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ABSTRACT

Ageing of components is a major threat to asset integrity in offshore process facilities . A

robust maintenance strategy mitigates the effects of age-based structural degradations and

reduces the threat of failure. Failure caused by structural degradations is a stochastic

process. For maintenance strategies to be effective, the stochastic nature of failure has to

be taken into consideration . Risk based integrity modeling (RBIM) is a newly-developed

approach that aims at the protection of human life, financial investment, and the

environment against the consequences of failure. RBIM quantifies the risk to which

individual components are subjected and uses this as a basis for the design of a

maintenance strategy. Risk is a combination of the probability and the consequence of

failure. The major age-based structural degradations to be addressed include corrosion ;

such as uniform, pitting, and erosion mechanisms ; and cracking; such as stress corrosion,

corrosion fatigue, and hydrogen induced cracking. In this study, component degradation

processes are modeled stochastically to estimate the probability of failure using Bayesian

analysis methods . Bayesian analysis improves the fidelity on the likelihood of future

events by relating with the prior and posterior probabilities. Prior modeling is performed

using judgmental studies and analyzing historic databases from similar installations . For

the assessment of ageing assets and degradation mechanisms , field non-destructive test

(NDT) data is used to establish the likelihood function. The posterior modeling is

performed using a simulation-based Metropolis-Hastings algorithm and Laplace

approximation since the prior-likelihood combinations are non-conjugate pairs. In this

study, the consequences of failure are modeled using economic analysis to estimate the

costs of failure, inspection and maintenance. The cost of failure includes lost production ,
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loss of shutdown, cost of spill cleanup, loss caused by environmental damage and

liability. The inspection and maintenance costs are estimated using the inspection and

maintenance tasks, access, surface preparation, gauging defects, coating and restoration

costs. Maintenance may be either minimal repair or replacement of components . The

annual equivalent cost (AEC) of operating and maintaining a facility is the summation of

the annual equivalent costs of failure, inspection, and maintenance. The cumulative

posterior failure probability is combined with AEC to produce the operational life risk

curve for a component. Since the risk curve is a convex function of the maintenance

interval, then the optimum interval is the global minimum point. The operational risk is

thus reduced to as low as reasonably practicable level by optimal maintenance.
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CHA PTE R I

INTRODUCTION AND BACKGR OUND

1.1 INTRODUCTION

Offshore process components fail while operating even though due diligence has been

observed during the design and fabrication stages. Failures of these components pose

serious threats to human life, financial investment and the environment. Threats to human

life include the fatalities and injuries . The threats to financial investment arise from the

loss of commodity as a result of shutdown. The threats to the environment consist of

pollution caused by spills and other environmental damage. In addition, every failure is

associated with liability and bad-reputation. Thus, integrity of process components is of

paramount importance to conducting safe operations. The integrity of a component is

defined as the ability of the component to perform its required function effectively and

efficiently whilst protecting health, safety and the environment (HSE UK, 2009). A good

asset integrity management plan ensures that people, systems, processes and resources

required to maintain the asset integrity are in place, in use, and will perform when

required over the whole lifecycle of the asset. Furthermore, the plan should ensure the

prevention of accidents and it should encompass good design, construction and

operational practices. Once the offshore process facility is operational , the only way to

prevent failure is through frequent inspection and proper maintenance . However, to

determine with confidence, the extent and interval of necessary inspection and

maintenance based on the condition of the component is a challenging task. Maintenance



optimization using mathematical models is one way to reduce the risk of failure of ageing

components.

1.2 HOW DO PROCESS COMPONENTS FAIL?

The components of offshore process installations deteriorate with time. During its life

cycle, it will be subjected to many potential damages, such as (Stephens et aI., 1995):

third party damage; ground movement due to seismic acceleration ; material and

fabrication defects ; and human factors. However, studies indicate that majority of failures

are contributed by time-dependent structural degradations (Faber, 2002; Straub, 2004;

Khan et aI., 2006); hence, the quantification of component integrity can be established by

understanding the physics of time-dependent failure processes and its adverse

consequences . Traditionally , the codes and standards that are used for inspection and

maintenance are prescriptive rules based on experience . Most of the time they have been

formulated in response to significant failure cases. They neither take into account all

types of failures, nor the various sources of uncertainty arising from degradation

processes associated with the facility's operation.

API 581 (2000) highlighted the need to develop an industry failure database and software

to support the risk based inspection planning and expands the program to fit into several

industry initiatives. Leaks and rupture are the principal causes of hydrocarbon release,

fire, and explosions in process facilities. Studies indicate that corrosion is the principal

cause of about 15% of leakage occurrences (HSE UK, 2002). In nine and a half years,

44.70% of the mechanical failures leading to hydrocarbon releases from offshore

facilities in the UK resulted from corrosion or other related degradations (HSR UK,



2002). The direct annual cost of corrosion in the USA is assessed to be 276 billion USD,

which represents 3.1% of the GNP, while about 121 billion USD is spent on corrosion

control (Koch et a!., 2000) . The direct cost of corrosion in industrialized countries in

billions of USD is reported (Bhaskaran et a!., 2005): Japan (59.02), Russia (55.01),

Germany (49.26), UK (8.51), Australia (7.32) and Canada (3.38). These figures show that

corrosion and related cracking degradation is an economic problem, which needs to be

addressed on a priority basis. In Canada, the environmentally induced defects, such as

metal corrosion, stress corrosion cracking and hydrogen induced cracking were

responsible for 40% of the natural gas pipelines failures and 38% of hazardous liquid

releases (Stephens et a!., 1995). It is reported that corrosion accounts for 2 I% of failures

in submarine gas pipelines, and erosion-corrosion modes account for 24.6% of pipe

leakages in process plants (Googan and Ashworth, 1990). Moreover, 40% of the

accidental hydrocarbon releases to the environment are corrosion related. Therefore, the

investigation and mitigation of corrosion and cracking and its effects is one of the main

actions required to reduce the frequency of hydrocarbon releases, to maximize the

production , and to improve the safety of offshore process operations. Better inspection

and maintenance optimization need a reliable determination of degradation mechanisms

and their consequences. This can be achieved with risk analysis by combining the

stochastic degradation modeling with consequence analysis (Faber , 2002).

1.3 HOW TO PREVENT FAILURES?

The time-dependent mechanisms which describe the structural degradation of process

components are random processes and hence it will have large uncertainty in the

degradation data. Thus, it is appropriate to use stochastic models to accurately describe



these mechanisms. Due to this uncertainty in determining the degradation mechanisms ,

there will always be a certain probability that a given component of the process facility

fails during its operation. The life cycle integrity threats may be reduced through well

established procedures of design, fabrication, quality assurance and quality control and

stringent policies and regulations. However, once the offshore process facility is

operational, the age-related or time-dependent degradation processes reduce its strength

and material. Therefore , during the operational stage, the best way to predict failure is

through inspection and prevent failure is through maintenance .

There are various inspection strategies, such as prescriptive rules, condition/health

monitoring and reliability based inspection . In recent years, risk based inspection has

emerged as an area of interest in asset integrity management (Faber, 2002; Kallen and

Noortwijk, 2002; Straub, 2004; Khan et aI., 2006). Risk based inspection may be

categorized as qualitative, semi-quantitative, and fully quantitative. A robust, quantitative

risk based inspection model based on reliable, probabilistic structural degradation

mechanisms and consequences analysis of offshore process components is not yet

published in literature (Faber, 2002; Khan et aI., 2006) .

The various maintenance strategies include reactive and proactive maintenance programs .

Reactive maintenance is based on the principle " fix it as it fails", which is costly due to

abrupt commodity loss and unplanned shutdowns . The recent developments in

maintenance are total productive maintenance (TPM), reliability centered maintenance

(RCM) and the condition based maintenance (CBM). However, their applications are



limited as they focus on likelihood of failure only. Failures result in direct economic

consequences such as loss of commodity, loss due to shutdown, spill cleanup and

environmental damage costs. Inspection and maintenance also have direct and indirect

economic consequences. Hence, optimizing maintenance on the basis of actual condition

and failure consequences is to be investigated. Risk based integrity management models

are emerging as a rationa l choice. The basic questions to be answered in connection with

optimization of inspection and maintenance of deteriorating components are:

• What component will fail? (identify critical components) .

• How will it fail? (understand the physics of failure).

• When failure becomes critical? (quantification of true risk).

• When to inspect/mai ntain? (estimation of inspection/maintenance interval).

• What is to be inspected/maintained? (inspection/maintenance activities).

1.4 BACKGRO UND

The first initiatives and developments of risk based approaches to the inspection and

maintenance planning were directed towards the inspection planning for welded

connections subject to fatigue in fixed steel offshore structures (Skjong, 1985; Madsen et

aI., 1987; Fujita et aI., 1989; Moan et aI., 2000). Later, the same methodo logy was

adopted to other structures such as tankers (Soares and Garbatov, 1996; Paik et aI., 2003);

floating, production, storage and off-loading facilities (Lotsberg et aI., 1999; Goyet et aI.,

2002); semi-submersibles and pipelines (Willcocks and Bai, 2000; Desjardins, 2002; Dey

and Gupta, 2001). Recently, the risk based approaches were applied to process plants

(Geary, 2002; Kallen, 2002; Montgomery and Serratella, 2002; Khan et aI., 2006);



bridges (Frangopol et aI., 2001) and to breakwaters (Noortwijk and Phajm, 1996). The

degradation mechanisms such as, fatigue cracking and, some aspects of corrosion of steel

and concrete structures were considered. Throughout these developments , structural

reliability methods have played an important role (Straub, 2004; Faber et aI., 2005).

Mclchers (2006) introduced an approach for probabilistic corrosion estimation based on

the structural reliability theory. Further, Straub and Faber (2006) discussed the

computational aspects of risk based inspection planning for fatigue cracking based on

structural reliability theory. The inspection planning for process equipments and marine

systems has later evolved from the traditional quantitative risk analysis (QRA) (Khan and

Haddara, 2003; Khan et aI., 2004; Dey, et aI., 2004). Offshore system operators collect

inspection data; however there is no proved model that makes use of such data to

dynamically update probability of failure, with the arrival of new data. A closer review of

literature has shown that little information is published on a robust, holistic and stochastic

risk based methodology for the integrity assessment of offshore process components ;

considering the important threats to structural integrity , such as various types of

detrimenta l corrosion and cracking. What is lacking is the development of a stochastic as

well as dynamic model for degradation modeling and economic consequence analysis

having predictive capabilities, which is the main focus of this study.

1.5 RISK ANALYSIS AND ASSE T INT EGRIT Y

The risk to a component's life is defined as a combination of the probability of an

undesirable event occurrence and its likely consequence. Thus, the operational life risk

analysis is reduced to the accurate estimation of probability and consequence of failures.

Integrity is defined as the quality of being whole and complete. When it is applied to



process components, the structural integrity is the ability to safely resist the required

loads and perform as desired. In other words, it is the soundness and consistency of the

process components to resist the operational loads or demands .

The life cycle integrity of process components could be achieved through various stages

of design, manufacturing, operation and maintenance. If the integrity has been ensured

during the design, fabrication and operational stages through a wel1-established design,

quality control and regulations, then asset integrity depends only on the maintenance . In

offshore process facilities, the design and fabrication usual1y fol1ow certain codes and

standards. The codes and standards are based on deterministic models, which will have

the model and data uncertainty, thus results in certain probability of failure. Once a plant

starts its operation, risk to life is a function of inspection and maintenance .

1.6 RISK BASED STUDIES

The application of risk based approaches to inspection and maintenance of deteriorating

structures, engineering instal1ations and production facilities has been increasing over the

last decade (Faber, 2002; Straub, 2004; Khan et aI., 2006). The components of offshore

process facilities are designed to ensure economical operation throughout the anticipated

service life in compliance with client's requirements and acceptance criteria. The

acceptance criteria are related to minimum code requirements that may be exceeded with

consideration of the safety of personnel, risk to environment and the annual operating and

maintenance budgets . The time dependent degradation processes such as corrosion and

cracking will always be present to some degree. Depending on the adopted design

philosophy in terms of degradation allowances and protective measures, the degradation



process will reduce the performance of the system causing leak, rupture and

contamination. In order to ensure that the acceptance criteria are fulfilled throughout the

service life, it is required to control the development of degradation and install proactive

maintenance measures, before the failure occurs.

The planning of inspection and maintenance concerns the identification of what to inspect

and maintain, how to inspect and maintain, where to inspect and maintain, and how often

to inspect and maintain. Even though inspections and maintenance are used as an

effective means for controlling the degradation of the process components , they may also

have considerable impact on the operation of the facility. It may result in direct and

indirect economic consequences in terms of shutdown costs and unavailability.

Therefore, it is necessary to plan inspection and maintenance, such that a balance is

achieved between the expected benefits of inspection and maintenance and the

corresponding economic consequences implied by the inspection and maintenance .

The development of risk based integrity modeling of process facilities is highly necessary

to avoid adverse technological incidents, to ensure the safe operation and to extend the

operational life of existing facilities. The proposed risk based integrity modeling (RBIM)

finds optimal strategy to the inspection and maintenance . The RBIM methodology

enables the assessment of the probability of failure of a component and the consequences

of that failure. In RBIM, the critical components for the safe operation of facility are

prioritized. Using probabilistic models, the RBIM models the degradation mechanisms

and estimates the rates of degradation. It optimizes the inspection method and interval,



and maintenance resource by adopting risk based maintenance strategy subject to the

corporate 's acceptance criterion . This result in an improved safety, low risk, fewer

shutdown, and reduced operational costs. The risk based integrity modeling approach

provides an integrated framework for the maintenance strategy of the facility.

1.7 STRUCTURAL DEGRADATION PROCESSES

Different methods are required for the inspection and maintenance of different

degradation processes. Kowaka (1994), Melchers (2001), Goyet et al., (2002), and Khan

and Howard (2007) reported that the main threats to the integrity of process facilities are

several types of corrosion (Figure 1.1). Further, Kallen (2002), Straub (2004), and Straub

and Faber (2005) have reported that the major degradation mechanisms threatening the

integrity of structural components consist of various types of cracks (Figure 1.2).

Corrosion is the loss of material as a result ofa chemical reaction between a metal and its

environment. Based on literature study (Stephens et al., 1995; Kallen, 2002; Khan et al.,

2006), the critical structural degradation mechanisms threatening the integrity of assets

are uniform corrosion (UC), localized or pitting corrosion (PC), erosion corrosion (EC),

stress corrosion cracking (SCC), corrosion fatigue cracking (CFC), and hydrogen induced

cracking (HIC). Uniform corrosion is defined as the uniform or regular removal of metals

from the surface (Jones, 1996). For uniform corrosion, the corrosive environment must

have the same access to all parts of the metal surface, and the metal itself must be

uniform in terms of metallurgy and composition. Uniform corrosion results in the

thinning of wall thickness until the wall is penetrated leading to leaks or breakdown of



equipment (Mansfeld, 1987). The localized attack of corrosive environment on an

otherwise resistant surface produces pitting corrosion (Jones, 1996). The combination of

the corrosive fluid and high flow velocity results in erosion corrosion. A stagnant or slow

flowing fluid will cause a low or modest corrosion rate, but the rapid movement of the

corrosive fluid physically erodes and removes the protective corrosion product film,

exposing the reactive metal beneath, thus accelerating corrosion. Sand or suspended

slurries enhance erosion and accelerate erosion corrosion attack on metal. The attack

follows the directions oflocalized flow and turbulence around surface irregularities.

The brittle fracture of a normally ductile alloy, in presence of a corrosive environment or

cyclic loading is known as cracking (Jones, 1996). The amount of cracking per unit time

either in length or depth is expressed in terms of cracking rate. Stress corrosion cracking

(SCC) is the cracking induced by the combined influence of static tensile stress and a

corrosive environment, especially at elevated temperatures . The required tensile stresses

may be in the form of directly applied stresses or in the form of residual stresses. The

process in which a metal fractures prematurely under conditions of simultaneou s

corrosion and repeated cyclic loading at lower stress levels or fewer cycles is known as

corrosion fatigue cracking (CFC). Hydrogen induced cracking (HIC) means the severe

loss of ductility caused by the presence of atomic hydrogen in the metal lattice (Jones,

1996). Hydrogen absorption may occur during electroplating, welding, pickling, cathodic

protection or other processes that favor the production of nascent hydrogen at the surface.
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Fig. I. I. Material Degradations-Various Types of Corrosion
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Fig.1.2. Material Degradations-Various Types of Cracking
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If structural corrosion or cracking are found during inspections, wasted parts are to be

repaired or renewed. Corrosion and cracking result in loss of material as well as structural

strength at local and global levels. It leads to leaks and breakage. Decisions regarding the

extent of renewal require the knowledge of how much more material will corrode or how

long the crack will grow before next inspection and maintenance. Thus, in order to ensure

the integrity of process components , it is crucial to estimate how often to inspect and

maintain so that risk is reduced to as low as reasonable practicable (ALARP) level.

Different inspection and maintenance strategies with different inspection and

maintenance effort, quality, and costs will have different effects on the risk. By

comparing the risk associated with different inspection and maintenance strategies, the

one implying smallest risk, which is acceptable, can be identified.

Though design strategies may attempt to mitigate the effect of degradation processes by

choice of materials and dimensions , degradation processes will still occur due to errors or

flaws during the manufacturing and operations . The real load carrying capacity and the

level of safety of these components will diminish with time. In order to maintain

acceptable level of safety, it is necessary to determine the variation of structural

properties with time. The rate of degradation may not be uniform in all cases. A constant

factor of safety (corrosion allowance/crack resistant material) taken to account for loss of

material at the design stage may not be adequate . This necessitates the stochastic

degradation modeling updated using the latest inspection data.

13



The reliability of a component is the probabilit y of its satisfactory performance under

specific service condition s within a time period. There are several analytical and

simulation methods to estimate the probability of failure. The major analytical methods

for the estimation of failure probabilitie s are the deterministi c method and the stochastic

method, which lead to the prediction of remaining life. The stochastic methods used in

risk analysis include the qualitative and quantitativ e methods.

The uncertainty in degradation processes may arise from many sources such as, inherent

randomness in physical processes, statistical uncertainty and modeling uncertainty. The

physical uncertainty means that the repeated measurements of the same physical quant ity

do not yield the same value due to numerous fluctuations in the environment, test

procedure , instruments, and the observer. Statistical uncertainty occurs when one does

not have precise information about the variability in the physical quantity of interest due

to limited data. Modeling uncertainty occurs due to the limited representation of the

system behavior. A computational model strives to capture the essential characteristics of

system behavior through idealized mathematical models or numerical procedures.

The stochastic Bayesian theory may be used for the quantification of uncertainty and the

prediction of the likelihood of the time-dependent degradation s. The Bayesian models are

based on a mixture of prior understanding, observations and experience. It is an adaptive

approach. The observations of actually occurring degradation s obtained by non

destructive tests (NOT) may be introduced into models that greatly enhance the precision

of their predictions. The probabilistic characteristics of the structural degradations are

14



decisive for the estimation of the future performance of the components. The predicted

future degradation will vary considerably if the observed degradation state is used to

update the degradation model at the time of the successive inspections. This facilitates the

system-learning process with the arrival of new NDT data.

The consequences of failure may be analyzed in terms of the cost incurred as a result of

the occurrence of failure and the implementation of inspection and maintenance strategy.

The consequences of failure include the loss due to breakdown , loss due to shutdown ,

cost of spill cleanup, cost of nature damage and liability. The cost of inspection may

depend on the method and duration of inspection , type of component , availability of

access, and surface preparation costs. The maintenance cost depends mainly on the type

of maintenance , availability of access, surface preparation , gauging defects, fitting,

welding and coating restoration costs. By developing the annual equivalent cost of

operating and maintaining the component , the inspection and maintenance strategy

following minimum risk may be developed. For that purpose, the annual equivalent cost

shall be combined with Bayesian probability model to develop operational life risk. A

model for the cost of degradation caused by corrosion and cracking in typical process

piping component is developed. The developed models take into account the effects of

the uncertainty in cost estimation using random sampling methods.

1.8 MOT IVATIONS

The safe operation of process components requires accurate modeling of failure modes,

understanding uncertainties, and the development of a robust methodology for the

quantification of risks. However, using available risk models, it is not possible to quantify

15



accurately the requirements of inspection and maintenance strategy considering the

overalI risk to facility. Based on the methodological developments in the area of

industrial integrity management for components subjected to age-based degradations , a

holistic approach is needed to the risk based integrity management of components in

offshore process facilities.

In order to protect the public, the financial investment and environment against the

consequences of failure of offshore process facilities, a risk based assessment of the

existing facility is necessary. Such an assessment should quantify the degradation of the

material and provide a basis for the decision making process regarding the optimal

inspection and maintenance. The decision making process under uncertainty using

Bayesian risk analysis is presented in Figure 1.3, where PoF and CoF refer to the

Data "". ~:{ Decisions I

Fig. 1.3. Decision Making Process using Bayesian Risk Analysis
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probability of failure and consequence of failure , respectively. Usually, the operational

risk in industrial applications is calculated by adding up all the consequence cost

elements and, multiplying it by the predicted frequency of the accident probabilities.

Further, the use of risk based integrity modeling allows the operating expenditures to be

focused on a few critical elements that will give the greatest return on expenditure.

In any integrity modeling efforts, the strategic elements, such as corrosion and cracking

mechanism and rate, available remaining life from the inspection data and history of

degradation rate, consequences of failure, inspection and maintenance etc. are important

to be modeled , which has not addressed so far in literature. Further , many researchers

(Faber, 2002 ; Frangopol et aI., 2004 ; Khan et aI., 2006) have reported the need of a

holistic procedure to be developed for risk management in offshore process installations.

Most of the risk based approaches reported in the open literature so far deal with the

structural reliability methods, and the physical condition ofthe asset, however, there is no

single approach that can be used to address the needs of offshore process facilities. The

economic consequence analysis of failure, inspection and maintenance are not well

integrated with probability of failure in the existing literature. Therefore, further work is

necessary to collect the relevant data, improve the modeling capability and formulate the

stochastic decision problems applicable to offshore process standards. The important

motivations to undertake this study are discussed in brief below :

• There are a few limitations in the existing models , such as scarce data, gap

between theory and practice, models are only mathematical and no convincing

case studies. Thus , the applications are limited in industry.
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• The risk based repair and replacement models with adequate confidence are

scanty. Some literature attempted to model the deterioration with Gamma process

that restricts the use of priors and need not reflect the true degradation process

based on subjective knowledge , experimental judgment and generic database.

There is a need for investigating the use of non-conjugate pairs to obtain reliable

posterior distribution s in the cases of corrosion and cracking processes.

• The lack of accurate and reliable methods to deal with the uncertainties in the

input data. There is a need for accurate and reliable modeling of degradations

resulting from pitting, erosion, and stress corrosion as well as corrosion fatigue

and hydrogen induced cracking .

• There is a need for developing models which account for the nonlinearity and

stochastic degradation growth in cases of corrosion and cracking.

• There is a need to understand the economic consequences of failure, inspection

and maintenance and integrate that in risk based maintenance decision making.

• There is a need for a risk based integrity model which is able to predict the

operational risk and is adaptive to the current condition of components.

• There is a need to develop quantitative risk models acceptable to the industry and

easy to use by maintenance practitioners, based on the operating and maintenance

budget towards the risk acceptance criteria.

1.9 ADVANTAGES OF RISK BASED METHODS OVER TRADITIONAL

METHODS

The risk based methods are preferred over the traditional deterministic methods, because:

18



• In traditional methods, the integrity of a component is evaluated by comparing the

current operating conditions with a design limit state that often yield conservative

results, leading to potentially unnecessary inspections and maintenance , that

results in an overall increase in maintenance costs and unavailability .

• The traditional methods do not provide information on potential degradation risks

to life and, thus results in unrealistic inspection and maintenance of component s.

The degradation risk arises from the uncertainty associated with data and

modeling; a chosen value of corrosion allowance or crack resistant material at the

start service may not be adequate to preclude the operational life-risk due to the

random nature of degradation process and uncertainty in data collection.

• The traditional approaches are based on prescriptive rules and leave little

possibility to adapt the inspection and maintenance effect to either the actual

condition of the components or degrading systems. The risk based approach is a

condition based approach and provides a rational basis for adapting the inspection

and maintenance using Bayes theorem, to the present condition of component s.

• In the operational stage, the traditional methods do not consider the importance of

the critical components for the inspection and maintenance of a facility. At the

same time, risk based approaches prioritizes the inspection and maintenance in

accordance with the importance of components and the criticality of different

degradation mechanisms.

• The risk based models minimizes the risk of operating and maintaining the

component to as low as reasonably practicable levels.
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• The risk based integrity models reduce failures, minimize the operating and

maintenance cost and at the same time promote the safe operation of facility .

1.10 ORGANIZATION OFTHESIS

This thesis is written in manuscript format. Outline of each chapter is discussed below :

Chapter 2 presents the literature review pertaining to this thesis. The literature review

deals with four areas : maintenance optimization using mathematical models ; risk based

inspection and maintenance models; stochastic degradation models including corrosion

and crack models; and failure consequence analysis models .

Chapter 3 reports the development of RBIM framework and thesis overview. The RBIM

is developed based on the stochastic degradation modeling using the Bayesian analysi s

and the economic consequence analysis . Inspection and maintenance is optimized by

minimizing risk. The framework for connecting the various chapters of this thesis is also

discussed in this chapter.

Chapter 4 reports the development of prior probability models for identified component­

degradation mechanisms. This chapter is a published paper in the Journal ofStochastic

Environmental Research and Risk Assessment (2009), 23(6): 793-809 .

Chapter 5 reports the development of Bayesian posterior probability models using the

simulation based Metropolis-Hastings algorithm and analytical Laplace approximation

methods. The field NOT data are used to estimate the likelihood probability of
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degradation processes. This chapter is published in the Journal of Risk Analysis (2010),

30(3): 400-420.

Chapter 6 focuses on the economic consequence analysis part of the RBIM and the

optimization of replacement decisions using the engineering economic analysis . This

work is accepted for publication by the Journal ofQuality in Maintenance Engineering.

Chapter 7 deals with the integration of RBIM and validation of models, using the

computed failure probability and consequence reported in chapters 5 and 6. It optimizes

the inspection and maintenance decisions under uncertainty. This work is submitted for

peer review and publication to the Journal ofRisk Analysis .

Finally, Chapter 8 reports the summary and conclusions of this thesis. It also includes the

novelties of this research and suggests the scope for future work in this area.
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CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

The optimization of maintenance strategies using mathematical models has been a subject

of research for many years. The research has been focused primarily on the deterministic

and probabilistic approaches. Recently, the importance of the considerations of reliability

and cost was recognized. The importance of the impact of the economic consideration s

on the inspection , maintenance, and replacement strategies cannot be overestimated .

Thus, the development of a more rational and cost-effective approach for maintenance

strategy is essential. Risk to the life of a component is an outcome of an uncertain event

and it may be defined as the product of probability of failure and its likely consequence s.

Risk reflects the impact of the three factors: condition , reliability and total cost. An

approach for the design of maintenance strategies on the basis of risk optimization seems

to be in order. In such a model, an accurate structural degradation modeling to estimate

probability of failure and a rigorous consequence analysis are two essential component s.

A review of the relevant literature related to risk based integrity modeling found in the

open literature has been carried out. The research work can be listed under four

categories: maintenance optimization models, risk based inspection and maintenance

planning models, stochastic degradation models for corrosion and cracking , and

consequence analysis models.



2.2 MAINTENANCE OPTIMIZATION MODELS

The history of maintenance in offshore industr y goes back to the history of offshore oil

and gas production. The earliest known approach in maintenance was reactive

maintenance . Up to 1940's , the maintenance cost was considered as an unavoidable cost

and the only maintenance carried out was breakdown maintenance. This was less

expensive and time consuming with limited number of components and parts. The

industrial revolution brought there a huge advancement in automation, machinery and

equipment s used in offshore industry. This opened the door for the use of complex and

costly-components in the system to transport and process the produced hydrocarbons.

Thus , the traditional breakdown maintenance was no more attractive nor cost-effecti ve.

The evolution of operational research and mathematical optimization after Second World

War II lead to the development of preventive maintenance strategies to avoid breakdown .

With the rapid growth and development of mathematical models and computational

capability in early 1990's, preventive maintenance strategies gained predominance. It was

recognized that preventing a failure is always better than recovering from it. Preventive

strategy not only prevents failure , but also avoid costly shutdown . Further , it reduces

operating and maintenance budgets , making the operation safe, reliable and profitable .

Maintenance optimization using mathematical models has been a subject of research for

many years . In the early 1960's, the detection of the degradation of specific component in

a system was used to minimize breakdown (Barlow and Hunter, 1960). The degrading

components are replaced either under an age-replacement policy or a block replacement

policy (Barlow and Proschan , 1965). In age replacement policies , the device is replaced
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upon failure or at fixed age, whichever occurs first. In block replacement policies, the

device is replaced at fixed time intervals and at failure. In both cases, the replacements

are done using new and identical devices (Barlow and Proschan, 1965). In 1970's more

integrated approach to maintenance involving a close linkage to reliability and

maintainability was recognized. Abdel-Hameed (1977) studied an age-replacement policy

for which renewal is defined as either a corrective replacement upon failure or preventive

replacement upon reaching a predetermined age, which ever occurs first, using a

stationary Gamma process with non-negative increments in material wear.

The fatigue reliability updating through inspection of steel bridges is presented in Zhao et

aI., (1994). An approach using the linear elastic fracture mechanics theory is proposed

and the corresponding risk of fatigue damage is evaluated. The overall fatigue reliability

can be maintained by undertaking minimal repairs or replacement as necessary . Since

degradation is a slow process, the inspection strategy may be more economical from the

design point of view and may help to extend the service life of components . A non

destructive test (NDT) may be an essential and important tool in the degradation­

detection and evaluation . Non-destructive means that component specimen examined

remains fit for purpose after inspection. During NDT the material properties could

change, but the change will be within allowable level. The NDT results may be utilized in

maintenance planning. For that purpose, mathematical models using the NDT data are to

be developed to link the degradation process to optimize maintenance planning. For a

particular NDT, several factors are expected to affect inspection results, including

modeling effects , human errors, and inspection factors (Zhao et aI., 1994).
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The modeling effects are composed of material characteristics, types of defects,

component configuration, and surface conditions including thickness, presence of abrupt

geometry changes, and accessibility of critical regions (Zhao et aI., 1994). The human

factors include variations in inspector skill, interpretation of results, variations in

calibration of equipment, variation in inspection procedures, and sequence of operations.

The inspection factors are attributed to different inspection environments, including

factory, laboratory, and field conditions, and detectability . These factors add uncertainty

to the inspection results, which needs to be addressed in the mathematical model.

Various NOT techniques are used for the purpose of detecting degradations. Some of the

most common techniques are visual inspection, ultrasonic inspection, liquid penetrant

inspection, magnetic particle inspection, eddy current testing and radiographic inspection.

The ultrasonic inspection is one of the most commonly used NOT and it is accepted for

corrosion and crack detection in components. The main advantage of this method include

the relative ease of penetration into materials with engineering application, such as steel,

and the ability to test from only one surface and to detect substantial flaws, the sensitivity

and comparative accuracy, and the presence of no significant radiation hazards requiring

operational precautions . During the operational lifetime of an offshore facility, the NOT

could be conducted several times to ensure the integrity of components . The information

generated during inspection needs to be incorporated in mathematical model to decide on

maintenance actions , which is lacking. Since the inspections are required at intervals , the

results may be used to update maintenance of components. Inspection information is

beneficial; however, it adds uncertainty to the degradation evaluation process.
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With the developments in mathematical modeling, operational research and computers,

more sophisticated preventive maintenance strategies such are reliability based and

condition based maintenance are developed. An inspection , maintenance and replacement

models are discussed by Abdel-Hameed (1995) based on age and block replacement

policies. The preventive maintenance with limited historic data has been presented in

Silver and Fiechter (1995). Since the breakdowns are costly, it may be attractive to

undertake preventive maintenance on a regular basis. The decision making depends on

the lifetime distribution of system, current state of system and cost structure of system.

For process components it is useful to base the failure model on the physics offailure and

the characteristic of operating environment (Singpurwalla , 1995). The condition based

monitoring uses direct monitoring of the mechanical condition, system efficiency and

other indicators to predict the actual time to failure or loss of efficiency . It serves two

purposes, such as: (i), determine if a problem exists in equipment, how serious the

problem is, and how long the equipment can run before failure, (ii), to detect and identify

specific components in the system that is degrading (Tsang, 1995). Thus, instead of

inspecting and maintaining each and every component in a system, which is rather costly

as well as unnecessary , the inspection and maintenance efforts may be focused on those

critical (degrading) components to ensure the safety of system operation.

To lower the cost of inspection , maintenance , replacement and failure, mathematical

optimization models are increasingly applied in the field of maintenance management

(Dekker, 1996; Dekker and Scarf, 1998). The optimization of maintenance is a decision
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making under uncertainty arising from degradation and cost. In maintenance

management, the most important uncertainty is the uncertainty in the rate of degradation .

Therefore, it is recommended to model the deterioration in terms of a time-dependent

stochastic process. Various classifications of maintenance optimization models and

maintenance performances have been presented in Dekker and Scarf (1998), Tsang

(1998), and Tsang et aI., (1999). Dekker and Scarf (1998) classified the maintenance

models as block replacement models, Markov decision models, and delay time models .

The maintenance optimization models can be qualitative or quantitative. The former

includes the techniques like total productive maintenance (TPM), reliability centered

maintenance (ReM), while the latter incorporates various deterministic or stochastic

models such as, Markov decision, stochastic deterioration, random processes, Bayesian

model etc. The corrective maintenance prevailed in 1940's has been evolved to

operational research, reliability, and risk based maintenance models of today.

The maintenance cost may be minimized by basing the maintenance on the condition of

the critical components. Since the condition of the component deteriorate randomly ,

probabilistic models are essential to model its nature . A probabilistic analysis framework

to estimate reliability incorporating the impact of inspection and repair activities planned

over the service life of a pipeline, vulnerable to corrosion is reported in Pandey (1998).

The framework is applied to determine the optimal inspection interval and the repair

strategy that would maintain adequate reliability throughout the service life. The

maintenance can be either preventive or corrective. The preventive maintenance can be

either reliability centered maintenance or condition based maintenance. The corrective
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maintenance is always less economical than preventive maintenance and all failure can be

prevented. Again, the predictive maintenance is more attractive than preventive

maintenance as it prevents failures, unnecessary shutdowns and maintenance errors .

Reliability centered maintenance (RCM) is a preventive maintenance strategy , and is a

structured methodology for determining the maintenance requirements of any physical

asset based on target reliability. The primary objective of RCM is to preserve the system

to function. It uses systematic technique to rank the criticality of failure modes and

provides guidelines for the selection of applicable preventive maintenance tasks that are

most effective in preserving system function. The goal of optimal maintenance is to make

economically justifiable decision, or it includes the profit or availability maximization,

and risk minimization. The development of an optimal maintenance programs based on

vibration monitoring of critical bearings on machinery is presented (Jardine et aI., 1999).

The lifetime extending maintenance models for offshore structures are discussed in

Bakker et aI., (1999) . The modeling of entire components in an offshore facility are not

feasible, however, high risk components may be ranked and analyzed. The general rule of

thump in process facility is that, 80% of the system failures are from 20% of the

components. The risk based decision model will focus on these high risk components.

With the advent of computers and fast programming, maintenance strategies have

witnessed a paradigm shift over the recent decades from breakdown maintenance to more

sophisticated strategies like online monitoring, reliability and risk based maintenance.

The safety of offshore operation is directly related to the reliability of its components. A
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robust maintenance program is necessary for process components as it deals with

hazardous substances often under harsh operating and environmental conditions.

Preventive maintenance (PM) can help to minimize the probability of losses due to

accidents and unscheduled failure of process components . However, the predictive

maintenance is more advanced as it allows the optimal utilization of maintenance

resources . The trade-off is usually in risk and cost balance to achieve the acceptance

criteria. Quantitative approaches connect the component degradation to the condition

improvement by maintenance to make informed decision under uncertainty . A large

number of publications are available on the subject of maintenance through risk based

models (Wilcocks and Bai, 2000; Montgomery and Serratella, 2002; Khan and Haddara,

2003; Dey, 2004; Khan et a!., 2006). The API (2000) has developed a methodology for

aiding the industry to base the maintenance on quantitative risk analysis . It was argued

that the existing method of health monitoring , which requires the entire components to be

inspected periodically , is both time-wasting and expensive. Risk based model prioritize

the critical components to the safe operation . A risk based model for the inspection and

maintenance of cross country pipeline is presented in Dey (2001) based on the analytical

hierarchy process, a multi criteria decision making techniques. The weightage given to

the failure factors based upon subjective experience and available data.

Risk is defined as the product of the probability of an unwanted event occurrence and its

likely consequences. Risk assessment may be used as an identification and prioritization

tool to assist decision making on the selection of inspection and maintenance to prevent

asset failures. It is essential to ensure that the stake holders concerns are adequately
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addressed and that the system is safe for production. Risk management is a technique

used to identify, characterize, quantify, evaluate and reduce losses from actions of

decisions that have undesired outcomes . It provides equal priority to low probability-high

consequence failures as well as high probability-low consequence failures.

Risk is often viewed as the uncertainty associated with any outcome . Uncertainty can be

in the form of probability of potential failures and consequences . The vital risk factors,

which correspond to the likelihood of failure, are corrosion: internal and external,

external influence: third party activity , free span and vibration, construction and material

defects: poor construction and low grade material, errors: human and operational, and

natural hazards : earthquakes, storms (Stephens et aI., 1995). The literature study reveals

that the internal corrosion and cracking are the major causes for likelihood of failure. The

environmental and social factors also have more impact on failure.

Wang (2002) reported a survey of maintenance policies of deteriorating systems and has

summarized , classified and compared various existing maintenance policies with an

emphasis on single unit systems. Risk analysis is one tool the decision makers can use to

help with prioritizing maintenance action planning (Backlund and Hannu, 2002). An

effective use of resources can be achieved by using risk-based maintenance decisions to

guideline where and when to perform maintenance. By conducting a comparative study

of three independent risk analyses on a specific hydro-power plant, to make a meaningful

decision, it was concluded that careful requirement identification, ensuring the system

approach with clear aims and goals are needed when performing risk analysis (Backlund
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and Hannu, 2002) . The client needs to have sufficient competence to evaluate and

understand approaches and result from the risk analysis performed. In order to identify

risks in terms of where they are located in a system and how serious they are, risk

analysis is often used. The results of risk analysi s can provide guidance as to where

maintenance actions should be directed . Some quality assurance applied to risk analysis

process will enhance the conditions for reliable results. Literature on the use of

simulation in maintenance planning has been reviewed by Andijani and Duffuaa (2002).

Knowledge of the reliability and maintenance engineer may be useful in the design of

customized inspection and maintenance concept. An optimal maintenance of systems

subjected to deterioration of renewal type has been reported by Abdel-Hameed (2003) .

The optimization is based on the total discounted cost over the infinite horizon , and the

long-run average cost criterion .

The deterioration and maintenance models for insuring safety of civil infrastructures at

lowest life cycle cost are presented in van Noortwijk and Frangopol (2004). The model

can be applied to determine the best maintenance strategy to insure an adequate level of

safety at minimallifecycle cost while taking the uncertainties in the deterioration process

in to account. Without being complete , a time-dependent deterioration process can be

modeled as a failure rate function , a Markov model, a stochastic process or a time­

dependent reliability index . The pros and cons of the different models considered are

discussed (van Noortwijk and Frangopol , 2004) . The advantage of reliability based

maintenance is that the reliability is explicitly taken to account in decision making. In

condition-based deterioration models, the reliability only follows implicitly after
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transforming condition to reliability . The advantage of condition based models is that

conditions can be measured or inspected, whereas reliabilities must be computed and that

inspections can naturally included in maintenance models . Ideally, the best way is to base

a deterioration model on the time-dependent stochastic processes of resistance and stress

and to compute the corresponding lifetime distribution and failure rate function, as well

as the time-dependent reliability function (van Noortwijk and Frangopol , 2004).

Offshore process systems usually consist of a large number of components which operate

under high pressure and temperature transporting corrosive products. This will degrade

the material of component at a faster rate as it ages . The rate of loss of strength and

material produce the highest uncertainty in the decision models. Inspections may be used

to reduce this uncertainty. An optimal maintenance decision model under imperfect

inspection for a steel pressure vessel subjected to corrosion is reported by Kallen and van

Noortwijk (2005) . It was based on risk analysis and has concluded that a Gamma

stochastic process with an adaptive Bayesian approach for incorporating the uncertainty

in the degradation process is a viable option to be used in the structural reliability

methods, which are commonly used in the process industry . However fitting a Gamma

prior-likelihood, thinking of getting a closed form posterior may not always reflect the

reality of degradation processes.

The failure probability of offshore process component is scarce , but if a failure occurs ,

the consequences are severe. A risk based maintenance model for offshore oil and gas

pipeline is discussed by Dey et aI., (2004). The breakdown maintenance of the pipelines
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is cost-intensive and time-consuming resulting in huge tangible and intangible loss to the

operators. Pipeline health monitoring and integrity analysis have been researched a lot for

successful pipeline operation and risk based maintenance model is one of the outcome of

those researches. The reasons for optimal maintenance planning are from: stringent

environmental protection laws, scarce resource, and excessive inspection and

maintenance costs. A clearly focused inspection and maintenance policy that has low

investment to benefit ratio should be formulated. The study introduced a tool for

predicting the risk factor for pipeline failures, analyzed their effects, and developed a

response measure through effective inspection and maintenance methods.

An analytical model for the optimization of maintenance profitability has been presented

by Oke (2005). The traditional view of maintenance is changing. Earlier, it has been

viewed as a necessary evil, now mangers are visualizing maintenance as a valuable

function since it is regarded as the safety line for components . Recently, maintenance

function is portrayed as a value-adding activity. There is a need to integrate the cost into

the model (Oke, 2005). With cost, a mechanism that links expenses incurred during a

financial period with budgeted costs would add great value to the maintenance model.

The optimization of lifetime maintenance strategies for deteriorating structures

considering the probabilities of violating safety, condition and cost thresholds is

presented by Bucher and Frangopol (2006). Two different maintenance strategies (i.e.,

time-based and performance-based) are considered and the corresponding cost values are

computed on a probabilistic basis in terms of the expected values, standard deviations and

38



probabilities of exceeding prescribed thresholds. The computational analysis of costs and

useful key performance indicators for different maintenance policies in order to choose

the most advisable applied to a food product plant is presented in Silva et al. (2008). A

good maintenance plan will give: reduction of the amount of routine work, planned

workload much lower than breakdown maintenance , less overtime work, higher plant

availability and reliability, less time given to corrective maintenance and greater safety.

The uncertainty in maintenance models is mainly from the parameter, deterioration rate

per unit time (Frangopol et aI., 2004). Pandey et aI., (2006) has pointed out that time­

based variability is not taken into account in the random variable models. For stochastic

modeling of monotonic and gradual asset deterioration, a Gamma process is most

appropriate (van Noortwijk, 2009). The less developed aspects in the modeling of

maintenance under Gamma-process deterioration are variability, dependence , multi­

failure mode models including their statistics dependence (van Noortwijk, 2009).

Optimum preventive maintenance schedules may be obtained, using the minimization of

total cost incurred in relation to maintenance activities . Cost minimization has been the

traditional objective in maintenance planning. However, risk optimization is more

attractive as it takes into account both the condition of component through probability of

failure and consequences through cost incurred. The preventive maintenance interval is

often optimized when the increasing rate of corrective maintenance cost equals the

decreasing rate of preventive maintenance costs (Ghosh and Roy, 2009). Flexible

maintenance intervals are conceptualized by studying the change in risk over the service
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life of components . Efficient maintenance policies are of fundamental importance to

offshore process systems because of their impact on the safety and economics of facility

operation. A survey of the application of Gamma processes in maintenance is presented

by van Noortwijk (2009) . Gamma processes are increasingly used to model the stochastic

deterioration for optimizing maintenance. An extensive literature study of inspection and

maintenance models under Gamma process deterioration is presented. However , these

litterateurs were tempted to use stationary Gamma process because of the existence of

conjugate pairs for updating. The non-conjugate pairs are not covered in any study.

