
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

JfAY 30 1996

~~~.. ""-# / 
~· 



1+1 National Library 
of Canada 

Bibliotheque nationale 
du Canada 

Acquisitions and Direction des acquisitions et 
Bibliographic Services Branch des services bibliographiques 

395 Wellington Street 
Ottawa, Ontario 
K1AON4 

395, rue Wellington 
Ottawa (Ontario) 
K1AON4 

THE AUTHOR HAS GRANTED AN 
IRREVOCABLE NON-EXCLUSIVE 
LICENCE ALLOWING THE NATIONAL 
LffiRARYOFCANADATO 
REPRODUCE, LOAN, DISTRffiUTE OR 
SELL COPIES OF HIS/HER THESIS BY 
ANY :MEANS AND IN ANY FORM OR 
FORMAT, MAKING THIS THESIS 
AVAILABLE TO INTERESTED 
PERSONS. 

THE AUTHOR RETAINS OWNERSHIP 
OF THE COPYRIGHT IN HIS/HER 
THESIS. NEITHER THE THESIS NOR 
SUBSTANTIAL EXTRACTS FROM IT 
MAY BE PRINTED OR OTHERWISE 
REPRODUCED WITHOUT HIS/HER 
PERMISSION. 

ISBN 0-612-06149-3 

Canada 

Your file VO/re refiJrence 

Our file NOire reference 

L'AUTEUR A ACCORDE UNE LICENCE 
IRREVOCABLE ET NON EXCLUSIVE 
PERMETT ANT A LA BffiLIOTHEQUE 
NATIONALE DU CANADA DE 
REPRODUIRE, PRETER, DISTRffiUER 
OU VENDRE DES COPIES DE SA 
THESE DE QUELQUE MANIERE ET 
SOUS QUELQUE FORME QUE CE SOIT 
POUR :METTRE DES EXEMPLAffi.ES DE 
CETTE THESE A LA DISPOSITION DES 
PERSONNE INTERESSEES. 

L'AUTEUR CONSERVE LA PROPRIETE 
DU DROIT D'AUTEUR QUI PROTEGE 
SA THESE. NI LA THESE NI DES 
EXTRAITS SUBST ANTIELS DE CELLE
CI NE DOIVENT ETRE IMPRIMES OU 
AUTRE:MENT REPRODUITS SANS SON 
AUTORISATION. 



Development of A Fast Ray-Tracing 

Algorithm 

By 

Ming Tan B.Sc. 

A thesis submitted to the School of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

Master of Science 

St. John's 

Department of Computer Science 

Memorial University of Newfoundland 

April, 1995 

Newfoundland Canada 



Abstract 

Ray-tracing is one of the best rendering techniques for the creation of high quality 

and realistic computer synthesized 2D images of the 3D world. It has been successfully 

applied in many graphics packages. However, while the technique renders realistic im

ages by simulating the behavior of real light rays, a ray tracing algorithm also imposes 

a heavy computational burden. As the most time-consuming part of a ray tracer is 

to check the intersections between imaginary rays and object surfaces, an efficient al

gorithm is crucial. Thus, many efficient acceleration algorithms have been invented. 

Bounding volume techniques are the most popular among the many acceleration tech

niques for ray/ object intersection testing. Although a few bounding volumes have 

been proposed, spheres are the simplest. In this thesis, two ray /sphere intersection 

algorithms, i.e. the traditional algebraic solution and the efficient geometric solution, 

are first discussed. Then, a new ray tracing algorithm is introduced that features a 

fast ray/sphere interaction. By homogeneously transforming the definition world to a 

ray, the new algorithm simplifies the expensive 3-D surface intersection problem into 

a 2-D enclosure check. The speed-up of image rendering is derived theoretically in the 

thesis from complexity analysis and is also demonstrated in an implementation with 

experimental results. 

ii 



Acknowledgments 

I would like first to express my thanks to my two supervisors Prof. Xiaobu Yuan 

and Prof. Paul Gillard for their interest, financial support, guidance and patience 

during my studies at Memorial University of Newfoundland. Without their help and 

supervision, it would be impossible to give the thesis its current quality. 

I would also like to thank other professors at Department of Computer Science who 

taught or helped me: Prof. Caoan Wang, Prof. Jian Tang, Prof. Siwei Lu and Prof. 

John Shieh. 

Special thanks are due to staff members who have helped me in one way or another. 

Finally I thank those graduate students who provided encouragement and assis-

tance. 

111 



Contents 

1 Introduction 

2 Ray-'fracing Processing 

2.1 

2.2 

Physical Theory . 

The Algorithm . 

3 Survey of Ray Tracing Acceleration Techniques 

3.1 

3.2 

Introduction . . .. 

Bounding Volumes 

3.3 Hierarchical Bounding Volumes(HBV) 

3.4 An Algorithm With HBV 

3.5 

3.6 

3.7 

Theoretical Analysis of Bounding Volume Optimization 

Approximate Convex Hulls . . ...... . 

Predicting the Effectiveness of a Hierarchy 

3.8 Constructing A Hierarchy ... 

lV 

1 

4 

4 

6 

10 

10 

12 

13 

14 

17 

20 

22 

25 



4 Two Current Ray /Sphere Intersection Testing Techniques 

4.1 

4.2 

Algebraic Solution 

Geometric Solution 

5 A New Algorithm 

5.1 From Intersection to Enclosure Check 

5.1.1 

5.1.2 

Coordinate System Transformation 

Point-Circle Enclosure Check 

6 Complexity and Comparison 

6.1 

6.2 

The Complexities 

A Comparison .. 

7 Implementation 

7.1 Understanding the Functionalities of Rayshade 4.0.6 

7.2 

7.3 

Understanding the source code of Rayshade 4.0.6 

7. 2.1 

7.2.2 

Data Structure 

Algorithm .. 

Experimental Results 

8 Conclusion 

v 

27 

28 

31 

35 

36 

37 

42 

44 

46 

49 

51 

51 

54 

55 

55 

58 

65 



List of Tables 

6.1 The Number of Operations to Calculate T 47 

7.1 The Results of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 59 

V1 



List of Figures 

2.1 Direct and indirect rays that travel from the light source to a pixel 5 

2.2 Ray tracing as a tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

3.1 A procedure for intersecting a ray with a collection of objects organized 

in a bounding volume hierarchy. Procedure 'Intersect' and function 'In

tersecLB' hide many of the low-level details. . . . . . . . . . . . . . . . 14 

3.2 An optimization which results from shrinking the distance interval as

sociated with a ray whenever an intersection is found. The contents of 

volume V2 need not be tested against this ray if the intersection with 

object 0 1 is found first. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

3.3 A comparison of three different types of bounding volumes for the same 

primitive object. Each presents a different cost/fit ratio. (a) Bounding 

sphere. (b) Axis-aligned bounding box. (c) Oriented bounding box. . . 19 

Vll 



3.4 A plane-set normal defines a family of parallel planes orthogonal to 

it. Two values associated with a plane-set normal select two of these 

planes and define a slab. The intersection of several such slabs forms a 

parallelepiped bounding volume. (a) A single slab bracketing an object. 

(b) Three slabs defining a bounding volume. . . . . . . . . . . . . . . . 21 

3.5 (a) An approach of computing the conditional probability of a ray hitting 

B given that it has hit A. This can be used in cases like (b) to compute 

the average cost of intersecting a ray with the arbitrary contents of a 

bounding volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

4.1 The Geometric Relation between a Ray and a Sphere . . . . . . . . . . 32 

5.1 

5.2 

The Definition and Transform of the Ray System 

The Point-Circle Enclosure Check ... . . . .. . 

7.1 The object stack data structure after preprocessing stage of 'Rayshade 

4.0.6' ................ . 

7.2 The Performance of the Algorithms 

7.3 Buckyball, a Rendered Image 

7.4 

7.5 

Branch, a Rendered Image 

Tree, a Rendered Image . 

Vlll 

36 

42 

56 

61 

62 

63 

64 



Chapter 1 

Introduction 

One goal of computer graphics is to create 'realistic' images. For this purpose, people 

simulate the real world's optical physics in the virtual world of the computer. Many 

rendering techniques have been developed, such as hidden surface removal, shadow 

computation, reflection of light, transparency, motion blur, and global specular inter

action. However, most of the rendering algorithms work only in special cases. One often 

finds a picture with shadows, but no transparency, or another picture with reflection, 

but no motion blur. 

Ray-tracing was introduced as geometric optics in Rene Descartes' treatise , pub

lished in 1637 and was used to explain some physical phenomena at that time. Some 

people suggested introducing this technique for rendering images by computer in the 

1960's. It was not feasible then because ray-tracing algorithms take a great deal of time 

1 



for calculation. As computers became more and more powerful, graphics researchers 

began to think that this physical simulation of light would be a good way to create 

high quality synthetic images of the real world. 

In a ray tracing algorithm, a ray is first projected through one pixel in an image 

backwards into the scene along the viewing direction. At the intersection point of the 

ray with the nearest surface, the color intensity is computed under the illumination of 

both the local light sources and two contributions from the reflected and transmitted 

light intensities. The secondary light contributions are in turn accumulated recursively 

along the reflected and refracted rays as with the original ray until they are 'aged' 

off[27]. 

