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ABSTRACT

Corrosion and thermal hot spots are typical of damage occurring in pressure 

vessels, piping or storage tanks used in industrial processes. Structural integrity of such 

components needs to be evaluated periodically to determine the acceptability for 

continued service. The ability to demonstrate structural integrity of an in-service 

component containing damage is termed as Fitness-for-Service (FFS) assessment.

In the present thesis, the Remaining Strength Factor (RSF) is chosen to quantify 

FFS assessments. Three alternative methods for Level 2 FFS assessments (according to 

API 579) of pressure components are proposed. Damage due to corrosion and thermal hot 

spots is considered. The methods are based on variational principles in plasticity, the limit 

load multiplier m-method, reference volume and the concept of decay lengths in shells. 

The m-method has been shown to provide acceptable approximations to limit load of 

various mechanical components and is thus employed as one of the bases of the 

recommended calculations for RSF in the current study.

The effects of local damage on a shell structure are normally restricted to a limited 

volume in the vicinity of the damage termed as reference volume. The use of reference 

volume instead of the entire volume of the structure gives a better approximation of limit 

load multipliers. In the present study, reference volume is characterized by using decay 

lengths of shells. Decay lengths for spherical and cylindrical shells are derived based on 
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elastic shell theories. The derived decay lengths are also used to specify the limit of what 

can be called “local” damage. They allow one to examine the interaction between decay 

effects in two perpendicular directions. The local damage limit is defined as the 

maximum size of damage beyond which pure equilibrium stress occurs at some place 

inside the damaged area. If the damage in a component is larger than this limit, it can be 

deemed as “global.” For global damage, the “failure” load is as if the damage extends to 

the entire component and the classical lower bound RSFL is used.

The stretching and bulging effects due to the damage are studied. For highly 

localized damage, the effects of stretching action dominate the behavior of the damage 

and surrounding areas. The damaged spot tends to open up instead of forming a bulge. 

The limit defining the threshold to dominance of stretching action is proposed by using an 

approximate equilibrium calculation and yield-line analysis. 

The usefulness and effectiveness of the three recommended methods are 

demonstrated through illustrative examples. The recommended approaches are validated 

by detailed inelastic finite element analysis. Recommendations and relevant observations 

for general shapes have been made. Detailed procedures and useful aids for FFS 

assessments are provided.



iii

ACKNOWLEDGEMENTS

I owe my gratitude to all the people who have made this thesis possible. First and 

foremost I wish to express my deep gratitude to my supervisors, Dr. R. Seshadri and 

Dr. S. M. R. Adluri, for their tireless support, guidance and technical discussions during 

the entire course of my doctoral program. Thanks are also directed to Dr. S. Iyer, 

Dr. W. Reinhardt and Dr. K. Munaswamy for their helpful comments. The financial 

support provided by NSERC and the Faculty of Engineering and Applied Science, 

Memorial University of Newfoundland are gratefully acknowledged. 

I would like to extend my acknowledgements to my friends in the Asset Integrity 

Management Research Group for their interesting discussions and kind assistance. I also 

would like to thank all my friends for their constant support and friendship. Last but not 

least, I owe my deepest thanks to my family: my father, my mother and both of my 

brothers; for their inspiration, encouragement and understanding through all these years. 



iv

TABLE OF CONTENTS



xi

LIST OF TABLES

Table 4.1 Parameters likely to influence the behaviour of pipeline defects..................... 62

Table 5.1 Ramberg-Osgood Constants for pipeline and pressure vessel steels ............... 91

Table 5.2 Material Properties for SA 516 Grade 55 ........................................................ 94

Table 5.3 Comparison of the limit pressures obtained from different material models. 100

Table 5.4 Comparison of  limit pressure from PLANE82 axisymmetric model and 

SHELL91 model for corrosion damage........................................................ 101

Table 5.5 Comparison of  limit pressure from PLANE82 axisymmetric model and 

SHELL93 model for thermal hot spot damage ............................................. 102

Table 5.6 Comparison of the results from inelastic analysis using different models for 

corrosion damage in cylinders (R/h = 33.6).................................................. 103

Table 6.1 Values of rd for different R/h ratios.................................................................110

Table 6.2 Decay angles  d and  d  for different R/h ratios .........................................120

Table 7.1 RSF for a corroded spherical shell (R/h = 58.9) with remaining thickness 5h/6

.....................................................................................................................151

Table 7.2 RSF for a corroded spherical shell (R/h = 58.9) with remaining thickness 2h/3

........................................................................................................................152

Table 7.3 RSF for a corroded spherical shell (R/h = 58.9) with remaining thickness h/2

........................................................................................................................152



xii

Table 7.4 RSF for a spherical shell with a 93.3 C  thermal hot spot (R/h = 20)............155

Table 7.5 RSF for a spherical shell with a 204C  thermal hot spot (R/h =20)...............155

Table 7.6 RSF for a spherical shell with a 316C  thermal hot spot (R/h =20)...............156

Table 7.7 Comparison of the three methods with inelastic analysis of a sphere         

(R/h =58.9, corroded thickness h/2) ...............................................................182

Table 7.8 Comparison of the RSFi for spheres R/h ratio 20 with different inner radius .184

Table 7.9 Comparison of RSFi for spheres with R/h ratios 20 and 58.9 .........................185

Table 8.1 Comparison of RSF from the three recommended methods and inelastic 

analysis for corrosion damage in a cylinder...................................................222

Table 8.2 Comparison of RSF from the three recommended methods and inelastic 

analysis for hot spot in a cylinder (R/h =33.6, Th = 600 °F, r = 0.2) .............223



xiii

LIST OF FIGURES

Figure 1.1 Damaged spots in cylindrical pressure vessel with spherical head ...................5

Figure 2.1 Yield criteria in σ1 - σ2  plane (a) Tresca criterion (b) von-Mises criterion. ....13

Figure 2.2 (a) Yield surfaces and (b) Yield locus for Tresca and von Mises criteria .......15

Figure 2.3 Loading surfaces. .............................................................................................17

Figure 2.4 Forces and moments acting on a cylindrical shell element. ............................23

Figure 2.5 Thin Cylindrical Shell .....................................................................................24

Figure 2.6 Shells having the form of a surface of revolution............................................27

Figure 2.7 Metal loss and analysis parameters used in the effective area method............35

Figure 2.8 Procedure to establish the critical thickness profiles (CTP).............................40

Figure 3.1 Identification of the reference volume, VR. ......................................................56

Figure 3.2 Leap-frogging to the limit state (Seshadri and Mangaramanan, 1997). ..........57

Figure 4.1 Schematic diagram of primary factors controlling the behavior of locally 

thinned areas ................................................................................................... 62

Figure 4.2 (a) Circular equivalent area in sphere (b) Rectangular equivalent area in 

cylinder............................................................................................................ 64

Figure 4.3 Centerlines misalignment in (a) Internal corrosion (b) External corrosion.... 65

Figure 4.4 Contributing parameters to the proposed Level 2 evaluation methods .......... 66



xiv

Figure 4.5 Reference volumes in (a) Sphere (or vessel head) (b) Cylinder..................... 70

Figure 4.6 Equivalent circular damage and reference volume......................................... 71

Figure 4.7 Reference volume dimensions for localized damage in cylindrical shell....... 71

Figure 5.1 Geometries and boundary conditions for finite element analyses (a) Sphere  

(b) Cylinder. .................................................................................................... 85

Figure 5.2 The SHELL93 model for thermal hot spot ..................................................... 87

Figure 5.3 Node locations for the SHELL91 model (a) Internal (b) External corrosion . 88

Figure 5.4 Ramberg-Osgood stress-strain relationships for steels................................... 91

Figure 5.5 Material model for finite element analysis ..................................................... 92

Figure 5.6 Typical meshes for sphere and cylinder ......................................................... 96

Figure 5.7 Typical bulging in sphere and cylinder with local damage ............................ 96

Figure 5.8 (a) Typical mesh (b) Bulging in sphere using axisymmetric elements .......... 97

Figure 5.9 Solid-element models for (a) Internal corrosion (b) External corrosion ........ 98

Figure 5.10 Material models using yield stress, flow stress and strain hardening........... 99

Figure 6.1 A spherical shell subjected to normal concentrated force .............................108

Figure 6.2 Radial displacement for different R/h ratios..................................................110

Figure 6.3 (a) A spherical shell with built-in edges subjected to normal pressure           

(b) Membrane stresses  (c) Superposed edge conditions................................112

Figure 6.4 The phase shift constant ( ) for angle of fixed-edges ()ranging from 0° to 

90° ..................................................................................................................116

Figure 6.5 The decay angles d  and  d for spherical shells of different R/h ratios .....119



xv

Figure 6.6 Thin Cylindrical Shell ...................................................................................121

Figure 6.7 Displacement along the axial direction of a cylinder with axisymmetric 

loading............................................................................................................122

Figure 6.8 Radial displacements obtained by using m = 1, 3 and 5................................127

Figure 6.9 Radial displacements obtained from 1-terms, 2-terms and all the terms...127

Figure 6.10 Elastic equivalent stress and strain distributions for corroded spherical shells 

with R/h = 20 and 58.4 subject to internal pressure ....................................131

Figure 6.11 Elastic radial displacement distributions for corroded spherical shells with 

with R/h = 20 and 58.4 subject to internal pressure ....................................132

Figure 6.12 Inelastic equivalent stress distribution distributions for corroded spherical 

shells with R/h = 20 and 58.4 subject to internal pressure..........................133

Figure 6.13 Inelastic equivalent stress distributions for spherical shells with a thermal hot 

spot (Th = 600 °F) subject to internal pressure............................................133

Figure 6.14 Decay lengths due to local force in the axial and circumferential directions 

(a) R/h = 60 (b) R/h = 32.6 (c) R/h = 20......................................................135

Figure 6.15 Elastic decay lengths for cylindrical shell with R/h ratio 32.6 with internal 

corrosion a = b = 12.7 cm ...........................................................................137

Figure 6.16 Radial displacement distributions and decay lengths for cylindrical shell R/h

ratio 32.6 with hot spot size 2a x 2b at 316ºC ............................................138

Figure 6.17 Results for internal corrosion of the size 2a x 2b (a = 7.6 cm and b = 22.9 

cm) in cylindrical shell R/h ratio 32.6.........................................................139



xvi

Figure 6.18 Results for external corrosion of the size 2a x 2b (a = 50.8 cm and b = 10.2

cm) in cylindrical shell R/h ratio 32.6.........................................................140

Figure 7.1 (a) Overlapping edge effect region in a local damage (b) Pure equilibrium 

stress region inside a “global” size damage ...................................................145

Figure 7.2 An example of comparison between iRSF  and lower bound limits for local 

and global corrosion damage in a spherical shell (R/h = 58.4) ......................146

Figure 7.3 Method I Recommendation: 1rRSF  for various sizes of damaged areas in 

spherical shells ...............................................................................................150

Figure 7.4 Comparison of Method I 1rRSF  and inelastic RSFi for corrosion damage in 

spherical shell with R/h ratio 58.9..................................................................154

Figure 7.5 Comparison of Method I 1rRSF  and inelastic RSFi for corrosion damage in 

spherical shell with R/h ratio 20.....................................................................154

Figure 7.6 Comparison of Method I 1rRSF  and inelastic RSFi for thermal hot spots in 

spherical shell with R/h ratio 20.....................................................................157

Figure 7.7 Comparison of Method I 1rRSF  and inelastic RSFi for thermal hot spots in 

spherical shell with R/h ratio 58.9..................................................................157

Figure 7.8 Dominance of stretching effect in spherical shell with corrosion damage....160

Figure 7.9 Typical bulging of damaged area ..................................................................160

Figure 7.10 Shell behaviors for different sizes of damaged area (a) Open-up behavior   

(b) Bulging behavior ......................................................................................162

Figure 7.11 Formation of “plastic hinges” along the edge of a circular corroded area ..163



xvii

Figure 7.12 (a) Top view of a circular corroded area (b) Unit perimeter segment .........163

Figure 7.13 Plastic moment capacity of a cross section .................................................164

Figure 7.14 Method II Recommendation: 2rRSF  for various sizes of damaged areas in 

spherical shells ............................................................................................167

Figure 7.15 Comparison of 2rRSF  and RSFi for internal and external corrosion in 

spherical shells with R/h ratio = 20.............................................................169

Figure 7.16 Comparison of 2rRSF  and RSFi for thermal hot spots in spherical shells 

with R/h ratio = 20 ......................................................................................169

Figure 7.17 Method III Recommendation: 3rRSF  for various sizes of damaged areas in 

spherical shells ............................................................................................170

Figure 7.18 Comparison of 3rRSF  and RSFi for internal and external corrosion in 

spherical shells with R/h ratio = 20.............................................................171

Figure 7.19 Comparison of 3rRSF  and RSFi for thermal hot spots in a spherical shell 

with R/h ratio = 20 ......................................................................................171

Figure 7.20 Idealized bulging geometry .........................................................................173

Figure 7.21 Comparison of the three RSF recommendations for spherical shells          

(R/h ratio = 58.9, corroded thickness hc = 5h/6) .........................................183

Figure 7.22 Comparison of the three RSF recommendations for spherical shells          

(R/h ratio = 58.9, corroded thickness hc = h/2) ...........................................183

Figure 8.1 Linear and elliptic interaction curves ............................................................195

Figure 8.2 Extent for local damage for different values of slope parameter . ..............196



xviii

Figure 8.3 Examples of local damage limit for r = 1 and r = 0.2 ...................................197

Figure 8.4 Method I recommendation: 1rRSF  for various sizes of damaged areas in 

cylindrical shells ............................................................................................200

Figure 8.5 Dominance of stretching effect in a cylinder with small damaged spot........202

Figure 8.6 Typical bulging in cylindrical shell ...............................................................202

Figure 8.7 Yield line mechanism of an approximate rectangular flat plate ....................203

Figure 8.8 Method II Recommendation: 2rRSF  for cylindrical shells ..........................209

Figure 8.9 Method III Recommendation: 3rRSF for cylindrical shells..........................210

Figure 8.10 Idealized bulging geometry for rectangular damage....................................212

Figure 8.11 Comparison of RSFr and RSFi for cylindrical shells (R/h ratio = 33.6)         

with corrosion damage................................................................................224

Figure 8.12 Comparison of RSFr and RSFi for a cylindrical shell R/h ratio = 33.6 with 

thermal hot spots TH = 316 °C.....................................................................225

Figure 8.13 Comparison of RSFi and 3rRSF  using linear and elliptic interaction curves 

for a cylinder (R/h = 32.6) with thermal hot spots of different aspect ratios

.....................................................................................................................228

Figure 8.14 Comparison of RSFi and 3rRSF  for a cylinder (R/h = 32.6) with corrosion 

damage hc = h/6 using (a) linear interaction curve (b) elliptic interaction 

curve............................................................................................................229

Figure 8.15 Comparisons of iRSF  and 3rRSF  for thermal hot spot with r = 3.0              

(a)  = 0.50 (b)  = 0.75 (c)  = 0.875.......................................................230



xix

Figure 8.16 Comparisons of iRSF  and 3rRSF  for thermal hot spot with r = 0.2              

(a)  = 0.50 (b)  = 0.75 (c)  = 0.875.......................................................231

Figure 8.17 Comparisons of iRSF  and 3rRSF  for corrosion damage with r = 1.0            

(a)  = 0.50 (b)  = 0.75 (c)  = 0.875.......................................................232

Figure 8.18 Recommended rRSF  for corrosion damage calculated by using different xc

........................................................................................................................234

Figure 9.1 An example of a highly irregular damaged spot........................................... 245



xx

LIST OF APPENDICES

Appendix A: Numerical Results.....................................................................................255

Appendix B: Aids for RSF Assessment..........................................................................275

Appendix C: ANSYS Input Files and Command Listing...............................................308

Appendix D: Compact Disc............................................................................................346



xxi

LIST OF ACRONYMS AND ABBREVIATIONS

ANSI American National Standards Institute

API American Petroleum Institute

ASME American Society of Mechanical Engineers

CA Corrosion Allowance

FCA Future Corrosion Allowance

FEA Finite Element Analysis

FFS Fitness-for-service

LTA Locally Thinned Area

RSF Remaining Strength Factor

RTA Round Thin Area



xxii

LIST OF SYMBOLS

Symbols

a, b Half length and width of an 

equivalent rectangular damaged 

area

aL, bL Extent of local damage for 

cylinder

A Area of the crack or defect

 B, n Creep parameters for second 

stage power law creep

c Bulging displacement for 

ellipsoidal bulge

D Nominal outside diameter; 

Flexural rigidity of shell 

 Di Inside diameter

mazD Maximum diameter of the 

component due to bulging

oD Original diameter of the 

component

D Increment of plastic dissipation 

per unit volume

 d Depth of corrosion

 e Distance between thickness 

centerlines of corroded and 

uncorroded areas

 E Modulus of elasticity

effE Effective elastic modulus based 

on the concept of reference 

volume

0E Original Young’s modulus of 

material

jE Joint efficiency

sE Modified Young’s modulus

f Safety factor

)( ijsf Yield function

 F Functional 

 G Shear modulus

 h shell thickness

 hc corroded thickness

2J Second invariant of the stress 

deviator tensor

 K Shear rigidity of shell

 k Yield stress in pure shear; Shell 

parameter; Element number

 l Characteristic length used in 

shell theory

L Length of cylinder

)(L Operator for shell having the 

form of a surface of revolution



xxiii

msdL Distance between flaw and major 

structural discontinuity

vL Thickness averaging zone

 m Exact limit load multiplier or 

safety factor; The number of 

harmonics

0m Statically admissible upper 

bound multiplier

m Lower bound multiplier from 

Mura’s formulation

m Improve lower bound multiplier

m* Kinematically admissible 

multiplier

Lm Classical lower bound multiplier

0
dm Upper bound multiplier for 

damaged component

0
um Upper bound multiplier for 

undamaged pipe

 M Folias factor; Bending moments 

per unit length

Mp Plastic moment

 N Normal forces per unit length; 

Total number of elements in 

FEA; Hardening exponent

 p1, p2 Roots of Donnell’s equation

 p Internal pressure

dP Design pressure

,, zyx PPP Components of body forces in 

x, y and z directions, respectively

 q Modulus adjustment index, 

intensity of a continuous 

distributed load

eQ Effective generalized stress

 r Aspect ratio of damaged spot

21, rr Radii of curvature of a shell in 

meridian plane and in the normal 

plane perpendicular to meridian, 

respectively

lrd Decay length of a spherical shell 

loaded by a concentrated normal 

force

iR Inner radius

oR Outer radius

RSF Improved lower bound RSF 

based on m -multiplier

aRSF Allowable RSF

iRSF Inelastic RSF

LRSF Lower bound RSF

rRSF Recommended RSF

URSF Upper bound RSF

bR Radius of the bulge

CR Inner radius of the corroded part 

of the component

tR Remaining thickness ratio



xxiv

 s Corrosion axial length

ijs Deviatoric stress 

0
ijs Statically admissible deviatoric 

stress field under applied load 

iTm0

0
ijs Statically admissible deviatoric 

stress field under applied load iT

TS Surface of the body where 

surface traction is prescribed

vS Surface of the body where 

velocity is prescribed

 t Nominal wall thickness

Ct Corroded thickness

mint   Minimum required wall 

thickness

mmt   Minimum measured remaining wall 

thickness.

T Temperature

iT Applied surface traction

dU Distortion energy

u Velocity field

wvu ,, Non-dimensional displacement 

components

iv Velocity vector


iv Kinematically admissible velocity

 V Volume of the component; Angle of 

rotation of a tangent to a meridian

DV Volume of the damaged spot

RV Reference volume

TV Total volume 

IV Undamaged adjacent volume

w1, w2 Longer and shorter side of an 

approximate rectangular flat plate

Wext External work

Wint Internal energy dissipation

 x, y, z Rectangular coordinates

xc, xl Decay length in the circumferential 

and axial directions of cylinder

Greek Symbols

 Thermal coefficient; Ramberg-

Osgood constant; Slope factor for 

linear interaction curve

1, 2 Real parts of roots p1, p2

eff Effective thermal coefficient based 

on the concept of reference volume

 Shell parameter for cylinder

1, 2 Imaginary parts of roots p1, p2



xxv

b Radial displacement of the bulge

ij Kronecker delta

T Temperature change due to 

formulation of hot spot

 Strain

b Maximum membrane strain at 

the crown of bulging

 Strain rate

P
ijd Plastic strain increment


ij Kinematically admissible strain 

rate

 Engineering shear strain; 

Integration constant for sphere; 

parameter for surface area of 

ellipsoid

 non-dimensional variable for 

linear interaction curves

 Stress function

 Angle defined a parallel plane

a Hot spot or corrosion included 

angle

b Included angle of the bulge

d Decay angle based on an applied 

normal concentrated load

0 Point function introduced in the 

yield criterion

 Change in curvature; non-

dimensional variable for elliptic 

interaction curves

 Metal loss parameter; parameter 

representing the thinness of shell

d Positive scalar of proportionality 

in the flow rule

 Plastic flow parameter  

 Poisson’s ratio

 Yielding surface 

 Angle defined a meridian plane

e Equivalent stress

ijij  , Stress tensor

fail Nominal hoop stress at failure

flow Flow stress

y Yield stress

321 ,,    Principal stresses

 non-dimensional variable for 

damage in cylindrical shell

d Decay angle based on edge 

moment effects

L Transition angle from small to 

intermediate of hot spot 

 Iteration variable

2 Laplacian operator



xxvi

Subscripts

 c Circumferential direction

 D Parameters in the damaged part of the component

 e Von Mises equivalent

 I Parameters in the adjacent part 

i, j Tensorial indices

 k Element number

 L Lower bound; Quantities at the extent for local damage

 r Radial direction

 T Quantities at transition point

 u Upper bound

 U Parameters in the undamaged part of the component

 Parameters based on m  method

Superscripts

0 Statically admissible quantities

* Kinematically admissible quantities; 

Quantities at the threshold to dominance of membrane and bending effect

c Complementary solution



1

CHAPTER 1

INTRODUCTION

1.1. BACKGROUND 

Structural integrity assessment of mechanical components and structures is of 

considerable importance in a number of industrial sectors. The ability to demonstrate 

structural integrity of an in-service component undergoing damage is termed as integrity 

assessment or Fitness-for-Service assessment and is extensively dealt with by 

recommended practices and procedures such as API 579 (American Petroleum Institute, 

2000) and R6 (Nuclear Electric, 1995). 

Fitness-for-Service (FFS) evaluations are conducted periodically to determine 

whether the component with existing flaws or damage is suitable for continued service 

until the end of some desired period of operation such as the next shutdown, a specific 

future date or the end of its useful life. The assessments include determination of current 

serviceability to ensure safe operation in the present condition, and remaining service life 
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of the equipment or structure. Sometimes it can be used to assess the component 

suitability for planned modifications or upgrades.

For pressurized equipment in operating plants, API 579 prescribes three levels of 

structural integrity evaluations. Levels 1 to 3 are progressively more sophisticated. Each 

assessment level provides a balance between the degree of conservatism, the amount of 

required input, the skill of the practitioner, the complexity of analysis effort and the 

accuracy of the procedure. Level 1 assessments are the most conservative screening 

criteria that generally include the use of charts and tables, which can be implemented by 

plant technicians with minimal inspection requirements. Level 2 assessments involve 

detailed calculations intended for use by plant engineers with the help of a recommended 

procedure on a routine basis without too much complication. Level 3 assessments require 

a rational analysis by specialists where advanced computational techniques such as full 

scale nonlinear finite element modeling are engaged. 

The procedures in API 579 are developed to overcome the shortcomings of the 

former inspection codes for pressure vessels and piping which are mainly based on 

empirical data and past experience (Sims, Hantz and Kuehn, 1992). Extensive validations 

based on both numerical analysis and physical testing are applied to various damage 

modes such as metal loss and crack-like flaws.  In that regard, further enhancements to 

Level 2 procedures for damaged areas such as hot spots and corrosion effects are of 

interest.
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Localized corrosion damages and thermal hot spots are typical of damage that 

occurs in ageing pressure vessels, piping or storage tanks, e.g., corrosion-damaged 

pipelines in Trans Alaska Pipeline System (TAPS) and Prudhoe Bay network (Fineberg, 

2006; Loy, 2006). Corrosion spots are considered to be locally thinned areas (LTA) for 

the purpose of evaluation. External corrosion can occur in pressure components exposed 

to hostile surrounding environments such as buried or submerged metallic piping systems. 

The primary protection for external corrosion is a coating or lining of the outside surface. 

A corrosion protection system will be a secondary protection. Internal corrosion is caused 

by corrosive products inside the pressurized component for instance natural gas and 

petroleum products transported in pipelines or corrosive products inside pressure vessels.

Although B31.X code equation does not explicitly account for corrosion tolerance in tnom, 

corrosion allowance is sometimes specified at the design stage to accommodate in-service 

corrosion that is likely to occur. Corrosion damage can be detected by the use of 

ultrasonic devices on the exterior of storage tanks or pressure vessels, or by the use of 

in-line inspection vehicles called ‘Smart Pigs’1 in pipelines.

Thermal hot spots are caused by damage due to local loss of refractory lining on 

the inside wall of pressure components or due to mal-distribution of flow containing 

catalyst and reactive fluids. They are detected through thermography or temperature 

sensitive paints on the outside of the vessel. Although thermal hot spots are caused by 

loss of refractory lining on the inside wall of the pressure components, it also results in 

                                                
1 Smart Pig : An electronic internal inspection device placed inside the pipeline to provide data about the 

condition of the pipeline, such as measuring dents or locating corrosion (Westwood and Hopkin, 2004)
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higher temperature on the outside wall of the component. This temperature change can be 

noticed by the color of the temperature sensitive paints on the outside.

An FFS assessment is required to determine the acceptability of a component 

containing hot spots or corroded areas for continued service. The parameter generally 

used in such assessments is the Remaining Strength Factor (RSF). The RSF is defined as 

the ratio of the limit load (pressure) of the damaged component to that of the undamaged 

component. Limit load indicates the reaching of certain predefined failure criteria and not 

necessarily physical collapse. If the calculated RSF is greater than or equal to the 

allowable RSF, the damaged component is termed as fit-for-service and no repair/rework

are warranted. If the calculated RSF is less than the allowable value (or if the vessel is 

shown to have sustained damage beyond some unacceptable repair threshold), the 

component can be repaired, rerated or some form of remediation can be applied to combat

the severity of the operating environment.

1.2. PRESENT STUDY

The existing procedures for RSF calculation pertaining to corrosion damage, such 

as API 579, are mostly limited to cylindrical components and the recommendations are 

based on empirical relationships. However, there are no recommendations for pressure 

components containing thermal hot spots. Seshadri (2004) addressed this to calculate an 

RSF for cylinders with thermal hot spots. The current work extended this.
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Spherical head

Zone in the scope of 
the present study

Cylindrical 
pressure vessel

Irregular profile of a 
damaged spot

Distance from 
discontinuity

Zone with 
discontinuity effect

Zone in the scope of 
the present study

Distance between 
damaged areas

Cone

One of the objectives of the current research is to study the factors affecting 

structural integrity of pressure vessels with typical damage so as to provide practical, 

simple and theoretical-grounded Level 2 techniques to determine the remaining strength 

factors of such components. The evaluation procedures in the present study are developed 

based on the concept of reference volume, application of the variational principles in 

plasticity and the estimation of limit load multipliers.

Figure 1.1 Damaged spots in cylindrical pressure vessel with spherical head

The behaviour of pressure vessels at limit state including the effect of membrane 

and bending actions is studied for different sizes of the damaged zone. The size of 

damage to be defined as “local” and “global” is specified by using shell theory and the 

interaction of damage in circumferential and axial directions of a cylinder is investigated. 

The minimum distance between a damaged spot and structural discontinuities and 

between multiple damages such that no interaction occurs are also studied. Although the 
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current study is focused on spherical and cylindrical pressure vessels, the recommended 

methods are shown to be applicable to pressure components of other shapes due to the 

shape-independence feature of the RSF used.  An example of a pressure vessel with 

typical damages is shown in Figure 1.1. 

1.3. OBJECTIVES OF THE RESEARCH

The objectives of the current research are to:

1. Develop Level 2 structural integrity assessment procedures to evaluate the 

remaining strength factors for pressure vessels (cylinders and spheres) containing 

corrosion damage or thermal hot spots using limit load multipliers. The 

recommendations will be validated using in-elastic finite element analysis.

2. Investigate the decay lengths for a variety of pressure component configurations 

based on elastic shell theory. The decay lengths will be used

 to specify the size of damage that can be classified as “local” for different 

shell geometries and examine its implications.

 to identify the reference volume participating in plastic action and use it to 

identify whether interaction occurs between multiple damage zones.

 to investigate the effect of having different decay lengths along longitudinal 

and circumferential directions of cylinders.

3. Study the stretching and bulging effects due to damage and their interaction.
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4. Estimate bulging displacement using the simplified theory.

5. Provide detailed procedures, examples and other aids (MATLAB and Spreadsheet 

files) useful for Level 2 assessment of damage due to corrosion and thermal hot 

spots in spherical and cylindrical pressure vessels.

1.4. SCOPE OF THE STUDY

The current study will focus on estimating remaining strength factors for pressure 

vessels with the shape of a sphere or a cylinder. The study of the fitness-for-service 

assessment methodology assumes elastic-plastic ductile material which is able to absorb 

significant deformation beyond the elastic limit without the danger of fracture. Strain 

hardening is assumed to be small. If the strain hardening is significant, a flow stress is 

used instead of the actual yield stress. This will accommodate different materials with 

differing tangent moduli.

Internal pressure is assumed to be the only significant load. The study will focus 

on pressure vessels with thermal hot spots and part-wall internal or external volumetric 

corrosion damage. Corrosion damage will be considered for vessels with the remaining 

thickness ratio (defined as the ratio of the corroded wall thickness to the nominal 

thickness) not less than 0.5. The discontinuity of corrosion damage is assumed to be 

tapered down smoothly and corrosion damage is considered as blunt or non-crack like 

flaws.
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All pressure retaining items with pressure greater than 15 psig are designed to 

appropriate codes and standards and also need to be registered according to legal 

requirement.  The components studied in the current work are assumed to be originally 

designed and constructed in accordance with a recognized code or standard. It is assumed 

that the operating condition of the vessel is not in the creep range of the material, i.e., 

temperatures for carbon steel do not exceed 750°F (400°C). Therefore, the assessments 

proposed in the current study are not valid for coal fired plants operating at a higher 

temperature environment. Thermal hot spots and corrosion damage are assumed to be

remote from other major structural discontinuities, such as nozzles, or geometry changes 

such as cone-to-cylinder junctions (hatched region of Figure 1.1), or knuckles in 

hemispherical heads. It is also assumed that the corrosion and thermal hot spots do not 

significantly overlap with each other.

1.5. STRUCTURE OF THE THESIS

This thesis is organized in nine chapters. The first chapter introduces the 

background to the problem, objectives and scope of the study. The second chapter 

presents a review of literature. The theoretical aspects of plasticity, the classical lower 

and upper bound theorems and limit load multipliers are discussed. A brief outline of the 

existing Level 2 fitness-for-service evaluation methods for pressure vessels containing 

corrosion damage or thermal hot spots is provided. Shell theory which is fundamental to 

the study of decay length is reviewed. 
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Chapter 3 provides the principles for an improved lower bound limit load 

estimation called the m-method which is the basis of the current research. The concepts 

used in the m-method including theorem of nesting surfaces, leap-frogging of iterations 

to the limit state and Mura’s extended variational formulation are discussed.

Chapter 4 studies the factors influencing the behavior of pressure vessels 

containing typical damage. Similarities and differences in the behavior of pressure 

components with corrosion damage and thermal hot spots are discussed. The general 

methodology of the proposed Level 2 Fitness-for-Service assessment based on the 

concept of reference volume is also presented.

In Chapter 5, finite element modeling details for the present study including 

geometry and constraints, material models and samples of typical mesh are given. 

Advantages and disadvantages of different element types used in this research are also 

discussed.

Chapter 6 discusses in detail decay length estimation for spherical and cylindrical 

shells using elastic theory. Comparison of decay lengths for different shell shapes and 

application of decay lengths to the current research is discussed.

Chapters 7 and 8 discuss recommendations for remaining strength factors. 

Illustrative numerical examples are provided. The extent of local damage and interaction 

of damage is investigated. The threshold to dominance of membrane and bending effects 

for sphere and cylinder are also suggested using an approximate method. The 

recommended procedure is validated by Level 3 inelastic finite element analysis. 
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Chapter 9 includes summary of the current work, conclusions and recommendations for 

future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter reviews briefly the theoretical background in plasticity and limit 

analysis including limit load multipliers and estimations of remaining strength factor for 

pressure vessels. Theory of cylindrical shells and the more general theory of shells of 

surface of revolution are presented. These theories will be applied in the investigation of 

decay length. Literature regarding Fitness-for-Service assessments for pressure 

components containing corrosion and thermal hot spots from previous investigations and 

existing standards and procedures is reviewed and discussed.

2.1. PLASTICITY

Theory of plasticity is the basis for limit analysis in which the components or 

structures are assumed to reach a certain limiting plastic state of the material before 

failure. Plasticity is defined as the behavior of solid bodies where permanent deformation 

occurs under the action of external loads, whereas elasticity is the behavior of solid 
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bodies in which they return to the original shape when the external forces are removed

(Mendelson, 1968). 

2.1.1. Criteria for Yielding

The basic theory of yielding is well known (Beer and Johnston, 2002). The 

following is included for review purposes. When the stress is uniaxial, a yield point at 

which the material begins to deform plastically can be readily determined. However, 

when the material is subject to multiaxial stresses, yield criteria are used in deciding 

which combination of multiaxial stresses will cause yielding. The most common yield 

criteria for metal structures will be briefly discussed below. 

(a) Tresca Criterion (Maximum Shear Stress Theory)

This theory assumes that yielding will occur when the maximum shear stress in 

multiaxial state of stress reaches the value of the maximum shear stress occurring under 

simple tension test. The maximum shear stress is equal to half the difference between the 

maximum and minimum principal stresses. For simple tension, only one principal stress 

exists and 032  . If the principal stresses are 321 and,  ( 321   ), the 

Tresca criterion then asserts that yielding will occur when 

y  31 (2.1)

A plot for Tresca yield criterion for a 2D-stress state is shown in Figure 2.1a. The 

Tresca criterion is in fair agreement with experiments and is used to a considerable extent 
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by designers (Kachanov, 1971) since it is easy to apply and is slightly conservative 

compared to the von Mises criterion.

(b) Von Mises Criterion (Distortion Energy Theory)

Strain energy is energy stored in the material due to elastic deformation. This 

deformation can be viewed as a combination of volume change and angular distortion 

without volume change. The latter stores the shear strain energy or distortion energy, 

which has been shown to be a primary cause of failure. Detailed experiments showed that 

hydrostatic pressure has negligible effect on the yielding thereby indicating that the 

material in the plastic range can be considered as incompressible. This observation is used 

by von Mises criterion (and the maximum shear stress theory) to derive the yield 

function.

 (a) (b)

Figure 2.1 Yield criteria in σ1 - σ2  plane (a) Tresca criterion (b) von-Mises criterion.

The distortion energy theory assumes that yielding begins when the distortion 

energy equals the distortion energy at yield in simple tension. The distortion energy can 
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be calculated as 22
1 J
G

Ud  , where, G is the shear modulus and 2J  is the second 

invariant of the deviatoric stress tensor which can be written in terms of principal stresses 

as ])()()[( 2
23

2
31

2
216

1
2  J . At the yield point in simple tension, 

2
3
1

2 yJ  . The yield condition therefore becomes

22
23

2
31

2
21 ])()()[(

2
1

y  (2.2)

Equation (2.2) plots as an ellipse in the 21 -  plane (Figure 2.1b). 

The von Mises yield criterion is widely used because it is smoothly differentiable 

and is without abrupt changes as is the case with Tresca criterion. 

2.1.2. Yield Surface

In general, a yield criterion will depend on a complete three-dimensional state of 

stress at the point under consideration. For a material loaded to the initial yield, the 

relationship for a yield criterion can be expressed as,

Kf ij )(     (2.3)

where, ij  is a stress tensor in three dimensional space, K is a known function (which can 

be selected as zero if desired). Equation (2.3) is called yield function and represents a 

hypersurface called yield surface. Any point on this surface represents a point at which 

yielding can begin. 
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In the Haigh-Westergaard stress space for principal stress ),,( 321   coordinate 

system, a line having equal angles with the coordinate axes (i.e., m  321 ) 

corresponds to a hydrostatic stress state where the deviatoric stresses are equal to zero. 

The yield surface is plotted as a cylinder or prism along this line for von Mises or Tresca 

criterion, respectively. The intersection of this yield surface with any plane perpendicular 

to the centerline will produce a curve called the yield locus (Figure 2.2).

(a) (b)

Figure 2.2 (a) Yield surfaces and (b) Yield locus for Tresca and von Mises criteria

2.1.3. Theory of Plastic Flow

In the elastic range, the strains are linearly related to the stresses by Hooke’s law 

and can be computed directly from the current state of stress regardless of how it was 

reached. The relationship will be nonlinear in the plastic range and can not be uniquely 

determined by the current stresses but depends on the whole history of loading. In order 

to determine the strains, it becomes necessary to compute the increments of plastic strain 

Centerline of yield surface

1

2

3

1

2

3 -plane, 1 =2=3

Uniaxial stress

Pure shear

Von Mises criterion

Tresca criterion
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throughout the loading history and then obtain the total strains by integration or 

summation. Yield criteria are used to prescribe the onset of plastic deformation. Further 

plastic strain increment is related to the state of stress through the flow rule.

The general form of the flow rule for ideal plasticity1 can be written as 

ij

ijP
ij

f
dd









)(

 (2.4)

where, P
ijd  is the plastic strain increment at any instant of loading and f is a yield 

function. The flow parameter d  is equal to zero when the material behaves elastically or 

)( ijf  < K and has a positive value when plastic flow takes place or )( ijf  = K. The 

direction cosine of the normal to the yield surface is proportional to ijf  . Therefore,

Eq. (2.4) implies that the plastic flow vector is directed along the normal to the yield

surface.

The associated flow rule corresponding to the von-Mises criterion can be 

expressed in the form 

ij
P
ij sdd    (2.5)

where, ijs  is the deviatoric stress. Since plastic stress and strain are related by the 

infinitesimal strain increments and deviatoric stresses, it is convenient to divide the 

strains and strain rates by the increment of time and write the equilibrium equations. 

These equations remain homogeneous in time which acts only as a scaling parameter.

                                                
1 plastic deformation without hardening
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ij ij

ijdC

P
ijd






B

A

2.1.4. Drucker’s Postulate

Consider an element that has an initial stress ij   lying inside or on the current 

position of yielding surface Σ (point A in Figure 2.3). Let some external loading add 

stresses until a state of stress ij  on the yield surface is reached (point B). Only elastic 

changes have taken place so far. Next, an infinitesimal stress increment ijd (which 

produces small plastic strain increments P
ijd  as well as elastic increments) is applied. 

The state of stress is now changed from point B to point C. Let this external loading be 

applied and then removed. The state of stress is returned to ij   along an elastic path 

C A. The changes are assumed to take place sufficiently slowly for the process to be 

regarded as isothermal. The total work done over the cycle is

  P
ijij

P
ijijij dddW    (2.6)

Figure 2.3 Loading surfaces (Hill, 1950).

Drucker’s postulate states that the prolongation of plastic deformation of a 

hardening medium requires additional work done or 0W . The work done will be 
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equal to zero only for purely elastic changes. The second term in Eq. (2.6) corresponds to 

strain-hardening and has positive value. This term is equal to zero in the case of perfectly 

plastic material. 

Since the magnitude of ijij    can always be made larger than that of ijd , it 

follows that

  0 P
ijijij d  (2.7)

From inequality (2.7), the scalar product of the vector of additional stresses 

ijij    (vector AB ) and the vector P
ijd  is positive. This means that these vectors always 

generate an acute angle. Consequently, we deduce the convexity of the yielding surface 

with respect to the origin of the vector space. This will be used in explaining Mura’s 

extended variational principle in plasticity which is the basis of the m-method.

2.2. LIMIT ANALYSIS

Complete plastic analyses of practical engineering structures are generally 

difficult and time-consuming. If the failure prevention of a structure is the main interest 

of the analysis, it is justified to concentrate on the collapse state of the structure or the 

“limit state.” In classical limit analysis, material nonlinearity is included by assuming the 

material behavior to be perfectly plastic while geometric nonlinearity is ignored. The 

bounding theorems are used to provide lower and upper estimates of the exact limit load.
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2.2.1. Classical Upper and Lower Bound Theorems 

The upper bound theorem states that if an estimate of the limit load of a structure 

is made by equating the internal rate of dissipation of energy to the rate of external work 

for any strain and displacement field which corresponds to a postulated mechanism of 

deformation, the limit load estimate will be either too high or correct (Calladine, 2000). 

Applying the principle of virtual work, the upper-bound theorem may be 

expressed as

 
TT VS ii dVDdSuT   (2.8)

where, iT  are the tractions acting on the surface TS , iu  are the postulated displacement

rates, D  are the corresponding increment rates of plastic dissipation per unit volume, and 

TV  is the total volume.

The lower bound theorem states that if any stress distribution throughout the 

component or structure can be found, which is everywhere in equilibrium internally, 

balances the external loads and at the same time does not violate the yield condition, then 

the corresponding applied loads will be less than, or at most equal to, the exact limit load 

and will be carried safely by the structure.

The upper bound limit analysis can be viewed as the “geometry” approach in 

which the mode of deformation and energy balance are considered and a limit load is 

arrived at without considering the equilibriums equations. In contrast, the lower bound 

limit analysis is the “equilibrium” approach in which the equilibrium equations and yield 
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condition are satisfied and an estimate of collapse load is obtained without considering 

the mode of deformation (Calladine, 2000). 

2.2.2. Admissible multipliers

Consider an arbitrary structure with volume V and surface S disjointed in two 

parts TS  and vS , i.e., vT SSS  . The body is subjected to a surface force traction Ti

prescribed on TS  and geometric constraints over the remainder of the total surface vS . Let 

m be a multiplier and consider the structure under the loads mTi as m is slowly increased 

from zero. When the value of m is sufficiently small, the structure behaves elastically. As 

m increases, a part in the body reaches the plastic state. The plastic region spreads further 

as the multiplier increases. The safety factor s is defined as the smallest value of m for 

which the structure can undergo an increase in deformation without increase in load. The 

set of loads corresponding to the impending plastic flow is called the limit load of the 

structure. Thus, the safety factor is the ratio of the limit load to the actual load (Ti). 

(a) Kinematically Admissible Multipliers, m*

A velocity field, vi is called kinematically admissible if it satisfies velocity (or 

displacement) constraints and if the total external rate of work done by the actual loads on 

this velocity field is positive. Therefore, the conditions for a kinematically admissible 

velocity field are as following;

0    , jiij v in V
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0    iv on vS     (2.9)

 
TS ii dSvT 0     

where, ij  is Kronecker delta. Note that the first of Eqs. (2.9) is due to incompressibility 

condition. 

Let the generalized strain-rate vector associated with a given kinematically 

admissible velocity field be designated by  , where the asterisk is used to indicate that 

this is not necessarily the actual strain-rate vector but one that is kinematically admissible. 

If the von Mises yield criterion is applied, plastic strains occur when the deviatoric 

stresses are on the yield surface or 2
2
1 kss ijij  , where, k is the yield limit in pure shear. 

The kinematically admissible multiplier m* is then defined by the ratio of the internal and 

external energy dissipation as

m*    
Ts

ii

V

ijij dSvTdVk ,2 *2/1**    (2.10)

where, 2)( *
,

*
,

*
ijjiij vv   in V, and constraint conditions from Eqs. (2.10) are applied.  

(b) Statically Admissible Multiplier, m0

A statically admissible stress field, 0
ij  is defined as one which is in internal 

equilibrium with the external load iTm0 , and nowhere exceeds the yield limit. The 

multiplier m0 corresponding to such a stress field is called a statically admissible 

multiplier. Therefore,
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0
, jij     0    in  V,  

jij n
0   iTm 0    on ST ,   (2.11)

)( 0
ijsf   0        200

2
1  kss ijij   in  V,

where, 0
ijs  is the statically admissible deviatoric stress ( 0

ijs 00  ijij  ), 0 3  0
kk . 

Note that the first and second of Eqs. (2.11) are equilibrium equations and the third of 

Eqs. (2.11) is the yield function.

These two classical multipliers are the basis of other improved lower bound 

multipliers applied in the current research as will be further explained in Chapter 3.

2.3. THEORY OF SHELLS

In the present research, pressure vessels of practical shapes, such as cylinder and

sphere will be studied. The volume that participates in localized plastic collapse due to 

corrosion damage or thermal hot spot will be investigated. For this, shell theory needs to 

be used. Basic shell theory is well known (Timoshenko, 1970; Ugural, 1999) and it is 

included for review purposes. Solutions for a circular cylindrical shell under arbitrary 

load will be reviewed first while a more general theory of shell of surface of revolution is 

subsequently discussed. 
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2.3.1. Circular Cylindrical Shell 

Kraus (1967), among several others, derived the governing equations for circular 

cylindrical shells with bending resistance under arbitrary loads. The governing equations 

are derived from the equations of static equilibrium; the relationships between strains, 

changes of curvature and the displacements; and the relationships between the stress 

resultants and the strains.

Figure 2.4 Forces and moments acting on a cylindrical shell element.

If the shells are thin, the transverse shearing force makes a negligible contribution 

to the equilibrium of forces in the circumferential direction. The equations of equilibrium 

of the cylindrical shell (Figure 2.4) are,
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where, N  are the normal forces per unit length of sections, q is the intensity of a 

continuous distributed load, M are the moments per unit length of sections and R is the 

radius of the cylinder.

If the shell is assumed to have small curvature (shallow shell), the stretching 

displacement su has negligible effect on the changes of curvature and twist. Shallow

shells are shells in which the slope of its middle surface (described by z = z(x, y)) is very 

small and satisfies the requirements  2xz   « 1 and  2yz  « 1. For circular 

cylindrical shells, these conditions are satisfied automatically since xz  = 0 and 

yz  = r - rcos(d)   0. The relationship between the strains ( ), changes in curvature 

( ), relative angle of twist () and the displacements ( xu , su  and w ) as shown in Figure 

2.5 can be expressed as
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Figure 2.5 Thin Cylindrical Shell.
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The behavior of a thin cylindrical shell of small curvature is similar to that of a 

thin plate except for the presence of RN s  in the third equilibrium equation and w/R in 

the definition of the circumferential normal strain. Finally, the stress resultants and stress 

couples are related to the strains and changes of curvature as

][ sxx KN   ,    ][ xss KN   ,     xssxxs GhNN 

][ sxx DM   ,    ][ xss DM   ,    12/3GhMM sxxs    (2.14)

where, )1( 2 EhK  and the flexural rigidity of shell, )1(12 23  EhD .

The governing equations of the cylindrical shell that relate the displacements and 

surface loadings can be accomplished by substitution of Eqs. (2.13) and (2.14) into Eq. 

(2.12). The governing equations have the form
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The solutions of Eqs. (2.15) can be decomposed into particular and 

complementary components corresponding to the contributions from the distributed 
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surface loadings and edge loadings, respectively. Therefore, only the complementary 

component is of interest in the determination of decay length as mentioned in Chapter 1.

Donnell (1933) manipulated Eqs. (2.15) to achieve a decoupled eighth-order 

differential equation for the radial displacement w.  In the absence of surface loadings, 

Donnell’s equations in a non-dimensional coordinate system are
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where, 
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complementary solution. For any known mechanical or thermal loading Eq. (2.16a) can 

be solved for w and then xu  and su  can be obtained as the solutions of (2.16b) and 

(2.16c).