An optimal maintenance and replacement decisions under technological change is

presented by Nguyen Thi (2010) . There is an intensive research to provide the most

appropriate strategies for organizing a set of maintenance actions based on complex

degradation models to optimize a decision criterion . The usual maintenance models are

considering various maintenance actions such as good as new replacement by an identical

item, imperfect maintenance which restores the system to an acceptable condition as bad

as old. The literature reviews and directions for maintenance management reported by

Garg and Deshmukh (2006) brought out the major gap in knowledge. In offshore process

facilities, 30% of the total manpower is utilized in the maintenance and operations

departments . The widespread mechanization and automation has reduced the number of

personnel and increased the capital employed in the offshore production facilities . As a

result, the fraction of employees working in the area of maintenance as well as the

fraction of maintenance spending on total operational costs has grown over the years

(Garg and Deshmukh, 2006). Next to energy costs , the maintenance cost can be the
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largest part of any operational budget. The main question faced by the maintenance

management, whether its output is produced more effectively, in terms of contribution to

company profits and efficiently , in terms of man power and materials employed, is very

difficult to answer. The current maintenance optimization model covers the following:

• A description model of the technical system, its function and importance.

• A modeling of the deterioration of the system in time and possible consequences

for this system.

• A description of the available information about the system and actions open to

management.

• An objective function and an optimization technique , which helps in finding the

best balance.

The models are classified into modeling of deterioration as deterministic or stochastic ,

qualitative or quantitative (Garg and Oeshmukh, 2006; Khan et aI., 2006). Stochastic

models are further classified into stochastic models under uncertainty or warranty . The

various maintenance optimization models are classified as (Garg and Oeshmukh , 2006):

Bayesian Approach (BA)

A fully Bayesian, i.e., a subjective approach towards straight forward means of

presenting uncertainty related to future events to decision makers in the process of

decision making on inspection and maintenance. Bayesian model helps to update the

inspection and maintenance efforts . This approach is in contrast with the classical

probability approach, which assumes the existence of true probability distributions.

Kallen and van Noortwijk (2005); Straub and Faber (2006); Khan et al. (2006 has been

used this approach to optimize the maintenance performance with new NOT data.
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Mixed Integer Linear Programming (MILP)

Goel et aI., (2003) presented a new mathematical formulation, MILP for the integrated

design, production and maintenance planning for a multi-process plant. In contrast to

earlier approaches, which focus mainly on deriving an effective maintenance policy at the

operational stage, the proposed integrated approach provides a design with an opportunity

to improve the operational availability at design stage itself.

Fuzzy Multiple Criteria Decision Making (MCDM) and Linguistic Approaches

AI-Najjar and Alyouf (2003) assessed and selected the most informative maintenance

approach using fuzzy MCDM evaluation methodology.

Simulation and Markovian Probabilistic Models

Chen and Popova (2002) and Barata et aI., (2002) used Monte Carlo simulation to

determine optimum maintenance policy by minimizing total service cost and for

modeling of continuously deteriorating systems. The Markov probability models using

random variables for optimizing the maintenance policy has also been discussed in Bruns

(2002); Sarkar and Haque (2000); and Balakrishnan (1992) .

Analytical Hierarchy Process (AHP) and Artificial Neural Network (ARN)

AHP is used for selecting the best maintenance strategy for oil refineries (Bevilacqua and

Braglia, 2000; Shervin , 2000). Further, Bevilacqua et aI., (2005) have used artificial

neural network (ANN) framework for failure rate prediction for maintenance.

Presently, many researchers are pursuing the development of various mathematical

maintenance models to estimate the life cycle risk measures and determine the optimum

maintenance policies . However, these models may be useful to maintenance engineers if
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they are capable of incorporating information about the repair and replacement strategy,

the management policies , the methods of failure detection, failure mechanism etc. (Garg

and Oeshmukh, 2006). Further, the assumptions used in the model and the applicability

of model in a given system environment that can give greater confidence in estimates

based on small number of NOT data, have to be strictly checked .

2.2.1 Maintenance Strategies

The available maintenance strategies based on Ouffuaa et aI., (1999) ; Garg and

Oeshmukh (2006), and Jardine and Tsang (2006) are reviewed briefly below.

Breakdown Maintenance (BM) or Corrective Maintenance: This type of maintenance is

only performed when the equipment is incapable of further operation. There is no

element of planning for this as it is a run to failure strategy.

Preventive Maintenance (PM): A series of tasks performed at a frequency dictated by the

passage of time, the amount of production , machine condition that either extends the life

of an asset or detect that an asset had a critical wear is going to fail or breakdown

constitutes PM. It is a planned maintenance to counteract potential failures.

Condition Based Maintenance (CBM): This is a maintenance strategy, in which the

maintenance tasks are performed on the basis of component condition. The condition is

detected using measurement, such as pressure, temperature, vibration going beyond a

predetermined limit. If a machine cannot hold a tolerance, the CBM is initiated. Grall et

al (2002) developed a mathematic model for the condition based inspection/replacement

policy for a stochastically and continuously deteriorating single unit system.

Total Production Maintenance (TPM): Originating from Japan, it centers on solving

maintenance problems using quality circles method. Some of the advantages ofTPM are
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better understanding of the maintenance performance, improved teamwork , less

adversarial approach between production and maintenance.

Computerized Maintenance Management System (CMMS): CMMS provide capabilities

to store, retrieve and analyze information and help to make informed decision on PM.

Reliability Centered Method (RCM): It was founded in 1960's and initialIy oriented to

aircraft maintenance. It directs maintenance efforts at those parts and units where

reliability is critical. High probability of failure components gets more attention .

Predictive Maintenance : Predictive maintenance consists in deciding whether or not to

maintain a system according to its expected state . It estimates through diagnostic tools

and probabilistic methods, when a component is going to fail and what type of

maintenance to perform to prevent the occurrence of failure.

Maintenance Outsourcing (MO) : This refers to transferring workload to outsiders with

the goal of getting higher quality maintenance at faster , safer and lower costs. The other

goals are to reduce the number of fulItime equivalents and concentrate organizations

talents , energy and resources in the areas calIed core competence.

Effectiveness Centered Maintenance (ECM): It emphasizes doing the right things , instead

of doing things right. This approach focuses on system functions and customer service

and has several features that are designed to enhance the performance of maintenance

practices and encompasses core concepts of quality management, TPM and RCM.

Strategic Maintenance Management (SMM) : In the SMM approach, maintenance is

viewed as a multi-disciplinary activity. It is mostly qualitative or semi quantitative.

Risk Based Maintenance (RBM) : Risk based maintenance ensures a sound maintenance

strategy meeting the dual objective of minimization of hazards caused by unexpected
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failure of equipment and reduction of cost. Khan and Haddara (2003) and Khan et aI.,

(2006) outlined this strategy. This methodology is comprehensive and quantitative. The

risk to life is used as a criterion for decision making regarding maintenance.

2.3 RISK BASED INSPECTION AND MAI NT ENANCE PLANNING MODELS

The past risk based inspectio n (RBI) and risk based maintenance (RBM) efforts and

methods have been reviewed based on their application to the various industries such as

offshore structures, pipelines, ships, civil structures and process plants. Although the

inspection performance models for the detection of crack and flaws were in use in early

sixties by McCall (1965) and Barlow and Proschan (1965), the risk based approaches for

inspection and maintenance gained predominance since 1980's due to the rapid

developments in the field of mathematical computations and programming.

2.3.1 Offshore Stru ctures

The first initiatives and developments towards the inspection planning for welded

connections subjected to fatigue in fixed offshore steel structures has reported in Skjong

(1985); Madsen et aI., (1987); Fujita et aI., (1989), and Moan et aI., (2000). Later, the

same methodology was adopted to other structures such as tankers, Soares and Garbatov

(1996); Paik et aI., (2000); floating, production, storage and off-loading facilities,

Lotsberg et aI., (1999), and Goyet et aI., (2002, 2004); and to semi-submersibles,

Lotsberg et aI., (2000). The structural reliability method has played a vital role in these

developments. Recently, a generic and simplified approach for the risk based inspection

planning has been reported in Straub and Faber (2005a). A comprehensive documentation

of this approach has been observed in Straub (2004), considering the fatigue crack growth
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between hot spots as the degradation mechanism. The reliability updating for structures

subjected to localized corrosion defects, based on the fatigue crack models has been

found in Straub and Faber (2005). For localized corrosion defects, the actual

measurements as well as the possibility of missing the largest defect are accounted in

reliability updating of inspections (Straub and Faber, 2005).

The theoretical framework for risk based inspection planning, consequence assessment,

modeling of uncertainties, assessment of probabilities, modeling of inspections, modeling

of engineering systems in terms of logical systems, modeling of deterioration processes

and the acceptance criteria for RBI has been published in Faber (2002). This paper has

outlined the problem of inspection planning and summarized the theoretical basis for its

systematic treatment within the framework of Bayesian decision theory. The need of

implementing the robust and efficient algorithms for future developments in enhancing

the use of RBI planning into industrial practice has been emphasized.

A unified approach to the risk based inspection planning of offshore facilities comprising

of both structural and process type components and systems was published by Faber et

aI., (2003), based on a generic modeling of risk based inspection planning for

components subjected to fatigue degradation . Methodology for the derivation of

acceptance criteria for inspection planning purposes at component level taking basis in

the overall facility acceptance criteria specified in terms of risk to personnel, environment

and economy by the responsible authorities has been proposed . The same probabilistic

model was then applied for steel components subject to corrosion; thereby enhancing the
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RBI planning for process type components of offshore facilities. The generic approach

described is promising for practical use of risk based inspection planning of components.

However, in regard to probabilistic modeling of various corrosion and cracking

phenomena much work is still required, Faber et a\., (2003). The detailed case study and

calibration needs to be performed for degradation rates to validate the model for different

degradation phenomena. Inspections based on Bayesian theory must be performed to

ensure that the assumptions prevailing the modeling of the ideal age-based deterioration

are satisfied .

A simplified and practically applicable approach for risk based inspection planning of

fatigue sensitive structural details have been reported in Bloch et a\., (2000). The fatigue

sensitive details are categorized according to their stress intensity factors and their fatigue

design life to reserve strength ratio. When the reserve strength ratio and the

corresponding probability of total structural failure given fatigue failure of the considered

detail is known, it is possible to develop pre-made inspection plans, which depend on

relative cost of inspections, repairs and failures. Due to simplicity of the format of the

developed inspection plans, it is reported that the proposed approach has a high potential

in making codes for the design and maintenance of steel structures, Engelund et aI.,

(2000) . The generic inspection plans have been established in Sorensen and Faber (2002)

for representative fatigue sensitive detail in terms of fatigue design factor and reserve

strength ratio. How the generic inspection plans can be used for code making purpose in

connection with the inspection of steel structures, has been reported in this paper. Two

approximations to determine inspection times have been described in the paper ; namely
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equidistant inspections plan and constant thresholds plan and it greatly simplified the

inspection planning problems and facilitated the development of inspection plans which

are generic in the sense that they are representative for a range of different detail designs .

The generic inspection plans may be applied as a decision tool for evaluating the effect of

service life extensions, load increases and strengthening on the required inspection and

maintenance efforts . Both approaches result in inspection plans that are sub-optimal , but

the numerical calculations are reduced significantly for practical situations .

A combination of proactive, reactive and interactive approaches, employing strategies to

(i) reduce the likelihood of malfunction, (ii) increase detection and correction of

malfunction and (iii) decrease the effects and consequences of mal-function, have been

reported in Bea (2001) . The approach developed for estimating fatigue crack growth may

be used in the risk based inspection planning of offshore systems, Straub and Faber

(2005a, b). The method has been applied by several industries , Faber et aI., (2005) ;

Chakrabarti et aI., (2005) , and Goyet et a!., (2002 and 2004). The benefits of risk based

inspection planning for offshore structures can be found in Straub et a!., (2006). A unified

approach to the risk based inspection planning of an offshore production facility has been

reported in Faber et aI., (2003), the assumptions of which limited its application. The

computational aspects of risk based inspection planning based on Bayesian updating of

fatigue, reported in Straub and Faber (2006), is quite complex and time-consuming.

The development of a reliability-based management of inspection, monitoring,

maintenance and repair has been reported by Moan (2005), for various types of offshore
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structure, with focus on management of hull damage due to crack growth and corrosion.

It is shown that different inspection and repair strategies may be relevant for different

types of offshore structures, because the existing structure poses different degree of

vulnerability to fatigue and robustness. The deterioration due to combined fatigue

cracking and corrosion wastage of structural components has been addressed to certain

extent. The reliability framework allowed for explicit accounting of uncertainties as well

as the effect of inspections. A series of inspection events are defined to update the

reliability level based on the detection of fatigue cracks and thickness measurements,

both before and after the vessel has changed its location and sea environment. The

analyses showed that the reliability may be maintained at the target level for a significant

period of time beyond documented fatigue life ; provided that adequate inspections are

carried out at prescribed intervals and that any defects found are repaired to an acceptable

standard . It has shown that the inspection interval needs to be reduced from 5 to 2.5 years

to maintain the reliability level when through-thickness cracks are detected after 15-20

years for a welded joint with a 20 years fatigue life. However, by introducing additional

safety measures such as weld profiling and toe grinding, the reliability and inspection

intervals may be greatly enhanced.

2.3.2 Civil Infrastructures

A comparison and description of the deterioration and maintenance models for civil

infrastructures has been reported in van Noortwijk and Frangopol (2004) . It is reported

that, the time-dependent, uncertain deterioration process can be modeled as: a failure rate

function, a Markov model , a stochastic process and, a time-dependent reliability index

method . In condition based deterioration models , the reliability follows implicitly or
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explicitly after transforming the condition to reliability. The best way is to base a

deterioration model on the time dependent stochastic process of stress and resistance and

compute the corresponding lifetime distribution and failure rate function.

A review of the probabilist ic models for life cycle performance of deteriorating structures

is presented in Frangopol et aI., (2004). In comparison with the well-researched field of

analysis and design of structural systems, the life cycle performance prediction of these

systems under no maintenance as well as under various maintenance scenarios is far more

complex and is a rapidly emerging field in structural failure engineering. As structures

become older and maintenance costs become higher, different agencies and

administrations in charge of civil infrastructure systems are facing challenges related to

the implementation of structural maintenance and management systems based on life

cycle cost. This paper reviewed the research to date related to probabilistic models for

maintaining and optimizing the life cycle performance of deteriorating structures and

formulated future directions in this field. Some of the modeling approaches dealt with the

reliability index, whereas the others are concerned with the physical condition of a

structure. No single approach has yet proven to be generally applicable. The use of

reliability index to model the performance of a structure is a classic approach in

engineering , and has resulted in many design codes. The Markov model, which is purely

a condition-based is the most commonly used in bridge maintenance models.

The Gamma process model has been the subject of many scientific publications with a

few applications to real maintenance problems in civil engineering (van Noortwijk and
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Pandey, 2004 ; Pandey and van Noortwijk, 2005; Kallen and van Noortwijk, 2005).

Further work is necessary to collect the relevant data, improve the modeling capability

and formulate the probabilistic decision problems as follows: (i) establish an acceptable

and consistent methodology for probabilistic modeling of deterioration processes of

structural performance in terms of both condition and reliability, (ii) improve the

understanding of the effects of maintenance actions on structural performance and their

probabilistic modeling ; improve the incorporation of measurement data from imperfect

inspections into the deterioration models, (iii) develop consistent probabilistic

methodologies for evaluating maintenance and management strategies for structures and,

(iv) use optimization for finding the best strategy through balancing of competing

objective such as reliability , condition and cost. Two probabilistic life-cycle maintenance

models for deteriorating civil infrastructure were discussed in van Noortwijk and

Frangopol (2004); (i) Rijkswaterstaat 's model, which has applied to the public works and

water management by Netherlands ministry of transport, used for the justification and

optimization of maintenance measures and, (ii) Frangopol's model, which has applied to

the development of bridge management methodology that has been set up by UK

highway agency. Although the maintenance models are quite similar, the former model is

reliability based and treats the multi component, multi-failure mode and multi-uncertainty

case. The latter model is condition based and treats only single component, single failure

mode and uncertainty . The Frangopol model uses Monte Carlo simulation with stochastic

process, whereas, the Rijkswaterstaat model is analytic with uncertain parameters.
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A model for lifetime-extending maintenance (LEM) has been reported by Bakker et aI.,

(1999) in which both the interval of life time extension and preventive replacement is

optimized . The proposed LEM may be used to optimize the maintenance in both design

and operating phase of deteriorating structures. In the design phase, the initial cost of

investment can be optimally balanced against the future cost of maintenance . In the

operating phase, the cost of preventive maintenance (lifetime extension and replacement)

can be optimally balanced against the cost of corrective replacement and failure.

Other relevant works in this area are by Dekker (1996); Wang (2002), and on bridges by,

Frangopol and Estes (1999) ; Frangopol et aI., (2001), and Frangopol and Neves (2004) .

Further, on optimal decision making for sea-bed protection, by van Noortwijk et al.,

(1997); on breakwaters , by van Noortwijk and Phajm (1996); on bridge structures , by van

Noortwijk (1998); on nuclear plants by Ellingwood and Mori (1993); and a condition

based maintenance by Grall et aI., (2002). A reliability based inspection optimization

technique for use in complex structures, such as offshore and bridge structures has been

found in Onoufiiou and Frangopol (2002). The engineering systems are exposed to a

variety of operational stresses and aging related degradation mechanisms which will

affect the overall system life, safety and efficiency. A probabilistic approach to minimize

the life-cycle cost of inspection and refurbishment of engineering components in large

infrastructure systems has been reported in Dalla and Pandey (2005). The probabilistic

methodology is based on the lifetime distribution of components, though its estimation is

hampered by the lack of data. The advantage of the methodology is demonstrated by

applying it to the analysis of wood poles in a large electrical distribution network.

52



2.3.3 Oil and Gas Pipelines

In pipeline industry , the objective of a risk based inspection management is to ensure and

maintain the required confidence in the pipelines integrity and hence maximi ze its

operating availability. It essential1y includes the optimization of resources to ensure

pipeline integrity , such as planning of inspection intervals and method s, repairs etc. A

versatile methodology for the RBI of pipelines has been published by Willcock s and Bai

(2000) , which consists of : defining a required level of confidence in the pipeline

integrity, establish a database of operating conditions , evaluate and rank the risks of each

potential failure modes , study the time-dependent degradation failure models and finding

optimal solutions to reduce the risks and uncertainties to an acceptable level. The designs

of pipeline systems are being optimized through probabilistic methods to reduce the cost.

Since, the major cause of failures are extreme loading, corrosion , third party defects and

fatigue damage ; it requires the monitoring and control1ing of these factors to eliminate

potential risks . A good understanding and management of risks is of vital importance in

ensuring the integrity of pipeline transporting oil and gas to terminals. It showed that the

adoption of risk based inspection can reduce design , inspection and repair costs whilst

ensuring that the required levels of pipeline integrity. By identifying , understanding and

addressing the hazards to the pipelines integrity and evaluating the consequence of

failure, a high availability of the pipelines can be ensured at an optimum cost. The model

discussed was unable to predict the impact of maintenance and replacement plans and

lacked the implementation of stochastic models.
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The identification of potential hazards and their elimination is critical to the effective risk

management of pipeline systems . The corrosion management studies with RBI

methodology will instantaneously provide the pipeline risk which can be useful in

anomaly assessment and in scheduling inspection interval. Venkatesh and Farinha (2004)

presented a corrosion risk assessment (CRA) and its importance in the RBI approach

based on the hypothetical data analyzed by various statistical techniques. A holistic

approach is proposed based on corrosion inspection strategies and statistical approach. In

order to judge the reliability of the statistical approach, corrosion failure prediction

models have been created by simple trend, Weibull and survivability techniques. The

degradation rate has been estimated for the failure mechanisms that are considered to be

inspectable (corrosion, pitting, erosion-corrosion). Following the calculation of critical

defect size, the predicted service life is determined by extrapolating existing inspection

data, where there is a history of deterioration, or by probabilistic methods (Monte Carlo

simulation), where there is no history of deterioration. By multiplying the predicted

remaining service life with a risk factor, the approximate inspection interval has been

determined. This risk based factor was semi-quantitatively derived using matrices

incorporating likelihood predictability and consequence of failure . Pro-active monitoring

methods need to be maintained and implemented including good corrosion house

keeping, such as routine sampling, on-line monitoring and review of the operator logs,

such as proper corrosion monitoring techniques, suitable inhibitor and biocide regime,

with the corrosion data will help in predicting reliable asset remaining life. The

traditional process data recording should be extended to integrity-related data recording.

Cost of risk and its effects on the integrity management of pipelines has been reported by
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Laughlin (2004). It is argued that the current tool specifications make the determination

of actual risk difficult and hence the cost of risk is underestimated .

The optimal inspection and replacement decisions for multiple failure modes are

presented by Kallen and van Noortwijk (2004). The cost function associated with Gamma

process for modeling deterioration has been extended to multiple failure modes, which

limit the use of priors. An elbow in a pipeline which is susceptible to thinning due to

corrosion and stress corrosion cracking has been considered in the modeling , and effect

of data availability is discussed. The optimal maintenance decision under imperfect

inspection has been published by KaIIen and van Noortwijk (2005). A risk based model

for the inspection and maintenance of cross-country petroleum pipeline has been reported

in Dey (2001). A risk based model using an analytic hierarchy process, a multiple

attribute decision making technique, to identify the factors influencing failure on specific

segments and analyzed their effects by determining the probability of risk factors, Cagno

et a!., (2000) . Another risk based maintenance model for offshore oil and gas pipeline has

been reported in Dey et a!., (2004). Some of the risk assessment methods for formalizing

the pipeline integrity for operating companies will find in Biagiotti and Gosse (2000).

2.3.4 Process Installations

The proper inspection and maintenance of process plants, which deals with hazardous

chemicals at extreme temperature and pressure, are highly important to ensure the safe

and continuous operation of the facility. A risk based methodology for the integrity and

inspection modeling of such a facility has been presented by Khan et a!., (2006) based on

KaIIen (2002). The Gamma distribution has been used to model the material degradation
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and a Bayesian updating method to improve the distribution based on real inspection

results. The risk is calculated using the probability of failure and, the consequence is

assessed in terms of cost as a function of time . The risk function is used to determine an

optimal inspection and replacement interval and, that inspection interval has subsequently

been used in the design of the integrity inspection plan. This method takes into account

the random nature of the material degradation of components and it allows the updating

of the probability density function using Bayesian approach. The maintenance interval

has been optimized based on risk associated with component failure and the optimization

criterion is based on the level of risk that satisfies the acceptance criteria. The study was

limited to Gamma distribution that fits the material degradation processes, but may not

always in-line with the subjective information or historical database of different

degradation processes. It is showed that the method gives reliable estimates for inspection

intervals that are comparable with literature, but, the critical degradation mechanisms,

such as pitting, erosion corrosion and cracking (CFC, HIC) were not included in the

study . Further, the method is computationally intensive and time consuming.

Kallen and van Noortwijk (2005) proposed an adaptive Bayesian decision model to

determine the optimal inspection plans under uncertain deterioration. A Gamma

stochastic process has been used to model the corrosion damage mechanism, similar way

of fatigue cracks based on hot spots and, a Bayes theorem to update the prior knowledge

over the corrosion rate with imperfect wall thickness measurements. Since the current

non destructive inspection techniques are not capable of measuring the exact material

thickness, the imperfect inspection modeling is very important in process plants. The
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decision model in Kallen (2002) finds a periodic inspection and replacement policy

which minimizes the expected average costs per year. The failure condition has assumed

to be random and depends on uncertain operation conditions and material properties . The

combined deterioration and decision model has been illustrated by using actual plant

inspection data for pressurized vessel in Kallen and van Noortwijk (2005) ; for a

pressurized steel pipeline elbow in Kallen and van Noortwijk (2004) ; and hydrogen dryer

in Kallen and van Noortwijk (2003). In all these models , the choice of prior is restricted

to Gamma stochastic process, which is not true in the case of all degradation priors. It

doesn 't reflect the subjective knowledge and experimental data for all degradation priors .

Material Degradation Mechanisms

Material degradation is one of the main causes of process component's failure and it may

be caused by one or more mechanisms. The mechanism of failure includes: internal and

external thinning due to corrosion, stress corrosion cracking, brittle fracture, and fatigue

due to vibration , Kallen (2002), and Khan et aI., (2006). These mechanisms cause

material deterioration and thus affect the ability of the component to withstand the

applied load. The two models reported were a thinning model and a stress corrosion crack

model (Kallen, 2002). The thinning model has been used to describe the reduction in

material thickness of components as a result of internal or external corrosion and wear.

The cracking model has been used to describe the reduction in the load carrying capacity

of the components as a result of cracks (Kallen, 2002) . Such cracks may results from

stress induced corrosion, brittle fracture or fatigue. The stress corrosion cracking (SeC)

failure occurs when applied stress on a component generates a field of localized surface

crack along the grain boundaries, which yield the component incapable of performing its
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function. The see includes caustic cracking, amine cracking, carbonate cracking, sulfide

stress cracking, hydrogen induced cracking , polythionic acid cracking and chloride

cracking. At low temperatures the carbon steels suffers brittle fracture at loads

significantly below the design loads because of its ductility loss at low temperatures.

Vibration also causes components to fail prematurely. Improperly supported piping near

vibration sources is prone to fatigue . The net degradation of the material is the total sum

of degradations that take place as a result of the above mentioned mechanisms (Kallen

2002; Khan et aI., 2006) . Although these mechanisms are deterministic, there is a level of

uncertainty associated with some of their variables and hence , those variables have to be

considered random and degradation process is expected to be a stochastic process. It has

been assumed that the incremental material deterioration is independent, exponentially

distributed random variables. Then, the cumulative degradation from the start to end of

service is a Gamma distributed stochastic process with stationary increments. The results

of inspection can effectively be used in updating the prior knowledge of the average

degradation rate using the Bayesian updating . The inspection updating modeling involves

two steps: (i) selection of an appropriate prior and, (ii) Bayesian updating of the prior

using the likelihood function of new inspection data (Kallen, 2002) . In order to calculate

the risk, consequence analysis associated with the failure needs to be estimated . The

consequence has been estimated in terms of the cost incurred as a result of failure

(Kallen, 2002; Khan et al., 2006). The expected average costs per cycle are determined

by the expected number of inspections during cycle and the expected costs due to either

preventive or corrective replacement.

58



2.4 STOCHASTIC DEGRADATION MODELS FOR CORROSION AND

CRACKING

2.4.1 Probabilistic Corrosion Models

The probabilistic deterioration of structural strength and the multiple applied loadings are

the main criteria needs to be considered for the life assessment of the existing assets

using the reliability theory. Various corrosion models have been reviewed in Melchers

(2003a) using the data pooled from many sources and, it has been found that most of

them are statistical only with little theoretical insight. They provided poor quality mean

value information with very high statistical uncertainties . In practice, corrosion is not an

independent deterioration mechanism for remaining life assessment of aging systems as it

interacts with applied stresses , fatigue, mechanical damages, with protective systems and

management practices. The interaction with each of these phenomena or materials is a

matter that cannot be ignored in practice, even though the interactions are not fully

understood in all cases. In Melchers (2003a), more attention and efforts has been given to

marine corrosion to develop statistical models. The marine corrosion is not a linear

function of time and the variability in the data is very large and it increases with time. It

is further argued that there is an urgent need for better quality models to adequately

represent the deterioration mechanism for corrosion. It must be based on sound

understanding of the corrosion mechanism and would require calibration to field data and

in turn, new data collection with better supplementation of existing data. A probabilistic

model needs to be developed and it should follow the deterministic physiochemical

corrosion models. These must reflect a reasonable degree of physical reality if they are to

have predictive power beyond the data from which they are calibrated.
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Considering the probabilistic corrosion modeling based on corrosion mechanics

principles and including the effect of environments, another paper has been published by

Melchers (2003b) . The environmental effects include temperature, dissolved oxygen,

salinity, calcium carbonate, pH, water velocity and marine growth. A new multi-phase,

non-linear mean value model has been developed for the corrosion of mild and low alloy

steel under "at sea" immersion conditions. The model consists of four stages: (i) largely

linear phase during which oxygen controls governs, (ii) a phase during which the

corrosion rate diminishes rapidly due to buildup of corrosion products and corrosion is

governed by diffusion , and (iii) and (iv) governed by anaerobic conditions. The influence

of factors that may affect the model under coastal and near shore conditions, such as

temperature, dissolved oxygen, salinity, calcium carbonate, pH, water velocity and

marine growth are included. The application of basic corrosion understanding and models

will help in the development of more specific models for practical applications .

In general, the extreme value statistics are used to model the pitting corrosion (Shibata

2007; Kowaka, 1994; Khan and Howard, 2007). There is likely to be a high degree of

dependence among the depths of extreme pits and, the statistical population describing

such pits is likely to be different from that of the remaining pits, Melchers (2005). These

observations questioned the conventional use of extreme value distributions for modeling

the uncertainty in maximum pit depth since such distributions are based on the

assumption of independent statistical events. The empirical observations suggest that

extreme pit depths appear to be representable by a normal distribution. This provides a

basis for a review of probability theory to be used for dealing with systems of highly
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dependent events. Significantly lower probabilities of occurrence of extreme depth pits

are predicted while it is applied to the probabilistic modeling of the maximum pit depths .

Melcher (2005) proposed that the deepest pits are drawn from a different population

being the result of super-stable pitting. The probability distribution for all pit depths is bi­

model and that for the deeper pit is approximately normally distributed . There is likely to

be a high degree of dependence between the depths of external pits is based on the use of

experiments of near uniform but homogeneous material properties and similar

environmental conditions. The actual degree of correlation between external pit depths

and its variability with separation distance between pits has not been addressed

specifically. On the basis of near-uniform but essentially homogeneous material

properties and similar environmental conditions, a high degree of dependence is expected

between the deepest depths that occur on a corroding metal surface. Series system

probability theory shows that the probability distribution for all pits is approximately

normal for deeper pits. A similar result was found from the consideration of the

uncertainty associated with estimating the theoretical upper pit depth cut-off value in the

application of the generalized extreme value theory. The implication for practical analysis

of pitting data is that if the external pitting is highly correlated, there is no need to

consider individual coupons but only a sufficiently large area so as to capture the deepest

pits with a high degree of confidence. In this approach, the probability estimates that have

much less uncertainty than those estimated by conventional approaches (i.e., Gumbel

Extreme Values). These propositions are based on the assumption that the extreme pits

are formed through super-stable pitting, the external pits are likely to be those that initiate
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immediately on the metal being exposed and then continue to grow in a stable pitting

mode without entering a meta-stable state.

The asset integrity management is the management of assets such that availability is

maximized at optimum cost without compromising the safety to environment and

legislative standards . This is achieved when the risk of failure endangering the safety of

personnel, environment and asset value are as low as reasonably practicable .

One of the primary life-limiting threats is the internal corrosion and therefore the

effective corrosion management is vital. The two approaches for corrosion management:

probabilistic, and the traditional, deterministic approach have been compared in Lawson

(2005). The probabilistic approach to the assessment of pipeline corrosion risks dealt

with many of the uncertainties that are common in the corrosion data. Rather than

considering each input parameters as an average value, this approach considered the

inputs as a series of probability density functions, the collective use during the

assessment of risks yields a risk profile that is quantified on the basis of uncertain data.

The variability in pipeline failure probability with time has been predicted using both the

FORM and Monte Carlo simulation and it was observed that the failure probability

increases over the time periods considered, consistent with an increased level of damage

with time. This approach differs from the traditional deterministic assessment in that the

output yields a curve that shows how the risk of failure increases with time. The asset

operator simply chooses the level of risk that is acceptable and then devises a strategy to

deal with those risks.
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The probabilistic methods reduces the weakness in the deterministic method concerning

the assumptions made with regard to the input variables , but it doesn't remove the

possibility that important parameters are omitted , or perhaps even misjudged , Lawson

(2005). The probabilistic methods are computationally intensive, time consuming and can

be very complex in many cases . The inherent strength of probabilistic method is

compromised in two areas . The first one is the data available to support the calculation of

risks and the calculation method itself. Second one is the choice of target level of risk.

A probabilistic analysis framework capable of evaluating the condition of a corroding

pipeline and the evolution of its probability of failure with time has been outlined in

Hallen et a\., (2003). The uncertainties associated with the inspection tool, corrosion

growth rate, pipeline geometry , material strength and operating pressure were modeled.

The results of these evaluations were compared with target reliability levels derived by

risk analysis in order to formulate optimal re-inspection intervals, corrosion growth rate

control measures, re-rating strategies and repair/replacement actions over the targeted

pipeline service life. The proposed methodology (Hallen et a\., 2003) ensures the current

and future safe operation of the pipeline based on minimizing the cost of repair while

maintaining at least the minimum safety goals projected for the pipeline . The probability

of failure has been determined for the entire pipeline , ranked by segment between joints

or for a given characteristic length . Then, it is compared with target probabilities which

are established either from historic failure rates or from risk criteria. This comparison

allows the operator to formulate cost effective strategies for future safe operation.

63



Corrosion is the most prevalent time dependent safety threat to a pipeline and continues

to be the most important cause of failure for the oil and gas pipeline (Hallen et aI., 2003).

Significant effort has been made in order to assess the condition of corroding pipelines

using data obtained from high resolution magnetic flux leakage or ultrasonic technology

based in-line inspection tools. The reliability assessment framework used in the paper can

identify the relevant failure modes and establish the corresponding limit states . Two limit

states were established as immediate integrity concerns: (i) burst or rupture state and, (ii)

leak state. Burst threaten the pipeline integrity when the operating pressure (Pop) exceeds

predicted burst pressure ( l't,lIrsl) and leak threatens the pipeline integrity when a metal loss

(d) exceeds a given percentage of the pipeline wall thickness. Once the PDF's of P"P'

l't,1Irs1 and d are established through uncertainty analysis, the probability of failure

associated with each corrosion defect can be calculated for these two limit states.

A study on the probabilistic methodology for the estimation of the remaining life of

pressurized pipelines containing active corrosion defects has been presented in Caleyo et

aI., (2002). The First Order Second Moment (FOSM) method, the Monte Carlo

integration techniques and the first order Tyler series expansion of the limit state function

are used in order to estimate the probability of failure associated with each corrosion

defect over time . The uncertainty of the statistical variables on which the limit state

function depends is modeled using the normal and lognormal distributions and the

sensitivity of pipeline reliability to these variables has evaluated. The extended

probabilistic analysis framework has been applied to a sample operating pipeline which is

inspected using a high resolution magnetic flux leakage inspection tool. The failure
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probability model considered to define the limit state function lead to similar failure

probabilities for short pipeline service periods. The expected numbers of repair actions

predicted by the probabilistic and deterministic methodologies are similar if the

normalization factor PF,'"esh is used to define the global safety factor, for the pipeline

failure probability is assumed to be unity. PF,'"e'h is a key parameter in planning

inspections and maintenance strategies and can be estimated from the global safety factor

for pipeline as established by the regulating safety codes. The FOSM and Monte Carlo

integration reliability algorithms produce similar results when the LSF can be linearized

and the load and resistance variables have normal probability distributions. If the

probabilistic distribution of a load or resistance parameter is not experimentally available,

then sensitivity of pipeline reliability to this variable is the key to assume its distribution

type. The probabilistic analysis of a pipeline must be carried out separately for deep and

shallow defects in pipelines containing a large number of corroded sections to ensure a

correct repair strategy for short and long term exposure periods (Caleyo et al., 2002).

Wang et al., (2003) published an estimation of corrosion rates of structural members in

oil tankers using a probabilistic model and a corrosion wastage database. The corrosion

rates could be described by Weibull distribution; the mean, standard deviation and

maximum values of the corrosion rates for the structural members are obtained based on

the entire population of the database. The salient observations made are: corrosion rates

scatter in wide ranges, the maximum corrosion rate is much higher than average and the

average corrosion rates do not seem to depend on the usage space on ship. The predicted

corrosion rates presented may be generalized to the tanker fleets in the world and can be
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used as a reference when planning maintenance and inspection for a group of ships. The

analysis is based on a corrosion wastage database that contains over 110 000 thickness

measurements. Upon comparisons of the estimated corrosion rates with TSCF (Tanker

Structure Co-operative Forum) estimations, the estimated mean corrosion rates has been

found generally higher than or close to the high end of the TSCF ranges. The estimated

corrosion rate can be used for establishing corrosion allowances for structural designs,

planning for inspections and scheduling for maintenance optimization .

The risk of failure for a tank vessel type during its serviceable life is associated with

structure 's strength , corrosion and cracking defects, Anghel and Lazar (2005). The

simulation techniques of the performance function and a well known reliability method

(FORM) have been used in the analysis. The professional analysis package, crystal ball

has been used for the former and a developed procedure built on the principle of FORM

implemented in MATLAB has been used for the latter to perform the simulations . The

corrosion decay model is based on experimental values from the published failure

models. The uncertainty and variability of the variables and parameters on which the

model depends are evaluated by sensitivity analysis .

A large number of technological structures like, pressure vessels are deteriorating by

corrosion, with time, due to process exposure. As a result, the carrying capacity

diminishes with time and hence, the level of risk of these structures increases. Using a

corrosion decay model, based on experimental data and a probabilistic assessment , it is

possible, more realistic to decide when the structure becomes unsafe or the level of risk
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becomes too high. The sampling and probabilistic algorithms for calculating the risk of

failure, for corrosion deteriorating pressure vessel at any time during the service life has

been discussed . The study has offered a greater reliability in life prediction. The

excessive safety margin in design and more cumbersome experimental and analytical

approach has thus reduced. The active corrosion defects are major conditions for the risks

of failure or the reduction in safety. This type of study is necessary for integrity engineers

to work out the optimal safety decisions, inspection and maintenance schedules.

A critical evaluation of empirical and mechanistically based modeling of pit propagation

kinetics has been found in Turnbull (1993). The extreme value statistics applied to

materials exposed for varying periods of time provide a more effective method of

prediction of maximum pit depth at a given time. The statistical characterization of

pitting corrosion, for probabilistic modeling of maximum pit depth has been reported in

Melchers (2005); Scarf and Laycock (1996) , and Laycock et al., (1990) .

2.4.2 Probabilistic Crack Models

The earlier works reported in Skjong (1985); Madsen et al., (1987) ; Fujita et aI., (1989) ,

and Moan et al., (2000) attempted to model the fatigue cracks in structures. The fatigue

modeling was further extended to other structures, Soares and Garbatov (1996); Paik et

a\., (2001), Lotsberg et a\., (1999, 2000), and Goyet et a\., (2002, 2004) . Recently ,

generic and simplified approaches for the risk based inspection planning have been

formulated by Straub and Faber (2005 a, b) and, comprehensive documentation of the

approach has seen in Straub (2004), considering the fatigue crack degradation
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mechanism. The modeling of crack mechanisms and acceptance criteria for RBI has been

found in Faber et aI., (2005).

A unified approach to the risk based inspection planning of offshore facilities comprising

of both structural and process systems has been published in Faber et aI., (2003) based on

a generic modeling of risk based inspection planning for components subjected to fatigue

degradation . A simplified and practically applicable approach for risk based inspection

planning of fatigue sensitive structural details is presented in Bloch et aI., (2000). A

combination of proactive, reactive and interactive approaches for RBI has been proposed

by Bea (200 I). The generic approach developed for fatigue crack growth renders a

potential to risk based inspection planning of systems, Straub and Faber (2005a,b), and

the method has been applied by industries as reported in Faber et aI., (2005); Chakrabarti

et aI., (2005), and Goyet et aI., (2002 and 2004). A unified approach to the risk based

inspection planning of an offshore production facility has been reported in Faber et aI.,

(2003). Generic inspections plans has established in Sorensen and Faber (2002) for

representative fatigue sensitive detail in terms of fatigue design factor and reserve

strength ratio. It has shown how the generic inspection can be used for codification

purpose in connection with the inspection planning of steel structures. The computational

aspects of risk based inspection, based on Gamma process and Bayesian updating

through a generic fatigue approach has been reported in Straub and Faber (2006).

The development of a reliability-based management of inspection, monitoring,

maintenance and repair has been reported by Moan (2005), for various types of offshore
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structure, with focus on management of hull damage due to crack growth. A risk based

methodology for the integrity and inspection modeling of a process facility, with respect

to stress corrosion cracking has been presented by Khan et aI., (2006) based on Kallen

(2002). The combined deterioration and decision model has been illustrated by using

actual plant inspection data for pressurized vessel in Kallen and van Noortwijk (2005) ,

for a pressurized steel pipeline elbow in Kallen and van Noortwijk (2004); and a

hydrogen dryer in Kallen and van Noortwijk (2003) . There is a little information on

modeling sse, but little information on hydrogen induced cracking or combined

corrosion- fatigue cracking.

An approach to the estimation of variability cased by the material microstructural

inhomogeneities has been presented by Shen et aI., (2001). The approach was based on

the results of a combined experimental and analytical study of the probabilistic nature of

fatigue crack growth in Ti-6AI-4V. A simplified experimental fracture mechanics

framework has been used for the determination of statistical fatigue crack growth

parameters from fatigue tests . The experimental study showed that the variabilities in

fatigue crack growth data and the Paris coefficient are well described by the lognormal

distributions. The variabilities in the Paris exponent are also known to be well

characterized by a normal distribution . These statistical distributions are incorporated into

a probabilistic fracture mechanics framework for the estimation of material reliability.

2.5 ECONOMIC CONSEQUENCE ANALYSIS

When a failure occurs there is an instantaneous loss of profits and combination costs. In
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addition to the lost profit, the fixed and variable costs during the time of repair are paid

by the business, yet they have been wasted without production. This cost of shutdown can

be really high in offshore process facilities . This could be modeled using the unit cost of

product and the total quantity of affected production with maintenance delay time.

Knowing the total cost of failure is only useful if the failure can be prevented . The best

protection against failure is prevention . Once the asset ages, the economic consequences

of failure are to be assessed. Then the management can take informed decisions on

maintenance to prevent them failing . The failure costing will show that vast amount of

money and resources are wasted throughout a company whenever failure happens. The

bigger the failure, the more resources and money are lost. The cost of process component

failure due to degradation encumbers billions of dollars in offshore industry. It is not only

financially damaging the economies , but also wasting the limited natural resources ,

damaging environment and causing a great deal of human suffering (Jackson , 2003) . The

understanding of degradation with correct engineering application could greatly reduce

the damaging effects and cost of degradation, such as corrosion and cracking.

A guideline for the life cycle costing of corrosion in the oil and gas industry is presented

in Jackson (2003). It provides structured guidance on establishing a system for gathering

cost of corrosion data during the life of a facility . It is useful for analysts in the life cycle

costing studies for new facilities which are similar. This study indicates that the cost of

corrosion can be estimated in terms of dollar with respect to: capital costs , operating

costs, cost of lost production caused by equipment failure and the material residual value

(Jackson (2003). The capital cost includes the costs for hydrocarbon systems, utility
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systems and structures and covers the design and construction phases . In the operational

phase, the cost to recover from a failure may also be included in the capital cost. The

operating cost includes the preventive and corrective maintenance , energy consumption

and routine operating services . The preventive maintenance costs include one or any

combination of the following: personnel costs to maintain and inspect the systems and

equipments, such as cost of extra materials for corrosion allowance together with the

extra cost of transport, storage and fabrication, cost of corrosion inhibitors for mitigating

the fluids corrosivity, cost of painting and coating restoration including the cost of cost of

personnel, products, surface preparation , inspection and scaffolding, the cost of

purchasing , installing and commissioning corrosion monitoring systems, including data

storage, processing and analysis equipment , including planned shutdowns (Jackson

(2003). The costs of replacement parts and materials associated with a degraded item,

where component failures have critical effects are to be accounted.

Consideration may be given to predictive maintenance . This could be based on previous

experience and an assessment of the risk of defects and failures caused by degradation . It

includes: the cost of failure analysis and studies to solve degradation problems in the

operating phase, the personnel costs required to rectify degradation related defects and

failures within the facility, including the cost of unplanned shutdown, the cost of spare

parts and materials associated with repair and replacement , the consequential costs

associated with a failure due to corrosion and cracking, including injury to personnel and

equipment , damage to the environment and necessary clean-up operations and other

safety issues, the energy consumption costs should include those costs for systems and
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equipments. The lost productions costs are financial losses or penalty charges which are

associated with loosing production because of degradation related failures and include the

cost associated with lost revenue. The method of calculating the cost of lost production

needs to be defined as it may vary for each operating company.

At the end of the facility 's life, it may be possible to recover some or part of the value of

material used, known as the residual value. This is valuable when the degradation

resistant materials are used. Benefits derived from this recovery may be used to offset the

initial costs. The life cycle cost (LCC) calculation method given in Jackson (2003) is

used in this thesis. The aim of LCC analysis is to maximize the profit from the operation

of facility by minimizing or eliminating the costs associated with degradations, The LCC

analysis will only be good as the data and experience used for the analysis . By operating

a system of life-time data accumulation, the degree of accuracy should be increased with

time and experience. This is true especially in the case of ageing offshore assets .