As a result, a ray tracing algorithm mainly involves two types of processing -

surface intersection and intensity calculation. While color intensity can be fairly easily 

computed from illumination models[28], a ray tracing algorithm spends most of its 

time on ray-surface intersection tests1 . Therefore, an efficient ray-surface intersection 

testing method will definitely accelerate the ray tracing process and thus speed up the 

rendering of realistic images. 

In this thesis, a new ray tracing algorithm is introduced. It employs a fast ray /sphere 

interaction test that simplifies the expensive three-dimensional surface interaction prob-

lem to a simple two-dimensional enclosure check. This ability is obtained by transform-

1 It was estimated[21) that, for a scene of moderate complexity, a recursive ray tracing algorithm 
spends up to 95% of its time checking ray-surface intersections. 

2 



ing the coordinate system of the scene to a coordinate system related to the direction 

of the ray. Technical details are presented in the thesis. To demonstrate the speed 

improvement of image rendering with this new algorithm, computational complexity is 

analyzed in terms of numerical operations. Comparison with three typical ray-tracing 

algorithms is also given with results from real implementations. 

3 



Chapter 2 

Ray-Tracing Processing 

2.1 Physical Theory 

A ray traced through a scene enables the computation of the intensity of the pixel as

sociated with the ray. Assuming the big and small spheres in Figure 2.1 are completely 

opaque, and that the cube is partially transparent, actually three rays can be traced 

in the direction of light propagation: 

1. A ray from the light source that reflects off the small sphere and refract through 

the cube to the pixel of interest. 

2. A ray from the light source that reflects directly from the cube to the pixel of 

interest. 

4 



Light source 

Image 

plane 

Figure 2.1: Direct and indirect rays that travel from the light source to a pixel 

5 



3. A ray from the light source that reflects off the big sphere and then off the cube 

to the pixel of interest. 

The first ray is 'indirect' as the light propagates along four separate paths in its 

journey from the light source to the pixel. The second ray is 'direct'. Although both 

rays are technically indirect, a ray that reaches to the eye due to a single reflection 

is different from ray that is the result of multiple reflections. The third ray is also 

indirect. 

2.2 The Algorithm 

Ray tracing is often perceived as a tree creation process. A tree of one pixel in the scene 

shown in Figure 2.1 is given in Figure 2.2(a). In this figure, each node represents a 

recursive call of a general ray tracing procedure. Such ray trees are subsets of a general 

binary tree( Figure 2.2(b) ) that will have a refracted and a reflected branch emanating 

from each node. If a ray intersects an object, it then spawns two rays in general -

a reflected ray and a transmitted or refracted ray. Each of these rays produces two 

rays at the next interface and a recursive trace continues until either a predeterm1ned 

recursive depth is exceeded, or a ray hits nothing and is allotted a background color. 

Herein lies the high computational cost of recursive ray tracing. 

In any implementation, it usually traces rays backwards from the view point through 

6 



(a) Tree for a ray shown in Figure 2.1 

Reflect/ 

s 
(b) Ray trees are subsets of a general tree. 

Figure 2.2: Ray tracing as a tree. 

7 



each pixel into the scene. That is, it traces in the reverse direction of light propagation. 

Since an infinite number of rays emanate from a light source and it is difficult to trace 

rays in the direction of light propagation, we only trace those rays which could pass 

through the image plane among all the rays within the 3D scene because they are the 

rays contributing to the picture intensities. 

In a naive ray tracer, a ray is tested against every object in the scene for intersection[20]. 

If more than one object intersects the ray then the one that is the nearest to the ray 

origin is selected. 

At each intersection point, the light intensity is calculated as follows: 

That is, the light reflected from a point on a surface is the linear combination of 

three terms. First, a local term Il counts in the local illumination at the intersection 

point on the surface directly from light sources. It can be calculated by using any of 

the direct reflection model descriptions, e.g., the Phong model[22]. Secondly, the global 

terms, Ir and It, are added into the local component. Ir represents light that arr :ves 

at a point due to reflection from another object, and It light that transmits through 

the object if it is partially transparent. Here kr and kt are reflection and transmission 

coefficients relevant to the surface material. 

8 



It is important to bear in mind that this is a recursive process. A tree is evaluated 

bottom-up at every intersection point using the same equation to calculate the intensity, 

and each node's intensity is computed as a function of its children's intensities. 

The algorithm involves two stages of processing. The first stage is the ray/object 

intersection testing. In the second stage, the ray is recursively traced and the intersec

tion point light intensity is calculated. It is also noted that the first part is separate 

from the second part. This means that the calculations for ray /object intersection test

ing are just for determining the intersection point location in the scene and is totally 

processed before the actual intersection point light intensity evaluation. 

This is a well-known important advantage of the ray tracing approach. This advan

tage makes it possible to independently develop totally different ray/ object intersection 

strategies for the ray tracing algorithm because the new intersection algorithm is easy 

to add into the ray tracer. As mentioned in the introduction, the ray tracer will spend 

most of its calculation time on intersection tests. Therefore, a better intersection 

checking strategy can always be used to speed up the ray tracing process. 

9 



Chapter 3 

Survey of Ray Tracing Acceleration 

Techniques 

3.1 Introduction 

The ray-tracing algorithm depends exclusively on a single operation: calculating the 

point of intersection between a ray in the 3-D space and a geometric object, or primitive . 

The primitive objects could have any shape, e.g. polygonal, spherical, cylindrical , and 

more complex shapes like parametric surfaces [12, 13] or swept surfaces[15]. Rays have 

to do the intersection operations with the collection of all possible primitive objects, 

which actually define an environment. 

Each ray must be tested with all the primitive objects within the environment 

10 



and the intersection point is the point closest to the ray origin. This is commonly 

referred to as the 'standard' (or 'traditional') ray-tracing algorithm. This has a linear 

time complexity in the number of objects. This exhaustive ray tracing is the most 

intuitive solution, and it is still employed in the processing of subproblems within more 

complicated techniques because some complicated environment might prevent the use 

of the acceleration techniques. 

Accounting for the huge time consumed by the ray tracing algorithm, it is found 

that the cost of the operation for calculating the intersection point typically overshad

ows other operations in the ray-tracing algorithm such as intensities evaluations and 

common book-keeping operations. A statistic reported by Whitted[21] is that more 

than 95% of the time could be spent conducting this operation for scenes of moderate 

complexity. 

Most techniques to accelerate ray tracing fall into one of three categories: reducing 

the number of objects for a given inclusion test, providing more efficient intersec

tion tests for objects and bounding volumes, and simultaneous multiple-ray projection 

schemes (e.g., beam tracing[35] and cone tracing[36]). The first two techniques can 

often be used simultaneously, but may require that "pure" ray tracing be employed

in "pure" ray tracing, intersections are calculated with a single ray. 

The following survey examines some of the strategies employed for the first two of 

the previous acceleration categories, employing "pure" ray tracing. 

11 



3.2 Bounding Volumes 

In the intersection testing stage of a ray tracing algorithm, a ray is tested against all 

the objects in a scene to find out exactly which object is hit by the ray. Because 3D 

objects may have many different shapes, it is usually very difficult and time-consuming 

to check the intersection between the ray and objects. Therefore, researchers have 

introduced several simpler bounding volumes[20][23], such as spheres, boxes, cylinders, 

to enclose these real objects with different 3D shapes. After all the objects in the 

scene are bounded by one type of bounding volume, e.g., spheres, the difficulties of 

intersection checks between the ray and many objects with different shapes is reduced 

and the gain in efficiency is significant because their shapes are unified. 

Convexity is a geometrical property usually desired for bounding volumes because 

it guarantees that any ray will intersect the volume at most twice. Spheres, boxes and 

cylinders are all convex shapes and valid to serve as bounding volumes. 

Whitted[21] initially used spheres as bounding volumes, observing that they are the 

simplest shapes to test for intersection. 

Two advantages of the sphere as a bounding volume are: 

• It is easy to find the sphere's center and radius. 

• The number of calculations for testing the ray /sphere intersection is the smallest. 

For example, when spheres are selected as bounding volumes in the new algorithm 

12 



developed in the thesis (Chapter 5), only the centers of the spheres need to be translated 

and rotated in order to determine the new locations of the objects. However, if boxes 

are selected, the same set of calculations has to be applied to 8 vertices of the box 

before an object's new position could be known. So, using spheres as the bounding 

volumes is about eight times faster in the new algorithm than using boxes. 

3.3 Hierarchical Bounding Volumes(HBV) 

The use of bounding volumes make the intersection testing operations simpler than 

the original shapes. However, it does not actually decrease the number of primitive 

objects in the scene. According to the theoretical analysis, this might reduce the 

computational complexity by a constant factor. In order to improve this case, Rubin 

and Whitted[ll] used hierarchical bounding volumes instead of separate volumes. This 

technique obtains a theoretical logarithmic time complexity in the number of objects. 

The idea is to enclose many smaller bounding volumes (sibling volumes) within a bigger 

one (parent volume). If a ray did not intersect the parent volume, it is not needed to 

conduct intersection testing against the sibling volumes within. A hierarchy should be 

constructed before real intersection testing operations. 

