

Consistent Access to Replicated Web Service Registries

St. John's

by

©Mahantesh Surgihalli

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

October 2006

Newfoundland

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-30509-6
Our file Notre reference
ISBN: 978-0-494-30509-6

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par !'Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Abstract

Web Services is supposed to be the next biggest revolution in IT industry as it has created a

platform-neutral environment for business processes to communicate. Because of the

interoperability provided by Web Services, the number of companies using it is expected to

grow exponentially. As such, the number of queries to name directory services for Web

Services, Universal Description Discovery and Integration (UDDI) registries, is expected to

be very high. To facilitate high availability, UDDI version 3 suggests replication of data in

the registry.

For quick response and scalability, a lazy replication scheme is appropriate for UDDI

registries. Here, update transactions are executed at primary node(s) as primary transactions,

committed, and then updates are transmitted to other nodes asynchronously, which are then

executed at those nodes as refresh transactions. Then, due to the updates at different nodes

being done at different times, a user may read a recent version of a data item at one node and,

later, read an older version of the same or some other related data item at some other node.

As a result, the user may obtain an inconsistent view of the registry. For a user accessing

different nodes in operations of a session, a session guarantee mechanism is required to

ensure a consistent view of the registry.

In this work, we propose a transaction execution protocol that (i) uses a lazy replication

scheme, (ii) ensures one copy serializability, and (iii) incorporates a fine grained session

guarantee mechanism. Transactions are classified as update or read only transactions and also

as local or global transactions. We extensively study these transaction types and design a

ii

protocol that exploits the compatibility among them to achieve high performance. The

protocol is an extension of two phase locking protocol which has flexibility to execute a

transaction pessimistically or optimistically. Message propagation mechanism is designed

such that updates of conflicting transactions (only) are delivered causally.

The protocol is designed first for a fully replicated system, and then extended to the partially

replicated system. Lastly, we propose a deadlock detection and resolution mechanism.

iii

Acknowledgements

The first acknowledgement in every thesis goes to the supervisor. My thesis supervisor Prof.

K Vidyasankar deserves special acknowledgement not only for his guidance and support but

also for identifying my strength and weakness in my technical skills and providing clear and

efficient feedback. I would like to heartily thank him for spending millions of minutes of his

time on my thesis during the course of my program.

I would like to thank my parents Chandrashekarappa, and Ratnamma, for their love,

encouragement, and constant support. I thank my sisters Veena, Aruna, and Vijaya for

always being there for me. I would also like to thank my uncle Dr. H. B. Chandrasekhar, and

Umakka for giving a new direction in my life and always suggesting improvements in me.

Special thanks to Usha Vidyasankar for being kind and helpful.

This acknowledgement is incomplete without the mention of my dearest friend, Debmalya

Biswas, with whom I used to discuss almost everything under the Sun. Thanks for having

numerous technical discussions both online and offline. I am thankful to Dr.

Ananthanarayana for many stimulating discussion we had during his stay in StJohn's. I also

thank to my friends Joseph, Donald, Ram, Manoj, Koshi, Prem, Jianmin Su, Chen, and

Pradeep (and the list goes on) for the good time I shared with them during my program. I am

also thankful to all my friends in Pantaru group who helped me to keep in touch with my

motherland.

I would like to thank everyone in the Computer Science Department at Memorial University

for providing the perfect study environment, especially, Dr. Wolfgang Banzhaf, Ms. Radha

iv

Gupta, and Ms. Elaine Boone for their encouragement and support. Last but not the least, I

would like to thank the various sources within and outside the University for sponsoring my

studies and participation at PDCS 2005 and WISE 2005.

v

Table of Contents
Abstract .. ii

Acknowledgements ... iv

Table of Contents .. vi

List of Figures ... viii

List of Tables .. x

Chapter 1 Introduction .. 1

1.1 Web Services .. I

1.2 UDDI and Replication .. 5

1.3 Objectives of the thesis ... 6

1.4 Structure of the thesis ... 8

Chapter 2 Background .. 9

2.1 UDDI .. 9

2.2 Replication .. 11

2.2.1 Replica Control. ... 12

2.2.2 Eager Replication .. 13

2.2.3 Lazy Replication .. 13

2.2.4 Session Guarantee ... 14

Chapter 3 Replication Model. ... 18

3.1 Architecture .. 18

3.2 Communication Model ... 20

3.3 Transactional Model ... 22

3.3.1 Local and global transactions .. 25

3.4 Session Guarantee .. 29

Chapter 4 Replication Protocol .. 35

4.1 Protocol .. 36

4.1.1 For primary transaction T K .. 38

4.1.2 For refresh transaction T K·· 50

4.1.3 For ROT TK ... 52

4.1.4 Session guarantee for transaction T K ... 56

4.2 Causal transmission of messages .. 64

4.3 Fully optimistic replication protocol .. 66

vi

4.4 Correctness Proof ... 72

4.5 Discussion .. 83

4.6 Performance evaluation .. 85

4. 7 Starvation .. 88

4.8 Livelocks .. 90

4.9 Related Work .. 91

Chapter 5 Partial Replication .. 95

5.1 Protocol for partial replication .. 102

5.1.1 Primary transaction .. 104

5.1.2 Refresh transaction .. 113

5.1.3 Read only transaction .. 114

5 .1.4 Mechanism for session guarantee .. 114

5.2 Causal multicast transmission of messages .. 125

5.3 Correctness Proof ... 126

5.4 Discussion .. 131

Chapter 6 Deadlocks .. 132

6.1 Deadlocks in our protocol .. 132

6.2 Distributed deadlocks ... 134

6.2.1 Algorithm to detect and resolve deadlocks using wait for graphs 134

6.3 Correctness proof ... 154

6.4 Discussion .. 156

Chapter 7 Web Service discovery using UDDI.. .. 160

7.1 Introduction .. 160

7.2 Protocol to ensure strong session 1SR .. 164

7.3 Correctness proof ... 170

7.4 Discussion .. 172

Chapter 8 Conclusion ... 17 5

Bibliography ... 178

vii

List of Figures

Figure 1.1 Web Services usage scenario .. 3

Figure 2.1 Core UDDI data structure ... 10

Figure 3.1 Illustrates the configuration in UDDI ... 19

Figure 3.2 Illustrates the false causality ... 21

Figure 3.3 Illustrates of global and local transactions .. 27

Figure 3.4 Illustrates the state transitions among the nodes in the registry .. 30

Figure 3.5 Snapshot of UDDI registry to illustrate session guarantee ... 32

Figure 4.1 Flow chart representing the execution of the primary transaction protocol... 40

Figure 4.2 The primary transaction protocol with the coordinator's view for the execution ofT H 41

Figure 4.3 The primary transaction protocol with participant's view forTH 47

Figure 4.4 Illustrates the execution of the refresh transaction protocol along with the primary

transaction protocol .. 51

Figure 4.5 The execution of the primary transaction protocol to illustrate the execution of ROTs 54

Figure 4.6 Illustrates the messages exchanged between the nodes (in terms of roles) for the execution

ofTL··55

Figure 4.7 Illustrates the minimum and maximum states of each individual nodes along with its one

copy equivalent. .. 57

Figure 4.8 Illustrates the total order of delivery and execution of W(b) and W(c) corresponding to T1

and T 2, respectively .. 66

Figure 5.1 Illustrates the benefits of causal multicast over causal broadcast 96

Figure 5.2 Illustrates the inconsistent state seen by the global ROT, T H·· 99

Figure 5.3 Illustrates that the liveness property is not ensured by the causal multicast mechanism .. lOl

Figure 5.4 Illustrates the execution of the primary transaction protocol ofT H 110

Figure 5.5 Illustrates that the liveness property is not ensured by the session guarantee mechanism 115

Figure 5.6 Illustrates the execution of global ROTs ... 117

Figure 5.7 Illustrates the protocol for the execution of the global ROT, T0 123

Figure 6.1 Illustrates distributed deadlocks due to global transactions .. 133

Figure 6.2 A Flow chart for detection and resolution of deadlocks ... 136

Figure 6.3 Illustrates the creation sub-phase of the algorithm .. 141

Figure 6.4 Illustrates the building sub-phase of the algorithm ... 144

Figure 6.5 Illustrates the deletion sub-phase of the algorithm ... 146

viii

Figure 6.6 Illustrates that the deadlock cycle, T K --+ T L --+ T H --+ T K. does not exist in the system at the

time of resolution .. 148

Figure 6.7 Illustrates that two deadlocks simultaneously exist in a WFG .. 149

Figure 6.8 Illustrates the confirmation phase of the deadlock algorithm ... 151

Figure 6.9 Illustrates the abort phase of the deadlock algorithm .. 153

Figure 7.1 Illustrates the data structure of BE1 and BE2 ... 161

ix

List of Tables

Table 1 Classification of transactions ... 28

Table 2 Illustrates the execution of the transactions by service providers, P1 and P2, and service

requestor R1 .. 162

X

1.1 Web Services

Chapter 1

Introduction

The World Wide Web (WWW) has revolutionized the field of Information

Technology (IT). The WWW has changed the way people think and communicate.

Web Services is expected to be the next big revolution in IT. The WWW boom was

basically due to its capability to communicate between an application and its users.

The hype around Web Services is due to its promise of enabling the communication

between the applications without user intervention, because of which companies can

integrate and reuse software that they or others have already built, historically an

expensive and time-consuming process. Although communication between

applications was possible in traditional frameworks, such as CORBA [CORBA] and

DCOM [DCOM], Web Services is considered a landmark technology because of its

standardization and wide acceptance in the IT community. The World Wide Web

Consortium (W3C) defines Web Services as "a software application identified by a

Uniform Resource Identifier (URI), whose interfaces and bindings are capable of

being defined, described, and discovered as Extensible Markup Language (XML)

artifacts. A Web Service supports direct interactions with other software agents using

XML-based messages via Internet-based protocols". Service Oriented Architecture

(SOA) has fueled the growth of Web Services by enabling dynamic discovery and

usage over the Internet.

1

Usually, a Web Service has the following properties:

• Service Description: It explains what a Web Service can do. The public interface

is published along with the Web Service, so that a user knows how to invoke it.

This description should be at least human-readable so that a developer can

integrate the Web Service. Typically, this is machine-readable using W3C's Web

Service Description Language (WSDL) [WSDL]. WSDL uses XML grammar to

identify all public methods, method arguments and return values.

• Service Discovery: The consumers of Web Services go to the service broker to

find one of the providers through a static or dynamic brokerage system. This

brokerage system is basically a name service registry. Universal Description,

Discovery, and Integration (UDDI) [UDDI] is the standard XML based registry

for Web Services.

• Service Interactions: Simple Object Access Protocol (SOAP, although this full

name has been dropped in Version 1.2 of SOAP specification) [SOAP] is the de

facto standard for information exchange between Web Services. Initially, SOAP

was designed as remote procedure call over HTTP. Nevertheless, SOAP can be

used in a variety of messaging systems and can be delivered via a variety of

transport protocols. The major difference between SOAP and other frameworks,

such as CORBA and DCOM, is that SOAP is language and platform independent

(whereas others are not).

2

SetV/ce
Reques'ler

Sfti'VIce
Broker

Service
Provider

Figure 1.1 Web Services usage scenario*

The Web Services usage scenario can be explained with Figure 1.1 as follows:

1. The service provider prepares a WSDL document describing the services it

provides. The provider publishes (registers) the WSDL document with an UDDI

registry.

2. The client queries the UDDI registry. The registry returns not only descriptive

information about the service provider but also information regarding where and

how the service can be invoked.

3. The client interacts with the provider using the above information.

Let us consider an example scenario where the Web Services technology can be used.

Example 1.1: Let us consider a trusted environment where every business

organization trusts every other organization. Consider such organizations to be Intel,

• http://en. wikipedia.org/wiki!W eb_service

3

Microsoft, and Apple Computers. Let us assume that Intel manufactures a new

hardware device. Microsoft releases the operating system for Intel's hardware. Apple

Computers releases the device driver, a software which can be used by the old legacy

system. When the hardware device is deployed to the user, there may be

incompatibility problems which are traditionally very difficult for end users to

resolve. Even intermediate users may have difficulty in finding out if the problem is

with the hardware, operating system, or device driver.

Web Services technology can solve this problem. Whenever there is such an

incompatibility, the software stops executing the module and an exception is reported.

Each of the modules is associated with a category. The program now queries the

UDDI registry for Web Services using the category of the module. Once the search is

successful, it invokes the Web Service at the provider site. The solution for the

problem is dependent on service selection and its invocation at the provider's site.

That is, if the provider is Intel, it may replace the hardware. On the other hand, if the

provider is Microsoft or Apple Computers, they may install an update to the existing

software. This kind of automation enables even a novice user to handle the latest

hardware without worrying much about the internal details. This kind of automation

is not possible in other name service directories, such as ebXML [ebXML], as they

allow users to define their own data structure. The strength of the UDDI data model

lies in its precise definition of all its entity types.

4

1.2 UDDI and Replication

UDDI is commonly regarded as a cornerstone of the Web Services paradigm. UDDI

registries are accessed by providers who publish Web Services, requesters who look

for Web Services and by other registries that need to exchange information. The

customers of UDDI use APis for interacting with the registry. APis in UDDI can be

classified into Publish and Inquiry Application Programming Interfaces (APis) which

are used by publisher of service and all customers, respectively. As only publishers

use publish API and all the consumers use inquiry API, the number of queries is

expected to be very high. In order to provide high availability and fault tolerance,

version 3 of UDDI has moved to replicated UDDI registries, with full replication. The

replication process imposes the overhead of maintaining consistency among replica

copies. Although consistency issues have been considered in the conventional

databases, they do not consider the configuration as specified in the UDDI

specification. As the number of queries to UDDI registries is expected to be very

high, accessing UDDI is likely to become bottleneck.

The main requirements of an UDDI registry are high throughput, low response time,

high availability and accurate access to the entries in it. As UDDI is still evolving,

consistency issues are still unaddressed.

5

1.3 Objectives of the thesis

Web Services is considered as the next big wave in the field of the Information

Technology because of its interoperability with heterogeneity. As the user's

dependency on Web Services increases, UDDI registries, the name directory services

for Web Services are likely to become the bottleneck for their usage. UDDI version 3

has adopted replication of data items in an effort to solve this problem. In this thesis

we develop the following subsystem to address the consistency issues in UDDI:

1. Replication protocol for fully replicated registries: The most commonly accepted

correctness criterion in replicated database systems is one copy serializability, in

which a user sees the entire system as a one copy system. As tight

synchronization among nodes for replication of data items is not suitable for

UDDI registries, a lazy replication scheme [HSAE03, DS04, ATSGB05] (in

which data items are updated first at one node and the updates are propagated

later to other nodes) is appropriate. However, in this system, as the updates at

different nodes are done at different times, a user may read recent version of a

data item at one node and later may read an older version of the data item at

another node. As a result, the user may obtain an inconsistent view of the system.

To avoid this, that is, to ensure a consistent view of the system, a session

guarantee mechanism is required.

The two phase locking protocol is the basic component of the replication protocol.

If a transaction has at least one write operation, it is called an update transaction;

6

otherwise, it is a read-only transaction. We also classify transactions as local or

global. We propose a two-phase locking protocol that achieves high performance

based on the compatibility among different types of transactions. The protocol has

flexibility to execute a transaction, either pessimistically or optimistically. It also

provides a fine grained session guarantee. This part of the work appears in the

proceedings of the 17th lASTED International Conference on Parallel and

Distributed Computing and Systems (PDCS 2005), Phoenix, USA, November

2005.

2. Replication protocol for partially replicated registries: In partially replicated

systems, updates of a data item need to be sent only to those nodes which have a

copy of that data item. Therefore, for enhanced performance, a multicast

mechanism is appropriate, instead of the broadcast mechanism that is used in fully

replicated systems. The replication protocol and the session guarantee mechanism

are extended to suit this requirement of partially replicated systems.

3. Deadlock resolution mechanism: Distributed deadlocks are possible as the

replication protocol uses non-conservative locking mechanism. A mechanism that

handles deadlocks, by means of detection and resolution is proposed. The

advantages of the mechanism include resolution of complex configuration of

deadlocks deterministically and non-abortion of transactions due to deadlocks

which do not exist at the point of resolution.

7

4. Session guarantee mechanism: The session guarantee mechanism is designed to

ensure a serialized view of transaction's updates executed in a session if these

transactions conflict with each other and, in addition, ensures a consistent view of

the operations of a service provider's session.

1.4 Structure of the thesis

The rest of the thesis is structured as follows. Chapter 2 presents a brief overview of

the challenges and related work in conventional replicated databases and session

guarantees. In Chapter 3, we introduce the architecture of UDDI. In the transactional

framework for replication, we classify the transactions based on their operations and

execution location. Then, we consider session guarantees in a lazy replicated registry.

Chapter 4 deals with the replication protocol. We also provide the mechanisms for

message propagation and session guarantees. A correctness proof is given. A protocol

for partial replication is considered in Chapter 5. This protocol is an extension of the

replication protocol in Chapter 4. In Chapter 6, we give an algorithm to detect and

resolve distributed deadlocks. The algorithm is capable of detecting complex

configurations of deadlock cycles. Deadlocks are resolved by aborting a transaction in

the cycle. In Chapter 7, we extend the session guarantee mechanism discussed in

chapter 4 to UDDI context. Chapter 8 concludes the work and provides directions for

the future work.

8

Chapter 2

Background

In this chapter, we first explain the basic concepts of UDDI and then the replication

protocol.

2.1 UDDI

Unlike ebXML [ebXML], UDDI does not allow users to define their own data model.

UDDI defines data structures and API's for publishing service descriptions in the

registry (publish API) and querying the registry to look for published descriptions

(inquiry API).

An UDDI information model is composed of instances of the following entity types

(refer Figure 2.1). Their descriptions are as follows:

1. BusinessEntity (BE): Business or organization that typically provides Web

Services.

2. BusinessService (BS): A collection of related Web Services offered by an

organization described by a BE.

3. BindingTemplate (BT): Technical information necessary to use a particular Web

Service.

9

4. tModel (tM): The cryptic name stands for "technical model", representing a

reusable concept, such as a Web Service type, a protocol used by Web Services,

or a category system.

5. PublisherAssertion: Describes, with respect to a BE, the relationship the BE has

with another BE.

6. Subscription: Describes a standing request to keep track of changes to the entities

described by the subscription.

businessEntity: Information about
the party who publishes information
about a service

businessEntities contain
businessServices

r- businessService: Descriptive
'- information about a particular

family of technical services

businessServices contain
bindingTemplates

I

-rr=================~
- bindingTemplate: Technical

information about a service entry
point and implementation specs

tModel: Description of
specification for services or value
sets. Basis for technical fingerprint

bindingTemplates contain
references to tModels. These
references designate the interface
specifications for a service

Figure 2.1 Core UDDI data structure

10

It is easy to see from Figure 2.1 that one BE may contain multiple BS. Similarly, one

BS may contain multiple BT. Thus, a container relationship exists among these

entities. But BT has an external link to the tM. So, there is a reference relationship

between these two. Note that UDDI (or the UDDI specification) only defines logical

organization and is independent of how they are stored physically.

The UDDI registry has the following components:

1. White Pages: Contains address, contact, and known identifiers of a business.

2. Yellow Pages: Contains industrial categorizations based on standard taxonomies

for a business.

3. Green Pages: Contains technical information about services exposed by the

business.

2.2 Replication

Replication of data items is one of the most common methods to increase the

availabily and reliability of a system. Replication increases the availability by

facilitating reading of a data item from a local node instead of a remote node.

Reliability is ensured by redundancy, that is, if one of the nodes fails, another can

take over and still keep the system running.

11

2.2.1 Replica Control

The price paid for providing availability and reliability is keeping all the replicas

consistent. That is, whenever there is an update on any one of the data items, it has to

be propagated to all the nodes. Maintaining all the nodes consistent is the aim of

replica control. Replica control has been studied extensively in conventional

databases. In a replicated database scenario, the most commonly accepted correctness

criterion is one copy serializability (lSR) [BHG87]. To a user, the replicated database

system appears as a single non-replicated database system. This correctness criterion

is the strongest known, as it ensures commitment of a transaction at all the nodes if it

commits at any one node, and all of the nodes reach the same consistent state. Other

weaker correctness criteria, such as eventual consistency, allow concurrent

conflicting transactions at different nodes to commit at the nodes they are submitted.

The execution may not be serializable. Later, reconciliation operations [S84, FM82,

X84] are performed to bring the database to a consistent state. The database

replication issues can be divided into two parts - execution of transactions and

propagation of updates between nodes. The transaction manager (TM) takes care of

execution of transactions and the broadcast primitives take care of propagation of

updates.

The two main classes of replica control strategies are lazy [HSAE03, DS04,

ATSGB05] and eager [.KA98, .KAOO]. In eager replication, for the execution of a

transaction there is communication between all the nodes. Only after coordinating

with these nodes does the transaction commit. The user obtains a response from the
12

system only after the transaction has successfully committed at all those nodes. In

lazy replication, a transaction is first executed and committed at one node called the

primary node and updates are propagated later to the other nodes called secondary

nodes, asynchronously. Transactions executing at the primary and secondary nodes

are called primary transactions and refresh transactions, respectively. As soon as the

primary transaction is executed, the user obtains the response from the system.

2.2.2 Eager Replication

Eager replication essentially implements the Two Phase Commit protocol (2PC)

[BHG87]. After executing a transaction, one of the nodes is selected as a coordinator

which initiates the voting phase. All the nodes participate in the voting phase. The

coordinator based on the votes executes a decision in the decision phase. As per the

decision, the transaction commits at all nodes or does not commit at any node. The

value for a data item at all the nodes will be the same at any point in time. There is no

uncertainty period where different nodes have different values for a data item. Hence,

this method is easy to facilitate to the user a notion of a single logical copy of the

database.

2.2.3 Lazy Replication

2PC, which is a part of the eager replication, is often not feasible for real life

applications, as it requires a lot of coordination among the nodes. [GHOS96] shows

that as one node is added into the replicated system, a ten times increase in

coordination is required which causes a thousand times increase in deadlock or

13

reconciliation rates. This scalability problem can be solved by relaxing the atomicity

requirement of the eager replication. As a result, replica nodes may not be mutually

consistent. In lazy replication, the need for the atomic commitment protocol is

relaxed. It increases the availability by decreasing the response time of the replicated

system. This also makes the system scalable with the increase in the number of nodes,

as it decouples the primary transaction execution and propagation of updates to other

nodes. Therefore, the lazy replication scheme is popular among commercially

available databases. UDDI has used the lazy replication strategy [UDDI].

Inconsistency arises in the lazy replication as replicated nodes may be out of

synchronization for a certain period of time. A user interacting with the system with a

sequence of transactions may obtain an inconsistent view if different replica nodes are

accessed over a period of time. A session guarantee mechanism aims to give a

consistent view of the replicated system to each user, individually.

2.2.4 Session Guarantee

"A session is an abstraction for a sequence of read and write operations performed

during execution of an application" [TDPSTW94]. The lazy replication may create

multiple stale versions of the same data item at different nodes. A user is not aware of

an internal organization of the replicated database and to him the system appears as a

single copy database. The user's operations in a session is scheduled by the system

such that the first operation reads a data item at a node, and a later operation reads the

same data item from another node which is stale as compared to the previous

14

operation. This is an inconsistent view to the user. The session guarantee mechanism

is tailored to provide a consistent view of the system on a per user basis. Different

types of session guarantees are described in [TDPSTW94] as follows:

1. Read Your Writes: If any read R operation follows write W operation in the same

session where both operations are performed on the same data item, then R should

read the updates of at least W (or higher versions).

Example 2.1: If W(b) is performed at Node-X, then R(b) of the same session

cannot be executed at Node-Y until the update of W(b) is incorporated at that

node.

2. Monotonic Reads: If read R1 occurs before read R2 in the same session and R1

accesses Node-X at time t1 and R2 accesses Node-Y at time t2, then R2 should at

least see the database state which was present when R1 was executed at Node-X.

Example 2.2: Let R1(b) be executed at Node-X which has already executed a set

of write operations, namely w~. Wz, W3, ... ,W0 • Later at Node-Y, Rz(c) of the

same session cannot be executed until changes of W 1, Wz, W3, ... ,W0 have been

incorporated at that node.

3. Writes Follow Reads: At every node, writes made during the session are ordered

after any writes whose effects were seen by previous reads in the same session.

Example 2.3: Let R1(b) occur before W2(c) at Node-X in the same session. R1 has

read the data item b written by W0(b). Then, at every node, order of execution

should be W 0 followed by W 2.

15

4. Monotonic Writes: A write is executed at a node if it includes all previous writes

that were executed in the session.

Example 2.4: Let W1(b) occur before W2(c) in the same session. Then, at any

node, when W 2 is being executed, W 1 would have already been executed.

Providing session guarantee in a transactional framework becomes more complex

than that considered in [TDPSTW94], as a transaction usually consists of multiple

operations. While ensuring session guarantee for a transaction, only the previous

transactions (both active and inactive transactions) in the session which directly or

indirectly conflict with the transaction are considered. That is, if the present

transaction does not conflict (directly or indirectly) with any of the previous (active

and inactive) transactions in the session, then the present transaction need not obey

any of these session guarantee types. We provide our own classification of session

guarantee where we consider read only transactions (ROTs) and update transactions,

separately. Types of session guarantees are ordered based on their strength; the latter

ones being stronger than the former.

