80.017 | 76.094 | 79.933 | 75.852 | 79.805 | 75.629 | 79.717
(75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 196.131 | 199.497 | 195.876 | 199.459 | 195.662 | 199.516 | 195.418 | 199.463
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) | (199.4)
Fourth 367.407 | 369.036 | 366.841 | 368.982 | 366.414 | 368.92 | 365.506 | 368.66
(360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) | (383.3)
ffr‘ e”sljc':f‘c‘“rfaolr 43.716 43213 42.826 42,628
quency (43.453) (43.422) (43.111) (42.92)
torsion
Crack depth ratios
Frequency 40% 50% 60% 70%
% H % H v H % H
First 36.0127 | 42.787 | 35796 | 42.693 | 35.196 | 42.244 | 33.943 | 41.748
: (35.402) | (41.575) | (34.922) | (41.002) | (34.23) | (40.497) | (33.706) | (40.583)
Second 75.049 | 79517 | 74204 | 79.336 | 72378 | 78.896 | 69.237 | 77.852
(74.27y | (77.997) | (73.48) | (77.79) | (71.832) | (76.594) | (69.705) | (76.879)
i 194.588 | 199.346 | 193.44 | 199.075 | 190.76 | 198.454 | 185339 | 197.31
(186.4) | (198.66) | (185.36) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Fourth 362.889 | 367.672 | 359.133 | 366.075 | 350.019 | 362.326 | 333.269 | 354.93
(358.5) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
1‘: - ':]“\”rl:)'r 12292 11.864 41.723 11.497
uzo;si;'n (42.739) (42.599) (42.353) (41.877)
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Table A.1.3 (A) Experimental Values of the Natural Frequencies for Various Crack Depth Ratios for Shaft

# 3 (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios
0.0% 10% 20% 30%
Frequency
\% H \% H % H \Y% H
First 33.861 40.648 | 33.815 40.680 33.719 | 40.654 33.750 40.559
(35.577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
Second 74.559 | 79.937 | 74.622 79.811 74.407 79.816 74.237 79.825
: (75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 192.141 | 197.821 | 191.984 | 197.833 | 191.729 | 197.791 | 191.295 | 197.651
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) | (199.4)
Fourth 35223 | 356.036 | 353.499 | 355.740 | 352.623 | 355.639 | 347.419 | 353.123
(360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) | (383.3)
ff;:;l:t’;ac‘;’{gr 43.716 43213 42.826 42.628
torsion (43.453) (43.422) (43.111) (42.92)
Crack depth ratios
Frequency 40% 50% 60% 70%
\Y H v J H % H v H
| | o | ) o | o | | o
: : : ' : : : (33.706) | (40.583)
73.413 79.615 72564 | 79369 | 70.733 | 78.947 .
it 67.587 77.896
N ) o) ;
Second (7427) | (77.997) | (7348) | (7779) | (083D | (T6.594) | (00| g6 e70)
190.034 | 197.427 | 188.679 | 197.064 | 185.399 | 196.36
. : : 180.197 | 195.073
C [
Third (186.4) | (198.60) | (185.56) | (198.76) | (183.36) | (197.05) | ‘oo | [o¢ 46)
Fourth 344186 | 350337 | 339.04 | 347.542 | 328.718 | 343.309 1 315593 | 336.402
(358.5) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
f’: - f:]"‘\‘\‘,‘"t".’)'r 12,292 41.864 11723 11497
quency e (42.739) (42.599) (42.353) (41.877)
torsion




Table A.1.3 (B) Experimental Values of the Natural Frequencies for Various Crack Depth Ratios for Shaft

