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Abstract

Bacterial abundance and size was characterized in ballast and port water along the West

and East coasts of Canada and on the Great Lakes during 2007 and 2008. Ballast water

unexchanged at sea showed higher bacterial abundance than ballast water exchanged. On

average, bacterial abundance in receiving port water was three-to-four-fold higher than

that in ballast water. During 2007, bacterial community structure, as determined by

fluorescence in situ hybridization, showed that the bacterial communities did not differ

among ballast waters which had experienced different ballast operations. However,

bacterial communities differed between ballast and port water, which implies that there is

a potentially environmental risk from ballast water-distributed bacteria into Canadian

harbors. With an increase of ballast water age, both the % Bacteria and the %

Alpha-Proteobacteria in ballast water samples decreased.
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Chapter 1 Introduction

Aquatic invasive species potentially have adverse affects on biodiversity, public health,

and aquaculture as causing tremendous ecological and economic harm (Pimentel et al.

2005). Annually environmental damage and economic losses in the United States alone

are valued at an excess of US$137 billion caused by both aquatic and terrestrial

alien-invasive species (Pimentel et al. 2005). The increasing global occurrence of invasive

species over the last decades has stimulated the establishment of national and worldwide

research networks, including the Canada Aquatic Invasive Species Network (CAISN),

which studies global aquatic invasions and constructs invasive species profiles (Ruiz et al.

2000).

Heterotrophic prokaryotes (hereafter bacteria) have obtained much attention in aquatic

invasion studies after findings showed ships could globally distribute the pathogen Vibrio

cholerae 01 and 0139 (Ruiz et al. 2000). In 1991, ballast water containing the microbe

Vibrio cholerae was released in a Peruvian port, contaminating the drinking water (Bright

1998). The contamination caused over one million people to be infected with cholera and

over 10 000 deaths (Bright 1998). The global distribution of bacteria in ballast water, not

only imposes a health risk by spreading epidemic diseases, but can also impact the

bacterial communities and the ecological functions of receiving waters.



1.1 Roles of Bacteria in Ocean Biogeochemistry

Over the past 3.5 billion years, marine microbes have shaped and defined Earth's

biosphere and have created an environment that have allowed the evolution of

macroorganisms and complex biological communities (Karl 2007). Bacteria not only

constitute a significant portion of the total biomass of the oceans (Whitman et al 1998),

but they also have important roles in ocean biogeochemistry (Karl 2007). Bacteria can

harvest and transduce solar energy (Grigorieff et al. 1996; Beja et al. 2000), transform

dissolved organic matter and recover fixed carbon into microbial food web (Sherr and

Sherr 2000), catalyze key biogeochemical transformations of the nutrients and trace

elements that sustain the organic productivity of the oceans, and regulate the flow of most

greenhouse gases between the ocean and atmosphere (Kirchman 2000; Karl 2007).

1.1.1 Dynamics of Bacterial Communities

Some microorganisms have ubiquitous distribution (Finlay 2002), but it does not mean

microbial community assemblages from various sites are the same. Open-ocean

ecosystems are time-and-space variable mosaics with regards to microbial composition

and metabolism (del Giorgio and Bouvier 2002; Cottrell and Kirchman 2003; Smith and

del Giorgio 2003).

Bacterial communities are controlled both by "bottom-up" effects, i.e. bacterial food

resources, and by "top-down" effects, i.e. the mortality exerted by bacterial predators or

viruses (Billen et al 1990; Weisse 1991; Pace and Cole 1994). Further, the growth of



bacteria is influenced by various physiochemical factors, including temperature

(Kirchman J997), salinity (Bouvier and del Giorgio 2002), pH (Hiorns et al. 1997),

radiation (Herndl et al. J993), and trace metal supply (Tortell et al. 1996).

1.1.2 Microbial Community Structure and Function

The relationship between bacterial community composition and community ecological

functions is complex. Not all phylogenetic groups of bacteria can mediate all elemental

processes and transformations, nor do all groups with the same potential metabolic

capacities play equal roles. The biogeochemical implications of the phylogenetic diversity

of marine bacterial communities are poorly understood (Riemann et al. 1999). For

example, Roseobacter (a lineage of Alpha-Proteobacteria) is recognized as a major player

in the sulfur carrier dimethylsulphoniopropionate (DMSP) turnover within the microbial

food web (Zubkov et aI. 200 I), although Sima (2004) reported Roseobacter was not the

only player in DMSP cycling. In addition, community functions are not only dependent

on components of a community, but are also dependent on the physiological state of cells.

Thus, to fully understand the roles prokaryotes play in ocean biogeochemistry, one needs

to first determine bacterial abundance, phylogenetic diversity and bacterial metabolic

rates (Kirchman 2002).

1.2 Global Dissemination ofAquatic Species

As early as 1934, Baas Becking (1934) had referred to atmospheric transport as the major

medium to transport microbial "germs" passively over long distances and distribute them
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homogeneously over the world. Now, it is recognized that major contributors to bacterial

cosmopolitan distribution in marine environments are ocean circulation and shipping.

Ships have been identified as the predominant vector for human transport of

non-indigenous species around the world (Carlton 1985; Ruiz et al. 2000). A ship may be

viewed as a "biological island" with organisms occurring on the outside, inside, and

aboard the vessel.

Hull fouling and ballast water are the two primary shipping sub-vectors responsible for

coastal invasion (Fofonoff et al 2003). These sub-vectors are responsible for 95% of

invasions introduced solely by ships in coastal marine environments off continental North

America since 1990 (Fofonoff et al. 2003). Due to changes in shipping regulations, such

as increased vessel speeds, decreased port residency, increased use and efficacy of toxic

antifouling paints, and an increased frequency of hull cleaning, there have been

reductions in the amount of invasive species introduced via ship fouling (Carlton 1985;

Carlton et al. 1995). However, for ships to operate safely, ballast water is required.

Therefore, ballast water can be seen as a "guaranteed" release of inoculation with scores

or hundreds of species, and sometimes million of individuals. Ships can transport ballast

water across the ocean, within weeks or months (Smith et al. 1999). Over 80% of the

world cargo is mobilized by sea and over 12 billion metric tons of ballast water is filled at

one part of the ocean and discharged in another (Anil et al. 2002). Approximately 3 to 5

billion metric tons of ballast water is transferred among international waters annually

(Raaymakers 2002). A survey carried out by Canadian Aquatic Invasive Species Network



(CAISN) showed that 4.07 x 107 metric tons ballast water was deballasted into Canadian

harbors internationally in 2007 (Lo et al. 2008).

In general, the transfer rate of marine organisms is thought to have increased, especially

during the twentieth century, due to changes in the size, speed, and operation of global

shipping traffic (Carlton 1996; Ruiz et al. 1997). Additionally, almost all marine plankton,

including fouling organisms and benthos with a planktonic larval phase or a semipelagic

mode of life, have the potential to be transported by ballast water. Ballast water transfers

aquatic organisms to foreign regions. If ballast water is discharged at a habitable

environment, surviving plankton will have the opportunity to establish themselves,

propagate and potentially displace native species. Therefore, ballast water is one of the

primary mechanisms to globally disseminate invasive aquatic species.

