CENTRE

TOTAL OF 10 PA

(Withowt Author's Permission)










i+l

National Library

of Canada du Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

395, rue Wellins
Ottawa ON K1

Bibliothéque nationale

Acquisisitons et
services bibliographiques

ton
SoNa

Yourfile Votre référence
ISBN: 0-612-89647-1
Ourfile  Notre référence
ISBN: 0-612-89647-1

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

4

Canada

Conformément & la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Finite Element Analysis of Ice-structure Interaction with a

Viscoelastic Model Coupled with Damage Mechanics

by

© Chuanke Li, B.Eng

A thesis submitted to the School of Graduate Studies
In partial fulfillment of the requirement for the degree of
Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
September 2002

St. John's Newfoundland Canada



Abstract

Medium scale ice indentation tests were conducted at Hobson’s Choice Island in
1989 and 1990. A damaged layer was found near the contact interface of the indentor and
ice mass. The fluctuation of ice load is believed to be related to the layer. Triaxial small
scale tests have been conducted at Memorial University of Newfoundland. The tests
showed that microcracking is dominant at low confining pressure levels and
recrystallization and pressure melting are dominant under high confining pressure levels.
At the medium pressure levels, both the two mechanisms are inhibited and damage
remains low. The tests also showed that increasing temperature has a softening effect on
ice. The data of the tests is used to calibrate the damage parameter as a function of
confining pressure and deviatoric stress. Strain localization and rupture observed from

these tests are also studied.

A constitutive model coupled with damage effects was established for finite element
implication. Both the triaxial small-scale test and medium scale test are simulated by the
finite element program, ABAQUS. Results of small-scale model show that
inhomogeneity plays a significant role in triggering the strain localization and its
consequent rupture. Results of medium-scale model are compared with the field data and
they show a good agreement. The damage evolution process, stress state, energy flux and

scale effect are also investigated.
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Chapter 1

Introduction and Outline

In arctic and sub-arctic water areas, sea ice and icebergs provide a challenge to oil
and gas industry. This leads to a focus on an adequate understanding of the mechanical

behaviour of ice during its interaction with an offshore structure. The objective of the

present research is to develop ical models for ice-st i ion that will aid
in the design of offshore structures subjected to impacts with ice in arctic and sub-arctic
waters.

The load acting on structures during an ice impact event is transmitted though
localized, short-lived zones of intense high pressure along the contact surface (see Figure
L1.1). Theses zones are called * hot spots” or “ critical zones”. In ship ramming trials on
sea ice with the icebreaker C.C.G.S. Louis S. St. Laurent in 1994 at North Pole,
numerous local peaks in pressure were recorded on the hull during contact. Medium scale

indentation tests on Hobson’s Choice Ice Island have shown peak pressures reaching as



high as 70 MPa (Frederking e al. 1990a,b). Understanding of the high-pressure zones
will not only aid in estimating the global impact force but also should be valuable to the
design of individual components making up the structure. A probabilistic model of high-
pressure zones has been developed based on the idealization of the high pressure zones as
a point load by Jordaan et al. (1993). The present research will develop a mechanical
model to predict the local impact load and the pressure distribution within these zones. In
order to establish the model, it is necessary to understand the deformation under

loading

p A power law ip is well ized for a small
amount of deformations in ice. However, the ice within the contact zones shows large
deformations and the formation of a damaged layer. Small-scale experiments in
Memorial University of Newfoundland showed that damage can enhance the deformation
of ice significantly (Meglis et al. 1999, Melanson, 1998 and Barrette, in preparation). In
this research a mechanical model based on Glen’s law coupled with damage mechanics is
formulated. The damage parameter to be used in this research is based on the Schapery's
approach (Schapery, 1991), which has been further developed by Xiao (1997) and
Jordaan (2001) to include the pressure softening effects. The damage model has been
calibrated against triaxial small-scale tests carried out at Memorial University of
Newfoundland. Since a small-scale specimen can be treated as an element in the ice mass
of a medium scale test, the calibrated model can be applied to large models. The model
has been applied to the study of the failure modes of ice specimens under compressive
loading conditions. Finite element analysis with a UMAT (user’s material subroutine) is

used to predict the formation of the layer and the stress distribution of a medium-scale



test. Scale effect of high-pressure zones is also studied in this thesis, because it is
important for predicting the local design load of the offshore structures.

The scope of the present research can be outlined as follows:

Literature review of the mechanical behavour of ice, including ice mechanics,
damage mechanics, Schapery’s approach and the coupled model of ice

‘mechanics and damage mechanics.

P

Description of the medium-scale tests and triaxial small-scale tests. Discussion of
the formation of the damage layer in medium-scale tests and the failure modes of

small-scale specimens.

b

Constitutive model for finite element application; analysis of triaxial small-scale

tests to calibrate the constants in the damage model.

*

Study of mechanisms of strain localization and numerical analysis for the

of potential of strain ion and rupture in ice

specimens.

]

Finite element analysis of an indentation test to study the damage evolution,

stress distribution, formation of the layer and scale effect of high-pressure zones.
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Figure 1.1 Sketch of hot spots (modified from Jordaan and Xiao, 1992).



Chapter 2

Review of Relevant Mechanics

In order to develop a model for the interaction between ice and structures, a proper

of the i of ice is necessary. In this chapter, the

mechanical behaviour of ice with and without damage effects is reviewed.

2.1 Viscoelastic Model

The mechanical properties of ice, as described by Sanderson (1988) can be classified
into two areas: continuum ductile behaviour and brittle behaviour. The second is related
to high strain rates, high strain levels and the development of a large number of cracks
which will be studied in Scction 2.3. In this section, the continuum ductile behaviour
under small strain levels is reviewed and fresh water ice is discussed unless otherwise

indicated. A large number of studies based on experimental work under uniaxial and



biaxial stress conditions have been undertaken (Sinha, 1979, 1982; Mellor and Cole,
1983; Cole, 1983; Jacka and Maccagnan,1984; Smith and Schulson, 1993, Jezek, et al.
1985). A number of studies under triaxial stress conditions have also been performed
(Jones,1982; Stone et al., 1989; Kalifa et al., 1992; Rist and Murrel, 1994; Rist et al.,
1994, Stone et al., 1997, Melanson, 1998; Meglis ez al., 1999). A review of recent
experiments under triaxial stress conditions was made by Barrette (2001).

A typical creep curve of ice under constant stress conditions is shown in Figure 2.1.
It can be divided to three phases: primary creep (delayed elastic strain), secondary creep
(viscous strain) and tertiary creep. A viscoelastic model shown in Figure 2.2 including a
Maxwell unit and Kelvin unit has been used to model the ice behavior by Jordaan and
McKenna (1988) and Xiao (1991). The spring in the Maxwell unit represents the instant
elastic strain whereas the dashpot represents the viscous strain. The Kelvin unit
represents the delayed elastic strain. The tertiary strain is related to microcracking and
recrystalization as described by Sanderson (1988) and will be discussed in Section 2.3.
Therefore, the total strain of ice under constant stress conditions can be expressed as:

e=e"+e' +e, @.1)

where £°is the instantaneous elastic component; &”is the delayed elastic component and

£“is the viscous component.



2.1.1 Elasticity of Ice

Granular ice is typically treated as an isotropic material in engineering problems.
Two constants can characterize its elastic properties: the elastic modulus E, and the

Poisson’s ratio, v. Following Hooke’s law, the elastic strain of ice is given as
o
£=—. 22)
E

The elastic modulus can be determined by reading the initial tangent value from a stress
strain curve obtained from a very rapid test. This is not very accurate since ice creeps at
any stress. This effect can be minimized by high frequency measurements.

Although the elastic modulus and Poisson’s ratio vary with temperature and a
temperature dependent equation was given by Glen (1975), it was shown (Sinha,1978)
that the effect of temperature on the elastic modulus is not significant and can be
neglected. A study by Sinha (1989) shows that the elastic modulus varies from 9 GPa to
10.16 GPa and v varies from 0.308 to 0.365 in the temperature range of -50 ‘C to 0 'C.
With the high frequency dynamic measurements, the elastic modulus varies from 9 t0 9.5
MPa in a temperature range of -5 'C to -10 ‘C and the Poisson’s ratio varies from 0.3 to
0.33 for polycrystalline ice of low porosity (Mellor, 1983). Mellor’s work also shows that
the elastic modulus of sea ice is highly dependent on the porosity and varies from 10 GPa
to 1 GPa when the porosity is from 0 to 0.3. Theoretical and experimental models for
calculating the elastic modulus of sea ice as a function of brine volume have been

proposed by Schwarz and Weeks (1977).



2.1.2 The Creep of Ice
Under small strain levels, the creep of ice includes two phases as shown in Figure
2.1: delayed elastic strain (primary creep) and viscous strain (secondary creep).

The viscous strain is the permanent component of the total strain. Physically, it is

with di: within the grains. Glen’s law (Glen, 1955) is

commonly accepted for polycrystalline ice under uniaxial compression or tension
conditions. It is expressed as follows:

& =A0", 23)
where 7 is a material constant and A is a shift factor of temperature in the form of:

A= Bexp(-Q/RT), 2.4)
where B is a material constant; Q is the activation energy; R is Boltzman constant
(R=8314J mol"l('); T is absolute temperature. It can be seen from Eq. (2.4) that ice
obeys the thermorheologically simple principle. The thermorheologically simple
principle means that once the behaviour of a material at a given temperature is known,
the behaviour at other temperature of interest can be obtained by a shift factor. Sinha
(1978) confirmed that ice follows the thermorheologically simple principle at small strain
levels as described in Eq.(2.4) and without considering the temperature effect, the

following equation was applied in his model:

&(oloy)", 25)

where £ and o, are the reference strain rate and stress, respectively.



Jonas and Muller (1969) developed an equation expressed below including dynamic
recrystallization on strain rate.

Mr=17,]

) @6)

=9, EXP('%)CXP(
where ¢, is a structure factor ; AH is the activation energy in the presence of pressure, v
is activation volume; 7 is the shear stress and 7, is the internal generated back stress. A
similar model for viscoelastic materials was also studied by Findley et al. (1976) and
Schapery (1997b).

The delayed elastic strain is totally recoverable after the unloading process (see
Figure 2.1) if time is long enough. Physically, it is related to grain distortion and sliding

due to the shear stress generated between the grain boundaries. Sinha (1978, 1983)

ped a grain size and equation based on viscoelastic theory
under constant and monotonic uniaxial loading conditions expressed as follows:

d,
3 “d—‘%)’u—exp(—(a,n"n, @n

where ¢, 5, b and ¢, are all constants dependent on temperature T and grain size d: d; is
the unit grain size.

A general nonlinear viscoelastic model was given by Jordaan and McKenna (1988).
It was based on the assumption that the viscous coefficient is power law dependent on
stress inside the dashpot of the Kelvin unit described as follows:

1

— 2.8
Co” ()

Hx =



where C and n are a constant; and o, is the stress inside the dashpot.
‘Then, in the Kelvin unit of Figure 2.2, the governing equation for equilibrium under

constant stress conditions will be:

(2.9)

where Ej is the elastic modulus of the Kelvin unit and o, is the stress inside the spring of
the Kelvin unit.

Therefore, by a mathematical transformation of Eq.(2.9), the following equation can
be obtained.

oo By, 2.10)
oy Hy(0y)

By integrating the both sides, the delayed elastic strain can be expressed as follows:

o
—[l-exp{-E; —dl)], (2.11)
E. 7 I REH)
where [ is called the pseudo-time or reduced time.
o M

The delayed elastic strain which includes both the stress nonlinearity and temperature

dependence was proposed by Schapery (1997a) as follows:
! = [ -y m—dn j a,ly ()~ p(odr, @1
d

where J represents the creep compliance, i is the reduced time including both the stress

and temperature effects, and @, is the thermal expansion tensor.