Rubin and Whitted employed oriented bounding boxes as bounding volumes to 

minimize void area. Before the ray /box intersection testing operations, the ray is 

first transformed into the defined coordinate system of the bounding box. Testing the 

13 



Procedure 
begin 

if 

B VH_Intersect( ray, node) 

node is a leaf then 

Intersect(ray, node.object) 

else if Intersect_B(ray, node.bounding_volume) then 

for each child of node do 

B VH_Intersect(ray, child); 

end 

Figure 3.1: A procedure for intersecting a ray with a collection of objects organized 
in a bounding volume hierarchy. Procedure 'Intersect' and function 'IntersecLB' hide 
many of the low-level details. 

intersection between the transformed ray and axis-aligned bounding box becomes easier 

because the coordinate system was always the same; it is aligned to the box now. Since 

it is very simple to conduct the ray transformation operation, the bounding boxes are 

also used for representing the objects at the terminal nodes of a hierarchy. Rubin and 

Whitted also tried to simplify the polygonal representations by one or more bounding 

boxes along one axis. 

3.4 An Algorithm "With HBV 

Figure 3.1 shows a procedure, namely 'BVHJntersect' , that intersects a ray with 

many objects organized in a bounding volume hierarchy. The data structure of this 

hierarchy is similar to a tree with an arbitrary branching factor at each internal node. 

Thus, parent bounding volumes may enclose any number of other sibling bounding 

14 



volumes. Each leaf node of the tree is a single primitive and the interior node is a 

bounding volume with a list of pointers to its sibling nodes. 

The procedure 'Intersect' in 'BVHJntersect' is responsible for calling the ap

propriate ray-object intersection operation for this type of primitive object. The 'ray' 

parameter includes a 3-D origin, a direction vector, and a distance interval. Points of 

intersection farther than the distance interval (measured along the ray from its origin) 

are to be ignored and a newly found point of intersection in 'Intersect' always replaces 

the far end of the distance interval to that point . 

The procedure 'Intersect_B' is very similar to 'Intersect' except that it returns a 

boolean value indicating whether an intersection might happen and it does not actually 

alter the ray's distance interval. This function is used to test if the particular bounding 

volume is hit by the ray. 

With 'Intersect' and 'Intersect_B', the work of intersecting a ray within a certain 

bounding volume hierarchy is quite straightforward. The process begins with the root 

node of the tree, representing a bounding volume enclosing the entire environment, 

and the ray is assigned the distance interval equal to 'infinity' before real processing. 

Each recursive reference of 'BVHJntersect' descends another level of the hierarchy, 

and the recursion terminates with real ray-object intersection tests at the leaves. At 

each level, the ray is tested against all the sibling bounding volumes and only descends 

into the ones which are hit by the ray. Those sibling volumes not hit by the ray are 

15 



Ray origin 

Figure 3.2: An optimization which results from shrinking the distance interval associ
ated with a ray whenever an intersection is found. The contents of volume V2 need not 
be tested against this ray if the intersection with object 0 1 is found first. 

ignored and the prune function is realized. 

The benefit of adjusting the ray's distance interval is that it performs a useful 

optimization [4, 10]. Once an intersection point has been found with some object, or 

bounding volume with an upper bound of the distance interval, all objects or bounding 

volumes farther than this bound do not need be tested. This provides a second prune 

mechanism from the hierarchy during the processing of a ray. An example of this is 

shown in Figure 3.2. If bounding volume Vi is processed before V2, the contents of 

the latter need not be tested because the point of intersection with object 0 1 is closer 

than any within V2. This saves at least one ray-object intersection test and potentially 

many in cases where V2 encloses other sibling bounding volumes. 

16 



3.5 Theoretical Analysis of Bounding Volume Op-

timization 

In section 3.2, it is already observed (Whitted[21]) that the sphere is the simplest shape 

to conduct intersection calculations. However, people still do not know if the sphere is 

the best bounding volume and what is the relationship between bounding volume and 

the cost of intersection. This section addresses this question. 

Weghorst et al. [16] investigated this by considering the two major factors of 

this problem: tightness of fit and the cost of intersection. It was found that the 

total computational cost associated with an object and its bounding volume could be 

expressed by 

Cost = n * B + m * I (3.1) 

That means the total cost has two components, the cost (B) spent for conducting 

intersection testing between all rays (n) with the object's bounding volume and the 

cost (I) spent for conducting intersection testing between some rays (m) with this 

primitive object. n is the number of rays tested against the bounding volume. m is 

the number of rays which actually hit the volume. Since n, I , and B are all relatively 

fixed, it is better to select a bounding volume which minimizes m , i.e., as tight fitting 

as possible because the smaller the bounding volume is, the smaller the number of 

17 



rays that will hit it. Now, it is necessary to set a standard for measuring the fit of 

the bounding volumes. Weghorst et al. used the enclosed volume as a measure of fit, 

observing that it is related to the projected void area with respect to any direction, 

i.e., to the difference in the projected areas of the bounding volume and the enclosed 

objects. This difference in area indicates how likely a ray is to hit the bounding volume 

without hitting the enclosed object. A large void area, resulting from a loose fit, can 

increase m and cause many unnecessary object intersection checks. Reducing m even 

at the expense of an increase in B is sometimes warranted. Weghorst et al. introduced 

a simple method to determine when such a trade-off is likely to be advantageous. 

1. Each type of bounding volume, such as a sphere, box, cylinder etc., was assigned 

a relative complexity factor to rank the computational cost of the ray intersection 

tests. In their implementation, spheres were given the lowest complexity rating 

and cylinders the highest. 

2. Each volume was 'tried' in turn as a potential bound, and the one producing 

the smallest product of volume and complexity factor was selected. This ap

plies equally well to the bounding volumes of the internal nodes of a hierarchy. 

Because this method did not take the complexity of the enclosed object into 

account , however , an interactive program was used to occasionally override the 

algorithmically selected bounding volume. 

18 



(b) (c) 

Figure 3.3: A comparison of three different types of bounding volumes for the same 
primitive object. Each presents a different cost/fit ratio. (a) Bounding sphere. (b) 
Axis-aligned bounding box. (c) Oriented bounding box. 

Figure 3.3 shows three possible bounding volumes for a complex object and the 

shaded region represents the projected void area. This void area usually depends upon 

the direction along which the two-dimensional projection is formed. Since the rays in 

the environment are effectively randomized by multiple reflections and refraction, the 

average projected void area (over all directions) becomes the relevant measure of fit. 

Volumes(b) and (c) in Figure 3.3 are axis-aligned and transformed (oriented) bound-

ing boxes, respectively. The latter clearly produces a better fit but needs the extra 

cost of a ray transformation for every ray-bounding volume intersection check. 

19 



3.6 Approximate Convex Hulls 

A convex hull is a uniquely defined bounding volume and has the property of most 

tightness for a certain bounded object. Therefore, it may be an exemplary bound

ing volume according to the standard mentioned in the last section. However, the 

computation and representation of the convex hull can be difficult. Therefore, an ap

proximation of the true convex hull may have to be used so that the resulting volume 

can easily be used to conduct the intersection operations, otherwise the convex hull is 

useless even though it might have the least void area. 

Kay and Kajiya[9] designed one type of approximate convex hull, i.e. the many

sided parallelepiped, which can be made as close to the object as the actual convex 

hull. The algorithm uses the concept of plane-sets which are actually families of parallel 

planes. Each plane-set is defined according to a single unit vector, the plane-set normal, 

and each plane of a family is uniquely determined by its signed distance from the origin 

(equal to the inner product of the plane-set normal and any point on the plane). Given 

a plane-set normal and an arbitrary (bounded) object, there exist two such planes 

which most closely bracket the object. The infinite region between the two planes is 

called a slab, and is conveniently represented by a min-max interval associated with 

the plane-set normal as shown in Figure 3.4(a). 

The intersection of several different slabs can define a bounded region totally en

closing the object, as shown in Figure 3.4(b). In 3-D space, three slabs whose plane-set 

20 



(a) Max 

Min 

" 

-f Plane-set 

normal 

(b) 

./ 

" 

~ -·------------ ------

Figure 3.4: A plane-set normal defines a family of parallel planes orthogonal to it. Two 
values associated with a plane-set normal select two of these planes and define a slab. 
The intersection of several such slabs forms a parallelepiped bounding volume. (a) A 
single slab bracketing an object. (b) Three slabs defining a bounding volume. 

normals are linearly independent are necessary (two suffice in two-space), but the num-

ber of slabs is by no means limited to three. The greater the number of slabs, the more 

closely the actual convex hull of the object can be approximated. To intersect a ray 

with such a volume the interval along the ray is first computed, measured from its 

origin, which lies within each of the slabs. This amounts to computing two ray-plane 

intersections for each slab. If the intersection of these intervals is empty, the ray misses 

the volume. Otherwise, the ray hits the volume and the maximum of the minimum 

interval values is the distance to the point of intersection. 

