PERFORMANCE EVALUATION OF THE PROPULSION SYSTEM FOR THE AUTONOMOUS UNDERWATER VEHICLE "C-SCOUT"

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

PERFORMANCE EVALUATION OF THE PROPULSION SYSTEM FOR THE AUTONOMOUS UNDERWATER VEHICLE " C-SCOUT "

By

[©] Roy Thomas, B.Eng.

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

August 2003

St John's, Newfoundland, Canada

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 0-612-99122-9 Our file Notre référence ISBN: 0-612-99122-9

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis. Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

ABSTRACT

This thesis begins with a study of AUV energy systems and endurance. A comparative study of a number of high energy density systems is carried out and based on this study, a few high energy density systems are selected for possible use on the AUV "C-SCOUT". The optimum operating speed and the endurance limits of "C-SCOUT" are then calculated. Next, two powering prediction methods (the "ITTC 1978" method and the "Load-Varying Self-Propulsion Test" method) are compared, in order to estimate the powering performance of "C-SCOUT". Subsequently an account of the resistance, self-propulsion and bollard pull tests conducted on "C-SCOUT", is included. Areas discussed include test setup, test procedure, test results and problems faced. Finally this thesis takes a look at propeller design. A high efficiency propeller is designed for "C-SCOUT" using Eckhardt and Morgan's propeller design method.

ACKNOWLEDGMENTS

First of all I would like to thank God for giving me an opportunity to spend two wonderful years studying for my masters degree in the beautiful city of St John's, Newfoundland.

I would then like to thank my supervisors Dr Neil Bose and Dr Christopher Williams for their guidance, support and help throughout my program. Thank you gentlemen – a student could not have asked for better supervisors.

I would also like to gratefully acknowledge the financial support provided to me through the NSERC Strategic Project "Offshore Environmental Engineering Using Autonomous Underwater Vehicles".

Thanks are also due to the National Research Council Canada – Institute for Marine Dynamics, St John's for the technical support that was provided during the in-water tests, for the office space that was provided to me and for the library facilities that I was given access to.

I would also like to thank my parents and sister for their constant support and help. Thanks are also due to my good friends in St John's – Tim and Kristina Churchill and the Swamidas's.

TABLE OF CONTENTS

Abs	iractii
Ack	nowledgmentsiii
Tab	e of Contentsiv
List	of Figuresvi
List	of Tablesx
List	of Abbreviations and Symbolsxi
List	of Appendicesxviii
Cha	pter 1: Introduction1
1.1	Introduction1
1.2	The AUV "C-SCOUT "
1.3	Thesis Objectives
1.4	Thesis Outline
Cha	pter 2: AUV Energy Systems and Endurance
2.1	AUV Comparison
2.2	Comparison of AUV Energy Systems
2.3	Optimum Speed of the "C-SCOUT " AUV
2.4	Endurance of the "C-SCOUT " AUV
2.5	Conclusions46
Cha	pter 3: Powering Prediction for Ships / Submersibles47
3.1	Powering Prediction Using the ITTC 1978 Performance Prediction Method49
3.2	Powering Prediction Using Load-Varying Self-Propulsion Tests Alone
3.3	"C-SCOUT" Tests75
3.4	Testing Prototype Vessels and Scale Models75
3.5	Conclusions76

Cha	pter 4: Resistance and Propulsion Tests	76
4.1	Test Setup	77
4.2	Test Procedure	83
4.3	Test Results	95
4.4	Uncertainty Analysis	122
4.5	Problems Faced During Course of the Tests	125
4.6	Conclusions	126
Cha	apter 5: Design of a High Efficiency Propeller for "C-SCOUT"	
5.1	The Need for a High Efficiency Propeller	127
5.2	High Efficiency Propeller Concept	129
5.3	Design Methodology	
5.4	High Efficiency Propeller Design: Steps	139
5.5	High Efficiency Propeller Design: Calculations	163
5.6	Conclusions	172
Cha	apter 6: Conclusions and Recommendations	
6.1	Conclusions	173
6.2	Recommendations	
Ref	erences	177
Арј	pendix A: Calculations for Chapter 2	A 1
App	pendix B: Resistance and Propulsion Test Results (Chapter 4)	B 1
Арј	pendix C: Calculations for Chapter 5	C 1

LIST OF FIGURES

Chapter 1

1.1	The C-SCOUT Vehicle (Baseline Version) (2-D Drawing)	.3
1.2	The C-SCOUT Vehicle (Baseline Version) (3-D Drawing)	.3
1.3	A Look Inside the Vehicle	.4
1.4	Modules	.4
1.5	Main Propulsion Thruster and Fin Actuator	5
1.6	Vehicle Electronics	5

2.1	Pie Chart : Percentage Distribution of AUV Energy Systems
2.2	C-SCOUT Required Energy vs Forward Speed (H.L = 100 W, Range = 50 km)35
2.3	C-SCOUT Required Energy vs Forward Speed (H.L = 150 W, Range = 50 km)35
2.4	C-SCOUT Required Energy vs Forward Speed (H.L = 200 W, Range = 50 km)
2.5	C-SCOUT Required Energy vs Forward Speed (H.L = 250 W, Range = 50 km)
2.6	C-SCOUT Endurance Using the Present Energy System (H.L = 100 W)
2.7	C-SCOUT Endurance Using the Present Energy System (H.L = 150 W)
2.8	C-SCOUT Endurance Using the Present Energy System (H.L = 200 W)
2.9	C-SCOUT Endurance Using the Present Energy System (H.L = 250 W)
2.10	C-SCOUT Endurance (Dist.) Using a High Energy Density System (H.L = 100 W)42
2.11	C-SCOUT Endurance (Time) Using a High Energy Density System (H.L = 100 W)42
2.12	C-SCOUT Endurance (Dist.) Using a High Energy Density System (H.L = 150 W)43
2.13	C-SCOUT Endurance (Time) Using a High Energy Density System (H.L = 150 W)43
2.14	C-SCOUT Endurance (Dist.) Using a High Energy Density System (H.L = 200 W)44
2.15	C-SCOUT Endurance (Time) Using a High Energy Density System (H.L = 200 W)44

2.16	C-SCOUT Endurance (Dist.) Using a High Energy Density System ($H.L = 250 \text{ W}$)45
2.17	C-SCOUT Endurance (Time) Using a High Energy Density System (H.L = 250 W)45

3.1	$C_{TM} / C_{FM} vs Fn^4 / C_{FM}$	52
3.2	$K_{TOM},10K_{QOM},\eta_0$ vs J_0	.53
3.3	K _{FD} , 10K _{FDM} vs J	57
3.4	K _T , 10K _Q Identity	59
3.5	K _{TS} vs J	.60
3.6	Forces Acting on a Submerged Vehicle Moving Ahead at Constant Speed	65
3.7	Tow Force vs Thrust for Different Froude Numbers	67
3.8	Shift in K _T , 10K _Q Curves After Corrections for Frictional Drag and Wake Scaling	.73
3.9	K _{TS} vs J	.73

4.1	Test Setup (Drawing)	78
4.2	Test Setup (Photograph)	78
4.3	Arrangement for Supporting the Vehicle Forward Section	79
4.4	Forward Flexible Support	79
4.5	Forward Flexible Support	79
4.6	Arrangement for Supporting the Vehicle Aft Section	80
4.7	Aft Flexible Support	80
4.8	Aft Flexible Support	80
4.9	Pressure Vessel and its Components	81
4.10	Linear Rotary Bearings	82

4.11	Dynamometer Calibration
4.12	Dynamometer Thrust Calibration Graph85
4.13	Dynamometer Torque Calibration Graph85
4.14	Load cell Calibration
4.15	Load Cell Calibration Graph
4.16	Motor Tachometer Speed Calibration
4.17	Motor Tachometer Speed Calibration Graph
4.18	Vehicle Being Prepared for the Tests
4.19	The Fully Prepared Vehicle
4.20-	- 4.25 Vehicle Being Lowered into the Water and Being Attached to the Struts91
4.26	Vehicle Alignment Check92
4.27	Shaft Friction Torque vs RPM93
4.28	Propeller Thrust vs Tow Force (Only Prop. Fitted On)
4.29	Total Thrust vs Tow Force (Prop. + Duct Fitted On)98
4.30	-4.37 10Kq, Ktp, Kfd, Kts vs J (V = 0.8 to 2.5 m/s, Only Prop. Fitted On)101-104
4.38	-4.45 10Kq, Ktt, Kfd, Kts vs J (V = 0.8 to 2.5 m/s, Prop.+Duct Fitted On)105-108
4.46	Delivered and Effective Power vs Forward Speed (Only Prop. Fitted On)111
4.47	Propulsive Efficiency vs Forward Speed (Only Prop. Fitted On)111
4.48	Delivered and Effective Power vs Forward Speed (Prop. + Duct Fitted On)112
4.49	Propulsive Efficiency vs Forward Speed (Prop. + Duct Fitted On)112
4.50	Forces Acting on the Vehicle in Phase I and Phase II Tests
4.51	Tow Force, Propeller Thrust vs Propeller Speed (Bollard-Pull Tests)115
4.52	Delivered Power vs Propeller Speed (Bollard-Pull Tests)116
4.53	Bare-Hull Resistance vs Forward Speed (Resistance Tests)118
4.54	Bare-Hull Resistance vs Astern Speed (Resistance Tests)118 viii

.

4.55	Comparison of Ahead and Astern Resistance vs Speed (Resistance Tests)	119
4.56	Comparison of F _{T=0} and R vs Forward Speed	119
4.57	Cross Sectional Area C _d vs Ahead Speed (Resistance Tests)	120
4.58	Cross Sectional Area C _d vs Astern Speed (Resistance Tests)	121
4.59	Wetted Surface Area C _d vs Ahead Speed (Resistance Tests)	.121
4.60	Wetted Surface Area Area C _d vs Astern Speed (Resistance Tests)	.122

5.1	Tecnadyne Thruster	127
5.2	K_t, K_q, η_0, C_{th} vs J	130
5.3	Lift vs Angle of Attack, Wing Tip Vortices and Downwash	132
5.4	C_L vs α (Cascade Effect)	133
5.5	Flowchart for the Eckhardt and Morgan Propeller Design Method137	7 - 138
5.6	High Efficiency Propeller	159
5.7	Blade Section Profile	160
5.8	Blade Root Section – Moment of Inertia	161
5.9	Blade Root Section – Bending Moments and Stresses	162

LIST OF TABLES

Chapter 2

2.1	AUV Comparison	9
2.2	Energy Density Comparison of AUV Energy Systems	.13
2.3	The Cost of Producing 1 kW-hr of Energy	.30
2.4	Energy Required by "C-SCOUT"	.32
2.5	Optimum Speed of "C-SCOUT"	.34
2.6	"C-SCOUT" Endurance	.41

Chapter 4

4.1	Equations of the Straight Lines [Fig 4.24]	97
4.2	Equations of the Straight Lines [Fig 4.25]	98
4.3	Phase I Tests: Self-Propelled Condition	110
4.4	Phase II Tests: Self-Propelled Condition	110
4.5	Comparison of F _{T=0} and R1	10
4.6	Summary of the Uncertainty Analysis	123

5.1	Propeller Efficiency and Power Consumption Comparison	.128
5 2	Ideal Efficiency vs Propeller Diameter	140
5.2	ideal Efficiency vs riopener Diameter	140

LIST OF ABBREVIATIONS AND SYMBOLS

Symbol

Definition

Chapter 2

- V Vehicle Forward Speed (m/s)
- P_E Effective Power (W)
- P_H Hotel Load (W)
- P_T Total Power Required by the AUV (W)
- E_T Total Energy Provided by the Energy System (W-hr)
- R Vehicle Resistance (N)
- C_D Drag Coefficient of the AUV
- ρ Mass Density of Water (kg/m³)
- A Cross Sectional Area of the Vehicle (m/s)
- R Range (km)
- P_d Delivered Power (W)
- P_m Motor Mechanical Power (W)
- Pe Motor Electrical Power (W)
- P_h Hotel Load (W)
- Pt Total Power Required by Vehicle at a Particular Forward Speed (W)
- t Total Time for a Mission at a Particular Forward Speed (hr)
- E Total Energy Required by the Vehicle at a Particular Forward Speed (W-hr)
- t' Total Time for a Mission at a Particular Forward Speed (Using the Current Energy System) (hr)
- D Max. Distance the Vehicle Can Travel at Sea (Using the Current Energy System) (km)
- t" Total Time for a Mission at a Particular Forward Speed (Using a High Energy Density System) (hr)
- D" Max. Distance the Vehicle Can Travel at Sea (Using a High Energy Density System) (km)
- Ag-Zn Silver Zinc Batteries
- Li-ion Lithium-ion Batteries
- Li-ion P Lithium-ion Polymer Batteries
- AI-O₂ Aluminium Oxygen Semi-Fuel Cell
- PEM Proton Exchange Membrane Fuel Cell
- SPE Solid Polymer Electrolyte
- Ni-Cd Nickel Cadmium Battery

Pb-H₂SO₄ Lead Acid Batteries

- CCDE Closed Cycle Diesel Engine
- NA Data Not Available
- ISE International Submarine Engineering Ltd.
- HL Hotel Load

- V_M Model Speed (m/s)
- V_S Ship (Full Scale Vehicle Speed) Speed (m/s)
- R_{TM} Total Resistance of Model (N)

- R_{TS} Total Resistance of Ship (N)
- C_{TM} Coefficient of Total Resistance of the Model
- C_{TS} Coefficient of Total Resistance of the Ship
- C_{FM} Coefficient of Frictional Resistance of the Model
- C_{FS} Coefficient of Frictional Resistance of the Ship
- C_{RM} Coefficient of Residuary Resistance of the Model
- C_{RS} Coefficient of Residuary Resistance of the Model
- C_A Correlation Allowance
- C_{AA} Air Resistance Coefficient
- k Form Factor
- k_M Model Form Factor
- ks Ship Form Factor
- ρ_{s} Density of Sea Water (kg/m³)
- ρ_{M} Density of Fresh Water (kg/m³)
- S_s , S Wetted Surface Area of the Ship (m²)
- S_M Wetted Surface Area of the Model (m²)
- Rn Propeller Reynolds Number
- R_{nco} Local Reynolds Number at 0.75 Radius (Propeller)
- Fn Froude Number
- T⁰ Water Temperature (⁰C)
- J₀ Open Water Advance Coefficient
- J Behind Ship Advance Coefficient
- T_M Model Thrust (N)
- T_S Ship Thrust (N)
- Q_M Model Torque (N-m)
- Q_s Ship Torque (N-m)
- n_M Model Propeller Speed (rpm or rps)
- n_S Ship Propeller Speed (rpm or rps)
- K_{TOM} Open Water Thrust Coefficient for the Model
- K_{QOM} Open Water Torque Coefficient for the Model
- K_{TBM} Behind Ship Thrust Coefficient for the Model
- K_{QBM} Behind Ship Torque Coefficient for the Model
- K_{FDM} Tow Force Coefficient for the Model
- K_{FD} Tow Force Coefficient for the Model as a Function of J²
- K_R Resistance Coefficient
- K_{TS} Thrust Coefficient for the Ship
- K_{QS} Torque Coefficient for the Ship
- t Thrust Deduction Fraction (ITTC 1978 Method)
- t Thrust Deduction Fraction (Load Varying Self-Propulsion Test Method)
- C_{DM} Drag Coefficient of the Model Propeller
- C_{DS} Drag Coefficient of the Ship Propeller

- δC_D Difference in the Model / Ship Propeller Drag Coefficients
- δK_T Correction Factor for K_T
- δK_{Q} Correction Factor for K_{Q}
- P Propeller Pitch (m)
- D Propeller Diameter (m)
- q Propeller Blade Chord Length (m)
- Z Number of Propeller Blades
- m Propeller Blade Thickness (m)
- k_P Propeller Blade Roughness
- w_{TM} Effective Wake Fraction for the Model using the Thrust Identity
- w_T Effective Wake Fraction using the Thrust Identity
- w_Q Effective Wake Fraction using the Torque Identity
- w_{TS} Effective Wake Fraction for the Ship using the Thrust Identity
- C_{VS} Coefficient of Viscous Resistance of the Ship
- C_{VM} Coefficient of Viscous Resistance of the Model
- η_0 Open Water Efficiency of the Propeller (%)
- $\eta_{\rm D}$ Propulsive Efficiency of the Propeller (%)
- $\eta_{\rm H}$ Hull Efficiency (%)
- η_{R} Relative Rotative Efficiency (%)
- F Tow Force (N)
- $F = F_D$ Tow Force corresponding to Ship Self-Propulsion point (N)
- F= 0 Tow Force corresponding to Model Self-Propulsion point (N)
- F_{T=0} Total Resistance of the Model under Idling Propeller Conditions (N)
- C_{FD} Skin Friction Correction Coefficient
- dF Differential Tow Force (N)
- dT Differential Thrust (N)
- T Thrust (N)
- Q Torque (N-m)
- T_M^{\star} Model Thrust at Ship Self-Propulsion Point (N)
- Ts* Ship Thrust at Ship Self-Propulsion Point (N)
- T_M^{**} Model Thrust at Model Self-Propulsion Point (N)
- m Slope
- c Intercept on the y axis
- λ Scale Ratio (D_S / D_M)
- J_M Advance Ratio for the Model
- J_S Advance Ratio for the Ship
- P_D Delivered Power (W)
- P_E Effective Power (W)
- ITTC International Towing Tank Conference
- x Non-Dimensional Radius of the Propeller
- BM Behind Model
- BS Behind Ship

- F Measured Tow Force (N)
- $F_{T=0}$ Value of the Tow Force when Propeller Thrust is Zero (N)
- T Measured Propeller Thrust (N)
- T_s Propulsor Thrust at Self-Propulsion Point (N)
- T_P Propeller Thrust (N)
- T_t Total Thrust (N)
- T_P Propeller Thrust (N)
- t^{*} Thrust Deduction Fraction (Load Varying Self-Propulsion Test Method)
- a Augment in Resistance
- V Vehicle Speed (m/s)
- ρ Mass Density of Water (kg/m³)
- n Propeller Speed (rpm or rps)
- D Propeller Diameter (m)
- K_{tp} Propeller Thrust Coefficient
- K td Duct Thrust Coefficient
- K tt Total (Propeller + Duct) Thrust Coefficient
- K_q Propeller Torque Coefficient
- K fd Tow Force Coefficient
- K_{ts} Propeller Thrust Coefficient as a Function of J²
- J Advance Coefficient
- P_d Delivered Power (W)
- P_e Effective Power (W)
- h_d Propulsive Efficiency of the Propeller (%)
- C_d Drag Coefficient
- Re Reynolds Number
- Fr Froude Number

- D Propeller Dia. (m)
- R Propeller Radius (m)
- r Radial Distance (measured from the centreline of the propeller) (m)
- r_h Hub Radius (m)
- X Non Dimensional Radius
- X_h Non Dimensional Radius of the Propeller Hub
- P Section Pitch (m)
- L Section Chord Length (m)
- Z Number of Blades
- ρ Mass Density of Water (kg/m³)
- ρ_0 Mass Density of Manganese Bronze (kg/m³)
- g Acceleration due to Gravity (m/s^2)
- C_{th} Thrust Loading Coefficient

- C_T Thrust Loading Coefficient (Calculated using the Speed of Advance)
- C_{TS} Thrust Loading Coefficient (Calculated using the Vehicle Speed)
- C_{Ti} Ideal Thrust Loading Coefficient (Calculated using the Speed of Advance)
- C_{TSi} Ideal Thrust Loading Coefficient (Calculated using the Vehicle Speed)
- C_P Power Coefficient (Calculated using the Speed of Advance)
- C_{PS} Power Coefficient (Calculated using the Vehicle Speed)
- C_{Pi} Ideal Power Coefficient (Calculated using the Speed of Advance)
- C_{PSi} Ideal Power Coefficient (Calculated using the Vehicle Speed)
- P_d Delivered Power (W)
- T Thrust (N)
- Q Torque (N-m)
- η_0 Propeller Efficiency in Open Water (%)
- $\eta_{\rm b}$ Propeller Efficiency when fitted behind the Vehicle (%)
- η_i Ideal Propeller Efficiency (%)
- n Propeller Speed (rpm or rps)
- V Vehicle Speed (m/s)
- V_A Speed of Advance of the Propeller (m/s)
- A_0 Propeller Disc Area (m²)
- A_E Propeller Expanded Area (m²)
- A_E / A₀ Expanded Area Ratio
 - a Rotational Inflow Factor
 - a' Axial Inflow Factor
 - C_L Coefficient of Lift
 - C_{Li} Coefficient of Lift at the Ideal Angle of Attack
 - C_D Coefficient of Drag
 - A.R Aspect Ratio
 - α Angle of Attack (⁰)
 - α_i Ideal Angle of Attack (⁰)
 - β Hydrodynamic Pitch Angle (uncorrected for Induced Velocities) (⁰)
 - β_{i} Hydrodynamic Pitch Angle (corrected for Induced Velocities) (⁰)
 - Φ Geometric Pitch Angle (⁰)
- U / 2 Induced Velocity (m/s)
- Ut / 2 Tangential Component of the Induced Velocity (m/s)
- U_a / 2 Radial Component of the Induced Velocity (m/s)
 - V_r Resultant Inflow Velocity to the Propeller (m/s)
 - ω Angular Velocity of the Propeller (rad/s)
 - J Advance Coefficient
 - λ Advance Ratio (calculated using the Speed of Advance)
 - λ_s Advance Ratio (calculated using the Vehicle Speed)
 - λ_i Advance Ratio in an Ideal Fluid
 - Γ Circulation
 - K Goldstein Factor

- dL Differential Lift (N)
- dD Differential Drag (N)
- ε Ratio of the Differential Drag by the Differential Lift
- dr Differential Radial Distance (m)
- dx Differential Non-Dimensional Radius
- dT_i Differential Ideal Thrust (N)
- dQ_i Differential Ideal Torque (N-m)
- dC_{TS} Differential Thrust Loading Coefficient (Calculated using the Speed of Advance) (N)
- dC_{TSi} Differential Thrust Loading Coefficient (Calculated using the Vehicle Speed) (N)
- w_x Wake Fraction at Non-Dimensional Radius x
- w₀ Effective Wake Fraction
- m_x Maximum Section Camber (m)
- t_x Maximum Section Thickness (m)
- t₀ Blade Thickness at the Root Section (m)
- t_{Tip} Blade Thickness at the Tip (m)
- m_x/L Camber Ratio
- t_x / L Thickness Ratio
- t_x / D Radial Distribution of Maximum Thickness
- σ_x Section Cavitation Number
- P Pressure due to the Head of Water (N/m²)
- P_a Atmospheric Pressure (N/m²)
- h' Depth of Submergence (m)
- tdc Top Dead Centre Position
- K₁ Camber Correction Factor
- K₂ Camber Correction Factor
- K₃ Correction Factor (dependent on the shape of the Meanline)
- K₄ Correction Factor (dependent on the shape of the Meanline)
- α_1 Pitch Correction Factor (rad)
- α_2 Pitch Correction Factor (rad)
- α_{b} Bound Vortex Contribution to the Pitch Correction Factor α_{2} (rad)
- $\alpha_{\rm f}$ Free Vortex Contribution to the Pitch Correction Factor $\alpha_{\rm 2}$ (rad)
- α_i ' Difference between $\beta_i \& \beta$ (rad)
- α_0 Angle of Zero Lift of Meanline (rad)
- μ Angular Position of the Blade (⁰)
- G Non-Dimensional Circulation per Blade
- θ Lerbs factor (used to determine h)
- h Lerbs factor (used to determine α_{f})
- K₀ Empirical Factor used in Keller's Formula
- X_U Abscissa of a point on the Blade Section Upper Surface (m)
- Y_U Ordinate of a point on the Blade Section Upper Surface (m)
- X_L Abscissa of a point on the Blade Section Lower Surface (m)

- Y_L Ordinate of a point on the Blade Section Lower Surface (m)
- Yt Thickness Distribution Ordinate (m)
- Y_c Meanline Ordinate (m)
- tan θ Meanline Slope
- X' Chordwise Position
- M_T Moment due to Thrust (N-m)
- M_Q Moment due to Torque (N-m)
- x₀ Non-Dimensional Radius of the Section being analyzed
- I_{X0} Moment of Inertia of the Root Section about an axis that is parallel to the nose -tail line & passes through the centroid of the section (m⁴)
- I_{Y0} Moment of Inertia of the Root Section about an axis that is perpendicular to the nose tail line & passes through the centroid of the section (m⁴)
- M_{x0} Bending Moment about an axis that is parallel to the nose -tail line & passes through the centroid of the section (N-m)
- M_{Y0} Bending Moment about an axis that is perpendicular to the nose -tail line & passes through the centroid of the section (N-m)
- m Mass of one blade (kg)
- A_X Blade Sectional Area (m²)
- $A_{X=0.2}$ Blade Sectional Area at the Non-Dimensional Radius X = 0.2 (m²)
 - X_c Longitudinal C.G of a Blade (m)
 - F_c Centrifugal Force (N)
- $\sigma_{L.E}$ Total Stress at the Leading Edge of the Root Section (N/m²)
- $\sigma_{T,E}$ Total Stress at the Trailing Edge of the Root Section (N/m²)
- $\sigma_{S,B}$ Total Stress at the point of maximum thickness on the Suction Back of the Root Sec. (N/m²)
- X₁ Distance from the Neutral Axis to the Leading Edge (along the X axis) (m)
- X₂ Distance from the Neutral Axis to the Trailing Edge (along the X axis) (m)
- X₃ Distance from the Neutral Axis to the point of maximum thickness on the Suction Back (m)
- Y₁ Distance from the Neutral Axis to the Leading Edge (along the Y axis) (m)
- Y₂ Distance from the Neutral Axis to the Trailing Edge (along the Y axis) (m)
- Y₃ Distance from the Neutral Axis to the point of maximum thickness on the Suction Back (along the Y axis) (m)
- δx Blade Tip Deflection about the X0 axis (mm)
- δ_{Y} Blade Tip Deflection about the Y0 axis (mm)
- X0 An axis that is parallel to the nose -tail line & passes through the section centroid
- Y0 An axis that is perpendicular to the nose -tail line & passes through the section centroid
- L₀ Blade Length (m)
- E Modulus of Elasticity of the Blade Material (N/m²)
- S.M Simpson's Multiplier

LIST OF APPENDICES

Appendix A	A 1
Appendix B	B1
Appendix C	C 1

Introduction

1.1 Introduction

Out of all the planets in the solar system, ours is the only "water" planet. Approximately 70 percent of our planet's surface is covered with water. Yet the oceans are the most alien part of our earth. The innermost depths of the oceans are still shrouded in mystery, a dangerous and alien place where humans fear to go. It is a world of silence, darkness and immense pressure. It is also a world that contains a rich diversity of ecological systems; castles of coral, forests of sponges, fleets of whales, eels, seahorses and other marine life in immeasurable variety. The oceans are also a relatively untapped resource base for minerals and energy. As land based resources deplete, mankind will undoubtedly turn to the oceans to supply their needs. In fact the process has already begun with the setting up of offshore oil and gas platforms. In places like the Grand Banks of Newfoundland, overfishing by foreign vessels has dramatically depleted fish stocks.

As ocean exploration heads into deeper waters, Autonomous Underwater Vehicles (AUVs) are increasingly emerging as a commercially viable technology. An AUV is a self-propelled underwater robot capable of carrying out pre-programmed tasks without human intervention. During the course of its mission, an AUV can be hundreds of miles away from any support vessel and completely out of contact with any external human input for hours or days on end. These missions include oceanographic sampling, environmental monitoring, iceberg profiling, pipeline tracking, mine detection, searching for lost wrecks etc [Ref. 1-4].

For decades AUVs were either expensive military systems or very low cost academic research tools. They lacked the necessary brain (high power computers) and the brawn (high energy density systems). However, with recent advances made in the field of computers, communication and energy systems, the necessary brains and brawn have finally begun to arrive. The functionality and the endurance of AUVs have greatly increased, thus making them commercially attractive tools for deep sea exploration.

According to an analysis conducted by C&C Technologies Inc. [Ref. 1-1], in depths greater than about 400 meters, an AUV is more cost effective than a deep towed system. In fact the deeper the water and the larger the number of line turns, the greater the AUV cost savings. For rectangular survey areas, an AUV is 10 percent less expensive and requires only 50 percent of the time needed for a deep tow survey. For linear surveys such as pipelines and cable routes, an AUV is 15 percent less expensive and requires only 40 percent of the time needed for a deep tow survey.

1.2 The AUV "C-SCOUT"

The Autonomous Underwater Vehicle "C-SCOUT" is being jointly developed by the National Research Council Canada – Institute for Marine Dynamics (NRC-IMD) and the Ocean Engineering Research Center at Memorial University of Newfoundland (MUN-OERC) with the support of several Canadian companies and universities. The acronym "C-SCOUT" stands for Canadian Self Contained Off-the-shelf Underwater Testbed. "C-SCOUT" is being developed as part of a larger NSERC Strategic Project entitled "Offshore Environmental Engineering Using Autonomous Underwater Vehicles". The project is concerned with the development of AUVs for environmental monitoring missions, in order to assess the impact of

discharges from offshore oil and gas operations. In its current configuration, the vehicle is torpedo shaped, with an overall length of 2.7 metres and a diameter of 0.40 metres. The vehicle is streamlined in shape with an ellipsoidal nose, cylindrical mid-body and a cubic spline tail [Figs. 1.1 and 1.2].

The "C-SCOUT" Vehicle (Baseline Version): Fig. 1.1 (all dimensions in mm, unless specified otherwise)

The "C-SCOUT" Vehicle (Baseline Version): Fig. 1.2

The vehicle has been designed and constructed using modular sections, so that it can be easily adapted to a wide variety of configurations, depending on its mission. These modules include the nose module, the forward and aft battery modules, the pressure vessel module, the aft fin module and the tail module [Figs. 1.3 and 1.4].

A Look Inside the Vehicle: Fig 1.3

Modules: Fig. 1.4

The vehicle is propelled using a 0.75 kW (1 HP) ducted thruster (Tecnadyne Model 1020 Thruster) [Fig 1.5]. Four fins (NACA-0012 sections) have been provided for maneuvering the vehicle in the horizontal and vertical planes [Fig 1.5]. The vehicle electronics are housed in a sealed pressure vessel [Fig. 1.6] and the electronics are based on a Distributed Embedded Modular Architecture (DEMA) [Ref. 1-3].

Main Propulsion Thruster: Fig. 1.5

Vehicle Electronics: Fig. 1.6

1.3 Thesis Objectives

The primary objectives of this thesis work were to:

- Do a comparative study of available energy systems for AUVs and subsequently recommend a few high energy density systems for "C-SCOUT".
- Determine the optimum vehicle speed for minimum energy consumption and to determine the endurance limits of "C-SCOUT" using the current energy system on board the vehicle and also using a high energy density system that could possibly be used on the vehicle.
- Evaluate the performance of the existing propulsion system of "C-SCOUT" by conducting resistance and propulsion tests in a towing tank.
- Design a higher efficiency propeller for "C-SCOUT".

1.4 Thesis Outline

Chapter 2 (AUV Energy Systems and Endurance): This chapter starts with a survey of a number of current AUVs, in order to determine what their endurance limits are, what their operating speeds are and what energy systems they have on board. Subsequently this chapter includes a comparative study of a number of energy systems currently being used by AUVs. Thereafter the optimum operating speed of "C-SCOUT" for minimum energy consumption and the endurance limits of "C-SCOUT" are calculated.

Chapter 3 (Powering Prediction): In this chapter, two powering prediction methods (the "ITTC 1978" method and the "Load-Varying Self-Propulsion Test" method) are compared, in order to estimate the powering performance of "C-SCOUT". This chapter explains the theory behind the analysis methods used in Chapter 4.

Chapter 4 (Resistance and Propulsion Tests): This chapter gives an account of the resistance and propulsion tests that were carried out on "C-SCOUT". Areas discussed include test setup, test procedure, test results and problems faced during the course of the tests.

Chapter 5 (Design of a High Efficiency Propeller for "C-SCOUT"): The chapter starts with an explanation as to why "C-SCOUT" needs a high efficiency propeller. Subsequently the high efficiency propeller envisioned for "C-SCOUT" is described and the factors that make this propeller highly efficient, are explained. Thereafter the propeller design process is explained and the calculations are worked out.

Chapter 6 (Conclusions and Recommendations): This chapter briefly states the conclusions drawn by the author at the end of his thesis work and the recommendations he would like to make.

AUV Energy Systems and Endurance

Introduction

The endurance of an AUV is principally governed by the amount of energy stored on board the vehicle. Endurance refers to the range (distance) or the time that an AUV can travel at sea, while working on a mission, given a fixed amount of energy stored on board the vehicle. Over the last few decades, one of the biggest barriers to commercial development of AUVs has been the lack of high energy density, atmosphere independent energy systems. The Lead Acid battery, which was developed at the turn of the last century, has been the dominant subsea energy source for decades. Reasons for its continued use include low cost, ruggedness, ease of use and the fact that Lead Acid technology is well understood. However, the biggest drawback of this battery is its low energy density. Consequently vehicles using Lead Acid batteries have relatively low endurance.

Recent advances in energy systems have led to the development of new, high energy density technologies such as fuel cells, Li-ion polymer batteries etc, all of which show considerable promise. Over the next decade or so, as these high energy density technologies are developed and perfected, the endurance of AUVs is expected to greatly increase, thus making them commercially viable tools for offshore exploration. This chapter explores the present day AUV energy systems market and then recommends a few high energy density systems that could be possibly used on "C-SCOUT". Subsequently the optimum vehicle speed (from energy considerations) and the vehicle endurance limits are worked out.

2.1 AUV Comparison

The author conducted a survey of a few present day AUVs, in order to get an idea about the most popular energy systems being used currently. The results are tabulated in Table 2.1.

Table 2.1

AUV Comparison

<u>Key</u>

Ni-Cd : Nickel Cadmium	<i>Pb-H₂SO</i> ₄: Lead Acid
<i>Al-O</i> ₂ : Aluminium Oxygen	PEM : Proton Exchange Membrane
Ag-Zn : Sliver Zinc	CCDE : Closed Cycle Diesel Engine
Li-ion : Lithium ion	N.A : (Data) Not Available

S. No.	AUV	Speed (knots)	Endurance (hrs or km)	Energy Storage / Supply Device
1	ARCS ISE Ltd, Canada	5.5 knots (maximum) 4 knots (cruising)	36 km – 1 Ni-Cd 72 km – 2 Ni-Cd 235 km – Al-O ₂	1 or 2 Ni-Cd battery units (10 kW-hr each) Al-O ₂ semi-fuel cells (100 kW-hr)
2	AURORA ISE Ltd, Canada	3.5 knots (maximum) 1.5 – 2 knots (cruising)	750 km	Li-ion battery units
3	THESEUS ISE Ltd, Canada	4 knots (cruising)	780 km	Ag-Zn battery units (360 kW-hr)
4	HUGIN 3000 Kongsberg Simrad AS, Norway	4 knots (cruising)	6-8 hrs – Ni-Cd 36 hrs – Al-O ₂	Ni-Cd battery units (3 kW-hr) Al-O ₂ semi-fuel cells (18 kW-hr)

S. No.	AUV	Speed (knots)	Endurance (hrs or km)	Energy Storage / Supply Device
5	DeepC Federal Ministry of Education and Research, Germany	6 knots (maximum) 0.5 – 4 knots (cruising)	400 km 60 hrs	PEM fuel cells
6	HS-AUTOSUB Halliburton Subsea, UK	2-4 knots (cruising)	170 km 24 hrs	Li-ion battery units
7	AUTOSUB Southampton Oceanography Centre, UK	2-4 knots (cruising)	500 km 144 hrs	Alkaline primary battery units
8	SEA ORACLE Bluefin Robotics Corporation, US	4 knots (maximum) 3 knots (cruising)	20 hrs	Ag-Zn battery units
9	OKPO 6000 Daewoo Heavy Industries, Korea	3 knots (maximum)	10 hrs	Ag-Zn battery units
10	MARIDAN 600 Maridan ApS Denmark	4 knots (maximum) 3 knots (cruising)	36 km 10 hrs	Pb-H ₂ SO ₄ battery units
11	XP-21 Applied Remote Technology Inc, (Raytheon), US	5 knots (maximum)	N.A	Pb-H ₂ SO ₄ battery units Ag-Zn battery units Al-O ₂ semi-fuel cells
12	OCEAN VOYAGER II Florida Atlantic University, US	5 knots (maximum) 3 knots (cruising)	50-100 km	Pb-H ₂ SO ₄ battery units Ag-Zn battery units

13	CARIBOU (ODYSSEY III) MIT, US	4 knots (maximum) 3 knots (cruising)	20 hrs	Li-ion Polymer battery units
14	XANTHOS (ODYSSEY IIc) MIT, US	1 – 3 knots (cruising)	22 km 4 hrs	Ag-Zn battery units (1.2 kW-hr)
15	CETUS Lockheed Martin / MIT, US	5 knots (maximum) 1.5 – 2.5 knots (cruising)	20 - 40 km	Pb-H ₂ SO ₄ battery units
16	ABE WHOI, US	2 knots (maximum) 1 knot (cruising)	50 km	Pb-H ₂ SO ₄ battery units (1 kW-hr) Alkaline primary battery units (2.2 kW-hr) Li primary battery units (10 kW-hr)
17	REMUS WHOI, US	5 knots (maximum) 3 knot (cruising)	46.3 km	Pb-H ₂ SO ₄ battery units (400 W-hr)
18	URASHIMA JAMSTEC, Japan	4 knots (maximum) 3 knot (cruising)	80 km 300 km, 54 hrs	Li-ion battery units PEM fuel cells
19	AQUA EXPLORER 2 KDD Labs, Japan	2 knots (maximum) 1 knot (cruising)	24 hrs	Li primary battery units (3870 W-hr)
20	R-One Robot URA Labs / Mitsui Eng. and Shipbuilding Co, Japan	3.6 knots (maximum) 2 knot (cruising)	120 km 25 hrs	CCDE (60 kW-hr)

Based on the above survey, the most popular energy systems currently on board AUVs are:

Silver Zinc batteries
Nickel-Cadmium batteries
Lead Acid batteries
Lithium Primary batteries
Altaline Primary batteries
Aluminium-Oxygen semi-fuel cells
Lithium Polymer batteries
Alkaline Primary batteries
Alkaline Primary batteries

The percentage breakup is shown in Fig. 2.1. The percentage refers to the percentage of vehicles using these systems. The pie chart below is by no means exhaustive – it merely reflects the trend being followed by current-day AUVs.

Percentage Distribution of AUV Energy Systems: Fig. 2.1

- 12 -

2.2 Comparison of AUV Energy Systems

A study was conducted to determine the energy densities and the advantages / disadvantages of energy systems currently being employed by AUVs. The comparative energy densities are tabulated in Table 2.2. In this table, "primary cells" refer to those cells which are not rechargeable and "secondary cells" refer to those cells that are rechargeable.

<u>Table 2.2</u>

Classification **Energy Storage / Supply** Gravimetric S. Energy Device No. Density (W-hr/kg)Secondary cell Lead Acid 1 30 to 45 2 Secondary cell Nickel-Cadmium 30 to 55 3 Primary cell Alkaline AAA 100 AA 120 С 102 D <u>11</u>0 4 Secondary cell Silver-Zinc 110 to 150 5 Secondary cell 130 to 170 Lithium-ion Secondary cell 6 Lithium-ion Polymer 130 to 170 7 Thermal engine Closed Cycle Diesel engine 125 8 Thermal engine Stirling engine 175 9 Semi-fuel cell 260 to 280 Aluminium-Oxygen 10 Primary cell Lithium-Thionyl Chloride 450 Fuel cell PEM 300 to 1030 11

Energy Density Comparison of AUV Energy Systems
2.2.1 Lead Acid Batteries

Lead Acid batteries are the primary source of power in conventional Diesel electric submarines and manned submersibles. Over the past few decades, they were the primary source of power for AUVs. A Lead Acid battery basically consists of three active components; a positive electrode (lead dioxide), a negative electrode (pure lead) and an electrolyte (dilute sulphuric acid). The latest class of Lead Acid batteries (maintenance free batteries) use a gel instead of liquid sulphuric acid as the electrolyte.

The advantages of Lead Acid batteries include:

- Low cost
- Rugged / Durable
- Easy to maintain
- Well understood

The disadvantages of Lead Acid batteries include:

- Low energy density
- Very heavy and require a large volume
- High discharge rates
- Moderate charge / discharge cycle life ($\cong 250$ cycles)
- Loss of capacity at low temperatures
- Give off hydrogen gas when charging / discharging
- Lead (a heavy metal) is toxic and poses disposal problems
- Long charging time (\cong 8 hours)

2.2.2 Nickel-Cadmium Batteries

Nickel-Cadmium batteries have marginally higher energy densities than Lead Acid batteries. A typical Nickel-Cadmium battery consists of a nickel hydroxide cathode and a cadmium anode, both of which are immersed in potassium hydroxide electrolyte.

The advantages of Nickel-Cadmium batteries include:

- Greater energy density than Lead Acid batteries
- Good discharge performance (a more uniform output with respect to Lead Acid battery)
- Cold temperatures do not degrade their performance significantly
- Evolves no gases during charging / discharging
- High charge / discharge cycle life (\cong 800 cycles)
- Rugged / Durable

The disadvantages of Nickel-Cadmium batteries include:

- More expensive than Lead Acid batteries
- Displays a "Memory Effect" *
- Gives little warning before being completely discharged and becoming dead.
- Cadmium (a heavy metal) is toxic and poses disposal problems
- Long charging time (\cong 8 hours)

* Memory Effect: When a battery has been recharged to a particular level several times consecutively, then the battery remembers this level and whenever it hits this level the next time, then it acts as if it is discharged, despite the fact that much of its capacity remains.

2.2.3 Silver-Zinc Batteries

Silver-Zinc batteries have energy densities that are approximately three to four times greater than Lead Acid / Nickel-Cadmium batteries. Due to their high energy density and availability, these batteries are widely used in current day AUVs. A typical Silver-Zinc battery consists of a porous silver oxide cathode and a zinc anode, both of which are immersed in potassium hydroxide electrolyte.

The advantages of Silver-Zinc batteries include:

- High energy density (110 to 150 W-hr / kg)
- Good discharge performance (a more uniform output with respect to Lead Acid battery)
- Cold temperatures do not degrade their performance significantly

The disadvantages of Silver-Zinc batteries include:

- Expensive batteries
- Low charge / discharge cycle life (\cong 40 to 50 cycles)
- Substantial drop in energy density near the end of its cycle life
- Low wet (in-water) standard life (2 to 18 months)
- Difficult to determine the state of charge
- Long recharging process. Need precise charging. Batteries need to be charged individually
- Outgassing prevents charging in an enclosed space

2.2.4 Lithium-ion Batteries

Lithium-ion batteries were introduced into the market in the early 1990's, principally for use in the communication and computer markets. However their high energy densities made them an ideal choice for use on board AUVs. These batteries essentially consist of a lithium cobalt oxide or lithium manganese oxide cathode and an anode constructed by dissolving lithium as ions into carbon. Lithium salt is used as the electrolyte. Some of the companies currently manufacturing these batteries include Yardney Technical Products Inc. (USA), Ultralife (USA), Valence Technology Inc. (USA) and Saft (France). The US Navy (Naval Surface Warfare Center, MD) in collaboration with Honeywell Power Sources Center (USA), is researching Lithium-ion batteries as a possible replacement for Silver Zinc batteries, for powering the next generation of naval underwater vehicles.

The advantages of Lithium-ion batteries include:

- High energy density (130 to 170 W-hr / kg)
- High charge / discharge cycle life (\cong 1000 cycles)
- Require no maintenance
- Long battery life (6 to 8 years)
- Hermetically sealed no outgassing
- Excellent discharge performance
- Can operate over a range of temperatures.
- No "Memory Effect"

The disadvantages of Lithium-ion batteries include:

• Expensive batteries

• May demonstrate a drop in performance if the charging voltages are not controlled carefully. Needs charge control circuitry.

2.2.5 Lithium-ion Polymer Batteries

Lithium-ion Polymer batteries are an improvement over the conventional Lithium-ion batteries. Both batteries have a similar electrochemistry, however in the Lithium-ion Polymer batteries, the electrolyte is immobilized (plasticized or solidified), creating a matrix of ion conductive polymers. Since the electrolyte is in a solid form, therefore the cell no longer requires a metal / plastic casing to hold the liquid electrolyte. The cells are instead packed in thin foils and this helps save weight and greatly enhances design flexibility. Individual cells can be stacked together to create a battery of optimum dimensions that can make best use of the internal volume of an AUV. Some of the companies manufacturing these batteries include Yardney Technical Products Inc. (USA), Ultralife (USA), Valence Technology Inc. (USA) and Saft (France). These batteries are principally used in the communication and computer markets. They are also used in the electric car market. The high energy density of these batteries, coupled with their design flexibility, make them an ideal choice for powering AUVs.

The advantages of Lithium-ion Polymer batteries include:

- High energy density (130 to 170 W-hr / kg)
- Packed in foils. No casing required.
- Design flexibility individual cells can be stacked together to form battery packs of any size or shape.
- High charge / discharge cycle life (\cong 600 cycles)
- Requires no maintenance

- Long battery life (5 years)
- No outgassing
- Solid electrolyte used eliminates the possibility of leakages. Can be used under ambient pressure conditions (does not need to be installed in a pressure vessel)
- Excellent discharge performance
- Can operate over a range of temperatures.
- No "Memory Effect"

The disadvantages of Lithium-ion Polymer batteries include:

- Expensive batteries
- May demonstrate a drop in performance if the charging voltages are not controlled carefully. Needs charge control circuitry.

2.2.6 Fuel Cells

Fuel cells convert the chemical energy of a fuel and an oxidant into a low voltage direct current (DC), via electrochemical reactions similar to those associated with conventional secondary batteries. However unlike the latter devices, the fuel cell does not consume materials that form an integral part of its structure. Hence they can operate for as long as they are fed with a suitable fuel and an oxidant and the reaction products are removed. In theory any fuel and oxidant can be used in a fuel cell, but for almost all practical purposes the Hydrogen-Oxygen fuel cell is the only viable option for underwater applications. A typical Hydrogen-Oxygen fuel cell consists of two porous electrodes separated by an ion-conducting electrolyte. The fuel electrode is the anode, the oxidant electrode is the cathode. The two electrodes are connected to an external load. Hydrogen and oxygen chemically react with the electrodes and a current flow is established [Ref 2-1].

Fuel cells are generally classified by the electrolyte they use. There are five basic types of fuel cells:

- Alkaline
- Phosphoric Acid
- Molten Carbonate
- Monolithic Solid Oxide
- Proton Exchange Membrane (PEM) or Solid Polymer Electrolyte (SPE)

Molten Carbonate (operating temperature $\cong 650$ °C), Monolithic Solid Oxide ($\cong 1000$ °C) and Phosphoric Acid ($\cong 180$ °C) fuel cells operate at very high temperatures and are hence unsuitable for use on underwater vehicles. Alkaline and PEM fuel cells have attracted the most attention for underwater applications. However, Alkaline cells cannot tolerate carbon dioxide contamination (a by-product of the reforming process used for extracting hydrogen from hydrogen rich compounds) and hence they need pure hydrogen fuel. PEM fuel cells on the other hand are more tolerant to carbon dioxide contamination. They can therefore make use of hydrogen obtained by reforming hydrogen-rich compounds. Also PEM fuel cells (\cong 80 $^{\circ}$ C) operate at a lower temperature than Alkaline fuel cells (\cong 120 $^{\circ}$ C). These two factors have given PEM fuel cells the edge over Alkaline fuel cells.

Fuel cell development work is in progress in many laboratories in Canada, USA, Japan and other countries around the world. Siemens AG (Germany) is currently building four 120 kW fuel cell power modules for German / Italian naval submarines. The Advanced Research Projects Agency (ARPA) of the Department of Defense (USA) is sponsoring a program to expand the capability of a UUV, by replacing the current Silver-Zinc batteries on board the vehicle with a 10 kW PEM fuel cell developed by International Fuel Cells Corporation (USA). The Japan Marine Science and Technology Center (JAMSTEC) has developed a prototype Solid Polymer Electrolyte (SPE) fuel cell for use on an AUV; trial results indicate that the fuel cell has an energy density of 1030 W-hr / kg [Ref 2-2].

Energia Space Corporation, Moscow (Russia) has developed Hydrogen-Oxygen fuel cells for its space shuttle program. The company offers a modified version of its fuel cell for undersea applications. The specifications of this fuel cell are an energy density of 300 W-hr / kg, capacity of 30 kW-hr and a cell life of 10,000 hours. Ballard Power Systems (Canada) is currently marketing a portable PEM fuel cell module for surface applications (Nexa Power Module). The unit produces 1200 W of power and has a cell life of 1500 hours. The unit could possibly be modified for subsea use.

The advantages of fuel cells include:

- Much higher energy densities than conventional batteries (300 to 1030 W-hr / kg): Present battery systems have limited energy densities. To obtain more energy using conventional batteries, additional batteries need to be added. Additional batteries mean an increase in energy with a corresponding increase in weight of the battery system. Consequently the energy density of the battery system remains more or less constant irrespective of the number of batteries added. Fuel cells on the other hand need only additional hydrogen and oxygen to supply additional energy. The size / weight of the fuel cell unit remains constant. Therefore as additional hydrogen / oxygen is added to the system, the energy density of the system increases.
- Silent and vibration-free operation no mechanical / combustion processes involved
- Clean exhaust (no NO_X and other hydrocarbon emissions).
- More efficient (50 to 70 %) than Diesel Engines / Turbines no mechanical losses
- Can maintain a high efficiency over a range of loads (30 to 100 % loads)
- Capable of instant start up: As long as hydrogen and oxygen are present, fuel cells can produce power whether they are fully "warmed-up" or not.
- Responds instantly to electrical load changes the system does not need to wait for controllers or pumps to change settings in response to load changes.
- Rapid recharging possible: The fuel cell can be replenished by simply filling up the hydrogen and oxygen tanks and emptying the produced-water tank.

The disadvantages of fuel cells include:

- Costly equipment: A PEM fuel cell stack is extremely expensive (≅ US \$ 6000 per kW) due to the high cost membranes and gas-diffusion electrodes present in the cells.
- Hydrogen storage issues: Oxygen is normally stored on board either in gaseous form under pressure or in liquid form under cryogenic conditions. Onboard storage of hydrogen however poses a problem. While hydrogen (boiling point: 15°C and density: 0.085 kg / m³) is very light in weight, it is also quite voluminous when stored in gaseous form. Therefore storing it in sufficient quantities is difficult in a volume-limited submersible. Another option is cryogenic storage. However this requires a complex control system to ensure safety. The best solution to the problem at present seems to be onboard extraction of hydrogen by reforming hydrogen-rich compounds such as methanol, ammonia, hydrazine etc. The issue still remains unresolved and work is in progress at different laboratories around the world to overcome this problem.

2.2.7 Semi-Fuel Cells

In a semi-fuel cell, the oxidant (cathode) is pumped into the cell, but the fuel is supplied in solid form within the cell as a metal anode. Electrical power is produced by the reaction between the metal anode and the oxidant. The anode is usually made from lithium or aluminium and is consumed during the energy conversion process [Ref. 2-1]. The energy densities of the semi-fuel cells presently available in the market, lie in the range of 260 to 280 W-hr / kg. Aluminium-Oxygen semi-fuel cells are currently being used by the HUGIN 3000 and XP-21 AUVs. International Submarine Engineering Ltd. (Canada) tested a 2.3 kW, 100 kW-hr Aluminium-Oxygen semi-fuel cell developed by Fuel Cell Technologies (Canada), on

their ARCS AUV. This semi-fuel cell had an energy density of 260 W-hr / kg. It used 36 kg of aluminium anodes, 30 kg of oxygen (stored in gaseous form at 4000 psi) and needed two hours to refuel.

The advantages of a semi-fuel cell over a fuel cell include:

- The semi-fuel cell needs only approximately half the quantity of oxygen that a fuel cell needs in order to produce one unit of electricity. This is because its cell voltage is approximately double that of a fuel cell.
- Since the "fuel" in a semi-fuel cell is the aluminium or lithium anode, therefore Hydrogen storage or its on-board generation is not required. The associated safety hazards posed by hydrogen are also eliminated.
- Semi-fuel cells are cheaper than fuel cells. This is because the high cost membranes and gas-diffusion electrodes present in fuel cells are not required in semi-fuel cells.
- Semi-fuel cells operate at much lower temperatures ($\cong 25$ ⁰C) as compared to fuel cells ($\cong 80$ ⁰C).

The disadvantages of a semi-fuel cell include:

• Waste disposal problem – the expended aluminium / lithium anodes are difficult to dispose off.

2.2.8 Closed Cycle Diesel Engines (CCDE)

In a CCDE, a conventional Diesel Engine operates in a closed cycle. The exhaust outlet of the engine is connected to the inlet side of the engine through an exhaust gas processing unit. In this unit, the exhaust gas is cooled down and the combustion products are removed. The combustion products are stored in onboard tanks and are discharged on return to base. The cleaned and cooled exhaust gas is re-circulated to the engine as a synthetic atmosphere, after mixing it with replenishment oxygen. Since the CCDE operates in a closed cycle, it is therefore independent of the external atmosphere and consequently the vehicle can dive to any depth without altering engine performance.

The URA labs at the University of Tokyo and Mitsui Engineering and Shipbuilding Corporation Ltd. (Japan) have jointly developed an AUV (R-One Robot) that uses a CCDE. This CCDE has an output of 5 kW and a capacity of 60 kW-hr. At a speed of 2 knots, this gives the vehicle an endurance limit of 25 hours / 120 kms. The R-One Robot completed sea trials between the years 1996-98. In October 2000 the vehicle was sent on a full mission and it explored the underwater volcano Teisi Knoll off the coast of Japan. Test results from this mission indicated that the CCDE functioned quite reliably. In June 1989, the German company Bruker launched an experimental 50 tonne manned submersible (Seahorse KD) that was equipped with a CCDE. This engine could operate in dual mode; when the vehicle surfaced it would operate in an open cycle mode (breathing air) and when the vehicle dived it would operate in a closed cycle mode (breathing a synthetic atmosphere).

CCDEs are ideally suited for AUVs which embark on long range missions, since the additional oxygen and fuel required for these missions give the CCDE a higher energy density

than conventional batteries. For short range missions, the energy density of CCDE is comparable to conventional batteries (since the engine, the exhaust gas processing unit and other associated equipment are quite heavy and voluminous).

2.2.9 Stirling Engines

The Stirling Engine is an external combustion engine that operates on a closed regenerative thermodynamic cycle. It differs in three fundamental ways from a conventional internal combustion engine:

- The working gas (helium) operates in a closed circuit between two cylinders
- The pistons are double acting
- A regenerator is provided for extracting / adding heat to the working gas.

A simple Stirling Engine consists of two pistons enclosed in two cylinders. The space above each piston is termed the "hot" space and the space below each piston is termed the "cold" space. The working gas which is enclosed between the two pistons, moves continuously back and forth between the hot and cold spaces through a regenerator. The regenerator either extracts heat or adds heat to the working gas, depending on whether the gas is moving from a hot space to a cold space or from a cold space to a hot space, respectively. The two pistons are mechanically linked to each other in order to synchronize volumetric variation between the two cylinders.

The power output of the engine can be controlled by altering the pressure of the working gas. The combustion pressure of the Stirling Engine can also be raised above ambient, to that of the surrounding water pressure (up to a maximum of 300 m), so that the engine can operate submerged without the need for an exhaust gas processing unit. The first Stirling Engine installed in a subsea vehicle was that installed in the 1200 tonne Swedish naval submarine "Nacken" between the periods 1988-90, by the Swedish companies United Stirling AS and Kockums. Two 75 kW Stirling Engines were installed in the "Nacken" and these engines improved the subsea endurance of the submarine by a factor of five to eight. Stirling Engines were also installed in the French commercial submarine "SAGA-1" in 1990. Kockums is currently developing a prototype AUV energy hull sub-section (0.99 m internal diameter and 3.5 m long) comprising of a four cylinder Stirling Engine, a liquid oxygen tank, a hydrocarbon fuel tank and the associated control system. The power output of this system is 5 to 15 kW, the capacity of the system is 600 kW-hr and the energy density of the system is 175 W-hr / kg.

The advantages of the Stirling Engine over the CCDE include:

- Low noise and vibration levels
- Low cyclic torque variations
- Does not need an exhaust gas processing unit

The disadvantages of the Stirling Engine include:

• They are slow starting engines and cannot be started instantly

Like CCDE, Stirling Engines are ideally suited for AUVs which embark on long range missions, since the additional oxygen and fuel required for these missions give the Stirling Engines a higher energy density than conventional batteries. For short range missions, the energy density of Stirling Engines is comparable to conventional batteries (since the engine and other associated equipment are quite heavy and voluminous).

2.2.10 Lithium Primary Batteries

Primary batteries are expendable (one-shot) devices that cannot be reused once they have been discharged. The Lithium-Thionyl Chloride primary battery has a very high energy density (450 W-hr / kg). However it is not commonly used on AUVs since it suffers from the following problems:

- The batteries are always active. They have the capability to violently release energy (explode) under certain circumstances and thus pose a safety hazard.
- The net energy cost (\$ per kW-hr) works out to be very high, since the batteries have to be frequently replaced.

2.2.11 Selection of a High Energy Density System for "C-SCOUT"

The factors to be kept in mind while selecting a suitable energy system for any underwater vehicle are:

- High energy density (W-hr / kg)
- Low / moderate cost
- High reliability
- Easy to recharge and maintain
- Low start up time
- Non hazardous / safe
- Good wet / dry shelf life
- Environmentally friendly

At present no underwater energy system can perfectly satisfy all these requirements simultaneously. Therefore it is necessary to find a system that offers the best compromise.

After studying the energy systems on board current AUVs (section 2.1) and after evaluating different energy systems (section 2.2), the author selected four high energy density systems that could possibly be used on "C-SCOUT". These are:

- Silver-Zinc batteries
- Lithium-ion Polymer batteries
- Aluminium-Oxygen semi-fuel cells
- PEM fuel cells

Out of these four systems, Silver-Zinc batteries and Lithium-ion Polymer batteries are immediate solutions. Aluminium-Oxygen semi-fuel cells and PEM fuel cells are long-term solutions (to be employed once outstanding issues such as the onboard storage / generation of hydrogen, the waste disposal problem of expended aluminium / lithium anodes, etc., have been resolved).

The currently available Stirling engines, Closed Cycle Diesel engines and their associated systems are bulky and occupy a large proportion of the vehicle length. To use such systems on board "C-SCOUT" will require the length / diameter of the vehicle to be modified. Also their energy densities are not much higher than Silver-Zinc and Lithium-ion Polymer batteries. Owing to these two reasons, they have not been considered by the author.

Lithium-Thionyl Chloride primary batteries are unsafe for use and hence they have not been considered as a possible option. Alkaline primary batteries have moderately high energy densities, but the cost to produce 1 kW-hr of energy using these cells is extremely high (refer to Table 2.3 on the next page) and hence they have not been considered.

Table 2.3

The Cost of Producing 1 kW-hr of Energy [Ref. 2-13]

S.No.	Energy System	Cost per kW-hr (US \$)
1	Alkaline primary battery (AAA)	890
2	Alkaline primary battery (AA)	330
3	Alkaline primary battery (C)	180
4	Alkaline primary battery (D)	90
5	Nickel-Cadmium battery	7.5
6	Lead Acid battery	8.5
7	Lithium-ion battery	24
8	Internal Combustion engine	0.3
9	Fuel cell	4.1
10	Electricity from the grid	0.1

2.3 Optimum Speed of the "C-SCOUT" AUV

Next, the author worked out the optimum speed of "C-SCOUT" for the most effective energy consumption. For this calculation, the vehicle was assumed to have a range of 50 km. Results from the self-propulsion tests (see Chapter 4) were then used to provide a relationship between delivered power (P_d) and the vehicle forward speed (V). This delivered power was then converted to motor mechanical power (P_m) by assuming 2 % losses in the bearings and magnetic coupling of the Tecnadyne 1020 thruster.

The motor mechanical power (P_m) was then converted to motor electrical power (P_e) by assuming a motor efficiency of 90 % (to account for iron and friction losses in the motor) [Ref 2-14]. At each forward speed, the motor electrical power (P_e) was then added to the hotel load (P_h), in order to give the total power requirement of the vehicle at that speed (P_t). The total time (t) required for a mission (at a particular vehicle speed) was then calculated by dividing the range (50 km) by the vehicle speed. The time (t) was then multiplied with the total power requirement of the vehicle at that speed (P_t), in order to give the total energy requirement (E) of the vehicle at that speed (see Appendix A for the calculations). These calculations were carried out at hotel loads of 100, 150, 200 and 250 W.

The total energy requirement (ordinate) was then plotted against the vehicle forward speed (abscissa) [Figs. 2.2 to 2.5]. From the plots it can be seen that the optimum speed of "C-SCOUT" at which it consumes the minimum energy and has the maximum range, is around 2 m/s. Similar results are obtained for vehicle ranges other than 50 km. It should be noted that the optimum speed is independent of the vehicle range. (Refer to Eqn. 2.5). Table 2.4 shows the amount of energy required by "C-SCOUT" when traveling at an optimum speed of 2 m/s.

Table 2.4

S.No.	Hotel Load (W)	Required Energy (kW-hr)
1	100	1.8
2	150	2.2
3	200	2.5
4	250	2.9

Energy Required by "C-SCOUT"
(Vehicle Speed = 2 m/s)

Analytical Expression for the Optimum Speed of "C-SCOUT"

The total power (P_T) required by an AUV is the sum of the effective power (P_E) and the Hotel Load (P_H) . The effective power (P_E) is the power required to propel the vehicle and it is equal to the product of the vehicle resistance (R) and the vehicle forward speed (V). The hotel load (P_H) is defined as the power required by the vehicle for all other purposes apart from propulsion.

$$P_T = P_E + P_H = R^* V + P_H$$
 W2.1

Now the vehicle resistance (R) can be expressed as:

$$R = 1/2 C_D \rho A V^2$$
 N2.2

where " C_D " is the drag coefficient of the vehicle, " ρ " is the mass density of water, "A" is the

cross sectional area of the vehicle hull and "V" is the forward speed of the vehicle.

Substituting Eqn. 2.2 into Eqn. 2.1:

$$P_T = R^* V + P_H = 1/2 C_D \rho A V^3 + P_H$$

If E_T is the total energy provided by the energy system (W-hr), then the time (t) for which the vehicle can travel at sea is:

$$t = E_T / P_T \qquad hr \qquad \dots 2.3$$

The range (R) of the vehicle is:

$$R = 3.6 V * t = 3.6 V * E_T / (1/2 C_D \rho A V^3 + P_H)$$
 km2.4

where the factor 3.6 is used for converting the vehicle speed in m/s to km/hr.

The optimum speed at which the vehicle range is maximized, can be determined by differentiating Eqn. 2.4 with respect to speed (V) and then equating it to zero (the coefficient of drag is assumed to be a constant). Differentiation leads to the following expression:

$$1/2 C_D \rho A V^3 + P_H = 3/2 C_D \rho A V^3$$

on simplifying the expression we get:

$$P_{\rm H} = C_{\rm D} \rho A V^3$$

from which the optimum speed of the vehicle for maximum range can be expressed as:

$$V = (P_{\rm H} / C_{\rm D} \rho A)^{1/3} \qquad \dots 2.5$$

If Eqn. 2.5 is substituted into Eqn. 2.1, it can be shown that at the optimum vehicle speed for maximum range, the hotel load (P_H) is 2/3 times the total power (P_T) required by the vehicle and the effective power (P_E) is 1/3 times the total power (P_T) required by the vehicle.

The value of the optimum vehicle speed for maximum vehicle range, can then be calculated by substituting the values of the hotel load, drag coefficient, mass density of water and the cross sectional area of the vehicle, into Eqn. 2.5. Table 2.5 tabulates the optimum speeds at different hotel loads.

Table 2.5

Optimum Speed of C-SCOUT

S.No.	Hotel Load (W)	Optimum Speed (m/s)
1	100	1.6
2	150	1.8
3	200	2.0
4	250	2.1

<u>C-SCOUT Required Energy vs Forward Speed</u> (Hotel Load = 100 W , Range = 50 km)

Fig 2.2

<u>C-SCOUT Required Energy vs Forward Speed</u> (Hotel Load = 150 W , Range = 50 km)

Fig 2.3

<u>C-SCOUT Required Energy vs Forward Speed</u> (Hotel Load = 200 W , Range = 50 km)

Fig 2.4

<u>C-SCOUT Required Energy vs Forward Speed</u> (Hotel Load = 250 W , Range = 50 km)

Fig 2.5

2.4 Endurance of the "C-SCOUT" AUV

As the next step, the endurance limits of "C-SCOUT" were calculated. First the endurance limits using the present energy system on board the vehicle were calculated (Section 2.4.1). Subsequently the endurance limits using a few higher energy density systems were calculated (Section 2.4.2). These calculations were carried out at hotel loads of 100, 150, 200 and 250 W.

2.4.1 Endurance Using the Present Energy System

The present energy system on board "C-SCOUT" consists of six Lead Acid batteries. Two of these batteries supply 312 W-hr of energy (each) and weigh 9.25 kg (each). The remaining four batteries supply 379.2 W-hr of energy (each) and weigh 11 kg (each). The total energy supply available on board the vehicle is therefore $2 \times 312 + 4 \times 379.2 = 2140.8$ W-hr. The total weight of all the batteries is $2 \times 9.25 + 4 \times 11 = 62.50$ kg. The energy density of the battery system is therefore 2140.8 / 62.50 = 34.25 W-hr / kg.

At each forward speed, the total time required for a mission (t') was then calculated by dividing the total energy supply available on board (2140.8 W-hr) by the total power requirement of the vehicle at that speed (P_t). At each forward speed, the maximum distance the vehicle can possibly travel at sea (D) was then calculated by multiplying the time (t') with the vehicle forward speed (V) (see Appendix A for the calculations).

The time (t'), distance (D) (ordinate) was then plotted against the vehicle forward speed (abscissa) [Figs. 2.6 to 2.9]. Table 2.6 tabulates the vehicle endurance at different hotel loads.

Fig. 2.6

- 38 -

Fig. 2.7

<u>C-SCOUT Endurance: Present Energy System</u> (Hotel Load = 200 W, 6 Lead Acid Batteries)

Fig. 2.8

Fig. 2.9

2.4.2 Endurance Using a High Energy Density System

The current energy system on board "C-SCOUT" has a low energy density (34.25 W-hr/kg). If the endurance of the vehicle is to be increased, then it is essential that this system be replaced with a system of higher energy density. The vehicle endurance limits using the four high energy density systems selected in Section 2.2.11 were calculated (see Appendix A for the calculations) and plotted [Figs. 2.10 to 2.17], using a procedure similar to that used in section 2.4.1, For these calculations, the energy density of the selected systems were taken as:

- Silver Zinc batteries: 110 W-hr / kg
- Lithium-ion Polymer batteries: 130 W-hr / kg
- Aluminium Oxygen semi-fuel cells: 260 W-hr / kg
- PEM fuel cells: 300 W-hr / kg

Also, for these calculations, the total onboard energy of an energy system having equivalent weight to that of the current energy system on board \Box C-SCOUT \Box (62.5 kg) was obtained by multiplying the above energy densities with a weight of 62.5 kg.

Plots [Figs. 2.10 to 2.17] show that maximum vehicle endurance can be obtained by using PEM fuel cells. This is followed by Aluminium Oxygen semi-fuel cells, Lithium-ion Polymer batteries and Silver Zinc batteries respectively. The benefit of using a high energy density system is an improvement in the endurance of the vehicle. For example if the vehicle travels at a speed of 2 m/s and has a hotel load of 250 Watt [Fig. 2.16], then use of PEM fuel cells leads to an endurance limit that is nine times that obtained using Lead Acid batteries. Similarly use of Aluminium Oxygen semi-fuel cells, Lithium-ion Polymer batteries and Silver Zinc batteries leads to an endurance limit that is eight, four and three times respectively, that obtained using Lead Acid batteries. With a hotel load of 250 Watt, the current endurance limit of "C-

SCOUT" is a distance of 36 km. This goes up to 320 km, 277 km, 139 km and 117 km if PEM fuel cells, Aluminium Oxygen semi-fuel cells, Lithium-ion Polymer Batteries and Silver Zinc Batteries respectively, are used instead of the Lead Acid battery. Table 2.6 tabulates the vehicle endurance at different hotel loads, at a speed of 2 m/s.

Table 2.6

<u>"C-SCOUT" Endurance</u> (Vehicle Speed = 2 m/s)

 S.No.	Hotel Load (W)	Lead Acid Battery	Silver Zinc Battery	Li-ion Polymer Battery	Aluminium Oxygen Semi-Fuel Cell	PEM Fuel Cell
		Range (km)	Range (km)	Range (km)	Range (km)	Range (km)
1	100	57	182	215	430	496
 2	150	48	154	182	363	419
3	200	41	133	157	314	363
4	250	36	117	139	277	320

C-SCOUT Endurance: High Energy Density System (Hotel Load = 100 W, Energy System Weight = 62.5 kg)

Fig. 2.10

Fig. 2.11

Fig. 2.12

Fig. 2.13

Fig. 2.14

Fig. 2.15

C-SCOUT Endurance: High Energy Density System (Hotel Load = 250 W, Energy System Weight = 62.5 kg)

Fig. 2.16

Fig. 2.17

2.5 Conclusions

With advent of higher energy density battery systems such as Lithium-ion Polymer batteries, Aluminium-Oxygen semi-fuel cells, PEM fuel cells etc, the days of the Lead Acid battery as the dominant energy source for AUVs are numbered. As technology develops, it is hoped that AUVs with the ability to circumnavigate the globe on a single charge of energy, will be a possibility in the future.

Chapter 3

Powering Prediction for Ships / Submersibles

Powering prediction for ships / submersibles based on the ITTC 1978 method makes use of experimental data from tests conducted on the hull and propulsion system in isolation of each other. This means that the interaction effects between the hull and propulsion system have to be accounted for approximately. This can lead to inaccuracies in a powering prediction, especially in cases when compound propulsors such as ducted propellers, podded propellers, etc., are used. To overcome these deficiencies, Kracht [Ref 3-2] and Schmiechen [Ref 3-1] proposed a powering prediction method that is based solely on one set of experiments; load-varying self-propulsion tests. In these tests, the hull and propulsion system are treated as one physical unit. Therefore interaction effects between the hull and propulsion system are taken into consideration and this leads to more accurate results in cases where there are strong interaction effects, although scale effects still lead to small errors. The level of hull-propulsor interaction. Values of thrust deduction fraction less than 0.1 indicate that the hull-propulsor interaction is not particularly strong, whereas values around 0.3 indicate strong hull-propulsor interaction.

Preliminary work on powering prediction using load-varying self-propulsion tests, was carried out at MARIN, Netherlands [Ref 3-3] and the Berlin Model Basin (VWS), Germany [Ref 3-2]. This chapter compares powering prediction for ships / submersibles based on the ITTC 1978 method with that based on the load-varying self-propulsion test method and states the salient points of each method.

In the marine industry, whenever powering prediction figures are required for new ships / submersibles, it is a standard practice to first construct a scaled-down, geometrically-similar model of the ship / submersible, then test it in water and subsequently extrapolate the model scale results to full scale results. For in-water tests on ship models, the model floats on the surface of water. For in-water tests on submersible models, the model is submerged below the surface of water. In this chapter, the term "model" (denoted by the subscript "M") refers to a scaled-down geometrically-similar model of the actual ship / submersible. The term "ship" (denoted by the subscript "S") refers to the actual full scale ship / submersible.

3.1 Powering Prediction Using the ITTC 1978 Performance Prediction Method

The ITTC 1978 Performance Prediction Method is currently the industry standard for powering prediction of marine vehicles. This method essentially requires that three independent tests be carried out on a scaled-down geometrically-similar model of the marine vehicle, in order to predict the performance of the actual vehicle. These three tests are – the resistance test, the propeller open water test and the self-propulsion test.

3.1.1 Resistance Tests

Resistance tests [Ref 3-10, 3-6] can be further categorized as standard resistance tests and low-speed resistance tests.

a) Standard Resistance Tests

The basic purpose of the standard resistance tests is to determine the drag force (resistance) of a scaled-down, geometrically-similar, bare-hull model of the marine vehicle. The measured drag force is then extrapolated to full scale in order to obtain the drag of the actual vehicle. During a standard resistance test, the model is towed by a towing carriage over a range of speeds (normally 5% of the speed range below the minimum speed at which reliable data is required to 5 % above the highest speed required). The following parameters are recorded during a test:

- Model speed (V_M)
- Resistance (R_{TM})
- Trim angle
- Sinkage
- Water temperature (T^0)
The raw data are then non-dimensionalized into resistance coefficients which are then extrapolated to full scale:

г

$$\begin{array}{c} C_{TM} &= \frac{R_{TM}}{\frac{l_{2}}{\rho_{M}} V_{M}^{2} S_{M}} \end{array} \quad Coefficient of total resistance of the model \qquad3.1 \\ \hline C_{FM} &= \frac{0.075}{(\log_{10}Rn_{M}-2)^{2}} \qquad Coefficient of frictional resistance of the model (based on the 1957 model-ship correlation line) \qquad3.2 \\ \hline C_{RM} &= C_{TM} - (1 + k) C_{FM} \qquad Coefficient of residuary resistance of the model \qquad3.3 \\ \hline C_{RM} &= C_{RS} \qquad3.4 \\ \hline k_{M} &= k_{S} = k \qquad3.5 \\ \hline C_{TS} &= (1 + k) C_{FS} + C_{RS} + C_{A} + C_{AA} \qquad Coefficient of total resistance of the ship \qquad3.6 \\ \hline R_{TS} &= C_{TS} \frac{l_{2}}{\rho_{S}} V_{S}^{2} S_{S} \qquad Total resistance of the full scale vehicle \qquad3.7 \\ \hline P_{E} &= R_{TS} V_{S} \qquad Effective power \qquad3.8 \end{array}$$

It should be noted that the value of the coefficient of frictional resistance has traditionally been estimated using the ITTC 1957 model–ship correlation line. However it is physically more correct to use a true turbulent flat-plate friction line such as that formulated by Schlichting [Ref 3-8] or by Grigson [Ref 3-9].

b) Low-Speed Resistance Tests

The basic purpose of the low-speed resistance tests is to determine the form factor (k) of the scaled-down geometrically-similar model of the marine vehicle. The form factor accounts for the three dimensional form of the marine vehicle. It is used to convert the two dimensional value of the coefficient of frictional resistance (C_F) into a three dimensional value (1+k) C_F . The form factor is considered to be invariant with Reynolds number (Rn), hence $k_M = k_S = k$. The low speed resistance tests are carried out between the Froude numbers (Fn) of 0.12 to 0.20, so as to preclude any wave making resistance effects. The parameters recorded include:

- Model speed (V_M)
- Resistance (R_{TM})
- Water temperature (T^0)

The ITTC 1978 method uses a procedure similar to Prohaska's method [Ref 3-7] for analyzing the test results. At each towing speed, the C_{FM} and C_{TM} values are calculated. A plot is then made with C_{TM} / C_{FM} as the ordinate and Fn^n / C_{FM} as the abscissa [Fig 3.1]. A straight line is fitted through the data points. The equation of this line is of the form:

.....3.9

 $C_{TM} / C_{FM} = (1+k) + C (Fn^n / C_{FM})$

where: "1 + k" is the intercept on the C_{TM} / C_{FM} axis when Fn = 0, "C" is the slope of the straight line, "n" is a power that lies between 4 and 6, The value of "k" is then determined from the value of the intercept.

Form Factor: Fig 3.1

3.1.2 Propeller Open Water Tests

The basic purpose of the propeller open water test [Refs 3-10, 3-6] is to evaluate the performance of a scaled-down, geometrically-similar model of the actual propeller, when working under homogeneous inflow conditions. The model propeller is fitted onto an open water propeller boat and towed by the towing carriage at different speeds. In a typical open water test program, the propeller is rotated at a constant speed and the carriage speed is systematically varied so as to cover a range of advance coefficients from $J_0 = 0$ to the J_0 corresponding to $K_{T0} = 0$. This corresponds to the range of operation in which the propeller drives the vehicle in the ahead direction (the first quadrant). The parameters recorded include:

- Carriage speed (V_A)
- Propeller thrust (T_M)
- Propeller torque (Q_M)
- Propeller rotational speed (n_M)
- Water temperature (T⁰)

The raw data are then non-dimensionalized into the advance coefficient (J_0), thrust coefficient (K_{T0M}) and the torque coefficient (K_{Q0M}) [Fig 3.2].

The difference in the Reynolds number at which the model propeller is tested and at which the actual ship propeller runs, causes a change in the frictional coefficient over the surface of the blades. This is corrected using the correction factors δK_T and δK_Q [Ref 3-6]. The corrected values K_{TS} and K_{QS} represent the non-dimensional coefficients for the full scale propeller and

these are used for determining the self-propulsion point of the ship propeller.

$$K_{TS} = K_{T0M} - \delta K_T$$
3.13 $K_{QS} = K_{Q0M} - \delta K_Q$ 3.14

where:

$$\delta K_{\rm T} = -\delta C_{\rm D} 0.3 \underline{P} \underline{q} \underline{Z} \dots 3.15 \qquad \delta K_{\rm Q} = \frac{\delta C_{\rm D} 0.25}{\rm D} \underline{q} \underline{Z} \dots 3.16$$

$$\delta C_{\rm D} = C_{\rm DM} - C_{\rm DS} \qquad \dots 3.17$$

$$C_{DM} = \frac{2(1+2m)\left[0.044 - \frac{5}{(R_{nco})^{1/6}}\right]^{1/6}}{q} \frac{0.044}{(R_{nco})^{1/6}} \frac{1}{(R_{nco})^{2/3}}$$
.....3.18

$$C_{DS} = 2\left(1 + \frac{2}{q}m\right)\left[1.89 + 1.62\frac{\log q}{k_{P}}\right]^{-5/2} \dots 3.19$$

q = Chord length of the propeller blade

m = Maximum thickness of the propeller blade

P / D = Pitch to diameter ratio of the propeller blade

 R_{nco} is the local Reynolds number at x = 0.75 (should be at least 2 * 10⁵)

 k_P = Blade roughness

3.1.3 Self-Propulsion Tests

The basic purpose of this test [Ref 3-10, 3-6] is to evaluate the propulsive performance of a scaled down geometrically similar model of the vehicle, when it is being self-propelled. This test tries to model as accurately as possible the actual vehicle operating conditions. Hence the propulsion system and all the appendages are fitted in place and the propeller operates in a non-uniform wake field behind the vehicle. The model is free to heave and pitch, but is restrained in its longitudinal symmetry plane. Two different types of self-propulsion tests are currently in use:

- a) Load-varying self-propulsion tests
- b) Speed-varying self-propulsion tests

a) Load-Varying Self-Propulsion Tests

In a load-varying self-propulsion test, the model is towed at a number of different speeds, so as to cover the entire speed range of the vehicle. At each vehicle speed, the propeller rotational speed is systematically varied so as to cover a wide range of propeller loadings – from the towed region, through the self-propulsion point, to the overload region. At each vehicle speed, 5 to 7 values of propeller rotational speeds are used for covering a wide range of propeller loadings. The parameters recorded include:

- Model speed (V_M)
- Propeller thrust (T_M)
- Propeller torque (Q_M)
- Propeller rotational speed (n_M)
- Tow force (F)
- Water temperature (T^0)

The raw data are then non-dimensionalized into the advance coefficient (J), thrust coefficient (K_{TBM}), torque coefficient (K_{QBM}) and the tow force coefficient (K_{FDM}).

$$J = \frac{V_M}{n_M D_M}$$
3.20

$$K_{TBM} = \frac{T_{M}}{\rho_{M} n_{M}^{2} D_{M}^{4}} \dots 3.21$$

$$K_{QBM} = \frac{Q_M}{\rho_M n_M^2 D_M^5}$$
3.22

$$K_{FDM} = \frac{F}{\rho_M n_M^2 D_M^4}$$
3.23

Now since the load-varying self-propulsion test is not conducted at the exact self-propulsion point, but instead at a number of points above and below this point, therefore the exact self-propulsion point needs to be interpolated. For this purpose the tow force coefficient (K_{FDM}) is plotted against the advance coefficient (J) [Fig 3.3]. On this plot, an additional curve which represents the tow force coefficient (K_{FD}) as a function of J² is also plotted.

$$K_{FD} = \frac{C_{FD} S_{M} J^{2}}{2 D_{M}^{2}} \qquad \dots 3.24$$

This additional curve basically represents that value of towing force which is equal to the towing force at ship self-propulsion point (F_D) (see section 3.1.4 for a note on F_D). The intersection of the curves K_{FDM} and K_{FD} represents the ship self-propulsion point. At this point the values of K_{TBM} , K_{QBM} and J are read off.

Self-Propulsion Point: Fig 3.3

To determine the thrust deduction fraction (t) at the ship self-propulsion point, an additional curve of the non-dimensional coefficient K_R is inserted into the above plot. K_R is defined as:

$$K_{\rm R} = \frac{R_{\rm TM}}{\rho_{\rm M} n_{\rm M}^2 D_{\rm M}^4} \qquad \dots 3.23$$

The value of K_R at the ship self-propulsion point is then read off. The thrust deduction fraction is then calculated using the expression:

$$t = \frac{K_{TBM} - K_R}{K_{TBM}}$$
 which is essentially the non-
dimensional form of the equation
$$t = \frac{T_M^* - R_{TM}}{T_M^*}$$

where T_M^* is the model thrust at ship self-propulsion point and R_{TM} is the total resistance of the model.

Since the thrust deduction fraction is assumed to be independent of propeller loading and scale effects, therefore:

$t_{\rm Model} = t_{\rm Ship} = t$

Next to determine the effective wake fraction, the K_{TBM} , K_{QBM} and the K_{T0M} , K_{Q0M} curves are plotted together. The effective wake fraction is then determined by either considering a thrust identity (constant thrust) or a torque identity (constant torque). The effective wake fraction determined using a thrust identity is denoted by w_T and that determined by using a torque identity is denoted by w_Q . For a thrust identity, a straight line representing the value of K_{TBM} at the self-propulsion point, is drawn [Fig 3.4]. At the point where this line intersects the K_{T0M} and K_{TBM} curves, the values of J_0 and J are read off. The effective wake fraction is then calculated using the expression:

$$w_{\rm TM} = \frac{J - J_0}{J} \qquad \dots 3.25$$

A similar procedure is used to determine the effective wake fraction using a torque identity. Generally w_T is somewhat larger than w_Q . Use of the thrust identity wake fraction is generally preferred in the analysis of propulsion factors.

Unlike the thrust deduction fraction, the scale effect on wake fraction is large and cannot be ignored. Therefore in the ITTC 1978 method, the model scale wake fraction (w_{TM}) is extrapolated to the full scale (w_{TS}) using the relation:

$$w_{TS} = (t + 0.04) + (w_{TM} - t - 0.04) (C_{VS} / C_{VM}) \qquad \dots 3.26$$

where the viscous resistance coefficients are expressed as:

$$C_{VS} = (1 + k) C_{FS} + C_A$$
.....3.27
$$C_{VM} = (1 + k) C_{FM}$$
.....3.28

Next the relative rotative efficiency ($\eta_R = \eta_{B \ /} \ \eta_0)$ is calculated using the relation:

$$\eta_{\rm R} = \frac{K_{\rm Q0M}}{K_{\rm QBM}} \qquad \dots 3.29$$

where K_{Q0M} and K_{QBM} are determined at the advance ratio (J) corresponding to ship selfpropulsion point.

Next, in order to determine the self-propulsion point (propeller operating point) of the full scale vehicle, a K_{TS} , K_{QS} vs J plot is made [Section 3.1.2]. An additional curve of K_{TS} as a function of J_0^2 [Eqn. 3.30] is also plotted [Fig 3.5].

$$K_{TS} = \frac{S}{2 D^2} \frac{C_{TS}}{(1-t)(1-w_{TS})^2} J_0^2$$
3.30

Self Propulsion Point of the Full Scale Vehicle: Fig 3.5

The intersection of the two K_{TS} curves represents the self-propulsion point (propeller operating point) of the full scale ship [Fig 3.5]. At this point, the values of J, K_{TS} and K_{QS} for the full scale ship are read off and are used to calculate the following power prediction factors:

$$n_{\rm S} = \frac{\rm V_S}{\rm J\,D_S} \qquad \dots 3.31$$

$$Q = \rho_{\rm S} \, n_{\rm S}^{2} \, D_{\rm S}^{5} \, K_{\rm QS} \qquad \dots 3.32$$

$$P_{\rm D} = 2 \pi \rho_{\rm S} \, n_{\rm S}^{3} \, {\rm D_{\rm S}}^{5} \, {\rm K_{\rm QS}}$$

$$\mathbf{P}_{\mathrm{E}} = \mathbf{R}_{\mathrm{TS}} \ \mathbf{V}_{\mathrm{S}}$$

$$\eta_0 = \frac{J_0 K_{\rm TS}}{2 \pi K_{\rm QS}} \qquad \dots 3.35$$

$$\eta_{\rm H} = \frac{1 - t}{1 - w_{\rm TS}}$$
3.36

$$\eta_{\rm D} = P_{\rm E} / P_{\rm D} \qquad \dots 3.37$$

b) Speed-Varying Self-Propulsion Tests

In a speed-varying self-propulsion test, the model is towed at a number of different speeds so as to cover the entire speed range of the vehicle. At each vehicle speed, the propeller rotational speed is adjusted such that the towing force (F) becomes equal to the towing force at ship self-propulsion point (F_D) (see section 3.1.4 for a note on F_D). The model is then said to be operating at the ship self-propulsion point. At this point the following parameters are recorded:

- Model speed (V_M)
- Propeller thrust (T_M)
- Propeller torque (Q_M)
- Propeller rotational speed (n_M)
- Tow force (F)
- Water temperature (T⁰)

The raw data are then converted to non-dimensional coefficients, which are then analyzed in a manner similar to that for the load-varying self-propulsion tests.

Comparison of the Load-Varying and Speed-Varying Self-Propulsion Tests

Speed-varying tests are less time consuming and cost less than load-varying tests. This is because speed-varying tests require a fewer number of runs in the tow tank. However, the propulsion factors derived from speed-varying tests are less realistic than those obtained from load-varying tests. In a load-varying test, the model propeller is subjected to a range of towing forces, at each vehicle speed. Therefore these tests are able to properly investigate the influence of propeller loading on the propeller-hull interaction effects. Hence the propulsion factors obtained are more realistic. In a speed-varying test, the model propeller is subjected to only one specific towing force (F_D). Therefore load dependent interaction effects between the propeller and the hull cannot be investigated by this method. Due to the above mentioned reasons, load-varying self-propulsion tests were employed for evaluating the propulsive performance of "C-SCOUT" (see chapter 4).

3.1.4 Towing Force at Ship Self-Propulsion Point (F_D)

From the resistance test results: $C_{TS} = (1+k) C_{FS} + C_{RS} + C_A + C_{AA}$ where: $C_{RM} = C_{TM} - (1+k) C_{FM}$ and $C_{RM} = C_{RS}$

Substituting and solving:

$$C_{TS} = C_{TM} - [(1+k)(C_{FM} - C_{FS}) - C_A - C_{AA}]$$
.....3.38

This basically shows that the coefficient of total resistance of the ship (C_{TS}) is smaller than that of the model (C_{TM}) by the skin friction correction ($C_{FM} - C_{FS}$) times (1+k) minus the correlation allowance (C_A) and the coefficient of air resistance (C_{AA}). Therefore in a selfpropulsion test, at the model self-propulsion point, the model propeller is actually working at a higher value of the thrust loading coefficient ($C_{th} = T_M / (\frac{1}{2} \rho D^2 V_A^2)$) than the full scale ship propeller. Due to this extra loading, the model propeller's efficiency is lower than that of the ship's propeller. To compensate for this difference, the self-propulsion point for the model is instead defined at the ship self-propulsion point. At this point, the towing force is:

$$F_D = \frac{1}{2} \rho S_M V_M^2 C_{FD}$$
3.39

where:

$$C_{FD} = (1+k) (C_{FM} - C_{FS}) - C_A - C_{AA}$$
3.40

This ensures that at the self-propulsion point, the model propeller and the ship propeller are both working at the same thrust loading coefficient and that both propellers are working under dynamically similar conditions.

3.2 Powering Prediction Using Load-Varying Self-Propulsion Tests Alone

3.2.1 Rationale

The ITTC 1978 Performance Prediction Method gives fairly accurate powering estimates for cases when either there is a weak interaction between the propulsor and the vehicle hull [Ref 3-5] or when the vehicle is of low / moderate power [Ref 3-2]. In cases when there is a strong interaction between the propulsor and the hull, the powering estimates using the ITTC 1978 method are questionable.

Strong propulsor-hull interaction occurs in cases when compound propulsors such as ducted propellers, podded propellers, etc., are used. Unlike conventional propellers, compound propulsors can strongly modify the flow pattern around the hull. This means that methods such as the ITTC 1978 method, which make use of results from tests on the vehicle hull and propulsor in isolation, actually ignore the effect of an altered flow pattern around the hull, consequently leading to inaccuracies in the powering estimates.

Kracht [Ref 3-2] and Schmiechen [Ref 3-1], in an effort to overcome these shortcomings, suggested that powering prediction be based on only one set of experiments; load-varying self-propulsion tests. In these tests, the hull and propulsor are treated as one physical unit. Preliminary work on this concept was carried out by Kracht [Ref 3-2], Schmiechen [Ref 3-1], Holtrop [Ref 3-3], Bose and Molloy [Ref 3-4], etc. The following section discusses the theory behind this method and highlights the salient points of this method.

3.2.2 Theory

Forces Acting on a Submerged Vehicle: Fig. 3.6

Tow Force – Thrust Equation

In a load-varying self-propulsion test [Fig 3.6], consider the case when the vehicle is moving ahead at constant speed (V), under steady-state conditions. The following forces act on the body:

F: Towing force

T : Propeller thrust

 $F_{T=0}$: Total resistance of the vehicle under unloaded / idling propeller conditions

t^{*}: Thrust deduction fraction (calculated using self-propulsion test results alone)

a : Augment in resistance ($a = t^*T$)

Equilibrium of forces leads to the relationship:

$$\mathbf{T} + \mathbf{F} = \mathbf{F}_{\mathbf{T}=\mathbf{0}} + \mathbf{a}$$

Substituting the value of "a" and rearranging the terms:

 $\mathbf{T} - \mathbf{t}^* \mathbf{T} = \mathbf{F}_{\mathbf{T}=\mathbf{0}} - \mathbf{F}$

 $T (1 - t^{*}) = F_{T=0} - F$ or $F = -(1 - t^{*})T + F_{T=0}$ Tow force – thrust equation
.....3.41

For most marine vehicles, the thrust deduction fraction (t^{*}) is independent of propeller (thrust) loading. Assuming $F_{T=0}$ is constant for variable propeller loading, differentiation of the tow force – thrust equation [Eqn. 3.41] with respect to thrust, leads to :

$$\frac{dF}{dT} = -(1 - t^*) = \text{Constant (for variable propeller loading)} \qquad \dots 3.42$$

This basically shows that the tow force – thrust equation [Eqn. 3.41] is linear over a range of propeller loadings. It therefore represents a straight line, having an equation of the form y = mx + c, where "m" is the slope of the line and "c" is the intercept it makes on the y axis [Fig 3.7].

The linear relationship between tow force (F) and thrust (T) generally holds good for all kinds of hull forms and propulsors. Only for the fullest hull forms with relatively small propulsors, could there be a tendency for a slight departure from linearity [Ref 3-3].

or

Tow Force vs Thrust: Fig. 3.7

Thrust Deduction Fraction (t^*)

From the tow force – thrust plot [Fig 3.7], the slope of each straight line can be seen to be:

Slope = $\frac{F_{T=0}}{T_{M}^{**}}$ where T_{M}^{**} is the model thrust at model self-propulsion point.

Also as calculated previously, the slope of the line is also equal to:

$$\frac{\mathrm{d}F}{\mathrm{d}T} = -(1 - t^*) = \text{Slope}$$

Equating the two:

$$\frac{F_{T=0}}{T_M} = -(1-t^*) = \frac{dF}{dT}$$

$$\begin{bmatrix} t^* = & 1 - F_{T=0} & = 1 + \frac{1}{dT / dF} \\ & T_M^{**} & & \frac{dT / dF}{dT} \end{bmatrix}$$
3.43

Also from the ITTC 1978 method [Eqn 3.24], the thrust deduction fraction (t) is defined as:

$$t = \frac{T_M^* - R_{TM}}{T_M^*}$$

or

From the above two equations, it can be observed that in order to calculate the thrust deduction fraction (t) as defined by ITTC 1978, the results from two independent tests (resistance and self-propulsion tests) are needed. On the other hand, in order to calculate the thrust deduction fraction (t^{*}) as defined by the load-varying self-propulsion test method, results from only one test are needed. The forces $F_{T=0}$ and T_M^{**} that are used for calculating t^{*} belong to the same running condition. Therefore no falsification of the value of t^{*} is possible, on account of usage of test results from tests that are not performed under the exactly same conditions. Hence the value of the thrust deduction fraction (t^{*}) as determined by the load-varying self-propulsion test method, is likely to be more realistic than the value of the thrust deduction fraction (t) as determined by the ITTC 1978 method.

3.2.3 Method of Analyzing the Test Results

1) Determining the Model Propulsor Thrust (T_M^*) at Ship Self-Propulsion Point $(F = F_D)$

After conducting a load varying self-propulsion test, the test results are used to make a plot between tow force (ordinate) and thrust (abscissa), at each Froude number at which the tests were conducted [Fig 3.7]. The relationship between tow force and thrust is linear for this submersible ("C-SCOUT"). Using regression analysis, straight lines are fitted through the data points and the equation of each line is determined. The equation of each line is of the form:

y = mx + c

where "m" is the slope and "c" the intercept that the line makes on the y axis. From the discussion in the previous section, we know that the equation of each line can also be written as:

$$F = -(1 - t^*)T + F_{T=0}.$$

By comparing the two equations, the value of t^* and $F_{T=0}$ can be determined:

 $t^* = 1 + m$

 $F_{T=0} = c$

The values of t^* and $F_{T=0}$ are then substituted into the tow force – thrust equation [Eqn 3.41]. Now in order to determine the propulsor thrust at the ship self-propulsion point (T_M^*), we need to substitute that value of tow force that exists at the ship self-propulsion point (F_D) [Sec 3.1.4], into the tow force – thrust equation. The value of the propulsor thrust at ship selfpropulsion point (T_M^*) is then obtained as:

$$T_{M}^{*} = \frac{F_{T=0} - F_{D}}{1 - t^{*}}$$

where:

$F_D = \frac{1}{2} \rho S_M V_M^2 C_{FD}$

 $C_{FD} = (1+k) (C_{FM} - C_{FS}) - C_A - C_{AA}$

The values of " C_A " and " C_{AA} " are calculated using databases of model test facilities (possibly created using regression analysis of results from previously conducted tests). The values of the frictional coefficients " C_{FM} " and " C_{FS} " are determined using a turbulent flat plate friction line such as that formulated by Schlichting [Ref 3-8] or by Grigson [Ref 3-9], instead of the traditional ITTC 1957 model – ship correlation line. The value of the form factor " k " is determined using low-speed load-varying self-propulsion tests [Ref 3-3].

2) Determining the Ship Propulsor Thrust (T_s^*) at Ship Self-Propulsion Point $(F = F_D)$

The model propulsor thrust (T_M^*) is then extrapolated to the ship propulsor thrust (T_S^*) , using the relationship:

$$T_{s}^{*} = T_{M}^{*} \lambda^{3} \rho_{s} / \rho_{M}$$
3.45

where λ is the scale ratio ($\lambda = D_S / D_M$).

The above relationship is derived by dividing the expression for ship propulsor thrust by that for model propulsor thrust and by assuming that Froude scaling is valid for speed ($V_S / V_M = \lambda^{1/2}$) and that the advance coefficient (J) and the thrust coefficients (K_{TBS and} K_{TBM}) are the same for the model and the ship.

3) Determining the Non-Dimensional Coefficients K_{TBM} , K_{QBM} , J_M and Converting them to their Full Scale Values K_{TS} , K_{QS} , J_S

The raw data are then non-dimensionalized into the advance coefficient (J_M) , thrust coefficient (K_{TBM}) , torque coefficient (K_{QBM}) and the tow force coefficient (K_{FDM}) .

$$J_{\rm M} = \frac{V_{\rm M}}{n_{\rm M} D_{\rm M}} \qquad \dots 3.46$$

$$K_{QBM} = \frac{T_M}{\rho_M n_M^2 D_M^4}$$
3.47

$$K_{\text{TBM}} = \frac{Q_{\text{M}}}{\rho_{\text{M}} n_{\text{M}}^2 D_{\text{M}}^5}$$
3.48

These model coefficients then need to be converted to their full scale values K_{TS} , K_{QS} , J_S . This is achieved by performing the following two corrections:

a) Correction for Change in the Frictional Coefficient Over the Surface of the Propeller Blades

The difference in the propeller Reynolds numbers (Rn) at which the model is tested and at which the actual ship operates, causes a change in the frictional coefficient over the surface of the propeller blades. This can be corrected for using the correction factors [Ref 3-6]:

 $K_{TS} = K_{TBM} - \delta K_T$

 $K_{QS} = K_{QBM} - \delta K_Q$

The values of the correction factors δK_T and δK_Q are determined using the expressions given in section 3.1.2. However it should be noted that these correction factors are now applied to the propeller coefficients in the behind condition (unlike the ITTC 1978 method, where they are applied to the open water propeller coefficients). These corrections cause a vertical shift (downwards) in the K_{TS} and K_{QS} curves [Fig 3.8].

b) Correction for Wake Scaling

Since the model is tested at a much lower propeller Reynolds number than the actual ship (due to practical constraints at the model testing facilities), therefore the inflow velocity (V_A) at the model's propeller is lower than that at the ship's propeller. Hence the effective wake fraction at the ship's propeller is lower than that at the model's propeller. Therefore at the thrust (T_M^*) corresponding to the ship self-propulsion point, the thrust loading coefficient (C_{TH}) of the propeller is higher than that of the ship. This causes the model propeller's efficiency to drop to a value lower than that of the ship's propeller. To correct for this effect, the advance coefficient of the full scale propeller is corrected using the expression [Ref 3-3]:

$$J_{S} = J_{M} (1 - w_{M}) / (1 - w_{S}) \qquad \dots 3.49$$

This correction causes the K_{TS} and K_{QS} curves to shift towards the left [Fig 3.8]. The value of the scaling factor " $(1 - w_M)/(1 - w_S)$ " required for this correction, can be estimated using databases of model testing facilities (for similar ships / submersibles).

