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ABSTRACT
Ageing of components is a major threat to asset integrity in offshore process facilities. A
robust maintenance strategy mitigates the effects of age-based structural degradations and
reduces the threat of failure. Failure caused by structural degradations is a stochastic
process. For maintenance strategies to be effective, the stochastic nature of failure has to
be taken into consideration. Risk based integrity modeling (RBIM) is a newly-developed

approach that aims at the protection of human life, financial investment, and the

against the of failure. RBIM quantifies the risk to which

individual components are subjected and uses this as a basis for the design of a

maintenance strategy. Risk is a ination of the ility and the of

failure. The major age-based structural i to be add d include

such as uniform, pitting, and erosion mechanisms; and cracking; such as stress corrosion,
corrosion fatigue, and hydrogen induced cracking. In this study, component degradation

processes are modeled ically to estimate the ility of failure using Bayesian

analysis methods. Bayesian analysis improves the fidelity on the likelihood of future
events by relating with the prior and posterior probabilities. Prior modeling is performed

using judgmental studies and analyzing historic databases from similar installations. For

the assessment of ageing assets and d dati i field ive test
(NDT) data is used to establish the likelihood function. The posterior modeling is
performed using a simulation-based Metropolis-Hastings algorithm and Laplace

since the prior-likeli ions are j pairs. In this

study, the consequences of failure are modeled using economic analysis to estimate the

costs of failure, inspection and maintenance. The cost of failure includes lost production,




loss of shutdown, cost of spill cleanup, loss caused by environmental damage and
liability. The inspection and maintenance costs are estimated using the inspection and
maintenance tasks, access, surface preparation, gauging defects, coating and restoration
costs. Maintenance may be either minimal repair or replacement of components. The

annual equivalent cost (AEC) of operating and maintaining a facility is the summation of

the annual equivalent costs of failure, i i and i The

posterior failure probability is combined with AEC to produce the operational life risk
curve for a component. Since the risk curve is a convex function of the maintenance
interval, then the optimum interval is the global minimum point. The operational risk is

thus reduced to as low as reasonably practicable level by optimal maintenance.
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CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

Offshore process components fail while operating even though due diligence has been
observed during the design and fabrication stages. Failures of these components pose
serious threats to human life, financial investment and the environment. Threats to human
life include the fatalities and injuries. The threats to financial investment arise from the
loss of commodity as a result of shutdown. The threats to the environment consist of
pollution caused by spills and other environmental damage. In addition, every failure is
associated with liability and bad-reputation. Thus, integrity of process components is of

ducting safe i The integrity of a component is

to
defined as the ability of the component to perform its required function effectively and
efficiently whilst protecting health, safety and the environment (HSE UK, 2009). A good
asset integrity management plan ensures that people, systems, processes and resources
required to maintain the asset integrity are in place, in use, and will perform when
required over the whole lifecycle of the asset. Furthermore, the plan should ensure the
prevention of accidents and it should encompass good design, construction and
operational practices. Once the offshore process facility is operational, the only way to
prevent failure is through frequent inspection and proper maintenance. However, to
determine with confidence, the extent and interval of necessary inspection and

maintenance based on the condition of the is a challenging task.




optimization using mathematical models is one way to reduce the risk of failure of ageing

components.

1.2 HOW DO PROCESS COMPONENTS FAIL?

The components of offshore process installations deteriorate with time. During its life
cycle, it will be subjected to many potential damages, such as (Stephens et al., 1995):
third party damage; ground movement due to seismic acceleration; material and
fabrication defects; and human factors. However, studies indicate that majority of failures

are i by ti structural ions (Faber, 2002; Straub, 2004;

Khan et al., 2006); hence, the quantification of component integrity can be established by
understanding the physics of time-dependent failure processes and its adverse
consequences. Traditionally, the codes and standards that are used for inspection and
maintenance are prescriptive rules based on experience. Most of the time they have been
formulated in response to significant failure cases. They neither take into account all

types of failures, nor the various sources of i arising from

processes associated with the facility’s operation.

API 581 (2000) highlighted the need to develop an industry failure database and software
to support the risk based inspection planning and expands the program to fit into several
industry initiatives. Leaks and rupture are the principal causes of hydrocarbon release,
fire, and explosions in process facilities. Studies indicate that corrosion is the principal
cause of about 15% of leakage occurrences (HSE UK, 2002). In nine and a half years,
44.70% of the mechanical failures leading to hydrocarbon releases from offshore

facilities in the UK resulted from corrosion or other related degradations (HSR UK,



2002). The direct annual cost of corrosion in the USA is assessed to be 276 billion USD,
which represents 3.1% of the GNP, while about 121 billion USD is spent on corrosion
control (Koch et al., 2000). The direct cost of corrosion in industrialized countries in
billions of USD is reported (Bhaskaran et al., 2005): Japan (59.02), Russia (55.01),
Germany (49.26), UK (8.51), Australia (7.32) and Canada (3.38). These figures show that
corrosion and related cracking degradation is an economic problem, which needs to be
addressed on a priority basis. In Canada, the environmentally induced defects, such as
metal corrosion, stress corrosion cracking and hydrogen induced cracking were
responsible for 40% of the natural gas pipelines failures and 38% of hazardous liquid
releases (Stephens et al., 1995). It is reported that corrosion accounts for 21% of failures
in submarine gas pipelines, and erosion-corrosion modes account for 24.6% of pipe
leakages in process plants (Googan and Ashworth, 1990). Moreover, 40% of the

releases to the envil are corrosion related. Therefore, the

investigation and mitigation of corrosion and cracking and its effects is one of the main

actions required to reduce the freq y of releases, to imize the

production, and to improve the safety of offshore process operations. Better inspection

and maintenance optimization need a reliable ination of
and their consequences. This can be achieved with risk analysis by combining the

stochastic degradation modeling with consequence analysis (Faber, 2002).

1.3 HOW TO PREVENT FAILURES?

The time-dependent mechanisms which describe the structural degradation of process

components are random processes and hence it will have large uncertainty in the

degradation data. Thus, it is iate to use hastic models to ly describe



these mechanisms. Due to this uncertainty in ining the

there will always be a certain probability that a given component of the process facility
fails during its operation. The life cycle integrity threats may be reduced through well
established procedures of design, fabrication, quality assurance and quality control and

stringent policies and regulations. However, once the offshore process facility is

the age-related or ti processes reduce its strength
and material. Therefore, during the operational stage, the best way to predict failure is

through inspection and prevent failure is through maintenance.

There are various inspection strategies, such as prescriptive rules, condition/health
monitoring and reliability based inspection. In recent years, risk based inspection has
emerged as an area of interest in asset integrity management (Faber, 2002; Kallen and

Noortwijk, 2002; Straub, 2004; Khan et al., 2006). Risk based inspection may be

categorized as qualitative, i-quantitative, and fully quantitative. A robust, q
risk based inspection model based on reliable, probabilistic structural degradation
mechanisms and consequences analysis of offshore process components is not yet

published in literature (Faber, 2002; Khan et al., 2006).

The various maintenance strategies include reactive and proactive maintenance programs.

Reactive maintenance is based on the principle “fix it as it fails”, which is costly due to

abrupt ity loss and The recent developments in

are total producti i (TPM), reliability centered maintenance

(RCM) and the condition based maintenance (CBM). However, their applications are



limited as they focus on likelihood of failure only. Failures result in direct economic
consequences such as loss of commodity, loss due to shutdown, spill cleanup and

damage costs. ion and mai also have direct and indirect

Hence, optimizi i on the basis of actual condition
and failure consequences is to be investigated. Risk based integrity management models
are emerging as a rational choice. The basic questions to be answered in connection with

of i ion and mai of deteriorati are:

‘What component will fail? (identify critical components).

How will it fail? (understand the physics of failure).

When failure becomes critical? (quantification of true risk).

e When to insp intain? (estimation of i i i interval).
*  Whatis to be i intained? (i
1.4 BACKGROUND
The first initiatives and of risk based to the i ion and

maintenance planning were directed towards the inspection planning for welded
connections subject to fatigue in fixed steel offshore structures (Skjong, 1985; Madsen et
al., 1987; Fujita et al., 1989; Moan et al., 2000). Later, the same methodology was
adopted to other structures such as tankers (Soares and Garbatov, 1996; Paik et al., 2003);
floating, production, storage and off-loading facilities (Lotsberg et al., 1999; Goyet et al.,
2002); semi-submersibles and pipelines (Willcocks and Bai, 2000; Desjardins, 2002; Dey
and Gupta, 2001). Recently, the risk based approaches were applied to process plants

(Geary, 2002; Kallen, 2002; Montgomery and Serratella, 2002; Khan et al., 2006);



bridges (Frangopol et al., 2001) and to breakwaters (Noortwijk and Phajm, 1996). The

degradation mechanisms such as, fatigue cracking and, some aspects of corrosion of steel

and concrete were i Tt these structural
reliability methods have played an important role (Straub, 2004; Faber et al., 2005).
Melchers (2006) introduced an approach for probabilistic corrosion estimation based on
the structural reliability theory. Further, Straub and Faber (2006) discussed the
computational aspects of risk based inspection planning for fatigue cracking based on
structural reliability theory. The inspection planning for process equipments and marine
systems has later evolved from the traditional quantitative risk analysis (QRA) (Khan and
Haddara, 2003; Khan et al., 2004; Dey, et al., 2004). Offshore system operators collect
inspection data; however there is no proved model that makes use of such data to
dynamically update probability of failure, with the arrival of new data. A closer review of
literature has shown that little information is published on a robust, holistic and stochastic
risk based methodology for the integrity assessment of offshore process components;
considering the important threats to structural integrity, such as various types of

detrimental corrosion and cracking. What is lacking is the development of a stochastic as

well as dynamic model for ion modeling and i analysis

having predictive capabilities, which is the main focus of this study.

1.5 RISK ANALYSIS AND ASSET INTEGRITY

The risk to a component’s life is defined as a combination of the probability of an

event and its likely Thus, the i life risk

analysis is reduced to the accurate estimation of ility and of failures.

Integrity is defined as the quality of being whole and complete. When it is applied to



process components, the structural integrity is the ability to safely resist the required
loads and perform as desired. In other words, it is the soundness and consistency of the

process components to resist the operational loads or demands.

The life cycle integrity of process components could be achieved through various stages

of design, ing, operation and mai If the integrity has been ensured

during the design, fabrication and operational stages through a well-established design,
quality control and regulations, then asset integrity depends only on the maintenance. In
offshore process facilities, the design and fabrication usually follow certain codes and
standards. The codes and standards are based on deterministic models, which will have
the model and data uncertainty, thus results in certain probability of failure. Once a plant

starts its operation, risk to life is a function of inspection and maintenance.

1.6 RISK BASED STUDIES

The ication of risk based to il ion and mai of d

and ion facilities has been increasing over the

last decade (Faber, 2002; Straub, 2004; Khan et al., 2006). The components of offshore

process facilities are designed to ensure ical operation the

with client’s i and criteria. The

service life in

acceptance criteria are related to minimum code requirements that may be exceeded with

of the safety of 1, risk to envi and the annual operating and
maintenance budgets. The time dependent degradation processes such as corrosion and
cracking will always be present to some degree. Depending on the adopted design

11 and

in terms of protective measures, the



process will reduce the performance of the system causing leak, rupture and
contamination. In order to ensure that the acceptance criteria are fulfilled throughout the
service life, it is required to control the development of degradation and install proactive

maintenance measures, before the failure occurs.

The planning of inspection and maintenance concerns the identification of what to inspect
and maintain, how to inspect and maintain, where to inspect and maintain, and how often
to inspect and maintain. Even though inspections and maintenance are used as an
effective means for controlling the degradation of the process components, they may also
have considerable impact on the operation of the facility. It may result in direct and
indirect economic consequences in terms of shutdown costs and unavailability.
Therefore, it is necessary to plan inspection and maintenance, such that a balance is

achieved between the expected benefits of inspection and maintenance and the

implied by the inspection and

The development of risk based integrity modeling of process facilities is highly necessary
to avoid adverse technological incidents, to ensure the safe operation and to extend the

operational life of existing facilities. The proposed risk based integrity modeling (RBIM)

finds optimal strategy to the i ion and mail The RBIM thodol

enables the of the ility of failure of a and the

of that failure. In RBIM, the critical components for the safe operation of facility are
prioritized. Using probabilistic models, the RBIM models the degradation mechanisms

and estimates the rates of ion. It optimizes the i ion method and interval,




and maintenance resource by adopting risk based maintenance strategy subject to the
corporate’s acceptance criterion. This result in an improved safety, low risk, fewer

shutdown, and reduced operational costs. The risk based integrity modeling approach

provides an i k for the mai strategy of the facility.

1.7 STRUCTURAL DEGRADATION PROCESSES

Different methods are required for the inspection and maintenance of different
degradation processes. Kowaka (1994), Melchers (2001), Goyet et al., (2002), and Khan
and Howard (2007) reported that the main threats to the integrity of process facilities are
several types of corrosion (Figure 1.1). Further, Kallen (2002), Straub (2004), and Straub
and Faber (2005) have reported that the major degradation mechanisms threatening the

integrity of structural components consist of various types of cracks (Figure 1.2).

Corrosion is the loss of material as a result of a chemical reaction between a metal and its
environment. Based on literature study (Stephens et al., 1995; Kallen, 2002; Khan et al.,
2006), the critical structural degradation mechanisms threatening the integrity of assets
are uniform corrosion (UC), localized or pitting corrosion (PC), erosion corrosion (EC),
stress corrosion cracking (SCC), corrosion fatigue cracking (CFC), and hydrogen induced
cracking (HIC). Uniform corrosion is defined as the uniform or regular removal of metals
from the surface (Jones, 1996). For uniform corrosion, the corrosive environment must
have the same access to all parts of the metal surface, and the metal itself must be
uniform in terms of metallurgy and composition. Uniform corrosion results in the

thinning of wall thickness until the wall is penetrated leading to leaks or breakdown of



equipment (Mansfeld, 1987). The localized attack of corrosive environment on an
otherwise resistant surface produces pitting corrosion (Jones, 1996). The combination of
the corrosive fluid and high flow velocity results in erosion corrosion. A stagnant or slow
flowing fluid will cause a low or modest corrosion rate, but the rapid movement of the
corrosive fluid physically erodes and removes the protective corrosion product film,
exposing the reactive metal beneath, thus accelerating corrosion. Sand or suspended
slurries enhance erosion and accelerate erosion corrosion attack on metal. The attack

follows the directions of localized flow and turbulence around surface irregularities.

The brittle fracture of a normally ductile alloy, in presence of a corrosive environment or
cyclic loading is known as cracking (Jones, 1996). The amount of cracking per unit time
cither in length or depth is expressed in terms of cracking rate. Stress corrosion cracking
(SCC) is the cracking induced by the combined influence of static tensile stress and a

corrosive envit pecially at elevated The required tensile stresses

may be in the form of directly applied stresses or in the form of residual stresses. The

process in which a metal fractures y under conditions of

corrosion and repeated cyclic loading at lower stress levels or fewer cycles is known as
corrosion fatigue cracking (CFC). Hydrogen induced cracking (HIC) means the severe
loss of ductility caused by the presence of atomic hydrogen in the metal lattice (Jones,
1996). Hydrogen absorption may occur during electroplating, welding, pickling, cathodic

protection or other processes that favor the production of nascent hydrogen at the surface.



Fig.1.1. Material Degradations-Various Types of Corrosion



Fig.1.2. Material Degradations-Various Types of Cracking




If structural corrosion or cracking are found during inspections, wasted parts are to be
repaired or renewed. Corrosion and cracking result in loss of material as well as structural
strength at local and global levels. It leads to leaks and breakage. Decisions regarding the
extent of renewal require the knowledge of how much more material will corrode or how
long the crack will grow before next inspection and maintenance. Thus, in order to ensure
the integrity of process components, it is crucial to estimate how often to inspect and
maintain so that risk is reduced to as low as reasonable practicable (ALARP) level.
Different inspection and maintenance strategies with different inspection and
maintenance effort, quality, and costs will have different effects on the risk. By
comparing the risk associated with different inspection and maintenance strategies, the

one implying smallest risk, which is acceptable, can be identified.

Though design strategies may attempt to mitigate the effect of degradation processes by
choice of materials and dimensions, degradation processes will still occur due to errors or
flaws during the manufacturing and operations. The real load carrying capacity and the
level of safety of these components will diminish with time. In order to maintain
acceptable level of safety, it is necessary to determine the variation of structural
properties with time. The rate of degradation may not be uniform in all cases. A constant
factor of safety (corrosion allowance/crack resistant material) taken to account for loss of
material at the design stage may not be adequate. This necessitates the stochastic

degradation modeling updated using the latest inspection data.



The reliability of a is the ility of its sati y under

specific service conditions within a time period. There are several analytical and
simulation methods to estimate the probability of failure. The major analytical methods

for the estimation of failure ilities are the inistic method and the

method, which lead to the prediction of ining life. The stochastic methods used in

risk analysis include the qualitative and quantitative methods.

The uncertainty in degradation processes may arise from many sources such as, inherent
randomness in physical processes, statistical uncertainty and modeling uncertainty. The
physical uncertainty means that the repeated measurements of the same physical quantity

in the envi , test

do not yield the same value due to
procedure, instruments, and the observer. Statistical uncertainty occurs when one does
not have precise information about the variability in the physical quantity of interest due
to limited data. Modeling uncertainty occurs due to the limited representation of the
system behavior. A computational model strives to capture the essential characteristics of

system behavior through idealized ical models or ical p

The stochastic Bayesian theory may be used for the quantification of uncertainty and the

of the likelil of the time-ds d i The Bayesian models are
based on a mixture of prior understanding, observations and experience. It is an adaptive
approach. The observations of actually occurring degradations obtained by non
destructive tests (NDT) may be introduced into models that greatly enhance the precision

of their predicti The ilisti istics of the structural degradations are




decisive for the estimation of the future performance of the components. The predicted
future degradation will vary considerably if the observed degradation state is used to
update the degradation model at the time of the successive inspections. This facilitates the

system-learning process with the arrival of new NDT data.

The consequences of failure may be analyzed in terms of the cost incurred as a result of

the occurrence of failure and the i ion of i ion and maij strategy.

The consequences of failure include the loss due to breakdown, loss due to shutdown,

cost of spill cleanup, cost of nature damage and liability. The cost of inspection may

depend on the method and duration of i ion, type of ilability of
access, and surface preparation costs. The maintenance cost depends mainly on the type

of maintenance, availability of access, surface preparation, gauging defects, fitting,

welding and coating ion costs. By ping the annual equivalent cost of

operating and intaining the the i ion and i strategy
following minimum risk may be developed. For that purpose, the annual equivalent cost
shall be combined with Bayesian probability model to develop operational life risk. A

model for the cost of degradation caused by corrosion and cracking in typical process

piping is ped. The ped models take into account the effects of

the uncertainty in cost estimation using random sampling methods.

1.8 MOTIVATIONS

The safe operation of process components requires accurate modeling of failure modes,

for the

d di inties, and the lopi of a robust

quantification of risks. However, using available risk models, it is not possible to quantify

15



ly the i of i ion and mail strategy idering the

overall risk to facility. Based on the methodological developments in the area of

industrial integrity for subjected to age-based i a
holistic approach is needed to the risk based integrity management of components in

offshore process facilities.

In order to protect the public, the financial investment and environment against the
consequences of failure of offshore process facilities, a risk based assessment of the
existing facility is necessary. Such an assessment should quantify the degradation of the
material and provide a basis for the decision making process regarding the optimal
inspection and maintenance. The decision making process under uncertainty using

Bayesian risk analysis is presented in Figure 1.3, where PoF and CoF refer to the

Experience Data

| PoF Model I

Uncertainty

Risk Model I.i[ Acceptance ]

Experience

CoF Model

Risk/
Dats Benefits

Fig. 1.3. Decision Making Process using Bayesian Risk Analysis
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P of failure and of failure, respectively. Usually, the

risk in industrial applications is calculated by adding up all the consequence cost
elements and, multiplying it by the predicted frequency of the accident probabilities.
Further, the use of risk based integrity modeling allows the operating expenditures to be

focused on a few critical elements that will give the greatest return on expenditure.

In any integrity modeling efforts, the strategic elements, such as corrosion and cracking
mechanism and rate, available remaining life from the inspection data and history of

rate, of failure, i ion and mais etc. are important

to be modeled, which has not addressed so far in literature. Further, many researchers

(Faber, 2002; Frangopol et al., 2004; Khan et al., 2006) have reported the need of a

holistic dure to be devel

ped for risk in offshore process installations.

Most of the risk based approaches reported in the open literature so far deal with the
structural reliability methods, and the physical condition of the asset, however, there is no
single approach that can be used to address the needs of offshore process facilities. The
economic consequence analysis of failure, inspection and maintenance are not well
integrated with probability of failure in the existing literature. Therefore, further work is
necessary to collect the relevant data, improve the modeling capability and formulate the
stochastic decision problems applicable to offshore process standards. The important
motivations to undertake this study are discussed in brief below:
e There are a few limitations in the existing models, such as scarce data, gap
between theory and practice, models are only mathematical and no convincing

case studies. Thus, the applications are limited in industry.

17



The risk based repair and replacement models with adequate confidence are
scanty. Some literature attempted to model the deterioration with Gamma process
that restricts the use of priors and need not reflect the true degradation process
based on subjective knowledge, experimental judgment and generic database.

There is a need for i igating the use of \jugate pairs to obtain reliable

posterior distributions in the cases of corrosion and cracking processes.

The lack of accurate and reliable methods to deal with the uncertainties in the

input data. There is a need for accurate and reliable modeling of degradations
resulting from pitting, erosion, and stress corrosion as well as corrosion fatigue
and hydrogen induced cracking.

e There is a need for developing models which account for the nonlinearity and
stochastic degradation growth in cases of corrosion and cracking.

e There is a need to und d the i of failure, i

and maintenance and integrate that in risk based maintenance decision making.

e There is a need for a risk based integrity model which is able to predict the
operational risk and is adaptive to the current condition of components.

o There is a need to develop quantitative risk models acceptable to the industry and
easy to use by maintenance practitioners, based on the operating and maintenance

budget towards the risk acceptance criteria.

1.9 ADVANTAGES OF RISK BASED METHODS OVER TRADITIONAL

METHODS

The risk based methods are preferred over the traditional deterministic methods, because:



In traditional methods, the integrity of a component is evaluated by comparing the

current operating conditions with a design limit state that often yield conservative

results, leading to p i y i it and i that
results in an overall increase in maintenance costs and unavailability.
The traditional methods do not provide information on potential degradation risks

to life and, thus results in istic i ion and mail of

The degradation risk arises from the uncertainty associated with data and
modeling; a chosen value of corrosion allowance or crack resistant material at the
start service may not be adequate to preclude the operational life-risk due to the

random nature of ion process and inty in data

The traditional approaches are based on prescriptive rules and leave little
possibility to adapt the inspection and maintenance effect to either the actual
condition of the components or degrading systems. The risk based approach is a
condition based approach and provides a rational basis for adapting the inspection
and maintenance using Bayes theorem, to the present condition of components.

In the operational stage, the traditional methods do not consider the importance of

the critical for the i ion and mai of a facility. At the
same time, risk based ioritizes the i ion and mail in
with the i of and the criticality of different

degradation mechanisms.

The risk based models minimizes the risk of operating and maintaining the

to as low as i levels.



e The risk based integrity models reduce failures, minimize the operating and

maintenance cost and at the same time promote the safe operation of facility.

1.10 ORGANIZATION OF THESIS

This thesis is written in manuscript format. Outline of each chapter is discussed below:

Chapter 2 presents the literature review pertaining to this thesis. The literature review

deals with four areas: mai imization using ical models; risk based

and mail models; i ion models including corrosion

and crack models; and failure consequence analysis models.

Chapter 3 reports the development of RBIM framework and thesis overview. The RBIM

is developed based on the hasti ion modeling using the Bayesian analysis
and the i analysis. ion and mai is optimi. by
risk. The for ing the various chapters of this thesis is also

discussed in this chapter.

Chapter 4 reports the development of prior probability models for identified component-
degradation mechanisms. This chapter is a published paper in the Journal of Stochastic

Environmental Research and Risk Assessment (2009), 23(6): 793-809.

Chapter 5 reports the development of Bayesian posterior probability models using the
simulation based Metropolis-Hastings algorithm and analytical Laplace approximation

methods. The field NDT data are used to estimate the likelihood probability of

20



degradation processes. This chapter is published in the Journal of Risk Analysis (2010),

30(3): 400-420.

Chapter 6 focuses on the economic consequence analysis part of the RBIM and the
optimization of replacement decisions using the engineering economic analysis. This

work is accepted for publication by the Journal of Quality in Maintenance Engineering.

Chapter 7 deals with the integration of RBIM and validation of models, using the

failure

and reported in chapters 5 and 6. It optimizes
the inspection and maintenance decisions under uncertainty. This work is submitted for

peer review and publication to the Journal of Risk Analysis.

Finally, Chapter 8 reports the summary and conclusions of this thesis. It also includes the

novelties of this research and suggests the scope for future work in this area.
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CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

The optimization of maintenance strategies using mathematical models has been a subject
of research for many years. The research has been focused primarily on the deterministic

and ilisti Recently, the i of the i ions of reliability

and cost was recognized. The importance of the impact of the economic considerations

on the i i i and strategies cannot be overestimated.

Thus, the development of a more rational and cost-effective approach for maintenance
strategy is essential. Risk to the life of a component is an outcome of an uncertain event
and it may be defined as the product of probability of failure and its likely consequences.
Risk reflects the impact of the three factors: condition, reliability and total cost. An
approach for the design of maintenance strategies on the basis of risk optimization seems
to be in order. In such a model, an accurate structural degradation modeling to estimate

probability of failure and a rigorous consequence analysis are two essential components.

A review of the relevant literature related to risk based integrity modeling found in the

open literature has been carried out. The research work can be listed under four

models, risk based inspection and maintenance
planning models, stochastic degradation models for corrosion and cracking, and

consequence analysis models.



2.2 MAINTENANCE OPTIMIZATION MODELS

The history of maintenance in offshore industry goes back to the history of offshore oil
and gas production. The earliest known approach in maintenance was reactive

maintenance. Up to 1940’s, the mai cost was i as an i cost

and the only maintenance carried out was breakdown maintenance. This was less
expensive and time consuming with limited number of components and parts. The
industrial revolution brought there a huge advancement in automation, machinery and
equipments used in offshore industry. This opened the door for the use of complex and
costly-components in the system to transport and process the produced hydrocarbons.

Thus, the traditional breakdown maintenance was no more attractive nor cost-effective.

The evolution of operational rescarch and i imization after Second World
War II lead to the pment of preventive mai strategies to avoid breakdown.
With the rapid growth and pment of mathematical models and

capability in carly 1990s, preventive mai strategies gained i It was

recognized that preventing a failure is always better than recovering from it. Preventive
strategy not only prevents failure, but also avoid costly shutdown. Further, it reduces

operating and maintenance budgets, making the operation safe, reliable and profitable.

1 models has been a subject of research for

using
many years. In the early 1960’s, the detection of the degradation of specific component in
a system was used to minimize breakdown (Barlow and Hunter, 1960). The degrading
components are replaced either under an age-replacement policy or a block replacement

policy (Barlow and Proschan, 1965). In age replacement policies, the device is replaced
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upon failure or at fixed age, whichever occurs first. In block replacement policies, the
device is replaced at fixed time intervals and at failure. In both cases, the replacements
are done using new and identical devices (Barlow and Proschan, 1965). In 1970’s more
integrated approach to maintenance involving a close linkage to reliability and

maintainability was recognized. Abdel-Hameed (1977) studied an age-replacement policy

for which renewal is defined as either a i upon failure or p
replacement upon reaching a predetermined age, which ever occurs first, using a

stationary Gamma process with non-negative increments in material wear.

The fatigue reliability updating through inspection of steel bridges is presented in Zhao et
al., (1994). An approach using the linear elastic fracture mechanics theory is proposed
and the corresponding risk of fatigue damage is evaluated. The overall fatigue reliability
can be maintained by undertaking minimal repairs or replacement as necessary. Since
degradation is a slow process, the inspection strategy may be more economical from the
design point of view and may help to extend the service life of components. A non
destructive test (NDT) may be an essential and important tool in the degradation-
detection and evaluation. Non-destructive means that component specimen examined
remains fit for purpose after inspection. During NDT the material properties could
change, but the change will be within allowable level. The NDT results may be utilized in
maintenance planning. For that purpose, mathematical models using the NDT data are to
be developed to link the degradation process to optimize maintenance planning. For a
particular NDT, several factors are expected to affect inspection results, including

modeling effects, human errors, and inspection factors (Zhao et al., 1994).
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The modeling effects are of material istics, types of defects,

and surface itions including thickness, presence of abrupt

geometry changes, and accessibility of critical regions (Zhao et al., 1994). The human

factors include variations in inspector skill, interpretation of results, variations in

of equij variation in i d and sequence of operations.

The inspection factors are attributed to different inspection environments, including
factory, laboratory, and field conditions, and detectability. These factors add uncertainty

to the inspection results, which needs to be addressed in the mathematical model.

Various NDT techniques are used for the purpose of detecting degradations. Some of the

most common i are visual i i ic i ion, liquid penetrant
inspection, magnetic particle inspection, eddy current testing and radiographic inspection.
The ultrasonic inspection is one of the most commonly used NDT and it is accepted for
corrosion and crack detection in components. The main advantage of this method include
the relative ease of penetration into materials with engineering application, such as steel,
and the ability to test from only one surface and to detect substantial flaws, the sensitivity

and comparative accuracy, and the presence of no significant radiation hazards requiring

During the ional lifetime of an offshore facility, the NDT
could be conducted several times to ensure the integrity of components. The information

generated during i ion needs to be i in ical model to decide on

‘maintenance actions, which is lacking. Since the inspections are required at intervals, the

results may be used to update mai of ion i ion is

beneficial; however, it adds inty to the i ion process.
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With the in ical modeling, ional research and

more isti j2 i i strategies such are reliability based and

condition based mai are ped. An i i i and

models are discussed by Abdel-Hameed (1995) based on age and block replacement
policies. The preventive maintenance with limited historic data has been presented in
Silver and Fiechter (1995). Since the breakdowns are costly, it may be attractive to
undertake preventive maintenance on a regular basis. The decision making depends on

the lifetime distribution of system, current state of system and cost structure of system.

For process components it is useful to base the failure model on the physics of failure and
the characteristic of operating environment (Singpurwalla, 1995). The condition based

uses direct itoring of the ical condition, system efficiency and

other indicators to predict the actual time to failure or loss of efficiency. It serves two
purposes, such as: (i), determine if a problem exists in equipment, how serious the
problem is, and how long the equipment can run before failure, (ii), to detect and identify

specific components in the system that is degrading (Tsang, 1995). Thus, instead of

and maintaining each and every in a system, which is rather costly

as well as 'y, the ii ion and mai efforts may be focused on those

critical (degrading) components to ensure the safety of system operation.

To lower the cost of i i i and failure,

models are i i applied in the field of maintenance management

(Dekker, 1996; Dekker and Scarf, 1998). The optimization of maintenance is a decision



making under uncertainty arising from degradation and cost. In maintenance

management, the most important inty is the inty in the rate of

Therefore, it is recommended to model the deterioration in terms of a time-dependent

stochastic process. Various i i of maij imization models and
maintenance performances have been presented in Dekker and Scarf (1998), Tsang
(1998), and Tsang et al., (1999). Dekker and Scarf (1998) classified the maintenance
models as block replacement models, Markov decision models, and delay time models.
The maintenance optimization models can be qualitative or quantitative. The former

includes the i like total producti i (TPM), reliability centered

maintenance (RCM), while the latter i various inistic or
models such as, Markov decision, stochastic deterioration, random processes, Bayesian
model etc. The corrective maintenance prevailed in 1940°s has been evolved to

operational research, reliability, and risk based maintenance models of today.

The mai cost may be minimized by basing the mai; on the condition of

the critical components. Since the condition of the component deteriorate randomly,
probabilistic models are essential to model its nature. A probabilistic analysis framework

to estimate reliability i ing the impact of inspection and repair activities planned

over the service life of a pipeline, vulnerable to corrosion is reported in Pandey (1998).

The is applied to ine the optimal i ion interval and the repair

strategy that would maintain adequate reliability throughout the service life. The

can be cither preventive or ive. The preventive mai can be

either reliability centered maintenance or condition based maintenance. The corrective
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is always less ical than preventive mai and all failure can be

p Again, the predicti i is more attractive than preventive
maintenance as it prevents failures, y and i errors.
liability centered mail (RCM) is a pi i i strategy, and is a
for ining the mai qui of any physical

asset based on target reliability. The primary objective of RCM is to preserve the system
to function. It uses systematic technique to rank the criticality of failure modes and
provides guidelines for the selection of applicable preventive maintenance tasks that are
most effective in preserving system function. The goal of optimal maintenance is to make

economically justifiable decision, or it includes the profit or availability maximization,

and risk minimization. The pi of an optimal mai programs based on

vibration monitoring of critical bearings on machinery is presented (Jardine et al., 1999).

The lifetime extending maintenance models for offshore structures are discussed in
Bakker et al., (1999). The modeling of entire components in an offshore facility are not
feasible, however, high risk components may be ranked and analyzed. The general rule of
thump in process facility is that, 80% of the system failures are from 20% of the

components. The risk based decision model will focus on these high risk components.

With the advent of and fast i i strategies have

witnessed a paradigm shift over the recent decades from breakdown maintenance to more
sophisticated strategies like online monitoring, reliability and risk based maintenance.

The safety of offshore operation is directly related to the reliability of its components. A



robust maintenance program is necessary for process components as it deals with
hazardous substances often under harsh operating and environmental conditions.

Preventive maintenance (PM) can help to minimize the probability of losses due to

accidents and unscheduled failure of process However, the pi
maintenance is more advanced as it allows the optimal utilization of maintenance
resources. The trade-off is usually in risk and cost balance to achieve the acceptance
criteria. Quantitative approaches connect the component degradation to the condition
improvement by maintenance to make informed decision under uncertainty. A large
number of publications are available on the subject of maintenance through risk based
models (Wilcocks and Bai, 2000; Montgomery and Serratella, 2002; Khan and Haddara,
2003; Dey, 2004; Khan et al., 2006). The API (2000) has developed a methodology for
aiding the industry to base the maintenance on quantitative risk analysis. It was argued

that the existing method of health monitoring, which requires the entire components to be

inspected periodically, is both ti ting and expensive. Risk based model prioritize
the critical components to the safe operation. A risk based model for the inspection and
maintenance of cross country pipeline is presented in Dey (2001) based on the analytical
hierarchy process, a multi criteria decision making techniques. The weightage given to

the failure factors based upon subjective experience and available data.

Risk is defined as the product of the probability of an unwanted event occurrence and its
likely consequences. Risk assessment may be used as an identification and prioritization
tool to assist decision making on the selection of inspection and maintenance to prevent

asset failures. It is essential to ensure that the stake holders concerns are adequately
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addressed and that the system is safe for ion. Risk isa iq

used to identify, characterize, quantify, evaluate and reduce losses from actions of
decisions that have undesired outcomes. It provides equal priority to low probability-high

consequence failures as well as high probability-low consequence failures.

Risk is often viewed as the uncertainty associated with any outcome. Uncertainty can be
in the form of probability of potential failures and consequences. The vital risk factors,

which d to the likelihood of failure, are ion: internal and external,

external influence: third party activity, free span and vibration, construction and material
defects: poor construction and low grade material, errors: human and operational, and
natural hazards: earthquakes, storms (Stephens et al., 1995). The literature study reveals
that the internal corrosion and cracking are the major causes for likelihood of failure. The

environmental and social factors also have more impact on failure.

Wang (2002) reported a survey of maintenance policies of deteriorating systems and has

classified and d various existing maintenance policies with an

emphasis on single unit systems. Risk analysis is one tool the decision makers can use to
help with prioritizing maintenance action planning (Backlund and Hannu, 2002). An

effective use of resources can be achieved by using risk-based maintenance decisions to

guideline where and when to perform mai By ing a ive study
of three independent risk analyses on a specific hydro-power plant, to make a meaningful

decision, it was ded that careful requis ification, ensuring the system

approach with clear aims and goals are needed when performing risk analysis (Backlund
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and Hannu, 2002). The client needs to have sufficient competence to evaluate and
understand approaches and result from the risk analysis performed. In order to identify
risks in terms of where they are located in a system and how serious they are, risk
analysis is often used. The results of risk analysis can provide guidance as to where
maintenance actions should be directed. Some quality assurance applied to risk analysis
process will enhance the conditions for reliable results. Literature on the use of

simulation in maintenance planning has been reviewed by Andijani and Duffuaa (2002).

Knowledge of the reliability and mai engineer may be useful in the design of

and mai concept. An optimal maintenance of systems
subjected to deterioration of renewal type has been reported by Abdel-Hameed (2003).
The optimization is based on the total discounted cost over the infinite horizon, and the

long-run average cost criterion.

The deterioration and maintenance models for insuring safety of civil infrastructures at
lowest life cycle cost are presented in van Noortwijk and Frangopol (2004). The model
can be applied to determine the best maintenance strategy to insure an adequate level of
safety at minimal lifecycle cost while taking the uncertainties in the deterioration process
in to account. Without being complete, a time-dependent deterioration process can be
modeled as a failure rate function, a Markov model, a stochastic process or a time-
dependent reliability index. The pros and cons of the different models considered are
discussed (van Noortwijk and Frangopol, 2004). The advantage of reliability based
maintenance is that the reliability is explicitly taken to account in decision making. In

condition-based deterioration models, the reliability only follows implicitly after
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condition to reliability. The of condition based models is that
conditions can be measured or inspected, whereas reliabilities must be computed and that

inspections can naturally included in maintenance models. Ideally, the best way is to base

a deterioration model on the ti ic processes of resi: and stress
and to compute the corresponding lifetime distribution and failure rate function, as well

as the time-dependent reliability function (van Noortwijk and Frangopol, 2004).

Offshore process systems usually consist of a large number of components which operate
under high pressure and temperature transporting corrosive products. This will degrade
the material of component at a faster rate as it ages. The rate of loss of strength and
material produce the highest uncertainty in the decision models. Inspections may be used

to reduce this i An optimal mai decision model under imperfect

inspection for a steel pressure vessel subjected to corrosion is reported by Kallen and van
Noortwijk (2005). It was based on risk analysis and has concluded that a Gamma
stochastic process with an adaptive Bayesian approach for incorporating the uncertainty
in the degradation process is a viable option to be used in the structural reliability
methods, which are commonly used in the process industry. However fitting a Gamma
prior-likelihood, thinking of getting a closed form posterior may not always reflect the

reality of degradation processes.

The failure probability of offshore process component is scarce, but if a failure occurs,
the consequences are severe. A risk based maintenance model for offshore oil and gas

pipeline is discussed by Dey et al., (2004). The breakdown maintenance of the pipelines
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is cost-intensive and time-consuming resulting in huge tangible and intangible loss to the
operators. Pipeline health monitoring and integrity analysis have been researched a lot for
successful pipeline operation and risk based maintenance model is one of the outcome of
those researches. The reasons for optimal maintenance planning are from: stringent
environmental protection laws, scarce resource, and excessive inspection and
maintenance costs. A clearly focused inspection and maintenance policy that has low
investment to benefit ratio should be formulated. The study introduced a tool for
predicting the risk factor for pipeline failures, analyzed their effects, and developed a

response measure through effective inspection and maintenance methods.

An analytical model for the optimization of mai ility has been presented

by Oke (2005). The traditional view of maintenance is changing. Earlier, it has been
viewed as a necessary evil, now mangers are visualizing maintenance as a valuable
function since it is regarded as the safety line for components. Recently, maintenance
function is portrayed as a value-adding activity. There is a need to integrate the cost into
the model (Oke, 2005). With cost, a mechanism that links expenses incurred during a

financial period with budgeted costs would add great value to the maintenance model.

The optimization of lifetime maintenance strategies for deteriorating structures
considering the probabilities of violating safety, condition and cost thresholds is
presented by Bucher and Frangopol (2006). Two different maintenance strategies (i.c.,

time-based and per based) are i and the ing cost values are

computed on a probabilistic basis in terms of the expected values, standard deviations and



of ing prescribed The ional analysis of costs and

useful key performance indicators for different maintenance policies in order to choose
the most advisable applied to a food product plant is presented in Silva et al. (2008). A
good maintenance plan will give: reduction of the amount of routine work, planned
workload much lower than breakdown maintenance, less overtime work, higher plant

availability and reliability, less time given to corrective maintenance and greater safety.

The uncertainty in maintenance models is mainly from the parameter, deterioration rate
per unit time (Frangopol et al., 2004). Pandey et al., (2006) has pointed out that time-
based variability is not taken into account in the random variable models. For stochastic
modeling of monotonic and gradual asset deterioration, a Gamma process is most

appropriate (van Noortwijk, 2009). The less developed aspects in the modeling of

under G pi ioration are variability, multi-

failure mode models including their statistics dependence (van Noortwijk, 2009).

Optimum preventive maintenance schedules may be obtained, using the minimization of
total cost incurred in relation to maintenance activities. Cost minimization has been the

ditional objective in mai planning. However, risk optimization is more

attractive as it takes into account both the condition of component through probability of

failure and consequences through cost incurred. The preventive maintenance interval is

often optimi: when the i ing rate of i i cost equals the
ds ing rate of pi i i costs (Ghosh and Roy, 2009). Flexible
intervals are lized by studying the change in risk over the service




life of components. Efficient maintenance policies are of fundamental importance to
offshore process systems because of their impact on the safety and economics of facility
operation. A survey of the application of Gamma processes in maintenance is presented
by van Noortwijk (2009). Gamma processes are increasingly used to model the stochastic

for optimizi i An extensive literature study of inspection and

maintenance models under Gamma process deterioration is presented. However, these
litterateurs were tempted to use stationary Gamma process because of the existence of

conjugate pairs for updating. The non-conjugate pairs are not covered in any study.

An optimal maintenance and replacement decisions under technological change is
presented by Nguyen Thi (2010). There is an intensive research to provide the most

strategies for izing a set of mai actions based on complex

degradation models to optimize a decision criterion. The usual maintenance models are
considering various maintenance actions such as good as new replacement by an identical

item, imperfect maintenance which restores the system to an acceptable condition as bad

as old. The literature reviews and directions for mai reported by
Garg and Deshmukh (2006) brought out the major gap in knowledge. In offshore process

facilities, 30% of the total manpower is utilized in the maintenance and operations

The widespread ization and ion has reduced the number of
personnel and increased the capital employed in the offshore production facilities. As a
result, the fraction of employees working in the area of maintenance as well as the
fraction of maintenance spending on total operational costs has grown over the years

(Garg and Deshmukh, 2006). Next to energy costs, the maintenance cost can be the
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largest part of any operational budget. The main question faced by the maintenance
management, whether its output is produced more effectively, in terms of contribution to
company profits and efficiently, in terms of man power and materials employed, is very
difficult to answer. The current maintenance optimization model covers the following:

e A description model of the technical system, its function and importance.