1. Monotonic Updates: An update transaction is executed at a node, if all the

preceding conflicting update transactions executed in the system in the same

session have been executed already at that node. This session guarantee is the

weakest of all types of session guarantees. This is similar to Monotonic Writes

guarantees in [TDPSTW94].

16

2. Updates Follow Read Only: At every node, an update transaction follows those

update transactions whose effects were seen by the ROTs in the same session.

This session guarantee is similar to Write Follows Reads guarantees in

[TDPSTW94]. It is stronger than Monotonic Update guarantees as ordering

between a ROT and an update transaction is considered stronger than ordering

between two update transactions. Please note that Monotonic Update guarantees

and Update Follows Read Only guarantees are essential to ensure lSR in a

replicated system.

3. Read Only Follow Updates: At a node, a ROT sees the effects of all the update

transactions (i.e., conflicting transactions as the ROT can only see preceding

conflicting transactions) being executed in the same session. This is similar to

Read Your Writes guarantees in [TDPSTW94]. This type of session guarantee is

stronger than the above two, as without this criterion lSR may be ensured.

4. Monotonic Read Only: At a node, a ROT sees the effect of all previous

transactions being executed by the same session. That is, a ROT sees the effect of

both the ROTs and update transactions executed previously. This is similar to

Monotonic Reads in [TDPSTW94]. This is the strongest of all the above types of

session guarantees, as even two ROTs are ordered globally. As both transactions

of the session are ROTs, this criterion is not required to ensure lSR.

17

Chapter 3

Replication Model

This chapter introduces the basics of the replication model on which our protocol is

based. First, we start with the architecture where we describe the configuration used

in UDDI. Then, we describe the communication model used by our protocol. Later,

we explain a transactional model with a session guarantee mechanism.

3.1 Architecture

We consider a fully replicated registry as adopted in Version 3 of UDDI specification

[UDDI]. In this system, each data item is replicated at all the nodes. Our model

facilitates complete distribution and loose synchronization among the nodes. In a

distributed registry with n nodes, each data item is in the custody of exactly one node.

In UDDI, changes to a data item must be first executed at the custodian node and

these changes are propagated and executed at other nodes. Different data items may

be in custody of different nodes. Therefore, changes to a set of data items may be

executed at different nodes and all the latest updates can be found at no single node.

In our model, the primary transaction executes the transaction at a node in the

registry. Later, changes of the transaction are propagated as a change-record to other

nodes. Each change-record is associated with a monotonically increasing unique

number, called the Unique Sequence Number (USN), which is assigned at the node

where the primary transaction is executed. It should be noted that the USN generated

18

at a node should not be compared with USNs generated at another node (i.e., USN is

not globally unique). Change-records are implemented as refresh transactions. Our

protocol minimizes communication, coordination, and synchronization required for

execution of primary transactions. We assume the fail stop model where a faulty node

stops functioning completely [SS83].

Node-Y

Node-X Node-W

Node-Z

Figure 3.1 Illustrates the configuration in UDDI

Figure 3.1 shows the configuration of UDDI. Node-X is the custodian of data item b.

Similarly, data items c, d, and e are in custody of Node-Y, Node-Z, and Node-W,

respectively. A change to data items b, c, d, and e is first updated at Node-X, Node-Y,

Node-Z, and Node-W, respectively.

19

3.2 Communication Model

We assume that the system provides a reliable broadcast of the messages. Reliable

broadcast ensures that messages sent by a correctly working node are received by all

the correctly working nodes eventually in the same order. The reliable broadcast of

messages does not impose any ordering on messages at the global level. If Node-X

sends message Y and Node-Y sends message <J>, these two messages may be delivered

in different orders at different nodes. Other types of broadcast primitives are causal

and total order. The total order broadcast ensures that all messages are delivered in

the same order at all the nodes. The causal broadcast ensures that if the broadcast of

message <1> causally precedes the broadcast of message Y, then at no node, is Y

delivered before <J>.

The reliable broadcast provides the weakest ordering guarantee of the three types of

broadcast primitives. Total ordering imposes a total order on all the messages in the

system. This requirement is too strong in a distributed transaction processing

environment, such as replication. It causes reduced concurrency, resulting in lower

transaction throughput of the system. A better tradeoff between these two extremes is

the causal broadcast, which imposes partial ordering of messages such that any two

messages are ordered at the global level only if there is a happens-before relationship

between them. When this is translated to the transaction processing context, it means

that two transactions are ordered if the change-record message of the second

transaction is sent after that of the first transaction has been received at a node. This is

20

termed as the false causality in [TG98] where two messages are ordered just because

the second message occurs after the first, but the first has not caused the second event

to occur. In the transaction processing context, we avoid the false causality among the

messages, by inducing ordering between two messages only if there is a dependency

between transactions.

Example 3.1: Consider the setup as shown in Figure 3.2. We illustrate the false

causality using the following transactions:

TH = R(b) W(c)

Node -Y Node -Z

Case 1
-=r=::;;::;;:-------!-_.M • M is received before N

• Causality not important
because of no dependency

N • False causality

Causality essential because of

dependency

Figure 3.2 lllustrates the false causality

21

In case 1, Node-X executes TK and sends M as the changes of TK to Node-Y and

Node-Z. Node-Y after receiving M executes T L and sends N. This happens-before

relationship at Node-Y orders M before N at all the nodes. This ordering is not

important, as T K and T L are independent transactions. This communication primitive

is the false causality. In case 2, Node-X sends M to Node-Y and Node-Z. Node-Y

receives M and executes TH and sends N1
• Because of the dependency between TK

and TH, M before N1 ordering has to be maintained at all the nodes. Therefore,

causality is important in this case.

Facilitating the flexibility for delivery of independent transactional messages in any

order at all the nodes yields higher concurrency in distributed transaction processing.

3.3 Transactional Model

A transaction basically consists of a set of read and write operations. A transaction is

usually associated with ACID properties:

• A - Atomicity: Either all operations of a transaction are executed or none of them

is executed.

• C - Consistency: Guarantees that the execution of the transaction transforms the

database from one valid state to another.

• I - Isolation: Noninterference of concurrent transactions. That is, one transaction

will not see the intermediate values of the other.

22

• D - Durability: Committed updates are never lost, and their effect persists in the

database beyond the transaction's lifetime.

A TM and scheduler of the database system take care of preprocessing, scheduling,

and execution of all the transactions in the system. For simplicity, in the rest of the

thesis, we abstract that the TM will take care of all these functionalities. Basically, the

concurrency control mechanism employed for execution of transactions can be

classified as pessimistic or optimistic. Typically, locking is employed for the

pessimistic concurrency control where locks are first acquired on all the data items

and then the transaction is executed and committed. In the optimistic method, the

transaction is first executed and then it is validated to find out if the execution is

correct. Only after the successful validation, does the transaction commit. The Two

phase locking (2PL) is a type of locking mechanism where all the locks required by

the transaction are acquired in the first phase. In the second phase, those locks can be

released gradually. It should be noted that once 2PL enters the second phase, no locks

can be acquired further. This clearly distinguishes a growing phase which is followed

by a shrinking phase. If a scheduler acquires all the required locks before the

execution starts, then it is called a conservative scheduler. Otherwise, it is called an

aggressive scheduler. If all the locks are released atomically in the shrinking phase,

the locking mechanism is called the Strict Two Phase Locking (strict-2PL).

23

Two transactions are said to be conflicting if they access the same data item. Based

on the type of operations accessing the data item, conflicts are classified into

following types:

• WW conflict: The operations of both transactions are write operations.

• WR conflict: The operation of the first transaction is a write and that of the

second transaction is a read.

• RW conflict: The operation of the first transaction is a read and that of the second

transaction is a write.

• RR conflict: The operations of both transactions are read operations.

We have listed RR conflicts for the sake of completeness. Usually, and in the rest of

the thesis, a conflict refers to either of the WW, WR or RW conflicts.

In distributed transaction processing, execution of a transaction involves participation

of a number of nodes. In order to ensure ACID properties of transactions, atomic

commitment protocols, such as the Two Phase Commit (2PC), are used. 2PC has two

phases - voting phase and decision phase. In this protocol, one of the nodes is

selected as a coordinator. In the voting phase, the coordinator sends a vote request to

all the other nodes known as participants. Each of the participants sends Yes or No

vote to the coordinator. In the second phase, the coordinator, based on the responses

received, decides either to commit or abort the transaction. If all the participants vote

Yes, the protocol decides to commit. Else, if any of them vote No, it decides to abort.

24

This decision message is sent to all the participants. Upon receiving the decision

message, based on the decision, each of the participants either commits or aborts the

transaction. Hence all the nodes reach the same consistent state.

A history (H) indicates the order in which the operations of the transactions are

executed relative to each other. The serialization graph (SG) for H, is a directed graph

whose nodes are the transactions that are committed in H and whose edges are all T K

- TL (K =f. L) such that one of TK's operations precedes and conflicts with one of

T L' s operations in H.

In replication, ensuring atomicity of execution of a transaction at all the nodes is not a

feasible option. Therefore, among commercially available databases, a relaxed

atomicity criterion, such as lazy replication, is popular. In this thesis, we consider a

lazy replicated database which uses the locking mechanism. We assume that each

node has its own TM and uses the locking mechanism, such as 2PL, with an added

flexibility of giving locks to transactions being executed at other nodes. In short, one

node can request a lock from another node. In our system, we assume that the

custodian node of a data item acts as a lock granting agency for that particular data

item.

3.3.1 Local and global transactions

We classify transactions as local and global based on communication and

coordination requirement for the execution of the primary transaction. This

25

classification is based purely on the execution location of the transaction. The

execution location is decided by types of operations and data items the transaction

accesses. The difference between local and global transactions is that a local

transaction does not require any communication or coordination with any other nodes

in the system for a primary transaction to commit, whereas a global transaction does.

Example 3.2: Consider the setup as shown in Figure 3.3. Node-X, Node-Y, Node-Z,

and Node-W are custodians of data items b, c, d, and e, respectively. Following are

the set of transactions executed in the system.

TK =W(c)

TL = R(b) R(c) R(d)

TH = W(b) W(e)

Ta = R(b) W(d)

Transactions are classified into the following categories and sub-categories:

1. Local Transactions:

1.1. ROTs: As we consider the fully replicated registry, a ROT can read any data

item at a node. In Figure 3.3, T Lis a local transaction, as it is a ROT.

1.2. Local update transactions: These transactions access data items in the custody

of a single node and are executed at its custodian node. In Figure 3.3, TK is a

local transaction.

26

2. Global Transactions: A primary update transaction accessing data items in the

custody of remote nodes is a global transaction.

2.1 Read access at other nodes: The coordinator of a primary transaction accesses

data items in custody of other nodes in read operations. In Figure 3.3, T a is a

global transaction.

2.2 Write access at other nodes: The coordinator of a primary transaction accesses

data items in the custody of other nodes in write operations. In Figure 3.3, T H

is a global transaction.

~.-Node-Y
TK = W(c) -Local-......
TL = R(b) R(c) R(d) ·Local<:~ .. - - .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. - .. - .. _ .. ·, -·-
TH = W(b) W(e) -Global.., · ::;,.,.-···· ··

TG = R(b) W(d)

Node-X

Node-Z

Figure 3.3 Illustrates of global and local transactions

27

In order to execute the primary transaction of a global transaction, we differentiate the

roles of nodes in the system into the following types:

1. Coordinator Node: Usually, one of the custodians of write data items is selected

by the system as the coordinator. Even a node with the custody of read data item

or which is not in custody of any data item of a transaction may become

coordinator, but it would increase communication costs and make the data item

inaccessible to other concurrent primary transactions.

2. Participant Node: Custodians of other read and write data items of a global

transaction are termed as participant nodes.

3. Non-Participant Node: All the remaining nodes are termed as Non-Participants.

Type Coordinator Participants Non-Participants

TK=W(c) Local Node-Y - All others

TL = R(b) R(c) R(d) Local Any node - All others

T H = W(b) W(e) Global Node-W/X Node-X/W Node-Y &Z

T0 = R(b) W(d) Global Node-Z Node-X Node-Y &W

Table 1 Classification of transactions

28

Let us consider the assignment of these roles for transactions T K. T L. T H. and T 0 .

1. TK: Usually, TK is executed at the coordinator node, Node-Y, as it is the custodian

of data item c.

2. TL: It is a local transaction which can be executed at any node.

3. TH: Usually, the system will select either Node-W or Node-X as a coordinator for

execution ofTH, as the custodians ofthe write data items are Node-Wand Node-X.

If Node-W is the coordinator, Node-X will be the participant node or vice versa.

Node-Y and Node-Z are non-participant nodes.

4. Ta: Usually, Ta is executed at Node-Z as it is the custodian of the write data item

of the transaction. Node-X is a participant node. Node-Y and Node-W are non

participant nodes.

3.4 Session Guarantee

In this thesis, we facilitate a user in a session to observe a registry with a view that is

increasingly up-to-date over time. This can be achieved by ensuring Read Only

Follow Updates and Monotonic Read Only guarantees. We know that all the nodes in

the registry start with the same initial state. Any new transaction executed in the

system increases the state of the system. The primary transactions can be executed at

different nodes in the system. A state transition diagram in our model is given in

Figure 3.4.

29

Node-X Node-Y Node-Z Node-W

~------------- ---------------------- ------------------ --------------

T1 = W(b) T3 = W(d)

T 2 = R(b)W(c) T4 = W(e)

Figure 3.4 Illustrates the state transitions among the nodes in the registry

1

Example 3.3: Consider the setup shown in Figure 3.4. S0, S1, S2, ••• ,S 11 indicate the

states of nodes in the system. The global view of the registry indicating the present

states of all the nodes cannot be obtained anywhere. Just for the sake of clarity, we

30

explain with a global view which would have occurred in the system. Execution of a

transaction triggers a transition from one state to another.

Let us consider the execution ofT 1 at Node-X. T 1 triggers a transition from state So to

S1. The transactions in the system are T1, Tz, T3, and T4. There is no unique sequence

in the execution of all these transactions. That is, the sequence of execution of

transactions is different at different nodes. All the nodes in the registry start with the

same initial state So and end with the same final state S11 • There is no intermediate

shared state between all these nodes. There is an intermediate state shared by Node-Y

and Node-Z, namely Sz. Also, S8 is shared by Node-X and Node-W.

Example 3.4: Consider the setup shown in Figure 3.5. T11 and T12 are executed by

User-A in a session. T21 and T22 are executed by User-Bin another session. User-A's

transactions are as follows:

T11 = W(b)

T12 = R(b) W(c)

31

$JT21
User-B T 22 ---->::vl':'lii'!TlT----~~~....._

' I

T1 2 =R(b)W(c---------~
Single copy registry

Node-X
T22 = R(b):...._ ___________ ~

W(c) t
W(b) I

Figure 3.5 Snapshot of UDDI registry to illustrate session guarantee

The primary transactions of T11 and T12 are executed at Node-X and Node-Y,

respectively. As we employ a lazy replication scheme, we obtain a snapshot as shown

in Figure 3.5, after execution of the following set of events in the given order.

a. The primary transaction of T11 is executed at Node-X and the change-record is

sent to all other nodes.

b. The change-record ofT11 is received and executed at Node-Y.

c. The primary transaction of T12 is executed at Node-Y and the change-record is

sent to all other nodes.

32

d. The change-record ofT12 is received and executed at Node-X.

e. Change-records of neither T 11 nor T 12 have been received at Node-Z or Node-W

User-B's transactions in another session are as follows:

T21 = R(c)

T22 = R(b)

As the registry is fully replicated, these two transactions can be executed at any node

by the system. The user will not be aware about where transactions are executed

because of replica transparency. At this point in time (referred to in Figure 3.5), the

following transactions are executed in the given order:

a. T21 is executed at Node-X

b. T 22 is executed at Node-Z.

User-B obtains the latest value of the registry when T21 is executed at Node-X. When

he executes T22 at Node-Z, neither T11 nor T12 have been executed at that node so far.

Therefore, he obtains the initial value of data item b in the registry.

This is an inconsistent view because when one copy equivalence is considered, User

B who has seen T 12. has not been able to see the previous conflicting transaction (T 11).

As shown in Figure 3.5, User-B is said to have seen the decreasing state of the

registry. This problem arises basically due to the lazy replication in a replica

33

transparent environment. This can be solved using session guarantees. In [DS05], this

is termed as transaction inversion where a ROT precedes an update transaction in the

serialization order, despite the fact that it follows the update transaction in the client's

request stream.

In general, as different transactions may execute the primary transaction at different

nodes, the sequence of states at all the nodes may not be the same. If a user always

reads and updates at only one node, the session guarantee is ensured trivially. This

may be a major restriction, as efficient load balancing cannot be achieved. We

provide the flexibility for consecutive transactions in a session to access different

nodes.

Our basic protocol explained in chapter 4 ensures lSR. In order to ensure lSR, it

considers only update transactions in the system. This is because ROTs executed at

different nodes may cause indirect conflicts and create a cycle in the global SG. Our

protocol executes all update transactions such that, it constructs an acyclic SG at the

global level. The ROT can read some consistent state from this global SG. The

session guarantee mechanism built on basic protocol ensures that the ROTs see the

increasing state of the system.

34

Chapter 4

Replication Protocol

The replication of UDDI poses new challenges as compared to conventional

replicated databases. This is, basically, because of the concept of custodianship

employed in UDDI. There are many configurations employed for lazy replication in

the literature. [HSAE03] considers a replicated database, where every copy is a

master copy. In this configuration, primary transactions can be executed at any node.

[HSAE03] uses an optimistic approach, which leads to an increase in the abort rate

with increase in the number of nodes and subsequent poor performance as the conflict

rate increases. [DS04] considers the primary master-slave approach. With respect to

the execution of primary transactions, this is a centralized approach, where all the

primary transactions are executed at the same node. This configuration does not

facilitate efficient load balancing as all the transactions have to be executed at the

same node. This leads to poor performance, when the cost of execution (in terms of

the time required to execute) is higher than the cost of communication (in terms of the

time required to communicate). Also, the failure of the primary node causes loss of all

the latest updates in the system. With respect to execution of the primary transaction,

configuration in UDDI is different from the approaches studied in literature described

above. In this chapter, we design a protocol which suits the above discussed

requirements and is efficient for replicated UDDI registries.

35

4.1 Protocol

Our protocol uses a locking mechanism. The locking mechanism is an extension of

2PL which is designed such that once the primary transaction executes, the

transaction's serialization order is fixed in the acyclic global serialization graph. Each

node in the registry has its own TM. Usually, a TM uses 2PL [BHG87] for the

execution of refresh transactions and ROTs. A node in the registry can request locks

from another node for the execution of the primary transaction.

Let us consider a registry with n nodes. Each transaction is associated with an Update

Sequence Number (USN), which is unique at the node where its primary transaction

is executed. The USN at a node increases monotonically. A transaction in a registry is

uniquely identified by the pair <Node-ID, USN>. A state of the node can be defined

as transactions that have been committed successfully at that node. Each of the nodes

in the registry has a set of data structures. We list them with respect to a node, say

Node-Y:

1. A two dimensional array Ny[l,2,3, ... ,n][1,2,3, ... ,n] (denoted by N-array) indicates

the state of Node-Y. Ny[y][y] is the USN of the latest primary transaction, TK,

that was executed at Node-Y and has been committed successfully at that node.

Ny[x][z] indicates the USN of the latest transaction whose primary transaction

was executed at Node-Z with Node-Z as its coordinator and has been executed at

Node-X that Node-Y is aware of. Thus, Ny[x][1,2,3, ... n] denotes the USNs of the

36

set of the latest transactions that have been executed at Node-X whose primary

transactions were executed at Nodes 1,2,3, ... ,n, that Node-Y is aware of.

2. A one dimensional present state array Py(1,2,3, ... ,n] (denoted by P-array) is

Ny(y][1,2,3, n]. Py(x] denotes the USN of transaction whose primary

transaction was executed at Nodes-X and also has been executed at Node-Y.

3. A one dimensional array My[1,2,3, ... ,n] (denoted by M-array) indicates the set of

the latest transactions which have been executed at all the Nodes 1,2,3, ... ,n that

Node-Y is aware of. That is, My(x] denotes the USN of the latest transaction

whose primary transaction was executed at Node-X and has been executed at all

the other nodes, which Node-Y is aware of.

After transaction T K is executed at the coordinator node, updates of the transaction

are broadcast as a change-record to the other nodes. The USN of a transaction is

assigned (at commit time of the primary transaction) to a change-record. A change

record contains the following fields:

1. Node identifier of the coordinator ofT K;

2. The USN of transaction T K;

3. Write operations with its values and read operations of transaction T K;

4. The present state array (Py(1,2,3, ... ,n]) of the coordinator (optional); and

37

5. The dependency array (D-array) of TK. DK[l,2,3, ... ,n][l,2,3, ... ,n] of TK contains

the USN of TK and USNs of all the preceding conflicting (directly and indirectly)

transactions.

A Change-record is stored at a node until it is explicitly deleted by the delete_change

record procedure.

Our protocol implements causal broadcast of messages. It ensures causal delivery of

messages only among the messages of conflicting transactions, and hence, avoids the

issue of false causality [TG98]. Messages which have to be delivered causally are

change-record, lock-grant, and acknowledge messages. We provide separate

protocols for each type of transactions - primary, refresh, and read only. Primary

transactions request PT locks (PT-S and PT-X, representing read and write locks,

respectively). PT locks are used to resolve the conflicts and decide the transaction's

serialization order. Refresh transactions request RT locks. Our protocol is such that

when a transaction has been granted a PT lock on a data item, its conflicting

transaction can not be granted a RT lock. The local TM executes ROTs and refresh

transactions (both local transactions) such that they ensure conflict serializability. All

three types of protocols can be executed independently.

4.1.1 For primary transaction T K

The primary transaction protocol is basically a 2PL. Execution of a primary

transaction has mainly five stages:

38

(1) Lock acquisition phase

a) Requests locks on data items which are m custody of the local node,

atomically.

b) May request a few locks at remote nodes also (for a global transaction).

(2) Execution phase (executes the transaction)

(3) Validation phase

a) Requests locks at remote nodes from which they were not requested earlier

(for a global transaction).

(4) Abort phase (aborts & releases locks)

a) Sends lock-release-request to nodes from which locks were requested earlier.

(5) Commit phase (executes refresh transaction protocol, commits, creates change

record, releases locks and broadcasts change-records).

When a transaction starts, the coordinator node acquires locks on all the data items of

which it is the custodian in stage (l.a), atomically. For a global transaction, the

coordinator acquires locks for data items in custody of other nodes at their respective

custodian nodes, either in stage (l.b) or (3.a). If all the required locks are obtained in

stage (1), then execution is pessimistic. Otherwise, it is optimistic. The protocol

executes either stage (4) or stage (5). We do not consider deadlock initially. We

assume that when the TM at one node requests a lock from some other node, it will

39

obtain the lock within a finite amount of time. Figure 4.1 illustrates the primary

transaction execution using a flow chart. The flow chart shows that if the primary

transaction is executed pessimistically, then the validation phase is not executed. It

executes either stage (4) or stage (5).

Lock acquisition phase

Execution phase

Optimistic execution ~----.%.....------

Validation phase

Abort phase

(Releases locks)

Pessimistic execution

Commit phase

(Executes refresh transaction

protocol, Commits, Creates change

record, Releases locks, Broadcasts

change-record)

Figure 4.1 Flow chart representing the execution of the primary transaction protocol

40

TH = W(b) W(c) R(d)
/'-,

Participant~/

Coordinator I
I
I
I
I

""' !Participant

Node-Y
I
I
I
I
I
I

1.a Obtains local locks: PT-X(c) :
I
I

41111--i-- 1.b Requests PT-X(b) from Node-X:
I
I --!--•., 1.c Obtains lock-grant from Node-X:

2. Executes

Node-Z

3.a Validates R(d) at Node-z7'--:--•.,
I

G.b Receives positive acknowledgement

5.a Executes refresh transaction

5.b Commits

5.c Creates change-record

5.d Release locks

5.e Causally broadcasts chanae-records
~·i······· j\·······~::::::~·······

I

Non-

No de-W

............ -~

Figure 4.2 The primary transaction protocol with the coordinator's view for the

execution ofT H

Example 4.1: Consider the setup shown in Figure 4.2. Node-X, Node-Y, Node-Z, and

Node-Ware custodians of data items b, c, d, and e, respectively. Let us consider the

execution of the transaction T "' which writes b, c, and reads d. (Please note that the

T H is different from T K used in the description of the protocol as T H in the example

illustrates only limited set of cases.) The write data items band care in the custody of

Node-X and Node-Y, respectively. The system selects Node-Y as the coordinator to

execute TH. Node-Y requests the PT-X lock on data item b from Node-X,

41

pessimistically. The protocol reads the data item d, which is in custody of Node-Z,

optimistically. The coordinator validates execution of the read operation of the

transaction from Node-Z in stage (3). Participants are Node-X and Node-Z. Non

Participant is Node-W.

The execution of the primary transaction can be explained from the coordinator's and

the participant's view.

For Coordinator (Coordinator's view)

Consider the execution of the primary transaction, TK, at the coordinator, Node-Y.

(1) Lock acquisition phase: TK acquires the locks in two steps, namely, stage (l.a)

and stage (l.b), executed in the given order. Once all the requested locks have

been acquired the protocol goes to stage (2).