Shift in K_{T} , 10 K_{Q} Curves: Fig. 3.8

4) Determining the Self-Propulsion Point of the Full Scale Vehicle

A plot is made between K_{TS} , K_{QS} vs J_S . On this plot an additional curve of K_{TS} as a function of J_S^2 is plotted [Fig 3.9]:

Self-Propulsion Point of the Full Scale Vehicle: Fig. 3.9

where:

$$K_{TS} = \frac{T_{S}^{*}}{\rho_{S} D_{S}^{2} V_{S}^{2}} J_{S}^{2} \dots 3.50$$

The intersection of the two K_{TS} curves gives the ship self-propulsion point (propeller operating point of the ship). At this point the values of K_{QS} and J_S are read off and are used to calculate the power prediction quantities of the full scale vehicle.

5) Determining the Power Prediction Factors of the Full Scale Vehicle

These are calculated using the following expressions

3.3 <u>"C-SCOUT" Tests</u>

The propulsive performance of the autonomous underwater vehicle "C-SCOUT" was assessed by using the load-varying self-propulsion test method (see Chapter 4). For these tests, a full-scale version of the "C-SCOUT" vehicle was used. This vehicle was outfitted with a propulsion system and submerged 0.91 meters below the surface of water. The test results were analyzed using the method described in section 3.2.3. A comparative analysis of the propulsive performance of "C-SCOUT" using the ITTC 1978 method, could not be attempted, since results from one of the three tests required by this method (the propeller open water test), were not available.

3.4 Testing Prototype Vessels and Scale Models

If a scale model of "C-SCOUT" had been used for these tests, instead of the actual vehicle (prototype vessel), then the following would have to be considered:

1) When testing a scale model, at model self-propulsion point, the model propeller is actually working at a higher value of the thrust loading coefficient, than the propeller of the prototype vessel. To compensate for this difference, the self-propulsion point of the model is instead defined at the self-propulsion point of the prototype vessel. For a detailed explanation, please refer to section 3.1.4.

2) Due to practical constraints at model testing facilities, the scale model is tested at a much lower Reynolds number than the prototype vessel. This causes the prototype vessel to have a smaller wake fraction and a higher propeller entrance velocity, which in turn results in the model propeller having a lower efficiency than the full scale propeller. To compensate for this effect, the advance coefficient of the full scale propeller is corrected.

This correction causes the K_{TS} and K_{QS} curves to shift towards the left [Fig. 3.8]. For a detailed explanation, please refer to section 3.2.3 3.b.

3) The difference in the Reynolds number at which the model is tested and at which the prototype vessel operates, causes a change in the frictional coefficient over the surface of the propeller blades. This is corrected for using correction factors, which then cause a vertical shift in the K_{TS} and K_{QS} curves [Fig. 3.8]. For a detailed explanation, please refer to section 3.2.3 3.a.

3.5 Conclusions

With the increasing use of non-conventional / compound propulsors, there has been an increased demand for an accurate power prediction method. The accuracy of the power prediction results provided by the ITTC 1978 method has not been very satisfactory when compound propulsors have been used [Ref 3-5]. This is because the ITTC 1978 method makes use of results from tests in which the hull and propulsor are tested in isolation of each other, thus ignoring interaction effects between the hull and propulsor. For accurate results, it is therefore preferable to employ the load-varying self-propulsion test method for such cases.

Chapter 4

Resistance and Propulsion Tests

Introduction

All AUV designers strive to improve the endurance of their AUVs. Endurance refers to the range (distance) or time that an AUV can travel at sea, while working on a mission, given a fixed amount of energy which is stored on board the vehicle. Endurance is a measure of the overall efficiency of an AUV. Two components that contribute to this overall efficiency are resistance and propulsion. The lower the vehicle resistance, the higher its endurance. Similarly, the higher the efficiency of the propulsion system, the higher is the vehicle endurance. In order to improve the efficiency of the propulsion system and reduce the resistance of the vehicle, one must first be able to quantify what their values are, hence resistance and self-propulsion tests are one step in gaining this information. Resistance, self-propulsion and bollard-pull tests were conducted, on a full scale version of the "C-SCOUT" vehicle, at the towing tank (54.7 x 4.57 x 2.5 m) of the Ocean Engineering Research Centre (OERC) at Memorial University.

4.1 Test Setup

A bare-hull version of the "C-SCOUT" vehicle (2.70 m long, 0.40 m diameter) was outfitted with a propulsion system for these tests. The vehicle was immersed 0.91 m below the water surface [Figs. 4.1 and 4.2]. Two faired vertical struts, one at each end of the vehicle, were used to support the vehicle in the water. The top ends of these struts were attached to a support frame, which was attached to the towing carriage. The bottom ends of the struts were attached to the vehicle forward and aft through flexible supports.

Sketch of Test Setup: Fig. 4.1

Photo of Test Setup: Fig. 4.2

Fig. 4.3

Forward Flexible Support: Fig 4.4 (all dimensions in inches)

Forward Flexible Support: Fig 4.5

Fig. 4.6

Pressure Vessel: Fig. 4.9

Each of these flexible supports had three leaf springs mounted in a Y-shaped configuration [Figs. 4.3 to 4.8]. For the forward flexible support [Figs. 4.3 to 4.5], the outer end of each leaf spring was attached to the vehicle hull; the inner end of each leaf spring was attached to the load cell housing. For the aft flexible support [Figs. 4.6 to 4.8], the outer end of each leaf spring was attached to a ring, which was in turn attached to the aft strut; the inner end of each leaf spring was attached to the vehicle hull. These leaf springs constrained the vehicle to move only forward and aft, relative to the struts.

The forward flexible support housed a single-axis load cell (450 N capacity). This load cell was attached between the forward strut and the hull, in order to measure the force required to tow the vehicle through the water. Inside the vehicle, in the free space between the forward and aft flexible supports, a pressure vessel was fitted [Fig. 4.9]. This pressure vessel housed the main propulsion motor (Aerotech model 1960 DC motor) and

a thrust and torque dynamometer (Kempf and Remmers model 25). The propulsion motor had an built-in tachometer for measuring the rotational speed of the propeller shaft. This motor was used for the self-propulsion tests and is not the motor used on the regular vehicle for propulsion.

The pressure vessel was charged with nitrogen gas (15 kPa), so as to keep the internal pressure of the cylinder slightly higher than the outside water pressure and thereby preclude the possibility of water ingress into the pressure vessel, in case of leakage at the stern tube seal. Nitrogen gas was supplied to the pressure vessel using a portable nitrogen bottle placed on the towing carriage; a flexible hose supplied gas from the bottle to the pressure vessel.

The stern tube housed the propulsion shafting. The hardened steel propeller shaft was coupled to the thrust and torque dynamometer at the inboard end and had the propeller mounted on its outboard end. The shaft was supported by three linear rotary bearings [Fig. 4.10], fitted at equal distances apart, inside the stern tube. The linear rotary bearings permitted the shaft to rotate, as well as to slide freely in the axial direction. This ensured that all thrust developed by the propeller was transmitted directly to the dynamometer and that there was no substantial loss of measured thrust due to over-tight bearings.

Linear Rotary Bearing: Fig. 4.10

At the location where the propeller shaft penetrated the cover plate of the pressure vessel, two lip seals (fitted back to back) were used for sealing purposes. The propeller, hub and accelerating duct used for these tests were identical to that of the commercially available Tecnadyne model 1020 thruster, used on the underwater vehicle "C-SCOUT".

An Omega OM3 series signal conditioner was used for amplifying and filtering the analogue output signals from the different transducers (load cell, dynamometer, tachometer). A DaqBoard 2000 data acquisition card, fitted into the PCI slot of a Pentium desktop computer, was used as the data acquisition system. This card was controlled and operated by the DaqView data acquisition software. The DaqBoard 2000 card had a built-in 16 bit, 200 kHz analog-to-digital converter, which converted the continuous analogue signals from the signal conditioner into digital signals. The acquired data were processed and stored on the hard drive of the computer in ASCII format.

4.2 Test Procedure

The test procedure involved the following steps:

- Calibrating the transducers
- Preparing the vehicle
- Attaching the vehicle to the struts
- Performing the in-situ tests / checks
- Performing the resistance and propulsion tests

4.2.1 Calibrating the Transducers

The load cell and the dynamometer were mechanically calibrated by subjecting them to known loads and torques [Figs. 4.11 and 4.14] and then noting the output voltages of

these transducers. The output voltages (abscissa) were then plotted against the applied loads or torques (ordinate) and straight lines were fitted through the data points using regression analysis [Fig. 4.12, 4.13 and 4.15]. The equations of these straight lines were then used for directly converting the output voltages of the transducers into engineering units (N, N-m, etc.), during the course of the actual tests.

Fig. 4.11

Dynamometer Thrust Calibration

Fig. 4.12

Fig. 4.14

Fig. 4.16

Motor Tachometer Speed Calibration

Fig. 4.17

The propulsion motor tachometer [Fig 4.16] was calibrated by running the motor at a number of speeds and recording the output voltage of the tachometer; the motor speed was measured using a portable optical tachometer. The output voltages (abscissa) of the motor tachometer were then plotted against the motor speed (ordinate) and a straight line was fitted through the data points using regression analysis [Fig. 4.17]. The equation of this straight line was then used for directly converting the output voltages of the tachometer into engineering units (rpm), during course of the actual tests. All calibrations were carried out using the same data acquisition system that was used for the actual tests. This prevents possible errors due to different electronic circuits being used.

4.2.2 Preparing the Vehicle

Once the transducers were calibrated, they were then fitted into the vehicle. The dynamometer was fitted onto a frame using four Allen bolts. This frame was used for supporting the dynamometer and the propulsion motor [Fig. 4.9 and 4.16]. The live end of the dynamometer was coupled to the propeller shaft and the dead end of the dynamometer was coupled to the motor shaft. The frame was then inserted into the pressure vessel and the pressure vessel was then sealed.

The pressure vessel was then lifted and placed inside the vehicle hull and bolted in place. The waterproof cables (for supplying power to the motor and for transmitting the transducer output voltages to the data acquisition system) were then plugged into the

Preparing the Vehicle: Fig. 4.18

The Prepared Vehicle: Fig. 4.19

waterproof connectors on the pressure vessel. The nitrogen hose was then fitted and clamped in place using a jubilee clip [Fig. 4.18]. The space between the pressure vessel and the vehicle hull was then filled with styrofoam blocks, in order to give the vehicle additional buoyancy and hence ensure neutral buoyancy in water. The forward and aft flexible supports were then fitted in place. Subsequently the hinged upper half of the vehicle hull (skin) was closed and screwed in place [Fig. 4.19].

4.2.3 Attaching the Vehicle to the Struts

The vehicle was then lifted using an overhead crane and placed in the water. Subsequently the vehicle was attached to the struts [Figs. 4.20 to Fig. 4.25].

Fig. 4.20

Fig. 4.21

Fig. 4.22

Fig. 4.23

Fig. 4.24

Fig. 4.25

4.2.4 Performing the In-Situ Tests / Checks

Subsequently the in-situ tests and checks were performed. These included an alignment check of the vehicle and leaf springs, an axial pull check and shaft friction torque tests.

Alignment Check of the Vehicle / Leaf Springs

The vehicle trim was adjusted by raising / lowering the forward and aft struts, so as to ensure that the vehicle was at level trim [Fig. 4.26]. The leaf springs were aligned by rotating the forward / aft struts clockwise / anticlockwise by a small amount, so as to ensure that all the springs lay in the same vertical plane.

Vehicle Alignment Check: Fig. 4.26

Axial Pull Check

The (tow force) load cell readings were then checked by applying a series of axial loads on the vehicle. The measured and applied loads were found to correspond accurately.

Shaft Friction Torque Tests

For performing the shaft friction torque tests, the propeller and duct were removed and a dummy hub was fitted in place. The propeller shaft was rotated at a number of different speeds and the friction torque measured by the dynamometer was noted. A plot was then made between the shaft friction torque (ordinate) and the shaft speed (abscissa). [Fig. 4.27].

Shaft Friction Torque vs RPM

Fig. 4.27

4.2.5 Performing the Resistance and Propulsion Tests

After completing the in-situ tests / checks, the propeller and duct were fitted in place, and the tank water level was raised to 6.3 ft. Subsequently the resistance and propulsion tests were performed [Ref. 4-1]. The test plan included the following tests:

- a) Load-varying self-propulsion tests
- b) Bollard-pull tests
- c) Bare-hull resistance tests

For the resistance tests, the bare-hull of the vehicle was towed at a series of constant speeds, in both the forward and reverse directions, and the vehicle resistance was noted. For the bollard-pull tests, the towing carriage was kept stationary and the propeller was rotated at a number of different speeds. At each rotational speed of the propeller, the tow force, the propeller thrust, torque and rotational speed were noted.

For the self-propulsion tests, the vehicle was towed at a combination of towing speeds and propeller shaft speeds, in the forward direction; here the vehicle speed, tow force, propeller thrust, torque and the propeller rotational speed were measured, with and without the duct. By performing these different types of tests, one can isolate the effects of the hull, propeller and duct and thus obtain a measure of the overall system efficiency, as well as an insight into where further improvements in efficiency can be obtained.

4.3 Test Results

4.3.1 Load-Varying Self-Propulsion Tests

One of the primary objectives of these tests was to evaluate the propulsive performance of the vehicle, using load-varying self-propulsion tests. The load-varying self-propulsion tests included two phases. Phase I tests were performed with only the propeller fitted onto the vehicle. Phase II tests were performed with both the propeller and duct fitted onto the vehicle.

Each of the two sets of tests were conducted using the following speeds of the towing carriage: 0.8, 1.1, 1.3, 1.6, 1.8, 2.1, 2.3 and 2.5 m/s. At each towing speed, the propeller shaft speed was systematically varied so as to cover the entire range of propeller loadings. Each test used the following shaft speeds: 500, 550, 600, 650, 750, 900, 1000, 1050, 1100, 1150, 1200 and 1250 RPM. At shaft speeds below 500 RPM, the thrusts and torques generated by the propeller were too small in magnitude to be measured accurately, hence no tests were conducted below 500 RPM.

The results from Phases I and II were then utilized to determine the duct thrust, using the procedure described in section 4.3.2. The duct thrust was then added to the propeller thrust in order to obtain the total thrust of the propulsor.

For the Phase I tests, the tow force (ordinate) was plotted against the propeller thrust (abscissa) as shown in Figure 4.28. For the Phase II tests, the tow force (ordinate) was plotted against the total propulsor thrust (abscissa) as shown in Figure 4.29.

Both plots were found to be linear and hence they satisfied the linearity axiom for loadvarying self-propulsion tests [Refs. 4-2 and 4-3]. Using regression analysis, straight lines were fitted through the data points. Each straight line represents a particular vehicle speed (V) at which the self-propulsion test was conducted.

Phase I Tests

<u>Propeller Thrust vs Tow Force</u> (Load-Varying Self-Propulsion Test , Ahead direction, only Propeller fitted on)

Fig. 4.28

Equations of the Straight Lines

S.No.	Vehicle Speed	Equation
1	V = 2.5 m/s	y = -0.9369x + 80.875
2	V = 2.3 m/s	y = -0.9341x + 66.219
3	V = 2.1 m/s	y = -0.9358x + 52.164
4	V = 1.8 m/s	y = -0.9327x + 37.544
5	V = 1.6 m/s	y = -0.9329x + 31.978
6	V = 1.3 m/s	y = -0.9307x + 22.203
7	V = 1.1 m/s	y = -0.9319x + 16.302
8	V = 0.8 m/s	y = -0.9392x + 7.9354

y = Tow Force , x = Thrust

Phase II Tests

<u>Total Thrust vs Tow Force</u> (Load-Varying Self-Propulsion Test, Ahead direction, Propeller + Duct fitted on)

Fig. 4.29

Equations of the Straight Lines

S.No.	Vehicle Speed	Equation
1	V = 2.5 m/s	y = -0.9554x + 81.46
2	V = 2.3 m/s	y = -0.9554x + 66.907
3	V = 2.1 m/s	y = -0.9561x + 52.395
4	V = 1.8 m/s	y = -0.9551x + 38.033
5	V = 1.6 m/s	y = -0.9532x + 32.217
6	V = 1.3 m/s	y = -0.9508x + 22.343
7	V = 1.1 m/s	y = -0.9493x + 15.984
8	V = 0.8 m/s	y = -0.9545x + 7.722

y = Tow Force , x = Thrust

The equation of each straight line in Fig. 4.28 and Fig. 4.29 is of the form:

$$F = -(1 - t^*) \cdot T + F_{T=0} \qquad \dots 4.1$$

where 'F' is the measured tow force, 'T' is the measured propulsor thrust, and ' $F_{T=0}$ ' is the value of the tow force when the propulsor thrust is zero, that is, the intercept on the ordinate axis of Fig. 4.28 and Fig. 4.29. From these equations, the vehicle resistance under idling propeller conditions, $F_{T=0}$, and the thrust deduction fraction (t*) were determined; see Tables 4.3 and 4.4. Since the full scale "C-SCOUT" vehicle was used for these tests, therefore the self-propulsion point of the vehicle is that point when the tow force (F) becomes equal to zero. Substituting F = 0 in the above equation, the values of the propulsor thrust, at each self-propulsion point (T_s), were determined; see Tables 4.3 and 4.4.

The measured values of the vehicle speed, propeller rotational speed, propeller torque, propeller thrust and tow force were then used to form non-dimensional thrust, torque, tow force and advance coefficients [see Appendix B for test results], according to the following definitions. For the Phase I tests, these coefficients are the propeller thrust coefficient 'K_{tp}', propeller torque coefficient 'K_q', tow force coefficient 'K_{fd}' and advance coefficient 'J'. For the Phase II tests, these coefficients are the propeller thrust coefficient 'K_{tp}', duct thrust coefficient 'K_{td}', total thrust coefficient 'K_{tt}', propeller torque coefficient 'K_{tp}', duct thrust coefficient 'K_{td}' and advance coefficient 'J'. Here ' ρ ' is the mass density of water, 'n' is the propeller rotational speed, 'D' is the propeller diameter and 'V' is the vehicle (towed) speed.

$$K_{td} = T_d / \{\rho.n^2.D^4\}$$
- Thrust coefficient for the duct.....4.2 $K_{tp} = T_p / \{\rho.n^2.D^4\}$ - Thrust coefficient for the propeller.....4.3 $K_{tt} = K_{tp} + K_{td}$ - Thrust coefficient for the propeller + duct.....4.4 $K_q = Q / \{\rho.n^2.D^5\}$ - Torque coefficient for the propeller.....4.5 $K_{fd} = F / \{\rho.n^2.D^4\}$ - Tow Force Coefficient.....4.6 $J = V / \{n.D\}$ - Advance Coefficient for the propeller.....4.7

For the Phase I tests, these coefficients were plotted as curves of K_{tp} vs J, $10K_q$ vs J and K_{fd} vs J, as shown in Fig. 4.30 to Fig 4.37. For the Phase II tests, these coefficients were plotted as curves of K_{tp} vs J, K_{td} vs J, K_{tt} vs J, $10K_q$ vs J and K_{fd} vs J, as shown in Fig. 4.38 to Fig. 4.45. The self-propulsion point in these plots can also be determined by inserting an additional curve of thrust coefficient ' K_{ts} ' as a function of J² into the plots. The coefficient ' K_{ts} ' is defined as:

$$K_{ts} = T_s. J^2 / \{\rho.D^2.V^2\}$$
4.8

Where ' T_s ' is the propulsor thrust at self-propulsion point. For the Phase I tests, the intersection of the ' K_{ts} ' curve and the ' K_{tp} ' curve represents the self-propulsion point of the vehicle [Fig. 4.30 to Fig. 4.37]. For the Phase II tests, the intersection of the ' K_{ts} ' curve and the ' K_{tt} ' curve represents the self-propulsion point of the vehicle [Fig. 4.38 to Fig. 4.45]. Note that in each figure, the curve of ' K_{fd} ' crosses the J-axis, indicating that the tow force is zero at the self-propulsion point.

÷,

 $\label{eq:Load-Varying Self-Propulsion Test} \underbrace{ \mbox{Load-Varying Self-Propulsion Test} }_{\mbox{(V = 0.8 m/s, Ahead Direction, Only Propeller Fitted on)} }$

Fig. 4.30

 $\label{eq:Load-Varying Self-Propulsion Test} \underbrace{ \mbox{Load-Varying Self-Propulsion Test} }_{\mbox{(V = 1.1 m/s, Ahead Direction, Only Propeller Fitted on)} }$

Fig. 4.31

 $\label{eq:Load-Varying Self-Propulsion Test} \underbrace{ \mbox{Load-Varying Self-Propulsion Test} }_{\mbox{(V = 1.3 m/s, Ahead Direction, Only Propeller Fitted on)} }$

Fig. 4.32

Load-Varying Self-Propulsion Test (V = 1.6 m / s , Ahead Direction , Only Propeller Fitted on)

Fig. 4.33

Fig. 4.34

Load-Varying Self-Propulsion Test (V = 2.1 m / s , Ahead Direction , Only Propeller Fitted on)

Fig. 4.35

 $\label{eq:Load-Varying Self-Propulsion Test} \underbrace{ \mbox{Load-Varying Self-Propulsion Test} }_{\mbox{(V = 2.3 m/s, Ahead Direction, Only Propeller Fitted on)} }$

Fig 4.36

 $\label{eq:loss} \frac{\mbox{Load-Varying Self-Propulsion Test}}{(\mbox{V}=2.5\mbox{ m/s},\mbox{Ahead Direction},\mbox{Only Propeller Fitted on})}$

Fig. 4.37

 $\label{eq:load-Varying Self-Propulsion Test} {$(V = 0.8 \text{ m/s}, Ahead Direction, Propeller + Duct Fitted on)$}$

 $\label{eq:load-Varying Self-Propulsion Test} \underbrace{ \mbox{Load-Varying Self-Propulsion Test} }_{\mbox{(V = 1.3 m/s, Ahead Direction, Propeller + Duct Fitted on)} }$

Fig. 4.40

<u>Load-Varying Self-Propulsion Test</u> (V = 1.6 m / s , Ahead Direction , Propeller + Duct Fitted on)

Fig. 4.41

- 106 -

2.00 1.50 10 K_q κ K_{ts} Ktd 0.20 1.20 1.80 0.00 0.40 0.60 0.80 -1.50 -2.00 J

 $\label{eq:load-Varying Self-Propulsion Test} \end{tabular} (V = 2.1 \mbox{ m/s}, Ahead Direction , Propeller + Duct Fitted on)$

- 107 -

 $\label{eq:loss} \frac{\mbox{Load-Varying Self-Propulsion Test}}{(\mbox{V}=2.3\mbox{ m/s}, \mbox{Ahead Direction}, \mbox{Propeller}+\mbox{Duct Fitted on})}$

 $\label{eq:load-Varying Self-Propulsion Test} \end{tabular} (V = 2.5 \mbox{ m/s}, Ahead Direction , Propeller + Duct Fitted on })$

From the self-propulsion point, the propeller torque coefficient ' $10K_q$ ' and the advance coefficient 'J' were read off [see Appendix B]. These were then used to determine the propeller rotational speed 'n' and the delivered power 'P_d' at the self-propulsion point, using the following expressions.

$$n = V / \{J \cdot D\} \qquad \dots 4.9$$

and

$$P_{d} = 2 \pi \rho n^{3} D^{5} K_{q} \qquad \dots 4.10$$

The effective power ' P_e ' of the vehicle was then calculated from

$$P_e = V \cdot F_{T=0} \qquad \dots 4.11$$

Subsequently the propulsive efficiency ' η_d ' of the propulsion system was calculated from

$$\eta_d = P_e / P_d \qquad \dots 4.12$$

The results for the Phase I and Phase II tests are tabulated in Tables 4.3 and 4.4 respectively. For the Phase I tests, Fig. 4.46 shows a plot of delivered power and effective power vs forward speed and Fig. 4.47 shows a plot of propulsive efficiency vs forward speed. Similarly for the Phase II tests, Fig. 4.48 shows a plot of delivered power and effective power vs forward speed and Fig. 4.49 shows a plot of propulsive efficiency vs forward speed. ' $F_{T=0}$ ' for the Phase I and Phase II tests, are compared with 'R' from the bare hull resistance tests, in Table 4.5.

Table 4.3 (Phase I)

S. No.	V	n	F _{T=0}	t [*]	Ts	Pd	Pe	η_d
	(m/s)	(rpm)	(N)		(N)	(W)	(W)	(%)
1	2.5	1161	80.8	0.0631	86.3	382.0	202.8	53.0
2	2.3	1074	66.2	0.0659	70.8	291.3	152.8	52.4
3	2.1	984	52.1	0.0642	55.7	215.2	109.8	51.0
4	1.8	875	37.5	0.0673	40.2	138.0	67.7	49.1
5	1.6	824	31.9	0.0671	34.2	117.1	51.2	43.7
6	1.3	733	22.2	0.0693	23.8	79.0	28.9	36.5
7	1.1	664	16.3	0.0681	17.4	52.4	17.9	34.3
8	0.8	557	7.9	0.0608	8.4	20.9	6.3	30.4

Self-Propelled Condition, Ahead Direction, Only Propeller Fitted on

Table 4.4 (Phase II)

Self-Propelled Condition, Ahead Direction, Propeller + Duct Fitted on

S. No.	V	n	F _{T=0}	t*	Ts	Pd	Pe	η_d
	(m/s)	(rpm)	(N)		(N)	(W)	(W)	(%)
1	2.5	1089	81.4	0.0446	85.2	300.4	204.4	68.0
2	2.3	1004	66.9	0.0446	70.0	227.2	154.8	68.1
3	2.1	921	52.3	0.0439	54.8	172.6	110.4	63.9
4	1.8	832	38.0	0.0449	39.8	124.3	68.6	55.2
5	1.6	777	32.2	0.0468	33.7	100.0	51.7	51.6
6	1.3	694	22.3	0.0492	23.4	66.7	29.1	43.6
7	1.1	617	15.9	0.0507	16.8	44.0	17.6	39.9
8	0.8	500	7.7	0.0455	8.0	17.6	6.1	35.1

Table 4.5

<u>Comparison of $F_{T=0}$ and R</u>

			Propeller fitted on		Propeller + D	uct fitted on
S.No	V	R	F _{T=0}	F _{T=0} / R	F _{T=0}	F _{T=0} / R
	(m/s)	(N)	(N)		(N)	
1	0.8	8.0	7.9	1.0	7.7	1.0
2	1.1	13.9	16.3	1.2	15.9	1.1
3	1.3	18.7	22.2	1.2	22.3	1.2
4	1.6	27.2	31.9	1.2	32.2	1.2
5	1.8	33.8	37.5	1.1	38.0	1.1
6	2.1	46.4	52.1	1.1	52.3	1.1
7	2.3	60.9	66.2	1.1	66.9	1.1
8	2.5	76.9	80.8	1.1	81.4	1.1

Delivered and Effective Power vs Forward Speed

(Load-Varying Self-Propulsion Tests, Ahead Direction, Only Propeller Fitted on)

Fig. 4.46

<u>Propulsive Efficiency vs Forward Speed</u> (Load-Varying Self-Propulsion Tests, Ahead Direction, Only Propeller Fitted on)

Fig. 4.47

Fig. 4.48

Propulsive Efficiency vs Forward Speed (Load-Varying Self-Propulsion Tests, Ahead Direction, Propeller + Duct Fitted on)

4.3.2 Duct Thrust Measurement Method

The test setup for the self-propulsion tests was used for the duct thrust measurements. In this case direct measurement of duct thrust is required, so the duct needs to be supported by its own load cell, which is in turn supported by a rigid structure. In a conventional test where the vehicle is attached rigidly to the towing struts, this load cell would be attached to the aft strut or to the support frame.

But for these tests, since the vehicle was not attached rigidly to the towing struts, the load cell for measuring duct thrust could no longer be attached to the aft strut or to the support frame, but instead would have had to be directly attached to the vehicle hull. Such an arrangement invariably causes the flow pattern around the aft end of the vehicle to get altered, thereby changing the test results.

Forces Acting on the Vehicle: Fig. 4.50

Further, the entire arrangement for supporting the vehicle using flexible supports was already quite complicated and fitting an additional load cell and its support structure was not found to be practical. Therefore it was decided not to measure the duct thrust directly, but instead to infer the duct thrust from the results from the tests of Phases I and II.

Fig. 4.50 shows the forces acting on the vehicle during the course of Phases I and II. The towing force at zero propulsor thrust ($F_{T=0}$) is essentially the same in both the cases (see Table 4.3 and 4.4). If the augment in resistance (a thrust-deduction effect of propulsor) is assumed to be same in both the cases, then the duct thrust can be inferred using the following expression:

Duct Thrust = [Tow Force(II)- Propeller Thrust(II)] - [Tow Force(I)- Propeller Thrust(I)]4.13

Using the above expression, the duct thrust was inferred at each propeller speed for which a self-propulsion test was conducted. This duct thrust was then added to the propeller thrust, in order to obtain the total thrust generated by the propulsor, at each propeller speed for which a self-propulsion test was conducted [see Appendix B].

4.3.3 Bollard-Pull Tests

The bollard-pull of a vehicle is essentially a measure of the greatest towing force the vehicle can exert on a towline, while the vehicle is stationary (zero forward speed). The vehicle was fitted with both the propeller and the duct for these tests. Bollard-pull tests were conducted by keeping the vehicle stationary and then systematically varying the propeller speed. At each propeller speed, the following parameters were recorded: propeller speed, propeller thrust, shaft torque, tow force and water temperature. The recorded data were then used to make plots of tow force versus propeller speed [Fig. 4.51], and of delivered power versus propeller speed [Fig. 4.52]. [see Appendix B for test results].

4.3.4 Bare-Hull Resistance Tests

Resistance tests were conducted in order to determine the drag (resistance) of the barehull of the vehicle. The propeller and duct were removed for these tests. The vehicle was towed over a range of speeds in the ahead as well as astern directions. The parameters recorded included the carriage speed, vehicle resistance and the water temperature. Tests were not conducted at speeds below 0.6 m/s, since the measured resistance at speeds below 0.6 m/s was too small to be reliably measured by the load cell. For the astern direction, the tests were limited to a maximum speed of 2 m/s, since the towing carriage could go no faster than 2 m/s when traveling backwards. The measured data [see Appendix B for test results] were then used to create plots of vehicle resistance versus vehicle speed, for both the ahead and astern conditions, Fig. 4.53 and Fig 4.54.

Since the depth of the towing tank was limited, therefore the vehicle could only be submerged to a centreline depth of 0.91 m (2.2 body diameters) below the free surface of water. As a rule of thumb, the body needs to be submerged at least five body diameters below the surface of water, in order to completely preclude free surface (wave making) effects [Ref 4-4]. Consequently at towing speeds above 2 m/s, a significant amount of wave making resistance showed up in the data. This is indicated by a sharp jump in the vehicle resistance above 2 m/s, Fig. 4.53. Below towing speeds of 2 m/s, the vehicle resistance is predominantly viscous and there is a uniform parabolic-type increase in resistance with increasing forward speeds.

The vehicle bare-hull resistances in the ahead and astern directions were compared, Fig. 4.55. The resistance values (towing forces) were close to each other at lower speeds. With increasing speeds, the difference in resistance increased and then stabilized to a more or less constant difference of about 10.7 percent.

The vehicle bare-hull resistance in the ahead direction (R) was also compared with the magnitude of the towing force at zero propulsor thrust ($F_{T=0}$); Fig 4.56 and Table 4.5. The values of R and $F_{T=0}$ were close to each other at lower speeds. At higher speeds the difference in R and $F_{T=0}$ stabilized to a more or less constant value of about 9.8 percent.

Bare-Hull Resistance vs Forward Speed

Fig. 4.53

Fig. 4.54

Comparison of Ahead and Astern Bare-Hull Resistances

Fig. 4.55

 $\label{eq:result} \frac{Resistance\ Tests}{(\ Comparison\ of\ R\ and\ F_{T=0}\)} \\ (F_{T=0}\ for\ "Propeller\ +\ Duct\ Fitted\ on"\ Case)$

Fig. 4.56

The data were then non-dimensionalized into a drag coefficient 'C_d'; the frontal area $\pi D^2/4$ of the vehicle was used for calculating the drag coefficient. The drag coefficient 'C_d' was then plotted against the vehicle forward speed and astern speed; see Fig. 4.57 and Fig 4.58. In Fig 4.57, at speeds above 2 m/s, the rise of 'C_d' indicates a higher than V² dependence of resistance on speed (V). The data were also non-dimensionalized into a drag coefficient 'C_d' using the wetted surface area (3.009 m²) of the vehicle. This drag coefficient 'C_d' was then plotted against the vehicle forward speed and astern speed; see Fig. 4.59 and Fig 4.60.

Resistance Tests (Drag Coefficient vs Ahead Speed)

Fig. 4.57

Resistance Tests (Drag Coefficient vs Astern Speed)

Fig. 4.58

(Drag Coefficient vs Ahead Speed)

Fig. 4.59

4.4 Uncertainty Analysis

An uncertainty analysis was carried out in order to ascertain the overall level of uncertainty in the test measurements. The analysis was carried out according to the ITTC recommended procedure 7.5-02-03-01.2 Rev.00 (Propulsion, Performance Uncertainty Analysis, Example for Propulsion Test) and 7.5-02-02-02 Rev.01 (Testing and Extrapolation Methods, Resistance Uncertainty Analysis, Example for Resistance Test). Results of the uncertainty analysis are tabulated in Appendix B. These results are summarised in Table 4.6 on the following page.

<u>Table 4.6</u>

Summary of the Uncertainty Analysis

Load Varying Self-Propulsion Test (Propeller Fitted on)		
Page No.	Term	Uncertainty
B 14 to	n	The uncertainty in the value of 'n' (U_n) is about 0.039 rpm and
B 18		is essentially the same for different forward speeds (V).
B 19 to	V	For different forward speeds (V), the uncertainty in the value
B 23		of 'V' (U_V) is about 0.003 m/s.
B 24 to	Q	For different forward speeds (V), the uncertainty in the value
B 28		of 'Q' (U ₀) is about 0.008 N-m.
B 29 to	T _P	For different forward speeds (V), the uncertainty in the value
B 33		of ' T_P ' (U_T) is about 0.25 N.
B 34 to	F	For different forward speeds (V), the uncertainty in the value
B 38		of 'F' (U_F) is about 0.27 N.
B 39 to	J	For different forward speeds (V), the uncertainty in the value
B 43		of 'J' (U_J) is less than or equal to 0.002.
B 44 to	Ka	For different forward speeds (V), the uncertainty in the value
B 47	1	of 'K _q ' (U_{Kq}) is less than or equal to 0.002.
B 48 to	K _{tp}	For different forward speeds (V), the uncertainty in the value
B 51	T	of ' K_{tp} ' (U_{Ktp}) is less than or equal to 0.02.
	and the second	
Lo	ad Varying	g Self-Propulsion Test (Propeller + Duct Fitted on)
Lo: Page No.	ad Varying <i>Term</i>	g Self-Propulsion Test (Propeller + Duct Fitted on) Uncertainty
Lo: <i>Page No.</i> B 52 to	ad Varying <i>Term</i> n	Self-Propulsion Test (Propeller + Duct Fitted on) Uncertainty The uncertainty in the value of 'n' (Un) is about 0.039 rpm and
Lo: <i>Page No.</i> B 52 to B 56	ad Varying Term n	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).
Lo: Page No. B 52 to B 56 B 57 to	ad Varying Term n V	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the value
Lo: Page No. B 52 to B 56 B 57 to B 61	ad Varying Term n V	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to	ad Varying Term n V Q	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the value
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66	ad Varying Term n V Q	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to	ad Varying Term n V Q T _t	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the value
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71	ad Varying Term n V Q T _t	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'Te' (UT) is about 0.25 N.
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71 B 72 to	ad Varying Term n V Q T _t F	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'TP' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the value
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71 B 72 to B 76	ad Varying Term n V Q T _t F	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'Te' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the valueof 'Te' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the valueof 'F' (UF) is about 0.27 N.
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71 B 72 to B 76 B 77 to	ad Varying Term n V Q T _t F J	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'Te' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the valueof 'F' (UF) is about 0.27 N.For different forward speeds (V), the uncertainty in the value
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71 B 72 to B 76 B 77 to B 81	ad Varying Term n V Q T _t F J	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'Te' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the valueof 'F' (UF) is about 0.27 N.For different forward speeds (V), the uncertainty in the valueof 'F' (UF) is about 0.27 N.For different forward speeds (V), the uncertainty in the valueof 'J' (UJ) is less than or equal to 0.002.
Los Page No. B 52 to B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71 B 72 to B 76 B 77 to B 81 B 82 to	ad Varying Term n V Q T _t F J K _q	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'Te' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the valueof 'F' (UF) is about 0.27 N.For different forward speeds (V), the uncertainty in the valueof 'J' (UJ) is less than or equal to 0.002.For different forward speeds (V), the uncertainty in the value
Los Page No. B 52 to B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71 B 72 to B 76 B 77 to B 81 B 82 to B 85	ad Varying Term n V Q T _t F J K _q	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'T' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the valueof 'F' (UF) is about 0.27 N.For different forward speeds (V), the uncertainty in the valueof 'J' (UJ) is less than or equal to 0.002.For different forward speeds (V), the uncertainty in the valueof 'J' (ULF) is about 0.27 N.
Los Page No. B 52 to B 56 B 57 to B 61 B 62 to B 66 B 67 to B 71 B 72 to B 76 B 77 to B 81 B 82 to B 85 B 86 to	ad Varying Term n V Q T _t F J K _q K _{tt}	Self-Propulsion Test (Propeller + Duct Fitted on)UncertaintyUncertaintyThe uncertainty in the value of 'n' (Un) is about 0.039 rpm andis essentially the same for different forward speeds (V).For different forward speeds (V), the uncertainty in the valueof 'V' (Uv) is about 0.003 m/s.For different forward speeds (V), the uncertainty in the valueof 'Q' (Uo) is about 0.008 N-m.For different forward speeds (V), the uncertainty in the valueof 'Te' (UT) is about 0.25 N.For different forward speeds (V), the uncertainty in the valueof 'J' (UF) is about 0.27 N.For different forward speeds (V), the uncertainty in the valueof 'J' (UJ) is less than or equal to 0.002.For different forward speeds (V), the uncertainty in the valueof 'L' (UKq) is less than or equal to 0.002.For different forward speeds (V), the uncertainty in the value

<u>Table 4.6</u> (continued)

Summary of the Uncertainty Analysis

Bare-Hull Resistance Test			
Page No.	Term	Uncertainty	
B 90 to	V	For different forward speeds (V), the uncertainty in the value	
B 92	(Ahd.)	of 'V' (U_V) is less than or equal to 0.004 m/s.	
	V	For different astern speeds (V), the uncertainty in the value of	
	(Ast.)	'V' (U_V) is less than 0.004 m/s.	
B 93 to	R	For different forward speeds (V), the uncertainty in the value	
B 95	(Ahd.)	of 'R' (U_R) is about 0.27 N.	
	R	For different astern speeds (V), the uncertainty in the value of	
	(Ast.)	'R' (U_R) is about 0.27 N.	
B 96 to	Cd	For different forward speeds (V), the uncertainty in the value	
B 98	(Ahd.)	of $C_d'(U_{Cd})$ is less than 0.03.	
	Cd	For different astern speeds (V), the uncertainty in the value of	
	(Ast.)	C_d (U _{Cd}) is less than 0.03.	
Bollard-Pull Test			
Page No.	Term	Uncertainty	
B 99 to	n	For different propeller rotational speeds (n), the uncertainty in	
B 100		the value of 'n' (U_n) is about 0.039 rpm.	
B 101 to	Q	For different propeller rotational speeds (n), the uncertainty in	
B 102		the value of 'Q' (U_Q) is about 0.008 N-m.	
B 103 to	T _P	For different propeller rotational speeds (n), the uncertainty in	
B 104		the value of ' T_P ' (U_T) is about 0.25 N.	
B 105 to	F	For different propeller rotational speeds (n), the uncertainty in	
B 106		the value of 'F' (U_F) is about 0.27 N.	

4.5 Problems Faced During the Tests

i) Leaf Spring Breakage: In a conventional self-propulsion test, a braking arrangement is generally provided, in order to prevent forces of large magnitude from acting on the (tow force) load cell during the acceleration / deceleration periods. During a test run, when the vehicle accelerates / decelerates, the brakes are engaged. This ensures that all the towing forces are transmitted directly from the struts to the hull (the load cell is bypassed). Once the vehicle reaches a constant speed, the brakes are disengaged and subsequently all the towing forces are transmitted from the strut to the hull via the load cell. For the self-propulsion tests conducted on "C-SCOUT", no braking arrangement was provided. Consequently at high speeds (> 3 m/s), when the vehicle was being accelerated / decelerated for a run, forces of large magnitude acted on the forward and aft flexible supports, leading to spring breakage. To prevent spring breakage, the maximum test speed was therefore limited to 3 m/s.

ii) Stern Tube Bearing Seizure: The stern tube initially had two bearings (oil-lite bushings), one fitted at each end of the stern tube. During the course of the tests, the aft bearing seized up. The two oil-lite bearings were subsequently replaced with three linear rotary bearings [Fig. 4.10] and no further instances of bearing seizure occurred.

iii) Difficulty in Accessing Components: In a conventional self-propulsion test with a ship model, the model floats on the surface of the water and hence all components are easily accessible. For the tests conducted on "C-SCOUT", the vehicle was submerged in water, making it very difficult to access components in case something malfunctioned.

4.6 **Conclusions**

These resistance and propulsion experiments with "C-SCOUT", constitute a first step in evaluating the vehicle performance. They provide a wealth of information about the performance of the propulsion system over a range of vehicle speeds and propeller loadings. This data will be used for optimizing the propulsion system and the hull form of the vehicle.

Chapter 5

Design of a High Efficiency Propeller for "C-SCOUT"

5.1 The Need for a High Efficiency Propeller

The amount of stored energy available on board an AUV is limited. Hence all AUVs operate on a tight energy budget. The propulsion system of an AUV is one of the major consumers of energy. Therefore a high efficiency propeller implies lower energy consumption, which then translates into increased vehicle endurance and a reduction in vehicle operating costs. The AUV "C-SCOUT" currently uses a 1 HP Tecnadyne (model 1020) thruster unit as its main propulsion system. The unit [Fig 5.1] consists of a brushless DC motor mounted inside a waterproof casing, a magnetic coupling, propeller and an accelerating duct.

Tecnadyne (Model 1020) Thruster: Fig 5.1 [Ref 5-13]

Table 5.1 compares the performance of the Tecnadyne thruster unit with a proposed high efficiency propeller that was designed for "C-SCOUT" by the author (see Section 5.4). The

results for the Tecnadyne thruster were obtained from the propulsion tests conducted on "C-SCOUT" (see Chapter 4). From the table, it can be observed that in order to move "C-SCOUT" at a speed of 2 m/s, the Tecnadyne thruster unit requires a delivered power of 153 Watt. In contrast, the proposed high efficiency propeller needs only 115 Watt for the same job. Use of the high efficiency propeller therefore leads to a gain of 20 % in terms of propulsive efficiency and a savings of 38 Watt in terms of energy consumption.

Table 5.1

S.No	Propulsor	Propeller Diameter (D) cm	Propeller Speed (n) rpm	Delivered Power (P _d) Watt	Propulsive Efficiency (ŋa) %
1	Tecnadyne 1020				
1.a	Propeller alone	15.2	953	187	50
1.b	Propeller + Duct	15.2	890	153	62
2	High efficiency propeller	50.0	300	115	82

Tecnadyne 1020 Thruster vs High Efficiency Propeller (at a Forward Speed of 2 m/s)

The low efficiency of the Tecnadyne thruster unit is the consequence of using a small diameter, high rpm, heavily-loaded propeller. Heavily-loaded blades are less efficient and are more susceptible to cavitation. The small diameter of the propeller means that it has to rotate at a higher rpm to produce the same amount of thrust, than a propeller of larger diameter. This leads to increased rotational energy losses and a corresponding drop in propeller efficiency. Due to the above mentioned reasons, it can be clearly seen that use of the Tecnadyne thruster unit means low propeller efficiencies and high energy consumption.

5.2 High Efficiency Propeller Concept

The high efficiency propeller envisioned for "C-SCOUT" basically consists of a large diameter (0.5 m), slender, fine-bladed, slow-turning (300 rpm), wake-adapted, single-screw propeller with two blades [Fig 5.6]. The advantage of such a propeller is a potential propeller efficiency of 80 to 90 %.

5.2.1 Reasons for the High Efficiency of the Propeller

1) Large Diameter

a) Low Thrust Loading: From propeller momentum theory it can be shown that the ideal efficiency (η_i) of a propeller is given by [Ref 5-14]:

$$\eta_{i} = \frac{2}{1 + (1 + C_{th})^{1/2}} \dots \dots 5.1$$

where the thrust loading coefficient (C_{th}) is defined as:

$$C_{\rm th} = \frac{T}{\frac{1}{2} \rho V_{\rm A}^2 A_0} \qquad \dots 5.2$$

T = Propeller thrust (N)

 ρ = Density of water (kg/m³)

 V_A = Speed of advance of the propeller (m/s)

 $A_0 =$ Propeller disc area (m²)

From the above expression and from Fig 5.2, it can be seen that the lower the thrust loading, the higher the propeller efficiency. A low thrust loading can be achieved by increasing the propeller disc area (by increasing the propeller diameter).

 K_t , K_q , η_o , C_{th} vs J: Fig 5.2 [Ref 5-14]

b) High Mass Flow: The thrust generated by a propeller is governed by Newton's second law. That is, propeller thrust is equal to the rate of change of momentum (mass times axial induced velocity) of the mass of water that the propeller accelerates. Now there are two ways that a propeller can produce a particular amount of thrust. Either it can accelerate a large mass of water at low induced velocities (using a large diameter, slow rpm propeller) or it can accelerate a small mass of water at high induced velocities (using a small diameter, high rpm propeller). From propeller momentum theory, it can be proved that the former method of thrust generation is much more efficient than the latter method. According to this theory, the ideal efficiency (η_i) of a propeller can also be expressed as [Ref 5-14]:

η _i =
η _i =

where "a' " is the rotational inflow factor and "a" is the axial inflow factor. The factors "a" and "a' " are used for calculating the axial induced velocity (aV_A) and the rotational induced velocity $(a'\omega)$. From the above expression, it can be seen that the propeller efficiency can be maximized by minimizing the factors "a" and "a' ", ie., by minimizing the axial and rotational induced velocities. Therefore one of the objectives while designing a high efficiency propeller is to maximize the mass flow and minimize the induced velocities. A large diameter propeller by virtue of its large disc area, can accelerate a large mass of water while imparting low induced velocities. Consequently such a propeller is extremely efficient.

2) High Aspect Ratio Blades: High efficiency propeller blades have a large span and a short chord length (high aspect ratio), conceptually similar to the wings of a glider. The efficiency of a propeller blade is directly proportional to the blade lift to drag ratio. Therefore the higher the lift/drag ratio, the greater is the propeller efficiency [Ref 5-12].

$$\eta_{\text{blade}} \propto \frac{\text{Lift}}{\text{Drag}} \propto \frac{C_{\text{L}}}{C_{\text{D}}} \qquad \dots 5.4$$

At the same angle of attack, high aspect ratio blades have a higher coefficient of lift (C_L) and a lower coefficient of drag (C_D) than low aspect ratio blades and this leads to increased propeller efficiency. This can be explained as follows. Any lifting surface such as a propeller blade generates lift due to a pressure differential across its two faces. At the blade tip, due to this pressure differential, a certain amount of spillage occurs. Fluid from the high pressure side rushes into the low pressure side – this sets up blade tip vortices and these vortices lead to a downwash of fluid behind the blades [Fig 5.3]. This downwash causes the blades to develop a local induced angle of attack – which then leads to a reduction in lift generated by the blades and an additional drag force to act on the blades (known as induced drag).

Lift vs Angle of Attack, Wing Tip Vortices and Downwash: Fig 5.3 [Ref 5-12]

The effect of tip vortices and downwash is quite pronounced on low aspect ratio blades and this effect reduces as the aspect ratio of the blades increases. Hence high aspect ratio blades have higher lift/drag ratios than blades of lower aspect ratios and consequently high aspect ratio blades are more efficient.

3) Use of a Minimum Number of Blades: In general, for the same advance coefficient (J), as the number of blades on the propeller increases, its efficiency drops. This is due to the cascade effect [Ref 5-11]. The cascade effect occurs when a series of lifting surfaces (blades) work in sufficient proximity to each other, so as to mutually alter the flow regime around each other. Downwash from the first blade affects the second blade, causing its lift to drop [Fig 5.4] and its drag to increase. Downwash from the second blade then affects the third blade and so on. The lift/drag ratio of individual blades drops and consequently the propeller efficiency drops. Ideally a propeller with one blade is the most efficient, but getting such a propeller to balance is difficult. Hence a propeller with two blades is the next logical choice. Among all the practically feasible multi-bladed propellers, a two bladed propeller is least affected by the cascade effect.

C_L vs α (Cascade Effect): Fig 5.4 [Ref 5-11]

4) Use of a Wake-Adapted Propeller: The high efficiency propeller is designed to be wakeadapted. In a wake-adapted propeller, the propeller pitch matches the inflow conditions, i.e., at each section of the blade, the blade geometric pitch angle (Φ) is set such that the angle of attack is equal to the ideal angle of attack (α_i):

$$\alpha_i = \Phi - \beta_i \qquad \dots 5.5$$

where α_i is the ideal angle of attack and β_i is the hydrodynamic pitch angle. The ideal angle of attack is defined as that angle of attack at which flow enters the leading edge smoothly [Ref 5-19]. Smooth entry prevents a low pressure peak near the leading edge of the blade, thus preventing flow separation (and the accompanying increase in drag) and hence maximizing propeller efficiency and avoiding potential cavitation.

5) Use of Cambered Airfoil Sections: The high efficiency propeller blade sections consist of a superposition of a NACA a=0.8 meanline with a NACA 16-015 airfoil thickness distribution

- 133 -

[Fig 5-7]. This family of airfoil sections in general has a high lift/drag ratio and hence it maximizes propeller efficiency. Airfoil sections can generate lift either by having an angle of attack or by having section camber (asymmetry). The high efficiency propeller blade sections generate most of their lift due to section camber. Consequently blade sections have a very small angle of attack ($= \alpha_i$). At small angles of attack, the lift/drag ratio is maximum and this ensures maximum propeller efficiency. Also since the propeller blade is lightly loaded, the lift required to be generated by individual blade sections is low. This ensures that the camber required by individual blade sections is low – this minimizes drag losses.

6) Use of Fine (Thin) Blades with Low Expanded Area Ratio: The minimum expanded area ratio (A_E / A_O) is determined by cavitation considerations and the minimum blade thickness (t) is determined by structural strength considerations. The lower the expanded area ratio and the lower the blade thickness, lower is the blade drag and hence the propeller efficiency is higher. The high efficiency propeller has a very low expanded area ratio of 0.11 and a thickness ratio (t_x / D) of 0.0094 at 0.7R. Hence the blades generate low drag and have high efficiency.

7) Use of Low Propeller Rotational Speeds: The higher the rotational speed of a propeller, the higher the rotational energy losses and consequently the lower the propeller efficiency. As a general rule, the propeller rotational speed is inversely proportional to the propeller diameter. Use of a large diameter propeller therefore permits the use of low propeller speeds and hence minimizes the rotational energy losses. Also for a given vehicle speed (V) and propeller diameter (D), there exists a particular propeller rotational speed (n) and a corresponding value of the advance coefficient (J) at which the propeller efficiency (η) is

maximum. Any further increase in the propeller rotational speed, leads to a reduction in the advance coefficient and hence efficiency. High propeller rotational speeds therefore implies a low value of J and a propeller that operates in a region of low η . Hence use of optimum propeller rotational speeds ensures maximum efficiency.

Thus as explained in the above sections, the key features that give the high efficiency propeller its high efficiency are: a large diameter, large mass flow, low thrust loading, high aspect ratio blades, minimum number of blades, low blade expanded area ratio, low blade thickness, a wake-adapted pitch distribution and lift development using section camber alone.

5.2.2 The Disadvantages of the High Efficiency Propeller

1) Blade Damage Issues: The high efficiency propeller has a diameter (0.5m) (see section 5.4.1) that is 25 % greater than the hull diameter (0.4 m). This is not expected to pose much of a problem in the open seas, where the vehicle is expected to spend much of its mission time. However in shallow waters, in the vicinity of other objects, the vehicle needs to be maneuvered with care, so as to preclude the possibility of blade damage.

2) Structural Strength Issues: Large diameter blades imply increased moment arms and hence greater stress levels at the blade root section. This calls for additional blade thickness to withstand the stresses. However, since the vehicle operates at low speeds (2 to 4 knots), therefore the thrust and torque loads on the blades are quite low. Consequently the blade stresses are also quite low.

5.3 Design Methodology

The high efficiency propeller was designed using Eckhardt and Morgan's propeller design method [Ref 5-1] for a wake-adapted propeller. This method is based on the lifting line theory of Hill [Ref 5-2] along with modifications made by Lerbs [Ref 5-3] to account for the radial variation in the wake around the propeller disc. Once the propeller has been designed by lifting line theory, Eckhardt and Morgan then used Ludwieg and Ginzel's correction factors [Ref 5-4] to modify the section camber (in order to account for flow curvature effects). Then they also modified the section pitch using Lerb's h-factor method [Ref 5-5] (in order to account for viscosity, ideal angle of attack and lifting surface effect). Subsequently the blade strength is checked using the cantilever beam theory developed by Morgan [Ref 5-6].

Eckhardt and Morgan's propeller design method thus complements lifting line theory with lifting surface theory and is a fairly accurate method for designing lightly loaded propellers of moderate / high aspect ratios. Figure 5.10 shows a flowchart for the steps involved in systematically designing a propeller using Eckhardt and Morgan's method.

Flowchart for Eckhardt and Morgan's Propeller Design Method

Flowchart for Eckhard and Morgan's Method: Fig 5.5

5.4 High Efficiency Propeller Design: Steps

5.4.1 Selection of the Propeller Design Parameters

a) Vehicle Speed (V): Results from the self-propulsion tests (Chapter 4) indicated that the optimum vehicle speed at which the maximum propulsive efficiency was achieved, lay in the region of 2 to 2.5 m/s (\cong 4 to 5 knots). Also the vehicle speed for optimum energy consumption was found to be around 2 m/s (see Chapter 2). Apart from this, a study of the maximum / cruising speeds of a number of present day AUVs (see Table 2.1, Chapter 2) indicated that the maximum speeds of most AUVs lay in the region of 4 to 5 knots (\cong 2 to 2.5 m/s) and that the cruising speeds of most AUVs lay in the region of 3 to 4 knots (\cong 1.5 to 2 m/s). Based on these facts, a speed of 2 m/s (\cong 4 knots) was chosen as the design speed for the high efficiency propeller.

b) Propeller Diameter (D): The propeller was envisioned to have a large diameter, but the question of "how large was large enough" arose. Since the propeller was not a standard series propeller, therefore no charts were available for optimizing the diameter – rpm combination. Therefore, to get an idea about what diameter propeller was needed, the thrust loading coefficient (C_{th}) and the ideal efficiencies (η_i) for a number of diameters ranging from 0.15 m to 0.70 m were calculated [Table 5.2]. Based on these results, a diameter of 0.5 m was selected. This diameter while not being too large, provided an ideal efficiency of over 96 %.

<u>Table 5.2</u>

Propeller Diameter vs Ideal Efficiency

D	C _{th}	η _{IDEAL}
m		olo
0.70	0.06	98.3
0.65	0.07	98.1
0.60	0.09	97.7
0.55	0.11	97.3
0.50	0.14	96.7
0.45	0.18	95.8
0.40	0.24	94.4
0.35	0.35	92.3
0.30	0.55	89.0
0.25	0.94	83.5
0.20	1.80	74.7
0.15	4.16	61.1

c) Propeller Rotational Speed (n): Based on the results of the self-propulsion tests (Chapter 4), for the speed range of 2 to 2.5 m/s (speed range for maximum propulsive efficiency), the advance coefficient (J) was found to lie between 0.8 and 0.9. The advance coefficient J = 0.8 is an efficient operating regime for most propellers [Ref 5-20]. Therefore this was selected as the design J for the high efficiency propeller. At this value of J, for a vehicle speed of 2 m/s and a propeller diameter of 0.5 m, the propeller speed works out to be 300 rpm. The high efficiency propeller is expected to be driven by a small DC motor (0.15 kw capacity or smaller). A large variety of DC motors of this capacity / speed range are currently available in the market. Therefore propeller / DC motor matching should not be a problem.

d) Thrust (T) and Thrust Deduction Fraction (t): The amount of thrust required to propel the vehicle at a speed of 2 m/s (T = 52 N) and the value of the thrust deduction fraction (t = 0.065) were obtained from the self-propulsion test results (Chapter 4).

e) Radial Distribution of the Wake Fraction (w_x): In the absence of detailed wake survey information on "C-SCOUT", this information was extrapolated from wake survey tests carried out on a similar body of revolution [Ref 5-15].

f) Number of Blades (Z): Since the propeller was being designed for maximum efficiency, this required minimization of the cascade effect. Hence a minimum number of blades (Z = 2) were selected.

g) Blade Material: Manganese bronze was selected as the blade material owing to its high tensile and compressive strength, good machinability, corrosion resistance and a good ability to withstand fatigue failure. Other materials with similar properties, which could be used instead, include Naval Brass and Nickel Aluminium Bronze.

5.4.2 Calculation of the Non-dimensional Parameters (C_T and λ):

Using the selected propeller design parameters, the values of C_T , C_{TS} , λ , λ_S were calculated using Eqns. 5.6, 5.7, 5.8 and 5.9 [Ref 5-1] (See section 5.5.1 for the calculations):

$$C_{T} = \frac{T}{\frac{1}{2}\rho \frac{D^{2} \pi V_{A}^{2}}{4}} \dots 5.6$$

$$C_{TS} = \frac{T}{\frac{1}{2}\rho \frac{D^{2} \pi V^{2}}{4}} \dots 5.7$$

$$1 = \frac{V_{A}}{\pi nD} \dots 5.8$$

$$\lambda_{S} = \frac{V}{\pi nD} \dots 5.9$$

Since Eckhardt and Morgan's method is based on potential flow theory, it is therefore necessary to change the real fluid thrusts (C_T and C_{TS}) into ideal fluid thrusts (C_{Ti} and C_{TSi}). This was achieved using Eqns. 5.10 and 5.11 [Ref 5-1] (See section 5.5.1 for the calculations):

$$C_{Ti} = \frac{C_T}{1 - 2 \epsilon \lambda_i}$$
5.10 where $\lambda_i = x \tan \beta_i$ 5.11

Since ε and λ_i are initially unknown, it was assumed that the value of C_{Ti} is 3 % greater than C_T . Similarly the value of C_{TSi} was assumed to be 3 % greater than C_{TS} . This value of C_{TSi} is the required (design) value and is denoted as (C_{TSi}) required.

5.4.3 Determination of the Hydrodynamic Pitch Angle (β_i):

The next step involves determination of the hydrodynamic pitch angle β_i . An initial estimate of β_i was made using Lerbs's expression [Eqn. 5.12] for optimum wake-adapted propellers [Ref 5-1] (See the spreadsheet in section 5.5.1 for the calculations. Refer to the first row: "hydrodynamic pitch angle calculation – first iteration"):

$$\tan \beta_{i} = \frac{\lambda_{s} (1 - \omega_{0})^{1/2} (1 - \omega_{x})^{1/2}}{X \eta_{i}} \qquad \dots 5.12$$

The ideal efficiency (η_i) required for use in the above expression, was determined using a set of curves developed by Kramer [Ref 5-1] for optimum propellers operating in open water. Since the propeller that is being designed is a non-optimum wake-adapted propeller, therefore the value of tan β_i obtained using Lerbs's expression for optimum wake-adapted propellers [Eqn. 5.12], gives only a first estimate of the actual value of tan β_i . Using this value of tan β_i the elemental ideal thrust loading coefficient for each section was computed using Hill's expression [Eqn 5.13]:

$$dC_{TSi} / dx = \frac{8 K X}{2 V} \left(\frac{X}{\lambda} - \frac{U_t}{2V} \right) \qquad \dots 5.13$$

where $U_t / 2V$ was obtained using [Eqn 5.14] and β was obtained using [Eqn 5.15]:

$$\frac{U_{t}}{2 V} = \frac{(1 - \omega_{x}) \frac{\sin \beta_{i} \sin (\beta_{i} - \beta)}{\sin \beta}}{\sin \beta} \dots 5.14$$

$$\tan \beta = \frac{\lambda_{s} (1 - \omega_{x})}{X} \dots 5.15$$

The elemental thrust loading coefficients [Eqn. 5.21] were then integrated over the length of the blade in order to obtain the "calculated" value of the ideal thrust loading coefficient. The "required" value of C_{Tsi} was then compared with the "calculated" value of C_{Tsi} . Since there was a small difference between the two, the value of tan β_i obtained using the first estimate was corrected using the expression [Ref 5-1]:

$$(\tan \beta_i)_{\text{corrected}} = (\tan \beta_i)_{\text{previous}} \left[1 + \frac{(C_{\text{TSi}})_{\text{required}} - (C_{\text{TSi}})_{\text{calculated}}}{5(C_{\text{TSi}})_{\text{required}}} \right] \dots 5.16$$

Using this corrected value of tan β_I , the values of the ideal elemental thrust loading coefficients were again calculated and integrated over the blade length, so as to obtain $(C_{TSi})_{calculated}$. (See section 5.5.1 for the calculations. Refer to the second row: "hydrodynamic pitch angle calculation – second iteration"). The values of $(C_{TSi})_{calculated}$ and $(C_{TSi})_{required}$ were again compared and were found to converge (no difference existed between the two). At this

point (of convergence) the correct value of tan β_i and hence the hydrodynamic pitch angle β_i was obtained.

5.4.4 Calculation of the Section Chord Lengths (L):

Cavitation criterion (Keller's formula) was used to determine the minimum expanded area ratio (A_E / A_O) required, at a depth of submergence of 1 m and a water temperature of 2 ⁰C. Keller's formula states that:

$$\frac{A_{\rm E}}{A_{\rm O}} = \left[\frac{1.3 + 0.3 Z}{(P_0 - P_{\rm v}) D^2}\right] T + K_0 \qquad \dots 5.17$$

where:

$$P_{0} = P_{A} + \rho g h' = 1.1110 * 10^{5} N / m^{2}$$

$$P_{v} = 588.399 N / m^{2} (0 {}^{0}C)$$

$$Z = 2$$

$$T = 52.26 N$$

$$D = 0.5 m$$

$$K_{0} = 0.1$$

Substituting and solving, the minimum A_E / A_O needed to prevent cavitation was found to be 0.1036. Substituting the value of $A_E / A_O = 0.1036$ into Eqn. 5.18, the chord lengths at different sections were determined:

$$\frac{A_E}{A_O} = \frac{2Z}{\pi} \int_{x_h}^{1} \frac{L}{D} dx$$
.....5.18

The calculated chord lengths were then adjusted so as to obtain a final A_E/A_0 of 0.1114. (See Appendix C for the calculations).

5.4.5 Calculation of the Blade Thickness Ratio (t_x / L):

A linearly decreasing blade thickness ratio (t_x / L), varying from 15 % at the root section (x = 0.2) to 4.5 % at the section x = 0.9, was selected. Blade stresses for this thickness distribution were checked using cantilever beam theory and were found to be much lower than the yield strength of the blade material (See section 5.4.12.e and section 5.5.2 for the strength calculations).

5.4.6 Calculation of the Section Lift-Length-Diameter Coefficient (C_L L / D):

The next step involves calculation of the lift-length-diameter coefficient ($C_L L / D$) at each section. This was calculated using Hill's expression [Ref 5-1]:

$$\frac{C_{L} \cdot L}{D} = \frac{4 \pi}{Z} \frac{X K U_{t} / 2V}{X - U_{t}} \cos \beta_{i}$$

$$\frac{1}{\lambda} \frac{2V}{2V} = \frac{1}{2} \frac{1}{2} \frac{X K U_{t} / 2V}{X - U_{t}} \frac{1}{2} \frac{1}{2}$$

The section lift coefficient (C_L) was then obtained by dividing $C_L L / D$ by L / D (obtained from section 5.4.4). (See the spreadsheet in section 5.5.1 for the calculations. Refer to the fourth row: "coefficient of lift calculation").

5.4.7 Selection of the Blade Section Profile (Meanline and Thickness Distribution):

For most marine vehicles, blade section profiles of airfoil shape are the usual choice, since these profiles have a high lift / drag ratio, thus making them extremely efficient. A section profile of airfoil shape was therefore selected for the high efficiency propeller. The section profile was built by combining a NACA a=0.8 meanline with a NACA 16-015 thickness distribution [Fig 5.7]. The NACA a = 0.8 meanline is a common choice for propeller applications. It has uniform chordwise loading for 80 % of its chord length from the leading edge, followed by linear attenuation in the loading. This type of loading is quite realistic in real fluids, whereas uniform chordwise loading (a = 1.0 meanline) is not. The a = 0.8 meanline is able to develop nearly 100 % of its theoretical lift in viscous flow. The a = 1.0 meanline in comparison is able to develop only about 74 % of its theoretical lift in viscous flow. The NACA 16 series airfoils are particularly well suited for propeller applications. Their thickness distribution was developed in order to produce a shape that generated very low induced velocities and hence had minimum energy losses. These airfoils have the location of maximum thickness at 0.5 chord length.

Method of Combining the Meanline and Thickness Distribution:

The ordinates and slopes for the a = 0.8 meanline, for a design lift coefficient (C_{Li}) of unity, were obtained from Ref 5-16. The ordinates and slopes for meanlines having lift coefficients other than unity, is obtained by multiplying the values of the ordinates and slopes for the case when C_{Li} = 1, with the required lift coefficient. The ordinates for the NACA 16-015 thickness distribution were again obtained from Ref 5-16. This thickness distribution was laid out perpendicular to the meanline (See Appendix C for the calculations). The abscissas and the ordinates of points on the upper (X_U, Y_U) and lower (X_L, Y_L) faces of the section, were obtained using the following expressions [Ref 5-16]:

$$X_{U} = X' - Y_{t} \sin \theta \qquad \dots 5.20$$

$$X_{L} = X' + Y_{t} \sin \theta \qquad \dots 5.22$$

$$Y_{U} = Y_{c} + Y_{t} \cos \theta \qquad \dots 5.21$$

$$Y_{L} = Y_{c} - Y_{t} \cos \theta \qquad \dots 5.23$$

where:

X': chordwise position Y_c : meanline ordinate $\tan \theta$: meanline slope

Y_t : thickness distribution ordinate

5.4.8 Calculation of the Section Cavitation Numbers (σ_x) :

The cavitation number (σ_x) at each section was then calculated using Eqn. 5.24 [Ref 5-1]. The propeller shaft centerline was assumed to be submerged 1 m below the surface of water and the water temperature was assumed to be 2 ^oC. In Eqn. 5.24, the pressure due to the head of water (P) was determined using P = ρ g [h – x. D/2], where "h" is the shaft submergence and "P_a" is the atmospheric pressure. Eqn. 5.24 calculates the cavitation number at each section of a propeller blade which is in the top dead center (tdc) position. In the tdc position, the propeller blade experiences the least static head, coupled with a mean dynamic head.

$$\sigma_{x} = \frac{(P + P_{a}) \sin^{2} \beta}{\frac{1}{2} \rho V^{2} \cos^{2}(\beta - \beta_{i}) (1 - \omega_{x})^{2}} \dots 5.24$$

The calculated values of the section cavitation numbers were found to be considerably higher than the minimum cavitation numbers given in the incipient cavitation charts for the NACA a = 0.8 meanline and the NACA 16 thickness distribution [Ref 5-1] (See the spreadsheet in section 5.5.1 for the calculations. Refer to the third row: "cavitation number calculation"). This basically shows that the expanded area ratio (A_E / A_O) can be reduced still further. However, A_E / A_O was not reduced any further. The reason for this is that reduction in A_E / A_O leads to a corresponding reduction in the braking effect of the propeller when running at astern rotation to stop the vehicle [Ref 5-17]. Also a reduction in A_E / A_O leads to a reduction in blade strength. Since the expanded area ratio was already quite small ($A_E / A_O = 0.11$), it was not considered wise to reduce it any further.

5.4.9 Calculation of the Section Camber Ratios (m_x / L) and the Camber Corrections:

For the NACA a = 0.8 meanline, at $C_{Li} = 1$, $m_x / L = 0.0679$. As explained in section 5.4.7, since the meanline ordinates vary linearly with the coefficient of lift, therefore the camber ratio can be expressed as:

$$m_x / L = 0.0679 C_L$$
5.25

The section camber ratios were then calculated by substituting the appropriate values of the lift coefficient (C_L) into the above expression. The calculated values of the camber ratios (m_x / L) are two-dimensional values operating in rectilinear flow. They then need to be corrected for flow curvature effects. Ludwieg and Ginzel's correction factors K₁ and K₂ [Ref 5-4] were used to account for flow curvature effects. The corrected camber ratio is given by the relation:

$$(\underline{m}_{x})_{\text{corrected}} = K_{1} K_{2} \underline{m}_{x}$$
.....5.26

where the correction factor K_1 = function (λ_i , A_E/A_0) and K_2 = function (x, A_E/A_0). (See the spreadsheet in section 5.5.1 for the calculations. Refer to the fifth row: "camber correction calculation").

5.4.10 Calculation of the Section Pitch Distributions (P / D) and the Pitch Corrections:

Once the section cambers have been corrected, the section pitches need to be corrected for viscosity, for ideal angle of attack of the meanline and for change in curvature over the chord

length. Corrections for viscosity and for ideal angle of attack of the meanline are combined into an additional angle of attack α_1 , expressed as [Ref 5-1]:

$$\alpha_1 = K_3 C_L \qquad \dots 5.27$$

where " K_3 " is a correction factor that depends on the shape of the meanline.

Correction for change in curvature over the chord length is made using Lerbs h-factor method. This correction is necessary since Ludwieg and Ginzel's camber correction was based on flow curvature effects at the mid-point of the section. Experiments with propellers however showed that they were underpitched with this correction. Lerbs defined an additional angle of attack (α_2) to account for this change in curvature over the chord length. This additional angle of attack is defined as [Ref 5-1]:

$$\alpha_2 = (\alpha_b + \alpha_f) - (\alpha_i' + \alpha_0) \qquad \dots 5.28$$

where α_b is the bound vortex contribution, defined by the expression [Ref 5-1]:

$$\alpha_{b} = \frac{\sin\beta i}{2} \sum \left[\left(\frac{L}{D} \sin\mu - 0.7 \cos\beta i \cos\mu \right) \right]_{x_{h}}^{1} \frac{G}{(P/R)^{3}} dx$$

.....5.29

where :

 μ = angular position of the blade

G = Non-dimensional circulation per blade [Ref 5-1]

$$G = \frac{2 X K}{Z} \frac{U_{t}}{2V} \frac{1}{(1 - \omega_{x})} \qquad \dots 5.30$$

$$(P/R)^3 = \left[X^2 + (L/D)^2 + 0.49 - 2(L/D\cos\mu\cos\beta i + 0.7\sin\mu)X \right]^{3/2}$$

.....5.31

 α_f is the free vortex contribution, defined by the expression [Ref. 5-1]:

$$\alpha_{\rm f} = \alpha_{\rm i}' \frac{2}{1 + \cos^2 \beta_{\rm i} (2/h - 1)} \qquad \dots 5.32$$

where [Ref 5-1]:

$$\alpha_i = \beta_i - \beta \qquad \dots 5.33$$

The parameter h is a function of θ , which is defined as [Ref 5-1] :

$$\theta = \arctan\left(\begin{array}{cc} 0.7 & D \\ \sin \beta_i & L \end{array}\right) \qquad \dots 5.34$$

 α_0 is defined by the expression [Ref 5-1] :

$$\alpha_0 = K_4 C_L \qquad \dots 5.35$$

where " α_0 " is the angle of zero lift of the meanline and "K₄" is a factor that depends on the shape of the meanline [Ref 5-1].

The value of α_1 was determined using Eqn. 5.27 (See the spreadsheet in section 5.5.1 for the calculations. Refer to the sixth row: "pitch correction (α_1) calculation"). Thereafter the values of α_b , α_f , α_i and α_0 were determined using Eqns. 5.29 to 5.35. Subsequently the value of α_2 was determined using Eqn. 5.28 (See the spreadsheet in section 5.5.1 for the calculations. Refer to the seventh row: "pitch correction (α_2) calculation").

The pitch corrections α_1 and α_2 were then used in the following expression [Ref 5-1], so as to obtain the final corrected pitch distribution at each section (See the spreadsheet in section 5.5.1 for the calculations. Refer to the eighth row: "final P/D ratio calculation"):

$$P/D = \pi X \tan \left(\beta_i + \alpha_1 \right) \left(1 + \frac{\Delta P/D}{P/D} \right)$$
.....5.36

where [Ref 5-1]:

$$\frac{1 + \Delta P / D}{P / D} = \frac{\tan (\beta_{i} + \alpha_{2})_{0.7R}}{\tan (\beta_{i})_{0.7R}}$$
.....5.37

5.4.11 Calculation of the Thrust Loading Coefficient (C_{TS}), Power Coefficient (C_{PS}), Delivered Power (P_d) and Propeller Efficiency (η_b):

Subsequently the thrust loading coefficient (C_{TS}) & the power coefficient (C_{PS}) of the propeller (in a real fluid) were calculated using the expressions [Ref 5-1]:

where [Ref 5-1]:

$$\varepsilon \cong \underline{0.008}_{C_L} \qquad \dots 5.40$$

The delivered power (P_d) required by the propeller was then determined using [Ref 5-1]:

$$P_{d} = \frac{1}{2} \rho \pi R^{2} V^{3} C_{PS} \qquad \dots 5.41$$

The efficiency (η_b) of the propeller was subsequently determined using [Ref 5-1]:

$$\eta_b = C_{TS} / C_{PS} \times 100$$
 %

(See the spreadsheet in section 5.5.1 for the calculations. Refer to the ninth row: "final thrust coefficient / power coefficient calculation").

5.4.12 Verification of the Blade Strength Using Cantilever Beam Theory:

The blade stresses at the root section (x = 0.2) were then calculated using cantilever beam theory [Ref 5.6]. The principal stresses acting on the blade section are the bending stresses due to propeller thrust and propeller torque and the tensile stress due to centrifugal force. Since the high efficiency propeller has no skew or rake, therefore the stress components due to centrifugal bending and due to the out of plane stresses, are very small and can therefore be neglected.

a) Calculation of the Bending Moments M_{X0} and M_{Y0} :

First of all, the bending moments due to thrust (M_T) and torque (M_Q) were calculated using the expressions [Ref 5.6] (See the spreadsheet in section 5.5.2 for the calculations):

$$M_{T} = \frac{1}{2} \rho \frac{\pi}{Z} R^{3} V^{2} \int_{x_{h}}^{1} (x - x_{0}) (1 - \epsilon \tan \beta_{i}) \frac{dC_{TSi}}{dx} dx \qquad \dots 5.43$$

$$M_{Q} = \frac{1}{2} \rho \frac{\pi}{Z} R^{3} V^{2} \int_{x_{h}}^{1} (x - x_{0}) (\tan \beta_{i} + \varepsilon) \frac{dC_{TSi}}{dx} dx \dots 5.44$$

where " x_0 " is the non-dimensional radius of the section being analyzed.

The moments M_T and M_Q were then resolved into two components [Fig 5.9]: M_{X0} about an axis parallel to the nose-tail line and passing through the centroid of the blade section; M_{Y0} about an axis perpendicular to the nose-tail line and passing through the centroid of the blade section.

The following expressions were used for obtaining M_{X0} and M_{Y0} [Ref 5.6]:

$$M_{X0} = M_T \cos \phi + M_Q \sin \phi \qquad \dots 5.45$$
$$M_{Y0} = M_T \sin \phi - M_Q \cos \phi \qquad \dots 5.46$$

where ϕ is the geometric pitch angle of the blade section, defined as [Ref 5.6]:

$$\phi = \arctan\left[\frac{1}{x \pi} \frac{P}{D}\right] \qquad \dots 5.47$$

b) Calculation of the Moment of Inertias (I_{X0} and I_{Y0}) and the Position of the Centroid (X_{CG} and Y_{CG}) of the Root Section:

For the root section, the position of the centroid (X_{CG} and Y_{CG}) and the moments of inertia about an axis parallel to the nose-tail line and passing through the centroid of the blade section (I_{X0}) and about an axis perpendicular to the nose-tail line and passing through the centroid of the blade section (I_{Y0}), were calculated using Simpson's rule (See the spreadsheet in Appendix C for the calculations) [Fig 5.8].

c) Calculation of the Blade Mass (m) and the Blade Longitudinal Center of Gravity (X_c):

The blade mass was then calculated using the expression [Ref 5.11] (See the spreadsheet in Appendix C for the calculations):

$$m = \rho_0 \int_{\mathbf{r}_h}^{\mathbf{R}} A_x \, d\mathbf{r} \qquad \dots 5.48$$

where:

- r_h : Hub radius
- R : Tip radius
- A_x : Blade section area
- ρ_0 : Density of manganese bronze (blade material)

The blade mass calculated using the above expression was increased by a factor of 2.5 % in order to account for the additional mass of the blade fillets [Ref 5-11]. Blade section area (A_x) was calculated from positions x = 0.2 to x = 1.0 using the following expression[Ref 5.11]:

$$A_{x} = \int_{0}^{L} t \, dl \qquad \dots 5.49$$

where:

t : Blade section thickness

L : Chord length

The position of the longitudinal center of gravity (X_c) of one blade was then calculated using the expression [Ref 5.11]:

X. =	$\int_{x_h}^{1} A_x x dx$
X _c =	$\int_{x_h}^{1} A_x dx$

.....5.50

d) Calculation of the Centrifugal Force (F_C) Acting on One Blade:

The centrifugal force acting on one blade was then calculated using the expression [Ref 5.11] (See the spreadsheet in section 5.5.2 for the calculations):

$$F_{\rm C} = 2 \ \pi^2 \ {\rm m} \ {\rm X_c} \ {\rm D} \ {\rm n}^2$$
5.51

where:

m : Blade mass

 X_c : Blade LCG

D : Propeller diameter

n : Propeller speed (rps)

e) Calculation of the Stresses at the Root Section:

The total stresses acting on the root section were then calculated at three critical points on the root section – at the leading edge ($\sigma_{L.E}$), at the trailing edge ($\sigma_{T.E}$) and at the point of maximum thickness on the suction back ($\sigma_{S.B}$), using the following expressions [Fig 5.9] (See the spreadsheet in section 5.5.2 for the calculations) [Ref 5.6]:

$$\sigma_{L.E} = \frac{Y_1 M_{X0}}{I_{X0}} - \frac{X_1 M_{Y0}}{I_{Y0}} + \frac{F_c}{A_{x=0.2}}$$
.....5.52

٦

٦

$$\sigma_{T.E} = \frac{Y_2 M_{X0}}{I_{X0}} + \frac{X_2 M_{Y0}}{I_{Y0}} + \frac{F_c}{A_{x=0.2}} \qquad \dots 5.53$$

$$\sigma_{S,B} = -\frac{Y_3 M_{X0}}{I_{X0}} + \frac{X_3 M_{Y0}}{I_{Y0}} + \frac{F_c}{A_{x=0.2}}$$
.....5.54

where:

- + ve sign : Tensile stress
- ve sign : Compressive stress
- X_1 : Distance from the neutral axis to the leading edge (along the x axis) [Fig 5.9]
- X_2 : Distance from the neutral axis to the trailing edge (along the x axis) [Fig 5.9]
- X₃ : Distance from the neutral axis to the point of max. thickness on the suction back (along the x axis) [Fig 5.9]
- Y₁: Distance from the neutral axis to the leading edge (along the y axis) [Fig 5.9]
- Y₂: Distance from the neutral axis to the trailing edge (along the y axis) [Fig 5.9]
- Y₃: Distance from the neutral axis to the point of max. thickness on the suction back (along the y axis) [Fig 5.9]
- A $_{x=0.2}$: Blade section area at section x = 0.2

The magnitudes of the calculated stresses were as follows:

 $\sigma_{L.E} = 6.2 \text{ MPa}$ (Tensile)

 $\sigma_{T.E} = 7.3 \text{ MPa}$ (Tensile)

 $\sigma_{S.B} = 8.3 \text{ MPa}$ (Compressive)

These stresses were much lower than the yield strength (138 MPa), the ultimate tensile (414 MPa) and compressive strengths (159 MPa) of manganese bronze.
f) Calculation of the Blade Tip Deflection:

The blade tip deflections δ_x (about the X0 axis) and δ_y (about the Y0 axis) were calculated using beam theory (See the spreadsheet in section 5.5.2 for the calculations):

$$\delta_{x} = \frac{M_{X0} L_{0}^{2}}{2 E I_{X0}} \qquad \dots 5.55$$

$$\delta_{y} = \frac{M_{Y0} L_{0}^{2}}{2 E I_{Y0}} \qquad \dots 5.56$$

where:

- E : Modulus of elasticity of blade material (Manganese Bronze)
- L₀: Blade length

The magnitudes of the deflections were:

$$\delta_x = 0.38 \text{ mm}$$

 $\delta_y = 0.004 \text{ mm}$

Fig. 5.6

Blade Section Profile

Root Section (X = 0.2)

Moment of Inertia Calculation

Blade Root Section (X = 0.2)

Fig. 5.9

5.5 High Efficiency Propeller Design: Calculations

5.5.1 Propeller Design Calculations

					Non-Dimensional Parameters (Usin	g Speed of Advance)
Vehicle Speed (V)	2.00	m/s				
Speed of Advance (V _a)	1.94	m/s			Advance Coefficient (J)	0.7762
Thrust Ded. Fraction (t)	0.0653				Advance Ratio (λ)	0.2470
Wake Fraction (W _e)	0.0297				Thrust Coefficient (C _T)	0.1413
					Ideal Thrust Coefficient (C $_{Ti}$)	0.1455
					Kramer's Ideal Efficiency (η_i)	0.9400
Propeller Speed (N)	300	rpm	5.00	rps		
Propeller Dia. (D)	0.50	m			Non-Dimensional Parameters (Usin	g Vehicle Speed)
Number of Blades (Z)	2					
Propeller Thrust	52.26	N			Advance Coefficient (J _s)	0.8000
Prop.Shaft Submergence	1.00	m			Advance Ratio (λ_s)	0.2545
					Thrust Coefficient (C _{TS})	0.1330
					Ideal Thrust Coefficient (C $_{\text{TS}i})$	0.1370

<u>Hydrodynamic Pitch Angle (β_i) Calculation - First Iteration</u> (Row 1)

X	1 - w _x	tan β	β	sin β	tan β i	βi	$\sin \beta_i$	$\sin(\beta_i - \beta)$	1/λ _i	к	U ₁ /2V	dC _{TS i}	S.M	Product
0.2	0.5835	0.7426	0.6387	0.5962	1.0187	0.7947	0.7136	0.1553	4.9080	1.0000	0.1085	0.1175	1	0.1175
0.3	0.7005	0.5943	0.5362	0.5109	0.7441	0.6397	0.5970	0.1033	4.4794	0.9695	0.0846	0.2153	4	0.8611
0.4	0.7987	0.5083	0.4702	0.4531	0.5960	0.5374	0.5119	0.0672	4.1949	0.9381	0.0606	0.2749	2	0.5497
0.5	0.8782	0.4471	0.4204	0.4081	0.4999	0.4636	0.4472	0.0432	4.0005	0.9011	0.0415	0.2878	4	1.1512
0.6	0.9390	0.3983	0.3791	0.3701	0.4308	0.4068	0.3956	0.0277	3.8689	0.8529	0.0278	0.2650	2	0.5299
0.7	0.9703	0.3528	0.3392	0.3327	0.3754	0.3591	0.3514	0.0199	3.8059	0.7804	0.0204	0.2431	4	0.9723
0.8	0.9878	0.3143	0.3045	0.2998	0.3314	0.3200	0.3146	0.0155	3.7720	0.6712	0.0160	0.2154	2	0.4307
0.9	1.0000	0.2828	0.2756	0.2722	0.2964	0.2881	0.2842	0.0125	3.7489	0.5093	0.0131	0.1686	4	0.6745
1.0	1.0000	0.2545	0.2493	0.2467	0.2667	0.2607	0.2577	0.0114	3.7489	0.0000	0.0119	0.0000	1	0.0000
												Integrated	C _{TS i}	0.1762
												Required	C _{TS i}	0.1370

<u>Hydrodynamic Pitch Angle (β_i) Calculation - Second Iteration</u> (Row 2)

Correction Factor for β_i

0.98215

x	1 - w _x	tan β	β	sin β	tan β i	βi	sin β,	$\sin(\beta_i - \beta)$	1/λ,	к	U _t /2V	dC _{TS i}	S.M	Product
0.2	0.5835	0.7426	0.6387	0.5962	1.0006	0.7857	0.7073	0.1464	4.9972	1.0000	0.1013	0.1110	1	0.1110
0.3	0.7005	0.5943	0.5362	0.5109	0.7309	0.6311	0.5901	0.0948	4.5608	0.9700	0.0767	0.1967	4	0.7866
0.4	0.7987	0.5083	0.4702	0.4531	0.5853	0.5296	0.5052	0.0593	4.2711	0.9404	0.0528	0.2413	2	0.4826
0.5	0.8782	0.4471	0.4204	0.4081	0.4910	0.4564	0.4408	0.0360	4.0732	0.9053	0.0341	0.2386	4	0.9545
0.6	0.9390	0.3983	0.3791	0.3701	0.4231	0.4003	0.3897	0.0212	3.9392	0.8584	0.0209	0.2016	2	0.4031
0.7	0.9703	0.3528	0.3392	0.3327	0.3687	0.3532	0.3459	0.0140	3.8751	0.7867	0.0141	0.1702	4	0.6808
0.8	0.9878	0.3143	0.3045	0.2998	0.3255	0.3147	0.3095	0.0101	3.8406	0.6777	0.0103	0.1404	2	0.2808
0.9	1.0000	0.2828	0.2756	0.2722	0.2911	0.2833	0.2795	0.0076	3.8171	0.5147	0.0078	0.1025	4	0.4099
1.0	1.0000	0.2545	0.2493	0.2467	0.2620	0.2562	0.2534	0.0070	3.8171	0.0000	0.0072	0.0000	1	0.0000
												Integrated	C TS i	0.1370

Required C TS i 0.1370

Cavitation Number Calculation (Row 3)

×	P+P _A	1 - w _x	sin ² β	$\cos^2(\beta - \beta_i)$	σ	0.8σ
0.2	110616.32	0.5835	0.3554	0.9786	59.0124	47.2100
0.3	110371.15	0.7005	0.2610	0.9910	29.6254	23.7003
0.4	110125.99	0.7987	0.2053	0.9965	17.7830	14.2264
0.5	109880.82	0.8782	0.1666	0.9987	11.8825	9.5060
0.6	109635.65	0.9390	0.1369	0.9996	8.5189	6.8151
0.7	109390.49	0.9703	0.1107	0.9998	6.4330	5.1464
0.8	109145.32	0.9878	0.0899	0.9999	5.0287	4.0230
0.9	108900.15	1.0000	0.0741	0.9999	4.0332	3.2266
1.0	108654.99	1.0000	0.0609	1.0000	3.3060	2.6448

Coefficient of Lift Calculation (Row 4)

x	κ	U ₁ /2V	cosβi	C _L *L/D	L/D	CL
0.2	1.0000	0.1013	0.7069	0.1316	0.1000	1.3161
0.3	0.9700	0.0767	0.8074	0.1027	0.1100	0.9340
0.4	0.9404	0.0528	0.8630	0.0709	0.1200	0.5912
0.5	0.9053	0.0341	0.8976	0.0452	0.1250	0.3614
0.6	0.8584	0.0209	0.9210	0.0267	0.1275	0.2096
0.7	0.7867	0.0141	0.9383	0.0168	0.1250	0.1341
0.8	0.6777	0.0103	0.9509	0.0107	0.1150	0.0930
0.9	0.5147	0.0078	0.9601	0.0062	0.0900	0.0690
1.0	0.0000	0.0072	0.9674	0.0000	0.0000	0.0000

Camber Correction Calculation (Row 5)

		Initial				Corrected
x	CL	m _x /L	λι	k1	k ₂	m _x /L
0.2	1.3161	0.0894	0.2001	0.86	1.00	0.0769
0.3	0.9340	0.0634	0.2193	0.86	1.10	0.0600
0.4	0.5912	0.0401	0.2341	0.87	1.30	0.0454
0.5	0.3614	0.0245	0.2455	0.88	1.50	0.0324
0.6	0.2096	0.0142	0.2539	0.90	1.75	0.0224
0.7	0.1341	0.0091	0.2581	0.90	1.80	0.0148
0.8	0.0930	0.0063	0.2604	0.91	1.80	0.0103
0.9	0.0690	0.0047	0.2620	0.91	1.80	0.0077
1.0	0.0000	0.0000	0.2620	0.00	0.00	0.0000

(m_x / L) $_{Corrected}$ = (m_x / L) $_{Initial}$ * k_1 * k_2

<u>Pitch Correction (α_1) Calculation</u> (Row 6)

					Initial
х	β _i	α ₁	$\beta_i + \alpha_1$	$\tan(\beta_i + \alpha_1)$	P/D
0.2	0.7857	0.0264	0.8121	1.0549	0.6631
0.3	0.6311	0.0187	0.6499	0.7600	0.7163
0.4	0.5296	0.0119	0.5414	0.6014	0.7557
0.5	0.4564	0.0073	0.4637	0.5001	0.7855
0.6	0.4003	0.0042	0.4045	0.4281	0.8069
0.7	0.3532	0.0027	0.3559	0.3717	0.8175
0.8	0.3147	0.0019	0.3165	0.3275	0.8232
0.9	0.2833	0.0014	0.2846	0.2926	0.8273
1.0	0.2562	0.0000	0.2562	0.2620	0.8230

 $(P/D)_{Initial} = \pi * x * tan (\beta_i + \alpha_1)$

Pitch Correction (a 2) Calculation (Row 7)

Blade 1

μ	90°	1.5714 rads	
cos µ	0		
sin µ	1		
$\cos \beta_i$	0.9383)	
sin β i	0.3459	{ at X = 0.7])
L/D	0.1250	J	
А	0.0217		

x	$(P/R)^3$	$G/(P/R)^3$	S. M.	Product
0.2	0.1369	0.2537	1	0.2537
0.3	0.0736	0.4326	4	1.7303
0.4	0.0344	0.7237	2	1.4475
0.5	0.0131	1.3386	4	5.3545
0.6	0.0041	2.7854	2	5.5708
0.7	0.0020	4.0626	4	16.2503
0.8	0.0041	1.3731	2	2.7461
0.9	0.0132	0.2758	4	1.1031
1.0	0.0344	0.0000	11	0.0000
			Integral	1.1485

(α_b) _{Blade 1}

0.0249

Blade 2

μ	270°	4.7143 rads
cos μ	0	
sin μ	-1	
$\cos \beta_i$	0.9383)
sinβ _i	0.3459	} (atX=0.7)
L/D	0.1250	J
Α	-0.0218	

x	$(P/R)^3$	$G/(P/R)^3$	S. M.	Product
0.2	0.7501	0.0463	1	0.0463
0.3	1.0233	0.0311	4	0.1245
0.4	1.3566	0.0183	2	0.0367
0.5	1.7558	0.0100	4	0.0401
0.6	2.2270	0.0052	2	0.0103
0.7	2.7762	0.0029	4	0.0115
0.8	3.4094	0.0017	2	0.0033
0.9	4.1326	0.0009	4	0.0035
1.0	4.9518	0.0000	1	0.0000
			Integral	0.0092

(α_b)_{Blade 2} -0.0002

- $\alpha_{b} = (\alpha_{b})_{Blade 1} + (\alpha_{b})_{Blade 2} = 0.0247$
- α_i 0.0140
- α_o 0.0186
- φ **86.4654**
- h 1.1

α_f 0.0163

 $\alpha_2 = \alpha_b + \alpha_f - \alpha_i - \alpha_o = 0.0083$

Pitch Correction = [tan (β_i + α_2)] _{0.7R} / [tan (β_i)] _{0.7R}

1.0258

Final P/D Ratio Calculation (Row 8)

	Corrected
x	P/D
0.2	0.68
0.3	0.73
0.4	0.78
0.5	0.81
0.6	0.83
0.7	0.84
0.8	0.84
0.9	0.85
1.0	0.84

(P/D)_{Corrected} = (P/D)_{Initial} * Pitch Correction

Final Thrust Coefficient Calculation (Row 9)

3	1-ε tan β _i	dC _{TS i} / dx * dx	SM	Product
0.0061	0.9939	0.1110	1	0.1103
0.0086	0.9937	0.1967	4	0.7817
0.0135	0.9921	0.2413	2	0.4787
0.0221	0.9891	0.2386	4	0.9441
0.0382	0.9839	0.2016	2	0.3966
0.0597	0.9780	0.1702	4	0.6658
0.0861	0.9720	0.1404	2	0.2729
0.1159	0.9663	0.1025	4	0.3961
0.0000	0.0000	0.0000	1	0.0000
			CTS	0.1349

Propeller Efficiency	η _ь	92.32	%
Propeller Thrust	т	52.99	N
Propeller Torque	Q	3.65	N - m
Delivered Power	P d	114.79	Watt

Final Power Coefficient Calculation (Row 10)

x/λ _s	$\tan \beta_i + \varepsilon$	dC _{TS i} / dx * dx	SM	Product
0.7857	1.0066	0.1110	1	0.0878
1.1786	0.7394	0.1967	4	0.6855
1.5714	0.5989	0.2413	2	0.4541
1.9643	0.5132	0.2386	4	0.9621
2.3571	0.4613	0.2016	2	0.4383
2.7500	0.4283	0.1702	4	0.8019
3.1429	0.4115	0.1404	2	0.3632
3.5357	0.4070	0.1025	4	0.5899
3.9286	0.2620	0.0000	1	0.0000
			CP	0.1461

% Difference C _{TS (calc.)} &	C _{TS} (design)	1.3715	%
% Difference C _{TSi} & C _{TS}		1.5564	%

Final Parameters for the Designed Propeller

Propeller Diameter	D	0.50	m
Number of Blades	Z	2	
Expanded Area Ratio	A _E / A _O	0.11	
Speed of Rotation	n	300	rpm
Vehicle Speed	v	2.01	m/s
Propeller Thrust	т	52.99	N
Propeller Torque	Q	3.65	N - m

Delivered Power	P _d	114.79	Watt
Effective Power	P _e	94.17	Watt
Propeller Efficiency	η _. ,	92.32	%
Propulsive Efficiency	η _d	82.04	%

x	P/D	L/D	t _x /D	t _x /L	m _x /L
0.2	0.68	0.1000	0.0150	0.1500	0.0769
0.3	0.73	0.1100	0.0149	0.1350	0.0600
0.4	0.78	0.1200	0.0144	0.1200	0.0454
0.5	0.81	0.1250	0.0131	0.1050	0.0324
0.6	0.83	0.1275	0.0115	0.0900	0.0224
0.7	0.84	0.1250	0.0094	0.0750	0.0148
0.8	0.84	0.1150	0.0069	0.0600	0.0103
0.9	0.85	0.0900	0.0041	0.0450	0.0077
1.0	0.84	0.0000	0.0030	0.0000	0.0000

- Pitch Ρ D
 - Diameter
- L Chord Length
- Maximum Section Thickness t _x
- m _x Maximum Section Camber

5.5.2 Blade Root Section Stress Calculation

<u>Moment due to Thrust</u> (M_T)

Х	X - X ₀	1 - ε tan β _i	dC _{TSi} /dx * dx	SM	Product
0.2	0	0.9940	0.1128	1	0.0000
0.3	0.1	0.9937	0.1967	4	0.0782
0.4	0.2	0.9921	0.2413	2	0.0957
0.5	0.3	0.9891	0.2386	4	0.2832
0.6	0.4	0.9839	0.2016	2	0.1586
0.7	0.5	0.9780	0.1702	4	0.3329
0.8	0.6	0.9720	0.1404	2	0.1638
0.9	0.7	0.9663	0.1025	4	0.2773
1	0.8	0.0000	0.0000	1	0.0000

N-m

X	X - X o	$\tan \beta_i + \varepsilon$	dC _{TSi} /dx * dx	SM	Product
0.2	0	1.0065	0.1128	1	0.0000
0.3	0.1	0.7394	0.1967	4	0.0582
0.4	0.2	0.5989	0.2413	2	0.0578
0.5	0.3	0.5132	0.2386	4	0.1469
0.6	0.4	0.4613	0.2016	2	0.0744
0.7	0.5	0.4283	0.1702	4	0.1458
0.8	0.6	0.4115	0.1404	2	0.0693
0.9	0.7	0.4070	0.1025	4	0.1168
1	0.8	0.2620	0.0000	1	0.0000

<u>Moment due to Torque</u> (M_Q)

In	tegral	0.0223	
[Mq	1.0307	N-r

m

Geometric Pitch Angle	Φ	0.8320	Radians	47.6673	Degrees
	$\cos \Phi$	0.6734			
	$\sin \Phi$	0.7392			
Resultant Moment about the X Axis	M _{X 0}	2.2033	N-m	(M _{X 0} = M _{T *} cos	$\Phi + \mathbf{M}_{Q} \cdot \sin \Phi$)
Resultant Moment about the Y Axis	M _{Y0}	0.8882	N-m	(M _{Y 0} = M _T . sin	$\Phi - M_{Q} \cdot \cos \Phi$)
Moment of Inertia about the X Axis	I _{X0}	1.20E-09	m⁴		
Moment of Inertia about the Y Axis	l _{Y 0}	3.91E-08	m⁴		
Blade L.C.G	X _c	0.5065			
Blade Mass (I blade)	m	0.3756	Kg		
Blade Profile Area at X = 0.2	A _{x = 0.2}	276.0935	mm²		
Centrifugal Force	F _c	46.9732	Ν	($F_c = 2 * \pi^2 * m$	* x _c * D * n ²)
Distance from the N.A to the Pressure Face (at the L.E / T.E)	$\mathbf{Y}_1 = \mathbf{Y}_2$	3.5867	mm		
Distance from the N.A to the Suction Back	Y ₃	4.6268	mm		
Distance from the N.A to the Leading Edge	X ₁	24.4766	mm		
Distance from the N.A to the Trailing Edge	X ₂	25.5234	mm		
Distance from the N.A to the Max. Thickness Section	X ₃	0.5234	mm		

Calculated Stress at the Blade Root Section (X = 0.2)

5.6 **Conclusions**

A high efficiency propeller was designed (calculations shown in Section 5.5) using the procedure described in Section 5.4. Since the high efficiency propeller leads to a gain of 20 % in terms of propulsive efficiency and a savings of 38 Watt in terms of energy consumption, it provides an attractive solution to the problem of minimizing energy consumption and maximizing propulsive efficiency. Long term benefits of this propeller include increased vehicle endurance and reduced operating costs.

Chapter 6

Conclusions and Recommendations

6.1 <u>Conclusions</u>

With the introduction of high energy density systems and compact high power computers, AUV technology has finally started coming of age. The brains (compact high power computers) and the brawn (high energy density systems) that AUVs lacked for a long time are finally becoming available commercially, thus making AUV technology commercially viable. The next decade or so promises to be an exciting time for AUV technology.