* A modeling of the deterioration of the system in time and possible consequences

for this system.

A description of the available information about the system and actions open to

management.

An objective function and an optimization technique, which helps in finding the
best balance.

The models are classified into modeling of ioration as inistic or

qualitative or quantitative (Garg and Deshmukh, 2006; Khan et al., 2006). Stochastic
models are further classified into stochastic models under uncertainty or warranty. The
various maintenance optimization models are classified as (Garg and Deshmukh, 2006):
Bayesian Approach (BA)

A fully Bayesian, i.c., a subjective approach towards straight forward means of
presenting uncertainty related to future events to decision makers in the process of
decision making on inspection and maintenance. Bayesian model helps to update the
inspection and maintenance efforts. This approach is in contrast with the classical
probability approach, which assumes the existence of true probability distributions.
Kallen and van Noortwijk (2005); Straub and Faber (2006); Khan et al. (2006 has been

used this approach to optimize the maintenance performance with new NDT data.
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Mixed Integer Linear Programming (MILP)

Goel et al., (2003) presented a new mathematical formulation, MILP for the integrated

design, ion and mai planning for a multi-ps plant. In contrast to
earlier approaches, which focus mainly on deriving an effective maintenance policy at the
operational stage, the proposed integrated approach provides a design with an opportunity
to improve the operational availability at design stage itself.

Fuzzy Multiple Criteria Decision Making (MCDM) and Linguistic Approaches
Al-Najjar and Alyouf (2003) assessed and selected the most informative maintenance
approach using fuzzy MCDM evaluation methodology.

and ian F ilistic Models

Chen and Popova (2002) and Barata et al., (2002) used Monte Carlo simulation to
determine optimum maintenance policy by minimizing total service cost and for
modeling of continuously deteriorating systems. The Markov probability models using
random variables for optimizing the maintenance policy has also been discussed in Bruns
(2002); Sarkar and Haque (2000); and Balakrishnan (1992).

Analytical Hierarchy Process (AHP) and Artificial Neural Network (ARN)

AHP is used for selecting the best maintenance strategy for oil refineries (Bevilacqua and
Braglia, 2000; Shervin, 2000). Further, Bevilacqua et al., (2005) have used artificial

neural network (ANN) framework for failure rate prediction for maintenance.

Presently, many rescarchers are pursuing the pment of various
maintenance models to estimate the life cycle risk measures and determine the optimum

maintenance policies. However, these models may be useful to maintenance engineers if'
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they are capable of incorporating information about the repair and replacement strategy,
the management policies, the methods of failure detection, failure mechanism etc. (Garg
and Deshmukh, 2006). Further, the assumptions used in the model and the applicability
of model in a given system environment that can give greater confidence in estimates

based on small number of NDT data, have to be strictly checked.
2.2.1 Maintenance Strategies

The available maintenance strategies based on Duffuaa et al., (1999); Garg and
Deshmukh (2006), and Jardine and Tsang (2006) are reviewed briefly below.

Breakdown Maintenance (BM) or Corrective Maintenance: This type of maintenance is
only performed when the equipment is incapable of further operation. There is no
element of planning for this as it is a run to failure strategy.

Preventive Maintenance (PM): A series of tasks performed at a frequency dictated by the
passage of time, the amount of production, machine condition that either extends the life
of an asset or detect that an asset had a critical wear is going to fail or breakdown
constitutes PM. It is a planned maintenance to counteract potential failures.

Condition Based Maintenance (CBM): This is a maintenance strategy, in which the
maintenance tasks are performed on the basis of component condition. The condition is
detected using measurement, such as pressure, temperature, vibration going beyond a
predetermined limit. If a machine cannot hold a tolerance, the CBM is initiated. Grall et
al (2002) developed a mathematic model for the condition based inspection/replacement
policy for a stochastically and continuously deteriorating single unit system.

Total Production Maintenance (TPM): Originating from Japan, it centers on solving

maintenance problems using quality circles method. Some of the advantages of TPM are
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better d di of the i per improved teamwork, less

adversarial approach between production and maintenance.

G ized Mai System (CMMS): CMMS provide capabilities

to store, retrieve and analyze information and help to make informed decision on PM.

Reliability Centered Method (RCM): It was founded in 1960’s and initially oriented to

aircraft mai It directs mai efforts at those parts and units where

reliability is critical. High probability of failure components gets more attention.

Predictive Mai Predictive mai consists in deciding whether or not to

maintain a system according to its expected state. It estimates through diagnostic tools
and probabilistic methods, when a component is going to fail and what type of
maintenance to perform to prevent the occurrence of failure.

Maintenance Outsourcing (MO): This refers to transferring workload to outsiders with

the goal of getting higher quality maintenance at faster, safer and lower costs. The other

goals are to reduce the number of fulltime equi and

talents, energy and resources in the areas called core competence.

Effecti Centered Mai (ECM): It emphasizes doing the right things, instead
of doing things right. This approach focuses on system functions and customer service
and has several features that are designed to enhance the performance of maintenance
practices and encompasses core concepts of quality management, TPM and RCM.
Strategic Maintenance Management (SMM): In the SMM approach, maintenance is
viewed as a multi-disciplinary activity. It is mostly qualitative or semi quantitative.

Risk Based Maintenance (RBM): Risk based maintenance ensures a sound maintenance

strategy meeting the dual objective of minimization of hazards caused by unexpected
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failure of equipment and reduction of cost. Khan and Haddara (2003) and Khan et al.,

(2006) outlined this strategy. This methodology is ive and quantitative. The

risk to life is used as a criterion for decision making regarding maintenance.

2.3 RISK BASED INSPECTION AND MAINTENANCE PLANNING MODELS

The past risk based inspection (RBI) and risk based maintenance (RBM) efforts and
methods have been reviewed based on their application to the various industries such as
offshore structures, pipelines, ships, civil structures and process plants. Although the
inspection performance models for the detection of crack and flaws were in use in early
sixties by McCall (1965) and Barlow and Proschan (1965), the risk based approaches for

and i gained i since 1980°s due to the rapid

d in the field of i ions and

2.3.1 Offshore Structures

The first initiatives and towards the i ion planning for welded
connections subjected to fatigue in fixed offshore steel structures has reported in Skjong
(1985); Madsen et al., (1987); Fujita et al., (1989), and Moan et al., (2000). Later, the
same methodology was adopted to other structures such as tankers, Soares and Garbatov
(1996); Paik et al., (2000); floating, production, storage and off-loading facilities,
Lotsberg et al., (1999), and Goyet et al., (2002, 2004); and to semi-submersibles,
Lotsberg et al., (2000). The structural reliability method has played a vital role in these
developments. Recently, a generic and simplified approach for the risk based inspection
planning has been reported in Straub and Faber (2005a). A comprehensive documentation

of this approach has been observed in Straub (2004), considering the fatigue crack growth
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between hot spots as the degradation mechanism. The reliability updating for structures
subjected to localized corrosion defects, based on the fatigue crack models has been
found in Straub and Faber (2005). For localized corrosion defects, the actual

as well as the ibility of missing the largest defect are accounted in

reliability updating of inspections (Straub and Faber, 2005).

The i for risk based inspection planning,

modeling of inti of ilities, modeling of il ions, modeling

of engineering systems in terms of logical systems, modeling of deterioration processes
and the acceptance criteria for RBI has been published in Faber (2002). This paper has

outlined the problem of i ion planning and ized the ical basis for its

systematic treatment within the framework of Bayesian decision theory. The need of
implementing the robust and efficient algorithms for future developments in enhancing

the use of RBI planning into industrial practice has been emphasized.

A unified approach to the risk based inspection planning of offshore facilities comprising
of both structural and process type components and systems was published by Faber et

al,, (2003), based on a generic modeling of risk based inspection planning for

components subjected to fatigue i M for the ivation of
acceptance criteria for inspection planning purposes at component level taking basis in
the overall facility acceptance criteria specified in terms of risk to personnel, environment
and economy by the responsible authorities has been proposed. The same probabilistic

model was then applied for steel subject to ion; thereby ing the
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RBI planning for process type components of offshore facilities. The generic approach
described is promising for practical use of risk based inspection planning of components.
However, in regard to probabilistic modeling of various corrosion and cracking
phenomena much work is still required, Faber et al., (2003). The detailed case study and
calibration needs to be performed for degradation rates to validate the model for different
degradation phenomena. Inspections based on Bayesian theory must be performed to
ensure that the assumptions prevailing the modeling of the ideal age-based deterioration

are satisfied.

A simplified and practically applicable approach for risk based inspection planning of
fatigue sensitive structural details have been reported in Bloch et al., (2000). The fatigue
sensitive details are categorized according to their stress intensity factors and their fatigue
design life to reserve strength ratio. When the reserve strength ratio and the
corresponding probability of total structural failure given fatigue failure of the considered
detail is known, it is possible to develop pre-made inspection plans, which depend on
relative cost of inspections, repairs and failures. Due to simplicity of the format of the
developed inspection plans, it is reported that the proposed approach has a high potential
in making codes for the design and maintenance of steel structures, Engelund et al.,
(2000). The generic inspection plans have been established in Sorensen and Faber (2002)
for representative fatigue sensitive detail in terms of fatigue design factor and reserve
strength ratio. How the generic inspection plans can be used for code making purpose in

with the inspection of steel has been reported in this paper. Two

to ine i ion times have been described in the paper; namely
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equidistant inspections plan and constant thresholds plan and it greatly simplified the

inspection planning problems and facilii the i of i ion plans which
are generic in the sense that they are representative for a range of different detail designs.
The generic inspection plans may be applied as a decision tool for evaluating the effect of
service life extensions, load increases and strengthening on the required inspection and

efforts. Both hes result in i ion plans that are sub-optimal, but

the i ions are reduced signi y for practical situations.

A combination of proactive, reactive and interactive approaches, employing strategies to
(i) reduce the likelihood of malfunction, (i) increase detection and correction of
malfunction and (iii) decrease the effects and consequences of mal-function, have been
reported in Bea (2001). The approach developed for estimating fatigue crack growth may
be used in the risk based inspection planning of offshore systems, Straub and Faber
(2005a, b). The method has been applied by several industries, Faber et al., (2005);
Chakrabarti et al., (2005), and Goyet et al., (2002 and 2004). The benefits of risk based
inspection planning for offshore structures can be found in Straub et al., (2006). A unified
approach to the risk based inspection planning of an offshore production facility has been
reported in Faber et al., (2003), the assumptions of which limited its application. The
computational aspects of risk based inspection planning based on Bayesian updating of

fatigue, reported in Straub and Faber (2006), is quite complex and time-consuming.

The develops of a reliability-based of i

maintenance and repair has been reported by Moan (2005), for various types of offshore
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structure, with focus on management of hull damage due to crack growth and corrosion.
It is shown that different inspection and repair strategies may be relevant for different
types of offshore structures, because the existing structure poses different degree of

to fatigue and The joration due to i fatigue

cracking and corrosion wastage of structural components has been addressed to certain
extent. The reliability framework allowed for explicit accounting of uncertainties as well
as the effect of inspections. A series of inspection events are defined to update the
reliability level based on the detection of fatigue cracks and thickness measurements,
both before and after the vessel has changed its location and sea environment. The
analyses showed that the reliability may be maintained at the target level for a significant
period of time beyond documented fatigue life; provided that adequate inspections are
carried out at prescribed intervals and that any defects found are repaired to an acceptable
standard. It has shown that the inspection interval needs to be reduced from 5 to 2.5 years
to maintain the reliability level when through-thickness cracks are detected after 15-20
years for a welded joint with a 20 years fatigue life. However, by introducing additional
safety measures such as weld profiling and toe grinding, the reliability and inspection

intervals may be greatly enhanced.
2.3.2 Civil Infrastructures

A comparison and description of the deterioration and maintenance models for civil

infrastructures has been reported in van Noortwijk and Frangopol (2004). It is reported

that, the time-d dent, uncertain ioration process can be modeled as: a failure rate

function, a Markov model, a ic process and, a ti reliability index

method. In condition based deterioration models, the reliability follows implicitly or
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explicitly after transforming the condition to reliability. The best way is to base a
deterioration model on the time dependent stochastic process of stress and resistance and

compute the corresponding lifetime distribution and failure rate function.

A review of the probabilistic models for life cycle performance of deteriorating structures
is presented in Frangopol et al., (2004). In comparison with the well-researched field of
analysis and design of structural systems, the life cycle performance prediction of these
systems under no maintenance as well as under various maintenance scenarios is far more
complex and is a rapidly emerging field in structural failure engineering. As structures
become older and maintenance costs become higher, different agencies and
administrations in charge of civil infrastructure systems are facing challenges related to
the implementation of structural maintenance and management systems based on life
cycle cost. This paper reviewed the research to date related to probabilistic models for
maintaining and optimizing the life cycle performance of deteriorating structures and
formulated future directions in this field. Some of the modeling approaches dealt with the
reliability index, whereas the others are concerned with the physical condition of a
structure. No single approach has yet proven to be generally applicable. The use of
reliability index to model the performance of a structure is a classic approach in

engineering, and has resulted in many design codes. The Markov model, which s purely

a condition-based is the most y used in bridge mai models.

The Gamma process model has been the subject of many scientific publications with a

few applications to real maintenance problems in civil engineering (van Noortwijk and



Pandey, 2004; Pandey and van Noortwijk, 2005; Kallen and van Noortwijk, 2005).
Further work is necessary to collect the relevant data, improve the modeling capability

and formulate the probabilistic decision problems as follows: (i) establish an acceptable

and i for ilistic modeling of ioration processes of
structural performance in terms of both condition and reliability, (i) improve the

understanding of the effects of maintenance actions on structural performance and their

; improve the i ion of data from imperfect

inspections into the deterioration models, (iii) develop consistent probabilistic

hodologies for eval and strategies for and,

(iv) use optimization for finding the best strategy through balancing of competing
objective such as reliability, condition and cost. Two probabilistic life-cycle maintenance
models for deteriorating civil infrastructure were discussed in van Noortwijk and
Frangopol (2004); (i) Rijkswaterstaat’s model, which has applied to the public works and
water management by Netherlands ministry of transport, used for the justification and
optimization of maintenance measures and, (ii) Frangopol’s model, which has applied to

the devel, of bridge that has been set up by UK

highway agency. Although the maintenance models are quite similar, the former model is

reliability based and treats the multi lti-failure mode and multi
case. The latter model is condition based and treats only single component, single failure
mode and uncertainty. The Frangopol model uses Monte Carlo simulation with stochastic

process, whereas, the Rijkswaterstaat model is analytic with uncertain parameters.
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A model for lifetime-extending maintenance (LEM) has been reported by Bakker et al.,
(1999) in which both the interval of life time extension and preventive replacement is
optimized. The proposed LEM may be used to optimize the maintenance in both design
and operating phase of deteriorating structures. In the design phase, the initial cost of
investment can be optimally balanced against the future cost of maintenance. In the
operating phase, the cost of preventive maintenance (lifetime extension and replacement)

can be optimally balanced against the cost of corrective replacement and failure.

Other relevant works in this area are by Dekker (1996); Wang (2002), and on bridges by,
Frangopol and Estes (1999); Frangopol et al., (2001), and Frangopol and Neves (2004).
Further, on optimal decision making for sea-bed protection, by van Noortwijk et al.,
(1997); on breakwaters, by van Noortwijk and Phajm (1996); on bridge structures, by van
Noortwijk (1998); on nuclear plants by Ellingwood and Mori (1993); and a condition
based maintenance by Grall et al., (2002). A reliability based inspection optimization
technique for use in complex structures, such as offshore and bridge structures has been
found in Onoufriou and Frangopol (2002). The engineering systems are exposed to a
variety of operational stresses and aging related degradation mechanisms which will
affect the overall system life, safety and efficiency. A probabilistic approach to minimize

the life-cycle cost of i ion and i of engineeri in large

infrastructure systems has been reported in Datla and Pandey (2005). The probabilistic
methodology is based on the lifetime distribution of components, though its estimation is

hampered by the lack of data. The ge of the methodol, is d d by

applying it to the analysis of wood poles in a large electrical distribution network.
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2.3.3 Oil and Gas Pipelines
In pipeline industry, the objective of a risk based inspection management is to ensure and
maintain the required confidence in the pipelines integrity and hence maximize its

operating ilability. It ially includes the imization of resources to ensure

pipeline integrity, such as planning of inspection intervals and methods, repairs etc. A
versatile methodology for the RBI of pipelines has been published by Willcocks and Bai
(2000), which consists of: defining a required level of confidence in the pipeline
integrity, establish a database of operating conditions, evaluate and rank the risks of each
potential failure modes, study the time-dependent degradation failure models and finding
optimal solutions to reduce the risks and uncertainties to an acceptable level. The designs
of pipeline systems are being optimized through probabilistic methods to reduce the cost.
Since, the major cause of failures are extreme loading, corrosion, third party defects and
fatigue damage; it requires the monitoring and controlling of these factors to eliminate
potential risks. A good understanding and management of risks is of vital importance in
ensuring the integrity of pipeline transporting oil and gas to terminals. It showed that the
adoption of risk based inspection can reduce design, inspection and repair costs whilst
ensuring that the required levels of pipeline integrity. By identifying, understanding and
addressing the hazards to the pipelines integrity and evaluating the consequence of
failure, a high availability of the pipelines can be ensured at an optimum cost. The model
discussed was unable to predict the impact of maintenance and replacement plans and

lacked the implementation of stochastic models.
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The identification of potential hazards and their elimination is critical to the effective risk
management of pipeline systems. The corrosion management studies with RBI

methodology will instantaneously provide the pipeline risk which can be useful in

anomaly and in ing i ion interval. and Farinha (2004)

presented a corrosion risk (CRA) and its i in the RBI approach

based on the hypothetical data analyzed by various statistical techniques. A holistic
approach is proposed based on corrosion inspection strategies and statistical approach. In
order to judge the reliability of the statistical approach, corrosion failure prediction
models have been created by simple trend, Weibull and survivability techniques. The

degradation rate has been estimated for the failure mechanisms that are considered to be

pitting, i i ing the of critical

defect size, the predicted service life is ined by ing existing i

data, where there is a history of deterioration, or by probabilistic methods (Monte Carlo
simulation), where there is no history of deterioration. By multiplying the predicted
remaining service life with a risk factor, the approximate inspection interval has been

determined. This risk based factor was semi-quantitatively derived using matrices

likelihood ictability and of failure. Pro-active monitoring.
methods need to be maintained and implemented including good corrosion house
keeping, such as routine sampling, on-line monitoring and review of the operator logs,
such as proper corrosion monitoring techniques, suitable inhibitor and biocide regime,
with the corrosion data will help in predicting reliable asset remaining life. The
traditional process data recording should be extended to integrity-related data recording.

Cost of risk and its effects on the integrity management of pipelines has been reported by
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Laughlin (2004). It is argued that the current tool i ions make the

of actual risk difficult and hence the cost of risk is underestimated.

The optimal inspection and replacement decisions for multiple failure modes are
presented by Kallen and van Noortwijk (2004). The cost function associated with Gamma
process for modeling deterioration has been extended to multiple failure modes, which
limit the use of priors. An elbow in a pipeline which is susceptible to thinning due to
corrosion and stress corrosion cracking has been considered in the modeling, and effect
of data availability is discussed. The optimal maintenance decision under imperfect

inspection has been published by Kallen and van Noortwijk (2005). A risk based model

for the i ion and mai of itry pipeline has been reported
in Dey (2001). A risk based model using an analytic hierarchy process, a multiple
attribute decision making technique, to identify the factors influencing failure on specific
segments and analyzed their effects by determining the probability of risk factors, Cagno
etal., (2000). Another risk based maintenance model for offshore oil and gas pipeline has
been reported in Dey et al., (2004). Some of the risk assessment methods for formalizing
the pipeline integrity for operating companies will find in Biagiotti and Gosse (2000).
2.3.4 Process Installations

The proper inspection and maintenance of process plants, which deals with hazardous
chemicals at extreme temperature and pressure, are highly important to ensure the safe
and continuous operation of the facility. A risk based methodology for the integrity and
inspection modeling of such a facility has been presented by Khan et al., (2006) based on

Kallen (2002). The Gamma distribution has been used to model the material degradation
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and a Bayesian updating method to improve the distribution based on real inspection
results. The risk is calculated using the probability of failure and, the consequence is
assessed in terms of cost as a function of time. The risk function is used to determine an
optimal inspection and replacement interval and, that inspection interval has subsequently
been used in the design of the integrity inspection plan. This method takes into account
the random nature of the material degradation of components and it allows the updating
of the probability density function using Bayesian approach. The maintenance interval

has been optimized based on risk iated with failure and the

criterion is based on the level of risk that satisfies the acceptance criteria. The study was
limited to Gamma distribution that fits the material degradation processes, but may not
always in-line with the subjective information or historical database of different
degradation processes. It is showed that the method gives reliable estimates for inspection
intervals that are comparable with literature, but, the critical degradation mechanisms,
such as pitting, erosion corrosion and cracking (CFC, HIC) were not included in the

study. Further, the method is computationally intensive and time consuming.

Kallen and van Noortwijk (2005) proposed an adaptive Bayesian decision model to
determine the optimal inspection plans under uncertain deterioration. A Gamma
stochastic process has been used to model the corrosion damage mechanism, similar way
of fatigue cracks based on hot spots and, a Bayes theorem to update the prior knowledge
over the corrosion rate with imperfect wall thickness measurements. Since the current
non destructive inspection techniques are not capable of measuring the exact material

thickness, the imperfect inspection modeling is very important in process plants. The
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decision model in Kallen (2002) finds a periodic inspection and replacement policy
which minimizes the expected average costs per year. The failure condition has assumed
to be random and depends on uncertain operation conditions and material properties. The
combined deterioration and decision model has been illustrated by using actual plant
inspection data for pressurized vessel in Kallen and van Noortwijk (2005); for a
pressurized steel pipeline elbow in Kallen and van Noortwijk (2004); and hydrogen dryer
in Kallen and van Noortwijk (2003). In all these models, the choice of prior is restricted
to Gamma stochastic process, which is not true in the case of all degradation priors. It

doesn’t reflect the subjecti ge and i data for all ion priors.

Material Degradation Mechanisms

Material degradation is one of the main causes of process component’s failure and it may
be caused by one or more mechanisms. The mechanism of failure includes: internal and
external thinning due to corrosion, stress corrosion cracking, brittle fracture, and fatigue
due to vibration, Kallen (2002), and Khan et al., (2006). These mechanisms cause
material deterioration and thus affect the ability of the component to withstand the
applied load. The two models reported were a thinning model and a stress corrosion crack
model (Kallen, 2002). The thinning model has been used to describe the reduction in
material thickness of components as a result of internal or external corrosion and wear.
The cracking model has been used to describe the reduction in the load carrying capacity
of the components as a result of cracks (Kallen, 2002). Such cracks may results from
stress induced corrosion, brittle fracture or fatigue. The stress corrosion cracking (SCC)
failure occurs when applied stress on a component generates a field of localized surface

crack along the grain boundaries, which yield the component incapable of performing its
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function. The SCC includes caustic cracking, amine cracking, carbonate cracking, sulfide
stress cracking, hydrogen induced cracking, polythionic acid cracking and chloride
cracking. At low temperatures the carbon steels suffers brittle fracture at loads
significantly below the design loads because of its ductility loss at low temperatures.

Vibration also causes to fail piping near

vibration sources is prone to fatigue. The net degradation of the material is the total sum
of degradations that take place as a result of the above mentioned mechanisms (Kallen
2002; Khan et al., 2006). Although these mechanisms are deterministic, there is a level of
uncertainty associated with some of their variables and hence, those variables have to be

considered random and degradation process is expected to be a stochastic process. It has

been assumed that the i material ioration is i ially
distributed random variables. Then, the cumulative degradation from the start to end of
service is a Gamma distributed stochastic process with stationary increments. The results
of inspection can effectively be used in updating the prior knowledge of the average
degradation rate using the Bayesian updating. The inspection updating modeling involves
two steps: (i) selection of an appropriate prior and, (ii) Bayesian updating of the prior
using the likelihood function of new inspection data (Kallen, 2002). In order to calculate
the risk, consequence analysis associated with the failure needs to be estimated. The
consequence has been estimated in terms of the cost incurred as a result of failure
(Kallen, 2002; Khan et al., 2006). The expected average costs per cycle are determined
by the expected number of inspections during cycle and the expected costs due to either

preventive or corrective replacement.



2.4 STOCHASTIC DEGRADATION MODELS FOR CORROSION AND

CRACKING

2.4.1 Probabilistic Corrosion Models

The probabilistic deterioration of structural strength and the multiple applied loadings are
the main criteria needs to be considered for the life assessment of the existing assets
using the reliability theory. Various corrosion models have been reviewed in Melchers
(2003a) using the data pooled from many sources and, it has been found that most of
them are statistical only with little theoretical insight. They provided poor quality mean

value information with very high statistical uncertainties. In practice, corrosion is not an

for ining life of aging systems as it
interacts with applied stresses, fatigue, mechanical damages, with protective systems and

practices. The i ion with each of these phenomena or materials is a

matter that cannot be ignored in practice, even though the interactions are not fully
understood in all cases. In Melchers (2003a), more attention and efforts has been given to
marine corrosion to develop statistical models. The marine corrosion is not a linear
function of time and the variability in the data is very large and it increases with time. It
is further argued that there is an urgent need for better quality models to adequately
represent the deterioration mechanism for corrosion. It must be based on sound

of the corrosion ism and would require calibration to field data and

in turn, new data collection with better ion of existing data. A probabilistic

model needs to be developed and it should follow the deterministic physiochemical
corrosion models. These must reflect a reasonable degree of physical reality if they are to

have predictive power beyond the data from which they are calibrated.
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Considering the probabilistic corrosion modeling based on corrosion mechanics
principles and including the effect of environments, another paper has been published by

Melchers (2003b). The envii I effects include dissolved oxygen,

salinity, calcium carbonate, pH, water velocity and marine growth. A new multi-phase,
non-linear mean value model has been developed for the corrosion of mild and low alloy
steel under “at sea” immersion conditions. The model consists of four stages: (i) largely
linear phase during which oxygen controls governs, (ii) a phase during which the
corrosion rate diminishes rapidly due to buildup of corrosion products and corrosion is
governed by diffusion, and (iii) and (iv) governed by anaerobic conditions. The influence
of factors that may affect the model under coastal and near shore conditions, such as
temperature, dissolved oxygen, salinity, calcium carbonate, pH, water velocity and
marine growth are included. The application of basic corrosion understanding and models

will help in the development of more specific models for practical applications.

In general, the extreme value statistics are used to model the pitting corrosion (Shibata
2007; Kowaka, 1994; Khan and Howard, 2007). There is likely to be a high degree of
dependence among the depths of extreme pits and, the statistical population describing
such pits is likely to be different from that of the remaining pits, Melchers (2005). These
observations questioned the conventional use of extreme value distributions for modeling
the uncertainty in maximum pit depth since such distributions are based on the
assumption of independent statistical events. The empirical observations suggest that
extreme pit depths appear to be representable by a normal distribution. This provides a

basis for a review of probability theory to be used for dealing with systems of highly
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events. Signi lower ilities of of extreme depth pits

are predicted while it is applied to the ilistic modeling of the maximum pit depths.

Melcher (2005) proposed that the deepest pits are drawn from a different population

being the result of super-stable pitting. The ility distribution for all pit depths is bi-

model and that for the deeper pit is approximately normally distributed. There is likely to
be a high degree of dependence between the depths of external pits is based on the use of
experiments of near uniform but homogeneous material properties and similar
environmental conditions. The actual degree of correlation between external pit depths

and its variability with separation distance between pits has not been addressed

specifically. On the basis of ift but i material

and similar a high degree of dependence is expected

between the deepest depths that occur on a corroding metal surface. Series system
probability theory shows that the probability distribution for all pits is approximately

normal for deeper pits. A similar result was found from the consideration of the

d with estimating the ical upper pit depth cut-off value in the
application of the generalized extreme value theory. The implication for practical analysis
of pitting data is that if the external pitting is highly correlated, there is no need to
consider individual coupons but only a sufficiently large area so as to capture the deepest
pits with a high degree of confidence. In this approach, the probability estimates that have
much less uncertainty than those estimated by conventional approaches (i.e., Gumbel
Extreme Values). These propositions are based on the assumption that the extreme pits

are formed through super-stable pitting, the external pits are likely to be those that initiate
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immediately on the metal being exposed and then continue to grow in a stable pitting

mode without entering a meta-stable state.

The asset integrity management is the management of assets such that availability is
maximized at optimum cost without compromising the safety to environment and
legislative standards. This is achieved when the risk of failure endangering the safety of

personnel, environment and asset value are as low as reasonably practicable.

One of the primary life-limiting threats is the internal corrosion and therefore the

effective corrosion management is vital. The two for corrosion
and the traditional inistic approach have been compared in Lawson
(2005). The ilistic approach to the of pipeline corrosion risks dealt

with many of the uncertainties that are common in the corrosion data. Rather than
considering each input parameters as an average value, this approach considered the
inputs as a series of probability density functions, the collective use during the
assessment of risks yields a risk profile that is quantified on the basis of uncertain data.
The variability in pipeline failure probability with time has been predicted using both the
FORM and Monte Carlo simulation and it was observed that the failure probability
increases over the time periods considered, consistent with an increased level of damage
with time. This approach differs from the traditional deterministic assessment in that the
output yields a curve that shows how the risk of failure increases with time. The asset
operator simply chooses the level of risk that is acceptable and then devises a strategy to

deal with those risks.
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The probabilistic methods reduces the weakness in the deterministic method concerning
the assumptions made with regard to the input variables, but it doesn’t remove the

possibility that important parameters are omitted, or perhaps even misjudged, Lawson

(2005). The ilistic methods are i intensive, time consuming and can
be very complex in many cases. The inherent strength of probabilistic method is
compromised in two areas. The first one is the data available to support the calculation of

risks and the calculation method itself. Second one is the choice of target level of risk.

A probabilistic analysis k 1 the condition of a corroding

capable of
pipeline and the evolution of its probability of failure with time has been outlined in
Hallen et al., (2003). The uncertainties associated with the inspection tool, corrosion
growth rate, pipeline geometry, material strength and operating pressure were modeled.
The results of these evaluations were compared with target reliability levels derived by
risk analysis in order to formulate optimal re-inspection intervals, corrosion growth rate
control measures, re-rating strategies and repair/replacement actions over the targeted
pipeline service life. The proposed methodology (Hallen et al., 2003) ensures the current
and future safe operation of the pipeline based on minimizing the cost of repair while
maintaining at least the minimum safety goals projected for the pipeline. The probability
of failure has been determined for the entire pipeline, ranked by segment between joints
or for a given characteristic length. Then, it is compared with target probabilities which
are established either from historic failure rates or from risk criteria. This comparison

allows the operator to formulate cost effective strategies for future safe operation.
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Corrosion is the most prevalent time dependent safety threat to a pipeline and continues
to be the most important cause of failure for the oil and gas pipeline (Hallen et al., 2003).
Significant effort has been made in order to assess the condition of corroding pipelines
using data obtained from high resolution magnetic flux leakage or ultrasonic technology
based in-line inspection tools. The reliability assessment framework used in the paper can
identify the relevant failure modes and establish the corresponding limit states. Two limit
states were established as immediate integrity concerns: (i) burst or rupture state and, (ii)

leak state. Burst threaten the pipeline integrity when the operating pressure ( £,,) exceeds
predicted burst pressure ( £, ) and leak threatens the pipeline integrity when a metal loss
(d) exceeds a given percentage of the pipeline wall thickness. Once the PDF’s of P,

o>

P, and d are established through inty analysis, the ility of failure

associated with each corrosion defect can be calculated for these two limit states.

A study on the probabilistic methodology for the estimation of the remaining life of
pressurized pipelines containing active corrosion defects has been presented in Caleyo et
al, (2002). The First Order Second Moment (FOSM) method, the Monte Carlo
integration techniques and the first order Tyler series expansion of the limit state function
are used in order to estimate the probability of failure associated with each corrosion
defect over time. The uncertainty of the statistical variables on which the limit state
function depends is modeled using the normal and lognormal distributions and the
sensitivity of pipeline reliability to these variables has evaluated. The extended
probabilistic analysis framework has been applied to a sample operating pipeline which is

inspected using a high resolution magnetic flux leakage inspection tool. The failure
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probability model considered to define the limit state function lead to similar failure
probabilities for short pipeline service periods. The expected numbers of repair actions

predicted by the ilistic and inisti jes are similar if the

normalization factor PF),,, is used to define the global safety factor, for the pipeline
failure probability is assumed to be unity. PF,,, is a key parameter in planning
inspections and maintenance strategies and can be estimated from the global safety factor
for pipeline as established by the regulating safety codes. The FOSM and Monte Carlo
integration reliability algorithms produce similar results when the LSF can be linearized

and the load and resistance variables have normal probability distributions. If the

of a load or resi is not experimentally available,
then sensitivity of pipeline reliability to this variable is the key to assume its distribution
type. The probabilistic analysis of a pipeline must be carried out separately for deep and
shallow defects in pipelines containing a large number of corroded sections to ensure a

correct repair strategy for short and long term exposure periods (Caleyo et al., 2002).

‘Wang et al., (2003) published an estimation of corrosion rates of structural members in
oil tankers using a probabilistic model and a corrosion wastage database. The corrosion
rates could be described by Weibull distribution; the mean, standard deviation and
maximum values of the corrosion rates for the structural members are obtained based on
the entire population of the database. The salient observations made are: corrosion rates
scatter in wide ranges, the maximum corrosion rate is much higher than average and the
average corrosion rates do not seem to depend on the usage space on ship. The predicted

corrosion rates presented may be generalized to the tanker fleets in the world and can be
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used as a reference when planning maintenance and inspection for a group of ships. The
analysis is based on a corrosion wastage database that contains over 110 000 thickness
measurements. Upon comparisons of the estimated corrosion rates with TSCF (Tanker
Structure Co-operative Forum) estimations, the estimated mean corrosion rates has been
found generally higher than or close to the high end of the TSCF ranges. The estimated
corrosion rate can be used for establishing corrosion allowances for structural designs,

planning for i ions and ing for

The risk of failure for a tank vessel type during its serviceable life is associated with
structure’s strength, corrosion and cracking defects, Anghel and Lazar (2005). The
simulation techniques of the performance function and a well known reliability method
(FORM) have been used in the analysis. The professional analysis package, crystal ball
has been used for the former and a developed procedure built on the principle of FORM
implemented in MATLAB has been used for the latter to perform the simulations. The
corrosion decay model is based on experimental values from the published failure
models. The uncertainty and variability of the variables and parameters on which the

model depends are evaluated by sensitivity analysis.

A large number of technological structures like, pressure vessels are deteriorating by
corrosion, with time, due to process exposure. As a result, the carrying capacity
diminishes with time and hence, the level of risk of these structures increases. Using a

corrosion decay model, based on i data and a ilisti it is

possible, more realistic to decide when the structure becomes unsafe or the level of risk
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becomes too high. The sampling and probabilistic algori for ing the risk of
failure, for corrosion deteriorating pressure vessel at any time during the service life has
been discussed. The study has offered a greater reliability in life prediction. The
excessive safety margin in design and more cumbersome experimental and analytical
approach has thus reduced. The active corrosion defects are major conditions for the risks

of failure or the reduction in safety. This type of study is necessary for integrity engineers

to work out the optimal safety decisions, i ion and

A critical evaluation of empirical and mechanistically based modeling of pit propagation
kinetics has been found in Turnbull (1993). The extreme value statistics applied to
materials exposed for varying periods of time provide a more effective method of
prediction of maximum pit depth at a given time. The statistical characterization of
pitting corrosion, for probabilistic modeling of maximum pit depth has been reported in
Melchers (2005); Scarf and Laycock (1996), and Laycock et al., (1990).

2.4.2 Probabilistic Crack Models

The carlier works reported in Skjong (1985); Madsen et al., (1987); Fujita et al., (1989),
and Moan et al., (2000) attempted to model the fatigue cracks in structures. The fatigue
modeling was further extended to other structures, Soares and Garbatov (1996); Paik et
al,, (2001), Lotsberg et al., (1999, 2000), and Goyet et al., (2002, 2004). Recently,
generic and simplified approaches for the risk based inspection planning have been
formulated by Straub and Faber (2005 a, b) and, comprehensive documentation of the

approach has seen in Straub (2004), considering the fatigue crack degradation
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mechanism. The modeling of crack mechanisms and acceptance criteria for RBI has been

found in Faber et al., (2005).

A unified approach to the risk based inspection planning of offshore facilities comprising
of both structural and process systems has been published in Faber et al., (2003) based on

a generic modeling of risk based inspection planning for components subjected to fatigue

degradation. A simplified and practically appli approach for risk based inspection
planning of fatigue sensitive structural details is presented in Bloch et al., (2000). A
combination of proactive, reactive and interactive approaches for RBI has been proposed
by Bea (2001). The generic approach developed for fatigue crack growth renders a
potential to risk based inspection planning of systems, Straub and Faber (2005a,b), and
the method has been applied by industries as reported in Faber et al., (2005); Chakrabarti
et al., (2005), and Goyet et al., (2002 and 2004). A unified approach to the risk based
inspection planning of an offshore production facility has been reported in Faber et al.,
(2003). Generic inspections plans has established in Sorensen and Faber (2002) for
representative fatigue sensitive detail in terms of fatigue design factor and reserve
strength ratio. It has shown how the generic inspection can be used for codification
purpose in connection with the inspection planning of steel structures. The computational
aspects of risk based inspection, based on Gamma process and Bayesian updating

through a generic fatigue approach has been reported in Straub and Faber (2006).

The d P! of a reliability-based of i

maintenance and repair has been reported by Moan (2005), for various types of offshore
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structure, with focus on management of hull damage due to crack growth. A risk based
methodology for the integrity and inspection modeling of a process facility, with respect
to stress corrosion cracking has been presented by Khan et al., (2006) based on Kallen
(2002). The combined deterioration and decision model has been illustrated by using
actual plant inspection data for pressurized vessel in Kallen and van Noortwijk (2005),
for a pressurized steel pipeline elbow in Kallen and van Noortwijk (2004); and a
hydrogen dryer in Kallen and van Noortwijk (2003). There is a little information on
modeling SSC, but little information on hydrogen induced cracking or combined

corrosion-fatigue cracking.

An approach to the estimation of variability cased by the material microstructural
inhomogeneities has been presented by Shen et al., (2001). The approach was based on

the results of a combined experimental and analytical study of the probabilistic nature of

fatigue crack growth in Ti-GA-4V. A simpli i fracture
framework has been used for the determination of statistical fatigue crack growth
parameters from fatigue tests. The experimental study showed that the variabilities in
fatigue crack growth data and the Paris coefficient are well described by the lognormal
distributions. The variabilities in the Paris exponent are also known to be well

by a normal distribution. These statistical distributions are i into

a ilistic fracture i k for the estimation of material

2.5 ECONOMIC CONSEQUENCE ANALYSIS

When a failure occurs there is an instantaneous loss of profits and combination costs. In
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addition to the lost profit, the fixed and variable costs during the time of repair are paid
by the business, yet they have been wasted without production. This cost of shutdown can
be really high in offshore process facilities. This could be modeled using the unit cost of
product and the total quantity of affected production with maintenance delay time.
Knowing the total cost of failure is only useful if the failure can be prevented. The best
protection against failure is prevention. Once the asset ages, the economic consequences
of failure are to be assessed. Then the management can take informed decisions on
maintenance to prevent them failing. The failure costing will show that vast amount of
money and resources are wasted throughout a company whenever failure happens. The
bigger the failure, the more resources and money are lost. The cost of process component
failure due to degradation encumbers billions of dollars in offshore industry. It is not only

the ies, but also wasting the limited natural resources,

damaging environment and causing a great deal of human suffering (Jackson, 2003). The

d ding of degradation with correct engineeri ication could greatly reduce

the damaging effects and cost of degradation, such as corrosion and cracking.

A guideline for the life cycle costing of corrosion in the oil and gas industry is presented
in Jackson (2003). It provides structured guidance on establishing a system for gathering
cost of corrosion data during the life of a facility. It is useful for analysts in the life cycle
costing studies for new facilities which are similar. This study indicates that the cost of
corrosion can be estimated in terms of dollar with respect to: capital costs, operating
costs, cost of lost production caused by equipment failure and the material residual value

(Jackson (2003). The capital cost includes the costs for hydrocarbon systems, utility
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systems and structures and covers the design and ion phases. In the

phase, the cost to recover from a failure may also be included in the capital cost. The

operating cost includes the pi ive and corrective mai energy

and routine operating services. The preventive maintenance costs include one or any
combination of the following: personnel costs to maintain and inspect the systems and
equipments, such as cost of extra materials for corrosion allowance together with the
extra cost of transport, storage and fabrication, cost of corrosion inhibitors for mitigating
the fluids corrosivity, cost of painting and coating restoration including the cost of cost of
personnel, products, surface preparation, inspection and scaffolding, the cost of

installing and issioning corrosion itoring systems, including data

storage, processing and analysis equipment, including planned shutdowns (Jackson
(2003). The costs of replacement parts and materials associated with a degraded item,

where component failures have critical effects are to be accounted.

Consi ion may be given to predicti i This could be based on previous
experience and an assessment of the risk of defects and failures caused by degradation. It
includes: the cost of failure analysis and studies to solve degradation problems in the
operating phase, the personnel costs required to rectify degradation related defects and
failures within the facility, including the cost of unplanned shutdown, the cost of spare
parts and materials associated with repair and replacement, the consequential costs
associated with a failure due to corrosion and cracking, including injury to personnel and
equipment, damage to the environment and necessary clean-up operations and other

safety issues, the energy consumption costs should include those costs for systems and
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equipments. The lost productions costs are financial losses or penalty charges which are

d with loosing production because of ion related failures and include the

cost associated with lost revenue. The method of ing the cost of lost

needs to be defined as it may vary for each operating company.

At the end of the facility’s life, it may be possible to recover some or part of the value of
material used, known as the residual value. This is valuable when the degradation
resistant materials are used. Benefits derived from this recovery may be used to offset the
initial costs. The life cycle cost (LCC) calculation method given in Jackson (2003) is

used in this thesis. The aim of LCC analysis is to maximize the profit from the operation

of facility by minimizing or eliminating the costs i with i The LCC
analysis will only be good as the data and experience used for the analysis. By operating
a system of life-time data accumulation, the degree of accuracy should be increased with

time and experience. This is true especially in the case of ageing offshore assets.

A case study of the cost of corrosion in fertilizer industry is presented in Bhaskaran et al.
(2004). A cost of corrosion survey has been undertaken using the net present value

method to estimate the direct annual cost due to corrosion. The risk factor is an important

in the ion of a mai strategy under uncertain degradation

for idering risk have not been

processes. y, the present
entirely satisfactory as they overlook at the failure consequences. This assumption has

high impact when the event probability is less, however the consequences are severe.



