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These values are higher than those at the lower Rw, because Cr is lower at Rw = 1774. 

There is a decrease in tc in the vicinity of the groove. The decrease is followed by an 

increase and subsequent relaxation back to the smooth-wall value. There is a strong 

correlation between the tc and Cr distributions (Figure 5 .2.2) in this case. For the smooth-

wall, tc increases with x, while Cr decreases with x. For the grooved-wall, 1C is lower than 

that on the smooth-wall for xlw ;S 30, and higher than that on the smooth-wall value in the 

range 30 s xlw :S 100. This is completely opposite to the Cr/Cr.o distribution as one would 

expect. In the region x/w 2: l 00, the tc-distributions on the smooth- and grooved-wall are 

almost the same with a monotonic increase with x. The behavior of the 1r-distribution at 

Rw = 1774 corroborates the results of Matsumoto (1994) and Tani (1987a), that a 

reduction in Cr results in an increase in tc and vice versa. 

5.6 Energy Spectra 

The energy spectra of the streamwise velocity fluctuations on the smooth-wall at 

Rw = 645 and 1774 at xlw = 1 are presented in Figures 5.6.1 and 5.6.2, respectively. The 

spectra at different locations in the layer are shown. The spectrum is evaluated by a Fast 

Fourier Transform applied to 29 successive blocks, each containing 1024 data points. 

Finally, the energy spectra from the 29 blocks are averaged. 

The energy spectra (E1(kl)/ u2
) is plotted against the wave number k1 (kr is the 

one dimensional wave number defined as 27rf/U. where f and U are frequency and local 

mean velocity, respectively). Hinze (1959) defines the energy spectra as 

u 
21l' 

(5.3) 
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so that 

(5.4) 

The present method follows the method used by Klebanoff ( 1955). 

The turbulent energy is spread out over about two decades in wave number at the 

lower Rw, and about three decades at the higher Rw. The energy at the lower wave number 

decreases as the wall is approached. This is because the energy containing eddies are 

larger at the lower wave number (i.e. lower frequency) than eddies at the higher wave 

number. As the wall is approached, the large eddy motions are damped. This results in a 

lower energy in the large eddies at distances closer to the wall. 

Figure 5.6.3 compares the energy spectra on the smooth- and grooved-wall at the 

two Rw. The spectra are at the streamwise location immediately downstream of the cavity 

(xlw = 1) and at the y-location where the turbulence intensity is maximum (y + == 13 ). There 

is no distinguishable difference between the spectrum on the smooth- and grooved-wall at 

both Rws. As Rw increasesy the high wave number component of energy increases, while 

the low wave number component decreases. It may be concluded that the groove has no 

effect on the spectral distribution of the turbulent kinetic energy. 

5.7 Turbulent Kinetic Energy Dissipation Rate (E) 

The distributions of Ei(U- )2 across the layer at Rw = 645 and 1774 at x/w = 1 are 

shown in Figures 5.7.1 and 5.7.2. The figures are presented using a semi logarithmic 

scale to enhance the near wall region. In each figure, the distributions of El(U- )2 for the 

smooth- and grooved-wall are compared. 
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Figure 5.5.1 Wake parameter (n) distribution on the smooth· and grooved-waD at R., = 645. 
Symbols: o, smooth-wall; <>, grooved-wall; 

1.0 

I 

! 

0.8 

0.6 

0.4 

0.2 

0.0 

I 

I 
I 

0 0 I 0 0 coo 0 4) I 
0 > 0 I 0 

~ b I 

oo ~ 
! .. i i 
I 

I 

- I 
I I 

-20 20 60 100 140 180 220 260 300 340 380 420 
x/w 

Figure 5.5.2 Wake parameter (n) distribution on the smooth· and grooved-waD at R .. = 
1774 .. Symbols: o, smooth-waD; <>, grooved-waD; 
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Figure 5.6.3 Eaergy spectra of the streamwise velocity fluctuation at xlw =1. and y • = 13. 
Symbols: At Rw = 645~ ~ smooth-waD; x~ grooved-wall; at Rw = 1774. o. 
smooth-wall;+, grooved-wall 

At Rw = 645, there is a significant difference in EI(U_ )2 on the smooth- and 

grooved-wall. The peak values of El( U. )2 on the smooth- and grooved-wall are about 

0.17 Is and 0.12/s, respectively. At the lower Rw~ (Ei(U.)2)max occurs at y• about 2.0 and 

4.0 for the smooth- and grooved-walt respectively. 