Selecting the best high energy density system for an AUV is a complex techno-economic problem. There are quite a few high energy density systems available in the market today for AUVs. After doing a comparative study of a number of high energy density systems available in the market today, the author selected four systems that could possibly be used on "C-SCOUT". Two of these systems (Lithium-ion Polymer batteries and Silver Zinc batteries) are immediate solutions. The other two systems (Aluminium Oxygen semi-fuel cells and PEM fuel cells) are long term solutions. These systems have energy densities that are much higher than those offered by Lithium-ion Polymer batteries and Silver Zinc batteries. However, the technology still needs some research and development in order to solve critical issues like the onboard storage / generation of hydrogen etc.

The benefit of using a high energy density system is an improvement in the endurance of the vehicle. For example if the vehicle travels at a speed of 2 m/s and has a hotel load of 250 Watt, then the use of PEM fuel cells leads to an endurance limit that is nine times that obtained using Lead Acid batteries. Similarly the use of Aluminium Oxygen semi-fuel cells,

Lithium-ion Polymer batteries and Silver Zinc batteries leads to an endurance limit that is eight, four and three times respectively, that obtained using Lead Acid batteries. With a hotel load of 250 Watt, the current endurance limit of "C-SCOUT" is a distance of 36.5 km. This goes up to 320 km, 277 km, 139 km and 117 km if PEM fuel cells, Aluminium Oxygen semi-fuel cells, Lithium-ion Polymer batteries and Silver Zinc batteries respectively, are used instead of the Lead Acid battery.

Resistance, load-varying self-propulsion and bollard pull tests were conducted on "C-SCOUT" by the author, at the towing tank of the Ocean Engineering Research Center at Memorial University of Newfoundland in December 2002. A bare hull version of the "C-SCOUT" vehicle was outfitted with a propulsion system for these tests. The results from these tests provided a wealth of information about the performance of the propulsion system over a range of vehicle speeds and propeller loadings.

The maximum propulsive efficiency of the propulsion system (without the duct fitted on) was found to be around 53 %. This increased to around 68 % once the duct was fitted on. The tow force – thrust plots [Fig 4.28 and Fig 4.29] were found to be linear. Linearity of these plots indicates that the thrust deduction fraction (t^*) is essentially constant over a range of propeller loadings. The average value of the thrust deduction fraction mas found to be equal to 0.06 (without the duct fitted on) and 0.04 (with the duct fitted on).

The vehicle resistance in the ahead and astern directions were found to be close to each other at lower speeds. At higher speeds, the difference in the ahead and astern resistance initially increased and then stabilized to a more or less constant difference of around 10.7 %. At vehicle speeds below 2 m/s, the vehicle resistance was found to be predominantly viscous. At

speeds above 2 m/s, a significant amount of wave-making resistance was noted. Results obtained from the resistance and propulsion tests will be used for optimizing the propulsion system and the hull form of the "C-SCOUT" vehicle.

A high efficiency propeller was designed for "C-SCOUT" using Eckhardt and Morgan's propeller design method. This propeller is essentially a large diameter (0.5 m), slow-turning (300 rpm), slender, fine-bladed ($t_x/D = 0.0094$ at 0.7R), wake-adapted, single-screw propeller with two blades. The propeller blades have a low expanded area ratio ($A_E/A_0 = 0.11$). The blade section profile consists of a superposition of a NACA a=0.8 meanline with a NACA 16-015 thickness distribution. The propeller has a propulsive efficiency of 82 %. At a forward speed of 2 m/s, use of this propeller instead of the current Tecnadyne 1020 thruster, will lead to a gain of 20 % in terms of propulsive efficiency and a savings of 38 Watt in terms of energy consumption.

6.2 <u>Recommendations</u>

At the end of his thesis work, the author would like to make the following recommendations for the "C-SCOUT" project:

- In order to improve vehicle endurance, the low energy density Lead Acid batteries that are being currently used to power "C-SCOUT", need to be replaced with a high energy density system.
- The optimum operating speed of the vehicle from energy considerations is 2 m/s (3.8 knots). It is therefore recommended that the vehicle be run at or near this speed, while cruising on a mission at sea.
- For future in-water captive-model tests on "C-SCOUT" in a towing tank, it is essential that a braking mechanism be provided, in order to prevent forces of large magnitude from acting on the load cells during the acceleration / deceleration periods of the tests.
- In order to preclude wave-making effects during future in-water tests, it is recommended that the vehicle be submerged at least five body diameters (2 meters) below the surface of water.
- In order to achieve further improvements in vehicle endurance, it is recommended that the current Tecnadyne 1020 thruster be replaced with a high efficiency propulsion system.

REFERENCES

Chapter 1

- 1-1 Chance, T., Kleiner, A. and Northcutt., J., "The Impact of Autonomous Underwater Vehicles Upon Deepwater Survey Costs", C&C Technologies Inc., Louisiana, USA. (http://www.cctechnol.com)
- 1-2 Werneli, R. L., "AUVs A Technology Whose Time Has Come", Proceedings Oceans 2000, IEEE, USA.
- 1-3 Taylor, S., Simms, M., O'Young, S. and Bose, N., "Distributed Embedded Modular Architecture (DEMA) for Autonomous Underwater Vehicle (AUV) Control Systems". Proceedings UUST'03, Durham, New Hampshire, August 2003.
- 1-4 Curtis, T.L., Perrault, D.E., Williams, C.D., Bose, N., "Maneuvering of the C-SCOUT AUV", Proceedings of the 26th ATTC, July 2001, New York, USA.

Chapter 2

- 2-1 Hawley, J.G., Nuckols, M.L, Reader G.T., Potter, I.J., "Design Aspects of Underwater Intervention Systems", Kendall / Hunt Publishing Company, Iowa, USA, 1996.
- 2-2 Aoki, T., Shimura, T., "Fuel Cell for Long Range AUV", Sea Technology, August 1997.
- 2-3 Hawley, J.G., M.L, Reader G.T., Walker, G., "Power Plant Development for Underwater Naval Vehicles Upto 3000t Displacement", Trans. I.Mar.E., vol 102, pp 345-362.
- 2-4 Morris, R.A., "Underwater Power Supplies", Underwater Systems Design, July 1990.
- 2-5 Kordesch, K., Simander, G., "Fuel Cells and their Applications", VCH Publishers, New York, USA, 1996.
- 2-6 DeRonck, H.J., "Fuel Cell Power Systems for Submersibles", Proceedings of Oceans 1994, IEEE, USA.
- 2-7 www.valence.com
- 2-8 www.ulbi.com
- 2-9 www.fct.ca
- 2-10 www.yardney.com

2-11 www.saft.fr

- 2-12 "Undersea Vehicles and National Needs", Committee on Undersea Vehicles and National Needs, National Research Council, Washington, D.C, USA, National Academy Press, 1996
- 2-13 Buchmann, I., "Batteries in a Portable World", Cadex Electronics Inc., May 2001 (http://www.buchmann.ca)
- 2-14 Theraja, B.L and Theraja, A.K, "A Text Book of Electrical Technology", S. Chand and Company Ltd., New Delhi, India.

Chapter 3

- 3-1 Schmiechen M., "Wake and Thrust Deduction from Quasisteady Ship Model Propulsion Tests Alone", VWS Report No. 1100/87, 1987, Germany
- 3-2 Kracht, A.M, "Load Variation Tests Improve the Reliability of Ship Power Predicitions Based on Model Test Results", Schiffstechnik 38, 1991, Germany
- 3-3 Holtrop, J., "Extrapolation of Propulsion Tests for Ships with Appendages and Complex Propulsors", Marine Technology, SNAME, Vol 38, No. 3, July 2001, USA
- 3-4 Molloy, S., "Ship Powering Prediction Using Load Varying Self-Propulsion Tests", Masters Degree Thesis, 2001, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada
- 3-5 Bose, N. and Molloy, S., "Powering Prediction for Ships with Compound Propulsors", International Conference on Ocean Engineering, IIT Madras, 2001, India
- 3-6 Van Manen, J.D and Van Oossanen P., "Propulsion", Principles of Naval Architecture, SNAME, 1988, USA
- 3-7 Harvald, Sv. Aa., "Resistance and Propulsion of Ships", Krieger Publishing Company, 1992
- 3-8 Schlichting, H., "Boundary Layer Theory", Mc Graw Hill, 1987
- 3-8 Grigson, C., "A Planar Friction Algorithm and its Use in Analyzing Hull Resistance", Trans. RINA, 1999, London
- 3-9 Iannone, L., "Power Performance Analysis and Full Scale Predictions without Towing Tests", Proceedings of the NAV and HSMV International Conference, Sorrento, 1997
- 3-10 Murdey, D.C., NRC Institute for Marine Dynamics Standard Test Methods: "Resistance In Open Water", 42-8595-S/TM-1, version 5, 09 March 2001; "Propeller Open Water

Tests", 42-8595-S/TM-2, version 4, 20 February 2002; "Model Propulsion in Open Water", 42- 8595- S/TM-3, version 4, 06 March 2002; St. John's, Newfoundland, Canada.

Chapter 4

- 4-1 Murdey, D.C., NRC Institute for Marine Dynamics Standard Test Methods: "Resistance in Open Water", 42-8595-S/TM-1, version 5, 09 March 2001; "Propeller Open Water Tests", 42-8595-S/TM-2, version 4, 20 February 2002; "Model Propulsion in Open Water", 42- 8595- S/TM-3, version 4, 06 March 2002; St. John's, Newfoundland, Canada.
- 4-2 Kracht, A.M, "Load Variation Tests Improve the Reliability of Ship Power Predictions Based on Model Test Results", Schiffstechnik 38, 1991, Germany.
- 4-3 Holtrop, J., "Extrapolation of Propulsion Tests for Ships with Appendages and Complex Propulsors", Marine Technology, SNAME, Vol. 38, No. 3, July 2001, USA.
- 4-4 Hoerner, S.F., "Fluid Dynamic Drag", Published by the Author, 1965.
- 4-5 ITTC Recommended Procedure 7.5-02-03-01.2 Rev.00, "Propulsion, Performance Uncertainty Analysis, Example for Propulsion Test".
- 4-6 ITTC Recommended Procedure 7.5-02-02 Rev.01, "Testing and Extrapolation Methods, Resistance Uncertainty Analysis, Example for Resistance Test".

Chapter 5

- 5-1 Eckhardt M.K and Morgan W.B, "A Propeller Design Method", Trans. SNAME, Vol 63, 1955
- 5-2 Hill J.G, "The Design of Propellers", Trans. SNAME, Vol 57, 1949
- 5-3 Lerbs H.W, "Moderately Loaded Propellers With a Finite Number of Blades and an Arbitrary Distribution of Circulation", Trans. SNAME, Vol 60, 1952
- 5-4 Ludwieg H. and Ginzel I., "On The Theory of Screws With Wide Blades", Aerodynamische Versuchsanstalt, Goettingen, Germany, Report 44 / A / 08, 1944
- 5-5 Lerbs H.W, "Propeller Pitch Correction Arising From Lifting Surface Effect", David Taylor Model Basin, Washington DC, Report 942, 1955
- 5-6 Morgan W.B, "An Approximate Method of Obtaining Stress in a Propeller Blade", David Taylor Model Basin, Washington DC, Report 919, 1954

- 5-7 Tachmindji A.I and Milam A.B, "The Calculation of the Circulation for Propellers With Finite Hub Having 3, 4, 5 and 6 Blades", David Taylor Model Basin, Washington DC, Report 1141, 1957
- 5-8 Lerbs H.W, "The Loss of Energy of a Propeller in a Locally Varying Wake Field", David Taylor Model Basin, Washington DC, Report 862, 1953
- 5-9 Kramer K.N, "The Induced Efficiency of Optimum Propellers Having a Finite Number of Blades", NACA Technical Memorandum, No. 884, 1939
- 5-10 Manen J.D and Troost L., "The Design of Ship Screws of Optimum Diameter for an Unequal Velocity Field", Trans. SNAME, Vol 60, 1952
- 5-11 Carlton J.S, "Marine Propellers and Propulsion", Butterworth-Heinemann, 1994
- 5-12 www.grc.nasa.gov/www/k-12/airplane/induced.html
- 5-13 www.tecnadyne.com
- 5-14 Harvald Sv. Aa., "Resistance and Propulsion of Ships", Krieger Publishing Company
- 5-15 Huang T.T et al, "Propeller / Stern / Boundary Layer Interaction on Axisymmetric Bodies: Theory and Experiment", David Taylor Naval Ship Research and Development Center, Report 76-0113, 1976
- 5-16 Abbott I.H and Von Doenhoff A.E, "Theory of Wing Sections", Dover Publications, New York, 1958.
 [Wing Section data also available on line at :<u>www.pdas.com/avd.html</u>]
- 5-17 O' Brien T.P, "The Design of Marine Screw Propellers", Hutchinson and Co. Ltd, London, 1968
- 5-18 Gerr D., "The Propeller Handbook", International Marine Publishing Company, Camden, Maine, 1989
- 5-19 Theodorsen, Theodore, "On the Theory of Wing Sections With Particular Reference to the Lift Distribution", Report 383, NACA, 1932, USA
- 5-20 Bernitsas, M.M, Ray, D, Kinley, P, "K_T, K_Q and Efficiency Curves for the Wageningen B-Series Propellers", Dept. of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, USA,1981

Appendix A

Calculations for Chapter 2

Vehicle Endurance Calculations

50 km, 100 W

٧	Pd	Pm	Pe	Ph	Pt	t	E	ť	D
m/s	W	W	W	W	W	hr	W-hr	hr	km
0.75	14.47	14.62	16.24	100.00	116.24	18.52	2.15	18.42	49.73
1.00	34.21	34.55	38.39	100.00	138.39	13.89	1.92	15.47	55.69
1.25	60.52	61.13	67.92	100.00	167.92	11.11	1.87	12.75	57.37
1.50	88.11	89.00	98.89	100.00	198.89	9.26	1.84	10.76	58.12
1.75	117.14	118.32	131.47	100.00	231.47	7.94	1.84	9.25	58.27
2.00	153.21	154.75	171.95	100.00	271.95	6.94	1.89	7.87	56.68
2.25	207.38	209.47	232.75	100.00	332.75	6.17	2.05	6.43	52.11
2.50	296.16	299.16	332.39	100.00	432.39	5.56	2.40	4.95	44.56
2.75	441.53	445.99	495.54	100.00	595.54	5.05	3.01	3.59	35.59
2.90	567.08	572.81	636.46	100.00	736.46	4.79	3.53	2.91	30.35
3.06	746.00	753.54	837.27	100.00	937.27	4.53	4.25	2.28	25.19

50 km, 150 W

V	Pd	Pm	Pe	Ph	Pt	t	E	ť	D
m/s	W	W	W	W	W	hr	W-hr	hr	km
0.75	14.47	14.62	16.24	150.00	166.24	18.52	3.08	12.88	34.77
1.00	34.21	34.55	38.39	150.00	188.39	13.89	2.62	11.36	40.91
1.25	60.52	61.13	67.92	150.00	217.92	11.11	2.42	9.82	44.21
1.50	88.11	89.00	98.89	150.00	248.89	9.26	2.30	8.60	46.45
1.75	117.14	118.32	131.47	150.00	281.47	7.94	2.23	7.61	47.92
2.00	153.21	154.75	171.95	150.00	321.95	6.94	2.24	6.65	47.88
2.25	207.38	209.47	232.75	150.00	382.75	6.17	2.36	5.59	45.31
2.50	296.16	299.16	332.39	150.00	482.39	5.56	2.68	4.44	39.94
2.75	441.53	445.99	495.54	150.00	645.54	5.05	3.26	3.32	32.83
2.90	567.08	572.81	636.46	150.00	786.46	4.79	3.77	2.72	28.42
3.06	746.00	753.54	837.27	150.00	987.27	4.53	4.48	2.17	23.91

50	km.	200	W
•••			•••

V	P _d	Pm	Pe	Ph	P _t	t	E	ť	D
m/s	W	W	W	W	W	hr	W-hr	hr	km
0.75	14.47	14.62	16.24	200.00	216.24	18.52	4.00	9.90	26.73
1.00	34.21	34.55	38.39	200.00	238.39	13.89	3.31	8.98	32.33
1.25	60.52	61.13	67.92	200.00	267.92	11.11	2.98	7.99	35.96
1.50	88.11	89.00	98.89	200.00	298.89	9.26	2.77	7.16	38.68
1.75	117.14	118.32	131.47	200.00	331.47	7.94	2.63	6.46	40.69
2.00	153.21	154.75	171.95	200.00	371.95	6.94	2.58	5.76	41.44
2.25	207.38	209.47	232.75	200.00	432.75	6.17	2.67	4.95	40.07
2.50	296.16	299.16	332.39	200.00	532.39	5.56	2.96	4.02	36.19
2.75	441.53	445.99	495.54	200.00	695.54	5.05	3.51	3.08	30.47
2.90	567.08	572.81	636.46	200.00	836.46	4.79	4.01	2.56	26.72
3.06	746.00	753.54	837.27	200.00	1037.27	4.53	4.70	2.06	22.76

50 km, 250 W

V	Pd	Pm	Pe	Ph	P _t	t	E	ť	D
m/s	W	W	W	W	W	hr	W-hr	hr	km
0.75	14.47	14.62	16.24	250.00	266.24	18.52	4.93	8.04	21.71
1.00	34.21	34.55	38.39	250.00	288.39	13.89	4.01	7.42	26.72
1.25	60.52	61.13	67.92	250.00	317.92	11.11	3.53	6.73	30.30
1.50	88.11	89.00	98.89	250.00	348.89	9.26	3.23	6.14	33.13
1.75	117.14	118.32	131.47	250.00	381.47	7.94	3.03	5.61	35.36
2.00	153.21	154.75	171.95	250.00	421.95	6.94	2.93	5.07	36.53
2.25	207.38	209.47	232.75	250.00	482.75	6.17	2.98	4.43	35.92
2.50	296.16	299.16	332.39	250.00	582.39	5.56	3.24	3.68	33.08
2.75	441.53	445.99	495.54	250.00	745.54	5.05	3.77	2.87	28.43
2.90	567.08	572.81	636.46	250.00	886.46	4.79	4.25	2.42	25.21
3.06	746.00	753.54	837.27	250.00	1087.27	4.53	4.93	1.97	21.71

Comparison of Different High Energy Density Systems

50 km, 100 W

V	Pt	Ag-	Zn	Li-io	n P	Al-	0 ₂	PE	М
m/s	W	t" (hr)	D" (km)	t" (hr)	D" (km)	t" (hr)	D" (km)	t" (hr)	D" (km)
0.75	116.24	59.14	159.69	69.90	188.73	139.80	377.45	161.30	435.52
1.00	138.39	49.68	178.84	58.71	211.36	117.42	422.72	135.49	487.75
1.25	167.92	40.94	184.24	48.39	217.74	96.77	435.47	111.66	502.47
1.50	198.89	34.57	186.66	40.85	220.60	81.70	441.20	94.27	509.08
1.75	231.47	29.70	187.12	35.10	221.14	70.20	442.29	81.01	510.33
2.00	271.95	25.28	182.02	29.88	215.11	59.75	430.23	68.95	496.42
2.25	332.75	20.66	167.36	24.42	197.79	48.84	395.57	56.35	456.43
2.50	432.39	15.90	143.10	18.79	169.12	37.58	338.23	43.36	390.27
2.75	595.54	11.54	114.29	13.64	135.07	27.29	270.13	31.48	311.69
2.90	736.46	9.34	97.46	11.03	115.18	22.07	230.36	25.46	265.80
3.06	937.27	7.34	80.89	8.67	95.60	17.34	191.19	20.00	220.61

50 km, 150 W

V	Pt	Ag-	Zn	Li-io	n P	Al-	02	PE	M
m/s	W	t" (hr)	D" (km)						
0.75	166.24	41.36	111.66	48.87	131.96	97.75	263.92	112.79	304.53
1.00	188.39	36.49	131.38	43.13	155.26	86.26	310.53	99.53	358.30
1.25	217.92	31.55	141.97	37.28	167.78	74.57	335.56	86.04	387.18
1.50	248.89	27.62	149.16	32.65	176.28	65.29	352.57	75.33	406.81
1.75	281.47	24.43	153.88	28.87	181.86	57.73	363.72	66.62	419.68
2.00	321.95	21.35	153.75	25.24	181.71	50.47	363.41	58.24	419.32
2.25	382.75	17.96	145.49	21.23	171.95	42.46	343.90	48.99	396.80
2.50	482.39	14.25	128.27	16.84	151.59	33.69	303.17	38.87	349.82
2.75	645.54	10.65	105.43	12.59	124.60	25.17	249.21	29.05	287.55
2.90	786.46	8.74	91.26	10.33	107.86	20.66	215.71	23.84	248.90
3.06	987.27	6.96	76.79	8.23	90.76	16.46	181.51	18.99	209.44

50	km.	200	\\\
50	лш,	200	V V

V	P _t	Ag-	Zn	Li-io	n P	Al-	0 ₂	PE	M
m/s	W	t" (hr)	D" (km)	t" (hr)	D" (km)	t" (hr)	D" (km)	t" (hr)	D" (km)
0.75	216.24	31.79	85.84	37.57	101.45	75.15	202.90	86.71	234.11
1.00	238.39	28.84	103.82	34.08	122.70	68.17	245.40	78.65	283.15
1.25	267.92	25.66	115.47	30.33	136.47	60.65	272.93	69.98	314.92
1.50	298.89	23.00	124.21	27.18	146.79	54.37	293.59	62.73	338.75
1.75	331.47	20.74	130.67	24.51	154.43	49.02	308.85	56.57	356.37
2.00	371.95	18.48	133.08	21.84	157.28	43.69	314.56	50.41	362.95
2.25	432.75	15.89	128.68	18.78	152.08	37.55	304.16	43.33	350.96
2.50	532.39	12.91	116.22	15.26	137.35	30.52	274.70	35.22	316.96
2.75	695.54	9.88	97.86	11.68	115.65	23.36	231.29	26.96	266.88
2.90	836.46	8.22	85.81	9.71	101.41	19.43	202.82	22.42	234.02
3.06	1037.27	6.63	73.09	7.83	86.38	15.67	172.76	18.08	199.34

50 km, 250 W

V	Pt	Ag-	Zn	Li-io	n P	Al-	0 ₂	PE	М
m/s	W	t" (hr)	D" (km)	t" (hr)	D" (km)	t" (hr)	D" (km)	t" (hr)	D" (km)
0.75	266.24	25.82	69.72	30.52	82.40	61.04	164.79	70.43	190.15
1.00	288.39	23.84	85.82	28.17	101.42	56.35	202.85	65.02	234.06
1.25	317.92	21.62	97.31	25.56	115.00	51.11	230.01	58.98	265.40
1.50	348.89	19.71	106.41	23.29	125.76	46.58	251.51	53.74	290.21
1.75	381.47	18.02	113.54	21.30	134.19	42.60	268.37	49.15	309.66
2.00	421.95	16.29	117.31	19.26	138.64	38.51	277.29	44.44	319.94
2.25	482.75	14.24	115.36	16.83	136.33	33.66	272.66	38.84	314.61
2.50	582.39	11.80	106.24	13.95	125.56	27.90	251.12	32.19	289.75
2.75	745.54	9.22	91.29	10.90	107.89	21.80	215.78	25.15	248.98
2.90	886.46	7.76	80.97	9.17	95.69	18.33	191.38	21.15	220.82
3.06	1087.27	6.32	69.73	7.47	82.41	14.95	164.82	17.25	190.17

Appendix B

Resistance and Propulsion Test Results

V	n	Q	F	Τ _Ρ	J	K _{fd}	K _{tp}	K _{ts}	10 * K _a	Self-Pro	pulsion F	Point
(m/s)	(rpm)	(N-m)	(N)	(N)					•			
0.8007	503.8949	0.1810	5.3638	3.6262	0.6256	-0.1410	0.0953	0.2221	0.3122	J	0.5680	
0.8012	552.6343	0.3680	1.4334	8.7409	0.5708	-0.0313	0.1910	0.1846	0.5277	V	0.8029	m/s
0.8027	602.3573	0.5143	-3.5438	12.8134	0.5246	0.0652	0.2357	0.1554	0.6207	10 K _q	0.5077	
0.8034	651.5623	0.7198	-10.4367	18.6583	0.4854	0.1641	0.2933	0.1328	0.7425	Kq	0.0508	
0.8005	753.4148	1.2080	-24.3516	32.8282	0.4183	0.2863	0.3860	0.0993	0.9319	K _{tp}	0.1821	
0.8012	913.8563	2.0427	-48.5726	59.3485	0.3452	0.3881	0.4743	0.0675	1.0711	Q	0.3590	N-m
0.8037	1002.5757	2.6202	-64.7292	77.0108	0.3156	0.4298	0.5113	0.0561	1.1415	Т	8.4491	Ν
0.8045	1051.5807	2.9224	-74.4405	87.1072	0.3012	0.4492	0.5257	0.0510	1.1572	R	7.9354	Ν
0.8098	1102.1417	3.3564	-85.7547	98.8701	0.2893	0.4711	0.5432	0.0464	1.2100	Pd	20.9319	W
0.8032	1154.0417	3.7562	-96.8046	111.2684	0.2740	0.4851	0.5576	0.0423	1.2351	Pe	6.3712	W
0.8015	1207.3702	4.1532	-108.6784	123.8401	0.2614	0.4975	0.5669	0.0387	1.2476	η_d	30.4378	%
0.8022	1246.6728	4.5121	-117.3754	135.8194	0.2533	0.5040	0.5832	0.0363	1.2713			
		_	<u></u>			22						
V	n	Q	F	T _P	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	pulsion F	Point
V (m/s)	n (rpm)	Q (N-m)	F (N)	Т _Р (N)	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	pulsion f	Point
V (m/s)	n (rpm)	Q (N-m)	F (N)	Τ _Ρ (N)	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	pulsion F	Point
V (m/s) 1.1030	n (rpm) 507.2079	Q (N-m) 0.1699	F (N) 14.2900	Τ _P (Ν) 2.2849	J 0.8562	К _{fd} -0.3707	К _{тр}	K _{ts}	10 * K _q 0.2892	Self-Pro	0.6538	Point
V (m/s) 1.1030 1.1027 1.1025	n (rpm) 507.2079 554.5345	Q (N-m) 0.1699 0.3535	F (N) 14.2900 10.5355	Τ_Ρ (N) 2.2849 6.2834	J 0.8562 0.7829	K _{fd} -0.3707 -0.2286	K _{tp} 0.0593 0.1364	K _{ts} 0.4538 0.3796	10 * K _q 0.2892 0.5034 0.5082	Self-Pro	0.6538 1.1033	Point m/s
V (m/s) 1.1030 1.1027 1.1035	n (rpm) 507.2079 554.5345 603.8746	Q (N-m) 0.1699 0.3535 0.4982	F (N) 14.2900 10.5355 6.8977	T _P (N) 2.2849 6.2834 10.2080	J 0.8562 0.7829 0.7194	K _{fd} -0.3707 -0.2286 -0.1262	K tp 0.0593 0.1364 0.1868	K ts 0.4538 0.3796 0.3201	10 * K _q 0.2892 0.5034 0.5983	Self-Pro J V 10 Kq	0.6538 1.1033 0.7470	Point m/s
V (m/s) 1.1030 1.1027 1.1035 1.1032	n (rpm) 507.2079 554.5345 603.8746 654.2447	Q (N-m) 0.1699 0.3535 0.4982 0.7005	F (N) 14.2900 10.5355 6.8977 0.5784	T_P (N) 2.2849 6.2834 10.2080 16.3454	J 0.8562 0.7829 0.7194 0.6639	K _{fd} -0.3707 -0.2286 -0.1262 -0.0090	K tp 0.0593 0.1364 0.1868 0.2548	K ts 0.4538 0.3796 0.3201 0.2727	10 * K _q 0.2892 0.5034 0.5983 0.7166	Self-Pro J V 10 K _q K _q	0.6538 1.1033 0.7470 0.0747	Point m/s
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733	Q (N-m) 0.1699 0.3535 0.4982 0.7005 1.1746	F (N) 14.2900 10.5355 6.8977 0.5784 -11.0514	T_P (N) 2.2849 6.2834 10.2080 16.3454 29.4461	J 0.8562 0.7829 0.7194 0.6639 0.5794	K _{fd} -0.3707 -0.2286 -0.1262 -0.0090 0.1310	K tp 0.0593 0.1364 0.1868 0.2548 0.3490	K ts 0.4538 0.3796 0.3201 0.2727 0.2073	10 * K _q 0.2892 0.5034 0.5983 0.7166 0.9135	Self-Pro J V 10 K _q K _t	0.6538 1.1033 0.7470 0.0747 0.2645	Point m/s
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733 910.3564	Q (N-m) 0.1699 0.3535 0.4982 0.7005 1.1746 1.9868	F (N) 14.2900 10.5355 6.8977 0.5784 -11.0514 -34.4575	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330	0.8562 0.7829 0.7194 0.6639 0.5794 0.4775	K _{fd} -0.3707 -0.2286 -0.1262 -0.0090 0.1310 0.2775	K tp 0.0593 0.1364 0.1868 0.2548 0.3490 0.4391	K ts 0.4538 0.3796 0.3201 0.2727 0.2073 0.1409	10 * K _q 0.2892 0.5034 0.5983 0.7166 0.9135 1.0498	Self-Pro J V 10 K _q K _g Q	0.6538 1.1033 0.7470 0.0747 0.2645 0.7530	Point m/s N-m
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678	Q (N-m) 0.1699 0.3535 0.4982 0.7005 1.1746 1.9868 2.5799	F (N) 14.2900 10.5355 6.8977 0.5784 -11.0514 -34.4575 -52.5912 20 4540	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689	J 0.8562 0.7829 0.7194 0.6639 0.5794 0.4775 0.4314	K _{fd} -0.3707 -0.2286 -0.1262 -0.0090 0.1310 0.2775 0.3463 2.2720	K tp 0.0593 0.1364 0.1868 0.2548 0.3490 0.4391 0.4871	K ts 0.4538 0.3796 0.3201 0.2727 0.2073 0.1409 0.1152	10 * K _q 0.2892 0.5034 0.5983 0.7166 0.9135 1.0498 1.1148	Self-Pro	0.6538 1.1033 0.7470 0.0747 0.2645 0.7530 17.4932	Point m/s N-m N
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678 1056.9924	Q (N-m) 0.1699 0.3535 0.4982 0.7005 1.1746 1.9868 2.5799 2.8694 2.8694	F (N) 14.2900 10.5355 6.8977 0.5784 -11.0514 -34.4575 -52.5912 -63.4548 25 4524	T_P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126	J 0.8562 0.7829 0.7194 0.6639 0.5794 0.4775 0.4314 0.4111	K _{fd} -0.3707 -0.2286 -0.1262 -0.0090 0.1310 0.2775 0.3463 0.3790	K tp 0.0593 0.1364 0.1868 0.2548 0.3490 0.4391 0.4871 0.5114	K ts 0.4538 0.3796 0.3201 0.2727 0.2073 0.1409 0.1152 0.1045	10 * K _q 0.2892 0.5034 0.5983 0.7166 0.9135 1.0498 1.1148 1.1247 1.1247	Self-Pro J V 10 K _q K _p Q T R	0.6538 1.1033 0.7470 0.0747 0.2645 0.7530 17.4932 16.3020	Point m/s N-m N
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678 1056.9924 1108.8989	Q (N-m) 0.1699 0.3535 0.4982 0.7005 1.1746 1.9868 2.5799 2.8694 3.2875	F (N) 14.2900 10.5355 6.8977 0.5784 -11.0514 -34.4575 -52.5912 -63.4548 -75.4534	T_P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126 98.4729	J 0.8562 0.7829 0.7194 0.6639 0.5794 0.4775 0.4314 0.4111 0.3916	K _{fd} -0.3707 -0.2286 -0.1262 -0.0090 0.1310 0.2775 0.3463 0.3790 0.4095	K tp 0.0593 0.1364 0.1868 0.2548 0.3490 0.4391 0.4391 0.4871 0.5114 0.5344	K ts 0.4538 0.3796 0.3201 0.2727 0.2073 0.1409 0.1152 0.1045 0.0949	10 * K _q 0.2892 0.5034 0.5983 0.7166 0.9135 1.0498 1.1148 1.1247 1.1707	J V 10 K _q K _p Q T R P _d	0.6538 1.1033 0.7470 0.0747 0.2645 0.7530 17.4932 16.3020 52.4151	Point m/s N-m N N W
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031 1.1031	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678 1056.9924 1108.8989 1156.0328	Q (N-m) 0.1699 0.3535 0.4982 0.7005 1.1746 1.9868 2.5799 2.8694 3.2875 3.6710	F (N) 14.2900 10.5355 6.8977 0.5784 -11.0514 -34.4575 -52.5912 -63.4548 -75.4534 -86.3969	T_P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126 98.4729 110.2023	J 0.8562 0.7829 0.7194 0.6639 0.5794 0.4775 0.4314 0.4111 0.3916 0.3757	K fd -0.3707 -0.2286 -0.1262 -0.0090 0.1310 0.2775 0.3463 0.3790 0.4095 0.4314	K tp 0.0593 0.1364 0.1868 0.2548 0.3490 0.4391 0.4391 0.4871 0.5114 0.5344 0.5503	K ts 0.4538 0.3796 0.3201 0.2727 0.2073 0.1409 0.1152 0.1045 0.0949 0.0874	10 * K _q 0.2892 0.5034 0.5983 0.7166 0.9135 1.0498 1.1148 1.1247 1.1707 1.2029	J V 10 K _q K _{tp} Q T R P _d P _e	0.6538 1.1033 0.7470 0.0747 0.2645 0.7530 17.4932 16.3020 52.4151 17.9867	Point m/s N-m N N W W
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031 1.1031 1.1029	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678 1056.9924 1108.8989 1156.0328 1206.4133	Q (N-m) 0.1699 0.3535 0.4982 0.7005 1.1746 1.9868 2.5799 2.8694 3.2875 3.6710 4.0899	F (N) 14.2900 10.5355 6.8977 0.5784 -11.0514 -34.4575 -52.5912 -63.4548 -75.4534 -86.3969 -96.9218	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126 98.4729 110.2023 121.4830	J 0.8562 0.7829 0.7194 0.6639 0.5794 0.4775 0.4314 0.4111 0.3916 0.3757 0.3599	K _{fd} -0.3707 -0.2286 -0.1262 -0.0090 0.1310 0.2775 0.3463 0.3790 0.4095 0.4314 0.4444	K tp 0.0593 0.1364 0.1868 0.2548 0.3490 0.4391 0.4871 0.5114 0.5344 0.5503 0.5570	K ts 0.4538 0.3796 0.3201 0.2727 0.2073 0.1409 0.1152 0.1045 0.0949 0.0874 0.0802	10 * K _q 0.2892 0.5034 0.5983 0.7166 0.9135 1.0498 1.1148 1.1247 1.1707 1.2029 1.2305	J V 10 K _q K _{tp} Q T R P _d P _e η _d	0.6538 1.1033 0.7470 0.0747 0.2645 0.7530 17.4932 16.3020 52.4151 17.9867 34.3158	Point m/s N-m N N W W W

Load Varying Self - Propulsion Test (Propeller fitted on)

V	n	Q	F	Tp	J	K _{fd}	K _{tp}	K _{ts}	10 * K _a	Self-Pro	opulsion I	Point	
(m/s)	(rpm)	(N-m)	(N)	(N)									
										2			
1.3031	504.2337	0.1657	23.7086	-0.5806	1.0174	-0.6223	-0.0152	0.6262	0.2854	J	0.6999		
1.3022	550.4535	0.3278	19.5828	3.8393	0.9314	-0.4313	0.0846	0.5254	0.4738	V	1.3025	m/s	
1.3025	600.5634	0.4670	15.5347	7.2149	0.8539	-0.2874	0.1335	0.4414	0.5670	10 K _q	0.8406		
1.3035	652.2352	0.6650	7.4959	13.4575	0.7868	-0.1176	0.2111	0.3742	0.6845	Kq	0.0841		
1.3036	752.8192	1.1361	-3.1778	26.1866	0.6817	0.0374	0.3084	0.2809	0.8778	K _{tp}	0.2966		
1.3022	901.8296	1.9541	-23.6329	51.7382	0.5685	0.1939	0.4245	0.1958	1.0521	Q	1.0305	N-m	
1.3022	1000.1110	2.5466	-45.8753	72.3597	0.5126	0.3061	0.4828	0.1592	1.1149	Т	23.8562	Ν	
1.3023	1046.2973	2.8254	-54.5532	82.1375	0.4900	0.3326	0.5007	0.1454	1.1302	R	22.2030	Ν	
1.3020	1105.7242	3.2400	-67.4871	96.1106	0.4636	0.3684	0.5246	0.1302	1.1604	Pd	79.0985	W	
1.3023	1155.3342	3.6311	-78.2728	107.4396	0.4438	0.3913	0.5372	0.1193	1.1912	Pe	28.9203	W	
1.3022	1206.0095	4.0298	-88.6396	119.2426	0.4251	0.4067	0.5471	0.1095	1.2133	ηa	36.5624	%	
1.3024	1248.0299	4.4059	-98.8778	130.6479	0.4109	0.4237	0.5598	0.1022	1.2387				
									2				
V	n	Q	F	Т _Р	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	opulsion I	Point	
V (m/s)	n (rpm)	Q (N-m)	F (N)	Τ _Ρ (N)	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	opulsion F	Point	
V (m/s)	n (rpm)	Q (N-m)	F (N)	Τ _Ρ (N)	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	opulsion I	Point	
V (m/s) 1.6032	n (rpm) 503.9995	Q (N-m) 0.1484	F (N) 35.6003	Τ _Ρ (N) -1.5261	J 1.2523	K _{fd}	К _{tp}	K _{ts}	10 * K _q	Self-Pro	0.7664	Point	
V (m/s) 1.6032 1.6046	n (rpm) 503.9995 550.3443	Q (N-m) 0.1484 0.2710	F (N) 35.6003 31.5343	T _P (N) -1.5261 1.5354 5.3720	J 1.2523 1.1479	K _{fd} -0.9353 -0.6948	К _{тр} -0.0401 0.0338	K ts 0.9006 0.7553	10 * K _q 0.2559 0.3918	Self-Pro J V	0.7664 1.6038	Point m/s	
V (m/s) 1.6032 1.6046 1.6035	n (rpm) 503.9995 550.3443 601.4574	Q (N-m) 0.1484 0.2710 0.3833	F (N) 35.6003 31.5343 27.4347	T _P (N) -1.5261 1.5354 5.3738	J 1.2523 1.1479 1.0496	K _{fd} -0.9353 -0.6948 -0.5061	K _{tp} -0.0401 0.0338 0.0991	K _{ts} 0.9006 0.7553 0.6324	10 * K _q 0.2559 0.3918 0.4639	Self-Pro J V 10 K _q	0.7664 1.6038 0.8758	Point m/s	
V (m/s) 1.6032 1.6046 1.6035 1.6038	n (rpm) 503.9995 550.3443 601.4574 653.7645	Q (N-m) 0.1484 0.2710 0.3833 0.6033	F (N) 35.6003 31.5343 27.4347 17.3544	Τ_Ρ (N) -1.5261 1.5354 5.3738 11.6456	J 1.2523 1.1479 1.0496 0.9658	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710	K _{tp} -0.0401 0.0338 0.0991 0.1818	K _{ts} 0.9006 0.7553 0.6324 0.5352	10 * K _q 0.2559 0.3918 0.4639 0.6181	Self-Pro J V 10 K _q K _q	0.7664 1.6038 0.8758 0.0876	Point m/s	
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040	n (rpm) 503.9995 550.3443 601.4574 653.7645 755.9224	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703	F (N) 35.6003 31.5343 27.4347 17.3544 8.5633	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105	J 1.2523 1.1479 1.0496 0.9658 0.8354	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710 -0.1000	K tp -0.0401 0.0338 0.0991 0.1818 0.2933	K _{ts} 0.9006 0.7553 0.6324 0.5352 0.4003	10 * K _q 0.2559 0.3918 0.4639 0.6181 0.8202	Self-Pro J V 10 K _q K _q K _{tp}	0.7664 1.6038 0.8758 0.0876 0.3370	Point m/s	
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038	n (rpm) 503.9995 550.3443 601.4574 653.7645 755.9224 911.6408	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340	F (N) 35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265	J 1.2523 1.1479 1.0496 0.9658 0.8354 0.6926	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710 -0.1000 0.1018	K tp -0.0401 0.0338 0.0991 0.1818 0.2933 0.3865	K _{1s} 0.9006 0.7553 0.6324 0.5352 0.4003 0.2753	10 * K _q 0.2559 0.3918 0.4639 0.6181 0.8202 0.9663	Self-Pro J V 10 K _q K _q K _{tp} Q	0.7664 1.6038 0.8758 0.0876 0.3370 1.3576	Point m/s N-m	
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044	n (rpm) 503.9995 550.3443 601.4574 653.7645 755.9224 911.6408 1003.7944	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389	F (N) 35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672	J 1.2523 1.1479 1.0496 0.9658 0.8354 0.6926 0.6293	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710 -0.1000 0.1018 0.2156	K tp -0.0401 0.0338 0.0991 0.1818 0.2933 0.3865 0.4469	K _{ts} 0.9006 0.7553 0.6324 0.5352 0.4003 0.2753 0.2270	10 * K _q 0.2559 0.3918 0.4639 0.6181 0.8202 0.9663 1.0599	Self-Pro J V 10 K _q K _q Q T	0.7664 1.6038 0.8758 0.0876 0.3370 1.3576 34.2780	Point m/s N-m N	
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042	n (rpm) 503.9995 550.3443 601.4574 653.7645 755.9224 911.6408 1003.7944 1051.3377	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228	F (N) 35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648	J 1.2523 1.1479 1.0496 0.9658 0.8354 0.6926 0.6293 0.6007	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710 -0.1000 0.1018 0.2156 0.2536	K tp -0.0401 0.0338 0.0991 0.1818 0.2933 0.3865 0.4469 0.4695	K ts 0.9006 0.7553 0.6324 0.5352 0.4003 0.2753 0.2270 0.2070	10 * K _q 0.2559 0.3918 0.4639 0.6181 0.8202 0.9663 1.0599 1.0787	Self-Pro J V 10 K _q K _q Q T R	0.7664 1.6038 0.8758 0.0876 0.3370 1.3576 34.2780 31.9780	Point m/s N-m N N	
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043	n (rpm) 503.9995 550.3443 601.4574 653.7645 755.9224 911.6408 1003.7944 1051.3377 1104.0239	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228 3.1449	F (N) 35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001 -51.6517	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648 91.4829	J 1.2523 1.1479 1.0496 0.9658 0.8354 0.6926 0.6293 0.6007 0.5721	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710 -0.1000 0.1018 0.2156 0.2536 0.2828	K tp -0.0401 0.0338 0.0991 0.1818 0.2933 0.3865 0.4469 0.4695 0.5009	K ts 0.9006 0.7553 0.6324 0.5352 0.4003 0.2753 0.2270 0.2070 0.1877	10 * K _q 0.2559 0.3918 0.4639 0.6181 0.8202 0.9663 1.0599 1.0787 1.1299	Self-Pro J V 10 K _q K _{tp} Q T R R Pd	0.7664 1.6038 0.8758 0.0876 0.3370 1.3576 34.2780 31.9780 117.1749	Point m/s N-m N N W	
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6034	n (rpm) 503.9995 550.3443 601.4574 653.7645 755.9224 911.6408 1003.7944 1051.3377 1104.0239 1152.5333	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228 3.1449 3.5384	F (N) 35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001 -51.6517 -63.4763	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648 91.4829 104.5737	J 1.2523 1.1479 1.0496 0.9658 0.8354 0.6926 0.6293 0.6007 0.5721 0.5477	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710 -0.1000 0.1018 0.2156 0.2536 0.2828 0.3189	K tp -0.0401 0.0338 0.0991 0.1818 0.2933 0.3865 0.4469 0.4695 0.5009 0.5254	K _{1s} 0.9006 0.7553 0.6324 0.5352 0.4003 0.2753 0.2270 0.2070 0.1877 0.1722	10 * K _q 0.2559 0.3918 0.4639 0.6181 0.8202 0.9663 1.0599 1.0787 1.1299 1.1665	Self-Pro J V 10 K _q K _{tp} Q T R Pd Pd Pe	0.7664 1.6038 0.8758 0.0876 0.3370 1.3576 34.2780 31.9780 117.1749 51.2868	Point m/s N-m N N W W	
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6034 1.6034	n (rpm) 503.9995 550.3443 601.4574 653.7645 755.9224 911.6408 1003.7944 1051.3377 1104.0239 1152.5333 1210.1129	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228 3.1449 3.5384 3.9176	F (N) 35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001 -51.6517 -63.4763 -76.3438	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648 91.4829 104.5737 116.7686	J 1.2523 1.1479 1.0496 0.9658 0.8354 0.6926 0.6293 0.6007 0.5721 0.5477 0.5217	K _{fd} -0.9353 -0.6948 -0.5061 -0.2710 -0.1000 0.1018 0.2156 0.2536 0.2828 0.3189 0.3479	K tp -0.0401 0.0338 0.0991 0.1818 0.2933 0.3865 0.4469 0.4695 0.5009 0.5254 0.5322	K _{1s} 0.9006 0.7553 0.6324 0.5352 0.4003 0.2753 0.2270 0.2070 0.1877 0.1722 0.1562	10 * K _q 0.2559 0.3918 0.4639 0.6181 0.8202 0.9663 1.0599 1.0787 1.1299 1.1665 1.1715	J V 10 K _q K _{tp} Q T R P _d P _e η _d	0.7664 1.6038 0.8758 0.0876 0.3370 1.3576 34.2780 31.9780 117.1749 51.2868 43.7695	Point m/s N-m N N W W W	

Load Varying Self - Propulsion Test (Propeller fitted on)

V	n	Q	F	T _P	J	K _{fd}	K _{tp}	K _{ts}	10 * K _a	Self-Pro	pulsion F	Point
(m/s)	(rpm)	(N-m)	(N)	(N)								
1.8042	510,9808	0.1265	40.6558	-1.9385	1.3901	-1.0391	-0.0495	1.0288	0.2122	L	0.8119	
1.8034	552.4233	0.1528	37.6344	1.1898	1.2853	-0.8230	0.0260	0.8803	0.2193	v	1.8051	m/s
1.8068	602.7853	0.3126	33.4536	4.2981	1.1801	-0.6144	0.0789	0.7393	0.3767	10 K.	0.8602	
1.8056	651.5334	0.5023	24.9715	10.5564	1.0911	-0.3926	0.1660	0.6328	0.5181	K,	0.0860	
1.8042	757.8054	0.9753	17.3566	22,9946	0.9373	-0.2017	0.2672	0.4678	0.7437	K.,	0.3506	
1.8051	911.1136	1.7271	-4.5070	45.8331	0.7800	0.0362	0.3685	0.3236	0.9111	Q	1.5051	N-m
1.8048	1002.7594	2.3395	-25.1929	65.0234	0.7086	0.1672	0.4316	0.2672	1.0189	Т	40.2530	N
1.8061	1056.9214	2.6019	-32.6326	73.8682	0.6728	0.1950	0.4413	0.2405	1.0200	R	37.5440	Ν
1.8051	1118.8065	3.0425	-43.1904	87.2252	0.6352	0.2303	0.4650	0.2146	1.0644	Pd	138.0146	W
1.8043	1161.1239	3.4240	-55.8141	100.0789	0.6118	0.2763	0.4954	0.1993	1.1121	P	67.7707	w
1.8059	1215.6599	3.7826	-68.1665	112.6564	0.5849	0.3078	0.5087	0.1818	1.1208	ηď	49.1040	%
1.8057	1246.0544	4.1864	-77.6279	125.3448	0.5705	0.3337	0.5388	0.1730	1.1807		×	
· · ·		~	-	-		14	17	14	40 + 12	0 K D		
V	n	Q	F	I _P	J	K _{fd}	K _{tp}	K _{ts}	10 * K q	Self-Pro	pulsion H	oint
(m/s)	(rpm)	(N-m)	(N)	(N)								
2 1001	500 1371	0 0502	54 2008	-2 2244	1 6603	-1 4461	-0 0593	1 /872	0 1037	-	0 8427	
2.1051	551 5545	0.0002	51 6384	0 7034	1.5030	-1 1328	0.0154	1 2228	0.1847	v	2 1062	m/s
2.1068	600.3476	0.2676	49,7643	3.3349	1.3816	-0.9215	0.0618	1.0322	0.3251	10 K.	0.9442	
2 1067	654 3489	0 4750	42 3233	9 0348	1 2675	-0.6597	0 1408	0.8688	0.4858	K	0.0944	
2 1101	752 6505	0.8776	34 8043	19 5316	1 1038	-0.4100	0.2301	0.6567	0.6784	K.	0.3842	
2 1068	901 9876	1 6341	13 6338	42 0655	0.9196	-0 1118	0.3451	0.4572	0.8795	n _p	2 0877	N-m
2 1070	1002 6789	2 2376	-3 9622	59 4139	0.8273	0.0263	0.3944	0.3700	0.9746	T	55 7426	N
2.0959	1052,8833	2.5437	-13.7635	68.8805	0.7837	0.0829	0.4147	0.3356	1.0048	R	52.1640	N
				, 						요즘 것을 정말 지방하는 것		
2.1064	1103,4297	2.9378	-24.0542	80.5944	0.7516	0.1318	0.4418	0.3055	1.0566	Pa	215.2089	W
2.1064 2.1073	1103.4297 1156 4853	2.9378 3 3080	-24.0542 -33.2420	80.5944 93.1518	0.7516 0 7174	0.1318 0.1659	0.4418 0.4648	0.3055 0.2781	1.0566 1.0831	P _d P	215.2089	w
2.1064 2.1073 2.1066	1103.4297 1156.4853 1214.1716	2.9378 3.3080 3.6923	-24.0542 -33.2420 -47.5793	80.5944 93.1518 106.0173	0.7516 0.7174 0.6831	0.1318 0.1659 0.2154	0.4418 0.4648 0.4799	0.3055 0.2781 0.2523	1.0566 1.0831 1.0968	Pa Pe n.	215.2089 109.8674 51.0515	W W %

Load Varying Self - Propulsion Test (Propeller fitted on)

V	n	Q	F	Tp	J	K _{fd}	K to	K _{ts}	10 * K _a	Self-Pro	pulsion F	Point
(m/s)	(rpm)	(N-m)	(N)	(N)								
2.3079	502.2690	0.0030	70.1815	-3.6889	1.8090	-1.8566	-0.0976	1.8753	0.0052	J	0.8459	
2.3069	550.3896	0.1071	65.5744	-0.4585	1.6502	-1.4446	-0.0101	1.5617	0.1549	V	2.3076	m/s
2.3074	603.5423	0.2439	62.5675	2.8578	1.5052	-1.1463	0.0524	1.2988	0.2932	10 K _q	0.9832	
2.3070	652.5464	0.4126	56.4648	7.3859	1.3919	-0.8849	0.1158	1.1110	0.4243	Ka	0.0983	
2.3084	752.0456	0.7863	52.8606	17.3533	1.2085	-0.6237	0.2048	0.8365	0.6088	K _{to}	0.4101	
2.3081	901.6673	1.5450	31.0591	39.3701	1.0078	-0.2550	0.3232	0.5819	0.8322	Q	2.5899	N-m
2.3082	1006.0527	2.1446	14.6680	56.3185	0.9033	-0.0967	0.3713	0.4674	0.9279	Т	70.8906	Ν
2.3077	1052.1662	2.4494	5.4600	65.8199	0.8635	-0.0329	0.3968	0.4273	0.9689	R	66.2190	N
2.3074	1101.3796	2.7844	-4.9423	75.6556	0.8248	0.0272	0.4162	0.3900	1.0051	Pd	291.3985	W
2.3075	1150.4349	3.1913	-16.4586	88.4838	0.7897	0.0830	0.4462	0.3575	1.0559	Pe	152.8059	W
2.3077	1213.5677	3.5556	-29.2323	102.4455	0.7487	0.1325	0.4642	0.3212	1.0572	η _d	52.4388	%
2.3068	1249.1721	3.9343	-42.1765	114.3675	0.7270	0.1804	0.4891	0.3032	1.1041			
V	n	Q	F	Т _Р	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	pulsion F	Point
V (m/s)	n (rpm)	Q (N-m)	F (N)	T _P (N)	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	pulsion F	oint
V (m/s)	n (rpm)	Q (N-m)	F (N)	T _P (N)	J	K _{fd}	K _{tp}	K _{ts}	10 * K _q	Self-Pro	pulsion F	Point
V (m/s) 2.5100	n (rpm) 504.0554	Q (N-m) 0.0003	F (N) 87.5695	τ _ρ (Ν) -5.1534	J 1.9605	K _{fd} -2.3002	К _{tp} -0.1354	K _{ts} 2.2674	10 * K _q 0.0006	Self-Pro	opulsion F 0.8502	?oint
V (m/s) 2.5100 2.5086	n (rpm) 504.0554 552.5634	Q (N-m) 0.0003 0.0817	F (N) 87.5695 83.4748	Τ_Ρ (N) -5.1534 -2.4533	J 1.9605 1.7874	K _{fd} -2.3002 -1.8245	K _{tp} -0.1354 -0.0536	K _{ts} 2.2674 1.8868	10 * K _q 0.0006 0.1172	Self-Pro J V	0.8502 2.5077	Point m/s
V (m/s) 2.5100 2.5086 2.5072	n (rpm) 504.0554 552.5634 601.0760	Q (N-m) 0.0003 0.0817 0.2188	F (N) 87.5695 83.4748 78.4785	Τ _Ρ (N) -5.1534 -2.4533 1.5344	J 1.9605 1.7874 1.6422	K _{fd} -2.3002 -1.8245 -1.4496	K _{tp} -0.1354 -0.0536 0.0283	K _{ts} 2.2674 1.8868 1.5945	10 * K _q 0.0006 0.1172 0.2651	Self-Pro J V 10 K _q	0.8502 2.5077 1.0199	Point
V (m/s) 2.5100 2.5086 2.5072 2.5095	n (rpm) 504.0554 552.5634 601.0760 651.4524	Q (N-m) 0.0003 0.0817 0.2188 0.3268	F (N) 87.5695 83.4748 78.4785 72.4764	T _P (N) -5.1534 -2.4533 1.5344 5.3858	J 1.9605 1.7874 1.6422 1.5166	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397	K tp -0.1354 -0.0536 0.0283 0.0847	K ts 2.2674 1.8868 1.5945 1.3574	10 * K _q 0.0006 0.1172 0.2651 0.3372	Self-Pro J V 10 K _q K _q	0.8502 2.5077 1.0199 0.1020	Point m/s
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020	n (rpm) 504.0554 552.5634 601.0760 651.4524 751.7646	Q (N-m) 0.0003 0.0817 0.2188 0.3268 0.7249	F (N) 87.5695 83.4748 78.4785 72.4764 66.8172	T_P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565	J 1.9605 1.7874 1.6422 1.5166 1.3103	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397 -0.7890	K _{tp} -0.1354 -0.0536 0.0283 0.0847 0.1884	K ts 2.2674 1.8868 1.5945 1.3574 1.0193	10 * K _q 0.0006 0.1172 0.2651 0.3372 0.5617	Self-Pro J V 10 K _q K _q K _p	0.8502 2.5077 1.0199 0.1020 0.4272	'oint m/s
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092	n (rpm) 504.0554 552.5634 601.0760 651.4524 751.7646 905.0740	Q (N-m) 0.0003 0.0817 0.2188 0.3268 0.7249 1.4758	F (N) 87.5695 83.4748 78.4785 72.4764 66.8172 46.3855	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313	J 1.9605 1.7874 1.6422 1.5166 1.3103 1.0915	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397 -0.7890 -0.3779	K _{tp} -0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090	K ts 2.2674 1.8868 1.5945 1.3574 1.0193 0.7033	10 * K _q 0.0006 0.1172 0.2651 0.3372 0.5617 0.7889	Self-Pro J V 10 K _q K _{\p} Q	0.8502 2.5077 1.0199 0.1020 0.4272 3.1408	Point m/s N-m
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081	n (rpm) 504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353	Q (N-m) 0.0003 0.0817 0.2188 0.3268 0.7249 1.4758 2.0551	F (N) 87.5695 83.4748 78.4785 72.4764 66.8172 46.3855 32.5307	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894	J 1.9605 1.7874 1.6422 1.5166 1.3103 1.0915 0.9827	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397 -0.7890 -0.3779 -0.2150	K tp -0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463	K _{ts} 2.2674 1.8868 1.5945 1.3574 1.0193 0.7033 0.5706	10 * K _q 0.0006 0.1172 0.2651 0.3372 0.5617 0.7889 0.8913	Self-Pro J V 10 K _q K _{tp} Q T	0.8502 2.5077 1.0199 0.1020 0.4272 3.1408 86.3219	Point m/s N-m N
 ♥ (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 	n (rpm) 504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015	Q (N-m) 0.0003 0.0817 0.2188 0.3268 0.7249 1.4758 2.0551 2.3871	F (N) 87.5695 83.4748 78.4785 72.4764 66.8172 46.3855 32.5307 22.3437	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939	J 1.9605 1.7874 1.6422 1.5166 1.3103 1.0915 0.9827 0.9385	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397 -0.7890 -0.3779 -0.2150 -0.1346	K tp -0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760	K ts 2.2674 1.8868 1.5945 1.3574 1.0193 0.7033 0.5706 0.5201	10 * K _q 0.0006 0.1172 0.2651 0.3372 0.5617 0.7889 0.8913 0.9438	Self-Pro J V 10 K _q K _p Q T R	0.8502 2.5077 1.0199 0.1020 0.4272 3.1408 86.3219 80.8750	Point m/s N-m N N
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 2.5087	n (rpm) 504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015 1103.3557	Q (N-m) 0.0003 0.0817 0.2188 0.3268 0.7249 1.4758 2.0551 2.3871 2.6963	F (N) 87.5695 83.4748 78.4785 72.4764 66.8172 46.3855 32.5307 22.3437 12.3667	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930	J 1.9605 1.7874 1.6422 1.5166 1.3103 1.0915 0.9827 0.9385 0.8952	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397 -0.7890 -0.3779 -0.2150 -0.1346 -0.0678	K tp -0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760 0.3969	K ts 2.2674 1.8868 1.5945 1.3574 1.0193 0.7033 0.5706 0.5201 0.4732	10 * K _q 0.0006 0.1172 0.2651 0.3372 0.5617 0.7889 0.8913 0.9438 0.9699	Self-Pro	0.8502 2.5077 1.0199 0.1020 0.4272 3.1408 86.3219 80.8750 382.0881	roint m/s N-m N N W
 ♥ (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5020 2.5081 2.5087 2.5087 2.5023 	n (rpm) 504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015 1103.3557 1154.7567	Q (N-m) 0.0003 0.0817 0.2188 0.3268 0.7249 1.4758 2.0551 2.3871 2.6963 3.0789	F (N) 87.5695 83.4748 78.4785 72.4764 66.8172 46.3855 32.5307 22.3437 12.3667 3.6930	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930 84.3833	J 1.9605 1.7874 1.6422 1.5166 1.3103 1.0915 0.9827 0.9385 0.8952 0.8531	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397 -0.7890 -0.3779 -0.2150 -0.1346 -0.0678 -0.0185	K tp -0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760 0.3969 0.4223	K ts 2.2674 1.8868 1.5945 1.3574 1.0193 0.7033 0.5706 0.5201 0.4732 0.4320	10 * K _q 0.0006 0.1172 0.2651 0.3372 0.5617 0.7889 0.8913 0.9438 0.9699 1.0111	Self-Pro	0.8502 2.5077 1.0199 0.1020 0.4272 3.1408 86.3219 80.8750 382.0881 202.8115	roint m/s N-m N N W W
 ♥ (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 2.5087 2.5023 2.5092 	n (rpm) 504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015 1103.3557 1154.7567 1207.1602	Q (N-m) 0.0003 0.0817 0.2188 0.3268 0.7249 1.4758 2.0551 2.3871 2.6963 3.0789 3.4660	F (N) 87.5695 83.4748 78.4785 72.4764 66.8172 46.3855 32.5307 22.3437 12.3667 3.6930 -11.5045	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930 84.3833 97.3348	J 1.9605 1.7874 1.6422 1.5166 1.3103 1.0915 0.9827 0.9385 0.8952 0.8531 0.8183	K _{fd} -2.3002 -1.8245 -1.4496 -1.1397 -0.7890 -0.3779 -0.2150 -0.1346 -0.0678 -0.0185 0.0527	K tp -0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760 0.3969 0.4223 0.4458	K ts 2.2674 1.8868 1.5945 1.3574 1.0193 0.7033 0.5706 0.5201 0.4732 0.4320 0.3953	10 * K _q 0.0006 0.1172 0.2651 0.3372 0.5617 0.7889 0.8913 0.9438 0.9699 1.0111 1.0415	J V 10 K _q K _q Q T R P _d P _e η _d	0.8502 2.5077 1.0199 0.1020 0.4272 3.1408 86.3219 80.8750 382.0881 202.8115 53.0798	roint m/s N-m N N W W W

Load Varying Self - Propulsion Test (Propeller fitted on)

LUGU Varving Sen - Fropulsion rest (Duct + Fr	opener nilled on 1	1
--	--------------------	---

$ \begin{array}{c cm/s} & (rpm) & (N-m) & (N) & (N) & (N) & (N) & (N) \\ \hline 0.8002 & 495.767 & 0.334 & 1.3073 & 5.8455 & 7.6425 & 1.7779 & 0.6306 & 0.0580 & 0.1586 & 0.0475 & 0.2014 & 0.2163 & 0.5902 \\ \hline 0.8004 & 551.4566 & 0.4972 & 4.6450 & 10.3820 & 14.1975 & 3.8156 & 0.5714 & 0.1019 & 0.2278 & 0.0837 & 0.3116 & 0.1775 & 0.7159 & V & 0.8007 \\ \hline 0.8012 & 600.4575 & 0.6220 & -10.5645 & 14.4121 & 19.7185 & 5.3064 & 0.5253 & 0.1955 & 0.2686 & 0.0982 & 0.3650 & 0.1487 & 0.7603 & 10 K_q & 0.5900 \\ \hline 0.8018 & 650.4466 & 0.8160 & -17.5455 & 19.4810 & 26.1852 & 6.7042 & 0.4853 & 0.2678 & 0.3073 & 0.1058 & 0.4130 & 0.1276 & 0.8446 & K_q & 0.0590 \\ \hline 0.8002 & 902.9660 & 1.9967 & -68.0707 & 54.7882 & 78.0332 & 22.2450 & 0.3489 & 0.5571 & 0.4484 & 0.1903 & 0.6387 & 0.0662 & 1.0723 & Q & 0.3363 & N-m \\ \hline 0.8005 & 10052.3455 & 2.8657 & -108.6758 & 82.9812 & 21.3940 & 33.3850 & 0.3124 & 0.6212 & 0.4604 & 0.2191 & 0.6994 & 0.0531 & 1.0864 & T & 8.0900 & N \\ \hline 0.8005 & 10052.4455 & 2.8657 & -108.6758 & 82.9812 & 12.13940 & 33.4129 & 0.2995 & 0.6543 & 0.501 & 0.2135 & 0.7315 & 0.4488 & 1.1331 & R & 7.7220 & N \\ \hline 0.8001 & 1005.0548 & 3.1841 & -123.9928 & 93.6252 & 137.7978 & 44.1727 & 0.2857 & 0.6781 & 0.5125 & 0.2418 & 0.7542 & 0.0443 & 1.1426 & P_e & f.1826 & W \\ \hline 0.8008 & 1205.249 & 3.5484 & -139.0968 & 103.744 & 154.0467 & 50.3024 & 0.2739 & 0.7016 & 0.5233 & 0.2257 & 0.7770 & 0.4048 & 1.1732 & P_e & f.1826 & W \\ \hline 0.8008 & 1205.27469 & 4.2519 & -174.2846 & 126.4966 & 191.4733 & 64.9767 & 0.2516 & 0.7411 & 0.5379 & 0.2763 & 0.8142 & 0.0344 & 1.1864 & W & M_e & 0.7649 \\ \hline 1.1002 & 552.7477 & 0.4724 & 4.9553 & 5.0764 & 6.1274 & 7.6859 & 0.2737 & 0.1386 & 0.0245 & 0.1631 & 0.4483 & 0.5579 & J & 0.7029 \\ \hline 1.1022 & 552.7477 & 0.4724 & 4.9553 & 5.6767 & 7.8223 & 2.5467 & 0.7481 & 0.1080 & 0.3227 & 0.3086 & 0.7666 & 10 K_q & 0.7640 \\ 1.1032 & 651.6550 & 0.8161 & -9.4535 & 18.7681 & 26.6377 & 7.6851 & -0.1089 & 0.2247 & 0.1631 & 0.4483 & 0.5579 & J & 0.7029 \\ \hline 1.1022 & 552.7477 & 0.4722 & 4.9553 & 5.5707 & 7.82233 & 2.5647 & 0.7481 & 0.7493 $		n	Q	F	Tp	Tt	Td	J	K _{fd}	K _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion	Point
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(m/s)	(rpm)	(N-m)	(N)	(N)	(N)	(N)										
0.8004 551.4566 0.4972 4.46450 10.3820 14.1975 3.8156 0.5714 0.1019 0.2278 0.0837 0.3116 0.7175 0.7159 V 0.8007 m/s 0.8014 550.4456 0.8460 -17.545 19.44121 19.7185 5.3064 0.5258 0.1955 0.2668 0.0822 0.3650 0.1437 0.7150 K 0.5000 0.8014 560.4466 0.8167 75.4578 19.4810 26.1852 0.3877 0.1409 0.5086 0.9952 0.9712 K K 0.2163 0.0590 0.3637 0.6887 0.6887 0.6862 1.0723 Q 0.3363 N-m 0.8003 1008.5085 2.5232 -94.6789 73.2083 106.5934 3.33850 0.3124 0.6212 0.4484 0.2191 0.6594 0.0581 1.0864 T R 7.7220 N N 0.8002 110.512 1.3131 R 7.7220 N 0.8002 1.05233 0.2537 0.7710 0.4481 1.1431 R 7.7220 N 0.8002 <td< th=""><th>0.8002</th><th>499.5767</th><th>0.3364</th><th>1.3073</th><th>5.8645</th><th>7.6425</th><th>1.7779</th><th>0.6306</th><th>-0.0350</th><th>0.1568</th><th>0.0475</th><th>0.2044</th><th>0.2163</th><th>0.5902</th><th>J</th><th>0.6309</th><th></th></td<>	0.8002	499.5767	0.3364	1.3073	5.8645	7.6425	1.7779	0.6306	-0.0350	0.1568	0.0475	0.2044	0.2163	0.5902	J	0.6309	
0.8012 600.4575 0.6260 -10.5645 14.4121 19.7185 5.3064 0.5253 0.1955 0.2668 0.0982 0.3650 0.1497 0.7603 10 Kq 0.5900 0.8012 650.4466 0.8160 -17.5455 19.4810 26.1852 6.7042 0.4833 0.2768 0.20758 0.4103 0.1276 0.8446 Kq 0.2768 0.0568 0.0982 0.9770 0.409 0.5651 0.4843 0.571 0.4484 0.1903 0.6687 0.0662 1.0723 Q 0.3363 N-m 0.8000 1005.508 2.5232 -94.6789 73.2083 106.5934 33.350 0.3124 0.6212 0.7345 0.0488 1.137 R 7.7220 N 0.8001 105.2545 2.6847 .30.611 175.187 0.8024 0.2357 0.7770 0.0408 1.1372 P_a 17.6053 W 0.8027 0.8122 0.4481 1.1426 P_a 17.6053 W 0.8027 0.0371 1.1746 N N N 10 Kq 0.5579 V 0.6181	0.8004	551,4566	0.4972	-4.6450	10.3820	14.1975	3.8156	0.5714	0.1019	0.2278	0.0837	0.3116	0.1775	0.7159	v	0.8007	m/s
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.8012	600.4575	0.6260	-10.5645	14.4121	19.7185	5.3064	0.5253	0.1955	0.2668	0.0982	0.3650	0.1497	0.7603	10 K.,	0.5900	
0.8002 753.2179 1.2582 -34.8750 31.2554 43.2349 11.9795 0.4183 0.4102 0.3677 0.1409 0.5086 0.0952 0.9712 K _u 0.2163 0.8003 10065085 2.522 -94.6789 73.22845 0.3489 0.5571 0.4484 0.1903 0.6387 0.0662 1.0723 Q 0.3363 N-m 0.8005 1052.3455 2.8657 -108.5758 82.9812 121.3940 38.4129 0.2995 0.6543 0.5011 0.2315 0.7315 0.0488 1.1331 R 7.7220 N 0.8004 1102.1946 3.1813 -123.8928 93.6252 137.7978 44.1727 0.22857 0.6781 0.5125 0.2418 0.7542 0.0443 1.1426 P _a 61.826 W 0.8004 1206.8237 3.9061 -159.0113 116.5481 175.1871 58.6390 0.2612 0.7266 0.5340 0.2687 0.8027 0.3711 1.1745 P _a 61.826 W N _a 35.1180 % 35.1180 % 1.1025 55	0.8018	650,4466	0.8160	-17.5455	19.4810	26,1852	6.7042	0.4853	0.2768	0.3073	0.1058	0.4130	0.1276	0.8446	К. Т	0.0590	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.8002	753,2179	1.2582	-34.8750	31,2554	43,2349	11,9795	0.4183	0.4102	0.3677	0.1409	0.5086	0.0952	0.9712	K.	0.2163	
0.8003 1008.5085 2.5232 -94.6789 73.2083 106.5934 33.3850 0.3124 0.6212 0.4804 0.2191 0.6994 0.0531 1.0864 T 8.0900 N 0.8004 1052.3455 2.8657 -108.5758 82.9812 121.3940 38.4129 0.2295 0.6543 0.5011 0.215 0.7745 0.0443 11.424 Pa 17.7220 N 0.8002 1150.2549 3.5448 -139.0968 103.7442 154.0467 50.3024 0.2739 0.7016 0.5233 0.2537 0.7770 0.0408 1.1732 Pa 6.1826 W 0.8006 1252.7469 4.2519 -174.2846 126.4966 191.4733 64.9767 0.2516 0.7246 0.5027 0.0371 1.1745 Pa 6.1826 W 33.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 % 35.1180 <t< th=""><th>0.8002</th><th>902.9860</th><th>1.9967</th><th>-68.0707</th><th>54,7882</th><th>78.0332</th><th>23.2450</th><th>0.3489</th><th>0.5571</th><th>0.4484</th><th>0.1903</th><th>0.6387</th><th>0.0662</th><th>1.0723</th><th>Ő</th><th>0.3363</th><th>N-m</th></t<>	0.8002	902.9860	1.9967	-68.0707	54,7882	78.0332	23.2450	0.3489	0.5571	0.4484	0.1903	0.6387	0.0662	1.0723	Ő	0.3363	N-m
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.8003	1008.5085	2.5232	-94.6789	73.2083	106.5934	33.3850	0.3124	0.6212	0.4804	0.2191	0.6994	0.0531	1.0864	Ť	8.0900	N
0.8014 1104.1946 3.1813 -123.8928 93.6252 137.7978 44.1727 0.2857 0.6781 0.5125 0.2418 0.7542 0.0443 1.1426 Pa 17.6053 W 0.8002 1150.2549 3.5448 -139.0968 103.7442 154.0467 50.3024 0.2739 0.7016 0.5233 0.2537 0.7770 0.0408 1.1732 Pa 6.1826 W 0.8007 0.0371 1.1745 Pa 6.1826 W 0.8007 0.0371 1.1745 Pa 51.180 % 9 0.8006 1252.7469 4.2519 -174.2846 126.4966 191.4733 64.9767 0.2516 0.7411 0.5379 0.2763 0.8142 0.0344 1.1864 17.6053 W 0.8006 1252.7469 4.2519 -174.2846 126.4966 191.4733 64.9767 0.2516 0.7411 0.5379 0.2763 0.8142 0.0344 1.1864 1.864 1.864 1.864 1.864 1.864 1.864 1.864 1.864 1.864 1.864 1.864 1.864 1.864 1.866 0.2745 0.8163 0.	0.8005	1052.3455	2.8657	-108.5758	82.9812	121.3940	38.4129	0.2995	0.6543	0.5001	0.2315	0.7315	0.0488	1.1331	R	7.7220	N
0.8002 1150.2549 3.5448 -139.0968 103.7442 154.0467 50.3024 0.2739 0.7016 0.5233 0.2537 0.7770 0.0408 1.1732 P. 6.1826 W 0.8006 1265.8237 3.9061 -159.0113 116.5481 175.1871 58.6390 0.2612 0.7286 0.5340 0.2687 0.8027 0.0311 1.1745 N N N N 35.1180 % 35.1180 % 35.1180 % 35.1180 % N	0.8014	1104.1946	3.1813	-123.8928	93.6252	137.7978	44.1727	0.2857	0.6781	0.5125	0.2418	0.7542	0.0443	1.1426	Pd	17.6053	W
0.8008 1206.8237 3.9061 -159.0113 116.5481 175.1871 58.6390 0.2612 0.7286 0.5340 0.26763 0.8027 0.0371 1.1745 n _a 35.1180 % 0.8006 1252.7469 4.2519 -174.2846 126.4966 191.4733 58.6390 0.2612 0.7286 0.5340 0.26763 0.8142 0.0344 1.1864 1.1864 V n Q F Tp Tt Ta A J Kre Kre Kre Kre N Q Self-Propulsion Point 1.1006 500.6686 0.3193 10.2786 5.2064 6.1254 0.9190 0.8655 -0.2737 0.1386 0.0245 0.1631 0.4483 0.5579 J 0.7029 V 1.1018 m/s 1.0022 552.7477 0.4722 4.9858 9.5730 11.5778 2.0047 0.7851 -0.1089 0.2091 0.0438 0.2529 0.3678 0.6769 V 1.1018 m/s 1.1018 m/s 1.1018 m/s 0.7029 V 1.1018	0.8002	1150.2549	3.5448	-139.0968	103.7442	154.0467	50.3024	0.2739	0.7016	0.5233	0.2537	0.7770	0.0408	1.1732	P	6.1826	W
0.8006 1252.7469 4.2519 -174.2846 126.4966 191.4733 64.9767 0.2516 0.7411 0.5379 0.2763 0.8142 0.0344 1.1864 V n Q F Tp Tt Td V N Ktd Ktd Kt Kt Kt Kt Kt Kt Kt Kt Self-Propulsion Point 1.1006 500.6686 0.3193 10.2786 5.2064 6.1254 0.9190 0.8655 -0.2737 0.1386 0.0245 0.1631 0.4483 0.5579 J 0.7029 1.1002 552.7477 0.4722 4.9858 9.5730 11.5778 2.0047 0.7851 -0.1089 0.2091 0.0438 0.2529 0.3678 0.6769 V 1.1018 m/s 1.1031 603.4644 0.6209 -0.7660 12.7872 17.6112 4.8240 0.7197 0.0140 0.2343 0.0884 0.3227 0.3086 0.7466 10 Kq 0.7840 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693	0.8008	1206.8237	3.9061	-159.0113	116.5481	175.1871	58.6390	0.2612	0.7286	0.5340	0.2687	0.8027	0.0371	1.1745	η	35.1180	%
V n Q F T _p T _t T _d J K _{fd} K _{tp} K _{td} K _{ts} 10*K _q Self-Propulsion Point 1.1006 500.6686 0.3193 10.2786 5.2064 6.1254 0.9190 0.8655 -0.2737 0.1386 0.0245 0.1631 0.4483 0.5579 J 0.7029 1.1002 552.7477 0.4722 4.9858 9.5730 11.5778 2.0047 0.7851 -0.1089 0.2091 0.0438 0.2529 0.3666 0.7466 10 K _q 0.7840 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693 0.6665 0.1486 0.2243 0.0844 0.3227 0.3086 0.7466 10 K _q 0.7840 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693 0.6665 0.1486 0.2249 0.1237 0.4186 0.2646 0.8416 K _q 0.0784 1.1026 901.8126 1.9412	0.8006	1252.7469	4.2519	-174.2846	126.4966	191.4733	64.9767	0.2516	0.7411	0.5379	0.2763	0.8142	0.0344	1.1864			
V n Q F T _p T _t T _d J K _{fd} K _{tg} K _{ts} 10 * K _q Self-Propulsion Point 1.1006 500.6686 0.3193 10.2786 5.2064 6.1254 0.9190 0.8655 -0.2737 0.1386 0.0245 0.1631 0.4483 0.5579 J 0.7029 1.1022 552.7477 0.4722 4.9858 9.5730 11.5778 2.0047 0.7851 -0.1089 0.2091 0.0438 0.2529 0.3678 0.6769 V 1.1018 m/s 1.1031 603.4646 0.6209 -0.7660 12.7872 17.6112 4.8240 0.7197 0.0140 0.2343 0.0884 0.3227 0.3086 0.7466 10 K _q 0.7840 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693 0.6665 0.1486 0.2949 0.1237 0.4186 0.2646 0.8416 K _q 0.0784 1.1002 901.8126 1.9412																	
V n Q F T _p T _t T _d J K _{fd} K _{tp} K _{ts} 10 * K _q Self-Propulsion Point 1.1006 500.6686 0.3193 10.2786 5.2064 6.1254 0.9190 0.8655 -0.2737 0.1386 0.0245 0.1631 0.4483 0.5579 J 0.7029 1.1022 552.7477 0.4722 4.9858 9.5730 11.5778 2.0047 0.7851 -0.1089 0.2021 0.0438 0.2259 0.3678 0.6769 V 1.1018 m/s 1.1031 603.4646 0.6209 -0.7660 12.7872 17.6112 4.8240 0.7197 0.0140 0.2343 0.0884 0.3227 0.3086 0.7466 10 K _q 0.7840 1.1005 754.9726 1.2195 -24.9334 30.1015 43.0749 12.9734 0.5739 0.2919 0.5243 0.1519 0.9369 K _{tt} 0.6818 N-m 1.1026 901.8126 1.9412 -58.3065																	
(m/s) (rpm) (N-m) (N)																	
1.1006 500.6686 0.3193 10.2786 5.2064 6.1254 0.9190 0.8655 -0.2737 0.1386 0.0245 0.1631 0.4483 0.5579 J 0.7029 V 1.1018 m/s 1.1022 552.7477 0.4722 4.9858 9.5730 11.5778 2.0047 0.7851 -0.1089 0.2091 0.0438 0.2529 0.3678 0.6769 V 1.1018 m/s 1.1031 603.4646 0.6209 -0.7660 12.7872 17.6112 4.8240 0.7197 0.0140 0.2343 0.0884 0.3227 0.3086 0.7466 D M 0.7840 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693 0.6665 0.1486 0.2949 0.1237 0.4186 0.2646 0.8416 Kq 0.0784 1.1005 754.9726 1.2195 -24.9334 30.1015 43.0749 12.9734 0.5739 0.2919 0.3524 0.1519 0.5043 0.1971 0.9369 Kt 0.2951 1.1026 901.8126 1.9412	v	n	Q	F	Tp	T _t	Td	J	K _{fd}	K _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion	Point
1.1006 500.6686 0.3193 10.2786 5.2064 6.1254 0.9190 0.8655 -0.2737 0.1386 0.0245 0.1631 0.4483 0.5579 J 0.7029 1.1022 552.7477 0.4722 4.9858 9.5730 11.5778 2.0047 0.7851 -0.1089 0.2091 0.0438 0.2529 0.3678 0.6769 V 1.1018 m/s 1.1031 603.4646 0.6209 -0.7660 12.7872 17.6112 4.8240 0.7197 0.0140 0.2343 0.0884 0.3227 0.3086 0.7466 10 K _q 0.7840 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693 0.6665 0.1486 0.2949 0.1237 0.4186 0.2646 0.8416 K _q 0.0784 1.1005 754.9726 1.2195 -24.9334 30.1015 43.0749 12.9734 0.5739 0.2919 0.3524 0.1519 0.5043 0.1971 0.9369 K _u 0.2951 1.1026 901.8126 1.9412 -58.3065 52.6797 78.2263	V (m/s)	n (rpm)	Q (N-m)	F (N)	T _p (N)	T _t (N)	T _d (N)	J	K _{fd}	K _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion	Point
1.1022 552.7477 0.4722 4.9636 9.5730 11.5778 2.0477 0.7851 -0.1069 0.2091 0.0438 0.2529 0.3678 0.6789 V 1.1018 11.8 1.1031 603.4646 0.6209 -0.7660 12.7872 17.6112 4.8240 0.7197 0.0140 0.2343 0.0884 0.3227 0.3086 0.7466 10 K _q 0.7840 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693 0.6665 0.1486 0.2949 0.1237 0.4186 0.2646 0.8416 K _q 0.0784 1.1005 754.9726 1.2195 -24.9334 30.1015 43.0749 12.9734 0.5739 0.2919 0.3524 0.1519 0.5043 0.1971 0.9369 K _{tt} 0.2951 1.1026 901.8126 1.9412 -58.3065 52.6797 78.2263 25.5467 0.4814 0.4785 0.4323 0.2096 0.6419 0.1382 1.0452 Q 0.6818 N-m 1.1014 1000.0880 2.4885 -82.6355 71.0720	V (m/s)	n (rpm)	Q (N-m)	F (N)	Τ _p (N)	T _t (N)	T _d (N)	J	K _{fd}	K _{tp}	K _{ta}	K ₁₁	K _{ts}	10 * K _q	Self-Pr	opulsion	Point
1.1031 603.4646 0.0209 -0.7660 12.7872 17.6112 4.0240 0.7197 0.0140 0.2343 0.0684 0.0227 0.0366 0.7466 10 K _q 0.7640 1.1032 651.6550 0.8161 -9.4535 18.7681 26.6374 7.8693 0.6665 0.1486 0.2949 0.1237 0.4186 0.2646 0.8416 K _q 0.0784 1.1005 754.9726 1.2195 -24.9334 30.1015 43.0749 12.9734 0.5739 0.2919 0.3524 0.1519 0.5043 0.1971 0.9369 K _{tt} 0.2951 1.1026 901.8126 1.9412 -58.3065 52.6797 78.2263 25.5467 0.4814 0.4785 0.4323 0.2096 0.6419 0.1382 1.0452 Q 0.6818 N-m 1.1014 1000.0880 2.4885 -82.6355 71.0720 103.9908 32.9188 0.4336 0.5514 0.4742 0.2311 0.7183 0.1006 1.0968 R 15.9840 N 1.1017 1056.9566 2.7980 -98.0144 81.5514 </th <th>V (m/s) 1.1006</th> <th>n (rpm) 500.6686</th> <th>Q (N-m) 0.3193</th> <th>F (N) 10.2786</th> <th>T_p (N) 5.2064</th> <th>T_t (N) 6.1254</th> <th>T_d (N) 0.9190</th> <th>J 0.8655</th> <th>K _{fd}</th> <th>К _{tp}</th> <th>K td</th> <th>К_н</th> <th>K ts</th> <th>10 * K _q</th> <th>Self-Pr J</th> <th>0.7029</th> <th>Point</th>	V (m/s) 1.1006	n (rpm) 500.6686	Q (N-m) 0.3193	F (N) 10.2786	T _p (N) 5.2064	T_t (N) 6.1254	T _d (N) 0.9190	J 0.8655	K _{fd}	К _{tp}	K td	К _н	K ts	10 * K _q	Self-Pr J	0.7029	Point
1.1032 851.6550 0.8161 -9.4535 18.7681 28.6374 7.8693 0.6665 0.1486 0.2949 0.1237 0.4186 0.2046 0.0416 R _q 0.0784 1.1005 754.9726 1.2195 -24.9334 30.1015 43.0749 12.9734 0.5739 0.2919 0.3524 0.1519 0.5043 0.1971 0.9369 K _{tt} 0.2951 1.1026 901.8126 1.9412 -58.3065 52.6797 78.2263 25.5467 0.4814 0.4785 0.4323 0.2096 0.6419 0.1382 1.0452 Q 0.6818 N-m 1.1014 1000.0880 2.4885 -82.6355 71.0720 103.9908 32.9188 0.4336 0.5514 0.4742 0.2196 0.6939 0.1123 1.0895 T 16.8376 N 1.1017 1056.9566 2.7980 -98.0144 81.5514 120.2376 38.6862 0.4104 0.5855 0.4872 0.2311 0.7183 0.1006 1.0968 R 15.9840 N 1.1013 1104.4112 3.1236 -114.1839	V (m/s) 1.1006 1.1022 1.1021	n (rpm) 500.6686 552.7477	Q (N-m) 0.3193 0.4722	F (N) 10.2786 4.9858 0.7660	T _p (N) 5.2064 9.5730 12 7872	T _t (N) 6.1254 11.5778 17.6112	T _d (N) 0.9190 2.0047 4 ≈240	J 0.8655 0.7851 0.7107	K fd -0.2737 -0.1089	K _{tp} 0.1386 0.2091 0.2342	K td 0.0245 0.0438 0.0884	К _н 0.1631 0.2529 0.2227	K _{ts} 0.4483 0.3678 0.2086	10 * K _q 0.5579 0.6769 0.7466	Self-Pr J V	0.7029 1.1018	Point m/s
1.1005 754.9726 1.2195 -24.9334 30.1015 43.0749 12.9734 0.5739 0.2919 0.3524 0.1519 0.5043 0.1971 0.9369 Ktt 0.2915 1.1026 901.8126 1.9412 -58.3065 52.6797 78.2263 25.5467 0.4814 0.4785 0.4323 0.2096 0.6419 0.1382 1.0452 Q 0.6818 N-m 1.1014 1000.0880 2.4885 -82.6355 71.0720 103.9908 32.9188 0.4336 0.5514 0.4742 0.2196 0.6939 0.1123 1.0895 T 16.8376 N 1.1017 1056.9566 2.7980 -98.0144 81.5514 120.2376 38.6862 0.4104 0.5855 0.4872 0.2311 0.7183 0.1006 1.0968 R 15.9840 N 1.1013 1104.4112 3.1236 -114.1839 92.2256 137.1587 44.9331 0.3926 0.6247 0.5046 0.2458 0.7505 0.0921 1.1214 Pd 44.0797 W 1.1020 1156.9473 3.4722 <t< th=""><th>V (m/s) 1.1006 1.1022 1.1031 1.1032</th><th>n (rpm) 500.6686 552.7477 603.4646</th><th>Q (N-m) 0.3193 0.4722 0.6209</th><th>F (N) 10.2786 4.9858 -0.7660</th><th>T_p (N) 5.2064 9.5730 12.7872</th><th>T_t (N) 6.1254 11.5778 17.6112 26.6274</th><th>T_d (N) 0.9190 2.0047 4.8240 7.8602</th><th>J 0.8655 0.7851 0.7197</th><th>K fd -0.2737 -0.1089 0.0140</th><th>K tp 0.1386 0.2091 0.2343</th><th>K td 0.0245 0.0438 0.0884 0.4227</th><th>K_{tt} 0.1631 0.2529 0.3227</th><th>K ts 0.4483 0.3678 0.3086</th><th>10 * K_q 0.5579 0.6769 0.7466</th><th>Self-Pr J V 10 K_q</th><th>0.7029 1.1018 0.7840</th><th>Point m/s</th></t<>	V (m/s) 1.1006 1.1022 1.1031 1.1032	n (rpm) 500.6686 552.7477 603.4646	Q (N-m) 0.3193 0.4722 0.6209	F (N) 10.2786 4.9858 -0.7660	T _p (N) 5.2064 9.5730 12.7872	T _t (N) 6.1254 11.5778 17.6112 26.6274	T _d (N) 0.9190 2.0047 4.8240 7.8602	J 0.8655 0.7851 0.7197	K fd -0.2737 -0.1089 0.0140	K tp 0.1386 0.2091 0.2343	K td 0.0245 0.0438 0.0884 0.4227	K _{tt} 0.1631 0.2529 0.3227	K ts 0.4483 0.3678 0.3086	10 * K _q 0.5579 0.6769 0.7466	Self-Pr J V 10 K _q	0.7029 1.1018 0.7840	Point m/s
1.1026 901.8126 1.9412 -58.3065 52.6797 78.2263 25.5467 0.4814 0.4785 0.4323 0.2096 0.6419 0.1382 1.0452 0 0.6818 N-m 1.1014 1000.0880 2.4885 -82.6355 71.0720 103.9908 32.9188 0.4336 0.5514 0.4742 0.2196 0.6939 0.1123 1.0895 T 16.8376 N 1.1017 1056.9566 2.7980 -98.0144 81.5514 120.2376 38.6862 0.4104 0.5855 0.4872 0.2311 0.7183 0.1006 1.0968 R 15.9840 N 1.1013 1104.4112 3.1236 -114.1839 92.2256 137.1587 44.9331 0.3926 0.6247 0.5046 0.2458 0.7505 0.0921 1.1214 P _d 44.0797 W 1.1020 1156.9473 3.4722 -130.2701 102.7820 154.0702 51.2882 0.3750 0.6495 0.5125 0.2557 0.7682 0.0839 1.1360 P _e 17.6106 W	V (m/s) 1.1006 1.1022 1.1031 1.1032	n (rpm) 500.6686 552.7477 603.4646 651.6550	Q (N-m) 0.3193 0.4722 0.6209 0.8161	F (N) 10.2786 4.9858 -0.7660 -9.4535	T _p (N) 5.2064 9.5730 12.7872 18.7681	T _t (N) 6.1254 11.5778 17.6112 26.6374	T _d (N) 0.9190 2.0047 4.8240 7.8693	J 0.8655 0.7851 0.7197 0.6665	K _{fd} -0.2737 -0.1089 0.0140 0.1486	K _{tp} 0.1386 0.2091 0.2343 0.2949	K td 0.0245 0.0438 0.0884 0.1237	K _{tt} 0.1631 0.2529 0.3227 0.4186	K ts 0.4483 0.3678 0.3086 0.2646	10 * K ₉ 0.5579 0.6769 0.7466 0.8416	Self-Pr J V 10 Kq Kq	0.7029 1.1018 0.7840 0.0784	Point m/s
1.1014 1000.0880 2.4885 -82.6355 71.0720 103.9908 32.9188 0.4336 0.5514 0.4742 0.2196 0.6939 0.1123 1.0895 1 16.8376 N 1.1017 1056.9566 2.7980 -98.0144 81.5514 120.2376 38.6862 0.4104 0.5855 0.4872 0.2311 0.7183 0.1006 1.0968 R 15.9840 N 1.1013 1104.4112 3.1236 -114.1839 92.2256 137.1587 44.9331 0.3926 0.6247 0.5046 0.2458 0.7505 0.0921 1.1214 Pd 44.0797 W 1.1020 1156.9473 3.4722 -130.2701 102.7820 154.0702 51.2882 0.3750 0.6495 0.5125 0.2557 0.7682 0.0839 1.1360 Pe 17.6106 W	V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334	T _p (N) 5.2064 9.5730 12.7872 18.7681 30.1015	T _t (N) 6.1254 11.5778 17.6112 26.6374 43.0749	T _d (N) 0.9190 2.0047 4.8240 7.8693 12.9734	J 0.8655 0.7851 0.7197 0.6665 0.5739	K fd -0.2737 -0.1089 0.0140 0.1486 0.2919 0.1725	K tp 0.1386 0.2091 0.2343 0.2949 0.3524	K td 0.0245 0.0438 0.0884 0.1237 0.1519	К _н 0.1631 0.2529 0.3227 0.4186 0.5043	K ts 0.4483 0.3678 0.3086 0.2646 0.1971	10 * K ₉ 0.5579 0.6769 0.7466 0.8416 0.9369	Self-Pr J V 10 K _q K _q	0.7029 1.1018 0.7840 0.0784 0.2951	Point m/s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065	T _p (N) 5.2064 9.5730 12.7872 18.7681 30.1015 52.6797 74.0722	T _t (N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263	T _d (N) 0.9190 2.0047 4.8240 7.8693 12.9734 25.5467 20.0420	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4814	K fd -0.2737 -0.1089 0.0140 0.1486 0.2919 0.4785 0.5514	K tp 0.1386 0.2091 0.2343 0.2949 0.3524 0.4323 0.4323	K td 0.0245 0.0438 0.0884 0.1237 0.1519 0.2096 0.2096	К _н 0.1631 0.2529 0.3227 0.4186 0.5043 0.6419	K ts 0.4483 0.3678 0.3086 0.2646 0.1971 0.1382	10 * K ₉ 0.5579 0.6769 0.7466 0.8416 0.9369 1.0452	Self-Pr J V 10 K _q K _t Q	0.7029 1.1018 0.7840 0.0784 0.2951 0.6818	Point m/s N-m
$1.1013 + 104.4112 + 3.1236 + 114.1639 + 92.2256 + 137.1567 + 44.9351 + 0.3926 + 0.6247 + 0.5046 + 0.2438 + 0.7505 + 0.0921 + 1.1214 + \mathbf{F_d} = 44.0797 \text{ W}1.1020 + 1156.9473 + 3.4722 + 130.2701 + 102.7820 + 154.0702 + 51.2882 + 0.3750 + 0.6495 + 0.5125 + 0.2557 + 0.7682 + 0.0839 + 1.1360 + \mathbf{F_d} = 44.0797 \text{ W}$	V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1055 6565	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7090	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -82.6355	T _p (N) 5.2064 9.5730 12.7872 18.7681 30.1015 52.6797 71.0720 81 514	T _t (N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2276	T _d (N) 0.9190 2.0047 4.8240 7.8693 12.9734 25.5467 32.9188 29.6862	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104	K fd -0.2737 -0.1089 0.0140 0.1486 0.2919 0.4785 0.5514 0.55514	K tp 0.1386 0.2091 0.2343 0.2949 0.3524 0.4323 0.4742 0.4872	K td 0.0245 0.0438 0.0884 0.1237 0.1519 0.2096 0.2196 0.2211	К _н 0.1631 0.2529 0.3227 0.4186 0.5043 0.6419 0.6939 0.7182	K ts 0.4483 0.3678 0.3086 0.2646 0.1971 0.1382 0.1123 0.1006	10 * K ₉ 0.5579 0.6769 0.7466 0.8416 0.9369 1.0452 1.0895 1.0068	Self-Pr J V 10 K _q K _t Q T B	0.7029 1.1018 0.7840 0.0784 0.2951 0.6818 16.8376	Point m/s N-m N
1.1020 1156.9473 3.4722 -130.2701 102.7820 154.0702 51.2882 0.3750 0.6495 0.5125 0.2557 0.7682 0.0839 1.1360 🕊 17.6106 W	V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1012	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7980 2.1226	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -98.0144	T _p (N) 5.2064 9.5730 12.7872 18.7681 30.1015 52.6797 71.0720 81.5514 02.2255	T _t (N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2376 127.457	T _d (N) 0.9190 2.0047 4.8240 7.8693 12.9734 25.5467 32.9188 38.6862	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104 0.226	K fd -0.2737 -0.1089 0.0140 0.1486 0.2919 0.4785 0.5514 0.5514 0.5855 0.6247	K tp 0.1386 0.2091 0.2343 0.2949 0.3524 0.4323 0.4742 0.4872 0.5046	K td 0.0245 0.0438 0.0884 0.1237 0.1519 0.2096 0.2196 0.2311 0.2458	К _н 0.1631 0.2529 0.3227 0.4186 0.5043 0.6419 0.6939 0.7183 0.7505	K ts 0.4483 0.3678 0.3086 0.2646 0.1971 0.1382 0.1123 0.11006 0.0021	10 * K ₉ 0.5579 0.6769 0.7466 0.8416 0.9369 1.0452 1.0895 1.0968	Self-Pr J V 10 K _q K _t Q T R	0.7029 1.1018 0.7840 0.0784 0.2951 0.6818 16.8376 15.9840	Point m/s N-m N N
	V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1023	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7980 3.1236 2.4792	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -98.0144 -114.1839	T _p (N) 5.2064 9.5730 12.7872 18.7681 30.1015 52.6797 71.0720 81.5514 92.2256	T _t (N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2376 137.1587 154.0302	T _d (N) 0.9190 2.0047 4.8240 7.8693 12.9734 25.5467 32.9188 38.6862 44.9331	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104 0.3926 0.2350	K fd -0.2737 -0.1089 0.0140 0.1486 0.2919 0.4785 0.5514 0.5855 0.6247 0.6447	K tp 0.1386 0.2091 0.2343 0.2949 0.3524 0.4323 0.4742 0.4872 0.5046 0.5125	K td 0.0245 0.0438 0.0884 0.1237 0.1519 0.2096 0.2196 0.2311 0.2458 0.2557	К _н 0.1631 0.2529 0.3227 0.4186 0.5043 0.6419 0.6939 0.7183 0.7505 0.7692	K ts 0.4483 0.3678 0.3086 0.2646 0.1971 0.1382 0.1123 0.1006 0.0921	10 * K ₉ 0.5579 0.6769 0.7466 0.8416 0.9369 1.0452 1.0895 1.0968 1.1214	Self-Pr J V 10 K _q K _t Q T R R Pa Pa	0.7029 1.1018 0.7840 0.0784 0.2951 0.6818 16.8376 15.9840 44.0797	Point m/s N-m N N W
I.IUID IZIZ.9155 5.0551 -147.5041 IID.0547 I72.0909 00.4902 0.3575 0.0000 0.5240 0.2501 0.7607 0.0764 1.1469 ⊕ ¶ _d 39.9518 % 1.1011 1258.8101 4.2360 -163.3845 125.0240 188.8362 62.0113 0.3444 0.6881 0.5303 0.2650 0.7053 0.0700 1.1700	V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1025	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112 1156.9473 1212.0423	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7980 3.1236 3.4722 2.9524	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -98.0144 -114.1839 -130.2701	T _p (N) 5.2064 9.5730 12.7872 18.7681 30.1015 52.6797 71.0720 81.5514 92.2256 102.7820	T _t (N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2376 137.1587 154.0702	T _d (N) 0.9190 2.0047 4.8240 7.8693 12.9734 25.5467 32.9188 38.6862 44.9331 51.2882 56.4562	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104 0.3926 0.3750 0.2575	K fd -0.2737 -0.1089 0.0140 0.1486 0.2919 0.4785 0.5514 0.5855 0.6247 0.6247 0.6495 0.6695	K tp 0.1386 0.2091 0.2343 0.2949 0.3524 0.4323 0.4742 0.4872 0.5046 0.5125 0.52346	K td 0.0245 0.0438 0.0884 0.1237 0.1519 0.2096 0.2196 0.2311 0.2458 0.2557 0.2557	К _и 0.1631 0.2529 0.3227 0.4186 0.5043 0.6419 0.6939 0.7183 0.7505 0.7682 0.7882	K ts 0.4483 0.3678 0.3086 0.2646 0.1971 0.1382 0.1123 0.1006 0.0921 0.0839 0.2764	10 * K ₉ 0.5579 0.6769 0.7466 0.8416 0.9369 1.0452 1.0895 1.0968 1.1214 1.1360 1.1460	Self-Pr J V 10 K _q K _t Q T R P _d P _d P _e	0.7029 1.1018 0.7840 0.0784 0.2951 0.6818 16.8376 15.9840 44.0797 17.6106 20.0512	Point m/s N-m N W W

Load Varying Self - Propulsion Test (Duct + Propeller fitted on)