2.1.3 Broad Spectrum Method

Since ice is a highly nonlinear viscoelastic material, more accurate results will be
achieved if a chain of Kelvin units with spectrum values for the springs and dashpot are
applied to model the delayed elastic strain. A spring-dashpot model with a series of
Kelvin units is shown in Figure 2.3. For linear viscoelastic materials, using the
Boltzmann superposition principle, the strain for creep test and stress for relaxation tests,

respectively, can be expressed by two hereditary integrals (Flugge, 1975):

f(l):jl(tAr)l;—:dr 2.13)
o

a() :J'E(t—r}%dr. (2.14)
0

where J(¢) is called the creep compliance and E(1) is called the relaxation modulus.
Based on the theymodynamics of irreversible processes, the creep compliance and
relaxation modulus for the broad spectrum method described in Figure 2.3 can be

expressed in the following manner:

1 o & i
JO)=—+—+) p{l-exp(-—)}
b :

N
E(t)=E, + ) E,{1-exp( (2.15)

where ¢, = I/E; and 1/ = Z_

If the number of Kelvin elements in the model increases indefinitely, the creep

compliance becomes (Findley et al., 1976):



t
1

1.1 7
J(t) = —+—+ | @@t ) {1-exp( Jt, . (2.16)
|

The relaxation modulus takes a similar form.

For nonlinear materials such as ice, a stress dependent viscous coefficient should be
used instead of a constant value in Eq.(2.15) or Eq.(2.16). Jordaan et al. (1988) and Xiao
(1997) used two Kelvin elements and three Kelvin elements in the model, respectively.
‘The comparison of creep test results under constant stress conditions with Xiao’s broad
spectrum model results is illustrated in Figure 2.4. In practice, as pointed out by Jordaan
et al. (1990), for a series of Kelvin units a spectrum of retardation times with a
distribution function is required, which will increase significantly the difficulty and
complexity for modeling and fitting of the experimental data. In this research, because
delayed elastic strain becomes small compared to viscous strain as studied by Xiao
(1991) and Melanson (1998), a simplified model with one Kelvin unit as shown in Figure

2.2 is applied to model the ice mechanical behaviour.
2.2 Review of Damage Mechanics

2.2.1 The Concept of Damage Mechanics

Modern engineering materials subjected to unfavorable mechanical and

undergo mi changes which decrease their strength.
Since these changes impair the mechanical properties of these materials, the term
“damage” is used. The changes of material structure mentioned are, in general,

ireversible, since during the process of damage the entropy increases. Damage can be



caused by microcracks or fracture. Thermal effects and environmental degradation
factors can also contribute to damage of structures.

Much of the early work done in the field of damage mechanics was performed by
Kachanov (1958). In his later work (Kachanov, 1986), the damage on a structure was
measured by a scalar parameter defined as the ratio between the area of voids (caused by
damage) and the overall area of the structure. Consider an undamaged material under

uniaxial loading. The stress is defined as
o=L @.17)

where P is the uniaxial force, and Ay is the original, undamaged area. If the material
undergoes isotropic damage, the amount of damage can be “measured” using the

variable:
D=—, 0<D< (2.18)

where A is the damaged area (voids and cracks openings, see Figure 2.5). Because of
damage in the material, the effective stress in the material is increased and the material is

not as strong as it was originally. The effective stress is given as:

(2.19)

The strain experienced by the damaged material is only influenced by the effective stress

. Thus



O o o
e=-L=— =, 2.20
E, E(-D) E &0

where Eo = “original” modulus (undamaged material) and E = Eo(1 - D) is called the
“effective” modulus. The “effective” modulus is reduced from the “original” modulus by
the presence of damage. As damage increases, the “effective” modulus decreases. By
using the effective modulus in place of the original modulus, the material can be analyzed

in the same manner as undamaged material.

2.2.2 Reduction of Elastic Properties of Solids by Microcracks

Much research has been done in finding the effective elastic moduli of cracked solids
for arbitrary crack orientation statistics. Budianski and O’Connell (1976) investigated the
reduction in the elastic modulus of specimen under tensile loading due to microcracking.
The investigation was based on the strain energy loss during the nucleation of each
individual crack. The tension across the crack surface was not considered, and all cracks
were considered open. Assuming that the cracks were isotropic in nature, the following

relationship was determined:

D=a'N, @21
where a is the crack length and N is the crack density per volume. A similar damage
parameter was obtained by Krajcinovic et al. (1981) and Krajcinovic (1983, 1985) based

on thermodynamics.



According to the damage parameter described in Eq.(2.21), Budiansky and
O’Connell (1976) and Sayers and Kachanov (1991) gave the effective elastic moduli of
uniform cracked solids as follows:

E = E,{1- D[16(1-v*)(10-3v)]/[45(2 - v)]} 222)

K = K, {1 - D[16(1-v*))/[9(1 - 2v)]}, (2.23)
where the subscript o represents the original moduli; E is Young’s modulus, K is bulk
modulus and v is Poisson’s ratio with the damage effect.

Horii and Ne Ni (1983) i ig the same for the case of

two-dimensional, plane strain and compressive state of stress. The authors stated that
traction across the crack surface could not be ignored in a compressive state. The effect
of compression on the reduction of the elastic modulus was not as significant as that of
the tensile case. The compressive forces caused crack closure that greatly inhibited
nucleation. Consider an elastic solid with N cracks per unit volume; each crack has a
normal n'. Given an applied stress o° at the remote boundary, this configuration can be
represented by the problem with crack surfaces loaded by tractions of f° = n'c® and
stresses vanishing at infinity. A 3-D solution was proposed by Kachanov (1993) to
approximate the effictive elastic modulus of noninteracting cracks with an isotropic

random distribution. The effective moduli are given as follows:
E .
—=1+C\N,
E, i)

g=(1+czm"
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2.3 Damage in Ice

During the development of tertiary strain as shown in Figure 2.1, ice may display a
sudden or gradual change of deformation mechanism. This process is associated with
microstructural changes of ice and may lead to a brittle fracture. The microstructural
change may include microcracking nucleation and growth, dynamic recrystalization and

pressure melting.

2.3.1 Cracking of Ice

There has been significant research conducted on the characterization of events
leading up to initial crack formation and the subsequent crack propagation or
coalescence. The onset of the microcracks is associated with the load level (5-10 MPa for

uniaxial compression, 1-2 MPa for uniaxial tension), strain rate (10° s for uniaxial



compression) and strain level (1% or more) [Sanderson, 1988; Cole, 1989]. The
mechanisms under tensile loading conditions are different from those under compressive
loading conditions. For tensile tests, the failure of ice is normally controlled by the
unstable propagation of one crack. The most important distinction to make at the outset is
that between nucleation of a crack and propagation of a crack. For compressive tests, the
process of crack propagation is not so simple as under tension. The propagation of a
single crack is highly restricted by the compression and final failure generally occurs by
the linkage of a large number of cracks during a stable process.

Consider an initially homogenous specimen of intact ice subjected to a uniaxial
tensile load. Crack nucleation appears to be associated with critical strain in the material
as proposed by Seng-Kiong and Shyam Sunder (1985) or at a critical level of delayed
elastic strain proposed by Sinha (1982). In either case, the physical process of crack
nucleation occurs in order to relieve the stress concentrations developing at the grain
boundaries during the early stage of the deformation (Schulson and Cannon, 1984). The
stress for nucleation to occur shows a clear dependence on grain size. The dependence
was modeled by Schulson er al. (1984, 1989) with an equation of the form:

o +kiVd, .25)

Oy
where &, is 0.6 Mpa; k is 0.02 MPa m"? and d is the grain size. Schulson’s work also

shows that the stress for propagation to occur also depends on grain size with an equation
of the form:

o, =K,I\d, (226)



where K, is an empirical constant with the same dimensions as fracture toughness K

(0.044 MPa m'?, experi ). The stresses for ion and p

p described
in Eq. (2.25) and (2.26) indicate that for grain size d greater than 1.5 mm, fracture is
controlled by nucleation, while for d less than 1.5 mm, fracture is more likely controlled
by propagation.

Gold (1972) conducted an experimental study on the compressive failure process in
ice where an analysis on the dependence of microcracking activity with stress, strain and

time was presented. The ion of cracks under ive stresses occurs for the

same reason as under tension. Studies by Hallam (1986) also indicated that as many as
50% of nucleated cracks are transgranular in character besides the cracks due to

pile-up at grain ies and relief of stress concentration along the

boundaries. Hallam (1986) and Seng-Kiong and Shyam Sunder (1985) have proposed

that the crack ion under ive stress itions may occur simply when
lateral tensile strain induced by Poisson expansion reaches a critical value.
Experimental studies by Cole (1986) provided quantitative data on length, density
and orientation of cracks in polycrystalline ice. The length of cracks, 2a, is proportional
to the grain size d with an approximate relationship:
2a=0.65d . 227
This relationship was justified by using concepts of elastic strain energy and surface

energy by Cole (1986). The density of cracks is grain-si and imately

one crack per grain for grain size exceeding about Smm. The average absolute angle of



the cracks is 23° with a standard deviation of 17°. About 90% of the cracks were
observed within 45° of the principal axis of compressive stress.

After the nucleation of cracks, under uniaxial stress conditions, the cracks tend to
grow and align themselves with the principal axis of compression. A numerical study has
been performed by Ashby and Hallam (1986). Studies by Kalifa et al. (1989) provided
the critical stress for crack nucleation for triaxial stress conditions. The work shows that

the i pressure has a significant effect on the crack nucleation. The results of

their tests were regressed by the least squares method giving the following equation,

0,-0,=-247+040,. (2.28)
Figure 2.6 shows the theoretical (dotted line) and experimental (solid line) results. It can
be determined that the crack formation under compressive triaxial conditions is
dominated by the remote effective stress (von Mises stress, 0, — ;) with a given
pressure. The figure also shows that with the pressure increasing, the critical stress for
crack nucleation also increases. In other words, pressure increase can inhibit crack
nucleation. A similar study was perfomed by Schulson et al. (1991) with proportional
triaxial stress conditions.

The final failure mode under triaxial test conditions is highly dependent on the
confining pressure. Under very low confinement, the same trend as under uniaxial
conditions, axial splitting, was found. With increasing confinement, shear fracture was
observed by Schulson (1987), Rist et al. (1988) and Weiss and Schulson (1995). It has

been proposed by Rist et al.(1988) and Weiss and Schulson (1995) that the fracture is



highly related to the boundary conditions. The ends of the ice specimen are fixed by the
testing equipment which exerts frictional constraint on the ends of the specimen. Axial
splitting is restricted by the end effects and increasing confinement. The linkage of the
microcracks tends to be oriented along the direction of maximum shear stress. Work by
Murrell et al. (1991) showed that shear fracture is also restricted and viscoelastic flow
dominates the failure if the pressure keeps increasing to a certain level. Studies by
Melanson et al. (1998) also showed that no fracture was observed when pressure is
around 30 MPa. Microcracking and fracture of ice is also observed in indentation tests.
Jordaan and Timco (1988) and Jordaan and McKenna (1988) studied the interaction
between an ice sheet and flat indentors. A layer of crushed ice is formed in front of the
indentor and the microcracks tend to form along the maximum shear stress, as shown in
Figure 2.7(a). Jordaan and McKenna (1988) characterized the ice into three zones as

shown in Figure 2.7(b): crushed zone, ice with microcracks and undamaged virgin ice.