At Rw = 1774, there is a good collapse of the grooved- and smootl!-wall EI(U_ )2 

data throughout the layer. At the higher Rw, (el(U.)2)max = 0.18 /s for the smooth- and 

grooved-wall, and occurs at y + = 4.0. 

At Rw = 1774., there is good agreement in EI(U_ )2 for the smooth- and grooved-

wall throughout the layer. On the contrary, at Rw = 645, there appears to be a big 

difference between the two for y•::; 200. The reason for this is not clear at this moment. 
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At both Rw., they+ locations of (EI(U-)2)mu are closer to the wall than they+ locations of 
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Figure 5. 7.1 Rate of the turbulent kinetic energy distribution at R. = 645. Symbols: o., 
smooth-wall; +, grooved-waD. 
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Figure 5.7.2 Rate of the turbulent kinetic energy distribution at R. = 1774. Symbols: o., 
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5.8. Internal Layer Growth Downstream of the Cavity 

The growth of the internal layer ( ~ as a response of the turbulent boundary layer 

to the presence of the cavity is shown in Figure 5.8.1. The mean velocity profiles inside 

the internal layer near the step change are linear when plotted in the form UIU- versus 

y112 (Elavarasan et al. 1996). The height of the internal layer can be used to estimate the 

inner layer thickness. In the present study, the height of the internal layer was obtained 

using the 'knee' method (Antonia and Luxton. 1971). 

-~ 
c.o 

0.05 ------------------------, 

0.04 

0.03 

0.02 

0.01 

-~------~----------------0 e ,--a 
0 

.·-··----------------------····• filii'• ... --.- .... -----------

I 

0.00 -+--...,.---,---....,-----.....,---.,.---,...-~-------' 

-20 20 60 1 00 140 180 220 260 300 340 380 420 
x/w 

Figure 5.8.1 The internal layer growth on the grooved-wall at R., = 645 and--1774: o, R., = 
645; <>, R.., = 1774. Lines are drawn only for convenience. 

The height of the internal layer at Rw = 645 is approximately twice as high as that 

at Rw = 1774 (Figure 5.8.1). In the range xlw ~ 7, there is a rapid growth of the internal 

layers, however, the rate of growth of the two internal layers for xlw ~ 7 is approximately 

the same. Beyond xlw :: 7, the growth of the internal layers is rather slow. The rate of 
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growth of the internal layer (d6/dx) is about 0.093 and 0.041 mm/mm at the lower and 

higher Rw., respectively, in the region xlw s 7. In the region xlw ~ 7 .. (dO/dx) for both Rw 

is about the same at 0.00010 mm/mm. 

The growth of the internal layers in the present study is compared to the data of 

Elavarasan et al. (1996) in Figure 5.8.2. The data are presented in a semi-logarithmic 

scale to enhance the region immediately downstream of the cavity. While there is a 

difference in the magnitude of the two layers, the rate of growth is approximately the 

same. The difference in the magnitude of the internal layers is primarily due to the 

difference in diD.. In the present study., dl6t is 0.072, while in the study of Elavarasan et 

al. d/0. was o~ 125. 
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Figure 5.8.2 The intemallayer growth on the grooved-waH. Symbols: o. Current data (R9 = 
1000); ~ data of Elavarasan et al. (1996, R8 = 1300). The liDes are plotted only 
for convenience. 
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5.9 X-Wire Measurement Results 

Mean velocity, streamwise and wall-normal turbulence intensity profiles, and 

Reynolds shear stress obtained from X-wire measurements are presented in Figures 5.9.1 

to 5.9.4. Representative data at two xlw locations on the smooth-wall are presented. The 

measurements were performed at R9 == 1000, which corresponds to a freestream velocity 

of 2 mls. It is not possible to obtain near-wall data (y slmm or y + s 6), because of the 

probe size. In the present study, the X-wire measurements for the grooved-wall could not 

be obtained due to time constraints. 