V	n	Q	F	Tp	T _t	Td	J	K _{fd}	K _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion l	Point
(m/s)	(rpm)	(N-m)	(N)	(N)	(N)	(N)										
1 2022	501 9541	0 2051	25 0604	1 0075	2 4715	2 4790	1 0224	0 6955	0.0267	0 0022	0.0655	0 6007	0 4057	1	0 7200	
1 3116	550 7550	0.2001	19 5634	1.0075	-2.4713	-3.4709	0.0224	-0.0000	0.0207	-0.0922	-0.0000	0.0227	0.4957	J V	1 3035	m/s
1 3018	601 3456	0.4200	14 6455	9 1934	7 6691	-1.0200	0.3570	-0.4304	0.1670	-0.0330	0.0720	0.3170	0.0179	10 K	0.8367	11//3
1 3022	654 7460	0.0000	3 6444	16 6810	18 63/2	1 0533	0.0020	-0.2703	0.1007	0.0201	0.1410	0.4007	0.7 100	LA LA	0.0007	
1 2025	752 1400	1 1578	0.6546	26 3380	32 8566	6 5177	0.7030	-0.0307	0.2007	0.0304	0.2901	0.3030	0.7900	rq K	0.0007	
1 3023	007 7705	1.1576	-9.0040	20.3309	70 4953	20.0082	0.0010	0.1139	0.3107	0.0709	0.5070	0.2772	0.0902	n _{tt}	0.3200	NLm
1.3020	1006 9377	2 4451	-71 4491	68 2528	99 0206	30 7678	0.5050	0.3017	0.4000	0.1701	0.5709	0.1903	1.0103	T	23 4992	N N
1.3014	1051 7237	2 6985	-85 4106	78 4238	113 7191	35 2953	0.0001	0.5153	0.4432	0.2020	0.6861	0.1047	1.0000	R	22 3430	N
1.3116	1103.5535	3.0711	-101.8478	89.1648	130.8195	41.6547	0.4679	0.5581	0.4886	0.2283	0.7169	0.1288	1.1043	P.	66.7978	w
1.3007	1155.5678	3.4310	-120.5716	101.3690	150.4082	49.0392	0.4431	0.6026	0.5066	0.2451	0.7517	0.1174	1.1251	P.	29.1250	w
1.3006	1208.2135	3.7775	-136.2495	113.4923	166.7611	53.2687	0.4238	0.6229	0.5188	0.2435	0.7624	0.1074	1.1332	n,	43.6018	%
1.3020	1256.7456	4.1836	-152.6671	123.8806	183.7284	59.8478	0.4079	0.6451	0.5234	0.2529	0.7763	0.0993	1.1599	-10		, -
		~	_	-	-	-		12	12	17	1Z	14	40 + 17			n · .
V	'n	Q	F	Tp	T _t	Td	J	K _{fd}	К _ф	K _{td}	K _{tt}	K _{ts}	10 * K ₉	Self-Pr	opulsion l	Point
V (m/s)	n (rpm)	Q (N-m)	F (N)	T _p (N)	T _t (N)	T _d (N)	J	K _{fd}	К _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion l	Point
V (m/s) 1.6030	n (rpm) 503.1755	Q (N-m) 0.2466	F (N) 41.2862	Τ_ρ (Ν) -1.2270	T _t (N) -7.0565	T _d (N) -5.8296	J 1.2542	К _{fd} -1.0882	К _{tp} -0.0323	К _{td} -0.1537	К _н	K _{ts} 0.8909	10 * K _g 0.4265	Self-Pr J	opulsion 0.8138	Point
V (m/s) 1.6030 1.6053	n (rpm) 503.1755 554.4423	Q (N-m) 0.2466 0.3896	F (N) 41.2862 35.5623	T _p (N) -1.2270 3.2810	T_t (N) -7.0565 -2.6691	T _d (N) -5.8296 -5.9501	J 1.2542 1.1399	K _{fd} -1.0882 -0.7720	К _{tp} -0.0323 0.0712	K _{td} -0.1537 -0.1292	K tt -0.1860 -0.0579	K _{ts} 0.8909 0.7338	10 * K _q 0.4265 0.5550	Self-Pr J V	0.8138 0.8138 1.6051	Point m/s
V (m/s) 1.6030 1.6053 1.6045	n (rpm) 503.1755 554.4423 604.3557	Q (N-m) 0.2466 0.3896 0.5547	F (N) 41.2862 35.5623 28.4763	Τ_ρ (N) -1.2270 3.2810 7.5364	T _t (N) -7.0565 -2.6691 3.2865	T _d (N) -5.8296 -5.9501 -4.2499	J 1.2542 1.1399 1.0452	K _{fd} -1.0882 -0.7720 -0.5203	К _{tp} -0.0323 0.0712 0.1377	K td -0.1537 -0.1292 -0.0777	K _{ft} -0.1860 -0.0579 0.0600	K _{ts} 0.8909 0.7338 0.6176	10 * K _q 0.4265 0.5550 0.6650	Self-Pr J V 10 K _a	0.8138 0.8138 1.6051 0.8936	Point m/s
V (m/s) 1.6030 1.6053 1.6045 1.6063	n (rpm) 503.1755 554.4423 604.3557 652.4344	Q (N-m) 0.2466 0.3896 0.5547 0.7494	F (N) 41.2862 35.5623 28.4763 19.6455	T _p (N) -1.2270 3.2810 7.5364 13.8101	T _t (N) -7.0565 -2.6691 3.2865 11.6498	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603	J 1.2542 1.1399 1.0452 0.9693	K fd -1.0882 -0.7720 -0.5203 -0.3080	К _{tp} -0.0323 0.0712 0.1377 0.2165	K td -0.1537 -0.1292 -0.0777 -0.0339	-0.1860 -0.0579 0.0600 0.1826	K _{ts} 0.8909 0.7338 0.6176 0.5299	10 * K _q 0.4265 0.5550 0.6650 0.7710	Self-Pr J V 10 K _q K _o	0.8138 0.8138 1.6051 0.8936 0.0894	Point m/s
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132	F (N) 41.2862 35.5623 28.4763 19.6455 3.7317	T _p (N) -1.2270 3.2810 7.5364 13.8101 25.8394	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603 2.3523	J 1.2542 1.1399 1.0452 0.9693 0.8407	K fd -1.0882 -0.7720 -0.5203 -0.3080 -0.0440	К _{tp} -0.0323 0.0712 0.1377 0.2165 0.3047	K td -0.1537 -0.1292 -0.0777 -0.0339 0.0277	К н -0.1860 -0.0579 0.0600 0.1826 0.3325	K ts 0.8909 0.7338 0.6176 0.5299 0.3986	10 * K _q 0.4265 0.5550 0.6650 0.7710 0.8615	Self-Pr J V 10 K _q K _t	0.8138 1.6051 0.8936 0.0894 0.3741	Point m/s
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053	F (N) 41.2862 35.5623 28.4763 19.6455 3.7317 -29.3272	T _p (N) -1.2270 3.2810 7.5364 13.8101 25.8394 47.4539	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603 2.3523 16.5901	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013	K fd -1.0882 -0.7720 -0.5203 -0.3080 -0.0440 0.2408	K tp -0.0323 0.0712 0.1377 0.2165 0.3047 0.3896	K td -0.1537 -0.1292 -0.0777 -0.0339 0.0277 0.1362	К н -0.1860 -0.0579 0.0600 0.1826 0.3325 0.5258	K ts 0.8909 0.7338 0.6176 0.5299 0.3986 0.2775	10 * K _q 0.4265 0.5550 0.6650 0.7710 0.8615 0.9726	Self-Pr J V 10 K _q K _t Q	0.8138 1.6051 0.8936 0.0894 0.3741 1.2304	Point m/s N-m
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295	F (N) 41.2862 35.5623 28.4763 19.6455 3.7317 -29.3272 -55.1247	T _p (N) -1.2270 3.2810 7.5364 13.8101 25.8394 47.4539 65.2205	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603 2.3523 16.5901 26.7112	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279	K fd -1.0882 -0.7720 -0.5203 -0.3080 -0.0440 0.2408 0.3630	K tp -0.0323 0.0712 0.1377 0.2165 0.3047 0.3896 0.4295	K td -0.1537 -0.1292 -0.0777 -0.0339 0.0277 0.1362 0.1759	K 11 -0.1860 -0.0579 0.0600 0.1826 0.3325 0.5258 0.6054	K ts 0.8909 0.7338 0.6176 0.5299 0.3986 0.2775 0.2226	10 * K _q 0.4265 0.5550 0.6650 0.7710 0.8615 0.9726 1.0498	Self-Pr J V 10 K _q K _t Q T	0.8138 1.6051 0.8936 0.0894 0.3741 1.2304 33.7987	Point m/s N-m N
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6063	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763	F (N) 41.2862 35.5623 28.4763 19.6455 3.7317 -29.3272 -55.1247 -72.6503	T _p (N) -1.2270 3.2810 7.5364 13.8101 25.8394 47.4539 65.2205 76.7941	T ₁ (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603 2.3523 16.5901 26.7112 33.5084	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998	K _{fd} -1.0882 -0.7720 -0.5203 -0.3080 -0.0440 0.2408 0.3630 0.4362	K tp -0.0323 0.0712 0.1377 0.2165 0.3047 0.3896 0.4295 0.4610	K td -0.1537 -0.1292 -0.0777 -0.0339 0.0277 0.1362 0.1759 0.2012	К <u>н</u> -0.1860 -0.0579 0.0600 0.1826 0.3325 0.5258 0.6054 0.6622	K ts 0.8909 0.7338 0.6176 0.5299 0.3986 0.2775 0.2226 0.2029	10 * K _q 0.4265 0.5550 0.6650 0.7710 0.8615 0.9726 1.0498 1.0543	Self-Pr J V 10 K _q K _t Q T R	0.8138 1.6051 0.8936 0.0894 0.3741 1.2304 33.7987 32.2170	Point m/s N-m N N
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063 1.6059	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763 3.0303	F (N) 41.2862 35.5623 28.4763 19.6455 3.7317 -29.3272 -55.1247 -72.6503 -88.4574	T _p (N) -1.2270 3.2810 7.5364 13.8101 25.8394 47.4539 65.2205 76.7941 86.8346	T ₁ (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025 126.9004	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603 2.3523 16.5901 26.7112 33.5084 40.0658	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998 0.5735	K fd -1.0882 -0.7720 -0.5203 -0.3080 -0.0440 0.2408 0.3630 0.4362 0.4857	K tp -0.0323 0.0712 0.1377 0.2165 0.3047 0.3896 0.4295 0.4610 0.4768	K td -0.1537 -0.1292 -0.0777 -0.0339 0.0277 0.1362 0.1759 0.2012 0.2200	К н -0.1860 -0.0579 0.0600 0.1826 0.3325 0.5258 0.6054 0.6622 0.6967	K ts 0.8909 0.7338 0.6176 0.5299 0.3986 0.2775 0.2226 0.2029 0.1856	10 * K _q 0.4265 0.5550 0.6650 0.7710 0.8615 0.9726 1.0498 1.0543 1.0917	Self-Pr J V 10 K _q K _t Q T R Pd	0.8138 1.6051 0.8936 0.0894 0.3741 1.2304 33.7987 32.2170 100.0958	Point m/s N-m N N W
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063 1.6059 1.6059 1.6050	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010 1154.9706	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763 3.0303 3.3480	F (N) 41.2862 35.5623 28.4763 19.6455 3.7317 -29.3272 -55.1247 -72.6503 -88.4574 -104.0080	T _p (N) -1.2270 3.2810 7.5364 13.8101 25.8394 47.4539 65.2205 76.7941 86.8346 97.6091	T ₁ (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025 126.9004 143.2220	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603 2.3523 16.5901 26.7112 33.5084 40.0658 45.6129	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998 0.5735 0.5471	K fd -1.0882 -0.7720 -0.5203 -0.3080 -0.0440 0.2408 0.3630 0.4362 0.4857 0.5203	K tp -0.0323 0.0712 0.1377 0.2165 0.3047 0.3896 0.4295 0.4610 0.4768 0.4883	K td -0.1537 -0.1292 -0.0777 -0.0339 0.0277 0.1362 0.1759 0.2012 0.2200 0.2282	К н -0.1860 -0.0579 0.0600 0.1826 0.3325 0.5258 0.6054 0.6622 0.6967 0.7165	K ts 0.8909 0.7338 0.6176 0.5299 0.3986 0.2775 0.2226 0.2029 0.1856 0.1691	10 * K ₉ 0.4265 0.5550 0.6650 0.7710 0.8615 0.9726 1.0498 1.0543 1.0917 1.0991	Self-Pr J V 10 K _q K _{tt} Q T R P _d P _e	0.8138 1.6051 0.8936 0.0894 0.3741 1.2304 33.7987 32.2170 100.0958 51.7120	Point m/s N-m N N W W
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063 1.6059 1.6050 1.6050 1.6054	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010 1154.9706 1211.5007	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763 3.0303 3.3480 3.7189	F (N) 41.2862 35.5623 28.4763 19.6455 3.7317 -29.3272 -55.1247 -72.6503 -88.4574 -104.0080 -122.4283	T _p (N) -1.2270 3.2810 7.5364 13.8101 25.8394 47.4539 65.2205 76.7941 86.8346 97.6091 110.6533	T ₁ (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025 126.9004 143.2220 162.3490	T _d (N) -5.8296 -5.9501 -4.2499 -2.1603 2.3523 16.5901 26.7112 33.5084 40.0658 45.6129 51.6957	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998 0.5735 0.5471 0.5217	K fd -1.0882 -0.7720 -0.5203 -0.3080 -0.0440 0.2408 0.3630 0.4362 0.4857 0.5203 0.5567	K tp -0.0323 0.0712 0.1377 0.2165 0.3047 0.3896 0.4295 0.4610 0.4768 0.4883 0.5031	K td -0.1537 -0.1292 -0.0777 -0.0339 0.0277 0.1362 0.1759 0.2012 0.2200 0.2282 0.2351	K n -0.1860 -0.0579 0.0600 0.1826 0.3325 0.5258 0.6054 0.6622 0.6967 0.7165 0.7382	K ts 0.8909 0.7338 0.6176 0.5299 0.3986 0.2775 0.2226 0.2029 0.1856 0.1691 0.1537	10 * K ₉ 0.4265 0.5550 0.6650 0.7710 0.8615 0.9726 1.0498 1.0543 1.0917 1.0991 1.1095	Self-Pr J V 10 Kq Kt Q T R Pd Pe ηd	0.8138 1.6051 0.8936 0.0894 0.3741 1.2304 33.7987 32.2170 100.0958 51.7120 51.6626	Point m/s N-m N N W W W W

Load Varying Self - Propulsion Test (Duct + Propeller fitted on)

v	n	Q	F	Tp	Tt	Td	J	K _{fd}	K _{tp}	K _{td}	Ktt	K _{ts}	10 * K _q	Self-Pr	opulsion P	Point
(m/s)	(rpm)	(N-m)	(N)	(N)	(N)	(N)										
1.8051	503.4015	0.2345	51.8995	-1.8453	-12.0461	-10.2007	1.4117	-1.3668	-0.0486	-0.2686	-0.3172	1.0487	0.4053	J	0.8544	
1.8061	550.5344	0.3599	45.3553	2.2818	-7.9307	-10.2125	1.2916	-0.9987	0.0502	-0.2249	-0.1746	0.8768	0.5200	V	1.8054	m/s
1.8054	601.7534	0.4952	39.4746	5.8363	-2.0996	-7.9358	1.1812	-0.7275	0.1076	-0.1463	-0.0387	0.7339	0.5988	10 Ka	0.9029	
1.8043	655.6402	0.7021	29.6365	12.8210	8.3160	-4.5049	1.0835	-0.4601	0.1990	-0.0699	0.1291	0.6182	0.7152	Ka .	0.0903	
1.8049	756.7032	1.1097	14.8382	23.0704	24.0023	0.9320	0.9391	-0.1729	0.2689	0.0109	0.2797	0.4641	0.8487	K,	0.3840	
1.8053	903.5768	1.7817	-16.0784	44.1607	56.0137	11.8530	0.7866	0.1314	0.3610	0.0969	0.4579	0.3255	0.9556	Q	1.4270	N-m
1.8053	1007.3473	2.3494	-41.3141	62.1857	82.5484	20.3627	0.7056	0.2717	0.4090	0.1339	0.5429	0.2619	1.0138	т	39.8209	N
1.8062	1051.7675	2.6355	-58.6353	74.1854	100.6055	26.4201	0.6761	0.3537	0.4475	0.1594	0.6069	0.2402	1.0433	R	38.0330	N
1.8057	1105.5646	2.9403	-75.5367	85.3344	118.5649	33.2305	0.6430	0.4124	0.4659	0.1814	0.6474	0.2174	1.0534	Pd	124.3640	w
1.8064	1151.0459	3.2937	-91.0393	95.7116	135.0686	39.3570	0.6179	0.4586	0.4821	0.1982	0.6803	0.2006	1.0886	Pe	68.6635	w
1.8051	1199.5015	3.6086	-109.2754	108.5271	154.5146	45.9875	0.5925	0.5069	0.5034	0.2133	0.7167	0.1847	1.0983	η_{d}	55.2117	%
1.8046	1261.8668	4.0584	-128.6862	121.0877	175.6173	54.5296	0.5630	0.5393	0.5075	0.2285	0.7360	0.1669	1.1161			
Ch. J. S. Wanaka P. S.		A A A A A BEALTING		<u></u>				22	2.2			<u></u>		2		
V	п	Q	F	T _p	T,	Td	J	K _{fd}	K _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion P	Point
V (m/s)	n (rpm)	Q (N-m)	F (N)	T _p (N)	T _t (N)	T _d (N)	J	K _{fd}	К _{tp}	K _{td}	Кü	K _{ts}	10 * K _q	Self-Pr	opulsion P	Point
V (m/s) 2.1082	n (rpm) 500.4856	Q (N-m) 0.1922	F (N) 66.8995	Т _р (N) -2.1356	T _t (N) -15.0436	T _d (N) -12.9080	J 1.6584	К _{fd} -1.7824	К _{tp} -0.0569	K _{td} -0.3439	K _{it}	K _{ts} 1.4600	10 * K _q 0.3360	Self-Pr J	opulsion P 0.9012	Point
V (m/s) 2.1082 2.1078	n (rpm) 500.4856 552.4532	Q (N-m) 0.1922 0.3309	F (N) 66.8995 60.4425	T _p (N) -2.1356 1.3531	T_t (N) -15.0436 -8.6422	T _d (N) -12.9080 -9.9953	J 1.6584 1.5021	K _{fd} -1.7824 -1.3216	K _{tp} -0.0569 0.0296	K _{td} -0.3439 -0.2186	K _{tt} -0.4008 -0.1890	K ts 1.4600 1.1983	10 * K ₉ 0.3360 0.4748	Self-Pr J V	0.9012 2.1087	Point m/s
V (m/s) 2.1082 2.1078 2.1093	n (rpm) 500.4856 552.4532 604.4664	Q (N-m) 0.1922 0.3309 0.4607	F (N) 66.8995 60.4425 54.4746	Τ _P (N) -2.1356 1.3531 5.2497	T _t (N) -15.0436 -8.6422 -2.1310	T _d (N) -12.9080 -9.9953 -7.3807	J 1.6584 1.5021 1.3738	K _{fd} -1.7824 -1.3216 -0.9950	K _{tp} -0.0569 0.0296 0.0959	K td -0.3439 -0.2186 -0.1348	-0.4008 -0.1890 -0.0389	K _{ts} 1.4600 1.1983 1.0009	10 * K _q 0.3360 0.4748 0.5522	Self-Pr J V 10 Kq	0.9012 0.9012 2.1087 0.9232	°oint m/s
V (m/s) 2.1082 2.1078 2.1093 2.1056	n (rpm) 500.4856 552.4532 604.4664 651.4342	Q (N-m) 0.1922 0.3309 0.4607 0.6493	F (N) 66.8995 60.4425 54.4746 47.4534	T _P (N) -2.1356 1.3531 5.2497 10.3091	T _t (N) -15.0436 -8.6422 -2.1310 5.3703	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388	J 1.6584 1.5021 1.3738 1.2725	K _{fd} -1.7824 -1.3216 -0.9950 -0.7463	-0.0569 0.0296 0.0959 0.1621	K td -0.3439 -0.2186 -0.1348 -0.0777	K ff -0.4008 -0.1890 -0.0389 0.0845	K _{ts} 1.4600 1.1983 1.0009 0.8618	10 * K ₉ 0.3360 0.4748 0.5522 0.6700	Self-Pr J V 10 K _q K _q	0.9012 2.1087 0.9232 0.0923	Point m/s
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084	n (rpm) 500.4856 552.4532 604.4664 651.4342 754.9317	Q (N-m) 0.1922 0.3309 0.4607 0.6493 1.0051	F (N) 66.8995 60.4425 54.4746 47.4534 32.8382	T _P (N) -2.1356 1.3531 5.2497 10.3091 20.4760	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388 0.2251	J 1.6584 1.5021 1.3738 1.2725 1.0995	K _{fd} -1.7824 -1.3216 -0.9950 -0.7463 -0.3845	-0.0569 0.0296 0.0959 0.1621 0.2398	K td -0.3439 -0.2186 -0.1348 -0.0777 0.0026	К н -0.4008 -0.1890 -0.0389 0.0845 0.2424	K ts 1.4600 1.1983 1.0009 0.8618 0.6417	10 * K ₉ 0.3360 0.4748 0.5522 0.6700 0.7723	Self-Pr J V 10 K _q K _q K _t	0.9012 2.1087 0.9232 0.0923 0.4310	Point m/s
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095	n (rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852	Q (N-m) 0.1922 0.3309 0.4607 0.6493 1.0051 1.6707	F (N) 66.8995 60.4425 54.4746 47.4534 32.8382 1.0784	T _p (N) -2.1356 1.3531 5.2497 10.3091 20.4760 42.8728	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388 0.2251 10.6172	J 1.6584 1.5021 1.3738 1.2725 1.0995 0.9216	K _{fd} -1.7824 -1.3216 -0.9950 -0.7463 -0.3845 -0.0089	-0.0569 0.0296 0.0959 0.1621 0.2398 0.3523	K td -0.3439 -0.2186 -0.1348 -0.0777 0.0026 0.0872	К _н -0.4008 -0.1890 -0.0389 0.0845 0.2424 0.4395	K ts 1.4600 1.1983 1.0009 0.8618 0.6417 0.4503	10 * K ₉ 0.3360 0.4748 0.5522 0.6700 0.7723 0.9008	Self-Pr J V 10 K _q K _q K _t	0.9012 2.1087 0.9232 0.0923 0.4310 1.7891	°oint m/s N-m
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082	n (rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008	Q (N-m) 0.1922 0.3309 0.4607 0.6493 1.0051 1.6707 2.2317	F (N) 66.8995 60.4425 54.4746 47.4534 32.8382 1.0784 -23.4953	T _p (N) -2.1356 1.3531 5.2497 10.3091 20.4760 42.8728 59.8464	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388 0.2251 10.6172 19.3338	J 1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276	K fd -1.7824 -1.3216 -0.9950 -0.7463 -0.3845 -0.0089 0.1559	-0.0569 0.0296 0.0959 0.1621 0.2398 0.3523 0.3971	K td -0.3439 -0.2186 -0.1348 -0.0777 0.0026 0.0872 0.1283	K ft -0.4008 -0.1890 -0.0389 0.0845 0.2424 0.4395 0.5254	K ts 1.4600 1.1983 1.0009 0.8618 0.6417 0.4503 0.3636	10 * K ₉ 0.3360 0.4748 0.5522 0.6700 0.7723 0.9008 0.9716	Self-Pr J V 10 K _q K _t Q T	0.9012 2.1087 0.9232 0.0923 0.4310 1.7891 54.8007	°oint m/s N-m N
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098	n (rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204	Q (N-m) 0.1922 0.3309 0.4607 0.6493 1.0051 1.6707 2.2317 2.5445	F (N) 66.8995 60.4425 54.4746 47.4534 32.8382 1.0784 -23.4953 -37.6353	T _p (N) -2.1356 1.3531 5.2497 10.3091 20.4760 42.8728 59.8464 69.3011	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388 0.2251 10.6172 19.3338 24.7043	J 1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883	K fd -1.7824 -1.3216 -0.9950 -0.7463 -0.3845 -0.0089 0.1559 0.2262	K tp -0.0569 0.0296 0.0959 0.1621 0.2398 0.3523 0.3971 0.4165	K td -0.3439 -0.2186 -0.1348 -0.0777 0.0026 0.0872 0.1283 0.1485	K ft -0.4008 -0.1890 -0.0389 0.0845 0.2424 0.4395 0.5254 0.5650	K ts 1.4600 1.1983 1.0009 0.8618 0.6417 0.4503 0.3636 0.3294	10 * K ₉ 0.3360 0.4748 0.5522 0.6700 0.7723 0.9008 0.9716 1.0035	Self-Pr J V 10 K _q K _t Q T R	0.9012 2.1087 0.9232 0.0923 0.4310 1.7891 54.8007 52.3950	Point m/s N-m N N
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103	n (rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204 1101.8507	Q (N-m) 0.1922 0.3309 0.4607 0.6493 1.0051 1.6707 2.2317 2.5445 2.8646	F (N) 66.8995 60.4425 54.4746 47.4534 32.8382 1.0784 -23.4953 -37.6353 -54.5367	T _p (N) -2.1356 1.3531 5.2497 10.3091 20.4760 42.8728 59.8464 69.3011 80.1924	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054 111.6413	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388 0.2251 10.6172 19.3338 24.7043 31.4489	J 1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883 0.7540	K fd -1.7824 -1.3216 -0.9950 -0.7463 -0.3845 -0.089 0.1559 0.2262 0.2998	K tp -0.0569 0.0296 0.0959 0.1621 0.2398 0.3523 0.3971 0.4165 0.4408	K td -0.3439 -0.2186 -0.1348 -0.0777 0.0026 0.0872 0.1283 0.1485 0.1729	K H -0.4008 -0.1890 -0.0389 0.0845 0.2424 0.4395 0.5254 0.5650 0.6137	K ts 1.4600 1.1983 1.0009 0.8618 0.6417 0.4503 0.3636 0.3294 0.3012	10 * K ₉ 0.3360 0.4748 0.5522 0.6700 0.7723 0.9008 0.9716 1.0035 1.0332	Self-Pr J V 10 K _q K _t Q T R Pd	0.9012 2.1087 0.9232 0.0923 0.4310 1.7891 54.8007 52.3950 172.6572	Point m/s N-m N N W
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103 2.1101	n (rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204 1101.8507 1153.6637	Q (N-m) 0.1922 0.3309 0.4607 0.6493 1.0051 1.6707 2.2317 2.5445 2.8646 3.1899	F (N) 66.8995 60.4425 54.4746 47.4534 32.8382 1.0784 -23.4953 -37.6353 -54.5367 -70.0393	T _p (N) -2.1356 1.3531 5.2497 10.3091 20.4760 42.8728 59.8464 69.3011 80.1924 90.9845	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054 111.6413 128.0193	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388 0.2251 10.6172 19.3338 24.7043 31.4489 37.0348	J 1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883 0.7540 0.7201	K fd -1.7824 -1.3216 -0.9950 -0.7463 -0.3845 -0.0089 0.1559 0.2262 0.2998 0.3512	K tp -0.0569 0.0296 0.0959 0.1621 0.2398 0.3523 0.3971 0.4165 0.4408 0.4562	K td -0.3439 -0.2186 -0.1348 -0.0777 0.0026 0.0872 0.1283 0.1485 0.1729 0.1857	K n -0.4008 -0.1890 -0.0389 0.0845 0.2424 0.4395 0.5254 0.5650 0.6137 0.6419	K ts 1.4600 1.1983 1.0009 0.8618 0.6417 0.4503 0.3636 0.3294 0.3012 0.2748	10 * K ₉ 0.3360 0.4748 0.5522 0.6700 0.7723 0.9008 0.9716 1.0035 1.0332 1.0495	Self-Pr J V 10 K _q K _t Q T R Pd Pe	0.9012 2.1087 0.9232 0.0923 0.4310 1.7891 54.8007 52.3950 172.6572 110.4875	Point m/s N-m N N W W
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103 2.1101 2.1091	n (rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204 1101.8507 1153.6637 1210.1050	Q (N-m) 0.1922 0.3309 0.4607 0.6493 1.0051 1.6707 2.2317 2.5445 2.8646 3.1899 3.5803	F (N) 66.8995 60.4425 54.4746 47.4534 32.8382 1.0784 -23.4953 -37.6353 -54.5367 -70.0393 -88.2754	T _p (N) -2.1356 1.3531 5.2497 10.3091 20.4760 42.8728 59.8464 69.3011 80.1924 90.9845 103.8501	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054 111.6413 128.0193 147.2988	T _d (N) -12.9080 -9.9953 -7.3807 -4.9388 0.2251 10.6172 19.3338 24.7043 31.4489 37.0348 43.4488	J 1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883 0.7540 0.7201 0.6862	K fd -1.7824 -1.3216 -0.9950 -0.7463 -0.3845 -0.0089 0.1559 0.2262 0.2998 0.3512 0.4023	K tp -0.0569 0.0296 0.0959 0.1621 0.2398 0.3523 0.3971 0.4165 0.4408 0.4562 0.4733	K td -0.3439 -0.2186 -0.1348 -0.0777 0.0026 0.0872 0.1283 0.1485 0.1729 0.1857 0.1980	K n -0.4008 -0.1890 -0.0389 0.0845 0.2424 0.4395 0.5254 0.5650 0.6137 0.6419 0.6713	K ts 1.4600 1.1983 1.0009 0.8618 0.6417 0.4503 0.3636 0.3294 0.3012 0.2748 0.2497	10 * K _q 0.3360 0.4748 0.5522 0.6700 0.7723 0.9008 0.9716 1.0035 1.0332 1.0495 1.0707	Self-Pr J V 10 Kq Ka Q T R Pd Pe ηd	0.9012 2.1087 0.9232 0.0923 0.4310 1.7891 54.8007 52.3950 172.6572 110.4875 63.9924	Point m/s N-m N W W W W
Load Varying Self - Propulsion Test (Duct + Propeller fitted on)

v	n	Q	F	Tp	Tt	T _d	J	K _{fd}	K _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	ropulsion P	Point
(m/s)	(rpm)	(N-m)	(N)	(N)	(N)	(N)										
2.3113	506.5541	0.1820	86.1252	-3.5334	-19.3516	-15.8182	1.7964	-2.2400	-0.0919	-0.4114	-0.5033	1.8214	0.3106	J	0.9079	
2.3012	554.4124	0.3087	80.4523	-0.1165	-15.8623	-15.7458	1.6341	-1.7468	-0.0025	-0.3419	-0.3444	1.5205	0.4398	v	2.3142 1	m/s
2.3106	602.4889	0.4268	75.8979	4.0222	-10.8438	-14.8660	1.5099	-1.3954	0.0739	-0.2733	-0.1994	1.2875	0.5149	10 K.	0.9400	
2.3087	653.7372	0.6197	68.2312	9.2811	-1.9037	-11.1847	1.3904	-1.0655	0.1449	-0.1747	-0.0297	1.0936	0.6349	κ,	0.0940	
2.3127	751.5777	0.9597	55.4110	18.7622	13.1329	-5.6292	1.2115	-0.6547	0.2217	-0.0665	0.1552	0.8274	0.7440	K,	0.4641	
2.3075	907.7627	1.6567	24.5844	38.9545	45.9201	6.9655	1.0008	-0.1991	0.3155	0.0564	0.3719	0.5672	0.8804	Q	2.1617	N-m
2.3104	1009.7375	2.2082	0.7728	57.7942	70.3932	12.5991	0.9008	-0.0051	0.3783	0.0825	0.4608	0.4584	0.9484	Т	70.0300 I	N
2.3089	1055.8389	2.5040	-13.1249	66.6765	84.5472	17.8707	0.8609	0.0786	0.3992	0.1070	0.5061	0.4192	0.9836	R	66.9070 I	N
2.3716	1105.4558	2.7615	-27.7563	76.7109	99.2872	22.5764	0.8446	0.1516	0.4189	0.1233	0.5422	0.3824	0.9896	Pd	227.2621	w
2.3101	1156.8492	3.1357	-45.5095	88.9061	117.4706	28.5645	0.7862	0.2269	0.4433	0.1424	0.5858	0.3492	1.0260	Pe	154.8345	w
2.3079	1207.4927	3.4799	-62.1596	100.1417	134.4150	34.2733	0.7525	0.2845	0.4584	0.1569	0.6152	0.3205	1.0452	ηa	68.1304	%
2.3092	1255.9025	3.8185	-78.5473	112.6834	151.0913	38.4079	0.7239	0.3323	0.4768	0.1625	0.6393	0.2963	1.0601			
V	_	~	c	т	т	т		V	K	V	V	K	10 * K	Salf D	enulaion D	oint
V	n ()	Q	F	T _p	T _t	T _d	J	K _{fd}	K _{tp}	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion P	Point
V (m/s)	n (rpm)	Q (N-m)	F (N)	T _p (N)	T _t (N)	T _d (N)	J	K _{fd}	К _ф	K _{td}	K _{tt}	K _{ts}	10 * K _q	Self-Pr	opulsion P	Point
V (m/s) 2.5094	n (rpm) 504.8586	Q (N-m) 0.1628	F (N) 105.9464	Т _р (N) -5.1789	T _t (N) -23.5927	T _d (N) -18.4138	J 1.9569	К _{fd} -2.7740	К _{tp}	K _{td} -0.4821	К _{tt} -0.6177	K _{ts} 2.2324	10 * K ₉ 0.2797	Self-Pı J	opulsion P 0.9078	Point
V (m/s) 2.5094 2.5104	n (rpm) 504.8586 552.4243	Q (N-m) 0.1628 0.2813	F (N) 105.9464 101.2323	τ _ρ (N) -5.1789 -1.3845	T _t (N) -23.5927 -21.2282	T_d (N) -18.4138 -19.8438	J 1.9569 1.7891	K _{fd} -2.7740 -2.2138	K _{tp} -0.1356 -0.0303	K _{td} -0.4821 -0.4340	K _{tt} -0.6177 -0.4642	K ts 2.2324 1.8645	10 * K _q 0.2797 0.4036	Self-Pr J V	0.9078 2.5100 r	Point m/s
V (m/s) 2.5094 2.5104 2.5067	n (rpm) 504.8586 552.4243 604.5795	Q (N-m) 0.1628 0.2813 0.4035	F (N) 105.9464 101.2323 96.3633	T _p (N) -5.1789 -1.3845 1.8110	T ₁ (N) -23.5927 -21.2282 -16.9244	T _d (N) -18.4138 -19.8438 -18.7354	1.9569 1.7891 1.6324	K _{fd} -2.7740 -2.2138 -1.7594	K _{tp} -0.1356 -0.0303 0.0331	K _{td} -0.4821 -0.4340 -0.3421	•0.6177 -0.4642 -0.3090	K ts 2.2324 1.8645 1.5567	10 * K _q 0.2797 0.4036 0.4834	Self-Pr J V 10 K _q	opulsion P 0.9078 2.5100 ر 0.9736	Point m/s
V (m/s) 2.5094 2.5104 2.5067 2.5107	n (rpm) 504.8586 552.4243 604.5795 653.2312	Q (N-m) 0.1628 0.2813 0.4035 0.5696	F (N) 105.9464 101.2323 96.3633 90.3483	T _p (N) -5.1789 -1.3845 1.8110 6.9611	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308	1.9569 1.7891 1.6324 1.5132	K _{fd} -2.7740 -2.2138 -1.7594 -1.4130	K _{tp} -0.1356 -0.0303 0.0331 0.1089	K td -0.4821 -0.4340 -0.3421 -0.2742	К _{tt} -0.6177 -0.4642 -0.3090 -0.1653	K ts 2.2324 1.8645 1.5567 1.3334	10 * K _q 0.2797 0.4036 0.4834 0.5845	Self-Pr J V 10 K _q K _g	0.9078 2.5100 0.9736 0.0974	Point m/s
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477	Q (N-m) 0.1628 0.2813 0.4035 0.5696 0.9274	F (N) 105.9464 101.2323 96.3633 90.3483 78.3736	T _p (N) -5.1789 -1.3845 1.8110 6.9611 15.4460	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697 2.9669	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308 -12.4791	1.9569 1.7891 1.6324 1.5132 1.3115	K fd -2.7740 -2.2138 -1.7594 -1.4130 -0.9218	К _{1р} -0.1356 -0.0303 0.0331 0.1089 0.1817	K td -0.4821 -0.4340 -0.3421 -0.2742 -0.1468	К _н -0.6177 -0.4642 -0.3090 -0.1653 0.0349	K ts 2.2324 1.8645 1.5567 1.3334 1.0028	10 * K _q 0.2797 0.4036 0.4834 0.5845 0.7157	Self-Pr J V 10 K _q K _q K _t	0.9078 2.5100 0.9736 0.0974 0.4802	Point m/s
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469	Q (N-m) 0.1628 0.2813 0.4035 0.5696 0.9274 1.6051	F (N) 105.9464 101.2323 96.3633 90.3483 78.3736 49.0260	T _p (N) -5.1789 -1.3845 1.8110 6.9611 15.4460 35.9381	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697 2.9669 34.7210	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308 -12.4791 -1.2172	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906	K fd -2.7740 -2.2138 -1.7594 -1.4130 -0.9218 -0.3986	K tp -0.1356 -0.0303 0.0331 0.1089 0.1817 0.2922	K td -0.4821 -0.4340 -0.3421 -0.2742 -0.1468 -0.0099	K tt -0.6177 -0.4642 -0.3090 -0.1653 0.0349 0.2823	K ts 2.2324 1.8645 1.5567 1.3334 1.0028 0.6931	10 * K _q 0.2797 0.4036 0.4834 0.5845 0.7157 0.8562	Self-Pr J V 10 K _q K _q K _t	0.9078 2.5100 r 0.9736 0.0974 0.4802 2.6345 r	<mark>'oint</mark> m/s N-m
V (m/s) 2.5094 2.5104 2.5107 2.5107 2.5093 2.5099 2.5126	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932	Q (N-m) 0.1628 0.2813 0.4035 0.5696 0.9274 1.6051 2.1197	F (N) 105.9464 101.2323 96.3633 90.3483 78.3736 49.0260 21.5911	T _p (N) -5.1789 -1.3845 1.8110 6.9611 15.4460 35.9381 55.1685	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697 2.9669 34.7210 63.3290	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308 -12.4791 -1.2172 8.1605	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865	K fd -2.7740 -2.2138 -1.7594 -1.4130 -0.9218 -0.3986 -0.1433	K tp -0.1356 -0.0303 0.0331 0.1089 0.1817 0.2922 0.3661	K td -0.4821 -0.4340 -0.3421 -0.2742 -0.1468 -0.0099 0.0542	K tt -0.6177 -0.4642 -0.3090 -0.1653 0.0349 0.2823 0.4203	K ts 2.2324 1.8645 1.5567 1.3334 1.0028 0.6931 0.5658	10 * K _q 0.2797 0.4036 0.4834 0.5845 0.7157 0.8562 0.9231	Self-Pr J V 10 K _q K _t Q T	0.9078 2.5100 r 0.9736 0.0974 0.4802 2.6345 r 85.2600 r	<mark>°oint</mark> m/s N-m N
V (m/s) 2.5094 2.5104 2.5107 2.5093 2.5099 2.5126 2.5100	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234	Q (N-m) 0.1628 0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384	F (N) 105.9464 101.2323 96.3633 90.3483 78.3736 49.0260 21.5911 9.2021	T _p (N) -5.1789 -1.3845 1.8110 6.9611 15.4460 35.9381 55.1685 64.9951	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697 2.9669 34.7210 63.3290 76.2347	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308 -12.4791 -1.2172 8.1605 11.2396	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390	K fd -2.7740 -2.2138 -1.7594 -1.4130 -0.9218 -0.3986 -0.1433 -0.0554	-0.1356 -0.0303 0.0331 0.1089 0.1817 0.2922 0.3661 0.3916	K td -0.4821 -0.4340 -0.3421 -0.2742 -0.1468 -0.0099 0.0542 0.0677	К н -0.6177 -0.4642 -0.3090 -0.1653 0.0349 0.2823 0.4203 0.4593	K ts 2.2324 1.8645 1.5567 1.3334 1.0028 0.6931 0.5658 0.5137	10 * K q 0.2797 0.4036 0.4834 0.5845 0.7157 0.8562 0.9231 0.9641	J V 10 K _q K _t Q T R	0.9078 2.5100 0.9736 0.9736 0.0974 0.4802 2.6345 85.2600 81.4600	Point m/s N-m N N
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234 1106.7229	Q (N-m) 0.1628 0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384 2.7268	F (N) 105.9464 101.2323 96.3633 90.3483 78.3736 49.0260 21.5911 9.2021 -5.5593	T _p (N) -5.1789 -1.3845 1.8110 6.9611 15.4460 35.9381 55.1685 64.9951 74.6193	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697 2.9669 34.7210 63.3290 76.2347 91.4780	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308 -12.4791 -1.2172 8.1605 11.2396 16.8588	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390 0.8930	K fd -2.7740 -2.2138 -1.7594 -1.4130 -0.9218 -0.3986 -0.1433 -0.0554 0.0303	K tp -0.1356 -0.0303 0.0331 0.1089 0.1817 0.2922 0.3661 0.3916 0.4066	K td -0.4821 -0.4340 -0.3421 -0.2742 -0.1468 -0.0099 0.0542 0.0677 0.0919	K n -0.6177 -0.4642 -0.3090 -0.1653 0.0349 0.2823 0.4203 0.4203 0.4593 0.4984	K ts 2.2324 1.8645 1.5567 1.3334 1.0028 0.6931 0.5658 0.5137 0.4645	10 * K q 0.2797 0.4036 0.4834 0.5845 0.7157 0.8562 0.9231 0.9641 0.9749	Self-Pr J V 10 K _q K _t Q T R Pd	0.9078 2.5100 0.9736 0.0974 0.4802 2.6345 85.2600 81.4600 300.4342	Point m/s N-m N N W
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104 2.5101	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234 1106.7229 1152.3582	Q (N-m) 0.1628 0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384 2.7268 3.0710	F (N) 105.9464 101.2323 96.3633 90.3483 78.3736 49.0260 21.5911 9.2021 -5.5593 -19.5704	T _p (N) -5.1789 -1.3845 1.8110 6.9611 15.4460 35.9381 55.1685 64.9951 74.6193 83.9508	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697 2.9669 34.7210 63.3290 76.2347 91.4780 105.8466	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308 -12.4791 -1.2172 8.1605 11.2396 16.8588 21.8958	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390 0.8930 0.8576	K fd -2.7740 -2.2138 -1.7594 -1.4130 -0.9218 -0.3986 -0.1433 -0.0554 0.0303 0.0984	K tp -0.1356 -0.0303 0.0331 0.1089 0.1817 0.2922 0.3661 0.3916 0.4066 0.4219	K td -0.4821 -0.4340 -0.3421 -0.2742 -0.1468 -0.0099 0.0542 0.0677 0.0919 0.1100	K n -0.6177 -0.4642 -0.3090 -0.1653 0.0349 0.2823 0.4203 0.4203 0.4593 0.4984 0.5319	K ts 2.2324 1.8645 1.5567 1.3334 1.0028 0.6931 0.5658 0.5137 0.4645 0.4285	10 * K q 0.2797 0.4036 0.4834 0.5845 0.7157 0.8562 0.9231 0.9641 0.9749 1.0127	Self-Pr J V 10 K _q K _t Q T R P _d P _e	0.9078 2.5100 0.9736 0.9736 0.0974 0.4802 2.6345 85.2600 81.4600 300.4342 204.4646	Point m/s N-m N N W W
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104 2.5101 2.5109	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234 1106.7229 1152.3582 1204.5756	Q (N-m) 0.1628 0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384 2.7268 3.0710 3.4002	F (N) 105.9464 101.2323 96.3633 90.3483 78.3736 49.0260 21.5911 9.2021 -5.5593 -19.5704 -38.1235	T _p (N) -5.1789 -1.3845 1.8110 6.9611 15.4460 35.9381 55.1685 64.9951 74.6193 83.9508 95.8461	T _t (N) -23.5927 -21.2282 -16.9244 -10.5697 2.9669 34.7210 63.3290 76.2347 91.4780 105.8466 124.7560	T _d (N) -18.4138 -19.8438 -18.7354 -17.5308 -12.4791 -1.2172 8.1605 11.2396 16.8588 21.8958 28.9099	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390 0.8930 0.8930 0.8576 0.8207	K fd -2.7740 -2.2138 -1.7594 -1.4130 -0.9218 -0.3986 -0.1433 -0.0554 0.0303 0.0984 0.1753	K tp -0.1356 -0.0303 0.0331 0.1089 0.1817 0.2922 0.3661 0.3916 0.4066 0.4219 0.4408	K td -0.4821 -0.4340 -0.3421 -0.2742 -0.1468 -0.0099 0.0542 0.0677 0.0919 0.1100 0.1330	K n -0.6177 -0.4642 -0.3090 -0.1653 0.0349 0.2823 0.4203 0.4203 0.4593 0.4984 0.5319 0.5738	K ts 2.2324 1.8645 1.5567 1.3334 1.0028 0.6931 0.5658 0.5137 0.4645 0.4285 0.3921	10 * K q 0.2797 0.4036 0.4834 0.5845 0.7157 0.8562 0.9231 0.9641 0.9749 1.0127 1.0261	J V 10 K _q K _t Q T R P _d P _e η _d	0.9078 2.5100 0.9736 0.9736 0.0974 0.4802 2.6345 85.2600 81.4600 300.4342 204.4646 68.0564	Point m/s N-m N W W W

Duct Thrust Extrapolation

	:	only Prop	<u>. on</u>				Prop. + Du	uct on			only Prop o	on	Prop + Duct on	<u>only</u> Prop on	
v	-		E	т	M			E	т		F	т	ET	E_T	т
(m/a)	(mm)		(NI)	'p (N)	(m/o)	(mm)	Ű	(11)	'p (NI)	J	(11)	1p (NI)	(NI)	(N)	*d (N))
(m/s)	(ipin)		(14)	(N)	(11/5)	(ipin)		(N)	(N)		(N)	(N)	(N)	(N)	())
0.8007	503.8949	0.6256	5.3638	3.6262	0.8002	502,5735	0.6269	1.3073	5.8645	0.6269	5.3288	3.6210	-7.1718	-8.9498	1.7779
0.8012	552.6343	0.5708	1.4334	8.7409	0.8004	551.4566	0.5714	-4.6450	10.3820	0.5714	1.6898	7.8627	-5.7370	-9.5525	3.8156
0.8027	602.3573	0.5246	-3.5438	12.8134	0.8012	600.4575	0.5253	-10.5645	14.4121	0.5253	-4.0378	13.1919	-3.8476	-9.1541	5.3064
0.8034	651.5623	0.4854	-10.4367	18.6583	0.8018	650.4466	0.4853	-17.5455	19.4810	0.4853	-10.2344	18.8742	-1.9355	-8.6397	6.7042 `
0.8005	753.4148	0.4183	-24.3516	32.8282	0.8002	753.2179	0.4183	-34.8750	31.2554	0.4183	-23.9146	32.2745	3.6196	-8.3599	11.9795
0.8012	913.8563	0.3452	-48.5726	59.3485	0.8002	902.9860	0.3489	-68.0707	54.7882	0.3489	-47.5126	57.4752	13.2825	-9.9625	23.2450
0.8037	1002.5757	0.3156	-64.7292	77.0108	0.8003	1008.5085	0.3124	-94.6789	73.2083	0.3124	-67.3279	79.2424	21.4706	-11.9145	33.3850
0.8045	1051.5807	0.3012	-74.4405	87.1072	0.8005	1052.3455	0.2995	-108.5758	82.9812	0.2995	-76.1428	88.9610	25.5946	-12.8182	38.412 9
0.8098	1102.1417	0.2893	-85.7547	98.8701	0.8014	1104.1946	0.2857	-123.8928	93.6252	0.2857	-86.7294	100.6345	30.2676	-13.9050	44.1727
0.8032	1154.0417	0.2740	-96.8046	111.2684	0.8002	1150.2549	0.2739	-139.0968	103.7442	0.2739	-96.9863	111.9361	35.3526	-14.9499	50.3024
0.8015	1207.3702	0.2614	-108.6784	123.8401	0.8008	1206.8237	0.2612	-159.0113	116.5481	0.2612	-109.1949	125.3707	42.4632	-16.1758	58.6390
0.8022	1246.6728	0.2533	-117.3754	135.8194	0.8006	1252.7469	0.2516	-174.2846	126.4966	0.2516	-119.4611	136.6498	47.7880	-17.1887	64.9767
v	n	J	F	Tp	V	n	J	F	Tp	L	F	Tp	F - Tp	F-Tp	Td
(m/s)	(rpm)		(N)	(N)	(m/s)	(rpm)		(N)	(N)		(N)	(N)	(N)	(N)	(N)
1.1030	507.2079	0.8562	14.2900	2.2849	1.1006	500.6686	0.8655	10.2786	5.2064	0.8655	14.1086	2.2954	-15.4850	-16.4040	0.9190
1.1027	554.5345	0.7829	10.5355	6.2834	1.1022	552.7477	0.7851	4.9858	9.5730	0.7851	11.1953	5.3682	-14.5588	-16.5635	2.0047
1.1035	603.8746	0.7194	6.8977	10.2080	1.1031	603.4646	0.7197	-0.7660	12.7872	0.7197	6.0708	10.7744	-12.0212	-16.8452	4.8240
1.1032	654.2447	0.6639	0.5784	16.3454	1.1032	651.6550	0.6665	-9.4535	18.7681	0.6665	0.8604	16.3236	-9.3146	-17.1839	7.8693
1.1044	750.3733	0.5794	-11.0514	29.4461	1.1005	754.9726	0.5739	-24.9334	30.1015	0.5739	-11.4573	29.5988	-5.1681	-18.1415	12.9734
1.1041	910.3564	0.4775	-34.4575	54.5330	1.1026	901.8126	0.4814	-58.3065	52.6797	0.4814	-33.4364	53.3562	5.6268	-19.9198	25.5467
1.1030	1006.6678	0.4314	-52.5912	73.9689	1.1014	1000.0880	0.4336	-82.6355	71.0720	0.4336	-52.1842	73.5396	11.5635	-21.3553	32.9188
1.1037	1056.9924	0.4111	-63.4548	85.6126	1.1017	1056.9566	0.4104	-98.0144	81.5514	0.4104	-63.9686	86.1918	16.4630	-22.2232	38.6862
1.1031	1108.8989	0.3916	-75.4534	98.4729	1.1013	1104.4112	0.3926	-114.1839	92.2256	0.3926	-74.4169	97.3917	21.9583	-22.9748	44.9331
1.1031	1156.0328	0.3757	-86.3969	110.2023	1.1020	1156.9473	0.3750	-130.2701	102.7820	0.3750	-86.1232	109.9234	27.4881	-23.8001	51.2882
1.1029	1206.4133	0.3599	-96.9218	121.4830	1.1015	1212.9133	0.3575	-147.3841	115.6347	0.3575	-99.2352	123.9419	31.7494	-24.7068	56.4562
1.1034	1249.3622	0.3477	-107.1228	132.4100	1.1011	1208.8191	0.3444	-103.3845	125.9249	0.3444	-110.1865	135.6382	37.4596	-20.4017	02.9113
V	n	J	F	T,	v	n	J	F	T.	J	F	Tn	F-Ta	F - T ₀	Td
(m/s)	(rpm)		(N)	(N)	(m/s)	(rpm)		(N)	(N)		(N)	(N)	(N)	(N)	(N)
1.3031	504.2337	1.0174	23.7086	-0.5806	1.3033	501.8541	1.0224	25.8684	1.0075	1.0224	23.9228	-0.5259	-26.8759	-23.3969	-3.4789
1.3022	550.4535	0.9314	19.5828	3.8393	1.3116	550.7550	0.9376	19.5634	4.8992	0.9376	19.9850	2.8496	-24.4626	-22.8346	-1.6280
1.3025	600.5634	0.8539	15.5347	7.2149	1.3018	601.3456	0.8523	14.6455	9.1934	0.8523	14.2409	8.0737	-23.8389	-22.3146	-1.5242
1.3035	652.2352	0.7868	7.4959	13.4575	1.3022	654.7460	0.7830	3.6444	16.6810	0.7830	8.5663	13.7124	-20.3254	-22.2786	1.9533
1.3036	752.8192	0.6817	-3.1778	26.1866	1.3025	752.1400	0.6818	-9.6546	26.3389	0.6818	-2.8693	26.0713	-16.6843	-23.2020	6.5177
1.3022	901.8296	0.5685	-23.6329	51.7382	1.3028	907.7795	0.5650	-44.6663	49.4971	0.5650	-26.9059	52.7349	-4.8308	-25.8290	20.9982
1.3022	1000.1110	0.5126	-45.8753	72.3597	1.3020	1006.9377	0.5091	-71.4491	68.2528	0.5091	-46.0278	73.5993	3.1963	-27.5715	30.7678
1.3023	1046.2973	0.4900	-54.5532	82.1375	1.3014	1051.7237	0.4872	-85.4106	78.4238	0.4872	-55.4250	83.7335	6.9868	-28.3085	35.2953
1.3020	1105.7242	0.4636	-67.4871	96.1106	1.3116	1103.5535	0.4679	-101.8478	89.1648	0.4679	-64.7226	93.6943	12.6830	-28.9717	41.6547
1.3023	1155.3342	0.4438	-78.2728	107.4396	1.3007	1155.5678	0.4431	-120.5716	101.3690	0.4431	-78.2864	108.1230	19.2026	-29.8366	49.0392
1.3022	1206.0095	0.4251	-88.6396	119.2426	1.3006	1208.2135	0.4238	-136.2495	113.4923	0.4238	-90.2450	120.7565	22.7572	-30.5116	53.2687
1.3024	1248.0299	0.4109	-98.8778	130.6479	1.3020	1256.7456	0.4079	-152.6671	123.8806	0.4079	-101.0751	132.1363	28.7865	-31.0613	59.8478

.

Duct Thrust Extrapolation

	only Prop. on				Prop. + Duct on					only Prop on			Duct on	Prop on		
v	n	J	F	T,	v	n	J	F	T,		J	F	T,	F-T _o	F-T _p	Td
(m/s)	(rpm)		(N)	(N)	(m/s)	(rpm)		(N)	(N)			(N)	(Ń)	(N)	(N)	(N)
1.6032	503.9995	1.2523	35.6003	-1.5261	1.6030	503.1755	1.2542	41.2862	-1.2270		1.2542	35.6755	-1.4458	-40.0592	-34.2297	-5.8296
1.6046	550.3443	1.1479	31.5343	1.5354	1.6053	554.4423	1.1399	35.5623	3.2810		1.1399	31.6231	1.2701	-38.8433	-32.8932	-5.950 1
1.6035	601.4574	1.0496	27.4347	5.3738	1.6045	604.3557	1.0452	28.4763	7.5364		1.0452	25.3902	6.3726	-36.0127	-31.7628	-4.2499
1.6038	653.7645	0.9658	17.3544	11.6456	1.6063	652.4344	0.9693	19.6455	13.8101	(0.9693	19.7697	11.5256	-33.4556	-31.2953	-2.1603
1.6040	755.9224	0.8354	8.5633	25.1105	1.6063	752.2439	0.8407	3.7317	25.8394	(0.8407	8.5430	23.3804	-29.5711	-31.9234	2.352 3
1.6038	911.6408	0.6926	-12.6824	48.1265	1.6059	901.5599	0.7013	-29.3272	47.4539	(0.7013	-12.2246	46.9413	-18.1267	-34.7168	16.5901
1.6044	1003.7944	0.6293	-32.5581	67.4672	1.6056	1006.7175	0.6279	-55.1247	65.2205	(0.6279	-31.4537	68.2607	-10.0958	-36.8070	26.7112
1.6042	1051.3377	0.6007	-42.0001	77.7648	1.6063	1054.3192	0.5998	-72.6503	76.7941	(0.5998	-41.1811	78.8333	-4.1438	-37.6522	33.5084
1.6043	1104.0239	0.5721	-51.6517	91.4829	1.6059	1102.5010	0.5735	-88.4574	86.8346	(0.5735	-51.7748	90.2178	1.6228	-38.4430	40.0658
1.6034	1152.5333	0.5477	-63.4763	104.5737	1.6050	1154.9706	0.5471	-104.0080	97.6091	(0.5471	-63.9740	103.1880	6.3989	-39.2140	45.6129
1.6036	1210.1129	0.5217	-76.3438	116.7686	1.6054	1211.5007	0.5217	-122.4283	110.6533	(0.5217	-77.4263	1 17.3470	11.7750	-39.9207	51.6957
1.6030	1250.8055	0.5046	-88.3925	127.3434	1.6019	1257.0444	0.5017	-139.6617	122.2759	(0.5017	-89.3107	129.7507	17.3858	-40.4400	57.8258
V	n	J	F	Tp	v	n	J	F	Tp		J	F	Т _Р	F - T _p	F - T _p	Td
(m/s)	(mm)		(N)	(N)	(m/s)	(rpm)		(N)	(N)			(N)	(N)	(N)	(N)	(N)
1.8042	510.9808	1.3901	40.6558	-1.9385	1.8051	503.4015	1.4117	51.8995	-1.8453		1.4117	40.6569	-0.8034	-50.0542	-39.8534	-10.2007
1.8034	552.4233	1.2853	37.6344	1.1898	1.8061	550.5344	1.2916	45.3553	2.2818		1.2916	37.9281	-0.5035	-47.6371	-37.4246	-10.2125
1.8068	602.7853	1.1801	33.4536	4.2981	1.8054	601.7534	1.1812	39.4746	5.8363		1.1812	32.3158	5.0592	-45.3109	-37.3750	-7.9358
1.8056	651.5334	1.0911	24.9715	10.5564	1.8043	655.6402	1.0835	29.6365	12.8210		1.0835	26.4884	11.4642	-42.4575	-37.9525	-4.5049
1.8042	757.8054	0.9373	17.3566	22.9946	1.8049	756.7032	0.9391	14.8382	23.0704	(0.9391	15.9131	22.9275	-37.9086	-38.8405	0.9320
1.8051	911.1136	0.7800	-4.5070	45.8331	1.8053	903.5768	0.7866	-16.0784	44.1607	(0.7866	-3.9124	43.8477	-28.0823	-39.9353	11.8530
1.8048	1002.7594	0.7086	-25.1929	65.0234	1.8053	1007.3473	0.7056	-41.3141	62.1857	(0.7056	-22.5514	63.7857	-20.8716	-41.2343	20.3627
1.8061	1056.9214	0.6728	-32.6326	73.8682	1.8062	1051.7675	0.6761	-58.6353	74.1854	(0.6761	-31.4680	73.4382	-15.5501	-41.9702	26.4201
1.8051	1118.8065	0.6352	-43.1904	87.2252	1.8057	1105.5646	0.6430	-75.5367	85.3344	(0.6430	-43.1497	86.1779	-9.7977	-43.0282	33.2305
1.8043	1161.1239	0.6118	-55.8141	100.0789	1.8064	1151.0459	0.6179	-91.0393	95.7116	(0.6179	-53.3702	97.3995	-4.6723	-44.0293	39.3570
1.8059	1215.6599	0.5849	-68.1665	112.6564	1.8051	1199.5015	0.5925	-109.2754	108.5271	().5925	-64.9756	110.2148	0.7483	-45.2392	45.98/5
1.8057	1246.0544	0.5705	-77.6279	125.3448	1.8046	1261.8668	0.5630	-128.6862	121.0877	(0.5630	-80.2297	127.1608	7.5985	-46.9311	54.5296
v	n	J	F	Tp	v	n	J	F	Tp		J	F	Tp	F - T _p	F - T _p	Td
(m/s)	(rpm)		(N)	(N)	(m/s)	(rpm)		(N)	(N)			(N)	(N)	(N)	(N)	(N)
2.1091	500.1371	1.6603	54.2008	-2.2244	2.1082	500.4856	1.6584	66.8995	-2.1356	-	1.6584	54.0240	-2.1681	-64.7639	-51.8559	-12.9080
2.1056	551.5545	1.5030	51.6384	0.7034	2.1078	552.4532	1.5021	60.4425	1.3531	1	1.5021	52.4925	-0.6922	-61.7956	-51.8003	-9.9953
2.1068	600.3476	1.3816	49.7643	3.3349	2.1093	604.4664	1.3738	54.4746	5.2497	1	1.3738	48.0280	4.3156	-59.7243	-52.3436	-7.3807
2.1067	654.3489	1.2675	42.3233	9.0348	2.1056	651.4342	1.2725	47.4534	10.3091	1	1.2725	43.6156	9.2080	-57.7625	-52.8237	-4.9388
2.1101	752.6505	1.1038	34.8043	19.5316	2.1084	754.9317	1.0995	32.8382	20.4760	1	1.0995	33.6565	19.8827	-53.3142	-53.5393	0.2251
2.1068	901.9876	0.9196	13.6338	42.0655	2.1095	901.1852	0.9216	1.0784	42.8728	C).9216	14.5964	39.9720	-43.9512	-54.5684	10.6172
2.1070	1002.6789	0.8273	-3.9622	59.4139	2.1082	1002.9008	0.8276	-23.4953	59.8464	C).8276	-3.1288	58.8136	-36.3511	-55.6849	19.3338
2.0959	1052.8833	0.7837	-13.7635	68.8805	2.1098	1053.7204	0.7883	-37.6353	69.3011	C).7883	-12.9237	69.2938	-31.6658	-56.3701	24.7043
2.1064	1103.4297	0.7516	-24.0542	80.5944	2.1103	1101.8507	0.7540	-54.5367	80.1924	(0.7540	-22.8534	79.9580	-25.6557	-57.1046	31.4489
2.1073	1156.4853	0.7174	-33.2420	93.1518	2.1101	1153.6637	0.7201	-70.0393	90.9845	C	0.7201	-34.1337	92.1136	-20.9452	-57.9800	37.0348
2.1066	1214.1716	0.6831	-47.5793	106.0173	2.1091	1210.1050	0.6862	-88.2754	103.8501	C	0.6862	-47.0057	106.0292	-15.5747	-59.0234	43.4488
2.1060	1246.6579	0.6651	-57.4544	117.5641	2.1086	1258.3035	0.6597	-107.6862	117.4283	(0.6597	-58.2606	118.2295	-9.7421	-59.9688	50.2267

Duct Thrust Extrapolation

	only Prop. on				Prop. + Duct on					only Prop on			Duct on	Prop on		
v	n	J	F	T.	v	n	J	F	T,			F	T,	F - T,	F - T.,	T,
(m/s)	(rpm)		(N)	(Ň)	(m/s)	(rpm)		(N)	(Ň)			(N)	(N)	(N)	(N)	(N)
2.3079	502.2690	1.8090	70.1815	-3.6889	2.3113	506.5541	1.7964	86.1252	-3.5334	1.7	964	70.1007	-3.3271	-82.5918	-66.7736	-15.8182
2.3069	550.3896	1.6502	65.5744	-0.4585	2.3012	554.4124	1.6341	80.4523	-0.1165	1.63	341	65.5989	-1.0089	-80.3358	-64.5900	-15.7458
2.3074	603.5423	1.5052	62.5675	2.8578	2.3106	602.4889	1.5099	75.8979	4.0222	1.5	099	61.8298	3.2243	-79.9201	-65.0541	-14.8660
2.3070	652.5464	1.3919	56.4648	7.3859	2.3087	653.7372	1.3904	68.2312	9.2811	1.3	904	58.2501	8.0775	-77.5123	-66.3276	-11.1847
2.3084	752.0456	1.2085	52.8606	17.3533	2.3127	751.5777	1.2115	55.4110	18.7622	1.2	115	51.1627	17.3812	-74.1732	-68.5439	-5.6292
2.3081	901.6673	1.0078	31.0591	39.3701	2.3075	907.7627	1.0008	24.5844	38.9545	1.0	008	31.9903	38.5141	-63.5389	-70.5045	6.9655
2.3082	1006.0527	0.9033	14.6680	56.3185	2.3104	1009.7375	0.9008	0.7728	57.7942	0.9	208	14.1489	57.0171	-58.5670	-71.1660	12.599 1
2.3077	1052.1662	0.8635	5.4600	65.8199	2.3089	1055.8389	0.8609	-13.1249	66.6765	0.8	509	4.6684	66.7538	-53.5516	-71.4223	17.870 7
2.3074	1101.3796	0.8248	-4.9423	75.6556	2.3716	1105.4558	0.8446	-27.7563	76.7109	0.84	146	0.3371	71.1938	-48.9546	-71.5309	22.5764
2.3075	1150.4349	0.7897	-16.4586	88.4838	2.3101	1156.8492	0.7862	-45.5095	88.9061	0.7	362	-17.6066	89.5678	-43.3966	-71.9611	28.564 5
2.3077	1213.5677	0.7487	-29.2323	102.4455	2.3079	1207.4927	0.7525	-62.1596	100.1417	0.7	525	-29.8499	102.1053	-37.9821	-72.2554	34.2733
2.3068	1249.1721	0.7270	-42.1765	114.3675	2.3092	1255.9025	0.7239	-78.5473	112.6834	0.73	239	-41.4538	113.9978	-34.1361	-72.5440	38.407 9
V	n	J	F	Tp	v	n	J	F	Tp		1	F	Т _Р	F - T _p	F - Tp	Td
(m/s)	(rpm)		(N)	(N)	(m/s)	(rpm)		(N)	(N)			(N)	(N)	(N)	(N)	(N)
2.5100	504.0554	1.9605	87.5695	-5.1534	2.5094	504.8586	1.9569	105.9464	-5.1789	1.9	569	87.4743	-5.1206	-100.7675	-82.3537	-18.4138
2.5086	552.5634	1.7874	83.4748	-2.4533	2.5104	552.4243	1.7891	101.2323	-1.3845	1.78	391	83.6727	-3.6687	-99.8478	-80.0041	-19.8438
2.5072	601.0760	1.6422	78.4785	1.5344	2.5067	604.5795	1.6324	96.3633	1.8110	1.63	324	77.7464	1.6925	-98.1743	-79.4389	-18.7354
2.5095	651.4524	1.5166	72.4764	5.3858	2.5107	653.2312	1.5132	90.3483	6.9611	1.5	132	73.2244	6.5542	-97.3094	-79.7786	-17.5308
2.5020	751.7646	1.3103	66.8172	15.9565	2.5093	753.2477	1.3115	78.3736	15.4460	1.3	115	65.0928	16.2477	-93.8196	-81.3405	-12.4791
2.5092	905.0740	1.0915	46.3855	37.9313	2.5099	906.0469	1.0906	49.0260	35.9381	1.09	906	48.2725	35.4745	-84.9641	-83.7470	-1.2172
2.5081	1004.8353	0.9827	32.5307	52.3894	2.5126	1002.7932	0.9865	21.5911	55.1685	0.98	365	32.8107	52.1094	-76.7596	-84.9201	8.1605
2.5087	1052.4015	0.9385	22.3437	62.3939	2.5100	1052.4234	0.9390	9.2021	64.9951	0.93	390	23.1745	62.2624	-74.1972	-85.4368	11.2396
2.5087	1103.3557	0.8952	12.3667	72.3930	2.5104	1106.7229	0.8930	-5.5593	74.6193	0.89	930	11.9390	73.9797	-69.0600	-85.9187	16.8588
2.5023	1154.7567	0.8531	3.6930	84.3833	2.5101	1152.3582	0.8576	-19.5704	83.9508	0.8	576	1.7912	84.4850	-64.3804	-86.2762	21.8958
2.5092	1207.1602	0.8183	-11.5045	97.3348	2.5109	1204.5756	0.8207	-38.1235	95.8461	0.82	207	-10.2948	96.9273	-57.7226	-86.6325	28.9099
2.5091	1252.5791	0.7886	-23.5327	110.9502	2.5096	1256.7444	0.7862	-53.2054	108.0306	0.78	362	-23.1296	110.0787	-54.8252	-86.9491	32.1239

Bare Hull Resistance Tests

Ahead

V	Re	Fn	R	Cd	Ca
(m/s)			(N)	CSA	WSA
0.6010	1.36E+06	0.1168	4.8372	0.2131	0.0089
0.6987	1.59E+06	0.1358	6.2947	0.2052	0.0086
0.8003	1.82E+06	0.1555	7.9859	0.1985	0.0083
0.8990	2.04E+06	0.1747	9.8816	0.1946	0.0081
1.0015	2.27E+06	0.1946	11.7594	0.1866	0.0078
1.1016	2.50E+06	0.2140	13.8754	0.1820	0.0076
1.2007	2.72E+06	0.2333	16.2767	0.1797	0.0075
1.3048	2.96E+06	0.2535	18.6795	0.1746	0.0073
1.4054	3.19E+06	0.2731	21.2504	0.1712	0.0072
1.5037	3.41E+06	0.2922	23.8043	0.1676	0.0070
1.6040	3.64E+06	0.3117	27.2382	0.1685	0.0070
1.7060	3.87E+06	0.3315	30.5770	0.1672	0.0070
1.8091	4.10E+06	0.3515	33.8079	0.1644	0.0069
1.9061	4.32E+06	0.3704	37.4270	0.1640	0.0068
2.0064	4.55E+06	0.3899	41.1379	0.1626	0.0068
2.1073	4.78E+06	0.4095	46.4036	0.1663	0.0069
2.3105	5.24E+06	0.4489	60.8839	0.1815	0.0076
2.5122	5.70E+06	0.4881	76.8940	0.1939	0.0081
2.7087	6.15E+06	0.5263	98.8119	0.2143	0.0090
2.9112	6.61E+06	0.5657	127.6270	0.2397	0.0100
3.1129	7.06E+06	0.6049	160.1392	0.2630	0.0110

Astern

V	Re	Fn	R	C _d	C _d
(m/s)			(N)	CSA	WSA
0.6088	1.38E+06	0.1183	5.3066	0.2279	0.0095
0.7089	1.61E+06	0.1377	6.9982	0.2216	0.0093
0.8097	1.84E+06	0.1573	8.9347	0.2169	0.0091
0.9113	2.07E+06	0.1771	11.1765	0.2142	0.0089
1.0126	2.30E+06	0.1968	13.4500	0.2088	0.0087
1.1124	2.52E+06	0.2161	15.8659	0.2041	0.0085
1.2146	2.76E+06	0.2360	18.5111	0.1997	0.0083
1.3139	2.98E+06	0.2553	21.1376	0.1949	0.0081
1.4123	3.20E+06	0.2744	24.1367	0.1926	0.0080
1.5161	3.44E+06	0.2946	27.3797	0.1896	0.0079
1.6148	3.66E+06	0.3138	30.4808	0.1860	0.0078
1.7155	3.89E+06	0.3333	34.0387	0.1841	0.0077
1.8173	4.12E+06	0.3531	37.5215	0.1808	0.0076
1.9185	4.35E+06	0.3728	40.8561	0.1767	0.0074
2.0195	4.58E+06	0.3924	44.6591	0.1743	0.0073

CSA Cross Sectional Area

WSA Wetted Surface Area

Bollard Pull Tests

(Propeller + Duct fitted on)

	n	Q	F	Τ _P	Pd
	rpm	N-m	N	N	Watt
	503.9033	0.5283	-11.3075	8.9647	27.8915
į	550.4767	0.6797	-17.3445	12.5679	39.1967
	605.9664	0.8448	-24.1935	17.6148	53.6326
	650.5832	1.0205	-30.4523	22.3550	69.5562
	750.1102	1.3944	-48.3194	35.0872	109.5780
	907.7347	2.1970	-84.1484	59.2718	208.9271
	1001.8816	2.6913	-113.0899	76.4800	282.4713
	1052.1447	3.0135	-129.0183	87.9141	332.1587
	1102.7669	3.3844	-145.7299	98.9344	390.9927
	1151.0962	3.6596	-162.4119	109.1874	441.3201
	1201.9108	4.0432	-183.5970	121.8579	509.0934
	1250.9090	4.3910	-200.7750	132.5731	575.4300

Load Varying Self-Propulsion Test (Propeller fitted on) Uncertainty Analysis (Propeller Rotational Speed)

v	Vehicle Velocity (m/s)	
n	Propeller Rotational Speed (rpm)	
С	Number of Counted Pulses in Time dt	
dt	Time (s)	
S.D	Standard Deviation	
Pn	Precision Error for n	$P_n = 2 \times S.D$
Bc	Bias Error for C	
B _{dt}	Bias Error for dt	
B _n	Bias Error for n	$B_n = ((\delta n / \delta C B_c)^2 + (\delta n / \delta dt B_{dt})^2)^{1/2}$
Un	Total Error for n	$U_n = (B_n^2 + P_n^2)^{1/2}$
% Unc.	Percentage Uncertainty for n	% Unc. = (U _n / n) x 100

V	n	Pn	B _c δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.
(m/s)	(rpm)						
			0.0004		0.0004	0 0004	0.0070
0.8007	503.8949	0.0004	0.0391	-0.0009	0.0391	0.0391	0.0078
0.8012	552.6343	0.0005	0.0391	-0.0010	0.0391	0.0391	0.0071
0.8027	602.3573	0.0005	0.0391	-0.0011	0.0391	0.0391	0.0065
0.8034	651.5623	0.0005	0.0391	-0.0013	0.0391	0.0391	0.0060
0.8005	753.4148	0.0004	0.0391	-0.0016	0.0391	0.0391	0.0052
0.8012	913.8563	0.0005	0.0391	-0.0020	0.0391	0.0391	0.0043
0.8037	1002.5757	0.0005	0.0391	-0.0023	0.0391	0.0392	0.0039
0.8045	1051.5807	0.0005	0.0391	-0.0024	0.0392	0.0392	0.0037
0.8098	1102.1417	0.0004	0.0391	-0.0025	0.0392	0.0392	0.0036
0.8032	1154.0417	0.0005	0.0391	-0.0027	0.0392	0.0392	0.0034
0.8015	1207.3702	0.0005	0.0391	-0.0028	0.0392	0.0392	0.0032
0.8022	1246.6728	0.0005	0.0391	-0.0029	0.0392	0.0392	0.0031
		_		B C (C 1)	~		0/ 11
V	n	Pn	Β_c δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.
V (m/s)	n (rpm)	P _n	Β_C δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.
V (m/s)	n (rpm)	Pn	B _c δn/δC	B _{dt} δn/δdt	B _n	U _n	% Unc.
V (m/s) 1.1030	n (rpm) 507.2079	P _n 0.0006	B _c δn/δC	B _{dt} δn/δdt	B _n 0.0391	U _n	% Unc.
V (m/s) 1.1030 1.1027	n (rpm) 507.2079 554.5345	P _n 0.0006 0.0006	B _c δn/δC 0.0391 0.0391	-0.0009 -0.0010	B _n 0.0391 0.0391	U n 0.0391 0.0391	% Unc.
V (m/s) 1.1030 1.1027 1.1035	n (rpm) 507.2079 554.5345 603.8746	P _n 0.0006 0.0006 0.0006	B _c δn/δC 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011	B _n 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391	% Unc. 0.0077 0.0071 0.0065
V (m/s) 1.1030 1.1027 1.1035 1.1032	n (rpm) 507.2079 554.5345 603.8746 654.2447	P _n 0.0006 0.0006 0.0006 0.0006	B _c δn/δC 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013	B _n 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0077 0.0071 0.0065 0.0060
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044	n (rpm) 557.2079 554.5345 603.8746 654.2447 750.3733	Pn 0.0006 0.0006 0.0006 0.0006 0.0006	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016	B _n 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0077 0.0071 0.0065 0.0060 0.0052
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041	n (rpm) 557.2079 554.5345 603.8746 654.2447 750.3733 910.3564	Pn 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0077 0.0071 0.0065 0.0060 0.0052 0.0043
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030	n (rpm) 507.2079 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678	P _n 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	% Unc. 0.0077 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037	n (rpm) 557.2079 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678 1056.9924	Pn 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	Un 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	% Unc. 0.0077 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031	n (rpm) 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678 1056.9924 1108.8989	Pn 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024 -0.0026	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	Un 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	% Unc. 0.0077 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037 0.0035
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031 1.1031	n (rpm) 554.5345 603.8746 654.2447 750.3733 910.3564 1006.6678 1056.9924 1108.8989 1156.0328	Pn 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024 -0.0026 -0.0027	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	Un 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	% Unc. 0.0077 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037 0.0035 0.0034

-0.0029

0.0391

1.1034 1249.3622 0.0006

<u>Uncertainty Analysis</u> (Rotational Speed) Load Varying Self-Propulsion Test (Propeller fitted on)

0.0392

0.0392

0.0031

	Load Varying Self-Propulsion Test (Propeller fitted on)									
V	n	Pn	B _c δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.			
(m/s)	(rpm)		100							
1.3031	504.2337	0.0006	0.0391	-0.0009	0.0391	0.0391	0.0078			
1.3022	550.4535	0.0006	0.0391	-0.0010	0.0391	0.0391	0.0071			
1.3025	600.5634	0.0007	0.0391	-0.0011	0.0391	0.0391	0.0065			
1.3035	652.2352	0.0007	0.0391	-0.0013	0.0391	0.0391	0.0060			
1.3036	752.8192	0.0007	0.0391	-0.0016	0.0391	0.0391	0.0052			
1.3022	901.8296	0.0007	0.0391	-0.0020	0.0391	0.0391	0.0043			
1.3022	1000.1110	0.0007	0.0391	-0.0023	0.0391	0.0392	0.0039			
1.3023	1046.2973	0.0007	0.0391	-0.0024	0.0392	0.0392	0.0037			
1.3020	1105.7242	0.0007	0.0391	-0.0025	0.0392	0.0392	0.0035			
1.3023	1155.3342	0.0007	0.0391	-0.0027	0.0392	0.0392	0.0034			
1.3022	1206.0095	0.0007	0.0391	-0.0028	0.0392	0.0392	0.0032			

-0.0029

0.0392

0.0392

0.0031

0.0391

1.3024 1248.0299

0.0007

Uncertainty Analysis (Rotational Speed) .oad Varying Self-Propulsion Test (Propeller fitted on)

V	n	Pn	Β _c δ n /δ C	B _{dt} δn/δdt	B _n	Un	% Unc.
(m/s)	(rpm)						
1.6032	503.9995	0.0008	0.0391	-0.0009	0.0391	0.0391	0.0078
1.6046	550.3443	0.0008	0.0391	-0.0010	0.0391	0.0391	0.0071
1.6035	601.4574	0.0008	0.0391	-0.0011	0.0391	0.0391	0.0065
1.6038	653.7645	0.0009	0.0391	-0.0013	0.0391	0.0391	0.0060
1.6040	755.9224	0.0008	0.0391	-0.0016	0.0391	0.0391	0.0052
1.6038	911.6408	0.0008	0.0391	-0.0020	0.0391	0.0391	0.0043
1.6044	1003.7944	0.0008	0.0391	-0.0023	0.0391	0.0392	0.0039
1.6042	1051.3377	0.0008	0.0391	-0.0024	0.0392	0.0392	0.0037
1.6043	1104.0239	0.0008	0.0391	-0.0025	0.0392	0.0392	0.0035
1.6034	1152.5333	0.0008	0.0391	-0.0027	0.0392	0.0392	0.0034
1.6036	1210.1129	0.0008	0.0391	-0.0028	0.0392	0.0392	0.0032
1.6030	1250.8055	0.0009	0.0391	-0.0030	0.0392	0.0392	0.0031

V	n	Pn	Β _c δ n /δ C	B _{dt} δn/δdt	B _n	Un	% Unc.
(m/s)	(rpm)						
1 8042	510 9808	0.0010	0 0391	-0 0009	0.0391	0 0391	0.0077
1.8034	552.4233	0.0010	0.0391	-0.0010	0.0391	0.0391	0.0071
1.8068	602.7853	0.0009	0.0391	-0.0011	0.0391	0.0391	0.0065
1.8056	651.5334	0.0009	0.0391	-0.0013	0.0391	0.0391	0.0060
1.8042	757.8054	0.0010	0.0391	-0.0016	0.0391	0.0391	0.0052
1.8051	911.1136	0.0010	0.0391	-0.0020	0.0391	0.0391	0.0043
1.8048	1002.7594	0.0010	0.0391	-0.0023	0.0391	0.0392	0.0039
1.8061	1056.9214	0.0010	0.0391	-0.0024	0.0392	0.0392	0.0037
1.8051	1118.8065	0.0010	0.0391	-0.0026	0.0392	0.0392	0.0035
1.8043	1161.1239	0.0010	0.0391	-0.0027	0.0392	0.0392	0.0034
1.8059	1215.6599	0.0010	0.0391	-0.0029	0.0392	0.0392	0.0032
1.8057	1246.0544	0.0010	0.0391	-0.0029	0.0392	0.0392	0.0031

V	n	Pn	B _c δn/δC	B _{dt} δn/δdt	Bn	Un	% Unc.
(m/s)	(rpm)						
2.1091	500.1371	0.0011	0.0391	-0.0009	0.0391	0.0391	0.0078
2.1056	551.5545	0.0012	0.0391	-0.0010	0.0391	0.0391	0.0071
2.1068	600.3476	0.0011	0.0391	-0.0011	0.0391	0.0391	0.0065
2.1067	654.3489	0.0011	0.0391	-0.0013	0.0391	0.0391	0.0060
2.1101	752.6505	0.0011	0.0391	-0.0016	0.0391	0.0391	0.0052
2.1068	901.9876	0.0012	0.0391	-0.0020	0.0391	0.0392	0.0043
2.1070	1002.6789	0.0012	0.0391	-0.0023	0.0391	0.0392	0.0039
2.0959	1052.8833	0.0011	0.0391	-0.0024	0.0392	0.0392	0.0037
2.1064	1103.4297	0.0011	0.0391	-0.0025	0.0392	0.0392	0.0036
2.1073	1156.4853	0.0011	0.0391	-0.0027	0.0392	0.0392	0.0034
2.1066	1214.1716	0.0011	0.0391	-0.0028	0.0392	0.0392	0.0032
2.1060	1246.6579	0.0011	0.0391	-0.0029	0.0392	0.0392	0.0031

	Uncer	<u>tainty Ar</u>	<u>nalysis</u>	(Rotat	tiona	il Spe	ed)		
Load	Varying	Self-Pro	pulsion	Test (Pro	beller	fitted	on)	

V	n	Pn	Β _c δ n /δ C	B _{dt} δn/δdt	Bn	Un	% Unc.
(m/s)	(rpm)						
2.3079	502.2690	0.0013	0.0391	-0.0009	0.0391	0.0391	0.0078
2.3069	550.3896	0.0012	0.0391	-0.0010	0.0391	0.0391	0.0071
2.3074	603.5423	0.0013	0.0391	-0.0011	0.0391	0.0391	0.0065
2.3070	652.5464	0.0013	0.0391	-0.0013	0.0391	0.0391	0.0060
2.3084	752.0456	0.0013	0.0391	-0.0016	0.0391	0.0391	0.0052
2.3081	901.6673	0.0013	0.0391	-0.0020	0.0391	0.0392	0.0043
2.3082	1006.0527	0.0013	0.0391	-0.0023	0.0391	0.0392	0.0039
2.3077	1052.1662	0.0013	0.0391	-0.0024	0.0392	0.0392	0.0037
2.3074	1101.3796	0.0013	0.0391	-0.0025	0.0392	0.0392	0.0036
2.3075	1150.4349	0.0013	0.0391	-0.0027	0.0392	0.0392	0.0034
2.3077	1213.5677	0.0013	0.0391	-0.0028	0.0392	0.0392	0.0032
2.3068	1249.1721	0.0013	0.0391	-0.0029	0.0392	0.0392	0.0031

V	n	Pn	Β_c δn/δC	B _{dt} δn/δdt	Bn	Un	% Unc.
(m/s)	(rpm)						
2.5100	504.0554	0.0015	0.0391	-0.0009	0.0391	0.0391	0.0078
2.5086	552.5634	0.0014	0.0391	-0.0010	0.0391	0.0391	0.0071
2.5072	601.0760	0.0015	0.0391	-0.0011	0.0391	0.0391	0.0065
2.5095	651.4524	0.0015	0.0391	-0.0013	0.0391	0.0391	0.0060
2.5020	751.7646	0.0015	0.0391	-0.0016	0.0391	0.0391	0.0052
2.5092	905.0740	0.0014	0.0391	-0.0020	0.0391	0.0392	0.0043
2.5081	1004.8353	0.0015	0.0391	-0.0023	0.0391	0.0392	0.0039
2.5087	1052.4015	0.0015	0.0391	-0.0024	0.0392	0.0392	0.0037
2.5087	1103.3557	0.0014	0.0391	-0.0025	0.0392	0.0392	0.0036
2.5023	1154.7567	0.0015	0.0391	-0.0027	0.0392	0.0392	0.0034
2.5092	1207.1602	0.0015	0.0391	-0.0028	0.0392	0.0392	0.0032
2.5091	1252.5791	0.0015	0.0391	-0.0030	0.0392	0.0392	0.0031

Load Varying Self-Propulsion Test (Propeller fitted on) Uncertainty Analysis (Velocity)

V	Vehicle Velocity (m/s)	
D	Diameter of Carriage Wheel (m)	
С	Number of Counted Pulses in Time dt	
dt	Time (s)	
S.D	Standard Deviation	
P_{V}	Precision Error for V	$P_V = 2 \times S.D$
Bc	Bias Error for C	
B _D	Bias Error for D	
B _{dt}	Bias Error for dt	
Bv	Bias Error for V	$B_{V} = ((\delta V / \delta C B_{C})^{2} + (\delta V / \delta D B_{D})^{2} + (\delta V / \delta dt B_{dt})^{2})^{1/2}$
Uv	Total Error for V	$U_V = (B_V^2 + P_V^2)^{1/2}$
% Unc.	Percentage Uncertainty for V	% Unc. = (U _v / V) x 100

V	Pv	Β_C δV/δC	Β _D δ V /δD	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta dt$	Bv	Uv	% Unc
(m/s)							
0.8007	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4413
0.8012	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4418
0.8027	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4400
0.8034	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4394
0.8005	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4419
0.8012	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4418
0.8037	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4397
0.8045	0.0004	0.0035	0.0002	-0.00005	0.0035	0.0035	0.4397
0.8098	0.0002	0.0035	0.0002	-0.00005	0.0035	0.0035	0.4356
0.8032	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4402
0.8015	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4405
0.8022	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4412
	<u> </u>			-	-		o/ 11
V	Pv	B _c δV/δC	B ^D 9A19D	B _{dt} ðV/ðdt	R ^A	Uγ	% Unc
(m/s)							
1.1030	0.0004	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3223
1.1027	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3231
1.1035	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3231
1.1032	0 000						
1 1044	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3229
1.1044	0.0005	0.0035 0.0035	0.0003 0.0003	-0.00009 -0.00009	0.0035 0.0035	0.0036 0.0036	0.3229 0.3221
1.1044	0.0005 0.0005 0.0004	0.0035 0.0035 0.0035	0.0003 0.0003 0.0003	-0.00009 -0.00009 -0.00009	0.0035 0.0035 0.0035	0.0036 0.0036 0.0036	0.3229 0.3221 0.3219
1.1044 1.1041 1.1030	0.0005 0.0005 0.0004 0.0005	0.0035 0.0035 0.0035 0.0035	0.0003 0.0003 0.0003 0.0003	-0.00009 -0.00009 -0.00009 -0.00009	0.0035 0.0035 0.0035 0.0035	0.0036 0.0036 0.0036 0.0036	0.3229 0.3221 0.3219 0.3227
1.1044 1.1041 1.1030 1.1037	0.0005 0.0005 0.0004 0.0005 0.0005	0.0035 0.0035 0.0035 0.0035 0.0035	0.0003 0.0003 0.0003 0.0003 0.0003	-0.00009 -0.00009 -0.00009 -0.00009 -0.00009	0.0035 0.0035 0.0035 0.0035 0.0035	0.0036 0.0036 0.0036 0.0036 0.0036	0.3229 0.3221 0.3219 0.3227 0.3228
1.1044 1.1041 1.1030 1.1037 1.1031	0.0005 0.0005 0.0004 0.0005 0.0005 0.0005	0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	-0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009	0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	0.3229 0.3221 0.3219 0.3227 0.3228 0.3235
1.1044 1.1041 1.1030 1.1037 1.1031 1.1031	0.0005 0.0005 0.0004 0.0005 0.0005 0.0005 0.0005	0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	-0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009	0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	0.3229 0.3221 0.3219 0.3227 0.3228 0.3235 0.3227
1.1044 1.1041 1.1030 1.1037 1.1031 1.1031 1.1029	0.0005 0.0005 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005	0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	-0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009	0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	0.3229 0.3221 0.3219 0.3227 0.3228 0.3235 0.3227 0.3230

V	Pv	Β _C δV/δC	Β_D δV/δD	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta \mathbf{dt}$	Bv	Uv	% Unc
(m/s)							
1.3031	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2744
1.3022	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2751
1.3025	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2748
1.3035	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2751
1.3036	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2743
1.3022	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2744
1.3022	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2751
1.3023	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2748
1.3020	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2747
1.3023	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2744
1.3022	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2746
1.3024	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2746
-	<u></u>				_		
V	Pv	Β _C δV/δC	Β _D δ V /δ D	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta dt$	Bv	Uv	% Unc
V (m/s)	Pv	Β_C δV/δC	Β_D δV/δD	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta \mathbf{dt}$	Β _ν	Uy	% Unc
V (m/s)	Pv	Β _c δ V /δC	Β _D δV/δD	B _{dt} δV/δdt	Β _ν	Uv	% Unc
V (m/s) 1.6032	P v 0.0006	B _c δV/δC	B _D δV/δD	B _{dt} δV/δdt	B _v 0.0036	U _v	% Unc
V (m/s) 1.6032 1.6046	P _v 0.0006 0.0007	B _c δ V /δC 0.0035 0.0035	B _D δV/δD 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016	B _V 0.0036 0.0036	U _v 0.0036 0.0036	% Unc 0.2251 0.2256
V (m/s) 1.6032 1.6046 1.6035	Pv 0.0006 0.0007 0.0007	B _c δV/δC 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260
V (m/s) 1.6032 1.6046 1.6035 1.6038	Pv 0.0006 0.0007 0.0007 0.0007	B _c δV/δC 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040	Pv 0.0006 0.0007 0.0007 0.0007 0.0007	B _c δV/δC 0.0035 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254 0.2252
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038	Pv 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006	B _c δV/δC 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254 0.2252 0.2250
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044	Pv 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006 0.0007	B _c δV/δC 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254 0.2252 0.2250 0.2261
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042	Pv 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006 0.0007 0.0007	B _c δV/δC 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254 0.2252 0.2250 0.2261 0.2254
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043	Pv 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006 0.0007 0.0007 0.0006	B _c δV/δC 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254 0.2252 0.2250 0.2261 0.2254 0.2254 0.2249
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6043	Pv 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006 0.0007 0.0006 0.0007	B _c δV/δC 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254 0.2252 0.2250 0.2261 0.2254 0.2254 0.2249 0.2260
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6034 1.6034	Pv 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006 0.0007 0.0006 0.0007 0.0006	B _c δV/δC 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	B _D δV/δD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	B _{dt} δV/δdt -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	U _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	% Unc 0.2251 0.2256 0.2260 0.2254 0.2252 0.2250 0.2261 0.2254 0.2254 0.2249 0.2260 0.2257

<u>Uncertainty Analysis</u> (Velocity) Load Varying Self - Propulsion Test (Propeller fitted on)

V	Pv	Β _C δ V /δ C	Β _D δ V /δ D	B _{dt} δV/δdt	Bv	Uv	% Unc
(m/s)							
1 0040	0 0009	0.0025	0.0006	0.00010	0.0026	0.0027	0 2020
1.6042	0.0008	0.0035	0.0006	-0.00019	0.0030	0.0037	0.2030
1.8034	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2041
1.8068	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2032
1.8056	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2031
1.8042	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2037
1.8051	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2039
1.8048	0.0008	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2029
1.8061	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2030
1.8051	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2034
1.8043	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2040
1.8059	0.0008	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2028
1.8057	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2031
W	Đ	B SV/SC	B SV/SD	B &V/&dt	R	П.	% linc
•	FV	DCOMICO	DDOVIOD	D _{dt} o viour	Dv	υv	70 0110
(m/s)							
2.1091	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1766
2.1056	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1764
2.1068	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1773
2,1067	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1771

	- v	-0000	-0 - 1.0-	-01 - 11 - 1	— v		
(m/s)							
2.1091	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1766
2.1056	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1764
2.1068	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1773
2.1067	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1771
2.1101	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1765
2.1068	0.0011	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1776
2.1070	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1765
2.0959	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1777
2.1064	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1773
2.1073	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1767
2.1066	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1771
2.1060	0.0011	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1776

V	Pv	Β _C δV/δC	Β _D δV/δD	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta dt$	Bv	Uν	% Unc
(m/s)							
2.3079	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1636
2.3069	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1642
2.3074	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1641
2.3070	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1646
2.3084	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1637
2.3081	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1632
2.3082	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1635
2.3077	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1643
2.3074	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1630
2.3075	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1635
2.3077	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1638
2.3068	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1644
	<u>_</u>				_		
V	Pv	Β _C δV/δC	Β _D δV/δD	B _{dt} δV/δdt	Bv	Uv	% Unc
(m/s)							
2.5100	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0038	0.1532
2.5086	0.0012	0.0035	0.0008	-0.00029	0.0036	0.0038	0.1529
2.5072	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1543
2.5095	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0038	0.1533
2.5020	0.0013	0.0035	0.0008	-0.00028	0.0036	0.0039	0.1543
2.5092	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0038	0.1531
2.5081	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0038	0.1533
2.5087	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1537
2.5087	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0038	0.1531
2.5023	0.0013	0.0035	0.0008	-0.00028	0.0036	0.0039	0.1546

0.0035

0.0035

2.5092

2.5091

0.0013

0.0013

0.0008

8000.0

-0.00029

-0.00029

<u>Uncertainty Analysis</u> (Velocity) Load Varying Self - Propulsion Test (Propeller fitted on)

0.0036

0.0036

0.0039

0.0039

0.1542

0.1536

Load Varying Self-Propulsion Test (Propeller fitted on) Uncertainty Analysis (Torque)

V	Vehicle Velocity (m/s)	
Q	Propeller Torque (N-m)	
F	Calibrating Weight (N)	
R	Lever Arm (m)	
Pq	Precision Error for Q	$P_Q = 2 \times S.D$
S.D	Standard Deviation	
S.E.E	Standard Error Estimate	
AD	Analog to Digital Converter	
B _F	Bias Error for F	
B _R	Bias Error for R	
B1	Bias Error due to Calibration	$B_1 = ((\delta Q / \delta F B_F)^2 + (\delta Q / \delta R B_R)^2)^{1/2}$
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Data Reduction	$B_3 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
Bq	Bias Error for Q	$B_{Q} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2})^{1/2}$
Uq	Total Error for Q	$U_{Q} = (B_{Q}^{2} + P_{Q}^{2})^{1/2}$
% Unc.	Percentage Uncertainty for Q	% Unc. = (U _Q / Q) x 100

V	Q	Pq	Β_F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
0.8007	0.1810	0.0007	0.00001	0.00014	0.0001	0.0076	0.0007	0.0076	0.0077	4.2361
0.8012	0.3680	0.0007	0.00002	0.00029	0.0003	0.0076	0.0007	0.0076	0.0077	2.0855
0.8027	0.5143	0.0007	0.00003	0.00041	0.0004	0.0076	0.0007	0.0076	0.0077	1.4930
0.8034	0.7198	0.0007	0.00004	0.00058	0.0006	0.0076	0.0007	0.0077	0.0077	1.0687
0.8005	1.2080	0.0008	0.00006	0.00097	0.0010	0.0076	0.0007	0.0077	0.0077	0.6403
0.8012	2.0427	0.0008	0.00010	0.00163	0.0016	0.0076	0.0007	0.0078	0.0078	0.3841
0.8037	2.6202	0.0008	0.00013	0.00210	0.0021	0.0076	0.0007	0.0079	0.0080	0.3037
0.8045	2.9224	0.0008	0.00015	0.00234	0.0023	0.0076	0.0007	0.0080	0.0080	0.2746
0.8098	3.3564	0.0008	0.00017	0.00269	0.0027	0.0076	0.0007	0.0081	0.0081	0.2424
0.8032	3.7562	0.0008	0.00019	0.00300	0.0030	0.0076	0.0007	0.0082	0.0082	0.2196
0.8015	4.1532	0.0008	0.00021	0.00332	0.0033	0.0076	0.0007	0.0083	0.0084	0.2015
0.8022	4.5121	0.0008	0.00023	0.00361	0.0036	0.0076	0.0007	0.0084	0.0085	0.1882
		o stat <u>s</u> aantioo						<u></u>		
V	Q	Pa	Β_F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
1.1030	0.1699	0.0008	0.00001	0.00014	0.0001	0.0076	0.0007	0.0076	0.0077	4.5211
1.1027	0.3535	0.0008	0.00002	0.00028	0.0003	0.0076	0.0007	0.0076	0.0077	2.1736
1.1035	0.4982	0.0008	0.00002	0.00040	0.0004	0.0076	0.0007	0.0076	0.0077	1.5437
1.1032	0.7005	0.0009	0.00004	0.00056	0.0006	0.0076	0.0007	0.0077	0.0077	1.0996
1.1044	1.1746	0.0009	0.00006	0.00094	0.0009	0.0076	0.0007	0.0077	0.0077	0.6589
1.1041	1.9868	0.0009	0.00010	0.00159	0.0016	0.0076	0.0007	0.0078	0.0078	0.3950
1.1030	2.5799	0.0009	0.00013	0.00206	0.0021	0.0076	0.0007	0.0079	0.0080	0.3085
1.1037	2.8694	0.0009	0.00014	0.00230	0.0023	0.0076	0.0007	0.0080	0.0080	0.2796
1.1031	3.2875	0.0009	0.00016	0.00263	0.0026	0.0076	0.0007	0.0081	0.0081	0.2472
1.1031	3.6710	0.0009	0.00018	0.00294	0.0029	0.0076	0.0007	0.0082	0.0082	0.2243
4 4000										
1.1029	4.0899	0.0009	0.00020	0.00327	0.0033	0.0076	0.0007	0.0083	0.0084	0.2044