2.3.2 Dynamic Recrystallization

Dynamic recrystallization is defined as a deformation-induced reworking of the grain
sizes, shapes or orientation with little or no chemical change (Poirier and Guillope, 1979).
Physically, dynamic recrystallization is a process involving the formation or migration of
grain boundaries (Vernon, 1981). The driving force for the grain-boundary migration is
due to the difference in strain energy between deformed grains and dislocation-free nuclei
and it can be reduced by a large amount when the dislocation in the deformed grains

rearrange into low-energy configurations by polygonization (Poirier, 1985).
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Dynamic recrystallization was observed to have a significant effect on softening

of materials and ing the creep disconti . The

processes ible for this effect are ized by Urai et al. (1980) as:
changes in grain size, changes in substructure, changes in preferred orientation and
changes in grain boundary structure. The formation or migration of grain boundaries due
to the dynamic recrystallization can either increase or decrease the grain size. The new
generated grain size, D, depends only on the applied stress (Poirer, 1985):

D k&~ @29
b

where b, K, u and r are constants; the value of 7 is usually somewhat larger than 1 and
closeto 1.2.

Studies by Duval et al. (1983) showed that dynamic recrystallization will not be
initiated under very low stresses and it will be periodic under intermediate stresses
leading to periodic increases of strain rate. Under high stress levels, the strain rate will be
accelerated rapidly by the dynamic recrystallization. Studies by Urai (1986) at triaxial
conditions for polycrystalline materials observed that dynamic recrystallization is
dependent on hydrostatic pressure. It showed that when hydrostatic pressure is more than
28 MPa, the creep stress began to decrease with the increase of pressure. Therefore, the
hydrostatic pressure with a certain level of shear stress has a softening effect on
polycrystalline ice. Stone et al. (1997) and Meglis er al. (1999) have recently shown that

dynamic recrystallization is a mechanism leading to enhanced creep rate.
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2.3.3 Pressure Melting

The ism of i of ice at high pressures is believed to

be associated with pressure melting besides dynamic recrystalization. The melting point
of ice decreases with the increase of pressure. Some of the early work on pressure
melting of ice was presented by Hobbs (1974). An equation based on thermodynamics is.
given as follows:

e (2.30)
where T, is the melting temperature of ice in degrees Kelvin, p is pressure; v, and v; are
the specific volume of water and ice, respectively; s,, and s; are the entropy of water and
ice, respectively. According to the thermodynamic second law, the denominator of the
right-hand term will necessarily be positive. Since the density of water is greater than that
of ice, the numerator of the Eq. 2.30 is negative. Therefore the melting point of ice is
inversely proportional to the pressure. A general solution (the Clausius-Clapeyron
equation) is given as:

dT, =-Adp @31
where A is a constant dependent on temperature. For ice, A = 0.0743°C / MPa at 0°C and
0.0833°C / MPa at -10°C. At a pressure of 70 MPa, the ice specimen would be expected
to melt at about -5.5°C. At a temperature of -10°C, melting occurs at 120 MPa. The
results of the experimental work on the relationship between melting point and pressure

by Nordell (1990) is plotted in Figure 2.8.
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Since pressures of 70 MPa have been observed under field condition (Frederking et
al., 1990), the effect of stress concentrations in addition to these pressures may be
sufficient during ice-structure interaction to initiate this mechanism at grain boundaries.
Recent studies by Meglis et al. (1999) and Muggeridge and Jordaan (1999) presented the
possible evidence of pressure melting in cylindrical ice specimens under triaxial

conditions and the damage layer in the full-scale indentation tests, respectively.

2.4 Schapery’s Model and Damage Evolution

2.4.1 Schapery’s Model

Polycrystalline ice behaves as a brittle, nonlinear viscoelastic material under a wide
range of conditions of engineering interest. The brittleness and polycrystalline structure
combine to produce a significant level of distributed damage under compressive stress

states. Schapery (1991) i amodel for the behaviour of vi:

media with distributed damage. His model was based on the correspondence principle,
generalized J-integral and Modified Superposition Principle to express the overall strains
&;. The description is as follows:

W )dr, (2.32)
a0,

: b
& =Ep[D(t- D3¢
2
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where D(t-7) is creep compliance and may be got from experiments , Ey is a reference
Young’s modulus and W/ is the free energy density which is a function of stress oand
damage parameter S. A proportional stress state is defined as:
0= 00y, 233)
where 0 =0(t) and a; are the components of a constant symmetric tensor.
The complementary strain energy density W,. obeys a power-law relationship as
follows.

LACHEI I ACAN (234)

where W/ also depends on the geometry of the time-varying microcracks, although not
explicitly shown in Eq.(2.34). Note that W/ = W./V, where W,. is the complementary
strain energy and V is the initial volume. Thus Eq.(2.34) is valid even if tractions act on
crack faces if these tractions are proportional to o; such will be the case for closed cracks
with crack-face sliding if the frictional traction is zero or proportional to the contact
pressure.

Differentiating Eq.(2.34) with respect to o produces:

ow’
9o,

i

- oW,

a0

w1
do; o

sgn(o) , (2.35)

where the tensor W,/ 9o, is independent of 'and is only a function of the damage

parameter S, g(S). By substituting Eq.(2.35) into Eq.(2.32), the following equation can be

obtained:
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E, ! D~ r)%[\a]’g@)sgn(a)]dr 2.36)

For the application to ice, Jordaan er al. (1988) proposed an exponential form for the
enhancement of inelastic strains (delayed elastic strain and viscous strain) as expressed in
the following:
g =exp(fS), @37
where fis a constant enhancement factor.
Schapery (1991) also established a non-proportional stress model for nonlinear
viscoelasticity with distributed damage. In that case, a generalized force and

displacement are used so that the traction on the crack faces can be included.

2.4.2 Derivation of Damage t pery’s App )

Schapery (1981, 1984) developed a continuum damage approach based upon a
generalized form of the J-integral. This approach included treatment of the energy flux
into the crack from the tip, as well as the thin layer of damaged material outside the crack
tip zone along the crack surface. The result was developed for materials with a nonlinear
power law relationship between stress and strain subjected to proportional loading,
Based upon results from past experimental studies, the crack growth rate can be
expressed as:

a=fJ*, (238)
where f; is a constant; a is a half crack length and J is the J - Integral.

Schapery (1984) proved the relationship of
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_ oW,

S 2.39
J Y (2.39)

in which, 0A = Bda (B = crack width). Since J is proportional to the crack length a and

W, is proportional to o', the following can be derived:
a=ca'o?, (2.40)

where ¢, and k are constants and g = (r+1)k. The relationship between the original crack

length and the new crack length is found by integrating Eq.(2.40). The result is

LN S— @a41)
a fi-E-1eats,
where
s, =[fio'dr (242)
v

is defined as Schapery’s measurement of damage. A crack will become unstable when the

denominator of Eq.(2.41) tends towards zero. Setting the denominator to zero results in

$5,= j’f,a"dr o P (243)

The growth of damage and increase of the complementary strain energy is shown in

Figure 2.9,



2.4.3 Damage Evolution in Ice and Its effects on Mechanical
Behaviour

A constitutive model including the effect of damage has been studied by Karr (1985)
under uniaxial conditions and Karr and Choi (1989), Jordaan and McKenna (1988),
McKenna et al. (1989) and Schapery (1991), etc. under triaxal conditions. Based on
Glen’s law, the constitutive equation for inelastic behaviour of ice with damage

enhancement can be expressed as:
5 T i
£=c(—)"exp(f%S), (2.44)
Oy

where ¢, n and fare constants, 0, is reference stress and S is the damage parameter.
Jordaan and McKenna (1988), McKenna et al. (1989), Xiao (1991) and Jordaan and Xiao
(1992) proposed an evolution of damage as:

T Teymgy, (2.45)

s:j'a"N,(
°

%

where a is the grain size, N, is a reference rate, m is constant, o, s a reference stress and
o, is critical stress for crack nucleation.

Jordaan and McKenna (1991) proposed a similar model as Eq. (2.45) but with a

exponential form instead of the power law dependence of stress.

5= [, expT="<ya . (2.46)
° o,

o
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The models described in Eq. (2.45) and (2.46) were focused on the influence of
microcracks on the mechanical behaviour of ice. This has been applied by Xiao (1991) to
simulate the ice indentation tests at low speed levels.

Recently, models of damage evolution for ice have been established based on
Schapery’s approach. However, under triaxial conditions, the damage in ice as discussed
in Section 2.3, the mechanisms of damage include not only the microcracking but also
dynamic recrystallization and pressure melting. The mechanisms of damage are also

highly pressure dependent. Under low confining pressure conditions, microcracking may

dominate the damage evolution ing dynamic recrystallization. Under high
confining pressure conditions, microcracking is significantly inhibited and dynamic
recrystallization and pressure melting are the dominant mechanisms.

Models by Xiao (1997), Melanson (1998), Jordaan ef al. (1999) and Jordaan (2001)
separated the damage evolution to two components to interpret the pressure effects. In the

mode] by Melanson (1998), the equation for damage evolution can be described as
Li Oisi
5= [LAPED" + f,(p)-2)" 1t @47)
Oy Oy
where m and n are constants; o, is a reference stress; the first component of Eq. (2.47)
represents the damage evolution rate of microcracking at low pressure levels; the second

component of Eq.(2.47) represents the evolution rate of dynamic recrystallization and

pressure melting for all the pressure levels; fi(p) and f>(p) can be expressed as
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a,1-L)* whenp<p,
fip)= B (2.48)
0 when p > p,
and
fp=a Ly, (249)
P

where ay, a; and r are constants; the values of p; and p, are reference confinement
pressure.

In the model of Xiao (1997), Jordaan et al. (1999) and Jordaan (2001), an
exponential form of stress as expressed below was presented instead of a power law

relationship in Eq. (2.47):
$ = [UAPD)" + fo(pexp(Tilde (@250)
o, o,

in which fi(p) and f>(p) have the same description as Eq. (2.48) and Eq. (2.49) ,
respectively.

In the present research, Eq. (2.4) is used to predict the behaviour of ice under large
deformations. Eq.(2.50) is applied to identify the damage parameter, S. The material
constants in Eq.(2.50) have been calibrated through triaxial small-scale tests with

temperature corrections.
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Figure 2.1 Strain history curve of ice under constant stress conditions.
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Figure 2.2 Schematic demonstration of Burgers model
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Figure 2.3 Illustration of the spectrum method with a series of Kelvin units
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Figure 2.4 Comparison of creep test results with model results on intact ice under stress
differences from 1 to 10 MPa and confinement of 10 MPa (Xiao, 1997).
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Figure 2.5 The overall area and the damaged area (Kachnov, 1986)
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Figure 2.6 Theoretical and experimental critical differential stress as function of
confining stress at triaxial compressive conditions. (Kalifa er al. 1989)
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Figure 2.7 Idealizaion of contact zone; plan view (a) photographic representation
showing progress of damage; (b) idealization into three zones (Jordaan and
Timco, 1988)
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Figure 2.8 Variation of the melting temperature of ice with pressure (Nordell, 1990)
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Figure 2.9 Growth of damage § and change in complementary strain energy W (Jordaan
and Xiao, 1992).
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Chapter 3

Experimentation

3.1 Introduction

Research in ice mechanics at the Ocean Engineering Research Centre of Memorial
University of Newfoundland has focused on understanding the deformation of ice during
impact with offshore structures. Jordaan (2001) proposed a model for the impact of ice
with a structure. Three areas of pressure were distinguished in his model as shown in
Figure 3.1. These three areas are parts of the nominal interaction area, defined as the
projection of the structure onto the original shape (without spalls) of the ice feature. The
three areas are then the spalled area, of zero pressure for edge spalls; the area across
which crushed ice extrudes, of moderate pressure; and finally the high-pressure zones
which apply most of the load. They fluctuate in positions and magnitude during the

impact process.
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The load acting on a structure during an ice impact event is transmitted through the
localized, short-lived zones of intense high pressure at the interaction interface. Jordaan
et al. (1993) proposed a probabilistic model for the localized high pressure zones based
on experimental data from ship-ramming trials in multiyear sca ice on the USCGS Polar
Sea and MV Canmar Kigoriak. The loading conditions inside the high pressure zones of

the interaction area is multiaxial and the process is very complex. In order to study ice

a under such two medij le test programs were carried out on
Hobson’s Choice Ice Island Research Station by the Ocean Engineering Research Centre
of Memorial University of Newfounland, the National Research Council of Canada
(NRC), Canadian Cost Guard (CCG) and Sandwell Swan Wooster (SSW) in April, 1989
and May, 1990. To understand the microstructure change of ice and its effect on
mechanical behaviour of ice, tests were conducted by Xiao (1991) under unixial
conditions and Stone et al. (1997), Melanson (1998), Melanson et al. (1999), Meglis
et al. (1999) and most recently by Barrette (2001) with laboratory prepared granular ice

and a few ice cores retrieved from icebergs. The data from Barrette (2001) are analyzed

to study the and of effect on strain history and
failure modes of ice in this research. These tests setup are briefly introduced to describe
the experimental conditions and provide a geometrical image for numerical analysis in

Chapter 5.