In the case of cylindrical shell subjected to axisymmetric longitudinal bending, the 

displacements are independent of the circumferential coordinate s and the last of Eq. 

(2.15) can be reduced to 
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Equations (2.16) will be used in Chapter 6 to calculate the decay length for 

circular cylindrical shell in the circumferential direction and Eq. (2.17) will be used to 

determine decay length in the longitudinal direction.

2.3.2. Shells Having the Form of a Surface of Revolution

A brief review of the governing equations for a more general case of shells of 

surface of revolution is presented in this section. Complete details in the derivation are

provided by Timoshenko (1970) as well as others, such as Kraus (1967), Ugural (1999) 

and Lukasiewicz (1979).

Figure 2.6 Shells having the form of a surface of revolution (Timoshenko, 1970).

Shells having the form of surfaces of revolution find extensive application in 

various kinds of containers, tanks, and domes. A surface of revolution is obtained by 

Parallels

Axis of revolution

2r





 d
N

N





N

N

Q M

1r

x

M

z





 d
M

M





N
M

0r





 d
Q

Q





d

Meridians



28

rotation of a plane curve about an axis lying in the plane of the curve. This curve is called 

the “meridian” and its plane is a meridian plane. The conditions of equilibrium of an 

element of the shell bounded by two adjacent meridian planes and two sections 

perpendicular to the meridians are considered (Figure 2.6).

Due to the symmetry, only normal stresses will act on the two sides of the element 

that are in the meridian planes. The stresses can be reduced to the resultant force  drN 1

and resultant moment  drM 1 , which are independent of the angle θ. The external load 

acting upon the element can be resolved into two components  ddrrPy sin21  and 

 ddrrPz sin21  tangent to the meridians and normal to the shell, respectively. If the 

change of curvature is neglected, three equations of equilibrium can be expressed as

0  cos)( 10010  yqrrQrrNrN
d

d
 



   0  
)(

sin 01
0

10  rrq
d

rQd
rNrN z

 
   (2.18)

     0  cos)( 0110  rrQrMrM
d

d
 



Equations (2.18) contain five unknown quantities, three resultant forces N( , 

N , Q  and ) and two resultant moments )  and(  MM . The number of unknowns can be 

reduced to three by expressing the membrane forces and the moments in terms of the 

displacement components v and w using Hooke’s law as,
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Three equations with three unknown quantities v, w, and Q  can be obtained by 

substitution of expressions (2.19) into Eqs. (2.18). By using the third of Eqs. (2.18) the 

shearing force Q  can be eliminated and the three equations reduced to two equations of 

the second order with the unknowns v and w. Timoshenko (1970) introduced the use of 

two new variables, the angle of rotation of a tangent to a meridian V and the quantity U, 

to further simplify the equations,







 

d
dwv

r
V

1

1    and   QrU 2   (2.20)

Consider the equilibrium of the portion of the shell above the parallel circle 

defined by the angle  . Assuming there is no load applied to the shell, this equation gives

   0     cos2sin2 00    QrNr   (2.21)

Therefore,
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Substituting N  from Eq. (2.22) into the second of Eqs. (2.18), for sin20 rr 

and  Z = 0, we obtain
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From the first two equations of Eqs. (2.18), expressions for N  and N  in (2.19), 

and Eqs. (2.22) and (2.23), the equation relating U and V is 
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By substituting expressions of M  and M  in (2.19) into the third of Eqs. (2.18), 

the second equation for U and V is obtained as
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If the thickness of the shell is constant, the terms containing a factor ddh /

vanish. Introducing the notation
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Eqs. (2.24) and (2.25) simplified to two simultaneous differential equations of the 

second order as

EhVU
r

UL 
1

)( 

D
UV

r
VL 

1

)(    (2.27)

The application of these differential equations to determine a decay length in 

spherical shells will be further explained in Chapter 6.

2.4. FITNESS-FOR-SERVICE

Fitness-for-service assessments are quantitative engineering evaluations that are 

performed to demonstrate the structural integrity of an in-service component containing a 

flaw or damage. Three levels of assessment are presented by API 579 in Section 2.4.1 as

given below:

Level 1 – The assessment procedures included in this level are intended to provide 

conservative screening criteria that can be utilized with a minimum amount of inspection 

or component information. Level 1 assessments may be performed by either plant 

inspection or engineering personnel.

Level 2 – The assessment procedures included in this level are intended to provide 

a more detailed evaluation that produces results that are more precise than those from a 

Level 1 assessment. In a Level 2 Assessment, inspection information similar to that 
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required for a Level 1 assessment are needed; however, more detailed calculations are 

used in the evaluation. Level 2 assessments would typically be conducted by plant 

engineers, or engineering specialists experienced and knowledgeable in performing FFS 

assessments.

Level 3 – The assessment procedures included in this level are intended to provide 

the most detailed evaluation which produces results that are more precise than those from 

a Level 2 assessment. In a Level 3 Assessment the most detailed inspection and 

component information is typically required, and the recommended analysis is based on 

numerical techniques such as the finite element method.  A Level 3 analysis is primarily 

intended for use by engineering specialists experienced and knowledgeable in performing 

FFS assessments.

As mentioned previously, the current study aims at deriving Level 2 methods for 

FFS assessment of pressure vessels with corrosion or hotspot damage. 

This following presents a summary of the primary investigations that have been 

reported in the literature on failure due to corrosion damage and thermal hot spots. 

Numerous models have been proposed for evaluation of corroded components. Several 

standards have incorporated the assessment methodology for continuing service of 

components containing corrosion spots. A vast majority of these studies are limited to 

analysis and assessment of pipes and sometimes cylindrical vessels.
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2.4.1. FFS Assessment for Thermal Hot Spots

Although thermal hot spot is known to be one of the common types of damage 

that occurs in ageing pressure vessels, the studies of hot spot FFS evaluation procedures 

are meager compared to other damages such as crack-like flaws. The few studies that 

have focused on hot spots are mostly restricted to assessment of cylindrical shells.

Du Preez (1995) investigated the characteristics of hot spots that would cause 

cyclic plasticity or ratcheting in particular vessels of conical and cylindrical shape. It was 

concluded that ratcheting can be present in the cases of large hot spot size and high 

temperature difference between hot spot and average temperature. It was suggested that a 

condition which is within the shakedown regime should be selected as a basis for 

continuous operation and hot spots which fall in the cyclic plasticity and ratcheting 

regimes are only acceptable with a restriction on the total accumulated strain during the 

lifetime of the vessel.

Radakovic, Zhao and Lucas (2004) performed heat transfer and stress analysis to 

identify conditions that can lead to hot spots on the shell and potential failure of the shell 

plate in blast furnace bustle pipe. It was concluded that thinning of the shell due to 

corrosion combined with high shell temperature has contributed to cracking and bulging 

of the shell plate.

Seshadri (2004) proposed a Level 2 FFS assessment for hot spots based on elastic 

analysis. The localized effect of discontinuities on the cylindrical shell is discussed and 

the concept of reference volume is introduced as the “kinematically active” portion that 
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participates in plastic action. The reference volume is defined by using a characteristic 

length called “decay length” of a cylinder. The decay length is the distance from the 

applied force to the point where the effect of the force is almost completely dissipated and 

becomes negligible. In order to determine a decay length in the circumferential direction 

of a cylinder, the effects of line load applied along the generator of cylindrical shells is 

used. A decay length in longitudinal direction can be determined by using the solution for 

differential equations of cylindrical shell subjected to an axisymmetric loading. 

The remaining strength factor is suggested based on the m -multiplier. In order to 

verify the evaluation assessment, inelastic finite element analyses are carried out on the 

basis that there is post-yield strain hardening in the material with the plastic modulus of 

3447 MPa (500 ksi) -compared to E = 207 GPa (30x103 ksi), and the maximum strain is 

limited to 1%. It is concluded that the recommended RSF calculated using m -multiplier 

provides close lower bound approximation compared with a nonlinear finite element 

model. This and associated work is used and extended in the present research. The 

relevant theory using m-method, etc., is summarized in the next chapter.

It may be noted that the plastic tangent modulus used in the above study is 

somewhat high and is perhaps not the most preferred.  In that sense, the numerical data 

presented in (Seshadri, 2004) can be improved upon. However, the proposed ideas are 

still very useful for the simple and yet practical Level 2 assessment of RSF. The present 

research includes the use of decay lengths and other intuitive concepts meshed with 

variational principles. Thus, the application of reference volume and the estimation of 
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decay lengths for cylindrical shells will be explored further in the present research. The 

RSF evaluation procedures discussed by Seshadri (2004) will be the basis of the 

recommended RSF for the current work.

At the current stage, there is no design standard for hot spot evaluation in pressure 

vessels. Procedures and rules for hot spot evaluation are currently being developed to be 

added to section 14 of API 579 by considering fatigue and creep damages (Osage, 1997).

It should also be noted in addition that the entire API 579 document is being re-

developed in conjunction with the American Society of Mechanical Engineers (ASME) to 

provide a common document as a Standard issued by both societies (Furtado and May, 

2004).

Figure 2.7 Metal loss and analysis parameters used in the effective area method
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2.4.2. FFS Assessment for Corrosion Damage in Cylindrical Shells 

The study of pressure vessels containing blunt metal-loss defects or corrosion 

damage, usually considered as a locally thinned area (LTA), has been far more elaborate 

compared to that for thermal hot spot problems. However, most studies are on the 

evaluation of piping and cylindrical vessels. The most widely used criteria in North 

America for the assessment of corroded pipes called “effective area methods” include 

ASME B31G (ASME/ANSI, 1984), Modified B31G and PRC RSTRENG (Kiefner and 

Vieth, 1989). The standard for conducting FFS assessments for pressurized components 

in oil and gas sector is API 579 (API, 2000) in which the procedures are based on ASME 

B31G and the RSTRENG criteria. 

Note that for crack-like defects and defects caused by stress corrosion cracking 

(SCC), the failure mechanism is based on material toughness and the evaluation 

procedures are different. SCC is cracking due to a process involving conjoint corrosion 

and straining of a metal due to residual or applied stress (Arup and Parkins, 1979). This 

requires specific combinations of metal and environment such as chloride cracking of 

stainless steel or hydrogen embrittlement of high strength steels (Cottis, 2000). This type 

of corrosion is currently dealt with by Level 3 assessment according to API 579 and is not 

of direct interest in the current research.

The effective area method was first developed from a semi-empirical fracture 

mechanics relationship by Maxey, et al. (1972). The method assumes that the strength 

loss due to corrosion is proportional to the amount of metal loss measured axially along 
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the pipe (s). To accommodate for the irregular corrosion profiles, the profile of the flaw is 

measured and the deepest points (path A-B-C) are projected to a single axial plane for 

analysis as shown in Figure 2.7. 

The remaining strength factor is based on a Dugdale plastic-zone-size model and a 

“Folias” factor. Folias factor is a bulging stress magnification factor used in through-wall 

crack in pressurized cylinder (Folias, 1969). An empirical flaw-depth-to-pipe-thickness 

relationship is used to modify the Folias factor to account for part-through wall effects 

based on “effective” cross sectional area. This method assumes that the flaw fails when 

the stress in the flaw reaches the flow stress, flow . The nominal pipe wall hoop stress at 

failure in the flaw is given by


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where, A is the corroded area in the cross section, oA  is the original cross sectional area, 

M is Folias factor. The term in the bracket is proposed as the effects from effective area 

for a surface flaw.

(a) ASME B31G criterion

The expression for nominal hoop stress at failure fail  of a flaw used by 

ASME B31G is

RSFyfail  1.1 ; 
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where, y  is the yield stress, d is the maximum depth of corrosion and t is the pipe 

thickness. The Folia factor, used in this assessment is a function of the corrosion axial 

length s, the pipe diameter D, and t as 







Dt
sM

2

8.01 .

It can be observed by comparison of Eq. (2.28) and (2.29) that this method 

assumes that flow stress yflow  1.1 . The flow stress used in this method is 

conservative when compared with yield stress for cylinders calculated using von-Mises 

criterion with elastic-perfectly plastic model which is equal to y32  or 1.15 y . The 

corrosion flaw is assumed to have a parabolic shape and hence parameter A = 2/3sd and 

0A  = st. The two-term form of the Folias bulging factor is used to simplify the 

calculation. However, this two-term factor is only applicable to flaws with Rts / < 6.3 

and d/t   0.175. Beyond this length, the flaw depth is limited to 10 percent of the wall 

thickness. This limitation results in a discontinuity in the flaw assessment criterion that 

contributes frequently to excessively conservative evaluations of LTAs in pipelines.

(b) Modified ASME B31G criterion

The Modified B31G criterion attempts to reduce B31G simplifying assumptions 

and associated conservatism. The Modified B31G criterion is given by

  RSFyfail  psi000,10 ; 
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where, 
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The flow stress used in Modified B31G is less conservative than B31G. For high 

strength pipeline material such as API 5L X80, the flow stress calculated by using 

Eq. (2.30) is 1.125 y . For lower strength material such as API 5L grade A, with a yield 

stress of 30000 psi, the flow stress becomes 1.333 y . This assumes that the material 

attains significant amount of strain hardening after yield. An empirical fit factor of 0.85 is

also used in this criterion instead of the “2/3” area factor resulting from the assumed 

parabolic shape. In addition, the more accurate 3-term expression for the Folias bulging 

factor is utilized and hence the discontinuity that exists in B31G is eliminated.

(c) RSTRENG

The more accurate computation of the effective area is developed by applying 

more detailed corrosion profiles with the help of PC-based software known as 

RSTRENG.

RSTRENG uses the less conservative definition of flow stress and the 3-term 

Folias bulging factor described in the Modified B31G. The equivalent axial profile can be 

made by plotting points along the deepest path of the contour map, often referred to as the 

critical thickness profiles (CTP) or “river bottom” of the flaw (Figure 2.8). RSTRENG 

computes the failure pressure based upon all possible flaw geometries along the river 
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bottom and reports the lowest as its result. Although RSTRENG provides more accurate 

results, difficulties can often arise because of a large amount of information must be 

collected.

(a) Longitudinal CTP (b) Circumferential CTP

Figure 2.8 Procedure to establish the critical thickness profiles (CTP).

Note that the effective area method is a strength dependent method in which 

material toughness is not considered. Toughness is the ability of the material to withstand 

fracture. This implies the assumption of ductile material which is able to undergo large 

deformation before failure and the failure is non-crack-like. The assumption of ductile 

mechanism is also used in the current research.
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The advantages of the effective area methods for corrosion flaw assessment lie in 

their simplicity and their experimental validation. The effective area methods have been 

validated by experiments and field failures on pipeline steels. Numerous additional 

experiments have been conducted and modifications to the criteria are suggested to 

reduce the conservatism. Extensions of the method to include some specific areas such as 

spirally oriented corrosion, corrosion longer than one pipe diameter, interaction of axial 

and circumferential separation of axially oriented corrosion defects, etc., have been 

investigated through experiments by Coulson and Worthingham (1990), Mok, et al. 

(1990, 1991), Hopkins and Jones (1992), and Jones et al. (1992).

Although corrosion in cylindrical shells has been examined by many researchers, 

the proposed criteria are mostly empirical based and do not consider the effects of 

damages in circumferential direction.

(d) Level 1 Method of Assessment from API 579

The assessment procedures for API 579 are based on the ASME B31G and the 

RSTRENG criteria. The API 579 assessment provides a consistent result for regions of 

metal loss with significant thickness variability (Osage, 2001). Two acceptance criteria 

are included, a simple Level 1 criterion based on length and depth dimensions (Sec. 5.4.2)

and a more complex Level 2 criterion relying on the detailed cross-sectional profile. 

Different assessment criteria are used for stress in the circumferential and longitudinal 

directions to properly account for pressure and supplemental loads. 
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The assessment procedures for circumferential stress in pressure vessels with LTA 

subject to internal pressure are as shown below. Based on the thickness profile, the 

remaining thickness ratio, tR , and the metal loss damage parameter,  , are computed as 

mint

FCAt
R mm

t


     and    

min

285.1

Dt

s
  (2.31)

where, mmt  is minimum measured remaining wall thickness, FCA  is future corrosion 

allowance, and mint  is minimum required wall thickness determined in accordance with 

the original construction code. 

The stress at failure of LTA is computed as 
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fail
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RSF
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where, 248.01 M . 

The geometrical limitations on the region of local metal loss are 

min8.1 DtLmsd  , 20.0tR  and mm5.2     FCAtmm , where, msdL  is the shortest 

distance between the edge of corrosion area and the discontinuity. 

The first limitation, as in this thesis, requires that the LTA be located away from a 

structural discontinuity and any local effects associated with the discontinuity will decay 

to negligible value such that the stress field at the LTA will be predominantly membrane. 

The second of these limitations is due to the absence of validation results for deep 

corrosion profiles. It can be seen that evaluation is valid for corrosion loss up to 80% of 
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design thickness. The third limitation is to confine the minimum remaining thickness to 

prevent both leakage and mechanical damage to a component. 

It can be noticed from Eq. (2.32) that the criteria for API 579 are based on Folias 

factor as in ASME B31G. The flow stress is also assumed to be equal to 9.0y

(= 1.111 y ) similar to that of ASME B31G. However, the empirical relationship 

accounts for surface flaw effects based on the remaining thickness ratio. This implies 

rectangular shape of corrosion. Therefore, API 579 is expected to provide more 

conservative results than ASME B31G.

(e) Level 2 Method of Assessment from API 579

If there are significant variations in the thickness profile, the Level 2 assessment 

can be used to provide a better estimate of the RSF (API 579, Sec. 5.4.3). The inherent 

strength of the actual thickness profile is evaluated using an incremental approach to 

ensure that the weakest ligament is identified and properly evaluated. The limitations are 

checked using Eqs. (2.31) and an additional condition that 0.5 . The procedure is 

similar to the RSTRENG method by using the same river-bottom methodology except 

that a different value of the Folias factor is used in the procedure, i.e,
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The criteria in API 579 appear to be suitable and applicable for evaluation of the 

remaining strength of LTA in cylindrical pressure vessels and piping under internal 

pressure loading. 

One of the most significant limitations of the API 579 assessment procedure is the 

requirement that the LTA be located a minimum distance of DtLmsd 8.1  from the 

nearest discontinuity. This length is essentially equal to min5.2 Rt  which is the decay 

length in axial direction for cylinders. This is the decay length used in the present work as 

explained in Section 6.2. Harvey (1991) obtained an analogous length of a cylindrical 

vessel to be considered as an infinitely long beam by using theory of beam on elastic 

foundation. It is also implies that API 579 uses the same decay length in the 

circumferential direction of the cylinder.

Seshadri (2004) proved that the decay length in circumferential is much larger

than that of axial direction. Hence, this criterion of API 579 is not good from the 

interaction point of view for damage located near other damages or discontinuities in 

circumferential direction. Decay length in the circumferential direction will be further 

investigated in the current research in order to use it to find the RSF. 

Different curvatures of the axial and the circumferential directions of a cylindrical 

shell affect the decay lengths in those directions differently. Hence, it is anticipated that 

the decay lengths associated with other shapes of pressure vessels (such as sphere, cone 

and torus) are different from that of a similar cylindrical shell. Thus, the minimum 

distance to a major structural discontinuity from an LTA without inducing interaction 
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effects is increased from that of API 579. One of the objectives of the present research is 

to utilize the theory of shells to estimate the minimum distance of the damages such as 

corrosion and thermal hot spots from the closest discontinuity.

(f) The m-method

Indermohan and Seshadri (2004) proposed a Level 2 FFS methodology for 

evaluating corrosion in cylindrical shells. It is similar to the previously discussed FFS 

assessment procedures for hot spots by Seshadri (2004). Thin cylindrical shells with 

radius to thickness ratio equal to 52.8 subject to internal corrosion of various sizes are 

studied. The remaining thickness ratios are taken as 0.9, 0.8, and 0.6. The results are 

compared with inelastic finite element analysis results. The material is modeled by using 

plastic modulus of 3447 MPa (500 ksi) and the criterion of 1% membrane strain limit is 

used. It is concluded by them that the RSF obtained are conservative and comparable with 

nonlinear FEA results. 

Ramkumar and Seshadri (2005) extended the application of the assessment to a 

thicker cylindrical shell with radius to thickness ratio 32.6 for both internal and external 

corrosion. The RSF and limit pressure computed from the proposed method are compared 

with the results from finite element analysis using the same model and yield criteria as 

(Indermohan and Seshadri, 2004). The results are also compared with the results 

according to ASME B31G. The comparison showed the variation of the RSF and limit 

pressure of the LTA followed a similar pattern when variational method and inelastic 

FEA were used and the results from the variational method are conservative. Moreover, 
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the remaining strength factor evaluated by using the ASME B31G criterion is shown to 

underestimate the effect of corrosion damage in some cases. 

The method proposed by Indermohan and Seshadri and extended later on by 

Ramkumar and Seshadri is shown to provide a simple and useful Level 2 FFS assessment 

to evaluate the effects of damage due to corrosion which reduce the conservatism 

compared with the ASME B31G criterion. Moreover, the reference volume approach 

overcomes the limitation of other evaluation methods by considering the circumferential 

extent of corrosion. However, it should also be mentioned that the plastic modulus of 500 

ksi used in their work may be somewhat high and need to be used only for appropriate 

cases. 

The corrosion areas studied in both works are limited to the aspect ratio of 1 to 1, 

1 to 2 and 2 to 1. Further application of the method to cylindrical vessels with corrosion 

regions of various aspect ratio is of interest for the current research. The method will also 

be applied in conjunction with decay lengths calculated from shell theory to spherical 

pressure components.

(g) Comparison of Existing Procedures

Osage, et al. (2001) compared the existing assessment criteria for blunt LTA (non-

crack like) in cylindrical shells by considering the maximum acceptable flaw dimensions 

in vessels which maintain their maximum allowable working pressure. The models are 

compared in terms of acceptable flaw depth ratio (d/t) and RtL  and also in terms of 

remaining wall thickness (tmm) and flaw length/vessel diameter (s/D). They suggested that 
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most of the criteria overlap significantly except for the Modified B31G criterion which 

provides the least conservative results for permissible flaw sizes. The “modified Level 1” 

criterion is recommended based on the adaptation of API Level 1 and Level 2 criteria and 

the curve fit factor tdAA o 85.0  similar to the Modified B31G criterion. Although this 

method offers a continuous criterion with low variability of safety factor, the results are 

shown to be more conservative than those obtained from ASME B31G criterion for LTA 

with 3.6Rts .

2.4.3. FFS Assessment for Corrosion Damage in Non-cylindrical Shells

Little technical development and experimental validation has been performed for 

corrosion damage in non-cylindrical pressure vessels and corrosion damage near 

structural discontinuities. The LTA assessment procedures for spherical shells and formed 

heads in API 579 are based on the procedures used for cylinders. However, in the Level 2 

assessment procedures, the Folias factor developed for spherical shells is used in place of 

Eq. (2. 33).
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Sims (1992) studied local Round Thin Areas (RTA) in cylinders and spheres with 

similar dimensions. The results indicate that for a given shell diameter and thickness, and 

RTA diameter and depth, the RSF for a cylinder is greater than that for a sphere. If the 

Folias factor for the sphere is used in the API 579 Level 2 assessment, this same trend 
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occurs. This can also be supported by the concept of reference volume as will be shown 

in the Chapter 7.

In API 579, the assessment procedures for LTA in conical shells located away 

from major structural discontinuities are also based on the procedures used for cylinders. 

The distance is specified to be the same as in the evaluation of cylindrical shell. However, 

the minimum required thickness is based on the construction code for conical shells and 

the inside diameter is specified to be the diameter at the center of the LTA. As discussed 

earlier, this distance can be improved upon by using theory of shells to obtain a decay 

length in a conical shell. 

2.5. CLOSURE

The current chapter reviewed the theories in plasticity and limit analysis generally

employed in evaluation of pressure vessels with local damages. An overview of the 

existing Fitness-for-Service assessments for thermal hot spot and corrosion damage is 

presented. It is observed that there is a lack of procedures for evaluating RSF for thermal 

hot spots in pressure vessels. Most of the FFS assessments for corrosion damage are 

designed for cylindrical shells and only consider the longitudinal extent of damage. An 

improved Level 2 procedure can be developed to overcome these limitations and offers a 

better understanding of the behavior of corrosion damage and thermal hot spots in 

pressurized components.
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CHAPTER 3

THE m-MULTIPLIER METHOD

Limit load of a structure can be conservatively approximated by using statically 

admissible or lower bound limit load multipliers. The improved lower bound 

m -multiplier developed by Seshadri and Mangalaramanan (1997) is shown to provide 

close lower bound estimates to a variety of practical mechanical components including 

pressurized components of various shapes. Hence the m- multiplier will be the main 

multiplier applied to assess the strength of damaged pressure vessels in the current 

research. The theoretical background and application of the m- multiplier method will be 

discussed in this chapter.

3.1. BACKGROUND

Mura and coworkers (1963, 1965) introduced the concept of integral mean of 

yield criterion that allows the pseudo-elastic distributions of stresses to lie outside the 
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yield surface. Seshadri and Mangalaramanan (1997) applied this concept in conjunction 

with successive elastic finite element analyses, the concept of leap-frogging to the limit 

state and the theorem of nesting surfaces to develop an improved lower bound 

m -multiplier. The concept of reference volume is used to narrow the upper and lower 

bound spread for localized plastic collapse. The m -multiplier is proved to be robust 

(Fowler, 1998; Ralph, 2000) and applicable to determine lower bound estimation of limit 

load for a range of mechanical components (Pan and Seshadri, 2002; Reinhardt and 

Seshadri, 2003).

Indermohan and Seshadri (2004) recommended the mα-multiplier method to 

evaluate the remaining strength factor (RSF) for cylinders with thermal hot spots. 

Ramkumar (2005) showed that the method provided lower bound RSF approximation for

cylindrical shells with locally thinned area (LTA). The mα-multiplier method will be 

applied to estimate RSF of spherical and cylindrical containing local corrosion damage or 

thermal hot spots in the current research.

3.2. GENERAL CONCEPTS

The theories used in the derivation of the mα-multiplier method include the

theorem of nesting surfaces, Mura’s extended variational principle in plasticity and the 

concept of reference volume. These are briefly discussed below.
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3.2.1. Theorem of Nesting Surfaces

In the steady state creep analysis, the constitutive equation is given by nB
dt

d 


where, B and n are creep parameters. Using elastic analogy, Hoff (1954) replaced the 

creep problem by a problem in nonlinear elasticity with the stress-strain law nB  . 

The value of exponent n = 1 is analogous to linear elasticity, while n →   resembles 

perfect plasticity. 

The effective generalized stress for the entire volume Qe, is then given by,
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where, e  is equivalent stress.

Calladine and Drucker (1962) extended the work of Hoff and suggested the 

theorem of nesting surfaces. The theorem essentially shows that the functional )( eeQ   is 

strictly monotonically increasing with the exponent n. It is bounded from below by the 

result for n = 1 and from above by the limiting functional as n→  . Boyle (1982) 

deduced that if hypersurfaces )( eeQ  = constant in stress space are considered, they must 

nest inside each other for increasing n. For a linear elastic material n = 1, the reference 

stress is expressed as
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The above equation can be written using a finite element discretization scheme as
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where, k is element number and N is the total number of elements.

3.2.2. Mura’s Extended Variational Formulation and Application

Mura and Lee (1963) showed by means of variational principles that the safety 

factor, the kinematically admissible multiplier and the statically admissible multiplier for 

a body made of perfectly plastic material and subjected to a given surface traction are 

actually extremum values of the same functional under different constraint conditions.

In a lower bound limit analysis, a statically admissible stress field cannot lie 

outside the yield surface, and in an upper bound analysis, the stress associated with a 

kinematically admissible strain rate field in calculating the plastic dissipation should lie 

on the yield surface. Mura, et al., (1965) eliminated such a requirement by further 

introducing the concept of integral mean of yield criterion,

 
TV ij dVsf 0])()([ 2000      (3.4)

where, the superscript “0” refers to statically admissible stress distributions that are in 

equilibrium and 0  is the flow parameter from the associated flow rule. The deviatoric 

stress 0
ijs  corresponds to the impending limit state, where, 0

ijs  = 00
ijd sm  and 0

dm  is the 

limit load multiplier and the deviatoric stress 0
ijs  equilibrates the applied set of loads. The 
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parameter 0  is a point function that takes on a value of zero if 0
ijs  is at yield and remains 

positive below yield.

Mura’s extended variational principle leads to a new lower bound multiplier m

smaller than the unknown actual collapse load multiplier m and can be expressed as

2200

0

2/])()(max[1 ksf
mm
ij 

 m    (3.5)

Equation (3.5) includes the classical definition of lower bound multiplier where 

])()(max[ 200 iisf = 0, with Eq. (3.5) reducing to mm 0 . 

Since 0
ijs  corresponds to the deviator of the stress state for impending plastic flow, 

0
ijs  = 00

ijsm , where, 0
ijs  represents the deviator of the stress state for applied traction iT . 

The von Mises yield criterion is given by 2
2
3)( yijijeij sssf    and the associated 

flow rule can be expressed as  ijij sf    where, 0 . Mura and co-workers have 

shown that 0m , 0  and 0  can be determined by rendering the functional F stationary in

 
TV ij dVsfmF ])()([ 20000     (3.6)

leading to the set of equations
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For the von Mises yield criterion, the functional becomes



54

dVssmmF
TV yijij 



  202002000 )()(
2

3      (3.8)

Assuming a constant flow parameter 0 and setting F = 0, the foregoing 

functional can be written in a finite element scheme, for 00  , as 
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where, N  is the total number of elements, ek  and kV  are the equivalent stress and 

volume of element k, and TV  is the total volume of the component.

Combining Eqs. (3.2) and (3.9) yields
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Therefore, 0m  is related to the reference stress eQ  and Mura’s formulation is related to 

the theorem of nesting surfaces.

Equation (3.5) for m  can be rewritten in terms of the maximum equivalent stress 

0
M  in a component as 
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Statically admissible stress fields and kinematically admissible strain fields can be 

obtained from linear elastic analyses by using a modulus adjustment scheme. The first 
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linear analysis is a conventional elastic analysis and the elastic modulus of all elements 

can be modified in the second analysis using the equation
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where, q is a modulus adjustment parameter nominally taken as one. The iteration can be 

repeated any number of times until convergence is obtained. An iteration variable   is 

now introduced in a manner that infinitesimal changes of the elastic modulus in 

successive elastic analysis would induce a corresponding change  . As   increases 

with the iterations, 0m  and m  should ideally converge uniformly to the exact value of 

the safety factor m.

3.2.3. Reference Volume

When plastic collapse occurs over a localized region of a component, the 

calculation based on the total volume TV would give an overestimated value of 0m and 

underestimated value of m . Moreover, the use of VT can also give value that does not 

converge to the exact multiplier m. The reference volume concept is then introduced to 

identify the “kinematically active” portion of the structure that participates in the plastic 

actions. Equation (3.9) can be written in terms of the reference volume, RV , as
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where, 
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The elements are arranged in the descending order of energy dissipation
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As k is increased from 1 to N, the value of 0m  increases for any given linear elastic 

iteration. The variation of 0
1m  and 0

2m  with volume corresponding to the first and second 

linear elastic FEA is shown in Figure 3.1. The theorem of nesting surfaces is valid if 

0
2

0
1 mm   which is when RVV  . The phrase “ m -method” refers to the use of 

elements in the finite element discretization scheme that pertains to the identification of 

an appropriate reference volume.

Figure 3.1 Identification of the reference volume, VR.

Volume, V

VR VT

Multiplier,
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Validity of Nesting 
Surfaces Theorem
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0
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0
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3.3. THE m-MULTIPLIER

By using the new lower bound multiplier m  from Mura’s variational principle, 

the m -multiplier can be determined by the concept of leap-frogging1 to the limit state of 

two successive finite element analyses.

Figure 3.2 Leap-frogging to the limit state (Seshadri and Mangalaramanan, 1997).

Equation (3.9) can be expressed in terms of iteration variable   as
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In terms of finite differences, we have

                                                
1, ‘leap-frogging’ refers to the use of two iterations to obtain an estimate of the ‘exact’ multiplier by using 
the concept of reference volume

Leapfrogging

of Iterations

Iteration Variable, 

Safety Factor

Exact Multiplier (m)

m

)(0
TVm

)(0
RVm

)( RVm

i 1i

)( TVm
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where, i   corresponds to the i-th iteration. For a limit state   , we define 
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where, m  is the value to which m  and 0m  are conjectured to converge by the idea of 

leap-frogging of iterations as shown in Figure3.2. 

Substitution of Eqs. (3.16) and (3.17) into Eq. (3.15) yields the quadratic equation 

02  CBmAm    (3.18)
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0
0  . The values for 0

im  and 0
Mi  are calculated from the results of any linear 

elastic FEA iteration. Although the m  method was intended for two iterations, more 

iterations would provide a better estimation. 

Equation (3.18) is a polynomial of second degree and the m -multiplier can be 

solved for the larger of the two possible solutions as
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where,  0/ MyLm   is the classical lower bound multiplier . It should be noted that the 

solution for m vanishes (becomes imaginary) if 21/0 Lmm .

Reinhardt and Seshadri (2003) showed that m estimates are lower bounds in the 

great majority of cases. Although, the m-multiplier could be 5% on the upper bound side 

in the cases where the upper-bound multiplier is not so close to the exact multiplier, this 

may be considered as acceptable within engineering accuracy. Pan and Seshadri (2002) 

applied the m-multiplier to various types of practical mechanical components. Despite 

its complicated theoretical background and derivation, the formulation and application of 

m  has been proved to be practicable and straightforward for determining lower bound 

approximations. Hence, the m -multiplier is used as the basis of RSF in the proposed 

assessment.

3.4. CLOSURE

The m-method has been shown to provide reasonable lower bound 

approximations to limit loads of various mechanical components. The background and 

theoretical aspects of the method are discussed in detail in the current chapter. The 

application of the mmultiplier to evaluate pressure components with local damages 

such as corrosion damage and thermal hot spots will be presented in Chapter 4.
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CHAPTER 4

GENERAL METHODOLOGY FOR 

PROPOSED LEVEL 2 FITNESS-FOR-SERVICE 

ASSESSMENTS

Structural integrity of an in-service component containing damages such as 

corrosion and thermal hot spots have to be evaluated regularly so as to certify the 

acceptance and safety of continued service of the component. Level 1 Fitness-for-Service 

(FFS) assessments such as those recommended by API 579 can be used as basic screening 

criteria by plant technicians. Level 2 FFS assessments are recommended procedures 

which are less conservative but involve more detailed calculations intended for use by 

plant engineers.

This chapter discusses general methodology of the proposed Level 2 FFS 

assessments for pressure vessels containing thermal hot spots or corrosion damages. The 

factors influencing the failure of damaged pressure components are presented. The 

similarities and differences between edge effects due to corrosion damage and those due 
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to thermal hot spots are investigated. The parameters taken into consideration, the 

assumptions and failure criteria for the proposed FFS assessments are discussed. 

Procedures for Level 2 evaluation of corrosion damage or thermal hot spots in spherical 

and cylindrical shells including the concept of reference volume, distinction of local and

global damage and calculation of equivalent stresses are then explained in detail.

4.1. FACTORS INFLUENCING CORROSION AND THERMAL HOT 

SPOT FAILURE

The complexity of obtaining an accurate FFS evaluation for a pressure component 

containing a flaw lies in the involvement of a number of parameters affecting the 

behavior of the flaw and the failure of the component. Experimental studies showed that 

the failure of corroded component can occur either by ductile failure (non crack-like 

flaws) or toughness dependent failure (crack-like flaws) as pointed out in Chapter 2. The 

current study focuses on the behavior of non-crack-like (or blunt) corrosion.

As discussed earlier, in order to determine strength of such corroded components, 

corrosion damage is considered as locally thinned area (LTA). Osage, et al. (2001), 

among others, investigated the applicable criteria for acceptance of LTA in pipe and 

cylindrical vessels. The global schematic of the factors contributing to failure of LTA is 

illustrated in Figure 4.1. Failure occurs when the effect of driving forces which induce the 

stresses and strains exceeds the material resistance.
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Geometry
Material

Resistance to Failure
Induced

Stress -Strain

Material 
Characteristics

Applied Loads

Driving Forces Resistance

Figure 4.1 Schematic diagram of primary factors controlling the behavior of           

locally thinned areas (Osage et al., 2001).

Table 4.1 Parameters likely to influence the behaviour of pipeline defects

Applied Global Loadings Geometry Material Characteristics

Internal pressure

Uniform axial loads

Bending moment

Pipe dimensions

   Diameter

   Wall thickness

Defect geometry

   Depth

   Length

   Width

   Shape/ profile

Yield strength

Ultimate strength

Plasticity/strain hardening

Fracture toughness

Limiting strain for 

acceptable performance
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The parameters likely to influence the behavior of LTA are applied loadings 

(operating conditions), vessel geometry, flaw geometry and material characteristics (as 

listed in Table 4.1). The applied loads include the direct surface traction (internal 

pressure) and the net section tensile, compressive and bending loads. Vessel geometry, 

flaw characteristics and material properties directly influence the stress and strain field by 

controlling the manner in which the damaged area deforms.

4.2. METHODOLOGY FOR PROPOSED LEVEL 2 FITNESS-FOR-

SERVICE (FFS) EVALUATIONS

This section discusses the methodology of the proposed Level 2 FFS assessments. 

Evaluation procedures for spherical and cylindrical shells are recommended based on m

multiplier, reference volume and variational principle.

4.2.1. Behavior of Local Damage

In the current research, irregular profiles of the flaws are represented by 

equivalent regular shapes to facilitate the evaluation procedures. For cylindrical shells, a 

flaw profile is replaced by an equivalent rectangle enclosing the defect with the edges 

along circumferential and meridian directions of the shell. In the case of spherical shells, 

it is more advantageous to use an enclosing circular area as illustrated in Figure 4.2. The 

maximum thickness loss is used in the evaluation of corrosion damage. This implies that 

the defect has an aspect ratio that is not too different from 1.0 and that the corroded 
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thickness does not vary widely over the corroded area. For defects with widely varying 

thicknesses, or highly irregular geometries, we can arrive at similar suitable equivalent 

properties.

 (a) (b)

Figure 4.2 (a) Circular equivalent area in sphere (b) Rectangular equivalent area               

in cylinder 

When local damage such as thermal hot spots or corrosion occurs in a component 

with internal pressure, the damaged region undergoes higher deformations than the 

undamaged region and the undamaged area acts somewhat like a support to the high 

bending moments generated in the vicinity of discontinuities. This can result in excessive 

deformation called “bulging” of the damaged area and the bending moments at the 

junction are in the direction that restrains the deformation of the softer part.

However, the behavior of corrosion damage and thermal hot spots in pressurized 

components is slightly different. In the hot spot case, the discrepancy in the deformation 

between hot and cool regions is due to the reduction of the elastic modulus and yield 

strength at higher temperature. The hot spot region is softer than the surrounding region 

and yields before the cooler parts. On the other hand, the difference in the deformations 
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of the corroded and uncorroded parts is due to the difference in the thicknesses of the two 

parts. The corroded region is considerably more flexible than the surrounding region.

The behavior of corrosion damage is also different from that of hot spots due to 

the misalignment of the thickness centerlines of the corroded and uncorroded areas 

(Figure 4.3). For a pressure vessel with internal corrosion, the mean radius of the 

corroded area is slightly larger than that of the uncorroded area while for a pressure vessel 

with external corrosion the mean radius of the corroded area is smaller than that of the 

uncorroded area. An additional bending moment is introduced due to the thickness 

misalignment. It is equal to the product of the stretching force at the junction and the 

eccentricity (the distance between the two centerlines as shown in Figure 4.3). 

Figure 4.3 Centerlines misalignment in (a) Internal corrosion (b) External corrosion

Excessive plastic deformation in a damaged area can lead to plastic collapse over 

a localized region of a component. In general, the effects from the discontinuities do not 
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affect the entire structure but rather only a controlled region. The concept of reference 

volume is introduced to identify the kinematically active portion of the structure that 

participates in plastic action. The reference volume prescribes the containment of effects 

of local stresses and strains acting on the structure. 

Figure 4.4 Contributing parameters to the proposed Level 2 evaluation methods
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In the present research, the reference volume is computed by using the shell decay 

length. The decay length is determined by the effect of a local force or moment acting on 

the shell and is defined as the distance from the applied force (or moment) to the point 

where the effect of the force is dissipated or becomes negligible. The decay length is a 

characteristic length corresponding to the component geometry, i.e., the shape of the shell 

surface and its dimensions. Larger decay length generally indicates better energy 

dissipation of the structure and leads to higher loading capacity whereas smaller decay 

lengths suggest severe local effects due to the applied forces. Once the decay length 

associated with the component geometry is obtained, the reference volume can be 

calculated from the geometric properties of the damage.

A diagram for parameters considered in the proposed Level 2 FFS methodology is 

shown in Figure 4.4. A key consideration in the determination of RSF is the reference 

volume estimation and the application of the yield criterion to the RSF calculation.

4.2.2. Assumptions and Failure Criteria

In the current research, the primary loading applied on pressure components is 

taken as internal pressure. The considered damaged spot is assumed not to interact with 

any other types of damage, discontinuity or with other nearby corrosion or hot spots. It is 

also assumed that the corrosion damage is not a crack like flaw. The material is assumed 

to have sufficient toughness to ensure ductile failure mechanism, i.e., the material inside 

the thermal hot spot or corrosion damage is assumed to elongate sufficiently prior to 

failure.



68

Several kinds of steel are used for the fabrication of pressure vessels depending on 

the types of applications. These steels have differing strain hardening characteristics. 

Some of them have significant post yield modulus while others are nearly perfectly 

plastic immediately after initial yield until a significant amount of plastic strain (like 4-

5%) is accumulated beyond which strain hardening may become significant. In order to 

have a general method for Level 2 estimates, codes often resort to the use of flow stress in 

place of actual yield stress. This flow stress is higher than the material yield strength. In 

the present work, this concept is utilized. However, the “flow stress” is simply designated 

as yield strength in the present work. This implies that beyond the flow stress/ yield 

strength, the modulus has only a nominal value. The material stress-strain relationship 

used in finite element analysis is explained in more detail in Chapter 5.

The temperature of the metal is assumed to be between 37.8 C – 316 C (100 F 

– 600 F) as appropriate for the different cases that have been studied. Plastic modulus ET

is assumed to be small compared to elastic modulus of the material. For example, at 

37.8 C (100 F), TE =  81038.1   Pa ( 31020 psi) compared to E = 910202  Pa 

( 61030 psi). 

The “failure” is assumed to be arrived at when von-Mises membrane strain (strain 

at mid-surface and not peak strain) at the center of the flaw reaches 1%. Although such 

materials as carbon steel are known to have much higher strain than 1% at the actual 

failure state, this criterion is applied to assure the serviceability of the component. This is 

slightly more conservative than the 2% limit that was used by Sims et al. (1992). Since 
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the use of flow stress is implied, the strain at failure can be viewed as the average strain 

between yield and 2% which comes to be nearly 1%. Hence, the use of 1% membrane 

(centerline) strain in place of 2% strain at the extreme points to define “failure’ is 

justifiable.  It must be noted that the 1% membrane (or average) strain is the current 

industry practice as specified by ASME Boiler and Pressure Vessel Code (Section III 

Division 1). Clause T-1310 Limits for Inelastic Strains states that the maximum 

accumulated inelastic strain shall not exceed the following values: 

(a) strains averaged through the thickness, 1%;

(b) strains at the surface, due to an equivalent linear distribution of strain through the 

thickness, 2%;

(c) local strains at any point, 5%.  

In view of the above, the normal range of materials used in the pressure vessels is 

covered by the present thesis.  However, if the vessels use a high strength steel where is 

2% inelastic strain indicates more than 20% increase in the stress beyond yield (1.2 y), a 

suitable flow stress needs to be used in place of the values used in the current work to 

make the procedures applicable.  An additional failure criterion to control excessive 

deformation due to the bulging of the component is to limit the out-of-roundness ratio of 

the component to 1.01. This criterion will be discussed in detail in Section 7.5. 

4.2.3. Reference Volume

Typical reference volumes for the equivalent areas as in Figure 4.2 are shown as 

shaded regions in Figure 4.5. A reference volume is the sum of the volume inside the 
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damaged spot and the “adjacent volume”. When damage occurs in a pressure component, 

the entire volume outside the damage does not participate in the failure mechanism. The 

“adjacent volume” is the effective undamaged volume outside the damaged area that 

participates in plastic action and will form part of the reference volume.

(a)  (b)

Figure 4.5 Reference volumes in (a) Sphere (or vessel head) (b) Cylinder

The concept of reference volume as discussed above might appear to imply that a 

material particle that is near the outer edge of the adjacent volume has the same effect as 

one near the damaged area. However, although the effect from secondary stresses (due to 

change of thicknesses or thermal stresses) for the two particles is not the same, primary 

(membrane) stresses of the two particles will be the same. The proposed method 

considers only primary stresses.  More discussion on the concept of the reference volume 

can be found in Seshadri and Mangalaramanan (1997).

(a) Reference Volume for Spherical Shells

An irregular shape of a hot spot or corrosion damage in a spherical shell is 

assumed to be represented by an equivalent circular area. For a damaged area identified 
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through the included angle a  in a spherical shell as shown in Figure 4.6, the volume of 

the damaged area can be calculated as

)cos1(2
acoD hRV       (4.1)

where, oR  is the outside radius of the sphere and hc is the thickness of the damaged area, 

i.e., the corroded thickness for corrosion damage and the original thickness for hot spot.

Figure 4.6 Equivalent circular damage and reference volume.

The adjacent volume is defined as the strip volume surrounding the damaged area 

where the shell might participate in plastic action. If the decay angle where the effects of 

the discontinuity become negligible is identified, the adjacent volume is

))cos((cos  2
daaoI hRV       (4.2)

a

  =  0

  = 
2



Adjacent Volume (VI)

Volume of hot spot or 
corrosion damage (VD)

Reference volume (VR = VD + VI)

Ro = R + h
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where, d  is the decay angle. Derivation of a proposed decay angle in spherical shell is 

presented Section 6.1.

The reference volume RV  obtained as IDR VVV   is the total volume of the 

kinematically active portion of the shell as explained above.

(b) Reference Volume for Cylindrical Shells

An equivalent rectangular shape is utilized to represent an irregular shape of a hot 

spot or a corroded area in cylindrical shells. For a damaged area of the width 2a in 

circumferential direction and the length 2b in longitudinal direction of a cylinder as 

shown in Figure 4.7, the volume of the damaged spot VD can be calculated as

cD abhV 4     (4.3)

The adjacent volume is the strip around the damaged volume that participates in 

plastic action and is bounded by decay lengths of cylindrical shells. Since the extent of 

decay length in shells is highly dependent on shell curvature, the decay lengths in 

circumferential and axial directions are different. Therefore, the adjacent volume is given 

by 

 abbxa (xh  V lcI  ))(4     (4.4)

where, xl and xc are decay lengths of cylindrical shells in axial and circumferential 

directions, respectively. These decay lengths for cylindrical shells are derived in Section 

6.2. As before, the reference volume is the sum of the above volumes or VR = VD + VI .
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Figure 4.7 Reference volume dimensions for localized damage in cylindrical shell

4.2.4. Equivalent Stress for Thermal Hot Spot and Corrosion Damage

The reference volume is also applied to the calculation of elastic modulus and 

thermal expansion coefficient of a component with thermal hot spots. The effective 

elastic modulus and thermal coefficient are used to calculate the elastic thermal stresses 

and strains due to the temperature change. These are obtained as weighted averages of the 

volumes corresponding to each temperature zone. Thus, the effective elastic modulus and 

thermal expansion coefficients can be written as

effE   =  
R

DDII

V
VEVE 

    and   eff   =  
R

DDII

V
VV  

    (4.5)

where, V is volume, E is Young’s modulus,  is the coefficient of thermal expansion. The 

subscripts I, D, and R indicate respectively, initial (or undamaged), damaged and 

reference zones. The adjacent volume and reference volume are dependent on shell 
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geometry and can be computed as explained in Section 4.2.3. This is slightly different 

from the approach used by Seshadri (2004) where a simple mean value was used. This is 

one of the current research contributions. It must be noted that the hotspot is assumed to 

have a uniform temperature which is different from that of the adjacent region. In reality, 

a small transition zone of temperature gradient will be present in the shell near the 

boundary of the hotspot.

