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Abstract 

There are many practical situations where one may encounter binary data over a long 

period of time. For example, in clinical studies, one may be interested in examining 

the effects of certain time dependent covariates on the binary asthma status (yes or 

no) of an individual recorded daily over a few months. The analysis of this type of 

binary time series data is, however, not adequately addressed in the literature. In the 

thesis, we review three widely used binary time series models and discuss their ad­

vantages and draw-backs mainly with regard to their correlation structures. We then 

provide inferences for a non-linear conditional dynamic binary model which appears 

to accommodate correlations with full ranges. 

With regard to the estimation of the regression and a dynamic dependence pa­

rameters we use the well-known maximum likelihood (ML) and various versions of 

the generalized quasilikelihod (GQL) approaches. The relative performances of these 

approaches are examined through a simulation study. A conditional GQL ( CGQL) 

approach appears to be quite simple and at the same time it produces the same esti­

mates as that of the ML approach. A lag 1 forecasting for a future binary probability 

is also studied mainly through simulations. 
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Chapter 1 

Introduction 

1.1 Background of the Problem 

There is a vast literature in time series analysis for continuous data. For example, one 

may refer to Box and Jenkins (1994) for analysis of (i) two hourly chemical process 

concentration, (ii) daily IBM common stock closing prices and (iii) monthly inter­

national airline passengers in log scale. In practice, we may also encounter discrete 

data such as binary and count time series. When dichotomous responses are collected 

from an individual (such as individual person or individual firm or business) over a 

long period of time, their responses form a binary time series. For example, there are 

many clinical studies when asthma status of an individual is recorded daily, for a few 

months. In this type of study, multidimensional covariates are also recorded along 

with the binary response at a given time. We refer to Zhang, Triche and Leaderer 

(2000) for such a binary time series analysis. These authors were interested in finding 

the effects of the associated covariates on the 'yes ' or 'no ' respiratory symptom 

status of a runny or stuffy nose for mothers followed in southwestern Virginia for the 

summer period from June 10 to August 31, 1995. In an ecological and environmental 

study, Guttorp (1986) modelled the daily rainfall data (zero for rainfree day and one 

for rainy day) observed at Sea-Tac airport in Washington for the month of January 

1965 through 1982. 
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For the analysis of time series for count data we refer to Zeger (1988), where the 

monthly number of poliomyelitis cases were observed from 1970 to 1983 by U.S Cen­

ters for Disease Control. 

Note that unlike the modelling of continuous time series, the modelling of discrete 

time series in particular the binary time series, is however not easy. This happens 

mainly due to the fact that there is no unique way to model the correlation structure 

of the repeated binary data. Kanter (1975) introduced a dynamic observation driven 

AR(1) type correlated binary model for stationary data, where the present observa­

tion is related to the past observations through a specified function. But this model 

does not cover the full range for the correlation parameters. Keenan (1982) has dealt 

with a latent variable approach. To be specific, under the assumption that a latent 

process follows a multivariate normal distribution, Keenan (1982) developed a time 

series model for the observed binary responses. In this approach even though the 

latent process is assumed to have a simple correlation structure, the resulting corre­

lation structure for the responses, however become extremely complicated. Recently, 

Qaqish (2003) has introduced a conditional linear dynamic binary model, where the 

conditional probability of a binary response is assumed to be a linear function of past 

responses. Similar to the models considered by Kanter (1975) and Keenan (1982), 

this model of Quaish (2003) also suffers from the range problems for the correlation 

parameters. 

1.2 Objective of The Thesis 

In this thesis, we consider a non linear dynamic binary time series model that accom­

modates binary responses with full ranges from -1 to 1 for the correlation parameters. 

It is further assumed, under this model that the binary responses are influenced by 

certain time dependent covariates. The main objective of the thesis is to provide 

inferences for the effects of the covariates by taking the correlation structure of the 

time series into account. The specific plan of the thesis is as follows. 
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In Chapter 2, we review two similar but different binary time series models. One 

of them [Keenan (1982)] is constructed based on a correlated latent process, whereas 

the second model discussed in Qaqish (2003) is developed based on a linear dynamic 

relationship among the responses. The advantages and disadvantages of these two 

models are discussed. In the same chapter, we introduce the non-linear dynamic 

model for the binary time series and discuss the basic properties of responses such as 

the mean, variance and correlation structures. The relative merits of this non-linear 

dynamic model as compared to the models due to Keenan (1982) and Qaqish (2003) 

are discussed. 

The inference for the proposed non linear dynamic binary time series model is 

provided in Chapter 3. Note that in addition to the regression effects, it is also of 

main interest to examine the dynamic dependence among the repeated binary re­

sponses. For this purpose, we discuss estimation techniques for the estimation of 

both regression and the dynamic dependence parameters. To be specific, we exam­

ine the performance of four competitive estimation approaches through an extensive 

simulation study. These approaches are: (i) the generalized quasilikelihood (GQL) 

approach, (ii) a semi-quasi likelihood (SGQL) approach , (iii) the maximum likeli­

hood (ML) approach and (iv) a conditional quasilikelihood (CGQL) approach. 

In Chapter 4, we examine the performance of the ML and CGQL approaches in 

estimating the probability for a future binary response. This is done mainly by com­

paring the predicted probabilities and the true probabilities based on a simulation 

study. 

In Chapter 5, we discuss the estimation technique for the estimation of regression 

and dependence parameters for a lag 2 model. Note that, we examine the perfor­

mance of the estimation approach through a simulation study. 

We conclude the thesis in Chapter 6 with some remarks about the usefulness of 

the non - linear dynamic binary time series model and the parameter estimation tech­

niques that we constructed in Chapter 3. In the same chapter, we have also noted 

the possibilities of some future research in this area. 



Chapter 2 

Non- Stationary Models 

Let Yt denote the binary response recorded at time point t from an individual or 

individual firm. Also let Xt = ( xn, ... , Xtj, ... , Xtp)' be the p dimensional vector 

of covariates which explains Yt, and {3 = (/31 , ... , /3j, ... , /3p)' denote this effect 

of Xt on Yt· In the independence set up, where y1 , ... , Yt, ... , Yr are treated as 

independent binary responses, it is common to use the binary logistic form 

(2.1) 

as a marginal probability model to relate Yt with Xt at time point t. This leads to the 

likelihood function given by 

T 

L(/3) = II P(Yt = llxt) (2.2) 
t=l 

which can be maximized for consistent estimation of the {3 parameter. 

When y1 , ... , Yt, ... , Yr are repeated binary responses from the same indi­

vidual, it is likely that the responses will be correlated. In this case, we say that 

the binary responses form a time series. Note however that the construction of the 

likelihood function in the correlated set up may be complicated. Consequently, the 

estimation of the regression effects {3 also becomes complicated. Over the past few 

decades, some authors have attempted to develop certain correlation structure based 

4 
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likelihood functions for the binary data. For example, we refer to Keenan (1982) for 

the likelihood construction of a correlated latent process based binary time series, and 

Qaqish (2003) for a conditional dynamic relationship based correlated binary model. 

In the following two subsections we review these models and discuss their advantages 

and limitations. Note that the above two models are recently discussed in detail by 

Sutradhar and Rao (2006) in the context of longitudinal data analysis. 

2.1 Correlated Latent Process Based Dynamic Model: 

An Overview 

2.1.1 Likelihood Computation and Complexity 

Let {y;, t = 1, ... , T} be a sequence of a latent variable, that follows a Gaussian 

AR(1) process. Suppose that y* = (yr, ... , y;, ... , yf )'. We then write 

y* "" N ( 0*, E*) (2.3) 

where 0* = (or, ... , o;, ... , Of) with o; = x~/3 and E* is an AR(1) process based 

suitable covariance matrix. Next suppose that the relationship between the observed 

binary responses Yt and the latent quantity y; is given by 

Yt = { 
1 if y; > 0 

0 otherwise. 
(2.4) 

The repeated binary responses (y1 , ••• , Yt, ... , Yr) from the same individual 

are correlated. It then follows that the likelihood function of the binary responses is 

given by 

L(/3, 0* 'E*) = fooo ... fooo 9N(y* IO* 'E*) dy~ · · · dy;, , (2.5) 

where 9N(Y~, ... ,y;, ... ,yf) is the T- dimensional normal density function given 

by 

9N(y* IO* E*) 
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By shifting the latent process as z; = [y;- o;] where o; = x~j3, one may re-write the 

equation (2.5) in the cumulative form as 

x
1 fJ x' fJ 

L(/3, 0* ~*) = /_~ ... /_~ 9N(z*IO ~*) dz; ... dz;, (2.6) 

with z* = (z~, ... , z;, ... , zf )'. But the likelihood function (2.5) or (2.6) is 

extremely complicated for the purpose of the estimation of the main parameter j3. 

2.1.2 Basic Properties of the Model: Mean, Variance and 

Correlation 

Note that one may attempt to use an alternative approach such as the quasilikeli­

hood approach (Zeger (1988) , Sutradhar (2003)) to estimate this j3 parameter. This 

technique requires the formulas for the mean vector and the covariance matrix of the 

observed response vector y = (y1 , ... , Yr )'. Let 0 and ~ denote the mean vector and 

the covariance matrix of y respectively. The computations for the 0 vector and the 

~ matrix under the present latent process based model, however, also appear to be 

complicated. To have a feel about the form of the 0 vector and the ~ matrix, we now 

consider the simplest case with T = 2, and demonstrate that even though Yi and Y2 
may have a simple correlation structure, the correlation structure of y1 and y2 would 

be complicated. 

To compute 0 and ~ for T = 2, we first express 0* and ~* of the corresponding 

latent process as 

( 
a* a* ) ( a* 0* = {0~, o;}' and ~* = 

11 a~: = 
11 (2.7) 

where o; = x~j3, t = 1, 2 and p* is the correlation between Yi and Y2· As the latent 

variable y; is assumed to follow a normal distribution with mean o; and variance 

covariance matrix ( a~t), then the unconditional mean of the binary response Yt may 



7 

be computed as 

-1 (y*- ()*)2 
E(Y,) = P(y, = !) = {oo ~ , e 2 'va;;' dy;. (2.8) 

lo 211" au 

By using z; = [y; - o;] "' N(O, a;t) , this expectation may be re - expressed as 

E(yt) 

(2.9) 

where FN(O;) is the cumulative normal density function for o; = x~j3. 

To compute the covariance structure (aut) for the binary responses y1 and y2 , we first 

write the the unconditional variance for Yt as 

(2.10) 

where FN(O;) = FN(x~j3) is the expectation of Yt as in (2.9). Next, the covariance 

between y1 and y2 is written as 

E(Y1 1'2) - E(Yi) E(Y;) 

P(Yi = 1 Y2 = 1) - E(Yi) E(Y2) 

fo'XJ fooo (21r)T 1 E* 121 
e 21 [(y•-e•)IE•- 1 (y•-e•)Jdy~dy;- FN(O~)FN(o;). 