(a) Requests PT-S and PT-X locks on the data items to which Node-Y is

custodian, atomically. That is, TK obtains locks on all the data items in

custody of Node-Y or does not obtain any lock. Only after completing stage

(l.a) the protocol goes to stage (l.b).

(b) The coordinator of T K decides which locks to request from participants now

(stage (l.b)). It sends the PT-XIPT-S lock-request message (contains the type

of locks and the data items on which locks are required) to the corresponding

custodian nodes.

(2) Execution phase: Transaction T K is executed. All writes are performed in a

private workspace.

42

(3) Validation phase: T K validates the operations for the data items from which locks

were not requested in stage (1). Validation is performed by sending messages to

the corresponding participants using one or more of the following types of

messages:

(a) Read validate a data item: If a read operation on data item dis to be validated,

then S-optimistic-request on data item d is sent to the custodian of data item d.

The message contains transaction identifier, <Node-ID, USN>, from which

data item d was read. (This can be obtained from the change-records stored

locally.)

(b) Write validate a data item: If a write operation on data item b is to be

validated, then X-optimistic-request on data item b is sent to the custodian of

data item b.

(c) Read and write validate a data item: If the transaction has both read and

written data item e without requesting locks pessimistically, then both X

optimistic-request and S-optimistic-request on data item e are sent to the

custodian of data item e.

If the coordinator obtains a negative response from at least one participant, then

the protocol goes to stage (4). Otherwise, upon arrival of positive responses from

all its participants, it goes to stage (5).

43

(4) Abort phase: The protocol aborts transaction TK, releases all its PT locks (i.e., PT

X and PT-S) at the local node, atomically. Then, sends a lock-release message to

all the other participant nodes.

(5) Commit phase: The protocol performs each of the following steps in the given

order:

a) Executes the refresh transaction protocol (explained later as the refresh

transaction) forT K.

b) Commits the primary transaction, T K·

c) Generates the USN. Then, updates the state array, Nv, and creates the present

state array, Py, the D-array, DK. Creates change-record for TK.

d) Releases all the PT locks.

e) Broadcasts change-records to all the nodes.

Then, session_update procedure is executed. This procedure is discussed in section

4.1.4.

The data-structures at all the nodes in the registry have to be initialized when the

replicated registry starts. Initially, there are no transactions in the system. Therefore,

the state arrays at Node-X, Node-Y, Node-Z, and Node-W are initialized to zero

value as follows:

Nx[1,2,3, ... ,n][l,2,3, ... ,n]:= Nv[1,2,3, ... ,n][l,2,3, ... ,n] := Nz[l,2,3, ... ,n][1,2,3, ... ,n] :=

Nw[1,2,3, ... ,n][l,2,3, ... ,n] := 0

44

During the execution of the primary transaction of T K. arrays associated with the

change-records are updated or created as follows:

• Update of theN-array, Nv[1,2,3, ... ,n][l,2,3, ... ,n] at Node-Y

Nv[Y] [y] := USN of primary transaction T K

• Creation of present state array (P-array) Pv representing yth row of Nv

Pv[1,2,3, ... ,n] := Nv[y][1,2,3, ... ,n]

• Creation of D-array DK for T K

DK[l,2,3, ... ,n][l,2,3, ... ,n] := 0

DK[Y] [y] := USN of transaction T K

For all x, which are participants ofTK, DK[x][y] := USN of transaction TK

Let transaction TK conflict with a set of transactions namely TKI. Tl(2, ... ,TKP. WW,

RW, and WR conflicts with TK are calculated at the local TM as follows:

The change-records are stored at a node in the order of their execution. That is, the

change-record of the latest transaction is stored at the top of the queue and that of the

oldest transaction at the bottom. For each of the operations of T K, the conflicting

operation in the change-record is searched, starting from top and then proceeding

towards the bottom of the queue at that node. If a conflicting operation in the change

record of T L is found, then T L conflicts with T K· The types of conflicts between T K

and T L can be WW, WR, and R W. This procedure is continued for all the remaining

45

operations of T K· For a global transaction, instead of searching at a local node for the

conflicting transaction (i.e., searching in change-records using the above procedure)

on a data item in custody of another node, DKRM-array received along with lock-

grant/acknowledgement messages can be used. While the former method would also

give the same result, the latter elimi~ates re-computation costs.

The computation for DK of transaction T K can be performed as follows. Let D-arrays

in change-records of conflicting transactions found at local nodes, namely T KI.

Tl(2, ... , TKM be DK1, 01(2, ... , DKM, respectively. Let D-arrays in the lock-

grant/positive-acknowledgement messages of TKMI. TKMz, ... , TKP be DKMJ, DKMz, ... ,

DKP, respectively. Then, the code finds the most recent transactions that were

executed at each node in the registry that conflict with T K as follows:

for var = 1 to n, where n is the number of nodes
for varp = 1 to n, where n is the number of nodes

DK[var] [varp] := Max(DK1 [var] [varp], DK2[var] [varp], ... ,DKM[var] [varp],
DKM 1 [var] [varp], DKMz[var] [varp], ... ,DKP[var] [varp l. ... DK[var] [varp])

Function Max returns the maximum integer for a given set of integers (throughout
the thesis, this function is used with the same meaning).

The above code computes and stores in DK[1,2,3, ... ,n][1,2,3, ... ,n], USNs of all the

transactions conflicting with T K· including itself. Therefore, DK[x][y] contains the

USN of the transaction conflicting with T K, or the USN of T K, which was executed

with Node-Y as the coordinator and Node-X as the participant.

In Example 4.1 (refer Figure 4.2), the coordinator Node-Y, requests aPT -X lock from

Node-X in stage (1). After the coordinator obtains the lock on data item a, primary

46

transaction T H is executed in stage (2). In stage (3), the transaction sends the

validation request message to Node-Z. Node-Z validates and obtains the PT-S lock on

data item c and sends a positive acknowledgement to Node-Y. Then, the transaction

commits in stage (5).

T H = W(b) W(c) R(d) Coordinator

Node-Y

1.a Obtains local locks: PT-X(c)

(l) 1111 ~ 1.b Requests PT-X(b) from Node-X
1. O~ins PT-X(~1 &

Node-Z

• I

sendsi lock-grant : II 1.c Obtains lock-grant from Node-X
• I

! l 2. Executes (2)

l 3.a Validates R(d) at Node-Z. __ -+-2=:·....::V5~1idat~

I

"

1 transaction! & gets 13.b Receives positive acknowledgem81et~~l_::.:::.:: 1

5.a Executes refresh transaction PT-S locks:and

5.b Commits sends 1

I

acknowledgement
5.c Creates change-record

5.d Release locks

5.e Causally broadcasts change-record, .
• • • I I .. ,. ,,....... .

..... I • • •• • .. • • • • • • •• • • I

! :" •••••••• ~t·

Non-

Node-W

. ·~

Figure 4.3 The primary transaction protocol with participant's view for T H

For Participants (participant's view):

Consider the execution of the primary transaction, T K, at the participant, Node-X.

47

(1) Upon receiving a PT-S/PT-X lock-request (refer to stage (l.b) in the coordinator's

view): Node-X acquires the corresponding PT locks (PT-S or PT-X) from the

local TM. Then, the local TM sends the lock-grant message which contains D

array DKMr[I ,2,3, ... ,n][1,2,3, ... ,n] (creation of DKMr is explained later).

(2) Upon receiving a validation request message (refer to stage (3) in the

coordinator's view): Node-X can receive S-optimistic-request or X-optimistic

request or both on data item d. Validation of the operation on a data item is

performed as follows:

a) S-optimistic-request: On receiving an S-optimistic-request on data item d, a

check is performed if there are any recent writes on data item d. This is

performed by searching the change-records stored at the local node for write

on data item d, starting from the latest change-record until either the change

record with identifier, <Node-ID, USN>, (identifier of the change-record from

which the data item has read from at the coordinator) or the last change-record

is reached. If any change-record with such an operation is found, then a

negative acknowledgement is sent. Otherwise, the PT-S lock is obtained from

the local TM (we assume that checking the condition and obtaining the locks

are performed atomically) and a positive acknowledgement is sent.

b) X-optimistic-request: On receiving an X-optimistic-request on data item d,

Node-X obtains the PT-X lock from the local TM and sends a positive

acknowledgment.

48

c) Both S-optimistic-request and X-optimistic-request: On receiving both of

these requests on data item d, a check is performed as in the case of S

optimistic-request on data item d. If successful, PT-X lock on data item c is

acquired and a positive acknowledgement is sent.

All the types of acknowledgement messages contain D-array,

DKMr[1,2,3, ... ,n][l,2,3, ... ,n] for i1
h request ofTK.

(3) Commit phase: The refresh transaction protocol is executed upon receiving a

change-record and then all the PT locks are released.

(4) Upon receiving the lock-release: Node releases all the PT locks held by the

transaction, T K·

Noted that in the above protocol, the primary transaction can abort due to S

optimistic-request but it will never abort due to X-optimistic-request.

Creation of D-array which is associated with lock-grant/acknowledgement messages

for transaction TK is performed by the TM at Node-X, similar to the procedure

explained in the coordinator's view. The only difference is that, in the coordinator's

view, the conflicts are detected on all the operations of TK; whereas, in the

participant's view, the conflicts are detected only on the requested data item.

In Example 4.1 (refer Figure 4.3), Node-X receives a lock-request message from

Node-Yon data item b. After the TM at Node-X obtains the lock, it sends the lock

grant message to Node-Y. Node-Z receives an S-optimistic-request message on the

49

data item d from Node-Y. It validates the read operation of the transaction. Then, it

obtains the PT -S lock and sends a positive acknowledgement message.

4.1.2 For refresh transaction T K

Usually, the locking mechanism is used for the execution of the refresh transaction

protocol. The execution of refresh transaction protocol in each of the roles can be

explained as follows:

• Coordinator node: The refresh protocol is nested inside stage (5) of the primary

transaction of the coordinator's view.

• Participant node: The refresh protocol is nested inside stage (3) of the primary

transaction of the participant's view.

• Non-Participant node: The refresh protocol is executed independently.

The protocol has three stages:

1. Lock acquisition phase

2. Execution phase

3. Commit phase

The protocol is the same for the coordinator, participant and non-participant nodes.

50

r

Participant Non - Participant

P"P.Locks
I J Deci~ t~ commit

r~l rsllr-x L~c~
PT-X~ocks •.• .99nlm]_t,.,::····--·'- f31

Node-Z
Node-X

Node-W

i :::::::::::::.:::::::----·-n~s~ .. c: ~ - ·-·~ ~R
~~ ~~ ~~

t ... • • :
Commit

Commit Commit

Figure 4.4 lllustrates the execution of the refresh transaction protocol along with the

primary transaction protocol

For Coordinator, Participants and Non-Participants:

The execution of a refresh transaction is the same for all the roles. Let us assume that

the local TM uses 2PL for execution of refresh transactions. Consider the execution

of the refresh transaction ofTK at Node-X.

1. Lock acquisition phase: RT-X locks are acquired on all the data items to be

written.

2. Execution phase: The transaction is executed. Now, values of TK's data items in

its write-set present at that node are written.

51

3. Commit phase: Transaction commits. RT-X locks on all the data items of TK are

released.

In Example 4.1 (refer Figure 4.4), after the primary transaction decides to commit, the

refresh transaction protocol is executed first at the coordinator node. This is indicated

by [5], as it is performed at stage (5) in coordinator's view of the primary transaction.

Then, the change-records are sent to all the nodes. The change-records are

implemented at these nodes using the refresh transaction protocol. It should be noted

that at the participant nodes, the primary transaction locks and the refresh transaction

locks (ie PT-X and RT-X locks) co-exist, whereas at the non-participant nodes, only

the refresh transaction locks are acquired. The symbol [1] at Node-X and [3] at Node

Z indicates that these locks were obtained in stage (1) and stage (3), respectively, of

the primary transaction protocol in its participant's view. In Figure 4.4, CR indicates

that these RT locks were acquired after the delivery of the change-record message.

4.1.3 For ROT TK

Usually, the locking mechanism is used for execution of the ROT protocol. Its

execution has three stages:

(1) Lock acquisition phase

(2) Execution phase

(3) Commit phase

A ROT can be executed at any node. Let us consider the execution of a ROT at Node-

52

X.

(1) Lock acquisition phase: ROT-S locks are requested on all the data items at the

present node. The ROT protocol is compatible with the execution of the primary

transaction protocol but not compatible with the execution of the refresh

transaction protocol. (That is, ROT-S locks are compatible with PT locks but not

with RT locks.)

(2) Execution phase: The transaction is executed.

(3) Commit phase: the transaction committed and all the ROT-S locks are released.

In Figure 4.5, Node-X executes ROT TR when there is aPT lock on data item b. This

shows that ROTs and primary transactions can be executed concurrently. But, ROTs

and refresh transactions of conflicting transactions cannot be executed concurrently.

53

TH = W(b) W(c) R(d)

Participant

Coordinator

Participant

• I

Node-V

1.a Obtains local locks: PT-X(c)

•llll--+-1.b Requests PT-X(b) from Node-X

--•t 1.c Obtains lock-grant from Node-X
I
I
1 2. Executes
I
I

: 3.a Validates R(d) at Node-.~~&----.--.,. T R = R(~) R(c) R(d) ..
ROT can

execute

I
I
13.b Receives positive acknowledgem..,~"'"'(l--

5.a Executes refresh transaction

5.bCommits

5.c Creates change-record

5.d Releases RT locks

•
PT-Std)

ROT pan

execute
~

D

I

15.e Causally broadcasts c;~~~~p;t~~<2~'!~... i ~·· ·······~· ······~·······
I• • • e e • • I • • e e • • • e •!

· ROTcan •

not

execute

17 TL-----'

Commit

I

R locks
I

I

C
T .

omm1t

Node-W

········
RT!ocks

ROT can

not

execute

Commit

Figure 4.5 The execution of the primary transaction protocol to illustrate the execution

of ROTs

54

Participant

Node-Y

Node-X

_!lo~c~k-~re~g~pe~st~----(1} ..
lock-grant

Participant

Node-Z

Negative 1:wl.:~m.

(4)

I
I
I
I
I
I
I
I
I

on-Participant

Node-W

Figure 4.6 lllustrates the messages exchanged between the nodes (in terms of roles)

for the execution ofT L

Figure 4.6 illustrates all the messages exchanged between the nodes. Consider the

transaction, T L, executing with Node-Y as its coordinator. The transaction T L requests

a PT-X lock on the data item b in stage (1). Then, it sends an S-optimistic-request

message to validate the operation on data item din stage (3). TK is aborted due to the

negative acknowledgement. So, it sends lock-release messages to the other

participants.
55

4.1.4 Session guarantee for transaction T K

Session P, in which a user interacts with the registry, is represented by the two

dimensional array Sp[l,2,3, ... ,n][1,2,3, ... ,n] (denoted by S-array). Informally, S-array

contains the state of the registry previously seen by the user. A transaction, submitted

to the system by the input stream, contains the S-array indicating the user's session.

When a new ROT in session P is scheduled for execution, the session_read procedure

is first executed. This procedure reads data from the S-array of session P (That is,

Sp[l,2,3, ... ,n][1,2,3, ... ,n]). After the ROT is executed, S-array is updated by the

session_update procedure. The procedure stores the state of the system as seen by the

operations of the session. This procedure is also performed after the execution of the

primary transaction of the update transaction.

Sp[l,2,3, ... ,n][1,2,3, ... ,n] contains the set of USNs of the transactions seen by the

user session P (directly or indirectly) in its previous operations.

Example 4.3: Consider the setup as shown in Figure 4.7. The state ofNode-X can be

represented using Nx[x][1,2,3, ... ,n] indicated by the arc AB in the figure. Arc AB

indicates all committed transactions at Node-X (similarly arcs CD, EF, and GH

represent for the other nodes). The maximum state of the registry is represented by

the set of the latest committed transactions in the system. The minimum state of the

registry is represented by the set of transactions which have committed at their

coordinator nodes and yet to be executed at some other nodes in the registry. As the

registry is a loosely synchronized system, no node may know the exact minimum and

56

maximum states of the registry. Therefore, the state of the node is stale compared to

the maximum state of a system in its one copy equivalence. Minimum state of the

registry in its one copy equivalence is inferred from minimum states of all nodes. The

actual minimum and maximum states of the registry are not stored any where. A user

may infer maximum and minimum states of the registry when he executes ROTs at

different nodes in the registry.

Minimum state

of a node

Node-Z

<:l(f~lt·::
T

Node·W

Maximum state of system j

T1 13 /i Bookkoepiog ""'";""
to take care of

12 1
conflicting

~ transactions
17

T~ IT, Minimum state of
T •• to:-

Onecopy'~ system
&I' equivalent

Bookkeeping not required for

session guarantee
L:::IJIP

Figure 4.7 lllustrates the minimum and maximum states of each individual nodes

along with its one copy equivalent

The minimum and maximum states of the registry are represented by the set of

transactions T 1, T2, T3, T4 and T11 , T12, T13, T14, respectively. Node-X has executed

transaction Tll which is the latest in the system. Similarly, the latest transactions in

the system executed at Node-Y, Node-Z, and Node-W are T12, T13, and T14,

57

respectively. T1 at Node-W represents the oldest transaction which is yet to be

executed at some node in the registry. It may also be the case that T1 has been

executed at all the nodes but Node-W is not aware about it. T 1 forms a part of the

minimum state of the registry. Similarly, T2, T3, and T4 also constitute the minimum

state of the registry. For Node-X, Nx[x][l,2,3, ... ,n] represents its state while

Mx[1,2,3, ... ,n] represents its minimum state. The array representing the state of the

node and maximum state of the node are represented by N-array and M-array,

respectively.

We consider two procedures for maintaining the session guarantee mechanism -

session_read and session_update. The former procedure is used before execution of a

ROT, while the latter is used after the execution of all types of transactions. The

initialization and delete_change-record procedures are used by the registry to book

keep the storage requirement and for message propagation mechanism.

Initialization:

When the system starts, M-array stored at each of the node in the registry is initialized

to zero value. M-arrays at Node-X, Node-Y, Node-Z, and Node-Ware initialized as

follows:

Mx[l,2,3, ... ,n][l,2,3, ... ,n] := Mv[1,2,3, ... ,n][l,2,3, ... ,n] := Mz[l,2,3, ... ,n][l,2,3, ... ,n] :=
Mw[1,2,3, ... ,n][l,2,3, ... ,n] := 0

58

This assignment means that each element of the two dimensional array is assigned

zero value. When a new session P starts in the system, its S-array is initialized to zero

value.

Sp[l,2,3, ... ,n][l,2,3, ... ,n] := 0

Session guarantee procedures:

A simple solution to ensure session guarantees is to update S-array of session P with

the state of a node at which the transaction was executed, after its execution. Then,

the next transaction in session Pis executed only after that recorded state inS-array is

reached at the executing node. As there is no common sequence of state changes at all

the nodes, wait time may increase unpredictably between consecutive transactions.

Our fine grained session guarantee mechanism aims at reducing wait time and making

it more predictable.

Session_read:

The update transaction always accesses the latest values in the registry, as otherwise

lSR cannot be ensured. But, ROTs can read any values between minimum and

maximum states of the system (in one copy equivalence). In order to provide the

consistent database view to the user, our protocol ensures Read Only Follow Updates

and Monotonic Read Only guarantees. All the ROTs should perform the session_read

procedure before executing the transaction.

The latest set of transactions of session P which have updated or seen the updates of

data items in custody of Node-X is given by Sp[x][1,2,3, ... ,n]. Similarly, the latest set

59

of data items in custody of Node-X and Node-Y seen by the user session is obtained

by computing the recent transactions among Sp[x][1,2,3, ... ,n] and Sp[y][1,2,3, ... ,n].

In general, for a ROT reading data items in custody ofNode-X, Node-Y, and Node-Z,

the following strategy is used. (We assume some basic name service directory to find

out custodians of data items.) In the session_read procedure, first, finds transactions

already seen by session P in custody of these nodes. Later, the ROT is executed only

if these transactions have been already executed at Node-Q. In summary, the

procedure computes the USNs of the conflicting transactions which at least must have

been executed by reading values from session variable (in user input stream). Then, it

waits only for those transactions.

II Let Temp be an one dimensional array of size n
for var = 1 to n, where n is the number of nodes

temp[var] := Max(Sp[x][var], Sp[y][var], Sp[z][var])
where Nodes x, y, z are the custodians of data items of the ROT

wait until (No[q][1,2,3, ... ,n] ~ Temp[1,2,3, ... ,n])
execute the ROT at Node-Q

First three lines of the above procedure computes and stores in Temp array the latest

transactions reading or updating data items in custody of Node-X, Node-Y, and

Node-Z in session P. The transaction can read the data item only if the state of the

node is greater than state of the system stored in the Temp array. Otherwise, it waits

until that state is reached. As a new ROT to be executed waits for only the most

relevant transactions, the unnecessary wait time is minimized.

60

Session_ update:

We have two different kinds of procedures for session_update. One kind is used for

update transactions, and the other is used for read only transactions. The former kind

of procedure ensures the Read Only Follow Updates session guarantees while the

latter one ensures Monotonic Read Only session guarantees.

The session_update procedure used for an update transaction can be explained as

follows:

Let the update transaction, TK. be executed in session P. Then, the following

procedure updates the session variable (in user input stream) with the USNs of

transactions that conflict with T K and ofT K.

for var = 1 to n, where n is the number of nodes

for varp = 1 to n, where n is the number of nodes

Sp[var][varp] := Max(DK[var][varp], Sp[var][varp])

In the above code, please notice that there is one to one correspondence between D-

array of the update transaction and S-array of the user session. DK contains USNs of

all the oldest transactions directly or indirectly conflicting with T K, including itself.

USNs of all the conflicting transactions in their D-arrays are copied to Sp. Now, Sp

contains the oldest transactions recently seen by the user so far. Note that Sp of a

session contains transactions seen and not the present state of the node. Therefore,

61

session guarantee mechanism is fine grained and increases the performance of the

system.

The session_update procedure used for a ROT can be explained as follows:

A ROT may have read data items written by more than one transaction. The ROT

conflicts with all these transactions. The TM lists these conflicting transactions. (The

conflicts are found using the same procedure, as used in the creation of the D-array.)

Let D-arrays corresponding to these conflicting transactions be D1. D2, D3, ... , DM.

Then the following procedure updates the session variable with USNs of transactions

conflicting with T K·

for var = 1 to n, where n is the number of nodes
for varp = 1 to n, where n is the number of nodes

Sp[var][varp] .- Max(D1[var][varp], D2[var][varp], D3[var][varp], ,
DM[var][varp], Sp[var][varp])

The above code computes and stores in Sp, all the conflicting update transactions seen

by the ROT. In both the above kind of procedures, after a transaction commits the

result of the execution is returned to the user. The next transaction in session P cannot

proceed until the session_update procedure is executed and the user receives the

response.

Delete_change-record:

As change-records generated in the registry are stored at all the nodes, they grow

without bound. Using this procedure, we delete the change-records at nodes so that

62

the space required for bookkeeping can be reduced. If the primary transaction ofT K is

executed at Node-X and is successfully committed, we know that at some point in

time, all the nodes in the registry will execute TK. Mx[1,2,3 ... ,n] array indicates to

Node-X, a set ofUSNs of transactions that have been executed at Nodes 1,2,3, ... ,n in

the registry. The procedure is designed such that the change-records of these

transactions can be deleted at Node-X and still session guarantee can be ensured. The

Delete_change-record procedure computes and stores in M-array, the USNs of

transactions that have been executed at all the nodes as follows:

for var = 1 to n, where n is the number of nodes
Mx[var] := Nx[var][var]

//stores Node-X's knowledge about the last primary transaction executed at Node-var
for varp = 1 to n, where n is the number of nodes
Mx[var] :=Min(Nx[varp][var], Mx[var])

//calculates the transaction which has been executed at all nodes whose primary
//transaction was executed at Node-var

where the Min function returns the minimum integer of a set of integers.

The above code, computes and stores in Mx[y] the latest primary transaction that was

executed at Node-Y and has been executed at all the nodes. Therefore, Mx, computed

at Node-X, contains the set of USNs of primary transactions which were executed at

different nodes and has been executed at all the nodes known by Node-X. Delete-

change-record procedure is invoked by Node-X whenever any of the entries in

Mx[l,2,3, ... ,n] array is updated. As change-records are ordered with the latest on top

and oldest at the bottom, the procedure searches for the change-record with identifier

<i, Mx[i]> from bottom to top and deletes that change-record.

63

The space required to store change-records at a node is directly dependent upon its

knowledge about transactions that have already been executed at other nodes

indicated by the M-array at that node. Therefore, sending the P-array with all the

message types increases the freshness of the M-array. If the cost of communication

between the nodes is higher than the cost of space, then the P-array is sent with only

some of the messages. On the other hand, if the cost of space required is higher than

the cost of communication between the nodes, then the P-array is sent along with all

the messages. Basically, the system has flexibility to decide how frequently to send

the P-array.