(a) Equivalent Stress in Spherical Shells

For a spherical shell with applied internal pressure, the principal thermo-elastic 

primary stresses inside a hot spot are the same in the meridianal and tangential directions. 

They can be calculated as,

22
    2,1

TE

h
RP effeffid





     (4.6)

where, dP  is the design pressure, iR  is the inner radius of the sphere, and CH TTT 

is the temperature change due to loss of refractory lining leading to the formation of hot 

spot. The effective Young’s modulus Eeff and the effective thermal coefficient eff are 

obtained from Eq. (4.5) The temperature induced effect on the membrane stress in the 

adjacent volume will be spread over the entire shell and is neglected for the present study.  

The von Mises equivalent stress can be expressed as 

21
2
2

2
1  e     (4.7)

Therefore, the thermo-elastic equivalent stress is 21   e
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For a spherical shell with corrosion damage, the equivalent stresses in the 

damaged area and the adjacent area are different. The equivalent stress in the undamaged 

zone, eI , and that inside the damaged area, eD , are

h
RP cd

eI 2
       and    

c

id
eD h

RP
2

       (4.8)

where, cR  and hc are the inner radius and shell thickness of the sphere inside the 

corrosion damage, respectively

(b) Equivalent Stress in Cylindrical Shells

The principal thermo-elastic membrane stresses of a cylindrical shell subject to 

internal pressure and temperature change are calculated as,

2
    1

TE

h

RP effeffid





  and  
22

    2
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h

RP effeffid





   (4.9)

The von Mises equivalent stress can then be written as Eq. (4.7).

For corrosion damage in a cylindrical shell, the equivalent stress in the 

undamaged zone, eI , and that inside the damaged area, eD , are

h
RP cd

eI 2
3

       and    
c

id
eD h

RP
2
3

     (4.10)



76

It can be observed that for similar spherical and cylindrical shells with the same 

inner radius and thickness, equivalent stress in cylindrical shell is higher than that in 

spherical shells.

4.2.5. Application of Reference Volume to Mura’s Integral Mean of Yield 

Criterion

From the expression for integral mean of yield criterion Eq. (3.4), the concept of 

reference volume can be employed as

 dVsf
RV

ij )()( 2000     =  0   (4.11)

where, the mean of yield criterion is calculated over the reference volume VR instead of 

the total volume.

The Tresca and von-Mises yield criteria can be expressed, respectively, as

yedij msf   00     )(  = 0 (4.12a)

and ])([    )( 2200
yedij msf    = 0 (4.12b)

where, 0
dm  is the upper bound limit multiplier for damage component, e  is the relevant 

equivalent stress and y  is the appropriate temperature dependent yield strength.



77

(a) Thermal Hot Spot

The integral mean of yield criterion can be applied to a pressure vessel with local 

thermal hot spots subject to Tresca yield criterion Eq. (4.12a) assuming the primary 

stresses to be uniformly distributed within the adjacent volume, IV , and the hot spot 

volume, DV . The flow parameter o is taken as a non-zero constant for all the elements in 

the model. Hence it drops out of the equation. The integration of Eq. (4.11) leads to

    0)()( 0000  DyDeDdIyIeId VmVm    (4.13)

where, the suffix D refers to the damaged or hot spot region and suffix I refers to adjacent 

volume as explained in Section 4.2.3. Note that the reference volume VR is the sum of the 

damaged and adjacent volumes.

If the thickness is constant throughout the reference volume, the effective stresses 

in both regions are the same and are equal to e . The upper bound limit load multiplier 

0
dm  for Tresca criterion can then be obtained by rearranging Eq. (4.13) as, 

Re

DyDIyI
d Vσ

VσVσ
m


    0   (4.14)

Similarly, integration of Eq. (4.11) using von-Mises yield criterion Eq. (4.12b) 

gives

    0)()( 22002200  DyDedIyIed VmVm    (4.15)

Rearrangement of Eq. (4.15) gives the multiplier 0
dm  for von-Mises criterion as
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

  (4.16)

Although a uniform stress distribution throughout each volume in the calculation 

of the multiplier 0
dm  is assumed, this uniform stress is only used to obtain a practical and 

effective way to calculate approximate lower bound limit load multipliers and does not 

represent the exact stress distribution in the component. The assumption is justified since 

the primary stress that leads to limit load is considered as uniform membrane stress for 

the present case.

(b) Corrosion Damage

For a component containing corroded areas, the integral mean of yield using 

Tresca criterion can be expressed by integration of Eq. (4.11) as, 

0    ])[(])[( 0000  DyeDdIyeId VmVm    (4.17)

In this case, the equivalent stress of the intact portion eI  is different from the 

equivalent stress of the corroded portion eD  as discussed in Section 4.2.4.

The multiplier 0
dm  for corrosion damage using Tresca criterion is

DeDIeI

Ry
d

VV

V
m

00

0






   (4.18)
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Von-Mises criterion can be applied to the integral mean of yield in a similar 

manner. We obtain

0    ])[(])[( 22002200  DyeDdIyeId VmVm    (4.19)

Therefore, the equation for 0
dm  multiplier for corrosion damage using von-Mises 

criterion can be written as

DeDIeI
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d
VV

V
m

22

2

0






   (4.20)

4.2.6. Remaining Strength Factors (RSF)

The parameter usually employed to identify the acceptance for continued service 

of a damaged component in FFS assessments is the remaining strength factor (RSF). The 

RSF of a component containing damage is computed as the ratio of the strength of the 

damaged component to that of the component before damage. If the calculated RSF is 

higher than the allowable RSF, the component is allowed to be placed back into service.

Three types of RSF are applied to the proposed methods. The upper bound 

remaining strength factor RSFU can be obtained from 0
dm as

0

0

u

d
U m

m
RSF    (4.21)
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where,  eIyIum 0  is the multiplier for undamaged vessel and 0
dm  is determined on 

the integral mean of yield basis and applicable yield criterion as explained in the previous 

section using Eqs. (4.14) to (4.20). Since RSFU is the ratio of an upper bound multiplier of 

a damaged component to that of the component in the undamaged condition, the RSF is 

guaranteed to be an upper bound estimate.

The second RSF is calculated based on the improved lower bound multiplier 

called m  proposed by Seshadri and Mangalaramanan (1997) as discussed previously in 

Chapter 3. The remaining strength factor RSF  is then expressed as,

0
um

m
RSF 

    (4.22)

Note that in the current research, a finite element analysis is not required to 

estimate RSF  since the structure is considered as determinate for obtaining primary 

stresses in the shell. This is one of the key aspects of the current analysis. This is due to 

the fact that in spite of the presence of secondary stresses caused by the edge effects, 

softer or thinner material, etc., the failure is controlled by primary stress, which in this 

case is membrane tensile stress that can be calculated for determinate conditions.

The third remaining strength factor LRSF  is based on the classical lower bound 

multiplier Lm  and is given by,

o
u

L
L m

m
RSF    (4.23)
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The Lm  multiplier is calculated from eIeDLm  for corrosion damage and 

from yIyDLm   for thermal hot spot. This RSFL is valid, and hence will be used, for 

all damaged areas larger than the extent of local damage for each shell configuration.

As explained above, the concept of RSF as the ratio of the plastic collapse load of 

a damaged component to the plastic collapse load of the undamaged component is applied 

to the evaluation of the acceptability for continued service of a component containing a 

flaw. The recommended value for the allowable RSF is normally around 0.90 for 

equipment in process services (Osage, 2001). In the current study, allowable RSF is 

estimated as the ratio of the required thickness to the pressure vessel thickness in the 

undamaged state. The required thickness is the minimum thickness required to withstand 

the applied internal pressure and can be calculated according to applicable standards or 

design codes. In the present study, it is computed based on Boiler and Pressure Vessel 

Code (BPVC) Section VIII Division 1 (ASME, 2004).

4.2.7. Local and Global Damage

When corrosion damage or a thermal hot spot occurs in a pressurized component, 

the overall structural capacity of the component is diminished due to lower strength of the 

damaged area. However, the remaining strength of the component is not solely dependent 

on the strength of the damaged area. The neighbouring undamaged area also plays a role 

in facilitating the severity of the damage via the edge effects near discontinuities. Hence, 

damage is defined as “local” damage when the edge effects at the discontinuities due to 
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higher stiffness of the undamaged region have not damped out inside the damage. Beyond 

the local damage limit, there will be pure membrane stress effect at some place inside the 

damaged area. Therefore, the extent for local damage can be determined by using the 

decay lengths of the corresponding shell configuration.

The extent for local damage in a spherical shell can be described by the size of 

damage covered by an included angle equal to d2  where d  is the decay angle of 

spherical shell. For cylindrical shells, decay lengths in axial and circumferential 

directions are different. It is postulated that the extent for local damage in a cylindrical 

shell depends on the aspect ratio of the equivalent rectangular damaged area. For a 

damaged area with aspect ratio r (= b/a) equal to the ratio of the axial decay length xl to 

the circumferential decay length xc, the extent of local damage in axial and 

circumferential directions are equal to the decay length in each direction. For damaged 

areas with other aspect ratios rather than xl/xc, interaction of the damage decay lengths has

to be considered.

If a damaged spot is larger than the extent of local damage, it means that pure 

membrane stress has occurred inside the damaged area and thus the failure is as if a 

“global” damaged spot has occurred. Therefore, for this case, the classical lower bound 

remaining strength factor RSFL is used. This implies that if the damage is large enough, 

RSFL governs irrespective of geometry and other considerations.
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4.3. CLOSURE

The main factors influencing the behavior of pressurized components containing 

local damages such as corrosion damage or thermal hot spots are geometries of the 

damage and the shell and material characteristics. These factors have been considered in 

the proposed Level 2 assessment based on variation principle and the concept of reference 

volume. The reference volume identifying the volume participates in plastic action for 

spherical and cylindrical shells can be determined by using decay lengths of each shell. 

Effective elastic modulus and effective thermal coefficients are also computed by weight 

average using the reference volume. 

Three remaining strength factors exercised in the current study based on integral 

mean of yield criterion, m-multiplier and classical lower bound multiplier are presented. 

These remaining strength factors are employed in different circumstances as will be 

discussed further in Chapter 7. The conditions for a damaged to be called “local” and 

“global” are the presence of membrane action inside the damaged area in which edge 

effects from the discontinuity have dissipated and become negligible.
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CHAPTER 5 

FINITE ELEMENT MODELING 

Inelastic strength of the pressurized components with a hot spot or corrosion 

damage can be determined by using nonlinear finite element analysis (FEA). A detailed 

inelastic FEA provides fairly accurate estimates but can be very expensive in terms of 

evaluation time and modeling complication. It is not a tool that a practicing engineer in a 

plant would use on a daily or weekly basis whenever a maintenance check reveals some 

possibility of damage. In the current research, the nonlinear FEA is done to validate the 

recommended remaining strength factor (RSF) values obtained from the proposed 

evaluation method. In that sense, the proposed method is Level 2 assessment while the 

nonlinear FEA can be taken as Level 3 technique. 

This chapter describes the finite element models of thermal hot spots and 

corrosion damage in spherical and cylindrical pressure vessels. The chosen element types 

and material models are validated and samples of typical meshing and results are 

presented. 
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5.1. GEOMETRY AND CONSTRAINTS 

Two geometries of pressure components are studied in the present research, viz., 

sphere and cylinder. The symmetries of these components are taken into consideration 

where applicable. 

Figure 5.1 shows geometries and boundary conditions of the models employed in 

the current research. A quarter sphere with a quarter of circular damaged area on top of 

the sphere is modeled. Symmetries are applied along the two edges of the model. For 

cylindrical shell, a rectangular damage of dimensions ba 22 ×  (in circumferential and 

axial directions, respectively) is modeled. Two planes of symmetry are assumed to pass 

through the center of the damage along the shell parallels and meridians. A spherical cap 

is also modeled at the cut end of the cylinder to account for the longitudinal stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (a) (b) 

Figure 5.1 Geometries and boundary conditions for finite element analyses         

(a) Sphere (b) Cylinder. 
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Different element real constants or material models are assigned to the damaged 

and undamaged regions in the above models. For corrosion damage, the corrosion spot 

uses the same material properties as the undamaged part but the element thickness is 

different. The basis of the current study is based on primary stresses. Since thermal 

stresses are secondary stresses, thermal analysis is not required in the case of hot spots. 

The thermal hot spot will only have different material properties (i.e., elastic modulus and 

yield stress) from the undamaged part. Most structural materials such as steel have lower 

yield stress at higher temperature. Hence, plastic deformation may occur inside the hot 

spot even at the design pressure of the pressure vessel. 

5.2. FINITE ELEMENT MODEL 

Due to the possibility of high bending in the vicinity of the damaged area, shell 

elements which have rotational degrees of freedom are preferable. Solid elements can be 

used to model such problems. However, since only translational degrees of freedom are 

applicable, a number of element divisions through thickness are required in order to 

accurately represent the bending effects occurring near the edges of damaged portions. 

This causes the solid-element model to be more expensive in terms of computational time 

compared with shell-element model and hence is less preferred in the current research. 

For the hot spot problem, the finite element models have been constructed by 

using 8-node structural shell elements (SHELL93) of ANSYS software (Figure 5.2). This 

element is well suited to model curved shells and has plasticity capability suitable for 
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material nonlinear analysis. The element has 6 degrees of freedom per node, i.e., 

translations in x, y and z directions and rotations about the nodal x, y and z axes. An 

option to store calculated midsurface results (membrane results) in the results file is 

available in ANSYS. This option to access the correct midsurface results is useful for 

analyses where averaging the results from top and bottom of the shell elements could 

sometimes be inappropriate to obtain the midsurface stresses and strains because of the 

nonlinear material behaviour. The effects of hot spot are simulated by applying the proper 

material properties (yield stress and modulus of elasticity) consistent with the temperature 

of the elements in the damaged zone.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The SHELL93 model for thermal hot spot 

The metal loss in corroded pressure vessel is modeled by reduced thickness 

elements in the corrosion zone using 8-node nonlinear layered shell elements SHELL91. 

The element option for node locations to be at the top, middle or bottom surface of the 

element (available for this particular shell element in ANSYS) is convenient for modeling 

different parts of the structure that share the same nodes with different shell thicknesses. 

At the junction where corroded and uncorroded areas meet, internal corrosion is created 

Original shell with normal 
material properties 
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different properties 

Nodes on the shell 
midsurface 
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by aligning the outer surfaces of the shell elements in either part while external corrosion 

is modeled by aligning the inner surfaces of the shell elements. The elements are defined 

by locating the nodes at the top or bottom surface of the shell instead of at mid-thickness 

as in the case of hot spot problems. By doing so, the forces and moments are matched at 

the common nodes as shown in Figure 5.3. Note that the thicknesses of the shells in 

Figure 5.3 are greatly magnified in order to illustrate the common nodes. The directions 

of shell normal are verified to ensure the location of common nodes at the top or bottom 

of the surface. 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Figure 5.3 Node locations for the SHELL91 model (a) Internal (b) External corrosion 

The differential thickness problem can also be tackled by the use of multipoint 

constraints (MPC). Displacements and rotations of two shell elements (with different 

shell thicknesses) linked by using MPC elements will be matched. However, in the 

present study it was not used since SHELL91 element gave satisfactory results. An 

axisymmetric model has also been used to model spherical shells with circular damage by 

using 2-D axisymmetric 8-node elements PLANE82. This element has compatible 
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displacement shapes and is well suited to model curved boundaries. The element has two 

degrees of freedom per node: translations in the nodal x and y directions. The use of an 

axisymmetric model can greatly reduce the modeling and analysis time compared to that 

of an equivalent 3-D model. The results for the same problems using different models are 

compared and discussed in Sections 5.5.2 and 5.2.3. 

A three-dimensional solid modeling of cylindrical components has also been used 

with solid element SOLID185 in ANSYS. The element is defined by eight nodes having 

three degrees of freedom at each node - translations in the nodal x, y, and z directions. 

The element has plasticity capability. Pressures may be input as surface loads on the 

element faces. As discussed earlier, since solid elements possess only translational 

degrees of freedom at each node, it is necessary to use an adequate number of elements 

through the thickness of pressurized components to represent the true stresses especially 

where high bending occurs such as in the proximity of discontinuity. 

All elements are automatically tested for acceptable shape in ANSYS. This testing 

is performed by computing shape parameters, such as Aspect Ratio, Parallel Deviation, 

Maximum Corner Angle and Jacobian ratio, which are functions of element geometry, 

then comparing them to element shape limits. Nothing may be said about an element, one 

or more warnings may be issued, or it may be rejected with an error. If there are any 

warnings or error messages, the element models will be re-meshed to eliminate the issue. 

In the present research, a mesh convergence study is not explicitly carried out. 

However, the models have been thoroughly verified by comparing the results for intact 
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models with known solutions. In addition, the results using different elements 

(axisymmetric, shell and solid) for the same case of damage have been compared to 

estimate accuracy of the elastic and inelastic analyses. 

5.3. MATERIAL MODEL 

It is widely recognized that the design of pipelines and mechanical components 

based on a limiting elastic stress (or pseudo-elastic stress) may be less economical than 

that using limiting strain criteria (Walker and Williams, 1995). Structures can be stable 

and fit-for-purpose even when strained well beyond the yield point. The application of 

limiting stress criteria for design and strength calculations requires only knowledge of the 

maximum allowable stress or the specified minimum yield strength (SMYS) of the 

material whereas strain based design requires more detailed description of material 

properties or stress-strain relationship. 

One of the mathematical formulations broadly used for pipe material is provided 

by the Ramberg-Osgood formula (Ramberg and Osgood, 1943) given below, 
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where, ε is the total strain, σ is the applied stress, E is material modulus, α (plastic yield 

offset) and N (hardening exponent) are Ramberg-Osgood constants, and σ0 is the 

minimum yield stress. It was shown by Walker and Williams (1995) that this model 

offers well-matched stress-strain curves for pipeline steels. 
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Table 5.1 Ramberg-Osgood Constants for pipeline and pressure vessel steels 

σ 0  ε 0  σu ε u  E Ramberg-Osgood 

Steel Grade Minimum 

yield stress 

(MPa) 

Yield strain 

(%) 

Ultimate 

Tensile Stress 

(MPa) 

Ultimate 

Tensile 

Strain (%) 

Young’s 

Modulus 

(GPa) 

α 

Coefficient 

N 

Exponent 

API 5L Gr X25 172 0.5 310 34.5 205 4.96 7.49 

API 5L Gr X46 317 0.5 434 25.5 205 2.23 13.67 

API 5L Gr X70 483 0.5 565 20.0 205 1.13 27.13 

A516 Gr. 70 295 0.15 483 21.0 193 1.89 5.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Ramberg-Osgood stress-strain relationships for steels 
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The Ramberg-Osgood constants corresponding to API 5L pipeline steel grades 

and A 516 pressure vessel plate are shown in Table 5.1 and the stress-strain curves using 

Ramberg-Osgood formula are shown in Figure 5.4. 

It can be seen from Ramberg-Osgood model in Table 5.1 that some strain 

hardening is present after initial yielding of the material. The ultimate tensile stress for 

each material is higher than its minimum yield stress by 17% (API 5L X70) to 80% (API 

5L X25). Moreover, the ultimate tensile strains are between 20.0% to 34.5% indicating 

the ductile failure mechanism of pipeline and pressure vessel steel. 

Evaluation of a remaining strength factor in the present study assumes a material 

model almost equivalent to elastic perfectly plastic behavior as shown in Figure 5.5. The 

Bilinear Kinematic Hardening (BKIN) option in ANSYS, which assumes the total stress 

range is equal to twice the yield stress is used to represent this material model. This 

option is suitable for general small-strain use for materials that obey von Mises yield 

criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Material model for finite element analysis  
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In Level 2 procedures currently in use (such as modified B31G), the strain 

hardening aspect is accounted for by the use of flow stress in place of yield stress. This 

implies that we use an elastic perfectly plastic material which yields at flow stress instead 

of at the actual material yield point. The calibration for RSF in the current research has 

also been carried out by adhering to this concept. If we use the flow stress in the proposed 

calculations, it will automatically account for any strain hardening present in the material. 

This has been verified by numerical analysis and will be discussed in Section 5.5.1. 

API 579 recommends limiting the peak strain at any location of the remaining 

ligament to 5% when a Level 3 analysis is performed. The limit commonly used in 

industry is 2% for strains at the surface of shell and 1% for strains averaged through the 

thickness (ASME, Section III Division 1 Subsection NH). Sims et al. (1992) studied 

corrosion damage in spheres using the limit for maximum strain inside damaged zone to 

be 2%. The failure criterion for the present research is taken as von-Mises membrane 

strain at the center of the damaged area (not peak strain) reaching 1%. Since the study is 

based on primary stress effects, a 1% limit is justifiable. Although such materials as 

carbon steel are known to have much higher failure strain than 1% at actual failure 

rupture, the present criterion is applied to assure the serviceability of the component since 

excessive deformation in the damaged area can interfere with other functions. 

The material used in the current research is SA 516 Grade 55, which is a common 

carbon steel for pressure vessels. The material properties including modulus of elasticity, 

thermal coefficients and yield stress for different temperatures are shown in Table 5.2.  
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Table 5.2 Material Properties for SA 516 Grade 55 

Temperature (°F) 100 

(37.8 °C) 

200 

(93.3 °C) 

300 

(149 °C) 

400 

(204 °C) 

500 

(260 °C) 

600 

(316 °C) 

E ( 610×  psi) 29.3 28.8 28.3 27.7 27.3 26.7 

α ( 610−×  in./in./°F) 5.53 5.89 6.26 6.61 6.91 7.17 

yσ  (ksi) 30.0 27.3 26.6 25.7 24.5 22.2 

The temperature of the metal for the present research is assumed to be between 

100 °F (37.8 °C) and 600 °F (316 °C). As mentioned earlier, plastic modulus ET is 

assumed to be very small compared to elastic modulus of the material. For example, at 

temperature 100°F (37.8 °C), TE is equal to 138 MPa (20 ksi) compared to elastic 

modulus E = 310202 ×  MPa ( 31030 ×  ksi). If actual strain hardening is higher than the 

assumed value, flow stress can be used to account for the strain hardening as discussed 

before. In this case, the stress at 1% strain is equal to 208 MPa (30.2 ksi) or 1.01σy. If we 

use the “flow stress” in place of yield stress, this model will result in a total stress slightly 

greater than 1.1σy at “failure”. Indermohan and Seshadri (2004) used elastic-plastic 

material model with plastic modulus of 31045.3 ×  MPa (500 ksi) in his finite element 

analysis, along with limit of 1% strain as in the present study. This leads to yield stress at 
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1% strain of 1.15 yσ  which can be considered somewhat high and can be unconservative 

in some cases. 

An additional failure criterion to control excessive deformation due to bulging of 

the component is limiting the out-of-roundness ratio of the component to 1.01 as 

discussed in Section 6.6. 

5.4. SAMPLES OF TYPICAL MESH 

Typical meshes of finite element models for spherical and cylindrical pressure 

vessels using shell elements are shown in Figure 5.6. Higher mesh density has been used 

inside the damaged area and its neighborhood. 

Internal pressure is applied to the pressure components in a series of small 

incremental steps by using the automatic time stepping feature. This feature responds to 

plasticity by reducing the load step size after a load step in which a large number of 

equilibrium iterations were performed or in which a plastic strain increment greater than 

15% was encountered. If too large a step was taken, the program bisects the load 

increment and proceeds using a smaller step size.  

Figure 5.7 shows typical bulging that occurs inside a corroded area or hot spot. 

The membrane strain calculated at midsurface of the shell is obtained at the center of the 

damage. The inelastic collapse load (pressure) for a component containing hot spot or 

corrosion corresponds to the time step for which 1% von-Mises strain occurs. Note that as 



 96 

 
 

Circular hot spot 
or corroded area 

Rectangular hot spot 
or corroded area 

  

mentioned earlier, this does not indicate physical collapse. It is merely a limit condition 

imposed to obtain a limit load. The actual structure may have more reserve strength (due 

to margin for error in parameters) if excessive strains and serviceability are not a 

consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Typical meshes for sphere and cylinder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Typical bulging in sphere and cylinder with local damage 
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Typical mesh and bulging in an axisymmetric model for corrosion damage in a 

sphere are shown in Figure 5.8. The sharp discontinuities at the junction of the corroded 

and uncorroded areas are replaced by using a fillet to minimize stress concentration at the 

rim. This is typical of corrosion damage where the thickness usually tapers down from 

undamaged thickness to the corroded thickness rather than abruptly changing at the 

junction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) (b) 

Figure 5.8 (a) Typical mesh (b) Bulging in sphere using axisymmetric elements 

Typical 3-D solid models for internal and external corrosion damage in cylinder 

are shown in Figure 5.9. The mesh is similar to that of the shell model but uses six to ten 

solid elements through thickness to guarantee proper transmission of bending stresses, if 

any. 
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Figure 5.9 Solid-element models for (a) Internal corrosion (b) External corrosion 

5.5. INELASTIC ANALYSIS USING DIFFERENT MODELS 

This section discusses inelastic results obtained from different material models 

and element types. Different material models are employed to verify the use of flow stress 

to account for strain hardening of the material. Results from FE models using different 

element types are compared and verified to be similar. 
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5.5.1. Comparison of Different Material Models  

The material model used in FE analysis for the present study is elastic-plastic 

model with very little strain hardening as explained in Section 5.3. As discussed earlier, 

strain hardening present in the material is commonly accounted for by the use of flow 

stress in lieu of yield stress in the calculation procedure. Three different material models 

are used to verify this concept (Figure 5.10). Model 1 is the elastic-perfectly plastic 

material model. Model 2 uses flow stress of 1.1σy (similar to that used in ASME B31G) 

instead of yield stress along with very little post yield strain hardening. Model 3 is a strain 

hardening similar to that present in the actual material. These models are used to compute 

the limit pressure for spherical shell with R/h ratio and different damage sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Material models using yield stress, flow stress and strain hardening 

The limit pressures obtained from the three models are shown in Table 5.3. It can 

be seen that the limit pressures obtained from FE analysis using model 2 (flow stress 
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model) and model 3 (strain hardening model) are similar and approximately 1.1 times of 

those from the model 1 used. Hence, strain hardening present in the material can be 

accounted for by using the flow stress in the proposed calculations in place of yield stress. 

Table 5.3 Comparison of the limit pressures obtained from different material models 

Limit Pressure from 

model 2 

Limit Pressure from 

model 3 

R/h hc ϕa 

Limit 

Pressure from 

model 1,  

P1 (psi) P2 (psi) P2 /P1 P3 (psi) P3 /P1 

58.4 h/2 5° 850 955 1.123 950 1.118 

58.4 2h/3 12° 733 810 1.105 807 1.101 

58.4 2h/3 25° 682 751 1.100 751 1.100 

20.0 h/2 5° 2823 3160 1.119 3167 1.122 

20.0 2h/3 12° 2605 2860 1.098 2870 1.102 

5.5.2. Models for Spherical Shell 

The limit pressure for spherical shells with corrosion damage can be obtained 

from the axisymmetric model using PLANE82 elements or the shell model using 

SHELL93 elements as explained earlier. The results from both models for corrosion 

damage of various sizes and remaining thicknesses for spheres are compared in Table 5.4.  
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Table 5.4 Comparison of  limit pressure from PLANE82 axisymmetric model and 

SHELL91 model for corrosion damage  

Limit pressure 
R/h hc ϕa 

PLANE82 SHELL91 

Percent 

Difference 

20.0 5h/6 5° 2928 2997 2.5 % 

20.0 5h/6 8° 2790 2826 2.8 % 

20.0 5h/6 15° 2778 2658 4.0 % 

20.0 h/2 15° 1671 1620 3.0 % 

58.9 5h/6 5° 964 985 2.5 % 

58.9 h/2 5° 734 767 4.6 % 

58.9 h/2 8° 583 573 1.8 % 

It can be seen that both models give comparable results with less than 5% 

difference which is considered acceptable in numerical analysis. 

Similarly, the inelastic results from the PLANE82 axisymmetric model and the 

SHELL93 model are compared for various sizes of hot spots and temperatures in Table 

5.5. The results from both models have difference less than 2.5%. Hence, the 

axisymmetric models which require less computational effort and are easier to interpret 

are favorable for both types of damage.  
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Table 5.5 Comparison of  limit pressure from PLANE82 axisymmetric model and 

SHELL93 model for thermal hot spot damage  

Limit Pressure 
R/h Th ϕa 

PLANE82 SHELL93 

Percent 

Difference 

20.0 600 °F 8° 2718 2766 1.8 % 

20.0 600 °F 12° 2556 2595 1.5 % 

20.0 200 °F 12° 2793 2856 2.3 % 

58.9 600 °F 5° 965 956 0.9 % 

58.9 600 °F 7° 915 910 0.6 % 

58.9 200 °F 7° 990 997 0.7% 

More comparisons of the results from the two models for other cases are given in 

Appendix A. 

5.5.3. Models for Cylindrical Shell 

The limit pressure for cylindrical shells with corrosion damage can be obtained 

from the shell model using SHELL91 elements with node location option, or the solid 

element using SOLID185 as explained earlier. The results from the two models for 

corrosion damage of various sizes, aspect ratios and remaining thicknesses for cylinders 

are compared in Table 5.7. It can be seen that the results from both models are 
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comparable. The differences of inelastic results from different models are within 6%. 

Although the SOLID185 model requires somewhat more computational effort than the 

SHELL91 model, the modeling is simpler and post-processing procedures are 

straightforward. Thus, the solid model is employed in the current study of corrosion in 

cylindrical shells. 

Table 5.6 Comparison of the results from inelastic analysis using different models for 

corrosion damage in cylinders (R/h = 33.6) 

Limit Pressure 
hc a (in.) b (in.) 

SHELL91 SOLID185 

Percent 

Difference 

h/2 5 5 675 658 0.3% 

h/2 10 10 560 558 2.6% 

2h/3 10 10 730 725 0.7% 

h/2 3 9 640 605 5.8% 

h/2 20 4 671 675 4.7% 
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5.6. CLOSURE 

The present chapter discusses finite element modeling for damage in spherical and 

cylindrical components. The element models, material models and typical mesh applied 

to the current study are explained in detail. Finite Element Analysis based on these 

models is used to determine the “exact” inelastic remaining strength for damaged 

components. The finite element analyses are regarded as Level 3 assessment and are 

conducted to verify the effectiveness of the proposed Level 2 evaluation procedures. 
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CHAPTER 6

DECAY LENGTHS IN SHELLS

This chapter presents the derivation of decay lengths for spherical and cylindrical 

shells. Decay (or characteristic) length can be estimated by evaluating the effect of a local 

force (or moment) on the shell configuration. The decay length is defined as the distance 

from the applied force (or moment) to the point where the effect of the force is almost 

completely dissipated or becomes negligible. A large decay length generally indicates a 

large adjacent volume participating in energy dissipation. Thus, if a similar force is 

applied, the type of structure which possesses larger decay lengths can dissipate a larger

amount of energy and therefore has higher loading capacity than that with smaller decay 

lengths. A small decay length suggests severe local effects due to the applied forces.

Decay lengths for spherical shells will be first investigated based on elastic 

solutions of shell loaded by concentrated normal force and edge effect bending moments. 

A conservative decay length will be proposed based on comparison of the effects from 

both cases for various R/h ratios. For cylindrical shells, a decay length in axial direction is 
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obtained from solutions to axisymmetric loading while a decay length in circumferential 

direction is estimated by using solutions to Donnell’s differential equations

(Donnell,1933)  subjected to line load along generator. 

It must be noted that the decay lengths studied in the current research are based on 

elastic analysis. The elastic decay lengths are likely to be smaller than those calculated 

from plastic analysis due to stress redistribution in structures undergoing plastic 

deformation. This might lead to an overestimation of the damage severity and thus result 

in conservative approximation of remaining strength factors. However, results from 

nonlinear finite element analysis show that the proposed elastic decay lengths are not 

much different from plastic decay lengths. Hence, the use of elastic analysis for 

estimating decay lengths, although slightly conservative, is justified. Justification of the 

proposed decay lengths is discussed in detail in Section 6.3.

6.1. DECAY LENGTHS FOR SPHERICAL SHELLS

The decay lengths (or angles) in spherical shells are approximated from the effects 

of a concentrated normal force and edge bending moments to the shell (Tantichattanont, 

2006a) The decay angles computed in both cases are compared for a range of practical 

R/h ratios and a conservative decay angle for spherical shell is suggested. 
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6.1.1. Spherical Shell Loaded with Concentrated Normal Force

Lukasiewicz (1979), among others, has discussed the problem of spherical shells 

extensively. The shell differential equations in terms of the radial displacement w and 

stress function Φ , take the form:
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where, R is the mean radius, h is the shell thickness,   is the Poisson’s ratio, zP  is the 

component of body forces normal to the shell surface, and E is the modulus of elasticity  

of the material. The flexural rigidity of the shell is expressed as D = 
)1(12 2
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 is the Laplacian operator in terms of lxx / and ,/ lyy  where, l

is a certain characteristic length.

Consider a spherical shell loaded by a concentrated normal force P in the outward 

normal direction as shown in Figure 6.1. The force can be represented by means of a 

Fourier integral. The closed form expression for radial displacement w is obtained as,
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, r is the distance along x-axis as shown in Figure 

6.1, and )2( Ro krY  is the Bessel function of the second kind. The functions ker r, kei r 

are the real and imaginary parts of the Kelvin function, K , stated as )( 4/2/ ii zeKe 
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 , where,   and   are coefficients expressing the 

effects of stress normal to middle surface and the effects of transverse shear deformation, 

respectively. 

Figure 6.1 A spherical shell subjected to normal concentrated force
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The function 1f in Eq. (6.2) corresponds to Reissner’s solution obtained by means 

of the theory of shallow shells, 2f  presents the result of the use of the complete non-

shallow shell equations (6.1a) and (6.1b), and 3f  and 4f  are the effect of transverse shear 

and normal deformations.

The radial displacement w has a peak near the loading point and decays drastically 

away from this point in an oscillating pattern. The amplitude of w in the second and 

subsequent half waves is considerably smaller compared to that in the first half wave. The 

decay length, lrd , can be chosen as the distance from the loading point to the first point 

where zero radial displacement occurs. This location is taken as the characteristic decay 

location for the current study. It may be noted that other decay locations can be used with 

slightly varying results, e.g., Seshadri (2004) used the decay location as the point where 

the amplitude drops to .peak valuee

The normalized radial displacement w  (= 
P
w2 ) as stated in Eq. (6.2) is then 

plotted against the nondimensional distance, r, for a range of practical R/h ratios 

(Figure 6.2). The values of the decay parameter dr  for different R/h ratios are shown in 

Table 6.1. It can be seen that the values of dr  vary from 3.91 to 4.28 for all practical R/h

values. This range is reasonably narrow. Hence, the conservative value of 3.91 is applied 

in the derivation below.
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Figure 6.2 Radial displacement for different R/h ratios

Table 6.1 Values of rd for different R/h ratios

R/h 10 20 30 50 70 100 150 200

rd 3.91 4.22 4.28 4.25 4.19 4.14 4.08 4.05

For spherical shells, a decay angle gives better perception of the extent of the shell 

involved in local effects and therefore will be used in lieu of the decay length. From 

Figure 6.1, the distance along x-axis can be written in terms of the angle to the apex as, 

Region of zero displacement for 
various R/h ratios indicating 
decay locations and rd

r

w
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sinRrl      (6.3)

For Poisson’s ratio  = 0.3, the characteristic length l of Eq. (6.2) becomes, 

Rhl 5501.0     (6.4)

Substitution of 91.3dr  and l (from Eq. (6.4)) into Eq. (6.3) leads to the 

expression for the decay angle d  for a spherical shell loaded by concentrated normal 

force as,
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It can be seen from Eq. (6.5) that the elastic decay angle of spherical shell is 

simply a function of R/h ratio, which specifies the thinness of the shell under 

consideration. Thin shells have smaller decay angles indicating less amount of energy the 

structures can absorb when subjected to localized damage.

6.1.2. Edge Rotational Effect on Decay Length

In the subsection above, the decay angle has been computed through the use of a 

point load on the shell. This simulates the decay in the meridian direction due to the shear 

at the rim of the hot spot or the corroded area. Similar decay angles can be obtained due 

to the edge moments along the rim of the damaged area. 
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In order to simulate the effects of moments along the rim of a hot spot or corroded 

area, spherical shells subjected to uniform surface pressure p are studied for two cases, 

viz., edges fixed against translation and rotation, and edges fixed against rotation but not 

against translation. The actual effect of the edge moments along the rim of the damaged 

area is likely to be in between the two cases.

Figure 6.3 (a) A spherical shell with built-in edges subjected to normal pressure          

(b) Membrane stresses  (c) Superposed edge conditions

By applying Rrr  21  to the operator )(L  as stated in Eq. (2.26) in Chapter 2,

Timoshenko (1970) showed that the operator )(L  for a spherical shell of constant

thickness becomes 
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Using Eqs. (2.27), stresses of spherical shells with constant thickness loaded 

symmetrically with respect to its axis can be described by using two differential equations 

of the second order as,

EhVQ
d

dQ

d

Qd
 

 




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




2
2

2

2

)(cotcot      (6.7)

where, Q  is the shearing force, the angle   is as shown in Figure 6.3, and V is the angle 

of rotation of a tangent to a meridian defined by 







 

d
dwv

R
V 1     (6.8)

where, v and w are displacement components in meridian and radial directions, 

respectively.

The solutions for Eqs. (6.7) can be estimated by the method of asymptotic 

integration and a satisfactory approximation for the shearing force can be obtained as, 

Q     sinCe     (6.9)

where,  =   ,   is the angle from the crown to the edge of the sphere, the constants 

C and   are to be determined from the edge conditions at   , and   is obtained from
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
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h
R   (6.10)

Since  is large in the case of thin shells, the derivative of Q is large in 

comparison with the function itself, and the second derivative is large in comparison with 

the first. Equation (6.7a) can then be approximated as

EhV
d

Qd


2

2


   (6.11)

Therefore, we obtain the expression for the angle of rotation

)cos(21 2

2

2




  Ce
Ehd

Qd
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V   (6.12)

The bending moments can be determined as
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4
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2



 

 CeRMM   (6.13)

In the case of a spherical shell with a built-in edge subjected to a uniform normal 

pressure p as shown in Figure 6.3a, the membrane force (Figure 6.3b) can be calculated 

from equilibrium of forces in vertical direction as

0)sin)(sin()sin( 2   NRpR   (6.14)

This results in uniform compression of the shell 
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2pRNN     (6.15)

The edge of the shell as shown in Figure 6.3b experiences no rotation and

undergoes a horizontal displacement




  sin
2

)1(
)(sin

2

Eh
pR

NN
Eh

R 
   (6.16)

The membrane force in Figure 6.3b is superposed with the horizontal forces and 

the moments uniformly distributed along the edge as shown in Figure 6.3c. These forces 

and moments are of such magnitude that the corresponding horizontal displacement is 

equal and opposite to the displacement caused by the membrane compression, and the 

corresponding rotation of the edge is equal to zero. This leads to, 

2

2

4

)1(








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




 sin2
)1(
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2 


pR

M
R

H   (6.17)

The negative signs indicate that M and H have directions opposite to those shown in 

Figure 6.3c. The edge conditions can then be expressed as

 MM )(    and   
 cos

)( HN    (6.18)

Substitution of   = 0 into Eqs. (6.9) and (6.13) leads to
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The constants C and   for spherical shells with built-in edges subjected to 

uniform pressure p can then be determined by using Eqs. (6.17), (6.18) and (6.19) as




sin
1

cos2

)1(
2
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2

1

cos1
1tan   (6.20)

Figure 6.4 The phase shift constant ( ) for angle of fixed-edges ()ranging from 0° to 90°

It is noticed that the constant C is the magnification factor for functions (6.9) and 

(6.13), whereas,  corresponds to the phase shift of the sine function and directly affects 
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the decay length. For   less than 90°, the angle   has the value ranging from 26.5° to 

45.0° as shown in Figure 6.4.

Similarly, for spherical shells with edge moments where the rotations are 

restrained and the displacements are allowed, the boundary conditions are 

 MM )(    and   0)( N   (6.21)

From Eqs. (6.19) and (6.21), the constant  is equal to zero.

If radial displacements and rotations at the edges of spherical shells are not 

restrained, the boundary conditions are 0)( M  and HN  )( and the constant 

  is equal to 45°. This is similar to the fixed-fixed case with  = 90°.

In each case, the effects of edge bending moments are considered negligible after 

the first half sine wave of Eqs. (6.13). This is the same as the angle inside the sine term 

being equal to 
2
 . The angle 1  at which zero moments first occur is 






  




4
31

1   (6.22)

It can be seen that the decay angle 1 depends on the value of  , which represents 

the thinness of the shell, and the angle  , which is an integration constant satisfied by 

boundary conditions. 
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If the damaged spot is very flexible compared to the remaining part, we can 

assume a sort of fixed support at the damaged area boundary. For this case, the value of 

  is given by Eq. (3.20b)  )cos1(1tan 21    . If the damaged spot stiffness is the 

same as that of the adjacent part, it implies that there is no differential rotation (indicating 

the presence of rigid connection). For this case, .0  The actual   will be between the 

two extremes.

In the hot spot case, if we assume that the relative stiffness is proportional to the 

ratio of the Young’s moduli of the cold and hot regions,  can be assumed to vary linearly 

from that given by  )cos1(1tan 21     for CH EE = 0 to 0  for CH EE = 1.0. It 

can be shown that for practical values of HE  and CE ,   values are small. In the case of 

corrosion damage, the value of   can vary from 0 to 
4
 .depending on the boundary 

conditions. Therefore, a conservative value of 0  is assumed for all cases. The decay 

angle d can be calculated for 3.0 as, 

d  = 



4
3  = 

4/12

73.2
1

4
3
















R
h  = 1.833

R
h   (6.23)

It must be noted that γ and hence d  will have slightly larger values than above if 

the damaged spot is much more flexible than the adjacent volume.
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6.1.3. Comparison of the Decay Angles

The decay angles obtained by using Eqs. (6.5) and (6.23) computed for 

concentrated loads and edge moments for different R/h ratios are plotted in Figure 6.5. 

Examples of the value of decay angles for some R/h ratios are also shown in Table 62.

Figure 6.5 The decay angles d  and  d for spherical shells of different R/h ratios

It can be seen that the angle d  is only slightly higher than d  for most practical 

cases. In a real hot spot, the decay length is influenced by both normal loads (pressures) 

and edge moments at the boundary of hot spots. Therefore, the actual decay angle is 

likely to be in between d  and d . Conservatively, d  can be used for calculations for 

Level 2 assessments of decay length since a smaller decay angle would indicate a more 

adverse effect.
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Table 6.2 Decay angles  d  and  d  for different R/h ratios

R/h 20 30 40 50 75 100 200

d (degree) 28.7 23.1 19.8 17.7 14.3 12.4 8.7

d (degree) 23.5 19.2 17.7 14.9 12.0 10.5 7.4

6.2. DECAY LENGTHS FOR CYLINDRICAL SHELLS

The decay lengths for cylindrical shells in axial and circumferential directions are 

investigated by using solutions of shells under relevant loading conditions for each case.

6.2.1. Decay Length of Cylindrical Shell in Axial Direction 

For circular cylindrical shell subjected to axisymmetric loading, the displacements 

are independent of the circumferential coordinate s. For this case, the expression for 

radial displacement w can be written as (Timoshenko, 1959) 

0    4 4
4

4

 w
dx

wd    (6.24)

where, 
22

2
4 )1(3

hR

  , x is the distance in axial coordinate from the half-length of the 

cylinder as shown in Figure 6.6 (same as Figure 2.5 repeated here for clarity). Note that 
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only the homogeneous solution is considered in this case since particular solution is not 

required for displacement boundary conditions.

The general solution to Eq. (6.24) for radial displacement w can then be written as 

)sincos()sincos( 4321 xCxCexCxCew xx      (6.25)

where, C1, C2, C3 and C4 are constants obtained from boundary conditions.

Figure 6.6 Thin Cylindrical Shell

For the displacements to vanish as x ,  the constant 3C  and 4C in Eq. (6.25) 

must be equal to zero. The constants C1 and C2 can be obtained from the symmetry 

boundary condition, viz., 0
dx
dw  at x = 0. Differentiate Eq. (6.25) with respect to x and 

rearrange the terms, we get C1 = C2. Hence, the expression for radial displacement is

)sin(cos1 xxeCw x    (6.26a)

or  4sin2 1
   xeCw x (6.26b)
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The radial magnitude of the displacement is then described by a descending 

exponential function with sinusoidal oscillation of period 2 as shown in Figure 6.7. 

Therefore, the magnitude of the radial displacement is bounded by xe 2 .

4/1

2

22

)1(3 












 hRxl   (6.26)

Figure 6.7 Displacement along the axial direction of a cylinder with axisymmetric loading

At some distance away from the origin, the so-called “decay length” or 

“characteristic length”, the displacements will become very small compared to those at 

the point of the origin and can be considered negligible. The radial displacement 

diminishes significantly at the distance lx  where the bound is e2  which is 

4.3% of that at the point of origin. Therefore, the elastic decay length in longitudinal 

direction is written as
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For general carbon steels used in pressure vessels and piping, taking  = 0.3, the 

decay length becomes

Rhxl 5.2   (6.27)

Although it was not shown explicitly, this decay length value in the longitudinal 

direction of cylindrical shells has been incorporated into several Codes at appropriate 

places. For example, one of the provisions of the API 579 (paragraph 5.4.2.2.d)

assessment procedure is the requirement that the locally thinned area (LTA) be located a 

minimum distance of DhLmsd 8.1  from the nearest discontinuity where D is the 

diameter of the shell. This length is essentially equal to Rh5.2  which is the decay 

length in axial direction for cylinders as derived above.

6.2.2. Decay Length of Cylindrical Shell in Circumferential Direction 

Donnell (1933) proposed eighth order governing differential equations for 

cylindrical shells in which the displacements are decoupled. In the absence of surface 

loadings, Donnell’s equilibrium conditions in a non-dimensional coordinate system are
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where, 2  is nondimensional Laplace’s operator (
2

2

2

2
2

 



 ), the non-dimensional 

variables are defined as,
R
x ,

R
s , 

R
ww  ,

R
uu  , and

R
vv   . The displacements 

u, v, and w are in axial, circumferential and radial directions as shown in Figure 6.5. The 

shell characteristic constant k is given by  
2

24 1124 






h
Rvk . 

Hoff, Kempner and Pohle (1954) suggested closed form solutions to Donnell’s 

equations for the displacements of thin cylindrical shells with radial uniform line load 

along the generator = 0. The edges  x =  L/2  are assumed to be simply supported, 

where, L is the length of the shell. The simply-supported condition implies that the radial 

displacement w vanishes at the edges. The axial decay length is defined as the distance 

from the applied force to the location where the effect of the local action dissipates. In 

other words, the radial displacement at locations further away (in the axial direction) from 

the origin than the axial decay length will be almost equal to zero. Hence, it is justified to 

use twice of the axial decay length obtained from Eq. (6.27) as the length of the simply-

supported cylinder (or RhL 5 ). This is also confirmed by the length of a cylindrical 

vessel considered as infinitely long beam suggested by Harvey (1991).