(2.11) 

By using z; = [y;- 0;], (2.11) reduces to 

I 

I E* I:/ e -~/ [z• E*- 1 z*ldz~dz;- FN(O~)FN(O;) 

I 

I E* 12
1 

e 2
1 

[z* E*- 1 z*ldz~dz;- FN(O~)FN(O;), 

(2.12) 
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where z* = (y*- ()*) rv N 2 (0, 2:*), and 2:* is 2 x 2 variance- covariance matrix of the 

latent variable. One may then compute the correlation between the binary variables 

Y1 and Y2 by using 
corr(Yi , Y2) = cov(Y1 , Y2 ) , 

Jvar(Yi) var(Y;) 
(2.13) 

where cov(Yi, Y2) is given by (2.12) and var(Yt) fort= 1,2 is given by (2.10). Note 

that the computation of the covariance by (2.12) is quite complicated even though 

ar2 in (2.7) has a simple form, that is, ai2 = p*Jah a22 with p* as the correlation 

between Yi and y~. Then, the correlation structure computed by (2.13) would be 

complicated to use for the computation of the quasilikelihood estimation equation for 

f3. Also the correlation between Yi and Y2 does not satisfy the range from -1 to 1, 

which makes the model quite limited for any practical application. 

2.2 Lagged Response Based Conditional Linear Dy­

namic Model 

In the last subsection, a correlated binary model was developed based on a correlated 

latent process. The resulting correlation structure of that model was found to be 

complicated. There exists some alternative conditional linear dynamic models in the 
I 

ext/3 
literature for correlated binary time series. For example, for J-l; 1 ; t = 

1 + extf3 
1, ... , T, one may consider a correlated binary model given by 

E(Yt!Yt-1) = _xtit-1 = 1-l; + '1/J(Yt-1 - J-l;_ 1), t = 2, ... , T, [Qaqish (2003)]. (2.14) 

But it was not clear from Qaqish (2003) how one may obtain this conditional 

linear form (2.14) for modelling binary time series data. In this subsection, we first 

show that this model, in fact arises based on a uniform latent process, whereas a 

normal latent process based model was discussed in the last subsection. We then 

discuss in brief the likelihood approach for the estimation of the parameters of the 

model. We also provide the basic properties such as mean, variance and covariance 
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of the correlated responses based on this model. These properties are given as in the 

previous subsection with an objective that one may be able to use these to construct 

a second moments based quasilikelihood estimation approach. 

Suppose that the latent variable y; (which was Gaussian in the previous model) 

follows a uniform distribution with the probability density function 

-1 < y; < 1. t = 1, 2, ... , T. (2.15) 

Similar to the previous subsection, the binary variable Yt is generated through the 

following relationship with y;. That is, 

{ 
1 if y; > [1 - 2~tlt- 1 ] t = 2, ... , T 

Yt = 
0 otherwise, 

(2.16) 

which appears to be quite different than the relationship (2.4) used for the normal 

latent based process discussed in the previous subsection. 

Note that fort= 1, we assume that ~1 1 0 = .\1 = J.Li. It then follows that for t = 1 

the marginal probability of y1 = 1 is given by 

(2.17) 

whereas for t = 2, ... , T, the probability that Yt takes value Yt = 1 conditional on 

Yt-1 is written as 

(2.18) 

Thus, it is clear that, the conditional linear model (2.14) or (2.18) is developed based 

on the uniform latent process given by (2.15). It is also clear that even though (2.18) 
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looks similar to the Gaussian AR(1) model, the 'lj; parameter however may not satisfy 

the full range from -1 to 1. This is because the binary probability >.;
1
t_ 1 must lie 

between 0 and 1. 

2.2.1 Likelihood Computation and Complexity 

Note that it follows from the model (2.14) or (2.18) that the time series responses 

(y1, ... , Yt, ... , Yr) are correlated. Consequently, their likelihood function may be 

written as 

P(y1) P(y2, y3, · · · , YriY1) 

P(y1) P(Y21YI) P(y3, Y4, · · · , YriY1, Y2) 

P(y1) P(Y21YI) P(y3iY2) ... P(Yt!Yt-1) ... P(YriYr-1)· (2.19) 

By using ( 2 .17) and ( 2.18), this likelihood function can be expressed as 

L(/3 ''1/J) 
T 

' *YI (1- ' *)(1-yi) II '*Yt (1- '* )(1-yt) 
A1 A1 Atit-1 "tlt-1 (2.20) 

t=2 

I 

exi{J 
with >.i = I = J.lr and >.;

1
t_ 1 = J.l; + '1/J(Yt-1 - J.l;_ 1) for t = 2, ... , T where 

1 + ex1f3 
ex:f3 

J.l; = I • 

1 + extf3 
Note that maximization of the likelihood function (2.20) with respect to f3 and 'lj; 

simultaneously is complicated. This is because 'lj; is restricted to a narrower unknown 

range than -1 to 1, which may cause non- convergence if this range restriction is not 

taken care of during the estimation. 
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2.2.2 Basic Properties of the model: Mean, Variance and 

Correlation 

In the previous subsection we have discussed the limitations of the likelihood esti­

mation approach for estimating the regression and the correlation parameters. To 

avoid this complexity, as mentioned in section 2.1.2, one may attempt to estimate 

the (3 parameter by using a quasilikelihood approach, whereas the '1/J parameter may 

be consistently estimated by the well-known method of moments. The construction 

of the quasilikelihood estimating equation however requires the computation of the 

moments for the responses up to order 2. Note that the range restriction problem for 

the '1/J parameter can cause problems also in the quasilikelihood estimation which is 

not due to the fault of the estimation technique but rather a modelling problem that 

arises because of the use of conditional linear function to relate the responses. 

We now turn back to the computation for the moments up to order 2. These 

moments are provided in the following two lemmas. 

Lemma 2.1: Under the conditional linear dynamic model (2.14), the unconditional 

mean and variance for the binary responses are given by 

E(yt) = p; and var(yt) = p;(l- p;) for all t = 1, ... , T. 

Proof: By using the conditional mean E(rtiYt-1 ) = P(yt = 1IYt-1) from (2.18), we 

compute the unconditional expectation of Yt as 

E(yt) = P(yt = 1) 
1 

L P(yt = 1IYt-1 = j) P(rt-1 = j) 
j=O 

(p;- 'I/Jp;_1) (1- p;_1) + [p; + 'I/J(1- p;_1)] tt:-1 

p;. (2.21) 

Since Yt is a binary response, it now follows from (2.21) that 

(2.22) 

Next, we proceed to compute the correlations of the binary responses ( y1, ••. , Yt, ... , YT) 

under the model (2.14). For convenience we provide the formulas for these correla-

tions in lemma 2.2. 
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Lemma 2.2: For u < t, auto-correlations of lag (t- u) for the repeated binary 

responses y1, ... , Yt, ... , YT under the model (2.14) are given by 

(Y. "l/) .t,t-u J-l~ ( 1 - J-l~) 
carr u, .1 t = '+' ( ) • 

J-Lt 1 - J-Lt 
(2.23) 

Proof: Note that by Lemma 2.1, the variance of Yt is given as var(yt) = J-Lt(1- J-L;) 

for all t = 1, ... , T. Now to verify the correlation formula (2.23), we first compute 

the E(Yurt) as 

Ey,EY,[Yu+t · · · EYt-tlYt-2E(Yu rtlrt-1) 

Ey,EY,[Yu+t · · · EYt-tlYt-2[Yu(J-l; + VJ(rt-1- J-l;_1))] 

E(Yu) J-l; + V;[EY,EY,[Yu+t ... Eyt_ 1 [Yt-2(Yurt-1)]- VJJ-l;_1E(Yu) 

J-l~ J-l; + V;E[y,EY,[Yu+t · · · E(Yurt-11Yt-2)] - VJJ-l:-11-l~ 

J-l~ J-l; + V;[Ey,EY,[Yu+t · · · E(Yu(J-l;-1 + VJ(rt-2- J-l;_2))]- VJJ-l:-11-l~ 

J-l~ J-l; + VJJ-l;_1E(Yu) + VJ2[EY,EY,[Yu+t · · · E(Yurt-2)] 

-V;2 J-L;_2E(Yu) - VJJ-l;-11-l~ 

J-l~ J-l; + VJJ-l;_1J-l~ + VJ2[Ey,EY,[Yu+t · · · E(Yurt-2)]- VJ2J-l;_2J-l~- VJJ-l;-11-l~ 

J-l~ J-l; + VJ2[EY,EY,[Yu+t ... E(Yurt-2)]- VJ2J-L;_2J-l~· (2.24) 

By doing some algebra in the manner similar to that of (2.24), we finally obtain 

J-l~ J-l; + VJt-u Ey, (Y;) _ VJt-u J-l; 

J-l~ J-l; + VJt-u[J-L~(1 _ J-L~)] , 

which yields the lag ( t - u) auto-covariance as 

E(Yurt) - E(Yu)E(yt) 

(2.25) 

(2.26) 

Thus, the lag ( t - u) auto correlation between the binary responses Yu and Yt has the 

formula 

corr(Yu, Yt) (2.27) 
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as in Lemma 2.2. 

Note that unlike the correlated latent process based model discussed in Section 2.1, 

this conditional linear dynamic model (2.14) provides a simpler correlation structure 

(2.27). Nevertheless, the correlations may not satisfy the full range from -1 to 1. This 

is mainly because the 'ljJ parameter in (2.14) is restricted to a narrower range ( than 

-1 to 1) in order to have the probability in (2.18) between 0 and 1. Consequently, if 

the range restrictions for correlations are not taken into account properly, then this 

would naturally cause certain convergence problems in the estimation of f3 regardless 

of whether the likelihood or the quasilikelihood approach is used. In the following 

section, we propose an alternative model which does not suffer from this type of 

range restrictions. Consequently, it is expected that the regression effects will be 

easily computed consistently and efficiently. 

2.3 A Non Linear Dynamic Binary Time Series 

Model 

In Section 2.1, we have shown how to construct a correlated binary model by using 

a multivariate correlated latent variable which follows a multivariate normal distri­

bution. The limitations of this model were also discussed. In the previous section, 

we have discussed the conditional linear dynamic model and demonstrated how this 

linear form can arise by using a uniform distribution based latent process. Note that 

the inferences for these two models whether one uses the likelihood or quasilikelihood 

approach are complicated because of the range restrictions on the correlations under 

these models. These disadvantages compel us to seek a proper correlation structure 

based alternative model to analyze the correlated binary data. We now discuss a 

logistic latent process based non-linear dynamic model that accommodates a wider 

correlation structure as compared to the above two models. This model has been used 

by many researchers in the econometric literature. For example, see Amemiya(1985, 

p 422). We however first show how this binary logistic model arises from the logistic 
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distribution based latent process. 

Suppose that the latent variable yr follows a logistic distribution with mean gr = 
2 

x~(3 and variance~ (Johnson and Kotz (1970)), whereas fort= 2, ... , T, y; follows 

the same logistic distribution but with mean g; = x~f3+11 Yt- 1 + ... +lt-1Y1 and vari-
2 

ance ~ . To be specific the probability density function of yr and y; (t = 2, ... , T) 

are written as 

f * exp[-{yr- x~/3}] 
L(y1 ) = {1 + exp[-{Yi- x~/3}]}2 ' (2.28) 

and 

f ( *) exp[ -{y; - g;}] 
L Yt = {1 + exp[-{y;- g;}JF ' (2.29) 

respectively. 