The lf and u + profiles from the X -wire are in very good agreement with the 

single-wire measurements and the DNS data, however, the wall-normal turbulence 

intensity and the Reynolds shear stress are lower than the DNS data. The peak values of 

v• and -u·v• are about 85% and 63%, respectively, of the DNS data (Re = 1410). 

There are several difficulties in measuring v· and -u+v+ using X-wires. The wire 

separation and physical length of each sensor are important parameters for accurate 

measurements (Zhu and Antonia (1995); Ligrani and Bradshaw (1987); Elsner et al. 

(1993)). The X-wire measurements of Antonia et al. (1995) were also lower than the 

corresponding DNS data. In their study, (v~max and ( -u•v+ )max were apprmtimately 76% 

and 68%, respectively, of the DNS data. The attenuation in v+ is probably due to the 

angle of the instantaneous velocity vector exceeding the effective angle of the wire. 
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Figure 5.9.1 Streamwise mean velocity profiles obtained from X-wire measurements at R. = 
645. +, :dw = 13; <>, :dw = 81; DNS: --, (Re = 1410); • • • ·, (R8 = 670) 
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Figure 5.9.3 WaD-normal turbulence intensity profiles obtained from X-wire measurements 
at R., = 645. +, xlw = 13; O, xlw = 81; DNS: --, (Re = 1410); • • • ·, (R8 = 670) 
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Figure 5.9.4 Reynolds shear stress obtained from X-wire measurements at R., = 645 •• +, xlw 
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Cbapter6 

Concluding Remarks and Recommendations 

6.1 Concluding Remarks 

The development of a turbulent boundary layer downstream of a transverse square 

groove under a zero pressure gradient has been studied at two different Rw (645 and 

1774). Experiments were performed in a low-speed wind tunnel using hot-wire 

anemometry. Single-normal and X-wires were used to obtain the velocity p~oftles and 

velocity fluctuations in the streamwise and wall-normal directions. The main purpose of 

this study is to examine the effect of the groove on the skin friction and turbulence 

structure. In addition, the wake parameter, power spec~ turbulent kinetic energy 

dissipation rate and the development of the internal layer downstream of the groove have 

been investigated. 

At the lower Rw. the effect of the groove on Cr is insignificant. The maximum 

deviation of Cr on the grooved-wall from the smooth-wall is about 1% which is within 

the experimental uncertainty. At the higher Rw, the effect of the groove is more 

pronounced. There is an increase in Cr over the smooth-wall value immediately 

downstream of the groove until xlw = 30. This increase in Cr is followed by a decrease 

and a subsequent oscillatory relaxation back to the smooth-wall value. The decrease in Cr 

can be attributed to the weakening of the streamwise vortices due to the presence of the 

groove (Elavarasan et al., 1996). From this study, it can be concluded that dl t5t has a 

significant effect on the wall shear stress characteristics downstream of the groove. 

Qualitatively, the results for Cr at the higher Rw are similar to the results of Pearson et al. 
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( 1997), however, the sharp rise in Cr of the current study is not as intense as in the study 

of Pearson et al. 

It is difficult to make any conclusions on the overall drag due to the groove. but 

the distribution of Cc downstream of the groove suggests that surface drag reduction 

using ad-type roughness is possible. If the area under the overshoot (increase in Cr over 

the smooth-wall value) can be reduced. while the area under the undershoot (decrease in 

Cc below the smooth-wall value) is increased. a total surface drag reduction could be 

achieved (Ching and Parsons, 1998}. 

The mean velocity profiles are not affected by the presence of the groove at both 

Rw. The ratio dl D. is probably too small to alter the mean velocity profiles. The 

streamwise turbulence intensity is reduced over the grooved-wall in the inner region (y + ~ 

1 0) at both Rw. The cavity attenuates the turbulence intensity in this region. At Rw = 177 4, 

this effect is limited to the near-wall region. In the outer region (y+ ~ 10}, there is a good 

collapse of the turbulence intensity profiles between the smooth- and the grooved-wall. 

