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ABSTRACT 
This study addresses the origin of methane on Mars. A possible source of methane 

on Mars has been attributed to serpentinization. Active serpentinization is occurring in 

the subsurface at The Tablelands Ophiolite, in Gros Mome National Park, Newfoundland. 

Active serpentinization is evidenced by the highly reducing (Eh~ -700m V), ultra-basic 

(pH 10-12) groundwater springs containing dissolved methane and other lower molecular 

weight hydrocarbon gases, and the presence of travertine deposits. 

The source of methane in the springs was determined to be non-microbial and 

attributed to either thermogenic or possible abiogenic synthesis. Despite this finding, the 

ultra-basic springs are an extreme environment for an extant microbial community. 

Phospholipid fatty acid (PLF A) analysis determined an abundance of gram-negative 

bacteria as well as the presence algae and fungal biomarkers; and carbon isotopic analysis 

of PLF A suggests both heterotrophic and autotrophic metabolisms. 
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Chapter 1: Introduction and Overview 

1.1 CONTEXT AND OBJECTIVES 

Abiogenic hydrocarbons (produced geologically by the reduction of oxidized 

fonns of carbon) have been hypothesized to be possible precursor compounds from which 

life originated. Apart from being geologically synthesized, hydrocarbons can also form 

through microbial processes or by thermally induced decomposition of once living 

organic matter; both types of hydrocarbons are classified as biogenic (Schoell, 1988). The 

potential for the production of hydrocarbons not associated with biological processes has 

far reaching implications to the study of past and present life on Earth, and potentially life 

on other planets. Despite the intense focus on the discovery of abiogenic hydrocarbons in 

natural settings, only a handful of sites have reported abiogenic organic synthesis on 

Earth (Barnes et a!. , 1978; Neal and Stanger, 1983; Abrajano et a!., 1988; Sherwood 

Lollar et a!., 1993; Kelley and Frueh-Green, 1999; Sherwood Lollar et a!. , 2002; 

Proskurowski et a!. , 2008; Etiope et a!., 2011b). These sites are considered to be 

important analogues for organic synthesis on early Earth and potentially other planets, 

such as Mars (Schulte eta!., 2006). Of these studied sites, there has also been an emphasis 

on the geochemistry rather than the microbiology to determine how hydrocarbons are 

formed. Furthermore, the extent of abiogenic hydrocarbon production in natural settings 

has yet to be defmed. 

Perhaps the strongest evidence for abiogenic organic synthesis in natural settings 

IS associated with the aqueous alteration of the mineral olivine in ultramafic rocks 

(originating from the Earth's mantle, e.g., peridotite) producing an abundance of 
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hydrogen gas (H2), through a reaction referred to as "serpentinization". Serpentinization 

is highly exothermic and can produce high amounts of heat energy. The reaction of 

ultramafic rocks (olivine + pyroxene) with water can generally be described by the 

following half reactions (Reactions 1 a, 1 b and 1 c): 

Fayalite +water -7 magnetite + aqueous silica+ hydrogen 

J Fe2Si04 + 2H20 -7 2Fe304 + JSi02 + 2H2 

Forsterite +aqueous silica -7 serpentine 

JMg3Si204+ Si02 + 4H20 -7 2Mg3Sb05(0H)4 

Forsterite + water -7 serpentine+ bructite 

2Mg3Sb04+ JH20 -7 Mg3Sh0s(OH)4 + Mg(OH)2 

(I a] 

(lb] 

[lc] 

In the first half reaction, the Fe-endmember (fayalite) in olivine reacts with water 

to produce magnetite, aqueous silica and hydrogen gas. In the second half reaction the 

Mg-endmember (forsterite) in olivine reacts with aqueous silica to produce serpentine. 

The third reaction describes forsterite reacting with water only to produce serpentine and 

bructite. The production of bructite contributes hydroxide ions resulting in high pH fluids 

(Janecky and Seyfried, 1986). In general., the mineral alteration during serpentinization 

generates an extreme environment containing high concentrations of H2 gas, and fluids 

with high pH. 

The production of H2 is important in that it creates highly reducing conditions 

(low Eh), which are favourable for synthesizing abiogenic methane (C~) (Horita and 

Berndt, 1999; Foustoukos and Seyfried, 2004; McCollom and Seewald, 2006; Fu et al., 

2007; Taran et al. , 2007; McCollom et al. , 20 I O).Under reducing conditions, hydrogen 

can react with dissolved carbon oxides to produce CH4 (Reactions 2 and 3). 
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C02 + 4 H2 ~ C~ +2H20 

CO + 3 H2 ~ C~ + H20 

[2] 

[3] 

Moreover, it is widely suggested that higher molecular weight hydrocarbons (e.g., 

ethane, propane, butane) can be further synthesized from methane by the reduction of 

C02 with H2 in the presence of water and catalyst via a Fischer-Tropsch Type (FTT) 

reaction (Horita and Berndt, 1999; McCollom and Seewald, 2006; Fu et al., 2007). 

The production of H2 is also important in that it is very energy rich and can serve 

as an electron donor to carry out metabolic processes by chemolithoautotrophic 

microorganisms including methanogenesis (i.e., microbial formation of C~). Therefore, 

understanding the microbial processes that may also be occurring at sites of 

serpentinization can help in the understanding of methane production pathways as well as 

carbon cycling within these sites and possibly in the deep subsurface where 

serpentinization occurs. 

Although H2 is very energy rich for microbes, not every microorganism can 

survive in high pH and reducing conditions in these extreme environments at sites of 

serpentinization. The microbial life that may exist in the extreme environment created by 

serpentinization could be supported by the availability of different carbon substrates in 

the organic and inorganic carbon pools. As a result, different sources of carbon available 

may support different autotrophic and heterotrophic metabolisms. Identifying which 

microbes can survive in these extreme environments and how they harness their energy 

for growth could give some insight into how microbes may also be contributing to cycling 

of methane, and potentially higher molecular weight hydrocarbons within sites of 

serpentinization. 
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Apart from abiogenic and microbial synthesis, hydrocarbons can form by the 

thermal decomposition of sedimentary organic matter (thermogenic hydrocarbons). 

Gaseous hydrocarbons produced through the thermal alteration of sedimentary organic 

matter underlying an ophiolite complex may migrate to the surface through the highly 

fractured weathered ultramafics. 

Determining the source of hydrocarbon production at serpentinization sites can be 

challenging. Currently both isotope and compositional analysis of gases produced have 

been used to identify the carbon source and thus subsequent reaction pathways 

responsible for hydrocarbon synthesis (Kelley et al., 2005; Etiope et al., 2011 b). 

However, in natural settings both biogenic and abiogenic processes may be contributing 

to hydrocarbon production (Sherwood Lollar et al., 2002; Proskurowski et al. , 2008; 

Etiope et al., 2011 a). The second Chapter of this thesis examines the geochemistry of the 

serpentinization springs found in the Tablelands and uses both isotopic and compositional 

analysis to determine the source of hydrocarbons within the fluids. The objectives of 

Chapter Two were to identify and characterize the ultra-basic springs at a site of 

serpentinization in the Tablelands Ophiolite to place in context with other sites of 

serpentinization; use composition and stable isotope analysis of the hydrocarbons (i.e., 

CH4, ethane, propane, butane, pentane, and hexane) in the ultra-basic springs to determine 

the mechanisms responsible for their synthesis (microbial., thermogenic, or abiogenic); 

and assess the application of the Tablelands as an analogue site to determine how to 

source CH4 detected in areas of serpentinization on Mars. 

Although geochemical analysis can be useful to distinguish between different 

hydrocarbon production mechanisms (abiogenic, thermogenic, microbial), there is little 
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information on the microbial communities at these sites. If serpentinization reactions were 

more prevalent on early Earth, and could have or could potentially be occurring on Mars, 

understanding how the microbial community thrives in these present-day extreme 

environments could help in our interpretation of past or present life on Earth and other 

planets. Chapter 3 of this thesis focuses on identifying the microbial community and their 

possible metabolic pathways that allow the community to thrive in the highly reducing 

ultra-basic fluids. The objectives of Chapter Three were to identify the microbial 

community that is thriving in the ultra-basic fluids and community structure using life 

detection instrumentation and compositional analysis of the biomass and phospholipid 

fatty acids; and to identify the possible carbon source (s) and metabolic pathways used by 

the microbial community to gain a better understanding of how these microorganisms can 

survive in the extreme ultra-basic springs. 

1.2BACKGROUND 

1.2.1 Sites of Serpentinization and The Tablelands, Gros Morne National Park 

Sites of serpentinization were more prevalent on Achaean Earth during the 

evolution of chemolithotrophic bacteria, as a result of increased geothermal heat flow; 

abundance of ultramafic rocks, and high tectonic activity exposing ultramafic rocks to a 

highly reduced atmosphere (Sleep and Zahnle, 2001; Sleep et al., 2004). Today, 

ultramafic rocks undergoing serpentinization can be found in peridotite-hosted deep-sea 

hydrothermal vents (Charlou et al., 2002; Kelley et al., 2005), and in terrestrial sites 

where the oceanic crust has been tectonically emplaced on the continent as an ophiolite 
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(Barnes et al., 1967; Neal and Stanger, 1983; Abrajano et al., 1988; Fritz et al., 1992; 

Hosgormez, 2006). 

Deep-sea hydrothermal vents where serpentinization may be occurnng are 

difficult to study due to their location. Alternatively, continental ophiolites provide a 

more accessible opportunity to study in-situ active serpentinization and potentially 

abiogenic hydrocarbon production. In addition, these sites may provide rare ecosystems 

that support chemolithoautotrophic life in freshwater. The Tablelands at Gros Morne 

National Park in Newfoundland is one such site, which is undergoing active 

serpentinization in the subsurface, as evidenced by serpentinized ultra-mafic rocks and 

ultra-basic springs at the surface. 

The rocks of the Tablelands are predominantly peridotites and are components of 

the ancient sea floor. Approximately 500 million years ago the ancient Iapetus Ocean 

began to close due to tectonic activity. During this process, rocks from the mantle (i.e., 

peridotites) were emplaced on the continental crust currently known as Western 

Newfoundland. Following the Wisconsinan glaciation (- 25,000 to 10000 years ago), 

fresh unaltered rocks in the Tablelands were exposed to groundwater, which provided the 

starting materials for serpentinization (Jenness, 1960; Stevens, 1988). 

Today, active sites of serpentinization in the Tablelands are evidenced by ultra

basic reducing groundwater discharging along the banks of the creeks. Groundwater 

passing through these rocks has formed springs, which are highly reducing (Eh up to -700 

mY) and highly alkaline (pH 10-12). Travertine deposits, which are formed by the 

precipitation of carbonate minerals from solution at high pH conditions (pH> 1 0) can be 

found in areas surrounding the ultra-basic reducing groundwater discharge locations. 
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Carbonate deposits have also been found in other continental locations where active 

serpentinization is occurring (Barnes and O'Neil, 1971; O'Neil and Barnes, 1971; Clark et 

al., 1992), and on Mars where serpentinization is thought to have occurred (Ehlmann et 

al., 2010) 

1.2.2 Mechanisms of Organic Synthesis (Biogenic and Abiogenic) 

The source of hydrocarbon gases in the geological environment can be classified 

into three subcategories: "microbial", "thermogenic", and "abiogenic" (Schoell, 1988). 

Microbial hydrocarbons are formed through biological activity as the result of metabolic 

and biosynthetic processes (e.g., methanogenesis, ethanogenesis, and propanogenesis). 

Thermogenic hydrocarbons are formed by thermally induced decomposition of once 

living organic matter (i.e., hydrothermal alteration of organic-rich sediments, "cracking" 

of kerogen; (Hunt, 1996). It is important to note that the production of both microbial and 

thermogenic hydrocarbons requires the presence of active or reworked biological material 

and thus the ultimate source of carbon is considered "biogenic" (Schoell, 1988). 

Alternatively, abiogenic hydrocarbons are formed independent of biological activity (e.g., 

Fisher- Tropsch-Type reaction). 

The primary difficulty in studying abiogenic hydrocarbon synthesis in geological 

settings is that hydrocarbons in nature can be produced by more than one mechanism and 

are typically dominated by thermogenic and microbial products in near-surface 

environments (Whiticar, 1999). Furthermore, the geochemical signatures of abiogenic 

gaseous hydrocarbons are still being developed, and therefore it is difficult to distinguish 

them from microbial and thermogenic hydrocarbon sources (Proskurowski et al. , 2008). 
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Therefore, both biogenic and abiogenic sources must be considered until multiple lines of 

evidence can distinguish an abiogenic source. 

1.2.3 Distinguishing between Abiogenic and Biogenic Sources 

Currently there is no single measurement or analysis that can independently 

identify an abiogenic or biogenic source. However, there are multiple lines of evidence, 

which when combined, can provide a strong argument for the abiogenic origin of 

hydrocarbons in the environment. One such line of evidence for determining the origin of 

methane involves the use of carbon (13C/12C) isotopes values of the gases being produced 

in combination with Bernard parameters (CRJ~Cc2+) (Whiticar, 1999). Isotope data are 

reported in the standard b-notation (e.g., o13C, oD) and expressed in permil, %o units 

(Equation 1): 

o= [ (Rsample - R standard)/(Rstandard)] X 1000 (%o) Eq. 1 

where R is the ratio of 13CPC or D/H relative to the PDB and SMOW standards 

respectively. Different isotopic fractionation factors (a) are associated with different 

mechanisms of methane production. Isotopic fractionation factors can be determined 

using Equation 2: 

ax.v = (1000 +bx)/(1000 +bv) Eq. 2. 

Where x and y represent the product and reactant respectively. Fractionation 

factors can be used to determine isotopic enrichment factors (E) using Equation 3: 

E = lOOO(a-1) Eq.3 

Large isotopic fractionations between C02 and CI--4 (£c02.cH4>20%o) are typically 

observed for microbial autotrophic methane, where as smaller fractionations (£c02. 
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cH4<20%o) are observed for thermogenic methane (Whiticar, 1999). Likewise, Bernard 

parameters have been used to differentiate microbial (CHJLCc2+ > 1000) from 

thermogenic hydrocarbons (CHJLCc2+ = 0 to 50) (Hunt, 1996). Distinguishing abiogenic 

from thermogenic methane is more difficult, as the abiogenic field has not yet been 

defmed on a Bernard plot. Attempts to resolve this issue include using hydrogen isotopes 

in combination with stable carbon isotopes showing distinct isotopic patterns of low 

molecular weight hydrocarbons (Sherwood Lollar et al., 2002; Sherwood Lollar et al., 

2006; Sherwood Lollar et al., 2008). In Chapter 2, isotopic analysis of methane and other 

hydrocarbon gases in combination with Bernard parameters were used to distinguish 

between microbial and non-microbial (i.e., thermogenic and/or abiogenic) methane. 

1.2.4 Possible Microbial Carbon Cycling Pathways. at Sites of Serpentinization 

Serpentinization produces H2 gas that provides the reducing conditions favourable 

for chemolithotrophic life. Active sites of serpentinization can be found all over the world 

and in different locations on Earth;, however, the microbial communities that exist in 

these locations are poorly understood (Schrenk et al., 2004; Biddle et al., 2006; Brazelton 

et al., 2006). Furthermore, the highly reducing, ultra-basic fluids at sites of 

serpentinization provide both unique and extreme conditions for the thriving microbial 

community that exists. 

Both phylogenie and metagenomic studies have been done at two sites of 

serpentinization, the Lost City Hydrothermal Vent Field (LCHF) situated at the Mid-

Atlantic Ridge, and recently at the Tablelands Ophiolite in order to investigate the 

microbial diversity and the possible microbial metabolisms that exists in these serpentine-
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hosted environments (Schrenk et al., 2004; Kelley et al., 2005; Brazelton and Baross, 

2008; Brazelton et al., 2012). At LCHF, the production of methane and low-molecular 

weight hydrocarbons was determined to be abiogenic (Proskurowski et al., 2008). 

However it is not understood if these abiogenic organic compounds support microbial 

communities that exist at LCHF. Furthermore, at both LCHF and the Tablelands, 

metagenomic evidence yields the potential for both H2 oxidizing and producing 

microbes(Brazelton et al., 2012). Although metagenomic and phylogenie evidence 

provides a great deal of information about the species, additional use of biochemical 

markers such as lipids has shown to provide complimentary quantitative information 

about the microbial community structure and its interaction with the environment without 

the need of culturing and isolation (White et al., 1996). 

Phospholipid fatty acids (PLF A) are integral components of the cell membrane, 

which can be used to indicate the microbial community present. Additionally, PLF A can 

be analyzed for their natural abundance 13C signatures directly related to the 13C signature 

of the source of carbon used by bacteria in metabolic processes (Boschker et al., 1998). In 

Chapter 3, PLF A extracted from the serpentinization springs in the Tablelands Ophiolite 

were analyzed to determine changes in the community structure and to identify 

biomarkers to identify microbial groups that exist in the springs. Additionally, isotopic 

analysis of the biomass and individual lipids was used to identify possible metabolic 

pathways, in comparison to past microbial studies at the Tablelands. 
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1.3 CONTRIBUTIONS TO FIELD OF SCIENCE 

Sites of present-day serpentinization, such as the Tablelands in Gros Morne are 

considered important analogs for early ecosystems both on Earths and other planets such 

as Mars. On Earth, and potentially other planets, the production and availability of H2 is 

the fundamental starting point leading to the synthesis of organic compounds. Methane 

and higher molecular weight hydrocarbons can be produced when H2 reacts with 

dissolved forms of oxidized carbon (i.e., C02 and CO; (McCollom and Seewald, 2006) 

and/or likewise be used as a source of energy by chemolithoautotrophic organisms to 

carry out metabolic functions. 

Before the evolution of photosynthesis, organisms relied on chemical forms of 

metabolic energy (chemosynthesis). Thus, investigating modern earth environments such 

as active sites of serpentinization that may support chemolithothoautotrophs can help 

increase our understanding of life on early Earth. 

Since the detection of methane in the Martian atmosphere and polar ice caps, there 

has been an increasing interest in understanding the mechanisms for methane production 

on Mars. Likewise, the crust and upper mantle of Mars are composed of ultramafic rocks 

similar to those of the ocean crust on Earth (Boston et al., 1992; Formisano et al., 2004; 

Ehlmann et al., 2008; Ehlmann et al. , 2010) Thus, it is possible that geological processes 

produced methane on Mars now or many years ago. 

The production of hydrocarbons via abiogenic and biogenic mechanisms have far 

reaching implications to fields of Earth and Planetary Sciences and the study of early life 

and life in extreme environments. An overall assessment of carbon cycling (abiogenic, 

thermogenic, and biogenic) at the Tablelands is required in order to distinguish methane 
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of abiogenic origin in addition to further understanding natural processes through which it 

is produced. Likewise, an assessment of the microbial community and its importance in 

carbon cycling within these sites can be useful to better understand the processes, which 

are responsible for past and present life on Earth, life in the deep subsurface and 

potentially life on other planetary bodies. 

1.4 CO-AUTHORSHIP STATEMENT 

Dr Penny Morrill described the initial concept of this project in a grant proposal 
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Chapter 2: Geochemistry of a Continental Site of Serpentinization in the 
Tablelands Ophiolite, Gros Morne National Park: a Mars Analogue 

2.1 ABSTRACT 

The presence of aqueous altered olivine-rich rocks along with carbonate on Mars 

suggest that serpentinization may have occurred in the past and may be occurring 

presently, and possibly contributing methane (C~) to the Martian atmosphere. 

Serpentinization, the hydration of olivine in ultramafic rocks, yields ultra-basic fluids (pH 

:2: 10) with unique chemistry (i.e., Ca2+-oH· waters) and hydrogen gas, which can support 

the abiogenic production of hydrocarbons (i.e., Fisher-Tropsch Type synthesis) and 

subsurface chemosynthetic metabolisms. Mars analogue sites of present-day 

serpentinization can be used to determine what geochemical measurements are required 

for determining the source of methane at sites of serpentinization on Earth and possibly 

on Mars. The Tablelands Ophiolite is a continental site of present-day serpentinization 

and a Mars analogue due to the presence of altered olivine-rich ultramafic rocks with both 

carbonate and serpentine signatures. This study describes the geochemical indicators of 

present-day serpentinization as evidenced by meteoric ultra-basic reducing groundwater 

discharging from ultramafic rocks, and travertine and calcium carbonate sediment, which 

form at the discharge points of the springs. Dissolved hydrogen concentrations (0.06 to 

1.20mg/L) and methane (0.04 to 0.30mg/L) with 813CcH4 values (-28.5 to -15.6%o) were 

measured in the spring fluids. Molecular and isotopic analyses of CH4 , ethane, propane, 

butane, pentane and hexane suggest a non-microbial source of methane, and attribute the 
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origin of methane and higher hydrocarbon gases to either thermogenic or abiogenic 

pathways. 

2.2 INTRODUCTION 

The detection of methane (Cl-4) and its short lifetime in the Martian atmosphere 

(Formisano et al., 2004; Krasnopolsky et al., 2004; Mumma et al., 2009), has led to much 

discussion regarding the source of methane on Mars. A possible source of methane has 

been attributed to serpentinization, a fluid-rock reaction common in ultramafic rocks that 

has been hypothesized to occur on Mars (Boston et al., 1992; Formisano et al. , 2004; 

Atreya et al. , 2007; Oze and Sharma, 2007). This reaction produces hydrogen (H2) and 

the reducing conditions necessary for abiogenic hydrocarbon synthesis through the 

hydration of ultramafic rock, while also producing conditions for the production of 

methane through chemolithoautotrophic pathways. On Earth, serpentinization has been 

observed in ultramafic rocks on the sea floor at deep sea hydrothermal vents such as the 

Lost City hydrothermal field (Kelley et al., 2005), and on continents in ophiolites (Barnes 

et al., 1978; Abrajano et al., 1990; Blanket al., 2009; Etiope et al., 2011b). Ophiolites are 

sections of the ocean crust and upper mantle that have been obducted onto continental 

crust that can yield ground waters with unique chemistry that are ultra-basic (pH> I 0), 

Mg2+-0H, and/or Ca2+-0H rich (Barnes et al., 1967). The Tablelands Ophiolite (also 

referred to in literature as the Bay of Islands Ophiolite) in Gros Mome National Park, 

Newfoundland, Canada is a continental site exhibiting present-day serpentinization. 

Olivine-rich ultramafic rocks, prerequisites for serpentinization, have been found on Mars 

(Hoefen et al., 2003; Hamilton and Christensen, 2005; Quesnel et al., 2009; Ehlmann et 
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al., 201 0), and also occur at the Tablelands massif, thus making the Tablelands Ophiolite 

an important terrestrial analogue for Mars. 

During serpentinization, ultramafic rocks composed of mostly olivine 

[(Mg,Fe)2Si04] and pyroxene [orthopyroxene (Mg,Fe)-Si03 and clinopyroxenes 

Ca(Mg,Fe)Si20 6] undergo hydration producing serpentine. The reaction of ultramafic 

rocks with water is often presented as the following idealized reaction (Equation 1): 

(Mg,Fe)2Si04 + H20-? (Mg, Fe)3Si20s(OH)4 + (Mg,Fe)OH2 + Fe304 + H2(g) [I] 

Olivine Serpentine Bructite Magnetite 

where the Fe-endmember (fayalite) in olivine reacts with water to produce 

magnetite and hydrogen gas, and the Mg-endmember (forsterite) undergoes hydration 

producing serpentine and bructite. The hydration of olivine (i.e., production of bructite) 

and clinopyroxenes also releases OH- and Ca2
+ ions resulting in highly alkaline fluids, 

which can emerge from fractures in the ultramafic rocks (Coleman and Keith, 1971 ). 

Under basic conditions and in the presence of inorganic carbon, Ca2
+ and Mg2

+ form 

calcium and magnesium carbonate respectively (Equations 2, 3): 

Ca2
+ + C03 2- -? CaC03 (s) 

calcium carbonate 

Mg2
+ + 2 HC03- -? MgC03(s) + C02 + H20 

magnesium carbonate 

[2] 

(3] 

The production of hydrogen gas results m conditions capable of reducing 

dissolved inorganic carbon species and forming abiogenic hydrocarbons (Sleep et al., 

2004). In the following generalized reaction for abiogenic hydrocarbon formation (i.e., 
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the Fisher Tropsch Type synthesis; (Schulz, 1999), H2 gas reduces inorganic carbon to 

form methane and other higher molecular weight hydrocarbon gases (Equation 4): 

C02 + H2 ~ CH4 + C2H6 + C3Hs + CnHn+2 ... + H20 [4] 

In addition to abiogenic hydrocarbons, the ultra-basic reducing groundwaters 

associated with active serpentinization sites are suitable niches for microorganisms that 

can tolerate high pH environments with anaerobic microbial metabolisms including those 

of hydrogen-utilizing microbes, such as homoacetogens and methanogens (Kelley et al., 

2005; Brazelton et al., 2006; Schulte et al., 2006). Therefore, sites of serpentinization may 

support the production of either abiogenic hydrocarbons or microbial methane or both. 

Apart from abiogenic and microbial synthesis, hydrocarbons can form by the thermal 

decomposition of sedimentary organic matter (thermogenic hydrocarbons). Gaseous 

hydrocarbons produced through the thermal alteration of sedimentary organic matter 

underlying an ophiolite complex may migrate to the surface through highly fractured 

weathered ultramafic rocks. 

The Tablelands Ophiolite formed during the closure of the Iapetus Ocean and the 

collision of Laurentia and Gondwana continents approximately 485 million years ago 

(Elthon, 1991). Underlying ultramafic rocks of the Earth's mantle were abducted onto the 

continental margin of Laurentia, deforming and trapping clastic sedimentary rocks and 

limestones underneath the ophiolite complex through folding and faulting (Elthon, 1991 ). 

Thermal alteration of sedimentary organic matter could produce hydrocarbon gases. 

Therefore, thermogenic hydrocarbons may also be present at the Tablelands. 

Ultra-basic reducing springs have been identified in the Tablelands Ophiolite 

(Stevens, 1988). One of the main objectives of this study is to determine if these springs 
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contain H2, CH4 and other hydrocarbons. Highly reducing conditions in ground waters 

discharging from the Tablelands may provide conditions amendable for either abiogenic 

and/ or biogenic production of C~ and subsequently other higher molecular weight 

hydrocarbons. 

The process of serpentinization is of particular interest for the exploration of Mars 

and determining the origin of CH4• Serpentinization leaves mineralogical evidence of a 

previous physicochemical environment that would provide conditions for the production 

of methane and potentially other hydrocarbon gases to the martian atmosphere (Schulte et 

al., 2006). Near-infrared data from the orbiting imaging spectrometer Mars 

Reconnaissance Orbiter- Compact Reconnaissance Imaging Spectrometer for Mars 

(MRO-CRISM) have shown the presence of Mg carbonate and serpentine signatures in 

several outcrops on Mars, indicating that serpentinization occurred in the past and was 

active at least > 3-7 Gyr ago (i.e., Noachian) (Ehlmann et al., 2008; Ehlmann et al., 201 0). 

Similarities in the martian crust to terrestrial ophiolites, and the lack of significant 

tectonic activity suggest that serpentinization would occur in localized areas where there 

is active fluid flow, potentially in the subsurface (Schulte et al., 2006). Orbital 

reconnaissance data has identified water ice extant in the subsurface, and the possible 

flows of liquid water (likely saline brines) in the upper martian regolith (Holt et al., 2008; 

McEwen, 2011). The presence of fluvial channels and water-forming minerals such as 

carbonates, phyllosilicates, and sulfates within the Martian crust support the potential for 

the process to be active in the past (Mustard et al. , 2008; Boynton, 2009; Quesnel et al., 

2009; Niles et al., 2010). However, if subsurface water on Mars is extant and in contact 

with ultramafic rocks, then serpentinization may still be occurring (Ehlmann et al., 20 l 0). 
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Two possible source regions; Nili Fossae and North Eastern Syrtis, have been 

found where both reactants (olivine) and products (serpentine, carbonates) of 

serpentinization are present (Ehlmann et al., 201 0). Methane measured at these source 

regions would require either recent serpentinization, where active fluid flows would be in 

contact with ultramafics, such as in the subsurface; or be the result of Noachian 

serpentinization, where methane would likely have been trapped for billons of years. The 

presence of methane clathrate reservoirs in the martian subsurface and/or polar ice caps 

would allow for the storage and slow release of methane to the atmosphere (Max and 

Clifford, 2000; Chastain, 2007). A solid understanding of the mineralogy and 

geochemistry associated with serpentinization is necessary for locating and sourcing 

methane on Mars. Terrestrial sites of serpentinization can be used to investigate the 

geochemical measurements required for determining the serpentinization process, and the 

reaction pathways that could be responsible for the methane detected in the Martian 

atmosphere. 

The Gale Crater, the landing site for the Mars Science Laboratory (MSL) is 

interpreted as an ancient lake, which will likely provide context for Mars geological 

history, but not insight into the minerals associated with serpentinization that have been 

observed on the basis of the CRISM data. However, the Sample Analysis at Mars (SAM) 

investigation on the MSL will conduct in situ surveys of gases such as methane in the 

martian atmosphere to localize and understand the nature of their production (Mahaffy, 

2008; Mahaffy, 2012). 

The aim of this study is to present characteristic aqueous geochemistry, carbonate 

mineralogy, and hydrocarbon source signatures associated with present-day 
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serpentinization occurring at the Tablelands Ophiolite in Gros Marne National Park, 

Newfoundland, Canada, in attempt to provide geochemical parameters relevant for 

planning future Mars exploration missions. 

2.3 MATERIAL AND METHODS 

2.3.1 Site Description 

Highly reducing, ultra-basic springs discharging from serpentinized 

peridotite (i.e., harzburgite with some lherzolites; (Suen et al., 1979) rocks were located 

in the Tablelands Ophiolite in Gros Marne National Park (N49°27' 58.9", W57°57' 29.0"; 

Figure 2.1). The spring fluids are Ca2+-0K1 type waters similar to those described by 

Barnes and O'Neil (1967). Inorganic carbon precipitates in these waters and is found as 

either carbonate sediment, travertine, or conglomerate cements that form where the 

springs discharge. Three sampling locations were identified on the north-eastern face of 

the Tablelands and within Winter House Creek: Wallace Brook (WB), Tablelands East 

(TLE), and Winter House Creek (WHC) are shown in Figure 2.2. TLE and WB were 

located on the slope of the Tablelands massif with travertine deposits and discharging 

Ca2+-0H-1 type waters. Located in WHC is a pool of ultra-basic water (labelled WHC2) 

that is approximately 40cm deep and 126cm wide, and exposed to the atmosphere at the 

surface. A survey of the bottom of WHC2 pool using handheld pH and Eh meters showed 

that there were two distinct locations where the pH was the highest and the Eh was the 

lowest indicating that there are two ultra-basic, reducing spring discharge points at the 

bottom of WHC2 (labeled WHC2a and WHC2b). A third sampling location (WHC2c) 

was selected for this study. At this location freshwater from overland flow trickles into 
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the WHC2 pool. This site was of particular interest for studying the geochemical and 

biological interactions at a mixing site with large redox and nutrient gradients. The 

carbonate sediment at the bottom of the WHC2, and the travertine on the side of WHC2 

spring were also sampled to determine the source of the inorganic carbon. A small and 

shallow oval shaped pool (approximately 2cm deep, 5cm wide) of ultra-basic spring 

water seeping from the travertine deposit was located approximately a meter from 

WHC2. It is identified as WHCI. WHCI recharges at rate of 1mL/min, and its surface is 

continuously exposed to the atmosphere; however, this pool was continuously flushed 

with ultra-basic groundwater and no freshwater inputs to WHC1 were indentified. Winter 

House Brook (WHB) which flows along the bottom of Winter House Canyon was 

identified as the freshwater end member. 

