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Abstract 

The PepTl transporter is getting much attention in modem nutrition due to its 

universal substrate affinity for di/tripeptides which facilitates efficient transport of 

amino acids. As such, di/tripeptides may be an important component of amino acid 

nutrition because they are transported into enterocytes more efficiently than a mixture of 

free amino acids. However, limited data are available on the contribution of PepT 1 to 

total peptide uptake. We studied the contribution of PepT !-mediated transport versus 

paracellular movement to total dipeptide uptake in intestinal samples excised from 

suckling piglets. Using an in vitro Ussing chamber model, we determined that PepTl 

was responsible for 46% of the glycyl-sarcosine uptake by piglet jejunum and 73% of 

the glycyl-sarcosine uptake by piglet ileum; these values are lower than previously 

reported in cell culture models, suggesting that paracellular peptide uptake is 

quantitatively important in young piglets. 

PepTl and amino acid transport systems both contribute to amino acid uptake by 

enterocytes, but the contribution of the different routes to overall amino acid absorption 

has not yet been defined. Furthermore, very little is known about the interaction between 

free amino acid and peptide uptake at the cellular level. Using an in vivo gut loop 

perfusion model in piglets, we demonstrated that arginine uptake was enhanced by 81 % 

when perfused simultaneously with 20 mM lysyl-lysine, compared to control. In 

contrast, perfusing loops with equimolar lysyl-glycine did not alter arginine uptake. We 

speculated that enhanced uptake of arginine was likely due to trans-stimulation of 

rBAT/b0·+ transporter. Dipeptides are taken up by enterocytes via PepTl and are then 
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hydrolyzed to release free lysine. High intracellular free lysine trans-stimulates the 

rBA T/b0
'+ anti-transporter to enhance arginine uptake. When lysyl-lysine was perfused 

with an amino peptidase inhibitor (amastatin), the potentiating effect was abolished, 

suggesting that this trans-stimulation activity was impeded by reducing intracellular 

hydrolysis of dipeptides. To the best of my knowledge we are the first to demonstrate 

the interaction between arginine absorption and lysine-containing dipeptides at the 

cellular level in an in situ model. 
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1. Introduction 

1.1. Protein digestion overview 

Dietary proteins play a critical role for maintaining optimal health. In the period 

from birth to weaning, dietary protein requirements are high in order to support both 

maintenance and growth of the individual (Dupont, 2003). According to the World 

Food and Agricultural Organization, the protein requirement for infants is 2.4 g/kg/d 

(WHO, 2007). Not only is quantity important, but also the quality of dietary protein is 

important as it is the only source of essential amino acids, which are crucial for protein 

synthesis and body homeostasis. 

Degradation of dietary proteins begins in the stomach and ends at the small 

intestinal epithelium (Matthews, 1972). The acidic environment in the stomach 

denatures the proteins and promotes proteolysis by pepsin. The polypeptides arising 

from partial protein hydrolysis enter into the small intestine. Thereafter, pancreatic 

peptidases hydrolyze these polypeptides into small chain oligopeptides ( 4-6 amino 

acids) and free amino acids (Freeman eta!., 1979). The degradation of dietary protein 

subsequently continues by the action of hydrolytic enzymes, called brush border 

membrane peptidases, on the apical surface of the intestinal epithelium. These 

peptidases split the small chain oligopeptides into di and tripeptides (2 or 3 amino acids) 

or free amino acids (Caspary, 1992). Analysis of luminal contents after the 

administration of a protein-containing meal has demonstrated that the end products of 

protein digestion are mixture of free amino acids and di and tripeptides (Adibi & 
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Mercer, 1973). These di and tripeptides are taken up by the enterocytes via the hydrogen 

ion (H+)-dependent peptide transporter 1 (PepTl), while free amino acids are transported 

into the cell via a number of different amino acid transporter systems that are present on 

the apical surface of the enterocytes (Adibi, 1976; Ganapathy & Lei bach, 1996). 

1.2. Amino acid absorption 

The small intestine is the major site of amino acid absorption. There are three 

major regions in the intestine; proximally to distally, the intestine is divided as 

duodenum, jejunum and ileum. In addition, the wall of the intestine also consists of three 

layers of tissues: inner tunica mucosa, middle tunica muscularis and outer tunica serosa 

(Harrison et al, 2004). The inner mucosal layer is folded into finger like projections 

called villi which are lined by columnar epithelial cells or enterocytes. The apical 

surface of the enterocytes is organized as microvilli. This structure creates the brush 

border membrane, which is the active site of free amino acids and di and tripeptide 

absorption (Barrett, 2006). Both the villi and microvilli structures facilitate absorption 

by increasing the overall absorptive surface area of the small intestine. Amino acid 

transporters are present on the apical surface of the small intestine along its entire 

length, from the duodenum to the ileum; however, the jejunum has the highest amino 

acid transporter density as reported in the pig, chicken and human (Broer, 2008). 

Free amino acid transport is very complex because of the existence of multiple 

amino acid carriers with overlapping substrate specificity. For this reason, free amino 

acid transport activity is commonly referred to as a transport system (Broer, 2008). 
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These transport systems differ by the type of substrate, as well as the dependency on Na + 

or Cr ions (Dave, 2004; Terada & Inui, 2004). There are five different amino acid 

transport systems in the brush border membrane: 1) low affinity neutral amino acid 

transporter system, 2) anionic amino acid transporter system specific for aspartate and 

glutamate,3) imino acid transporter system for proline and hydroxyproline, 4) 

transporter system for ~-amino acids and anionic amino acids and 5) cationic amino acid 

transporter system (reviewed by Broer, 2008). 

1.2.1. Neutral amino acid transporter (B0 amino acid transporter) 

The transport of neutral amino acids into enterocytes occurs mainly via the Na+

dependent B0 system. This system is capable of transporting a broad spectrum of neutral 

and basic amino acids, non-polar amino acids, methionine, glycine, isoleucine and 

leucine, and aromatic amino acids as well as some metabolites like creatine (Sloan & 

Mager, 1999; Nakanishi eta!., 2001). Mutation of the B0 system can cause Hartnup's 

disease, which is characterized by hyperaminoaciduria with photosensitive skin rash, 

ataxia, and psychotic behavior (Broer eta!., 2004). 

1.2.2. Anionic amino acid transporter system (X-AG) 

The anionic amino acids aspartate and glutamate are taken up by enterocytes via 

the anionic amino acid transporter system XAG (Maenz eta!. , 1993). System X AG is 

strictly Na+ dependent (Munck & Munck, 1999) and it is described to be coupled with 

the inwardly directed electrochemical potential gradients ofNa+ and H+, and with the 

outwardly directed gradient of K+ (Kanai & Hediger, 1992). 
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1.2.3. Imino acid transport system 

The imino acids, proline and hydroxyproline, appear to be transported via Na+ 

dependent transport activity (Medow eta!., 1986; Stevens & Wright, 1987). Munck 

( 1966) reported two carriers involved in uptake of imino acids into enterocytes. The 

imino acid system transports the amino acids proline, glycine and sarcosine (Stevens & 

Wright, 1985). The B0 system also shares its transporter capacity with imino acids 

(Munck, 1966). Additionally, the H+ coupled amino acid transporter 1 (PAT 1) has been 

identified as another imino acid carrier which also shares its transport activity with 

glycine (Anderson eta!., 2004). 

1.2.4. P-amino acid transporter system 

Taurine and P-alanine are subject to transport via B-amino acid transport (Liu et 

a!., 1992; Munck & Munck, 1995b ). There are two major transporters that have been 

identified as ~-amino acid transporter systems. One is a high affinity Na+ and Cr 

dependent transporter (Miyamoto eta!., 1990); the other is an H+ dependent low affinity 

transporter which is shared by P-alanine, taurine, GABA, proline and glycine (Munck & 

Munck, 1995b). 

1.2.5. Cationic amino acid transporter system (rBAT/b0'+AT) 

Cationic amino acids are taken up into enterocytes by an amino acid transporter 

system called system rBAT/b0·+AT (Palacin, 1994). This cationic amino acid transport 

system facilitates the Na+ independent transport of the cationic amino acids arginine, 

lysine, ornithine and the neutral amino acid cystine (Munck & Munck, 1997). 
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rBA T /b0·+ AT consists of two subunits. The heavy subunit rBA T is a type II membrane 

N-glycoprotein and it belongs to a solute carrier protein (Palacin eta/. , 2005). rBAT is 

positioned extracellularly, attaching to the plasma membrane through a single trans

membrane domain (Kanai & Endou, 2001). The light subunit, b0·+AT is a highly 

hydrophobic membrane protein with 12 trans-membrane domains (Palacin eta!., 2001). 

Heavy rBA T and light b0·+ subunits are connected by a disulphide bond (Gasol eta!., 

2004). The rBA T protein is unstable and rapidly degraded when it exists alone (Bauch & 

Verrey, 2002); on the other hand, the b0·+ AT subunit is able to function even if expressed 

alone (Reig eta!. , 2002). Hagihira eta!. (1961) have demonstrated mutual inhibition 

among arginine, cystine, lysine, and ornithine which indicates they share the same 

transport mechanism (Hagihira eta!., 1961). rBAT/b0·+ AT transports cystine and 

cationic amino acids with Km values of -100 J.lM (Palacin eta!., 2005). Stieeger eta!., 

conducted a study using rat renal brush border membrane vesicles, showing inhibition of 

cationic amino acid transport with high concentrations of phenylalanine and methionine 

(Stieger eta/., 1983). However rBAT/b0·+ AT has a higher affinity to cationic amino 

acids than neutral amino acids (Palacin, 1994). Thus, under normal physiological 

conditions, rBAT/b0·+ AT transports only cationic amino acids (Palacin eta/. 2001 ). An 

experiment conducted in oocytes using radio-labeled amino acids has shown that 

rBAT/b0·+ AT is an obligatory antiporter (Chillaron eta!., 1996) and as such, it has 

intracellular and extracellular binding sites. As well, the Km value for extracellular 

binding sites is higher compared to intracellular binding sites (Busch eta!. , 1994). An in 

vitro study conducted in human intestinal epithelial Caco-2 cells demonstrated that 85% 
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of arginine uptake into the cell occurred via rBA Tfb 0
·+ AT (Wenzel eta!. , 2001). A 

similar kind of study demonstrated that rBAT/b0·+ AT was responsible for 47% of lysine 

uptake across the apical surface of human intestinal epithelial Caco-2 cells (Thwaites et 

a!., 1996). Mutation in the cationic amino acid transporter in the intestine and kidney 

can cause cystinuria (Rajan eta!., 1999). Cystinuria is characterized by the inadequate 

reabsorption of cystine in the proximal convoluted tubules after the filtering of the 

amino acids by the kidney's glomeruli, resulting in an excessive concentration of this 

amino acid in the urine which leads to crystals or stones developing in the ureters or 

bladder (Fjellstedt eta!. , 2003). Furthermore, malfunction of rBAT/b0·+ AT can lead to 

arginine and lysine deficiencies (de Sanctis eta!., 2001). Thus, rBAT/b0·+AT plays an 

important role in cationic amino acid uptake. 
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Figure 1-1 Schematic diagram ofrBAT/b0
'+ amino acid 

tr·ansporter. The heavy subunit rBA T is type II membrane 

glycoproteins with a single trans membrane domain, and the other 

light subunit bo,+, has 12 trans membrane domains, with the H2 and 

COOH termini located intracellularly. 

Adapted from Palacin et al., (2005). 
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1.3. Nutritional importance of small chain oligopeptide absorption 

A classic study conducted in human volunteers demonstrated that after a heavy 

protein meal, a major portion of amino acids were present as small peptides in the gut 

lumen as opposed to free amino acids (Adibi & Mercer, 1973). This suggests a role for 

small chain oligopeptides in amino acid uptake. Another human study demonstrated that 

the transport of amino acids as small chain oligopeptides was more efficient than the 

transport of the constituent free L-amino acids (Adibi, 1971 ). Later, similar 

observations were reported in studies conducted in pigs (Rerat et a!., 1992) and rats 

(Hara eta!., 1984). Further evidence of the importance of small chain oligopeptide 

absorption is their effectiveness as an alternative route to supply specific essential amino 

acids to the individuals suffering from genetic mutations of free amino acid transporters 

(Adibi, 1997). 

1.4. Transepithelial transport of small chain oligopeptides 

Transepithelial transport of small chain oligopeptides ( di/tripeptides) occurs 

through three major pathways: I) PepTI mediated transport (Adibi, 1997), 2) passive 

paracellular movement (McCollum & Webb, 1998) and 3) by cell-penetrating peptides, 

which act as cargo carriers to take small chain oligopeptides to the cell interior 

(Sebbage, 2009). However, the majority of studies on transepithelial transport of di and 

tripeptides have focused on PepTI mediated trans-cellular transport and passive 

paracellular movement. 
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1.5. Passive paracellular movement in di/tripeptides transport 

Transepithelial movement of di and tripeptides between epithelial cells is 

possible via passive paracellular movement. Access to the paracellular route is 

considered to be quite limited, as it constitutes only 1110 000 of the total intestinal 

absorptive surface area (Zhou et al., 1999). Paracellular movement is driven by a 

concentration gradient, but the size and charge of tight junctions that are present 

between the epithelial cells also play a part in the regulation of passive paracellular 

movement (Karczewski & Groot, 2000). A study conducted in sheep reported a high 

amount of carnosine (beta-alanyl-L-histidine) paracellular movement in omasa! 

epithelial tissue (Matthews & Webb, 1995), even though PepT1 transporter was present 

in that epithelial tissue (Chen et al., 1999). A similar study conducted in sparrow 

intestine showed greater paracellular movement of serine-lysine and serine-aspartate 

compared to receptor mediated transport (Chediack et al., 2006). Another study carried 

out using human intestinal epithelial Caco-2 cell layers reported passive paracellular 

movement as the major transepithelial route of transport for the valine-valine 

diastereomers, L-valine-D-valine, D-valine-L-valine and D-valine-D-valine (Tamura et 

al., 1996a) although the D-isomer dipeptides are also transported by PepTl(Lister eta/. , 

1995). Tamura et al. (1996b) also reported that the major transepithelial transport route 

for valine-valine-valine stereo isomers is the paracellular route (Tamura eta!., l996b ). 