It is better to use the same collection of plane-set normals for all the objects 1n 

the environment, despite their individual orientations. The most significant advantage 

is that the task of intersecting a ray with a number of bounding volumes can be 

21 



greatly accelerated because certain rays just need to be transformed once and common 

expressions in the ray-plane intersection calculations can be ' factored out' and done 

once per ray instead of once per bounding volume. The calculations required here 

are only two subtractions, two multiplications and a comparison for each slab of a 

bounding volume[9). 

3. 7 Predicting the Effectiveness of a Hierarchy 

The effectiveness of a bounding volume also depends on the distribution of rays which 

will be tested against it. If every ray were to hit the enclosed object, no bounding 

volume would be useful because every type of bounding volume, no matter how simple, 

would only increase the cost of the intersection checks. On the other hand, if no ray 

even approaches the enclosed object, any type of bounding volumes with less cost to 

test than the object is better. In most situations the distribution of rays falls somewhere 

between these two extremes. 

It is time to study how ray distributions affect the BVH because it can be used to 

predict the performance of a BVH. Goldsmith and Salmon[6] in particular study the 

conditional probability of a ray hitting a sibling volume, B, provided that it has hit the 

parent volume, A . See Figure 3.5(a). This conditional probability can be expressed by 

Pr(r hits B I r hits A), where r is a 'random' ray and all the rays hit A are assumed to 

be uniformly distributed. It is clear that A helps to filter out those rays which would 

22 



(a) (b) 

Figure 3.5: (a) An approach of computing the conditional probability of a ray hitting 
B given that it has hit A. This can be used in cases like (b) to compute the average 
cost of intersecting a ray with the arbitrary contents of a bounding volume. 

not hit B. 

It was found that Pr ( r hits B I r hits A) is equal to the ratio of the average projected 

area of B to the average projected area of A. This discovery makes the ray distribution 

computable because it is already known that the average projected area of a convex 

body is equal to one quarter of its surface area [14, p.llO]. Since A and B are convex 

bounding volumes, the ray distribution Pr can be calculated by the formula, 

. . < P(B, d)> S(B) 
Pr(r h<tts Bl r h2ts A)= < P(A, d) > = S(A) (3.2) 

where P(V, d) is the projected area of V (A or B ) along direction d, <> means the 

average taken over all directions d, and S(V) (S(A) or S(B)) is the surface area of 

volume V. This formula is the basic tool to study the cost effect of a HBV. 

There are usually two types of costs for a bounding volume: 

1. external cost (EC) the cost for ray /volume intersection operation. 

23 



2. internal cost (JC) : the average cost between the ray and the contents within 

the volume if the ray hits it. 

Here, EC is actually the B and JC the I in Eq. 3.1. Now, since the conditional 

probability (Eq. 3.2 ) has been discovered, the JC in volume A can be computed by 

the formula: 

JC(A) = t. { EC(B;) + ~~~1 * IC(B;)} (3.3) 

where EC(Bi) is the fixed cost of testing a ray against the ith individual sibling. IC(Bi) 

is the internal costs of the siblings. ~(tl/ are the different conditional probabilities for 

A's enclosing sibling volumes B1, B 2 , • • ·, Bn. The JC of a primitive is defined here 

to be zero. Thus, the average cost of intersecting a ray with a BVH is obtained by 

recursive application of Eq. 3.3 in terms of surfaces areas and ECs. 

However, It should be noted that Eq. 3.3 is only an approximate formula because 

many assumptions were made. In addition to the proper nesting, convexity, and ran

domness assumptions noted earlier, an implicit assumption has been that the external 

cost ( EC ) of a bounding volume is constant for all rays and independent of whetner 

or not the volume is hit by the ray. The effects of objects occluding one another are 

also neglected. For example, in Figure 3.5(b) any of the rays shown which hit an object 

within B 1 need not be tested against the contents of B 2 due to the distance interval 

24 



optimization. 

3.8 Constructing A Hierarchy 

Two types of decisions need to be made before constructing a BVH: 

1. Which ones should be the enclosed objects or sibling bounding volumes. 

2. What is the bounding volume selected. 

The formulas and standards described in Section 3.5 and 3.7 are usually employed by 

such decisions. 

However, since the number of possible hierarchy groupings of objects grows ex

ponentially with the number of objects while constructing a BVH using the selected 

volume, it is actually impractical to make a exhaustive search. Rubin and Whitted[11] 

first solved this problem by using a structure editor, an interactive program which 

constructs successive levels of a BVH by beginning with those unstructured primitives. 

Thus, user can select group of objects according to their real space coherence and se

lect proper tight-fitting bounding boxes for them as well. A means of performing this 

operation automatically was also suggested in [11]. 

Weghorst et al.[16] suggested that modeling hierarchies used in constructing the 

environment are often adequate for a ray tracing algorithm. The model builder usually 

25 



groups those objects in close proximity and this practice could reduce the average pro

jected void area of the resulting bounding volume. However, Goldsmith and Salmon[6] 

pointed out that such hierarchies tend to have large branching factors, thereby reduc

ing the benefits of tree pruning during ray intersection testing. In order to overcome 

this problem, they developed an algorithm for automatic generation of bounding vol

ume hierarchies according to Eq. 3.3. In the method, the hierarchy is constructed 

incrementally, inserting the primitives into the growing structure one at a time while 

striving to minimize the resulting increases of the bounding volume surface areas. Each 

primitive starts at the root of the tree and selects the subtree which would incur the 

smallest increase of surface areas if the new object were to become a child of it. This 

process continues until reaching a leaf of the tree. 

Goldsmith and Salmon observed that the order of the inserted objects into the 

BVH is very important for the eventual form of the tree. The order could actually 

have three kinds, i.e. the imposed model order, the sorted order along a line and 

randomized. It was discovered that the best trees would be constructed by trying 

many different randomized orders. 

26 



Chapter 4 

Two Current Ray /Sphere 

Intersection Testing Techniques 

The preceding survey suggests that spheres are the simplest and most practical bound

ing volumes and therefore are widely used in ray tracing [27). Now, we shall examine 

current algorithms which perform ray /sphere intersection testing task and see if we 

can improve their efficiency. 

Until now, there are two principal ray /sphere intersection testing algorithms, the 

traditional algebraic solution and a more efficient geometric solution[18). The two 

techniques are introduced in detail in this chapter. 

27 



4.1 Algebraic Solution 

The intersection point between a ray and a sphere can be obtained algebraically from 

their mathematical definition[29]. Let r(t) be the ray and s(x, y, z) the sphere. Given 

the origin r 0 = [x0 Yo zof and direction rd = [l m nf, r(t) is defined by r(t) = ro+rdt, 

where tis a parameter and t > 0. The equation can also be written as follows: 

x(t) 

y(t) 

X 0 + lt 

Yo+mt 

z(t) Z 0 + nt 

t>O 

s(x, y, z) is defined implicitly with its center Xc = [xc Yc zcf and radius r 5 • 

(4.1) 

(4.2) 

Substituting x, y, and z in Eq. 4.2 with x(t), y(t), and z(t) from Eq. 4.1 yields the 

following relation, 

(4.3) 

which can be rewritten as, 

28 



At2 + Bt + C = 0 (4.4) 

where 

A (4.5) 

B 2l(xo - Xc) + 2m(yo- Yc) + 2n(zo - zc) (4.6) 

c (4.7) 

When the ray's direction rd is a unit vector, A = 1. Therefore t can be obtained 

using the quadratic formula, Eq. 4.4. 

-B ± yf(B2- 4C) 
to,1 = 

2 
(4.8) 

Since t > 0, the ray intersects with the sphere only if there is a positive real root 

ti, in Eq. 4.8, i = 0 or 1. If there are two such roots, the smaller one is chosen as it 

stands for the closer intersection to r 0 • 

Once the distance t is found , the actual intersection point is: 

29 



rintersect = ri =[xi Yi Zi] = [xo + l * t, Yo+ m * t , Zo + n * t] (4.9) 

The unit vector normal at the surface is then simply: 

r normal r n = [ X j - Xc '1li.:::JI..£ 
T s T s 

~] 
T s 

( 4 .10) 

To summarize, the steps in the algorithm are: 

Step 1: calculation of A , B, and C of the quadratic. 

Step 2: calculation of discrimination. 

Step 3: calculation of t 0 and comparison. 

Step 4: possible calculation of t 1 and comparison. 

Step 5: intersection point calculation. 

Step 6: calculation of normal at point. 

The calculations associated with each step are: 

Step 1: 8 additions/subtractions and 7 multiplies. 

Step 2: 1 subtraction, 2 multiplies, and 1 compare. 

Step 3: 1 subtraction, 1 multiply, 1 square root , and 1 compare. 

Step 4: 1 subtraction, 1 multiply, and 1 compare. 

Step 5: 3 additions, 3 multiplies. 

Step 6: 3 subtractions, 3 multiplies. 

30 



For the worst case this gives a total of 17 additions/subtractions, 17 multiplies, 1 

square root , and 3 compares. 

4.2 Geometric Solution 

With the simple sphere intersection routine being outlined, the next question is, "How 

can we make it run faster ?" After studying the geometry of the ray /sphere situation, 

Haines[18] points out that there are a number of small tests which can be made to 

determine whether an ray /sphere intersection takes place. The purpose of these small 

tests is to avoid ray /sphere intersection calculations until they are needed. 