1.3 Ballast Water Mediated Invasion

Ballast water has been used widely to maintain ship stability and trim during voyages

since the early 1880's (Carlton 1985). Typically, as cargo is loaded onboard the ship, the

ballast water from the departure port is discharged at the port of call. A successful

ballast-mediated invasion is a multistep process whereby the transport of microorganisms

in ballast water to new environment is governed by a series of selection processes

(Carlton 1985). Firstly, planktonic communities in source water are pumped into ballast

tanks. Secondly, the specific environment in ballast water tanks may drive the succession

ofthe biological communities. Lastly, the surviving biota in the ballast-water at the end of
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the voyage is released into the receiving water port and selected upon by the suite of

environmental conditions there (Carlton 1985).

Increasing awareness about the potentially disastrous consequences of aquatic invasions,

has resulted in a surge of additional research focused on a species inventory, primarily the

planktonic community present in ballast water (Wonham et al. 2000, 2001; Choi et al.

2005). It is well established that ballast water can contain a diversity of metazoan (Lavoie

et al. 1999) and protozoan taxa (Galil and Hi.ilsmann 1997), phytoplankton and their cysts

(Hallegraeff and Bolch 1992), and bacteria (Ruiz et al. 2000; Drake et al. 200 I). Several

well-known instances of ballast-water introductions are the zebra mussel (Dreissena

polymorpha) to the Great Lakes (Griffiths et al. 1991) and Chinese mitten crab (Eriocheir

sinensis) to North America and Europe (Herborg et al. 2003).

1.3.1 Measures to Attenuate Ballast Water Introduced Invasion

Various ballast water treatments have been attempted to reduce the risk of invasive

species from deballasted water. Strategies include biocides (Gregg and Hallegraeff, 2007),

filtration, thermal treatment, electric pulse/pulse plasma treatment, ultraviolet, acoustics,

magnetic, and deoxygenation (Hallegraeff 1998). However, the application of these

control methods are limited by safety requirements, environmental acceptability, technical

feasibility and practicability, and cost effectiveness (Tamburrie et al. 2003). Nowadays,

the most practical method for ballast water management is ballast water mid-ocean

exchange (MOE) (Carlton et al. 1995; International Maritime Organization 1998;

1-6



American Bureau of Shipping 1999). Canada initiated mandatory MOE for ocean-going

ships entering all Canadian ports in 2006 following the International Maritime

Organization guidelines (Transport Canada 2006). However, voyages from certain nearby

US ports to Canada do not require MOE as nearby ports would have similar community

compositions. Ballast water on board can vary from 5x 102 to 8x I04 metric tons,

depending on the ship types, ship size, and the onboard cargo weight. Ballast water

exchange can be accomplished by either the sequential empty-refill method or by flow

through. Empty-refill exchange involves emptying the ballast tank completely of port

water before uploading ocean water (100%). Flow through exchange involves

simultaneously uploading ocean water while allowing excess ballast water to overflow on

to the deck. Due to the mixing of ocean and port water during this process, three

tank-volumes of water (300%) are required theoretically to remove >95% of the original

water (International Maritime Organization, 2004).

Mid-ocean exchange management of ballast water from commercial ships can be divided

into transoceanic navigation and intra-coastal navigation. Transoceanic ships are required

to exchange their ballast water at more than 200 nautical miles from shore where the

water depth is at least 2000 m, whereas intra-coastal ships are required to exchange

ballast water at least 50 nautical miles from shore and at water depths of at least 500 m

(Transport Canada 2006). Ballast water from arriving international ships falls under one

of the three categories: trans-oceanic exchanged (TOE); intra-coastal exchanged (ICE);

without mid-ocean exchange (NonMOE).
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The rationale for MOE to reduce the nonindigenous species is that the difference in

environmental conditions (e.g. salinity, temperature, nutrient richness) between coastal

water and the open ocean are inhospitable for the successive survival and propagation of

aquatic organisms from foreign regions (Smith et al. 1999). However, this justification

may not apply to microorganisms able to tolerate a wide range of environment conditions.

1.3.2 Ballast Water Globally Disperses Bacteria

Bacteria possess the ability to invade new environments and are numerically dominant in

seawater, occurring in densities of 107 to 10 10 cells L- I (Whitman et al. 1998). Combined

with their small cell size (0.2-0.8 !lm is the operational definition of bacterioplankton),

bacteria are easily transported globally in high abundance. Previous studies have reported

that the bacterial abundance in ballast water can range from 107 to 109 cells L- I (Drake et

al. 2001, 2002). Furthermore, bacteria can employ a variety of survival strategies,

including the formation of spores that enable them to withstand prolonged periods of

inhospitable conditions (Karl 2007). In addition, short generation time (Riemann et al.

1987) enables bacteria to quickly populate new environment.

Strong bias exists for the studies of taxonomic invasions caused by ballast water, and the

prevalence of small organisms (e.g. bacteria) is grossly underrepresented by current

studies (Ruiz et al. 2000). The available baseline information for bacteria transported in

ballast-water is poorly established (Elbraechter 1999). Prior studies about bacteria in

ballast water have generally been limited to bacterial abundances (Drake et al. 2001,2002)
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and the occurrence of pathogens (Ruiz et al. 2000; Burkholder et al. 2007). Global

movement of ballast water by ships creates a long-distance dispersal mechanism for

human pathogens and waterborne diseases affecting plants and animals (Ruiz et al. 2000).

Also, the global transport of species brings together pathogens and previously unexposed

host populations (Harvell et al. 1999). Although total bacterial abundance and occurrence

of pathogens is informative, further studies on phylogenetic group composition of

introduced communities (Carlton 1996) are needed to predict species invasion of marine

environments.

Bacterial communities in ballast water tanks are influenced by myriads of factors, among

which, ballast water operation (i.e. if MOE, exchange location) (Wonham et al. 2001),

"bottom-up" and "top-down" effects (Drake et al. 2001), temperature, salinity (Riemann

and Middelboe 2002), and ballast water age (Burkholder et al. 2007) are main factors.

Understanding bacterial dynamics in response to these factors would allow researchers to

identify ways to better control invasions as well as methods to better predict and prevent

future invasions.