With   , the solution for radial displacement is assumed in series form 

as,

            4422 wwwwwwtot

and   nxAew p cos    (6.29)
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where, )( LRmn  and m is an odd integer. The constant A and n are assumed to be real 

while p may be complex. It was shown that the results obtained only from the first term 

usually have sufficient accuracy. Substitution of w from the latter of Eq. (6.29) into Eq. 

(6.28a) yields

0]4)[( 44422  wnknp   (6.30)

which must be satisfied identically. Hence,

  nknp 4/122 12    (6.31)

Since 2/   iei  , the fourth root of -1 is  i1)22(  or  i1)22( . 

Therefore, Eq. (6.31) can be written as
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where, 1p  and 2p  can be written as 111  ip  , 222  ip  , and ,1 ,2 ,1 2

are positive real numbers. Substitution of 1p  and 2p  into Eqs. (6.32) and separation of 

real and imaginary parts gives (Kraus, 1967)
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Finally,
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Note that the conjugate solutions corresponding to the remaining two “fourth 

roots” of -1, 113  ip   and 224  ip  , are governed by the same relationships 

as 1p  and 2p . In addition, the positive solution of 1  and 2  leads to positive real parts 

of the exponent p and thus gives displacements which increase without bounds as 

increases.

Equation (6.29) can then be written as

      )cos(]sincossincos[ 24231211
2211   neAeAeAeAw  

  (6.36)

We can plot Eq. (6.36) explicitly to examine the relative influence of 1  and 2

for different situations. Figure 6.8 shows the displacement calculated by using the first, 

second and third harmonics of the series (m = 1, 3 and 5). It can be seen that the second 

harmonic gives much smaller contribution to the series than the first and the third 

harmonic is much smaller than the second. Therefore, the radial displacement can be 

approximately calculated by using only the first harmonic (m = 1).
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Figure 6.8 Radial displacements obtained by using m = 1, 3 and 5

Figure 6.9 Radial displacements obtained from 1-terms, 2-terms and all the terms
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Figure 6.9 shows the plot of radial displacements computed by using only the 

1-terms (the first and second terms in Eq. (6.36)), only the 2-terms (the third and fourth 

terms in Eq. (6.36) ), and all the terms in Eq. (6.36). It can be seen that 2 dominates the 

displacement pattern. Therefore, only the 2–terms will be used in the later derivation.

If we consider only the first harmonic (m = 1) and let RhL 5  as discussed 

earlier, 

h
R

Rh

R
L

Rmn 6283.0
5

)1(


   (6.37)

For  = 0.3, shell characteristic constant k is

h
R

h
Rk 2854.1)3.01(34

2
2 





   (6.38)

Substitution of n and k from Eqs. (6.37) and (6.38) into the second of Eq. (6.35) leads to 

h
R4971.02    (6.39)

Similar to the case of decay length in axial direction, the critical angle c  where 

radial displacement decays considerably is proposed to be at 2 c . The decay 

length in circumferential direction for cylindrical shell, cx , can then be calculated from 

the critical angle c  as
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RhRRx cc 3.62     (6.40)

It can be seen that the proposed decay length in circumferential direction is much 

larger than that in longitudinal direction. This may be the result of the curvature of the 

shell present in the circumferential direction. Justification of the proposed decay lengths 

in cylindrical shells will be discussed in the following section.

6.3. JUSTIFICATION OF THE PROPOSED DECAY LENGTHS

The decay lengths for spherical and cylindrical shells proposed in the previous 

sections are justified by performing finite element analysis using ANSYS. The decay 

lengths (or angles) are taken as the distance from the edge of the damaged area to the 

location where the local effects dissipate.

6.3.1. Spherical Shells

The elastic decay angle d  for spherical shells as stated in Eq. (6.23) is validated 

by finite element analyses (FEA) using axisymmetric plane elements based on elastic and 

elastic-plastic material models Details of FEA modeling are as described in Chapter 5. 

The proposed decay angles for R/h ratios equal to 20 and 58.4 calculated from Eq. 

(6.23) are 20.3° and 13.2°, respectively. Figures 6.10 and 6.11 show the comparison of 

the elastic decay angles and the equivalent stress and strain distributions and the radial 

displacements from elastic analyses for different cases of corrosion damage in spheres 
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subject to internal pressure. The stress-strain curve is assumed to be linear with elastic 

modulus equal to 910202  Pa ( 61030  psi). 

Due to high stress concentration at the discontinuity, the parts that experience high 

local bending stresses can not sometimes be easily differentiated from the adjoining parts 

using the contour plot for stress and strain distributions (Figure 6.10). However, the local 

effects can also be identified by using the elastic radial displacement contours 

(Figure 6.11). It can be seen that the decay angle d as proposed in Eq. (6.23) is sufficient 

to enclose most of the local effects due to damage.

Figures 6.12 and 6.13 illustrate von-Mises stress distribution obtained from 

nonlinear FEA for spherical shells with different cases of corroded area and thermal hot 

spot based on elastic-plastic material model. The operating temperature is assumed to be 

100 °F. The material properties are as given in Table 5.2 in Chapter 5. The plots shown 

are at the load step in which von-Mises membrane strain at the crown of the sphere is 1% 

(failure criterion for serviceability used in the present research).

Although the deformed shapes for inelastic analyses in Figures 6.12 and 6.13

seem to experience less deformation in the undamaged part than that for elastic cases 

(Figures 6.10 and 6.11), this is merely due to scale effect. For inelastic analysis, the 

displacement at the crown is much larger than that for elastic analysis. Therefore, by 

proportion, the displacements at the remaining parts of the shell merely appear to be small 

for the inelastic cases.
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ad

ad
ad

a d

(a) External corrosion hc = h/2; R/h = 20; a = 12° (b) External corrosion hc = h/2; R/h = 20; a = 12°

(c) Internal corrosion hc = h/2; R/h = 58.4; a = 12° (d) Internal corrosion hc = h/2; R/h = 58.4; a = 12°

Figure 6.10 Elastic equivalent stress and strain distributions for corroded spherical shells 

with R/h = 20 and 58.4 subject to internal pressure
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d
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d

a

d

(a) Internal corrosion hc = h/2; R/h = 20.0; a = 12° (b) External corrosion hc = 2h/3; R/h = 20.0; a = 12°

 (c) Internal corrosion hc = h/2; R/h = 58.4; a = 6° (d) External corrosion hc = 2h/3; R/h = 58.4; a = 6°

Figure 6.11 Elastic radial displacement distributions for corroded spherical shells with

with R/h = 20 and 58.4 subject to internal pressure
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a
a d

da
d

a

(a) Internal corrosion hc = h/2; R/h = 20; a = 8° (b) External corrosion hc = h/2; R/h = 58.4; a = 5°

Figure 6.12 Inelastic equivalent stress distribution distributions for corroded spherical 

shells with R/h = 20 and 58.4 subject to internal pressure

 (a) R/h = 20; a = 20° (b) R/h = 58.4; a = 5°

Figure 6.13 Inelastic equivalent stress distributions for spherical shells with a thermal hot 

spot (Th = 600 °F) subject to internal pressure
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It can be seen that the plastic decay angle obtained from FEA is less than the 

proposed elastic decay angle for both corrosion damage and hot spot cases. Moreover, it 

is observed that the effect from bending action seems to decay more rapidly for large 

damaged spots than smaller damages. The difference in decay angles of small and large 

damaged spots may be the result of different mechanisms of the shells. It is observed 

from the FEA results that shells with highly localized damage tend to open up rather than 

forming a bulge. The decay angle for this behavior is larger than that for bulging. These 

types of shell behavior will be further investigated in Chapter 7 and 8. 

6.3.2. Cylindrical Shells

The decay lengths in axial and circumferential directions calculated by using Eqs. 

(6.27) and (6.40), respectively, are verified using the results obtained from finite element 

analysis. 

Cylinders with inner radius Ri = 53.3 cm (21 in.) are used. Decay lengths in the 

axial direction xl are calculated by using Eq. (6.27) and those in the circumferential 

direction xc are obtained from Eq. (6.40). A simply-supported cylinder subject to uniform 

ring load is used to validate the derived decay length in axial direction (xl) whereas a 

uniformly distributed line load along the generator is applied to verify the decay length in 

the circumferential direction (xc). Figure 6.14 shows radial displacements of the cylinders

from the two models for R/h ratio of 60, 32.6 and 20. It can be seen that the derived decay 

lengths are justifiable.
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(a) R/h = 60

(b) R/h = 32.6

(c) R/h = 20

Figure 6.14 Decay lengths due to local force in the axial and circumferential directions

xc = 22.8 in.xl = 8.93 in.

xl = 6.78 in. xc = 17.2 in.

xl = 11.8 in. xc = 30.3 in.

Axial direction Circumferential direction

Radial 
displacement

Radial 
displacement

Radial 
displacement

Radial 
displacement

Radial 
displacement

Radial 
displacement
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An elastic analysis is carried out to study decay lengths due to the effects of 

damaged area in cylinders. The damaged areas are assumed to be rectangular ( ba 22   ). 

Equivalent stress and strain distributions along the paths passing through the middle of 

rectangular damaged areas in circumferential ( = 0) and axial ( = 0) directions of the 

cylinders are then plotted and compared with theoretical decay lengths from elastic 

solutions. Figure 6.14 shows that elastic decay lengths for local damages such as corroded 

area obtained from FEA are comparable with the theoretical decay lengths.

Inelastic analyses are then performed on similar cylindrical shells with hot spot or 

corrosion damage of various sizes using elastic-plastic material model. Examples of 

plastic decay lengths for different cases of hot spots and corrosion damage are shown in 

Figures 6.15 to 6.18. It can be seen that the proposed decay lengths are reasonably 

conservative for both elastic and inelastic analyses. The estimations are proportionately 

similar for xc and xl.   I may be noted that the displacements shown here include the 

primary displacements which will be present even if the shell is not damaged.  These 

displacements will vary depending on the support point provided in the FE model.  For 

this reason, the displacements shown in, e.g., Figure 6.17 may appear to be significant 

even beyond the end of decay length location. However, the appropriateness of the 

computed decay length can still be seen from the strain distribution diagrams.  
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(a) Equivalent stress distribution along circumferential direction ( = 0) (b) Equivalent strain distribution along circumferential direction ( = 0)

(c) Equivalent stress distribution along axial direction ( = 0) (d) Equivalent strain distribution along axial direction ( = 0)

Figure 6.15 Elastic decay lengths for cylindrical shell with R/h ratio 32.6 with internal corrosion a = b = 12.7 cm
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(a) Along circumferential direction ( = 0); a = b = 12.7 cm (b) Along axial direction ( = 0);a = b = 12.7 cm

(c) Along circumferential direction ( =0); a = 63.5 cm, b = 12.7 cm (d) Along axial direction ( = 0)); a = 63.5 cm, b = 12.7 cm

Figure 6.16 Radial displacement distributions and decay lengths for cylindrical shell R/h ratio 32.6 with hot spot size 2a x 2b at 316ºC
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(a) Radial displacement along  = 0 (b) Radial displacement along  = 0

(c) Equivalent strain distribution along  = 0 (d) Equivalent strain distribution along  = 0

Figure 6.17 Results for internal corrosion of the size 2a x 2b (a = 7.6 cm and b = 22.9 cm) in cylindrical shell R/h ratio 32.6
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(a) Radial displacement along  = 0 (b) Radial displacement long  = 0

(c) Equivalent strain distribution along  = 0 (d) Equivalent strain distribution along  = 0

Figure 6.18 Results for external corrosion of the size 2a x 2b (a = 50.8 cm and b = 10.2 cm) in cylindrical shell R/h ratio 32.6
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6.4. COMPARISON OF THE PROPOSED DECAY LENGTHS

In all problems of interest in the present research, the distance to which the effects 

of local action extend is defined by a decay angle (or length). For spheres, this angle is 

presented in Eq. (6.23). From this decay angle, the decay length for spherical shell, xs, is

obtained as 

Rhxs 83.1   (6.42)

The decay lengths of cylindrical shell in axial and circumferential directions are

derived in Eqs. (6.26) and (6.40) as, Rh5.2  and Rh3.6 , respectively. 

The decay length for a sphere is less than that for a cylinder of the same radius 

and thickness. This is because spheres have double curvature compared to the single 

curvature of cylinders. Deformations in a sphere are dissipated much more rapidly than 

those in a cylinder. Thus, the effects from damaged spots in spheres are much more 

localized and hence have an adverse effect compared to those in cylinders. It is also 

evident that the effects of local action are different in the axial and circumferential 

directions for cylinders. The decay length in the axial direction of a cylinder is 40% of 

that in circumferential direction indicating the greater severity of axial damage. This is 

perhaps an indication that the decay length is influenced heavily by the curvature in the 

perpendicular direction. For the decay length along the length of cylinder, the curvature in 

the circumferential direction is high whereas for the decay length in the circumferential 
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direction, the curvature in the perpendicular direction is zero. The curvature in the 

perpendicular direction is similar to the subgrade modulus in a problem involving beam-

on-elastic foundation. The more the curvature, the stiffer the subgrade modulus and faster 

the decay of the displacements. It implies that the decay length in the longitudinal 

direction will be much smaller than that in the circumferential direction.

Seshadri (2004) derived a decay length in the circumferential direction of 

cylindrical shells as 4/13 )(1.6 hR  using a slightly different set of assumptions. However, 

the decay length proposed in the present work is a function of Rh similar to the well-

known value for longitudinal direction and hence is adopted here.

6.5. APPLICATIONS OF DECAY LENGTHS

When a corroded area or a thermal hot spot occurs in a pressure vessel, local 

bending and shear actions will take place at the perimeter of the discontinuity. The decay 

lengths can be used to identify the kinematically active portion of the structure that 

participates in plastic action. The so-called reference volume prescribes the containment 

of local effects acting on the structure. Details in calculations of reference volume for 

spherical and cylindrical shells are presented in Chapter 4.

As discussed earlier, damage is defined as “local” when the edge effects at the 

discontinuities have not damped out inside the damage and the pure membrane stress 

effect does not occur at any place inside the damaged area. Therefore, the extent of 

“local” damage can be defined by using the decay lengths. This also implies that 
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interaction between two spots of local damage will not occur if the distance between the 

outer edges of the damaged areas is at least equal to twice the decay length. For spherical 

shell, two locally damaged areas which are at least 2d apart from each other will not 

interact and the effects of the damage to the shell integrity can be treated separately. For 

cylindrical shells, the decay lengths in the axial and circumferential directions are 

different. The extent of local damage and interaction are likely to be affected by the 

effects from both directions. These aspects will be investigated further in Chapter 8.

6.6. CLOSURE

The decay lengths in spherical and cylindrical shells are proposed based on elastic 

solutions to local forces or edge effects around damaged areas. The proposed elastic 

decay lengths are shown to be applied in plastic analysis by using results obtained from 

finite element analyses. It was also shown that decay lengths in shells with small 

curvature are likely to be larger than shells with large curvature. This implies that small-

curvature shells can dissipate the energy better and thus be able to tolerate larger extents 

of damage. The decay lengths as proposed in this chapter will be utilized in calculation of 

the reference volume and the extent of local damage.
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CHAPTER 7 

RECOMMENDATIONS FOR REMAINING STRENGTH 

FACTORS OF SPHERICAL SHELLS 

This chapter proposes Level 2 structural integrity or Fitness-for-Service (FFS) 

assessments for spherical pressure vessels containing damage due to corrosion or thermal 

hot spots. As discussed earlier, the parameter generally used to quantify the acceptability 

(for continued service) of a structure with such damaged areas is the remaining strength 

factor (RSF). It can be computed as the ratio of the limit loads of the component with and 

without damage. Three possible methods for RSF estimation are suggested. Each format 

contains different cases based on the size of the damaged area. An approach to estimate 

“bulging” deformation using geometric properties of the shell is also explained. 

7.1. LOCAL AND GLOBAL DAMAGE IN SPHERICAL SHELL 

In the current research, it is postulated that there is a certain size of damage below 

which the damage can be identified as “local.” Damage larger than this limit can be 
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deemed “global.” For global damages, the remaining strength will be “as if” the damage 

extends to the entire component. In other words, beyond a limiting size the damage 

behaves as if it is a global damage. 

As explained in Chapter 6, the local damage limit is defined as the maximum size 

of damage beyond which a pure equilibrium stress occurs at some place inside the 

damaged area. This extent can be obtained by using the decay angle (or decay length). 

The decay angle dψ  for a spherical shell is proposed in Eq. (6.23) as 

(Tantichattanont, 2006a),   

  id Rh83.1=ψ    (7.1) 
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Figure 7.1 (a) Overlapping edge effect region in a local damage (b) Pure equilibrium 

stress region inside a “global” size damage 
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If the angle aϕ  defining the size of the actual damaged spot is smaller than the 

limit dψ , it means that the effects from discontinuities at the edge of the hot spot or 

corroded area have not yet damped out inside the damaged area and there is an area of 

overlapping edge effects (Figure 7.1a). On the other hand, if the angle aϕ  is larger than 

dψ , there is a certain area within the hot spot where the edge effects from discontinuities 

have dissipated and hence the area is in pure membrane action defined by equilibrium 

stresses alone (Figure 7.1b).  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 An example of comparison between iRSF  and lower bound limits for local 

and global corrosion damage in a spherical shell (R/h = 58.4) 
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This area will accordingly fail in pure membrane action controlled by the yield 

stress of the hot region in the case of hot spot, or the remaining thickness in the case of 

corrosion damage. Hence for this case, we can deduce that even if the damaged spot is 

larger than the extent of “local” damage, the failure is “as if” a “global” damaged spot has 

occurred. It must be noted that this extent may not be defined sharply in practice. In 

addition, the actual structure would in all likelihood have other reserve strengths. 

“Failure” here is simply indicative of the limit criterion being surpassed.  For this case, 

RSFL (where the damaged area extends over the whole component) is the governing 

value.   

Figure 7.2 shows an example of inelastic RSF (RSFi) obtained from finite element 

analysis for internal corrosion damage in a spherical shell with R/h of 58.4. The corrosion 

damage is studied for three different remaining thicknesses hc equal to 5h/6, 2h/3 and h/2 

(shown as diamond, square and triangular markers, respectively), where, h is the 

uncorroded thickness. The horizontal lines in the graph indicate the lower bound RSFL for 

different hc. The RSFs are plotted against the included angle of the corroded area, aϕ . In 

this particular case, the decay angle dψ  calculated by using Eq. (7.1) is 13.9
o
. A damaged 

area with aϕ  less than this decay angle dψ  can be called “local” damage whereas a 

damaged area with aϕ  larger than this extent can be called “global” damage. It can be 

seen from the graph that the values of inelastic RSFi for global damage are converging to 

RSFL.  
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Note that the value of RSFL in Figure 7.2 is slightly smaller than hhc  since it is 

calculated by the ratio of equivalent membrane stress in the undamaged zone eIσ  

( hpRi= ) and the equivalent membrane stress inside the corroded area eDσ  ( cic hpR= ), 

where, icR  is the inner radius of the sphere inside the corroded part which is slightly 

larger than the original inner radius iR  in the case of internal corrosion. Hence, the lower 

bound limit or the LRSF , obtained as 






h

h

R

R
c

ic

i , is slightly smaller than hhc . 

The above observation (that inelastic strength converges to that indicated by RSFL 

for large damage spots) is also valid for other cases of corrosion damage and hot spot in 

spherical shells. More results supporting this are shown in the following sections. Details 

on FEA modeling used to determine RSFi are discussed in Chapter 5. 

7.2. RECOMMENDATION FOR SPHERICAL SHELLS  

– METHOD I 

Thus far in the present study, different concepts and scenarios for calculating the 

strength of the damaged components is discussed. These include the concepts of reference 

volume, decay length, limit loads based on the mα-method, lower bound limit loads, 

remaining strength factors, etc. While RSFα, RSFL, and others are ways of estimating the 

remaining strength factors for specific situations, they do not necessarily apply for all 

ranges of parameters as explained earlier. These are limited in their applicability by 
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factors such as decay length. All these concepts are brought together in the following 

sections to arrive at comprehensive recommendations for estimating RSF of pressure 

components. The recommendations will be applicable for different ranges of parameters. 

Three alternative strategies are recommended as Methods I, II and III (Tantichattanont, 

2006b).. In all these methods, the damaged area is assumed to be replaced by an 

equivalent circular spot. The size of the damaged area is represented by an included angle 

ϕa.  

In recommended Method I, the remaining strength factor αRSF  is taken to provide 

a lower bound approximation for the component with small local damage where decay 

lengths from opposite ends overlap significantly at the middle of the damaged zone. For 

large spots where the decay lengths do no overlap at all, RSFL (Eq. 4.23) is applicable as 

explained earlier. A linear interpolation between αRSF  and LRSF  is assumed for 

intermediate size local corroded spots. The transition angle from small to intermediate 

damaged spots is suggested as the location where the direction of curvature of the 

bending moment expression changes. This is equal to one-third of the decay angle and 

can be given as,  

  
λ
πψ
4

=L      (7.2) 

Figure 7.3 summarizes this recommendation which is identified as RSFr-1. The 

relevant equations for Method I (for a spherical pressure vessel containing a corroded 

area or a hot spot) are listed below. 
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Shell 

a 

αRSF  

aϕ

L
ψ

d
ψ

LRSF  

Size of damaged area 

Linear 
variation 

For La ψϕ ≤ ,  αRSFRSFr =−1  

For daL ψϕψ ≤< ,  ( ) ( ) Laar RSFRSFRSF 5.0637.0637.05.1
Lat  1 −+−=− λϕλϕ ψα      (7.3) 

For da ψϕ > ,  1−rRSF = LRSF  

where, ( )224 /)1(3 hRνλ −= . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Method I Recommendation: 1−rRSF  for various sizes of damaged areas in 

spherical shells 

Different cases of damaged areas (corrosion or hot spots), remaining thickness and 

temperatures have been studied to evaluate the effectiveness of the proposed 

recommendation. An inelastic Finite Element Analysis is performed using ANSYS to 

determine the inelastic strength. The inelastic iRSF  is calculated from the ratio of the 

internal pressure that causes a maximum of 1% average strain (in the hot spot) and the 

limit pressure of undamaged sphere (not design pressure).  The models used for FEA are 

described in Chapter 5. 
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Table 7.1 RSF for a corroded spherical shell (R/h = 58.9) with remaining thickness 5h/6 

aϕ  RSFU RSFα RSFL RSFr-1 RSFi-external RSFi-internal 

3° 0.994 0.927 0.827 0.927 0.975 0.993 

5° 0.986 0.923 0.827 0.920 0.939 0.983 

8° 0.973 0.917 0.827 0.889 0.891 0.949 

12° 0.958 0.909 0.827 0.847 0.862 0.896 

15° 0.947 0.904 0.827 0.827 0.849 0.867 

20° 0.932 0.895 0.827 0.827 0.835 0.842 

25° 0.920 0.889 0.827 0.827 0.832 0.834 

Tables 7.1, 7.2 and 7.3 show RSF according to Method I for various sizes of 

external and internal corrosion damage in a spherical shell (R/h ratio 58.9, inner radius 

21.9 in.) with the remaining thickness inside the corroded area equal to 5h/6, 2h/3 and 

h/2, respectively. It can be concluded from these results that the upper bound RSFU offers 

close upper bound approximations for all the cases. The RSFU estimations are closer to 

“exact” inelastic RSFi in the cases where the damaged area is small and the corroded 

thickness is not much different from the original undamaged thickness. The 

recommended RSFr-1 can bee seen to offer lower bound estimations for all the cases.  
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Table 7.2 RSF for a corroded spherical shell (R/h = 58.9) with remaining thickness 2h/3 

aϕ  RSFU RSFα RSFL RSFr-1 RSFi-external RSFi-internal 

3° 0.987 0.807 0.663 0.807 0.935 0.976 

5° 0.971 0.803 0.663 0.799 0.832 0.949 

8° 0.945 0.797 0.663 0.753 0.754 0.811 

12° 0.913 0.788 0.663 0.692 0.692 0.714 

15° 0.882 0.782 0.663 0.663 0.678 0.687 

20° 0.863 0.771 0.663 0.663 0.669 0.672 

25° 0.840 0.762 0.663 0.663 0.671 0.664 

Table 7.3 RSF for a corroded spherical shell (R/h = 58.9) with remaining thickness h/2 

aϕ  RSFU RSFα RSFL RSFr-1 RSFi-external RSFi-internal 

3° 0.976 0.608 0.498 0.608 0.868 0.967 

5° 0.949 0.612 0.498 0.607 0.715 0.828 

8° 0.906 0.617 0.498 0.569 0.568 0.592 

12° 0.854 0.618. 0.498 0.521 0.518 0.526 

15° 0.822 0.617 0.498 0.498 0.507 0.508 

20° 0.777 0.612 0.498 0.498 0.501 0.503 

25° 0.743 0.606 0.498 0.498 0.499 0.497 
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These results plotted against the included angle of the shell are shown in 

Figure 7.4. The solid and hollow markers are inelastic RSFi for internal and external 

corrosion, respectively. The solid lines represent the lines for the recommended RSFr-1. It 

can be seen that the recommended RSFr-1 provide close lower bound RSF approximation 

for this sphere. The study is extended to a thicker spherical shell with R/h ratio of 20 (the 

same inner radius as before). A similar plot for various sizes of external and internal 

corrosion damage with the remaining thicknesses of 5h/6, 2h/3 and h/2 is shown in 

Figure 7.5. Tabulated results for these cases are shown in Appendix A. It can be seen 

from Figure 7.5, that Method I gives a lower bound result in comparison with inelastic 

analysis. For damaged spots with included angles larger than dψ  (or “global” damages), 

iRSF  are equal to LRSF  as discussed before. However, it is observed that there is higher 

conservatism in the recommended RSFr-1 estimation in the cases of highly localized 

damage especially when there is high thickness loss. 

Similar spherical shells with the same R/h ratios of 58.9 and 20.0 are also studied 

for thermal hot spots. The RSF for the spherical shell R/h ratio of 20.0 with thermal hot 

spot temperatures 93.3 °C, 204 °C and 316 °C are shown in Tables 7.4, 7.5 and 7.6, 

respectively. As before, the URSF  gives upper bound estimates whereas the RSFr-1 offers 

lower bound values for all the cases. 
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Figure 7.4 Comparison of Method I 1−rRSF  and inelastic RSFi for corrosion damage in 

spherical shell with R/h ratio 58.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Comparison of Method I 1−rRSF  and inelastic RSFi for corrosion damage in 

spherical shell with R/h ratio 20 
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Table 7.4 RSF for a spherical shell with a 93.3 °C (200 °F) thermal hot spot (R/h = 20) 

Case No. aϕ  RSFU RSFα RSFL RSFr-1 RSFinelastic 

1 8° 0.994 0.965 0.910 0.964 0.967 

2 12° 0.990 0.962 0.910 0.950 0.952 

3 18° 0.983 0.958 0.910 0.929 0.931 

4 22° 0.979 0.956 0.910 0.914 0.919 

5 25° 0.976 0.954 0.910 0.910 0.913 

Table 7.5 RSF for a spherical shell with a 204°C (400 °F) thermal hot spot (R/h =20) 

Case No. aϕ  RSFU RSFα RSFL RSFr-1 RSFinelastic 

1 8° 0.991 0.940 0.857 0.939 0.957 

2 12° 0.984 0.936 0.857 0.917 0.932 

3 18° 0.973 0.930 0.857 0.885 0.895 

4 22° 0.967 0.927 0.857 0.863 0.875 

5 25° 0.962 0.924 0.857 0.857 0.865 
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Table 7.6 RSF for a spherical shell with a 316°C (600 °F) thermal hot spot (R/h =20) 

Case No. aϕ  RSFU RSFα RSFL RSFr-1 RSFinelastic 

1 8° 0.985 0.869 0.740 0.867 0.922 

2 12° 0.973 0.864 0.740 0.833 0.865 

3 18° 0.954 0.857 0.740 0.783 0.795 

4 22° 0.943 0.853 0.740 0.750 0.767 

5 25° 0.934 0.849 0.740 0.740 0.745 

Figures 7.6 and 7.7 compare the recommended 1−rRSF  and the inelastic iRSF  for 

thermal hot spots in spherical shells (inner radius 21 in.) with R/h ratios equal to 20.0 and 

58.9, respectively. The same trend as in the case of corrosion damage can be observed. 

Samples of detailed calculation of 1−rRSF  are presented in Section 7.6.  
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Figure 7.6 Comparison of Method I 1−rRSF  and inelastic RSFi for thermal hot spots in 

spherical shell with R/h ratio 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Comparison of Method I 1−rRSF  and inelastic RSFi for thermal hot spots in 

spherical shell with R/h ratio 58.9 
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From the above, it can be concluded that for all cases of R/h ratios, remaining 

corroded thickness and practical hot spot temperatures, 1−rRSF  provide good lower bound 

approximation. For spherical shells containing damaged spots with large included angles, 

the remaining strength factors obtained from finite element analyses are shown to be 

constant and are equal to 
L

RSF  indicating the dominance of primary membrane effects as 

discussed earlier. The “local” damaged-spot limit defined by the angle 
d

ψ  as indicated by 

Eq. (7.1) is slightly on the conservative side. For very small damaged areas, the failure is 

less influenced by the decay length compared to the stretching action. The stretching 

decay lengths are likely to be larger than those of bending action thus indicating a more 

diffused effect resulting in higher RSF. In that sense, for very small damaged spots the 

RSF as computed above from RSFα will be conservative. This is also confirmed by the 

results of FEA. 

Although the proposed (Method I) approach provides lower bound approximation 

to the problems of interest, the results for very small damaged areas can be fairly 

conservative compared with FEA results. The value of RSFα does not converge to unity 

when there is no damage. For spherical shell with highly localized corroded area or hot 

spots, the effects of stretching membrane action govern the shell behavior and the decay 

angle 
d

ψ  is sometimes significantly underestimated. Since a small decay angle indicates 

an adverse effect, this leads to an overestimation of the effect on the components 

containing small corroded areas. This usually does not give a problem since very small 

corrosion spots can simply be ignored. This also depends on how much margin the shell 
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has. For pressure vessels over 
8

3  in. in thickness (ASME, Part UG-36 Section VIII 

Division 1) allows 
8

32  in. diameter opening without reinforcement. This dimension is 

shown as dashed lines in Figs. 7.4 and 7.7. This opening size may appear to be large for 

the examples shown above. However, for shells with larger inner radius, this is merely a 

small size and the dashed lines will be closer to the y-axes. Therefore, 1−rRSF  for very 

small damages, although fairly conservative, is not of much practical use. Thus, if the 

conservatism present in the use of RSFr-1 for very small damage spots is acceptable, 

Method I can be adopted for regular use. However, if it is not acceptable, a second 

alternative recommendation in the form of RSFr-2 is proposed. This is based on an 

approximate calculation of the crossover limit or the threshold between bending and 

stretching decay angles. 

7.3. RECOMMENDATION FOR SPHERICAL SHELLS -  

METHOD II 

7.3.1. Membrane and Bending Effects due to Local Damage 

The decay angle of spherical shell calculated as suggested in Chapter 6 is based on 

applied local loads (shear and moment) acting on the shell. When a shell is subjected to a 

pure stretching membrane action, the decay angle is not the same. Owing to the nature of 

shell behavior, the decay length due to membrane action is much larger than that due to 

bulging action (Tantichattanont, 2006b).. 
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Figure 7.8 Dominance of stretching effect in spherical shell with corrosion damage  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 Typical bulging of damaged area 
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For highly localized damaged areas, the effects of membrane action dominate the 

behaviour of the damaged and surrounding areas. For larger sizes of damaged area, the 

effects of bending action compared to those of stretching action are increased. At a 

certain size of damaged spot, a crossover from dominance of the stretching effects to 

dominance of the bending effects occurs. Membrane action causes the shell to stretch out 

such that the damaged area becomes flat like the membrane of a musical drum whereas 

bending action causes the shell to “bulge” or deform in radial (out-of-plane) direction 

Results from inelastic finite element analyses illustrate this behavior. The 

damaged area is stretched and tries to “open up” the surrounding shell rather than 

becoming a bulge. Figure 7.8 shows an example of the “open up” behaviour and the 

effect of stretching action in shells with a small damaged area.  

For larger sizes of damage, the effects of bulging action compared to those due to 

membrane action are increased. Eventually, at a certain size of hot spot or corrosion 

damage, a “crossover” from dominance of the stretching effects to dominance of bulging 

behaviour occurs. An example of bulging in spherical shell is shown in Figure 7.9.  

The behavior of the surrounding region in the two figures 7.8 and 7.9 is different 

(Figure 7.10). The absence of bulging in Figure 7.8 is partly due to the plastic rotation at 

the edge of damage similar to the formation of a plastic hinge. The size of a damaged area 

defining the threshold of dominance of membrane effects for spherical shell is discussed 

in the following section. 
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Figure 7.10 Shell behaviors for different sizes of damaged area (a) Open-up behavior   

(b) Bulging behavior 

7.3.2. Threshold to Dominance of Membrane Effects for Spherical Shell 

Consider the limit state when “plastic hinges” are formed around the circular 

damaged area as shown in Figure 7.11. If the damaged spot is not too large, the curved 

shell can be approximately considered to be a circular flat plate (Figure 7.12a). For a 

segment of a unit perimeter “cut out” of the circular plate (Figure 7.12b), the edge 

moment can be calculated by assuming that the undamaged zone is much more rigid than 

the damaged part. 
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Figure 7.11 Formation of “plastic hinges” along the edge of a circular corroded area 

 

 

 

 

 

 

 

 (a) (b) 

Figure 7.12 (a) Top view of a circular corroded area (b) Unit perimeter segment 

The edge moments due to the applied internal pressure, M, can be approximately 

computed by the resultant force F and the average lever arm measured from the edge of 

the damaged area (Figure7.12b) as  

 ( )
3
crApM ⋅∆=      (7.4) 

where, p is the applied internal pressure, A∆  is the area of the segment under 

consideration, and cr  is the radius of the nearly-flat damaged zone.  
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The area A∆ for a unit length of perimeter is computed as,  

 
cc
rr

A

ππ 2

1
2
=∆

  or   
2
crA =∆      (7.5) 

The plastic moment capacity of the cross section for a unit perimeter segment 

(Figure 7.13) is  
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2

cy

p

h
M

σ
=      (7.6) 

where, pM  is the plastic moment of the section, yσ  is material yield stress, ch  is the 

thickness inside the damaged area. In the case of hot spot, the thickness hc is the same as 

the original shell thickness h. 

 

 

 

 

 

 

Figure 7.13 Plastic moment capacity of a cross section 

The pressure that initiates plastic flow at the edge of the damaged area can then be 

calculated by equating the moments from Eqs. (7.4) and (7.6). as 
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Equation (7.7) leads to the expression for the crossover pressure for a spherical shell, *

sp  

as 

 

2

*

2

3 



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
=

c

c

ys r

h
p σ      (7.8) 

For a given radius of the damaged area cr , the pressure 
*

sp  defining the threshold 

to dominance of membrane action can be calculated. This pressure is a function of 

material yield stress, remaining thickness and the size of the damaged spot. It is 

postulated that if the design pressure Pd is smaller than *

sp , stretching action dominates 

the behavior of the damage and the decay angle is expected to be larger than the decay 

angle based on bending effect dψ  proposed in Eq. (7.1). If the design pressure is larger 

than *

sp , bending action dominates the damage behavior and the decay angle dψ  can be 

applied for the remaining strength factor calculation. 

Rearrangement of Eq. (7.8) leads to the radius of the circular damaged area that 

defines the threshold between dominance of membrane and bending effects as 

 
*2

3

s

y

cc
p

hr
σ

=      (7.9) 

Membrane action will dominate the behavior of a pressure vessel with a damaged area of 

radius smaller than cr , whereas bulging action dominates the behavior of a larger 

damaged area. 
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By introducing some safety factor to the calculation above, the threshold angle to 

the dominance of membrane effect can be given by, 

 
d

y

o

c

PR

h
f

2

3
**

σ
ϕ =    (7.10) 

where, ∗ϕ )( od Rr ∗=  is the included angle of damaged spot at the threshold, *

dr  is the 

radius of the circle of the damaged spot at the threshold and f
*
 is an empirical safety 

factor included to account for the approximation introduced in deriving p
*
. 

In the present research, the value of f
*
 is chosen conservatively as 0.5. It can be 

shown that a slightly larger value of the factor does not significantly alter RSF 

calculation. Note that the derivation of the above limit is approximate. In reality, the two 

actions (stretching and bulging) are both present to some extent regardless of the size of 

the damaged area. 

7.3.3. Recommendation and Results 

Based on the previous discussion about the demarcation between stretching and 

bulging, the second recommendation (Method II) 2−rRSF , can be determined as shown in 

Figure7.14.  

First, the αRSF  at angle defining the threshold to dominance of membrane effect 

∗ϕ  is calculated. For small damaged spots where, aϕ  < ∗ϕ , 2−rRSF  is computed by linear 

interpolation of the known RSF equaling unity at aϕ  = 0 (no damage) and αRSF  at angle 
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*ϕ . For intermediate sized damaged spots where ∗ϕ < aϕ  < dψ , a linear transition from 

αRSF  at angle ∗ϕ to LRSF  at angle dψ is applied. For large damaged spots with da ψϕ > , 

LRSF  is used as in the case of Method I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14 Method II Recommendation: 2−rRSF  for various sizes of damaged areas in 

spherical shells 

In summary, the second recommendation (Method II) for the remaining strength 

factor (RSFr-2) for a spherical component with a corroded area or a hot spot can be 

computed as below. 
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where, *

αRSF  is αRSF  at angle *ϕ . 

Some samples of comparisons of the Method II recommended 2−rRSF and 

inelastic iRSF  for various cases of corrosion and hot spot damage in spherical shells are 

illustrated in Figures 7.15 and 7.16. 

It must be noted that for the purpose of plotting the curve for 2−rRSF , the design 

pressure must be specified in order to calculate the angle ∗ϕ . For the graphs as shown 

below, the design pressures are computed by using the maximum internal pressure that 

can be sustained by the shell, i.e., the design pressures in these figures are back-calculated 

from the formula for design thickness. The actual design pressures will be lower than 

those that are back calculated and hence the actual curves will be less conservative than 

those shown in the figures. The 2−rRSF is shown to provide lower bound approximations 

for all the cases studied and reduce the conservatism present in 1−rRSF for highly 

localized damage. 
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Figure 7.15 Comparison of 2−rRSF  and RSFi for internal and external corrosion in 

spherical shells with R/h ratio = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16 Comparison of 2−rRSF  and RSFi for thermal hot spots in spherical shells with 

R/h ratio = 20 
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7.4. RECOMMENDATION FOR SPHERICAL SHELLS –  

METHOD III 

As it can be seen that both Method I and II presented above have 

phenomenological and intuitive basis and are grounded in variational formulation in the 

form of mα calculation, etc. They are both lower bound estimates. However, both the 

recommendations employ linear transitions and have a kink at the changeover points. A 

third recommendation is provided if the user likes to avoid these issues. This method (III) 

uses RSFL for large corroded areas as in the case of the other two recommendations. For 

smaller corrosion areas, a parabolic transition is employed between the limits of RSFr-3 = 

1 at 0=aϕ  and RSFr-3 = RSFL at da ψϕ =  (as shown in Figure 7.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17 Method III Recommendation: 3−rRSF  for various sizes of damaged areas in 

spherical shells 
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Figure 7.18 Comparison of 3−rRSF  and RSFi for internal and external corrosion in 

spherical shells with R/h ratio = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19 Comparison of 3−rRSF  and RSFi for thermal hot spots in a spherical shell 

with R/h ratio = 20 
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The function for 3−rRSF  can be expressed as below: 

For da ψϕ ≤ ,  
( )

1
121 2

23 +
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=− a
d
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r

RSFRSF
RSF ϕ

ψ
ϕ

ψ
 

For da ψϕ > ,  3−rRSF = LRSF    (7.12) 

It must be noted that Method III is simpler than the previous two. However, it is 

also less grounded in theoretical considerations compared to the first two 

recommendations. 

Figures 7.18 and 7.19 show some examples of 3−rRSF  compared with inelastic 

iRSF  from FEA for spheres (R/h = 20) with corrosion damage and thermal hot spots, 

respectively. It can be seen that 3−rRSF  gives close lower bound approximates to almost 

all of the cases. Numerical results and additional graphs are provided in Appendix A. 

7.5. DISTORTION DUE TO BULGING 

Deformation due to damaged spots could result in bulging of the component. 

Bulging is the local inward or outward deviation from the original geometry. Strain due to 

bulging and the included angle (Seshadri, 2004) of the bulge can be shown to be,  
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where, bε  is the maximum membrane strain in the bulge, and oR  is the outside radius of 

the shell. The angle aϕ  is the included angle of the corrosion or hot spot area and bR  and 

bϕ  are the radius and angle of the bulge as shown in Figure 7.20. 

By limiting bε  to 1%, we can find bR  and bϕ  from Eq. (7.13). Radial 

displacement of the assumed spherical bulge bδ  is then given by 

   )sin()(    22

aobobb RRR ϕδδ −−−=    (7.14) 

where, oao R )cos-(1    ϕδ = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20 Idealized bulging geometry 

The out-of-roundness ratio is computed as the ratio of the maximum diameter of 

the component due to bulging ),(max boDD δ+=  and the original diameter of the 

component ,oD  as shown in Figure 7.20. If the out-of-roundness ratio exceeds a certain 
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recommended value, rRSF  should be taken as LRSF . This will be an additional limit 

criterion for the shell based on excessive deformation. 

7.6. ILLUSTRATIVE EXAMPLE 

The following example is given to demonstrate the proposed Level 2 integrity 

assessment methods for a sphere under internal pressure. The values given in the 

parentheses are in SI units. 

ASTM Material :  SA 516 Grade 55 

Shell Inside Radius (Ri) : 21.9 in. (556 mm) 

Operating Pressure : 250 psi (1.72 MPa) 

Design Pressure (Pd) : 390 psi (2.69 MPa) 

Operating Temperature :  90 °F (32.2 °C) 

Design Temperature : 100 °F (37.8 °C) 

Corrosion Allowance (CA) :  1/16 in (1.59 mm) 

Joint Efficiency (Ej) :  1.0 

7.6.1. Required Thickness Calculation 

Design thickness, hd, for spherical shell can be determined as (Bednar, 1985): 
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dj

id
d PSE

RP
h

2.02 −
= = 0.313 in. (7.95 mm) 

Required shell thickness is h = hd + CA = 0.375 in. (9.53 mm) 

Therefore, a 3/8 in. wall thickness is specified. 

The allowable RSF can be expressed as  RSF
*
 = hd /h = 0.835. Note that this 

*RSF  

is based on design requirements. 

Outside radius of the sphere, Ro = 22.275 in. (566 mm) 

In this case, R/h ratio is 58.9. 

The decay angle of spherical shells is calculated from Eq. (7.1), dψ  = 13.7°. 

7.6.2. Recommended RSFr for Corrosion Damage 

For the following demonstration for corrosion damage, the thickness loss inside 

the corroded area is assumed to be equal to h/6 = 1/16 in. (1.59 mm). For internal 

corrosion, the inner radius of the shell inside the corroded spot Rc becomes 21.963 in. 

(558 mm) and the remaining thickness hc is 5/16 in. (7.94 mm) 

The extent of the corroded spot are defined with aϕ  = 8.0°. 

From Eq. (7.2), Lψ  = 4.6°.  

Since Lψ < aϕ  ≤) dψ , this is the case of intermediate corroded spot. RSFr-1 is calculated 

from the second of Eq. (7.3) and RSFr-3  is calculated from the first of Eq. (7.12). 
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The angle for reference volume is ϕR  = ϕa +)ψd = 21.7° 

From Eq. (4.1), Corroded Volume VD = πRo
2
hc(1-cosϕa) = 9.481 in3 (1.554 410×  mm

3
) 

From Eq. (4.2), adjacent Volume VI  = πRo
2
h(cosϕa – cos(ϕa+ψd)) = 67.43 in

3  

(1.105 610×  mm
3
) 

Reference Volume VR = VD + VI = 76.91 in
3
 (1.260 610×  mm

3
) 

The yield stress of carbon steel at a temperature of 100 °F (37.8 °C) is 30 ksi (207 MPa) 

The primary stress of the undamaged shell is σeI = PdRi/2h = 11.4 ksi (78.6 MPa) 

The primary membrane stress inside the corroded spot is σeD = PdRc/2hc = 13.8 ksi 

(96.1 MPa) 

Comparing with σy, σeI and σeD indicate that there is no general yielding through 

membrane action. It must be noted that σeI and σeD need not be computed to estimate RSF 

values although it serves a useful purpose to compare with σy. 

Using the above, mu
0
 = σy /σeI  = 2.620 and mL = σy/)σeD  = 2.177. 

From Eq. (6.14), RSFL = 
0

uL mm  =  0.831 

The URSF  and αRSF  can be calculated for on Tresca and von Mises yield criteria. 

Tresca criterion:  

From Eq. (4.18), 
DeDIeI

Ry

d
VV

V
m

00

0

σσ

σ

+
=  = 2.556. 
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From Eq. (4.21), URSF = 00

ud mm  = 0.976. 

     

0

L

d

m

m
Z = = 1.174. 

From Eq. (3.19), αm  = 2.408. 

From Eq. (4.22), αRSF  = 0

u
mmα = 0.919. 

Von Mises criterion:  

From Eq. (4.20), 
DeDIeI

Ry

d
VV

V
m

22

2

0

σσ

σ

+
=  = 2.551 

From Eq. (4.21), URSF = 00

ud mm = 0.974. 

     

0

L

d

m

m
Z = = 1.171. 

From Eq. (3.19), αm  = 2.406. 

From Eq. (4.22), αRSF  = 0

u
mmα  = 0.918. 

Similarly, RSFα calculated using the angle ϕ = ψL is  0.926. 

From the second of Eq. (7.3),  RSFr-1 = 0.887 

From Eq. (7.10), the angle ϕ* = 4.4°. Thus, RSFα at the angle ϕ*  is 0.926. Linear 

interpolation from RSFα at the angle ϕ* and RSFL  at the angle ψd  using the third of Eq. 

(7.11) gives RSFr-2 = 0.887. 

From the first of Eq. (7.12),  RSFr-3 = 0.857 
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If the maximum strain in the bulge εb is 1%, from Eqs. (7.13), Rb = 12 in. 

(305 mm) and ϕb = 15.0°. 

From Eq. (7.14), δb = 0.191 in. (4.85 mm). This corresponding value from 

inelastic analysis is 0.082 in. (2.08 mm). The MATLAB files used in calculation of δb are 

given in Appendix B (along with spreadsheet files in the CD).  

Thus, rout-of-roundness = obo
DD /)( δ+  = 1.004 ≤ 1.01. 

7.6.3. Recommended RSFr for Thermal Hot spot Damage  

For the following example for thermal hot spot evaluation, hot spot temperature is 

assumed as 400 °F (204 °C). 

The dimensions of the hot spot are defined with ϕa = 10.0°. 

From Eq. (7.2), ψL = 4.6°.  

Since ψL < ϕa ≤ )ψd, this is the case of intermediate hot spot. RSFr-1 is again 

calculated from the second of Eq. (7.3) and RSFr--3 is calculated from the first of 

Eq. (7.12). 

The angle for reference volume is ϕR  = ϕa +)ψd = 23.7°. 

From Eq. (4.1), Hot spot Volume VD = πRo
2
h(1-cosϕa) = 17.76 in3 (2.91 510×  mm

3
). 

From Eq. (4.2), Adjacent Volume VI  = πRo
2
h(cosϕa – cos(ϕa+ψd)) = 80.71 in

3
 

(1.32 510×  mm
3
). 
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Reference Volume VR = VD + VI = 98.472 in
3
 (1.61 510×  mm

3
). 