# 3 (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Crack depth ratios

0.0% 10% 20% 30%
Frequency
% H v H Y% H % H
Firet 33.842 | 40.606 | 33.754 | 40.660 | 33.768 | 40.603 | 33.746 | 40.540
s (35.577) | (41.182) | (35.594) | (41.113) | (35.551) | (41.173) | (35.471) | (41.107)
Second 74603 | 79.924 | 74516 | 79816 | 74.519 | 79.805 | 74.241 | 79.829
(75.247) | (78.245) | (75.113) | (78.102) | (75.021) | (78.017) | (74.933) | (78.129)
Third 192.167 | 197.799 | 191.936 | 197.815 | 191.727 | 197.767 | 191.275 | 197.654
(187.88) | (199.22) | (187.51) | (198.97) | (187.43) | (198.82) | (187.4) | (199.4)
Fourth 353.571 | 354.825 | 353.314 | 355.777 | 352.537 | 355.223 | 350.492 | 353.115
(360.1) | (381.49) | (358.72) | (380.75) | (358.99) | (380.58) | (362.09) | (383.3)
f:xe{ﬂ;rgr 43.716 43213 42.826 42.628
ey (43.453) (43.422) (43.111) (42.92)
Crack depth ratios
Frequency 40% 50% 60% 70%
Y i v H v H v "
First 33.535 | 40471 | 33333 | 40340 | 32.791 | 40.041 | 31672 | 39.527
(35.402) | (41.575) | (34.922) | (41.002) | (34.23) | (40.497) | (33.706) | (40.583)
Second 73454 | 79623 | 72.569 | 79.384 | 70.757 | 78.949 | 67.542 | 78.0671
(7427 | (77.997) | (73.48) | (77.79) | (71.832) | (76.594) | (69.705) | (76.879)
Third 190.034 | 197.413 | 1886 | 197.069 | 185.451 | 196.385 | 180.078 | 195.06
(186.4) | (198.66) | (185.56) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Fourth 344309 | 350243 | 33921 | 347.540 | 328.87 | 343.262 | 315.226 | 336.080
(358.5) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
{'K'“:L‘;"L‘”’S)'r 42.292 41.864 41723 41.497
‘Lmign (42.739) (42.599) (42.353) (41.877)




Table A.1.3 (C) Experimental Values of the Natural Frequencies for Various Crack Depth Ratios for Shaft

# 3 (Numerical Values Shown Within Brackets —V- Vertical and H — Horizontal and Torsional).

Frequency

Crack depth ratios

10%

20%

33.862
(35.577)

40.635
(41.182)

33.754
(35.594)

40.628
(41.113)

33.765
(35.551)

40.587
(41.173)

33.711
(35.471)

40.552
(41.107)

Second

74.679
(75.247)

79.882
(78.245)

74.640
(75.113)

79.801
(78.102)

74.535
(75.021)

79.911
(78.017)

74.167
(74.933)

79.823
(78.129)

Third

192,262
(187.88)

197.818
(199.22)

191,967
(187.51)

197.803
(198.97)

191.77
(187.43)

197.756
(198.82)

191.324
(187.4)

197.65
(199.4)

353.078
(360.1)

356.932
(381.49)

353.364
(358.72)

355.367
(380.75)

352.765
(358.99)

355.084
(380.58)

350.259
(362.09)

353.157
(383.3)

rust natural
frequency for
torsion

43.716
(43.453)

43213
(43.422)

42.826
(43.111)

42.628
(42.92)

Crack depth ratios

Frequency 40% 50% 60% 70%
v H v 0 Y 0 v T
First 33557 | 40503 | 33328 | 40324 | 32806 | 40045 | 3167 | 39546
(35.402) | (41.575) | (34.922) | (41.002) | (34.23) | (40.497) | (33.706) | (40.583)
Second 73463 | 79571 | 72529 | 79363 | 70725 | 78883 | 67504 | 77.895
(74.27) | (77.997) | (73.48) | (77.79) | (71.832) | (76.394) | (69.705) | (76.879)
Thing 190.033 | 197.403 | 188.653 | 197073 | 185386 | 196378 | 179.982 | 195.066
(186.4) | (198.66) | (185.56) | (198.76) | (183.36) | (197.05) | (179.87) | (196.46)
Courth 34471 | 350.176 | 338.906 | 347570 | 328.853 | 342.961 | 314673 | 336.130
(358.5) | (379.14) | (360.66) | (380.83) | (341.77) | (376.87) | (338.83) | (366.55)
fl: :Slfe':l‘\“r;'r 42292 41.864 41.723 41.497
quency (42.739) (42.599) (42.353) (41.877)

torsion
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Appendix D — “Shows the ANSYS Codes that were used to find the Values of