However, at Rw = 645, u+ max is slightly affected by the presence of the groove. There is a 

decrease in u +max of about 4% on the grooved-wall. The location of u +max remains 

unchanged at y + = 13 for both the smooth- and grooved-wall at the two RwS. 

The wake parameter (1t) distribution indicates that the boundary layers over the 

smooth- and grooved-wall are not in equilibrium as characterized by Rona ( 1962). There 

is a strong correlation between 1t and Cr distributions at Rw = 177 4. This correlation is 

similar to that obtained by Matsumoto ( 1994 ), where n increases as Cr decreases. 

There is no significant effect of the groove on the energy spec~ at least at the 

location where the turbulence intensity is maximum. The effect of Rw on the spectrum is 
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to increase the high wave number component of energy, and to reduce the low wave 

number component as Rw increases. 

In the present study, the effect of the groove on the skin friction. mean velocity,. 

turbulent intensity, and energy spectta is less pronounced compared with the srudies of 

Pearson et al. ( 1997), Elavarasan et al. ( 1996),. and Choi and Fujisawa ( 1993). This 

difference may be attributed to the difference in dJ 6t of the present study and the previous 

three studies. In the present study, d/6,. = 0.07~ while in the previous three studies, dlt5t = 

0.17, 0.125, and 0.4, respectively. It can be conjectured that d/0. = 0.1 for the groove to 

have a significant effect on the turbulent boundary layer. 

At Rw = 645, the peak values of the turbulent kinetic energy dissipation, cl(U-)2
• 

on the grooved- and smooth-walls are about 0.12 and 0.17 /s, respectively. While there is 

good agreement in s(U-)2 for the smooth- and grooved-wall throughout the layer at Rw = 

1774, there is a significant difference between the two at Rw = 645. The reason for this is 

not clear at this moment. At both Rw, the y + location of El( U -)2 
max is closer to the wall 

than the y + location of u • max· 

The height of the internal layer at the lower R.., is approximately twice that at the 

higher R..,. The internal layer grows rapidly immediately downstream of the cavity. 

-
(d&./dx) is about 0.093 and 0.041 mm/mm for xlw $ 7 at the lower and higher Rw, 

respectively. Beyond xlw = 7, the growth of the internal layer is much slower at both R..,s. 

6.2 Recommendations 

It is recommended that further X-wire measurements using a smaller probe 

(miniature X-wire probe) be performed. This would provide information on v• and -u·v· 
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in the near-wall region. and lead to an improved understanding of the turbulent structure 

in the vicinity of the groove. 

The present hot-wire traverse is manually controlled. and a computer controlled 

traverse is highly desirable. This will improve the accuracy of the measurement of probe 

locations. and facilitate performing the experiments. 

Near-wall measurement with hot-wires is very difficult because of the wall 

conduction. Laser Doppler Anemometry (LOA) can be used to overcome this problem. 

Very accurate measurements in the near-wall region have been obtained using LDA 

(Djenidi and Antonia ( 1993}; Djenidi et al ( 1994 )). This will also allow the wall shear 

stress to be obtained directly from the mean velocity gradient very close to the wall. 

Experiments using a slightly larger dl 0. are recommended. This will allow one to 

determine if an optimum d/6. can be obtained to increase the undershoot in Cr 

downstream of the groove. The effect of different groove shapes on the turbulent 

boundary layer needs to be investigated (Figure 6.2.1 ). While keeping the basic 

dimensions of the groove (d and w) constant. groove shapes suggested in Figure 6.2.1 can 

be investigated. This may potentially reduce the intense favorable pressure gradient that 

emanates from the downstream edge of the groove and reduce the sharp rise in Cr 

immediately downstream of the groove. 
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Appendices 

A: Program Listings 

Al: Program listing to analyze SN-wtre data 

*********************************************************** 
clear 

% MEAN AND RMS CALCULATION +++ 

load ps_0831 % Third order polynomial constants 

% generate sequence of file names, velocity at a certain 
% distance off the wall 

file= [ 1 s400_0.dat 1
; 

1 S300_0.dat'; 
I s200_0 .datI ; 
1 Sl50_0.dat'; 
'slOO_O.dat'; 
~so9o_o.dat'; 

~soso_O.dat'; 

I s070_0 .dat •; 
1 S060_0.dat'; 
1 sOSS_O. dat 1 

; 