Certain explicit formulas for both the expected value and variance of discounted life-
cycle costs over an unbounded horizon are presented by van Noortwijk (2003). In life
cycle costing analysis, the optimal design is achieved by minimizing the expected value
of the discounted costs. The variance of the discounted cost is useful to determine
uncertainty bounds. Uncertainty in the cost estimated has to be accurately modeled.

The cost of failure estimation should take the following factors into account: the cost of

lost commodity, shutdown, spill cleanup, nature damage and liability.
2.5.1 Factors Influencing the Spill Cleanup and Nature Damage

It is important to estimate the cost consequences of an oil spill in offshore, as it is
necessary for insurance company, corporate administration to allocate recovery measures.
The cost associated with failure includes economic losses, environmental damages and
mitigation expenses (White and Molloy, 2003; Etkin, 2000; Purnell, 1999). The expenses
related to the cost of spill are divided into direct cost and indirect costs. The direct
expenses include: cost of personnel and their expenses during cleanup, cost of contractors
and other direct cleanup, fees and fines from state agencies, cost of litigation and
litigation defense. Indirect costs includes: the increased attention by regulators, permit for
new activities cost more, more drills and training, increased cost of new equipment and
other preparation cost, new local, state and federal laws and taxes, business cost by
diverting key personnel to spill control, stock price and stockholder pressure, higher
insurance costs, loss of sale of products. The best way to estimate the cost of spill cleanup
is considering per unit cost and the duration and rate of spillage. Obtaining the cost data

for spill is difficult as many aspects of cleanup operations and damage claims are
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confidential business agreements between claimants and the operators. However, the

published data in literature may provide some guidelines (Etkin, 2000; White, 2000).

One of the most important factors is the type of oil, coupled with the physical, biological
and economic characteristics of the spill location (White and Molloy, 2003). The other
factors such as the amount spilled and the rate of spillage, weather and sea conditions,
time of the year and the effectiveness of cleanup can also be crucial in determining the
overall cost of an incident. Each spill involves a unique set of circumstances that
determines the clean up cost (Etkin, 1999). Estimating a per-unit cleanup cost is

meaningless without taking into consideration factors such as location and type of oil,

which can be profoundly influence the cost. An ing of the relative i

of these various factors can help focus the spill prevention programs, the development of
realistic spill contingency plans and the delivery of cost-effective response. Trend in
costs associated with various low technology shoreline clean-up methods by drawing on
information gathered during the response and subsequent claims for compensation from
the local government councils is presented in Purnell (1999). It should be recognized that
complete removal of every trace of oil is neither achievable in practice nor technically
reasonable. Etkin (2000) reported the marine oil spill cleanup costs on the basis of
country, proximity to shoreline, spill size, oil type, degree of shoreline oiling, and
cleanup methodology to determine how each of this factors impacts per unit cleanup
costs. It is reported that the oil spill response in different countries and regions of the
world vary considerably in their costs most likely due to the differences in cultural

values, socio-economic factors, and labor costs. A model has been developed from cost
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data collected from case studies of over 300 spills in 40 nations. It has taken into account
the oil type, location, spill size, cleanup methodology and shoreline oiling to deduce a

per-unit cleanup cost value.
2.5.2 Liability Consequences

Accident costs are used in economic analysis for choosing among alternate improvements
to the existing systems. Estimates of costs that results from an offshore accident are not
available in open literature. However, the estimates of costs that results from motor
vehicle accidents are routinely published by several public and private organizations.
They are often derived from different bases, which often results in significantly different

estimates. C ive cost is a of motor vehicle accident cost that

includes effects of injury on people’s lives. The injuries and deaths caused by a system
failure have the most severe implications possible. The loss of life or pain of an injury is
impossible to quantify, however, the cost implied due to worker’s compensation and
corporate liabilities shall be taken into account (Jones, 1995). Apart from that, safety
related system failures have other immediate implications, such as legal fines and

penalties of i i The US of it i a

technical note (Judycki, 1994) on comprehensive motor vehicle accident costs. The

components of the comprehensive costs includes medical costs, emergency services,

lost earnings, inistrative costs, legal Iting fees, pain

and lost quality of life. The seven categories of liability costs and their descriptions are

presented in Chapter VIL.
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2.6 CRITICAL REVIEW OF LITERATURE

Most of the modeling approaches dealt with the structural reliability methods, whereas
the others are concerned with the physical condition of the asset. No single approach has
yet proven to be generally applicable and each model has its own advantages and
disadvantages. It is found that further work is necessary to collect the relevant data,

improve the modeling capability and the ilistic decision problems

applicable to industry standards. A critical review of literature has been given below.

2.6.1 Maintenance Optimization Models

There are a few problems in applying quantitative optimization models, such as
decision support systems are needed for maintenance optimization, scarce data,
gap between theory and practice. Thus, the applications are limited in industry.

The models are published as ical discipline with i research,

the applications are very limited, and no convincing case studies are reported.

Engineers need to learn economics of maintenance, statistical data analysis and

iples of optimization. That is, a multi-disciplinary risk analysis is needed.

The existing models may be useful to maintenance engineers if they are capable
of incorporating risk information about the repair and replacement strategy, the
methods of failure detection, accurate failure mechanism and consequences that
can give greater confidence in estimates based on small number of NDT data.

«  Maintenance is increasingly viewed as a multi disciplinary activity and is evident
from the emergence of new approaches, like RBM. However, No convincing risk

based models for mai and imization is available.
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2.6.2 Risk Based Inspection and Maintenance Planning Models

.

Preventive and condition based maintenance continue to be the areas where most
of the research has been focused. Various simulation tools and mathematical
models are attempted in recent years to reduce the cost. Risk based inspection,
maintenance and replacement models with adequate confidence are limited.

Most of the models described in literature were unable to predict the impact of
recommended maintenance strategy and Bayesian updating using latest NDT data.
Some literature attempted to model the deterioration with Gamma process that
restricts the use of priors and need not reflect the true degradation process based
on subjective knowledge, experimental judgment and generic database.

It is observed that, developments are still needed in enhancing the use of risk
based inspection and maintenance planning into practice. A pre-requisite for the
practical implementation of risk based inspection and maintenance planning is

that numerical operations are simplificd and d and adapted yto

the special requirements of the different industry’s acceptable risk levels.

The inherent strength of existing risk based models is compromised in three arcas
which limit its application, needs to be explored further. The first one is the data
available to support the model; the second one is the calculation method of risk
itself, and the third one is the choice of acceptable level of risk.

Since the quantitative models available are computationally intensive, only skilled
engineers can use them in industrial applications. A generally acceptable, efficient

and easy to apply tool has not yet been reported in open literature.
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2.6.3 Stochastic Degradation Models for Corrosion and Cracking

The outputs from the deterministic assessment are highly uncertain and variable.
Thus, they fail to capture the true risk to life of components.
The inaccuracies and the inabilities to deal with uncertainties in the input data

would lead to an imati imation of the likelihood or

of failure and hence the true risk iated with

It is observed that the major types of corrosion and cracks are not a linear function
of time and the variability in the data is very large and it increases with time.
Therefore, probabilistic assessments are necessary to model it accurately.

It is argued by many researchers that there is an urgent need for better quality
models to adequately represent the uncertainty and variability in structural
degradation processes and to make use of it to predict the future degradation.

In regard to probabilistic modeling of various relevant corrosion and cracking
phenomena much work is still required. The calibration of the existing model was
done with limited data; detailed case study using field data needs to be done to
validate the model for different corrosion and crack phenomena.

There are a little i ion reported on the ilistic modeling of uniform

corrosion and localized pitting, but little information is reported on the modeling
of erosion corrosion. Similarly, the fatigue cracks are modeled in isolated cases,
but little information has been observed on the modeling hydrogen induced

cracking and corrosion fatigue cracking degradations.
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2.6.4 Economic Consequence Analysis

.

The direct i of failure, i ion and i of

offshore process components are not estimated and published in literature,

The economic consequences of failure are not well understood and integrated in

the risk based decision making on mai and of

In the available risk based models, due consideration has not been given to the
low probability-high consequence models, which needs to be explored further.

An easy to use tool for engineering management to make informed decision,
based on the operating and maintenance budget in dollar, which can estimate the

operational life risk from ageing components, is not available in literature.
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CHAPTER III

OVERVIEW OF RISK BASED INTEGRITY MODELING (RBIM)

3.1 INTRODUCTION

This chapter outlines the framework for the development of a methodology for risk based
integrity modeling of process components. The framework outlines the use of Bayes
theorem to obtain stochastic degradation models for the various degradation processes
which affect process component. An outline of the consequence analysis is also given.
The consequence analysis consists of modeling the consequences of failure, inspection

and maintenance. Finally, the optimization of the i ion and mai and

replacement intervals are carried out using the operational risk analysis. This chapter

provides an integration and overview of the entire thesis.

3.2 OBJECTIVES

The main objective of this research is to develop a risk based methodology which can be
used to design optimal maintenance strategies. This objective will be achieved by
completing the following steps:

o Identify the potential degradation processes in offshore process components.

e Develop i ion models, for the d

processes which affect
process components, using a Bayesian analysis.

e Determine failure using an i analysis.

e Combine the probability of failure and the consequence to develop an RBIM

methodology.



«  Optimize inspecti i and strategies.

e D the ication of

and models for the integrity

assessment of an aging facility operating in the North Sea.

3.3 SCOPE

A risk based integrity modeling methodology is based on a stochastic modeling of
structural degradation processes to estimate the probability of failure and the engineering
economic analysis to estimate the consequences of failure. An optimum inspection and
maintenance strategy will be developed as a tradeoff between risk and benefits. The

structural ion processes, such as ion: uniform corrosion (UC), pitting

corrosion (PC) and erosion corrosion (EC); and cracking: stress corrosion cracking
(SCC), corrosion fatigue cracking (CFC) and hydrogen induced cracking (HIC) are

modeled using the stochastic Bayesian models.

The study of physical degradation processes, such as abrasion or cavitations, and process
degradations, such as leak, rupture or contamination will not be considered in this study.
The modeling of minor laps, hook cracks and girth weld cracks are also excluded.
Similarly, the other non-age dependent causes of component failures, such as third party
damage, natural disasters, seismic vibrations, and human errors are also beyond the scope
of this study. Mathematical modeling of failure consequences using fault tree/event tree
analysis are not included, but rather failure consequences are estimated using the

economic analysis. This study is conducted at component level and not the system level.
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3.4 ASSUMPTIONS

The study is based on the following assumptions:

. processes are y

*  Failure are isolated and i

e Components have crossed the early stages of degradation or infant mortality.

. Failure rate of is i ing, i.ce., are in wear-out region.

e After each minor repair, the components return to a state just before failure.

o After each replacement, the components behave as good as new condition.

e Components’ failure will cause the system failure, but will not result in a chain
reaction, which may lead to the loss of entire facility.

*  Risk acceptance criteria depend on the maintenance budget, the individual, societal
and environmental safety expectations are included in the maintenance budget.

e The cost of maintenance is very high after failure than before.

3.5 ASSET INTEGRITY THREATS IN PROCESS COMPONENTS

Asset integrity is defined as the ability of an asset to perform its required function

ly and effici whilst ing health, safety and environment (HSE UK,
2009). Failure of the management of offshore facilities to adequately monitor the asset
integrity often leads to poor decision making. Past studies indicate that the major asset
integrity threats in process components are (Stephens et al., 1995): third party damage,
environmentally induced defects, material and fabrication defects, and operational errors.
Integrity threats may be functions of the age of component or it may be independent of

the age. The non-age dependent failure processes may be reduced through establishing
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adequate design procedures, effective quality assurance and quality control programs,
training personnel and imposing stringent policies and regulations, and hence are not
considered in this study. Moreover, the review of published literature (Khan et al., 2006;
Straub, 2004; Kallen and Noortwijk, 2002; Stephens, et al., 1995) indicates that the most

critical asset integrity threats in offshore process components are age-dependent and

environmentally-induced defects. The potential i induced di d

processes threatening the integrity of assets are various types of corrosion and cracking.
The typical age-dependent asset integrity threats in process components are illustrated in
Figure 3.1. Also, the literature data indicates that several corrosion and cracking
processes are stochastic in nature. Therefore, their accurate modeling with predictive

capability is a challenging task for engineers, which is addressed in this thesis.
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"\ Welds (o
7
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Fig. 3.1. Process Component Integrity Threats



3.5.1 Corrosion Degradation Processes

Corrosion is the loss of material as a destructive result of chemical reaction between a

metal or alloy and its environment (Jones, 1996). Corrosion has been viewed from three

perspectives as el hemical reaction, ion theory and theory.

Most corrosion processes are of electrochemical in nature. The corrosion rate depends on
the surface structure of the substrate, i. ., the density of steps and kinks on the surface.
The surface structure is determined by the orientation of crystal faces exposed to the

2! lyte, by dislocations and grain boundaries in the metal, and by segregation of

impurities from the metal by chemical absorptions of various substances from electrolyte
(Mansfield, 1987). The absorbed substances from the electrolyte change the structure of
the interphase metal/electrolyte, catalyze of inhibit metal dissolution and may change the
reaction path. The changes of interphase may also arise by the formation of uniform or
non uniform or porous or non porous 2D or 3D films of intermediates and reaction
products on the surface. For example, under galvanic conditions, it has been observed

that the iron electrode is subjects to ization in one step i by cr

phenomena: Fe < Fe,,’" +2¢—

With i ing pH, the i ism of iron di: ion with hydroxyl ion

participating in the formation of intermediates and products, such as;

Fe+OH™ & Fe(OH),,, +¢ and, Fe(OH) ,, + OH™ & FeO,, + H,0 +¢

FeO,, +OH™ & HFeO, and, HFeO, + H,0 < Fe(OH), + OH

The kinetics of iron dissolution orders a catalytic mechanism involving the transfer of Fe
(II) leading to the loss of metal, called corrosion. The corrosion may be either,

atmospheric corrosion (uniform corrosion) or localized corrosion (pitting and erosion).
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According to the ion theory, the aggressive anions adsorbed on the oxide film
enter and penetrate the film when the electrostatic field across the film or solution

interface reaches a critical value cor ing to the critical potential. Thus,

a contaminated oxide film is produced, which is much better ion conductor than the

original passive layer. Rapid cation egress occurs and corrosion can proceed.

Mechanical breakdown of the passive films is a principal step in pit initiation, giving
direct access of the electrolyte to reach the base metal within the crack. The thin films
always contain a significant film pressure mainly due to electrostriction. When this
pressure exceeds the critical compressive strength of the oxides or hydroxides, the film
could easily deform or break, leading to loss of material. Three types of critical corrosion
mechanisms are studied and modeled in this thesis: the uniform or general corrosion, the
localized or pitting corrosion, and the erosion corrosion.

Uniform Corrosion

Uniform corrosion is defined as the uniform or regular removal of metals from the
surface (Jones, 1996). For uniform corrosion, the corrosive environment must have the
same access to all parts of the metal surface, and the metal itself must be uniform in terms
of metallurgy and composition. Uniform corrosion results in the thinning of wall
thickness of components until the wall is penetrated leading to leaks or rupture. The
extent of deterioration per unit time is expressed in terms of corrosion rate. The
breakdown of passive oxide layer is the main cause of uniform corrosion. Usually, its rate
is very slow in process components and may be measured using ultrasonic testing. Being

slow and uniform, it can be predicted in most cases and necessary measures shall be
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taken in the design stage itself, in terms of corrosion allowances. However, in the
operational life, the rate of corrosion may be random due to environmental exposure. The
most critical corrosive environment is the presence of H,S, CO,, CI and H,0.

Pitting Corrosion

The localized attack of corrosive environment on an otherwise resistant surface produces
pitting corrosion (Jones, 1996). It is confined to a point or small surface area that takes
the form of cavities. Pitting is the localized form of attack that results in relatively rapid
penetration at small discrete areas. Pits are quite small at the surface and may easily be
hidden by inoffensive corrosion products and process streams. Pitting often remains

undetected until leaks results from penetration of the wall thickness. Pitting of stainless

steel alloys ining various i of iron, i nickel and

molybdenum are common. The iron and aluminum pit in the alkaline chloride solution by
similar mechanism in less aggressive condition prevails in offshore process components.
Pitting corrosion results from the failure of passive film, by the adsorption of aggressive

anions at energetically preferred places. Susceptibility increases with chloride solutions

in high Pitting is i especially in conditions forming deep pits.
The rate is variable, depending on uncertain migration of corrodents into and out of the
pits. Pits may be initiated by a number of surface discontinuities, including sulphide
inclusions, insufficient inhibitor coverage, scratches in coatings, and deposits of slag,
scale, dust, mud or sand. Depending on the metallurgy of the alloy and chemistry of
environment, pits may be shallow, elliptical, deep, undercut or subsurface. Pit initiates at
the critical pitting potential, with the presence of chlorides in an acid solution. Once it is

initiated, it propagates in the direction of least resistance.
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Erosion Corrosion

The combination of the corrosive fluid and high flow velocity results in erosion
corrosion. The same stagnant or slow flowing fluid will cause a low or modest corrosion
rate, but the rapid movement of the corrosive fluid physically erodes or abrades and
removes the protective corrosion product film, exposes the reactive alloy beneath, thus
accelerates corrosion (Jones, 1996). The corrosivity of the flowing corrodent has a
significant effect. Sand or suspended slurries enhance erosion and accelerate erosion
corrosion attack on metal or alloy. The attack generally follows the directions of localized
flow and turbulence around surface irregularities. Removal of protective surface film by
erosion due to flowing stream results in accelerated corrosion. The attack is accelerated at
elbows, turbines, pumps, tees, reducers and other structural features that alter flow
direction or speed and increase turbulence. Erosion corrosion often occurs when the
corrodent is in the liquid phase. Suspended solids further aggravate the erosion of surface
films and increase erosion corrosion. The lower strength, less corrosion resistance alloys,
such as carbon steel, copper and aluminum are highly susceptible to erosion corrosion.
Erosion corrosion takes the form of grooves, waves, gullies, tear-drop shaped pits and

hy hoe shaped ions in the surface. The turbulent eddies facilitates

to thin the protective film locally to account for downstream undercutting.
3.5.2 Cracking Degradation Processes

The brittle fracture of a normally ductile alloy in the presence of an environment or
loading is known as environmentally-induced cracking (Jones, 1996). Three distinct types

of cracking are studied and modeled in this thesis: stress corrosion cracking, corrosion
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fatigue cracking and hydrogen induced cracking. The amount of cracking per unit time
either in length or depth is expressed in terms of cracking rate.

Stress Corrosion Cracking

The stress corrosion cracking occurs in metals or alloys with static tensile stress in the
presence of specific corrosive environmental condition (Jones, 1996). SCC is the brittle
failure at relatively low, constant tensile stress of an alloy exposed to a corrosive media.
Pure metals are relatively resistant to SCC. Three conditions must be present
simultaneously to produce SCC: a critical environment, a susceptible alloy, and a tensile
stress. Environmental conditions are specific to the alloys system and many not have an
effect on other alloys of different type. For e.g., the hot aqueous solutions readily crack
stainless steel, but do not have the same effect on carbon steel or aluminum. The required
tensile stresses may be in the form of directly applied stresses or residual stresses. Tensile
stresses even below yield are sufficient to cause SCC and that may result from bolting
and fastening parts that fit together imperfectly. Uneven thermal expansion and
contraction can also produce tensile stress after welding and other heat treatments. SCC
may be either transgranular o intergranular, but the cracks follows a general macroscopic
path and is always normal to the tensile component of stress. In transgranular failures, the
crack propagates across the grains usually in specific crystal planes. The intergranular
crack follows the grain boundaries in the intergranular mode. The cracking is primarily
by mechanical fracture, with a little electrochemical dissolution during fracture process.
The intergranular failure mode is due to inhomogenity at the grain boundaries. The

electrochemical potential has a critical effect in the SCC.
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Corrosion Fatigue Cracking

The process in which a metal fractures under ditions of si

corrosion and repeated cyclic loading at lower stress levels or fewer cycles is known as
corrosion fatigue cracking (Jones, 1996). Corrosion products typically present in cracks
grow slowly during service life. Fracture surfaces from CFC shows macroscopic bench
‘marks, where corrosion products accumulate at discontinuous crack advance fronts. On
the microscopic scale, stripy pattern are often evident, where each cycle produces a
discontinuous advance on the crack front. The cyclic stress is also important as low
frequency leads to greater crack propagation per cycle. Stress raisers such as notches or
surface roughness increase the susceptibility to CFC. Cracks are observed to initiate from
corrosion pits, which again serve as surface for stress concentration. The endurance limit
to cause fatigue failure is reduced in a corrosive environment. CFC cracks propagate
perpendicular to the principal tensile stress component of cyclic stress. CFC crack usually
form more slowly and corrosion products are likely to present in the crack. CFC is
confined to the crystallographic features of grains and do not follow grain boundaries.
Hydrogen Induced Cracking

Hydrogen induced cracking is caused by hydrogen diffusing into the alloy lattice when
the hydrogen evolution reaction produces atomic hydrogen at the surface (Jones, 1996).
HIC means the severe loss of ductility in material, leading to failure. Hydrogen
absorption may occur during electroplating, welding, pickling, cathodic protection or
other processes that favor the production of nascent hydrogen at the surface. Because of
its small size, atomic hydrogen can enter into the lattice to produce HIC. The necessary

atomic hydrogen can also be provided by dissociation of hydrogen gas on the surface
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during exposure to elevated temperature gases. HIC is prevalent in iron alloys because of
the restricted slip capabilities in the predominantly body centered cubic structure.
Cathodic polarization initiates or enhances the HIC. HIC cracks are brittles, fast growing

and unbranched. HIC cracks are more often transgranular.

3.6 BAYES’ THEOREM

Degradation modeling is often viewed as an iterative process of integrating, accumulating
and interpreting information capturing the physics of failure process. The analysts can
assess the current state of knowledge regarding the degradation level, gather new
integrity data to infer the question of future degradation, and then update and refine the
current understanding to incorporate new data. Bayesian inference provides a logical and
quantitative framework for this. Bayesian approach to degradation modeling starts with
the formulation of a model that is expected to describe the degradation process. The prior

distributi of unknown of the model may then be formulated, which is

meant to capture the beliefs about the degradation before actually seeing the data. After
observing data, the Bayes theorem may be applied to obtain the posterior distributions for
those unknowns, which takes account of both the prior and system data. From these

posterior distributions, predictive distributions for future observations may be computed.

Probability is a degree of belief, that is, how much one thinks that something is true based
on the evidence at hand. In the face of uncertainty in degradations, one can make the best
inference based on the inspection data and any prior knowledge that one might have,
reserving the right to revise the present knowledge if new information comes to light.

Bayes theorem allows this process of learning as more data becomes available. It states
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how to update the prior ili istributi p(0), with a likelil function,
p(y/6), mathematically, to obtain the posterior distribution as:

0/y) = POPYIO) 31
PO oorprinio oD

The posterior density p(€/ y) summarizes the total information, after viewing the data
and provides a basis for inference regarding the parameter, . Denominator of (3.1), i.e.,
[p(O)p(y/0)d6 is known as the normalizing factor. The application of the Bayesian
methods in risk analysis is limited due to the challenge of computing normalizing factor.
3.6.1 Conjugate Pair Distributions

The conj pairs are those distributi whose posterior can be directly obtained from

the prior and likelih and hence no ions are needed. For example,
the Gamma prior and likelihood provides a Gamma posterior with a combination of the

prior and likeli The natural conj pairs for ial families are

presented in Table 3.1. The use of conjugate pair makes it simple to carry out the process
of Bayesian updating. However, in some cases the concept of conjugate pairs does not

yield realistic i Some literature iently assumes there are conjugate pairs

for degradation process, for easy computation of posteriors, which is not the case in real
life. This introduces significant uncertainty in the analysis. Distributions like, Weibull,
lognormal, extreme value, do not lend themselves easily to the Bayesian updating.
Another alternative is the use of simulation methods to determine the posterior
distributions (Robert and Casella, 1999). In this study, simulation methods, such as

Metropolis-Hastings algorithm will be used for the posterior development. To compare
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the results of simulation methods, analytical imation, such as

technique or Laplace approximation method may also be used.

Table 3.1 Natural Conjugate Pairs for Exponential Family (Bedford and Cooke, 2001)

Prior Distribution Likelihood Posterior Distribution
7(0) f(10) 7(01y)
Normal Normal N(p(@*u+7y), pa’t’)
Nu,%) N@,02) plma? el
Gamma Poisson
Gla+y,p+1)
G(a, p) P(O)
Gamma Gamma
G(a+v,B+y)
G(a, ) G(v,0)
Beta Binomial
Be(a+y,f+n-y)
Be(a, ) B(n,0)
Beta Negative Binomial
Be(a+m,f+y)
Be(a, ) Neg(m,0)
Dirichlet Multinomial
D(ay + Xy ey @ + X5 )
D(@yees ) M (6),.-0;)
Gamma Normal
G(@+0.5,B+(u-y)12)
Ga(a,p) N(u,1/0)

3.7 DEVELOPMENT OF RBIM FRAMEWORK
The risk based integrity modeling provides a framework to quantify the risks posed by
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aging components, based on structural degradation processes. Risk is defined as a
combination of the probability of failure and its consequences. The integrity refers to the
soundness of the component to perform its desired functions. The major threats to asset
integrity in process components have been identified earlier. These are age-based
degradation processes, such as corrosion and cracking. Based on detailed literature
review, the critical structural degradation processes threatening the integrity of process

components are identified as UC, PC, EC, SCC, CFC and HIC. Thus, the essential steps

of the risk based integrity modeling are the estimation of ility of these d

failures and The overall for the risk based integrity modeling

has been presented in Figure 3.2. The probability of failure is estimated using Bayesian

modeling of potential degradation processes. The consequence analysis estimates the

of an i event in terms of cost of failure, damage to
human life, and envi . The of failure are exp d in terms of cost
(in dollars) i with failure, i ion and
The annual equivalent cost (AEC) of failure is i with

density function (CDF) of failure probability to estimate the operational life risk profile
as given below.

R() = Fp(01y, )lx AEC(j) 62)
where, R(j) is the risk of failure due to a degradation (in dollar) in the ;” interval,

F[p(01y), j] is the CDF of posterior probability of failure and AEC(j) is the annual

equi cost, ing to the i ion and mai interval, j. The AEC

may be computed from the equivalent rate costs of failure, inspection and maintenance.
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Thus, finding the optimal inspection and maintenance interval reduces to finding a value

of mai interval that minimizes the i risk. At the optimal risk point, the

risk will be reduced to as low as reasonably practicable (ALARP) level and at the same
time the maintenance interval is maximized, thus avoiding unwanted maintenance, and its
associated costs. The risk in dollar is compared with the company’s operating budget (as
risk acceptance criteria) to make a decision on maintenance. The risk acceptance criteria
typically relate to the safety of personnel and risk to environment. They will be reflected
in the corporate’s annual operating and maintenance budgets. By plotting the operational
risk curve over maintenance intervals, the optimum interval may be obtained as the

period corresponding to the minimum risk.

An engineering replacement analysis is used to obtain an optimal replacement strategy.
The same formula as in equation (3.2), with j being the replacement interval may be
used. The annual equivalent cost (AEC) is computed as a summation of the annual
equivalent of failure recovery, inspection and maintenance cost. The annual equivalent of
failure recovery cost may be estimated using the annuity factor, indicating a series of
future payments towards the failure cost for a specified number of years. The expected
cost of inspection and maintenance involves periodic payments that increase by a
constant amount from period to period, as a function of the age of component. This
increasing trend may be modeled using arithmetic gradient (Park, 2007). Then, the AEC
is combined with CDF of posterior probability of failure to estimate the operational life
risk and economic service life of components. The optimum replacement interval will be

obtained from the economic service life analysis of components.



The overall framework presented in Figure 3.2 consists of four parts; identification of

modeling for estimating the

potential

of failure, i analysis for estimating the of

failure, optimization of maintenance strategy and, testing and validation.

3.8 IDENTIFICATION OF DEGRADATION PROCESSES

To identify the potential i i the ional details of the system,

subsystem and component are analyzed by subject experts. The data to be analyzed

includes the material of component, the service (sweet or sour), the product being used or

and the such as pressure, temperature and

humidity. Furthermore, the wall thickness data obtained using NDT is used to identify the
degradations. Analyzing the generic failure database and literature also helps to identify
degradation processes. If the degradation is a uniform loss of material over the entire
surface, the uniform corrosion is predominant. If it is localized attack in the form of pits
at key points, the localized pitting, and if the loss of wall material follows the flow

pattern of muddy fluid boundary layer, then the erosion corrosion may be dominant.

3.9 STOCHASTIC DEGRADATION MODELING

The stochastic degradation modeling has been carried out using the Bayesian analysis.
The Bayesian analysis consists of computation of the prior, likelihood and posterior

models for degradation processes; i. e., corrosion and cracking.
3.9.1 Prior Probability Modeling

The corrosion and cracking process are studied in detail and their mathematical modeling
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is attempted using probabilistic methods. The data extracted from the literature,
pertaining to different types of degradations, such as UC, PC and EC, and SCC, CFC and
HIC are considered in the probabilistic prior modeling. The data is tested with standard
probability distributions to check for their suitability. A goodness of fit test is conducted
using the probability plot and Anderson Darling (A-D) test. The method of least squares
and maximum likelihood estimate are used for the parameter estimation. At the end of
this study, best suited prior models for each degradation mechanism are obtained.
Chapter III deals with the development of corrosion prior distributions in RBIM, which is

published in the journal of research and risk

The probabilistic modeling of degradation processes is essential to quantify the
uncertainty and variability in the data. In order to develop the most appropriate prior
distributions for degradations modeling, the following procedure has been followed:

o A study of the ies of standard probability ions, such as

normal, lognormal, Weibull, extreme value, Gamma and beta, which may be suitable
for modeling the degradation processes in process components, was conducted.

e Minitab and self-developed subroutines in Matlab were used for testing and to
assessing the goodness of fits using data obtained from the literature.

o Selected priors were validated using the field NDT data from an ageing facility.

e The best suitable prior models were identified using goodness of fit tests and the

distribution parameters are estimated.
3.9.2 Likelihood Probability Modeling

In Bayesian analysis, the likelihood refers to the evidence from field that is supporting
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the prior i ion. If the likeli is not ing the prior, then the Bayesian
posterior diverges. In that case, the chosen prior may be incorrect. If evidence supports
the prior information, then the posterior obtained provides an accurate description of the

degradation process.

The non-destructive test (NDT) data obtained from an offshore production facility
operating in the North Sea has been used to model the likelihood probability of corrosion
degradations. The data includes the minimum and average wall thickness measurements
acquired during the period 1997 to 2003. The nominal diameters of its components varied
from 19.05 to 508 mm. In the absence of such field data for cracking, the data from
literature is used instead. From the piping system, the data obtained from the Gas
Condensate (GC) system is observed to follow a uniform wall loss. Also, it is observed
that the data obtained for the Gas Export (GE) system, in the above mentioned facility,
follows the localized pitting corrosion. The data associated with high pressure Drilling
Mud (DM) system has been observed to follow the erosion pattern. For precise estimation
of corrosion and cracking rates, inspection data has been divided into several groups,
namely, straight pipes and features. Features include bends, tees, reducers, flanges and
valves. Three major components, straight pipes, bends and tees are considered in the

analysis.

The statistical analysis has been divided into two groups, one is the precise estimation of

degradation rates and the second is testing of the degradation rates with standard

probability distributions. The method outlined in Khan and Howard (2007) and HSE UK
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(2002) has been used to compute the corrosion rates from the wall loss data. The

collected data is first analyzed to identify uniform or localized degradation. In the case of

uniform ion, time analysis and in the case of localized
degradation, an extreme value analysis has been carried out for estimating the rates of
degradation. Further, the estimated degradation rates are tested with probability

distributions and the best suitable likelihood models are concluded.

3.9.3 Posterior Probability Modeling

Prior probability models provide initial iption of the d dati i As
more inspection data become available from field, these prior probability models can be
revised to posterior probability models, which represent the current system and can be
used to predict future failures. Since the priors and likelihoods of degradations may be of
non-conjugate pairs, closed form solution for posteriors may not be possible. Thus,

simulation methods or analytical approximations are required to estimate the posteriors.

In this study, a rejection sampling based lis-Hastings (M-H) algorithm is used to

develop posterior distributions. The M-H algorithm is a Markov chain Monte Carlo
algorithm used to generate a sequence of posterior samples without actually knowing the
normalizing constant. Ignoring the transient samples in the generated Markov chain, the
steady state samples are rejected or accepted based on an acceptance criterion. To
validate the estimated parameters of posterior models, analytical Laplace approximation
method is used to compute the integrals involved in the posterior function. Results of the

M-H algorithm and Laplace imati are with jug: pair

estimations of known prior and likelihood combinations, and thus, the best suitable
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method will be ded. The conjugate-pairs, such as il I, Gamma-
Gamma, Gamma-normal and Gamma-Poisson will be used to test and compare the
results. The revised posterior model is a system-learned model and hence can be used for
the accurate predictions of future probability of failure from degradations. This work is

presented in detail in Chapter VI, which is published in the journal of risk analysis.

3.10 ECONOMIC CONSEQ!

(CE ANALYSIS

The purpose of RBIM is to minimize the risk arising from degradation processes. By
operating a dynamic system of life-time data accumulation and processing, the accuracy
will be improved with time and experience. To provide a consistent measure of risk, all
consequence categories should be in the same units. Otherwise, the overall risk from
many contributing sources cannot be computed. A standard choice of unit to represent all
consequence categories is dollar, because risk can be interpreted as the expected loss due
to a certain event or group of events (Jones, 1995). Therefore, the failure consequences
are expressed in terms of dollar in this study. To minimize the likelihood of failure,
components need to be inspected and maintained at very small interval. However, if the

is performed too frequently, it will involve large costs and if it is performed

too rarely, it will result in failure followed by unpl: d shutds and costly

may not be an ideal choice from the
economic perspective, in such a case; the replacement strategy should be considered.
Replacement is a maintenance strategy that entails the replacement of component rather
than performing maintenance based on the economic service life. Therefore, the purpose
of this module is to develop a consequence analysis to find an optimal maintenance

strategy taking the component’s operational risk into account.
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The failure include the i of failure,

and maif The of failure include the loss of commodity

due to breakdown, loss due to shutdown, cost of spill cleanup, cost of nature damage and
liability. The inspection cost depends on the method of NDT inspection, type of
component, cost of gaining access, surface preparation and logistics costs. The
maintenance cost depends mainly on the type of repair, i.e., minimal repair or component
replacement, along with gaining access, surface preparation, gauging and coating
restoration costs. Further, the total cost, also known as AEC, of operating and

the is The AEC is a summation of the annual

equivalent costs of failure, inspection and maintenance and may be estimated using (3.3):
AEC(j)=FC(j) +1C(j) + MC(j) ¢3)

where, FC is the failure cost, IC is the i ion cost, MC is the mai costand j

represents the maintenance interval. Further details of the economic consequence analysis

are presented in Chapters VI and VIL.
3.10.1 Consequences of Failure

Failure cost is the cost associated with the loss of a facility due to degradation processes,
such as corrosion and cracking. It is assumed that a component failure is followed by an
immediate repair to prevent any system failure scenario with much higher consequences.
Degradation-related failures may lead to increased risk of loss of the entire unit through a
chain of reactions, in such cases the event tree analysis will be required to assess the
system-level consequences. In this study, the component will be assumed as independent

and isolated. The cost consequences of component failure includes loss of commodity
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due to breakdown, loss due to shutdown, cost of spill cleanup, legal fees and penalties
due to environmental damage and liability.

Loss due to Breakdown

The loss of wall thickness by degradation leading to rupture is the main cause of
breakdown. The breakdown costs are the financial losses, which are associated with
loosing commodity. This cost depends upon what product is being processed, the rate of
leakage and its current market value when the failure occurs. The focus in this thesis is on
a process piping component in the North Sea and the product considered is crude oil. Unit
cost of crude oil is extracted from the market value. The cost of breakdown will be
estimated using the unit cost, rate and duration of release.

Loss of Production due to Shutdown

The main factor influencing the cost of failure is the facility’s unavailability for

and mai can be planned, whereas failures may lead to an

unplanned, immediate shutdown of the facility. The cost of such a shutdown is dependent
on the number of days of shutdown, the rate of loss of production and the value of
products at the time of failure. Thus, the shutdown cost may be estimated by combining
the unit cost of product, loss of affected production and maintenance delay time.

Cost of Spill Cleanup

The cost of oil spill cleanup depends on a number of factors, such as, the type of oil, the
amount spilled and rate of spillage, the characteristics of affected area, weather and sea
conditions, local and national laws, time of the year and the spill cleanup strategy (Etkin,
2000). Predicting the unit cost of spill response is possible, though it is complex. In this

study, the crude oil spillage in offshore is considered. The average per-unit offshore oil

113



spill cleanup cost may be taken from literature. The necessary formula for cleanup cost

will be ped from first princi ising the unit cost of spill cleanup and the
total quantity released due to failures caused by degradations.

Loss due to Environmental Damage

The size of penalty as a result of damaging the environment is difficult to estimate,
because costs increase with the scope of failure. The failure modes developed could
escalate to more complex system failures leading to significant environmental damages.
However, approximate assessments considering the quantity released and unit penalty
rate are possible. The environment damage due to oil spillage includes loss of marine as
well as coastal habitat, soil pollution, damage to agriculture land and adverse health
impact (Purnell, 1999). The cost of environmental damage comprises the unit cost of
nature damage, the rate and duration of product release. The per-unit cleanup cost of
environmental damage may be obtained from literature.

Cost of Liability

The injuries and deaths caused by the failure of process components have the most severe
implications possible. The loss of life or pain of an injury is impossible to quantify, yet,
the cost implied due to worker’s compensation and corporate liabilities shall be taken into
account. The safety-related system failures have other immediate implications, such as
legal fines and penalties for professional negligence. The estimates of liability costs that

result from accidents are routinely i by several izati For

failure, liability cost may be estimated based on these reports. The liability cost typically

1 reh lost carnings,

include medical costs, y services,

administrative costs, legal consulting fees, pain and lost quality of life.

114



Total Cost of Failure

The total cost of failure is the summation of loss of breakdown, loss due to shutdown,
cost of spill cleanup, costs of environmental damage and liability. This total cost is based
on two assumptions; the component is isolated, and the component failure leads to a

system failure with ilability for

3.10.2 Consequences of Inspection

The NDT techniques are used for the detection and quantification of discontinuities and
separations in materials due to degradations. The integrity data is achieved by detecting,
locating and sizing of detected flaws, such as corrosion, cracking and holes. Defect

requires iderable skill and i and the use of more than one

NDT technique. The best suitable inspection methods for corrosion and cracking may be
identified and their corresponding dollar costs may be estimated. The unit costs for the
NDT techniques may be obtained from inspection industry.

Cost of Degradation Inspection

The NDT technique is used to detect and quantify the extent of wall loss, pit depth and
surface crack as well as coating breakage. The inspection costs depend on how much area
has to inspect from a risk perspective. The inspection cost includes the cost for gaining
access to the component, the cost for surface preparation, personnel cost for inspection,

cost iated with technical assi the cost of and i and the

logistics cost. In this thesis, it is assumed that the proposed inspection method is able to
detect the presence of corrosion discontinuities, and surface or subsurface cracks. The
cost of each inspection activity may be estimated using the per-unit personnel cost and

the total duration of inspection.
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3.10.3 Consequences of Maintenance

Inspection can detect the potential failure; however it is the maintenance that does the

risk reduction. Mai cost is the cost iated with restoring a facility. To ensure

safe operation, the maintenance needs to be performed at very small intervals. However,

it is impractical to have frequent maintenance due to large costs, the possibility of

maintenance-induced errors, and the iated plant ilability for duction. To
optimize the maintenance, the following necessary conditions are to be satisfied; the cost

of maintenance should be greater after failure than before, and the hazard rate of

should be i ing, i.e., should be in the wear-out region. This

thesis focuses on predicti i of process It estimates through
diagnostic tools, when a component or part is about to fail and should be repaired or
replaced; thus reducing the costly corrective maintenance. This section covers the cost of
necessary repair, replacement and material costs associated with the maintenance.

Cost of Degradation Maintenance

The maintenance may be either a minor patch repair work or the complete replacement of
degraded component. For all types of corrosion, minor patch repair work of the affected
area is considered, and for any types of cracking, immediate component replacement with
necessary repair is considered. The maintenance task includes the access to degraded
component, surface preparation, cutting and removal of parts, assembling, welding,
testing and restoring the protective coating. Thus, in addition to the cost of repair and
replacement, the personnel and logistics cost related to transportation, storage and rent of
facilities also must be included. The cost of each maintenance activity may be estimated

using a unit cost of maintenance task and total duration of maintenance. Refer to

116



Chapters VI and VII for further details on modeling the failure inspection, and

maintenance costs.

3.11 OPTIMIZATION OF MAINTENANCE STRATEGY

Maintenance is a combination of activities by which a component is kept in, or restored
to a state in which it can perform its designed functions. Application of the correct

strategy optimizes the use of mai resources in the best interests of

corporations. Determination of an optimal inspection and maintenance strategy is a
problem of optimization under uncertainty. The ideal approach for such optimization will
be the use of risk based analysis as it provides a predictive mechanism to evaluate the
alternatives and identify the optimal choice. The operational risk estimated will be used
to determine the maximum length of time between two consecutive inspection and
maintenance, or to compute optimum time to replace the component in a cost-effective

manner that will result in a minimum acceptable risk.

The cumulative probability density (CDF) of structural degradations is combined with the

AEC of operating and maintaining the to produce the ional risk over the
varying maintenance interval. From the operational risk curve, optimal inspection and
maintenance strategy is obtained by minimizing the overall risk. The optimum inspection
and maintenance interval thus obtained satisfy the two necessary criteria of maintenance:

first, the risk is reduced to ALARP level, and second, the maintenance interval is

maximized, thus avoiding unwanted mair and its iated costs. The P!
and i risk are d with the company’s operating and
budget, as risk criteria. It is assumed that the component returns
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a condition just before failure after each minimal repair. This quantitative, risk-based

model rationalizes the i ion and mai decision. Chapter VI discusses the

various aspects of risk based i ion and

The decision to repair or replace the ageing component is based on economic analysis.

The best time to make decisions for i is during the

operational phase. The likelihood of failure and the life cycle costs are used in the

replacement analysis. The decision to replace the components can be taken as it starts

ageing, mainly due to the evidence of ion or or In that
case, the varying operational costs, such as failure, inspection and maintenance costs

must be taken into ideration. The repl of failed ies with spares often

require less time out of service, but require the stocking in inventory. The failure

mechanism influences the selection of appropriate course of action to be taken for the

The time-based repl cannot be applied for truly random
processes, following exponential models. However, degradation processes are observed
to be a time-dependent process, enabling one to use the models such as Weibull,
lognormal or Extreme Values. The economic decision about repair or replacement would
be needed to determine the action to take for the failed or degrading components. Chapter

VII discusses the various aspects of risk based replacement optimization.