Natural Frequencies”

D.1 Shows the ANSYS codes are used to find the values of natural frequencies

FINISH

/CLEAR, NOSTART

/PREP7

Dotttk R kR EFINING ELEMENT TY P % 5 o ks ke ok ok ok ok ok ok o oo oo o o ok ok
'ET,1,pipel6

ET,1,Beam4

ET,2,MASS21

ET,3,COMBIN14

ok ok ok kbR kR R AL CONSTANTTS % %555k sk s oo sk s ko ook o ok oo oo oo o

R,1,2.01062e-4,3.217e-9,3.217¢e-9,1.6e-2,1.6e-2

Real constant for beam4

!*******MASS REAL CONSTANTS 3k o ok ok ok ok ok ok ok okok ok sk sk ok ok sk ok ki ki ok sk sk ok ook ok ok kb sk sk kok kok ok

R.2,0.072,0.072,0.072,!5.51e-6,5.51e-6,5.51e-6 'Mass 2
R.3,0.016,0.016,0.016,!1.224e-6,1.224e-6,1.224¢e-6 'Mass 3
'R,4,1.572,1.572,1.572,10.013825,0.013825,0.013825 'Mass 4

R.4,1.45,1.45,1.45

pekskEkk COMBINIS REAL CONSTANTS, %k ok ok ket ook ok ok o ok ok ok ok ok ok ok ok ok ok ko
R.5,4.25¢6 !'Z $ R,6,7¢9 'Y  $R,7,1.46e6 'z $ R.8,9¢e15 'z
R.9, 2e8 'Y  $R,10,9e15 !z

praocckck ks REAL CONSTANTS FOR NEW FIVE ELEMENTS %4 ok ok ek
R,11,2.01062e-4,3.217e-9,3.217e-9,1.6e-2,1.6e-2 ! Un-cracked
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R,11,2.86272¢-5,2.12982¢-9,2.96868¢-9,1.28¢-2,0.32¢-2

! Area, Izz, lyy, TKz, TKy, Theta about x-axis
R,12,2.01062¢-4,3.217¢-9.,3.217¢-9,1.6¢-2,1.6¢-2
R,13,2.01062¢-4,3.217¢-9,3.217¢-9,1.6¢-2,1.6¢-2
R,14,2.01062¢-4,3.217¢-9,3.217¢-9,1.6¢-2,1.6¢-2
R,15,2.01062e-4,3.217e-9,3.217e-9,1.6e-2,1.6e-2

13k 3k 3k >k ok ok >k 5k >k ok ok 5k >k ok k MATERIALS********************************************

EX,1.2¢l1 $ PRXY,1,0.3 $ Dens,1,7667.01

N1, $N,2,0.01 $N3,0.0335 $N,40057 $N.,94,0.98 $N,95,1.0035
N,96,1.027 $N,99,1.047 $N.,100,1.04765 $N,101,1.057  $N,102,1.067
N,103,1.077 $N,104,1.087 $N,106,1.13915  $ N,107,1.1733  $ N,108,1.2133
FILL4,94  $Fill,96,99  $Fill,104,106

ok koo ok ok ok ook ok ook ok kb ok ok B EMENT CONNEC TV T % % % 5 s ok ok sk sk ok ok o ok ok oo
TYPE,I $REAL,1 $EN,1,1,2 $EN223 $ENJ3,34 §EGEN96,1,1

TYPE,1 $REAL,11  $EN,99,99,100 $ TYPE,I $ REAL,12  $ EN,100,100,101
TYPE,1 $REAL,13 $EN,101,101,102 $ TYPE,1 $ REAL,14 §EN,102,102,103
TYPE,l $REAL,IS $EN,103,103,104 $ TYPE,1 $ REAL,1 $EN,104,104,105
EN,105,105,106 $ EN,106,106,107 $ EN,107,107,108

1o s sk oo s ok ok ok oo sk ok ok ok ook QDR TN (S % % % o o o ok oo ook ok ok sk ok ok oo ook o sk sk e s ok ok o ook ook ok o
N,502,0.01,0 ,-.01 $N,503,0.0335,-.01, $ N,504,0.057,0,-.01 $N,594,0.98.0,-0.01
N,595,1.0035,-0.01 $N.,596,1.027,0,-0.01 $TYPEJ3 $REAL,S $ E,94,594