The yield stress of steel at a temperature of 100 °F (37.8 °C) is 30 ksi (207 MPa) 

The yield stress of steel at the hot spot temperature of 400 °F (204 °C) is 25.7 ksi 

(177 MPa) 

The thermo-elastic primary stress of the shell is calculated as σe = pdRi/2h – Eα∆T/2 = 

14.0 ksi (96.5 M Pa) 

Using the above, mu
0
 =)σyc /)σe  = 2.149 and mL =)σyh /)σe  = 1.841. 

From Eq. (6.14), RSFL = 
0

uL mm  = 0.857. 

Tresca criterion:  

From Eq (4.14), 
Re

DyDIyI

d Vσ

VσVσ
m

+
=    0  = 2.09 

From Eq. (4.21), URSF = 00

ud mm  = 0.974. 

     

0

L

d

m

m
Z = = 1.137. 

From Eq. (3.19), αm  = 2.000. 

From Eq. (4.22), αRSF  = 00

ud mm = 0.931. 

Von Mises criterion:  

From Eq. (4.16), 
Re

DyDIyI

d
Vσ

VσVσ
m

2

22

0     
+

=  = 2.096 
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From Eq. (4.21), URSF = 00

ud mm  =0.976. 

     

0

L

d

m

m
Z = = 1.139. 

Similarly, αRSF  calculated using the angle Lψϕ =  is αRSF at the angle Lψ  = 0.940. 

From the second of Eq. (7.3),  RSFr-1 = 0.890 

From Eq. (7.10), the angle ϕ* = 4.4°. Thus, RSFα at the angle ϕ*  is 0.926. Linear 

interpolation from RSFα at the angle ϕ* and RSFL  at the angle ψd  using the third of Eq. 

(7.11) gives RSFr-2 = 0.892. 

From the first of Eq. (7.12),  RSFr-3 = 0.867 

If the maximum strain in the bulge εb is 1%, from Eqs. (7.13), Rb = 13.095 in.(333 mm) 

and ϕb = 17.2°. 

From Eq. (7.14), δb = 0.246 in. (6.25 mm). This corresponding value from 

inelastic analysis is 0.091 in. (2.31 mm). The MATLAB files used in calculation of δb are 

in Appendix B (spreadsheet files are in the CD). 

Thus, rout-of-roundness = obo
DD /)( δ+  = 1.006 ≤ 1.01. 

7.6.4. Comparison with Nonlinear (Level 3) Analysis  

To verify the above recommendation, the inelastic remaining strength factor RSFi 

is calculated from the ratio of the internal pressure that causes 1% von-Mises membrane 
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strain in the damaged region to the limit pressure of the undamaged sphere. For the 

examples given above, RSFi is 0.949 and 0.915 for corrosion damage and hot spot, 

respectively. It can be seen that all three recommendations of the current study provide 

lower bound RSF approximations compared to the inelastic results. Thus, the 

recommended RSF are acceptable and conservative.  

It may be noted that an improved estimate of the mobilized reference volume 

might yield a better prediction. However, the aim of the present study is to give the 

practicing engineers a simple yet effective Level 2 method of obtaining the remaining 

strength factor without recourse to a detailed study. 

7.7. DISCUSSION  

7.7.1. Comparison of the Three Methods 

The three recommended RSF as proposed above and the inelastic RSF are 

compared. Some sample plots of spheres with R/h ratio 58.9 for corroded thickness 5h/6 

and h/2 are shown in Figures 7.21 and 7.22, respectively. Examples of numerical data are 

shown in Table 7.7. 

It can be seen that all three recommended methods offer the same RSF for large 

damages. For large damages, the results are very close to the Level 3 inelastic RSF. For 

highly localized damages, 2−rRSF  and 3−rRSF  provide closer approximations than 1−rRSF  

as discussed earlier. In most cases, 1−rRSF  and 2−rRSF  give better RSF estimate for 
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damages of intermediate size than 3−rRSF  (Figure 7.21). However, in some cases 

particularly when the depth of corrosion is large, 3−rRSF  can provide the closest 

recommendation to the inelastic RSF compared to the other two (Figure 7.22). Note that 

all the three proposed methods are shown to provide a lower bound estimation compared 

to inelastic FEA results. The first method is more theoretically grounded than the other 

two but can overestimate the adverse effect for very small damaged areas. In general, the 

second method 2−rRSF  gives closer RSF estimation than the first recommendation. The 

third method can be used with the least amount of calculation among the three. The users 

can choose one of the three methods depending on their preference for rigor and the 

amount of computation (Tantichattanont, 2006c).. 

Table 7.7 Comparison of the three methods with inelastic analysis of a sphere         

(R/h =58.9, corroded thickness h/2) 

aϕ  
URSF  

1−rRSF  2−rRSF  3−rRSF  

internal

inelasticRSF  

3° 0.970 0.606 0.602 0.778 0.863 

5° 0.936 0.594 0.578 0.665 0.715 

8° 0.887 0.551 0.542 0.550 0.568 

12° 0.831 0.496 0.496 0.496 0.518 

15° 0.831 0.496 0.496 0.496 0.507 

20° 0.797 0.496 0.496 0.496 0.501 
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Figure 7.21 Comparison of the three RSF recommendations for spherical shells          

(R/h ratio = 58.9, corroded thickness hc = 5h/6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.22 Comparison of the three RSF recommendations for spherical shells          

(R/h ratio = 58.9, corroded thickness hc = h/2) 
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7.7.2. Effect of R/h ratio and Inner Radius  

Since the recommended RSF in the current study depends on the R/h ratio rather 

than the exact values of R and h, an inelastic finite element analysis of another smaller 

sphere with R/h ratio of 20 but the shell inner radius of 7.5 in. is also studied for corrosion 

damage. The comparison between these results is shown in Table 7.8. As expected, the 

two spheres possess similar remaining strength for all the cases. 

Table 7.8 Comparison of the RSFi for spheres R/h ratio 20 with different inner radius 

RSFi 

hc ϕa 
Ri = 21.9 in. Ri = 7.5 in. 

Percent 

Difference 

5h/6 5° 0.976 0.975 0.1% 

5h/6 8° 0.969 0.968 0.1% 

5h/6 12° 0.947 0.947 0.0% 

2h/3 5° 0.953 0.930 2.3% 

2h/3 8° 0.868 0.838 0.9% 

h/2 5° 0.941 0.941 0.0% 

h/2 12° 0.625 0.614 1.8% 
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Unlike RSF recommendation in the present study, Sims, et al. (1992) suggest an 

empirical equation for the remaining strength of spherical shells containing LTA’s be 

independent of R/h ratio. However, FEA results show an effect of R/h ratios on RSF 

values. Table 7.9 compares inelastic RSF for damaged areas with the same ratio of 

corroded thickness to original thickness (hc/h) and the same included angle (ϕa) for 

spheres with R/h ratios of 20 and 58.9. The shell inner radius for both cases is 21.9 in.  

Table 7.9 Comparison of RSFi for spheres with R/h ratios 20 and 58.9 

RSFi 

hc ϕa 
R/h = 20 R/h = 58.9 

Percent 

Difference 

5h/6 5° 0.976 0.983 0.7% 

5h/6 15° 0.926 0.842 9.0% 

2h/3 8° 0.953 0.867 14.9% 

2h/3 15° 0.784 0.687 12.4% 

h/2 5° 0.941 0.828 12.0% 

h/2 12° 0.625 0.526 15.8% 

h/2 20° 0.511 0.503 1.6% 
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It can be seen that although RSF for the two cases are not much different for very 

small damage, the discrepancies are much larger when the damages are more severe. In 

most cases, RSF for spherical shells with larger R/h ratio (thinner shells) are less than 

those for spheres with smaller R/h ratio (thicker shells). This can be explained as the 

effect of a smaller decay angle and more contained effects from local damage in thin 

shells. For damaged areas with very large included angle, the damage is considered 

“global” and RSFs are converging to RSFL (= hc/h) as discussed before. Hence, the 

differences between the two cases are small for very large damages. For intermediate size 

damages, the difference in RSF for thinner and thicker shells can be significant as shown 

in the table.  

7.7.3. Shape Independence Feature of RSF 

It can be seen that the three remaining strength factors used in the present 

research, i.e., ,URSF  αRSF  and LRSF  (as defined by Eqs. (4.21), (4.22) and (4.23), 

respectively) are non-dimensional. They only depend on the ratios of physical parameters 

and not on actual values. Hence, the theory for the calculation of RSF is very likely 

common to all shapes and sizes of pressure vessels provided that a few necessary 

adjustments are made to the parameters, e.g., the decay length along the generator for a 

cone will include the term sin(β), where β is the angle of the side with the base.   

The shape influences the equivalent primary stress.  For example, calculation of 

equivalent stress eσ  will use hRP id 2  for spheres and hRP id 23  for cylinders. The 
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individual load factors ,0um  ,Lm  etc., are all inversely proportional to eσ  for any given 

pressure. The RSFs, however, are ratios of these load factors. Thus, the RSFs are not 

directly dependent on the shape induced primary stress eσ . This can be easily verified. 

Therefore, the RSF for any pressure vessel is only a function of the geometrical and 

material property ratios for a given situation and are independent of the actual applied (or 

operating) load. The shape, of course, influences the decay length and hence the reference 

volume. But, for the same volume ratio, the formulas (and values) of αRSFRSFU ,  and 

LRSF  are identical for a sphere and a cylinder. It can be postulated that for other types of 

geometries, we can use the same argument and obtain a simplified level 2 estimation of 

RSF. This could be a key conclusion of the present research.  

In terms of property ratios, we can express RSF for pressure vessels containing 

hot spots as below. Let IDV VVr = , yIyDr σσσ = , and 
V

V

r

rr
r

+
+

=
1

1 2

σ
α . Then,  

 σα rrZ =          
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 σrRSFL = . 
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The non-dimensional ratios for corrosion similar to those for hot spots become 

DIV VVr = , eDeIr σσσ = , and 
V

V

rr

r
r

21

1

σ
α +

+
= . However, the RSF formulas in 

Eqs. (7.15) remain the same for corrosion as well. 

Note that since internal pressure is considered as the only primary load, the 

equivalent stresses in the corroded and uncorroded areas ( eDσ  and eIσ ) are calculated as 

hPRi 2  and CC hPR 2 , respectively, where, CR  is the inner radius of the corroded 

segment of the component and Ch  is the remaining thickness of the corroded area or the 

original thickness for hotspot problems. Hence, the ratio σr  here equals to 
ci

c

RR

hh
which 

depends only on the geometry of the component and the damaged area and not the actual 

applied load. 

For corrosion damage, it can also be observed that since the inner radius cR  of a 

pressure vessel containing external corrosion is the same as the uncorroded inner 

radius iR , σr  will only be the ratio of the remaining thickness and the uncorroded 

thickness. However, cR  is slightly larger than iR  for pressure components with internal 

corrosion. Thus, σr and consequently LRSF  for internal corrosion will be slightly less 

than that for external corrosion for the same thickness loss. In thin shells, this difference 

is not prominent and hence the more conservative RSF calculation assuming internal 

corrosion has been presented in the current study. 
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7.8. SUMMARY 

The main factors influencing the remaining strength factors of pressurized 

components containing local damages such as corrosion or thermal hot spots are: the size 

of the damage, shell geometry and material characteristics. These factors have been 

considered in the Level 2 assessments recommended in this chapter. A decay angle for 

spherical shells based on edge effects is defined.  It gives the extent of what can be called 

as ‘local’ damage. Various aspects of these edge effects have been discussed using shell 

theory and simplified analysis. Three alternative methods (recommendations) are 

proposed using the concept of reference volume in conjunction with a variational 

formulation to assess limit strength. These recommendations will be the basis of RSF 

evaluation in cylindrical shells. 

For corroded areas or hot spots larger than the local damage limit, the lower 

bound remaining strength factor RSFL is used in all the three methods. For very small 

damaged spots, the recommendations involve using the αm -multiplier and integral mean 

of yield criterion or a transition between two limit points. For intermediate size damaged 

spots, a linear or parabolic transition is shown to work well. 

The first recommendation is more conservative than the others for very small 

damaged spots but is also more theoretically grounded. The second recommendation 

involves a simplified analysis to identify the threshold between dominance of stretching 

and bending effects. It uses a linear transition between applicable points and uses the  
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αm - multiplier for the intermediate limit. Third recommendation involves a simple 

parabolic transition between the zero damage case and the limiting case for large 

damages. 

All the three proposed recommendations are verified to provide good lower bound 

estimation compared to inelastic FEA results. The users can choose one of the three 

methods depending on their need or preference for rigor and the amount of computation. 

Excessive deformation in bulging is also prevented by limiting the out-of-roundness ratio 

of the shell to 1.01.  Approximate equations for estimating the bulging displacement are 

provided. 
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CHAPTER 8 

RECOMMENDATIONS FOR REMAINING STRENGTH 

FACTORS OF CYLINDRICAL SHELLS 

The present chapter proposes Level 2 Fitness-for-Service (FFS) assessment 

procedures for cylindrical pressure vessels with corrosion damage or thermal hot spots. 

The extent of “local” damage in cylindrical shells and interactions of damage effects in 

the circumferential and axial directions of the shells are discussed based on elastic decay 

lengths.  

Three methods for assessment of spheres were proposed in Chapter 7. These are 

used in the present chapter as the basis of the recommendations for similar problems in 

cylindrical shells. The effectiveness of the recommendations is verified through 

illustrative examples and comparison with results from Level 3 inelastic finite element 

analysis. 



 192 

8.1. LOCAL DAMAGE AND INTERACTION EQUATIONS 

The size of “local damage” in a cylindrical shell can be suggested on lines similar 

to those proposed for spheres in Chapter 7. Damage can be called “local” when the edge 

effect from the undamaged region has not yet dissipated inside the damaged area thus 

preventing pure membrane stress from occurring anywhere inside the damaged zone. 

Damage larger than the limit for “local” is identified as “global” damage.  

As in the case of spheres, decay lengths of cylinders proposed in Chapter 6 can be 

used to define the extent for local damage. However, unlike the case for spheres, where 

the damaged zone is assumed to be circular, the cylinder damages can be anywhere 

between a perfect square and very long and narrow rectangle. For narrow rectangles, the 

edge effects in the narrow direction interfere with those in the length direction. Interaction 

of such effects in circumferential and axial directions is investigated and discussed in 

detail in Section 8.1.2. The proposed interaction curves for different aspect ratios of 

damaged area are verified by comparison with inelastic results. 

8.1.1. Local Damage Limit 

Typical damaged zones in cylinder are assumed to be rectangles ba 22 × , where a 

and b are half of the damaged area dimensions measured along circumferential and axial 

direction, respectively. If damaged zones are not exactly rectangular, equivalent 

rectangles bounding around damage are assumed. 
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As discussed in Chapter 6, elastic decay lengths in axial and circumferential 

directions (xl  and xc , respectively) are calculated as given below 

 Rhxl 5.2≈           and         Rhxc 3.6=      (8.1) 

It is postulated that if the size of the damage is smaller than lc xx 22 × , there will 

be no pure membrane action at any point inside the damage. If the damage is slightly 

larger than lc xx 22 × , pure membrane stress will occur at the centre of the damaged area. 

This can be called as “global” damage. The behaviour then is “as if” the damage extends 

over the entire cylinder. 

Note that since the effect from the discontinuity in the circumferential direction 

dissipates at the distance xc inside the damage as well as outside the damage, for both 

effects not to interact, the distance 2xc cannot be larger than half of the cylinder perimeter 

or 2(6.3 Rh ) ≤ Rπ . Hence, the proposed xc is valid for only cylinders with R/h greater 

than 16. For cylinders with R/h ratio less than 16, interaction will occur. This effect is 

outside the scope of the current study. 

8.1.2. Interaction of Damage in Axial and Circumferential Directions 

Different damage sizes yield different RSF for the pressure vessel. The proposed 

Level 2 methods for RSF indicate that RSF gradually decreases with increase in damage  

size until it reaches a “global” size damage. In sphere, the size of the damage is simply 

defined by the central included angle. However, in the case of the cylinder the damage 
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defined by both a and b. If a is large, the edge effects in the circumferential direction will 

not play any role in the RSF. However, if b is not large, the edge effects still influence the 

RSF. A similar effect is observed if a is small and b is large. There is a definite 

interaction between a and b in defining the extent of damage and its influence on the 

calculation of RSF. We need to have a single parameter to characterize the severity of 

damage instead of two values a and b. Such interaction curves are common when more 

than one parameter (or effect) influences “failure” or limit criterion simultaneously. For 

example, if a column is subject to axial load only, the limit criterion is given as Cf ≤ Cr, 

where, Cf is the applied compressive force and Cr is the compressive resistance. If the 

same member is subject to bending moment only, its limit criterion is given by Mf ≤ Mr, 

where Mf is the applied moment and Mr is the moment resistance. It is well known that if 

a certain Cf (≤ Cr) and some other Mf (≤ Mr) are both present, the failure criterion is not a 

single point but is instead given by an interaction curve defined as 1≤+
r

f

r

f

M

M
U

C

C
, 

where U is an amplification factor. The left hand side of the above equation presents a 

single factor for the combined effect of axial force and moment which will have a single 

limiting value (1.0). Similar logic is used here to estimate the interaction between decay 

lengths in axial and circumferential directions of a cylinder. 

Interaction in axial and circumferential directions for damages with aspect ratios 

(b/a) other than xc/xl is investigated by proposing linear or elliptic interaction curves. 

Linear and elliptic interaction curves are simple to calculate and have been effectively 

used in many areas. Any of these interaction curves need to pass through the point 
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) ,( cl xx . Figure 8.1 shows an example of such interaction curves for a particular 

cylindrical shell with inner radius of 21.0 in.(533 mm) and wall thickness of 0.625 in. 

(15.9 mm). For this cylinder, the decay length in the axial direction, xl, is 9.1 in.(232 mm) 

and the decay length in the circumferential direction, xc, is 22.8 in. (579 mm). Corroded 

areas or thermal hot spots with dimensions inside the area enclosed by an interaction 

curve might be considered “local” damage. Any damage with dimensions outside this 

bound might be regarded as “global” damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Linear and elliptic interaction curves 

Equation for linear interaction curves can be written in the form,  

 0.1)1( =−+
cl x

a

x

b
αα      (8.2) 
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where, α is a slope parameter varying from 0 to 1. The larger the parameter α , the steeper 

the line. It can be seen from Figure 8.2 that the local damage limit depends on the value 

of parameter α and the aspect ratio of the damaged area.  

For each b/a ratio (= r), the limits for local damage based on linear interaction 

curves (defined by linearLa ,  and linearLb , ) can be calculated by substitution of rab ×=  into 

Eq. (8.2). This gives  

 
lc

lc
linearL xrx

xx
a

)1(, αα −+
=     and    rab linearLlinearL ,, =      (8.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 Extent for local damage for different values of slope parameter α. 
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The local damage limits based on elliptic interaction curves can also be calculated 

in a similar manner. Equations for elliptic interaction curves are in the form, 

 0.1)1(

22

=






−+








cl x
a

x
b ββ      (8.4) 

where, β is a parameter varying from 0 to 1. The local damage limit ellipsticLa ,  and ellipticLb ,  

can be computed as 

 
222

,

)1( lc

lc
ellipticL

xxr

xx
a

ββ −+
=     and    rab ellipticLelllipticL ,, =      (8.5) 

Figure 8.3 shows examples of the local damage limits calculated for linear and 

elliptic interaction curves for different cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3 Examples of local damage limit for r = 1 and r = 0.2 
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The extents for local damage obtained from linear and elliptic envelopes are then 

investigated by comparison with inelastic RSFi from FEA and with RSFL for thermal hot 

spots or corrosion damage with different damage sizes and aspect ratios. The value of 

RSFi generally decreases as the size of the damage increases until it converges to the 

value RSFL. for damage sizes equal to or greater than the “local” damage limit.  

It was observed that linear interaction curves give better estimations of the local 

damage limit than elliptic interaction curves for all the cases studied. Comparison of 

linear interaction curves with different slope parameters suggests an optimal value of α = 

0.75. Therefore, the linear interaction curve with α = 0.75 will be used in the FFS 

evaluation of cylindrical shells in the current research. Verification for this 

recommendation will be given in Section 8.7.2 where it is more appropriate. Note that the 

straight line interaction curve is likely valid only for damaged area shapes with 

reasonable aspect ratios and may not work for very narrow and very long damaged areas. 

The equation for the proposed linear interaction curve for damage in cylindrical 

shells is given by, 

 0.1
44

3 =+
cl x
a

x
b

     (8.6) 

Hence, the extent for the local damage limit is calculated as, 
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4
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8.2. METHOD I FOR REMAINING STRENGTH FACTOR 

CALCULATION FOR CYLINDRICAL SHELLS 

In the following discussion, three different methods for calculation of remaining 

strength factors (RSF) for cylindrical shells are proposed. These are similar to those for 

spherical shells. In each of the recommended methods, the size of “local” damage limit is 

calculated by using Eq. (8.7). For damage larger than this extent, the recommended RSF 

is equal to RSFL. Interaction of damaged spots can be neglected when the distance 

between the outer edges of the damaged areas is more than the extent aL in the axial 

direction and bL in the circumferential direction.  

The first recommended remaining strength factor RSFr-1 is shown in Figure. 8.4. 

The x-axis is plotted by using a normalized variable ξ, calculated as, 

 
lc x
b

x
a

4
3

4
+=ξ      (8.8) 

This parameter is equal to zero when there is no damage (a = b = 0). At the local 

damage limit a = aL and b = bL, ξ, equals to unity. A value of ξ more than unity indicates 

“global” damage. 

Similar to those for spherical shells, the recommended RSFr-1 has three parts 

corresponding to the sizes of corroded areas or hot spots. The remaining strength factor 

RSFα provides a lower bound approximation for the component with small local damaged 

spots. For global damaged spots larger than the extent as stated in Eq. (8.7), which gives ξ  
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Linear 
variation 

RSFα 

RSFL 

RSFr-1 

ξξξξ    ξΤ  1.0 

greater than 1, RSFL is applicable. A linear interpolation between RSFα and RSFL can be 

used for local damaged spots of intermediate size. The transition size from small to 

intermediate damaged spots is suggested as 

 
lc

lcL
T xrx

xxa
a

39

4

3 +
==     and    rab TT =      (8.9) 

or in terms of the normalized variable, ξT = 1/3. This is similar to the transition angle for 

spherical shell ψL, which is also proposed to be one-third of the decay angle ψd. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4 Method I recommendation: 1−rRSF  for various sizes of damaged areas in 

cylindrical shells 

In summary, the first recommended method for the remaining strength factor 

RSFr-1 for cylindrical shells can be calculated as below. 

For ξ  ≤ ξT,       RSFr-1 = RSFα 

For ξT < ξ  ≤ 1, RSFr-1 = RSFα at ξT – 1.5(RSFα at ξT  – RSFL)(ξ  – ξT )  (8.10) 

For ξ  > 1,        RSFr-1 = RSFL 



 201 

As will be shown later in Section 8.7, RSFr-1 provides a lower bound 

approximation in the evaluation of corrosion damage and thermal hot spots in cylinders 

compared with inelastic FEA results. As explained in the case of spherical shell, the 

results for damaged spots of very small sizes are fairly conservative due to the difference 

of decay lengths for stretching and bulging actions. To reduce this conservatism, the 

second recommended method based on the threshold to dominance of membrane action is 

proposed. 

8.3. METHOD II FOR REMAINING STRENGTH FACTOR 

CALCULATION FOR CYLINDRICAL SHELLS 

8.3.1. Threshold to Dominance of Stretching Effects for Cylindrical 

Shells 

Similar to the behavior of spherical shells with local damage as discussed in 

Chapter 7, results from inelastic finite element analyses indicate that the effects of 

stretching action dominate the behaviour inside the damaged area if damaged spots are 

very small in size. The damaged area is stretched and tries to open up (Figure 8.5). Note 

that even for small damage, there may be bulging. However, this will be largely outside 

the damaged zone. For this dominance of stretching action, the decay length and thus the 

reference volume are different from those due to bulging action. In Figure 8.5, the decay 

length extends far outside the boundary of the damage itself. 
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Figure 8.5 Dominance of stretching effect in a cylinder with small damaged spot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 Typical bulging in cylindrical shell 

damage area (before) 

damage area (before) 

damage area (after) 
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For larger sizes of damaged spots, the effects of bulging action compared to those 

of stretching action are increased. Typical bulging in a cylinder with a large rectangular 

damaged area is shown in Figure 8.6. As can be seen, the bulging effects inside the 

damaged area are a lot more pronounced compared to those inside small damage areas. 

Also, the decay length of bulging does not extend much beyond the damage boundary as 

compared to the case with small damage. The size of damaged area defining the threshold 

of dominance of stretching effects for cylindrical shell is discussed below. 

The mechanism of a cylindrical shell containing a rectangular corroded area or 

thermal hot spot is postulated to be similar to that of a fixed plate with UDL. If the 

damaged spot is not too large, the curved shell can be approximately considered to be a 

flat plate. Plastic hinge lines are formed at the edges and inside the damaged area as 

shown in Figure 8.7. The limit pressure for the equivalent plate can be calculated by 

assuming that the undamaged zone is much more rigid than the hot zone or corroded area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7 Yield line mechanism of an approximate rectangular flat plate  
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The load required to initiate plastic hinge mechanism can be calculated by 

equating the external work done by the applied pressure and the internal work done by 

plastic moments along the yield lines. The results for standard cases can be obtained 

using the well known yield line theory (Johansen, 1972). This theory is heavily used for 

concrete slabs, metal plates and a variety of other applications (Thakkar, 2006; Morris, 

1988; Baumann, 1985). It is an upper bound method.  The limit load is computed in terms 

of a geometrical parameter such as the location of yield line.  This parameter is used to 

minimize the limit load expression to obtain the ‘exact’ limit load.  Variational 

formulations for finding limit loads of plats using secant rigidity is developed by Bolar 

and Adluri (2005). The work uses techniques similar to ma method and derived limit 

loads by avoiding full nonlinear analysis and contains extensive examples and theoretical 

development (see, Bolar, 2002). 

The external work from the applied internal pressure p to deflect the line OG of 

the flat plate by a distance δ is given by the product of the pressure p and the volume of 

the inverted rectangular pyramid formed by the displaced plate. Assume that point O 

moves to O′ as a result of the displacement.  

The total volume of the pyramid is divided into 3 parts, from AB to BD ′′  (V1), 

from BD ′′  to FE ′′ (V2), and from FE ′′  to EF (V3). The volumes V1 and V3 together form 

a pyramid of single vertex with a base xw 22 2 ×  and a height δ with a volume of 

3)2)(2( 2 δxw . Volume V2 is calculated by the product of the area OBD ′′′  and the length 

OG as )22(
2

)2(
1

2 xw
w

−
δ

. Therefore, the external work is given by,  
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The length of line AO, ,AOL  is .
2

2

2 wx + The length of line OC, ,OCL  is 

calculated by,  
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The angle OOC ′  is  
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Similarly, the length of line OD is 
2

2

22 wx
x

w
LOD +=  and the angle OOD ′ is 
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 (8.13b) 

For work done along diagonal lines, line AO is considered. Internal dissipation 

along line AO can be expressed as 

 δ






 +=∠+∠⋅= ′′−
2

2
int )(

w
x

x

w
MLMW pAOpAO OODOOC    (8.14) 
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where, Mp is the plastic moment per unit length of the section. Internal work done by 

plastic moment along line BO, EG and FG can be calculated in a similar manner. 

Therefore, total internal dissipation along all diagonal lines is δ






 +
3

24
w
x

x

w
M p . 

For lines AE and BF along the longer side, internal dissipation can be written as 

 δ
2

1
,int

2
2)(2

w

w
MLMW pAEpBFAE ODO =∠⋅⋅= ′′−    (8.15) 

Internal work done along line OG is 
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For line AB and EF along the shorter side, internal dissipation is 
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w
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2
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Therefore, total internal work done by plastic moments is 
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Equating the total internal work done expression, Eq. (8.18), to the external work 

done Eq. (8.11) gives 
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Rearrangement of Eq. (8.19) gives the expression for the limit pressure that 

initiates plastic moment 

 pM
xwwwxw

wxw
p

)3(
12

2212

2

21
lim −

+
=    (8.20) 

Varying the value of x to obtain the minimum value of limp ,  
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Therefore,  
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The plate is assumed to be made of elastic-perfectly plastic material with a yield 

stress σy. The plastic moment capacity of the cross section Mp can be written in terms of 

the shell thickness h. For a unit length, 4
2

hM yp σ= . Therefore, the pressure for plastic 

hinge lines to occur is calculated by 

 
)3(

3
2212
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212*

xwwwxw

wxw
hp yc −

+
= σ    (8.23) 

where, *

cp  is the internal pressure for which plastic hinges are initiated. As before, it is 

postulated that if the applied internal pressure of a cylinder is less than or equal to *

cp  
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determined by using Eq. (8.23), stretching effect dominates the behaviour of the damaged 

shell whereas if the applied internal pressure is more than *

cp , bulging effect is dominant. 

For the damaged area with aspect ratio r (= b/a), substitution of design pressure 

Pd into Eq. (8.23) gives, 

for a > b,  
( )

2222

22

3

3

xarxra
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σ

,  where 22 3 arrarx −+=  (8.24a) 

for a < b,  
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x −+= 231
1

 (8.24b) 

Equations (8.24) can be used to determine the dimensions )22( ** ba ×  of a 

damaged area in a cylindrical shell that identify the threshold of dominance of stretching 

action. If the damaged area is smaller than this limit, stretching effect dominates the shell 

behaviour and the shell tries to open-up instead of bulging. Bulging will dominate the 

behaviour of cylindrical pressure vessels with damaged areas larger than this limit.  

In the form of the normalized variable ξ, the threshold to dominance of stretching 

effect is, 

 






 +=
lc x
b

x
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f
4
*3

4
*

**ξ    (8.25) 

where, f
*
 is an empirical safety factor included to account for the approximation 

introduced in deriving *

cp . In the present research, the value of f
*
 is chosen conservatively 

as 0.6. 
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8.3.2. Calculation Procedures for the Method II 

The second recommended RSFr-2 can be determined from the threshold to 

dominance of membrane effects, as shown in Figure 8.8. First, the RSFα at ξ = ξ* is 

calculated. For small damaged spots where, ξ < ξ*, RSFr-2 is computed by linear 

interpolation of the known RSF of unity at ξ  = 0 (no damage) and RSFα at ξ  = ξ*. For 

intermediate size of the damaged areas where, ξ* < ξ ≤ 1, a linear variation from RSFα at 

ξ  = ξ* to RSFL at ξ  = 1 is applied. For “global” damage sizes in which ξ   > 1, RSFL is 

used. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8 Method II Recommendation: 2−rRSF  for cylindrical shells 

In summary, the method II recommendation RSFr-2 for cylindrical shells with 

corroded areas or thermal hot spots can be calculated as below. 

For ξ  ≤ ξ*,       RSFr-2 = 1 – (1 – RSFα
∗)(ξ / ξ∗ ) 

For ξ* < ξ  ≤ 1, RSFr-2 = RSFα
∗ – (RSFα

∗ – RSFL)(ξ  – ξ
∗ )/(1 – ξ∗ )   (8.26) 
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For  ξ  > 1,        RSFr-2 = RSFL   

The second recommended RSFr-2 can be shown to provide less conservative RSF 

than RSFr-1 especially for highly localized damaged areas. 

8.4. METHOD III FOR REMAINING STRENGTH FACTOR FOR 

CYLINDRICAL SHELLS 

As in the case of spherical shell, the third recommended approach is provided to 

avoid abrupt change at the changeover points of the first and second recommended 

methods. For local damaged areas, a parabolic variation is employed between the limits 

of RSFr-3 equal to unity at ξ  = 0, and RSFr-3 = RSFL at ξ  = 1 as shown in Figure 8.11. For 

global damaged areas (ξ  > 1), RSFL is used. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9 Method III Recommendation: 3−rRSF for cylindrical shells 

The expressions for RSFr-3 can be written as below. 
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For ξ  ≤ 1, RSFr-3 = (1–RSFL)(ξ 
2
  – 2ξ) + 1 

For ξ  >1, RSFr-3 = RSFL   (8.27) 

Obviously, this recommendation is less rigorous in theoretical background 

compared to Methods I and II. However, it is simpler to use. 

8.5. DISTORTION DUE TO BULGING 

An additional limit criterion for the shell is based on excessive deformation due to 

bulging inside the damaged area of the component. If the damaged area is not too large, 

the bulge is assumed to be an inscribed ellipsoid given in Cartesian coordinate by 

(Fig. 8.10)  

 1
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   (8.28) 

where, c is the bulging displacement at the center of the damaged area. Surface area of 

half of the ellipsoid is computed by Knud Thomsen’s formula (Tee, 2005) as,  

 ( ) ( ) γγγγγγγπ
/1

,, cbcabacbaS ++=    (8.29) 

where, γ = ln(3)/ln(2).  

Therefore, strain due to bulging is given by 
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where, ε b is the average membrane strain in the entire bulge. The inelastic limiting 

membrane strain for crown point is 1%. Hence, radial displacement of the assumed bulge, 

c, is calculated as  
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Figure 8.10 Idealized bulging geometry for rectangular damage 

The out-of-roundness ratio is computed as the ratio of the maximum diameter of 

the circular cylinder due to bulging (= Do + c ), and the original diameter of the cylinder 

Do. If the out-of-roundness ratio exceeds a certain recommended value (equal to 1.01 in 

the current study), RSFr should be taken as RSFL.  

Note that since the stiffness of the undamaged shell is higher than that of the 

damaged area, the undamaged portion acts like a support to the damaged area. The edge 

moments at the rim of the damaged spot cause “transition zone” where there is reversal of 

bulge curvature (Fig. 8.10). A better estimation of bulging displacement can be achieved 
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by using “effective” dimensions of the ellipsoid depending on differential stiffness of the 

two parts. 

8.6. ILLUSTRATIVE EXAMPLE 

The following example is given to demonstrate the proposed Level 2 integrity 

assessment methods for a cylinder under internal pressure. The values given in the 

parentheses are in SI units. 

ASTM Material :  SA 516 Grade 55 

Shell Inside Radius (Ri) : 33.0 in. (838 mm) 

Shell Overall Length (L) : 400 in. (10160 mm ) 

Operating Pressure : 180 psig (1.24 MPa) 

Design Pressure (Pd) : 220 psi (1.52 MPa) 

Operating Temperature : 90 °F (32.2 °C) 

Design Temperature : 100 °F (37.8 °C) 

Allowable stress (S) : 13700 psi (94.5 MPa) 

Corrosion Allowance (CA) :  1/16 in. (1.59 mm) 

Joint Efficiency (Ej) :  1.0 
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8.6.1. Required Thickness Calculation 

Design thickness, hd, for spherical shell can be determined as (Bednar, 1985): 

 
dj

id

d PSE

RP
h

6.0−
= = 0.536 in. (13.6 mm) 

Required shell thickness is h = hd + CA = 0.599 in. (15.2 mm) 

Therefore, a 5/8 in. wall thickness is specified. 

The allowable RSF can be expressed as  RSF
*
 = hd /h = 0.895. Note that this 

*RSF  

is based on design requirements. 

Outside radius of the sphere, Ro = 33.625 in.(854 mm) 

In this case, R/h ratio is 52.8. 

The decay length in axial direction of a cylindrical shell is calculated from the first 

of Eq. (8.1), xl = 11.5 in. (291 mm) 

The decay length in circumferential direction of a cylindrical shell is calculated 

from the latter of Eq. (8.1), xc = 28.9 in. (734 mm) 

8.6.2. Recommended RSFr for Corrosion Damage 

For the following demonstration for corrosion damage, the depth of thickness loss 

inside the corroded area is assumed to be equal to h/3 = 0.208 in. (5.3 mm). For internal 

corrosion, the inner radius of the shell inside the corroded spot Rc becomes 33.42 in. 

(849 mm) and the remaining thickness hc is 0.417 in.(10.6 mm).  
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The circumferential extent of corrosion (2a) is 10 in. (254 mm) 

The longitudinal extent of corrosion (2b) is 10 in. (254 mm) 

Aspect ratio of the damaged area is r = b/a = 1.0 

From Eq. (8.8), the dimensions of the damaged area is defined by the normalized 

variable ξ  = 0.370. 

Since ξΤ  < ξ  ≤ 1, this is the case of intermediate corroded spot. RSFr-1 is 

calculated from the second of Eq. (8.10) and RSFr-3  is calculated from the first of Eq. 

(8.27). 

From Eq. (4.3), Corroded Volume VD = 4abhc = 41.67 in
3
 (6.827 x 10

5
  mm

3
) 

From Eq. (4.4), Adjacent Volume VI = ( )abbxa (xh lc −++ ))(4  = 1332 in
3 

(2.182 x 10
7
 mm

3
) 

Reference Volume VR = VD + VI = 1373 in
3
 (2.251 x 10

7
  mm

3
) 

The yield stress of steel at a temperature of 100 °F (37.8 °C) is 30 ksi (207 MPa) 

The principal stresses of the undamaged shell are σ1I  = PdRi/h = 11616 psi 

(80.1 MPa) and σ2I= PdRi/2h = 5808 psi (40.0 MPa). Therefore, the equivalent stress of 

the undamaged shell (σeI ) is calculated from IIIIeI 21

2

2

2

1 σσσσσ −+= , = 10060 psi 

(69.4 MPa) 
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The principal stresses inside the corroded spot are σ1D  = PdRc/hc = 17643 psi 

(122 MPa) and σ2I   = PdRc/2hc = 8821 psi (60.8 MPa). Similarly, the equivalent stress of 

inside the corrosion damage (σeD ) is 15279 psi (105 MPa)  

Using the above, mu
0
 = σy / σeI  = 2.982 and mL = σy / σeD  = 1.976. 

From Eq. (4.23), RSFL = 
0

uL mm  = 0.663. 

The URSF  and αRSF  can be calculated for Tresca and von Mises yield criteria. 

Tresca criterion:  

From Eq. (4.18), 
DeDIeI

Ry

d
VV

V
m

00

0

σσ

σ

+
=  = 2.937. 

From Eq. (4.21), URSF = 00

ud mm  = 0.985. 

     

0

L

d

m

m
Z = = 1.487. 

From Eq. (3.19), αm  =2.404. 

From Eq. (4.22), αRSF  = 0

u
mmα  = 0.806. 

Von Mises criterion:  

From Eq. (4.20), 
DeDIeI

Ry

d
VV

V
m

22

2

0

σσ

σ

+
=  = 2.926 

From Eq. (4.21), URSF  = 00

ud mm  = 0.981. 
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0

L

d

m

m
Z = = 1.481. 

From Eq. (3.19), αm  =2.402. 

From Eq. (4.22), αRSF  = 0

u
mmα  = 0.805. 

Similarly, RSFα calculated at the transition ξ = ξT is 0.806.  

From the second of Eq. (7.3), RSFr-1 = 0.793 

From Eq. (8.24), a
*
 = 2.93 in. From Eq. (8.25), the variable ξ* = 0.217. Thus, 

RSFα at ξ = ξ* is 0.808. Linear interpolation from RSFα at ξ = ξ* and RSFL at ξ = 1 using 

the second of Eq. (8.26) gives RSFr-2 = 0.779. 

From the first of Eq. (8.31),  RSFr-3 = 0.796 

From Eqs. (8.31), c = 0.236 in.  

Thus, rout-of-roundness = ( ) obo DD δ+ = 1.004 ≤ 1.01. 

8.6.3. Recommended RSFr for Thermal Hot spot Damage  

For the following example for thermal hot spot evaluation, hot spot temperature is 

assumed as 400 °F (204 °C). 

The dimensions of the hot spot are 2a x 2b = 10 x 10 in2 (25.4 x  25.4 mm
2
) 

Aspect ratio of the damaged area is r = b/a = 1.0 
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From Eq. (8.8), the dimensions of the damaged area is defined by the normalized 

variable ξ  = 0.370. 

Since ξΤ  < ξ  ≤ 1, this is the case of intermediate hot spot. RSFr-1 is calculated 

from the second of Eq. (8.9) and RSFr-3 is calculated from the first of Eq. (8.27). 

From Eq. (4.3), Hot Spot Volume VD =4abh = 62.50 in
3
 (1.024 610×  mm

3
) 

From Eq. (4.4), Adjacent Volume VI = ( )abbxa (xh lc −++ ))(4  =1332.0 in
3 

(2.182 x 10
6
 mm

3
) 

Reference Volume VR = VD + VI = 1394.3 in
3
 (2.285 x 10

7
 mm

3
) 

The yield stress of steel at a temperature of 100 °F (37.8 °C) is 30 ksi (207 MPa) 

The yield stress of steel at the hot spot temperature of 400 °F (204 °C) is 25700 psi 

(177 MPa) 

The effective elastic modulus and thermal coefficient are obtained from Eq. (4.5) as 

Eeff = 
R

DDII

V

VEVE +
 = 29.2 610×  psi and αeff = 

R

DDII

V

VV αα +
 = 5.578 x 10-6 in./in./°F. 

The thermo-elastic principal stresses inside the hot spot are calculated from Eqs. (4.9) as 

2
    1

TE

h

RP effeffid
∆

−=
α

σ  = -18649 psi (129 MPa) and 
22

    2

TE

h

RP effeffid
∆

−=
α

σ  

=  -12841 psi (88.5  MPa). The equivalent stress is 16529 psi (114 MPa). 

Using the above, mu
0
 = σyc / σe  = 1.815 and mL = σyh / σe  = 1.555. 

From Eq. (4.23), RSFL = 
0

uL mm  = 0.857. 
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Tresca criterion:  

From Eq (4.14), 
Re

DyDIyI

d Vσ

VσVσ
m

+
=    0  = 1.803 

From Eq. (4.21), URSF = 00

ud mm  = 0.994. 

     

0

L

d

m

m
Z = = 1.160. 

From Eq. (3.19), αm  =1.708. 

From Eq. (4.22), αRSF  = 0.941. 

Von Mises criterion:  

From Eq. (4.16), 
Re

DyDIyI

d
Vσ

VσVσ
m

2

22

0     
+

=  = 1.804 

From Eq. (4.21), URSF = 00

ud mm  =0.994. 

     

0

L

d

m

m
Z = = 1.160. 

From Eq. (3.19), αm  =1.709. 

From Eq. (4.22), αRSF = 00

ud mm  = 0.942. 

Similarly, RSFα calculated at the transition ξ = ξT is 0.871.  

From the second of Eq. (7.3),  RSFr-1 = 0.841 
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From Eq. (8.24), a
*
 = 4.07 in. From Eq. (8.25), the variable ξ* = 0.301. Thus, 

RSFα at ξ = ξ* is 0.942. Linear interpolation from RSFα at ξ = ξ* and RSFL  at ξ = 1 using 

the second of Eq. (8.30) gives RSFr-2 = 0.934. 

From the first of Eq. (8.31),  RSFr-3 = 0.913 

From Eqs. (8.31), c = 0.236 in.  

Thus, rout-of-roundness = 1.004  ≤ 1.01. 

8.6.4. Comparison with Nonlinear (Level 3) Analysis 

The inelastic remaining strength factor RSFi is calculated from the ratio of the 

internal pressure that causes 1% von-Mises membrane strain in the damaged region to the 

limit pressure of the undamaged cylinder. For the examples given above, RSFi are 0.859 

and 0.938 for corrosion damage and thermal hot spot, respectively. Bulging 

displacements at the center of the damaged spot from inelastic analysis for corrosion 

damage and hot spot are 0.160 in. and 0.173 in., respectively. It can be seen that all three 

recommendations of the current study provide lower bound RSF approximations 

compared to the inelastic results. Thus, the recommended RSF are acceptable and 

conservative. 
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8.7. DISCUSSION  

8.7.1. Comparison of RSF from the Three Methods 

An analysis is carried out to evaluate the effectiveness of the proposed Level 2 

methods for cylindrical shells with different damaged conditions. For corrosion damage, 

the methods are applied to internal and external corrosion with different damaged sizes, 

aspect ratios and remaining thicknesses. Examples of numerical data for comparison of 

RSF obtained from the three recommended methods and inelastic finite element analysis 

for cylindrical shells with inner radius 21.0 in. and R/h ratio of 33.6 are shown in Tables 

8.1 and 8.2. Additional numerical results are given in Appendix A.  
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Table 8.1 Comparison of RSF from the three recommended methods and inelastic 

analysis for corrosion damage in a cylinder (R/h =33.6, hc = h/2, r = 1.0) 

a (in.) b (in.) 
URSF  

1−rRSF  2−rRSF  3−rRSF  

external

inelasticRSF  

1.0 1.0 0.997 0.596 0.785 0.908 0.965 

2.5 2.5 0.984 0.599 0.590 0.787 0.813 

3.5 3.5 0.972 0.596 0.577 0.718 0.712 

5.0 5.0 0.953 0.574 0.559 0.632 0.630 

10.0 10.0 0.888 0.500 0.499 0.494 0.520 

12.5 12.5 0.860 0.492 0.492 0.492 0.512 
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Table 8.2 Comparison of RSF from the three recommended methods and inelastic 

analysis for hot spot damage in a cylinder (R/h =33.6, Th = 600 °F, r = 0.2) 

a (in.) b (in.) 
URSF  

1−rRSF  2−rRSF  3−rRSF  inelasticRSF  

5 1 0.996 0.873 0.938 0.932 0.978 

10 2 0.988 0.871 0.876 0.875 0.920 

15 3 0.980 0.859 0.847 0.828 0.878 

20 4 0.971 0.830 0.821 0.791 0.842 

25 5 0.964 0.802 0.795 0.764 0.813 

32 6.4 0.955 0.762 0.760 0.743 0.776 
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(a) r = 3.0; hc = h/2 

 

 

 

 

 

 

 

 

 

 

 

 
(b) r = 1.0; hc = h/2 

 

 

 

 

 

 

 

 

 

 

 

 

(c) r = 1.0; hc = 2h/3 

Figure 8.101 Comparison of RSFr and RSFi for cylindrical shells (R/h ratio = 33.6)         

with corrosion damage
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 (a) r = 3.0 

 

 

 

 

 

 

 

 

 

 

 

 
 (b) r = 1.0 

 

 

 

 

 

 

 

 

 

 

 

 
 (c) r = 0.2 

Figure 8.112 Comparison of RSFr and RSFi for a cylindrical shell R/h ratio = 33.6 with 

thermal hot spots TH = 316 °C 
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Figure 8.11 compares the recommended RSFr-1, RSFr-2, RSFr-3 and the inelastic 

RSFi for corrosion damage with remaining corroded thicknesses of 2h/3 and h/2 and 

damage area aspect ratio r of 3.0 and 1.0. The RSF are plotted against the normalized 

variable defining the size of the damaged area, ξ. Figure 8.12 shows similar comparisons 

for a cylinder with thermal hot spots of aspect ratios 1.0 and 0.2. It can be seen that all 

three recommended methods offer good lower bound approximations compared to 

inelastic FEA results. Note that vertical dashed lines in Figs 8.11 and 8.12 indicate the 

allowable opening size of 2
8

3  in (along the diagonal of rectangular damaged areas) 

without reinforcement as in the case of spherical shells. 

Similar to the recommendation for spherical shells, the three methods give the 

same remaining strength factor for “global” damages. The RSF for global damage is 

almost the same as the inelastic RSF.  

The first method is more theoretically grounded than the other two but can 

overestimate the damage severity for very small damaged area. The second method in 

which the threshold to dominance of stretching effect is taken into consideration provides 

closer estimations of RSF for highly localized damage than 1−rRSF . The RSF from the 

first and second recommended methods are also shown to give better estimate for 

intermediate size than RSF from the third method. The third recommended 3−rRSF  is less 

theoretically grounded but has advantages in providing a smooth curve with no abrupt 

change as well as in the simplification of calculation procedures compared to the other 
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two methods. The users can choose one of the three recommendations depending on their 

preference. 