V	Q	Pa	Β _F δ Q /δF	B _R δQ/δR	B ₁	B ₂	B ₃	B _Q	Uq	% Unc.
(m/s)	(N-m)									
1.3031	0.1657	0.0009	0.00001	0.00013	0.0001	0.0076	0.0007	0.0076	0.0077	4.6400
1.3022	0.3278	0.0009	0.00002	0.00026	0.0003	0.0076	0.0007	0.0076	0.0077	2.3471
1.3025	0.4670	0.0009	0.00002	0.00037	0.0004	0.0076	0.0007	0.0076	0.0077	1.6484
1.3035	0.6650	0.0009	0.00003	0.00053	0.0005	0.0076	0.0007	0.0077	0.0077	1.1596
1.3036	1.1361	0.0010	0.00006	0.00091	0.0009	0.0076	0.0007	0.0077	0.0077	0.6820
1.3022	1.9541	0.0010	0.00010	0.00156	0.0016	0.0076	0.0007	0.0078	0.0079	0.4019
1.3022	2.5466	0.0010	0.00013	0.00204	0.0020	0.0076	0.0007	0.0079	0.0080	0.3126
1.3023	2.8254	0.0010	0.00014	0.00226	0.0023	0.0076	0.0007	0.0080	0.0080	0.2840
1.3020	3.2400	0.0010	0.00016	0.00259	0.0026	0.0076	0.0007	0.0081	0.0081	0.2508
1.3023	3.6311	0.0010	0.00018	0.00290	0.0029	0.0076	0.0007	0.0082	0.0082	0.2266
1.3022	4.0298	0.0011	0.00020	0.00322	0.0032	0.0076	0.0007	0.0083	0.0084	0.2075
1.3024	4.4059	0.0011	0.00022	0.00352	0.0035	0.0076	0.0007	0.0084	0.0085	0.1926
	•	ъ		D SO/SD	Р		D	D	11	% Uno
V	Q	Pa	Β _F δ Q /δF	B _R δ Q /δR	B ₁	B ₂	B ₃	B _Q	Uq	% Unc.
V (m/s)	Q (N-m)	Pa	Β _F δQ/δF	B _R δQ/δR	B ₁	B 2	B ₃	B _Q	Uq	% Unc.
V (m/s)	Q (N-m)	Pa	Β _F δ Q /δF	B _R δQ/δR	B 1	B ₂	B ₃	Β _Q	U _Q	% Unc.
V (m/s) 1.6032	Q (N-m) 0.1484	P _Q 0.0011	B _F δ Q /δF	B _R δ Q /δR	0.0001	B ₂ 0.0076	B ₃	Β _Q 0.0076	U _Q	% Unc.
V (m/s) 1.6032 1.6046	Q (N-m) 0.1484 0.2710	P _Q 0.0011 0.0011	B _F δQ/δF	B _R δQ/δR	B ₁ 0.0001 0.0002	B ₂ 0.0076 0.0076	B ₃ 0.0007 0.0007	B _Q 0.0076 0.0076	U _Q 0.0077 0.0077	% Unc. 5.1970 2.8459
V (m/s) 1.6032 1.6046 1.6035	Q (N-m) 0.1484 0.2710 0.3833	P _Q 0.0011 0.0011 0.0011	B _F δQ/δF 0.00001 0.00001 0.00002	B _R δQ/δR 0.00012 0.00022 0.00031	B ₁ 0.0001 0.0002 0.0003	B ₂ 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007	BQ 0.0076 0.0076 0.0076	U _Q 0.0077 0.0077 0.0077	% Unc. 5.1970 2.8459 2.0151
V (m/s) 1.6032 1.6046 1.6035 1.6038	Q (N-m) 0.1484 0.2710 0.3833 0.6033	P _Q 0.0011 0.0011 0.0011 0.0011	B _F δQ/δF 0.00001 0.00001 0.00002 0.00003	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048	B ₁ 0.0001 0.0002 0.0003 0.0005	B ₂ 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007	BQ 0.0076 0.0076 0.0076 0.0077	U _Q 0.0077 0.0077 0.0077 0.0077	% Unc. 5.1970 2.8459 2.0151 1.2822
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703	P _Q 0.0011 0.0011 0.0011 0.0011 0.0012	B _F δQ/δF 0.00001 0.00001 0.00002 0.00003 0.00005	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048 0.00086	B ₁ 0.0001 0.0002 0.0003 0.0005 0.0009	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007	BQ 0.0076 0.0076 0.0076 0.0077 0.0077	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078	% Unc. 5.1970 2.8459 2.0151 1.2822 0.7260
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340	P _Q 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012	B _F δQ/δF 0.00001 0.00001 0.00002 0.00003 0.00005 0.00009	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048 0.00086 0.00147	B ₁ 0.0001 0.0002 0.0003 0.0005 0.0009 0.0015	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0076 0.0077 0.0077 0.0078	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079	% Unc. 5.1970 2.8459 2.0151 1.2822 0.7260 0.4286
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389	P _Q 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012	B _F δQ/δF 0.00001 0.00001 0.00002 0.00003 0.00005 0.00009 0.00012	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048 0.00048 0.00086 0.00147 0.00195	B ₁ 0.0001 0.0002 0.0003 0.0005 0.0009 0.0015 0.0020	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0076 0.0077 0.0077 0.0078 0.0079	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080	% Unc. 5.1970 2.8459 2.0151 1.2822 0.7260 0.4286 0.3268
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228	P _Q 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012 0.0012	B _F δQ/δF 0.00001 0.00001 0.00002 0.00003 0.00005 0.00009 0.00012 0.00014	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048 0.00048 0.00048 0.00147 0.00195 0.00218	B ₁ 0.0001 0.0002 0.0003 0.0005 0.0009 0.0015 0.0020 0.0022	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080	% Unc. 5.1970 2.8459 2.0151 1.2822 0.7260 0.4286 0.3268 0.2948
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228 3.1449	P _Q 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012 0.0012 0.0012	B _F δQ/δF 0.00001 0.00001 0.00002 0.00003 0.00005 0.00005 0.00009 0.00012 0.00014 0.00016	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048 0.00048 0.00048 0.00147 0.00195 0.00218 0.00252	B ₁ 0.0001 0.0002 0.0003 0.0005 0.0009 0.0015 0.0020 0.0022 0.0025	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	BQ 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079 0.0079	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080 0.0081	% Unc. 5.1970 2.8459 2.0151 1.2822 0.7260 0.4286 0.3268 0.2948 0.2948
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6043	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228 3.1449 3.5384	P _Q 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012	B _F δQ/δF 0.00001 0.00002 0.00003 0.00005 0.00009 0.00012 0.00014 0.00016 0.00018	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048 0.00048 0.00147 0.00195 0.00218 0.00252 0.00283	B ₁ 0.0001 0.0002 0.0003 0.0005 0.0009 0.0015 0.0020 0.0022 0.0025 0.0028	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	BQ 0.0076 0.0076 0.0077 0.0077 0.0078 0.0079 0.0079 0.0080 0.0081	U _Q 0.0077 0.0077 0.0077 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082	% Unc. 5.1970 2.8459 2.0151 1.2822 0.7260 0.4286 0.3268 0.2948 0.2948 0.2584 0.2326
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6034 1.6034	Q (N-m) 0.1484 0.2710 0.3833 0.6033 1.0703 1.8340 2.4389 2.7228 3.1449 3.5384 3.9176	P _Q 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012	B _F δQ/δF 0.00001 0.00001 0.00002 0.00003 0.00005 0.00009 0.00012 0.00012 0.00014 0.00016 0.00018 0.00020	B _R δQ/δR 0.00012 0.00022 0.00031 0.00048 0.00048 0.00147 0.00195 0.00218 0.00252 0.00283 0.00313	B ₁ 0.0001 0.0002 0.0003 0.0005 0.0009 0.0015 0.0020 0.0022 0.0025 0.0028 0.0031	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	BQ 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079 0.0080 0.0081 0.0083	U _Q 0.0077 0.0077 0.0077 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082 0.0083	% Unc. 5.1970 2.8459 2.0151 1.2822 0.7260 0.4286 0.3268 0.2948 0.2584 0.2326 0.2129

	<u>Uncertainty Analysis</u> (Torque)	
Load	Varying Self-Propulsion Test (Propeller fitted on)	

V	Q	Pq	Β_F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
•	· · · · · ·									
1.8042	0.1265	0.0012	0.00001	0.00010	0.0001	0.0076	0.0007	0.0076	0.0077	6.1087
1.8034	0.1528	0.0012	0.00001	0.00012	0.0001	0.0076	0.0007	0.0076	0.0077	5.0619
1.8068	0.3126	0.0012	0.00002	0.00025	0.0003	0.0076	0.0007	0.0076	0.0077	2.4751
1.8056	0.5023	0.0012	0.00003	0.00040	0.0004	0.0076	0.0007	0.0076	0.0077	1.5421
1.8042	0.9753	0.0012	0.00005	0.00078	0.0008	0.0076	0.0007	0.0077	0.0078	0.7970
1.8051	1.7271	0.0013	0.00009	0.00138	0.0014	0.0076	0.0007	0.0078	0.0079	0.4551
1.8048	2.3395	0.0013	0.00012	0.00187	0.0019	0.0076	0.0007	0.0079	0.0080	0.3404
1.8061	2.6019	0.0013	0.00013	0.00208	0.0021	0.0076	0.0007	0.0079	0.0080	0.3080
1.8051	3.0425	0.0013	0.00015	0.00243	0.0024	0.0076	0.0007	0.0080	0.0081	0.2667
1.8043	3.4240	0.0013	0.00017	0.00274	0.0027	0.0076	0.0007	0.0081	0.0082	0.2399
1.8059	3.7826	0.0013	0.00019	0.00303	0.0030	0.0076	0.0007	0.0082	0.0083	0.2199
1.8057	4.1864	0.0013	0.00021	0.00335	0.0034	0.0076	0.0007	0.0083	0.0084	0.2017
v	~	D	D SO/SE	B SO/SD	D	B	Ð	D	11	% line
V	ų	r _o		DR OW/OK	D1		Da	Do		/0 UIIC.
				n		-2	•		-4	
(m/s)	(N-m)			•		-4	ÿ		-4	
(m/s)	(N-m)	0.0006	0.00000	0.00005	0.0000	0.0076	0.0007	0.0076	0.0077	12 9350
(m/s) 2.1091	(N-m) 0.0592	0.0006	0.00000	0.00005	0.0000	0.0076	0.0007	0.0076	0.0077	12.9350
(m/s) 2.1091 2.1056 2.1068	(N-m) 0.0592 0.1283 0.2676	0.0006 0.0013 0.0013	0.00000 0.00001	0.00005 0.00010	0.0000 0.0001 0.0002	0.0076	0.0007 0.0007 0.0007	0.0076 0.0076 0.0076	0.0077	12.9350 6.0373 2 8976
(m/s) 2.1091 2.1056 2.1068 2.1067	(N-m) 0.0592 0.1283 0.2676 0.4750	0.0006 0.0013 0.0013 0.0013	0.00000 0.00001 0.00001 0.00001	0.00005 0.00010 0.00021 0.00038	0.0000 0.0001 0.0002 0.0004	0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076	0.0077 0.0077 0.0078 0.0078	12.9350 6.0373 2.8976 1 6340
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776	0.0006 0.0013 0.0013 0.0013 0.0014	0.00000 0.00001 0.00001 0.00002 0.00002	0.00005 0.00010 0.00021 0.00038 0.00070	0.0000 0.0001 0.0002 0.0004 0.0007	0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0076	0.0077 0.0077 0.0078 0.0078 0.0078	12.9350 6.0373 2.8976 1.6340 0.8874
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776 1.6241	0.0006 0.0013 0.0013 0.0013 0.0014 0.0014	0.00000 0.00001 0.00001 0.00002 0.00004 0.00008	0.00005 0.00010 0.00021 0.00038 0.00070 0.00131	0.0000 0.0001 0.0002 0.0004 0.0007 0.0013	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077	0.0077 0.0077 0.0078 0.0078 0.0078 0.0078	12.9350 6.0373 2.8976 1.6340 0.8874 0.4814
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776 1.6341 2.2276	0.0006 0.0013 0.0013 0.0013 0.0014 0.0014	0.00000 0.00001 0.00001 0.00002 0.00004 0.00008 0.00011	0.00005 0.00010 0.00021 0.00038 0.00070 0.00131 0.00179	0.0000 0.0001 0.0002 0.0004 0.0007 0.0013 0.0018	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077 0.0077	0.0077 0.0077 0.0078 0.0078 0.0078 0.0079 0.0080	12.9350 6.0373 2.8976 1.6340 0.8874 0.4814 0.3559
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0050	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776 1.6341 2.2376 2.5427	0.0006 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014	0.00000 0.00001 0.00001 0.00002 0.00004 0.00008 0.00011	0.00005 0.00010 0.00021 0.00038 0.00070 0.00131 0.00179 0.00203	0.0000 0.0001 0.0002 0.0004 0.0007 0.0013 0.0018 0.0020	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078	0.0077 0.0077 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080	12.9350 6.0373 2.8976 1.6340 0.8874 0.4814 0.3559 0.3154
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959 2.1064	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776 1.6341 2.2376 2.5437 2.9278	0.0006 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014	0.00000 0.00001 0.00001 0.00002 0.00004 0.00008 0.00011 0.00013 0.00015	0.00005 0.00010 0.00021 0.00038 0.00070 0.00131 0.00179 0.00203 0.00235	0.0000 0.0001 0.0002 0.0004 0.0007 0.0013 0.0018 0.0020 0.0024	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080	0.0077 0.0077 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081	12.9350 6.0373 2.8976 1.6340 0.8874 0.4814 0.3559 0.3154 0.2762
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959 2.1064 2.1073	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776 1.6341 2.2376 2.5437 2.9378 2.29378	0.0006 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014	0.00000 0.00001 0.00001 0.00002 0.00004 0.00008 0.00011 0.00013 0.00015 0.00017	0.00005 0.00010 0.00021 0.00038 0.00070 0.00131 0.00179 0.00203 0.00235 0.00265	0.0000 0.0001 0.0002 0.0004 0.0007 0.0013 0.0018 0.0020 0.0024 0.0027	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0081	0.0077 0.0077 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082	12.9350 6.0373 2.8976 1.6340 0.8874 0.4814 0.3559 0.3154 0.2762 0.2481
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959 2.1064 2.1073 2.1066	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776 1.6341 2.2376 2.5437 2.9378 3.3080 3.6923	0.0006 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	0.00000 0.00001 0.00001 0.00002 0.00004 0.00008 0.00011 0.00013 0.00015 0.00017 0.00018	0.00005 0.00010 0.00021 0.00038 0.00070 0.00131 0.00179 0.00203 0.00235 0.00265 0.00295	0.0000 0.0001 0.0002 0.0004 0.0007 0.0013 0.0018 0.0020 0.0024 0.0027 0.0030	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0081 0.0082	0.0077 0.0077 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082 0.0083	12.9350 6.0373 2.8976 1.6340 0.8874 0.4814 0.3559 0.3154 0.2762 0.2481 0.2252
(m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959 2.1064 2.1073 2.1073	(N-m) 0.0592 0.1283 0.2676 0.4750 0.8776 1.6341 2.2376 2.5437 2.9378 3.3080	0.0006 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014	0.00000 0.00001 0.00001 0.00002 0.00004 0.00008 0.00011 0.00013 0.00015 0.00017	0.00005 0.00010 0.00021 0.00038 0.00070 0.00131 0.00179 0.00203 0.00235 0.00265	0.0000 0.0001 0.0002 0.0004 0.0007 0.0013 0.0018 0.0020 0.0024 0.0027	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0081	0.0077 0.0077 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082	12.9350 6.0373 2.8976 1.6340 0.8874 0.4814 0.3559 0.3154 0.2762 0.2481 0.2252

V	Q	Pa	Β _F δ Q /δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
2.3079	0.0030	0.0002	0.00000	0.00000	0.0000	0.0076	0.0007	0.0076	0.0076	253.9565
2.3069	0.1071	0.0015	0.00001	0.00009	0.0001	0.0076	0.0007	0.0076	0.0078	7.2595
2.3074	0.2439	0.0015	0.00001	0.00020	0.0002	0.0076	0.0007	0.0076	0.0078	3.1928
2.3070	0.4126	0.0015	0.00002	0.00033	0.0003	0.0076	0.0007	0.0076	0.0078	1.8880
2.3084	0.7863	0.0015	0.00004	0.00063	0.0006	0.0076	0.0007	0.0077	0.0078	0.9938
2.3081	1.5450	0.0016	0.00008	0.00124	0.0012	0.0076	0.0007	0.0077	0.0079	0.5106
2.3082	2.1446	0.0016	0.00011	0.00172	0.0017	0.0076	0.0007	0.0078	0.0080	0.3722
2.3077	2.4494	0.0016	0.00012	0.00196	0.0020	0.0076	0.0007	0.0079	0.0080	0.3283
2.3074	2.7844	0.0016	0.00014	0.00223	0.0022	0.0076	0.0007	0.0080	0.0081	0.2916
2.3075	3.1913	0.0017	0.00016	0.00255	0.0026	0.0076	0.0007	0.0081	0.0082	0.2576
2.3077	3.5556	0.0017	0.00018	0.00284	0.0029	0.0076	0.0007	0.0081	0.0083	0.2339
2.3068	3.9343	0.0017	0.00020	0.00315	0.0032	0.0076	0.0007	0.0083	0.0084	0.2142
		** 500000000000000000000000000000000000								
V	Q	Pq	B _F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
2.5100	0.0003	0.0001	0.00000	0.00000	0.0000	0.0076	0.0007	0.0076	0.0076	2231.3629
2.5086	0.0817	0.0014	0.00000	0.00007	0.0001	0.0076	0.0007	0.0076	0.0078	9.5018
2.5072	0.2188	0.0017	0.00001	0.00018	0.0002	0.0076	0.0007	0.0076	0.0078	3.5786
2.5095	0.3268	0.0017	0.00002	0.00026	0.0003	0.0076	0.0007	0.0076	0.0078	2.3976
2.5020	0.7249	0.0018	0.00004	0.00058	0.0006	0.0076	0.0007	0.0077	0.0079	1.0839
2.5092	1.4758	0.0018	0.00007	0.00118	0.0012	0.0076	0.0007	0.0077	0.0079	0.5372
2.5081	2.0551	0.0018	0.00010	0.00164	0.0016	0.0076	0.0007	0.0078	0.0080	0.3897
2.5087	2.3871	0.0018	0.00012	0.00191	0.0019	0.0076	0.0007	0.0079	0.0081	0.3379
2.5087	2.6963	0.0018	0.00013	0.00216	0.0022	0.0076	0.0007	0.0079	0.0081	0.3017
2.5023	3.0789	0.0018	0.00015	0.00246	0.0025	0.0076	0.0007	0.0080	0.0082	0.2672
2.5092	3.4660	0.0018	0.00017	0.00277	0.0028	0.0076	0.0007	0.0081	0.0083	0.2404
2.5091	3.8650	0.0019	0.00019	0.00309	0.0031	0.0076	0.0007	0.0082	0.0084	0.2185

<u>Uncertainty Analysis</u> (Torque) Load Varying Self-Propulsion Test (Propeller fitted on)

Load Varying Self-Propulsion Test (Propeller fitted on) Uncertainty Analysis (Thrust)

V	Vehicle Velocity (m/s)	
Τ _Ρ	Propeller Thrust (N)	
Ρ _τ	Precision Error for T _P	$P_T = 2 \times S.D$
S.D	Standard Deviation	
S.E.E	Standard Error Estimate	
AD	Analog to Digital Converter	
B ₁	Bias Error due to Calibration	$B_1 = 0.00005 \times T_P$
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Data Reduction	$B_3 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
Β _T	Bias Error for T _P	$B_{T} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2})^{1/2}$
Uτ	Total Error for T _P	$U_{T} = (B_{T}^{2} + P_{T}^{2})^{1/2}$
% Unc.	Percentage Uncertainty for T _P	% Unc. = (U_T / T_P) x 100

V	T _P	PT	B ₁	B ₂	B ₃	B _T	U _T	% Unc.
(m/s)	(N)							
0.0007	0 0000	0 0005	0.0000	0.0407	0.0400	0.0404	0.0405	0.0000
0.8007	3.6262	0.0085	0.0002	0.2487	0.0182	0.2494	0.2495	6.8803
0.8012	8.7409	0.0087	0.0004	0.2487	0.0182	0.2494	0.2495	2.8544
0.8027	12.8134	0.0088	0.0006	0.2487	0.0182	0.2494	0.2495	1.94/2
0.8034	18.6583	0.0086	0.0009	0.2487	0.0182	0.2494	0.2495	1.3372
0.8005	32.8282	0.0089	0.0016	0.2487	0.0182	0.2494	0.2495	0.7601
0.8012	59.3485	0.0089	0.0030	0.2487	0.0182	0.2494	0.2495	0.4204
0.8037	77.0108	0.0092	0.0039	0.2487	0.0182	0.2494	0.2495	0.3240
0.8045	87.1072	0.0095	0.0044	0.2487	0.0182	0.2494	0.2496	0.2865
0.8098	98.8701	0.0094	0.0049	0.2487	0.0182	0.2494	0.2496	0.2524
0.8032	111.2684	0.0096	0.0056	0.2487	0.0182	0.2494	0.2496	0.2243
0.8015	123.8401	0.0094	0.0062	0.2487	0.0182	0.2494	0.2496	0.2016
0.8022	135.8194	0.0097	0.0068	0.2487	0.0182	0.2494	0.2496	0.1838
v	-	Р	D	D	P	Ð	11	% IIno
V	T _P	P _T	B ₁	B ₂	B ₃	B _T	UT	% Unc.
V (m/s)	Т Р (N)	P _T	B ₁	B 2	B ₃	B _T	UT	% Unc.
V (m/s)	τ _ρ (N)	P _T	B ₁	B ₂	B ₃	B _T	U _T	% Unc.
V (m/s) 1.1030	Т _Р (N) 2.2849 6 2824	P _T 0.0095	B ₁ 0.0001	B ₂ 0.2487 0.2487	B ₃ 0.0182	B _T	U _T 0.2495 0.2495	% Unc.
V (m/s) 1.1030 1.1027	T _P (N) 2.2849 6.2834 40.2020	P _T 0.0095 0.0098	B ₁ 0.0001 0.0003 0.0005	B ₂ 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182	B _T 0.2494 0.2494	U _T 0.2495 0.2495	% Unc. 10.9209 3.9714
V (m/s) 1.1030 1.1027 1.1035	T _P (N) 2.2849 6.2834 10.2080	P _T 0.0095 0.0098 0.0100	B ₁ 0.0001 0.0003 0.0005	B ₂ 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268
V (m/s) 1.1030 1.1027 1.1035 1.1032	T _P (N) 2.2849 6.2834 10.2080 16.3454	P _T 0.0095 0.0098 0.0100 0.0102	B ₁ 0.0001 0.0003 0.0005 0.0008	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461	P _T 0.0095 0.0098 0.0100 0.0102 0.0103	B ₁ 0.0001 0.0003 0.0005 0.0008 0.0015	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268 0.8475 0.8475
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330	P _T 0.0095 0.0098 0.0100 0.0102 0.0103 0.0106	B ₁ 0.0001 0.0003 0.0005 0.0008 0.0015 0.0027	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268 0.8475 0.4577
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689	P _T 0.0095 0.0098 0.0100 0.0102 0.0103 0.0106 0.0108	B ₁ 0.0001 0.0003 0.0005 0.0008 0.0015 0.0027 0.0037	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268 0.8475 0.4577 0.3375
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126	P _T 0.0095 0.0098 0.0100 0.0102 0.0103 0.0106 0.0108 0.0109	B ₁ 0.0001 0.0003 0.0005 0.0008 0.0015 0.0027 0.0037 0.0043	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268 0.8475 0.4577 0.3375 0.2916
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126 98.4729	P _T 0.0095 0.0098 0.0100 0.0102 0.0103 0.0106 0.0108 0.0109 0.0111	B ₁ 0.0001 0.0003 0.0005 0.0008 0.0015 0.0027 0.0037 0.0043 0.0049	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268 0.8475 0.4577 0.3375 0.2916 0.2535
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031 1.1031	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126 98.4729 110.2023	P _T 0.0095 0.0098 0.0100 0.0102 0.0103 0.0106 0.0108 0.0109 0.0111 0.0109	B ₁ 0.0001 0.0003 0.0005 0.0008 0.0015 0.0027 0.0027 0.0037 0.0043 0.0049 0.0055	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268 0.8475 0.4577 0.3375 0.2916 0.2535 0.2265
V (m/s) 1.1030 1.1027 1.1035 1.1032 1.1044 1.1041 1.1030 1.1037 1.1031 1.1031 1.1029	T _P (N) 2.2849 6.2834 10.2080 16.3454 29.4461 54.5330 73.9689 85.6126 98.4729 110.2023 121.4830	P _T 0.0095 0.0098 0.0100 0.0102 0.0103 0.0106 0.0108 0.0109 0.0111 0.0109 0.0111	B ₁ 0.0001 0.0003 0.0005 0.0008 0.0015 0.0027 0.0037 0.0043 0.0043 0.0049 0.0055 0.0061	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2495 0.2495 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2496	% Unc. 10.9209 3.9714 2.4447 1.5268 0.8475 0.4577 0.3375 0.2916 0.2535 0.2265 0.2055

V	Т _Р	PT	B ₁	B ₂	B ₃	B _T	UT	% Unc.
(m/s)	(N)							
•								
1.3031	-0.5806	0.0090	0.0000	0.2487	0.0182	0.2494	0.2495	-42.9741
1.3022	3.8393	0.0117	0.0002	0.2487	0.0182	0.2494	0.2496	6.5018
1.3025	7.2149	0.0118	0.0004	0.2487	0.0182	0.2494	0.2496	3.4599
1.3035	13.4575	0.0117	0.0007	0.2487	0.0182	0.2494	0.2496	1.8549
1.3036	26.1866	0.0119	0.0013	0.2487	0.0182	0.2494	0.2496	0.9533
1.3022	51.7382	0.0123	0.0026	0.2487	0.0182	0.2494	0.2497	0.4826
1.3022	72.3597	0.0121	0.0036	0.2487	0.0182	0.2494	0.2497	0.3450
1.3023	82.1375	0.0125	0.0041	0.2487	0.0182	0.2494	0.2497	0.3040
1.3020	96.1106	0.0128	0.0048	0.2487	0.0182	0.2494	0.2497	0.2598
1.3023	107.4396	0.0127	0.0054	0.2487	0.0182	0.2494	0.2497	0.2324
1.3022	119.2426	0.0129	0.0060	0.2487	0.0182	0.2494	0.2498	0.2095
1.3024	130.6479	0.0131	0.0065	0.2487	0.0182	0.2494	0.2498	0.1912
	-	-	~	-	-	P	••	0/ 11
V	T _P	P _T	B ₁	B ₂	B ₃	B _T	UT	% Unc.
V (m/s)	T _P (N)	PT	B ₁	B ₂	B ₃	Bī	U _T	% Unc.
V (m/s)	T _P (N)	P _T	B ₁	B ₂	B 3	Вт	U _T	% Unc.
V (m/s) 1.6032	Т _Р (N) -1.5261	PT 0.0130	B ₁	B ₂ 0.2487	B ₃ 0.0182	B _T 0.2494	U _T 0.2497	% Unc.
V (m/s) 1.6032 1.6046	Τ _P (N) -1.5261 1.5354 5 2720	P _T 0.0130 0.0137	-0.0001 0.0001	B ₂ 0.2487 0.2487	B ₃ 0.0182 0.0182	B _T 0.2494 0.2494	U _T 0.2497 0.2497	% Unc.
V (m/s) 1.6032 1.6046 1.6035	T _P (N) -1.5261 1.5354 5.3738	P _T 0.0130 0.0137 0.0143	B ₁ -0.0001 0.0001 0.0003 0.0003	B ₂ 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498	% Unc. -16.3610 16.2641 4.6478
V (m/s) 1.6032 1.6046 1.6035 1.6038	T _P (N) -1.5261 1.5354 5.3738 11.6456	P _T 0.0130 0.0137 0.0143 0.0145	B ₁ -0.0001 0.0001 0.0003 0.0006	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498 0.2498	% Unc. -16.3610 16.2641 4.6478 2.1448
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105	P _T 0.0130 0.0137 0.0143 0.0145 0.0143	B ₁ -0.0001 0.0001 0.0003 0.0006 0.0013 0.0021	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498 0.2498	% Unc. -16.3610 16.2641 4.6478 2.1448 0.9947 0.5400
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 27.4070	P _T 0.0130 0.0137 0.0143 0.0145 0.0143 0.0147	B ₁ -0.0001 0.0001 0.0003 0.0006 0.0013 0.0024	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498	% Unc. -16.3610 16.2641 4.6478 2.1448 0.9947 0.5190
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672	P _T 0.0130 0.0137 0.0143 0.0145 0.0143 0.0147 0.0148	B ₁ -0.0001 0.0001 0.0003 0.0006 0.0013 0.0024 0.0034	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498	% Unc. -16.3610 16.2641 4.6478 2.1448 0.9947 0.5190 0.3703
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648	P _T 0.0130 0.0137 0.0143 0.0145 0.0143 0.0147 0.0148 0.0150	B ₁ -0.0001 0.0003 0.0006 0.0013 0.0024 0.0034 0.0039 0.0040	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498	% Unc. -16.3610 16.2641 4.6478 2.1448 0.9947 0.5190 0.3703 0.3213 0.3214
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648 91.4829	P _T 0.0130 0.0137 0.0143 0.0145 0.0143 0.0143 0.0147 0.0148 0.0150 0.0152	B ₁ -0.0001 0.0001 0.0003 0.0006 0.0013 0.0024 0.0034 0.0039 0.0046	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499	% Unc. -16.3610 16.2641 4.6478 2.1448 0.9947 0.5190 0.3703 0.3213 0.2731
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6043	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648 91.4829 104.5737	P _T 0.0130 0.0137 0.0143 0.0145 0.0143 0.0143 0.0147 0.0148 0.0150 0.0152 0.0155	B ₁ -0.0001 0.0001 0.0003 0.0006 0.0013 0.0024 0.0034 0.0039 0.0046 0.0052	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499 0.2499	% Unc. -16.3610 16.2641 4.6478 2.1448 0.9947 0.5190 0.3703 0.3213 0.2731 0.2390
V (m/s) 1.6032 1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6043 1.6034	T _P (N) -1.5261 1.5354 5.3738 11.6456 25.1105 48.1265 67.4672 77.7648 91.4829 104.5737 116.7686	P _T 0.0130 0.0137 0.0143 0.0145 0.0143 0.0143 0.0147 0.0148 0.0150 0.0152 0.0155 0.0154	B ₁ -0.0001 0.0001 0.0003 0.0006 0.0013 0.0024 0.0034 0.0039 0.0046 0.0052 0.0058	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499 0.2499 0.2499	% Unc. -16.3610 16.2641 4.6478 2.1448 0.9947 0.5190 0.3703 0.3213 0.2731 0.2390 0.2140

<u>Uncertainty Analysis</u> (Thrust) Load Varying Self-Propulsion Test (Propeller fitted on)

V	T _P	PT	B ₁	B ₂	B ₃	B _T	UT	% Unc.
(m/s)	(N)							
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							
1.8042	-1.9385	0.0161	-0.0001	0.2487	0.0182	0.2494	0.2499	-12.8898
1.8034	1.1898	0.0158	0.0001	0.2487	0.0182	0.2494	0.2499	21.0001
1.8068	4.2981	0.0163	0.0002	0.2487	0.0182	0.2494	0.2499	5.8138
1.8056	10.5564	0.0164	0.0005	0.2487	0.0182	0.2494	0.2499	2.3672
1.8042	22.9946	0.0165	0.0011	0.2487	0.0182	0.2494	0.2499	1.0868
1.8051	45.8331	0.0167	0.0023	0.2487	0.0182	0.2494	0.2499	0.5453
1.8048	65.0234	0.0167	0.0033	0.2487	0.0182	0.2494	0.2499	0.3844
1.8061	73.8682	0.0169	0.0037	0.2487	0.0182	0.2494	0.2499	0.3384
1.8051	87.2252	0.0172	0.0044	0.2487	0.0182	0.2494	0.2500	0.2866
1.8043	100.0789	0.0173	0.0050	0.2487	0.0182	0.2494	0.2500	0.2498
1.8059	112.6564	0.0175	0.0056	0.2487	0.0182	0.2494	0.2500	0.2219
1.8057	125.3448	0.0176	0.0063	0.2487	0.0182	0.2494	0.2500	0.1995
۷	T _P	P _T	B ₁	B ₂	B ₃	B _T	UT	% Unc.
∨ (m/s)	T _P (N)	P _T	B ₁	B ₂	B ₃	B _T	U _T	% Unc.
V (m/s)	T _P (N)	P _T	B ₁	B ₂	B ₃	B _T	UT	% Unc.
V (m/s) 2.1091	τ _ρ (Ν) -2.2244	P_T 0.0173	B ₁ -0.0001	B ₂ 0.2487	B 3 0.0182	В_Т 0.2494	U_T 0.2499	% Unc. -11.2370
V (m/s) 2.1091 2.1056	τ _Ρ (N) -2.2244 0.7034	P _T 0.0173 0.0110	B ₁ -0.0001 0.0000	B 2 0.2487 0.2487	B ₃ 0.0182 0.0182	B_T 0.2494 0.2494	U _T 0.2499 0.2496	% Unc. -11.2370 35.4817
V (m/s) 2.1091 2.1056 2.1068	Τ_Ρ (N) -2.2244 0.7034 3.3349	P _T 0.0173 0.0110 0.0183	B ₁ -0.0001 0.0000 0.0002	B ₂ 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182	B_T 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500	% Unc. -11.2370 35.4817 7.4971
V (m/s) 2.1091 2.1056 2.1068 2.1067	Τ _P (N) -2.2244 0.7034 3.3349 9.0348	P _T 0.0173 0.0110 0.0183 0.0182	B ₁ -0.0001 0.0000 0.0002 0.0005	B ₂ 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500	% Unc. -11.2370 35.4817 7.4971 2.7672
V (m/s) 2.1091 2.1056 2.1068 2.1067 2.1101	T _P (N) -2.2244 0.7034 3.3349 9.0348 19.5316	P _T 0.0173 0.0110 0.0183 0.0182 0.0185	B ₁ -0.0001 0.0000 0.0002 0.0005 0.0010	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500 0.2500 0.2500	% Unc. -11.2370 35.4817 7.4971 2.7672 1.2802
V (m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068	T _P (N) -2.2244 0.7034 3.3349 9.0348 19.5316 42.0655	P _T 0.0173 0.0110 0.0183 0.0182 0.0185 0.0186	B ₁ -0.0001 0.0000 0.0002 0.0005 0.0010 0.0021	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500 0.2500 0.2500 0.2501	% Unc. -11.2370 35.4817 7.4971 2.7672 1.2802 0.5944
V (m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070	T_P (N) -2.2244 0.7034 3.3349 9.0348 19.5316 42.0655 59.4139	P _T 0.0173 0.0110 0.0183 0.0182 0.0185 0.0185 0.0186 0.0187	B ₁ -0.0001 0.0000 0.0002 0.0005 0.0010 0.0021 0.0030	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500 0.2500 0.2501 0.2501	% Unc. -11.2370 35.4817 7.4971 2.7672 1.2802 0.5944 0.4209
V (m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959	T _P (N) -2.2244 0.7034 3.3349 9.0348 19.5316 42.0655 59.4139 68.8805	P _T 0.0173 0.0110 0.0183 0.0182 0.0185 0.0186 0.0187 0.0190	B ₁ -0.0001 0.0000 0.0002 0.0005 0.0010 0.0021 0.0030 0.0034	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500 0.2500 0.2501 0.2501 0.2501	% Unc. -11.2370 35.4817 7.4971 2.7672 1.2802 0.5944 0.4209 0.3631
V (m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959 2.1064	T_P (N) -2.2244 0.7034 3.3349 9.0348 19.5316 42.0655 59.4139 68.8805 80.5944	P _T 0.0173 0.0110 0.0183 0.0182 0.0185 0.0185 0.0186 0.0187 0.0190 0.0192	B ₁ -0.0001 0.0000 0.0002 0.0005 0.0010 0.0021 0.0030 0.0034 0.0040	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500 0.2500 0.2501 0.2501 0.2501 0.2501	% Unc. -11.2370 35.4817 7.4971 2.7672 1.2802 0.5944 0.4209 0.3631 0.3103
V (m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959 2.1064 2.1073	T _P (N) -2.2244 0.7034 3.3349 9.0348 19.5316 42.0655 59.4139 68.8805 80.5944 93.1518	P _T 0.0173 0.0110 0.0183 0.0182 0.0185 0.0186 0.0187 0.0190 0.0192 0.0193	B ₁ -0.0001 0.0000 0.0002 0.0005 0.0010 0.0021 0.0030 0.0034 0.0040 0.0047	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500 0.2500 0.2501 0.2501 0.2501 0.2501 0.2501	% Unc. -11.2370 35.4817 7.4971 2.7672 1.2802 0.5944 0.4209 0.3631 0.3103 0.2685
V (m/s) 2.1091 2.1056 2.1068 2.1067 2.1101 2.1068 2.1070 2.0959 2.1064 2.1073 2.1066	T _P (N) -2.2244 0.7034 3.3349 9.0348 19.5316 42.0655 59.4139 68.8805 80.5944 93.1518 106.0173	P _T 0.0173 0.0110 0.0183 0.0182 0.0185 0.0185 0.0186 0.0187 0.0190 0.0192 0.0193 0.0196	B ₁ -0.0001 0.0000 0.0002 0.0005 0.0010 0.0021 0.0030 0.0034 0.0040 0.0047 0.0053	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2499 0.2496 0.2500 0.2500 0.2500 0.2501 0.2501 0.2501 0.2501 0.2501 0.2501	% Unc. -11.2370 35.4817 7.4971 2.7672 1.2802 0.5944 0.4209 0.3631 0.3103 0.2685 0.2360

<u>Uncertainty Analysis</u> (Thrust) Load Varying Self-Propulsion Test (Propeller fitted on)

V	T _P	PT	B ₁	B ₂	B ₃	B _T	U _T	% Unc.
(m/s)	(N)							
2.3079	-3.6889	0.0205	-0.0002	0.2487	0.0182	0.2494	0.2502	-6.7823
2.3069	-0.4585	0.0119	0.0000	0.2487	0.0182	0.2494	0.2496	-54.4470
2.3074	2.8578	0.0200	0.0001	0.2487	0.0182	0.2494	0.2502	8.7531
2.3070	7.3859	0.0207	0.0004	0.2487	0.0182	0.2494	0.2502	3.3876
2.3084	17.3533	0.0208	0.0009	0.2487	0.0182	0.2494	0.2502	1.4419
2.3081	39.3701	0.0209	0.0020	0.2487	0.0182	0.2494	0.2502	0.6356
2.3082	56.3185	0.0210	0.0028	0.2487	0.0182	0.2494	0.2502	0.4443
2.3077	65.8199	0.0210	0.0033	0.2487	0.0182	0.2494	0.2503	0.3802
2.3074	75.6556	0.0212	0.0038	0.2487	0.0182	0.2494	0.2503	0.3308
2.3075	88.4838	0.0215	0.0044	0.2487	0.0182	0.2494	0.2503	0.2829
2.3077	102.4455	0.0219	0.0051	0.2487	0.0182	0.2494	0.2504	0.2444
2.3068	114.3675	0.0220	0.0057	0.2487	0.0182	0.2494	0.2504	0.2189
v	T.	P	B,	Ba	Ba	B	11-	% Unc
V (m/s)	T _P	P _T	B ₁	B ₂	B ₃	B _T	UT	% Unc.
V (m/s)	T _P (N)	P _T	B ₁	B ₂	B ₃	B _T	U _T	% Unc.
V (m/s) 2.5100	Т _Р (N) -5.1534	P _T 0.0231	B ₁ -0.0003	B ₂ 0.2487	B 3 0.0182	В_т 0.2494	U _T 0.2504	% Unc. -4.8592
V (m/s) 2.5100 2.5086	Τ Ρ (Ν) -5.1534 -2.4533	P _T 0.0231 0.0215	B ₁ -0.0003 -0.0001	B ₂ 0.2487 0.2487	B ₃ 0.0182 0.0182	B _T 0.2494 0.2494	U_T 0.2504 0.2503	% Unc. -4.8592 -10.2016
V (m/s) 2.5100 2.5086 2.5072	T _P (N) -5.1534 -2.4533 1.5344	P _T 0.0231 0.0215 0.0209	B ₁ -0.0003 -0.0001 0.0001	B ₂ 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182	B_T 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502	% Unc. -4.8592 -10.2016 16.3072
V (m/s) 2.5100 2.5086 2.5072 2.5095	T _P (N) -5.1534 -2.4533 1.5344 5.3858	P _T 0.0231 0.0215 0.0209 0.0232	B ₁ -0.0003 -0.0001 0.0001 0.0003	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504	% Unc. -4.8592 -10.2016 16.3072 4.6497
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565	P _T 0.0231 0.0215 0.0209 0.0232 0.0234	B ₁ -0.0003 -0.0001 0.0001 0.0003 0.0008	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504 0.2504	% Unc. -4.8592 -10.2016 16.3072 4.6497 1.5696
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313	P _T 0.0231 0.0215 0.0209 0.0232 0.0234 0.0237	B ₁ -0.0003 -0.0001 0.0001 0.0003 0.0008 0.0019	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504 0.2504 0.2505	% Unc. -4.8592 -10.2016 16.3072 4.6497 1.5696 0.6604
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894	P _T 0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236	B ₁ -0.0003 -0.0001 0.0001 0.0003 0.0008 0.0019 0.0026	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504 0.2504 0.2505 0.2505	% Unc. -4.8592 -10.2016 16.3072 4.6497 1.5696 0.6604 0.4781
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939	P _T 0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238	B ₁ -0.0003 -0.0001 0.0001 0.0003 0.0008 0.0019 0.0026 0.0031	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504 0.2504 0.2505 0.2505 0.2505	% Unc. -4.8592 -10.2016 16.3072 4.6497 1.5696 0.6604 0.4781 0.4015
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 2.5087	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930	P _T 0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238	B ₁ -0.0003 -0.0001 0.0001 0.0003 0.0008 0.0019 0.0026 0.0031 0.0036	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504 0.2504 0.2505 0.2505 0.2505 0.2505	% Unc. -4.8592 -10.2016 16.3072 4.6497 1.5696 0.6604 0.4781 0.4015 0.3460
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 2.5087 2.5087 2.5023	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930 84.3833	P _T 0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0239	B ₁ -0.0003 -0.0001 0.0001 0.0003 0.0008 0.0019 0.0026 0.0031 0.0036 0.0042	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504 0.2504 0.2505 0.2505 0.2505 0.2505 0.2505	% Unc. -4.8592 -10.2016 16.3072 4.6497 1.5696 0.6604 0.4781 0.4015 0.3460 0.2969
V (m/s) 2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 2.5087 2.5087 2.5023 2.5092	T _P (N) -5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930 84.3833 97.3348	P _T 0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0239 0.0241	B ₁ -0.0003 -0.0001 0.0003 0.0008 0.0019 0.0026 0.0031 0.0036 0.0042 0.0049	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₃ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2504 0.2503 0.2502 0.2504 0.2505 0.2505 0.2505 0.2505 0.2505 0.2505 0.2505	% Unc. -4.8592 -10.2016 16.3072 4.6497 1.5696 0.6604 0.4781 0.4015 0.3460 0.2969 0.2574

<u>Uncertainty Analysis</u> (Thrust) Load Varying Self-Propulsion Test (Propeller fitted on)

Load Varying Self-Propulsion Test (Propeller fitted on) Uncertainty Analysis (Tow Force)

V	Vehicle Velocity (m/s)	
F	Tow Force (N)	
P _F	Precision Error for F	P _F = 2 x S.D
S.D	Standard Deviation	
S.E.E	Standard Error Estimate	
AD	Analog to Digital Converter	
B ₁	Bias Error due to Calibration	$B_1 = 0.00005 \times F$
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Load Cell Misalignment	B ₃ = F - (Cos 0.25 ⁰ x F)
B ₄	Bias Error due to Data Reduction	$B_4 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
B_F	Bias Error for F	$B_{F} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2} + B_{4}^{2})^{1/2}$
U _F	Total Error for F	$U_{\rm F} = (B_{\rm F}^2 + P_{\rm F}^2)^{1/2}$
% Unc.	Percentage Uncertainty for F	% Unc. = (U _F / F) x 100

V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
, , ,									
0.8007	5.3638	0.0092	0.0003	0.2693	0.0001	0.0054	0.2694	0.2695	5.0249
0.8012	1.4334	0.0085	0.0001	0.2693	0.0000	0.0054	0.2694	0.2695	18.8015
0.8027	-3.5438	0.0091	-0.0002	0.2693	0.0000	0.0054	0.2694	0.2695	-7.6054
0.8034	-10.4367	0.0092	-0.0005	0.2693	-0.0001	0.0054	0.2694	0.2695	-2.5825
0.8005	-24.3516	0.0094	-0.0012	0.2693	-0.0002	0.0054	0.2694	0.2695	-1.1068
0.8012	-48.5726	0.0096	-0.0024	0.2693	-0.0005	0.0054	0.2694	0.2695	-0.5549
0.8037	-64.7292	0.0095	-0.0032	0.2693	-0.0006	0.0054	0.2694	0.2696	-0.4164
0.8045	-74.4405	0.0097	-0.0037	0.2693	-0.0007	0.0054	0.2694	0.2696	-0.3621
0.8098	-85.7547	0.0099	-0.0043	0.2693	-0.0008	0.0054	0.2694	0.2696	-0.3144
0.8032	-96.8046	0.0101	-0.0048	0.2693	-0.0009	0.0054	0.2694	0.2696	-0.2785
0.8015	-108.6784	0.0102	-0.0054	0.2693	-0.0010	0.0054	0.2694	0.2696	-0.2481
0.8022	-117.3754	0.0102	-0.0059	0.2693	-0.0011	0.0054	0.2694	0.2696	-0.2297
- 10.00.00.00.00.00.00.00.00							_		
V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
1.1030	14.2900	0.0116	0.0007	0.2693	0.0001	0.0054	0.2694	0.2696	1.8868
1.1027	10.5355	0.0111	0.0005	0.2693	0.0001	0.0054	0.2694	0.2696	2.5589
1.1035	6.8977	0.0099	0.0003	0.2693	0.0001	0.0054	0.2694	0.2695	3.9078
1.1032	0.5784	0.0080	0.0000	0.2693	0.0000	0.0054	0.2694	0.2695	46.5925
1.1044	-11.0514	0.0115	-0.0006	0.2693	-0.0001	0.0054	0.2694	0.2696	-2.4396
1.1041	-34.4575	0.0116	-0.0017	0.2693	-0.0003	0.0054	0.2694	0.2696	-0.7825
1.1030	-52.5912	0.0117	-0.0026	0.2693	-0.0005	0.0054	0.2694	0.2696	-0.5127
1.1037	-63.4548	0.0118	-0.0032	0.2693	-0.0006	0.0054	0.2694	0.2696	-0.4249
1.1031	-75.4534	0.0118	-0.0038	0.2693	-0.0007	0.0054	0.2694	0.2697	-0.3574
1.1031	-86.3969	0.0119	-0.0043	0.2693	-0.0008	0.0054	0.2694	0.2697	-0.3121
1.1029	-96.9218	0.0120	-0.0048	0.2693	-0.0009	0.0054	0.2694	0.2697	-0.2782
1 1034	-107.1228	0.0121	-0.0054	0.2693	-0.0010	0.0054	0.2694	0.2697	-0.2518

V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
1 3031	23 7086	0.0131	0.0012	0 2693	0 0002	0.0054	0.2694	0.2697	1.1375
1.3022	19 5828	0.0130	0.0010	0.2693	0.0002	0.0054	0.2694	0.2697	1.3771
1.3025	15 5347	0.0130	0.0008	0.2693	0.0001	0.0054	0.2694	0.2697	1.7360
1.3035	7,4959	0.0129	0.0004	0.2693	0.0001	0.0054	0.2694	0.2697	3.5976
1.3036	-3.1778	0.0128	-0.0002	0.2693	0.0000	0.0054	0.2694	0.2697	-8.4862
1.3022	-23.6329	0.0130	-0.0012	0.2693	-0.0002	0.0054	0.2694	0.2697	-1.1411
1.3022	-45.8753	0.0132	-0.0023	0.2693	-0.0004	0.0054	0.2694	0.2697	-0.5879
1.3023	-54.5532	0.0131	-0.0027	0.2693	-0.0005	0.0054	0.2694	0.2697	-0.4944
1.3020	-67.4871	0.0134	-0.0034	0.2693	-0.0006	0.0054	0.2694	0.2697	-0.3997
1.3023	-78.2728	0.0135	-0.0039	0.2693	-0.0007	0.0054	0.2694	0.2697	-0.3446
1.3022	-88.6396	0.0134	-0.0044	0.2693	-0.0008	0.0054	0.2694	0.2697	-0.3043
1.3024	-98.8778	0.0138	-0.0049	0.2693	-0.0009	0.0054	0.2694	0.2698	-0.2728
				_			_		
V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
1.6032									
	35.6003	0.0155	0.0018	0.2693	0.0003	0.0054	0.2694	0.2698	0.7579
1.6046	35.6003 31.5343	0.0155 0.0152	0.0018 0.0016	0.2693 0.2693	0.0003 0.0003	0.0054 0.0054	0.2694 0.2694	0.2698 0.2698	0.7579 0.8556
1.6046 1.6035	35.6003 31.5343 27.4347	0.0155 0.0152 0.0151	0.0018 0.0016 0.0014	0.2693 0.2693 0.2693	0.0003 0.0003 0.0003	0.0054 0.0054 0.0054	0.2694 0.2694 0.2694	0.2698 0.2698 0.2698	0.7579 0.8556 0.9834
1.6046 1.6035 1.6038	35.6003 31.5343 27.4347 17.3544	0.0155 0.0152 0.0151 0.0150	0.0018 0.0016 0.0014 0.0009	0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0003 0.0002	0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698	0.7579 0.8556 0.9834 1.5546
1.6046 1.6035 1.6038 1.6040	35.6003 31.5343 27.4347 17.3544 8.5633	0.0155 0.0152 0.0151 0.0150 0.0144	0.0018 0.0016 0.0014 0.0009 0.0004	0.2693 0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0003 0.0002 0.0001	0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698 0.2698	0.7579 0.8556 0.9834 1.5546 3.1501
1.6046 1.6035 1.6038 1.6040 1.6038	35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824	0.0155 0.0152 0.0151 0.0150 0.0144 0.0151	0.0018 0.0016 0.0014 0.0009 0.0004 -0.0006	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0003 0.0002 0.0001 -0.0001	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698 0.2698 0.2698	0.7579 0.8556 0.9834 1.5546 3.1501 -2.1273
1.6046 1.6035 1.6038 1.6040 1.6038 1.6044	35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581	0.0155 0.0152 0.0151 0.0150 0.0144 0.0151 0.0152	0.0018 0.0016 0.0014 0.0009 0.0004 -0.0006 -0.0016	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0002 0.0001 -0.0001 -0.0003	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698	0.7579 0.8556 0.9834 1.5546 3.1501 -2.1273 -0.8287
1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042	35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001	0.0155 0.0152 0.0151 0.0150 0.0144 0.0151 0.0152 0.0154	0.0018 0.0016 0.0014 0.0009 0.0004 -0.0006 -0.0016 -0.0021	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0002 0.0001 -0.0001 -0.0003 -0.0004	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698	0.7579 0.8556 0.9834 1.5546 3.1501 -2.1273 -0.8287 -0.6424
1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043	35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001 -51.6517	0.0155 0.0152 0.0151 0.0150 0.0144 0.0151 0.0152 0.0154 0.0155	0.0018 0.0016 0.0014 0.0009 0.0004 -0.0006 -0.0016 -0.0021 -0.0026	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0002 0.0001 -0.0001 -0.0003 -0.0004 -0.0005	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698	0.7579 0.8556 0.9834 1.5546 3.1501 -2.1273 -0.8287 -0.6424 -0.5224
1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6034	35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001 -51.6517 -63.4763	0.0155 0.0152 0.0151 0.0150 0.0144 0.0151 0.0152 0.0155 0.0156	0.0018 0.0016 0.0014 0.0009 0.0004 -0.0006 -0.0016 -0.0021 -0.0026 -0.0032	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0002 0.0001 -0.0001 -0.0003 -0.0004 -0.0005 -0.0006	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698	0.7579 0.8556 0.9834 1.5546 3.1501 -2.1273 -0.8287 -0.6424 -0.5224 -0.4251
1.6046 1.6035 1.6038 1.6040 1.6038 1.6044 1.6042 1.6043 1.6034 1.6036	35.6003 31.5343 27.4347 17.3544 8.5633 -12.6824 -32.5581 -42.0001 -51.6517 -63.4763 -76.3438	0.0155 0.0152 0.0151 0.0150 0.0144 0.0151 0.0152 0.0155 0.0155 0.0157	0.0018 0.0016 0.0014 0.0009 0.0004 -0.0006 -0.0016 -0.0021 -0.0026 -0.0032 -0.0038	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0003 0.0003 0.0002 0.0001 -0.0001 -0.0003 -0.0004 -0.0005 -0.0006 -0.0007	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2698 0.2699	0.7579 0.8556 0.9834 1.5546 3.1501 -2.1273 -0.8287 -0.6424 -0.5224 -0.4251 -0.3535

•

V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
4 00 4 0	40 6559	0.0174	0.0020	0.2602	0.0004	0.0054	0.2604	0 2600	0 6640
1.8042	40.0000	0.0174	0.0020	0.2093	0.0004	0.0054	0.2094	0.2099	0.0040
1.8034	37.0344	0.0171	0.0019	0.2093	0.0004	0.0054	0.2094	0.2099	0.7172
1.8068	33.4330	0.0171	0.0017	0.2093	0.0003	0.0054	0.2094	0.2099	1 0909
1.8056	24.9715	0.0168	0.0012	0.2093	0.0002	0.0054	0.2094	0.2099	1.0000
1.8042	17.3500	0.0169	0.0009	0.2093	0.0002	0.0054	0.2094	0.2099	5 0997
1.8051	-4.5070	0.0171	-0.0002	0.2693	0.0000	0.0054	0.2694	0.2099	-5.9007
1.8048	-25.1929	0.0171	-0.0013	0.2693	-0.0002	0.0054	0.2694	0.2099	-1.07 14
1.8061	-32.6326	0.0172	-0.0016	0.2693	-0.0003	0.0054	0.2694	0.2699	-0.0272
1.8051	-43.1904	0.0174	-0.0022	0.2693	-0.0004	0.0054	0.2694	0.2099	-0.0230
1.8043	-55.8141	0.0175	-0.0028	0.2693	-0.0005	0.0054	0.2694	0.2699	-0.4637
1.8059	-68.1665	0.0177	-0.0034	0.2693	-0.0006	0.0054	0.2694	0.2700	-0.3960
1.8057	-77.6279	0.0178	-0.0039	0.2693	-0.0007	0.0054	0.2694	0.2700	-0.3478
V	F	PF	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)		•						
(···· •)	()								
2.1091	54.2008	0.0203	0.0027	0.2693	0.0005	0.0054	0.2694	0.2701	0.4984
2.1056	51.6384	0.0202	0.0026	0.2693	0.0005	0.0054	0.2694	0.2701	0.5231
2.1068	49.7643	0.0202	0.0025	0.2693	0.0005	0.0054	0.2694	0.2701	0.5428
2.1067	42.3233	0.0199	0.0021	0.2693	0.0004	0.0054	0.2694	0.2701	0.6382
2.1101	34.8043	0.0198	0.0017	0.2693	0.0003	0.0054	0.2694	0.2701	0.7761
2.1068	13.6338	0.0196	0.0007	0.2693	0.0001	0.0054	0.2694	0.2701	1.9810
2.1070	-3.9622	0.0193	-0.0002	0.2693	0.0000	0.0054	0.2694	0.2701	-6.8159
2.0959	-13.7635	0.0195	-0.0007	0.2693	-0.0001	0.0054	0.2694	0.2701	-1.9622
2.1064	-24.0542	0.0196	-0.0012	0.2693	-0.0002	0.0054	0.2694	0.2701	-1.1228
2 1072								0.0704	
2.1073	-33.2420	0.0199	-0.0017	0.2693	-0.0003	0.0054	0.2694	0.2701	-0.8125
2.1073	-33.2420 -47.5793	0.0199 0.0201	-0.0017 -0.0024	0.2693 0.2693	-0.0003 -0.0005	0.0054 0.0054	0.2694 0.2694	0.2701 0.2701	-0.8125 -0.5677

۷	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
2.3079	70.1815	0.0242	0.0035	0.2693	0.0007	0.0054	0.2694	0.2705	0.3854
2.3069	65.5744	0.0239	0.0033	0.2693	0.0006	0.0054	0.2694	0.2704	0.4124
2.3074	62.5675	0.0235	0.0031	0.2693	0.0006	0.0054	0.2694	0.2704	0.4322
2.3070	56.4648	0.0234	0.0028	0.2693	0.0005	0.0054	0.2694	0.2704	0.4789
2.3084	52.8606	0.0234	0.0026	0.2693	0.0005	0.0054	0.2694	0.2704	0.5115
2.3081	31.0591	0.0229	0.0016	0.2693	0.0003	0.0054	0.2694	0.2703	0.8704
2.3082	14.6680	0.0260	0.0007	0.2693	0.0001	0.0054	0.2694	0.2706	1.8450
2.3077	5.4600	0.0225	0.0003	0.2693	0.0001	0.0054	0.2694	0.2703	4.9506
2.3074	-4.9423	0.0224	-0.0002	0.2693	0.0000	0.0054	0.2694	0.2703	-5.4691
2.3075	-16.4586	0.0227	-0.0008	0.2693	-0.0002	0.0054	0.2694	0.2703	-1.6424
2.3077	-29.2323	0.0229	-0.0015	0.2693	-0.0003	0.0054	0.2694	0.2703	-0.9248
2.3068	-42.1765	0.0232	-0.0021	0.2693	-0.0004	0.0054	0.2694	0.2704	-0.6411
V	E	D	P	Ð	P	Ð	Ð	11	% llno
V (male)	F (NI)	FF	•	D ₂	Dg	D4	DF	UF	/0 UIIC.
(m/s)	(N)								
2.5100	87.5695	0.0276	0.0044	0.2693	0.0008	0.0054	0.2694	0.2708	0.3093
2.5086	83.4748	0.0275	0.0042	0.2693	0.0008	0.0054	0.2694	0.2708	0.3244
2.5072	78.4785	0.0274	0.0039	0.2693	0.0007	0.0054	0.2694	0.2708	0.3450
2.5095	72.4764	0.0271	0.0036	0.2693	0.0007	0.0054	0.2694	0.2708	0.3736
2.5020									0 4050
2 5092	66.8172	0.0268	0.0033	0.2693	0.0006	0.0054	0.2694	0.2707	0.4052
E.COUL	66.8172 46.3855	0.0268 0.0266	0.0033 0.0023	0.2693 0.2693	0.0006 0.0004	0.0054 0.0054	0.2694 0.2694	0.2707 0.2707	0.4052 0.5836
2.5081	66.8172 46.3855 32.5307	0.0268 0.0266 0.0263	0.0033 0.0023 0.0016	0.2693 0.2693 0.2693	0.0006 0.0004 0.0003	0.0054 0.0054 0.0054	0.2694 0.2694 0.2694	0.2707 0.2707 0.2707	0.4052 0.5836 0.8320
2.5081 2.5087	66.8172 46.3855 32.5307 22.3437	0.0268 0.0266 0.0263 0.0261	0.0033 0.0023 0.0016 0.0011	0.2693 0.2693 0.2693 0.2693	0.0006 0.0004 0.0003 0.0002	0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694	0.2707 0.2707 0.2707 0.2706	0.4052 0.5836 0.8320 1.2112
2.5081 2.5087 2.5087	66.8172 46.3855 32.5307 22.3437 12.3667	0.0268 0.0266 0.0263 0.0261 0.0258	0.0033 0.0023 0.0016 0.0011 0.0006	0.2693 0.2693 0.2693 0.2693 0.2693	0.0006 0.0004 0.0003 0.0002 0.0001	0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694	0.2707 0.2707 0.2707 0.2706 0.2706	0.4052 0.5836 0.8320 1.2112 2.1881
2.5081 2.5087 2.5087 2.5023	66.8172 46.3855 32.5307 22.3437 12.3667 3.6930	0.0268 0.0266 0.0263 0.0261 0.0258 0.0245	0.0033 0.0023 0.0016 0.0011 0.0006 0.0002	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0006 0.0004 0.0003 0.0002 0.0001 0.0000	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2707 0.2707 0.2707 0.2706 0.2706 0.2705	0.4052 0.5836 0.8320 1.2112 2.1881 7.3241
2.5081 2.5087 2.5087 2.5023 2.5023	66.8172 46.3855 32.5307 22.3437 12.3667 3.6930 -11.5045	0.0268 0.0266 0.0263 0.0261 0.0258 0.0245 0.0257	0.0033 0.0023 0.0016 0.0011 0.0006 0.0002 -0.0006	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0006 0.0004 0.0003 0.0002 0.0001 0.0000 -0.0001	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2707 0.2707 0.2707 0.2706 0.2706 0.2705 0.2706	0.4052 0.5836 0.8320 1.2112 2.1881 7.3241 -2.3520

Load Varying Self-Propulsion Test (Propeller fitted on)

Uncertainty Analysis (Advance Coefficient)

- V Vehicle Velocity (m/s)
- n Propeller Rotational Speed (rpm)
- D Propeller Diameter (m)
- J Advance Coefficient
- P_V Precision Error for V
- B_V Bias Error for V
- P_J Precision Error for J
- P_n Precision Error for n
- B_n Bias Error for n
- B_D Bias Error for D
- B_J Bias Error for J
- U_J Total Error for J
- % U Percentage Uncertainty for J

 $B_{J} = (\delta J / \delta V B_{V})^{2} + (\delta J / \delta n B_{n})^{2} + (\delta J / \delta D B_{D})^{2})^{1/2}$ $U_{J} = (B_{J}^{2} + P_{J}^{2})^{1/2}$ $\% U = (U_{J} / J) \times 100$

V	Pv	Bv	n	Pn	B _n	BD	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
0.8007	0.0003	0.0035	503.8949	0.0004	0.0391	0.0001	4.58E-05	-8.09E-07	-6.84E-06	4.63E-05	0.0005	0.0005	0.6256	0.0863
0.8012	0.0004	0.0035	552.6343	0.0005	0.0391	0.0001	4.18E-05	-6.73E-07	-6.24E-06	4.23E-05	0.0006	0.0006	0.5708	0.1053
0.8027	0.0003	0.0035	602.3573	0.0005	0.0391	0.0001	3.83E-05	-5.68E-07	-5.74E-06	3.88E-05	0.0006	0.0006	0.5246	0.1098
0.8034	0.0003	0.0035	651.5623	0.0005	0.0391	0.0001	3.54E-05	-4.86E-07	-5.31E-06	3.58E-05	0.0006	0.0006	0.4854	0.114/
0.8005	0.0004	0.0035	753.4148	0.0004	0.0391	0.0001	3.06E-05	-3.62E-07	-4.57E-06	3.10E-05	0.0006	0.0006	0.4183	0.1361
0.8012	0.0004	0.0035	913.8563	0.0005	0.0391	0.0001	2.53E-05	-2.46E-07	-3.77E-06	2.55E-05	0.0006	0.0006	0.3452	0.1821
0.8037	0.0003	0.0035	1002.5757	0.0005	0.0391	0.0001	2.30E-05	-2.05E-07	-3.45E-06	2.33E-05	0.0006	0.0006	0.3156	0.1777
0.8045	0.0004	0.0035	1051.5807	0.0005	0.0392	0.0001	2.20E-05	-1.87E-07	-3.29E-06	2.22E-05	0.0006	0.0006	0.3012	0.1941
0.8098	0.0002	0.0035	1102.1417	0.0004	0.0392	0.0001	2.10E-05	-1.71E-07	-3.16E-06	2.12E-05	0.0005	0.0005	0.2893	0.1734
0.8032	0.0003	0.0035	1154.0417	0.0005	0.0392	0.0001	2.00E-05	-1.55E-07	-3.00E-06	2.02E-05	0.0006	0.0006	0.2740	0.2208
0.8015	0.0003	0.0035	1207.3702	0.0005	0.0392	0.0001	1.91E-05	-1.41E-07	-2.86E-06	1.93E-05	0.0006	0.0006	0.2614	0.2128
0.8022	0.0004	0.0035	1246.6728	0.0005	0.0392	0.0001	1.85E-05	-1.33E-07	-2.77E-06	1.87E-05	0.0006	0.0006	0.2533	0.2480
	_	_		_	-	-	D STICL	D 81/8-	D ST/SD		D		1	0/11
V	Pv	Вγ	n	۳n	Dn	DD	DV 01/0	D _n 03/011	PD 01/0D	Dj	Гј	U)	J	/ 0 U
(m/s)			(rpm)											
1 1020	0.0004	0.0035	507 2079	0.0006	0.0301	0.0001	4 56E-05	-1 10E-06	-9 36E-06	4 66E-05	0 0007	0.0007	0 8562	0.0834
1.1030	0.0004	0.0000	554 5345	0.0000	0.0391	0.0001	4.00E-00	-9 20E-07	-8 56E-06	4 26E-05	0.0008	0.0008	0.7829	0.0980
1 1027	0.0005	0.0000	603 8746	0.0006	0.0391	0.0001	3.83E-05	-7 76E-07	-7 87E-06	3.91E-05	0.0008	0.0008	0.7194	0.1105
1 1032	0.0005	0.0035	654 2447	0.0006	0.0391	0.0001	3 54E-05	-6.61E-07	-7.26E-06	3.61E-05	0.0008	0.0008	0.6639	0.1225
1 1044	0.0005	0.0035	750 3733	0.0006	0.0391	0.0001	3.08E-05	-5.03E-07	-6.34E-06	3.15E-05	0.0008	0.0008	0.5794	0.1333
1 1041	0.0004	0.0035	910 3564	0.0006	0.0391	0.0001	2.54E-05	-3.42E-07	-5.22E-06	2.60E-05	0.0008	0.0008	0.4775	0.1627
1 1030	0.0005	0.0035	1006 6678	0.0007	0.0391	0.0001	2.30E-05	-2.80E-07	-4.72E-06	2.35E-05	0.0008	0.0008	0.4314	0.1893
1 1037	0.0005	0.0035	1056 9924	0.0006	0.0392	0.0001	2.19E-05	-2.54E-07	-4.50E-06	2.24E-05	0.0008	0.0008	0.4111	0.1938
1 1031	0.0005	0.0035	1108.8989	0.0006	0.0392	0.0001	2.09E-05	-2.31E-07	-4.28E-06	2.13E-05	0.0008	0.0008	0.3916	0.2024
1 1031	0.0005	0.0035	1156.0328	0.0006	0.0392	0.0001	2.00E-05	-2.12E-07	-4.11E-06	2.04E-05	0.0008	0.0008	0.3757	0.2088
1 1029	0.0005	0.0035	1206.4133	0.0006	0.0392	0.0001	1.92E-05	-1.95E-07	-3.94E-06	1.96E-05	0.0008	0.0008	0.3599	0.2087
1 1034	0.0005	0.0035	1249 3622	0.0006	0.0392	0.0001	1.85E-05	-1.82E-07	-3.80E-06	1.89E-05	0.0008	0.0008	0.3477	0.2241

V	Pv	Bv	n	Pn	Bn	BD	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
1.3031	0.0005	0.0035	504.2337	0.0006	0.0391	0.0001	4.60E-05	-1.31E-06	-1.11E-05	4.73E-05	0.0008	0.0008	1.0174	0.0824
1.3022	0.0006	0.0035	550.4535	0.0006	0.0391	0.0001	4.21E-05	-1.10E-06	-1.02E-05	4.34E-05	0.0008	0.0008	0.9314	0.0882
1.3025	0.0006	0.0035	600.5634	0.0007	0.0391	0.0001	3.86E-05	-9.27E-07	-9.34E-06	3.97E-05	0.0009	0.0009	0.8539	0.1033
1.3035	0.0006	0.0035	652.2352	0.0007	0.0391	0.0001	3.56E-05	-7.86E-07	-8.60E-06	3.66E-05	0.0009	0.0009	0.7868	0.1173
1.3036	0.0005	0.0035	752.8192	0.0007	0.0391	0.0001	3.08E-05	-5.90E-07	-7.46E-06	3.17E-05	0.0009	0.0009	0.6817	0.1252
1.3022	0.0005	0.0035	901.8296	0.0007	0.0391	0.0001	2.57E-05	-4.11E-07	-6.22E-06	2.65E-05	0.0009	0.0009	0.5685	0.1535
1.3022	0.0006	0.0035	1000.1110	0.0007	0.0391	0.0001	2.32E-05	-3.34E-07	-5.61E-06	2.39E-05	0.0009	0.0009	0.5126	0.1804
1.3023	0.0006	0.0035	1046.2973	0.0007	0.0392	0.0001	2.22E-05	-3.06E-07	-5.36E-06	2.28E-05	0.0009	0.0009	0.4900	0.1830
1.3020	0.0005	0.0035	1105.7242	0.0007	0.0392	0.0001	2.10E-05	-2.74E-07	-5.07E-06	2.16E-05	0.0009	0.0009	0.4636	0.1942
1.3023	0.0005	0.0035	1155.3342	0.0007	0.0392	0.0001	2.01E-05	-2.51E-07	-4.85E-06	2.07E-05	0.0009	0.0009	0.4438	0.1945
1.3022	0.0005	0.0035	1206.0095	0.0007	0.0392	0.0001	1.92E-05	-2.30E-07	-4.65E-06	1.98E-05	0.0009	0.0009	0.4251	0.2080
1.3024	0.0005	0.0035	1248.0299	0.0007	0.0392	0.0001	1.86E-05	-2.15E-07	-4.49E-06	1.91E-05	0.0009	0.0009	0.4109	0.2191
	_	_		_	_	-	B 0 7/01/	B 67/6	B 67/0 B	-	~			0/ 11
V	Pv	Bv	n	۲n	Bn	RD	BV 97/9A	B _n oJ/on	B ^D 91/9D	Вј	PJ	Uj	J	% U
(m/s)			(rpm)											
1.6032	0.0006	0.0036	503.9995	0.0008	0.0391	0.0001	4.62E-05	-1.62E-06	-1.37E-05	4.82E-05	0.0010	0.0010	1.2523	0.0794
1.6046	0.0007	0.0036	550.3443	0.0008	0.0391	0.0001	4.23E-05	-1.36E-06	-1.26E-05	4.42E-05	0.0011	0.0011	1.1479	0.0927
1.6035	0.0007	0.0036	601.4574	0.0008	0.0391	0.0001	3.87E-05	-1.14E-06	-1.15E-05	4.04E-05	0.0011	0.0011	1.0496	0.1012
1.6038	0.0007	0.0036	653.7645	0.0009	0.0391	0.0001	3.56E-05	-9.63E-07	-1.06E-05	3.72E-05	0.0011	0.0011	0.9658	0.1136
1.6040	0.0007	0.0036	755.9224	0.0008	0.0391	0.0001	3.08E-05	-7.20E-07	-9.14E-06	3.22E-05	0.0011	0.0011	0.8354	0.1261
1.6038	0.0006	0.0036	911.6408	0.0008	0.0391	0.0001	2.56E-05	-4.96E-07	-7.57E-06	2.67E-05	0.0010	0.0010	0.6926	0.1435
1.6044	0.0007	0.0036	1003.7944	0.0008	0.0391	0.0001	2.32E-05	-4.09E-07	-6.88E-06	2.42E-05	0.0011	0.0011	0.6293	0.1709
1.6042	0.0007	0.0036	1051.3377	0.0008	0.0392	0.0001	2.22E-05	-3.73E-07	-6.57E-06	2.31E-05	0.0010	0.0011	0.6007	0.1748
1.6043	0.0006	0.0036	1104.0239	0.0008	0.0392	0.0001	2.11E-05	-3.38E-07	-6.26E-06	2.20E-05	0.0010	0.0010	0.5721	0.1737
1.6034	0.0007	0.0036	1152.5333	0.0008	0.0392	0.0001	2.02E-05	-3.10E-07	-5.99E-06	2.11E-05	0.0011	0.0011	0.5477	0.1938
1.6036	0.0007	0.0036	1210.1129	0.0008	0.0392	0.0001	1.93E-05	-2.82E-07	-5.71E-06	2.01E-05	0.0011	0.0011	0.5217	0.2067
1.6030	0.0007	0.0036	1250.8055	0.0009	0.0392	0.0001	1.86E-05	-2.64E-07	-5.52E-06	1.94E-05	0.0011	0.0011	0.5046	0.2173

V	Pv	Bv	n	Pn	Bn	BD	Βν δͿ/δν	B _n δJ/δn	B _D δJ/δD	Вյ	Pj	Uj	J	% U
(m/s)			(rpm)											
1.8042	0.0008	0.0036	510.9808	0.0010	0.0391	0.0001	4.58E-05	-1.77E-06	-1.52E-05	4.83E-05	0.0013	0.0013	1.3901	0.0918
1.8034	0.0009	0.0036	552.4233	0.0010	0.0391	0.0001	4.23E-05	-1.52E-06	-1.41E-05	4.46E-05	0.0014	0.0014	1.2853	0.1058
1.8068	0.0009	0.0036	602.7853	0.0009	0.0391	0.0001	3.88E-05	-1.28E-06	-1.29E-05	4.09E-05	0.0013	0.0013	1.1801	0.1092
1.8056	0.0009	0.0036	651.5334	0.0009	0.0391	0.0001	3.59E-05	-1.09E-06	-1.19E-05	3.78E-05	0.0013	0.0013	1.0911	0.1155
1.8042	0.0009	0.0036	757.8054	0.0010	0.0391	0.0001	3.09E-05	-8.06E-07	-1.03E-05	3.25E-05	0.0014	0.0014	0.9373	0.1452
1.8051	0.0009	0.0036	911.1136	0.0010	0.0391	0.0001	2.57E-05	-5.58E-07	-8.53E-06	2.71E-05	0.0014	0.0014	0.7800	0.1780
1.8048	0.0008	0.0036	1002.7594	0.0010	0.0391	0.0001	2.33E-05	-4.61E-07	-7.75E-06	2.46E-05	0.0013	0.0013	0.7086	0.1843
1.8061	0.0009	0.0036	1056.9214	0.0010	0.0392	0.0001	2.21E-05	-4.15E-07	-7.36E-06	2.33E-05	0.0013	0.0013	0.6728	0.1938
1.8051	0.0009	0.0036	1118.8065	0.0010	0.0392	0.0001	2.09E-05	-3.71E-07	-6.95E-06	2.20E-05	0.0013	0.0013	0.6352	0.2051
1.8043	0.0009	0.0036	1161.1239	0.0010	0.0392	0.0001	2.01E-05	-3.44E-07	-6.69E-06	2.12E-05	0.0014	0.0014	0.6118	0.2246
1.8059	0.0008	0.0036	1215.6599	0.0010	0.0392	0.0001	1.92E-05	-3.14E-07	-6.40E-06	2.03E-05	0.0013	0.0013	0.5849	0.2207
1.8057	0.0009	0.0036	1246.0544	0.0010	0.0392	0.0001	1.88E-05	-2.99E-07	-6.24E-06	1.98E-05	0.0013	0.0013	0.5705	0.2312
V	Pv	Bv	n	Pn	Bn	BD	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
2.1091	0.0010	0.0036	500.1371	0.0011	0.0391	0.0001	4.71E-05	-2.16E-06	-1.82E-05	5.05E-05	0.0015	0.0015	1.6603	0.0896
2.1056	0.0010	0.0036	551.5545	0.0012	0.0391	0.0001	4.27E-05	-1.78E-06	-1.64E-05	4.58E-05	0.0015	0.0015	1.5030	0.1002
2.1068	0.0010	0.0036	600.3476	0.0011	0.0391	0.0001	3.92E-05	-1.50E-06	-1.51E-05	4.21E-05	0.0015	0.0015	1.3816	0.1117
2.1067	0.0010	0.0036	654.3489	0.0011	0.0391	0.0001	3.60E-05	-1.26E-06	-1.39E-05	3.86E-05	0.0015	0.0015	1.2675	0.1184
2.1101	0.0010	0.0036	752.6505	0.0011	0.0391	0.0001	3.13E-05	-9.56E-07	-1.21E-05	3.35E-05	0.0015	0.0015	1.1038	0.1361
2.1068	0 0011	0 0026								~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~ ~ ~ ~ ~	~ ~ . ~ ~	() 7 // ()
0 4070	0.0011	0.0036	901.9876	0.0012	0.0391	0.0001	2.61E-05	-6.65E-07	-1.01E-05	2.80E-05	0.0016	0.0016	0.9196	0.1709
2.1070	0.0010	0.0036	901.9876 1002.6789	0.0012 0.0012	0.0391 0.0391	0.0001 0.0001	2.61E-05 2.35E-05	-6.65E-07 -5.38E-07	-1.01E-05 -9.05E-06	2.80E-05 2.52E-05	0.0016 0.0015	0.0016 0.0015	0.9196 0.8273	0.1854
2.1070	0.0011 0.0010 0.0010	0.0036 0.0036	901.9876 1002.6789 1052.8833	0.0012 0.0012 0.0011	0.0391 0.0391 0.0392	0.0001 0.0001 0.0001	2.61E-05 2.35E-05 2.24E-05	-6.65E-07 -5.38E-07 -4.86E-07	-1.01E-05 -9.05E-06 -8.57E-06	2.80E-05 2.52E-05 2.39E-05	0.0016 0.0015 0.0015	0.0016 0.0015 0.0015	0.9196 0.8273 0.7837	0.1854 0.1935
2.1070 2.0959 2.1064	0.0010 0.0010 0.0010	0.0036 0.0036 0.0036 0.0036	901.9876 1002.6789 1052.8833 1103.4297	0.0012 0.0012 0.0011 0.0011	0.0391 0.0391 0.0392 0.0392	0.0001 0.0001 0.0001 0.0001	2.61E-05 2.35E-05 2.24E-05 2.13E-05	-6.65E-07 -5.38E-07 -4.86E-07 -4.45E-07	-1.01E-05 -9.05E-06 -8.57E-06 -8.22E-06	2.80E-05 2.52E-05 2.39E-05 2.29E-05	0.0016 0.0015 0.0015 0.0015	0.0016 0.0015 0.0015 0.0015	0.9196 0.8273 0.7837 0.7516	0.1709 0.1854 0.1935 0.2034
2.1070 2.0959 2.1064 2.1073	0.0011 0.0010 0.0010 0.0010 0.0010	0.0036 0.0036 0.0036 0.0036 0.0036	901.9876 1002.6789 1052.8833 1103.4297 1156.4853	0.0012 0.0012 0.0011 0.0011 0.0011	0.0391 0.0391 0.0392 0.0392 0.0392	0.0001 0.0001 0.0001 0.0001 0.0001	2.61E-05 2.35E-05 2.24E-05 2.13E-05 2.04E-05	-6.65E-07 -5.38E-07 -4.86E-07 -4.45E-07 -4.05E-07	-1.01E-05 -9.05E-06 -8.57E-06 -8.22E-06 -7.85E-06	2.80E-05 2.52E-05 2.39E-05 2.29E-05 2.18E-05	0.0016 0.0015 0.0015 0.0015 0.0015	0.0016 0.0015 0.0015 0.0015 0.0015	0.9196 0.8273 0.7837 0.7516 0.7174	0.1709 0.1854 0.1935 0.2034 0.2052
2.1070 2.0959 2.1064 2.1073 2.1066	0.0011 0.0010 0.0010 0.0010 0.0010 0.0010	0.0036 0.0036 0.0036 0.0036 0.0036	901.9876 1002.6789 1052.8833 1103.4297 1156.4853 1214.1716	0.0012 0.0012 0.0011 0.0011 0.0011 0.0011	0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	2.61E-05 2.35E-05 2.24E-05 2.13E-05 2.04E-05 1.94E-05	-6.65E-07 -5.38E-07 -4.86E-07 -4.45E-07 -4.05E-07 -3.67E-07	-1.01E-05 -9.05E-06 -8.57E-06 -8.22E-06 -7.85E-06 -7.47E-06	2.80E-05 2.52E-05 2.39E-05 2.29E-05 2.18E-05 2.08E-05	0.0016 0.0015 0.0015 0.0015 0.0015 0.0015	0.0016 0.0015 0.0015 0.0015 0.0015 0.0015	0.9196 0.8273 0.7837 0.7516 0.7174 0.6831	0.1709 0.1854 0.1935 0.2034 0.2052 0.2242

V	Pv	Bv	n	Pn	B _n	BD	Β _ν δJ/δV	B _n δJ/δn	Β _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
2.3079	0.0011	0.0036	502.2690	0.0013	0.0391	0.0001	4.71E-05	-2.35E-06	-1.98E-05	5.11E-05	0.0017	0.0017	1.8090	0.0941
2.3069	0.0012	0.0036	550.3896	0.0012	0.0391	0.0001	4.30E-05	-1.95E-06	-1.80E-05	4.67E-05	0.0017	0.0017	1.6502	0.1029
2.3074	0.0012	0.0036	603.5423	0.0013	0.0391	0.0001	3.92E-05	-1.63E-06	-1.65E-05	4.25E-05	0.0017	0.0017	1.5052	0.1144
2.3070	0.0012	0.0036	652.5464	0.0013	0.0391	0.0001	3.63E-05	-1.39E-06	-1.52E-05	3.93E-05	0.0018	0.0018	1.3919	0.1264
2.3084	0.0011	0.0036	752.0456	0.0013	0.0391	0.0001	3.15E-05	-1.05E-06	-1.32E-05	3.41E-05	0.0018	0.0018	1.2085	0.1452
2.3081	0.0011	0.0036	901.6673	0.0013	0.0391	0.0001	2.62E-05	-7.29E-07	-1.10E-05	2.85E-05	0.0017	0.0017	1.0078	0.1685
2.3082	0.0011	0.0036	1006.0527	0.0013	0.0391	0.0001	2.35E-05	-5.86E-07	-9.88E-06	2.55E-05	0.0017	0.0017	0.9033	0.1911
2.3077	0.0012	0.0036	1052.1662	0.0013	0.0392	0.0001	2.25E-05	-5.36E-07	-9.44E-06	2.44E-05	0.0017	0.0017	0.8635	0.1993
2.3074	0.0011	0.0036	1101.3796	0.0013	0.0392	0.0001	2.15E-05	-4.89E-07	-9.02E-06	2.33E-05	0.0017	0.0017	0.8248	0.2024
2.3075	0.0011	0.0036	1150.4349	0.0013	0.0392	0.0001	2.06E-05	-4.48E-07	-8.64E-06	2.23E-05	0.0017	0.0017	0.7897	0.2167
2.3077	0.0011	0.0036	1213.5677	0.0013	0.0392	0.0001	1.95E-05	-4.03E-07	-8.19E-06	2.11E-05	0.0017	0.0017	0.7487	0.2323
2.3068	0.0012	0.0036	1249.1721	0.0013	0.0392	0.0001	1.89E-05	-3.80E-07	-7.95E-06	2.05E-05	0.0018	0.0018	0.7270	0.2449
V	Pv	Bv	n	Pn	Bn	BD	Β _ν δJ/δV	B _n δJ/δn	Β _D δJ/δD	Вյ	Pj	Uj	J	% U
(m/s)			(rpm)											
2.5100	0.0013	0.0036	504.0554	0.0015	0.0391	0.0001	4.72E-05	-2.53E-06	-2.14E-05	5.19E-05	0.0019	0.0019	1.9605	0.0991
2.5086	0.0012	0.0036	552.5634	0.0014	0.0391	0.0001	4.31E-05	-2.11E-06	-1.95E-05	4.73E-05	0.0019	0.0019	1.7874	0.1066
2.5072	0.0013	0.0036	601.0760	0.0015	0.0391	0.0001	3.96E-05	-1.78E-06	-1.80E-05	4.35E-05	0.0020	0.0020	1.6422	0.1219
2.5095	0.0013	0.0036	651.4524	0.0015	0.0391	0.0001	3.65E-05	-1.52E-06	-1.66E-05	4.01E-05	0.0019	0.0019	1.5166	0.1284
2.5020	0.0013	0.0036	751.7646	0.0015	0.0391	0.0001	3.16E-05	-1.14E-06	-1.43E-05	3.48E-05	0.0020	0.0020	1.3103	0.1529
2.5092	0.0013	0.0036	905.0740	0.0014	0.0391	0.0001	2.63E-05	-7.87E-07	-1.19E-05	2.89E-05	0.0019	0.0019	1.0915	0.1758
2.5081	0.0013	0.0036	1004.8353	0.0015	0.0391	0.0001	2.37E-05	-6.38E-07	-1.07E-05	2.60E-05	0.0020	0.0020	0.9827	0.1991
2.5087	0.0013	0.0036	1052.4015	0.0015	0.0392	0.0001	2.26E-05	-5.82E-07	-1.03E-05	2.48E-05	0.0020	0.0020	0.9385	0.2089
2.5087	0.0013	0.0036	1103.3557	0.0014	0.0392	0.0001	2.16E-05	-5.30E-07	-9.79E-06	2.37E-05	0.0019	0.0019	0.8952	0.2144
2.5023	0.0013	0.0036	1154.7567	0.0015	0.0392	0.0001	2.06E-05	-4.82E-07	-9.33E-06	2.26E-05	0.0020	0.0020	0.8531	0.2347
2.5092	0.0013	0.0036	1207.1602	0.0015	0.0392	0.0001	1.97E-05	-4.43E-07	-8.95E-06	2.17E-05	0.0020	0.0020	0.8183	0.2483
2 5091	0.0013	0.0036	1252 5791	0.0015	0.0392	0.0001	1 90E-05	-4 11E-07	-8 62E-06	2 09E-05	0.0020	0.0020	0 7886	0 2524
Load Varying Self-Propulsion Test (Propeller fitted on)

Uncertainty Analysis (Torque Coefficient)

- V Vehicle Velocity (m/s)
- n Propeller Rotational Speed (rpm)
- D Propeller Diameter (m)
- Q Propeller Torque (N-m)
- ρ Density of Water (kg/m³)
- K_q Torque Coefficient
- P_q Precision Error for Q
- B_q Bias Error for Q
- P_{Kq} Precision Error for K_q
- P_n Precision Error for n
- B_n Bias Error for n
- B_{ρ} Bias Error for ρ
- B_D Bias Error for D
- B_{Kq} Bias Error for K $_{\mathsf{q}}$
- U_{Kq} Total Error for K _q
- % U Percentage Uncertainty for K_q

 $B_{Kq} = (\delta K_q / \delta Q B_q)^2 + (\delta K_q / \delta \rho B_p)^2 + (\delta K_q / \delta n B_n)^2 + (\delta K_q / \delta D B_D)^2)^{1/2}$ $U_{Kq} = (B_{Kq}^2 + P_{Kq}^2)^{1/2}$ % U = (U_{Kq} / K_q) x 100

<u>Uncertainty Analysis</u> (Torque Coefficient) Load Varying Self-Propulsion Test (Propeller fitted on)

V	n	Q	Pa	Ba	Pn	Bn	Bo	BD	Β _q δΚ _q /δQ	Β _ρ δ Κ _q /δρ	B _n δK _q /δn	B _D δK _q /δD	BKq	PKq	U _{Kq}	Kq	% U
(m/s)	(rpm)	(N-m)															
0.8007	503.8949	0.1810	0.0007	0.0076	0.0004	0.0391	0.0578	0.0001	3.66E-07	-5.01E-10	-1.35E-09	-2.85E-08	3.67E-07	0.0008	0.0008	0.0312	2.6347
0.8012	552.6343	0.3680	0.0007	0.0076	0.0005	0.0391	0.0578	0.0001	3.04E-07	-8.47E-10	-2.07E-09	-4.81E-08	3.08E-07	0.0009	0.0009	0.0528	1.6231
0.8027	602.3573	0.5143	0.0007	0.0076	0.0005	0.0391	0.0578	0.0001	2.56E-07	-9.97E-10	-2.24E-09	-5.66E-08	2.63E-07	0.0009	0.0009	0.0621	1.3897
0.8034	651.5623	0.7198	0.0007	0.0077	0.0005	0.0391	0.0578	0.0001	2.19E-07	-1.19E-09	-2.48E-09	-6.77E-08	2.30E-07	0.0009	0.0009	0.0742	1.1880
0.8005	753.4148	1.2080	0.0008	0.0077	0.0004	0.0391	0.0578	0.0001	1.65E-07	-1.50E-09	-2.69E-09	-8.49E-08	1.86E-07	0.0009	0.0009	0.0932	0.9516
0.8012	913.8563	2.0427	0.0008	0.0078	0.0005	0.0391	0.0578	0.0001	1.14E-07	-1.72E-09	-2.55E-09	-9.76E-08	1.50E-07	0.0009	0.0009	0.1071	0.8493
0.8037	1002.5757	2.6202	0.0008	0.0079	0.0005	0.0391	0.0578	0.0001	9.58E-08	-1.83E-09	-2.48E-09	-1.04E-07	1.41E-07	0.0009	0.0009	0.1142	0.7933
0.8045	1051.5807	2.9224	0.0008	0.0080	0.0005	0.0392	0.0578	0.0001	8.78E-08	-1.86E-09	-2.39E-09	-1.05E-07	1.37E-07	0.0009	0.0009	0.1157	0.7899
0.8098	1102.1417	3.3564	0.0008	0.0081	0.0004	0.0392	0.0578	0.0001	8.11E-08	-1.94E-09	-2.39E-09	-1.10E-07	1.37E-07	0.0009	0.0009	0.1210	0.7618
0.8032	1154.0417	3.7562	0.0008	0.0082	0.0005	0.0392	0.0578	0.0001	7.50E-08	-1.98E-09	-2.33E-09	-1.13E-07	1.35E-07	0.0010	0.0010	0.1235	0.7846
0.8015	1207.3702	4.1532	0.0008	0.0083	0.0005	0.0392	0.0578	0.0001	6.95E-08	-2.00E-09	-2.25E-09	-1.14E-07	1.33E-07	0.0010	0.0010	0.1248	0.7616
0.8022	1246.6728	4.5121	0.0008	0.0084	0.0005	0.0392	0.0578	0.0001	6.61E-08	-2.04E-09	-2.22E-09	-1.16E-07	1.33E-07	0.0010	0.0010	0.1271	0.7689
																	or en a Malaina
v	n	Q	Pq	Bq	Pn	Bn	Bp	BD	Β _q δK _q /δQ	Β _ρ δΚ _q /δρ	B _n δK _q /δn	B _D δK _q /δD	BKq	PKq	U _{Kq}	Kq	% U
(m/s)	(rpm)	(N-m)															
1.1030	507.2079	0.1699	0.0008	0.0076	0.0006	0.0391	0.0578	0.0001	3.61E-07	-4.64E-10	-1.24E-09	-2.64E-08	3.62E-07	0.0010	0.0010	0.0289	3.4340
1.1027	554.5345	0.3535	0.0008	0.0076	0.0006	0.0391	0.0578	0.0001	3.02E-07	-8.08E-10	-1.97E-09	-4.59E-08	3.06E-07	0.0010	0.0010	0.0503	1.9791
1.1035	603.8746	0.4982	0.0008	0.0076	0.0006	0.0391	0.0578	0.0001	2.55E-07	-9.61E-10	-2.15E-09	-5.45E-08	2.61E-07	0.0010	0.0010	0.0598	1.7119
1.1032	654.2447	0.7005	0.0009	0.0077	0.0006	0.0391	0.0578	0.0001	2.18E-07	-1.15E-09	-2.38E-09	-6.53E-08	2.27E-07	0.0011	0.0011	0.0717	1.4847
1.1044	750.3733	1.1746	0.0009	0.0077	0.0006	0.0391	0.0578	0.0001	1.66E-07	-1.47E-09	-2.65E-09	-8.33E-08	1.86E-07	0.0011	0.0011	0.0914	1.1517
1.1041	910.3564	1.9868	0.0009	0.0078	0.0006	0.0391	0.0578	0.0001	1.14E-07	-1.69E-09	-2.51E-09	-9.57E-08	1.49E-07	0.0011	0.0011	0.1050	1.0288
1.1030	1006.6678	2.5799	0.0009	0.0079	0.0007	0.0391	0.0578	0.0001	9.49E-08	-1.79E-09	-2.41E-09	-1.02E-07	1.39E-07	0.0011	0.0011	0.1115	0.9867
1.1037	1056.9924	2.8694	0.0009	0.0080	0.0006	0.0392	0.0578	0.0001	8.68E-08	-1.81E-09	-2.31E-09	-1.02E-07	1.34E-07	0.0011	0.0011	0.1125	0.9499
1.1031	1108.8989	3.2875	0.0009	0.0081	0.0006	0.0392	0.0578	0.0001	7.99E-08	-1.88E-09	-2.30E-09	-1.07E-07	1.33E-07	0.0011	0.0011	0.1171	0.9074
1.1031	1156.0328	3.6710	0.0009	0.0082	0.0006	0.0392	0.0578	0.0001	7.45E-08	-1.93E-09	-2.26E-09	-1.10E-07	1.33E-07	0.0011	0.0011	0.1203	0.9154
1.1029	1206.4133	4.0899	0.0009	0.0083	0.0006	0.0392	0.0578	0.0001	6.94E-08	-1.98E-09	-2.22E-09	-1.12E-07	1.32E-07	0.0011	0.0011	0.1231	0.8753
1.1034	1249.3622	4.4395	0.0009	0.0084	0.0006	0.0392	0.0578	0.0001	6.56E-08	-2.00E-09	-2.17E-09	-1.14E-07	1.31E-07	0.0011	0.0011	0.1245	0.8868
			-	-					D SK ISO	D SIZ IS-	D SK /S-	D SV /SD	в			V-	0/ 11
v	n	Q	٣٥	BQ	۳n	Dn	Dp	ÞD	Dq ONq/OU	Dp or quop	Dn or q/on	BD ON gIOD	DKq	r Kq	OKq	ny	<i>/</i> ^ U
(m/s)	(rpm)	(N-m)															
4 2024	504 0007	0 1657	0.0000	0.0076	0.0006	0.0201	0.0579	0.0001	2 655 07	4 58 10	1 23 - 00	-2 605-08	3.66E-07	0.0011	0.0011	0.0285	3 8693
1.3031	504.2337	0.1057	0.0009	0.0076	0.0008	0.0391	0.0578	0.0001	3.03E-07	7.615 10	1 975 00	4 225 08	2 105 07	0.0011	0.0011	0.0200	2 2054
1.3022	550.4535	0.3270	0.0009	0.0076	0.0000	0.0391	0.0570	0.0001	3.07E-07	-7.012-10	2 055 00	-4.32E-00	2.635-07	0.0011	0.0011	0.0567	2.2004
1.3025	600.5634	0.4670	0.0009	0.0076	0.0007	0.0391	0.0570	0.0001	2.30E-07	-9.10E-10	2.052-09	-3.17E-00	2.032-07	0.0017	0.0017	0.0684	1 7122
1.3035	652.2352	0.0000	0.0009	0.0077	0.0007	0.0391	0.0570	0.0001	2.19E-07	-1.10E-09	-2.200-09	-0.24E-00	1 925 07	0.0012	0.0012	0.0004	1 3178
1.3036	/52.8192	1.1301	0.0010	0.0077	0.0007	0.0391	0.05/8	0.0001	1.03E-07	1.412-09	-2.335-09	-0.UUE-UO	1.030-07	0.0012	0.0012	0.0070	1 1202
1.3022	901.8296	1.9541	0.0010	0.0078	0.0007	0.0391	0.0578	0.0001	1.1/E-U/	-1.09E-09	-2.54E-09	-9.59E-08	1.31E-07	0.0012	0.0012	0.1052	1.1292
1.3022	1000.1110	2.5466	0.0010	0.0079	0.0007	0.0391	0.0578	0.0001	9.012-08	-1./9E-09	-2.42E-09	-1.02E-07	1.400-07	0.0012	0.0012	0.1110	1.0092
1.3023	1046.2973	2.8254	0.0010	0.0080	0.0007	0.0392	0.0578	0.0001	8.85E-08	-1.81E-09	-2.35E-09	-1.03E-07	1.30E-07	0.0012	0.0012	0.1150	1.0304
1.3020	1105.7242	3.2400	0.0010	0.0081	0.0007	0.0392	0.0578	0.0001	8.02E-08	-1.86E-09	-2.28E-09	-1.06E-07	1.33E-07	0.0012	0.0012	0.1100	1.0049
1.3023	1155.3342	3.6311	0.0010	0.0082	0.0007	0.0392	0.0578	0.0001	7.45E-08	-1.91E-09	-2.24E-09	-1.09E-07	1.32E-07	0.0012	0.0012	0.1191	1.0000
1.3022	1206.0095	4.0298	0.0011	0.0083	0.0007	0.0392	0.0578	0.0001	0.93E-08	-1.95E-09	-2.19E-09	-1.11E-07	1.31E-07	0.0013	0.0013	0.1213	1.0740
1 3024	1248 0299	4 4059	0.0011	0.0084	0.0007	0.0392	0.0578	0.0001	0.5/E-08	-1.99E-09	-2.10E-09	~I.ISE-U/	1.310-0/	0.0013	0.0013	0.1239	1.0001