REAL,6 § EJ95,595 § REAL,7 $ E.96,596 $ REAL.8 $ E2,502
REAL,9 $ E.3.503 $ REAL,10  $ E.4,504

l***********************SUPPORT***************************************

D,1,ALL $ D.5S02,ALL $ D,503,ALL $ D.SO4ALL  $ D,594,ALL
D,595,ALL $ D.596,ALL
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|************************MASSES***************************************

TYPE,2 $REAL4 $EJ106 $REAL3 $E, 107 $REAL2 S$E,108

Pk ok ok ok ok ok ok Kok R kR ok kR (GR A VI TY A HF koo skookok ok s tokok koo sk koo ok ko koo ot o

ACEL,0,9.81,0

Dok ok ok sk ok ok bk ko ok ok ook Rk Rk kok GO 1T TN %% % 5k ok sk ko sk ko ok stk sk koo o fokokokok ok o skok

FINISH

/SOL

ANTYPE,2

MODOPT,LANB,20

EQSLV,SPAR

MXPAND,20, , ,0
MODOPT,LANB,20,0.05,5000, ,OFF

Solve
s ok ok sk ok ok ok ok ok ok ok ok ok ok sk sk ok o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok o ok sk sk Kok 3K ok K ok ok ok o sk ok K sk sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok
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D.2 Experimental and Numerical Results of Natural Frequencies for Six, Eight and
Ten Springs Modeling.
Table D.2.1 Experimental and Numerical Values of the Natural Frequencies for Various

Crack Depth-Ratios (the Numerical Values of the Six, Eight and Ten Springs Modeling
Shown Within Brackets, Respectively.); V - Vertical and H — Horizontal.

Crack depth ratios
0.0% 10% 20% 30%
Frequency
\Y H \% H \Y H \Y H
34.134 43.633 34.125 43.515 33.816 43.363 33.778 43.343
First (33.909) (43.616) (33.908) (43.615) (33.905) (43.615) (33.903) (43.613)
(33.909) (43.616) (33.908) (43.615) (33.905) (43.615) (33.903) (43.613)
(34.423) (43.658) (34.421) (43.657) (34.419) (43.657) (34.416) (43.654)
76.703 78.792 76.657 78.806 76.483 78.424 76.195 78.382
Second (77.666) (80.127) (77.658) (80.122) (77.644) (80.123) (77.631) (80.115)
(77.666) (80.127) (77.658) (80.122) (77.644) (80.123) (77.631) (80.115)
(77.998) (80.101) (77.993) (80.092) (77.993) (80.077) (77.986) (80.063)
191.652 199.499 191.491 199.204 191.256 199.069 190.859 199.006
Third (188.23) (195.36) (188.22) (195.35) (188.20) (195.36) (188.19) (195.35)
(188.23) (195.36) (188.22) (195.35) (188.20) (195.36) (188.19) (195.35)
(188.92) (195.93) (188.91) (195.91) (188.92) (195.89) (188.91) (195.87)
367.563 383.139 367.282 379.423 365.883 379.213 365.752 379.109
Fourth (364.33) (380.33) (364.32) (380.32) (364.29) (380.33) (364.27) (380.31)
(364.33) (380.33) (364.32) (380.32) (364.29) (380.33) (364.27) (380.31)
(363.42) (381.00) (363.42) (380.98) (363.42) (380.95) (363.42) (380.92)
Crack depth ratios
Frequency
40% 50% 60% 70%
v H Vv H Vv H \ H

33.556 43.185 33.145 42.947 32.774 42.862 31.286 42.069

First (33.902) (43.608) (33.902) (43.600) (33.901) (43.583) (33.900) (43.544)
(33.902) (43.608) (33.902) (43.600) (33.901) (43.583) (33.900) (43.544)
(34.415) (43.650) (34.415) (43.642) (34.414) (43.625) (34.413) (43.585)