Furthermore, a study conducted in human intestinal epithelial Caco-2 cell monolayers 

suggested paracellular movement was the main mechanism for the transport of intact 

valine-proline-proline across the Caco-2 cell monolayer (Satake et al., 2002). All those 
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studies listed above have shown higher contribution of paracellular movement in 

dipeptide transport over PepTl mediated transport. However some studies have 

demonstrated higher contribution ofPepTl mediated transport in dipeptide transport 

over paracellular movements. A study conducted in Caco-2 cell monolayers, which 

inhibited the PepT1 activity by incubating at 4°C, reported that ~80% of dipeptide 

transport was via the receptor mediated pathway while ~20% of transport was via 

passive movement (Scow et al., 2011). Similarly, Chen eta!., have reported 70% lower 

glycyl-sarcosine uptake in PepT 1 knockout mice compared to wild type, which suggests 

that 30% of dipeptide uptake was non-receptor mediated dipeptide transport across the 

intestine (Chen et a!., 201 0). A similar observation was reported in another PepT 1 

knockout mouse study, in which 22% of glycyl-sarcosine uptake was via paracellular 

movement, and 78% was PepTl mediated transport (Nassl et al., 20 11 ). Thus, 

paracellular movement may play an important role in transepithelial transport of 

di/tripeptides as it contributed to at least 20% of transepithelial transport of dipeptides in 

the studies above. However PepTI mediated transcellular transport appears to be the 

major route of di/tripeptide transport system across the intestinal epithelium in the 

various models studied. 

1.6. Intestinal peptide transporter (PepTl) 

Transcellular transport of di/tripeptides occurs through the intestinal peptide 

transporter (PepT 1 ). PepT 1 plays a major role in efficient absorption of dietary protein 

(Thamotharan et al., 1999). A study conducted in isolated rabbit intestinal brush border 
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membrane vesicles demonstrated that PepTl is a H+-coupled, energy-dependent, Na+ 

independent transporter (Terada & Inui, 2004) . 
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Figure 1-2 Schematic diagram of intestinal peptide transporter 

(PepTl). It has 12 trans-membrane domains with both amino and 

carboxyl termini fac ing the cytoplasmic side. 

Adapted from Fei et al., (1 994) 
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1.6.1. PepTl structure 

The PepTl transporter protein belongs to solute carrier family 15 (SLC 15A 1) 

and is encoded by the SLC15Al gene (Daniel, 2004a). PepTl mRNA was first isolated 

from the rabbit and cloned in Xenopus oocytes (Fei eta!., 1994). The structure of the 

PepTl transporter has been predicted using hydropathy analysis, and the predicted 

structure has 12 trans-membrane domains with both amino and carboxyl termini facing 

the cytoplasm side (Figure 1-2) (Urtti eta!. , 2001; Daniel, 2004a). In terms of energetic 

efficiency, PepT 1 can transport 2 or 3 amino acids into the cell using the same energy 

expenditure required to transport a single free amino acid via an amino acid transporter 

(Daniel, 2004). 

1.6.2. Ion dependency 

An early study that was conducted using brush border membrane vesicles 

showed that dipeptide transport via PepTl was Na +dependent (Sigrist-Nelson, 1975). 

Later Ganapathy eta!., (1981) reported that dipeptide uptake into brush border 

membrane vesicles was aNa+ independent mechanism. Similarly Fei eta!. (1994) and 

Pan eta!. (2001) using rabbit PepTl cloned Xenopus oocytes, Watanabe eta!. (2005) 

using PepTI expressed in HEK293 cells and Ma eta!. (2011) using everted gut sacs 

from mice have confirmed the Na + independent activity of PepTl. Further work on the 

transporter in rabbit brush border membrane vesicles has demonstrated that dipeptides 

are co-transported into enterocytes along with H+ ions (Ganapathy & Leibach, 1983). 
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Di/tripeptide transport through PepTl causes an inward current as a result of a 

net transfer of positively charged ions across the membrane during peptide transport 

(Daniel, 1996). Ganapathy & Leibach (1985) demonstrated enhanced dipeptide uptake 

with interior-negative membrane potential and inhibited uptake with an interior-positive 

membrane potential. The authors also suggested that the inward proton gradient in the 

mammalian small intestine acts as an energy source for the uphill transport of peptides 

via PepT 1 (Ganapathy & Lei bach, 1985). A study conducted in guinea pig intestinal 

epithelial cell layers also has shown enhanced dipeptide uptake when the apical pH is 

more acidic than intracellular pH (Hayashi & Suzuki, 1998). As a whole, an acidic 

microenvironment surrounding the apical surface of the enterocytes acts as the driving 

force for the PepT1 transporter (Daniel & Kottra, 2004b). The combination of a Na+-H+ 

exchanger in the brush-border membrane and a Na+-K+-ATPase on the basolateral 

membrane is likely responsible for the maintenance of the proton gradient in the 

intestine (Ganapathy & Leibach, 1985; Adibi, 2003). 

1.6.3. PepTl distribution 

The PepT1 transporter is primarily expressed in intestinal epithelial cells (Daniel 

& Kottra, 2004). Within the intestine, PepTl mRNA expression has been predominantly 

detected in the small intestine, with different rates of expression corresponding to 

different regions. Freeman (1995) reported PepTl mRNA expression in rabbits was 

highest in the duodenum and decreased along the length of the intestine towards the 

ileum. In humans, PepT 1 transporters are also present in the colon but with lower 
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expression levels compared to small intestine (Ford eta/., 2003). PepT1 has been 

identified in a variety of species including humans, mice (Grone berg et a/. 2001 ), pigs, 

chickens, sheep, dairy cows (Chen et al. 1999), rats, guinea pigs, rabbits (Adibi, 2003) 

and black bears (Gilbert et al., 2007). Interestingly, the amount of PepT1 expressed 

varies within regions of the intestine amongst different species. In chickens, pig, and 

ruminants , the highest PepTl mRNA was detected in the duodenum, jejunum, and ileum 

respectively (Chen eta!., 1999). A previous study conducted in our lab demonstrated 

high PepTl mRNA expression levels in proximal compared to distal intestine in suckled 

Yucatan miniature piglets; however, the pattern shifted after weaning, with the greatest 

expression identified in the distal small intestine (Nos worthy et al., 20 12). In contrast, in 

rats, PepT 1 protein expression was greatest in the ileum as compared to jejunum 

(Tanaka eta/., 1998). Gilbert et al. (2007) reported PepTl mRNA levels were high in 

the mid-region of the black bear small intestine. Apart from the small intestine, PepTl 

transporter has also been identified in the omasum and rumen of ruminants (Chen et al. , 

1999) and in the caecum of the chicken (Chen et a/., 1999). Immunohistochemical 

analyses have shown that PepTl protein is localized to the brush border membrane of 

cells lining the villi tips (Ogihara eta/., 1999). Localization of PepT 1 to the apical side 

of the enterocyte has been described as a developmental change. A study carried out 

using mice showed that PepT1 protein at fetal d 18 and at birth was located in the sub

apical cytoplasm, basal cytoplasm, and basolateral membrane and later localized to 

apical surface of enterocyte (Hussain et al., 2002). In summary, PepTl distribution 
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varies along the intestinal length amongst various species and also it varies by 

developmental stage within a species. 

1.6.4. PepTl transport affinity and substrate specificity 

PepT1 has the potential to transport over 400 dipeptides and 8000 tripeptides 

(Boudry eta!., 201 0). Daniel (2004a) reviewed this vast substrate specificity of PepTl, 

and suggested that it is facilitated by a water molecule. She suggested that a water 

molecule shields the electric charges of amino acid side chains in the PepT 1 substrate 

binding sites and allows both charged, polar as well as large nonpolar substrates to bind 

at the same site (Daniel, 2004a). Though PepTl has wide substrate specificity, it has 

differing affinities for different substrates. Perfusion studies conducted in human 

volunteers to determine the transport rate of 12 different glycyl-containing dipeptides 

demonstrated the influence of C-terminal amino acid residues on dipeptide absorption in 

the intestine. One study demonstrated faster absorption of glycyl dipeptides which 

contain neutral amino acid in their C-terminus over dipeptides containing cationic amino 

acids in this position (Steinhardt & Adibi, 1986). Vig eta!., (2006) and Pan eta!., 

(200 1) have shown that dipeptides which consist of cationic amino acids have lower 

affinity for PepTl. A study conducted in rabbit PepTl expressed in Xenopus oocytes 

suggested that theN-terminus of dipeptides was the primary binding site with PepTl 

(Meredith et a/., 2000). Moreover, transporter affinity of charged molecules could 

change depending on the pH ofthe apical microenvironment (Daniel & Kottra, 2004b). 
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Studies conducted using glycyl-sarcosine as the model dipeptide have shown 

that it has similar affinity for PepTl in multiple species including sheep (0.61 mM), 

chickens (0.47 mM), pigs (0.94 mM), turkeys (0.69 mM), and humans (1.2 mM) 

(Gilbert eta!., 2008). However, the PepTl transporter has been reported to have a wide 

range of substrate affinities both within and amongst species; in sheep the affinity of 

various peptide substrates ranges from 27 f.!M to 3.0 mM (Pan eta!., 2001), in pigs it is 

4 f.!M to 0.53 mM (Klang eta!. , 2005) and in humans, 80 f.!M to 8 mM (Vig eta!., 

2006). Another study that was conducted using Madin-Darby canine kidney (MDCK) 

cells in which PepTl is over expressed, reported that the volume (i.e. size) of dipeptides 

also determines the transport affinity. These MDCK cells did not transport a tryptophan

tryptophan dipeptide via PepTl because this dipeptide failed to activate the PepTl 

transporter (Vig eta!., 2006). The authors suggested that the reduced activity was 

because of the large total volume of the dipeptide, which is greater than the capacity of 

the PepTJ binding site (Vig eta!. , 2006). In summary, PepTl has broad substrate 

specificity with a wide range of affinities. The charge of the amino acid in the C

terminus position, and the pH value of the apical microenvironment among other factors, 

seems to determine the transport affinity. 

1.6.5. PepTl Expression 

The composition of the diet, the age ofthe animal and the pathological and/or 

nutritional condition have all been identified as regulatory factors of PepT 1 expression. 
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1.6.5.1.Changes of PepTJ expression with diet 

The type of nutrients presented to the intestinal absorptive surface changes 

during the period from birth to post-weaning. At birth, the neonatal diet shifts from 

amniotic fluid to milk and during weaning the diet changes from highly digestible milk 

to a solid diet (Pacha, 2000; Gilbert et al., 2008). Such diet changes likely induce 

changes in PepTl presence and/or activity in the intestine. Moreover, the protein 

composition of the diet has also been identified as a regulatory factor for PepT 1 

expression (Chen et a!. , 2005). A study conducted in human intestinal epithelial Caco-2 

cells which were incubated in dipeptide-rich media, demonstrated a 1.92 fold increase in 

peptide-induced PepTl mRNA expression and a 1.64 fold greater uptake of dipeptides, 

compared to Caco-2 cells incubated with a mixture of free amino acids (Walker eta!. , 

1998). Similarly, Caco-2 cells exposed to glycyl-sarcosine for 24 h had a two-fold 

increase in glycyl-glutamine uptake and three-fold increase in PepTl mRNA abundance 

(Thamotharan et al., 1998). These data suggest a substrate-driven up regulation of 

PepTl in intestinal epithelial cells. 

1.6.5.2.Changes of PepTJ expression with age 

A linear increase in PepT1 mRNA levels in chicken intestine has been observed 

with age. In rats, PepT1 expression the small intestine was shown to be maximal at 3-5 d 

after birth; a rapid decline in PepT 1 expression followed. Interestingly, again in rats, a 

rapid increase of PepT 1 expression was observed at 24 d after birth, which corresponded 

to weaning age (Shen et a/., 2001 ). Another study carried out in Tibetan pigs showed a 
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continuous increase of PepT 1 mRNA expression in the duodenum and proximal jejunum 

from 1 to 14 days of age, followed by a gradual decrease from d 21 to 35 (Wang eta!., 

2009b). 

1.6.5.3.Changes ofPepTJ expression under pathological conditions 

Expression of PepTl may also change due to pathological and/or nutritional 

conditions that an animal experiences. Experiments conducted with tissue taken from 

food-deprived rats have shown a 2-fold increase in the uptake of dipeptides by isolated 

brush border membrane vesicles when compared to vesicles from control-fed rats. In the 

same study, they measured a 3-fold increase in PepTl protein levels in brush border 

membrane vesicles from fasted rats (Thamotharan et a!., 1999). Furthermore, rats that 

were food deprived for 4 days showed a distinct increase of PepT 1 protein expression in 

jejunum compared to the control group of chow-fed rats (Ogihara eta!., 1999). 

Inflammatory bowel disease is a common intestinal disorder that affects 

approximately 0.5% of Canadians (Bernstein eta!. , 2006). Higher PepTl expression was 

identified in the colon of inflammatory bowel disease patients compared to control 

patients who did not have colonic mucosal inflammation (Merlin eta!., 2001). Similarly, 

greater expression of PepT 1 mRNA was reported in patients with short bowel syndrome 

compared to control subjects who had intact intestines (Ziegler eta!. , 2002). In 

summary, up regulation of PepT 1 expression during weaning, fasting and intestinal 

pathological conditions may represent an intestinal compensatory mechanism to increase 

amino acid absorption. 
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1.7. Interaction between peptide and amino acid absorption 

Numerous studies have suggested that peptides and free amino acids use 

different transport mechanisms to enter enterocytes (Cheeseman & Smyth, 1975). 

However, some studies have reported that interactions occur between free amino acids 

and peptides during intestinal uptake. A study conducted in monkeys demonstrated an 

inhibition of glycyl-glycine uptake when provided together with free leucine and 

methionine (Ganapathy et a!., 1979). A similar observation was reported in a study 

conducted in guinea pigs where they demonstrated an inhibition of glycyl-leucine uptake 

by leucine and isoleucine (Himukai & Hoshi, 1980). Later, this inhibition was described 

as a "pseudo-competitive" type of inhibition (Himukai eta!., 1982). However, in a study 

conducted in human volunteers, this effect was not exhibited, and leucine did not inhibit 

the uptake of glycyl-leucine (Adibi & Soleimanpour, 1974). 

In contrast to free amino acids inhibiting peptide uptake, there is evidence that 

PepT !-mediated uptake of peptides actually increased free amino acid uptake. An in 

vitro study carried out in Caco-2 cells demonstrated enhanced arginine uptake when 

cells were pre-incubated with dipeptides (Wenzel eta/., 2001). Similarly, the uptake of 

gabapentin (a substrate for cationic amino acid transport system) was also shown to be 

enhanced by the presence of dipeptide in the incubation media (Nguyen eta!., 2007). 