1.4 Objectives and Justification of Study

As part of the CASIN, the bacterial abundance and community structure of ballast and

receiving port waters were characterized. This research was undertaken to assess the

potential impacts posed by ballast water introduced bacteria on the Canadian aquatic

environment. Sampling was carried out between March 2007 and November 2007, and



between May 2008 and October 2008. Samples were collected along the West Coast

(Vancouver, British Columbia) and East Coast (2007: Baie-Comeau, Sept-lies,

Port-Cartier, along the lower north shore of the St Lawrence Estuary, Quebec; 2008: Saint

John, New Brunswick; Point Tupper, New Brunswick; Halifax, Nova Scotia; Auld Cove,

Nova Scotia; Comer Brook, Newfoundland and Labrador) of Canada, and the Great

Lakes (Toledo, Ohio, USA; Milwaukee, Wisconsin, USA; Detroit, Michigan, USA; and

Samia, Ontario, Canada). Environmental parameters (temperature, pH, and salinity) and

ballast water reporting forms (ballast water source, if MOE conducted, mid-ocean

exchange locations, voyage duration, and ballast water age) were also recorded.

This thesis has been organized into two manuscript chapters:

Chapter 2 (Bacterial abundances and cell volumes in ballast water discharged into

Canadian harbors) examines the propagule pressure of ballast water bacteria conveyed to

Canadian waters. By comparing the bacterial dynamics (bacterial abundance and cell

volume) between ballast water and receiving port water samples, the extent of bacterial

propagule pressure from ballast water to receiving port water was estimated. In addition,

the relationships of measured bacterial variables (bacterial abundance and cell volume)

among the three ballast water types (ICE, TOE and NonMOE) were studied to evaluate

the effect of different ballast water operations (ICE, TOE and NonMOE) on bacteria in

ballast waters. Lastly, the relationships between measured bacterial variables (bacterial

abundance and cell volume) and physiochemical factors (e. g. temperature, salinity, pH,
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ballast water age, and exchange locations) were also investigated to identify potential

ballast water treatment measurement.

Information about bacterial community composition, in addition to simple abundance, is

needed to evaluate the disturbance to receiving waters from bacteria introduced from

ballast water. Chapter 3 (Bacterioplankton communities distributed globally by ballast

water) investigated the prokaryotic community structure using fluorescence in situ

hybridization (FISH). The proportion of ubiquitous phylogenetic groups (e.g. Bacteria,

Archaea, Alpha-Proteobacteria, Cytophaga-Flavobacteria) and potential pathogens (e.g.

Vibrio spp., Escherichia coli) within bacterial communities were assessed. The objectives

of this chapter were to evaluate different ballast water operation effects (lCE, TOE and

NonMOE) on bacterial communities in ballast waters, and to assess the differences in

bacterial community structure between ballast water and receiving ports in the three

regions. The relationships between bacterial community composition and environmental

factors (i.e. temperature, salinity, pH, ballast water age, exchange locations) were also

investigated.

The results of this study are an important contribution to our knowledge of the abundance,

cell volume, and phylogenetic diversity of the bacterial community in ballast water tank

on large spatial and temporal scales. The study will also give some insight about the

effects of ballast water management applications in Canada to the bacterial communities

in ballast water.
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Chapter 2 Bacterial Abundances and Cell Volumes in Ballast Water

Discharged into Canadian Harbors

2.1 Abstract

Ballast water discharged by oceangoing ships contributes to the introduction of benign

and pathogenic invasive species. As part of the Canadian Aquatic Invasive Species

Network, we studied the abundance and cell sizes of heterotrophic prokaryotes (hereafter

bacteria) in ballast and receiving port waters. The study was carried out from March to

November 2007, and May to October 2008, with samples collected along the West and

East coasts of Canada and on the Great Lakes. Bacterial abundance in port water was

three-to-four-fold higher than in ballast water. Among the ballast water types,

unexchanged ballast water showed higher bacterial abundance than ballast water

exchanged at-sea. There was no significant difference in bacterial abundance between

2007 and 2008 for each ballast water sample type and for port samples. There was no

significant difference in average bacterial cell volume between ballast water and port

water samples; however the average bacterial cell volumes were about two-fold larger

during 2007 than 2008. The average bacterial abundance and cell volume in ballast water

did not show specific regional difference among the Great Lakes, the West and East

coasts of Canada and were generally unrelated to ballast water age, end-of-voyage

temperature, salinity and pH. The exception was a negative relationship between the

bacterial abundance of intra-coastal exchanged samples and ballast water age. We

estimated that 3.3xl0 19 prokaryotic cells are transported into Canadian ports annually by



ballast water. Although bacterial abundances in ballast waters were lower than in

receiving harbors, future studies should focus on the bacterial community structure in

ballast and ports waters, the fate of bacteria in the new environment and regional

susceptibility to invasion by the introduced bacteria.

2.2 Introduction

Many microorganisms (prokaryotes and microbial eukaryotes) are abundant, fast growing,

tolerant to a wide range of environments and easily dispersed, hence there are few

geographic barriers to their dispersion (Finlay 2002). For small-sized microscopic

organisms, distribution is mediated by a range of passive mechanisms, such as ocean

currents, sea spray and aerial transport, and migrating organisms (Fenchel et al. 1998;

Finlay 2002). In marine environments, ocean circulation and shipping are primary

processes for transport of microorganisms.

Seawater has been used as ballast to help vessels keep stability and trim during voyages

since the late 1870s (Carlton 1985). Over 80% of the world's cargo is mobilized

internationally by ships and over 12 billion metric tons of ballast water is filled at one part

of the ocean and discharged at the other annually (Anil et al. 2002). Ballast water has

been recognized as the primary vector for the transport of aquatic microorganisms

(Carlton and Geller 1993; Ruiz et al. 2000), and it has been calculated that about 10 18

viable bacteria are transported between continents annually by this passive mechanism

(Fenchel and Finlay 2004).



Successful establishment of nonindigenous organisms can cause unwanted economic

(Pimentel et al. 2005), ecological (Mills et al. 1993; Carlton et al. 1990; Frenot et al. 2005)

and human health impacts (Hallegraeff 1998; McCarthy and Khambaty 1994; Juliano and

Lounibos 2005). Species abundance have shown consistently positive correlations with

species establishment success of invasives in introduced environments (Lockwood et al.

2005). Thus, the abundance of introduced undesirable species is a risk-indicator for future

invasion (McCarthy and Crowder 2000). To attenuate the risk of ballast water-mediated

invasions, the International Maritime Organization (IMO) established mid-ocean ballast

water exchange (MOE) guidelines. The ballast water collected from coastal regions is

required to be exchanged in open ocean. The rationale for MOE is that most coastal

organisms will be flushed out during exchange (being replaced by oceanic species) and

that the different physicochemical parameters between coastal and oceanic waters will

impair the survival of coastal organisms in the open ocean. Similarly, oceanic species

released into ports with coastal environmental conditions will be unlikely to survive or

establish themselves (Smith et al. 1999). However, this justification may not be valid for

microorganisms with wide environmental tolerances.