75572 78.298 74.553 78.214 73.401 77.644 69.774 75.896
Second (77.624) (80.100) (77.623) (80.073) (77.621) (80.020) (77.613) (79.894)
(77.624) (80.100) (77.623) (80.073) (77.621) (80.020) (77.613) (79.894)

(77.973) (80.056) (77.949) (80.055) (77.900) (80.054) (77.785) (80.044)

190.076 198.671 188.763 198.299 187.240 197.993 182.790 194457
Third (188.18) (195.33) (188.17) (195.30) (188.17) (195.24) (188.16) (195.11)
(188.18) (195.33) (188.17) (195.30) (188.17) (195.24) (188.16) (195.11)

'188.90) (195.86) (188.88) (195.86) (188.83) (195.86) (188.74) (195.85)

363.809 378.435 359.989 377.565 355.839 376.664 343.971 373.689

Fourth (364.26) (380.29) (364.26) (382.25) (364.26) (380.17) (364.24) (379.97)
(364.26) (380.29) (364.26) (382.25) (364.26) (380.17) (364.24) (379.97)

(363.40) (380.91) (363.38) (380.91) (363.35) (380.90) (363.25) (380.89)
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Appendix G — “Frequency Responses of the Rotor Shaft system”

G.1 The Responses of the System Under Test (impact excitation) and the
Corresponding Responses

Functions

(Acceleration FRFs,

umerical Results

Velocity FRFs,

Displacement FRFs) for Experimental and N

R —— T ‘ - B - . . ,‘
, For acceleration ) For acceleration :
3 3
& N: J
E : E D‘ Ly \X' X
o : \v q "} 3
E 1 I —intact Num, :
H —Cracked Exp.10% 3 —Cracked Num.10%)
E A - grac:g Exp.ZO:/. 5 4 -~ Gracked Num.20% .
w racked Exp.30% v Cracked Num.J30%)
E ~Cracked Exp.40% :’- —Cracked Num.40%)
5 f-grac:: Exp.ﬁ'; £ —Cracked Num.50%
- Grag xp.60% - Cracked Num.60%)
“—Cracked Exp.70% —Cracked Num.70%)
4 D avency [ = (a)F 100 150 200 250
equency Frequency [Hz)
a - ) L
—Intact Exp. 0 —intact Num.
2 ~-Cracked Exp.10%| —Gracked Num.10%
Cracked Exp.20% 2 g:“z:: ::',:m
=K1 - —_— 3l .
2 Cracked Exp.30% £ — Cracked Num.40%
E » —gracked Exp.40% % 4 —Cracked Num.50%
= ] R |—Cracked Exp.50% = Cracked Num.60%
2 5 ‘ Cracked Exp.60% @ —Cracked Num.70%
3 —Cracked Exp.70% T s
= T
g T < 3
'S W
£ g
-10
8-
For velocity For velocity
* o " m m G 100 150 20 250
Frequency [Hz] (b) Frequency [Hz)
b — : — 0
—Intact Exp. —Intact Num.
—Cracked Exp.10% 2 ~Cracked Num.10%
Cracked Exp.20% Cracked Num.20%
5 Cracked Exp.30% 5 4 Cracked Num.30% )
:E. A —Cracked Exp.40% E $ —Cracked Num 40%
® —Cracked Exp.50% P ~-Cracked Num.50%
T Cracked Exp.60% T8 Cracked Num.60%
£ —Cracked Exp.70% z —Cracked Num.70%
a 240
E E
q <
gt u-12
t x
s =] A4
-16 .
For displacement ) For displacement
y 100 150 n % ’ 8() 100 150 200 250
Frequency [Hz] (c) Frequency [Hz]

Figure G.1.1 Schematic of Experimental and Numerical Frequency Response Functions
of: a) Accelerations (ARFs); b) Velocities (VRFs) and (¢) Displacements (DRFs) for