4.2 Causal transmission of messages

Our protocol facilitates causal transmission of messages. If a message has to be

received in causal order, it should contain the D-array. The only messages having D

arrays are - change-record, lock-grant, and acknowledge messages and these are

delivered in causal order. (Lock-request, X-optirnistic, S-optimistic, and lock-release

request messages are not delivered causally.) The procedure to ensure causal message

delivery is as follows:

Consider the message of transaction TK sent from Node-Y to Node-X. Then, the

procedure waits until all conflicting transactions ofTK have been delivered at Node-X

and later updates the state array at Node-Y to indicate the delivery event as follows:

64

Initialize DK-coL[1,2,3, ... ,n] := 0
II All the elements of array are initialized to zero value
for var = 1 to n; where n is the number of nodes

for varp = 1 to n; where n is the number of nodes
DK-coL[var] := Max(DK-codvar], DK[varp][var])
//converts two dimensional array to one dimensional array

Wait until Nx[x][1,2,3, ... ,y-1,y+1, ... ,n] 2:: DK-cod 1,2,3, ... ,y-1,y+1, ... ,n]
then deliver TK at Node-X.

//After delivery of the message, Nx[l,2,3, ... ,n][1,2,3, ... ,n] is updated
if the change-record contains Py

Nx[x][y] := Max(Nx[x][y], Py[y])
for var = 1 to n; where n is the number of nodes

Nx[y][var] := Max(Nx[y][var], Py[var])
else

Nx[x][y] := Max(Nx[x][y], DK[y][y])
for var = 1 to n; where n is the number of nodes

Nx[y][var] := Max(Nx[y][var], DK[y][var])

In the above code, the two dimensional array DK is converted to the one dimensional

array DK-COL· This array is compared with the state array Nx[x][1,2,3, ... ,n]. The

transactional message is delivered only if its state is greater than or equal to the state

of Node-X. It should be noted that in our algorithm, the causal delivery of message of

T K at Node-X involves comparison of the state array of Node-X and the D-array of

T K· That is, a message delivery will be delayed only if its preceding conflicting

messages are not delivered. This imposes a total order delivery between two

messages only if they are conflicting. This also eliminates the false causality (the

perception that because one event occurred before another, the earlier event has

caused the later event). Also, note that message need not contain the P-array to be

delivered causally.

65

T1 = W(b)R(c) T2 = W(c) T3=W(d)

Accor ·ng to ISR- T1 -+ 2

Node-X Node-V Node-Z Node-V Node-W

[IJ [IJ W(d) W(e)

W(b) W(d)))

W(e) W(d) wfc) [IJ W(d) W(e) W(e))

Figure 4.8 lllustrates the total order of delivery and execution of W(b) and W(c)

corresponding to T1 and T2, respectively

Example 4.4: In Figure 4.8, T1, T2, T3, and T4 are executed at Node-X, Node-Y,

Node-Z, and Node-V, respectively. It should be noted that T1 and T2 are conflicting

transactions (WR conflict). Therefore, the causal delivery mechanism ensures a total

order among messages of these transactions. It provides the flexibility to execute T 3

and T 4 in any order at all the nodes.

4.3 Fully optimistic replication protocol

The replication protocol facilitates the coordinator to execute a transaction either

pessimistically or optimistically. That is, a lock on a data item for a global transaction

66

may be requested either before or after its execution. We know that any non

conservative locking mechanism is prone to the occurrence of deadlocks. Distributed

deadlocks are possible in our protocol as locks cannot be requested atomically. (That

is, locks required by the transaction may be local locks, pessimistic global locks and

optimistic global locks. Each of these kinds of locks is requested atomically. But all

these different kinds of locks together cannot be requested atomically.)

In the replication protocol discussed in section 4.1, the optimistic lock request on a

data item is performed after its execution; but validated before the broadcast of the

change-record. The protocol can be modified to be fully optimistic by deferring the

lock request on the data item until the change-record message is delivered at a node

similar to [HSAE03]. Thus, deadlocks can be prevented in our system. The fully

optimistic replication protocol can be explained as follows:

The primary transaction is executed at the coordinator node. If the transaction is

executed without requesting a lock on at least one data item until the change-record is

broadcasted, then it is said to be in a pre-committed state. The change-record of the

pre-committed transaction is broadcast to all the nodes. If a conflict is found at any of

the participant nodes, then the transaction is aborted. Otherwise, on the successful

commitment at all participant nodes, the transaction commits at all the nodes in the

system. Please note that for the local transactions the protocol is same as explained

earlier.

67

The fully replicated protocol can be explained from the coordinator, participants, and

non-participant's views.

For Coordinator (Coordinator's view)

Consider the execution ofthe primary transaction, TK, at the coordinator, Node-Y.

(1) Lock acquisition phase: Requests PT-S and PT-X locks on the data items to which

Node-Y is custodian, atomically. That is, it obtains locks on all the data items in

custody of Node-Y or does not obtain any lock. (Please note that the locks at the

remote node are not requested in this phase.)

(2) Execution phase: Transaction T K is executed. T K pre-commits. This state ofT K is

known as pre-committed state. All writes are performed in the private workspace.

(3) Broadcast of the change-records of the transaction: The change-records of the

transaction is created and broadcast to other nodes. The creation of the change

record is as follows:

a) The USN is generated.

b) Then, updates state array Ny and creates the present state array Py, the D-

array DK.

c) Creates change-record for TK.

The procedures to create these arrays are similar to one explained in section 4.1

except that for creation of the D-array for a pre-committed transaction, the

preceding conflicting pre-committed transactions are not considered (that is, only

committed transactions are considered). The change-record of a pre-committed

68

transaction is indicated as the pre-committed transaction. Please note that in the

original replication protocol, the change-record is used only for a committed

transaction.

(4) Commit phase: Whenever theN-array at Node-Y is modified, the following check

is performed. The Node-Y checks if the change-record of T K has been

successfully delivered and pre-committed at all the participant nodes ofT K· That

is, if Node-X, Node-Z, and Node-V are the other participants ofTK and tusn is the

USN of T K· Then, the following procedure checks, if T K has been delivered at

participant nodes. On successful delivery of change-records at all the nodes, the

refresh transaction protocol is executed and transaction commits.

Wait until (Nv[x][y] ~ tusn && Nv[z][y] ~ tusn && Nv[v][y] ~ tusn)
then executes the refresh transaction protocol ofT K and commits

In the above code, TK at Node-Y waits until its state array is updated with the

USN of TK, indicating its delivery at Node-X, Node-Z, and Node-V. Then, TK

commits.

After T K commits, the following steps are performed:

a) Releases all the PT locks.

b) Converts the pre-committed change-record of T K stored at that node to a

(regular committed) change-record.

69

(5) Abort phase: When a pre-committed transaction is delivered at a node, it checks if

T K conflicts with any other pre-committed transactions. If any conflict is found,

then both the transactions are aborted. All PT locks of T K are released. Then,

change-record message ofT K is deleted.

For Participants (participant's view):

Consider the execution of the primary transaction, T K, at the participant, Node-X.

(1) Upon receiving the pre-committed change-record message (refer to stage (3) in

the coordinator's view): On receiving the change-record of the pre-committed

transaction, T K. the protocol checks for the conflicting pre-committed

transactions. If there are no conflicting pre-committed transactions, then PT locks

are obtained on the data items ofTK, to which Node-Xis custodian of. If the locks

are held by the conflicting transactions, then the protocol goes to stage (3), where

T K is aborted. It should be noted that checking for the conflicts and obtaining

locks are performed as an atomic operation.

(2) Commit phase: Whenever the N-array at Node-X is modified, Node-X checks, if

the change-record ofT K has been successfully delivered and pre-committed at all

the other participant nodes of T K· If the outcome is true, the refresh transaction

protocol for T K is executed and T K commits. Then, the following steps are

performed:

a) Converts the pre-committed change-record of T K stored at that node to a

committed change-record.

70

b) Releases all the PT locks.

(3) Abort phase: When a pre-committed transaction is delivered at a node, the

protocol checks if T K conflicts with any other pre-committed transactions. If any

conflict is found, then both the conflicting transactions are aborted. All PT locks

ofT K are released. Then, change-record message ofT K is deleted.

For Non-Participants (Non-Participant's view):

Consider the execution of the primary transaction, TK, at the participant, Node-W.

(1) Upon receiving the change-record message of pre-committed transaction (refer to

stage (3) in the coordinator's view): On delivery of the change-record of the pre

committed transaction, T K, the protocol checks for the conflicting pre-committed

transaction. If any conflict is detected, it goes to stage (3) where it is aborted.

(2) Commit phase: TK commits at Node-W, if the change-record of TK has been

successfully delivered and pre-committed at coordinator and all the participant

nodes. Then, the following steps are performed:

a) Executes the refresh transaction protocol for T K.

b) Converts the pre-committed change-record of T K stored at that node to a

committed change-record.

(3) Abort phase: If Node-W receives the abort message from another node, then the

pre-committed transaction is aborted and deletes the change-record message.

71

Read only transactions

During the creation of the D-array for the ROT (for session guarantees), the pre

committed transactions are not considered.

The main disadvantage of the fully optimistic protocol is that, as the conflict rate

increases, the abort rate also increases and the system performance decreases.

4.4 Correctness Proof

First, we show that all the dependent messages are delivered causally without the

effect of false causality. Then, we show that the primary transaction protocol ensures

lSR. Also, we show that the session guarantee mechanism ensures Read Only Follow

Updates and Monotonic Read Only guarantees. Finally, we show that the fully

optimistic protocol ensures one copy serializability.

Lemma 1: If TK conflicts with TL where TK precedes TL (TK--+ TL), then either the

D-array ofTL contains the identifier <Node-ID, USN> ofTK or the latest transaction.

Proof: Let TK and TL be executed with Node-X and Node-Y, respectively, as their

coordinators. Let us assume that the change-record of TK is present at Node-Y. Also,

let T K be the immediately preceding transaction of T L· As for each operation in T L,

the procedure checks if there is a conflicting operation in any of the change-records,

starting from the present state to the oldest state of the node, it will discover the

change-record of TK. Any of the WW, WR, and RW conflicts between the

transactions will be detected.

72

Consider the following code which creates D-array for T L·

for var = 1 to n; where n is the number of nodes
for varp = 1 to n; where n is the number of nodes
Ddvar][varp] := Max(DK[var][varp],Ddvar][varp])

In the above code, as T K precedes T L, creation of D-array takes maximum USNs of

DK and DL to find the latest conflicting transactions to T L· This assignment ensures

that Ddx][x] holds the USN ofTK.

Let us assume that T K is not the immediately preceding transaction. Let T 0 be

immediately preceding transaction to TL and TK precedes T0 . Therefore, TK--+ To--+

TL. By the above procedure, when Do is calculated, it contains the USN of TK.

Similarly, when DL is calculated the procedure takes the maximum USNs from each

of the nodes. DL will have the identifier ofT K or the succeeding transaction T 0 from

that node.

On other hand, if the change-record ofT K has been deleted by delete_change-record

at the coordinator node ofTL, it means that TK has been executed at all nodes already.

As TK is already delivered at all nodes, there is no need for TL to wait for message of

T K. In such a situation, even if T L does not have the USN of T K· it does ensure a

correct execution.

The proof is complete.

Theorem 1: The broadcast mechanism ensures causal delivery of messages of

conflicting transactions.

73

Proof: Let ct>K and ct>L be the messages corresponding to T K and T L where T K

precedes T L (T K ___.. T L). This precedence relation is induced when D-array for ct>K and

ct>L are created. Let ct>K and ct>L be created and sent by Node-X and Node-Y,

respectively.

Consider the delivery of ct>K and ct>L at Node-Z.

Now, let Nz[z][l,2,3, ... ,n] be the state array of Node-Z. A message of the transaction

can be either of a change-record or a lock-grant/acknowledge message. Thus, for the

conflict between T K and T L' we have the following types of messages in the system:

• If both ct>K and ct>L are change-records, then TK -7 TL means that DL[l,2,3, ... ,n]

contains at least the USN of TK (ci>K) or the latest transaction (by Lemma-

!) .. (i)

• If both ct>K and ct>L are lock-grant/acknowledge messages, Dd1,2,3, ... ,n] contains

the USN ofTK (ci>K) which is the same as case (i).

• If ct>L is a lock-grant/acknowledgement message, then ct>K may be the change

record of its preceding conflicting transaction. Then, this case reduces to the same

as in (i).

• If ct>K is a lock-grant/acknowledge message on some data item, then its succeeding

conflicting transaction T L cannot obtain the lock on that data item until T K

finishes its execution. So this case is invalid.

Effectively we have only one case namely, case (i) where the succeeding

transaction's message type contains the preceding transaction's identifier.

74

We prove the theorem with the following two claims:

(1) All the conflicting transactional messages are delivered causally.

(2) A message will be eventually delivered after a bounded period of time.

Claim 1: All the conflicting transactional messages are delivered causally.

Consider the delivery of <PL at Node-Z which is sent from Node-Y. The delivery of

<PL means that the following condition is satisfied.

'Nz[z][1,2,3, ... ,y-1,y+ 1, ... ,n] 2: DL-COL[1,2,3, ... ,y-1,y+ 1, ... ,n]'

DL-cod1,2,3, ... , y-1,y+1, ... ,n] contains the latest USNs of the transactions conflicting

with TL whose primary transaction was executed with Nodes 1,2,3, ... , y-1,y+1, ... ,n

as the coordinator, respectively. Satisfying the above condition means that the state

vector of Node-Z (Nz[z][1,2,3, ... ,n]) contains the USN ofTK (by Lemma 1). That is,

<PK would have been delivered already. Until <PK is delivered, <PL cannot be delivered.

Hence, causality is maintained.

Claim 2: A message will be eventually delivered after a bounded period of time.

On the contrary, let us assume that there is a set of messages of transactions sent from

Node-Y to Node-Z which is not delivered. Let <PL be first among such messages. Let

T K precede T L in the serialization graph. These transactions can be either a local

transaction or a global transaction. If both are local transactions whose primary

transaction executed at Node-Y, then the reliable broadcast mechanism ensures that

they are delivered in the same order at all the nodes. On the other hand, if one of them

is a global transaction, then the eventual delivery must be ensured.

75

Let us assume that TK and TL are global and local transactions, respectively. Let the

primary transactions of TK and TL be executed at Node-X and Node-Y, respectively.

By Lemma 1, Ddx][1,2,3, ... ,n] of <t>L contains the USN of TK. If <t>L is not delivered

at Node-Z, the following condition is not satisfied.

"Nz[z][1,2,3, ... ,y-l,y+ 1, ... ,n] 2: DL-coL[1,2,3, ... y-1,y+ 1, ... ,n]"

This means that the state of Node-Z waiting for the delivery of <t>K. But due to reliable

broadcast of message, sent from Node-X <t>K must be delivered at Node-Z after finite

amount of time. This is contradictory to our assumption that <t>L is not delivered

waiting for other messages. Using the same reasoning, it can be shown that even if

both are global transactions, then T K will be delivered.

The proof is complete.

Lemma 2: Lock management obeys two phase locking (2PL) at each node.

Proof: For the 2PL to hold true at a node, once a transaction starts releasing locks at a

node, it should not acquire any further locks. In our protocol, locks are released in

stage (4) or (5) of the primary transaction protocol in coordinator's view and stage (3)

of the refresh transaction protocol. We show that every transaction executed at any

node follows the 2PL. (A few of the transactions may have RT-X locks and PT-X

locks on the data items simultaneously. These locks are held till the commit point and

no lock is requested after this point.)

Case 1: For the refresh transactions (executed using refresh transaction protocol).

76

Once the transaction reaches stage (3), it does not request any further locks. Only

after execution, the transaction starts to release the locks. Hence, the refresh

transaction follows 2PL.

Case 2: For the primary transaction (executed using the primary transaction protocol).

All locks in the coordinator's view are acquired at stage (1) or stage (3). They are

released at stage (4) or (5). If they are released in stage (4), the transaction is aborted.

If the transaction has to commit successfully, the primary transaction has to release

the locks in one of the following stages:

• Stage (5) of the coordinator's view.

• Stage (3) of the participant's view.

The stage (3) of participant's view occurs only after the lock-grant/acknowledgement

message is given for the primary transaction in stage (2) in participant's view. Locks

at participant nodes are not requested after stage (2) in participant's view. Also, the

refresh transaction is nested inside the primary transaction protocol before releasing

its locks.

As from case 1, the refresh transaction protocol follows 2PL and no locks are

requested after the refresh transaction protocol starts executing, in both the above

cases.

For the coordinator's view, it is clear that when lock releasing starts, the primary

transaction should have already acquired all the required locks as stage (5) succeeds

stage (3) at the coordinator.

77

For the participant's view, the primary transaction releases the lock at its stage (3).

The coordinator would have acquired lock at this participant's node in stage (1) or

stage (2).

Therefore, the primary and refresh transactions ensure 2PL at both the coordinator

and participant nodes. In summary, if a transaction starts releasing locks, it must have

aborted or it does not request any further locks. Therefore, all the update transactions

follow 2PL.

Case 3: For ROT

It acquires all the required locks in the beginning. Then, executes the transaction. It

does not request any locks after stage (3). Hence ROTs follow 2PL.

The proof is complete.

Lemma 3: Local lock management ensures conflict serializability

Proof: In Lemma-2 we have shown that for a particular transaction, 2PL is ensured at

the local nodes. It follows from [BGH87] that all the transactions are conflict

serializable. The proof is complete.

Theorem 2: At a global level acyclic Global Serialization Graph (GSG) is obtained

for all the update transactions.

Proof: Let TK and TL be conflicting transactions. Let TK precede TL (TK -7 TL). We

have to show that the two transactions are totally ordered.

78

First, we consider a case where both these transactions have the same coordinator

node. The transactions may conflict on data items in custody of the common

coordinator node or at another node. Later, we consider both transactions having

different coordinator nodes. Here also, transactions may conflict on a data item in

custody of one of these coordinator nodes or at other nodes.

Case 1: Transactions have the same coordinator node and conflict on a data item,

which is in custody of the common coordinator node.

Both T K and T L request locks from the same local TM. By Lemma 3, the local TM

serializes these two transactions. Change-records are created in the same order and

sent to other nodes in the same order (Theorem-1). Eventually, they are executed in

the same order at all those nodes. These two transactions are globally serializable.

Case 2: Transactions have the same coordinator node and they conflict on a data item,

which is in custody of a node other than the common coordinator node.

Both T K and T L request the locks from the remote TM. The remote TM gives the lock

to TK first and then to TL (because, TK ~ TL). TL obtains the lock from the remote

TM only after the change-record ofT K is received and executed at the remote node as

a refresh transaction. When the remote TM sends the lock-grant message to T L· the

message's D-array contains the USN of TK (identified by, <Node-ID of coordinator

of TK, USN of TK>). This dependency is copied later in DL[1,2,3, ... ,n][1,2,3, ... ,n] of

TL's change-record. By Theorem-1, these change-records are delivered in this order at

79

all the nodes. Also, they are executed in this order at all the nodes. These two

transactions are globally serializable.

Case 3: Transactions have different coordinator nodes and they conflict on a data

item, which is in custody of one of the coordinator nodes.

Let the conflict be at TK's coordinator. TL will obtain the lock from the TM at that

node only after TK's change-record is created and locks are released. Lock-grant

message that T L obtains will have the D-array containing the USN of T K· Therefore,

the D-array ofT L' s change-record will have the USN ofT K· By Theorem-1, they are

totally ordered at all the nodes. These two transactions are globally serializable.

Case 4: Transactions have different coordinator nodes and they conflict on a data

item, which is in custody of neither of these coordinator nodes.

Let both of these transactions conflict on a data item at a remote node. The TM at the

remote node first grants the lock to TK. Later, TL obtains the lock only after the

remote TM receives the change-record ofT K and the refresh transaction is executed at

that node. The lock-grant message's D-array for TL will contain the identifier of TK.

The change-record ofT L will contain the identifier ofT K in its D-array (by lemma-1).

By Theorem-1, these two change-records are totally ordered. Hence, they are globally

serializable.

In all the above cases it is assumed that the coordinator will use pessimistic method to

request locks. Even if any of the coordinators request the lock optimistically, the

80

proof remains the same, as both types of messages contain information about the all

preceding conflicting transactions in their D-arrays.

The proof is complete.

Theorem 3: Session guarantee is ensured.

Proof: Let us assume that two update transactions are executed in the system in such

a way that T K precedes T L (T K -7 T L). Let T K and T L update data items b and c,

respectively. Please note that T K and T L may also update data items other than b and

c, respectively. But our interest here is only on the updates of data items b and c. Let

Node-X and Node-Y be the coordinator and the participant, respectively, of TK. Let

Node-W and Node-Z be the coordinator and the participant, respectively, of TL. Let

user session P execute transactions T0 followed by TH. To reads data item cat Node-

U written by TL. Now, when THreads data item bat some node, we have to show that

it will read, at least, the version written by T K·

Let the identifier ofTK and TL be <i, x> and <j, w>, respectively.

During creation of the change-record ofT K, DK is obtained as follows:

DK[x][x] := DK[y][x] := i

During creation of change-record ofT L, DL is obtained as follows:

Ddx][x] := DK[x][x] (value is i, because of conflict with TK)
DL[y][x] := DK[y][x] (value is i, because of conflict with TK)
Ddw][w] := Ddz][w] := j (after updating present transaction)

81

When session Sp[l,2,3, ... ,n][l,2,3, ... ,n] executes its first transaction T0 , it reads from

T L· The D-array ofT L is copied to Sp. When the next transaction, T H, is submitted to

Node-Q, it is executed only if the session_read procedure satisfies the condition -

NQ[q][l,2,3, ... ,n] ~ Sp[x][1,2,3, ... ,n] (actually, NQ[q][l,2,3, ... ,n]~Temp [1,2,3, ... ,n])

In the code Sp[x][l,2,3, ... ,n] is used, as the data item to be read is in custody of

Node-X. Satisfying this condition means Ny has executed transaction T K· Therefore it

will read the transaction written by at least T K·

The proof is complete.

Theorem 4: The fully optimistic protocol ensures one copy serializability.

Proof: Let T K and T L be conflicting transactions. Let T K precede T L (T K ~ T L). We

have to show that the two transactions are totally ordered.

If both T K and T L are local transactions, then the local TM will ensure that these

transactions are executed in the order; T K precedes T L. and later delivered and

executed in the same order at all the other nodes.

Let us consider global transactions. Let us assume that the primary transactions ofT K

and TL be executed at Node-X and Node-Y, respectively. Also, let TL be a global

transaction, accessing at a data item in custody of Node-X, due to which it conflicts

with T K· After T L is executed, it is said to be in a pre-committed state. The change

record of TL is sent to Node-X. At Node-X, if no conflicts are found on the data item

either due to a pre-committed transaction or a committed transaction, then the

82

change-record of T L is delivered at that node. Only after Node-Y knows that T L is

delivered successfully and no abort message is received, TL commits. Therefore, TK

and TL are totally ordered. Similarly, we can show that TK and TL are totally ordered

at all nodes for other combination of global transactions.

The proof is complete.

4.5 Discussion

The main features of the replication protocol are:

1. Flexibility: The flexibility of requesting locks at hot spots during the lock

acquisition phase, pessimistically, (reduces the abort rates due to high conflicts)

and requesting locks on other data items during the validation phase,

optimistically, (provides higher transaction throughput), gives better

performance. For any given transaction, a coordinator may decide to request a

few of locks pessimistically and a few locks optimistically.

2. Lower response time: We know that a local transaction does not communicate

with any other nodes to execute the primary transaction. If the transaction access

pattern is known in advance, the custodianship for the data items can be arranged

in such a way that global transactions can be minimized. Even though

custodianship of the node is completely distributed in the registry, good design

for assigning custodianship can give lower response time even with the increase

in the number of nodes.

83

3. Minimizing the bookkeeping required: Book keeping for the session guarantee

mechanism is minimized as it is proportional to the number of nodes instead of

the number of data items. As a result, the protocol is highly scalable with an

increase in data items in the registry.

4. Distributed and fault tolerant: As the latest updates may be at different nodes

in the entire registry, the protocol designed is distributed. There is no single point

of failure. If a node fails, the custodianship of data items in custody of that node

is transferred to another node [UDDI].

5. Fine grained session guarantee: While ensuring an increasing view of the

registry to a user, the protocol does not wait till exact previously known state is

attained. The fine grained session guarantee waits only for the execution of

previously read conflicting transactions with which the present transaction

conflicts either directly or indirectly. This mechanism neither requires full

synchronization nor tight coupling between the nodes.

6. No deadlocks: The fully optimistic replication protocol, which is an extension to

the replication protocol, prevents the deadlock in the system by ensuring that

there is no circular-wait among the transactions.

84

4.6 Performance evaluation

In this subsection, we analyze the performance of our replication protocol with

respect to various parameters. The performance of the system can be increased by

reducing each of the following costs associated with the execution of a transaction:

1. The communication cost: This is the overhead involved in sending and receiving

the change-record messages from one node to another.

2. Execution cost: This is the cost involved in executing a transaction submitted at a

node by its TM.

3. Waiting cost: The ROT has to wait at a node to attain a state such that session

guarantee mechanism is satisfied. This waiting time is calculated to determine the

throughput of the system.

Each of the following parameters affects the costs in different ways:

1. Number of data items in the registry.

2. Number of nodes in the registry.

3. Rate of conflicting transactions: This is determined by the number of conflicting

transactions among the total number of transactions in the system.

4. Number of remote accesses of a transaction: To execute a transaction, the primary

transaction coordinates with other nodes which are the custodians of the data items

of its operations. The number of remote accesses is determined by the number of

operations accessing data items in custody of other nodes.

85

In our study, we assume that custodianship of data items is uniformly distributed in the

registry. This uniform distribution enables fair load balancing in the execution of the

primary transactions in the registry.

Let us consider each of the costs with respect to above parameters.