'sOSO_O.dat'; 
's045_0.dat'; 
1 S040_0.dat 1

; 

1 S035_0.dat'; 
I s030_0 .datI; 
I s027 _5 .datI; 
1 S025_0.dat'; 
I s022_5. datI ; 
I s020_0 .datI ; 
I s019_0 .datI ; 
's018_0.dat'; 
1 S017_0.dat'; 
1 S016_0.dat 1

; 

1 S015_0.dat 1
; 

1 S014_0.dat'; 
I s013_0 .datI; 
1 S012_0.dat'; 
1 S01l_O.dat'; 
1 S010_0.dat 1

; 

's009_0.dat'; 



's008_0.dat'; 
's007_0.dat'; 
's006_0.dat'; 
'sOOS_O.dat'; 
's004_0.dat'; 
's003_5.dat'; 
's003_0.dat'; 
's002_5.dat'; 
's002_0.dat'; 
'sOOl_S.dat'; 
'sOOl_O.dat'; 
's000_9.dat'; 
's000_8.dat'; 
's000_7 .dat'; 
's000_6.dat'; 
'sOOO_S.dat'; 
's000_4.dat'; 
's000_3.dat'; 
's000_2 .dat'; 
'sOOO_l.dat'; 
'sOOO_O.dat';]; 
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for n=l:size(file,l); % file incrernenter 
fid = fopen(file(n,l:size(file,2)), 'r'); 
data = fscanf(fid, '%i %i', [1, inf]); 
ndata_l = data(l, :}; 
u = polyval(ps_083l,ndata_l); 
u_mean(n)= mean(u(l,l:size(u,2))); 
u_prime = u-u_mean {n) ; 
clear data ndata_l; 
fclose ( fid) ; 

u_rms (n) = 0; 
form = l:size(u,2); 

u_rms(n) = u_r.ms(n)+(u_prime(m))A2; 
end; 

u_rms(n) = (u_rms(n)/size(u,2))A0.5; 
fclose ( fid) ; 

clear u; % make some room 
end; % repeat for every file 

clear n m fid file fsaved; % tidy up 

*********************************************************** 
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A2: Program listing to analyze X-wire data 

*********************************************************** 
clear 

% MEAN AND RMS CALCULATION +++ 

load px0917_1; % Third order polynomial constants for 
% wire 1 

load px0917_2; % Third order polynomial constants for 
% wire 2 

% generate sequence of file names, velocity at a certain 
% distance from the wall 

file= [ 'x400_0.dat'; 
'x300_0 .dat •; 
'x200_0 .datI; 
I xlSO_O .datI; 
'xlOO_O. datI; 
'x090_0 .datI; 
'x080_0 .dat 1 ; 

'x070_0. datI ; 
'x060_0.dat'; 
1 xOSS_O. dat 1 

; 

~xoso_o.dat'; 

'x045_0 .dat'; 
I x040_0. dat 1

; 

1 x035_0 .dat'; 
'x030_0.dat •; 
'x027_5 .datI; 
1 X025_0.dat 1

; 

I x022_5 .datI; 
~x020_0. dat 1

; 

1 X018_0.dat 1
; 

1 X017_0.dat 1
; 

1 X016_0.dat'; 
I xOlS_O. datI; 
1 X014_0.dat'; 
'x013_0.dat'; 
• x012_0. dat • ; 
• xOll_O. datI ; 
1 X010_0.dat'; 
'x009_0. dat 1

; 

·xooa_o .datI; 
1 X007_0 .dat 1 ; 



•x006_0.dat 1
; 

•xOOS_O.dat 1
; 

'x004_0.dat'; 
1 X003_5 .dat 1 ; 

I x003_0. datI ; 
'x002_5.dat'; 
'x002_0.dat•; 
1 X001_5.dat 1

; 