2.3.2 Aqueous geochemistry sampling and analysis 

Daily field measurements of pH and redox potential (Eh) were obtained during 

sampling trips in July and September, 2009; June, August, and October, 2010; and June 

20 11. Redox and pH values of water samples were measured using an 0 RPTestr 10 meter 

(Eutech Instruments), pH paper and handheld pH meter (IQ Scientific Instruments GLP 

series IQ 1800), respectively. Redox and pH values were measured during sampling to 

identify any changes in these parameters during or after water withdraw, and after rainfall 

events. Samples were collected at least 48 hrs following a rainfall event to minimize 

dilution effects. 
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Samples for total inorganic carbon (TIC) and dissolved organic carbon (DOC) 

were collected for both concentration and stable carbon isotope (b 13C) values in pre

com busted 40mL amber vials spiked with 200ul of mercuric chloride (HgCh) and 20% 

phosphoric acid (H3P04) respectively. Samples for DOC were filtered through a 0.7J.Lm 

pre-combusted glass microfiber filter. TIC and DOC concentrations and b13C values were 

determined using an OI Analytical Aurora 1030 TOC Analyzer equipped with a reduction 

furnace, water trap, and packed GC column; coupled to a ThermoElectron Delta VPlus 

Isotope Ratio Mass Spectrometer (IRMS) system or a Finnigan MA T252 IRMS via a 

Conflo III interface. The Aurora uses a wet chemical oxidation process to extract carbon 

as C02 gas using phosphoric acid for total inorganic carbon (TIC) and Na-persulfate for 

total dissolved organic carbon (DOC). Accuracy and reproducibility for concentration 

was ± 1.5% RSD and± 0.5%o RSD for b13C (n=3). b13C values are reported in delta 

notation relative to the Vienna Pee Dee Belemnite (PDB) reference standard. 

Water samples were collected for hydrogen and oxygen isotopes (bDHzo, b180H2o) 

m pre-combusted 4mL vials with no headspace. Oxygen and hydrogen isotope 

measurements were analyzed at Isotope Tracer Technologies in Waterloo, Ontario on a 

Picarro Cavity Ring Down Spectroscopy Analyzer (Model Lll02-i). Precision on 

multiple b180 and bD measurements was ± O.l%o and± 0.6%o respectively. All results for 

oxygen and hydrogen are reported in delta notation relative to the Vienna Standard Mean 

Ocean water (SMOW) reference standard. 

Water samples were collected for major-ions (i.e., Mg2
+, Ca2

+, cr, B() chemistry 

and measured on an inductively coupled plasma mass spectrometer (ICP-MS) at 
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Memorial University of Newfoundland using an ELAN DRCII ICP-MS. Samples for 

ICP-MS were filtered through a 0.45J.1m filter and collected in 125mL Trace-Clean bottles 

and immediately acidified with approximately 200ul 5N nitric acid. Certified reference 

materials were used for quality control. The detection limit on conservative ions cr was 

<O.Olmg/L, and <1.7mg/L for Br". The detection limit on Ca2
+ and Mg2

+ were <167J.1g/L 

and <0.35J.1g/L respectively. Total analytical error was± 10% RSD. 

2.3.3 Carbonate mineralogy and isotope analysis 

Samples of travertine and carbonate sediment from spring locations were collected 

for trace element geochemistry and carbon (6 13C) and oxygen (6 180) isotope analysis. 

Samples were frozen upon collection, freeze dried, and ground to a fine powder with a 

mortar and pestle. X-ray diffraction was employed on powdered carbonates to determine 

measurements of major minerals present. 

6 13C and 6180 isotopes of carbonates were analyzed using a ThermoElectron Gas 

Bench II interfaced to an IRMS. Approximately I mg of sample was measured into glass 

vials, placed in a heated block (50°C), and flushed with helium prior to injection with 

phosphoric acid. The resultant gases were passed through Nation driers and a capillary 

column prior to entering the ion source. External calcium carbonate standards CBM, 

NBS-19, and SPEX were used throughout the sequence to determine the linearity and 

accuracy of the instrument. Reproducibility of 6180 and 613C measurements were ± 0 .I %o 

and ± 0.05%o, (n=3), respectively, and values were reported in delta notation relative to 

SMOW and PDB standards respectively. 
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2.3.4 Dissolved gas sampling 

Dissolved gases including H2 and C~; and other hydrocarbons including ethane 

(C2H6, or C2), propane (C3H8, or C3), butane (C4H10, or C4), pentane (CsHr2, orCs), and 

hexane (C6H 14, or C6) were sampled using a modified syringe gas phase equilibration 

technique by McAuliffe (1971) and Rudd et al.,(Rudd et al., 1974). Twenty millilitres of 

fluid was withdrawn with a 60mL sterile syringe and shaken vigorously for 5 min with an 

equal volume (20 mL) of helium (He), and repeated with a second syringe. This allowed 

for partitioning of the dissolved gas in the sample water into the gas phase. The entire gas 

phase from each syringe (20mL) was injected into a 30mL serum vial (i.e., total gas 

volume of 40mL), prefilled with degassed water and sealed with blue butyl stoppers. The 

dissolved gases in He displaced the water in the serum vial. Samples were collected in 

triplicates for most samples. The samples that were not sampled in duplicate of triplicate. 

Samples were fixed with 5f,.lL-saturated solution of HgCh to ensure there was no 

microbial growth in bottles. 

Dissolved gases were sampled for b13C analysis by collecting 50mL of fluid using 

a 60mL sterile syringe and injecting directly into a pre-evacuated 125mL serum vial fixed 

with HgCh and sealed with a blue butyl stopper. Samples were collected in triplicate. 

2.3.5 Analysis of dissolved gases 

Dissolved gases, including H2 and CH4 were analyzed for concentration using a 

portable SRI 8610 Gas Chromatograph (GC) with a Thermal Conductivity Detector 

(TCD) and a Flame Ionization Detector (FlO) respectively. The gases were separated 

using a Carboxen 1000 column packed in stainless steel (15 ft x I /8in, 2.1 mm film 

thickness) with a temperature program: 35°C, hold 5min, ramp at 20°C/min to 225°C, 
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hold 15min with a He carrier gas. Hydrocarbons were also analyzed by a GC equipped 

with a FID on a Porabond-Q column (30m x 0.25mm, 0.251-lm film thickness) with a 

temperature program of 35°C hold 8 min, 10°C/min to 150°C, hold 8min, ramp 5°C/min 

to 21 0°C, hold 1Om in. Peak areas were compared to hydrocarbon standard curves 

(R2~0.99) to determine concentrations. Reproducibility on replicate samples was better 

than 5%. 

Stable carbon isotope ratios of CH4 were measured using an Agilent 6890 GC 

equipped with the Carboxen 1010 column coupled to a Finnigan MA T252 IRMS via 

combustion Conflo II Interface (GC-C-IRMS). Methane isotopes were determined using 

a 5:1 split ratio and a 100°C isothermal temperature program. Low molecular weight 

hydrocarbons (C2, C3, iC4, nC4, iC5, nC5, C6) were determined on the Porabond Q column 

using a 5:1 split ratio and the same temperature program as used for concentration 

analysis. 

Samples were withdrawn from serum bottles and injected directly into the GC-C

IRMS system. On each injection onto the Carboxen 1010 column, b13C of CH4 was 

determined. On each injection onto the Porabond-Q column, b13C of low molecular 

weight hydrocarbons was determined. All results are reported in delta notation relative to 

the PDB standard reference material. Accuracy and reproducibility for b13C values were 

± 0.5%o. This error incorporates both internal reproducibility on triplicate measurements 

and accuracy of instrumental measurement of a CH4 standard with a known carbon 

isotope value. Methane standards were run through out the sequence to determine the 

linearity and accuracy of the instrument. All isotope ratios are reported in delta notation 
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(e.g., b13C, 6 180, bD) relative to an international standard (e.g., V-PDB, SMOW) using 

(Equation 5): 

0 (%o )= (Rsample/Rstandard -1) X 1 000 (5] 

where R is the ratio of heavy to light isotopes. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Origin of spring water 

The b2DH2o and b 180H2o of the ultra-basic springs and freshwater including WHB, 

snowmelt, rainwater, and surface pond water collected from the top of the Tablelands 

massif plot close to the global meteoric water line (GMWL; Figure 2.3a), indicating that 

the ultra-basic spring fluids are meteoric in origin. This further suggests that the 

groundwater discharging from the peridotite rocks has been in recent contact with the 

atmosphere, excluding connate water or magmatic water sources. 

The GMWL is representative of precipitation data collected from different 

locations globally as determined by (Craig, 1961) and therefore represents the global 

Tablelands do not plot directly on GMWL, which likely reflects the local conditions that 

control the b2DH2o and b 180H2o relationship. A linear regression of the freshwater sources 

was used in Figure 2.3a as a proxy of the local meteoric water line (LMWL) for the 

Tablelands. Spring fluid b2DH2o and b180H2o values plot closely to the LMWL indicating 

a similar b2DH2o and b 180H2o relationship as the freshwater. Therefore, changes in local 

meteoric conditions (e.g., temperature) likely govern the b2DH2o and b180H2o of 
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freshwater and ultra-basic springs. However, o2DH2o and o180H2o of spring fluids may 

also reflect physical mixing of the o2DH2o and o180H2o of freshwater with the ultra-basic 

water. 

A positive relationship exists between temperature and oDH2o and o180H2o, with a 

greater fractionation associated with decreasing temperatures, resulting in a depletion of 

DH2o and 180H2o. Samples were collected over winter-spring, summer-fall seasons and 

thus varied in different seasonal temperatures. Figure 2.4 plots o180 and oD of waters 

sampled from WHC2b and WHB during different seasons: July and September 2009 

(summer-fall season), and June 2010 (winter-spring season). The most isotopically 

depleted DH2o and 180H2o values were observed in early June, and the most enriched DH2o 

and 180H2o values were observed in September (summer-fall season; Figure 2.4). The 

trend that was observed can be explained by changes seasonal temperatures, with an 

isotopic depletion during colder seasons (e.g., June) when there was snow cover on the 

Tablelands and colder surface temperatures and an enrichment during warmer seasons 

(e.g., September), when there was no snow cover and warmer surface temperatures. 

2.4.2 Mixing of freshwater and ultra-basic fluids at springs 

Average measurements of pH, redox, and dissolved gas composition of fluids 

from the Tablelands are reported in Table 2.1. Standard deviations reflect seasonal and 

annual variability in the geochemical parameters. The highest pH measurements were 

found at WHC1 (12.2), WHC2a (12.3), and WHC2b (12.3). Redox measurements 

remained consistently low at WHC2a and WHC2b (Eh -552 and -609m V) at the bottom 
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of the WHC pool where a distinct anoxic zone was observed. High redox values 

( +415m V) were measured for the more oxidizing WHB freshwater end member. The 

redox value of the groundwater spring discharging at WHCl increased during sampling. 

This occurred because of the slow recharge rate of the seep and exposure to the 

atmosphere, which allowed for atmospheric 0 2 to partition into spring water and increase 

the redox value while sampling. Redox measurements were higher at mixing spring 

locations with oxygen-containing freshwater inputs (i.e., WHC2c, TLE, and WB). 

Differences in redox measurements can be explained by different amounts of mixing of 

freshwater and ultra-basic water at different times of sampling. 

To better understand changes in geochemical parameters m the spnngs, the 

contributions of freshwater and ultra-basic fluids were quantified at sites where mixing of 

the two end members was suspected. Figure 2.5 represents a conservative 2-component 

mixing model between the freshwater end member (represented by WHB) and the ultra

basic reducing end member (represented by WHCl). 1n this model bromine (Bf) and 

chlorine (Cr) are assumed to be conservative tracers of these two end members The data 

from WHC2a, WHC2b, and WHC2c are well represented by the model and therefore 

suggest that the cr or Bf concentrations can be used to calculate the fraction of ultra

basic water (fuB) contributing to the mixing sites (WHC2a, WHC2b, WHC2c). Sampling 

sites that fall off the WHB and WHC mixing line (i.e. , TLE and WB), are not as well 

described by the mixing model. This could be due to differences in the geochemistry of 

the end members for the TLE and WB springs. Likewise, TLE and WB, which are located 

on a steep slope of the Tablelands massif, received water inputs in the form of surface 
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runoff, which could contribute to large differences observed in aqueous geochemistry 

seasonally, and account for larger standard deviations (Table 2.1 ). 

2.4.3 Geochemical evidence of present-day serpentinization 

Fluids found discharging from serpentinized peridotites at the Tablelands 

Ophiolite are geochemically distinct from freshwater as evidenced by high pH, negative 

redox potentials, and the presence of H2. 

Dissolved H2 concentrations were the highest (1.04 and 1.18mg/L; Table 2.2) at 

the most reducing sites with the least amount of mixing with freshwater and minimum 

exposure to the atmosphere (WHC2a and WHC2b ). Lesser amounts of dissolved 

hydrogen (0.57 to 0.36mg/L; Table 2.2) were measured at sites with greater mixing 

between the ultra-basic reducing groundwater and the surface freshwater (WHC2c, TLE) 

and at slow discharging sites where the ultra-basic groundwater was directly exposed to 

the atmosphere for at least 10 min before sampling could occur (WHC1). During this time 

frame, dissolved hydrogen gas may be released to the atmosphere. Dissolved hydrogen 

gas measurements were below detection at WB. 

Likewise, major ions Mg2
+ and Ca2

+, derived from the hydration of olivine and 

clinopyroxenes respectively, are often found in fluids discharging from serpentinized 

ultramafic rocks giving evidence for active serpentinization. High Ca2
+ /Mg2

+ are found in 

the ultra-basic springs at continental sites of serpentinziation such as Cazadero in 

California (Barnes et al., 1967). Through serpentinization, soluble Mg2+ concentrations 

become accommodated into serpentine and soluble Ca2
+ gets released into the water. 
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Therefore, higher ratios of Ca2+ to Mg2+ are observed. Similarly, high Ca2+/Mg2+ ratios 

were found in the ultra-basic springs at the Tablelands (see Table 2.1 ). 

In Figure 2.6, Ca2+/Mg2+ ratios from spring fluids at WHC2a, WHC2b, and 

WHC2c at certain sampling periods are well described by the 2-component conservative 

mixing model defmed from the freshwater and ultra-basic end members. The highest 

Ca2+/Mg2+ ratios are observed at most ultra-basic springs. However, Ca2+/Mg2+ ratios 

observed at WHC2b (fu8 = 0.62) and WHC2c (fu8= 0.32) are not well described by the 2-

component model. A possible third end member rich in Mg2+-HC03- may be contributing 

to the spring fluids. As described by Barnes et al. (1967), Mg2+-HC03- rich fluids can be 

found in localities of incomplete or inactive serpentinization resulting in shallow, 

moderately basic groundwater that is related to the weathering of serpentine and other 

magnesium-bearing minerals. Likewise, serpentinization can be affecting Ca2+ and Mg2+ 

concentrations. High Mg2+ concentrations (Table 2.1) were observed at WHC2b (fu8= 

0.62) and WHC2c (fu8= 0.32) suggesting possible mixing ofMg2+-HC03- fluids resulting 

in lower Ca2+/Mg2+ ratios. Similar concentrations of Mg2+ and low Ca2+/Mg2+ ratios were 

observed at TLE and WB (Table 2.1), suggesting possible incomplete or inactive 

serpentinization at these localities. 

2.4.4 Carbonate mineralogy and deposition 

Carbonates have been observed to precipitate at the discharge points of ultra-basic 

springs emanating from altered ophiolites (Barnes and O'Neil, 1971 ). Carbonates in the 

form of travertine and sediment were found at ultra-basic springs discharging from 

serpentinized peridotite in the Tablelands. X-Ray Diffraction (XRD) analyses of 
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travertine and carbonate sediments from the Tablelands suggest the carbonates found at 

all sites primarily consist of calcite (>90%) with a lesser amount of aragonite (<10%). 

The isotopic composition of carbonates can be used to understand the 

geochemical conditions under which the carbonates were deposited and can be used to 

interpret the inorganic carbon origin (Clark and Fritz, 1997). Stable carbon and oxygen 

isotope compositions (as b13C and 6180 values) in travertine and carbonate sediment were 

determined (Figure 2.7) and compared to the 6180 value of water and b13C value of 

dissolved TIC (Table 2.3). 

The large range in the b13C of the carbonates (-25 to -5%o) in this study (Figure 

2. 7) has also been observed in other freshwater carbonates at sites of present-day 

serpentinization (O'Neil and Barnes, 1971; Clark et al. , 1992). Carbon isotope 

fractionation during chemical precipitation of freshwater carbonates is dependent on the 

rate of carbonate precipitation, temperature of precipitation, and the carbonate species 

present; therefore, a large range in the b 13Ccaco3 can be observed (Romanek et al., 1992). 

During this process TIC provides carbon for carbonate precipitation. TIC is the sum of 

dissolved carbon species: C02 (aq)• H2C03(aq). HC03 -(aq). and C03 2-{aq}· In the ultra-basic 

springs at the Tablelands (pH> 1 0), the carbonate ion, cot, is the predominant inorganic 

carbon species and can be assumed to make up most of the TIC composition. The 

enrichment factor between cot and CaC03 (i.e., calcite) is small (i.e., ~0.9%o at 25°C; 

(Mook, 1974). Therefore, it is not unexpected that the b13C composition of carbonates 

reflects the b13C composition of the TIC within roughly 1 %o. 
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Since the b 13Ccaco3 is largely influenced by the isotopic composition of the TIC, it 

is necessary to understand the origin of inorganic carbon that is contributing to the 

isotopic composition of the TIC pool. Different sources of inorganic carbon (e.g., C02) 

for carbonates can contribute to b13Cnc values, thus providing a wide range of isotope 

compositions. Relative contributions of C02 (g) can be contributed from the atmosphere 

(b13C ~-7%o; (Clark and Fritz, 1997); oxidized terrestrial organic matter (b 13C s -24%o; 

(Deines, 1980); marine organic matter (b 13C :<!: -23%o); marine carbonate (b 13C -0%o; 

(Anderson, 1983) and C02 from microbial methane oxidation (b13C ~ -54 to-30%o, 

assuming a starting b13C methane of -60%o) (Whiticar, 1999). In addition to the isotopic 

composition of the initial carbon, the b 18C value of carbonates is also influenced by the 

temperature-controlled fractionation between CaC03 and C02(g)· Without knowing the 

b13C value of C02 and the rate of precipitation only general conclusions can be made on 

13CcaC03 values observed. A theoretical 813C value for C02 (g) contributing to the 

formation of carbonates was determined using the equilibrium calcite-C02(g) isotope 

fractionation relationship (1000lna=1.435 x106/T2 -6.13) reported by Bottinga (1969) and 

the measured temperatures of the sampled spring fluids (Table 2.3). The calculated 

starting b 13Cco2(g) value ranged from -36.2 to -27.1 %o. which, is more depleted in 13C 

compared to atmospheric C02(g)· Additionally, the b18C value of carbonates can be 

influenced by the temperature-controlled fractionation between CaC03 and C02. Using 

the measured temperatures of the sampled spring fluids, equilibrium calcite-C02(g) 

isotope fractionations were calculated using the Ecalcite-co2 (g) relationship developed by 

(Bottinga, 1969); Table 2.3). Equilibrium fractionations ranged from 10.1 to 12.0%o. If 
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the precipitation of the carbonated were simply due to atmospheric co2(g) dissolving into 

the water and precipitating, based on calculated equilibrium fractionations , the b13C of 

the carbonates would be expected to range from -19.0 to -17.4 %o. Using the Bottinga 

( 1969) relationship and calculated Ecalcite-C02 (g), the starting b 13C values of C02 (g) were 

determined (Table 2.3). Starting b13Cc02 (g) values ranged from -36.2 to -27.1 %o 

suggesting, in addition to atmospheric C02 dissolution, there may be oxidation of 

terrestrial organic matter and/or methane contributing to the carbonates associated with 

the ultra-basic springs. 

The b180 value of carbonates IS influenced by the temperature-controlled 

fractionation between CaC03 and water, and the b180 value of the water. Additionally 

180 fractionation effects are largely influenced by the pH that defines the DIC speciation 

and consequently the overall b180 signature ofthe sum of the DIC species (Uchikawa and 

Zeebe, 2012). The observed b180caco3 value for travertine and carbonate sediment ranged 

from 10.9 to 21.9 %o (Figure 2.7). Using the measured b180 values and temperatures of 

the sampled spring fluids, and calcite-water oxygen isotope fractionation relationship 

reported in Friedman and O'Neil (1000lna=2.78 x106/T2 -2.89; (1977), theoretical calcite 

b180 cac03 VSMOW values were calculated (Table 2.3). This isotopic fractionation 

assumes that the carbonates were precipitated in isotopic equilibrium with the water. The 

calculated equilibrium b180 caC03 values ranged from 17.9 to 21.0 %o. The b180 caco3 data 

collected from WHC2b and WB fall within range of the calculated equilibrium b180 

values based on the b 180 value of water and temperature at the time of sampling. Data 

from TLE, WHC2a, and WHC2c only partially fall within the range of calculated 
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equilibrium &'so values, where as data from WHCI does not fall within the calculated 

equilibrium range at all. For the most part, measured &1s0caco3 values that do not fall 

within the range of equilibrium &'so values are depleted in tso. A similar isotopic 

depletion in tso has been observed in travertine deposits and carbonate sediments at ultra-

basic reducing springs at continental sites of serpentinization such as Cazadero, CA and 

the Oman ophiolite (O'Neil and Barnes, 1971; Clark et al., 1992). O'Neil and Barnes 

( 1971) attributed this depletion in tso to the rapid precipitation of CaC03 in an alkaline 

solution where by two-thirds of the oxygen in the solid carbonate comes from the C02 

and therefore isotopically depleted oxygen of CaC03 would have been expected. 

2.4.5 Source of CH4 and low molecular weight hydrocarbons in spring fluids 

Dissolved hydrocarbon gases including methane, ethane, propane, n-butane, n-

pentane, and n-hexane were measured in the ultra-basic reducing springs. Highest 

hydrocarbon concentrations were at the most reducing sites WHC2a and WHC2b (Table 

2.2). Lesser amounts of dissolved hydrocarbon gases were measured at sites with greater 

mixing between the ultra-basic reducing groundwater and the surface freshwater 

(WHC2c) and at slow discharge rates (WHCl). In the latter case hydrocarbons may have 

been lost to the atmosphere before they could be sampled. To obtain a fresh spring water 

sample, all water was removed from WHCl and the small depression in the travertine 

was allowed to fill again before the water was sampled. It was noted that the Eh became 

more positive while the pool was filling up, suggesting that the geochemistry of the water 

was changing in the presence of air. Therefore, hydrocarbons, inorganic carbon, and 

dissolved organic matter may have been partially or completely lost before sampling. At 
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sites with the greatest amount of mixing, dissolved hydrocarbon gases were below 

detection (TLE and WB). 

As a first approach, a Bernard plot (Figure 2.8) was used to determine the primary 

source of CH4 in the ultra-basic reducing springs. The, Bernard plot has been used 

previously to discriminate between microbial and thermogenic methane production 

(Bernard et al., 1977). Bernard et a!., ( 1977) found that on a plot of b 13CcH4 versus 

CHJC2+ (where C2+ is the sum of the concentrations of C2, C3, and C4) that microbially 

produced methane has high CHJC2+ ratios (>400) and very negative o13C values (<-50 

%o) relative to thermogenic methane with lower CHJC2+ (<100) and more positive b13C 

values (>-50%o). Dissolved methane from the ultra-basic springs at the Tablelands plot in 

the thermogenic field suggesting that the primary source of methane is not microbial in 

these springs. This observation is consistent with initial microbiological studies of the 

Tablelands spring fluids, which found a lack of significant contribution from biological 

methanogenesis (Brazelton et al., 2012). All methanogens are members of the Archaea, 

and attempts to detect archaeal 16S ribosomal RNA genes in Tablelands fluids via the 

polymerase chain reaction have failed. In contrast, bacterial 16S ribosomal RNA genes 

are readily detected (Brazelton et al., 2012) Furthermore, metagenomic sequences 

predicted to represent methanogens comprise only 0.2% of the full metagenomic dataset 

from WHC2b (Brazelton et al., 20 12); data are available at http://metagenomics.anl.gov 

under dataset"WHC2B sfC'). These predictions are based on automated sequence 

similarity algorithms, and none of the predicted sequences actually encode proteins 
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directly involved in the methanogenesis pathway. In short, the available microbiological 

data indicate that if methanogens are present in WHC2b at all, they are extremely rare. 

All of the measured methane samples were similar in o13C value (-28 to -25%o; 

Figure 2.8), except for one data point collected from WHC2c in August 20 I 0 had an 

enriched value (o13CcH4= -15.9%o), where C2+ was below detection limit. This enriched 

CH4 value may be evidence of methane oxidation occurring at WHC2c where 0 2 is 

present. Assuming a carbon isotopic signature of oxidized methane similar to that 

reported in June 2010 (-25.6%o), and uptake of the isotopically light carbon for 

metabolism, the left over carbon pool will be enriched in 13C as observed at WHC2c from 

August 20 I 0. A decrease in CH4 concentration and increase in TIC concentration was 

also observed in August 20IO (O.Olug/L, 14.8mg/L) as compared to June (0.03ug/L, 

11.8mg/L) suggesting possible C~ oxidation and C02 consumption by microorganisms. 

The methane measured may be them1ogenic in origin. Thermogenic methane 

could be produced from the thennal alteration of the sedimentary organic matter 

underlying the Tablelands Ophiolite, that migrated to the surface through cracks and 

fissures in the altered peridotite. Sedimentary organic matter most likely exists in the 

siliclastic marine sandstones from the Blow-me-Down Brook formation, siliclastic marine 

melange from the Crolly Cove fonnation, and carbonate limestone from McKenzie's 

formation (see geologic map, Figure 2.1 ). Therefore, a thermogenic origin of the methane 

must be considered; however, an abiogenic origin must also be considered. 

Although an abiogenic field is not defined in the Bernard plot, experimental and 

field studies have shown the CHJ C2+ for abiogenic hydrocarbons (0.0 I to 200) can 
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overlap with the lower range of CHJC2+ ratios for thermogenic hydrocarbons, especially 

if mixing with thermogenic hydrocarbons (McCollom and Seewald, 2006; Taran et al., 

2007; Yunyan et al., 2009; McCollom et al., 2010; Etiope et al., 201lb). CHJC2+ ratios 

from the Tablelands springs (0.68 to 3.78) fall within this range. Therefore, the Bernard 

plot cannot discriminate between thermogenic and abiogenic sources of CH4 within this 

range. 

To distinguish between thennogenic and abiogenic origins of methane and higher 

molecular weight hydrocarbons, patterns of o13C and 82H values of C 1-C6 alkanes were 

considered. Thermogenic hydrocarbons display a 13C enrichment with increasing carbon 

number. This isotopic trend is attributed to kinetic isotope effect where alkyl groups 

cleave from the source organic matter. The weaker 12C- 12C bonds will break at a faster 

rate than the heavier 12C-13C bond (DesMarais et al., 1981; Sherwood Lollar et al., 2006). 

As a result, residual alkanes will be more enriched in the 13C with increasing molecular 

mass. In contrast, it has been suggested that ethane can form abiogenically via a 

polymerization reaction that results in a depletion of 13C and enrichment in 2H with 

respect to methane (Sherwood Lollar et al., 2008). In this polymerization reaction, the 

lighter isotopes 12C- 12C will bond at a faster rate than the heavier and lighter isotopes 

12C- 13C, resulting in a depletion of 13C of ethane compared to that of methane. In this 

study, the o13C of alkanes from WHC2a and WHC2b follow a general isotopic depletion 

of C2-C6 relative to CH4 with increasing carbon number and a clear 13C depletion between 

methane and ethane similar to other putative abiogenic hydrocarbons (Figure 2.9). 

However, it must be noted that this 13C depletion between methane and ethane is not 
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consistently observed for abiogenic hydrocarbons (Taran et al., 2007). Sherwood Lollar et 

al. (2008) proposed that a saw-tooth pattern, in this case a 13C depletion between methane 

and ethane followed by a 13C enrichment between ethane and propane, can be modeled 

assuming rapid abiogenic polymerized chain growth with negligible carbon isotope 

fractionation in the formation of C2+ compounds (Figure 2.9). The Tablelands C2+ data is 

not well described by such a model suggesting that the carbon isotopic patterns observed 

at the Tablelands may be due to fractionation effects associated with secondary alteration 

processes such as oxidation or diffusion, or mixing of hydrocarbons from thermogenic 

sources. Moreover, not all thermogenic and abiogenic hydrocarbons can be described by 

the isotopic trends and more research needs to be done to distinguish between the two 

mechanisms. 

2.5 IMPLICATIONS AND CONCLUSIONS 

Temporal variations in methane concentration have been observed in the Martian 

atmosphere suggesting the presence of localized source regions (Fonnisano et al. , 2004; 

Mumma et al., 2009). This suggests that production and/or release of methane to the 

Martian atmosphere may be related to the geology of the planet's surface or subsurface. 

Possible source regions include Nili Fossae and NE Syrtis Major where aqueous altered 

olivine-rich rocks are exposed (Hamilton and Christensen, 2005; Mumma et al. , 2009; 

Ehlmann et al., 20 I 0). At Nili Fossae Mg- carbonates and Mg-rich serpentines have also 

be found (Ehlmann et al. , 20 I 0), and calcium pyroxenes have been detected at Syrtis 

Major (Rogers and Christensen, 2007). The presence of carbonate and serpentine 

signatures at localized methane source regions suggests that serpentinization may have 
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occurred in the past on Mars. Given the short residence time of methane, detected 

methane at source regions would suggest either recent serpentinization where liquid water 

would need to be present, possibly in the subsurface; or Noachian and trapped as methane 

clathrates in the subsurface and/or polar ice being released in the subsurface (Mumma et 

al., 2009). 

The Tablelands Ophiolite is an active site of serpentinization and a Mars analogue 

for the presence of altered olivine-rich ultramafic rocks with both carbonate and 

serpentine signatures. Meteoric water reacting with ultramafic peridotites at the 

Tablelands forms geochemically distinct ultra-basic and reducing springs. These springs 

have characteristic Ca2
+ and Mg2

+ ion ratios. Calcium-rich carbonate sediment and 

travertine deposits have been found in and around the ultra-basic springs. Isotopic 

analyses of carbonates suggest that carbonate sediment and travertine derived carbon 

from co/- and are precipitated in non-equilibrium with the atmosphere and fluids. 

