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Abstract 

Web Services is supposed to be the next biggest revolution in IT industry as it has created a 

platform-neutral environment for business processes to communicate. Because of the 

interoperability provided by Web Services, the number of companies using it is expected to 

grow exponentially. As such, the number of queries to name directory services for Web 

Services, Universal Description Discovery and Integration (UDDI) registries, is expected to 

be very high. To facilitate high availability, UDDI version 3 suggests replication of data in 

the registry. 

For quick response and scalability, a lazy replication scheme is appropriate for UDDI 

registries. Here, update transactions are executed at primary node(s) as primary transactions, 

committed, and then updates are transmitted to other nodes asynchronously, which are then 

executed at those nodes as refresh transactions. Then, due to the updates at different nodes 

being done at different times, a user may read a recent version of a data item at one node and, 

later, read an older version of the same or some other related data item at some other node. 

As a result, the user may obtain an inconsistent view of the registry. For a user accessing 

different nodes in operations of a session, a session guarantee mechanism is required to 

ensure a consistent view of the registry. 

In this work, we propose a transaction execution protocol that (i) uses a lazy replication 

scheme, (ii) ensures one copy serializability, and (iii) incorporates a fine grained session 

guarantee mechanism. Transactions are classified as update or read only transactions and also 

as local or global transactions. We extensively study these transaction types and design a 
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protocol that exploits the compatibility among them to achieve high performance. The 

protocol is an extension of two phase locking protocol which has flexibility to execute a 

transaction pessimistically or optimistically. Message propagation mechanism is designed 

such that updates of conflicting transactions (only) are delivered causally. 

The protocol is designed first for a fully replicated system, and then extended to the partially 

replicated system. Lastly, we propose a deadlock detection and resolution mechanism. 
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1.1 Web Services 

Chapter 1 

Introduction 

The World Wide Web (WWW) has revolutionized the field of Information 

Technology (IT). The WWW has changed the way people think and communicate. 

Web Services is expected to be the next big revolution in IT. The WWW boom was 

basically due to its capability to communicate between an application and its users. 

The hype around Web Services is due to its promise of enabling the communication 

between the applications without user intervention, because of which companies can 

integrate and reuse software that they or others have already built, historically an 

expensive and time-consuming process. Although communication between 

applications was possible in traditional frameworks, such as CORBA [CORBA] and 

DCOM [DCOM], Web Services is considered a landmark technology because of its 

standardization and wide acceptance in the IT community. The World Wide Web 

Consortium (W3C) defines Web Services as "a software application identified by a 

Uniform Resource Identifier (URI), whose interfaces and bindings are capable of 

being defined, described, and discovered as Extensible Markup Language (XML) 

artifacts. A Web Service supports direct interactions with other software agents using 

XML-based messages via Internet-based protocols". Service Oriented Architecture 

(SOA) has fueled the growth of Web Services by enabling dynamic discovery and 

usage over the Internet. 
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Usually, a Web Service has the following properties: 

• Service Description: It explains what a Web Service can do. The public interface 

is published along with the Web Service, so that a user knows how to invoke it. 

This description should be at least human-readable so that a developer can 

integrate the Web Service. Typically, this is machine-readable using W3C's Web 

Service Description Language (WSDL) [WSDL]. WSDL uses XML grammar to 

identify all public methods, method arguments and return values. 

• Service Discovery: The consumers of Web Services go to the service broker to 

find one of the providers through a static or dynamic brokerage system. This 

brokerage system is basically a name service registry. Universal Description, 

Discovery, and Integration (UDDI) [UDDI] is the standard XML based registry 

for Web Services. 

• Service Interactions: Simple Object Access Protocol (SOAP, although this full 

name has been dropped in Version 1.2 of SOAP specification) [SOAP] is the de­

facto standard for information exchange between Web Services. Initially, SOAP 

was designed as remote procedure call over HTTP. Nevertheless, SOAP can be 

used in a variety of messaging systems and can be delivered via a variety of 

transport protocols. The major difference between SOAP and other frameworks, 

such as CORBA and DCOM, is that SOAP is language and platform independent 

(whereas others are not). 
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Sfti'VIce 
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Figure 1.1 Web Services usage scenario* 

The Web Services usage scenario can be explained with Figure 1.1 as follows: 

1. The service provider prepares a WSDL document describing the services it 

provides. The provider publishes (registers) the WSDL document with an UDDI 

registry. 

2. The client queries the UDDI registry. The registry returns not only descriptive 

information about the service provider but also information regarding where and 

how the service can be invoked. 

3. The client interacts with the provider using the above information. 

Let us consider an example scenario where the Web Services technology can be used. 

Example 1.1: Let us consider a trusted environment where every business 

organization trusts every other organization. Consider such organizations to be Intel, 

• http://en. wikipedia.org/wiki!W eb_service 
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Microsoft, and Apple Computers. Let us assume that Intel manufactures a new 

hardware device. Microsoft releases the operating system for Intel's hardware. Apple 

Computers releases the device driver, a software which can be used by the old legacy 

system. When the hardware device is deployed to the user, there may be 

incompatibility problems which are traditionally very difficult for end users to 

resolve. Even intermediate users may have difficulty in finding out if the problem is 

with the hardware, operating system, or device driver. 

Web Services technology can solve this problem. Whenever there is such an 

incompatibility, the software stops executing the module and an exception is reported. 

Each of the modules is associated with a category. The program now queries the 

UDDI registry for Web Services using the category of the module. Once the search is 

successful, it invokes the Web Service at the provider site. The solution for the 

problem is dependent on service selection and its invocation at the provider's site. 

That is, if the provider is Intel, it may replace the hardware. On the other hand, if the 

provider is Microsoft or Apple Computers, they may install an update to the existing 

software. This kind of automation enables even a novice user to handle the latest 

hardware without worrying much about the internal details. This kind of automation 

is not possible in other name service directories, such as ebXML [ebXML], as they 

allow users to define their own data structure. The strength of the UDDI data model 

lies in its precise definition of all its entity types. 
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1.2 UDDI and Replication 

UDDI is commonly regarded as a cornerstone of the Web Services paradigm. UDDI 

registries are accessed by providers who publish Web Services, requesters who look 

for Web Services and by other registries that need to exchange information. The 

customers of UDDI use APis for interacting with the registry. APis in UDDI can be 

classified into Publish and Inquiry Application Programming Interfaces (APis) which 

are used by publisher of service and all customers, respectively. As only publishers 

use publish API and all the consumers use inquiry API, the number of queries is 

expected to be very high. In order to provide high availability and fault tolerance, 

version 3 of UDDI has moved to replicated UDDI registries, with full replication. The 

replication process imposes the overhead of maintaining consistency among replica 

copies. Although consistency issues have been considered in the conventional 

databases, they do not consider the configuration as specified in the UDDI 

specification. As the number of queries to UDDI registries is expected to be very 

high, accessing UDDI is likely to become bottleneck. 

The main requirements of an UDDI registry are high throughput, low response time, 

high availability and accurate access to the entries in it. As UDDI is still evolving, 

consistency issues are still unaddressed. 
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1.3 Objectives of the thesis 

Web Services is considered as the next big wave in the field of the Information 

Technology because of its interoperability with heterogeneity. As the user's 

dependency on Web Services increases, UDDI registries, the name directory services 

for Web Services are likely to become the bottleneck for their usage. UDDI version 3 

has adopted replication of data items in an effort to solve this problem. In this thesis 

we develop the following subsystem to address the consistency issues in UDDI: 

1. Replication protocol for fully replicated registries: The most commonly accepted 

correctness criterion in replicated database systems is one copy serializability, in 

which a user sees the entire system as a one copy system. As tight 

synchronization among nodes for replication of data items is not suitable for 

UDDI registries, a lazy replication scheme [HSAE03, DS04, ATSGB05] (in 

which data items are updated first at one node and the updates are propagated 

later to other nodes) is appropriate. However, in this system, as the updates at 

different nodes are done at different times, a user may read recent version of a 

data item at one node and later may read an older version of the data item at 

another node. As a result, the user may obtain an inconsistent view of the system. 

To avoid this, that is, to ensure a consistent view of the system, a session 

guarantee mechanism is required. 

The two phase locking protocol is the basic component of the replication protocol. 

If a transaction has at least one write operation, it is called an update transaction; 
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otherwise, it is a read-only transaction. We also classify transactions as local or 

global. We propose a two-phase locking protocol that achieves high performance 

based on the compatibility among different types of transactions. The protocol has 

flexibility to execute a transaction, either pessimistically or optimistically. It also 

provides a fine grained session guarantee. This part of the work appears in the 

proceedings of the 17th lASTED International Conference on Parallel and 

Distributed Computing and Systems (PDCS 2005), Phoenix, USA, November 

2005. 

2. Replication protocol for partially replicated registries: In partially replicated 

systems, updates of a data item need to be sent only to those nodes which have a 

copy of that data item. Therefore, for enhanced performance, a multicast 

mechanism is appropriate, instead of the broadcast mechanism that is used in fully 

replicated systems. The replication protocol and the session guarantee mechanism 

are extended to suit this requirement of partially replicated systems. 

3. Deadlock resolution mechanism: Distributed deadlocks are possible as the 

replication protocol uses non-conservative locking mechanism. A mechanism that 

handles deadlocks, by means of detection and resolution is proposed. The 

advantages of the mechanism include resolution of complex configuration of 

deadlocks deterministically and non-abortion of transactions due to deadlocks 

which do not exist at the point of resolution. 
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4. Session guarantee mechanism: The session guarantee mechanism is designed to 

ensure a serialized view of transaction's updates executed in a session if these 

transactions conflict with each other and, in addition, ensures a consistent view of 

the operations of a service provider's session. 

1.4 Structure of the thesis 

The rest of the thesis is structured as follows. Chapter 2 presents a brief overview of 

the challenges and related work in conventional replicated databases and session 

guarantees. In Chapter 3, we introduce the architecture of UDDI. In the transactional 

framework for replication, we classify the transactions based on their operations and 

execution location. Then, we consider session guarantees in a lazy replicated registry. 

Chapter 4 deals with the replication protocol. We also provide the mechanisms for 

message propagation and session guarantees. A correctness proof is given. A protocol 

for partial replication is considered in Chapter 5. This protocol is an extension of the 

replication protocol in Chapter 4. In Chapter 6, we give an algorithm to detect and 

resolve distributed deadlocks. The algorithm is capable of detecting complex 

configurations of deadlock cycles. Deadlocks are resolved by aborting a transaction in 

the cycle. In Chapter 7, we extend the session guarantee mechanism discussed in 

chapter 4 to UDDI context. Chapter 8 concludes the work and provides directions for 

the future work. 
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Chapter 2 

Background 

In this chapter, we first explain the basic concepts of UDDI and then the replication 

protocol. 

2.1 UDDI 

Unlike ebXML [ebXML], UDDI does not allow users to define their own data model. 

UDDI defines data structures and API's for publishing service descriptions in the 

registry (publish API) and querying the registry to look for published descriptions 

(inquiry API). 

An UDDI information model is composed of instances of the following entity types 

(refer Figure 2.1). Their descriptions are as follows: 

1. BusinessEntity (BE): Business or organization that typically provides Web 

Services. 

2. BusinessService (BS): A collection of related Web Services offered by an 

organization described by a BE. 

3. BindingTemplate (BT): Technical information necessary to use a particular Web 

Service. 
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4. tModel (tM): The cryptic name stands for "technical model", representing a 

reusable concept, such as a Web Service type, a protocol used by Web Services, 

or a category system. 

5. PublisherAssertion: Describes, with respect to a BE, the relationship the BE has 

with another BE. 

6. Subscription: Describes a standing request to keep track of changes to the entities 

described by the subscription. 

businessEntity: Information about 
the party who publishes information 
about a service 

businessEntities contain 
businessServices 

r- businessService: Descriptive 
'- information about a particular 

family of technical services 

businessServices contain 
bindingTemplates 

I 

-rr=================~ 
- bindingTemplate: Technical 

information about a service entry 
point and implementation specs 

tModel: Description of 
specification for services or value 
sets. Basis for technical fingerprint 

bindingTemplates contain 
references to tModels. These 
references designate the interface 
specifications for a service 

Figure 2.1 Core UDDI data structure 
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It is easy to see from Figure 2.1 that one BE may contain multiple BS. Similarly, one 

BS may contain multiple BT. Thus, a container relationship exists among these 

entities. But BT has an external link to the tM. So, there is a reference relationship 

between these two. Note that UDDI (or the UDDI specification) only defines logical 

organization and is independent of how they are stored physically. 

The UDDI registry has the following components: 

1. White Pages: Contains address, contact, and known identifiers of a business. 

2. Yellow Pages: Contains industrial categorizations based on standard taxonomies 

for a business. 

3. Green Pages: Contains technical information about services exposed by the 

business. 

2.2 Replication 

Replication of data items is one of the most common methods to increase the 

availabily and reliability of a system. Replication increases the availability by 

facilitating reading of a data item from a local node instead of a remote node. 

Reliability is ensured by redundancy, that is, if one of the nodes fails, another can 

take over and still keep the system running. 
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2.2.1 Replica Control 

The price paid for providing availability and reliability is keeping all the replicas 

consistent. That is, whenever there is an update on any one of the data items, it has to 

be propagated to all the nodes. Maintaining all the nodes consistent is the aim of 

replica control. Replica control has been studied extensively in conventional 

databases. In a replicated database scenario, the most commonly accepted correctness 

criterion is one copy serializability (lSR) [BHG87]. To a user, the replicated database 

system appears as a single non-replicated database system. This correctness criterion 

is the strongest known, as it ensures commitment of a transaction at all the nodes if it 

commits at any one node, and all of the nodes reach the same consistent state. Other 

weaker correctness criteria, such as eventual consistency, allow concurrent 

conflicting transactions at different nodes to commit at the nodes they are submitted. 

The execution may not be serializable. Later, reconciliation operations [S84, FM82, 

X84] are performed to bring the database to a consistent state. The database 

replication issues can be divided into two parts - execution of transactions and 

propagation of updates between nodes. The transaction manager (TM) takes care of 

execution of transactions and the broadcast primitives take care of propagation of 

updates. 

The two main classes of replica control strategies are lazy [HSAE03, DS04, 

ATSGB05] and eager [.KA98, .KAOO]. In eager replication, for the execution of a 

transaction there is communication between all the nodes. Only after coordinating 

with these nodes does the transaction commit. The user obtains a response from the 
12 



system only after the transaction has successfully committed at all those nodes. In 

lazy replication, a transaction is first executed and committed at one node called the 

primary node and updates are propagated later to the other nodes called secondary 

nodes, asynchronously. Transactions executing at the primary and secondary nodes 

are called primary transactions and refresh transactions, respectively. As soon as the 

primary transaction is executed, the user obtains the response from the system. 

2.2.2 Eager Replication 

Eager replication essentially implements the Two Phase Commit protocol (2PC) 

[BHG87]. After executing a transaction, one of the nodes is selected as a coordinator 

which initiates the voting phase. All the nodes participate in the voting phase. The 

coordinator based on the votes executes a decision in the decision phase. As per the 

decision, the transaction commits at all nodes or does not commit at any node. The 

value for a data item at all the nodes will be the same at any point in time. There is no 

uncertainty period where different nodes have different values for a data item. Hence, 

this method is easy to facilitate to the user a notion of a single logical copy of the 

database. 

2.2.3 Lazy Replication 

2PC, which is a part of the eager replication, is often not feasible for real life 

applications, as it requires a lot of coordination among the nodes. [GHOS96] shows 

that as one node is added into the replicated system, a ten times increase in 

coordination is required which causes a thousand times increase in deadlock or 
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reconciliation rates. This scalability problem can be solved by relaxing the atomicity 

requirement of the eager replication. As a result, replica nodes may not be mutually 

consistent. In lazy replication, the need for the atomic commitment protocol is 

relaxed. It increases the availability by decreasing the response time of the replicated 

system. This also makes the system scalable with the increase in the number of nodes, 

as it decouples the primary transaction execution and propagation of updates to other 

nodes. Therefore, the lazy replication scheme is popular among commercially 

available databases. UDDI has used the lazy replication strategy [UDDI]. 

Inconsistency arises in the lazy replication as replicated nodes may be out of 

synchronization for a certain period of time. A user interacting with the system with a 

sequence of transactions may obtain an inconsistent view if different replica nodes are 

accessed over a period of time. A session guarantee mechanism aims to give a 

consistent view of the replicated system to each user, individually. 

2.2.4 Session Guarantee 

"A session is an abstraction for a sequence of read and write operations performed 

during execution of an application" [TDPSTW94]. The lazy replication may create 

multiple stale versions of the same data item at different nodes. A user is not aware of 

an internal organization of the replicated database and to him the system appears as a 

single copy database. The user's operations in a session is scheduled by the system 

such that the first operation reads a data item at a node, and a later operation reads the 

same data item from another node which is stale as compared to the previous 

14 



operation. This is an inconsistent view to the user. The session guarantee mechanism 

is tailored to provide a consistent view of the system on a per user basis. Different 

types of session guarantees are described in [TDPSTW94] as follows: 

1. Read Your Writes: If any read R operation follows write W operation in the same 

session where both operations are performed on the same data item, then R should 

read the updates of at least W (or higher versions). 

Example 2.1: If W(b) is performed at Node-X, then R(b) of the same session 

cannot be executed at Node-Y until the update of W(b) is incorporated at that 

node. 

2. Monotonic Reads: If read R1 occurs before read R2 in the same session and R1 

accesses Node-X at time t1 and R2 accesses Node-Y at time t2, then R2 should at 

least see the database state which was present when R1 was executed at Node-X. 

Example 2.2: Let R1(b) be executed at Node-X which has already executed a set 

of write operations, namely w~. Wz, W3, ... ,W0 • Later at Node-Y, Rz(c) of the 

same session cannot be executed until changes of W 1, Wz, W3, ... ,W0 have been 

incorporated at that node. 

3. Writes Follow Reads: At every node, writes made during the session are ordered 

after any writes whose effects were seen by previous reads in the same session. 

Example 2.3: Let R1(b) occur before W2(c) at Node-X in the same session. R1 has 

read the data item b written by W0(b). Then, at every node, order of execution 

should be W 0 followed by W 2. 
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4. Monotonic Writes: A write is executed at a node if it includes all previous writes 

that were executed in the session. 

Example 2.4: Let W1(b) occur before W2(c) in the same session. Then, at any 

node, when W 2 is being executed, W 1 would have already been executed. 

Providing session guarantee in a transactional framework becomes more complex 

than that considered in [TDPSTW94], as a transaction usually consists of multiple 

operations. While ensuring session guarantee for a transaction, only the previous 

transactions (both active and inactive transactions) in the session which directly or 

indirectly conflict with the transaction are considered. That is, if the present 

transaction does not conflict (directly or indirectly) with any of the previous (active 

and inactive) transactions in the session, then the present transaction need not obey 

any of these session guarantee types. We provide our own classification of session 

guarantee where we consider read only transactions (ROTs) and update transactions, 

separately. Types of session guarantees are ordered based on their strength; the latter 

ones being stronger than the former. 

1. Monotonic Updates: An update transaction is executed at a node, if all the 

preceding conflicting update transactions executed in the system in the same 

session have been executed already at that node. This session guarantee is the 

weakest of all types of session guarantees. This is similar to Monotonic Writes 

guarantees in [TDPSTW94]. 
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2. Updates Follow Read Only: At every node, an update transaction follows those 

update transactions whose effects were seen by the ROTs in the same session. 

This session guarantee is similar to Write Follows Reads guarantees in 

[TDPSTW94]. It is stronger than Monotonic Update guarantees as ordering 

between a ROT and an update transaction is considered stronger than ordering 

between two update transactions. Please note that Monotonic Update guarantees 

and Update Follows Read Only guarantees are essential to ensure lSR in a 

replicated system. 

3. Read Only Follow Updates: At a node, a ROT sees the effects of all the update 

transactions (i.e., conflicting transactions as the ROT can only see preceding 

conflicting transactions) being executed in the same session. This is similar to 

Read Your Writes guarantees in [TDPSTW94]. This type of session guarantee is 

stronger than the above two, as without this criterion lSR may be ensured. 

4. Monotonic Read Only: At a node, a ROT sees the effect of all previous 

transactions being executed by the same session. That is, a ROT sees the effect of 

both the ROTs and update transactions executed previously. This is similar to 

Monotonic Reads in [TDPSTW94]. This is the strongest of all the above types of 

session guarantees, as even two ROTs are ordered globally. As both transactions 

of the session are ROTs, this criterion is not required to ensure lSR. 
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Chapter 3 

Replication Model 

This chapter introduces the basics of the replication model on which our protocol is 

based. First, we start with the architecture where we describe the configuration used 

in UDDI. Then, we describe the communication model used by our protocol. Later, 

we explain a transactional model with a session guarantee mechanism. 

3.1 Architecture 

We consider a fully replicated registry as adopted in Version 3 of UDDI specification 

[UDDI]. In this system, each data item is replicated at all the nodes. Our model 

facilitates complete distribution and loose synchronization among the nodes. In a 

distributed registry with n nodes, each data item is in the custody of exactly one node. 

In UDDI, changes to a data item must be first executed at the custodian node and 

these changes are propagated and executed at other nodes. Different data items may 

be in custody of different nodes. Therefore, changes to a set of data items may be 

executed at different nodes and all the latest updates can be found at no single node. 

In our model, the primary transaction executes the transaction at a node in the 

registry. Later, changes of the transaction are propagated as a change-record to other 

nodes. Each change-record is associated with a monotonically increasing unique 

number, called the Unique Sequence Number (USN), which is assigned at the node 

where the primary transaction is executed. It should be noted that the USN generated 
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at a node should not be compared with USNs generated at another node (i.e., USN is 

not globally unique). Change-records are implemented as refresh transactions. Our 

protocol minimizes communication, coordination, and synchronization required for 

execution of primary transactions. We assume the fail stop model where a faulty node 

stops functioning completely [SS83]. 

Node-Y 

Node-X Node-W 

Node-Z 

Figure 3.1 Illustrates the configuration in UDDI 

Figure 3.1 shows the configuration of UDDI. Node-X is the custodian of data item b. 

Similarly, data items c, d, and e are in custody of Node-Y, Node-Z, and Node-W, 

respectively. A change to data items b, c, d, and e is first updated at Node-X, Node-Y, 

Node-Z, and Node-W, respectively. 
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3.2 Communication Model 

We assume that the system provides a reliable broadcast of the messages. Reliable 

broadcast ensures that messages sent by a correctly working node are received by all 

the correctly working nodes eventually in the same order. The reliable broadcast of 

messages does not impose any ordering on messages at the global level. If Node-X 

sends message Y and Node-Y sends message <J>, these two messages may be delivered 

in different orders at different nodes. Other types of broadcast primitives are causal 

and total order. The total order broadcast ensures that all messages are delivered in 

the same order at all the nodes. The causal broadcast ensures that if the broadcast of 

message <1> causally precedes the broadcast of message Y, then at no node, is Y 

delivered before <J>. 

The reliable broadcast provides the weakest ordering guarantee of the three types of 

broadcast primitives. Total ordering imposes a total order on all the messages in the 

system. This requirement is too strong in a distributed transaction processing 

environment, such as replication. It causes reduced concurrency, resulting in lower 

transaction throughput of the system. A better tradeoff between these two extremes is 

the causal broadcast, which imposes partial ordering of messages such that any two 

messages are ordered at the global level only if there is a happens-before relationship 

between them. When this is translated to the transaction processing context, it means 

that two transactions are ordered if the change-record message of the second 

transaction is sent after that of the first transaction has been received at a node. This is 
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termed as the false causality in [TG98] where two messages are ordered just because 

the second message occurs after the first, but the first has not caused the second event 

to occur. In the transaction processing context, we avoid the false causality among the 

messages, by inducing ordering between two messages only if there is a dependency 

between transactions. 

Example 3.1: Consider the setup as shown in Figure 3.2. We illustrate the false 

causality using the following transactions: 

TH = R(b) W(c) 

Node -Y Node -Z 

Case 1 
-=r=::;;::;;:-------!-_.M • M is received before N 

• Causality not important 
because of no dependency 

N • False causality 

Causality essential because of 

dependency 

Figure 3.2 lllustrates the false causality 
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In case 1, Node-X executes TK and sends M as the changes of TK to Node-Y and 

Node-Z. Node-Y after receiving M executes T L and sends N. This happens-before 

relationship at Node-Y orders M before N at all the nodes. This ordering is not 

important, as T K and T L are independent transactions. This communication primitive 

is the false causality. In case 2, Node-X sends M to Node-Y and Node-Z. Node-Y 

receives M and executes TH and sends N1
• Because of the dependency between TK 

and TH, M before N1 ordering has to be maintained at all the nodes. Therefore, 

causality is important in this case. 