Now by using the relationship (2.4) between the latent variable y; and the binary 

variable Yt, one can obtain the marginal probability function for Y1 as, 

P(y1 = 1) = 

(2.30) 

and fort= 2, ... , T the conditional probability for Yt = 1 given Yt-1, ... , Y1 as 

(2.31) 

where g; = x~(3 + I1Yt-1 + ... + lt-1Y1· 

It is clear from (2.30) and (2.31) that the >.; for all t = 1, ... , T ranges between 

0 and 1 for any values of -oo < 11, 12 , ... , IT-1 < oo. This implies that there is 

no range restriction for the dynamic dependence parameters 11, 12, ... , lr-1 un­

der the present non-linear model, whereas similar dependence parameters under the 
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models discussed in Sections 2.1 and 2.2 were restricted to certain narrower ranges. 

In Subsection 2.3.2 we demonstrate that unlike the correlated latent process based 

dynamic model (Section 2.1), and the conditional linear dynamic model (Section 2.2), 

the present model accommodates full ranges for the correlations. 

Note that it is in general complicated to deal with the inference for the general 

full-lagged model (2.30)-(2.31). In many practical situations it may be however suf­

ficient to fit smaller lagged dependent models such as AR(1), AR(2) types. In the 

following subsection, we provide the likelihood function and basic properties of a lag 

1 dependent model. 

2.3.1 Likelihood Function 

For a lag1 dependent model, that is, where g; in (2.31) depends only on Xt and Yt- 1, 

g; is written as 

* '(3 9t = Xt + 'Y1Yt-1 ' 

leading to the conditional probability function given by, 

exp(x~(3 + 'Y1Yt-d 
[1 + exp(x~(3 + 'Y1Yt-dl 

PtYt-1 = >.;. 

(2.32) 

(2.33) 

Note that it follows from the model (2.33) that the time series responses ( Y1, ... , Yt, ... , Yr) 

are correlated. Consequently, their likelihood function may be written as 

L((3 ''Yd 

P(y1)P(y2, Y3, · · · , YriY1) 

P(y1)P(y2IY1)P(y3, Y4, ... , YriY1, Y2) 

P(y1)P(y2iyt)P(y3IY2) ... P(YtiYt-1) ... P(YriYr-1), (2.34) 

where by (2.33), the conditional probability P(YtiYt-1) is given by 

(2.35) 
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where Pty1_ 1 is as in (2.33). Thus, we re-write the likelihood function (2.34) as 

T 

L(/3, "Yl) = PlY! (1- Pl)(l-yJ) rr Pnt-1 (1- PtYt-!)(1-yt) (2.36) 
t=2 

with P1 = exp(x~/3) /[1 + exp(x~/3)] and Pty1_ 1 = exp(x~/3 + "YlYt-d /[1 + exp(x~/3 + /"lYt-1)] 

for t = 2, ... , T. 

Note that the conditional probability function Pty1_ 1 contains a lag1 dependence 

parameter ')'1• It is clear from their relationship that Pty1_ 1 satisfies the 0 to 1 range 

for any value of the dependence/correlation parameter -oo < /"l < oo. This is in 

contrast to the other two models discussed in Section 2.1 and 2.2, a big advantage of 

this model over the other two models from a data analysis point of view. 

As far as the likelihood inference for the data is concerned in Chapter 3, we discuss 

the maximization of the likelihood function (ML) (2.36) with respect to {3 and "Yl· We 

will also consider an alternative GQL estimation approach and compare the relative 

performances of the GQL and the ML approaches. 

2.3.2 Basic Properties of the Non-Linear Dynamic Model: 

Mean, Variance and Correlation 

In Section 2.1 and 2.2 we have provided the likelihood functions of the correlated 

binary data under two specific models. Note however that to understand the basic 

nature of the data, it is useful to know the mean, variance and correlation structure 

under a specific model. This type of lower order moments may also be useful to de­

velop simpler estimation technique, such as the GQL ( mentioned in section 2.1.2 and 

2.2.2) estimation approach, as an alternative to the ML approach. For the purpose, 

we now provide these moments ( see also Farrell and Sutradhar (2006)) under the 

model (2.33) in Lemmas 2.3 and 2.4 below. These moments will be used in chapter 

3 for the construction of the GQL estimating equation. 

Lemma 2.3: Under the model (2.33), y1 has the mean p 1 = E(Yi) = exp(x~/3)/[1 + exp(x~/3)] 
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and the mean of Yt fort= 2, ... , T, has a recurrence relationship given by 

f-lt = E(yt) = Pto + Mt-I(Ptl- Pta), (2.37) 

where Pti = exp(x~f3 + 'YI)/[1 + exp(x~f3 +/'I)] and Pto = exp(x~f3)/[1 + exp(x~f3)]. 

Furthermore, the variance of Yt for all t = 1, ... , T is given by 

var(yt) =au= f-lt (1- f-lt)· (2.38) 

Proof: It is obvious from (2.31) that JJI = P(yi = 1) = exp(x~f3)/[1 + exp(x~f3)]. 

Next, by (2.33) we obtain 

M2 = P(y2 = 1) 
I 

L P(Y2 = 1IYI = j) P(YI = j) 
j=O 

P2o (1 - JJI) + P2I /-li 

P2o + /-li (P2I - P2o) 

with P2I = exp(x~f3 + /'I)/[1 + exp(x~f3 +')'I)] and P2o = exp(x~/3)/[1 + exp(x~f3)]. 

Similarly, we obtain 
I 

/-l3 = P(y3 = 1) L P(13 = 1IY2 = j) P(Y2 = j) 
j=O 

P3o (1 - M2) + P3I M2 

P3o + M2(P3I - P3o) 

with P3I = exp(x~f3 + ')'I)/[1 + exp(x~f3 +/'I)] and P3o = exp(x~f3)/[1 + exp(x~f3)]. 

By following this pattern, we write 

I 

f-lt = P(Yt = 1) L P(yt = 1IYt-I = j) P(Yi-I = j) 
j=O 

Pta(1- Mt-I) + Pt1/-lt-I 

Pta + Mt-I (Ptl - Pto) 

with Ptl = exp(x~f3 + 'Yd/[1 + exp(x~f3 + /'1)] and Pta 

This provides the proof for the first part of the lemma. 

(2.39) 

exp(x~f3)/[1 + exp(x~f3)]. 

Next, as Yt is a binary response with P(yt = 1) = f-tt (2.39), it then follows that 

var(yt) = f-lt (1 - f-lt) (2.40) 
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which proves the second part of the lemma. This completes the proof for Lemma 2.3. 

Note that there is a big difference in the formulas for the means provided by 

this non-linear dynamic model and the other two models presented in the previous 

subsections. To be specific the present model has a dynamic relationship for the 

means of the data, whereas the other two models provide the marginal means. The 

variances of these three models may also be interpreted similarly. To examine the 

difference in correlation forms, we now compute the correlations for the present non­

linear dynamic model as in the following lemma. 

Lemma 2.4 For u < t, the auto-correlations of lag t - u for the repeated binary 

responses y1 , ..• , Yt, ... , YT under the non linear dynamic model (2.31) are given 

by 

J-Lu (1 - J-Lu) 
J-Lt ( 1 - J-Lt) 

t 

II (Pjl - Pjo), 
j=u+l 

(2.41) 

where Pjl = exp(x~/3 + ')'I)/[1 + exp(x~f3 + ')'1)] and Pjo = exp(x~/3)/[1 + exp(x~/3)] by 

(2.33). 

Proof: For u < t, we first derive the lag t- u auto-covariance as 

t 

cov(Yu, Yt) = J-Lu(1- J-Lu) II (pjl - Pjo). (2.42) 
j=u+l 

This result may be verified by induction. To begin with, we compute the two lag-

1 auto-covariances, cov(Yi, Y2) and cov(Y2 , Y3 ) as follows. To be specific, for the 

computation of cov(Y1 , Y2 ) we use 

cov(Yi, Y2) 

where 

P(y2 = 1, Y1 = 1) 

P(y2 = 1\yl = 1)P(y1 = 1) 



This leads to the covariance of Yi and Y2 as 

cov(Yi, Y2) P21/11 - /11 [P2o + /11 (P21 - P2o)] 

/11 (1 - /11)(P21 - P2o) 
2 

/11 (1 - 11d II (Pj1 - Pio). 
j=2 

Next, to compute cov(Y2, Y3 ), we first compute 

P(y3 = 1,y2 = 1) 

P(y3 = 1IY2 = 1)P(y2 = 1) 

which yields the covariance of Y2 and Y3 as 

P31/12 - /12[P3o + /12(P31 - P3o)] 

/12(1- /12)(P31- P3o) 
3 

/12(1 - /12) II (Pj1 - Pjo). 
j=3 
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(2.43) 

(2.44) 

Similarly, to compute the lag-2 auto-covariances, cov(Yi, Y3 ) and cov(Y2 , 1'4), we first 

compute 

E(YiY3) 

and 

E(Y2Y4) 

P(y3 = 1,y1 = 1) 

P(y3 = 1IY2 = O)P(y2 = OIY1 = 1)P(y1 = 1) + 
P(y3 = 1IY2 = 1)P(y2 = 1IY1 = 1)P(y1 = 1) 

P(y2 = 1, Y4 = 1) 

P(y4 = 1IY3 = O)P(y3 = OIY2 = 1)P(y2 = 1) + 
P(y4 = 1IY3 = 1)P(y3 = 1IY2 = 1)P(y2 = 1) 
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yielding 

and 

cov(Y;, Y4) 

respectively. 

Next by using the recurrence relationship for JL2 and JL3 given in Lemma 2.3, the 

above two equations (2.45) and (2.46) reduce to the formulas given by 

and 

respectively. 