However, limited studies have been carried out to investigate the interaction between 

free amino acids and dipeptide uptake; further investigation is required, particularly in in 

vivo models. 
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1.8. PepTl mediated trans-stimulation of rBAT/b0
'+ AT 

Cationic amino acid transporter rBATbO,+ AT accounts for 80% of arginine 

uptake into the enterocyte (Wenzel eta!., 2001 ). A study conducted in de-folliculated 

stage VI Xenopus laevis oocytes demonstrated that rBA Tb0'+ AT is an obligatory amino 

acid transporter. As such, rBATb0·+ AT has shown the capability to exchange 

intracellular for extracellular amino acids under specific conditions, a concept that has 

been named trans-stimulation (Chillar6n eta!., 1996). As described previously, 

rBATb0'+ AT has intracellular and extracellular binding sites. The Km value for the 

intracellular binding site is higher than that of the extracellular binding site (Busch et 

a/.1994). Thus trans-stimulation activity of rBATb0'+ AT may occur once intracellular 

free amino acid concentration reach an elevated level to bind with the intracellular 

binding site. A study conducted in rabbit renal brush border membrane vesicles to 

determine Na +independent arginine uptake has demonstrated accelerated exchange 

diffusion of arginine in vesicles that were pre-incubated with lysine and ornithine, but 

not alanine or proline, suggesting trans-stimulation ofNa+ independent arginine 

transporter (Hammennan, 1982). 
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Figure 1-3 Trans-stimulation ofrBAT/b0'+AT after PepTl mediated 

dipeptide uptake into enterocytes. (1) PepTl mediated uptake of 

dipeptides into enterocytes; (2) Intracellular hydrolysis of dipeptides into 

free AA by amino peptidase enzymes; (3) Results in increased 

intracellular free AA concentration; ( 4) Exchange of intracellular free AA 

for extracellular AA (i.e. trans-stimulation). 
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Wenzel et a/. (200 l) conducted a study using human intestinal Caco-2 cells to 

investigate the effect of PepTI -mediated dipeptide uptake on the uptake of cationic 

amino acids. They demonstrated enhanced arginine uptake when the cells were pre

incubated with cationic amino acid-containing dipeptides. The authors suggested that 

high intracellular free amino acid concentrations were the consequence of the rapid 

hydrolysis of dipeptides which had been taken up via PepT 1; the high intracellular 

amino acid concentrations triggered the trans-stimulation of rBA Tfb0
·+ AT, increasing 

arginine uptake (Figure 1-3). This effect has been confirmed using hydrolysis-resistant 

dipeptides and intracellular amino-peptidase inhibitors; and in both these conditions, 

when intracellular free amino acid concentration was not increased, greater uptake of 

arginine via rBAT/b0·+AT was not observed (Wenzel eta/., 2001). Gabapentin is an 

amino acid-like drug, taken up by enterocytes via rBAT/b0·+ AT (Nguyen eta/., 2007). 

An in situ single-pass rat intestinal perfusion model study demonstrated significantly 

improved uptake of gabapentin when perfused with dipeptide mixtures, compared to 

gabapentin alone. The authors concluded that PepT1 mediated uptake of a dipeptides led 

to trans-stimulation uptake of gabapentin through the transport system rBAT/b0•+ AT 

(Nguyen eta/. , 2007). This concept of a relationship between PepT1 and rBAT/b0·+ AT 

represents a new level of understanding of amino acid transport, particularly for the 

cationic amino acids arginine and lysine; further elucidation of this concept is a primary 

objective of this thesis. 
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1.9. Nutritional importance of arginine 

The dibasic cationic amino acid arginine was first isolated in crystalline form and 

subsequently named in 1886 by Schulze and Steiger; in 1895, Hedin showed its presence 

in animal tissue (Rogers & Visek, 1985). Arginine is a dispensable amino acid in 

human adults under normal conditions (Tapiero et a!., 2002), as it can be synthesized 

from citrulline in the kidney (Featherston eta!., 1973). However, arginine is considered 

an indispensable amino acid in neonates (Wu et a!., 2004a). Arginine becomes 

indispensable in both neonates and adults if de novo synthesis is limited (Hoogenraad et 

a!., 1985) or if the demand for arginine is higher than de novo synthesis rates permit, as 

occurs during growth or in sepsis (Barbul, 1986). Arginine has been identified as the 

most abundant carrier of nitrogen in mammals as it contains four nitrogen atoms per 

molecule (Wu et a!., 1999b ). Arginine is involved in many biochemical reactions in 

mammals, such as protein synthesis, urea cycle metabolism, polyamine synthesis, nitric 

oxide (NO) production as well as creatine and agmatine synthesis (Morris, 2006). Thus 

its metabolism is complex. 

1.10. De novo arginine synthesis 

Arginine can be found in the liver as it is formed via the urea cycle from 

citrulline (Morris, 2004a). However there is no net arginine synthesis in liver due to 

high activity of arginase in the hepatocytes which rapidly hydrolyzes arginine to 

ornithine and urea (Flynn eta!., 2002). In adults, de novo arginine synthesis involves 

the intestinal-renal axis. Citrulline is synthesized in intestinal enterocytes from dietary 
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arginine (Marini, 2012), or from glutamine (Tomlinson et al., 2011a) and proline 

(Tomlinson et al., 2011a) via pyrroline-5-carboxylate synthase (Blachier et al. , 2009). 

Citrulline is recognized as the major precursor for arginine synthesis in the kidney 

(Borsook et a!, 1941; Wu & Morris, 1998). The citrulline that is synthesized in the 

intestine is released into the portal venous system (Windmueller & Spaeth, 1981); it 

bypasses the liver and is taken up by the kidney. In the proximal renal tubules, citrulline 

is converted to arginine by argininosuccinate synthase and argininosuccinate lyase 

(Morris, 2004b). The newly synthesized arginine is released into the circulation due to 

low activity of renal arginase, and is used by other body tissues (Bertolo & Burrin, 

2008). 

Unlike adults, it has been established that in neonatal piglets (Flynn & Wu, 

1996) and humans (Tomlinson eta!., 2011 b) arginine synthesis takes place 

predominantly in intestinal enterocytes. Studies conducted in pigs have estimated 

arginine intake from sow's milk to be 0.42 g· kg - I. d- 1 in one-week-old piglets, but the 

metabolic arginine requirement for the piglet is estimated to be 1.1 g· kg - I . d- 1 (Wu et al., 

2000). Thus, to meet the entire metabolic arginine requirement, there must be substantial 

reliance on de novo arginine synthesis in suckling piglets. The amino acid proline has 

been identified as a major precursor for de novo arginine synthesis in neonatal piglets 

(Brunton eta!., 1999) and human neonates (Tomlinson eta!., 2011 b). 

Studies conducted in neonatal pig intestine have demonstrated age related 

changes in de novo arginine synthesis. Enterocytes obtained from 1-d-old piglets 

exhibited efficient conversion of citrulline produced from its precursors into arginine 

24 



(Blachier eta!., 1993). On the other hand, more citrulline was released from the small 

intestine in 7-21-d-old piglets compared to newborn animals. This was likely due to a 

decrease in activity of argininosuccinate synthase and lyase in the enterocytes as the 

piglet ages (Wu eta!., 1994). Thus, the small intestine transitions from being a major 

arginine producer to a major citrulline producer as the animal ages. 

1.11. Arginine metabolism and function 

Arginine has many important metabolic roles (Visek, 1986). As a urea cycle 

intermediary, arginine plays a major role in ammonia detoxification. Ammonia derived 

from amino acids, nucleic acids and other nitrogenous compounds, is converted to non

toxic urea in the liver via the urea cycle. Arginine is hydrolyzed to ornithine by the 

action of arginase to release urea, which also plays an important role in maintaining 

acid-base balance (Meijer et a!., 1990). 

Nitric oxide (NO) production is another important metabolic role of arginine 

(Wu & Morris, 1998). Nitric oxide synthase (NOS) oxidizes the guanidino group of 

arginine to form NO and citrulline (Marietta, 1989). There are three isoforms ofNOS: 

neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) 

(Hallemeesch eta!., 2002). NO has been identified as a major vascular endothelial 

relaxation factor. It also acts as mediator of the immune response, a neurotransmitter as 

well as a widespread signaling molecule (lgnarro, 2002). NO also inhibits platelet 

aggregation, leukocyte adhesion and superoxide generation (Wu & Meininger, 2000). 
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Arginine deficiency can lead to reduction of NO production which can result in impaired 

organ blood flow and growth retardation in young animals (Wu eta!., 1999a). 

Ornithine, which is derived from arginine, is the immediate precursor for 

polyamine synthesis. Polyamines act as antioxidants to protect cells from oxidative 

damage and they have also been found to modulate protein synthesis by stimulating the 

assembly of 30S ribosomal subunits (Igarashi & Kashiwagi, 2000). As such, 

polyamines play a key role in cell division, tissue growth and differentiation (Pegg & 

McCann, 1982). 

Creatine is another important metabolite of arginine which acts as a high energy 

phosphate source for the regeneration of adenosine triphosphate (Visek, 1986). In a 

review by Wyss & Kaddurah-Daouk (2000), they suggest that creatine has antioxidant, 

antitumor, antiviral, and antidiabetic effects. 

In summary, arginine is a dispensable amino acid in most adult mammals as they 

are able to synthesize arginine de novo. However, in neonates and growing animals, 

arginine has been recognized as a semi-indispensable amino acid that is in high demand 

but with limited de novo synthesis in situations of growth and weaning. 

1.12. Arginine nutrition during growth and weaning 

An experiment conducted in weaning piglets has shown that weight gain and 

efficiency of feed utilization were maximized when arginine was supplied at 0.48% in 

the diet, which is double the National Research Council recommendations (Southern & 

Baker, 1983). Another study reported sub-maximal growth in sow-fed piglets compared 
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to artificially fed animals. Data showed that artificially fed piglets have a potential for 

growth 2::400 g/d which is 74% greater compared to sow-fed animals (Boyd et al., 1995). 

Similarly, a study conducted to determine the effect of dietary arginine supplementation 

at 0.2 and 0.4% of diet in artificially reared piglets demonstrated an improvement of 

28% to 66%, respectively, in daily weight gain compared to controls. Final body 

weights were 15% and 32% higher with the 0.2 and 0.4% supplementation levels 

compared to piglets fed unsupplemented sow-milk replacer (Kim et al., 2004). Dietary 

arginine supplementation has also been reported to enhance intestinal development and 

expression of vascular endothelial growth factor in weaning piglets (Yao et al., 2011). 

In the muscle, arginine increased mTOR signaling activity in neonatal pigs, which 

stimulated muscle protein synthesis and promoted weight gain (Yao et al. , 2008). 

Furthermore, arginine enhanced immune status in early-weaned piglets (Tan et al., 

2009). Thus, it is interesting that the arginine content in sow milk has been identified as 

deficient compared to the estimated arginine requirement for optimal piglet growth and 

metabolism (Wu et al., 2004b). 

Weaning is a stressful event linked with gastrointestinal disorders in piglets and 

weight gain generally slows during this phase (Moeser et al., 2007). A study conducted 

in 21-d-old male piglets demonstrated that weaning stress reduced the body weight gain 

by 15% compared to the sow-fed group. Furthem1ore, arginine supplementation 

improved the growth rate of piglets by 5.6% during the stressful weaning period (He et 

al., 2011). 
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In summary, dietary arginine supplementation may be beneficial for early growth 

and especially during weaning due to a low concentration of arginine in sow milk and 

apparent limited de novo arginine synthesis necessary to maximize growth. 

1.13. Arginine-lysine antagonism 

Though it is not yet a common practice to supplement arginine to pig diets, the 

addition of lysine to animal feed as a supplement is a common practice amongst poultry 

and swine farmers. Cereal grains are the major ingredient of animal feed and lysine has 

been identified as deficient in cereal grain-based diets (Ostrowski, 1978). Lysine is 

considered the first limiting amino acid in the pig diet, and the second limiting amino 

acid for poultry (Baker, 2007). Lysine is an indispensable amino acid for mammals and 

its primary function is as a component of body proteins. However, lysine undergoes 

obligatory oxidation, despite being limited in the diet (Ball et al., 2007). Lysine is also 

necessary for camitine synthesis and lysine deficiency will lead to lipid accumulation in 

the liver, possibly due to a disruption in the transport of long chain fatty acids into the 

mitochondria for P-oxidation, which requires carnitine (Ball et al., 2007). Thus, lysine 

deficiency affects not only protein synthesis, but alters lipid metabolism as well. 

As described earlier, the cationic amino acid lysine is taken up into enterocytes 

by rBAT/b0
·+ AT. As arginine and lysine share the same transporter system for cellular 

uptake, lysine-arginine antagonism has been observed in chickens (Kadirvel & Kratzer, 

1974), growing dogs (Czarnecki et al., 1985), guinea pigs (O'Dell & Regan, 1963) and 

pigs (Anderson et a/. , 1984 ). A study conducted in chickens demonstrated a clear effect 
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of excess lysine on arginine transport and metabolism (Nesheim, 1968). And in reverse, 

excess arginine has shown unfavorable effects on lysine utilization in pigs (Hagemeier et 

al., 1983). The classic study conducted in dogs demonstrated that excess lysine 

supplementation depressed the growth by antagonizing arginine uptake; dogs developed 

arginine deficiency with orotic aciduria, depressed urea formation, hyperammonemia, 

and emesis (Czamecki et al., 1985). Chicks also have shown growth retardation and 

reduced food intake when they were fed a high lysine diet (Austic & Scott, 1975). 

Young pigs also demonstrated a decreased weight gain and feed intake when arginine 

was supplemented in excess with a high arginine to lysine ratio. Moreover excess 

arginine supplementation increased plasma arginine, omithine and citrulline levels while 

reducing plasma lysine concentration in pigs (Southem & Baker, 1982). 

In summary, excess arginine in the diet has an antagonistic effect on cellular 

uptake of lys ine in growing piglets. Deficiency or excess of arginine or lysine in the diet 

can cause growth retardation and adverse metabolic effects in young and growing 

animals. Designing the ideal diet to meet the requirements for both arginine and lysine 

while avoiding the antagonistic effects is remains an important challenge. Maximizing 

growth performance of domestic animals, especially pigs and poultry, will help to 

address the increased global food demand. 

The interactions between free amino acids and peptide uptake at the cellular 

level is not well understood, but the use of dipeptide supplementation, as opposed to free 

amino acids, may help to address the issue of antagonism between amino acids which 

compete for the same transporter. Describing trans-stimulation activity of b0
·+ transporter 
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will open new doors for the supply of nutritionally important amino acids, particularly 

during intestinal stress or injury, in both domestic animals and humans. 

1.14. Rationale 

1.14.1. Growing piglet as the animal model 

The piglet is considered a suitable animal model in nutritional research related to 

human neonates because of similar gastrointestinal tract morphology, physiology and 

metabolic changes during development (Miller & Ullrey, 1987). Intestinal development 

of pigs is representative of humans at the fetal and neonatal stages of development 

(Pacha, 2000). Small intestinal mucosal enzyme activities of 6 week old piglets and 

young human infants are similar (Shulman et al, 1988). Also Shulman eta!. (1993) have 

reported similar gross body composition in newborn piglets and preterm infants. 