3.2 Medium Scale Indentation Tests

3.2.1 Test Setup

In April, 1989, eleven tests were conducted on Hobson’s Choice Ice Island. Three
tests used a flat-rigid indentator with speeds varying from to 10 mm/s to 80 mm/s and the
other tests used a spherical indentator with speeds ranging from 0.3 mm/s to 90 mm/s.
Five indentation tests with flat indentors were performed in May, 1990. The speeds
varied form 100 mmy/s to 400 mm/s. The insitu temperature of the ice was around 10 to
—14 °C. The indentation test system consisted of a hydraulic actuator (some tests in May,
1990 used three actuators) mounted upon a large mobile skid of beam and strut
construction, as shown in Figure 3.2. The actuator was controlled by a servo-control
system which provided an approximately constant speed, although there were some
forward surges during the unloading process. This is because the servo-control valve can
not control the rapid movement forward upon the pulverization of the ice. The system
was located in a trench 3 m wide, 4 m deep and 100 m long. The walls of the trench were
roughly smoothed with a chain saw and the test areas were specially machined with a
vertically mounted circular saw. The tests were carried out in an area of 8 m thick
multiyear ice which was attached to the edge of the ice island. Pressure sensors were
mounted in front of the indentor to measure the local pressures. The ice failure process
was recorded with a video camera through a special window (160 x 340 mm) at the

center.



3.2.2 Discussion

The results were discussed by Frederking ez al. (1990a, b), Xiao (1997 for tests of
NRC6 and NRC7) and Jordaan (2001). Peak pressures as high as 70 MPa have been
shown in the tests on sensors 12.7 mm in the diameter. These high pressures result in the
formation of a damage layer of ice in the contact zone. Both large spalls and local
crushing under the indentor face typically accompanied the indentation tests. Low speed
tests allowed sufficient time for a creep deformation and microcracks to extend into the
ice, and the load history curve is relatively smooth. High speed tests showed relatively
brittle behaviour and dynamic ice forces on the indentors are recorded. Analyses of
damaged layer profiles showed that the layer thickness was irregular. The thickness of the
damaged layer was typically 20 mm to 50 mm and a maximum value of 320 mm was
observed in test NRC5.

A section through the impacted surface of one test in 1989, as shown in Figure 3.3,
was studied by Muggeridge and Jordaan (1999) and Jordaan (2001). A pronounced
boundary some distance away from the center contact zone is shown between the
damaged ice and the parent ice in Figure 3.3. Lateral motion of grains along the boundary
was also observed. Spalls and damaged ice with extensive microfracturing are in
evidence in the outer areas, with a bluish interior. This is because at the edge, the lower
confinement and high shear will nucleate microcracks. The blue zone in the central

region contains a mixture of fine grains and parent-sized grains and extends some way

into the ice. Severe grain modi primarily recr due to the high

confinement pressure, was the major feature of this zone. The thickness varies along the
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layer and near the center may be merely a damaged zone without a clear boundary. This
is because the lateral deformation contributing to the extrusion is minimal ( Jordaan,
2001).

Jordaan (2001) proposed a model, as shown in Figure 3.4. to estimate the behaviour

of a high-pressure zone during the cycling of load. In his model, damage first forms near

the edge of the high-p: zone. ion of mi occurs across the basal
planes, at points of stress concentration, accompanied by extensive recrystallization. This
results in extensive microfracturing near the edges, with the formation of a white zone
containing cracks and air pockets. The coalescence of the microcracks finally results in
fragmentation of the material near the edges of the zone. Because of the high confining
pressure, the centre of the high-pressure zone exhibits pressure softening as a result of the
fine-grained material in the recrystallization process. In the cyclic behaviour, the pressure
softening process which occurs towards the peak loads, reverses itself when the pressure

drops.

3.3 Triaxial Ice Tests in Laboratory

3.3.1 Test Setup

The tests were conducted using laboratory prepared granular ice and a few
specimens retrieved from the field. A cylindrical geometry was used for all specimens.
The cylinders were 155 mm high and 70 mm in diameter. Samples were allowed to

equilibrate for at least 12 hours at the temperature of interest prior to being tested. Testing
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was performed using a MTS test frame (Figure 3.5) fitted with a Structural Behaviour
Engineering Laboratories Model 10 Triaxial Cell. The MTS system consisted of two
servo-controlled hydraulic rams that applied axial load and confining pressure
independently.

A prepared sample was mounted on hardened steel end platens of the same diameter
and the assembly was then enclosed in a latex jacket to keep the confining medium
(silicone oil) from penetrating the ice. The specimen assembly was placed inside the
triaxial cell and, in the tests at low strain levels, two linear variable differential
transformers (LVDTs) were clamped to the sides of the jacketed specimen. In these tests,
the LVDTs were used to monitor axial displacement and to control the advance rate of
the ram. For tests at high strain levels, large sample distortions prevented the use of
LVDTs. In these tests, the displacement of the ram was used to control the ram advance
rate directly. The confining cell was closed and filled with silicone oil, and a small axial
load was applied at ambient pressure to ensure contact between the specimen and piston.
The confining pressure was then increased at 0.5 MPa per second to the target
confinement, and then the specified axial deformation or creep load was applied to the
sample. The parameters recorded during the tests included platen displacement, axial
load, confining pressure and temperature.

At the end of each test the axial load was quickly removed and the confining
pressure was released gradually. The sample was removed from the cell immediately

after testing and inspected for jacket leaks and large scale fractures. When immediate thin
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sectioning was not possible, samples were stored at -30°C to restrict grain growth and
other microstructural change until thin sections could be prepared and photographed.
Temperature was monitored during some tests using an RTD sensor within the confining
vessel. However, the RTD was not consistently reliable, particularly for tests at high
confinement levels. Therefore in nearly all these tests a consistent starting temperature of
the cold room, the ice and the confining fluid was maintained at the temperature of

interest.

3.3.2 Test Results and Discussion

Meglis et al. (1999) studied the effects of varying deviatoric stress for a selected
confining pressure. The selected confining pressures were 20 MPa and 55 MPa while the
deviatoric stesses varied from 2 MPa to 20 MPa. It has been observed for both pressures
that by increasing the deviatoric stress, the creep strain and strain rate were enhanced
significantly. In the tests at high deviatoric stress levels such as 20 MPa, ice showed
nearly brittle behaviour. Using a similar method, the effects of different confining
pressures under constant deviatoric stress conditions were studied by Meglis ef al. (1999).
The study showed that creep strain and strain rate were also accelerated under low and
high pressure levels. The acceleration of the strain and strain rate was believed to be
caused by the damage enhancement. Damage analysis is described in detail in Chapter 4.

In this study, the analysis of recent experimental data obtained from Barrette (2001)
has been conducted to study the temperature effect, failure modes and relevant

mechanisms. A strong temperature effect on the creep behaviour of ice was observed
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with a given confining pressure and deviatoric stress. Two groups of tests are analyzed
here. The first was done at a deviatoric stress s = 15 MPa and the confining pressure P, =
10 MPa with the temperature varying from —7 °C to —27 °C. The second was conducted
at a deviatoric stress of stress s = 15 MPa and confining pressure P = 65 MPa with the
temperature varying from -8.5 °C to —25 °C. Figures 3.6 and 3.7 demonstrate the effects
of the temperature on the creep strains and strain rates for the two cases, respectively. It
can be seen that an increased temperature results in softening of the ice so that the strains
and strain rates of ice are enhanced significantly.

In the triaxial tests, two main types of mechanical behaviour were observed. The first

is a ductile behaviour as shown in curve C of Figure 3.8. The creep rate increased rapidly

from a mi value, on the confining pressures, and then increased much
more slowly with a steady state deformation. The second is a semi-brittle behaviour as
shown in curve C’ of Figure 3.8. The creep rate increased also from a minimum value
without stabilizing. This is termed “runaway” strain behaviour in this research. This

runaway behaviour is assumed to be related to the failure of the ice spemimens.

of the pic shapes of typical deformed samples are
shown in Figure 3.9. Samples that deformed without rupture showed axial shortening and
lateral expansion which was relatively uniform along the length of the sample (Figure
3.9a). Three types of failure (shear strain localization, rupture and splitting), can be
roughly identified from the tests as demonstrated in Figure 3.9b. ¢ and d. respectively.
Figure 3.10 shows the pressure-temperature relationship of all the tests that have shown a

runaway behaviour. Both laboratory ice and iceberg ice specimens were studied. Figure
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3.11 shows the pressure-temperature relationship of all the tests which resulted in
specimen failure. By checking the final shape of the specimens showing runaway
behaviour, these specimens also showed a failure. However, one out of sixteen failed
specimens did not show the runaway behaviour. The failure type of this specimen is shear
strain localization. From Figure 3.11 it can be simply obtained that the runaway tends to
occur at low and high confining pressures for lab ice and no evidence of runaway was
found at medium pressure levels among the tests of laboratory ice. Most of the runaway
results for tests of laboratory ice occurred at relatively high temperature (higher than -10
°C) and only one test was found to have a runaway behaviour at temperature equal to -21
°C and P, = 10 MPa with an initial flaw. The runaway behaviour for tests of iceberg ice
was relatively less dependent on the confining pressure and temperature. However, the
tests did show that most of the runaway strains for iceberg ice specimens occurred at low
and high pressures except two tests with a runaway observed at confining pressure equal
to 30 MPa. Initial flaws such as cracks,veins and brine pockets, etc., were observed in all
the iceberg ice specimens before the tests.

Figure 3.11 shows that at a low pressure level (10 MPa), rupture is the only type of
failure observed for both laboratory ice specimens and iceberg ice specimens. At medium
pressure, two failed iceberg specimens were observed. One showed rupture at relatively
low temperature of —5 °C and another showed a band of strain localization at —26 °C. At
relatively high pressure levels (more than 50 MPa), both rupture and shear strain
localization were observed and one iceberg ice specimen failed by splitting. An initial

vein in the axial direction before the test was observed in the specimen that failed by
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splitting. All the ruptured planes and strain localized bands of the specimens were
oriented approximately at 45 °.