3.12 SUMMARY

This chapter provides an overview and integration of the entire thesis. It started with the
objective and scope, and the assumptions made in this study. The critical asset integrity

threats in process components are further discussed. Later, it is argued that the statistical
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Bayes theorem is an ideal choice to model the uncertain degradation processes. Further,
the challenges of using Bayes theorem in quantitative risk analysis are discussed. In life

cycle, the failure, i ion and mais of may result in

consequences. Furthermore, a robust RBIM framework is developed based on the
stochastic degradation modeling and economic consequence analysis. Finally, the

optimization of maintenance strategy is briefly outlined in this Chapter. Although,

induced d

are only one major part of complete asset integrity

spectrum, it is only considered in this thesis for optimizing inspection and
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CHAPTER IV
THE SELECTION OF CORROSION PRIOR DISTRIBUTIONS FOR

RISK BASED INTEGRITY MODELING

Premkumar Thodi, Faisal Khan and Mahmoud Haddara
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Memorial University, St. John’s, NL, Canada - A1B3X5

PREFACE

This chapter presents the selection of best suitable prior probability models for critical
structural degradation processes in offshore process components. Although the choice of
prior is often subjective, a rational consensus has been achieved here by analyzing generic
data from similar installations. This paper has been published in the Journal of Stochastic

Environmental Research and Risk Assessment (2009), 23(6): 793-809.

The principal author conducted an independent literature review to understand the potential
integrity threats for offshore process components. The framework is designed and
structured by the principal author. The major integrity threats in process components are
observed to be several corrosion processes, namely: uniform, pitting and erosion corrosion;
and cracking, namely: stress corrosion, corrosion fatigue and hydrogen induced cracking.
The principal author collected generic data from literature for cach of these degradation

processes. He analyzed the ies of standard ility distributions and tested the

collected data with exponential, normal, lognormal, Weibull, Extreme Value, Gamma and

beta distributions. A Matlab ine probfit has been ped by the principal author



to test the candidate distributions using the maxi likelihood estimates. The statistical
software Minitab is also used for analyzing the data. How well the data fit with the
distribution has been measured using the statistical goodness of fit tests. In this study, the
principal author used the Anderson Darling (A-D) test for all random variables; the Chi-
square and Kolmogorov-Smirnov (K-S) test are applied only for normal random variables.
The A-D test is used mainly as it gives more weight to the tails of distribution than the K-S
test, so it is better to model the uncertainty in degradation data. Once the type of probability
distribution has been selected, the least square and maximum likelihood estimates are used

to estimate the parameters.

The selected priors of the degradation processes are validated using a case study by the
principal author. With request from the principal author, the second author collected the
field non-destructive test data from Lloyd’s register, UK. The principal author categorized
and analyzed the data by system, subsystem and component level, considering the product
and operating conditions. The co-authors provided review and feedback. The regression and
extreme value analysis are used to estimate the rates of degradation and the estimated rates
are tested with standard probability distributions by the principal author. This study
concluded that the best suitable prior probability models that could handle uniform, pitting
and erosion corrosion were 3P Weibull and 3P lognormal; Type 1 Extreme Value and 3P

Weibull; and 3P Weibull and 3P lognormal distributions, respectively.
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ABSTRACT

The deterioration of the condition of process plants assets has a major negative impact on
the safety of its operation. Risk based integrity modeling provides a methodology to
quantify the risks posed by an aging asset. This provides a means for the protection of
human life, financial investment and the environmental damage from the consequences of
its failures. This methodology is based on modeling the uncertainty in material degradations
using probability distributions, known as priors. Using Bayes theorem, one may improve
the prior distribution to obtain a posterior distribution using actual inspection data.
Although the choice of priors is often subjective, a rational consensus can be achieved by
judgmental studies and analyzing the generic data from the same or similar installations.
‘The first part of this paper presents a framework for a risk based integrity modeling. This
includes a methodology to select the prior distributions for the various types of corrosion
degradation mechanisms, namely, the uniform, localized and erosion corrosion. Several
statistical tests were conducted based on the data extracted from the literature to check
which of the prior distributions follows data the best. Once the underlying distribution has
been confirmed, one can estimate the parameters of the distributions. In the second part, the
selected priors are tested and validated using actual plant inspection data obtained from
existing assets in operation. It is found that uniform corrosion can be best described using
3P-Weibull and 3P-Lognormal distributions. Localized corrosion can be best described
using Typel Extreme Value and 3P-Weibull, while erosion corrosion can best be described

using the 3P-Weibull, Typel Extreme Value, or 3P-Lognormal distributions.

y : Corrosion dation, risk, prior ility, asset integrity, goodness of fit.
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4.1 INTRODUCTION

The deterioration of assets of oil and gas and process plants has a major negative impact on
the safety of their operation. Maintaining the integrity of process components has been a
subject of research for many years (Khan and Howard, 2007). Plant assets are subject to
deterioration processes, such as corrosion and fatigue crack growth (Kallen, 2002; Straub,
2004). For assets in operation, design changes are often difficult. Inspection and
maintenance are only the feasible measures for risk reduction (Straub, 2004). Risk based
integrity modeling (RBIM) provides a framework to quantify the risks posed by an aging
asset. In the RBIM, the uncertainty in assets’ degradations is modeled using a probability
distribution, known as a prior that is based on the knowledge and expertise of the model
maker. Using Bayes theorem one may combine a prior distribution with the results of real
life inspection data to obtain a posterior distribution (Bedford and Cooke, 2001). The new
distribution can be useful in quantifying the risk to the installations. Even though many
researchers have indicated a need for a formal process of eliciting a prior distribution, there
is no standard method (Ahn et al., 2007). The lack of uniqueness and objectivity associated
with the prior probability can be reduced with models of invariance principle and maximum
entropy concepts (Baker and Christakos, 2007). One of the major concerns with Bayesian
analysis is the daunting task of prior estimation (Tesfamariam and Sadiq, 2008). Although
the choice of a prior is often subjective, a rational consensus can be achieved by judgmental

studies and analysis of material degradation data obtained from similar existing plants.

Hydrocarbon leak poses a serious threat to the safety of operation in chemical installations.

Leaks are the principal cause of fire and explosions in chemical installations. Studies
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indicate that corrosion is the principal cause of about 15% of leakage occurrences (HSE
UK, 2002). The direct annual cost of corrosion in the USA is assessed by Koch et al. (2001)
to be 276 billion USD, which represents 3.1% of the GNP, while about 121 billion USD is
spent on corrosion control. Googan and Ashworth (1990) reported that corrosion accounts
for 21% of failures in submarine gas pipelines, and erosion-corrosion modes account for
24.6% of pipe leakages in process plants. Moreover, 40% of the accidental hydrocarbon
releases to the environment are corrosion related. Usually, inspections are carried out for
internal as well as external corrosion by means of non-destructive tests (NDT) to estimate
the loss of material. Although, the use of statistical methods to estimate the corrosion rates
and probabilistic methods to predict plant life have been reported over the past four decades
but they have been applied in a few isolated cases. Better inspection planning and

needs a reliable iction of i hanisms and rate.

This can be achieved by combining the statistical techniques with reliability models

(Melchers, 2003a and b; Khan and Howard, 2007).

This paper proposes a framework for proposed risk based inspection and maintenance
methodology. The first step in this methodology is to select suitable prior distributions for
various types of corrosion in process components, namely uniform, localized/pitting and
erosion corrosion. Statistical tests were conducted on the short listed distributions to check
their applicability. The short listed priors were tested and validated using real life inspection

data obtained from an operating asset.
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4.2 THEORETICAL BACKGROUND

The first initiatives for the developments of risk based approaches to the inspection and
maintenance planning were directed towards the inspection planning for welded
connections subject to fatigue in fixed steel offshore structures (Skjong, 1985; Madsen et
al., 1987; Fujita et al., 1989). Later, the same methodology was applied to other structures
such as ships and tankers (Soares and Garbatov, 1996; Paik et al., 2003), floating,
production, storage and off-loading facilities (Lotsberg et al., 1999; Goyet et al., 2002),
semi-submersibles, pipelines (Willcocks and Bai, 2000; Desjardins, 2002; Dey and Gupta,
2001), process plants (Geary, 2002; Montgomery and Serratella, 2002; Kallen and

Noortwijk, 2005; Khan et al., 2006), bridges (Frangopol et al., 2004), and breakwaters

( ijk, 1996). The i i such as fatigue cracking and corrosion of
steel and concrete structures were also considered (Faber, 2002). A generic approach for the
probabilistic corrosion estimation, based on the structural reliability theory, has been
introduced by Melchers (2003a and b). The recent progress in the modeling of corrosion of
structural steel immersed in seawaters has been reported by Melchers (2005, 2006). Straub
and Faber (2005) reported the reliability updating for structures subject to localized
corrosion defects based on a generic approach developed for fatigue crack growth. The
computational aspects of their study are complex and time consuming. Similarly, the use of
priors has been restricted to the Gamma distribution, which may not reflect the actual
degradations in all cases. Inspection planning for process equipments and systems evolved
from the traditional quantitative risk analysis (Khan et al., 2004; Dey, 2004; Khan et al.,
2006). A closer look at the literature has shown that little information has been published on

a robust RBIM methodology using stochasti ion models.
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A theoretical framework for the RBIM is proposed in Figure 4.1. The framework consists

of four parts: (a) the comparison of different models for selecting the most appropriate prior

for structural i (b) the develop: of posterior

models and the analysis of their (c) optimization of risks and i ion and

maintenance intervals, and finally, (d) testing and validation. This paper is an attempt to
discuss the first part of the overall RBIM framework (Figure 4.1). Based on literature study
(Kallen, 2002; Straub, 2004; Khan et al., 2006), the critical structural degradation
mechanisms threatening the integrity of assets are corrosion (uniform corrosion (UC),
localized or pitting (PC), and erosion corrosion (EC)) and cracks (stress corrosion cracks

(SCC), corrosion fatigue cracks (CFC) and hydrogen induced cracks (HIC)).

Risk is defined as the product of probability of failure of an undesirable event and its likely
consequences. Therefore, the main steps in risk based integrity modeling are the estimation
of the probability of structural failure and its consequences. The probability of failure could
be estimated by the stochastic modeling of individual corrosion and cracking mechanisms
using the Bayesian prior-posterior analysis. The consequence analysis estimates the cost
incurred as result of failure including the cost of corrective repair or replacement and the

proposed inspection and mai plan. The risk criteria based on the

ALARP principle will be discussed later. Statistical decision theory will be used for the
optimization of inspection intervals. Design of additional safety measures will be
considered if the estimated risk exceeds the acceptable criteria. The developed stochastic

model will be tested and validated using case studies of an aging process facility.
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Fig. 4.1. Methodology for Risk Based Integrity Modeling
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4.3 TYPES OF CORROSION

Corrosion is the loss of material as a result of chemical reaction between a metal or metal
alloy and its environment (Jones, 1996). Three important types of asset corrosion
mechanisms will be discussed in this section: the uniform or general corrosion, the

localized or pitting corrosion, and the erosion corrosion.

Uniform corrosion is defined as the uniform or regular removal of metals from the surface
(Jones, 1996). For uniform corrosion, the corrosive environment must have the same access
to all parts of the metal surface, and the metal itself must be uniform in terms of metallurgy
and composition. Uniform corrosion results in the thinning of wall thickness until the wall
is penetrated leading to leaks or breakdown of equipment (Mansfeld, 1987). The localized
attack of corrosive environment on an otherwise resistant surface produces pitting corrosion
(Jones, 1996). The combination of the corrosive fluid and high flow velocity results in
erosion corrosion. The same stagnant or slow flowing fluid will cause a low or modest
corrosion rate, but the rapid movement of the corrosive fluid physically erodes or abrades
and removes the protective corrosion product film, exposes the reactive alloy beneath, thus
accelerates corrosion. Sand or suspended slurries enhance erosion and accelerate erosion
corrosion attack on metal or alloy. The attack generally follows the directions of localized

flow and turbulence around surface irregularities.
4.4 ANALYSIS OF CORROSION DEGRADATION MODELS
The different probabilistic models which can be used to describe major corrosion

degradation mechanisms will be discussed in this section. The distributions of corrosion
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samples can be established in several ways; including frequency diagrams, plotting data
using probability graphs, and conducting the goodness of fit tests for the distributions

(Halder and Mahadevan, 2000). The of distribution can be estimated using the

methods of least squares, moments and maximum likelihood estimates.
4.4.1 Goodness of Fit Tests

The goodness of fit test determines how well a particular distribution fits the observed data.
The commonly used statistical tests for goodness of fit are Chi-square, Kolmogorov-
Smirnov (K-S) and Anderson-Darling (A-D) tests. The Chi-square test is based on the error
between the observed and assumed probability density functions (PDF) of the distribution.
In the Chi-square test, the range of observed data is divided into intervals, and the number
of times the random variable is observed in a particular interval is counted. Details of the
tests can be obtained from statistical text books such as, D*Agostino and Stephens (1986).
The K-S test is based on the error between the observed and assumed cumulative
distribution functions (CDF) of the distribution (Halder and Mahadevan, 2000). The A-D
test is a modification of the K-S test and it gives more weight to the tails than the K-S test.
The K-S test is distribution free in the sense that the critical values do not depend on the
specific distribution being tested. The critical values for the A-D test are dependent on the
specific distribution that is being tested. The critical values for various distributions, for
different significance levels (say, 1% and 5%) have been adopted from D’Agostino and
Stephens (1986) and are presented in Table 4.1. Using the A-D statistic, one can compare
the fit of competing distributions as opposed to an absolute measure of how a particular
distribution fits the data. The A-D statistic is calculated for the probability plots (PP’s),

maximum likelihood (MLE) and the least square (LSXY) estimates. If several distributions
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provide a close fit to the data, the distribution with smallest A-D value will be reported or,

the ion of more is sought. In this paper, the goodness of fit

test has been carried out using A-D test for all distributions as it is more sensitive on tails;

the K-S and chi-square tests have been applied only for the normal distributions.

Table 4.1. Critical Values of A-D Statistic for Distributions (D’ Agostino & Stephens, 1986)

Types of | Significance | Critical Value
Distribution | Level of A-D Statistic

0.05 1.087
Normal

0.01 1.551

0.05 1.087
Lognormal

0.01 1.551

0.05 2.492

0.01 3.857

0.05 1321
Extr. Value

0.01 1.959

0.05 1321 |
Weibull

0.01 1.959

0.05 1.562
Gamma

0.01 1.562

0.05 1.046
Logistic

0.01 1.505
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4.4.2 Estimation of Parameters

Once a probability distribution has been identified for a degradation mechanism, its
parameters need to be assessed. The accuracy in estimating these parameters is based on the
ability of observed data in representing the uncertainty in the corrosion data (Halder and
Mahadevan, 2000). In the present study, parameters have been estimated using least square

method and the method of maximum likelihood.

Least square estimates are calculated by fitting a regression line to the points in a

probability plot. The line is formed by regressing time to failure or log (time to failure) on

is

the transformed percent (Johnson, 2005). The

by maximizing the likelihood function, where the likelihood function represents the

that the true distribution has said based on the sample. The detailed

principle behind the i likelihood method for imation can be found in

Halder and Mahadevan (2000).
4.5 DATA SUMMARY AND ANALYSIS PROCEDURE

In order to select the prior probability distributions for different corrosion mechanisms,
several distributions have been tested using data extracted from the literature. For this
purpose, the uniform corrosion data has been extracted from Anghel and Lazar (2005),
Melchers (2003), Lawson (2005), McLaughlan and Stuetz (2004) and Paik et al. (2003).
For pitting corrosion, the data has been extracted from Melchers (2005), Scarf and Laycock
(1996), Laycock et al. (1990) and Sankaran et al. (2001). For erosion corrosion, the data has

been extracted from Vinod et al. (2003), Melchers (2006), Salama (2000) and Abdusalam
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and Stanley (1993). The extracted data has been tested with standard probability
distributions, like Normal, Lognormal, 3P-Lognormal, Weibull, 3P-Weibull, Exponential,
2P-Exponential, Typel Extreme Value, Gamma and Beta using the statistical software
Minitab and developed subroutines in Matlab. The goodness of fit test has then been
performed using the adjusted A-D statistic and the best fit is reported as the one with
smallest A-D statistic. The more and less relevant prior distributions with A-D statistic for
probability plot method have been presented in Table 4.2; Table 4.3 reports the maximum
likelihood estimates and Table 4.4 reports results of the method of least squares. The
sample probability plots are presented for uniform corrosion (data extracted from Anghel
and Lazar, 2005) in Figures 4.2a and b, the pitting corrosion (data extracted from Scarf and
Laycock, 1996) in Figures 4.3a and b, and the erosion corrosion (data extracted from

Melchers, 2006) in Figures 4.4a and b.

A Matlab subroutine, Probfit has been developed for testing the candidate distributions

using i ikelil estimates. The log-likeli statistic has been used to compare

the goodness of fits and to estimate the parameters of the distributions (Table 4.3). The
parameters, such as, location and scale parameters are estimated using 95% confidence
intervals. The interactive distribution fit tool, dfittool has been used to prepare the
probability plots of the data and to estimate the log-likelihood parameter. The sample PDF
and CDF plots corresponding to the data extracted from Anghel and Lazar (2005) for

maximum likelihood estimation are shown in Figures 4.5a and b.
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The probability plots have been developed using the least square estimate (LSXY) also. The
A-D test statistic and correlation coefficient (CC) statistic have been used for comparing the
goodness of fits (Table 4.4). The lower value of A-D statistic and higher value of CC
statistic suggested better fit. The mean, standard error, 95% of upper and lower bounds of
the probability have also been computed. The sample least square plots with their
corresponding CC values (for data extracted from Anghel and Lazar, 2005) have presented

in Figures 4.6a and b.
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‘Table 4.2. Summary of Probabilistic Corrosion Prior Modeling using Probability Plots

Types  of | Data  Extracted | Fitting Summary by Probability Plot Method
Corrosion From More Relevant | Statistics | Less Relevant | Statistics
3P-Lognormal | 1.738 Normal 1.790
Anghel and
Weibull 1.739 Lognormal 1.849
Lazar (2005)
3P-Weibull 1.752 Ext. Value 1.965
3P-Weibull 1.511 Normal 1.537
Melchers
Ext. Value 1.514 Weibull 1.591
(2003)
3P-Lognormal 1.537 Lognormal 1.830
g
2 3P-Weibull 1.441 Lognormal 1.518
g Lawson
3 3P-Lognormal | 1.479 Weibull 1.634
E (2005)
& 3P-Loglogistic | 1.479 Normal 1.751
K|
. 3P-Lognormal | 1.319 3P-Weibull 1.476
McLaughlan and
Lognormal 1.389 2P-Exponential | 1.575
Stuetz (2004)
Weibull 1.474 Exponential 1.832
3P-Lognormal | 1.199 Ext. Value 1.289
Paik et al.,
Normal 1.200 Weibull 1.313
(2003)
3P-Weibull 1.203 Lognormal 1.768
Ext Value 1.742 3P-Lognormal | 1.796
Melchers
3P-Weibull 1.742 Weibull 2.245
B (2005)
'z Normal 1.794 Lognormal 2.543
E
IS Scarf and | Ext. Value 1.451 Normal 1.543
20
é Laycock (1996) 3P-Weibull 1.445 3P-Lognormal | 1.543
=
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Types f | Data  Extracted | Fitting Summary by Probability Plot Method
Corrosion | From More Relevant | Statistics | Less Relevant | Statistics
Weibull 1.506 Lognormal 1.693
Ext Value 1.297 Normal 1.393
Laycock et al.,
3P-Weibull 1.297 3P-Lognormal | 1.396
(1990)
Weibull 1.378 Lognormal 1.689
Ext Value 1.453 Normal 1.571
Sankaran et al.,
3P-Weibull 1.453 Weibull 1.645
(2001)
3P-Lognormal | 1.571 Lognormal 1.945
Ext Value 1173 3P-Lognormal | 1.219
Vinod et al,
3P-Weibull 1.197 Normal 1.319
(2003)
Weibull 1.216 Lognormal 1.430
Weibull 1.095 Normal 1.101
Melchers
& 3P-Weibull 1.101 Ext Value 1.225
2 (2006)
g 3P-Lognormal | 1.101 Lognormal 1.246
S
U: 3P-Weibull 1.109 Lognormal 1.253
- Salama
£ 3P-Lognormal | 1.171 2P-Exponential | 1.395
(2000)
Weibull 1.126 Exponential 1.564
Weibull 1.058 3P-Lognormal | 1.081
Abdusal and.
3P-Weibull 1.067 Ext Value 1.101
Stanley (1993)
Normal 1.078 Lognormal 1.247
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Table 4.3. Probabilistic Corrosion Prior Modeling using Maximum Likelihood Estimates

Fitting Summary by Maximum Likelihood Method
Types of | Data  Extracted
More Log Less Log
Corrosion | From
Relevant likelihood | Relevant likelihood
Anghel and | Weibull 18.6565 Gamma 18.4352
Lazar (2005) Beta 18.5341 Normal 18.0010
Melchers Ext Value 6.0722 Weibull 5.7341
E (2003) Beta 5.8790 Normal 5.6763
g Lawson Lognormal | -16.3408 | Weibull -17.5002
(é (2005) Gamma -16.6827 | Normal -18.2951
;g McLaughlan and | Gamma 16.7484 Weibull 16.3820
Stuetz (2004) Lognormal | 16.5554 | Beta 16.0780
Paik et al., Weibull -22.9423 | Ext Value -23.8987
(2003) Normal -23.2055 | Gamma -24.0077
Melchers Ext Value -25.7766 | Weibull -27.9618
(2005) Normal -27.2373 | Gamma -29.3530
- Scarf and | Ext Value -2.8491 Normal -4.0541
Aé Laycock (1993) | Weibull -3.1969 Gamma -4.8803
L;)h Laycock Ext Value -36.5267 | Normal -37.858
E etal., (1990) Weibull -37.1421 | Gamma -39.2315
Sankaran Ext Value 58.7858 Normal 57.5830
etal., (2001) Weibull 57.9119 Beta 56.2077
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Fitting Summary by Maximum Likelihood Method
Types of | Data  Extracted
More Log Less Log
Corrosion | From
Relevant likelihood | Relevant likelihood
Vinod Weibull 68.2410 Normal 67.7708
etal,, (2003) Ext Value 67.9288 Beta 67.1419
- Melchers Weibull 37.5092 Beta 373557
g
§ (2006) Normal 37.5075 | Gamma 37.1616
s
E Salama Beta 46.6300 Gamma 46.0812
E (2000) Weibull 46.5867 Exponential | 43.9436
Abdusalam  and | Weibull -20.6869 | Ext Value -21.3339
Stanley (1993) Normal -21.0715 | Gamma -21.6241
Table 4.4. Probabilistic Corrosion Prior Modeling using the Least Square Estimate

Types Fitting Summary by Least Square Estimates
Data Extracted
of More A-D Less A-D
From cc cc
Corr. Relevant Statistic Relevant Statistic
Anghel and | 3P-Weibull 1.857 0.996 | Logistic 1.853 0.992
Lazar (2005) 3P-Lognormal | 1.853 0.995 | Normal 1.863 0.992
Melchers 3P-Weibull 1.537 0.997 | Normal 1.580 0.990
s
g
§ (2003) Ext. Value 1.552 0.996 | 3P-Lognormal | 1.581 0.989
s
(é Lawson 3P-Weibull 1.451 0.997 | Lognormal 1517 0.991
S
;é (2005) 3P-Lognormal | 1.483 | 0.994 | Loglogistic | 1.542 | 0.986
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Types Fitting Summary by Least Square Estimates
Data Extracted
of More A-D Less A-D
From cc cc
Corr. Relevant Statistic Relevant Statistic
McLaughlan & | 3P-Lognormal | 1.393 0.975 | Loglogistic 1.509 0.969
Stuetz (2004) 3P-Weibull 1.519 0.976 | Weibull 1.522 0.976
Paik et al., 3P-Weibull 1.156 0.995 | Normal 1.170 0.992
(2003) 3P-Lognormal | 1.169 0.992 | Logistic 1.235 0.986
Melchers Ext Value 1.601 0.967 | Normal 1.712 0.957
(2005) 3P-Weibull 1.604 0.966 | 3P-Lognormal | 1.719 0.956
- Scarf and | Ext Value 1.471 0.997 | Weibull 1.541 0.988
g Laycock (1996) | 3P-Weibull 1.472 0.996 | Normal 1.603 0.976
[5, Laycock Ext Value 1.300 0.998 | Weibull 1.447 0.983
E etal., (1990) 3P-Weibull 1.301 0.998 | Normal 1.453 0.979
Sankaran Ext Value 1.438 0.990 | 3P-Lognormal | 1.582 0.975
etal., (2001) 3P-Weibull 1.438 0.990 | Normal 1.582 0.975
Vinod 3P-Weibull 1.189 0.992 | Normal 1216 0.989
etal., (2003) Weibull 1.193 0.992 | Ext Value 1.236 0.985
g Melchers Weibull 1.156 0.994 | Normal 1.191 0.991
E (2006) 3P-Weibull 1.159 0.994 | 3P-Lognormal | 1.192 0.991
g Salama Weibull 1.012 0.988 | 3P-Lognormal | 1.145 0.981
E (2000) 3P-Weibull 1.054 0.990 | Loglogistic 1.342 0.954
Abdusalam and | Weibull 1.074 0.997 | Normal 1.101 0.994
Stanley (1993) | 3PWeibull 1.074 0.997 | 3P-Lognormal | 1.102 0.994
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Probability Plot for Pitting Corrosion
ML Estimates-Arbitrary Censoring
‘Anderson-Daring (ad))
e Weibull
1.
ot Lognormal
50. % 1693
-4 H Exponential
8 g5 5610
& 10 i Nomal
D & 1.543
10-
1.0 L5 20 1.0 1.5 2.0
Pitting Corrosion Pitting Corrosion
Exponential Normal
0 D
90
& £
§ f i
Ew o H /-"
w0f ,
ja
0.01 0.10 1.00 10, 1.0 1.5 2.0 25
Pitting Corrosion Pitting Corrosion
Probability Plot for Pitting Corrosion
ML Estimates-Arbitrary Censoring
Pl ‘AndersonDarlng (ad))
- 4 » o 3-Parameter Weibull
1.445
»i . 3-Parameter Lognormal
ot 1.543
|
2parameter Exponential
E % 1
10| Smallest Extreme Value
o 2 1451
.
/ v
mes w0 ws s s sws w0
Piting Comosion - Theshokd Piting Comosion - Threshokd
2 rameter Exponentl Smalest Btreme Voe
0 H %0
© 0
o
/ 0 .
10 - 10 D
//'
,
oot o0 W 0w 05 N 15 P)
Piting Comosion - Thveshokd Piting Comosion

Fig. 4.3. Sample Probability Plots for Pitting Corrosion, Data from Scarf and Laycock (1996)

142



Probability Plot for Erosion Corrosion
ML Estimates-Arbitrary Censoring

Percent

Percent

Andersonaring (o)
ool Weibull
1055
Lognormal
1246
B Exponentol
] 731
H Nomal
3 - 1.101
0z R,
Erosion Corrwhn Erosion Corrosion
Exponental Nomal
H
8
o v &
L
o0 oiw 100 02 03 4
Erosion Corrosion Erosion Corrosion

Probability Plot for Erosion Corrosion

‘Anderson-Daring (ad))
SPanmeer et

percent

34 varamewmqmmu

2oarametr Exnentel

Smallst Extreme Value
1.225

ML Estimates-Arbitrary Censoring
3 Parometer Well 3 Parameter Logomal
B
.
O siat 22
~Threshold Erosion Comosion - Threshokd
2paameter Btal Smast Extreme Vae

Percent

percent

/

o

ErosonComoson- Threshokt

ig. 4.4. Sample Probability Plots for Erosion Corrosion, Data from Melchers (2006)




Fii 5)
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4.6 RESULTS AND DISCUSSIONS

The summary of more relevant and less relevant models for uniform corrosion, pitting
corrosion and erosion corrosion prior selection are reported in Table 4.5. The more
appropriate distributions that can be used to describe the uniform corrosion are 3P-Weibull
and 3P-Lognormal. Typel Extreme Value and 3P-Weibull distributions are the best to
model pitting corrosion, and the 3P-Weibull, Type 1 Extreme Value or 3P-Lognormal
distributions are the best to model erosion corrosion priors. The less relevant, but still
usable distribution for uniform corrosion include Normal, Gamma and Beta distributions;
for pitting corrosion, Gamma, Beta, Normal and Loglogistic distributions; and for erosion

corrosion, Normal, Gamma and Beta distributions.

Table 4.5. Summary of Relevant Prior Probability Models for the Corrosion Degradation

Types of Material | More Relevant Prior | Less Relevant Prior

Degradations Probability Models Probability Models

3P-Weibull and 3P- | Normal, Gamma, Beta
Uniform Corrosion
Lognormal and Ext. Value

Type 1 Extreme Value and | Normal, Gamma, Beta
Localized/Pitting Corrosion
3P-Weibull and Loglogistic

3P-Weibull, Type 1 Extreme Normal, Gamma and
Erosion Corrosion
Value or 3P-Lognormal Beta

The short listed corrosion priors were further tested and validated using the case study of a

plant life i ion data. A brief di ion on this validation is reported in Section 4.7.
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4.7 VALIDATION OF SELECTED CORROSION PRIORS WITH CASE STUDY

The inspection data obtained from an offshore production facility operating in the North
Sea has been used to validate the selected priors for each type of corrosion degradations.
The data used for uniform corrosion is the data obtained for the Gas Condensate (GC)
system. This data is used to obtain the distribution for uniform corrosion as the data is
observed to follow a uniform wall loss. The data includes the minimum and average wall
thickness readings acquired during the period 1997 to 2002. The nominal diameters of its

components varied from 25.4 to 304.8 mm.

It was observed that data obtained for the Gas Export (GE) system, in the above mentioned
facility, follows the localized or pitting corrosion. The data includes the minimum and
average inspection readings acquired during the period 1997 to 2002. The nominal diameter

of its components varied from 19.05 to 508 mm.

The data associated with HP Drilling Mud (HP) system, which has flow lines of several
diameters, has been observed to follow the erosion pattern. The data includes the inspection
readings acquired during the period 1999 to 2003. The nominal diameters of its components
varied from 50.8 to 127 mm. For precise estimation of corrosion rates, inspection data has
been divided into several groups, namely, straight pipes and features. Features include
bends, tees, reducers, flanges and valves (Khan and Howard, 2007). Three major

components: straight pipes, bends and tees were considered in the analysis.
4.7.1 Subsystem Description

In present study, the flow lines of GC, where uniform wall loss is observed were considered
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for uniform corrosion; it consists of flow lines from high pressure compressor K1301 to
Cooler E1303 of nominal wall thickness varying from 5.54 to 17.48 mm. Further, the
system GE has been considered for pitting corrosion as the data observed were localized in
nature. For illustration purpose, the subsystem 6 of GE flow lines is presented. The sample
wall loss data used for the analysis has been provided in Table 4.6 and the corresponding
subsystem 6 isometrics is included in Figure 4.7. The subsystem 6 essentially consists of
gas export lines from K3201B to first stage after cooler (0.75, 1.0, 1.5, 6 and 8 inch lines),
K3201C to after coolers, K3201 A/B (0.75, 1.0, 1.5 and 6 inch lines), K3201A, first stage
compressor (3 and 6 inch lines), and K-3201A to after/inter coolers (6, 8 inch lines). The
nominal wall thickness of its components varied from 3.91 to 23.01 mm. The flow lines in
HP Drilling Mud for erosion corrosion consists of high pressure mud lines of module 2 and

16, with wall thickness of components varying from 5.49 to 19.05 mm.
4.7.2 Analysis Methodology

The statistical analysis task has been divided into two groups, one is the precise estimation
of corrosion rates and the second is testing of these corrosion rates with standard probability
distributions. The method outlined in Khan and Howard (2007) has been used to compute
the corrosion rates from the available wall loss data. The collected data is first analyzed to
identify uniform or localized degradation. In the case of uniform degradation, time
dependent regression analysis and in the case of localized degradation, the extreme value
analysis has been carried out for estimating the rates of degradation. The HSE UK (2002)
guideline for use of statistics for the analysis of corrosion inspection sample has also been

referred for general guidance to estimate the corrosion rates using extreme value analysis.

148



In the regression analysis, regressor variable considered is the period of exposure (T) of
each system and the response variable is the loss of wall thickness (Y) over such duration.
The inspected data is then regressed to get the degradation rate, & which is represented by
the slope of the regression line,Y = A7 + C, where C is referred as the wall thickness loss

(C = 0)at the start of service, i. e., at (7' =0).

Corrosion rates for localized material degradation were estimated using an extreme value
model (Khan and Howard, 2007; Melchers, 2005). In constructing an extreme value
distribution, an underlying random variable, corrosion rate, with a particular distribution is
necessary (Halder and Mahadevan, 2000). If different set of samples are obtained through
inspection, one can select the extreme values from each sample set and then construct a
distribution for the extreme value analysis. The extreme value equations are summarized in

Table 4.7, the detailed ical aspects of distributions can be found in Gumbel

(1958).

Table 4.6. Wall Loss Data for Pipes of Subsystem 6 (mm)

1997 2000 2001 2002
0 0 0 0

0 0 0.1 0
0.1 0 0.1 0

0.1 0 0.1 0
0.1 0 0.1 0
0.2 0 0.1 0.1
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Table 4.7. Extreme Value Distributions (Gumbel distribution)

Maximum value Minimum value

= iexpl- y-exp(-¥)] | 0= iexp[y —exp(y)]

FO) = expl-exp(-y)] F ) =1-expl-exp(y)]

;a>0 Whmy:—xii;a>0
a

where, x is wall loss or pit depth, % is location parameter, and « is scale parameter.

The Gumbel distribution is widely used for extreme value analysis including the localized
corrosion and stress corrosion crack inspection data analysis (HSE UK, 2002; Kowaka,
1994; Melchers, 2005). Once y is known, the representative location parameter (1) and
scale parameter (a) may be estimated by plotting function of F(y) versus x. Using these

values statistical corrosion parameters may be estimated (Khan and Howard, 2007) as:

Mean wall loss =« + 2, where y is Euler’s constant and has a value of = 0.5772.

Standard deviation = la , Median wall loss = 4 - In(In(2)) and Most likely loss = 4

V6
The degradation rate for localized corrosion may be expressed either by linear, power law,
or logarithmic extreme value models (Kowaka, 1994) as:

Linear model: x-Xo =k(T-T;)
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Power law model: X=X, =k(T-T,)"

Logarithmic law model: ~ x-x, = klog(T-T,)

where, x, is the threshold depth of degradation (i.e., pit depth) at incubation time7;, x is
measured depth at time 7' and & is degradation rate. Depths exceeding x, would grow,

whereas depths lower than x, may fail to grow with exposure period.

4.7.3 Procedure and Illustration

The annual wall losses were plotted using the simple regression method for uniform
corrosion and the extreme value distribution for localized and erosion corrosion data. For
illustration purposes, the straight pipe inspection data of subsystem 6 of the GE lines (i.e.,
pitting corrosion) has been presented in this section. The sample extreme value probability
plot which is obtained by plotting the ordered wall loss versus the cumulative probability,
i.e., (~In(~In(f(wall loss))) for the year 2001, for straight pipe is shown in Figure 4.8.
Similarly, the data can be plotted for the years 1997, 2001 and 2002. The observation of a
good linear fit, suggested the appropriateness of choosing extreme value distributions for
such data. These plots can then be used to estimate the location and scale parameters, mean,
median and most likely wall losses and the yearly wall loss corresponding to 95%
confidence intervals. The cumulative exposure times and the corresponding wall loss values

for the 95% confidence interval is used for the estimation of corrosion rates.

The predicted wall losses corresponding to the confidence intervals of 0.95 over several

inspection years were then plotted against the cumulative exposure times to estimate the
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actual corrosion rate of components either by linear or power law model. The sample

corrosion rate plot for straight pipes of subsystem 6 (GE) is shown in Figure 4.9.

The estimated corrosion rate data has been tested with probability distribution models like,
Normal, Lognormal, 3P-Lognormal, Weibull, 3P-Weibull, Exponential, 2P-Exponential
and Type 1 Extreme Value using Minitab. The goodness of fit test has been performed
using the A-D statistics and the best fit is reported as the one with smallest A-D statistic.

The tested models with their A-D test statistics are summarized in Table 4.8.
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Extreme Value Probability Plot - Year 2001
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Fig. 4.8. Sample Extreme Value Probability Plot (Year: 2001) for Pipes of Subsystem 6
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Fig. 4.9. Sample Corrosion Rate (PC) Plots for Straight Pipes of Subsystem 6 (GE)
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Table 4.8. Summary of Probabilistic Corrosion Prior Modeling for Case Study NDT Data

Standard Uniform Corrosion Pitting Corrosion Erosion Corrosion
Typeof | p obability

Feature | 1. ibutions A-Dtest | Sample | Standard | A-D test Sample | Standard | A-D test Sample | Standard
Parameter | Mean Error Parameter Mean Error Parameter Mean Error
Normal 3.816 0.328 0.1608 2.627 0.9472 .1682 4.832 0.2080 | 0.0685
Lognormal 3.061 0.310¢ 0.2038 2.958 1.1048 .4177 4.886 0.2386 0.1501
Exponential 4.092 0.328 0.1160 2.973 0.9472 .3157 4.828 0.2080 | 0.1040
Pipes Weibull 3.214 0.316! 0.1572 2.824 0.9335 .1809 4.869 0.2066 | 0.0759
Extreme Value 3.745 0.2785 | 0.2341 2.603 0.9546 .1718 4.826 0.2086 | 0.0744
3P-Weibull 2.961 0.3420 | 0.2330 2.60: 0.9561 .1705 4.826 0.2087 | 0.0742
3P- Lognormal 3.033 12907 | 2.2777 2.62 0.9497 .1686 4.833 0.2080 | 0.0685
2P-Exp i 5.054 0.3280 | 0.1085 3.24: 0.9472 .2898 5.485 0.2080 | 0.0902
Normal 3.651 0.4112 | 0.1682 2.98 0.1373 | 0.0243 5.056 2.1169 | 0.5171
Lognormal 2.896 0.4325 | 0.2585 3.087 0.1429 | 0.0374 5.038 2.1315 | 0.6111
i 3316 0.4112 | 0.1454 3.269 0.1373 | 0.0485 5.053 2.1169 1.0585
Bends Weibull 3.023 0.4077 | 0.1727 3.055 0.1372 | 0.024 5.057 2.1305 | 0.5030
Extreme Value 3.682 0.3715 | 0.2332 2.964 0.1382 | 0.025. 5.059 2.1296 | 0.5586
3P-Weibull 2911 0.4418 | 0.2647 2.964 0.1382 | 0.025 4.944 2.2331 1.0759
3P- Lognormal 3.051 2.0465 | 3.5906 2.980 0.1373 | 0.024: 4.910 44472 | 7.0987
2P- i 3.986 0.4112 | 0.1356 3372 0.1373 | 0.036 5.530 2.1169 | 0.5599
Normal 3.487 0.3582 | 0.1247 3.612 0.6710 | 0.1811 4.959 1.5237 | 0.8036
Lognormal 3.297 0.3991 | 0.2371 3.795 0.8025 | 0.4482 4.797 1.5372 1.0645
Exponential 3.381 .3582 .1354 3.709 0.6710 | 0.2739 4.835 1.5237 | 0.7618
Tees Weibull 3.345 .3581 1403 3.749 0.6652 | 0.2046 4.814 1.5200 | 0.8017
Extreme Value 3435 .3424 1567 3.594 0.6536 .2157 5.001 1.3931 1.1069
3P-Weibull 3.256 .3977 .2480 3.975 0.7451 .4336 4.779 1.7816 | 1.7819
3P- Lognormal 3.320 1.9640 7715 3.623 0.6710 .1814 4.830 9.2579 | 27.4754
2P-Exponential 4.115 0.3582 | 0.1224 4.225 0.6710 .2492 5.734 1.5237 | 0.6378
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4.7.4 Case Study Results

The statistical reliability tests have been d for the estimation of ion rates for the

data extracted from an oil and gas production facility (offshore, North Sea). The summary of
uniform corrosion, pitting corrosion and erosion corrosion prior validation has shown in Table
4.9. For uniform corrosion, the representative straight pipes of the gas condensate system; for
pitting corrosion, the bends of gas export system; and for erosion corrosion, the tees of the HP
drilling mud system are presented. The column 3 shows the results from first part using data
from literature; and column 4 shows the results from case study. Identical observations prove
that the selected priors from literature and case study are the best to model the various corrosion

under

Table 4.9. Summary of the Study and Validation

Type of Systems or Most Relevant Distributions
Corrosion Component From Literature Study From Case Study
Uniform 3P-Weibull, 3P-Weibull,
Straight Pipes
Corrosion 3P-Lognormal 3P-Lognormal
Pitting Type | Extreme Value, | Type | Extreme Value
Feature-Bends
Corrosion 3P-Weibull and 3P-Weibull
3P-Weibull, 3P- 3P-Weibull,
Erosion
Feature-Tees Lognormal, Type 1 Lognormal, or Type 1
Corrosion
Extreme Value, Extreme Value
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4.8 SUMMARY AND CONCLUSIONS

In risk based integrity assessments, the uncertainty in the material degradations is modeled using

prior distributi which are updated to a posterior distribution using Bayes

theorem and actual inspection data. This updated distribution is useful in assessing the potential

risk to installati The life ing structural ions observed are several types of

metal corrosion and cracking. The major corrosion mechanisms include uniform corrosion,
pitting corrosion and erosion corrosion. Therefore, the selection and validation of the prior

models for each type of corrosion is inevitable in the integrity assessment of assets.

The first part of this paper discussed the development of an RBIM framework and the selection
of probabilistic prior distributions for various corrosion degradation mechanisms. Several
statistical tests were conducted based on the data extracted from literature to check which of the
prior distributions best describes the data. The relative accuracy of such fits is tested using
probability plots and A-D tests, and the underlying parameters are estimated using the method of

least squares and maximum likelihood estimates.

The second part of this paper dealt with the validation of the selected priors through a case study,
using life inspection data associated with the operation of an oil and gas production facility,
operating in the North Sea. For uniform corrosion, the regression analysis and, for localized
pitting or erosion corrosion, the extreme value analysis has been used for estimating the

corrosion rates.
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A summary of the results is presented in Table 4.9. It is concluded that the most appropriate prior
distributions that can be used to describe uniform corrosion are 3P-Weibull and 3P-Lognormal
distributions; the pitting corrosion priors is best modeled using Typel Extreme Value and 3P-
Weibull and, the erosion corrosion using 3P-Weibull, 3P-Lognormal or Type 1 Extreme Value

distributions.
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CHAPTER V
THE DEVELOPMENT OF POSTERIOR PROBABILITY MODELS IN

RISK BASED INTEGRITY MODELING

Premkumar N. Thodi, Faisal I. Khan, and Mahmoud R. Haddara
Faculty of Engineering and Applied Science,
Memorial University, St. John's, NL, Canada-A1B3X5

PREFACE
This paper presents the development of Bayesian posterior probability models for the identified
degradation processes. The prior and likelihood models for the critical structural degradation
processes obtained in Chapter IV are observed to be non-conjugate pairs. Thus, their Bayesian
posterior estimation cannot be performed in closed form. One of the main challenges of

Bayesian analysis, i.e., the posterior estimation of ji pairs is in this

Chapter. This work is published in the Journal of Risk Analysis (2010), 30(3): 400-420.