Under the IMO ballast water management guidelines, Canada initiated mandatory

mid-ocean exchange (MOE) for ocean-going ships entering all Canadian ports as of June

8th
, 2006 (Transport Canada, 2006). However, limited voyages from certain nearby US

ports to Canada have no compulsory MOE requirement, because similar community

compositions are expected between the nearby ports. Mid-ocean exchange of ballast
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water from commercial ships can be divided into transoceanic and intra-coastal

navigation. Transoceanic ships are required to exchange their ballast water more than 200

nautical miles from shore where the water depth is at least 2000 m. In contrast,

intracoastal ships are required to exchange ballast water at least 50 nautical miles from

shore and at water depth of at least 500 m. Therefore, ballast water from ships arriving

from international destinations falls into three categories: trans-oceanic exchanged (TOE);

intra-coastal exchanged (ICE); without mid-ocean exchange (NonMOE).

As part of the Canadian Aquatic Invasive Species Network, a study was carried out to

examine average bacterial abundances and cell volumes in ballast water (TOE, ICE,

NonMOE) and receiving port water for ships that deballasted into different areas (the

Great Lakes, the West Coast and East Coast of Canada) during 2007 and 2008. The

objectives of this study are to evaluate different ballast water exchange protocols (ICE,

TOE and NonMOE) on measured biological variables (bacterial abundance and cell

volume) in ballast waters; to assess the differences in measured biological variables

between ballast water and receiving ports in the three regions; to assess if there are

differences in ballast water bacteria discharged into the three sampling regions; and to

assess the relationships between measured biological variables (bacterial abundances and

cell volumes) and concurrent physiochemical factors (i.e. temperature, salinity, pH, and

ballast water age).
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2.3 Materials and Methods

2.3.1 Fixative Effects on Bacterial Abundances and Cell Volumes

Both glutaraldehyde and formaldehyde (final concentration vol/vol 2%) are routinely

used to preserve samples for the determination of bacterial abundance using acridine

orange (AO) staining (Turley and Hughes 1992). Formaldehyde (final concentration

vol/vol 3.7%) is also used to preserve samples for analysis of community structure by

fluorescence in situ hybridization (FISH) (Glockner et al. 1996). In this study, samples

will be used for both bacterial abundance study with AO staining (Chapter 2) and

community structure study with FISH (Chapter 3). The suitability of formaldehyde (final

concentration vol/vol 3.7%) for acridine orange direct count (AODC) method was

investigated in this study.

A five-liter seawater sample was collected from Logy Bay, Newfoundland, Canada

(47°37'30.32"N, 52°39'48.36"W) on January 3rd, 2007. Replicate 500ml samples were

preserved with 0.2 11m filtered glutaraldehyde (final concentration vol/vol 2%). Another

replicate of 500ml samples were preserved with 0.2 11m filtered formaldehyde (final

concentration vol/vol 3.7%). Preserved samples were stored at 4°C, and sub-samples were

taken at 2 h, I d, 2 d, 3 d, and 5 d. Samples were filtered onto 25mm diameter, 0.2 11m

black polycarbonate filters (GE Osmonics Labstore, Minnetonka), stained with AO (final

concentration I.872x 1O·Sg L· 1
) (Hobbie et al. 1977; Kirchman et al. 1982). Slides were

corrected for non-cell staining by counting of 5 ml of 0.2 11m filtered distilled water

2·5



before each sample filtration. To eliminate possible bias introduced by prolonged slide

storage, all slides were counted within one hour after being made.

2.3.2 Preservation Duration Effects on Bacterial Abundances and Cell

Volumes

Turley and Hughes (I 992) have reported an average 39% bacterial cell loss after 40 days

storage in 2% glutaraldehyde suspension. Therefore, they recommended that collected

water samples should be fixed, stained, and then slides prepared as soon as possible after

sample collection. However, it could take days to transport water samples from sampling

sites to our laboratory for filtration. To make sure there is comparability among samples

with different preservation duration (time between fixative addition and filtration),

short-term (five days) preservation effects on bacterial abundance and cell volume were

tested in this study.

A 10-liter seawater sample was collected from Logy Bay, Newfoundland, Canada

(47°37'30.32"N, 52°39'48.36"W), on March 13th, 2007. Five replicate 1L sub-samples

were preserved with formaldehyde (final concentration vol/vol 3.7%). Samples were

stored at 4°C, and sub-sampled at 2 h, I d, 2 d, 3 d, and 5 d. Slides were prepared as

described above.
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2.3.3 Ballast Water and Port Water Sampling

Sampling was carried out from March to November 2007, and May to October 2008 from

three sampling regions of Canada (EC-East Coast; GL-Great Lakes; WC-West Coast) that

actively engage in international shipping. These site included the West Coast (Vancouver,

British Columbia) and the East Coast of Canada (2007: Baie-Comeau, Sept-IIes,

Port-Cartier, all on the lower north shore of the St Lawrence Estuary, Quebec; 2008: Saint

John, New Brunswick; Point Tupper, New Brunswick; Halifax, Nova Scotia; Auld Cove,

Nova Scotia; Comer Brook, Newfoundland and Labrador), and the Great Lakes (Toledo,

Ohio, USA; Milwaukee, Wisconsin, USA; Detroit, Michigan, USA; and Sarnia, Ontario,

Canada). Commercial vessels which arrived at those ports and had ballast tanks with TOE,

ICE, and NonMOE, were sampled. Port water samples were periodically collected during

sampling seasons.

After onboard each vessel, CAISN sampling teams sampled one or two ballast tanks per

ship. For each ballast tank, samples were collected, through a deck hatch, by a Niskin

bottle lowered to four depths in the tank (surface, mid surface, mid bottom, and bottom).

Equal volumes of ballast water from each of the sampling depths were combined together

from the same ballast tank. Associated environmental data (temperature, salinity, and pH)

was also recorded from each sampling depth using a handheld YSI Model 85 meter

equipped with a 15 m cable (YST Incorporated, Yellow Springs, OH, USA). A sub-sample

(500ml) of the combined ballast water from one tank was preserved with formaldehyde

(final concentration 3.7%) and shipped on ice to the Ocean Sciences Centre (St. John's,
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Newfoundland and Labrador, Canada) for analyses within five days. Along with the

collected ballast water samples, the ballast water management forms with information on

vessel type, ballast water source, exchange location, ballast water deballast port, onboard

ballast water volume, exchanged ballast water volume and deballast water volume of

sampled vessels data were provided.

2.3.4 Epifluorescence Microscopy

The slides for bacterial abundances and cell volume measurements were observed using

an Olympus BH2-RFC epifluorescence microscope, equipped with a 100 x 1.30 oil

objective (1250 x total magnification), a 100 W mercury lamp and appropriate filter sets

(502 nm for excitation, 526 nm for emission). The optimal cell direct counting scheme

was followed to optimize the accuracy of the direct count (Kirchman 1982). Briefly, for

sample slides, 50 boxes out of 100 boxes in an ocular grid were counted per field, 10 to

20 random selected fields were scanned each slides until more than 600 cells were

counted from one filter. For the determination of background counts, we counted 100

boxes per field and 10 fields were scanned per slide.