Amino acid transporter systems and oligopeptide transporter PepTl are 

expressed in the porcine intestine from birth. The PepT1 transporter was detected in 

Tibetan piglets measured at 1, 14 and 28 days of age (Wang et al., 2009b). A previous 

study conducted in our lab also showed the presence of the PepT 1 transporter in the 

small intestine of Yucatan miniature piglets at 2, 7, 14 and 21 days of age (Nasworthy et 

a!., 2012). The cationic amino acid transporter rBAT/b0·+AT was reported in the 

duodenum, jejunum, and ileum of the Tibetan pigs at 7 and 21 days of age (Wang et al. , 

2009a). Hence, the transporters that we were interested in studying (rBAT/b0·+ AT and 

PepT 1) are present in the 18-21 day old piglet intestine. In our facility, piglets start 

weaning at approximately 21 days of age, when they begin to take in teres in the grain-
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based diet fed to the sows, and is completed at 28 days of age when the piglets are 

removed from the sow. As mentioned earlier, weaning is a stressful event linked to 

gastrointestinal changes. In order to develop ideal diets to accommodate weaning, it is 

important to understand nutrient transport physiology at this stage of development. As 

such, Yucatan miniature piglets at 18 to 21 days of age were selected as the animal 

model for the studies described in this thesis. 

1.14.2. Ussing chambers as the in vitro model 

Different techniques have been applied for in vitro physiological studies of 

gastrointestinal epithelia including everted sacs, intestinal rings (Hillgren eta!. 1995) 

and Ussing chambers. Ussing chambers provide a valuable and validated method for the 

measurement of electrolyte, nutrient, and drug transport across epithelial tissues (Clarke, 

2009). Modified Ussing chambers provide good working interface using viable intestinal 

tissue under in vitro conditions. Studies have demonstrated that with the provision of 

supplemental oxygen and other nutrients, intestinal tissue can be kept viable for over 

120 min in the Ussing chamber system (Soderholm eta!., 2002). Winckler et a/.,(1999) 

have reported successful transport studies using the Ussing chamber as an in vitro model 

for pig intestinal mucosal tissues. Thus, the Ussing chamber system was selected as our 

in vitro model to measure PepTI transport activity. 

1.14.3. Glycyl-sarcosine as the model dipeptide 

Glycyl-sarcosine was found to be very resistant to hydrolysis by brush-border 

membrane peptidases in the intestine (Ganapathy eta!. , 1984). The hydrolysis resistance 
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characteristic of glycyl-sarcosine ensures that the dipeptide is presented to PepTl as an 

intact molecule. As such, it has been used extensively in studies describing dipeptide 

transport. Pig intestine is capable of energy-dependent, proton-coupled transport of 

glycyl-sarcosine via PepTl (Winckler eta/., 1999). Thus, glycyl-sarcosine was selected 

as the model dipeptide for the in vitro studies. 

1.14.4. Losartan as PepTl inhibitor 

The PepTl transporter is responsible for the electrogenic transport of dipeptides 

into intestinal epithelial cells (Adibi, 1997). A number of dipeptide-like drugs 

competitively inhibit the PepTl transporter (Sawada eta!., 1999; Terada eta!., 2000; 

Knutter eta!., 2009). Losartan potassium is among the peptidomimetic drugs, and is an 

effective drug for treating hypertension. Losartan strongly inhibited PepTl-mediated 

dipeptide uptake in human Caco-2 cells (Knutter eta!., 2009). While losartan has a 

high-affin ity interaction with PepT 1, it binds to the transporter but is not transported. 

By this mechanism, it strongly inhibits PepT !-mediated uptake of dipeptides (Knutter et 

a!., 2009). Thus, losartan was selected for our studies of PepT 1 inhibition in the in vitro 

transport studies. 

1.14.5./n vivo gut loop method as experimental model 

The intestinal gut loop method has been recognized as a convenient method for 

intestinal metabolic studies (Nichols & Bertolo, 2008) as well as in amino acid and 

dipeptide transport kinetic studies (Nosworthy eta!., 20 12). 
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Adegoke eta!. (1999) successfully validated the continuous perfusion gut loop 

model to measure first pass metabolism in gut. It was established in our research group 

by Nichols and Bertolo (2008) to investigate threonine metabolism. Also Ashida eta!. 

(2004) and Pan et al. (2002) successfully demonstrated the in vivo gut loop method as a 

reliable method for studies of PepT !-mediated transport in rats. Previously in our lab, 

Nasworthy et al. (2012) used the in vivo gut loop method for PepTl transport studies in 

Yucatan miniature piglets. Multiple loops within one animal allows for the 

implementation of multiple experimental conditions at one time while using a minimum 

number of animals. Thus, the intestinal gut loop method was selected as our 

experimental model to measure the effects of lysine-containing dipeptides on arginine 

uptake. 

1.14.6. Amastatin as amino peptidase inhibitor 

Dipeptides undergo rapid hydrolysis after transport via PepT 1 into enterocytes. 

Aminopeptidase enzymes rapidly hydrolyze dietary dipeptides into free amino acids 

(Newey & Smyth, 1 960). Thus, intracellular aminopeptidase inhibitors will interfere 

with the intracellular hydrolysis of dipeptides (Wenzel eta!., 200 1). Amastatin and 

bastatin are two potent aminopeptidase enzyme inhibitors. Bastatin is considered to be a 

more potent aminopeptidase inhibitor, but it was identified as a strong PepT 1 inhibitor 

as well (Daniel & Adibi, 1994) . In contrast, amastatin does not interact with PepTl 

(Daniel & Adibi, 1994). Thus, amastatin was selected as the aminopeptidase inhibitor in 

this study. 
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1.15. Objectives and Hypotheses 

Study 1: 

Objective: To detem1ine the proportion of dipeptide transported by the PepTl-mediated 

transcellular transport versus paracellular movement in the small intestine under in vitro 

conditions. 

Hypothesis: Transepithelial transport of dipeptides consists of passive paracellular 

movement and PepT !-mediated transcellular transport. Inhibition of PepT !-mediated 

transport by losartan will inhibit transcellular transport of glycyl-sarcosine and as such, 

transepithelial movement of glycyl-sarcosine will represent only the passive paracellular 

avenue of dipeptide uptake. 

Study 2: 

Objective: To determine whether the presence of lysyl dipeptides enhance the uptake of 

free L-arginine by the small intestine. 

Hypothesis: The presence of dipeptides will enhances the uptake of free arginine into 

enterocytes through trans-stimulation of the rBAT/b0
·+ system. The addition ofthe 

aminopeptidase inhibitor, amastatin, along with dipeptides will impede the trans

stimulation activity by reducing intracellular hydrolysis of dipeptides. 
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2. Materials and methods 

2.1. Ussing chamber experiment 

2.1.1. Animal procedure 

Eighteen day old, sow-fed Yucatan miniature piglets were obtained from Animal 

Care Services, Memorial University of Newfoundland. All procedures were approved by 

the institutional Animal Care Committee (Memorial University of Newfoundland), and 

were in accordance with the guidelines of the Canadian Council on Animal Care. Pigs 

were anaesthetized using 4%-5% isoflurane (Abbot Laboratories Ltd. , Montreal, QC) 

delivered with 1.5 Llmin oxygen. Once the animal was deeply anaesthetized, a mid-line 

laparotomy incision was made and an intestinal segment was excised from the mid 

jejunum which was 100 em distal to the ligament ofTreitz. The isolated intestinal 

section was freed from the mesenteric fixation and the underlying serous membrane was 

detached. The intestine was rinsed with ice-cold physiological saline (0.9% NaC!) to 

remove any residual chyme and was placed in ice-cold oxygenated incubation buffer for 

transport to the laboratory. The composition of the incubation buffer solution (Table 2-

1) is the same as that used in the "serosal" side of the Ussing chamber, described below. 

2.1.2. Mounting of intestinal tissues on Ussing chamber 

Once in the laboratory, the intestine segments were open longitudinally and 

rinsed with cold saline to remove all luminal debris. A 2-3 em section taken from the 
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intestinal segment was allowed to float in oxygenated modified Krebs's buffer solution 

until it 

Figure 2- 1: (A) Ussing chamber compartment and (B) Ussing 
chamber system 
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spread out completely. Subsequently, it was mounted on a Styrofoam plate and then 

transferred to the pins on the Ussing chamber port (Figure 2-1 a). The other half of the 

chamber was aligned with the pins and connected to the gas lift system. World Precision 

Instruments system model CHM6 Ussing chambers with an aperture of 1 cm2 were used 

for the experiment (Figure 2-1 b). 

2.1.3. Ussing chamber transport studies 

Tissues mounted in the Ussing chambers were incubated on both luminal and 

serosal sides with 6 mL of modified Kreb's buffer solution (Winkler et al., 200 1) (Table 

2-1). The pH was set at 7.4 for the serosal solution and 6.0 for the luminal solution using 

TRIS buffer. The buffer on the luminal side also contained 5 mM glycyl-sarcosine 

(Bachem Americas, Torrance, CA) alone or with 0, 1, 5 or 10 mM losartan (Sigma

Aldrich Canada Ltd, Oakville, ON) which was used as the PepTl inhibitor. The Ussing 

chamber with glycyl-sarcosine and no inhibitor was used as the control condition. 10 

mM glucose was added to the serosal solution as an energy source, and 10 mM mannitol 

was added to the luminal solution to achieve osmotic balance. The luminal buffer 

solutions also contained 1 flCi/mL 3H-glycyl-sarcosine and 1 flCi/mL 14C-mannitol. 

Continuous oxygenation and recirculation of the incubation solutions was provided by 

the gas lift system and all solutions were maintained at 37°C by using the temperature 

controlled water jacket. At the initiation of the experiment and at 15 min intervals 

thereafter, 0.5 mL aliquots were sampled from the serosal buffer. The aliquots were 
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replaced by an equal volume of fresh buffer solution. The luminal buffer was sampled 

before and after the experiment. The entire experiment was run for 2 hours. 

Table 2-1: Composition ofmodified K.reb 's buffer used as the incubation buffer, and in 

Ussing chamber experiments 

Ingredient 

NaCl 

KCl 

CaCb•2H20 

MgS04 

K2HP04 

NaH2P04 
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Cone entration 

137 mM 

5.4 mM 

mM 

mM 

mM 

mM 

2.8 

1 

0.3 

0.3 



2.1.4. Measuring glycyl-sarcosine appearance in the serosal buffer 

Glycyl-sarcosine transport was determined by 3H-glycyl-sarcosine appearance in 

the serosal buffer. A 50 11L sample was mixed with 5 mL of ScintiVerse (Fisher 

Scientific, Fair Lawn, NJ). Disintegrations per minute (DPM) were measured in TriCarb 

2810 TR liquid scintillation counter (Perkin Elmer Life and Analytical Sciences, 

Downers Grove, IL) with a count time of 15 min per sample. Glycyl-sarcosine 

appearance was detennined using the following calculations: 

Glycyl- sarcosine appearance = SRA * DPMtn 

SRA = no 
DPMt0 

DPMto: DPM counted in the luminal compartment buffer before the experiment was 

started 

DPMt11 : DPM counted in serosal compartment taken after t11 

n0 : total glycyl-sarcosine (nmol) present in the luminal buffer before the experiment was 

started 

SRA: specific radio activity. 

2.1.5. Measuring the tissue viability 

Viability of the intestinal tissue mounted on the Ussing chambers was assessed 

using the EKl electrode kit (WPI, Sarasota, FL) and DVC-1 000 voltage/current clamp 

(WPI, Sarasota, FL). Smaller blue voltage electrodes were plugged into "V 1" and "V2" 

of the DVC-3 preamplifier (WPI, Sarasota, FL) and they were connected to luer ports 
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located proximal to tissue. The larger red current electrodes were connected with "Il" 

and "12" of DVC-3 and connected to luer ports located distally to the intestinal mucosal 

tissue. Then DVC-3 was connected with DVC-1 000 electrode clamp. Voltage gradient 

between the intestinal mucosal tissues was detected by DVC-1000 electrode clamp. The 

amplified signals were sent to the computer using the Lab-Trax data acquisition system 

and were plotted using Lab-Trax data recording software (WPI, Sarasota, FL). 
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2.2. In vivo gut loop study to measure arginine uptake 

2.2.1. Animals 

Three week old sow-fed Yucatan miniature piglets were obtained from Animal 

Care Services, Memorial University ofNewfoundland and were randomized to one of 

three treatment groups (n = 5 per group) as described in section 2.4. All procedures 

were approved by the Institutional Animal Care Committee (Memorial University of 

Newfoundland), and were in accordance with the guidelines of the Canadian Council on 

Animal Care. Experimentation was initiated within 2 h of separating the piglets from 

the sow. 

2.2.2. Surgery 

Piglets were initially anaesthetized using 5% isoflurane and maintained with 2% 

isoflurane mixed with 0 2 delivered at 1.5 L/min. The ventral abdominal area of the 

animal was cleaned thoroughly with soap and Povidone-iodine prior to the initiation of 

surgery. Piglets ' body temperature, heart rate, respiration rate and oxygen saturation 

were monitored throughout the experiment. 

A midline incision was made to expose the small intestine. The small intestine 

was exteriorized and the beginning of jejunum was identified using the ligament of 

Treitz (end of duodenum) as a landmark. Five or six closed gut loops were positioned 

along the proximal portion of the jejunum (Adegoke eta!., 1999). The first closed gut 

loop was located 15 em distal to the ligament ofTreitz. An inlet cannula (ID, 1/16 in.; 
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OD 118 in., Watson Marlow, Comwall, UK) was inserted into the lumen through a small 

perforation in the intestinal wall and the tubing was secured by tying a suture around the 

intestine and the tubing. 10 em was measured distal to the inlet cannula and the same 

procedure was performed to implant the outlet cannula to form a loop. The remaining 

loops were created in a similar fashion, placed along the jejunum and separated by 50 

em segments of intestine. Remaining intestine was rinsed with warm saline and placed 

back into the abdominal cavity. Exposed intestinal segments were moistened with 3 7°C 

saline and covered with plastic wrap, in order to prevent dehydration during perfusion. 

The loops were flushed with warmed PBS (144.6 mM NaCl, 15.9 mM Na2HP04, 1.2 

mM NaH2P04 . H20) to remove any chyme present in the intestinal lumen before starting 

the perfusion. 