8.7.2. Verification of the Proposed Interaction Curve  

In the current research, interaction curves are used to calculate the extent of local 

damage in cylindrical shells as discussed in Section 8.1. Linear and elliptic interaction 

curves are studied and the interaction curve for damage in cylindrical shells is proposed to 

be a linear line with slope diameter α = 0.75.  

The recommendation is verified by comparison of the method III recommendation 

RSFr-3 and inelastic RSFi from FEA. The 3−rRSF  are plotted against the normalized 

parameter for each curve. Different cases of damage type and aspect ratio of damaged 

area (from r = 0.2 to r = 5.0) are studied for linear interaction curve with α = 0.5 and 

elliptic interaction curve with β = 0.5. 

Some examples of comparison for r = 1.0 and r = 0.2 are shown in Figures 8.13 

and 8.14. The normalized variables for linear interaction curve is calculated by the left-

hand side of Eq. (8.2) as  

 
cl x
a

x
b

)1( αααη −+=    (8.28) 

For each value of α, the parameter η is different. By changing α, we can study the best 

possible alternative η to represent RSF curve. Several different values of α (and hence 
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ηα) were examined to get a good fit. Note that ηα = 1 indicates the limit of local damage 

for each value of α and 75.0η  is the same as the recommended variable ξ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  r = 1.0; Linear   (b) r = 1.0; Elliptic  

 

 

 

 

 

 

 

 
 

 

 

 

 

(c) r = 0.2; Linear   (d) r = 0.2; Elliptic  

Figure 8.123 Comparison of RSFi and 3−rRSF  using linear and elliptic interaction curves 

for a cylinder (R/h = 32.6) with thermal hot spots of different aspect ratios 
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 (a) (b) 

Figure 8.134 Comparison of RSFi and 3−rRSF  for a cylinder (R/h = 32.6) with corrosion 

damage hc = h/2 using (a) linear interaction curve (b) elliptic interaction curve  

Similarly, the normalized variables for elliptic interaction curve is calculated by 

the left-hand side of Eq. (8.4), viz,  
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)1( 




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−+






=
cl x
a

x
b ββχβ    (8.29) 

It can be seen that 3−rRSF  calculated from linear interaction curves provides 

conservative estimations for almost all cases whereas 3−rRSF  calculated by using elliptic 

interaction curves can be unconservative. Thus, linear interaction curves are preferable.  
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(c) 

Figure 8.145 Comparisons of iRSF  and 3−rRSF  for thermal hot spot with r = 3.0              

(a) α = 0.50 (b) α = 0.75 (c) α = 0.875 
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(c) 

Figure 8.156 Comparisons of iRSF  and 3−rRSF  for thermal hot spot with r = 0.2              

(a) α = 0.50 (b) α = 0.75 (c) α = 0.875 
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(c) 

Figure 8.167 Comparisons of iRSF  and 3−rRSF  for corrosion damage with r = 1.0           

(a) α = 0.50 (b) α = 0.75 (c) α = 0.875 
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It is observed from FEA results that a narrow long damage along the 

circumferential direction of cylindrical shell (represented by larger r, such as r = 5.0) 

affects structural capacity of the shell structure less than a narrow damage of the same 

length in the axial direction (represented by small r). Moreover, it can be also observed 

that the linear interaction curve with α of 0.5 underestimates the limit for local damage of 

long damages along the circumferential direction (Figure 8.13c). This results in rather 

conservative RSFr-3 in such cases.  

This can be improved upon by increasing the slope parameter α. As α increases, 

the linear interaction curve is steeper. Thus, the extent of local damage in the 

circumferential direction becomes larger and much more than the decay length cx . The 

extent of local damage in axial direction is smaller and closer to the decay length in that 

direction, lx  (Figure 8.2). In addition, it can be seen that as α changes, the change in the 

extent of local damage in the circumferential direction is more rapid than that in the axial 

direction. 

Recommended 3−rRSF  using linear interaction curve with α = 0.50, 0.25 and 

0.125 for different cases are shown in Figures 8.15 to 8.17. Note that the x-axis for each 

graph is the normalized variable αη  corresponding to each of the applied α. Hence, the 

actual dimensions of the damages where the variables are equal are, in fact, not identical.  
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(a) a = b = 5 in. (r = 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) a = 15 in. b = 3 in. (r = 0.2) 

Figure 8.17 Recommended rRSF  for corrosion damage calculated by using different xc  
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It can be concluded from these comparisons that the linear interaction curve with 

α = 0.75 offers the best recommended 3−rRSF . For this case, almost the same 

conservatism is present for different profiles of corrosion damage and thermal hot spots, 

viz., hot spot temperatures, corroded thickness and dimensions of the damaged spot. 

Therefore, this curve is used as the interaction line for damage in cylindrical shells. 

8.7.3. Comparison RSF for Different Circumferential Decay Lengths 

In this section, the effect of the circumferential decay length xc on the 

recommended RSF is studied. Figure 8.18 shows the three recommended RSF calculated 

by using different choices for the value of xc for corrosion damage in cylinder (Ri = 53.3 

cm, h = 1.58 cm.). The proposed xc for this case (from Eq. 8.1) is 22.8 in. (57.8 cm).  

It can be seen that RSF increases as the decay length xc is chosen to be larger. The 

effects of xc on RSF are more noticeable in the cases where the damage is more severe 

(e. g., hc ≤ h/2) or the damage aspect ratio r is small (narrow damage lying along the 

circumferential direction). In addition, recommended RSF can be unconservative if a 

much larger circumferential decay length is used instead of the proposed one.  

Note that the choice of xc value also affects the limit for local damage. When xc is 

chosen to be very small, this limit is small and the damaged area of interest may be 

considered as global damage. Hence, RSF’s for very small choices of  xc values are 

constant and are equal to RSFL. 
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8.8. SUMMARY 

This chapter discusses the application of elastic decay lengths to defining the 

extent of local damage in cylindrical shells. For damaged area with aspect ratio (b/a) 

other than xl/xc, a linear interaction curve is proposed. Three alternative methods are 

proposed similar to those for spherical shells.  

The remaining strength factors are suggested depending on the size and aspect 

ratio of damaged spot. For damaged spots larger than the extent for local damage, the 

lower bound remaining strength factor RSFL is recommended in all three methods.. For 

very small damaged spots, the recommendations involve using the αm -multiplier and 

integral mean of yield criterion or a transition between two limit points. For intermediate 

size damaged spots, a linear or parabolic transition is shown to work well. 

The first recommended method is more conservative than the others for very small 

damaged spots but is also more theoretically grounded in an overall sense. The second 

recommendation involves a simplified analysis to identify the threshold between 

dominance of stretching and bulging effects. It uses the αm -multiplier for the 

intermediate limit and linear transitions between this limit and the zero damage point as 

well as between this limit and the maximum local damage. Third recommended approach 

involves a simple parabolic transition between the zero damage case and the lower bound 

RSF limit for large damaged areas. 
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The “local” damage limits and mutual influence of decay in longitudinal and 

circumferential directions is studied using an interaction equation. 

All the three proposed recommended methods are shown to provide good lower 

bound estimations compared to inelastic FEA results. Excessive deformation in bulging 

can be prevented by limiting the out-of-roundness ratio of the shell to 1.01. 
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the main work carried out and the key ideas proposed in 

the present thesis. The main conclusions of the research are presented and 

recommendations for future work are given.

9.1. SUMMARY

The present thesis proposes Level 2 procedures for evaluating Fitness-for-Service 

of pressure vessels containing corrosion damage or thermal hot spots. They are based on  

variational methods, m-multipliers, reference volume and the concept of decay lengths in 

shells.

The principles leading an improved lower bound limit load called the m-method  

(as developed in earlier studies) are discussed in detail in Chapters 2 and 3. These include 

theorem of nesting surfaces, leap-frogging of iterations to the limit state and Mura’s 
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extended variational formulation. The m-method has been shown to provide acceptable 

approximations to limit load of various mechanical components and thus is employed as 

the basis of the calculation of the recommended remaining strength factors proposed in 

the current study.

The effects of local loads on a shell structure are normally restricted to a limited 

volume in the vicinity of the loads. This kinematically active volume participates in 

plastic action when local damage occurs in a component and is termed as the reference 

volume. The use of reference volume instead of the entire volume of the structure gives 

better approximation of limit load multipliers. In the present research, reference volume is 

characterized by using decay lengths of shells.

A decay length can be defined as the distance from the applied force (or moment) 

to the point where the effect of the force is almost completely dissipated or becomes 

negligible. In the current study, decay lengths for spherical and cylindrical shells are 

derived based on elastic shell theories. Decay lengths were shown to depend on shell 

radius and thickness. They were derived as functions of Rh . A decay length for thin 

shell is smaller than that for thicker shell. It was also concluded that decay lengths in 

shells with large curvature are likely to be smaller than shells with small curvature. 

Therefore, thinner and highly curved shells possess smaller reference volume (or 

influence zones). Small reference volume implies more severe damage.

The derived decay lengths are also used to specify the limit of what can be called 

“local” damage. The local damage limit is defined by the maximum size of damage for 
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which the edge effects at the discontinuities have not damped out at the centre of the 

damage. For this case, the pure membrane stress effect is not expected to occur at any 

place inside the damaged area. If the damaged spot is larger than this limit, the “failure” 

will be due to pure membrane action inside the damaged spot as if a “global” damaged 

spot has occurred. This also implies that interaction between two local damaged areas will 

not occur if the distance between the outer edges of the damaged areas is at least equal to 

twice the decay lengths. A linear interaction curve based on decay lengths in the axial and 

circumferential directions is also proposed for cylindrical shells.

The main factors considered to influence the behaviors of pressurized components 

containing corrosion damage or thermal hot spots are material characteristics and 

geometric properties of the damaged spot and the shell. Three alternative methods to 

calculate remaining strength factors (RSF) for spherical and cylindrical shells with local

damage are recommended.

In all the three methods, the lower bound RSFL is suggested for global damage. 

The first recommended method uses RSF for small damaged spots and a linear transition 

between RSF  and RSFL for intermediate spots. It was shown that for highly localized 

damage, the first recommended method can offer highly conservative estimation. This is 

due to dominance of stretching action in the shell with very small damage rather than 

bulging effect. The threshold to dominance of membrane (as opposed to bulging) is 

suggested using an approximate method. The second recommended procedure uses linear 

transitions from the point of no damage to RSF at the threshold to dominance of 
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membrane effect and from that point to RSFL. The third method recommends a parabolic 

variation from the point of no damage to the local damage limit. 

The usefulness and effectiveness of the three recommended methods are 

demonstrated through illustrative examples. The recommended approaches are validated 

by full scale inelastic finite element analysis which is regarded as a Level 3 assessment.

9.2. CONCLUSIONS

Major conclusions of the present research are summarized below.

1. The present research developed recommendations for Level 2 structural integrity 

assessment procedures to evaluate the remaining strength factors for spherical and 

cylindrical pressure vessels containing corrosion damages or thermal hot spots. The 

recommendations use limit load multipliers. Three methods based on the concept of 

reference volume and the m-method are proposed. They are validated using nonlinear 

FE analysis.

2. Decay lengths for spherical and cylindrical shells based on elastic solutions 

subject to local actions are proposed. These decay lengths are used to identify the extent 

of reference volume participating in plastic action. Some observations on decay lengths 

can be concluded as follows:
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 Decay lengths in both spheres and cylinders are functions of Rh , where, R is 

shell radius and h is shell thickness. 

 Thinner shells possess smaller decay lengths than thicker shells (with the same 

radius). In other words, damage in thin shells is more localized and hence 

more severe.

 Shells with larger curvature possess smaller decay lengths. Thus, decay length 

of a spherical shell possessing double curvature (in two directions) is smaller 

than that of a similar cylindrical shell with single curvature. 

3. In the present work, local damage is defined as a damaged area inside which pure 

membrane action is not present. For damaged areas larger than the local damaged limit,

the effects from discontinuities have dissipated and become negligible at the middle of 

the damaged spot. This limit is estimated by using decay lengths. Pressure vessels with 

damaged spots larger than the limit will therefore “fail” by pure membrane action inside 

the damaged area and the remaining strength is calculated by using classical lower bound 

RSFL.

4. Interaction of damage in circumferential and axial directions of cylindrical shells 

can be determined by using a linear interaction curve. The slope of the proposed envelope 

is calibrated using limit analyses. It was shown that damage in the circumferential 

direction deteriorates structural integrity of the cylinder less than that in the axial 

direction. This is because hoop stress is twice of longitudinal stress.
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5. It is shown that stretching action dominates the behavior of pressure components 

with highly localized damage. The damaged spot tends to open up instead of forming a 

bulge. This gives rise to the second limit which considers the threshold to dominance of 

stretching action using an approximate equilibrium equation. 

6. For intermediate and large damaged spots, bulging occurs. Bulging displacement 

is proposed to be estimated by using geometries of the damaged spot and the pressure 

vessel and is used as another limit criterion (for serviceability). 

7. The remaining strength factors used in the present study are observed to possess 

shape independence feature. They are only a function of the geometrical and material 

property ratios for a given situation and are independent of the actual applied (or 

operating) load. Hence, the theory for the calculation of RSF is very likely common to all 

shapes and sizes of pressure vessels. The shape influences the decay lengths and the

reference volumes. The same arguments as discussed in the current research should apply 

to other types of geometries. Therefore, similar simplified level 2 estimations of RSF can 

be proposed.

8. Some observations have been made based on results from inelastic FEA:

 in most cases, RSF for external corrosion is slightly lower than the RSF for 

internal corrosion.

 R/h ratio, rather than the individual values of R and h, affects RSF of shells 

containing local damage.
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 Sims (1992) recommended RSF for spherical shell to be independent of the

R/h ratio. It was shown that although the RSF for thinner and thicker shells are 

not much different for very small or very large damaged areas, the difference

can be significant for intermediate size damage. 

 The use of an elastic-perfectly plastic model with maximum stress equal to 

flow stress instead of yield stress to account for material strain hardening is 

justifiable. 

9.3. RECOMMENDATIONS FOR FUTURE RESEARCH

Recommendations for future work are as following.

1. In the present research, an irregular profile of corrosion damage or a thermal hot 

spot is represented by an equivalent circular area in a sphere or an equivalent rectangular 

damaged area in a cylindrical pressure vessel. In reality, damaged spots generally have 

irregular profiles. Although the proposed approach assumes uniform damage and does not 

account for the irregularity, the method can be extended to determine the remaining 

strength factors for an irregular profile including irregular damaged area and thickness 

loss (Figure 9.1). The Level 2 Assessment rules of API 579 (Sec. 5.4.1.2) provide for a 

better estimate of the structural integrity of a component when significant variations in 

the thickness profile occur within the region of metal loss. A proper assessment including 

such variation will be beneficial particularly in the cases where the geometries of 
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The overestimated damage zone

Irregular profiles of 
damaged spot

Uniform equivalent 
damaged spot

damaged spots considerably change and the assumption of uniform damage is 

conservative but can greatly overestimate the damage (the shaded zones).

2. Equivalent damaged areas used in the current study are obtained by the outside 

bound of the irregular damaged areas as well as the minimum corroded thickness. For 

damage with highly irregular geometries, more suitable equivalent properties must be

examined.

Surface area of the damage Through the thickness profile of the damage

Figure 9.1 An example of a highly irregular damaged spot

3. The present research studied corrosion and hot spot damage which is sufficiently 

remote from other major structural discontinuities (such as nozzles, elbows, tees, etc.) or 

geometry changes (i.e., cone-to-cylinder junctions, knuckles in hemispherical heads, etc.).

Therefore, they are not affected by them. However, these areas are important since they 

are common in piping systems that experience Flow Accelerated Corrosion. Two adjacent 

damage areas are also assumed not to interact. Procedures to calculate the remaining 

strength factor of pressure vessels with damaged spots near structural discontinuities or 

multiple interacting damaged spots need to be studied.
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4. It is shown that internal and external corrosion damage of the same size have a 

different effect on the structural integrity of pressure vessels. However, the procedure 

proposed in the present study does not differentiate between the two types of damage and 

offers the same remaining strength factor for internal and external corrosion with the 

same damaged area and thickness loss. Further study on an approach to incorporate this 

distinction would be useful.

5. The proposed Fitness-for-Service assessments in the current research have been 

shown to offer lower bound remaining strength factor estimates to pressure vessels of 

spherical and cylindrical shapes. Since the remaining strength factors used in the present 

study are expected to be shape-independent, the method can also be employed to evaluate 

corrosion damage and hot spots in other shapes of pressure vessels. However, decay 

lengths for each shape of pressure component need to be investigated prior to 

implementation of the proposed method.

6. The changeover from the dominance of stretching action to bulging action has 

been estimated using approximate equilibrium equations. A more thorough analysis of 

small shell geometries (with fixed edges) subject to pressure can be included to improve 

Method II. 

7. Interaction of damage in the axial and circumferential directions of cylindrical 

shells was investigated in the present study. Similar interaction curves can also be 

examined for spherical shells with elliptical damaged areas.
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8. The current study investigates pressure vessels which operating condition is not in 

the creep range of material. This can be quite a severe restriction for thermal hot spots. 

Study of creep effects can be in such cases can be of interest.

9. An experimental study with strain gauges set up can be conducted to obtain the 

collapse pressure of a corroded component as well as to investigate the behavior of the 

damaged pressure components at limit state. Results from such experiments can be used 

to validate the accuracy and effectiveness of the proposed methods. 
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APPENDIX A

NUMERICAL RESULTS 

This section presents some supplementary results for the inelastic remaining strength 

factors of damaged spheres and cylinders to those given in Chapter 7 and 8. 

Tables A.1 to A.19 and Figure A.1 to A.6 show comparisons of the inelastic RSF

obtained from FEA and the recommended RSF’s for different cases. It can be seen that 

the recommended RSF’s are comparable and conservative in all the cases.
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Table A.1 RSF for spherical shell (R/h =20) with remaining corroded thickness 5h/6

a RSFU RSFα RSFL RSFr-1 RSFi-external RSFi-internal

3° 0.997 0.928 0.826 0.927 0.974 0.979

5° 0.994 0.926 0.826 0.926 0.961 0.976

8° 0.987 0.922 0.826 0.920 0.930 0.969

12° 0.976 0.917 0.826 0.894 0.893 0.947

15° 0.969 0.913 0.826 0.875 0.872 0.926

20° 0.957 0.907 0.826 0.842 0.851 0.882

25° 0.957 0.901 0.826 0.826 0.834 0.852

35° 0.946 0.891 0.826 0.826 0.824 0.824
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Table A.2 RSF for spherical shell (R/h =20) with remaining corroded thickness 2h/3

a RSFU RSFα RSFL RSFr-1 RSFi-external RSFi-internal

3° 0.993 0.802 0.656 0.801 0.961 0.975

5° 0.984 0.800 0.656 0.800 0.915 0.965

8° 0.968 0.796 0.656 0.789 0.833 0.953

12° 0.944 0.791 0.656 0.749 0.767 0.868

15° 0.927 0.787 0.656 0.720 0.718 0.784

20° 0.901 0.779 0.656 0.670 0.685 0.705

25° 0.878 0.772 0.656 0.656 0.675 0.673

35° 0.841 0.758 0.656 0.656 0.661 0.655
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Table A.3 RSF for spherical shell (R/h =20) with remaining corroded thickness h/2

a RSFU RSFα RSFL RSFr-1 RSFi-external RSFi-internal

3° 0.987 0.590 0.488 0.591 0.942 0.969

5° 0.969 0.594 0.488 0.594 0.861 0.941

8° 0.938 0.600 0.488 0.587 0.725 0.864

12° 0.897 0.603 0.488 0.554 0.590 0.625

15° 0.868 0.605 0.488 0.531 0.544 0.557

20° 0.826 0.605 0.488 0.491 0.514 0.511

25° 0.791 0.603 0.488 0.488 0.503 0.500

35° 0.761 0.600 0.488 0.488 0.497 0.486
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Table A.4 Comparison of RSFr from the three methods and RSFi  for spherical shells

(R/h =20, remaining corroded thickness hc = 5h/6)

a RSFU RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

3° 0.997 0.928 0.967 0.953 0.993 0.975

5° 0.994 0.926 0.946 0.929 0.983 0.939

8° 0.987 0.920 0.917 0.898 0.949 0.891

12° 0.976 0.894 0.892 0.843 0.896 0.865

15° 0.969 0.875 0.873 0.863 0.866 0.849

20° 0.957 0.842 0.842 0.828 0.842 0.835

25° 0.946 0.826 0.826 0.826 0.834 0.832

35° 0.918 0.826 0.826 0.826 0.824 0.825
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Table A.5 Comparison of RSFr from the three methods and RSFi  for spherical shells

(R/h =20, remaining corroded thickness hc = 2h/3)

a RSFU RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

3° 0.994 0.791 0.887 0.916 0.961 0.975

5° 0.986 0.790 0.812 0.866 0.915 0.965

8° 0.970 0.787 0.770 0.801 0.833 0.953

12° 0.948 0.751 0.739 0.732 0.767 0.868

15° 0.931 0.724 0.715 0.693 0.718 0.784

20° 0.906 0.679 0.675 0.654 0.685 0.705

25° 0.883 0.645 0.645 0.645 0.675 0.673

35° 0.845 0.645 0.645 0.645 0.661 0.655
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Table A.6 Comparison of RSFr from the three methods and RSFi for spherical shells

(R/h =20, remaining corroded thickness hc = h/2)

a RSFU RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

3° 0.990 0.590 0.709 0.879 0.942 0.968

5° 0.976 0.593 0.587 0.807 0.861 0.941

8° 0.950 0.596 0.571 0.713 0.725 0.864

12° 0.914 0.569 0.550 0.613 0.590 0.625

15° 0.888 0.548 0.534 0.557 0.544 0.557

20° 0.848 0.514 0.508 0.501 0.514 0.511

25° 0.814 0.488 0.488 0.488 0.503 0.500

35° 0.758 0.488 0.488 0.488 0.497 0.486
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Table A.7 Comparison of RSFr from the three methods and RSFi for spherical shells

(R/h =58.9, remaining corroded thickness hc = 5h/6)

a RSFU RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

3° 0.994 0.925 0.964 0.952 0.975 0.993

5° 0.986 0.916 0.914 0.895 0.939 0.983

8° 0.973 0.884 0.883 0.854 0.891 0.949

12° 0.958 0.842 0.841 0.825 0.862 0.896

15° 0.947 0.822 0.822 0.822 0.849 0.867

20° 0.932 0.822 0.822 0.822 0835 0.842

25° 0.920 0.822 0.822 0.822 0.832 0.834
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Table A.8 Comparison of RSFr from the three methods and RSFi for spherical shells

(R/h =58.9, remaining corroded thickness hc = 2h/3)

a RSFU RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

3° 0.986 0.803 0.831 0.869 0.935 0.976

5° 0.970 0.795 0.782 0.799 0.832 0.949

8° 0.944 0.749 0.741 0.721 0.754 0.811

12° 0.912 0.688 0.685 0.665 0.692 0.714

15° 0.890 0.659 0.659 0.659 0.678 0.687

20° 0.861 0.659 0.659 0.659 0.669 0.672

25° 0.837 0.659 0.659 0.659 0.671 0.664
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Table A.9 Comparison of RSFr from the three methods and RSFi for spherical shells

(R/h =58.9, remaining corroded thickness hc = h/2)

a RSFU RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

3° 0.976 0.605 0.601 0.806 0.868 0.967

5° 0.948 0.604 0.581 0.702 0.715 0.828

8° 0.905 0.568 0.553 0.587 0.598 0.592

12° 0.853 0.519 0.514 0.505 0.518 0.526

15° 0.820 0.496 0.496 0.496 0.507 0.508

20° 0.776 0.496 0.496 0.496 0.501 0.503

25° 0.741 0.496 0.496 0.496 0.499 0.497
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Table A.10 Comparison of RSFr from the three methods and RSFi for spherical shells 

(R/h =20) with thermal hot spots Th = 316 °C

a RSFU RSFr-1 RSFr-2 RSFr-3 inelasticRSF

8° 0.985 0.868 0.867 0.854 0.922

12° 0.973 0.836 0.834 0.804 0.865

18° 0.955 0.787 0.786 0.755 0.795

25° 0.936 0.740 0.740 0.740 0.745

Table A.11 Comparison of RSFr from the three methods and RSFi for spherical shells 

(R/h =20) with thermal hot spots Th = 204 °C

a RSFU RSFr-1 RSFr-2 RSFr-3 inelasticRSF

8° 0.991 0.940 0.939 0.920 0.957

12° 0.984 0.919 0.918 0.892 0.932

18° 0.974 0.887 0.887 0.865 0.931

25° 0.963 0.857 0.857 0.857 0.913
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Table A.12 Comparison of RSFr from the three methods and RSFi for spherical shells 

(R/h =20) with thermal hot spots Th = 94.4 °C

a RSFU RSFr-1 RSFr-2 RSFr-3 inelasticRSF

8° 0.994 0.965 0.965 0.950 0.967

12° 0.990 0.951 0.951 0.932 0.952

18° 0.983 0.929 0.930 0.915 0.931

25° 0.976 0.910 0.910 0.910 0.913

Table A.13 Comparison of RSFr from the three methods and RSFi for spherical shells 

(R/h =58.9) with thermal hot spots Th = 316 °C

a RSFU RSFr-1 RSFr-2 RSFr-3 inelasticRSF

5° 0.969 0.864 0.875 0.847 0.931

7° 0.974 0.836 0.842 0.804 0.886

10° 0.959 0.794 0.798 0.760 0.828

15° 0.936 0.740 0.740 0.740 0.764

20° 0.916 0.740 0.740 0.740 0.747



274

Table A.14 Comparison of RSFr from the three methods and RSFi for spherical shells 

(R/h =20) with thermal hot spots Th = 204 °C

a RSFU RSFr-1 RSFr-2 RSFr-3 inelasticRSF

5° 0.991 0.937 0.942 0.915 0.950

7° 0.985 0.919 0.923 0.892 0.947

10° 0.976 0.892 0.894 0.868 0.915

15° 0.963 0.857 0.857 0.857 0.878

20° 0.952 0.857 0.857 0.857 0.863

Table A.15 Comparison of RSFr from the three methods and RSFi for spherical shells 

(R/h =20) with thermal hot spots Th = 94.4 °C

a RSFU RSFr-1 RSFr-2 RSFr-3 inelasticRSF

5° 0.994 0.963 0.967 0.947 0.983

7° 0.990 0.951 0.954 0.932 0.971

10° 0.985 0.933 0.935 0.917 0.951

15° 0.979 0.910 0.910 0.910 0.927

20° 0.969 0.910 0.910 0.910 0.915
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Table A.16 Comparison of RSF from the three recommended methods and inelastic 

analysis for corrosion damage in cylindrical shells (R/h =33.6, hc = 2h/3, r = 1.0)

a (in.) RSFu RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

2.5 0.991 0.805 0.794 0.859 0.903 0.948

3.5 0.984 0.798 0.778 0.814 0.846 0.892

5.0 0.972 0.769 0.753 0.756 0.788 0.809

10.0 0.933 0.670 0.671 0.661 0.702 0.694

12.5 0.915 0.660 0.660 0.660 0.692 0.682
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Table A.17 Comparison of RSF from the three recommended methods and inelastic 

analysis for corrosion damage in cylindrical shells (R/h =33.6, hc = h/2, r = 0.2)

a (in.) RSFu RSFr-1 RSFr-2 RSFr-3
internal

inelasticRSF external
inelasticRSF

5.0 0.988 0.598 0.674 0.870 0.967 0.957

10.0 0.967 0.601 0.585 0.759 0.828 0.885

15.0 0.945 0.596 0.568 0.668 0.742 0.694

20.0 0.924 0.575 0.550 0.595 0.646 0.617

30.0 0.885 0.533 0.515 0.508 0.550 0.550



277

Table A.18 Comparison of RSF from the three recommended methods and inelastic 

analysis for thermal hot spots in cylindrical shells (R/h =33.6, Th = 316 °C, r =1)

a (in.) b (in.)
URSF

1rRSF 2rRSF 3rRSF inelasticRSF

2.0 2.0 0.997 0.873 0.888 0.912 0.957

3.0 3.0 0.993 0.872 0.861 0.875 0.919

5.0 5.0 0.985 0.841 0.830 0.814 0.842

7.0 7.0 0.976 0.806 0.799 0.760 0.799

10.0 10.0 0.963 0.753 0.740 0.740 0.766

15.0 15.0 0.940 0.740 0.740 0.740 0.743

18.0 18.0 0.930 0.740 0.740 0.740 0.739
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Table A.19 Comparison of RSF from the three recommended methods and inelastic 

analysis for thermal hot spot in cylindrical shells (R/h =33.6, Th = 316 °C, r =0.3)

a (in.) b (in.)
URSF

1rRSF 2rRSF 3rRSF inelasticRSF

5.0 1.5 0.995 0.872 0.877 0.915 0.957

10.0 3.0 0.986 0.867 0.844 0.847 0.880

15.0 4.5 0.976 0.832 0.815 0.796 0.833

20.0 6.0 0.967 0.796 0.786 0.761 0.798

24.0 7.2 0.959 0.768 0.763 0.745 0.777

28.8 8.6 0.951 0.740 0.740 0.740 0.766

32.0 9.6 0.946 0.740 0.740 0.740 0.759
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Figure A.1 Method II recommendation: 2rRSF and RSFi for corrosion damage in

spherical shells with R/h ratio = 58.9

Figure A.2 Method II recommendation: 2rRSF and RSFi for thermal hot spots in

spherical shells with R/h ratio = 58.9
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spherical shells with R/h ratio = 58.9

Figure A.4 Method III recommendation: 3rRSF and RSFi for thermal hot spots in 

spherical shells with R/h ratio = 58.9
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Figure A.5 Comparison of recommended RSF and RSFi for thermal hot spots in a

spherical shell with R/h ratio = 58.9
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Figure A.6 Comparison of recommended RSF and RSFi for thermal hot spots in a

spherical shell with R/h ratio = 20
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APPENDIX B

AIDS FOR RSF ASSESSMENT

The current section provides useful aids for Level 2 RSF evaluation of damaged

spheres and cylinders. This includes MATLAB command files and Excel spreadsheet 

files that can be easily used or customized to obtain the recommended remaining strength 

factors. They can be adapted by changing the input data to correspond to the case of 

interest. The MATLAB command files to calculate RSF and estimated bulging 

displacement are listed along with examples of input data and output arguments. The 

Excel spreadsheet files are recorded in a compact disc attached with the dissertation. 

Sample prints of the spreadsheet files are also presented. The spreadsheet files can do all 

the calculations for RSF and can be used as alternative means for MATLAB functions

B.1. MATLAB SCRIPTS FOR RSF CALCULATION 

The MATLAB script and functions (M-files) implemented to determine the 

recommended remaining strength factors are listed below. 
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Figure B.1 Flow Chart for the MATLAB script

When the main script is executed, The user is asked to input necessary data such as 

shell and damaged area properties and operating condition. The data_input m-file stores 

the input properties which will be used through out the program. Function bulge

determines an approximate bulging radius and displacement. Volume of the damaged 

spot, adjacent volume and reference volume are obtained by using function RefVol. The 

present program automatically acquires material properties for SA 516 grade 55 based on 

READ
- Shell and damaged area properties 
- Operating condition

START

Calculate bulging radius and 
bulging displacement

Calculate damaged volume, 
adjacent volume 

and reference volume

READ Material properties 
for SA 516 Gr. 55

WRITE Material properties 
for the current condition

Calculate equivalent stresses
based on reference volume

Calculate three  
recommended RSFs

END
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operating temperature and stored in parameter mp_data (a column array with 4 quantities 

in the order: Young’s modulus, coefficient of thermal expansion, yield stress at 

temperature of hot spot, yield stress at operating temperature). For other materials with 

known properties, this array can be input directly to the main program and the execution 

of function MP can be omitted. The RSF from the three recommended methods are then 

calculated based on Tresca or von-Mises criteria depending upon the user demand. Note 

that each of the m-files can also be executed on its own if only some particular parameters 

are of interest (provided that the necessary data are stored at the right places).A simple 

flow chart of the process described above is provided in Figure B.1.

B.1.1. Main Script

% Main Program

% Data input 

[ShapeType, Data] = data_input   

% Calculate bulging radius and displacement

[delta_b] = bulge(ShapeType, Data);          

% Obtain Reference Volume

mp_data = [0 0 0 0];

[V] = RefVol(ShapeType, Data, mp_data);   

   

% Get Material Properties 

[mp_data] = MP(ShapeType, Data, V);           

% Calculate Equivalent stresses 

[se, se_c] = eqvS(ShapeType, Data, mp_data);

% Calculate Three Recommended Remaining Strength Factors

[RSF] = RSFs(ShapeType, Data, mp_data, V, se, se_c)
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B.1.2. M-File for Data Input

% Function for data input

function [ShapeType, Data] = data_input

clc

% input shell and damaged spot geometries

disp('  ')

disp ('                    DATA INPUT ')

check = 'N';

while (check ~= 'Y') && (check ~= 'y')

% continue the loop as long as check is not Y or y

    disp('  ')

    disp('---------------------------------------------------------')

    disp ('   Pressure vessel Geometries')

    disp('---------------------------------------------------------')

    disp('  ')

    shape = input('Pressure vessel shape (C for cylinder, S for sphere): ','s');

    Ri = input('Inner Radius (in.): ');

    h  = input('Shell Thickness (in.): ');

    disp('  ')

    disp('---------------------------------------------------------')

    disp('   Operating conditions.')

    disp('---------------------------------------------------------')

    disp('  ')

    Pd = input('Design Internal Pressure (psi): ');

    Tc = input('Operating Temperature (F): ');

    disp('  ')

    disp('---------------------------------------------------------')

    disp('   Damage conditions and dimensions.')

    disp('---------------------------------------------------------')

    disp('  ')

    type = input('Type of damaged spot (H for hot spot, C for corrosion): ', 

's');

    if (type == 'H') || (type == 'h')

        Th = input('Temperature of the hot spot (F): ');

    elseif (type == 'C') || (type == 'c')

        hc = input('Remaining thickness (in.): ');
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    else

        disp('Invalid type of damaged spot.')

        check = 'N';

    end

    if (shape == 'S') || (shape == 's')

        phi_a_degree = input('Included angle of damaged spot (degree): ');

        % Half of the included angle

        phi_a = phi_a_degree/180*pi/2;                               

    elseif (shape == 'C') || (shape == 'c')

        A = input('Size of damaged spot along the circumferential direction 

(in.): ');

        B = input('Size of damaged spot along the axial direction (in.): ');

        a = A/2; b = B/2;

    else

        disp('Invalid pressure vessel shape.')

        check = 'N';

    end

    disp('  ')

    disp('Please check all your input data.')

    check = input('Is your input correct? (y,n): ', 's');

    

    % Output data

    ShapeType = [shape; type];

    if (ShapeType(1,1) == 'C') || (ShapeType(1,1) == 'c')        

        if (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c')

            Data = [Ri, h, Pd, Tc, hc, a, b];

        elseif (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

            Data = [Ri, h, Pd, Tc, Th, a, b];

        else

            disp('Some input is invalid. Please enter your data again.') 

        end

    elseif (ShapeType(1,1) == 'S') || (ShapeType(1,1) == 's')

        if (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c')

            Data = [Ri, h, Pd, Tc, hc, phi_a];

        elseif (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

            Data = [Ri, h, Pd, Tc, Th, phi_a];

        end

    else

        check = 'N';
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        disp('Some input is invalid. Please enter your data again.')

    end

end

% Output

B.1.3. M-File for Bulging Displacement Calculation

% Function used to estimate bulging displacement in spherical or 

cylindrical shells

function [delta_b] = bulge(ShapeType, Data);

% For corrosion - ShapeType(2,1) = 'C'

% For hot spot  - ShapeType(2,1) = 'H'

% For cylinder  - ShapeType(1,1) = 'C'; Data = [Ri, h, Pd, Tc, Th, a, b]

% For sphere    - ShapeType(1,1) = 'S'; Data = [Ri, h, Pd, Tc, Th, phi_a]

disp('  ')

disp('---------------------------------------------------------')

disp ('           CALCULATION OF BULGE DISPLACEMENT')

disp('---------------------------------------------------------')

disp('  ')

strain = input('Please enter the limit strain for bulging [default = 0.01]: ');

%If there is no input argument, strain = 0.01 by default

if isempty(strain)

    strain = 0.01;

end

% For cylindrical shells

if (ShapeType(1,1) == 'C') || (ShapeType(1,1) == 'c')    

    Ri = Data(1,1);   % Inner radius

    h  = Data(1,2); a = Data(1,6); b = Data(1,7); % Shell thickness

    c  = sqrt(a^2 + b^2); %radius of damaged area

    Ro = Ri + h; Shell outside radius

    theta_o = c/Ro; Included angle of damaged area

% For spherical shells

elseif (ShapeType(1,1) == 'S') || (ShapeType(1,1) == 's')    

    Ri = Data(1,1); h  = Data(1,2); theta_o = Data(1,6);   % Inner radius

    Ro = Ri + h; Shell outside radius
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else

    disp('Invalid pressure vessel shape. Please enter your data again.')

end

r_h     = Ro*sin(theta_o);

delta_o = Ro-sqrt(Ro^2-r_h^2);

Rb_thetab = strain*Ro*theta_o + Ro*theta_o;

% Input bound for Rb to calculate Rb and theta b numerically

check1 = 0;

% continue the loop as long as check1 = 0

while check1 == 0

    check2 = 0; 

    while check2 == 0

        jRb = input('Please enter your estimate bound for bulging radius (in.) 

:');

        kRb = input('and (in.): ');

        if jRb < kRb

            Rb = jRb:0.0005:kRb; % variables for bulging radius Rb

            check2 = 1;

        elseif kRb < jRb

            Rb = kRb:0.0005:jRb;

            check2 = 1;

        else

            disp('   The two values are equal. Please re-enter the esimate 

bound.')

        end

    end

    

    % numbers of Rb

    iRb = size(Rb); nRb = iRb(1,2);

    

    % Solve for Rb and thetab that give the y equation zero

    for i = 1:nRb

        y(i) = Rb(i)*sin(Rb_thetab/Rb(i)) - r_h;

    end

    

    done = 0;

    for i = 1:nRb
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        if done == 0

            if y(i)>0

                R_b = Rb(i);

                % bulge included angle (radians)

                theta_b = Rb_thetab/R_b;

                % bulge included angle (degrees)

                theta_b_deg = theta_b/pi*180;

                % bulge displacement

                delta_b = (R_b-delta_o)-(sqrt(R_b^2-r_h^2));

                done = 1;

            end

        end

    end

    disp('  ')

    disp('Estimate bulging Radius (in.): ') 

    disp(R_b)

    if (R_b ~= jRb) && (R_b ~= kRb) 

        disp('Estimate bulging displacement (in.):')

        disp(delta_b)

        disp('   ')

        check1 = 1;

    else

        disp('If the calculated bulging radius is equal to your either bound, 

please consider changing the bound.')

        % If the bound for bulge radius (Rb) does not give y = 0, the loop will

        restart and the program will ask for new bound for Rb. 

    end

end

B.1.4. M-File for Calculation of Reference Volume

% Reference Volume Calculation

function [V] = RefVol(ShapeType, Data, mp_data)

% For cylinder  - Data = [Ri, h, Pd, Tc, Th (or hc), a, b]

% For sphere    - Data = [Ri, h, Pd, Tc, Th (or hc), phi_a]
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Ri = Data(1,1);      h = Data(1,2);      Pd = Data(1,3);   

s_y = mp_data(1,3);  % stress at operating temperature

% For corrosion damage, obtain corroded thickness (hc) from the Data(1,5)

if (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c') 

    hc = Data(1,5);

else

    % For hot spot damage, hc = shell thickness (h)

    hc = h;

end

% Calculation

Rm    =  Ri + h/2;                                    % Mean radius

% For spherical shell

if (ShapeType(1,1) == 'S') || (ShapeType(1,1) == 's') 

    phi_a = Data(1,6);                              % Included angle for damaged

spot

    psi_d = 2.14*sqrt(h/Rm);                   % Decay angle for spherical shell

    

    VD = 2*pi*Rm^2*(1-cos(phi_a))*hc;                   % Volume of damaged spot

    VI = 2*pi*Rm^2*(cos(phi_a)-cos(psi_d))*h;         % Volume of adjacent zone

    VR = VD + VI;                                            % Reference volume

else 

    % For cylindrical shell

    a = Data(1,6);               % Half damage size in circumferential direction

    b = Data(1,7);                        % Half damage size in axial direction

    xc = 6.3*sqrt(h*Rm);             % Decay length in circumferential direction

    xl = 2.5*sqrt(h*Rm);                       % Decay length in axial direction

    

    VD = 4*a*b*hc;                                      % Volume of damaged spot

    VI = 4*h*((a+xc)*(b+xl)-a*b);                      % Volume of adjacent zone

    VR = VD + VI;                                             % Reference volume

end

% Output (Damaged volume, Adjacent volume, Reference volume)

V = [VD VI VR];
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B.1.5. M-File for Material Properties

% Material Properties for SA 516 Grade 55

% Young's modulus, thermal expansion coefficient and yield stress.

function [mp_data] = MP(ShapeType, Data, V)

% For cylinder  - Data = [Ri, h, Pd, Tc, Th (or hc), a, b]

% For sphere    - Data = [Ri, h, Pd, Tc, Th (or hc), phi_a]

checkC = 0;     

    % For hot spot damage, operating temperature (Tc) = Data(1,4) and hot spot

    temperature (Th) = Data(1,5).

if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

    Tc = Data(1,4); Th = Data(1,5);

    checkH = 0;

% For corrosion damage, operating temperature (Tc) = Data(1,4) and hot spot

    temperature (Th) is set as zero.

elseif (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c')

    Tc = Data(1,4); Th = 0; 

    checkH = 1;     s_yh = 0;

else

    checkC = 1;     checkH = 1;

end

   

% Material Properties 

Tt   = [    100     200     300     400     500     600];

Et   = [ 2.93e7  2.88e7  2.83e7  2.77e7  2.73e7  2.67e7];

alpt = [5.53e-6 5.89e-6 6.26e-6 6.61e-6 6.91e-6 7.17e-6];

s_yt = [ 3.00e4  2.73e4  2.66e4  2.57e4  2.45e4  2.22e4];

n = 1; iTt = size(Tt); nTt = iTt(1,2);

while checkC == 0

    if n < nTt

        if Tc < Tt(n)

            i = n-1;

            if i == 0
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                disp ('Invalid input for operating temperature. The minimum

temperature is (F) :')

                disp(Tt(1))

                Ec = 0; alpc = 0; s_yc = 0;

                checkC = 1;

            else

                deltaT = Tc - Tt(i); 

                Ec     = Et(i) + deltaT*(Et(n)-Et(i))/(Tt(n)-Tt(i));

                alpc   = alpt(i) + deltaT*(alpt(n)-alpt(i))/(Tt(n)-Tt(i));

                s_yc   = s_yt(i) + deltaT*(s_yt(n)-s_yt(i))/(Tt(n)-Tt(i));   

                checkC = 1;

            end

        elseif Tc == Tt(n)

            Ec = Et(n);

            alpc = alpt(n);

            s_yc = s_yt(n);

            checkC = 1;

        else

            n = n+1;

        end

    else

        disp ('Invalid input for operating temperature. The maximum temperature 

is (F):')

        disp(Tt(nTt))

        Ec = 0; alpc = 0; s_yc = 0;

        checkC = 1;

    end

end

n = 1;   

while checkH == 0

    if n < nTt

        if Th < Tt(n)

            i = n-1;

            if i == 0

                disp ('Invalid input for hot spot temperature. The minimum 

temperature is (F):')

                disp(Tt(1))

                Eh = 0; alph = 0; s_yh = 0;

                checkH = 1;
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            elseif Th == Tt(n)

                Eh = Et(i);

                alph = alpt(i);

                s_yh = s_yt(i);

                checkH = 1;

            else

                deltaT = Th - Tt(n); 

                Eh    = Et(i) + deltaT*(Et(n)-Et(i))/(Tt(n)-Tt(i));

                alph  = alpt(i) + deltaT*(alpt(n)-alpt(i))/(Tt(n)-Tt(i));

                s_yh = s_yt(i) + deltaT*(s_yt(n)-s_yt(i))/(Tt(n)-Tt(i));   

                checkH = 1;

            end            

        else

            n = n+1;

        end

    elseif Th == Tt(n)

        Eh = Et(n);

        alph = alpt(n);

        s_yh = s_yt(n);

        checkH = 1;

    else

        disp ('Invalid input for hot spot temperature. The maximum temperature 

is (F):')

        disp(Tt(nTt))

        Eh = 0; alph = 0; s_yh = 0;

        checkH = 1;

    end

end

VD = V(1,1); % Volume of damaged spot

VI = V(1,2); % Volume of adjacent zone

VR = V(1,3); % Reference volume

% For hot spot problem, calculate effective Young’s modulus and thermal 

% coefficient by weight average of the volume involved

if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

    Ee   = (Eh*VD + Ec*VI)/VR;

    alpe = (alph*VD + alpc*VI)/VR; 

elseif (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c')

    Ee = Ec; 
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    alpe = alpc;

end

% Output    

% Ee = Effective Young’s modulus; alpe = Effective thermal coefficient

% s_yc = yield stress of the material at operating temperature

% s_yh = yield stress of the material inside the hot spot

mp_data = [Ee alpe s_yc s_yh];

B.1.6. M-File for Calculation of Equivalent Stress

% Equivalent stresses

function [se, se_c] = eqvS(ShapeType, Data, mp_data)

Ri = Data(1,1);     h   = Data(1,2);       Pd = Data(1,3);        

Tc = Data(1,4);     hc  = Data(1,5);

Ee = mp_data(1,1);  alpe = mp_data(1,2); 

if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

    Th = Data(1,5);

    se  = abs(Pd*Ri/(2*h) - Ee*alpe*(Th-Tc)/2);    

    se_c = 0;

elseif (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c') 

    hc = Data(1,5);

    se  = Pd*Ri/(2*h);

    se_c = Pd*Ri/2/hc;

else

    disp(' Invalid type of damage.')

end

B.1.7. M-File for Calculation of Recommended RSFs

% RSF Recommendations

function [RSF] = RSFs(ShapeType, Data, mp_data, V, se, se_c)

Ri   = Data(1,1);     h    = Data(1,2);      Pd   = Data(1,3); 
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s_yc = mp_data(1,3);

Rm  = Ri + h/2; % Mean radius

% For corrosion damage, corroded thickness (hc) = Data(1,5)

if (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c')

    hc = Data(1,5);

else

% For hot spot damage, corroded thickness (hc) is set to be equal to shell 

% thickness

    hc = Data(1,2);

end

% For Spherical Shells

if (ShapeType(1,1) == 'S') || (ShapeType(1,1) == 's')

    phi_a = Data(1,6);

    % Decay angle for sphere

    psi_d = 2.14*sqrt(h/Rm);      

                      

    % Transition point (1/3 of the extent for damaged spot)

    Data(1,6) = psi_d/3;  

   % Determine Reference volume for the transition point

    [Vt] = RefVol(ShapeType, Data, mp_data); 

    % Threshold to dominance of membrane action

    phi_star = 0.5*hc/Rm*sqrt(3*s_yc/2/Pd);

    % Determine Reference volume for the threshold

    Data(1,6) = phi_star;                                

    [Vc] = RefVol(ShapeType, Data, mp_data);             

    Data(1,6) = phi_a;

    % Calculate multipliers 

    [All_m] = Multiplier(ShapeType, Data, mp_data, V, Vt, Vc, se, se_c);