In summary, for laboratory ice, the failure of ice specimens occurred at low and high
pressures and for iceberg ice specimens, failure is relatively less dependent on confining
pressure. The failure of iceberg ice specimens is suspected to be induced by the initial
flaws. By checking the microstructure of failed specimens with thin sections, along the

faulted plane at low pressure levels (10 MPa), a local dense concentration of highly

aligned mi some fine-grained ice were observed (Meglis e al.,
1999). However, at medium and high pressure levels (more than 30 MPa) fine-grained
ice was observed (microcracks are negliblible) along the faulted plane or inside the band
of shear strain localization (see Figure 3.12). This evidence suggests that the rupture at

low pressure is mainly induced by the nucleation and growth of microcracks along with

the dynamic recr i and by dynamic recr ization and pressure melting
mechanisms at high pressure levels. Some evidence shows that rupture might be
associated with strain localization. There were two tests at pressures of 50 MPa and 65
MPa that showed a band of strain localization which is nearly ruptured. This evidence
supports the explanation that the rupture starts from a strain localization band and a
rupture will occur along the band when the damage evolution inside the band goes to a
certain level. Shear fracture without a significant lateral deformation was observed by
Meglis et al. (1999) at increased deviatoric stresses (30 MPa). This may be attributed to
brittle behaviour induced by the drastic enhancement of the strain rate at the increased

stresses so that not enough lateral deformation can be developed before the fracture.



From the study of runaway behaviour and failure of ice specimens, it may be
concluded that under triaxial conditions at confining pressures larger than 5 MPa, the ice
specimens fail mainly by the rupture starting with strain localization. Runaway and
failure of intact ice tend to occur at low and high confining pressures with relatively high
temperature (higher than 10 °C). It is also believed that rupture can ccur if the pressure
and deviatoric stress reach a certain level. Runaway behaviour can be induced by rupture.
Runaway behaviour can also be induced by a certain level of strain localization, but strain
localization doesn’t necessarily induce runaway behaviour. For the ice with significant
initial flaws such as iceberg ice. rupture and runaway behaviour may be triggered by

these flaws. A study of ism of strain ization is described in details

in Chapter 5.
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Figure 3.1 Nominal i ion area and ibuti (Jordaan, 2001).
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Figure 3.2 Schematic of the actuator indentor system (Frederking et al. 1990a)
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Figure 3.3 Thin section of the contact zone of ice and the indentor; (a) Hobson’s Choice
1989, test NRC 05: (b) Hobson's Choice 1990, test TFF-01. (Jordaan, 2001)
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Figure 3.7a Strain history for s = 15 MPa and P = 65 MPa
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Figure 3.8 Illustration of strain rate history of ice. A: Decelerating creep; B: Minimum
creep rate; C: Accelerating creep; C': Run-away behaviour.
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Figure 3.9 Schematic represents of macroscopic shape of deformed samples after tests.
(a) most samples deformed relatively uniformly; (b) strain localization;
(c) rupture; (d) axial splitting
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Figure 3.12 Photographs of samples show strain localization or rupture. (a) Profile for
test IT 000501 showing localized bands at deviatoric stress =15 MPa and
confining pressure = 50 Mpa; (b) Thin section for IT 000501 showing fine
grains concentrated inside the localized bands; (c) Thin section for IT 000505
(deviatoric stress = 15 MPa, confining pressure = 30 MPa) showing fine
grains along the faulted plane.
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Chapter 4

Constitutive Model for Finite Element Analysis and
Parametric Calibration
4.1 Derivation of Constitutive Model

4.1.1 Total Strain and Its Components at Triaxial Loading Conditions

Under triaxial loading conditions, both the delayed elastic strain and viscous creep

strain can be d in terms of a strain ejanda
strain component &, , i.e.,

£ =e) +&! and @.1)

£ =e bel . “2)
Combining the volumetric strain components in Eq.(4.1) and Eq.(4.2), the total strain and

strain rate of ice at triaxial loading conditions can be expressed as



ol o
£, =€ e tej+£0; 4.3)
e d s gy

&y =85t éy +é5+ &0, (4.4)

where & represents the elastic strain; e is the deviatoric delayed elastic strain tensor;

e, is the deviatoric viscous strain tensor; £; is the volumetric strain tensor and J; is the

delta function.

Under triaxial conditions, for the equivalent delayed elastic strain tensor and
equivalent viscous strain tensor the von Mises stress should be used instead of the normal
stress. According to Eq.(2.44), the equivalent delayed elastic and viscous elastic strain

rates have been derived by Xiao (1991) and Singh (1993) as follows:

o= 3:‘5’[i}" 2 exp(8,5) and
o,) s

g =§e[;] Loxpiss). s
where £{ and &{ are the reference strain rate; s is von Mises stress; s is the deviatoric
stress tensor; /3, and f, are the damage enhancement factors mentioned in Section 2.4.3
and s is the effective stress in the dashpot of the Kelvin unit which can be expressed as

s =5-Ege’, 4.6)
where Ex is the Young’s modulus of the spring in the Kelvin unit and ¢ is the equivalent

delayed elastic strain.
The volumetric strain can be obtained by the study of dilatation of ice. The density of

ice in the crushed layer adjacent to the indentor was observed to be less than that of
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parent ice in Hobson Choice island ice tests (Frederking et al. 1990a, b). This indicated
the dilatation of ice during the interaction process. The dilatation of ice may be caused by
the microcracking. Dilatation of ice was measured in small-scale constant strain rate tests
by Wang (1981) and Dorris (1989). Recently, at Memorial University of Newfoundland
dilatation of ice has been studied at small-scale constant stress tests by Singh (1993),
Stone et al. (1997) and Xiao and Jordaan (1996) on intact and damaged ice under triaxial
compressive loading conditions. The dilatation (volumetric strain) can be determined by
two methods: (1) measuring the diametral expansion of the sample in two orthogonal
directions with three specially designed strain gauges at the central portion of the sample.
(2) measuring the fluid volume change within the confining cell. An empirical equation
for volumetric strain was proposed by Singh (1993) at triaxial compressive loading
conditions as follows:

B=Bpitye
P

5

—-P—(é,'j +é5), @.7)

where f3is a constant; p is hydrostatic pressure; e is the equivalent total strain under
triaxial loading conditions and e*is the equivalent elastic strain.
4.1.2 Constitutive Model for Finite Element Application

For viscoelastic materials, the stress tensor can be described as follows:

o, =K, -€) =K, € . 4.8)
where £ =ejl +ej +£]6, is the total inelastic strain tensor and the isotropic modulus

matrix:
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3

Ky = (K=26)6,0,+G(5,8,+6,6,). @9
where K is bulk modulus and G is shear modulus.

Following Eq.(4.8), the increment of stress tensor is

60, = K 08 + Ky €. (4.10)
Thus, the stress at time 7 + A can be described as

6, =0, +d0,. @11
The stiffness matrix in Eq.(4.10) can be obtained using Eq. (4.9) and the shear modulus
and Young’s modulus are given by Eq. (2.24) as follows:

E=E,(1+C,8)™" and

G=G,(1+C,9)" (4.12)
where the damage parameter S follows the expression described by Eq. (2.50). Then, the
bulk modulus can be derived from Young’s modulus and shear modulus.

The decrement in elastic moduli can be obtained by calculating the difference
between the elastic moduli at current and previous state, i.e.,

OE=E'—E and

86G=G-G, (4.13)
where E’and G’ represent the elastic moduli of the current state which can be expressed

as
E'=E,[1+C,(S+85)] " and

G =G, 1+ C,(S+3)]". (4.14)
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The damage, § , in Eq. (4.14) is given by Eq.(2.50) and the increment of the damage

parameter, &, can be expressed as
& =[P + fo(pexpldr @15
So So

Substituting Eq.(4.13) into Eq.(4.9), the increment of the stiffness matrix, 5K, in
Eq.(4.10) can be obtained.

According to Eq. (4.3) and Eq.(4.4). the increment of the elastic strain component,
€, can be calculated by

O] = O, — deif — e, —65,;5”’ (4.16)

where the increment of the total strain, JL‘U, is a variable which can be automatically
given by ABAQUS with iteration. The increments of equivalent delayed elastic strain,
viscous strain and volumetric strain components (Jg; ,de; and €, ), can be calculated

respectively by the following equations:

a5 Y 8
4 —| Lexp(B, ) 4.17)
o) s
e 3.(s s,
& :;50(;_0] ~Lep(A9)A, and (4.18)
o oD
= (é) e (4.19)
»

This process of the derivation of the constitutive model was modified from a user

material subroutine (UMAT) of ABAQUS using FORTRAN code by Xiao (1997) The
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stress, delayed elastic strain, viscous strain and damage are all stored as state variables

from previous steps; at the end of each increment, they will be updated.

4.2 Calibration for Damage Parameter

The creep response of ice specimens deformed in the laboratory has been analyzed to
determine parameters in damage analyses. This analysis has been done for very high
strain levels (up to 35%). A nominal constant stress of 15 MPa was applied to all the
specimens. The proposed damage model has been calibrated from the data collected
during these tests.

At high strains, from a damage mechanics point of view, the Burgers body can be
reduced to a single dashpot. The spring in the Kelvin unit for the delayed elastic strain

and the spring in the Maxwell unit for elastic strain are neglected. This breakdown of the

Burgers body serves to reduce the of the calibrati i . In the other

words, we can use the steady strain rate from the experimental data for calibrating the
damage parameter.
4.2.1 Derivation of The Calibration Model for Damage Parameter

Based on the approximation for large deformation of ice described above, a model

can be ished for calibrating of the damage As proposed by Xiao (1997),

the constitutive model for triaxial tests with damage effects can be expressed as:

(4.20)
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where ¢ and n are constants; sy is a reference stress; s is von Mises stress and S is damage

parameter as expressed below:
s=[r@Cra, @21
o o

where g is a constant, f(p) is a general function of hydrostatic pressure which can lead to
either a reduction in the creep rate by suppression of tensile zones at the tips of
microcracks, or to an increase in the creep rate by pressure softening.

For constant stress tests, the damage parameter is only dependent on time, Eq.(4.21)

becomes:
§=f(pye. (4.22)
So

Substituting Eq.(4.22) in Eq.(4.20) and taking the natural logarithm of both sides yields:

f(p)
5

In(é) =

s +nln) + In(e). (4.23)
So

Eq.(4.23) shows that the natural logarithm of the strain rate is approximately linear with
time for the special case of constant stress. This can be simplified as:

In(€) =g +1, (4.24)
where the slope, ¢, is equal to the damage rate (dS/dr) according to Eq.(4.23) and the

intercept, 7, is expressed as:

I=nIn)+ Ine). 425
So
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Using Eq.(4.24), with a stress and a strain rate correction to the collected data, a model

can be established for constant stress conditions with various pressures.

4.2.2 Stress and Strain Rate Corrections to The Experimental Data

A significant increase in cross sectional area of the samples by lateral strain was
observed when specimens deformed to a high strain levels. Because the MTS test system
maintained a constant load instead of a constant stress, a stress correction needed to be
applied when plotting and analyzing the data. As a result, the calculated strain rates also
required a correction to approximate the constant stress conditions.

Two assumptions were made to simplify the problem for data correction (Melanson,
1998). The first is that the specimens are assumed to deform uniformly along the entire
length. The second is to assume that the specimens maintain a constant volume during the
tests. Based on the power law dependence of creep rate on stress, the following equations
can be applied:

&, =ks] (4.26)

&, =ksh, 4.27)

where the subscripts e and cs represent experimental data and data corrected for constant
stress respectively. Since k is a material constant, Eq.(4.26) and (4.27) may be combined

to give:

£y =8,Coy (4.28)
Se
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In this equation, we know £, and s, (determined from the uniform deformation
assumption) and s,, (15 MPa). The power law dependence n was obtained from a plot of
the logarithm of true stress versus the logarithm of strain rate (Figure 4.1) for strain levels
of 5%, 10%, 20%, 30%, 40% and 44%, respectively. By taking the natural logarithm of
each side of Eq.(4.26), the slope of each line in Figure 4.1 is the stress dependence n. It
can be seen that best fit lines show a trend of power law dependence. Also, from Figure
4.1, the exponent n seems to increase slightly with increasing strain levels. The mean
value of the slopes, 4.2, has been used. The standard deviation is 0.4.
The first calibration neglects the damage enhancement factor for strain rate. This
enhancement is small for small strain levels, but becomes significant for large strain
levels. To include the damage effects, a second calibration is needed after the initial
calibration of the damage was performed based on the data after first correction.