2.2.3. Perfusion Procedures 

The experimental perfusates (described below in section 2.2.4) were 

continuously re-circulated through the closed intestinal loops, via the use of a multi

channel peristaltic pump (Watson Marlow, Comwall, UK) (Figure 2-2). At the 

beginning of the study, 60 mL of each perfusate was placed in a bottle with the inlet and 

outlet cannula tubing immersed in the solution, and the bottles were placed in a water 

bath that was maintained at 37°C. The experimental solutions were randomly assigned 

to the loops for each animal from the proximal to distal end of jejunum in order to avoid 

an effect of location. The solutions were perfused for 120 min. The luminal perfusates 

were sampled (1 mL) every 30 min. At the end of the experiment, the loops were 
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excised by cautery and flushed with cold 0.9% saline, placed on ice, cut longitudinally 

and scraped with a microscope slide to remove the mucosa. The mucosa tissues were 

weighed and immediately flash frozen in liquid nitrogen and stored at -80°C for future 

analyses. 

2.2.4. Amino acid and dipeptide composition of the perfusates 

Each perfusate (60 mL) was made up ofPBS buffer and contained 10 mM 

arginine (Ajinomoto North America, Inc, Raleigh, NC). The first perfusion experiment 

(n=5 pigs) tested the effect oflysyl-lysine (Bachem Americas, Torrance, CA) on 

arginine uptake in the jejunum. Gut loops were perfused with experimental buffers; 

each buffer contained I 0 mM L-arginine with 10, 20 or 50 mM lysyl-lysine (Bachem 

Americas, Torrance, CA) or with 20 mM L-lysine (Sigma-Aldrich Canada Ltd, 

Oakville, ON) (Table 2-2). The objective of the second experiment (n=5 pigs) was to 

determine the effect of lysyl-glycine on L-arginine uptake. Six gut loops in each piglet 

were perfused with buffers that contained 10 mM L-arginine along with 10, 20 and 50 

mM lysyl-glycine (Bachem Americas, Torrance, CA) or 20 mM L-lysine or 20 mM 

glycine (Table 2-3). The third experiment (n=5 pigs) assessed the effect of an amino 

peptidase inhibitor amastatin on L-arginine uptake. Experimental buffers each 

contained 10 mM L-arginine with 20 mM lysyl-lysine or 50 mM lysyl-glycine with or 

without 10 f.LM amastatin (Sigma-Aldrich Canada Ltd, Oakville, ON) (Table 2-4). The 

gut loops, which were perfused with buffers containing amastatin, were pre-incubated 

with a 10 f.LM amastatin solution for 10 min prior to starting the perfusion. In each ofthe 
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three experiments, a loop that was perfused with L-arginine as the sole amino acid was 

used as the control condition. The amino acids and dipeptides were dissolved in PBS 

buffer which was adjusted to pH 6. To each perfusate, radio-labeled arginine was added 

in the form of 3H-arginine (2220 kBq or 60 11Ci per 60 mL) (American Radiolabeled 

Chemicals, Inc, St. Louis, MO). 
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Table 2-2: Experimental conditions (luminal perfusate composition) to determine the 

effect of lysyl-lysine on arginine uptake. 

Ingredient Perli1sate I Perfusate 2 Perfusate 3 Perfusate 4 Perfusate 5 

Arginine lOmM lOmM lOmM lOmM lOmM 

Lysyl-lysine - lOmM 20mM 50mM -
Lysine - - - - 20mM 

Table 2-3: Experimental conditions (luminal perfusate composition) to determine the 

effect of glycyl-lysine on arginine uptake 

Ingredient Perfusate I Perfusate 2 Perfusate 3 Perfusate 4 Perfusate 5 Perfusate 6 

Arginine lOmM lOmM lOmM lOmM lOmM lOmM 

Glycyl- - lOmM 20mM 50mM - -
lysine 

Lysine - - - - 20mM -
Glycine - - - - - 20mM 
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Table 2-4: Experimental conditions (luminal perfusate composition) to determine the 

effect of amino peptidase inhibitor amastatin on arginine uptake. 

Ingredient Perfusate 1 Perfusate 2 Perfusate 3 Perfusate 4 Perfusate 5 Perfusate 6 

Arginine lOmM IOmM lOmM lOmM lOmM 10mM 

Lysyl-lysine - - 20mM 20mM - -
Glycyl- - - - - 50 m.M SOmM 

lysine 

Amastatin - 10 1-1M - 10 j.tM - 10 j.tM 
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2.2.5. Measuring arginine disappearance in luminal perfusates 

Arginine uptake was determined by 3H-arginine disappearance from the luminal 

perfusate. Sampled perfusate (200 J.lL) was mixed with 5 mL of ScintiYerse (Fisher 

Scientific, Fair Lawn, NJ). Disintegrations per minute (DPM) were measured in TriCarb 

2810 TR liquid scintillation counter (Perkin Elmer Life and Analytical Sciences, 

Downers Grove, IL) with a count time of 15 min per sample. Arginine disappearance 

was measured using following calculations 

. . . DPMt0 - DPMt120 
Argmme dLsappearance = DPMto 

no 

Initial arginine concentration 
n --------------

0 - initial volume 

DPMto: DPM in luminal perfusate sample before start perfusion 

DPMt120: DPM in luminal sample taken after 120 min perfusion 

ll0: absolute amount of arginine (J.lmol) present in luminal perfusate before the perfusion 

was started 
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Figure 2-2: Schematic of gut loop model 
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2.2.6. Amino acid and dipeptide analysis of perfusate samples 

Absolute amounts of amino acids and dipeptides in the perfusates were 

determined using high performance liquid chromatography (HPLC) (Waters, 

Mississauga, ON) or ultrahigh performance liquid chromatography (UPLC) (Waters, 

Mississauga, ON). 

2.2.6.1. Sample preparation for HPLC analyses 

HPLC analyses were performed in order to determine the absolute amounts of 

free amino acids and intact dipeptides in the luminal perfusates. Samples were diluted 

I: 10 as the amino acid concentrations were higher than the maximum loading capacity 

of Waters PicoTag HPLC column. 100 IlL of diluted sample was mixed with 20 IlL of 

2.5 mM norleucine standard (Sigma-Aldrich Canada Ltd, Oakville, ON). Then 1 mL of 

0.5% trifluoroacetic acid (TFA) (Sigma-Aldrich Canada Ltd, Oakville, ON) in methanol 

(MeOH) (Fisher Scientific, Whitby, ON) was added to the samples in order to 

precipitate any protein in the perfusate. Protein-free supernatant was separated after the 

samples were centrifuged at 4200 x g for 3 min. The supernatant was frozen in liquid 

nitrogen and vacuum dried on the Thermo Scientific® Digital Series SpeedVac Systems 

(Thermo Fisher Scientific, Nepean, ON). Subsequently 50 IlL of a mixture of 

triethylamine (TEA) (Sigma Aldrich Canada Ltd, Oakville, ON), MeOH (Fisher 

Scientific, Whitby, ON) and water in a 2:2:6 ratio were added to each sample. The 

samples were vacuum dried again using the SpeedVac system. Once dried, the samples 

were labeled with a mixture of TEA, PITC (Thermo Scientific, USA), MeOH and water 
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in a 1:1:7:1. 20 f..lL of the PITC solution was added to each sample, and after an 

incubation period of 35 minutes at room temperature, the process was stopped by 

freezing in liquid nitrogen. This derivatization step allows PITC to bind with free amino 

acids to form phenylthiocarbamyl amino acids. The samples were then dried down 

again. Prior to HPLC analyses, the samples were re-suspended in 200 f..lL of sample 

diluent which was 5 mM Na2HP04 (Sigma Aldrich Canada Ltd, Oakville, ON) titrated 

to pH 7.4 with 10% H3P04 acid and acetonitrile was added to 10% (Fisher Scientific, 

Whitby, ON). Following the addition of the diluent, the samples were vortexed and then 

centrifuged at 3000 x g for 3 min and the supernatant was transferred to HPLC vials. 

2.2.6.2. Sample preparation for UPLC analyses 

UPLC analysis was performed after derivatizing the perfusate samples using the 

Waters AccQ·Tag Amino Acid Analysis Method® (Waters, Mississauga, ON). Samples 

were diluted 1:10 prior to derivatization. 100 f..lL of diluted perfusate sample was mixed 

with I 0 f..lL of 2.5 f..lM norvaline (Sigma Aldrich Canada Ltd, Oakville, ON) internal 

standard and vacuum dried using the SpeedVac system. Dried samples were then 

resuspended in 50 f..lL of 0 .1 N HCl (Fisher Scientific, Whitby, ON). 10 ~LL of the 

resuspended sample was mixed with 70 f..lL of AccQ·Tag ultra-borate buffer (Waters, 

Mississauga, ON) and 20 f..lL of AccQ·Tag ultra-reagent (Waters, Mississauga, ON), and 

was heated for I 0 min at 55°C in an oven to facilitate the labeling proce s of the amino 

acids with the AccQ•Tag reagent. 
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2.2.6.3. HPLC analysis of perfusate samples 

HPLC sample vials which contained the prepared sample were placed in Waters 

717 Plus Auto Sampler system (Waters, Mississauga, ON). A 40 f..LL aliquot of sample 

was injected into the reverse phase C18 column which was kept at 46°C to facilitate the 

separation procedure. The phenylthiocarbamyl amino acids were separated on the 

column during a 112 min run time, at 1 mL/min and quantified by the UV absorbance at 

254 nm. The peaks in the chromatogram for each amino acid were integrated using 

Breeze software (Waters, Version 3.3, 2002, Waters Corporation, Woburn, MA), and the 

amino acid concentrations in the plasma were determined by comparing peak areas to 

the area produced by the internal norleucine standard. 

2.2.6.4. UPLC analysis of perfusate samples 

UPLC-prepared samples were placed in the Acquity Sample Manager® (Waters, 

Mississauga, ON). 1 J..LL of derivatized sample was injected into a 2.1 x 100 mm 

AccQ·Tag ultra® UPLC column (Waters, Mississauga, ON). The column was kept at 

55°C to facilitate the separation procedure. Samples were separated on the column 

during 9.5 min run time at 0.7 mL/min flow rate. Fluorescence absorba ce were 

quantified at 515 nm, using Acquity FLR detector® (Waters, Mississauga, ON). The 

peaks in the chromatogram were integrated and analyzed using Empower® software 

(Waters, Version2, 2009, Milford, MA). 
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2.2. 7. Dipeptide identification 

The amino acid elution protocol used in our lab did not provide good separation 

of dipeptides. Hence, the buffer flow gradient protocol was changed as described in 

Table 2-4. Once peaks for the dipeptides of interest (lysyl-lysine and ly yl-glycine) were 

identified on the chromatograph, further standards containing 0.0025, 0.025, 0.25 and 

2.5 mM lysyl-lysine and lysyl-glycine standards were analyzed to confirm the identity of 

the peaks. 

2.2.7.1. Fraction collection of HPLC samples 

The radioactivity that was associated with arginine was determined by fraction 

collecting the eluent from the HPLC column that corresponded to the arginine peak; 

similarly, peaks associated with the urea cycle amino acids (ie ornithine and citrulline) 

were also collected with subsequent scintillation counting. The eluent for each amino 

acid was collected into a 7 mL scintillation vial using Waters Fraction Collector II 

(Waters, Mississauga, ON). The radioactivity in those fractions was determined by 

liquid scintillation counting using biodegradable scintillant (1 0 mL) (Fisher Scientific, 

Whitby, ON). 

2.2.7.2. Tissue free amino acid analysis 

To determine intracellular free amino acid concentrations, 100 mg of tissue was 

homogenized with 1 mL of 2% perchloric acid for ~45 seconds. The homogenates were 

centrifuged at 3000 g for 15 min to separate acid soluble free amino acids from protein 

precipitates. This was repeated 3 times and supernatants were collected and pooled. 50 
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)lL of the internal standard, 25 )1M norleucine (Sigma Aldrich, Oakville, Canada) was 

added to the tissue free supernatant. Subsequently, the supernatant was neutralized with 

125 )lL of 2 M K2C03 and the samples were centrifuged to separate the supernatant 

from precipitate. 1 mL of supernatant was vacuum dried and derivatized for HPLC 

analyses, as described above (Section 2.6.1). However, small changes were made with 

the amount of derivatization solutions which were used. In the TEA:methanol:water 

step, 100 )lL was used, and for the PITC labeling step, 50 )lL was used. In the final step, 

derivatized samples were re-suspended in 300 )lL of sample diluent. Eventually HPLC 

analyses were performed as described in section 2.6.5. 
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Table 2-5 Modified buffer flow gradient protocol developed for HPLC dipeptide 

separation 

Standard Amino Acid Separation Modified Gradient for Dipeptide 

Gradient Separation 

<!) 
<!) 

<!) 
<!) 

8 :s: -< p::) C; 8 :s: -< p::) C; 
0 3 0 _8 r.:: i:i:' ~ ~ r.:: i:i:' ~ ~ 

1 0.01 1.0 100. 0.0 6 0.01 1.0 100.0 0.0 6 

2 13.5 1.0 97.0 3.0 11 13.5 1.0 97.0 3.0 11 

3 24.0 1.0 94.0 6.0 8 24.0 1.0 96.0 4.0 8 

4 30.0 1.0 91.0 9.0 5 30.0 1.0 91.0 9.0 5 

5 50.0 1.0 66.0 34.0 6 50.0 1.0 66.0 34.0 6 

6 66.0 1.0 66.0 34.0 6 66.0 1.0 66.0 34.0 6 

7 66.5 1.0 0.0 100.0 6 92.0 1.0 0.0 100.0 6 

8 78.5 1.0 0.0 100.0 6 102.0 1.0 0.0 100.0 6 

9 79.0 1.0 100. 0.0 6 102.5 1.0 100.0 0.0 6 

10 90.0 1.0 100. 0.0 6 11 2.0 1.0 100.0 0.0 6 
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3. Results 

3.1. PepTl contribution to the trans epithelial transport of glycyl-sarcosine 

Transepithelial transport of glycyl-sarcosine in jejunal sections, determined in 

vitro via Ussing chambers, was linear between 15 and 120 min (Figure 3-1). 

Correspondingly, transepithelial transport of glycyl-sarcosine across the jejunal 

epithelium with different concentrations of the PepTl inhibitor losartan was also found 

to be linear from 15 to 120 min (Figure 3-1). Similarly, in ileal sections mounted in 

Ussing chambers, glycyl-sarcosine movement was linear between 15 to 120 min (Figure 

3-5). The linear relationship of glycyl-sarcosine transport with time indicated the 

constant movement of glycyl-sarcosine out of the intestinal lumen, which laid the 

foundation for us to carry out further analyses of glycyl-sarcosine transport through 

intestinal mucosa. 