Dissolved gases including hydrogen, methane, and low molecular weight alkanes (C2 to 

C6) have been measured in ultra-basic springs. The primary source of methane sampled 

from the springs is not microbial., but either thermogenic or abiogenic in origin, or a 

mixture of both. Additional work is needed to distinguish between the two possible 

sources of hydrocarbons. One possible approach is to examine the stable isotope 

composition of hydrogen of the hydrocarbon gases to determine if they are abiogenic or 

thermogenic in origin (Sherwood Lollar et al., 2008). With the current Mars Science 

Laboratory rover, goals to survey gases such as methane in the martian atmosphere, stable 

isotope and abundance analyses of gases can be applied to help provide information on 

the source of methane on Mars. Likewise, serpentinization at the Tablelands Ophiolite 
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can be used as a mineralogical indicator to understand previous aqueous environment 

conditions and as a geochemical indicator to understand the conditions suitable for 

methane production on Earth and potentially on other ultramafic planetary bodies such as 

Mars. 

Overall, key measurements on serpentinizing systems including aqueous 

geochemistry, carbonate mineralogy, and evidence of organic molecules can help in both 

interpreting data from MSL and planning future Mars exploration missions. 
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Figure 2.1 Geologic map, modified from (Berger et a l. , 1992). showing the 

Table lands massif and approximate sampl ing locations (sta r symbols): Wallace Brook 

(WB), Tablelands East (TLE), Winterhouse Creek (WHC 1, 2a, b, c); and Winterhouse 

Brook (WHB). The Tablelands is located in Gros Morne National Park in Newfoundland, 

Eastern Canada. 
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Figure 2.2 Images of springs and travertine deposits at sampling locations: 

Winterhouse Creek I (2 .2a, human fo r scale ~ I . 70m); Winterhouse Creek 2 (2.2b, human 

fo r scale ~1.70m), Tablelands East (2 .2c, human fo r scale ~1. 70m) ; and Wallace Brook 

(2.2d, spatula for scale ~22cm). 

59 



-50 

-55 

-60 
0 

~ -65 
~ 
0 -70 
~ 
VI -75 
11'1 
> 
0 -80 
10 

-85 

y = 8.06x + 14.3 
R2 = 0.83 Dtt/ 

~/' 

-90 ' 
' 

~5 ' 
' 

= Sx + 10 OWHC1 

OWHC2a 

6 WHC2b 

0WHC2c 

OTLE 

t.WB 

-100 +-----------,-~·~------~-----------,----------~ 

-20 -15 -10 -5 0 
6180 vs SMOW, %o 

Figure 2.3 o 0 and oD of fluids sampled from all sites including rainwater, 

snowmelt, and pond water collected from the top of the Tablelands. 6180 and oD of fluids 

are plotted with the GMWL (solid line) and the linear regression for collected freshwater 

(i.e. WHB, pond water, rain, snowmelt) as a proxy for the LMWL (dashed line). Error on 

6 180 and oD represent ±0.1 %o and ±0.6%o respectively. Note that error bars are smaller 

than the plotted symbol. 
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Figure 2.5 Dissolved ion concentrations of Bf and cr as conservative tracers to 

determine mixing of freshwater and ultra basic water. Samples plotted are from WHCl, 

WHC2a, WHC2b, WHC2c, TLE, WB, and WHB collected in September 2009 and June 

2010. The solid line represents conservative mixing between the freshwater (WHB) and 

ultra basic (WHCOl) end member. Note that TLE and WB do not plot on the conservative 

mixing line. Error bars are ±10% for Br- and cr and may appear smaller than the plotted 

symbol. 
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Figure 2.6 Ca2+/Mg2+ plotted versus the fraction of ultra basic water mixing with 

the conservative mixing line. Ca2+/Mg2+ ratios increase with greater fraction of ultra basic 

water. Ca2+/Mg2+ of waters from the Tablelands are plotted against Ca2+/Mg2+ ratios of 

spring (Ca2+/Mg2+ = 177) and meteoric water (Ca2+/Mg2+ = 0.14) from another continental 

site of present-day serpentinization in Cazadero, California (Barnes et al., 1967). Error 

bars of Ca2+/Mg2+ are ±10% and may appear smaller than the plotted symbol. 
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(17.9 to 21.0%o) determined by (O'Neil, 1969) corrected in (Friedman and O'Neil, 1977) 

assuming chemical precipitation of calcium carbonate in equilibrium with Tableland 
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Figure 2.9 Natural gas plot of b C of hydrocarbon gases sampled at WHC2a, and 

WHC2b in June 20I 0, June 201. Error bars represent ±0.5%o for b13C. The block arrows 

represent general abiogenic and thermogenic isotopic trends. The solid line shows the 

predicted cS 13C values using an abiogenic polymerization model developed by Sherwood 

Lollar et a!. (2008) using the following equations: cS 13Cc2 = lOOOlna + cS 13CcH4 ( eq. 7), 

cS 13CcH4) (eq. II). The initial input data (cS 13CcH4 and cS 13Cc2) for the abiogenic 

polymerization model were the average carbon isotope values of methane and ethane 

measured at the Tablelands. 
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Table 2.1 A comparison of average ( ± std, 1 o) aqueous geochemical parameters of spring waters. 

Freshwater Ultra-Basic 
Endmember Mixing Springs with Freshwater Inputs Endmember 

WHB TLE WB WHC2c WHC2b WHC2a WHCl 

pH 7.6(± 0.7) 10.6 (± 0.5) 10.7(± 0.2) 11.8 (± 0.8) 12.3(± 0.3) 12.3(± 0.3) 12.2(± 0.2) 

Eh (mv) 415(± 26) 186 (± 55) 318(±64) -437 (± 229) -552 (± 103) -609 (± 11 8) 121(±12) 

Cl- (mg/L) 3.7(± 0.23) 49 (± 61) 50 (± 61) 166 (± 17) 340(± 38) 403(± 40) 479(± 37) 

Br- (mg/L) 0.009 (± 0.002) 0.29 (± 0.39) 0 .29 (± 0.39) 0.37 (± 0.04) 0.79(± 0.1) 0.89 (±0.09) 1.1 (± 0.06) 

Mg2
+ (mg/L) 13.3(± 1.3) 1.12(± 0.4) 1.47(± 0.05) 7.57(± 0.4) 1.12(± 0.7) 0.61 (±0.1) 0.06(± 0.0 I) 

Ca2+
1Mg2+ 0.08 (± 0.01) 29 (± 18) 23 (± 20) 3 (± 0.3) 57 (± 42) 97 (± 9.0) 144 (± 5.0) 

TIC (mg/L) 8.06 (± 1.7) 0.83 (± 0.5) 0.8 (± 1.0) 14.9 (± 2.5) 4.45 (± 6.3) 1.1 (± 0.5) 27.25 (± 15) 

TIC o13C %o -1.7 (± 0.8) -11.4 (± 2.4) -18.6 (± 3.0) -12.5 (± 0.8) -16.2 (± 3.0) -15 .2 (± 2.9) -29.4 (± 1.7) 

DOC (mg/L) 0.46 (± 0.2) 0.16 (± 0.1) 0.19 (± 0.1) 1.24(± 0.4) 0.96 (± 0 .6) 1.62 (± 1.0) 2.04 (± 0.6) 

DOC o 13C o/oo -27.1 (± 0.6) -23.3 (± 0.5) <d.l. -23 .7(± 1.5) -22.1 (± 6.0) -1 7.7 (± 1.8) -18.2 (± 1.1) 

<d.l.= less than detection limit 
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Table 2.2 Gaseous composition of spring waters 

TLE WHC2c WHC2b WHC2a WHCJ 

H2 (mg/L) 0.13to0.36 0.07 to 0.57 0.47 to 1.04 0.47 to 1.18 0.06 

CH4 (mg/L) <d. I. 0.03 to 0.05 0.04 to 0.32 0.16 to 0.38 0.03 to 0.06 

C2H6 (mg/L) <d.!. 0.004 to 0.03 0.01 to 0.03 0.02 to 0.04 0.004 to 0.0 1 

C3Hs (mg/L) <d.!. 0.01 to 0.03 0.01 to 0.04 0.03 to 0.05 0.004 to 0.0 1 

nC4H1o (mg/L) <d. I. 0.01 0.01 to 0.02 0.01 to 0.02 0.004 

nCsH1z (mg/L) <d. I. 0.01 0.01 0.01 to 0.02 0.004 

nC6HJ4 (mg!L) <d.!. 0.005 to 0.01 0.01 to 0.02 0.02 to 0.04 0.004 to 0.01 

C1/C2+ NA 0.68 to 3.65 2.78 to 3.78 2.62 to 3.14 3.08 to 3.72 

6
13

CcH4 <d. I. -15.9 to -26.3 -26.4 to -28.0 -26.4 to -27.7 -27.2 to -28.5 

<d. I.= less than detection limit, NA= not analyzed 
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Table 2.3 Isotopic composition of total inorganic carbon, water, and carbonates 

Measured Measured Measured Measured 
Site 013CTJC, %o 013CcaC03, %o 0180 cac03, %o Avg. 0180H20 

WHCI -30.6to-28.2 -25 .8to -19.6 10.9to14.8 -9.5(± 0.1) 

WHC2a -19.8to-13.0 -16.7to-11.6 16.1to22.2 -11.0(±0.2) 

WHC2b -19.2 to -12.5 -15.2 to -12.6 17.9 to 21.0 -10.8 (± 0.3) 

WHC2c -13 .3to-16.5 -15.4to-8.8 15.7to21.9 -10.5(±0.5) 

WB -20.7 to -16.5 -16.7 to -9.9 14.6 to 19.2 -11.6 (± 0.1) 

TLE -15.5 to -9.9 -15.2 to -6.2 14.7 to 19.8 - 12.3 (± 0.1) 
TM =Temperature measured, 6 13C reported vs. PDB and 6180 reported vs. SMOW. 

21.3 to 24.3 

10.5 to 15.5 

10.4 to 16.2 

11.3 to 17.2 

10.0 to 19.9 

8.3 to9.1 

Calculated 
a 

Ecalcite·C02 (g) 

10.1 to 10.4 

11.1 to 11.7 

1l.Oto 11.7 

10.9 to 11.6 

10.6 to 11.8 

11.9 to 12.0 

Calculated 
s.l 3c % b 
U C02 (g) oo 
-36.2 to -35.9 

-28.4 to -27.8 

-26.9 to -26.2 

-27.0 to -26.3 

-28.5 to -27.3 

-27.2 to -27.1 

a Calculated equilibrium carbon enrichment between calcite and C02 (gJ using fractionation equation: 10001na= l.435 x106/T2 -6.13 
(Bottinga, 1 969) 
bCalcu1ated equilibrium 6 13Cco2(gJ using Ecalcite-C02(gJ and measured 6 13Ccaco3 
c Calculated equilibrium carbonate oxygen isotope composition using fractionation equation: 10001na=2.78 x106/T2 -2 .89 
(O'Neil, 1969); corrected in (Friedman and O'Neil, 1977) 

Calculated 
0180 caC03, %oc 

19.0 to 19.7 

19.5to20.7 

19.5to20.9 

19.6 to 21.0 

17.9 to 20.2 

19.7 to 19.9 
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Chapter 3: Microbial Community Composition and Cycling of Carbon 

in the Ultra-basic and Reducing Springs at a Site of Serpentinization in 

the Tablelands- Gros Morne National Park 

3.1 ABSTRACT 

Highly reducing and ultrabasic springs at a site of active serpentinization in the 

Tablelands Ophiolite in Gros Morne National Park, Newfoundland hosts an extreme 

environment for a thriving microbial community. However, little is known about the 

microbial community that exists at sites of serpentinization. 

A variety of different possible substrates are available to the microbial community 

including large amounts of H2 gas and variable amounts of dissolved inorganic and 

organic carbon compounds. Likewise, non-microbial methane and low molecular weight 

hydrocarbons have been previously detected in the springs, and may provide a carbon 

substrate for the microbial community. This study uses lipid profiling to identify the 

microbial community that thrives in the reducing and ultra basic springs at the surface and 

possibly in the subsurface. Lipid biomarkers identified a microbial community dominated 

by gram-negative bacteria with lesser amounts of microeukaryotes, gram-positive 

bacteria, fungi , and lipid biomarkers belonging to non-specific bacteria. Additionally, an 

integrated lipid profiling and isotope approach was used in identifying both autotrophic 

and heterotrophic metabolisms. 
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3.2 INTRODUCTION 

Serpentinization,- the hydration of olivine in ultramafic rocks,- produces an 

abundance of hydrogen (H2) gas and associated fluids that are highly reducing and ultra

basic. This reaction produces conditions favourable for both abiogenic synthesis of 

methane and other hydrocarbons while also producing conditions amenable for 

chemosynthetic microbial metabolisms such as methanogenesis. Locations where 

serpentinization is occurring have been reported worldwide including: the Lost City 

Hydrothennal Vent Field (LCHF) which is a marine location (Kelley et al., 200 I), deep 

subsurface mines (Sherwood Lollar et al., 2002); and other continental locations (i.e., 

ophiolites) including Oman (Barnes et al. , 1978; Neal and Stanger, 1983), Turkey 

(Hosgormez, 2006; Etiope et al., 2011 b), Zambales, Philippines (Abrajano et al. , 1990), 

and in Cazadero, California (Barnes et al., 1967; Morrill et al., submitted). At these sites, 

both abiogenic methane and biogenic methane production have been reported (Barnes et 

al. , 1967; Abrajano et al., 1988; Sherwood Lollar et al. , 2002; Kelley, 2005 ; Morrill et al. , 

2008; Etiope et al. , 20 II b). Additionally, hydrocarbons can be synthesized through the 

thermal degradation of sedimentary organic matter (i.e., thermogenesis) which commonly 

underlie an ophiolite complex. Evidence for thennogenic synthesis has been reported at a 

site of serpentinization in Terikova, Turkey (Etiope et al., 2011 b). There has been a great 

deal of emphasis on the geochemistry at locations of serpentinization, however little is 

known about the microbial community that may exist at these sites. 

The Tablelands Ophiolite in Gros Morne National Park, Newfoundland is 

experiencing active serpentinization in its subsurface as evidenced by springs found near 

serpentinized peridotites that are ultra-basic (pH ~ 1 0), calcium rich, highly reducing and 
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linked with the production of hydrogen gas (Chapter 2). Associated work has shown that 

the methane produced at the Tablelands springs is non-microbial and attributed to 

thermogenic or possible abiogenic origin (Szponar eta!., ln Press). 

The land cover at the Tablelands is primarily peridotite rocks. Perdotites lack the 

usual nutrients to sustain plant life. Peridotites limit plant growth by having high 

magnesium content, and toxic amounts of heavy metals (e.g., Ni; (Berger et a!., 1992). 

Therefore, the Tablelands is mostly barren with limited plant growth (Berger eta!., 1992). 

Additionally, the ultra-basic and reducing springs at the Tablelands provide an extreme 

environment for microbial communities. Similar to other sites of serpentinization, the 

microbial community that potentially exists at the Tablelands is poorly understood. 

Studying the microbial community that exists in the ultra-basic springs in the Tablelands 

can help provide information about life in these extreme environments and likewise 

provide a window to possible communities that may exist in the deep subsurface. 

Previous genomic data have shown the presence of hydrogen oxidizers and 

hydrogen producers in the ultra-basic springs at the Tablelands (Brazelton et a!. , 20 12). 

However, little is known about the microbial cycling of carbon in the springs. 

Phospholipid fatty acids (PLF A) are integral components of bacterial cell membranes 

which can be used to profile the structure of microbial communities, detect shifts in 

microbial ecology, and compare carbon turnover in different ecosystems in situ 

(Steinberger et a!., 1999; Boschker et a!., 2002; Kramer and Gleixner, 2006). Likewise, 

different PLF A indicator compounds can be used to identify specific groups of 

microorganisms such as bacteria, fungi , algae, or protozoa (Steinberger et a!. , 1999). 
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Phospholipid fatty acids have natural abundance b13C signatures directly related to 

the b13C value of the carbon pool used by bacteria for metabolic processes (Boschker and 

Middelburg, 2002). Phospholipids turnover quite rapidly during metabolism and therefore 

are indicative of a viable biomass (White, 1979). Therefore, the isotopic composition of 

PLFA is indicative of the carbon source of the active microbial community (Vestal and 

White, 1989). Isotopic analysis of both dissolved organic carbon (DOC) and total 

inorganic carbon (TIC) pools can be compared to the isotopic composition of PLF A to 

identify heterotrophic and autotrophic metabolisms, respectively. Large carbon isotope 

fractionations between TIC and PLF A are associated with autotrophic metabolism 

relative to minimal isotopic fractionation between DOC and PLF A in heterotrophic 

metabolism. Therefore, carbon-isotope fractionations can provide useful infom1ation 

about possible substrates used by the microbial community and possible biosynthetic 

pathways. 

The overall objective of the study was to identify microbial community 

composition in the ultra-basic springs and identify possible microbial metabolisms. The 

first aim of the study was to identify a viable biomass in the ultra-basic and reducing 

springs and determine the relative microbial abundance. A handheld field instrument, 

(i.e. , Limulus Amoebocyte Lysate (LAL) assay) was used for a qualitative observation of 

living biomass in the springs, specifically detecting gram-negative bacteria. Cell counts 

on fluids and rocks were used to obtain relative biomass abundance in the springs. The 

second aim of the study was to identify the microbial community composition and 

possible autotrophic and heterotrophic metabolisms. Phospholipid biomarkers were used 
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to identify groups of microorganism that are living in the spnngs. Autotrophic and 

heterotrophic metabolisms were determined by comparing the carbon isotope 

composition (6 13C) of reduced and oxidized carbon reservoirs to the () 13C value of PLF A 

and the total biomass, and their fractionations respectively. 

3.3 SAMPLING AND ANALYTICAL METHODS 

3.3.1 Site Description 

The Tablelands Ophiolite is situated in Gros Mome National Park, Newfoundland, 

Canada. Active serpentinization is occurring in the subsurface of the Tablelands as 

evidenced by highly reducing, ultra-basic springs discharging from serpentinized 

peridotites, surrounded by calcium carbonate travertine deposits. The spring fluids are 

Ca2+-0H- type waters contributing to inorganic carbon precipitates as carbonate sediment 

in the spring fluids and travertines near spring discharge outlets (see Chapter 2). A site of 

serpentinization at Winter House Canyon (WHC) was selected for this study. WHC 

contains two sampling pools (i.e., WHCl and WHC2) that are continually recharged with 

ultra-basic reducing water. WHCI is a shallow pool (approximately 2 em deep, 5 em 

wide) of ultra-basic spring water seeping from the travertine deposit and located 

approximately a meter from WHC2. This pool recharges at rate of 1 mL/min, and no 

freshwater inputs to WHC 1 were indentified. The ultra-basic water at WHC 1 is exposed 

to the atmosphere and thus redox values measured reflect more positive values (~Eh of 

137mV; pH of 12.7). In this study WHCI was sampled for microbial abundance in fluids 

using Limulus Amoebocyte Lysate measurements only. Not enough carbonate sediment 

could be collected at WHC 1 for lipid analysis. 
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WHC2 was selected to study the geo-biological interactions due to large redox 

and nutrient gradients within the pool. WHC2 is larger (approximately 0.5 meter deep, 1 

meter wide). In particular, two highly reducing ultra-basic (~Eh of -600 to -700mvV; pH 

of 12.3 to 12.6) spring discharge points are located at the bottom of the WHC2 pool 

(labelled WHC2a and WHC2b). A third sampling location that receives trickling 

freshwater input from overland flow was selected for this study (labelled WHC2c), The 

WHC2c site was selected because it is a mixing site with large redox ( - Eh of-1OOm V to 

- 470mV) and nutrient gradients. Additionally, Winter House Brook (WHB) which flows 

along the bottom of Winter House Canyon was chosen as the freshwater end member and 

used to compare Limulus Amoebocyte Lysate (LAL) measurements from the ultra-basic 

spnngs. 

3.3.2 LAL Assay 

The Limulus Amoebocyte Lysate (LAL) Assay was employed at the Tablelands to 

find traces for life in the ultra-basic springs. The LAL assay used was part of the 

Endosafe®- PTS (Portable Test System) which contains a sample test cartridge and a 

hand-held spectrophotometer. The LAL assay uses the LAL enzyme found uniquely in 

horseshoe crabs to detect gram-negative cell walls of bacteria by reacting with the 

endotoxins in the cells (Watson et al., 1977). Endotoxins from the gram-negative bacteria 

degrade rapidly between 15 to 30 min and therefore the LAL assay can detect live cells. 

In particular, the LAL assay detects single celled microorganisms (i.e., gram negative 

bacteria), in terms of endotoxin units per ml of fluid. 
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The instrument was calibrated using cartridges with a tolerance range of 0.0 I , 

0.05, and 0.1-10 EU/mL (R2=0.99). The quantification limit for this study was detem1ined 

to be 200EU/ml based on a I :20 dilution of the sample. Sampling locations WHC2b and 

WHC2c, and WHB were swabbed in triplicate for life detection using the LAL assay. A 

dilution of I :400 was applied for sample WHCI and dilutions of I :20 were applied for 

samples WHC2b and WHC2c to obtain a reading on the instrument within the calibration 

curve. Nuclease free water was used as a control to test the LAL assay to ensure 

corrections were made for non-vital reactivity and luminescence. Error associated with 

the LAL endocrine concentrations is ± standard deviation (lo) associated with single 

injections of a triplicate sample. 

3.3.3 Microscopic Cell Abundance 

Fluids and carbonate sediment were collected for cell counts in June 20 I 0. Fluid 

samples were collected in 50ml sterile falcon tubes and fixed with I 0 ml of 3 7% fonnalin. 

After one to six hours, the fixed samples were filtered using vacuum filtration through 

0.22flm black polycarbonate membrane filters (Millipore). The collected cells were 

stained for 20 min using a 2.0 flg/ml solution of 4' ,6' diamidino-2phenylindole (OAPI) 

(Porter and Feig, I980). A I Oml volume of sample was filtered in triplicate. The filters 

were then placed onto microscope slides, using type A immersion oil and stored at -20°C 

in the dark. 

Cells were extracted from carbonate sediment using a modified extraction method 

by Chevaldonne and Godfroy ( I997). Carbonate sediment samples were collected in 60ml 

falcon tubes and submersed in 2% parafonnaldehyde/phosphate buffered saline solution 
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(PFA:PBS). The mixture was sonicated for 30 min, and centrifuged. The supernatant was 

transferred to eppendorf tubes, and vortexed for 30-60 sec. Extracts were filtered at 0.1 ml 

and 0.5ml following the procedure as per fluid samples. The carbonate sediment sample 

was air dried and weighed. Average cell counts were determined per ml and converted to 

weight specific counts by multiplying volume based counts by the total volume extracted 

and dividing by the dry weight of the carbonate sediment sample. Based on extraction 

efficiencies determined for extracting cells from solid samples by Chevaldonne and 

Godfroy ( 1997) a similar extraction efficiency of 46% is assumed for this study. 

Cell counts were determined on both fluid and carbonate sediments at East 

Carolina University on an Olympus BX61 Spinning Disk epiflourescence confocal 

microscope ( 1 OOx magnification) using blue light excitation. Cell abundance values are 

reported as average cells counted per gram of mineral (dry weight) for carbonate 

sediment and average cells counted per mL for fluid samples. The minimum detection 

limit on bacterial cell counts was 1 03cells/mL Upper and lower 95% confidence intervals 

for average cell counts are listed in Table 3 .I. 

3.3.4 Dissolved organic matter and total inorganic carbon 

Fluid samples were collected for dissolved organic carbon (DOC) and total 

inorganic carbon (TIC) concentration, and stable carbon isotope (613C) analysis. Samples 

for DOC were filtered through a 0.7flm pre-combusted glass microfiber filter using a 

60ml syringe and filter holder. A 30mL filtered sample was collected in pre-combusted 

40mL amber vials spiked with 20% phosphoric acid (H3P04) Samples for TIC were 

collected without headspace in pre-combusted 40mL amber vials spiked with mercuric 
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chloride (HgCb). DOC and TIC concentrations and b 13C values were determined using an 

01 Analytical Aurora 1030 TOC Analyzer equipped with a reduction furnace, water trap, 

and packed GC column; coupled to a Thermo Electron Delta VPlus Isotope Ratio Mass 

Spectrometer (IRMS) system via a Conflo Ill interface, or a Finnigan MA T252 IRMS via 

a Conflo 11 interface. The Aurora uses a wet chemical oxidation process to extract carbon 

as C02 gas using phosphoric acid for TIC and Na-persulfate for total DOC. Error 

associated with DOC and TIC concentration were less than ±0.5%o for b13C. The error 

determination is based on the± mean standard deviation (1 a) on triplicate samples, which 

incorporates both instrumental error and error from samples run in triplicate. Isotopic 

standards with a concentration range of 0.50mg/L to 20mg/L were used for calibration for 

of both TIC and DOC. TIC samples ~ 0.10 mg/L and DOC samples ~ 0.50 mg/L were 

below detection for carbon isotope analysis. Therefore the b 13C values of TIC and DOC 

are only reported for samples with measured concentrations greater than 0.1 Omg/L and 

0.50 mg/L respectively. b13C values are reported in delta notation using the following 

relationship (Equation 1 ): 

[1] 

where, 13C/12Cstandard is the carbon isotope ratio of the international Vienna Pee 

Dee Belemnite (PDB) reference standard. All carbon isotope data is reported relative to 

PDB. 

3.3.5 C/N ratios and b 13C of bulk organic matter 

Carbonate sediment was collected at the bottom of the Winter House Canyon 

(WHC2) spring for bulk organic matter (OM) analysis. The bulk organic matter is a 
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combination of both living and non living material (i.e., detritus). Source information on 

the OM can be obtained by analyzing the elemental and isotope composition of the OM. 

Bulk OM was analyzed for percent carbon and nitrogen to determine C:N ratios, and 

carbon isotope composition. Carbonate sediments were treated three times with 5M HCI 

to remove any inorganic carbon and oven-dried at 40°C overnight. Samples were 

grounded using a mortar and pestle and stored in 4ml pre-combusted glass vials prior to 

analysis. The percent carbon and nitrogen of the OM was measured using a Carlo Erba 

NA 1500 Series II Elemental Analyzer (EA) calibrated using an internal sulfanilamide 

standard with a known carbon and nitrogen ratio. Replicate analysis (n=5) of the 

sulphanilamide standard gave a precision of less than± 0.3% (lo) for both carbon and 

nitrogen. 

Stable carbon isotope values of organic matter (b13CoM) were measured on the EA 

coupled to a Thermo Electron Delta VP!us Isotope Ratio Mass Spectrometer (IRMS), 

calibrated with the sulfanilamide standard, and using isotopically characterized MUN

C02 Suprapur CaC03 and IAEA- CH-6 Sucrose as check standards. Check standards 

were isotopically characterized at Memorial University of Newfoundland. Replicate 

analyses of checks standards (n=5) and duplicate analysis of samples (n=2) gave a 

precision of less than ±0.3%o (lo). The b13CoM value of bulk organic carbon is reported 

in standard notation (Equation I) relative to PeeDee Belemnite (PDB). Error associated 

with b13CoM is ± 0.3%o, which incorporates both instrumental error and error from 

samples prepared and ran in duplicate. 
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3.3.6 Phospholipid Fatty Acid identification and quantification 

Phospholipid fatty acid (PLFA) analyses were performed on lyophilized carbonate 

sediment samples collected from the three sampling sites (WHC2a, WHC2b, and 

WHC2c) within the WHC pool. Only one sample, WHC2c from June 2010 was used to 

determine PLF A recovery. This sample was split into two subsamples. Only one WHC2c 

June 20 I 0 subsample was spiked with a PLF A standard (1 ,2-diheptadecanoyl-sn-

g1ycerol-3phosphocholine from Avanti Polar Lipids) to determine PLFA recovery, and 

the other was used for comparison. Both WHC2c 20 I 0 subsamples were extracted 

separately, to determine reproducibility on the extraction method. PLFAs were extracted 

from the lyophilized carbonate sediment samples using a modified Bligh and Dyer 

method (Bligh and Dyer, 1959). Neutral and glycolipids were further isolated using solid 

phase silica gel chromatography. Phospholipids were converted to fatty acid methyl esters 

(FAMEs) by mild alkaline methanolysis (Guckert et al., 1985). FAMEs were separated 

using an Agilent 6890 Gas Chromatography (GC) (30m x 0.25mm BPX-70 column, 30m 

x 0.32mm, 0.25~-tm film thickness) interfaced with an Agilent 5973 mass spectrometer 

and quantified using an Agilent 6890 equipped with a flame ionization detector. The 

temperature program used was 70°C, ramp at 1 0°C/min to 160°C, hold for 5 min, ramp at 

4°C/min to 280°C, hold for 20min. FAMES were identified using a bacterial reference 

standard (Bacterial Acid Methyl Esters (BAME) CP Mix, Matreya Inc, mass-fragment 

patterns, and retention times. FAMEs were quantified using external FAME standards of 

different carbon chain length: CI4, Cis,CI6, Cl7, Cis, CI9, c20· Ethyl ester C2o:o FAMEs 

generated from PLF A are designated according to Cn:m, where n is the number of carbon 

atoms in the chain and m is the number of double bonds. Recovery of PLF A on the 
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WHC2c June 2010 sample was better than 65%. PLF A are reported as mol% relative to 

the total PLF A. Reproducibility on WHC2c June 20 I 0 subsamples was < 10% relative 

standard deviation. Therefore, an assumed error of± 10% is applied to mol% of all PLF A 

samples quantified. 

3.3.7 Phospholipid fatty acid stable isotope analysis 

Compound-specific stable carbon isotope analyses of fatty acid methyl esters 

(FAMEs) were performed on an Aglilent 6890 GC interfaced with a Finnigan MAT 252 

stable isotope mass spectrometer via a Conflo 11 interface. Precision and accuracy of 

b13CrLFA analyses were determined by multiple injections and compared to a 

commercially available bacteria methyl ester 813C standard mixture supplied by Indiana 

University. Reproducibility for isotopically characterized Indiana standards was better 

than ±0.6%o (la, n=8). 

FAMEs were injected into a split/splitless injector set to splitless at 300°C prior to 

separation on a gas chromatography capillary column (BPX-70, 50m, 0.32 mm internal 

diameter, 0.3um film thickness). The temperature program used was the same as for lipid 

quantification. A small aliquot of methanol used during methylation was analyzed for its 

b13C value on an OI Analytical Aurora 1030 TOC Analyzer coupled to a Finnigan 

MAT252 IRMS. FAME b13C values were corrected for the added methyl carbon via the 

relationship (Equation 2): 

[2] 
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where N is the number of carbon atoms. All the &13C values are reported in 

standard delta notation (Equation 1) relative to Pee Dee Belemnite (PDB) reference 

material. 