2.3.5 Image Analysis

Cell dimensions were determined with an Image-Pro Plus V6.2 Image Analysis System

(Media Cybernetics, Inc., Bethesda). The system is configured to capture and store

images, measurements and size distributions. In this image analysis study the

epifluorescence microscope was equipped with a highly sensitive camera linked to a



desktop computer. The image analysis system used was digitally calibrated using a stage

micrometer and initial calibration software. Images of cells which fluoresce on the slide

were captured by the camera and the image diverted to a Dell Pc. The cell diameters were

measured: cell lengths and cell widths. The images were individually examined, and the

cell dimensions were recorded. Manual determination of the fluorescence intensity

threshold was essential in determination of cell edge locations. Detrital particles or

specific cells (i.e. clumped or aggregated) were screened out from the analysis either

through the direct removal from the working image, or by constraints assigned to

acceptable diameters. Slides for individual experiments were made at the same time so

that bacterial slide quality and cell sizes within an experiment were comparable. The

output measured variables for each sample were diverted to an Excel spreadsheet. Cell

volumes were calculated using formulae created for volume determination of spheres or

cylinders. Cells with an aspect ratio <1.5 were calculated as spheres whereas cells with an

aspect ratio> 1.5 were calculated using the formula for cylinders. Mean cell volume was

determined for each shape class (round-shaped and rod-shaped cells).

2.3.6 Statistical Analyses

The effects of the glutaraldehyde and formaldehyde fixatives at each of the preservation

durations (2 h, I d, 2 d, 3 d, and 5 d) on the average bacterial abundance and cell volume

of samples were analyzed by paired t-test. Regressions were applied to estimate the

relationship between preservation duration and bacterial parameters (abundance and cell

volume). Multivariate Analyses of Variance (ANOVA) were applied first to analyze the
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relationships of measured bacterial parameters among different sample types, sampling

locations, and different years; however, the statistics showed that the interaction terms

were significant. Therefore, one-way ANOYA were carried out to compare the measured

bacterial parameters (bacterial abundances and cell volumes) among the three ballast

water types, and between ballast and port waters at each deballasting location, among

three deballasting locations, and between sampling years (2007 and 2008). If a

statistically significant result was found in an omnibus F-test for a one-way ANOYA,

post-hoc analyses using the Tukey test were conducted. Regression analyses were run to

determine the relationships between bacterial abundances and environmental variables

(i.e. temperature, pH, salinity, ballast water age), and relationships between cell volumes

and these environmental variables.

All statistical analyses were conducted using Minitab Release 14 (Minitab Inc., State

College, USA). For each analysis, the residuals were examined and met the assumptions

of linearity, normality, independence, and homogeneity (Seber and Lee 2003). The

significance judge criterion for statistics in this study is a = 0.05.

2.4 Results

2.4.1 Fixative Effects on Bacterial Abundances and Cell Volumes

There were no significant differences in bacterial abundances and cell volumes for the

two fixatives at each of the storage times (n = 20; bacterial abundance: t = 0.19, P = 0.856;

cell volume: t = 2.61, P = 0.060). However, we did observe better contrast between the



AO stained cells and background fluorescence for formaldehyde than glutaraldehyde

preserved samples. Therefore, subsequent samples for bacterial abundances, cell volumes

and bacterial community structure investigations were preserved by 0.2 11m filtered

formaldehyde (final concentration vol/vol 3.7%).

2.4.2 The Effects of Preservation on Bacterial Abundances and Cell

Volumes

Regressions were used to determine if bacterial abundances and cell volumes were

preservation-duration dependent. Within 5 days preservation in suspension, there was no

significant difference in bacterial abundances (n = 25, P = 0.191), whereas cell volumes

increased with the preservation time following an exponential growth rate: Cell Volume =

0.0731 + 0.0030 Duration, r2 = 0.52, n = 25, P < 0.001 (Figure 2.1).

2.4.3 Vessels Sampled and Ballast Water Management

A total of 139 ballast water samples (NonMOE, ICE, and TOE) and 13 port water

samples were collected from March to November 2007, and May to October 2008. Table

2.1 summarizes the sample number in each group defined by sampling year (2007,2008),

sampling locations (Great Lakes, West Coast and East Coast of Canada), and sample

types (TOE, ICE, NonMOE, port).

This study primarily included commercial bulk carriers, general cargo, and tankers (91 %

of total ballast water samples or 126 of 139 ballast water samples), with a few containers,



roll on/roll off and multi-purpose ships. The pie graph in Figure 2.2 shows the

composition of ballast water sample by vessel types (bulk carriers, general cargo vessels,

tankers and others) at WC, EC, and GL during 2007 and 2008 sampling seasons. The

majority of ballast water collected from the WC was from bulk carriers and general cargo

vessels, while the majority of ballast water samples from GL and the EC were from

bulkers and tankers.

2.4.4 Ballast Water Ages and Physical/Chemical Characteristics of

Collected Samples

Ballast water ages were computed as the number of days between the date of exchange

for MOE (lCE and TOE) or take-up in the port for NonMOE samples and sampling date.

The mean (± SD) ballast water age of ICE samples was (6.7 ± 6.6) days (median = 3.5, n

= 56), which was shorter than that of TOE samples (10.7 ± 5.7) days (median = 10.5, n =

54). NonMOE samples (mean ± SD = 7.4 ± 17.0, median = 3.5, n = 28) had the oldest

ballast water, ranging from 1-93 days, compared to 1-27 days for ICE and3-43 days for

TOE.

Physical/chemical parameters of all tanks showed no depth stratification in pH, salinity,

and temperature (data not shown). The average of the four sampling depths recorded for

each ballast water parameter are presented. Temperature of port water samples ranged

from 1°C in May 2007 at the EC to 26°C in August 2007 and August 2008 at the GL.

Temperature of ballast water samples ranged from 3.6°C in May 2007 at the EC to 30.6
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°C in August 2008 at the EC. Temperature of port, TOE, ICE, NonMOE samples all

followed the same monthly patterns during the two sampling seasons (April to November

in 2007; May to October in 2008) (Figure 2.3). The mean temperature of samples

increased starting in spring, peaked at end of summer in August, and then started to

decrease (Figure 2.3). Salinity showed distinct characteristics for oceanic (TOE and ICE)

and coastal (port and NonMOE) source samples. Oceanic source samples had higher

salinity with narrow range: salinities of TOE water samples ranged from 24.7 to 37.0 psu

(practical salinity units) (mean 33.6 psu); salinity of TCE water samples ranged from 25.8

to 36.1 psu (mean 32.2 psu). In contrast, coastal sources samples had wide salinity range:

salinity of port water samples ranged from 0.0 psu at the GL to 32.4 psu at the EC;

salinity of NonMOE water samples ranged from 0.1 to 31.2 psu. The pH ranged from 6 to

8.5.