Actually, the intersection between a ray and a sphere depends completely on the 

spatial relation[30] between the ray (r0 and rd) and the sphere (xc and r 5 ). A ray 

whose origin is outside of a sphere will never hit the sphere if the ray points away from 

it . As Eq. 4.2 defines the set of surface points on the sphere, the origin of a ray is 

inside of the sphere only if the distance between r 0 and Xc is smaller than r s. 

( 4.11) 

Squaring both sides leads to the following condition. 

( 4 .12) 

31 



(a) to a sphere (b) away from a sphere 

Figure 4.1: The Geometric Relation between a Ray and a Sphere 

Meanwhile, the sign of the dot product d0 between rd and vector r 0Xc tells if a ray 

points away from a sphere when the ray is outside of the sphere. This dot product 

d0 rd · roxc = JrdJJroxcJcasO 

l(xc- Xo) + m(yc- Yo) + n(zc- Zo) (4.13) 

is positive if the ray points to the sphere (Figure 4.1(a)) or negative when pointing 

away (Figure 4.1 (b)). 

In addition, the squared distance df between the ray and the sphere center Xc can 

be obtained from d0 and lroxcl (Figure 4.1(a)). 

( 4 .14) 

32 



It is also a useful measurement for testing for intersection, i.e., a ray will miss the 

sphere if elf > r: when it starts outside of and points towards the sphere. 

A ray that cannot be eliminated by d0 and d1 must intersect the sphere. Since dt 

in Figure 4.1(a) is the square root of r; minus elf, 

( 4.15) 

the actual distance from r 0 to the intersection point is d0 - dt if r 0 is outside of the 

sphere, or d0 + dt if r 0 is on or inside of the sphere. The spheres that definitely are 

hit by the ray are sorted by distance, for actual surface intersection. This function is 

provided in the previous section by the algebraic solution of Eq. 4.8. 

The testing and elimination procedures enable a ray tracing algorithm to avoid 

computing the real surface interactions unless it is absolutely necessary. Based on 

the geometric relations, an improved algorithm was generated[18], which has been 

recognized for its efficiency in ray tracing [31 , 32]. 

To summarize, the steps in the algorithm are: 

Step 1: find distance squared between ray origin and center. 

Step 2: calculate ray distance which is closest to center. 

Step 3: test if ray is outside and points away from sphere. 

Step 4: find square of half chord intersection distance. 

Step 5: test if square is negative. 

33 



Step 6: calculate intersection distance. 

Step 7: find intersection point. 

Step 8: calculate normal at point. 

The calculations associated with each step are: 

Step 1: 5 additions/subtractions and 3 multiplies. 

Step 2: 2 additions and 3 multiplies. 

Step 3: 2 compares( 1 if origin inside sphere ) . 

Step 4: 2 additions/subtractions and 1 multiply. 

Step 5: 1 compare ( none if origin inside sphere ) . 

Step 6: 1 addition/subtraction and 1 square root. 

Step 7: 3 additions, 3 multiplies. 

Step 8: 3 subtractions, 3 multiplies. 

At worst this gives a total of 16 additions/subtractions, 13 multiplies, 1 square root, 

and 3 compares. Note that this is less than the algebraic solution. 

34 



Chapter 5 

A New Algorithm 

Although the use of spheres as bounding volumes delays computing the complicated 

ray-surface intersection, the testing of ray /sphere intersection still takes too much 

time. This problem arises because of the three-dimensional relationship between ray 

and spheres as all of them are given in the three-dimensional definition space - the 

world coordinate system. If, however, a plane is perpendicularly attached to the ray 

and all spheres are projected onto the plane as circles, only those spheres for which 

the ray goes through their projected circles can intersect with the ray. As a result, the 

three-dimensional ray /sphere interaction is simplified into a two-dimensional point

circle enclosure check. This is the observation that promoted the new algorithm. 

35 



g ... ... 

y 

z 

y Yr 

(C) 

z 

y 
r 

Figure 5.1: The Definition and Transform of the Ray System 

5.1 From Intersection to Enclosure Check 

X 

(b) 

y 

(d) 

The point-circle enclosure check is conducted after transforming the spheres to a coor-

dinate system defined for the ray. This process includes the following steps: 

1. Define a ray coordinate system Fr = { ( Xr, Yn Zr)} and make r d the axis Zr. 

2. Obtain the matrix that transforms the coordinates in the world coordinate system 

Fw = {(xr, Yr , Zr)} into the coordinates in {Fr }. 

3. Apply the matrix to all the spheres to obtain their definition in the ray coordinate 

system. 

36 



4. Discard those spheres that are totally in the negative Zr half space of {Fr }. 

5. Project the remaining spheres onto the Xr- Yr plane. 

6. Find and save the spheres whose projected circles enclose the origin of the Xr -yr 

plane. 

5.1.1 Coordinate System Transformation 

The ray coordinate system {Fr} is defined in such a way that its origin coincides with 

r 0 and its Zr axis points in the same direction as rd (Figure 5.1(b)). The matrix that 

transforms coordinates { ( x, y, z)} into coordinates { ( Xr, Yr, Zr)} is obtained from the 

homogeneous matrices that specify a series of transformations bringing the Zr axis of 

{Fr} to the z axis of {Fw}[33]. 

To bring { Fr} to { F w} , the origin of { Fr} is first shifted to the origin of { F w} by a 

homogeneous translation matrix T( -r0 ) (Figure 5.1(b)). 

1 0 0 -Xo 

0 1 0 -yo 

T(-ro) = (5 .1) 

0 0 1 -Zo 

0 0 0 1 

The shifted { Fr} is then rotated for an angle 'Y, 0 < 'Y < 360°, around the z axis of 

{Fw} to lay axis Zr onto the z- x plane with Zr pointing in the positive direction of 

37 



x (Figure 5.1(c)). 

COS'"'( - S~n'"'( 0 0 

s~n'"'( COS'"'( 0 0 

0 

0 

0 

0 

1 0 

0 1 

(5 .2) 

The Zr axis is finally brought to coincide with the z axis by the last rotation Ry(/3) , 

which is a rotation around they axis of {Fw} for an angle /3, -180° < j3 < 0° (Figure 

5.1(d)). 

cos/3 0 sin/3 0 

0 1 0 0 
(5.3) 

-sin/3 0 cos/3 0 

0 0 0 1 

As a result, the transformation matrix T that transforms coordinates {(x, y, z)} into 

coordinates {(xnYr,zr)} is the product of matrices T(-r0 ),Rz(7), and Ry(/3), 

38 



c{3 0 s{3 0 C( -S{ 0 0 1 0 0 -Xo 

0 1 0 0 S( C( 0 0 0 1 0 -yo 

-s{3 0 c{3 0 0 0 1 0 0 0 1 -Zo 

0 0 0 1 0 0 0 1 0 0 0 1 

cf3cr -cf3sr s{3 0 1 0 0 -Xo 

S( C( 0 0 0 1 0 -yo 

-sf3cr sf3sr c{3 0 0 0 1 -Zo 

0 0 0 1 0 0 0 1 

cf3cr -cf3sr s{3 -xocf3cr + Yocf3sr- zosf3 

S( C[ 0 -X0 S(- YoC( 
(5.4) 

-sf3cr sf3sr c{3 Xosf3cr - Yosf3sr- zocf3 

0 0 0 1 

where C[ =cos[, S[ =sin[, c{3 = cos{3, s{3 = sin{3. Since rd points to the direction 

[0 0 1 ]T after the transformation, they are related by the rotational component of -r[34] . 

39 



0 

0 

1 

1 

cf3c'Y -cf3s'Y s(3 0 

S"f C"f 0 0 

-sf3c'Y sf3s'Y cf3 0 

0 0 0 1 

l 

m 
(5.5) 

n 

1 

where l, m, and n are the three components of rd. An inverse of the transformation 

matrix relates l, m, and n with C"f, S"f, c/3, and s(J. 

-1 

l cf3cr -cf3s'Y sf3 0 0 

m S"f C"f 0 0 0 

n -sf3c'Y sf3sr cf3 0 1 

1 0 0 0 1 1 

cf3c'Y S"f -sf3c'Y 0 0 

-cf3s'Y C"f sf3s'Y 0 0 

sf3 0 cf3 0 1 

0 0 0 1 1 

40 



-sf3c7 

(5.6) 

cf3 

1 

As a consequence, c7, S"f, c/3, and s/3 are derived from Eq. 5.6, where the minus 

sign of s/3 is selected due to the angle of {3, -180° < f3 < 0°. 

sf3 -.j1 - c/32 = -V1 - n 2 

cf3 n 

m m 
(5.7) S"f 

s/3 
-

v1- n 2 

l l 
C"f 

s/3 .J1- n 2 

By substituting Eq. 5.7 into Eq. 5.4, the transformation matrix 7 is finally obtained. 