3.3.8 Data Analysis 

Data were statistically analysed usmg Excel (Microsoft Excel; release 12.2.3, 

2008) and StatPlus (Mac OS; version 2009) software (Appendix B). Normal distribution 

of data was determined in StatPlus using the Kolmogorov-Smimov/Lilliefor Test based 

on the maximum difference between the sample cumulative distribution and the 

hypothesized cumulative distribution; the Shapiro-Wilk W using power properties to 

compute normality; and the D'Agostino test based on the skewness coefficient, the 

kurtosis coefficient, and combination of both coefficients. In cases where data were not 

normally distributed, non-parametric analysis was employed in addition to parametric 

analysis. An equal-variance t-test or "General Linear Model" analysis of variance 

ANOVA was used. The Mann-Whitney U test or Wilcoxon Rank-Sum Test: a non-

parametric substitute for the equal-variance t-test was used when the assumption of 

normality was not valid. The non-parametric test for difference of medians (Kruskall

Wallis Test) was used to test differences between sampling times and between sampling 

locations for stable carbon isotope values and C:N ratios of organic matter; stable carbon 

isotope values and concentrations of total inorganic carbon (TIC) and dissolved organic 

carbon (DOC). 

Upper and lower 95% confidence intervals were computed for cell counts (Table 

3.1). A Modelll regression (Reduced Major Axis Regression) was also employed using 
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Excel on data where a relationship was being determined between two variables having 

error as both dependant and independent variables (Riggs et al. , 1978). In particular, the 

Modelll regression was employed to determine the relationship between the fractionation 

in fatty acids and TIC, and the fractionation between fatty acids and DOC. 

3.4 RESULTS 

3.4.1 Life detection in ultra-basic springs 

As a first line of evidence for life detection in the ultra-basic springs, the Limulus 

Amoebocyte Lysate (LAL) Assay was deployed in the field due to its advantage of 

detecting viable biomass in situ. In particular, the LAL assay detects endotoxins which 

are a major constituent of the outer cell wall of gram-negative bacteria (Table 3.1 ). 

Endotoxins from the gram-negative bacteria degrade rapidly, within 15 to 30 mm, 

following cell lyses, and therefore, the LAL assay gives the advantage of detecting live 

viable cells in situ. However, LAL results are to be seen as qualitative measurements of 

the relative abundance of gram-negative bacteria in the different sampling locations. The 

LAL assay detected the least amount of endotoxins units (EU) in the freshwater 

endmember WHB (5 ± 0.3 EU/mL, pH 8.5, Eh +439mV); followed by ultrabasic spring 

WHC1 (45 ± 11EU/mL, pH 12.3, Eh + 137mV); WHC2b (62± 10 EU/ml, pH 12.6, Eh-

642); and above detection limits at WHC 2c (>200 EU/mL, pH 11.5, Eh -468mV). The 

error associated with endotoxin concentrations represents the reproducibility on a 

triplicate sample (Io, n=3). 
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The LAL assay is limited to detecting only gram-negative bacteria, and thus is not 

a quantitative measurement of the entire microbial community that exists in the springs. 

Therefore quantitative measurements of microbial abundance using traditional laboratory 

cell counts were employed (Table 3.1 ). Cell counts were measured on fluids and 

carbonate sediments. Average cell concentrations in the carbonate sediment from WHC2a 

and WHC2b were 4.88xl08 and 1.25x 109 celllg (wet weight), respectively. Cell counts 

from the ultra basic fluids at WHC2a were 1.67xl05 cells/ml, 7.14xl04 cells/ml at 

WHC2b and 2.12x I 04 cells/ml at WHC2c. 

3.4.2 Organic matter analysis and carbon isotope composition 

Organic matter (OM) in carbonate sediment was studied to determine its source in 

the ultrabasic springs. Composed of either living or once living organisms, OM can also 

be the product of decomposition and/or capable of decomposition. Therefore, OM can be 

used as biomass (energy source) for the microbial community that exists in the springs. 

Elemental (i.e., C:N) and stable carbon isotopic composition (613CoM) of bulk organic 

matter (OM) can provide information about the source of OM. Table 3.2 lists C:N ratios 

and 613CoM values for bulk organic matter from carbonate sediments collected from 

WHC2a, WHC2b, and WHC2c in June and August 2012, and June 2011. Comparison 

between spring locations and between sampling years are made in attempt to identify 

significant differences and changes in microbial biomass. 

No significant difference (Kruskall-Wallis ANOVA) in 613CoM was observed 

between spring locations WHC2a, WHC2b, and WHC2c sampled in June and August 

2010 and June 2011. A significant annual difference (Mann Whitney U) on average 
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o13CoM from all sampling locations was observed between June 2010 and June 2011 

(p<0.05). Average o13CoM on OM samples from June 2010 was -26.8±0.3%o (n=3, 1o); 

and -25.7 ± 0.2 %o (n=3, 1o) for June 2011. In general., the average o13CoM value 

measured in 2011 was higher by - 1 %o than the average o 13CoM value measured in 2010. 

No significant difference (Kruskall-Wallis ANOVA) between C:N ratios on OM 

was observed between spring locations WHC2a, WHC2b, and WHC2c sampled in June 

and August 2010 and June 2011. However a significant annual difference (Mann Whitney 

U) on· average C:N ratios of OM from all spring locations was observed between June 

2010 and June 2011 (p<0.05). The average C:N ratio on OM in June 2010 was 14.6±1.4 

(n=3, lo), and higher than the average C:N ratio 12.1 ± 0.2 {n=3,1o) for June 2011. 

3.4.3 DOC and TIC analysis 

The concentrations and o 13C values of dissolved organic carbon (DOC) and total 

inorganic carbon {TIC) were measured to characterize the bulk oxidized and reduced 

pools of dissolved carbon in the ultra-basic springs and to determine the changes in these 

pools over the summer season and between two years. DOC and TIC concentrations and 

carbon isotope values are listed in Table 3.2. 

No significant difference (Kruskall-Wallis ANOVA) m average DOC 

concentrations and o13C0 0 c values was observed between spring locations (i.e., WHC2a, 

2b, 2c). Likewise no significant annual difference (Mann Whitney U) in average DOC 

concentrations and o13C00c values was observed between June 2010 and June 2011 for all 

spring locations. 
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A significant difference (Kruskall-Wallis ANOVA) in average TIC concentration 

was observed between spring locations (i.e., WHC2a, 2b, 2c), with the lowest TIC 

concentrations in WHC2a, followed by WHC2b, and highest TIC concentrations in 

WHC2c (Table 3.2). 

No significant difference (Kruskall-Wallis ANOVA) in average 6 13CT1c was 

observed between spring locations (i.e., WHC2a, 2b, 2c) sampled in 2010 and June 2011. 

Likewise no significant annual difference (Mann Whitney U) in average 613CT1c was 

observed between June 2010 and June 2011 for all spring locations. 

3.4.4 Phospholipid fatty acids analysis 

Changes in microbial community structure between sampling sites, over the 20 I 0 

summer season (June and August 20 I 0), and over a one year period (between 20 I 0 and 

June 2011) were determined by analyzing the distribution of different types of PLFA (i.e., 

monounsaturated, polyunsaturated, saturated, branched, and cyclic fatty acids) at each 

sampling location (Figures 3.1, 3.2, 3.3). The PLFA composition of the biomass 

calculated as mol% of the total PLF A from carbonate sediment collected in the ultra-basic 

springs is listed in Table 3.3. PLF A can be grouped based on their carbon structure. 

Figure 3.4 plots the relative abundance of fatty acids by mol% of PLF A group. In 

general, monounsaturated fatty acids comprised the majority of the total PLF A at all 

sampling sites during June and August 2010, and June 2011 with the exception of 

WHC2a from June 20 I 0 where the majority of PLFA were comprised of shorter saturated 

straight chain fatty acids (<20 carbon atoms: comprising of C 14 to C 18); followed by 

polyunsaturated fatty acids, saturated fatty acids (>20C: comprising of C19 to C24), 
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branched fatty acids, and cyclic fatty acids. The total mol% of monounsaturated fatty 

acids ranged from 31.8 to 56.5%; from 14.8 to 36.3 mol% of the shorter ( <20 carbons 

atoms) saturated fatty acids; from 13.1 to 26.8 mol% of the polyunsaturated fatty acids; 

from 2.2 to 14.7 mol% of the longer (>20 carbon atom) saturated fatty acids; 2.4 to 10.2% 

of the branched fatty acids; and 0 to 1.4 mol% of the cyclic fatty acids. No significant 

difference (Mann Whitney U) in the mol% of PLF A values was observed between June 

and August 2010 at spring locations WHC2b and WHC2c and between June 2010 and 

June 2011 at spring locations WHC 2a and WHC2c for all groups. 

3.4.5 Isotopic composition of PLF A 

Differences in carbon substrate and metabolic pathways between sampling sites, 

over the 201 0 summer season, and over a one year period (between June 20 I 0 and June 

20 II) were detennined by analyzing the b 13C value of each PLF A at each sampling 

location. Likewise, the difference in the b 13C value of PLF A between monounsaturated, 

branched, polyunsaturated, and short carbon chained saturated fatty acids were also 

determined. The b 13C value of PLF A from carbonate sediments collected from ultra-

basic springs in June, August 2010 and June 20 I 1 are presented in Table 3.3, and are 

shown in Figures 3.1, 3.2, and 3.3. 

A significant difference (Mann Whitney U) in the PLFA b13C values of all fatty 

acids (i.e., monounsaturated, branched, polyunsaturated, and saturated (<20C) fatty acids) 

was observed between from June 2010 and June 2011 at spring locations WHC2a and 

WHC2c. No significant difference (Mann Whitney U) in the PLFA b 13C values of all 

fatty acids [i.e., monounsaturated, branched, polyunsaturated, and saturated (<20C) fatty 

95 



acids] was observed between from June and August 2010 at spring locations WHC 2b and 

WHC2c. In general., PLFA c5 13C values of fatty acids from samples collected in June 

2011 are more enriched in 13C than c5 13CrLFA values collected in 2010. 

3.5 DISCUSSION 

3.5.1 Evidence for life in the ultra-basic reducing springs 

A geochemical study of the ultra-basic springs at the Tablelands determined that 

the methane in the fluids is non-microbial in origin (Chapter 2). However, extant life was 

detected in the extreme pH environment of the ultra-basic reducing springs using the 

Limulus Amoebocyte Lysate (LAL). In particular, the LAL detected gram-negative 

bacteria at all ultra-basic springs measured. 

Cell counts from fluids and carbonate sediments sediment in the ultra-basic 

reducing springs provide quantitative measurements of the viable biomass that can exist 

in the extreme pH environment. High cell counts were determined in carbonate sediments 

(108-109 cells/g) and in spring fluids (l04-106cells/ ml). Similarly, high cell densities (106
-

109 cells/g carbonate mineral) were determined on biofilms that cover carbonate 

chimneys at a site of serpentinization in the Lost City Hydrothermal Vent Field (Schrenk 

et al. , 2004). Although, high cell densities were determined at both the Tablelands and in 

previous studies of LCHF by Schrenk et al. , (2004 ), phylogenie studies of both sites have 

shown low diversity in the carbonates and fluids; thus, understanding the microbial 

structure that exists in the ultra-basic springs seeps is of particular interest (Schrenk et al., 

2004; Brazelton et al. , 2006; Brazelton et al. , 2012). 
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The LAL assay was useful in quickly determining the presence of a viable 

community (i.e., in particular gram-negative bacteria), and cell counting was useful in 

identifying general abundance levels of biomass at the serpentinization springs. However, 

cell counts in this study do not discriminate between live and dead cells (Nannipieri et al. , 

2003). Furthermore, the LAL assay, and cell counts do not provide infonnation on 

microbial composition or associated metabolisms. Additional phospholipid fatty acid 

(PLF A) analysis of carbonate sediments provide a tool to profile the living microbial 

community in the ultra-basic reducing springs in situ. In addition 613C analysis of PLFA 

can be used to indentify the major sources and fate of organic matter in the environment. 

3.5.2 Microbial community composition 

Phospholipid fatty acids (PLFA) can be used as biomarkers to indicate specific 

groups of organisms (White et al., 1996). Interpretations of the PLF A biomarkers in this 

study are based on literature reviews (Table 3.4). In particular, monounsaturated and 

cyclopropyl unsaturated fatty acids are indicative of gram-negative bacteria (Wilkinson, 

1988). In this study, the combination of monounsaturated and cyclopropyl unsaturated 

PLFA (16:lw7, 18:lw9t, 18:lw9c, 18:3w3), are assigned to gram-negative bacteria. 

Gram negative lipid biomarkers made up the largest group of the total PLFA (range of 32 

% to 56.5%) at all springs with the exception of WHC2a in June 20 I 0 where the 

dominant lipid group belonged to non-specific bacteria commonly found in all bacteria 

(36%) (Boschker, 2002). 
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The second largest lipid group detected were the straight-chained (< 20 carbon) 

saturated fatty acids (14:0, 15:0, 16:0, 17:0, 18:0), indicative of non-specific bacteria 

(range of 14.8% to 29.2%). 

Polyunsaturated fatty acids (16:2w6, 18:2w5, 20:3w6, 20:4w6, 22:6w6) and the 

straight-chained (greater than 20 carbon) saturated fatty acids (20:0, 22:0) are indicative 

of microeukaryotes; made up the third largest lipid group (11.7% to 16.7%) with the 

exception of WHC2b in August 201 0 where microeukaryotes made up the fourth largest 

lipid group. The microeukaryotes also include green algae and some diatom biomarkers 

( 18:3w3, 18:4w3, 20:5w3, 22:5w6) (Volkman et at., 1989; Boschker, 2002). 

Fungal biomarkers (18:2w6, 18:3w6, and 24:0) were also observed (Froostegard 

and Tunlid, 1993, 1996). Fungi made up the third largest lipid group at WHC2b in August 

2010 and fourth largest lipid group at all other sites and sampling times (ranging from 

4.1% to 10.3%). The smallest mol% oftotal PLFA in this study were the methyl branched 

fatty acids (i15:0, a15:0. i16:0, i17:0) indicative of gram-positive bacteria (O'Leary and 

Wilkinson, 1988). 

3.5.3 Source of bulk organic matter 

The elemental composition of organic matter (OM) can provide information on 

the nutrient status of a microbial community (Bianchi and Canuel, 20 12). Organic matter 

which is composed of both living and non-living organic material can be derived from 

both terrestrial sources and can be derived from lipids, carbohydrates, proteins and other 

organic matter components produced by living or once living organisms. Therefore, 

source infonnation on the OM is retained in the C:N ratio and the o13CoM value. Newly 
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reworked OM will have higher C:N ratios due to the preferential microbial uptake and 

breakdown nitrogen over carbon. Alternatively, older OM will contain lower C:N ratios 

due to lower nitrogen concentrations and uptake of organic carbon. 

The C/N ratios of OM were similar between spring locations (WHC2a, 2b, 2c) 

and between summer 2010 (June and August) and June 2011 (Table 3.2). The OM 

collected from the springs has high C/N ratios (ranging from 11.9 tol6.2) suggesting that 

the OM is freshly reworked, either consistently decomposed at the bottom of the springs, 

or decomposed OM is washing downstream into the springs. 

The o13CoM values can be used to distinguish between terrestrial plant sources. 

Terrestrial C3 plants have one values that range from -29 to-25%o, while C4 plants range 

from -22 to -16%o (Oleary, 1988). However, no C4 plants have been identified in the 

Tablelands (Berger et al., 1992). The average o 13CoM value for samples collected in June 

and August 2010 (-27.1 ±0.4%o, n=5, Ia) and June 2011(-25.7 ± 0.2%o, n=3, Ia) fall 

within isotopic range for C3 plant derived OM. 

3.5.4 Isotopic analysis of microbial community 

Phospholipid fatty acids (PLFA) have one values directly related to the o13C 

value of the carbon pool used by bacteria for metabolic processes (Boschker and 

Middelburg, 2002). Additionally, phospholipids turnover quite rapidly during metabolism 

and thus provide a snapshot into the viable biomass present in the environment (White, 

1979). To determine possible metabolisms in the springs, average PLF As were analyzed 

for their o13C values and compared to the isotopic composition of carbon substrates 

(Table 3.5). Carbon sources including DOM and TIC substrate pools were identified, as 
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well as OM which can be utilized by microbial community m the springs m either 

heterotrophic or autotrophic metabolisms respectively. 

Average c~PC of PLFA were calculated from Table 3.3 for PLFA groups 

identified in Table 3.4. Average 6 13C of PLFA from summer 2010 (June and August) 

determined for non-specific bacteria (-31.2 ± 0.6%o, n=5, lo); gram-negative bacteria(-

29.2 ± 0.9%o, n=5, 1o); gram-positive bacteria (-27.1± 0.4%o, n=2, lo); fungi (-31.6 ± 

0.9%o, n=2, lo) and algae (-38.8± 1.2%o, n=2, lo). Average 6 13C of PLFA from June 

2011 were determined for non-specific bacteria (-25.1 ± 0.7%o, n=2, lo); gram-negative 

bacteria (-24.8 ± l.3%o, n=2, 1o); gram-positive bacteria (-23.4± l.7%o, n=2, lo); fungi(-

29.4 ± 3.1 %o, n=2, 1o). and algae (-29.0 ± 1.7%o, n=2, 1o). 

Average 613C of PLFA from June 2011 for all PLFA groups were more enriched 

in 13C relative to average 613C of PLF A from June 2010. This observation is consistent 

with the observed enrichment in 13C in the bulk organic carbon from the carbonate 

sediment biomass in 2011 (-25.7 ±0.2%o) relative to June 2010 (-26.8 ±0.3%o). An 

enrichment in 13C of the biomass from 20 I 0 to 20 II, may be the result of changes in the 

available substrates in combination with changes in the predominant metabolic pathways. 

Both autotrophic (i.e. , algae) and heterotrophic (i.e., fungi) metabolisms were 

identified (Table 3.4). Freshwater algae utilize dissolved C02 which is commonly in 

isotopic equilibrium with atmospheric C02 (~-7%o) (Meyers, 1994) In the ultrabasic 

springs at the Tablelands, the dissolved carbon species are predominately bicarbonate due 

to the high pH nature of the fluids. If the total inorganic carbon pool (i .e., () 13CT1c ranging 

from -19.2 to -ll.5%o) is being utilized by the algae, the 613C of algal PLFA would reflect 
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the isotopic signature for TIC. The average 6 13C for algae lipid biomarker (20:5w3) 

ranged from - 39.1 to -27.8%o. The depleted b 13C of algal LFA may be the result of a 

more depleted source of inorganic carbon that is metabolized by the algae, such as C02 

produced via microbial methane oxidation, or the result isotope fractionation associated 

with different modes of carbon fixation (House et al., 2003). 

Fungi utilize organic carbon for metabolism. If the dissolved organic carbon (i.e., 

b 13Cooc ranging from -23.7 to -16.3%o is being utilized by the fungi, the b 13C of fungi 

PLF A would reflect the isotopic signature for DOC. The fungal biomarkers (18:2w6, 

18:3w6) had average 6 13C values that ranged from -32.9 to -27.2%o, also reflecting a more 

depleted organic carbon source. However, isotope fractionation is associated with the 

isotope value of the source of carbon being metabolized and the different biosynthetic 

pathways (Hayes, 200 I). Therefore, differences in the isotopic value of source carbon and 

heterotrophic metabolisms can help explain the observed range in the () 13C value for 

fungal PLF A. 

The average b 13C value of bacterial lipids ranged from -30.4 to -25. 7%o for gram-

negative bacteria, from -27.4 to -22.2%o for gram-positive bacteria, and -31.9 to -24.5%o 

for non-specific bacteria. The isotopic values of bacterial lipids can reflect either or a 

combination of heterotrophic and autotrophic metabolisms. 

3.5.5 Possible autotrophic and heterotrophic metabolism 

Isotopic fractionations between fatty acids and the bulk oxidized and reduced 

pools of dissolved carbon in the ultra-basic springs can be used to determine possible 

metabolic pathways and in particular to distinguish between heterotrophic and autotrophic 
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metabolisms (Hayes, 2001). The isotopic fractionation between the organism and its 

carbon source is related to the size of the carbon bearing molecule being utilized. 

Reduction of smaller inorganic carbon molecule through autotrophy will result in large 

isotopic fractionation, where as assimilation of larger carbon molecules (i.e., organic 

matter) in heterotrophy will result in lower fractionations. 

Carbon isotopic enrichment factors were calculated to detennine the isotopic 

fractionations between fatty acids and total inorganic carbon (EFA-TJc; Table 3.5), and 

dissolved organic carbon (EFA-ooc; Table 3.5). Fractionations were calculated using 

613CT1c, and 6 13C00c values presented in Table 3.2, and average 6 13CPLFA that were 

grouped based on biomarker fatty acids indicative of different groups of microorganisms 

(Table 3.4). Three major groups of organisms were identified including fungi which are 

predominately heterotrophic, algae which are predominately photosynthesizers and thus 

autotrophic, and bacteria (i.e., gram-positive, gram-negative, and non- specific) which can 

include both autotrophic and heterotrophic metabolisms. 

The isotopic fractionation between fatty acids and TIC (EFA-TJC) relative to the 

fractionation between fatty acids and DOC (EFA-ooc) is plotted in Figure 3.5 . In Figure 3.5 

a weak relationship between isotopic fractionations are observed between each individual 

taxonomic group: gram-negative (R2=0.27), gram-positive bacteria (R2=0.27), and fungi 

(R2=0.16), and non-specific bacteria (R2=0.34), with a slightly stronger relationship in 

algae (R2=0.68). A weak relationship is observed between £FA-TIC and £FA-DOC in all PLF A 

groups (R2=0.51), In general gram-negative, gram-positive, and fungi have smaller £FA-
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TIC and £FA-DOC than algae. Smaller fractionation between fatty acids and TIC and DOC 

respectively suggest heterotrophic activity. 

Variable enrichments between PLFA and TIC; and PLFA and DOC may also be a 

reflection of variability in the isotopic composition of the substrate used and the 

fractionation associated with either the fixation or assimilation of carbon. 

Relative sources of inorganic carbon can include carbon dioxide (C02) derived 

from marine limestones (o 13C= O%o; (Anderson, 1983); a crustal source of C02 (-7 %o; 

(Anderson, 1983); atmospheric C02 (o 13C = -7%o); dissolved carbonate species (i.e., 

cot at pH> I 0, o 13Cco32- = -15 .5%o, at 25°C; (Clark and Fritz, 1997); and C02 from 

microbial oxidation (o13C ~ -23 to +4%o, assuming a starting o13C methane of -27%o; 

Chapter 2). Changes observed in the autotrophic PLF A that cannot be explained by 

changes in o13C ofthe inorganic carbon (i.e., same o13CT1c values measured) may be due 

to either temperature changes (i.e., spring and summer) or different photosynthetic 

pathways. 

The o13C value of heterotrophic substrate is much more difficult to detem1ine 

because heterotrophs use a variety of organic compounds found in DOC. Variability in 

the o13C00c was observed between sampling sites and sampling times (o13C00c ranging 

from -23 .7 to -16.3%o). The o13C of DOC can be difficult to resolve due to the 

contribution from primary production, food web release, marine organic matter ( -23 to -

18%o) and terrestrial sources ( -29 to -25%o) to DOM with varying isotopic signatures 

(Oleary, 1988). 
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An isotopic fractionation is also associated with the total biomass and PLF A. 

Lipids in general are depleted in 13C relative to the total biomass by 3-6%o, however other 

studies have shown more variable enrichment factors between +4%o to -9%o (Boschker et 

a!., 1998; Zhang et a!., 2004). Enrichments between fatty acids and biomass are 

metabolism-specific. In this study the EFAOM varied between -13%o to 5%o (Table 3.5). In 

particular, fatty acids belonging to algae, fungi, and bacteria, including gram-negative and 

non gram-specific bacteria were depleted in 13C relative to the biomass (by -2 to -13%o), 

where as other fatty acids including all gram-positive, gram-negative, and non-specific 

bacteria were enriched in 13C relative to biomass (1-4%o). 

Other available substrates for the microbial community including H2, nitrates, 

phosphates, sulphates and organic acids such as acetate have also been identified 

(Brazelton et a!., 2012; Kavanagh et a!., 2012). No lipid biomarkers diagnostic of 

methanotrophic bacteria (PLF A 16: 1 w8 and 18: 1 w8) were detected in the springs. This 

agrees with recent geochemical data from Chapter 2 and microbial studies by Brazelton et 

a!. (20 12) which suggest that the methane detected in the springs is non microbial. 

However, the presence of CH4 produced at sites of serpentinization could also provide a 

substrate for methane oxidation which has not yet been identified. 

3.5.6 Linking phospholipid fatty acid analysis to previous microbial studies 

Brazelton et a!. (20 12) provided a metagenomic and phylogenetic survey 

(16SrRNA) of bacteria present in the ultra-basic spring WHC2b at the Tablelands to 

determine the potential of H2 primary production. Both metagenomic and phylogenetic 

studies are useful in profiling the microbial diversity, taxonomic classification of 
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organisms, and determining possible metabolisms of particular kinds of microbes such as 

bacteria and fungi (Brock, 1975). However, the additional use of lipid-based analysis is a 

complimentary technique to study the microbiology of the springs because it can provide 

both quantitative concentration and carbon isotope signatures to help understand relative 

biomass and the carbon source metabolized by the microbial community in situ. The 

samples collected by Brazelton et al. (20 12) were collected during the same sampling 

period as the current study and thus samples from the PLF A analysis can be directly 

compared to the metagenomic and phylogenetic survey. 

Brazelton et a!., (2012) found the dominance of ~-proteobacteria (species 

Hydrogenophaga, within the order Burkholderiales) followed by the presence of 

firmicutes (within Bacillales and Clostridales orders) in lesser amounts in the fluids 

collected at WHC2b in August 2010. Proteobacteria are faculative autotrophs and gram

negative bacteria (Schwartz et a!., 2009). The dominance of proteobacteria in the ultra

basic springs agrees with the presence of gram-negative bacteria determined with the 

LAL assay, and dominance of gram-negative lipid biomarkers. The Bacillales (facultative 

aerobes) and Clostridales (obligate anaerobe) orders are commonly gram-positive 

bacteria (Schwartz et a!. , 2009). Gram-positive lipid biomarkers were also detected m 

lesser amounts in the ultra-basic springs. 

This PLF A study demonstrated that the organisms in the ultra-basic springs were 

ubiquitous among the ultra-basic springs, with PLF A belonging to bacteria, and fungi , 

and eukaryote groups. Different metabolic pathways (both heterotrophic and autotrophic) 

are likely occurring in the Tableland springs as evidenced by the different fractionations 
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associated with individual PLFA and presence of different organisms as determined by 

different biomarker compounds. It is difficult to determine exact metabolic pathways and 

resolve carbon sources solely using b13CT1c and b13C00c due to overlapping signatures in 

the carbon pool. Further labelling studies in combination to isotopic analysis of PLF A on 

pure cultures isolated from the serpentinization springs may help in resolving the 

substrates and metabolic pathways used with the microorganisms present in the springs. 

3.6 CONCLUSION 

Serpentinization provides both the reducing conditions and organic carbon (i.e., 

methane, other low molecular weight compounds) to support microbial life that may 

inhabit the ultramafic subsurface (McCollom and Shock, 1997; Proskurowski et a!. , 

2008). However, the microbial community existing at sites of serpentinization are poorly 

understood. The highly reducing and high pH conditions should inhibit the growth of 

most organisms, therefore life that can survive in the springs associated with 

serpentinization is considered to be extreme. 

This is the first phospholipid fatty acid study conducted at a continental site of 

serpentinization. As a first line of evidence using life detection instrumentation including 

the LAL assay and cell counts, there is evidence for life in the ultra-basic springs at the 

Tablelands. PLFA biomarkers were used to determine groups of microorganisms that live 

in the springs and they were analyzed for their isotopic composition to help determine 

possible carbon substrate and metabolic pathways. 

The largest mol% of total PLF A in the ultra-basic springs were monounsatured 

and cyclopropane unsaturated PLF A which are indicative of gram-negative bacteria. The 
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presence of lipid compounds related to gram-negative bacteria agrees with observations 

of gram-negative bacteria determined using the LAL assay. The dominance of gram

negative bacteria PLF A is also consistent with initial microbiological studies of the 

Tablelands spring fluids, which have found the presence of gram-negative proteobacteria 

(Brazelton et al., 2012). Likewise, the presence of gram-positive PLFA signatures 

supports the presence of Firmicutes as determined through microbiological studies of the 

spring fluids (Brazelton et al., 20 12). 

The 613C value of PLF A from June 2011 were more enriched in 13C relative to 

June and August 2010, which is consistent with the observed enrichment in 13CoM of the 

total biomass in 20 II relative to 20 I 0. Isotopic variability in both PLF A and biomass 

may be the result of changes in the available substrates in combination to changes in the 

metabolic pathways as reflected in variability in enrichment factors (E) between FA and 

biomass, FA and TIC, and FA and DOC. PLF A biomarkers identified both heterotrophic 

and autotrophic microorganisms in the ultra-basic springs. 

The lack of a methanogenic indicator PLF A further suggests that the methane 

detected is not produced from microbial methanogenesis via the carbonate reduction 

pathway. This observation is consistent with past studies where methane from ultra-basic 

springs was determined non-microbial (Chapter 2) in addition to microbiological studies 

(Brazelton et al., 2012). 

Although it is difficult to resolve exact metabolic pathways without labelled 

studies on pure cultures from the Tableland springs, PLF A provided useful information 
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on the changing community structure, while isotope fractionations were useful m 

identifying possible metabolisms and shifts within the community. 
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3.7 FIGURES AND TABLES 

Table 3.1Cell abundance and endotoxins detected from the Tablelands ultra-basic fluids as evidence for life 

Carbonate sediment Fluids 
Redox Avg 

Sample pH Avg (mY) 
(cells/g) 

95% LCI 95% UCI (cells/ml 95% LCI 
fluid) 

WHC1 12.3 137 n.d. 3.39E+06 3.2E+06 
WHC2A 12.5 -647 4.88E+08 4.7E+08 5. \E+08 1.67E+05 1.5E+05 
WHC2B 12.6 -642 1.25E+09 1.1 E+09 1.3E+09 7.14E+04 6.3E+04 
WHC2C 11.5 -468 n.d. 2.12E+04 1.9E+04 
WHB 8.5 439 n.d. n.d. 
a - . o. - -EU - endocnne umts, >QL - greater than quantificatiOn limit (>200EU/mL), n.d.- not determmed, 
c Corrected for a I :400 dilution d Corrected for a l :20 
LAL averages are based on a triplicate sample (n=3 , 1o). 