Facilitating the flexibility for delivery of independent transactional messages in any 

order at all the nodes yields higher concurrency in distributed transaction processing. 

3.3 Transactional Model 

A transaction basically consists of a set of read and write operations. A transaction is 

usually associated with ACID properties: 

• A - Atomicity: Either all operations of a transaction are executed or none of them 

is executed. 

• C - Consistency: Guarantees that the execution of the transaction transforms the 

database from one valid state to another. 

• I - Isolation: Noninterference of concurrent transactions. That is, one transaction 

will not see the intermediate values of the other. 
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• D - Durability: Committed updates are never lost, and their effect persists in the 

database beyond the transaction's lifetime. 

A TM and scheduler of the database system take care of preprocessing, scheduling, 

and execution of all the transactions in the system. For simplicity, in the rest of the 

thesis, we abstract that the TM will take care of all these functionalities. Basically, the 

concurrency control mechanism employed for execution of transactions can be 

classified as pessimistic or optimistic. Typically, locking is employed for the 

pessimistic concurrency control where locks are first acquired on all the data items 

and then the transaction is executed and committed. In the optimistic method, the 

transaction is first executed and then it is validated to find out if the execution is 

correct. Only after the successful validation, does the transaction commit. The Two 

phase locking (2PL) is a type of locking mechanism where all the locks required by 

the transaction are acquired in the first phase. In the second phase, those locks can be 

released gradually. It should be noted that once 2PL enters the second phase, no locks 

can be acquired further. This clearly distinguishes a growing phase which is followed 

by a shrinking phase. If a scheduler acquires all the required locks before the 

execution starts, then it is called a conservative scheduler. Otherwise, it is called an 

aggressive scheduler. If all the locks are released atomically in the shrinking phase, 

the locking mechanism is called the Strict Two Phase Locking (strict-2PL). 
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Two transactions are said to be conflicting if they access the same data item. Based 

on the type of operations accessing the data item, conflicts are classified into 

following types: 

• WW conflict: The operations of both transactions are write operations. 

• WR conflict: The operation of the first transaction is a write and that of the 

second transaction is a read. 

• RW conflict: The operation of the first transaction is a read and that of the second 

transaction is a write. 

• RR conflict: The operations of both transactions are read operations. 

We have listed RR conflicts for the sake of completeness. Usually, and in the rest of 

the thesis, a conflict refers to either of the WW, WR or RW conflicts. 

In distributed transaction processing, execution of a transaction involves participation 

of a number of nodes. In order to ensure ACID properties of transactions, atomic 

commitment protocols, such as the Two Phase Commit (2PC), are used. 2PC has two 

phases - voting phase and decision phase. In this protocol, one of the nodes is 

selected as a coordinator. In the voting phase, the coordinator sends a vote request to 

all the other nodes known as participants. Each of the participants sends Yes or No 

vote to the coordinator. In the second phase, the coordinator, based on the responses 

received, decides either to commit or abort the transaction. If all the participants vote 

Yes, the protocol decides to commit. Else, if any of them vote No, it decides to abort. 
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This decision message is sent to all the participants. Upon receiving the decision 

message, based on the decision, each of the participants either commits or aborts the 

transaction. Hence all the nodes reach the same consistent state. 

A history (H) indicates the order in which the operations of the transactions are 

executed relative to each other. The serialization graph (SG) for H, is a directed graph 

whose nodes are the transactions that are committed in H and whose edges are all T K 

- TL (K =f. L) such that one of TK's operations precedes and conflicts with one of 

T L' s operations in H. 

In replication, ensuring atomicity of execution of a transaction at all the nodes is not a 

feasible option. Therefore, among commercially available databases, a relaxed 

atomicity criterion, such as lazy replication, is popular. In this thesis, we consider a 

lazy replicated database which uses the locking mechanism. We assume that each 

node has its own TM and uses the locking mechanism, such as 2PL, with an added 

flexibility of giving locks to transactions being executed at other nodes. In short, one 

node can request a lock from another node. In our system, we assume that the 

custodian node of a data item acts as a lock granting agency for that particular data 

item. 

3.3.1 Local and global transactions 

We classify transactions as local and global based on communication and 

coordination requirement for the execution of the primary transaction. This 
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classification is based purely on the execution location of the transaction. The 

execution location is decided by types of operations and data items the transaction 

accesses. The difference between local and global transactions is that a local 

transaction does not require any communication or coordination with any other nodes 

in the system for a primary transaction to commit, whereas a global transaction does. 

Example 3.2: Consider the setup as shown in Figure 3.3. Node-X, Node-Y, Node-Z, 

and Node-W are custodians of data items b, c, d, and e, respectively. Following are 

the set of transactions executed in the system. 

TK =W(c) 

TL = R(b) R(c) R(d) 

TH = W(b) W(e) 

Ta = R(b) W(d) 

Transactions are classified into the following categories and sub-categories: 

1. Local Transactions: 

1.1. ROTs: As we consider the fully replicated registry, a ROT can read any data 

item at a node. In Figure 3.3, T Lis a local transaction, as it is a ROT. 

1.2. Local update transactions: These transactions access data items in the custody 

of a single node and are executed at its custodian node. In Figure 3.3, TK is a 

local transaction. 
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2. Global Transactions: A primary update transaction accessing data items in the 

custody of remote nodes is a global transaction. 

2.1 Read access at other nodes: The coordinator of a primary transaction accesses 

data items in custody of other nodes in read operations. In Figure 3.3, T a is a 

global transaction. 

2.2 Write access at other nodes: The coordinator of a primary transaction accesses 

data items in the custody of other nodes in write operations. In Figure 3.3, T H 

is a global transaction. 

~.-Node-Y 
TK = W(c) -Local ...... ..-...... 
TL = R(b) R(c) R(d) ·Local<:~ .. - - .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. - .. - .. _ .. ·, -·- .. . .. 
TH = W(b) W(e) -Global.., · ::;,.,.-···· ·· 

TG = R(b) W(d) 

Node-X 

Node-Z 

Figure 3.3 Illustrates of global and local transactions 
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In order to execute the primary transaction of a global transaction, we differentiate the 

roles of nodes in the system into the following types: 

1. Coordinator Node: Usually, one of the custodians of write data items is selected 

by the system as the coordinator. Even a node with the custody of read data item 

or which is not in custody of any data item of a transaction may become 

coordinator, but it would increase communication costs and make the data item 

inaccessible to other concurrent primary transactions. 

2. Participant Node: Custodians of other read and write data items of a global 

transaction are termed as participant nodes. 

3. Non-Participant Node: All the remaining nodes are termed as Non-Participants. 

Type Coordinator Participants Non-Participants 

TK=W(c) Local Node-Y - All others 

TL = R(b) R(c) R(d) Local Any node - All others 

T H = W(b) W(e) Global Node-W/X Node-X/W Node-Y &Z 

T0 = R(b) W(d) Global Node-Z Node-X Node-Y &W 

Table 1 Classification of transactions 
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Let us consider the assignment of these roles for transactions T K. T L. T H. and T 0 . 

1. TK: Usually, TK is executed at the coordinator node, Node-Y, as it is the custodian 

of data item c. 

2. TL: It is a local transaction which can be executed at any node. 

3. TH: Usually, the system will select either Node-W or Node-X as a coordinator for 

execution ofTH, as the custodians ofthe write data items are Node-Wand Node-X. 

If Node-W is the coordinator, Node-X will be the participant node or vice versa. 

Node-Y and Node-Z are non-participant nodes. 

4. Ta: Usually, Ta is executed at Node-Z as it is the custodian of the write data item 

of the transaction. Node-X is a participant node. Node-Y and Node-W are non­

participant nodes. 

3.4 Session Guarantee 

In this thesis, we facilitate a user in a session to observe a registry with a view that is 

increasingly up-to-date over time. This can be achieved by ensuring Read Only 

Follow Updates and Monotonic Read Only guarantees. We know that all the nodes in 

the registry start with the same initial state. Any new transaction executed in the 

system increases the state of the system. The primary transactions can be executed at 

different nodes in the system. A state transition diagram in our model is given in 

Figure 3.4. 
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Node-X Node-Y Node-Z Node-W 

~------------- ---------------------- ------------------ --------------

T1 = W(b) T3 = W(d) 

T 2 = R(b)W(c) T4 = W(e) 

Figure 3.4 Illustrates the state transitions among the nodes in the registry 

1 

Example 3.3: Consider the setup shown in Figure 3.4. S0, S1, S2, ••• ,S 11 indicate the 

states of nodes in the system. The global view of the registry indicating the present 

states of all the nodes cannot be obtained anywhere. Just for the sake of clarity, we 

30 



explain with a global view which would have occurred in the system. Execution of a 

transaction triggers a transition from one state to another. 

Let us consider the execution ofT 1 at Node-X. T 1 triggers a transition from state So to 

S1. The transactions in the system are T1, Tz, T3, and T4. There is no unique sequence 

in the execution of all these transactions. That is, the sequence of execution of 

transactions is different at different nodes. All the nodes in the registry start with the 

same initial state So and end with the same final state S11 • There is no intermediate 

shared state between all these nodes. There is an intermediate state shared by Node-Y 

and Node-Z, namely Sz. Also, S8 is shared by Node-X and Node-W. 

Example 3.4: Consider the setup shown in Figure 3.5. T11 and T12 are executed by 

User-A in a session. T21 and T22 are executed by User-Bin another session. User-A's 

transactions are as follows: 

T11 = W(b) 

T12 = R(b) W(c) 
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$JT21 
User-B T 22 ---->::vl':'lii'!TlT----~~~....._­

' I 

T1 2 =R(b)W(c---------~ 
Single copy registry 

Node-X 
T22 = R(b):...._ ___________ ~ 

W(c) t 
W(b) I ......... 

Figure 3.5 Snapshot of UDDI registry to illustrate session guarantee 

The primary transactions of T11 and T12 are executed at Node-X and Node-Y, 

respectively. As we employ a lazy replication scheme, we obtain a snapshot as shown 

in Figure 3.5, after execution of the following set of events in the given order. 

a. The primary transaction of T11 is executed at Node-X and the change-record is 

sent to all other nodes. 

b. The change-record ofT11 is received and executed at Node-Y. 

c. The primary transaction of T12 is executed at Node-Y and the change-record is 

sent to all other nodes. 
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d. The change-record ofT12 is received and executed at Node-X. 

e. Change-records of neither T 11 nor T 12 have been received at Node-Z or Node-W 

User-B's transactions in another session are as follows: 

T21 = R(c) 

T22 = R(b) 

As the registry is fully replicated, these two transactions can be executed at any node 

by the system. The user will not be aware about where transactions are executed 

because of replica transparency. At this point in time (referred to in Figure 3.5), the 

following transactions are executed in the given order: 

a. T21 is executed at Node-X 

b. T 22 is executed at Node-Z. 

User-B obtains the latest value of the registry when T21 is executed at Node-X. When 

he executes T22 at Node-Z, neither T11 nor T12 have been executed at that node so far. 

Therefore, he obtains the initial value of data item b in the registry. 

This is an inconsistent view because when one copy equivalence is considered, User­

B who has seen T 12. has not been able to see the previous conflicting transaction (T 11). 

As shown in Figure 3.5, User-B is said to have seen the decreasing state of the 

registry. This problem arises basically due to the lazy replication in a replica 
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transparent environment. This can be solved using session guarantees. In [DS05], this 

is termed as transaction inversion where a ROT precedes an update transaction in the 

serialization order, despite the fact that it follows the update transaction in the client's 

request stream. 

In general, as different transactions may execute the primary transaction at different 

nodes, the sequence of states at all the nodes may not be the same. If a user always 

reads and updates at only one node, the session guarantee is ensured trivially. This 

may be a major restriction, as efficient load balancing cannot be achieved. We 

provide the flexibility for consecutive transactions in a session to access different 

nodes. 

Our basic protocol explained in chapter 4 ensures lSR. In order to ensure lSR, it 

considers only update transactions in the system. This is because ROTs executed at 

different nodes may cause indirect conflicts and create a cycle in the global SG. Our 

protocol executes all update transactions such that, it constructs an acyclic SG at the 

global level. The ROT can read some consistent state from this global SG. The 

session guarantee mechanism built on basic protocol ensures that the ROTs see the 

increasing state of the system. 
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Chapter 4 

Replication Protocol 

The replication of UDDI poses new challenges as compared to conventional 

replicated databases. This is, basically, because of the concept of custodianship 

employed in UDDI. There are many configurations employed for lazy replication in 

the literature. [HSAE03] considers a replicated database, where every copy is a 

master copy. In this configuration, primary transactions can be executed at any node. 

[HSAE03] uses an optimistic approach, which leads to an increase in the abort rate 

with increase in the number of nodes and subsequent poor performance as the conflict 

rate increases. [DS04] considers the primary master-slave approach. With respect to 

the execution of primary transactions, this is a centralized approach, where all the 

primary transactions are executed at the same node. This configuration does not 

facilitate efficient load balancing as all the transactions have to be executed at the 

same node. This leads to poor performance, when the cost of execution (in terms of 

the time required to execute) is higher than the cost of communication (in terms of the 

time required to communicate). Also, the failure of the primary node causes loss of all 

the latest updates in the system. With respect to execution of the primary transaction, 

configuration in UDDI is different from the approaches studied in literature described 

above. In this chapter, we design a protocol which suits the above discussed 

requirements and is efficient for replicated UDDI registries. 
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4.1 Protocol 

Our protocol uses a locking mechanism. The locking mechanism is an extension of 

2PL which is designed such that once the primary transaction executes, the 

transaction's serialization order is fixed in the acyclic global serialization graph. Each 

node in the registry has its own TM. Usually, a TM uses 2PL [BHG87] for the 

execution of refresh transactions and ROTs. A node in the registry can request locks 

from another node for the execution of the primary transaction. 

Let us consider a registry with n nodes. Each transaction is associated with an Update 

Sequence Number (USN), which is unique at the node where its primary transaction 

is executed. The USN at a node increases monotonically. A transaction in a registry is 

uniquely identified by the pair <Node-ID, USN>. A state of the node can be defined 

as transactions that have been committed successfully at that node. Each of the nodes 

in the registry has a set of data structures. We list them with respect to a node, say 

Node-Y: 

1. A two dimensional array Ny[l,2,3, ... ,n][1,2,3, ... ,n] (denoted by N-array) indicates 

the state of Node-Y. Ny[y][y] is the USN of the latest primary transaction, TK, 

that was executed at Node-Y and has been committed successfully at that node. 

Ny[x][z] indicates the USN of the latest transaction whose primary transaction 

was executed at Node-Z with Node-Z as its coordinator and has been executed at 

Node-X that Node-Y is aware of. Thus, Ny[x][1,2,3, ... n] denotes the USNs of the 
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set of the latest transactions that have been executed at Node-X whose primary 

transactions were executed at Nodes 1,2,3, ... ,n, that Node-Y is aware of. 

2. A one dimensional present state array Py(1,2,3, ... ,n] (denoted by P-array) is 

Ny(y][1,2,3, .... n]. Py(x] denotes the USN of transaction whose primary 

transaction was executed at Nodes-X and also has been executed at Node-Y. 

3. A one dimensional array My[1,2,3, ... ,n] (denoted by M-array) indicates the set of 

the latest transactions which have been executed at all the Nodes 1,2,3, ... ,n that 

Node-Y is aware of. That is, My(x] denotes the USN of the latest transaction 

whose primary transaction was executed at Node-X and has been executed at all 

the other nodes, which Node-Y is aware of. 

After transaction T K is executed at the coordinator node, updates of the transaction 

are broadcast as a change-record to the other nodes. The USN of a transaction is 

assigned (at commit time of the primary transaction) to a change-record. A change­

record contains the following fields: 

1. Node identifier of the coordinator ofT K; 

2. The USN of transaction T K; 

3. Write operations with its values and read operations of transaction T K; 

4. The present state array (Py(1,2,3, ... ,n]) of the coordinator (optional); and 
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5. The dependency array (D-array) of TK. DK[l,2,3, ... ,n][l,2,3, ... ,n] of TK contains 

the USN of TK and USNs of all the preceding conflicting (directly and indirectly) 

transactions. 

A Change-record is stored at a node until it is explicitly deleted by the delete_change­

record procedure. 

Our protocol implements causal broadcast of messages. It ensures causal delivery of 

messages only among the messages of conflicting transactions, and hence, avoids the 

issue of false causality [TG98]. Messages which have to be delivered causally are 

change-record, lock-grant, and acknowledge messages. We provide separate 

protocols for each type of transactions - primary, refresh, and read only. Primary 

transactions request PT locks (PT-S and PT-X, representing read and write locks, 

respectively). PT locks are used to resolve the conflicts and decide the transaction's 

serialization order. Refresh transactions request RT locks. Our protocol is such that 

when a transaction has been granted a PT lock on a data item, its conflicting 

transaction can not be granted a RT lock. The local TM executes ROTs and refresh 

transactions (both local transactions) such that they ensure conflict serializability. All 

three types of protocols can be executed independently. 

4.1.1 For primary transaction T K 

The primary transaction protocol is basically a 2PL. Execution of a primary 

transaction has mainly five stages: 
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( 1) Lock acquisition phase 

a) Requests locks on data items which are m custody of the local node, 

atomically. 

b) May request a few locks at remote nodes also (for a global transaction). 

(2) Execution phase (executes the transaction) 

(3) Validation phase 

a) Requests locks at remote nodes from which they were not requested earlier 

(for a global transaction). 

(4) Abort phase (aborts & releases locks) 

a) Sends lock-release-request to nodes from which locks were requested earlier. 

(5) Commit phase (executes refresh transaction protocol, commits, creates change­

record, releases locks and broadcasts change-records). 

When a transaction starts, the coordinator node acquires locks on all the data items of 

which it is the custodian in stage (l.a), atomically. For a global transaction, the 

coordinator acquires locks for data items in custody of other nodes at their respective 

custodian nodes, either in stage (l.b) or (3.a). If all the required locks are obtained in 

stage (1 ), then execution is pessimistic. Otherwise, it is optimistic. The protocol 

executes either stage (4) or stage (5). We do not consider deadlock initially. We 

assume that when the TM at one node requests a lock from some other node, it will 
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obtain the lock within a finite amount of time. Figure 4.1 illustrates the primary 

transaction execution using a flow chart. The flow chart shows that if the primary 

transaction is executed pessimistically, then the validation phase is not executed. It 

executes either stage (4) or stage (5). 

Lock acquisition phase 

Execution phase 

Optimistic execution ~----.%.....------

Validation phase 

Abort phase 

(Releases locks) 

Pessimistic execution 

Commit phase 

(Executes refresh transaction 

protocol, Commits, Creates change­

record, Releases locks, Broadcasts 

change-record) 

Figure 4.1 Flow chart representing the execution of the primary transaction protocol 
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Figure 4.2 The primary transaction protocol with the coordinator's view for the 

execution ofT H 

Example 4.1: Consider the setup shown in Figure 4.2. Node-X, Node-Y, Node-Z, and 

Node-Ware custodians of data items b, c, d, and e, respectively. Let us consider the 

execution of the transaction T "' which writes b, c, and reads d. (Please note that the 

T H is different from T K used in the description of the protocol as T H in the example 

illustrates only limited set of cases.) The write data items band care in the custody of 

Node-X and Node-Y, respectively. The system selects Node-Y as the coordinator to 

execute TH. Node-Y requests the PT-X lock on data item b from Node-X, 
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pessimistically. The protocol reads the data item d, which is in custody of Node-Z, 

optimistically. The coordinator validates execution of the read operation of the 

transaction from Node-Z in stage (3). Participants are Node-X and Node-Z. Non­

Participant is Node-W. 

The execution of the primary transaction can be explained from the coordinator's and 

the participant's view. 

For Coordinator (Coordinator's view) 

Consider the execution of the primary transaction, TK, at the coordinator, Node-Y. 

(1) Lock acquisition phase: TK acquires the locks in two steps, namely, stage (l.a) 

and stage (l.b), executed in the given order. Once all the requested locks have 

been acquired the protocol goes to stage (2). 

(a) Requests PT-S and PT-X locks on the data items to which Node-Y is 

custodian, atomically. That is, TK obtains locks on all the data items in 

custody of Node-Y or does not obtain any lock. Only after completing stage 

(l.a) the protocol goes to stage (l.b). 

(b) The coordinator of T K decides which locks to request from participants now 

(stage (l.b)). It sends the PT-XIPT-S lock-request message (contains the type 

of locks and the data items on which locks are required) to the corresponding 

custodian nodes. 

(2) Execution phase: Transaction T K is executed. All writes are performed in a 

private workspace. 
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(3) Validation phase: T K validates the operations for the data items from which locks 

were not requested in stage (1). Validation is performed by sending messages to 

the corresponding participants using one or more of the following types of 

messages: 

(a) Read validate a data item: If a read operation on data item dis to be validated, 

then S-optimistic-request on data item d is sent to the custodian of data item d. 

The message contains transaction identifier, <Node-ID, USN>, from which 

data item d was read. (This can be obtained from the change-records stored 

locally.) 

(b) Write validate a data item: If a write operation on data item b is to be 

validated, then X-optimistic-request on data item b is sent to the custodian of 

data item b. 

(c) Read and write validate a data item: If the transaction has both read and 

written data item e without requesting locks pessimistically, then both X­

optimistic-request and S-optimistic-request on data item e are sent to the 

custodian of data item e. 

If the coordinator obtains a negative response from at least one participant, then 

the protocol goes to stage (4). Otherwise, upon arrival of positive responses from 

all its participants, it goes to stage (5). 
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(4) Abort phase: The protocol aborts transaction TK, releases all its PT locks (i.e., PT­

X and PT-S) at the local node, atomically. Then, sends a lock-release message to 

all the other participant nodes. 

(5) Commit phase: The protocol performs each of the following steps in the given 

order: 

a) Executes the refresh transaction protocol (explained later as the refresh 

transaction) forT K. 

b) Commits the primary transaction, T K· 

c) Generates the USN. Then, updates the state array, Nv, and creates the present 

state array, Py, the D-array, DK. Creates change-record for TK. 

d) Releases all the PT locks. 

e) Broadcasts change-records to all the nodes. 

Then, session_update procedure is executed. This procedure is discussed in section 

4.1.4. 

The data-structures at all the nodes in the registry have to be initialized when the 

replicated registry starts. Initially, there are no transactions in the system. Therefore, 

the state arrays at Node-X, Node-Y, Node-Z, and Node-W are initialized to zero 

value as follows: 

Nx[1,2,3, ... ,n][l,2,3, ... ,n]:= Nv[1,2,3, ... ,n][l,2,3, ... ,n] := Nz[l,2,3, ... ,n][1,2,3, ... ,n] := 

Nw[1,2,3, ... ,n][l,2,3, ... ,n] := 0 
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During the execution of the primary transaction of T K. arrays associated with the 

change-records are updated or created as follows: 

• Update of theN-array, Nv[1,2,3, ... ,n][l,2,3, ... ,n] at Node-Y 

Nv[Y] [y] := USN of primary transaction T K 

• Creation of present state array (P-array) Pv representing yth row of Nv 

Pv[1,2,3, ... ,n] := Nv[y][1,2,3, ... ,n] 

• Creation of D-array DK for T K 

DK[l,2,3, ... ,n][l,2,3, ... ,n] := 0 

DK[Y] [y] := USN of transaction T K 

For all x, which are participants ofTK, DK[x][y] := USN of transaction TK 

Let transaction TK conflict with a set of transactions namely TKI. Tl(2, ... ,TKP. WW, 

RW, and WR conflicts with TK are calculated at the local TM as follows: 

The change-records are stored at a node in the order of their execution. That is, the 

change-record of the latest transaction is stored at the top of the queue and that of the 

oldest transaction at the bottom. For each of the operations of T K, the conflicting 

operation in the change-record is searched, starting from top and then proceeding 

towards the bottom of the queue at that node. If a conflicting operation in the change­

record of T L is found, then T L conflicts with T K· The types of conflicts between T K 

and T L can be WW, WR, and R W. This procedure is continued for all the remaining 
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operations of T K· For a global transaction, instead of searching at a local node for the 

conflicting transaction (i.e., searching in change-records using the above procedure) 

on a data item in custody of another node, DKRM-array received along with lock-

grant/acknowledgement messages can be used. While the former method would also 

give the same result, the latter elimi~ates re-computation costs. 

The computation for DK of transaction T K can be performed as follows. Let D-arrays 

in change-records of conflicting transactions found at local nodes, namely T KI. 