<u>Uncertainty Analysis</u> (Torque Coefficient) Load Varying Self-Propulsion Test (Propeller fitted on)

v	n	Q	Pq	Bq	Pn	Bn	Bo	BD	B _q δK _q /δQ	Β _ρ δ Κ _α /δρ	B _n δK _g /δn	B _D δK _α /δD	BKg	PKg	U _{Ka}	Kq	% U
(m/s)	(rpm)	(N-m)								• •							
1.6032	503.9995	0.1484	0.0011	0.0076	0.0008	0.0391	0.0578	0.0001	3.66E-07	-4.11E-10	-1.10E-09	-2.33E-08	3.66E-07	0.0013	0.0013	0.0256	5.2245
1.6046	550.3443	0.2710	0.0011	0.0076	0.0008	0.0391	0.0578	0.0001	3.07E-07	-6.29E-10	-1.55E-09	-3.57E-08	3.09E-07	0.0013	0.0013	0.0392	3.4096
1.6035	601.4574	0.3833	0.0011	0.0076	0.0008	0.0391	0.0578	0.0001	2.57E-07	-7.45E-10	-1.68E-09	-4.23E-08	2.60E-07	0.0014	0.0014	0.0464	2.9419
1.6038	653.7645	0.6033	0.0011	0.0077	0.0009	0.0391	0.0578	0.0001	2.18E-07	-9.92E-10	-2.05E-09	-5.63E-08	2.25E-07	0.0014	0.0014	0.0618	2.3104
1.6040	755.9224	1.0703	0.0012	0.0077	0.0008	0.0391	0.0578	0.0001	1.64E-07	-1.32E-09	-2.36E-09	-7.48E-08	1.80E-07	0.0014	0.0014	0.0820	1.7319
1.6038	911.6408	1.8340	0.0012	0.0078	0.0008	0.0391	0.0578	0.0001	1.14E-07	-1.55E-09	-2.30E-09	-8.81E-08	1.44E-07	0.0014	0.0014	0.0966	1.4351
1.6044	1003.7944	2.4389	0.0012	0.0079	0.0008	0.0391	0.0578	0.0001	9.51E-08	-1.70E-09	-2.30E-09	-9.66E-08	1.36E-07	0.0014	0.0014	0.1060	1.3345
1.6042	1051.3377	2.7228	0.0012	0.0079	0.0008	0.0392	0.0578	0.0001	8.74E-08	-1.73E-09	-2.23E-09	-9.83E-08	1.32E-07	0.0014	0.0014	0.1079	1.3139
1.6043	1104.0239	3.1449	0.0012	0.0080	0.0008	0.0392	0.0578	0.0001	8.02E-08	-1.81E-09	-2.23E-09	-1.03E-07	1.31E-07	0.0014	0.0014	0.1130	1.2422
1.6034	1152.5333	3.5384	0.0012	0.0081	0.0008	0.0392	0.0578	0.0001	7.46E-08	-1.87E-09	-2.20E-09	-1.06E-07	1.30E-07	0.0014	0.0014	0.1166	1.2198
1.6036	1210.1129	3.9176	0.0012	0.0083	0.0008	0.0392	0.0578	0.0001	6.86E-08	-1.88E-09	-2.11E-09	-1.07E-07	1.27E-07	0.0014	0.0014	0.1172	1.2336
1.6030	1250.8055	4.3454	0.0012	0.0084	0.0009	0.0392	0.0578	0.0001	6.52E-08	-1.95E-09	-2.12E-09	-1.11E-07	1.29E-07	0.0015	0.0015	0.1216	1.2205
V	n	Q	Pa	Ba	Pn	Bn	Bo	BD	Β _α δΚ _α /δQ	Β , δ Κ ,/δρ	B _n δK _n /δn	Β _D δΚ _σ /δD	BKg	PKa	UKa	Kq	% U
(m/s)	(rpm)	(N-m)															
			21														
1.8042	510.9808	0.1265	0.0012	0.0076	0.0010	0.0391	0.0578	0.0001	3.56E-07	-3.41E-10	-9.02E-10	-1.93E-08	3.56E-07	0.0015	0.0015	0.0212	7.2415
1.8034	552.4233	0.1528	0.0012	0.0076	0.0010	0.0391	0.0578	0.0001	3.04E-07	-3.52E-10	-8.62E-10	-2.00E-08	3.05E-07	0.0016	0.0016	0.0219	7.2300
1.8068	602.7853	0.3126	0.0012	0.0076	0.0009	0.0391	0.0578	0.0001	2.56E-07	-6.05E-10	-1.36E-09	-3.43E-08	2.58E-07	0.0015	0.0015	0.0377	4.0886
1.8056	651.5334	0.5023	0.0012	0.0076	0.0009	0.0391	0.0578	0.0001	2.19E-07	-8.32E-10	-1.73E-09	-4.72E-08	2.24E-07	0.0015	0.0015	0.0518	2.9799
1.8042	757.8054	0.9753	0.0012	0.0077	0.0010	0.0391	0.0578	0.0001	1.63E-07	-1.19E-09	-2.13E-09	-6.78E-08	1.76E-07	0.0016	0.0016	0.0744	2.1486
1.8051	911.1136	1.7271	0.0013	0.0078	0.0010	0.0391	0.0578	0.0001	1.14E-07	-1.46E-09	-2.17E-09	-8.30E-08	1.41E-07	0.0016	0.0016	0.0911	1.7848
1.8048	1002.7594	2.3395	0.0013	0.0079	0.0010	0.0391	0.0578	0.0001	9.51E-08	-1.64E-09	-2.21E-09	-9.29E-08	1.33E-07	0.0016	0.0016	0.1019	1.5865
1.8061	1056.9214	2.6019	0.0013	0.0079	0.0010	0.0392	0.0578	0.0001	8.62E-08	-1.64E-09	-2.10E-09	-9.30E-08	1.27E-07	0.0016	0.0016	0.1020	1.5650
1.8051	1118.8065	3.0425	0.0013	0.0080	0.0010	0.0392	0.0578	0.0001	7.79E-08	-1.71E-09	-2.07E-09	-9.70E-08	1.24E-07	0.0016	0.0016	0.1064	1.4957
1.8043	1161.1239	3.4240	0.0013	0.0081	0.0010	0.0392	0.0578	0.0001	7.32E-08	-1.79E-09	-2.08E-09	-1.01E-07	1.25E-07	0.0016	0.0016	0.1112	1.4717
1.8059	1215.6599	3.7826	0.0013	0.0082	0.0010	0.0392	0.0578	0.0001	6.76E-08	-1.80E-09	-2.01E-09	-1.02E-07	1.23E-07	0.0016	0.0016	0.1121	1.4596
1.8057	1246.0544	4.1864	0.0013	0.0083	0.0010	0.0392	0.0578	0.0001	6.53E-08	-1.90E-09	-2.06E-09	-1.08E-07	1.26E-07	0.0017	0.0017	0.1181	1.4026
			ne o kradna i seze	n a labor isaaci ita mainte													
V	n	Q	Pq	Bq	Pn	Bn	B _p	BD	B _q δK _q /δQ	Β _ρ δΚ _q /δρ	B _n δK _q /δn	B _D δK _q /δD	B _{Kq}	PKq	U _{Kq}	Kq	% U
(m/s)	(rpm)	(N-m)															
2.1091	500.1371	0.0592	0.0006	0.0076	0.0011	0.0391	0.0578	0.0001	3.71E-07	-1.66E-10	-4.50E-10	-9.45E-09	3.71E-07	0.0013	0.0013	0.0104	12.0880
2.1056	551.5545	0.1283	0.0013	0.0076	0.0012	0.0391	0.0578	0.0001	3.05E-07	-2.97E-10	-7.27E-10	-1.68E-08	3.06E-07	0.0017	0.0017	0.0185	9.4342
2.1068	600.3476	0.2676	0.0013	0.0076	0.0011	0.0391	0.0578	0.0001	2.58E-07	-5.22E-10	-1.18E-09	-2.96E-08	2.59E-07	0.0018	0.0018	0.0325	5.3884
2.1067	654.3489	0.4750	0.0013	0.0076	0.0011	0.0391	0.0578	0.0001	2.17E-07	-7.80E-10	-1.61E-09	-4.43E-08	2.22E-07	0.0017	0.0017	0.0486	3.5688
2.1101	752.6505	0.8776	0.0014	0.0077	0.0011	0.0391	0.0578	0.0001	1.65E-07	-1.09E-09	-1.96E-09	-6.18E-08	1.76E-07	0.0018	0.0018	0.0678	2.5971
2.1068	901.9876	1.6341	0.0014	0.0077	0.0012	0.0391	0.0578	0.0001	1.16E-07	-1.41E-09	-2.12E-09	-8.02E-08	1.41E-07	0.0018	0.0018	0.0880	2.0410
2.1070	1002.6789	2.2376	0.0014	0.0078	0.0012	0.0391	0.0578	0.0001	9.49E-08	-1.56E-09	-2.11E-09	-8.88E-08	1.30E-07	0.0018	0.0018	0.0975	1.8630
2.0959	1052.8833	2.5437	0.0014	0.0079	0.0011	0.0392	0.0578	0.0001	8.67E-08	-1.61E-09	-2.08E-09	-9.16E-08	1.26E-07	0.0018	0.0018	0.1005	1.7891
2.1064	1103.4297	2.9378	0.0014	0.0080	0.0011	0.0392	0.0578	0.0001	7.98E-08	-1.70E-09	-2.08E-09	-9.63E-08	1.25E-07	0.0018	0.0018	0.1057	1.7117
2.1073	1156.4853	3.3080	0.0014	0.0081	0.0011	0.0392	0.0578	0.0001	7.35E-08	-1.74E-09	-2.04E-09	-9.87E-08	1.23E-07	0.0018	0.0018	0.1083	1.6546
2.1066	1214.1716	3.6923	0.0015	0.0082	0.0011	0.0392	0.0578	0.0001	6.76E-08	-1.76E-09	-1.97E-09	-1.00E-07	1.21E-07	0.0018	0.0018	0.1097	1.6829
2,1060	1246.6579	4.0446	0.0015	0.0083	0.0011	0.0392	0.0578	0.0001	6.49E-08	-1.83E-09	-1.99E-09	-1.04E-07	1.23E-07	0.0019	0.0019	0.1140	1.6248

<u>Uncertainty Analysis</u> (Torque Coefficient) Load Varying Self-Propulsion Test (Propeller fitted on)

v	n	Q	Pq	Bq	Pn	Bn	Bo	BD	Β _α δΚ _α /δQ	Β _ρ δ Κ _α /δρ	B _n δK _q /δn	Β _D δΚ _α /δD	BKg	PKg	U _{Ka}	Kq	% U
(m/s)	(rpm)	(N-m)															
2.3079	502.2690	0.0030	0.0002	0.0076	0.0013	0.0391	0.0578	0.0001	3.68E-07	-8.38E-12	-2.26E-11	-4.76E-10	3.68E-07	0.0013	0.0013	0.0005	248.1630
2.3069	550.3896	0.1071	0.0015	0.0076	0.0012	0.0391	0.0578	0.0001	3.07E-07	-2.49E-10	-6.11E-10	-1.41E-08	3.07E-07	0.0019	0.0019	0.0155	12.4668
2.3074	603.5423	0.2439	0.0015	0.0076	0.0013	0.0391	0.0578	0.0001	2.55E-07	-4.71E-10	-1.06E-09	-2.67E-08	2.56E-07	0.0020	0.0020	0.0293	6.7772
2.3070	652.5464	0.4126	0.0015	0.0076	0.0013	0.0391	0.0578	0.0001	2.18E-07	-6.81E-10	-1.41E-09	-3.87E-08	2.22E-07	0.0020	0.0020	0.0424	4.6865
2.3084	752.0456	0.7863	0.0015	0.0077	0.0013	0.0391	0.0578	0.0001	1.65E-07	-9.77E-10	-1.76E-09	-5.55E-08	1.74E-07	0.0020	0.0020	0.0609	3.3531
2.3081	901.6673	1.5450	0.0016	0.0077	0.0013	0.0391	0.0578	0.0001	1.16E-07	-1.34E-09	-2.01E-09	-7.58E-08	1.38E-07	0.0020	0.0020	0.0832	2.4310
2.3082	1006.0527	2.1446	0.0016	0.0078	0.0013	0.0391	0.0578	0.0001	9.41E-08	-1.49E-09	-2.01E-09	-8.46E-08	1.27E-07	0.0021	0.0021	0.0928	2.2106
2.3077	1052.1662	2.4494	0.0016	0.0079	0.0013	0.0392	0.0578	0.0001	8.66E-08	-1.56E-09	-2.00E-09	-8.83E-08	1.24E-07	0.0020	0.0020	0.0969	2.0939
2.3074	1101.3796	2.7844	0.0016	0.0080	0.0013	0.0392	0.0578	0.0001	7.98E-08	-1.61E-09	-1.99E-09	-9.16E-08	1.21E-07	0.0021	0.0021	0.1005	2.0541
2.3075	1150.4349	3.1913	0.0017	0.0081	0.0013	0.0392	0.0578	0.0001	7.40E-08	-1.70E-09	-2.00E-09	-9.62E-08	1.21E-07	0.0021	0.0021	0.1056	1.9894
2.3077	1213.5677	3.5556	0.0017	0.0081	0.0013	0.0392	0.0578	0.0001	6.73E-08	-1.70E-09	-1.90E-09	-9.63E-08	1.18E-07	0.0021	0.0021	0.1057	2.0061
2.3068	1249.1721	3.9343	0.0017	0.0083	0.0013	0.0392	0.0578	0.0001	6.44E-08	-1.77E-09	-1.92E-09	-1.01E-07	1.19E-07	0.0021	0.0021	0.1104	1.9393
																	ana an an ann an an an an an an an an an
V	n	Q	Pa	Bq	Pn	Bn	B _p	BD	Β _q δK _q /δQ	Β _ρ δΚ _q /δρ	B _n δK _q /δn	B _D δK _q /δD	BKq	PKq	U _{Kq}	Kq	% U
(m/s)	(rpm)	(N-m)															
2.5100	504.0554	0.0003	0.0001	0.0076	0.0015	0.0391	0.0578	0.0001	3.66E-07	-9.47E-13	-2.54E-12	-5.37E-11	3.66E-07	0.0015	0.0015	0.0001	2478.4485
2.5086	552.5634	0.0817	0.0014	0.0076	0.0014	0.0391	0.0578	0.0001	3.04E-07	-1.88E-10	-4.61E-10	-1.07E-08	3.04E-07	0.0020	0.0020	0.0117	17.2520
2.5072	601.0760	0.2188	0.0017	0.0076	0.0015	0.0391	0.0578	0.0001	2.57E-07	-4.26E-10	-9.58E-10	-2.42E-08	2.58E-07	0.0023	0.0023	0.0265	8.5581
2.5095	651.4524	0.3268	0.0017	0.0076	0.0015	0.0391	0.0578	0.0001	2.19E-07	-5.41E-10	-1.12E-09	-3.07E-08	2.21E-07	0.0023	0.0023	0.0337	6.7359
2.5020	751.7646	0.7249	0.0018	0.0077	0.0015	0.0391	0.0578	0.0001	1.65E-07	-9.02E-10	-1.62E-09	-5.12E-08	1.73E-07	0.0023	0.0023	0.0562	4.1171
2.5092	905.0740	1.4758	0.0018	0.0077	0.0014	0.0391	0.0578	0.0001	1.15E-07	-1.27E-09	-1.90E-09	-7.19E-08	1.35E-07	0.0023	0.0023	0.0789	2.9021
2.5081	1004.8353	2.0551	0.0018	0.0078	0.0015	0.0391	0.0578	0.0001	9.41E-08	-1.43E-09	-1.93E-09	-8.12E-08	1.24E-07	0.0023	0.0023	0.0891	2.5887
2.5087	1052.4015	2.3871	0.0018	0.0079	0.0015	0.0392	0.0578	0.0001	8.64E-08	-1.52E-09	-1.95E-09	-8.60E-08	1.22E-07	0.0023	0.0023	0.0944	2.4229
2.5087	1103.3557	2.6963	0.0018	0.0079	0.0014	0.0392	0.0578	0.0001	7.93E-08	-1.56E-09	-1.91E-09	-8.84E-08	1.19E-07	0.0023	0.0023	0.0970	2.3687
2.5023	1154.7567	3.0789	0.0018	0.0080	0.0015	0.0392	0.0578	0.0001	7.32E-08	-1.62E-09	-1.91E-09	-9.21E-08	1.18E-07	0.0023	0.0023	0.1011	2.3201
2.5092	1207.1602	3.4660	0.0018	0.0081	0.0015	0.0392	0.0578	0.0001	6 78E-08	-1 67E-09	-1 88E-09	-9.49E-08	1.17E-07	0.0024	0.0024	0.1042	2.2914
								0.0001	0.102 00	1.01 2 00	1.002 00						

Load Varying Self-Propulsion Test (Propeller fitted on)

Uncertainty Analysis (Thrust Coefficient)

- V Vehicle Velocity (m/s)
- n Propeller Rotational Speed (rpm)
- T_P Propeller Thrust (N)
- D Propeller Diameter (m)
- ρ Density of Water (kg/m³)
- K tp Thrust Coefficient for Propeller
- P_T Precision Error for T_P
- B_T Bias Error for T_P
- P_{Ktp} Precision Error for K tp
- P_n Precision Error for n
- B_n Bias Error for n
- B_{ρ} Bias Error for ρ
- B_D Bias Error for D
- B_{Ktp} Bias Error for K tp
- U_{Ktp} Total Error for K tp
- % U Percentage Uncertainty for K to

 $B_{Ktp} = (\delta K_{tp} / \delta T_P B_T)^2 + (\delta K_{tp} / \delta \rho B_\rho)^2 + (\delta K_{tp} / \delta n B_n)^2 + (\delta K_{tp} / \delta D B_D)^2)^{1/2}$ $U_{Ktp} = (B_{Ktp}^2 + P_{Ktp}^2)^{1/2}$ % U = (U_{Ktp} / K_{tp}) x 100

Uncertainty Analysis (Thrust Coefficient) Load Varying Self-Propulsion Test (Propeller fitted on)

v	n	Tp	PT	BT	Pn	Bn	Bo	Bp	Β _T δΚ _{tp} /δΤ _P	Β _ο δ Κ _{to} /δρ	B _n δK _{tr} /δn	B _D δK _{to} /δD	B _{Ktp}	PKtp	UKto	Ktp	% U
(m/s)	(rpm)	(N)					,					- +					
0.8007	503.8949	3.6262	0.0085	0.2494	0.0004	0.0391	0.0578	0.0001	1.82E-06	-1.53E-09	-4.11E-09	-6.95E-08	1.82E-06	0.0085	0.0085	0.0953	8.9298
0.8012	552.6343	8.7409	0.0087	0.2494	0.0005	0.0391	0.0578	0.0001	1.51E-06	-3.07E-09	-7.51E-09	-1.39E-07	1.52E-06	0.0087	0.0087	0.1910	4.5613
0.8027	602.3573	12.8134	0.0088	0.2494	0.0005	0.0391	0.0578	0.0001	1.27E-06	-3.78E-09	-8.50E-09	-1./2E-07	1.29E-06	0.0088	0.0088	0.2357	3.7397
0.8034	651.5623	18.6583	0.0086	0.2494	0.0005	0.0391	0.0578	0.0001	1.09E-06	-4.71E-09	-9.78E-09	-2.14E-07	1.11E-06	0.0086	0.0086	0.2933	2.9366
0.8005	753.4148	32.8282	0.0089	0.2494	0.0004	0.0391	0.0578	0.0001	8.14E-07	-6.20E-09	-1.11E-08	-2.81E-07	8.62E-07	0.0089	0.0089	0.3860	2.3088
0.8012	913.8563	59.3485	0.0089	0.2494	0.0005	0.0391	0.0578	0.0001	5.54E-07	-7.61E-09	-1.13E-08	-3.46E-07	6.53E-07	0.0089	0.0089	0.4743	1.8796
0.8037	1002.5757	77.0108	0.0092	0.2494	0.0005	0.0391	0.0578	0.0001	4.60E-07	-8.21E-09	-1.11E-08	-3.73E-07	5.92E-07	0.0092	0.0092	0.5113	1.8016
0.8045	1051.5807	87.1072	0.0095	0.2494	0.0005	0.0392	0.0578	0.0001	4.18E-07	-8.44E-09	-1.09E-08	-3.83E-07	5.67E-07	0.0095	0.0095	0.5257	1.8093
0.8098	1102.1417	98.8701	0.0094	0.2494	0.0004	0.0392	0.0578	0.0001	3.81E-07	-8.72E-09	-1.07E-08	-3.96E-07	5.49E-07	0.0094	0.0094	0.5432	1.7324
0.8032	1154.0417	111.2684	0.0096	0.2494	0.0005	0.0392	0.0578	0.0001	3.47E-07	-8.95E-09	-1.05E-08	-4.07E-07	5.35E-07	0.0096	0.0096	0.55/6	1.7241
0.8015	1207.3702	123.8401	0.0094	0.2494	0.0005	0.0392	0.0578	0.0001	3.17E-07	-9.10E-09	-1.02E-08	-4.13E-07	5.21E-07	0.0094	0.0094	0.5669	1.6602
0.8022	1246.6728	135.8194	0.0097	0.2494	0.0005	0.0392	0.0578	0.0001	2.98E-07	-9.36E-09	-1.02E-08	-4.25E-07	5.19E-07	0.0097	0.0097	0.5832	1.0004
V	n	T,	Ρτ	Вт	Ρ.	B,	B,	Bn	Β _τ δΚ _m /δΤ _P	B. δK./δρ	B _n δK _{tn} /δn	B _n δK _m /δD	BKto	PKto	UKto	Kto	% U
(m/s)	(rpm)	(N)								, .							
1.1030	507.2079	2.2849	0.0095	0.2494	0.0006	0.0391	0.0578	0.0001	1.80E-06	-9.52E-10	-2.54E-09	-4.32E-08	1.80E-06	0.0095	0.0095	0.0593	16.0554
1.1027	554.5345	6.2834	0.0098	0.2494	0.0006	0.0391	0.0578	0.0001	1.50E-06	-2.19E-09	-5.34E-09	-9.94E-08	1.51E-06	0.0098	0.0098	0.1364	7.1992
1.1035	603.8746	10.2080	0.0100	0.2494	0.0006	0.0391	0.0578	0.0001	1.27E-06	-3.00E-09	-6.72E-09	-1.36E-07	1.27E-06	0.0100	0.0100	0.1868	5.3625
1.1032	654.2447	16.3454	0.0102	0.2494	0.0006	0.0391	0.0578	0.0001	1.08E-06	-4.09E-09	-8.46E-09	-1.86E-07	1.10E-06	0.0102	0.0102	0.2548	4.0103
1.1044	750.3733	29.4461	0.0103	0.2494	0.0006	0.0391	0.0578	0.0001	8.21E-07	-5.60E-09	-1.01E-08	-2.54E-07	8.60E-07	0.0103	0.0103	0.3490	2.9566
1.1041	910.3564	54.5330	0.0106	0.2494	0.0006	0.0391	0.0578	0.0001	5.58E-07	-7.05E-09	-1.05E-08	-3.20E-07	6.43E-07	0.0106	0.0106	0.4391	2.4182
1.1030	1006.6678	73.9689	0.0108	0.2494	0.0007	0.0391	0.0578	0.0001	4.56E-07	-7.82E-09	-1.05E-08	-3.55E-07	5.78E-07	0.0108	0.0108	0.4871	2.2212
1.1037	1056.9924	85.6126	0.0109	0.2494	0.0006	0.0392	0.0578	0.0001	4.14E-07	-8.21E-09	-1.05E-08	-3.73E-07	5.57E-07	0.0109	0.0109	0.5114	2.1349
1.1031	1108.8989	98.4729	0.0111	0.2494	0.0006	0.0392	0.0578	0.0001	3.76E-07	-8.58E-09	-1.05E-08	-3.90E-07	5.42E-07	0.0111	0.0111	0.5344	2.0798
1.1031	1156.0328	110.2023	0.0109	0.2494	0.0006	0.0392	0.0578	0.0001	3.46E-07	-8.84E-09	-1.04E-08	-4.01E-07	5.30E-07	0.0109	0.0109	0.5503	1.9839
1.1029	1206.4133	121.4830	0.0111	0.2494	0.0006	0.0392	0.0578	0.0001	3.18E-07	-8.94E-09	-1.01E-08	-4.06E-07	5.16E-07	0.0111	0.0111	0.5570	1.9952
1.1034	1249.3622	132.4165	0.0113	0.2494	0.0006	0.0392	0.0578	0.0001	2.96E-07	-9.09E-09	-9.87E-09	-4.13E-07	5.08E-07	0.0113	0.0113	0.5661	1.9986
v	n	Tp	PT	BT	Pn	Bn	Bo	Bo	$B_T \delta K_{tp} / \delta T_P$	Β _ρ δ Κ _{τρ} /δρ	B _n δK _{tp} /δn	B _D δK _{tp} /δD	BKtp	PKtp	UKtp	K _{tp}	% U
(m/s)	(rpm)	(N)															
1.3031	504.2337	-0.5806	0.0090	0.2494	0.0006	0.0391	0.0578	0.0001	1.82E-06	2.45E-10	6.56E-10	1.11E-08	1.82E-06	0.0090	0.0090	-0.0152	-59.2044
1.3022	550.4535	3.8393	0.0117	0.2494	0.0006	0.0391	0.0578	0.0001	1.53E-06	-1.36E-09	-3.34E-09	-6.17E-08	1.53E-06	0.0117	0.0117	0.0846	13.8531
1.3025	600.5634	7.2149	0.0118	0.2494	0.0007	0.0391	0.0578	0.0001	1.28E-06	-2.14E-09	-4.83E-09	-9.73E-08	1.29E-06	0.0118	0.0118	0.1335	8.8538
1.3035	652.2352	13.4575	0.0117	0.2494	0.0007	0.0391	0.0578	0.0001	1.09E-06	-3.39E-09	-7.03E-09	-1.54E-07	1.10E-06	0.0117	0.0117	0.2111	5.5519
1.3036	752.8192	26.1866	0.0119	0.2494	0.0007	0.0391	0.0578	0.0001	8.16E-07	-4.95E-09	-8.90E-09	-2.25E-07	8.46E-07	0.0119	0.0119	0.3084	3.8650
1.3022	901.8296	51.7382	0.0123	0.2494	0.0007	0.0391	0.0578	0.0001	5.68E-07	-6.82E-09	-1.02E-08	-3.10E-07	6.47E-07	0.0123	0.0123	0.4245	2.9019
1.3022	1000.1110	/2.3597	0.0121	0.2494	0.0007	0.0391	0.0578	0.0001	4.62E-07	-/./5E-09	-1.05E-08	-3.52E-07	5.81E-07	0.0121	0.0121	0.4828	2.5107
1.3023	1046.2973	82.1375	0.0125	0.2494	0.0007	0.0392	0.0578	0.0001	4.22E-07	-8.04E-09	-1.04E-08	-3.65E-07	5.58E-07	0.0125	0.0125	0.5007	2.5003
1.3020	1105.7242	96.1106	0.0128	0.2494	0.0007	0.0392	0.0578	0.0001	3.78E-07	-8.42E-09	-1.03E-08	-3.82E-07	5.38E-07	0.0128	0.0128	0.5246	2.443/
1.3023	1155.3342	107.4396	0.0127	0.2494	0.0007	0.0392	0.0578	0.0001	3.46E-07	-8.62E-09	-1.01E-08	-3.92E-07	5.23E-07	0.012/	0.0127	0.5372	2.30//
1.3022	1206.0095	119.2426	0.0129	0.2494	0.0007	0.0392	0.0578	0.0001	3.18E-07	-8.78E-09	-9.88E-09	-3.99E-07	5.10E-07	0.0129	0.0129	0.5471	2.3012
1.3024	1248.0299	130.64/9	0.0131	0.2494	0.0007	0.0392	0.0578	0.0001	2.97E-07	-8.99E-09	-9.11E-09	-4.08E-07	5.05E-07	0.0131	0.0131	0.0098	2.3431

<u>Uncertainty Analysis</u> (Thrust Coefficient) Load Varying Self-Propulsion Test (Propeller fitted on)

v	n	Tp	PT	BT	Pn	Bn	B	Bo	Β _T δΚ _{to} /δΤ _P	Β _ο δΚ _{το} /δρ	B _n δK _{to} /δn	B _D δK _{to} /δD	BKto	PKto	UKto	K _{tp}	% U
(m/s)	(rpm)	(N)					,										
																	-
1.6032	503.9995	-1.5261	0.0130	0.2494	0.0008	0.0391	0.0578	0.0001	1.82E-06	6.44E-10	1.73E-09	2.92E-08	1.82E-06	0.0130	0.0130	-0.0401	-32.4782
1.6046	550.3443	1.5354	0.0137	0.2494	0.0008	0.0391	0.0578	0.0001	1.53E-06	-5.43E-10	-1.34E-09	-2.47E-08	1.53E-06	0.0137	0.0137	0.0338	40.5633
1.6035	601.4574	5.3738	0.0143	0.2494	0.0008	0.0391	0.0578	0.0001	1.28E-06	-1.59E-09	-3.58E-09	-7.23E-08	1.28E-06	0.0143	0.0143	0.0991	14.4461
1.6038	653.7645	11.6456	0.0145	0.2494	0.0009	0.0391	0.0578	0.0001	1.08E-06	-2.92E-09	-6.04E-09	-1.33E-07	1.09E-06	0.0145	0.0145	0.1818	7.9882
1.6040	755.9224	25.1105	0.0143	0.2494	0.0008	0.0391	0.0578	0.0001	8.09E-07	-4.71E-09	-8.43E-09	-2.14E-07	8.37E-07	0.0143	0.0143	0.2933	4.8841
1.6038	911.6408	48.1265	0.0147	0.2494	0.0008	0.0391	0.0578	0.0001	5.56E-07	-6.20E-09	-9.22E-09	-2.82E-07	6.24E-07	0.0147	0.0147	0.3865	3.8089
1.6044	1003.7944	67.4672	0.0148	0.2494	0.0008	0.0391	0.0578	0.0001	4.59E-07	-7.17E-09	-9.68E-09	-3.26E-07	5.63E-07	0.0148	0.0148	0.4469	3.3166
1.6042	1051.3377	77.7648	0.0150	0.2494	0.0008	0.0392	0.0578	0.0001	4.18E-07	-7.54E-09	-9.72E-09	-3.42E-07	5.41E-07	0.0150	0.0150	0.4695	3.1992
1.6043	1104.0239	91.4829	0.0152	0.2494	0.0008	0.0392	0.0578	0.0001	3.79E-07	-8.04E-09	-9.87E-09	-3.65E-07	5.27E-07	0.0152	0.0152	0.5009	3.0384
1.6034	1152.5333	104.5737	0.0155	0.2494	0.0008	0.0392	0.0578	0.0001	3.48E-07	-8.44E-09	-9.92E-09	-3.83E-07	5.18E-07	0.0155	0.0155	0.5254	2.9539
1.6036	1210.1129	116.7686	0.0154	0.2494	0.0008	0.0392	0.0578	0.0001	3.16E-07	-8.54E-09	-9.57E-09	-3.88E-07	5.00E-07	0.0154	0.0154	0.5322	2.8980
1.6030	1250.8055	127.3434	0.0157	0.2494	0.0009	0.0392	0.0578	0.0001	2.96E-07	-8.72E-09	-9.46E-09	-3.96E-07	4.94E-07	0.0157	0.0157	0.5432	2.8946
v	n	Tp	PT	BT	Pn	Bn	B _p	BD	$B_T \delta K_{tp} / \delta T_P$	Β _ρ δΚ _{τρ} /δρ	B _n δK _{tp} /δn	B _D δK _{tp} /δD	BKtp	PKtp	UKtp	K _{tp}	% U
(m/s)	(rpm)	(N)															
1.8042	510.9808	-1.9385	0.0161	0.2494	0.0010	0.0391	0.0578	0.0001	1.77E-06	7.96E-10	2.11E-09	3.61E-08	1.77E-06	0.0161	0.0161	-0.0495	-32.5520
1.8034	552.4233	1.1898	0.0158	0.2494	0.0010	0.0391	0.0578	0.0001	1.51E-06	-4.18E-10	-1.02E-09	-1.90E-08	1.51E-06	0.0158	0.0158	0.0260	60.8484
1.8068	602.7853	4.2981	0.0163	0.2494	0.0009	0.0391	0.0578	0.0001	1.27E-06	-1.27E-09	-2.84E-09	-5.76E-08	1.27E-06	0.0163	0.0163	0.0789	20.6820
1.8056	651.5334	10.5564	0.0164	0.2494	0.0009	0.0391	0.0578	0.0001	1.09E-06	-2.66E-09	-5.53E-09	-1.21E-07	1.10E-06	0.0164	0.0164	0.1660	9.8974
1.8042	757.8054	22.9946	0.0165	0.2494	0.0010	0.0391	0.0578	0.0001	8.05E-07	-4.29E-09	-7.66E-09	-1.95E-07	8.28E-07	0.0165	0.0165	0.2672	6.1864
1.8051	911.1136	45.8331	0.0167	0.2494	0.0010	0.0391	0.0578	0.0001	5.57E-07	-5.92E-09	-8.79E-09	-2.69E-07	6.18E-07	0.0167	0.0167	0.3685	4.5411
1.8048	1002.7594	65.0234	0.0167	0.2494	0.0010	0.0391	0.0578	0.0001	4.60E-07	-6.93E-09	-9.36E-09	-3.15E-07	5.57E-07	0.0167	0.0167	0.4316	3.8766
1.8061	1056.9214	73.8682	0.0169	0.2494	0.0010	0.0392	0.0578	0.0001	4.14E-07	-7.09E-09	-9.08E-09	-3.22E-07	5.24E-07	0.0169	0.0169	0.4413	3.8360
1.8051	1118.8065	87.2252	0.0172	0.2494	0.0010	0.0392	0.0578	0.0001	3.69E-07	-7.47E-09	-9.04E-09	-3.39E-07	5.02E-07	0.0172	0.0172	0.4650	3.7043
1.8043	1161.1239	100.0789	0.0173	0.2494	0.0010	0.0392	0.0578	0.0001	3.43E-07	-7.95E-09	-9.29E-09	-3.61E-07	4.98E-07	0.0173	0.0173	0.4954	3.4983
1.8059	1215.6599	112.6564	0.0175	0.2494	0.0010	0.0392	0.0578	0.0001	3.13E-07	-8.17E-09	-9.11E-09	-3.71E-07	4.85E-07	0.0175	0.0175	0.5087	3.4453
1.8057	1246.0544	125.3448	0.0176	0.2494	0.0010	0.0392	0.0578	0.0001	2.98E-07	-8.65E-09	-9.41E-09	-3.93E-07	4.93E-07	0.0176	0.0176	0.5388	3.2720
			As Starsen	<u> </u>	_	_		<u>_</u>	-		-		_	etras <u>v</u> etas signa			
v	n	l p	PT	BT	٣	Bn	Вр	DD	BT ON tp/OIP	Bp on the lop	B _n on tp/on	BD ON tp/OD	БКф	PKtp	UKtp	κ _φ	% U
(m/s)	(rpm)	(N)															
2 1001	500 1371	2 2244	0.0172	0 2404	0.0011	0.0201	0.0579	0.0001	1 955 06	0.525 10	2 585 00	4 335 09	1 955 06	0.0172	0.0172	0.0502	20 2102
2.1091	500.1371	-2.2244	0.0173	0.2494	0.0011	0.0391	0.0578	0.0001	1.002-00	9.535-10	2.30E-09	4.332-00	1.032-00	0.0173	0.0173	-0.0593	-29.2102
2.1000	551.5545	0.7034	0.0110	0.2494	0.0012	0.0391	0.0576	0.0001	1.52E-06	-2.46E-10	-0.00E-10	-1.13E-00	1.52E-00	0.0111	0.0111	0.0154	71.0773
2.1000	654 3490	0.0249	0.0183	0.2494	0.0011	0.0391	0.0578	0.0001	1.20E-00	-9.912-10	-2.23E-09	-4.50E-08	1.202-00	0.0165	0.0183	0.0010	29.0920
2.1007	752 6505	9.0340	0.0185	0.2494	0.0011	0.0391	0.0578	0.0001	1.00E-00	-2.20E-09	-4.00E-09	-1.03E-07	1.00E-00	0.0182	0.0102	0.1406	12.94/9 0.0547
2.1101	001 0876	19.0010	0.0100	0.2494	0.0011	0.0391	0.0578	0.0001	0.10E-07	-3.09E-09	-0.04E-09	-1.000-0/	6.33E-U/	0.0196	0.0100	0.2301	6.004/ 5.4000
2.1008	301.90/0	42.0000	0.0100	0.2494	0.0012	0.0391	0.0578	0.0001	3.08E-U/	-3.54E-09	-0.32E-U9	-2.32E-07	0.21E-U/	0.0107	0.0107	0.3451	3.4009
2.1070	1002.0789	59.4139	0.0100	0.2494	0.0012	0.0391	0.0578	0.0001	4.60E-07	-0.33E-09	-0.552-09	-2.88E-U/	5.42E-07	0.018/	0.018/	0.3944	4.7509
2.0959	1002.0033	08.8803	0.0190	0.2494	0.0011	0.0392	0.0578	0.0001	4.1/E-U/	-0.00E-09	-0.5/E-U9	-3.02E-07	5.15E-U/	0.0190	0.0190	0.414/	4.5902
2.1004	1103.4297	00.5944	0.0192	0.2494	0.0011	0.0392	0.0578	0.0001	3.80E-07	-7.09E-09	-0./12-09	-3.22E-07	4.98E-07	0.0192	0.0192	0.4418	4.303/
2.10/3	100.4003	33.1310	0.0193	0.2494	0.0011	0.0392	0.0576	0.0001	3.400-07	-7.40E-09	-0./JE-09	-3.392-07	4.04E-U/	0.0193	0.0193	0.4040	4.130/
2.1000	1214.1710	117 56/4	0.0190	0.2494	0.0011	0.0392	0.0576	0.0001	3.14E-U/	-1.1 IE-09	-0.010-09	-3.30E-07	4./UE-U/	0.0190	0.0190	0.4/99	4.0900
2.1000	1240.00/9	117.3041	0.0190	0.2494	0.0011	0.0392	0.00/0	0.0001	2.902-07	-0.11E-09	-0.02E-U9	-3.00E-U/	4.130-01	0.0190	0.0190	0.0040	3.0009

<u>Uncertainty Analysis</u> (Thrust Coefficient) Load Varying Self-Propulsion Test (Propeller fitted on)

V	n	Tp	PT	BT	Pn	Bn	B _p	Bo	Β _τ δΚ _{τρ} /δΤ _Ρ	Β _ρ δ Κ _{τρ} /δρ	B _n δK _{tp} /δn	B _D δK _{tp} /δD	BKtp	PKtp	U _{Ktp}	K _{tp}	% U
(m/s)	(rpm)	(N)															
0.0070	500 0000	0.0000	0.0005	0.0404	0.0040	0 0004	0.0570	0.0004	4 005 00	4 575 00	4 005 00	7 445 00	1 005 00	0 0005	0.0005	0.0070	04.0400
2.3079	502.2690	-3.6889	0.0205	0.2494	0.0013	0.0391	0.0578	0.0001	1.83E-06	1.57E-09	4.22E-09	7.11E-08	1.83E-06	0.0205	0.0205	-0.0976	-21.0482
2.3069	550.3896	-0.4585	0.0119	0.2494	0.0012	0.0391	0.0578	0.0001	1.53E-06	1.62E-10	3.99E-10	7.36E-09	1.53E-06	0.0120	0.0120	-0.0101	-118.4513
2.3074	603.5423	2.8578	0.0200	0.2494	0.0013	0.0391	0.0578	0.0001	1.27E-06	-8.41E-10	-1.88E-09	-3.82E-08	1.27E-06	0.0200	0.0200	0.0524	38.2765
2.3070	652.5464	7.3859	0.0207	0.2494	0.0013	0.0391	0.0578	0.0001	1.09E-06	-1.86E-09	-3.85E-09	-8.44E-08	1.09E-06	0.0207	0.0207	0.1158	17.9174
2.3084	752.0456	17.3533	0.0208	0.2494	0.0013	0.0391	0.0578	0.0001	8.17E-07	-3.29E-09	-5.92E-09	-1.49E-07	8.31E-07	0.0208	0.0208	0.2048	10.1790
2.3081	901.6673	39.3701	0.0209	0.2494	0.0013	0.0391	0.0578	0.0001	5.69E-07	-5.19E-09	-7.79E-09	-2.36E-07	6.16E-07	0.0209	0.0209	0.3232	6.4796
2.3082	1006.0527	56.3185	0.0210	0.2494	0.0013	0.0391	0.0578	0.0001	4.57E-07	-5.96E-09	-8.03E-09	-2.71E-07	5.31E-07	0.0210	0.0210	0.3713	5.6663
2.3077	1052.1662	65.819 9	0.0210	0.2494	0.0013	0.0392	0.0578	0.0001	4.18E-07	-6.37E-09	-8.20E-09	-2.89E-07	5.08E-07	0.0210	0.0210	0.3968	5.3021
2.3074	1101.3796	75.6556	0.0212	0.2494	0.0013	0.0392	0.0578	0.0001	3.81E-07	-6.68E-09	-8.22E-09	-3.03E-07	4.87E-07	0.0212	0.0212	0.4162	5.1027
2.3075	1150.4349	88.4838	0.0215	0.2494	0.0013	0.0392	0.0578	0.0001	3.49E-07	-7.16E-09	-8.44E-09	-3.25E-07	4.77E-07	0.0215	0.0215	0.4462	4.8276
2.3077	1213.5677	102.4455	0.0219	0.2494	0.0013	0.0392	0.0578	0.0001	3.14E-07	-7.45E-09	-8.33E-09	-3.38E-07	4.62E-07	0.0219	0.0219	0.4642	4.7261
2.3068	1249.1721	114.3675	0.0220	0.2494	0.0013	0.0392	0.0578	0.0001	2.96E-07	-7.85E-09	-8.53E-09	-3.57E-07	4.64E-07	0.0220	0.0220	0.4891	4.5062
		_	-	_	-	-	_	-	D 01/ 10 T	B 617 10	B 917 10	D 01/ 10D	~	•			~ 11
V	n	Ip	PT	BT	Pn	Bn	B _p	BD	BT OK tp/OIP	Bp oktp/op	B _n δK _{tp} /δn	BD 9Ktb/9D	BKtp	PKtp	UKtp	K _{tp}	% U
(m/s)	(rpm)	(N)															
	504.0554	E 4504	0.0004	0.0404	0.0045	0.0204	0.0570	0.0004	4 835 06	0.475.00	E 825 00	0.075.08	4 825 06	0.0004	0.0224	0 4254	17 0002
2.5100	504.0554	-5.1534	0.0231	0.2494	0.0015	0.0391	0.0578	0.0001	1.82E-06	2.17E-09	5.83E-09	9.87E-08	1.82E-06	0.0231	0.0231	-0.1354	-17.0992
2.5100	504.0554 552.5634	-5.1534 -2.4533	0.0231 0.0215	0.2494 0.2494	0.0015	0.0391 0.0391	0.0578	0.0001	1.82E-06 1.51E-06	2.17E-09 8.61E-10	5.83E-09 2.11E-09	9.87E-08 3.91E-08	1.82E-06 1.51E-06	0.0231 0.0215	0.0231 0.0215	-0.1354 -0.0536	-17.0992 -40.1848
2.5100 2.5086 2.5072	504.0554 552.5634 601.0760	-5.1534 -2.4533 1.5344	0.0231 0.0215 0.0209	0.2494 0.2494 0.2494	0.0015 0.0014 0.0015	0.0391 0.0391 0.0391	0.0578 0.0578 0.0578	0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06	2.17E-09 8.61E-10 -4.55E-10	5.83E-09 2.11E-09 -1.02E-09	9.87E-08 3.91E-08 -2.07E-08	1.82E-06 1.51E-06 1.28E-06	0.0231 0.0215 0.0210	0.0231 0.0215 0.0210	-0.1354 -0.0536 0.0283	-17.0992 -40.1848 73.9228
2.5100 2.5086 2.5072 2.5095	504.0554 552.5634 601.0760 651.4524	-5.1534 -2.4533 1.5344 5.3858	0.0231 0.0215 0.0209 0.0232	0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015	0.0391 0.0391 0.0391 0.0391	0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08	1.82E-06 1.51E-06 1.28E-06 1.09E-06	0.0231 0.0215 0.0210 0.0232	0.0231 0.0215 0.0210 0.0232	-0.1354 -0.0536 0.0283 0.0847	-17.0992 -40.1848 73.9228 27.4470
2.5100 2.5086 2.5072 2.5095 2.5020	504.0554 552.5634 601.0760 651.4524 751.7646	-5.1534 -2.4533 1.5344 5.3858 15.9565	0.0231 0.0215 0.0209 0.0232 0.0234	0.2494 0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015 0.0015	0.0391 0.0391 0.0391 0.0391 0.0391	0.0578 0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.18E-07	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09 -3.03E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09 -5.45E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08 -1.37E-07	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.29E-07	0.0231 0.0215 0.0210 0.0232 0.0234	0.0231 0.0215 0.0210 0.0232 0.0234	-0.1354 -0.0536 0.0283 0.0847 0.1884	-17.0992 -40.1848 73.9228 27.4470 12.4443
2.5100 2.5086 2.5072 2.5095 2.5020 2.5092	504.0554 552.5634 601.0760 651.4524 751.7646 905.0740	-5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313	0.0231 0.0215 0.0209 0.0232 0.0234 0.0237	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015 0.0015 0.0014	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	0.0578 0.0578 0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.18E-07 5.64E-07	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09 -3.03E-09 -4.96E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09 -5.45E-09 -7.42E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08 -1.37E-07 -2.25E-07	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.29E-07 6.08E-07	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237	-0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090	-17.0992 -40.1848 73.9228 27.4470 12.4443 7.6835
2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081	504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353	-5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894	0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015 0.0015 0.0014 0.0015	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.18E-07 5.64E-07 4.58E-07	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09 -3.03E-09 -4.96E-09 -5.56E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09 -5.45E-09 -7.42E-09 -7.49E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08 -1.37E-07 -2.25E-07 -2.52E-07	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.29E-07 6.08E-07 5.23E-07	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236	-0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463	-17.0992 -40.1848 73.9228 27.4470 12.4443 7.6835 6.8289
2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5081	504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015	-5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939	0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.18E-07 5.64E-07 4.58E-07 4.17E-07	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09 -3.03E-09 -4.96E-09 -5.56E-09 -6.04E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09 -5.45E-09 -7.42E-09 -7.49E-09 -7.77E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08 -1.37E-07 -2.25E-07 -2.52E-07 -2.74E-07	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.29E-07 6.08E-07 5.23E-07 4.99E-07	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238	-0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760	-17.0992 -40.1848 73.9228 27.4470 12.4443 7.6835 6.8289 6.3424
2.5100 2.5086 2.5072 2.5095 2.5092 2.5092 2.5081 2.5087 2.5087	504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015 1103.3557	-5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930	0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.18E-07 5.64E-07 4.58E-07 4.17E-07 3.80E-07	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09 -3.03E-09 -4.96E-09 -5.56E-09 -6.04E-09 -6.37E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09 -5.45E-09 -7.42E-09 -7.42E-09 -7.77E-09 -7.83E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08 -1.37E-07 -2.25E-07 -2.52E-07 -2.74E-07 -2.89E-07	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.29E-07 6.08E-07 5.23E-07 4.99E-07 4.78E-07	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238	-0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760 0.3969	-17.0992 -40.1848 73.9228 27.4470 12.4443 7.6835 6.8289 6.3424 6.0082
2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 2.5087 2.5023	504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015 1103.3557 1154.7567	-5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930 84.3833	0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0239	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014 0.0015	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.18E-07 5.64E-07 4.58E-07 4.17E-07 3.80E-07 3.47E-07	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09 -3.03E-09 -4.96E-09 -6.04E-09 -6.37E-09 -6.78E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09 -5.45E-09 -7.42E-09 -7.49E-09 -7.79E-09 -7.83E-09 -7.96E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08 -1.37E-07 -2.25E-07 -2.52E-07 -2.52E-07 -2.74E-07 -3.08E-07	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.29E-07 6.08E-07 5.23E-07 4.99E-07 4.78E-07 4.64E-07	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0238	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0238	-0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760 0.3969 0.4223	-17.0992 -40.1848 73.9228 27.4470 12.4443 7.6835 6.8289 6.3424 6.0082 5.6701
2.5100 2.5086 2.5072 2.5095 2.5020 2.5092 2.5081 2.5087 2.5087 2.5023 2.5092	504.0554 552.5634 601.0760 651.4524 751.7646 905.0740 1004.8353 1052.4015 1103.3557 1154.7567 1207.1602	-5.1534 -2.4533 1.5344 5.3858 15.9565 37.9313 52.3894 62.3939 72.3930 84.3833 97.3348	0.0231 0.0215 0.0209 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0238 0.0239 0.0241	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.0015 0.0014 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015 0.0015 0.0015	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578 0.0578	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.18E-07 5.64E-07 4.58E-07 4.17E-07 3.80E-07 3.47E-07 3.17E-07	2.17E-09 8.61E-10 -4.55E-10 -1.36E-09 -3.03E-09 -4.96E-09 -5.56E-09 -6.04E-09 -6.37E-09 -6.78E-09 -7.16E-09	5.83E-09 2.11E-09 -1.02E-09 -2.82E-09 -5.45E-09 -7.42E-09 -7.49E-09 -7.77E-09 -7.83E-09 -7.83E-09 -8.04E-09	9.87E-08 3.91E-08 -2.07E-08 -6.17E-08 -1.37E-07 -2.25E-07 -2.52E-07 -2.74E-07 -2.89E-07 -3.08E-07 -3.25E-07	1.82E-06 1.51E-06 1.28E-06 1.09E-06 8.29E-07 6.08E-07 5.23E-07 4.99E-07 4.78E-07 4.64E-07 4.54E-07	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0239 0.0241	0.0231 0.0215 0.0210 0.0232 0.0234 0.0237 0.0236 0.0238 0.0238 0.0239 0.0241	-0.1354 -0.0536 0.0283 0.0847 0.1884 0.3090 0.3463 0.3760 0.3969 0.4223 0.4458	-17.0992 -40.1848 73.9228 27.4470 12.4443 7.6835 6.8289 6.3424 6.0082 5.6701 5.4172

Load Varying Self-Propulsion Test (Prop. + Duct fitted on) Uncertainty Analysis (Propeller Rotational Speed)

V	Vehicle Velocity (m/s)	
n	Propeller Rotational Speed (rpm)	
С	Number of Counted Pulses in Time dt	
dt	Time (s)	
S.D	Standard Deviation	
Pn	Precision Error for n	$P_n = 2 \times S.D$
B _c	Bias Error for C	
B _{dt}	Bias Error for dt	
Bn	Bias Error for n	$B_n = ((\delta n / \delta C B_c)^2 + (\delta n / \delta dt B_{dt})^2)^{1/2}$
Un	Total Error for n	$U_n = (B_n^2 + P_n^2)^{1/2}$
% Unc.	Percentage Uncertainty for n	% Unc. = (U _n / n) x 100

V (m/s)	n (rpm)	P _n	B _c δn/δC	$\mathbf{B}_{dt} \delta \mathbf{n} / \delta dt$	B _n	Un	% Unc.
(1183)	(ipin)						
0 8002	499 5767	0 0005	0 0391	-0.0009	0.0391	0 0391	0.0078
0.8004	551 4566	0.0005	0.0391	-0.0010	0.0391	0.0391	0.0071
0.8012	600.4575	0.0005	0.0391	-0.0011	0.0391	0.0391	0.0065
0.8018	650.4466	0.0005	0.0391	-0.0013	0.0391	0.0391	0.0060
0.8002	753.2179	0.0005	0.0391	-0.0016	0.0391	0.0391	0.0052
0.8002	902.9860	0.0005	0.0391	-0.0020	0.0391	0.0391	0.0043
0.8003	1008.5085	0.0005	0.0391	-0.0023	0.0391	0.0392	0.0039
0.8005	1052.3455	0.0005	0.0391	-0.0024	0.0392	0.0392	0.0037
0.8014	1104.1946	0.0005	0.0391	-0.0025	0.0392	0.0392	0.0035
0.8002	1150.2549	0.0005	0.0391	-0.0027	0.0392	0.0392	0.0034
0.8008	1206.8237	0.0005	0.0391	-0.0028	0.0392	0.0392	0.0032
0.8006	1252.7469	0.0005	0.0391	-0.0030	0.0392	0.0392	0.0031
		_			_		
V	n	P _n	Β_c δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.
V (m/s)	n (rpm)	Pn	B _c δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.
V (m/s)	n (rpm)	Pn	Β_c δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.
V (m/s) 1.1006	n (rpm) 500.6686	P _n 0.0006	Β _c δ n/δC 0.0391	B _{dt} δn/δdt	B _n 0.0391	U _n 0.0391	% Unc.
V (m/s) 1.1006 1.1022	n (rpm) 500.6686 552.7477	P _n 0.0006 0.0006	B _c δn/δC	B _{dt} δ n/δdt -0.0009 -0.0010	B _n 0.0391 0.0391	U n 0.0391 0.0391	% Unc.
V (m/s) 1.1006 1.1022 1.1031	n (rpm) 500.6686 552.7477 603.4646	P _n 0.0006 0.0006 0.0007	B _c δn/δC 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011	B _n 0.0391 0.0391 0.0391	U n 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065
V (m/s) 1.1006 1.1022 1.1031 1.1032	n (rpm) 500.6686 552.7477 603.4646 651.6550	P _n 0.0006 0.0006 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011 -0.0013	B _n 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065 0.0060
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726	P _n 0.0006 0.0006 0.0007 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016	B _n 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126	P _n 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880	P _n 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0023	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566	P _n 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024 -0.0024	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112	P _n 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024 -0.0025 -0.0025	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037 0.0035
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1025	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112 1156.9473	P _n 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024 -0.0025 -0.0027 0.0027	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037 0.0035 0.0034
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1015	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112 1156.9473 1212.0122	P _n 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δ n/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024 -0.0025 -0.0027 0.0027 0.0028	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037 0.0035 0.0034 0.0032

V	n	Pn	Β _c δn/δ C	$\mathbf{B}_{dt} \delta \mathbf{n} / \delta \mathbf{dt}$	B _n	Un	% Unc.
(m/s)	(rpm)						
1.3033	501.8541	0.0008	0.0391	-0.0009	0.0391	0.0391	0.0078
1.3116	550.7550	0.0007	0.0391	-0.0010	0.0391	0.0391	0.0071
1.3018	601.3456	0.0007	0.0391	-0.0011	0.0391	0.0391	0.0065
1.3022	654.7460	0.0008	0.0391	-0.0013	0.0391	0.0391	0.0060
1.3025	752.1400	0.0008	0.0391	-0.0016	0.0391	0.0391	0.0052
1.3028	907.7795	0.0008	0.0391	-0.0020	0.0391	0.0391	0.0043
1.3020	1006.9377	0.0008	0.0391	-0.0023	0.0391	0.0392	0.0039
1.3014	1051.7237	0.0007	0.0391	-0.0024	0.0392	0.0392	0.0037
1.3116	1103.5535	0.0008	0.0391	-0.0025	0.0392	0.0392	0.0035
1.3007	1155.5678	0.0008	0.0391	-0.0027	0.0392	0.0392	0.0034
1.3006	1208.2135	0.0008	0.0391	-0.0028	0.0392	0.0392	0.0032
1.3020	1256.7456	0.0008	0.0391	-0.0030	0.0392	0.0392	0.0031
		_	B 0 100	B 0 10 11	-		0/ 11
V	n	Pn	B _c δn/δC	B _{dt} δn/δdt	B _n	U _n	% Unc.
V (m/s)	n (rpm)	Pn	B _c δn/δC	B _{dt} δn/δdt	Bn	U,	% Unc.
V (m/s)	n (rpm)	Pn	B _c δn/δC	B _{dt} δn/δdt	Bn	U,	% Unc.
V (m/s) 1.6030	n (rpm) 503.1755	P _n 0.0009	B _c δn/δC	B _{dt} δn/δdt	B _n 0.0391	U n 0.0391	% Unc.
V (m/s) 1.6030 1.6053	n (rpm) 503.1755 554.4423	P _n 0.0009 0.0009	B _c δn/δC	-0.0009 -0.0010	B _n 0.0391 0.0391	U _n 0.0391 0.0391	% Unc.
V (m/s) 1.6030 1.6053 1.6045	n (rpm) 503.1755 554.4423 604.3557	P _n 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011	B _n 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065
V (m/s) 1.6030 1.6053 1.6045 1.6063	n (rpm) 503.1755 554.4423 604.3557 652.4344	P _n 0.0009 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013	B _n 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065 0.0060
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439	P _n 0.0009 0.0009 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016	B _n 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6059	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	U, 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063 1.6059	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0024 -0.0025	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037 0.0036
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6059 1.6059 1.6059	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010 1154.9706	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _c δn/δC 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _{dt} δn/δdt -0.0009 -0.0010 -0.0011 -0.0013 -0.0016 -0.0020 -0.0023 -0.0023 -0.0024 -0.0025 -0.0027	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	U _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	% Unc. 0.0078 0.0071 0.0065 0.0060 0.0052 0.0043 0.0039 0.0037 0.0036 0.0034

0.0391

<u>Uncertainty Analysis</u> (Rotational Speed) Load Varying Self-Propulsion Test (Prop.+ Duct fitted on)

•

1.6019 1257.0444 0.0009

0.0392

0.0031

0.0392

-0.0030

V	n	Pn	Β _c δn/δ C	B _{dt} δn/δdt	Bn	Un	% Unc.
(m/s)	(rpm)						
1 8051	503 4015	0.0010	0.0391	-0 0009	0.0391	0.0391	0 0078
1.8061	550.5344	0.0010	0.0391	-0.0010	0.0391	0.0391	0.0071
1.8054	601.7534	0.0011	0.0391	-0.0011	0.0391	0.0391	0.0065
1.8043	655.6402	0.0011	0.0391	-0.0013	0.0391	0.0391	0.0060
1.8049	756.7032	0.0011	0.0391	-0.0016	0.0391	0.0391	0.0052
1.8053	903.5768	0.0011	0.0391	-0.0020	0.0391	0.0391	0.0043
1.8053	1007.3473	0.0010	0.0391	-0.0023	0.0391	0.0392	0.0039
1.8062	1051.7675	0.0011	0.0391	-0.0024	0.0392	0.0392	0.0037
1.8057	1105.5646	0.0011	0.0391	-0.0025	0.0392	0.0392	0.0035
1.8064	1151.0459	0.0011	0.0391	-0.0027	0.0392	0.0392	0.0034
1.8051	1199.5015	0.0011	0.0391	-0.0028	0.0392	0.0392	0.0033
1.8046	1261.8668	0.0011	0.0391	-0.0030	0.0392	0.0392	0.0031

ş.

V	n	Pn	B _c δn/δC	B _{dt} δn/δdt	Bn	Un	% Unc.
(m/s)	(rpm)						
2.1082	500.4856	0.0012	0.0391	-0.0009	0.0391	0.0391	0.0078
2.1078	552.4532	0.0012	0.0391	-0.0010	0.0391	0.0391	0.0071
2.1093	604.4664	0.0013	0.0391	-0.0011	0.0391	0.0391	0.0065
2.1056	651.4342	0.0013	0.0391	-0.0013	0.0391	0.0391	0.0060
2.1084	754.9317	0.0012	0.0391	-0.0016	0.0391	0.0391	0.0052
2.1095	901.1852	0.0012	0.0391	-0.0020	0.0391	0.0392	0.0043
2.1082	1002.9008	0.0012	0.0391	-0.0023	0.0391	0.0392	0.0039
2.1098	1053.7204	0.0012	0.0391	-0.0024	0.0392	0.0392	0.0037
2.1103	1101.8507	0.0013	0.0391	-0.0025	0.0392	0.0392	0.0036
2.1101	1153.6637	0.0013	0.0391	-0.0027	0.0392	0.0392	0.0034
2.1091	1210.1050	0.0013	0.0391	-0.0028	0.0392	0.0392	0.0032
2.1086	1258.3035	0.0013	0.0391	-0.0030	0.0392	0.0392	0.0031

V	n	Pn	B _c δn/δC	$\mathbf{B}_{dt} \delta \mathbf{n} / \delta \mathbf{dt}$	B _n	Un	% Unc.
(m/s)	(rpm)						
	,						
2.3113	506.5541	0.0013	0.0391	-0.0009	0.0391	0.0391	0.0077
2.3012	554.4124	0.0014	0.0391	-0.0010	0.0391	0.0391	0.0071
2.3106	602.4889	0.0013	0.0391	-0.0011	0.0391	0.0391	0.0065
2.3087	653.7372	0.0014	0.0391	-0.0013	0.0391	0.0391	0.0060
2.3127	751.5777	0.0013	0.0391	-0.0016	0.0391	0.0391	0.0052
2.3075	907.7627	0.0014	0.0391	-0.0020	0.0391	0.0392	0.0043
2.3104	1009.7375	0.0014	0.0391	-0.0023	0.0391	0.0392	0.0039
2.3089	1055.8389	0.0014	0.0391	-0.0024	0.0392	0.0392	0.0037
2.3716	1105.4558	0.0014	0.0391	-0.0025	0.0392	0.0392	0.0035
2.3101	1156.8492	0.0014	0.0391	-0.0027	0.0392	0.0392	0.0034
2.3079	1207.4927	0.0014	0.0391	-0.0028	0.0392	0.0392	0.0032
2.3092	1255.9025	0.0014	0.0391	-0.0030	0.0392	0.0392	0.0031
	<u>_</u>	•	0 S-180	D 9	P		0/ 11
V	n	P _n	BC OU/OC	B _{dt} on/out	D _n	Un	% UNC.
(m/s)	(rpm)						
2 5001	504 8586	0.0015	0 0301	-0 0009	0 0391	0 0391	0.0077
2.5034	552 1213	0.0015	0.0391	-0.0000	0.0391	0.0001	0.0071
2.5104	604 5795	0.0015	0.0391	-0.0010	0.0391	0.0001	0.0065
2.5007	653 2312	0.0015	0.0001	-0.0013	0.0391	0.0391	0.0060
2.5107	753 2477	0.0015	0.0001	-0.0016	0.0391	0.0391	0.0052
2.5095	906 0469	0.0015	0.0391	-0.0010	0.0391	0.0392	0.0043
2.5033	1002 7932	0.0015	0.0391	-0.0023	0.0391	0.0392	0.0039
2.5120	1052 4234	0.0015	0.0391	-0.0024	0.0392	0.0392	0.0037
2 5100	1106 7229	0.0015	0.0391	-0.0025	0.0392	0.0392	0.0035
2 5101	1152 3582	0.0016	0.0391	-0.0027	0.0392	0.0392	0.0034

0.0391

0.0391

2.5109

1204.5756

2.5096 1256.7444 0.0016

0.0015

<u>Uncertainty Analysis</u> (Rotational Speed) Load Varying Self-Propulsion Test (Prop.+ Duct fitted on)

0.0392

0.0392

0.0033

0.0031

0.0392

0.0392

-0.0028

-0.0030

Load Varying Self-Propulsion Test (Prop. + Duct fitted on) Uncertainty Analysis (Velocity)

v	Vehicle Velocity (m/s)	
D	Diameter of Carriage Wheel (m)	
С	Number of Counted Pulses in Time dt	
dt	Time (s)	
S.D	Standard Deviation	
P_V	Precision Error for V	$P_V = 2 \times S.D$
Bc	Bias Error for C	
B _D	Bias Error for D	
B _{dt}	Bias Error for dt	
Bv	Bias Error for V	$B_V = ((\delta V / \delta C B_C)^2 + (\delta V / \delta D B_D)^2 + (\delta V / \delta dt B_{dt})^2)^{1/2}$
Uv	Total Error for V	$U_V = (B_V^2 + P_V^2)^{1/2}$
% Unc.	Percentage Uncertainty for V	% Unc. = (U _v / V) x 100

V	Pv	Β _c δV/δC	$\mathbf{B}_{\mathbf{D}} \delta \mathbf{V} / \delta \mathbf{D}$	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta dt$	Bv	Uv	% Unc
(m/s)							
0 8002	0 0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4421
0.8004	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4417
0.8012	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4426
0.8018	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4415
0.8002	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4429
0.8002	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4421
0.8003	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4420
0.8005	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4422
0.8014	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4419
0.8002	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4432
0.8008	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4426
0.8006	0.0004	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4424
	•	D SW80	D SW/SD	D \$11/5-14	P	11	0/ 11ma
V	Pv	BC 9A19C	R ^D 0A10D	B _{dt} 0V/00t	BV	Uγ	% UNC
(11/5)							

V	Fγ	DC OVIOC	DD ONIOD		Þv	Uγ	/0 UIIC
(m/s)							
1.1006	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3237
1.1022	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3230
1.1031	0.0006	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3238
1.1032	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3232
1.1005	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3242
1.1026	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3231
1.1014	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3240
1.1017	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3231
1.1013	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3240
1.1020	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3235
1.1015	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3239
1.1011	0.0006	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3243

V	Pv	Β _c δV/δC	Β _D δV/δD	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta dt$	Β _ν	Uv	% Unc
(m/s)							
1.3033	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2751
1.3116	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2739
1.3018	0.0007	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2765
1.3022	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2756
1.3025	0.0007	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2761
1.3028	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2758
1.3020	0.0007	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2765
1.3014	0.0007	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2766
1.3116	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2734
1.3007	0.0007	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2765
1.3006	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2760
1.3020	0.0007	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2768
M	D			R SV/Sdt	P	11	% line
V	ΓV	DCOMIC	DDOMOD	Ddt O VIOUL	υv	00	78 OHC
(m/s)							
1 6030	0 0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2255
1.6053	0.0008	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2262
1.6045	0.0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2261
1.6063	0.0008	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2261
1.6063	0.0008	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2264
1.6059	0.0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2254
1.6056	0.0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2259
1.6063	0.0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2256
1.6059	0.0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2256
1.6050	0.0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2260
1 6054					~ ~ ~ ~ ~		
1.0001	0.0008	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2262

V	Pv	Β _C δ V /δ C	Β_D δV/δD	B _{dt} δV/δdt	Β _ν	Uv	% Unc
(m/s)							
4 0054	0 0000	0.0025	0.0006	0.00010	0.0026	0 0027	0 2020
1.8051	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2039
1.8061	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2041
1.8054	0.0008	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2028
1.8043	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2037
1.8049	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2034
1.8053	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2042
1.8053	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2031
1.8062	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2035
1.8057	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2039
1.8064	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2041
1.8051	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2039
1.8046	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2037
V	Pv	Β _C δV/δC	Β _D δV/δD	B _{dt} δV/δdt	Bv	Uv	% Unc
(m/s)							
2.1082	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1772
2.1078	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1767
2.1093	0.0011	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1776
2.1056	0.0011	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1777
2.1084	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1772
2.1095	0.0011	0.0035	0.0007	-0.00023	0.0036	0.0038	0.1779
2.1082	0.0011	0.0035	0.0007	-0.00023	0.0036	0.0038	0.1783
2.1098	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1771

0.0007

0.0007

0.0007

0.0007

-0.00023

-0.00023

-0.00023

-0.00023

2.1103

2.1101

2.1091

~ 2.1086

0.0011

0.0011

0.0011

0.0011

0.0035

0.0035

0.0035

0.0035

<u>Uncertainty Analysis</u> (Velocity) Load Varying Self - Propulsion Test (Prop. + Duct fitted on)

0.0037

0.0038

0.0038

0.0037

0.1773

0.1779

0.1782

0.1774

0.0036

0.0036

0.0036

0.0036

V	Pv	Β _C δ V /δ C	Β _D δV/δD	B _{dt} δV/δdt	Bv	Uγ	% Unc
(m/s)							
2.3113	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1629
2.3012	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1657
2.3106	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1648
2.3087	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1643
2.3127	0.0011	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1635
2.3075	0.0013	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1655
2.3104	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1640
2.3089	0.0013	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1657
2.3716	0.0013	0.0035	0.0008	-0.00027	0.0036	0.0038	0.1613
2.3101	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1648
2.3079	0.0013	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1661
2.3092	0.0013	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1654

V	Pv	Β _c δV/δC	Β _D δV/δD	$\mathbf{B}_{dt} \delta \mathbf{V} / \delta \mathbf{dt}$	Bv	Uv	% Unc
(m/s)							
2.5094	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1541
2.5104	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0038	0.1529
2.5067	0.0014	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1545
2.5107	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1534
2.5093	0.0014	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1546
2.5099	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1535
2.5126	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1536
2.5100	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1540
2.5104	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1537
2.5101	0.0014	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1543
2.5109	0.0014	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1545
2.5096	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1540

Load Varying Self-Propulsion Test (Prop. + Duct fitted on) Uncertainty Analysis (Torque)

V	Vehicle Velocity (m/s)	
Q	Propeller Torque (N-m)	
F	Calibrating Weight (N)	
R	Lever Arm (m)	
Pq	Precision Error for Q	$P_Q = 2 \times S.D$
S.D	Standard Deviation	
S.E.E	Standard Error Estimate	
AD	Analog to Digital Converter	
B_F	Bias Error for F	
B _R	Bias Error for R	
B ₁	Bias Error due to Calibration	$B_1 = ((\delta Q / \delta F B_F)^2 + (\delta Q / \delta R B_R)^2)^{1/2}$
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Data Reduction	$B_3 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
BQ	Bias Error for Q	$B_Q = (B_1^2 + B_2^2 + B_3^2)^{1/2}$
Uq	Total Error for Q	$U_{Q} = (B_{Q}^{2} + P_{Q}^{2})^{1/2}$
% Unc.	Percentage Uncertainty for Q	% Unc. = (U _Q / Q) x 100

V	Q	Pa	Β _F δ Q /δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
	•									
0.8002	0.3364	0.0008	0.0000	0.0003	0.0003	0.0076	0.0007	0.0076	0.0077	2.2836
0.8004	0.4972	0.0008	0.0000	0.0004	0.0004	0.0076	0.0007	0.0076	0.0077	1.5463
0.8012	0.6260	0.0008	0.0000	0.0005	0.0005	0.0076	0.0007	0.0077	0.0077	1.2293
0.8018	0.8160	0.0008	0.0000	0.0007	0.0007	0.0076	0.0007	0.0077	0.0077	0.9447
0.8002	1.2582	0.0008	0.0001	0.0010	0.0010	0.0076	0.0007	0.0077	0.0077	0.6156
0.8002	1.9967	0.0009	0.0001	0.0016	0.0016	0.0076	0.0007	0.0078	0.0078	0.3930
0.8003	2.5232	0.0009	0.0001	0.0020	0.0020	0.0076	0.0007	0.0079	0.0079	0.3149
0.8005	2.8657	0.0009	0.0001	0.0023	0.0023	0.0076	0.0007	0.0080	0.0080	0.2800
0.8014	3.1813	0.0009	0.0002	0.0025	0.0026	0.0076	0.0007	0.0080	0.0081	0.2546
0.8002	3.5448	0.0009	0.0002	0.0028	0.0028	0.0076	0.0007	0.0081	0.0082	0.2313
0.8008	3.9061	0.0009	0.0002	0.0031	0.0031	0.0076	0.0007	0.0083	0.0083	0.2126
0.8006	4.2519	0.0009	0.0002	0.0034	0.0034	0.0076	0.0007	0.0084	0.0084	0.1979
	_	_	D COICE		_	_	_	_		0/ 11
V	Q	Pq	Β_F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	BQ	Uq	% Unc.
V (m/s)	Q (N-m)	Pa	B _F δ Q /δF	B _R δ Q /δR	B ₁	B ₂	B ₃	Bq	Ua	% Unc.
V (m/s)	Q (N-m)	Pa	Β _F δ Q /δF	Β _R δ Q /δR	B ₁	B ₂	B ₃	B _Q	U _Q	% Unc.
V (m/s)	Q (N-m) 0.3193	P _Q 0.0009	B _F δQ/δF	B _R δ Q /δR	B ₁ 0.0003	B ₂ 0.0076	B ₃	B _Q	U _Q	% Unc.
V (m/s) 1.1006 1.1022	Q (N-m) 0.3193 0.4722	P _Q 0.0009 0.0010	B _F δQ/δF	B _R δQ/δR 0.0003 0.0004	B ₁ 0.0003 0.0004	B ₂ 0.0076 0.0076	B ₃	B _Q 0.0076 0.0076	U _Q 0.0077 0.0077	% Unc. 2.4103 1.6312
V (m/s) 1.1006 1.1022 1.1031	Q (N-m) 0.3193 0.4722 0.6209	P _Q 0.0009 0.0010 0.0010	B _F δQ/δF	B _R δ Q /δR 0.0003 0.0004 0.0005	B ₁ 0.0003 0.0004 0.0005	B ₂ 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077	U _Q 0.0077 0.0077 0.0077	% Unc. 2.4103 1.6312 1.2420
V (m/s) 1.1006 1.1022 1.1031 1.1032	Q (N-m) 0.3193 0.4722 0.6209 0.8161	P _Q 0.0009 0.0010 0.0010 0.0010	B _F δQ/δF	B _R δ Q/ δR 0.0003 0.0004 0.0005 0.0007	B ₁ 0.0003 0.0004 0.0005 0.0007	B ₂ 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077	U _Q 0.0077 0.0077 0.0077 0.0077	% Unc. 2.4103 1.6312 1.2420 0.9466
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195	P _Q 0.0009 0.0010 0.0010 0.0010 0.0010	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000 0.0001	B _R δ Q /δR 0.0003 0.0004 0.0005 0.0007 0.0010	B ₁ 0.0003 0.0004 0.0005 0.0007 0.0010	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078	% Unc. 2.4103 1.6312 1.2420 0.9466 0.6364
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.9412	P _Q 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001	B _R δQ/δR 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016	B ₁ 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079	% Unc. 2.4103 1.6312 1.2420 0.9466 0.6364 0.4047
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885	P _Q 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001	B _R δQ/δR 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020	B ₁ 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080	% Unc. 2.4103 1.6312 1.2420 0.9466 0.6364 0.4047 0.3198
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7980 2.7980	P _Q 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	B _F δQ/δF 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001	B _R δQ/δR 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022 0.0025	B ₁ 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080	% Unc. 2.4103 1.6312 1.2420 0.9466 0.6364 0.4047 0.3198 0.2868
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7980 3.1236 3.1236	P _Q 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	B _F δQ/δF 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002	B _R δQ/δR 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022 0.0025 0.0025	B ₁ 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022 0.0025	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080	U _Q 0.0077 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080 0.0081	% Unc. 2.4103 1.6312 1.2420 0.9466 0.6364 0.4047 0.3198 0.2868 0.2594
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7980 3.1236 3.4722	P _Q 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0011 0.0011	B _F δQ/δF 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002	B _R δQ/δR 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022 0.0025 0.0025 0.0028	B ₁ 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022 0.0025 0.0028	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080 0.0081	Uq 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082	% Unc. 2.4103 1.6312 1.2420 0.9466 0.6364 0.4047 0.3198 0.2868 0.2594 0.2360
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1015	Q (N-m) 0.3193 0.4722 0.6209 0.8161 1.2195 1.9412 2.4885 2.7980 3.1236 3.4722 3.8531	P _Q 0.0009 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0011 0.0011	B _F δQ/δF 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002	B _R δQ/δR 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022 0.0025 0.0025 0.0028 0.0031	B ₁ 0.0003 0.0004 0.0005 0.0007 0.0010 0.0016 0.0020 0.0022 0.0022 0.0025 0.0028 0.0031	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082	Uq 0.0077 0.0077 0.0077 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082 0.0083	% Unc. 2.4103 1.6312 1.2420 0.9466 0.6364 0.4047 0.3198 0.2868 0.2594 0.2360 0.2155 0.2155

V	Q	Pa	B _F δQ/δF	B _R δ Q /δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
1.3033	0.2851	0.0010	0.0000	0.0002	0.0002	0.0076	0.0007	0.0076	0.0077	2.7024
1.3116	0.4280	0.0011	0.0000	0.0003	0.0003	0.0076	0.0007	0.0076	0.0077	1.8030
1.3018	0.5866	0.0011	0.0000	0.0005	0.0005	0.0076	0.0007	0.0076	0.0077	1.3173
1.3022	0.7812	0.0012	0.0000	0.0006	0.0006	0.0076	0.0007	0.0077	0.0078	0.9926
1.3025	1.1578	0.0012	0.0001	0.0009	0.0009	0.0076	0.0007	0.0077	0.0078	0.6725
1.3028	1.9016	0.0012	0.0001	0.0015	0.0015	0.0076	0.0007	0.0078	0.0079	0.4145
1.3020	2.4451	0.0012	0.0001	0.0020	0.0020	0.0076	0.0007	0.0079	0.0080	0.3262
1.3014	2.6985	0.0012	0.0001	0.0022	0.0022	0.0076	0.0007	0.0079	0.0080	0.2976
1.3116	3.0711	0.0013	0.0002	0.0025	0.0025	0.0076	0.0007	0.0080	0.0081	0.2644
1.3007	3.4310	0.0013	0.0002	0.0027	0.0028	0.0076	0.0007	0.0081	0.0082	0.2394
1.3006	3.7775	0.0013	0.0002	0.0030	0.0030	0.0076	0.0007	0.0082	0.0083	0.2201
1.3020	4.1836	0.0013	0.0002	0.0033	0.0034	0.0076	0.0007	0.0083	0.0084	0.2017
	_				_	_		-		A/ II
V	Q	Pq	B _F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
V (m/s)	Q (N-m)	Pa	Β_F δQ/δF	B _R δ Q /δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
V (m/s)	Q (N-m)	Po	B _F δ Q /δF	B _R δQ/δR	B ₁	B ₂	B ₃	BQ	U _Q	% Unc.
V (m/s) 1.6030	Q (N-m) 0.2466	Ρ _Q 0.0011	Β_F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	B _Q	U _Q	% Unc.
V (m/s) 1.6030 1.6053	Q (N-m) 0.2466 0.3896	Ρ _Q 0.0011 0.0013	B _F δQ/δF	B _R δ Q /δR	B ₁ 0.0002 0.0003	B ₂ 0.0076 0.0076	B ₃ 0.0007 0.0007	0.0076	U _Q 0.0077 0.0078	% Unc. 3.1292 1.9894
V (m/s) 1.6030 1.6053 1.6045	Q (N-m) 0.2466 0.3896 0.5547	P _Q 0.0011 0.0013 0.0013	B _F δQ/δF 0.0000 0.0000 0.0000	B _R δ Q /δR 0.0002 0.0003 0.0004	B ₁ 0.0002 0.0003 0.0004	B ₂ 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0076	U _Q 0.0077 0.0078 0.0078	% Unc. 3.1292 1.9894 1.3990
V (m/s) 1.6030 1.6053 1.6045 1.6063	Q (N-m) 0.2466 0.3896 0.5547 0.7494	P _Q 0.0011 0.0013 0.0013 0.0013	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000	B _R δQ/δR 0.0002 0.0003 0.0004 0.0006	B ₁ 0.0002 0.0003 0.0004 0.0006	B ₂ 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0076 0.0077	U _Q 0.0077 0.0078 0.0078 0.0078	% Unc. 3.1292 1.9894 1.3990 1.0372
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132	P _Q 0.0011 0.0013 0.0013 0.0013 0.0013	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000 0.0001	B _R δ Q /δR 0.0002 0.0003 0.0004 0.0006 0.0009	B ₁ 0.0002 0.0003 0.0004 0.0006 0.0009	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077	U _Q 0.0077 0.0078 0.0078 0.0078 0.0078	% Unc. 3.1292 1.9894 1.3990 1.0372 0.7008
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053	P _Q 0.0011 0.0013 0.0013 0.0013 0.0013 0.0013	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001	B _R δ Q /δR 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014	B ₁ 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077	U _Q 0.0077 0.0078 0.0078 0.0078 0.0078 0.0079	% Unc. 3.1292 1.9894 1.3990 1.0372 0.7008 0.4368
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295	P _Q 0.0011 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001	B _R δ Q /δR 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019	B ₁ 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0078 0.0079	Uq 0.0077 0.0078 0.0078 0.0078 0.0078 0.0079 0.0080	% Unc. 3.1292 1.9894 1.3990 1.0372 0.7008 0.4368 0.3290
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6063	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763	P _Q 0.0011 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014	B _F δQ/δF 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001	B _R δ Q /δR 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019 0.0021	B ₁ 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019 0.0021	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079	Uq 0.0077 0.0078 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080	% Unc. 3.1292 1.9894 1.3990 1.0372 0.7008 0.4368 0.3290 0.3006
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063 1.6059	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763 3.0303	P _Q 0.0011 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014	B _F δQ/δF 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _R δQ/δR 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019 0.0021 0.0024	B ₁ 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019 0.0021 0.0024	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079 0.0080	U _Q 0.0077 0.0078 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081	% Unc. 3.1292 1.9894 1.3990 1.0372 0.7008 0.4368 0.3290 0.3006 0.2682
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6063 1.6059 1.6059	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763 3.0303 3.3480	P _Q 0.0011 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014	B _F δQ/δF 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002	B _R δQ/δR 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019 0.0021 0.0024 0.0027	B ₁ 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019 0.0021 0.0024 0.0027	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0078 0.0079 0.0079 0.0079 0.0080 0.0081	U _Q 0.0077 0.0078 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082	% Unc. 3.1292 1.9894 1.3990 1.0372 0.7008 0.4368 0.3290 0.3006 0.2682 0.2452
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6053 1.6059 1.6050 1.6050	Q (N-m) 0.2466 0.3896 0.5547 0.7494 1.1132 1.8053 2.4295 2.6763 3.0303 3.3480 3.7189	P _Q 0.0011 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014 0.0014 0.0014	B _F δQ/δF 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002	B _R δ Q /δR 0.0002 0.0003 0.0004 0.0009 0.0014 0.0019 0.0021 0.0021 0.0027 0.0030	B ₁ 0.0002 0.0003 0.0004 0.0006 0.0009 0.0014 0.0019 0.0021 0.0021 0.0027 0.0030	B ₂ 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	B ₃ 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _Q 0.0076 0.0076 0.0077 0.0077 0.0078 0.0079 0.0079 0.0080 0.0081 0.0082	U _Q 0.0077 0.0078 0.0078 0.0078 0.0078 0.0079 0.0080 0.0080 0.0081 0.0082 0.0083	% Unc. 3.1292 1.9894 1.3990 1.0372 0.7008 0.4368 0.3290 0.3006 0.2682 0.2452 0.2235

V	Q	Pa	Β_F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
•••••••••••••••••••••••••••••••••••••••										
1.8051	0.2345	0.0012	0.0000	0.0002	0.0002	0.0076	0.0007	0.0076	0.0077	3.2962
1.8061	0.3599	0.0014	0.0000	0.0003	0.0003	0.0076	0.0007	0.0076	0.0078	2.1588
1.8054	0.4952	0.0014	0.0000	0.0004	0.0004	0.0076	0.0007	0.0076	0.0078	1.5708
1.8043	0.7021	0.0015	0.0000	0.0006	0.0006	0.0076	0.0007	0.0077	0.0078	1.1098
1.8049	1.1097	0.0015	0.0001	0.0009	0.0009	0.0076	0.0007	0.0077	0.0078	0.7050
1.8053	1.7817	0.0015	0.0001	0.0014	0.0014	0.0076	0.0007	0.0078	0.0079	0.4438
1.8053	2.3494	0.0015	0.0001	0.0019	0.0019	0.0076	0.0007	0.0079	0.0080	0.3405
1.8062	2.6355	0.0015	0.0001	0.0021	0.0021	0.0076	0.0007	0.0079	0.0081	0.3058
1.8057	2.9403	0.0015	0.0001	0.0024	0.0024	0.0076	0.0007	0.0080	0.0081	0.2764
1.8064	3.2937	0.0015	0.0002	0.0026	0.0026	0.0076	0.0007	0.0081	0.0082	0.2494
1.8051	3.6086	0.0015	0.0002	0.0029	0.0029	0.0076	0.0007	0.0082	0.0083	0.2301
1.8046	4.0584	0.0015	0.0002	0.0032	0.0033	0.0076	0.0007	0.0083	0.0084	0.2079
C. Station and C. Sta						<u> </u>				
V	Q	PQ	Β _F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	BQ	Uq	% Unc.
(m/s)	(N-m)									
2.1082	0.1922	0.0011	0.0000	0.0002	0.0002	0.0076	0.0007	0.0076	0.0077	4.0146
2.1078	0.3309	0.0016	0.0000	0.0003	0.0003	0.0076	0.0007	0.0076	0.0078	2.3571
2.1093	0.4607	0.0016	0.0000	0.0004	0.0004	0.0076	0.0007	0.0076	0.0078	1.6933
2.1056	0.6493	0.0016	0.0000	0.0005	0.0005	0.0076	0.0007	0.0077	0.0078	1.2038
2.1084	1.0051	0.0016	0.0001	0.0008	0.0008	0.0076	0.0007	0.0077	0.0078	0.7803
2.1095	1.6707	0.0016	0.0001	0.0013	0.0013	0.0076	0.0007	0.0078	0.0079	0.4738
2.1082	2.2317	0.0016	0.0001	0.0018	0.0018	0.0076	0.0007	0.0078	0.0080	0.3588
2.1098	2.5445	0.0016	0.0001	0.0020	0.0020	0.0076	0.0007	0.0079	0.0081	0.3171
2.1103	2.8646	0.0017	0.0001	0.0023	0.0023	0.0076	0.0007	0.0080	0.0081	0.2842
2.1101	3.1899	0.0017	0.0002	0.0026	0.0026	0.0076	0.0007	0.0081	0.0082	0.2578
2.1091	3 5803	0.0017	0.0002	0 0029	0 0029	0.0076	0 0007	0.0082	0.0083	0 2326
	0.0000	0.0011	0.0002	0.0025	0.0025	0.0070	0.0007	0.0002	0.0000	0.2020

V	Q	Pq	Β_F δQ/δF	B _R δ Q /δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
· · ·										
2.3113	0.1820	0.0010	0.0000	0.0001	0.0001	0.0076	0.0007	0.0076	0.0077	4.2314
2.3012	0.3087	0.0017	0.0000	0.0002	0.0002	0.0076	0.0007	0.0076	0.0078	2.5367
2.3106	0.4268	0.0017	0.0000	0.0003	0.0003	0.0076	0.0007	0.0076	0.0078	1.8360
2.3087	0.6197	0.0017	0.0000	0.0005	0.0005	0.0076	0.0007	0.0077	0.0078	1.2655
2.3127	0.9597	0.0018	0.0000	0.0008	0.0008	0.0076	0.0007	0.0077	0.0079	0.8201
2.3075	1.6567	0.0018	0.0001	0.0013	0.0013	0.0076	0.0007	0.0077	0.0079	0.4797
2.3104	2.2082	0.0018	0.0001	0.0018	0.0018	0.0076	0.0007	0.0078	0.0080	0.3639
2.3089	2.5040	0.0018	0.0001	0.0020	0.0020	0.0076	0.0007	0.0079	0.0081	0.3232
2.3716	2.7615	0.0018	0.0001	0.0022	0.0022	0.0076	0.0007	0.0079	0.0081	0.2951
2.3101	3.1357	0.0018	0.0002	0.0025	0.0025	0.0076	0.0007	0.0080	0.0082	0.2628
2.3079	3.4799	0.0018	0.0002	0.0028	0.0028	0.0076	0.0007	0.0081	0.0083	0.2395
2.3092	3.8185	0.0019	0.0002	0.0031	0.0031	0.0076	0.0007	0.0082	0.0084	0.2208
									2.2	
V	Q	Pa	Β_F δQ/δF	B _R δQ/δR	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
(m/s)	(N-m)									
2.5094	0.1628	0.0011	0 0000	0.0001						4 7396
2.5104			0.0000	0.0001	0.0001	0.0076	0.0007	0.0076	0.0077	1.1 000
0 5007	0.2813	0.0018	0.0000	0.0001	0.0001 0.0002	0.0076 0.0076	0.0007 0.0007	0.0076 0.0076	0.0077 0.0078	2.7899
2.5067	0.2813 0.4035	0.0018 0.0019	0.0000	0.0001 0.0002 0.0003	0.0001 0.0002 0.0003	0.0076 0.0076 0.0076	0.0007 0.0007 0.0007	0.0076 0.0076 0.0076	0.0077 0.0078 0.0079	2.7899 1.9517
2.5067 2.5107	0.2813 0.4035 0.5696	0.0018 0.0019 0.0019	0.0000 0.0000 0.0000	0.0002 0.0003 0.0005	0.0001 0.0002 0.0003 0.0005	0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076	0.0077 0.0078 0.0079 0.0079	2.7899 1.9517 1.3846
2.5067 2.5107 2.5093	0.2813 0.4035 0.5696 0.9274	0.0018 0.0019 0.0019 0.0019	0.0000 0.0000 0.0000 0.0000	0.0001 0.0002 0.0003 0.0005 0.0007	0.0001 0.0002 0.0003 0.0005 0.0007	0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077	0.0077 0.0078 0.0079 0.0079 0.0079	2.7899 1.9517 1.3846 0.8530
2.5067 2.5107 2.5093 2.5099	0.2813 0.4035 0.5696 0.9274 1.6051	0.0018 0.0019 0.0019 0.0019 0.0019	0.0000 0.0000 0.0000 0.0000 0.0000	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077	0.0077 0.0078 0.0079 0.0079 0.0079 0.0080	2.7899 1.9517 1.3846 0.8530 0.4973
2.5087 2.5107 2.5093 2.5099 2.5126	0.2813 0.4035 0.5696 0.9274 1.6051 2.1197	0.0018 0.0019 0.0019 0.0019 0.0019 0.0020	0.0000 0.0000 0.0000 0.0000 0.0001 0.0001	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0076 0.0077 0.0077 0.0078	0.0077 0.0078 0.0079 0.0079 0.0079 0.0080 0.0081	2.7899 1.9517 1.3846 0.8530 0.4973 0.3803
2.5067 2.5107 2.5093 2.5099 2.5126 2.5100	0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384	0.0018 0.0019 0.0019 0.0019 0.0019 0.0020 0.0020	0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079	0.0077 0.0078 0.0079 0.0079 0.0079 0.0080 0.0081 0.0081	2.7899 1.9517 1.3846 0.8530 0.4973 0.3803 0.3331
2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104	0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384 2.7268	0.0018 0.0019 0.0019 0.0019 0.0019 0.0020 0.0020 0.0020	0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020 0.0022	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020 0.0022	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079	0.0077 0.0078 0.0079 0.0079 0.0079 0.0080 0.0081 0.0081 0.0082	2.7899 1.9517 1.3846 0.8530 0.4973 0.3803 0.3331 0.3002
2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104 2.5101	0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384 2.7268 3.0710	0.0018 0.0019 0.0019 0.0019 0.0020 0.0020 0.0020 0.0020 0.0020	0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020 0.0022 0.0025	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020 0.0022 0.0025	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079 0.0080	0.0077 0.0078 0.0079 0.0079 0.0080 0.0081 0.0081 0.0082 0.0083	2.7899 1.9517 1.3846 0.8530 0.4973 0.3803 0.3331 0.3002 0.2690
2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104 2.5101 2.5109	0.2813 0.4035 0.5696 0.9274 1.6051 2.1197 2.4384 2.7268 3.0710 3.4002	0.0018 0.0019 0.0019 0.0019 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020 0.0022 0.0025 0.0027	0.0001 0.0002 0.0003 0.0005 0.0007 0.0013 0.0017 0.0020 0.0022 0.0025 0.0027	0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0076 0.0076 0.0076 0.0077 0.0077 0.0077 0.0078 0.0079 0.0079 0.0080 0.0081	0.0077 0.0078 0.0079 0.0079 0.0080 0.0081 0.0081 0.0082 0.0083 0.0083	2.7899 1.9517 1.3846 0.8530 0.4973 0.3803 0.3331 0.3002 0.2690 0.2455

Load Varying Self-Propulsion Test (Prop. + Duct fitted on) Uncertainty Analysis (Total Thrust)

V	Vehicle Velocity (m/s)	
Tt	Total Thrust (N)	
Ρ _τ	Precision Error for Tt	$P_T = 2 \times S.D$
S.D	Standard Deviation	
S.E.E	Standard Error Estimate	
AD	Analog to Digital Converter	
B ₁	Bias Error due to Calibration	$B_1 = 0.00005 \times T_t$
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Data Reduction	$B_3 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
Β _τ	Bias Error for T _t	$B_{T} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2})^{1/2}$
Uτ	Total Error for T _t	$U_{T} = (B_{T}^{2} + P_{T}^{2})^{1/2}$
% Unc.	Percentage Uncertainty for T_t	% Unc. = (U_T / T_t) x 100

V	Tt	PT	B ₁	B ₂	B ₃	B _T	U _T	% Unc.
(m/s)	(N)							
0 8002	7 6425	0 0090	0.0004	0.2487	0.0182	0.2494	0.2495	3.2648
0.8004	14 1975	0.0092	0.0007	0.2487	0.0182	0.2494	0.2495	1.7575
0.8012	19 7185	0.0091	0.0010	0.2487	0.0182	0.2494	0.2495	1.2654
0.8018	26.1852	0.0094	0.0013	0.2487	0.0182	0.2494	0.2495	0.9529
0.8002	43.2349	0.0095	0.0022	0.2487	0.0182	0.2494	0.2495	0.5772
0.8002	78.0332	0.0097	0.0039	0.2487	0.0182	0.2494	0.2496	0.3198
0.8003	106.5934	0.0098	0.0053	0.2487	0.0182	0.2494	0.2496	0.2342
0.8005	121.3940	0.0098	0.0061	0.2487	0.0182	0.2494	0.2496	0.2056
0.8014	137.7978	0.0099	0.0069	0.2487	0.0182	0.2494	0.2496	0.1812
0.8002	154.0467	0.0100	0.0077	0.2487	0.0182	0.2495	0.2497	0.1621
0.8008	175.1871	0.0102	0.0088	0.2487	0.0182	0.2495	0.2497	0.1425
0.8006	191.4733	0.0104	0.0096	0.2487	0.0182	0.2495	0.2498	0.1304
v	т	D	D	D	Ð	P	11	% line
						to an a second second second by which is a second second		
1 1 >	•t (N)	• T	U 1	D ₂	-4	-1	UT	70 Onc.
(m/s)	•t (N)	• T	Pd.	H2	-4		Φţ	/0 0110.
(m/s)	(N) 6.1254	0.0100	0.0003	0.2487	0.0182	0.2494	0.2496	4.0741
(m/s) 1.1006 1.1022	(N) 6.1254 11.5778	0.0100 0.0108	0.0003	0.2487 0.2487	0.0182 0.0182	0.2494 0.2494	0.2496 0.2496	4.0741 2.1557
(m/s) 1.1006 1.1022 1.1031	6.1254 11.5778 17.6112	• T 0.0100 0.0108 0.0110	0.0003 0.0006 0.0009	0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182	0.2494 0.2494 0.2494	0.2496 0.2496 0.2496	4.0741 2.1557 1.4172
(m/s) 1.1006 1.1022 1.1031 1.1032	6.1254 11.5778 17.6112 26.6374	0.0100 0.0108 0.0110 0.0112	0.0003 0.0006 0.0009 0.0013	0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494	0.2496 0.2496 0.2496 0.2496	4.0741 2.1557 1.4172 0.9370
(m/s) 1.1006 1.1022 1.1031 1.1032 1.1005	6.1254 11.5778 17.6112 26.6374 43.0749	0.0100 0.0108 0.0110 0.0112 0.0115	0.0003 0.0006 0.0009 0.0013 0.0022	0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.2496 0.2496 0.2496 0.2496 0.2496	4.0741 2.1557 1.4172 0.9370 0.5795
(m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026	6.1254 11.5778 17.6112 26.6374 43.0749 78.2263	0.0100 0.0108 0.0110 0.0112 0.0115 0.0117	0.0003 0.0006 0.0009 0.0013 0.0022 0.0039	0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.2496 0.2496 0.2496 0.2496 0.2496 0.2496 0.2497	4.0741 2.1557 1.4172 0.9370 0.5795 0.3191
(m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014	(N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908	0.0100 0.0108 0.0110 0.0112 0.0115 0.0115 0.0117 0.0116	0.0003 0.0006 0.0009 0.0013 0.0022 0.0039 0.0052	0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.2496 0.2496 0.2496 0.2496 0.2496 0.2497 0.2497	4.0741 2.1557 1.4172 0.9370 0.5795 0.3191 0.2401
(m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017	(N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2376	0.0100 0.0108 0.0110 0.0112 0.0115 0.0117 0.0116 0.0119	0.0003 0.0006 0.0009 0.0013 0.0022 0.0039 0.0052 0.0060	0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.2496 0.2496 0.2496 0.2496 0.2496 0.2497 0.2497 0.2497	4.0741 2.1557 1.4172 0.9370 0.5795 0.3191 0.2401 0.2077
(m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013	(N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2376 137.1587	0.0100 0.0108 0.0110 0.0112 0.0115 0.0115 0.0117 0.0116 0.0119 0.0121	0.0003 0.0006 0.0009 0.0013 0.0022 0.0039 0.0052 0.0060 0.0069	0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.2496 0.2496 0.2496 0.2496 0.2496 0.2497 0.2497 0.2497 0.2497	4.0741 2.1557 1.4172 0.9370 0.5795 0.3191 0.2401 0.2077 0.1821
(m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020	(N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2376 137.1587 154.0702	0.0100 0.0108 0.0110 0.0112 0.0115 0.0115 0.0117 0.0116 0.0119 0.0121 0.0124	0.0003 0.0006 0.0009 0.0013 0.0022 0.0039 0.0052 0.0060 0.0069 0.0077	0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	0.2496 0.2496 0.2496 0.2496 0.2496 0.2497 0.2497 0.2497 0.2497 0.2497 0.2498	4.0741 2.1557 1.4172 0.9370 0.5795 0.3191 0.2401 0.2077 0.1821 0.1621
(m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1015	(N) 6.1254 11.5778 17.6112 26.6374 43.0749 78.2263 103.9908 120.2376 137.1587 154.0702 172.0909	0.0100 0.0108 0.0110 0.0112 0.0115 0.0117 0.0116 0.0119 0.0121 0.0124 0.0124	0.0003 0.0006 0.0009 0.0013 0.0022 0.0039 0.0052 0.0060 0.0069 0.0077 0.0086	0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2495 0.2495 0.2495	0.2496 0.2496 0.2496 0.2496 0.2496 0.2497 0.2497 0.2497 0.2497 0.2498 0.2498	4.0741 2.1557 1.4172 0.9370 0.5795 0.3191 0.2401 0.2077 0.1821 0.1621 0.1452

V	T _t	PT	B ₁	B ₂	B ₄	B _T	UT	% Unc.
(m/s)	(N)							
1.3033	-2.4715	0.0128	-0.0001	0.2487	0.0182	0.2494	0.2497	-10.1023
1.3116	3.2712	0.0130	0.0002	0.2487	0.0182	0.2494	0.2497	7.6328
1.3018	7.6691	0.0133	0.0004	0.2487	0.0182	0.2494	0.2497	3.2560
1.3022	18.6342	0.0134	0.0009	0.2487	0.0182	0.2494	0.2497	1.3401
1.3025	32.8566	0.0134	0.0016	0.2487	0.0182	0.2494	0.2497	0.7600
1.3028	70.4953	0.0135	0.0035	0.2487	0.0182	0.2494	0.2497	0.3543
1.3020	99.0206	0.0138	0.0050	0.2487	0.0182	0.2494	0.2498	0.2523
1.3014	113.7191	0.0137	0.0057	0.2487	0.0182	0.2494	0.2498	0.2197
1.3116	130.8195	0.0138	0.0065	0.2487	0.0182	0.2494	0.2498	0.1910
1.3007	150.4082	0.0139	0.0075	0.2487	0.0182	0.2495	0.2499	0.1661
1.3006	166.7611	0.0142	0.0083	0.2487	0.0182	0.2495	0.2499	0.1499
1.3020	183.7284	0.0143	0.0092	0.2487	0.0182	0.2495	0.2499	0.1360
W	Ŧ	Р	D	D	D	D	11	9/ 11no
V	Tt	P _T	B ₁	B ₂	B ₄	B _T	U _T	% Unc.
V (m/s)	T _t (N)	P _T	B₁	B ₂	B 4	B _T	U _T	% Unc.
♥ (m/s)	T t (N)	P _T	B ₁	B ₂	0.0182	B _T	U _T	% Unc.
V (m/s) 1.6030 1.6053	T _t (N) -7.0565	P _T 0.0140 0.0135	B ₁ -0.0004	B ₂ 0.2487 0.2487	B ₄ 0.0182 0.0182	B_T 0.2494 0.2494	U _T 0.2497 0.2497	% Unc.
V (m/s) 1.6030 1.6053 1.6045	T _t (N) -7.0565 -2.6691 3 2865	P _T 0.0140 0.0135 0.0138	B ₁ -0.0004 -0.0001 0.0002	B ₂ 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2497	% Unc. -3.5392 -9.3558 7 5988
V (m/s) 1.6030 1.6053 1.6045 1.6063	T _t (N) -7.0565 -2.6691 3.2865 11 6498	P _T 0.0140 0.0135 0.0138 0.0145	B ₁ -0.0004 -0.0001 0.0002 0.0006	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2497 0.2498	% Unc. -3.5392 -9.3558 7.5988 2 1440
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28 1917	P _T 0.0140 0.0135 0.0138 0.0145 0.0147	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2497 0.2498 0.2498	 % Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440	P _T 0.0140 0.0135 0.0138 0.0145 0.0147 0.0148	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014 0.0032	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2497 0.2498 0.2498 0.2498	% Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860 0.3901
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6059	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 01 0217	P _T 0.0140 0.0135 0.0138 0.0145 0.0147 0.0148 0.0149	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014 0.0032 0.0046	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498	% Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860 0.3901 0.2718
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6052	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110 2025	P _T 0.0140 0.0135 0.0138 0.0145 0.0147 0.0148 0.0149 0.0152	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014 0.0032 0.0046 0.0055	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498	% Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860 0.3901 0.2718 0.2265
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6063	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025 126 9004	P _T 0.0140 0.0135 0.0138 0.0145 0.0147 0.0148 0.0149 0.0152 0.0152	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014 0.0032 0.0046 0.0055 0.0063	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499	% Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860 0.3901 0.2718 0.2265 0.1969
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6063 1.6059	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025 126.9004	P _T 0.0140 0.0135 0.0138 0.0145 0.0147 0.0148 0.0149 0.0152 0.0153 0.0155	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014 0.0032 0.0046 0.0055 0.0063 0.0072	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499 0.2499	% Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860 0.3901 0.2718 0.2265 0.1969 0.1745
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6059 1.6050 1.6050	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025 126.9004 143.2220 162.2490	P _T 0.0140 0.0135 0.0138 0.0145 0.0145 0.0147 0.0148 0.0149 0.0152 0.0153 0.0155 0.0158	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014 0.0032 0.0046 0.0055 0.0063 0.0072 0.0081	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2495 0.2495	U _T 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499 0.2499 0.2499	% Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860 0.3901 0.2718 0.2265 0.1969 0.1745 0.1540
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6059 1.6050 1.6050 1.6054	T _t (N) -7.0565 -2.6691 3.2865 11.6498 28.1917 64.0440 91.9317 110.3025 126.9004 143.2220 162.3490 180.1017	P _T 0.0140 0.0135 0.0138 0.0145 0.0145 0.0147 0.0148 0.0149 0.0152 0.0153 0.0155 0.0158 0.0160	B ₁ -0.0004 -0.0001 0.0002 0.0006 0.0014 0.0032 0.0046 0.0055 0.0063 0.0072 0.0081 0.0081	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2495 0.2495 0.2495	U _T 0.2497 0.2497 0.2498 0.2498 0.2498 0.2498 0.2498 0.2499 0.2499 0.2499 0.2499 0.2500	% Unc. -3.5392 -9.3558 7.5988 2.1440 0.8860 0.3901 0.2718 0.2265 0.1969 0.1745 0.1540 0.1388