A case study of the cost of corrosion in fertilizer industry is presented in Bhaskaran et at.

(2004). A cost of corrosion survey has been undertaken using the net present value

method to estimate the direct annual cost due to corrosion. The risk factor is an important

consideration in the evaluation of a maintenance strategy under uncertain degradation

processes. Unfortunately, the present procedures for considering risk have not been

entirely satisfactory as they overlook at the failure consequences. This assumption has

high impact when the event probability is less, however the consequences are severe.
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Certain explicit formulas for both the expected value and variance of discounted life­

cycle costs over an unbounded horizon are presented by van Noortwijk (2003). In life

cycle costing analysis, the optimal design is achieved by minimizing the expected value

of the discounted costs. The variance of the discounted cost is useful to determine

uncertainty bounds. Uncertainty in the cost estimated has to be accurately modeled.

The cost of failure estimation should take the following factors into account: the cost of

lost commodity, shutdown, spill cleanup, nature damage and liability.

2.5.1 Factors Influencing the Spill Cleanup and Nature Damage

It is important to estimate the cost consequences of an oil spill in offshore, as it is

necessary for insurance company, corporate administration to allocate recovery measures.

The cost associated with failure includes economic losses, environmental damages and

mitigation expenses (White and Molloy, 2003; Etkin, 2000; Purnell, 1999). The expenses

related to the cost of spill are divided into direct cost and indirect costs . The direct

expenses include: cost of personnel and their expenses during cleanup, cost of contractors

and other direct cleanup, fees and fines from state agencies, cost of litigation and

litigation defense. Indirect costs includes: the increased attention by regulators, permit for

new activities cost more, more drills and training, increased cost of new equipment and

other preparation cost, new local, state and federal laws and taxes, business cost by

diverting key personnel to spill control, stock price and stockholder pressure, higher

insurance costs, loss of sale of products. The best way to estimate the cost of spill cleanup

is considering per unit cost and the duration and rate of spillage. Obtaining the cost data

for spill is difficult as many aspects of cleanup operations and damage claims are
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confidential business agreements between claimants and the operators. However, the

published data in literature may provide some guidelines (Etkin, 2000; White, 2000).

One of the most important factors is the type of oil, coupled with the physical, biological

and economic characteristics of the spill location (White and Molloy, 2003). The other

factors such as the amount spilled and the rate of spillage, weather and sea conditions,

time of the year and the effectiveness of cleanup can also be crucial in determining the

overall cost of an incident. Each spill involves a unique set of circumstances that

determines the clean up cost (Etkin, 1999). Estimating a per-unit cleanup cost is

meaningless without taking into consideration factors such as location and type of oil,

which can be profoundly influence the cost. An understanding of the relative importance

of these various factors can help focus the spill prevention programs, the development of

realistic spill contingency plans and the delivery of cost-effective response. Trend in

costs associated with various low technology shoreline clean-up methods by drawing on

information gathered during the response and subsequent claims for compensation from

the local government councils is presented in Purnell (1999). It should be recognized that

complete removal of every trace of oil is neither achievable in practice nor technically

reasonable. Etkin (2000) reported the marine oil spill cleanup costs on the basis of

country, proximity to shoreline, spill size, oil type, degree of shoreline oiling, and

cleanup methodology to determine how each of this factors impacts per unit cleanup

costs. It is reported that the oil spill response in different countries and regions of the

world vary considerably in their costs most likely due to the differences in cultural

values, socio-economic factors , and labor costs. A model has been developed from cost
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data collected from case studies of over 300 spills in 40 nations. It has taken into account

the oil type, location , spill size, cleanup methodology and shoreline oiling to deduce a

per-unit cleanup cost value.

2.5.2 Liability Consequences

Accident costs are used in economic analysis for choosing among alternate improvements

to the existing systems . Estimates of costs that results from an offshore accident are not

available in open literature. However, the estimates of costs that results from motor

vehicle accidents are routinely published by several public and private organizations.

They are often derived from different bases, which often results in significantly different

estimates. Comprehensive cost is a measurement of motor vehicle accident cost that

includes effects of injury on people's lives. The injuries and deaths caused by a system

failure have the most severe implications possible . The loss of life or pain of an injury is

impossible to quantify, however, the cost implied due to worker's compensation and

corporate liabilities shall be taken into account (Jones, 1995). Apart from that, safety

related system failures have other immediate implications , such as legal fines and

penalties of professional negligence. The US department of transportation published a

technical note (Judycki, 1994) on comprehensive motor vehicle accident costs. The

components of the comprehensive costs includes medical costs, emergency services,

vocational rehabilitation, lost earnings, administrative costs, legal consulting fees, pain

and lost quality of life. The seven categories of liability costs and their descriptions are

presented in Chapter VII.
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2.6 CRITICAL REVIEW OF LITERATURE

Most of the modeling approaches dealt with the structural reliability methods , whereas

the others are concerned with the physical condition of the asset. No single approach has

yet proven to be generally applicable and each model has its own advantages and

disadvantages. It is found that further work is necessary to collect the relevant data,

improve the modeling capability and formulate the probabilistic decision problems

applicable to industry standards. A critical review ofliterature has been given below .

2.6.1 Maintenance Optimization Models

• There are a few problems in applying quantitative optimization models , such as

decision support system s are needed for maintenance optimization, scarce data,

gap between theory and practice. Thus, the applications are limited in industry .

• The models are published as mathematical discipline with operational research,

the applications are very limited , and no convincing case studies are reported .

• Engineers need to learn economics of maintenance, statistical data analysis and

principles of optimization. That is, a multi-disciplinary risk analysis is needed .

• The existing models may be useful to maintenance engineers if they are capable

of incorporating risk information about the repair and replacement strategy , the

methods of failure detection, accurate failure mechanism and consequences that

can give greater confidence in estimates based on small number of NOT data.

• Maintenance is increasingly viewed as a multi disciplinary activity and is evident

from the emergence of new approaches, like RBM. However , No convincing risk

based models for maintenance and replacement optimization is available .
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2.6.2 Risk Based Inspection and Maintenance Planning Models

• Preventive and condition based maintenance continue to be the areas where most

of the research has been focused . Various simulation tools and mathematical

models are attempted in recent years to reduce the cost. Risk based inspection,

maintenance and replacement models with adequate confidence are limited.

• Most of the models described in literature were unable to predict the impact of

recommended maintenance strategy and Bayesian updating using latest NOT data.

• Some literature attempted to model the deterioration with Gamma process that

restricts the use of priors and need not reflect the true degradation process based

on subjective knowledge, experimental judgment and generic database .

• It is observed that, developments are stiII needed in enhancing the use of risk

based inspection and maintenance planning into practice. A pre-requisite for the

practical implementation of risk based inspection and maintenance planning is

that numerical operations are simplified and automated and adapted specifically to

the special requirements of the different industry 's acceptable risk levels.

• The inherent strength of existing risk based models is compromised in three areas

which limit its application, needs to be explored further. The first one is the data

available to support the model ; the second one is the calculation method of risk

itself, and the third one is the choice of acceptable level of risk.

• Since the quantitative models available are computationally intensive , only skiIIed

engineers can use them in industrial applications. A generally acceptable, efficient

and easy to apply tool has not yet been reported in open literature.
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2.6.3 Stochastic Degradation Models for Corrosion and Cracking

• The outputs from the deterministic assessment are highly uncertain and variable.

Thus, they fail to capture the true risk to life of components.

• The inaccuracies and the inabilities to deal with uncertainties in the input data

would lead to an underestimation/overestimation of the likelihood or consequence

of failure and hence the true risk associated with component operations.

• It is observed that the major types of corrosion and cracks are not a linear function

of time and the variability in the data is very large and it increases with time.

Therefore, probabilistic assessments are necessary to model it accurately .

• It is argued by many researchers that there is an urgent need for better quality

models to adequately represent the uncertainty and variability in structural

degradation processes and to make use of it to predict the future degradation.

• In regard to probabilistic modeling of various relevant corrosion and cracking

phenomena much work is still required . The calibration of the existing model was

done with limited data; detailed case study using field data needs to be done to

validate the model for different corrosion and crack phenomena.

• There are a little information reported on the probabilistic modeling of uniform

corrosion and localized pitting, but little information is reported on the modeling

of erosion corrosion. Similarly, the fatigue cracks are modeled in isolated cases,

but little information has been observed on the modeling hydrogen induced

cracking and corrosion fatigue cracking degradations.
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2.6.4 Economic Conseq uence Ana lysis

• The direct economic consequences of failure, inspection and maintenance of

offshore process components are not estimated and published in literature.

• The economic consequences of failure are not well understood and integrated in

the risk based decision making on maintenance and replacement of component s.

• In the available risk based models , due consideration has not been given to the

low probability-high consequence models, which needs to be explored further.

• An easy to use tool for engineering management to make informed decision,

based on the operating and maintenance budget in dollar, which can estimate the

operational life risk from ageing components, is not available in literature .
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CHAPTER III

OVERVIEW OF RISK BASED INTEGRITY MODELING (RBIM)

3.11NTRODUCTION

This chapter outlines the framework for the development of a methodology for risk based

integrity modeling of process components. The framework outlines the use of Bayes

theorem to obtain stochastic degradation models for the various degradation processes

which affect process component. An outline of the consequence analysis is also given .

The consequence analysis consists of modeling the consequences of failure, inspection

and maintenance. Finally, the optimization of the inspection and maintenance, and

replacement intervals are carried out using the operational risk analysis. This chapter

provides an integration and overview of the entire thesis.

3.2 OBJECTIVES

The main objective of this research is to develop a risk based methodology which can be

used to design optimal maintenance strategies. This objective will be achieved by

completing the following steps :

Identify the potential degradation processes in offshore process components .

Develop stochastic degradation models , for the degradation processes which affect

process components, using a Bayesian analysis .

Determine failure consequences using an economic consequence analysis.

Combine the probability offailure and the consequence to develop an RBIM

methodology.



Optimize inspection, maintenance, and replacement strategies.

Demonstrate the application of developed methodology and models for the integrity

assessment of an aging facility operating in the North Sea.

3.3 SCOPE

A risk based integrity modeling methodology is based on a stochastic modeling of

structural degradation processes to estimate the probability of failure and the engineering

economic analysis to estimate the consequences of failure . An optimum inspection and

maintenance strategy will be developed as a tradeoff between risk and benefits . The

structural degradation processes, such as corrosion : uniform corrosion (UC), pitting

corrosion (PC) and erosion corrosion (EC); and cracking: stress corrosion cracking

(SCC), corrosion fatigue cracking (CFC) and hydrogen induced cracking (HIC) are

modeled using the stochastic Bayesian models .

The study of physical degradation processes , such as abrasion or cavitations, and process

degradations, such as leak, rupture or contamination will not be considered in this study .

The modeling of minor laps, hook cracks and girth weld cracks are also excluded.

Similarly , the other non-age dependent causes of component failures, such as third party

damage , natural disasters, seismic vibrations, and human errors are also beyond the scope

of this study . Mathematical modeling of failure consequences using fault tree/event tree

analysis are not included , but rather failure consequences are estimated using the

economic analysis . This study is conducted at component level and not the system level.
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3.4 ASSUMPTIONS

The study is based on the following assumptions:

Structural degradation processes are statistically independent.

Failure consequences are isolated and independent.

Components have crossed the early stages of degradation or infant mortality.

Failure rate of components is increasing, i.e., components are in wear-out region.

After each minor repair, the components return to a state just before failure.

After each replacement , the components behave as good as new condition .

Components' failure will cause the system failure, but will not result in a chain

reaction, which may lead to the loss of entire facility.

Risk acceptance criteria depend on the maintenance budget, the individual , societal

and environmental safety expectations are included in the maintenance budget.

The cost of maintenance is very high after failure than before.

3.5 ASSET INTEGRITY THREATS IN PROCESS COMPONENTS

Asset integrity is defined as the ability of an asset to perform its required function

effectively and efficiently whilst protecting health, safety and environment (HSE UK,

2009). Failure of the management of offshore facilities to adequately monitor the asset

integrity often leads to poor decision making. Past studies indicate that the major asset

integrity threats in process components are (Stephens et aI., 1995): third party damage,

environmentally induced defects, material and fabrication defects, and operational errors.

Integrity threats may be functions of the age of component or it may be independent of

the age. The non-age dependent failure processes may be reduced through establishing
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adequate design procedures , effective quality assurance and quality control programs,

training personnel and imposing stringent policies and regulations , and hence are not

considered in this study. Moreover, the review of published literature (Khan et aI., 2006;

Straub, 2004; KalIen and Noortwijk, 2002; Stephens, et aI., 1995) indicates that the most

critical asset integrity threats in offshore process components are age-dependent and

environmentalIy-induced defects. The potential environmentally -induced degradation

processes threatening the integrity of assets are various types of corrosion and cracking .

The typical age-dependent asset integrity threats in process components are ilIustrated in

Figure 3.1. Also, the literature data indicates that several corrosion and cracking

processes are stochastic in nature. Therefore, their accurate modeling with predictive

capability is a chalIenging task for engineers , which is addressed in this thesis.

Cr evice
Corro sion

Fig. 3.1. Process Component Integrity Threats
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3.5.1 Corr osion Degradation Processes

Corrosion is the loss of material as a destructive result of chemical reaction between a

metal or alloy and its environment (Jones, 1996). Corrosion has been viewed from three

perspectives as electrochemical reaction , penetration theory and breakdown theory.

Most corrosion processes are of electrochemical in nature. The corrosion rate depends on

the surface structure of the substrate , i. e., the density of steps and kinks on the surface.

The surface structure is determined by the orientation of crystal faces exposed to the

electrolyte, by dislocations and grain boundaries in the metal, and by segregation of

impurities from the metal by chemical absorptions of various substances from electrolyte

(Mansfield , 1987). The absorbed substances from the electrolyte change the structure of

the interphase metal/electrolyte, catalyze of inhibit metal dissolution and may change the

reaction path. The change s of interphase may also arise by the formation of uniform or

non uniform or porous or non porous 20 or 30 films of intermediates and reaction

products on the surface. For example , under galvanic conditions , it has been observed

that the iron electrode is subjects to polarization in one step influenced by crystalli zation

phenomena: Fe <=> r-: : + 2e -

With increasing pH, the consecutive mechanism of iron dissolution with hydroxyl ion

participating in the formation of intermediates and products , such as;

Fe +OH - <=> Fe(OH) ads +e - and, Fe(OH )ads + OH - <=> FeOads + H 20+e­

Fe0ads + OH - <=> HFe02- and, HFe02- + H 20 <=> Fe(OH) 2 + OH -

The kinetics of iron disso lution orders a catalytic mechanism involving the transfer of Fe

(11) leading to the loss of metal, called corrosion. The corrosion may be either ,

atmospheric corros ion (uniform corrosion) or localized corrosion (pitting and erosion).
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According to the penetration theory, the aggressive anions adsorbed on the oxide film

enter and penetrate the film when the electrostatic field across the film or solution

interface reaches a critical value corresponding to the critical breakdown potential. Thus,

a contaminated oxide film is produced, which is much better ion conductor than the

original passive layer. Rapid cation egress occurs and corrosion can proceed.

Mechanical breakdown of the passive films is a principal step in pit initiation, giving

direct access of the electrolyte to reach the base metal within the crack. The thin films

always contain a significant film pressure mainly due to electrostriction . When this

pressure exceeds the critical compressive strength of the oxides or hydroxides, the film

could easily deform or break, leading to loss of material. Three types of critical corrosion

mechanisms are studied and modeled in this thesis : the uniform or general corrosion, the

localized or pitting corrosion, and the erosion corrosion.

Uniform Corrosion

Uniform corrosion is defined as the uniform or regular removal of metals from the

surface (Jones, 1996). For uniform corrosion, the corrosive environment must have the

same access to all parts of the metal surface, and the metal itself must be uniform in terms

of metallurgy and composition. Uniform corrosion results in the thinning of wall

thickness of components until the wall is penetrated leading to leaks or rupture. The

extent of deterioration per unit time is expressed in terms of corrosion rate. The

breakdown of passive oxide layer is the main cause of uniform corrosion. Usually, its rate

is very slow in process components and may be measured using ultrasonic testing . Being

slow and uniform, it can be predicted in most cases and necessary measures shall be
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taken in the design stage itself, in terms of corrosion allowances. However, in the

operational life, the rate of corrosion may be random due to environmental exposure . The

most critical corrosive environment is the presence of H2S, CO2, cr and H20.

Pitting Corrosion

The localized attack of corrosive environment on an otherwise resistant surface produces

pitting corrosion (Jones, 1996). It is confined to a point or small surface area that takes

the form of cavities. Pitting is the localized form of attack that results in relatively rapid

penetration at small discrete areas. Pits are quite small at the surface and may easily be

hidden by inoffensive corrosion products and process streams . Pitting often remains

undetected until leaks results from penetration of the wall thickness. Pitting of stainless

steel alloys containing various proportions of iron, chromium, nickel and sometimes

molybdenum are common. The iron and aluminum pit in the alkaline chloride solution by

similar mechanism in less aggressive condition prevails in offshore process components .

Pitting corrosion results from the failure of passive film, by the adsorption of aggressive

anions at energetically preferred places. Susceptibility increases with chloride solutions

in high temperatures. Pitting is unpredictable , especially in conditions forming deep pits.

The rate is variable, depending on uncertain migration of corrodents into and out of the

pits. Pits may be initiated by a number of surface discontinuities, including sulphide

inclusions, insufficient inhibitor coverage, scratches in coatings, and deposits of slag,

scale, dust, mud or sand. Depending on the metallurgy of the alloy and chemistry of

environment, pits may be shallow, elliptical, deep, undercut or subsurface . Pit initiates at

the critical pitting potential, with the presence of chlorides in an acid solution. Once it is

initiated, it propagates in the direction ofleast resistance .
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Erosion Corrosion

The combination of the corrosive fluid and high flow velocity results in erosion

corrosion . The same stagnant or slow flowing fluid will cause a low or modest corrosion

rate, but the rapid movement of the corrosive fluid physically erodes or abrades and

removes the protective corrosion product film, exposes the reactive alloy beneath, thus

accelerates corrosion (Jones, 1996). The corrosivity of the flowing corrodent has a

significant effect. Sand or suspended slurries enhance erosion and accelerate erosion

corrosion attack on metal or alloy. The attack generally follows the directions of localized

flow and turbulence around surface irregularities. Removal of protective surface film by

erosion due to flowing stream results in accelerated corrosion. The attack is accelerated at

elbows, turbines, pumps, tees, reducers and other structural features that alter flow

direction or speed and increase turbulence. Erosion corrosion often occurs when the

corrodent is in the liquid phase. Suspended solids further aggravate the erosion of surface

films and increase erosion corrosion. The lower strength, less corrosion resistance alloys,

such as carbon steel, copper and aluminum are highly susceptible to erosion corrosion.

Erosion corrosion takes the form of grooves, waves, gullies, tear-drop shaped pits and

horse-shoe shaped depressions in the component surface. The turbulent eddies facilitates

to thin the protective film locally to account for downstream undercutting.

3.5.2 Cracking Degradation Processes

The brittle fracture of a normally ductile alloy in the presence of an environment or

loading is known as environmentally-induced cracking (Jones, 1996). Three distinct types

of cracking are studied and modeled in this thesis: stress corrosion cracking, corrosion
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fatigue cracking and hydrogen induced cracking. The amount of cracking per unit time

either in length or depth is expressed in terms of cracking rate.

Stress Corrosion Cracking

The stress corrosion cracking occurs in metals or alloys with static tensile stress in the

presence of specific corrosive environmental condition (Jones, 1996). SCC is the brittle

failure at relatively low, constant tensile stress of an alloy exposed to a corrosive media.

Pure metals are relatively resistant to SCC. Three conditions must be present

simultaneously to produce SCC: a critical environment, a susceptible alloy, and a tensile

stress. Environmental conditions are specific to the alloys system and many not have an

effect on other alloys of different type. For e.g., the hot aqueous solutions readily crack

stainless steel, but do not have the same effect on carbon steel or aluminum . The required

tensile stresses may be in the form of directly applied stresses or residual stresses. Tensile

stresses even below yield are sufficient to cause SCC and that may result from bolting

and fastening parts that fit together imperfectly. Uneven thermal expansion and

contraction can also produce tensile stress after welding and other heat treatments. SCC

may be either transgranular or intergranular, but the cracks follows a general macroscopic

path and is always normal to the tensile component of stress. In transgranular failures, the

crack propagates across the grains usually in specific crystal planes. The intergranular

crack follows the grain boundaries in the intergranular mode. The cracking is primarily

by mechanical fracture, with a little electrochemical dissolution during fracture process.

The intergranular failure mode is due to inhomogenity at the grain boundaries. The

electrochemical potential has a critical effect in the SCC.
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Corrosion Fatigue Cracking

The process in which a metal fractures prematurely under conditions of simultaneous

corrosion and repeated cyclic loading at lower stress levels or fewer cycles is known as

corrosion fatigue cracking (Jones, 1996). Corrosion products typically present in cracks

grow slowly during service life. Fracture surfaces from CFC shows macroscopic bench

marks, where corrosion products accumulate at discontinuous crack advance fronts. On

the microscopic scale, stripy pattern are often evident, where each cycle produces a

discontinuous advance on the crack front. The cyclic stress is also important as low

frequency leads to greater crack propagation per cycle. Stress raisers such as notches or

surface roughness increase the susceptibility to CFC. Cracks are observed to initiate from

corrosion pits, which again serve as surface for stress concentration. The endurance limit

to cause fatigue failure is reduced in a corrosive environment. CFC cracks propagate

perpendicular to the principal tensile stress component of cyclic stress. CFC crack usually

form more slowly and corrosion products are likely to present in the crack. CFC is

confined to the crystallographic features of grains and do not follow grain boundaries .

Hydrogen Induced Cracking

Hydrogen induced cracking is caused by hydrogen diffusing into the alloy lattice when

the hydrogen evolution reaction produces atomic hydrogen at the surface (Jones, 1996).

HlC means the severe loss of ductility in material, leading to failure. Hydrogen

absorption may occur during electroplating , welding, pickling, cathodic protection or

other processes that favor the production of nascent hydrogen at the surface. Because of

its small size, atomic hydrogen can enter into the lattice to produce HlC. The necessary

atomic hydrogen can also be provided by dissociation of hydrogen gas on the surface
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during exposure to elevated temperature gases. HIC is prevalent in iron alloys because of

the restricted slip capabilities in the predominantly body centered cubic structure.

Cathodic polarization initiates or enhances the HIC. HIC cracks are brittles, fast growing

and unbranched . HIC cracks are more often transgranular.

3.6 BAYES' THEOREM

Degradation modeling is often viewed as an iterative process of integrating, accumulating

and interpreting information capturing the physics of failure process. The analysts can

assess the current state of knowledge regarding the degradation level, gather new

integrity data to infer the question of future degradation, and then update and refine the

current understanding to incorporate new data. Bayesian inference provides a logical and

quantitative framework for this. Bayesian approach to degradation modeling starts with

the formulation of a model that is expected to describe the degradation process. The prior

distributions of unknown parameters of the model may then be formulated, which is

meant to capture the beliefs about the degradation before actually seeing the data. After

observing data, the Bayes theorem may be applied to obtain the posterior distributions for

those unknowns, which takes account of both the prior and system data. From these

posterior distributions , predictive distributions for future observations may be computed.

Probability is a degree of belief, that is, how much one thinks that something is true based

on the evidence at hand. In the face of uncertainty in degradations, one can make the best

inference based on the inspection data and any prior knowledge that one might have,

reserving the right to revise the present knowledge if new information comes to light.

Bayes theorem allows this process of learning as more data becomes available. It states
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how to update the prior probability distribution, p(B) , with a likelihood function,

p(y I B) , mathematically, to obtain the posterior distribution as:

p(B I y ) p(B)p(y IB)

f p(B)p(y I B)dB
(3.1)

The posterior density p(B I y ) summarizes the total information, after viewing the data

and provides a basis for inference regarding the parameter, O. Denominator of(3.1), i.e.,

fp(B)p(y IB)dB is known as the normalizing factor. The application of the Bayesian

methods in risk analysis is limited due to the challenge of computing normalizing factor.

3.6.1 Conjugate Pair Distributions

The conjugate pairs are those distributions, whose posterior can be directly obtained from

the prior and likelihood parameters and hence no computations are needed. For example ,

the Gamma prior and likelihood provides a Gamma posterior with a combination of the

prior and likelihood parameters . The natural conjugate pairs for exponential families are

presented in Table 3. I. The use of conjugate pair makes it simple to carry out the process

of Bayesian updating. However, in some cases the concept of conjugate pairs does not

yield realistic posteriors. Some literature conveniently assumes there are conjugate pairs

for degradation process, for easy computation of posteriors, which is not the case in real

life. This introduces significant uncertainty in the analysis. Distributions like, Weibull,

lognormal, extreme value, do not lend themselves easily to the Bayesian updating.

Another alternative is the use of simulation methods to determine the posterior

distributions (Robert and Casella, 1999). In this study, simulation methods, such as

Metropolis-Hastings algorithm will be used for the posterior development. To compare
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the resu lts of simulation method s, analytical approximation, such as numeric al integration

technique or Laplace approximation method may also be used.

Table 3.1 Natural Conjugate Pairs for Exponential Family (Bedford and Cooke , 2001)

Prior Distribution Likelihood Posterior Distribution

7T(B) j(y / B) 7T(B /y)

Normal Normal N (p «(J" 2p + 1' 2y ),p(J"21'2)

N (p,1'2 ) N (B, (J"2 ) p - \ = (J"2 + 1'2

Gamma Poisson
G(a + y,j3+ 1)

G(a, j3) P(B)

Gamma Gamma
G(a + v,j3 + y )

G(a, j3) G(v ,B)

Beta Binomial
Be(a + y,j3 + n - y )

Be(a , j3) B(n, B)

Beta Negative Binomial
Be(a +m ,j3 + y )

Be(a,j3) Neg(m, B)

Dirichlet Multinomial
D( al +xb ..·,a k + xd

D( a\ ,...,a k ) Mk(Bb...ek )

Gamma Normal
G(a+ O.5,j3+ (p- y )2/ 2)

Ga(a ,j3 ) N(p,l / B)

3.7 DEVELOPMENT OF RBIM FRAMEWOR K

The risk based integrity modeli ng provides a framework to quantify the risks posed by

103



aging components, based on structural degradation processes. Risk is defined as a

combination of the probability of failure and its conseq uences. The integrity refers to the

soundness of the component to perform its desired functions. The major threats to asset

integrity in process components have been identified earlier. These are age-based

degradation processes, such as corrosion and cracking. Based on detailed literature

review , the critical structura l degradation processes threatening the integrity of proces s

compo nents are identified as UC, PC, EC, SCC, CFC and HIC. Thus, the essential steps

of the risk based integrity modeling are the estimat ion of probabi lity of these degradation

failures and consequences. The overa ll framewor k for the risk based integrity modeling

has been presented in Figure 3.2 . The probability of failure is estimated using Bayesian

modeling of potent ial degradation processes. The consequence analysis estima tes the

conseq uence of an undes irable event occurrence in terms of cost of failure , damage to

human life, and environment. The consequences of failure are expressed in terms of cost

(in dolla rs) associated with failure , inspection and maintenance.

The annual equiva lent cost (AEC) of failure consequence is combined with cumulati ve

density function (CDF) of failure probability to estimate the operational life risk profile

as give n below.

R(j) = F[p(B / y,J)]x AEC(j) (3.2)

where , R(j ) is the risk of failure due to a degradation (in do llar) in the j''' interva l,

F[p(B / y),J] is the CDF of posterior probabilit y of failure and AEC(j) is the annual

equiva lent cost, corresponding to the inspection and maintenance interval, J . The AEC

may be com puted from the equiva lent rate costs of failure, inspection and mainte nance.
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Data Collection

Fig.3.2 . Framework for Risk based Integrity Modeling
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Thus, finding the optimal inspection and maintenance interval reduces to finding a value

of maintenance interval that minimizes the operational risk. At the optimal risk point, the

risk wi11 be reduced to as low as reasonably practicable (ALARP) level and at the same

time the maintenance interval is maximized, thus avoiding unwanted maintenance, and its

associated costs. The risk in dollar is compared with the company 's operating budget (as

risk acceptance criteria) to make a decision on maintenance. The risk acceptance criteria

typically relate to the safety of personnel and risk to environment. They wi11 be reflected

in the corporate's annual operating and maintenance budgets. By plotting the operational

risk curve over maintenance intervals, the optimum interval may be obtained as the

period corresponding to the minimum risk.

An engineering replacement analysis is used to obtain an optimal replacement strategy.

The same formula as in equation (3.2), with j being the replacement interval may be

used. The annual equivalent cost (AEC) is computed as a summation of the annual

equivalent of failure recovery, inspection and maintenance cost. The annual equivalent of

failure recovery cost may be estimated using the annuity factor, indicating a series of

future payments towards the failure cost for a specified number of years. The expected

cost of inspection and maintenance involves periodic payments that increase by a

constant amount from period to period, as a function of the age of component. This

increasing trend may be modeled using arithmetic gradient (Park, 2007). Then, the AEC

is combined with CDF of posterior probability of failure to estimate the operational life

risk and economic service life of components . The optimum replacement interval will be

obtained from the economic service life analysis of components.
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The overall framework presented in Figure 3.2 consists of four parts; identification of

potential degradation mechanisms, stochastic degradation modeling for estimating the

likelihood of failure, economic consequence analysis for estimating the consequences of

failure, optimization of maintenance strategy and, testing and validation .

3.8 IDENTIFICATION OF DEGRADATION PROCESSES

To identify the potential degradation mechanisms, the functional details of the system ,

subsystem and component are analyzed by subject experts . The data to be analyzed

includes the material of component , the service (sweet or sour) , the product being used or

transported, and the environmental conditions , such as pressure, temperature and

humidity. Furthermore, the wall thickness data obtained using NOT is used to identify the

degradations . Analyzing the generic failure database and literature also helps to identify

degradation processes . If the degradation is a uniform loss of material over the entire

surface , the uniform corrosion is predominant. If it is localized attack in the form of pits

at key points, the localized pitting, and if the loss of wall material follows the flow

pattern of muddy fluid boundary layer, then the erosion corrosion may be dominant.

3.9 STOCHASTIC DEGRADATION MODELING

The stochastic degradation modeling has been carried out using the Bayesian analysis.

The Bayesian analysis consists of computation of the prior, likelihood and posterior

models for degradation processes; i. e., corrosion and cracking.

3.9.1 Prior Probability Modeling

The corrosion and cracking process are studied in detail and their mathematical modeling
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is attempted using probabilistic methods. The data extracte d from the literature,

pertaining to di fferent types of degradations, such as UC, PC and EC, and SCC , CFC and

HIC are consi dered in the probabi listic prior modeling. The data is tested with standard

probabi lity distributions to check for their suitability. A goodness of fit test is conducted

using the probabi lity plot and Anderson Darling (A- D) test. The method of least squares

and maximum likelihood estimate are used for the parameter estimation. At the end of

this study, best sui ted prior models for each degradation mec hanism are obtained.

Cha pte r III dea ls with the deve lopme nt of corrosion prior distrib utions in RBIM, which is

publishe d in the jo urna l of stochastic enviro nmenta l researc h and risk assessment.

The probabilistic modeli ng of degradation proce sses is esse ntia l to quantify the

uncertainty and variability in the data . In order to develop the most appropriate prior

distributions for degradations mode ling , the following procedure has been followed :

• A study of the properties of standard probability distributions, such as exponential,

normal, lognormal, Weibull , extreme value , Gamma and beta , which may be suitable

for modeling the degradation proces ses in process components, was conducted.

• Minitab and self-developed subroutines in Matlab were used for testing and to

assessing the goodness of fits using data obtained from the lite rature.

• Selec ted priors were va lidate d using the field NOT data from an age ing faci lity .

• The best suitable prior models were identified using good ness of fit tests and the

distributi on parameters are estimated.

3.9.2 Likelihood Probability Modeling

In Bayesian ana lysis, the likelihood refers to the evidence from field that is sup porting
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the prior information, If the likelihood is not supporting the prior, then the Bayesian

posterior diverges. In that case, the chosen prior may be incorrect. If evidence supports

the prior information , then the posterior obtained provides an accurate description of the

degradation process.

The non-destructive test (NOT) data obtained from an offshore production facility

operating in the North Sea has been used to model the likelihood probability of corrosion

degradations. The data includes the minimum and average wall thickness measurements

acquired during the period 1997 to 2003. The nominal diameters of its components varied

from 19.05 to 508 mm. In the absence of such field data for cracking, the data from

literature is used instead. From the piping system, the data obtained from the Gas

Condensate (GC) system is observed to follow a uniform wall loss. Also, it is observed

that the data obtained for the Gas Export (GE) system, in the above mentioned facility,

follows the localized pitting corrosion. The data associated with high pressure Drilling

Mud (OM) system has been observed to follow the erosion pattern. For precise estimation

of corrosion and cracking rates, inspection data has been divided into several groups,

namely, straight pipes and features. Features include bends, tees, reducers, flanges and

valves. Three major components, straight pipes, bends and tees are considered in the

analysis.

The statistical analysis has been divided into two groups , one is the precise estimation of

degradation rates and the second is testing of the degradation rates with standard

probability distributions. The method outlined in Khan and Howard (2007) and HSE UK
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(2002) has been used to compute the corrosion rates from the wall loss data. The

collected data is first analyzed to identify uniform or localized degradation . In the case of

uniform degradation , time dependent regression analysis and in the case of localized

degradation , an extreme value analysis has been carried out for estimating the rates of

degradation . Further, the estimated degradation rates are tested with probability

distributions and the best suitable likelihood models are concluded.

3.9.3 Posterior Probability Modeling

Prior probability models provide initial description of the degradation mechanism s. As

more inspection data become available from field, these prior probability models can be

revised to posterior probability models, which represent the current system and can be

used to predict future failures. Since the priors and likelihoods of degradation s may be of

non-conjugate pairs, closed form solution for posteriors may not be possible. Thus,

simulation methods or analytical approximation s are required to estimate the posteriors.

In this study, a rejection sampling based Metropolis-Hastings (M-H) algorithm is used to

develop posterior distributions. The M-H algorithm is a Markov chain Monte Carlo

algorithm used to generate a sequence of posterior samples without actually knowing the

normalizing constant. Ignoring the transient samples in the generated Markov chain, the

steady state samples are rejected or accepted based on an acceptance criterion. To

validate the estimated parameters of posterior models, analytical Laplace approximation

method is used to compute the integrals involved in the posterior function. Results of the

M-H algorithm and Laplace approximations are compared with conjugate pair

estimations of known prior and likelihood combination s, and thus, the best suitable
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method will be recommended. The conjugate-pairs, such as normal-normal, Gamma­

Gamma, Gamma-normal and Gamma-Poisson will be used to test and compare the

results. The revised posterior model is a system-learned model and hence can be used for

the accurate predictions of future probability of failure from degradations. This work is

presented in detail in Chapter VI, which is published in the journal of risk analysis .

3.10 ECONOMIC CONSEQUENCE ANALYSIS

The purpose of RBIM is to minimize the risk arising from degradation processes. By

operating a dynamic system of life-time data accumulation and processing, the accuracy

will be improved with time and experience. To provide a consistent measure of risk, all

consequence categories should be in the same units. Otherwise, the overall risk from

many contributing sources cannot be computed . A standard choice of unit to represent all

consequence categories is dollar, because risk can be interpreted as the expected loss due

to a certain event or group of events (Jones, 1995). Therefore , the failure consequences

are expressed in terms of dollar in this study. To minimize the likelihood of failure,

components need to be inspected and maintained at very small interval. However, if the

maintenance is performed too frequently, it will involve large costs and if it is performed

too rarely, it will result in failure followed by unplanned shutdown and costly corrective

maintenance . Sometimes, performing maintenance may not be an ideal choice from the

economic perspective, in such a case; the replacement strategy should be considered .

Replacement is a maintenance strategy that entails the replacement of component rather

than performing maintenance based on the economic service life. Therefore, the purpose

of this module is to develop a consequence analysis to find an optimal maintenance

strategy taking the component's operational risk into account.
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The failure consequences include the economic consequences of component failure,

inspection and maintenance . The consequences of failure include the loss of commodity

due to breakdown , loss due to shutdown, cost of spill cleanup, cost of nature damage and

liability. The inspection cost depends on the method of NDT inspection , type of

component , cost of gaining access, surface preparation and logistics costs. The

maintenance cost depends mainly on the type of repair, i.e., minimal repair or component

replacement, along with gaining access, surface preparation, gauging and coating

restoration costs. Further, the total cost, also known as AEC, of operating and

maintaining the component is computed . The AEC is a summation of the annual

equivalent costs offailure, inspection and maintenance and may be estimated using (3.3):

AECU) = FCU) + ICU) + MCU) (3.3)

where, FC is the failure cost, IC is the inspection cost, MC is the maintenance cost and j

represents the maintenance interval. Further details of the economic consequence analysis

are presented in Chapters VI and VII.

3.10.1 Consequences of Failure

Failure cost is the cost associated with the loss of a facility due to degradation processes,

such as corrosion and cracking. It is assumed that a component failure is followed by an

immediate repair to prevent any system failure scenario with much higher consequences.

Degradation-related failures may lead to increased risk ofloss of the entire unit through a

chain of reactions, in such cases the event tree analysis will be required to assess the

system-level consequences. In this study, the component will be assumed as independent

and isolated. The cost consequences of component failure includes loss of commodity
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due to breakdown, loss due to shutdown, cost of spill cleanup, legal fees and penalties

due to environmental damage and liability.

Loss due to Breakdown

The loss of wall thickness by degradation leading to rupture is the main cause of

breakdown. The breakdown costs are the financial losses, which are associated with

loosing commodity . This cost depends upon what product is being processed, the rate of

leakage and its current market value when the failure occurs. The focus in this thesis is on

a process piping component in the North Sea and the product considered is crude oil. Unit

cost of crude oil is extracted from the market value. The cost of breakdown will be

estimated using the unit cost, rate and duration of release.

Loss ofProduction due to Shutdown

The main factor influencing the cost of failure is the facility's unavailability for

production . Inspection and maintenance can be planned, whereas failures may lead to an

unplanned, immediate shutdown of the facility. The cost of such a shutdown is dependent

on the number of days of shutdown , the rate of loss of production and the value of

products at the time of failure. Thus, the shutdown cost may be estimated by combining

the unit cost of product, loss of affected production and maintenance delay time.

Cost ofSpill Cleanup

The cost of oil spill cleanup depends on a number of factors, such as, the type of oil, the

amount spilled and rate of spillage, the characteristics of affected area, weather and sea

conditions, local and national laws, time of the year and the spill cleanup strategy (Etkin,

2000). Predicting the unit cost of spill response is possible, though it is complex . In this

study, the crude oil spillage in offshore is considered. The average per-unit offshore oil
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spill cleanup cost may be taken from literature. The necessary formula for cleanup cost

will be developed from first principles comprising the unit cost of spill cleanup and the

total quantity released due to failures caused by degradations .

Loss due to En vironm ental Damage

The size of penalty as a result of damaging the environment is difficult to estimate,

because costs increase with the scope of failure. The failure modes developed could

escalate to more complex system failures leading to significan t environmental damages.

However, approximate assessments considering the quantity released and unit penalty

rate are possible. The environment damage due to oil spillage includes loss of marine as

well as coastal habitat, soil pollution, damage to agriculture land and adverse health

impact (Purnell, 1999). The cost of environmental damage comprises the unit cost of

nature damage, the rate and duration of product release. The per-unit cleanup cost of

environmenta l damage may be obtained from literature.

Cost ofLiability

The injuries and deaths caused by the failure of process components have the most severe

implications possible. The loss of life or pain of an injury is impossib le to quantify, yet,

the cost implied due to worker's compensation and corporate liabilities shall be taken into

account. The safety-related system failures have other immediate implications, such as

legal fines and penalties for professional negligence. The estimates of liability costs that

result from accidents are routinely published by several organizations. For component

failure, liability cost may be estimated based on these reports. The liability cost typically

include medical costs, emergency services, vocational rehabilitation, lost earnings,

administrative costs, legal consulting fees, pain and lost quality oflife.
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Total Cost ofFailure

The total cost of failure is the summation of loss of breakdown, loss due to shutdown,

cost of spill cleanup, costs of environmental damage and liability. This total cost is based

on two assumptions; the component is isolated, and the component failure leads to a

system failure with subsequent unavailability for production.

3.10.2 Consequences of Inspection

The NDT techniques are used for the detection and quantification of discontinuities and

separations in materials due to degradations . The integrity data is achieved by detecting ,

locating and sizing of detected flaws, such as corrosion, cracking and holes. Defect

quantification requires considerable skill and experience, and the use of more than one

NDT technique. The best suitable inspection methods for corrosion and cracking may be

identified and their corresponding dollar costs may be estimated. The unit costs for the

NDT techniques may be obtained from inspection industry.

Cost ofDegradation Inspection

The NDT technique is used to detect and quantify the extent of wall loss, pit depth and

surface crack as well as coating breakage. The inspection costs depend on how much area

has to inspect from a risk perspective. The inspection cost includes the cost for gaining

access to the component, the cost for surface preparation , personnel cost for inspection ,

cost associated with technical assistance, the cost of consumables and chemicals, and the

logistics cost. In this thesis, it is assumed that the proposed inspection method is able to

detect the presence of corrosion discontinuities , and surface or subsurface cracks. The

cost of each inspection activity may be estimated using the per-unit personnel cost and

the total duration of inspection.
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3.10.3 Consequences of Maintenance

Inspection can detect the potential failure; however it is the maintenance that does the

risk reduction . Maintenance cost is the cost associated with restoring a facility. To ensure

safe operation, the maintenance needs to be performed at very small intervals . However,

it is impractical to have frequent maintenance due to large costs, the possibility of

maintenance-induced errors, and the associated plant unavailability for production . To

optimize the maintenance, the following necessary conditions are to be satisfied; the cost

of maintenance should be greater after failure than before, and the hazard rate of

component should be increasing, i.e., component should be in the wear-out region. This

thesis focuses on predictive maintenance of process components. It estimates through

diagnostic tools, when a component or part is about to fail and should be repaired or

replaced; thus reducing the costly corrective maintenance. This section covers the cost of

necessary repair, replacement and material costs associated with the maintenance .

Cost ofDegradation Maintenance

The maintenance may be either a minor patch repair work or the complete replacement of

degraded component. For all types of corrosion, minor patch repair work of the affected

area is considered, and for any types of cracking, immediate component replacement with

necessary repair is considered . The maintenance task includes the access to degraded

component, surface preparation, cutting and removal of parts, assembling, welding,

testing and restoring the protective coating. Thus, in addition to the cost of repair and

replacement , the personnel and logistics cost related to transportation , storage and rent of

facilities also must be included. The cost of each maintenance activity may be estimated

using a unit cost of maintenance task and total duration of maintenance . Refer to
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Chapters VI and VII for further details on modeling the failure inspection , and

maintenance costs.

3.11 OPTIMIZATION OF MAINTENANCE STRATEGY

Maintenance is a combination of activities by which a component is kept in, or restored

to a state in which it can perform its designed functions . Application of the correct

maintenance strategy optimizes the use of maintenance resources in the best interests of

corporations. Determination of an optimal inspection and maintenance strategy is a

problem of optimization under uncertainty . The ideal approach for such optimization will

be the use of risk based analysis as it provides a predictive mechanism to evaluate the

alternatives and identify the optimal choice. The operational risk estimated will be used

to determine the maximum length of time between two consecutive inspection and

maintenance, or to compute optimum time to replace the component in a cost-effective

manner that will result in a minimum acceptable risk .

The cumulative probability density (CDF) of structural degradations is combined with the

AEC of operating and maintaining the component to produce the operational risk over the

varying maintenance interval. From the operational risk curve, optimal inspection and

maintenance strategy is obtained by minimizing the overall risk . The optimum inspection

and maintenance interval thus obtained satisfy the two necessary criteria of maintenance:

first, the risk is reduced to ALARP level, and second, the maintenance interval is

maximized, thus avoiding unwanted maintenance and its associated costs . The developed

inspection and maintenance risk are compared with the company 's operating and

maintenance budget , as risk acceptance criteria. It is assumed that the component returns
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a condition just before failure after each minimal repair. This quantitative, risk-based

model rationalizes the inspection and maintenance decision. Chapter VI discusses the

various aspects of risk based inspection and maintenance optimization .