3 

cov(Yi, Y3) = JL1 (1- JLt) II (Pjl - Pjo), 
j=2 

cov(Y;, Y4) 
4 

JL2(1- JL2) II (Pjl- Pjo), 
j=3 

(2.47) 

(2.48) 

Next, we also check the formulas for two lag-3 auto-covariances, namely cov(Y2 , Y5) 

and cov(Y3 , Y6). To compute the covariance of Y2 and Y5 , we first compute 

P(y2 = 1,ys = 1) 

P(Ys = 1IY4 = O)P(y4 = OIY3 = 1)P(y3 = 1IY2 = 1)P(y2 = 1) + 
P(ys = 1IY4 = O)P(y4 = OIY3 = O)P(y3 = OIY2 = 1)P(y2 = 1) + 
P(ys = 1IY4 = 1)P(y4 = 1IY3 = 1)P(y3 = 1IY2 = 1)P(y2 = 1) + 
P(ys = 1IY4 = 1)P(y4 = 1IY3 = O)P(y3 = OIY2 = 1)P(y2 = 1) 

Pso(1- P4t)P3t/L2 + Pso(1- P4o)(1- P3t)JL2 + 
PstP4tP31/L2 + PstP4o(1 - p3t)JL2 

JL2[Pso(1- P4o)(1- p3t) + PstP4o(1- P3t) + Pso(1- P4t)P31 + PstP4tP31], 

which produces the covariance 

(2.49) 
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Now, using the recurrence relationship for J-Ls from lemma 2.3 in equation (2.49) 

and the recurrence relationship for J-L4 and J-La from the same lemma 2.3, we get the 

following form 

/-L2(1- M2HPa1- Pao)(P4l - P4o)(Psl - Pso) 
5 

J-L2 (1 - M2) IT (Pjl - Pjo) · 
j=3 

In the similar fashion, we compute the formula for cov(Ya, Y6). For this, 

P(ya = 1, Y6 = 1) 

P(y6 = 1IYs = O)P(ys = OIY4 = 1)P(y4 = 1IYa = 1)P(ya = 1) + 

P(y6 = 1IYs = O)P(ys = OIY4 = O)P(y4 = OIYa = 1)P(ya = 1) + 

P(y6 = 1IYs = 1)P(ys = 1IY4 = 1)P(y4 = 1IYa = 1)P(ya = 1) + 
P(y6 = 11Ys = 1)P(ys = 1IY4 = O)P(y4 = OIYa = 1)P(ya = 1) 

P6o(1- Psl)P41/-L3 + P6o(1- Pso)(1- P4l)J-La + 

P6lP5lP4l/-L3 + P61Pso(1- P4l)J-La 

(2.50) 

J-La[p6o(1- Pso)(1- P4l) + P61Pso(1- P4l) + P6o(1 - PsdP4l + P61Ps1P41], 

which provides the covariance 

cov(Ya, Y6) = J-La[P6o(1- Pso)(1- P4t) + P61Pso(1- P4l) + P6o(1- PsdP4l + P61Ps1P41] 

- /-L3/-L6· (2.51) 

Now using the recurrence relationship for J-L6 from lemma 2.3 in equation (2.51) and 

the recurrence relationship for J-Ls and J-L4 from the same lemma 2.3, we obtain the 

formula for the covariance 

J-La(1- J-La)(P41- P4o)(Psl - Pso)(P6l - P6o) 
6 

J-La(1- J-La) IT (Pjl - Pjo). 
j=4 

(2.52) 
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It is clear from (2.43), (2.44); ( 2.47), (2.48); and (2.50), (2.52) that for u < t we may 

write the formula for the lag( t - u) auto-covariance between Yu and yt as 

t 

cov(Yu, Y't) = JLu(1- JLu) IT (Pjl - Pjo), (2.53) 
j=u+l 

where, similar to (2.39), Piland Pio are defined as Pil = exp(x~/3 + "}'1)/[1 + exp(x~/3 + "}'1)] 

and Pjo = exp(x~/3)/[1 + exp(x~/3)], respectively. It then follows that for u < t, the 

correlation between Yu and yt is given by 

corr(Yu, yt) = 
Jvar(Yu) var(yt) 

JLu(1 - JLu) n;=u+l (Pjl - Pio) 

V JLu (1 - JLu) /Lt (1 - JLt) 

JLu(1 - JLu) 
JLt(1 - JLt) 

t 

IT (Pil -Pia). 
j=u+l 

This completes the proof of Lemma 2.4. 

(2.54) 

Note that in this chapter we have discussed three binary time series models. 

Among these models, the correlated latent process based binary time series model 

discussed in Section 2.1 provides a complicated correlation structure (2.13). The 

conditional linear dynamic based model discussed in Section 2.2 gives a simpler cor­

relation structure (2.27) but the correlations are found to satisfy narrower range as 

compared to the full range -1 to 1. The non linear dynamic model discussed in this 

section appears to be simple to interpret and allows for correlations covering the full 

range unlike the other two models. For a detailed numerical comparison on the ranges 

of the correlations under different models including the present non-linear dynamic 

model, we refer to Farrell and Sutradhar (2006). Note that there is, however, no ad­

equate discussion in the literature on the statistical inferences based on this simpler 

and attractive time series model. This motivated us to seek estimation approaches 

for the parameters of this model which we present in the next chapter. In Chapter 4, 

we discuss forecasting aspects of this model. 



Chapter 3 

Estimation of the Model 

Parameters of Lag 1 Model 

Recall that the non-linear dynamic model was discussed in Section 2.3. For conve­

nience, we re-write this model here as follows. 

P(y1 = 1) 

and 

[1 + exp(x;,B)] 
-\i. 

[1 + exp(x~,B + /IYt-d] 
PtYt-! = ,\;. 

(3.1) 

(3.2) 

It is of interest to estimate the regression effect ,8 and the lag 1 dependence 

parameteq1. For this purpose, we choose to explore the performance of the tra­

ditional maximum likelihood (ML) approach and a less familiar generalized quasi 

likelihood ( GQL) approach for the estimation of these parameters. 

In Section 3.1, we conduct an initial study to examine the performances of these 

two approaches in estimating ,8 only by using a "working" independence approach 

which treats the data as independent even though data are truly correlated. As we 

23 
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explain below, it follows that when data are generated independently, these "work­

ing" independence assumption based ML and GQL approaches work quite well in 

estimating the regression parameters, whereas the performance of these approaches 

is extremely poor for the estimation of the same parameters where the data are truly 

correlated. 

3.1 A "working " Independence Approach 

Let y1, ... , Yt, ... , Yr be a time series of binary observations following the model 

(3.1- 3.2) with Xt = (xn, ... , Xtj, ... , Xtp)' as a vector of p-dimensional covari­

ates associated with Yt· To estimate the regression parameter /3, in this subsection 

we treat the observations as independent and develop the likelihood as well as the 

GQL estimating equations, even though data are generated with certain correlations 

represented by non-zero values of ')'1 . That is, data are generated with ')'1 #- 0 but 

estimation will be done by treating 'Yl = 0. 

3.1.1 Likelihood Estimation Equation 

As we are treating the observations as independent, we may write the "working" 

likelihood function as, 

T T 

LI(f3Jy) = II f(Yt) ITPt(f)Yt(1- Pt(I))(l-yt)' (3.3) 
t=l t=l 

with Mt(I) = Pt(I) = exp(x~ /3)/[1 + exp(x~ /3)]. Here L1 (f3Jy) represents an indepen­

dence(!) assumption based likelihood function. The log-likelihood function is then 

written as 
T 

L (Yt logpt(I) + (1- Yt) log(1- Pt(I))), 
t=l 

yielding the derivative function as 

8li(f3Jy) = t ( Pt(/)(1- Pt(I)) + (1 _ ) (1- Pt(I)) (I)(_ )) 
8/3 t=l Yt Pt(I) Xt Yt (1- Pt(I))Pt Xt 
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T 

L(YtXt(1- Pt(I))- (1- Yt)Pt(I)xt) 
i=l 

T 

L(Yt- Pt(I))xt. (3.4) 
t=l 

The likelihood estimating equation is, 

(3.5) 

By using a Taylor's series expansion, it follows from (3.5) that the f3 parameter 

may be estimated by using the iterative equation , 

A A [ 82h(f3iy) -18ZJ(f3iy)] f3wML(r + 1) = f3wML(r) + [ 813813, ] 813 . , 
.BwML(r) 

(3.6) 

where SwML(r), the "working " maximum likelihood estimate of f3 is a solution of 

(3.4) at the r-th interation, and [.].BwMdr)is the value of the expression in the square 

bracket evaluated at f3 = SwML(r). Note that in (3.6), the first derivative 
8l1~1Y) 

has the formula given by (3.4). Similarly one may obtain the second derivative as 
82 lJ(f3iy) T I 

813813, = - ~ XtPt(I)(1- Pt(I))xt. 

3.1.2 "Working "Generalized Quasilikelihood Estimation for 

the Regression Parameter f3 

Let p,( I) = (p,1 (I), ... , ttr (I)) be the T- dimensional mean vector of y = (Yl, ... , Yt, ... , Yr) 

and L::(J) =(au' (I)) be the covariance matrix of y. Here au (I) = var(Yth'1 = 0) and 

au' (I) = cov(Yt, ~'11'1 = 0). Note that covariance of Yt and ~' is zero, because the 

binary observations are assumed to be independent. Thus, I: (I) has only the diagonal 

elements. 

One may write the generalized quasilikelihood(GQL) estimating equation for f3 as 

% (I)L:- 1(I)(y- p,(I)) = 0. (3.7) 
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Let SwaQL be the GQL estimator of f3 obtained from (3.7). Note that the computation 
~ ~ 

of f3waQL is usually done by an iterative method. More specifically, f3wGQL is obtained 

by using the Newton-Raphson iterative equations 

SwaQL(r + 1) = SwaQL(r) + [(81~~I)E_1 (I){}~~)) -I {}~~lr;-I(I)(y _ 1,(!))]. . 
fJwaQL(r) 

a I (I) 
Note that in (3.8) to compute ~/3 , we first compute 

aJ-Lt(I) I • • af-L
1 

(I) 
B/3 = (xt1f..Lt(I)(1 - f..Lt)(I), ... , Xtpf..Lt(I)(1 - f..Lt(J))) , which yields B/3 

X
1

A(I) where X= (xi,X2, ... ,Xt, .. . xr)
1 

with Xt = (xtl, ... ,Xtp)
1

, and 

A(I) = diag[J..LI(J)(1- J..LI(J)), ... ,J..Lr(J)(1- J..Lr(J))]. 

It then follows that for computational convenience the WGQL estimating equation 

(3.8) may be re-expressed as 

(3.8) 

SaQL(r) + [(x1

(I)A(I)E- 1(I)A(I)X(I))-
1 

X
1

(I)A(I)E- 1(I)(y- J-L(l))]. . 
/JaQL(r) 

3.1.3 A Simulation Study 

In this subsection we conduct a simulation study to examine the performance of SwML 

and SwaQL to estimate the f3 parameter of the true model. Recall that under the 

true model the responses are correlated, whereas SwML and SwaQL are computed by 

treating the responses as independent. 

Under the true time series model (3.1) - (3.2), we generated YI, ... , Yt, ... , YT 

for T = 100, 200 and 300 with p = 2 covariates such that /31 = /32 = 0.5, and with 

dependence parameter value as 'YI = -1, 0, 1 for a given design matrix X. As far as 

the choice of this X matrix is concerned we consider the following four designs. Two 

covariates were chosen under each of the four designs. 

(3.9) 



D 1 (Design 1) : 

and 

D 2 (Design 2) : 

and 

D3 (Design 3) : 

and 

Xi2 = 

D4 (Design 4) : 

xil = 1 for i = 1. ... . T 

{ 

-1 

Xi2 = ~ 

for 0 < i < Tl4 

for T I 4 < i < 3T I 4 

otherwise. 

Xil = 1 for i = 1. ... . T. 

xi2 = iiT fori = 1. ... . T. 

xil = 1 for i = 1. ... . T. 

0.01 fori = 1 

x(i- 1, 2) + 0.01 for 1 < i < Tl4 

x(i -1, 2) + 0.05 for Tl4 < i < 3TI4 

x(i -1, 2) + 0.10 for 3TI4 < i < T. 

X;1 = { ~ for 0 < i < Tl2 

otherwise. 

27 
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and 

{ 

-1 for 0 < i < T I 4 

Xi2 = 0 for T I 4 < i < 3T I 4 

1 otherwise. 