2.4.5 Heterotrophic Bacterial Abundance

Comparison among Ballast Water Types

The bacterial abundances among ballast water types (TOE, ICE and NonMOE) at each

sampling region during 2007 and 2008 are reported in Table 2.2. There was no significant

difference in the bacterial abundance between TOE and ICE samples at the EC (FI.21 =

0.47, P = 0.503, Table 2.2) and GL (Fl. 9 = 0.04, P = 0.852, Table 2.2). The number of

onMOE samples collected at the EC and GL was too low for statistical analysis.

ANOYA results showed that there was a significant difference in bacterial abundance

among TOE, ICE and NonMOE at the WC in 2007 (F2. 2s = 3.50, P = 0.046, Table 2.2).
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Post-hoc comparisons using the Tukey test indicated that bacterial abundance was

significantly higher in NonMOE than TOE samples, but there was no significant

difference between NonMOE and ICE, or between TOE and ICE samples at the WC site.

In 2008, there was no significant difference in bacterial abundance between ICE and

NonMOE samples at the EC (FI, 23 = 1.24, P = 0.276, Table 2.2). The number of TOE

samples collected at the EC was too low for statistical analysis. Only TOE samples were

collected at the GL in 2008, so no comparison among ballast water types was conducted.

ANaYA results showed that there was a significant difference in bacterial abundance

among TOE, ICE and NonMOE at the WC in 2008 (F2,3S= 4.18, P = 0.023, Table 2.2).

Post-hoc comparisons using the Tukey test indicated that bacterial abundance was

significantly higher in NonMOE than TOE samples, but there was no significant

difference between NonMOE and ICE, or between TOE and ICE samples at the We.

Taken together, the bacterial abundance was significantly higher in NonMOE than TOE

samples, but there was no difference detected in bacterial abundance between TOE and

ICE samples, or between NonMOE and ICE samples.

Comparison between Port and Ballast Water Samples

The bacterial abundance in port water samples ranged from 3.44x10s to 1.0lxl0 Io cells

L- 1 and was three-or-four-fold higher than that in ballast water samples which ranged

from 8.69x 107 to 2.60xl09 cells L,I. The bacterial abundance of ballast water and port

water samples in each region each year is shown in Figure 2.4. Although bacterial

abundance was generally higher in port water than ballast water samples at each



deballasting location in both years, the statistical differences were detected only at the

WC in 2007 (F I.29 = 28.59, P < 0.001, Table 2.4), the EC (F I• 36 = 13.11, P = 0.001, Table

2.4) and WC (F 1• 49 = 40.15, P < 0.001, Table 2.4) in 2008. Too few port water samples

were collected from the GL in both years to compare bacterial abundance between ballast

water and port water samples in the GL.

Comparison among Deballasting Locations

The limited number of port water samples collected from the GL in both years prevented

their inclusion in the port water samples comparison. The bacterial abundance of port

water samples was significantly higher in the WC than in the EC in 2007 (F I.6 = 7.43, P =

0.034, Table 2.4), but no significant difference was detected between the WC and EC port

water samples in 2008 (Fl. 19 = 1.53, P = 0.232, Table 2.4).

There was no significant difference in the bacterial abundance of TOE samples among the

three deballasting locations (F2.38 = 0.66, P = 0.524, Table 2.2); neither for lCE samples

(F2. 21 = 0.71, P = 0.510, Table 2.2) during 2007. Too few NonMOE samples were

collected from the EC and GL for statistical comparisons during 2007 (Table 2.2). During

2008, bacterial abundances in TOE samples were compared between the GL and WC only,

since the number of TOE samples collected at the EC was too low for statistical analysis.

There was no significant difference in bacterial abundance of TOE samples between the

GL and the WC during 2008 (Fl. 17 = 1.93, P = 0.182, Table 2.2). There were no ICE and

NonMOE samples collected from the GL, so the bacterial abundances in the ICE and



NonMOE samples were compared between location EC and WC in 2008. During 2008,

the bacterial abundances were higher at the EC than at the WC for both ICE (FI.3J = 6.71,

P = 0.014, Table 2.2) and NonMOE samples (Fl. 20 = 8.52, P = 0.008, Table 2.2). In

general, ANOYA results showed that the bacterial abundance in ballast water that was

deballasted into the three regions was significantly different in 2008 (F2• 73 = 14.18, P <

0.001, Table 2.4). Post-hoc comparisons using the Tukey test indicated that the bacterial

abundance in ballast water that was deballasted into the EC was higher than into the WC

and the GL during 2008. However, there was no significant difference in the bacterial

abundances of ballast water samples that were deballasted into the WC and GL sites.

Comparison between Years

Due to low and variable sample sizes, comparison of bacterial abundances between years

was only tested for port, ICE samples at the EC; TOE samples at the GL; and port, TOE,

ICE and NonMOE samples at the We. There were no significant differences in bacterial

abundances between 2007 and 2008 for any above comparisons (Table 2.3, Table 2.2).

2.4.6 Cell Volume

Comparison among Ballast Water Types

The cell volumes for the different ballast water types in each sampling region during 2007

and 2008 are reported in Table 2.2. There was no significant difference in the cell volume

between TOE and ICE samples at the EC (F 1• 21 = 0.01, P = 0.931, Table 2.2) or GL (F J,9

= 0.13, P = 0.724, Table 2.2). The number of NonMOE samples collected at the EC and
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GL was too low for statistical analysis. ANaYA results showed that there was significant

difference in cell volume among TOE, ICE and NonMOE at the WC in 2007 (F2.25 = 4.20,

P = 0.027, Table 2.2). Post-hoc comparisons using the Tukey test showed that the cell

volume was significantly larger in ICE samples than TOE samples at the WC in 2007, but

there was no significant difference in cell volume between TOE and NonMOE samples,

or between ICE and NonMOE samples. In 2008, there was no significant difference in

cell volume between ICE and NonMOE samples at the EC (F 1. 23 = 0.01, P = 0.920, Table

2.2). The number of TOE samples collected at the EC was too low for statistical analysis.

Only TOE samples were collected at the GL in 2008, so no comparison among ballast

water types was conducted. ANaYA results show that there was significant difference in

cell volume among TOE, ICE and NonMOE samples at the WC in 2008 (F2• 38 = 4.47, P =

0.0183, Table 2.2). Post-hoc comparisons using the Tukey test indicated that cell volume

was significant larger in TOE than NonMOE samples, but there was no significant

difference between NonMOE and ICE, or between TOE and ICE samples at the WC site

in 2008.

Comparison between Port and Ballast Water Samples

The cell volume comparisons between ballast water and port water samples at each

location site each year are shown in Table 2.4. The cell volumes in port water samples

was significantly larger than those of ballast water samples at the EC in 2007 (F 1,26 =

5.13, P = 0.032, Table 2.4). This was the only detected significant difference in cell
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volume between port water and ballast water samples among all the comparisons in Table

2.4.

Comparisons among Deballasting Locations

The limited number of port water samples collected from the GL in both years prevents

them from being included in the port water samples comparison among deballasting

locations (Table 2.1). There was no significant difference in cell volume of port water

samples between the WC and EC in both 2007 (FI,6 = 0.32, P = 0.591, Table 2.4) and

2008 (F I , 19 <0.01, P = 0.990, Table 2.4).