3.1.1. Glycyl-sarcosine transport across the intestinal sections with iffering 

concentrations of PepTl inhibitor: preliminary study to determine the ideal 

PepTl inhibitor concentration 

Glycyl-sarcosine transport rate through the jejunum samples was determined 

from five different Ussing chamber experiments in intestinal tissues taken from three 

different animals. The overall mean rate of transport was 3.87 ± 1.45 nmol/cm2/min 

(Figure 3-2). The addition of 1 mM of losartan to the luminal buffer reduced the glycyl

sarcosine transport rate significantly to 1.83 ± 0.49 nmol/cm2/min (P < 0.05) (Figure 3-

2). 
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Figure 3-1 Glycyl-sarcosine movement through neonatal pig .iejunum 

over time. Values are means ± SD; each data point represents 4 or 5 

individual recordings with tissues taken from two piglets. Data are 

regressed linearly across time, but statistical comparison of concentrations 

was not performed. 
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Figure 3-2 Glycyl-sarcosine transport through neonatal pig jejunum 

with varying concentrations of PepTl inhibitor (losartan). Values are 

means ± SD; each bar represents 4 or 5 Ussing chamber experim nts, with 

tissues taken from two piglets. P values were determined by one-way 

ANOV A. Groups with differing superscripts are significantly different at 

P < 0.05 using Tukey's Multiple Comparison Test. 
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Further increases in the concentration of losartan to 5 mM and 10 mM reduced the 

glycyl-sarcosine movement to 1.13 ± 0.42 nmol/cm2/min and 1.52 ± 0.65 nmol/cm2/min, 

respectively (Figure 3-2). These values were significantly lower than the glycyl

sarcosine transport rate without PepT1 inhibitor (p < 0.05), but not different (p > 0.05) 

from the 1 mM losartan treatment. Glycyl-sarcosine transport with 5 and 10 mM 

losartan concentrations were carried out in four Ussing chambers (two per 

concentration) with tissues obtained from two animals. 

3.1.2. Transepithelial transport of glycyl-sarcosine through jejunum with and 

without PepTl inhibitor 

Transepithelial transport of glycyl-sarcosine was measured in Ussing chambers 

under standard conditions with and without losartan, a PepTl inhibitor. A concentration 

of 1 mM losartan was used based on the study described above that demonstrated no 

significant further inhibition with higher concentrations. Intestinal tissues were 

obtained from 5 piglets and each experimental condition was run in duplicate. Glycyl

sarcosine transport rate through jejunum sections without PepTl inhibit r was 3.31 ± 

0.67 nmol/cm2/min (Figure 3-3). The addition of losartan to the luminal buffer resulted 

in a glycyl-sarcosine transport rate of 1.78 ± 0.26 nmol/cm2/min, which was 53% lower 

than without inhibitor (p < 0.05, n = 5) (Figure 3-3). 

Transepithelial transport of mannitol via piglet jejunum was measured by 

tracking 14C-mannitol appearance in the basolateral buffer to determine if losartan 

affected paracellular movement. Transepithelial transport of mannitol without PepTl 
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Figure 3-3 Glycyl-sarcosine transport through neonatal jejunum with and 

without PepTl inhibitor. Values are means ± SD; n = 5. P values were 

determined by Student's t-test. Groups with differing superscripts are 

significantly different at P < 0.01. 
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Figure 3-4 Mannitol movement through neonatal pig jejunum 

against time. P values were determined by repeated measure ANOV A. 

Values are means ± SD; n = 4. 
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inhibitor was not significantly different compared to when 1 mM of losartan was present 

(p > 0.05, n = 3) (Figure 3-4). Data were acquired from four different Ussing chamber 

experiments, but tissues were obtained from three animals. 

3.1.1. Transepithelial transport of glycyl-sarcosine in the ileum 

Glycyl-sarcosine transport was also measured in sections of piglet ileum that 

were mounted in Ussing chambers, to determine if PepT1 inhibition would have a 

greater effect in the distal small intestine. Glycyl-sarcosine transport rate through the 

ileum was 0.56 ± 0 .24 nmol/cm2/min under standard conditions, which was significantly 

lower (p < 0.01) than glycyl-sarcosine transport rate in the jejunum und r similar 

conditions (Figure 3-6). Ileal glycyl-sarcosine transport rate in the presence of 10 mM 

losartan resulted in significantly lower transport at 0.15 ± 0.10 nmol/cm2/min compared 

to when no inhibitor was present (p < 0.05, n = 4) (Figure 3-7). 

3.1.2. Tissue viability 

Viability of excised intestinal tissues was determined by measuring 

transepithelial potential difference. Change with time of transepithelial potential 

difference after adding 50 mM glucose solution to the luminal buffer was recorded with 

both control (Figure 3-8A) and with inhibitor (Figure. 3-8B) conditions. 
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Figure 3-8 Transepithelial potential difference measured using EKl 

electrode kit. After measuring the glycyl-sarcosine movement over 120 min, 50 

rnM glucose was added to the luminal buffer (arrow) and the change in the 

potential difference was measured without PepTl inhibitor (A) and with PepTl 

inhibitor (B). 
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3.2. Effect of lysine-containing dipeptides on arginine uptake by the rBAT/b0
'+ 

system 

Arginine uptake in the presence of differing concentrations of lysine-containing 

dipeptides was measured using the in vivo gut loop method. Five 21 d old piglets were 

assigned to each condition, and 5 or 6 loops were created in each individual animal. 

3.2.1. Effect of differing concentrations of lysyl-lysine on arginine uptake 

The uptake of arginine into loops of proximal intestine perfused with varying 

concentrations of lysyl-lysine or 20 mM L-lysine is shown in Figure 3-9. Significantly 

higher arginine uptake (81% higher than control) was observed when 20 mM lysyl

lysine was added to the perfusate, compared to arginine alone (p < 0.05). Arginine 

uptake with 10 and 50 mM lysyl-lysine ( 139%, 131% of control, respectively) was not 

significantly different from the control condition. Moreover, 20 mM L-lysine (120% of 

control) was also not significantly different. 
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Figure 3-9 Arginine uptake in the presence of lysyl-lysine dipeptide or free 

lysine. Arginine (Arg) uptake was determined by the disappearance of 3H-arginine 

+ arginine (I 0 mM) in the absence (control) or presence of I 0, 20, 50 rnM of 

lysyl-lysine (LL) or 20 rnM L-lysine. Data were expressed as the percentage of 

baseline, which was arginine disappearance from luminal buffer when perfused 

alone. Values are mean± SD (n=4). Data were analyzed by repeated measures 

ANOV A (*P <0.05). 
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3.2.2. Effect of differing concentrations of lysyl-glycine on arginine uptake 

Unlike lysyl-lysine, lysyl-glycine did not enhance arginine uptake at any 

concentration in perfused loops of proximal jejunum compared to arginine alone (Figure 

3-10). Arginine uptake with 50 mM lysyl-glycine (124% of control) or 20 rnM L-lysine 

(130% of control) was not significant. However, when 20 mM free glycine was included 

in the perfusate, arginine uptake was 47% higher than in the control condition (p < 0.05) 

(Figure 3-10). 

3.2.3. Effect of the aminopeptidase inhibitor amastatin on arginine uptake 

Arginine uptake into the proximal intestine was measured with and without the 

aminopeptidase inhibitor amastatin under each of the following conditions: arginine 

alone, arginine with 20 mM lysyl-lysine, and arginine with 50 mM lysyl-glycine (Figure 

3-11). Arginine perfused with amastatin did not change arginine uptake in proximal 

intestine compared to the control. A significantly higher arginine uptake was measured 

when perfused with 20 rnM lysyl-lysine compared to arginine alone (p < 0.05), and the 

effect was abolished when the gut loop was perfused with amastatin and 20 rnM lysyl

lysine simultaneously. Arginine uptake with 50 mM lysyl-glycine (181 Yo of control) 

also was not significantly different (Figure 3-11 ). 
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Figure 3-10 Arginine uptake with lysyl-glycine dipeptide. Arginine (Arg) 

uptake was determined by the disappearance of 3H -arginine + arginine ( 1 OrnM) in 

the absence (control) or presence of l 0, 20, 50 mM of lysyl-glycine (LG) or 20 

rnM L-lysine (Lys) or 20 rnM glycine (Gly). Data were expressed as the 

percentage of baseline, which was arginine disappearance from luminal buffer 

when perfused alone. Values are mean ± SD (n= 4). Data were analyzed by 

repeated measures ANOV A(* P < 0.05). 
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3.2.4. Free amino acid concentrations in intestinal tissue exposed to varying 

concentrations of lysyl-lysine and lysyl-glycine 

Tissue free amino acid concentrations were measured in intesti al mucosa 

harvested after the cessation of the perfusion experiments; only the con entrations of 

arginine, lysine, ornithine and glycine under varying experimental conditions are 

reported. 

3.2.4.1. Tissue free amino acid concentrations in jejunal mucosa following lysyl

lysine perfusion 

Mucosal tissue free arginine concentration did not differ in the lysyl-lysine 

experiment, regardless of the concentration or form oflysine that was delivered in the 

perfusate (Figure 3-12 A). Tissue free ornithine concentrations were al o similar under 

all experimental conditions (Figure 3-12 B). Compared to the control loop with no lysine 

in the perfusate, tissue free lysine concentration was significantly higher in intestinal 

loops exposed to 20 mM lysyl-lysine or 50 mM lysyl-lysine group (0.5 ± 0.2 versus 2.1 

± 0.8 or 2.9 ± 1.1 ~-tmollg, respectively) (Figure 3-12 C). 
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Figure 3-11 Effect of preincubation of small intestine with amino peptidase 

inhibitor amastatin (AM) on uptake of arginine (Arg). Arg uptake was 

determined by the disappearance of 3H-arginine (1 0 mM) in the absence (control) 

or presence of20 mM lysyl-lysine (LL) or 50 mM lysyl-glycine (GL) with or 

without 10 J.!M amastatin (AM). Data were expressed as the percentage of 

baseline, which was arginine disappearance from luminal buffer when perfused 

alone. Values are mean ± SD (n = 5). Data were analyzed by repeated measures 

ANOV A (*P < 0.05) 
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3.2.4.2. Tissue free amino acid concentrations in jejunal mucosa following lysyl

glycine perfusion 

Mucosal tissue free arginine concentration did not differ in the lysyl-glycine 

experiment, regardless of the concentrations or form of lysine and glycine that were 

delivered in the perfusate (Figure 3-13 A). Similarly, tissue free ornithine 

concentrations were not significantly different under the varying experimental 

conditions (Figure 3-13 B). Tissue free lysine concentrations rose with increasing lysyl

glycine concentrations in the perfusate, and tissue free lysine concentration was 

significantly higher in loops perfused with 50 mM lysyl-glycine (7.3 ± 2.7 Jlmollg) than 

in the control loop (1.5 ± 2.2 Jlmol/g) (P < 0.05) (Figure 3-13 C). However, during 

analysis of standards, the retention time of lysyl-glycine dipeptide peak and the L-lysine 

peak were found to be very close; as such, when the LG concentrations are high there is 

a likely possibility that there was overlap of these two peaks and lysine concentrations 

may not be accurate. Tissue free glycine concentration in the 20 rnM glycine-treated 

loop (11.7 ± 6.9 Jlmollg) was significantly higher than that in arginine alone control 

group (3.4 ± 1.5 Jlmol/g) (Figure 3-13 D). Tissue free glycine concentration in 10, 20 

and 50 mM lysyl-glycine treated loops were not significantly different. 
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Figu re 3-12 Tissue free arginine, ornithine and lysine concentrations in 

intestinal mucosa treated with differing forms and concentrations of lysine. 

Intestinal mucosal free amino acid concentrations of arginine (A), ornithine (B) 

and lys ine (C). Values are mean ± SO (n=4). Data were analyzed by repeated 

measures ANOVA fo llowed by Dunnett's Multiple Compari son Test(* P < 0.05). 
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3.2.4.3. Tissue free amino acid concentrations in jejunal mucosa following lysyl

lysine or lysyl-glycine perfusion with or without amastatin 

Similar to previous two experimental conditions, tissue free arginine (Figure 3-

14 A) and ornithine (3.14 B) did not exhibit any significant differences in response to 

changes in the luminal buffer. In the previous two experimental conditions, there was 

significantly higher tissue free lysine concentration with 20 mM lysyJ .. Jysine or 50 mM 

lysyl-glycine; however, in this experiment, free lysine concentrations were similar in all 

experimental groups (Figure 3-1 4 C). 
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Figure 3-13 Tissue free arginine, ornithine, lysine and glycine 

* 

concentrations in intestinal mucosa treated with differing forms and 

concentrations of lysine and glycine. Intestinal mucosal free amino acid 

concentration of arginine (A), ornithine (B), lysine or lysyl-glycine (C) and 

g lycine (D). Values are means ± SO (n=4). Data were ana lyzed by repeated 

measures A NOVA followed by Dunnett's Multiple Comparison Test(* P < 

0.05). 
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Figure 3-14 Tissue free arginine, ornithine, lysine and glycine concentrations 

in intestinal mucosa treated with differing forms and concentrations of lysine 

and glycine, with or without amastatin. Intestina l mucosal free amino acid 

concentrations of arginine (A), ornithine (B) and lysine or lysyl-g lyc ine (C). 

Values are mean ± SD (n=4). Data were ana lyzed by repeated m asures ANOVA 

followed by Dunnett's Multiple Comparison Test. 
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3.2.5. Amino acid concentrations in the luminal perfusates 

The amino acid concentrations in buffers perfused into the intestinal loops were 

measured in samples that were collected at 0, 30, 60, 90 and 120 min ofth e perfusion 

experiment. 