    % Calculate RSF for sphere 

    [RSF] = RSFsphere(Data, All_m , hc, psi_d, phi_star);
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% For Cylindrical Shells

elseif (ShapeType(1,1) == 'C') || (ShapeType(1,1) == 'c')

    a = Data(1,6);   b = Data(1,7);

    r = b/a;

    % Decay length in the circumferential direction

    xc = 6.3*sqrt(h*Rm);                                 

    % Decay length in the axial direction

    xl = 2.5*sqrt(h*Rm);                             

    

    % Normalize variable for dimensions of damaged spot

    xi = a/4/xc + 3*b/4/xl;                              

    % Transition point (1/3 of the extent for damaged spot)

    at = 4*xc*xl/(r*xc+3*xl)/3;                          

    Data(1,6) = at;      

    % bt         

    Data(1,7) = r*at;   

    % Determine Reference volume for the transition point

    [Vt] = RefVol(ShapeType, Data, mp_data);    

    % Threshold to dominance of membrane action 

   star_test = 0;   w1 = 0.01;  w2 = w1*r;

    Plim = s_yc*5/8/Ri/(1+0.6*5/8/Ri);               % Maximum applied pressure

    while star_test == 0

        if r < 1                                             % w1 = shorter size

            x_star = (w2*sqrt(w2^2+3*w1^2)-w2^2)/w1;

            p_star = 3*s_yc*hc^2*(w1*x_star+w2^2)/(w2*x_star*(3*w1*w2

                       - w2*x_star));

        else                                                 % w2 = shorter size

            x_star = (w1*sqrt(w1^2+3*w2^2)-w1^2)/w2;

            p_star = 3*s_yc*hc^2*(w2*x_star+w1^2)/(w1*x_star*(3*w2*w1

                       - w1*x_star));

        End

        % Stretching action dominates when pressure more than p_star

        if Plim > p_star              

            star_test = 1;                                      % Terminate loop

            a_star = 0.6*w1;                           % Empirical factor = 0.6

        else
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            w1 = w1 + 0.01;                % Continue the loop by increasing w1

            w2 = w1*r;

        end

    end

    Data(1,6) = a_star;     

    % b_star    

    Data(1,7) = r*a_star;    

    % Determine Reference volume for the threshold

    [Vc] = RefVol(ShapeType, Data, mp_data); 

             

    xi_star   = 0.5*(a_star/4/xc + 3*a_star*r/4/xl);

    Data(1,6) = a;   Data(1, 7) = b;

    

    % Calculate multipliers 

    [All_m] = Multiplier(ShapeType, Data, mp_data, V, Vt, Vc, se, se_c);

    

    % Calculate RSF for cylinder

    [RSF] = RSFcylinder(Data, All_m, hc, xi, xi_star);

end

B.1.8. M-File for RSF in Sphere

% Recommended RSF for sphere

function [RSF] = RSFsphere(Data, All_m, hc, psi_d, phi_star)

Ri  = Data(1,1);     h    = Data(1,2);      Pd   = Data(1,3);      

phi_a = Data(1,6);

RSF_L = All_m(1,2);  RSF_alp = All_m(1,3);  RSF_alpt = All_m(1,4); 

RSF_alpc = All_m(1,5)

Rm = Ri + h/2;

%--------------------------------------------------------------------------

% Calculation of RSF_r1

%--------------------------------------------------------------------------

% Define Poisson's ratio = 0.3
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nu     = 0.3;       

% Shell constant                       

lambda = (3*(1-nu^2)*(Rm/h)^2)^(1/4);  

   

% Transition point at one-third of decay angle 

if phi_a < psi_d/3

    % For included angle less than the transition angle

    RSF_r1 = RSF_alp;

elseif phi_a < psi_d

    % For intermediate damage spot (larger than the transition angle, smaller 

    % than the decay angle)

    RSF_r1 = (1.5-0.637*lambda*phi_a)*RSF_alpt + (0.637*lambda*phi_a-0.5)*RSF_L;

else

    % For global damage (included angle larger than decay angle)

    RSF_r1 = RSF_L;

End

disp('   ')

disp('---------------------------------------------------------')

disp('   ')

disp('  Recommended RSF from the first method (RSF-r1): ')

disp(RSF_r1)

%--------------------------------------------------------------------------

% Calculation of RSF_r2

%--------------------------------------------------------------------------

% For included angle less than the threshold to dominance of membrane effect

if phi_a < phi_star; 

    RSF_r2 = 1 - (1-RSF_alpc)*(phi_a/phi_star);

elseif phi_a < psi_d

    % For intermediate damage spot (larger than the threshold, smaller than the

    %decay angle)

    RSF_r2 = RSF_alpc - (RSF_alpc-RSF_L)/(psi_d-phi_star)*phi_a;

Else

    % For global damage (included angle larger than decay angle)

    RSF_r2 = RSF_L;

end

disp('  Recommended RSF from the second method (RSF-r2): ')

disp(RSF_r2)



299

%--------------------------------------------------------------------------

% Calculation of RSF_r3

%--------------------------------------------------------------------------

if phi_a < psi_d

    % For local damage (included angle smaller than decay angle)

    RSF_r3 = (1-RSF_L)/(psi_d^2)*(phi_a^2) - 2*(1-RSF_L)/psi_d*phi_a + 1;

Else

    % For global damage (included angle larger than decay angle)

    RSF_r3 = RSF_L;

end

disp('  Recommended RSF from the third method (RSF-r3): ')

disp(RSF_r3)

% Output

RSF = [RSF_r1 RSF_r2 RSF_r3];

    

B.1.9. M-File for RSF in Cylinder

% Recommended RSF for cylinder

function [RSF] = RSFcylinder(Data, All_m, hc, xi, xi_star)

Ri  = Data(1,1);     h    = Data(1,2);      Pd   = Data(1,3);      

a   = Data(1,6);     b    = Data(1,7);

RSF_L = All_m(1,2);  RSF_alp = All_m(1,3);  RSF_alpt = All_m(1,4); 

RSF_alpc = All_m(1,5)

Rm = Ri + h/2;

%--------------------------------------------------------------------------

% Calculation of RSF_r1

%--------------------------------------------------------------------------

% Transition point at one-third of decay angle

if xi < 1/3                             

    RSF_r1 = RSF_alp;

elseif xi < 1

    RSF_r1 = RSF_alpt - 1.5*(RSF_alpt - RSF_L)*(xi-1/3);

else
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    RSF_r1 = RSF_L;

End

disp('   ')

disp('---------------------------------------------------------')

disp('   ')

disp('  Recommended RSF from the first method (RSF-r1): ')

disp(RSF_r1)

%--------------------------------------------------------------------------

% Calculation of RSF_r2

%--------------------------------------------------------------------------

if xi < xi_star; 

    RSF_r2 = 1 - (1-RSF_alpc)*(xi/xi_star);

elseif xi < 1

    RSF_r2 = RSF_alpc - (RSF_alpc-RSF_L)*(xi-xi_star)/(1-xi_star);

else

    RSF_r2 = RSF_L;

end

disp('  Recommended RSF from the second method (RSF-r2): ')

disp(RSF_r2)

%--------------------------------------------------------------------------

% Calculation of RSF_r3

%--------------------------------------------------------------------------

if xi < 1

    RSF_r3 = (1-RSF_L)*(xi^2 - 2*xi) + 1;

else

    RSF_r3 = RSF_L;

end

disp('  Recommended RSF from the third method (RSF-r3): ')

disp(RSF_r3)

% Output

RSF = [RSF_r1 RSF_r2 RSF_r3];    

B.1.10. M-File for Limit Load Multipliers

% Calculation of m_u, m_L and m_alpha
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function [All_m] = Multiplier(ShapeType, Data, mp_data, V, Vt, Vc, se, se_c)

Ri  = Data(1,1);     h    = Data(1,2);      Tc = Data(1,4);        

phi_a = Data(1,6);

Ee  = mp_data(1,1);  alpe = mp_data(1,2);   s_yc = mp_data(1,3);   

s_yh = mp_data(1,4); 

VD  = V(1,1);        VI   = V(1,2);         VR   = V(1,3);

VDt = Vt(1,1);       VIt  = Vt(1,2);        VRt  = Vt(1,3);

VDc = Vc(1,1);       VIc  = Vc(1,2);        VRc  = Vc(1,3);

Rm = Ri + h/2;   % Mean radius

% Specify yield criterion

disp('  ')

disp('---------------------------------------------------------')

disp('         CALCULATION OF LIMIT LOAD MULTIPLIERS')

disp('---------------------------------------------------------')

disp('  ')

cr = input('Please specify yield criterion (T for Tresca, V for von Mises) [V]: 

', 's');

% set yield criterion to be von Mises by default

if isempty(cr)

    cr = 'V';

end

% Calculation of lowerbound multiplier based on Mura's extended variational

% principle, m_d

check = 0;

while check == 0

    % For von Mises criterion

    if (cr == 'V') || (cr == 'v')

        % For corrosion problem, corroded thickness (hc) = Data (1,5)

        if (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c')

            hc = Data(1,5);

            m_d = sqrt((s_yc^2*VI + s_yh^2*VD)/(se^2*VR));   

        else 

            % For hot spot problem, set corroded thickness to shell thickness

            hc = Data(1,2);

            m_d = sqrt((s_yc^2*VR)/(se^2*VI + se_c^2*VD));  
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        end

        check = 1;

    % For Tresca criterion

    elseif (cr == 'T') || (cr == 't')

        % For corrosion problem, corroded thickness = Data (1,5)

        if (ShapeType(2,1) == 'C') || (ShapeType(2,1) == 'c')

            hc = Data(1,5);

            m_d = (s_yc*VI + s_yh*VD)/(se*VR);

        else

            % For hot spot problem, set corroded thickness to shell thickness

            hc = Data(1,2);

            m_d = (s_yc*VR)/(se*VI + se_c*VD);

        end

        check = 1;

    else

        disp('Invalid yield criterion.')

        cr = input ('Please re-enter yield criterion (T for Tresca, V for von 

Mises): ');

        % restart the loop, if the user specifies yield criterion other than T 

or V

    end

end

% Classical upperbound multiplier, m_u

m_u   = s_yc/se;

RSF_U = m_d/m_u;

% Classical lowerbound multiplier, m_L

if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

    m_L   = s_yh/se; 

else

    m_L   = se_c/se;

end

RSF_L = m_L/m_u;

% Improved lowerbound multiplier, m-alpha

z     = m_d/m_L;

m_alp = 2*m_d*((2*z^2+sqrt(z*(z-1)^2*(1+sqrt(2)-z)*(z-1+sqrt(2))))/...

        ((z^2+2-sqrt(5))*(z^2+2+sqrt(5))));

RSF_alp = m_alp/m_u;
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% Calculate m-alpha at the transition point 

check = 0;

while check == 0

    % For von Mises criteria

    if (cr == 'V') || (cr == 'v')

        % calculation of m_d at the transition angle for hot spot problems

        if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

            m_dt = sqrt((s_yc^2*VIt + s_yh^2*VDt)/(se^2*VRt));   

        else

            % calculation of m_d at the transition angle for corrosion problems

            m_dt = sqrt((s_yc^2*VRt)/(se^2*VIt+se_c^2*VDt));

        end

        check = 1;

    % For Tresca criteria

    elseif (cr == 'T') || (cr == 't')

       if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

            m_dt = (s_yc*VIt + s_yh*VDt)/(se*VRt);

        else

            m_dt = (s_yc*VRt)/(se*VIt + se_c*VDt);

        end

        check = 1;

    end

end

zt     = m_dt/m_L;

m_alpt = 2*m_dt*((2*zt^2+sqrt(zt*(zt-1)^2*(1+sqrt(2)-zt)*(zt-1+sqrt(2))))/...

        ((zt^2+2-sqrt(5))*(zt^2+2+sqrt(5))));

RSF_alpt = m_alpt/m_u;

% Calculate m-alpha at the threshold to dominance of membrane effect

% (phi = phi_star)

check = 0;

while check == 0

    % For von Mises criteria

    if (cr == 'V') || (cr == 'v')

        % calculation of m_d at the threshold for hot spot problems

        if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')
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            m_dc = sqrt((s_yc^2*VIc+s_yh^2*VDc)/(se^2*VRc));   

        else

            % calculation of m_d at the threshold for corrosion problems

            m_dc = sqrt((s_yc^2*VRc)/(se^2*VIc+se_c^2*VDc));

        end

        check = 1;

    % For Tresca criteria

    elseif (cr == 'T') || (cr == 't')

        % calculation of m_d for hot spot problems

        if (ShapeType(2,1) == 'H') || (ShapeType(2,1) == 'h')

            m_dc = (s_yc*VIc + s_yh*VDc)/(se*VRc);

        else

           % calculation of m_d for corrosion problems

            m_dc = (s_yc*VRc)/(se*VIc + se_c*VDc);

        end

        check = 1;

    end

end

% Calculation of RSF_alpha at the threshold to dominance of membrane effects

zc     = m_dc/m_L;

m_alpc = 2*m_dc*((2*zc^2+sqrt(zc*(zt-1)^2*(1+sqrt(2)-zc)*(zc-1+sqrt(2))))/...

        ((zc^2+2-sqrt(5))*(zc^2+2+sqrt(5))));

RSF_alpc = m_alpc/m_u;

% Output

% RSF_U = Classical upperbound multiplier

% RSF_L = Classical lowerbound multiplier

% RSF_alp = RSF_alpha for the damaged spot

% RSF_alpt = RSF_alpha at the transition angle (1/3 of the decay angle)

% RSF_alpc = RSF_alpha at the threshold to dominance of membrane effect

All_m = [RSF_U RSF_L RSF_alp RSF_alpt RSF_alpc];
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B.2. SAMPLES OF OUTPUT AND RESULTS FROM MATLAB 

FILES

Samples of the return output arguments from the MATLAB functions given in the 

previous section are given in this section. 

B.2.1. Hot Spot in Spherical Shell

  
                    DATA INPUT 

  

---------------------------------------------------------

   Pressure vessel Geometries

---------------------------------------------------------

  

Pressure vessel shape (C for cylinder, S for sphere): S

Inner Radius (in.): 21.0

Shell Thickness (in.): 0.375

  

---------------------------------------------------------

   Operating conditions.

---------------------------------------------------------

  

Design Internal Pressure (psi): 600

Operating Temperature (F): 100

  

---------------------------------------------------------

   Damage conditions and dimensions.

---------------------------------------------------------

  

Type of damaged spot (H for hot spot, C for corrosion): H

Temperature of the hot spot (F): 600

Included angle of damaged spot (degree): 10

  

Please check all your input data.

Is your input correct? (y,n): y
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---------------------------------------------------------

           CALCULATION OF BULGE DISPLACEMENT

---------------------------------------------------------

  

Please enter the limit strain for bulging [default = 0.01]: 0.01

Please enter your estimate bound for bulging radius (in.) :10

and (in.): 30

  

Estimate bulging Radius (in.): 

    10

If the calculated bulging radius is equal to your either bound, please consider 

changing the bound.

Please enter your estimate bound for bulging radius (in.) :5

and (in.): 10 

Estimate bulging Radius (in.): 

    7.2695

Estimate bulging displacement (in.):

    0.1614

---------------------------------------------------------

         CALCULATION OF LIMIT LOAD MULTIPLIERS

---------------------------------------------------------

Please specify yield criterion (T for Tresca, V for von Mises) [V]: v

All_m =

    0.9784    0.7400    0.8664    0.8650    0.8641

RSF_alpc =

    0.8641

---------------------------------------------------------

   

  Recommended RSF from the first method (RSF-r1): 

    0.8664
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  Recommended RSF from the second method (RSF-r2): 

   0.8120

  Recommended RSF from the third method (RSF-r3): 

    0.8650

B.2.2. Corrosion in Cylindrical Shell

  

                    DATA INPUT 

  

---------------------------------------------------------

   Pressure vessel Geometries

---------------------------------------------------------

  

Pressure vessel shape (C for cylinder, S for sphere): C

Inner Radius (in.): 21

Shell Thickness (in.): 0.625

  

---------------------------------------------------------

   Operating conditions.

---------------------------------------------------------

  

Design Internal Pressure (psi): 600

Operating Temperature (F): 100

  

---------------------------------------------------------

   Damage conditions and dimensions.

---------------------------------------------------------

  

Type of damaged spot (H for hot spot, C for corrosion): C

Remaining thickness (in.): 0.4

Size of damaged spot along the circumferential direction (in.): 15

Size of damaged spot along the axial direction (in.): 10

  

Please check all your input data.

Is your input correct? (y,n): y
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---------------------------------------------------------

           CALCULATION OF BULGE DISPLACEMENT

---------------------------------------------------------

  

Please enter the limit strain for bulging [default = 0.01]: 0.01

Please enter your estimate bound for bulging radius (in.) :10

and (in.): 20

  

Estimate bulging Radius (in.): 

   18.8755

Estimate bulging displacement (in.):

    0.3017

---------------------------------------------------------

         CALCULATION OF LIMIT LOAD MULTIPLIERS

---------------------------------------------------------

  

Please specify yield criterion (T for Tresca, V for von Mises) [V]: T

All_m =

    0.9687    0.5250    0.6491    0.6486    0.6455

RSF_alpc =

    0.6428

---------------------------------------------------------

   

  Recommended RSF from the first method (RSF-r1): 

    0.6191

  Recommended RSF from the second method (RSF-r2): 

    0.6021

  Recommended RSF from the third method (RSF-r3): 

    0.6473
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B.3. EXAMPLES OF SPREADSHEET EXCEL FILES

Excel spreadsheet files for calculation of recommended RSF are provided in the CD

attached to the dissertation. Sample outputs of the files are shown in this section.

B.3.1. Corrosion in Spherical Shell

Spherical shell and damaged spot properties

Inner radius (in.) = 21.9 Shell thickness (in.) = 0.375

Corroded thickness (in.) = 0.25

Included angle     
of damaged spot  (deg.) = 30 Operating Temperature (°F) = 100

R/h = 58.4
Design pressure = 392.10 psi

Outside radius = 22.275 in.

lambda = 9.8231

decay angle  = 0.2399 rad 13.74 degree
Transition angle = 0.0800 rad 4.58 degree

Threshold to bending = 0.0611 rad 3.50 degree

E = 29300000 psi

y  = 30000 psi

 5.530E-06

ec = 17272 psi Classical upperbound, mu = 2.620

ea = 11449 psi Classical lowerbound, mL = 1.737

Limit pressure = 1100.0 psi RSF at T = 0.8042

 RSF at L = 0.8061
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Recommended Remaining Strength Factors

phi_a(deg) phi_a (rad) VD VA VR m d z m a RSFU RSF RSFL RSFr - 1 RSFr - 2 RSFr - 3

0 0.000 0.00 33.47 33.47 2.6202 1.5086 2.1210 1.0000 0.8095 0.6629 0.809 1.000 1.000

1 0.017 0.12 38.31 38.43 2.6151 1.5056 2.1201 0.9980 0.8091 0.6629 0.809 0.945 0.953

2 0.035 0.47 43.14 43.62 2.6022 1.4982 2.1176 0.9931 0.8082 0.6629 0.808 0.889 0.909

3 0.052 1.07 47.96 49.03 2.5846 1.4880 2.1141 0.9864 0.8069 0.6629 0.807 0.834 0.869

4 0.070 1.90 52.76 54.66 2.5640 1.4762 2.1099 0.9786 0.8052 0.6629 0.805 0.799 0.832

5 0.087 2.97 57.55 60.52 2.5420 1.4635 2.1051 0.9701 0.8034 0.6629 0.798 0.785 0.799

6 0.105 4.27 62.32 66.59 2.5192 1.4504 2.0998 0.9614 0.8014 0.6629 0.782 0.771 0.770

7 0.122 5.81 67.07 72.88 2.4964 1.4372 2.0943 0.9527 0.7993 0.6629 0.767 0.757 0.744

8 0.140 7.58 71.80 79.38 2.4738 1.4243 2.0885 0.9441 0.7971 0.6629 0.751 0.743 0.722

9 0.157 9.60 76.51 86.10 2.4517 1.4116 2.0827 0.9357 0.7948 0.6629 0.736 0.729 0.703

10 0.175 11.84 81.19 93.03 2.4303 1.3992 2.0767 0.9275 0.7926 0.6629 0.721 0.715 0.688

11 0.192 14.32 85.85 100.17 2.4097 1.3873 2.0707 0.9197 0.7903 0.6629 0.705 0.701 0.676

12 0.209 17.03 90.48 107.52 2.3899 1.3759 2.0647 0.9121 0.7880 0.6629 0.690 0.687 0.668

13 0.227 19.98 95.09 115.07 2.3708 1.3650 2.0588 0.9048 0.7857 0.6629 0.674 0.673 0.664

14 0.244 23.15 99.67 122.82 2.3526 1.3545 2.0529 0.8979 0.7835 0.6629 0.663 0.663 0.663

15 0.262 26.56 104.21 130.77 2.3351 1.3444 2.0471 0.8912 0.7813 0.6629 0.663 0.663 0.663

16 0.279 30.19 108.73 138.92 2.3185 1.3348 2.0414 0.8848 0.7791 0.6629 0.663 0.663 0.663

17 0.297 34.06 113.21 147.27 2.3025 1.3256 2.0358 0.8787 0.7769 0.6629 0.663 0.663 0.663

18 0.314 38.15 117.66 155.80 2.2873 1.3169 2.0303 0.8729 0.7748 0.6629 0.663 0.663 0.663

19 0.332 42.46 122.07 164.53 2.2727 1.3085 2.0249 0.8674 0.7728 0.6629 0.663 0.663 0.663

20 0.349 47.00 126.44 173.45 2.2587 1.3004 2.0196 0.8620 0.7708 0.6629 0.663 0.663 0.663

21 0.367 51.77 130.78 182.55 2.2454 1.2927 2.0145 0.8569 0.7688 0.6629 0.663 0.663 0.663

22 0.384 56.75 135.08 191.83 2.2326 1.2854 2.0094 0.8520 0.7669 0.6629 0.663 0.663 0.663

Transition angle = 4.58 0.080 2.49 55.55 58.04 2.5513 1.4689 2.1072 0.9737 0.8042 0.6629

Threshold to stretching = 3.50 0.061 1.46 50.38 51.84 2.5745 1.4822 2.1121 0.9825 0.8061 0.6629

15.00 0.262 26.56 104.21 130.77 2.3351 1.3444 2.0471 0.8912 0.7813 0.6629 0.663 0.663 0.663
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Bulging calculations for spherical vessels

Assume that the bulge has a spherical shape and extends over all the damaged area

                     maximum permissible strain at the crown of the bulge, b =  0.01

a  = 0.5236 radians

0   = 0.746  in.

                  r = Ro/Rb    = 1.35221  (Choose to be greater than 1)

Use the solver option of the spreadsheet to set the target cell identified as "equation LHS" 

to zero by changing the value of the cell identified with r = Ro/Rb

Each time the input data is changed, go to Tools >Solver and select "solve"
In the next pop-up window, select "keep solver solution" option if the result is acceptable.

equation LHS 4.86E-07  (Should be zero)

                                    Bulge radius, Rb = 16.20  in.

                       Bulge included angle, b =  0.3575  radians

                 = 20.49  degrees

    Bulging displacement, b  =  0.2780   in. 
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B.3.2. Hot Spot in Cylindrical Shell

Cylindrical shell and damaged spot properties

                               Outer radius (in.) = 21.0                              Shell thickness (in.) = 0.625

                 Size of damaged spot along 

       the circumferential direction (in.) = 15      Aspect ratio of damaged spot (b/a) = 1.0

               Operating Temperature (°F) = 100                   Hot spot Temperature (°F) = 600

                             R/h = 33.1

        Design pressure = 600.00 psi

                Inner radius = 20.4 in.

decay length in circumferential direction  (xc) = 22.48 in.

                    decay length in axial direction  (xl) = 8.92 in.

Use the solver option of the spreadsheet to set the target cell identified as "LHS" to zero

by changing the value of the cell identified with a*

Each time the input data is changed, go to Tools >Solver and select "solve"

In the next pop-up window, select "keep solver solution" option if the result is acceptable.


                             Threshold to bending:         LHS = 2.20E-07                 x = 3.79

          a* = 3.79                 b* = 3.79

* = 0.2167


Material Properties at operating temperature                   Material Properties at hot spot temperature

                             E = 2.930E+07 psi                E = 2.670E+07  psi

y  = 30000 psi y  = 22200  psi

 5.530E-06  7.170E-06

eI = 25511 psi Classical upperbound, mu = 1.176

 Classical lowerbound, mL = 0.870

             Limit pressure = 1807.2 psi                       RSF at T = 0.8713

                       RSF at L = 0.8725
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Recommended Remaining Strength Factors  0.75

a (in.) b (in.)  VD VA VR Ea ya   a  e

0.00 0.00 0.000 0.00 501.42 501.42 2.930E+07 30000 5.530E-06 9569

0.50 0.50 0.048 0.63 540.67 541.29 2.930E+07 29991 5.532E-06 9577

1.00 1.00 0.095 2.50 579.92 582.42 2.929E+07 29967 5.537E-06 9600

1.50 1.50 0.143 5.63 619.18 624.80 2.928E+07 29930 5.545E-06 9635

2.00 2.00 0.190 10.00 658.43 668.43 2.926E+07 29883 5.555E-06 9678

2.50 2.50 0.238 15.63 697.68 713.31 2.924E+07 29829 5.566E-06 9728

3.00 3.00 0.286 22.50 736.94 759.44 2.922E+07 29769 5.579E-06 9784

3.50 3.50 0.333 30.63 776.19 806.82 2.920E+07 29704 5.592E-06 9844

4.00 4.00 0.381 40.00 815.45 855.45 2.918E+07 29635 5.607E-06 9908

4.50 4.50 0.428 50.63 854.70 905.33 2.915E+07 29564 5.622E-06 9974

5.00 5.00 0.476 62.50 893.95 956.45 2.913E+07 29490 5.637E-06 10042

5.50 5.50 0.524 75.63 933.21 1008.83 2.911E+07 29415 5.653E-06 10110

6.00 6.00 0.571 90.00 972.46 1062.46 2.908E+07 29339 5.669E-06 10180

6.50 6.50 0.619 105.63 1011.72 1117.34 2.905E+07 29263 5.685E-06 10250

7.00 7.00 0.666 122.50 1050.97 1173.47 2.903E+07 29186 5.701E-06 10320

7.50 7.50 0.714 140.63 1090.22 1230.85 2.900E+07 29109 5.717E-06 10390

8.00 8.00 0.762 160.00 1129.48 1289.477 2.898E+07 29032 5.733E-06 10459

8.50 8.50 0.809 180.63 1168.73 1349.36 2.895E+07 28956 5.750E-06 10528

9.00 9.00 0.857 202.50 1207.98 1410.48 2.893E+07 28880 5.765E-06 10597

9.50 9.50 0.904 225.63 1247.24 1472.86 2.890E+07 28805 5.781E-06 10664

10.00 10.00 0.952 250.00 1286.49 1536.49 2.888E+07 28731 5.797E-06 10731

10.50 10.50 0.999 275.63 1325.75 1601.37 2.885E+07 28657 5.812E-06 10797

11.00 11.00 1.047 302.50 1365.00 1667.50 2.883E+07 28585 5.828E-06 10861

11.50 11.50 1.095 330.63 1404.25 1734.88 2.880E+07 28514 5.843E-06 10925

12.00 12.00 1.142 360.00 1443.51 1803.51 2.878E+07 28443 5.857E-06 10988

12.50 12.50 1.190 390.63 1482.76 1873.39 2.876E+07 28374 5.872E-06 11049

Transition angle = 3.22 3.22 0.306 25.86 753.92 779.78 2.921E+07 29741 5.584E-06 9810

Threshold to bending = 2.28 2.28 0.217 12.96 680.14 693.09 2.925E+07 29854 5.561E-06 9705

7.50 7.50 0.71 140.63 1090.22 1230.85 2.900E+07 29109 5.717E-06 10390
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a (in.) b (in.)  mu mL md z m RSFU RSF RSFL RSFr - 1 RSFr - 2 RSFr - 3

0.00 0.00 0.000 3.135 2.3200 3.1351 1.3514 2.7397 1.0000 0.8739 0.7400 0.874 1.000 1.000

0.50 0.50 0.048 3.132 2.3179 3.1315 1.3510 2.7370 0.9997 0.8738 0.7400 0.874 0.972 0.976

1.00 1.00 0.095 3.125 2.3124 3.1218 1.3500 2.7297 0.9990 0.8735 0.7400 0.874 0.944 0.953

1.50 1.50 0.143 3.114 2.3042 3.1074 1.3486 2.7189 0.9980 0.8732 0.7400 0.873 0.916 0.931

2.00 2.00 0.190 3.100 2.2939 3.0893 1.3468 2.7054 0.9966 0.8727 0.7400 0.873 0.888 0.910

2.50 2.50 0.238 3.084 2.2820 3.0685 1.3446 2.6897 0.9950 0.8722 0.7400 0.872 0.869 0.891

3.00 3.00 0.286 3.066 2.2689 3.0455 1.3423 2.6725 0.9933 0.8716 0.7400 0.872 0.861 0.873

3.50 3.50 0.333 3.047 2.2551 3.0211 1.3397 2.6542 0.9914 0.8710 0.7400 0.866 0.853 0.856

4.00 4.00 0.381 3.028 2.2406 2.9957 1.3370 2.6351 0.9894 0.8703 0.7400 0.857 0.845 0.840

4.50 4.50 0.428 3.008 2.2258 2.9696 1.3341 2.6155 0.9873 0.8696 0.7400 0.848 0.837 0.825

5.00 5.00 0.476 2.988 2.2108 2.9431 1.3312 2.5956 0.9851 0.8688 0.7400 0.839 0.829 0.811

5.50 5.50 0.524 2.967 2.1958 2.9165 1.3282 2.5756 0.9829 0.8680 0.7400 0.830 0.821 0.799

6.00 6.00 0.571 2.947 2.1807 2.8899 1.3252 2.5556 0.9807 0.8672 0.7400 0.821 0.813 0.788

6.50 6.50 0.619 2.927 2.1658 2.8636 1.3221 2.5358 0.9784 0.8664 0.7400 0.812 0.804 0.778

7.00 7.00 0.666 2.907 2.1511 2.8375 1.3191 2.5162 0.9761 0.8656 0.7400 0.803 0.796 0.769

7.50 7.50 0.714 2.887 2.1367 2.8118 1.3160 2.4969 0.9738 0.8647 0.7400 0.794 0.788 0.761

8.00 8.00 0.762 2.868 2.1225 2.7865 1.3129 2.4779 0.9715 0.8639 0.7400 0.785 0.780 0.755

8.50 8.50 0.809 2.849 2.1086 2.7618 1.3098 2.4592 0.9692 0.8631 0.7400 0.776 0.772 0.749

9.00 9.00 0.857 2.831 2.0950 2.7376 1.3067 2.4410 0.9670 0.8622 0.7400 0.767 0.764 0.745

9.50 9.50 0.904 2.813 2.0817 2.7139 1.3037 2.4231 0.9647 0.8614 0.7400 0.758 0.756 0.742

10.00 10.00 0.952 2.796 2.0688 2.6908 1.3007 2.4057 0.9625 0.8605 0.7400 0.749 0.748 0.741

10.50 10.50 0.999 2.779 2.0562 2.6683 1.2977 2.3887 0.9603 0.8597 0.7400 0.740 0.740 0.740

11.00 11.00 1.047 2.762 2.0440 2.6463 1.2947 2.3721 0.9581 0.8588 0.7400 0.740 0.740 0.740

11.50 11.50 1.095 2.746 2.0320 2.6250 1.2918 2.3560 0.9559 0.8580 0.7400 0.740 0.740 0.740

12.00 12.00 1.142 2.730 2.0205 2.6042 1.2889 2.3403 0.9538 0.8571 0.7400 0.740 0.740 0.740

12.50 12.50 1.190 2.715 2.0092 2.5839 1.2860 2.3250 0.9517 0.8563 0.7400 0.740 0.740 0.740

Transition angle = 3.22 3.22 0.306 3.058 2.2630 3.0351 1.3412 2.6647 0.9925 0.8713 0.7400 0.871 0.857 0.865

Threshold to bending 
=

2.28 2.28 0.217 3.091 2.2875 3.0781 1.3456 2.6969 0.9958 0.8725 0.7400 0.872 0.872 0.900

7.50 7.50 0.71 2.887 2.1367 2.8118 1.3160 2.4969 0.9738 0.8647 0.7400 0.794 0.788 0.761
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Bulging calculations for cylindrical vessels

Assume that the bulge has a spherical shape and extends over all the damaged area

                     maximum permissible strain at the crown of the bulge, b =  0.01

a  = 1.9619 radians

0   = 9.597  in.

                  r = Ro/Rb    = 1.01832  (Choose to be greater than 1)

Use the solver option of the spreadsheet to set the target cell identified as "equation LHS" 

to zero by changing the value of the cell identified with r = Ro/Rb

Each time the input data is changed, go to Tools >Solver and select "solve"
In the next pop-up window, select "keep solver solution" option if the result is acceptable.

equation LHS 4.95E-07  (Should be zero)

                                    Bulge radius, Rb = 21.24  in.

                       Bulge included angle, b =  1.0089  radians

                 = 57.81  degrees

    Bulging displacement, b  =  0.3253   in. 
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APPENDIX C

ANSYS INPUT FILES AND COMMAND LISTING 

Typical ANSYS batch files for different models used in determination of inelastic 

remaining strength factors of spherical and cylindrical shells containing hot spots and

corrosion damages as discussed in Chapter 5 are provided in this section. ANSYS 9.0 is 

the version used for the analysis. The electronic versions of the files are included in the 

CD attached with the dissertation.

C.1. INPUT AND MACROS FOR SPHERICAL SHELLS

Two models are used in nonlinear finite element analysis for spherical shells with 

damages. The first model uses an 8-node plane element (PLANE82) for an axisymmetric 

problem. The other model is for a quarter of a complete sphere by using an 8-node shell 

element (SHELL91 for hot spot problems and SHELL93 for corrosion). The results from 

the axisymmetric and shell models are shown to be comparable. The PLANE82 model 

requires less computational time and hence is favorable when appropriate. Typical 

ANSYS batch files for the two models are listed below. As mentioned in the main thesis, 
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no thermal analysis is included in the hot spot problem. The temperature of the damaged 

and undamaged zones is assumed and the appropriate material properties are input in the 

present analysis.

C.1.1.Axisymmetric Model for Hot Spot Damage in Spherical Shells

/COM, HOT SPOT IN SPHERICAL SHELL 

! Sphere dimensions (in.)

*SET, Ri, 21.9 ! Inner radius
*SET, R_h, 58.9 ! R/h ratio
*SET, h, Ri/R_h ! Shell thickness
*SET, Ro, Ri+h ! Outer radius

! Damaged spot dimensions

*SET, PI, 3.14159265359

*SET, phia, 7/180*pi ! Half of included angle (measure from y axis) (rad)
*SET, a, phia*Ro ! Half arc length at the outside surface

*SET, rai, Ro*sin(phia)
*SET, s, Ri*cos(phia)

! Applied internal pressure (psi)

*SET, P, 1000

! Number of element divisions

*SET, hsp_div, 150 ! Inside the hot spot
*SET, top_div, 400 ! The rest of the top part of the sphere
*SET, bot_div , 150 ! The bottom part of the sphere

! --- P R E P R O C E S S O R ---
/PREP7 ! Enter Preprocessor
/TITLE, Spherical shell, hot spot, axisymmetric
/UNITS, BIN

! NOTE: For each analysis change : phia and choose the proper MP

! --M O D E L I N G--

CSYS,2 ! Spherical coordinate system

! Create keypoints
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K, 1, 0, 0, 0 
K, 2, Ri, 0, 0
K, 3, Ri+h, 0, 0

K,12, Ri,  -90, 0
K,13, Ri+h, -90, 0

K,22, Ri, 90-phia*180/PI, 0

K,23, Ri+h, 90-phia*180/PI,0

K,32, Ri, 90, 0
K,33, Ri+h, 90, 0

! Create lines
LARC,12, 2, 1, Ri ! Arc line 1 to 6
LARC,13, 3, 1, Ri+h
LARC, 2,22, 1, Ri
LARC, 3,23, 1, Ri+h
LARC,22,32, 1, Ri
LARC,23,33, 1, Ri+h

L,2,3 ! Line 7 to 10
L,12,13
L,22,23
L,32,33

! Create areas from lines
AL,10,5,9,6 ! Area 1 to 3
AL, 9,3,4,7
AL, 7,1,8,2

! –-E L E M E N T   D I V I S I O N --

LSEL,S,line,,1,2
LESIZE,ALL,,,bot_div

LSEL,S,line,,3,4
LESIZE,ALL,,,top_div,0.35

LSEL,S,line,,5,6
LESIZE,ALL,,,hsp_div 

LSEL,S,line,,7,8
LESIZE,ALL,,,4 

LSEL,S,line,,9,10
LESIZE,ALL,,,10

! -- E L E M E N T A N D   M A T E R I A L   P R O P E R T I E S--

ET,1,PLANE82,,,1 ! Use PLANE82 element for axisymmetric model

! Properties for hot region
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! Material type 1

! Properties at temperature 600 deg.F
!MP,EX,1,26.7E6 ! Young’s modulus
!MP,PRXY,1,0.3 ! Poisson’s ratio
!TB,BKIN,1,,,1 ! Bilinear kinematic strain hardening 

!TBDATA,,22182,2E3 ! Table data: Yield point and plastic modulus

! Properties at temperature 400 deg.F
!MP,EX,1,27.7E6
!MP,PRXY,1,0.3
!TB,BKIN,1,,,1 
!TBDATA,,25682,2E3

! Properties at temperature 200 deg.F
MP,EX,1,28.8E6
MP,PRXY,1,0.3
TB,BKIN,1,,,1 
TBDATA,,27282,2E3

! Meshing the hot spot 
TYPE,1
MAT,1
ASEL,S,AREA,,1
AMESH,ALL

! Properties at temperature 100 deg F (cold region)
! Material type 2

MP,EX,2,29.3E6
MP,PRXY,2,0.3
TB,BKIN,2,,,1 
TBDATA,,29982,2E3 

! Meshing the rest of the sphere
TYPE,1
MAT,2
ASEL,S,AREA,,2,3
AMESH,ALL

ASEL,ALL

CSYS,0

! Boundary Conditions

NSEL,S,LOC,X,Ri
NSEL,R,LOC,Y,0
D,ALL,UY,0
NSEL,ALL

CHECK
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FINISH ! Exit Preprocessor 

! –- S O L  U T I  O N   M O D U L E--

/SOLU ! Enter Solution module

LSEL,S,line,,1,5,2 ! Apply uniform internal pressure
SFL,ALL,PRES,P
LSEL,ALL
SFTRAN ! Transfer surface load to the FE model

ANTYPE,STATIC ! Static Analysis
SOLCONTROL,ON ! Nonlinear analysis
AUTOT,ON ! Automatic time stepping
NSUBST,200 !Initial number of substeps
OUTRES,ALL,ALL

SOLVE
SAVE ! Save Database
FINISH ! Exit Solution Routine

! -- P O S T   P R O C E S S O R   M O D U L E --

/POST1 ! Enter post processor
RSYS,2 ! Spherical coordinate
PLESOL,EPTO,EQV ! Plot element solution, von Mises strain
*GET,bulge_strain,node,2,epto,eqv ! Obtain bulging strain at the crown of the sphere

EXIT

C.1.2.Axisymmetric Model for Internal Corrosion in Spherical Shells

/COM, INTERNAL CORROSION IN SPHERICAL SHELL 

! Sphere dimensions (in.)

*SET, Ri, 21.9 ! Inner radius
*SET, h, 3/8 ! Original shell thickness
*SET, Ro, Ri+h ! Outer radius

! Damaged spot dimensions

*SET, c , h/2 ! Corrosion depth
*SET, hc, h-c ! Corroded thickness

*SET, phia, 10/180*pi ! Half of included angle (measure from y axis) (rad)
*SET, a, phia*Ro ! Half arc length at the outside surface

*SET, rai, Ro*sin(phia)
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*SET, s, Ri*cos(phia)

! Applied internal pressure (psi)

*SET, P, 1000

! Number of element divisions

*SET, hsp_div, 100 ! Inside the damaged spot
*SET, top_div, 400 ! The rest of the upper part of the sphere
*SET, bot_div , 150 ! The bottom part of the sphere

*SET, PI, 3.14159265359

! –- P R E P R O C E S S O R   M O D U L E –

/PREP7 ! Enter Preprocessor
/TITLE, Spherical shell, internal corrosion, axisymmetric
/UNITS, BINS

! NOTE:for each case, change : corrosion depth (c) and included angle of damaged spot (phia)

! –- M O D E L I N G --

CSYS,2 ! Spherical coordinate system

! Create keypoints

K, 1,  0, 0, 0
K, 2, Ri, 0, 0
K, 3, Ri+c,  0, 0
K, 4, Ri+h, 0, 0

K,12, Ri,  -90, 0
K,13, Ri+c, -90, 0
K,14, Ri+h, -90, 0

K,22, Ri, 90-phia*180/PI, 0
K,23, Ri+c, 90-phia*180/PI, 0
K,24, Ri+h, 90-phia*180/PI,  0

K,33, Ri+c, 90, 0
K,34, Ri+h, 90, 0

! Create lines by keypoints

LARC,12, 2, 1, Ri ! Arc line 1 to 3
LARC,13, 3, 1, Ri+c
LARC,14, 4, 1, Ri+h

LARC, 2,22, 1, Ri ! Arc line 4 to 6
LARC, 3,23, 1, Ri+c
LARC, 4,24, 1, Ri+h
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LARC,23,33, 1, Ri+c ! Arc line 7 to 8
LARC,24,34, 1, Ri+h

L,2,3 ! Line 9 to 15
L,3,4
L,12,13
L,13,14
L,22,23
L,23,24
L,33,34

! Create fillet inside the corroded spot
LFILLT,7,13,0.1.0
LDIV,16,0.5
L,23,7

! Create areas by lines
AL,1,11,2,9 ! Area 1

AL,2,12,3,10 ! Area 2 to 5
AL,4,9,5,18,17,13
AL,5,10,6,14
AL,7,16,18,14,8,15

! --E L E M E N T   D I V I S I O N S --

LSEL,ALL

LSEL,S,line,,1,3
LESIZE,ALL,,,bot_div

LSEL,S,line,,4,6
LESIZE,ALL,,,top_div,0.35

LSEL,S,line,,7,8
LESIZE,ALL,,,hsp_div 

LSEL,S,line,,10
LSEL,A,line,,12,13
LESIZE,ALL,,,4 

LSEL,S,line,,16,18
LESIZE,ALL,,,2 

LSEL,S,line,,9
LSEL,A,line,,11
LESIZE,ALL,,,4

LSEL,S,line,,14
LESIZE,ALL,,,8 

LSEL,S,line,,15
LESIZE,ALL,,,8 
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LSEL,ALL

! --E L E M E N T   A N D   M A T E R I A L  P R O P E R T I E S --

! Element type 1
ET,1,PLANE82,,,1 ! Plane 82

! Material type 1, Properties at temperature 100 F
MP,EX,1,29.3E6 ! Young’s modulus
MP,PRXY,1,0.3 ! Poisson’s ratio
TB,BKIN,1,,,1                   ! Bilinear kinematic hardening
TBDATA,,30E3,2E4                ! Yield point = 30E3, Platic modulus = 50E4

! Meshing 
ASEL,ALL
AMESH,ALL

CSYS,0 ! Cartesian coordinate system 

! Boundary Conditions

NSEL,S,LOC,X,Ri
NSEL,R,LOC,Y,0
D,ALL,UY,0
NSEL,ALL

CHECK
FINISH ! Exit Preprocessor! 

! --S O L U T I O N   M O D U L E --

/SOLU ! Enter solution routine

LSEL,S,line,,1,7,3
SFL,ALL,PRES,P ! Apply internal pressure
LSEL,ALL
SFTRAN

ANTYPE,STATIC ! Static analysis
SOLCONTROL,ON ! Nonlinear analysis
AUTOT,ON ! Automatic time stepping
NSUBST,200 ! Initial number of substep
OUTRES,ALL,ALL ! Basic output

SOLVE
SAVE ! Save Database
FINISH ! Exit Solution Routine

! --P O S T  P R O C E S S O R --

/POST1 ! Enter postprocessor
RSYS,2 ! Spherical coordinate system
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PLESOL,EPTO,EQV ! Plot element solution, equivalent strain
*GET,bulge_strain,node,2,epto,eqv ! Obtain bulging strain at the crown

EXIT

C.1.3.Axisymmetric Model for External Corrosion in Spherical Shells

/COM, EXTERNAL CORROSION IN SPHERICAL SHELL 

! Sphere dimensions (in.)

*SET, Ri, 21.9 ! Inner radius
*SET, h, 3/8 ! Original shell thickness
*SET, Ro, Ri+h ! Outer radius

! Damaged spot dimensions

*SET, c , h/2 ! Corrosion depth
*SET, hc, h-c ! Corroded thickness

*SET, phia, 10/180*pi ! Half of included angle (measure from y axis) (rad)
*SET, a, phia*Ro ! Half arc length at the outside surface

*SET, rai, Ro*sin(phia)
*SET, s, Ri*cos(phia)

! Applied internal pressure (psi)

*SET, P, 1000

! Number of element divisions

*SET, hsp_div, 100 ! Inside the damaged spot
*SET, top_div, 400 ! The rest of the upper part of the sphere
*SET, bot_div , 150 ! The bottom part of the sphere

*SET, PI, 3.14159265359

! –-- P R E P R O C E S S O R   M O D U L E ---
/PREP7 ! Enter preprocessor
/TITLE, Spherical shell, external corrosion, axisymmetric
/UNITS, BINS

! NOTE:for each case, change : corrosion depth (c) and included angle of damaged spot (phia)

! ---M O D E L L I N G ---

CSYS,2 ! Spherical coordinate system

! Create keypoints
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K, 1,  0, 0, 0 
K, 2, Ri, 0, 0
K, 3, Ri+hc, 0, 0
K, 4, Ri+h, 0, 0

K,12, Ri, -90, 0
K,13, Ri+hc, -90, 0
K,14, Ri+h, -90, 0

K,22, Ri, 90-phia*180/PI, 0
K,23, Ri+hc, 90-phia*180/PI, 0
K,24, Ri+h,  90-phia*180/PI,       0

K,32, Ri,  90, 0
K,33, Ri+hc, 90, 0

! Create lines by keypoints

LARC,12, 2, 1, Ri ! Arc line 1 to 3
LARC,13, 3, 1, Ri+hc
LARC,14, 4, 1, Ri+h

LARC, 2,22, 1, Ri ! Arc line 4 to 6
LARC, 3,23, 1, Ri+hc
LARC, 4,24, 1, Ri+h

LARC,23,33, 1, Ri+hc ! Arc line 7 to 8
LARC,24,34, 1, Ri+h

L,2,3 ! Line 9 to 15
L,3,4
L,12,13
L,13,14
L,22,23
L,23,24
L,32,33

! Create fillet inside the corroded spot
LFILLT,8,14,0.1.0
LDIV,16,0.5
L,23,7

! Create areas by lines
AL,1,11,2,9 ! Area 1 to 5
AL,2,12,3,10 !
AL,5,10,6,14,17,18
AL,13,4,9,5
AL,7,13,18,16,8,15

! ---E L E M E N T   D I V I S I O N S ---

LSEL,ALL

LSEL,S,line,,1,3
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LESIZE,ALL,,,bot_div

LSEL,S,line,,4,6
LESIZE,ALL,,,top_div,0.3

LSEL,S,line,,7,8
LESIZE,ALL,,,hsp_div 

LSEL,S,line,,10
LSEL,A,line,,12,14,2
LESIZE,ALL,,,4 

LSEL,S,line,,16,18
LESIZE,ALL,,,2 

LSEL,S,line,,9
LSEL,A,line,,11
LESIZE,ALL,,,4

LSEL,S,line,,12,15,2
LESIZE,ALL,,,12
LSEL,ALL

!--- E L E M E N T   A N D   M A T E R I A L   P R O P E R T I E S ---

! Element type 1
ET,1,PLANE82,,,1 ! Plane 82

! Material type 1, Properties at temperature 100 F
MP,EX,1,29.3E6 ! Young’s modulus
MP,PRXY,1,0.3 ! Poisson’s ratio
TB,BKIN,1,,,1                   ! Bilinear kinematic hardening
TBDATA,,30E3,2E4                ! Yield point = 30E3, Platic modulus = 50E4

! Meshing 
ASEL,ALL
AMESH,ALL

CSYS,0 ! Cartesian coordinate system 

! Boundary Conditions

NSEL,S,LOC,X,Ri
NSEL,R,LOC,Y,0
D,ALL,UY,0
NSEL,ALL

CHECK
FINISH ! Exit preprocessor

!--- S O L U T I O N   M O D U L E ---

/SOLU ! Enter solution routine
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LSEL,S,line,,1,7,3
SFL,ALL,PRES,P ! Apply internal pressure
LSEL,ALL
SFTRAN ! Transfer surface load to FE model

ANTYPE,STATIC
SOLCONTROL,ON ! Nonlinear analysis
AUTOT,ON ! Automatic time stepping
NSUBST,200
OUTRES,ALL,ALL ! Obtain all output results

SOLVE
SAVE ! Save database
FINISH ! Exit solution routine

!--- P O S T P R O C E S S O R   M O D U L E ---

/POST1 ! Enter postprocessor
RSYS,2 ! Spherical coordinate system
PLESOL,EPTO,EQV ! Plot element solution, equivalent strain
*GET,bulge_strain,node,2,epto,eqv ! Obtain bulging strain at the crown

EXIT

C.1.4.Shell Element Model for Hot Spot Damage in Spherical Shells

/COM, HOT SPOT IN SPHERICAL SHELL 

! Sphere dimensions (in.)