moo mo1 mo2 mo3 

m1o m11 m12 m13 

m2o m21 m22 m23 

0 0 0 1 

41 



5.1.2 

(a) a sphere behind 

2 
x' + c 

(b) a sphere out of range 

Figure 5.2: The Point-Circle Enclosure Check 

ln mn -v'l- n 2 ln mn + yl 2 
Vl-n2 J1 - n 2 -Xo Vl- n2 - Yo Vl - n 2 Zo - n 

m l 0 X m Y l 
~ ~ 0~- 0~ 

l m n -Xol- Yom- Z0 n 

0 0 0 1 

Point-Circle Enclosure Check 

(5.8) 

The new algorithm is outlined below, which is a two-dimensional point-circle enclosure 

check instead of the three-dimensional ray/ sphere intersection. 

step 0: Obtain the sphere-list and create a hit-list. 

step 1: Use Eq. 5.8 to compute the homogeneous matrix T from ray's origin r 0 and 

direction rd. 

42 



step 2: Take one sphere from the sphere-list and calculate the z~ component of the 

new origin Xc in { Fr}. 

I 

Zc = m2oXc + ffi2IYc + m22Zc + ffi23 (5.9) 

step 3: If z~ < -r5 , the sphere must be behind the ray (Figure 5.2(a)), i.e., no inter-

section takes place between the ray and the sphere. Discard the sphere from the 

sphere-list and go back to step 2 to continue processing the other spheres. 

step 4: Otherwise, compute the x~ andy~ component of origin Xc· 

(5.10) 

' 
Yc (5.11) 

t2 t2 t2 t2 2 • • 
step 5: Calculate xc + Yc , If xc + Yc > r 5 , the ray misses the sphere as It passes 

outside of the sphere (Figure 5.2(b)). Discard the sphere and go back to step 2. 

step 6: Remove the sphere from the sphere-list, and add it to the hit-list in a position 

determined by its z~ value. 

step 7: If the sphere-list is not empty, go back to step 2. Otherwise, the check is 

finished. 

43 



Chapter 6 

Complexity and Comparison 

From the discussion of Chapter 4 and 5, three ideas are clear: 

1. There are currently two main ray /sphere intersection algorithms, the algebraic 

solution and the geometric solution, and the geometric solution is the faster of 

the two. If, in the worst case, the new algorithm is faster than the geometric 

solution, it will also be faster than the algebraic solution. 

2. After careful analysis , the algebraic solution actually can be divided into two 

parts: first , conduct some calculations in order to check whether or not the 

current ray hits the sphere, (Step 1 to Step 4 in Section 4.1); we can call this stage 

the pre-determination part. Second, calculate the intersection point coordinates 

and normal values, (Step 5,6 in Section 4.1) we call this stage the evaluation part. 

It is also noticed that the geometric solution only makes some improvements 

44 



(Step 1 to Step 6 in Section 4.2) to the pre-determination part of the algebraic 

algorithm and keeps the second evaluation part unchanged. 

3. The new algorithm also makes some improvements to the pre-determination stage 

by employing homogeneous transformations operations to realize 3D to 2D sim

plification. 

After understanding the above three points, it is clear that the complexity com

parison of this Chapter should only be conducted between geometric solution and the 

new algorithm. It is also clear that only comparison of their pre-determination stages 

is necessary. 

In order to facilitate the complexity analysis and comparison, we restate the steps 

of the pre-determination part of the geometric solution of ray /sphere intersection al

gorithms in Section 4.2 as follows: 

1. Calculate the squared distance lroxcl 2 between ro and Xc. 

2. Calculate the dot product d0 of rd and r 0Xc. 

3. Use Eq. 4.10 and the sign of d0 to check if the ray is outside of and points away 

from the sphere. If yes, go back to 1. to process the other spheres. 

4. Otherwise, compute at from Eq. 4.12. If at > r;, go back to 1. 

45 



5. Compute dt from Eq. 4.13. If the ray's origin is outside of the sphere, use d0 - dt 

and continue to 6.; otherwise, use d0 + dt. 

6. Go back to 1, unless all spheres have been processed. 

6.1 The Complexities 

The computational complexity of an algorithm is determined by the number of oper

ations necessary to implement the algorithm. In this section, the complexity of the 

new algorithm is analyzed first. Then, after obtaining the complexity of the improved 

geometric algorithm, the advantage of the new algorithm becomes apparent with a 

complexity comparison. 

The number of operations is obtained from the algorithm of point-circle enclosure 

check introduced in Section 5.1.2 with step 0 ignored because it is a common step of 

all raytracing algorithms. 

• In step 1, the operations to calculate Tare 6 additions, 13 multiplications, and 

1 square root (Table 6.1) . While the operations in the step are needed only once 

for a given ray, in the remaining steps the number of spheres, supposedly N, has 

to be multiplied by the number of operations. 

• To calculate z:(Eq. 5.9), step 2 needs 3 additions and 3 multiplications. 

46 



order I operation I add/minus I multiply /divide I square root 

a. n 2 = nn 1 
b. 1- n 2 1 
c. v1-n2 1 
d. mlO = ( -m)/v1- n 2 1 
e. mn = Z/v1- n 2 1 
f . moo= nm11 1 
g. mo1 = nm/v1- n 2 1 
h. mo2 = (-v1 - n 2) 
1. mo3 = -xomoo - Yomol + zomo2 2 3 
j. m13 = XomlO- Yom12 1 2 
k. m23 = ( -xol) -Yom- Zon 2 3 

total 6 13 1 

Table 6.1: The Number of Operations to Calculate r 

• In step 3, 1 comparison is used to check the condition z~ < -r s. 

• Then, in step 4, x~ requires 3 additions and 3 multiplications, andy~, 2 additions 

and 2 multiplications. 

• In the final checking stage step 5 1
, 1 addition and 1 comparison are needed on 

top of the 2 multiplications created by x~2 and z~2 . 

The number of operations for the new algorithm is given as Cn in the following 

equation. For simplicity, symbols EB (addition), ® (multiplication), 0(comparison ), 

andy' (square root) are used to stand for different types of operations. They are also 

used in the next section to denote basic time units of the operations. 

1 Since r; is not associated with any particular ray, it is computed outside of the algorithm. 

47 



6 EB +13 0 +1y' + N(9 EB +10 0 +20) 

(6 + 9N) EB +(13 + 10N) 0 +2N 0 +1y' (6.1) 

This analysis applies to the worst case when all spheres are kept until the end of 

the algorithm. 

In comparison, the complexity of the geometric method described in Section 4.2 is 

as follows. 

1. The calculation of lroxcl2 needs 5 additions and 3 multiplications. 

2. The dot product d0 in Eq. 4.11 adds 2 additions and 3 multiplications; 

3. To verify Eq. 4.10 and to check the sign of d0 , each requires a comparison, i,e, 2 

comparisons. 

4. In addition to the 1 addition and 1 multiplication involved in Eq. 4.12, 1 com

parison is needed to check the relation between df and r;. 

5. While Eq. 4.13 adds to the complexity 1 addition and 1 square root, d0 ± dt 

generate 1 additional addition. 

In total, the number of operations for the geometric algorithm adds up to 0 9 . 

48 



C9 N(IO EB +7 ® +3 0 +ly'"") 

ION EB +7N ® +3N 0 +lN V (6.2) 

6.2 A Comparison 

If there is only one sphere in the scene, Cn and C9 are specialized by substituting N = 1 

into Eq. 6.1 and Eq. 6.2 respectively. 

15 EB +23 ® +2 0 +ly'"" 

10EB+7®+30+ly'"" (6.3) 

C9 (1) is better than Cn(l) in the special case since the new algorithm needs five more 

additions and sixteen more multiplications than the geometric algorithm. 

If there is more than one sphere in the scene , e.g. , N spheres, although it is difficult 

to give an accurate comparison as it depends on both the scene and the machine on 

which the program runs, an estimation is still derivable from the general knowledge. 

In general, the cost of operations is in such an order: 

49 



(6.4) 

If, as a reasonable assumption2
, let 0 = EB = ®, and V = 10®, Eq. 6.1 and Eq. 

6.2 have the following relation. 

29 + 21N (6.5) 

30N (6.6) 

When N > 3 , Cn(N) is smaller than C9 (N). This means that the new algorithm is 

better if a ray intersects more than three spheres in the scene. As a ray-traced image 

of moderate complexity involves a huge number of rays, the new algorithm is typically 

much faster than the geometric algorithm for such an image. Even if the cost of y' 

operation is only 3®, the new algorithm is superior, for a large number of intersections. 

2 It has been predicted that in the near future, E9 = ®; and it was indicated by Haines[18] that V 
t akes 15-30 times more than ®. 

50 



Chapter 7 

Implementation 

In order to test the effectiveness of the new algorithm and collect data for comparison, 

the algorithm is implemented within an existing ray-tracing package. The implemen

tation is actually based upon the public domain ray tracing package Rayshade 4. 0. 6 

(version 2) developed by Craig E. Kolb and his colleagues at Princeton University from 

1988 to 1992. The following sections give a brief overview of this package. 

7.1 Understanding the Functionalities of Rayshade 

4.0.6 

The Rayshade 4.0.6 package provides many functions or features which are explained 

in detail in the eight-chapter document entitled 'Rayshade User's Guide and Reference 

51 



Manual' 1 . 

There are actually two ways to provide input date into Rayshade 4. 0. 6. 