The decision to repair or replace the ageing component is based on economic analysis.

The best time to make replacement decisions for repairable components is during the

operational phase. The likelihood of failure and the life cycle costs are used in the

replacement analysis. The decision to replace the components can be taken as it starts

ageing, mainly due to the evidence of degradation or breakdown or obsolescence. In that

case, the varying operational costs, such as failure, inspection and maintenance costs

must be taken into consideration. The replacement of failed assemblies with spares often

require less time out of service, but require the stocking in inventory. The failure

mechanism influences the selection of appropriate course of action to be taken for the

component replacement. The time-based replacement cannot be applied for truly random

processes, following exponential models. However, degradation processes are observed

to be a time-dependent process, enabling one to use the models such as Weibull,

lognormal or Extreme Values. The economic decision about repair or replacement would

be needed to determine the action to take for the failed or degrading components. Chapter

VII discusses the various aspects of risk based replacement optimization.

3.12 SUMMARY

This chapter provides an overview and integration of the entire thesis. It started with the

objective and scope, and the assumptions made in this study. The critical asset integrity

threats in process components are further discussed. Later, it is argued that the statistical
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Bayes theorem is an ideal choice to model the uncertain degradation processes. Further,

the challenges of using Bayes theorem in quantitative risk analysis are discussed. In life

cycle, the failure, inspection and maintenance of component may result in economic

consequences. Furthermore, a robust RBIM framework is developed based on the

stochastic degradation modeling and economic consequence analysis . Finally, the

optimization of maintenance strategy is briefly outlined in this Chapter. Although,

environmentally induced degradations are only one major part of complete asset integrity

spectrum, it is only considered in this thesis for optimizing inspection and maintenance.
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PREFACE

This chapter presents the selection of best suitable prior probability models for critical

structural degradation processes in offshore process components. Although the choice of

prior is often subjective, a rational consensus has been achieved here by analyzing generic

data from similar installations. This paper has been publi shed in the Journal of Stochastic

Environmental Research and Risk Assessment (2009), 23(6): 793-809,

The principal author conducted an independent literature review to understand the potential

integrity threats for offshore process components, The framework is designed and

structured by the principal author. The major integrity threats in process components are

observed to be several corrosion processes, namely: uniform, pitting and erosion corrosion;

and cracking, namely : stress corrosion, corrosion fatigue and hydrogen induced cracking.

The principal author collected generic data from literature for each of these degradation

processes. He analyzed the propertie s of standard probability distributi ons and tested the

collected data with exponential , normal , lognormal, Weibull, Extreme Value, Gamm a and

beta distribution s. A Matlab subroutine probjit has been developed by the principal author



to test the candidate distributions using the maximum likelihood estimates. The statisti cal

software Minitab is also used for analyzing the data. How well the data fit with the

distribution has been measured using the statistical goodness of fit tests . In this study , the

principal author used the Anderson Darling (A-D) test for all random variables ; the Chi­

square and Kolmogorov-Smimov (K-S) test are applied only for normal random variables .

The A-D test is used mainly as it gives more weight to the tails of distribution than the K-S

test , so it is better to model the uncertainty in degradation data . Once the type of probability

distribution has been selected, the least square and maximum likelihood estimates are used

to estimate the parameters.

The selected priors of the degradation processes are validated using a case study by the

principal author. With request from the principal author , the second author collected the

field non-destructive test data from Lloyd 's register , UK. The principal author categorized

and analyzed the data by system, subsystem and component level, considering the product

and operating conditions. The co-authors provided review and feedback . The regression and

extreme value analysis are used to estimate the rates of degradation and the estimated rate s

are tested with standard probability distributions by the principal author. This study

concluded that the best suitable prior probability models that could handle uniform , pitting

and erosion corrosion were 3P Weibull and 3P lognormal; Type I Extreme Value and 3P

Weibull; and 3P Weibull and 3P lognormal distributions, respectively.
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ABSTRACT

The deterioration of the condition of process plants assets has a major negative impact on

the safety of its operation. Risk based integrity modeling provides a methodology to

quantify the risks posed by an aging asset. This provides a means for the protection of

human life, financial investment and the environmental damage from the consequences of

its failures . This methodology is based on modeling the uncertainty in material degradations

using probability distributions , known as priors. Using Bayes theorem , one may improve

the prior distribution to obtain a posterior distribution using actual inspection data.

Although the choice of priors is often subjective , a rational consensus can be achieved by

judgmental studies and analyzing the generic data from the same or similar instalIations .

The first part of this paper presents a framework for a risk based integrity modeling . This

includes a methodology to select the prior distributions for the various types of corrosion

degradation mechanisms , namely , the uniform, localized and erosion corrosion. Several

statistical tests were conducted based on the data extracted from the literature to check

which of the prior distributions folIows data the best. Once the underlying distribution has

been confirmed, one can estimate the parameters of the distributions . In the second part, the

selected priors are tested and validated using actual plant inspection data obtained from

existing assets in operation. It is found that uniform corrosion can be best described using

3P-WeibulI and 3P-Lognormal distributions. Localized corrosion can be best described

using Type! Extreme Value and 3P-WeibulI, while erosion corrosion can best be described

using the 3P-WeibulI, Typel Extreme Value, or 3P-Lognormal distributions.

Keywords: Corrosion degradation, risk, prior probability , asset integrity, goodness of fit.

!24



4.1 INTRODUCTION

The deterioration of assets of oil and gas and process plants has a major negative impact on

the safety of their operation . Maintaining the integrity of process components has been a

subject of research for many years (Khan and Howard, 2007). Plant assets are subject to

deterioration processes, such as corrosion and fatigue crack growth (Kallen, 2002; Straub,

2004). For assets in operation, design changes are often difficult. Inspection and

maintenance are only the feasible measures for risk reduction (Straub, 2004). Risk based

integrity modeling (RBIM) provides a framework to quantify the risks posed by an aging

asset. In the RBIM, the uncertainty in assets' degradations is modeled using a probability

distribution, known as a prior that is based on the knowledge and expertise of the model

maker. Using Bayes theorem one may combine a prior distribution with the results of real

life inspection data to obtain a posterior distribution (Bedford and Cooke, 2001). The new

distribution can be useful in quantifying the risk to the installations . Even though many

researchers have indicated a need for a formal process of eliciting a prior distribution , there

is no standard method (Ahn et a\., 2007). The lack of uniqueness and objectivity associated

with the prior probability can be reduced with models of invariance principle and maximum

entropy concepts (Baker and Christakos, 2007). One of the major concerns with Bayesian

analysis is the daunting task of prior estimation (Tesfamariam and Sadiq, 2008). Although

the choice of a prior is often subjective, a rational consensus can be achieved by judgmental

studies and analysis of material degradation data obtained from similar existing plants.

Hydrocarbo n leak poses a serious threat to the safety of operation in chemical installations .

Leaks are the principal cause of fire and explosions in chemical installations . Studies
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indicate that corrosion is the principal cause of about 15% of leakage occurrences (HSE

UK, 2002). The direct annual cost of corrosion in the USA is assessed by Koch et al. (2001)

to be 276 billion USO, which represents 3.1% of the GNP, while about 121 billion USO is

spent on corrosion control. Googan and Ashworth (1990) reported that corrosion accounts

for 21% of failures in submarine gas pipelines, and erosion-corrosion modes account for

24.6% of pipe leakages in process plants. Moreover, 40% of the accidental hydrocarbon

releases to the environment are corrosion related. Usually, inspections are carried out for

internal as well as external corrosion by means of non-destructive tests (NOT) to estimate

the loss of material. Although, the use of statistical methods to estimate the corrosion rates

and probabilistic methods to predict plant life have been reported over the past four decades

but they have been applied in a few isolated cases. Better inspection planning and

maintenance optimization needs a reliable prediction of degradation mechanisms and rate.

This can be achieved by combining the statistical techniques with reliability models

(Melchers, 2003a and b; Khan and Howard, 2007) .

This paper proposes a framework for proposed risk based inspection and maintenance

methodology. The first step in this methodology is to select suitable prior distributions for

various types of corrosion in process components, namely uniform, localized/pitting and

erosion corrosion. Statistical tests were conducted on the short listed distributions to check

their applicability. The short listed priors were tested and validated using real life inspection

data obtained from an operating asset.
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4.2 THEORETICAL BACKGROUND

The first initiatives for the developments of risk based approaches to the inspection and

maintenance planning were directed towards the inspection planning for welded

connections subject to fatigue in fixed steel offshore structures (Skjong, 1985; Madsen et

al., 1987; Fujita et al., 1989). Later, the same methodology was applied to other structures

such as ships and tankers (Soares and Garbatov , 1996; Paik et aI., 2003), floating,

production, storage and off-loading facilities (Lotsberg et aI., 1999; Goyet et al., 2002),

semi-submersibles, pipelines (Willcocks and Bai, 2000; Desjardins, 2002; Dey and Gupta,

2001), process plants (Geary, 2002; Montgomery and Serratella, 2002; Kallen and

Noortwijk , 2005; Khan et a\., 2006), bridges (Frangopol et al., 2004), and breakwaters

(Noortwijk, 1996). The degradation mechanisms such as fatigue cracking and corrosion of

steel and concrete structures were also considered (Faber, 2002). A generic approach for the

probabilistic corrosion estimation, based on the structural reliability theory, has been

introduced by Melchers (2003a and b). The recent progress in the modeling of corrosion of

structural steel immersed in seawaters has been reported by Melchers (2005, 2006). Straub

and Faber (2005) reported the reliability updating for structures subject to localized

corrosion defects based on a generic approach developed for fatigue crack growth. The

computationa l aspects of their study are complex and time consuming. Similarly, the use of

priors has been restricted to the Gamma distribution, which may not reflect the actual

degradations in all cases. Inspection planning for process equipments and systems evolved

from the traditional quantitative risk analysis (Khan et al., 2004; Dey, 2004; Khan et al.,

2006). A closer look at the literature has shown that little information has been published on

a robust RBIM methodology using stochastic degradation models.

127



A theoretical framework for the RBIM is proposed in Figure 4.1. The framework consists

of four parts: (a) the comparison of different models for selecting the most appropriate prior

distributions for structural degradations, (b) the development of posterior probabilistic

models and the analysis of their consequences, (c) optimization of risks and inspection and

maintenance intervals, and finally , (d) testing and validation. This paper is an attempt to

discuss the first part of the overall RBIM framework (Figure 4.1). Based on literature study

(Kallen, 2002 ; Straub, 2004 ; Khan et aI., 2006) , the critical structural degradation

mechanisms threatening the integrity of assets are corrosion (uniform corrosion (UC) ,

localized or pitting (PC), and erosion corrosion (EC)) and cracks (stress corrosion cracks

(SCC) , corrosion fatigue cracks (CFC) and hydrogen induced cracks (HIC)).

Risk is defined as the product of probability of failure of an undesirable event and its likely

con sequences. Therefore, the main steps in risk based integrity modeling are the estimation

of the probability of structural failure and its consequences. The probability of failure could

be estimated by the stochastic modeling of individual corrosion and cracking mechanism s

using the Bayesian prior-posterior analysis. The consequence analysis estimates the cost

incurred as result of failure including the cost of corrective repair or replacement and the

proposed inspection and maintenance plan . The risk acceptance criteria based on the

ALARP principle will be discussed later . Stat istical decision theory will be used for the

optimization of inspection intervals. Design of additional safety measures will be

considered if the estimated risk exceeds the acceptable criteria. The developed stochastic

model will be tested and validated using case studies of an aging process facility.
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Part A

Fig. 4.1. Met odology for Risk Based Integrity Modeling
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4.3 TYPES OF CORROSION

Corrosion is the loss of material as a result of chemical reaction between a metal or metal

alloy and its environment (Jone s, 1996). Three important types of asset corrosion

mechanisms will be discussed in this section: the uniform or general corrosion, the

localized or pitting corrosion, and the erosion corrosion.

Uniform corrosion is defined as the uniform or regular removal of metals from the surface

(Jones , 1996) . For uniform corrosion, the corrosive environment must have the same access

to all parts of the metal surface, and the metal itself must be uniform in terms of metallurgy

and composition. Uniform corrosion results in the thinning of wall thickne ss until the wall

is penetrated leading to leaks or breakdown of equipment (Mansfeld, 1987). The locali zed

attack of corrosive environment on an otherwise resistant surface produces pitting corrosion

(Jones, 1996) . The combination of the corrosive fluid and high flow velocity results in

erosion corrosion. The same stagnant or slow flowing fluid will cause a low or modest

corrosion rate , but the rapid movement of the corrosive fluid physically erodes or abrade s

and removes the protective corrosion product film , exposes the reactive alloy beneath , thu s

accelerates corrosion. Sand or suspended slurries enhance erosion and accelerate erosion

corrosion attack on metal or alloy , The attack generally follows the directions of localized

flow and turbulence around surface irregularities.

4.4 ANALYSIS OF CORROSION DEGRADATION MODELS

The different probabilistic models which can be used to describe major corrosion

degradation mechanisms will be discussed in this section. The distributions of corrosion
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samples can be established in several ways; including frequency diagrams, plotting data

using probability graphs, and conducting the goodness of fit tests for the distribution s

(Halder and Mahadevan, 2000) . The parameters of distribution can be estimated using the

methods ofl east squares, moments and maximum likelihood estimates.

4.4. t Goodness of Fit Tests

The goodness of fit test determines how well a particular distribution fits the observed data.

The commonly used statistical tests for goodness of fit are Chi-square, Kolmogorov­

Smimov (K-S) and Anderson-Darling (A-D) tests. The Chi-square test is based on the error

between the observed and assumed probability density functions (PDF) of the distribution .

In the Chi-square test, the range of observed data is divided into intervals , and the number

of times the random variable is observed in a particular interval is counted. Details of the

tests can be obtained from statistical text books such as, 0 'Agostino and Stephens (1986).

The K-S test is based on the error between the observed and assumed cumulative

distribution functions (CDF) of the distribution (Halder and Mahadevan, 2000). The A-D

test is a modification of the K-S test and it gives more weight to the tails than the K-S test.

The K-S test is distribution free in the sense that the critical values do not depend on the

specific distribution being tested. The critical values for the A-D test are dependent on the

specific distribution that is being tested. The critical values for various distributions, for

different significance levels (say, 1% and 5%) have been adopted from D'Agostino and

Stephens (1986) and are presented in Table 4.1. Using the A-D statistic, one can compare

the fit of competing distribution s as opposed to an absolute measure of how a particular

distribution fits the data. The A-D statistic is calculated for the probabilit y plots (PP's),

maximum likelihood (MLE) and the least square (LSXY) estimates . If several distribution s
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provide a close fit to the data, the distribution with smallest A-D value will be reported or,

the collection of more meaningful information is sought. In this paper, the goodnes s of fit

test has been carried out using A-D test for all distributions as it is more sensitive on tails;

the K-S and chi-square tests have been applied only for the normal distributions.

Table 4.1. Critical Values of A-D Statistic for Distributions (D 'Agostino & Stephens , 1986)

Types of Significance Critical Value

Distribution Level ofA-DStatistic

0.05 1.087
Normal

0.01 1.551

0.05 1.087
Lognormal

0.01 1.551

0.05 2.492
Exponential

0.01 3.857

0.05 1.321
Extr . Value

0.01 1.959

0.05 1.321
Weibull

0.01 1.959

0.05 1.562
Gamma

0.01 1.562

0.05 1.046
Logistic

0.01 1.505
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4.4.2 Estimation of Parameters

Once a probability distribution has been identified for a degradation mechanism , its

parameters need to be assessed. The accuracy in estimating these parameters is based on the

ability of observed data in representing the uncertainty in the corrosion data (Halder and

Mahadevan, 2000). In the present study, parameters have been estimated using least square

method and the method of maximum likelihood.

Least square estimates are calculated by fitting a regression line to the points in a

probability plot. The line is formed by regressing time to failure or log (time to failure) on

the transformed percent (Johnson, 2005). The maximum likelihood parameter is calculated

by maximizing the likelihood function, where the likelihood function represents the

probability that the true distribution has said parameters based on the sample. The detailed

principle behind the maximum likelihood method for parameter estimation can be found in

Halder and Mahadevan (2000).

4.5 DATA SUMMARY AND ANALYSIS PROCEDURE

In order to select the prior probability distributions for different corrosion mechanisms,

several distributions have been tested using data extracted from the literature . For this

purpose , the uniform corrosion data has been extracted from Anghel and Lazar (2005),

Melchers (2003), Lawson (2005), McLaughlan and Stuetz (2004) and Paik et al. (2003).

For pitting corrosion, the data has been extracted from Melchers (2005), Scarf and Laycock

(1996), Laycock et al. (1990) and Sankaran et al. (2001). For erosion corrosion, the data has

been extracted from Vinod et al. (2003), Melchers (2006), Salama (2000) and Abdusalam
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and Stanley (1993). The extracted data has been tested with standard probability

distributions, like Normal, Lognormal, 3P-Lognormal, Weibull, 3P-Weibull, Exponential,

2P-Exponential, Typel Extreme Value, Gamma and Beta using the statistical software

Minitab and developed subroutines in Matlab. The goodness of fit test has then been

performed using the adjusted A-D statistic and the best fit is reported as the one with

smallest A-D statistic . The more and less relevant prior distributions with A-D statistic for

probability plot method have been presented in Table 4.2; Table 4.3 reports the maximum

likelihood estimates and Table 4.4 reports results of the method of least squares. The

sample probability plots are presented for uniform corrosion (data extracted from Anghel

and Lazar, 2005) in Figures 4.2a and b, the pitting corrosion (data extracted from Scarf and

Laycock, 1996) in Figures 4.3a and b, and the erosion corrosion (data extracted from

Melchers, 2006) in Figures 4.4a and b.

A Matlab subroutine, Probjit has been developed for testing the candidate distributions

using maximum likelihood estimates. The log-likelihood statistic has been used to compare

the goodness of fits and to estimate the parameters of the distributions (Table 4.3) . The

parameters, such as, location and scale parameters are estimated using 95% confidence

intervals. The interactive distribution fit tool, djittool has been used to prepare the

probability plots of the data and to estimate the log-likelihood parameter. The sample PDF

and CDF plots corresponding to the data extracted from Anghel and Lazar (2005) for

maximum likelihood estimation are shown in Figures 4.5a and b.
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The probability plots have been developed using the least square estimate (LSXY) also. The

A-D test statistic and correlation coefficient (CC) statistic have been used for comparing the

goodness of fits (Table 4.4). The lower value of A-D statistic and higher value of CC

statistic suggested better fit. The mean, standard error, 95% of upper and lower bounds of

the probability have also been computed . The sample least square plots with their

corresponding CC values (for data extracted from Anghel and Lazar, 2005) have presented

in Figures 4.6a and b.
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Table 4.2. Summary of Probabilistic Corrosion Prior Modeling using Probability Plots

Types of Data Extracted Fitting Summary by Probability Plot Method

Corrosion From More Relevant Statistics Less Relevant Statistics

3P-Lognormal 1.738 Normal 1.790
Anghel and

Weibull 1.739 Lognormal 1.849
Lazar (2005)

3P-Weibull 1.752 Ext. Value 1.965

3P-Weibull 1.511 Normal 1.537
Melchers

Ext. Value 1.514 Weibull 1.591
(2003)

3P-Lognormal 1.537 Lognormal 1.830

I::
0 3P-Weibull 1.441 Lognormal 1.518

~ Lawson

U 3P-Lognormal 1.479 Weibull 1.634

§ (2005)

<8 3P-Loglogistic 1.479 Normal 1.751
·2
~

3P-Lognormal 1.319 3P-Weibull 1.476
McLaughlan and

Lognormal 1.389 2P-Exponential 1.575
Stuetz (2004)

Weibull 1.474 Exponential 1.832

3P-Lognormal 1.199 Ext. Value 1.289
Paik et a\.,

Normal 1.200 Weibull 1.313
(2003)

3P-Weibull 1.203 Lognormal 1.768

Ext Value 1.742 3P-Lognormal 1.796
Melchers

3P-Weibull 1.742 Weibull 2.245
I:: (2005)
0

Normal 1.794 Lognormal 2.543

~
U Scarf and Ext. Value 1.451 Normal 1.543
00
I::

Laycock (1996) 3P-Weibull 1.445 3P-Lognormal 1.543
0:
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Types of Data Extracted Fitting Summary by Probability Plot Method

Corrosion From More Relevant Statistics Less Relevant Statistics

Weibull 1.506 Lognormal 1.693

Ext Value 1.297 Normal 1.393
Laycock et aI.,

3P-Weibull 1.297 3P-Lognormal 1.396
(1990)

Weibull 1.378 Lognormal 1.689

Ext Value 1.453 Normal 1.571
Sankaran et aI.,

3P-Weibull 1.453 Weibull 1.645
(2001)

3P-Lognormal 1.571 Lognormal 1.945

Ext Value 1.173 3P-Lognormal 1.219
Vinod et aI.,

3P-Weibull 1.197 Normal 1.319
(2003)

Weibull 1.216 Lognormal 1.430

Weibull 1.095 Normal 1.101
Melchers

3P-Weibull 1.101 Ext Value 1.225
(2006)

3P-Lognormal 1.101 Lognormal 1.246

3P-Weibull 1.109 Lognormal 1.253
Salama

3P-Lognormal 1.171 2P-Exponential 1.395
(2000)

Weibull 1.126 Exponential 1.564

Weibull 1.058 3P-Lognormal 1.081
Abdusalam and

3P-Weibull 1.067 Ext Y.alue 1.101
Stanley (1993)

Normal 1.078 Lognormal 1.247
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Table 4.3. Probabilistic Corrosion Prior Modeling using Maximum Likelihood Estimates

Fitting Summary by Maximum Likelihood Method
Types of Data Extracted

More Log Less Log
orrosion From

Relevant likelihood Relevant likelihood

Anghel and Weibull 18.6565 Gamma 18.4352

Lazar (2005) Beta 18.5341 Normal 18.0010

Melchers Ext Value 6.0722 Weibull 5.7341

I::
(2003) Beta 5.8790 Normal 5.6763

0

~ Lawson Lognormal -16.3408 Weibull -17.5002

U

E (2005) Gamma -16.6827 Normal -18.2951

<E
'2 McLaughlan and Gamma 16.7484 Weibull 16.3820
~

Stuetz (2004) Lognormal 16.5554 Beta 16.0780

Paiketal. , Weibull -22.9423 Ext Value -23.8987

(2003) Normal -23.2055 Gamma -24.0077

Melchers Ext Value -25.7766 Weibull -27.9618

(2005) Normal -27.2373 Gamma -29.3530

Scarf and Ext Value -2.8491 Normal -4.0541
I::
0

~
Laycock (1993) Weibull -3.1969 Gamma -4.8803

U Laycock Ext Value -36.5267 Normal -37.858co
I::
:::

et aI., (1990) Weibull -37.1421 Gamma -39.2315~

Sankaran Ext Value 58.7858 Normal 57.5830

et aI., (2001) Weibull 57.9119 Beta 56.2077
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Fitting Summary by Maximum Likelihood Method
Types of Data Extracted

More Log Less Log
orrosion From

Relevant likelihood Relevant likelihood

Vinod Weibull 68.2410 Normal 67.7708

et al., (2003) Ext Value 67.9288 Beta 67.1419

:::
Me1chers Weibull 37.5092 Beta 37.3557

0

~
(2006) Normal 37.5075 Gamma 37.1616

U
Salama Beta 46.6300 Gamma 46.0812:::

0

~ (2000) Weibull 46.5867 Exponential 43.9436

Abdusalam and Weibull -20.6869 Ext Value -21.3339

Stanley (1993) Normal -21.0715 Gamma -21.6241

Table 4.4. Probabilistic Corrosion Prior Modeling using the Least Square Estimate

Types Fitting Summary by Least Square Estimates
Data Extracted

of More A-D Less A-D
From CC CC

Corr. Relevant Statistic Relevant Statistic

Anghel and 3P-Weibull 1.857 0.996 Logistic 1.853 0.992

Lazar (2005) 3P-Lognormal 1.853 0.995 Normal 1.863 0.992

Me1chers 3P-Weibull 1.537 0.997 Normal 1.580 0.990

(2003) Ext. Value 1.552 0.996 3P-Lognormal 1.581 0.989

Lawson 3P-Weibull 1.451 0.997 Lognormal 1.517 0.991

(2005) 3P-Lognormal 1.483 0.994 Loglogistic 1.542 0.986
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Types Fitting Summary by Least Square Estimates
Data Extracted

of More A-D Less A-D
From CC CC

Corr . Relevant Statistic Relevant Statistic

McLaughlan & 3P-Lognormal 1.393 0.975 Loglogistic 1.509 0.969

Stuetz (2004) 3P-Weibull 1.519 0.976 Weibull 1.522 0.976

Paik et aI., 3P-Weibull 1.156 0.995 Normal 1.170 0.992

(2003) 3P-Lognormal 1.169 0.992 Logistic 1.235 0.986

Melchers Ext Value 1.601 0.967 Normal 1.712 0.957

(2005) 3P-Weib ull 1.604 0.966 3P-Log norma l 1.719 0.956

Scarf and Ext Value 1.471 0.997 Weibull 1.541 0.988
l::
0

~
Laycock (1996) 3P-Weibull 1.472 0.996 Normal 1.603 0.976

u Laycock Ext Value 1.300 0.998 Weibull 1.447 0.983OJ)
l::

c:: et aI., (1990) 3P-Weibull 1.301 0.998 Normal 1.453 0.979

Sankaran Ext Value 1.438 0.990 3P-Lognormal 1.582 0.975

etal., (2001) 3P-Weibull 1.438 0.990 Normal 1.582 0.975

Vinod 3P-Weibull 1.189 0.992 Normal 1.216 0.989

et aI., (2003) Weibull 1.193 0.992 Ext Value 1.236 0.985

Melchers Weibull 1.156 0.994 Normal 1.191 0.99 1

(2006) 3P-Weibull 1.159 0.994 3P-Lognormal 1.192 0.99 1

Salama Weibull 1.012 0.988 3P-Log norma l 1.145 0.98 1

(2000) 3P-Weibull 1.054 0.990 Loglogistic 1.342 0.954

Abdusalam and Weibull 1.074 0.997 Normal 1.101 0.994

Stanley (1993) 3PWeibull 1.074 0.997 3P-Lognormal 1.102 0.994
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Fig. 4. 2. Sample Probability Plots for Uniform Corrosio n, Data from Anghel and Lazar (2005)
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Fig. 4.3. Sample Probability Plots for Pitting Corrosion, Data from Scarf and Laycock (1996)
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Fig. 4.5b. Sample CDF Plots for Uniform Corrosion, Data from Anghel and Lazar (2005)
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Probability Plot for Uniform Corrosion
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4.6 RESULTS AND DISCUSSIONS

The summary of more relevant and less relevant models for uniform corrosion, pitting

corrosion and erosion corrosion prior selection are reported in Table 4.5. The more

appropriate distributions that can be used to describe the uniform corrosion are 3P-Weibull

and 3P-Lognormal. Typel Extreme Value and 3P-Weibull distributions are the best to

model pitting corrosion, and the 3P-Weibull , Type I Extreme Value or 3P-Lognormal

distributions are the best to model erosion corrosion priors . The less relevant, but still

usable distribution for uniform corrosion include Normal, Gamma and Beta distributions ;

for pitting corrosion, Gamma , Beta, Normal and Loglogistic distributions; and for erosion

corrosion , Normal, Gamma and Beta distributions.

Table 4.5. Summary of Relevant Prior Probability Models for the Corrosion Degradation

Types of Material More Relevant Prior Less Relevant Prior

Degradations Probabilit y Models Probability Model s

3P-Weibull and 3P- Normal , Gamma , Beta
Uniform Corrosion

Lognormal and Ext. Value

Type I Extreme Value and Normal, Gamma , Beta
Localized/Pitting Corrosion

3P-Weibull and Loglogistic

3P-Weibull , Type I Extreme Normal, Gamma and
Erosion Corrosion

Value or 3P-Lognormal Beta

The short listed corrosion priors were further tested and validated using the case study of a

plant life inspection data. A brief discussion on this validation is reported in Section 4.7.
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4.7 VALIDATION OF SELECTED CORROSION PRIORS WITH CASE STUDY

The inspection data obtained from an offshore production facility operating in the North

Sea has been used to validate the selected priors for each type of corrosion degradations.

The data used for uniform corrosion is the data obtained for the Gas Condensate (GC)

system. This data is used to obtain the distribution for uniform corrosion as the data is

observed to follow a uniform wall loss. The data includes the minimum and average wall

thickness readings acquired during the period 1997 to 2002. The nominal diameters of its

components varied from 25.4 to 304.8 mm.

It was observed that data obtained for the Gas Export (GE) system, in the above mentioned

facility, follows the localized or pitting corrosion. The data includes the minimum and

average inspection readings acquired during the period 1997 to 2002. The nominal diameter

of its components varied from 19.05 to 508 mm.

The data associated with HP Drilling Mud (HP) system, which has flow lines of several

diameters, has been observed to follow the erosion pattern. The data includes the inspection

readings acquired during the period 1999 to 2003. The nominal diameters of its components

varied from 50.8 to 127 mm. For precise estimation of corrosion rates, inspection data has

been divided into several groups, namely, straight pipes and features. Features include

bends, tees, reducers, flanges and valves (Khan and Howard, 2007) . Three major

components: straight pipes, bends and tees were considered in the analysis.

4.7.1 Subsyste m Descr iption

In present study, the flow lines ofGC, where uniform wall loss is observed were considered
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for uniform corrosion; it consists of flow lines from high pressure compressor Kl30l to

Cooler E1303 of nominal wall thickness varying from 5.54 to 17.48 mm. Further, the

system GE has been considered for pitting corrosion as the data observed were localized in

nature. For illustration purpose, the subsystem 6 of GE flow lines is presented. The sample

wall loss data used for the analysis has been provided in Table 4.6 and the corresponding

subsystem 6 isometrics is included in Figure 4.7. The subsystem 6 essentially consists of

gas export lines from K320lB to first stage after cooler (0.75, 1.0, 1.5,6 and 8 inch lines),

K320lC to after coolers, K3201 NB (0.75, 1.0, 1.5 and 6 inch lines), K320lA, first stage

compressor (3 and 6 inch lines), and K-3201A to after/inter coolers (6, 8 inch lines). The

nominal wall thickness of its components varied from 3.91 to 23.01 mm. The flow lines in

HP Drilling Mud for erosion corrosion consists of high pressure mud lines of module 2 and

16, with wall thickness of components varying from 5.49 to 19.05 mm.

4.7.2 Analysis Methodology

The statistical analysis task has been divided into two groups, one is the precise estimation

of corrosion rates and the second is testing of these corrosion rates with standard probability

distributions. The method outlined in Khan and Howard (2007) has been used to compute

the corrosion rates from the available wall loss data. The collected data is first analyzed to

identify uniform or localized degradation . In the case of uniform degradation, time

dependent regression analysis and in the case of localized degradation, the extreme value

analysis has been carried out for estimating the rates of degradation. The HSE UK (2002)

guideline for use of statistics for the analysis of corrosion inspection sample has also been

referred for general guidance to estimate the corrosion rates using extreme value analysis .
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In the regression analysis, regressor variable considered is the period of exposure (T) of

each system and the response variable is the loss of wall thickness (Y) over such duration.

The inspected data is then regressed to get the degradation rate, k which is represented by

the slope of the regression line, Y =kT +C, where C is referred as the wall thickness loss

(C = 0) at the start of service, i. e., at (T = 0) .

Corrosion rates for localized material degradation were estimated using an extreme value

model (Khan and Howard, 2007; Melchers, 2005). In constructing an extreme value

distribution , an underlying random variable, corrosion rate, with a particular distribution is

necessary (Halder and Mahadevan, 2000). If different set of samples are obtained through

inspection , one can select the extreme values from each sample set and then construct a

distribution for the extreme value analysis . The extreme value equations are summarized in

Table 4.7, the detailed mathematical aspects of distribution s can be found in Gumbel

(1958).

Table 4.6. Wall Loss Data for Pipes of Subsystem 6 (mm)

1997 2000 2001 2002

0 0 0 0

0 0 0.1 0

0.1 0 0.1 0

0.1 0 0.1 0

0.1 0 0.1 0

0.2 0 0.1 0.1
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0.4 0.1 0.1 0.2

0.1 0.3 0.3

0.1 0.5 0.6

0.1 0.6 0.7

0.1 0.6 0.7

0.1 0.6 1.5

0.1 0.7

0.3 0.7

0.3 1.2

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.6

0.7

0.8

1.5

1.5

1.7
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Table 4.7. Extreme Value Distribution s (Gumbel distribution)

Maximum value Minimum value

J (y ) =± exp[- y - exp(- y )] J - I(y) =± exp(y - exp(y)]

F (y ) =exp[-exp(- y )] F -1( y) =I - exp[- exp(y)]

Where y = x: 11. ; a> 0 Where y = x: 11. ; a> 0

where, x is wall loss or pit depth, "A. is location parameter , and a is scale parameter.

The Gumbel distribution is widely used for extreme value analysis including the localized

corrosion and stress corrosion crack inspection data analysis (HSE UK, 2002; Kowaka,

1994; Melchers, 2005). Once y is known, the representative location parameter (11.) and

scale parameter (a ) may be estimated by plotting function of F(y) versus x. Using these

values statistical corrosion parameters may be estimated (Khan and Howard, 2007) as:

Mean wall loss = a + yl1. , where y is Euler' s constant and has a value of = 0.5772.

Standard deviation = "ia ,Median wall loss = 11. - aIn(1n(2» and Most likely loss = 11.

The degradation rate for localized corrosion may be expressed either by linear, power law,

or logarithmic extreme value models (Kowaka, 1994) as:

Linear model: x - xo = k(T - TJ
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Power law model:

Logarithmic law model:

x-x o = k(T - T;) n

x - X o = k.log(T - Tj )

where, X o is the threshold depth of degradation (i.e., pit depth) at incubation time Y;,x is

measured depth at time T and k is degradation rate. Depths exceeding Xo would grow,

whereas depths lower than Xo may fail to grow with exposure period.

4.7.3 Procedure and Illustration

The annual wall losses were plotted using the simple regression method for uniform

corrosion and the extreme value distribution for localized and erosion corrosion data. For

illustration purposes, the straight pipe inspection data of subsystem 6 of the GE lines (i.e.,

pitting corrosion) has been presented in this section . The sample extreme value probability

plot which is obtained by plotting the ordered wall loss versus the cumulative probability,

i.e., (-In(-ln(f(wal/ loss))) for the year 2001, for straight pipe is shown in Figure 4.8.

Similarly, the data can be plotted for the years 1997, 200 I and 2002. The observation of a

good linear fit, suggested the appropriateness of choosing extreme value distributions for

such data. These plots can then be used to estimate the location and scale parameters, mean ,

median and most likely wall losses and the yearly wall loss corresponding to 95%

confidence intervals. The cumulative exposure times and the corresponding wall loss values

for the 95% confidence interval is used for the estimation of corrosion rates.

The predicted wall losses corresponding to the confidence intervals of 0.95 over several

inspection years were then plotted against the cumulative exposure times to estimate the
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actual corrosion rate of components either by linear or power law model. The sample

corrosion rate plot for straight pipes of subsystem 6 (GE) is shown in Figure 4.9.

The estimated corrosion rate data has been tested with probability distribution models like,

Normal, Lognormal, 3P-Lognormal, WeibuII, 3P-WeibuII, Exponential, 2P-Exponential

and Type I Extreme Value using Minitab. The goodness of fit test has been performed

using the A-D statistics and the best fit is reported as the one with smaIIest A-D statistic.

The tested models with their A-D test statistics are summarized in Table 4.8.

~
1, 2, 5,10 ,14 , 27, 31­
Straight Pipes
3, 4, 11,12 , 15,2 5,3 1, 39­
Feature: Bends
29,41 ,4 3-
Feature: Tees

FigA.7. Sample Subsystem 6 (of Gas Export Lines) Isometric Drawing
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Extreme Value Probability Plot - Year 2001

y=0.3103x+0.2275

~=0.9078

-In(-ln(f(Wall Loss)))

Fig. 4.8. Samp le Extreme Value Probability Plot (Year: 200 1) for Pipes of Subsystem 6

Corrosion Rate Plot for Straight Pipe

y=O.7484xo.4025

R2 =O.8838

y=O.1761x + 0.5538

R2=O .6239

• Corrosion Rate Plot

• • • .Unear (COrrosionR atePl ot)

-Power (Corrosion Rate Plot)

Exposure Time (Years)

Fig. 4.9. Sample Corrosio n Rate (PC) Plots for Straigh t Pipes of Subsys tem 6 (GE)
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Table 4.8. Summary of Probabilistic Corrosion Prior Modeling for Case Study NDT Data

Type of
Standard Uniform Corrosion Pitting Corrosion Erosion Corrosion

Feature
Probability

A-Dtest Sample Standard A-Dtest Sample Standard A-Dtest Sample StandardDistributions
Parameter Mean Error Parameter Mean Error Parameter Mean Error

Normal 3.816 0.3280 0.1608 2.627 0.9472 0.1682 4.832 0.2080 0.0685
Lognormal 3.061 0.3106 0.2038 2.958 1.1048 0.4177 4.886 0.2386 0.1501
Exponential 4.092 0.3280 0.1160 2.973 0.9472 0.3157 4.828 0.2080 0.1040

Pipes
Weibull 3.214 0.3168 0.1572 2.824 0.9335 0.1809 4.869 0.2066 0.0759

Extreme Value 3.745 0.2785 0.2341 2.603 0.9546 0.1718 4.826 0.2086 0.0744
3P-Weibull 2.961 0.3420 0.2330 2.603 0.9561 0.1705 4.826 0.2087 0.0742

3P- Lognormal 3.033 1.2907 2.2777 2.626 0.9497 0.1686 4.833 0.2080 0.0685
2P-Exponential 5.054 0.3280 0.1085 3.242 0.9472 0.2898 5.485 0.2080 0.0902

Normal 3.651 0.4112 0.1682 2.980 0.1373 0.0243 5.056 2.1169 0.5171
Lognormal 2.896 0.4325 0.2585 3.087 0.1429 0.0374 5.038 2.1315 0.6111
Exponential 3.316 0.4112 0.1454 3.269 0.1373 0.0485 5.053 2.1169 1.0585

Bends
Weibull 3.023 0.4077 0.1727 3.055 0.1372 0.0241 5.057 2.1305 0.5030

Extreme Value 3.682 0.3715 0.2332 2.964 0.1382 0.0253 5.059 2.1296 0.5586
3P-Weibull 2.911 0.4418 0.2647 2.964 0.1382 0.0253 4.944 2.2331 1.0759

3P- Lognormal 3.051 2.0465 3.5906 2.980 0.1373 0.0243 4.910 4.4472 7.0987
2P-Exponential 3.986 0.4112 0.1356 3.372 0.1373 0.0361 5.530 2.1169 0.5599

Normal 3.487 0.3582 0.1247 3.612 0.6710 0.1811 4.959 1.5237 0.8036
Lognormal 3.297 0.3991 0.2371 3.795 0.8025 0.4482 4.797 1.5372 1.0645
Exponential 3.381 0.3582 0.1354 3.709 0.6710 0.2739 4.835 1.5237 0.7618

Tees
Weibull 3.345 0.3581 0.1403 3.749 0.6652 0.2046 4.814 1.5200 0.8017

Extreme Value 3.435 0.3424 0.1567 3.594 0.6536 0.2157 5.001 1.3931 1.1069
3P-Weibull 3.256 0.3977 0.2480 3.975 0.7451 0.4336 4.779 1.7816 1.7819

3P- Lognormal 3.320 1.9640 3.7715 3.623 0.6710 0.1814 4.830 9.2579 27.4754
2P-Exponential 4.115 0.3582 0.1224 4.225 0.6710 0.2492 5.734 1.5237 0.6378
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4.7.4 Case Study Results

The statistical reliability tests have been performed for the estimation of degradation rates for the

data extracted from an oil and gas production facility (offshore, North Sea). The summary of

uniform corrosion, pitting corrosion and erosion corrosion prior validation has shown in Table

4.9. For uniform corrosion, the representative straight pipes of the gas condensate system; for

pitting corrosion, the bends of gas export system; and for erosion corrosion , the tees of the HP

drilling mud system are presented. The column 3 shows the results from first part using data

from literature; and column 4 shows the results from case study. Identical observations prove

that the selected priors from literature and case study are the best to model the various corrosion

degradation mechanisms under consideration.

Table 4.9. Summary of the Study and Validation

Type of Systems or Most Relevant Distributions

Corrosion Component From Literature Study From Case Study

Uniform 3P-Weibull , 3P-Weibull ,
Straight Pipes

Corrosion 3P-Lognormal 3P-Lognormal

Pitting Type I Extreme Value, Type I Extreme Value
Feature-Bends

Corrosion 3P-Weibull and 3P-Weibull

3P-Weibull,3P- 3P-Weibull ,
Erosion

Feature-Tees Lognormal, Type I Lognormal, or Type I
Corrosion

Extreme Value, Extreme Value
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4.8 SUMMARY AND CONCLUSIONS

In risk based integrity assessments, the uncertainty in the material degradat ions is modeled using

prior distributions, which are subsequently updated to a posterior distribution using Bayes

theorem and actual inspection data. This updated distribution is useful in assessing the potential

risk to installations. The life threatening structural degradations observed are several types of

metal corrosion and cracking. The major corrosion mechanisms include uniform corrosion,

pitting corrosion and erosion corrosion. Therefore , the selection and validation of the prior

models for each type of corrosion is inevitable in the integrity assessment of assets.

The first part of this paper discussed the development of an RBIM framework and the selection

of probabilistic prior distributions for various corrosion degradation mechanisms. Several

statistical tests were conducted based on the data extracted from literature to check which of the

prior distributions best describes the data. The relative accuracy of such fits is tested using

probability plots and A-D tests, and the underlying parameters are estimated using the method of

least squares and maximum likelihood estimates.

The second part ofthis paper dealt with the validation of the selected priors through a case study,

using life inspection data associated with the operation of an oil and gas production facility,

operating in the North Sea. For uniform corrosion, the regression analysis and, for localized

pitting or erosion corrosion, the extreme value analysis has been used for estimating the

corrosion rates.
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A summary of the results is presented in Table 4.9. It is concluded that the most appropriate prior

distributions that can be used to describe uniform corrosion are 3P-Weibull and 3P-Lognormal

distributions; the pitting corrosion priors is best modeled using Typel Extreme Value and 3P­

Weibull and, the erosion corrosion using 3P-Weibull , 3P-Lognormal or Type I Extreme Value

distributions.
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PREFACE

This paper presents the development of Bayesian posterior probability models for the identified

degradation processes. The prior and likelihood models for the critical structural degradation

processes obtained in Chapter IV are observed to be non-conjugate pairs. Thus, their Bayesian

posterior estimation cannot be performed in closed form. One of the main challenges of

Bayesian analysis, i.e., the posterior estimation of non-conjugate pairs is addressed in this

Chapter. This work is published in the Journal of Risk Analysis (2010), 30(3): 400-420.

The potential asset integrity threats are identified by the principal author; the data have had

large uncertainty and variability . It has been suggested by the co-authors that the Bayes

theorem may be employed to model the uncertainty and to predict the future degradation . The

prior model is based on generic data and the likelihood is based on field NDT data from an

ageing process component as discussed in Chapter IV. The principal author conducted

extensive literature review to identify the best suitable methods to develop the Bayesian

posteriors of non-conjugate pairs. The simulation based Metropolis-Hastings (M-H) algorithm

and the analytical Laplace approximation methods are identified by the principal author as the



best suitable methods for posterior estimation. The M-H algorithm is a rejection sampling

based algorithm, which is used to generate a sequence of Markov chain Monte Carlo (McMC)

that is difficult sample directly. This sequence is used to approximate the posterior distribution.

The ability to generate the posterior samples without actually knowing the normalizing factor is

a major virtue of this algorithm. The Laplace method is used for approximating the parameters

of the posteriors when direct estimations are difficult and if a normal approximation is

reasonable. The basic idea is to carry out a Taylor series expansion around the maximum

likelihood estimate value (i.e ., mode), ignore the negligible terms and normalize. The principal

author investigated the theory behind M-H algorithm and the Laplace approximation, and

programmed these two methods in Matlab software , and demonstrated the use for developing

the posteriors of non-conjugate degradation priors.