Tl(2, ... , TKM be DK1, 01(2, ... , DKM, respectively. Let D-arrays in the lock-

grant/positive-acknowledgement messages of TKMI. TKMz, ... , TKP be DKMJ, DKMz, ... , 

DKP, respectively. Then, the code finds the most recent transactions that were 

executed at each node in the registry that conflict with T K as follows: 

for var = 1 to n, where n is the number of nodes 
for varp = 1 to n, where n is the number of nodes 

DK[ var] [ varp] := Max(DK1 [ var] [ varp], DK2[ var] [ varp], ... ,DKM[ var] [ varp], 
DKM 1 [ var] [ varp ], DKMz[ var] [ varp ], ... ,DKP[ var] [ varp l. ... DK[ var] [ varp]) 

Function Max returns the maximum integer for a given set of integers (throughout 
the thesis, this function is used with the same meaning). 

The above code computes and stores in DK[1,2,3, ... ,n][1,2,3, ... ,n], USNs of all the 

transactions conflicting with T K· including itself. Therefore, DK[x][y] contains the 

USN of the transaction conflicting with T K, or the USN of T K, which was executed 

with Node-Y as the coordinator and Node-X as the participant. 

In Example 4.1 (refer Figure 4.2), the coordinator Node-Y, requests aPT -X lock from 

Node-X in stage (1). After the coordinator obtains the lock on data item a, primary 
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transaction T H is executed in stage (2). In stage (3), the transaction sends the 

validation request message to Node-Z. Node-Z validates and obtains the PT-S lock on 

data item c and sends a positive acknowledgement to Node-Y. Then, the transaction 

commits in stage (5). 

T H = W(b) W(c) R(d) Coordinator 

Node-Y 

1.a Obtains local locks: PT-X(c) 

(l) 1111 ~ 1.b Requests PT-X(b) from Node-X 
1. O~ins PT-X(~1 & 

Node-Z 

• I 

sendsi lock-grant : II 1.c Obtains lock-grant from Node-X 
• I 

! l 2. Executes (2) 

l 3.a Validates R(d) at Node-Z. __ -+-2=:·....::V5~1idat~ 

I 

" 

1 transaction! & gets 13.b Receives positive acknowledgem81et~~l_::.:::.:: 1 

5.a Executes refresh transaction PT-S locks:and 

5.b Commits sends 1 

I 

acknowledgement 
5.c Creates change-record 

5.d Release locks 

5.e Causally broadcasts change-record, . 
• • • I I .. ,. . ... ,,....... . 

..... I • • •• • .. • • • • • • •• • • I 

! :" •••••••• ~t· ..... 

Non-

Node-W 

. . . . . . . . ·~ 

Figure 4.3 The primary transaction protocol with participant's view for T H 

For Participants (participant's view): 

Consider the execution of the primary transaction, T K, at the participant, Node-X. 
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(1) Upon receiving a PT-S/PT-X lock-request (refer to stage (l.b) in the coordinator's 

view): Node-X acquires the corresponding PT locks (PT-S or PT-X) from the 

local TM. Then, the local TM sends the lock-grant message which contains D­

array DKMr[ I ,2,3, ... ,n][ 1,2,3, ... ,n] (creation of DKMr is explained later). 

(2) Upon receiving a validation request message (refer to stage (3) in the 

coordinator's view): Node-X can receive S-optimistic-request or X-optimistic­

request or both on data item d. Validation of the operation on a data item is 

performed as follows: 

a) S-optimistic-request: On receiving an S-optimistic-request on data item d, a 

check is performed if there are any recent writes on data item d. This is 

performed by searching the change-records stored at the local node for write 

on data item d, starting from the latest change-record until either the change­

record with identifier, <Node-ID, USN>, (identifier of the change-record from 

which the data item has read from at the coordinator) or the last change-record 

is reached. If any change-record with such an operation is found, then a 

negative acknowledgement is sent. Otherwise, the PT-S lock is obtained from 

the local TM (we assume that checking the condition and obtaining the locks 

are performed atomically) and a positive acknowledgement is sent. 

b) X-optimistic-request: On receiving an X-optimistic-request on data item d, 

Node-X obtains the PT-X lock from the local TM and sends a positive 

acknowledgment. 
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c) Both S-optimistic-request and X-optimistic-request: On receiving both of 

these requests on data item d, a check is performed as in the case of S­

optimistic-request on data item d. If successful, PT-X lock on data item c is 

acquired and a positive acknowledgement is sent. 

All the types of acknowledgement messages contain D-array, 

DKMr[1,2,3, ... ,n][l,2,3, ... ,n] for i1
h request ofTK. 

(3) Commit phase: The refresh transaction protocol is executed upon receiving a 

change-record and then all the PT locks are released. 

(4) Upon receiving the lock-release: Node releases all the PT locks held by the 

transaction, T K· 

Noted that in the above protocol, the primary transaction can abort due to S­

optimistic-request but it will never abort due to X-optimistic-request. 

Creation of D-array which is associated with lock-grant/acknowledgement messages 

for transaction TK is performed by the TM at Node-X, similar to the procedure 

explained in the coordinator's view. The only difference is that, in the coordinator's 

view, the conflicts are detected on all the operations of TK; whereas, in the 

participant's view, the conflicts are detected only on the requested data item. 

In Example 4.1 (refer Figure 4.3), Node-X receives a lock-request message from 

Node-Yon data item b. After the TM at Node-X obtains the lock, it sends the lock­

grant message to Node-Y. Node-Z receives an S-optimistic-request message on the 
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data item d from Node-Y. It validates the read operation of the transaction. Then, it 

obtains the PT -S lock and sends a positive acknowledgement message. 

4.1.2 For refresh transaction T K 

Usually, the locking mechanism is used for the execution of the refresh transaction 

protocol. The execution of refresh transaction protocol in each of the roles can be 

explained as follows: 

• Coordinator node: The refresh protocol is nested inside stage (5) of the primary 

transaction of the coordinator's view. 

• Participant node: The refresh protocol is nested inside stage (3) of the primary 

transaction of the participant's view. 

• Non-Participant node: The refresh protocol is executed independently. 

The protocol has three stages: 

1. Lock acquisition phase 

2. Execution phase 

3. Commit phase 

The protocol is the same for the coordinator, participant and non-participant nodes. 
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Figure 4.4 lllustrates the execution of the refresh transaction protocol along with the 

primary transaction protocol 

For Coordinator, Participants and Non-Participants: 

The execution of a refresh transaction is the same for all the roles. Let us assume that 

the local TM uses 2PL for execution of refresh transactions. Consider the execution 

of the refresh transaction ofTK at Node-X. 

1. Lock acquisition phase: RT-X locks are acquired on all the data items to be 

written. 

2. Execution phase: The transaction is executed. Now, values of TK's data items in 

its write-set present at that node are written. 
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3. Commit phase: Transaction commits. RT-X locks on all the data items of TK are 

released. 

In Example 4.1 (refer Figure 4.4), after the primary transaction decides to commit, the 

refresh transaction protocol is executed first at the coordinator node. This is indicated 

by [5], as it is performed at stage (5) in coordinator's view of the primary transaction. 

Then, the change-records are sent to all the nodes. The change-records are 

implemented at these nodes using the refresh transaction protocol. It should be noted 

that at the participant nodes, the primary transaction locks and the refresh transaction 

locks (ie PT-X and RT-X locks) co-exist, whereas at the non-participant nodes, only 

the refresh transaction locks are acquired. The symbol [1] at Node-X and [3] at Node­

Z indicates that these locks were obtained in stage (1) and stage (3), respectively, of 

the primary transaction protocol in its participant's view. In Figure 4.4, CR indicates 

that these RT locks were acquired after the delivery of the change-record message. 

4.1.3 For ROT TK 

Usually, the locking mechanism is used for execution of the ROT protocol. Its 

execution has three stages: 

( 1) Lock acquisition phase 

(2) Execution phase 

(3) Commit phase 

A ROT can be executed at any node. Let us consider the execution of a ROT at Node-
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X. 

(1) Lock acquisition phase: ROT-S locks are requested on all the data items at the 

present node. The ROT protocol is compatible with the execution of the primary 

transaction protocol but not compatible with the execution of the refresh 

transaction protocol. (That is, ROT-S locks are compatible with PT locks but not 

with RT locks.) 

(2) Execution phase: The transaction is executed. 

(3) Commit phase: the transaction committed and all the ROT-S locks are released. 

In Figure 4.5, Node-X executes ROT TR when there is aPT lock on data item b. This 

shows that ROTs and primary transactions can be executed concurrently. But, ROTs 

and refresh transactions of conflicting transactions cannot be executed concurrently. 
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Figure 4.5 The execution of the primary transaction protocol to illustrate the execution 

of ROTs 
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Figure 4.6 lllustrates the messages exchanged between the nodes (in terms of roles) 

for the execution ofT L 

Figure 4.6 illustrates all the messages exchanged between the nodes. Consider the 

transaction, T L, executing with Node-Y as its coordinator. The transaction T L requests 

a PT-X lock on the data item b in stage (1). Then, it sends an S-optimistic-request 

message to validate the operation on data item din stage (3). TK is aborted due to the 

negative acknowledgement. So, it sends lock-release messages to the other 

participants. 
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4.1.4 Session guarantee for transaction T K 

Session P, in which a user interacts with the registry, is represented by the two 

dimensional array Sp[l,2,3, ... ,n][1,2,3, ... ,n] (denoted by S-array). Informally, S-array 

contains the state of the registry previously seen by the user. A transaction, submitted 

to the system by the input stream, contains the S-array indicating the user's session. 

When a new ROT in session P is scheduled for execution, the session_read procedure 

is first executed. This procedure reads data from the S-array of session P (That is, 

Sp[l,2,3, ... ,n][ 1,2,3, ... ,n]). After the ROT is executed, S-array is updated by the 

session_update procedure. The procedure stores the state of the system as seen by the 

operations of the session. This procedure is also performed after the execution of the 

primary transaction of the update transaction. 

Sp[l,2,3, ... ,n][1,2,3, ... ,n] contains the set of USNs of the transactions seen by the 

user session P (directly or indirectly) in its previous operations. 

Example 4.3: Consider the setup as shown in Figure 4.7. The state ofNode-X can be 

represented using Nx[x][1,2,3, ... ,n] indicated by the arc AB in the figure. Arc AB 

indicates all committed transactions at Node-X (similarly arcs CD, EF, and GH 

represent for the other nodes). The maximum state of the registry is represented by 

the set of the latest committed transactions in the system. The minimum state of the 

registry is represented by the set of transactions which have committed at their 

coordinator nodes and yet to be executed at some other nodes in the registry. As the 

registry is a loosely synchronized system, no node may know the exact minimum and 
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maximum states of the registry. Therefore, the state of the node is stale compared to 

the maximum state of a system in its one copy equivalence. Minimum state of the 

registry in its one copy equivalence is inferred from minimum states of all nodes. The 

actual minimum and maximum states of the registry are not stored any where. A user 

may infer maximum and minimum states of the registry when he executes ROTs at 

different nodes in the registry. 

Minimum state 

of a node 

Node-Z 

<:l(f~lt·:: 
T ............. .. 

Node·W 

Maximum state of system j 

T1 13 /i Bookkoepiog ""'";"" 
to take care of 

12 1 
conflicting 

~ transactions 
17 

T~ IT, Minimum state of 
T •• to:-

Onecopy'~ system 
&I' equivalent 

Bookkeeping not required for 

session guarantee 
L:::IJIP 

Figure 4.7 lllustrates the minimum and maximum states of each individual nodes 

along with its one copy equivalent 

The minimum and maximum states of the registry are represented by the set of 

transactions T 1, T2, T3, T4 and T11 , T12, T13, T14, respectively. Node-X has executed 

transaction Tll which is the latest in the system. Similarly, the latest transactions in 

the system executed at Node-Y, Node-Z, and Node-W are T12, T13, and T14, 
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respectively. T1 at Node-W represents the oldest transaction which is yet to be 

executed at some node in the registry. It may also be the case that T1 has been 

executed at all the nodes but Node-W is not aware about it. T 1 forms a part of the 

minimum state of the registry. Similarly, T2, T3, and T4 also constitute the minimum 

state of the registry. For Node-X, Nx[x][l,2,3, ... ,n] represents its state while 

Mx[1,2,3, ... ,n] represents its minimum state. The array representing the state of the 

node and maximum state of the node are represented by N-array and M-array, 

respectively. 

We consider two procedures for maintaining the session guarantee mechanism -

session_read and session_update. The former procedure is used before execution of a 

ROT, while the latter is used after the execution of all types of transactions. The 

initialization and delete_change-record procedures are used by the registry to book 

keep the storage requirement and for message propagation mechanism. 

Initialization: 

When the system starts, M-array stored at each of the node in the registry is initialized 

to zero value. M-arrays at Node-X, Node-Y, Node-Z, and Node-Ware initialized as 

follows: 

Mx[l,2,3, ... ,n][l,2,3, ... ,n] := Mv[1,2,3, ... ,n][l,2,3, ... ,n] := Mz[l,2,3, ... ,n][l,2,3, ... ,n] := 
Mw[1,2,3, ... ,n][l,2,3, ... ,n] := 0 
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This assignment means that each element of the two dimensional array is assigned 

zero value. When a new session P starts in the system, its S-array is initialized to zero 

value. 

Sp[l,2,3, ... ,n][l,2,3, ... ,n] := 0 

Session guarantee procedures: 

A simple solution to ensure session guarantees is to update S-array of session P with 

the state of a node at which the transaction was executed, after its execution. Then, 

the next transaction in session Pis executed only after that recorded state inS-array is 

reached at the executing node. As there is no common sequence of state changes at all 

the nodes, wait time may increase unpredictably between consecutive transactions. 

Our fine grained session guarantee mechanism aims at reducing wait time and making 

it more predictable. 

Session_read: 

The update transaction always accesses the latest values in the registry, as otherwise 

lSR cannot be ensured. But, ROTs can read any values between minimum and 

maximum states of the system (in one copy equivalence). In order to provide the 

consistent database view to the user, our protocol ensures Read Only Follow Updates 

and Monotonic Read Only guarantees. All the ROTs should perform the session_read 

procedure before executing the transaction. 

The latest set of transactions of session P which have updated or seen the updates of 

data items in custody of Node-X is given by Sp[x][1,2,3, ... ,n]. Similarly, the latest set 
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of data items in custody of Node-X and Node-Y seen by the user session is obtained 

by computing the recent transactions among Sp[x][1,2,3, ... ,n] and Sp[y][1,2,3, ... ,n]. 

In general, for a ROT reading data items in custody ofNode-X, Node-Y, and Node-Z, 

the following strategy is used. (We assume some basic name service directory to find 

out custodians of data items.) In the session_read procedure, first, finds transactions 

already seen by session P in custody of these nodes. Later, the ROT is executed only 

if these transactions have been already executed at Node-Q. In summary, the 

procedure computes the USNs of the conflicting transactions which at least must have 

been executed by reading values from session variable (in user input stream). Then, it 

waits only for those transactions. 

II Let Temp be an one dimensional array of size n 
for var = 1 to n, where n is the number of nodes 

temp[var] := Max(Sp[x][var], Sp[y][var], Sp[z][var]) 
where Nodes x, y, z are the custodians of data items of the ROT 

wait until ( No[q][1,2,3, ... ,n] ~ Temp[1,2,3, ... ,n]) 
execute the ROT at Node-Q 

First three lines of the above procedure computes and stores in Temp array the latest 

transactions reading or updating data items in custody of Node-X, Node-Y, and 

Node-Z in session P. The transaction can read the data item only if the state of the 

node is greater than state of the system stored in the Temp array. Otherwise, it waits 

until that state is reached. As a new ROT to be executed waits for only the most 

relevant transactions, the unnecessary wait time is minimized. 
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Session_ update: 

We have two different kinds of procedures for session_update. One kind is used for 

update transactions, and the other is used for read only transactions. The former kind 

of procedure ensures the Read Only Follow Updates session guarantees while the 

latter one ensures Monotonic Read Only session guarantees. 

The session_update procedure used for an update transaction can be explained as 

follows: 

Let the update transaction, TK. be executed in session P. Then, the following 

procedure updates the session variable (in user input stream) with the USNs of 

transactions that conflict with T K and ofT K. 

for var = 1 to n, where n is the number of nodes 

for varp = 1 to n, where n is the number of nodes 

Sp[var][varp] := Max(DK[var][varp], Sp[var][varp]) 

In the above code, please notice that there is one to one correspondence between D-

array of the update transaction and S-array of the user session. DK contains USNs of 

all the oldest transactions directly or indirectly conflicting with T K, including itself. 

USNs of all the conflicting transactions in their D-arrays are copied to Sp. Now, Sp 

contains the oldest transactions recently seen by the user so far. Note that Sp of a 

session contains transactions seen and not the present state of the node. Therefore, 
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session guarantee mechanism is fine grained and increases the performance of the 

system. 

The session_update procedure used for a ROT can be explained as follows: 

A ROT may have read data items written by more than one transaction. The ROT 

conflicts with all these transactions. The TM lists these conflicting transactions. (The 

conflicts are found using the same procedure, as used in the creation of the D-array.) 

Let D-arrays corresponding to these conflicting transactions be D1. D2, D3, ... , DM. 

Then the following procedure updates the session variable with USNs of transactions 

conflicting with T K· 

for var = 1 to n, where n is the number of nodes 
for varp = 1 to n, where n is the number of nodes 

Sp[var][varp] .- Max(D1[var][varp], D2[var][varp], D3[var][varp], .... , 
DM[var][varp], Sp[var][varp]) 

The above code computes and stores in Sp, all the conflicting update transactions seen 

by the ROT. In both the above kind of procedures, after a transaction commits the 

result of the execution is returned to the user. The next transaction in session P cannot 

proceed until the session_update procedure is executed and the user receives the 

response. 

Delete_change-record: 

As change-records generated in the registry are stored at all the nodes, they grow 

without bound. Using this procedure, we delete the change-records at nodes so that 

62 



the space required for bookkeeping can be reduced. If the primary transaction ofT K is 

executed at Node-X and is successfully committed, we know that at some point in 

time, all the nodes in the registry will execute TK. Mx[1,2,3 ... ,n] array indicates to 

Node-X, a set ofUSNs of transactions that have been executed at Nodes 1,2,3, ... ,n in 

the registry. The procedure is designed such that the change-records of these 

transactions can be deleted at Node-X and still session guarantee can be ensured. The 

Delete_change-record procedure computes and stores in M-array, the USNs of 

transactions that have been executed at all the nodes as follows: 

for var = 1 to n, where n is the number of nodes 
Mx[var] := Nx[var][var] 

//stores Node-X's knowledge about the last primary transaction executed at Node-var 
for varp = 1 to n, where n is the number of nodes 
Mx[var] :=Min( Nx[varp][var], Mx[var]) 

//calculates the transaction which has been executed at all nodes whose primary 
//transaction was executed at Node-var 

where the Min function returns the minimum integer of a set of integers. 

The above code, computes and stores in Mx[y] the latest primary transaction that was 

executed at Node-Y and has been executed at all the nodes. Therefore, Mx, computed 

at Node-X, contains the set of USNs of primary transactions which were executed at 

different nodes and has been executed at all the nodes known by Node-X. Delete-

change-record procedure is invoked by Node-X whenever any of the entries in 

Mx[l,2,3, ... ,n] array is updated. As change-records are ordered with the latest on top 

and oldest at the bottom, the procedure searches for the change-record with identifier 

<i, Mx[i]> from bottom to top and deletes that change-record. 
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The space required to store change-records at a node is directly dependent upon its 

knowledge about transactions that have already been executed at other nodes 

indicated by the M-array at that node. Therefore, sending the P-array with all the 

message types increases the freshness of the M-array. If the cost of communication 

between the nodes is higher than the cost of space, then the P-array is sent with only 

some of the messages. On the other hand, if the cost of space required is higher than 

the cost of communication between the nodes, then the P-array is sent along with all 

the messages. Basically, the system has flexibility to decide how frequently to send 

the P-array. 

4.2 Causal transmission of messages 

Our protocol facilitates causal transmission of messages. If a message has to be 

received in causal order, it should contain the D-array. The only messages having D­

arrays are - change-record, lock-grant, and acknowledge messages and these are 

delivered in causal order. (Lock-request, X-optirnistic, S-optimistic, and lock-release­

request messages are not delivered causally.) The procedure to ensure causal message 

delivery is as follows: 

Consider the message of transaction TK sent from Node-Y to Node-X. Then, the 

procedure waits until all conflicting transactions ofTK have been delivered at Node-X 

and later updates the state array at Node-Y to indicate the delivery event as follows: 
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Initialize DK-coL[1,2,3, ... ,n] := 0 
II All the elements of array are initialized to zero value 
for var = 1 to n; where n is the number of nodes 

for varp = 1 to n; where n is the number of nodes 
DK-coL[var] := Max(DK-codvar], DK[varp][var]) 
//converts two dimensional array to one dimensional array 

Wait until Nx[x][1,2,3, ... ,y-1,y+1, ... ,n] 2:: DK-cod 1,2,3, ... ,y-1,y+1, ... ,n] 
then deliver TK at Node-X. 

//After delivery of the message, Nx[l,2,3, ... ,n][1,2,3, ... ,n] is updated 
if the change-record contains Py 

Nx[x][y] := Max(Nx[x][y], Py[y]) 
for var = 1 to n; where n is the number of nodes 

Nx[y][var] := Max(Nx[y][var], Py[var]) 
else 

Nx[x][y] := Max(Nx[x][y], DK[y][y]) 
for var = 1 to n; where n is the number of nodes 

Nx[y][var] := Max(Nx[y][var], DK[y][var]) 

In the above code, the two dimensional array DK is converted to the one dimensional 

array DK-COL· This array is compared with the state array Nx[x][1,2,3, ... ,n]. The 

transactional message is delivered only if its state is greater than or equal to the state 

of Node-X. It should be noted that in our algorithm, the causal delivery of message of 

T K at Node-X involves comparison of the state array of Node-X and the D-array of 

T K· That is, a message delivery will be delayed only if its preceding conflicting 

messages are not delivered. This imposes a total order delivery between two 

messages only if they are conflicting. This also eliminates the false causality (the 

perception that because one event occurred before another, the earlier event has 

caused the later event). Also, note that message need not contain the P-array to be 

delivered causally. 
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T1 = W(b)R(c) T2 = W(c) T3=W(d) 

Accor ·ng to ISR- T1 -+ 2 

Node-X Node-V Node-Z Node-V Node-W 

[IJ [IJ W(d) W(e) 

W(b) W(d) ) ) 

W(e) W(d) wfc) [IJ W(d) W(e) W(e) ) 

Figure 4.8 lllustrates the total order of delivery and execution of W(b) and W(c) 

corresponding to T1 and T2, respectively 

Example 4.4: In Figure 4.8, T1, T2, T3, and T4 are executed at Node-X, Node-Y, 

Node-Z, and Node-V, respectively. It should be noted that T1 and T2 are conflicting 

transactions (WR conflict). Therefore, the causal delivery mechanism ensures a total 

order among messages of these transactions. It provides the flexibility to execute T 3 

and T 4 in any order at all the nodes. 

4.3 Fully optimistic replication protocol 

The replication protocol facilitates the coordinator to execute a transaction either 

pessimistically or optimistically. That is, a lock on a data item for a global transaction 
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may be requested either before or after its execution. We know that any non­

conservative locking mechanism is prone to the occurrence of deadlocks. Distributed 

deadlocks are possible in our protocol as locks cannot be requested atomically. (That 

is, locks required by the transaction may be local locks, pessimistic global locks and 

optimistic global locks. Each of these kinds of locks is requested atomically. But all 

these different kinds of locks together cannot be requested atomically.) 

In the replication protocol discussed in section 4.1, the optimistic lock request on a 

data item is performed after its execution; but validated before the broadcast of the 

change-record. The protocol can be modified to be fully optimistic by deferring the 

lock request on the data item until the change-record message is delivered at a node 

similar to [HSAE03]. Thus, deadlocks can be prevented in our system. The fully 

optimistic replication protocol can be explained as follows: 

The primary transaction is executed at the coordinator node. If the transaction is 

executed without requesting a lock on at least one data item until the change-record is 

broadcasted, then it is said to be in a pre-committed state. The change-record of the 

pre-committed transaction is broadcast to all the nodes. If a conflict is found at any of 

the participant nodes, then the transaction is aborted. Otherwise, on the successful 

commitment at all participant nodes, the transaction commits at all the nodes in the 

system. Please note that for the local transactions the protocol is same as explained 

earlier. 
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The fully replicated protocol can be explained from the coordinator, participants, and 

non-participant's views. 