1. Communication cost

As the number of operations of a transaction increases, the rate of conflict with other

transactions increases. As the message propagation mechanism has to wait for the

conflicting transactions, the wait time to deliver the change-record message at the

destination node increases. As a result the communication cost increases. For

example, when the number of operations of a transaction increases from five to ten, in

the worse case the transaction conflicts with ten transactions instead of five. If all

these conflicting transactions were executed at different nodes then the transaction

has to wait for the change-record message from ten nodes instead of five. The

additional wait time increases the communication cost of the system.

As the number of nodes in the registry increases, wait time to deliver a change-record

of a transaction at a node increases. In the worse case, if the preceding primary

transactions of a transaction are executed at different nodes, the change-record

message delivered at the node is on hold until the preceding conflicting transactions

are delivered. As number of nodes in the registry increases from two to five nodes,

the wait time to deliver the change-record increases drastically. When number of

86

nodes is far more than the number of data items in the registry, increase in number of

nodes does not have much affect on the wait time to deliver the change-record.

As the number of remote accesses of a transaction decreases, the conflicting

transactions being executed at other nodes decreases. This decreases the wait time to

deliver the transactions at a node.

2. Execution cost

As the number of nodes in the registry increases, the number of copies of a data item

in the registry increases. Therefore, more number of ROTs can be executed in the

registry at a given point in time. For example, when number of nodes in the registry is

increased from five to ten nodes the ROTs can be executed at different nodes

concurrently. This increases the transaction throughput of the system.

As the number of remote accesses of a transaction increases the communication

overhead involved increases. This decreases the number of transactions executed per

unit time.

3. Waiting cost

The session guarantee mechanism ensures that the ROT sees an increasing view of

the system by waiting for all the preceding conflicting transactions in the session. As

the number of transactions in a session increases, the session guarantee mechanism

delays the execution of the ROT until the preceding conflicting transactions of the

session are executed at that node. As a result, wait time to execute ROTs increases

and throughput of the system decreases. For example, when the number of

87

transactions increases from five to ten, the tenth transaction in the worse case has to

wait for previous nine transactions to execute, whereas the fifth transaction has to

wait only for the previous four transactions to execute.

The increase in the number of data items in the registry does not effect wait time to

execute a transaction in a session unless the data items induces a conflict with the

other transactions in the session.

4.7 Starvation

As a few of the operations of a transaction may be executed optimistically, the

transaction may be aborted several times. Thus, a few transactions may not be

executed even after waiting for a long duration of time. This leads to starvation of

those transactions.

For simplicity, first let us assume that all the transactions at a node are executed by

the local TM using First Come First Serve (FCFS) policy. That is, a transaction which

arrives first at a node is executed first by the local TM at that node. A simple and

efficient solution to resolve starvation is to execute the transaction pessimistically by

requesting locks on all the data items before the execution starts. Hence, a transaction

is executed in the order of its arrival which ensures that the transaction is not aborted

later due to conflicts.

The major problem with this method is that pessimistic locking increases the

deadlock rate. The deadlock algorithm may select the same transaction as the victim

transaction several times.

88

In the distributed system, an aborted transaction can be executed at a node which is

not the same node as its previous execution. As a result an aborted transaction may be

aborted again by a different TM. Therefore, it is not suitable to use FCFS method by

local TM for resolving starvation at the global level. The following method is

employed to resolve the starvation at a global level.

When a transaction is submitted to a local TM at a node for execution, the transaction

is inserted in a FCFS queue at that node. When a transaction is scheduled for

execution for the first time, it is assigned the NA-array at that node and initialized.

Every transaction is assigned the NA-array as follows:

Let T0 , TE, TF be transactions with NA-arrays NA0 [1,2,3, ... ,n], NAE[l,2,3, ... ,n] and

NAF[l,2,3, ... ,n], respectively. NA-arrays for T0 , TE, TF are initialized at Node-X,

Node-Y and Node-Z, respectively, as follows:

Then, NAo[1,2,3, ... ,n] := Nx[x][1,2,3, n]

NAE[1,2,3, ... ,n] := Ny[y][1,2,3, n]

NAF[1,2,3, ... ,n] := Nz[z][l,2,3, n]

An aborted transaction retains the NA-array which was assigned to it in its previous

execution. Upon addition of a transaction in the queue, it is sorted according to the

precedence of NA-array. The precedence of the NA-array for transactions can be

determined as follows:

89

if NA0 [1,2,3, ... ,n]:::; NAE[1,2,3, ... ,n]:::; NAF[l,2,3, ... ,n]

then their ordering in the queue is changed to T 0 ~ T E ~ T F

This ordering is changed upon the addition of a new item into the queue. If ordering

between two consecutive transactions cannot be determined, then they are unaltered.

That is, its default FCFS ordering is maintained.

4.8 Livelocks

Livelock is a special case of deadlock in which the involved transactions constantly

change their states with respect the states of others but do not make progress. It is also

defined as a special case of resource starvation in which a specific transaction is not

progressing.

In our protocol, a livelock occurs when two are more transactions are acquiring a few

of the locks optimistically and other locks pessimistically. Both of the transaction

types may be invalidated and aborted. During its next execution if those transactions

swap the optimistic and pessimistic lock requests on their respective data items, this

cycle may continue repeatedly. A simple method to resolve the livelock is to execute

one transaction by requesting all the locks pessimistically at a point in time in the

system. Only after the transaction finishes execution, another transaction is executed

again in fully pessimistic method. In this way we can ensure that at least one

transaction changes its state in the system.

90

4.9 Related Work

A brief comparison of our work with related works in the literature is as follows:

[HSAE03] uses the lazy replication where the primary transactions can be executed at

any node. Once they have been successfully executed, they are said to be in

precommit state. They are propagated to other nodes by epidemic propagation

(exchanging up-to-date information by choosing another node at random, in a way

passing them through the system like an infectious disease) of messages to detect

conflicts. The transaction commits successfully if no conflicts are detected at any

other node. Their method is in a way an eager replication where a pre-committed

transaction commits only after it has the information of all the other nodes in the

registry or it can abort if some other node does this computation and sends the abort

message. Our method is more efficient than [HSAE03], as once a primary transaction

at the coordinator commits, the user obtains the response from the system and

coordination is required only with participant nodes. That is, our method needs to

know only a subset of all the transactions in the system. While in [HSAE03], at all the

nodes the data items in the write-set of the precommit transaction cannot be read by

other transactions, whereas in our method the transactions can read values of previous

transactions.

Providing session guarantees within a transactional framework is presented in

[DS04]. They ensure a new correctness criterion called strong session serializability

(strong session lSR) which is weaker than strong serializability (where all conflicting

91

transactions must be serialized in the order in which they are submitted) but stronger

than ISR. Our method is more efficient than in [DS04], as we provide the flexibility

of executing ROTs at any node in the registry, whereas they allow only at specified

nodes. As the session keeps track of transactions from which it has read, instead of

the present state of the registry our session guarantee mechanism is fine grained and

provides more concurrency than theirs. We consider the conflicts (directly or

indirectly) only on those data items which the present transaction is accessing,

whereas they consider the exact state of the system for comparison. We allow

distributed transaction execution, whereas theirs is centralized.

Recently, providing the freshness guarantee in partially replicated databases has been

dealt with in the PDBREP project in [ATGBOS]. It considers a lazy replicated

database where there are separate set of update nodes and read only nodes. They

assume that system ensures ISR criterion at update nodes. As any read only node is

not as up-to-date as an update node, they allow user to specify the freshness

requirements for transactions. PDBREP has a centralized log which keeps track of the

present state of the system, whereas ours is completely distributed. In their case, if

user gives an invalid freshness requirement, the user may read an inconsistent view of

the system. In our protocol, we first provide ISR. Then, we provide Monotonic Read

Only and Read Only Follow Updates guarantees which ensure the valid and

consistently increasing view of system to each user in the session individually.

92

In traditional name service directories, such as Grapevine [S84] and Clearinghouse

[X84], a weak consistency called eventual consistency is employed. They are not

serializable but all data items of all the nodes eventually reach the same state. It is a

sufficient correctness criterion for the applications for which they are used. Due to the

lack of trust between organizations and other issues, such as confidentiality, in UDDI

a serialized view of transactions is required. Any weaker consistency criterion should

be avoided. In [SLK04], a comparison of UDDI registry replication strategies is

given.

[CRR96] considers replication in partially replicated databases. A data item can be in

custody of any one of the nodes in the system. As they consider the basic reliable

broadcast, there is a need to ensure global serializability. They consider the issue of

assigning primary node for data items. They use the data placement graph which is a

directed graph representing distribution of primary and secondary copies of data

items across the system. They show that acyclic data placement graph ensures global

serializability. Their algorithm finds a primary node for each replicated data item. The

main drawback of their algorithm is that, it finds the primary node for a data item

only when such a solution exists. It provides only very restricted set of solutions.

When there is no feasible solution, the algorithm does not take any alternative action.

It requires a lot of careful designing or the system would not ensure transactional

guarantees. Our protocol is more efficient than theirs, as whatever may be the

93

distribution of the custodianship in the replicated registry; the transactions can be

executed (provided there are no deadlocks and failures).

94

Chapter 5

Partial Replication

Replicating all the data items at all the nodes requires high bandwidth and many of

the replicated data items may never be used. Replicating only those data items which

are frequently used is a practical approach to increase the performance and utility of

the system. Replicating a data item only at a subset of the nodes is called partial

replication. If the data item's access pattern is known in advance, then the replicated

system can be designed such that data items are only replicated at the nodes where

they are used. Also, more frequently used data items can be replicated at more nodes

than less frequently used data items, thereby, increasing the availability and utility of

the system. The partial replication reduces lock contention, write overhead and

communication costs in comparison with the fully replicated system. This aspect

improves the performance of the distributed system. Ideally, partially replicating

required data items in the system should increase the system performance in

comparison with the fully replicated system. In reality, the advantage of partial

replication is offset by the cost of added complexity that is required to manage it, in

comparison to full replication.

In a partially replicated system, a data item is replicated only at a few nodes. If a

transaction updates a data item, only those nodes in the system having a copy of the

data item need updates of the transaction. Instead of broadcasting updates of the
95

transaction to all the nodes in the system, it is advantageous to multicast these updates

to only the subset of the nodes which have these data items. Also, at the destination

node where the message is to be delivered, it does not need to wait even for a

preceding conflicting transaction in the system that does not update any data item at

that node. Similarly, for the session guarantee mechanism for a ROT executing at a

node, the ROT does not need to wait for a change-record which is not sent to that

node. Our motivation for using the causal multicast mechanism is demonstrated by

the following example.

Node-X Node-Y Node-Z Node-W

Figure 5.1 Illustrates the benefits of causal multicast over causal broadcast

Example 5.1: Consider the setup as shown in Figure 5.1. Let us consider a registry

with 100 nodes, say Node-X, Node-Y, Node-Z, Node-Zl, Node-Z2, ... , Node-W.

96

Data item b is replicated at Node-X (custodian), Node-Y, and Node-W. Similarly,

data item cis replicated at Node-X and Node-Y (custodian). Data item dis replicated

at Node-X and Node-W (custodian). Data item e is replicated at all the nodes (Node

W is the custodian).

A simple solution to ensure global serializability of such a partially replicated system

would be to use the causal broadcast mechanism (as discussed in chapter 4). The

change-record can be ignored at the nodes where there are no data items to update.

T~o T2, T3, and T4 are transactions as shown in the Figure 5.1. Their respective

change-records are indicated by (1), (2), (3), and (4). The solid lines indicate nodes at

which change-records, once delivered, are implemented as refresh transactions

because these nodes contain data items in the write-set of the transaction. The dotted

lines indicate the nodes where the delivered change-records are ignored. In summary,

• (1) is implemented at Node-X, Node-Y, and Node-W.

• (2), (3) are implemented at Node-X and Node-Y.

• (4) is implemented at Node-X, Node-Y, and Node-W.

Let us assume that the communication link between Node-X and Node-W is broken

after (1) is delivered at all the nodes. Then, the causal broadcast mechanism delivers

(4) at Node-W only when the link starts working and all the preceding change

records, namely, (2) and (3), have been delivered at that node. (4) is waiting for other

change-records (i.e., (2) and (3)), which will eventually be ignored at Node-W. In

97

summary, at Node-W, message (4) waiting for other change-record messages,

namely, (2) and (3), is an unnecessary wait. On the other hand, if the causal multicast

mechanism is used, then (4) can be delivered without waiting for any other messages.

This method, in tum, increases the transaction throughput of the system.

In partially replicated system, all the data items accessed by a transaction may not be

at a single node. This factor affects the update transactions and ROTs as follows:

• Usually, a node which has copies of all the data items accessed by a transaction is

selected as the coordinator for the execution. If a transaction accesses a data item

which does not exist at the coordinator node, then the coordinator can request the

lock and value from the custodian node of that data item.

• In a replicated system, the volume of ROTs is usually high. To increase the

transaction throughput of the system, we provide access to any value of a data

item as permitted by the session guarantee mechanism. In partially replicated

systems, as all the data items are not present at a particular node, we extend a

ROT to access multiple nodes. A ROT which accesses data items at more than

one node in the registry is called the global ROT. As we have global ROTs in the

system, even if the TM at each node in the registry ensures serializability, it may

not be possible to ensure serializability (lSR) at the global level. This can be

illustrated with the following example.

-98

Example 5.2: Consider the setup shown in Figure 5.2. Let Node-Z be the custodian

of data items b and c. Let Node-X and Node-Y have data items b and c, respectively.

We have the following transactions in the system:

TK ~ W(b) R(c)

TL ~ R(c) W(c)

TH ~ R(b) R(c)

Node-X Node-Y Node-Z

\, ~ W(b) R(c)

TL-+ R(c) W(c)

T H -<R(b)) (R(~·),)
............ ············

Figure 5.2 Illustrates the inconsistent state seen by the global ROT, TH

They are executed as follows:

a) TK and TL are executed at Node-Z. TK precedes TL (TK ~ TL).

b) THis divided into sub-transactions TH1 and TH2• TH1 reads data item bat Node-X,

before TK is executed (THI ~ TK) and TH2 reads data item cat Node-Y, after TL

99

is executed (T L - T Hz). As T H should be executed atomically as a single

transaction, the execution order is T L - T H - T K.

From (a) and (b) we have a cycle, TL- TH- TK- TL in the serialization graph at a

global level. Because an atomic global transaction is divided into two sub

transactions, the schedule is not globally serializable. This is an incorrect execution.

(Although, in this thesis, we consider two different ROTs from two different sessions

creating a cycle in the global serialization graph to be a correct execution.)

• Also, if the same message propagation mechanism (i.e., broadcasting), as in the

fully replicated system, is used for multicasting; it does not ensure the liveness

property. This can be illustrated with the following example.

Example 5.3: Consider the setup as shown in Figure 5.3. Node-X and Node-Z are

custodians of data items band d, respectively. TL and TH are transactions executed at

Node-X and Node-Z, respectively. For any update transaction in the system, its

change-records are multicast to nodes containing data items in the write-set of the

transaction, as only those nodes needs to update the data item. Consider the following

execution sequence:

100

Node-X TH = R(b) W(d)

~!!.,.,'"
__..,,...,,...__ , , ,

Figure 5.3 lllustrates that the liveness property is not ensured by the causal multicast

mechanism

• T Lis executed with Node-X as the coordinator.

• TH is executed with Node-Z as the coordinator. Node-Z requests the lock and

value for data item b from Node-X. After obtaining the lock and value of data

item b, TH executes R(b). TH commits and the change-record of TH is sent to

Node-Y. As TH obtains lock on data item b after the execution of TL at Node-X,

• At Node-Y, the change-record ofT H is waiting for the change-record ofT L, as it is

a preceding conflicting transaction. T L will never be delivered at that node, as it

was not sent to Node-Y by its coordinator. (Please note that the change-record of

TL is not sent to Node-Y, as there is no data item bat that node.) Therefore, TH

will be waiting forT L infinitely.

101

Therefore, the liveness property for the delivery of messages is not ensured by the

causal message propagation mechanism.

The message propagation mechanism employed in the fully replicated system must be

modified to ensure the liveness property. We know that serializability at the global

level is dependent on the causal propagation mechanism. While designing the

propagation of messages, we have to ensure that, on one hand, there is progress in the

message delivery and, on the other hand, the dependent messages are delivered in the

same serial order. Therefore, to deliver a change-record of a transaction at a node, the

multicast mechanism has to know the transaction's preceding conflicting transactions

and which of these conflicting transactions have been sent to that node by their

coordinators.

5.1 Protocol for partial replication

Analogous to the fully replicated protocol, the execution of a transaction is divided

into a primary and a refresh transaction. The protocol is explained from the

coordinator's view, participant's view, and non-participant's view.

The protocol for partial replication differs from that of full replication in the

following ways:

1. Message propagation: Implements the causal multicast of messages, instead of the

causal broadcast of messages.

2. Replication protocol: Replicates a data item at only a subset of nodes, instead of

replicating at all the nodes.

102

3. Session guarantee mechanism for read only transactions: Implements global

ROTs.

A change-record for T K contains the following fields:

1. Node identifier of the coordinator ofT K;

2. USN of transaction T K;

3. Write operations with their values and read operations of transaction T K;

4. Present state array (Py[l,2,3, ... ,n]) of the coordinator (optional);

5. Dependency array (0-array) of TK. DK[l,2,3, ... ,n][l,2,3, ... ,n] of TK which

contains the USN of TK and USNs of all the preceding (directly and indirectly)

conflicting transactions; and

6. Receive array (R-array) ofT K: As the change-record of a transaction may not be

sent to all the nodes in the partially replicated protocol, the liveness property

cannot be ensured using the protocol in chapter 4 (see Example 5.3). To solve the

problem cited in the example, an additional array called the R-array is used to

indicate that T H does not have to wait for T L at Node-Y, as T L was not sent to

Node-Y by its coordinator. RH[y][l,2,3, ... ,z-l,z+l, ... ,n] ofTH indicates the USNs

of all the preceding (directly and indirectly) conflicting transactions which have to

be delivered at Node-Y, before T H can be delivered at that node. Hence,

RH[y][l,2,3, ... ,z-l,z+l, ... ,n] is designed in such a way that its change-record

waits for only those preceding conflicting transactions which were sent to Node-Y

103

by their coordinators. In summary, the R-array of a change-record is designed in

such a way that to deliver the change-record at a node, it waits only for those

preceding conflicting transactions which were sent to that node by their

coordinators.

D-arrays and R-arrays are associated with the change-record, lock-grant, and

acknowledgement messages.

5.1.1 Primary transaction

For Coordinator (Coordinator's view)

Consider the execution of the primary transaction, T K, at the coordinator, Node-Y.

(1) Lock acquisition phase: TK acquires the locks in two steps, namely, stage (l.a)

and stage (l.b), executed in the given order. Once all the requested locks have

been acquired, the protocol goes to stage (2).

(a) Requests PT-S and PT-X locks on data items which are in custody of Node-Y,

atomically. After successful completion the protocol goes to stage (l.b).

(b) The coordinator of T K decides which locks to request from the participants

now (in stage (l.b)). If there is a read operation in TK accessing a data item

not present at the coordinator node, then the lock and value for that data item

must be requested from the participant (now). That is, transaction T K cannot

execute that operation optimistically. A PT-S lock-value-request message on

that data item is sent to its custodian node by the coordinator. On the other

104

hand, if a data item is available locally, a PT-S lock-request message on the

data item is sent to its custodian node by the coordinator.

(2) Execution phase: Transaction T K is executed. All writes are performed in the

private workspace.

(3) Validation phase: Let us consider the validation of the operation on data item b of

transaction TK executed at the coordinator, Node-Y. If a transaction is

performing validation of an operation on a data item, it means that it had not

requested the lock on that data item in stage (1). If both read and write operations

are performed on the same data item optimistically, then the write operation on

that data item should precede the read operation. The procedure for validation of

an operation on a data item of a read operation only or a write operation only is

the same as in the fully replicated protocol. The types of validation messages that

are possible in the partially replicated protocol are:

(a) Read validate a data item: Possible only if the data item is present at the

coordinator ofT K·

(b) Read and write validate a data item: Possible only if the data item is present at

the coordinator of T K. or if the data item is not present at the coordinator but

the write operation precedes the read operation.

(c) Write validate a data item: Possible.

S-optimistic-request and X-optimistic-request messages are sent to read validate

and write validate, respectively. While sending the S-optirnistic-request message

105

on data item b, the identifier of the transaction, <Node-ID, USN>, from which the

data item was read is also sent.

(4) Abort phase: The protocol aborts the transaction, as per the decision made in the

validation phase. Then, it sends the lock-release message to all the participants of

the transaction. This procedure is the same as in the fully replicated protocol.

(5) Commit phase: The transaction commits by executing the following steps in the

given order:

a) Executes the refresh transaction protocol (explained later) ofT K.

b) Commits the primary transaction ofT K·

c) Creates the change-record of TK. First, the USN is generated. Then, updates

the state array Ny, creates P-array Py, D-array DK, and R-array RK.

d) Releases all the PT locks.

e) Multicasts the change-records to all other nodes which have at least one data

item in the write-set or the read-set ofT K·

Then, the session_update procedure is executed. This procedure is discussed later.

When the registry starts, the state vector at each node is initialized to zero value as

follows:

Nx[1,2,3, ... ,n][1,2,3, ... ,n] := Ny[l,2,3, ... ,n][1,2,3, ... ,n] := 0
Nz[l,2,3, ... ,n][l,2,3, ... ,n] := Nw[1,2,3, ... ,n][l,2,3, ... ,n] := 0

The procedure for creation and updating of arrays in stage (5.c) can be explained as

follows:

106

• Update ofNy[l,2,3, ... ,n][1,2,3, ... ,n] at Node-Y

Ny[x][z] is the USN of a transaction whose primary transaction was executed at

Node-Z, and has been executed at Node-X as refresh transaction that Node-Y is

aware of. (Sometimes, Ny[x][z] may indicate the USN of a transaction which was not

executed at Node-X. This happens when Node-Xis the custodian of the data item in

the read-set of the transaction, but does not contain any data item in the write-set of

the transaction.) The state array at Node-Y is updated so that it records the

commitment ofT K at that node.

Ny[y][y] :=USN of primary transaction TK

• Creation of the present state array (P-array), Py, representing the yth row of Ny

P-array is a one dimensional array indicating the state of the coordinator. This array is

optionally sent with the change-record.

Py[l,2,3, ... ,n] := Ny[y][1,2,3, ... ,n]

• Creation of the R-array, RK, ofT K

RK[x][z] is the USN of either the transaction conflicting with T K, or of T K, whose

primary transaction is executed at Node-Z (its coordinator) and has been sent to

Node-X. In the zth column of the R-array, rows that have the USN ofT K indicate the

nodes to which the change-records of T K have been sent. These nodes include the

coordinator, participants, and those non-participants which have the data items in the

107

write-set of the transaction. The procedure below stores the USN ofT K in the rows of

R-array, corresponding to nodes that are sender and receivers of the message ofTK.

RK[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II initialize
RK[y][y] := USN of transaction T K
For all x, to which the change-record ofT K is sent, RK[x] [y] :=USN of transaction T K
Here all nodes indicated by x are participant nodes or those non-participant nodes
which have a data item in the write-set of the transaction.

A row in the R-array of T K indicates the preceding conflicting transactions, which

have to be delivered at a node represented by the row in order to deliver the change-

record of TK at that node. For example, RK[x][1,2,3, ... ,n] of TK indicates to Node-X,

the preceding conflicting transactions that have to be delivered at that node before

delivering that transaction.

• Creation of D-array DK for T K

DK[x][z] is the USN of a transaction conflicting with TK, or of TK, whose primary

transaction was executed at Node-Z (its coordinator) and Node-X as the participant.

In the zth column of the D-array, the rows with the USN of T K indicate the

coordinator and participants ofT K· The procedure below stores the USN of T K in the

rows of the D-array, corresponding to nodes that are participants and coordinator of

DK[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II initialize
DK[y][y] :=USN of transaction TK
For all x, which are participant nodes ofTK, DK[x][y] :=USN of transaction TK.

108

LetT K conflict with a set of transactions T Kh T K2·· .. ,T KM at the present node. Let D-

arrays and R-arrays corresponding to these conflicting transactions be DK1,

DK2, ... ,DKM and RKI, RK2, ... ,RKM, respectively. (Please note that the D-array and the

R-array can be obtained from the change-records of these transactions.) Also, let the

D-array and the R-array associated with the lock-grant and acknowledgement

messages of TK be DKMh DKM2·····DKP and RKMI, RKM2·····RKP, respectively. Then,

the procedure below computes the transactions that are conflicting with T K. and the

nodes to which these transactions have been sent to and stores them in arrays.

for var = 1 to n, where n is the number of nodes
for varp = 1 to n, where n is the number of nodes

RK[var][varp] .- Max(RK1[var][varp], RK2[var][varp], , RKM[var][varp],
RKM1 [var] [varp], RKM2[var] [varp], ... ,RKP[var][varp], RK[var][varp])

DK[var][varp] .- Max(DK1[var][varp], DK2[var][varp], , DKM[var][varp],
DKM 1 [var] [varp], DKM2[var] [varp], ... ,DKP[var] [varp]. DK[var] [varp])

The above code calculates and stores in DK, USNs of all the transactions conflicting

with TK in the entire system. Similarly, USNs stored in RK indicates the nodes to

which the change-record of these conflicting transactions has been sent.