The potential asset integrity threats are identified by the principal author; the data have had
large uncertainty and variability. It has been suggested by the co-authors that the Bayes
theorem may be employed to model the uncertainty and to predict the future degradation. The
prior model is based on generic data and the likelihood is based on field NDT data from an
ageing process component as discussed in Chapter IV. The principal author conducted

extensive literature review to identify the best suitable methods to develop the Bayesian

of j pairs. The si; ion based is-Hastings (M-H) algorith;

and the analytical Laplace approximation methods are identified by the principal author as the



best suitable methods for posterior estimation. The M-H algorithm is a rejection sampling
based algorithm, which is used to generate a sequence of Markov chain Monte Carlo (McMC)
that is difficult sample directly. This sequence is used to approximate the posterior distribution.
The ability to generate the posterior samples without actually knowing the normalizing factor is
a major virtue of this algorithm. The Laplace method is used for approximating the parameters
of the posteriors when direct estimations are difficult and if a normal approximation is
reasonable. The basic idea is to carry out a Taylor series expansion around the maximum
likelihood estimate value (i.e., mode), ignore the negligible terms and normalize. The principal
author investigated the theory behind M-H algorithm and the Laplace approximation, and

programmed these two methods in Matlab software, and demonstrated the use for developing

the posteriors of jug ion priors.

The known conjugate posterior estimates are used to validate the Matlab code. The conjugate
parameter estimates are used as true values. The Normal-Normal, Gamma-Poisson, Gamma-
Gamma and Gamma-Normal combinations are tested. The Laplace approximation functions for

each combination are derived by the principal author and are presented in Appendix. For

pi the i of i in process facilities, the M-H algorithm is
recommended. Since the posterior models are based on real-life NDT data, they provide more
reliable and accurate predictions for the future degradations of components in offshore process

facilities. The principal author prepared the initial draft of this manuscript, which was later

consecutively revised and improved based on comments from the co-authors.
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ABSTRACT

There is a need for accurate modeling of mechanisms causing material degradation of
equipment in process installation, to ensure safety and reliability of the equipment. Degradation
mechanisms are stochastic processes. They can be best described using risk based approaches.
Risk based integrity assessment quantifies the level of risk to which the individual components
are subjected and provides means to mitigate them in a safe and cost effective manner. The
uncertainty and variability in structural degradations can be best modeled by probability
distributions. Prior probability models provide initial description of the degradation
mechanisms. As more inspection data become available, these prior probability models can be
revised to obtain posterior probability models which represent the current system and can be
used to predict future failures. In this paper, a rejection sampling based Metropolis-Hastings
(M-H) algorithm is used to develop posterior distributions. The M-H algorithm is a Markov
chain Monte Carlo algorithm used to generate a sequence of posterior samples without actually
knowing the normalizing constant. Ignoring the transient samples in the generated Markov
chain, the steady state samples are rejected or accepted based on an acceptance criterion. To
validate the estimated parameters of posterior models, analytical Laplace approximation

method is used to compute the integrals involved in the posterior function. Results of the M-H

algorithm and Laplace imations are d with conj pair estimations of known
prior and likelihood combinations. The M-H algorithm provides better results and hence it is

used for posterior development of the selected priors for corrosion and cracking.

Keywords: Asset integrity, corrosion, cracking, prior, Bayes theorem, posterior
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5.1 INTRODUCTION

Asset integrity of process i i i isa ing area of research.

Research has been focused on the study of damage mechanisms, failure occurrences, and
developing models for failure prediction. The major causes of asset failures can be generally

classified into (Stephens et al., 1995): third party damage, environmentally induced defects,

material and fabri defects, and 1 errors. Third party damage includes

mechanical damage and ground movement. Environmental effects cause corrosion and
cracking. Surface and weld defect result from bad manufacturing practices. Operational errors
result from components failure and human factors. The major share of process components and
pipelines failure are attributed to environmentally induced defects such as corrosion and

cracking (Khan et al., 2006; Straub, 2004; Kallen, 2002).

Leaks are the principal cause of hydrocarbon release, fire and explosions in process
installations. Studies indicate that corrosion is the principal cause of about 15% of leakage
occurrences (HSE UK, 2002). In nine and half years, 44.70% of the mechanical failures leading
to hydrocarbon release from offshore facilities in the UK were due to corrosion or other related
degradations (HSR UK, 2003). The direct annual cost of corrosion in the USA is assessed to be
276 billion USD, which represents 3.1% of the GNP, while about 121 billion USD is spent on
corrosion control (Koch et al., 2001). In Canada, the environmentally induced defects, such as
metal corrosion, stress corrosion cracking, hydrogen induced cracking etc. has caused for 40%
of the natural gas pipelines failures and 38% of hazardous liquid releases (Stephens et al.,
1995). It is reported that corrosion accounts for 21% of failures in submarine gas pipelines, and

erosion-corrosion modes account for 24.6% of pipe leakages in process plants (Googan and
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Ashworth, 1990). Moreover, 40% of the acci hydrocarbon releases to the
are corrosion related. Therefore, the investigation and mitigation of corrosion and cracking, and
its effects is one of the main actions required to reduce the frequency of hydrocarbon releases,

to maximize the production, and to improve the safety of the operations.

Usually, inspections are carried out for internal as well as external corrosion and cracking by
means of non-destructive tests (NDT) to estimate the loss of wall thickness and detect the
cracking. Although a few probabilistic methods are available to predict plant life, these have

been applied in a few isolated cases. Better integrity i ion planning and

optimization needs a reliable and adaptable prediction of d. dati i and rates.

This can be achieved by combining the statistical techniques within the risk assessment and
decision making framework. This paper presents a methodology for risk based integrity

modeling (RBIM) and the devel of posterior ilistic models for structural

degradations. The prior models are taken from available literature dealing with assets from
different industries (Thodi et al., 2009). The posterior models are developed for the selected

priors using the simulation based Metropolis-Hastings (M-H) algorithm and analytical Laplace

The conj prior-posterior are used to calibrate the Matlab code.
This study summarizes the development of posterior models for identified degradations in order

to estimate the probability of failure in risk based integrity modeling (RBIM).

5.2 RISK BASED INTEGRITY MODELING

Risk is the product of the probability of failure and its consequence. Therefore, the major tasks
in risk based asset integrity modeling are the estimation of the probability of structural failure

(PoF) and the consequence of this failure (CoF). The probability of failure is estimated using
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stochastic modeling of all identified degradations, such as corrosion and cracking. The

consequence analysis estimates the consequence of failure in terms of the costs of failure,

i ive repair or and i ing the proposed i ion and

plan. The P ility of failure and of failure models will be

tested and validated using case studies of an ageing process facility operating in the North Sea.

An overall framework for the RBIM is proposed in Figure 5.1. The framework consists of the

following tasks: identification of potential i hani develop of most
prior and likelihood models, Pl of posterior ility models and the
analysis of ine inspection and mai intervals which optimize the

risk and finally, testing and validation of the models. In the overall framework, the
development of posterior probability model using the M-H algorithm and Laplace
approximation is discussed in this paper. For real life applications, the expert’s initial
knowledge will form the prior models. Subsequently it will be updated using the ageing data
(field NDT, as likelihood probability model) to obtain the posteriors, which describe the
dynamic model of the current system. These posterior models describe the degradation

processes accurately and hence posses better predictive capabilities of future failures.

5.3 ASSET INTEGRITY THREATS

The review of published literature (Khan et al., 2006; Straub, 2004; Kallen, 2002; Stephens et

al., 1995) indicates that the most critical i induced
threatening the integrity of assets are various types of internal/external corrosion and cracking.
Corrosion includes uniform corrosion (UC), localized or pitting corrosion (PC), and erosion

corrosion (EC). Cracking includes stress corrosion cracking (SCC), corrosion fatigue cracking
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(CFC) and hydrogen induced cracking (HIC). Corrosion is the loss of material as a result of

destructive chemical reaction between a metal or metal alloy and its environment (Jones, 1996).

Uniform corrosion is the uniform and regular removal of metals from the surface, which results
in thinning of wall thickness leading to leaks and breakage. The localized attack of corrosive
environment on an otherwise resistant surface produces pitting corrosion (Jones, 1996). The
combination of a corrosive fluid and a high flow velocity results in material wear-out, leading
to erosion type corrosion. The brittle fracture of a normally ductile alloy in the presence of an
environment or cyclic loading is known as environmentally-induced cracking (Jones, 1996).
The stress corrosion cracking occurs in metals or alloys with static tensile stress in the presence
of specific corrosive environmental condition. The corrosion fatigue cracking occurs under
cyclic stresses in a corrosive environment. Hydrogen induced cracking is caused by hydrogen
diffusing into the alloy lattice when the hydrogen evolution reaction produces atomic hydrogen

at the surface during corrosion, electroplating, cleaning and cathodic protection (Jones, 1996).

5.4 BAYES’ THEOREM

Bayes theorem is one of the best suitable methods for logical and consistent reasoning.
Probability is a degree of belief, that is, how much one thinks that something is true based on
the evidence at hand. In the face of uncertainty in degradations, one can make the best
inference based on the inspection data and any prior knowledge that one might have, reserving
the right to revise the present knowledge if new information comes to light. Bayes theorem

encapsulates this process of learning as more evidence becomes available.
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Bayes' theorem states how to update the prior probability distribution, p(¢) with a likelihood
function, p(y/6@) mathematically, to obtain the posterior distribution as:

pO)p(y/0)
PO m
1pO)p(y/0)d0
The posterior density p(f/y) summarizes the total information, after viewing the data and
provides a basis for inference regarding the parameter, € (Leonard and Hsu, 1999).

Denominator of (1), i.e., [ p(€) p(y/0)d0 is known as the normalizing factor, the estimation of

which is a daunting task in Bayesian analysis.
5.5 PRIOR PROBABILITY MODELING

A prior probability refers to the initial belief of something to be true. In the case of asset
degradation, the prior refers to the initial knowledge about each type of degradation
mechanisms. Although the choice of a prior is often subjective, a rational agreement can be
achieved by analyzing historic data from the same or other similar installations.  To develop
the prior probability models for different corrosion and cracking degradations, several
probability distributions have been tested using the data extracted from the relevant literature.
Details of the literature and statistical test for estimating the priors are presented elsewhere.
A set of sample prior models, which are the initial knowledge based on judgmental studies,

used to describe corrosion and cracking degradations are presented in Table 5.1.
5.6 LIKELIHOOD PROBABILITY MODELING

The inspection data obtained from an ageing offshore process facility has been used to estimate
the likelihood probability of different types of corrosion degradation. The facility has different

systems: a Gas Condensate system (GC), a Gas Export system (GE), and a high pressure
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Table 5.1. Sample Prior Probability Models and the Estimated Parameters

Structural | Prior Probability Models and their Parameters Sources'of

D ion | Type of Model Shape | Scale Location | Data '*'"

e 3P Weibull 17860 | 01062 | 0.0079 | Anghel and
3P Lognormal | -1.6500 | 0.2722 | -0.0965 | Lazar (2005)

- Type | Ext. Value |2.086 | 0.6821 |- Melchers
3P Lognormal | 63010 | 0.0016 | -543.40 | (2005)

= 3P Weibull 45970 | 0.0545 | -0.0075 | Vinod etal.
Type 1 Ext. Value | 0.0482 | 00109 |- (2003)
Weibull 27070 26790 |- i

— Type 1 Ext. Value | 2.8520 | 0.8260 |- Shibata 2007)

pos Weibull 22550 |2.5080 |- Robert and
Lognormal 6192 0.7663 | - Harlow (2005)
Weibull 8750 | 18.130 |-

He Lognormal 4830 [ 12330 |- Del1973)

Drilling Mud system (DM). Each system exhibited a different degradation mechanism. The Gas
Condensate system exhibited uniform corrosion degradation. The Gas Export system exhibited
localized or pitting corrosion. The Drilling Mud system suffered erosion corrosion degradation.
The data collected from each of these systems were used to update the relevant model. The data
includes the minimum and average wall thicknesses acquired during the period 1997-2003.

Since no such data has been available for cracking, data from literature has been used instead.
5.6.1 Estimation of Corrosion Rate

The inspection data, which consists of wall loss measurements, has been divided into two
groups, namely; straight pipes and features (both corrosion coated). The features include bends,
tees, reducers, flanges and valves. "* Three major components: straight pipes, bends and tees
were considered in the analysis. The data is first analyzed to identify uniform or localized

A time ion analysis was used to analyze uniform degradation

data, while the extreme value analysis was used to analyze localized degradation data.
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Mathematical details of the analysis may be obtained from elsewhere (Thodi et al., 2009; Khan
and Howard, 2007).

5.6.2 Probabilistic Model Testing

The system corrosion rate data has been tested with same probability distribution models as in
the case of prior modeling. A goodness of fit test has been performed using the probability plot

and Anderson-Darling (A-D) test, details of the testing and plots may be obtained from

elsewhere (Thodi et al., 2009). A set of sample likelihood ility models and its

for each type of corrosion and cracking are reported in Table 5.2.

Table 5.2 Sample Likelihood Probability Models and the Estimated Parameters

Structural | Likelihood Probability Models and their F Sources of
D i Model Shape | Scale | Location | Data 2"
UG 3P Weibull 0.6863 | 0.2401 | 0.0062 | GC system-
3P Lognormal | -1.937 | 1.2450 | -0.0103 | Pipe's
= Type 1 Ext. Value | 0.6604 | 0.5730 | - GE system-
3P Lognormal | -1.672 | 1.1750 | -0.0061 | Bend's
BC 3P Weibull 0.9551 | 1.3400 | -0.1281 | DM system-
Type 1 Ext. Value | 2.0990 | 17760 | - Tee's
— Weibull 0.8288 | 9.9507 | -
Type 1 Ext. Value | 0.8331 | 0.0806 | - etal. (2003)
e Weibull 0.0015_|0.2907 | - Sankaran
Lognormal -8.2964 |3.6164 | - etal. (2001)
Weibull 0.0087 | 0.9359 | - Woodtli &
HIC Lognormal 52798 | 1.0654 | - fz’;;gl)"“h

The statistical reliability tests have been performed for the estimation of priors and likelihoods
of different corrosion and cracking degradation mechanisms. From Table 5.1 and 5.2, it has
been observed that the priors and likelihoods are identical distributions; therefore, one can say

that the likelihood supports the prior and that makes the estimation of posteriors of
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easy. Furthermore, it supports the assumption that the posteriors yield the same form of

distributions as that of priors and likelihoods.

5.7 POSTERIOR PROBABILITY MODEL DEVELOPMENT

There are four methods for computing the posterior distributions using the known prior and
likelihood functions. They include (Ghosh et al., 2006): analytical approximations, such as
numerical integration techniques and Laplace approximations; data augmentation methods;
Monte Carlo direct sampling and McMC (Markov chain Monte Carlo) methods, such as M-H
algorithm and Gibb’s sampling. If the problem under consideration does not involve a
conjugate prior-likelihood pair, the posterior parameter estimation can not be performed in
closed form; analytical approximation or Monte Carlo methods are needed (Tierney and

Kadane, 1986). In the present study, the developed prior and likelihood for degradations, like

Weibull, Lognormal (with two and three parameters) and Type 1 Extreme Value do not lend
themselves easily to Bayesian updating. The main problem is that there is no distribution class
on the parameters that is preserved under Bayesian updating (Bedford and Cooke, 2001). This
means that simulation methods are the best ways to determine the posterior distributions of
such prior models. The use of M-H algorithm in conjunction with a particular choice of prior
has been suggested (Bedford and Cooke, 2001; Robert and Casella, 1999). In the present study,
the M-H algorithm has been studied. In order to compare the results of the M-H algorithm, an
analytical Laplace approximation method has also been used. By comparing the results of both
the estimations against the values obtained from known conjugate pairs, the best suitable

posterior development method has been concluded.
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5.7.1 Metropolis — Hastings (M-H) Algorithm
The M-H algorithm is a rejection-sampling algorithm used to generate a sequence of samples
following a probability distribution that is difficult to sample directly (Metropolis et al., 1953;

Hastings, 1970). This sequence is used in McMC si ions to i a distribution or

to compute an integral. In Bayesian applications, the normalizing factor is often extremely
difficult to compute, so the ability to generate the posterior samples without actually knowing
this constant of proportionality is a major virtue of this algorithm (Berg, 2004). The McMC
methods are extensively used in statistics to simulate complex, non-standard multivariate

posterior distributions (Chib and Greenberg, 1995).
The algorithm generates a Markov chain in which each state x'*! depends only on the previous
sample state x' . The algorithm uses a proposal density ¢(x',x"), which depends on the current
state x', to generate the new proposed sample x'. The proposal is accepted as the next value
(! = x) if @(x',x') drawn from a uniform distribution, u(0,1) is:

PE)g(x' ) 7

A< @)

If the proposal is not accepted, then the current value of x is retained; i.e., x'*' =x'. The
proposal density may be a multivariate Gaussian distribution centered around the current state
x5 g(x',x) ~ N(x,02), where, g(x',x") is the probability density function for x' given the
previous value x'. This proposed density would generate samples centered around the current

state with variance, o-2. The acceptance of such generated samples will be based on equation
(2). Theoretical background of the M-H algorithm (Chib and Greenberg, 1995) has been

summarized in the next section.
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Theory behind the M-H Algorithm
A proposal density g(x',x") is assumed, where [q(x',x")dx" = 1. It is assumed that the density
is to be depending only on the current state of process, since dealing with Markov chains. This
value is to be interpreted as saying that when a process is at the point x’, the density generates
avalue x' from g(x',x"). For that to happen, g(x',x") should satisfy reversibility condition
(Chib and Greenberg, 1995). But mostly, it will not; one might find for example, that for
some (x',x"):

Pa)g,x") > p() g’ x) G)

! to x' too often and from x' to x' too rarely. A

In this case, the process moves from x'
convenient way to correct this condition is to reduce the number of moves from x' to x' by
introducing a probability @(x',x") <1, that the move is made. The @(x',x") is known as the
probability of move. If the move is not made, the process again returns x’ as a value from the

! to x' are made according to

target distribution. Thus, the transition from x'
P (X5x") = g(x', x e (x', x"), x'# x', where the probability of move, a(x',x") is yet to
be determined. From (3), it is obvious that the movement from x' to x is not made often. One
should therefore, define a(x’,x') to be as large as possible and, since it is a probability its
upper limit is 1. But now, the probability of move a(x',x") is determined by requiring that

Pun (X', x") satisfies the reversibility condition, because then (Chib and Greenberg, 1995):

PN, e, x') = p()g(x! e, x) @

= p(¥)q(x',x")
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P, x) ©
p(x"g(x,x")

Therefore, a(x',x') =
where, a(x',x')is set as 1 (the upper limit). If the inequality in (3) is reversed, we set
a(x',x") =1, and derive the e(x',x') as above. The probabilities @(x',x") and a(x',x") are
introduced to ensure that the two sides of (3) are in balance or, in other words, pygy (x',x")
satisfies the reversibility. Thus, in order for pjzy (x',x") to be reversible, the probability of

move must be set to:

Nalx! 1
a(x,x')= min{Ap(X‘)q(x 'X‘) ,|} P g, x") >0
P(x)g(x',x7)

=1 otherwise. ©)
The M-H algorithm is specified by its proposal density, g(x',x') (Chib and Greenberg, 1995).
If a candidate value is rejected, the current value is taken as the next item in the sampling
sequence. The calculation of c(x',x") does not require the knowledge of normalizing constant
of p() because it appears both in numerator and denominator. If the proposal density is
symmetric, i. €., g(x',x')=gq(x',x'), then the probability of move a(x',x') reduces to
p(x)/ p(x'), hence, if p(x)> p(x'), the chain moves to x'; otherwise it moves with
probability given by p(x')/ p(x'). In this study, the M-H algorithm has been implemented in
Matlab software. The algorithm implementation details can be obtained from elsewhere
(Makowski and Wallach, 2007; Makowski et al., 2002; Robert and Casella, 1999; Chib and

Greenberg, 1995; Tierney, 1994).
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5.7.2 Laplace Approximation

Laplace method (Laplace, 1986) is used for approximating the parameters of the posterior

densities that is useful in Bayesian applications when direct estimations are difficult. The
Laplace approximation is very handy tool when a normal approximation posterior is reasonable
and can be especially useful in higher dimensions when other methods fail (Gill, 2002). The

basic idea is to carry out a Taylor series ion around the i ikeli estimate

value (i.e., mode), ignore the negligible terms, and normalize. The derivation of the
approximation in one dimension is simple and it starts with a posterior density of interest
calculated by the likelihood times the specified prior:

p(01y) is proportional to p(0)L(y!0) )
where, p(@) is the prior, L(y/0) is the conditional likelihood function and, p(€@/y) is the

posterior. It is assumed that this | form is ive, i and single

peaked about the distribution mode @. The standard reference for approximating the Bayesian
posteriors with Laplace method (Tierney and Kadane, 1986) and theoretical details on the
accuracy of the approximation has been reported (Wong and Li, 1992; Kass, 1992).
Furthermore, it was showed that how the Laplace approximation can be a handy tool for
calculating the parameters of the Bayesian posteriors (Ghosh et al., 2006; Tanner, 1996; Kass,
1993; Tierney et al., 1989 a and b; Tierney and Kadane, 1986).

Theory behind the Laplace Approximation

A computable approximation for the posterior mean and variance of a smooth function of the
parameter that is nonzero on the interior of the parameter space is introduced (Tierney and

Kadane, 1986). Let g(0) be a smooth, positive function on the parameter space, with a

maximum at 0. The posterior mean of g(¢) can be written as: *
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2(0).e" a0

jefnh(ﬂ)dg ®

A= Eg0)yl=

where, ¢ @ = p().L(y/6). 1t is a common practice to approximate the denominator
integral by an approximating normal curve centered at the posterior mode and having variance
equal to minus the inverse of the second derivative of the log posterior density at its mode. It
will produce reasonable results as long as the posterior is dominated by a single mode (Tierney
and Kadane, 1986; Tanner, 1996). Bayesian posterior analysis requires the evaluation of
integrals of the form, as shown in (8):

1= [g@)e ™ a0 ©)

where, g and —h are smooth functions of @, with —/ having a unique maximum at 6. In
Bayesian applications, —nk(¢) may be the log-likelihood function or logarithm of the un-
normalized posterior density p(6).L(y/6) and 0 may be the maximum likelihood estimate. If

2(0) has a unique sharp maximum at (}, then most contribution to the integral / comes from

the integral over a small neighborhood (65,0 + &) of 6 (Ghosh et al., 2006)-

6+6 e
Asn—>w,wehave, I=I; = | g(@).e " Pdo (10)
6-6

Laplace method involves Taylor series expansion of g and A about 0, which gives, @
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. PN 52 s
B J[g(H) +(0-0)g'(0)+(0-0)"g"(6) + smaller !erms] x

L~
-5 ....expl:f {nh(6)+n(0 - 0).0'(0) + g(o ~0)2 1"(0) + smaller lerms}]
: 645
L~ | [I +(0-0)g'0)/g(0)+ %(a—é)z‘g"w‘vg(é)} an
6-5

xexp[f §(9~§)2h"(é):|d9
Assuming that ¢ = h"(ﬁ) is positive and, using a change of variable, ¢ = Ve (0 - ), ®

—nh(@) +ovne s a1 2 . 2
I~e™ g(F))\/’T I l+fg(0)/g(9)+5; .£"(0)/g(0) |xex -3 dt

1~ o0 :/C (0){ £"(0) ]
cg(0) 12

&0 ? g@)+0m™)

There is an approximation for estimating the mean, £[g(¢)/ y] (Tiemey and Kadane, 1986):
First apply the Laplace method to the numerator of (8) with g(@) positive, and,

—nh*(0) = -nh(0) +log(2(0)) o

-1/2
2_ e
where 0% is the mode of — nh* (0) and, o-*? = [M\g-}

20°
Next, apply the Laplace method to the denominator of (8) with, g(6) = 1.

— nh(6) = log L(y/0) + log(p(6)) (14)

r".

where  is the mode of —nh(6) and, &>
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Taking the ratio, the approximate mean may be obtained as (Tiemney and Kadane, 1986;
Tanner, 1996):

= %’(exp[—"h * (O} texp[-nh(9)]} 15

E[g(0)]= A

The simplest way to obtain such an approximation for posterior variance is to set: ¥

72 _ 2 2
V(g(0)]=c" = E[g(0)"]- E[g(0)] (16)
One can use (15) to approximate the posterior means of g(¢) and g(¢)° and then insert these

values into a standard computational formula for variance (16). Further, it has been showed that

the mean and variance has a relative error of (Tierney and Kadane, 1986):
E[g(0)/ y] = E@)1+0(n™")] and a7

VIg@)/ y1= V(@ +00 ™) a®

Computational requirements of this approach are minimal; one just needs to evaluate the first

and second derivative and imize both the i Still, the resulting approximations are
quite accurate. An intuitive explanation for this is given (Tierney and Kadane, 1986); if the
function is bounded away from zero near the posterior mode, then the two integrands will be
similar in shape. Thus, by applying the same approximation technique to the numerator and the
denominator one will be making similar errors, and in taking ratio some portion of these errors
will be cancelled. Detailed mathematical derivation of the Laplace approximation for

estimating parameters of the posterior distributions of known conjugate pairs, such as normal-

normal, g ga rmal and g poison are included in Appendix 5.1.
5.7.3 Comparison with Conjugate Pairs

Both the M-H algorithm and Laplace approximation are coded in Matlab and used for
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ping the iors of the i ion priors. The known conjugate
prior-posterior values are used to validate the code. Inputs to the Matlab codes are the sampling

size, the

pective prior and likelil and the outputs are the estimated posterior
parameters using the both methods. The natural conjugate pair of exponential family is
extracted from literature (Robert and Casella, 1999) and presented in Table 5.3. The sample

prior, likeli and conj posterior i are shown in Table 5.4a and the

corresponding parameters estimated by the M-H algorithm and the Laplace approximation
methods are presented in Table 5.4b. It has been observed that the M-H algorithm produced

better results (Error <12%) d with Laplace imati (Error <28%). The

error in Laplace estimation has been found to increase while estimating variances using higher

order terms.

Table 5.3. Natural Conjugate Pair of Exponential Family (Robert and Casella, 1999)

Likelihood, /(x/6) | Prior, p(6) Posterior distribution, p(0/ x)

Normal, N(9,0%) | Normal, N(u1,7%) | N(p(o*u+7%x),p0%%) p™' = o 422
Poisson, P(6) Gamma, G(a, f3) G(a+x,B+1)

Gamma, G(v,0) Gamma, G(a, f) G(a +v,p+x)

Normal, N(1,1/60) | Gamma, Ga(, ) | G(a +0.5, 8+ (s~ x)* /2

Table 5.4a. Parameters of Prior, Likelihood and Conjugate Pair Posterior Distributions

Prior distribution Likelihood distributi Posteriors by conj pairs
Type Parl | Par2 Type Parl | Par2 | Type Parl Par2

Normal | 5.00 | 2.000 | Normal |9.00 | 1.00 | Normal 8.2000 | 0.8000
Gamma | 0.10 | 0.025 | Gamma |2.00 | 1.00 | Gamma 2.1000 | 1.0250
2.00
1.00

Gamma | 0.10 | 0.025 | Normal 1.00 | Gamma 1.5000 | 0.7500
Gamma | 0.10 | 0.025 | Poisson - Gamma 1.1000 | 1.0250

Notes: Parl denotes parameter 1, which refers to the mean in normal and shape parameter in Gamma
Par2 denotes parameter 2, which refers to the std. deviation in normal and scale parameter in Gamma
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Table 5.4b. Comparison of Posteriors by M-H Algorithm and Laplace Approximations

Posterior | M-H algorithm Percentage error | Laplace appx. | Percentage error
Type Parl Par2 Parl Par2 Parl Par2 Parl Par2
Normal | 8.2286 |0.7498 | -0.35 6.28 8.2008 | 0.7476 | -0.01 | 6.55
Gamma | 2.3557 | 1.0362 |-12.18 |-1.09 2.0110 | 1.2084 | 4.24 -17.89
Gamma | 1.5616 | 0.7444 | -4.11 0.75 1.4331 | 0.7915 | 4.46 -5.53
Gamma | 1.1986 | 1.0756 | -8.96 -4.94 1.2213 | 0.7338 | -11.03 | 28.41

5.8 RESULTS AND DISCUSSIONS

The prior-posterior analysis results obtained using the M-H algorithm for corrosion and
cracking are summarized in Table 5.5, and are shown graphically in Figures 5.2 to 5.7. The
prior and likelihood parameters were taken from Tables 5.1 and 5.2, respectively. The M-H
algorithm coded in Matlab has been used to simulate the posterior samples and to estimate their
parameters. Input to the code includes the prior and likelihood parameters, and required sample
size. The posterior estimation based on M-H algorithm converges to results with around 10000
samples. First half of the simulated samples were ignored. These samples describe the transient
state. The remaining samples which describe a steady state condition were used. The
acceptance rate was above 65%. Being computationally intensive, the Laplace approximation
was not very useful while using distributions with more than two parameters. The error in
Laplace estimation has been found to increase as a result of computing the variance using

second order terms.
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Table 5.5. Summary of the Estimated Posterior Probability Models and its Parameters

Structural Posterior Probability Models and its Parameters
D i Type of Model Shape Scale Location
uc 3P Weibull 1.2660 0.1017 0.0079
3P Lognormal 0.1202 0.281 -0.0939
PC Type 1 Ext. Value 1.7280 1.107¢ -
3P Lognormal 1.7370 1.075 -543.50
EC 3P Weibull 2.7070 0.042 -0.0065
Type 1 Ext. Value 0.0447 0.0164 -
sce Weibull 1.6590 1.9500 -
Type 1 Extreme Value 2.445 1.341 -
CFC Weibull 1.456( 2.065 -
Lognormal 2.770 2.641 -
HIC Weibull 1.097 10.56( -
Lognormal 14.190 10.050 -
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Fig.5.2. Sample Prior-Posterior (Weibull) Analysis Result for UC (M-H algorithm)
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Fig. 5.3. Sample Prior-Posterior (Extreme Value) Analysis Result for PC (M-H algorithm)

187



Distribution Plot
Weibull

35 Shape Scale
597 0,055
77_oonn

000 002 004 006 008
Corrosion Rate (mm/year)

Fig. 5.4. Sample Prior-Posterior (Weibull) Analysis Result for EC (M-H algorithm)
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Fig. 5.5. Sample Prior-Posterior (Weibull) Analysis Result for SCC (M-H algorithm)
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Fig. 5.6. Sample Prior-Posterior (Weibull) Analysis Result for CFC (M-H algorithm)
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Fig. 5.7. Sample Prior-Posterior (Weibull) Analysis Result for HIC (M-H algorithm)
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5.9 SUMMARY AND CONCLUSIONS

This paper presents a framework for risk based integrity modeling and the development of

stochastic models for asset degradation mechanisms in process plants. The proposed framework

takes into account the inty and variability in i The life ing asset
degradation mechanisms are identified as different types of corrosion and cracking. The earlier
developed prior models of corrosion and cracking are revised to obtain posterior distributions
using simulation based M-H algorithm and analytical Laplace approximation methods. Since
these posterior models are based on real life NDT data, they provide more reliable and accurate

for the future ions of assets.

The use of a simulation method is necessitated because; none of the prior models falls into the
natural conjugate pair of the exponential family. The two Matlab programs, one using the M-H

algorithm and another using the Laplace imati have been ped and used to

compute the posterior distributions. The code is calibrated using known conjugate pairs. The
programs work well for Weibull, Lognormal and Type 1 Extreme Value distributions. Further,
it has been observed that, for posterior estimation, the rejection sampling based M-H algorithm
is the best suitable method compared with the Laplace approximation method. For corrosion,
the prior distribution is based on historic failure database, and likelihood is based on field NDT
data of an ageing asset in operation, hence the posteriors converge based on their parameters.
Since there was no field inspection data available in the case of different cracking; data from

literature is used instead.
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The posterior estimation based on the M-H algorithm converges to satisfactory results within
10000 steady state samples. The acceptance rate was above 65% which satisfies the statistical
requirements. But, the Laplace approximation results were not encouraging, especially when

working with ths istributi The error in the variance estimation

due to the second order terms. Laplace approximation diverges as the parameter is either too
small or too large due to numerical instability resulting from the use of higher order terms in

the estimate. Therefore, for ping the iors of structural d in process
plants, the Laplace approximation would not be recommended. While using the M-H
algorithm, the change in location parameter from priors to posteriors was found insignificant.
Therefore, instead of using three-parameter models, one may use the two-parameter models to

develop the posteriors and subsequently the location parameter can be added.
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APPENDIX 5.1
1.NORMAL (PRIOR, (11,,7,)) + NORMAL (LIKELIHOOD, (z,7/)) = NORMAL

(POSTERIOR, (i1,5))

2
7l[€“ﬂp
2| Tp

Prior, p(0) = e

P

] " where(pp.o',,) are the first two moments (i. e., mean

1
Ner

and standard deviation) of the prior distribution.

\(0-u,
1 2 o

¢
2oy

2
Likelihood, L@y}, yn ) = L(O/ y) = ] , where (447,07) are the mean and

standard deviation of the likelihood function.
1.1 Estimation of Posterior Mean
~nh(0) = log p(0) + 1og L(O/ y)

5 lz(a—up)z - lz(ofpnz
=logl@p27) e 7P 1+ logl(@27) e 2! ] 0]

1 1
=y O ) - O~ )’
20, 20y
where, the constant terms are ignored as it will cancel out while we take the differences.

Now, for estimating the posterior mode 0,

5, 2O i implies,
20

)

7 2
”:(}:M,ﬁ/ +HOop

o +0,?
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=1

In order to estimate the standard deviation, &, 6% =
[a%nhw» ]
2
0 |;
2
ow, & (fnfzt(e)):
00
22
oo
ie,62 = L z] £
1 oy +(7p
2 +
%p

= —nh(0) + log(6)
1

1
=g (0= 1) =5 (0~ u)* +log(0)
20, 20,

Now, for estimating 6", lets find the first derivative and equate to zero, i.e.,

which implies,

O-up) O-pp) 1
ie,-————-—>—=+—-=0
e 2 o? 0

+L2 10+ ﬁ%+—;i
oy g’ oy

o

P

Multiplying through out by &,

2
+L2 02 + Q’Z-+L'z 0+1=0
oy a," op
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®)

3 o 2 =1 S
In order to estimate the standard deviation, cr‘, ot — , this implies,

o2 (-nh’ (0))
007 |y

©6)

And then, we can compute the E[g(6)] using equation (7), as outlined in (Tierney and Kadane,

1986; Tanner, 196) below:

+
o

Eg(0)]= 7t = -expl-nh" (©"))/ exp[-nh(d)) Q)

G
1.2 Estimation of Posterior Variance

5@ -up)?

Prior, p(0%) =
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2
Likelihood, L(62 /y) = —— ¢ 21

o2
—nh(0%) =log p(6*) +log L(6° / y)
0% up)?
~logl(p\27) e 2P 1+ logl(o7+27)

1 1
S @ ) O )’
Zay 20

where, the constant terms are ignored as it will cancel out while we take the differences.

Now, for estimating the posterior mode &,

2
y, Anh07) =0, this implies,
260

3 3
207 - u,0) =,
PO i . il

a, o

% 0% = "—”ZM‘—’Z o
oy a," or

2 2
HpOI” + 1O p

o +up2

=1
0 (-nh(0)) J
0* |,

4
% 0% +2) L%+”—’2
oy ot oy

For estimating &, calculate as, 6= {

2
Now, LCmHO)
260?
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(10)

—nh*(0%) = —nh(0%) + log p(6%)
= —nh(6%) +log(6%) 1

1 1
= O )~ 5 0% - ) +210g(0)
20 20

*92
Now, for computing 6", W =0, this implies,

2
2(0° - 0 2
,-,e”,#.,,_z(gi;")g+z=o
oy a; 4
% 0% +2) ”—’zar"—’z 0+2-0
Up Up oy 0

Multiplying through out by €,

1

6% +2) L”ZU’—’Z 02 +2=0
a,” o

(12)

Now, for estimating, 0,0 = , this implies,

[52(_,,;,'(9)) ]
»

20?

200



o*enh’ @) _
20°

(14)

Once the posterior mean, for 0, i.., E[g(9)] and the posterior mean, for 62, 1. ¢., E[g(6°)]
are known, we can compute the posterior variance using the equation (15);

Vig@) =57 = Eg©*))- FlzO) as)
2. GAMMA (PRIOR, (@, 3,)) + GAMMA (LIKELIHOOD, (@, /}))) = GAMMA

(POSTERIOR, (@,/))

Prior, p(0) =07 "¢ #7” where, (a,p, 8, )are the parameters of the prior distribution.

Likelihood, L(0/y) =0 "¢ 1% where (a;, ;) are the parameters of the likelihood.
1Pt

2.1. Posterior Gamma Mean
~ nh(0) = log p(0) +log L0/ )
= 10;(9"P"e’ﬂ"gj+log(9"l “lghi0) (16)

=lap +ay ~2)logf~[, + 110
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=0, which implies,

For estimating the posterior mode 8, a—’;:ﬁ

[a,+a, AZ]%—[/}” +41=0

0-p= % a2 T
1B, +£h]
. 0% —nh(0) 1
For estimating &, = '["‘p +ay _.2]72
20 o
2 -1 1 P
2 - h -
Gl —n:(Q) [y +ar-2) lZ [ap+a;-2]
20 4
) .
or, e S 18)
[ap+a; ap+a;-21
.
—nh.(o):—nh(a) +logd )
—nh’(0)=[a, +a; ~2]log0 -, + 110 +10g0
For estimating the posterior mode 6°, # =0, which implies,
la, +a,-211 (8, + B1+ L =0
4 ! 0 » d 0
1
gl ra-N=18,+ 4]
+ay -1
Therefore, 0= 0" = lap+a -1 0)
[Bp+Bi]
2 e
For estimating &, L’;(G) =a,+a _IIL2
20 0
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2 -1 1 0?
. _

@n

Therefore, posterior mean, E[g(6)] = i = "7‘exp[—nh‘(s«‘)]/exp[—nh(é)] 22)
2.2. Posterior Gamma Variance

Prior, p(0%) = sl 7”eiﬁ”y2
Likelihood, L(62 /y) = %@ ~Ve=F10 2
—nh(0%) = log p(0%) +log L(6* / )

_1) -p,0° 2
=1og[92("" DePo? ]+1og[92("1")e’/’19 ] 3

=2a, +a; ~2log0 - [, + 10>

For estimating the posterior mode of g(02), 0, d =0, which implies,

— nh(0%)
o0
{4y =215 -2, + f1=0

eyt -2

[Bp+ 511

0? 4

2% —nh(0%)

R 1
For estimating &, == =2y +a1 =215~ 2By + )

-1 1

) Aa, +a;-2] [ +20B, +B)
2 0?
o0
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21] @)
+2(Bp + 1)

ap,+ay -
52

—nh’ (%) = -nh(6?) +log 67

) @6)
=2a, +a; ~1llogf - (B, + 110
—nh*(0?
For estimating the mode 6°, & ”;‘g(g ) _ 0, which implies,
1
Ay a1 = 2Af, + 10 =0
1
E[a’ +ay-1=[B, + 510
a,+ap-1
Therefore, 0% = 0" = M @7
[Bp+B1]
A2 * 2
B L N 1
For estimating o, TAfZ[at‘p +ap 71]9772[/1‘, +41
2 -1 1
7 TR wed) [Aap a1
- P
+20Bp + Bl
20? ( 0* G
or, " = ] (28)

2Aap, +ap-1]
2

+2pp +/"1]J

Now, we can estimate the posterior mean for g(0%) as, E[g(6)*](Tiemey and Kadane, 1986;

Tanner, 196):

Therefore, posterior mean, E[g(6°)] =

10% cxplonh® (0 YV expl-nh@®)] (29)
6
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Once the posterior mean, for @, i.e., E[g(#)] and the posterior mean, for 02, ie, E[g(ﬁ)z]

are known, we can compute the posterior variance using equation (30) below;
Vig@)= Hg©)*)- ElzO)F 60)
Hence, the posterior standard deviation, & = \/'[g(#)] . Now one can easily compute the

parameters of posterior distributions, using mean and standard deviation as,

ps. | -
a-:(é] and 3:(%] 0.
v z

3. GAMMA (PRIOR, (¢, #)) + NORMAL (LIKELIHOOD, (1,5)) = GAMMA

(POSTERIOR, (@,5))

Prior, p(0) = G(a, ) = 0@ Ve % where (a, 3) are the parameters of the distribution.

2
71[%,;]
Likelihood, L(@Y1 ..., ) = L(O/ y) = e 247 ) where(u,0) are the mean and

1
Varo
standard deviation parameters of the likelihood function.

3.1 Estimation of Posterior Mean
— nh(0) = log L(0/ y) + log p(6)
1 2
| ——56-p) ”
= logl(cy2m) e 207 1+ 1og[l'z—)0a"e’/”’] &)
a

= —%(a—y)z +(a-1)log0 - 0
20

where, the constant terms are ignored as it will cancel out while we take the differences.