Similar to the first correction as described by Eq.(4.28), the second correction can be

performed based on the equation expressed below:

£, = 6,2y exp(s,, - S.), (429

Se

where n=4.2; and S, and S, are damage parameter for the constant stress conditions and

experimental data respectively. S,s and S, are calculated based on Eq.(4.21), and the

hydrostatic pressure is calculated as: p = p, + %

The following izes the p used in the calibration process:



. Collect data and correct the stress based on the assumption of a constant volume
of specimens .
2. Correct the strain rate based on corrected stress using Eq.(4.28).
3. Eq.(4.23) s used to develop the initial damage parameter with the strain rate from
step 2 and to find the initial function of f{p) in Eq.(4.21).
4. With the initial f{p), Eq.(4.28) is used to provide a second correction of the strain

rate.

2

‘With the data from step 4 a final damage parameter can be obtained using

Eq.(4.23); thus, f{p) is final calibrated.

4.2.3 Formulation of Damage Calibration
The formulation for the damage parameter used in this study is based on the model
proposed by Xiao and Jordaan (1996) which is different from the power law model by

Mel (1998). The ion can be as follows:

s= ilf(pnsin)“ + f,(p)exp(indx @30)
where,

fipy=a, (1—%)1 when p<p,
and

fm=a, Ly
Py



where a,, a,, p,, p,,rand g are constants; p, is a transition pressure at which damage
by microcracking is highly restricted and approaches zero; the stress s, is a reference
value.

Following the procedures outlined above, the damage rate at different pressures has
been obtained from the original test data by using Eq. (4.24) with corrected stresses and
strain rate. Temperature corrections have been made in the present study, since
temperature varied from -5 °C to -27 °C in these tests. Apart from the calibration for
pressure, the stress calibration has also been done in this study. This process is performed
by a Matlab program. An example giving a comparison of the logarithm of strain rate
versus time before and after the first correction and after the second correction is plotted

in Figure 4.2,

4.2.4 The First Calibration for Pressure

Figure 4.3 shows the values of damage rate (¢ ) computed for all tests at various
pressures. The data points at a pressure of 10 MPa are retrieved from the tests by
Melanson (1998). The data in Figure 4.3 include results were obtained at different
temperatures. Since the data were collected at different temperatures, it would be
beneficial to reduce the values to a single nominal temperature, namely —10 °C in this
research. At a given pressure, the damage rate is assumed to be related with temperature

as given below:
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where Q is activation energy, R is Boltzman’s constant and T is temperature in Kelvin
degree.

Verification of the assumption in Eq.(4.31) can be obtained by taking natural
logarithm of data in Figure 4.3 and plotting the resulting values against the inverse
temperature. The relationship between In(¢) and 1/T is plotted in Figure 4.4a, 4.4b, 4.4c,

4.4d and 4.4e for different pressures. ion lines and the ing equations

are also shown in these figures. Then the temperature correction can be made by taking
the intercept of In(¢) at 1/T = 0.0038 which is referred to ~10 °C. The damage rate ¢ can
be obtained for temperature at —10 °C. Figures 4a to 4e provide empirical evidence for
the validity of Eq.(4.31). The damage-pressure relationship at -10°C including the
temperature correction is plotted is Figurc 4.5.

Figure 4.5 shows the values of the damage rate (¢ ) computed for all tests at various
pressures with a constant stress of 15 MPa. The data show a minimum value in the 40 —
50 MPa region. This minimum will serve as the point of inflection or transition point
(p,) . where two separate functions described in Eq.(4.30), defining the relation on either
side, will meet and overlap. The first part is within the low pressure zone which

undergoes microfracturing and shear banding, by dynamic recr

The second part appears at high pressures and is characterized by possible pressure
melting, grain boundary migration, and more intense recrystallisation. Since there is no

clear boundary between the two zones, the model parameters were developed to overlap



the ranges, eventually reaching zero as the functions pass the transition pressure. This is
shown in Figure 4.6 as both functions are plotted separately.
The first part of the curve was approximated by using a parabolic function up to the

transition pressure:
£,(p)=0.6(1— %)l when p <50 MPa
and

fi(p)=0 if p >50 Mpa (4.32)

The second part of the curve was expressed by a power law function:

fap)= o.1o<£>‘ 433)

4.2.5 The Second Calibration for Pressure

The procedure for the second calibration is similar to the first calibration presented in
Section 4.2.4. The data points for damage rate including the second correction based on
Eq.(4.29) without the temperature correction are plotted against pressure in Figurc 4.7.
The relationship between In(¢) and 1/T is plotted in Figure 4.84, 4.8b, 4.8¢, 4.8d and 4.8¢

for different pressure ion lines and the

q are included in
the figures. The damage-pressure relationship at ~10 °C, after the temperature correction,
is plotted in Figure 4.9. A temperature correction is made as similar as discussed in
Section 4.2.4. The calibrated curve fitted to the data is also shown in Figure 4.9. The

resulting parameters were determined to be as follows:
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fi(p)=070 -%)l when p <50 MPa
and
fi(p)=0 if p>50MPa (4.34)

The second part of the curve was expressed as a power law function:

= P ye 3
2(p)=012(5) (435)

4.2.6 Stress Calibration

Two sets of experiment data retrieved from Meglis er al. (1999) were used to
calibrate the ¢ and sy in Eq.(4.30). The first is a set of data with various stresses at
pressure = 10 MPa. The second is a set of data with various stresses at pressure = 55
MPa. Since at low pressure levels, especially when pressure is around 10 MPa (see
Figure 9), damage is mainly caused by microcracks so that the second component in
Eq.(4.30) can be neglected. Therefore, under constant stress conditions, Eq.(+.30) can be

simplified:

as _ S
i (p)(:n) (4.36)

Similarly, for pressure equal to 55 MPa, the first component of Eq.(4.30) can be
neglected and under constant stress conditions, it can be simplified to:

ds _

dt

2 (P)exp(--) 437
So
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First, Eq.(4.37) is used to calibrate the reference effective stress sy By taking the natural

logarithm of both sides of Eq.(4.37), the following can be obtained:

In(@) = In(f, (p)) + . (4.38)

o

Since pressure is constant during the whole test, fo(p) is constant and the slope of
Eq.(4.38) will be 1/sp. Following the similar procedures as described in Section 4.2.4, we
can obtain a plot of In(g) versus s as shown in Figure 4.10. The value for sp = 15 MPa
can be obtained by take the inversion of the slope of the regression line.

Once spis determined, Eq.(4.36) can be used to calibrate g by taking logarithm to the base

10 on both sides:
s

log(g) = log(f,(P)) + qlog(:) . (4.39)
0

Therefore, g is the slope of Eq.(4.39). Again, following the similar procedures as

described in Section 4.2.4 and Section 4.2.5, a plot of log(¢) against — can be obtained;

this is shown in Figure 4.11. The value of ¢ obtained by this procedure is 2.4.

4.2.7 Calibrated Results

Based on the calibrated results above and the calibration of Xiao (1997) and
Melanson (1998) for other parameters in the constitutive equations in Section 4.1,

brated of the ical model for finite element implementation

described in Section 4.1 are given in Table 4.1.
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Table 4.1 Calibrated model parameters for the mechanical model for finite element

implementation.

Description Parameter Value (unit)
Elastic modulus E 9500 (MPa)
Elastic modulus in Kelvin Unit E; 9500 (MPa)
Poisson’s ratio v 03
Primary creep reference rate £ 1.0 X10” at -10°C
Secondary creep reference rate o 1.76X10” at -10°C
Creep exponent for Kelvin Unit n 1.0

Creep exponent for Maxwell Unit m 25
Volumetric Constant 7] 0.11
Reference stress S0 15 (MPa)
Creep enhancement parameter B 1

Creep enhancement parameter b 1
Damage function constant ay 0.7
Reference pressure Pup2 50
Damage function constant a 0.12

Low pressure exponent g 2

High pressure exponent r 6
Damage function exponent q 24
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first correction; (c) after the second correction
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Figure 4.3 Damage rate(9) plotted versus hydrostatic pressure for data under different
temperatures from all the tests with the first correction of stress and strain rate
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Figure 4.4c In(¢) against 1/T at pressure = 55 MPa after the first correction

=-10207x + 36,811
45 .

0.0037 0.00375 0.0038 0.00385 0.0033 0.00395 0.004 0.00405
T

Figured4.4d In(¢) against 1/T at pressure = 35MPa after the first correction

74



.

-4 y =-0211.4x + 33.242

-45
0.0037 0.0038 0.0038 0.0039 0.0039 0.004 0.004 0.0041 0.0041

m

Figure 4.4e In(¢) against 1/T at pressure = 15 MPa after the first correction
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Figure 4.5 Damage rate(9) plotted against hydrostatic pressure at -10°C after temperature
correction for the first calibration
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Figure 4.6 The two pressure dependent terms of the damage function, f,(p)and f,(p),
plotted and summed to show the resultant function f(p) after the first
calibration
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Figure 4.7 Damage rate(¢) plotted versus hydrostatic pressure for data under different
temperatures from all the tests after the second correction
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Figure 4.9 The two pressure dependent terms of the damage function, f,(p)and f,(p),

plotted and summed to show the resultant function f(p) after the second
calibration

82



¥ =0.0882x - 2.4286.

] 5 10 15 20 25 30
Stess (MPa)

Figure 4.10 Natural logarithm of damage rate, ¢ versus stress at pressure = 55 MPa
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Chapter 5

Numerical Analysis of Triaxial Small-scale Ice Tests

As discussed in Chapter 3, two typical mechanical behaviours (ductile behaviour and
runaway behaviour) have been observed during the tests in laboratory. From the
experimental results, the runaway strain tends to occur at low and high pressure levels for
intact laboratory ice under triaxial loading conditions and occurs without obvious
pressure dependence for iceberg ice with initial flaws. The runaway strain is believed to
be triggered by inhomogeneities in the ice which can cause the formation of localized
bands of intense straining. Once localization takes place, large strains can accumulate
inside the band and lead to rupture. The term localization used here refers to situations in
which the concentration of deformation into a band is an outcome of constitutive
behavior of the materials or boundary effects.

In this chapter, the of strain i and ility for

rate-independent and rate-dependent materials are studied. Finite element analyses are



conducted with two kinds of inhomogeneities (material imperfection and end effects) in

order to study the possible mechanisms of strain localization in ice.

5.1 Mechanisms of Localized Strain and Instability

Besides having been observed in ice, shear instabilities in the form of shear bands are
commonly observed in metals and polymers subjected to large deformations. The
formation of a shear band is often an immediate precursor to rupture of the materials as
observed by Molinari and Clifton (1987) and Anand et al. (1987) for viscoplastic solids,
and Armero (1999) for rate-dependent inelastic solids and Borja e al. (2000) for soft
rock. The physical mechanisms responsible for triggering localization vary widely. For
example, thermal softening plays a key role in initiating localization at high rates of
loading in structural metals (Costin, 1979) and in viscoplastic materials (Molinari and

Clifton (1987) and Shawki (1994)). In brittle materials such as rocks, faulting appears to

be caused by mi growth and under uniaxial
stress conditions (Needleman, 1988). His study used incremental constitutive equations to

discuss the formation of ion. For rat lastic-pl. materials under

the nstitutive equation can be written as
f:G(}'/—;?"), (5.1)
where 7is shear stress; G is elastic shear modulus; y is total shear strain and ¥, isthe

strain for plastic loading. This strain can be expressed as follows:



7, =%/ H for plastic loading

otherwise,

¥ =05 (5.2)
Here, H is plastic hardening modulus (see Figure 5.1).
Combining Eq.(5.1) and (5.2) provides

£=G, for plastic loading

otherwise

t=Gy, (5.3)
where G, (see Figure 5.1) is effective modulus and can be given asl/G, =1/G+1/H

(Needleman, 1988).