For Coordinator (Coordinator's view) 

Consider the execution ofthe primary transaction, TK, at the coordinator, Node-Y. 

(1) Lock acquisition phase: Requests PT-S and PT-X locks on the data items to which 

Node-Y is custodian, atomically. That is, it obtains locks on all the data items in 

custody of Node-Y or does not obtain any lock. (Please note that the locks at the 

remote node are not requested in this phase.) 

(2) Execution phase: Transaction T K is executed. T K pre-commits. This state ofT K is 

known as pre-committed state. All writes are performed in the private workspace. 

(3) Broadcast of the change-records of the transaction: The change-records of the 

transaction is created and broadcast to other nodes. The creation of the change­

record is as follows: 

a) The USN is generated. 

b) Then, updates state array Ny and creates the present state array Py, the D-

array DK. 

c) Creates change-record for TK. 

The procedures to create these arrays are similar to one explained in section 4.1 

except that for creation of the D-array for a pre-committed transaction, the 

preceding conflicting pre-committed transactions are not considered (that is, only 

committed transactions are considered). The change-record of a pre-committed 
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transaction is indicated as the pre-committed transaction. Please note that in the 

original replication protocol, the change-record is used only for a committed 

transaction. 

(4) Commit phase: Whenever theN-array at Node-Y is modified, the following check 

is performed. The Node-Y checks if the change-record of T K has been 

successfully delivered and pre-committed at all the participant nodes ofT K· That 

is, if Node-X, Node-Z, and Node-V are the other participants ofTK and tusn is the 

USN of T K· Then, the following procedure checks, if T K has been delivered at 

participant nodes. On successful delivery of change-records at all the nodes, the 

refresh transaction protocol is executed and transaction commits. 

Wait until (Nv[x][y] ~ tusn && Nv[z][y] ~ tusn && Nv[v][y] ~ tusn) 
then executes the refresh transaction protocol ofT K and commits 

In the above code, TK at Node-Y waits until its state array is updated with the 

USN of TK, indicating its delivery at Node-X, Node-Z, and Node-V. Then, TK 

commits. 

After T K commits, the following steps are performed: 

a) Releases all the PT locks. 

b) Converts the pre-committed change-record of T K stored at that node to a 

(regular committed) change-record. 
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(5) Abort phase: When a pre-committed transaction is delivered at a node, it checks if 

T K conflicts with any other pre-committed transactions. If any conflict is found, 

then both the transactions are aborted. All PT locks of T K are released. Then, 

change-record message ofT K is deleted. 

For Participants (participant's view): 

Consider the execution of the primary transaction, T K, at the participant, Node-X. 

(1) Upon receiving the pre-committed change-record message (refer to stage (3) in 

the coordinator's view): On receiving the change-record of the pre-committed 

transaction, T K. the protocol checks for the conflicting pre-committed 

transactions. If there are no conflicting pre-committed transactions, then PT locks 

are obtained on the data items ofTK, to which Node-Xis custodian of. If the locks 

are held by the conflicting transactions, then the protocol goes to stage (3), where 

T K is aborted. It should be noted that checking for the conflicts and obtaining 

locks are performed as an atomic operation. 

(2) Commit phase: Whenever the N-array at Node-X is modified, Node-X checks, if 

the change-record ofT K has been successfully delivered and pre-committed at all 

the other participant nodes of T K· If the outcome is true, the refresh transaction 

protocol for T K is executed and T K commits. Then, the following steps are 

performed: 

a) Converts the pre-committed change-record of T K stored at that node to a 

committed change-record. 
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b) Releases all the PT locks. 

(3) Abort phase: When a pre-committed transaction is delivered at a node, the 

protocol checks if T K conflicts with any other pre-committed transactions. If any 

conflict is found, then both the conflicting transactions are aborted. All PT locks 

ofT K are released. Then, change-record message ofT K is deleted. 

For Non-Participants (Non-Participant's view): 

Consider the execution of the primary transaction, TK, at the participant, Node-W. 

(1) Upon receiving the change-record message of pre-committed transaction (refer to 

stage (3) in the coordinator's view): On delivery of the change-record of the pre­

committed transaction, T K, the protocol checks for the conflicting pre-committed 

transaction. If any conflict is detected, it goes to stage (3) where it is aborted. 

(2) Commit phase: TK commits at Node-W, if the change-record of TK has been 

successfully delivered and pre-committed at coordinator and all the participant 

nodes. Then, the following steps are performed: 

a) Executes the refresh transaction protocol for T K. 

b) Converts the pre-committed change-record of T K stored at that node to a 

committed change-record. 

(3) Abort phase: If Node-W receives the abort message from another node, then the 

pre-committed transaction is aborted and deletes the change-record message. 
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Read only transactions 

During the creation of the D-array for the ROT (for session guarantees), the pre­

committed transactions are not considered. 

The main disadvantage of the fully optimistic protocol is that, as the conflict rate 

increases, the abort rate also increases and the system performance decreases. 

4.4 Correctness Proof 

First, we show that all the dependent messages are delivered causally without the 

effect of false causality. Then, we show that the primary transaction protocol ensures 

lSR. Also, we show that the session guarantee mechanism ensures Read Only Follow 

Updates and Monotonic Read Only guarantees. Finally, we show that the fully 

optimistic protocol ensures one copy serializability. 

Lemma 1: If TK conflicts with TL where TK precedes TL (TK--+ TL), then either the 

D-array ofTL contains the identifier <Node-ID, USN> ofTK or the latest transaction. 

Proof: Let TK and TL be executed with Node-X and Node-Y, respectively, as their 

coordinators. Let us assume that the change-record of TK is present at Node-Y. Also, 

let T K be the immediately preceding transaction of T L· As for each operation in T L, 

the procedure checks if there is a conflicting operation in any of the change-records, 

starting from the present state to the oldest state of the node, it will discover the 

change-record of TK. Any of the WW, WR, and RW conflicts between the 

transactions will be detected. 
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Consider the following code which creates D-array for T L· 

for var = 1 to n; where n is the number of nodes 
for varp = 1 to n; where n is the number of nodes 
Ddvar][varp] := Max(DK[var][varp],Ddvar][varp]) 

In the above code, as T K precedes T L, creation of D-array takes maximum USNs of 

DK and DL to find the latest conflicting transactions to T L· This assignment ensures 

that Ddx][x] holds the USN ofTK. 

Let us assume that T K is not the immediately preceding transaction. Let T 0 be 

immediately preceding transaction to TL and TK precedes T0 . Therefore, TK--+ To--+ 

TL. By the above procedure, when Do is calculated, it contains the USN of TK. 

Similarly, when DL is calculated the procedure takes the maximum USNs from each 

of the nodes. DL will have the identifier ofT K or the succeeding transaction T 0 from 

that node. 

On other hand, if the change-record ofT K has been deleted by delete_change-record 

at the coordinator node ofTL, it means that TK has been executed at all nodes already. 

As TK is already delivered at all nodes, there is no need for TL to wait for message of 

T K. In such a situation, even if T L does not have the USN of T K· it does ensure a 

correct execution. 

The proof is complete. 

Theorem 1: The broadcast mechanism ensures causal delivery of messages of 

conflicting transactions. 

73 



Proof: Let ct>K and ct>L be the messages corresponding to T K and T L where T K 

precedes T L (T K ___.. T L). This precedence relation is induced when D-array for ct>K and 

ct>L are created. Let ct>K and ct>L be created and sent by Node-X and Node-Y, 

respectively. 

Consider the delivery of ct>K and ct>L at Node-Z. 

Now, let Nz[z][l,2,3, ... ,n] be the state array of Node-Z. A message of the transaction 

can be either of a change-record or a lock-grant/acknowledge message. Thus, for the 

conflict between T K and T L' we have the following types of messages in the system: 

• If both ct>K and ct>L are change-records, then TK -7 TL means that DL[l,2,3, ... ,n] 

contains at least the USN of TK (ci>K) or the latest transaction (by Lemma-

!) .......................................................................................... (i) 

• If both ct>K and ct>L are lock-grant/acknowledge messages, Dd1,2,3, ... ,n] contains 

the USN ofTK (ci>K) which is the same as case (i). 

• If ct>L is a lock-grant/acknowledgement message, then ct>K may be the change­

record of its preceding conflicting transaction. Then, this case reduces to the same 

as in (i). 

• If ct>K is a lock-grant/acknowledge message on some data item, then its succeeding 

conflicting transaction T L cannot obtain the lock on that data item until T K 

finishes its execution. So this case is invalid. 

Effectively we have only one case namely, case (i) where the succeeding 

transaction's message type contains the preceding transaction's identifier. 
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We prove the theorem with the following two claims: 

(1) All the conflicting transactional messages are delivered causally. 

(2) A message will be eventually delivered after a bounded period of time. 

Claim 1: All the conflicting transactional messages are delivered causally. 

Consider the delivery of <PL at Node-Z which is sent from Node-Y. The delivery of 

<PL means that the following condition is satisfied. 

'Nz[z][1,2,3, ... ,y-1,y+ 1, ... ,n] 2: DL-COL[ 1,2,3, ... ,y-1,y+ 1, ... ,n]' 

DL-cod1,2,3, ... , y-1,y+1, ... ,n] contains the latest USNs of the transactions conflicting 

with TL whose primary transaction was executed with Nodes 1,2,3, ... , y-1,y+1, ... ,n 

as the coordinator, respectively. Satisfying the above condition means that the state 

vector of Node-Z (Nz[z][1,2,3, ... ,n]) contains the USN ofTK (by Lemma 1). That is, 

<PK would have been delivered already. Until <PK is delivered, <PL cannot be delivered. 

Hence, causality is maintained. 

Claim 2: A message will be eventually delivered after a bounded period of time. 

On the contrary, let us assume that there is a set of messages of transactions sent from 

Node-Y to Node-Z which is not delivered. Let <PL be first among such messages. Let 

T K precede T L in the serialization graph. These transactions can be either a local 

transaction or a global transaction. If both are local transactions whose primary 

transaction executed at Node-Y, then the reliable broadcast mechanism ensures that 

they are delivered in the same order at all the nodes. On the other hand, if one of them 

is a global transaction, then the eventual delivery must be ensured. 

75 



Let us assume that TK and TL are global and local transactions, respectively. Let the 

primary transactions of TK and TL be executed at Node-X and Node-Y, respectively. 

By Lemma 1, Ddx][1,2,3, ... ,n] of <t>L contains the USN of TK. If <t>L is not delivered 

at Node-Z, the following condition is not satisfied. 

"Nz[z][1,2,3, ... ,y-l,y+ 1, ... ,n] 2: DL-coL[1,2,3, ... y-1,y+ 1, ... ,n]" 

This means that the state of Node-Z waiting for the delivery of <t>K. But due to reliable 

broadcast of message, sent from Node-X <t>K must be delivered at Node-Z after finite 

amount of time. This is contradictory to our assumption that <t>L is not delivered 

waiting for other messages. Using the same reasoning, it can be shown that even if 

both are global transactions, then T K will be delivered. 

The proof is complete. 

Lemma 2: Lock management obeys two phase locking (2PL) at each node. 

Proof: For the 2PL to hold true at a node, once a transaction starts releasing locks at a 

node, it should not acquire any further locks. In our protocol, locks are released in 

stage (4) or (5) of the primary transaction protocol in coordinator's view and stage (3) 

of the refresh transaction protocol. We show that every transaction executed at any 

node follows the 2PL. (A few of the transactions may have RT-X locks and PT-X 

locks on the data items simultaneously. These locks are held till the commit point and 

no lock is requested after this point.) 

Case 1: For the refresh transactions (executed using refresh transaction protocol). 
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Once the transaction reaches stage (3), it does not request any further locks. Only 

after execution, the transaction starts to release the locks. Hence, the refresh 

transaction follows 2PL. 

Case 2: For the primary transaction (executed using the primary transaction protocol). 

All locks in the coordinator's view are acquired at stage (1) or stage (3). They are 

released at stage (4) or (5). If they are released in stage (4), the transaction is aborted. 

If the transaction has to commit successfully, the primary transaction has to release 

the locks in one of the following stages: 

• Stage (5) of the coordinator's view. 

• Stage (3) of the participant's view. 

The stage (3) of participant's view occurs only after the lock-grant/acknowledgement 

message is given for the primary transaction in stage (2) in participant's view. Locks 

at participant nodes are not requested after stage (2) in participant's view. Also, the 

refresh transaction is nested inside the primary transaction protocol before releasing 

its locks. 

As from case 1, the refresh transaction protocol follows 2PL and no locks are 

requested after the refresh transaction protocol starts executing, in both the above 

cases. 

For the coordinator's view, it is clear that when lock releasing starts, the primary 

transaction should have already acquired all the required locks as stage (5) succeeds 

stage (3) at the coordinator. 
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For the participant's view, the primary transaction releases the lock at its stage (3). 

The coordinator would have acquired lock at this participant's node in stage (1) or 

stage (2). 

Therefore, the primary and refresh transactions ensure 2PL at both the coordinator 

and participant nodes. In summary, if a transaction starts releasing locks, it must have 

aborted or it does not request any further locks. Therefore, all the update transactions 

follow 2PL. 

Case 3: For ROT 

It acquires all the required locks in the beginning. Then, executes the transaction. It 

does not request any locks after stage (3). Hence ROTs follow 2PL. 

The proof is complete. 

Lemma 3: Local lock management ensures conflict serializability 

Proof: In Lemma-2 we have shown that for a particular transaction, 2PL is ensured at 

the local nodes. It follows from [BGH87] that all the transactions are conflict 

serializable. The proof is complete. 

Theorem 2: At a global level acyclic Global Serialization Graph (GSG) is obtained 

for all the update transactions. 

Proof: Let TK and TL be conflicting transactions. Let TK precede TL (TK -7 TL). We 

have to show that the two transactions are totally ordered. 

78 



First, we consider a case where both these transactions have the same coordinator 

node. The transactions may conflict on data items in custody of the common 

coordinator node or at another node. Later, we consider both transactions having 

different coordinator nodes. Here also, transactions may conflict on a data item in 

custody of one of these coordinator nodes or at other nodes. 

Case 1: Transactions have the same coordinator node and conflict on a data item, 

which is in custody of the common coordinator node. 

Both T K and T L request locks from the same local TM. By Lemma 3, the local TM 

serializes these two transactions. Change-records are created in the same order and 

sent to other nodes in the same order (Theorem-1). Eventually, they are executed in 

the same order at all those nodes. These two transactions are globally serializable. 

Case 2: Transactions have the same coordinator node and they conflict on a data item, 

which is in custody of a node other than the common coordinator node. 

Both T K and T L request the locks from the remote TM. The remote TM gives the lock 

to TK first and then to TL (because, TK ~ TL). TL obtains the lock from the remote 

TM only after the change-record ofT K is received and executed at the remote node as 

a refresh transaction. When the remote TM sends the lock-grant message to T L· the 

message's D-array contains the USN of TK (identified by, <Node-ID of coordinator 

of TK, USN of TK>). This dependency is copied later in DL[1,2,3, ... ,n][1,2,3, ... ,n] of 

TL's change-record. By Theorem-1, these change-records are delivered in this order at 
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all the nodes. Also, they are executed in this order at all the nodes. These two 

transactions are globally serializable. 

Case 3: Transactions have different coordinator nodes and they conflict on a data 

item, which is in custody of one of the coordinator nodes. 

Let the conflict be at TK's coordinator. TL will obtain the lock from the TM at that 

node only after TK's change-record is created and locks are released. Lock-grant 

message that T L obtains will have the D-array containing the USN of T K· Therefore, 

the D-array ofT L' s change-record will have the USN ofT K· By Theorem-1, they are 

totally ordered at all the nodes. These two transactions are globally serializable. 

Case 4: Transactions have different coordinator nodes and they conflict on a data 

item, which is in custody of neither of these coordinator nodes. 

Let both of these transactions conflict on a data item at a remote node. The TM at the 

remote node first grants the lock to TK. Later, TL obtains the lock only after the 

remote TM receives the change-record ofT K and the refresh transaction is executed at 

that node. The lock-grant message's D-array for TL will contain the identifier of TK. 

The change-record ofT L will contain the identifier ofT K in its D-array (by lemma-1 ). 

By Theorem-1, these two change-records are totally ordered. Hence, they are globally 

serializable. 

In all the above cases it is assumed that the coordinator will use pessimistic method to 

request locks. Even if any of the coordinators request the lock optimistically, the 
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proof remains the same, as both types of messages contain information about the all 

preceding conflicting transactions in their D-arrays. 

The proof is complete. 

Theorem 3: Session guarantee is ensured. 

Proof: Let us assume that two update transactions are executed in the system in such 

a way that T K precedes T L (T K -7 T L). Let T K and T L update data items b and c, 

respectively. Please note that T K and T L may also update data items other than b and 

c, respectively. But our interest here is only on the updates of data items b and c. Let 

Node-X and Node-Y be the coordinator and the participant, respectively, of TK. Let 

Node-W and Node-Z be the coordinator and the participant, respectively, of TL. Let 

user session P execute transactions T0 followed by TH. To reads data item cat Node-

U written by TL. Now, when THreads data item bat some node, we have to show that 

it will read, at least, the version written by T K· 

Let the identifier ofTK and TL be <i, x> and <j, w>, respectively. 

During creation of the change-record ofT K, DK is obtained as follows: 

DK[x][x] := DK[y][x] := i 

During creation of change-record ofT L, DL is obtained as follows: 

Ddx][x] := DK[x][x] (value is i, because of conflict with TK) 
DL[y][x] := DK[y][x] (value is i, because of conflict with TK) 
Ddw][w] := Ddz][w] := j (after updating present transaction) 
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When session Sp[l,2,3, ... ,n][l,2,3, ... ,n] executes its first transaction T0 , it reads from 

T L· The D-array ofT L is copied to Sp. When the next transaction, T H, is submitted to 

Node-Q, it is executed only if the session_read procedure satisfies the condition -

NQ[q][l,2,3, ... ,n] ~ Sp[x][1,2,3, ... ,n] (actually, NQ[q][l,2,3, ... ,n]~Temp [1,2,3, ... ,n]) 

In the code Sp[x][l,2,3, ... ,n] is used, as the data item to be read is in custody of 

Node-X. Satisfying this condition means Ny has executed transaction T K· Therefore it 

will read the transaction written by at least T K· 

The proof is complete. 

Theorem 4: The fully optimistic protocol ensures one copy serializability. 

Proof: Let T K and T L be conflicting transactions. Let T K precede T L (T K ~ T L). We 

have to show that the two transactions are totally ordered. 

If both T K and T L are local transactions, then the local TM will ensure that these 

transactions are executed in the order; T K precedes T L. and later delivered and 

executed in the same order at all the other nodes. 

Let us consider global transactions. Let us assume that the primary transactions ofT K 

and TL be executed at Node-X and Node-Y, respectively. Also, let TL be a global 

transaction, accessing at a data item in custody of Node-X, due to which it conflicts 

with T K· After T L is executed, it is said to be in a pre-committed state. The change­

record of TL is sent to Node-X. At Node-X, if no conflicts are found on the data item 

either due to a pre-committed transaction or a committed transaction, then the 
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change-record of T L is delivered at that node. Only after Node-Y knows that T L is 

delivered successfully and no abort message is received, TL commits. Therefore, TK 

and TL are totally ordered. Similarly, we can show that TK and TL are totally ordered 

at all nodes for other combination of global transactions. 

The proof is complete. 

4.5 Discussion 

The main features of the replication protocol are: 

1. Flexibility: The flexibility of requesting locks at hot spots during the lock 

acquisition phase, pessimistically, (reduces the abort rates due to high conflicts) 

and requesting locks on other data items during the validation phase, 

optimistically, (provides higher transaction throughput), gives better 

performance. For any given transaction, a coordinator may decide to request a 

few of locks pessimistically and a few locks optimistically. 

2. Lower response time: We know that a local transaction does not communicate 

with any other nodes to execute the primary transaction. If the transaction access 

pattern is known in advance, the custodianship for the data items can be arranged 

in such a way that global transactions can be minimized. Even though 

custodianship of the node is completely distributed in the registry, good design 

for assigning custodianship can give lower response time even with the increase 

in the number of nodes. 
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3. Minimizing the bookkeeping required: Book keeping for the session guarantee 

mechanism is minimized as it is proportional to the number of nodes instead of 

the number of data items. As a result, the protocol is highly scalable with an 

increase in data items in the registry. 

4. Distributed and fault tolerant: As the latest updates may be at different nodes 

in the entire registry, the protocol designed is distributed. There is no single point 

of failure. If a node fails, the custodianship of data items in custody of that node 

is transferred to another node [UDDI]. 

5. Fine grained session guarantee: While ensuring an increasing view of the 

registry to a user, the protocol does not wait till exact previously known state is 

attained. The fine grained session guarantee waits only for the execution of 

previously read conflicting transactions with which the present transaction 

conflicts either directly or indirectly. This mechanism neither requires full 

synchronization nor tight coupling between the nodes. 

6. No deadlocks: The fully optimistic replication protocol, which is an extension to 

the replication protocol, prevents the deadlock in the system by ensuring that 

there is no circular-wait among the transactions. 
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4.6 Performance evaluation 

In this subsection, we analyze the performance of our replication protocol with 

respect to various parameters. The performance of the system can be increased by 

reducing each of the following costs associated with the execution of a transaction: 

1. The communication cost: This is the overhead involved in sending and receiving 

the change-record messages from one node to another. 

2. Execution cost: This is the cost involved in executing a transaction submitted at a 

node by its TM. 

3. Waiting cost: The ROT has to wait at a node to attain a state such that session 

guarantee mechanism is satisfied. This waiting time is calculated to determine the 

throughput of the system. 

Each of the following parameters affects the costs in different ways: 

1. Number of data items in the registry. 

2. Number of nodes in the registry. 

3. Rate of conflicting transactions: This is determined by the number of conflicting 

transactions among the total number of transactions in the system. 

4. Number of remote accesses of a transaction: To execute a transaction, the primary 

transaction coordinates with other nodes which are the custodians of the data items 

of its operations. The number of remote accesses is determined by the number of 

operations accessing data items in custody of other nodes. 
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In our study, we assume that custodianship of data items is uniformly distributed in the 

registry. This uniform distribution enables fair load balancing in the execution of the 

primary transactions in the registry. 

Let us consider each of the costs with respect to above parameters. 

1. Communication cost 

As the number of operations of a transaction increases, the rate of conflict with other 

transactions increases. As the message propagation mechanism has to wait for the 

conflicting transactions, the wait time to deliver the change-record message at the 

destination node increases. As a result the communication cost increases. For 

example, when the number of operations of a transaction increases from five to ten, in 

the worse case the transaction conflicts with ten transactions instead of five. If all 

these conflicting transactions were executed at different nodes then the transaction 

has to wait for the change-record message from ten nodes instead of five. The 

additional wait time increases the communication cost of the system. 

As the number of nodes in the registry increases, wait time to deliver a change-record 

of a transaction at a node increases. In the worse case, if the preceding primary 

transactions of a transaction are executed at different nodes, the change-record 

message delivered at the node is on hold until the preceding conflicting transactions 

are delivered. As number of nodes in the registry increases from two to five nodes, 

the wait time to deliver the change-record increases drastically. When number of 
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nodes is far more than the number of data items in the registry, increase in number of 

nodes does not have much affect on the wait time to deliver the change-record. 

As the number of remote accesses of a transaction decreases, the conflicting 

transactions being executed at other nodes decreases. This decreases the wait time to 

deliver the transactions at a node. 

2. Execution cost 

As the number of nodes in the registry increases, the number of copies of a data item 

in the registry increases. Therefore, more number of ROTs can be executed in the 

registry at a given point in time. For example, when number of nodes in the registry is 

increased from five to ten nodes the ROTs can be executed at different nodes 

concurrently. This increases the transaction throughput of the system. 

As the number of remote accesses of a transaction increases the communication 

overhead involved increases. This decreases the number of transactions executed per 

unit time. 

3. Waiting cost 

The session guarantee mechanism ensures that the ROT sees an increasing view of 

the system by waiting for all the preceding conflicting transactions in the session. As 

the number of transactions in a session increases, the session guarantee mechanism 

delays the execution of the ROT until the preceding conflicting transactions of the 

session are executed at that node. As a result, wait time to execute ROTs increases 

and throughput of the system decreases. For example, when the number of 
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transactions increases from five to ten, the tenth transaction in the worse case has to 

wait for previous nine transactions to execute, whereas the fifth transaction has to 

wait only for the previous four transactions to execute. 