*SET, Ri, 21.9 ! Inner radius
*SET, Ro, 22.275 ! Outside radius (case 1 R/h = 58.4)
!*SET, Ro, 22.995 ! Outside radiuis (case 2 R/h = 20)
*SET,  h, Ro – Ri ! Shell thickness
*SET, Rm, (Ri+Ro)/2 ! Mean radius

! Damaged spot dimensions

*SET, phia, 10/180*pi ! Half of included angle (measure from y axis) (rad)
*SET, a, phia*Ro ! Half arc length at the outside surface

*SET, rai, Ro*sin(phia)
*SET, s, Ri*cos(phia)

! Applied internal pressure (psi)

*SET, P, 1000

! Number of element divisions
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*SET, hsp_div, 14 ! Inside the hot spot along y axis
*SET, hspa_div, 14 ! Inside the hot spot along the arclength 
*SET, hor_div, 40 ! Along the equator of the sphere
*SET, ver_div , 150 ! Along the rest of the upper part of the sphere

*SET, PI, 3.14159265359

! --- P R E P R O C E S S O R ---
/PREP7
/TITLE, Spherical shell, hot spot , Shell model
/UNITS, BIN

! NOTE: Change: hot spot size (phia) and choose the proper material properties (MP)

! ---M O D E L I N G ---

CSYS,2  ! Spherical coordinate system

! Create keypoints

K, 1,  0, 0, 0 
K, 2, Rm, 0, 90  
K, 3, Rm, 0, 0
K, 4, Rm, 90, 0
K, 5, Rm, -90, 0

K, 6, Rm, 90, phia*180/PI 
K, 7, Rm, 90-phia*180/PI, 0

K, 8, Rm*cos(phia),   90, 0

! Create lines by keypoints

LARC, 2, 3, 1, Rm ! Arc lines 1 to 8 
LARC, 3, 7, 1, Rm
LARC, 7, 4, 1, Rm
LARC, 4, 6, 1, Rm
LARC, 6, 2, 1, Rm
LARC, 2, 5, 1, Rm
LARC, 5, 3, 1, Rm
LARC, 6, 7, 8, Rm*sin(phia)

! Create areas by lines
AL, 3, 4, 8 ! Area 1 (hot spot area)
AL, 1, 2, 8,5 ! Area 2 and 3 (cold region)
AL, 7, 1, 6

! ---- E L E M E N T   D I V I S I O N ---

LSEL,S,LINE,, 1 ! Select lines by line number,, vmin,vmax,vinc
LSEL,A,LINE,, 6, 7
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LESIZE,ALL,,,hor_div ! Number of element divisions

LSEL,S,LINE,,2
LSEL,A,LINE,,5
LESIZE,ALL,,,ver_div 

LSEL,S,LINE,, 3, 4
LESIZE,ALL,,,hspv_div

LSEL,S,LINE,, 8
LESIZE,ALL,,,hspa_div 

LSEL,ALL

! ----E L E M E N T   A N D   M A T E R I A L   T Y P E S ---

! Element type 1
ET,1,SHELL93 ! Shell93
R,1,h ! Real constant set no. 1, thickness
KEYOPT,1,8,2

! Material properties for hot region
! At temperature 600 deg.F
!MP,EX,1,26.7E6 ! Young’s modulus
!MP,PRXY,1,0.3 ! Poisson ratio
!TB,BKIN,1,,,1 ! Bilinear kinematic strain hardening 
!TBDATA,,22182,2E3 ! Data table, Yield point, Plastic modulus

! At temperature 400 deg.F
MP,EX,1,27.7E6
MP,PRXY,1,0.3
TB,BKIN,1,,,1 
TBDATA,,25682,2E3

! At temperature 200 deg.F
!MP,EX,1,28.8E6
!MP,PRXY,1,0.3
!TB,BKIN,1,,,1 
!TBDATA,,27282,2E3

! Mesh the hot spot  area
TYPE,1
MAT,1
ASEL,S,AREA,,1
AMESH,ALL

! Material properties for cold region
! At design temperature 100 deg.F, Material type 2
MP,EX,2,29.3E6 ! Young’s modulus
MP,PRXY,2,0.3 ! Poisson ratio
TB,BKIN,2,,,1 ! Bilinear kinematic strain hardening
TBDATA,,29982,2E3 ! Data table, Yield point, Plastic modulus

! Mesh the rest of the sphere
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TYPE,1 ! Element type
MAT,2 ! Material type
ASEL,S,AREA,,2,3 ! Select cold region
AMESH,ALL

ASEL,ALL

CSYS,0 ! Cartesian coordinate system

! Boundary Conditions

NSEL,S,LOC,Z,0
DSYM,SYMM,Z,0 ! Symmetry along Z = 0 (create a quarter of the model)

NSEL,S,LOC,X,0           
DSYM,SYMM,X,0 ! Symmetry along X = 0

NSEL,S,LOC,X,0 ! Constrain the bottom node
NSEL,R,LOC,Z,0
NSEL,R,LOC,Y,-Rm
D,ALL,UY,0

NSEL,ALL

CHECK
FINISH ! Exit preprocessor

!--- S O L U T I O N    M O D U L E ---

/SOLU ! Enter solution module

ASEL,S,AREA,,1,3
SFA,ALL,,PRES,1000 ! Apply internal pressure
SFTRAN ! Transfer surface load to the FE model

ANTYPE,STATIC
SOLCONTROL,ON ! Nonlinear analysis
AUTOTS,ON ! Automatic time stepping
NSUBST,100 ! Initial number of substep
OUTRES,ALL,ALL ! Obtain all output results

SOLVE
SAVE ! Save database
FINISH ! Exit solution routine

! ---- P O S T P R O C E S S O R   M O D U L E ---

/POST1 ! Enter postprocessor
RSYS,2 ! Obtain results using global spherical coordinate system

SHELL,TOP ! Read results at the top of the shell
*GET,bulge_strain,node,2,epto,eqv   ! Get strain at the crown (node 2)
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SHELL,MID ! Read results at the middle of the shell
*GET,bulge_strain,node,2,epto,eqv ! Get strain at the crown
SHELL,BOT ! Read results at the bottom of the shell
*GET,bulge_strain,node,2,epto,eqv ! Get strain at the crown

SHELL,MID
*GET,disp,node,2,U,X ! Get displacement at node 2

!Read results along a defined path 
!PATH,P1,59
!PPATH,P

!PDEF,UX,U,X
!PDEF,EPTOEQV,EPTO,EQV
!PLPATH,UX
!PLPATH,EPTOEQV

!PSEL,S,P1 ! Select path
!PASAVE,ALL,patha ! Store path in a file name 'patha'
!PARESU,ALL,patha ! Retrieve path 

EXIT

C.1.5.Shell Element Model for Internal Corrosion in Spherical Shelsl

/COM, INTERNAL CORROSION IN SPHERICAL SHELL 

! Sphere dimensions (in.)

*SET, Ri, 21.9 ! Inner radius
*SET, Ro, 22.275 ! Outer radius for R/h = 58.4
!*SET, Ro, 22.995 ! Outer radius for R/h = 20

*SET, h,Ro-Ri ! Original shell thickness
*SET, Ro, Ri+h ! Outer radius

! Damaged spot dimensions

*SET, c , h/3 ! Corrosion depth
*SET, hc, h-c ! Corroded thickness

*SET, phia, 8/180*pi ! Half of included angle (measure from y axis) (rad)
*SET, a, phia*Ro ! Half arc length at the outside surface

*SET, rai, Ro*sin(phia)
*SET, s, Ri*cos(phia)

! Applied internal pressure (psi)

*SET, P, 1000
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! Number of element divisions

*SET, hsp_div, 50 ! Inside the corrodedt spot along y axis
*SET, hspa_div, 50 ! Inside the corroded spot along the arclength 
*SET, hor_div, 50 ! Along the equator of the sphere
*SET, ver_div , 120 ! Along the rest of the upper part of the sphere

*SET, PI, 3.14159265359

! –-- P R E P R O C E S S O R   M O D U L E –--

/PREP7 ! Enter preprocessor
/TITLE, Spherical shell, internal corrosion, Shell model
/UNITS, BIN

! ---M O D E L L I N G A   Q U A R T E R O F   T H E   S P H E R E ---

CSYS,2 ! Spherical coordinate system

! Create keypoint in the current CS
K, 1,  0, 0, 0 
K, 2, Ro, 0, 90  
K, 3, Ro, 0, 0
K, 4, Ro, 90, 0
K, 5, Ro, -90, 0
K, 6, Ro, 90, phia*180/PI 

K, 7, Ro, 90-phia*180/PI, 0

K, 8, Ro*cos(phia),   90, 0

! Create lines by keypoints

LARC, 2, 3, 1, Ro ! Arc lines 1 to 8 
LARC, 7, 3, 1, Ro
LARC, 7, 4, 1, Ro
LARC, 4, 6, 1, Ro
LARC, 6, 2, 1, Ro
LARC, 2, 5, 1, Ro
LARC, 5, 3, 1, Ro
LARC, 6, 7, 8, Ro*sin(phia)

! Create areas by lines
AL, 3, 4, 8 ! Areas 1 to 3 
AL, 1, 2, 8,5
AL, 7, 1, 6

! --- E L E M E N T   D I V I S I O N S ---

LSEL,S,LINE,, 1 !Select line, line number,,,vmin,vmax,vinc
LSEL,A,LINE,, 6, 7 ! Select additional lines
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LESIZE,ALL,,,hor_div ! Element size control, by line

LSEL,S,LINE,,2
LSEL,A,LINE,,5
LESIZE,ALL,,,ver_div,5 

LSEL,S,LINE,, 3, 4
LESIZE,ALL,,,hspv_div

LSEL,S,LINE,, 8
LESIZE,ALL,,,hspa_div 

LSEL,ALL

!--E L E M E N T   A N D   M A T E R I A L   T Y P E S   ( A T   T E M P E R A T U R E   1 0 0   F )--

! Inside the corroded spot
MP,EX,1,29.3E6 ! Young’s modulus
MP,PRXY,1,0.3 ! Poisson ratio
TB,BKIN,1,,,1 ! Bilinear kinematic Hardening 
TBDATA,,30E3,2 E4 ! Yield point = 30E3, Platic modulus = 2E4 

ET,1,SHELL91,10,1,,,1 ! SHELL91, Maximum no. of layers = 3
KEYOPT,1,11,2 ! Nodes located at top surface

R,1,10 ! Real constant, number of layers
RMORE 
RMORE,1,,hc/3 ! Material number and thickness for layer 1 (bottom)
RMORE,1,,hc/3 ! Material number and thickness for layer 2 (middle)
RMORE,1,,hc/3 ! Material number and thickness for layer 3 (top)

! Mesh the corroded spot
TYPE,1 ! Element type 1
REAL,1 ! Real constant set no. 1
ASEL,S,AREA,,1 ! Mesh area 1
AMESH,ALL

! Element type 2
ET,2,SHELL91,16,1,,,1 ! Maximum =  6 layers
KEYOPT,2,11,2 ! Nodes located at top surface

R,2,6 ! Number of layers, 6
RMORE 
RMORE,1,,c/3 ! material number and thickness for layer 1 (bottom)
RMORE,1,,c/3 ! material number and thickness for layer 2 
RMORE,1,,c/3
RMORE,1,,hc/3
RMORE,1,,hc/3
RMORE,1,,hc/3 ! Material number and thickness for layer 6 (top)

! Mesh the rest of the sphere
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TYPE,2 ! Element type 2
REAL,2 ! Real constant set no. 2
ASEL,S,AREA,,2,3 ! Mesh area 2 and 3
AMESH,ALL

CSYS,0

! Boundary Conditions

NSEL,S,LOC,Z,0 ! Symmetry along Z = 0
DSYM,SYMM,Z,0

NSEL,S,LOC,X,0 ! Symmetry along X = 0
DSYM,SYMM,X,0

NSEL,S,LOC,X,0 ! Constrain the bottom node 
NSEL,R,LOC,Z,0
NSEL,R,LOC,Y,-Ro
D,ALL,UY,0

NSEL,ALL

CHECK
FINISH !Exit preprocessor

! ---S O L U T I O N   M O D U L E ---

/SOLU ! Enter solution module

ASEL,S,AREA,,1,3 ! Apply internal pressure to areas 1 to 3
SFA,ALL,,PRES,P ! Internal pressure = P
SFTRAN ! Transfer surface loading to FE models

ANTYPE,STATIC ! Static analysis
SOLCONTROL,ON ! Nonlinear analysis
AUTOT,ON ! Automatic time stepping
NSUBST,300 ! Initial number of substep

OUTRES,ALL,ALL ! Obtain all output results
SOLVE
SAVE ! Save database
FINISH ! Exit solution routine

EXIT
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C.2. INPUT AND MACROS FOR CYLINDRICAL SHELLS

Nonlinear finite element analysis for cylindrical shells with damages is executed by 

using shell element (SHELL91 for hot spot and SHELL93 for corrosion) and solid 

element (SOLID185) modeling as explained in Chapter 5. Examples of typical macro for 

such models are listed below.

C.2.1.Shell Element Model for Hot Spot Damage in Cylindrical Shells

/COM, HOT SPOT IN CYLINDRICAL SHELL 

! Cylinder dimensions
*SET, Ro, 21 ! Outer radius
*SET, Ri, 20.375 ! Inner radius
*SET, len,200 ! Length of the cylinder

*SET, h, Ro-Ri ! Shell thickness
*SET, Rm, (Ro+Ri)/2 ! Mean radius

*SET, pi, 3.141592654

! Applied internal pressure 
*SET, P,  900

! Number of element divisions

*SET, bhsp_div, 20 ! Along axial direction of the hot spot
*SET, ahsp_div , 20 ! Along circumferential direction of the hot spot
*SET, r1_div, 25 ! For the rest of the upper part of the cylinder
*SET, r2_div, 20 ! For the bottom part of the cylinder
*SET, r3_div, 30 ! For lines along circumference (half of the cylinder)
*SET, lon_div, 30 ! Along half the total length of the cylinder
*SET, lon_div2, 25 ! Along the rest of the Z axis exclude the hot spot

! Damaged spot dimension
*SET, a_hsp,15 ! Half the width of the hot spot along the circumference
*SET, b_hsp, 15 ! Half the width of the hot spot along the axial direction
*SET, theta_hsp , (a_hsp/Ro)*(180/pi)

! --- P R E P R O C E S S O R ---

/PREP7 ! Enter preprocessor
!/TITLE, Cylindrical shell, Shell 93, hot spot
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/UNITS,BIN

! --- M O D E L I N G ---

CSYS,0 ! Cartesian coordinate system

! Create keypoints

K,  1,  0,  0, 0 ! Keypoints on Z=0 plane (inner radius) 
K,  2, Rm,  0, 0
K,  3,  0, Rm, 0
K,  4,-Rm,  0, 0

K,  6,  0,  0,b_hsp ! Keypoint  6 at the center at Z = b_hsp
K,  7, Rm,  0,b_hsp  
K,  8,  0, Rm,b_hsp
K,  9,-Rm,  0,b_hsp 

K, 11,  0,  0,len ! Keypoint 11 at the center at z = len
K, 12, Rm,  0,len 
K, 13,  0, Rm,len
K, 14,-Rm,  0,len

K, 16,  0,  0,len+Rm

CSYS,1 ! Cylindrical CS with Z as the axis of rotation
K,  5, Rm,theta_hsp,0
K, 10, Rm,theta_hsp,b_hsp
K, 15, Rm,theta_hsp,len
K,18,Rm*cos(theta_hsp/180*pi),0,len

CSYS,0 ! Cartesian coordinate system

! Creates lines by keypoints
LARC,2,5,1,Rm ! Arcline 1 to 3 at Z = 0
LARC,5,3,1,Rm 
LARC,3,4,1,Rm

LARC, 7,10,6,Rm ! Arcline 4 to 6 at Z = b_hsp
LARC,10, 8,6,Rm 
LARC, 8, 9,6,Rm

LARC,12,15,11,Rm  ! Arcline 7 to 9 at Z = len
LARC,15,13,11,Rm 
LARC,13,14,11,Rm

L, 2, 7 ! Line 10 to 13 from Z = 0 to b_hsp
L, 5,10
L, 3, 8
L, 4, 9 

L, 7,12 ! Line 14 to 17 from Z = b_hsp to len
L,10,15
L, 8,13 
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L, 9,14

! Create areas by lines
CSYS,1 ! Cylindrical coordinate system
AL, 1,11, 4,10 ! Area 1 to 6
AL, 2,12, 5,11
AL, 3,13, 6,12
AL, 4,15, 7,14
AL, 5,16, 8,15
AL, 6,17, 9,16

CSKP,11,2,11,12,13 !Local CS – spherical CS - origin at KP 11
K,17,Rm,0,theta_hsp

LARC,14,16,11,Rm ! Lines for spherical head (line 18 to 22)
LARC,16,17,11,Rm
LARC,17,12,11,Rm
LARC,13,16,11,Rm
LARC,15,17,18,Rm*sin(theta_hsp/180*pi)

AL,20, 7,22 ! Areas for spherical head (area 7 to 9)
AL,19,22, 8,21
AL,18,21, 9

CSYS,0

!--- E L E M E N T   D I V I S I O N ---

LSEL,S,LINE,, 1, 7,3 !Select line by line no - vmin,vmax,vinc
LESIZE,ALL,,,ahsp_div 

LSEL,S,LINE,,10,11,1
LESIZE,ALL,,,bhsp_div 

LSEL,S,LINE,, 2, 8,3
LESIZE,ALL,,,r1_div,3

LSEL,S,LINE,,14,17,1
LESIZE,ALL,,,lon_div,4

LSEL,ALL

! --- E L E M E N T   A N D M A T E R I A L   T Y P E S---

! Element type 1
ET,1,SHELL93 ! SHELL93
R,1,h ! Real constant, shell thickness
KEYOPT,1,8,2

! Material properties at temperature  600 deg.F
MP,EX,1,26.7E6 ! Young’s modulus
MP,PRXY,1,0.3 ! Poisson’s ratio
TB,BKIN,1,,,1 ! Rice's Hardening 
TBDATA,,22182,2E3 ! Yield point and plastic modulus
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! Material properties at temperature 400 deg.F
!MP,EX,1,27.7E6
!MP,PRXY,1,0.3
!TB,BKIN,1,,,1 
!TBDATA,,25682,2E3

! Material properties at temperature 200 deg.F
!MP,EX,1,28.8E6
!MP,PRXY,1,0.3
!TB,BKIN,1,,,1                     
!TBDATA,,27282,2E3

! Meshing the hot region
TYPE,1 ! Select element type
MAT,1 ! Select material type
ASEL,S,AREA,,1 ! Mesh area 1
AMESH,ALL

! Material properties at temperature 100 deg.F
MP,EX,2,29.3E6
MP,PRXY,2,0.3
TB,BKIN,2,,,1
TBDATA,,29982,2E3

MAT,2 ! Select material type 2
ASEL,S,AREA,,7,9 ! Mesh area 7 to 9
DESIZE,,,,,,,0.5 ! Define element size
AMESH,ALL

ASEL,ALL ! Select all areas
ASEL,U,AREA,,1 ! Deselect area 1, 7, 9
ASEL,U,AREA,,7,9
AMESH,ALL ! Mesh

ASEL,ALL
FINISH ! Exit preprocessor

!--- S O L U T I O N   M O D U L E ---

/SOLU ! Enter solution routine

ANTYPE,STATIC ! Static analysis 
CSYS,0 ! Global Cartesian corrodiante

! --- B O U N D A R Y   C O N D I T I O N S ---

NSEL,S,LOC,Z,0 ! Symmetry along Z = 0
DSYM,SYMM,Z,0

NSEL,S,LOC,Y,0 ! Symmetry along Y = 0
DSYM,SYMM,Y,0

!simply support at the end of the cap
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NSEL,S,LOC,Z,len+Rm
NSEL,R,LOC,Y,0
NSEL,R,LOC,X,0
D,ALL,UX,0

NSEL,ALL
DTRAN ! Transfer constraints to the FE model

ASEL,ALL
SFA,ALL,,PRES,P ! Apply internal pressure 
SFTRAN ! Transfer surface loading to the FE modle

SOLCONTROL,ON ! Nonlinear analysis
AUTOTS,ON ! Automatic time stepping
NSUBST, 100 ! Initial number of substep
OUTRES,ALL,ALL
SOLVE
SAVE ! Save database
FINISH ! Exit solution routine

EXIT

C.2.2.Shell Element Model for Internal Corrosion in Cylindrical Shells

/COM, INTERNAL CORROSION IN CYLINDRICAL SHELL 

! Cylinder dimensions
*SET, Ro, 21 ! Outer radius
*SET, Ri, 20.375 ! Inner radius
*SET, len,80 ! Length of the cylinder

*SET, h, Ro-Ri ! Shell thickness
*SET, Rm, (Ro+Ri)/2 ! Mean radius

*SET, pi, 3.141592654

! Damaged spot dimensions
*SET, aspect_ratio, 3 ! Aspect ratio of the damaged spot
*SET, a_hsp, 3 ! Length of the damaged spot in circumferential direction
*SET, b_hsp,  aspect_ratio*a_hsp ! Length of the damaged spot in axial direction
*SET, theta_hsp, (a_hsp/Ro)*(180/pi) ! Angle of the damaged spot in circumferential direction

*SET, c, h/2 ! Corrosion depth
*SET, hc, h-c ! Corroded thickness

! Applied internal pressure 
*SET, P,  900
! Number of element divisions

*SET, bhsp_div, 20 ! Along axial direction of the corroded spot
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*SET, ahsp_div , 10 ! Along circumferential direction of thecorroded spot
*SET, r1_div,40 ! For the rest of the upper part of the cylinder
*SET, lon_div, 50 ! Along half the total length of the cylinder

! Damaged spot dimension
*SET, a_hsp,15 ! Half the width of the corrosion along the circumference
*SET, b_hsp, 15 ! Half the width of the corrosion along the axial direction
*SET, theta_hsp , (a_hsp/Ro)*(180/pi)

! --- P R E P R O C E S S O R ---

/PREP7 ! Enter preprocessor
/TITLE, Cylinder, Shell 91, Internal corrosion
/UNITS,BIN

! ---M O D E L I N G ---

! Create keypoints

CSYS,0 ! Cartesian coordinate system
K,  1,  0,  0,0 ! keypoints 1 to 4 on Z=0 plane (inner radius) 
K,  2, Ro,  0,0  
K,  3,  0, Ro,0
K,  4,-Ro,  0,0 

K,  6,  0,  0,b_hsp ! keypoint  6 to 9 at the center at Z = b_hsp
K,  7, Ro,  0,b_hsp  
K,  8,  0, Ro,b_hsp
K,  9,-Ro,  0,b_hsp 

K, 11,  0,  0,len ! keypoint 11 to 14 at the center at Z= len
K, 12, Ro,  0,len 
K, 13,  0, Ro,len
K, 14,-Ro,  0,len

K, 16,  0,  0,len+Ro ! keypoint 16 at the center at Z = len+Ro

CSYS,1 ! Cylindrical axis with Z as the axis of rotation
K,  5, Ro,theta_hsp,0
K, 10, Ro,theta_hsp,b_hsp
K, 15, Ro,theta_hsp,len
K,18,Ro*cos(theta_hsp/180*pi),0,len

! Create lines by keypoints

CSYS,0 ! Cartesian coordinate system

LARC,2,5,1,Ro ! Arcline 1 to 3 at Z = 0
LARC,5,3,1,Ro 
LARC,3,4,1,Ro

LARC, 7,10,6,Ro ! Arcline 4 to 6 at Z = b_hsp
LARC,10, 8,6,Ro 
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LARC, 8, 9,6,Ro

LARC,12,15,11,Ro ! Arcline 7 to 9 at Z = len
LARC,15,13,11,Ro 
LARC,13,14,11,Ro

L, 2, 7 ! line 10 to 13 from 0 to b_hsp
L, 5,10
L, 3, 8
L, 4, 9 
L, 7,12 ! line 14 to 17 from b_hsp to len
L,10,15
L, 8,13 
L, 9,14

! Create areas from lines

CSYS,1 ! Cylindrical coordinate system
AL, 1,11, 4,10 ! Area 1 to 6
AL, 2,12, 5,11
AL, 3,13, 6,12
AL, 4,15, 7,14
AL, 5,16, 8,15
AL, 6,17, 9,16

CSKP,11,2,11,12,13 !Local CS – spherical CS - origin at KP 11
K,17,Ro,0,theta_hsp

LARC,14,16,11,Ro !Spherical head – arc line 18 to 22
LARC,16,17,11,Ro
LARC,17,12,11,Ro
LARC,13,16,11,Ro
LARC,15,17,18,Ro*sin(theta_hsp/180*pi)

AL,20, 7,22 ! Create areas (area 7 to 9) by lines
AL,19,22, 8,21
AL,18,21, 9

CSYS,0

! --- E L E M E N T   D I V I S I O N S ---

LSEL,S,LINE,, 1, 7,3 ! Defined by line number,,,Vmin,Vmax,Vinc
LESIZE,ALL,,,ahsp_div 

LSEL,S,LINE,,10,13,1
LESIZE,ALL,,,bhsp_div 

LSEL,S,LINE,, 2, 8,3
LESIZE,ALL,,,r1_div,4

LSEL,S,LINE,,14,17,1
LESIZE,ALL,,,lon_div,8
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LSEL,ALL

! ---- E L E M E N T   A N D   M A T E R I A L T Y P E S ---

! Material type 1
MP,EX,1,29.3E6 ! Temperature = 100 F
MP,PRXY,1,0.3
TB,BKIN,1,,,1 ! Rice's Hardening 
TBDATA,,30000,2E4 ! yield point = 30000, Platic modulus = 2E4

! Element type 1
ET,1,SHELL91,3,1,,,1 ! Shell91, Maximum no. of layers = 3
KEYOPT,1,11,2 ! Nodes located at 1. bottom 2. top surface
KEYOPT,1,5,1 ! Print average results at layer middle

! Real constant set no. 1
R,1,3 ! number of layers
RMORE 
RMORE,1,,hc/3 ! material number and thickness for layer 1 (bottom)
RMORE,1,,hc/3 ! material number and thickness for layer 2 (middle)
RMORE,1,,hc/3 ! material number and thickness for layer 3 (top)

! Mesh the damaged spot
TYPE,1 ! Element type 1
REAL,1 ! Real constant set 1
ASEL,S,AREA,,1 ! Select area 1
AMESH,ALL

! Element type 2
ET,2,SHELL91,6,1,,,1  ! Shell91, Maximum no. of layers =  6 layers
KEYOPT,2,5,1 ! Print average results at layer middle
KEYOPT,2,11,2 ! Nodes located at 1. bottom 2. top surface

! Real constant set no. 2
R,2,6 ! number of layers
RMORE
RMORE,1,,c/3 ! material number and thickness for layer 1
RMORE,1,,c/3 ! material number and thickness for layer 2
RMORE,1,,c/3 ! material number and thickness for layer 3
RMORE,1,,hc/3 ! material number and thickness for layer 4
RMORE,1,,hc/3 ! material number and thickness for layer 5
RMORE,1,,hc/3 ! material number and thickness for layer 6

! Mesh the remaining of the cylinder
TYPE,2 ! Element type 2
REAL,2 ! Real constant set 2
ASEL,ALL ! Select all areas
ASEL,U,AREA,,1 ! Deselect area 1
DESIZE,,,,,,,0.5 ! Assign element edge size
AMESH,ALL

ASEL,ALL
CSYS,0
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! ---B O U N D A R Y   C O N D I T I O N S ---

NSEL,S,LOC,Z,0 ! Symmetry along Z = 0
DSYM,SYMM,Z,0

NSEL,S,LOC,Y,0 
DSYM,SYMM,Y,0 ! Symmetry along Y = 0

! Simply support at the end of the cap
NSEL,S,LOC,Z,len+Ro
NSEL,R,LOC,Y,0
NSEL,R,LOC,X,0
D,ALL,UX,0

NSEL,ALL
DTRAN ! Transfer constraints to FE model

! Apply internal pressure
ASEL, ALL
SFA,ALL,,PRES,P
SFTRAN ! Transfer loads to FE model

CHECK
FINISH ! Exit preprocessor

! ---- S O L U T I O N    M O D U L E ---

/SOLU ! Enter solution routine

ANTYPE,STATIC ! Static analysis
SOLCONTROL,ON ! Nonlinear analysis
AUTOTS,ON ! Automatic time stepping
NSUBST,200 ! Initial number for substep

SOLVE
SAVE ! Save database
FINISH ! Exit solution routine

! ----P O S T P R O C E S S O R   M O D U L E ---
/POST1 ! Enter postprocessor

RSYS,1 ! Obtain results in cylindrical coordinate system
*get,strain_0,node,1,epto,eqv ! Obtain strain at the crown of bulging 
*get,stress_0,node,1,s,eqv ! Obtain stress at the crown of bulging
PLESOL,EPTO,EQV ! Contour plot for von Mises strain

EXIT
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C.2.3.Solid Element Model for Internal Corrosion in Cylindrical Shells

/COM, INTERNAL CORROSION IN CYLINDRICAL SHELL 

! Cylinder dimensions (inch)
*SET, Ro, 21 ! Outer radius
*SET, Ri, 20.375 ! Inner radius
*SET, len, 80 ! Length of the cylinder

*SET, h, Ro-Ri ! Shell thickness
*SET, Rm, (Ro+Ri)/2 ! Mean radius

*SET, pi, 3.141592654

! Applied internal pressure
*SET, P, 1050

! Corrosion dimenstion

*SET, aspect_ratio, 3 ! Aspect ratio of the damaged spot
*SET, a_hsp, 3 ! Half the width of the damaged spot along circumference
*SET, b_hsp, aspect_ratio*a_hsp ! Half the width of the damaged spot along axial direction
*SET, theta_hsp, (a_hsp/Ro)*(180/pi)

*SET, c,  h/2 ! Corrosion depth
*SET, hc, h-c ! Corroded thickness
*SET, Rc, Ri+c ! Inner radius inside the corroded spot

! Number of element divisions

*SET, bhsp_div, 12 ! Inside the corroded area – axial direction
*SET, ahsp_div, 6 ! Inside the corroded area – circumferential direction
*SET, r1_div, 10 ! For the rest of the upper part of the cylinder
*SET, lon_div, 40 ! Along the length of the cylinder
*SET, hc_div, 10 ! Through thickness inside the corrosion
*SET, h_div,  5 ! Through thickness outside the corrosion

*SET, SL, -(P*Ri*Ri)/(2*Rm*h)
*SET, arc1, pi/2*Rc
*SET, arc4, pi/2*Ri
*SET, arc5, pi/2*Ro
*SET, arc2, (pi*theta_hsp*Rc)/180
*SET, arc3, (pi*theta_hsp*Ri)/180
*SET, arc6, (pi*theta_hsp*Ro)/180
*SET, a, arc2/arc1
*SET, a1, arc3/arc4
*SET, a2, arc6/arc5

! ---- P R E P R O C E S S O R ----

/PREP7 ! Enter the preprocessor
/TITLE, Cylindrical shell, Solid 185, Internal corrosion
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/UNITS,BIN

! ---M A T E R I A L   P R O P E R T I E S   A N D   E L E M E N T   T Y P  E S ---

! Element type 1
ET,1,SOLID185 ! SOLID185 

! Material properties for temperature 100 deg. F
MP,EX,1,29.3E6 !  Young’s modulus
MP,PRXY,1,0.3 ! Poisson’s ratio
TB,BKIN,1,1,2,1 ! Bilinear kinematic strain hardening
TBDATA,,29982,2E4 ! Data table, yield stress, plastic modulus

! ---- M O D E L I N G   ---

! Create keypoints on the current CS
K,1,0,0,0
K,2,Ri,0,0
K,3,0,Ri,0
K,4,0,-Ri,0
K,5,Ro,0,0
K,6,0,Ro,0
K,7,0,-Ro,0
K,8,0,0,len

! Create lines from keypoints
LARC,2,3,1,Ri ! Arc line 1 to 4
LARC ,5,6,1,Ro
LARC ,2,4,1,Ri
LARC ,5,7,1,Ro

L,2,5 ! Line 5 to 8
L,3,6
L,4,7
L,1,8

! Create areas by lines
AL,5,1,6,2 ! Area 1 and 2
AL,5,3,7,4
ASEL, ALL
VDRAG,1,2,,,,,8 ! Create volume by dragging areas along line 8

! Create internal corroded spot
K,15,0,Rc,0
K,16,Rc,0,0
LARC,15,16,1,Rc
LDIV,22,a,17
LDIV,1,1-a,18
L,17,18
LCSL,6,22 ! Divide intersecting lines at points of intersection
AL,26,22,25,24 ! Create areas by lines
VEXT,12,,,,,b_hsp ! Generates additional volumes by extruding areas
VSBV,1,3 ! Subtract volume 3 from volume 1
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! Create different portions for meshing
LDIV,2,1-A2,51 ! Line along longitudinal direction at a_hsp
L,18,51
LDIV,12,1-A2,52
LDIV,16,A1,53
L,52,53
A,52,53,18,51
VSBA,4,1 ! Subtract area 1 from volume 4 

K,54,Ro+10,Ro+10,b_hsp !Line along circumferential direction at a_hsp
K,55,-(Ro+10),Ro+10,b_hsp
K,56,-(Ro+10),-(Ro+10),b_hsp
K,57,(Ro+10),-(Ro+10),b_hsp
A,54,55,56,57
VSBA,3,1 ! Subtract area 1 from vol 3 (inside the corroded area)

K,54,Ro+10,Ro+10,b_hsp
K,55,-(Ro+10),Ro+10,b_hsp
K,56,-(Ro+10),-(Ro+10),b_hsp
K,57,(Ro+10),-(Ro+10),b_hsp
A,54,55,56,57
VSBA,1,1 ! Subtract area 1 from vol 1 (upper part of the cylinder)

K,54,Ro+10,Ro+10,b_hsp
K,55,-(Ro+10),Ro+10,b_hsp
K,56,-(Ro+10),-(Ro+10),b_hsp
K,57,(Ro+10),-(Ro+10),b_hsp
A,54,55,56,57
VSBA,2,1 ! Subtract area 1 from volume 2 (lower part)

! ---- E L E M E N T    D I V I S I O N S ----

lesize,35,,,lon_div,6 ! Along longitudinal direction
lesize,40,42,,lon_div,6
lesize,48,49,,lon_div,6
lesize,58,59,,lon_div,6

lesize,1 ,2,,r1_div,4 ! Along circumferential direction (upper part)
lesize,12,,,r1_div,4
lesize,23,,,r1_div,4
lesize,31,,,r1_div,4
lesize,51,52,,r1_div,4

lesize,3 ,4,,12 ! Along circumferential direction (lower part)
lesize,17,,,12
lesize,21,,,12
lesize,38,,,12
lesize,56,,,12

lesize,15,16,,ahsp_div ! Inside the corroded spot (along circumference)
lesize,22,,,ahsp_div
lesize,26,30,2,ahsp_div
lesize,45,,,ahsp_div
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lesize,6 ,,,hc_div ! Through corroded thickness
lesize,25,29,2,hc_div
lesize,39,,,hc_div
lesize,46,47,,hc_div

lesize,32,34,,bhsp_div ! Inside the corroded spot (along axial direction)
lesize,37,,,bhsp_div
lesize,43,44,,bhsp_div
lesize,53,55,,bhsp_div

! ---- M E S H I N G ----

! Preparation for mapped meshing
LREVERSE,1 ! Reverse the normal of selected lines
LREVERSE,2
LREVERSE,12
LREVERSE,35
LREVERSE,41
LREVERSE,42
LREVERSE,58
LREVERSE,59

LCCAT,25,39 ! Concatenates lines into one line for mapped meshing
LCCAT,47,29
LCCAT,46,6
LCCAT,15,2
LCCAT,43,48
LCCAT,44,49
LCCAT,40,34
LCCAT,37,59
LCCAT,54,42
LCCAT,53,41

ACCAT,12,2 ! Concatenates areas into one area for mapped meshing
ACCAT,16,19
ACCAT,18,13

! Mesh volume
VMESH,ALL ! Mesh volume

! ---- B O U N D A R Y    C O N D I T I O N S ---
DA,2 ,symm ! Apply symmetric boundary conditions 
DA,7 ,symm
DA,12,symm
DA,14,symm
DA,23,symm
DA,26,symm
DA,34,symm

DK,5,UY,0 ! Constrain disp along axial direction at keypoint 5

SFA,15,1,PRES,P ! Apply internal pressure to inside surface areas
SFA,24,1,PRES,P
SFA,29,1,PRES,P
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SFA,21,1,PRES,P
SFA,3 ,1,PRES,P
SFA,35,1,PRES,P

SFA,22,1,pres,SL ! Apply pressure to the end of the cylinder
SFA,6,1,pres,SL
SFA,11,1,pres,SL

DTRAN ! Transfer constraints to FE model
SFTRAN ! Transfer surface load to FE model
FINISH ! Exit preprocessor

! ---- S O L U T I O N   M O D U L E ---

/SOLU ! Enter solution routine
NSUBST,500 ! Initial number of substep
OUTRESS,ALL,ALL
SOLVE
SAVE ! Save database
FINISH ! Exit solution routine

EXIT

C.2.4.Solid Element  Model for External Corrosion in Cylindrical Shells

/COM, EXTERNAL CORROSION IN CYLINDRICAL SHELL 

! Cylinder dimensions (inch)
*SET, Ro, 21 ! Outer radius
*SET, Ri, 20.375 ! Inner radius
*SET, len, 100 ! Length of the cylinder

*SET, h, Ro-Ri ! Shell thickness
*SET, Rm, (Ro+Ri)/2 ! Mean radius

*SET, pi, 3.141592654

! Applied internal pressure
*SET, P, 1050

! Corrosion dimenstion

*SET, aspect_ratio, 3 ! Aspect ratio of the damaged spot
*SET, a_hsp, 3 ! Half the width of the damaged spot along circumference
*SET, b_hsp, aspect_ratio*a_hsp ! Half the width of the damaged spot along axial direction
*SET, theta_hsp, (a_hsp/Ro)*(180/pi)

*SET, c,  h/2 ! Corrosion depth
*SET, hc, h-c ! Corroded thickness
*SET, Rc, Ri+c ! Inner radius inside the corroded spot
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! Number of element divisions

*SET, bhsp_div, 12 ! Inside the corroded area – axial direction
*SET, ahsp_div, 6 ! Inside the corroded area – circumferential direction
*SET, r1_div, 10 ! For the rest of the upper part of the cylinder
*SET, lon_div, 40 ! Along the length of the cylinder
*SET, hc_div, 10 ! Through thickness inside the corrosion
*SET, h_div,  5 ! Through thickness outside the corrosion

*SET, SL, -(P*Ri*Ri)/(2*Rm*h)
*SET, arc1, pi/2*Rc
*SET, arc4, pi/2*Ri
*SET, arc5, pi/2*Ro
*SET, arc2, (pi*theta_hsp*Rc)/180
*SET, arc3, (pi*theta_hsp*Ri)/180
*SET, arc6, (pi*theta_hsp*Ro)/180
*SET, a, arc2/arc1
*SET, a1, arc3/arc4
*SET, a2, arc6/arc5

! ---- P R E P R O C E S S O R ----

/PREP7 ! Enter preprocessor
/TITLE, Cylindrical shell, Solid 185, External corrosion
/UNITS,BIN

! M A T E R I A L    P R O P E R T I E S

ET,1,solid185 ! SOLID185 element

MP,EX,1,29.3e6 ! Young’s modulus
MP,PRXY,1,0.3 ! Poisson’s ratio
TB,BKIN,1,1,2,1 ! Bilinear kinematic strain hardenting
TBDATA,,29982,2e4 ! Yield point, plastic modulus

! ---M O D E L I N G ---

! Create keypoints on the current CS
K,1,0,0,0 ! At the center of the cylinder
K,2,Ri,0,0 ! Along the circumference of the inner radius
K,3,0,Ri,0
K,4,0,-Ri,0
K,5,Ro,0,0 ! Along the circumference of the outter radius
K,6,0,Ro,0
K,7,0,-Ro,0
K,8,0,0,len

! Create lines from keypoints
LARC,2,3,1,Ri ! Arc line 1 to 4
LARC ,5,6,1,Ro
LARC ,2,4,1,Ri
LARC ,5,7,1,Ro
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L,2,5 ! Line 5 to 8
L,3,6
L,4,7
L,1,8

! Create areas by lines
AL,5,1,6,2 ! Area 1 and 2
AL,5,3,7,4
ASEL, ALL
VDRAG,1,2,,,,,8 ! Create volume by dragging areas along line 8

! Create external corroded spot
K,15,0,Rc,0
K,16,Rc,0,0
LARC,15,16,1,Rc
LDIV,22,a,17
LDIV,2,1-a2,18
L,17,18
LCSL,6,22 ! Divide intersecting lines at points of intersection
AL, 22,27,24,25 ! Create areas by lines
VEXT,12,,,,,b_hsp ! Generates additional volumes by extruding areas
VSBV,1,3 ! Subtract volume 3 from volume 1

! Create different portions for meshing
LDIV, 1,1-a1,51 ! Line along longitudinal direction at a_hsp
L,18,51
LDIV, 12,1-a2,52
LDIV,16,a1,53
L,52,53
A,52,53,51, 18
VSBA,4,1 ! Subtract area 1 from volume 4 

K,54,Ro+10,Ro+10,b_hsp !Line along circumferential direction at a_hsp
K,55,-(Ro+10),Ro+10,b_hsp
K,56,-(Ro+10),-(Ro+10),b_hsp
K,57,(Ro+10),-(Ro+10),b_hsp
A,54,55,56,57
VSBA,3,1 ! Subtract area 1 from vol 3 (inside the corroded area)

K,54,Ro+10,Ro+10,b_hsp
K,55,-(Ro+10),Ro+10,b_hsp
K,56,-(Ro+10),-(Ro+10),b_hsp
K,57,(Ro+10),-(Ro+10),b_hsp
A,54,55,56,57
VSBA,1,1 ! Subtract area 1 from vol 1 (upper part of the cylinder)

K,54,Ro+10,Ro+10,b_hsp
K,55,-(Ro+10),Ro+10,b_hsp
K,56,-(Ro+10),-(Ro+10),b_hsp
K,57,(Ro+10),-(Ro+10),b_hsp
A,54,55,56,57
VSBA,2,1 ! Subtract area 1 from volume 2 (lower part)
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! ---- E L E M E N T    D I V I S I O N S ----

lesize,35,,,lon_div,6 ! Along longitudinal direction
lesize,40,42,,lon_div,6
lesize,48,49,,lon_div,6
lesize,58,59,,lon_div,6

lesize,1 ,2,,r1_div,4 ! Along circumferential direction (upper part)
lesize,12,,,r1_div,4
lesize,23,,,r1_div,4
lesize,34,,,r1_div,4
lesize,51,52,,r1_div,4

lesize,3 ,4,,12 ! Along circumferential direction (lower part)
lesize,17,,,12
lesize,21,,,12
lesize,38,,,12
lesize,56,,,12

lesize,6,,,ahsp_div ! Inside the corroded spot (along circumference)
lesize,13,16,3,ahsp_div
lesize,22,,,ahsp_div 
lesize,27,29,2,ahsp_div
lesize,45,,,ahsp_div

lesize,26 ,,,hc_div ! Through corroded thickness
lesize,39,,,hc_div
lesize,43,44,,hc_div

lesize,25,,,h_div ! Through the shell thickness
lesize,28,,,h_div
lesize,30,,,h_div

lesize,31,33,,bhsp_div ! Inside the corroded spot (along axial direction)
lesize,37,,,bhsp_div
lesize,46,47,,bhsp_div
lesize,53,55,,bhsp_div

! ---- M E S H I N G ----

! Preparation for mapped meshing
LREVERSE,1 ! Reverse the normal of selected lines
LREVERSE,2
LREVERSE,12
LREVERSE,35
LREVERSE,41
LREVERSE,42
LREVERSE,58
LREVERSE,59

LCCAT,25,39 ! Concatenates lines into one line for mapped meshing
LCCAT,47,29
LCCAT, 3, 1
LCCAT, 4, 2
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LCCAT, 1,13
LCCAT,12,17
LCCAT,16,34
LCCAT,27,12
LCCAT,28,44
LCCAT,33,40
LCCAT,34,21
LCCAT,41,53
LCCAT,42,54
LCCAT,43,30
LCCAT,46,48
LCCAT,58,55
LCCAT,59,37

ACCAT,6,13 ! Concatenates areas into one area for mapped meshing
ACCAT,15,19

! Mesh volume
VMESH,ALL ! Mesh volume

! ---- B O U N D A R Y    C O N D I T I O N S ---

DA,2 ,symm ! Apply symmetric boundary conditions 
DA,12 ,symm
DA,16,symm
DA,18,symm
DA,22,symm
DA,26,symm
DA,34,symm

DK,5,UY,0 ! Constrain disp along axial direction at keypoint 5

SFA,3 ,1,PRES,P ! Apply internal pressure to inside surface areas
SFA, 7,1,PRES,P
SFA,21,1,PRES,P
SFA,25,1,PRES,P
SFA,29,1,PRES,P
SFA,35,1,PRES,P

SFA,5,1,pres,SL ! Apply pressure to the end of the cylinder
SFA,11,1,pres,SL
SFA,23,1,pres,SL

DTRAN ! Transfer constraints to FE model
SFTRAN ! Transfer surface load to FE model
FINISH ! Exit preprocessor

! ---- S O L U T I O N   M O D U L E ---

/SOLU ! Enter solution routine
NSUBST,500 ! Initial number of substep
OUTRESS,ALL,ALL
SOLVE
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SAVE ! Save database
FINISH ! Exit solution routine

EXIT
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