3.2.5.1.Amino acid concentrations in luminal buffers sampled in the lysyl-lysine 

and lysyl-glycine experiments 

The arginine concentration in the perfused buffers declined dramatically (~50%) in the 

first 30 min in a ll experimental conditions in both lysyl-lysine (Figure 3-15 A) and lysyl

glycine (Figure 3-16 A) experiments. Subsequently, arginine concentration appeared to 

plateau or decline only slightly over the next 90 min . Surprising ly, high concentrations 

of ornithine and citrulline were also found in the luminal buffer samples collected from 

30 min onwards in the lysy l-lysine experiment (Figure 3- 15 8 and C) as well as the 

lysyl-g lyc ine experiment (Figure 3-16 8 and C). Scintillation counting of the fracti ons 

collected from citrulline and ornithine peaks demonstrated that the amino acids were 

radio-labeled with 3H, and thus were at least partially derived from the perfused 

arginine. Neither ornithine nor citrulline appearance in the luminal buffer differed 

significantl y amongst the various experimental treatments. Lysyl-lys ine dipeptide 

concentrations in perfused buffers also decreased dramatically in first 30 min and 

appeared to plateau over next 90 min (Figure 3- 15 D). Interestingly, the free L- lys ine 

concentration in the lysyl- lys ine buffers increased rapidly in first 30 min and afterwards 

it increased slightly or appeared to plateau (Figure 3-15 E) over next 90 min . Similarly, 
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lysyl-glycine concentration in perfused buffers declined rapidly in fir t 30 min and 

appeared to plateau or decline slightly over the next 90 min (Figure 3-16 D). Another 

interesting finding was spontaneous hydrolysis of dipeptides in perfusates. Analyses of 

the buffers sampled prior to the perfusion study demonstrated that 37%, 28% and 39% of 

the lysyl-lysine underwent spontaneous hydrolysis in the 10, 20 and 0 mM lysyl-lysine 

solutions, respectively (Figure 3-15 D). However, similar analyses of the lysyl-glycine 

buffers showed no hydrolysis prior to the start of the perfusion (Figure 3-16 D). 
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4. Discussion 

4.1.Transepithelial transport of dipeptides 

The end products of luminal protein digestion are a mixture of free amino acids, 

di and tripeptides (Adibi & Mercer, 1973). In vivo studies in pigs have illustrated that it 

may be beneficial for absorption when amino acids are presented to the mucosa in the 

peptide-bound form (Rerat et al. 1992). This has also been demonstrated in humans 

through an in vivo experiment during which the absorption rates of amino acids were 

determined from a mixture of free am ino acids or a corresponding mi ture of the same 

amino acids provided as glycyl-dipeptides (Steinhardt & Adibi , 1986). However, the 

contribution of dipeptides to total amino acid uptake from dietary prote ins is stil l 

unknown (Daniel, 2004a). 

PepT !-mediated transcellular transport (Adibi, 1997) and passive paracellular 

movement (McCollum & Webb 1998) are recognized as the two major mechani sms for 

the transepithelial transport of di/tripeptides. In the current study, wei vestigated the 

proportion of dipeptide transported by the PepTl mediated transcellular transport versus 

paracellular movement in the small intestine of Yucatan miniature piglets under in vitro 

cond itions. In the first Ussing chamber study, the rate oftransepithelial transport of 

glycyl-sarcosine was 3.87 ± I. 50 nmollcm2/min . Winkler et al. ( 1999) also used the 

Ussing chamber system to measure g lycyl-sarcosine uptake in pig j ejunum, and reported 

a rate of 62 ± 12.6 nmol/cm2/l 0 min. The similarity of these values shows that the 
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Ussing chamber system can be considered a consistent in vitro model to measure 

transepithelial transport of dipeptides in piglet intestine. 

4.1.1. Transepithelial transport of glycyl-sarcosine with different 

concentrations of PepT1 inhibitors 

Our experimental design was based on measuring passive paracellular movement 

by inhibiting the PepTI-mediated pathway. Therefore, the ava ilability of a potent PepTI 

inhibitor (losartan) was essential to the study. In a preliminary study, the transepithelial 

movement of glycyl-sarcosine across the jejunal epithelium was measured with differing 

concentrations of losartan in order to determine the concentration that optimally 

inhibited PepTI . We observed that the addition of I mM losartan to the luminal buffer 

significantly reduced the transepithelial transport of glycyl-sarcosine i piglet jejunum 

by 52%. Interestingly, further increases in losartan concentration to 5 or I 0 mM did not 

produce a significantly di fferent transport rate compared to I mM of inhi bitor. 

However, all losartan concentrations resulted in inhibition of PepT ]-mediated transport, 

and all were significantly di fferent from control group when no losart n was added 

(F igure 3-2). To the best of my knowledge, we are the first to demonstrate inhibition of 

PepT ]-mediated dipeptide transport by losartan in piglet intestine. Previously, Knutter et 

al. , (2009) reported a strong inhibition of PepT I mediated uptake of di peptides into 

Caco-2 cell s with I mM of losartan. In that study, Knutter and colleagues measured the 

cellular uptake of glycyl-sarcosine into Caco-2 cell s, which only repre ents PepT I

mediated transport. However, our model is more physiological than Caco-2 cell lines 
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which are known to poorly express some metabolic enzymes (Sun et a!., 2008). Also, 

tight junction permeability ofCaco-2 cell lines is lower compared tot at of human small 

intestine (Sun eta!. , 2008). Hence, we conclude that maximum inhibi tion by losat1an on 

PepT I transporters is satisfied at 1 mM concentration in piglet jej unum under in vitro 

conditions. 

4.1.2. Transepithelial transport of glycyl-sarcosine through jejunum with 

and without PepTt inhibitor 

It was a surprise to find that the addition of Josartan lowered transepithel ial 

transport of glycyl-sarcosine by only 47 to 53%; that is, addition of Josartan to the 

lumina l buffer acted to inhibit PepT )-mediated transport such that ~ 50% of the 

dipeptide movement occurred via the passive paracellular route. Those values for 

paracellular movement were higher than we expected. However, our estimate of the 

proportion of dipeptides that were transported via paracellular movement was likely an 

overestimation, because our PepT I inhibitor may not have inhibited PepT I by I 00%. 

Knutter eta!. (2009) reported that losartan inhibited PepTI mediated uptake by 80-85% 

at I mM concentration. Thus, ~ 7- I 0% of the transport that was attributed to paracel lular 

movement may have actual ly been due to PepTI-mediated transpot1, because 

incomplete inhibition confounded the data. Other than incomplete inhibition of the 

PepTI transporter, the in vitro Ussing chamber model has its own limitations. One of the 

main weaknesses is that it is missing the complex physiological system of intestinal 

mucosa (Clarke, 2009). The excision of tissue from the anima l suppre ses the action of 
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any endocrine or nervous stimuli on intestinal mucosa (C larke, 2009). That would 

reduce the intestinal tonicity such that the tissue becomes " leakie r" than in vivo. 

Other studies have reported both high and low pass ive parace llular movement of 

peptides or peptidomemetic drugs, us ing a variety of mode ls. In an in vitro everted gut 

sac study, approx imately 80% of ampic ill in transport occutTed via passive paracellular 

movement (Lafforgue eta!. , 2008) even though ampicillin is a substrate for PepTI 

(Bretschneider et a!. , 1999). In contrast, a study conducted in Caco-2 cell s reported 

PepT !-mediated transepithe lia l transport of g lycyl-sarcosine to be 69% to 87% of tota l 

transport (Scow et al., 20 II ) . However, it has been reported that narrow pores of the 

tight junctions in Caco-2 cell lines cause an underestimation of the parace llular route 

contribution (Nagahara et af. , 2004), which may have reduced paracellular movement of 

dipeptides in the Caco-2 mode l. Two studies conducted in adult PepT 1 knockout mice 

reported 70% (Chen eta f. , 20 I 0) and 78% (Nassl el a f. , 20 II ) lower transepithe lial 

transport of g lycyl-sarcosine compared to w ild type mice, which suggests a higher 

contribution of PepT !-mediated transport of dipeptides in mice intestine compared to 

our in vitro mode l. Data on the importance of PepT !-mediated transport collected from 

the knockout mouse mode l are quite different than our findings, and may be due to in ter

species variation of PepT 1 expression; however, it is more like ly re lated to 

developmental di fferences in the models. Intestinal permeability, particularly in the 

prox imal jejunum, is likely very high in 18 day old pig lets in contrast to that in adul t 

mice. Further studies are necessary to understand the discrepancy in data on PepT !

mediated transcellular transport of dipeptides fro m different experimental mode ls. 
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Mannito l is commonly used as a probe for paracellular permeability in intestinal 

research in vitro (Madara & Stafford, 1989). Unidirectional 14C-mannitol movement was 

measured in the current study in order to determine if the PepT I inhibitor losartan 

impacted paracellular permeability, which would also confound the results. Mannitol 

transport through piglet jej unum in the presence of 1 mM losartan wa not a ltered 

(Figure 3-4); thus, paracellular permeability was not affected, and losartan was shown to 

be a good cho ice as a PepT I inhibitor under our experimenta l conditi ns. 

Ti ssue v iabili ty is an important factor for in vitro studies. A considerable change 

in the potential di fference was observed after adding of 50 mM D-g lucose to the luminal 

buffer at the end of the experiment which demonstrated that ti ssues were still viable 

(F igure 3-8). The potentia l difference across the membrane is produced by the active 

transport of the e lectrogenic ions (Clarke, 2009) . Once glucose is added to the luminal

s ide buffer, the Na + coupled g lucose transporter on the apical membrane transports 

glucose into the enterocyte (Takata, 1996). This event contributes to a h igh intracellular 

Na+ ion concentrati on, and the Na+/K+ ATPase pump in the basolatera l membrane 

actively transports Na + to reduce the intracellular Na + concentration. The process of 

transport ing Na + ions from the luminal to the basolateral s ide creates the potential 

di fference. In order for that process to happen, the cell s need to be viable as the Na +/K+ 

A TPase pump needs cellular energy. Therefore, we can conclude that the intestinal 

segments used in Ussing chamber experiment were viable at the end of experiment. 
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4.1.3. Transepithelial transport of glycyl-sarcosine in the ileum with and 

without PepTl inhibitor 

Paracellular movement in the ileum is known to be lower compared to the 

jejunum, as reduced inter-cellular space reduces the leakiness of the il um (Lacombe et 

a!. , 2004). We hypothesized that the contribution of the paracellular movement to total 

dipeptide transport would be lower in ileal compared to jejunal tissue. We observed only 

27% paracellular movement in ileum while PepT I-mediated transcellular transport was 

responsible for 73% ofthe glycyl-sarcosine transport. Also, contributi n ofPepT I

mediated transcellular transport in total glycyl-sarcosine transport across the ileal tissue 

was 20% higher compared to jejunal segments. Therefore, as a proportion of total 

dipeptide uptake, PepT !-mediated transcellular transport may be of greater importance 

in the distal compared to the proximal small intestine segments. 

4.1.4. Transepithelial transport of glycyl-sarcosine in the jejunum and 

ileum without PepTl inhibitor 

In the current study we found the overall transepithelial transport of glycyl

sarcosine was significantly lower in the ileum than jejunum under control conditions, 

and was more affected in the ileum when PepT I transport was inhibited (Figure 3-7). 

Ungell et al. ( 1998) have reported that the available surface area of the intestine 

decreases from the jejunum to the ileum. A reduction in avai lable surface area could 

cause absorption to drop in the ileum compared to the jejunum. Although PepTI

mediated transcellular transport contributes a greater proportion of total peptide uptake 
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in the ileum than the jejunum, PepTI transporters exist in a relatively low concentration 

in the distal intestine of 18 day old piglets. The piglets we used in the current study had 

been fed only highly digestible sow milk;PepTI expression depends highly on substrate 

exposure (Adibi, 2003). Supporting this argument, Wang et al. , (2009b) reported the 

lowest PepTl expression in the ileum of21 day old Tibetan piglets, and Chen et al. , 

( 1999) reported lower PepTl expression in the ileum compared to the jejunum. Hence, 

without the contribution of paracellular movement and low PepT I expression in the 

ileum, total dipeptide transport capacity in the ileum is likely lower compared to the 

jejunum. Thus, proximal intestine plays a major role in peptide absorption in young 

neonates. 

4.2.Effect of luminal dipeptides on trans-stimulation of rBA T/b0
' + 

Arginine and lysine are cationic amino acids which share the rBA T/b0
• +system 

for intestinal uptake. Lysine is considered the first limiting amino acid in the pig diet 

(Baker, 2007), and argin ine is an indispensable amino acid in both neonates and growing 

animals. The Na +-independent rBAT/b0·+ system has been described as the major 

transport mechanism for arginine uptake into enterocytes. Wenzel et al. , (200 I) reported 

that 85% of arginine uptake takes place via the rBAT/b0'+ system. In t e present study 

we investigated the effect of lysine-containing dipeptides on arginine uptake through 

rBA T/b0·+ transporter. 
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4.2.1. Arginine uptake with Iysyi-Iysine dipeptides 

To my knowledge, we are the first to demonstrate a positive effect of dipeptides 

on arginine uptake in an in situ gut loop model. In the presence of20 mM Jysyl-lysine, 

L-arginine uptake was greater compared to when arginine was perfus d alone (Figure 3-

9). Enhanced arginine uptake that we measured in response to dipeptides, and likely via 

the rBA T/b0
·+ system, is termed trans-stimulation. This process was first described as 

enhanced arginine uptake by human rBA T injected xenopus oocytes that had elevated 

intracellular cationic amino acid concentrations (Chillar6n et al., 1996). The potential 

fo r lysine dipeptides to enhance arginine uptake was described in a study conducted in 

Caco-2 cell s (Wenzel et al., 200 I). In that study, cells pre-incubated with I 0 mM Jysyl

lysine demonstrated enhanced arginine uptake (293. 1 ± 5.7%) compared to the controls. 

In contrast, we did not observe significant enhancement of arginine uptake with I 0 mM 

Jysyl-lysine. In our in vivo model, intracell ular free amino acid concentration generated 

by I 0 mM Iysyl-lysine may not have been high enough to trigger trans-stimulation of 

rBAT/b0
·+ system. Intracellular free amino acid concentration is the main determinant of 

trans-stimulation (Chillar6n et al. , 1996). We measured the tissue-free lysine 

concentration in the mucosa scraped from the perfused gut sections and found that the 

concentrations changed in parallel with perfusate lysyl-lysine or free lysine 

concentrations. The tissue free lysine concentration was lowest in the control condition 

(arginine alone) and was significantly higher in tissue exposed to 20 mM or 50 mM 

lysyl-lysine (F igure 3- I 2 C). Thus, intracellular cationic free amino acid concentration 

may induce trans-stimulation, as arginine uptake was sign ificantly higher when 
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perfused with 20 mM lysyl-lysine. However, we also found that the addition of 50 mM 

lysyl-lysine did not produce any further benefit to arginine uptake compared to 20 mM 

condition. To follow-up on this result, we measured the amino acid and dipeptide 

concentrations of the buffers that were sampled during the perfusion studies. Lysyl

lysine when added at 50 mM concentration underwent extensive intraluminal hydrolysis 

during the perfusion study, such that the free lysine concentration in the perfusate was 

very high. After 120 min ofperfusion, the luminallysyl-lysine concentration in the 

buffer had decreased to approximately 21 mM (Figure 3-15 D) and luminal free lysine 

concentrati on had increased to 32 mM (Figure 3-15 E). The high free lysine 

concentrati on in the luminal buffers may have competed with arginine for the common 

transporter, resulting in less total uptake of arginine. The appearance of free lysine due 

to luminal hydrolysis in the I 0 mM and 20 mM lysyl-lysine treatments was 8.5 and 16.4 

mM , respecti vely; thus, the lower free lysine concentrations may not have interfered 

with rBA T/b0·+ -mediated arginine uptake. Wenzel et al. (200 I) investigated whether the 

max imum rate of arginine uptake via trans-stimulation was predicted by limitations in 

di peptide transport or by intracellular dipeptide hydrolysis. They reported that when 

Caco-2 cell s were exposed to increasing lysyl-lysine concentrations, arginine uptake 

over time followed a sigmoidal pattern, and the lysyl-lysine EC50 value for trans

stimulation was ~ 0.5 mM ; maximal trans-stimulation of arginine upta e occurred at ~ 

I 0 mM lysyl-lys ine, after which point the rate of arginine uptake plateaued. ln our 

study, the perfusion of gut loops with 50 mM lysyl-lysine may have exceeded the 

max imal rate of transport that can be stimulated by intracellular lysine. Furthermore, we 
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found very high free lysine concentration in the buffers during and after the perfusion 

study with the 50 mM lysyl-lysine condition; thus, it is possible that luminal free lysine 

may have been taken up by rBA T/b0·+, simply exchanging intracellular lysine for 

ex trace II u lar. 