Now by using the generated y = (y1 , .•• , Yt, ... , YT) and the design matrix 

constructed under the chosen design, we apply (3.6) and (3.9) to obtain the WML 

and WGQL estimates of (31 and (32 . All together we consider 1000 simulations. The 

average values for each of the components of SwML = (SwML,l, SwML,2) and SwaQL = 
(SwaQL,l, SwaQL,2) based on 1000 simulations are reported in Tables 3.1, 3.2 and 3.3 

for 'Yt = -1, 0 and 1 respectively. The standard errors and mean squared errors of 

these estimates are also reported in the same tables. 
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Table 3.1: Simulated mean (SM), simulated standard error (SSE) and simulated mean 
squared error (SMSE) of the WML (Independence based) and WGQL(Independence 
based) estimates for regression coefficients with T = 100, 200, 300; /31 = /32 = 0.5; 
based on 1000 simulations, for the case when ')"1 = -1, 0, 1 

Estimates 

/"1 Size T Design Method Quantity !31 /32 
-1 100 D1 WML/WGQL SM 0.006 0.394 

SSE 0.159 0.230 
SMSE 0.269 0.064 

D2 WML/WGQL SM 0.002 0.388 
SSE 0.310 0.534 
SMSE 0.344 0.298 

Da WML/WGQL SM -0.024 0.427 
SSE 0.248 0.140 
SMSE 0.336 0.025 

D4 WML/WGQL SM -0.115 0.650 
SSE 0.274 0.266 
SMSE 0.453 0.093 

200 D1 WML/WGQL SM -0.001 0.391 
SSE 0.112 0.166 
SMSE 0.264 0.039 

D2 WML/WGQL SM -0.001 0.379 
SSE 0.221 0.394 
SMSE 0.300 0.170 

Da WML/WGQL SM -0.045 0.440 
SSE 0.198 0.084 
SMSE 0.336 0.011 

D4 WML/WGQL SM -0.123 0.646 
SSE 0.179 0.199 
SMSE 0.420 0.061 



30 

(Table 3.1 Contd .... ) 

Estimates 

'Yl Size T Design Method Quantity f3t /32 
300 Dt WML/WGQL SM 0.001 0.382 

SSE 0.096 0.133 
SMSE 0.258 0.032 

D2 WML/WGQL SM 0.001 0.386 
SSE 0.182 0.324 
SMSE 0.282 0.118 

Da WML/WGQL SM -0.053 0.445 
SSE 0.177 0.068 
SMSE 0.337 0.008 

D4 WML/WGQL SM -0.129 0.644 
SSE 0.153 0.159 
SMSE 0.419 0.046 

0 100 Dt WML/WGQL SM 0.524 0.537 
SSE 0.222 0.327 
SMSE 0.050 0.108 

D2 WML/WGQL SM 0.510 0.554 
SSE 0.448 0.783 
SMSE 0.201 0.616 

Da WML/WGQL SM 0.500 0.546 
SSE 0.374 0.225 
SMSE 0.140 0.053 

D4 WML/WGQL SM 0.531 0.534 
SSE 0.380 0.369 
SMSE 0.145 0.137 
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(Table 3.1 Contd .... ) 

Estimates 

/1 Size T Design Method Quantity (31 (32 
200 D1 WML/WGQL SM 0.513 0.524 

SSE 0.148 0.232 
SMSE 0.022 0.054 

D2 WML/WGQL SM 0.516 0.515 
SSE 0.299 0.524 
SMSE 0.089 0.275 

D3 WML/WGQL SM 0.500 0.529 
SSE 0.287 0.138 
SMSE 0.082 0.020 

D4 WML/WGQL SM 0.514 0.521 
SSE 0.246 0.250 
SMSE 0.061 0.063 

300 D1 WML/WGQL SM 0.510 0.513 
SSE 0.123 0.177 
SMSE 0.015 0.031 

D2 WML/WGQL SM 0.513 0.510 
SSE 0.254 0.446 
SMSE 0.064 0.199 

D3 WML/WGQL SM 0.499 0.524 
SSE 0.254 0.118 
SMSE 0.064 0.015 

D4 WML/WGQL SM 0.509 0.513 
SSE 0.201 0.203 
SMSE 0.040 0.041 
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(Table 3.1 Contd .... ) 

Estimates 

/'1 Size T Design Method Quantity /31 !32 
1 100 D1 WML/WGQL SM 1.280 0.642 

SSE 0.325 0.455 
SMSE 0.714 0.227 

D2 WML/WGQL SM 1.244 0.709 
SSE 0.644 1.151 
SMSE 0.968 1.368 

D3 WML/WGQL SM 1.230 0.728 
SSE 0.543 0.858 
SMSE 0.828 0.788 

D4 WML/WGQL SM 1.510 0.180 
SSE 0.553 0.476 
SMSE 1.326 0.329 

200 D1 WML/WGQL SM 1.250 0.622 
SSE 0.223 0.304 
SMSE 0.612 0.107 

D2 WML/WGQL SM 1.235 0.643 
SSE 0.430 0.765 
SMSE 0.725 0.606 

D3 WML/WGQL SM 1.231 0.646 
SSE 0.425 0.371 
SMSE 0.715 0.159 

D4 WML/WGQL SM 1.454 0.161 
SSE 0.365 0.314 
SMSE 1.043 0.214 
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(Table 3.1 Contd .... ) 

Estimates 

'/'1 Size T Design Method Quantity /31 /32 
300 D1 WML/WGQL SM 1.240 0.613 

SSE 0.172 0.240 
SMSE 0.577 0.070 

D2 WML/WGQL SM 1.230 0.630 
SSE 0.358 0.633 
SMSE 0.661 0.418 

D3 WML/WGQL SM 1.230 0.622 
SSE 0.386 0.263 
SMSE 0.682 0.084 

D4 WML/WGQL SM 1.448 0.147 
SSE 0.290 0.262 
SMSE 0.983 0.193 

The results of Tables 3.1 show that when data are generated with certain cor­

relations ( ')'1 = -1, ')'1 = 1 )the independent assumption based WML and WGQL 

approaches perform very poorly in estimating both /31 and /32. To be specific, when 

data are generated with ')'1 = -1, the results of the table show that the independence 

assumption based approaches grossly underestimate /31 and /32 for all designs except 

D4 . For the cases with D 4 , WML and WGQL approaches overestimate /32 and highly 

underestimate /31. For example, when ')'1 = -1, WML and WGQL produce the same 

mean estimates of /31 and /32 as 0.001 and 0.382 under D1 with T = 300, whereas 

/31 and /32 have the true values as /31 = /32 = 0.5. When T = 300, under D4 , the 

mean estimates of /31 and /32 produced by WML and WGQL are found to be -0.129 

and 0.644 for the same true values of /31 and /32, that is for /31 = /32 = 0.5. It is 

therefore clear that when data are correlated ( with ')'1 = -1 ) but it is attempted to 

obtain the estimates by assuming independence, the estimates are bound to be poor. 

Similar results hold for the case with ')'1 = 1. In this case both WML and WGQL 

approaches generally overestimate both /31 and /32 for D1, D2 and D 3 , whereas for 

D 4 , /31 is overestimated and /32 is highly underestimated. 
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When the data are generated under the independence condition ( ')'1 = 0) and the 

estimation approaches are also based on the independence assumption, the WML 

and WGQL approaches perform extremely well in estimating /31 and /32 • For exam­

ple, when T = 300, under D1 , the mean estimates of /31 and /32 are found to be 0.510 

and 0.513 with standard errors 0.123 and 0.177 respectively, whereas /31 = /32 = 0.5 

truly. These results therefore indicate that the ML and GQL approaches may per­

form well in the dependence case provided the correlation parameter ')'1 is accounted 

for while estimating /31 and j32.The results for this case with ')'1 = 0 also show that 

as T increases, the WML and WGQL approaches perform better in estimating the 

parameters. 

In summary, when the data are truly independent and parameters are estimated by 

the "working "ML and GQL approaches under an independence assumption, these 

approaches work very well, whereas when data are generated with correlation, the 

"working "independence assumption based WML and WGQL approaches provide 

poor estimates. This indicates that it is important to estimate /31 and /32 after taking 

the correlations ( ')'1 ) into account. The purpose of the next section is to estimate /31 

and /32 as well as ')'1 such that the estimates of /31 and /32 are obtained by taking the 

correlations into account. 

3.2 True Correlation Structure Based Approach 

The model (3.2) involves two unknown parameters: (i) /3, the p-dimensional vector 

of regression parameters and (ii)'Y1 , the correlation or dependence parameter. In the 

last section, we have estimated j3 by treating ')'1 = 0 , even though the data may 

be correlated. It was found that when data were generated with ')'1 f. 0, the inde­

pendence assumption based ML (i.e WML) and GQL (i.e WGQL ) approaches yield 

highly biased, i.e, inconsistent estimates. We also emphasize that under the present 

non-linear dynamic model, ')'1 along with j3 is also an important parameter. This 
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is because all of these parameters are involved in the expressions for the mean and 

variance of the responses. The other higher order moments also will be functions of 

these parameters. Consequently, any estimation approaches constructed by ignoring 

'/'I will not produce good estimators for {3. This motivates us to estimate all param­

eters j3 and '/'I simultaneously. To be specific, we consider the well-known ML and 

different versions of the GQL approach to estimate these parameters. We also refer 

to Sutradhar and Farrell (2006) where some of these approaches were used in the 

context of longitudinal data analysis, whereas we consider the estimation problem for 

binary time series. 

3.2.1 Likelihood Estimating Equations for (3 and the Depen­

dence Parameter 'YI 

Note that the model (3.1) - (3.2) generates Yt as a function of Xt and Yt-I· Recall 

that the likelihood function of j3 and '/'I for this model was written in (2.36). Here 

we maximize this likelihood function (2.36) with respect to j3 and "YI· 

For the purpose, we first write the log-likelihood function as, 

log L(j3, '/'I) = l(/3, '/'I) = Yilogpi + (1- YI) log(1- pi) 
T 

+ L[Yt logptYt-l + (1- Yt) log(1- Ptyt_ 1 )], (3.10) 
t=2 

with PI = exp(x'I/3)/[1 + exp(x~/3)] and PtYt-l = exp(x~/3 + '/'IYt-d/[1 + exp(x~/3 + '/'IYt-I)] 

fort = 2, ... , T. Now the log-likelihood function with respect to j3 is given by 

(3.11) 

Similarly the first derivative of the log-likelihood function with respect to '/'I is given 

by 

T 

L [ (Yt - PtYt-l )Yt-I] . (3.12) 
t=2 



We now solve the likelihood equations, 

for 0 = (/3, ')'1)'. 