Shaft # 1.
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For acceleration

FRF Amplitude [(m/5%}/N]
&

° w

ARF Amplitude [(m/s%)/N]
o

T

For acceleration

—Intact Exp. - ~—Intact Num.
—Cracked Exp.10% —Cracked Num.10%)
4 ~Cracked Exp.20% 4 - Cracked Num.20% =
Ctacked Exp.30% Cracked Num.30%|
~—Cracked Exp.40% —Cracked Num.40%)
53 ~~Cracked Exp.50% - £- —Cracked Num.50%; -
y - Cracked Exp.60% Cracked Num.80%)
-80 —Cracked Exp.70%) ) N  [=Cracked Num.70%|
5 100 150 200 P | 50 100 150 200 250
Frequency [Hz] Frequency {Hz)
(a)
1] T [ T
—Intact Exp. — Intact Num.
—Cracked Exp.10% — Cracked Num_ 10%
2- - Cracked Exp.20% N 2- - Cracked Num.20%| -
z Cracked Exp.30% 5 Cracked Num.30%|
= —Cracked Exp.40% = —Cracked Nurn.40%
2 4 —Cracked Exp.60% B ‘E" 4 —Cracked Num.50%
E - Cracked Exp.60% N = - Cracked Num.60%
o e Cracked Exp.70%) B o
is T 3
4 . B
E 3 Y E
4 3 : < 8
& i &
“ 10 j ” 10
For velocity For velocity
15 50 100 150 200 PR | 50 100 150 200 25
Frequency [Hz] Frequency [Hz}
(b)
0-- — 0 : -
=Intact Exp. —intact Num,
-2 —Cracked Exp.10% -2 —Cracked Num.10%
- Cracked Exp.20%) - Cracked Num.20%
s * Cracked Exp.30% g 4 Cracked Num.30%
T s —Cracked Exp.40% - Es —Cracked Num.40%
> —Cracked Exp.50% T —Cracked Num.50%
T8 - Cracked Exp.60% - 3 8 Cracked Num.§0%
g —Cracked Exp.70% £ —Cracked Num.70%
2.0 : £-10
E \ E =
g W <
w-12 9 u -12
E -
-4 ] -14- -
i
- . -16 .
16 For displacement For displacement
b 50 100 150 200 w1 50 100 150 200 250
Frequency [Hz] (c) Frequency [Hz]

Figure G.1.2 Schematic of Experimental and Numerical Frequency Response Functions
of: a) Accelerations (ARFs); b) Velocities (VRFs) and (c) Displacements (DRFs) for

Shaft # 3.
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Appendix H — “Comparison Frequency Response Function for Experimental and

Numerical Computations”

H.1 Frequency Response Functions for Different Depth of Crack of Experimental
and Numerical Computations: shaft # 1 & shaft # 3

p] |
---Intact Exp.
—Intact Num.|

<«

4

A
For accelerdtion

\ ‘/ -
14 \ For displacement™ ™™

18, 50 160 150 200 250

Frequency [Hz]
---Cracked 20% Exp.
—Cracked 20% Num.

FRF Amplitude [m/N] [(m/s}iN] {(mis2yN
PR

.o

For displacement ™,
: 200 250

FRF Amplitude [m/N] [(m/s)N] {tm/s?yN]

100 150
Frequency [Hz]

n

a2 !
. , \ For displacementl“-::.-"' T

%

FRF Amplitude [m/N] [{mvs)N] [(m/s*kN]
P S

~~Cracked 10% Exp. |
—Cracked 10% Num.

FRF Amplitude [m/N] [(m/s}/N] [(mls’)IN

100 150 200 250
Fraquency [Hz]

—~Cracked 30% Exp. N
—Cracked 30% Num. Vi

For accelegatfon

Ay

LI LT -

3
Y

For velocity 3

10 i ¥ :

A2 i\ Y .

Al For displacemeit™ =
H

“b 50 100 150 260 250
Frequency [Hz]

~-Cracked 50% Exp. .
] g —Cracked 50% Num. /"n‘

For acceleration,
4 1

FRF Amplitude [myN] [(misyiN) [{mis2)N]