1. Writing an input file according to a certain format. 

2. Giving some simple options. 

The second method is only employed for simple applications. For more complicated 

scene descriptions with many parameters, the first method is preferable since small 

changes in the scene can be made easily. 

The functionalities or features provided in Rayshade 4.0.6 are briefly indicated in 

the following list: 

• Statistics Reporting 

• Anti-aliasing 

• Camera Position 

• Field of View 

• Depth of Field 

• Stereo Rendering 

• Light Source Types 

1 This document can be found under 'Doc/' directory within the Rayshade 4.0.6 distribution. 

52 



• Shadows 

• Primitives 

• Aggregate Objects 

• Constructive Solid Geometry 

• Surface Description 

• Atmospheric Effects 

• Medium 

• Transformations 

• Texture Mapping 

• Animation 

A good way to understand a large software system initially is to get its 'structure 

graph' and analyze it in order to have a whole picture of the software skeleton in mind. 

Although a full structure graph is not available for this system, an old version 'structure 

graph' for 'Rayshade 1.0' , is provided. 

This 'structure graph' shows us that 'Rayshade ' package can be divided into two 

main parts: 

• Preprocessing 

53 



• Rendering 

The 'Rendering algorithm' described in the 'structure graph' for 'Rayshade 1.0' is 

an older method and totally different from that in Rayshade 4.0.6 package which uses 

the current popular 'raytracing algorithm'. 

7.2 Understanding the source code of Rayshade 4.0.6 

'Rayshade 4.0.6' is a program for creating raytraced images. It reads in a description of 

the scene to be rendered and produces a color image corresponding to this description. 

The description is actually an input file. In Rayshade, this file is read by the 'C

preprocessor' program provided by almost all UNIX systems, which compiles the input 

scene data using the 'yacc' program and puts the data into appropriate data structures 

for the 'Rayshade 4.0.6' program. The 'raytracing' algorithm will then take this data 

and begin the real 'raytracing' process. Finally, the raytraced image plane's pixel color 

value will be written into an output file. This output process employs the 'RLE' image 

representation and calls a set of functions developed at Utah university. 

Any program can be abstracted into two parts, a data structure component and 

an algorithm component. The detailed explanation of 'Rayshade 4.0.6' program will 

discuss the two parts clearly. 

54 



7.2.1 Data Structure 

MatrixMult(): matrix multiplication function. 

Matrixlnvert(): matrix inverse function. 

VecTransform(): vector transformation function, 

the transformations are restricted to translate, 

rotate and scale. 

MatrixCreate (): create a RSMatrix data structure 

Listlntersect (): make a individual list to do intersection 

testing with current ray. 

ListBounds(): get a list's bounding box 

GeomBounds(): get the object's bounding box 

After the preprocessing stage, the scene description data is read into 'Rayshade 

4.0.6' data structure as Figure 7.1. 

7.2.2 Algorithm 

The major relationships among the functions is as follows: 

• main(argc,argv) (main.c) 

55 



Defstack 
---;;.. 

1\ ~ 

Geoml 

"World" 

Geom2 

"objl" 

Figure 7.1: The object stack data structure after preprocessing stage of 'Rayshade 
4.0.6' 

• RSinitialize(argc,argv) (setup.c) 

This is the preprocessing stage of 'Rayshade 4.0.6' program mentioned before and the 

detailed subroutine calling procedure could be checked out from the 'structure graph' . 

• raytrace(argc,argv) (main.c) 

This is the ray trace processing function . 

• Raytracelni t () 

The function finished some raytracing preparation, the most important part of 

these is to arrange the samples according to the user's requirement for anti-

aliasing. 

• TraceRay(ray, &hitlist, Epsilon, &dist) 

56 



This is the ray tracing algorithm. 'ray' here is the current ray vector. '&hitlist ' 

is the result from raytracing processing containing all the objects which are hit 

by the current ray. 'Epsilon' is a variable for optimization purposes, it actually 

contains the smallest 't' value in '&hitlist' as return value. '&dist' is the distance 

from ray's origin to the intersection point. 

• Intersect(World, ray, hitlist, mindist, maxdist) 

This is the function for conducting ray I object intersection testing. 'World' is the 

pointer to the data structure containing all the objects within the scene generated 

at the preprocessing stage. The other four variables are the same as in 'TraceRay' 

and will return back to 'TraceRay'. 

• Boundslntersect(ray, bounds, mindist, &nmaxdist) 

This is the function which has been modified inC-language and recompiled with 

the other functions for this implementation. This function tests 'ray' with specific 

'bounds' from 'intersect' and determines if a hit might happen or not. That is 

the pre-determination part of the ray I object intersection algorithm. 

• AddToHitList() 

This function adds all the hit objects into 'hitlist' for later processing. 

• ShadeRay() 

57 



This function finds the exact intersection point from 'hitlist ' and calculates t he 

intersection point color value according to the illumination equations. 

• Picture() 

This function puts the evaluated pixel color into appropriate the position in the 

output file. 

7.3 Experimental Results 

The new algorithm has been successfully implemented and tested on SU N™ work

stations. When the new algorithm was programmed in Rayshade 4.0.6, the algebraic 

and geometric algorithms were also implemented. To verify the theoretical analysis 

of the complexity and comparison, the time consumed by the program, namely 'user 

time', on the machine from the ray-volume intersection is recorded. Since Rayshade 

4.0.6 uses boxes as the bounding volumes, four types of data are obtained. 

The experiment has two phases. In the first phase, images are rendered with a 

gradually increasing number of special spheres, which are randomly placed in the scene. 

The size of each image is 256 x 256 , and the radius of each sphere is 0.161. By setting 

all spheres to non-reflecting and non-transparent objects, the number of spheres reflects 

the complexity of the scene in the direction of a random ray since every ray is an 

original ray. In the second phase, all four algorithms are tested with three 'big' scenes, 

58 



scene user time of the algorithm (seconds) 
(sphere/ tree) box-volume algebraic geometric new algorithm 

3 7.72 6.32 6.85 6.45 
4 10.04 8.31 8.94 8.19 
5 12.02 9.95 10.80 9.71 
6 15.13 13.72 13.27 12.42 
7 18.63 15.93 16.32 14.60 
8 24.15 19.41 20.51 19.46 
9 26.96 22.26 23.27 20.20 

10 29.31 25.12 25.28 23.75 
11 32.52 27.08 26.60 25.19 
12 37.61 31.71 33.04 30.43 
13 42.64 35.29 36.82 34.76 
14 46.40 37.49 39.22 36.70 
15 47.60 40.27 40.76 39.55 
16 52.18 43.53 44.42 41.61 
17 53.20 46.08 46.61 44.22 
18 55.91 48.97 47.83 45.39 
19 59.79 51.14 52.04 47.86 

buckyball 380.00 330.92 310.57 275.18 
branch 1,649.84 1,390.46 1,375.02 1,104.82 

tree 5,358.12 4,550.37 4,451.86 3,605.10 

Table 7.1: The Results of Experiment 

a buckyball, a branch and a tree. The object files of the buckyball and tree scene were 

down loaded together with the Rayshade package. The object file of the branch was 

modified from the tree file as part of the original tree. The buckyball is a 768 x 768 

image with 150 primitives. The tree is a 983 x 768 image with 6, 268 primitives. The 

branch is also a 983 x 768 image but with only 1824 primitives. 

In Table 7.1, the experimental results on a SPARCstation 10-30 are combined 

59 



for both phases. The times are given in seconds. A graph of the performance is 

provided by Figure 7.3, where Cn, 0 9 , Ca, and Cb are the complexity in user's time for 

the new, geometric, algebraic, and box-volume algorithms respectively. The rendered 

images buckyball, branch and tree are shown in half size and grey levels in Figure 7.4, 

Figure 7.5, and Figure 7.6. The experiment shows that the new algorithm is not only 

theoretically but also in practice the best among the four algorithms in all tested cases. 

60 



60 

50 

40 

30 

20 

10 

0 
0 5 10 15 

sphere (number) 

Figure 7.2: The Performance of the Algorithms 

61 

"Cn" 
"Cg" 
"Ca" 
"Cb" 

20 25 



Figure 7.3: Buckyball, a Rendered Image 

62 



Figure 7.4: Branch, a Rendered Image 

63 



Figure 7.5: Tree , a Rendered Image 

64 



Chapter 8 

Conclusion 

In this thesis, the ray-tracing technique, a rendering algorithm for producing 'super

real' 2D images is discussed. A ray tracer generates a color value for each pixel by 

tracing the ray of light backward from the eye position to the sources in a 3D envi

ronment and simulates the light intensity at the pixel due to three physical processes, 

namely, local illumination, reflection and transparency. Ray tracing is widely applied 

in current graphics packages. 

In a ray-tracing algorithm, the major time consuming processing is the calculation 

of the intersection point of the current ray with objects within a scene. Therefore, ac

celeration techniques for the ray/ object intersection task were surveyed, concentrating 

particularly on bounding volume techniques. After an overview of bounding volume 

technology, the sphere emerged as the most useful volume because the balanced burden 

65 



for using it is the least, i.e. it has the simplest intersection calculation and is the easiest 

volume to create no matter what kind of object it bounds. 