Too few NonMOE samples were collected from the EC and GL to compare NonMOE

samples among locations in 2007. There was no significant difference in cell volume of

ICE samples among the three deballasting locations in 2007 (F2, 12 =2.57, P = 0.118, Table

2.2). ANOYA results showed that there was significant difference in the cell volume of

TOE samples among the three regions in 2007 (F2, 38 = 4.62, P = 0.016, Table 2.2).

Post-hoc comparisons using the Tukey test indicated that the cell volume of TOE samples

was significantly larger at the GL than at the EC and WC in 2007, but there was no

difference in cell volume of TOE samples between the EC and WC in 2007. During 2008,

cell volume of TOE samples was compared between the GL and WC only, since the

number of TOE samples collected at the EC was too low for statistical analysis. There

was no significant difference in cell volumes of TOE samples between the GL and WC in

2008 (F I , 17 = 0.47, P = 0.502, Table 2.2). There were no ICE and NonMOE samples
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collected from the GL in 2008, so the cell volume of ICE and NonMOE samples were

compared between location EC and We. There was no significant difference in cell

volume between the EC and WC for ICE samples (F I ,31 = 0.03, P = 0.860, Table 2.2), or

for NonMOE samples (F I, 20 = 0.83, P = 0.372, Table 2.2).

Comparison between Years

The between-year comparisons of cell volume were tested for port and ICE samples at the

EC; TOE samples at the GL; and port, TOE, ICE and NonMOE samples at the WC, due

to low sample sizes. Cell volumes were significantly larger for 2007 than 2008 samples in

all of the above comparisons (Table 2.3, Table 2.2). Cell volume of all 2007 samples

(mean = 0.083 j.!m3
; range 0.051 to 0.162 j.!m3

; n = 72) was about l.5-fold larger than

during 2008 (mean = 0.055 j.!m3
; range 0.039 to 0.088 j.!m3

; n = 99).

2.4.7 Relationships between Microbial Parameters and Environmental

Factors

The relationships between bacterial variables (bacterial abundance and cell volume) of

each ballast water type and physiochemical factors (salinity, pH, temperature, and ballast

water age) were examined. The cell volume data was divided by year, because of the

different cell volume ranges in 2007 and 2008. However, there was no significant

difference in bacterial abundance between 2007 and 2008 samples, so the bacterial

abundance of samples from both years was analyzed together. There were no significant

relationships between bacterial variables and salinity, pH, temperature and ballast water
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age, except that the bacterial abundances of ICE samples decreased with the aging of

ballast water (n = 56, r2
= 0.18, P < 0.0 I, Figure 2.5).

2.5 Discussion

2.5.1 Fixative Effects on Bacterial Abundances and Cell Volumes

In this study, seawater samples preserved with formaldehyde showed better contrast

between the AO fluorochrome stained cells and filter background fluorescence than

samples preserved with glutaraldehyde. Formaldehyde has been noted to negatively affect

cell fluorescence (Crissman et al. 1978; Lebaron et al. 1998; Troussellier et al. 1999);

however, glutaraldehyde frequently leads to intense autofluorescence which limits its use

with fluorescent stains (Gasol and del Giorgio 2000; Vives-Rego et al. 2000). There was

no significant difference observed in bacterial abundances and cell volumes between

glutaraldehyde (final concentration vol/vol 2%) fixed samples and formaldehyde (final

concentration vol/vol 3.7%) fixed samples at each of the storage times. The results

indicated that formaldehyde (final concentration vol/vol 3.7%) can be used to preserve

water samples to study both bacterial abundance and cell volume with AO staining and

bacterial community structure with FISH.

2.5.2 The Effects of Preservation on Bacterial Abundances and Cell

Volumes

Loss of visible (or stainable) bacteria has been noted after months of storage (Turley and

Hughes 1992; Gundersen et al. 1996). Two possible non-exclusive explanations for the
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cell loss are: (I) bacteria attached to bottle inner surface (Turley and Hughes 1992); (2)

bacteria were degraded by enzymatic or viral activity (Gundersen et at. 1996). We did not

observe bacterial cell loss following fixation and storage within five days. However, it is

worth noting that the relationship between bacterial abundance and preservation duration

is sample specific (Gundersen et at. 1996; Turley and Hughes 1992). A similar experiment

reported that the concentration of bacteria decreased sharply in the first week of storage in

two out of four samples collected from different locations and depths (Decamp and

Rajendran 1998).

Cell volume is widely used for bacterial organic carbon (BOC) estimation and to evaluate

the bacterial mediated carbon cycle (Simon et at. 1992). The long-term preservation

effects of vol/vol 2.0% formaldehyde on cell volumes have been studied, and it was

reported that cell volumes significantly increased after 120 days of preservation

(Matthews and Rivkin, 2002). In this study, samples preserved with vol/vol 3.7%

formaldehyde demonstrated an increase in cell volume during five-day storage at 4 0c.

Formaldehyde is a cross-linking fixative which forms DNA-protein cross-links within the

cells. It has been reported that AO not only binds to both DNA and RNA, but also stains

other structures in the cell (e.g. the cell wall) (Suzuki et at. 1993). The cross-linked

structures formed during the storage might cause the observed cell volume increase.

2.5.3 Ballast Water Mediated Bacterial Invasion

Bacteria in ballast water at the end of a voyage represent those cells and groups that

survived after a series of selections (Carlton 1985). The main selective factors for



surviving bacteria include bacterial communities composition from source waters, the

specific environment in ballast water tanks (Carlton 1985) and effects of MOE. The

abundance and species diversity in a ballast tank depends very much on the location and

seasonality of the water ballasted. Within the tank, the environmental conditions may

drive the succession of bacterial communities (Carlton 1985) including absence of light,

salinity, pH and temperature fluctuation with the ambient temperature of the ocean (Chu

et al. 1997). If the ballast water is exchanged in the mid-ocean, most coastal organisms

would be replaced by oceanic organisms and the physiochemical parameters of ballast

water would be similar to those of open ocean water where the exchange occurred

(Wonham et al. 2001). Coastal environments generally have higher bacterial abundance

than oceanic environments. Along a 3 800 Ian transect from the coastal waters of

Monterey Bay, California to the open ocean Hawaii Ocean Times-Series station, the

coastal station had the highest bacterial abundance (Culley and Welschmeyer 2002).