In summary, luminal lysyl-lysine appeared to have the capability to enhance 

arginine uptake by trans-stimulating the rBA T/b0
·+ system. Trans-stimulation of 

rBA T/b0
·+ system seems to be due to increased intracellular free lysine concentration 

generated by lysyl-lysine hydrolysis. 

4.2.2. Arginine uptake with lysyl-glycine dipeptides 

In a previous study by others, intracellular free amino acid con entration was 

found to be a key factor in achieving trans-stimulation of the rBAT/b0
·+ system 

(Chillaron et a!., 1996). In the present study, lysyl-glycine dipeptide was tested along 

with lysyl-lysine to further clarify the effect of intracellular cationic a1 ino acid 

concentration on trans-stimulation of the rBA T/b0
·+ system. Thwaites eta!. ( 1995) 

reported that glycine was not transported via the rBA T/b0
·+ system. Thus, we 

hypothesized that the transport of lysyl-glycine would not enhance arginine uptake to the 

same extent as lysyl-lysine. Free glycine produced by intracellular hydrolysis of lysyl

glycine should not contribute to enhanced arginine uptake if glycine is not a substrate for 

counter-transport by the rBAT/b0
·+ transporter. In the current study, arginine uptake was 

not significantly higher with 10 ( 11 3% of control), 20 (1 08%) and 50 ( 125%) mM lysyl-
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g lycine, compared to the control loops (Figure 3-1 0) . In contrast, Wenzel et al., (200 I) 

reported that Caco-2 cells that were pre-incubated with g lycyl-arginin and lysyl-lys ine 

demonstrated an enhanced arginine uptake under both conditions, but arg inine uptake 

was lower when cell s were exposed to glycyl-arginine compared to ly yl-lys ine. They 

further demonstrated that g lycyl-glycine had no effect on trans-stimulation of the 

rBAT/b0
·+ system. It may have been interesting to have inc luded a g lycyl-g lycine 

perfus ion in our in vivo model, to confirm that the system responds only to intracellular 

concentrations of cationic amino acids. 

It was surprising that the 50 mM lysyl-g lycine treatment did not produce a 

s ignificant effect on argi nine uptake, as it should result in a s imilar in tracellular free 

lys ine concentrati on as 20 mM lysyl- lys ine. A study conducted in PepT !-expressed 

MOC K cell s demonstrated that the transport affinity for dipeptides via PepT I is as 

fo llows: neutral- neutral > charged- neutral = neutra l- charged > acidic- acidic > 

basic- basic (Vig et al. , 2006) . For this reason, lysyl-glycine should be taken up into 

enterocytes more efficiently than lysyl-lys ine and increase the tissue free lys ine and 

glycine concentration. We measured the tissue free lys ine and g lycine concentration of 

perfused gut loop mucosa and found that lys ine concentrations increas d w ith increasing 

exposure to lys ine (as lysyl-glycine). However, the tissue free lys ine concentration in 

the lysyl-glycine perfused mucosa (Figure 3- 13C) was much higher than that resul ting 

from 50 mM of lysyl-lysine perfusion (Figure 3- 12 C). The apparent high lys ine 

concentration fo llowing the glycyl-lys ine perfusion may be due to a m thodological 

problem, as there appeared to be inadequate separation between lysyl-glycine and lysine 
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in the HPLC analysis. We suspect this because ti ssue free glycine (the other hydrolysis 

product of lysy l-glycine) did not increase with higher lysyl-glycine treatments (Figure 3-

13 D). Another possible factor resulting in low tissue free glycine concentration in 

lysyl-glycine group is the inefficient hydrolysis of lysyl-glycine in enterocytes. Kottra 

et al. (2009) reported that the amino acid present on the carboxyl terminal affects the 

hydrolys is rate of dipeptides. They reported that glycine-containing dipeptides are more 

hydrolysis-resistant than other dipeptides. Accordingly, the high lysine+ lysyl-glycine 

peak determined by HPLC (and the low glycine concentration) could be due to the 

persistence of intact lysyl-glycine. It fo llows then, that the inefficient hydrolysis of 

lysyl-glycine may not have produced a high enough intracellular free lysine 

concentration to trigger the trans-stimulation of rBA T/b0
·+. Better separation techniques 

for lysyl-glycine and lys ine are needed to further explore thi s outcome. 

4.2.3. Effect of aminopeptidase inhibitor on trans-stimulation of rBAT/b0
'+ 

system 

Intracellular hydrolysis is an essential step to increase intracell lar free amino 

acid concentrations in order for dipeptides to induce trans-stimulation of rBA T/b0
·+ 

(Wenzel et al. , 200 I). To initiate trans-stimulation, the intracellular free amino acid 

concentration may have to reach an elevated level to bind with the intracellu lar binding 

site of rBAT/b0
·+. In the current study, we hypothesized that interfering with dipeptide 

hydrolysis using an aminopeptidase inhibitor would reduce the intracell ular free amino 

acid concentration, in turn dimin ishing the favorable effect demonstrated by lysine-
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conta ining dipeptides on arginine uptake. Indeed, we discovered that exposing the gut 

loops to the peptidase inhibitor amastatin abolished the potentiating effects of20 mM 

lysyl-lys ine on arginine uptake. Surprisingly, when we repeated a loop w ith arginine and 

50 mM g lycyl-lys ine (with no inhibitor), arginine uptake was enhanced s ignificantly, in 

contrast to the fi rst experiment; however, the effect was abolished when arginine and 

glycyl- lysi ne were perfused with amastatin (Figure 3- I I ). These data support our 

hypothesis that the addi tion of the aminopeptidase inhibitor amastatin with dipeptides 

would impede the trans-stimulation acti vity by reducing intracellular hydrolysis of 

di peptides. Wenzel et al. (200 I ) reported a similar observation where the trans

stimulation effect produced by glycyl-arginine was abolished when amastatin was added 

to the incubation media of Caco-2 cells . Importantly, these authors have also 

demonstrated that trans-stimulation produced by incubation of cells w ith free amino 

acids was not affected by the presence of aminopeptidase inhibitor. Taken together, our 

findings along w ith previously reported data c learly demonstrate that intracell ular free 

cationic amino acid concentration is a key factor for trans-stimulation f the rBAT/b0
·+ 

system. Furthermore, the intracellular free amino acid concentration generated by 

PepT \ -mediated di peptide uptake potentiates the effect likely because dipeptides are 

transported into enterocytes more efficiently and rapidly than free am ino acids (Adibi, 

197 1). 
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4.2.4. Arginine disappearance with free luminal lysine 

The cationi c amino acids arginine and lys ine enter enterocytes v ia the rBA T/b0
·+ 

system (Van Winkle et al. , 1988). Studies conducted in chicks (Austi c & Scott, 1975), 

dogs (Czarnecki eta!. , 1985) and guinea pigs (O'De ll & Regan, 1963) have reported 

arg inine and lys ine antagoni sm for intestinal uptake as they share the rBA T/b0
·+ system 

for cellular uptake. However, the importance of the antagoni sm between these two 

cationic amino acids is controversial in pigs, as Edmonds & Baker ( 1987) did not 

demonstrate an antagonistic effect on arginine w ith excess lysine. In the current study 

we were also unable to observe lys ine-arginine antagonism, as 20 mM of free lys ine 

( 123 -1 30% of control (Figures 3-9 and 3-1 0)) did not impa ir arginine uptake compared 

to the control situation w ith no lysine. 

We hypothesized that a high concentration of free lys ine in the lumina l buffers 

may compete with a rg inine fo r uptake by the common transporter; as such, the de li very 

of lysine as a dipeptide should be more efficient. Conversely, in the current study we 

did not observe either favo rable or negative effect w ith the free lysine condition. 

However, high free lys ine concentration generated by spontaneous hydro lysis and 

perhaps brush border hydrolys is during the perfus ion of 50 mM lysyl-lysine seemed to 

negatively influence trans-stimulated arg ini ne uptake. In contrast to our observation, 

the study conducted in Caco-2 cell culture reported that arginine uptake was enhanced 

by 246% w ith I 0 mM free lysine (Wenzel et al., 200 I ). However, they also reported that 

the potentiating effect of free lys ine was signi ficantly lower compared to lysyl-lys ine 

dipeptide . In our study, we observed that arginine uptake was similar when loops were 
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perfused with free lysine compared to when I 0 mM lysyl-lysine was added to the 

perfusate. Lack of arginine-lysine antagonism in piglet intestine could be due to the 

uptake of cationic amino acids by alternative transporters. Because of the importance of 

arginine and lysine to the growing neonate, it is important to further investigate the 

presence or absence of an antagonistic effect of high lysine on arginin uptake. 

4.2.5. Appearance of arginine metabolites in perfused buffers 

It was surprising to measure high concentrations of ornithine and citrulline in the 

perfused buffers. Orni thine and citrulline are major catabolic products of arginine and 

they are also components of the urea cycle (Wu & Morri s, 1998). Scintillation counting 

of the fractions collected from citrulline and ornithine peaks demonstrated that the 

amino acids were radio-labeled with 3H. This finding confirms that the ornithine and 

citrulline in the buffers were deri ved from the arginine tracer. Arginine hydrolysis by 

arginase results in the production of urea and ornith ine (Wu et al. , 1997). Interestingly, a 

study conducted in developing pig enterocytes reported that arginase activi ty in 

intestinal enterocytes is minimal during the first 2 1 days of li fe, and then increases (Wu, 

1995). We also studied 21 day old piglets, and expected that arginase activity would be 

low in the intestine, with minimal conversion of arginine to orni thine. I have measured 

arginase activity in 4 mucosal samples, but could not detect any arginase activity (results 

not shown). Thus, it will be interesting to investigate the underlying mechanism of this 

outcome. 
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4.3. Conclusions 

We have established and validated the Ussing chamber model as an in vitro 

experimental model in our laboratory by demonstrating intestinal ti ss e viability over 

two hours. To my knowledge, we are also the first to demonstrate inhibition of the 

PepTI transporter by losartan in intestinal tissue sampled from piglets. 

The results of our investigations on transepithelial transport of dipeptides have 

demonstrated that passive paracellular movement appears to contribute more to total 

transepithelial transport than PepT !-mediated transcellular transport in the jejunum of 

18 day old piglets. The high proportion of passive paracellular movement in the jejunum 

is likely due to " leakiness" and perhaps to relatively low expression of the PepTI 

transporter in jejunum during the late suckling period. Also, the high transepithelial 

transport observed in j ejunum compared to ileum could be considered developmental 

adaptation to absorb highly digestible sow milk in the upper gut during the suckling 

period. However further studies could be done to more carefully explore the high 

transepithelial rate of transport and high paracellular movement observed in jejunum 

compared to ileum. The in vivo gut loop method would be a better experimental model 

to measure transport activity in a more physiological situation. Further, contribution of 

the paracellular and PepT I mediated transcellular pathways on transepithilial transport 

of dipeptides should be measured in j ejunal and ileal sections of the gut in pre- and post

weaned piglets to determine the developmental changes. 

98 



The results of my in vivo gut loop study suggested that 20 mM lysyl-lysine was 

capable of enhancing arginine uptake by trans-stimulating the rBA T/b0·+ system. 

However, the contribution of the rBAT/b0'+ system in trans-stimulatio has yet to be 

verified. A study which specifically inhibits the rBA T/b0
• +system would be beneficial in 

determining whether it is involved in the trans-stimulation effect that is enhanced by 

dipeptides.The high free lysine concentration that appeared in the perfusion buffer both 

prior to and during the experiment with 50 mM lysyl-lysine may have contributed to a 

reduced potential effect on arginine uptake compared to 20 mM lysyl-lysine, due to 

competition of lysine with arginine for rBA T/b0·+; however, we do not have enough 

evidence to conclude that this outcome is the result of competition for the transporter, as 

arginine uptake was not lower than the control situation. It is possible that free luminal 

lysine may have exchanged with intracellular lysine via bBA T/b0·+ system. Therefore, 

further experiments are required to understand this scenario. Tissue free amino acid 

analysis suggested that the absence oftrans-stimulation with 50 mM lysyl-glycine may 

have been due to lack of intracellular hydrolysis of lysyl-glycine. Also, our experiments 

performed with the amino peptidase inhibitor showed that intracellular hydrolysis of 

dipeptides is critical step for successful trans-stimulation of the rBA T/bO,+ system. 

Although the current study answered our research question about trans

stimulation of rBA T/b0·+ system, it also brought to light some important questions 

requiring further research. We did not observe arginine-lysine antagonism when lysine 

and arginine were presented to the absorptive surface at the same cone ntration, but we 

observed a negative effect on trans-stimulation with higher free luminal lysine 
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concentration . Lysine is considered the first limiting amino acid in the pig diet and the 

second limiting amino acid for poultry (Baker, 2007) and arginine is an indispensable 

amino acid in neonates; thus, it is important to investigate varying antagonistic effects. 

Another important question arises from the appearance of isotopically labeled ornithine 

and citrulline in the perfusates. It remains to be determined whether arginase activity 

was higher in our piglets than previously reported in suckling piglets; furthermore, even 

with significant arginase activity, we also need to understand more about the 

transporting mechanism of these arginine metabolites back to the lumen. 

To the best of my knowledge, we are the first to demonstrate the interaction 

between the uptake of arginine and lysine-containing dipeptides at the cellular level in 

an in situ model. Understanding the interrelationships between free amino acids and 

peptide absorption could be used to enhance the delivery of nutritionally important 

amino acids, particularly during intestinal stress such as during weaning or infection. 
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