In Figure 5.4, transaction T H is executed with Node-Y as the coordinator. Node-Y

sends a PT-S lock-value-request on data item b to Node-X in stage (l.a). After

obtaining the lock-value-grant, the protocol executes the transaction by performing

the operations on data item d optimistically. Later, the coordinator of T H validates

those read and write operations on data item d, by sending the validation request

message to Node-Z. Upon successful validation, transaction T H commits.

109

T H = R(b) W(c) W(d) R{d) Coordinator

Participant! ~
Participant

Node-Y

1.a Obtains local locks: PT-X{c)

(l) ~ 1.b Requests PT-S{b) -value
Node-Z

1. Obftiins PT-S{I::() &
! • IJio 1.c Obtains lock-value-grant from Node-X

sendS! lock-value-! :

grant ~essage l 2. Executes l (2)

: 3.a Validates W{d), R{d) at Node-Z : 2. V\!idatel."

I

"

I 1 I

: 3.b Receives positive acknowledgeijiedt transaction ~ gets

5.a Executes refresh transaction

5.b Commits

5.c Creates change-record

5.d Release locks

PT-X locks ~nd

sends
I

acknowledgement

5.e Causally multicast change-record,
• • • I I .. ,. ~·

••• I •••••••• ·~
I I• • • e e • • e • • • e • • e
• I

I

Non

Participant

Node-W

.............

Figure 5.4 Illustrates the execution of the primary transaction protocol ofT H

For Participants (Participant's view):

Consider a participant node, Node-X, participating in the execution of the primary

transaction ofT K:

(1) Upon receiving a PT-S/PT-X lock-request or a PT-S lock-value-request (refer to

stage (l.b) of the coordinator's view): For a PT-S (PT-X) lock-request message,

Node-X acquires a PT-S (PT-X) lock on the data item from the local TM. Then, it

sends the lock-grant message along with the D-array, DKRr[1,2,3, ... ,n][1,2,3, ... ,n],

110

and the R-array, RKRr[1,2,3, ... ,n][1,2,3, ... ,n] (That is, Node-X is the ith participant

ofTK). For a PT-S lock-value-request on a data item, Node-X acquires the lock on

the data item and sends a lock-value-grant message, along with the present value

of the data item, the 0-array, DKRr[1,2,3, ... ,n][l,2,3, ... ,n], and the R-array,

RKRr[l,2,3, ... ,n][l,2,3, ... ,n]. These message types may optionally contain the P-

array.

(2) Upon receiving the validation message (refer to stage (3) of the coordinator's

view): A participant can receive an S-optimistic-request message or an X

optimistic-request on a data item. Validation of an operation on a data item is

performed as follows:

a) Upon receiving the S-optimistic-request: The S-optimistic-request message

contains the identifier of the transaction <Node-ID, USN> from which the

data item b was read. A check is made if there are any writes on data item b

starting from the latest state of the node, until the change-record identified by

<Node-10, USN>, or the last change-record is reached. If true, a negative

acknowledgement is sent. Otherwise, a PT -S lock is obtained from the local

TM (We assume that checking the condition and obtaining the locks are

performed atomically) and a positive acknowledgement is sent.

b) On receiving the X-optimistic-request: For an X-optimistic-request on data

item d, Node-X obtains a PT-X lock from the local TM and sends a positive

acknowledgment. If the PT -S lock is already present on the data item by the

111

same transaction, then the lock is upgraded to the PT-X lock and a positive

acknowledgement is sent. Please note that in-order to upgrade a lock on a data

item, the TM at Node-X must wait until all the other conflicting transactions

holding read locks on that data item are released. Deadlocks are possible when

two or more transactions are trying to upgrade their locks on the same data

item simultaneously.

c) Both S-optimistic-request and X-optimistic-request: On receiving both the

requests on data item c, first, a check is performed as in the case of the S

optimistic-request. Then, upon a successful outcome, the PT-X lock on the

data item dis acquired and a positive acknowledgement is sent.

All the acknowledgement messages contain the D-array and the R-array. They

may optionally contain the P-array.

(3) Upon delivery of a change-record (refer to stage (5.e) of the coordinator's view):

The change-record is stored. Then, one of the following steps is executed.

a) If there are data items of the write-set of the transaction at Node-X, then the

refresh transaction protocol is executed. Please note that the refresh

transaction writes only the data items in the write-set of the transaction present

at that node. The other operations in the write set of the transaction are

ignored.

112

b) On the other hand, if data items of the write-set of the transaction are not

present at Node-X, then the refresh transaction protocol is not executed.

Later, the participant node releases all PT locks of transaction T K·

(4) Upon receiving the lock-release message (refer to stage (4) of the coordinator's

view): Releases all the PT locks held by transaction T K·

For Non-Participants (Non-Participant's view):

Upon receiving the change-record from the coordinator node, it is stored and the

refresh transaction protocol is executed.

5.1.2 Refresh transaction

For Coordinator and Participants (Coordinator's view and Participant's view):

Consider the execution of the refresh transaction ofTK at Node-X.

1) Lock acquisition phase: The protocol request for RT locks and waits until

conflicting locks are released. Then, RT-X locks are acquired on all the data items

to be written at that node. ART-X lock on a data item can be given even when the

conflicting transaction has a PT-X lock on that data item. (Please note that as RT

X and ROT-S locks are incompatible, a RT-X lock on a data item is not given if

there is any ROT-S lock on that data item.)

2) Execution phase: Transaction TK is executed. Now, data items of TK's write-set

present at that node are written.

113

3) Commit phase: PT-S, PT-X, and RT-X locks on all the data items of TK are

released atomically.

For Non-Participants (Non-Participant's view):

The procedure is the same as in the protocol for the fully replicated case, except that

the write-set ofT K present at that node is written.

5.1.3 Read only transaction

The protocol is the same as in the fully replicated protocol, except that in the session

guarantee mechanism for the global and local ROTs.

5.1.4 Mechanism for session guarantee

We need an additional array called SRp for the session guarantee mechanism. This

array serves to eliminate the idle waiting at a node for the change-record of a

transaction which is not sent at that node. This can be illustrated using the following

example.

Example 5.4: Consider the set up shown in Figure 5.5. TL and TH are executed at

Node-X and Node-Z, respectively, where TL precedes TH (TL--+ TH). Let us assume

that a new session starts with a transaction reading data item d written by T H at Node

Z. When the next transaction of the session with a read operation on data item c is

executed at Node-Y, it must wait for the change-record of TH and TL, as they are

conflicting transactions. As the change-record of TL is not sent to Node-Y, the ROT

infinitely waits for the change-record ofT L to be delivered. A better solution would

114

be to allow the ROT to read the values from Node-Y, without delivery of TL at that

node, as it would still provide the consistent view of the system.

Node-X TH = R(b) W(c) W(d)

Node-Y

Figure 5.5 Dlustrates that the liveness property is not ensured by the session guarantee

mechanism

Initialization:

The data structures used in the session guarantee mechanism are initialized as

follows:

Sp[l,2,3, ... ,n][1,2,3, ... ,n] := 0 II belongs to a user session
SRp[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II belongs to a user session
Mx[1,2,3, ... ,n][l,2,3, ... ,n] := My[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II stored at a node
Mz[l,2,3, ... ,n][l,2,3, ... ,n] := Mw[1,2,3, ... ,n][l,2,3, ... ,n] := 0 II stored at a node

Session_read:

This procedure is performed before the execution of a ROT. Its key features are:

115

• The procedure eliminates the idle waiting for change-records which were not sent

to the node where the ROT is being executed.

• It provides the flexibility for a global ROT to read data items from more than one

node. This is performed by dividing a global ROT to a number of sub-transactions

and executing them at those nodes.

The global ROTs are useful for the following purposes:

• An administrator of the registry may want to archive the status of the registry at

the end of the day for auditing purposes. As only the custodian nodes of the

respective data items have the latest updates, no single node may have an accurate

and current snapshot of the entire system. A global ROT is divided into a number

of sub-transactions and executed at their respective custodian nodes, as a ROT. In

Figure 5.6, TL is divided into sub transactions Tu, TL2, and TL3. These

transactions read data items b, c, and d at Node-X, Node-Y, and Node-Z,

respectively. T L obtains the latest state of the registry.

• As the number of customers in the registry increases, there may be different

classes of users, namely, paid and free users. A business strategy could be to

provide more recent updates to paid users and any values to free users. The free

user's ROTs can be executed in such a way that they access data items only at the

nodes that are not custodians of those items. In this way, any update transaction

can obtain the response from the system without being interrupted by a free user's

116

ROT. This is because at the coordinator node of an update transaction, its primary

and refresh transactions do not wait for the locks held by free user's ROT. In

Figure 5.6, TH is divided into sub-transactions Tm and TH2· These sub-

transactions read local copies at Node-Y and Node-Z, respectively. Please note

that if T u and T H are executed at the same point in time, one does not have to wait

for another even though they are conflicting transactions. This method enhances

the availability of the system.

The global ROTs may be used in the fully replicated systems also. In partially

replicated systems, global ROTs become a necessity sometimes (depending on the

data items the transaction accesses), as the data distribution is not uniform.

Tu = W(d)

Node-X Node-Y Node-Z

~ :1-.... TLJ ~ .. JTH2
TL *.RCb{Rc~YRCct)··Y TH G'i"ctxR.cb))

················ · ·

Figure 5.6 lllustrates the execution of global ROTs

For execution of the global ROT, a consistent global view of the system must be

explicitly provided, as nodes being accessed by the sub-transactions may be at

different states of the system. Please recall that in Example 5.2, TH will obtain an

117

inconsistent global view of the system due to the same reason. The global transaction

does not obtain a consistent view of the system, as different sub-transactions read

different states of the system at different nodes. That is, in Example 5.2, THl at Node

X obtains the state of the system which was present before the execution ofT K. where

as TH2 at Node-Y obtains the state of the system after the execution ofTL.

The difference between local and global transactions is that in the former case, a

check is only performed before the execution of the transaction to ensure that the

session reads an increasing state of the system. In the latter case, in addition to this

check for component sub-transactions of the global transaction, it checks if a

consistent state of the entire system is obtained by the global transaction.

The procedure to check if a ROT can be executed, session_read_check, is as follows:

Sp represents user session P, containing all the preceding (directly or indirectly)

conflicting transactions seen by the user in the system. SRp[x][1,2,3, ... ,n] represents

all those preceding conflicting transactions of user session P which have been sent to

Node-X by the transaction's coordinator node. Let us consider the execution of a

ROT, TK, at Node-X. TK accesses the data items in custody of Node-Q, Node-R, and

Node-W. Temp is a one dimensional array. The session_read_check procedure

calculates the USNs of conflicting transactions of the ROTs that have been sent to

that node. Then, the procedure waits only for those transactions that are to be

executed at the node.

118

for var = 1 to n, where n is the number of nodes
//check for change-records which should have arrived at each of the nodes
tempR[var] := Max(SRp[q][var], SRp[r][var], SRp[w][var])
where q, r, and w are custodian nodes of data items accessed by the ROT

wait until (Nx[x][1,2,3, ... ,n] ~ tempR[l,2,3, ... ,n])
then execute the ROT at Node-X

In the above code, temp-array contains the USNs of the transactions for which the

ROT has to wait. At Node-X, N-array is compared to check if these transactions have

been executed already. If the change-record of a particular transaction has not been

sent to Node-X, then it does not wait for that transaction.

Execution of the global ROT:

Let us consider the execution of a global ROT. The procedure can be explained as

follows:

• Divide the global transaction into two or more sub-transactions. Submit the sub-

transactions to different nodes. One of these nodes is selected as the coordinator.

All the others are regarded as participants.

• Session_read_check procedure is executed at each of the nodes corresponding to

the sub-transactions at that node.

• Participants send the result and other information, such as the D-array, N-array,

and P-array, for each of those sub-transactions to the coordinator.

119

• The coordinator validates the global transaction using the session_read_validate

procedure.

Let us consider the global ROT, To. which is divided into sub-transactions Tm, T02,

Tm ToN and are executed at different nodes. One of the nodes, for example Node

Y, is selected as the coordinator. Node-X is one of the participant nodes.

Session_read_validate procedure for the global transaction can be executed from the

view of the coordinator and participant.

View of the coordinator node, Node-Y:

Consider the sub-transaction, T02, of the global transaction, To, executing at Node-Y.

1. Executes session_read_check procedure: This procedure is executed for sub

transaction T 02. It obtains locks on data items and executes the sub-transaction.

2. Create D-array and R-array: This step finds the preceding conflicting transactions

on all the data items that the sub-transaction, T 02, accesses. The procedure for

creating the D-array and R-array for the sub-transaction, T 02, at Node-Y is as

follows:

Let us assume that To2 conflicts with T1. T2, TJ, ... ,TM. Let D-arrays and R-arrays

of these transactions be D1. D2, DJ, ... ,DM and R1, R2, RJ, ... ,RM, respectively. Then,

the USN of transactions conflicting with T K and the nodes to which these

conflicting transactions have been sent is given by the D-array and the R-array,

respectively.

120

0 02[1,2,3, ... ,n] = 0
R02[1,2,3, ... ,n][1,2,3, ... ,n] = 0
for var = 1 to n, where n is the number of nodes
for varp = 1 to n, where n is the number of nodes

D02[var] .- Max(D1[varp][var], D2[varp][var], D3[varp][var], ,
DM[varp][var], Daz[var]) II D02 is one dimensional array

Raz[varp][var] := Max(Rt[varp][var], Rz[varp][var], R3[varp][var], ,
RM[varp][var], Raz[varp][var]) II Raz is a two dimensional array

The above code computes and stores in arrays, D02 and R02 all the preceding

conflicting transactions ofT 02 and the nodes to which the change-records of these

transactions are sent, respectively.

3. Validate the global transaction: The D-array, R-array, and P-array from all the

participants of the global transactions are received. For a given P-array, the

procedure checks with every other sub-transactions to ensure that the preceding

conflicting transactions of those sub-transactions are executed at that node. This

procedure can be explained as follows:

After receiving D-array and R-array from Node-X, the coordinator, Node-Y,

evaluates the acknowledgements as follows:

if (Daz[1,2,3, ... ,n] ~ Nv[y][1,2,3, ... ,n])
for z =1 ton, where n is the number of nodes
if (Raz[y][z] ~ Nv[y][z])

then result is negative & exit
end of for

else
result is positive

121

In the above code, a comparison is performed between the present state of Node

y and the D-array of the sub-transaction, T02, which was executed at Node-X. A

positive result indicates that the state of Node-X and Node-Yare consistent with

respect to the sub-transaction, T 02·

Using the method explained above, the D-array of the sub-transaction of T02 is

compared with the present state of every other node at which other sub

transactions were executed.

Then, similarly to all the other sub-transactions of the global transaction, its D

array is compared with the present state array of every other nodes at which a sub

transaction of the global transaction is executed. If any one of the results is

negative, then T 0 is invalidated. Otherwise, after obtaining the positive results for

all the comparisons, To is validated successfully.

4. Release locks: Releases all local locks and sends a lock-release message to all the

participants. If validation is successful, then the results are returned to the user.

View of participant node, Node-X:

Consider the execution of the sub-transaction, T OJ, at the participant node, Node-X.

I. Execute session_read_check: This procedure is executed for sub-transaction T OJ.

It obtains locks at Node-X and executes To1•

2. Create D-array, R-array, and P-array: This step finds preceding conflicting

transactions on all the data items sub-transaction TOJ (executing at Node-X)

122

accesses, except for, those data items of which it is the custodian. It uses a similar

procedure used for the coordinator to generate Dm and Rm. Then, it sends P-

array, D-array, and R-array, i.e., Px[l,2,3, ... ,n], Dm[1,2,3, ... ,n], and

Rm[l,2,3, ... ,n], to the coordinator.

3. Upon receiving the lock-release request: All the locks of the sub-transaction are

released.

Participant Coordinator

Node-X Node-Y Node-Z

Ta\ fm
l' ····• ·· .. .

To ---+' ... R(b)) \. R(c))
I. Executes session_read_check forT 02

I. Executes session_read_check for T Gt

2. Calculates D-array and R-array
2. Calculates D-array, R-array & sends along

with P-array

3. Releases locks

3. Validates T0

+------___;:....__ 4. Sends lock-release request

Figure 5.7 lllustrates the protocol for the execution of the global ROT, Ta

In Figure 5.7, Tm and T02 execute the session_read_check procedure at Node-X and

Node-Y, respectively, where all the operations of the sub-transactions are executed.

The coordinator, Node-Y, receives the Px. Dm, and Ra1 of Tm from Node-X. Ta is

validated at Node-Y. Then, Node-Y sends a lock-release request to Node-X.
123

Session_ update:

Consider the user session P. The usage of Sp is the same as in the fully replicated

protocol. A new array, SRp, is used to indicate the nodes to which these preceding

conflicting transactions stored in Sp are sent.

Let the update transaction, T K, be executed in the user session P. The procedure stores

in the session variable the USNs of transactions conflicting with TK and nodes to

which these transactions have been sent to.

for var = 1 to n, where n is the number of nodes
for varp = 1 to n, where n is the number of nodes
Sp[var][varp] := Max(DK[var][varp], Sp[var][varp])
SRp[var][varp] := Max(RK[var][varp], SRp[var][varp])

A ROT may have read from data items written by more than one transaction. The TM

lists the transactions with which the ROT conflicts. Let D-array and R-array

corresponding to these conflicting transactions be o~. Dz, D3, ... , DM and R1, Rz,

R3, ... , RM, respectively. The procedure stores in the session variable the USNs of

transactions conflicting with T K and nodes to which these transactions have been sent.

for var = 1 to n, where n is the number of nodes
for varp = 1 to n, where n is the number of nodes

Sp[var][varp] := Max(D1[var][varp], Dz[var][varp], D3[var][varp], ,
DM[var][varp], Sp[var][varp])

SRp[var][varp] := Max(RI[var][varp], Rz[var][varp], R3[var][varp], ,
RM[var][varp], SRp[var][varp])

124

The session_update procedure for both global ROTs and local ROTs is the same,

except that for global ROTs, the same procedure is executed both at the coordinator

and participant nodes.

Delete_ change-record:

The procedure is the same as in the case of the fully replicated system. But Mx[y]

indicates the USN of the latest transaction which was sent by Node-Y to other nodes

and has been executed at those nodes as known by Node-X. The procedure given

below stores in M-array, the USNs of transactions that have been executed at all

nodes.

for var = 1 to n, where n is the number of nodes
Mx[var] := Nx[var][var]
for varp = 1 to n, where n is the number of nodes
Mx[var] :=Min(Nx[varp][var], Mx[var])
where Min function returns the minimum integer of a set of integers.

This procedure is the same as in the fully replicated system. We have given here for

the sake of completeness.

5.2 Causal multicast transmission of messages

The algorithm for the causal multicast differs from the causal broadcast, as causal

multicast uses the R-array for the delivery of messages, instead of the D-array. The

causal multicast mechanism for the delivery of message of T K can be explained as

follows:

125

Let us assume that a message of TK is sent from Node-Y to Node-X. The procedure

given below waits until all the messages of conflicting transactions of TK that were

sent to Node-X have been delivered at that node. After delivery of message, the state

array at Node-X is updated to indicate the delivery event.

Wait until Nx[x][1,2,3, ... ,y-l,y+l, ... ,n] 2: RK[x][1,2,3, ... ,y-l,y+l, ... ,n]
then deliver the message ofTK at Node-X

After the delivery of message, Nx[l,2,3, ... ,n][l,2,3, ... ,n] is updated as follows:
Nx[x][y] := Max(Nx[x][y], RK[x][y])
Nx[y][y] := Max(Nx[y][y], RK[y][y])
for var = 1 to n; where n is the number of nodes
if Py exists in the change-record

then Nx[y][var] := Max(Nx[y][var], Py[var])

In the above code, if the present state of Node-X (denoted by

Nx[l,2,3, ... ,n][l,2,3, ... ,n]) contains all the preceding conflicting transaction ofTK to

be delivered at that node, then the change-record of TK is delivered. To indicate the

delivery event, the state array of Node-X is updated with the R-array of T K· Later,

Node-X's state array is updated with the P-array of TK, if the P-array exists in the

message.

5.3 Correctness Proof

First, we show that all the dependent messages are delivered causally ensuring the

liveness property. Then, we show that the primary transaction protocol ensures lSR

and the session guarantee mechanism does not block any ROT indefinitely. Later, we

show that the global ROT obtains a consistent state of the system.

126

Theorem 1: Algorithm ensures that all the messages are eventually delivered and the

causal delivery is ensured using multicast primitives.

Proof: We prove the theorem with the following two claims:

Claim 1: Message delivery mechanism ensures the liveness property

On the contrary, let us assume that there exists a set of messages which are not

delivered at Node-X. First, let us consider the non-delivered message Y of the

transaction, TK, at Node-X which was sent from Node-Y. Y may be a change-record,

lock-grant, or acknowledgment message ofT K. If Y is a lock-grant/acknowledgement

message, then the reliable broadcast mechanism ensures that all messages that are

sent from one node to another are delivered in the same order. On the other hand, if Y

is a change-record message, it can be of a local or global transaction. If Y is a change

record message of a local transaction and its dependent change-record messages are

also of the local transaction, then they will be eventually delivered due to the reliable

broadcast. But, if T K is a change-record of a global transaction, then it conflicts on a

data item in custody of another node. Let us assume that T K conflicts with T L whose

primary transaction was executed at Node-Z. Also, let T L be a local transaction. The

change-records of TK and TL are sent from Node-Y and Node-Z, respectively. At

Node-X, the change-record of TK is waiting for the change-record of TL to be

delivered at that node. If the change-record ofT Lis actually sent to Node-X, then due

to the reliable broadcast mechanism T L is delivered at that node. But if T L is not sent

to Node-X, the R-array ofTK does not contain the USN ofTL corresponding to Node-

127

X. Therefore, TK does not wait for TL and TK will be delivered eventually. The same

holds true even if either T K or T L or both are global transactions. But this is

contradictory to our earlier assumption.

Hence liveness is ensured.

Claim 2: Causal delivery of messages is ensured.

Let Node-Y and Node-Z be coordinators of T K and T L, respectively. Let us assume

that both transactions have sent their change-records to Node-X. Let TL precedes TK

(TL __.. TK). Then, RK[x][z] will have the USN of TL. or the later transaction. When

the change-record of TK is received at Node-X from Node-Y, it is delivered on the

following condition has been satisfied.

"If Nx[x][1,2,3, ... ,y-1,y+ 1, ... ,n] 2: RK[x][1,2,3, ... ,y-1,y+ 1, ... ,n]"

This means that Nx[x][z] is at least the USN of TL. Therefore, TL has been delivered

before TK at Node-X. Therefore, causal delivery is ensured.

The proof is complete.

Lemma 1: The session guarantee mechanism does not block any ROT indefinitely.

Proof: Let us assume that the ROT, T K, is executed at Node-X. Also let us assume

that TK is reading a data item in custody of Node-Y. The session_read_check

procedure for TK must wait until all the transactions in S-array, Sp[y][1,2,3, ... ,n],

have been delivered at that node. On the contrary, let us assume that the procedure of

128

T K is blocked because it is waiting for the transaction, T L, which was not sent to

Node-X from Node-Y. That is, Sp[y][y] > Nx[x][y].

We know that the R-array associated with TL, does indicate that TL is not sent from

Node-Y to Node-X. i.e., RL[x][y] does not contain the USN of TL (but of the

preceding conflicting transaction). Satisfying the following condition ensures that T K

does not wait for T L·

"wait until (Nx[x][1,2,3, ... ,n] ~ SRp[l,2,3, ... ,n][l,2,3, ... ,n])"

This is contradictory to our assumption that the execution of the ROT, TK, is blocked

due to TL.

The proof is complete.

Theorem 2: A global ROT obtains a consistent view of the state of the system.

Proof: If two sub-transactions of a global transaction are executed at different nodes,

then they must obtain a consistent state of the system. Let T KI and T K2 be sub

transactions of the global ROT, TK, executed at Node-X and Node-Y, respectively.

Let Node-Y be the coordinator. Let us assume that the result obtained is not from a

consistent snapshot of the system. This means that the state of Node-X is not

consistent with the state of Node-Y, either with respect to sub-transaction T KI, or sub

transaction T K2·

129

We know that when the state of Node-X is compared with the state of Node-Y, locks

are obtained on all the data items of the global transaction at both the nodes. For

transaction T KI. the positive result for the condition below ensures that all the

dependent transactions ofTK1 have been executed at Node-Y already.

if (DK1[1,2,3, ... ,n] ~ Nv[y][1,2,3, ... ,n])
for z =1 ton, where n is the number of nodes
if (RKI[y][z] ~ Nv[y][z])

then result is negative & exit
end of for

else
result is positive

While creating the D-array for a sub-transaction at a node, the conflict on a data item

in custody of the local node is not found. This is because, locks on all the data items

of the global transactions are released analogous to 2PL protocol. That is, a sub-

transaction releases a lock only after the global transaction acquires all the locks via

all its sub-transactions. Therefore, with respect to the execution of T KI. the present

state of Node-X and Node-Yare consistent. Similarly, satisfying the below condition

ensures that all the preceding conflicting transactions of T K2 have been already

executed at Node-X.

if (DK2[1,2,3, ... ,n] ~ Nx[x][1,2,3, ... ,n])
for z = 1 to n, where n is number of nodes
if (RK2[x][z] ~ Nx[x][z])

then result is negative & exit
end of for

else
result is positive

130

So the state of Node-X and the state of Node-Y are consistent with respect to sub

transaction, T K2· Upon satisfying the above two conditions, we can ensure that the

global transaction, TK, obtains a consistent state of the system. But this is

contradictory to our earlier assumption.