Now, for estimating the posterior mode o,

w =0, this implies,
a
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LeA,f(a;[‘)Jr”—"f/y:o
o

0
0 (@-1) u
-——+ +—=-p=0
o? [

Multiplying throughout by &,

—(0‘%]92+[;}%—ﬁ]9+(a71):0

Therefore, 0 =6 = ; (32)
2.x|
()
Now, for estimating &, 6%= ;—,
% (-nh(9))
0% |;
(33)
—nh*(0) = -nh(0) + log p(0)
= —nh(0) +log(0) (34)

=010 4 @-)1og0) - p0 +10g(0)
20

Now, for estimating ¢,

.
o 2Cnh 0D o ihis implics,
20
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" 1 1
r-z-r?(ﬂ—#)+(a{—l)§-ﬁ+
i 1 @, #

e —0+=2+L-p=0
ie. [al] + ) +g2 B

Multiplying through out by &,

{3 (e

s 82 -1

Now, for estimating 0,0 = , this implies,

T (et
a6°

N

And now, we can compute the E[g(0)]; >

HeO)= 1 =% explnh” @)/ expl-nh(@)]

3.2 Estimation of Posterior Variance

207

(35)

36)

@37



—nh(6%) =10g L0 / y) + log p(6%)

L) 2 2
o o507 a =) 2
= logl(c/27) e 20% J+logl 22 V0 39
I(a)
= 71—2(02 — )2 +(a-1)logd? - po*
20

where, the constant terms are ignored as it will cancel out while we take the differences.
» 2
Now, for estimating the posterior mode 6, % =0, this implies,

3
i~ A6 —p6)

o2

3 -
20 2a-n) 200
o? 0 o

2Aar—1)
+=——=-240=0
9 ]
—280=0
Multiplying throughout by @,

-[%]94 +2[LZ-/J]02 +2a-1)=0
o o

Therefore, 67

(39)

=1

[az(—nhw»

Now, for estimating &, 6% = &
2
20 9}

00% 0* o

n 1 1
ie 6% =- =

2Aax-1) 60° o) [2a-1)  60% 2u
[_ 2 o? 'Z'B+az 2 g2 *211‘02
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. @)
2Aa-1)

52
7 +(3€2—+2ﬂ7 24
4 o o

—nh*(02) = —nh(0%) + log p(0%)
= —nh(6%) +10g(0%) (@1)

=3 O - (@ lon0)-
o

b (02
Now, for estimating 0", w =0, this implies,

i (0% - ub)+ 2a L 250 =0
O'z 4

. 2 )5 2a [,l ]

ie A= 10°+—+2| =-p0=0
(02] 4 o2

Multiplying through out by @,

(2 e

42)

2 -
Now, for estimating o, o~ = L . this implies,

' 8% (-nh(0*))
20%

Mz_(i)gz ‘Lﬂuz[i, ,,]
o? 4
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o*= PR 43)
[ (’Z]g‘ + 2”1 +2ﬂ—2( “Z]
o 0" o
And now, we can compute the E[g(6)]; ***"
I 2
[poes p

HIg(O0)) =% explonh’ (0" )1/ expl-nh(0")) )
In order to find the posterior gamma variance, the following expression can be used.

VigO))= Hlg(©)]- He@)F @s)

Therefore, the posterior standard deviation, & = \/[g(6)] . Now one can casily compute the

parameters of posterior distributions, using mean and standard deviation as,
=x2 N 7
@ =[“j) and j =[.f7] @5.1)
g o
4. GAMMA (PRIOR (2, /3) ) + POISON (LIKELIHOOD, (0)) = GAMMA
(POSTERIOR, (7,/3))
Prior, p(0) = G(a, ) = 0“ Ve % | where (e, ) are the parameters of the distribution.

Likelihood, L(@y1,.... yn) = P(©) = e "?0> i | where (y,..., y,) are the observations.

4.1 E: ion of Posterior E

—nh(0) = log L(0/ y) + log p(6)
=logle "0 1) +log (0 Ve~ ) @)
=-n0+3 y;.log(0) + (@ 1) log(8) - 0
=log0(a@ -1)-0p
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where, @ =a +3 y; and S = 3 +n are the parameters of conjugate posteriors.

Now, for estimating the posterior mode 0, g%@)
@-1 ol B=0
T

0=0=

Now, for estimating &, 6= [ this implies,
[al(mh(e» ]
0

00°
egtoo 1 0 _@-»t _@-)
’ [~@-1) @-n @-np* p?
0
,;z(ﬁ"l)m

B

~nh’ () = -nh(0) +10g g(0)
= —nh(0) +log(0)
=logO(@ —1)-0() + log(0)
=alogl-0p

=0, this implies,

.
Now, for estimating 0‘, w

=0

=

a

s
0

.

9 =

= RI

211

=0, this implies,

@7

“8)

(49)

(50)



P x %2 -1 ool
Now, for oc,0 = , this implies,

[az(—nh‘(e» J
"

20?

0@
@b @ @p B
HZ

a

. #2
ie, 0 =

@2

B

Then we can compute the E[g(6)] (Tierney and Kadane, 1986; Tanner, 196):

N
HeO)= 7 = %-explnh” (")) expl-nh(@)]
4.2 Estimation of Posterior Variance

In order to find the posterior variance, the following expression can be used. ®**”

Vig©)]= Eg(0)*]- E[g(0))
In order to use equation (53), we need to use the equation (52) and further approximate
the E[g(0)?]. Following the same procedure;
— nh(6%) = log L(0? / y) + log p(0%)
2 S o _pa2
= logle 0" 622 Vi) + log{6>@ Ve P07y

=-n60? +23 y;.log(0) + 2(a — 1) log(0) - 0>
=2log0(@ -1)- 08

=0, this implies,

- 2
Now, for estimating 6, %{gﬂ»
B

e b
2@ -1, ~205 =0
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i,e,,(E—l)-:;:S/,_? or 2=-@D

or 6=0%
Now, for estimating 6, 6% = =l this implies,
{a%nhw’» ]
2
0 |,
2 1 1

@-n 5 -2 2“0 .0p
0 o0

+2f

62

—nh*(0%) = -nh(0%) + log(0%)
2 2
= logle 0" 0?21y +log (2@ Ve P07y
=-n6? + 23 y;.log(0) + 2(a ~1)log(0) - f0*
=2logO(@ —1)- 62 +2log(0)

=0, this implies,

—nh* (0%
Now, for estimating €, %

i.c.,Z(E—l)é -200+ % =0

A e,% (@)=2p0
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(57)
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2 (-nh" (%)) _ 12
T EVETEH
:_%(E—l+l)—2ﬂ
0
:,:7‘37213
-1
[a%—nhwl»

this implies,

Now, for estimati oot =

20?

i

(59)

And then we can compute the E[g(t9)2] ag; &)

o | s

Hg0)*]= exp[-nh"(0"))/ expl-nh(D)] (60)

And, therefore, the posterior variance will become,

VIg(0)] = Flg(0*)]- ELgO))

Since, the posterior standard deviation, & = /I'[g(#)], one can easily compute the parameters

of posterior distributions, using mean and standard deviation as,

-y =
a =(4] and § :[L‘J (60.1)
G &
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CHAPTER VI
RISK BASED INTEGRITY MODELING FOR THE OPTIMAL
REPLACEMENT DECISIONS OF OFFSHORE PROCESS
COMPONENTS SUFFERING STOCHASTIC DEGARADATION
Premkumar N. Thodi, Faisal I. Khan, and Mahmoud R. Haddara
Faculty of Engineering and Applied Science,
Memorial University, St. John’s, NL, Canada-A1B3X5
PREFACE

This chapter discusses the optimization of mai using the strategy for

offshore process components. The replacement strategy entails the replacement of
degrading components rather than performing maintenance. The principal author

explored the literature on economic service life and replacement analysis of engineering

Und, ding the inherent limitations of the condition-based and reliability

centered mai arisk based strategy is ped by principal author

in this chapter. The risk to life of component has been used as the criteria for decision
making regarding the optimum time to replace the components. The accurate failure
probability is developed in Chapter V using Bayesian analysis. In this chapter, the failure

due to various d processes have been assessed by the principal

author i . using the ic analysis. The co-authors provided support and
directions to improve the model. The research on RBIM is planned as multidisciplinary,
encompassing the areas of engineering, statistics, economics and MATLAB
programming. This work is accepted for publication in the Journal of Quality in

Maintenance Engineering (2011) after the peer review process.



To provide a consistent measure of risk, all consequence categories are presented in one
units, i. e., dollar. The principal author planned and determined the consequences of
failure in terms of failure, inspection and maintenance costs. The failure cost include the
loss of commodity due to breakdown, the loss due to shutdown, the cost of environmental
cleanup, the cost of nature damage and liability. Each of these costs is estimated by the

principal author independently by following the first principle, based on literature and

unit cost. The various i i i and mais methods are analyzed by

principal author to identify the best suitable ones for process components. The inspection

cost depends on the type of i ion, access, surface i , material
and logistic costs. Similarly, the maintenance costs are based on type of maintenance,
access, surface preparation and logistics cost. The principal author contacted an
inspection and maintenance company operating in the North Sea regarding the data on
unit cost of each inspection/maintenance activity. The obtained data is used in this

chapter. The posterior probability of failure estimated in Chapter V is combined with the

annual equivalent cost to produce the ional risk to life of In the risk
profile thus developed, the point at which risk is minimum is treated as the optimal
replacement interval. The principal author programmed the entire consequence analysis
using Monte Carlo simulation in MATLAB and used to develop the optimum

interval. The interval varies with degradation processes;

however, least of them are reported as the optimum interval considering independent and

isolated The is by using the data of erosion

corrosion and corrosion fatigue cracking processes.
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ABSTRACT
Finding an optimal replacement strategy for ageing offshore process components is a

task. ion and maij are essential to maintain normal operation

in the face of structural deterioration, and the subsequent loss of strength. Risk based
integrity modeling is a methodology for minimizing the risk of failure of a process
component. Risk is the product of the probability of failure and its consequence. The
probability failure of a component may be modeled using the Bayesian prior-posterior
analysis. The consequence of failure is modeled using an engineering economic analysis.
The consequences are analyzed in terms of the cost incurred as a result of failure,
inspection and maintenance. The cost of failure includes the loss due to breakdown, loss
due to shutdown, cost of spill cleanup, cost of nature damage and liability. The cost of
inspection and maintenance depends mainly on the types of inspection and maintenance,

access, surface preparation, gauging defects, coating and restoration costs. The annual

equivalent cost of operating and maintaining the is bined with the
posterior probability of failure to produce the operational life risk curve. Since, the risk
curve is a convex function of component’s service life; the optimal replacement strategy
is the one corresponding to the global minimum of the risk curve. The asset deterioration
caused by erosion corrosion and corrosion fatigue cracking in an offshore process piping

is discussed to illustrate the model. This model takes into account the effects of the

and iability in the ion processes and cost estimations using

probabilistic simulation models.

Keywords: Risk, integrity, d
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6.1 INTRODUCTION

Maintaining the structural integrity of deteriorating process assets has been a subject of
research for many years (Khan er al., 2006; API, 2002; Montgomery and Serratella,

2002). In the i stage, the deterioration of is mainly caused by

environmentally-induced defects, such as corrosion and cracking (Thodi, et al., 2010;
Straub, 2004). Thus, at some points in life-cycle, it will not be economical to operate the
components due to deterioration and strength loss. The continuation of operation depends
on the instantaneous condition and the cost of operation and maintenance. The failure to
make an appropriate decision may result in a slow down or shutdown of the complete

facility. Time to execute mai on an operating is decided on the basis

of either the fear of eminent failure or that it becomes too expensive to operate. The age-

related structural ions increase the probability and of failure over a
period of time that may itate the repl of The main
in idering the i by strategy of operating

equipment is to determine what is the exact condition and financial information to be
include in the model. The objective of this article is to develop an optimal replacement
strategy for ageing offshore process components. A brief description of the risk based
integrity modeling (RBIM) methodology is discussed at first. The aim of RBIM is to

protect human life, financial i and envi from the likelil of failure.

A stochastic degradation modeling for corrosion and cracking is followed. Further, the
consequence analysis using the engineering economics is emphasized in this article.

Thus, by ining the probability and of failure, an optimum interval for

the risk based of’ is ped in the article.
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6.2 BACKGROUND

Maintenance is defined as the combination of all technical and administrative actions
intended to restore an item to a state, where it can perform a required function

(Solderholm e al., 2007). The i i thodologies, such as reliability

centered mai (RCM), total p: i i (TPM) and condition based
maintenance (CBM) are robust enough to reduce the business risks. However, they are
based on the component’s probability of failure only. The incorporation of consequences
of failure, inspection, and maintenance is not a part of such maintenance strategies. The
RCM, TPM and CBM strategies become more useful if they incorporate information
about the failure detection, mechanism, repair, costs, maintenance strategy and
management policies (Garg and Deshmukh, 2006). Recently, the risk based maintenance
has been emerged as an optimal maintenance strategy. It is becoming a recognized tool
because it uses life cycle risks in optimizing the maintenance activities. A risk based
maintenance model for offshore oil and gas pipeline based on a semi-quantitative risk
ranking method is presented by Dey et al. (2004). The choice of a risk analysis approach
has a major impact on the identification of risk sources and in developing a realistic
decision making in maintenance process (Backlund and Hannu, 2002). Careful

a ic approach with clear aims and goals are needed

when performing risk analysis. Component failures involve various costs that are difficult
to estimate. A classification of expected failure costs for pipelines involving factors such
as loss of production, loss of commodity, loss of life and property, loss of reputation and

environmental damage are presented by Dey (2001). However, factors such as when the

failure happens, the impact of failure, cost iated with i ion and
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were not discussed. The total cost of combini T— 7

maintenance and condition based maintenance policies is reported by Silva et al. (2008).
But, it has taken into account the actual repair costs only; while the associated failure,
inspection and replacement costs are ignored. The approach presented by Anderson and
Rasmussen (1999) for short term maintenance planning strategies doesn’t consider the
effect of the economic consequences of failure in decision making. This article presents a
risk based integrity modeling for the optimal replacement, based on the component’s
likelihood and consequences of failure. In the RBIM methodology, an economic

consequence model for failure, i ion and mai is ized here.

6.3 ECONOMIC SERVICE LIFE AND REPLACEMENT

Once the offshore process facility is operational the only way to avoid failure is through

inspection and maintenance, as the design or ing changes in the
stage is cumbersome (Thodi, et al., 2010). If the operation is following a well-established

design dure and the receive proper i ion and mai they

can be kept operating for an extended period of time. If a component continues to operate
for an indefinite period of time, failure will eventually occur as a result of the structural
deterioration and strength loss, resulting in excessive corrective maintenance cost.
Replacement is a maintenance strategy, which involve replacing the component instead
of performing the maintenance (Duffuaa et al., 1999). After each replacement, the system
returns to its original condition. Economic service life is the period of time during which
a piece of equipment can function safely and economically. Based on equipment’s

condition, if an iate life span is y, the operator can schedule

the replacement strategy to smooth out operation. The costs of operating a facility can be
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divided into two categories: failure costs and operating costs. The failure costs have two
components: the failure recovery costs and the salvage value at the time of disposal. The
operating costs include the inspection and maintenance costs, the labor wages, the
material cost, coating, testing and alignment costs. Usually, it is the inspection and

maintenance cost that increases annually, due to degradations and material loss.

6.4 RISK BASED INTEGRITY MODELING (RBIM)

The risk to component’s operational life is defined as the multiplication of the probability
of failure and its consequence. The RBIM is a methodology to quantify the risk to life
posed by deteriorating components and to mitigate that in a cost-effective manner. The
general framework for RBIM is illustrated in Fig. 6.1. The wall thickness of components
deteriorates due to environmental effects, causing leaks and breakage. The potential
process components integrity threats have been identified as various types of corrosion
and cracking (Thodi, et al, 2010; 2009). Since these deterioration mechanisms are
stochastic processes, the inspection data are also random in nature. A probability
distribution function obtained using a Bayesian prior-posterior analysis, can be used to
model real life inspection data. An assumption is made is that the degradation processes
are independent to each other. In an RBIM framework (Fig. 6.1), the consequence
analysis focuses on estimating the cost incurred as a result of failure occurrence,
inspection, and maintenance tasks (Thodi, e al., 2010). Failure costs include loss of
breakdown, loss due to shut down, loss due to spill cleanup, loss due to environmental
damage and liability. The cost of inspection includes cost of gaining access to the

cost of surface ion, and cost of detecting and sizing of flaws using

the non-destructive tests (NDT). Upon detection and sizing of flaws, the maintenance
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cost consists of cost of transportation of equipment, and cost of skilled personnel. To rule

out likelil of failure , the needs to be replaced at the onset of

deterioration. But, if replacement is performed prematurely, maintenance will be large,

while late performance of replacement will result in large costs as a result of unplanned

hutd:

and costly i Hence, there is a need for an optimal
policy which aims at minimizing total operating cost. This article presents an attempt to

obtain an optimal replacement decision based on minimizing the operational risk.

degradations

Stochastic degradation Economic
modeling consequence analysis
Risk assessment

Optimal replacement
decisions

Fig. 6.1. Risk Based Integrity Modeling Framework

6.5 STOCHASTIC DEGRADATION MODELING

How to estimate the ility of structural iorati lated-failure, based on the
present condition of component is discussed in detail in Thodi e al. (2010, 2009). The

failure rate estimation is based on the expert’s prior knowledge and the NDT data
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acquired during inspection. The Bayesian prior-posterior analysis has been used to model
such a dynamic system, where the prior knowledge of the system and field data are input.
The prior probability is based on judgmental studies and analyzing generic database
(Thodi et al., 2009). The NDT data has been used to derive the likelihood probability.

Since the pri inations were j pairs, the si ion based

is-Hastings algorithm and Laplace imation methods are used to estimate

the posterior models (Thodi et al, 2010). The posterior model has been developed for
corrosion: uniform, pitting, and erosion, and cracking: stress corrosion, corrosion fatigue,
and hydrogen induced cracking. The Bayesian analysis methodology used for the said

degradation mechanisms has been discussed in brief in Section 6.5.1.
6.5.1 Bayes’ Theorem

Bayes theorem is one of the best suitable methods for logical and consistent reasoning.
Basically, probability is a degree of belief, that is, how much one thinks that something is
true based on the evidence at hand. Due to uncertainty in degradations, the prior
knowledge of the condition of the component may be revised with field NDT data,
reserving the right to revise the present knowledge as new information arrives. Bayes

theorem encapsulates this process of learning as more data becomes available. That is, it

states how to update the prior ility distribution, p(8), with a likelihood function,
p(y/0), to obtain the posterior probability distribution as:

PO)p(y/0) o)

13-
P T op a0

This posterior density p(¢/y) summarizes the total information, after viewing the data

and provides a basis for inference regarding degradation parameters. However, the
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d i of (1) is the izing factor, the estimation of which is a daunting task in

Bayesian analysis. The posterior models thus developed are robust and reliable enough to

predict the future ility of failure of deteriorati in process facilities.
Prior Probability Modeling
For ion, the prior ility refers to the initial knowledge about

each type of degradation processes. Although the choice of a prior is subjective, a rational
agreement can be achieved by analyzing historic data from the same or other similar
components. To develop the prior models for different corrosion and cracking, several
probability distributions have been tested using the data extracted from the relevant
literature. Details of the literature and statistical test performed for estimating the priors
are presented in Thodi et al. (2009). A set of sample prior models used to describe

erosion corrosion (EC) and corrosion fatigue cracking (CFC) are presented in Table 6.1.

Table 6.1. Sample Prior Probability Models and the Estimated Parameters

Structural Prior Probability Models and their Parameters

Degradation | Type of Model Shape Scale Location
EC 3P Weibull 4.5970 | 0.0545 | -0.0075
CFC Weibull 22550 |2.5080 |-

Likelihood Probability Modeling
The inspection data (NDT) obtained from an ageing process facility has been used to

estimate the likeli ilities of various ion processes. The facility has

different ibiting different ion processes, for example, a gas
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condensate system exhibiting uniform corrosion and a high pressure drilling mud system
exhibiting erosion corrosion. The data includes the minimum and average wall
thicknesses acquired during the period 1997-2003. The data, which consists of wall loss
measurements, has been divided into; straight pipes, bends, and tees. A time-dependent
regression analysis was used to estimate the rates of EC and CFC. Then, these rate data
has been tested with standard probability models and a goodness of fit test has been
performed using the probability plot and Anderson-Darling (A-D) tests. Details of the
likelihood modeling may be may be obtained from Thodi at al. (2010). A sample set of

likelihood probability models for EC and CFC are presented in Table 6.2.

Table 6.2. Sample Likelihood Probability Models and the Parameters

[Structural | Likelihood Probability Models and their Parameters
Degradation | Model Shape Scale | Location
EC 3P Weibull 0.9551 1.3400 | -0.1281
CFC Weibull 0.0015 | 0.2907 | -

From Table 6.1 and 6.2, it has been observed that the priors and likelihoods are identical
distributions. Further, since the likelihoods are revising the priors, it indicates that the
posteriors would yield the same form of distributions as that of priors and likelihoods.
Posterior Probability Modeling

The methods for computing the posterior distributions include; analytical approximations,
data augmentation methods, Monte Carlo direct sampling and Markov chain Monte Carlo

id does not involve a

(McMC) si i If the prior-likeli pair under

conjugate pair, the posterior estimation cannot be performed in closed form; analytical or
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Monte Carlo methods are needed (Bedford and Cooke, 2001). The prior-likelihood pairs
for EC and CFC are Weibull (with two and three parameters), which do not lend
themselves easily to Bayesian updating. This means that simulation methods are the ideal
ways to compute the posterior distributions of EC and CFC. Thus, the Metropolis-
Hastings algorithm, which is a McMC method, in conjunction with a particular choice of
prior, has been used (Bedford and Cooke, 2001). Details of the posterior development

methodology and models are presented in Thodi et al. (2010).

The ypolis-Hastings (M-H)
The M-H algorithm is a rejection-sampling algorithm used to generate a sequence of
samples following a probability distribution that is difficult to sample directly. This
sequence is used in McMC simulations to approximate the posterior distribution. In
Bayesian applications, the normalizing factor is difficult to compute, so the ability to
generate the samples without actually knowing this constant is a major virtue of this
algorithm. The algorithm generates a Markov chain in which each state x'*' depends only
on the previous sample state x'. The algorithm uses a proposal density g(x',x'), which
depends on the current state x', to generate the new proposed sample x'. The proposal is
accepted as next value (x“' =x') in the chain if a(x',x'), drawn from a uniform

distribution, u(0,]) is (Thodi et al., 2010):

P4 X) o

A g

If the proposal is not accepted, then the current value of x is retained; i.e., x'
Thus, the simulation generates a Markov chain, the acceptance of samples, which are

eligible for posterior probability model, will be based on equation (2).
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6.6 CONSEQUENCE ANALYSIS

The purpose of risk-based integrity modeling is to maximize the profit from the operation

of facility by minimizing the risk by p ing failures iated with

By operating a dynamic system of life-time data accumulation and processing, the
accuracy should be improved with time and experience. To provide a consistent measure
of risk, all consequence categories should be in the same units. Otherwise, the overall risk
from many contributing sources cannot be computed. A standard choice of unit to
represent all consequence categories is dollar, because risk can be interpreted as the
expected loss due to a certain event or groups of events (Jones, 1995). Therefore, the
failure consequences are expressed in terms of dollar in this study. The overall frame

work for economic consequence analysis is presented in Fig. 6.2.
6.6.1 Economic Consequences of Failure

Failure are ified in terms of the iated dollar value. Failure cost is

the cost associated with the loss of a facility due to structural deteriorations. The failure
cost may be classified into corrosion or cracking costs. Corrosion or cracking cost is the
increase in operating and maintenance cost throughout the life of a facility due to various
corrosion or cracking mechanisms (Verink, 2000). The total cost is given by the sum of
corrosion or cracking costs associated with four main aspects of life of a facility: failure

operating i cost of lost ion and the material residual

value (Jackson, 2003). In the case of cracking, it is assumed that a component failure is
followed by an immediate repair to prevent any system failure scenario with much higher
consequences. Also, the component is assumed to be isolated and hence its failure will

not contribute to any chain of reactions. The economic consequences of failure includes
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loss due to in terms of dity loss, production loss due to shutd cost
of spill cleanup, the legal fees and fines due to nature damage and liability (Fig. 6.2).

Each of these cost components are discussed in brief in the following sections.

Risk (dollar) Probability of
= PoF x CoF failure (PoF)

Corrosion Cracking

consequences consequences

Cost of Cost of Cost of Cost of Cost of Cost of
maintenance failure inspection maintenance failure inspection
-Gaining -Loss of -Gaining -Gaining -Loss of -Gaining
access product access access product access
-Surface -Loss of -Surface -Surface -Loss of -Surface
preparation | shutdown | cleaning preparation | shutdown | cleaning
-Minimum -Spill -Choice of -Minimum -Spill -Choice of
repair cleanup inspection repair cleanup inspection
-Replace- -Nature method -Replace- -Nature method
ment damage -Detecting ment damage -Detecting
-Testing -Liability flaws -Testing -Liability flaws
-Alignment charges -Sizing etc. || -Alignment charges -Sizing ete.
Fig. 6.2. The for ic Co Analysis

Loss due to Breakdown

Breakdown costs are the financial losses, which are associated with loosing commodity.
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This cost depends upon what product is being carried or stored, the rate of leakage and its
current market value when the failure occurs. The leak or rupture of component’s wall
thickness by corrosion and cracking is the main cause for breakdown. If a component
failure results in a system failure, then the breakdown consequences can be in terms of
lost material dollar value (Jones, 1995). The focus in this article is on a topside piping in
the North Sea and the product being conveyed is assumed to be crude oil. The market
value of crude oil is considered to be $ 70 per barrel in this article. To estimate the rate of
leakage, the source model, i.e., the flow of liquid through a hole in pipe (Crowl and
Louvar, 2002) is used. It provides a description of the rate of discharge, the total quantity
discharged and the state of the discharge. The mass flow rate, O, resulting from a hole

(in a typical pipe) of area A is given by (Crowl and Louvar, 2002):

0, = ACy\2p8.F, 3)
where, C, is the discharge coefficient, p is the fluid density (mass/volume), g is the
gravitational constant (length mass/force time?), P, is the gauge pressure. The

calculations to estimate the rate of release due to structural degradation based on equation

(3) are presented in Appendix 6.1.1 and are summarized in Table 6.3.

Table 6.3. Rates of Release through Hole in a Pipe

Deterioration | Rate of release of fluid
(kgfse) | (barrels/hr)

Corrosion 0.677 17.784
Cracking 0413 10.849
The cost estimati i with piping is discussed in the section below:
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Cost of Breakdown due to Degradation
The method of calculating the loss due to breakdown varies for cach operating company.

The cost of lost dity due to degradation is on the operation. The

following formula may be used to estimate the cost of breakdown (Jackson, 2003):

Cpp =ExPxD,xQ,xC, @

where, C,, = the cost of lost commodity in dollars, C,, = cost of downtime calculated in

fio

dollars barrel, 0, = quantity of commodity loss per unit time (for e.g., barrels per hour),

D,, = duration of the commodity loss (hours), P = probability of loss of commodity

on the

levels)=1 (assuming there is no redundancy and
the components are in series), £ = average number of critical failures in life time. The
sample calculation associated with the cost estimation of pipe corrosion is presented in
Appendix 6.1.2 and are summarized in Table 6.4.

Loss of Production due to Shutdown

The main factor influencing the cost of failure is the facility’s unavailability for
production. Maintenance can be planned, whereas failures may lead to an unplanned,
immediate shutdown of the facility. The cost of such a shutdown is highly dependent on
the number of days of shutdown, the rate of loss of production and value of products at
the time of failure. Typically, the loss of shutdown may be estimated using the unit cost
of product, quantity of affected production and the maintenance delay time. The

maintenance delay depends on the availability of skilled personnel and spare parts which

are necessary to carry out the mai The sh may be i because of

rupture and leakage due to corrosion and cracking processes.
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Cost of Shutdown due to Degradation

The shutd cost due to ion is by ining the unit cost of
product, loss of affected production and maintenance delay time (Straub et al., 2006) as:
Cpy =CuxQxT, ©®)
where, C, is the cost of shutdown (dollar), C, is the unit cost of product (dollar/barrel),
Q is the quantity of affected production (barrel/day) and 7,, is the maintenance delay
(days). A sample shutdown cost estimation associated with the pipe corrosion is
presented in Appendix 6.1.3 and is summarized in Table 6.4.

Cost of Spill Cleanup

The cost of oil spill cleanup varies considerably from one incident to another, depending
on a number of factors, such as, the type of oil, amount spilled and the rate of spillage,
the characteristics of the affected area, weather and sea conditions, local and national
laws, time of the year and the spill clean up strategy (White and Molloy, 2003; White,
2002; Etkin, 2000; 1999; Purnell, 1999). Predicting the per-unit cost of spill response is
highly uncertain since the factors impacting the costs are quite complex (Etkin, 2000).
The most important factors in determining the impact and response costs for an oil spill is
the type of oil and geographic location. In this article, the type of oil is assumed to be
crude oil and spillage is in offshore. Based on the location, the average per-unit offshore
oil spill cleanup costs is $ 6508 per tonne (Etkin, 2000). This unit cost represent only the
cleanup costs and do not reflect third-party damage claims or natural resources damage
costs which may be incurred in addition to cleanup costs, depending on regulations.

Cost of Spill Cleanup due to Degradation

The cost of environmental cleanup comprises of unit cost of spill cleanup and the total
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quantity released due to structural failures caused by degradations. Further, the total
quantity released depends on the rate of spillage and duration of release. The following
formula may be used to estimate the cost of spill cleanup:

Cpe=0,%xD,xC,, (6)
where, C,_ is the unit cost of spill cleanup (dollar/tonne), Q, loss of product per unit
time (tonne/hour) due to corrosion o cracking and, D,, is the duration of spillage (hour).
To demonstrate the calculations of spill cleanup cost, a sample calculation is provided in
Appendix 6.1.4, where it is assumed that the pipe failure is caused by corrosion. The
cleanup cost thus obtained is presented in Table 6.4.

Loss due to Nature Damage

The size of penalty that the company will incur as a result of damaging the environment
is difficult to estimate, because costs increase with the scope of failure. The failure modes

for cach ion-related failure could be graduated to more complex

system failures leading to significant environmental damages. The cost due to loss of
habitat and damage to natural resources are also difficult to estimate. Still, approximate
assessments considering the quantity of release and unit rate are quite possible (Etkin,
2000; 1999). The nature damage due to oil spillage includes loss of marine as well as
coastal habitat, soil pollution, damage to agriculture land and adverse health impact
(Etkin, 2000; Purnell, 1999). The natural cleansing approach may be an attractive option

from a cost perspective. However, the ible decision makers need to take notice of

the provincial and federal regulations, as well as respond to the values and needs of local
communities and stake holders before choosing this option (Etkin, 2000). The per-unit

cleanup cost of nature damage is $ 5086 per tonne of oil (for a shoreline length of 1 km),
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based on Etkin (2000). This cost includes the cleanup cost of damage happened to the
coastal ecosystem, consisting of nearshore and shoreline response.

Cost of Nature Damage due to Degradation

The total cost of environmental damage comprises of unit cost of nature damage and the
total quantity released. Again, the total quantity released from a facility depends on the
rate of release and the duration of spillage. Thus, the total cost associated with damaging
the natural recourses by structural failures may be estimated using the following formula:
Cpr =0nx Dy xC, (@)
where, C,,, is the unit cost of nature damage (dollar/tonne), Q,, release of product per
unit time (tonne/hour) due to corrosion and cracking, D,, is the duration of release
(hour). The pertaining sample calculation is presented in Appendix 6.1.5, and the nature
damage cost due to corrosion degradation is reported in Table 6.4.

Cost of Liability

The injuries and deaths caused by a system failure have the most severe implications
possible. The loss of life or pain of an injury is impossible to quantify, yet, the cost
implied due to worker’s compensation and corporate liabilities shall be taken into account
(Jones, 1995). Apart from that, safety related system failures have other immediate
implications, such as legal fines and penalties of professional negligence. The estimates

of liability costs that result from motor vehicle accidents are routinely published by

several public and private organizations. The US of
technical note (Judycki, 1994) on comprehensive motor vehicle accident costs which is

adopted as a baseline in this study. The components of the comprehensive costs includes

medical costs, services, lost earnings,
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costs, legal consulting fees, pain and lost quality of life. The seven categories of liability
costs (Judycki, 1994) and their descriptions are presented in Appendix 6.1.6. For typical
process piping, liability cost is extracted from Appendix 6.1.6 and presented in Table 6.4.
Liability cost associated with degradation-related failure is assumed to be similar to
Category 2, moderate injury causing a liability of $ 40 000 in this article.

Total Cost of Degradation Failure

The total cost of failure is the ion of loss of loss due to shutds the

costs of spill cleanup, nature damage and the liability charges. Hence, the total cost
associated with a structural failure due to degradation is given by:
Cp=Cp+Cpy+Cps +Cp +Cy ®8)

fie
The developed total cost is based on two assumptions; the component is isolated, and the

component failure leads to a system failure with ilability for

Table 6.4. Degradation Failure Cost for Piping (Pipeline segments) Components

Cost Cost Cost of corrosion Sources

consequence | divisions (dollar) (Appendix)
Loss due to breakdown | 14 939 Appendix 6.1.2
Loss due to shutdown 149 384 Appendix 6.1.3
Spill cleanup 190 336 Appendix 6.1.4

Failure cost
Damage to nature 148 748 Appendix 6.1.5
Liability charges 40 000 Appendix 6.1.6
Total cost (C,.) 543407

234



The expected annual equivalent of the total cost of failure due to degradation, which is
also called the failure recovery cost, over the service period of n years, with annual
interest rate of i% can be calculated using the following equation (Park, 2007):

FRG)=C, (A P,i,n) ©)
where, (4/P,i,n) is the recovery factor. The failure recovery factor (the 4/P factor,
which is also known as annuity factor, and indicates a series of future payments towards a

fixed amount for a specified number of periods) can be estimated as:

(A/ P,i,n) ]:ﬂ:r (10)

6.6.2 Ei ic C of

The integrity of process components has to be assessed for the facility’s safe operation.
The NDT techniques may be used for detection and quantification of unwanted

discontinuities and separations in materials due to degradations. The NDT provides the

qi as well as quantitative i ion by detecting, locating and sizing of flaws.
Several types of defects exist in components, such as corrosion, cracking, inclusions,
dents and holes. Defect quantification requires considerable skill and experience, use of
more than one NDT method owing to the fact that each method is able to provide limited
information on a particular type of defect. Based on literature (Roberge, 2007; Gros,
1997), the best suitable inspection methods for corrosion and cracking, and the
corresponding costs are estimated. The sample inspection cost estimation for corrosion

has been presented in Appendix 6.2. The per-unit cost for inspection, as obtained from an

inspection and testing contracting company in North America has been used in this study.
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Cost of Degradation Inspection

The purpose of inspection is to detect and quantify the extent of wall loss, pit depth, and
surface crack as well as coating breakage. The routine inspection costs depend on how
much area to inspect from a risk point of view. Thus, the inspection cost includes the cost
for gaining access to the degraded component, the cost for surface preparation, personnel

cost for i ion, the cost iated with technical assi the cost of

and chemicals, and the logistics cost (rent, storage and transportation etc.). For piping

ic test

(pipeline segments, bends and tees), the i ion methods are

(UT) thickness and radi ic inspection (RI) for different corrosion, and

the magnetic particle inspection (MPI) and UT defect sizing for quantification of

different types of cracking degradations (Roberge, 2007; Gros, 1997).

Gaining Access for Inspection

Cost of gaining access, C;,, = C; xt (1n
where, C,= cost of inspection personnel per hour, and ¢ = the duration of inspection (in
hours). Sample calculation for corrosion inspection is presented in Appendix 6.2.1.
Surface Preparation (Washing, Purging and Coating Breakage)

Cost of surface preparation, C,,, = C, xt 12)
where, C,= cost of skilled labor per hour, and ¢ = the duration of work (in hours).
Sample calculation for corrosion inspection is presented in Appendix 6.2.2.

Inspection Personnel Cost

Cost of visual inspection of piping, C,, = C,, xt

Cost of UT-(piping) thickness measurements, C,, = C,, xt
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Cost of radiographic inspection of piping, C, = C,, xt (13)
Cost of UT-(piping) defect sizing, C,,, = C,,, x1

Cost of magnetic particle inspection of piping, C,,, =C,,, xt

where, C,; = personnel cost (dollar) of visual inspection per hour, C,, = personnel cost
for UT thickness measurements per hour, C,, = personnel cost for radiographic
inspection per hour, C,, = personnel cost for UT defect sizing per hour, C,,, = personnel
cost of MPI (dollar per hour) and ¢=total duration of inspection activity in hours. Sample
calculation for corrosion and cracking inspection is presented in Appendix 6.2.3.
Technical Assistance

Cost of technical expert’s assistance, C,, = C, x1 (14)
where, C, = technical expert’s consultancy fees per hour, and ¢ = the duration of work
in hours. Sample calculation for corrosion inspection is presented in Appendix 6.2.4.
Logistics Cost

Logistic cost includes the cost of consumable, equipment rent, storage and transportation.
Logistics cost, C;, =C,+C, +C,, 15y

where, C, = cost of C,= cost of i i i rent, and C, = cost

of storage and transportation. Sample calculation is presented in Appendix 6.2.5.

Thus, the total costs i with piping ion i ion can be estimated as;

C;=Cipy +Cy, +Cy +C,, +Cyy +Cy (16)

isp

This cost includes the inspection with respect to wall thickness as well as coating checks.

The estimated costs of corrosion inspection cost are presented Table 6.5.
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Table 6.5. Corrosion Inspection Cost for Piping (pipeline segment) Components

Degradation | Cost component Cost ($) Source (Appendix)
Gaining Access 240 Appendix 6.2.1
Surface preparation 960 Appendix 6.2.2
Inspection: UT 960 Appendix 6.2.3

Corrosion
Inspection: RI 240 Appendix 6.2.3
Technical assistance | 240 Appendix 6.2.4
Logistics 1200 Appendix 6.2.5
Total cost (C,) 3840 Appendix 6.2.6

The expected inspection costs tend to increase as a function of age of components due to

strength ions and wall loss. This i ing trend can be modeled
using arithmetic gradient (Park, 2007). The cost of inspection involves periodic payments
that increase by a constant amount (G ) from period to period. The function to model the
increasing trend of inspection cost is given by (Newnan, 1976):

ClI(i)=C,(4/G,i,n) )
where, the gradient to equal-payment series conversion factor is given by:

o Jaiy i
(A/G,A,n)—G|: U] } (18)

6.63 E ic Co of Mai

This cost is associated with restoring or maintaining a process facility safely. To have a
safe facility, the maintenance should be performed at very small time interval. However,

it is impractical due to the huge costs, large maintenance-induced errors, and the facility’s
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unavailability for production. To optimize the replacement economically, the cost of
replacement should be greater after failure than before, and the component should be in
the wear-out region. The maintenance can be either corrective or proactive depending on
the condition of facility. The corrective maintenance is performed in response to an

or ime of the usually as a result of a failure.

This could be based on previous experience and an assessment of the risk of failure
caused by deteriorations. In general, the costs of corrective maintenance will always be

huge. The proactive maintenance is the advance maintenance and it can be either

P ive or predictive. Preventive mai is a ime, usually
periodical, in which a set of well defined tasks are performed. The predictive
‘maintenance estimates through diagnostic tools, such as NDT and probabilistic modeling,
when a component is about to fail and should be repaired or replaced, thus, reducing the

costly corrective maintenance. This article focuses on predicting the optimum interval for

the i of process
Cost of Degradation Maintenance
Maintenance in practice may be either a minor patch repair work or the complete

of degraded In this study, it is assumed that the proposed

inspection method is able to detect the presence of corrosion discontinuities and surface
cracks. For all types of corrosion, minor patch repair work of the affected area is
considered, and for any types of cracking, immediate component replacement with
necessary repair work is considered. The maintenance work includes the access to

part, surface ion, cutting and removal of pipes and plates, welding

and restoration of protective coating. Thus, in addition to the cost of component to be
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replaced, the personnel cost, logistics cost related to transportation, storage and rents of
facilities are also must be included. For a piping component, the maintenance costs are

estimated below. The sample calculations are presented in Appendix 6.3.

Gaining Access to the Degraded Component

The cost of gaining access for maintenance, C,,, =C,, xt (19)
where, C,, is the cost of maintenance personnel per hour and ¢ is the duration of work
(hour). A sample calculation for cost of gaining access is presented in Appendix 6.3.1.
Surface Preparation (Coating Breakage, Cleaning, Purging with Gas)

Cost of surface preparation for maintenance, C,,, = C,, xt (20)

where, C,, is the cost of maintenance labor per hour and ¢ is the duration of work (hour).

A sample calculation for the cost of surface preparation is presented in Appendix 6.3.2.

Gauging Defects
Personnel cost, C,, C,, xt @n
Total cost of defects gauging for maintenance, C,, = C,, +C,, 22)

where, C,, is the logistics cost (equipment rent, transportation and storage). The sample
calculation for the cost of defect gauging for maintenance is presented in Appendix 6.3.3.
Repair Work of Corroded Components

Repair cost (cutting, welding, fitting etc.), C,,, =C,, xt (23)
where, Cy, is cost of labor for minor repair in dollar per hour, ¢ is total repair time.
Weld quality test and coating restoration, C,,,, =C,, xt (24)

where, C,, is the personnel cost for weld quality testing, ¢ weld test duration.
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Technical assistance, C,, = C,, x! (25)

la

where, C,, = the cost of technical consultancy per hour, ¢ is the total work hours.
The cost of minor repair, Cpymy = Cos + Cery + Conwr + Coe + Copta (26)
where, C,, is the spare or part’s cost, and C,, is the cost of consumables. The sample

calculation for the cost of minor repair is presented in Appendix 6.3.4.
Thus, for minor patch repair of corroded component, the total costs are estimated by;

Chy =Crge +Cragp + Coogg + C @7

The final costs thus estimated are reported in Table 6.6.

Table 6.6. Corrosion Maintenance Cost for Piping Components

Degradation | Cost component Cost ($) | Source (Appendix)

Gaining access 800 Appendix 6.3.1

Surface preparation | 1200 Appendix 6.3.2

Corrosion Gauging defects 1200 Appendix 6.3.3

Minor repair work | 6800 Appendix 6.3.4

Total cost (C,,) | 10000

Similar to inspection, the expected maintenance cost also tends to increase as a function

of age of due to i and loss of wall thickness. This

increasing trend can be modeled using arithmetic gradient. The cost of operation and

maintenance involves periodic payments that increase by a constant amount (G ) from



period to period. In such a gradient series, 4, = (n—1)G, where G > 0. The cost function

to model the i ing trend of annual mai cost is given by (Newnan, 1976):

CM(i) = C,,(A/ G,i,n) (28)
where, the gradient to equal-payment series conversion factor is same as in equation (18).

Similar to corrosion, the estimated costs of pipe cracking are presented in Table 6.7.

Table 6.7. Estimated Cracking Costs for Piping Components

Degradation | Cost subdivisions Cost (dollar)

Total cost of failure 438235

Total cost of maintenance | 15 000

Cracking Total cost of inspection 4400

Salvage value 0

6.6.4  Annual Cost (AEC) of i

The AEC of operating and maintaining the ageing process component is the summation
of the annual equivalent costs of failure recovery, inspection, and maintenance. Hence the
AEC may be estimated as follows:

AEC(i) = FR(i) + CI(i) + CM (i) (29)
where, FR is the failure recovery cost, CI is the inspection cost, CM is the
maintenance cost and i represents the annual interest rate.

6.6.5 Tax Considerations

The corporate tax rate is applied to the taxable income of a corporation. Whether the

existing component is kept, or replaced with a new one, the tax credits on operating
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expenses must be incorporated into the analysis. To apply the concepts of minimum risk
to life, the tax effects (gains or losses) on failure, inspection and maintenance are

incorporated. In analysis, the operating income is taxed at an annual rate of 35%.
6.6.6 Probabilistic Cost Analysis

The uncertainty and variability in the above cost models has been overcame through
probabilistic cost analysis using the Monte Carlo simulations. In simulation, the total cost

of ’s failure, i ion and mai; as presented in Tables 6.4 to 6.6, is

assumed to be a Gaussian distribution with the estimated mean value. A coefficient of
variation of 2.5% has been assumed in the cost estimation.