The known conjugate posterior estimates are used to validate the Matlab code . The conjugate

parameter estimates are used as true values . The Normal-Normal, Gamma-Poisson, Gamma ­

Gamma and Gamma-Normal combinations are tested. The Laplace approximation functions for

each combination are derived by the principal author and are presented in Appendix . For

developing the posteriors of degradations in process facilities , the M-H algorithm is

recommended. Since the posterior models are based on real-life NDT data, they provide more

reliable and accurate predictions for the future degradations of components in offshore process

facilities. The principal author prepared the initial draft of this manuscript, which was later

consecutively revised and improved based on comments from the co-authors.
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ABSTRACT

There is a need for accurate modeling of mechanisms causing material degradation of

equipment in process installation, to ensure safety and reliability of the equipment. Degradation

mechanisms are stochastic processes . They can be best described using risk based approaches.

Risk based integrity assessment quantifies the level of risk to which the individual components

are subjected and provides means to mitigate them in a safe and cost effective manner. The

uncertainty and variability in structural degradations can be best modeled by probability

distributions. Prior probability models provide initial description of the degradation

mechanisms . As more inspection data become available, these prior probability models can be

revised to obtain posterior probability models which represent the current system and can be

used to predict future failures. In this paper, a rejection sampling based Metropolis-Hastings

(M-H) algorithm is used to develop posterior distributions . The M-H algorithm is a Markov

chain Monte Carlo algorithm used to generate a sequence of posterior samples without actually

knowing the normalizing constant. Ignoring the transient samples in the generated Markov

chain, the steady state samples are rejected or accepted based on an acceptance criterion. To

validate the estimated parameters of posterior models, analytical Laplace approximation

method is used to compute the integrals involved in the posterior function. Results of the M-H

algorithm and Laplace approximations are compared with conjugate pair estimations of known

prior and likelihood combinations. The M-H algorithm provides better results and hence it is

used for posterior development of the selected priors for corrosion and cracking.

Keywords: Asset integrity, corrosion, cracking, prior, Bayes theorem, posterior
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5.1 INTRODUCTI ON

Asset integrity management of proces s installation equipments is a burgeoning area of research .

Research has been focused on the study of damage mechan isms, failure occurrences, and

developing models for failure prediction . The major causes of asset failures can be generall y

classified into (Stephen s et a\., 1995): third party damage , environmentally induced defects,

material and fabrication defect s, and operational errors. Third party damage include s

mechanical damage and ground movement. Environmental effects cause corro sion and

cracking. Surface and weld defect result from bad manufacturing practices . Operational errors

result from componen ts failure and human factors . The major share of process components and

pipeline s failure are attributed to environmentally induced defects such as corrosion and

cracking (Khan et a\., 2006; Straub , 2004 ; Kallen, 2002) .

Leaks are the principal cause of hydrocarbon release, fire and explosions in process

installations. Studies indicate that corrosion is the principal cause of about 15% of leakage

occurrences (HSE UK, 2002) . In nine and half years, 44.70% of the mechanical failures leading

to hydrocarbon release from offshore facilitie s in the UK were due to corrosion or other related

degradations (HSR UK, 2003) . The direct annual cost of corrosion in the USA is assessed to be

276 billion USD, which represents 3.1% of the GNP, while about 121 billion USD is spent on

corrosion control (Koch et a\., 2001). In Canada, the environmentally induced defects , such as

metal corros ion, stress corrosion cracking, hydrogen induced cracking etc. has caused for 40%

of the natural gas pipelines failures and 38% of hazardous liquid releases (Stephens et al.,

1995). It is reported that corrosion accounts for 21% of failures in submarine gas pipelines, and

erosion-corrosion modes account for 24.6% of pipe leakages in proces s plants (Googan and
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Ashworth, 1990). Moreover, 40% of the accidental hydrocarbon releases to the environment

are corrosion related. Therefore, the investigation and mitigation of corrosion and cracking , and

its effects is one of the main actions required to reduce the frequency of hydrocarbon releases,

to maximize the production , and to improve the safety of the operations .

Usually, inspections are carried out for internal as well as external corrosion and cracking by

means of non-destructive tests (NDT) to estimate the loss of wall thickness and detect the

cracking. Although a few probabilistic methods are available to predict plant life, these have

been applied in a few isolated cases. Better integrity inspection planning and maintenance

optimization needs a reliable and adaptable prediction of degradation mechanisms and rates.

This can be achieved by combining the statistical techniques within the risk assessment and

decision making framework. This paper presents a methodology for risk based integrity

modeling (RBIM) and the development of posterior probabilistic models for structural

degradations. The prior models are taken from available literature dealing with assets from

different industries (Thodi et al., 2009). The posterior models are developed for the selected

priors using the simulation based Metropolis-Hastings (M-H) algorithm and analytical Laplace

approximations. The conjugate prior-posterior parameters are used to calibrate the Matlab code.

This study summarizes the development of posterior models for identified degradations in order

to estimate the probability of failure in risk based integrity modeling (RBIM).

5.2 RISK BASED INTEGRITY MODELING

Risk is the product of the probability of failure and its consequence. Therefore , the major tasks

in risk based asset integrity modeling are the estimation of the probability of structural failure

(PoF) and the consequence of this failure (CoF). The probability of failure is estimated using
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stochastic modeling of all identified degradations , such as corrosion and cracking . The

consequence analysis estimates the consequence of failure in terms of the costs of failure,

preventive repair or replacement , and implementing the proposed inspection and maintenance

plan. The developed stochastic probability of failure and consequence of failure models will be

tested and validated using case studies of an ageing process facility operating in the North Sea.

An overall framework for the RBIM is proposed in Figure 5.1. The framework consists of the

following tasks: identification of potential degradation mechanisms, development of most

appropriate prior and likelihood models , development of posterior probability models and the

analysis of consequences, determine inspection and maintenance intervals which optimize the

risk and finally, testing and validation of the models. In the overall framework, the

development of posterior probability model using the M-H algorithm and Laplace

approximation is discussed in this paper. For real life applications, the expert' s initial

knowledge will form the prior models. Subsequently it will be updated using the ageing data

(field NDT, as likelihood probability model) to obtain the posteriors, which describe the

dynamic model of the current system. These posterior models describe the degradation

processes accurately and hence posses better predictive capabilities of future failures.

5.3 ASSET INTEGRITY THREATS

The review of published literature (Khan et a\., 2006; Straub, 2004; Kallen, 2002; Stephens et

a\., 1995) indicates that the most critical environmentally-induced degradation mechanisms

threatening the integrity of assets are various types of internal/external corrosion and cracking.

Corrosion includes uniform corrosion (UC), localized or pitting corrosion (PC), and erosion

corrosion (EC). Cracking includes stress corrosion cracking (SCC), corrosion fatigue cracking
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Fig. 5.1. Framework for Risk based Integrity Modeling
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(CFC) and hydrogen induced cracking (HIC). Corrosion is the loss of material as a result of

destructive chemical reaction between a metal or metal alloy and its environment (Jones, 1996).

Uniform corrosion is the uniform and regular removal of metals from the surface , which results

in thinning of wall thickness leading to leaks and breakage. The localized attack of corrosive

environment on an otherwise resistant surface produces pitting corrosion (Jones, 1996). The

combination of a corrosive fluid and a high flow velocity results in material wear-out , leading

to erosion type corrosion. The brittle fracture of a normally ductile alloy in the presence of an

environment or cyclic loading is known as environmentally-induced cracking (Jones, 1996).

The stress corrosion cracking occurs in metals or alloys with static tensile stress in the presence

of specific corrosive environmental condition. The corrosion fatigue cracking occurs under

cyclic stresses in a corrosive environment. Hydrogen induced cracking is caused by hydrogen

diffusing into the alloy lattice when the hydrogen evolution reaction produces atomic hydrogen

at the surface during corrosion, electroplating, cleaning and cathodic protection (Jones , 1996).

SA BAYES' THEOREM

Bayes theorem is one of the best suitable methods for logical and consistent reasoning .

Probability is a degree of belief, that is, how much one thinks that something is true based on

the evidence at hand. In the face of uncertainty in degradations, one can make the best

inference based on the inspection data and any prior knowledge that one might have, reserving

the right to revise the present knowledge if new information comes to light. Bayes theorem

encapsulates this process ofleaming as more evidence becomes available.
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Bayes' theorem states how to update the prior probability distribution, p(B) with a likelihood

function, p(y I B) mathematically, to obtain the posterior distribution as:

p(B I y) p(B)p(y IB)
f p(B)p(y IB)dB

(I)

The posterior density p(B I y) summarizes the total information, after viewing the data and

provides a basis for inference regarding the parameter, B (Leonard and Hsu, 1999).

Denominator of (I) , i.e., f p(B)p(y IB)dB is known as the normalizing factor, the estimation of

which is a daunting task in Bayesian analysis.

5.5 PRIOR PROBABILITY MODELING

A prior probability refers to the initial belief of something to be true. In the case of asset

degradation, the prior refers to the initial knowledge about each type of degradation

mechanisms. Although the choice of a prior is often subjective, a rational agreement can be

achieved by analyzing historic data from the same or other similar installations. (9) To develop

the prior probability models for different corrosion and cracking degradations, several

probability distributions have been tested using the data extracted from the relevant literature.

Details of the literature and statistical test for estimating the priors are presented elsewhere. (9)

A set of sample prior models, which are the initial knowledge based on judgmental studies ,

used to describe corrosion and cracking degradations are presented in Table 5.1.

5.6 LIKELIHOOD PROBABILITY MODELING

The inspection data obtained from an ageing offshore process facility has been used to estimate

the likelihood probability of different types of corrosion degradation. The facility has different

systems: a Gas Condensate system (GC), a Gas Export system (GE), and a high pressure
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Table 5.1. Sample Prior Probability Models and the Estimated Parameters

Structural Prior Probability Models and their Parameters Sources of
Degradation Type of Model Shape Scale Location Data (12-17)

UC
3PWeibull 1.7860 0.1062 0.0079 Anghel and

3P Lognormal -1.6500 0.2722 -0.0965 Lazar (2005)

PC
Type I Ext. Value 2.086 0.6821 Melchers
3P Lognormal 6.3010 0.0016 -543.40 (2005)

EC
3PWeibull 4.5970 0.0545 -0.0075 Vinod eta\.
Type I Ext. Value 0.0482 0.0109 (2003)

SCC
Weibull 2.7070 2.6790

Shibata (2007)
Type I Ext. Value 2.8520 0.8260

CFC
Weibull 2.2550 2.5080 Robert and
Lognormal 0.6192 0.7663 Harlow (2005)

HIC
Weibull 1.8750 18.130

Dell (1973)
Lognormal 2.4830 1.2330

Drilling Mud system (DM). Each system exhibited a different degradation mechanism. The Gas

Condensate system exhibited uniform corrosion degradation . The Gas Export system exhibited

localized or pitting corrosion . The Drilling Mud system suffered erosion corrosion degradation.

The data collected from each of these systems were used to update the relevant mode\. The data

includes the minimum and average wall thicknesses acquired during the period 1997-2003 .

Since no such data has been available for cracking, data from literature has been used instead .

5.6.1 Estimation of Corrosion Rate

The inspection data, which consists of wall loss measurements, has been divided into two

groups , namely ; straight pipes and features (both corrosion coated) . The features include bends ,

tees, reducers , flanges and valves . (18 ) Three major components : straight pipes , bends and tees

were considered in the analysis . The data is first analyzed to identify uniform or localized

degradation . A time dependent regression analysis was used to analyze uniform degradation

data, while the extreme value analysis was used to analyze localized degradation data .
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Mathematical details of the analysis may be obtained from elsewhere (Thodi et aI., 2009; Khan

and Howard, 2007).

5.6.2 Probabilistic Model Testing

The system corrosion rate data has been tested with same probability distribution models as in

the case of prior modeling. A goodness of fit test has been performed using the probabilit y plot

and Anderson-Darling (A-D) test, details of the testing and plots may be obtained from

elsewhere (Thodi et aI., 2009). A set of sample likelihood probability models and its parameters

for each type of corrosion and cracking are reported in Table 5.2.

Table 5.2 Sample Likelihood Probability Models and the Estimated Parameters

Structural Likelihood Probability Models and their Parameters Sources of
Degradation Model Shape Scale Location Data (19-2 1)

UC
3PWeibuII 0.6863 0.2401 0.0062 GCsystem-
3P Lognormal -1.937 1.2450 -0.0103 Pipe's

PC
Type I Ext. Value 0.6604 0.5730 GEsystem-
3P Lognormal -1.672 I.l750 -0.0061 Bend's

EC
3PWeibuII 0.9551 1.3400 -0.1281 DMsystem-
Type I Ext. Value 2.0990 1.7760 Tee 's

SCC
WeibuII 0.8288 9.9507 Engelhardt
Type I Ext. Value 0.8331 0.0806 et ai. (2003)

CFC
WeibuII 0.0015 0.2907 Sankaran
Lognormal -8.2964 3.6164 et ai. (2001)
WeibuII 0.0087 0.9359 Woodtli&

HIC
Lognormal -5.2798 1.0654

Kieselbach
(2000)

The statistical reliability tests have been performed for the estimation of priors and likelihoods

of different corrosion and cracking degradation mechanisms . From Table 5.I and 5.2, it has

been observed that the priors and likelihoods are identical distributions ; therefore, one can say

that the likelihood supports the prior and that makes the estimation of posteriors of degradation
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easy. Furthermore, it supports the assumption that the posteriors yield the same form of

distributions as that of priors and likelihoods .

5.7 POSTERIOR PROBABILITY MODEL DEVELOPMENT

There are four methods for computing the posterior distributions using the known prior and

likelihood functions. They include (Ghosh et al., 2006): analytical approximations , such as

numerical integration techniques and Laplace approximations; data augmentation methods;

Monte Carlo direct sampling and McMC (Markov chain Monte Carlo) methods , such as M-H

algorithm and Gibb's sampling . If the problem under consideration does not involve a

conjugate prior-likelihood pair, the posterior parameter estimation can not be performed in

closed form; analytical approximation or Monte Carlo methods are needed (Tierney and

Kadane, (986). In the present study, the developed prior and likelihood for degradation s, like

Weibull, Lognormal (with two and three parameters) and Type I Extreme Value do not lend

themselves easily to Bayesian updating. The main problem is that there is no distribution class

on the parameters that is preserved under Bayesian updating (Bedford and Cooke, 200 I). This

means that simulation methods are the best ways to determine the posterior distributions of

such prior models. The use of M-H algorithm in conjunction with a particular choice of prior

has been suggested (Bedford and Cooke, 2001; Robert and Casella, 1999). In the present study,

the M-H algorithm has been studied. In order to compare the results of the M-H algorithm, an

analytical Laplace approximation method has also been used. By comparing the results of both

the estimations against the values obtained from known conjugate pairs, the best suitable

posterior development method has been concluded.
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5.7.1 Metropolis - Hastings (M-H) Algorithm

The M-H algorithm is a rejection-sampling algorithm used to generate a sequence of samples

following a probability distribution that is difficult to sample directly (Metropolis et aI., 1953;

Hastings, 1970). This sequence is used in McMC simulation s to approximate a distribution or

to compute an integral. In Bayesian applications , the normalizing factor is often extremely

difficult to compute, so the ability to generate the posterior samples without actually knowing

this constant of proportionality is a major virtue of this algorithm (Berg, 2004) . The McMC

methods are extensively used in statistics to simulate complex, non-standard multivariate

posterior distributions (Chib and Greenberg, 1995).

The algorithm generates a Markov chain in which each state x l + \ depends only on the previous

sample state X l . The algorithm uses a proposal density q(x '. x' }, which depends on the current

state xl , to generate the new proposed sample x' . The proposal is accepted as the next value

(x l+\ = x') if a (x', x ' ) drawn from a uniform distribution, 1/(0,1) is:

a (x', x' ) < p(x').q(x ',x')
pi x' ).q(x', x' )

(2)

If the proposal is not accepted, then the current value of x is retained; i.e., xl +1 = x", The

proposal density may be a multivariate Gaussian distribution centered around the current state

Xl; q(x' ,x l
) - N(x l

,00
2 ) , where, q(x' ,x l

) is the probability density function for x' given the

previous value X l . This proposed density would generate samples centered around the current

state with variance, 00
2. The acceptance of such generated samples will be based on equation

(2). Theoretical background of the M-H algorithm (Chib and Greenberg, 1995) has been

summarized in the next section.
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Theory behind the M-H Algorithm

A proposal density q( x' , x l) is assumed, where fq(x' , xl )dx l = I . It is assumed that the density

is to be depending only on the current state of process, since dealing with Markov chains. This

value is to be interpreted as saying that when a process is at the point xl , the density genera tes

a value x' from q( x' , xl ). For that to happen, q(x' ,xl ) should satisfy reversibility condition

(Chib and Greenberg, 1995). But mostly, it will not; one might find for example, that for

p(x l ).q(x' j ) > p( x' ).q(x l ,x ') (3)

In this case, the process moves from Xl to x' too often and from x' to x' too rarely. A

convenient way to correct this condition is to reduce the number of moves from / to x' by

introducing a probabilit y a (x ',xl ) < I , that the move is made. The a (x ',xl ) is known as the

probability of move. If the move is not made, the process again returns xl as a value from the

target distributi on. Thus, the transition from xl to x' are made according to

PMII( X',X') = q(x' , x ' )a( x' ,x ') , x'* x' , where the probabili ty of move, a (x' ,x l ) is yet to

be determined. From (3), it is obvious that the movement from x' to Xl is not made often. One

should therefore , define a (x l,x' ) to be as large as possible and, since it is a probability its

upper limit is I. But now, the probabi lity of move a (x ', Xl ) is determined by requirin g that

PMil (x' , x' ) satisfies the reversibility condition, because then (Chib and Greenber g, 1995):

p( XI)q(x' ,x l) a(x' ,x l) =p(x' )q(x l ,x' )a (x l ,x ' )

= p(x')q(xl ,x' )
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Therefore, a(x' ,x l) = P(x;>q(XI.x;)
p(x )q(x', x )

(5)

where, a(xl ,x') is set as I (the upper limit). If the inequality in (3) is reversed, we set

a (x', x l ) = I, and derive the a (xl ,x' ) as above. The probabilities a(x' ,x l) and a(xl,x') are

introduced to ensure that the two sides of (3) are in balance or, in other words, PMH (x', xl)

satisfies the reversibility. Thus, in order for PMH(X',X I) to be reversible, the probability of

move must be set to:

a(x' ,x l) =min[ P(x;>q(X
I .x;) ,I], p(xl)q(x'j) > 0

p(x )q(x', x )

=I otherwise. (6)

The M-H algorithm is specified by its proposal density, q(x',xl) (Chib and Greenberg, 1995).

If a candidate value is rejected, the current value is taken as the next item in the sampling

sequence . The calculation of a(x', xl) does not require the knowledge of normalizing constant

of p(.) because it appears both in numerator and denominator. If the proposal density is

symmetric, i. e., q(x',xl) =q(XI,x'), then the probability of move a(x',xl) reduces to

p(x') / p(xl), hence, if p(x') > p(x l), the chain moves to x' ; otherwise it moves with

probability given by p(x') / p(xl). In this study, the M-H algorithm has been implemented in

Matlab software. The algorithm implementation details can be obtained from elsewhere

(Makowski and Wallach, 2007; Makowski et aI., 2002; Robert and Casella, 1999; Chib and

Greenberg, 1995; Tierney, 1994).
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5.7.2 Laplace Approximation

Laplace method (Laplace, 1986) is used for approximating the parameters of the posterior

densities that is useful in Bayesian applications when direct estimations are difficult. The

Laplace approximation is very handy tool when a normal approximation posterior is reasonabl e

and can be especially useful in higher dimensions when other methods fail (Gill, 2002) . The

basic idea is to carry out a Taylor series expansion around the maximum likelihood estimate

value (i.e., mode) , ignore the negligible terms , and normali ze, The derivation of the

approximation in one dimension is simple and it starts with a posterior density of interest

calculated by the likelihood times the specified prior :

pee I y ) is proportional to p(e)L(y le) (7)

where , pee) is the prior, L(y l e) is the conditional likelihood function and, p(e l y ) is the

posterior. It is assumed that this distributional form is nonnegati ve, integrable , and single

peaked about the distribution mode e. The standard reference for approximating the Bayesian

posteriors with Laplace method (Tierney and Kadane , 1986) and theoretical details on the

accuracy of the approximation has been reported (Wong and Li , 1992; Kass, 1992).

Furthermore , it was showed that how the Laplace approximation can be a handy tool for

calculating the parameters of the Bayesian posteriors (Ghosh et aI., 2006 ; Tanner , 1996; Kass,

1993; Tierney et al., 1989 a and b; Tierney and Kadane , 1986).

Theory behind the Laplace Approximation

A computable approximation for the posterior mean and variance of a smooth function of the

parameter that is nonzero on the interior of the parameter space is introduced (Tierney and

Kadane, 1986). Let gee) be a smooth, positive function on the parameter space, with a

maximum at iJ. The posterior mean of gee) can be written as: (23)
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ji = E[g(O)/y] Jg(O). e-nh( B)dO

Je-nh( B)dO
(8)

where, e- nh(B) = p(O) .L(y /O) . It is a common practice to approximate the denominator

integral by an approximating normal curve centered at the posterior mode and having variance

equal to minus the inverse of the second derivative of the log posterior density at its mode. It

will produce reasonable results as long as the posterior is dominated by a single mode (Tierney

and Kadane , 1986; Tanner, 1996). Bayesian posterior analysis requires the evaluation of

integrals of the form, as shown in (8) :

(9)

where , g and - h are smooth functions of 0 , with - h having a unique maximum at iJ . In

Bayesian applications, - nh(O) may be the log-likelihood function or logarithm of the un-

normali zed posterior density p( O).L(y / O) and iJ may be the maximum likelihood estimate. If

g (O) has a unique sharp maximum at iJ , then most contribution to the integral/comes from

the integral over a small neighborhood (B- o,iJ+ 0 ) of iJ(Gho sh et aI., 2006)·

As n ~ 00 , we have, / '" /1 = 81'5 g (O).e- nh(B)dO

8- a

Laplace method involves Taylor series expan sion of g and h about o,which give s, (22)
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Ih8[g( tJ)+ (O- O)g'(O)+ ~ (0 -0) 2 g"( B) + smallerlerms]x
11- J

0-8 ....exp[ - {nh(B) + n(0 - B).h'(0) +~(O - B)2.h"(0) +smaller lermS}]

. 0+8[ ]
II - e- nh(O)g «(J). J I +(O- O)g'(B)/ g(B) +~(O - B) 2.g"(B) / g(O)

0 -8

x exp[ - ~ (O-B)2 h"(B)]dO

Assuming that c = h"(O) is positive and, using a change of variable, 1 = & (0 - B), (22)

h(O) • I +8&[ I • • 1/
2

•• ] [/
2]

i -. «" g(O) ~ I 1+ ~ g' (O) / g(O) +-- .g"(O)/g(O) x exp - - dt
-snc -8& -snc 2 nc 2

1 _ e- nh(O) ,J2;ig( O)[1+ g"( t.7). ]
.& 2ncg(O)

=e- nh(O) .Jfi- g( O)[1 + O(n - I )]
-Jnc

(II)

(12)

There is an approximation for estimating the mean, E[g( 0 ) / y ] (Tierney and Kadane, 1986):

First apply the Laplace method to the numerator of (8) with g (O) positive, and,

- nh * (0) = - nh(O) + 10g(g( 0»

. [a 2 - nh *(0 ) ] - 1/2
where 0 * lsthemodeof -nh*(O) and, 0"*2 = - - - 10.

a02

Next, apply the Laplace method to the denominator of(8) with, g( O)=I.

- nh(O) = log L(y / 0) + 10g(p (0»

[ ]

- 1/ 2

where 0 is the mode of - "h( O) and, 0-2 = a
2
~;; (O) 10
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Taking the ratio , the approximat e mean may be obta ined as (Tierney and Kadane , 1986;

Tanner, 1996):

a " .
E[g(O) ] = ji = --;:-{exp[- /liz*(O*)]}/ {exp[- /lIz(O)]}

The simplest way to obtain such an approximation for posterior variance is to set: (23)

V[g (O)] = (f2 = E[g( O)2] - E[g( O)]2

(15)

(16)

One can use (15) to approximate the posterior means of g(O) and g(O)2 and then insert these

values into a standard computational formula for variance (16). Further , it has been showed that

the mean and variance has a relative error of (Tierney and Kadane, 1986):

E[g(O)/ y ] = E(g)[1 + 0 (/1- 1)] and

V[g (O) / y ] = V(g )[1+ 0(/1- 2)]

(17)

(18)

Computational requirem ents of this approach are min imal; one just needs to evaluate the first

and second derivative and maximize both the integrands. Still, the resultin g approximati ons are

quite accurate. An intuitive explanation for this is given (Tierney and Kadane, 1986); if the

function is bounded away from zero near the posterior mode , then the two integrands will be

similar in shape. Thus, by applyin g the same approxim ation technique to the numerator and the

denominator one will be making similar errors , and in taking ratio some portion of these errors

will be cance lled. Detailed mathematical derivation of the Laplace approximation for

estimating parameters of the posterior distributions of known conjugate pairs, such as normal -

norma l, gamma-gamma , gamma-normal and gamma-poi son are included in Appendix 5.1.

5.7.3 Compar ison with Conjugate Pairs

Both the M-H algorithm and Laplace approximation are coded in Matlab and used for
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developing the posteriors of the aforementioned degradation priors. The known conjugate

prior-posterior values are used to validate the code. Inputs to the Matlab codes are the sampling

size, the respective prior and likelihood parameters and the outputs are the estimated posterior

parameters using the both methods. The natural conjugate pair of exponential family is

extracted from literature (Robert and Casella, 1999) and presented in Table 5.3. The sample

prior, likelihood and conjugate posterior parameters considered are shown in Table 5Aa and the

corresponding parameters estimated by the M-H algorithm and the Laplace approximation

methods are presented in Table 5Ab. It has been observed that the M-H algorithm produced

better results ( Error < 12%) compared with Laplace approximations ( Error < 28%) . The

error in Laplace estimation has been found to increase while estimating variances using higher

order terms.

Table 5.3. Natural Conjugate Pair of Exponential Family (Robert and Casella, 1999)

Likelihood, l (x 10 ) Prior,p(O) Posterior distribution, p(O1x)

Normal,N(O,a 2) Normal,N(p,r 2 ) N (p(a2p +r2x),pa2r 2) p -I = a 2 + r2

Poisson, P(O) Gamma, G(a , p) G(a +x,f3 + l)

Gamma,G(v,O) Gamma, G(a ,f3) G(a +u,f3 +x)

Normal,N(p, I IO) Gamma, Ga(a ,13) G(a + 0.5, f3+ (p - x)2 12

Table 5Aa. Parameters of Prior, Likelihood and Conjugate Pair Posterior Distributions

Prior distribution Likelihood distribution Posteriors by conjugate pairs

Type Pari Par2 Type ParI Par2 Type ParI Par2

Normal 5.00 2.000 Normal 9.00 1.00 Normal 8.2000 0.8000
Gamma 0.10 0.025 Gamma 2.00 1.00 Gamma 2.1000 1.0250
Gamma 0.10 0.025 Normal 2.00 1.00 Gamma 1.5000 0.7500
Gamma 0.10 0.025 Poisson 1.00 Gamma 1.1000 1.0250

Notes: Pari denotes parameter I , which refers to the mean in normal and shape parameter in Gamma
Par2 denotes parameter 2, which refers to the std. deviation in normal and scale parameter in Gamma
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Table 5.4b. Comparison of Posteriors by M-H Algorithm and Laplace Approximations

Posterior M-H algorithm Percentage error Laplace appx. Percentage error

Type ParI Par2 ParI Par2 ParI Par2 ParI Par2

Normal 8.2286 0.7498 -0.35 6.28 8.2008 0.7476 -0.01 6.55
Gamma 2.3557 1.0362 -12.18 -1.09 2.0110 1.2084 4.24 -17.89
Gamma 1.5616 0.7444 -4.11 0.75 1.4331 0.7915 4.46 -5.53
Gamma 1.1986 1.0756 -8.96 -4.94 1.2213 0.7338 -11.03 28.41

5.8 RESULTS AND DISCUSSIONS

The prior-posterior analysis results obtained using the M-H algorithm for corrosion and

cracking are summarized in Table 5.5, and are shown graphically in Figures 5.2 to 5.7. The

prior and likelihood parameters were taken from Tables 5.1 and 5.2, respectively . The M-H

algorithm coded in Matlab has been used to simulate the posterior samples and to estimate their

parameters. Input to the code includes the prior and likelihood parameters , and required sample

size. The posterior estimation based on M-H algorithm converges to results with around 10000

samples. First halfofthe simulated samples were ignored. These samples describe the transient

state. The remaining samples which describe a steady state condition were used. The

acceptance rate was above 65%. Being computationall y intensive, the Laplace approximation

was not very useful while using distributions with more than two parameters. The error in

Laplace estimation has been found to increase as a result of computing the variance using

second order terms.
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Table 5.5. Summary ofthe Estimated Posterior Probability Models and its Parameter s

Structural Posterior Probability Models and its Parameters
Degradations Type of Model Shape Scale Location

UC
3PWeibull 1.2660 0.1017 0.0079
3P Lognormal 0.1202 0.2810 -0.0939

PC
Type I Ext. Value 1.7280 1.1070
3P Lognormal 1.7370 1.0750 -543 .50

EC
3PWeibull 2.7070 0.0421 -0.0065
Type I Ext. Value 0.0447 0.0164

SCC
Weibull 1.6590 1.9500
Type I Extreme Value 2.4450 1.3410

CFC
Weibull 1.4560 2.0650
Lognormal 2.7700 2.6410

HIC
Weibull 1.0970 10.560
Lognormal 14.190 10.050
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Distribution Plot
Weibull

0.1 0.2 0.3 0.4
Corrosion Rate (nmfyear)

Fig.5.2. Sample Prior-Posterior (Weib ulI) Analysis Result for UC (M-H algorithm)

Distribution Plot
Smallest Extreme Value

0.2

0.6~----------------' ,----------,

.1::!
l!! 0.3
~

\
\

0.0 ..Lr----=--==-.::::...:=-r--=<=~-,--------.-~..::...--___,J

-5.0 -2.5 0.0 2.5
Corrosion Rate (nm/year)

Fig. 5.3. Sample Prior-Posterior (Extreme Value) Analysis Result for PC (M-H algorithm)
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Distribution Plot
Weibull

35

25

~ 20

~ 15

0.00 0.02 0.04 0.06
Corrosion Rate (rrm/year)

Fig. 5.4. Sample Prior-Posterior (Weib ull) Analysis Result for EC (M-H algorithm)

Distribution Plot
Weibull, Thresh=O

:I:!

~ 0.2

2 3 4
Cracking Rate (rrm/unit time)

Fig. 5.5. Sample Prior-Posterior (Weibull) Analysis Result for SCC (M-H algorithm)
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Distribution Plot
Weibull, Thresh=O

0.3

It::!

~ 0.2
~

2 3 4 5
Cracking Rate (mm/cycle)

Fig. 5.6 . Sample Prior-Posterior (Weibull) Analysis Result for CFC (M-H algorithm)

Distribution Plot
Weibull,Thresh=O

:I::!
~ 0.04
~

0.03

10 20 30 40
Cracking Rate (mm/unit time)

Fig. 5.7 . Samp le Prior-Posterior (Weibull) Analysis Result for HIC (M-H algorithm)
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5.9 SUMMARY AN D CONCLUS IONS

This paper presents a framework for risk based integrity modeling and the development of

stochastic model s for asset degradation mechanisms in process plants . The proposed framework

takes into account the uncertainty and variability in degradations. The life threatening asset

degradation mechani sms are identified as different types of corrosion and cracking. The earlier

developed prior models of corrosion and cracking are revised to obtain posterior distributions

using simu lation based M-H algorithm and analytical Laplace approximation methods . Since

these posterior models are based on real life NDT data, they provide more reliable and accurate

predictio ns for the future degradations of asse ts.

The use of a simulation method is necessitated because ; none of the prior mode ls falls into the

natural conjugate pair of the exponential family. The two Matlab programs, one using the M-H

algorithm and another using the Laplace approximations, have been developed and used to

compute the posterior distributions. The code is calibrated using known conjugate pairs. The

programs work well for Weibull, Lognormal and Type 1 Extreme Value distributions. Further ,

it has been observed that , for posterior estimation, the rejection sampling based M-H algorithm

is the best suitable method compared with the Laplace approximation method. For corrosion,

the prior distrib ution is based on historic failure database , and likelihood is based on field NDT

data of an age ing asset in operation, hence the posteriors conve rge based on their parameters.

Since there was no field inspection data avai lable in the case of different cracki ng; data from

literature is used instead.
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The posterior estimation based on the M-H algorithm converges to satisfactory results within

10000 steady state samples . The acceptance rate was above 65% which satisfies the statistical

requirements. But, the Laplace approximation results were not encouraging, especially when

working with three-parameter distributions . The error accumulates in the variance estimation

due to the second order terms. Laplace approximation diverges as the parameter is either too

small or too large due to numerical instability resulting from the use of higher order terms in

the estimate. Therefore, for developing the posteriors of structural degradations in process

plants, the Laplace approximation would not be recommended. While using the M-H

algorithm, the change in location parameter from priors to posteriors was found insignificant.

Therefore, instead of using three-parameter models, one may use the two-parameter models to

develop the posteriors and subsequently the location parameter can be added.
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APPENDIX 5.1

1. NORMAL (PRIOR, (p p ,CYp)) + NO RMAL (LIKEL IHOOD, (f.l/,CY/)) ~ NORMAL

(POSTE RIOR, (ji, Ci))

I(O-l'pJ2
I -2~ .

Prior , pCB) = ~ e p , where(pp ,CYp ) are the first two moments (I. e., mean
v 2JrCY p

and standard deviation) of the prior distribution.

standard deviation of the likelihood function .

1.1 Estimat ion of Posterior Mea n

- nh(B) = logp(B) + log L(B/ y )

- I _~(O_ IIP ) 2 _ I - 2~ 2 (0- 1'0
2

= log[(CY p J2J0" .e p ]+log[( cy/J2J0".e / ] (I)

= _ _ 1_
2

(B -f.l p) 2-~(B- f.l/ ) 2
2CY p 2CY/

where , the constant term s are ignored as it will cancel out while we take the differences.

Now , for estimating the posterior mode 0,8(-;~(B)) = 0 , thi s implies ,

i.e.,- (B - J~p) +_ (B- ~l/ ) =0

CY p CY/

i .e. , [~ +~]o = [ f.lP2 +4]
CY p CY/ CY p CY/

B =B JlpCY/ + f.lfCY p2

CY/ +CYp
2
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'n order to estim ate the standard deviation, 0-, 0-2
- I

[a2 (~;~(e»IJ

[
2 2 ]i e 0-2 = '__ = __1__ =~

.., _[~+~] [~+~] a/ +a/
«» at a p at

- nh * (0) = - nh(O) + log p( O)

= - nh(O) + 10g(0)

= _ _ 1_
2

(0 _p
p)2

-~(0- Pt ) 2 + log(O)
2a p Za ]

(3)

(4)

Now, for estimating 0* , lets find the first derivative and equate to zero , i.e., a(-nh*(0)) = 0,
eo

which implies,

i.e.,- (O -J~p) _ (O -~lt) + .!.-= O

CYp CYt 0

. [I ,] [pp Pt] Il.e. - - + - 0+ - +- + -= 0
, a p 2 CY/ a p 2 a/ 0

Multipl ying through out by 0,
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(5)

. . . * *2
In order to estimate the standard deviation , (J" , (J"

- I . . .

[ ]

' this Implies,

a2
(- nh* (O» 1

ao2
e*

(6)

And then, we can compute the E[ g( B)] using equation (7), as outlined in (Tierne y and Kadane,

1986; Tanner, 196) below :

E[g(O)]=Ji=~exP[-nh * (O* )] / exp[-nh(e)]

1.2 Estimation of Posterior Variance
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_~(02_P/ ) 2

Likelihood , L(0 2 /y) =~.e 217/
2

CY/v2Jr

- nh(02) =log p( 02) + log L(0 2 / y)

_I _~(02_pp ) 2 - 1 - 2~ 2 (02 _p02

=log[(cyp $) .e p ] + log[(cy/$) .e / ] (8)

= _ _ 1_
2

(0 2 - Jip )2 _~(02 _ p / )2
2CYp 2CY/

where, the constant terms are ignored as it will cancel out while we take the differences.

Now, for estimating the posterior mode e,a(- nh(0 2» = 0 , this implies,
eo

. 2(0
3

- JipO) 2(0 3 - Ji/O)
l.e·'- - - 2- + - - - 2- =0

«» cy/

i.e.'(~+~]03 =(PP2 + Ji/2 ]0
cyp cy/ «» cy/

0 2 ={) JipCY/ + JiW p
2

CY? + CYp
2

(9)

For estimating a,calculate as, 0'2
- 1

( 0' (~;~(B» IJ
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- nil *«()2) = _nll«()2) + log p(0 2 )

= _nll«()2) + log«()2)

=__ 1_
2

(0 2 _ p p )2 _~(02 - p tl 2 + 2 Iog«()
20"p 20"[

Now, for computing ()*, 8(- nil*«()2» = 0 , this implies,
80

i.e.,- 2«() 2 _ ~lp)() + _ 2«()2 _t [ )O+ ~= o
"» 0"[ 0

. [ I I ] 3 [pp P[ ] 2l.e.,-2 - +- () + 2 - +- ()+ -= o
O"p2 O"p2 O"p2 0"/ ()

Multiplying through out by 0,

- 2[ P P2 +4]± 4[ P P2 +4]2 - 4X-2[~+~]X 2
()2 = () * O"p 0"[ O" p 0"[ O"p 0"[

2 X -2[~+~]
"» 0"[

(10)

(II)

(12)

. . * *2
Now, for estimatmg, 0" , 0"

- I . . .

[ ]

' this implies,

8
2

(- nil; «()))I
ao o·
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a
2
(-nh* (O)) =-6[~+~]02 -~ + 2[ !!.L + J!L]

a02 ap
2 a/ 02 ap

2 a/

Then we can compute the E[g(O)2] (Tierney and Kadane , 1986; Tanner , 196):

a 10* * *2 ,
E[g (O)2 ] = a:r;;- eXp[- nh (0 )]/exp[-nh( 02)] (14)

Once the posterior mean, for 0 , i.e., E[g(O)] and the posterior mean , for 02, i. e., E[g(02)]

are known , we can compute the posterior variance using the equation (15);

V[g(O)] =s? = E[g( 02)] - E[g( O)]2

2. GAMMA (PRIOR, (ap ,fJp» + GAMMA (LIKELIHOOD, (al,fJI» => GAMMA

(POSTERIOR, (a } J»

Prior, p( O) =Oa p - Ie- PpO, where, (a p , fJp)are the parameters of the prior distribution .

Likelihood, L(O/ y ) =Oal - Ie- PI (), where (al, fJI) are the parameter s of the likelihood.

2.1. Posterior Gamma Mean

- nh(O) = logp(O)+ logL( O/ y )

=IOg(Oa p - Ie- Pp()) + log(Oal -l e- PIO)

= [a p + a I - 2] log 0 - [fJp + fJtJO
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For estimating the posterior mode iJ, a-;;(0)=0, which implie s,

For estimating a, a
2

- n
2h(

O) = - [a p + a [ - 2]~
ao 0 2

(17)

or,a =
0 2 iJ

[a p +a[ -2] = J [a p +a[ -2]
(18)

- nh*(0) = - nh(O) + log 0

- nh* (O)= [a p +a[ - 2] logO - [P p +PdO+ 1og O

For estimating the posterior mode 0*, a- ~~ (0) =0, which implies,

[a p + a, - 2]~- [Pp +PI ] +~ = 0

~[ap + a,- I ]= [Pp+PI ]

Therefore, 0 =0* = [a p + a [ - I]
[Pp + Pd

For estimating a, a
2

- nh
2
*(0) = - [a p + a [ - I ]~

ao 0 2
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or, (Y =
e2 e*

[a p +a,- I] = J [a p +a, - I]
(21)

Therefore , posterior mean , E[g( e)] = ji =~ exp[- nh*(e* )] / exp[- nh(O)]

2.2. Posterior Gamma Variance

- nh(e2) = logp(e2) +logL(e2 / y )

= IOg[ e 2<Up - l)e- fJp82 ]+ IOg(e 2<U' - I)e- fJ' 8
2)

= 2[a p +a, - 2] loge - [fJp + fJd e2

For estimating the posterior mode of g(e2) , 0, a- nh(e
2)

= 0, which impli es,
ae

For estimating 0-, a
2
- n~(e 2 ) =-2[a p +a,-2]-;' - 2(fJp + fJ, )
eo o
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(25)

- nh* (0 2) = - nh(02) + log 02

= 2[a p +al- I] logO - [Pp + PtJ02
(26)

For estimating the mode 0*, a- nh*(0
2)

=0, which implies ,
se

2[a p +al - 1]~- 2[Pp + PtJO=°
~ [a p + aI - I] = [Pp + PtJO

Therefore, 02 = 0* = [a p + a l - I ]
[P p + PtJ

(27)

For estimating (J" *, a
2

- nh: (0
2)

= - 2[a p + a l - I]~ - 2[Pp + PI]
eo 0

- I

a2 - nh* (02 )
--ao-2- [

2[a p +al - I] )
--0-2-- + 2[Pp + Pd

(28)
1

[

2[a p +al- I ] ]
--0-*2-- + 2[Pp + PtJ

or, (J" = 1---;--- - - - - - "7"

Now , we can estimate the posterior mean for g(02 ) as, E[g( 0) 2] (Tierney and Kadane, 1986;

Tanner , 196):

2 (J" le* * *2 ' 2
Therefore, posterior mean , E[g( O )] = -'-1- exp[ - nh (0 )]/ exp[ - nh(O )]

(J" iJ

(29)
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Once the posterior mean, for 0, i.e., E[g(O) ] and the posterior me an, for 0 2, i. e., E[g(O)2 ]

are known , we can compute the posteri or vari ance using equation (30) below;

V[g (O)] = E[g (O)2 ] - E[g(O )]2

Hence, the posterior standard deviat ion , (f =J V[g (O)] . Now one can easily compu te the

parameters of posterior distributi ons, using mean and standard deviat ion as,

3. GAMMA (PRIOR, (a,fJ) ) + NORMAL (LIKELIHOOD, (JI,a) ) ~ GAMMA

(POSTERIOR, (a,jJ) )

Prior, peS) =G(a,fJ) =O(a - l)e- BfJ, where (a,fJ) are the par ameters of the distribut ion .

(30)

(30 . 1)

I(B-Jlr
Likelih ood , L(mYI,...,Yn ) = L(O/ y ) = ~ e- "2 ----;- , wheref zz.rr) are the mean and

v2;ra

standa rd deviation parameters of the likelih ood function .

3.1 Estimation of Posterior Mean

- nh(O) = log L(O/ y) + log p (O)

-~(e- Jl ) 2 a
= log[( a J2;0 -I .e 20-2 ] + log[L Oa - Ie- fJB]

rea)

=-~(0- Jl ) 2 + (a - I ) logO -fJO
2a 2

where, the constant term s are ignor ed as it will cancel out whil e we take the dif ferences.

Now , for estimating the posteri or mode e,a(-~~(O)) = 0 , this impli es,
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i.e.,- (8;t)+ a; I - fl =0

_~+ (a -I) +L- fl= O
(]"2 8 (]"2

Multiplying throughout by 8,

Therefore, 8 = iJ
-(~- fl)± (~ - flr- 4 X-(~ ) X(a - I)

2 . X -(~)
(32)

Now, for estimating 0-,0-2
- I

(33)

- nh * (8) = - nh(8 ) + log p( 8)

= - nh(8 ) + log(8)

= - 2~2 (8 - JI)2 + (a - I) log(O) - fl8+ log(8)

Now, for estimating 8*, a(- nh*(8)) = 0 , this implies,
eo
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i.e.,--iz(o- p) + (a -1)7i -{J+ 7i = 0
. (I) (a) pl.e.,- 2 B+-+ 2 - {J= 0

(J" B (J"

Multiplying through out by B,

(35)

Now , for estimating (J" *, (J" *2

[
- I """8

2
(- nh* (B))1

8B
2 o·

And now , we can compute the E[g (B)]; (23.40)

E[g (O)] = Ji=~exp[-nh*(B*)]/exp[-nh(8)]

3.2 Estimation of Posterior Variance
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- nh(0 2) = logL(02 / y) + logp(02)

- 1 _~(B2 _Jl)2 a (a - I) 2
= log[(ooJ2;0 .e 2iT J+log[L 0 2 e-{JB J

rca)

= _~(02 - pi + (a - I) log 0 2 - 130 2

200
2

where , the constant terms are ignored as it will cancel out while we take the differences.