[ A=

PRSTRP N,

'-. ,¢"’, Fil i
f Nr displacement™ ...
50 100

-
N O

FRF Amplitude [mN] [{mys¥N] [(m/s)iN]
S b & b

N
b

16 50 100 150 200 250 18 150 200 250
Freauaney MHN Frequency [Hz}
= 5 - z 3
= S . = -Gracked 70% Exp.
» ——Cracked 60% Num. “» --Cracked 70% Num.
E t
= = 0 H - -
g ) z N ——T
w = P 2 A — e
= = g N\ —
E z 7N
£ Eaofea iy g e
4 3 . Y aemevaseeanin, -
‘E = s For dlsplacemel?(
& E
L N
-z, x
50 100 150 200 250 .20
0 50 100 150 200 250
Frequency [Hz) Frequency [Hz]

Figure H.1.1 Schematic of Frequency Response Functions for Different Depth of
Crack of Experimental and Numerical Computations: Shaft # 1
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Figure H.1.2 Schematic of Frequency Response Funct

Crack of Experimental and Numerical Computations: Shaft # 3
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Appendix I — “Comparison of Experimental Results of Resonant and Anti-Resonant
Frequency Amplitudes”

I.1.1: Comparison of Experimental Results for Resonant Frequency Amplitudes
shaft# 1

Normalized Experimental Aceeleration Amplitude Rutio Depth of crack/diameter (%)
{at resenant fregquency) vs. Crack Depth Ratio O 81 0! 83 84 05 06 BT B8

39 o u First Mode

Lol
=
ES

-

+ First Mmde

1.5
1.2
]
e
%]

0

% JJJ + Second Mode 2 Second Mode
Z i: + Third Mode B Third Mode
gL

= . »

213 Shaft #1 i Shafl #1
=]

Normlized max. modal

Experimental slope of modal acceleration (b)
amplitude vx. crackdepth rutio

0ol 02 03 a4 05 66 07 08
N a
Crack depth ratio ( )

Normlized Experimental Velocity Amplitude Rotio

(atresonant frequncy) vs. Crack Depth Ratio Depth of crackidiameter (%)

n 91 62 03 04 o5 46 07 08

4 " s First Mode "

%) ) - R ' # First Mode
L + Secomd Mode 10 -

38 0 + Second Muode

33 ¢ Third Mode -to BThird Mode

18 -0

23 K /" Shaft # 1
[R] -

- + &
1) e "
N v 60
o8 \_, -0

L

dy/dx

Shalt #1

velocity ampltude

Narmlbized max, modal

v} e — -Bo

0B B2 03 Rd BE 85 0T (C) -0

Crack depth ratio l‘.xprnn}rnml slepe of modal \'l.'lf)ﬂl‘\' (d)
amplitwle vs, crack depth ratio
Mormalized Experimental Displacement Amplitude Ratin Depth of eracktdiameter (%)

6;;" resonant frequency}vs. Crack  Depth Ratie o 04 b2 03 04 05 e 07 0%
6 ® First Mode " + First Mode
8 . :
sl s Second Mode " « Secund Mode
45 © Third Xnde .
+3 s ey B Third Mode

38 . .

28

13 /“u * 3
¥ *

e
1.3 N -1
[%]

(8] 18

L L (e) Experimental slope of modal displacentent (f)
Crack depth ratio amplitude vs. crack depth ratio

dy/dyx

Normlized . modal
displacement ampltade

Figure I.1.1 Comparison of Experimental Results for Resonant Frequency Amplitudes: a)
Acceleration Amplitude versus Crack Depth Ratio; b) Slope of Modal Acceleration
Amplitude versus Crack Depth Ratio; ¢) Velocity Amplitude versus Crack Depth Ratio;
d) Slope of Modal Velocity Amplitude versus Crack Depth Ratio; e) Displacement
Amplitude versus Crack Depth Ratio; and f) Slope of Modal Displacement Amplitude
versus Crack Depth Ratio; Shaft # 1
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I.1.2: Comparison of Experimental Results for Resonant Frequency Amplitudes

shaft #3
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Figure [.1.2 Comparison of Experimental Results for Resonant Frequency Amplitudes: a)
Acceleration Amplitude versus Crack Depth Ratio; b) Slope of Modal Acceleration
Amplitude versus Crack Depth Ratio; ¢) Velocity Amplitude versus Crack Depth Ratio;
d) Slope of Modal Velocity Amplitude versus Crack Depth Ratio; ¢) Displacement
Amplitude versus Crack Depth Ratio; and f) Slope of modal Displacement Amplitude
versus Crack Depth Ratio; Shaft # 3
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I.1.3: Comparison of Experimental Results for Anti-Resonant Frequency