Avg 
LAL 

95% UCI 
(EU/mL)" 

3.6E+06 45 (±11 )" 
1.8E+05 n.d. 
7.9E+04 62 (±IO)ct 
2.4E+04 >QLb.ct 

5 (±0.3) 

LALmeasurements were obtained from samples in July 2009. Redox and pH measurements were obtained in June 2010 
(Szponar et al. , In Press). Cell abundance data was obtained from samples collected in June 20 I 0. 
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Table 3.2 Geochemical analyses of possible carbon substrates in ultra-basic springs for microbial metabolism including bulk organic matter 
(OM), dissolved organic carbon (DOC), and total inorganic carbon (TIC) 

SamEle site and time EH Eh 013CoM%o" C: Nb DOC [mg/L] 6
13

CnoM %o TIC [mg/L] () 
13

CTIC. %o 

WHB Jun-10 8.5 439 n.d. n.d. 0.44 (±0.02) <d.l. 7.47 (±0.20) -1.1 (±0.02) 

Aug-10 7.9 413 n.d. n.d. 0.35 (±0.0 I) <d. I. 10.36 (±0.15) -3 .0 (±0.1) 

Jun-1 I 7.8 382 n.d. n.d. 0.30 (±0.0 1) <d.l. 7.1 (±0.4) -2 .1 (±0.1 ) 

WHC2a Jun-10 12.5 -647 -26.7 16.2 1.93 (±0.16) -16.3 (±0.9) 0.39 (±0.05) -1 2.5 (±0.1) 

Aug-10 12.4 -642 -27.4 15.5 2.67 (±0.11) -17.2 (±0.6) 1.17 (±0.03) -1 9.2 (±0.1 ) 

Jun-11 12.4 -690 -25 .9 12.3 0.35 (±0.20) <d.l. 1.13 (±0.4) -1 4.7 (±0.9) 

WHC2b Jun-10 12.6 -642 -27.1 13.9 0.44 (±0.08) <d. I. 1.73 (±0.2) -13 .0 (±0.3) 

Aug-10 12.3 -596 -27.6 15.4 1.09 (±0.03) -26.5 (±0.7) 2.16 (±0.4) -1 7.3 (±1.5) 

Jun-11 12.3 -618 -25 .8 12.2 0.29 (±0.03) <d.l. 1.20 (±0.4) -1 7.6(±0.4) 

WHC2c Jun- 10 11.5 -468 -26.7 13.8 1.93 (±0.04) -22.3 (±0.4) 11.7 (±0.2) -11.5 (±0.1) 

Aug-10 12.0 -106 n.d. n.d. 1.37 (±0.01 ) -23 .0 (±0.1 ) 14.7 (±0.4) - 12.6 (±0.2) 

Jun-11 12.2 -458 -25 .6 11.9 0.84 (±0.012 -23.7 (±0.022 13.5 (±0.62 
• Error associated with 6 13Corg. is ±0.3%o ( I a) which includes both analytical and instrumental error on a sample ran in duplicate. 

-11.8 {±0.032 

b Error associated with C:N ratio is ±0.3 ( I a) which includes both analytical and instrumental error on a sample ran in duplicate. 
Error associated with DOC and TIC concentration and stable carbon isotope measurements is ± standard deviation (n=3, la) and less than ±0.5%o for 
6 13C on triplicate samples. 
n.d. = not detennined, <d.l.= below linearity for 6 13C detection(~ 0.50 mg/L) 
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Table 3.3 Distribution of mol% and b 13C of PLF A as detected in June, August 20 I 0, and June 20 II 

~ WHC2a WHC2b WHC2c 
Jun-10 Jun-1 I Jun-10 Aug-10 Jun-10 Aug-10 Jun-1 I 
Mol 0 13CPLFA ,%o Mol Ou CPLFA ,%o Mol O" CPLFA ,%o Mol O" CPLFA ,%o Mol O" CPLFA ,%o Mol Ou( PLFA ,%o Mol OIJCPLFA ,o/oo 

PLFA I.D. % % % % % % % 
a-15 :0 0.0 2 .5 -21.3 (± 3.6) 4.1 0.0 2.1 -26.8 (± 1.0) 3.3 2.2 -24.0 (± 0.5) 
i-15:0 4.1 2 .7 -23.1 (± 2.0) 3.8 2.4 -27.4 (±0.6)b 2.1 -26.7 (± 1.4) 4.7 2.1 -25.3 (± 0.3) 
i-16:0 0.0 1.3 0.0 0.0 1.1 1.3 0.9 
i-17:0 0.0 1.0 0.0 0.0 0.9 1.0 0.6 
tl 17:0 0.0 1.4 0.0 0.0 1.0 1.1 0.8 
16:1w7 12.4 -31 .3 (± 0.6) 15.2 -22.0 (± 0.4) 17.7 -28.7 (± 0.3) 7.3 -29.8 (± 1.7) 14.7 -30.5 (± 1.2) 13.0 17.1 -23.4 (±0.5) 
18: I w41rans 0.0 0 .9 0.0 0.0 1.5 0.0 0.8 
18: 1w9cis 10.8 -27.8 (± 3.1) 14.1 -24.9 (± 0.4) 13 .5 -27.2 (±0 .9) 36.7 -28.3 (± 0.6) 20.1 -29.5 (± 0.4) 23.6 -28.3 (± 0.8) 17.0 -25.9 (± 0.2) 
18:1 w9trans 8.6 -30.1 (± 1.5) 4.4 -24.6 (± 0.4) 6.3 -29.1 (±2.3) 12.4 -28.7 (±1.5) 5.5 -31 .2 (± 0.9) 6.2 -28.8 (± 0.9) 4.1 -27.8 (± 0.2) 
16:2w6 0.0 1.9 0.0 0.0 1.3 0.0 1.8 
18:2w5 0.0 0 .9 0.0 0.0 1.7 3.7 1.2 
18:2w6 4.0 3.5 -26.6 (± 1.7) 3.8 3.5 4.5 -33 .9 (± 0.4) 4.3 3.9 -30.7 (± 1.1) 
18:3w3 0.0 3.2 -30.0 (± 0.6)b 0.0 0.0 2.3 -37.8(± 0.6)b 1.2 3.3 -32.5 (± 0.4) 
18:3w6 5.4 3.3 -27.8 (± 0.6) 4.4 -31.1 (±0.4) 10.1 -31.1 (± 0.4) 3 .2 -32.0 (± 0.5) 4.5 -31.3 (± 0.8) 1.8 -32.4 (± 1.8) 
18:4w3 0.0 2.1 0.0 0.0 1.0 0.0 1.4 
20:4w6 0.0 1.5 2.4 2.0 1.7 1.3 1.0 
20:5w3 0.0 8.3 -25.5 (± 0.6) 3.6 5.7 -37.4(±0.6)b 4 .9 -39.1 (± 0.8) 2.4 9.0 -27.9(±0. 1) 
22:5w6 3.7 0.9 0.0 0.0 0.8 0.8 0.7 
22:6w6 0.0 1.1 0.0 0.0 0.7 0.0 1.0 
14:0 5.7 3.8 -22.4 (± 2. 1) 4.7 2.3 3 .0 -32.2 (± 0.4) 2.9 3.5 -23.5 (±0.9) 
15:0 0.0 0.9 0.0 0.0 0.9 0.0 0.7 
16:0 19.9 -33.1 (± 0.6) 15.8 -23.1 (± 0.3) 17.0 -30.3 (± 1.1 ) 7.1 -3 1.4 (± 0.3) 14.3 -32.4 (± 0.8) 16.2 -32.0 (± 0. 7) 18.2 -25 .1 (± 0.5) 
17:0 0.0 0.0 0.0 0.0 0.7 1.0 0.6 
18:0 10.8 -30.6 (± 0.6) 3.5 -28. 1 (± 0.4) 7.6 -30.3 (± 0 .3) 5.4 -30.8 (± 0.9) 3.9 -31 .0 (±0.6) 4.5 -30.4 (± 0 .3) 2.6 -28.2 (± 1.0) 
20:0 5.9 1.5 4.1 3.2 1.3 1.3 0.8 
22:0 4.7 1.2 3.4 1.8 1.0 1.0 0.6 
24:0 4.1 1.1 3.6 0.0 0.9 0.8 0.7 
16:1w? b 0.0 1.8 0.0 0.0 2.8 0.0 1.7 
TOTAL 100 100 100 100 100 100 100 

0 0 13, Error on PLFA mol Yo IS± 10 % re lative standard dev1at10n (see methods) Error associated w1th b C represents standard deviatiOns on multiple samples 
a isotope value of a single measurement, error represents the standard deviation on FAME Indiana standard (n=6). b The position of the double bond for PLFA 16:1 w? is unknown. 
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Table 3.4 PLF A detected in this study and their interpretation for the Tablelands ultra-basic springs 

PLFA Type Group Reference 
il5:0, al5 :0. il6:0, Methyl Branched Bacteria, Gram positive (Wilkinson, 1988), (White et al. , 1996), 
i17:0 (O'Leary and Wilkinson, 1988) 
16:1w7, t:, 17:0, Monounsaturated and Bacteria, Gram (Wilkinson, 1988), (White et al. , 1996); 
I 8: I w9t, I 8: I w9c, cylcopropane negative 
18:1w4t, 18:3w3 unsaturated 
18:2w6, 18:3w6, 24:0 Monou·nsaturated and Fungi (Frostegard et al. , 1993), (Frostegard and 

polyunsaturated Baath, 1996), (Wells et al., 1996) 
18:3w3, 18:4w3, Polyunsaturated Green Algea and some (Volkman et al. , 1989), (Boschker, 2002) 
20:5w3, 22:5w6 diatoms 
16:2w6, 18:2w5, Polyunsaturated Microeukaryotes (Volkman eta!., 1989), (Lechevalier, 1977), 
20:3w6, 20:4w6, (Zelles, 1999) 
22:6w6 
14:0, 15:0, 16:0, 17:0, Saturated straight Bacteria (non-specific) (Lechevalier, 1977), (Boschker, 2002) 
18:0 chained (<20C) 
20:0, 22:0 Saturated straight M icroeukaryotes, (Zelles, 1999) 

chained (>20C) higher plants, mosses 
* 16:1 w7 and 18:1 w9c can occur tn Gm +ve bactena and eukaryotes in lesser amounts (Leckie, 2005), however for this study, these 
PLF A are grouped with Gm -ve Bacteria. 
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Bacteria (n.s) 
Avg 6 13CFA 

EFA-OM (%o) a 

E FA-TIC (%o) a 
E FA-DOC (%o) a 
Fungi 

Avg 6 13CFA 
EFA-OM(%o) a 
E FA-Tic(%o) a 
E FA-DOC (%o) a 
Gm -ve 
Avg 6 1 CFA 

EFA-oOM (%o) a 
E FA-Tic(%o) a 

E FA-DOC (%o) a 
Gm+ve 
Avg 6 13CFA 
EFA-OM (%o) a 

E FA-TIC (%o) a 

E FA-DOc (%o) a 
ME, algal 

Table 3.5 Enrichment factors of microbial., fungal. , and algal groups as determined in this study 

Jun- I 0 

WHC2a WHC2b WHC2c 

-31.7 (± 2.0) -30.3 (± 0.1) -31.9 (± 0.7) 
-5.2 (± 0.01) -3.3 (± 0.01) -5.4 (± 0.01) 
-19.5 (± 0.04) -17.6 (± 0.01) -20.6 (± 0.01) 
-15.7 (± 0 .05) -9.8 (± 0.01) 

-31.1 (± 0.6)b -32.9 (± 0.01) 
-4.1 (± 0.01) -6.4 (± 0.01) 
-18.4 (± 0.01) -21.6 (± 0.01) 

-10.9 (± 0.01) 

-29.7 (±I .8) -28.3 (± I .0) -30.4 (± 0.9) 
-3.1 (±0.01) -1.2 (± 0.0 I) -3.8 (± 0.01) 
-17.5 (± 0.03) -15.6 (± 0.01) -19.1 (± 0.01) 
-13.7 (± 0.05) -8.3 (± 0.01) 

-26.8 (± 0.3) 
-0.1 (± 0.01) 
-15.4 (± 0.01) 
-4.6 (± 0.01) 

Au -10 

WHC2b 

-31.1 (± 0.5) 
-3.6 (± 0.01) 
-14.1 (±0.05) 
-11.0 (± 0.01) 

-31.1 (± 0.6)b 

-3.6 (± 0.01) 
-14.1(±0.06) 
-1 I .0 (± 0.01) 

-28.9 (± 0.8) 
-1.4 (± 0.0 I) 
-11.9 (± 0.05) 
-8.8 (± 0.01) 

-27.4 (± 0.6)b 

0 .2 (± 0.01) 
-10.3 (± 0.04) 
-7.2 (± 0.01) 

WHC2c 

-31.2 (± 1.2) 

-18.8 (± 0.01) 
-8.5 (± 0.01) 

-31.3 (± 0.6)b 

-18.9 (± 0.01) 
-8.5 (± 0.01) 

-28.5 (± 0.3) 

-16.1 (±0.01) 
-5.7 (± 0 .01) 

Jun-1 I 

WHC2a 
-24.5 (± 3.1) 

1.4 (± 0.01) 
-1 0.0 (± 0.10) 

-27.2 (± 0.8) 
-1.4 (± 0.01) 
-12.7 (± 0.03) 

-23 .8 (± 1.6) 
2.1 (± 0.01) 
-9.3 (± 0.04) 

-22.2 (± 1.1) 

3 .8 (± 0.01) 
-7.6 (± 0.03) 

WHC2c 
-25 .6 (± 2.4) 

0.0 (± 0.01) 
-13.9 (± 0.06) 
-2.0 (± 0.01) 

-31 .6 (± 0.5) 
-6.2 (± 0.01) 
-20.0 (± 0.01 ) 
-8.1 (±0.01) 

-25 .7 (± 2.2) 
-0.2 (± 0.0 I) 
-14.1 (± 0.05) 
-2.1 (± 0.01) 

-24.7 (± 0.2) 
0.9 (± 0.01) 
-13.0 (± 0.01 ) 
-1.0 (± 0.01) 

Avg 6
13

CFA -39.1 (± 0 .9) -37.4 (± 0.6)b -27.8 (± 3.2) -30.2 (± 3.3) 
EFA-OM(%o)a -12.8(±0.01) -10.1(±0.01) -1.9(±0.01) -4.8 (± 0.03) 
E FA-TIC(%o) a -27.9 (± 0 .01) -20.5 (± 0.08) -13.3 (± 0.1) -1 8.6 (± 0. I) 
EFA-Doc(%o)a -17.2(± 0.01) -17.4(± 0.01) -6.7 ± (0.04) 
a Enrichment factor between two substances. EA-B = ((6 13CA +I 000)/(6 13C8+ I 000)-1) x 1000. FA= average total fatty acids; OM= bulk organic matter; 
TIC= total inorganic carbon; DOC= dissolved organic carbon. Errors were calculated using error of propagation by division. 613C values for bulk organic 
carbon, TIC, and DOC are listed in Table 2.b Standard deviation on average values is ±0.6%o which is standard deviation on FAME Indiana standard (n=6). 
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Figure 3.1 Spatial and temporal changes in microbial mol% (bars) and b13C 

(circles) of PLFA in ultra-basic spring WHC2a. Error bars associated with PLFA mol % 

are ± I 0% RSD, and error bars associated with b 13C represents standard deviations on 

replicate samples. Error bars may be smaller than the plotted point. Please note that not 

all PLFA have b 13C values because they were either not detected or below detection 

limits. Please note the different scales for the y-axis. 
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Figure 3.2 Spatial and temporal changes in microbial mol% (bars) and b13C 

(diamonds) of PLFA in ultra-basic spring WHC2b Error bars associated with PLFA mol 

% are ± 10% RSD, and error bars associated with b 13C represents standard deviations on 

replicate samples. Error bars may be smaller than the plotted point. Please note that not 

all PLF A have b 13C values because they were either not detected or below detection 

limits. Please note the different scales for they-axis. 
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Figure 3.3 Spatial and temporal changes in microbial mol% (bars) and b13C 

(triangles) ofPLFA in ultra-basic spring WHC2c Error bars associated with PLFA mol % 

are ± 10% RSD, and error bars associated with b 13C represents standard deviations on 

replicate samples. Error bars may be smaller than the plotted point. Please note that not 

all PLFA have b13C values because they were either not detected or below detection 

limits. Please note the different scales for the y-axis. 
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Chapter 4: Summary 

4.1 SUMMARY AND FUTURE WORK 

Serpentinization is an exothermic reaction where ultramafic rocks undergo 

hydration and produce an abundance of hydrogen gas (H2), resulting in conditions 

favourable for the synthesis of hydrocarbon gases such as methane. Current studies on 

sites of serpentinization today include the Lost City Hydrothermal Vent Field (LCHF), 

which is a marine location (Kelley et al., 2001 ), deep subsurface mines in the 

Precambrian Shield (Sherwood Lollar et al., 2006); and other continental locations 

including the ophiolite at Oman (Neal and Stanger, 1983), Turkey (Hosgormez, 2006), 

Philippines (Abrajano et al., 1990), and Cazadero, California (Barnes et al., 1967; Morrill 

et al., submitted). At these sites, characteristic ultra-basic and reducing fluids rich in 

hydrogen gas and variable amounts of hydrocarbons have been identified. A common 

focus in these studies has been to identify the source of hydrocarbon gases, particularly 

methane, and attribute its synthesis to either abiogenic or biogenic synthesis. 

Understanding and identifying the source(s) of methane is of particular interest as sites of 

serpentinization are considered important analogues for organic synthesis both on early 

Earth and potentially on other planets such as Mars (Oze, 2005; Schulte et al., 2006). The 

potential for microbial production of methane at these sites has brought forward an 

additional interest in identifying the microbial communities that can survive in the 

extreme environment of the ultra-basic, reducing fluids (Schrenk et al., 2004; Brazelton 

and Baross, 2008; Morrill et al., submitted). Previous microbial studies on sites of 

serpentinization include a marine location at the LCHF (Schrenk et al., 2004; Brazelton 
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and Baross, 2008; Konn, 2009), and continental locations including Cazedero, California 

(Morrill et al., submitted). Therefore the microbial communities and potential 

metabolisms that allow them to thrive at sites of serpentinization is still poorly 

understood. The Tablelands Ophiolite is a continental site exhibiting active 

serpentinization and it is a Mars analogue. 

The first aim of this thesis was to geochemically characterize the springs at the 

Tablelands and determine the mechanisms for hydrocarbon synthesis within the fluids 

using both compositional and isotopic analysis. To meet the first objective of Chapter 2, 

ultra-basic springs discovered so far in the Tablelands Ophiolite (i.e., WHCI , WHC2, 

TLE, WB) were distinguished based on common geochemical characteristics of springs 

with other sites of serpentinization such as Cazadero, in California (Barnes et al., 1967; 

Morrill et al., submitted). Similar to the springs in Cazadero, the springs in the Tablelands 

are highly reducing; ultra-basic; and meteoric in origin; with high Ca2+/Mg2+ ratios; and 

calcium-rich carbonate sediment and travertine deposits in and around the ultra-basic 

springs. Isotopic analyses of carbonates suggest that carbonate sediment and travertine 

were precipitated under non-equilibrium conditions with the atmosphere and fluids. , 

Additionally, large amounts of H2 (g) and variable amounts of methane (CH4) and 

low molecular weight hydrocarbon (C2 to C6) gases were detected in the springs. The 

second objective in Chapter Two was to determine the mechanisms responsible for their 

synthesis (microbial., thermogenic, or abiogenic) of aqueous hydroarbons trhough the 

bulk and stable carbon isotope analysis of methane and low molecular weight 

hydrocarbons. The results from this study showed that the primary source of methane in 

the ultra-basic springs is not microbial., but either thermogenic or abiogenic. 
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Additional work is needed to distinguish between the two possible sources of 

methane. One possible approach is to examine the stable isotope composition of hydrogen 

of the hydrocarbon gases to determine if they are abiogenic or thermogenic in origin. 

Hydrogen isotopes of thermogenic hydrocarbons have been determined to be more 

positive (>+250%o) relative to abiogenic hydrocarbons (<+250%o) for hydrocarbons with 

overlapping carbon isotope signatures (Sherwood Lollar et al., 2002). Therefore, a 

combination of carbon and hydrogen isotopes can help resolve between abiogenic and 

thermogenic hydrocarbons. In this study, dissolved concentrations of hydrocarbons were 

below detectable limits to measure hydrogen isotopes. To resolve the issue of low 

concentrations, larger sample sizes were collected but were not analyzed in this study. 

A thennogenic origin for methane is possible mechanism at the Tablelands 

because it is likely that sedimentary organic matter is associated with the ultramafic 

complex that would have been exposed to high temperatures and pressures during the 

emplacement of the ophiolite. However, abiogenic synthesis of hydrocarbons has also 

been shown to occur at active sites of serpentinization (Sherwood Lollar et al. , 2006; 

Proskurowski et al., 2008). Further isotopic and compositional analyses as well as 

biomarker, and other organic matter maturity analyses of the sedimentary organic matter 

beneath the Tablelands peridotite may help delineate the source of methane and 

hydrocarbon gases present in the ultra-basic springs. 

Similar application of isotopes and composition of hydrocarbons used to delineate 

sources of methane at the serpentinization sites in the Tablelands can be used to analyze 

data from the Mars Sample Laboratory and source CH4 detected in areas of 

serpentinization on Mars. Additionally, serpentinization at the Tablelands Ophiolite can 
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be used both as a mineralogical and a geochemical indicator to understand previous 

aqueous environment conditions and conditions suitable for methane production not only 

on Earth but also potentially on other ultramafic planetary bodies such as Mars. 

Although the methane produced at the serpentinization sites in the Tablelands is 

non-microbial in origin, extant life was found in the ultra-basic springs. There are very 

few studies that report on microbial life that exists at sites of serpentinization. 

Understanding how microbial communities thrive in these present-day extreme 

environments could help in our interpretation of past or present life on Earth and other 

planets, as well as provide a window into microbial life in the deep subsurface where 

serpentinization is occurring not only at the Tablelands, but possibly at other continental 

sites of serpentinization. 

The second aim of this thesis in Chapter 3 was to detect and identify the microbial 

community in the ultra-basic springs and determine their role in carbon cycling within the 

springs. Prior to this study, Brazelton et al. (2012) provided a metagenomic and 

phylogenie study of the ultra-basic springs at the Tablelands. This study is one of the first 

microbial studies at a continental site of serpentinization to examine microbial 

community structure using phospholipid biomarkers and isotopic analysis to determine 

possible substrate and metabolisms used by the ambient microbial community. The 

objectives of Chapter 3, to detect life and subsequently characterize the a microbial 

community, were met using life detection instrumentation including the LAL assay which 

detem1ined the presence of gram-negative bacteria in the ultra-basic springs. 

Additionally, cell counts determined a large abundance of microbial life (> 1 06
) in the 

spnngs. 
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Using PLF A biomarker compounds, fungi, eukaryotes including algae, and 

bacteria (both gram positive and gram negative) groups were detected in the springs. The 

largest mol% abundace of total PLF A in the ultra-basic springs were monounsatured and 

cyclopropane unsaturated PLF A which are indicative of gram-negative bacteria. The 

dominance of gram-negative bacteria and lesser amounts of gram-positive bacteria 

supports the findings of Brazelton et a!. (20 12), who determined the presence of gram

negative proteobacteria as the dominant species and the presence of some gram-positive 

Firmicutes in the ultra-basic fluids. 

Community structure was determined using compositional analysis of the biomass 

and phospholipid fatty acids (PLFA). Shifts in the community structure were identified in 

the groups of microorganism groups including fungi, algae, and bacteria (gram positive, 

gram negative) during June and August 2010, and June 2010. 

No methanogenic PLF A signatures (16: 1 w8 and 18: I w8) were found in the ultra

basic springs, further confirming results from the second Chapter, which determined that 

the methane from ultra-basic springs was non-microbial. To meet the second objective of 

Chapter 3, to identify possible metabolisms in the ultra-basic springs, the stable carbon 

isotope composition (6 13C) of PLFA and biomass were identified and compared to the 

() 
13C value of dissolved inorganic and organic carbon pools. Differences in () 13C of PLF A 

were observed between June and Aug 2010 and June 2011 , with PLFA more enriched in 

13C in June 2011 relative to June and August 2010. This observation was consistent with 

the observed enrichment in 13CoM of the total biomass in 2011 relative to 2010 suggesting 

possible differences in the available substrates or metabolisms. 
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Variability in enrichment factors ( £) between fatty acids (FA) and biomass, FA 

and total inorganic carbon (TIC), and FA and dissolved organic carbon (DOC) suggests 

changes in the substrates used in combinations to changes in metabolic pathways. 

Although it is difficult to resolve the exact metabolic pathways without knowing 

the specific carbon source, future labelled substrate and nutrient addition experiments on 

pure cultures with known metabolic pathways could help delineate the possible metabolic 

pathways (Zhang et a!., 2004). Furthermore PLF A analysis on microbial isolates could 

identify distinct biomarkers that can be compared to the natural abundance biomarkers in 

order to identify specific microbes, their shifts within the community, and corresponding 

metabolisms in situ. 

This study addresses the origin of methane in the Martian atmosphere and the 

potential for the existence of life on Mars. The discovery of a rich microbial community 

thriving in an extreme environment, could suggest the possibility of a similar microbial 

life is or was possible on Mars. However, this study has shown that microorganisms in 

the Tablelands springs do not produce methane, suggesting that Martian methane may not 

be the most indicative product of putative Martian metabolic activity. This is consistent 

with the recent findings by Keppler et a!., (20 12) that the Martian methane is produced 

when carbonaceous compounds are decomposed by high-energy UV radiation, rather than 

biological process. Further studies should aim at possible abiogenic sources that could be 

contributing to the Martian methane. Future work should aim at better constraining 

carbon sources of methane (abiogenic, thermogenic) and the carbon substrates and 

metabolic pathways used by the microbial community. 
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A I H d .. tyt rogen an d oxygen 1sotopes o rn ·d r u1 s rom Ch apter 2 F" 
' 

1gure 2 3 d 2 4 an 
Delta 180 and Delta 2H 

Avg Delta Avg Delta 2H 
Location Date Sampled pH Eh (mV) 180 VSMOW Stdev VSMOW Stdev 

WHC2a Jul-09 11.64 -867 
Jun-10 12.57 -847 -11.13 0.06 -71.6 0 .24 

Aug-10 12.40 -842 

Oct-10 12.50 -378 
WHC2b Jul-09 11.62 -749 -10.42 0 .08 -68.31 0.13 

Sep-09 12.2 -875 -10.76 0 .05 -67.53 0.18 

Jun- 10 12.63 -842 -11.23 0 .09 -72.74 0.21 

Aug-10 12.06 -733 
Oct-10 11.00 -123 

WHC01-pool € Sep-09 11 -90 -9.48 0.03 -61.17 0.25 
Jun- 10 12.35 -63 -9.46 0.09 -64.53 0.18 
Aug- 10 11.96 -85 
Oct-10 12.31 -86 

WHC2c Sep-09 10.3 -89 -9.65 0.13 -62.88 1 
Jun-10 13.11 -787 -11.68 0.05 -77.66 0 .16 
Aug-10 12.31 -796 

Oct-10 12 -306 
TLEb Jul-09 10.19 -67 -12.16 0 .25 -79.88 0 .33 

Sep-09 10 -71 -12.4 0 .05 -80.57 0.19 
Jun-10 10.5 24 -12.34 0.05 -82.69 0.2 
Aug-10 11.29 -7 

PIE Jun- 10 10.5 176 -11.61 0 .06 -79.61 0.07 

Aug-10 10.91 128 
Rain water Jun- 10 -12.57 0.03 -88.85 0.32 

Pond on top o Jun-10 -11.61 0.06 -79.61 0.07 
Snowmelt Jun-10 -11.95 0.04 -80.89 0.16 

WHBup Jun-10 8 .77 255 -10.88 0.09 -78.7 0.61 
Aug-10 7.29 223 
Oct-10 7 .51 172 

WHBdown Jul-09 7.56 188 -11.55 0.09 -74.02 0.33 
Sep-09 8.5 239 -9.86 0.07 -63.94 0.4 
Aug- 10 7.9 213 
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A 21 d t f on a a rom Ch t 2 d F" 2 5 d 2 6 d t I d t from ICPMS ap1er an agures . an . an ex ra on a a 
Concentration (ppb) 

Sample ID Mg Cl Ca43 Br 
Sep- 13 

WHC-02-c 16522 12978 2087 37.32 
WHC-02-c 16691 13588 2100 47.9 
WHC-02-c 17215 13655 2104 43.13 
WHC-0 l (pool 52 457083 7879 1058.95 
WHC-0 1 (pool 60 460188 8123 1077.51 
WHC-01 (pool 51 441258 8019 1039.92 
WHC-02b 592 369262 56655 843.98 
WHC-02b 589 362133 55630 858.94 
WHC-02b 770 369764 57708 878.79 
TLE-b 869 6378 13963 24.05 
TLE-b 869 6309 13690 12.57 
TLE-b 855 5873 14179 13.74 

Jun-14 
WHB inout 2 13305.17 7772.68 1076.03 15.39 
WHC2a 604.64 403384.49 58474.56 892.52 
WHC2b 1593.10 313576.33 43796.68 715.18 
WHC2c 7570.45 165870.60 225 16.27 373.46 
WHCOI (pooU 68.17 504843.83 9602.43 1141.93 
PIE (1) 1503.85 93993.65 57004.49 564.74 
PIE (2) 1427.78 7186.60 12916.60 8.54 
TLEb 1347.30 90389.01 55993.42 563.13 
TLEb 1402.21 94967.11 57369.29 579.83 
WHB 9499 3507 653 <9.11 
WHB 9453 3710 389 <9.41 
WHB 9591 3972 503 9.21 
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Table A.3 Raw Totallnoreanic Caron (TIC) Concentrations (ml!fL) and stable carbon Isotope values (permil) from Chapter l and 3 and Fl2 3.5 
OIC Otll• 13 C DIC Conctnlutlon 

Avg Delta of all SmEVof all OJ TIC Avg Avg DIC cone of SIDEV ofall 
Location Date: San1pled pH ..• Eh (mV) corrected -200m\' Del!aAvg_ Dcha STOEV Seasons lJ>pm) stdev RSD% all seasons [ppm) 
WHB Jul-09 7.~9 1.6 c2l 453 - 1.5 1.1 - 1.7 0.8 8.01 0.98 12.c6 8.06 1.69 

Scp-09 1.56 188 418 - 1.9 0 .2 9.62 0.44 4.59 
Jun- 10 8.5 239 469 -1.1 0 .0 1.41 0.20 2.12 
Aug-10 7.9 213 443 -3.0 0.1 10.36 0. 15 1.41 
Oct- 10 6.3 244 47• -0.8 0 .2 5.16 0. 13 2. 19 
Jun- 11 7.82 182 412 -2.1 0.1 7.14 0.37 5.24 

WHC~:a Jul-09 11.64 12.3 -867 .037 -16.1 c.s 1.10 0.53 
Scp-09 
Jun-10 12.5 -847 .017 0.1 0.39 0.05 11.89 
Aug-10 IH -842 .012 -19.1 0.1 1.11 0.03 2.83 
Oct- 10 12.31 .000 -14.3 0.1 1.69 0.33 19.54 
Jun-11 12.36 -890 .{;60 -14.7 0.9 1. 13 0.40 35.36 

WHC'~b Jui-Q9 11.6" ID -149 -519 -1 6.2 3.0 H5 6.21 
Sep-09 12.:! -875 -045 -19.8 1.2 1.48 0.)1 20.91 
Jun-1 0 12.63 -842 -6 12 -13.0 0 .3 1.13 0.16 9.21 
Aug-10 12.31 -196 -566 -11.) 1.5 2. 16 0.41 18.16 
Jun- 11 12.28 -8 18 -588 - 17.6 0.4 1.23 0.35 18.10 