Now, for estimating the posterior mode e, B(- nh(0 2)) = 0, this implies ,
BO

i.e.,- 2(0
3
~ JlO) + 2(a - I) _ 2130= 0

a 0

_ 20
3

+ 2(a - 1) + 2pO _ 2130= 0

00
2 0 00

2

Multiplying throughout by 0 ,

(2J 4 ( JI J 2- ~ 0 + 2 ~- f3 0 + 2(a- I) = 0

. - (~- f3J± (~- f3r- 4X-(~JX(a- l)
Therefore, 0 2 = 0

2 . X -(~J

(38)

(39)

Now , for estimating 0-,0-2
- 1
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- nh *(0 2) = - nh(f) 2) + logp(f) 2)

= - nh(f) 2) + log(f)2)

=_~(f) 2 _ p )2 + (a)log(0 2) - fJ0 2

20"

Now, for estimating 0* , a(- nh*(0
2

)) = 0 , this implie s,
ee

i.e. ,-~(03 - PO) + 2a ~- 2fJO = 0

. ( 2J 3 2a ( p Jl.e.,- ~ 0 + 0+ 2 ~- fJ 0 = 0

Multiplying through out by 0 ,

(40)

(41)

0 2 = 0* (42)

Now, for estimating 0"* , 0"*2
- I . ..

[ ]

' this implie s,

a 2 (-nh~02 )) 1
eo 0*
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And now , we can compute the E[g (O)] ; (23. 40)

2 0'* * *2 •
E[g(O )] =a:- exp[- nh (0 )] /exp[ -nh(0 2)]

In order to find the posterior gamm a vari ance , the following expre ssion can be used.

V[g (O)] = E[g (O)2 ] - E[g (0 )]2

(43)

(44)

(45)

Therefore, the posterior standard devi ation , if = J V[g(O)] . Now one can easily compute the

param eter s of posterior distributions, using mean and standard deviation as,

4. GAMMA (PRIOR(a , ,B»)+ POISON (LIKELIHOOD, (0») => GAMMA

(POSTERIOR, caJJ»

Prior , p(O)=G(a, ,B) =O(a - l)e- B/l, where (a , ,B) are the par ameter s of the distribution.

Likelihood, L(t1Yl,...,Yn ) = P(O) =e-n BOL Yi , where (YI ,...,Yn) are the observa tions.

4.1 Estimation of Posterior Expectation

- nh(O) = log L(O/ y) + log p(O)

= 10g{e-n BOL Yi) + 10g{O(a -l)e- /lB}

= - nO+ LYi. 1og(B) + (a - 1) log(O) - ,BO

= 10gO(a - 1)- 071

2 10

(45 .1)

(46)



where, a =a + LYi and 7J =fJ+ n are the parameters of conjug ate posterior s.

Now , for estimating the posterior mode e, a(-;~(O» =0 , this implie s,

W - I)~ -7J = O

(47)

Now, for estimat ing 0-,0-2
- I . . .

[ ]

this implies ,

a2
(- nh(0 » 1

a0
2 e

- nh*(0) = - nh(O) + log g( O)

=- nh(O) + log(O)

= log OW - 1) - 0(7J) + log(O)

= a logO- 07J

Now , for estimating 0 *, a(- nh*(0» =0 , this implie s,
ao

a~ -7J = 0

2 11

(48)

(49)

(50)



Now, for estimating (J *, (J*Z
- I .. .

( ]

' this implies,

aZ(-nhz* (e» 1

eo «

Then we can compute the E[g (e )] (Tierney and Kadane, 1986; Tanner , 196):

E[g( e)] = ji =~exP[-nh *(e*)]/exp[-nh(O)]

4.2 Estimation of Posterior Variance

In order to find the posterior variance , the following expression can be used. (23. 40)

V[g( e)] =E[g (e )z ] - E[g( e)] z

In order to use equation (53), we need to use the equation (52) and further appro ximate

the E[g( e)Z] . Following the same procedure ;

- nh(eZ) = log L(eZ / y ) + log p(e Z)

=log {e- nOZeZ'[.Yi ) + log {eZ(a-l)e- POZ }

=- nez + 2I Yi .log(e) + 2(a - I) log(e) - pe Z

= 21og0(a - I) - OZ7J

Now, for estimating 0, a(-nh(OZ» = 0 , this implies ,
eo

2(a - 1 ) ~- 2e7J = 0
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i .e.,( ii - I) i = rijJ or 0 2 = (iii I)

e=o2= (ii -=- I)
/3

(55 )

Now , for estimating 0-,0-2 - I . . .

[ ]

this impl ies,

a2
(- nh(0 2» 1

ao2 e

I I

[-(ii - 1 ) ~-2jJ] 2 (~ ;1) + 2jJ

- nh *(0 2) = - nh(0 2) + log(0 2)

= log {e - ne 202L.Yi )+ log {0 2(a -l )e- pe 2 }

= - n0 2 + 2L:Yi. log(O) + 2(a - 1) log(O) - /30 2

= 2log 0( ii - I) - 0 2jJ + 2 Iog(O)

Now , for estimating e,a(- nh*(0
2»= 0 , th is implie s,

ee

i.e.,2(ii - I)i - 2jJO+ ~ = 0

i , e, ~(ii) = 2jJO

or,
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a2
(- nh*(0

2
» = - 2(a - 1 )--.!...--~-2fJ

ao2 0 2 0 2

= -~(a - I+ I ) - 2fJ

=-~- 2fJ
0 2

Now, for estimating a * a *2
- I .. .

[ ]

this implies,

a2
(- nh; 0 2» 1

eo e*

U *2 = 2;1 = 1_

- --2fJ 2(~ + fJ)
0

2
0 2

Therefore , - : = - ( a
l

]

2 - +fJ
0 *2

And then we can compute the E[ g( 0) 2] as; (23, 40)

u le*2 * * •
E[ g( 0) 2] =-'-1- exp[- nh (0 )] / exp[-nh(O)]

a &2

And, therefore , the posterior variance will become,

V[ g( O)] =E[g (02 )] - E[g (0 )]2

(59)

(60)

Since, the posterior standard deviation , if =J V[g (B)] , one can easily compute the parameter s

of posterior distribution s, using mean and standard deviation as,

a=(E)2and lJ=(L)
if s?
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CHAPTER VI

RISK BASED INTEGRITY MODELING FOR THE OPTIMAL

REPLACEMENT DECISIONS OF OFFSHORE PROCESS

COMPONENTS SUFFERING STOCHASTIC DEGARADATION

Premkumar N. Thodi, Faisal I. Khan, and Mahmoud R. Haddara

Faculty of Engineering and Applied Science,

Memorial University, S1.John 's, NL, Canada-AIB3X5

PREFACE

This chapter discusses the optimization of maintenance using the replacement strategy for

offshore process components. The replacement strategy entails the replacement of

degrading components rather than performing maintenance . The principal author

explored the literature on economic service life and replacement analysis of engineering

economics. Understanding the inherent limitations of the condition-based and reliability­

centered maintenance , a risk based replacement strategy is developed by principal author

in this chapter. The risk to life of component has been used as the criteria for decision

making regarding the optimum time to replace the components. The accurate failure

probability is developed in Chapter V using Bayesian analysis . In this chapter , the failure

consequences due to various degradation processes have been assessed by the principal

author independently , using the economic analysis. The co-authors provided support and

directions to improve the model. The research on RBIM is planned as multidisciplinary ,

encompassing the areas of engineering , statistics, economics and MATLAB

programming . This work is accepted for publication in the Journal of Quality in

Maintenance Engineering (20 11) after the peer review process.



To provide a consistent measure of risk, all consequence categories are presented in one

units, i. e., dollar. The principal author planned and determined the consequences of

failure in terms of failure , inspection and maintenance costs. The failure cost include the

loss of commodity due to breakdown, the loss due to shutdown, the cost of environmental

cleanup, the cost of nature damage and liability. Each of these costs is estimated by the

principal author independently by following the first principle, based on literature and

unit cost. The various inspection techniques and maintenance methods are analyzed by

principal author to identify the best suitable ones for process components . The inspection

cost depends on the type of inspection, access, surface preparation, personnel, material

and logistic costs. Similarly, the maintenance costs are based on type of maintenance,

access , surface preparation and logistics cost. The principal author contacted an

inspection and maintenance company operating in the North Sea regarding the data on

unit cost of each inspection/maintenance activity . The obtained data is used in this

chapter. The posterior probability of failure estimated in Chapter V is combined with the

annual equivalent cost to produce the operational risk to life of component. In the risk

profile thus developed, the point at which risk is minimum is treated as the optimal

replacement interval. The principal author programmed the entire consequence analysis

using Monte Carlo simulation in MATLAB and used to develop the optimum

replacement interval. The replacement interval varies with degradation processes ;

however, least of them are reported as the optimum interval considering independent and

isolated components. The methodology is demonstrated by using the data of erosion

corrosion and corrosion fatigue cracking processes.
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ABSTRACT

Finding an optimal replacement strategy for ageing offshore process components is a

challenging task. Inspection and maintenance are essential to maintain normal operation

in the face of structural deterioration , and the subsequent loss of strength. Risk based

integrity modeling is a methodology for minimizing the risk of failure of a process

component. Risk is the product of the probability of failure and its consequence. The

probability failure of a component may be modeled using the Bayesian prior-posterior

analysis . The consequence of failure is modeled using an engineering economic analysis.

The consequences are analyzed in terms of the cost incurred as a result of failure,

inspection and maintenance . The cost of failure includes the loss due to breakdown , loss

due to shutdown, cost of spill cleanup, cost of nature damage and liability. The cost of

inspection and maintenance depends mainly on the types of inspection and maintenance ,

access, surface preparation , gauging defects, coating and restoration costs . The annual

equivalent cost of operating and maintaining the component is combined with the

posterior probability of failure to produce the operational life risk curve. Since, the risk

curve is a convex function of component's service life; the optimal replacement strategy

is the one corresponding to the global minimum of the risk curve. The asset deterioration

caused by erosion corrosion and corrosion fatigue cracking in an offshore process piping

is discussed to illustrate the model. This model takes into account the effects of the

uncertainty and variability in the degradation processes and cost estimations using

probabilistic simulation models.

Keywords: Risk, integrity, degradation , consequences , replacement.
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6.1 INTRODUCTION

Maintaining the structural integrity of deteriorating process assets has been a subject of

research for many years (Khan et al., 2006; API, 2002; Montgomery and Serratella ,

2002). In the operational stage, the deterioration of component is mainly caused by

environmentally-induced defects, such as corrosion and cracking (Thodi, et al., 2010;

Straub, 2004). Thus, at some points in life-cycle, it will not be economical to operate the

component s due to deterioration and strength loss. The continuation of operation depends

on the instantaneous condition and the cost of operation and maintenance. The failure to

make an appropriate decision may result in a slow down or shutdown of the complete

facility. Time to execute maintenance on an operating component is decided on the basis

of either the fear of eminent failure or that it becomes too expensive to operate . The age­

related structural degradations increase the probabilit y and consequences of failure over a

period of time that may necessitate the replacement of components. The main challenges

encountered in considering the maintenance by replacement strategy of operating

equipment is to determine what is the exact condition and financial information to be

include in the model. The objective of this article is to develop an optimal replacement

strategy for ageing offshore process components. A brief description of the risk based

integrity modeling (RBIM) methodology is discussed at first. The aim of RBIM is to

protect human life, financial investment and environment from the likelihood of failure.

A stochastic degradation modeling for corrosion and cracking is followed. Further, the

consequence analysis using the engineering economics is emphasized in this article.

Thus, by combining the probability and consequences of failure, an optimum interval for

the risk based replacement of components is developed in the article.
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6.2 BACKGROUND

Maintenance is defined as the combination of all technical and administrative actions

intended to restore an item to a state, where it can perform a required function

(Solderholm et al., 2007). The established maintenance methodologie s, such as reliability

centered maintenance (RCM), total productive maintenance (TPM) and condition based

maintenance (CBM) are robust enough to reduce the business risks. However, they are

based on the component's probability of failure only. The incorporation of consequences

of failure, inspection, and maintenance is not a part of such maintenance strategies. The

RCM, TPM and CBM strategies become more useful if they incorporate information

about the failure detection , mechanism, repair, costs, maintenance strategy and

management policies (Garg and Deshmukh, 2006). Recently, the risk based maintenance

has been emerged as an optimal maintenance strategy. It is becoming a recognized tool

because it uses life cycle risks in optimizing the maintenance activities. A risk based

maintenance model for offshore oil and gas pipeline based on a semi-quant itative risk

ranking method is presented by Dey et at. (2004). The choice of a risk analysis approach

has a major impact on the identification of risk sources and in developing a realistic

decision making in maintenance process (Backlund and Hannu, 2002). Careful

requirement identification, a systematic approach with clear aims and goals are needed

when performing risk analysis. Component failures involve various costs that are difficult

to estimate . A classification of expected failure costs for pipelines involving factors such

as loss of production, loss of commodity, loss of life and property, loss of reputation and

environmental damage are presented by Dey (200 I). However, factors such as when the

failure happens, the impact of failure, cost associated with inspection and maintenance
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were not discussed . The total cost of combining corrective maintenance , preventive

maintenance and condition based maintenance policies is reported by Silva et al. (2008).

But, it has taken into account the actual repair costs only; while the associated failure,

inspection and replacement costs are ignored. The approach presented by Anderson and

Rasmussen (1999) for short term maintenance planning strategies doesn 't consider the

effect of the economic consequences of failure in decision making. This article presents a

risk based integrity modeling for the optimal replacement , based on the component's

likelihood and consequences of failure. In the RBIM methodology , an economic

consequence model for failure, inspection and maintenance is emphasized here.

6.3 ECONOMIC SERVICE LIFE AND REPLACEMENT

Once the offshore process facility is operational the only way to avoid failure is through

inspection and maintenance , as the design or manufacturing changes in the operational

stage is cumbersome (Thodi, et al., 2010). If the operation is following a well-established

design procedure and the components receive proper inspection and maintenance , they

can be kept operating for an extended period of time. Ifa component continues to operate

for an indefinite period of time, failure will eventually occur as a result of the structural

deterioration and strength loss, resulting in excessive corrective maintenance cost.

Replacement is a maintenance strategy, which involve replacing the component instead

of performing the maintenance (Duffuaa et al., 1999). After each replacement , the system

returns to its original condition. Economic service life is the period of time during which

a piece of equipment can function safely and economically . Based on equipment's

condition, if an appropriate life span is computed dynamically, the operator can schedule

the replacement strategy to smooth out operation. The costs of operating a facility can be
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divided into two categories: failure costs and operating costs. The failure costs have two

components: the failure recovery costs and the salvage value at the time of disposal. The

operating costs include the inspection and maintenance costs, the labor wages, the

material cost, coating, testing and alignment costs. Usually, it is the inspection and

maintenance cost that increases annually, due to degradations and material loss.

6.4 RISK BASED INTEGRITY MODELING (RBIM)

The risk to component's operational life is defined as the multiplication of the probability

of failure and its consequence . The RBIM is a methodology to quantify the risk to life

posed by deteriorating components and to mitigate that in a cost-effective manner. The

general framework for RBIM is illustrated in Fig. 6.1. The wall thickness of components

deteriorates due to environmental effects, causing leaks and breakage. The potential

process components integrity threats have been identified as various types of corrosion

and cracking (Thodi, et al.. 2010; 2009). Since these deterioration mechanisms are

stochastic processes, the inspection data are also random in nature. A probability

distribution function obtained using a Bayesian prior-posterior analysis, can be used to

model real life inspection data. An assumption is made is that the degradation processes

are independent to each other. In an RBIM framework (Fig. 6.1), the consequence

analysis focuses on estimating the cost incurred as a result of failure occurrence ,

inspection, and maintenance tasks (Thodi, et al., 2010). Failure costs include loss of

breakdown, loss due to shut down, loss due to spill cleanup, loss due to environmental

damage and liability. The cost of inspection includes cost of gaining access to the

component, cost of surface preparation, and cost of detecting and sizing of flaws using

the non-destructive tests (NDT). Upon detection and sizing of flaws, the maintenance
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cost consists of cost of transportation of equipment , and cost of skilled personnel. To rule

out likelihood of failure completely, the component needs to be replaced at the onset of

deterioration. But, if replacement is performed prematurely , maintenance will be large,

while late performance of replacement will result in large costs as a result of unplanned

shutdown and costly breakdown maintenance. Hence, there is a need for an optimal

policy which aims at minimizing total operating cost. This article presents an attempt to

obtain an optimal replacement decision based on minimizing the operational risk.

Fig. 6.1. Risk Based Integrity Modeling Framework

6.5 STOCHASTIC DEGRADATION MODELING

How to estimate the probability of structural deterioration-related-failure, based on the

present condition of component is discussed in detail in Thodi et al. (2010,2009). The

failure rate estimation is based on the expert 's prior knowledge and the NOT data
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acquired during inspection. The Bayesian prior-posterior analysis has been used to model

such a dynamic system, where the prior knowledge of the system and field data are input.

The prior probability is based on judgmental studies and analyzing generic database

(Thodi et al., 2009). The NDT data has been used to derive the likelihood probability.

Since the prior-like lihood combinations were non-conjugate pairs, the simulation based

Metropolis-Hastings algorithm and Laplace approximation methods are used to estimate

the posterior models (Thodi et al., 2010). The posterior model has been developed for

corrosion: uniform, pitting, and erosion, and cracking : stress corrosion, corrosion fatigue,

and hydrogen induced cracking. The Bayesian analysis methodology used for the said

degradation mechanisms has been discussed in brief in Section 6.5.1.

6.5.1 Bayes' Theorem

Bayes theorem is one of the best suitable methods for logical and consistent reasoning.

Basically, probability is a degree of belief, that is, how much one thinks that something is

true based on the evidence at hand. Due to uncertainty in degradations, the prior

knowledge of the condition of the component may be revised with field NDT data,

reserving the right to revise the present knowledge as new information arrives. Bayes

theorem encapsulates this process of learning as more data becomes available. That is, it

states how to update the prior probability distribution, p(O) , with a likelihood function,

p(y I 0) , to obtain the posterior probability distribution as:

p(O I y) p(O)p(y IO)

fp(O)p(y IO)dO
(I)

This posterior density p(OIy) summarizes the total information , after viewing the data

and provides a basis for inference regarding degradation parameters . However, the
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denominator of (I) is the normalizing factor, the estimation of which is a daunting task in

Bayesian analysis. The posterior models thus developed are robust and reliable enough to

predict the future probability of failure of deteriorating components in process facilities.

Prior Probability Modeling

For component degradation, the prior probability refers to the initial knowledge about

each type of degradation processes. Although the choice of a prior is subjective, a rational

agreement can be achieved by analyzing historic data from the same or other similar

components. To develop the prior models for different corrosion and cracking, several

probability distributions have been tested using the data extracted from the relevant

literature. Details of the literature and statistical test performed for estimating the priors

are presented in Thodi et at. (2009). A set of sample prior models used to describe

erosion corrosion (EC) and corrosion fatigue cracking (CFC) are presented in Table 6.1.

Table 6.1. Sample Prior Probability Models and the Estimated Parameters

Structural Prior Probability Models and their Parameters

Degradation Type of Model Shape Scale Location

EC 3PWeibull 4.5970 0.0545 -0.0075

CFC Weibull 2.2550 2.5080

Likelihood Probability Modelin g

The inspection data (NOT) obtained from an ageing process facility has been used to

estimate the likelihood probabilities of various degradation processes. The facility has

different subsystems exhibiting different degradation processes, for example, a gas
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condensate system exhibiting uniform corrosion and a high pressure drilling mud system

exhibiting erosion corrosion. The data includes the minimum and average wall

thicknesses acquired during the period 1997-2003 . The data, which consists of wall loss

measurements, has been divided into; straight pipes , bends, and tees. A time-dependent

regression analysis was used to estimate the rates of EC and CFC. Then , these rate data

has been tested with standard probability models and a goodness of fit test has been

performed using the probability plot and Anderson-Darling (A-D) tests . Details of the

likelihood modeling may be may be obtained from Thodi at al. (2010) . A sample set of

likelihood probability models for EC and CFC are presented in Table 6.2.

Table 6.2 . Sample Likelihood Probability Models and the Parameters

Structural Likelihood Probability Models and their Parameters

Degradation Model I Shape IScale I Location

EC 3PWeibull 10.9551 1 1.3400 1-0.1281

CFC Weibull 10.0015 10.2907 1-

From Table 6.1 and 6.2, it has been observed that the priors and likelihoods are identical

distributions. Further, since the likelihoods are revising the priors , it indicate s that the

posteriors would yield the same form of distributions as that of priors and likelihood s.

Posterior Probability Modeling

The methods for computing the posterior distributions include ; analytical approximations,

data augmentation methods, Monte Carlo direct sampling and Markov chain Monte Carlo

(McMC) simulations . If the prior-likelihood pair under consideration does not involve a

conjugate pair, the posterior estimation cannot be performed in closed form; analytical or
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Monte Carlo methods are needed (Bedford and Cooke, 2001). The prior-likelihood pairs

for EC and CFC are Weibull (with two and three parameters) , which do not lend

themselves easily to Bayesian updating. This means that simulation methods are the ideal

ways to compute the posterior distributions of EC and CFC. Thus, the Metropolis­

Hastings algorithm, which is a McMC method, in conjunction with a particular choice of

prior, has been used (Bedford and Cooke, 2001). Details of the posterior development

methodology and models are presented in Thodi et al. (20 I0).

The Metropolis-Hastings (M-H) Algorithm

The M-H algorithm is a rejection-sampling algorithm used to generate a sequence of

samples following a probability distribution that is difficult to sample directly . This

sequence is used in McMC simulations to approximate the posterior distribution. In

Bayesian applications, the normalizing factor is difficult to compute, so the ability to

generate the samples without actually knowing this constant is a major virtue of this

algorithm. The algorithm generates a Markov chain in which each state X
U 1 depends only

on the previous sample state x' . The algorithm uses a proposal density q(x' ,x ') , which

depends on the current state x' , to generate the new proposed sample x' . The proposal is

accepted as next value (X
U 1 = x') in the chain if a (x' ,x' ), drawn from a uniform

distribution , 1/(0,1) is (Thodi et al.. 20 I0):

a(x',x') < :i;:~·.~~:: :;:~ (2)

If the proposal is not accepted, then the current value of x is retained; i.e., X
,
•

l = x' .

Thus, the simulation generates a Markov chain, the acceptance of samples, which arc

eligible for posterior probability model, will be based on equation (2).
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6.6 CONSEQUENCE ANALYSIS

The purpose of risk-based integrity modeling is to maximize the profit from the operation

of facility by minimizing the risk by preventing failures associated with deteriorations.

By operating a dynamic system of life-time data accumulation and processing , the

accuracy should be improved with time and experience. To provide a consistent measure

of risk, all consequence categories should be in the same units. Otherwise, the overall risk

from many contributing sources cannot be computed . A standard choice of unit to

represent all consequence categories is dollar, because risk can be interpreted as the

expected loss due to a certain event or groups of events (Jones, 1995). Therefore , the

failure consequences are expressed in terms of dollar in this study. The overall frame

work for economic consequence analysis is presented in Fig. 6.2.

6.6.1 Economic Consequences of Failure

Failure consequences are quantified in terms of the associated dollar value. Failure cost is

the cost associated with the loss of a facility due to structural deteriorations . The failure

cost may be classified into corrosion or cracking costs. Corrosion or cracking cost is the

increase in operating and maintenance cost throughout the life of a facility due to various

corrosion or cracking mechanisms (Verink, 2000). The total cost is given by the sum of

corrosion or cracking costs associated with four main aspects of life of a facility: failure

expenditures, operating expenditures , cost of lost production and the material residual

value (Jackson, 2003). In the case of cracking, it is assumed that a component failure is

followed by an immediate repair to prevent any system failure scenario with much higher

consequences. Also, the component is assumed to be isolated and hence its failure will

not contribute to any chain of reactions. The economic consequences of failure includes
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loss due to breakdown in terms of commodity loss, production loss due to shutdown, cost

of spill cleanup, the legal fees and fines due to nature damage and liability (Fig . 6.2).

Each of these cost components are discussed in brief in the following sections.
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Fig. 6.2. The Framework for Economic Consequence Analysis

Loss due to Breakdown

Breakdown costs are the financial losses , which are associated with loosing commodity.
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This cost depends upon what product is being carried or stored, the rate ofleakage and its

current market value when the failure occurs. The leak or rupture of component' s wall

thickness by corrosion and cracking is the main cause for breakdown. If a component

failure results in a system failure , then the breakdown consequences can be in terms of

lost material dollar value (Jones , 1995). The focus in this article is on a topside piping in

the North Sea and the product being conveyed is assumed to be crude oil. The market

value of crude oil is considered to be $ 70 per barrel in this article. To estimate the rate of

leakage, the source model, i.e., the flow of liquid through a hole in pipe (Crowl and

Louvar, 2002) is used. It provides a description of the rate of discharge, the total quantity

discharged and the state of the discharge . The mass flow rate, Qm resulting from a hole

(in a typical pipe) of area A is given by (Crowl and Louvar, 2002):

(3)

where, Co is the discharge coefficient , p is the fluid density (mass /volume) , gc is the

gravitational constant (length mass /force timei), Pg is the gauge pressure. The

calculations to estimate the rate of release due to structural degradation based on equation

(3) are presented in Appendix 6.1.1 and are summarized in Table 6.3.

Table 6.3. Rates of Release through Hole in a Pipe

Deterioration Rate of release of fluid

(kg/sec) I (barrels/hr)

Corrosion 0.677 1 17.784

Cracking 0.413 1 10.849

The cost estimation associated with piping breakdown is discussed in the section below:
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Cost ofBreakdown due to Degradation

The method of calculating the loss due to breakdown varies for each operating compan y.

The cost of lost commodity due to degradation is dependent on the operation . The

following formula may be used to estimate the cost of breakdown (Jackson, 2003):

(4)

where , CJlp = the cost of lost commodity in dollars, Cdp = cost of downtime calculated in

dollars barrel , Qpi = quantity of commodity loss per unit time (for e.g., barrels per hour) ,

D rp = duration of the commodity loss (hours), P = probability of loss of commodity

(depending on the equipment redundancy levels)=1 (assuming there is no redundancy and

the components are in series), E = average number of critical failures in life time. The

sample calculation associated with the cost estimation of pipe corrosion is presented in

Appendix 6.1.2 and are summarized in Table 6.4.

Loss of Production due to Shutdown

The main factor influencing the cost of failure is the facility 's unavailability for

production. Maintenance can be planned, whereas failures may lead to an unplanned ,

immediate shutdown of the facility. The cost of such a shutdown is highly dependent on

the number of days of shutdown, the rate of loss of production and value of products at

the time of failure. Typically, the loss of shutdown may be estimated using the unit cost

of product, quantity of affected production and the maintenance delay time. The

maintenance delay depends on the availability of skilled personnel and spare parts which

are necessary to carry out the maintenance . The shutdown may be necessitated because of

rupture and leakage due to corrosion and cracking processes .
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Cost ofShutdown due to Degradation

The shutdown cost due to degradation is calculated by combining the unit cost of

product, loss of affected production and maintenance delay time (Straub et al., 2006) as:

C ft d =Cu x Qx T; (5)

where , C j sd is the cost of shutdown (dollar), CII is the unit cost of product (dollar lbarrel) ,

Q is the quantity of affected production (barrel /day) and Tm is the maintenance delay

(days) . A sample shutdown cost estimation associated with the pipe corrosion is

presented in Appendix 6.1.3 and is summarized in Table 6.4.

Cost of Spill Cleanup

The cost of oil spill cleanup varies considerably from one incident to another , depending

on a number of factors, such as, the type of oil, amount spilled and the rate of spillage ,

the characteristics of the affected area, weather and sea condition s, local and national

laws, time of the year and the spill clean up strategy (White and Molloy , 2003 ; White ,

2002; Etkin, 2000 ; 1999; Purnell, 1999). Predicting the per-unit cost of spill response is

highly uncertain since the factors impacting the costs are quite complex (Etkin , 2000).

The most important factors in determining the impact and response costs for an oil spill is

the type of oil and geographic location. In this article , the type of oil is assumed to be

crude oil and spillage is in offshore . Based on the location , the average per-unit offshore

oil spill cleanup costs is $ 6508 per tonne (Etkin, 2000). This unit cost represent only the

cleanup costs and do not reflect third-party damage claims or natural resources damage

costs which may be incurred in addition to cleanup costs , depending on regulations.

Cost ofSpill Cleanup due to Degradation

The cost of environmental cleanup comprises of unit cost of spill cleanup and the total
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quantity released due to structural failures caused by degradations . Further, the total

quantity released depends on the rate of spillage and duration of release. The following

formula may be used to estimate the cost of spill cleanup:

(6)

where, C,,,c is the unit cost of spill cleanup (dollar/tonne), Qm loss of product per unit

time (tonne/hour) due to corrosion or cracking and, D,p is the duration of spillage (hour).

To demonstrate the calculations of spill cleanup cost, a sample calculation is provided in

Appendix 6.1.4, where it is assumed that the pipe failure is caused by corrosion . The

cleanup cost thus obtained is presented in Table 6.4.

Loss due to Nature Damage

The size of penalty that the company will incur as a result of damaging the environment

is difficult to estimate, because costs increase with the scope of failure. The failure modes

developed for each degradation-related failure could be graduated to more complex

system failures leading to significant environmental damages. The cost due to loss of

habitat and damage to natural resources are also difficult to estimate. Still, approximate

assessments considering the quantity of release and unit rate are quite possible (Etkin,

2000; 1999). The nature damage due to oil spillage includes loss of marine as well as

coastal habitat, soil pollution, damage to agriculture land and adverse health impact

(Etkin, 2000; Purnell, 1999). The natural cleansing approach may be an attractive option

from a cost perspective. However, the responsible decision makers need to take notice of

the provincial and federal regulations, as well as respond to the values and needs of local

communities and stake holders before choosing this option (Etkin, 2000). The per-unit

cleanup cost of nature damage is $ 5086 per tonne of oil (for a shoreline length of I km),
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based on Etkin (2000) . This cost includes the cleanup cost of damage happened to the

coastal ecosystem, consisting of nearshore and shoreline response .

Cost ofNature Damage due to Degradation

The total cost of environmental damage comprises of unit cost of nature damage and the

total quantity released. Again, the total quantity released from a facility depends on the

rate of release and the duration of spillage. Thus, the total cost associated with damaging

the natural recourses by structural failures may be estimated using the folIowing formula:

(7)

where, Cd"r is the unit cost of nature damage (dolIar/tonne) , Qm release of product per

unit time (tonne/hour) due to corrosion and cracking, D rp is the duration of release

(hour). The pertaining sample calculation is presented in Appendix 6.1.5, and the nature

damage cost due to corrosion degradation is reported in Table 6.4.

Cost of Liability

The injuries and deaths caused by a system failure have the most severe implications

possible. The loss of life or pain of an injury is impossible to quantify, yet, the cost

implied due to worker 's compensation and corporate liabilities shalI be taken into account

(Jones, 1995). Apart from that, safety related system failures have other immediate

implications , such as legal fines and penalties of professional negligence. The estimates

of liability costs that result from motor vehicle accidents are routinely published by

several public and private organizations . The US department of transportation published a

technical note (Judycki , 1994) on comprehensive motor vehicle accident costs which is

adopted as a baseline in this study. The components of the comprehensive costs includes

medical costs, emergency services, vocational rehabilitation, lost earnings, administrative
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costs, legal consulting fees, pain and lost quality of life. The seven categories of liability

costs (Judycki, 1994) and their descriptions are presented in Appendix 6.1.6. For typical

process piping, liability cost is extracted from Appendix 6.1.6 and presented in Table 6.4.

Liability cost associated with degradation-rela ted failure is assumed to be similar to

Category 2, moderate injury causing a liability of$ 40 000 in this article.

Total Cost of Degradation Failure

The total cost of failure is the summation of loss of breakdown, loss due to shutdown, the

costs of spill cleanup, nature damage and the liability charges. Hence, the total cost

associated with a structural failure due to degradation is given by:

(8)

The developed total cost is based on two assumptions; the component is isolated, and the

component failure leads to a system failure with subsequent unavailability for production.

Table 6.4. Degradation Failure Cost for Piping (Pipeline segments) Components

Cost Cost Cost of corrosion Sources

consequence divisions (dollar) (Appendix)

Loss due to breakdown 14 939 Appendix 6.1.2

Loss due to shutdown 149 384 Appendix 6.1.3

Spill cleanup 190 336 Appendix 6.1.4
Failure cost

Damage to nature 148748 Appendix 6.1.5

Liability charges 40 000 Appendix 6.1.6

Total cost (C F ) 543 407
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The expected annual equivalent of the total cost of failure due to degradation, which is

also called the failure recovery cost, over the service period of n years, with annua l

interest rate of i% can be calcu lated using the following equation (Park, 2007):

FR(i) =CF(A I P,i,n) (9)

where, (A I P,i ,n) is the recovery factor. The failure recovery factor (the AI P factor,

which is also known as annuity factor, and indicates a series of future payments towards a

fixed amount for a specifie d number of periods) can be estimated as:

(A I Pi n) =[ i(l+i)" ]
" (I + i)" -l

6.6.2 Economic Consequences of Inspection

(10)

The integrity of process compo nents has to be assesse d for the facility's safe operation.

The NOT techniques may be used for detection and quantifica tion of unwanted

disconti nuities and separations in materials due to degradations. The NOT provides the

qualitative as well as quanti tative informa tion by detecting, locating and sizing of flaws.

Severa l types of defects exist in compone nts, such as corrosion, cracking, inclusions,

dents and holes. Defect quantification requires considerab le skill and experience, use of

more than one NOT method owing to the fact that each method is able to provide limited

information on a particular type of defect. Based on literature (Roberge, 2007; Gros,

1997), the best suitable inspection methods for corrosion and cracking, and the

corresponding costs are estimated. The sample inspection cost estimation for corrosion

has been presented in Appendix 6.2. The per-unit cost for inspection, as obtained from an

inspection and testing contracting company in North America has been used in this study.
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Cost of Degradation Inspection

The purpose of inspection is to detect and quantify the extent of wall loss, pit depth, and

surface crack as well as coating breakage. The routine inspection costs depend on how

much area to inspect from a risk point of view. Thus, the inspection cost includes the cost

for gaining access to the degraded component , the cost for surface preparation, personnel

cost for inspection, the cost associated with technical assistance, the cost of consumables

and chemicals , and the logistics cost (rent, storage and transportation etc.). For piping

(pipeline segments, bends and tees), the suggested inspection methods are ultrasonic test

(UT) thickness measurement and radiographic inspection (RI) for different corrosion, and

the magnetic particle inspection (MP!) and UT defect sizing for quantification of

different types of cracking degradations (Roberge, 2007; Gros, 1997).

Gaining Access for Inspection

Cost of gaining access, C;ga =Cli x t (II)

where, Cli= cost of inspection personnel per hour, and t = the duration of inspection (in

hours). Sample calculation for corrosion inspection is presented in Appendix 6.2.1.

Surface Preparation (Washing, Purging and Coating Breakage)

Cost of surface preparation, C;sp=Cli x t (12)

where, CIi = cost of skilled labor per hour, and t = the duration of work (in hours).

Sample calculation for corrosion inspection is presented in Appendix 6.2.2.

Inspection Personnel Cost

Cost of visual inspection of piping, C;v = C/vi x t

Cost ofUT-(piping) thickness measurements, CjU, = Clut x t
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Cost of radiographic inspection of piping , C ir = Clr ; X t

Cost of UT-(piping) defect sizing, C /ds = C /ds X t

(13)

Cost of magnetic particle inspection of piping , C ;mp =C lmp X t

where, C lv; = personnel cost (dolIar) of visual inspection per hour, C lut = personnel cost

for UT thickness measurements per hour , C lr; = personnel cost for radiographic

inspection per hour , C /ds = personnel cost for UT defect sizing per hour, C lmp = personnel

cost ofMPI (dolIar per hour) and t =total duration of inspection activity in hours. Sample

calculation for corrosion and cracking inspection is presented in Appendix 6.2.3.

Technical Assistance

Cost of technical expert 's assistance , C ita = Ct a x t (14)

where, C ,a = technical expert 's consultancy fees per hour, and t = the duration of work

in hours . Sample calculation for corrosion inspection is presented in Appendix 6.2.4.

Logistics Cost

Logistic cost includes the cost of consumable , equipment rent, storage and transportation.

Logistics cost, Cil = C, + C, + C st (15)

where , C; = cost of consumables, C, = cost of inspection equipment rent, and C st = cost

of storage and transportation. Sample calculation is presented in Appendix 6.2.5.

Thus , the total costs associated with piping degradation inspection can be estimated as;

(16)

This cost include s the inspection with respect to walI thickness as welI as coating checks.

The estimated costs of corrosion inspection cost are presented Table 6.5.
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Table 6.5. Corrosion Inspection Cost for Piping (pipeline segment) Components

Degradation Cost component Cost ($) Source (Appendix)

Gaining Access 240 Appendix 6.2.1

Surface preparation 960 Appendix 6.2.2

Inspection: UT 960 Appendix 6.2.3
Corrosion

Inspection: RI 240 Appendix 6.2.3

Technical assistance 240 Appendix 6.2.4

Logistics 1200 Appendix 6.2.5

Total cost (C/) 3840 Appendix 6.2.6

The expected inspection costs tend to increase as a function of age of components due to

strength degradations and subsequent wall loss. This increasing trend can be modeled

using arithmetic gradient (Park, 2007). The cost of inspection involves periodic payments

that increase by a constant amount ( G ) from period to period. The function to model the

increasing trend of inspection cost is given by (Newnan, 1976):

C/ (i) = C/ (A IG,i, n)

where, the gradient to equal-payment series conversion factor is given by:

(A I G,i ,n) = G[(I +i)" - in- I ]
i[(l +i)" - I ]

6.6.3 Economic Consequences of Maintenance

(17)

(18)

This cost is associated with restoring or maintaining a process facility safely. To have a

safe facility, the maintenance should be performed at very small time interval. However,

it is impractical due to the huge costs, large maintenance-induced errors, and the facility' s
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unavailability for production. To optimize the replacement economically, the cost of

replacement should be greater after failure than before, and the component should be in

the wear-out region. The maintenance can be either corrective or proactive depending on

the condition of facility. The corrective maintenance is performed in response to an

unplanned or unscheduled downtime of the component, usually as a result of a failure.

This could be based on previous experience and an assessment of the risk of failure

caused by deteriorations. In general , the costs of corrective maintenance will always be

huge. The proactive maintenance is the advance maintenance and it can be either

preventive or predictive . Preventive maintenance is a scheduled downtime, usually

periodical, in which a set of well defined tasks are performed . The predictive

maintenance estimates through diagnostic tools , such as NOT and probabilistic modeling,

when a component is about to fail and should be repaired or replaced, thus, reducing the

costly corrective maintenance. This article focuses on predict ing the optimum interval for

the economic replacement of process components.

Cost of Degradation Maintenance

Maintenance in practice may be either a minor patch repair work or the complete

replacement of degraded component. In this study, it is assumed that the proposed

inspection method is able to detect the presence of corrosion discontinuities and surface

cracks. For all types of corrosion, minor patch repair work of the affected area is

considered, and for any types of cracking, immediate component replacement with

necessary repair work is considered. The maintenance work includes the acces s to

degradation part, surface preparation, cutting and removal of pipes and plates, welding

and restoration of protective coating. Thus, in addition to the cost of component to be
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replaced, the personnel cost, logistics cost related to transportation, storage and rents of

facilities are also must be included. For a piping component, the maintenance costs are

estimated below. The sample calculations are presented in Appendix 6.3.

Gaining Access to the Degraded Component

The cost of gaining access for maintenance, Cmga = C lm X t (19)

where, Clm is the cost of maintenance personnel per hour and t is the duration of work

(hour). A sample calculation for cost of gaining access is presented in Appendix 6.3.1.

Surface Preparation (Coating Breakage, Cleaning, Purging with Gas)

Cost of surface preparation for maintenanc e, Cmsp =Clm X t (20)

where, Clm is the cost of maintenance labor per hour and t is the duration of work (hour).

A sample calculation for the cost of surface preparation is presented in Appendix 6.3.2.

Gauging Defects

Personnel cost, C mp.Clm X t

Total cost of defects gauging for maintenance, C mgd = C mp + C ml

(21)

(22)

where, Cml is the logistics cost (equipment rent, transportation and storage). The sample

calculation for the cost of defect gauging for maintenance is presented in Appendix 6.3.3 .

Repair Work ofCorroded Components

Repair cost (cutting, welding, fitting etc.), Cmcw = Clcr X t

where, Clcr is cost of labor for minor repair in dollar per hour, t is total repair time.

Weld qualit y test and coating restoration, Cmw1 =Clw1 X t

where, C /M is the personnel cost for weld quality testing, t weld test duration .
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Technical assistance, C mta =Clta x t

where, Clta = the cost of technical consultancy per hour, t is the total work hours.

The cost of minor repair, C mmr = C ms + C mcw + C mwt +c.; + Cmta

(25)

(26)

where, Cms is the spare or part ' s cost, and C me is the cost of consumable s. The sample

calculation for the cost of minor repair is presented in Appendix 6.3.4.

Thus, for minor patch repair of corroded component , the total costs are estimated by;

C M = C mga + C msp + C mgd + C mmr

The final costs thus estimated are reported in Table 6.6.

Table 6.6. Corrosion Maintenance Cost for Piping Components

Degradation Cost component Cost ($) Source (Appendix)

Gaining access 800 Appendix 6.3.1

Surface preparation 1200 Appendix 6.3.2

Corrosion Gauging defects 1200 Appendix 6.3.3

Minor repair work 6800 Appendix 6.3.4

Total cost ( CM ) 10000

(27)

Similar to inspection, the expected maintenance cost also tends to increase as a function

of age of component s due to degradation s and subsequent loss of wall thickness. This

increasing trend can be modeled using arithmetic gradient. The cost of operation and

maintenance involves periodic payments that increase by a constant amount ( G) from
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period to period. In such a gradient series, An =(n - I)G , where G > o.The cost function

to model the increasing trend of annual maintenance cost is given by (Newnan , 1976):

CM(i) = CM(A /G ,i,n) (28)

where, the gradient to equal-payment series conversion factor is same as in equation (18).

Similar to corrosion, the estimated costs of pipe cracking are presented in Table 6.7.

Table 6.7. Estimated Cracking Costs for Piping Components

Degradation Cost subdivisions Cost (dollar)

Total cost offailure 438235

Total cost of maintenance 15000

Cracking Total cost of inspection 4400

Salvage value 0

6.6.4 Annual Equivalent Cost (AEC) of Degradation

The AEC of operating and maintaining the ageing process component is the summation

ofthe annual equivalent costs of failure recovery, inspection, and maintenance. Hence the

AEC may be estimated as follows:

AEC(i) =FR(i) + Cl(i) + CM(i) (29)

where, FR is the failure recovery cost, CI is the inspection cost, CM is the

maintenance cost and i represents the annual interest rate.

6.6.5 Tax Considerations

The corporate tax rate is applied to the taxable income of a corporation. Whether the

existing component is kept, or replaced with a new one, the tax credits on operating
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expenses must be incorporated into the analysis. To apply the concepts of minimum risk

to life, the tax effects (gain s or losses) on failur e, inspect ion and maintenance are

incorporated. In analysis, the operating income is taxed at an annual rate of 35%.

6.6.6 Proba bilistic Cost Ana lysis

The uncertainty and variability in the above cost model s has been overcame through

probabilistic cost analysis using the Monte Carlo simulations. In simulation, the total cost

of component' s failure , inspection and mainten ance, as presented in Tables 6.4 to 6.6, is

assumed to be a Gau ssian distribution with the estimated mean value. A coeffici ent of

variation of 2.5% has been assumed in the cost estim ation .

6.6.7 Risk Assessment

The AEC has been combined with the cumulative density function (COF) of the posterior

probability to estimate the operational life risk curve as shown in equation (30) . Thu s,

finding the optimal replacem ent period reduce s to finding a value of n that minimi zes the

oper ation al risk. At the optimal risk point, the risk will be reduced to as low as reasonably

practicable (ALARP) level and at the same time , ensures the safety of operati on.