The proof is complete.

5.4 Discussion

The main advantage of the partial replicated system is that it requires communication

only between a few peer nodes leading to timely relevant information to all the nodes.

By the mechanism of the coordinator sending the relevant change-records to other

nodes and the other nodes waiting for only those relevant change-records, the

unnecessary information overload and waiting is reduced compared to the fully

replicated system.

131

Chapter 6

Deadlocks

Deadlocks in the transaction processing context are situations in which two or more

transactions are waiting indefinitely for one of the others to finish but none of them

finishes. Any non-conservative locking mechanism is prone to the occurrence of

deadlocks. The simplest illustration of a deadlock consists of two transactions, each

holding a write lock on different data item and requesting a lock on a data item which

is write locked by the other transaction. A deadlock is said to be distributed, if

transactions executed at two or more nodes are involved in the deadlock.

6.1 Deadlocks in our protocol

Deadlocks are possible in our protocol, as it is basically a non-conservative 2PL. We

first consider deadlocks in the fully replicated protocol and later in the partially

replicated protocol. In the fully replicated protocol, local transactions are not involved

in the deadlocks, as all the locks are requested in stage (l.a), atomically. This is

shown in the following lemma.

Lemma 1: The local transactions are not involved in deadlocks.

Proof: Consider a local transaction, T K· T K requests locks only in stage (l.a). All the

locks are obtained atomically and after this stage no locks are requested. Therefore,

T K does not wait for any other transactions. The proof is complete.

132

A global transaction executing at the coordinator node requests locks from other

nodes. All the locks for a global transaction cannot be obtained in a single atomic

step. Therefore, distributed deadlocks are possible. This can be illustrated with the

following example.

Example 6.1: Consider the setup as shown in Figure 6.1. Node-X and Node-Y are

custodians of data items b and c, respectively. Let TK and TL be the primary

transactions with coordinators Node-X and Node-Y, respectively. TK obtains a PT-X

lock on data item b at Node-X in stage (l.a) of the primary transaction protocol.

Similarly, TL obtains a PT-X lock on data item c at Node-Y in stage (l.a) of its

primary transaction protocol. T K sends aPT -S lock-request to Node-Y for data item c.

Similarly, TL sends a PT-S lock-request to Node-X for data item b. TK is waiting for

T L for a lock on data item c and T L is waiting for T K for a lock on data item b. This

cyclic wait indicates the distributed deadlock.

Node-Y

Requests PT-S(b)
TK---+ W(b) R(c) +----'------ TL---+ R(b) W(c)

l
Requests PT-S(c)

l

Figure 6.1 Illustrates distributed deadlocks due to global transactions

133

6.2 Distributed deadlocks

We design an algorithm which detects and resolves the deadlocks which is discussed

in the following section.

6.2.1 Algorithm to detect and resolve deadlocks using wait for graphs

We first construct a Wait-For-Graph (WFG). It is a directed graph, where aT-node

(transaction node) T K represents a transaction, T K, and its outgoing edges represent

the lock-requests T K has made to other nodes, and incoming edges represent lock

requests that other nodes have made for T K· Depending upon the request on a data

item ofT K, its T -node may have the following kind of edges:

• Unconnected edge: If T K has requested a lock on a data item and is waiting for a

response, then an unconnected outgoing edge (unconnected to any node at the

other end) is drawn from the T-node ofTK.

• No outgoing edge: If T K has already acquired a requested lock, then with respect to

that request there is no outgoing edge in T -node ofT K·

• Connected edge: If T K is waiting for a lock which is currently held by T L. then a

directed edge is drawn from the T -node of T K to the T -node ofT L (T K --+ T L). On

the other hand, if T Lis waiting for a lock currently held by T K. then a directed edge

is drawn from the T -node ofT L to the T -node ofT K (T L --+ T K).

A WFG consists of only global transactions in the system. That is, there are no local

transactions in the WFG. At a node, there may be a set of WFGs corresponding to

134

different sets of transactions in the system. A WFG which contains the T -node ofT K

is called the WFG ofT K (represented by WFG(T K)). As the execution of the primary

transactions are distributed (i.e., different primary transactions may be executed at

different nodes), there is no total order in propagation of WFGs of these transactions.

Therefore, at a certain snapshot of the system, WFG(T K) present at different nodes

may be different. Our algorithm is designed in such a way that, if a deadlock really

exists in the system, the nodes in the system which constructs WFG(TK) eventually

will construct the same WFG for T K· Therefore, a victim transaction selection and its

abortion can be made deterministically.

135

Deadl k is
certain to exist

Continuance phase

ftft8e••••••···············••••••••••••••••oooo•••oooo••··························oo···••••••••oo•••••··,

_:: ::~-~~·- _j

Figure 6.2 A Flow chart for detection and resolution of deadlocks

The algorithm for deadlock detection and resolution has five main phases (refer to the

flow chart in Figure 6.2). The phases can be explained as follows:

136

1. Construction phase: Any change to a WFG is made in this phase. This phase is

sub-divided into three sub-phases. When a global transaction is submitted to the

system, it enters the first sub-phase. An algorithm may execute the second or the

third sub-phases concurrent to the execution of any of the other phases. The sub

phases are classified as follows:

a. Creation sub-phase: In this sub-phase, a new WFG of a transaction is created.

b. Building sub-phase: In this sub-phase, a new T -node is added to the existing

WFG by merging it with another WFG.

c. Deletion sub-phase: In this sub-phase, an edge of a T-node or a T-node is

deleted.

2. Victim selection phase: In this phase, one of the transactions in the deadlock cycle

is selected as a victim transaction. If it is certain that a deadlock exists, then the

algorithm goes to the abort phase directly.

3. Confirmation phase: The coordinator of the victim transaction starts the

confirmation phase to check if the detected deadlock really exists. If it exists, the

algorithm goes to the abort phase. Otherwise, it goes to the continuance phase.

4. Abort phase: The victim transaction is aborted.

5. Continuance phase: In this phase, the deadlock would have been successfully

resolved.

137

Definitions:

We use the graphical interpretation of WFGs to explain the algorithm. The developer

of an application is free to use his own data structure for implementation. Each node

in the registry is assigned a priority which is unique in the entire registry. The priority

is stored at every node in the registry. The T-node ofTK in WFG(TK) at a node in the

registry consists of the following variables:

1 Identifier of T -node: The T -node of T K is identified by <Node-ID, Transaction

ID>. Node-ID is the identifier of the coordinator node ofTK. Transaction-ID is the

identifier of T K.

2 Outstanding requests: This request indicates either pessimistic or optimistic lock

requests of T K at participant nodes. If T K has sent a request and is waiting for a

response, then it is represented by an unconnected outgoing edge in WFG(T K). On

the other hand, if T K knows that it is waiting for another transaction T L. then the

T -node ofT K is connected to the T -node ofT L with an edge represented by T K -+

TL.

3 Locks acquired: No outgoing edge is associated with the T -node of T K in

WFG(T K) for a lock already acquired by T K· For each lock on data items, the type

of lock is indicated (i.e., read lock or write lock).

4 Incoming requests: This request indicates either pessimistic or optimistic lock

requests other transactions have made to data items on which T K has already

138

acquired the locks. If T L has requested a lock on a data item which is presently

held by T K, then a directed edge, T L- T K, is added.

5 Total weight: Each T -node in the WFG is associated with a weight. The weight of

TK is represented by 'TK.Weight'.

The weight assignment to a T -node in a WFG can be explained as follows:

A weight is assigned to a transaction in order to select a victim in a deadlock cycle.

Weight is assigned to a transaction based on the type of its lock requests. A

transaction requests read and write locks from other nodes. Each of these may be

requested either pessimistically or optimistically. In stage (l.b) of the primary

transaction protocol, the coordinator node knows all transaction requests to other

nodes. Therefore, when a T -node of a WFG is created, the protocol knows all the

transaction requests. For transaction T K. weights are assigned based on type of request

as follows:

1 Optimistic write: If transaction T K has an outstanding optimistic write request on

a data item, its TK.Weight is incremented by 1. That is,

2 Pessimistic write: If transaction T K has an outstanding pessimistic write request

on a data item, its T K.Weight is incremented by 2. That is,

139

3 Pessimistic read: If transaction T K has an outstanding pessimistic read request on

a data item, its TK.Weight is incremented by 3. That is,

4 Optimistic read: If transaction T K has an outstanding optimistic read request on a

data item, its TK.Weight is incremented by 4. That is,

TK.Weight := TK.Weight + 4

Algorithm:

The algorithm for detection and resolution of deadlocks can be explained as follows:

1 Construction phase: This phase handles all the modifications of WFGs in the

system. This is explained in the following sub-phases:

a) Creation sub-phase: Once a global transaction, T K. is submitted to the

coordinator, Node-X, the algorithm enters the creation sub-phase. This sub

phase can be explained from the view of the coordinator and participants of

T K (refer Figure 6.3).

View of the coordinator node of TK, Node-X

i) Creating aT-node: When a global transaction, TK, starts its execution in

the system, coordinator Node-X creates the T-node of TK. Corresponding

to each outstanding request for the lock of T K, an outgoing edge is

associated with the T-node ofTK. This node creates the WFG(TK).

140

ii) Initialization: When the T -node of T K is created, it is assigned a weight.

First, all the outstanding requests are listed. Then, a weight is assigned to

the T-node. The assignment is done in stage (l.b) of the primary

transaction protocol in the coordinator's view. Once a weight is assigned

to a T -node of a transaction, it is not later altered.

iii) While sending the lock-request or the validation-request message of T K:

The coordinator, Node-X, while sending the lock-request or the validation

request message ofT K. also sends the WFG(T K) to the participants ofT K·

Coordinator ofT K

TL--+ W(c) R(d) R(e)

l.a.(i)

l.a.(ii)

l.a.(iii)-------. I.a.(iv)

Figure 6.3 lllustrates the creation sub-phase of the algorithm

View of the participant node ofT K, Node-Y

iv) Upon receiving the WFG(TK) with lock-request or validation request

messages: If the requested lock is available at Node-Y, then the TM grants

the lock. On the other hand, if T K is waiting for another transaction to

141

release the lock, then either two WFGs are merged or an edge is added

between T -nodes. This process can be explained as follows:

• Merging of two WFGs: If there are any common T -nodes between

WFG(T K) and WFG(T L), then those WFGs are merged. Merging is

performed by taking the union of T -nodes and edges of those two

WFGs. If merging adds aT-node which has been previously deleted

due to the delete-node message, then that T-node is not added into the

WFG (similarly for the edge). We assume that delete-node and delete

edge messages sent or received at a node are archived until all the

relevant nodes become aware of this event.

• Adding an edge between T -nodes: If T K is waiting for a lock on a data

item which is held by T L and the present node is custodian of that data

item, then the edge, TK---+ TL. is added between their respective T

nodes. This is called a Wait-For-Relationship (WFR). Please note that

even if a non-custodian node knows this WFR, it cannot add the edge.

For example in Figure 6.3, only Node-Y, the custodian of data item c

can add the edge, T K ---+ T L, as only that node knows if T L is still

holding the lock on data item c.

In WFG(T K), there is a set of transactions to which Node-Y is either a

participant or a coordinator. The participant nodes for transactions to

which Node-Y is coordinator of and the coordinators for transactions to

142

which Node-Y is participant of are called neighbors of Node-Y with

respect to WFG(T K). In Figure 6.4, the neighbors of Node-Y with respect

to WFG(TK) are Node-X and Node-Z.

After merging two WFGs of T K or adding an edge in WFG(T K), the new

WFG(T 0 is sent to all the neighbors of Node-Y with respect to WFG(T K).

b) Building sub-phase: In this sub-phase, the WFG created in the last sub-phase

is modified by adding more T-nodes. This sub-phase can be explained from

the view of the coordinator and participant nodes (refer Figure 6.4):

View of the participant node ofT K, Node-Y

i) Upon receiving WFG(T K): When Node-Y receives the propagation of

WFG(T K) message from another node, it checks if there are any common

T-nodes in any of the WFGs at that node and WFG(TK). If there are any,

then that WFG is merged with WFG(T K). If the new WFG obtained by

merging is different from both the WFGs, then the new WFG(T K) is sent

to the neighbors of Node-Y with respect to WFG(T K). On the other hand,

if there are no common T-nodes between WFGs, then WFG(TK) is stored

and no action is taken. In Figure 6.4, after WFG(T K) is merger with

another WFG, the new WFG(T K) is sent to neighbors of Node-Y with

respect to WFG(TK) i.e., to Node-X and Node-Z.

143

Coordinator ofT K

Participant ofT a

Coordinator ofT L

Participant ofTK

l.b.(ii)

Node-Z

TK-+ W(b) R(c)
/

l.b.(ii)

TL-+ W(c) R(d)

Node-Y

l.b.(i)

Figure 6.4 lllustrates the building sub-phase of the algorithm

View of the coordinator node of TK, Node-X

ii) Upon receiving the propagation message containing WFG(T K) or upon

addition of aT -node ofT K to WFG(T K): The procedure is similar to that of

the participant.

c) Deletion sub-phase: Whenever a transaction finishes execution at the local

node or a lock-grant message is received, its WFG is modified by deleting the

T-node or edge, respectively. This can be explained from the view of the

coordinator and participant of transaction T L (refer Figure 6.5).

144

View of the coordinator node ofT L, Node-Y

i) Upon receiving the lock-grant message: When the coordinator of

transaction TL, Node-Y, obtains the lock-grant message of TL which was

held by TH earlier, edge TL---+ TH in WFG(TL) at that node is deleted.

Later, a delete-edge T L ---+ T H message to neighbors of Node-Y with

respect to WFG(T L) is sent.

ii) Upon commitment of a transaction: After TL is successfully committed at

Node-Y, delete-node ofT L message is sent to its neighbor of Node-Y with

respect to WFG(TL). Node-Y also deletes the T-node of TL and all its

outgoing edges from WFG(T L).

We assume that delete-edge and delete-node messages are stored at all the

nodes sending these messages until all other nodes in the registry become

aware of these messages.

View of the participant node of TL, Node-X

iii) On receiving delete-edge TL---+ THor delete-node TL messages: If Node-X

has WFG containing either T L or T H, then on receiving these messages

they are propagated to neighbors of Node-X with respect to WFG(TL).

Also, WFG(T L) deletes edge T L ---+ T H and T -node T L corresponding to

message types delete-edge TL---+ TH and delete-node TL, respectively. IfT-

145

r;;-'\

node TL is deleted, then all the outgoing edges connected to its T-node are

deleted.

Coordinator ofT K

Participant ofTH

Coordinator ofT L

Participant ofTK

TK-+ W(b) R(c)
/

Node-Y

1 (... elete-edge T L-T H 1 (') .c. 111~........,.=~2:....:..:...:.:__ .c. 1 .
delete-node TL 1 (") .c. 11

1.c.(iii)

~ Node-Z

Figure 6.5 lllustrates the deletion sub-phase of the algorithm

2 Victim selection phase: Whenever a T -node or an edge is added to a WFG or two

WFGs are merged, then the node at which WFG was modified checks for a

deadlock cycle. If deadlock cycles are detected, then a deadlock cycle is selected

for resolution as follows:

If more than two deadlocks are detected, then the cycle with smallest length is

first selected for resolution. If the selected deadlock cycle is of length two, then

146

the algorithm goes to the abort phase directly where one of the transaction is

aborted. Otherwise, in order to make sure that the deadlock exists, the algorithm

goes to the confirmation phase.

The process of victim selection can be explained as follows:

Within a detected deadlock cycle, the transaction with the highest weight is

selected as a victim. If two or more transactions have the same highest weight,

then the transaction which starts its execution at the node in the registry with the

lower priority is selected as a victim. If two or more transactions starts its

execution at this lower priority coordinator, then the transaction with the highest

transaction ID is selected as a victim.

Any node which detects a deadlock cycle selects a victim transaction. If the

deadlock cycle is of length of two, the node sends the abort message to the

coordinator node of the victim transaction. On the other hand, if the deadlock

cycle is of length more than two, the node which detects deadlock cycle sends the

initiate-confirmation message to the coordinator node of the victim transaction.

The message contains the WFG of the deadlock cycle along with the victim T

node.

3 Confirmation phase: Upon receiving the initiate-confirmation message, the WFG

is merged with the WFG at the local node. If there is a deadlock cycle, then the

victim node (i.e., the coordinator of victim transaction) initiates the confirmation

phase. This phase serves two purposes:
147

• Makes sure that the deadlock really exists. This is demonstrated with the

following example.

Coordinator ofT K Coordinator ofT L

T K-+ W(b) R(c)

TL-+W(c)R(~

Coordinator ofT" Coordinator ofT N

~(b)W(d) ~

TN-+ R(c) W(e)
Node-Z Node-W

Figure 6.6 lllustrates that the deadlock cycle, T K ---+ T L ---+ T H ---+ T K. does not exist in

the system at the time of resolution

Example 6.2: Consider the set up shown in Figure 6.6. Node-X detects

deadlock cycle, TK ---+ TL ---+ Tu ---+ TK, in WFG(TK) at that node. Node-X

selects Tu as a victim of the deadlock cycle. Meanwhile, Node-W detects

another deadlock cycle, TN ---+ T L ---+ TN, and sends the abort ofT L message to

the coordinator of TL, Node-Y. Node-Yon receiving the message, aborts TL.

Node-X unaware of these events sends the abort of Tu message to the

148

coordinator of TH, Node-Z. Now, Node-Z unaware that TL has already been

aborted by Node-W, aborts TH. When TH was aborted, there was no deadlock

cycle containing T H in the system. As no single node has the global view of

the system a false deadlock exists in the system. The protocol must ensure that

the deadlock really exist in the system at the time of resolution.

Figure 6.7 illustrates that two deadlocks simultaneously exist in a WFG

• All the nodes in the registry abort the same transaction irrespective of the

topology of the WFG of the victim T -node. This is demonstrated with the

following example.

Example 6.3: Consider the setup shown in Figure 6.7. It consists of two

deadlock cycles, i.e., TK---+ TL---+ TH---+ TK and TN---+ TL---+ TH---+ TN. As

detection of deadlock is performed in a distributed fashion and there is no

total ordering among the messages, no single node in the system may have the

global view of the WFG as shown in the figure. One of the nodes in the

registry which detects only the former deadlock cycle selects T H as victim and

aborts it. Later, other node which detects only the latter deadlock cycle, selects

149

TL as a victim and aborts it. In summary, the algorithm aborts both TH and TL

but aborting either one of them would have resolved the deadlock.

The confirmation phase can be explained from the view of the victim node and its d

participants (i.e., coordinators of other transactions in the deadlock cycle. Please refer

Figure 6.8.)

View of the of victim node, coordinator ofT K, Node-X

a) Check if T K is still running: First, the coordinator of the victim transaction, T K,

checks if T K is still running. At any point in the execution of this phase, if T K

is aborted, then victim node Node-X sends the delete-node T K message to d

participants, if not already sent, and goes to the continuance phase.

b) Sends the confirmation-request message: The victim, Node-X, sends the

confirmation-request message to its d-participants along with TK's

information (i.e., weight of the transaction, Transaction ID, its coordinator's

priority).

c) Upon receiving confirmation messages: If the victim node receives a positive

confirmation message from all its d-participants, then the algorithm goes to

the abort phase where the victim transaction is aborted. On the other hand, if

Node-Y receives the negative-confirmation message from any one of the d

participant, then it sends no-deadlock cycle to all the d-participants and the

algorithm goes to the continuance phase.

150

d) Victim node receives the information about other victim nodes: This means

that its d-participants are part of another deadlock cycle. Node-X sends its

WFG to the victim of another deadlock cycle. Another victim node upon

receiving the WFG from the victim node constructs a global WFG and

resolves deadlocks one after another. Among the set of victim nodes, one final

victim node is selected and the abort message is sent to the victim's

coordinator node. Then, it goes to the abort phase.

Victim node, coordinator of T K d-participant, coordinator ofT L

TL---+ R(d)

3.a
3.6~--------------------~~~ 11I 3.d 3.o,f,g

+------------- 2

rfl•••n•<>nr coordinator ofT H

Node·V

Figure 6.8 Illustrates the confirmation phase of the deadlock algorithm

151

View of the d-participant - T L' Node-Y

On receiving the confirmation-request message, one of the following cases can

occur:

e) TL has not sent a positive-confirmation message to another deadlock cycle:

The information about the victim transaction (i.e., weight of the transaction,

Transaction ID, its coordinator's priority) is stored and a positive

confirmation message is sent to victim node.

f) TL has sent a positive-confirmation message to the victim of another deadlock

cycle: This means that T L is already involved in another deadlock cycle. The

coordinator of T L sends the information about the victim node of another

deadlock cycle to which it had sent the positive-confirmation message.

g) T L has already started a confirmation phase: This means that T L is a victim

transaction of another deadlock cycle and is waiting for a confirmation

message from at least one d-participant. The coordinator of TL appends TL's

information (i.e., weight, ID, coordinator's priority) and forwards it to the d

participants to which it is waiting for. If the coordinator ofT L receives it own

probe, using victim selection procedure, it selects one final victim among the

set of victim transactions and sends the abort message to the final victim node.

On the other hand, if Node-Y had already sent a positive-acknowledgement

message to a victim node earlier and now receives the no-deadlock message from

152

it, then the positive-confirmation message is acknowledged. This means that if T L

at Node-Y receives any new confirmation-request from another victim

transaction, then the positive-confirmation message can be granted to the new

request.

4. Abort phase: The coordinator of the victim transaction starts this phase on

receiving the abort T K message or as per the decision made by the victim node in

the confirmation phase. It aborts the victim transaction, T K. deletes the

corresponding T -node from WFG(T K) and propagates delete T -node T K message

to d-participants in the deadlock cycle. This can be explained from the view of the

coordinator and the participant ofT K (refer Figure 6.9).

Coordinator of the victim T K

TK-+ R(c) W(b)

Node-X TL-+ R(d) W(c) R(e) Node-Y

4.a

n
4.b

Participant

Node-Z
No de-W

Figure 6.9 Illustrates the abort phase of the deadlock algorithm

153

View of the coordinator of T K' Node-X

a) Node-X deletes the T-node of TK and all its outgoing edges in WFG(TK). It

sends the delete-node ofT K message to all its d-participants of deadlock cycle.

View of the d-participant, the coordinator ofT L, Node-Y

b) Upon receiving the delete-node TK messages for transaction TK, Node-Y

deletes the T -node ofT K and all its connecting edges. Then, Node-Y similarly

propagates the delete-node T K message to its participant nodes.

5 Continuance phase: During this phase, at least one node in the deadlock cycle of

T L knows that the deadlock does not exist. Later, all the d-participants become

aware of this through the message propagation. Hence the deadlock is

successfully resolved.

6 As all the transactions in a WFG finishes execution, eventually that WFG at all

the nodes are deleted. Once all the transactions in the system finish execution, the

algorithm comes to a halt.

6.3 Correctness proof

First, we show that if a deadlock cycle really exists in the system, then it will be

detected eventually. Then, we show that a deadlock victim selection is made

deterministically. Lastly, we show that if a transaction is aborted to resolve a

deadlock, then such a deadlock really exists at the time of resolution in the system.

154

Theorem 1: At least one of the nodes in the registry which is involved in a deadlock

cycle detects it.

Proof: Let us assume that a deadlock really exists in the system. Then, there exists a

cyclic wait among transactions which executes at two or more different nodes. We

know that at a node, if some global transaction is waiting for a lock which is held by

another global transaction, then a WFG containing those two transactions is

constructed at that node. Later, any modification to this WFG is propagated to the

node's neighboring nodes with respect to that WFG. By this method of propagation,

nodes which are coordinators of the global transactions in a deadlock will eventually

receive the propagation message. Hence, any one of these nodes can detect the

deadlock cycle.

Proof is complete.

Lemma 1: For a given deadlock cycle, if the algorithm detects the same deadlock at

more than one d-participant node, then all of them will select the same victim.

Proof: Let us assume that a deadlock really exists. Then by Theorem-1, at least one

of the nodes in the registry detects the deadlock. As message propagation and

merging of messages is uniform, all the nodes which construct the WFG for a

transaction will construct the same WFG for that transaction, eventually. For the

selection of the victim transaction, the factors considered are weight of the victim

155

transaction, priority of the node in the registry and transaction ID. No two

transactions in the system can have all these parameters in common. Hence the victim

transaction is selected deterministically.

Theorem 2: Only true deadlocks are resolved. That is, if a victim transaction is

aborted in a deadlock cycle, then such a deadlock really exists in the system at the

time of resolution.

Proof: Let us assume that a victim transaction is selected by one of the nodes in the

deadlock cycle. During the confirmation phase, the algorithm checks if all the

transactions which are a part of the deadlock cycle are still running, and are not

involved in the resolution of another deadlock cycle simultaneously. The participant

of the deadlock cycle sends a positive-confirmation message to the victim node, only

if the transaction is still running and is not involved in a deadlock with any other

transaction in the system. Therefore, one victim in a cycle is uniquely selected and

aborted. In this way deadlock resolution is deterministic.

6.4 Discussion

A weight is assigned to a T -node of a WFG based on the ranking for request types of

the transaction. The ranking for each type of requests can be explained as follows:

156

1. Optimistic write request: The transaction with this operation has already finished

the execution phase of the primary transaction. The basic protocol does not abort

this transaction. Therefore, this kind of request is assigned the lowest rank.