The increase in the number of data items in the registry does not effect wait time to 

execute a transaction in a session unless the data items induces a conflict with the 

other transactions in the session. 

4.7 Starvation 

As a few of the operations of a transaction may be executed optimistically, the 

transaction may be aborted several times. Thus, a few transactions may not be 

executed even after waiting for a long duration of time. This leads to starvation of 

those transactions. 

For simplicity, first let us assume that all the transactions at a node are executed by 

the local TM using First Come First Serve (FCFS) policy. That is, a transaction which 

arrives first at a node is executed first by the local TM at that node. A simple and 

efficient solution to resolve starvation is to execute the transaction pessimistically by 

requesting locks on all the data items before the execution starts. Hence, a transaction 

is executed in the order of its arrival which ensures that the transaction is not aborted 

later due to conflicts. 

The major problem with this method is that pessimistic locking increases the 

deadlock rate. The deadlock algorithm may select the same transaction as the victim 

transaction several times. 
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In the distributed system, an aborted transaction can be executed at a node which is 

not the same node as its previous execution. As a result an aborted transaction may be 

aborted again by a different TM. Therefore, it is not suitable to use FCFS method by 

local TM for resolving starvation at the global level. The following method is 

employed to resolve the starvation at a global level. 

When a transaction is submitted to a local TM at a node for execution, the transaction 

is inserted in a FCFS queue at that node. When a transaction is scheduled for 

execution for the first time, it is assigned the NA-array at that node and initialized. 

Every transaction is assigned the NA-array as follows: 

Let T0 , TE, TF be transactions with NA-arrays NA0 [1,2,3, ... ,n], NAE[l,2,3, ... ,n] and 

NAF[l,2,3, ... ,n], respectively. NA-arrays for T0 , TE, TF are initialized at Node-X, 

Node-Y and Node-Z, respectively, as follows: 

Then, NAo[1,2,3, ... ,n] := Nx[x][1,2,3, .... n] 

NAE[1,2,3, ... ,n] := Ny[y][1,2,3, .... n] 

NAF[1,2,3, ... ,n] := Nz[z][l,2,3, .... n] 

An aborted transaction retains the NA-array which was assigned to it in its previous 

execution. Upon addition of a transaction in the queue, it is sorted according to the 

precedence of NA-array. The precedence of the NA-array for transactions can be 

determined as follows: 
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if NA0 [1,2,3, ... ,n]:::; NAE[1,2,3, ... ,n]:::; NAF[l,2,3, ... ,n] 

then their ordering in the queue is changed to T 0 ~ T E ~ T F 

This ordering is changed upon the addition of a new item into the queue. If ordering 

between two consecutive transactions cannot be determined, then they are unaltered. 

That is, its default FCFS ordering is maintained. 

4.8 Livelocks 

Livelock is a special case of deadlock in which the involved transactions constantly 

change their states with respect the states of others but do not make progress. It is also 

defined as a special case of resource starvation in which a specific transaction is not 

progressing. 

In our protocol, a livelock occurs when two are more transactions are acquiring a few 

of the locks optimistically and other locks pessimistically. Both of the transaction 

types may be invalidated and aborted. During its next execution if those transactions 

swap the optimistic and pessimistic lock requests on their respective data items, this 

cycle may continue repeatedly. A simple method to resolve the livelock is to execute 

one transaction by requesting all the locks pessimistically at a point in time in the 

system. Only after the transaction finishes execution, another transaction is executed 

again in fully pessimistic method. In this way we can ensure that at least one 

transaction changes its state in the system. 
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4.9 Related Work 

A brief comparison of our work with related works in the literature is as follows: 

[HSAE03] uses the lazy replication where the primary transactions can be executed at 

any node. Once they have been successfully executed, they are said to be in 

precommit state. They are propagated to other nodes by epidemic propagation 

(exchanging up-to-date information by choosing another node at random, in a way 

passing them through the system like an infectious disease) of messages to detect 

conflicts. The transaction commits successfully if no conflicts are detected at any 

other node. Their method is in a way an eager replication where a pre-committed 

transaction commits only after it has the information of all the other nodes in the 

registry or it can abort if some other node does this computation and sends the abort 

message. Our method is more efficient than [HSAE03], as once a primary transaction 

at the coordinator commits, the user obtains the response from the system and 

coordination is required only with participant nodes. That is, our method needs to 

know only a subset of all the transactions in the system. While in [HSAE03], at all the 

nodes the data items in the write-set of the precommit transaction cannot be read by 

other transactions, whereas in our method the transactions can read values of previous 

transactions. 

Providing session guarantees within a transactional framework is presented in 

[DS04]. They ensure a new correctness criterion called strong session serializability 

(strong session lSR) which is weaker than strong serializability (where all conflicting 
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transactions must be serialized in the order in which they are submitted) but stronger 

than ISR. Our method is more efficient than in [DS04], as we provide the flexibility 

of executing ROTs at any node in the registry, whereas they allow only at specified 

nodes. As the session keeps track of transactions from which it has read, instead of 

the present state of the registry our session guarantee mechanism is fine grained and 

provides more concurrency than theirs. We consider the conflicts (directly or 

indirectly) only on those data items which the present transaction is accessing, 

whereas they consider the exact state of the system for comparison. We allow 

distributed transaction execution, whereas theirs is centralized. 

Recently, providing the freshness guarantee in partially replicated databases has been 

dealt with in the PDBREP project in [ATGBOS]. It considers a lazy replicated 

database where there are separate set of update nodes and read only nodes. They 

assume that system ensures ISR criterion at update nodes. As any read only node is 

not as up-to-date as an update node, they allow user to specify the freshness 

requirements for transactions. PDBREP has a centralized log which keeps track of the 

present state of the system, whereas ours is completely distributed. In their case, if 

user gives an invalid freshness requirement, the user may read an inconsistent view of 

the system. In our protocol, we first provide ISR. Then, we provide Monotonic Read 

Only and Read Only Follow Updates guarantees which ensure the valid and 

consistently increasing view of system to each user in the session individually. 
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In traditional name service directories, such as Grapevine [S84] and Clearinghouse 

[X84], a weak consistency called eventual consistency is employed. They are not 

serializable but all data items of all the nodes eventually reach the same state. It is a 

sufficient correctness criterion for the applications for which they are used. Due to the 

lack of trust between organizations and other issues, such as confidentiality, in UDDI 

a serialized view of transactions is required. Any weaker consistency criterion should 

be avoided. In [SLK04], a comparison of UDDI registry replication strategies is 

given. 

[CRR96] considers replication in partially replicated databases. A data item can be in 

custody of any one of the nodes in the system. As they consider the basic reliable 

broadcast, there is a need to ensure global serializability. They consider the issue of 

assigning primary node for data items. They use the data placement graph which is a 

directed graph representing distribution of primary and secondary copies of data 

items across the system. They show that acyclic data placement graph ensures global 

serializability. Their algorithm finds a primary node for each replicated data item. The 

main drawback of their algorithm is that, it finds the primary node for a data item 

only when such a solution exists. It provides only very restricted set of solutions. 

When there is no feasible solution, the algorithm does not take any alternative action. 

It requires a lot of careful designing or the system would not ensure transactional 

guarantees. Our protocol is more efficient than theirs, as whatever may be the 
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distribution of the custodianship in the replicated registry; the transactions can be 

executed (provided there are no deadlocks and failures). 
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Chapter 5 

Partial Replication 

Replicating all the data items at all the nodes requires high bandwidth and many of 

the replicated data items may never be used. Replicating only those data items which 

are frequently used is a practical approach to increase the performance and utility of 

the system. Replicating a data item only at a subset of the nodes is called partial 

replication. If the data item's access pattern is known in advance, then the replicated 

system can be designed such that data items are only replicated at the nodes where 

they are used. Also, more frequently used data items can be replicated at more nodes 

than less frequently used data items, thereby, increasing the availability and utility of 

the system. The partial replication reduces lock contention, write overhead and 

communication costs in comparison with the fully replicated system. This aspect 

improves the performance of the distributed system. Ideally, partially replicating 

required data items in the system should increase the system performance in 

comparison with the fully replicated system. In reality, the advantage of partial 

replication is offset by the cost of added complexity that is required to manage it, in 

comparison to full replication. 

In a partially replicated system, a data item is replicated only at a few nodes. If a 

transaction updates a data item, only those nodes in the system having a copy of the 

data item need updates of the transaction. Instead of broadcasting updates of the 
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transaction to all the nodes in the system, it is advantageous to multicast these updates 

to only the subset of the nodes which have these data items. Also, at the destination 

node where the message is to be delivered, it does not need to wait even for a 

preceding conflicting transaction in the system that does not update any data item at 

that node. Similarly, for the session guarantee mechanism for a ROT executing at a 

node, the ROT does not need to wait for a change-record which is not sent to that 

node. Our motivation for using the causal multicast mechanism is demonstrated by 

the following example. 

Node-X Node-Y Node-Z Node-W 

Figure 5.1 Illustrates the benefits of causal multicast over causal broadcast 

Example 5.1: Consider the setup as shown in Figure 5.1. Let us consider a registry 

with 100 nodes, say Node-X, Node-Y, Node-Z, Node-Zl, Node-Z2, ... , Node-W. 
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Data item b is replicated at Node-X (custodian), Node-Y, and Node-W. Similarly, 

data item cis replicated at Node-X and Node-Y (custodian). Data item dis replicated 

at Node-X and Node-W (custodian). Data item e is replicated at all the nodes (Node­

W is the custodian). 

A simple solution to ensure global serializability of such a partially replicated system 

would be to use the causal broadcast mechanism (as discussed in chapter 4). The 

change-record can be ignored at the nodes where there are no data items to update. 

T~o T2, T3, and T4 are transactions as shown in the Figure 5.1. Their respective 

change-records are indicated by (1), (2), (3), and (4). The solid lines indicate nodes at 

which change-records, once delivered, are implemented as refresh transactions 

because these nodes contain data items in the write-set of the transaction. The dotted 

lines indicate the nodes where the delivered change-records are ignored. In summary, 

• (1) is implemented at Node-X, Node-Y, and Node-W. 

• (2), (3) are implemented at Node-X and Node-Y. 

• (4) is implemented at Node-X, Node-Y, and Node-W. 

Let us assume that the communication link between Node-X and Node-W is broken 

after (1) is delivered at all the nodes. Then, the causal broadcast mechanism delivers 

(4) at Node-W only when the link starts working and all the preceding change­

records, namely, (2) and (3), have been delivered at that node. (4) is waiting for other 

change-records (i.e., (2) and (3)), which will eventually be ignored at Node-W. In 
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summary, at Node-W, message (4) waiting for other change-record messages, 

namely, (2) and (3), is an unnecessary wait. On the other hand, if the causal multicast 

mechanism is used, then (4) can be delivered without waiting for any other messages. 

This method, in tum, increases the transaction throughput of the system. 

In partially replicated system, all the data items accessed by a transaction may not be 

at a single node. This factor affects the update transactions and ROTs as follows: 

• Usually, a node which has copies of all the data items accessed by a transaction is 

selected as the coordinator for the execution. If a transaction accesses a data item 

which does not exist at the coordinator node, then the coordinator can request the 

lock and value from the custodian node of that data item. 

• In a replicated system, the volume of ROTs is usually high. To increase the 

transaction throughput of the system, we provide access to any value of a data 

item as permitted by the session guarantee mechanism. In partially replicated 

systems, as all the data items are not present at a particular node, we extend a 

ROT to access multiple nodes. A ROT which accesses data items at more than 

one node in the registry is called the global ROT. As we have global ROTs in the 

system, even if the TM at each node in the registry ensures serializability, it may 

not be possible to ensure serializability (lSR) at the global level. This can be 

illustrated with the following example. 
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Example 5.2: Consider the setup shown in Figure 5.2. Let Node-Z be the custodian 

of data items b and c. Let Node-X and Node-Y have data items b and c, respectively. 

We have the following transactions in the system: 

TK ~ W(b) R(c) 

TL ~ R(c) W(c) 

TH ~ R(b) R(c) 

Node-X Node-Y Node-Z 

\, ~ W(b) R(c) 

TL-+ R(c) W(c) 

T H -<R(b )) (R( ~·),) 
............ ············ 

Figure 5.2 Illustrates the inconsistent state seen by the global ROT, TH 

They are executed as follows: 

a) TK and TL are executed at Node-Z. TK precedes TL (TK ~ TL). 

b) THis divided into sub-transactions TH1 and TH2• TH1 reads data item bat Node-X, 

before TK is executed (THI ~ TK) and TH2 reads data item cat Node-Y, after TL 
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is executed (T L - T Hz). As T H should be executed atomically as a single 

transaction, the execution order is T L - T H - T K. 

From (a) and (b) we have a cycle, TL- TH- TK- TL in the serialization graph at a 

global level. Because an atomic global transaction is divided into two sub­

transactions, the schedule is not globally serializable. This is an incorrect execution. 

(Although, in this thesis, we consider two different ROTs from two different sessions 

creating a cycle in the global serialization graph to be a correct execution.) 

• Also, if the same message propagation mechanism (i.e., broadcasting), as in the 

fully replicated system, is used for multicasting; it does not ensure the liveness 

property. This can be illustrated with the following example. 

Example 5.3: Consider the setup as shown in Figure 5.3. Node-X and Node-Z are 

custodians of data items band d, respectively. TL and TH are transactions executed at 

Node-X and Node-Z, respectively. For any update transaction in the system, its 

change-records are multicast to nodes containing data items in the write-set of the 

transaction, as only those nodes needs to update the data item. Consider the following 

execution sequence: 
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Node-X TH = R(b) W(d) 

~!!.,.,'" 
__..,,...,,...__ , , , 

Figure 5.3 lllustrates that the liveness property is not ensured by the causal multicast 

mechanism 

• T Lis executed with Node-X as the coordinator. 

• TH is executed with Node-Z as the coordinator. Node-Z requests the lock and 

value for data item b from Node-X. After obtaining the lock and value of data 

item b, TH executes R(b). TH commits and the change-record of TH is sent to 

Node-Y. As TH obtains lock on data item b after the execution of TL at Node-X, 

• At Node-Y, the change-record ofT H is waiting for the change-record ofT L, as it is 

a preceding conflicting transaction. T L will never be delivered at that node, as it 

was not sent to Node-Y by its coordinator. (Please note that the change-record of 

TL is not sent to Node-Y, as there is no data item bat that node.) Therefore, TH 

will be waiting forT L infinitely. 
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Therefore, the liveness property for the delivery of messages is not ensured by the 

causal message propagation mechanism. 

The message propagation mechanism employed in the fully replicated system must be 

modified to ensure the liveness property. We know that serializability at the global 

level is dependent on the causal propagation mechanism. While designing the 

propagation of messages, we have to ensure that, on one hand, there is progress in the 

message delivery and, on the other hand, the dependent messages are delivered in the 

same serial order. Therefore, to deliver a change-record of a transaction at a node, the 

multicast mechanism has to know the transaction's preceding conflicting transactions 

and which of these conflicting transactions have been sent to that node by their 

coordinators. 

5.1 Protocol for partial replication 

Analogous to the fully replicated protocol, the execution of a transaction is divided 

into a primary and a refresh transaction. The protocol is explained from the 

coordinator's view, participant's view, and non-participant's view. 

The protocol for partial replication differs from that of full replication in the 

following ways: 

1. Message propagation: Implements the causal multicast of messages, instead of the 

causal broadcast of messages. 

2. Replication protocol: Replicates a data item at only a subset of nodes, instead of 

replicating at all the nodes. 
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3. Session guarantee mechanism for read only transactions: Implements global 

ROTs. 

A change-record for T K contains the following fields: 

1. Node identifier of the coordinator ofT K; 

2. USN of transaction T K; 

3. Write operations with their values and read operations of transaction T K; 

4. Present state array (Py[l,2,3, ... ,n]) of the coordinator (optional); 

5. Dependency array (0-array) of TK. DK[l,2,3, ... ,n][l,2,3, ... ,n] of TK which 

contains the USN of TK and USNs of all the preceding (directly and indirectly) 

conflicting transactions; and 

6. Receive array (R-array) ofT K: As the change-record of a transaction may not be 

sent to all the nodes in the partially replicated protocol, the liveness property 

cannot be ensured using the protocol in chapter 4 (see Example 5.3). To solve the 

problem cited in the example, an additional array called the R-array is used to 

indicate that T H does not have to wait for T L at Node-Y, as T L was not sent to 

Node-Y by its coordinator. RH[y][l,2,3, ... ,z-l,z+l, ... ,n] ofTH indicates the USNs 

of all the preceding (directly and indirectly) conflicting transactions which have to 

be delivered at Node-Y, before T H can be delivered at that node. Hence, 

RH[y][l,2,3, ... ,z-l,z+l, ... ,n] is designed in such a way that its change-record 

waits for only those preceding conflicting transactions which were sent to Node-Y 
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by their coordinators. In summary, the R-array of a change-record is designed in 

such a way that to deliver the change-record at a node, it waits only for those 

preceding conflicting transactions which were sent to that node by their 

coordinators. 

D-arrays and R-arrays are associated with the change-record, lock-grant, and 

acknowledgement messages. 

5.1.1 Primary transaction 

For Coordinator (Coordinator's view) 

Consider the execution of the primary transaction, T K, at the coordinator, Node-Y. 

(1) Lock acquisition phase: TK acquires the locks in two steps, namely, stage (l.a) 

and stage (l.b), executed in the given order. Once all the requested locks have 

been acquired, the protocol goes to stage (2). 

(a) Requests PT-S and PT-X locks on data items which are in custody of Node-Y, 

atomically. After successful completion the protocol goes to stage (l.b). 

(b) The coordinator of T K decides which locks to request from the participants 

now (in stage (l.b)). If there is a read operation in TK accessing a data item 

not present at the coordinator node, then the lock and value for that data item 

must be requested from the participant (now). That is, transaction T K cannot 

execute that operation optimistically. A PT-S lock-value-request message on 

that data item is sent to its custodian node by the coordinator. On the other 
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hand, if a data item is available locally, a PT-S lock-request message on the 

data item is sent to its custodian node by the coordinator. 

(2) Execution phase: Transaction T K is executed. All writes are performed in the 

private workspace. 

(3) Validation phase: Let us consider the validation of the operation on data item b of 

transaction TK executed at the coordinator, Node-Y. If a transaction is 

performing validation of an operation on a data item, it means that it had not 

requested the lock on that data item in stage (1). If both read and write operations 

are performed on the same data item optimistically, then the write operation on 

that data item should precede the read operation. The procedure for validation of 

an operation on a data item of a read operation only or a write operation only is 

the same as in the fully replicated protocol. The types of validation messages that 

are possible in the partially replicated protocol are: 

(a) Read validate a data item: Possible only if the data item is present at the 

coordinator ofT K· 

(b) Read and write validate a data item: Possible only if the data item is present at 

the coordinator of T K. or if the data item is not present at the coordinator but 

the write operation precedes the read operation. 

(c) Write validate a data item: Possible. 

S-optimistic-request and X-optimistic-request messages are sent to read validate 

and write validate, respectively. While sending the S-optirnistic-request message 
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on data item b, the identifier of the transaction, <Node-ID, USN>, from which the 

data item was read is also sent. 

( 4) Abort phase: The protocol aborts the transaction, as per the decision made in the 

validation phase. Then, it sends the lock-release message to all the participants of 

the transaction. This procedure is the same as in the fully replicated protocol. 

(5) Commit phase: The transaction commits by executing the following steps in the 

given order: 

a) Executes the refresh transaction protocol (explained later) ofT K. 

b) Commits the primary transaction ofT K· 

c) Creates the change-record of TK. First, the USN is generated. Then, updates 

the state array Ny, creates P-array Py, D-array DK, and R-array RK. 

d) Releases all the PT locks. 

e) Multicasts the change-records to all other nodes which have at least one data 

item in the write-set or the read-set ofT K· 

Then, the session_update procedure is executed. This procedure is discussed later. 

When the registry starts, the state vector at each node is initialized to zero value as 

follows: 

Nx[1,2,3, ... ,n][1,2,3, ... ,n] := Ny[l,2,3, ... ,n][1,2,3, ... ,n] := 0 
Nz[l,2,3, ... ,n][l,2,3, ... ,n] := Nw[1,2,3, ... ,n][l,2,3, ... ,n] := 0 

The procedure for creation and updating of arrays in stage (5.c) can be explained as 

follows: 
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• Update ofNy[l,2,3, ... ,n][1,2,3, ... ,n] at Node-Y 

Ny[x][z] is the USN of a transaction whose primary transaction was executed at 

Node-Z, and has been executed at Node-X as refresh transaction that Node-Y is 

aware of. (Sometimes, Ny[x][z] may indicate the USN of a transaction which was not 

executed at Node-X. This happens when Node-Xis the custodian of the data item in 

the read-set of the transaction, but does not contain any data item in the write-set of 

the transaction.) The state array at Node-Y is updated so that it records the 

commitment ofT K at that node. 

Ny[y][y] :=USN of primary transaction TK 

• Creation of the present state array (P-array), Py, representing the yth row of Ny 

P-array is a one dimensional array indicating the state of the coordinator. This array is 

optionally sent with the change-record. 

Py[l,2,3, ... ,n] := Ny[y][1,2,3, ... ,n] 

• Creation of the R-array, RK, ofT K 

RK[x][z] is the USN of either the transaction conflicting with T K, or of T K, whose 

primary transaction is executed at Node-Z (its coordinator) and has been sent to 

Node-X. In the zth column of the R-array, rows that have the USN ofT K indicate the 

nodes to which the change-records of T K have been sent. These nodes include the 

coordinator, participants, and those non-participants which have the data items in the 
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write-set of the transaction. The procedure below stores the USN ofT K in the rows of 

R-array, corresponding to nodes that are sender and receivers of the message ofTK. 

RK[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II initialize 
RK[y ][y] := USN of transaction T K 
For all x, to which the change-record ofT K is sent, RK[x] [y] :=USN of transaction T K 
Here all nodes indicated by x are participant nodes or those non-participant nodes 
which have a data item in the write-set of the transaction. 

A row in the R-array of T K indicates the preceding conflicting transactions, which 

have to be delivered at a node represented by the row in order to deliver the change-

record of TK at that node. For example, RK[x][1,2,3, ... ,n] of TK indicates to Node-X, 

the preceding conflicting transactions that have to be delivered at that node before 

delivering that transaction. 

• Creation of D-array DK for T K 

DK[x][z] is the USN of a transaction conflicting with TK, or of TK, whose primary 

transaction was executed at Node-Z (its coordinator) and Node-X as the participant. 

In the zth column of the D-array, the rows with the USN of T K indicate the 

coordinator and participants ofT K· The procedure below stores the USN of T K in the 

rows of the D-array, corresponding to nodes that are participants and coordinator of 

DK[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II initialize 
DK[y][y] :=USN of transaction TK 
For all x, which are participant nodes ofTK, DK[x][y] :=USN of transaction TK. 
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LetT K conflict with a set of transactions T Kh T K2·· .. ,T KM at the present node. Let D-

arrays and R-arrays corresponding to these conflicting transactions be DK1, 

DK2, ... ,DKM and RKI, RK2, ... ,RKM, respectively. (Please note that the D-array and the 

R-array can be obtained from the change-records of these transactions.) Also, let the 

D-array and the R-array associated with the lock-grant and acknowledgement 

messages of TK be DKMh DKM2·····DKP and RKMI, RKM2·····RKP, respectively. Then, 

the procedure below computes the transactions that are conflicting with T K. and the 

nodes to which these transactions have been sent to and stores them in arrays. 

for var = 1 to n, where n is the number of nodes 
for varp = 1 to n, where n is the number of nodes 

RK[var][varp] .- Max(RK1[var][varp], RK2[var][varp], .... , RKM[var][varp], 
RKM1 [ var] [ varp], RKM2[ var] [ varp], ... ,RKP[ var ][ varp], RK[ var ][ varp]) 

DK[var][varp] .- Max(DK1[var][varp], DK2[var][varp], .... , DKM[var][varp], 
DKM 1 [ var] [ varp], DKM2[ var] [ varp], ... ,DKP[ var] [ varp]. DK[ var] [ varp]) 

The above code calculates and stores in DK, USNs of all the transactions conflicting 

with TK in the entire system. Similarly, USNs stored in RK indicates the nodes to 

which the change-record of these conflicting transactions has been sent. 