R = F[p(OIy )] x AEC (30)

where, R is the risk offailure (in dollar) from a degrad ation , F [P(OI y )] is the COF of

posterior probability of failure and AEC is the annual equi valent cost of consequences.

6.7 RESULTS AND DISCUSSIONS

6.7.1 Stochastic Degrad ation Modeling

The Bayesian analysis results obtained using the M-H algorithm for EC and CFC are
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summarized in Table 6.8, and are shown graphically in Figures 6.3 and 6.4 (Thodi et al.,

2010). The M-H algorithm coded in MATLAB has been used to simulate the posterior

samples and to estimate their parameters. Input to the code includes the prior and

likelihood parameters, and required sample size. The posterior estimation based on M-H

algorithm converges to satisfactory results with 10000 samples. First half of the

simulated samples, which were in a transient state, were ignored. The remaining samples

which describe a steady state condition were used to produce the posterior models.

Table 6.8. The Estimated Posterior Probability Models and its Parameters

Structural Posterior Probability Models and its Parameters

Degradations Type of Model I Shape I Scale I Location

EC 3P Weibull / 2.7070 10.0421 1-0.0065

CFC Weibull 1 1.4560 12.0650 1-

Distribution Plot
Weibull

~ 20

~ 15

0.02 0.04 0.06
Corrosion Rate (Ilnl/year)

Fig. 6.3. Sample Prior-Posterior (Weibull) Analysis Result for Erosion Corrosion
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Fig. 6.4. Sample Prior-Posterior Analysis Result for Corrosion Fatigue Cracking

6.7.2 Econom ic Conseque nce Analysis

The economic consequence analysis has been performed for the cost of failure, inspection

and maintenance . The mean and standard deviation of estimated costs are summarized in

Table 6.9. The results for estimated annual equivalent costs due to EC and CFC are

presented in Figs. 6.5 and 6.6. The failure recovery cost over the service life of

component is estimated by considering a fixed rate of annual interest of 8%. The cost of

inspection and maintenance is estimated using the present worth factor approach ,

assuming the same rate of interest. The annual equivalent of failure cost is observed to be

a decreasing function, where as the inspection and maintenance costs are increasing

functions of service life. Increase in the inspection and maintenance costs are expected
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due to the loss of materia l and strength. The computed AEC is observed to be a convex

function of service life.

Table 6.9. Corrosion and Cracking Costs Estimated in the Consequence Analysis

Degradation Cost divisions Corrosion cost ($) Cracking cost ($)

Mean Std. dey Mean Std. dey

Total cost offailure 543407 13585 438235 10956

Total cost of maintenance 10 000 250 15 000 375

Corrosion! Total cost of inspection 3840 96 4 400 110

Cracking Salvage value 0 0 0 0

Annual interest rate 8 % 8%

Service Period vIs Corrosio n Cost Comparison

10 15 20
Service Period

25 30

Fig. 6.5. Sample Economic Consequence Analysis Results for Erosion Corrosion
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x 1 0~ Service Period vis Cracking Cost Comparison
6r-- -,-- - ,------ -,--;::::::==r:::::====:!:::====::;l

15 20
ServicePeriod

Fig. 6.6. Sample Economic Consequence Results for Corrosion Fatigue Cracking

6.7.3 Optimum Repl acement In ter val

Results of the risk analysis are presented in Figures 6.7 and 6.8 for sample EC and CFC.

A clear trend is obtained for the operational life risk in the form of a convex curve using

10000 iterations. The intervals for the optimal replacement of components are obtained

from Figure 6.7 and 6.8 are summarized in Table 6.10. IdealIy, it is the optimum interval

with minimum risk, to replace the component rather than performing maintenance. Also,

after each optimal replacement, the component returns to as good as new condition.

Table 6.10. Optimum Replacement Interval for Deteriorating Components

Asse ts Deter ior ation Source Op timu m main tenan ce interval

Piping EC Figures 6.7 10 yrs

Piping CFC Figures 6.8 08 yrs
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Fig. 6.7 . The Operational Life Risk Curve due to Erosion Corrosion

10 15 20
Service Period(years)

Fig. 6.8. The Operational Life Risk Curve due to Corrosion Fatigue Cracking
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6.8 SUMMARY AND CONCLUSIONS

An RBIM strategy for optimal replacement decisions of offshore process components has

been discussed in this article. Replacement strategies are designed to remedy the effects

of physical deterioration , strength loss and obsolescence of process components . Physical

deterioration leads to reduction in the efficiency of operation, wall thickness and material

strength. Obsolescence occurs as a result of continuous developments of new

components . In the first part of this article, an integrity modeling framework is discussed ,

followed by a brief discussion of the stochastic degradation modeling using the Bayesian

prior-posterior analysis. An economic consequence analysis model based on component

replacement concepts is discussed further in detail. The annual equivalent cost is

calculated by combining the failure, inspection and maintenance costs. The posterior

probability of failure is then combined with the annual equivalent cost of consequences to

produce the operational life risk curve. The optimal replacement interval is the interval

corresponding to minimum risk. By performing replacement at this interval, the risk of

operation will be reduced to the ALARP level. In this study, a case study of a pipeline

segment was presented. The optimum replacement intervals for a pipeline segment were

found to be 10 years for EC and 8 years for CFC. The smaller of these two values has

been selected as the optimum replacement interval for the ageing pipeline segment. The

replacement strategy entails the economic replacement of components rather than

performing maintenance. This model takes into account the effects of taxes, the

uncertainty and variability in the degradation process and the consequence parameters

using the Bayesian Monte Carlo simulations.
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Appendix 6.1

6.1.1 Flow of Liquid through a Hole in a Pipe

Assume the hole diameter = 5mm = 0.005m

p = density of crude oil = 862 kg/m ' (32.6°, API, www.simetric.co.uk/si liquids.htm)

S ; = gravitational constant (length mass/force time"), i. e., g c = I kg .";
N .s

r, =100 psi = 689475 .7N / m2

For corros ion, assume Co = I (Crow l and Louvar, 2002)

Qm= ACoJ2 pg cPg

Qm = 1.9635 X 10-5 x hl2 x 862 x Ix 689475 .7

Qm=0.677kg / s =17.784 barrelslhr

For cracking, assume Co = 0.61 (Crowl and Louvar, 2002)

Qm= ACoJ 2pg cpg

Qm= 1.9635 X 10-5 x 0.6 h l2 x862 x 1x 689475.7

Qm=0.4 13kg / s = 10.849 barrelslhr

6.1.2 Loss of Breakdown by Cor rosion Degradation

For corrosion, C jlp = E x P x D ,p x o; X Cdp

where, C jlp = present cost oflost commodity in dollars

Cdp = cost of downtime calculated in dollars per barrel = $ 70 per barrel
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Drp = duration of the loss of commodity (hour) = Yzday =12hr

P = probability of equipment breakdown (depending on equipment redundancy

levels)=l (assume there is no redundancy and components are in series).

E = average number of critical failures in life time= 1 failure

Qpi = quantity of commodity loss per unit time (barrels per hour)

Cost of a pipe breakdown due to corrosion mechanism:

The present cost: <; =lxlxl2hrx 17.:~4bl x$ZIO=$14939

6.1.3 Shutdown Cost due to Corrosion Degradation

The present worth, on an annual basis, Cftd = Cu x Qx Tm

Unit cost of product, C
II

= $ 70 per barrel

Maintenance delay, Tm = 5 days (Including time to access, minor patchwork, testing etc.)

Cost of shutdown due to the corrosion failure of pipeline segments:

Quantity of affected production, Q = 17.784 barrellhour = 426.816 barrels/day

Total loss due to shutdown, Cftd =~x 426.816barrel x5days = $149384
barrel day

6.1.4 Spill Cleanup Cost due to Corrosion Degradation

Total cost of spill clean up, C ftc = Qmx DrpX C,,,c

Unit cost of spill clean up, C,,,c= $6508/ tonne

Leakage through hole in a pipe due to corrosion failure:

Rate of spillage, Qm = 0.677kg/ s = 2.437tonnes/ hr

Therefore, Cj Se = 2.43~:nnes x 12hrx ~~n~~ = $190336
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6.1.5 Nature Damage Cost due to Corrosion Degradation

The total loss of nature damage , C fnr =Q m x Drp x Cdnr

Unit cost of spill clean up, Cdnr = $5086 / tonne

Leakage through hole in a pipe due to corrosi on failure:

Rate of spillage, Q m =0.677kg / s = 2.437tonnes / hr

Therefore , c; = 2.437::nnes x l2hrx ~n~:~ = $ 148748

6.1.6 Comprehensive Liability Cost

Severity Descriptor Cost per Injury (dolIars)*

Category I Minor 5,000

Category 2 Moderat e 40,000

Category 3 Serious 150,000

Category 4 Severe 490 ,000

Category 5 Critical 1,980,000

Category 6 Fatal 2,600,000

* Technical advisory, Motor Vehicle Accident Costs (Judycki, 1994), US Department of Transportation,

Federal Highway Administration.

257



Appendix 6.2 Inspection Cost Associated with Pipe Corrosion

6.2.1 Gaining Access

Cost of inspection labor per hour, Cli = $80 I hr

Duration of work, t = 3hr

Gaining access cost, C iga = 3hr x $80 I hr = $240

6.2.2 Surface Preparation (Washing, Purging and Coating Breakage)

Cost of inspection labor per hour, Cli = $80 I hr

Duration of work, t = l2hr

Surface preparation cost, C ;sp = 12hr x $80 I hr = $960

6.2.3 Inspection Cost

Cost ofUT thickness measurements, Citll = 12hrs @ $80 Ih r = $960

Cost of radiographic inspection of piping, Cir = 3hrs @$80 1hr = $240

Cost of piping UT defect sizing, Cids = IOhrs @ $80 Ih r = $800

Cost of piping magnetic particle inspection, Cimp = 12hrs @$80 I hr = $960

6.2.4 Technical Assistance

Cost of technical assistance, C ita = 3hrs @80 =$2 40

6.2.5 Logistics Cost

Logistic cost includes the cost of consumable, equipment rent, storage and transportation.

Logistics cost, Ci/ = C, + C, + C;

C, = $400 , C, = $400 , Cst = $400 , : . Ci/ = $ 1200 (from an inspection company)

6.2.6 Total Cost of Inspection

Thus, for piping corros ion inspection, the associated total costs can be estimated by;

C J = C ;ga + C isP + Cirri+ C; + C ita + Ci/ = $3840
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(from an inspection company)

Appendix 6.3 Maintenance Cost Associated with Pipe Corrosion

6.3.1 Gaining Access

Cos t of gaining acce ss for maintenance, Cmga = IOhrs x $80 / hr =$800

6.3.2 Surface Preparation (Coating Breakage, Cleaning, Pur ging with Ga s)

Cos t of surface preparation for main tenance, Cmsp = l 5hrs @ $80 / hr =$1200

6.3.3 Gauging Defects

Personn el cos t, Cmp = IOhrs @ $80 / hr =$800

Logistics cost, Cmf = $400

Tota l cost of gauging for mainte nance , Cmgd =Cmp+C ml =$ 1200

6.3.4 Minor Patch Repair Work

Spare/part 's cos t, Cms =$2200

Cutt ing, welding, fitting, Cmcw=30hrs @$80 /hr =$2400

We ld quality test and alignment, Cmw1=1Ohrs @$80 / hr =$800

Cost of consumables, Cme =$ \000

Tec hnica l assistance, Cm,a = 5hrs @$80 / hr =$400

Total cos t of min or patch repai r, Cmmr = Cms+ Cmcw+C mw1+C me + Cm,a = $6800

Th us, for minor patch repair of conce rned piping, the total costs are approximated by;

CM = Cmga + Cmsp + Cmgd + Cmmr = $ 10,000
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PREFACE

This chapter discusses the optimi zation of inspection and maintenance strategy for

offshore process components under deteriorat ing conditions. The decision making

regarding the inspection and maintenance under uncertainty is a chalIenging task.

Structural degradation is a stochastic process, thus the probabilistic models are developed

to optimize the inspection and maintenance. The aim of RBIM is to minimize the risk of

failure assoc iated with degradations and at the same time, maximize the inspec tion and

maintenance intervals to avoid unnecessary maintenance. To apply this model, the cost of

corrective maintenance should be high compared to the predictive maintenance and the

component should be in the wear-out region. Both these conditions are prevailing in the

ageing offshore process components. This manuscript is reviewe d internalIy by co­

authors and submitted for review to the Journal of Risk Analysis (March 2011).

An independent literature review on risk based inspection and maintenance has been

conducted by the principal author. The stochastic degradation model developed in

Chapter V and the economic consequence model developed in Chapter VI are integra ted



in this chapter by the principal author. The failure consequences are analyzed in terms of

cost incurred as a result of failure, inspection and maintenance . The cost of failure is

estimated under five headings; the loss of breakdown, the loss due to shutdown, the cost

of environmental cleanup, the cost of nature damage and liability. The inspection and

maintenance costs are estimated considering the: access, surface preparation, gauging

defects, inspection and maintenance, logistic and technical assistance costs. The RBIM

methodology has been integrated and implemented by the principal author to achieve the

target of optimal inspection and maintenance strategy.

The rates of failure, inspection and maintenance costs are developed to produce the

annual equivalent cost consequences . The estimated risk is plotted against the inspection

and maintenance interval. In the risk curve, the point at which the inspection and

maintenance interval is maximum (and where the risk is minimum) has been found out.

The risk to life from UC, PC, EC, SCC, CFC and HIC are developed and compared by

the principal author. The inspection and maintenance interval corresponding to the

minimum of them are designated as optimum interval. This quantitative model takes into

account the prior knowledge and NOT data using Bayes theorem, it is dynamic and it

performs well even though the degradation process follows non-conjugate pairs. The

principal author prepared the first draft of this manuscript, which was later consecutively

revised and improved based on comments from the co-authors.
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ABSTRACT

Degradation of components of offshore process facilities poses a major threat to the

integrity of the facility and may lead to its complete failure. Failure of such facilities may

have catastrophic effects on human life, the environment , and financial investment. A

robust inspection and maintenance strategy mitigates the effects of structural

degradations and reduces the threats of failure. Such a strategy needs to take into account

the stochastic nature of failure caused by structural degradations . Risk-based integrity

modeling (RBIM) is a newly-developed methodology that aims to protect human life,

financial investment , and the environment against the consequences of failure. RBIM

quantifies the risk associated with individual components and uses this as a basis for the

design of an inspection and maintenance strategy. The major structural degradations dealt

with are corrosion : uniform, pitting, erosion; and cracking: stress corrosion, corrosion

fatigue, and hydrogen induced cracking. The component's degradation processes are

modeled using Bayesian prior-posterior analysis. Field non-destructive test data is used in

the analysis to update the prior knowledge of degradation. The consequences of failure

are modeled considering the costs of failure, inspection and maintenance. The cost of

failure includes breakdown loss, shutdown loss, the cost of spill cleanup, loss caused by

environmental damage and liability. The total annual equivalent cost (AEC) of operating

and maintaining the facility is the summation of annual equivalent costs of failure,

inspection and maintenance. Further, the operational risk to the life of components is

computed by combining the posterior probability and the AEC. As the overall risk curve

is a convex function of the maintenance interval, the optimum maintenance interval is the

global minimum point. In this article, the operational risk is reduced to as low as



prac ticab le level and at the same time the inspec tion and maintenance interva ls are

maximized to avoid unnecessary maintenance. This model performs well even though the

degradation processes follow non-conjugate pairs. Bayesian Monte Carlo simulations are

used to model the uncertainty in the risk analysis.

Keyword s: Risk, integrity, degradation, probability, consequence, optimal maintenance
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7.1 INTRODUCTION AND BACKGROUND

In recent years, the optimization of maintenance planning using stochastic models is

gaining predominance due to the inherent limitations of breakdown maintenance. A large

number of articles have been published on the subject of maintenance optimization using

mathematical models (1-9). Most of them ( 1-6) are based on lifetime distribution , the

Markov process and qualitative risk ranking . The main drawbacks of such models are:

subjective being qualitative or semi-quantitative, lack of enough data for estimating the

parameters of distribution , lack of a dynamic updating mechanism, lack of information on

failure consequences, and hence the lack of true risk estimation associated with its

operation . Risk based maintenance is the latest development in asset integrity

management. It takes into account the probability and consequences of a failure, as risk

minimization is the maintenance objective , as opposed to condition monitoring or cost

minimization. Some of the literature (7-8) has used Bayesian analysis in maintenance

management; however, this literature conveniently assumes there are conjugate pairs for

degradation process, for easy computation of posteriors , which is not the case in real life.

This introduces significant uncertainty in the analysis, and thus proposes sub-optimal

strategy . The prior and likelihood are often non-conjugate pairs in real-life degradation

processes, but, their modeling has not been reported so far in literature. Thus, there is a

need for a quantitative, risk based maintenance model based on the time-dependent

degradation of components and consequences of failure caused by degradations.

Maintaining the integrity of process components has been a subject of research for many

years ( 1-9). The age-dependent structural degradation of components is a major threat to
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the integrity of offshore process facilities. Asset integrity management is the means of

ensuring that the people, systems, process and resources that deliver integrity are in place,

in use and will perform when required over the whole life cycle of the asset ( 10). From the

historic database it was observed that the major causes of process component failures in

offshore facilities are the environmentally induced defects, such as different types of

corrosion and cracking (II). For components in the operational stage, the design changes

or modifications are often cumbersome; thus, inspection and maintenance are the only

feasible measures for risk reduction (2) . However, the extent of inspection and

maintenance is unknown due to the large uncertainty and variability in degradation

processes and failure consequences . The failure caused by structural degradations is a

stochastic process. Failure consequences include the failure, inspection and maintenance

consequences. Failure consequences would include the loss of commodity due to

breakdown, production loss due to shutdown, cost of spill cleanup and the legal fees and

penalties due to environmental damage and liability. All these parameters are stochastic

and required to be taken into account in the designing of an optimal inspection and

maintenance strategy. Risk-based integrity modeling (RBIM) is a newly-developed

methodology that aims at the protection of human life, financial investment and the

environment against the consequences of failure (II ). The RBIM quantifies the level of

risk to which the individual components are subjected and uses this as a criterion for

developing the optimal inspection and maintenance strategy.

Leaks and ruptures are the principal cause of hydrocarbon release, blowout, fire and

explosions in offshore process facilities . The accident statistics reported for offshore
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systems on the UK continental shelf reported from the period 1990 to 2007 are: 836

hydrocarbon releases (with frequency 0.590), 17 blowouts (with frequency 0.012), 245

fire events (with frequency 0.173), 14 explosions (with frequency 0.010), 20 leakages

(with frequency 0.014) and 24 structural failures (10) . The offshore hydrocarbon release

report ( 12) indicates that 25% of the total releases are due to corrosion, 9% of the total

releases are due to erosion, 24% of them are due to fatigue and 13% are due to

mechanical wear. In Canada, environmentally induced defects, such as metal corrosion,

stress corrosion cracking, hydrogen induced cracking etc. have caused 40% of the natural

gas pipeline failures and 38% of hazardous liquid releases (9).

The cost of corrosion in the USA is observed to be 3.4 percent of the Gross National

Product (GNP). The direct cost of corrosion in industrialized countries in billions of USD

is reported ( 13): USA (303.76), Japan (59.02), former USSR (55.01), Germany (49.26),

UK (8.51), Australia (7.32) and Canada (3.38). These figures show that material

degradation of assets is an economic problem, which needs to be addressed on a priority

basis ( 13).

This paper presents a methodology and models for risk based maintenance optimization .

The age-based asset integrity threats are identified and modeled. In order to model

uncertainty and variability in the degradation processes, stochastic Bayesian prior-

posterior analysis has been used. The consequences of failure are modeled using

economic consequence analysis . The risk to operational life is used as a criterion for

decision making regarding the inspection and maintenance interval. The increasing rate
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of failure cost and decreasing rates of inspection and maintenance costs with respect to

inspection and maintenance intervals are used to minimize the risk. This quantitative risk

model accounts for uncertainty in asset integrity with Bayesian Monte Carlo analysis .

7.2 ASSET INTEGRITY THREATS IN PROCESS COMPONENTS

Asset integrity is defined as the ability of an asset to perform its required function

effectively and efficiently whilst protecting health, safety and the environment ( 10). Past

studies indicate that the major asset integrity threats in pipelines are (9) third party

damage , environmentally induced defects , material and fabrication defects and

operational errors. Most of these degradations may be reduced by implementing better

design procedures, effective quality assurance and quality control programs, better

programs for personnel training and by imposing stringent policies and regulations .

However, a major share of process components and pipelines in offshore fail primarily

due to environmentally-induced (age-based) defects, such as different types of corrosion

and cracking (1-2. II . 14). In reality, the time-based structural degradation processes are

stochastic in nature. This makes its precise modeling with predictive capability a

challenging task. This is addressed in this article.

Corrosion is the result of a chemical reaction between a metal or alloy and its

environment which causes loss of the properties of the metal or alloy, most importantly

its strength. (15) The extent of deterioration per unit time is expressed in terms of

corrosion rate. Corrosion may be either uniform , pitting or erosion types . Uniform

corrosion (UC) is characterized by the corrosive attack proceeding evenly over the entire

surface area, resulting in thinning of wall thickness until failure . The localized attack of a
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corrosive environment on an otherwise resistant surface produces pitting corrosion (PC) .

It is confined to a point or small surface area that takes the form of a cavity. A joint

action involving the corrosive environment and erosion in the presence of a moving

corrosive fluid is known as erosion corrosion (EC) . It leads to the accelerated loss of

material. The brittle fracture of a normally ductile alloy, in the presence of a corrosive

environment or cyclic loading , is known as cracking (15l. The amount of cracking per unit

of time either in length or depth is expressed as the cracking rate. Cracking may be either

stress corrosion , corrosion fatigue, or hydrogen induced types . Stress corrosion cracking

(SCC) is the cracking induced from the combined influence of static tensile stress and a

corrosive environment. The tensile stresses may be in the form of directly applied stresses

or in the form of residual stresses. The process in which a metal fractures prematurely

under conditions of simultaneous corrosion and repeated cyclic loading at lower stress

levels or fewer cycles is known as corrosion fatigue cracking (CFC). Hydrogen induced

cracking (HIC) refers to the severe loss of ductility caused by the presence of hydrogen in

the metal. Hydrogen absorption may occur during electroplating, welding , pickling or

other processes that favor the production of nascent hydrogen . Different types of

structural degradation processes were depicted in Figures 1.1 and 1.2.

7.3 RISK-BASED INTEGRITY MODELING

The risk to life of a component is a function of the combination of its Probability of

Failure (PoF) and Consequence of Failure (CoF). Thus, the main steps in an RBIM

program are the estimation of the probability of degradation-related-failures and the

likely consequences of such failures. In RBIM, the probability of failure is estimated

using stochastic modeling of all identified degradations. Bayesian analysis is used for
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generating a dynamic model, which facilitates the system-learning process with the

arrival of new data over a period of time. Field non-destructive test data is used in the

model. Consequence analysis estimates the economic consequences of failure.

Consequence analysis is based on the dollar cost incurred as a result of failure. The

RBIM is a quantitative, risk-based maintenance model that takes into account the

stochastic nature of the structural degradation processes and failure consequences. An

effective RBIM strategy should reduce the risk of operating the component to as low as

reasonably practicable (ALARP) level. An overall framework for the RBIM is presented

in Figure 7.1. The framework consists of the following tasks (Figure 7.1): data collection

to identify the potential degradation mechanisms , stochastic degradation modeling to

develop the best suitable prior, likelihood and posterior probability models, consequence

analysis to estimate the failure consequences, determination of inspection and

maintenance intervals, which optimize the operational risk, and testing and validation.

7.3.1 Data Collection

There are various testing techniques available for collecting integrity data. Two of these

techniques are destructive testing and non-destructive testing (NOT) . NOT is useful to

collect the data from large and expensive process components. The commonly used NOT

techniques are (16) visual inspection, liquid penetrant inspection, magnetic particle

inspection, eddy current testing, ultrasonic testing and radiography. In this article ,

component, the service (sweet or sour), the product being used or transported and

ultrasonic testing (UT) is used for detecting and quantifying the unwanted discontinuities

and separations in the wall thickness of offshore process components .
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Data Collection

Fig.7.1. Framework for Risk based Integrity Modelin g
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7.3.2 Identification of Degradation Mechanisms

The functional details of the system, subsystem and components are analyzed to study the

potential degradation mechanisms. The data to be analyzed includes the material of the

environmental conditions , such as pressure , temperature and humidity. Furthermore , the

wall thickness data obtained from NDT is used to identify the degradation s. [f the

degradation is a uniform loss of material , regression analysi s has been used; and if it is

localized attack , extreme value analysis has been used to develop the rates of degradation

(1, 14) .

7.3.3 Stochastic Degradation Modeling

Degradation modeling is performed based on Bayesian analysis. Statistical Bayes '

theorem is used to learn about the system more precisely with the arrival of new

inspection data. Since the structural degradation is a random process, the NDT data

indicates large uncertainty and variability. This uncertainty and variability may be best

modeled by stochastic models . The uncertainty in degradations can be best minimized by

inferring prior knowledge about the system, and revising the present knowledge with new

information (NDT data). Bayes' theorem states how to update the prior probability, p( O) ,

with a likelihood probability , p( y I e) , to obtain the posterior probability as:

p(B I y ) p(B)p(y I B)

fp(B)p(y I B)dB
(I)

The posterior probability density peeI y ) provides the latest information , after viewing

the data. It provides a basis for the inference on the degradation parameter 0 ( I I) . The

prior probability , which is the initial information about the degradation, is developed first

(14). Further, these prior models are combined with NDT data as the likelihood function to
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develop posterior probability. The posterior model is a system-learned model to predict

the future failure probability of degrading components . Stochastic degradation modeling

for potential corrosion and cracking processes is discussed in Section 7.4.

7.3.4 Economic Consequence Analysis

The failure consequences are analyzed in terms of operational-life cost incurred as a

result of the failure, inspection and maintenance. The consequences of failure include the

loss of a commodity due to breakdown , loss due to shutdown, the cost of spill cleanup ,

the cost of nature damage and liability ( 17). The inspection cost depends on the method of

NDT inspection, type of component, cost of gaining access , surface preparation and

logistics costs. The maintenance cost depends mainly on the type of repair ; i.e., minimal

repair or component replacement, along with the cost of gaining access , surface

preparation , gauging and coating restoration. Further, the total cost, also known as annual

equivalent cost (AEC) of operating and maintaining the component is computed. The

AEC is a summation of expected annual equivalent costs of failure, inspection and

maintenance . Details of consequence analysis are presented in Section 7.5.

7.3.5 Optimization of Inspection and Maintenance

In the proposed risk-based model, the estimated posterior probability of failure and the

economic consequences are combined to produce the operational risk in the service life.

The cumulative probability density of structural degradations is combined with the AEC

of operating and maintaining the component , to plot the operational risk curve. From the

risk curve , optimal inspection and maintenance strategy is obtained by minimizing the

overall risk. The optimum inspection and maintenance interval thus obtained satisfies the

two necessary criteria of maintenance: first, the risk is reduced to ALARP level; and
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second, the maintenance interval is maximized, thus avoiding unwanted maintenance and

its associated costs. The developed inspection and maintenance risks are compared with

the company 's operating budget, as risk acceptance criteria. Details of the inspection and

maintenance interval optimization are presented in Section 7.6.

7.3.6 Testing and Validation

To demonstrate the applicability of developed RBIM, a practical case study is presented .

The probabilities of piping component (pipes, bends, tees etc.) failure are modeled using

the field NDT data, associated with an ageing process facility operating in the North Sea.

The consequence of failure models are tested using the unit cost data of failure,

inspection and maintenance, obtained from an inspection and maintenance company

operating in the North Sea. Results of testing and validation are presented in Section 7.7.

7.4 STOCHASTIC DEGRADATION MODELING

As reported in Section 7.3.3, the life-threatening structural degradation processes are

modeled using Bayesian analysis. Statistical Bayes' theorem provides a formal and

structured approach that can be used to update the prior knowledge of degradation

processes based on data obtained through field NDT inspections.

7.4.1 Prior Probability Modeling

In the context of degradations, the prior probability refers to the initial understanding of

each type of degradation mechanism . Although the choice of prior is often subjective , a

rational consensus may be achieved by analyzing historic data from the same or similar

installations . To develop the prior probability models for each type of corrosion and

cracking degradations, several probability distributions have been tested using the data
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extracted from relevant literature. Details of the literature and statistica l tests performed

for developing the degradation prior models are presented elsewhere ( 14).

The prior probability models are developed for degradation process, such as, UC, PC,

EC, SCC, CFC and HIC. It is observed that, for UC, the 3P Weibull; for PC, the Type I

Extreme Value; for EC, the 3P Weibull; and for SCC, the 3P Weibull or Type I Extreme

Value; for CFC and HIC, the Lognormal and Weibull are observed to be the ideal

candidates ( 14). The goodness of this fit is tested using probability plots and Anderson­

Darling (A-D) tests. Then, the model parameters are estimated using the methods of least

square (LS) and maximum likelihood estimates (MLE) ( 14).

7.4.2 Likelihood Probability Modeling

The integrity inspection data from an ageing offshore process facility has been used to

develop the likelihood probability models for different types of corrosion mechanisms.

The facility has different systems; a gas condensate system exhibiting UC, a gas export

system exhibiting PC, and a high pressure drilling mud system exhibiting erosion type

corrosion. Inspection data includes the minimum and average wall thickness acquired

during the period 1997 to 2003. The nominal diamete rs of the facility's component s

varied from 19.05 to 508.0 mm. The inspection was carried out using the ultrasonic

testing (UT) technique. A typical sample isometric drawing related to the gas export

system is presented in Figure 7.2. Since no such data were available for cracking, such as

SCC, CFC and HIC, the data from literature is used in the analysis.
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Fig. 7.2. Sample Gas Export System Piping Isometric Drawing

The inspection data (NOT) is first analyzed to estimate the degradation rates. Then, these

degradation rates are tested with standard probability distributions to develop the

likelihood probability models. The method outlined in article (I ) has been used to compute

the corrosion rates from the available wall loss data. The collected data is first analyzed

to identify uniform or localized degradation . In the case of uniform degradation, a time
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dependent regression analysis, and in the case of localized degradation, an extreme value

analysis has been carried out for estimating the rates. Details of corrosion rate estimation

and the probability testing may be obtained from article (14). Similar to priors, the

likelihood probability has also been observed to be of the same form. That is, for UC, 3P

Weibull; for PC, Type I Extreme Value; for EC, 3P Weibull or Type I Extreme Value;

for SCC, 3P Weibull; and for CFC and HIC, the Lognormal and Weibull distributions are

observed to be more suitable likelihood models.

7.4.3 Posterior Probability Modeling

The methods for computing posterior models are (18) : analytical approximations , data

augmentation methods, Monte Carlo direct sampling and Markov chain Monte Carlo

(McMC) methods. The degradation priors and likelihoods , such as Weibull, Type I

Extreme Value and Lognormal distributions with two and three parameters do not have

conjugate prior-likelihood pairs; therefore, the posterior probability estimation cannot be

performed in closed form. In such cases, the McMC simulation or analytical

approximation methods are the best ways to determine the posterior distributions ( 19-20). In

this study, the simulation based Metropolis-Hastings (M-H) algorithm, which is a McMC

method; and Laplace approximation , which is an analytical method, are used for this

purpose. Fundamentals of the M-H algorithm and Laplace approximation are presented in

below section. The derivation and implementation details are reported elsewhere ( 11,2 1-22).

Metropolis-Hastings Algorithm

The M-H algorithm is a rejection-sampli ng algorithm used to generate a sequence of

posterior samples following a probability distribution that is difficult to sample directly

(23-24). This sequence is used in McMC simulations to approximate a distribution or to
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compute an integral. In Bayesian applications , the normali zation factor (denominator of

equation I) is difficult to compute , so the ability to generate posterior samples without

knowing this constant of p;oportionality is a major virtue of this algorithm (25). The

algorithm generate s a Marko v chain in which each state x l+l depend s only on the

previous sample state x' . The algorithm uses a proposal density q(x' ,x' ), which depends

on the current state x' , to generate the new proposed sample x' . The proposal is accepted

as the next value ( X t+1 = x' ) if a (x ',x' ) drawn from the uniform distribution 11(0,1) is:

a (x ',x' ) < p( x') .q(x ' / x' )
p(x ') .q(x' / x' )

(2)

If the proposal is not accepted, then the current value of x is retained; i.e., X ' +
I =x'. The

proposal dens ity could be a multivariat e normal distributi on centered on the current state

x'; q(x' , x') - N (x ' , (52 ) , where, q(x' , x' ) is the probability density function for x'

given the previou s value x' . This proposal density generates samples centered around the

current state with variance (5 2 . The acceptance of generated samples will be based on

equation (2). Algorithm implementati on details can be obtained from articles (1 1.2 1.2 5-26).

Laplace Approximation Method

When direct estimation s are difficult , the Laplace Approximation (LA) is a useful tool for

estimating the posterior parameter s. It is based on a Taylor series expansion around the

maximum likelihood estimate value, ignoring the negligibl e terms and normal izing. The

best reference s for approximating the Bayesian posteriors with the Laplace method (27)

are articles (22.28). The implementation details of LA method may be obtained from the

article (II). A computable approximation for the posterior mean and variance of smooth

function of the parameter that is nonzero on the interior of the parameter space has been
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introduced (22) . Let -1I(e) be a smooth , positive function on the parameter space, with a

maximum at its mode , B.The posterior mean of any function g (0) can be written as (22):

f g( O).e -n"(Old O
Ji =E[g (O)/YJ= - f - - - ' where, e -n"(O)= /(y/ O).p (O)

e -n"(O)dO
(3)

The LA method is to approximate the numerator and denominator of the above integral

by approximating normal curves centered at the posterior mode and having variance

equal to minus the inverse of the second derivative of the log posterior density at its

mode . It produces reasona ble results as long as the posterior is dominated by a single

mode (22). By Laplace approxima tion, the mean and variance may be obtained as (11. 22):

E(g( O» =~{eXP[-nll *(O*)]} / {exp[- nll (B)]}

V( g) =s ?= E[g( O)2J- E[g( O)f

where, (J" * is the mode of < nh *(0*) and (J" is the mode of - nll (O) ( II) .

(4)

(5)

Both the M-H algorithm and the Laplace approximation method are coded in Matlab and

used for developing the posteriors of the aforementi oned degradation priors . In order to

calibrate the codes , the known conjugate pair parameters are used as true estimate s. The

following conjugate pairs are used for the purpose of testing: Normal-Norma l, Gamma-

Gamma , Gamma -Normal and Gamma-Poisson (I I) . It is observed that the M-H algorithm

produced better results compa red to the Laplace approximation ( I I) . The estimated sample

posterior parameters using the M-H algorithm are presented in Table 7. 1.
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Table 7.1. Degradation Posterior Probability Models and their Parameters

Structural Posterior Probability Models and their Parameters

Degradations Types of Model Shape Scale Location

UC 3PWeibull 1.2660 0.1017 0.0079

PC Type 1 Extreme Value 1.7280 1.1070

EC 3PWeibull 2.7070 0.0421 -0.0065

SCC 2P Weibull 1.6590 1.9500

CFC Lognormal 2.7700 2.6410

HIC Lognormal 14.190 10.050

7.5 ECONOMIC CONSEQUENCE ANALYSIS

The purpose ofRBIM is to minimize the risk associated with degradation-related failures.

To provide a consistent measure of risk, all consequences are represented in dollars. That

is, risk is interpreted as the expected loss due to a certain event or groups of events (29).

To minimize the likelihood of failure, components need to be inspected and maintained at

every possible interval. However, if the inspection and maintenance is performed too

frequently, it will involve large costs and if it is performed too rarely, it will result in

failure followed by an unplanned shutdown and costly corrective maintenance. Therefore ,

the aim here is to find an optimal maintenance strategy, which takes into account the

component's condition and actual risk. Typically, the failure consequences include the

economic consequences of failure, inspection and maintenance.
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7.5.1 Economic Consequences of Failure

The operating and maintenance costs increase throughout the life of a facility due to

various degradation processes . Failure cost is the cost associated with the loss of a facility

due to deterioration failures . The failure cost may be divided into corrosion and cracking

costs. It is equal to the sum of the failure costs , operating costs , and the cost of lost

production, together with the material salvage value. It is assumed that a component

failure is followed by an immediate repair to prevent any system failure scenario with

much higher consequences. Degradation-related failures may lead to increased risk of

loss of the entire unit through a chain of reactions. In such cases event tree analysi s will

be required to assess the system-level consequences. In this study , the component is

assumed to be independent and isolated . Further, the economic consequen ces of a

component failure include loss of commodity due to breakdown, production loss due to

shutdown , cost of spill cleanup , legal fees and penaltie s due to environmental damage

and liability (17) .

Loss due to Breakdown

The leak or rupture of the component's wall thickness by degradation is a main cause for

breakdown. Thus , breakdown costs are financial losses, which are associated with losing

the commodity. This cost depends upon what product is being processed, the rate of

leakage and its current market value when the failure occurs . The focus in this article is

on a topside proces s piping in the North Sea and the product is crude oil. The market

value of crude oil is assumed to be $ 70 per barrel in this article . To estimate the rate of

leakage, the source model , that is, the flow of liquid through a hole in a pipe, is used (17) .

The following formula may be used to estimate the cost of breakdown (17.30) :
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(6)

where, C j lp = the cost of the lost commodity in dollars, Cdp = cost of downtime

calculated in dollars per barrel, Qp/ = quantity of commodity loss per unit of time (for

e.g., barrels per hour), Drp = duration of the commodity loss (hours), P = probability of

loss of the commodity (depending on the equipment redundancy levels)=1 (assuming

there is no redundancy and the components are in series), E = average number of critical

failures in the lifetime. Estimated cost of piping degradation is presented in Table 7.2.

Loss ofProduction due to Shutdown

The main factor influencing the cost of failure is the facility 's unavailability for

production. Inspection and maintenance can be planned, whereas failures may lead to an

unplanned , immediate shutdown of the facility. The cost of such a shutdown is dependent

on the number of days of shutdown, the rate of loss of production and the value of

products at the time of failure. Thus, the shutdown cost is calculated by combining the

unit cost ofthe product, loss of affected production and maintenance delay time as ( 17.3
1)

:

<; = ClIx Qx Tm (7)

where, C fsd is the cost of shutdown (dollars), C" is the unit cost of product

(dollars/barrel) , Q is the quantity of affected production (barrels/day) and Tm is the

maintenance delay (days). The estimated cost of piping degradation is presented in Table

7.2.

Cost ofSpill Cleanup

The cost of an oil spill cleanup depends on a number of factors, such as, the type of oil,

the amount spilled and rate of spillage, the characteristics of the affected area, weather
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and sea conditions , local and national laws, time ofthe year and the spill cleanup strategy

(32-33). Predicting the unit cost of spill response is highl y uncertain since the factors

impacting the cost are comple x. In the present article, crude oil spillage in offshore is

considered. Based on the location , the average per-unit offshore oil spill cleanup cost is

$6508 per tonne (33) . The cost of environmental cleanup compri ses the unit cost of spill

cleanup and the total quant ity released due to failures caused by degrad ations. Further,

the total quantit y released depends on the rate of spillage and the duration of the release.

The following formula may be used to estimate the cost of spill cleanup :

(8)

where, C,,,c is the unit cost of spill cleanup (dollars/tonne), Qm loss of product per unit

time (tonne/hour) due to corrosion or cracking, and D rp is the duration of spillage (hour).

The cleanup cost thus estimated is presented in Table 7.2.

Loss due to Environmental Damage

The size of penalty as a result of damaging the environment is difficult to estimate,

because costs increase with the scope of failure. The failure modes developed could

escalate to more complex system failures leading to significant environmental damages.

However , approximat e assessments considering the quantity released and the unit penalty

rate are possible (33) . The environment damage due to oil spillage includes loss of marine

as well as coastal habitat, soil pollution , damage to agriculture land and adverse health

impacts (33-34). The per-unit cleanup cost of environmental damage is $ 5086 per tonne of

oil (33) . This cost includes the cleanup cost of damage to the coastal ecosystem, consisting

of near shore and shoreline response. The cost of environmental damag e comprises the

unit cost of nature damage and the total quantity released. The total quant ity released
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depends on the rate of release and the duration of spillage. Thus, the total cost associated

with damaging natural resources by failures may be estimated using the formula:

(9)

where, Cdn, is the unit cost of nature damage (dollars/tonne), Q m is the release of product

per unit time (tonnes/hour) due to corrosion and cracking, and D,p is the duration of the

release (hour). The nature damage cost due to degradation is presented in Table 7.2.

Cost ofLiability

The injuries and deaths caused by process component failure have the most severe

implications possible. The loss of life or pain of an injury is impossible to quantify, yet,

the cost incurred due to workers compensation and corporate liabilities shall be taken into

account (29). Apart from that, safety-related system failures have other immediate

implications, such as legal fines and penalties for professional negligence . The estimates

of liability costs that result from motor vehicle accidents are routinely published by

several public and private organizations . The US Department of Transportation published

a technical note (35) on comprehensive motor vehicle accident costs which is adopted as a

baseline in this article. The comprehensive liability cost includes medical costs,

emergency services, vocational rehabilitation, lost earnings, administrative costs, legal

consulting fees, pain and lost quality of life. For a typical piping failure, the liability is

assumed to be a moderate injury, causing a lump sum payout of$ 40 000 in this article.

Total Cost ofFailure

The total cost of failure (C F) is the summation of loss of breakdown , loss due to

shutdown , cost of spill cleanup and costs of environmental damage and liability, as:
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(10)

This total cost is based on two assumptions: the component is isolated, and the

component failure leads to a system failure with subsequent unavailability. The estimated

values for failure cost are presented Table 7.2. The rate of failure cost due to

degradations, over the service life of n years, with varying inspection and maintenance

intervals may be calculated using the following equation:

( I I)

where, j is the inspection and maintenance interval, which varies from I to n years.

7.5.2 Economic Consequences of Inspection

The NOT techniques are used for the detection and quantification of unwanted

discontinuities and separations in materials due to degradations. This quantitative

information is achieved by detecting, locating and sizing of any detected flaws. Several

types of defects exist in components, such as corrosion, cracking, inclusions, dents and

holes. Defect quantification requires considerable skill and experience, and the use of

more than one NOT technique. Based on literature ( 16. 36), the best suitable inspection

methods for corrosion and cracking are identified, and their corresponding dollar costs

are estimated. The unit costs of the NOT techniques obtained from an inspection

contracting company have been used in the analysis.

Cost ofDegradation Inspection

The NOT technique is used to detect and quant ify the extent of wall loss, pit depth and

surface cracks as well as coating breakage. The inspection costs depend on how much

area to inspect from a risk perspective. The inspection cost includes the cost for gaining
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access to the degraded component, the cost for surface preparation, personnel cost for

inspection, the cost associated with technical assistance, the cost of consumables and

chemicals, and the logistics cost. In this article, it is assumed that the proposed inspection

method is able to detect the presence of corrosion discontinuities, and surface or

subsurface cracks. For piping (pipeline segments, bends and tees), the suggested

inspection methods are UT thickness measurement and radiographic inspection (RI) for

corrosion, and magnetic particle inspection (MPI) and UT defect sizing for cracking (16.

36). The cost of each inspection activity is estimated using the per-unit personnel cost , and

the total duration of inspection (17) . Cost associated with piping inspection (C l ) is ( 17):

(12)

where, C iga = cost of gaining access, C ;sp = cost of surface preparation, C ild = cost of UT

defect sizing, C;r = cost of radiographic inspection, Cita = cost of technical assistance

and Cil = cost of logistics (equipment storage , rent and transportation). The cost of UT

thickness measurements, Ciut = Clut x t , whereas Clld = personnel cost for UT thickne ss

measurements per hour , and t =total duration of inspection in hours. The estimated costs

for corrosion and cracking are presented in Table 7.2. On an annual basis , the rate of

inspection costs tends to decrease with the increase in inspection and maintenance

intervals . This decreasing trend may be modeled using the following equation:

lC(j) =CI~
}

(13)

where, j is the inspection interval , lC(j) is the inspection cost in the j''' interval, and n

is the component service life in years .
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7.5.3 Economic Consequences of Maintenance

This is the cost associated with restoring the components. To ensure safe operation ,

maintenance needs to be performed at very small intervals. However , it is impractical to

have frequent maintenance due to large costs , the possibility of maintenance-induced

errors, and the associated plant unavailability. To optimize maintenance, the following

necessary conditions must be satisfied: the cost of maintenance should be greater after

failure than before, and the hazard rate of the component should be increasing, i.e., the

component should be in the wear-out region. This article focuses on predictive

maintenance of process component s. Predictive maintenance estimates through

diagnostic tools, such as NOT techn iques and probabilistic models , when a component or

part is about to fail and should be repaired or replaced ; thus reducing costly corrective

maintenance . It covers the cost of necessary minimal repair , replacement , and material

costs associated with inspection and maintenance. Risk-based predictive maintenance is

possible only because the degradation-induced failures can be predicted with a certain

probability .