Amplitudes-shaft # 1
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Figure 1.1.3 Comparison of Experimental Results for Anti-Resonant Frequency
Amplitude Response: a) Acceleration Amplitude versus Crack Depth Ratio; b) Slope of
Modal Acceleration Amplitude versus Crack Depth Ratio; ¢) Velocity Amplitude versus
Crack Depth Ratio; d) Slope of Modal Velocity Amplitude versus Crack Depth Ratio; €)
Displacement Amplitude versus Crack Depth Ratio; and f) Slope of modal Displacement

Amplitude versus Crack Depth Ratio; Shaft # 1
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I.14:

Comparison of Experimental

Amplitudes - shaft # 3

Results

for Anti-Resonant Frequency
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Figure [.1.4 Comparison of Experimental Results for Anti-Resonant Frequency

Amplitude Response: a) Acceleration Amplitude versus Crack Depth Ratio; b) Slope of
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I.1.5: Comparison of Experimental

and Numerical

Frequencies of Shaft # 1 (for First and Second Modes).

Results for Resonant
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1.1.6: Comparison of Experimental

and Numerical Results

Frequencies of Shaft # 3 (for First and Second Modes)

for Resonant
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Appendix K — “Velocity Frequency Response of the Rotor Shaft system”

K.1.1: The Responses of the System under Test (Impact Excitation) for

Experimental and Numerical Results. Shaft # 1
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Figure K.1.1 Responses of the System for; a) Experimental; and b) Numerical
Computations of Velocity Response Functions (VRFs) for Shaft # 1.
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K.1.2: Comparisons for All Cases (Intact VRFs, Cracked 10% VRFs, Cracked 20%
VRFs, Cracked 30% VRFs, Cracked 40% VRFs, Cracked 50% VRFs, Cracked
60% VRFs, and Cracked 70% VRFs.) For Response Functions of Experimental and
Numerical Computations - Shaft # 1
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Figure K.1.2 Comparison of Velocity Responses Functions (VRF) in Experimental and
Numerical Computations: Intact VRFs, Cracked 10% VRFs, Cracked 20% VRFs,
Cracked 30% VRFs, Cracked 40% VRFs, Cracked 50% VRFs, Cracked 60% VRFs, and
Cracked 70% VRFs; for Shaft # 1
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K.1.3: The Velocity Responses of the System under Test (Impact Excitation) and the

Corresponding Experimental and Numerical Results - Shaft # 3
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Figure K.1.3 Responses of the System for; a) Experimental; and b) Numerical
Computations of Velocity Response Functions (VRFs) for Shaft # 3
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K.1.4: Comparisons for all Cases (intact VRFs, cracked 10% VRFs, cracked 20%
VREFs, cracked 30% VRFs, cracked 40% VRFs, cracked 50% VRFs, cracked 60%
VRFs, and cracked 70% VRFs.) of Response Functions for Experimental and

Numerical Computations - Shaft # 3
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rigure K.1.4 Comparison of Velocity Responses runctions (VRF) in Experimental and
Numerical Computations: Intact VRFs, Cracked 10% VRFs, Cracked 20% VRF S,
Cracked 30% VRFs, Cracked 40% VRFs, Cracked 50% VRFs, Cracked 60% VRFs, and
Cracked 70% VRFs; for Shaft # 3
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L.1.2.1: The Mechanical Impedances of Rotor Shaft-propeller-bearing System
Obtained for Vertical Vibrations — Shaft # 1
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Figure L.1.2.1 Variation of Experimental and Numerical Impedance for Different Crack
Depths for Shaft # 1
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L.1.2.2: The Mechanical Impedances of Rotor Shaft-propeller-bearing System
Obtained for Vertical Vibrations — Shaft # 3
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Figure 1..1.2.2 Variation of Experimental and Numerical Impedance for Different Crack
Depths for Shaft # 3
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Figure L.1.3.1.2 Changes in the Mobility between Intact and 70% Crack Depth Ratio for

Experimental and Numerical Results for Shaft # 3
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