2. Pessimistic write request: The transaction with this operation can both read and

write a data item requested from the other node. Therefore, this kind of request is

assigned the lower rank than transaction with pessimistic read.

3. Pessimistic read request: As the transaction with this operation only reads a data

item, this request is assigned the higher rank than pessimistic write request.

4. Optimistic read request: The transaction with this operation has already finished

the execution phase of the primary transaction. Even if another transaction which

is conflicting with this transaction in the global deadlock cycle is aborted, this

transaction may still be aborted by the replication protocol due to conflicts. That

is, a preceding conflicting transaction, which has already committed, may have

written a data item read by the transaction. This request is assigned the highest

rank.

The algorithm is designed in such a way that the deadlock detection is performed by

the propagation of messages. That is, all nodes in the system do not receive these

messages in the same order. Also, these propagation messages are sent only among

neighboring nodes. Once a deadlock is detected by any one of the nodes, the victim is

selected and the algorithm resolves the deadlock in a coordinated fashion. The main

benefit of our algorithm is that it does not abort any transaction due to a false
157

deadlock (i.e., the deadlocks which do not exist at the time of resolution). Our

algorithm minimizes the number of transactions aborted to resolve the deadlocks. If

the victims of two or more deadlocks are selected such that aborting one of the

victims resolves another deadlock also, then only one transaction is aborted. The

algorithm resolves the complex configuration of deadlocks deterministically.

The occurrence of deadlocks in our algorithm is directly proportional to the number

of global transactions in the system. It also depends on the number of factors, such as

the data item locking time, the number of data items locked by the transactions and if

the lock on the data items has been requested pessimistically or optimistically. The

global transactions having only the S-optimistic-request do not cause deadlocks in the

system. In general, if all the remote locks of the global transactions are requested

optimistically, it reduces the chances of deadlocks.

If most of the deadlocks in the system are of length two as in conventional database

system [GJ81], then, our algorithm performs efficiently. But as the length of the

deadlock cycle increases, the number of messages propagated in the system increases

and algorithm's performance decreases.

The main differences between the protocols for the fully replicated system and the

partially replicated system are the decision of when to request the locks on data items

and the nodes to which the change-records of these transactions are sent. The decision

of when to request the locks can affect the likeliness of the occurrence of deadlocks

but does not affect the protocol for deadlock detection and resolution. Another

158

difference is that the global ROTs may be involved in the distributed deadlocks in

partially replicated system. This is because a global update transaction may be

holding a lock of a data item and requesting a lock from another node which is held

by a sub-transaction of a global ROT. Another sub-transaction of the same global

transaction, in turn, may be waiting for the lock held by the global update transaction,

which creates a cyclic wait of locks among the transactions. This problem can be

solved by aborting the global ROTs by timeout mechanism. That is, an abort message

is sent to the coordinator of the global ROT and the coordinator aborts the

transaction.

159

Chapter 7

Web Service discovery using UDDI

In this chapter, we discuss the discovery of Web Services using UDDI.

7.1 Introduction

UDDI registries are accessed by service providers and service requestors. In the

registry, data items are only owned by service providers. The service requesters do

not own any data item. They only query for services. A service provider may also

query services published by another service provider. Ideally, a service provider in a

·session looking for services updated by other service providers expects to see those

updates in the order of their execution. The protocol discussed in chapter 4 does not

ensure this. This can be illustrated with the following example.

Example 7.1: Consider service providers, namely, P1 and P2, in the UDDI registry

which own business entities BE1 and BE2, respectively (refer to Figure 7.1 for the

data structure of the business entities). These providers are in a close collaboration on

certain project. The service providers Pt and Pz execute Tt, T3, T4 and Tz, T5, T6, T7,

Ts, respectively, in their sessions. Similarly, service requestor R1 executes T9 and T 10

in a session (refer Table 2). The sessions of Pt. Pz. and R1 are St. Sz, and S3,

respectively. We assume that in a given session, transactions are ordered serially. A

transaction in a session starts its execution only after the previous transaction
160

submitted to the system in that session commits. That is, in Table 2, T3 and T4

belonging to session St are executed such that, T4 starts its execution only after T3

commits. The notation 'Ts:= Read(BSu):T4' means that Ts reads data item BS11

written by T 4·

Figure 7.1 lllustrates the data structure of BE1 and BE2

The internal organization of entities in the registry is such that entities of the same

service provider are in custody of different nodes. That is, entities BE1, BS 11 , BS12,

BT11 , BT12, BT13, BT14, tM1 owned by P1 may be in the custody of different nodes in

the registry. Similarly, entities owned by P2 may be in custody of different nodes.

Transactions of the same session may be executed at different nodes. (That is, their

coordinators are different nodes.) Please note that T1 and T3 are conflicting

transactions, as they update the same data item BS12. Similarly, T1 and T4 are

conflicting transactions. But, T3 and T4 are non-conflicting transactions.

161

81 ofPt 82 ofP2 83 ofRt

(owner of BE1) (owner ofB~) (service requestor)

T1:= lnsert(BE1, BSu, BS12, T 2 := Insert(BEz, BS21, BSzz,
BTu, BT12, tM1) BT21,BTzz,tMz)

T3:= Update(BS12)

T4:= Update(BSu)

Ts:= Read(BSll):T4

T6:= Read(BS12):T1

T 7:= Update(BSzi)

Ts:= Read(BS12):T3 T9:= Read(BS21):T1

T 10:= Read(BS!2):T1

Table 2 lllustrates the execution of the transactions by service providers, P1 and P2,

and service requestor R1

In session S2, T5, and T6 read from T4, and T1. respectively. T4 and T1 were executed

in session S1. That is, the first read operation of S2 reads from the latest transaction,

T4, and the later operation reads from the older transaction, T1 (instead of T3). This

transaction inversion in S2 happens because the replication protocol discussed in

chapter 4 does not impose order on the execution of T 3 and T 4 at a node, as they are

162

non-conflicting transactions. That is, service provider P2 in S2 does not read an

increasing state of session S1• This could affect subsequent operations in S2• For

example, if T 6 had read BS 12 updated by T 3, instead ofT 1. P2 might not have updated

BS21 in T7.

Note that in the example, there is a dependency between the operations of S1 and S2•

Session S2 reads a data item updated in session S1 and later executes its operation.

That is, Ts of Sz reads from T4 of S1• Therefore, there is an indirect dependency

between T7 and T3, as T3 is ordered before T4, in S1• In session S3, the first operation

reads from T 7, and the later operation reads from T 1 (instead of T 3). This is an

inconsistent view, as order of execution of transactions at any node should be T 1 -

T3- T7. That is, if an operation in session reads from T7, the next operation should at

least read from T 3, in-order to provide an increasing view of the system. Our aim is to

provide a mechanism to take care of these inconsistencies.

This problem can be handled by ensuring strong session lSR [DS04]. A simple

method to ensure strong session 1 SR is to induce a conflict between every

consecutive transaction of the same session. In this method each session contains a

session variable called the ticket data item. Every transaction in a session reads and

updates the same ticket data item. Therefore, when a transaction is executed using the

replication protocol in chapter 4, every two consecutive transactions of the same

session conflict with each other. Also, the message propagation mechanism in chapter

4 will ensure that all the update transactions in a session will be delivered and

163

executed at all nodes in the same order. When this method is employed in Example

7.1, the execution ofT 4 at a node implies that T 3 has already committed at that node.

In session S2, as T 6 is executed after T s, T 6 would read from T 3 instead ofT 1. Also, T 6

which is a ROT when submitted to the system using the ticket method would induce a

direct visible conflict between T3 and T7. Therefore, another session would read the

transactions in order, T3 followed by T7•

The main disadvantages of this method are the following:

• Increases the number of global transactions in the system: Consider a local

transaction submitted to the system. The ticket method enforces this transaction to

read and update the ticket data item. As the ticket data item may be in custody of a

node, other than the coordinator node, such a local transaction is converted to a

global transaction.

• Increases the number of update transactions in the system: As all the transactions

in a session update the ticket data item, this method converts all ROTs to update

transactions.

The above two factors decrease the performance of the system. We propose a better

solution, which is presented in the following section.

7.2 Protocol to ensure strong session 1SR

In this chapter, we extend the mechanism discussed in chapter 4 to ensure strong

session lSR. The aim of the protocol is to execute all the operations (i.e.,

164

transactions) of the session in the same order at all the nodes. The new protocol can

be explained as follows:

The protocol requires the additional variables to ensure strong session lSR. The two

variables required are:

• Variables in the input stream of the user session

An operation in a session is uniquely identified by <Session-10, Operation-10>.

This indicates the last operation performed by the user in the session. This

identifier is included along with S-array (introduced in chapter 4) in the input

stream of the user session.

• Variables at a node in the registry

At every node, along with the state array (N-array), a session array (SN-array) is

also stored. The session array (denoted by SN[1,2,3, ... ,q]) indicates the latest

operations in sessions 1,2,3, ... ,q that have been executed at that node. That is, one

dimensional array, SNx[l,2,3, ... ,q], denotes operations of sessions 1,2,3, ... ,q that

have been executed at Node-X. Therefore, SNx[p] indicates the last operation of

the session p that has been executed at Node-X.

Execution of a transaction:

The protocol discussed in chapter 4, allows two consecutive non-conflicting update

transactions in the same session to be executed at different nodes without any

165

coordination. That is, when a transaction of a session is executed at a node, its

previous transaction in the same session may not be executed at that node. But, this

violates the criterion of strong session lSR. In this chapter, the protocol is extended to

ensure strong session lSR.

The session variables are modified before and after the execution of both the primary

transaction of update transaction and the ROT. This procedure does not modify the

refresh transaction of an update transaction in chapter 4. Note that these procedures

are executed in addition to the procedures in chapter 4. That is, we assume that the

underlying mechanism ensures guarantee provided in chapter 4.

Session_ update:

This procedure is executed after the execution of the transaction in a session at a

node.

Let us assume that a transaction in a session is executed at a node. Let the transaction

be mth operation (i.e., transaction) in a session, Sid. After the transaction is executed

at Node-X, the session variable stored at that node and session variable in the user

input stream are updated. That is,

SNx[Sid] := m II session variable stored at Node-X
<Sid, m> II session variable stored in the user input stream

In the above code, SNx[Sid] indicates the operation that was recently executed in the

session, Sid, at Node-X. The user input stream is updated to indicate that mth

transaction of the session has been executed.
166

Session_read:

This procedure is executed before the execution of the ROT and the pnmary

transaction of an update transaction in a session at a node. Please note that for the

protocol in chapter 4, the session_read procedure is not performed before the

execution of the primary transaction of an update transaction.

Let us assume that the session, Sid, has already executed a transaction which is mth

operation in that session. The session variable in the input stream of the user session

contains the identifier of mth transaction (<Sid, m>) executed in that session. The next

transaction, (m+ 1)th operation, in the same session can execute at its coordinator

node, if that node has already executed mth operation of the session. Otherwise,

(m+1)th operation waits until mth operation of the session is committed at that node.

That is,

Wait until (SNx[Sid] ~ m)

then execute the (m+ 1)th transaction

In the above code, SNx[Sid] indicates the operation that was last executed in the

session, Sid, at Node-X. It waits until mth transaction of the session is executed at that

node.

The creation of the change-record:

After the primary transaction commits at its coordinator node, the change-record of

the transaction is created at the coordinator node. The creation of the change-record

167

for an update transaction is similar to that discussed in chapter 4. In an effort to

ensure strong session lSR, the identifier of the operation within the session,

<Session-ID, Operation-ID>, is added to the change-record of the transaction.

The major difference in creation of the change-record compared to chapter 4 is that a

change-record is created even for a ROT. The procedure to create a change-record for

a ROT is similar to the update transaction explained above. The ROT is also assigned

an identifier <Session-ID, Operation-ID>, which indicates the operation number in its

session.

After the delivery of the change-record of a ROT at a node, it is neither executed nor

stored at that node. The change-record of an update transaction is implemented with

the refresh transaction protocol of chapter 4.

Propagation of the change-record:

The message propagation mechanism discussed in chapter 4 avoids the false

causality. As a result, a change-record of a transaction to be delivered waits only for

the preceding conflicting transactions in the system. We modify the session guarantee

mechanism, such that a change-record of a transaction in a session not only waits for

its preceding conflicting transactions, but also for previous transactions executed in

the same session which are non-conflicting. This condition is required to ensure

strong session lSR, as for every pair of committed transactions in a session, the first

transaction's commit should precede the second transaction's commit in one copy

history. Please note that this process of waiting for the previous transaction is not
168

only for an update transaction but also for a ROT. This kind of guarantee is indeed

required to ensure a consistent view between multiple sessions, as indicated in

Example 7 .1. In the example, the service requestor session, S3, does not have the

global view of all the operations of S1 and S2• The transaction execution discussed in

chapter 4 is distributed, facilitating the primary transaction to execute at any node,

which suits the configuration of UDDI. As a result, T9 and T10 of S3 read from T7 and

T1, respectively, even though the primary transaction ofT3 has committed before the

primary transaction of T7 could start. In [DS04], they do not consider the issue of

consistent view in multiple sessions, as they consider the centralized system where all

the update transactions are executed at a single node. Commit order of all the update

transactions are fixed in the global serialization graph at one node, and they are

propagated and committed in the same order at all the nodes. As a result, ensuring

guarantees between multiple sessions is simple in [DS04].

The new message propagation mechanism to ensure the causal delivery of messages,

such that strong session lSR criterion is satisfied can be explained as follows:

Let the transaction, T K, be mth operation in session, Sid. The change-record ofT K is

sent from Node-X to Node-Y. The procedure given below waits until all the

conflicting transaction ofT K and previous transactions in that session, Sid, have been

delivered at Node-Y. After delivery, the variables at Node-Y are updated to indicate

the delivery event.

169

Wait until (Ny[y][1,2,3, ... ,x-1,x+1, ... ,n] 2::: DK-cod1,2,3, ... ,x-1,x+1, ... ,n]
&& SNy[Sid] = m-1)

then deliver the change-record ofT K
Ny[y][x] := Px[x]
SNy[Sid] := m

In the above code, DK-COL[1,2,3, ... ,n] contains the maximum USNs in each column of

DK[1,2,3, ... ,n][1,2,3, ... ,n]. That is, the D-array of two dimensions is converted to

one dimension, maintaining USNs of all the preceding conflicting transactions. The

first condition ensures that the state array of Node-Y is compared with the D-array of

T K. This condition is similar to the condition in the message propagation mechanism

in chapter 4. The second condition ensures that the last operation of the same session

has been executed at the present node before delivery. This is a new condition which

is required to ensure strong session 1SR. After the delivery of a message the state

array of Node-Y is updated to indicate the event of message delivery. Then, the

session array at the node is updated to indicate that a change-record of a transaction

has been delivered.

7.3 Correctness proof

We have to show that our present extension to protocol in chapter 4 satisfies strong

session 1SR.

Theorem 1: The algorithm ensures strong session 1SR.

170

Proof: Let T K and T L be executed in the same session. In one copy history T K

precedes T L (T K ~ T L), if one of the following two conditions is satisfied:

(1) T K conflicts with T L and precedes it.

(2) T K commits before T L starts its first operation of the transaction.

The protocol in chapter 4 ensures that all conflicting transactions are delivered in the

same order at all the nodes. Later, all these transactions are executed in the same

order. As the protocol in this chapter is built on the protocol in chapter 4, ordering

imposed on the transactions is maintained. In message propagation mechanism, the

first condition is the same as in chapter 4. Therefore, (1) is satisfied.

We have to show that if TK commits before TL starts its execution, then they are

executed in the same order at all the nodes. Both T K and T L can either be update or

read only transactions. Therefore, we have the following cases:

Case 1: Both T K and T L are update transactions.

Before execution of each primary transaction of T L at the coordinator, the

session _read procedure ensures that T K has been executed at that node. Later, the

message propagation mechanism ensures that the change-record of T L is delivered

only after the delivery of the change-record ofT K· Hence, these two transactions are

delivered and executed in the same order at all the nodes.

Case 2: At least one of them is a ROT.

171

Let TK be a ROT. After its execution, a change-record is created for the ROT, TK, and

broadcast to all nodes. Later, TL is executed at its coordinator node only if the

change-record of T K has been implemented at that node. The message propagation

mechanism ensures that these two transactions are delivered in the same order at all

the nodes. Hence, when T L is executed at a node all its previous transactions in that

session have been executed at that node.

Case 3: Both TK and TL are ROTs.

We know that TL executes at a node only after the change-record ofTK is delivered at

that node. Also, T K is delivered at that node only after all the dependent change

records in other sessions have been delivered at that node. Similarly, these dependent

change-records are delivered only after its dependent change-records have been

delivered. Therefore, when T L is delivered at that node, all its indirectly dependent

transactions have been delivered.

From above three cases we can conclude that all the transactions in the same session

and conflicting transactions in multiple sessions are executed in the same order at all

the nodes.

The proof is complete.

7.4 Discussion

The replication protocol designed in chapter 4 orders only the conflicting transactions

at all nodes in the system. A user session in the system views only these conflicting

172

transactions in increasing order of their execution. Therefore, the non-conflicting

transactions executed in the same session may not be seen in the same order by

another session. This violates strong session lSR as the transactions executed in the

same session are not ordered by their commit time at all nodes.

In this chapter, we have extended the replication protocol in chapter 4 to ensure

strong session 1 SR. The execution of transactions in our system is distributed. That is,

different transaction in a session can be executed at different nodes. This holds for

both update and read only transactions. An interesting feature is that the operations

executed in two different sessions may be ordered globally, due to read only

transactions executed in a session. Therefore, any session reading these transactions

should obtain a consistent global view. In order to provide a consistent global view,

change-records are generated even for the read only transactions. The ordered

delivery of these change-records at all nodes makes an indirect conflict visible to

another session. The main disadvantage of this method is that, as change-records are

created even for a read only transaction, the number of messages propagated in the

system will be very large. Therefore, the system performance decreases.

The performance of the system can be increased for applications where one

organization does not have visibility of operations of second organization with the

third organization. That is, in a loosely coupled application, visibility is such that it

supports an increasing view of peer to peer organizations. A suitable correctness

criterion in such an application would be to provide an increasing view of one session

173

to another session. That is, a session provides a Monotonic Reads session guarantees

to a session, if those operations were read from the same session. On the other hand,

if those operations were read from different sessions, then it does not ensure

Monotonic Reads session guarantees to the session considered above. This criterion is

stronger than the session guarantee discussed in chapter 4, as it orders even the non

conflicting transactions which are executed in the same session, but weaker than

strong session lSR, as two ROTs are not ordered if the data items were read from

transactions updated by different sessions. The implementation of this criterion is

simple, as it is the same as in the above method, except that, there is no need to create

change-records for read only transactions.

174

Chapter 8

Conclusion

The major contribution of this thesis is the replication protocol for both fully and

partially replicated systems and the deadlock algorithm. The replication algorithm is

fully distributed as transactions can be executed at any node. The algorithm is such

that an update transaction can be executed with the minimum synchronization

requirement, providing lower response time. The session guarantee mechanism

allows a user to execute a transaction at any node and ensures that a user in a session

obtains an increasing state of the registry. This increases availability of the system

and provides an efficient load balancing. Even though our protocol requires high

communication volume and storage capacity, we provide a fine grained session

guarantee with a distributed execution. All these resource are required as we are using

each of them to increase the performance of the system. The major contribution in the

partially replicated protocol is to decrease the unnecessary communication cost by

employing the multicast mechanism. Then the violation of the liveness property

created due to multicast affects the basic replication protocol and the session

guarantee mechanism. We provide a solution to above problems with suitable

extensions.

The major contribution of our deadlock algorithm is to detect and resolve a deadlock

without aborting a transaction, which is not a part of deadlock cycle at the time of

175

resolution. The algorithm is capable of handling the deadlock cycles with complex

configuration.

Lastly, we extend the session guarantee mechanism to ensure strong session ISR

which is required in UDDI context. Our major contribution is providing strong

session ISR in distributed environment where a transaction in a session can be

executed at any node.

Some of the future directions of our research are as follows:

• In our work we have consider replication of data items in a single registry. In

UDDI registries, data items may be replicated in more than one registry. This kind

of replication imposes new kind of restrictions, such as autonomy, freshness

requirement etc. It is a reasonable requirement to give autonomy of different

business registry to their respective organizations, as there is lack of trust among

them. Achieving one copy serializability at a global level in a federated registry is

an interesting problem. Also, if an organization replicates data items in its registry

using publish-subscribe mechanism, it is difficult to ensure any known correctness

criteria. This is because the underlying message propagation mechanism does not

ensure synchronized delivery. Devising a suitable correctness criterion in such an

environment is an interesting problem.

• Presently, UDDI registries are only used for answering simple queries. As UDDI

matures, it will be used for the execution of complex queries in Web Service

176

composition. Usually, execution of complex queries decreases the system

performance, as data items have to be locked for a longer duration of time.

Composing partial results from different queries would be a better alternative. A

scheme to provide a consistent snapshot of the registry by composing the partial

results of different queries is an interesting problem.

177

Bibliography

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno and Vijay Machiraju, Web

services concepts, architectures and applications (Springer Verlag 2004).

[ATSGB05] F Akal, C Ttirker, H Sebek, T Grabs andY Breitbart, Fine-grained lazy

replication with strict freshness and correctness guarantees, In Proc of International

Conference on Very Large Data Bases (VLDB). 2005: 31

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and

recovery in database systems (Addison-Wesley, 1987).

[CORBA] Common Object Request Broker Architecture,

http://www.omg.org/technology/documents/spec_catalog.htm

[CRR96] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi, "Deferred Updates and Data

Placement in Distributed Databases." In Int. Conf on Data Engineering, 1996, IEEE

Computer Society (1996) 469--476

[DCOM] Distributed Component Object Model,
178

http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-01.txt

[DS04] K Daudjee and K Salem, Lazy database replication with ordering guarantees.

In Proc of International Conference on Data Engineering (ICDE 2004): 424-435

[DS05] Khuzaima Daudjee, Kenneth Salem, A Pure Lazy Technique for Scalable

Transaction Processing in Replicated Databases. In Proc of 11th International

Conference on Parallel and Distributed Systems (ICPADS 2005), 20-22 July 2005,

Fuduoka, Japan: 802-808

[ebXML] Electronic Business using eXtensible Markup Language,

http://www.ebxml.org/specdrafts/ebXML_TA_v0.9.pdf

[FM82] M. J. Fischer and A. Michael. Sacrificing Serializability to Attain High

Availability of Data in an Unreliable Network. In Proc ACM PODS, 1982: 70-75.

[GHOS96] J. Gray, P. Helland, P. O'Neil, and D. Shasha, The danger of replication

and a solution, In Proc of ACM Special Interest Group on Management Of Data

(SIGMOD), pages 173-182, 1996.

179

[GJ81] J. Gray et al., "A Straw-Man Analysis of the Probabilty of Waiting and

Deadlocks in a Database System," IBM Research Report, 1981.

[GK081] J. Gray, P. Homan, H. F. Korth, and R. L. Obermarck, 1981. A straw man

analysis of theprobability of waiting and deadlock in a database system. Tech. Rep.

RJ 3066, IBM Research Laboratory, San Jose, Calif.

[HSAE03] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawal, Amr El Abbadi:

Epidemic Algorithms for Replicated Databases. IEEE Trans. Know!. Data Eng. 15(5):

1218-1238 (2003)

[KA98] B. Kemme and G. Alonso. A suite of database replication protocols based on

group communication primitives. In Proc of International Conference on Distributed

Computing Systems (ICDCS) 1998: 156-163

[KAOO] B. Kemme and G. Alonso, Don't be lazy, be consistent: postgres-R, a new

way to implement database replication, In Proc of International Conference on Very

Large Data Bases (VLDB) 2000: 134-143.

180

[NT88] G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of

distributed systems. In Proc. of the ACM Symp. on Principles of Distributed

Computing (PODC), pages 248-262, Toronto, Canada, August 1988.

[S84] Schroeder, M.D, Experience with grapevine. ACM Transactions on Computer

Systems (TOCS) 2, 1984: 3-23.

[SLK04] C. Sun, Y. Lin and B. Kemme, Comparison of UDDI registry replication

strategies, In Proc of IEEE International Conference on Web Services (ICWS) 2004:

218-225

[SOAP] Specification: Simple Object Access Protocol, Version 1.2.

http://www.w3.orgffR/soap12

[SS83] F. B. Schneider and R. D. Schlichting. Fail-stop processors: an approach to

designing fault-tolerant computing systems. TOCS, 1(3):222--238, 1983.

[TDPSTW94] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B.

Welsh, Session guarantees for weakly consistent replicated data. In Proc of

Conference on Parallel and Distributed Information Systems (PDIS) 1994: 140-149

181

[TG98] Tarafdar, Vijay K. Garg, Happened before is the wrong model for potential

causality. TR-PDS-1998-006, UTA

[UDDI] Speciation: Universal Description, Discovery and Integration (UDDD,

Version 3.0.1.

http://uddi.org/pubs/uddi-v3.0.1-20031 014.pdf

[WSDL] Specification: Web Services Description Language (WSDL).

http://www.w3.org/2002/ws/desc/.

[X84] Xerox Corporation. Clearinghouse Protocol, XSIS 078404. Stamford,

Connecticut, 1984.

182