6.6.7 Risk Assessment

The AEC has been combined with the cumulative density function (CDF) of the posterior
probability to estimate the operational life risk curve as shown in equation (30). Thus,
finding the optimal replacement period reduces to finding a value of » that minimizes the
operational risk. At the optimal risk point, the risk will be reduced to as low as reasonably
practicable (ALARP) level and at the same time, ensures the safety of operation.
R=F[p@/y)x4EC 30)
where, R is the risk of failure (in dollar) from a degradation, F[p(6/y)] is the CDF of

posterior probability of failure and AEC is the annual equivalent cost of consequences.
6.7 RESULTS AND DISCUSSIONS

6.7.1 Stochastic Degradation Modeling

The Bayesian analysis results obtained using the M-H algorithm for EC and CFC are
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summarized in Table 6.8, and are shown graphically in Figures 6.3 and 6.4 (Thodi et al.,

2010). The M-H algorithm coded in MATLAB has been used to simulate the posterior
samples and to estimate their parameters. Input to the code includes the prior and
likelihood parameters, and required sample size. The posterior estimation based on M-H
algorithm converges to satisfactory results with 10000 samples. First half of the
simulated samples, which were in a transient state, were ignored. The remaining samples

which describe a steady state condition were used to produce the posterior models.

Table 6.8. The Estimated Posterior Probability Models and its Parameters

Structural Posterior Probability Models and its Parameters
Degradations | Type of Model Shape Scale Location
EC 3P Weibull 2.7070 0.0421 -0.0065
CFC Weibull 1.4560 2.0650 -
Distribution Plot
Weibull
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30
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10 /

000 002 004 006 008
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Fig. 6.3. Sample Prior-Posterior (Weibull) Analysis Result for Erosion Corrosion
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Fig. 6.4. Sample Prior-Posterior Analysis Result for Corrosion Fatigue Cracking

6.7.2  Economic Consequence Analysis

The economic consequence analysis has been performed for the cost of failure, inspection
and maintenance. The mean and standard deviation of estimated costs are summarized in
Table 6.9. The results for estimated annual equivalent costs due to EC and CFC are
presented in Figs. 6.5 and 6.6. The failure recovery cost over the service life of
component is estimated by considering a fixed rate of annual interest of 8%. The cost of
inspection and maintenance is estimated using the present worth factor approach,

assuming the same rate of interest. The annual equivalent of failure cost is observed to be

a decreasing function, where as the i ion and i costs are i

functions of service life. Increase in the inspection and maintenance costs are expected
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due to the loss of material and strength. The computed AEC is observed to be a convex

function of service life.

Table 6.9. Corrosion and Cracking Costs Estimated in the Consequence Analysis

Degradation | Cost divisions Corrosion cost (§) | Cracking cost ($)
Mean Std.dev | Mean | Std. dev
Total cost of failure 543407 | 13585 438235 | 10956
Total cost of maintenance | 10000 | 250 15000 | 375
Corrosion/ Total cost of inspection | 3840 96 4400 110
Cracking Salvage value 0 0 0 0
Annual interest rate 8% 8%

Senice Period v's Corrosion Cost Comparison

—8—Failure Cost

6 —6— Maintenance Cost
—+— Inspection Cost
—&— Annual Equivalent Cost

Cost (dollars)

0 5 10 15 2 2 30
Senice Period

Fig. 6.5. Sample Economic Consequence Analysis Results for Erosion Corrosion
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10 Senice Period v/s Cracking Cost Comparison

—E—Failure Cost

—6— Maintenance Cast

5§ —+— Inspection Cost
—&— Annual Equivalent Cost

Cost (dollars)
w

o 5 10 15 20 25 30
Senvice Period

Fig. 6.6. Sample Economic Consequence Results for Corrosion Fatigue Cracking

6.7.3 Optimum Replacement Interval

Results of the risk analysis are presented in Figures 6.7 and 6.8 for sample EC and CFC.
A clear trend is obtained for the operational life risk in the form of a convex curve using
10000 iterations. The intervals for the optimal replacement of components are obtained
from Figure 6.7 and 6.8 are summarized in Table 6.10. Ideally, it is the optimum interval

with minimum risk, to replace the rather than i i Also,

after each optimal replacement, the component returns to as good as new condition.

Table 6.10. Optimum Repl Interval for Deteriorating C
Assets | Deterioration | Source Optimum maintenance interval
Piping | EC Figures 6.7 | 10 yrs
Piping | CFC Figures 6.8 | 08 yrs
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Fig. 6.7. The Operational Life Risk Curve due to Erosion Corrosion

x 10

—&—Risk Curve

Overall Risk (dollars)
>

>

0 5 10 15 20 2% 0
Senice Period (years)

Fig. 6.8. The Operational Life Risk Curve due to Corrosion Fatigue Cracking
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6.8 SUMMARY AND CONCLUSIONS

An RBIM strategy for optimal replacement decisions of offshore process components has
been discussed in this article. Replacement strategies are designed to remedy the effects

of physical deterioration, strength loss and of process Physical

deterioration leads to reduction in the efficiency of operation, wall thickness and material
strength. Obsolescence occurs as a result of continuous developments of new

components. In the first part of this article, an integrity modeling framework is discussed,

followed by a brief discussion of the i ion modeling using the Bayesian
prior-posterior analysis. An economic consequence analysis model based on component

replacement concepts is discussed further in detail. The annual equivalent cost is

by ining the failure, i ion and maij costs. The posterior

probability of failure is then bined with the annual equi cost of to
produce the operational life risk curve. The optimal replacement interval is the interval

to minit risk. By i at this interval, the risk of

operation will be reduced to the ALARP level. In this study, a case study of a pipeline
segment was presented. The optimum replacement intervals for a pipeline segment were
found to be 10 years for EC and 8 years for CFC. The smaller of these two values has
been selected as the optimum replacement interval for the ageing pipeline segment. The

replacement strategy entails the i 1 of rather than

performing maintenance. This model takes into account the effects of taxes, the
uncertainty and variability in the degradation process and the consequence parameters

using the Bayesian Monte Carlo simulations.
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Appendix 6.1

6.1.1 Flow of Liquid through a Hole in a Pipe

0, =4Cy\2p8.p,

Assume the hole diameter = Smm = 0.005m

Zd’ = i’ (0.005%) = 1.9635x 10 *m”

p = density of crude oil = 862 kg/m3 (32.60, API, www.simetric.co.uk/siliquids.htm)

kgm
Ns?

g, = gravitational constant (length mass/force time?), i. e., g, =1
P, =100psi = 689475.7N /m’
For corrosion, assume C, =1 (Crowl and Louvar, 2002)

Q, = AC,\2p8.p,
0, =1.9635x10 ¥ x1J2x862 x 1x 689475.7

Q, =0.677kg /s =17.784 barrels/hr

For cracking, assume C, = 0.61 (Crowl and Louvar, 2002)

0, =A4C,\2pg.p,
0, =1.9635x10"° x 0.61y2x 862 x 1 x 689475.7

Q,, =0.413kg /s =10.849 barrels/hr

6.1.2  Loss of by Corrosion

For corrosion, C,, = Ex PxD,,xQ,,xC,,

1w

where, C;, = present cost of lost commodity in dollars

C,, = cost of downtime calculated in dollars per barrel = $ 70 per barrel

255



D,, = duration of the loss of commodity (hour) = /2 day =12hr

B ility of equi d ding on equi dund

levels)=1 (assume there is no redundancy and components are in series).
E = average number of critical failures in life time=1 failure

0, = quantity of commodity loss per unit time (barrels per hour)

Cost of a pipe t due to

—1x1x 125 x L7340 STO

=$14939
L hr bl

The present cost: C,

6.1.3 Shutdown Cost due to Corrosion Degradation
The present worth, on an annual basis, C, = CuxQxT,
Unit cost of product, C, =$ 70 per barrel

T,,= 5 days (Including time to access, minor patchwork, testing etc.)

Maintenance delay, 7,
Cost of shutdown due to the corrosion failure of pipeline segments:

Quantity of affected production, Q = 17.784 barrel /hour = 426.816 barrels/day

Total loss due to @, = b$70 x 426.8{;6barrel
arre lay

x 5days = $149384
6.1.4 Spill Cleanup Cost due to Corrosion Degradation

Total cost of spill clean up, Cy. =0, xD,, xC,,

Unit cost of spill clean up, C,,, = $6508/tonne

Leakage through hole in a pipe due to corrosion failure:

Rate of spillage, 0, = 0.677kg/s = 2.437tonnes / hr

_ 2437tomes $6508
i onn

Therefore, C . 12hr x =$190336
1

nnes
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6.1.5 Nature Damage Cost due to Corrosion Degradation
The total loss of nature damage, C, =0, x D, xC,,,

Unit cost of spill clean up, C,,, = $5086/tonne

Leakage through hole in a pipe due to corrosion failure:

Rate of spillage, 0, =0.677kg/s = 2.437tonnes/ hr

$5086
peios
nnes

12hr =$148748

Therefors; G, =220 lomes
£ hr

6.1.6 Comprehensive Liability Cost

Severity | Descriptor | Cost per Injury (dollars)*

Category 1 | Minor 5,000

Category 2 | Moderate 40,000

Category 3 | Serious 150,000
Category 4 | Severe 490,000
Category 5 | Critical 1,980,000
Category 6 | Fatal 2,600,000

* Technical advisory, Motor Vehicle Accident Costs (Judycki, 1994), US Department of Transportation,

Federal Highway Administration.
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A dix 6.2 ion Cost Associated with Pipe Corrosion

6.2.1 Gaining Access

Cost of inspection labor per hour, C, = $80//r

Duration of work, ¢ = 3hr

Gaining access cost, C,, =3hrx$80/hr =$240

622 Surface Preparation (Washing, Purging and Coating Breakage)
Cost of inspection labor per hour, C, =$80/ hr

Duration of work, ¢ =12hr

Surface preparation cost, C,,, = 12hr x $80/ hr = $960

6.2.3 Inspection Cost

Cost of UT thickness measurements, C,

' = 12hrs @S80/ hr = $960

Cost of radiographic inspection of piping, C, =3hrs@$80/hr = $240

Cost of piping UT defect sizing, C,, = 10/rs @S$80/ hr = $800

Cost of piping magnetic particle inspection, C,,, = 12/rs @$80/ hr = $960

6.2.4  Technical Assistance

Cost of technical assistance, C,, = 3hrs @80 = $240

6.2.5 Logistics Cost

Logistic cost includes the cost of consumable, equipment rent, storage and transportation.
Logistics cost, C, =C_ +C, +C,

C, =$400, C, =$400, C,, = $400, . C, =$1200 (from an inspection company)
6.2.6 Total Cost of Inspection

Thus, for piping corrosion inspection, the associated total costs can be estimated by;

C; =Ciy +Cy, +C +C,, +C,,, +C; =$3840
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A dix 6.3 i Cost Associated with Pipe Corrosion

6.3.1 Gaining Access

Cost of gaining access for maintenance, C,,, =10hrs x$80/hr = $800

6.3.2 Surface Preparation (Coating Breakage, Cleaning, Purging with Gas)
Cost of surface preparation for maintenance, Cy,g, = 15hrs @$80/hr = $1200
6.3.3 Gauging Defects

Personnel cost, C,,, =10hrs @S$80/ hr = $800

Logistics cost, C,, = $400

Total cost of gauging for maintenance, C,, = C,,, +C,, =$1200

6.3.4 Minor Patch Repair Work
Spare/part’s cost, C,, =$2200

Cutting, welding, fitting, C,,, = 30hrs @S$80/ hr = $2400

Weld quality test and alignment, C,,, = 10hrs @S$80/ hr = $800

Cost of consumables, C,,. =$1000 (from an inspection company)
Technical assistance, C,,, = Shrs @80/ hr = $400

Total cost of minor patch repair, C,,, =C,, +C,,, +C,,, +C,. +C,, =$6800

Thus, for minor patch repair of concerned piping, the total costs are approximated by;
=$10,000

s = Cogy + Coap * Cogy +C
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CHAPTER VII
RISK BASED INTEGRITY MODELING FOR THE OPTIMAL
INSPECTION AND MAINTENANCE DECISIONS OF OFFSHORE
PROCESS COMPONENTS
Premkumar N. Thodi, Faisal I. Khan, and Mahmoud R. Haddara

Faculty of Engincering and Applied Science

Memorial University, St. John's, NL, Canada-A1B 3X5

PREFACE

This chapter discusses the optimization of i ion and mai strategy for
offshore process under ioratis iti The decision making
regarding the i ion and mai under inty is a ing task.

Structural degradation is a stochastic process, thus the probabilistic models are developed
to optimize the inspection and maintenance. The aim of RBIM is to minimize the risk of
failure associated with degradations and at the same time, maximize the inspection and

maintenance intervals to avoid unnecessary maintenance. To apply this model, the cost of

corrective maintenance should be high d to the predictive mai and the
component should be in the wear-out region. Both these conditions are prevailing in the
ageing offshore process components. This manuscript is reviewed internally by co-

authors and submitted for review to the Journal of Risk Analysis (March 2011).

An independent literature review on risk based inspection and maintenance has been

h model ped in

conducted by the principal author. The

Chapter V and the i model ped in Chapter VI are integrated



in this chapter by the principal author. The failure consequences are analyzed in terms of
cost incurred as a result of failure, inspection and maintenance. The cost of failure is
estimated under five headings; the loss of breakdown, the loss due to shutdown, the cost
of environmental cleanup, the cost of nature damage and liability. The inspection and
maintenance costs are estimated considering the: access, surface preparation, gauging
defects, inspection and maintenance, logistic and technical assistance costs. The RBIM

has been i and impl d by the principal author to achieve the

target of optimal inspection and maintenance strategy.

The rates of failure, i ion and mai costs are

ped to produce the
annual equivalent cost consequences. The estimated risk is plotted against the inspection
and maintenance interval. In the risk curve, the point at which the inspection and
maintenance interval is maximum (and where the risk is minimum) has been found out.
The risk to life from UC, PC, EC, SCC, CFC and HIC are developed and compared by

the principal author. The i ion and mai interval to the

minimum of them are designated as optimum interval. This quantitative model takes into
account the prior knowledge and NDT data using Bayes theorem, it is dynamic and it

performs well even though the d ion process follows j pairs. The

principal author prepared the first draft of this manuscript, which was later consecutively

revised and improved based on comments from the co-authors.
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ABSTRACT

Degradation of components of offshore process facilities poses a major threat to the
integrity of the facility and may lead to its complete failure. Failure of such facilities may
have catastrophic effects on human life, the environment, and financial investment. A
robust inspection and maintenance strategy mitigates the effects of structural
degradations and reduces the threats of failure. Such a strategy needs to take into account
the stochastic nature of failure caused by structural degradations. Risk-based integrity

modeling (RBIM) is a newly-developed methodology that aims to protect human life,

financial i , and the envi against the of failure. RBIM

the risk i with i and uses this as a basis for the

design of an inspection and maintenance strategy. The major structural degradations dealt
with are corrosion: uniform, pitting, erosion; and cracking: stress corrosion, corrosion
fatigue, and hydrogen induced cracking. The component’s degradation processes are

modeled using Bayesian prior-posterior analysis. Field non-destructive test data is used in

the analysis to update the prior ige of ion. The of failure
are modeled considering the costs of failure, inspection and maintenance. The cost of
failure includes breakdown loss, shutdown loss, the cost of spill cleanup, loss caused by
environmental damage and liability. The total annual equivalent cost (AEC) of operating
and maintaining the facility is the summation of annual equivalent costs of failure,

and mai Further, the i risk to the life of components is

d by bining the posterior p: ility and the AEC. As the overall risk curve
is a convex function of the maintenance interval, the optimum maintenance interval is the

global minimum point. In this article, the operational risk is reduced to as low as



practicable level and at the same time the inspection and maintenance intervals are

d to avoid y mai This model performs well even though the
degradation processes follow non-conjugate pairs. Bayesian Monte Carlo simulations are

used to model the uncertainty in the risk analysis.

Risk, integrity, i ili optimal
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7.1 INTRODUCTION AND BACKGROUND

In recent years, the optimization of mail planning using ic models is

gaining predominance due to the inherent limitations of i A large
number of articles have been published on the subject of maintenance optimization using
mathematical models "”. Most of them ' are based on lifetime distribution, the

Markov process and qualitative risk ranking. The main drawbacks of such models are:

jective being qualitative or i-quantitative, lack of enough data for estimating the
parameters of distribution, lack of a dynamic updating mechanism, lack of information on

failure consequences, and hence the lack of true risk estimation associated with its

operation. Risk based i is the latest P! in asset integrity
management. It takes into account the probability and consequences of a failure, as risk
minimization is the maintenance objective, as opposed to condition monitoring or cost
minimization. Some of the literature ""* has used Bayesian analysis in maintenance
management; however, this literature conveniently assumes there are conjugate pairs for
degradation process, for easy computation of posteriors, which is not the case in real life.
This introduces significant uncertainty in the analysis, and thus proposes sub-optimal
strategy. The prior and likelihood are often non-conjugate pairs in real-life degradation
processes, but, their modeling has not been reported so far in literature. Thus, there is a

need for a quantitative, risk based mai model based on the time-dependent

of and of failure caused by degradations.

Maintaining the integrity of process components has been a subject of research for many

ears ). The structural dation of is a major threat to
y 2 1)
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the integrity of offshore process facilities. Asset integrity management is the means of
ensuring that the people, systems, process and resources that deliver integrity are in place,
in use and will perform when required over the whole life cycle of the asset '*’. From the
historic database it was observed that the major causes of process component failures in
offshore facilities are the environmentally induced defects, such as different types of
corrosion and cracking ", For components in the operational stage, the design changes

or ions are often

thus, i ion and mai are the only

feasible measures for risk reduction . However, the extent of inspection and

maintenance is unknown due to the large inty and variability in
processes and failure consequences. The failure caused by structural degradations is a
stochastic process. Failure consequences include the failure, inspection and maintenance

Failure would include the loss of commodity due to

, ion loss due to shutdown, cost of spill cleanup and the legal fees and

penalties due to environmental damage and liability. All these parameters are stochastic
and required to be taken into account in the designing of an optimal inspection and
maintenance strategy. Risk-based integrity modeling (RBIM) is a newly-developed
methodology that aims at the protection of human life, financial investment and the

against the of failure ", The RBIM quantifies the level of

risk to which the individual components are subjected and uses this as a criterion for

the optimal i ion and maij strategy.

Leaks and ruptures are the principal cause of hydrocarbon release, blowout, fire and

explosions in offshore process facilities. The accident statistics reported for offshore
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systems on the UK continental shelf reported from the period 1990 to 2007 are: 836
hydrocarbon releases (with frequency 0.590), 17 blowouts (with frequency 0.012), 245

fire events (with frequency 0.173), 14 explosions (with freq 0.010), 20 leakages

(with frequency 0.014) and 24 structural failures '”’. The offshore hydrocarbon release
report 2 indicates that 25% of the total releases are due to corrosion, 9% of the total
releases are due to erosion, 24% of them are due to fatigue and 13% are due to
mechanical wear. In Canada, environmentally induced defects, such as metal corrosion,
stress corrosion cracking, hydrogen induced cracking etc. have caused 40% of the natural

gas pipeline failures and 38% of hazardous liquid releases ).

The cost of corrosion in the USA is observed to be 3.4 percent of the Gross National
Product (GNP). The direct cost of corrosion in industrialized countries in billions of USD
is reported ' USA (303.76), Japan (59.02), former USSR (55.01), Germany (49.26),
UK (8.51), Australia (7.32) and Canada (3.38). These figures show that material
degradation of assets is an economic problem, which needs to be addressed on a priority
basis .

This paper presents a methodology and models for risk based maintenance optimization.

The age-based asset integrity threats are identified and modeled. In order to model

and variability in the degradation processes, hastic Bayesian prior-
posterior analysis has been used. The consequences of failure are modeled using

economic consequence analysis. The risk to operational life is used as a criterion for

decision making regarding the i ion and mai interval. The i ing rate

266



of failure cost and d ing rates of i ion and mai costs with respect to

inspection and maintenance intervals are used to minimize the risk. This quantitative risk

model accounts for uncertainty in asset integrity with Bayesian Monte Carlo analysis.
7.2 ASSET INTEGRITY THREATS IN PROCESS COMPONENTS

Asset integrity is defined as the ability of an asset to perform its required function
effectively and efficiently whilst protecting health, safety and the environment !*). Past
studies indicate that the major asset integrity threats in pipelines are ) third party
damage, environmentally induced defects, material and fabrication defects and
operational errors. Most of these degradations may be reduced by implementing better
design procedures, effective quality assurance and quality control programs, better
programs for personnel training and by imposing stringent policies and regulations.
However, a major share of process components and pipelines in offshore fail primarily
due to environmentally-induced (age-based) defects, such as different types of corrosion
and cracking " ' ') In reality, the time-based structural degradation processes are
stochastic in nature. This makes its precise modeling with predictive capability a

challenging task. This is addressed in this article.

Corrosion is the result of a chemical reaction between a metal or alloy and its
environment which causes loss of the properties of the metal or alloy, most importantly
its strength. ' The extent of deterioration per unit time is expressed in terms of
corrosion rate. Corrosion may be either uniform, pitting or erosion types. Uniform
corrosion (UC) is characterized by the corrosive attack proceeding evenly over the entire

surface area, resulting in thinning of wall thickness until failure. The localized attack of a
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corrosive environment on an otherwise resistant surface produces pitting corrosion (PC).
It is confined to a point or small surface area that takes the form of a cavity. A joint
action involving the corrosive environment and erosion in the presence of a moving
corrosive fluid is known as erosion corrosion (EC). It leads to the accelerated loss of
material. The brittle fracture of a normally ductile alloy, in the presence of a corrosive
environment or cyclic loading, is known as cracking . The amount of cracking per unit
of time either in length or depth is expressed as the cracking rate. Cracking may be either
stress corrosion, corrosion fatigue, or hydrogen induced types. Stress corrosion cracking
(SCC) is the cracking induced from the combined influence of static tensile stress and a
corrosive environment. The tensile stresses may be in the form of directly applied stresses
or in the form of residual stresses. The process in which a metal fractures prematurely
under conditions of simultaneous corrosion and repeated cyclic loading at lower stress
levels or fewer cycles is known as corrosion fatigue cracking (CFC). Hydrogen induced
cracking (HIC) refers to the severe loss of ductility caused by the presence of hydrogen in
the metal. Hydrogen absorption may occur during electroplating, welding, pickling or
other processes that favor the production of nascent hydrogen. Different types of

structural degradation processes were depicted in Figures 1.1 and 1.2.
7.3 RISK-BASED INTEGRITY MODELING

The risk to life of a component is a function of the combination of its Probability of
Failure (PoF) and Consequence of Failure (CoF). Thus, the main steps in an RBIM

program are the estimation of the ility of degradati lated-fail and the

likely consequences of such failures. In RBIM, the probability of failure is estimated

using stochastic modeling of all identified degradations. Bayesian analysis is used for
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generating a dynamic model, which facilitates the system-learning process with the
arrival of new data over a period of time. Field non-destructive test data is used in the
model. Consequence analysis estimates the economic consequences of failure.
Consequence analysis is based on the dollar cost incurred as a result of failure. The

RBIM is a quantitative, risk-based mai model that takes into account the

stochastic nature of the structural degradation processes and failure consequences. An
effective RBIM strategy should reduce the risk of operating the component to as low as
reasonably practicable (ALARP) level. An overall framework for the RBIM is presented

in Figure 7.1. The framework consists of the following tasks (Figure 7.1): data collection

to identify the potential hani b modeling to
develop the best suitable prior, likelihood and posterior ility models,
analysis to estimate the failure inati of i ion and

‘maintenance intervals, which optimize the operational risk, and testing and validation.
7.3.1 Data Collection

There are various testing techniques available for collecting integrity data. Two of these

are ive testing and ive testing (NDT). NDT is useful to
collect the data from large and expensive process components. The commonly used NDT
techniques are ' visual inspection, liquid penetrant inspection, magnetic particle
inspection, eddy current testing, ultrasonic testing and radiography. In this article,

component, the service (sweet or sour), the product being used or transported and

ultrasonic testing (UT) is used for detecting and quantifying the unwanted

and separations in the wall thickness of offshore process components.
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732 ification of D it it

The functional details of the system, subsystem and components are analyzed to study the
potential degradation mechanisms. The data to be analyzed includes the material of the
environmental conditions, such as pressure, temperature and humidity. Furthermore, the
wall thickness data obtained from NDT is used to identify the degradations. If the
degradation is a uniform loss of material, regression analysis has been used; and if it is

localized attack, extreme value analysis has been used to develop the rates of degradation

(1,14)

7.3.3 Stochastic Degradation Modeling

Degradation modeling is performed based on Bayesian analysis. Statistical Bayes’
theorem is used to learn about the system more precisely with the arrival of new
inspection data. Since the structural degradation is a random process, the NDT data
indicates large uncertainty and variability. This uncertainty and variability may be best

modeled by ic models. The inty in ions can be best minimized by

inferring prior knowledge about the system, and revising the present knowledge with new
information (NDT data). Bayes' theorem states how to update the prior probability, p(6),
with a likelihood probability, p(y/@), to obtain the posterior probability as:

PO(10) -

pO/y)=
[p@)p(y10)d0

The posterior probability density p(€/y) provides the latest information, after viewing

the data. It provides a basis for the inference on the degradation parameter 6 !". The

prior probability, which is the initial ion about the ion, is ped first

(9 Further, these prior models are combined with NDT data as the likelihood function to
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develop posterior probability. The posterior model is a system-learned model to predict

the future failure ility of degradi hastic degradation modeling

for potential corrosion and cracking processes is discussed in Section 7.4.
7.3.4 Economic Consequence Analysis

The failure consequences are analyzed in terms of operational-life cost incurred as a

result of the failure, i ion and mai The of failure include the

loss of a commodity due to breakdown, loss due to shutdown, the cost of spill cleanup,
the cost of nature damage and liability !”. The inspection cost depends on the method of
NDT inspection, type of component, cost of gaining access, surface preparation and
logistics costs. The maintenance cost depends mainly on the type of repair; i.e., minimal
repair or component replacement, along with the cost of gaining access, surface
preparation, gauging and coating restoration. Further, the total cost, also known as annual

equivalent cost (AEC) of operating and maintaining the is d. The

AEC is a summation of expected annual equivalent costs of failure, inspection and

maintenance. Details of consequence analysis are presented in Section 7.5.

7.3.5 Optimization of ion and Mais

In the proposed risk-based model, the estimated posterior probability of failure and the

55

are d to produce the ional risk in the service life.
The cumulative probability density of structural degradations is combined with the AEC

of operating and maintaining the to plot the ional risk curve. From the

risk curve, optimal inspection and maintenance strategy is obtained by minimizing the
overall risk. The optimum inspection and maintenance interval thus obtained satisfies the

two necessary criteria of maintenance: first, the risk is reduced to ALARP level; and
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second, the maintenance interval is maximized, thus avoiding unwanted maintenance and

its iated costs. The ped inspection and mai risks are d with

the company’s operating budget, as risk acceptance criteria. Details of the inspection and

maintenance interval optimization are presented in Section 7.6.

7.3.6 Testing and Validation

To the appli of loped RBIM, a practical case study is presented.

The probabilities of piping component (pipes, bends, tees etc.) failure are modeled using
the field NDT data, associated with an ageing process facility operating in the North Sea.
The consequence of failure models are tested using the unit cost data of failure,
inspection and maintenance, obtained from an inspection and maintenance company

operating in the North Sea. Results of testing and validation are presented in Section 7.7.

7.4 STOCHASTIC DEGRADATION MODELING

As reported in Section 7.3.3, the life ing structural ion processes are
modeled using Bayesian analysis. Statistical Bayes’ theorem provides a formal and
structured approach that can be used to update the prior knowledge of degradation

processes based on data obtained through field NDT inspections.
7.4.1 Prior Probability Modeling

In the context of degradations, the prior probability refers to the initial understanding of
each type of degradation mechanism. Although the choice of prior is often subjective, a
rational consensus may be achieved by analyzing historic data from the same or similar
installations. To develop the prior probability models for each type of corrosion and

cracking i several ility distributions have been tested using the data
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extracted from relevant literature. Details of the literature and statistical tests performed

for developing the degradation prior models are presented elsewhere ¥,

The prior ility models are ped for

process, such as, UC, PC,
EC, SCC, CFC and HIC. It is observed that, for UC, the 3P Weibull; for PC, the Type 1
Extreme Value; for EC, the 3P Weibull; and for SCC, the 3P Weibull or Type 1 Extreme
Value; for CFC and HIC, the Lognormal and Weibull are observed to be the ideal
candidates . The goodness of this fit is tested using probability plots and Anderson-
Darling (A-D) tests. Then, the model parameters are estimated using the methods of least

square (LS) and maximum likelihood estimates (MLE) .

7.4.2  Likelihood Probability Modeling

The integrity inspection data from an ageing offshore process facility has been used to
develop the likelihood probability models for different types of corrosion mechanisms.
The facility has different systems; a gas condensate system exhibiting UC, a gas export
system exhibiting PC, and a high pressure drilling mud system exhibiting erosion type
corrosion. Inspection data includes the minimum and average wall thickness acquired
during the period 1997 to 2003. The nominal diameters of the facility’s components
varied from 19.05 to 508.0 mm. The inspection was carried out using the ultrasonic
testing (UT) technique. A typical sample isometric drawing related to the gas export
system is presented in Figure 7.2. Since no such data were available for cracking, such as

SCC, CFC and HIC, the data from literature is used in the analysis.
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Fig. 7.2. Sample Gas Export System Piping Isometric Drawing

The inspection data (NDT) is first analyzed to estimate the degradation rates. Then, these
degradation rates are tested with standard probability distributions to develop the
likelihood probability models. The method outlined in article " has been used to compute
the corrosion rates from the available wall loss data. The collected data is first analyzed

to identify uniform or localized degradation. In the case of uniform degradation, a time
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dependent regression analysis, and in the case of localized degradation, an extreme value
analysis has been carried out for estimating the rates. Details of corrosion rate estimation
and the probability testing may be obtained from article “. Similar to priors, the
likelihood probability has also been observed to be of the same form. That is, for UC, 3P
Weibull; for PC, Type 1 Extreme Value; for EC, 3P Weibull or Type 1 Extreme Value;
for SCC, 3P Weibull; and for CFC and HIC, the Lognormal and Weibull distributions are

observed to be more suitable likelihood models.
7.43 Posterior Probability Modeling

The methods for computing posterior models are '¥: analytical approximations, data
augmentation methods, Monte Carlo direct sampling and Markov chain Monte Carlo
(McMC) methods. The degradation priors and likelihoods, such as Weibull, Type 1
Extreme Value and Lognormal distributions with two and three parameters do not have
conjugate prior-likelihood pairs; therefore, the posterior probability estimation cannot be
performed in closed form. In such cases, the McMC simulation or analytical
approximation methods are the best ways to determine the posterior distributions >, In
this study, the simulation based Metropolis-Hastings (M-H) algorithm, which is a McMC
method; and Laplace approximation, which is an analytical method, are used for this
purpose. Fundamentals of the M-H algorithm and Laplace approximation are presented in

below section. The derivation and implementation details are reported elsewhere "',

Metropolis-Hastings Algorithm
The M-H algorithm is a rejection-sampling algorithm used to generate a sequence of
posterior samples following a probability distribution that is difficult to sample directly

@329 This sequence is used in McMC si ions to i a distribution or to
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compute an integral. In Bayesian icati the ization factor i of
equation 1) is difficult to compute, so the ability to generate posterior samples without
knowing this constant of proportionality is a major virtue of this algorithm . The
algorithm generates a Markov chain in which each state x*' depends only on the
previous sample state x'. The algorithm uses a proposal density g(x',x"), which depends
on the current state x', to generate the new proposed sample x'. The proposal is accepted

as the next value (x' = x') if a(x',x") drawn from the uniform distribution u(0,1) is:

PO)g' /) o
PG

ax,xt)<
If the proposal is not accepted, then the current value of x is retained; i.c., x""' = x'. The
proposal density could be a multivariate normal distribution centered on the current state
x5 q(x',x")~ N(x',0”), where, g(x',x') is the probability density function for x'
given the previous value x'. This proposal density generates samples centered around the
current state with variance o>, The acceptance of generated samples will be based on
equation (2). Algorithm implementation details can be obtained from articles !'+2"+252%),
Laplace Approximation Method

When direct estimations are difficult, the Laplace Approximation (LA) is a useful tool for
estimating the posterior parameters. It is based on a Taylor series expansion around the
maximum likelihood estimate value, ignoring the negligible terms and normalizing. The
best references for approximating the Bayesian posteriors with the Laplace method 7
are articles ®* **). The implementation details of LA method may be obtained from the

article ', A computable approximation for the posterior mean and variance of smooth

function of the parameter that is nonzero on the interior of the parameter space has been
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introduced ®?. Let -h(6) be a smooth, positive function on the parameter space, with a
‘maximum at its mode, & . The posterior mean of any function g(¢)can be written as

Ig(g}f "o g9

W , where, e ™ =1(y/6).p(0) 3)
e

i =Eg0)y]=

The LA method is to i the and i of the above integral
by approximating normal curves centered at the posterior mode and having variance
equal to minus the inverse of the second derivative of the log posterior density at its
mode. It produces reasonable results as long as the posterior is dominated by a single

mode ??. By Laplace approximation, the mean and variance may be obtained as '"*2:

E(g(0) = %‘ {exp[—nh* (0*)]} /{exp(-nh(@)]} @

V(g)=5" = E[g(0)']- E[g(O)F )
where, o * is the mode of —nh* (6*) and o is the mode of —nh(6) "".
Both the M-H algorithm and the Laplace approximation method are coded in Matlab and

used for developing the iors of the i ion priors. In order to

calibrate the codes, the known conjugate pair parameters are used as true estimates. The
following conjugate pairs are used for the purpose of testing: Normal-Normal, Gamma-
Gamma, Gamma-Normal and Gamma-Poisson ") It is observed that the M-H algorithm
produced better results compared to the Laplace approximation "), The estimated sample

posterior parameters using the M-H algorithm are presented in Table 7.1.
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Table 7.1. Degradation Posterior Probability Models and their Parameters

Structural Posterior Probability Models and their Parameters
Degradations Types of Model Shape | Scale | Location

uc 3P Weibull 1.2660 | 0.1017 0.0079

PC Type 1 Extreme Value | 1.7280 | 1.1070 -

EC 3P Weibull 2.7070 | 0.0421 -0.0065
scc 2P Weibull 1.6590 | 1.9500 -
CFC Lognormal 2.7700 | 2.6410 -
HIC Lognormal 14.190 | 10.050 -

7.5 ECONOMIC CONSEQUENCE ANALYSIS

The purpose of RBIM is to minimize the risk associated with degradation-related failures.
To provide a consistent measure of risk, all consequences are represented in dollars. That
is, risk is interpreted as the expected loss due to a certain event or groups of events ”).

To minimize the likelihood of failure, components need to be inspected and maintained at

every possible interval. However, if the inspection and mai is too

frequently, it will involve large costs and if it is performed too rarely, it will result in

failure followed by an unpl d shutd and costly i i Therefore,
the aim here is to find an optimal maintenance strategy, which takes into account the

component’s condition and actual risk. Typically, the failure consequences include the

of failure, i ion and
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7.5.1 Economic Consequences of Failure

The operating and maintenance costs increase throughout the life of a facility due to
various degradation processes. Failure cost is the cost associated with the loss of a facility
due to deterioration failures. The failure cost may be divided into corrosion and cracking
costs. It is equal to the sum of the failure costs, operating costs, and the cost of lost
production, together with the material salvage value. It is assumed that a component
failure is followed by an immediate repair to prevent any system failure scenario with
much higher consequences. Degradation-related failures may lead to increased risk of
loss of the entire unit through a chain of reactions. In such cases event tree analysis will
be required to assess the system-level consequences. In this study, the component is

assumed to be independent and isolated. Further, the economic consequences of a

due to , ion loss due to

component failure include loss of
shutdown, cost of spill cleanup, legal fees and penalties due to environmental damage
and liability "

Loss due to Breakdown

The leak or rupture of the component’s wall thickness by degradation is a main cause for
breakdown. Thus, breakdown costs are financial losses, which are associated with losing
the commodity. This cost depends upon what product is being processed, the rate of
leakage and its current market value when the failure occurs. The focus in this article is
on a topside process piping in the North Sea and the product is crude oil. The market
value of crude oil is assumed to be $ 70 per barrel in this article. To estimate the rate of
leakage, the source model, that is, the flow of liquid through a hole in a pipe, is used "

The following formula may be used to estimate the cost of breakdown '7*%:
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Cyp =ExPxD,xQ,xC,, ©)
where, C,, = the cost of the lost commodity in dollars, C,, = cost of downtime
caleulated in dollars per barrel, 0, = quantity of commodity loss per unit of time (for

e.g., barrels per hour), D,, = duration of the commodity loss (hours), P = probability of

loss of the ity ing on the i levels)=1

there is no redundancy and the components are in series), £ = average number of critical
failures in the lifetime. Estimated cost of piping degradation is presented in Table 7.2.
Loss of Production due to Shutdown

The main factor influencing the cost of failure is the facility’s unavailability for

and mais can be planned, whereas failures may lead to an
unplanned, immediate shutdown of the facility. The cost of such a shutdown is dependent

on the number of days of shutdown, the rate of loss of production and the value of

products at the time of failure. Thus, the shutds cost is calculated by ining the
unit cost of the product, loss of affected production and maintenance delay time as 7>
Cpy = CuxQxT, )

is the unit cost of product

where, C,, is the cost of shutdown (dollars), C,
(dollars/barrel), Q is the quantity of affected production (barrels/day) and 7), is the

maintenance delay (days). The estimated cost of piping degradation is presented in Table

72:
Cost of Spill Cleanup

The cost of an oil spill cleanup depends on a number of factors, such as, the type of oil,

the amount spilled and rate of spillage, the characteristics of the affected area, weather
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and sea conditions, local and national laws, time of the year and the spill cleanup strategy
6233 predicting the unit cost of spill response is highly uncertain since the factors
impacting the cost are complex. In the present article, crude oil spillage in offshore is
considered. Based on the location, the average per-unit offshore oil spill cleanup cost is
$6508 per tonne ). The cost of environmental cleanup comprises the unit cost of spill
cleanup and the total quantity released due to failures caused by degradations. Further,
the total quantity released depends on the rate of spillage and the duration of the release.
The following formula may be used to estimate the cost of spill cleanup:
Cye=0,%xD,xC,, @®)
where, C,, is the unit cost of spill cleanup (dollars/tonne), @, loss of product per unit
time (tonne/hour) due to corrosion or cracking, and D, is the duration of spillage (hour).
The cleanup cost thus estimated is presented in Table 7.2.

Loss due to Environmental Damage

The size of penalty as a result of damaging the environment is difficult to estimate,
because costs increase with the scope of failure. The failure modes developed could
escalate to more complex system failures leading to significant environmental damages.
However, approximate assessments considering the quantity released and the unit penalty
rate are possible *. The environment damage due to oil spillage includes loss of marine
as well as coastal habitat, soil pollution, damage to agriculture land and adverse health
impacts ®**¥, The per-unit cleanup cost of environmental damage is $ 5086 per tonne of
0il ®, This cost includes the cleanup cost of damage to the coastal ecosystem, consisting
of near shore and shoreline response. The cost of environmental damage comprises the

unit cost of nature damage and the total quantity released. The total quantity released
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depends on the rate of release and the duration of spillage. Thus, the total cost associated
with damaging natural resources by failures may be estimated using the formula:

Cjp =Q0nxDpyxCoy ©)
where, C,, is the unit cost of nature damage (dollars/tonne), 0, is the release of product
per unit time (tonnes/hour) due to corrosion and cracking, and D, is the duration of the
release (hour). The nature damage cost due to degradation is presented in Table 7.2.

Cost of Liability

The injuries and deaths caused by process component failure have the most severe
implications possible. The loss of life or pain of an injury is impossible to quantify, yet,
the cost incurred due to workers compensation and corporate liabilities shall be taken into
account ®, Apart from that, safety-related system failures have other immediate
implications, such as legal fines and penalties for professional negligence. The estimates
of liability costs that result from motor vehicle accidents are routinely published by

several public and private izati The US D of Ti ion published

a technical note %

on comprehensive motor vehicle accident costs which is adopted as a
baseline in this article. The comprehensive liability cost includes medical costs,
emergency services, vocational rehabilitation, lost earnings, administrative costs, legal
consulting fees, pain and lost quality of life. For a typical piping failure, the liability is
assumed to be a moderate injury, causing a lump sum payout of $ 40 000 in this article.
Total Cost of Failure

The total cost of failure (C,) is the summation of loss of breakdown, loss due to

shutdown, cost of spill cleanup and costs of environmental damage and liability, as:
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CpptCpy+Cs+Cp +Cy (10)
This total cost is based on two assumptions: the component is isolated, and the
component failure leads to a system failure with subsequent unavailability. The estimated
values for failure cost are presented Table 7.2. The rate of failure cost due to

degradations, over the service life of n years, with varying inspection and maintenance

intervals may be calculated using the following equation:

PP |
FC(/)fC,; an
where, j is the inspection and maintenance interval, which varies from 1 to n years.

752 E ic C of

The NDT techniques are used for the detection and quantification of unwanted
discontinuities and separations in materials due to degradations. This quantitative
information is achieved by detecting, locating and sizing of any detected flaws. Several
types of defects exist in components, such as corrosion, cracking, inclusions, dents and

holes. Defect ification requires i skill and i and the use of

more than one NDT technique. Based on literature '® *, the best suitable inspection
methods for corrosion and cracking are identified, and their corresponding dollar costs
are estimated. The unit costs of the NDT techniques obtained from an inspection
contracting company have been used in the analysis.