In Figure 5.4, transaction T H is executed with Node-Y as the coordinator. Node-Y 

sends a PT-S lock-value-request on data item b to Node-X in stage (l.a). After 

obtaining the lock-value-grant, the protocol executes the transaction by performing 

the operations on data item d optimistically. Later, the coordinator of T H validates 

those read and write operations on data item d, by sending the validation request 

message to Node-Z. Upon successful validation, transaction T H commits. 
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Figure 5.4 Illustrates the execution of the primary transaction protocol ofT H 

For Participants (Participant's view): 

Consider a participant node, Node-X, participating in the execution of the primary 

transaction ofT K: 

(1) Upon receiving a PT-S/PT-X lock-request or a PT-S lock-value-request (refer to 

stage (l.b) of the coordinator's view): For a PT-S (PT-X) lock-request message, 

Node-X acquires a PT-S (PT-X) lock on the data item from the local TM. Then, it 

sends the lock-grant message along with the D-array, DKRr[1,2,3, ... ,n][1,2,3, ... ,n], 
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and the R-array, RKRr[1,2,3, ... ,n][1,2,3, ... ,n] (That is, Node-X is the ith participant 

ofTK). For a PT-S lock-value-request on a data item, Node-X acquires the lock on 

the data item and sends a lock-value-grant message, along with the present value 

of the data item, the 0-array, DKRr[1,2,3, ... ,n][l,2,3, ... ,n], and the R-array, 

RKRr[l,2,3, ... ,n][l,2,3, ... ,n]. These message types may optionally contain the P-

array. 

(2) Upon receiving the validation message (refer to stage (3) of the coordinator's 

view): A participant can receive an S-optimistic-request message or an X­

optimistic-request on a data item. Validation of an operation on a data item is 

performed as follows: 

a) Upon receiving the S-optimistic-request: The S-optimistic-request message 

contains the identifier of the transaction <Node-ID, USN> from which the 

data item b was read. A check is made if there are any writes on data item b 

starting from the latest state of the node, until the change-record identified by 

<Node-10, USN>, or the last change-record is reached. If true, a negative 

acknowledgement is sent. Otherwise, a PT -S lock is obtained from the local 

TM (We assume that checking the condition and obtaining the locks are 

performed atomically) and a positive acknowledgement is sent. 

b) On receiving the X-optimistic-request: For an X-optimistic-request on data 

item d, Node-X obtains a PT-X lock from the local TM and sends a positive 

acknowledgment. If the PT -S lock is already present on the data item by the 
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same transaction, then the lock is upgraded to the PT-X lock and a positive 

acknowledgement is sent. Please note that in-order to upgrade a lock on a data 

item, the TM at Node-X must wait until all the other conflicting transactions 

holding read locks on that data item are released. Deadlocks are possible when 

two or more transactions are trying to upgrade their locks on the same data 

item simultaneously. 

c) Both S-optimistic-request and X-optimistic-request: On receiving both the 

requests on data item c, first, a check is performed as in the case of the S­

optimistic-request. Then, upon a successful outcome, the PT-X lock on the 

data item dis acquired and a positive acknowledgement is sent. 

All the acknowledgement messages contain the D-array and the R-array. They 

may optionally contain the P-array. 

(3) Upon delivery of a change-record (refer to stage (5.e) of the coordinator's view): 

The change-record is stored. Then, one of the following steps is executed. 

a) If there are data items of the write-set of the transaction at Node-X, then the 

refresh transaction protocol is executed. Please note that the refresh 

transaction writes only the data items in the write-set of the transaction present 

at that node. The other operations in the write set of the transaction are 

ignored. 
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b) On the other hand, if data items of the write-set of the transaction are not 

present at Node-X, then the refresh transaction protocol is not executed. 

Later, the participant node releases all PT locks of transaction T K· 

(4) Upon receiving the lock-release message (refer to stage (4) of the coordinator's 

view): Releases all the PT locks held by transaction T K· 

For Non-Participants (Non-Participant's view): 

Upon receiving the change-record from the coordinator node, it is stored and the 

refresh transaction protocol is executed. 

5.1.2 Refresh transaction 

For Coordinator and Participants (Coordinator's view and Participant's view): 

Consider the execution of the refresh transaction ofTK at Node-X. 

1) Lock acquisition phase: The protocol request for RT locks and waits until 

conflicting locks are released. Then, RT-X locks are acquired on all the data items 

to be written at that node. ART-X lock on a data item can be given even when the 

conflicting transaction has a PT-X lock on that data item. (Please note that as RT­

X and ROT-S locks are incompatible, a RT-X lock on a data item is not given if 

there is any ROT-S lock on that data item.) 

2) Execution phase: Transaction TK is executed. Now, data items of TK's write-set 

present at that node are written. 
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3) Commit phase: PT-S, PT-X, and RT-X locks on all the data items of TK are 

released atomically. 

For Non-Participants (Non-Participant's view): 

The procedure is the same as in the protocol for the fully replicated case, except that 

the write-set ofT K present at that node is written. 

5.1.3 Read only transaction 

The protocol is the same as in the fully replicated protocol, except that in the session 

guarantee mechanism for the global and local ROTs. 

5.1.4 Mechanism for session guarantee 

We need an additional array called SRp for the session guarantee mechanism. This 

array serves to eliminate the idle waiting at a node for the change-record of a 

transaction which is not sent at that node. This can be illustrated using the following 

example. 

Example 5.4: Consider the set up shown in Figure 5.5. TL and TH are executed at 

Node-X and Node-Z, respectively, where TL precedes TH (TL--+ TH). Let us assume 

that a new session starts with a transaction reading data item d written by T H at Node­

Z. When the next transaction of the session with a read operation on data item c is 

executed at Node-Y, it must wait for the change-record of TH and TL, as they are 

conflicting transactions. As the change-record of TL is not sent to Node-Y, the ROT 

infinitely waits for the change-record ofT L to be delivered. A better solution would 
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be to allow the ROT to read the values from Node-Y, without delivery of TL at that 

node, as it would still provide the consistent view of the system. 

Node-X TH = R(b) W(c) W(d) 

Node-Y 

Figure 5.5 Dlustrates that the liveness property is not ensured by the session guarantee 

mechanism 

Initialization: 

The data structures used in the session guarantee mechanism are initialized as 

follows: 

Sp[l,2,3, ... ,n][1,2,3, ... ,n] := 0 II belongs to a user session 
SRp[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II belongs to a user session 
Mx[1,2,3, ... ,n][l,2,3, ... ,n] := My[l,2,3, ... ,n][l,2,3, ... ,n] := 0 II stored at a node 
Mz[l,2,3, ... ,n][l,2,3, ... ,n] := Mw[1,2,3, ... ,n][l,2,3, ... ,n] := 0 II stored at a node 

Session_read: 

This procedure is performed before the execution of a ROT. Its key features are: 
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• The procedure eliminates the idle waiting for change-records which were not sent 

to the node where the ROT is being executed. 

• It provides the flexibility for a global ROT to read data items from more than one 

node. This is performed by dividing a global ROT to a number of sub-transactions 

and executing them at those nodes. 

The global ROTs are useful for the following purposes: 

• An administrator of the registry may want to archive the status of the registry at 

the end of the day for auditing purposes. As only the custodian nodes of the 

respective data items have the latest updates, no single node may have an accurate 

and current snapshot of the entire system. A global ROT is divided into a number 

of sub-transactions and executed at their respective custodian nodes, as a ROT. In 

Figure 5.6, TL is divided into sub transactions Tu, TL2, and TL3. These 

transactions read data items b, c, and d at Node-X, Node-Y, and Node-Z, 

respectively. T L obtains the latest state of the registry. 

• As the number of customers in the registry increases, there may be different 

classes of users, namely, paid and free users. A business strategy could be to 

provide more recent updates to paid users and any values to free users. The free 

user's ROTs can be executed in such a way that they access data items only at the 

nodes that are not custodians of those items. In this way, any update transaction 

can obtain the response from the system without being interrupted by a free user's 
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ROT. This is because at the coordinator node of an update transaction, its primary 

and refresh transactions do not wait for the locks held by free user's ROT. In 

Figure 5.6, TH is divided into sub-transactions Tm and TH2· These sub-

transactions read local copies at Node-Y and Node-Z, respectively. Please note 

that if T u and T H are executed at the same point in time, one does not have to wait 

for another even though they are conflicting transactions. This method enhances 

the availability of the system. 

The global ROTs may be used in the fully replicated systems also. In partially 

replicated systems, global ROTs become a necessity sometimes (depending on the 

data items the transaction accesses), as the data distribution is not uniform. 

Tu = W(d) 

Node-X Node-Y Node-Z 

~ ......... :1-.... TLJ ~ .. JTH2 
TL *.RCb{Rc~YRCct)··Y TH G'i"ctxR.cb)) 

················ ............. · ............... .. ............ · .............. . 

Figure 5.6 lllustrates the execution of global ROTs 

For execution of the global ROT, a consistent global view of the system must be 

explicitly provided, as nodes being accessed by the sub-transactions may be at 

different states of the system. Please recall that in Example 5.2, TH will obtain an 
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inconsistent global view of the system due to the same reason. The global transaction 

does not obtain a consistent view of the system, as different sub-transactions read 

different states of the system at different nodes. That is, in Example 5.2, THl at Node­

X obtains the state of the system which was present before the execution ofT K. where 

as TH2 at Node-Y obtains the state of the system after the execution ofTL. 

The difference between local and global transactions is that in the former case, a 

check is only performed before the execution of the transaction to ensure that the 

session reads an increasing state of the system. In the latter case, in addition to this 

check for component sub-transactions of the global transaction, it checks if a 

consistent state of the entire system is obtained by the global transaction. 

The procedure to check if a ROT can be executed, session_read_check, is as follows: 

Sp represents user session P, containing all the preceding (directly or indirectly) 

conflicting transactions seen by the user in the system. SRp[x][1,2,3, ... ,n] represents 

all those preceding conflicting transactions of user session P which have been sent to 

Node-X by the transaction's coordinator node. Let us consider the execution of a 

ROT, TK, at Node-X. TK accesses the data items in custody of Node-Q, Node-R, and 

Node-W. Temp is a one dimensional array. The session_read_check procedure 

calculates the USNs of conflicting transactions of the ROTs that have been sent to 

that node. Then, the procedure waits only for those transactions that are to be 

executed at the node. 
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for var = 1 to n, where n is the number of nodes 
//check for change-records which should have arrived at each of the nodes 
tempR[var] := Max(SRp[q][var], SRp[r][var], SRp[w][var]) 
where q, r, and w are custodian nodes of data items accessed by the ROT 

wait until (Nx[x][1,2,3, ... ,n] ~ tempR[l,2,3, ... ,n]) 
then execute the ROT at Node-X 

In the above code, temp-array contains the USNs of the transactions for which the 

ROT has to wait. At Node-X, N-array is compared to check if these transactions have 

been executed already. If the change-record of a particular transaction has not been 

sent to Node-X, then it does not wait for that transaction. 

Execution of the global ROT: 

Let us consider the execution of a global ROT. The procedure can be explained as 

follows: 

• Divide the global transaction into two or more sub-transactions. Submit the sub-

transactions to different nodes. One of these nodes is selected as the coordinator. 

All the others are regarded as participants. 

• Session_read_check procedure is executed at each of the nodes corresponding to 

the sub-transactions at that node. 

• Participants send the result and other information, such as the D-array, N-array, 

and P-array, for each of those sub-transactions to the coordinator. 
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• The coordinator validates the global transaction using the session_read_validate 

procedure. 

Let us consider the global ROT, To. which is divided into sub-transactions Tm, T02, 

Tm ..... ToN and are executed at different nodes. One of the nodes, for example Node­

Y, is selected as the coordinator. Node-X is one of the participant nodes. 

Session_read_validate procedure for the global transaction can be executed from the 

view of the coordinator and participant. 

View of the coordinator node, Node-Y: 

Consider the sub-transaction, T02, of the global transaction, To, executing at Node-Y. 

1. Executes session_read_check procedure: This procedure is executed for sub­

transaction T 02. It obtains locks on data items and executes the sub-transaction. 

2. Create D-array and R-array: This step finds the preceding conflicting transactions 

on all the data items that the sub-transaction, T 02, accesses. The procedure for 

creating the D-array and R-array for the sub-transaction, T 02, at Node-Y is as 

follows: 

Let us assume that To2 conflicts with T1. T2, TJ, ... ,TM. Let D-arrays and R-arrays 

of these transactions be D1. D2, DJ, ... ,DM and R1, R2, RJ, ... ,RM, respectively. Then, 

the USN of transactions conflicting with T K and the nodes to which these 

conflicting transactions have been sent is given by the D-array and the R-array, 

respectively. 
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0 02[1,2,3, ... ,n] = 0 
R02[1,2,3, ... ,n][1,2,3, ... ,n] = 0 
for var = 1 to n, where n is the number of nodes 
for varp = 1 to n, where n is the number of nodes 

D02[var] .- Max(D1[varp][var], D2[varp][var], D3[varp][var], .... , 
DM[varp][var], Daz[var]) II D02 is one dimensional array 

Raz[varp][var] := Max(Rt[varp][var], Rz[varp][var], R3[varp][var], .... , 
RM[varp][var], Raz[varp][var]) II Raz is a two dimensional array 

The above code computes and stores in arrays, D02 and R02 all the preceding 

conflicting transactions ofT 02 and the nodes to which the change-records of these 

transactions are sent, respectively. 

3. Validate the global transaction: The D-array, R-array, and P-array from all the 

participants of the global transactions are received. For a given P-array, the 

procedure checks with every other sub-transactions to ensure that the preceding 

conflicting transactions of those sub-transactions are executed at that node. This 

procedure can be explained as follows: 

After receiving D-array and R-array from Node-X, the coordinator, Node-Y, 

evaluates the acknowledgements as follows: 

if (Daz[1,2,3, ... ,n] ~ Nv[y][1,2,3, ... ,n]) 
for z =1 ton, where n is the number of nodes 
if (Raz[y][z] ~ Nv[y][z] ) 

then result is negative & exit 
end of for 

else 
result is positive 
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In the above code, a comparison is performed between the present state of Node­

y and the D-array of the sub-transaction, T02, which was executed at Node-X. A 

positive result indicates that the state of Node-X and Node-Yare consistent with 

respect to the sub-transaction, T 02· 

Using the method explained above, the D-array of the sub-transaction of T02 is 

compared with the present state of every other node at which other sub­

transactions were executed. 

Then, similarly to all the other sub-transactions of the global transaction, its D­

array is compared with the present state array of every other nodes at which a sub­

transaction of the global transaction is executed. If any one of the results is 

negative, then T 0 is invalidated. Otherwise, after obtaining the positive results for 

all the comparisons, To is validated successfully. 

4. Release locks: Releases all local locks and sends a lock-release message to all the 

participants. If validation is successful, then the results are returned to the user. 

View of participant node, Node-X: 

Consider the execution of the sub-transaction, T OJ, at the participant node, Node-X. 

I. Execute session_read_check: This procedure is executed for sub-transaction T OJ. 

It obtains locks at Node-X and executes To1• 

2. Create D-array, R-array, and P-array: This step finds preceding conflicting 

transactions on all the data items sub-transaction TOJ (executing at Node-X) 
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accesses, except for, those data items of which it is the custodian. It uses a similar 

procedure used for the coordinator to generate Dm and Rm. Then, it sends P-

array, D-array, and R-array, i.e., Px[l,2,3, ... ,n], Dm[1,2,3, ... ,n], and 

Rm[l,2,3, ... ,n], to the coordinator. 

3. Upon receiving the lock-release request: All the locks of the sub-transaction are 

released. 

Participant Coordinator 

Node-X Node-Y Node-Z 

Ta\ fm 
l' ................ ····• ·· .. . 

To ---+' ... R(b )) \. R( c)) .......................... 
I. Executes session_read_check forT 02 

I. Executes session_read_check for T Gt 

2. Calculates D-array and R-array 
2. Calculates D-array, R-array & sends along 

with P-array 

3. Releases locks 

3. Validates T0 

+------___;:....__ 4. Sends lock-release request 

Figure 5.7 lllustrates the protocol for the execution of the global ROT, Ta 

In Figure 5.7, Tm and T02 execute the session_read_check procedure at Node-X and 

Node-Y, respectively, where all the operations of the sub-transactions are executed. 

The coordinator, Node-Y, receives the Px. Dm, and Ra1 of Tm from Node-X. Ta is 

validated at Node-Y. Then, Node-Y sends a lock-release request to Node-X. 
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Session_ update: 

Consider the user session P. The usage of Sp is the same as in the fully replicated 

protocol. A new array, SRp, is used to indicate the nodes to which these preceding 

conflicting transactions stored in Sp are sent. 

Let the update transaction, T K, be executed in the user session P. The procedure stores 

in the session variable the USNs of transactions conflicting with TK and nodes to 

which these transactions have been sent to. 

for var = 1 to n, where n is the number of nodes 
for varp = 1 to n, where n is the number of nodes 
Sp[var][varp] := Max(DK[var][varp], Sp[var][varp]) 
SRp[var][varp] := Max(RK[var][varp], SRp[var][varp]) 

A ROT may have read from data items written by more than one transaction. The TM 

lists the transactions with which the ROT conflicts. Let D-array and R-array 

corresponding to these conflicting transactions be o~. Dz, D3, ... , DM and R1, Rz, 

R3, ... , RM, respectively. The procedure stores in the session variable the USNs of 

transactions conflicting with T K and nodes to which these transactions have been sent. 

for var = 1 to n, where n is the number of nodes 
for varp = 1 to n, where n is the number of nodes 

Sp[var][varp] := Max(D1[var][varp], Dz[var][varp], D3[var][varp], .... , 
DM[var][varp], Sp[var][varp]) 

SRp[var][varp] := Max(RI[var][varp], Rz[var][varp], R3[var][varp], .... , 
RM[var][varp], SRp[var][varp]) 
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The session_update procedure for both global ROTs and local ROTs is the same, 

except that for global ROTs, the same procedure is executed both at the coordinator 

and participant nodes. 

Delete_ change-record: 

The procedure is the same as in the case of the fully replicated system. But Mx[y] 

indicates the USN of the latest transaction which was sent by Node-Y to other nodes 

and has been executed at those nodes as known by Node-X. The procedure given 

below stores in M-array, the USNs of transactions that have been executed at all 

nodes. 

for var = 1 to n, where n is the number of nodes 
Mx[var] := Nx[var][var] 
for varp = 1 to n, where n is the number of nodes 
Mx[var] :=Min( Nx[varp][var], Mx[var]) 
where Min function returns the minimum integer of a set of integers. 

This procedure is the same as in the fully replicated system. We have given here for 

the sake of completeness. 

5.2 Causal multicast transmission of messages 

The algorithm for the causal multicast differs from the causal broadcast, as causal 

multicast uses the R-array for the delivery of messages, instead of the D-array. The 

causal multicast mechanism for the delivery of message of T K can be explained as 

follows: 
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Let us assume that a message of TK is sent from Node-Y to Node-X. The procedure 

given below waits until all the messages of conflicting transactions of TK that were 

sent to Node-X have been delivered at that node. After delivery of message, the state 

array at Node-X is updated to indicate the delivery event. 

Wait until Nx[x][1,2,3, ... ,y-l,y+l, ... ,n] 2: RK[x][ 1,2,3, ... ,y-l,y+l, ... ,n] 
then deliver the message ofTK at Node-X 

After the delivery of message, Nx[l,2,3, ... ,n][l,2,3, ... ,n] is updated as follows: 
Nx[x][y] := Max(Nx[x][y], RK[x][y]) 
Nx[y][y] := Max(Nx[y][y], RK[y][y]) 
for var = 1 to n; where n is the number of nodes 
if Py exists in the change-record 

then Nx[y][var] := Max(Nx[y][var], Py[var]) 

In the above code, if the present state of Node-X (denoted by 

Nx[l,2,3, ... ,n][l,2,3, ... ,n]) contains all the preceding conflicting transaction ofTK to 

be delivered at that node, then the change-record of TK is delivered. To indicate the 

delivery event, the state array of Node-X is updated with the R-array of T K· Later, 

Node-X's state array is updated with the P-array of TK, if the P-array exists in the 

message. 

5.3 Correctness Proof 

First, we show that all the dependent messages are delivered causally ensuring the 

liveness property. Then, we show that the primary transaction protocol ensures lSR 

and the session guarantee mechanism does not block any ROT indefinitely. Later, we 

show that the global ROT obtains a consistent state of the system. 
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Theorem 1: Algorithm ensures that all the messages are eventually delivered and the 

causal delivery is ensured using multicast primitives. 

Proof: We prove the theorem with the following two claims: 

Claim 1: Message delivery mechanism ensures the liveness property 

On the contrary, let us assume that there exists a set of messages which are not 

delivered at Node-X. First, let us consider the non-delivered message Y of the 

transaction, TK, at Node-X which was sent from Node-Y. Y may be a change-record, 

lock-grant, or acknowledgment message ofT K. If Y is a lock-grant/acknowledgement 

message, then the reliable broadcast mechanism ensures that all messages that are 

sent from one node to another are delivered in the same order. On the other hand, if Y 

is a change-record message, it can be of a local or global transaction. If Y is a change­

record message of a local transaction and its dependent change-record messages are 

also of the local transaction, then they will be eventually delivered due to the reliable 

broadcast. But, if T K is a change-record of a global transaction, then it conflicts on a 

data item in custody of another node. Let us assume that T K conflicts with T L whose 

primary transaction was executed at Node-Z. Also, let T L be a local transaction. The 

change-records of TK and TL are sent from Node-Y and Node-Z, respectively. At 

Node-X, the change-record of TK is waiting for the change-record of TL to be 

delivered at that node. If the change-record ofT Lis actually sent to Node-X, then due 

to the reliable broadcast mechanism T L is delivered at that node. But if T L is not sent 

to Node-X, the R-array ofTK does not contain the USN ofTL corresponding to Node-

127 



X. Therefore, TK does not wait for TL and TK will be delivered eventually. The same 

holds true even if either T K or T L or both are global transactions. But this is 

contradictory to our earlier assumption. 

Hence liveness is ensured. 

Claim 2: Causal delivery of messages is ensured. 

Let Node-Y and Node-Z be coordinators of T K and T L, respectively. Let us assume 

that both transactions have sent their change-records to Node-X. Let TL precedes TK 

(TL __.. TK). Then, RK[x][z] will have the USN of TL. or the later transaction. When 

the change-record of TK is received at Node-X from Node-Y, it is delivered on the 

following condition has been satisfied. 

"If Nx[x][1,2,3, ... ,y-1,y+ 1, ... ,n] 2: RK[x][ 1,2,3, ... ,y-1,y+ 1, ... ,n]" 

This means that Nx[x][z] is at least the USN of TL. Therefore, TL has been delivered 

before TK at Node-X. Therefore, causal delivery is ensured. 

The proof is complete. 

Lemma 1: The session guarantee mechanism does not block any ROT indefinitely. 

Proof: Let us assume that the ROT, T K, is executed at Node-X. Also let us assume 

that TK is reading a data item in custody of Node-Y. The session_read_check 

procedure for TK must wait until all the transactions in S-array, Sp[y][1,2,3, ... ,n], 

have been delivered at that node. On the contrary, let us assume that the procedure of 
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T K is blocked because it is waiting for the transaction, T L, which was not sent to 

Node-X from Node-Y. That is, Sp[y][y] > Nx[x][y]. 

We know that the R-array associated with TL, does indicate that TL is not sent from 

Node-Y to Node-X. i.e., RL[x][y] does not contain the USN of TL (but of the 

preceding conflicting transaction). Satisfying the following condition ensures that T K 

does not wait for T L· 

"wait until (Nx[x][1,2,3, ... ,n] ~ SRp[l,2,3, ... ,n][l,2,3, ... ,n])" 

This is contradictory to our assumption that the execution of the ROT, TK, is blocked 

due to TL. 

The proof is complete. 

Theorem 2: A global ROT obtains a consistent view of the state of the system. 

Proof: If two sub-transactions of a global transaction are executed at different nodes, 

then they must obtain a consistent state of the system. Let T KI and T K2 be sub­

transactions of the global ROT, TK, executed at Node-X and Node-Y, respectively. 