8l(Oiy) 
ao ( 

alog~(/3,"'11)) 
- /3 -0 - a log L(/3, 'YI) -

a'Yl 
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(3.13) 

By using a Taylor's series expansion, it follows from (3.13) that the 0 parameter 

may be estimated by using the iterative equation 

0 ( 1) = 0 ( ) [[a2
Z(Oiy)l_1 az(Oiy)] 

M L r + M L r + aoaO' ao . . 
liML(r) 

(3.14) 

where OML(r) denotes the maximum likelihood estimate of 0 as a solution of (3.13) 

at the r-th interation , and [ .]0ML(r)is the value of the expression in the square bracket 

evaluated at 0 = OML(r). Note that the equation in (3.14) requires the computation 

of the second derivative matrix [a~~~~~)], which is of order (p + 1) x (p + 1). The 

components of this matrix may be computed by using the following formulas: 

a2 L(/3, 'YI) 
a{3af3' 

a2 L(/3, 'YI) 
a{3a')'l 

a2 L(/3, 'YI) 

a'Yr 

- [x1X~P1 (1 -PI) + t XtX~PtYt-1 (1 - PtYt-1 )] · 
t=2 

- [tPtYt-1 (1- PtYt-1)XtYt-l] · 
t=2 

- [t YZ-IPtYt-1 (1 - PtYt-1 )] . 
t=2 

(3.15) 

(3.16) 

(3.17) 

3.2.2 Generalized Quasilikelihood Estimating Equation: An 

Unconditional Approach 

In this approach we consider three different cases: (i) Estimation of the regression 

parameters /3 with known 'YI ; (ii) Estimation of the regression parameters and the 

correlation parameter simultaneously by using the GQL approach; (iii) Estimation of 

the regression parameters by using the GQL approach and the correlation parameter 

by using the method of moments. 
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Estimation of the regression parameters with known ')'1 

Recall that in section 3.1.2, we have used a 'working'GQL approach to estimate the re­

gression parameters. To be specific, the 'working 'approach was developed by treating 

the data as independent, i.e, by using ')'1 = 0, even though the data were correlated. 

In this subsection we discuss the GQL estimation for the regression parameters (3 

under the assumption that ')'1 is known, even though in practice ')'1 is unknown. The 

estimation of (3 for unknown ')'1 is discussed in the next subsection. 

Consider notation that we have used in section 3.1.2 and define E = (au') as the co­

variance matrix ofy, where ')'1 =/:- 0. To be specific, au = var(Yt) and au' = cov(Yt, ~~ ). 

The formulas for these variances (au) and covariances( au' )are given by (2.40) and 

(2.53). By using the E matrix, we now write the generalized quasilikelihood(GQL) 

estimating equation for (3 as 

(3.18) 

which can be solved iteratively as in (3.8). Let gGQL be the solution of (3.18). The 

iterative equation for f3aQL is given by 

A A [(8J-L
1 

-181-L) -l 8J-L -1 l f3aQL(r + 1) = f3aQL(r) + 
813 

E 
813 813

E (y- J-L) . · 
f3GQL(r) 

(3.19) 

Since by (2.39) J-lt =Pta+ J-lt-t(Pn- Pta) with Pto = exp(x~f3)/[1 + exp(x~(3)], and 

Pt1 = exp(x~f3+!'1)/[1+exp(x~f3+!'1)], and Xt = (xn, ... ,Xtj, ... ,Xtp)', to 

compute the derivative matrix ; in (3.19) it is sufficient to compute the derivative 

vector : for all t = 1, .... , T. This derivative vector for t = 2, ... , T has the 

formula given by 

8 1-Lt 8 /-Lt-1 
8(3 = [Pta(1- Pto)(1- /-Lt-1) + Pn(1- Pn)J-Lt-1]xt + (Ptt- Pta)-----ajj. 

8J-L1 
whereas 

813 
has the formula 

8J-Lt 
8(3 

where p1 = exp(x~f3)/[1 + exp(x~f3)]. 
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Estimation of Regression and Correlation parameters by using GQL ap­

proach 

As /'I is unknown in practice, in this subsection we estimate all parameters (,8, /'I) by 

using the GQL approach. 

By writing()= (,8, I'd' and following (3.18) the GQL estimating equation for ()may 

be written as 

{)p' -1 ) 802:, (y- J1- = 0. (3.20) 

Let OaQL be the GQL estimator of() obtained from (3.20). Similar to (3.9) and 

(3.19), OaQL is obtained by using the iterative equation 

A A [({)p' -1 {)p) -1 {)p -1 l 
()GQL(T + 1) = ()GQL(r) + {)() '2:, {)() {)()'2:, (y- JJ) . . (3.21) 

BaQL(r) 

{) Jl-1 {) I 

Now to compute {)() , we use the formula for cJ; from the previous subsection, 

{) p' . {) Pt 
whereas -

8 
may be computed by computmg -

8 
for all t = 1, ... , T. Note that 

/'1 /'1 
{) Jl-1 {) Jl-t {) Jl-t-1 
-
8 

= 0 whereas fort= 2, ... , T, -
8 

= Pt1(1- Pt1)Jl-t-l + (Ptl- Pto)-
8
-. 

~ ~ ~ 

Estimation of ,8 by GQL and 1'1 by Method of Moments 

Here, the estimation of ,8 and /'I will be done in cycles of iterations. For a given /'I, 

we first estimate ,8 parameter by using (3.18) - (3.19). Once we get this estimate, we 

use it in a moment estimating equation for f'1 . The moment estimating equation for 

f'1 is derived by equating L-[=2 Y¥/~1
1 with its expected value. Now to compute the 

expectation, that is, E(ytyt_ 1), we use the formula 

E[YtY't-1] = Cov(yt, yt_I) + Pt-lJl-t, (3.22) 

where by (2.53), the Cov(yt, yt_I) is given by 

Cov(yt, Y't-1) = Pt-1(1- Pt-d(Pt1- Pw). 
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It then follows that the moment estimating equation for 11 has the formula given by, 

T T 

E L:(YtYt-d- LYtYt-1 0 
t=2 t=2 

T T 

L[J-Lt-1(1- J-Lt-1)(Ptl- Pw) + J-Lt-11-Lt]- LYtYt-1 0 
t=2 t=2 

g* (')'I) 0, (3.23) 

where g* (rl) = g( /1)- L,f=2 YtYt-1 and g( /1) = L,f=2 [J-Lt-1 (1- /-Lt-1 )(Pt1-Pw) + J-Lt-1/-Lt]· 

By using a Taylor's series expansion, it follows from (3.23) that the 11 parameter 

may be estimated by using the iterative equation 

(3.24) 

where 11 (r) denotes the moment estimate of 11 as a solution of (3.23) at the r-th 

interation , and [.]..y1(r)is the value of the expression in the square bracket evaluated at 

11 = 11(r). Note that the equation in (3.24) requires the computation of the derivative 

ag;(!1
)' which has the formula given by 

/1 

~ a J-Lt-1 2 a J-Lt-1 
L.JJ-Lt-1Pt1(1- Ptl) + Pt1-~-- 1-Lt-1Pt1(1- Ptl)- Pt1·2·J-Lt-1-~--
~ ~ ~ 

a J-Lt-1 2 a J-Lt-1 a J-Lt a J-Lt-1] 
J-Lt-1·0- Pw-~- + 1-Lt-1.0 + Pw·2·J-Lt-1-~- + J-Lt-1 ~ + J-Lt-~-

u')'1 U/1 U/1 U/1 

~ aJ-Lt-1 
L,..[J-Lt-1Pt1(1- Pt1)(1- /-Lt-d+ (Ptl- Pw)-~--
t=2 U/1 

a J-Lt-1 a J-Lt a J-Lt-1 
2(ptl - Pw)J-Lt-1-~- + ~J-Lt-1 + J-Lt-~-J 

U/1 U/1 U/1 

~ aJ-Lt-1 
L..,[J-Lt-1Pt1(1- Pt1)(1- J-Lt-d + -~-{(Pt1- Pw)-
t=2 U/1 

a J-Lt 
2.(ptl - Pw)J-Lt-1 + J-Lt} + ~J-Lt-d· 

U/1 

As mentioned before, the estimate of f3 obtained from (3.19) is used in (3.24) to 

obtain an improved estimate of ')'1. The improved estimate of 11 is then used in 
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(3.19) to obtain an improved estimate of (3. This cycle of iteration continues until 

convergence. We refer to this GQL and moments based combined approach as the 

Semi-GQL(SGQL)approach. In notation, the estimators for (3 and /I based on this 

SGQL approach will be denoted by {jSGQL = (/JsaqL, "tsaQL,I)'. 

3.2.3 Generalized Quasilikelihood Estimating Equation: A 

Conditional Approach 

In the last section we have discussed an unconditional quasilikelihood estimating equa­

tion approach, where it was necessary to compute the unconditional mean, variance 

and all lag covariances. Note that the computations for the unconditional covari­

ance structure was somewhat involved. To reduce the computational burden in this 

subsection we now use a simpler conditional mean and covariance structure based 

conditional GQL approach. For this purpose the conditional first and second order 

moments readily follow from the model (3.1)- (3.2). To be specific, we provide these 

conditional moments as follows. 

Conditional Mean: 

It follows from (3.1) that for t=1, the expected value of y1 is given by 

exp(x~ (3) 
E(Yi) = P10 = [1 + exp(xi (3)] = JL1 ' 

For convenience we write JLi = JLI under the conditional setup. 

(3.25) 

Next, it is clear from the model (3.2) that for t = 2, ... , T, the conditional mean of 

yt given Yt-l is given by 

E(rtiYt-l) P(yt = 1IYt-1) =PtYt-1 

exp(x~ (3 + /1 Yt-l) * 
.,----=--.:........::.._:.._____;_:_..::...:__:_:__,...,. - JL (say) . 
[1 + exp(x~ (3 + 11 Yt-1)] - t' 

(3.26) 

Conditional Variance: 

As the time series observations are binary, the conditional variance is given by 
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where J-l; are defined in (3.25) and (3.26). 

Conditional Covariance: 

Since we are considering a Lag1 model, it follow that covariance of U = 1t-111t-2 and 

V = ltllt-1 is zero. This is because, 

cov(U, V) E(U V)- J-L;J-l;_ 1 

E(rt-1rt llt-1rt-2) - J-l; J-l;-1 

E(rt-11rt-2)E(ltl1t-1, rt-2)- J-l;J-l;_ 1 . (3.27) 

Note that by model (3.2), 1t depends on Yt- 1 but not on Yt-2 . Consequently, 

(3.27) may be written as 

cov(U, V) 

* * * * 1-lt-1 1-lt - 1-lt-1 1-lt 

0. (3.28) 

Now writing J-l* = (J-Li, ... ,J-l;, ... ,J-Lr) and~*= diag[J-Li(1- J-Li), ... ,J-L;(1-

J-L;), ... , J-LT(1 - J-Lr)J we follow (3.20) and write the conditional GQL(CGQL) 

estimating equation for () = (/3, 11)' as 

(3.29) 

8 *' 
where the derivative matrix :() may be computed by exploiting the derivatives of 

J-Li, J-l; ( t = 2, . . . , T) with respect to j3 and 11. For the sake of computation, we 

provide the formulas for these derivatives as: 

OJ-Li = O. 
011 

oJ-L; -
~ - PtYt-l (1 - PtYt-l )Yt-1 t = 2, ... 'T, 
u11 

where PtYt-l = exp(x~ f3 + 11 Yt-1)/[1 + exp(x~ f3 + 11 Yt-1)]. 

Let OcaQL be the CGQL estimator of () obtained from (3.29). Similar to the 
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unconditional GQL approach, OcaQL may now be obtained by using the iterative 

equation 

OcaQL(r + 1) A /1 *-t /1 /1 *-t * 
[ ( 

a *' a * ) -t a * ] 
OcaQL(r) + ae ~ ae ae ~ (y- 11 ) . 

BcaQL(r) 

(3.30) 

where OcaQL(r) denotes the CGQL estimate of(} as a solution of (3.30) at the r-th 

interation, and [.]0caQL(r)is the value of the expression in the square bracket evaluated 

at 0 = OcaQL(r). 