V	Tt	PT	B ₁	B ₂	B ₄	B _T	U _T	% Unc.
(m/s)	(N)							
1.8051	-12.0461	0.0170	-0.0006	0.2487	0.0182	0.2494	0.2499	-2.0748
1.8061	-7.9307	0.0168	-0.0004	0.2487	0.0182	0.2494	0.2499	-3.1512
1.8054	-2.0996	0.0163	-0.0001	0.2487	0.0182	0.2494	0.2499	-11.9017
1.8043	8.3160	0.0170	0.0004	0.2487	0.0182	0.2494	0.2499	3.0054
1.8049	24.0023	0.0172	0.0012	0.2487	0.0182	0.2494	0.2499	1.0413
1.8053	56.0137	0.0173	0.0028	0.2487	0.0182	0.2494	0.2500	0.4463
1.8053	82.5484	0.0172	0.0041	0.2487	0.0182	0.2494	0.2500	0.3028
1.8062	100.6055	0.0174	0.0050	0.2487	0.0182	0.2494	0.2500	0.2485
1.8057	118.5649	0.0175	0.0059	0.2487	0.0182	0.2494	0.2500	0.2109
1.8064	135.0686	0.0175	0.0068	0.2487	0.0182	0.2494	0.2501	0.1851
1.8051	154.5146	0.0177	0.0077	0.2487	0.0182	0.2495	0.2501	0.1619
1.8046	175.6173	0.0178	0.0088	0.2487	0.0182	0.2495	0.2501	0.1424
	-		_	_	n	-		0/ 11
V	T _t	PT	B ₁	B ₂	B ₄	B _T	U _T	% Unc.
V (m/s)	T _t (N)	P _T	B ₁	B 2	B ₄	B _T	U _T	% Unc.
V (m/s)	T _t (N)	P _T	B ₁	B ₂	B ₄	Вт	U _T	% Unc.
V (m/s) 2.1082	T _t (N) -15.0436	P _T 0.0192	B ₁ -0.0008	B ₂ 0.2487	B ₄ 0.0182	B _T 0.2494	U _T	% Unc.
V (m/s) 2.1082 2.1078	T _t (N) -15.0436 -8.6422	P _T 0.0192 0.0190	B ₁ -0.0008 -0.0004	B ₂ 0.2487 0.2487	B ₄ 0.0182 0.0182	B _T 0.2494 0.2494	U _T 0.2501 0.2501	% Unc.
V (m/s) 2.1082 2.1078 2.1093 2.1093	T _t (N) -15.0436 -8.6422 -2.1310	P _T 0.0192 0.0190 0.0184	B ₁ -0.0008 -0.0004 -0.0001	B ₂ 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2500	% Unc. -1.6624 -2.8936 -11.7327
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1056	T _t (N) -15.0436 -8.6422 -2.1310 5.3703	P _T 0.0192 0.0190 0.0184 0.0189	B ₁ -0.0008 -0.0004 -0.0001 0.0003	B ₂ 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2500 0.2501	% Unc. -1.6624 -2.8936 -11.7327 4.6565
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011	P _T 0.0192 0.0190 0.0184 0.0189 0.0191	B ₁ -0.0008 -0.0004 -0.0001 0.0003 0.0010	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2500 0.2501 0.2501	% Unc. -1.6624 -2.8936 -11.7327 4.6565 1.2081
V (m/s) 2.1082 2.1078 2.1093 2.1093 2.1056 2.1084 2.1095	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900	P _T 0.0192 0.0190 0.0184 0.0189 0.0191 0.0192	B ₁ -0.0008 -0.0004 -0.0001 0.0003 0.0010 0.0027	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2500 0.2501 0.2501 0.2501	% Unc. -1.6624 -2.8936 -11.7327 4.6565 1.2081 0.4676
V (m/s) 2.1082 2.1078 2.1093 2.1093 2.1056 2.1084 2.1095 2.1082	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802	P _T 0.0192 0.0190 0.0184 0.0189 0.0191 0.0192 0.0192	B ₁ -0.0008 -0.0004 -0.0001 0.0003 0.0010 0.0027 0.0040	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2500 0.2501 0.2501 0.2501 0.2501	% Unc. -1.6624 -2.8936 -11.7327 4.6565 1.2081 0.4676 0.3159
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1082 2.1098	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054	P _T 0.0192 0.0190 0.0184 0.0189 0.0191 0.0192 0.0192 0.0193	B ₁ -0.0008 -0.0004 -0.0001 0.0003 0.0010 0.0027 0.0040 0.0047	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2501 0.2501 0.2501 0.2501 0.2501	% Unc. -1.6624 -2.8936 -11.7327 4.6565 1.2081 0.4676 0.3159 0.2661
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1088 2.1103	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054 111.6413	P _T 0.0192 0.0190 0.0184 0.0189 0.0191 0.0192 0.0192 0.0193 0.0194	B ₁ -0.0008 -0.0004 -0.0001 0.0003 0.0010 0.0027 0.0040 0.0047 0.0056	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2501 0.2501 0.2501 0.2501 0.2501 0.2501 0.2502	% Unc. -1.6624 -2.8936 -11.7327 4.6565 1.2081 0.4676 0.3159 0.2661 0.2241
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103 2.1101	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054 111.6413 128.0193	P _T 0.0192 0.0190 0.0184 0.0189 0.0191 0.0192 0.0192 0.0193 0.0194 0.0196	B ₁ -0.0008 -0.0004 -0.0001 0.0003 0.0010 0.0027 0.0040 0.0047 0.0056 0.0064	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2501 0.2500 0.2501 0.2501 0.2501 0.2501 0.2502 0.2502	% Unc. -1.6624 -2.8936 -11.7327 4.6565 1.2081 0.4676 0.3159 0.2661 0.2241 0.1954
V (m/s) 2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103 2.1101 2.1091	T _t (N) -15.0436 -8.6422 -2.1310 5.3703 20.7011 53.4900 79.1802 94.0054 111.6413 128.0193 147.2988	P _T 0.0192 0.0190 0.0184 0.0189 0.0191 0.0192 0.0192 0.0193 0.0194 0.0196 0.0199	B ₁ -0.0008 -0.0004 -0.0001 0.0003 0.0010 0.0027 0.0040 0.0047 0.0056 0.0064 0.0074	B ₂ 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487	B ₄ 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182 0.0182	B _T 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494 0.2494	U _T 0.2501 0.2500 0.2501 0.2501 0.2501 0.2501 0.2501 0.2502 0.2502 0.2502	% Unc. -1.6624 -2.8936 -11.7327 4.6565 1.2081 0.4676 0.3159 0.2661 0.2241 0.1954 0.1699

V	T _t	P _T	B ₁	B ₂	B ₄	B _T	U _T	% Unc.
(m/s)	(N)							
2.3113	-19.3516	0.0218	-0.0010	0.2487	0.0182	0.2494	0.2503	-1.2934
2.3012	-15.8623	0.0217	-0.0008	0.2487	0.0182	0.2494	0.2503	-1.5779
2.3106	-10.8438	0.0213	-0.0005	0.2487	0.0182	0.2494	0.2503	-2.3079
2.3087	-1.9037	0.0180	-0.0001	0.2487	0.0182	0.2494	0.2500	-13.1324
2.3127	13.1329	0.0215	0.0007	0.2487	0.0182	0.2494	0.2503	1.9057
2.3075	45.9201	0.0218	0.0023	0.2487	0.0182	0.2494	0.2503	0.5451
2.3104	70.3932	0.0219	0.0035	0.2487	0.0182	0.2494	0.2503	0.3556
2.3089	84.5472	0.0221	0.0042	0.2487	0.0182	0.2494	0.2504	0.2961
2.3716	99.2872	0.0223	0.0050	0.2487	0.0182	0.2494	0.2504	0.2522
2.3101	117.4706	0.0225	0.0059	0.2487	0.0182	0.2494	0.2504	0.2132
2.3079	134.4150	0.0226	0.0067	0.2487	0.0182	0.2494	0.2505	0.1863
2.3092	151.0913	0.0228	0.0076	0.2487	0.0182	0.2495	0.2505	0.1658
<u>.</u>	_	_	_	_	_	_		A/ 11
V	۱ _t	PT	В ₁	B ₂	B ₄	BT	UT	% Unc.
(m/s)	(N)							
2.5094	-23.5927	0.0232	-0.0012	0.2487	0.0182	0.2494	0.2504	-1.0615
2.5104	-21.2282	0.0229	-0.0011	0.2487	0.0182	0.2494	0.2504	-1.1796
2.5067	-16.9244	0.0228	-0.0008	0.2487	0.0182	0.2494	0.2504	-1.4795
2.5107	-10.5697	0.0225	-0.0005	0.2487	0.0182	0.2494	0.2504	-2.3687
2.5093	2.9669	0.0206	0.0001	0.2487	0.0182	0.2494	0.2502	8.4330
2.5099	34.7210	0.0238	0.0017	0.2487	0.0182	0.2494	0.2505	0.7214
2.5126	63.3290	0.0239	0.0032	0.2487	0.0182	0.2494	0.2505	0.3956
2.5100	76.2347	0.0240	0.0038	0.2487	0.0182	0.2494	0.2505	0.3286
2.5104	91.4780	0.0242	0.0046	0.2487	0.0182	0.2494	0.2506	0.2739
2.5101	105.8466	0.0244	0.0053	0.2487	0.0182	0.2494	0.2506	0.2368
2.5109	124.7560	0.0245	0.0062	0.2487	0.0182	0.2494	0.2506	0.2009

Load Varying Self-Propulsion Test (Prop. + Duct fitted on) Uncertainty Analysis (Tow Force)

Vehicle Velocity (m/s)	
Tow Force (N)	
Precision Error for F	$P_F = 2 \times S.D$
Standard Deviation	
Standard Error Estimate	
Analog to Digital Converter	
Bias Error due to Calibration	B ₁ = 0.00005 x F
Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
Bias Error due to Load Cell Misalignment	B ₃ = F - (Cos 0.25 [°] x F)
Bias Error due to Data Reduction	$B_4 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
Bias Error for F	$B_{F} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2} + B_{4}^{2})^{1/2}$
Total Error for F	$U_{\rm F} = (B_{\rm F}^2 + P_{\rm F}^2)^{1/2}$
Percentage Uncertainty for F	% Unc. = (U _F / F) x 100
	Vehicle Velocity (m/s) Tow Force (N) Precision Error for F Standard Deviation Standard Error Estimate Analog to Digital Converter Bias Error due to Calibration Bias Error due to Data Acquisition Bias Error due to Load Cell Misalignment Bias Error due to Data Reduction Bias Error for F Total Error for F Percentage Uncertainty for F

V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
0.8002	1.3073	0.0095	0.0001	0.2693	0.0000	0.0054	0.2694	0.2695	20.6176
0.8004	-4.6450	0.0107	-0.0002	0.2693	0.0000	0.0054	0.2694	0.2696	-5.8037
0.8012	-10.5645	0.0107	-0.0005	0.2693	-0.0001	0.0054	0.2694	0.2696	-2.5518
0.8018	-17.5455	0.0109	-0.0009	0.2693	-0.0002	0.0054	0.2694	0.2696	-1.5365
0.8002	-34.8750	0.0110	-0.0017	0.2693	-0.0003	0.0054	0.2694	0.2696	-0.7730
0.8002	-68.0707	0.0112	-0.0034	0.2693	-0.0006	0.0054	0.2694	0.2696	-0.3961
0.8003	-94.6789	0.0113	-0.0047	0.2693	-0.0009	0.0054	0.2694	0.2696	-0.2848
0.8005	-108.5758	0.0113	-0.0054	0.2693	-0.0010	0.0054	0.2694	0.2697	-0.2484
0.8014	-123.8928	0.0115	-0.0062	0.2693	-0.0012	0.0054	0.2694	0.2697	-0.2177
0.8002	-139.0968	0.0114	-0.0070	0.2693	-0.0013	0.0054	0.2695	0.2697	-0.1939
0.8008	-159.0113	0.0116	-0.0080	0.2693	-0.0015	0.0054	0.2695	0.2697	-0.1696
0.8006	-174.2846	0.0117	-0.0087	0.2693	-0.0017	0.0054	0.2695	0.2698	-0.1548
v	E	D	P	D	D	D	D		% llnc
V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
V (m/s)	F (N)	P _F	B 1	B ₂	Ba	B 4	B _F	U _F	% Unc.
V (m/s)	F (N) 10.2786	P _F 0.0124	B ₁ 0.0005	B ₂ 0.2693	B ₃ 0.0001	B ₄ 0.0054	B_F 0.2694	U_F 0.2697	% Unc.
V (m/s) 1.1006 1.1022	F (N) 10.2786 4.9858	P _F 0.0124 0.0107	B ₁ 0.0005 0.0002	B ₂ 0.2693 0.2693	B ₃ 0.0001 0.0000	B ₄ 0.0054 0.0054	B _F 0.2694 0.2694	U _F 0.2697 0.2696	% Unc. 2.6234 5.4070
V (m/s) 1.1006 1.1022 1.1031	F (N) 10.2786 4.9858 -0.7660	P _F 0.0124 0.0107 0.0090	B ₁ 0.0005 0.0002 0.0000	B ₂ 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000	B ₄ 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695	% Unc. 2.6234 5.4070 -35.1850
V (m/s) 1.1006 1.1022 1.1031 1.1032	F (N) 10.2786 4.9858 -0.7660 -9.4535	P _F 0.0124 0.0107 0.0090 0.0124	B ₁ 0.0005 0.0002 0.0000 -0.0005	B ₂ 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000 -0.0001	B ₄ 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697	% Unc. 2.6234 5.4070 -35.1850 -2.8524
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334	P _F 0.0124 0.0107 0.0090 0.0124 0.0125	B ₁ 0.0005 0.0002 0.0000 -0.0005 -0.0012	B ₂ 0.2693 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000 -0.0001 -0.0002	B ₄ 0.0054 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697 0.2697	% Unc. 2.6234 5.4070 -35.1850 -2.8524 -1.0815
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065	P _F 0.0124 0.0107 0.0090 0.0124 0.0125 0.0125	B ₁ 0.0005 0.0002 0.0000 -0.0005 -0.0012 -0.0029	B ₂ 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000 -0.0001 -0.0002 -0.0006	B ₄ 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697 0.2697 0.2697	% Unc. 2.6234 5.4070 -35.1850 -2.8524 -1.0815 -0.4625
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355	P _F 0.0124 0.0107 0.0090 0.0124 0.0125 0.0125 0.0126	B ₁ 0.0005 0.0002 0.0000 -0.0005 -0.0012 -0.0029 -0.0041	B ₂ 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 -0.0001 -0.0002 -0.0006 -0.0008	B ₄ 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697 0.2697 0.2697 0.2697 0.2697	% Unc. 2.6234 5.4070 -35.1850 -2.8524 -1.0815 -0.4625 -0.3264
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -98.0144	P _F 0.0124 0.0107 0.0090 0.0124 0.0125 0.0125 0.0126 0.0128	B ₁ 0.0005 0.0002 0.0000 -0.0005 -0.0012 -0.0029 -0.0041 -0.0049	B ₂ 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000 -0.0001 -0.0002 -0.0006 -0.0008 -0.0009	B ₄ 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697	% Unc. 2.6234 5.4070 -35.1850 -2.8524 -1.0815 -0.4625 -0.3264 -0.2752
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -98.0144 -114.1839	P _F 0.0124 0.0107 0.0090 0.0124 0.0125 0.0125 0.0125 0.0126 0.0128 0.0128	B ₁ 0.0005 0.0002 0.0000 -0.0005 -0.0012 -0.0029 -0.0041 -0.0049 -0.0057	B ₂ 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000 -0.0001 -0.0002 -0.0006 -0.0008 -0.0009 -0.0011	B ₄ 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697	% Unc. 2.6234 5.4070 -35.1850 -2.8524 -1.0815 -0.4625 -0.3264 -0.2752 -0.2362
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -98.0144 -114.1839 -130.2701	P _F 0.0124 0.0107 0.0090 0.0124 0.0125 0.0125 0.0125 0.0126 0.0128 0.0128 0.0129	B ₁ 0.0005 0.0002 0.0000 -0.0005 -0.0012 -0.0029 -0.0041 -0.0049 -0.0057 -0.0065	B ₂ 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000 -0.0001 -0.0002 -0.0006 -0.0008 -0.0009 -0.0011 -0.0012	B ₄ 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697	% Unc. 2.6234 5.4070 -35.1850 -2.8524 -1.0815 -0.4625 -0.3264 -0.2752 -0.2362 -0.2071
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1015	F (N) 10.2786 4.9858 -0.7660 -9.4535 -24.9334 -58.3065 -82.6355 -98.0144 -114.1839 -130.2701 -147.3841	P _F 0.0124 0.0107 0.0090 0.0124 0.0125 0.0125 0.0126 0.0128 0.0128 0.0129 0.0132	B ₁ 0.0005 0.0002 0.0000 -0.0005 -0.0012 -0.0029 -0.0041 -0.0049 -0.0057 -0.0057 -0.0065 -0.0074	B ₂ 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	B ₃ 0.0001 0.0000 0.0000 -0.0001 -0.0002 -0.0006 -0.0008 -0.0009 -0.0011 -0.0012 -0.0014	B ₄ 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	B _F 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	U _F 0.2697 0.2696 0.2695 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697 0.2698 0.2698	% Unc. 2.6234 5.4070 -35.1850 -2.8524 -1.0815 -0.4625 -0.3264 -0.2752 -0.2362 -0.2071 -0.1831

<u>Uncertainty Analysis</u> (Tow Force) Load Varying Self-Propulsion Test (Duct + Prop. fitted on)

V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
•	, <i>,</i>		****						
1.3033	25.8684	0.0149	0.0013	0.2693	0.0002	0.0054	0.2694	0.2698	1.0429
1.3116	19.5634	0.0149	0.0010	0.2693	0.0002	0.0054	0.2694	0.2698	1.3790
1.3018	14.6455	0.0148	0.0007	0.2693	0.0001	0.0054	0.2694	0.2698	1.8420
1.3022	3.6444	0.0132	0.0002	0.2693	0.0000	0.0054	0.2694	0.2697	7.4001
1.3025	-9.6546	0.0146	-0.0005	0.2693	-0.0001	0.0054	0.2694	0.2698	-2.7941
1.3028	-44.6663	0.0148	-0.0022	0.2693	-0.0004	0.0054	0.2694	0.2698	-0.6040
1.3020	-71.4491	0.0149	-0.0036	0.2693	-0.0007	0.0054	0.2694	0.2698	-0.3776
1.3014	-85.4106	0.0150	-0.0043	0.2693	-0.0008	0.0054	0.2694	0.2698	-0.3159
1.3116	-101.8478	0.0153	-0.0051	0.2693	-0.0010	0.0054	0.2694	0.2699	-0.2650
1.3007	-120.5716	0.0152	-0.0060	0.2693	-0.0011	0.0054	0.2694	0.2699	-0.2238
1.3006	-136.2495	0.0156	-0.0068	0.2693	-0.0013	0.0054	0.2695	0.2699	-0.1981
1.3020	-152.6671	0.0159	-0.0076	0.2693	-0.0015	0.0054	0.2695	0.2699	-0.1768
					_	_	_		
V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
1.6030	41.2862	0.0173	0.0021	0.2693	0.0004	0.0054	0.2694	0.2699	0.6538
1.6053	35.5623	0.0171	0.0018	0.2693	0.0003	0.0054	0.2694	0.2699	0.7590
1.6045	28.4763	0.0171	0.0014	0.2693	0.0003	0.0054	0.2694	0.2699	0.9479
1.6063	19.6455	0.0168	0.0010	0.2693	0.0002	0.0054	0.2694	0.2699	1.3738
1.6063	3.7317	0.0135	0.0002	0.2693	0.0000	0.0054	0.2694	0.2697	7.2274
1.6059	-29.3272	0.0172	-0.0015	0.2693	-0.0003	0.0054	0.2694	0.2699	-0.9204
1.6056	-55.1247	0.0173	-0.0028	0.2693	-0.0005	0.0054	0.2694	0.2699	-0.4897
1.6063	-72.6503	0.0174	-0.0036	0.2693	-0.0007	0.0054	0.2694	0.2700	-0.3716
1.6059	-88.4574	0.0174	-0.0044	0.2693	-0.0008	0.0054	0.2694	0.2700	-0.3052
1.6050	-104.0080	0.0176	-0.0052	0.2693	-0.0010	0.0054	0.2694	0.2700	-0.2596
1.6054	-122.4283	0.0178	-0.0061	0.2693	-0.0012	0.0054	0.2694	0.2700	-0.2206

<u>Uncertainty Analysis</u> (Tow Force) Load Varying Self-Propulsion Test (Duct + Prop. fitted on)

V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
4 0054	E4 000E	0.0104	0.0026	0.2602	0.0005	0.0054	0.2604	0 2701	0 5204
1.8051	51.8995	0.0194	0.0026	0.2093	0.0005	0.0054	0.2094	0.2701	0.5204
1.8001	45.3553	0.0193	0.0023	0.2093	0.0004	0.0054	0.2094	0.2701	0.5954
1.8054	39.4746	0.0193	0.0020	0.2093	0.0004	0.0054	0.2094	0.2701	0.0041
1.8043	29.6365	0.0191	0.0015	0.2693	0.0003	0.0054	0.2094	0.2700	1 9100
1.8049	14.8382	0.0190	0.0007	0.2693	0.0001	0.0054	0.2694	0.2700	1.0199
1.8053	-16.0784	0.0192	-0.0008	0.2693	-0.0002	0.0054	0.2694	0.2701	-1.0790
1.8053	-41.3141	0.0193	-0.0021	0.2693	-0.0004	0.0054	0.2694	0.2701	-0.6537
1.8062	-58.6353	0.0195	-0.0029	0.2693	-0.0006	0.0054	0.2694	0.2701	-0.4606
1.8057	-75.5367	0.0197	-0.0038	0.2693	-0.0007	0.0054	0.2694	0.2701	-0.3576
1.8064	-91.0393	0.0197	-0.0046	0.2693	-0.0009	0.0054	0.2694	0.2701	-0.2967
1.8051	-109.2754	0.0198	-0.0055	0.2693	-0.0010	0.0054	0.2694	0.2702	-0.2472
1.8046	-128.6862	0.0202	-0.0064	0.2693	-0.0012	0.0054	0.2694	0.2702	-0.2100
V	F	PF	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
· · · · /	× 1								
2.1082	66.8995	0.0217	0.0033	0.2693	0.0006	0.0054	0.2694	0.2703	0.4040
2.1078	60.4425	0.0216	0.0030	0.2693	0.0006	0.0054	0.2694	0.2702	0.4471
2.1093	54.4746	0.0215	0.0027	0.2693	0.0005	0.0054	0.2694	0.2702	0.4961
2.1056	47.4534	0.0215	0.0024	0.2693	0.0005	0.0054	0.2694	0.2702	0.5695
2.1084	32.8382	0.0213	0.0016	0.2693	0.0003	0.0054	0.2694	0.2702	0.8229
2.1095	1.0784	0.0181	0.0001	0.2693	0.0000	0.0054	0.2694	0.2700	25.0347
2.1082	-23,4953	0.0212	-0.0012	0.2693	-0.0002	0.0054	0.2694	0.2702	-1.1500
2.1098	-37.6353	0.0214	-0.0019	0.2693	-0.0004	0.0054	0.2694	0.2702	-0.7180
2.1103	-54.5367	0.0215	-0.0027	0.2693	-0.0005	0.0054	0.2694	0.2702	-0.4955
2,1101	-70 0393	0.0217	-0.0035	0.2693	-0.0007	0.0054	0.2694	0.2703	-0.3859
2.1091	-88.2754	0.0219	-0.0044	0.2693	-0.0008	0.0054	0.2694	0.2703	-0.3062
2.1086	-107.6862	0.0221	-0.0054	0.2693	-0.0010	0.0054	0.2694	0.2703	-0.2510

<u>Uncertainty Analysis</u> (Tow Force) Load Varying Self-Propulsion Test (Duct + Prop. fitted on)

V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
2.3113	86.1252	0.0249	0.0043	0.2693	0.0008	0.0054	0.2694	0.2706	0.3141
2.3012	80.4523	0.0246	0.0040	0.2693	0.0008	0.0054	0.2694	0.2705	0.3362
2.3106	75.8979	0.0244	0.0038	0.2693	0.0007	0.0054	0.2694	0.2705	0.3564
2.3087	68.2312	0.0242	0.0034	0.2693	0.0007	0.0054	0.2694	0.2705	0.3964
2.3127	55.4110	0.0241	0.0028	0.2693	0.0005	0.0054	0.2694	0.2705	0.4881
2.3075	24.5844	0.0238	0.0012	0.2693	0.0002	0.0054	0.2694	0.2704	1.1000
2.3104	0.7728	0.0185	0.0000	0.2693	0.0000	0.0054	0.2694	0.2700	34.9381
2.3089	-13.1249	0.0238	-0.0007	0.2693	-0.0001	0.0054	0.2694	0.2704	-2.0603
2.3716	-27.7563	0.0239	-0.0014	0.2693	-0.0003	0.0054	0.2694	0.2704	-0.9743
2.3101	-45.5095	0.0240	-0.0023	0.2693	-0.0004	0.0054	0.2694	0.2704	-0.5943
2.3079	-62.1596	0.0243	-0.0031	0.2693	-0.0006	0.0054	0.2694	0.2705	-0.4351
2.3092	-78.5473	0.0245	-0.0039	0.2693	-0.0007	0.0054	0.2694	0.2705	-0.3444
2.2		a <u>sakanan</u> a tahun kata			<u></u>		<u></u>		
V	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
(m/s)	(N)								
2.5094	105.9464	0.0279	0.0053	0.2693	0.0010	0.0054	0.2694	0.2709	0.2557
2.5104	101.2323	0.0278	0.0051	0.2693	0.0010	0.0054	0.2694	0.2708	0.2675
2.5067	96.3633	0.0278	0.0048	0.2693	0.0009	0.0054	0.2694	0.2708	0.2811
2.5107	90.3483	0.0276	0.0045	0 2693	0 0009	0.0054	0.2694	0.2708	0.2997
2.5093				0.2000	0.0000	0.000			
2 5000	78.3736	0.0274	0.0039	0.2693	0.0007	0.0054	0.2694	0.2708	0.3455
2.0099	78.3736 49.0260	0.0274 0.0270	0.0039 0.0025	0.2693 0.2693	0.0007 0.0005	0.0054 0.0054	0.2694 0.2694	0.2708 0.2707	0.3455 0.5522
2.5099	78.3736 49.0260 21.5911	0.0274 0.0270 0.0269	0.0039 0.0025 0.0011	0.2693 0.2693 0.2693	0.0007 0.0005 0.0002	0.0054 0.0054 0.0054	0.2694 0.2694 0.2694	0.2708 0.2707 0.2707	0.3455 0.5522 1.2538
2.5126 2.5100	78.3736 49.0260 21.5911 9.2021	0.0274 0.0270 0.0269 0.0269	0.0039 0.0025 0.0011 0.0005	0.2693 0.2693 0.2693 0.2693	0.0007 0.0005 0.0002 0.0001	0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694	0.2708 0.2707 0.2707 0.2707	0.3455 0.5522 1.2538 2.9418
2.5126 2.5100 2.5104	78.3736 49.0260 21.5911 9.2021 -5.5593	0.0274 0.0270 0.0269 0.0269 0.0267	0.0039 0.0025 0.0011 0.0005 -0.0003	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0007 0.0005 0.0002 0.0001 -0.0001	0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694	0.2708 0.2707 0.2707 0.2707 0.2707	0.3455 0.5522 1.2538 2.9418 -4.8691
2.5126 2.5126 2.5100 2.5104 2.5101	78.3736 49.0260 21.5911 9.2021 -5.5593 -19.5704	0.0274 0.0270 0.0269 0.0269 0.0267 0.0269	0.0039 0.0025 0.0011 0.0005 -0.0003 -0.0010	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0007 0.0005 0.0002 0.0001 -0.0001 -0.0002	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2708 0.2707 0.2707 0.2707 0.2707 0.2707	0.3455 0.5522 1.2538 2.9418 -4.8691 -1.3833
2.5099 2.5126 2.5100 2.5104 2.5101 2.5109	78.3736 49.0260 21.5911 9.2021 -5.5593 -19.5704 -38.1235	0.0274 0.0270 0.0269 0.0269 0.0267 0.0269 0.0271	0.0039 0.0025 0.0011 0.0005 -0.0003 -0.0010 -0.0019	0.2693 0.2693 0.2693 0.2693 0.2693 0.2693 0.2693	0.0007 0.0005 0.0002 0.0001 -0.0001 -0.0002 -0.0004	0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054	0.2694 0.2694 0.2694 0.2694 0.2694 0.2694 0.2694	0.2708 0.2707 0.2707 0.2707 0.2707 0.2707 0.2707	0.3455 0.5522 1.2538 2.9418 -4.8691 -1.3833 -0.7101

<u>Uncertainty Analysis</u> (Tow Force) Load Varying Self-Propulsion Test (Duct + Prop. fitted on)

Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

Uncertainty Analysis (Advance Coefficient)

- V Vehicle Velocity (m/s)
- n Propeller Rotational Speed (rpm)
- D Propeller Diameter (m)
- J Advance Coefficient
- P_V Precision Error for V
- B_V Bias Error for V
- P_J Precision Error for J
- P_n Precision Error for n
- B_n Bias Error for n
- B_D Bias Error for D
- B_J Bias Error for J
- U_J Total Error for J
- % U Percentage Uncertainty for J

$$\begin{split} B_{J} &= (\delta J / \delta V B_{V})^{2} + (\delta J / \delta n B_{n})^{2} + (\delta J / \delta D B_{D})^{2})^{1/2} \\ U_{J} &= (B_{J}^{2} + P_{J}^{2})^{1/2} \end{split}$$

 $\% U = (U_J / J) \times 100$

V	Pv	Bv	n	Pn	Bn	BD	Β _ν δJ/δV	B _n δJ/δn	Β _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
0.8002	0.0004	0.0035	499.5767	0.0005	0.0391	0.0001	4.62E-05	-8.22E-07	-6.90E-06	4.67E-05	0.0006	0.0006	0.6306	0.0954
0.8004	0.0003	0.0035	551.4566	0.0005	0.0391	0.0001	4.19E-05	-6.75E-07	-6.25E-06	4.23E-05	0.0006	0.0006	0.5714	0.1090
0.8012	0.0004	0.0035	600.4575	0.0005	0.0391	0.0001	3.85E-05	-5.70E-07	-5.74E-06	3.89E-05	0.0007	0.0007	0.5253	0.1328
0.8018	0.0004	0.0035	650.4466	0.0005	0.0391	0.0001	3.55E-05	-4.86E-07	-5.31E-06	3.59E-05	0.0006	0.0006	0.4853	0.1296
0.8002	0.0004	0.0035	753.2179	0.0005	0.0391	0.0001	3.07E-05	-3.62E-07	-4.57E-06	3.10E-05	0.0006	0.0006	0.4183	0.1491
0.8002	0.0004	0.0035	902.9860	0.0005	0.0391	0.0001	2.56E-05	-2.52E-07	-3.82E-06	2.59E-05	0.0006	0.0006	0.3489	0.1814
0.8003	0.0004	0.0035	1008.5085	0.0005	0.0391	0.0001	2.29E-05	-2.02E-07	-3.42E-06	2.32E-05	0.0006	0.0006	0.3124	0.1922
0.8005	0.0004	0.0035	1052.3455	0.0005	0.0392	0.0001	2.19E-05	-1.86E-07	-3.28E-06	2.22E-05	0.0006	0.0006	0.2995	0.2046
0.8014	0.0004	0.0035	1104.1946	0.0005	0.0392	0.0001	2.09E-05	-1.69E-07	-3.12E-06	2.11E-05	0.0006	0.0006	0.2857	0.2242
0.8002	0.0004	0.0035	1150.2549	0.0005	0.0392	0.0001	2.01E-05	-1.55E-07	-3.00E-06	2.03E-05	0.0007	0.0007	0.2739	0.2488
0.8008	0.0004	0.0035	1206.8237	0.0005	0.0392	0.0001	1.91E-05	-1.41E-07	-2.86E-06	1.93E-05	0.0007	0.0007	0.2612	0.2560
0.8006	0.0004	0.0035	1252.7469	0.0005	0.0392	0.0001	1.84E-05	-1.31E-07	-2.75E-06	1.86E-05	0.0006	0.0006	0.2516	0.2484
	_	_		_	_	_		- 0-12		_	_			
V	Pv	Bv	n	Pn	B _n	B _D	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
V (m/s)	Pv	B _v	n (rpm)	Pn	B _n	B _D	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
V (m/s)	P _V	By	n (rpm)	P _n	B _n	B _D	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	В,	PJ	U,	J	% U
V (m/s) 1.1006	P _V	B _V 0.0035	n (rpm) 500.6686	P _n	B _n 0.0391	B _D	B _V δJ/δV	B _n δ J /δn	B _D δJ/δD	B J 4.72E-05	P _J	Uj 0.0008	J 0.8655	% U 0.0922
V (m/s) 1.1006 1.1022	P _v 0.0005 0.0005	B _v 0.0035 0.0035	n (rpm) 500.6686 552.7477	P _n 0.0006 0.0006	B _n 0.0391 0.0391	B _D 0.0001 0.0001	Β _V δ J /δ V 4.62E-05 4.19E-05	B _n δJ/δn -1.13E-06 -9.25E-07	B _D δJ/δD -9.46E-06 -8.59E-06	B _J 4.72E-05 4.28E-05 2.025 05	PJ 0.0008 0.0008	UJ 0.0008 0.0008	J 0.8655 0.7851 0.7107	% U 0.0922 0.1020
V (m/s) 1.1006 1.1022 1.1031 1.1032	P _v 0.0005 0.0005 0.0006	B _v 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 654.6560	P _n 0.0006 0.0006 0.0007	B _n 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001	Β _V δ J /δ V 4.62E-05 4.19E-05 3.84E-05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.87E-06	B _J 4.72E-05 4.28E-05 3.92E-05 2.625 05	PJ 0.0008 0.0008 0.0009	Uj 0.0008 0.0008 0.0009	J 0.8655 0.7851 0.7197	% U 0.0922 0.1020 0.1225
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005	Pv 0.0005 0.0005 0.0006 0.0005	B _v 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 651.6550 764.0726	P _n 0.0006 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 4.06E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 6 2.25 06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 2.13E 05	PJ 0.0008 0.0008 0.0009 0.0009	UJ 0.0008 0.0008 0.0009 0.0009	J 0.8655 0.7851 0.7197 0.6665 0.5720	% U 0.0922 0.1020 0.1225 0.1309 0.1487
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1005	Pv 0.0005 0.0005 0.0005 0.0005 0.0005	B _v 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 004 8126	P _n 0.0006 0.0006 0.0007 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05 3.07E-05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 -4.96E-07 2.49E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 -6.28E-06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 3.13E-05 2.63E 05	PJ 0.0008 0.0008 0.0009 0.0009 0.0009	UJ 0.0008 0.0008 0.0009 0.0009 0.0009	0.8655 0.7851 0.7197 0.6665 0.5739	% U 0.0922 0.1020 0.1225 0.1309 0.1487 0.1754
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026	Pv 0.0005 0.0005 0.0006 0.0005 0.0005 0.0005	Bv 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126	Pn 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05 3.07E-05 2.57E-05 2.212 05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 -4.96E-07 -3.48E-07 -3.48E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 -6.28E-06 -5.26E-06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 3.13E-05 2.62E-05	P _J 0.0008 0.0008 0.0009 0.0009 0.0009 0.0009	UJ 0.0008 0.0008 0.0009 0.0009 0.0009 0.0009	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4326	% U 0.0922 0.1020 0.1225 0.1309 0.1487 0.1754
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 4.1017	Pv 0.0005 0.0005 0.0006 0.0005 0.0005 0.0005 0.0005	Bv 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880	Pn 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05 3.07E-05 2.57E-05 2.31E-05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 -4.96E-07 -3.48E-07 -2.83E-07 2.632 6.7	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 -6.28E-06 -5.26E-06 -4.74E-06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 3.13E-05 2.62E-05 2.36E-05 2.36E-05	P _J 0.0008 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009	UJ 0.0008 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104	% U 0.0922 0.1020 0.1225 0.1309 0.1487 0.1754 0.2040
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1017	Pv 0.0005 0.0005 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005	By 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566	Pn 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05 3.07E-05 2.57E-05 2.31E-05 2.19E-05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 -4.96E-07 -3.48E-07 -2.83E-07 -2.53E-07 -2.53E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 -6.28E-06 -5.26E-06 -4.74E-06 -4.49E-06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 3.13E-05 2.62E-05 2.36E-05 2.24E-05 2.24E-05	P _J 0.0008 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009	UJ 0.0008 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104 0.2026	% U 0.0922 0.1020 0.1225 0.1309 0.1487 0.1754 0.2040 0.2109
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020	Pv 0.0005 0.0005 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	By 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112	P _n 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05 3.07E-05 2.57E-05 2.31E-05 2.19E-05 2.10E-05 2.005	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 -4.96E-07 -3.48E-07 -2.83E-07 -2.53E-07 -2.53E-07 -2.32E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 -6.28E-06 -5.26E-06 -4.74E-06 -4.49E-06 -4.29E-06 -4.29E-06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 3.13E-05 2.62E-05 2.36E-05 2.24E-05 2.14E-05 2.04E-05	P _J 0.0008 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009 0.0009	UJ 0.0008 0.0008 0.0009 0.0009 0.0009 0.0008 0.0009 0.0009 0.0009	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104 0.3926 0.2350	% U 0.0922 0.1020 0.1225 0.1309 0.1487 0.1754 0.2040 0.2109 0.2253 0.2253
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1025	Pv 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	By 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.6686 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112 1156.9473 1212.0122	P _n 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05 3.07E-05 2.57E-05 2.31E-05 2.10E-05 2.10E-05 2.00E-05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 -4.96E-07 -3.48E-07 -2.83E-07 -2.53E-07 -2.32E-07 -2.12E-07 -4.02E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 -6.28E-06 -5.26E-06 -4.74E-06 -4.49E-06 -4.29E-06 -4.10E-06 -2.01E-06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 3.13E-05 2.62E-05 2.36E-05 2.24E-05 2.14E-05 2.04E-05 2.04E-05	P _J 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	UJ 0.0008 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104 0.3926 0.3750 0.2535	% U 0.0922 0.1020 0.1225 0.1309 0.1487 0.1754 0.2040 0.2109 0.2253 0.2369
V (m/s) 1.1006 1.1022 1.1031 1.1032 1.1005 1.1026 1.1014 1.1017 1.1013 1.1020 1.1015	Pv 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	Bv 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035	n (rpm) 500.66866 552.7477 603.4646 651.6550 754.9726 901.8126 1000.0880 1056.9566 1104.4112 1156.9473 1212.9133	P _n 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.62E-05 4.19E-05 3.84E-05 3.55E-05 3.07E-05 2.57E-05 2.31E-05 2.19E-05 2.10E-05 2.00E-05 1.91E-05	B _n δJ/δn -1.13E-06 -9.25E-07 -7.77E-07 -6.67E-07 -4.96E-07 -3.48E-07 -2.83E-07 -2.53E-07 -2.32E-07 -2.12E-07 -1.93E-07	B _D δJ/δD -9.46E-06 -8.59E-06 -7.87E-06 -7.29E-06 -6.28E-06 -5.26E-06 -4.74E-06 -4.49E-06 -4.29E-06 -4.10E-06 -3.91E-06	B _J 4.72E-05 4.28E-05 3.92E-05 3.63E-05 3.63E-05 2.62E-05 2.36E-05 2.36E-05 2.24E-05 2.14E-05 2.04E-05 1.95E-05	PJ 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	J 0.8655 0.7851 0.7197 0.6665 0.5739 0.4814 0.4336 0.4104 0.3926 0.3750 0.3575	% U 0.0922 0.1020 0.1225 0.1309 0.1487 0.1754 0.2040 0.2109 0.2253 0.2369 0.2473

<u>Uncertainty Analysis</u> (Advance Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

V	Pv	Bv	n	Pn	B _n	B _D	Β _ν δJ/δV	B _n δJ/δn	Β _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
1.3033	0.0006	0.0035	501.8541	0.0008	0.0391	0.0001	4.62E-05	-1.33E-06	-1.12E-05	4.76E-05	0.0010	0.0010	1.0224	0.0948
1.3116	0.0006	0.0035	550.7550	0.0007	0.0391	0.0001	4.21E-05	-1.11E-06	-1.03E-05	4.34E-05	0.0010	0.0010	0.9376	0.1029
1.3018	0.0007	0.0035	601.3456	0.0007	0.0391	0.0001	3.86E-05	-9.24E-07	-9.32E-06	3.97E-05	0.0010	0.0010	0.8523	0.1146
1.3022	0.0006	0.0035	654.7460	0.0008	0.0391	0.0001	3.54E-05	-7.79E-07	-8.56E-06	3.65E-05	0.0010	0.0010	0.7830	0.1273
1.3025	0.0007	0.0035	752.1400	0.0008	0.0391	0.0001	3.08E-05	-5.91E-07	-7.46E-06	3.17E-05	0.0010	0.0010	0.6818	0.1477
1.3028	0.0006	0.0035	907.7795	0.0008	0.0391	0.0001	2.56E-05	-4.06E-07	-6.18E-06	2.63E-05	0.0010	0.0010	0.5650	0.1814
1.3020	0.0007	0.0035	1006.9377	0.0008	0.0391	0.0001	2.30E-05	-3.30E-07	-5.57E-06	2.37E-05	0.0010	0.0010	0.5091	0.2004
1.3014	0.0007	0.0035	1051.7237	0.0007	0.0392	0.0001	2.21E-05	-3.02E-07	-5.33E-06	2.27E-05	0.0010	0.0010	0.4872	0.2063
1.3116	0.0006	0.0035	1103.5535	0.0008	0.0392	0.0001	2.10E-05	-2.77E-07	-5.12E-06	2.16E-05	0.0010	0.0010	0.4679	0.2104
1.3007	0.0007	0.0035	1155.5678	0.0008	0.0392	0.0001	2.01E-05	-2.50E-07	-4.85E-06	2.07E-05	0.0011	0.0011	0.4431	0.2376
1.3006	0.0006	0.0035	1208.2135	0.0008	0.0392	0.0001	1.92E-05	-2.29E-07	-4.63E-06	1.98E-05	0.0010	0.0010	0.4238	0.2389
1.3020	0.0007	0.0035	1256.7456	0.0008	0.0392	0.0001	1.85E-05	-2.12E-07	-4.46E-06	1.90E-05	0.0010	0.0010	0.4079	0.2570
	-	-		_	-	-	B 07/01/			_	_			
V	Pv	Bv	n	Pn	Bn	B _D	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
V (m/s)	Pv	Bv	n (rpm)	P _n	B _n	B _D	Β _ν δ.J/δV	B _n δJ/δn	Β _D δJ/δD	Вј	Pj	Uj	J	% U
V (m/s)	P _v	Bv	n (rpm)	Pn	B _n	B _D	B _ν δ <i>J/</i> δV	B _n δJ/δn	B _D δJ/δD	В,	Pj	Uj	J	% U
V (m/s) 1.6030	P _v	B _V 0.0036	n (rpm) 503.1755	P _n	B _n 0.0391	B _D	B _V δJ/δV 4.63E-05	B _n δJ/δn -1.62E-06	B _D δJ/δD	B _J 4.83E-05	Р ј 0.0011	U ງ 0.0011	J 1.2542	% U
V (m/s) 1.6030 1.6053	P _v 0.0007 0.0008	B _v 0.0036 0.0036	n (rpm) 503.1755 554.4423	P _n 0.0009 0.0009	B _n 0.0391 0.0391	B _D 0.0001 0.0001	B _V δJ/δV 4.63E-05 4.20E-05	B _n δJ/δn -1.62E-06 -1.34E-06	B _D δJ/δD -1.37E-05 -1.25E-05	B _J 4.83E-05 4.39E-05	P _J 0.0011 0.0012	U J 0.0011 0.0012	J 1.2542 1.1399	% U 0.0900 0.1061
V (m/s) 1.6030 1.6053 1.6045	P _V 0.0007 0.0008 0.0007	B _V 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557	P _n 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001	Β _V δ J /δ V 4.63E-05 4.20E-05 3.86E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05	B _J 4.83E-05 4.39E-05 4.02E-05	P _J 0.0011 0.0012 0.0011	U _J 0.0011 0.0012 0.0011	J 1.2542 1.1399 1.0452	% U 0.0900 0.1061 0.1086
V (m/s) 1.6030 1.6053 1.6045 1.6063	P _v 0.0007 0.0008 0.0007 0.0008	B _v 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344	P _n 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05	P _J 0.0011 0.0012 0.0011 0.0012	U _J 0.0011 0.0012 0.0011 0.0012	J 1.2542 1.1399 1.0452 0.9693	% U 0.0900 0.1061 0.1086 0.1216
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063	Pv 0.0007 0.0008 0.0007 0.0008 0.0008	B _v 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439	Pn 0.0009 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001	Β _V δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05 3.10E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07 -7.29E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05 -9.19E-06	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05 3.23E-05	Pj 0.0011 0.0012 0.0011 0.0012 0.0012	U, 0.0011 0.0012 0.0011 0.0012 0.0012	J 1.2542 1.1399 1.0452 0.9693 0.8407	% U 0.0900 0.1061 0.1086 0.1216 0.1435
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059	Pv 0.0007 0.0008 0.0007 0.0008 0.0008 0.0007	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	Β _v δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05 3.10E-05 2.58E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07 -7.29E-07 -5.07E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05 -9.19E-06 -7.67E-06	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05 3.23E-05 2.70E-05	PJ 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011	0.0011 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013	% U 0.0900 0.1061 0.1086 0.1216 0.1435 0.1626
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056	Pv 0.0007 0.0008 0.0007 0.0008 0.0008 0.0007 0.0007	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	Β _v δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05 3.10E-05 2.58E-05 2.31E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07 -7.29E-07 -5.07E-07 -4.07E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05 -9.19E-06 -7.67E-06 -6.87E-06	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05 3.23E-05 2.70E-05 2.41E-05	P _J 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0011	0.0011 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011 0.0012	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279	% U 0.0900 0.1061 0.1086 0.1216 0.1435 0.1626 0.1832
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6063	Pv 0.0007 0.0008 0.0007 0.0008 0.0008 0.0007 0.0007 0.0007	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192	P _n 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05 3.10E-05 2.58E-05 2.31E-05 2.21E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07 -7.29E-07 -5.07E-07 -4.07E-07 -3.71E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05 -9.19E-06 -7.67E-06 -6.87E-06 -6.56E-06	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05 3.23E-05 2.70E-05 2.41E-05 2.31E-05	P.J. 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0011 0.0011	0.0011 0.0012 0.0011 0.0012 0.0012 0.0012 0.0011 0.0012 0.0011	1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998	% U 0.0900 0.1061 0.1086 0.1216 0.1435 0.1626 0.1832 0.1870
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063 1.6059	Pv 0.0007 0.0008 0.0007 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010	Pn 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05 3.10E-05 2.58E-05 2.31E-05 2.21E-05 2.11E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07 -7.29E-07 -5.07E-07 -4.07E-07 -3.71E-07 -3.40E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05 -9.19E-06 -7.67E-06 -6.87E-06 -6.56E-06 -6.27E-06	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05 3.23E-05 2.70E-05 2.41E-05 2.31E-05 2.20E-05	PJ 0.0011 0.0012 0.0011 0.0012 0.0011 0.0011 0.0011 0.0011 0.0012	U, 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0012 0.0011 0.0012	1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998 0.5735	% U 0.0900 0.1061 0.1086 0.1216 0.1435 0.1626 0.1832 0.1870 0.2065
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6063 1.6059 1.6056 1.6059 1.6059	Pv 0.0007 0.0008 0.0007 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0007	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010 1154.9706	Pn 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	Β _v δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05 3.10E-05 2.58E-05 2.31E-05 2.21E-05 2.11E-05 2.02E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07 -7.29E-07 -5.07E-07 -4.07E-07 -3.71E-07 -3.40E-07 -3.09E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05 -9.19E-06 -7.67E-06 -6.87E-06 -6.56E-06 -6.27E-06 -5.98E-06	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05 3.23E-05 2.70E-05 2.41E-05 2.31E-05 2.20E-05 2.10E-05	P.J. 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0011 0.0011 0.0012 0.0012	U, 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998 0.5735 0.5471	% U 0.0900 0.1061 0.1086 0.1216 0.1435 0.1626 0.1832 0.1870 0.2065 0.2158
V (m/s) 1.6030 1.6053 1.6045 1.6063 1.6059 1.6056 1.6063 1.6059 1.6059 1.6050 1.6054	Pv 0.0007 0.0008 0.0007 0.0008 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 503.1755 554.4423 604.3557 652.4344 752.2439 901.5599 1006.7175 1054.3192 1102.5010 1154.9706 1211.5007	Pn 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _v δJ/δV 4.63E-05 4.20E-05 3.86E-05 3.57E-05 3.57E-05 2.58E-05 2.31E-05 2.21E-05 2.11E-05 2.02E-05 1.92E-05	B _n δJ/δn -1.62E-06 -1.34E-06 -1.13E-06 -9.68E-07 -7.29E-07 -5.07E-07 -4.07E-07 -3.71E-07 -3.71E-07 -3.09E-07 -2.81E-07	B _D δJ/δD -1.37E-05 -1.25E-05 -1.14E-05 -1.06E-05 -9.19E-06 -7.67E-06 -6.87E-06 -6.56E-06 -6.27E-06 -5.98E-06 -5.98E-06 -5.71E-06	B _J 4.83E-05 4.39E-05 4.02E-05 3.73E-05 3.23E-05 2.70E-05 2.41E-05 2.31E-05 2.20E-05 2.10E-05 2.01E-05	P.J. 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012	U, 0.0011 0.0012 0.0011 0.0012 0.0012 0.0011 0.0012 0.0011 0.0012 0.0012 0.0012 0.0012	J 1.2542 1.1399 1.0452 0.9693 0.8407 0.7013 0.6279 0.5998 0.5735 0.5471 0.5217	% U 0.0900 0.1061 0.1086 0.1216 0.1435 0.1626 0.1832 0.1870 0.2065 0.2158 0.2258

<u>Uncertainty Analysis</u> (Advance Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)
V	Pv	Bv	n	Pn	Bn	BD	Βν δJ/δV	B _n δJ/δn	Β _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
1.8051	0.0009	0.0036	503.4015	0.0010	0.0391	0.0001	4.65E-05	-1.83E-06	-1.54E-05	4.90E-05	0.0014	0.0014	1.4117	0.0984
1.8061	0.0009	0.0036	550.5344	0.0011	0.0391	0.0001	4.25E-05	-1.53E-06	-1.41E-05	4.48E-05	0.0014	0.0014	1.2916	0.1097
1.8054	0.0008	0.0036	601.7534	0.0011	0.0391	0.0001	3.89E-05	-1.28E-06	-1.29E-05	4.10E-05	0.0014	0.0014	1.1812	0.1172
1.8043	0.0009	0.0036	655.6402	0.0011	0.0391	0.0001	3.57E-05	-1.08E-06	-1.18E-05	3.76E-05	0.0014	0.0014	1.0835	0.1284
1.8049	0.0009	0.0036	756.7032	0.0011	0.0391	0.0001	3.09E-05	-8.09E-07	-1.03E-05	3.26E-05	0.0014	0.0014	0.9391	0.1484
1.8053	0.0009	0.0036	903.5768	0.0011	0.0391	0.0001	2.59E-05	-5.68E-07	-8.60E-06	2.73E-05	0.0014	0.0014	0.7866	0.1840
1.8053	0.0009	0.0036	1007.3473	0.0010	0.0391	0.0001	2.32E-05	-4.57E-07	-7.72E-06	2.45E-05	0.0013	0.0013	0.7056	0.1891
1.8062	0.0009	0.0036	1051.7675	0.0011	0.0392	0.0001	2.22E-05	-4.20E-07	-7.39E-06	2.34E-05	0.0014	0.0014	0.6761	0.2080
1.8057	0.0009	0.0036	1105.5646	0.0011	0.0392	0.0001	2.12E-05	-3.80E-07	-7.03E-06	2.23E-05	0.0014	0.0014	0.6430	0.2230
1.8064	0.0009	0.0036	1151.0459	0.0011	0.0392	0.0001	2.03E-05	-3.50E-07	-6.76E-06	2.14E-05	0.0015	0.0015	0.6179	0.2367
1.8051	0.0009	0.0036	1199.5015	0.0011	0.0392	0.0001	1.95E-05	-3.23E-07	-6.48E-06	2.05E-05	0.0014	0.0014	0.5925	0.2395
1.8046	0.0009	0.0036	1261.8668	0.0011	0.0392	0.0001	1.85E-05	-2.91E-07	-6.16E-06	1.95E-05	0.0014	0.0014	0.5630	0.2525
								22		_	<u></u>			
V	Pv	Bv	n	Pn	Bn	BD	Βν δͿ/δν	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)						***************************************								
(1140)			(rpm)											
(110)			(rpm)						=	5 05 5 05			4 0504	0.0040
2.1082	0.0010	0.0036	(rpm) 500.4856	0.0012	0.0391	0.0001	4.70E-05	-2.16E-06	-1.81E-05	5.05E-05	0.0016	0.0016	1.6584	0.0949
2.1082 2.1078	0.0010 0.0010	0.0036 0.0036	(rpm) 500.4856 552.4532	0.0012 0.0012	0.0391 0.0391	0.0001 0.0001	4.70E-05 4.26E-05	-2.16E-06 -1.77E-06	-1.81E-05 -1.64E-05	5.05E-05 4.57E-05	0.0016 0.0016	0.0016 0.0016	1.6584 1.5021	0.0949 0.1051
2.1082 2.1078 2.1093	0.0010 0.0010 0.0011	0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664	0.0012 0.0012 0.0013	0.0391 0.0391 0.0391	0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05	-2.16E-06 -1.77E-06 -1.48E-06	-1.81E-05 -1.64E-05 -1.50E-05	5.05E-05 4.57E-05 4.18E-05	0.0016 0.0016 0.0017	0.0016 0.0016 0.0017	1.6584 1.5021 1.3738	0.0949 0.1051 0.1219
2.1082 2.1078 2.1093 2.1056	0.0010 0.0010 0.0011 0.0011	0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342	0.0012 0.0012 0.0013 0.0013	0.0391 0.0391 0.0391 0.0391	0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05	5.05E-05 4.57E-05 4.18E-05 3.87E-05	0.0016 0.0016 0.0017 0.0017	0.0016 0.0016 0.0017 0.0017	1.6584 1.5021 1.3738 1.2725	0.0949 0.1051 0.1219 0.1318 0.1421
2.1082 2.1078 2.1093 2.1056 2.1084	0.0010 0.0010 0.0011 0.0011 0.0010	0.0036 0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342 754.9317	0.0012 0.0012 0.0013 0.0013 0.0012	0.0391 0.0391 0.0391 0.0391 0.0391	0.0001 0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05 3.12E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06 -9.49E-07	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05 -1.20E-05	5.05E-05 4.57E-05 4.18E-05 3.87E-05 3.34E-05	0.0016 0.0016 0.0017 0.0017 0.0016	0.0016 0.0016 0.0017 0.0017 0.0016	1.6584 1.5021 1.3738 1.2725 1.0995	0.0949 0.1051 0.1219 0.1318 0.1431
2.1082 2.1078 2.1093 2.1056 2.1084 2.1095	0.0010 0.0010 0.0011 0.0011 0.0010 0.0011	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852	0.0012 0.0012 0.0013 0.0013 0.0012 0.0012	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05 3.12E-05 2.61E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06 -9.49E-07 -6.67E-07	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05 -1.20E-05 -1.01E-05	5.05E-05 4.57E-05 4.18E-05 3.87E-05 3.34E-05 2.80E-05 2.505	0.0016 0.0016 0.0017 0.0017 0.0016 0.0016	0.0016 0.0016 0.0017 0.0017 0.0016 0.0016	1.6584 1.5021 1.3738 1.2725 1.0995 0.9216	0.0949 0.1051 0.1219 0.1318 0.1431 0.1767
2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082	0.0010 0.0010 0.0011 0.0011 0.0010 0.0011 0.0011	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008	0.0012 0.0012 0.0013 0.0013 0.0012 0.0012 0.0012	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05 3.12E-05 2.61E-05 2.35E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06 -9.49E-07 -6.67E-07 -5.38E-07	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05 -1.20E-05 -1.01E-05 -9.05E-06	5.05E-05 4.57E-05 4.18E-05 3.87E-05 3.34E-05 2.80E-05 2.52E-05 2.42E-05	0.0016 0.0016 0.0017 0.0017 0.0016 0.0016 0.0016	0.0016 0.0016 0.0017 0.0017 0.0016 0.0016 0.0016	1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7892	0.0949 0.1051 0.1219 0.1318 0.1431 0.1767 0.2001
2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098	0.0010 0.0010 0.0011 0.0011 0.0011 0.0010 0.0011 0.0011 0.0010	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204	0.0012 0.0012 0.0013 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05 3.12E-05 2.61E-05 2.35E-05 2.23E-05 2.24E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06 -9.49E-07 -6.67E-07 -5.38E-07 -4.88E-07	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05 -1.20E-05 -1.01E-05 -9.05E-06 -8.62E-06	5.05E-05 4.57E-05 4.18E-05 3.87E-05 3.34E-05 2.80E-05 2.52E-05 2.40E-05 2.205-05	0.0016 0.0017 0.0017 0.0017 0.0016 0.0016 0.0017 0.0016	0.0016 0.0016 0.0017 0.0017 0.0016 0.0016 0.0016 0.0017 0.0016	1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883 0.7540	0.0949 0.1051 0.1219 0.1318 0.1431 0.1767 0.2001 0.2053 0.2184
2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103	0.0010 0.0010 0.0011 0.0011 0.0010 0.0011 0.0011 0.0010 0.0011	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204 1101.8507	0.0012 0.0012 0.0013 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05 3.12E-05 2.61E-05 2.35E-05 2.23E-05 2.14E-05 2.014E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06 -9.49E-07 -6.67E-07 -5.38E-07 -4.88E-07 -4.47E-07	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05 -1.20E-05 -1.01E-05 -9.05E-06 -8.62E-06 -8.62E-06 -8.25E-06	5.05E-05 4.57E-05 4.18E-05 3.87E-05 3.34E-05 2.80E-05 2.52E-05 2.40E-05 2.29E-05 2.29E-05	0.0016 0.0017 0.0017 0.0017 0.0016 0.0016 0.0017 0.0016 0.0016	0.0016 0.0017 0.0017 0.0017 0.0016 0.0016 0.0017 0.0016 0.0016	1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883 0.7540	0.0949 0.1051 0.1219 0.1318 0.1431 0.1767 0.2001 0.2053 0.2184
2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103 2.1101	0.0010 0.0010 0.0011 0.0011 0.0010 0.0011 0.0011 0.0011 0.0011	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204 1101.8507 1153.6637	0.0012 0.0012 0.0013 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05 3.12E-05 2.61E-05 2.35E-05 2.23E-05 2.14E-05 2.04E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06 -9.49E-07 -6.67E-07 -5.38E-07 -4.88E-07 -4.47E-07 -4.08E-07	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05 -1.39E-05 -1.20E-05 -1.01E-05 -9.05E-06 -8.62E-06 -8.62E-06 -7.88E-06 -7.88E-06	5.05E-05 4.57E-05 4.18E-05 3.87E-05 3.34E-05 2.80E-05 2.52E-05 2.40E-05 2.29E-05 2.19E-05 2.005	0.0016 0.0017 0.0017 0.0017 0.0016 0.0016 0.0017 0.0016 0.0016 0.0017	0.0016 0.0017 0.0017 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017	1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883 0.7540 0.7201	0.0949 0.1051 0.1219 0.1318 0.1431 0.1767 0.2001 0.2053 0.2184 0.2344
2.1082 2.1078 2.1093 2.1056 2.1084 2.1095 2.1082 2.1098 2.1103 2.1101 2.1091	0.0010 0.0010 0.0011 0.0011 0.0010 0.0011 0.0011 0.0011 0.0011 0.0011	0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	(rpm) 500.4856 552.4532 604.4664 651.4342 754.9317 901.1852 1002.9008 1053.7204 1101.8507 1153.6637 1210.1050	0.0012 0.0012 0.0013 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013	0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	4.70E-05 4.26E-05 3.89E-05 3.61E-05 3.12E-05 2.61E-05 2.35E-05 2.23E-05 2.14E-05 2.04E-05 1.95E-05	-2.16E-06 -1.77E-06 -1.48E-06 -1.27E-06 -9.49E-07 -6.67E-07 -5.38E-07 -4.88E-07 -4.47E-07 -4.08E-07 -3.70E-07	-1.81E-05 -1.64E-05 -1.50E-05 -1.39E-05 -1.20E-05 -1.20E-05 -1.01E-05 -9.05E-06 -8.62E-06 -8.62E-06 -7.88E-06 -7.50E-06 -7.50E-06	5.05E-05 4.57E-05 4.18E-05 3.87E-05 3.34E-05 2.80E-05 2.52E-05 2.40E-05 2.29E-05 2.19E-05 2.09E-05 2.09E-05	0.0016 0.0017 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.0017	0.0016 0.0017 0.0017 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.0017 0.0017	1.6584 1.5021 1.3738 1.2725 1.0995 0.9216 0.8276 0.7883 0.7540 0.7201 0.6862 0.6682	0.0949 0.1051 0.1219 0.1318 0.1431 0.1767 0.2001 0.2053 0.2184 0.2344 0.2344 0.2344

<u>Uncertainty Analysis</u> (Advance Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

V	Pv	Bv	n	Pn	Bn	Bp	Β _ν δJ/δV	B _n δJ/δn	Β _D δJ/δD	Bj	Pj	Uj	J	% U
(m/s)			(rpm)											
2 3113	0.0011	0.0036	506 5541	0.0013	0.0391	0.0001	4 67E-05	-2 31E-06	-1 96E-05	5.07E-05	0.0017	0.0017	1 7964	0 0958
2.3012	0.0012	0.0036	554 4124	0.0014	0.0391	0.0001	4.07E-05	-1.92E-06	-1.30E-05	4.63E-05	0.0019	0.0019	1 6341	0.1136
2 3106	0.0012	0.0036	602 4889	0.0013	0.0391	0.0001	3 93E-05	-1.63E-06	-1.65E-05	4.00E-05	0.0018	0.0018	1 5099	0 1201
2.3087	0.0012	0.0036	653 7372	0.0014	0.0391	0.0001	3.62E-00	-1.39E-06	-1.52E-05	3 93E-05	0.0018	0.0018	1 3904	0.1295
2 3127	0.0011	0.0036	751 5777	0.0013	0.0391	0.0001	3 15E-05	-1.05E-06	-1 32E-05	3.42E-05	0.0017	0.0017	1 2115	0 1440
2.3075	0.0013	0.0036	907 7627	0.0014	0.0391	0.0001	2.61E-05	-7 19E-07	-1.09E-05	2.83E-05	0.0019	0.0019	1.0008	0.1440
2 3104	0.0012	0.0036	1009 7375	0.0014	0.0391	0.0001	2.01E 00	-5.82E-07	-9 85E-06	2.00E 00	0.0018	0.0018	0 9008	0.2001
2 3089	0.0013	0.0036	1055 8389	0.0014	0.0392	0.0001	2 24E-05	-5.32E-07	-9 42E-06	2.01E 00	0.0019	0.0019	0.8609	0.2169
2.3716	0.0013	0.0036	1105 4558	0.0014	0.0392	0.0001	2.14E-05	-4 99E-07	-9 24E-06	2.34E-05	0.0019	0.0019	0.8446	0 2213
2 3101	0.0012	0.0036	1156 8492	0.0014	0.0392	0.0001	2.05E-05	-4 44F-07	-8.60E-06	2 22E-05	0.0019	0.0019	0 7862	0.2381
2 3079	0.0013	0.0036	1207 4927	0.0014	0.0392	0.0001	1.96E-05	-4 07E-07	-8 23E-06	2.13E-05	0.0019	0.0019	0 7525	0 2520
2.3092	0.0013	0.0036	1255.9025	0.0014	0.0392	0.0001	1.88E-05	-3.77E-07	-7.92E-06	2.04E-05	0.0019	0.0019	0.7239	0.2602
2.0002	0.0010				0.0001			0		2.0.12.00	0.00.0	0.0010	0.1.200	0.2002
V	Pv	Bv	n	Pn	B _n	B _D	Β _ν δJ/δV	B _n δJ/δn	Β _D δJ/δD	Bj	Pj	Uj	J	% U
V (m/s)	Pv	Bv	n (rpm)	Pn	B _n	B _D	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Bj	Pj	Uj	J	% U
V (m/s)	Pv	Bv	n (rpm)	Pn	B _n	B _D	Β _ν δJ/δV	B _n δJ/δn	B _D δJ/δD	Вյ	Pj	Uj	J	% U
V (m/s) 2.5094	P _V 0.0013	B _V 0.0036	n (rpm) 504.8586	P _n 0.0015	B _n 0.0391	В _р 0.0001	Β _V δ J/δV 4.71E-05	Β _n δ J/δn -2.53E-06	B _D δJ/δD -2.14E-05	B J 5.18E-05	Р _Ј 0.0020	U _J 0.0020	J 1.9569	% U 0.1028
V (m/s) 2.5094 2.5104	P _v 0.0013 0.0013	B _V 0.0036 0.0036	n (rpm) 504.8586 552.4243	P _n 0.0015 0.0015	B _n 0.0391 0.0391	B _D 0.0001 0.0001	Β _V δ J /δ V 4.71E-05 4.31E-05	B _n δ J /δn -2.53E-06 -2.11E-06	B _D δJ/δD -2.14E-05 -1.96E-05	B J 5.18E-05 4.74E-05	P J 0.0020 0.0020	U _J 0.0020 0.0020	J 1.9569 1.7891	% U 0.1028 0.1104
V (m/s) 2.5094 2.5104 2.5067	Pv 0.0013 0.0013 0.0014	B _v 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795	P _n 0.0015 0.0015 0.0015	B _n 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001	B _V δJ/δV 4.71E-05 4.31E-05 3.94E-05	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05	B _J 5.18E-05 4.74E-05 4.32E-05	PJ 0.0020 0.0020 0.0021	U _J 0.0020 0.0020 0.0021	J 1.9569 1.7891 1.6324	% U 0.1028 0.1104 0.1259
V (m/s) 2.5094 2.5104 2.5067 2.5107	P _V 0.0013 0.0013 0.0014 0.0013	B _v 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312	P _n 0.0015 0.0015 0.0015 0.0015	B _n 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001	B _v δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05	P _J 0.0020 0.0020 0.0021 0.0020	U, 0.0020 0.0020 0.0021 0.0020	J 1.9569 1.7891 1.6324 1.5132	0.1028 0.1104 0.1259 0.1302
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093	Pv 0.0013 0.0013 0.0014 0.0013 0.0014	B _v 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477	Pn 0.0015 0.0015 0.0015 0.0015 0.0015	B _n 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001	 Β_V δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05 3.16E-05 	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06 -1.14E-06	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05 -1.43E-05	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05 3.47E-05	PJ 0.0020 0.0020 0.0021 0.0020 0.0021	U _J 0.0020 0.0020 0.0021 0.0020 0.0021	J 1.9569 1.7891 1.6324 1.5132 1.3115	0.1028 0.1104 0.1259 0.1302 0.1566
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099	Pv 0.0013 0.0013 0.0014 0.0013 0.0014 0.0013	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469	Pn 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	B _V δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05 3.16E-05 2.63E-05	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06 -1.51E-06 -1.14E-06 -7.85E-07	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05 -1.43E-05 -1.19E-05	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05 3.47E-05 2.89E-05	P _J 0.0020 0.0020 0.0021 0.0020 0.0021 0.0020	0.0020 0.0020 0.0021 0.0020 0.0021 0.0020	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906	0.1028 0.1104 0.1259 0.1302 0.1566 0.1820
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126	Pv 0.0013 0.0013 0.0014 0.0013 0.0014 0.0013 0.0013	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932	Pn 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	B _n 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	 Β_V δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05 3.16E-05 2.63E-05 2.37E-05 	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06 -1.14E-06 -7.85E-07 -6.42E-07	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05 -1.43E-05 -1.19E-05 -1.08E-05	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05 3.47E-05 2.89E-05 2.61E-05	P _J 0.0020 0.0020 0.0021 0.0020 0.0021 0.0020 0.0020	0.0020 0.0020 0.0021 0.0020 0.0021 0.0020 0.0020	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865	0.1028 0.1104 0.1259 0.1302 0.1566 0.1820 0.2041
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126 2.5100	Pv 0.0013 0.0013 0.0014 0.0013 0.0014 0.0013 0.0013 0.0013	Bv 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234	Pn 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	Bn 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	 B_v δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05 3.16E-05 2.63E-05 2.37E-05 2.26E-05 	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06 -1.14E-06 -7.85E-07 -6.42E-07 -5.82E-07	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05 -1.43E-05 -1.19E-05 -1.08E-05 -1.03E-05	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05 3.47E-05 2.89E-05 2.61E-05 2.48E-05	PJ 0.0020 0.0020 0.0021 0.0020 0.0021 0.0020 0.0020 0.0020	0.0020 0.0020 0.0021 0.0020 0.0021 0.0020 0.0020 0.0020	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390	0.1028 0.1104 0.1259 0.1302 0.1566 0.1820 0.2041 0.2142
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104	Pv 0.0013 0.0013 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013	Bv 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234 1106.7229	Pn 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	Bn 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	 B_v δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05 3.16E-05 2.63E-05 2.37E-05 2.26E-05 2.15E-05 	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06 -1.14E-06 -7.85E-07 -6.42E-07 -5.82E-07 -5.27E-07	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05 -1.43E-05 -1.19E-05 -1.08E-05 -1.03E-05 -9.77E-06	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05 3.47E-05 2.89E-05 2.61E-05 2.48E-05 2.36E-05	PJ 0.0020 0.0020 0.0021 0.0020 0.0021 0.0020 0.0020 0.0020 0.0020	0.0020 0.0020 0.0021 0.0021 0.0020 0.0021 0.0020 0.0020 0.0020 0.0020	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390 0.8930	0.1028 0.1104 0.1259 0.1302 0.1566 0.1820 0.2041 0.2142 0.2271
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104 2.5101	Pv 0.0013 0.0013 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014	Bv 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234 1106.7229 1152.3582	Pn 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	Bn 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	 B_v δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05 3.16E-05 2.63E-05 2.37E-05 2.26E-05 2.15E-05 2.06E-05 	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06 -1.14E-06 -7.85E-07 -6.42E-07 -5.82E-07 -5.27E-07 -4.86E-07	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05 -1.43E-05 -1.19E-05 -1.08E-05 -1.03E-05 -9.77E-06 -9.38E-06	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05 3.47E-05 2.89E-05 2.61E-05 2.48E-05 2.36E-05 2.27E-05	PJ 0.0020 0.0020 0.0021 0.0020 0.0021 0.0020 0.0020 0.0020 0.0020 0.0021	0.0020 0.0020 0.0021 0.0021 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0021	1.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390 0.8930 0.8930 0.8576	0.1028 0.1104 0.1259 0.1302 0.1566 0.1820 0.2041 0.2142 0.2271 0.2413
V (m/s) 2.5094 2.5104 2.5067 2.5107 2.5093 2.5099 2.5126 2.5100 2.5104 2.5101 2.5109	Pv 0.0013 0.0013 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014	B _v 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	n (rpm) 504.8586 552.4243 604.5795 653.2312 753.2477 906.0469 1002.7932 1052.4234 1106.7229 1152.3582 1204.5756	Pn 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	Bn 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0392 0.0392 0.0392 0.0392	B _D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	 B_V δJ/δV 4.71E-05 4.31E-05 3.94E-05 3.64E-05 3.16E-05 2.63E-05 2.37E-05 2.26E-05 2.15E-05 2.06E-05 1.98E-05 	B _n δJ/δn -2.53E-06 -2.11E-06 -1.76E-06 -1.51E-06 -1.14E-06 -7.85E-07 -6.42E-07 -5.82E-07 -5.27E-07 -4.86E-07 -4.45E-07	B _D δJ/δD -2.14E-05 -1.96E-05 -1.79E-05 -1.65E-05 -1.43E-05 -1.19E-05 -1.08E-05 -1.03E-05 -9.77E-06 -9.38E-06 -8.97E-06	B _J 5.18E-05 4.74E-05 4.32E-05 4.00E-05 3.47E-05 2.89E-05 2.61E-05 2.48E-05 2.36E-05 2.27E-05 2.17E-05	PJ 0.0020 0.0020 0.0021 0.0020 0.0021 0.0020 0.0020 0.0020 0.0020 0.0021 0.0021	0.0020 0.0020 0.0021 0.0021 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0021 0.0021	J.9569 1.7891 1.6324 1.5132 1.3115 1.0906 0.9865 0.9390 0.8930 0.8930 0.8576 0.8207	0.1028 0.1104 0.1259 0.1302 0.1566 0.1820 0.2041 0.2142 0.2271 0.2413 0.2520

<u>Uncertainty Analysis</u> (Advance Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

Uncertainty Analysis (Torque Coefficient)

- V Vehicle Velocity (m/s)
- n Propeller Rotational Speed (rpm)
- D Propeller Diameter (m)
- Q Propeller Torque (N-m)
- ρ Density of Water (kg/m³)
- K_q Torque Coefficient
- P_q Precision Error for Q
- B_q Bias Error for Q
- P_{Kq} Precision Error for K_q
- P_n Precision Error for n
- B_n Bias Error for n
- B_{ρ} Bias Error for ρ
- B_D Bias Error for D
- B_{Kq} Bias Error for K _q
- U_{Kq} Total Error for K _q
- % U Percentage Uncertainty for K_q

 $B_{Kq} = (\delta K_q / \delta Q B_q)^2 + (\delta K_q / \delta \rho B_\rho)^2 + (\delta K_q / \delta n B_n)^2 + (\delta K_q / \delta D B_D)^2)^{1/2}$ $U_{Kq} = (B_{Kq}^2 + P_{Kq}^2)^{1/2}$ % U = (U_{Kq} / K_q) x 100

v	n	Q	Pq	Ba	Pn	Bn	Bo	BD	B _q δK _q /δQ	Β _ρ δ Κ _q /δρ	B _n δK _q /δn	B _D δK _q /δD	B _{Kq}	PKq	U _{Kq}	Kq	% U
(m/s)	(rpm)	(N-m)															
0.8002	499.5767	0.3364	0.0008	0.0076	0.0005	0.0391	0.0578	0.0001	3.72E-07	-9.48E-10	-2.57E-09	-5.38E-08	3.76E-07	0.0009	0.0009	0.0590	1.5807
0.8004	551.4566	0.4972	0.0008	0.0076	0.0005	0.0391	0.0578	0.0001	3.06E-07	-1.15E-09	-2.82E-09	-6.52E-08	3.13E-07	0.0010	0.0010	0.0716	1.3444
0.8012	600.4575	0.6260	0.0008	0.0077	0.0005	0.0391	0.0578	0.0001	2.58E-07	-1.22E-09	-2.75E-09	-6.93E-08	2.67E-07	0.0010	0.0010	0.0760	1.2914
0.8018	650.4466	0.8160	0.0008	0.0077	0.0005	0.0391	0.0578	0.0001	2.20E-07	-1.36E-09	-2.82E-09	-7.70E-08	2.33E-07	0.0010	0.0010	0.0845	1.1574
0.8002	753.2179	1.2582	0.0008	0.0077	0.0005	0.0391	0.0578	0.0001	1.65E-07	-1.56E-09	-2.80E-09	-8.85E-08	1.87E-07	0.0009	0.0009	0.0971	0.9771
0.8002	902.9860	1.9967	0.0009	0.0078	0.0005	0.0391	0.0578	0.0001	1.16E-07	-1.72E-09	-2.58E-09	-9.77E-08	1.52E-07	0.0010	0.0010	0.1072	0.9292
0.8003	1008.5085	2.5232	0.0009	0.0079	0.0005	0.0391	0.0578	0.0001	9.45E-08	-1.74E-09	-2.34E-09	-9.90E-08	1.37E-07	0.0010	0.0010	0.1086	0.9146
0.8005	1052.3455	2.8657	0.0009	0.0080	0.0005	0.0392	0.0578	0.0001	8.76E-08	-1.82E-09	-2.34E-09	-1.03E-07	1.35E-07	0.0010	0.0010	0.1133	0.8924
0.8014	1104.1946	3.1813	0.0009	0.0080	0.0005	0.0392	0.0578	0.0001	8.03E-08	-1.83E-09	-2.25E-09	-1.04E-07	1.32E-07	0.0010	0.0010	0.1143	0.9011
0.8002	1150.2549	3.5448	0.0009	0.0081	0.0005	0.0392	0.0578	0.0001	7.49E-08	-1.88E-09	-2.22E-09	-1.07E-07	1.31E-07	0.0011	0.0011	0.1173	0.9008
0.8008	1206.8237	3.9061	0.0009	0.0083	0.0005	0.0392	0.0578	0.0001	6.89E-08	-1.89E-09	-2.12E-09	-1.07E-07	1.27E-07	0.0011	0.0011	0.1174	0.9072
0.8006	1252.7469	4.2519	0.0009	0.0084	0.0005	0.0392	0.0578	0.0001	6.48E-08	-1.90E-09	-2.06E-09	-1.08E-07	1.26E-07	0.0011	0.0011	0.1186	0.8896
v	n	0	Pa	B.	P	в	R	B-	B 8K /80	B &K /80	Β δΚ /δα	B _n δK_/δD	Bra	P _{V-}	Ur.	Ka	%11
(m/c)	(mm)	(Nm)	• 4	Ψų	• 0	-0	- p	-0	-q		-1		- 64	- nq	-ny		
(11/5)	(1911)	(18-11)	8. 9938992.9999		0.0000000000000000000000000000000000000												
1 1006	500,6686	0.3193	0.0009	0.0076	0.0006	0.0391	0.0578	0.0001	3.71E-07	-8.96E-10	-2.42E-09	-5.08E-08	3.74E-07	0.0011	0.0011	0.0558	2.0185
1 1022	552 7477	0.4722	0.0010	0.0076	0.0006	0.0391	0.0578	0.0001	3.04E-07	-1.09E-09	-2.66E-09	-6.17E-08	3.11E-07	0.0011	0.0011	0.0677	1.6923
1 1031	603 4646	0.6209	0.0010	0.0077	0.0007	0.0391	0.0578	0.0001	2.56E-07	-1.20E-09	-2.69E-09	-6.80E-08	2.64E-07	0.0012	0.0012	0.0747	1.5757
1 1032	651,6550	0.8161	0.0010	0.0077	0.0007	0.0391	0.0578	0.0001	2.20E-07	-1.35E-09	-2.81E-09	-7.67E-08	2.33E-07	0.0012	0.0012	0.0842	1.4310
1 1005	754.9726	1.2195	0.0010	0.0077	0.0007	0.0391	0.0578	0.0001	1.64E-07	-1.50E-09	-2.70E-09	-8.54E-08	1.85E-07	0.0012	0.0012	0.0937	1.2700
1 1026	901 8126	1.9412	0.0010	0.0078	0.0007	0.0391	0.0578	0.0001	1.17E-07	-1.68E-09	-2.52E-09	-9.53E-08	1.51E-07	0.0012	0.0012	0.1045	1.1570
1.1014	1000.0880	2.4885	0.0010	0.0079	0.0007	0.0391	0.0578	0.0001	9.60E-08	-1.75E-09	-2.37E-09	-9.93E-08	1.38E-07	0.0012	0.0012	0.1090	1.1354
1.1017	1056.9566	2,7980	0.0010	0.0080	0.0007	0.0392	0.0578	0.0001	8.66E-08	-1.76E-09	-2.26E-09	-1.00E-07	1.32E-07	0.0013	0.0013	0.1097	1.1458
1.1013	1104.4112	3.1236	0.0010	0.0080	0.0007	0.0392	0.0578	0.0001	8.01E-08	-1.80E-09	-2.21E-09	-1.02E-07	1.30E-07	0.0013	0.0013	0.1121	1.1179
1.1020	1156.9473	3.4722	0.0011	0.0081	0.0007	0.0392	0.0578	0.0001	7.39E-08	-1.82E-09	-2.14E-09	-1.04E-07	1.27E-07	0.0013	0.0013	0.1136	1.1208
1.1015	1212.9133	3.8531	0.0011	0.0082	0.0007	0.0392	0.0578	0.0001	6.81E-08	-1.84E-09	-2.06E-09	-1.05E-07	1.25E-07	0.0013	0.0013	0.1147	1.1076
1.1011	1258.8191	4.2369	0.0011	0.0084	0.0007	0.0392	0.0578	0.0001	6.41E-08	-1.88E-09	-2.03E-09	-1.07E-07	1.25E-07	0.0013	0.0013	0.1171	1.0737
		_	•	_	-		_	_	D SV (50	D SV /S-	D 61/ 18-	D SK ISD	D	•		1 2	0/ 11
v	n	<u> </u>	Γq	Þq	٣	Dn	Dp	ÞD	Dq OKq/OU	D _p on q op	D _n or q/on	DD ON GLOD	DKq	FKq	UKq	NQ	70 U
(m/s)	(rpm)	(N-M)														16314-544-644	
1 2023	501 85/1	0 2851	0.0010	0.0076	0 0008	0.0301	0.0578	0.0001	3 695-07	-7 96E-10	-2 14E-09	-4 52E-08	3 72E-07	0.0013	0.0013	0.0496	2 5341
1 2116	550 7550	0.2001	0.0010	0.0076	0.0000	0.0301	0.0578	0.0001	3.06E-07	-9.92E-10	-2.14E-09	-5.63E-08	3 12E-07	0.0013	0.0013	0.0618	2 0871
1.0110	601 3456	0.4200	0.0011	0.0076	0.0007	0.0301	0.0578	0.0001	2.57E-07	-1 145-09	-2.44E-03	-6.47E-08	2.65E-07	0.0013	0.0013	0.0010	1 8237
1.3010	601.3430	0.0000	0.0011	0.0070	0.0007	0.0391	0.0570	0.0001	2.37 - 07	1 285 00	2.57 -2.57	7 275-08	2.000-07	0.0013	0.0010	0.0798	1 7035
1.3022	752 1400	4 4670	0.0012	0.0077	0.0008	0.0391	0.0570	0.0001	1.655.07	-1.200-09	2.000-09	9 17E 09	1 845 07	0.0014	0.0014	0.0750	1 50/3
1.3025	752.1400	1.15/0	0.0012	0.0077	0.0008	0.0391	0.0576	0.0001	1.05E-07	-1.44E-09	-2.592-09	0.21E.00	1.042-07	0.0014	0.0014	0.0030	1.0340
1.3028	901.1195	1.9010	0.0012	0.0078	0.0008	0.0391	0.0578	0.0001	0.465.09	1 705 00	-2.420-09	-9.210-00	1 355-07	0.0013	0.0013	0.1010	1 3611
1.3020	1000.9377	2.4401	0.0012	0.0079	0.0008	0.0391	0.0570	0.0001	9.40E-00	-1.70E-09	-2.20E-U9	-9.02E-00	1.335-07	0.0014	0.0014	0.1050	1 3517
1.3014	1051.7237	2.0985	0.0012	0.0079	0.0007	0.0392	0.0578	0.0001	0./JE-00	-1./2E-U9	-2.21E-09	-9./4E-08	1.312-07	0.0014	0.0014	0.1000	1 32/12
1.3116	1103.5535	3.0711	0.0013	0.0000	0.0008	0.0392	0.0578	0.0001	7 205 00	-1.//E-09	-2.100-09	1.012-07	1.290-07	0.0015	0.0015	0.1104	1 3361
1.3007	1155.5078	3.4310	0.0013	0.0001	0.0008	0.0392	0.0576	0.0001	1.395-00	-1.01E-09	-2.12E-09	1 03E-07	1 245 07	0.0015	0.0015	0.1120	1 3321
1.3006	1208.2135	3.1110	0.0013	0.0062	0.0008	0.0392	0.0578	0.0001	0.04E-U0 6 42E 09	-1.02E-09	-2.04E-09	-1.03E-07	1.240-07	0.0015	0.0013	0.1100	1 2006
1.3020	1200.7400	4.1030	0.0013	0.0083	0.0008	0.0392	0.00/0	0.0001	0.422-00	-1.00E-09	-2.012-09	-1.00E-07	1.245-01	0.0010	0.0010	0.1100	1.2330

<u>Uncertainty Analysis</u> (Torque Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

<u>Uncertainty Analysis</u> (Torque Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

v	n	Q	Pq	Bq	Pn	Bn	Bp	BD	B _q δK _q /δQ	Β _ρ δΚ _q /δρ	B _n δK _q /δn	Β _D δK _q /δD	B _{Kq}	PKq	U _{Kg}	Kq	% U
(m/s)	(rpm)	(N-m)									•						
1.6030	503.1755	0.2466	0.0011	0.0076	0.0009	0.0391	0.0578	0.0001	3.67E-07	-6.85E-10	-1.84E-09	-3.89E-08	3.69E-07	0.0014	0.0014	0.0427	3.3324
1.6053	554.4423	0.3896	0.0013	0.0076	0.0009	0.0391	0.0578	0.0001	3.02E-07	-8.91E-10	-2.17E-09	-5.06E-08	3.07E-07	0.0016	0.0016	0.0555	2.8904
1.6045	604.3557	0.5547	0.0013	0.0076	0.0009	0.0391	0.0578	0.0001	2.55E-07	-1.07E-09	-2.39E-09	-6.06E-08	2.62E-07	0.0016	0.0016	0.0665	2.3565
1.6063	652.4344	0.7494	0.0013	0.0077	0.0009	0.0391	0.0578	0.0001	2.19E-07	-1.24E-09	-2.57E-09	-7.03E-08	2.30E-07	0.0016	0.0016	0.0771	2.0830
1.6063	752.2439	1.1132	0.0013	0.0077	0.0009	0.0391	0.0578	0.0001	1.65E-07	-1.38E-09	-2.49E-09	-7.85E-08	1.83E-07	0.0016	0.0016	0.0861	1.8772
1.6059	901.5599	1.8053	0.0013	0.0078	0.0009	0.0391	0.0578	0.0001	1.16E-07	-1.56E-09	-2.35E-09	-8.86E-08	1.46E-07	0.0016	0.0016	0.0973	1.6597
1.6056	1006.7175	2.4295	0.0014	0.0079	0.0009	0.0391	0.0578	0.0001	9.46E-08	-1.69E-09	-2.27E-09	-9.57E-08	1.35E-07	0.0016	0.0016	0.1050	1.5351
1.6063	1054.3192	2.6763	0.0014	0.0079	0.0009	0.0392	0.0578	0.0001	8.68E-08	-1.69E-09	-2.18E-09	-9.61E-08	1.30E-07	0.0016	0.0016	0.1054	1.5182
1.6059	1102.5010	3.0303	0.0014	0.0080	0.0009	0.0392	0.0578	0.0001	8.02E-08	-1.75E-09	-2.15E-09	-9.95E-08	1.28E-07	0.0017	0.0017	0.1092	1.5219
1.6050	1154.9706	3.3480	0.0014	0.0081	0.0009	0.0392	0.0578	0.0001	7.38E-08	-1.76E-09	-2.07E-09	-1.00E-07	1.24E-07	0.0017	0.0017	0.1099	1.5091
1.6054	1211.5007	3.7189	0.0014	0.0082	0.0009	0.0392	0.0578	0.0001	6.79E-08	-1.78E-09	-1.99E-09	-1.01E-07	1.22E-07	0.0016	0.0016	0.1110	1.4849
1.6019	1257.0444	4.0895	0.0014	0.0083	0.0009	0.0392	0.0578	0.0001	6.40E-08	-1.82E-09	-1.96E-09	-1.03E-07	1.22E-07	0.0017	0.0017	0.1133	1.4782
												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
V	n	Q	Pq	Bq	Pn	Bn	Bp	BD	B _q δK _q /δQ	Β _ρ δΚ _q /δρ	B _n δK _q /δn	B _D δK _q /δD	BKq	PKq	U _{Kq}	Kq	% U
( m/s )	( rpm )	( N-m )															
1.8051	503.4015	0.2345	0.0012	0.0076	0.0010	0.0391	0.0578	0.0001	3.67E-07	-6.51E-10	-1.75E-09	-3.69E-08	3.68E-07	0.0016	0.0016	0.0405	3.9179
1.8061	550.5344	0.3599	0.0014	0.0076	0.0011	0.0391	0.0578	0.0001	3.07E-07	-8.35E-10	-2.05E-09	-4.74E-08	3.10E-07	0.0018	0.0018	0.0520	3.3923
1.8054	601.7534	0.4952	0.0014	0.0076	0.0011	0.0391	0.0578	0.0001	2.57E-07	-9.61E-10	-2.16E-09	-5.46E-08	2.63E-07	0.0018	0.0018	0.0599	3.0128
1.8043	655.6402	0.7021	0.0015	0.0077	0.0011	0.0391	0.0578	0.0001	2.17E-07	-1.15E-09	-2.37E-09	-6.52E-08	2.26E-07	0.0018	0.0018	0.0715	2.5113
1.8049	756.7032	1.1097	0.0015	0.0077	0.0011	0.0391	0.0578	0.0001	1.63E-07	-1.36E-09	-2.44E-09	-7.73E-08	1.81E-07	0.0018	0.0018	0.0849	2.1398
1.8053	903.5768	1.7817	0.0015	0.0078	0.0011	0.0391	0.0578	0.0001	1.16E-07	-1.53E-09	-2.30E-09	-8.71E-08	1.45E-07	0.0018	0.0018	0.0956	1.9296
1.8053	1007.3473	2.3494	0.0015	0.0079	0.0010	0.0391	0.0578	0.0001	9.43E-08	-1.63E-09	-2.19E-09	-9.24E-08	1.32E-07	0.0018	0.0018	0.1014	1.7648
1.8062	1051.7675	2.6355	0.0015	0.0079	0.0011	0.0392	0.0578	0.0001	8.71E-08	-1.68E-09	-2.16E-09	-9.51E-08	1.29E-07	0.0018	0.0018	0.1043	1.7562
1.8057	1105.5646	2.9403	0.0015	0.0080	0.0011	0.0392	0.0578	0.0001	7.95E-08	-1.69E-09	-2.07E-09	-9.60E-08	1.25E-07	0.0018	0.0018	0.1053	1.7505
1.8064	1151.0459	3.2937	0.0015	0.0081	0.0011	0.0392	0.0578	0.0001	7.42E-08	-1.75E-09	-2.06E-09	-9.92E-08	1.24E-07	0.0019	0.0019	0.1089	1.7123
1.8051	1199.5015	3.6086	0.0015	0.0082	0.0011	0.0392	0.0578	0.0001	6.90E-08	-1.76E-09	-1.99E-09	-1.00E-07	1.22E-07	0.0019	0.0019	0.1098	1.6904
1.8046	1261.8668	4.0584	0.0015	0.0083	0.0011	0.0392	0.0578	0.0001	6.34E-08	-1.79E-09	-1.93E-09	-1.02E-07	1.20E-07	0.0019	0.0019	0.1116	1.6811
v	n	۵	Po	Bo	Ρ.	В.	В.	Bn	Β. δΚ./δQ	<b>Β</b> , δ <b>Κ</b> ,/δο	B. δK./δn	Β ₅ δΚ./δD	Br.	Pr-	Ur.	Κα	% U
(m/s)	(mm)	(N-m)					P		4 4 -	, , , , , , , , , , , , , , , , , , ,		- 4	~~				
(	(()))))	1				1919 D.C. 1929 (M.C. 197											
2.1082	500.4856	0.1922	0.0011	0.0076	0.0012	0.0391	0.0578	0.0001	3.71E-07	-5.39E-10	-1.46E-09	-3.06E-08	3.72E-07	0.0016	0.0016	0.0336	4.8014
2.1078	552.4532	0.3309	0.0016	0.0076	0.0012	0.0391	0.0578	0.0001	3.04E-07	-7.62E-10	-1.87E-09	-4.33E-08	3.08E-07	0.0020	0.0020	0.0475	4,1880
2.1093	604.4664	0.4607	0.0016	0.0076	0.0013	0.0391	0.0578	0.0001	2.54E-07	-8.87E-10	-1.98E-09	-5.03E-08	2.59E-07	0.0020	0.0020	0.0552	3.6544
2.1056	651.4342	0.6493	0.0016	0.0077	0.0013	0.0391	0.0578	0.0001	2.19E-07	-1.08E-09	-2.23E-09	-6.11E-08	2.28E-07	0.0021	0.0021	0.0670	3.0653
2.1084	754.9317	1.0051	0.0016	0.0077	0.0012	0.0391	0.0578	0.0001	1.64E-07	-1.24E-09	-2.22E-09	-7.04E-08	1.78E-07	0.0020	0.0020	0.0772	2.5743
2.1095	901.1852	1.6707	0.0016	0.0078	0.0012	0.0391	0.0578	0.0001	1.16E-07	-1.45E-09	-2.17E-09	-8.21E-08	1.42E-07	0.0020	0.0020	0.0901	2.2202
2.1082	1002.9008	2.2317	0.0016	0.0078	0.0012	0.0391	0.0578	0.0001	9.48E-08	-1.56E-09	-2.11E-09	-8.85E-08	1.30E-07	0.0020	0.0020	0.0972	2.0872
2.1098	1053.7204	2.5445	0.0016	0.0079	0.0012	0.0392	0.0578	0.0001	8.66E-08	-1.61E-09	-2.07E-09	-9.15E-08	1.26E-07	0.0020	0.0020	0.1004	2.0409
2.1103	1101.8507	2.8646	0.0017	0.0080	0.0013	0.0392	0.0578	0.0001	7.99E-08	-1.66E-09	-2.04E-09	-9.42E-08	1.24E-07	0.0021	0.0021	0.1033	2.0093
2.1101	1153.6637	3.1899	0.0017	0.0081	0.0013	0.0392	0.0578	0.0001	7.36E-08	-1.69E-09	-1.98E-09	-9.56E-08	1.21E-07	0.0021	0.0021	0.1050	2.0048
2.1091	1210.1050	3.5803	0.0017	0.0082	0.0013	0.0392	0.0578	0.0001	6.78E-08	-1.72E-09	-1.93E-09	-9.76E-08	1.19E-07	0.0021	0.0021	0.1071	1.9840
2,1086	1258.3035	3.9869	0.0017	0.0083	0.0013	0.0392	0.0578	0.0001	6.36E-08	-1.77E-09	-1.91E-09	-1.00E-07	1.19E-07	0.0021	0.0021	0.1103	1.9117