Let Node-Y be the coordinator. Let us assume that the result obtained is not from a 

consistent snapshot of the system. This means that the state of Node-X is not 

consistent with the state of Node-Y, either with respect to sub-transaction T KI, or sub­

transaction T K2· 
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We know that when the state of Node-X is compared with the state of Node-Y, locks 

are obtained on all the data items of the global transaction at both the nodes. For 

transaction T KI. the positive result for the condition below ensures that all the 

dependent transactions ofTK1 have been executed at Node-Y already. 

if (DK1[1,2,3, ... ,n] ~ Nv[y][1,2,3, ... ,n]) 
for z =1 ton, where n is the number of nodes 
if (RKI[y][z] ~ Nv[y][z]) 

then result is negative & exit 
end of for 

else 
result is positive 

While creating the D-array for a sub-transaction at a node, the conflict on a data item 

in custody of the local node is not found. This is because, locks on all the data items 

of the global transactions are released analogous to 2PL protocol. That is, a sub-

transaction releases a lock only after the global transaction acquires all the locks via 

all its sub-transactions. Therefore, with respect to the execution of T KI. the present 

state of Node-X and Node-Yare consistent. Similarly, satisfying the below condition 

ensures that all the preceding conflicting transactions of T K2 have been already 

executed at Node-X. 

if (DK2[1,2,3, ... ,n] ~ Nx[x][1,2,3, ... ,n]) 
for z = 1 to n, where n is number of nodes 
if (RK2[x][z] ~ Nx[x][z] ) 

then result is negative & exit 
end of for 

else 
result is positive 
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So the state of Node-X and the state of Node-Y are consistent with respect to sub­

transaction, T K2· Upon satisfying the above two conditions, we can ensure that the 

global transaction, TK, obtains a consistent state of the system. But this is 

contradictory to our earlier assumption. 

The proof is complete. 

5.4 Discussion 

The main advantage of the partial replicated system is that it requires communication 

only between a few peer nodes leading to timely relevant information to all the nodes. 

By the mechanism of the coordinator sending the relevant change-records to other 

nodes and the other nodes waiting for only those relevant change-records, the 

unnecessary information overload and waiting is reduced compared to the fully 

replicated system. 
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Chapter 6 

Deadlocks 

Deadlocks in the transaction processing context are situations in which two or more 

transactions are waiting indefinitely for one of the others to finish but none of them 

finishes. Any non-conservative locking mechanism is prone to the occurrence of 

deadlocks. The simplest illustration of a deadlock consists of two transactions, each 

holding a write lock on different data item and requesting a lock on a data item which 

is write locked by the other transaction. A deadlock is said to be distributed, if 

transactions executed at two or more nodes are involved in the deadlock. 

6.1 Deadlocks in our protocol 

Deadlocks are possible in our protocol, as it is basically a non-conservative 2PL. We 

first consider deadlocks in the fully replicated protocol and later in the partially 

replicated protocol. In the fully replicated protocol, local transactions are not involved 

in the deadlocks, as all the locks are requested in stage (l.a), atomically. This is 

shown in the following lemma. 

Lemma 1: The local transactions are not involved in deadlocks. 

Proof: Consider a local transaction, T K· T K requests locks only in stage (l.a). All the 

locks are obtained atomically and after this stage no locks are requested. Therefore, 

T K does not wait for any other transactions. The proof is complete. 
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A global transaction executing at the coordinator node requests locks from other 

nodes. All the locks for a global transaction cannot be obtained in a single atomic 

step. Therefore, distributed deadlocks are possible. This can be illustrated with the 

following example. 

Example 6.1: Consider the setup as shown in Figure 6.1. Node-X and Node-Y are 

custodians of data items b and c, respectively. Let TK and TL be the primary 

transactions with coordinators Node-X and Node-Y, respectively. TK obtains a PT-X 

lock on data item b at Node-X in stage (l.a) of the primary transaction protocol. 

Similarly, TL obtains a PT-X lock on data item c at Node-Y in stage (l.a) of its 

primary transaction protocol. T K sends aPT -S lock-request to Node-Y for data item c. 

Similarly, TL sends a PT-S lock-request to Node-X for data item b. TK is waiting for 

T L for a lock on data item c and T L is waiting for T K for a lock on data item b. This 

cyclic wait indicates the distributed deadlock. 

Node-Y 

Requests PT-S(b) 
TK---+ W(b) R(c) +----'------ TL---+ R(b) W(c) 

l 
Requests PT-S(c) 

l 

Figure 6.1 Illustrates distributed deadlocks due to global transactions 
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6.2 Distributed deadlocks 

We design an algorithm which detects and resolves the deadlocks which is discussed 

in the following section. 

6.2.1 Algorithm to detect and resolve deadlocks using wait for graphs 

We first construct a Wait-For-Graph (WFG). It is a directed graph, where aT-node 

(transaction node) T K represents a transaction, T K, and its outgoing edges represent 

the lock-requests T K has made to other nodes, and incoming edges represent lock­

requests that other nodes have made for T K· Depending upon the request on a data 

item ofT K, its T -node may have the following kind of edges: 

• Unconnected edge: If T K has requested a lock on a data item and is waiting for a 

response, then an unconnected outgoing edge (unconnected to any node at the 

other end) is drawn from the T-node ofTK. 

• No outgoing edge: If T K has already acquired a requested lock, then with respect to 

that request there is no outgoing edge in T -node ofT K· 

• Connected edge: If T K is waiting for a lock which is currently held by T L. then a 

directed edge is drawn from the T -node of T K to the T -node ofT L (T K --+ T L). On 

the other hand, if T Lis waiting for a lock currently held by T K. then a directed edge 

is drawn from the T -node ofT L to the T -node ofT K (T L --+ T K). 

A WFG consists of only global transactions in the system. That is, there are no local 

transactions in the WFG. At a node, there may be a set of WFGs corresponding to 
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different sets of transactions in the system. A WFG which contains the T -node ofT K 

is called the WFG ofT K (represented by WFG(T K)). As the execution of the primary 

transactions are distributed (i.e., different primary transactions may be executed at 

different nodes), there is no total order in propagation of WFGs of these transactions. 

Therefore, at a certain snapshot of the system, WFG(T K) present at different nodes 

may be different. Our algorithm is designed in such a way that, if a deadlock really 

exists in the system, the nodes in the system which constructs WFG(TK) eventually 

will construct the same WFG for T K· Therefore, a victim transaction selection and its 

abortion can be made deterministically. 
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Figure 6.2 A Flow chart for detection and resolution of deadlocks 

The algorithm for deadlock detection and resolution has five main phases (refer to the 

flow chart in Figure 6.2). The phases can be explained as follows: 
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1. Construction phase: Any change to a WFG is made in this phase. This phase is 

sub-divided into three sub-phases. When a global transaction is submitted to the 

system, it enters the first sub-phase. An algorithm may execute the second or the 

third sub-phases concurrent to the execution of any of the other phases. The sub­

phases are classified as follows: 

a. Creation sub-phase: In this sub-phase, a new WFG of a transaction is created. 

b. Building sub-phase: In this sub-phase, a new T -node is added to the existing 

WFG by merging it with another WFG. 

c. Deletion sub-phase: In this sub-phase, an edge of a T-node or a T-node is 

deleted. 

2. Victim selection phase: In this phase, one of the transactions in the deadlock cycle 

is selected as a victim transaction. If it is certain that a deadlock exists, then the 

algorithm goes to the abort phase directly. 

3. Confirmation phase: The coordinator of the victim transaction starts the 

confirmation phase to check if the detected deadlock really exists. If it exists, the 

algorithm goes to the abort phase. Otherwise, it goes to the continuance phase. 

4. Abort phase: The victim transaction is aborted. 

5. Continuance phase: In this phase, the deadlock would have been successfully 

resolved. 
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Definitions: 

We use the graphical interpretation of WFGs to explain the algorithm. The developer 

of an application is free to use his own data structure for implementation. Each node 

in the registry is assigned a priority which is unique in the entire registry. The priority 

is stored at every node in the registry. The T-node ofTK in WFG(TK) at a node in the 

registry consists of the following variables: 

1 Identifier of T -node: The T -node of T K is identified by <Node-ID, Transaction­

ID>. Node-ID is the identifier of the coordinator node ofTK. Transaction-ID is the 

identifier of T K. 

2 Outstanding requests: This request indicates either pessimistic or optimistic lock 

requests of T K at participant nodes. If T K has sent a request and is waiting for a 

response, then it is represented by an unconnected outgoing edge in WFG(T K). On 

the other hand, if T K knows that it is waiting for another transaction T L. then the 

T -node ofT K is connected to the T -node ofT L with an edge represented by T K -+ 

TL. 

3 Locks acquired: No outgoing edge is associated with the T -node of T K in 

WFG(T K) for a lock already acquired by T K· For each lock on data items, the type 

of lock is indicated (i.e., read lock or write lock). 

4 Incoming requests: This request indicates either pessimistic or optimistic lock 

requests other transactions have made to data items on which T K has already 
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acquired the locks. If T L has requested a lock on a data item which is presently 

held by T K, then a directed edge, T L- T K, is added. 

5 Total weight: Each T -node in the WFG is associated with a weight. The weight of 

TK is represented by 'TK.Weight'. 

The weight assignment to a T -node in a WFG can be explained as follows: 

A weight is assigned to a transaction in order to select a victim in a deadlock cycle. 

Weight is assigned to a transaction based on the type of its lock requests. A 

transaction requests read and write locks from other nodes. Each of these may be 

requested either pessimistically or optimistically. In stage (l.b) of the primary 

transaction protocol, the coordinator node knows all transaction requests to other 

nodes. Therefore, when a T -node of a WFG is created, the protocol knows all the 

transaction requests. For transaction T K. weights are assigned based on type of request 

as follows: 

1 Optimistic write: If transaction T K has an outstanding optimistic write request on 

a data item, its TK.Weight is incremented by 1. That is, 

2 Pessimistic write: If transaction T K has an outstanding pessimistic write request 

on a data item, its T K.Weight is incremented by 2. That is, 
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3 Pessimistic read: If transaction T K has an outstanding pessimistic read request on 

a data item, its TK.Weight is incremented by 3. That is, 

4 Optimistic read: If transaction T K has an outstanding optimistic read request on a 

data item, its TK.Weight is incremented by 4. That is, 

TK.Weight := TK.Weight + 4 

Algorithm: 

The algorithm for detection and resolution of deadlocks can be explained as follows: 

1 Construction phase: This phase handles all the modifications of WFGs in the 

system. This is explained in the following sub-phases: 

a) Creation sub-phase: Once a global transaction, T K. is submitted to the 

coordinator, Node-X, the algorithm enters the creation sub-phase. This sub­

phase can be explained from the view of the coordinator and participants of 

T K (refer Figure 6.3). 

View of the coordinator node of TK, Node-X 

i) Creating aT-node: When a global transaction, TK, starts its execution in 

the system, coordinator Node-X creates the T-node of TK. Corresponding 

to each outstanding request for the lock of T K, an outgoing edge is 

associated with the T-node ofTK. This node creates the WFG(TK). 
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ii) Initialization: When the T -node of T K is created, it is assigned a weight. 

First, all the outstanding requests are listed. Then, a weight is assigned to 

the T-node. The assignment is done in stage (l.b) of the primary 

transaction protocol in the coordinator's view. Once a weight is assigned 

to a T -node of a transaction, it is not later altered. 

iii) While sending the lock-request or the validation-request message of T K: 

The coordinator, Node-X, while sending the lock-request or the validation 

request message ofT K. also sends the WFG(T K) to the participants ofT K· 

Coordinator ofT K 

TL--+ W(c) R(d) R(e) 

l.a.(i) 

l.a.(ii) 

l.a.(iii)-------. I.a.(iv) 

Figure 6.3 lllustrates the creation sub-phase of the algorithm 

View of the participant node ofT K, Node-Y 

iv) Upon receiving the WFG(TK) with lock-request or validation request 

messages: If the requested lock is available at Node-Y, then the TM grants 

the lock. On the other hand, if T K is waiting for another transaction to 
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release the lock, then either two WFGs are merged or an edge is added 

between T -nodes. This process can be explained as follows: 

• Merging of two WFGs: If there are any common T -nodes between 

WFG(T K) and WFG(T L), then those WFGs are merged. Merging is 

performed by taking the union of T -nodes and edges of those two 

WFGs. If merging adds aT-node which has been previously deleted 

due to the delete-node message, then that T-node is not added into the 

WFG (similarly for the edge). We assume that delete-node and delete­

edge messages sent or received at a node are archived until all the 

relevant nodes become aware of this event. 

• Adding an edge between T -nodes: If T K is waiting for a lock on a data 

item which is held by T L and the present node is custodian of that data 

item, then the edge, TK---+ TL. is added between their respective T­

nodes. This is called a Wait-For-Relationship (WFR). Please note that 

even if a non-custodian node knows this WFR, it cannot add the edge. 

For example in Figure 6.3, only Node-Y, the custodian of data item c 

can add the edge, T K ---+ T L, as only that node knows if T L is still 

holding the lock on data item c. 

In WFG(T K), there is a set of transactions to which Node-Y is either a 

participant or a coordinator. The participant nodes for transactions to 

which Node-Y is coordinator of and the coordinators for transactions to 
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which Node-Y is participant of are called neighbors of Node-Y with 

respect to WFG(T K). In Figure 6.4, the neighbors of Node-Y with respect 

to WFG(TK) are Node-X and Node-Z. 

After merging two WFGs of T K or adding an edge in WFG(T K), the new 

WFG(T 0 is sent to all the neighbors of Node-Y with respect to WFG(T K). 

b) Building sub-phase: In this sub-phase, the WFG created in the last sub-phase 

is modified by adding more T-nodes. This sub-phase can be explained from 

the view of the coordinator and participant nodes (refer Figure 6.4): 

View of the participant node ofT K, Node-Y 

i) Upon receiving WFG(T K): When Node-Y receives the propagation of 

WFG(T K) message from another node, it checks if there are any common 

T-nodes in any of the WFGs at that node and WFG(TK). If there are any, 

then that WFG is merged with WFG(T K). If the new WFG obtained by 

merging is different from both the WFGs, then the new WFG(T K) is sent 

to the neighbors of Node-Y with respect to WFG(T K). On the other hand, 

if there are no common T-nodes between WFGs, then WFG(TK) is stored 

and no action is taken. In Figure 6.4, after WFG(T K) is merger with 

another WFG, the new WFG(T K) is sent to neighbors of Node-Y with 

respect to WFG(TK) i.e., to Node-X and Node-Z. 
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Coordinator ofT K 

Participant ofT a 

Coordinator ofT L 

Participant ofTK 

l.b.(ii) 

Node-Z 

TK-+ W(b) R(c) 
/ 

l.b.(ii) 

TL-+ W(c) R(d) 

Node-Y 

l.b.(i) 

Figure 6.4 lllustrates the building sub-phase of the algorithm 

View of the coordinator node of TK, Node-X 

ii) Upon receiving the propagation message containing WFG(T K) or upon 

addition of aT -node ofT K to WFG(T K): The procedure is similar to that of 

the participant. 

c) Deletion sub-phase: Whenever a transaction finishes execution at the local 

node or a lock-grant message is received, its WFG is modified by deleting the 

T-node or edge, respectively. This can be explained from the view of the 

coordinator and participant of transaction T L (refer Figure 6.5). 
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View of the coordinator node ofT L, Node-Y 

i) Upon receiving the lock-grant message: When the coordinator of 

transaction TL, Node-Y, obtains the lock-grant message of TL which was 

held by TH earlier, edge TL---+ TH in WFG(TL) at that node is deleted. 

Later, a delete-edge T L ---+ T H message to neighbors of Node-Y with 

respect to WFG(T L) is sent. 

ii) Upon commitment of a transaction: After TL is successfully committed at 

Node-Y, delete-node ofT L message is sent to its neighbor of Node-Y with 

respect to WFG(TL). Node-Y also deletes the T-node of TL and all its 

outgoing edges from WFG(T L). 

We assume that delete-edge and delete-node messages are stored at all the 

nodes sending these messages until all other nodes in the registry become 

aware of these messages. 

View of the participant node of TL, Node-X 

iii) On receiving delete-edge TL---+ THor delete-node TL messages: If Node-X 

has WFG containing either T L or T H, then on receiving these messages 

they are propagated to neighbors of Node-X with respect to WFG(TL). 

Also, WFG(T L) deletes edge T L ---+ T H and T -node T L corresponding to 

message types delete-edge TL---+ TH and delete-node TL, respectively. IfT-

145 



r;;-'\ 

node TL is deleted, then all the outgoing edges connected to its T-node are 

deleted. 

Coordinator ofT K 

Participant ofTH 

Coordinator ofT L 

Participant ofTK 

TK-+ W(b) R(c) 
/ 

Node-Y 

1 (... elete-edge T L-T H 1 (') .c. 111~........,.=~2:....:..:...:.:__ .c. 1 . 
delete-node TL 1 (") .c. 11 

1.c.(iii) 

~ Node-Z 

Figure 6.5 lllustrates the deletion sub-phase of the algorithm 

2 Victim selection phase: Whenever a T -node or an edge is added to a WFG or two 

WFGs are merged, then the node at which WFG was modified checks for a 

deadlock cycle. If deadlock cycles are detected, then a deadlock cycle is selected 

for resolution as follows: 

If more than two deadlocks are detected, then the cycle with smallest length is 

first selected for resolution. If the selected deadlock cycle is of length two, then 
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the algorithm goes to the abort phase directly where one of the transaction is 

aborted. Otherwise, in order to make sure that the deadlock exists, the algorithm 

goes to the confirmation phase. 

The process of victim selection can be explained as follows: 

Within a detected deadlock cycle, the transaction with the highest weight is 

selected as a victim. If two or more transactions have the same highest weight, 

then the transaction which starts its execution at the node in the registry with the 

lower priority is selected as a victim. If two or more transactions starts its 

execution at this lower priority coordinator, then the transaction with the highest 

transaction ID is selected as a victim. 

Any node which detects a deadlock cycle selects a victim transaction. If the 

deadlock cycle is of length of two, the node sends the abort message to the 

coordinator node of the victim transaction. On the other hand, if the deadlock 

cycle is of length more than two, the node which detects deadlock cycle sends the 

initiate-confirmation message to the coordinator node of the victim transaction. 

The message contains the WFG of the deadlock cycle along with the victim T­

node. 

3 Confirmation phase: Upon receiving the initiate-confirmation message, the WFG 

is merged with the WFG at the local node. If there is a deadlock cycle, then the 

victim node (i.e., the coordinator of victim transaction) initiates the confirmation 

phase. This phase serves two purposes: 
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• Makes sure that the deadlock really exists. This is demonstrated with the 

following example. 

Coordinator ofT K Coordinator ofT L 

T K-+ W(b) R(c) 

TL-+W(c)R(~ 

Coordinator ofT" Coordinator ofT N 

~(b)W(d) ~ 

TN-+ R(c) W(e) 
Node-Z Node-W 

Figure 6.6 lllustrates that the deadlock cycle, T K ---+ T L ---+ T H ---+ T K. does not exist in 

the system at the time of resolution 

Example 6.2: Consider the set up shown in Figure 6.6. Node-X detects 

deadlock cycle, TK ---+ TL ---+ Tu ---+ TK, in WFG(TK) at that node. Node-X 

selects Tu as a victim of the deadlock cycle. Meanwhile, Node-W detects 

another deadlock cycle, TN ---+ T L ---+ TN, and sends the abort ofT L message to 

the coordinator of TL, Node-Y. Node-Yon receiving the message, aborts TL. 

Node-X unaware of these events sends the abort of Tu message to the 
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coordinator of TH, Node-Z. Now, Node-Z unaware that TL has already been 

aborted by Node-W, aborts TH. When TH was aborted, there was no deadlock 

cycle containing T H in the system. As no single node has the global view of 

the system a false deadlock exists in the system. The protocol must ensure that 

the deadlock really exist in the system at the time of resolution. 

Figure 6.7 illustrates that two deadlocks simultaneously exist in a WFG 

• All the nodes in the registry abort the same transaction irrespective of the 

topology of the WFG of the victim T -node. This is demonstrated with the 

following example. 

Example 6.3: Consider the setup shown in Figure 6.7. It consists of two 

deadlock cycles, i.e., TK---+ TL---+ TH---+ TK and TN---+ TL---+ TH---+ TN. As 

detection of deadlock is performed in a distributed fashion and there is no 

total ordering among the messages, no single node in the system may have the 

global view of the WFG as shown in the figure. One of the nodes in the 

registry which detects only the former deadlock cycle selects T H as victim and 

aborts it. Later, other node which detects only the latter deadlock cycle, selects 
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TL as a victim and aborts it. In summary, the algorithm aborts both TH and TL 

but aborting either one of them would have resolved the deadlock. 

The confirmation phase can be explained from the view of the victim node and its d­

participants (i.e., coordinators of other transactions in the deadlock cycle. Please refer 

Figure 6.8.) 

View of the of victim node, coordinator ofT K, Node-X 

a) Check if T K is still running: First, the coordinator of the victim transaction, T K, 

checks if T K is still running. At any point in the execution of this phase, if T K 

is aborted, then victim node Node-X sends the delete-node T K message to d­

participants, if not already sent, and goes to the continuance phase. 

b) Sends the confirmation-request message: The victim, Node-X, sends the 

confirmation-request message to its d-participants along with TK's 

information (i.e., weight of the transaction, Transaction ID, its coordinator's 

priority). 

c) Upon receiving confirmation messages: If the victim node receives a positive­

confirmation message from all its d-participants, then the algorithm goes to 

the abort phase where the victim transaction is aborted. On the other hand, if 

Node-Y receives the negative-confirmation message from any one of the d­

participant, then it sends no-deadlock cycle to all the d-participants and the 

algorithm goes to the continuance phase. 
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d) Victim node receives the information about other victim nodes: This means 

that its d-participants are part of another deadlock cycle. Node-X sends its 

WFG to the victim of another deadlock cycle. Another victim node upon 

receiving the WFG from the victim node constructs a global WFG and 

resolves deadlocks one after another. Among the set of victim nodes, one final 

victim node is selected and the abort message is sent to the victim's 

coordinator node. Then, it goes to the abort phase. 

Victim node, coordinator of T K d-participant, coordinator ofT L 

TL---+ R(d) 

3.a 
3.6~--------------------~~~ 11I 3.d 3.o,f,g 

+------------- 2 

rfl•••n•<>nr coordinator ofT H 

Node·V 

Figure 6.8 Illustrates the confirmation phase of the deadlock algorithm 
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View of the d-participant - T L' Node-Y 

On receiving the confirmation-request message, one of the following cases can 

occur: 

e) TL has not sent a positive-confirmation message to another deadlock cycle: 

The information about the victim transaction (i.e., weight of the transaction, 

Transaction ID, its coordinator's priority) is stored and a positive­

confirmation message is sent to victim node. 

f) TL has sent a positive-confirmation message to the victim of another deadlock 

cycle: This means that T L is already involved in another deadlock cycle. The 

coordinator of T L sends the information about the victim node of another 

deadlock cycle to which it had sent the positive-confirmation message. 

g) T L has already started a confirmation phase: This means that T L is a victim 

transaction of another deadlock cycle and is waiting for a confirmation 

message from at least one d-participant. The coordinator of TL appends TL's 

information (i.e., weight, ID, coordinator's priority) and forwards it to the d­

participants to which it is waiting for. If the coordinator ofT L receives it own 

probe, using victim selection procedure, it selects one final victim among the 

set of victim transactions and sends the abort message to the final victim node. 

On the other hand, if Node-Y had already sent a positive-acknowledgement 

message to a victim node earlier and now receives the no-deadlock message from 
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it, then the positive-confirmation message is acknowledged. This means that if T L 

at Node-Y receives any new confirmation-request from another victim 

transaction, then the positive-confirmation message can be granted to the new 

request. 

4. Abort phase: The coordinator of the victim transaction starts this phase on 

receiving the abort T K message or as per the decision made by the victim node in 

the confirmation phase. It aborts the victim transaction, T K. deletes the 

corresponding T -node from WFG(T K) and propagates delete T -node T K message 

to d-participants in the deadlock cycle. This can be explained from the view of the 

coordinator and the participant ofT K (refer Figure 6.9). 

Coordinator of the victim T K 

TK-+ R(c) W(b) 

Node-X TL-+ R(d) W(c) R(e) Node-Y 

4.a 

n 
4.b 

Participant 

Node-Z 
No de-W 

Figure 6.9 Illustrates the abort phase of the deadlock algorithm 
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View of the coordinator of T K' Node-X 

a) Node-X deletes the T-node of TK and all its outgoing edges in WFG(TK). It 

sends the delete-node ofT K message to all its d-participants of deadlock cycle. 

View of the d-participant, the coordinator ofT L, Node-Y 

b) Upon receiving the delete-node TK messages for transaction TK, Node-Y 

deletes the T -node ofT K and all its connecting edges. Then, Node-Y similarly 

propagates the delete-node T K message to its participant nodes. 

5 Continuance phase: During this phase, at least one node in the deadlock cycle of 

T L knows that the deadlock does not exist. Later, all the d-participants become 

aware of this through the message propagation. Hence the deadlock is 

successfully resolved. 