3.2.4 A Simulation Study 

Recall that in Section 3.1 we examined the performance of the independent assump­

tion based ML and GQL approaches through a simulation study. Altogether four 

different designs were considered under each T = 100, 200 and 300. 

Note that as opposed to Section 3.1, in Section 3.2 we have considered ML, GQL, 

SGQL and CGQL approaches to estimate (3 and It parameters. Two versions of GQL 

approaches were considered. First, under the GQL approach only (3 was estimated 

by using known, It· In the second version, we have estimated all three parameters by 

using the GQL approach. These two versions will be referred to as GQL1 and GQL2 

approaches. 

In the present subsection, we conduct a simulation study with p =2, to examine 

the performances of the above five (ML,GQL1,GQL2,SGQL,and CGQL) approaches 

in estimating with p=2 covariates such that (3 = (/3t, /32)' as well as It, wherever 

applicable. As far as the design is concerned, we, for simplicity use the fourth de­

sign (D4 ) from section 3.1.3. Furthermore, for the size of the binary time series, we 

consider T = 200. The simulation results based on 1000 simulations are reported in 

Table 3.2 for three selected values of It= -1, 0, 1. 
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Table 3.2: Simulated mean (SM), simulated standard error (SSE) and simulated mean 
squared error (SMSE) of the ML, GQL1, GQL2, SGQL and CGQL estimates for all 
parameters with T = 200 /31 = /32 = 0.5; based on 1000 simulations, for the case when 
1'1 = -1, 0, 1 

Estimates 

1'1 Method Quantity Simulations /31 /32 i1 
-1 ML SM 1000 0.552 0.513 -1.089 

SSE 0.305 0.261 0.304 
SMSE 0.096 0.068 0.100 

GQL1 SM 1000 0.497 0.518 
SSE 0.233 0.255 

SMSE 0.054 0.065 
GQL2 SM 700 0.549 0.527 -1.073 

SSE 0.510 0.270 0.689 
SMSE 0.263 0.074 0.481 

SGQL SM 900 0.521 0.518 -1.063 
SSE 0.290 0.258 0.296 

SMSE 0.084 0.067 0.092 
CGQL SM 1000 0.552 0.513 -1.089 

SSE 0.305 0.261 0.304 
SMSE 0.096 0.068 0.100 

0 ML SM 1000 0.554 0.514 -0.049 
SE 0.326 0.258 0.272 

MSE 0.109 0.067 0.076 
GQL1 SM 1000 0.514 0.521 

SSE 0.246 0.250 
SMSE 0.061 0.063 

GQL2 SM 800 0.554 0.521 -0.042 
SSE 0.470 0.278 0.506 

SMSE 0.224 0.077 0.258 
SGQL SM 700 0.547 0.515 -0.046 

SSE 0.338 0.262 0.276 
SMSE 0.116 0.069 0.078 

CGQL SM 1000 0.554 0.514 -0.049 
SSE 0.326 0.258 0.272 

SMSE 0.109 0.067 0.076 
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(Table 3.2 Contd .... ) 

Estimates 

/'1 Method Quantity Simulations f3t !32 'it 
1 ML SM 1000 0.550 0.511 0.986 

SSE 0.402 0.281 0.292 
SMSE 0.164 0.079 0.085 

GQL1 SM 0.532 0.516 
SSE 0.298 0.258 

SMSE 0.090 0.067 
GQL2 SM 0.543 0.520 1.004 

SSE 0.547 0.307 0.497 
SMSE 0.301 0.095 0.247 

SGQL SM 0.579 0.500 0.973 
SSE 0.421 0.284 0.319 

SMSE 0.184 0.081 0.325 
CGQL SM 0.550 0.511 0.986 

SSE 0.402 0.281 0.292 
SMSE 0.164 0.079 0.085 

The results of Table 3.2 show that the CGQL approach gives the same estimates 

for all three parameters (3ll (32 and /'I as that of the ML approach. For /'I =1, none 

of the approaches encountered any convergence problems. However for /'I = -1, the 

GQL2 approach converged in 700 simulations and the SGQL approach converged in 

900 simulations. For /'I = 0, the GQL2 encountered convergence difficulties in 200 

simulations whereas SGQL converged in 700 simulations. The ML, GQL1(1'1 known) 

and CGQL had no convergence problems. 

Note that when all three parameters are estimated at simultaneously, the ML 

and CGQL methods appear to produce their estimates with smaller mean squared 

errors(MSE) under all three cases with /'I = -1, 0, and 1. The GQL1 performs better 

than these two (ML and CGQL) approaches in estimating (31 and /32 , but, it is not 

of much interest. This is because in practice /'I has to be estimated too. To be 

specific about the performances of the ML and CGQL approaches, for /'I = 1 case 

for example, they produce simulated MSE (SMSE) for ~1 , ~2 and )'1 as 0.164, 0.079 
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and 0.085 respectively, whereas GQL2 produces their estimates with SMSE as 0.301, 

0.095 and 0.247, and similarly SGQL approach produces their estimates with SMSE 

0.184, 0.081 and 0.325. Thus, the ML and CGQL approaches perform better than 

other competitive approaches in estimating all three parameters. 



Chapter 4 

Forecasting Binary Probability 

In the previous chapter we have discussed the estimation approaches for the three 

parameters involved in our proposed the non-linear dynamic model. We have exam­

ined the performance of estimation approaches through a simulation study. In order 

to examine the forecasting performance of the ML and/ or CGQL approach, in this 

chapter we consider forecasting inference for a Lag1 model only. Note that in the bi­

nary case, it is appropriate to forecast the probability of the occurrence of the future 

binary observation. Thus, we want to use the available data up to time t to forecast 

/1t+1 = P(Yt+l = 1). 

Recall from Chapter 2 that for t = 1, ... , T, J1t+l can be obtained by using the 

recurrence relationship 

f1t+1 = Pt+l,o + J1t(Pt+1,1 - Pt+t,o), (4.1) 

where /11 = exp(x'tf3)/[1 + exp(x~/3)], Pt+l,l = exp(x~+ 1 /3 + l't)/[1 + exp(x~+ 1 /3 +I'd] 

and Pt+l,O = exp(x~+ 1 /3)/[1 + exp(x~+ 1 /3)]. 
Now suppose that data up to time point T, i.e, y1, ... , Yt, ... , Yr as well 

as x 1, ... , Xt, ... , xr are available. Also suppose that the covariate XT+l is 

available. It then follows from the model (3.1) - (3.2) that one may forecast /1t+l by 

using E(rt+tiYt) which has the formula as 
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exp(x~+ 1 /3 + 'Y1Yt)/[1 + exp(x~+ 1 /3 + 'Y1Yt)] 

PJ,t+1, say. (4.2) 

We evaluate the performance of this forecasting function ( 4.2) through a simula­

tion study. For this purpose we consider, p = 2 with /31 = /32 = 0.5 and three values 

of ')'1 = -1, 0, 1. Further more, we consider T =200 and examine the performance of 

the forecasting function .P1,201 (4.2) to forecast p201 (4.1). As far as the design matrix 

is concerned, we consider the same design D4 fort= 1, ... , T = (200), and we chose 

X201 = (1, 1)'. 

Note that based on xr+1 = (1, 1)', and the values of /31 , /32 and ')'1 , we first com­

pute p201 which is reported in the second column of Table 4.1. We remark that for 

given values of /31 , /32 and ')'1 , these values of p201 are fixed as they do not depend on 

the response variable, rather they depend only on the covariate Xt+ 1. Thus, there is 

no simulation needed for this. 

We carry out a simulation study to compute the simulation average of the fore­

casting function p /,201· As far as the values of s1' s2 and 1'1 are concerned ' we obtain 

these estimates in a given simulation based on T = 200 observations, by using both 

ML (3.13) and CGQL (3.29) approach as explained in chapter 3. In each simulations, 

these estimates are then used to compute .P1,201 by using x201 . The simulation average 

along with their standard errors based on 1000 simulations are reported in the fourth 

column of Table 4.1. 
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Table 4.1: The value of J.L2o1(fixed) simulated average value of 'fJJ,201 based on the ML 
and/or CGQL approach with T = 200; /31 = /32 = 0.5; based on 1000 simulations, for 
the case when 11=-1,0,1. 

/1 J.l201 

-1 0.363 
0 0.500 
1 0.699 

Method 
ML/CGQL 
ML/CGQL 
ML/CGQL 

p 1,201 (SSE) 
0.354(0.157) 
0.484(0.140) 
0.670(0.168) 

Note that, as the ML and the CGQL approaches provide the same estimates for 

the parameters (see Table 3.2) of the model, they also provide the same forecasted 

value. The simulation average appears to be very close to the value of J.L201 in all 

three cases with 11 = -1, 0, 1, indicating that the forecasting function PJ,201 forecasts 

J.lt+1very well. For example, where 11 = -1, the simulated average forecast to be 0.354, 

while the true value of the counterpart probability is found to be 0.363. 



Chapter 5 

Estimation of the Model 

Parameters of Lag 2 Model: A 

Generalization of Lag 1 Model 

Recall from chapter 3 that the ML and the CGQL approaches were found to be the 

best as compared to other competitive approaches in estimating the parameters of 

the lag 1 binary time series model. Note that, even though the lag 1 model is more 

practical as compared to other higher order lag based models, there may be some 

situations where lag 2 model may be appropriate. 

In this chapter, we examine the performance of the ML and the CGQL approaches 

in estimating the parameters of a lag 2 based binary time series model. For conve­

nience, we write this model as follows: 

P(y1 = 1) 
exp(x~/3) 

[1 + exp(x~/3)] 
.\i. 

exp( x~/3 + 1'1 Y1) 

[1 + exp( x~/3 + 'YtYt)] 
P2y1 = .\;. 
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and 

P(yt = 1IYt-1Yt-2) 
exp( x~/3 + ''llYt-1 + 'Y2Yt-2) 

[1 + exp( x~/3 + 'Y1Yt-1 + 'Y2Yt-2)] 

PtYt-l Yt-2l (5.3) 

fort = 3, ... , T. 

It is of interest to estimate the regression parameter (3 and the dynamic depen­

dence parameter 'Y = ( 'Y1, 'Y2)'. For this purpose, we discuss the ML and the CGQL 

approaches for the estimation of all four parameters, as these approaches were found 

to be best as compared to other competitive approaches explained in chapter 3. 

We consider the time series Y1, ... , Yt> ... , Yr, along with Xt = (xn, ... , Xtj, ... , Xtp)' 

as a vector of p-dimensional covariates associated with Yt, as before, but the responses 

now are generated following the model (5.1) - (5.3). The likelihood as well as the 

CGQL estimating equations are developed in sections 5.1 and 5.2, respectively. 

5.1 Likelihood Estimating Equations for f3 and 1 

Note that for the lag 1 model, the likelihood function of (3, and 'Y1 was written in 

(2.36). We now extend the likelihood function (2.36) to the lag 2 model (5.1)- (5.3). 