Cost ofDegradation Maintenance

Maintenance may be either a minor patch repair task or the complete replacement of a

degraded component. For all types of corrosion , minor patch repair work of the affected

area is considered , and for any types of cracking, immediate component replacement with

necessary repair is considered. Maintenance task includes access to the degraded part,

surface preparation , cutting and removal of parts, assembling, welding , testing and

restoring the protective coating. Thus, in addition to the cost of repair and replacement ,

the personnel and logistics cost related to transportation, storage and rent of facilities also
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should be included . The cost of each maintenance activity is estimated using the unit cost

of maintenance personnel and the total duration of maintenance. Details of the estimation

have been presented elsewhere ( 17). The total cost associated with piping maintenance for

degradation may be estimated as:

CM = Cmga + Cmsp + Cmgd + Cmmr (14)

where, Cmga = cost of gaining access to the degraded component, Cmsp = cost of surface

preparation , Cmgd = cost of gouging defects, and Cmmr = cost of minimal repair or

replacement. Where, the repair (cutting , welding and fitting) cost, Cmcw = Clcr X t ,

whereas the C/cr is cost of labor for repair in dollars per hour, t is the total repair time in

hours. The rate of maintenance costs decreases with the increase in maintenance intervals

over the service life. This decreasing trend may be modeled using the following equation:

MC(j) =C M ~
}

(15)

where , j is the inspection interval , MC(j) is the maintenance cost for the j' ''interval,

and n is the service life in years . The cost estimates associated with piping degradation

(corrosion and cracking) is presented in Table 7.2.

7.5.4 Annual Equivalent Cost of Degradations

The annual equivalent cost (AEC) of operating and maintaining the component is the

summation of the rate costs of failure, inspection and maintenance , and is estimated as:

AEC(j) =FC(j) + IC(j) + MC(j)
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Due to the increasing trend of rate of failure cost and the decreasing trends of rate of

inspection and maintenance costs, the AEC vis maintenance interval will be a convex

function.

7.5.5 Probabilistic Cost Analysis

Uncertainty and variability in consequence analysis are modeled with probabilistic

analysis using Monte Carlo simulations. For simulation, the total cost of component

failure, inspection and maintenance is considered to be a Gaussian distribution with the

estimated mean. The coefficients of variation of costs are assumed to be 2.5%. The

estimated mean and standard deviation values of the piping degradation costs are reported

in Table 7.2.

Table 7.2. Probabilistic Piping Degradation Costs used in the Economic Analysis

Structural Cost divisions Corrosion cost ($) Cracking cost ($)

degradation Mean Std. dev Mean Std. dev

Corrosion Total cost offailure 543407 13585 438235 10956

(UC, PC, EC) Total cost of maintenance 10000 250 15000 375

& Total cost of inspection 3840 96 4400 110

Cracking Salvage value 0 0 0 0

(SCC, CFC, Annual rate of interest 8 %

HIC) Service period 30 years
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7.6 OPTIMIZATION OF INSPECTION AND MAINTENANCE

The AEC has been combined with the cumulative density function (COF) of the posterior

probability to estimate the operational life risk as shown in equation (17) . Thu s, finding

the optimal inspection and maintenance interval is reduced to finding the value of

inspection and maintenance intervals that minimizes the operational risk . At the optimal

risk point , the risk will be reduced to as low as reasonably practicable (ALARP) level ,

which at the same time ensures the safety of the facility 's operation.

R(j) = F[p( B / y, j )] x AEC(j) (17)

where , R(j) is the risk of failure due to degradation (in dollars) in the r interval ,

F[P( O/ y) ,j] is the COF of posterior probability of failure and AEC is the annual

equivalent cost, corresponding to the inspection and maintenance interval , j .

The operational risk curve is observed to be a convex function of the component's service

life. A search is conducted to identify the minimum risk point , and the interval of this

minimum risk is considered as the optimal inspection and maintenance interval. The

optimum inspection and maintenance interval thus obtained satisfies the two necessary

criteria of optimal maintenance: one, the risk is reduced to ALARP level; and two, the

maintenance interval is maximized, thus avoiding unwanted maintenance and its

associated costs. The inspection and maintenance risk in dollars is compared with the

company's operating budget, as risk acceptance criteria . The results of estimated risk due

to UC, PC, EC, SCC , CFC, and HIC of process components are discussed in section 7.7.
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7.7 RESULTS AND DISCUSSIONS

Results of analysis are discussed under three headings: stochastic degradation modeling ,

economic consequence analysis and optimization of inspection and maintenance.

7.7.1 Stochas tic Degr ad ation Modeling

Sample results of the stochastic degradation modeling are presented in Figures 7.3 to 7.8

( I l l . The prior and likelihood models for the identified degradations , such as UC, PC, EC,

SCC, CFC and HIC, are observed to be of the same type. Since these likelihoods are

revising priors , the posteriors also converge to the same type of distribution. The

posterior estimation based on the M-H algorithm converged to satisfactory results. The

first half of the simulated samples is ignored, as these samples describe a transient state .

The remaining samples which describe a steady state condition are used in the analysis.

Laplace approximation is computationally intensive ; it is not effective when using

distributions with more than two parameters . The error accumulates in the variance

estimation due to the second order terms in the computation. Laplace approximation

diverges as the parameter size is either too small or too large due to numerical instabilit y

resulting from the use of higher order terms in the estimation . Therefore , for developing

the posteriors of structura l degradations in process component s, the Laplace

approximation method is not recommended. Further, the M-H algorithm produced better

results compared with Laplace approximatio n, and hence it was used for the posterior

develo pment of' degr adation priors ( I ll. While using the M-H algorithm, the change in the

value of the location parameter from the prior to the posterior was observed to be

insignificant. Thus , instead of using a three-parameter model , a two-parameter model
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may be used to develop posteriors and the location parameter may be added

subsequently.
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Fig. 7.3. Sample Prior and Posterior Distribution s for Uniform Corrosion
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291



Distribution Plot
Weibull

.~ 20

~ 15

I 5hapeScaie Thresh I
- 4.597 0.05445 -0.0075
-- 2.707 0.04211 -0.0065

0.02 0.04 0.06
Corrosion Rate (nm/year)

Fig. 7.5. Sample Prior and Posterior Distributions for Erosion Corrosion

Distribution Plot
Weibull,Thre5h=0

~ 0.2

~
hape Scale

-2.707 2.679
-- 1.659 1.95

2 3 4
Cracking Rate (mm/unit t ime)

Fig. 7.6. Sample Prior and Posterior Distribution s for Stress Corrosion Cracking

292



~ 0.2

Distribution Plot
Weibull,Thresh ;O

2 3 4 5
Cracking Rate (rnn/cycle)

~
~
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Fig. 7.8. Samp le Prior and Posterior Distributions for Hydrogen Induced Cracking
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7.7.2 Economic Consequence Analysis

Sample results ofthe economic consequence analysis are presented in Figures 7.9 to 7.14.

The rate of failure cost is observed to be an increasing function of the inspection and

maintenance interval. The rate of inspection and maintenance costs is found to be a

decreasing function of inspection and maintenance intervals. Further, the expected AEC

of operating and maintaining the component are computed using simulations. The AEC is

found to be a convex function of inspection and maintenance interval. The operational

risk curve is produced by combining the CDF and AEC to minimize the risk.
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Fig. 7.12. Economic Consequence Results for Stress Corros ion Cracking
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Fig. 7.13. Economic Consequence Results for Corrosion Fatigue Crack ing
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Fig. 7.14. Economic Consequence Results for Hydrogen Induced Cracking
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7.7.3 Optimization of Inspection and Maintenance Interval

The sample results of operational life risks due to corrosion and cracking are presented in

Figures 7.15 to 7.20. These Figures show overall risk in dollars due to various structural

degradation s, such as UC, PC, EC, SCC, CFC and HIC, plotted against the inspection and

maintenance interval. On the risk curve thus developed, the point where the risk is

minimal is defined as the optimum maintenance interval for the component with respect

to that particular degradation process. The degradation processes are assumed to be

independent of each other and isolated. Also, it is assumed that the minimal repair for

corrosion leaves the system in a state similar to its state just before its failure, whereas the

replacement for cracking brings the system back to an as good as new condition. With

respect to the considered piping degradations , the computed optimal inspection and

maintenance intervals are reported in Table 7.3. The optimum maintenance interval is the

time to the next inspection and maintenance starting from now onwards. Around 10 000

iterations are used to produce operational risk curves, shown in Figures 7.I5 to 7.20.

Table 7.3. Optimum Inspection and Maintenance Interval for the Components

Process Deterioration Source of Optimum Maintenance

Component Process Result Interval (years)

UC Figure 7.15 5

Piping PC Figure 7.16 4

(straight pipe, EC Figure 7.17 5

bends, tees) SCC Figure 7.18 6

CFC Figure 7.19 4

HIC Figure 7.20 5
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Fig. 7.15. Operational Life Risk Curve due to Uniform Corrosion
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Fig. 7.16. Operational Life Risk Curve due to Pitting Corrosion
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Fig. 7.17. Operation al Life Risk Curve due to Eros ion Corro sion
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Fig. 7. I8. Operational Life Risk Curve due to Stres s Corro sion Cracking
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Fig. 7.19. Operational Life Risk Curve due to Corrosion Fatigue Cracking
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Fig. 7.20. Operational Life Risk Curve due to Hydrogen Induced Cracking
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7.8 SUMMARY AND CONCLUSIONS

This article presents methodology and models using the risk based integrity modeling

framework capable of making optimal maintenance decisions for offshore process

components. Structural degradations are random processes and thus, probabilistic models

are developed to accurately predict failure mechan isms. The life threatening component

degradation processes are identified as different types of corrosion and cracking. The

degradation processes include DC, PC, EC, SCC, CFC and HIC. These structural

degradations are modeled using prior distributions , which are subsequently updated using

NOT data to posterior distributions through the use of Bayes ' theorem. The simulation

based M-H algorithm and analytical Laplace approximation methods are used to develop

the posteriors. Since these posterior models are based on real life NOT data , they provide

more reliable and accurate predictions for the future degradations of components .

The first part of this article discussed the development of an RBIM framework using the

potential degradation mechanisms. The prior distributions for various degradation

processes are developed based on the data extracted from literature. The relative accuracy

of the prior model is tested using probability plots and A-O tests, and the parameters are

estimated using the methods of least square and maximum likelihood estimates. The

model was applied to a real life case study, using field NOT data from an ageing offshore

process facility . Literature data is used for estimating the likelihoods of cracking .

The posterior probability models are then developed. The use of a simulation method is

necessitated because none of the prior-likelihood models fall into the natural conjugate
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pairs of the exponential family. Two MATLAB codes, one using the M-H algorithm and

the other using the Laplace approximations , have been developed and used to compute

the posterior distributions. These codes are calibrated using known conjugate pair

estimates . The MATLAB codes performed well for Weibull, Lognormal and Type I

Extreme Value distributions with two and three parameters . The posterior probability

thus developed is useful in assessing the potential risk to the life of component. Further, it

has been observed that the rejection sampling based M-H algorithm is the more suitable

method compared with the Laplace approximation for posterior estimation of

components . Using the M-H algorithm, it is observed that the posterior probability model

that can be used to estimate the future failure probability due to the UC is 3P Weibull; the

PC is Type I Extreme Value, and the EC is by 3P Weibull. Similarly, the SCC

degradation can be best modeled by Weibull; the CFC and HIC by Lognormal and

Weibull distributions .

An economic consequence analysis model based on the component's minimal repair and

replacement concept is discussed. The consequences of failure are estimated by

developing the cost of failure, inspection and maintenance. The cost of failure includes

the loss due to breakdown, loss due to shutdown, the cost of a cleanup strategy, loss of

nature damage and liability. Then, the CDF of posterior probability and AEC are

combined to produce the operational risk curve.

The optimal inspection and maintenance interval is determined from the operational risk

curve at the point corresponding to the minimum risk. In this article, the optimum

303



inspection and maintenance interval is observed to vary from 4 to 6 years for different

corrosion and cracking processes. The smaller value (4 years) should be considered the

optimum maintenance interval. This interval should be revised as new NDT data is

obtained. The developed model may be applied to the optimization of inspection and

maintenance even though component degradations follow non-conjugate pairs. This

model could be refined further by incorporating the actual costs and rates of interest

based on the market value at the time of analysis.
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CHAPTE R VIII

SUMMA RY, CONCLUS IONS AND NOVELITIES

8.1 GENERAL

The development of an optimal maintenance strategy taking into consideration of the

uncertainty surrounding the age-based degradation processes is critical to the safe

operation of offshore process facilities . During the operational life of the facility , the only

way to prevent component failure is through optimal maintenance as the design

modifications are cumbersome . The maintenance strategy can be inspection and repair ,

component replacement , or both. The inspection, repair and replacement may involve

costs, shutdown and the possibility of maintenance induced errors. Any human

intervention has to be limited from the safety and cost perspectives . If the interval

between subsequent inspections and maintenance tasks is prolonged irrationally , it may

cause the premature failure of components. On the other hand reducing the interval

between subsequent maintenance increases the operating , and maintenance cost as well as

the probability of maintenance induced errors. Hence, finding an optimal strategy taking

into consideration the uncertainty which accompany the degradation process is a

challenging task. The age-dependent degradation processes are one of the main asset

integrity threats in offshore process components. The degradation is a stochastic process

and hence the probabi lity distributions are ideal to mode l them. However, experience and

system field data playa crucia l role in the modeling of the degradation processes . If the

model to have some merit, it should represent the system in terms of data and experience

and reduce the uncertainty. It is argued that Bayesian analysis is an ideal choice in such

309



situations as it is good for logical and consistent reasoning under uncertainty . The

expertise may be utilized in the form of prior information and the system integrit y data

from NDT may be utilized to obtain a likelihood function to predict the latest degradation

of components in terms of posterior probability . Since, the posterior probability is based

on field data ; it provides a suitable model for the degradation process and may be used

successfully to predict the likelihood of future failures .

Existing maintenance strategies, like the reliability centered maintenanc e and condition

based maintenance, are based on the component probabilit y of failure only. However, it is

not difficult to visualize a situation where an event having a low probability of failure

will have drastic consequence s on the facility, safety, and the environment. The failure

consequences include the loss of breakdown due to commod ity loss, the loss due to

facility shutdown , the loss of environm ental cleanup, the loss of nature damage , and

liability. The different inspection and maintenance tasks have economic consequence s

themselves, such as the type of inspection and mainten ance, the cost of personnel , cost of

gaining access to the degraded component , the cost of surface preparation , the logistics,

the cost of consumable and transportation of parts and spares. If one keep in mind the

importance of probability of failure and its consequence, the risk based maintenance

strategy develop ed in this thesis provides a rational choice for the decision making

process regarding the inspection and maintenance .

In this work, the reduction of risk to as low as reasonably practicable levels and at the

same time ensuring the safety of operation through the optimal utilization of resource s
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has been achieved by developing an RBIM strategy which has been presented. The

maintenance may be either minimal repair or component replacement ; hence models for

their optimization are developed in this thesis. The optimization is a trade off between the

cost of maintenance resources and the benefits of risk reduction achieved by the optimal

maintenance in terms of increased safety and reliability. This chapter presents a summary

and conclusion of the thesis, along with the novelties and the scope for future work.

8.2 SUMMARY

Maintenance optimization using mathematical modeling of stochastic degradation

processes is a burgeoning area of research. A critical review ofliterature shows that there

is a need for a robust risk based integrity model to help make informed decision on

maintenance strategies in the face of uncertainty in the degradation processes. The aim of

such an RBIM is to protect human life, financial investment, and the environment. Based

on these requirements an RBIM methodology is developed in this thesis. This

methodology takes into account the uncertainty and variability in structural degradation

processes by using stochastic degradation modeling, and the consequences of failure in

terms of costs in dollars associated with it. By combining the stochastic degradation

modeling and economic consequences analysis, an optimal strategy is designed for the

inspection and maintenance, and replacement of ageing components .

The life threatening structural degradation processes are caused by various types of age­

dependent corrosion and cracking phenomena. The critical corrosion mechanisms

observed in process components are uniform, pitting and erosion corrosion. Similarly, the

critical cracking processes observed are stress corrosion cracking, corrosion fatigue
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cracking and hydrogen induced cracking . Degradation processes are identified by

analyzing historic data bases, the functional, service (sweet or sour) , product and

environmental conditions, such as pressure, temperature, humidity and the presence of

corrosive media, like H 2S, CO2 , cr and H 20. The wal1 loss data obtained by NDT

has also been used to identify the degradation processes. The identified degradations are

observed to be random processes, which prompted their stochastic modeling.

8.2.1 RBIM Framework Development

The RBIM framework is based on optimizing the maintenance strategy, considering the

age-dependent stochastic degradation processes . Essential1y, it is comprised of

identification of potential degradation processes and its precise modeling , the estimation

of consequences analysis, the optimization of risk based inspection and maintenance and

finally , testing and validation . A brief outline of the various asset integrity threats and the

philosophical background of Bayes theorem are discussed in the following sections .

8.2.2 Asset Integrity Threats

The potential degradation processes, threatening the integrity of offshore process

components are observed to be caused by several environmentalIy induced corrosion and

cracking. This thesis models three major corrosion processes and three major cracking

processes. These are uniform, pitting and erosion corrosion; and stress corrosion ,

corrosion fatigue and hydrogen induced cracking. Statistical Bayesian analysis is applied

for al1 these processes . However, the physics of failure is captured using a system

learning process which is continual1y updated using new data .
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8.2.3 Bayesian Analysis

Probability is a degree of analysts ' belief , i. e., how much one thinks that something is

true based on the evidence at hand. When dealing with random phenomena, the ideal

option would be to make an inference based on the experimental data and any prior

knowledge one might have , reserving the right to revise the position if new information

comes to light. This is the rationale behind Bayes theorem .

Degradation process modeling is often viewed as an iterative process of integrating,

accumulating and interpreting information. The analysts can assess the current state of

knowledge regarding the degradation level, gather new data to address the question of

future degradation, and then update and refine the current understanding to incorporate

new data . Bayesian inference provides a logical and quantitative framework for this.

Bayesian approach to degradation modeling starts with the formulation of a model that is

expected to describe the degradation process accurately. The prior distributions of

unknown parameters of the model may then be formulated, which is meant to capture the

beliefs about the degradation before actually seeing the data. After observing data, the

Bayes theorem may be applied to obtain the posterior distributions for those unknowns ,

which takes account of both the prior and system data. From these posterior distributions,

predictive distributions for future observations may be computed.

8.2.4 Stochastic Degradation Modeling

Prior Probability Modeling

In RBIM, the uncertainty in the material degradation is modeled using prior distribution,
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which is subsequently updated to obtain a posterior distribution using Bayes theorem and

actual inspection data. This updated distribution is useful in assessing the potential risk to

facility. The development of prior models is inevitable in the integrity assessments. The

priors are often subjective; however, subjectivity can be reduced by the use of generic

databases , and consulting studies of similar installations. Several statistical tests were

conducted based on data extracted from the literature to assess their suitability . How well

the data fits is tested using the probability plots and an A-O test. The underlying

parameters are estimated using the method of least squares and maximum likelihood

estimates . Once the prior models for UC, PC, EC, SCC, CFC and HIC are identified , they

are validated using a case study using the life inspection data associated with the

operation of an ageing FPSO in the North Sea. For UC, the regression analysis and for

localized PC and EC, the extreme value analysis has been used to estimate the rates of

degradation. The rates of degradation are tested using standard probability models and

the best fitting mode l for each of them was identified.

Likelihood Probability Modeling

In Bayesian analysis , the likelihood refers to the evidence obtained from field data that

supports the prior 's assessment. In this study the NOT data obtained from an ageing

FPSO operating in the North Sea is used to model the likelihood probability function .

The tested facility had different subsystems: a gas condensate system has been observed

to follow uniform corrosion; a gas export system has been observed to follow pitting

corrosion ; and a high pressure drilling mud system has been observed to follow the

erosion type corrosion. Regression analysis was used for UC and extreme value analysis

was used for localized PC and EC. Similarly, the data from the literature is used for
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different cracking processes due to lack of field NOT data. The rates of degradation are

tested using standard probability models and the best fitting models are identified. A-O

based goodness of fit test is used for the same. Parameters of the best fitting models are

estimated using the method of least squares and maximum likelihood estimates.

Posterior Probability Modeling

In statistics, there are different methods to estimate the posteriors from the known prior

and likelihood function. These include analytical approximations, data augmentation

methods, Monte Carlo direct sampling and Markov chain Monte Carlo simulations. In

theory, a posterior distribution always exists. However, in reality the computation of

posteriors is challenging if the prior and likelihood pair do not fall into the category of

exponential conjugate pairs. After extensive analysis, the simulation based methods and

analytical approximations have been found most suitable for use in developing posteriors

of degradation of process components. Likewise, the developed prior models of corrosion

and cracking are revised to obtain the posterior distributions using simulation based

Metropolis-Hastings (M-H) algorithm and an analytical Laplace approximation method.

Since, the posterior models are based on real life NOT data; they provide more reliable

and accurate predictions for future degradation of components. The use of simulation and

approximation methods was deemed necessary because none of the prior models

(Weibull, extreme value and lognormal) falls into the natural conjugate pair of the

exponential family. Matlab programs are developed using the M-H algorithm and the

Laplace approximations to compute the posterior distributions. The code has been

calibrated using known conjugate pairs, such as normal-normal, Gamma-Gamma ,

Gamma-Poisson and Gamma-normal. In order to test these combinations, the posterior
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functions are developed using Laplace approximations. The programs work satisfactorily

for all time-dependent degradation process , such as Weibull, lognormal and extreme

value distributions.

8.2.5 Economic Consequence Analysis

The consequence of component failure is expressed in terms of the cost incurred as a

result of failure due to degradation processes . To provide a consistent measure of risk, all

consequences categories should be in the same units , and then only the overall risk from

many contributing factors may be computed. A standard choice of unit to represent all

consequence categories is the dollar, because risk can be interpreted as the expected loss

due to a certain event or a group of events . The failure consequences are analyzed in

terms ofthe failure , inspection and maintenance consequences as summarized below .

Failure Consequences

Failure consequences are the financial losses due to loosing a facility upon failure due to

degradations. It includes the corrosion and cracking consequences. In this thesis , the

failure consequences are analyzed in terms of loss of commodity due to breakdown , the

production loss due to shutdown, loss of spill cleanup , and legal fees and fines due to

environmental damage and liability. Each of this cost components are estimated using the

developed formula, using the unit cost, rate of release and the duration of release. The

estimated costs are assumed to follow a Gaussian distribution with mean and variance .

Inspection Consequences

The NDT techniques are used to detect and quantify the unwanted discontinuity in

materials due to degradations. Several types of discontinuities exist in components, such

as holes , inclusions, corrosion and cracking. Different NDT techniques are required for
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the quantification of different corrosion and cracking . The best suitable methods for each

corrosion and cracking are identified and their corresponding dollar costs are estimated.

The purpose of inspection is to detect and quantify the extent of wall loss, pit depth and

surface as well as subsurface cracks . The inspection cost models the cost of gaining

access to the degraded component , cost of surface preparation , personnel cost for

inspection, the cost associated with technical assistance, the cost of consumables and

logistics. The ultrasonic testing and radiographic inspection are used for corrosion , and

the magnetic particle inspection and ultrasonic testing for defect sizing are used for

cracking. These costs are estimated based on the unit cost obtained from an inspection

contracting company operating in the North Sea. It is expected that the NDT inspection is

able to detect the degradation process with adequate reliability and accuracy .

Maintenance Consequences

The cost of restoring a process facility back to the operating condition after failure is the

maintenance consequence. To have a safely operating facility , maintenance needs to be

performed at very small intervals. However , frequent maintenance tasks cost more,

increase the probability of the occurrence of maintenance-induced errors and reduce the

availability of the facility. If maintenance is performed too rarely , it will result in costly

breakdown maintenance. Thus, finding an optimum strategy based on the condition of a

component is a challenging task. A predictive maintenance model is developed and

discussed in this thesis. One can use predictive maintenance diagnostic tools, such as

NDT and probabilistic modeling to estimate the time at which a component may fail, and

it should be repaired or replaced, thus reducing the costly corrective maintenance.
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Maintenance cost is obtained as the sum of the costs of access to the degraded

component; surface preparation; cutting and removal of pipes and plates; welding and

restoration of protective coating; component repair; component replacement; personnel;

and logistics related to transportation; and storage and rent of facilities . It was found that

on an annual basis, the inspection and maintenance cost increase due to degradation. This

is due to the material and strength loss of components.

8.2.6 Optimization of Maintenance Strategy

Two types of maintenance strategy is presented in this thesis; one is finding the optimal

inspection and maintenance interval , and second one is finding the optimal time to

inspect and replace the component economically . The component need to be maintained

or replaced depending on the condition of component as well the economic analysis.

Inspection and Maintenance

The inspection and maintenance strategy is used for repairable components . If the

component can be brought back to a state similar to its state just before failure through

minor repair, this strategy should be adopted. It consists of estimating the rate costs of

failure, inspection and maintenance on an annual basis. Then, the annual equivalent cost

(AEC) is estimated through the summation of various costs. This AEC is combined with

the posterior probability cumulative density function (COF) to profile the operational risk

in dollars. From the operational risk curve one is able to determine the point of minimum;

this point is taken as the optimal inspection and maintenance interval. This interval

satisfies two necessary conditions of predictive maintenance : the risk of operating the

facility is reduced to as low as reasonably practicable level and at the same time the

inspection and maintenance interval is maximized to reduce unwanted maintenance . Risk
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at this interval may be compared with company's maintenance budget as acceptance

criteria, which include the individual, societal and environmental aspects. It rationalizes

the inspection and maintenance decision.

Replacement Strategy

Replacement is a maintenance strategy that entails the replacement of component rather

than performing maintenance. This strategy is based on the economic service life of

component. At some point in an asset's life cycle, it will not be economical to operate the

component due to deterioration, strength loss and obsolescence. From the estimated

failure cost, on annual basis, the failure recovery cost is estimated using a fixed rate of

interest using the present worth factor approach . The inspection and maintenance cost

tends to increase as a result of strength degradation and wall loss of components as it

ages. This increasing trend is modeled using arithmetic gradient with a particular rate of

interests, on an annual basis. Then, the annual equivalent cost is estimated by combining

the annual costs of failure recovery, inspection and maintenance costs. This AEC is

combined with the posterior probability CDF of failure to produce the operational life

risk curve. The point of minimum risk on the operational risk curve is taken as the

optimum interval for replacement. This interval also satisfies two necessary conditions of

predictive replacement: the risk of operating the facility is reduced to as low as

reasonably practicable level and at the same time, the replacement interval is maximized

to reduce unwanted operating and maintenance cost. This rationalizes the replacement

decision, safety and reliability of the components .
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8.3 CONCLUSIONS

8.3.1 RBIM Frame work

Overcoming the limitations of existing models , a risk based integrity modeling

framework is developed and used in this thesis. The framework is based on the

identification of degradation processes threatening the integrity of component s, stochastic

degradation modeling, economic consequence analysis, and finally the testing and

validation using a case study . The degradation is a random process and hence the

inspection data includes large uncertainty and variability. This has taken into account in

the model using stochastic Bayesian analysis . The field NOT data from an ageing

offshore process facility is used in the analysis. The concepts from statistics , engineering

failure analysis and economics are integrated in the developed framework.

8.3.2 Degradation Mechanisms

The environmentally induced degradation mechanisms threatening the integrity of

process components are several types of corrosion and cracking. Amongst , the most

critical processes identified are uniform , pitting and erosion corrosion , and stress

corrosion , corrosion fatigue and hydrogen induced cracking . They belong to the age­

dependent degradation processes due to the effects of chemical and mechanical stresses

in corrosive environment in which the offshore component operates.

8.3.3 Bayesian Analysis

The statistical Bayesian analysis is suitable for modeling the stochastic degradation

processes because it uses both experience and system data to model random processes.

320



The prior probability is the initial information or judgment, which is updated using field

NOT data. This encapsulates a process ofleaming the system as the facility ages.

8.3.4 Stochastic Degradation Modeling

Stochastic degradation modeling has been performed using Bayesian analysis. Bayesian

analysis essential1y consists of computing three probabilities : a prior, a likelihood and a

posterior, which best models the physics of a degradation process.

Prior Probability Modeling

Judgmental studies based on historic data may be used to develop prior probability

models for degradation rates. Statistical goodness of fit tests using A-O tests are

performed to identify the best prior model. It is concluded that the most appropriate prior

models that can be used to describe uniform corrosion are the 3P Weibul1 and the 3P

lognormal distributions; the pitting priors is best modeled using Type I extreme value and

3P Weibul1, and the erosion corrosion using 3P Weibul1, 3P lognormal or Type 1 extreme

value distributions . Similarly, the stress corrosion cracking can be best modeled using

Weibul1 and Type I extreme value; the corrosion fatigue cracking using lognormal and

Weibul1, and the hydrogen induced cracking using Weibul1 and lognormal distributions.

Once the ideal distributions are selected, the parameters are estimated using the method

of least squares and maximum likelihood estimates. These parameters determine the

characteristics of the degradation process and they account for the uncertainty .

Likelihood Probability Modeling

The field inspection data obtainable from operating facilities, such as offshore structures ,

subsea pipelines and process piping may be used to model the likelihood function.

Initial1y, data may be categorized to system, subsystem and component level and then it
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needs to be processed for identifying the underlying degradation processes. The rates of

degradation may then be estimated using statistical analysis . The rate of degradation is

the most uncertain parameter. Regression analysis and extreme value analysis may be

used to estimate the rates of degradation in cases of uniform degradation and localized

effects, respectively. It is concluded that most appropriate likelihood models that can be

used to describe uniform corrosion are the 3P Weibull and the 3P lognormal

distributions ; the likelihood for pitting is best modeled using Typel extreme value and 3P

Weibull, and the erosion corrosion using 3P Weibull and 3P lognormal distributions.

Similarly, the likelihood of stress corrosion cracking can be best modeled using Weibull

and Type I extreme value; the corrosion fatigue cracking and hydrogen induced cracking

using the Weibull and lognormal distributions. The estimated rates of degradations may

further be tested using probability plots and A-D test to obtain the underlying likelihood

function . Once the likelihood distribution is identified , characteristic parameters may be

estimated using the method of least squares and maximum likelihood estimates.

Posterior Probability Modeling

The simulation based M-H algorithm and analytical Laplace approximation methods may

be used to develop the posteriors of age-dependent degradations in process components.

Simulation methods are necessary if the prior-likelihood combination models are non­

conjugate pairs. The posterior estimation based on the M-H algorithm converges to

satisfactory results within 10 000 steady state samples . The first half of the simulated

samples are ignored as it represents the transient samples in the Markov chain, only

steady state samples are used in the analysis . The acceptance rate of above 65 % is the

usual statistical requirement. Laplace approximation results were not encouraging,
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especially when working with three-parameter distributions. The error accumulates in the

variance estimation due to the second order terms. Laplace approximation diverges when

the parameter is either too small or too large due to the numerical instability resulting

from the use of higher order terms in the computations. Thus, for developing the

posteriors of degradation processes , Laplace approximation is not recommended . Further ,

the change in the location parameter was found insignificant when the M-H algorithm

was used. Therefore, instead of using complex three parameter models, the two parameter

models are sufficient to develop the posteriors, the location parameter may be added

subsequently.

8.3.5 Economic Consequence Analysis

The consequence of failure may be assessed in terms of operational costs. This helps the

management to compare the costs against the operational and maintenance budgets . This

helps in the choice of an optimal maintenance strategy. The estimated costs are reflected

in the estimated risk. The operational costs may be modeled using the varying costs of

failure recover y, inspection, and maintenance. The capital costs are not estimated in the

analysis as it does not change as the component ages. The failure cost varies depending

on various parameters , such as geographic location , type of product , time of failure ,

national and provincial regulations , injury and fatalities, damage to environment and

liability . The inspection and maintenance costs may be modeled using the unit cost and

duration of task. The unit costs may be obtained from industry.

Failure Consequences

The cost of failure is obtained as the sum of the following five costs: the loss of

commodity due to breakdown , the loss due to shutdown , the cost of spill cleanup, the cost
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of nature damage, and liability. They may be computed using different formulas based on

the unit cost of each item, the quantity of produce released due to failure, the total

duration of release. The unit costs are estimated from first principles or they may be

extracted from relevant literature. Failure occurrence forces the facility to shutdown for a

certain period of time until the proper corrective actions have been implemented. The

cost of such a shutdown and the resulting lost profit are the biggest contributor to failure

cost. The cost of negative reputation among stakeholders caused by failure is difficult to

estimate, however, it will have severe implications .

Inspection Consequences

Inspection is an inevitable part of safe operation as that is the only way to understand if

there are any imminent threats from material degradations. The cost of inspection may be

modeled using the costs of gaining access to the degraded component , surface

preparation , NOT inspection costs, logistic and technical assistance. The logistics costs

include the cost of rent, storage and transportation of inspection equipment. The NOT

inspection cost includes the type of inspection and the duration required for sufficient

data collection . Each of these may be modeled using the unit cost of inspection task and

total duration of inspection. Often, maintenance may be followed by inspection tasks .

How to link the NOT data, accounting for various sources of uncertainty, to the optimal

utilization of maintenance resources is developed and demonstrated in the thesis .

Maintenance Consequences

Inspection can identify potential threats ; however, it is the maintenance tasks that do

reduce the risk of failure. Since, the operational and maintenance budgets are increasing

due to failure, it is essential to optimize the resources . An optimal maintenance strategy
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reduces the operating and maintenance costs as well as minimizes asset failures and

breakdown issues. The cost of typical component maintenance may be modeled using the

cost of minimal repair for corrosion and cost of replacement for cracking. The minimal

repair leaves the system in a condition similar to its condition just before failure, whereas

replacements bring the system back to as good as new condition. If the component is

minimally repaired, the lifetime distribution will not change. If it is replaced with

identical components, the lifetime distribution may change. The cost of maintenance may

be estimated using the cost of accessing the degraded component , the cost of surface

preparation , gauging defects, cutting, removal and welding of plates and pipes, technical

support and the logistics related to rent storage and transportation. These costs are

modeled using the unit cost of maintenance tasks and the total duration of maintenance .

The usage of unit cost from an offshore maintenance contracting company makes the

model applicable to offshore industry in the North Sea.

8.3.6 Optimization of Maintenance Strategy

The inspection and maintenance strategies are designed to remedy the effects of physical

degradation, strength loss and obsolescence of process components . Physical degradation

leads to reduction in the efficiency of operation, wall thickness and material strength.

Obsolescence occurs as a result of continuous developments of new components . Two

types of maintenance strategies are adopted in this thesis: inspection and repair, and

inspection and replacement. If it is not economical to repair the component , or required

repair resources are unavailable or if the failure is imminent, then one has to resort to a

replacement action. Replacement is a maintenance strategy in which the component is

replaced with an identical one rather than doing repairs.
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Inspection and Maintenance

The optimization of inspection and maintenance has been achieved by optimi zing the

risk. Risk has two components: the probability of failure and the consequences of failure.

The probabilit y of component failure has been estimated using the Bayesian prior­

posterior analysis . The posterior probability cumulative density function is used to

estimate the probability of failure. The consequence of failure is obtained as explained

before . It is modeled using engineering economic analysis. The annual rate cost of

failure , inspection and maintenance are developed and combined to estimate the annual

equivalent cost (AEC) of failure . The estimated AEC is combined with probability to

perform component-level risk analysis. The operat ional life risk over the remaining

service life is estimated using the probability and consequences. The point at which risk

reaches its minimum value is used to determine the optimal inspection and maintenance

interval. This interval satisfies the two criteria of maintenance : minimizing maintenance

costs while keeping risk at the ALARP Level. The results of the analysi s are tabulated in

Table 8.1. The most critical interval is for PC and CFC degradation , with an inspection

and maintenance interval of 4 years. This interval may be revised when a new set of NOT

data is obtained . This renders the model developed in this work a dynamic model which

is continuously updated using new NOT data.

Replacement Analysis

An economic consequence analysi s based on component replacement concept is

discussed . The replacement strategy is based on the economic service life of the

component and the threat from an imminent failure of component. Replacement strategy

is also used for non-repairable components . The annual equivalent cost is calculated by
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combining failure recovery, inspection and maintenance costs. The failure recovery cost

is observed to follow a decreasing trend and the inspection and maintenance interval is

observed to follow an increasing trend , due to strength degradations and wall loss . Thus ,

the annual equivalent cost is a convex function of service life. The replacement intervals

based on critical degradation processes are presented in Table 8.1. The smallest one is

considered. The smallest one is 7 years for SCC and HIC degradations, which is reported

as the optimum replacement interval. By performing replacement at this interval, the risk

will be reduced to ALARP level and replacement intervals will be maximized.

Table 8.1. Optimal Interval for the Maintenance and Replacement of Components

Process Deterioration Degradation Replacement Maintenance

Component Process Model Interval (years) Interval (years)

UC 3PWeibull 9 5

Piping PC Type I Ex Val. 10 4

(straight EC 3PWeibull 10 5

pipes, bends, SCC Weibull 7 6

tees) CFC Weibull 8 4

HIC Weibull 7 5

The components have been in operation for 23 years . Since components are deteriorating

randomly, by comparing the optimum intervals in Table 8.1, the next inspection and

maintenance is due in 4 years and replacement is due in 7 years . By performing

maintenances in these intervals, the risk of failure can be reduced to ALARP level.
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8.4 NOVELTIES

8.4.1 Identification of Critical Degradation Processes

This study revealed the critical degradation processes which threaten the integrity of

offshore process components. It has been observed that the age-dependent corrosion and

cracking processes are posing major threats to the structural integrity of components. The

analysis of field NDT data has also confirmed the same conclusion.

8.4.2 Stochastic Degradation Modeling using Bayesian Analysis

The degradation is a stochastic process; its modeling is a challenging task to engineers. In

this study, this challenge is addressed using the Bayesian analysis. Bayes theorem is used

in inferential statistics to learn about the system with the arrival of new data. Since it

takes into account the uncertainties in experience and life data, its predictions are more

reliable and accurate to model the degradation processes of component s.

8.4.3 Development of Non-conj ugate Posterior Models

One of the major novelties of this thesis is the development of posterior probability

models for the component degradat ion processes of non-conjugat e pairs. The use of

conjugate pairs simplifies the posterior estimation; however, it may not produce a

realistic posterior. It is proposed that the simulation based M-H algorithm may be used to

model posteriors of any time-dependent degradation processes, such as Weibull,

lognormal or extreme value processes. This modeling is possible only with the fast

developments in the computational facilities in recent years.
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8.4.4 Incorporating Real Life NDT Data in the Analysis

Often, industry collects NDT data as a part of the asset integrity management, but the

data is rarely used in the development of optimal inspection and maintenance strategies .

The present work stresses the benefit of using NDT data to obtain the likelihood function

for the system .

8.4.5 Development of Economic Consequence Analysis

Most of the papers in the open literature consider the probability of failure only in the

optimization of maintenance . The reliability centered and condition based maintenance

methods follow this strategy . However , it is also important to consider the consequence

of failure when making decisions regarding optimal inspection and maintenance

programs. Some events which have low probability of failure may have high

consequences due to failure. Thus, maintenance strategy developed here is based on the

consideration of both the probability and consequence of failure, i.e. it is based on the

consideration oflife risk, and not only the probability offailure.

8.4.6 Risk Based Optimal Maintenance Strategy

Risk based strategies have been gaining predominance in the recent years, mainly due to

the development in the area of fast computations. Risk based maintenance strategy has

been addressed in this thesis, which is the most recent development in maintenance

management. Its importance lies in the fact that it takes into account both the likelihood

and consequence of failures. An optimized strategy reduces failures, risk to as low as

reasonably practicable level, and simultaneously ensures the safety of operation.
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8.4.7 Dynamic Updating

The Bayesian inference theory is used to update the inspection, maintenance and

replacement intervals in this study. The latest NDT data may be applied in the developed

model to revise the maintenance strategy. This is not equivalent to a constant health

monitoring , which is costly. This is far better than breakdown maintenance as well. It

tries to find a balance in between these two strategies. It rationalizes the maintenance

decision as well as minimizes the operating and maintenance cost. The posterior

probability and risk, in tum will keep on modifying as the component ages, reflecting the

reality of component performance with age. However, there is a need for structural health

monitoring of critical components, which is beyond the scope of this study .

8.4.8 Uncertainty Modeling

The uncertainty in degradation processes may arise from many sources such as, inherent

randomness in physical processes, statistical uncertainty and modeling uncertainty. The

physical uncertainty means that the repeated measurements of the same physical quantity

do not yield the same value due to numerous fluctuations in the environment, test

procedure, instruments, and the observer. Statistical uncertainty occurs when one does

not have precise information about the variability in the physical quantity of interest due

to limited data. Modeling uncertainty occurs due to the limited representation of the

system behavior. A computational model strives to capture the essential characteristics of

system behavior through idealized mathematical models or numerical procedures. The

proposed risk based maintenance model captures the inherent randomness through prior

and likelihood data collection in Bayesian analysis , statistical uncertainty through
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multiple NOT data collection and likelihood modeling, and modeling uncertainty through

the use of stochastic models in the analysis.

8.4.9 Integrating Statistic s and Economics in Decision Making

This study was planned as a multi-disciplinary project encompassing the concepts of

engineering failure analysis, statistics and economics in decision making. This is a novel

concept to use the statistical McMC analysis to model the stochastic degradation process,

engineering economic analysis to the model the failure consequences. Also, the basic

degradation processes are understood from chemistry and physics of failure process, and

the decision making is in maintenance engineering. This multidisciplinary research

integrating concepts from these areas is a novelty of the developed RBIM.

8.4.10 Industrial Applications

The strategy developed in this thesis provides a solution to a real life asset integrity

problem that can benefit industry. Real life NOT, specific to a particular facility can be

used to develop degradation models suitable to that facility. The models can be used to

determine optimal maintenance intervals and tasks.

8.4.11 Ease of Computational Effort and Time

The model inputs are NOT data and unit cost information. The computational tasks are

easy; minimum knowledge is required to run the Matlab code. The computational time

depends mainly on the level of accuracy required. Typically, two to three hours and

10000 iterations are sufficient for results to converge to satisfactory maintenance and

replacement intervals.
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8.5 FUTURE WORK

In the present study, an attempt has been made to develop a risk based integrity modeling

for the optimal maintenance decision making of offshore process components. This study

can be extended as suggested below:

8.5.1 Non-age Dependent Degradation Processes Modeling

This study has been limited to the age-dependent degradation processes of process

components . Other non-age dependent failure mechanisms such as third party damage ;

ship or boat collision ; material and fabrication defects; operational errors; vibration and

cyclic stresses may be investigated further.

8.5.2 The Online Risk Monitoring Systems

This study is limited to dynamic updating of the system performance in terms of revised

inspection and maintenance strategy. However, if the risk can be monitored online, the

system performance can be tracked and the maintenance decisions may be taken on the

spot. Such a system will be versatile considering the imminence of failures. There is a

broad scope for such studies especially for the far, deeper offshore facilities.

8.5.3 Syste m Effects in the Risk Ana lysis

This study has been focused on the component level risk analysis . However, the risk

analysis shall be conducted on a system level. The approach developed in this thesis can

be extended and applied to a group of components which constitute a system. The system

safety analysis may be achieved through the fault tree and event tree analysis .
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8.5.4 Risk Analysis for Combined Degradation Mechani sms

In reality the degradation process occurs simultaneous ly, for e.g., UC and SCC, PC and

CFC, etc. In this study, they are assumed to be independent and isolated. The modeling of

coupled degradation process is a challenging task, which needs to be explored further .

8.5.5 Inclu sion of Objective Bayesian Analysis

The Bayesian analysis is inherently subjective, since prior information is usually based

on subjective expertise . This subjectivity has been reduced by using generic data from

literature . However , the use of objective priors, such as non-informa tive priors may be

explored further to model the priors of degradation processes . Such a study may produce

more realistic results.
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