6 As all the transactions in a WFG finishes execution, eventually that WFG at all 

the nodes are deleted. Once all the transactions in the system finish execution, the 

algorithm comes to a halt. 

6.3 Correctness proof 

First, we show that if a deadlock cycle really exists in the system, then it will be 

detected eventually. Then, we show that a deadlock victim selection is made 

deterministically. Lastly, we show that if a transaction is aborted to resolve a 

deadlock, then such a deadlock really exists at the time of resolution in the system. 
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Theorem 1: At least one of the nodes in the registry which is involved in a deadlock 

cycle detects it. 

Proof: Let us assume that a deadlock really exists in the system. Then, there exists a 

cyclic wait among transactions which executes at two or more different nodes. We 

know that at a node, if some global transaction is waiting for a lock which is held by 

another global transaction, then a WFG containing those two transactions is 

constructed at that node. Later, any modification to this WFG is propagated to the 

node's neighboring nodes with respect to that WFG. By this method of propagation, 

nodes which are coordinators of the global transactions in a deadlock will eventually 

receive the propagation message. Hence, any one of these nodes can detect the 

deadlock cycle. 

Proof is complete. 

Lemma 1: For a given deadlock cycle, if the algorithm detects the same deadlock at 

more than one d-participant node, then all of them will select the same victim. 

Proof: Let us assume that a deadlock really exists. Then by Theorem-1, at least one 

of the nodes in the registry detects the deadlock. As message propagation and 

merging of messages is uniform, all the nodes which construct the WFG for a 

transaction will construct the same WFG for that transaction, eventually. For the 

selection of the victim transaction, the factors considered are weight of the victim 
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transaction, priority of the node in the registry and transaction ID. No two 

transactions in the system can have all these parameters in common. Hence the victim 

transaction is selected deterministically. 

Theorem 2: Only true deadlocks are resolved. That is, if a victim transaction is 

aborted in a deadlock cycle, then such a deadlock really exists in the system at the 

time of resolution. 

Proof: Let us assume that a victim transaction is selected by one of the nodes in the 

deadlock cycle. During the confirmation phase, the algorithm checks if all the 

transactions which are a part of the deadlock cycle are still running, and are not 

involved in the resolution of another deadlock cycle simultaneously. The participant 

of the deadlock cycle sends a positive-confirmation message to the victim node, only 

if the transaction is still running and is not involved in a deadlock with any other 

transaction in the system. Therefore, one victim in a cycle is uniquely selected and 

aborted. In this way deadlock resolution is deterministic. 

6.4 Discussion 

A weight is assigned to a T -node of a WFG based on the ranking for request types of 

the transaction. The ranking for each type of requests can be explained as follows: 
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1. Optimistic write request: The transaction with this operation has already finished 

the execution phase of the primary transaction. The basic protocol does not abort 

this transaction. Therefore, this kind of request is assigned the lowest rank. 

2. Pessimistic write request: The transaction with this operation can both read and 

write a data item requested from the other node. Therefore, this kind of request is 

assigned the lower rank than transaction with pessimistic read. 

3. Pessimistic read request: As the transaction with this operation only reads a data 

item, this request is assigned the higher rank than pessimistic write request. 

4. Optimistic read request: The transaction with this operation has already finished 

the execution phase of the primary transaction. Even if another transaction which 

is conflicting with this transaction in the global deadlock cycle is aborted, this 

transaction may still be aborted by the replication protocol due to conflicts. That 

is, a preceding conflicting transaction, which has already committed, may have 

written a data item read by the transaction. This request is assigned the highest 

rank. 

The algorithm is designed in such a way that the deadlock detection is performed by 

the propagation of messages. That is, all nodes in the system do not receive these 

messages in the same order. Also, these propagation messages are sent only among 

neighboring nodes. Once a deadlock is detected by any one of the nodes, the victim is 

selected and the algorithm resolves the deadlock in a coordinated fashion. The main 

benefit of our algorithm is that it does not abort any transaction due to a false 
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deadlock (i.e., the deadlocks which do not exist at the time of resolution). Our 

algorithm minimizes the number of transactions aborted to resolve the deadlocks. If 

the victims of two or more deadlocks are selected such that aborting one of the 

victims resolves another deadlock also, then only one transaction is aborted. The 

algorithm resolves the complex configuration of deadlocks deterministically. 

The occurrence of deadlocks in our algorithm is directly proportional to the number 

of global transactions in the system. It also depends on the number of factors, such as 

the data item locking time, the number of data items locked by the transactions and if 

the lock on the data items has been requested pessimistically or optimistically. The 

global transactions having only the S-optimistic-request do not cause deadlocks in the 

system. In general, if all the remote locks of the global transactions are requested 

optimistically, it reduces the chances of deadlocks. 

If most of the deadlocks in the system are of length two as in conventional database 

system [GJ81], then, our algorithm performs efficiently. But as the length of the 

deadlock cycle increases, the number of messages propagated in the system increases 

and algorithm's performance decreases. 

The main differences between the protocols for the fully replicated system and the 

partially replicated system are the decision of when to request the locks on data items 

and the nodes to which the change-records of these transactions are sent. The decision 

of when to request the locks can affect the likeliness of the occurrence of deadlocks 

but does not affect the protocol for deadlock detection and resolution. Another 
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difference is that the global ROTs may be involved in the distributed deadlocks in 

partially replicated system. This is because a global update transaction may be 

holding a lock of a data item and requesting a lock from another node which is held 

by a sub-transaction of a global ROT. Another sub-transaction of the same global 

transaction, in turn, may be waiting for the lock held by the global update transaction, 

which creates a cyclic wait of locks among the transactions. This problem can be 

solved by aborting the global ROTs by timeout mechanism. That is, an abort message 

is sent to the coordinator of the global ROT and the coordinator aborts the 

transaction. 

159 



Chapter 7 

Web Service discovery using UDDI 

In this chapter, we discuss the discovery of Web Services using UDDI. 

7.1 Introduction 

UDDI registries are accessed by service providers and service requestors. In the 

registry, data items are only owned by service providers. The service requesters do 

not own any data item. They only query for services. A service provider may also 

query services published by another service provider. Ideally, a service provider in a 

·session looking for services updated by other service providers expects to see those 

updates in the order of their execution. The protocol discussed in chapter 4 does not 

ensure this. This can be illustrated with the following example. 

Example 7.1: Consider service providers, namely, P1 and P2, in the UDDI registry 

which own business entities BE1 and BE2, respectively (refer to Figure 7.1 for the 

data structure of the business entities). These providers are in a close collaboration on 

certain project. The service providers Pt and Pz execute Tt, T3, T4 and Tz, T5, T6, T7, 

Ts, respectively, in their sessions. Similarly, service requestor R1 executes T9 and T 10 

in a session (refer Table 2). The sessions of Pt. Pz. and R1 are St. Sz, and S3, 

respectively. We assume that in a given session, transactions are ordered serially. A 

transaction in a session starts its execution only after the previous transaction 
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submitted to the system in that session commits. That is, in Table 2, T3 and T4 

belonging to session St are executed such that, T4 starts its execution only after T3 

commits. The notation 'Ts:= Read(BSu):T4' means that Ts reads data item BS11 

written by T 4· 

Figure 7.1 lllustrates the data structure of BE1 and BE2 

The internal organization of entities in the registry is such that entities of the same 

service provider are in custody of different nodes. That is, entities BE1, BS 11 , BS12, 

BT11 , BT12, BT13, BT14, tM1 owned by P1 may be in the custody of different nodes in 

the registry. Similarly, entities owned by P2 may be in custody of different nodes. 

Transactions of the same session may be executed at different nodes. (That is, their 

coordinators are different nodes.) Please note that T1 and T3 are conflicting 

transactions, as they update the same data item BS12. Similarly, T1 and T4 are 

conflicting transactions. But, T3 and T4 are non-conflicting transactions. 
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81 ofPt 82 ofP2 83 ofRt 

(owner of BE1) (owner ofB~) (service requestor) 

T1:= lnsert(BE1, BSu, BS12, T 2 := Insert(BEz, BS21, BSzz, 
BTu, BT12, tM1) BT21,BTzz,tMz) 

T3:= Update(BS12) 

T4:= Update(BSu) 

Ts:= Read(BSll):T4 

T6:= Read(BS12):T1 

T 7:= Update(BSzi) 

Ts:= Read(BS12):T3 T9:= Read(BS21):T1 

T 10:= Read(BS!2):T1 

Table 2 lllustrates the execution of the transactions by service providers, P1 and P2, 

and service requestor R1 

In session S2, T5, and T6 read from T4, and T1. respectively. T4 and T1 were executed 

in session S1. That is, the first read operation of S2 reads from the latest transaction, 

T4, and the later operation reads from the older transaction, T1 (instead of T3). This 

transaction inversion in S2 happens because the replication protocol discussed in 

chapter 4 does not impose order on the execution of T 3 and T 4 at a node, as they are 
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non-conflicting transactions. That is, service provider P2 in S2 does not read an 

increasing state of session S1• This could affect subsequent operations in S2• For 

example, if T 6 had read BS 12 updated by T 3, instead ofT 1. P2 might not have updated 

BS21 in T7. 

Note that in the example, there is a dependency between the operations of S1 and S2• 

Session S2 reads a data item updated in session S1 and later executes its operation. 

That is, Ts of Sz reads from T4 of S1• Therefore, there is an indirect dependency 

between T7 and T3, as T3 is ordered before T4, in S1• In session S3, the first operation 

reads from T 7, and the later operation reads from T 1 (instead of T 3). This is an 

inconsistent view, as order of execution of transactions at any node should be T 1 -

T3- T7. That is, if an operation in session reads from T7, the next operation should at 

least read from T 3, in-order to provide an increasing view of the system. Our aim is to 

provide a mechanism to take care of these inconsistencies. 

This problem can be handled by ensuring strong session lSR [DS04]. A simple 

method to ensure strong session 1 SR is to induce a conflict between every 

consecutive transaction of the same session. In this method each session contains a 

session variable called the ticket data item. Every transaction in a session reads and 

updates the same ticket data item. Therefore, when a transaction is executed using the 

replication protocol in chapter 4, every two consecutive transactions of the same 

session conflict with each other. Also, the message propagation mechanism in chapter 

4 will ensure that all the update transactions in a session will be delivered and 
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executed at all nodes in the same order. When this method is employed in Example 

7.1, the execution ofT 4 at a node implies that T 3 has already committed at that node. 

In session S2, as T 6 is executed after T s, T 6 would read from T 3 instead ofT 1. Also, T 6 

which is a ROT when submitted to the system using the ticket method would induce a 

direct visible conflict between T3 and T7. Therefore, another session would read the 

transactions in order, T3 followed by T7• 

The main disadvantages of this method are the following: 

• Increases the number of global transactions in the system: Consider a local 

transaction submitted to the system. The ticket method enforces this transaction to 

read and update the ticket data item. As the ticket data item may be in custody of a 

node, other than the coordinator node, such a local transaction is converted to a 

global transaction. 

• Increases the number of update transactions in the system: As all the transactions 

in a session update the ticket data item, this method converts all ROTs to update 

transactions. 

The above two factors decrease the performance of the system. We propose a better 

solution, which is presented in the following section. 

7.2 Protocol to ensure strong session 1SR 

In this chapter, we extend the mechanism discussed in chapter 4 to ensure strong 

session lSR. The aim of the protocol is to execute all the operations (i.e., 
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transactions) of the session in the same order at all the nodes. The new protocol can 

be explained as follows: 

The protocol requires the additional variables to ensure strong session lSR. The two 

variables required are: 

• Variables in the input stream of the user session 

An operation in a session is uniquely identified by <Session-10, Operation-10>. 

This indicates the last operation performed by the user in the session. This 

identifier is included along with S-array (introduced in chapter 4) in the input 

stream of the user session. 

• Variables at a node in the registry 

At every node, along with the state array (N-array), a session array (SN-array) is 

also stored. The session array (denoted by SN[1,2,3, ... ,q]) indicates the latest 

operations in sessions 1,2,3, ... ,q that have been executed at that node. That is, one 

dimensional array, SNx[l,2,3, ... ,q], denotes operations of sessions 1,2,3, ... ,q that 

have been executed at Node-X. Therefore, SNx[p] indicates the last operation of 

the session p that has been executed at Node-X. 

Execution of a transaction: 

The protocol discussed in chapter 4, allows two consecutive non-conflicting update 

transactions in the same session to be executed at different nodes without any 
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coordination. That is, when a transaction of a session is executed at a node, its 

previous transaction in the same session may not be executed at that node. But, this 

violates the criterion of strong session lSR. In this chapter, the protocol is extended to 

ensure strong session lSR. 

The session variables are modified before and after the execution of both the primary 

transaction of update transaction and the ROT. This procedure does not modify the 

refresh transaction of an update transaction in chapter 4. Note that these procedures 

are executed in addition to the procedures in chapter 4. That is, we assume that the 

underlying mechanism ensures guarantee provided in chapter 4. 

Session_ update: 

This procedure is executed after the execution of the transaction in a session at a 

node. 

Let us assume that a transaction in a session is executed at a node. Let the transaction 

be mth operation (i.e., transaction) in a session, Sid. After the transaction is executed 

at Node-X, the session variable stored at that node and session variable in the user 

input stream are updated. That is, 

SNx[Sid] := m II session variable stored at Node-X 
<Sid, m> II session variable stored in the user input stream 

In the above code, SNx[Sid] indicates the operation that was recently executed in the 

session, Sid, at Node-X. The user input stream is updated to indicate that mth 

transaction of the session has been executed. 
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Session_read: 

This procedure is executed before the execution of the ROT and the pnmary 

transaction of an update transaction in a session at a node. Please note that for the 

protocol in chapter 4, the session_read procedure is not performed before the 

execution of the primary transaction of an update transaction. 

Let us assume that the session, Sid, has already executed a transaction which is mth 

operation in that session. The session variable in the input stream of the user session 

contains the identifier of mth transaction (<Sid, m>) executed in that session. The next 

transaction, (m+ 1 )th operation, in the same session can execute at its coordinator 

node, if that node has already executed mth operation of the session. Otherwise, 

(m+1)th operation waits until mth operation of the session is committed at that node. 

That is, 

Wait until (SNx[Sid] ~ m) 

then execute the (m+ 1 )th transaction 

In the above code, SNx[Sid] indicates the operation that was last executed in the 

session, Sid, at Node-X. It waits until mth transaction of the session is executed at that 

node. 

The creation of the change-record: 

After the primary transaction commits at its coordinator node, the change-record of 

the transaction is created at the coordinator node. The creation of the change-record 
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for an update transaction is similar to that discussed in chapter 4. In an effort to 

ensure strong session lSR, the identifier of the operation within the session, 

<Session-ID, Operation-ID>, is added to the change-record of the transaction. 

The major difference in creation of the change-record compared to chapter 4 is that a 

change-record is created even for a ROT. The procedure to create a change-record for 

a ROT is similar to the update transaction explained above. The ROT is also assigned 

an identifier <Session-ID, Operation-ID>, which indicates the operation number in its 

session. 

After the delivery of the change-record of a ROT at a node, it is neither executed nor 

stored at that node. The change-record of an update transaction is implemented with 

the refresh transaction protocol of chapter 4. 

Propagation of the change-record: 

The message propagation mechanism discussed in chapter 4 avoids the false 

causality. As a result, a change-record of a transaction to be delivered waits only for 

the preceding conflicting transactions in the system. We modify the session guarantee 

mechanism, such that a change-record of a transaction in a session not only waits for 

its preceding conflicting transactions, but also for previous transactions executed in 

the same session which are non-conflicting. This condition is required to ensure 

strong session lSR, as for every pair of committed transactions in a session, the first 

transaction's commit should precede the second transaction's commit in one copy 

history. Please note that this process of waiting for the previous transaction is not 
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only for an update transaction but also for a ROT. This kind of guarantee is indeed 

required to ensure a consistent view between multiple sessions, as indicated in 

Example 7 .1. In the example, the service requestor session, S3, does not have the 

global view of all the operations of S1 and S2• The transaction execution discussed in 

chapter 4 is distributed, facilitating the primary transaction to execute at any node, 

which suits the configuration of UDDI. As a result, T9 and T10 of S3 read from T7 and 

T1, respectively, even though the primary transaction ofT3 has committed before the 

primary transaction of T7 could start. In [DS04], they do not consider the issue of 

consistent view in multiple sessions, as they consider the centralized system where all 

the update transactions are executed at a single node. Commit order of all the update 

transactions are fixed in the global serialization graph at one node, and they are 

propagated and committed in the same order at all the nodes. As a result, ensuring 

guarantees between multiple sessions is simple in [DS04]. 

The new message propagation mechanism to ensure the causal delivery of messages, 

such that strong session lSR criterion is satisfied can be explained as follows: 

Let the transaction, T K, be mth operation in session, Sid. The change-record ofT K is 

sent from Node-X to Node-Y. The procedure given below waits until all the 

conflicting transaction ofT K and previous transactions in that session, Sid, have been 

delivered at Node-Y. After delivery, the variables at Node-Y are updated to indicate 

the delivery event. 
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Wait until ( Ny[y][1,2,3, ... ,x-1,x+1, ... ,n] 2::: DK-cod1,2,3, ... ,x-1,x+1, ... ,n] 
&& SNy[Sid] = m-1 ) 

then deliver the change-record ofT K 
Ny[y][x] := Px[x] 
SNy[Sid] := m 

In the above code, DK-COL[1,2,3, ... ,n] contains the maximum USNs in each column of 

DK[1,2,3, ... ,n][ 1,2,3, ... ,n]. That is, the D-array of two dimensions is converted to 

one dimension, maintaining USNs of all the preceding conflicting transactions. The 

first condition ensures that the state array of Node-Y is compared with the D-array of 

T K. This condition is similar to the condition in the message propagation mechanism 

in chapter 4. The second condition ensures that the last operation of the same session 

has been executed at the present node before delivery. This is a new condition which 

is required to ensure strong session 1SR. After the delivery of a message the state 

array of Node-Y is updated to indicate the event of message delivery. Then, the 

session array at the node is updated to indicate that a change-record of a transaction 

has been delivered. 

7.3 Correctness proof 

We have to show that our present extension to protocol in chapter 4 satisfies strong 

session 1SR. 

Theorem 1: The algorithm ensures strong session 1SR. 
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Proof: Let T K and T L be executed in the same session. In one copy history T K 

precedes T L (T K ~ T L), if one of the following two conditions is satisfied: 

(1) T K conflicts with T L and precedes it. 

(2) T K commits before T L starts its first operation of the transaction. 

The protocol in chapter 4 ensures that all conflicting transactions are delivered in the 

same order at all the nodes. Later, all these transactions are executed in the same 

order. As the protocol in this chapter is built on the protocol in chapter 4, ordering 

imposed on the transactions is maintained. In message propagation mechanism, the 

first condition is the same as in chapter 4. Therefore, (1) is satisfied. 

We have to show that if TK commits before TL starts its execution, then they are 

executed in the same order at all the nodes. Both T K and T L can either be update or 

read only transactions. Therefore, we have the following cases: 

Case 1: Both T K and T L are update transactions. 

Before execution of each primary transaction of T L at the coordinator, the 

session _read procedure ensures that T K has been executed at that node. Later, the 

message propagation mechanism ensures that the change-record of T L is delivered 

only after the delivery of the change-record ofT K· Hence, these two transactions are 

delivered and executed in the same order at all the nodes. 

Case 2: At least one of them is a ROT. 
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Let TK be a ROT. After its execution, a change-record is created for the ROT, TK, and 

broadcast to all nodes. Later, TL is executed at its coordinator node only if the 

change-record of T K has been implemented at that node. The message propagation 

mechanism ensures that these two transactions are delivered in the same order at all 

the nodes. Hence, when T L is executed at a node all its previous transactions in that 

session have been executed at that node. 

Case 3: Both TK and TL are ROTs. 

We know that TL executes at a node only after the change-record ofTK is delivered at 

that node. Also, T K is delivered at that node only after all the dependent change­

records in other sessions have been delivered at that node. Similarly, these dependent 

change-records are delivered only after its dependent change-records have been 

delivered. Therefore, when T L is delivered at that node, all its indirectly dependent 

transactions have been delivered. 

From above three cases we can conclude that all the transactions in the same session 

and conflicting transactions in multiple sessions are executed in the same order at all 

the nodes. 

The proof is complete. 

7.4 Discussion 

The replication protocol designed in chapter 4 orders only the conflicting transactions 

at all nodes in the system. A user session in the system views only these conflicting 
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transactions in increasing order of their execution. Therefore, the non-conflicting 

transactions executed in the same session may not be seen in the same order by 

another session. This violates strong session lSR as the transactions executed in the 

same session are not ordered by their commit time at all nodes. 

In this chapter, we have extended the replication protocol in chapter 4 to ensure 

strong session 1 SR. The execution of transactions in our system is distributed. That is, 

different transaction in a session can be executed at different nodes. This holds for 

both update and read only transactions. An interesting feature is that the operations 

executed in two different sessions may be ordered globally, due to read only 

transactions executed in a session. Therefore, any session reading these transactions 

should obtain a consistent global view. In order to provide a consistent global view, 

change-records are generated even for the read only transactions. The ordered 

delivery of these change-records at all nodes makes an indirect conflict visible to 

another session. The main disadvantage of this method is that, as change-records are 

created even for a read only transaction, the number of messages propagated in the 

system will be very large. Therefore, the system performance decreases. 

The performance of the system can be increased for applications where one 

organization does not have visibility of operations of second organization with the 

third organization. That is, in a loosely coupled application, visibility is such that it 

supports an increasing view of peer to peer organizations. A suitable correctness 

criterion in such an application would be to provide an increasing view of one session 
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to another session. That is, a session provides a Monotonic Reads session guarantees 

to a session, if those operations were read from the same session. On the other hand, 

if those operations were read from different sessions, then it does not ensure 

Monotonic Reads session guarantees to the session considered above. This criterion is 

stronger than the session guarantee discussed in chapter 4, as it orders even the non­

conflicting transactions which are executed in the same session, but weaker than 

strong session lSR, as two ROTs are not ordered if the data items were read from 

transactions updated by different sessions. The implementation of this criterion is 

simple, as it is the same as in the above method, except that, there is no need to create 

change-records for read only transactions. 
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Chapter 8 

Conclusion 

The major contribution of this thesis is the replication protocol for both fully and 

partially replicated systems and the deadlock algorithm. The replication algorithm is 

fully distributed as transactions can be executed at any node. The algorithm is such 

that an update transaction can be executed with the minimum synchronization 

requirement, providing lower response time. The session guarantee mechanism 

allows a user to execute a transaction at any node and ensures that a user in a session 

obtains an increasing state of the registry. This increases availability of the system 

and provides an efficient load balancing. Even though our protocol requires high 

communication volume and storage capacity, we provide a fine grained session 

guarantee with a distributed execution. All these resource are required as we are using 

each of them to increase the performance of the system. The major contribution in the 

partially replicated protocol is to decrease the unnecessary communication cost by 

employing the multicast mechanism. Then the violation of the liveness property 

created due to multicast affects the basic replication protocol and the session 

guarantee mechanism. We provide a solution to above problems with suitable 

extensions. 

The major contribution of our deadlock algorithm is to detect and resolve a deadlock 

without aborting a transaction, which is not a part of deadlock cycle at the time of 
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resolution. The algorithm is capable of handling the deadlock cycles with complex 

configuration. 

Lastly, we extend the session guarantee mechanism to ensure strong session ISR 

which is required in UDDI context. Our major contribution is providing strong 

session ISR in distributed environment where a transaction in a session can be 

executed at any node. 

Some of the future directions of our research are as follows: 

• In our work we have consider replication of data items in a single registry. In 

UDDI registries, data items may be replicated in more than one registry. This kind 

of replication imposes new kind of restrictions, such as autonomy, freshness 

requirement etc. It is a reasonable requirement to give autonomy of different 

business registry to their respective organizations, as there is lack of trust among 

them. Achieving one copy serializability at a global level in a federated registry is 

an interesting problem. Also, if an organization replicates data items in its registry 

using publish-subscribe mechanism, it is difficult to ensure any known correctness 

criteria. This is because the underlying message propagation mechanism does not 

ensure synchronized delivery. Devising a suitable correctness criterion in such an 

environment is an interesting problem. 

• Presently, UDDI registries are only used for answering simple queries. As UDDI 

matures, it will be used for the execution of complex queries in Web Service 
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composition. Usually, execution of complex queries decreases the system 

performance, as data items have to be locked for a longer duration of time. 

Composing partial results from different queries would be a better alternative. A 

scheme to provide a consistent snapshot of the registry by composing the partial 

results of different queries is an interesting problem. 
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