Two current ray /sphere intersection algorithms were discussed in detail. They are 

the algebraic and geometric solutions. A careful analysis of their algorithms leads 

to the observation that their pre-determination stage can be realized in another way. 

Thus, a new fast ray /sphere intersection algorithm has been discovered. 

The new method uses a homogeneous transformation to simplify three-dimensional 

ray-sphere intersection into two-dimensional point-circle enclosure check, and thus 

speeds up the rendering of ray traced images. After comparing the time complex

ity of the new algorithm with the current most efficient geometric solution, it was 

shown that the more objects existing within a scene, the better the new algorithm 

would appear. 

This theoretical analysis was also tested by implementing the ray /box algorithm 

and the ray /sphere algorithms with the algebraic, geometric, and the new solutions. 

The experimental results also show that the new algorithm is the best among them. 

Thus, it can be concluded with confidence that the new algorithm can be very useful 

in graphics applications relating to ray tracing rendering techniques. 

Remaining work includes investigating the possibility of extending this algorithm 

to "bundled" ray tracing techniques; e.g., beam tracing[35] or cone tracing[36], and to 

animation systems[37]. 

66 



Appendix A. 

The C-Code of the New Algorithm 

This appendix gives the c-code of the new algorithm developed in the thesis. It de

fines the function that checks if a ray hits a bounding sphere. The Rayshade package is 

available at "http: I /www-graphics. stanford. edu/rvcek/rayshade/rayshade .html". 

int Boundslntersect(ray, bounds) 

Ray Hay; 

float bounds[2][3); 

{ 

static float r[4)[4) = { 

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 }; 

Vector sc, snc; 

float s2r, sr; 

float 1, m, n, xO, yO, zO; 

float tmp; 

I* 3-D vectors *I 

67 



sc.x = bounds[O)[O]; 

sc.y = bounds[O)[l]; 

sc.z = bounds[O] [2]; 

s2r = bounds[l][O]; 

sr = bounds[! )[1]; 

1 = ray-+dir.x; 

m = ray-+dir.y; 

n = ray-+dir.z; 

xO = ray-+pos.x; 

yO = ray-+pos.y; 

zO = ray-+pos.z; 

I* obtain the transformation matrix *I 

r[O] [2] = 1; 

r[1][2] = m; 

r[2][2] = n; 

r[2][0] = -sqrt( 1 - ll*ll ); 

tmp = 1.0 / r[2)[0]; 

r[O][l] = m * tmp; 

r[l][l] = -1 * tmp; 

r[O][O] = n * r[l )[1]; 

r[l][O] = -n * r[O][l]; 

68 

I* initialize the sphere center *I 

I* squred sphere radius *I 

I* sphere radius *I 

I* ray's direction *I 

I* ray's origine *I 



} 

r(3)[0] = -xO*r(O](O] - yO*r(l ](0] - zO*r(2)[0]; 

r(3](1] = -xO*r(O](l] - yO*r(l ](1 ]; 

r(3] (2] = -xO*l - yO*m -zO*n; 

I* calculate the 'z' component of the new sphere center *I 

snc.z = sc.x*r(0](2] + sc.y*r(1][2] + sc.zH(2](2] + r(3][2]; 

if( snc.z+sr ~ 0 ) 

return FALSE; I* sphere is behind the ray *I 

I* calculate the other two components of the new sphere center *I 

snc.x = SC.X*r(0](0] + SC.y*r(l](O] + SC.Z*r(2](0] + r(3](0]; 

snc.y = SC.X*f(0](1] + SC.y*r(l](l] + r(3](1]; 

if( snc.x*snc.x + snc.y*snc.y ~ s2r ) 

return FALSE; 

else 

return TRUE; 

69 

I* ray is out of the circle *I 

I* ray hits the sphere *I 



Bibliography 

[1] Clark, J.H. , Hierarchical geometric models for visible surface algorithms. Commun. ACM 

19(10) , 547-554, October 1976. 

[2] Fuchs, H., On visible surface generation by a priori tree structures. Comput. Graph. 

14(3) , 124-133, July 1980. 

[3] Fujimoto, A., Tanaka, T. and Iwata, K., ARTS: Accelerated Ray-Tracing System. IEEE 

Comput. Graph. Appl. 6(4) , 16-26, April1986. 

[4] Gervautz, M. , Three improvements of the ray tracing algorithm for CSG trees. Comput. 

Graph. 10(4) , 333-339, 1986. 

[5] Glassner, A. S. , Space subdivision for fast ray tracing. IEEE Comput. Graph. Appl. 

4(10) , 15-22, October 1984. 

[6] Goldsmith, J. and Salmon, J. , Automatic creation of object hierarchies for ray tracing. 

IEEE Comput. Graph. Appl. 7(5) , 14-20, May 1987. 

70 



[7] Jansen, F.W., Data structures for ray tracing. In Data Structures for Raster Graphics, 

Proceedings Workshop (eds L.R.A. Kessener, F.J. Peters, M.L.P. Lierop) pp. 57-73, 

Eurographics Seminars, Springer Verlag, 1986. 

[8] Kaplan, M.R., Space tracing a constant time ray tracer. State of the Art in Image 

Synthesis (Siggraph '85 Course Notes), Vol. 11, July 1985. 

[9] Kay, T.L., and Kajiya, J., Ray tracing complex scenes. Comput. Graph. 20(4), 269-278, 

August 1986. 

[10] Roth, S.D., Ray casting for modeling solids. Comput. Graph. Image Process. 18 109-144, 

1982. 

[11] Rubin, S. and Whitted, T., A three-dimensional representation for fast rendering of 

complex scenes. Comput. Graph. 14(3), 110-116, July 1980. 

[12] Sweeney, M.A.J. and Bartels, R.H., Ray tracing free-form B-spline surfaces. IEEE Com

put. Graph. Appl. 6(2), 41-49, February 1986. 

[13] Toth,D.L.,On ray tracing parametric surfaces. Comput. Graph. 19(3), 171-179 July 1985. 

[14] van de Hulst, H.C., Light Scattering by Small Particles, Dover Publications, New York, 

1981. 

[15] van Wijk, J.J., Ray tracing objects defined by sweeping planar cubic splines. ACM 

Trans. Graph. 3, 223-237, (3), July 1984. 

71 



[16] Weghorst, H., Hooper, G. and Greenberg, D., Improved computational methods for ray 

tracing. AGM Trans. Graph. 3(1), 52-69, January 1984. 

[17] Yau, Mann-May and Srihari, S.N., A hierarchical data structure for multidimensional 

digital images. Gommun. AGM 26(7), 504-515, July 1983. 

[18] Eric Haines, Essential Ray Tracing Algorithms," An Introduction to Ray 'lracing", Aca

demic Press, 1989 

[19] Alan Watt, Mark Watt, "Advanced Animation and Rendering Techniques,Theory and 

Practice", Addison-Wesley, 1993 

[20] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, " Computer 

Graphics: Principles and Practices, second edition", Addison-Wesley, 1990 

[21] Whitted, T., An Improved lllumination Model for Shaded Display, Gomm. AGM, 26(6), 

342-9. 1980 

[22] Bui-Tuong Phong, lllumination for computer generated pictures. Gommun. AGM 18(6), 

June 1975 

[23] Kajiya, J.T., Ray tracing parametric patches. Siggraph '82 

[24] R.A. Earnshaw and Norman Wiseman. An Introductory Guide to Scientific Visualiza

tion. Springer-Verlag, 1992. 

[25] K.W. Brodlie, L.A Carpenter, and etc., editors. Scientific Visualization: Techniques and 

Applications. Springer-Verlag, 1992. 

72 



-

[26] M.W. Firebaugh. Computer Graphics: Tools for Visualization.W.C. Brown, 1993. 

[27] J. Foley and et al. Computer Graphics: Principles and Practice. Addison Wesley, second 

edition, 1992. 

[28] D. Hearn and M. P. Baker. Computer Graphics. Prentice Hall, second edition, 1994. 

[29] W. Gellert and et. al. The VNR Concise Encydopedia of Mathematics. Van Nostrand 

Reomeold, second edition, 1989. 

[30] J. Roe. Elementary Geometry. Oxford University Press Inc., New York, 1993. 

[31] R.A. Earnshaw and D. Watson, editors. Animation and Scientific Visualization: Tools 

and Applications. Academic Press, 1993. 

[32] Alan Wat and Mark Watt. Advanced Animation and Rendering Techniques: Theory and 

Practice. Addison-Wesley, 1993. 

[33] S.G. Hoggar. Mathematics for Computer Graphics. Cambridge University Press, 1992. 

[34] X. Yuan. A mechanism of automatic 3D object modeling. IEEE Trans. on PAM!, 

17(3):307-311, March 1995. 

[35] P. S. Heckbert and P. Hanrahan. Beam Tracing Polygonal Objects, Computer Graphics, 

18(3):119-127, 1984. 

[36] J. Amanatides. Ray Tracing with Cones. Computer Graphics, 18(3):129-135, 1984. 

73 



[37] S. J . Adelson and L.F. Hodges, Generating Exact Ray-Traced Animation Frames by 

Reproduction, IEEE Computer Graphics and Applications, 15(3):43-52, 1995. 

74 