Considering quasi loading iti assume that a bil ion from a state of

shear into a ion pattern with a shear band appears at some stage of
the deformation history as sketched in Figure 5.2. Stress equilibrium requires

. (5.4)

where the subscripts b and o represent the region inside the band and outside the band,
respectively, corresponding to Figure 5.2.
Substituting Eq.(5.3) into (5.4) gives

G(7,~7,)=0. (5.5)
A nontrivial solution to Eq.(5.5) is only possible when G, vanishes so that localization is

associated with strain softening.
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However, for rate-dependent solids, the constitutive equation is different from rate-
independent materials and can be expressed as
t=G(-7,), (5.6)
Here, 7, is used to represent the viscous strain and other creep strain such as delayed

elastic strain for ice.

Then, ing the quasi-static loading i at some moment of the
deformation history when a bifurcation appears, equilibrium requires that the stress state
remains homogenous as described in Eq.(5.4). Combining Eq.(5.6) and (5.4) gives

G(7,~7,)=0. (5.7)

Since the elastic shear modulus, G, is positive, the unique solution to Eq.(5.7) is 7, A
In fact, Eq.(5.7) excludes bifurcation. Needleman (1988) also used a minimum potential
method to confirm this point. Accordingly, for rate-dependent materials, to get a
nontrivial solution to Eq.(5.7), a band with some kind of imhomogeneity such as material
properties or stress levels different from those in the surrounding materials has to be

introduced. Therefore, a solution can be constructed in which there is uniform straining

inside the band and uniform straining outside the band with a jump strain rate across the

band. The crucial role of

at quasi-stat for rat
materials was studied by Anand ez al. (1987), Molinari and Clifton (1987), Belytschko et

al. (1991) and Bayliss et al. (1994).

Strain i doesn’t ily lead to i iate failure, even though a band

with different material properties exists. The governing equation for strain localization
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is 7,17, =2 (F and Neale, 1977). By this criterion, a localization
instability is associated with an increment of strain occurring in the band and no increase
in strain outside the band. Under this condition, the strain localization will dominate the
failure. Needleman (1991) used a linear Kelvin-Voigt model to study the localization
instability in progressively softening solids by this governing equation. The term
progressive softening is used to refer to circumstances where, at least for certain
deformation histories, the constitutive relation permits the stress to decrease

monotonically to zero after the attai ofa stress. As ized by

(1991), izati i the failure when the material inside the band

softens while material outside the band hardens.

5.2 Finite Element Analysis of Localized Failure in Ice

Specimens

5.2.1 Model Description

Ice is a progressive softening material which requires a framework that can
characterize the actual softening process to model properly the progressive softening and
study the localization problem. The nonlinear viscoelastic constitutive equation with
damage effects described in Chapter 4 is assumed to be valid for describing ice behavior
at high strain levels. With the calibrated damage model discussed in Chapter 4, a UMAT

subroutine was written to simulate the time-dependent material properties of ice. The



finite element analysis software, ABAQUS, was used to analyze cylindrical ice
specimens deformed to high strain levels.

The length and diameter of the cylindrical specimen were taken as 155 mm and 70
mm, respectively. An axisymmetric condition was assumed and four-point continuum
axisymmetric elements (CAX4) were used for the whole specimen. The ice at the
beginning of the tests was assumed to be intact. A 20 x 10 mesh matrix was used. The
2-direction (see Figure 5.3) degree of freedom was fixed for bottom surface of the
specimen. The constant load, 57.6 KN, was appled in the 2-direction degree of freedom
on the top surface of the specimen. Three cases with confining pressure equal to 15 MPa,
35 MPa and 60 MPa have been studied, which represent low, medium and high pressure
levels. The meshed undeformed model is shown in Figure 5.3. The analyses were

performed at a constant temperature of ~10 °C.

5.2.2 Results and Discussion

As discussed in Section 5.1, for rate-dependent material under homogenous
conditions, the strain localization is entirely excluded. Therefore, an inhomogeneity has
to be introduced in order to trigger the strain localization. Two types of analyses were
made in this research. The first was to introduce a material imperfection inside the
specimen with a low elastic modulus as compared to the surrounding ice. The second was
to fix the 1 and 3 directions degree of freedom (see Figure 5.2) at the two ends of the
specimen to model the friction effect which is believed to be able to cause an

inhomogeneity.



For the analysis including a material imperfection, the local inhomogeneity was put
in two different positions of the specimen to study its effect. The results of the finite
element analysis are shown in Figure 5.4. This shows that the enhanced strains occur
within a band triggered by the imperfection along with the normal shear orientation of
45°, It also shows that the strain localization band is sensitive to the position of the
imperfection.

1 with

For the case without imperfections, three cases as described in Section
constraints in the 1 and 3 directions were analyzed. Damage contour plots for the
specimen under different pressures are showed in Figure 5.5. It demonstrates that damage
at pressure = 15 MPa and 60 MPa grows very fast at the center of the specimen in
comparison to the surrounding areas and forms a band along with the normal shear
direction. This inhomogeneity is caused by end effects which lead to the non-uniform of
the damage distribution. In Figure 5.5 damage at pressure equal to 35 MPa is small and
almost uniform throughout the whole specimen because in this case the growth of
damage is restricted.

Therefore, ice inside the band is damaged faster and more severe, which make the
properties of ice change much quicker, than that in the surrounding areas at pressure of
15 MPa and 60 MPa,. At some stage of the damage evolution, it is quite likely that this
process will cause the ice inside the band to soften while the ice in the surrounding areas
is still in a hardened state. Strain localization instability will occur along the band and

cause the ice to fail.
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Recently, studies of ductile fracture were conducted by Bandstra and Koss (2001) by
introducing two voids inside the materials; Orsini and Zikry (2001) did a similar
analsysis with four voids. Both the studies showed strong tendency for strain localization
between the voids which can be attributed to the void growth and interaction. Both the
constitutive model and the numerical model show that strain localization can be induced

byi ies of such as initial flaws or the end effect for

ice. From the analyses for intact laboratory ice, it seems that the confining pressure plays
a significant role in the initiation of the strain localization. It shows that when
temperature is equal to -10°C, at the low pressure and high pressure levels strain
localization occurs readily, but at the medium pressure level, ice is less prone to
localization. This meets the observation from the experiments as described in Chupter 3.
Other possible mechanisms of the strain localization and rupture should be
considered. As proposed by Molinari and Clifton (1987) and Bayliss et al. (1994), for
viscoplastic materials at high strain rate deformation, the thermal effect may be
significant for the onset of strain localization. This effect has been observed in ice
because the temperature through the specimen is not uniform in the tests. The higher the
temperature is, the softener is the ice and the imhomogeneity is caused by the thermal
effect. The current numerical model can only predict the possibility of the strain
localization. For post-localization behaviour (onset of rupture and its growth), a special
numerical technique has to be established to solve the strong discontinuity of the

mechanical behaviour on the rupture plane and outside the rupture plane.
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Figure 5.3 (a) Ice cylindrical specimen; (b) Mesh for a specimen
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Figure 5.4a Deformed mesh for the imperfection near the center.

Figure 5.4b Deformed mesh for the imperfection near the top end



Figure 5.5a Damage contour plot for pressure = 15 MPa

Figure 5.5b Damage Contour plot for pressure = 35 MPa
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Figure5.5c Damage contour plot for pressure = 60 MPa



Chapter 6

Finite Element Analaysis of Indentation Tests

In this chapter, finite element modeling of one of the indentation tests, TFRO7,
(Frederking ef al. 1990 a, b) conducted at Hobson’s Choice Ice Island in the 1990's is
described to study the high pressure zone. The indentor used in this test is flat and rigid
and moves towards the ice mass at a constant speed of 68 mmy/s during the whole
indentation process. The sketch of the ice mass is shown in Figure 6.1. Since big spalls
oceurred at the corners at the beginning of the interaction. the ice mass in contact with the
indentor is simplified as a pyramidal shape with a radius of 0.1m on the top surface and a
slope of 2:3. Finite element analysis is made to simulate this process. Damage evolution
and stress state are studied. Mechanisms of formation of the damaged layer involved in
this interaction are studied. Scale effect for high pressure zones is also studied with the

finite element method.

97



6.1 Model Description

The whole interaction system can be simply divided into two parts in finite element
analysis: the indentor and the ice mass. The finite element geometry is shown in Figurc
6.2. Since the whole system is symmetric, an axisymmetrical condition has been assumed
to simplify the modelling. The model for the indentor in this analysis is simulated as a
flat rigid body by fixing all the degree of freedoms except the 2-direction with a constant
speed towards to the ice mass. The ice mesh is separated into three zones with different
mesh sizes and material properties. Zone 1 shown in Figure 6.2 is near the contact
interface and the mesh is the finest of the three zones. The material in this zone obeys the
constitutive model coupled with damage effects as described in Chapter 4. Zone 2 is
adjacent to zonel and has a coarser mesh. It also follows the constitutive model with
damage for the ice. Zone 3 is the area surrounding zone 2; it is coarsely meshed and the
ice in this zone is taken elastic since damage can be negligible in this zone. The purpose
of zone 3 in the finite element mesh is to reduce the boundary effect as discussed by Xiao
(1991). The bottom of the ice mass is fixed in both 1 and 2 directions. The temperature of

the test is — 10 °C.

6.2 Modelling Results and The Layer Study

Liu (1994) and Xiao (1997) both studied the parameters related to the damage
constitutive model and found that they have significant effects on the shape of the load-

time curve as well as the magnitude of the peak load. In this research, the calibrated
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model in Chapter 4 is applied. Since there are some initial flaws in the ice mass for
medium scale indentation tests performed in Hobson’s Choice Ice Island, a preexisting
scalar damage is given at the beginning of the analysis.

The time history of the applied force is given in Figure 6.3 by the solid line, and the

test load history is given by the dashed line. It can be seen that the numerical results

compare well with the test data in both the i and freqy The ical result
is a little higher than the test data, because the current numerical technique can not
debond the damaged elements from the parent ice mass. Figure 6.3 also shows that the
reaction load will drop at a specific phase of the indentation history. The drop-off of the
load is believed to be related to the instability of the deformation caused by strain
softening effects within the layer of damaged ice. However, the model results are only
valid at the early phase of the drop-off of the applied force. This is because at the moment
of the drop-off, the pressure melting effect will reverse accompanying with the stress
decrease and some of the microcracks can disappear due to the pressure melting. This
reverse of damage is not well understood currently and is not considered in the model, so
the present numerical analysis can only simulate accurately half a cycle of the loading
history.