### <u>Uncertainty Analysis</u> (Torque Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

v	n	Q	Po	Bq	Pn	Bn	B _p	BD	B _q δK _q /δQ	<b>Β</b> _ρ δ <b>Κ</b> _q /δρ	B _n δK _q /δn	Β _D δΚ _q /δD	B _{Kq}	PKq	U _{Ka}	Kq	% U
( m/s )	(rpm)	(N-m)															
2.3113	506.5541	0.1820	0.0010	0.0076	0.0013	0.0391	0.0578	0.0001	3.62E-07	-4.99E-10	-1.33E-09	-2.83E-08	3.63E-07	0.0017	0.0017	0.0311	5.3828
2.3012	554.4124	0.3087	0.0017	0.0076	0.0014	0.0391	0.0578	0.0001	3.02E-07	-7.06E-10	-1.72E-09	-4.01E-08	3.05E-07	0.0022	0.0022	0.0440	5.0 <b>1</b> 44
2.3106	602.4889	0.4268	0.0017	0.0076	0.0013	0.0391	0.0578	0.0001	2.56E-07	-8.27E-10	-1.86E-09	-4.69E-08	2.60E-07	0.0022	0.0022	0.0515	4.2501
2.3087	653.7372	0.6197	0.0017	0.0077	0.0014	0.0391	0.0578	0.0001	2.18E-07	-1.02E-09	-2.11E-09	-5.79E-08	2.25E-07	0.0022	0.0022	0.0635	3.4534
2.3127	751.5777	0.9597	0.0018	0.0077	0.0013	0.0391	0.0578	0.0001	1.65E-07	-1.19E-09	-2.15E-09	-6.78E-08	1.79E-07	0.0022	0.0022	0.0744	2.9463
2.3075	907.7627	1.6567	0.0018	0.0077	0.0014	0.0391	0.0578	0.0001	1.14E-07	-1.41E-09	-2.11E-09	-8.02E-08	1.40E-07	0.0022	0.0022	0.0880	2.5544
2.3104	1009.7375	2.2082	0.0018	0.0078	0.0014	0.0391	0.0578	0.0001	9.35E-08	-1.52E-09	-2.04E-09	-8.64E-08	1.27E-07	0.0022	0.0022	0.0948	2.3665
2.3089	1055.8389	2.5040	0.0018	0.0079	0.0014	0.0392	0.0578	0.0001	8.61E-08	-1.58E-09	-2.03E-09	-8.96E-08	1.24E-07	0.0022	0.0022	0.0984	2.2774
2.3716	1105.4558	2.7615	0.0018	0.0079	0.0014	0.0392	0.0578	0.0001	7.91E-08	-1.59E-09	-1.95E-09	-9.02E-08	1.20E-07	0.0023	0.0023	0.0990	2.2840
2.3101	1156.8492	3.1357	0.0018	0.0080	0.0014	0.0392	0.0578	0.0001	7.31E-08	-1.65E-09	-1.93E-09	-9.35E-08	1.19E-07	0.0023	0.0023	0.1026	2.2499
2.3079	1207.4927	3.4799	0.0018	0.0081	0.0014	0.0392	0.0578	0.0001	6.78E-08	-1.68E-09	-1.88E-09	-9.52E-08	1.17E-07	0.0023	0.0023	0.1045	2.2006
2.3092	1255.9025	3.8185	0.0019	0.0082	0.0014	0.0392	0.0578	0.0001	6.34E-08	-1.70E-09	-1.84E-09	-9.66E-08	1.16E-07	0.0023	0.0023	0.1060	2.1885
																a na managana di kana sa sa	
V	n	Q	Pa	Bq	Pn	Bn	Bp	BD	B _q δK _q /δQ	Β _ρ δΚ _q /δρ	B _n δK _q /δn	B _D δK _q /δD	BKq	PKq	U _{Kq}	Kq	% U
( m/s )	(rpm)	( N-m )															
2.5094	504.8586	0.1628	0.0011	0.0076	0.0015	0.0391	0.0578	0.0001	3.64E-07	-4.49E-10	-1.20E-09	-2.55E-08	3.65E-07	0.0019	0.0019	0.0280	6.6512
2.5104	552.4243	0.2813	0.0018	0.0076	0.0015	0.0391	0.0578	0.0001	3.04E-07	-6.48E-10	-1.59E-09	-3.68E-08	3.07E-07	0.0024	0.0024	0.0404	5.8369
2.5067	604.5795	0.4035	0.0019	0.0076	0.0015	0.0391	0.0578	0.0001	2.54E-07	-7.76E-10	-1.74E-09	-4.41E-08	2.58E-07	0.0024	0.0024	0.0483	5.0596
2.5107	653.2312	0.5696	0.0019	0.0076	0.0015	0.0391	0.0578	0.0001	2.18E-07	-9.38E-10	-1.94E-09	-5.33E-08	2.24E-07	0.0024	0.0024	0.0585	4.1475
2.5093	753.2477	0.9274	0.0019	0.0077	0.0015	0.0391	0.0578	0.0001	1.64E-07	-1.15E-09	-2.06E-09	-6.52E-08	1.77E-07	0.0025	0.0025	0.0716	3.4324
2.5099	906.0469	1.6051	0.0019	0.0077	0.0015	0.0391	0.0578	0.0001	1.15E-07	-1.37E-09	-2.05E-09	-7.80E-08	1.39E-07	0.0025	0.0025	0.0856	2.8641
2.5126	1002.7932	2.1197	0.0020	0.0078	0.0015	0.0391	0.0578	0.0001	9.46E-08	-1.48E-09	-2.00E-09	-8.41E-08	1.27E-07	0.0025	0.0025	0.0923	2.6785
2.5100	1052.4234	2.4384	0.0020	0.0079	0.0015	0.0392	0.0578	0.0001	8.66E-08	-1.55E-09	-1.99E-09	-8.79E-08	1.23E-07	0.0025	0.0025	0.0964	2.5601
						0.0001	0.001.0								010020		
2.5104	1106.7229	2.7268	0.0020	0.0079	0.0015	0.0392	0.0578	0.0001	7.89E-08	-1.57E-09	-1.92E-09	-8.88E-08	1.19E-07	0.0025	0.0025	0.0975	2.5730
2.5104 2.5101	1106.7229 1152.3582	2.7268 3.0710	0.0020 0.0020	0.0079 0.0080	0.0015 0.0016	0.0392	0.0578 0.0578	0.0001 0.0001	7.89E-08 7.35E-08	-1.57E-09 -1.63E-09	-1.92E-09 -1.91E-09	-8.88E-08 -9.23E-08	1.19E-07 1.18E-07	0.0025 0.0025	0.0025 0.0025	0.0975 0.1013	2.5730 2.4813
2.5104 2.5101 2.5109	1106.7229 1152.3582 1204.5756	2.7268 3.0710 3.4002	0.0020 0.0020 0.0020	0.0079 0.0080 0.0081	0.0015 0.0016 0.0015	0.0392 0.0392 0.0392	0.0578 0.0578 0.0578	0.0001 0.0001 0.0001	7.89E-08 7.35E-08 6.80E-08	-1.57E-09 -1.63E-09 -1.65E-09	-1.92E-09 -1.91E-09 -1.85E-09	-8.88E-08 -9.23E-08 -9.35E-08	1.19E-07 1.18E-07 1.16E-07	0.0025 0.0025 0.0025	0.0025 0.0025 0.0025	0.0975 0.1013 0.1026	2.5730 2.4813 2.4522

### Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

Uncertainty Analysis (Thrust Coefficient)

- V Vehicle Velocity (m/s)
- n Propeller Rotational Speed (rpm)
- T_t Total Thrust (N)
- D Propeller Diameter (m)
- $\rho$  Density of Water (kg/m³)
- K_{tt} Total Thrust Coefficient
- P_T Precision Error for T_t
- B_T Bias Error for T_t
- P_{Ktt} Precision Error for K tt
- P_n Precision Error for n
- B_n Bias Error for n
- $B_{\rho}$  Bias Error for  $\rho$
- B_D Bias Error for D
- B_{Ktt} Bias Error for K tt
- Uktt Total Error for K tt
- % U Percentage Uncertainty for K_{tt}

$$\begin{split} B_{Ktt} &= (\delta K_{tt} / \delta T_{t} B_{T})^{2} + (\delta K_{tt} / \delta \rho B_{\rho})^{2} + (\delta K_{tt} / \delta n B_{n})^{2} + (\delta K_{tt} / \delta D B_{D})^{2})^{1/2} \\ U_{Ktt} &= (B_{Ktt}^{2} + P_{Ktt}^{2})^{1/2} \\ \% U &= (U_{Ktt} / K_{tt}) \times 100 \end{split}$$

### Uncertainty Analysis (Thrust Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

V	n	T,	PT	BT	Pn	B _n	В	Bp	B _t δK _{tt} /δT _t	<b>Β</b> _ο δ <b>Κ</b> _{tt} /δρ	B _n δK _{tt} /δn	B _p δK _{tt} /δD	B _{Ktt}	PKtt	U _{Ktt}	K _{it}	% U
( m/s )	(rpm)	(N)								,							
0.8002	499.5767	7.6425	0.0090	0.2494	0.0005	0.0391	0.0578	0.0001	1.85E-06	-3.28E-09	-8.88E-09	-1.49E-07	1.86E-06	0.0090	0.0090	0.2044	4.4103
0.8004	551.4566	14.1975	0.0092	0.2494	0.0005	0.0391	0.0578	0.0001	1.52E-06	-5.00E-09	-1.23E-08	-2.27E-07	1.54E-06	0.0092	0.0092	0.3116	2.9575
0.8012	600.4575	19.7185	0.0091	0.2494	0.0005	0.0391	0.0578	0.0001	1.28E-06	-5.86E-09	-1.32E-08	-2.66E-07	1.31E-06	0.0091	0.0091	0.3650	2.4977
0.8018	650.4466	26.1852	0.0094	0.2494	0.0005	0.0391	0.0578	0.0001	1.09E-06	-6.63E-09	-1.38E-08	-3.01E-07	1.13E-06	0.0094	0.0094	0.4130	2.2790
0.8002	753.2179	43.2349	0.0095	0.2494	0.0005	0.0391	0.0578	0.0001	8.15E-07	-8.17E-09	-1.47E-08	-3.71E-07	8.95E-07	0.0095	0.0095	0.5086	1.8702
0.8002	902.9860	78.0332	0.0097	0.2494	0.0005	0.0391	0.0578	0.0001	5.67E-07	-1.03E-08	-1.54E-08	-4.66E-07	7.34E-07	0.0097	0.0097	0.6387	1.5209
0.8003	1008.5085	106.5934	0.0098	0.2494	0.0005	0.0391	0.0578	0.0001	4.55E-07	-1.12E-08	-1.51E-08	-5.10E-07	6.83E-07	0.0098	0.0098	0.6994	1.4029
0.8005	1052.3455	121.3940	0.0098	0.2494	0.0005	0.0392	0.0578	0.0001	4.18E-07	-1.17E-08	-1.51E-08	-5.33E-07	6.78E-07	0.0098	0.0098	0.7315	1.3412
0.8014	1104.1946	137.7978	0.0099	0.2494	0.0005	0.0392	0.0578	0.0001	3.79E-07	-1.21E-08	-1.49E-08	-5.50E-07	6.68E-07	0.0099	0.0099	0.7542	1.3142
0.8002	1150.2549	154.0467	0.0100	0.2495	0.0005	0.0392	0.0578	0.0001	3.50E-07	-1.25E-08	-1.47E-08	-5.66E-07	6.66E-07	0.0100	0.0100	0.7770	1.2887
0.8008	1206.8237	175.1871	0.0102	0.2495	0.0005	0.0392	0.0578	0.0001	3.18E-07	-1.29E-08	-1.45E-08	-5.85E-07	6.66E-07	0.0102	0.0102	0.8027	1.2723
0.8006	1252.7469	191.4733	0.0104	0.2495	0.0005	0.0392	0.0578	0.0001	2.95E-07	-1.31E-08	-1.42E-08	-5.94E-07	6.63E-07	0.0104	0.0104	0.8142	1.2786
	_	-		-	~	-	_	-	B 61/ 167	<b>D</b> 012.00	B CIZ IC	D 01/ /0D	-	-		14	o/ 11
v	n	It.	PT	PT	Pn	Dn	Β _ρ	BD	Bt ONtt/OIt	Dp on thop	B _n on tt/on	D on thou	DKtt	PKtt	UKtt	n _{tt}	% U
( m/s )	(rpm)	(N)															
1.1006	500.6686	6.1254	0.0100	0.2494	0.0006	0.0391	0.0578	0.0001	1.84E-06	-2.62E-09	-7.07E-09	-1.19E-07	1.85E-06	0.0100	0.0100	0.1631	6.1438
1.1022	552.7477	11.5778	0.0108	0.2494	0.0006	0.0391	0.0578	0.0001	1.51E-06	-4.06E-09	-9.94E-09	-1.84E-07	1.52E-06	0.0108	0.0108	0.2529	4.2781
1.1031	603.4646	17.6112	0.0110	0.2494	0.0007	0.0391	0.0578	0.0001	1.27E-06	-5.18E-09	-1.16E-08	-2.35E-07	1.29E-06	0.0110	0.0110	0.3227	3.4149
1.1032	651.6550	26.6374	0.0112	0.2494	0.0007	0.0391	0.0578	0.0001	1.09E-06	-6.72E-09	-1.40E-08	-3.05E-07	1.13E-06	0.0112	0.0112	0.4186	2.6807
1.1005	754.9726	43.0749	0.0115	0.2494	0.0007	0.0391	0.0578	0.0001	8.11E-07	-8.10E-09	-1.45E-08	-3.68E-07	8.91E-07	0.0115	0.0115	0.5043	2.2840
1.1026	901.8126	78.2263	0.0117	0.2494	0.0007	0.0391	0.0578	0.0001	5.68E-07	-1.03E-08	-1.55E-08	-4.68E-07	7.37E-07	0.0117	0.0117	0.6419	1.8257
1.1014	1000.0880	103.9908	0.0116	0.2494	0.0007	0.0391	0.0578	0.0001	4.62E-07	-1.11E-08	-1.51E-08	-5.06E-07	6.86E-07	0.0116	0.0116	0.6939	1.6748
1.1017	1056.9566	120.2376	0.0119	0.2494	0.0007	0.0392	0.0578	0.0001	4.14E-07	-1.15E-08	-1.48E-08	-5.24E-07	6.68E-07	0.0119	0.0119	0.7183	1.6598
1.1013	1104.4112	137.1587	0.0121	0.2494	0.0007	0.0392	0.0578	0.0001	3.79E-07	-1.20E-08	-1.48E-08	-5.47E-07	0.00E-07	0.0121	0.0121	0.7505	1.0151
1.1020	1156.9473	154.0702	0.0124	0.2495	0.0007	0.0392	0.0578	0.0001	3.46E-07	-1.23E-08	-1.45E-08	-5.60E-07	6.58E-07	0.0124	0.0124	0.7682	1.61/0
1.1015	1212.9133	172.0909	0.0124	0.2495	0.0007	0.0392	0.0578	0.0001	3.14E-07	-1.25E-08	-1.40E-08	-5.69E-07	6.50E-07	0.0124	0.0124	0.7807	1.5909
1.1011	1258.8191	188.8362	0.0125	0.2495	0.0007	0.0392	0.0578	0.0001	2.92E-07	-1.28E-08	-1.38E-08	-5.80E-07	6.49E-07	0.0125	0.0125	0.7953	1.5740
v	n	т.	P.,	Br	Ρ.	B.	В.	Ba	Β. δΚ/δΤ.	B. δK./δο	B ₋ δK ₋ /δn	Β. δΚ./δD	Bra	Pru	Ատո	К.,	% U
(m/s)	(mm)	(N)			<b>n</b>	-"	-р	-0	-1 11	-pw-+	-11	-0u-	- Ru	- 14	- 14	-1	
(	()	()	6 36000303030 1														
1 3033	501.8541	-2 4715	0.0128	0 2494	0.0008	0.0391	0.0578	0.0001	1.84E-06	1.05E-09	2 83E-09	4.77E-08	1.84E-06	0.0128	0.0128	-0.0655	-19.5798
1 3116	550 7550	3 2712	0.0130	0 2494	0.0007	0.0391	0.0578	0.0001	1.52E-06	-1 16E-09	-2 84E-09	-5 25E-08	1.52E-06	0.0130	0.0130	0.0720	18 0904
1 3018	601 3456	7 6691	0.0133	0 2494	0.0007	0.0391	0.0578	0.0001	1.02E-06	-2 27E-09	-5 11E-09	-1 03E-07	1.28E-06	0.0133	0.0133	0 1415	9 4 10 1
1 3022	654 7460	18 6342	0.0134	0.2494	0.0008	0.0391	0.0578	0.0001	1.08E-06	-4 66E-09	-9 63E-09	-2 11E-07	1 10E-06	0.0134	0.0134	0 2901	4 6271
1 3025	752 1400	32 8566	0.0134	0.2494	0.0008	0.0391	0.0578	0.0001	8 17E-07	-6 22E-09	-1 12E-08	-2.83E-07	8.65E-07	0.0134	0.0134	0.3876	3 4627
1 3028	907 7795	70 4953	0.0135	0.2494	0.0008	0.0391	0.0578	0.0001	5.61E-07	-9 17E-09	-1 37E-08	-4 16E-07	6 99E-07	0.0135	0.0135	0.5709	2 3688
1 3020	1006 9377	90 0206	0.0138	0 2494	0.0008	0.0301	0.0578	0.0001	4 56E-07	-1.05E-09	-1 41E-09	-4 75E-07	6 59E-07	0.0138	0.0138	0.6518	2 1206
1 3014	1051 7227	113 7101	0.0137	0.2404	0.0008	0.0391	0.0578	0.0001	4.302-07	-1 105-08	-1 42E-08	-5.00E-07	6.52E-07	0.0137	0.0137	0.6861	1 0007
1 3116	1103 5535	130 8105	0.0138	0.2494	0.0007	0.0392	0.0578	0.0001	3.80E-07	-1 15E-08	-1 41E-08	-5.00L-07	6.46E-07	0.0138	0.0138	0.0001	1 9281
1 3007	1155 5679	150.0195	0.0130	0.2494	0.0008	0.0392	0.0578	0.0001	3.46E-07	-1 21E-08	-1 42E-09	-5.232-07	6.49E-07	0.0130	0.0130	0.7517	1 8524
1 3007	1208 2125	166 7611	0.0142	0.2495	0.0008	0.0392	0.0578	0.0001	3.402-07	-1.212-00	-1 37E-08	-5.462-07	6.40E-07	0.0142	0.0142	0.7624	1 8655
1.3020	1256 7456	183 7284	0.0143	0 2495	0.0008	0.0392	0.0578	0.0001	2 93E-07	-1 25E-08	-1.35E-08	-5 66E-07	6.38E-07	0.0143	0.0143	0 7763	1 8447
1.0020	1200.1400		0.0170	5.2750	0.0000	0.0002	3.0070	0.0001	2.000-01	1.202-00	1.000-00	0.000.07	0.00L 0/	0.0140	0.0140	0.1100	1.0447

Uncertainty Analysis (Thrust Coefficient)	
Load Varying Self-Propulsion Test (Prop. + Duct fitted on)	

V	n	T,	PT	BT	Pn	B _n	B	B _D	B _t δK _{tt} /δT _t	<b>Β</b> _ρ δ <b>Κ</b> _{tt} /δρ	B _n δK _{tt} /δn	Β _D δΚ _{tt} /δD	B _{Ktt}	P _{Ktt}	U _{Ktt}	K _{tt}	% U
( m/s )	( rpm )	(N)															
															0.01.10	0.4000	7 5 4 9 4
1.6030	503.1755	-7.0565	0.0140	0.2494	0.0009	0.0391	0.0578	0.0001	1.83E-06	2.99E-09	8.03E-09	1.36E-07	1.83E-06	0.0140	0.0140	-0.1860	-7.5424
1.6053	554.4423	-2.6691	0.0135	0.2494	0.0009	0.0391	0.0578	0.0001	1.50E-06	9.30E-10	2.27E-09	4.22E-08	1.50E-06	0.0135	0.0135	-0.0579	-23.3545
1.6045	604.3557	3.2865	0.0138	0.2494	0.0009	0.0391	0.0578	0.0001	1.27E-06	-9.64E-10	-2.16E-09	-4.38E-08	1.27E-06	0.0138	0.0138	0.0600	23.0230
1.6063	652.4344	11.6498	0.0145	0.2494	0.0009	0.0391	0.0578	0.0001	1.09E-06	-2.93E-09	-0.082-09	-1.33E-07	1.09E-06	0.0145	0.0145	0.1020	7.9542
1.6063	752.2439	28.1917	0.0147	0.2494	0.0009	0.0391	0.0578	0.0001	8.1/E-0/	-5.34E-09	-9.60E-09	-2.42E-07	6.52E-07	0.0147	0.0147	0.3325	4.4300
1.6059	901.5599	64.0440	0.0148	0.2494	0.0009	0.0391	0.0578	0.0001	5.69E-07	-8.44E-09	-1.27E-08	-3.63E-07	0.86E-07	0.0140	0.0140	0.5256	2.0190
1.6056	1006.7175	91.9317	0.0149	0.2494	0.0009	0.0391	0.0578	0.0001	4.56E-07	-9.72E-09	-1.31E-08	-4.41E-07	6.35E-07	0.0149	0.0149	0.6054	2.4050
1.6063	1054.3192	110.3025	0.0152	0.2494	0.0009	0.0392	0.0578	0.0001	4.102-07	-1.00E-00	-1.3/ E-00	-4.03E-07	6.36E-07	0.0152	0.0152	0.0022	2.2990
1.6059	1102.5010	126.9004	0.0153	0.2494	0.0009	0.0392	0.0578	0.0001	3.600-07	-1.12E-00	-1.30E-00	-3.06E-07	6.35E-07	0.0155	0.0155	0.0907	2.2001
1.6050	1154.9706	143.2220	0.0155	0.2495	0.0009	0.0392	0.0578	0.0001	3.4/E-0/	-1.15E-00	-1.332-00	-3.22E-07	6.2/E-0/	0.0155	0.0155	0.7105	2.1070
1.6054	1211.5007	162.3490	0.0100	0.2495	0.0009	0.0392	0.0578	0.0001	3.15E-07	-1.19E-00	-1.33E-00	-3.36E-07	6.24E-07	0.0156	0.0156	0.7362	2.1439
1.6019	1257.0444	180.1017	0.0160	0.2495	0.0009	0.0392	0.0578	0.0001	2.93E-07	-1.22E-08	-1.32E-06	-5.55E-07	0.27E-07	0.0160	0.0100	0.7606	2.1070
v	n	T,	PT	B _T	Pn	Bn	Bo	Bp	B, δK _{tt} /δT,	<b>Β</b> , δΚ _{tt} /δρ	B _n δK _{tt} /δn	B _D δK _{tt} /δD	B _{Ktt}	PKtt	U _{Ktt}	K _{tt}	% U
(m/s)	(rpm)	(N)															
1.8051	503.4015	-12.0461	0.0170	0.2494	0.0010	0.0391	0.0578	0.0001	1.82E-06	5.09E-09	1.37E-08	2.31E-07	1.84E-06	0.0170	0.0170	-0.3172	-5.3689
1.8061	550.5344	-7.9307	0.0168	0.2494	0.0011	0.0391	0.0578	0.0001	1.53E-06	2.80E-09	6.89E-09	1.27E-07	1.53E-06	0.0168	0.0168	-0.1746	-9.6398
1.8054	601.7534	-2.0996	0.0163	0.2494	0.0011	0.0391	0.0578	0.0001	1.28E-06	6.21E-10	1.40E-09	2.82E-08	1.28E-06	0.0163	0.0163	-0.0387	-42.2202
1.8043	655.6402	8.3160	0.0170	0.2494	0.0011	0.0391	0.0578	0.0001	1.08E-06	-2.07E-09	-4.28E-09	-9.41E-08	1.08E-06	0.0170	0.0170	0.1291	13.1930
1.8049	756.7032	24.0023	0.0172	0.2494	0.0011	0.0391	0.0578	0.0001	8.07E-07	-4.49E-09	-8.03E-09	-2.04E-07	8.33E-07	0.0172	0.0172	0.2797	6.1605
1.8053	903.5768	56.0137	0.0173	0.2494	0.0011	0.0391	0.0578	0.0001	5.66E-07	-7.35E-09	-1.10E-08	-3.34E-07	6.57E-07	0.0173	0.0173	0.4579	3.7861
1.8053	1007.3473	82.5484	0.0172	0.2494	0.0010	0.0391	0.0578	0.0001	4.56E-07	-8.72E-09	-1.17E-08	-3.96E-07	6.04E-07	0.0172	0.0172	0.5429	3.1738
1.8062	1051.7675	100.6055	0.0174	0.2494	0.0011	0.0392	0.0578	0.0001	4.18E-07	-9.74E-09	-1.26E-08	-4.43E-07	6.09E-07	0.0174	0.0174	0.6069	2.8724
1.8057	1105.5646	118.5649	0.0175	0.2494	0.0011	0.0392	0.0578	0.0001	3.78E-07	-1.04E-08	-1.27E-08	-4.72E-07	6.05E-07	0.0175	0.0175	0.6474	2.7086
1.8064	1151.0459	135.0686	0.0175	0.2494	0.0011	0.0392	0.0578	0.0001	3.49E-07	-1.09E-08	-1.29E-08	-4.96E-07	6.07E-07	0.0175	0.0175	0.6803	2.5775
1.8051	1199.5015	154.5146	0.0177	0.2495	0.0011	0.0392	0.0578	0.0001	3.21E-07	-1.15E-08	-1.30E-08	-5.23E-07	6.14E-07	0.0177	0.0177	0.7167	2.4743
1.8046	1261.8668	175.6173	0.0178	0.2495	0.0011	0.0392	0.0578	0.0001	2.90E-07	-1.18E-08	-1.27E-08	-5.37E-07	6.10E-07	0.0178	0.0178	0.7360	2.4230
v	n	T,	PT	Br	Pn	Bn	B,	Bo	B _t δK _{tt} /δT _t	<b>Β</b> _ρ δ <b>Κ</b> _{tt} /δρ	B _n δK _{tt} /δn	B _D δK _{tt} /δD	BKtt	PKtt	U _{Ktt}	K _{tt}	% U
( m/s )	(rpm)	(N)															
2.1082	500.4856	-15.0436	0.0192	0.2494	0.0012	0.0391	0.0578	0.0001	1.85E-06	6.44E-09	1.74E-08	2.92E-07	1.87E-06	0.0192	0.0192	-0.4008	-4.7994
2.1078	552.4532	-8.6422	0.0190	0.2494	0.0012	0.0391	0.0578	0.0001	1.51E-06	3.03E-09	7.43E-09	1.38E-07	1.52E-06	0.0190	0.0190	-0.1890	-10.0751
2.1093	604.4664	-2.1310	0.0184	0.2494	0.0013	0.0391	0.0578	0.0001	1.27E-06	6.25E-10	1.40E-09	2.84E-08	1.27E-06	0.0184	0.0184	-0.0389	-47.3867
2.1056	651.4342	5.3703	0.0189	0.2494	0.0013	0.0391	0.0578	0.0001	1.09E-06	-1.36E-09	-2.82E-09	-6.16E-08	1.09E-06	0.0189	0.0189	0.0845	22.4321
2.1084	754.9317	20.7011	0.0191	0.2494	0.0012	0.0391	0.0578	0.0001	8.11E-07	-3.89E-09	-6.98E-09	-1.77E-07	8.30E-07	0.0191	0.0191	0.2424	7.8944
2.1095	901.1852	53.4900	0.0192	0.2494	0.0012	0.0391	0.0578	0.0001	5.69E-07	-7.06E-09	-1.06E-08	-3.20E-07	6.53E-07	0.0192	0.0192	0.4395	4.3766
2.1082	1002.9008	79.1802	0.0192	0.2494	0.0012	0.0391	0.0578	0.0001	4.60E-07	-8.44E-09	-1.14E-08	-3.83E-07	5.98E-07	0.0192	0.0192	0.5254	3.6620
2.1098	1053.7204	94.0054	0.0193	0.2494	0.0012	0.0392	0.0578	0.0001	4.16E-07	-9.07E-09	-1.17E-08	-4.12E-07	5.86E-07	0.0193	0.0193	0.5650	3.4228
2.1103	1101.8507	111.6413	0.0194	0.2494	0.0013	0.0392	0.0578	0.0001	3.81E-07	-9.85E-09	-1.21E-08	-4.47E-07	5.88E-07	0.0194	0.0194	0.6137	3.16/9
2.1101	1153.6637	128.0193	0.0196	0.2494	0.0013	0.0392	0.0578	0.0001	3.47E-07	-1.03E-08	-1.21E-08	-4.68E-07	5.83E-07	0.0196	0.0196	0.6419	3.0599
2.1091	1210.1050	147.2988	0.0199	0.2495	0.0013	0.0392	0.0578	0.0001	3.16E-07	-1.08E-08	-1.21E-08	-4.89E-07	3.83E-07	0.0199	0.0199	0.7007	2.9/0/
2.1086	1258.3035	107.6550	0.0203	0.2495	0.0013	0.0392	0.0578	0.0001	2.92E-07	-1.13E-08	-1.22E-08	-5.15E-07	J.92E-07	0.0203	0.0203	0.7007	2.0102

### Uncertainty Analysis (Thrust Coefficient) Load Varying Self-Propulsion Test (Prop. + Duct fitted on)

(m/s) (npm) (N)		
2.3113 506.5541 -19.3516 0.0218 0.2494 0.0013 0.0391 0.0578 0.0001 1.80E-06 8.08E-09 2.16E-08 3.67E-07 1.84E-06 0.0218	0.0218 -0.5033	-4.3396
2.3012 554.4124 -15.8623 0.0217 0.2494 0.0014 0.0391 0.0578 0.0001 1.50E-06 5.53E-09 1.35E-08 2.51E-07 1.52E-06 0.0217	0.0217 -0.3444	-6.3135
2.3106 602.4889 -10.8438 0.0213 0.2494 0.0013 0.0391 0.0578 0.0001 1.27E-06 3.20E-09 7.19E-09 1.45E-07 1.28E-06 0.0213	0.0213 -0.1994 ·	-10.7051
2.3087 653.7372 -1.9037 0.0180 0.2494 0.0014 0.0391 0.0578 0.0001 1.08E-06 4.77E-10 9.88E-10 2.17E-08 1.08E-06 0.0181	0.0181 -0.0297	-60.7239
2.3127 751.5777 13.1329 0.0215 0.2494 0.0013 0.0391 0.0578 0.0001 8.18E-07 -2.49E-09 -4.49E-09 -1.13E-07 8.26E-07 0.0215	0.0215 0.1552	13.8828
2.3075 907.7627 45.9201 0.0218 0.2494 0.0014 0.0391 0.0578 0.0001 5.61E-07 -5.97E-09 -8.91E-09 -2.71E-07 6.23E-07 0.0218	0.0218 0.3719	5.8739
2.3104 1009.7375 70.3932 0.0219 0.2494 0.0014 0.0391 0.0578 0.0001 4.53E-07 -7.40E-09 -9.92E-09 -3.36E-07 5.64E-07 0.0219	0.0219 0.4608	4.7624
2.3089 1055.8389 84.5472 0.0221 0.2494 0.0014 0.0392 0.0578 0.0001 4.15E-07 -8.13E-09 -1.04E-08 -3.69E-07 5.55E-07 0.0221	0.0221 0.5061	4.3747
2.3716 1105.4558 99.2872 0.0223 0.2494 0.0014 0.0392 0.0578 0.0001 3.78E-07 -8.71E-09 -1.07E-08 -3.95E-07 5.47E-07 0.0223	0.0223 0.5422	4.1206
2.3101 1156.8492 117.4706 0.0225 0.2494 0.0014 0.0392 0.0578 0.0001 3.45E-07 -9.41E-09 -1.10E-08 -4.27E-07 5.50E-07 0.0225	0.0225 0.5858	3.8486
2.3079 1207.4927 134.4150 0.0226 0.2494 0.0014 0.0392 0.0578 0.0001 3.17E-07 -9.88E-09 -1.11E-08 -4.49E-07 5.50E-07 0.0226	0.0226 0.6152	3.6802
2.3092 1255.9025 151.0913 0.0228 0.2495 0.0014 0.0392 0.0578 0.0001 2.93E-07 -1.03E-08 -1.11E-08 -4.66E-07 5.51E-07 0.0228	0.0228 0.6393	3.5732
V n Τ _t Ρ _T Β _T Ρ _n Β _n Β _ρ Β _ρ Β _t δΚ _{tt} /δΤ _t Β _ρ δΚ _{tt} /δρ Β _n δΚ _{tt} /δn Β _ρ δΚ _{tt} /δD Β _{Ktt} Ρ _{Ktt}	U _{Ktt} K _{tt}	% U
(m/s) (rpm) (N)		
2.5094 504.8586 -23.5927 0.0232 0.2494 0.0015 0.0391 0.0578 0.0001 1.81E-06 9.92E-09 2.66E-08 4.50E-07 1.87E-06 0.0232	0.0232 -0.6177	-3.7635
2.5104 552.4243 -21.2282 0.0229 0.2494 0.0015 0.0391 0.0578 0.0001 1.51E-06 7.45E-09 1.83E-08 3.38E-07 1.55E-06 0.0230	0.0230 -0.4642	-4.9438
2.5067 604.5795 -16.9244 0.0228 0.2494 0.0015 0.0391 0.0578 0.0001 1.26E-06 4.96E-09 1.11E-08 2.25E-07 1.28E-06 0.0229	0.0229 -0.3090	-7.3953
2.5107 653.2312 -10.5697 0.0225 0.2494 0.0015 0.0391 0.0578 0.0001 1.08E-06 2.65E-09 5.50E-09 1.21E-07 1.09E-06 0.0225	0.0225 -0.1653 -	-13.6404
2.5093 753.2477 2.9669 0.0206 0.2494 0.0015 0.0391 0.0578 0.0001 8.15E-07 -5.60E-10 -1.01E-09 -2.54E-08 8.15E-07 0.0207	0.0207 0.0349	59.1906
2.5099 906.0469 34.7210 0.0238 0.2494 0.0015 0.0391 0.0578 0.0001 5.63E-07 -4.53E-09 -6.77E-09 -2.06E-07 6.00E-07 0.0238	0.0238 0.2823	8.4486
2.5126 1002.7932 63.3290 0.0239 0.2494 0.0015 0.0391 0.0578 0.0001 4.60E-07 -6.75E-09 -9.12E-09 -3.06E-07 5.53E-07 0.0239	0.0239 0.4203	5.6981
2.5100 1052.4234 76.2347 0.0240 0.2494 0.0015 0.0392 0.0578 0.0001 4.17E-07 -7.37E-09 -9.49E-09 -3.35E-07 5.35E-07 0.0240	0.0240 0.4593	5.2351
2.5104 1106.7229 91.4780 0.0242 0.2494 0.0015 0.0392 0.0578 0.0001 3.77E-07 -8.00E-09 -9.80E-09 -3.63E-07 5.24E-07 0.0242	0.0242 0.4984	4.8651
2.5101 1152.3582 105.8466 0.0244 0.2494 0.0016 0.0392 0.0578 0.0001 3.48E-07 -8.54E-09 -1.00E-08 -3.88E-07 5.21E-07 0.0244	0.0244 0.5319	4.5963
2.5109 1204.5756 124.7560 0.0245 0.2494 0.0015 0.0392 0.0578 0.0001 3.19E-07 -9.21E-09 -1.04E-08 -4.18E-07 5.26E-07 0.0245	0.0245 0.5738	4.2783
2.5096 1256.7444 140.1545 0.0248 0.2494 0.0016 0.0392 0.0578 0.0001 2.93E-07 -9.51E-09 -1.03E-08 -4.32E-07 5.22E-07 0.0248	0.0248 0.5922	4.1960

<u>Bare Hull Resistance Test</u> Uncertainty Analysis (Velocity - Ahead / Astern Directions)

V	Vehicle Velocity (m/s)	
D	Diameter of Carriage Wheel (m)	
С	Number of Counted Pulses in Time dt	
dt	Time (s)	
S.D	Standard Deviation	
$P_{V}$	Precision Error for V	$P_V = 2 \times S.D$
Bc	Bias Error for C	
B _D	Bias Error for D	
B _{dt}	Bias Error for dt	
Bv	Bias Error for V	$B_{V} = ((\delta V / \delta C B_{C})^{2} + (\delta V / \delta D B_{D})^{2} + (\delta V / \delta dt B_{dt})^{2})^{1/2}$
Uv	Total Error for V	$U_V = (B_V^2 + P_V^2)^{1/2}$
% Unc.	Percentage Uncertainty for V	% Unc. = ( U _v / V ) x 100

٧	Pv	Β _C δV/δC	Β _D δV/δD	B _{dt} δV/δdt	Bv	Uv	% Unc
( m/s )							
0.6010	0.0002	0.0035	0.0001	-0.00002	0.0035	0.0035	0.5860
0.6987	0.0002	0.0035	0.0001	-0.00004	0.0035	0.0035	0.5045
0.8003	0.0003	0.0035	0.0001	-0.00005	0.0035	0.0035	0.4415
0.8990	0.0003	0.0035	0.0002	-0.00006	0.0035	0.0035	0.3935
1.0015	0.0004	0.0035	0.0002	-0.00008	0.0035	0.0035	0.3539
1.1016	0.0004	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3227
1.2007	0.0005	0.0035	0.0003	-0.00011	0.0035	0.0036	0.2968
1.3048	0.0005	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2741
1.4054	0.0006	0.0035	0.0004	-0.00013	0.0035	0.0036	0.2550
1.5037	0.0006	0.0035	0.0004	-0.00015	0.0035	0.0036	0.2389
1.6040	0.0006	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2250
1.7060	0.0007	0.0035	0.0005	-0.00018	0.0036	0.0036	0.2128
1.8091	0.0008	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2024
1.9061	0.0009	0.0035	0.0006	-0.00020	0.0036	0.0037	0.1930
2.0064	0.0009	0.0035	0.0006	-0.00022	0.0036	0.0037	0.1844
2.1073	0.0010	0.0035	0.0007	-0.00023	0.0036	0.0037	0.1767
2.3105	0.0012	0.0035	0.0008	-0.00026	0.0036	0.0038	0.1638
2.5122	0.0013	0.0035	0.0008	-0.00029	0.0036	0.0039	0.1535
2.7087	0.0014	0.0035	0.0009	-0.00031	0.0036	0.0039	0.1447
2.9112	0.0015	0.0035	0.0010	-0.00034	0.0037	0.0040	0.1360
3.1129	0.0016	0.0035	0.0011	-0.00037	0.0037	0.0040	0.1297

### <u>Uncertainty Analysis</u> ( Velocity ) Bare Hull Resistance Test ( Ahead Direction )

•

V	Pv	Β _c δV/δC	Β _D δV/δD	B _{dt} δV/δdt	Bv	Uv	% Unc
( m/s )							
0.6088	0.0002	0.0035	0.0001	-0.00002	0.0035	0.0035	0.5787
0.7089	0.0002	0.0035	0.0001	-0.00004	0.0035	0.0035	0.4974
0.8097	0.0003	0.0035	0.0002	-0.00005	0.0035	0.0035	0.4363
0.9113	0.0004	0.0035	0.0002	-0.00007	0.0035	0.0035	0.3883
1.0126	0.0004	0.0035	0.0002	-0.00008	0.0035	0.0035	0.3499
1.1124	0.0005	0.0035	0.0003	-0.00009	0.0035	0.0036	0.3197
1.2146	0.0005	0.0035	0.0003	-0.00011	0.0035	0.0036	0.2935
1.3139	0.0006	0.0035	0.0004	-0.00012	0.0035	0.0036	0.2723
1.4123	0.0006	0.0035	0.0004	-0.00013	0.0035	0.0036	0.2539
1.5161	0.0006	0.0035	0.0004	-0.00015	0.0035	0.0036	0.2368
1.6148	0.0007	0.0035	0.0005	-0.00016	0.0036	0.0036	0.2238
1.7155	0.0008	0.0035	0.0005	-0.00018	0.0036	0.0036	0.2120
1.8173	0.0009	0.0035	0.0006	-0.00019	0.0036	0.0037	0.2019
1.9185	0.0009	0.0035	0.0006	-0.00020	0.0036	0.0037	0.1922
2.0195	0.0010	0.0035	0.0006	-0.00022	0.0036	0.0037	0.1836

### <u>Uncertainty Analysis</u> (Velocity) Bare Hull Resistance Test (Astern Direction)

Bare Hull Resistance Test Uncertainty Analysis (Resistance - Ahead / Astern Directions)

V	Vehicle Velocity (m/s)	
R	Bare Hull Resistance (N)	
P _R	Precision Error for R	$P_R = 2 \times S.D$
S.D	Standard Deviation	
S.E.E	Standard Error Estimate	
AD	Analog to Digital Converter	
B ₁	Bias Error due to Calibration	$B_1 = 0.00005 \times R$
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Load Cell Misalignment	$B_3 = R - (Cos \ 0.25^0 \times R)$
B ₄	Bias Error due to Data Reduction	$B_4 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
$B_R$	Bias Error for R	$B_{R} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2} + B_{4}^{2})^{1/2}$
U _R	Total Error for R	$U_{R} = (B_{R}^{2} + P_{R}^{2})^{1/2}$
% Unc.	Percentage Uncertainty for R	% Unc. = ( U _R / R ) x 100

V	R	P _R	B ₁	B ₂	B ₃	B ₄	B _R	U _R	% Unc.
(m/s)	(N)								
0.6010	4.8372	0.0088	0.0002	0.2693	0.0000	0.0054	0.2694	0.2695	5.5717
0.6987	6.2947	0.0092	0.0003	0.2693	0.0001	0.0054	0.2694	0.2695	4.2818
0.8003	7.9859	0.0099	0.0004	0.2693	0.0001	0.0054	0.2694	0.2695	3.3753
0.8990	9.8816	0.0109	0.0005	0.2693	0.0001	0.0054	0.2694	0.2696	2.7282
1.0015	11.7594	0.0114	0.0006	0.2693	0.0001	0.0054	0.2694	0.2696	2.2927
1.1016	13.8754	0.0119	0.0007	0.2693	0.0001	0.0054	0.2694	0.2696	1.9432
1.2007	16.2767	0.0125	0.0008	0.2693	0.0002	0.0054	0.2694	0.2697	1.6567
1.3048	18.6795	0.0138	0.0009	0.2693	0.0002	0.0054	0.2694	0.2697	1.4440
1.4054	21.2504	0.0145	0.0011	0.2693	0.0002	0.0054	0.2694	0.2698	1.2694
1.5037	23.8043	0.0154	0.0012	0.2693	0.0002	0.0054	0.2694	0.2698	1.1334
1.6040	27.2382	0.0164	0.0014	0.2693	0.0003	0.0054	0.2694	0.2699	0.9908
1.7060	30.5770	0.0181	0.0015	0.2693	0.0003	0.0054	0.2694	0.2700	0.8829
1.8091	33.8079	0.0193	0.0017	0.2693	0.0003	0.0054	0.2694	0.2701	0.7988
1.9061	37.4270	0.0198	0.0019	0.2693	0.0004	0.0054	0.2694	0.2701	0.7217
2.0064	41.1379	0.0210	0.0021	0.2693	0.0004	0.0054	0.2694	0.2702	0.6568
2.1073	46.4036	0.0221	0.0023	0.2693	0.0004	0.0054	0.2694	0.2703	0.5825
2.3105	60.8839	0.0247	0.0030	0.2693	0.0006	0.0054	0.2694	0.2705	0.4443
2.5122	76.8940	0.0264	0.0038	0.2693	0.0007	0.0054	0.2694	0.2707	0.3520
2.7087	98.8119	0.0274	0.0049	0.2693	0.0009	0.0054	0.2694	0.2708	0.2741
2.9112	127.6270	0.0280	0.0064	0.2693	0.0012	0.0054	0.2694	0.2709	0.2123
3.1129	160.1392	0.0291	0.0080	0.2693	0.0015	0.0054	0.2695	0.2711	0.1693

Uncertainty Analysis (Bare Hull Resistance - Ahead)

V	R	P _R	B ₁	B ₂	B ₃	B ₄	B _R	U _R	% Unc.
( m/s )	(N)								
					0.0004				
0.6088	5.3066	0.0094	0.0003	0.2693	0.0001	0.0054	0.2694	0.2695	5.0792
0.7089	6.9982	0.0098	0.0003	0.2693	0.0001	0.0054	0.2694	0.2695	3.8516
0.8097	8.9347	0.0104	0.0004	0.2693	0.0001	0.0054	0.2694	0.2696	3.0171
0.9113	11.1765	0.0114	0.0006	0.2693	0.0001	0.0054	0.2694	0.2696	2.4123
1.0126	13.4500	0.0122	0.0007	0.2693	0.0001	0.0054	0.2694	0.2696	2.0048
1.1124	15.8659	0.0130	0.0008	0.2693	0.0002	0.0054	0.2694	0.2697	1.6997
1.2146	18.5111	0.0132	0.0009	0.2693	0.0002	0.0054	0.2694	0.2697	1.4569
1.3139	21.1376	0.0141	0.0011	0.2693	0.0002	0.0054	0.2694	0.2697	1.2761
1.4123	24.1367	0.0148	0.0012	0.2693	0.0002	0.0054	0.2694	0.2698	1.1177
1.5161	27.3797	0.0163	0.0014	0.2693	0.0003	0.0054	0.2694	0.2699	0.9856
1.6148	30.4808	0.0172	0.0015	0.2693	0.0003	0.0054	0.2694	0.2699	0.8856
1.7155	34.0387	0.0194	0.0017	0.2693	0.0003	0.0054	0.2694	0.2701	0.7934
1.8173	37.5215	0.0198	0.0019	0.2693	0.0004	0.0054	0.2694	0.2701	0.7199
1.9185	40.8561	0.0211	0.0020	0.2693	0.0004	0.0054	0.2694	0.2702	0.6613
2.0195	44.6591	0.0224	0.0022	0.2693	0.0004	0.0054	0.2694	0.2703	0.6053

### Uncertainty Analysis (Bare Hull Resistance - Astern)

### Bare Hull Resistance Test

Uncertainty Analysis (Drag Coefficient - Ahead / Astern Directions)

- V Vehicle Velocity (m/s)
- R Bare Hull Resistance (N)
- D Propeller Diameter (m)
- A Cross Sectional Area of the Vehicle Hull (m²)
- $\rho$  Density of Water (kg/m³)
- C_d Drag Coefficient (Cross Sectional Area)
- $P_{Cd}$  Precision Error for  $C_d$
- P_R Precision Error for R
- B_R Bias Error for R
- P_R Precision Error for R
- B_V Bias Error for V
- P_V Precision Error for V
- B_A Bias Error for A
- $B_{\rho}$  Bias Error for  $\rho$
- B_{Cd} Bias Error for C_d
- U_{Cd} Total Error for C_d
- % Unc. Percentage Uncertainty for C_d

$$\begin{split} B_{Cd} &= (\delta C_d / \delta R B_R)^2 + (\delta C_d / \delta \rho B_\rho)^2 + (\delta C_d / \delta A B_A)^2 + (\delta C_d / \delta V B_V)^2)^{1/2} \\ U_{Cd} &= (B_{Cd}^2 + P_{Cd}^2)^{1/2} \\ \% \text{ Unc.} &= (U_{Cd} / C_d) \text{ x 100} \end{split}$$

### Uncertainty Analysis (Drag Coefficient) Bare Hull Resistance Test (Ahead Direction)

V	R	PR	B _R	Pv	Βv	B _p	B _A	B _R δC _d /δR	<b>Β</b> _ρ δC _d /δρ	$\mathbf{B}_{\mathbf{A}}  \delta \mathbf{C}_{\mathbf{d}} / \delta \mathbf{A}$	Β _ν δC _d /δV	B _{Cd}	P _{Cd}	U _{Cd}	Cd	% Unc.
( m/s )	(N)															
0.6010	4.8372	0.0088	0.2694	0.0002	0.0035	0.0578	0.0028	0.0119	-1.23E-05	-0.0048	-0.0025	0.0130	0.0088	0.0157	0.2131	7.3783
0.6987	6.2947	0.0092	0.2694	0.0002	0.0035	0.0578	0.0028	0.0088	-1.19E-05	-0.0046	-0.0021	0.0101	0.0092	0.0137	0.2052	6.6654
0.8003	7.9859	0.0099	0.2694	0.0003	0.0035	0.0578	0.0028	0.0067	-1.15E-05	-0.0044	-0.0017	0.0082	0.0099	0.0129	0.1985	6.4846
0.8990	9.8816	0.0109	0.2694	0.0003	0.0035	0.0578	0.0028	0.0053	-1.13E-05	-0.0043	-0.0015	0.0070	0.0109	0.0130	0.1946	6.6818
1.0015	11.7594	0.0114	0.2694	0.0004	0.0035	0.0578	0.0028	0.0043	-1.08E-05	-0.0042	-0.0013	0.0061	0.0114	0.0129	0.1866	6.9345
1.1016	13.8754	0.0119	0.2694	0.0004	0.0035	0.0578	0.0028	0.0035	-1.05E-05	-0.0041	-0.0012	0.0055	0.0119	0.0132	0.1820	7.2283
1.2007	16.2767	0.0125	0.2694	0.0005	0.0035	0.0578	0.0028	0.0030	-1.04E-05	-0.0040	-0.0011	0.0051	0.0125	0.0135	0.1797	7.5182
1.3048	18.6795	0.0138	0.2694	0.0005	0.0035	0.0578	0.0028	0.0025	-1.01E-05	-0.0039	-0.0009	0.0047	0.0138	0.0146	0.1746	8.3731
1.4054	21.2504	0.0145	0.2694	0.0006	0.0035	0.0578	0.0028	0.0022	-9.90E-06	-0.0038	-0.0009	0.0045	0.0145	0.0152	0.1712	8.8873
1.5037	23.8043	0.0154	0.2694	0.0006	0.0035	0.0578	0.0028	0.0019	-9.69E-06	-0.0037	-0.0008	0.0043	0.0154	0.0160	0.1676	9.5270
1.6040	27.2382	0.0164	0.2694	0.0006	0.0036	0.0578	0.0028	0.0017	-9.74E-06	-0.0038	-0.0007	0.0042	0.0164	0.0169	0.1685	10.0353
1.7060	30.5770	0.0181	0.2694	0.0007	0.0036	0.0578	0.0028	0.0015	-9.67E-06	-0.0037	-0.0007	0.0041	0.0181	0.0186	0.1672	11.1032
1.8091	33.8079	0.0193	0.2694	0.0008	0.0036	0.0578	0.0028	0.0013	-9.51E-06	-0.0037	-0.0006	0.0039	0.0193	0.0197	0.1644	11.9714
1.9061	37.4270	0.0198	0.2694	0.0009	0.0036	0.0578	0.0028	0.0012	-9.48E-06	-0.0037	-0.0006	0.0039	0.0198	0.0202	0.1640	12.3332
2.0064	41.1379	0.0210	0.2694	0.0009	0.0036	0.0578	0.0028	0.0011	-9.41E-06	-0.0036	-0.0006	0.0038	0.0211	0.0214	0.1626	13.1578
2.1073	46.4036	0.0221	0.2694	0.0010	0.0036	0.0578	0.0028	0.0010	-9.62E-06	-0.0037	-0.0006	0.0039	0.0221	0.0225	0.1663	13.5177
2.3105	60.8839	0.0247	0.2694	0.0012	0.0036	0.0578	0.0028	0.0008	-1.05E-05	-0.0040	-0.0006	0.0042	0.0248	0.0251	0.1815	13.8385
2.5122	76.8940	0.0264	0.2694	0.0013	0.0036	0.0578	0.0028	0.0007	-1.12E-05	-0.0043	-0.0006	0.0044	0.0265	0.0268	0.1939	13.8426
2.7087	98.8119	0.0274	0.2694	0.0014	0.0036	0.0578	0.0028	0.0006	-1.24E-05	-0.0048	-0.0006	0.0049	0.0274	0.0278	0.2143	12.9822
2.9112	127.6270	0.0280	0.2694	0.0015	0.0037	0.0578	0.0028	0.0005	-1.39E-05	-0.0053	-0.0006	0.0054	0.0280	0.0285	0.2397	11.9035
3.1129	160.1392	0.0291	0.2695	0.0016	0.0037	0.0578	0.0028	0.0004	-1.52E-05	-0.0059	-0.0006	0.0059	0.0291	0.0297	0.2630	11.3066

### Uncertainty Analysis (Drag Coefficient) Bare Hull Resistance Test (Astern Direction)

V	R	PR	B _R	Pv	Bv	Bp	BA	$\mathbf{B}_{\mathbf{R}}  \delta \mathbf{C}_{\mathbf{d}} / \delta \mathbf{R}$	<b>Β</b> _ρ δC _d /δρ	Β _Α δC _d /δΑ	Β _ν δC _d /δV	B _{Cd}	P _{Cd}	U _{Cd}	Cd	% Unc.
( m/s )	(N)															
0.6088	5.3066	0.0094	0.2694	0.0002	0.0035	0.0578	0.0028	0.0116	-1.32E-05	-0.0051	-0.0026	0.0129	0.0094	0.0160	0.2279	7.0090
0.7089	6.9982	0.0098	0.2694	0.0002	0.0035	0.0578	0.0028	0.0085	-1.28E-05	-0.0049	-0.0022	0.0101	0.0098	0.0141	0.2216	6.3523
0.8097	8.9347	0.0104	0.2694	0.0003	0.0035	0.0578	0.0028	0.0065	-1.25E-05	-0.0048	-0.0019	0.0084	0.0104	0.0133	0.2169	6.1475
0.9113	11.1765	0.0114	0.2694	0.0004	0.0035	0.0578	0.0028	0.0052	-1.24E-05	-0.0048	-0.0017	0.0072	0.0114	0.0135	0.2142	6.3135
1.0126	13.4500	0.0122	0.2694	0.0004	0.0035	0.0578	0.0028	0.0042	-1.21E-05	-0.0047	-0.0015	0.0064	0.0122	0.0138	0.2088	6.5869
1.1124	15.8659	0.0130	0.2694	0.0005	0.0035	0.0578	0.0028	0.0035	-1.18E-05	-0.0046	-0.0013	0.0059	0.0130	0.0142	0.2041	6.9761
1.2146	18.5111	0.0132	0.2694	0.0005	0.0035	0.0578	0.0028	0.0029	-1.15E-05	-0.0045	-0.0012	0.0054	0.0133	0.0143	0.1997	7.1741
1.3139	21.1376	0.0141	0.2694	0.0006	0.0035	0.0578	0.0028	0.0025	-1.13E-05	-0.0043	-0.0010	0.0051	0.0141	0.0150	0.1949	7.7198
1.4123	24.1367	0.0148	0.2694	0.0006	0.0035	0.0578	0.0028	0.0022	-1.11E-05	-0.0043	-0.0010	0.0049	0.0148	0.0156	0.1926	8.1118
1.5161	27.3797	0.0163	0.2694	0.0006	0.0035	0.0578	0.0028	0.0019	-1.10E-05	-0.0042	-0.0009	0.0047	0.0163	0.0170	0.1896	8.9671
1.6148	30.4808	0.0172	0.2694	0.0007	0.0036	0.0578	0.0028	0.0016	-1.08E-05	-0.0041	-0.0008	0.0045	0.0173	0.0178	0.1860	9.5900
1.7155	34.0387	0.0194	0.2694	0.0008	0.0036	0.0578	0.0028	0.0015	-1.06E-05	-0.0041	-0.0008	0.0044	0.0194	0.0199	0.1841	10.8294
1.8173	37.5215	0.0198	0.2694	0.0009	0.0036	0.0578	0.0028	0.0013	-1.05E-05	-0.0040	-0.0007	0.0043	0.0198	0.0203	0.1808	11.2285
1.9185	40.8561	0.0211	0.2694	0.0009	0.0036	0.0578	0.0028	0.0012	-1.02E-05	-0.0039	-0.0007	0.0042	0.0211	0.0215	0.1767	12.1563
2.0195	44.6591	0.0224	0.2694	0.0010	0.0036	0.0578	0.0028	0.0011	-1.01E-05	-0.0039	-0.0006	0.0041	0.0224	0.0228	0.1743	13.0691

Bollard Pull Test (Prop. + Duct fitted on) Uncertainty Analysis (Propeller Rotational Speed)

n	Propeller Rotational Speed (rpm)	
С	Number of Counted Pulses in Time dt	
dt	Time (s)	
S.D	Standard Deviation	
Pn	Precision Error for n	$P_n = 2 \times S.D$
Bc	Bias Error for C	
B _{dt}	Bias Error for dt	
B _n	Bias Error for n	$B_n = ((\delta n / \delta C B_C)^2 + (\delta n / \delta dt B_{dt})^2)^{1/2}$
Un	Total Error for n	$U_n = (B_n^2 + P_n^2)^{1/2}$
% Unc.	Percentage Uncertainty for n	% Unc. = ( U _n / n ) x 100

n ( rpm )	Pn	B _c δn/δC	B _{dt} δn/δdt	B _n	Un	% Unc.
503 9033	0.0004	0 0301	-0 0009	0 0391	0 0391	0.0078
550 4767	0.0004	0.0391	-0.0003	0.0391	0.0391	0.0070
605.9664	0.0005	0.0391	-0.0011	0.0391	0.0391	0.0065
650.5832	0.0005	0.0391	-0.0013	0.0391	0.0391	0.0060
750.1102	0.0005	0.0391	-0.0016	0.0391	0.0391	0.0052
907.7347	0.0005	0.0391	-0.0020	0.0391	0.0391	0.0043
1001.8816	0.0005	0.0391	-0.0023	0.0391	0.0392	0.0039
1052.1447	0.0004	0.0391	-0.0024	0.0392	0.0392	0.0037
1102.7669	0.0005	0.0391	-0.0025	0.0392	0.0392	0.0036
1151.0962	0.0005	0.0391	-0.0027	0.0392	0.0392	0.0034
1201.9108	0.0005	0.0391	-0.0028	0.0392	0.0392	0.0033
1250.9090	0.0005	0.0391	-0.0030	0.0392	0.0392	0.0031

### <u>Uncertainty Analysis</u> (Rotational Speed) Bollard Pull Test (Prop. + Duct fitted on)

# Bollard Pull Test (Prop. + Duct fitted on) Uncertainty Analysis (Propeller Torque)

n	Propeller Potational Speed (rpm)	
0	Propeller Torque (N-m)	
F	Calibrating Weight (N)	
R	l ever Arm (m)	
Po	Precision Error for O	$P_{o} = 2 \times S D$
SD	Standard Deviation	
SEE	Standard Error Estimate	
	Analog to Digital Converter	
B-	Rice Error for E	
DF		
B _R	Bias Error for R	
B ₁	Bias Error due to Calibration	$B_1 = ((\delta Q / \delta F B_F)^2 + (\delta Q / \delta R B_R)^2)^{1/2}$
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Data Reduction	$B_3 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
BQ	Bias Error for Q	$B_Q = (B_1^2 + B_2^2 + B_3^2)^{1/2}$
Uq	Total Error for Q	$U_{Q} = (B_{Q}^{2} + P_{Q}^{2})^{1/2}$
% Unc.	Percentage Uncertainty for Q	% Unc. = ( U _Q / Q ) x 100

n	Q	Pq	B _F δQ/δF	$B_R \delta Q/\delta R$	B ₁	B ₂	B ₃	Bq	Uq	% Unc.
( rpm )	( N-m )									
503.9033	0.5283	0.0006	0.00003	0.00042	0.0004	0.0076	0.0007	0.0076	0.0077	1.4519
550.4767	0.6797	0.0006	0.00003	0.00054	0.0005	0.0076	0.0007	0.0077	0.0077	1.1300
605.9664	0.8448	0.0007	0.00004	0.00068	0.0007	0.0076	0.0007	0.0077	0.0077	0.9105
650.5832	1.0205	0.0007	0.00005	0.00082	0.0008	0.0076	0.0007	0.0077	0.0077	0.7552
750.1102	1.3944	0.0007	0.00007	0.00112	0.0011	0.0076	0.0007	0.0077	0.0077	0.5557
907.7347	2.1970	0.0007	0.00011	0.00176	0.0018	0.0076	0.0007	0.0078	0.0079	0.3581
1001.8816	2.6913	0.0007	0.00013	0.00215	0.0022	0.0076	0.0007	0.0079	0.0080	0.2960
1052.1447	3.0135	0.0007	0.00015	0.00241	0.0024	0.0076	0.0007	0.0080	0.0080	0.2668
1102.7669	3.3844	0.0008	0.00017	0.00271	0.0027	0.0076	0.0007	0.0081	0.0081	0.2404
1151.0962	3.6596	0.0008	0.00018	0.00293	0.0029	0.0076	0.0007	0.0082	0.0082	0.2245
1201.9108	4.0432	0.0008	0.00020	0.00323	0.0032	0.0076	0.0007	0.0083	0.0083	0.2061
1250.9090	4.3910	0.0008	0.00022	0.00351	0.0035	0.0076	0.0007	0.0084	0.0084	0.1924

### <u>Uncertainty Analysis</u> (Propeller Torque) Bollard Pull Test (Prop. + Duct fitted on)

# Bollard Pull Test (Prop. + Duct fitted on) Uncertainty Analysis (Propeller Thrust)

Propeller Rotational Speed (rpm)	
Propeller Thrust (N)	
Precision Error for T _P	$P_T = 2 \times S.D$
Standard Deviation	
Standard Error Estimate	
Analog to Digital Converter	
Bias Error due to Calibration	$B_1 = 0.00005 \times T_P$
Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
Bias Error due to Data Reduction	$B_3 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
Bias Error for T _P	$B_{T} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2})^{1/2}$
Total Error for T _P	$U_{T} = (B_{T}^{2} + P_{T}^{2})^{1/2}$
Percentage Uncertainty for $T_P$	% Unc. = ( U _T / T _P ) x 100
	Propeller Rotational Speed (rpm) Propeller Thrust (N) Precision Error for $T_P$ Standard Deviation Standard Error Estimate Analog to Digital Converter Bias Error due to Calibration Bias Error due to Data Acquisition Bias Error due to Data Reduction Bias Error for $T_P$ Total Error for $T_P$ Percentage Uncertainty for $T_P$

n (rom)	T _P	P _T	B ₁	B ₂	B ₃	B _T	U _T	% Unc.
(ipin)	(11)							
503.9033	8.9647	0.0080	0.0004	0.2487	0.0182	0.2494	0.2495	2.7829
550.4767	12.5679	0.0082	0.0006	0.2487	0.0182	0.2494	0.2495	1.9851
605.9664	17.6148	0.0085	0.0009	0.2487	0.0182	0.2494	0.2495	1.4164
650.5832	22.3550	0.0083	0.0011	0.2487	0.0182	0.2494	0.2495	1.1160
750.1102	35.0872	0.0086	0.0018	0.2487	0.0182	0.2494	0.2495	0.7111
907.7347	59.2718	0.0087	0.0030	0.2487	0.0182	0.2494	0.2495	0.4210
1001.8816	76.4800	0.0088	0.0038	0.2487	0.0182	0.2494	0.2495	0.3263
1052.1447	87.9141	0.0092	0.0044	0.2487	0.0182	0.2494	0.2496	0.2839
1102.7669	98.9344	0.0091	0.0049	0.2487	0.0182	0.2494	0.2496	0.2523
1151.0962	109.1874	0.0093	0.0055	0.2487	0.0182	0.2494	0.2496	0.2286
1201.9108	121.8579	0.0096	0.0061	0.2487	0.0182	0.2494	0.2496	0.2048
1250.9090	132.5731	0.0095	0.0066	0.2487	0.0182	0.2494	0.2496	0.1883

Uncertainty Analysis (Propeller Thrust)
Bollard Pull Test (Prop. + Duct fitted on)

# Bollard Pull Test (Prop. + Duct fitted on) Uncertainty Analysis (Tow Force)

n	Propeller Rotational Speed (rpm)	
F	Tow Force (N)	
$P_{F}$	Precision Error for F	$P_F = 2 \times S.D$
S.D	Standard Deviation	
S.E.E	Standard Error Estimate	
AD	Analog to Digital Converter	
B1	Bias Error due to Calibration	B ₁ = 0.00005 x F
B ₂	Bias Error due to Data Acquisition	$B_2 = 2 \times S.E.E$
B ₃	Bias Error due to Load Cell Misalignment	B ₃ = F - (Cos 0.25 ⁰ x F)
B ₄	Bias Error due to Data Reduction	$B_4 = (AD_{error} \times AD_{range}) / (AD_{accuracy})$
B _F	Bias Error for F	$B_{F} = (B_{1}^{2} + B_{2}^{2} + B_{3}^{2} + B_{4}^{2})^{1/2}$
U _F	Total Error for F	$U_{\rm F} = (B_{\rm F}^2 + P_{\rm F}^2)^{1/2}$
% Unc.	Percentage Uncertainty for F	% Unc. = ( U _F / F ) x 100

n	F	P _F	B ₁	B ₂	B ₃	B ₄	B _F	U _F	% Unc.
( rpm )	(N)								
503.9033	-11.3075	0.0087	-0.0006	0.2693	-0.0001	0.0054	0.2694	0.2695	-2.3834
550.4767	-17.3445	0.0089	-0.0009	0.2693	-0.0002	0.0054	0.2694	0.2695	-1.5539
605.9664	-24.1935	0.0089	-0.0012	0.2693	-0.0002	0.0054	0.2694	0.2695	-1.1140
650.5832	-30.4523	0.0095	-0.0015	0.2693	-0.0003	0.0054	0.2694	0.2695	-0.8851
750.1102	-48.3194	0.0092	-0.0024	0.2693	-0.0005	0.0054	0.2694	0.2695	-0.5578
907.7347	-84.1484	0.0098	-0.0042	0.2693	-0.0008	0.0054	0.2694	0.2696	-0.3204
1001.8816	-113.0899	0.0102	-0.0057	0.2693	-0.0011	0.0054	0.2694	0.2696	-0.2384
1052.1447	-129.0183	0.0100	-0.0065	0.2693	-0.0012	0.0054	0.2694	0.2696	-0.2090
1102.7669	-145.7299	0.0103	-0.0073	0.2693	-0.0014	0.0054	0.2695	0.2697	-0.1850
1151.0962	-162.4119	0.0105	-0.0081	0.2693	-0.0015	0.0054	0.2695	0.2697	-0.1661
1201.9108	-183.5970	0.0111	-0.0092	0.2693	-0.0017	0.0054	0.2695	0.2698	-0.1469
1250.9090	-200.7750	0.0110	-0.0100	0.2693	-0.0019	0.0054	0.2696	0.2698	-0.1344

<u>Uncertainty Analysis</u> (Tow Force) Bollard Pull Test (Prop. + Duct fitted on)

# **Appendix C**

**Calculations for Chapter 5** 

X	t _x /L	t _x / D	L/D	S.M	Product
0.20	0.1500	0.0150	0.1000	1	0.1000
0.30	0.1350	0.0149	0.1100	4	0.4400
0.40	0.1200	0.0144	0.1200	2	0.2400
0.50	0.1050	0.0131	0.1250	4	0.5000
0.60	0.0900	0.0115	0.1275	2	0.2550
0.70	0.0750	0.0094	0.1250	4	0.5000
0.80	0.0600	0.0069	0.1150	2	0.2300
0.90	0.0450	0.0041	0.0900	4	0.3600
1.00	0.0000	0.0030	0.0000	1	0.0000

### C.1 Expanded Area Ratio & Chord Length Calculation

Integral	0.0875
A _E / A _O	0.1114

### C.2 Blade Root Section (X = 0.2) Profile Calculation

<u>NACA Mea</u> (a = 0.8)	<u>n Line</u>		<u>NACA Mea</u> (a = 0.8)	<u>n Line</u>		<u>NACA 16-0</u>	15 Airfoil	NACA 16	-015 Airfoil	+ NACA I	Wean Line ( a = 0.8 )
CL	1.00		CL	1.3147		t _x /L	0.15	t _x / L	0.15	CL	1.3147
x/c (%)	y。/c (%)	dy _c / dx (%)	x / c ( ratio )	y。/c (ratio)	dy _c / dx ( ratio )	x/c (%)	y,/c (%)	x/c (ratio)	y , / c ( ratio )	y 。/ c ( ratio )	dy _c / dx ( ratio )
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.5000	0.2870	0.4854	0.0050	0.0038	0.0064	0.5000	1.0321	0.0050	0.0103	0.0038	0.0064
0.7500	0.4040	0.4493	0.0075	0.0053	0.0059	0.7500	1.2591	0.0075	0.0126	0.0053	0.0059
1.2500	0.6160	0.4036	0.0125	0.0081	0.0053	1.2500	1.6155	0.0125	0.0162	0.0081	0.0053
2.5000	1.0770	0.3410	0.0250	0.0142	0.0045	2.5000	2.2584	0.0250	0.0226	0.0142	0.0045
5.0000	1.8410	0.2772	0.0500	0.0242	0.0036	5.0000	3.1400	0.0500	0.0314	0.0242	0.0036
7.5000	2.4830	0.2387	0.0750	0.0326	0.0031	7.5000	3.7927	0.0750	0.0379	0.0326	0.0031
10.0000	3.0430	0.2105	0.1000	0.0400	0.0028	10.0000	4.3250	0.1000	0.0433	0.0400	0.0028
15.0000	3.9850	0.1689	0.1500	0.0524	0.0022	15.0000	5.1736	0.1500	0.0517	0.0524	0.0022
20.0000	4.7480	0.1373	0.2000	0.0624	0.0018	20.0000	5.8339	0.2000	0.0583	0.0624	0.0018
25.0000	5.3670	0.1110	0.2500	0.0706	0.0015	25.0000	6.3597	0.2500	0.0636	0.0706	0.0015
30.0000	5.8630	0.0878	0.3000	0.0771	0.0012	30.0000	6.7754	0.3000	0.0678	0.0771	0.0012
35.0000	6.2480	0.0663	0.3500	0.0821	0.0009	35.0000	7.0932	0.3500	0.0709	0.0821	0.0009
40.0000	6.5280	0.0460	0.4000	0.0858	0.0006	40.0000	7.3189	0.4000	0.0732	0.0858	0.0006
45.0000	6.7090	0.0261	0.4500	0.0882	0.0003	45.0000	7.4545	0.4500	0.0745	0.0882	0.0003
50.0000	6.7900	0.0062	0.5000	0.0893	0.0001	50.0000	7.5000	0.5000	0.0750	0.0893	0.0001
55.0000	6.7700	-0.0143	0.5500	0.0890	-0.0002	55.0000	7.4514	0.5500	0.0745	0.0890	-0.0002
60.0000	6.6440	-0.0361	0.6000	0.0873	-0.0005	60.0000	7.2946	0.6000	0.0729	0.0873	-0.0005
65.0000	6.4050	-0.0601	0.6500	0.0842	-0.0008	65.0000	7.0129	0.6500	0.0701	0.0842	-0.0008
70.0000	6.0370	-0.0879	0.7000	0.0794	-0.0012	70.0000	6.5898	0.7000	0.0659	0.0794	-0.0012
75.0000	5.5140	-0.1231	0.7500	0.0725	-0.0016	75.0000	6.0086	0.7500	0.0601	0.0725	-0.0016
80.0000	4.7710	-0.1841	0.8000	0.0627	-0.0024	80.0000	5.2527	0.8000	0.0525	0.0627	-0.0024
85.0000	3.6830	-0.2392	0.8500	0.0484	-0.0031	85.0000	4.3055	0.8500	0.0431	0.0484	-0.0031
90.0000	2.4350	-0.2558	0.9000	0.0320	-0.0034	90.0000	3.1504	0.9000	0.0315	0.0320	-0.0034
95.0000	1.1630	-0.2490	0.9500	0.0153	-0.0033	95.0000	1.7708	0.9500	0.0177	0.0153	-0.0033 `
100.0000	0.0000	-0.2039	1.0000	0.0000	-0.0027	100.0000	0.1500	1.0000	0.0015	0.0000	-0.0027

•

x	Chord Line Abscissa	X u	Upper Surface Abscissa	$x_u = x - y_t \sin \phi$
Lorc	Chord Length	y u	Upper Surface Ordinate	$y_u = y_c + y_t \cos \phi$
Уt	Thickness Distribution Ordinate	XL	Lower Surface Abscissa	$x_{L} = x + y_{t} \sin \phi$
Уc	Mean Line Ordinate	УL	Lower Surface Ordinate	$y_{L} = y_{c} - y_{t} \cos \phi$
dy _c / dx	Mean Line Slope			

C 2

Calculating the	Upper & Lower	Surface Abscissa	& Ordinates
-----------------	---------------	------------------	-------------

x/c	y,/c	y c/c	dy _c / dx	sin Φ	cos Φ	x "/ c	y "/c	x_/c	y_/c
0.0000	0.0000	0.0000	0.0000	0.00000	1.00000	0.0000	0.0000	0.0000	0.0000
0.0050	0.0103	0.0038	0.0064	0.00638	0.99998	0.0049	0.0141	0.0051	-0.0065
0.0075	0.0126	0.0053	0.0059	0.00591	0.99998	0.0074	0.0179	0.0076	-0.0073
0.0125	0.0162	0.0081	0.0053	0.00531	0.99999	0.0124	0.0243	0.0126	-0.0081
0.0250	0.0226	0.0142	0.0045	0.00448	0.99999	0.0249	0.0367	0.0251	-0.0084
0.0500	0.0314	0.0242	0.0036	0.00364	0.99999	0.0499	0.0556	0.0501	-0.0072
0.0750	0.0379	0.0326	0.0031	0.00314	1.00000	0.0749	0.0706	0.0751	-0.0053
0.1000	0.0433	0.0400	0.0028	0.00277	1.00000	0.0999	0.0833	0.1001	-0.0032
0.1500	0.0517	0.0524	0.0022	0.00222	1.00000	0.1499	0.1041	0.1501	0.0007
0.2000	0.0583	0.0624	0.0018	0.00181	1.00000	0.1999	0.1208	0.2001	0.0041
0.2500	0.0636	0.0706	0.0015	0.00146	1.00000	0.2499	0.1342	0.2501	0.0070
0.3000	0.0678	0.0771	0.0012	0.00115	1.00000	0.2999	0.1448	0.3001	0.0093
0.3500	0.0709	0.0821	0.0009	0.00087	1.00000	0.3499	0.1531	0.3501	0.0112
0.4000	0.0732	0.0858	0.0006	0.00060	1.00000	0.4000	0.1590	0.4000	0.0126
0.4500	0.0745	0.0882	0.0003	0.00034	1.00000	0.4500	0.1627	0.4500	0.0137
0.5000	0.0750	0.0893	0.0001	0.00008	1.00000	0.5000	0.1643	0.5000	0.0143
0.5500	0.0745	0.0890	-0.0002	-0.00019	1.00000	0.5500	0.1635	0.5500	0.0145
0.6000	0.0729	0.0873	-0.0005	-0.00047	1.00000	0.6000	0.1603	0.6000	0.0144
0.6500	0.0701	0.0842	-0.0008	-0.00079	1.00000	0.6501	0.1543	0.6499	0.0141
0.7000	0.0659	0.0794	-0.0012	-0.00116	1.00000	0.7001	0.1453	0.6999	0.0135
0.7500	0.0601	0.0725	-0.0016	-0.00162	1.00000	0.7501	0.1326	0.7499	0.0124
0.8000	0.0525	0.0627	-0.0024	-0.00242	1.00000	0.8001	0.1153	0.7999	0.0102
0.8500	0.0431	0.0484	-0.0031	-0.00314	1.00000	0.8501	0.0915	0.8499	0.0054
0.9000	0.0315	0.0320	-0.0034	-0.00336	0.99999	0.9001	0.0635	0.8999	0.0005
0.9500	0.0177	0.0153	-0.0033	-0.00327	0.99999	0.9501	0.0330	0.9499	-0.0024
1.0000	0.0015	0.0000	-0.0027	-0.00268	1.00000	1.0000	0.0015	1.0000	-0.0015

### Converting to mm

### Selecting 21 Stations

X	Уc	X u	Уu	ХL	УL
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.2500	0.1887	0.2467	0.7047	0.2533	-0.3274
0.3750	0.2656	0.3713	0.8951	0.3787	-0.3640
0.6250	0.4049	0.6207	1.2127	0.6293	-0.4028
1.2500	0.7080	1.2449	1.8372	1.2551	-0.4212
2.5000	1.2102	2.4943	2.7802	2.5057	-0.3598
3.7500	1.6322	3.7440	3.5286	3.7560	-0.2641
5.0000	2.0003	4.9940	4.1628	5.0060	-0.1622
7.5000	2.6196	7.4943	5.2064	7.5057	0.0328
10.0000	3.1211	9.9947	6.0381	10.0053	0.2042
12.5000	3.5280	12.4954	6.7079	12.5046	0.3482
15.0000	3.8541	14.9961	7.2418	15.0039	0.4664
17.5000	4.1072	17.4969	7.6538	17.5031	0.5606
20.0000	4.2912	19.9978	7.9507	20.0022	0.6318
22.5000	4.4102	22.4987	8.1375	22.5013	0.6830
25.0000	4.4635	24.9997	8.2135	25.0003	0.7135
27.5000	4.4503	27.5007	8.1760	27.4993	0.7246
30.0000	4.3675	30.0017	8.0148	29.9983	0.7202
32.5000	4.2104	32.5028	7.7168	32.4972	0.7039
35.0000	3.9685	35.0038	7.2634	34.9962	0.6736
37.5000	3.6247	37.5049	6.6290	37.4951	0.6204
40.0000	3.1363	40.0064	5.7626	39.9936	0.5099
42.5000	2.4211	42.5068	4.5738	42.4932	0.2683
45.0000	1.6007	45.0053	3.1759	44.9947	0.0255
47.5000	0.7645	47.5029	1.6499	47.4971	-0.1209
50.0000	0.0000	50.0002	0.0750	49.9998	-0.0750

Уc	Xu	y _u	XL	y L
(mm)	(mm)	(mm)	(mm)	(mm)
0.0000	0.0000	0.0000	0.0000	0.0000
1.2102	2.4943	2.7802	2.5057	-0.3598
2.0003	4.9940	4.1628	5.0060	-0.1622
2.6196	7.4943	5.2064	7.5057	0.0328
3.1211	9.9947	6.0381	10.0053	0.2042
3.5280	12.4954	6.7079	12.5046	0.3482
3.8541	14.9961	7.2418	15.0039	0.4664
4.1072	17.4969	7.6538	17.5031	0.5606
4.2912	19.9978	7.9507	20.0022	0.6318
4.4102	22.4987	8.1375	22.5013	0.6830
4.4635	24.9997	8.2135	25.0003	0.7135
4.4503	27.5007	8.1760	27.4993	0.7246
4.3675	30.0017	8.0148	29.9983	0.7202
4.2104	32.5028	7.7168	32.4972	0.7039
3.9685	35.0038	7.2634	34.9962	0.6736
3.6247	37.5049	6.6290	37.4951	0.6204
3.1363	40.0064	5.7626	39.9936	0.5099
2.4211	42.5068	4.5738	42.4932	0.2683
1.6007	45.0053	3.1759	44.9947	0.0255
0.7645	47.5029	1.6499	47.4971	-0.1209
0.0000	50.0002	0.0750	49.9998	-0.0750

X

(mm)

0.0000

2.5000

5.0000

7.5000

10.0000

12.5000 15.0000

17.5000

20.0000

22.5000 25.0000

27.5000 30.0000

32.5000 35.0000

37.5000

40.0000

42.5000 45.0000

47.5000

50.0000

### C.3 Moment of Inertia & Centroid Position Calculation (Blade Root Section)

### 1) Calculating the M.I & Centroid Position about the Y-Y axis

### a) Section S₁ - about the Y-Y Axis

Station	x	Уu	S.M	L	yu*S.M	y _u * S.M * L	y _u * S.M*L ²
	(mm)	(mm)		(mm)			
1	0.00	0.0000	1	25	0.0000	0.0000	0.0000
2	2.50	2.7802	4	22.5	11.1207	250.2168	5629.8774
3	5.00	4.1628	2	20	8.3257	166.5133	3330.2667
4	7.50	5.2064	4	17.5	20.8255	364.4457	6377.7994
5	10.00	6.0381	2	15	12.0762	181.1425	2717.1373
6	12.50	6.7079	4	12.5	26.8316	335.3945	4192.4307
7	15.00	7.2418	2	10	14.4836	144.8358	1448.3580
8	17.50	7.6538	4	7.5	30.6151	229.6132	1722.0991
9	20.00	7.9507	2	5	15.9014	79.5068	397.5342
10	22.50	8.1375	4	2.5	32.5499	81.3747	203.4367
11	25.00	8.2135	2	0	16.4269	0.0000	0.0000
12	27.50	8.1760	4	-2.5	32.7041	-81.7602	204.4004
13	30.00	8.0148	2	-5	16.0296	-80.1479	400.7394
14	32.50	7.7168	4	-7.5	30.8673	-231.5049	1736.2866
15	35.00	7.2634	2	-10	14.5267	-145.2674	1452.6741
16	37.50	6.6290	4	-12.5	26.5159	-331.4485	4143.1064
17	40.00	5.7626	2	-15	11.5252	-172.8780	2593.1697
18	42.50	4.5738	4	-17.5	18.2952	-320.1653	5602.8932
19	45.00	3.1759	2	-20	6.3517	-127.0344	2540.6870
20	47.50	1.6499	4	-22.5	6.5996	-148.4913	3341.0537
21	50.00	0.0750	1	-25	0.0750	-1.8750	46.8748
					293.8723	160.3921	40067.3542
				Δ.	203 8723	mm²	
Desition	O			, 1 ₁	235.0725		
Position of	Centroid fro	om the Y-Y A	XIS	a ₁	0.5458	mm	
M.I of sect	ion S ₁ aboι	it the Y-Y Axi	s	M.I _{Y-YS1}	40067.3542	mm	

х	Chord Line Abscissa
Уu	Upper Surface Ordinate
L	Lever Arm

Lever Arm S.M Simpson's Multplier

C 5

### b) Section S 2 - about the Y-Y Axis

Station	x	УL	S.M	L	у _L * S.M	y _L * S.M*L	y _L * S.M * L ²
	(mm)	(mm)		(mm)			
1	10.00	0.2042	1	15	0.2042	3.0629	45.9433
2	12.50	0.3482	4	12.5	1.3928	17.4098	217.6225
3	15.00	0.4664	2	10	0.9328	9.3279	93.2789
4	17.50	0.5606	4	7.5	2.2423	16.8173	126.1297
5	20.00	0.6318	2	5	1.2636	6.3179	31.5893
6	22.50	0.6830	4	2.5	2.7319	6.8297	17.0742
7	25.00	0.7135	2	0	1.4269	0.0000	0.0000
8	27.50	0.7246	4	-2.5	2.8985	-7.2462	18.1154
9	30.00	0.7202	2	-5	1.4404	-7.2019	36.0095
10	32.50	0.7039	4	-7.5	2.8157	-21.1179	158.3846
11	35.00	0.6736	2	-10	1.3471	-13.4715	134.7150
12	37.50	0.6204	4	-12.5	2.4815	-31.0189	387.7364
13	40.00	0.5099	2	-15	1.0198	-15.2974	229.4616
14	42.50	0.2683	4	-17.5	1.0732	-18.7818	328.6818
15	45.00	0.0255	1	-20	0.0255	-0.5095	10.1906
					19.4135	-45.7332	1529.1106
				A ₂	19.4135	mm²	
Position of	Centroid fro	om the Y-Y A	xis	$d_2$	-2.3557	mm	
M.I of secti	on S ₂ abou	it the Y-Y Axi	s	M.I _{Y-Y S 2}	1529.1106	mm⁴	

x Chord Line Abscissa y_L Lower Surface Ordinate

- L Lever Arm
- S.M Simpson's Multplier

### c) Section S 3 - about the Y-Y Axis

Station	X	УL	S.M	L	у _L * S.M	y _L * S.M*L	y _L * S.M * L ²
	(mm)	(mm)		(mm)			
1	0.00	0.0000	1	25	0.0000	0.0000	0.0000
2	2.50	0.3598	4	22.5	1.4392	32.3813	728.5803
3	5.00	0.1622	1	20	0.1622	3.2430	64.8600
					1.3344	29.6870	661.2003
				A ₃	1.3344	mm²	
Position of Centroid from the Y-Y Axis				d ₃	22.2468	mm	
M.I of section S $_3$ about the Y-Y Axis				M.I _{Y-Y S 3}	661.2003 C 6	mm⁴	

- x Chord Line Abscissa
- **y**_L Lower Surface Ordinate
  - Lever Arm
- S.M Simpson's Multplier

Sections S₁, S₂, S₃ combined - about the Y-Y Axis

Position of Centroid from the Y-Y Axis ( $d_x$ ) $d_x = (A_1 * d_1 - A_2 * d_2 + A_3 * d_3) / (A_1 - A_2 + A_3)$	0.5234	mm
Position of Centroid from the origin ( x = 0 )	24.4766	mm
M.I of the complete section about the Y-Y axis M.I $_{Y-Y} = M.I_{S1} - M.I_{S2} + M.I_{S3}$	39199.4439	mm⁴
M.I of the complete section about an axis parallel to the I $_{Y0} = M.I_{Y-Y} - A \cdot d_x^2$	Y-Y Axis & passir 39123.8955	ig through the Centroid mm⁴

### 2) Calculating the M.I & Centroid Position about the X-X axis

### a) Section S₁ - about the X-X Axis

Station	X	y u	S.M	y "* S.M	y _u ² * S.M	y _u ³ * S.M
	(mm)	(mm)				
1	0.00	0.0000	1	0.0000	0.0000	0.0000
2	2.50	2.7802	4	11.1207	30.9177	85.9571
3	5.00	4.1628	2	8.3257	34.6584	144.2770
4	7.50	5.2064	4	20.8255	108.4250	564.5004
5	10.00	6.0381	2	12.0762	72.9169	440.2782
6	12.50	6.7079	4	26.8316	179.9831	1207.3067
7	15.00	7.2418	2	14.4836	104.8870	759.5700
8	17.50	7.6538	4	30.6151	234.3210	1793.4401
9	20.00	7.9507	2	15.9014	126.4268	1005.1795
10	22.50	8.1375	4	32.5499	264.8735	2155.3994
11	25.00	8.2135	2	16.4269	134.9220	1108.1767
12	27.50	8.1760	4	32.7041	267.3890	2186.1766
13	30.00	8.0148	2	16.0296	128.4737	1029.6894
14	32.50	7.7168	4	30.8673	238.1978	1838.1320
15	35.00	7.2634	2	14.5267	105.5131	766.3807
16	37.50	6.6290	4	26.5159	175.7730	1165.1939
17	40.00	5.7626	2	11.5252	66.4151	382.7236
18	42.50	4.5738	4	18.2952	83.6782	382.7267
19	45.00	3.1759	2	6.3517	20.1722	64.0639
20	47.50	1.6499	4	6.5996	10.8887	17.9653
21	50.00	0.0750	1	0.0750	0.0056	0.0004
				293.8723	995.3491	4749.2050
				A ₁ '	293.8723	mm²
Position of	Centroid fro	om the X-X A	xis	d ₁ '	3.3870	mm
M.I of secti	ion S $_1$ abou	it the X-X Axi	s	M.I _{X-X S 1}	4749.2050	mm⁴

- Chord Line Abscissa
- Upper Surface Ordinate
- S.M Simpson's Multplier

х

Уu
#### b) Section S 2 - about the X-X Axis

Station	x	УL	S.M	y _ * S.M	y _L ² * S.M	y _L ³ * S.M
	(mm)	(mm)				
1	10.00	0.2042	1	0.2042	0.0417	0.0085
2	12.50	0.3482	4	1.3928	0.4850	0.1689
3	15.00	0.4664	2	0.9328	0.4350	0.2029
4	17.50	0.5606	4	2.2423	1.2570	0.7046
5	20.00	0.6318	2	1.2636	0.7983	0.5044
6	22.50	0.6830	4	2.7319	1.8658	1.2743
7	25.00	0.7135	2	1.4269	1.0181	0.7263
8	27.50	0.7246	4	2.8985	2.1003	1.5219
9	30.00	0.7202	2	1.4404	1.0373	0.7471
10	32.50	0.7039	4	2.8157	1.9821	1.3952
11	35.00	0.6736	2	1.3471	0.9074	0.6112
12	37.50	0.6204	4	2.4815	1.5395	0.9551
13	40.00	0.5099	2	1.0198	0.5200	0.2652
14	42.50	0.2683	4	1.0732	0.2880	0.0773
15	45.00	0.0255	1	0.0255	0.0006	0.0000
				19.4135	5.9484	2.5452
				A2'	19.4135	mm²
Position of	Centroid fro	om the X-X A	xis	d ₂ '	0.3064	mm
M.I of secti	on S ₂ abou	it the X-X Axi	s	M.I _{X-X S 2}	2.5452	mm⁴

### Chord Line Abscissa

X

У∟ S.MI

Х

У∟ S.M

- Lower Surface Ordinate
- Simpson's Multplier

### c) Section S 3 - about the X-X Axis

Station	x	УL	S.M	y _ * S.M	y _L ² * S.M	y _L ³ * S.M
	(mm)	(mm)				
1	0.00	0.0000	1	0.0000	0.0000	0.0000
2	2.50	0.3598	4	1.4392	0.5178	0.1863
3	5.00	0.1622	1	0.1622	0.0263	0.0043
				1.3344	0.2267	0.0529
				A ₃ '	1.3344	mm∠
Position of Centroid from the X-X Axis			d ₃ '	-0.1699	mm	
M.I of section S $_3$ about the X-X Axis				M.I x-x 5 3	0.0529	mm⁴

- Chord Line Abscissa
- Lower Surface Ordinate
- Simpson's Multplier

# Sections S₁, S₂, S₃ combined - about the X-X Axis

n

Position of Centroid from the X-X Axis ( $d_y$ ) $d_y = (A_1' * d_1' - A_2' * d_2' + A_3' * d_3') / (A_1' - A_2' + A_3')$	3.5867	mm
M.I of the complete section about the X-X axis M.I $_{X-X}$ = M.I $_{X-XS1}$ - M.I $_{X-XS2}$ + M.I $_{X-XS3}$	4746.7127	mm⁴
M.I of the complete section about an axis parallel to the $I_{X0} = M.I_{X-X} - A \cdot d_y^2$	he X-X Axis & pas 1198.8900	sing through the Centroid mm⁴

#### M.I & Centroid Position - Final Values

X _{Centroid}	24.4766	mm
Y _{Centroid}	3.5867	mm
l _{Y0}	39123.8955	mm⁴
I _{X O}	1198.8900	mm⁴

### C.4 Blade Mass & Longitudinal Position of Centroid ( X c ) Calculation

#### Blade Mass

X	r _o m	A _x mm ²
0.2000	0.0500	276.0935
0.3000	0.0750	300.6658
0.4000	0.1000	318.0597
0.5000	0.1250	301.9773
0.6000	0.1500	269.2947
0.7000	0.1750	215.6980
0.8000	0.2000	146.0535
0.9000	0.2250	67.0907
1.0000	0.2500	0.0000

Station	A _x	S.M	A _x * S.M
	- 11		
1	2.76E-04	1	0.0003
2	3.01E-04	4	0.0012
3	3.18E-04	2	0.0006
4	3.02E-04	4	0.0012
5	2.69E-04	2	0.0005
6	2.16E-04	4	0.0009
7	1.46E-04	2	0.0003
8	6.71E-05	4	0.0003
9	0.00E+00	1	0.0000

Blade Vol.	4.40E-05	m³	(1 blade)
Density	8320	Kg / m³	(Manganese Bronze)
Mass	0.3664	Kg	(1 blade)
Total Mass	0.375562	Kg	(accounting for Fillet Mass)
A _x r₀ S.M	Blade Section Blade Section Simpson's M	onal Area on Radial Iultiplier	Position

4.40E-05

#### Longitudinal Position of the Blade Centroid (X_c)

Station	X	A _x mm ²	S.M	A _x * S.M	A _x * X	A _x * X * S.M
1	0.2	276.0935	1	276.0935	55.2187	55.2187
2	0.3	300.6658	4	1202.6633	90.1997	360.7990
3	0.4	318.0597	2	636.1194	127.2239	254.4478
4	0.5	301.9773	4	1207.9091	150.9886	603.9545
5	0.6	269.2947	2	538.5894	161.5768	323.1536
6	0.7	215.6980	4	862.7922	150.9886	603.9545
7	0.8	146.0535	2	292.1069	116.8428	233.6855
8	0.9	67.0907	4	268.3629	60.3816	241.5266
9	1.0	0.0000	1	0.0000	0.0000	0.0000

176.1546

89.2247

 $X_{c} = 0.5065$ 

<u>X = 0.3</u>

#### <u>X = 0.2</u>

t*S.M S.M Station t х mm mm 1 0.00 0.0000 1 0.0000 2 2.50 3.1400 4 12.5600 3 5.00 4.3250 2 8.6500 4 7.50 5.1736 4 20.6944 5 10.00 5.8339 2 11.6678 6 12.50 6.3597 4 25.4388 7 15.00 6.7754 2 13.5508 8 17.50 7.0932 4 28.3728 9 20.00 7.3189 2 14.6378 7.4545 4 10 22.50 29.8180 7.5000 15.0000 11 25.00 2 12 27.50 7.4514 4 29.8056 13 30.00 7.2946 2 14.5892 7.0129 28.0516 14 32.50 4 2 15 35.00 6.5898 13.1796 24.0344 16 37.50 6.0086 4 17 5.2527 2 10.5054 40.00 17.2220 18 42.50 4.3055 4 19 45.00 3.1504 2 6.3008 20 47.50 7.0832 1.7708 4 21 50.00 0.1500 0.1500 1

Station	x mm	t mm	S.M	t*S.M
1	0.00	0.0000	1	0.0000
2	0.00	2 1096	1	12 4244
2	2.75	3.1000	4	12.4344
3	5.50	4.2010	2	8.5635
4	8.25	5.1219	4	20.4875
5	11.00	5.7756	2	11.5511
6	13.75	6.2961	4	25.1844
7	16.50	6.7076	2	13.4153
8	19.25	7.0223	4	28.0891
9	22.00	7.2457	2	14.4914
10	24.75	7.3800	4	29.5198
11	27.50	7.4250	2	14.8500
12	30.25	7.3769	4	29.5075
13	33.00	7.2217	2	14,4433
14	35.75	6.9428	4	27.7711
15	38.50	6.5239	2	13.0478
16	41.25	5.9485	4	23,7941
17	44.00	5.2002	2	10.4003
18	46.75	4.2624	4	17.0498
19	49.50	3 1189	2	6 2378
20	52 25	1 7531	4	7 0124
21	55.00	0 1485	1	0 1485
	00.00	0.1.00	•	000

A_x 276.0935

mm²

A_X 300.6658 mm²

### <u>X = 0.4</u>

Station	x mm	t mm	S.M	t*S.M
	0.00	0.0000	1	0.0000
1	0.00	0.0000		0.0000
2	3.00	3.0144	4	12.0576
3	6.00	4.1520	2	8.3040
4	9.00	4.9667	4	19.8666
5	12.00	5.6005	2	11.2011
6	15.00	6.1053	4	24.4212
7	18.00	6.5044	2	13.0088
8	21.00	6.8095	4	27.2379
9	24.00	7.0261	2	14.0523
10	27.00	7.1563	4	28.6253
11	30.00	7.2000	2	14.4000
12	33.00	7.1533	4	28.6134
13	36.00	7.0028	2	14.0056
14	39.00	6.7324	4	26.9295
15	42.00	6.3262	2	12.6524
16	45.00	5.7683	4	23.0730
17	48.00	5.0426	2	10.0852
18	51.00	4.1333	4	16.5331
19	54.00	3.0244	2	6.0488
20	57.00	1.7000	4	6.7999
21	60.00	0.1440	1	0.1440

Station	X	t	S.M	t*S.M
		11111		<u> </u>
1	0.0000	0.0000	1	0.0000
2	3.1250	2.7475	4	10.9900
3	6.2500	3.7844	2	7.5688
4	9.3750	4.5269	4	18.1076
5	12.5000	5.1047	2	10.2093
6	15.6250	5.5647	4	22.2590
7	18.7500	5.9285	2	11.8570
8	21.8750	6.2066	4	24.8262
9	25.0000	6.4040	2	12.8081
10	28.1250	6.5227	4	26.0908
11	31.2500	6.5625	2	13.1250
12	34.3750	6.5200	4	26.0799
13	37.5000	6.3828	2	12.7656
14	40.6250	6.1363	4	24.5452
15	43.7500	5.7661	2	11.5322
16	46.8750	5.2575	4	21.0301
17	50.0000	4.5961	2	9.1922
18	53.1250	3.7673	4	15.0693
19	56.2500	2.7566	2	5.5132
20	59.3750	1.5495	4	6.1978
21	62.5000	0.1313	1	0.1313

Ax

301.9773

mm²

318.0597 mm²

 $\mathbf{A}_{\mathbf{X}}$ 

### <u>X = 0.6</u>

Station	X	t	S.M	t*S.M
	11111	mm		
1	0.0000	0.0000	1	0.0000
2	3.1875	2.4021	4	9.6084
3	6.3750	3.3086	2	6.6173
4	9.5625	3.9578	4	15.8312
5	12.7500	4.4629	2	8.9259
6	15.9375	4.8652	4	19.4607
7	19.1250	5.1832	2	10.3664
8	22.3125	5.4263	4	21.7052
9	25.5000	5.5990	2	11.1979
10	28.6875	5.7027	4	22.8108
11	31.8750	5.7375	2	11.4750
12	35.0625	5.7003	4	22.8013
13	38.2500	5.5804	2	11.1607
14	41.4375	5.3649	4	21.4595
15	44.6250	5.0412	2	10.0824
16	47.8125	4.5966	4	18.3863
17	51.0000	4.0183	2	8.0366
18	54.1875	3.2937	4	13.1748
19	57.3750	2.4101	2	4.8201
20	60.5625	1.3547	4	5.4186
21	63.7500	0.1148	1	0.1148

X =	0.7

Station	x mm	t mm	S.M	t*S.M
	1			4
1	0.0000	0.0000	1	0.0000
2	3.1250	1.9625	4	7.8500
3	6.2500	2.7031	2	5.4063
4	9.3750	3.2335	4	12.9340
5	12.5000	3.6462	2	7.2924
6	15.6250	3.9748	4	15.8993
7	18.7500	4.2346	2	8.4693
8	21.8750	4.4333	4	17.7330
9	25.0000	4.5743	2	9.1486
10	28.1250	4.6591	4	18.6363
11	31.2500	4.6875	2	9.3750
12	34.3750	4.6571	4	18.6285
13	37.5000	4.5591	2	9.1183
14	40.6250	4.3831	4	17.5323
15	43.7500	4.1186	2	8.2373
16	46.8750	3.7554	4	15.0215
17	50.0000	3.2829	2	6.5659
18	53.1250	2.6909	4	10.7638
19	56.2500	1.9690	2	3.9380
20	59.3750	1.1068	4	4.4270
21	62.5000	0.0938	1	0.0938

A_X 215.6980 mm²

A_x 269.2947

mm²

<u>X = 0.9</u>

## <u>X = 0.8</u>

Station	x	t	S.M	t*S.M
	mm	mm		
1	0.0000	0.0000	1	0.0000
2	2.8750	1.4444	4	5.7776
3	5.7500	1.9895	2	3.9790
4	8.6250	2.3799	4	9.5194
5	11.5000	2.6836	2	5.3672
6	14.3750	2.9255	4	11.7018
7	17.2500	3.1167	2	6.2334
8	20,1250	3.2629	4	13.0515
9	23,0000	3.3667	2	6.7334
10	25.8750	3.4291	4	13,7163
11	28,7500	3,4500	2	6,9000
12	31.6250	3.4276	4	13,7106
13	34 5000	3 3555	2	6 7110
14	37,3750	3,2259	4	12,9037
15	40 2500	3 0313	2	6.0626
16	43 1250	2 7640	4	11 0558
17	46 0000	2 4162	2	4 8325
18	48 8750	1 9805	4	7 9221
10	51 7500	1 4492	+ 2	2 8084
19	51.7500	0.9146	2	2.0304
20	54.0250	0.0140	4	3.2583
21	57.5000	0.0690	1	0.0690

Station	X	t	S.M	t*S.M
	mm	mm		
1	0.00	0.0000	1	0.0000
2	2.25	0.8478	4	3.3912
3	4.50	1.1678	2	2.3355
4	6.75	1.3969	4	5.5875
5	9.00	1.5752	2	3.1503
6	11.25	1.7171	4	6.8685
7	13.50	1.8294	2	3.6587
8	15.75	1.9152	4	7.6607
9	18.00	1.9761	2	3.9522
10	20.25	2.0127	4	8.0509
11	22.50	2.0250	2	4.0500
12	24.75	2.0119	4	8.0475
13	27.00	1.9695	2	3.9391
14	29.25	1.8935	4	7.5739
15	31.50	1.7792	2	3.5585
16	33.75	1.6223	4	6.4893
17	36.00	1.4182	2	2.8365
18	38.25	1.1625	4	4.6499
19	40.50	0.8506	2	1.7012
20	42.75	0.4781	4	1.9125
21	45.00	0.0405	1	0.0405

A_x 146.0535

mm²

A_X 67.0907 mm²