To be specific, under (5.1)- (5.3) the likelihood function has the form given by 

P(y1)P(y2iY1)P(y3iY2, yi) · · · P(YtiYt-1, Yt-2) · · · P(YriYr-1, YT-2)· 

(5.4) 

By (5.3) the conditional probability P(YtiYt-1Yt-2) is given as 

with Pty1_ 1 y1_ 2 as in (5.3). Thus, we can re-write the likelihood function (5.4) as 

T 

(5.5) 

L(/3, 1'1, 1'2) = P
1C (1- P1)(1-yl)p~~l (1- P2y1)(1-y2

) IT pf~t-lYt-2 (1- PtYt-!Yt-2)(1-yt) 

t=3 
(5.6) 
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yielding the log likelihood function 

T 

L[Yt logptYt-IYt-2 + (1- Yt) log(l- PtYt-lYt-2)] (5.7) 
t=3 

with P1 = exp(x~,B)/[l + exp(x~,B)], P2y1 = exp(x~,B + /'1Y1)/[1 + exp(x~,B + /'1Y1)] 

and PtYt-IYt-2 = exp( x~,B + /'1Yt-1 + /'2Yt-2)/[1 + exp( x~,B + /'1Yt-1 + /'2Yt-2)] 

fort = 3, ... , T. 

Now by similar calculations as in (3.11) the first derivative of the log likelihood 

function with respect to ,B is given by 

T a log L(,B, !'1, /'2) 
a,e (Y1- P1)x1 + (Y2- P2y1)x2 + L [(Yt- PtYt-lYt-2)xt] · 

t=3 

Similarly the first derivative with respect to !'1 is given by 

a In L(,B, !'1, /'2) ~ [ J a = (Y2- P2y1 )Y1 + ~ (Yt- PtYt-lYt-2)Yt-1 , 
/'1 t=3 

whereas the first derivative with respect to !'2 has the form 

a In L(,B, !'1, !'2) ~ [ J a = ~ (Yt - PtYt-lYt-2 )Yt-2 · 
/'2 t=3 

Next by combining (5.8) to (5.10), we solve the likelihood equation 

for 0 = (,B, /'1, /'2)'. 

at(Oiy) 
ao 

a log L(,B, 1'1, !'2) 
a,B 

a log L(,B, 1'1) 

a/'1 
a log L(,B, 1'1) 

=0 

a/'2 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

Similar to section 3.2.1, by using a Taylor's series expansion, it follows from (5.11) 

that the 0 parameter may be estimated by using the iterative equation 

{) ( l) = {) ( ) [[a2
l(Oiy)]_1 8l(Oiy)l 

M L r + M L r + aoaO' ao . ' 
OML(r) 

(5.12) 
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where BML(r) denotes the maximum likelihood estimate of() as a solution of (5.11) 

at the r-th iteration , and [.]0ML(r)is the value of the expression in the square bracket 

evaluated at () = BML(r). Note that the equation in (5.12) requires the computation 

of the second derivative matrix [ 
8~~~1~)] which is of order (p + 2) x (p + 2). The 

components of this matrix may be computed by using the following formulas: 

82 L(/3, 'Y1, 'Y2) 
8(38(3' 

82 L(/3, 'Yll 'Y2) 

8f38'Yl 

82 L(/3, 'Y1, 'Y2) 

8f38'Y2 

82 L(/3, 'Y1, 'Y2) 

8'Y18'Y~ 

82 L(/3, 'Y1, 'Y2) 

8'Y18'Y; 
and 

82 L(/3, 'Y1, 'Y2) 

8'Y28'Y; 

T 

LPtYt-!Yt-2(1- PtYt-!Yt-2)xtx:], (5.13) 
t=3 

- [P2y! (1- P2y!)X2Yl + tPtYt-!Yt-2(1- PtYt-!Yt-2)XtYt-l] ' 
t=3 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

5.2 Generalized Quasilikelihood Estimating Equa­

tion for (3 and 1: A Conditional Approach 

The conditional GQL ( CGQL) approach is much easier than the ML approach and it 

performs as well as the ML approach in estimating the parameters. In this section, 

we discuss the lag 2 model parameter estimation using a CGQL approach. Similar 

to section 3.2.3 we use the conditional mean and conditional covariance structure 
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to construct the CGQL estimating equations. The conditional mean, variance and 

covariance may be simplified as follows: 

Conditional Mean 

From model (5.1) for t=1, the expected value of y1 is given by, 

exp(x~(3) 
E(Y1) = PlO = [1 + exp(x~(3)] = /-l1, (5.19) 

which for convenience we write as jj1 = Mi· Next, the conditional expectation of y2 

given y1 is written as 

exp(x~(3+~1Y1) * 
[1 + exp(x~(3 + ~1 yl)] = M2 = M2 · 

(5.20) 

Similarly, fort= 3, ... , T, it follows from the model (5.3) that the conditional mean 

of Yt given Yt-1 and Yt-2 has the form, 

exp(x~ (3 + ~1 Yt-1 + ~2Yt-2) * ( ) 
( ' ) = 1-lt' say . 

1 + exp Xt (3 + ~1 Yt-1 + ~2Yt-2 
(5.21) 

Conditional Variance 

As the time series observations are binary, the conditional variance is given by, 

(5.22) 

where M; are define in (5.19) - (5.21). 

Conditional Covariance 

All conditional covariances are zero. This may be shown as follows. Suppose u = 

{Yt-11Yt-2,Yt-3} and v = {Yt!Yt-1,Yt-2}. Then, the covariance between u and v can 

be written as 

cov(U, V) E(UV) - M;J-L;_ 1 

E(Yt-1 YtlYt-1 1't-21't-3) - 1-l; M;-1 

E(Yt-11Yt-2, Yt-3)E(Yt1Yt-1, Yt-2, Yt-3)- M;M;-1. (5.23) 
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Note that it follows from (5.21) that Yt depends on Yt-I and Yt-2 , but not on Yt- 3 • 

Consequently, (5.23) may be written as, 

cov(U, V) 

* * * * Pt Pt-l - Pt Pt-l 

0. (5.24) 

CGQL Estimating Equation: 

Now writing p* =(pi, ... ,p;, ... ,/4) and E* = diag[pi(1- Pi), ... ,p;(l­

p;), ... , p:Z,(1-p:Z,)], we may write the conditional GQL(CGQL) estimating equation 

for()= (f3,"fi,"f2)' as 

(5.25) 

a *' 
where the derivative matrix :() may be computed by exploiting the derivatives of 

Pi, p;, p; (t = 3, ... ,T) with respect to f3 and 'Y = ('Y1,"(2)'. We provide the 

formulas for these derivatives as: 

8pi 
8(3 
8p2 
8(3 
ap; 
8(3 
ap; 
a'Y1 
ap; 
a'Y2 

8pi - 0 d 8pi - 0 - an - . 
a'Y1 a'Y2 
{)11

2
* {)11* 

,_., (1 ) and _,..,_2 = 0. 
{)'Yl = P2y1 - P2y1 Y1 a'Y2 

where Pty1_ 1 y1_ 2 = exp(x~ f3 + 'Y1 Yt-1 + 'Y2Yt-2)/[1 + exp(x~ f3 + 'Y1 Yt-1 + 'Y2Yt-2)]. 

Let ecGQL be the CGQL estimator of () obtained from (5.25). Similar to the 

CGQL estimating equating written in (3.30), {)CGQL may now be obtained for this 

larger model by using the iterative equation 

eccQL(r + 1) = {)CGQL(r) + [(a;;' E'-1 ~n -1 

i:o' E'-1(y- I'')] A ' 

OcaQL(r) 

(5.26) 
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where OcaQL(r) denotes the CGQL estimate of() as a solution of (5.25) at the r-th 

interation, and [.]0ccQL(r)is the value of the expression in the square bracket evaluated 

at () = BcaQL(r). Note that the computation of the CGQL iterative equation (5.26) is 

simpler than that of the ML equation (5.12). This is because unlike the ML approach, 

the CGQL estimating equation is only required to construct the conditional mean 

vector and conditional covariance matrix which is of diagonal form. 

5.3 A Simulation Study 

In this section we conduct a simulation study to examine the performance of the 

parameters of the lag 2 model. We use the same design matrix D4 from section 3.2.4. 

In the design matrix the number of covariates is two, i.e f3 = (f3b /32)'. Further, we 

consider T=200 for the size of the binary time series. The results based on 1000 

simulations are reported in Table 5.1 for three values of ')'1 = ')'2 = -1 , ')'1 = ')'2 = 0 

and 1'1 = ')'2 = 1. 

The results of Table 5.1 show that the CGQL and ML approaches gives the same 

estimates for all four parameters /31,/32 , ')'1 and ')'2 . Note that the approaches produces 

good estimates for all parameters except /31 . For example, when ')'1 = -1 and ')'2 

= -1 , the simulated mean (SM) of the estimates of /31 ,/32 , ')'1 , and')'2 are found to 

be /31 =0.572, /32 = 0.496 "91 = -1.091 and 12= -1.086, whereas the true f3 is given 

as f3 = (0.5, 0.5)'. However, the ML and CGQL overestimate /31 in all three cases. 

However, the approach overall perform well in estimating the parameters. 
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Table 5.1: Simulated mean (SM), and simulated standard error (SSE) and simulated 
mean squared error (SMSE) of the ML and CGQL estimates of the regression and 
the correlation parameters with T = 200; (31 = (32 = 0.5; based on 1000 simulations, 
for the case when 'Yl = -1, 0, 1 and "(2 = -1, 0, 1. 

Estimates 

'Y1 'Y2 Method Quantity /31 (32 i'1 i'2 
-1 -1 ML/CGQL SM 0.572 0.500 -1.091 -1.086 

SSE 0.348 0.269 0.319 0.332 
SMSE 0.126 0.0724 0.102 0.110 

0 0 ML/CGQL SM 0.582 0.509 -0.040 -0.043 
SSE 0.366 0.265 0.287 0.281 
SMSE 0.133 0.070 0.084 0.079 

1 1 ML/CGQL SM 0.672 0.453 1.022 0.956 
SSE 0.788 0.373 0.436 0.430 
SMSE 0.621 0.139 0.190 0.186 



Chapter 6 

Concluding Remarks 

As opposed to the Gaussian (Keenan(1982)) and uniform (Qaqish (2003)) latent pro­

cess based binary time series models, in this thesis we have considered a logistic latent 

process based non-linear dynamic binary time series model (Amemiya (1985)). This 

latter model has advantages over the other models because of its correlation structure 

that allows correlations to have full ranges. 

With regard to the estimation of the parameters of the non-linear dynamic binary 

time series model, we first examined the effect of ignoring correlations in estimating 

the regression parameters. It was found that ignoring correlations has detrimental 

effects on the regression parameter estimation. To estimate the regression as well as 

the dynamic dependence parameters, we have used the ML and the GQL approaches 

and found that the conditional GQL ( CGQL) approach performs as good as the ML 

approach in estimating these parameters. Also, the CGQL approach appears to be 

simpler as compared to the other approaches. 

We have also considered the forecasting problem. It was found that the non-linear 

conditional probability function works quite well in forecasting a future response prob­

ability. 

This work should be useful to the researchers interested in analysing discrete time 

series data. Note that in some situations the binary time series may be contaminated 

by certain outliers. One may attempt to use robust estimation approach to tackle 
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such outlier cases, which is however beyond the scope of the present thesis. 
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