•xOOl_O.dat'; 
•x000_9.dat';]; 
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tteta_1 = 47.1539; % teta 1 effective in degrees 
% teta 2 effective in degrees 
% teta 1 effective in radiant 
% teta 2 effective in radiant 

tteta_2 = 44.2203; 
tetal = tteta_l'*'pi/180; 
teta2 = tteta_2'*'pi/180; 

tantetal = tan ( tetal) ; 
tanteta2 = tan(teta2); 
costeta1 = cos(tetal); 

for n = l:size(file,l); %file incrementer 
fid = fopen(file(n,l:size(file,2}), •r•); 
data = fscanf(fid, '%i %'I ~ I [2, inf]); 
ndata_1 = data(!,:); 
ndata_2 = data(2, :); 
ul = polyval(px0917_l,ndata_l); % wire 1 
u2 = polyval(px0917_2,ndata_2); % wire 2 

for q = l:size(ul,2); 
u(q) = (costetal*ul(q))/(cos(tetal-atan((ul(q)/u2(q)­

l)/(tanteta2*ul(q)/u2(q)+tantetal))))*cos(atan 
((ul(q}/u2(q)-l)/(tanteta2*ul(q)/u2(q)+ 
tantetal))); % x-component of velocity 

v(q) = (costetal'*'ul(q))/(cos(tetal-atan((ul(q)/u2(q)­
l)/(tanteta2*ul(q)/u2(q}+tantetal}}))•sin(atan 
((ul(q)/u2(q)-l}/(tanteta2*ul(q)/ u2(q)+ 
tantetal))); % y-component of velocity 

end; 

u_mean(n) = mean(u(l,l:size(u,2))); 
v_mean(n) = mean(v(l,l:size(v,2))); 
u_prime = u-u_mean (n} ; 
v_prime = v-v_mean(n); 
clear data ndata_l ndata_2; 
fclose ( fid) ; 



form= l:size(u,l); 
uv_prime (m) = u_prime (m) *v_prime (m) : 

end; 

u_rms(n) 
v_rms(n) 
uv_mean(n) 

= std(u): 
= std(v): 
= mean ( uv _prime) : 

fclose(fid): 
clear ul u2 beta s u_prime v_pr£me uv_prime u v; 

% make some room 
end; % repeat for every file 

clear n m fid file xsaved q pitot_vel press rho temp; 
% tidy up 
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*********************************************************** 
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B: Physical Properties of Air at Standard Atmospheric Presswe 

Temperature Density, p Dynamic Kinematic 

I 
Speed of 

CO C) (kglmJ) VISCOSity, p. Viscosity9 v Sound. c .., ., 
(N.slm-) (m-/s) I (m/s) 

-40 1.514 1.57 X 10-;) 1.04 x to-~ 306.2 
-20 1.395 1.63 x ur;) 1.11 x to·~ 319.1 

0 1.292 1.71 X 10-;) 1.32 X 10-5 331.4 
5 1.269 1.73 X 10-;) 1.36 x to·:t 334.4 I 

J 
10 1.247 1.76 X 10-;) L4t x to·' I 337.4 1 
15 1.225 1.80 X l(T;) 1.47 X 10·' 340.4 l 
20 t.204 1.82 X 10-;) 1.51 x 10·5 343.3 l 
25 1.184 1.85 X HT~ 1.56 x Hr:t 3463 
30 1.165 1.86 X t0-:t 1.60 x to-~ 349.1 J 
40 l.t27 1.87 X 10-:> 1.66 x to·' I 354.7 j 
50 1.109 1.95 X tO-:. 1.76 X 10-~ 360.3 
60 1.060 1.97 x to-~ 1.86 x 1o·:t 365.7 I 

' 
70 1.029 2..03 X tO-:> 1.97 x 1o·' 371.2 
80 0.9996 2..rn x to·' 2.rn x to·~ 376.6 
90 0.9721 2..14 x to-~ 2.20 X t0"5 381.7 

100 0.9461 2..t7 X 10·:> 2.29 X 10·' 386.9 
I 

I 
200 0.7461 2.53 X 10-5 339 X 10"5 434.5 
300 0.6t59 2.98 X 10-:> 4.84 x to·~ 476.3 
400 0.5243 3.32 X 10-:. 6.34 X 10"' 514.1 
500 0.4565 3.64 X 10"5 7.97 X 10·5 548.8 

1000 0.2TI2 5.04 X 10"5 1.82 X 104 694.8 

Note: Data from MliDSOD et aL (1990) 
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