\\l iClc Jul-09 10.3 II.J -89 14 1 -12.5 0.8 14.9-l 2.58 
Scp-09 11.1 -187 -551 -13.0 0.2 18.H 0.6-l 3.44 
Jun- 10 11.31 -196 -566 -11 .5 0.1 11.15 0. 11 1.45 
AU,I(-10 12 -306 -16 ·11.6 0.2 14.78 0.45 3.03 
Oct-10 8.11 255 · 13.3 0 .3 16.10 0.23 1.42 
Jun-11 12.21 -658 -128 -1 1.8 0 .0 13.51 0 .61 .l.51 

IHICOI-pool6 Jul-09 12.2 -29.-i 1.1 21.25 1-1.82 
Scp-09 12 ·90 140 -28.:! 3.1 37.13 11.25 .5.71 
Jun- 10 12.35 .OJ 161 
Au;c-10 11.96 -85 145 -30.6 0.2 16.18 0.30 1.19 
Oct- 10 12.31 -19 151 
Jun-11 

TLE Jul-09 10.19 10.6 .01 163 0.2 -11 .8 2.6 0.3 1 0.03 8.25 0.83 0.49 
Scp-09 10 -71 159 -10.1 0.8 0.6 1 0.01 1.52 
Jun-10 10.5 24 254 ·10.0 0.3 1.49 0.22 15.05 
AUJt·IO 11.29 -1 llJ -11.5 8.6 0.55 O.oJ 5.50 
Oct-1 0 
Jun-11 10.81 lJ 283 -15.5 0.2 1.18 O.OH 6.66 

1\"B Jul-09 10.1 -18.6 3.0 O.HO 0.34 
Scp-09 
Jun- 10 10.5 116 406 ) .J 0."' 0. 10 n.~o 

Au~-10 10.91 118 358 -16.5 0.0 1.01 0.01 0.72 
Oct-1 0 
Jun- 11 10.76 50 280 -20.7 0.9 0.91 0.11 22.74 

WHC75 Jun- 11 11.2 I I.:! -803 -513 ·II 1 -11 .7 0.16 0 .16 
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A.4 Raw Dissolved Or2anic Carbon (DOC) concentration (ml!fL) and stable carbon isotope values <"-l from C hapter 2,3, Fi~ure 3.5 
DOC Delta t3 C DOC Concentraliun 

Avg DOC cone 
Avg Delta of all STDEV of a ll 01 TOCAvg o f all seasons STDEVofall RSD%ofall 

Location Date Samoled nH Eh_LmV_l DeltaAv2 Della STDEV Sea.~ons seasons _{j>J!111l s ldev RSDYo LJ>pmj seasons seasons 
WHB Jul-09 1.29 2:!3 ·26.6 ·27. 1 0 .6 0.36 O. IJ 35.66 0.46 0.20 43.09 

Sep.(J9 7.56 188 BQL 0.45 0.00 0. 16 
Jun-10 8.5 239 BQL 0.44 0.02 3.58 
Aug-10 7.9 213 BQL 0.35 0.01 3.41 
Ocl- 10 6.3 244 ·21.5 0.2 0.85 0.01 1.43 
Jun· l I 7.82 182 BOL 0.30 0.0 1 3.91 

WHC2a Jul-09 11.64 -867 -16.8 0.5 1.62 0.97 59.82 
Sep.(J9 
Jun-10 12.5 -847 -16.3 0.9 1.93 0. 16 8.25 
Aug-10 12.4 -842 -11.2 0.6 2.61 0.11 4.29 
Ocl- 10 12.37 -600 -17.0 0.0 l.SS O.oJ 2.0 1 
Jun-11 12.36 -890 BOL 0.35 0.20 57.40 

WHC2b Jul-09 11.62 -749 -17.4 1.8 -20.1 4.6 0.96 0.62 64.57 
Sep.(J9 12.2 -875 -16.3 0.3 1.84 0.08 4.56 
Jun- 10 12.63 -842 BQL 0.44 0.08 17.56 
Aug-10 12.3 1 -796 -26.5 0.7 1. 15 0. 14 12.24 
Ocl- 10 12.46 -430 -20.3 0.3 1.09 O.oJ 2.33 
Jun. Jl 12.28 ·818 BQL 0.29 0.03 11.88 

WHC2c Jul-09 10.3 -89 -23.7 l.S 1.51 0.22 14.73 1.24 0.44 35.18 
Sep.(J9 13. 11 -787 -23.4 0.3 0.89 0.06 6.28 
Jun.JO 12.31 -796 -22.3 0.4 1.93 0.04 1.95 
Aug- 10 12 -306 -23.0 0 .1 1.37 0. 11 7.72 
Ocl- 10 8.77 255 -26.2 l.S 0.91 0.07 7.95 
Jun·ll 12.21 -658 -23.7 0 .0 0.84 0.01 1.52 

WI \ CO \-pool 6 Jul-09 -1 8.2 1.1 2.04 0.65 31.75 
Scp.(J9 12 -90 -1 7.4 0.4 1.58 O.Q2 1.25 
Jun-10 12.35 -63 
Aug-10 11.96 ·85 -19.0 0.2 2.50 0.08 3.34 
Oc!- 10 12.3 I -79 
Jun- 11 

TLE Ju\.()9 10. 19 -67 -23.3 -23.3 #DIV/0~ 0.36 0.25 69.62 0. 16 0. 13 82.12 
Scp.(J9 10 -71 BQL 0. 12 0.05 43.20 
Jun-10 10.5 24 BQL 0.06 0.00 3.73 
Aug-10 11.29 -7 BQL 
Oc!-1 0 
Jun-1 1 10.81 53 BOL 0. 1::! 000 2.6:! 

WB Jul-09 oDIV/0! • DJ VIO: 0.19 0.11 60.59 
Sep.(J9 
lun- 10 10.5 176 BQL 0. 10 0.04 39.78 
Aug-10 10.91 128 BQL 0.32 0. 14 43.71 
Oc!-1 0 
Jun-11 10.76 so BOl 0.15 O.oJ 43.54 

IVHC75 Jun- 11 11.2 -803 -1 0. 1 0.4 -10.1 1.54 O.oJ 2.19 1.54 
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A21 dtf . on a a rom Ch t 2 d F" 2 5 d 2 6 d t I d t from ICPMS ap1er an ·~ures . an . an ex ra on a a 
Concentration (ppb) 

Sample ID Mg Cl Ca43 Br 
Sep-13 

WHC-02-c 16522 12978 2087 37.32 
WHC-02-c 16691 13588 2100 47.9 
WHC-02-c 17215 13655 2104 43.13 
WHC-01 (pool 52 457083 7879 1058.95 
WHC-01 (pool 60 460188 8123 1077.51 
WHC-0 1 (pool 51 441258 8019 1039.92 
WHC-02b 592 369262 56655 843.98 
WHC-02b 589 362133 55630 858.94 
WHC-02b 770 369764 57708 878.79 
TLE-b 869 6378 13963 24.05 
TLE-b 869 6309 13690 12.57 
TLE-b 855 5873 14179 13.74 

Jun-14 
WHB inout 2 13305.17 7772.68 1076.03 15.39 
WHC2a 604.64 403384.49 58474.56 892.52 
WHC2b 1593.10 313576.33 43796.68 715.18 
WHC2c 7570.45 165870.60 22516.27 373.46 
WHCO 1 (pool( 68.17 504843.83 9602.43 1141.93 
PIE (I) 1503.85 93993.65 57004.49 564.74 
PIE (2) 1427.78 7186.60 12916.60 8.54 
TLEb 1347.30 90389.01 55993.42 563.13 
TLEb 1402.21 94967.11 57369.29 579.83 
WHB 9499 3507 653 <9.11 
WHB 9453 3710 389 <9.41 
WHB 9591 3972 503 9.21 
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A 7 S bl . . ta e car b . t d on ISO ope ata o fh d b f 1y1 rocar on gases rom F" 1gure 2 8 d 2 9 . , an 
WHC2a WHC2b WHC2c WHC75 

Carbon # Jun-10 Jun-11 Jun- 11 Jun-11 Jun- 11 
C l -27.2 -26.4 -26.4 -26.4 -20.7 
C2 -29. 1 -29.1 -28.9 -28.2 -28.9 
C3 -30.9 -31.3 -31.1 -30.4 -30.8 
iC4 -30.2 -29.9 -30.5 
nC4 -30.2 -30.5 -30.4 -30. 1 -29.4 
nC5 -30.2 -30.7 -30.5 <d.l -30.9 
nC6 -32.9 -32.4 -3 1.4 -32.9 -31.5 

Error +/ 0.5 pcrrnil 
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8 A . . Phospholipid mol% from Fi2ures 3.1, 3.2, 3.3 and 3.4 
WHC 2a WHC 2b WHC2c 

Jun-10 Jun-11 Jun-10 Aua-10 Jun-10 Aua -10 Jun-11 Jun- 10 
PLFA I. D. %Moles %Moles %Moles %Moles %Moles % Moles %Moles %Moles 
a-15:0 0.00 2.50 4.09 0.00 2.13 3 .27 2.24 2.2 
i-15 :0 4 .10 2.73 3.61 2.42 2.11 4 .73 2.06 2.1 
1-16:0 0.00 1.34 0.00 0.00 1.10 1.32 0 .65 1.5 
1-17:0 0.00 1.03 0.00 0.00 0.66 1.00 0 .61 0.6 
11 17:0 0.00 1.41 0.00 0.00 0.97 1.12 0 .76 0 .6 

16: 1w7 12.36 15.20 17.69 7.27 14.74 12.97 17.12 14.3 
16: 1w4trans 0.00 0 .65 0.00 0.00 1.52 0 .00 0 .61 1.6 

16:1w9cls 10.76 14 .11 13.54 36.74 20.13 23 .55 17.01 21.4 
16 :1w9trans 6.62 4.42 6.33 12.45 5.51 6 .24 4 .11 5.2 

16:2w6 0.00 1.94 0.00 0 .00 1.31 0 .00 1.61 1.1 
16:2w5 0.00 0.95 0 .00 0 .00 1. 73 3.67 1.15 1.6 
16:2w6 4 .02 3.46 3.79 3.55 4.52 4 .26 3.66 4 .2 
16:3w3 0.00 3.20 0.00 0 .00 2.26 1.24 3 .30 2.2 
16:3w6 5.42 3.34 4.38 10.13 3.17 4.46 1.82 3.3 
16:4w3 0.00 2.11 0.00 0.00 1.02 0.00 1.36 0 .9 
20:4w6 0.00 1.49 2.40 2.02 1.68 1.32 1.05 1.7 
20:5w3 0.00 8.26 3.57 5 .67 4 .89 2.38 9 .00 4 .9 
22:5w6 3.67 0.91 0.00 0.00 0.80 0.84 0 .65 0 .7 
22:6w6 0 .00 1.08 0.00 0 .00 0.75 0.00 0.97 0.9 

14 :0 5.66 3.82 4 .72 2.30 3.01 2.87 3.53 3.3 
15 :0 0.00 0.95 0.00 0 .00 0.65 0.00 0.72 0 .9 
16:0 19 .91 15.77 16.96 7.06 14.26 16.17 18.17 14 .2 
17:0 0 .00 0.00 0.00 0 .00 0 .75 1.01 0 .56 0 .6 
18 :0 10 .77 3.54 7.56 5.40 3.94 4 .51 2 .63 3.4 
20:0 5.88 1.48 4 .12 3.20 1.30 1.27 0 .80 1.1 
22:0 4.75 1.17 3.43 1. 79 0.97 0 .96 0.63 0 .9 
24:0 4 .05 1.11 3.63 0 .00 0.95 0 .84 0 .73 0 .9 

Unknown 0.00 1.80 0.00 0 .00 2.76 0 .00 1.70 2.90 

PLFA I . D. FAME M.W . #Of Carbons Calibration Slol!e(m) Intercel!t ( b l 
14 :0 C15H3002 242 15 C14 14.93 16347 -9.69060749 

1-15:0 C16H3202 256 16 C15 16 .04597 -11.776019 
a-15:0 C16 H3202 256 16 C15 16 .04597 - 11.7760 19 

15 :0 C16H3202 256 16 C15 16.04597 -11.776019 
i-16:0 C17H3402 270 17 C16 16.3464668 - 13.6805684 
16:0 C17H3402 270 17 C16 16.3464868 -13.6805684 

16: 1w7 C17H3202 268 17 C16 16.3464668 -13.6805684 
1-17:0 C18 H3602 284 18 C17 16 .6864433 - 15.25174 

16: 1w9? C17H3202 268 17 C17 16.6664433 -15.25174 
17:0 C18H3602 284 18 C17 16.6864433 -15.25174 

16:2w6 C17H3002 266 17 C17 16.6664433 - 15.25174 
1117:0 C18H3402 282 18 C17 16.6864433 -15.25174 

18 :0 C19H3802 298 19 C18 15.8605747 -15.0552301 
18: 1w9trans C19H3602 296 19 C18 15.8805747 -15.0552301 
18:1w9' 1

' C19H3602 296 19 C18 15 .8805747 -15.0552301 
18:1w4trans C19H3602 296 19 C16 15.8805747 · 15.0552301 

18 :2w5 C19H3402 294 19 C18 15 .8605747 -15.0552301 
18 :2w6 C19H3402 294 19 C19 16.1125979 - 15.8136731 
18 :3w6 C19H3202 292 19 C19 16.1125979 - 15.8136731 
18:3w3 C19H3202 292 19 C19 16.1125979 -15.8136731 

20:0 C21H4202 326 21 C20 16.779643 - 12.635538 
18:4w3 C19H3002 290 19 C20 16 .779843 -12 .635538 
20:4w6 C21H3402 318 21 C20 16.779643 -12.635538 

22:0 C23H4602 354 23 C22 13.5374775 - 11.3278734 
20:5w3 C21H3202 316 21 C22 13.5374775 - 11 .3278734 

24:0 C25H5002 344 23 C22 13.5374775 -11.3278734 
22:5w6 C23H3602 344 23 C22 13.5374775 -11.3278734 
22:6w6 C23H3402 342 23 C22 13.5374775 - 11.3278734 
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8 .1 Ddt• 13 Cor u.-a:.nlr m•ttl'l'" (OM) st•llsllnllcsls 
OM dell• l.lC 

Lon lion Jun-IU Jun- 11 
WHC2n . lf,1 -25.') 
WHC2b ·27 I -2l.M 
WHC2c -2{, 7 -2fri ,(, 

l'ttrhrhlo• 11/l.hm-ltli 

Aug-Ill 
-27.4 
-27.r. 

Sample> :riu 2 A11•mr -26 K975 
Stmlllt~rd Dr•••illtum 0 32 173 Mt•dtun -26 KIJ75 
Skt-wtte.t.t 0 E +0 K urtt~si.t I. 
Alli:mutb't! Skt••mt·~t tFultt•INIA Altertlittiw I IN/A 

l'orinh/,• tU flf'HClul 
Smnplt! ,t i!l' Mt~on -1(, 66 
Stcmdim/ /)t•••iatlmt 0 7K Mt•diutr .2(, 6M 
$kt'W/Ft',f ,f (} 04 K11rtusi.t I 5 
Altt•rtwli\'t! .Slt'"'llc'.(.t (f 0 I Alu:rtJttril'f' Kurtosi.t (Fi.d liN/A 

rn t St•tlstlc p=lt''"l ·ncluslon: <S•J.) Tn:t St•llsUrs o=lt''<'l ·nt'luslon: (~•;.) 
KolmoJ.!onno-Smirtuw/Lillit•J 11.2f,HH liN/ A No t'l•idt•rtct' iiJ.:llin~t mmr Kt~lrmtJ.!onu ... SminllwiL• IJ.3K liN/A SIIJ:Xt'.'ftil't' ,.,.;o.,., n. trxaill.\f ,,,rmality 
Slwpim-Wilk W I. I .4t.n.•pt Normulil)• Shllftim- lf'i/k II' 0 77 
IYAgtJ.ttirm Skt' ll'llt>.(,t IfNI A liN/ A Rtj t'f't Normulity D'As:m·rimt Skt·wrrt'.(.t liN/A liN/A 

0 115 An ·t.•p t Ntmrnr/i~)' 

Rtjt•ct Ntmrnrli~v 
Rtj t 'C.'I Normuli~v 
R~kct Noruurlify 

IYAxo.,timr Kurttt.fi.t IN IA IfNI A Rt!jt•t·t Nnrmali~1· I)'As:o.,tillo Kurto.ci.t liN/ A liN/A 

D'AJ:m·rirm OmnihuJ IfNI A liN/... Rtjel'f Nlw~twli~•' IJ'Ag~t.~tino Omnihu.~ IfNI A IfNI A 

Mt'llff -2&.KZ 
Variah!t· fl1 (Aus- 1{1) Stmulunl /Jt.•,•iatitm O.'J5 Mt"tliwr ·21. 13 

Smnple .tlu I Mt•tm ·21.5M Skt'll'llt'.f.t IJ.~J K11rto.ci.c I 5 
Swnclonl Dt·1•ill fimr liN/A Al<'ditm -27. ~M . .fltemariw! Skt•wm•f.c(F 1.211 Allo•rtwrlin.· Krrrto.fi' fFi.cJIINIA 
S.tewm•.u IINIA KurttAfi.t liN/ A 
Alll•mtrtrw Skt•wm·~t IFi.,·ht• IINI.~ . .fltt'TIIillil't• JIINIA p-len-1 •ntluslon: cs-;.) 

Krtlmos:omv--Sm imm·/L, 0 l2 IfNI A No ,.,,idt!tlf't' ''X"i"·'' mwmulil)' 
rn t St•tlstlc P=ll'\'l'i •nc-luslon: (~•!.) Slwpim-Wi/k IV II MK U 33 An ·t'f'' Nnmurlr~l' 

KolmoMtmw-Smirtlln-ILillit•' liN/A liN/A No t•ridcmct• axui1t.tt 1111r11 {)~.fxoMim' Skt'll'tlt 'X' liN/A liN/A Rcj t'l'l Normali~l' 

SJwpim-IVilk IV I • .ftY.'t'f'' Ntmrmli~r V ' . .f~o.wmn K11r1o.,;,,. liN/A MN/A Rt'jt't't Nomurlity 
IJ:.f~muirm Skt'WIIt.'.u MNJA liN/ A Rt'jt-ct N.wmolity IJ'Aonflmo Oumih11.t liN/A liN/A Rd t"t't Nortrnrlity 

1J:.fgosti11o K11rtnci.t liN/A liN IA Rt'jt't't Nurrmrlity 

IJ'Ago.ttirro Omnibu.( liN/A IINI."- Rt'jt•ct Normtlli~l' ~~'~'".::i''"fhi::.•'-i'".:.":.:.":.:.'H:.:.(.<'l:.,:d"""":------::;--------~~ 
St.rmple .tite 2 Mi!tlll .2(, 12 

Ve~riobh• fiJ (Jmr- 11) 

Smnpli!si:re 
Stmu:lanl /)el•illtiorr 

2 Mt•tm -25 .66~ 

-25.665 

StmKlan i !J,·,·itrtimr 0.7M Afl'dimr -2(. 12 
SA-t•wm·.u OE+-0 Kurtosi.f 

Altarurtiw Skt'"'"'-'·' ·'fi (f #NIA Allt'TIIflli l't' KurltJ.'fiS (Fi.fiiiNIA 

Tc-siSIMIIsllcs p-lnl'l ·ndudon: (~•;.) 
Skt'wm•.•·s U.E+O KrtrfiA~i.t I . KuhrrfiJ.[ItnW-SminHti'IL• 0.2(, •N/A Ntt t ' l ' idt' /U.'(' liJ,:llill.~l llormultf.l' 
Altt•m(rti''t' Skt'll'llt'.l',t CFMw liN/A Altutullil'e J liN/ A Slwpiro-Wilk IV I 

l)'.~~~t.~tm•r Skt•wm•.(.t IINIA 

rl'st Stallsllc: p4 1cvrl •ncluslon: ts•;,) D'Axo.~tmu A'urro.d.t liN/A 

KoltnfiJ,!Onw-Smmtm-!Lillit•J 0.2(11125 liN/ A No t'l•id •. •uu iiJ;IIitt.ft nom/J'.4K"·'·rimr Ornrtih11,t liN/A 
Sht.~pim- IVilk W I . I . Atn·ptNnrmilfiiJ' 
0:-4~tJ.~tirroSkt•"''"'·(.t liN/A liN/A Rtj t•t·t Normulil)• 
IJ' . .fxo.t t;,w Kurtn.~i.t liN I A liN I A Rt'jt>t't NortfJ(r/ity 
D' . .fgt~ffifto Omnihu.t liN/ A IINI."- Rt'jet·t Norm111iry 

C'nmnulnP Mulrlnlr lndt'Mnrlrnf S•mnl" 

liN/ A 
/IN/ A 

/IN/A 

I . Ac:c.•ptNomurlit.l' 
Rt'jt~l Norm(llr~l' 

Rtjt'l. 'l Normull~l' 
Rtj t•t•tNormality 

WHCl" J 12. JO-Jmt 3 12. 
WHClh J I I . 
WHC!t· l 13 

II 
lkgn•t•.c 0/Fn•t•dmn 
ll (t'()fTI'('(t•d) 

Owrui/Medum 
,,..ft·w.·l 

I.XI N 
l p -11'1'1:1 

I.KI 

·:Uo.f!K Chi-.tqucm.· 
0 2(, 

OAI 

2 (,7 

11-Jrm J 2 1 
10-.411 • 

H 
/Jc:s.:n····'· Of Frt"~'• 
Htmm."t'MI) 

AfN/irm7i·•·l 
()l,._•rai/M,•tlimr 

fl-lewl 

'·25 11 
2 p -lt'l't'l 

(, 2~ 

-2(, C,K Chl·.fqtwn• 

007 

CUH 

5 33 

l irrit~hlr'U Vuriuhlt! fl1 l~rricrhlt! II) Till a/ l'c:triohlt• fll 11rriahlt· til l'c1riuhlt! P) 
<- Mt•dum (uh.,t!TI-..•d) 

< • Median (t!.l'Ct'fJit'd} 

flhSt'n'l'd·t'Xf'f'!Jit'd 
> !&ft'dimt (oh~t.'n't'd} 

> Mt'tlimt(t'XI'l'fHt'i/) 
oh,ff'n ·t·d-t•XCt'flll!d 

1(,wf:t,hft'n'('{/ 

2 
I 5 
115 

I 
I 5 

-O l 

O.E+O .. 
u I 
05 - I. 

I 
1.5 

-0.5 

< • Mt•diall (oh.~, 

< • A!t•dicm ((•;rn 

tlhft•n•t•d-~•xct•pto. 