Figure 6.4 illustrates the damage evolution process. Figure 6.4(a), 6.4(b) and 6.4(c)
show the damage contour plot at the points a, b and ¢ (see Figure 6.3) of the reaction load
history, respectively. It can be seen that severe damage first occurs at the edge of the ice
mass and expand towards the center of the ice mass along a thin layer. Severe damage

finally concentrates on the thin layer along the contact surface. Physically, microcracking



was observed at the edge of the ice mass as the result of the stress concentration. This
process expands to the center gradually. At a specific moment of the indentation, the
confining pressure at the central area increases to a value sufficient to induce the severe
pressure softening effects and damage will finally concentrate on the layer along the
contact surface. The pressure distribution along the layer is shown in Figure 6.5 for the
moment before the peak load, at the peak load and after peak load, respectively. It
illustrates that the pressure distribution shows a roughly parabolic curve around peak
load. This can be interpreted by the damage evolution history discussed above. Severe
damage starting from the edge softens the ice at that area, decreasing the pressure at the
edge. Note that there is a slight drop-off of pressure at central area of the pressure
distribution before the peak load. This is because that the pressure softening effect starts
from the central area and reduce the total pressure although the softening effect is not
severe at the beginning. A similar figure was obtained by Xiao (1991) with a spherical
indentor. Figure 6.6 shows the comparison between von Mises stress and confining
pressure at different positions along the contact surface. It can be seen that at the edge of
the contact surface, von Mises stress (21 MPa) is dominant and confining pressure

(4 MPa) is negligible in comparison to von Mises. Confining pressure becomes more and
more significant towards to the centre. Confining pressure (46 MPa) is bigger than von
Mises (37 MPa) at the central element and the two components (von Mises = 36 MPa;
confining pressure = 31 MPa) are almost even at the middle between the edge and centre.
The comparison provides an evidence to explain the different mechanisms of damage

formation at the edge and at the centre observed in the field test (see Chapter 3).



As discussed above, the drop-off of the reaction load in the indentation history is
believed to be related to ice softening inside the layer. This can be illustrated by the
energy flux evolution. Three phases were selected: the first was at time of 0.02 s; the
second was at the time of 0.048 s (near peak load) and 0.05 s (just after the peak load).
The energy flux evolution is shown in Figure 6.7. Energy in phase I flows into the ice
'mass roughly uniformly except at the edge of the indentation surface. This is because the
ice is not severely damaged at the beginning of the contact and energy flows everywhere
equally except at the edge as the result of stress concentration. Energy in phase II flows
into the region near the central area because severe damage occurred near the region of
the edge and softened the ice in that region. Energy at phase III flows into the thin layer
along the contact surface because severe damage finally expanded to the whole layer and
softened the ice inside the layer. Once ice softens, energy only flows into the softening
region and instability will occur. At this moment ice behaves as a brittle material and the
damaged layer will be extruded. After this process, a new cycle will begin. The arrow
size indicates relative magnitude of energy flux, and the arrow direction indicates the
direction of energy flux inside the ice mass. Note in Phase Il and phase III that energy at
the edge is lower than that at the center. This can be interpreted from Figure 6.5 where

around the peak load pressure is much lower at the edge than that at the center.
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6.3 Scaling Effect of High Pressure Zones

The problem of scale effect is particularly important to geotechnical materials such
as ice because it is inevitable to use reduced-scale laboratory tests to extrapolate real
structures, which are too large to be tested systematically. Realization of the problems
involved in this extrapolation has led to a surge of interest in this subject in ice-structure
indentation. Scale effect for ideal elastoplastic materials ia absent for which the failure
criteria can be described by only a well-defined yield stress regardless of size effect as
discussed by Jordaan (1999). It is also absent of scale effect for elastic-brittle materials
with a constant fracture toughness regardless of scales. However, the model of ice used in
this research is highly nonlinear time-dependent creep behaviour coupled with damage
mechanics and doesn’t have a given failure criterion dependent only on a well-defined
yield stress. Therefore, motivation arises for the scale effect of the current model. Results
of different scales from finite element analyses are used to study the problem.

Four materials in this section are studied. The first is the ideal elastic material. The
second is the linear viscoelastic material. The third is the nonlinear viscoelastic material
without any damage effects and the forth is the nonlinear viscoelastic material coupled
with damage effects, which was applied in the ice indentation model. For each material,
five geometrically similar indentation models have been studied. The diameters of the
contact surfaces are 0.08 m, 0.16 m, 0.24 m, 0.48 m and 0.96 m, respectively. For the
first three materials without damage, the failure criterion is described by a specific critical

stress. For the nonlinear material with damage, the failure criterion is described at the
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moment of peak load after which the reaction load will drop. The force-area data points
compared with theoretical line without scale effect are shown in Figure 6.8 for each case.
It can be seen from Figure 6.8 that the data points from finite element results match the
theoretical line well for the elastic, linear viscoelastic and nonlinear viscoelastic materials
without damage. Data points of finite element results tend to be below the theoretical line
along with the increasing size for nonlinear viscoelastic material with damage effects.
This indicates that there is a scale effect for this type of materials.

Bazant (1993) developed a power law relationship for scale effect in absence of
characteristic length (for instance, as the depth of beam, the span, the notch size, and so
forth). Letting Y as the nominal stress at failure, the scaling ratio Y/Y of the
corresponding responses Y and Y depends only on the size ratio A = D'/D of two
different sizes D" and D but is independent of the choice of the reference size D. let the

scaling law be f(X), then
v
Y ., 6.
¥ @ ©.1)

where f{)is the unkown function that needs to be found out. As proposed by Bazant
(1993), that i) is a power function

fA=a. 6.2)
For plasticity or elasticity with a strength limit, the value of m is 0 and for LEFM (linear
elastic fracture mechanics), the value m is —0.5. The value of m is between 0.5 and 0 for
nonlinear fracture mechanics or quasi-brittle materials. Bazant's approach is based on the

assumption that the flaws increase in size as sample size increases. However, the flaws of

103



ice in field under compressive stresses may be micro-cracks, grain boundaries, pressure
melting and other imperfections. Instead of strict geometric similarity, Sanderson (1988)
gave a more realistic assumption that any material contains a statistical population of
flaws of various sizes. On selecting a sample of larger size there is a higher chance of ice
containing larger flaws which are not necessary to follow the geometric similarity. By
assuming that the compressive failure obeys the “weakest link hypothesis™ as what tensile
failure does, Sanderson give a function of the failure strength as a function of volume, V/
in the form

ooV or I 6.3)
where by is a statistical parameter charactering the flaw-size distribution. The value of by
is approximately equal to 15 for fresh water ice (Lavrov, 1973) and equal to 1 or 3 by
statistical analysis for S-2 ice by Gold (1972).

A power law relationship of Eq. (6.2) or Eq. (6.3) can be applied on ice-structure
indentation model discussed in Section 6.2 which is lack of characteristic length. The
sizes and their corresponding nominal failure stress are listed in Table 6.1. The nominal
failure stress against diameter is plotted in Figure 6.9 with a scale on logarithm based on
10. The slope of the regression line of Figure 6.9 shows that the exponent m as described
in Eq. (6.2) is — 0.065 and the statistical parameter by is approximately 46 according to
Eg. (6.3). Both Tuble 6.1 and Figure 6.9 show that the current model has a slight scale
effect. However, the scale effect is not comparable to that of the ice failure dominated by
flaws for which the exponent m is — I (Sanderson, 1988) and b, = 15 for fresh water ice

(Lavrov, 1973). The recent indentation tests by Sodhi (2000) didn’t show a significant
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scale effect and Sodhi (2000) concluded that it was absent of scale effect in ice-structure
indentation. It was interpreted by Sodhi (2000) that the absence of the scale effect is as
the result of the similar failure modes. However, Sodhi’s results include some field tests
which are not exactly the high pressure zones without any flaws. For high pressure zones
without any initial flaws, the current model shows that the scale effect may be triggered
by the damage evolution. The physical mechanisms of the slight scale effect in Figure 6.9
are still not well understood and need to be further studied. A set of indentation tests with

different sizes is highly to be at the same

conditions and a probabilistic analysis is also recommended.
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Table 6.1 Scale effect of ice-structure indentation

Size (m) Failure Stress (MPa)
0.08 80.48
0.16 77.27
0.24 75.6
0.48 722
0.96 665
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Figure 6.3 Comparison of reaction load history between test data and model data.
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Figure 6.4 Damage evolution history: (a) damage contour before the peak load;
(b)damage contour around the peak load; (c) damage contour just after the
peak load.
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Figure 6.6 Comparison between von Mises and confining pressure at the peak load.(no
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Figure 6.7 Energy flux evolution history: (a) time = 0.02 s; (b) time = 0.048 s; (c) time =
05's.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Medium-scale ice indentation tests on Hobson’s Choice Ice Island were studied. A
damaged layer was observed in these tests. Inside the layer, microcracks and the evidence
of dynamic recrystallization and pressure melting were observed. The mechanisms of the
formation of the damaged layer have been discussed. A schematic model by Jordaan
(2001) was introduced to estimate the process of ice-structure interaction. This model

outlines the process of formation of the damaged layer and the variation of stress

during the Triaxial ll-scale tests carried out at Memorial
University of Newfoundland showed clear evidence of an enhancement of strain and
strain rate at large deformations. The cffect of deviatoric stress, confining pressure and

temperature on deformation history of ice is discussed. The failure modes of cylindrical

ice i are il

igated. Strain localization and rupture are the two main modes of



failure for laboratory (flawless) ice. Splitting was observed in specimens of iceberg ice

with initial flaws. The ps i ip of failed showed that
rupture tends to occur at low and high confining pressure levels and at relatively high
temperature. The observations also showed that strain localization may be the precursor
of the final rupture.

A constitutive model for triaxial loading conditions was developed from Glen’s law
coupled with damage mechanics. The enhancing effect of damage was described with an
exponential form. The damage evolution model and calibration were obtained by a series
of constant stress tests. The calibrated damage model was separated into two components.

The first damage with mi ing at relatively low pressures

while the second represents pressure softening effects such as dynamic recystallization
and pressure melting at high pressures. An empirical temperature correction was made in
calibrating the damage model. After the calibration, the damage evolution can be

represented as a function of effective stress and confining pressure.

The isms of i ility due to strain ization are di d in this thesis

for general ic materials. It is that i ity plays a

role in triggering the strain localization. Finite element analyses based on the constitutive
model coupled with damage mechanics were conducted to study the possible mechanisms
of strain localization in ice. The analyses showed that both material imperfection and end
effects can induce strain localization. Other mechanisms such as thermal effects were

also discussed.
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One of the medi le i ion tests was simulated with FEA to study the

high-pressure zone. The results of the model showed a good agreement with the test data.
Severe damage began from the edge of the contact interface and extended to the whole
interface with a thin layer. Energy flux inside the ice mass also concentrated into the thin

layer after peak load. These two giveani ion of the ion of the

layer, and the softening of ice inside the layer and the drop-off of the reaction load. The
stress distribution along the layer showed that the confining pressure is higher at the
center than at the edge of the contact surface. This provides an explanation of the
different mechanisms of damage initiation and growth of ice near the center and the edge.
The scale effect in ice-structure interaction was also studied by finite element analysis.
Results showed that for elastic materials, linear viscoelastic materials and nonlinear
viscoelastic materials without damage effects, scale effect is excluded. For nonlinear
materials with damage evolution, a small scale effect is observed but is far less extensive

than the scale effect for ice subjected to failure with a preexisting crack.

7.2 Recommendations

1. Currently, a power law relationship is well accepted for constitutive relationship
of ice. However, it is not that accurate for ice under large deformations (Jordaan ez al.,
1999). For the further study, a more accurate model based on activation theory by
Schapery (1997b) is recommended to replace Glen’s law for ice undergoing a large

deformation.
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2. A special i hnique is highly to be ped for
predicting the moment of initiation and post-behaviour of the material in the further
study.

3. In the numerical study of the high-pressure zone, the decrease in pressure can
reverse the damage after the peak load. It is therefore recommended to include this effect
in the constitutive model. In the study of scale effect of the high-pressure zone, the
physical mechanisms of the absence of significant scale effect need to be further studied.
A set of small-scale tests under the same experimental conditions are highly

recommended to be conducted together with a probabilistic analysis of the data.
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