Cost of Degradation Inspection

The NDT technique is used to detect and quantify the extent of wall loss, pit depth and
surface cracks as well as coating breakage. The inspection costs depend on how much

area to inspect from a risk perspective. The inspection cost includes the cost for gaining
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access to the degraded component, the cost for surface preparation, personnel cost for
inspection, the cost associated with technical assistance, the cost of consumables and
chemicals, and the logistics cost. In this article, it is assumed that the proposed inspection
method is able to detect the presence of corrosion discontinuities, and surface or

subsurface cracks. For piping (pipeline segments, bends and tees), the suggested

inspection methods are UT thickness and radi hic i ion (RI) for
corrosion, and magnetic particle inspection (MPI) and UT defect sizing for cracking '
%), The cost of each inspection activity is estimated using the per-unit personnel cost, and

the total duration of i ion 1", Cost iated with piping i ion (C, ) is 7

€ =Cig+Cip +Cy +C, +Cy + Gy 12)

where, C,,, = cost of gaining access, C,,= cost of surface preparation, C,

. = costof UT

defect sizing, C, = cost of technical assistance

= cost of radiographic inspection, C,,
and C, = cost of logistics (equipment storage, rent and transportation). The cost of UT

thickness measurements, C,, =C,, xt, whereas C,, = personnel cost for UT thickness

measurements per hour, and ¢=total duration of inspection in hours. The estimated costs
for corrosion and cracking are presented in Table 7.2. On an annual basis, the rate of
inspection costs tends to decrease with the increase in inspection and maintenance

intervals. This decreasing trend may be modeled using the following equation:
. n
1C(J)=Cr; (13)

where, j is the inspection interval, /C(j) is the inspection cost in the ;”interval, and n

is the component service life in years.
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753 E ic C of

This is the cost associated with restoring the components. To ensure safe operation,
maintenance needs to be performed at very small intervals. However, it is impractical to

have frequent maintenance due to large costs, the possibility of maintenance-induced

errors, and the iated plant ilability. To optimize mai the following
necessary conditions must be satisfied: the cost of maintenance should be greater after
failure than before, and the hazard rate of the component should be increasing, i.e., the
component should be in the wear-out region. This article focuses on predictive

maintenance of process Predictive i estimates  through

diagnostic tools, such as NDT techniques and probabilistic models, when a component or
part is about to fail and should be repaired or replaced; thus reducing costly corrective

maintenance. It covers the cost of necessary minimal repair, replacement, and material

costs iated with i ion and mai Risk-based predicti i is
possible only because the degradation-induced failures can be predicted with a certain
probability.

Cost of Degradation Maintenance

Maintenance may be either a minor patch repair task or the complete replacement of a
degraded component. For all types of corrosion, minor patch repair work of the affected
area is considered, and for any types of cracking, immediate component replacement with
necessary repair is considered. Maintenance task includes access to the degraded part,
surface preparation, cutting and removal of parts, assembling, welding, testing and
restoring the protective coating. Thus, in addition to the cost of repair and replacement,

the personnel and logistics cost related to transportation, storage and rent of facilities also
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should be included. The cost of each maintenance activity is estimated using the unit cost

of maintenance personnel and the total duration of mai Details of the
have been presented elsewhere . The total cost associated with piping maintenance for
degradation may be estimated as:

Cut = Cugg + Cogp + Cogy + Cpy (14)

where, C,,., = cost of gaining access to the degraded component, C,,, = cost of surface

mgn
preparation, C,,, = cost of gouging defects, and C,,, = cost of minimal repair or

replacement. Where, the repair (cutting, welding and fitting) cost, C,., =C,, xt,

whereas the C,

ler

is cost of labor for repair in dollars per hour, ¢ is the total repair time in
hours. The rate of maintenance costs decreases with the increase in maintenance intervals
over the service life. This decreasing trend may be modeled using the following equation:

MC(j)=Cy 3 (15)

where, j is the inspection interval, MC(j) is the maintenance cost for the j”interval,
and n is the service life in years. The cost estimates associated with piping degradation
(corrosion and cracking) is presented in Table 7.2.

7.5.4 Annual Equivalent Cost of Degradations

The annual equivalent cost (AEC) of operating and maintaining the component is the
summation of the rate costs of failure, inspection and maintenance, and is estimated as:

AEC(j) = FC(j) + IC()) + MC(j) (16)
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Due to the increasing trend of rate of failure cost and the decreasing trends of rate of
inspection and maintenance costs, the AEC v/s maintenance interval will be a convex

function.
7.5.5 Probabilistic Cost Analysis

Uncertainty and variability in consequence analysis are modeled with probabilistic
analysis using Monte Carlo simulations. For simulation, the total cost of component

failure, i ion and mai is i to be a Gaussian distribution with the

estimated mean. The coefficients of variation of costs are assumed to be 2.5%. The
estimated mean and standard deviation values of the piping degradation costs are reported

in Table 7.2.

Table 7.2. Probabilistic Piping Degradation Costs used in the Economic Analysis

Structural Cost divisions Corrosion cost ($) Cracking cost ($)
degradation Mean Std. dev | Mean | Std.dev
Corrosion Total cost of failure 543 407 13585 | 438235 | 10956

(UC, PC, EC) | Total cost of maintenance | 10 000 250 15000 375

& Total cost of inspection | 3840 9% 4400 | 110
Cracking Salvage value 0 0 0 0
(SCC,CFC, | Annual rate of interest 8%
HIC) Service period 30 years
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7.6 OPTIMIZATION OF INSPECTION AND MAINTENANCE

The AEC has been combined with the cumulative density function (CDF) of the posterior
probability to estimate the operational life risk as shown in equation (17). Thus, finding

the optimal inspection and maintenance interval is reduced to finding the value of

and mail intervals that minimizes the ional risk. At the optimal
risk point, the risk will be reduced to as low as reasonably practicable (ALARP) level,
which at the same time ensures the safety of the facility’s operation.
R()=Flp(©01y.)]x AEC() a”n
where, R(j) is the risk of failure due to degradation (in dollars) in the ;* interval,

F[p(0/y),j] is the CDF of posterior probability of failure and AEC is the annual

qui cost, ing to the i ion and mai interval, j.

The operational risk curve is observed to be a convex function of the component’s service
life. A search is conducted to identify the minimum risk point, and the interval of this
minimum risk is considered as the optimal inspection and maintenance interval. The
optimum inspection and maintenance interval thus obtained satisfies the two necessary
criteria of optimal maintenance: one, the risk is reduced to ALARP level; and two, the

interval is

thus avoiding unwanted maintenance and its

d costs. The i ion and mai risk in dollars is compared with the
company’s operating budget, as risk acceptance criteria. The results of estimated risk due

to UC, PC, EC, SCC, CFC, and HIC of process components are discussed in section 7.7.
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7.7 RESULTS AND DISCUSSIONS

Results of analysis are discussed under three headings: stochastic degradation modeling,

analysis and optimization of i ion and
7.7.1 Stochastic Degradation Modeling

Sample results of the stochastic degradation modeling are presented in Figures 7.3 to 7.8
D The prior and likelihood models for the identified degradations, such as UC, PC, EC,
SCC, CFC and HIC, are observed to be of the same type. Since these likelihoods are
revising priors, the posteriors also converge to the same type of distribution. The
posterior estimation based on the M-H algorithm converged to satisfactory results. The
first half of the simulated samples is ignored, as these samples describe a transient state.
The remaining samples which describe a steady state condition are used in the analysis.
Laplace approximation is computationally intensive; it is not effective when using
distributions with more than two parameters. The error accumulates in the variance
estimation due to the second order terms in the computation. Laplace approximation
diverges as the parameter size is either too small or too large due to numerical instability
resulting from the use of higher order terms in the estimation. Therefore, for developing

the posteriors of structural degradations in process components, the Laplace

method is not Further, the M-H algorithm produced better
results compared with Laplace approximation, and hence it was used for the posterior
development of degradation priors '"’. While using the M-H algorithm, the change in the

value of the location parameter from the prior to the posterior was observed to be

insignificant. Thus, instead of using a th model, a t model
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may be used

to develop posteriors and the location parameter may be added

subsequently.
Distribution Plot
Weibull
8 Shape Scoe Thveh
7
6
5
z
84
&
3
2
1
00 01 02 03 04
Corrosion Rate (mm/year)
Fig. 7.3. Sample Prior and Posterior Distributions for Uniform Corrosion
Distribution Plot
Smallest Extreme Value
06
05
04
g 03
02
01
50 25 0.0 25 50
Corrosion Rate (mm/year)

Fig. 7.4. Sample Prior and Posterior Distributions for Pitting Corrosion
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7.7.2  Economic Consequence Analysis
Sample results of the economic consequence analysis are presented in Figures 7.9 to 7.14.
The rate of failure cost is observed to be an increasing function of the inspection and

maintenance interval. The rate of inspection and maintenance costs is found to be a

ds function of i ion and mai intervals. Further, the expected AEC
of operating and maintaining the are d using si i The AEC is
found to be a convex function of i ion and mai interval. The 1

risk curve is produced by combining the CDF and AEC to minimize the risk.
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7.7.3  Optimization of ion and Interval

The sample results of operational life risks due to corrosion and cracking are presented in
Figures 7.15 to 7.20. These Figures show overall risk in dollars due to various structural
degradations, such as UC, PC, EC, SCC, CFC and HIC, plotted against the inspection and
maintenance interval. On the risk curve thus developed, the point where the risk is
minimal is defined as the optimum maintenance interval for the component with respect
to that particular degradation process. The degradation processes are assumed to be
independent of each other and isolated. Also, it is assumed that the minimal repair for
corrosion leaves the system in a state similar to its state just before its failure, whereas the

replacement for cracking brings the system back to an as good as new condition. With

respect to the d piping degradati the d optimal i ion and
maintenance intervals are reported in Table 7.3. The optimum maintenance interval is the
time to the next inspection and maintenance starting from now onwards. Around 10 000

iterations are used to produce operational risk curves, shown in Figures 7.15 to 7.20.

Table 7.3. Optimum ion and Mai Interval for the C
Process Deterioration Source of | Optimum Maintenance
Component Process Result Interval (years)

uc Figure 7.15 5

Piping PC Figure 7.16 4

(straight pipe, EC Figure 7.17 5

bends, tees) scc Figure 7.18 6

CFC Figure 7.19 4

HIC Figure 7.20 5
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Fig. 7.18. Operational Life Risk Curve due to Stress Corrosion Cracking
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7.8 SUMMARY AND CONCLUSIONS

This article presents methodology and models using the risk based integrity modeling
framework capable of making optimal maintenance decisions for offshore process

components. Structural degradations are random processes and thus, probabilistic models

are to predict failure ‘hani The life

degradation processes are identified as different types of corrosion and cracking. The
degradation processes include UC, PC, EC, SCC, CFC and HIC. These structural
degradations are modeled using prior distributions, which are subsequently updated using
NDT data to posterior distributions through the use of Bayes’ theorem. The simulation
based M-H algorithm and analytical Laplace approximation methods are used to develop

the posteriors. Since these posterior models are based on real life NDT data, they provide

more reliable and accurate ictions for the future ions of

The first part of this article discussed the development of an RBIM framework using the
potential degradation mechanisms. The prior distributions for various degradation
processes are developed based on the data extracted from literature. The relative accuracy
of the prior model is tested using probability plots and A-D tests, and the parameters are
estimated using the methods of least square and maximum likelihood estimates. The
model was applied to a real life case study, using field NDT data from an ageing offshore

process facility. Literature data is used for estimating the likelihoods of cracking.

The posterior ility models are then ped. The use of a sil ion method is

necessitated because none of the prior-likelihood models fall into the natural conjugate
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pairs of the exponential family. Two MATLAB codes, one using the M-H algorithm and

the other using the Laplace imations, have been ped and used to compute
the posterior distributions. These codes are calibrated using known conjugate pair

estimates. The MATLAB codes performed well for Weibull, Lognormal and Type 1

Extreme Value distributions with two and three The posterior
thus developed is useful in assessing the potential risk to the life of component. Further, it
has been observed that the rejection sampling based M-H algorithm is the more suitable
method compared with the Laplace approximation for posterior estimation of
components. Using the M-H algorithm, it is observed that the posterior probability model
that can be used to estimate the future failure probability due to the UC is 3P Weibull; the
PC is Typel Extreme Value, and the EC is by 3P Weibull. Similarly, the SCC
degradation can be best modeled by Weibull; the CFC and HIC by Lognormal and

Weibull distributions.

An economic consequence analysis model based on the component’s minimal repair and
replacement concept is discussed. The consequences of failure are estimated by
developing the cost of failure, inspection and maintenance. The cost of failure includes
the loss due to breakdown, loss due to shutdown, the cost of a cleanup strategy, loss of
nature damage and liability. Then, the CDF of posterior probability and AEC are

combined to produce the operational risk curve.

The optimal i ion and mail interval is ined from the i risk

curve at the point corresponding to the minimum risk. In this article, the optimum
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inspection and maintenance interval is observed to vary from 4 to 6 years for different
corrosion and cracking processes. The smaller value (4 years) should be considered the
optimum maintenance interval. This interval should be revised as new NDT data is

obtained. The developed model may be applied to the optimization of inspection and

even though ions follow j pairs. This
model could be refined further by incorporating the actual costs and rates of interest

based on the market value at the time of analysis.
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CHAPTER VIII

SUMMARY, CONCLUSIONS AND NOVELITIES

8.1 GENERAL

The development of an optimal maintenance strategy taking into consideration of the

ding the age-based degradation processes is critical to the safe
operation of offshore process facilities. During the operational life of the facility, the only
way to prevent component failure is through optimal maintenance as the design

difications are b The mai strategy can be i ion and repair,

or both. The i ion, repair and repl may involve
costs, shutdown and the possibility of maintenance induced errors. Any human
intervention has to be limited from the safety and cost perspectives. If the interval

between i ions and mai tasks is irrati ly, it may

cause the premature failure of components. On the other hand reducing the interval
between subsequent maintenance increases the operating, and maintenance cost as well as

the probability of maintenance induced errors. Hence, finding an optimal strategy taking

into i ion the i which the ion process is a
hallenging task. The ag ion processes are one of the main asset
integrity threats in offshore process The ion is a stochastic process

and hence the probability distributions are ideal to model them. However, experience and
system field data play a crucial role in the modeling of the degradation processes. If the
model to have some merit, it should represent the system in terms of data and experience

and reduce the uncertainty. It is argued that Bayesian analysis is an ideal choice in such
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situations as it is good for logical and consistent reasoning under uncertainty. The
expertise may be utilized in the form of prior information and the system integrity data
from NDT may be utilized to obtain a likelihood function to predict the latest degradation
of components in terms of posterior probability. Since, the posterior probability is based
on field data; it provides a suitable model for the degradation process and may be used

successfully to predict the likelihood of future failures.

Existing maintenance strategies, like the reliability centered maintenance and condition
based maintenance, are based on the component probability of failure only. However, it is
not difficult to visualize a situation where an event having a low probability of failure
will have drastic consequences on the facility, safety, and the environment. The failure

consequences include the loss of breakdown due to commodity loss, the loss due to

facility shutdown, the loss of envi I cleanup, the loss of nature damage, and
liability. The different i ion and mai tasks have
themselves, such as the type of i ion and mai the cost of 1, cost of

gaining access to the degraded component, the cost of surface preparation, the logistics,
the cost of consumable and transportation of parts and spares. If one keep in mind the
importance of probability of failure and its consequence, the risk based maintenance
strategy developed in this thesis provides a rational choice for the decision making

process regarding the inspection and maintenance.

In this work, the reduction of risk to as low as reasonably practicable levels and at the

same time ensuring the safety of operation through the optimal utilization of resources
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has been achieved by developing an RBIM strategy which has been presented. The
maintenance may be either minimal repair or component replacement; hence models for
their optimization are developed in this thesis. The optimization is a trade off between the
cost of maintenance resources and the benefits of risk reduction achieved by the optimal
maintenance in terms of increased safety and reliability. This chapter presents a summary

and conclusion of the thesis, along with the novelties and the scope for future work.

8.2 SUMMARY

using modeling of stochastic degradation

processes is a burgeoning area of research. A critical review of literature shows that there
is a need for a robust risk based integrity model to help make informed decision on
maintenance strategies in the face of uncertainty in the degradation processes. The aim of
such an RBIM is to protect human life, financial investment, and the environment. Based

on these i an RBIM is ped in this thesis. This

methodology takes into account the uncertainty and variability in structural degradation

processes by using stochastic degradation modeling, and the consequences of failure in

terms of costs in dollars i with it. By bining the h
modeling and economic consequences analysis, an optimal strategy is designed for the

and mai and of ageing.

The life threatening structural degradation processes are caused by various types of age-
dependent corrosion and cracking phenomena. The critical corrosion mechanisms
observed in process components are uniform, pitting and erosion corrosion. Similarly, the

critical cracking processes observed are stress corrosion cracking, corrosion fatigue

311



cracking and hydrogen induced cracking. Degradation processes are identified by
analyzing historic data bases, the functional, service (sweet or sour), product and
environmental conditions, such as pressure, temperature, humidity and the presence of
corrosive media, like H,S, CO,, CI" and H,0. The wall loss data obtained by NDT
has also been used to identify the degradation processes. The identified degradations are

observed to be random processes, which prompted their stochastic modeling.

8.2.1 RBIM Framework Development

The RBIM 'k is based on optimizing the mais strategy, idering the
g d hasti dation. processe ially, it is ised of
of potential ion processes and its precise modeling, the estimation

of analysis, the optimization of risk based i ion and mai and

finally, testing and validation. A brief outline of the various asset integrity threats and the
philosophical background of Bayes theorem are discussed in the following sections.

8.2.2 Asset Integrity Threats

The potential degradation processes, threatening the integrity of offshore process
components are observed to be caused by several environmentally induced corrosion and
cracking. This thesis models three major corrosion processes and three major cracking
processes. These are uniform, pitting and erosion corrosion; and stress corrosion,
corrosion fatigue and hydrogen induced cracking. Statistical Bayesian analysis is applied
for all these processes. However, the physics of failure is captured using a system

learning process which is continually updated using new data.
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8.2.3 Bayesian Analysis

Probability is a degree of analysts™ belief, i. e., how much one thinks that something is
true based on the evidence at hand. When dealing with random phenomena, the ideal
option would be to make an inference based on the experimental data and any prior
knowledge one might have, reserving the right to revise the position if new information

comes to light. This is the rationale behind Bayes theorem.

Degradation process modeling is often viewed as an iterative process of integrating,

and i ing i ion. The analysts can assess the current state of

ge regarding the ion level, gather new data to address the question of
future degradation, and then update and refine the current understanding to incorporate
new data. Bayesian inference provides a logical and quantitative framework for this.
Bayesian approach to degradation modeling starts with the formulation of a model that is
expected to describe the degradation process accurately. The prior distributions of
unknown parameters of the model may then be formulated, which is meant to capture the
beliefs about the degradation before actually seeing the data. After observing data, the
Bayes theorem may be applied to obtain the posterior distributions for those unknowns,
which takes account of both the prior and system data. From these posterior distributions,

predictive distributions for future observations may be computed.
8.2.4 Stochastic Degradation Modeling

Prior Probability Modeling

In RBIM, the inty in the material degradation is modeled using prior distribution,
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which is subsequently updated to obtain a posterior distribution using Bayes theorem and
actual inspection data. This updated distribution is useful in assessing the potential risk to
facility. The development of prior models is inevitable in the integrity assessments. The
priors are often subjective; however, subjectivity can be reduced by the use of generic
databases, and consulting studies of similar installations. Several statistical tests were
conducted based on data extracted from the literature to assess their suitability. How well
the data fits is tested using the probability plots and an A-D test. The underlying
parameters are estimated using the method of least squares and maximum likelihood
estimates. Once the prior models for UC, PC, EC, SCC, CFC and HIC are identified, they
are validated using a case study using the life inspection data associated with the
operation of an ageing FPSO in the North Sea. For UC, the regression analysis and for
localized PC and EC, the extreme value analysis has been used to estimate the rates of

The rates of d: ion are tested using standard probability models and

the best fitting model for each of them was identified.

Likelihood Probability Modeling

In Bayesian analysis, the likelihood refers to the evidence obtained from field data that
supports the prior’s assessment. In this study the NDT data obtained from an ageing
FPSO operating in the North Sea is used to model the likelihood probability function.
The tested facility had different subsystems: a gas condensate system has been observed
to follow uniform corrosion; a gas export system has been observed to follow pitting
corrosion; and a high pressure drilling mud system has been observed to follow the
erosion type corrosion. Regression analysis was used for UC and extreme value analysis

was used for localized PC and EC. Similarly, the data from the literature is used for
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different cracking processes due to lack of field NDT data. The rates of degradation are
tested using standard probability models and the best fitting models are identified. A-D
based goodness of fit test is used for the same. Parameters of the best fitting models are
estimated using the method of least squares and maximum likelihood estimates.
Posterior Probability Modeling

In statistics, there are different methods to estimate the posteriors from the known prior
and likelihood function. These include analytical approximations, data augmentation
methods, Monte Carlo direct sampling and Markov chain Monte Carlo simulations. In

theory, a posterior distribution always exists. However, in reality the computation of

is ing if the prior and likeli pair do not fall into the category of
exponential conjugate pairs. After extensive analysis, the simulation based methods and

analytical approximations have been found most suitable for use in developing posteriors

of degradation of process Likewise, the d ped prior models of corrosion
and cracking are revised to obtain the posterior distributions using simulation based
Metropolis-Hastings (M-H) algorithm and an analytical Laplace approximation method.

Since, the posterior models are based on real life NDT data; they provide more reliable

and accurate ictions for future ion of The use of si ion and

approximation methods was deemed necessary because none of the prior models
(Weibull, extreme value and lognormal) falls into the natural conjugate pair of the
exponential family. Matlab programs are developed using the M-H algorithm and the
Laplace approximations to compute the posterior distributions. The code has been
calibrated using known conjugate pairs, such as normal-normal, Gamma-Gamma,

Gamma-Poisson and Gamma-normal. In order to test these combinations, the posterior
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functions are ped using Laplace imati The programs work satisfactorily
for all time-dependent degradation process, such as Weibull, lognormal and extreme

value distributions.
8.2.5 Economic Conscquence Analysis

The of failure is d in terms of the cost incurred as a

result of failure due to degradation processes. To provide a consistent measure of risk, all
consequences categories should be in the same units, and then only the overall risk from
‘many contributing factors may be computed. A standard choice of unit to represent all
consequence categories is the dollar, because risk can be interpreted as the expected loss
due to a certain event or a group of events. The failure consequences are analyzed in

terms of the failure, i ion and mai as summarized below.

Failure Consequences

Failure consequences are the financial losses due to loosing a facility upon failure due to
degradations. It includes the corrosion and cracking consequences. In this thesis, the
failure consequences are analyzed in terms of loss of commodity due to breakdown, the
production loss due to shutdown, loss of spill cleanup, and legal fees and fines due to
environmental damage and liability. Each of this cost components are estimated using the
developed formula, using the unit cost, rate of release and the duration of release. The
estimated costs are assumed to follow a Gaussian distribution with mean and variance.
Inspection Consequences

The NDT techniques are used to detect and quantify the unwanted discontinuity in
materials due to degradations. Several types of discontinuities exist in components, such

as holes, inclusions, corrosion and cracking, Different NDT techniques are required for
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the quantification of different corrosion and cracking. The best suitable methods for each
corrosion and cracking are identified and their corresponding dollar costs are estimated.
The purpose of inspection is to detect and quantify the extent of wall loss, pit depth and
surface as well as subsurface cracks. The inspection cost models the cost of gaining
access to the degraded component, cost of surface preparation, personnel cost for

inspection, the cost associated with technical assistance, the cost of consumables and

are used for corrosion, and

logistics. The testing and
the magnetic particle inspection and ultrasonic testing for defect sizing are used for
cracking. These costs are estimated based on the unit cost obtained from an inspection
contracting company operating in the North Sea. It is expected that the NDT inspection is
able to detect the degradation process with adequate reliability and accuracy.
‘Maintenance Consequences

The cost of restoring a process facility back to the operating condition after failure is the
maintenance consequence. To have a safely operating facility, maintenance needs to be
performed at very small intervals. However, frequent maintenance tasks cost more,
increase the probability of the occurrence of maintenance-induced errors and reduce the
availability of the facility. If maintenance is performed too rarely, it will result in costly
breakdown maintenance. Thus, finding an optimum strategy based on the condition of a

is a challenging task. A predicti i model is ped and

discussed in this thesis. One can use predictive maintenance diagnostic tools, such as
NDT and probabilistic modeling to estimate the time at which a component may fail, and

it should be repaired or replaced, thus reducing the costly corrective maintenance.
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Maintenance cost is obtained as the sum of the costs of access to the degraded
component; surface preparation; cutting and removal of pipes and plates; welding and

of

pi ive coating; repair;
and logistics related to transportation; and storage and rent of facilities. It was found that
on an annual basis, the inspection and maintenance cost increase due to degradation. This

is due to the material and strength loss of components.
8.2.6 Optimization of Maintenance Strategy

Two types of maintenance strategy is presented in this thesis; one is finding the optimal

inspection and maintenance interval, and second one is finding the optimal time to

inspect and replace the it The need to be

or replaced depending on the condition of component as well the economic analysis.
Inspection and Maintenance

The inspection and maintenance strategy is used for repairable components. If the
component can be brought back to a state similar to its state just before failure through
minor repair, this strategy should be adopted. It consists of estimating the rate costs of
failure, inspection and maintenance on an annual basis. Then, the annual equivalent cost
(AEC) is estimated through the summation of various costs. This AEC is combined with
the posterior probability cumulative density function (CDF) to profile the operational risk
in dollars. From the operational risk curve one is able to determine the point of minimum;

this point is taken as the optimal inspection and maintenance interval. This interval

satisfies two necessary ditions of predicti i the risk of operating the
facility is reduced to as low as reasonably practicable level and at the same time the

and mai interval is imized to reduce unwanted maintenance. Risk
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at this interval may be compared with company’s maintenance budget as acceptance

criteria, which include the i , societal and envi aspects. It

the inspection and maintenance decision.

Replacement Strategy

Replacement is a maintenance strategy that entails the replacement of component rather
than performing maintenance. This strategy is based on the economic service life of
component. At some point in an asset’s life cycle, it will not be economical to operate the
component due to deterioration, strength loss and obsolescence. From the estimated
failure cost, on annual basis, the failure recovery cost is estimated using a fixed rate of
interest using the present worth factor approach. The inspection and maintenance cost
tends to increase as a result of strength degradation and wall loss of components as it
ages. This increasing trend is modeled using arithmetic gradient with a particular rate of
interests, on an annual basis. Then, the annual equivalent cost is estimated by combining
the annual costs of failure recovery, inspection and maintenance costs. This AEC is
combined with the posterior probability CDF of failure to produce the operational life
risk curve. The point of minimum risk on the operational risk curve is taken as the
optimum interval for replacement. This interval also satisfies two necessary conditions of
predictive replacement: the risk of operating the facility is reduced to as low as
reasonably practicable level and at the same time, the replacement interval is maximized

to reduce unwanted operating and mai cost. This rationalizes the repl.

decision, safety and reliability of the components.
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8.3 CONCLUSIONS

8.3.1 RBIM Frame work

Overcoming the limitations of existing models, a risk based integrity modeling
framework is developed and used in this thesis. The framework is based on the

of ion processes ing the integrity of

modeling, i analysis, and finally the testing and
validation using a case study. The degradation is a random process and hence the
inspection data includes large uncertainty and variability. This has taken into account in
the model using stochastic Bayesian analysis. The field NDT data from an ageing

offshore process facility is used in the analysis. The concepts from statistics, engineering

failure analysis and ics are i in the p

8.3.2 Degradation Mechanisms

The it ly induced i i ing the integrity of

process components are several types of corrosion and cracking. Amongst, the most
critical processes identified are uniform, pitting and erosion corrosion, and stress
corrosion, corrosion fatigue and hydrogen induced cracking. They belong to the age-
dependent degradation processes due to the effects of chemical and mechanical stresses

in corrosive environment in which the offshore component operates.
8.3.3 Bayesian Analysis

The statistical Bayesian analysis is suitable for modeling the stochastic degradation

processes because it uses both experience and system data to model random processes.
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The prior probability is the initial information or judgment, which is updated using field

NDT data. This encapsulates a process of learning the system as the facility ages.
8.3.4 Stochastic Degradation Modeling

Stochastic degradation modeling has been performed using Bayesian analysis. Bayesian

analysis ially consists of ing three ilities: a prior, a likeli and a
posterior, which best models the physics of a degradation process.

Prior Probability Modeling

Judgmental studies based on historic data may be used to develop prior probability
models for degradation rates. Statistical goodness of fit tests using A-D tests are
performed to identify the best prior model. It is concluded that the most appropriate prior
models that can be used to describe uniform corrosion are the 3P Weibull and the 3P
lognormal distributions; the pitting priors is best modeled using Typel extreme value and
3P Weibull, and the erosion corrosion using 3P Weibull, 3P lognormal or Type 1 extreme
value distributions. Similarly, the stress corrosion cracking can be best modeled using
Weibull and Type 1 extreme value; the corrosion fatigue cracking using lognormal and
Weibull, and the hydrogen induced cracking using Weibull and lognormal distributions.
Once the ideal distributions are selected, the parameters are estimated using the method
of least squares and maximum likelihood estimates. These parameters determine the
characteristics of the degradation process and they account for the uncertainty.
Likelihood Probability Modeling

The field inspection data obtainable from operating facilities, such as offshore structures,
subsea pipelines and process piping may be used to model the likelihood function.

Initially, data may be categorized to system, subsystem and component level and then it
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needs to be processed for identifying the underlying degradation processes. The rates of
degradation may then be estimated using statistical analysis. The rate of degradation is
the most uncertain parameter. Regression analysis and extreme value analysis may be

used to estimate the rates of degradation in cases of uniform degradation and localized

effects, respecti tis d that most d models that can be
used to describe uniform corrosion are the 3P Weibull and the 3P lognormal
distributions; the likelihood for pitting is best modeled using Typel extreme value and 3P
Weibull, and the erosion corrosion using 3P Weibull and 3P lognormal distributions.
Similarly, the likelihood of stress corrosion cracking can be best modeled using Weibull
and Type 1 extreme value; the corrosion fatigue cracking and hydrogen induced cracking
using the Weibull and lognormal distributions. The estimated rates of degradations may
further be tested using probability plots and A-D test to obtain the underlying likelihood

function. Once the likelihood distribution is identified, isti may be

estimated using the method of least squares and maximum likelihood estimates.
Posterior Probability Modeling

The simulation based M-H algorithm and analytical Laplace approximation methods may

be used to develop the posteriors of ag ions in process

Simulation methods are necessary if the prior-likelihood combination models are non-
conjugate pairs. The posterior estimation based on the M-H algorithm converges to
satisfactory results within 10 000 steady state samples. The first half of the simulated
samples are ignored as it represents the transient samples in the Markov chain, only
steady state samples are used in the analysis. The acceptance rate of above 65 % is the

usual statistical i Laplace imation results were not encouraging,
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especially when working with thi istributions. The error in the
variance estimation due to the second order terms. Laplace approximation diverges when
the parameter is either too small or too large due to the numerical instability resulting
from the use of higher order terms in the computations. Thus, for developing the
posteriors of degradation processes, Laplace approximation is not recommended. Further,
the change in the location parameter was found insignificant when the M-H algorithm
was used. Therefore, instead of using complex three parameter models, the two parameter
models are sufficient to develop the posteriors, the location parameter may be added

subsequently.
8.3.5 Economic Consequence Analysis

The consequence of failure may be assessed in terms of operational costs. This helps the
management to compare the costs against the operational and maintenance budgets. This
helps in the choice of an optimal maintenance strategy. The estimated costs are reflected
in the estimated risk. The operational costs may be modeled using the varying costs of
failure recovery, inspection, and maintenance. The capital costs are not estimated in the
analysis as it does not change as the component ages. The failure cost varies depending
on various parameters, such as geographic location, type of product, time of failure,
national and provincial regulations, injury and fatalities, damage to environment and
liability. The inspection and maintenance costs may be modeled using the unit cost and
duration of task. The unit costs may be obtained from industry.

Failure Consequences

The cost of failure is obtained as the sum of the following five costs: the loss of

commodity due to breakdown, the loss due to shutdown, the cost of spill cleanup, the cost
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of nature damage, and liability. They may be computed using different formulas based on
the unit cost of each item, the quantity of produce released due to failure, the total
duration of release. The unit costs are estimated from first principles or they may be
extracted from relevant literature. Failure occurrence forces the facility to shutdown for a
certain period of time until the proper corrective actions have been implemented. The
cost of such a shutdown and the resulting lost profit are the biggest contributor to failure
cost. The cost of negative reputation among stakeholders caused by failure is difficult to
estimate, however, it will have severe implications.

Inspection Consequences

Inspection is an inevitable part of safe operation as that is the only way to understand if
there are any imminent threats from material degradations. The cost of inspection may be
modeled using the costs of gaining access to the degraded component, surface
preparation, NDT inspection costs, logistic and technical assistance. The logistics costs

include the cost of rent, storage and ion of i i i The NDT

inspection cost includes the type of inspection and the duration required for sufficient
data collection. Each of these may be modeled using the unit cost of inspection task and
total duration of inspection. Often, maintenance may be followed by inspection tasks.

How to link the NDT data, accounting for various sources of uncertainty, to the optimal

ilization of mai resources is ped and in the thesis.
‘Maintenance Consequences

Inspection can identify potential threats; however, it is the maintenance tasks that do

reduce the risk of failure. Since, the i and mai budgets are i

due to failure, it is essential to optimize the resources. An optimal maintenance strategy
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reduces the operating and maintenance costs as well as minimizes asset failures and
breakdown issues. The cost of typical component maintenance may be modeled using the
cost of minimal repair for corrosion and cost of replacement for cracking. The minimal
repair leaves the system in a condition similar to its condition just before failure, whereas
replacements bring the system back to as good as new condition. If the component is
minimally repaired, the lifetime distribution will not change. If it is replaced with
identical components, the lifetime distribution may change. The cost of maintenance may
be estimated using the cost of accessing the degraded component, the cost of surface
preparation, gauging defects, cutting, removal and welding of plates and pipes, technical
support and the logistics related to rent storage and transportation. These costs are
modeled using the unit cost of maintenance tasks and the total duration of maintenance.
The usage of unit cost from an offshore maintenance contracting company makes the

model applicable to offshore industry in the North Sea.
8.3.6 Optimization of Maintenance Strategy

The inspection and maintenance strategies are designed to remedy the effects of physical

degradation, strength loss and of process Physical
leads to reduction in the efficiency of operation, wall thickness and material strength.

Obsolescence occurs as a result of i of new Two

types of maintenance strategies are adopted in this thesis: inspection and repair, and

and If it is not ical to repair the or required

repair resources are unavailable or if the failure is imminent, then one has to resort to a

action. 1l is a maij strategy in which the component is

replaced with an identical one rather than doing repairs.
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Inspection and Maintenance

The optimization of i ion and mai has been achieved by optimizing the

risk. Risk has two components: the probability of failure and the consequences of failure.
The probability of component failure has been estimated using the Bayesian prior-
posterior analysis. The posterior probability cumulative density function is used to

estimate the ility of failure. The of failure is obtained as explained

before. It is modeled using engineering economic analysis. The annual rate cost of

bined to estimate the annual

failure, i ion and mai are ped and
equivalent cost (AEC) of failure. The estimated AEC is combined with probability to
perform component-level risk analysis. The operational life risk over the remaining

service life is estimated using the probability and consequences. The point at which risk

reaches its minimum value is used to ine the optimal i ion and

interval. This interval satisfies the two criteria of

costs while keeping risk at the ALARP Level. The results of the analysis are tabulated in
Table 8.1. The most critical interval is for PC and CFC degradation, with an inspection
and maintenance interval of 4 years. This interval may be revised when a new set of NDT
data is obtained. This renders the model developed in this work a dynamic model which
is continuously updated using new NDT data.

Replacement Analysis

An economic consequence analysis based on component replacement concept is
discussed. The replacement strategy is based on the economic service life of the

component and the threat from an imminent failure of component. Replacement strategy

is also used for The annual equi cost is by
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combining failure recovery, inspection and maintenance costs. The failure recovery cost

is observed to follow a d ing trend and the i ion and mai interval is

observed to follow an increasing trend, due to strength degradations and wall loss. Thus,
the annual equivalent cost is a convex function of service life. The replacement intervals
based on critical degradation processes are presented in Table 8.1. The smallest one is
considered. The smallest one is 7 years for SCC and HIC degradations, which is reported
as the optimum replacement interval. By performing replacement at this interval, the risk

will be reduced to ALARP level and replacement intervals will be maximized.

Table 8.1. Optimal Interval for the Mai and Repl: of C
Process Deteriorati D¢ 1

Component Process Model Interval (years) | Interval (years)

uc 3P Weibull 9 5

Piping PC Type 1 Ex Val. 10 4

(straight EC 3P Weibull 10 5

pipes, bends, scc Weibull 7 6

tees) CFC Weibull 8 4

HIC Weibull 7 5

The components have been in operation for 23 years. Since components are deteriorating
randomly, by comparing the optimum intervals in Table 8.1, the next inspection and
maintenance is due in 4 years and replacement is due in 7 years. By performing

maintenances in these intervals, the risk of failure can be reduced to ALARP level.
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8.4 NOVELTIES

84.1 i ion of Critical ion Processes

This study revealed the critical degradation processes which threaten the integrity of
offshore process components. It has been observed that the age-dependent corrosion and
cracking processes are posing major threats to the structural integrity of components. The
analysis of field NDT data has also confirmed the same conclusion.

8.4.2 Stochastic Degradation Modeling using Bayesian Analysis

The degradation is a stochastic process; its modeling is a challenging task to engineers. In
this study, this challenge is addressed using the Bayesian analysis. Bayes theorem is used
in inferential statistics to learn about the system with the arrival of new data. Since it
takes into account the uncertainties in experience and life data, its predictions are more

reliable and accurate to model the degradation processes of components.

8.4.3 Development of Non-conjugate Posterior Models

One of the major novelties of this thesis is the of posterior
models for the ion processes of jugate pairs. The use of
jugate pairs simpli the posterior estimati however, it may not produce a

realistic posterior. It is proposed that the simulation based M-H algorithm may be used to

model iors of any time-d d ion processes, such as Weibull,
lognormal or extreme value processes. This modeling is possible only with the fast

developments in the computational facilities in recent years.
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8.4.4 Incorporating Real Life NDT Data in the Analysis

Often, industry collects NDT data as a part of the asset integrity management, but the

data is rarely used in the i of optimal i ion and mai strategies.

The present work stresses the benefit of using NDT data to obtain the likelihood function

for the system.

845 of Ei ic C Analysis

Most of the papers in the open literature consider the probability of failure only in the
optimization of maintenance. The reliability centered and condition based maintenance
methods follow this strategy. However, it is also important to consider the consequence
of failure when making decisions regarding optimal inspection and maintenance
programs. Some events which have low probability of failure may have high

consequences due to failure. Thus, maintenance strategy developed here is based on the

of both the pi ility and of failure, i.e. it is based on the

consideration of life risk, and not only the probability of failure.
8.4.6 Risk Based Optimal Maintenance Strategy

Risk based strategies have been gaining predominance in the recent years, mainly due to

the development in the area of fast i Risk based mai strategy has

been addressed in this thesis, which is the most recent development in maintenance
management. Its importance lies in the fact that it takes into account both the likelihood

and consequence of failures. An optimized strategy reduces failures, risk to as low as

y practicable level, and si y ensures the safety of operation.
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8.4.7 Dynamic Updating

The Bayesian inference theory is used to update the inspection, maintenance and
replacement intervals in this study. The latest NDT data may be applied in the developed
model to revise the maintenance strategy. This is not equivalent to a constant health
monitoring, which is costly. This is far better than breakdown maintenance as well. It
tries to find a balance in between these two strategies. It rationalizes the maintenance
decision as well as minimizes the operating and maintenance cost. The posterior
probability and risk, in turn will keep on modifying as the component ages, reflecting the
reality of component performance with age. However, there is a need for structural health

monitoring of critical components, which is beyond the scope of this study.
8.4.8 Uncertainty Modeling
The uncertainty in degradation processes may arise from many sources such as, inherent

randomness in physical processes, statistical uncertainty and modeling uncertainty. The

physical uncertainty means that the repeated measurements of the same physical quantity

do not yield the same value due to in the i , test
procedure, instruments, and the observer. Statistical uncertainty occurs when one does
not have precise information about the variability in the physical quantity of interest due
to limited data. Modeling uncertainty occurs due to the limited representation of the
system behavior. A computational model strives to capture the essential characteristics of
system behavior through idealized mathematical models or numerical procedures. The

proposed risk based maintenance model captures the inherent randomness through prior

and likelihood data collection in Bayesian analysis, statistical uncertainty through
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multiple NDT data collection and likelihood modeling, and modeling uncertainty through

the use of stochastic models in the analysis.

8.4.9 Integrating Statistics and Economics in Decision Making

This study was planned as a multi-discipli project ing the concepts of
engineering failure analysis, statistics and economics in decision making. This is a novel
concept to use the statistical McMC analysis to model the stochastic degradation process,
engineering economic analysis to the model the failure consequences. Also, the basic
degradation processes are understood from chemistry and physics of failure process, and

the decision making is in mai ineering. This idisciplinary research

integrating concepts from these areas is a novelty of the developed RBIM.

8.4.10 Industrial Applications

The strategy developed in this thesis provides a solution to a real life asset integrity
problem that can benefit industry. Real life NDT, specific to a particular facility can be
used to develop degradation models suitable to that facility. The models can be used to
determine optimal maintenance intervals and tasks.

8.4.11 Ease of Computational Effort and Time

The model inputs are NDT data and unit cost information. The computational tasks are
casy; minimum knowledge is required to run the Matlab code. The computational time
depends mainly on the level of accuracy required. Typically, two to three hours and
10000 iterations are sufficient for results to converge to satisfactory maintenance and

replacement intervals.
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8.5 FUTURE WORK

In the present study, an attempt has been made to develop a risk based integrity modeling
for the optimal maintenance decision making of offshore process components. This study
can be extended as suggested below:

8.5.1 Non-age Dependent Degradation Processes Modeling

This study has been limited to the age-dependent degradation processes of process

Other non-age failure i such as third party damage;

ship or boat collision; material and fabrication defects; operational errors; vibration and

cyclic stresses may be investigated further.
8.5.2 The Online Risk Monitoring Systems

This study is limited to dynamic updating of the system performance in terms of revised
inspection and maintenance strategy. However, if the risk can be monitored online, the
system performance can be tracked and the maintenance decisions may be taken on the
spot. Such a system will be versatile considering the imminence of failures. There is a

broad scope for such studies especially for the far, deeper offshore facilities.
8.5.3 System Effects in the Risk Analysis

This study has been focused on the component level risk analysis. However, the risk
analysis shall be conducted on a system level. The approach developed in this thesis can
be extended and applied to a group of components which constitute a system. The system

safety analysis may be achieved through the fault tree and event tree analysis.

332



8.5.4 Risk Analysis for Combined Degradation Mechanisms

In reality the ion process oceurs si , for e.g., UC and SCC, PC and

CFC, etc. In this study, they are assumed to be independent and isolated. The modeling of

coupled degradation process is a challenging task, which needs to be explored further.

8.5.5 Inclusion of Objective Bayesian Analysis

The Bayesian analysis is i y subjective, since prior i ion is usually based

on subjective expertise. This subjectivity has been reduced by using generic data from
literature. However, the use of objective priors, such as non-informative priors may be
explored further to model the priors of degradation processes. Such a study may produce

more realistic results.
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