> A!t-ditm (oh.,.-r 

> M,·dum (t'Xct'JJ 

oh.tt-•n•ed-t•:rN'plt 

7irtul:r•h.•·t'n'f!d 

1.5 
~~~ 

I 
15 

-05 

O.E+O 2. 
l.l 

- I 5 
3 n E+-o 

15 I 
15 - I 
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8 .1. C:N ralitu on Organic Mauer slalisllcalln ls 
0~1 C:N 

Loutlon 
WHCla 
\VHC2b 
WHC2c 

Normalllv Tnls 

Jun· IO 

"' 14 .. 
Aug· IO 

"' ll 

Jun· ll 
12 
12 
12 

St1mplt> .'l'i:e 2 Mm11 IJ.K171 5 
S/wl(/ardDt•••iatimr U.OKIKI Mt'tiilm IJ.KI71 S 
Skt•wnc•u O.E+I) K11rft1.'l.~ I. 
A/t,•motil't' Slic•wm•.'t<r (FI:<fhl'l liN/A .-4/tt'nkltiw I liN/A 

l'nriohf.- #/ t WHrlnl 

Smt~plc• .d:t• J Mt•(m 
Swmlunll.k 2 111054 Mt•diml 
Skt'll'llt'.'t'l' .1),(,2JK7 Kurto.fi.<f 
.-4/r,·r~mti•'t' ! ·I S2Ki fc Altt•m(ltil't' IIINIA 

rtsf Stallsllc p-lc,·cl ·nduslon: {5-t.) res1 Stallslic o-lc\'cl Conclusion: f5•t.l 
KulmOJ.:IHTJI'·Smimtw/Lillir(t 0.164115 liN/A No c••id..••~et• a}o!uin.<ff nom KfJimuJ,,'tlml' 0 2JI?') liN/A Ntt t' l 'idt'llt..'c' c'J.[trilutmlf'malil)• 
S/liJIJirn-Wilk W I Acct•pt Normulity SIWtJiro-Wi/1 0 K7575 0 311111 Arn:pl Normuli~l' 

D'AKtl.\'lilltJSkc•wm!.'t<f liN/A liN/A Rt•ject Normality D:.f~o.'l'tmo:IIN/A liN/A Rejt'('tNormolil)• 
D'AJ.:tJ.'I'tillo K11rrosi.c liN/A MNIA Rt•jt.oc.·t Normulity D'AJ.:tA<flillu I liN! A liN! A Rtjt"t't Nurmality 
D'Axn\·tino Om11ibu." liN! A liN/A Rcjt•ct Norme~lil)' D'Asn,timJ 1 #N/A liN/A Rt•jc·c-t Nurme~litr 

J?rrit~hli' #lfJIIH('lhl 
l't1rioh/,• lll(Aug-10) & rmpft• .du· 3 Mcmr 
Sc1mph• ,fi:t> I Mt'UII Stamlurcllk I 612C.3 Mt•tlicm 
Sltmdurd De~>iuliml liN! A Median 15AJ')j(, Skt>wm·.u -U.IIJ(cJI Kurtru·is 
Skt'~t'rtt•.u liN/A Kurtn~i.~ lfNIA . .fltanmiw ! -U.UKK'J:'i . .fltt'mllfil't' /liN! A 
. .fltc·rmlliw: Skt'WI/t'.'t' (Fi.-rhn liN IA ,.flt",.,"' ';,..., l lfNIA 

rrsl Slall.sliC" rtiC\'('' ·ncluslon: (5-t.) Kulmogonll' 0 17701 liN/A Ntlc'l'ill.mn• llj.!triiU( 1/fH'IIJtllity 

KoltmiJ.:tlmv-Smimrli'/Lillil'/i liN/A liN/A No t'l'illt''JCt'l'Xctill.fl 11111'11 Shat•im-Will 0 •)')')71 U.%72') At'Ct'ftl Normulity 
Slmpim-Wilk If' I . At.'CI'pt Nrmnt~lil)• D'AKtAftino: liN/A liN/A Rtjt'L't Norm(l/i~r 
D'AgtA'I'Iimt S/rt'WIIt'.f,'l' liN/A liN/A Rtjt•l:f Nurmulity D' . .fJ.:O.flino I #N/A IfNI A Rt'jt•cl Normuhty 
D' . .fgostino Kurltl.fi., liN/A liN/A Rtjt'Cf Normulity JJ:.fgo.,tmtJ ( IINI.A, liN/A Rt•iect Norma/it•• 

D'AJ.:o.ftmo Omnihu." liN! A liN/A Rc'jl'c t Normaluy 

Strmplc• .<fitt' 
Stmllhmll:h·••iatimr 

2 Memr 
11.2474~ Mt.Jicm 

12.03079 

Stulljlh' ,fi:to 
StandllrdDf> 

l Aft•an 

I JJW. Mt•diun 
Skc11'Ht'.'l'.f 0 E+O Kurttui., 

Aftt'rlllll/\'t'~ IIN/,4,. • .fltt'l'llu tm.> /IfNI A 

Skt•wnc>.u U.E+O Kurtosi.f 
12.03'J7'J 

I. Conclusion: (5-t.l 
Altt•mcttil'l' Skt•wm•.ft' CFi(ht'' liN! A . .f ltt•mt~tin• /liN! A Kolmus:mn11 H 2C.U25 liN! A N, t·,·id ... ·.~e·· cl).:uin.ft ,,,.,,u~,. 

Sl~t~Jiim-Wih I. 

-:-:-:---::-:--=::-:.:.:r""'''-'S::;'":!II:,;":.:;"'=~P-:::I•c:.'''"l--"·n;;.•,lu"''l"!on,_: =cs•;.) D' . .fs:u.<rtim• .' IIN/.-4,. 
KrHmogrJmv-Smimm1Lillit.'{r 0,2{,(125 liN! A No ,.,.id,·tiCI! t'Xuin"t 1m r11 D'AgtJ.,timJ I IN/.-4,. 

liN/A 
liN/A 
liN/A 

I Act•t•pt Normt.~llly 

Rtjt't.' l Normt~li~\' 

Rtj t'C'I Normuli~l' 

Rt•jc't'l Norm"li~l' Slwpim-Wilk W I . At:ct>pl Ntmtlulil)• D'.,.fJ.!tAffinu f liN/A 
/)'AJ.:tUtimJS/rl'll'tlt'S.'t 
IYAK"·'·tittt~Kurf(J.<fl:, 

D:.fwutiml Omt~ibu.'l' 

NNIA 
liN/A 
NNIA 

#N/A 
liN/A 
liN/A 

Rtjt.•ctNormulif)· 
Rtjt•cl Normulil)• 
Rejt'f'l Noruflllif)• 

C'nnmarln1• Mulrlnlr. lndcn r ndcnt Samnlrs 
Sample slze;um or Ranks 

WHC!11 
Wit('} It 
11'1-/Clt' 

KnHko/-U',tlfit ANfJIIA 
H 
lk•J,!n't',( Of Fr£•c•dmn 
1/ (t·om·t·lt'tl) 

A/,•dimr T!•t'l 
0.-..•n •IIM • .Jitm 
t~l,•wl 

< • M~dum (ob.fen-..'ll) 
<• Mc>ditm (t•.rct•ptt•d) 
oh,,•rw·d-o·xn·e,~·d 

> Mt•ditm (t1b.ft'rl't' d) 
> Mt'ditm(t>,rt'('Pit'tl) 
oh.<rt'l'l't'tl-o.·xct1Jit'd 
Towl:ob.ft'rl'l.'fl 

J IK. 
3 13. 

5. 

2<1 N 
2t•·lt'l'l'' 0 21) 

2 41 

IJ.Kl Clri·.(quun· 267 
0.2(. 

llt•riabh• #I HJriuhlt• til Variable IIJ Ttttdl 
I. 2 

I..Ci u 
-O.l .l)j 

2 2. 0 E+Cl 
l l l l I 
Ol Ol - I 

3 3 

C.nmnarln1• l\1ulrlnlc lndt'nt'ndcnr S•mnle!l 
Sample size Sum or Ranks 

/0-Jmr ) 

UJ-A11~ 

11-Jwr 

fl 5.14 N 
IJ.·s n '•'.\' 0(. 
H(t'tJrrt!Cit'G 

M,•tfitmT!•-rt 

Uwmi/Mt'G 
, ,_,t'l't'' 

<• M .. ditm 
<• Mt•dimr 
ob.fc•n •t•d-t•.r, 
> Mt•ditm(o 
> M!!ditm(c· 
o h.,.t•n •t•d·t'.fo 

Tittal:ub.ft•n 

IJ.K1 Clu-.cqmm· 
OCI7 

l~lrillblt• til 

15 
·0.5 

2 
l l 
Ul 

3 

f'Uriuhlt• IU 

I ·Ho7K')I 
IS 521Mc 

l.l 

13.1<4311 
I) KJ:'i 

12 KI1U5 

11 KilOS 
I 

17 
13 

'·· 

0 E+O 

I. 
-I. 

OOH 

5 JJ 

H•rlt~hlt• 111 Ttttul 

1.5 
15 

o E .. n 
l l 

- l l 
3 
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8 .3. Dissolved organic maller concelralion slalislicallesls 
Ave DOC cone ui!!L 

Location 
WHC2a 
WHC2b 
WHC2c 
WHB 

Normality Tesls 

Variable #I (irm-10) 
Sample size 

Standard Deviation 
Skewness 
Alternative Skewness (Fisf. 

Jun-10 Aug-10 Jun-11 
1.93 2.67 0.35 
0.44 1.09 0.29 
1.93 1.37 0.84 
0.44 0.35 0.30 

3 Mean 
0.86 11 7 Median 

1.43206 
1.9285 

-0.707 1 Kurtosis 1.5 
-1.73204 Alternative I #NIA 

Variable #I fWHBi 
Sample size 

Standard De 
Skewness 
Alternative~ 

Normalitv Tesls 

3 Mean 
0.07 Median 
0.26 Kurtosis 
0.64 Altemative I #N/A 

0.36 
0.35 

1.5 

res! Slalislic p-level ·nclusion: (5%) res! Sla lislic p-level :::onclusion: (5%) 
Ko /mof!orov-Smirnov/Li/li. 0.28 156 #N/A No evidence a~uinst norn Kolmof:!OIVV 0.22 #N/A No evidence against normali~y 

Shapiro-Wilk IV 0. 75075 0.00 166 Reject Normality Shapiro-Will 0.98 0. 76 Accept Nomrality 
D'Agostino Skewness #NIA #N/A Reject Normality D'Agostino ~ #N/A #N/A Reject Normality 
D'Agostino Kurtosis #N/A #N/A Reject Normality D'Agostino I #NIA #N/A Reject Normality 
D'Agostino Omnibus #NIA #N/A Reject Normality D'Agostino ( #N/A #N/A Reject Normality 

Variable #1 (aug- 10) 
Sample s ize 

Standard Deviation 

Skewness 
Alternative Skewness (Fisl. 

3 Mean 1.71289 
0.84397 Median 1.37 
0.623 19 Kurtosis 1.5 
1.52649 Altemative I #N/A 

Variable #1 (WHC1ai 
Sample size 
Standard De 
Skewness 
Alternative ~ 

3 Mean 
1.19 Median 

-0.41 Kurtosis 
-I. Alternative I #N/A 

1.65 
1.93 

1.5 

...,.,....,...----.,---,-,,.,...:.re:::Sc:I..::Sc:l=.a l:..:i:::Sic:;ic:...,...JPI:.-..:.le:;.V:.:e::.l_c•.::n:::ci:.:U;.eS,_,io:.::n:.:.: ..~.<5::.%) res! Slalislic p-level 
Kolmogorov-Smimov/Lil/i, 0.3244 #N/A No evidence against nom Kolmogorov 0.2 #N/A 

:::onclusion: (5%) 
No evidence against normali~y 
Accept Normality Shapiro-Wilk IV 0.8762 0.3 133 1 Accept Normality Shapiro-Will 0.96 0.61 

D'Agostino Skewness #NIA #N/A Reject Normality D'Agostino ~ #N/A #N/A Reject Normality 
D'Agostino Kurtosis #NIA #NIA Reject Normality D'Agostino I #NIA #N/A Reject Normality 

.;;D;..'A;.;.Q.f!.O;;;S;;.t;;.in;;;o..;O:;.'..;n;.;n.;;ib;;.u;;;s __ ..;#;;.N.;;I.;.A;_ __ #;..N;;.;;.IA.;... __ .;;R;oel~·e;;;c;..t N;.;.;;;o;;.r';;."ality D'Agostino ( #N/A #N/A Reject Normality 

Variable #3 (Jun- II) 
Sample size 
Standard Deviation 
Skewness 
Alternative Skewness (Fisl: 

3 Mean 0.49389 
0.30091 Median 0.347J3 
0.6825 1 Kurtosis 1.5 

1.6718 Alternative I #N/A 

Variable #3 (WHC1bl 
Sample size 3 Mean 0.6 1 
Standard De 0.43 Median 0.44 
Skewness 0.62 Kurtosis 1.5 
Alternative~ 1.51 Alternative I #N/ A 

...,.,....,...----.,---,-,,.,...:.re:.:S:.:.I.oS:.:.Ia::.l:.:.iS::I.:.:ic:...,...Jp-t:....:;le:o.;V:.:ec:.l_c•:.:.nc:::l:.:uC!.si:.:O:.::n:.:.: "'( 5::_o/o) res! Slalislic p-level :::oncl us ion: ( 5%) 
KolmOROrov-Smirnov/Li//i. 0.35355 #N/A Little evidence against no KobriOf:Orov 0.32 #N/A No evidence against normality 
Slrapiro-Wilk W 0.82209 0.16841 Accept Nomwlity Slrapiro-Wi/1 0.88 0.32 Accept Normality 
D'Agostino Skewness #NIA #N/A Reject Normality D'Agostino ~ #N/A #N/A Reject Normality 
D'Agostino Kurtosis #NIA #N/A Reject Normality D'Agostino I #NIA #N/A Reject Normality 

,;D;;..;;'A.,!j.;;O;;;St.;;ii;.;;W;..O;;.;;.n..;rll..;ib;.;r;;;'s--..;#;.;N.;I;;.A.;... __ ;;.#;.;N.;;IA.;.. __ .;;R;;;e~,;je;;;c.;.t;.;N.:;o;.;rr;.;llality D'A!jostino ( #N/A #N/A Reject Normality 

Variable #4 (WHClci 
Samplesi=e 
Standard De 
Skewness 
Alternative~ 

3 Mean 
0.55 Median 
0.03 Kurtosis 
0.08 Alternative I #N/A 

1.38 
1.37 

1.5 

rest Slalistlc p-level :::oncluslon: (5%) 
Kolmogorov 0.17 #N/A 
S/rapiro-Wi/1 
D'A~:ostino ~ #N/A 
D'Af!,ostino I #N/A 
D'Agostino ( #N/A 

I. 
#N/A 
#N/A 
#N/A 

No evidence against normality 
O.'l7 Accept Normali(v 

Reject Normality 
Reject Normality 
Reject Normality 
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8.3. Dissolved organic matter concetratlon statistical tests conUnuted 
Comoarln• Multlole lndcoendent Samoles 

Sample slzeium of Ranks 
W/-18 
WHC2a 
W/-/Clb 
W/-/Clc 

3 I I. 
3 25. 
3 15. 
3 27. 

Kmska/-Wallis A NOVA 
H 4.59 N 
Degrees Of• 

H (correcleli 

Median Test 
Overall Mea 
p-I eve/ 

<- Median , 
<= Median , 
obsen ·ed-e:n 
> M£~dian (o 
> Median (e 
ohserved-e.n 
To1al:observ 

3 p-level 

4 .59 

0.64 Chi-.HJIWre 
0.08 

Variable #I Variable #2 
3. I. 

1.5 1.5 
1.5 -0.5 

O.E+O 2. 
1.5 1.5 

- 1.5 0.5 

12 
0.2 

6.67 

Variable #3 
2. 

1.5 
0.5 

I. 
1.5 

-0.5 

Comoarln• Multlole lndeoendent Samoles 
Sample slzeium of Ranks 

10-Jun 4 32. 
10-Aug 33. 
11-Jun 13. 

Kruskai-Wallis A NO VA 
H 4 .H8 N 12 
Degrees O.f1 2 p -level O.o9 
H (correc/ec. 4 .HH 

A1edian Test 
Overall Mea 0.64 Chi-square 2. 
p-level 0.37 

Variable #I Variable #l Variable #3 
<- Median , 2. I. 3. 
<= Median . 2. 2. 2. 
observed-exc O.E+O - I. I. 
> Median (o 2. 3. I. 
> Median (e 2. 2. 2. 
obsen ·ed-exc O.E+O I. -I. 
Total:observ 4 4 4 

Variable #4 Tow/ 
O.E+O 

1.5 
- 1.5 

3. 
1.5 

1.5 

3 

Total 
6. 

6. 

12 

6. 

6. 

12 

ONLY SPRI 

Comoarlno Multlole lndeoendent Sa moles 
Sample slzeium of Ranks 

W/-/Cla 
IV/-/Clb 
JV/-/Clc 

3 IH. 
3 9. 
3 I H. 

Kru.<kai- IVallis A NOVA 
/-1 2.4 N 

Dew ees Of• 
H (correctea 

Median Tesl 
Overall Mea 
p-Ie vel 

<- Median , 
< = Median , 
observed-exc 
> Median (o 
> Median (e. 
ohsen•ed-e.n 
Total:ohserv 

2 p-level 
2.4 

1.09 Chi-square 

0. 16 

Variable # I Variable #l 
I. 3. 

1.5 1.5 
-0.5 1.5 

2. O.E+O 
1.5 1.5 
0.5 - 1.5 

3 

9 

0.3 

3.67 

Variable #3 
I. 

1.5 
-0.5 

2. 

1.5 
0.5 

3 

Comoarlno Multlole lndeoendent Sa moles 
Sample slzeium of Ranks 

10-Jun 3 18. 
10-A ug 3 20. 
11-Jun 7. 

Kruskai-Wallis A NOVA 

H 4.36 N 9 
DeJ,:rees O.f1 2 p -le•·el 0.11 
H (correc/ea 4.36 

Median Test 
Overall A-tea I .09 Chi-square 3.67 
p-I eve/ 0. 16 

Variable #I Variable #2 Variable #3 
< - Median , I. I. 3. 
<= Median , 1.5 1.5 1.5 
ohse1Ted-e.n -0.5 -0.5 1.5 
> Median (o 2. 2. O.E+O 
> Median (e. 1.5 1.5 1.5 
observed-exc 0.5 0.5 - 1.5 

Tola l:ohserv 3 

Total 
5. 

4. 

9 

Total 
5. 

4. 

9 
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8.4. ~~~~ 13 Cor Or'l:~nic mallcr concctutlon statistical tests 
DOC Av2 l><llo IJC 

Location Jun-10 Aug-10 Jun- 11 
WI-IC2c -22.3 -23 0 -23.7 
WHC2a 
WHC2b 

Varillhlt• #I fJVHClaJ 

-1 6.3 -17.2 
-20 3 

Normalllv Tests 

Samplt' size 2 Mean -16 74 
Standord Dcl•iotitm 0 66 Median -1 6 74 
Skei1'11CS!J' 0 E+O Kurto.\'i!J' 
A/Un1t1ti1·e Skewm•!J'S (Fi liN/A Altt..>m tltb·£• 1/JNIA 

Normalllv Tests 

Variohle # I fJun- 1 m 
S<1mplc s ize 2 Mean -19.28 
Standard De.· 4.26 Media11 -19.28 
Sk£'1WI£'."S O.E+O Kurtosis I 
Altemati1·e ~ liN/A Altematil't' I #NIA 

Conclusion: (S•/e) 7===-::-=--,7""'~.::;«::.1.=:S::.:I•";II:-':51~1<'-;;;:fp~-I::.<V:.,:<"-I _;:•n~<.::lu:::s!>lo:;:n.:..: i.::.S•!.) rl'St Statistic p-lcvcl 
Kolmogmm·-Smimm•/Lil 0 26 #N/A Noe\·id<•t~ccagainstnom Kolmogom•· 0.26 #N/A 
Slwpirv- IVi/k IY Accept Nomwlity Shnpiro- IVi/1 I. 

No t.'Vitlence axainst normolity 

AcuptNomwlity 
D'A~:ostino Ske,,·ne.s.l· #NIA liN /A Reject Normulity D'Axostino .'liN/A #N/A 
D'Axostino Kurtosis liN/A liN/A Reject Normality D'Axustino I liN/A liN/A 

.,:D;;,;'A;,;oN:..:'";;:;''~it::;"';.;O;;;'::."'::.:'ib~t:;;ts __ N;;,;N.;:I:..:A~-..;#;;,;N.;:I:..:A~-..;R::,:e.:it.;:;'C;;,;I M:.:;o;;;r::.;;nutlity D'Asostino f liN/A liN/A 

Vt1riobh• #1 ( WHCZh) 

S<mtplc si::f! · 20.32 
Stmularrl De•·iotion IfNI A Median -20 32 
SJwwnt.'.\'!J' IfNI A Kurtosi.\' liN/A 

Jlarhrble #1 fArw- /OJ 

3 Mean S<rmph• size 

umdardDc 2 88 Median 

0.1 Kurtosi.J 

Rcjtxt Normality 

Rejt.•ct Normulil)r 
Rejet·t Normality 

Alternatil't• Skt•wness (Fi IfNI A Altenwtiw .. • J liN/A 
Skewne..V!J' 
Alternatil'e~ 0 24 Altematil·e I #N! A 

·20. 17 
·20.32 

1.5 

~~----~~~~~~e<~I~S~Ia~II~SI~Ic'-;;;~p~-I~<V~<~I_.;:•n~c::,:lu~s~lo~n~:(~S·4) ~~----~re<~I~S~· ·~··~Is711~c~p~·~I<~V~<I~~--~C~on~c~lu~s~lo~n~: ~(5~~~·)~---
KolmoKomv-Smimtw/Lil #N/A #N/A No e1•idenee axt,;nst nom Kolmofo.!OJYJ\1 0 23 #N/ A No el'it.lt.•nt ·t• tlgtrinst normality 
Slwpim-Wi/k IV Accept Normality Shapim- IVi/1 0.98 015 At·ccpt Numwlity 
D'AKosti11u Skeu•ness liN/A liN /A Reject Normality D'Axostillo .' #N/A #N/A R£jt.'Ct Narmtlli~r 

D'AJ.:mlino KurwsLv #N/A #N/A Reject Normality D'Axostinai#NIA #NIA Rcjt'Ct Normolity 

.;;D'-''A00s"''":::''.;;i';;;'o;.;0;,:11~tn::;ib;;;t:;;t.<_..;#;,:N.;;I;,:A'---'#;,:N::,:I:.,:A __ ..;R::,:eo.;itJ;,:;'C'-'I M:.:;u:;:r::.;;mality .,:D;;,;>f"'S:..:'";;:;st~h;;;'";.;<.:;#:..:N:..:IA,:__....;;#;..:N;,:IA.:.... _ _:..:R_,et.::;'el;,:'I.:.M~o;..:rt::;llt::,:tf:;,ity~-----

Voritrhle #J (WHClc) 

S<1mph• size 
Stantlard Dcl'imion 

Sken·ness 
Altemafil'(.' Skeune.,·s (Fi 

3 Mmrr -22 97 
0 68 Median -22 97 

-0 01 Kurtosis I 5 

-0 OJ Altematil't! I #NIA 

Voriablt• #J fJrm- 11 J 
S<rmph• .. ~ize 
Stmulan l De liN/A 
Skcwm•.u #NI A 
Alu•nrtrtil't! ~IfNI A 

Mean 
Median 
Kurtosi!J' liN/ A 

Altcmatil'C I IfNI A 

·23.65 
-23 65 

rcs1 Stallstk e=lcvcl •nduslon: (S•!.) 7==-:-'ir«;t;IO'Sfl~al~is~li::_<~p'f'·~I<~•·~<I--~_,~C'=""on~c~lu:::s!>lo:.::n.:..: ~(5c:'!.:J')'-;,:---
Kolmoxmtii'·Smirnm·!Lil 0.29 #N/A Na el'idenct• ttKaimt 1/lll'll Kolmoxorrw #NIA #NIA No e•·itkmce OKainst normality 

Shaphn- IVi/k IJI 0 93 0.47 Accept Normality Shapim- IVi/1 Accept Nomrality 
D'AKostino Skt•,wwss #NIA HN IA Rejet·t NormaJi~J' D'AKostirw.' #N!A #NIA Rtjt'Ct Normali~v 

D'AKostino Kurtosis liN/A #NIA Rejt•t·t Normolity D'AJ,:ustino I liN/A #N! A Rejt'Ct Normality 
D'Agost;,w Omnihu.v liN/A liN/A Rejt'l't Normality D'A~:osti11o f #N/A #N/ A Rejt'Ct NtJrmality 

Comoarlne Mulllolc lndcocndcnt Samolcs Comoarlne Mulllnl4.' l ndrnrndrnl Samolcs l.!iorlnt!S onlv\ 
Samplr slzcium or Ranks Samelc size Sum of RankJ 

W/-/Clt~ 2 II JO-Ju11 2 9. 
WNC!h 4. 10-Aux II 
WNCk b. 11-Jrm I. 

Km.d:a/-Wolli.f A NOVA Kru.\'ko/-Wolli.•· A NOVA 

/-1 4 29 N N 2 38 N 6 
Degrt•e!J· OfF ret.•dom 2 p-/e1·el 0 12 Degret•s Of' 2 p -lel'e/ OJ 
H (corrected) 4 29 H (corrt'C'I£•a 2 38 

MctlianTcsl Median Te.,·t 
O ••emll Mctlimt ·21.3 1 Chi-square 0l'£•mi/M(•a ·21.31 Chi-squm'f' 1.33 
p-IC\'t•/ 0 05 p -h·l·el 051 

Varitrhle #I Variable#} Variable #J Total Vtrritrble #I Voriahle #1 Variahlc #J 
< = Ml•dian (ohsenv.>d) O.E+O 0 E+O 3 <= Median I. I I. 
< = M,·ditm (exct•pu•d) 05 15 <: Metlimr I. 1 5 05 
ob.,·£•nwl-cxt·el>ted ·I -0 5 1 5 obst'l'l'C'd-c.n OE+O .o 5 05 
> Median (ohsenwl) I OE+O > Median(o I . OE+{) 
> A·h•ditm {ext•t•pted) 05 I 5 > Meditm(e I 1.5 05 
obsenwl-cxt·cJJICd 05 -1 5 obscn·ed-t•.n 0 E+O 05 ·0.5 
Tottrl:ub..,·en'(•d TiJtal:ohst'rll 

TiJtol 
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B.S. Total inorganic matter concetration statistical tests 

Location 
WHC2a 
WHC2b 
WHC2c 

WHB 

Normality Tests 

Variable #I (Jun-1 0) 
Sample size 
Standard De viation 

Skewness 
Altemative Skewness (Fish 

Av. T IC cone {ug/L) 
Jun-10 Aug-10 Jun- 11 

0 .39 1.17 1.1 3 
1.73 
i l.75 
7.47 

2 .16 
14.7 
10 .36 

1.2 
13.5 
7.1 

3 Mean 4.62333 

6 .20813 Median I. 73 

0 .67023 Kurtosis 1.5 
1.64171 Altem ative I #NIA 

Variable #I (WHB! 
Sample size 
Standard De 
Skewness 
Alternative ~ 

Normalitv Tests 

3 Mean 
1.77 Median 
0.68 Kurtosis 
i .66 Altemative I #N/A 

rest Statistic p-level •nclusion: (5%) rest Statistic p-level Conclusion: (5%) 

8 .32 

7.47 

1.5 

KolmoRorov-Smim ov/Lilli. 0 .34608 #N/A No evidence liRainst nom KoltnOROIYJV 0.35 #N/A Lillie evidence against nomu 
Shapiro-Wilk W 0 .83709 0 .20652 Accept Normality Shapiro-Will 0.83 0 .18 Accept Normality 
D'Agostino Skewness #N/A #N/A Reject Normality D'AROStino ~ #N/A # N/A Reject Normality 
D'Agostino Kurtosis #NIA #N/A Reject Normality D'Agostino I #NIA #N/A Reject Normality 
D'Agostino Omnibus #NI A #N/ A Reject Normality .;D;;.;,;'A:.;,s,;;o;;;st;.;.i';.;.IO;.;,C,;;#.;.N;.;.I A;.;.. __ ..;#.:.N~/ A.:., __ .;R;,;e6j;;.ec:;;·t.;N.;;o;;;'.;·n:;;~<;;,;tl;;;it.:,Y ___ _ 

Variable #1 (Aug-10) 
Sample size 
Standm·d Deviation 

Skewness 
Altemative Skewness (Fish 

3 Mean 
7.54095 Median 
0 .69351 Kurtosis 

6.0 11 11 
2.16 

1.5 

1.69875 Alternative I #N/A 

Variable #l (WHC2a! 
Sample size 
Standat¥1 De 
Skewness 
Alternative ~ 

3 Mean 
0.44 Median 
-0.7 Kurtosis 

-1.7 1 Alternative i #NIA 

rest Statistic p-level ·nclusion: (5%) rest Statistic p-level Conclusion: (5%) 

0 .9 
1.13 

1.5 

Kolmogorov-Smimov/Lilli< 0.36 188 #N/A Lillie evidence against no Kolmogorov 0.27 #N/A No evidence againstnormali, 
Shapiro-Wilk W 0 .80439 0 .12503 Accept Normality Slwpiro-Wi/1 0.79 0 .09 Accept Normality 
D'Agostino Skewness #NIA #N/A Reject Normality D'Agostino ~ #N/A #N/A Reject Normality 
D'Agostino Kurtosis #N/A #N/A Reject Normality D'AROStino I #N/A #N/A Reject Normality 
D'Agostino Omnibus #N/ A #N/ A Reject Normality .;D;.';,;A:.;,g,;;o;;.st.;i'.;IO;..;.C ,;;#.;.N;;.I A;.;.. __ ..;#.:.N~I A..;..... __ .;R;,;e;:.ie;;;c;.;'t.;N.:.o;.;'.;'~~~.:.'.:.".:.it.;.v ___ _ 

Variable #3 (june- II) 
Sample size 
Standard Deviation 
Skewness 
Alternative Skewness (Fish 

3 Mean 
7. 11 256 Median 
0. 7069-1 Kurtosis 

5.28733 
1.232 

1.5 
1.73 165 Altemative I #N/A 

Variable #3 fWHC2b! 
Sample size 
Standard De 
Skewness 
Alternative ~ 

3 Mean 
0 .46 Median 

-0. 0'1 Kurtosis 
-0.22 Alternative I # N/A 

rest Statistic p-level •nclusion: (5%) rest Statistic p-level Conclusion: (5%) 

1.71 
1.73 
1.5 

KolmOROrov-Smimov/Lilli< 0.38238 #N/A SuRRestive evidence aRait KoiiiJOROrov 0.18 # N/A No evidence against twrma/i, 
Shapiro-Wilk W 0. 75618 0 .01369 Reject Normali~y Shapiro-Will I . 0 .92 Accept Normality 
D'Agostino Skewness #NIA #N/A Reject Normality D'Agostino ~ #N/A # N/A Reject Normality 
D'Agostino Kurtosis #NIA #N/A Reject Normality D'Agostino / #N/A #N/A Reject Normality 
D'Agostino Omnibus #N/ A #N/ A Reject Normali~y .;D;.;,'A;,;g~o;;;s;;.ti;;.no;;.;.c.;.#.;.N,;;I;,.A;_ __ ;;.#;.;N;.;I A;.;.. __ ..;R.;e:o~j,;;ec;;;·t..;N.;.o;;.'.;'';;.n<;;.li;;.it.:.''-----

Variable #4 fWHC2c/ 
3 Mean 

1.48 Median 
-0.22 Kurtosis 

13.32 
13.5 

1.5 

Sample size 
Standard De 
Skewness 
Alternative ~ -0.55 Alternatiw I #NIA 

rest Statistic p-level Conclusion: (5%) 
KoiiiWROrov 
Shapiro-Will 
D'ARostiiiO ~ # N/A 
D'Agostino I #NIA 
D'Agostino C #N/A 

0 . 19 #N/A 
0 .99 

# N/A 
#N/A 
#N/A 

No evidence agaiust norma/i. 
0.8 Accept Normality 

Reject Normality 
Reject Normality 
Reject Normality 
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B.S. Total inorganic matter concetration statistical tests continued 
Comoarlne Multlole lndeoendent Samoles 

Sample slze;um of Ranks 
WHB 
WHCla 
WHC2b 
JYHC2c 

3 24. 
6. 

15. 
33. 

Kruskai-Wallis A NOVA 
H 10.38 N 

Degrf!es Of• 3 p-level 

H (correctec. 10.38 

Median Test 
O••era/1 Mea 4.65 Chi-square 
p -le••el 0.0 1 

Variable #I Variable #2 
< - A1edicm . O.E+O 3. 
<= A1edian , 1.5 1.5 
obsen·ed-e.n -1.5 1.5 
> Median (o 3. O.E+O 
> Median (e 1.5 1.5 
ohservetl-exc 1.5 -1.5 
Total:ohserv 3 3 

12 
0.02 

12. 

Variable #3 
3. 

1.5 
1.5 

O.E+O 
1.5 

-1.5 

Comoarlnl! Multlolc lndcoendcnt Samoles 
Sample slze;um of Ranks 

10-Jttn 4 24. 
10-Aug 30. 
11 -Jun 24. 

Kmska/- JYallis A NOVA 
H 0.46 N 12 
Degrees Of• 2 p-le\·e/ 0.79 
H (correctec. 0.46 

A1edian Test 
O••ert~ll Mea 4.65 Clri-sqtwre O.E+O 
p-I eve/ #NIA 

Vt~rit~ble #I Variable #2 Varit~ble #3 
<- Median , 2. 2. 2. 
<= A1edicm , 2. 2. 2. 
observed-e.n O.E+O O.E+O O.E+O 
> Median (o 2. 2. 2. 
> Median (e 2. 2. 2. 
obsen·ed-e.n O.E+O O.E+O O.E+O 
Tow/:observ 

Vuriable #4 To1a/ 
O.E+O 

1.5 
- 1.5 

3. 

1.5 
1.5 

Total 
6. 

6. 

12 

6. 

6. 

12 

Comoarlne Multiole lndeoendent Samoles 
Sample slze;um of Ranks 

WHC2a 
WHClb 
JYHClc 

3 6. 
15. 
24. 

Kruskal-Wallis A NOVA 
H 7.2 N 

Degtl!e.<Of• 2 p-level 

H (correctea 7.2 

Median Test 
Overall Mea 1.73 Chi-square 
p-le••el 0.04 

Variable # I Variable #2 
<= A1edicm . 3. 2. 
<= Median , 1.5 1.5 
ohserved-exc 1.5 0.5 
> A1edian (o O.E+O I. 
> Atletlian (e 1.5 1.5 
ohse1,1ed-exc -1.5 -0.5 
Total:ohserv 

9 

0.03 

6.33 

Variable #3 

O.E+O 
1.5 

- 1.5 
3 . 

1.5 
1.5 

rmarine: Multiolc lndeocndcnt Sa moles (sorinl!S o 
Sample size;um of Ranks 

10-Jun 3 13. 
10-Aug 3 18. 
11-Jun 14. 

Kruskai-Wallis A NOVA 
H 0.62 N 9 
Degrees Oft 2 p-lewl 0.73 
H (correc/ea 0.62 

Median Test 
Overall Mea 1.73 Chi-square I. 
p-I eve/ 0.6 1 

llctriable #I Vt~rit~ble #l Variable #3 
<= Median , 2. I. 2. 
<= A1edian , 1.5 1.5 1.5 
obsen •ed-exc 0.5 -0.5 0.5 

> Median (o I. 2. I. 
> A~fedian (e 1.5 1.5 1.5 
obsen·ed-exc -0.5 0.5 -0.5 
Toial:observ 

To/a/ 
5. 

4. 

9 

Tollll 
5. 

4. 

9 
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8 .6. Ddta 13 Cor Total Inorganic matter statistical tests 

l .nution 
WfiC2a 
WfiC2b 
WHC2c 

WHB 

Norma lin· Trsts 

Variflh!t• Ill (}mu• 10) 
Sample .'fllzc• 

Standanl Dc!1·ialinn 
Skt•U'nt'.U 

Altemati•'t' Skell'ness (Fish 

TIC Av2 drltai3C 
Jun-10 Aug-10 Jun-11 
·1 2 5 - 1 ~.2 -14.7 
-13.0 -17.3 -17.6 
- 11.5 -Jl.(, - II.M 
·I I ·3 II ·2. 1 

3 Mean 
0. 72K65 Metliun 
0.34243 Kurtnsi.'f 

·l l .J2XX'J 
-I~ 47 

1.5 
II.M3K71J Altenwtiw I #NIA 

red Statistic p-lcvcl ·ncluslon: (S•!.) 
KolmtJj.,'OtlH'·Smirnm•/Lillit n 36 133 tfN/A Liule e••idt'm'(' against JH)I'IIIllli~\' 
Shapim-lf'illt. W 0 MO~r. 0 12794 At.."<'t'pt Nnrnwli~v 
D'Agmtinu SAewtte.ts tiN/A liN/A Rt'jt't'l Nom1ality 
D'Ago.ttitWJ Kurum:~ liN/A liN/A Reject Normali~1· 

D'Axo.ftinn 0 11wih11.f liN/A IfNI A Reic>t·t Normality 

l'tlriah/t• II} (AIIg- /0) 
Sample size 
Stamlartl Dc!1•iation 
S.h•u·nes." 
Altematiw Slu.-h·ne.(.\' CFi.,·h 

3 Mean 
3.39195 Media11 

- 16.3X22l 
- 17.26333 

0.-1-1502 Kurw . .l'is I 5 
I 0?007 Altt'marl' l! I MNIA 

rest Statistic p-lt.•Vt'l ·ncluslon: (S·I·) 
Kolmr~J..>rnu ,•.Smi,.,JfJl'ILillit 0.26043 liN/A Noe,•idelln! agtlim·t t~orma/i~,. 

Shapim-lt'i/Jc IV 0 MO.fR 0. 126 Act·t'pt Nonuuli~v 
D'A!;>tJStitw Skt!'ll'tU!.\'S liN/A IfNI A Rt'jt't..'l Normali~l' 
D'AgtWhtn Kttrto.d.<r KNIA IfNI A Rt!jt•t..·t Normali~v 
D'tlgostilm Om11ihus tiN/A liN/A Rejt't'l Nmmuli~\' 

l'ariahh• #J (}Wit!· II) 

Samplt>.<rb.• 
Stamlan/IJe,·iarioll 
Skl'll''lt'.fi.\' 

Altl!maliiY.' Skeu·m'.\'.f (Fish 

3 Mean -14.72222 
2.9 111()3 Medim1 - 14.706(.7 

...0 ()()lJM2 Km·tu.\'i.\· 1.5 

..fl 112405 Altt•math't• l liN/A 

fl'51 Statistic p-ll•vt.'l ·ndu5lun: (S•/•} 
KolmrJXrmw-Smirii<.II'ILillit 0. 17.532 IfNI A No t>l'idi!IU't' ogllin.\·t II<Jrma/i~,. 

Shopim-JI'ilk W 0 1)?1Jt)M 0.9911(1 At..'t..'t'ptNormali~'' 
D'tfJ.-tJ.UitJO Skt'li'ne.u· IfNI A liN/ A Rejet·t Normality 
O'.;lgtJsti'IO Km'lfui.t liN/A liN/A Rt>jet..·t Normality 
D'tl!,rn.\'lillo Omnihus NNIA IfNI A Rc•jn·t Nnrmali~~· 

V,,riahli~ Ul tWHRI 
Sample .\'izt• 3 Mean -2 07 
SttmdmYI De 0,% Mt'llion -~. 14 

Sltt'WIH!.f.\' 0. 13 Kwtasl.'f 1.5 
AltematiiY.• ~ 11.32 Alternatil't' Km·to.,·i.fi (Fi."her's) ~NIA 

fest Statbfic 
KolmfJ).!otVI' 
Sha11im- Wih 
D'AKUstioo : liN/A 
D'AJ.,>t'Jslim, I #NIA 
D', fsmtilln c liN/ A 

11. 17 liN/A 
I 

liN/A 
liN/A 
liN/A 

3.45 Median 
-0 )') Km1rl.l'is 

·nclulllon: (5•/.) 
NrJ t•vitlt•nce again.1'l uorm 

0 'JIJ At·t·c•pt Nonuolity 
Rejt!t'l Normality 
Rejt't..'l Narmolif.'' 
Rl!jt'ct Normality 

- 15H 
-14 71 

I 5 

Sample size 
Standard De 
Skeii.,Je..\~\· 

.;1/temotil't'~ -0 1)5 Altt•matil't' Kurwsl.t (Fi.\'lwr:,·J NNIA 

fest Statistic 
Kolnu)j.:mvv 
Shapim-U% 
D'AJ.!O..\Iino .'IfNI A 
D'AJ.,•o.ttino I MNIA 
D'AwJstino t liN/A 

II 32 liN/A 
0 R9 

liN/A 
NNIA 
liN/A 

11u·iahlt• U.J f WHClhl 
Sample .tiu 
Stot~tlarc/0..• 

3 Mean 
2.59 Median 
0.69 Km1osi.\· 

p-lcVl'l ·ncluslon: (S•!.) 

Nn l'l'idtm ce ogoill.\'1 r~orm 
035 AtX"f!JHNarnmlity 

Rt!jt'c'l Norntali~\' 

Rt'jt•c·tNomrality 
Rt•jt•ctNormality 

- 1~.% 
-1716 

I.S 
Altt',.,mtin.<~ 1.69 Altt•r,wtil~ Kur1o.1·i.t tFish,•r:~J NNIA 

rest Stalisllr -ncluslon: (S•!.} 
Ko/mVJ.:muv 
Shapim-Wih 
D'As.'fJStit~o:NNIA 

D'AJ.!tWitJo J #NIA 
D'Aij'mi11a f #N/A 

0.3t'i liN/A 
IlK I 

#NIA 
#NIA 
liN/A 

Lilllt! el'idmct' agaJm·t tKJl 
U 14 At"t"l'J11 Nnrntality 

Rej a ·t Normality 
Rt'jt't.'l Nornu11ity 
Rt•ii!.ctNornwllty 

l'ariohle U4 IWH('ld 
Somplesiu 
Stat~rlmv.l De 
Skt!lt'llf!.(.f 

Altt<mutiiV.' ~ 

3 Mc'tlll - 12. 
0.57 Mt•tlitm - II M2 

.n 52 Kurw.,·i.t 1.5 
- I 27 Altt!rtf(llil't' Km·wsi.fi (Fi.,·ht•r '.fi) liN/A 

rrst Stallsltc p-lcn•l ·ncluslon: (S•!.) 
KnlmOJ.,.'OIUI' 
Shupim-Wih 
D'Axmrti,o: #NIA 
D'AJ..>t'Jstino J liN/A 
D'tfj.!USiiiiO' #NIA 

0.2 1 liN/A 
0.93 

liN/A 
liN/A 
liN/A 

No t'l'itknce aglliiiSI ntH7U 

U 4 7 An·t•pl Nornwlity 
Rl.'jet·tNomiQiif.l' 
Rt>jt•t'l Nornwlity 
Rt~jt•t·t Normality 
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8.6. Delta 13 C of Total inorganic matter slatistical tests continued 
Com oarlng Mulliole lndeoendent Samoles 

WHB 
WHClo 
WHC2b 
WHC2c 

K111ska/-Wal/i.• ANOVA 
H 
Degrt'(.'S Of Fl'('f.~dom 
H (corn•clt•d) 

Median Test 
Overo/1 M£•dian 
p -le,·el 

<""' Medicm (obserl'ed) 
<= A·ledimt (exceptetl) 

obsen '(•d-£•xcee,ted 
> M£'ilian (obsen·ed) 

> Mecliau (t•.n:epted) 
obsen·ed-£•xcepted 

Total:obs£'rY£'il 

Sample slzeium of Ranks 
3 33 
3 I~ 

8 74 N 
3 p -h•wl 

8.74 

10 
23 

-I::! 55 Chi-square 
0.08 

Variable #I Variable #2 
OE+O 2. 

1 5 1.5 
-1.5 0.5 

3 I . 

1 5 1.5 
I 5 -0 5 

3 

12 

0.03 

6 67 

Variable #J 
3. 

15 
I .5 

OE+O 
I 5 

-I 5 
3 

ComoarinK Multi ole lndeoendent Sa moles 
Sample slzeium of Ranks 

10-Jun 4 33 
10-Aug 20 
11-Jun 25 

K111.•koi-Wallis ANOVA 
H I 65 N 12 
Degrees Of Freedom 2 p -le•·el 0.44 
H (corn•ctetl) 1.65 

Median Tc•.<u 
Overall Median - 12 55 Clti-squarL' 
IJ-h'l·e/ 0 37 

Jlariabh• #I Variable #2 Variable #J 
<= Median (obsen ,ed) I. 3. 2. 
<-= Median (excepted) 2 2. 2. 
obsenY!d-excel!.'ed -I I. 0 E+O 
> Mt'ilitm (obserwd) J 
> Meclian (e.\'l:epted) 2 2. 2. 
obsl'n 't•d-exc(•pted -I. 0 E+O 
Totol:ob:;;en·ed 

Comoarin2 Two lndeoendent Sa moles Uune 2010 and 2011) 
Samph• s ize #I 3 Sumple siu · 3 
Mmm-Wititne\' U Test 
W I Sum of Ranks (series 
JV2 Sum of Ranks (serh!l 
/&·lean WI 
Standard Dl!viatiou JV 
z 

Kolmogomv-Smimov Test 
Mw:imal Dij)(•reuce 

Wold- Wol[im•itz Runs Test 
RuuscountR 
p-levd 

Rosenbaum Criterion 

I J U (forger) 
8. u 

10 5 Mea11 Wl 
:! 29 Multiplicity . 
I Q<l p-leve/ 

0 33 p -level 

6Z 
0 49 

J Critical ''alu #NIA 

7. 
10 5 

0 E+O 
0 28 

0.98 

0.68 

Jluriubh· #4 
I 

1 5 
-0.5 

2. 
15 
05 

Total 
6. 

6 

I~ 

Tnral 
6. 

6. 

12 

Comparing Multiple Independent Samples 
Sample slzeium of Ranks 

WHC2o 
Wf/Clb 
WHC2c 

3 12 
10 
23 

Km•kai-Wal/i., ANOVA 
H 4 36 N 

Deg•vesOJ• 
H (conY.'l'tea 

Mt•dian7i.·st 
Q,•erui/ Mea 
p-le,•t•l 

< Met/ian , 
<= Median . 
obsen•etl-l•.n 

> Ml•dian(o 
> Median (e 

obst•n·ed-t•.n 
Total:nbst•rv 

:! p -len!l 

4.36 

-12.98 Clti-Sqtlat'(' 

004 

Vcwiable Il l Jlariabl£• #2 
2. 3 

1.5 1.5 
0 5 I 5 

I . O.E+O 
1.5 1.5 

-0 5 -1 5 
3 3 

9 
0 II 

633 

Voriable #J 
OE+O 

1.5 
- 1.5 

J . 
1.5 
I 5 

3 

Total 

4. 

9 

Comuarinl.! Multi ole lndeoendenl Sa moles tsor ines onlvl 
Sample sizeium or Ranks 

10-Jwt 3 21 

/ 0-Aug 10 
11-Jmt 14 

Kmskai-Wal/is A NOVA 
H 2 76 N 

DeRil?es 0[1 2 p-level 0.25 
fl (corn.·ctea 2.76 

M"dian Test 
Overall Mea - 12.98 Clti-squul'(~ 

p-1£'\'('1 0 61 

Variabh• #I Variabl£• #2 Vuriubh• #J Total 
<- Melliou , I. 2. 2. 5. 
< = Metlicm . 1.5 1.5 I 5 
obserlJ£•d-e.n -0 5 05 05 
> Ml!diun(o I 
> Median (t' 1.5 1.5 1.5 
obsen·ecl-ex~ 05 -0 5 -0.5 
Total:observ 3 3 9 
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8 .7. Phospholipid ratty acid (PLfA) mol•;. sta llsliultcsl 
Mol% 
Sampling Time 
WHC2o June 2010 
WHC2o June 2011 
WHC2b June 2010 
WHC2b Aug 2010 
WHC2e June 20 I 0 
WHC2c Aug 2010 
\VHC2e June 2011 

Branched Polyunsaturated FA iaturntcd (<20Ciatumtcd (>20C cyclic Mono rcc.:~lc 

Normalllv Tests 

Variuhlt• Ill ( Bram·lwd) 

Sample .viu 
Sumdtml Dt' l'iathm 
Skt!h'III!S.f 
Allt•r,wtb·e Skewm•ss tFi.,·h, 

4.1 
7.6 
7.9 
2.4 
6.2 
10.2 
5.X 

7 Mean 
2.57 Median 

-0.07 KurUJsi.,· 

1) .1 
26.X 
14.1 
21.4 
22.1 
IK.2 
25.0 

-0.08 Altematil't' Kurlflsis (/ 

Test Stalisllrs p-lcnl 

36.3 
24. 1 
29.2 
l ·t~ 

22.K 
24.6 
25.6 

6 .31 
6.2 

2.19 
-0. 13 

'ont'luslon: (5•!.) 

14.7 
3.X 
11.2 
4.9 
3.2 
3.1 
2.2 

().(J 31.X 
1.4 36.3 
0.0 37.6 
0.0 56.5 
1.0 44.7 
1.1 42.K 
o.x 40.6 

Voriah/e U4 (Smurated (> }(}C)) 

Sample .d:e 7 Mean 
Standort/ Ot!l'io 4JII Median 
Skt'll'llt!.VS 
Altt!l'ltalil'e Ske 

I . Km·tu.vl.\' 
1.29 Altenwtiw Kw 

6 . 15 
3.K 

2 .31 
0. 15 

Test Stalbllcs p-h.•,•el :ont'luslon: fS•!. ) 
KolnHJKtmw-SmimtJI'!Lillie, 

Shapinr Wilk IV 
0. 13 
0.99 

0.9X Nn e•·idem:e against normali~v Kolmo1:mm·-Sn 0.32 
0 .79 

0 .03 SuDirit•nt ,.,,illence again.,·t nom 

0 .03 Rt>}f't'l Nornwllty 0.99 Ac:t't'fJI Normality Shapinrlf'ilk If 
D'Ago.\'lilto Skewne.t.v 
D'Ago.,·tino Kurw.,·i.\' 
D'AgosthHJ Omnibm· 

UN/A UN/A 
0.06 

Rtjt!t'l Normali(l' D'AKo,,·tino Ske UN/A UN/A 
0.24 

Rl'jl!t'l Nornwlity 

#N/A 

Yariohle IU (Poll'lln.toWratetf FA) 

Sample .~ize 
Stomlmrl De,•iotinn 

#N/A 

7 Mt•on 

5.21 Met/ian 
-0.17 KllrtO.ti.\' 

0.95 An:t•p t Norntali(v 
Rejet'l Nonnalih' 

-0.22 Altematil't' Krmo.vi.,· (I 

20.1 
21 .4 
1.66 

-1.42 

Test Statistics 
KolmoJ,tOIYII'·SminuH"/Lil/ie, 0.16 
Shopim-Wilk W 0. 94 
D'AgtM'thHJ Skt!Witt!~'.\' UN/A UN/A 
D'Ago.Will() Kurto.,·i.v ·0.92 
D'Awu·tino Onmibu.\· UN/A UN/ A 

Variable UJ (Sollu·atetl (<10C)J 
Somple.tize 
Sumtlurtl Dc1'idtion 
SkC'II'IIt'.t .f 

7 Mean 
6.52 Metlitm 
0.12 Kurto.ti.v 

:onrluslon: cs•;.) 
O.X4 No t' l'idt•nce oguin.,·t tmrmolity 
0 .64 At't't•pt Normality 

Rtject Normality 
0 .36 AcL·t•pt Nornmli~v 

Reit•ctNormalitl' 

25.35 
24.6 
2.92 

tlllemutiw! Skt•tt'tlt'.U tFi.tht 0 .16 Alte,.,atil'l! A'urtas i.v (I 1.6 

Ttst Slall~llu D=ll'vel 
Kolmt~Kmm·-Sminun-/Lillie, 0 .2 
Shapim- IVilk IV 0.95 
D'AgO.\'IitJO Skt•II'IIC..t.'l #N/A #N/A 
D'Ago,\·tiiHJ Kurwsis 1.06 
D'Agn.\'linn Omnihu.v #N/A liN/A 

oaring Two Independent SamplcJ 
Sample s izt' U I 
Mamr-Whitnev U Ti'.\1 

6 Sampft! size 111 

WI Sum of Ranks (.verie.,· I) 
IV} Sum nf Rmtk.v (.n•rie,\· Z) 
Mean WI 

40. U (larger) 
3X. U 
39. Mea11 WZ 

'oncluslon: (5-;,) 
0.55 No t•vidt'llt't' against normali~l' 

0.12 Acct•pt Nnrmuli(l' 
Rrjtxt Nonnali~l' 

0.29 An·ept Normo/i~,. 

Rtjt•c·tNnrmalil_t' 

17. 
19. 
39. 

Stamkml Ot•,·iatioll W 

z 
6.24 Multiplid(v Fm_·tor 
0 .16 p-le wd 

O.E+O 
O.X7 

Wold· Wo/{uwilz Rtm.v Tl!.\'1 
RunsnnmtR 

p·"' ''e/ 

0.17 /)·fl'I'C'/ 

12 z 
0.17 

I Crirkt~lralut' (5%) HNIA 

Compulng Two lndl•pcndent Samples (JJu ne 2010 and 2011) 
Stmtph• .dzt• Ill 6 Samplt• .viu #} 

Mmm-Whitm'l' U Tr.{/ 
WISum ofRwrb(saie.r l ) 39. U(lmg~r) 
Wl Sum of Rank.r (series 1) 39. U 
Mean IV/ 39. Mean WJ 

I. 

1.36 

IX. 
1~. 

39. 
Stamlarrl Dt'l'iatioll W 
z 

6 .24 Afulliplid~1· Fm:tor O.E+O 

Wold- Wo/(nwitz Rum· Tt•.,·t 
RIIII.\' ('0111/IR 

p -lt' l'l'l 

Rn.n·uhtmm Critt!ritm 

RO.\'t!tlbtl/1111 Q 

O.E+O p-lt!l'l'l I . 

-0.33 p -Je,·t•l O.X I 

12 z 1.36 
0.17 

2 Crith·almlue (5%) UN/ A 

D'AKoJtitKJ Km 
D'Ago.,tilln Om UN/A 

Variable 115 (n dh.J 
Sampleslu 
Sta!lllanl Dt•t•in 
Slct' l\'llf!.U 

Altt'rnatil'l! Slw 

OJ( I 1k cep1 Nurmality 
#N/A 

7 Metm 
O.l't Mt"tliOII 

-0.03 Krmo.vi,,· 
-0.03 Alte,.,miw Km 

Rdet·t Nornwlit v 

0 .61 
o.x 

1.)2 
-2.23 

Test Statistics p-le\•el :oncluslon: (S•!. ) 
Kolmos,:mm'-SII 0 .26 0. 17 Na e t·itlellct! agai11~1 uormtlli~l' 
Shapim-Willc If O.M4 O.OQ An ·t!pt Normality 
D'Asm·ti,oSict• UN/A #NI A Rrjet•t Normalily 

D'AKo.l·tino Km ·I . 73 O.OX tk t't'pl Nurmolity 
D 'Aso.,·timl Om UN/A #N/A Rt•i'•l·t Normali1 11 

Varil1hle 116 (Mmm rt',.,/t·} 

Sample .vi:c 7 Mt!tm 41.47 
Standmrl Dt•,·ia 7.~ Metliml 40.6 
Skeu·11e.t.v O.X5 Kurtn.vi.f 3.04 
Altematil't•Ske 1.1 Alt~trmllil't• Km J.Y 

Test Sra rtsrlcs p-lnrl :onrluslon: ($•/e ) 

Ko/moJ,tnrrw-Sn 

Shapiro- Wilk If 
D'AJ!d.ttina S/.:,• liN/A 

D'AKnsliiKt Km 
D'AJ,tn.~tiiHt Om UN/A 

0 .2 
O.Y3 

#NIA 
1.2 

#N/A 

0 .55 No e 1•ldem·e ogt~itul normality 

0.57 A<'t't'l" Normalil_1' 
Rt>j t-.'1 Nm.,ali(tl 

0 .23 t fcCt'pl Normality 

Rejt•t·t Normality 

Compari ng Two Independent Samples (WHClb J une ' 10 and ' II) 
Sm11ple si::.t' # I ll Somph• .'li:!t' Nl 6 
Mamt.Whittwv U Te.,·t 
WI Sumo( Ran 37.5 U (/m-g,•r) IIJ . .S 
lfllSum o(Rmr 40.S U 16.5 
Mean W I 

Swmlmt i Del'ia 

z 

Ko/nmgnmv-Sminmv Tt'.\'1 

39. Memt 11'1 
6.24 Alultit11icill' Fllo 
0 .24 p-le wl 

Maximal Di/Ti.•r -0.33 p·lt'' "'' 

Wold- Wal(owitz Rrm.\' Tt•st 
RIIIIS ( '()IIIII R I I z 
p-ll'l'ei 0.2~ 

Ro.wmhoum ('ritt'l'irm 

RosenhamuQ I Criti<'o/mlue ( UN/A 

39. 
6. 

O.KI 

O.XI 

1.06 
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Jun-10 WIIC:!c 
A ug-10 WIIC:!b 
Jun- 11 WIIC2a 
Jun-11 WIIC2c 
Jun- 10 WIIC2h 

Aug- 10 WIIC2c 
Jun-10 WIIC2a 

J:,rmM.• IIIrfl, ,..,,.,.," '"''li 
.fW.tnlfllt•.fl:o• 
Slur.&mlf).,.·wtttHf 

tkha 13 C FA 
Uactl·na (n.~) Gm · \ ' C f unsr Grn +H: Mt:. algal 

-39.1 

7 M,•tm 
J.OK Ml·dUm 
0.9 KurttJ.IU 

·31.9 ·30.4 ·32 9 ·26JI 
-3 1.1 -21(9 .]I.J -27.4 -374 
· 24.5 -2J.Ii -27.2 -22.2 -27.11 
-25.6 -25.7 -JI .n -24.7 -302 
-30J -211.3 -311 
-31.2 -211.5 -31.] 
-31.7 -29.7 

("ftmn•rin• flo1 .. 1tJniP i nth•-ft.tPnl <; • .,. .. c ... 

Sam pl.- 1i1.f' Sum nr Manlu 
H11o 'fl'rN1(n.t) 7 91. 

-29.411 Gnl · •"t• 1211. 
-31.011 J-'IIIIJ.:I 56. 

Gn1 ' •'t' 95. 
l. ltl Alt.•r~uiii\\' Kw 

1.96 
-O.M Ml-." (/f •trf )6. 

.,-,---..,.---.,-.,.-,,.--- .:.Tn,_,c:.:S:::":::":.:."k::;•:_.,.o."'"H:---"'p-"-l .. :..:•o:-
1 .O"'I...;.~;::::.:c~~:::::::~."::.:.~~.=J.~~::.:::.:~H.:c•m.•·r •H-u"-:';~f""'"'"""''-'· ":::'•:::"''-'""''"''n"'c ·;'-;1;;0.9;;;J~N;;--------;,:;-, 

0.66 0. R<jt~ ·t/'IIJI'nurhty 0..'1!."'•'.f 0(1-""' 4 p-lo·•~·f rql' 

-OJ] liN/A O.N ~:~:;/';:,~~::;;~:. ~/:..1/ 1:,:-"~=':.:.''''::11/ __ --'1:::0·;.:.93'--------

7 Mt'OII 

2.33 Mo-dl(lrt 
O.KI K11rtt~'u 

I.Otl Aft,•nH'""' K''' 

-27.93 
· 2K.S4 

2.34 
0.22 

Ot\•rui/Mo•<Jim 
,,.,,.,~., 

< ~lt·dllm (uh 

< Mo•dum (t•.t 

l i1rmhlt• NI 

s. 

" 

12.52 

l'trrwhlo• ll.' J'irrltrhft' 111 

I. s. 
J.S J. 

Hrrruhlo•/14 llrrttlhlo• NJ ] iHIIf 

O.t: •O J . ... 
l . ! . 

I.S -2.5 -· -2. 

-· 6. I. 4. ... -::-:======;::---..!!!'-""""'-"'---,o."'!K:-_.J!:P•!!:C.'!;!''o!c1 .09;;;;-;;;o:..,::""':',.:!!!~~~~~"'\~ .... ~:':';,~,~-~' {ljl(llfi.O'IIIOI'~~'iC';'ff·~~o;~:!!:::~~:!<;:"'~:---¥-----"+----+-----":-----!~--...-
Q.I(9 0.29 A"'•'P' Nurttl(lhl,t• > Mf·diwr (t~n " J .S J . ' 

liN! A Rojt't'l l'ltJI"ttltlluy <~bJ4'nwl--~.~t\'IJ -U 2.5 -2. · I . 
1 1 " 0.29 0.77 A<\"o'IJI/'Im·nttllil_l' 2"!!!'"!!!"'::!'1th.!!;:'!;:""::!:' 'f!..d ___ ...f.. ___ ..i... ___ !.,. ___ !,_ __ --'::,_--~ 

~~~~~:,_--~~:,_------------·~N~'IA:,_ __ ~N~,1~n~·· N~,~~="'~htv 

-30.1'17 
-3 1.19 

1.24 Kr1rlmr.o· J .S 
I 7 Allo'rllill/0~' Km J 97 

Comparinr. ·rc.o lndtpt"ndtnl S•mpln(WIIC2a Junt 2010 and 2011 ) 
SultlfJI••.Ji:o• ll / ) St.!ttlp/l' ,f~;t•N1 fl 
,lfmm- H'hllllt' I'U To·.•·t 
H'I SII1t1<1(Hmt 
w:Smrro( Hmt 
M,·,ml4'1 

to. U(l<~r,:o•rJ 

) 9. u 
IS. M.·trn ll 1 

... 
OJ·.•O 

JO. 
Swrukm/IJ,••·In 3117 M lll llrlli4'111' Fth O.t-. •0 

..,-,---,--,------,;-.,.-,:---..!.!!:~!!!!!.!!L_,.,.,.--PP:·!!:I"!:!'LI ~·""'"'!:!!1•!!.•1!!!""'-'' P,'~"·t.) I. 2 J:! , ,_,,." '' '' 1, .. 
0 . • ) 0 . SlniiiJ: l'nJo' llt'l' trgtiiii.0-1 IJill'fl/trlrty 

O.M NN/A O. z:~:~::z::::::~:~:: ~~.,·;::=::=:";:,"'o;,;;e;~VrCC.,!!!'"!!!~!!:"'.!!];•:!!''.oo.7.7;-/::-,T:,,,,:::,.,;------;;O:;-.! 
I. 97 O.OS Hoj <"'' Mwttmlil.•' 

~~~~~:,_--~~::.,_ ____________ K~N~~:,_ __ ~R~·1~o'~' '~'~w·="~'fiN ~~~:~~~~~~i~~~~~·~·-~'="'"-"~"'~"---.~l------------~~ .4~) 

4 Mt'llll 

2 ] 4 Af.·Jklll 
0.4fl K11rtmu· 

-~S.2S 
-25.71 

1.66 
0 .79 Al t;•nm/11\' li."m -1J)9 

,,.,,," '' 0 I S 

Hll_.,·nlu~<ttr Q 9 Crmn J n1lw ( UN/A 

Comp•rint T ¥10 lndtJ)t'ndtnl S1mpl•s (WHC2c J unt 20 10 1nd 2011 ) 

-::-:======;::---..!!!'-""""'"'---,o.~,.=-,,,;;,,f~"''-"''-1 ---:·~'!'::,c"',~~"-.~7'~:'-''·"1~=;:,~.mn~"·"H'"'·'' ;;{;,':::~~~~::,~:. u 1•·~, 6 ~.,,,,, . .tho· N:! 
6 

0.93 0.59 • .ft·o~'/11 A'•lf'n~trluv H'/ ~'"',,(Hull !1. U (hKJ:o•r) 30. 
liN/A Ho"}c•c·tN•JI"ttmhty w:Suttru(Hom Sl . U b. 
liN/A H4j <'<'l Nurttllllrl).• Mt•m• H'l 39. Me'"" II'.' .l9 . 

.::..:===='----'='--------''~N:::IA;:__~N::l''':::'•••"'·' ~':::•w:.:•:::"'::::lrh• Sttrmlt~nliJ..·•·in ~·;~ ~;:~:~;Jw,ty 1-'th O.t •O 

4 "'''"" 5.49 ,,((-,/1(111 
O.OS Kurl</$0. 

·33.6] 
·33.1tl 

119 
0 09 All<'nllltm• Km ·4 SK 

Mm inwll)i(l<'r -O.b 7 ,,.,,.,.,,, O.OK 

H.mu 4"oi/IIIIH 12 % 

-::-:======,---..!!!'-""""'-"'---,o."'cs;-K;;;:N;;c,,!!"""''"'-"''L' ---;·~'!':~,c!:l!'~~!!..:~T~~",.=.,-"!~CZ.,;:};~~.tt rJiornHJiuy ,, . ,.., . .., 
0

'
17 

0 .91'1 0.1'19 Aol "<"J11 Nurttllrlity -::•'<!!">:O''"O'"'=III""''O:' 'C!!" .:<'''"-'" ""-' --;,-;;--,-.,-,--,=.,---
liN/A Ho-jo•o·t N•wttmhl).• Ru.•o•~thmtnl Q 7 Cr~twol•t'l<"· f liN! A 
UN/A Ho"}t"j'tNtJI"ttllllity 

" N/A Rl'ic'l·tNarttmlllt' rnmn•rln11 "1\on lnll•nf'n.t•nt S•mnln 1\\'U(" lh Jun•lOIO • •"' lOI Il 
St.tltlfllo•s i:I• NJ 6 St.•tttJ'IIo• .fl:t•lf1 4 
Mmur- lf'lufllt' t' U To•.d 
WISuttru(Ncm 30. U(ltr"}lo'r) 
II'.'Suttlu( Hmr 2S. U IS. 
M<'m!WI 
Sumtl.ml/A'I'tll 
l 

J]. loktm W1 
4.tl9 Alulltt>ltd tt• f O. 
0 64 ,,.,,." '' 

Hnm < '~>IIIItH 10 I. 
,,_,,.,.,., 0.19 

2 Cmwtrl t>~llr .. • ( IINIA 

O.t-. tO 
0.52 

0 .67 

u 
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8.9. Model II regression for determining relationship between fractionation of PLFA to T IC and PLFA to DOM 
Time Site Eh mY E Fa-TIC std E FA-DOC std 

Jun- 10 WHC2a -647 - 19.5 -0.04 - 15.7 -0.05 
WHC2b -642 - 17.6 -0.01 
WHC2c -468 -20.6 -0.0 1 -9.8 0.00 
WHC2b -642 - 18.4 -0.0 1 
WHC2c -468 -2 1.6 0.00 - 10.9 0.00 
WHC2a -647 - 17.5 -0.03 - 13.7 -0.05 
WHC2b -642 - 15.6 -0.0 1 
WHC2c -468 - 19. 1 -0.0 1 -8.3 0.00 
WHC2c -468 -1 5.4 0.00 -4.6 0.00 
WHC2c -468 -27.9 -0.01 -17.2 -0.0 1 

Aug- 10 WHC2a -642 - 10.0 -0. 10 
WHC2c -106 - 13.9 -0.06 -2.0 -0.0 1 
WHC2a -642 -1 2.7 -0.03 
WHC2c -106 -20.0 0.00 -8. 1 0.00 
WHC2a -642 -9.3 -0.04 
WHC2c - 106 - 14. 1 -0.05 -2. 1 -0.0 1 
WHC2a -642 -7.6 -0.03 
WHC2c - 106 - 13.0 0.00 -1.0 0.00 
WHC2a -642 - 13.3 -0. 11 
WHC2c -106 - 18.6 -0. 11 -6.7 -0.04 

Jun- 11 WHC2b -596 - 14. 1 -0.05 -11 .0 0.00 
WHC2c -458 -18.8 -0.01 -8.5 -0.0 1 
WHC2b -596 - 14. 1 -0.06 - 11.0 0.00 
WHC2c -458 - 18.9 0.00 -8.5 0.00 
WHC2b -596 - 11.9 -0.05 -8.8 0.00 
WHC2c -458 - 16. 1 0.00 -5.7 0.00 
WHC2b -596 -1 0.3 -0.04 -7.2 0.00 
WI-IC2b -596 -20.5 -0.08 - 17.4 0.00 

MODEL II For graph fractionation FA-TIC vs fractiona tion FA-DOC for individual fatty acid groups 
bacteria fu ngi GM-ve 
Beta 0.6235374 Beta 0.682726 Beta 
Intercept - 12. 17 1293 Intercept -1 3.22988 Intercept 
SDBeta 0. 19 12034 SDBeta 0.2560787 SDBeta 
SO Intercept 1.834 1245 SO Intercept 2.2699 SO Intercept 
Mean X Vari -6.701 35 11 Mean X Vari -6.41 6 1582 Mean X Vari< 
Mean Y Vari -1 6.349836 Mean Y Vari - 17.610358 Mean Y Varia 
R 0.585 R 0.395 R 
R" 2 0.342 R" 2 0.156 R" 2 

GM+ve algea 
Beta 1.9 Beta 1. 1945249 
Intercept -4.5 Intercept -6. 1749043 
SDBeta 0.7 SDBeta 0.302 12 16 
SO Intercept 3.2 SO Intercept 3.7 1880 1 
Mean X Vari -2.6 Mean X Vari -8.2746889 
MeanY Vari -9.3 Mean Y Vari - 16.059226 
R 0.516 R 0.825 
R" 2 0.266 R" 2 0.680 

MODEL II For graph fractionation FA-TIC vs fractionation FA-DOC for all fatty acid groups 
ALL 

Beta 1.4692579 
Intercept -4.8307757 
SDBeta 0. 1647753 
SDintercept 1.249 1088 
Mean X Vari -4.5688046 
MeanY Vari - 11 .543528 
R 0.714 
R" 2 0.509 

0.7 
- 11.2 
0.2 
1.7 

-5.5 
- 14.8 
0.516 
0.267 
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