Similar results have been reported that the bacterial abundance declined progressively

with increasing distance from shore (to 100 km) in the euphotic zone of the Southern

California Bight, USA (Fuhrman et al. 1980). In addition, bacterial community structures

are different between coastal and oceanic environment. Rappe et al. (2000) studied the

clone libraries of SSU rRNA genes of seawater collected over the western continental

shelf of the USA in the Pacific Ocean. It was concluded that coastal bacterial

communities have phylogenetic groups found prevalently distributed both in open ocean

and in freshwater (Rappe et al. 2000).
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2.5.4 Bacterial Abundance Comparison among Ballast Water Types

The number of samples that were collected from each ballast water category (i.e. TOE,

ICE, and NonMOE) was sufficient only at the WC to carry out robust statistical analyses

among ballast water types. Significantly higher bacterial abundance was observed in

NonMOE samples than in TOE samples during both years. Our result indicates that

unexchanged ballast water introduces higher propagule pressure than ballast water

exchanged on the high seas.

2.5.5 Bacterial Abundance Comparison between Port and Ballast

Table 2.5 summarizes published studies about bacteria in ballast water. Bacterial

abundances in ballast water samples ranged from 8.69x 107 to 2.60x 109 cells L- 1 (n = 142)

in our study and was similar to reported abundances of previous studies (Table 2.5).

Bacterial abundance in port water samples was about three- or four-fold higher than that

in ballast water samples in our study. Higher bacterial abundance in receiving ports than

that in ballast water was also documented in Singapore (Joachimsthal et aI. 2003; 2004),

and in Chesapeake Bay (Drake et aI. 200 I). Ballast water samples studied here were

collected at the end of voyage, so both ballast water environment selection and oceanic

source for exchanged ballast water samples could be probable reasons for the attenuated

bacterial abundance in ballast water samples. The concentration of microorganisms in

ballast waters has been considered as a proxy for propagule pressure (the number of

individuals introduced into a given environment), which is a prime factor to explain the

success of an invasion (Drake and Lodge 2007; Hayes and Barry 2008). Therefore, the
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lower bacterial abundance in ballast water observed here suggests that the ballast water

operations have attenuated the propagule pressure from the numerical standpoint.

2.5.6 Bacterial Abundance Comparison among Deballasting Locations

In a previous study about ballast water discharged along the West and East coasts of USA

(Burkholder et al. 2007) showed that bacterial abundance was significantly lower in

ballast tanks with Atlantic than Pacific Ocean source water. In our study, ballast waters

deballasted into the WC were from the Pacific Ocean, whereas ballast waters deballasted

into the EC and GL were from the Atlantic Ocean. Different patterns of bacterial

abundances among the deballasting locations were observed in each year. There was no

significant difference in bacterial abundance of ballast water samples among locations in

2007. However, the bacterial abundance was higher in ballast water that was deballasted

into the EC than in the WC and the GL in 2008. Our results indicate that ocean sources, as

proposed by Burkholder et al. (2007), might not be the primary factors for the bacterial

propagule pressure distribution among Canadian waters.

2.5.7 Cell Volume Comparison between Years

Bacterial cell volumes in the samples collected during 2007 were consistently larger than

those collected in 2008 at each deballasting region for each sample type (port, TOE, ICE

and NonMOE). Since the cell volume measurements were made by the same person for

both years, and the operations were semi-automated, the observed differences were not

likely due to observer/analytical variability. Our preservation duration experiment showed
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that the cell volume increased with an exponential rate of 5% daily. In our study, the

preservation duration of 2007 samples (average 3.2 days) was about I day longer than

that of 2008 samples (average 2 days). The difference in preservation duration alone

could not explain the observed difference in cell volume between the two years. The cell

volumes of 2007 samples (Mean ± SD: 0.083 ± 0.021 llm3
) were about 50% larger than

those of2008 samples (Mean ± SD: 0.055 ± 0.008 llm3
). The size distribution of bacterial

communities is influenced by microzooplankton grazing (Hahn and Hofle 200 I). A

previous study about bacterial volumes from different natural samples taken along the

Mediterranean coast suggested that medium-sized cells with the highest growth rates are

subjected to intense grazing (Bernard et al. 2000). Changes in the bacterial size

distribution to "inedible" small cells, or less desirable large cells due to microzooplankton

grazing have been described both in the field and in the laboratory (Jurgens and Gude

1994; Gasol et at. 1995). Cell volume is an indicator of bacterial activity (Gasot et al.

1995). By directly measuring the size distribution of active (cells that absorbed and

reduced the redox dye CTC) and inactive cells in a natural coastal bacterial community,

Gasol et at. (1995) found that bacterial activity is a function of cell volume. In their study,

the average size of an inactive bacterium was 0.055 llm3
, while the average size of an

active bacterium was 0.12 llm3
• In this study, the smaller cell size of 2008 samples

suggests that bacterial communities might survive in adverse conditions or experience

intensive grazing pressure. In contrast, the larger cell size of 2007 samples might indicate

higher cell activity due to replete nutrient supply and less grazing pressure.



2.5.8 Physiochemical Parameters and Bacterial Variables

Among the measured physiochemical conditions (temperature, salinity, pH, and ballast

water age), an inverse relationship was recorded between the bacterial abundance of ICE

samples and ballast age. It is premature to unequivocally relate one environmental forcing

to the dynamics of bacterial abundance or cell volume of ballast water samples. The lack

of consistent relationships between measured environmental parameters and bacterial

variables in all three ballast water types indicates there are regulatory factors, other than

those which were measured, influencing the bacterial population in ballast water. The

dissolved oxygen in ballast water, which was not measured in this study, during voyage

might be an influential factor for the dynamics of bacterial community (Tamburri et al.

2002,2003).

Previous studies documented that species richness and biomass of fish (Wonham et al.

2000), zooplankton (Gollasch et al. 2000), and phytoplankton (Burkholder et al. 2007)

decreased as ballast water aged. With the potential augmentation of dissolved organic

matter (DOM) in ballast water from planktonic constituents decomposing, the bacterial

abundance in ballast water samples did not flourish as expected. In contrast, the bacterial

abundances of ICE samples decreased with ballast water age. Similarly, a previous study

on bacterial community dynamics during shipping voyage from Israel to the USA also

indicated that the bacterial abundance declined with an increase in ballast water age

(Drake et al. 2002). Drake et al. (2002) have proposed three probable non-exclusive

reasons: (I) the DOM from the phyto- and zooplankton die-off could not be utilized by
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bacteria efficiently; (2) bacteria are removed by microzooplankton grazing; or (3) the

pulse of DOM from phyto- and zooplankton die-offs is respired by bacteria in the

beginning of the voyage, and the remaining small amount of DOM in the holds leads to a

steady state of low microbial biomass through the voyage. Besides biological reasons,

another possible explanation could be that the bacterial die-off is a response to toxic metal

corrosion from the interior ballast tanks.

This study primarily investigated commercial bulk carriers and tankers, which carry the

largest volumes of ballast water that are deballasted into Canadian jurisdictions (Harvey

et al. 1999). Sampling ports that were chosen are major Canadian ports either in ship

traffic or in the ballast water discharged volume among Canadian ports (Harvey et al.

1999). Sampling times spanned from spring to fall, which are the most intense shipping

seasons into Canada (Balaban 2001). Therefore, our study supplied an opportunity to

understand the roles of commercial shipping activities in redistributing globally bacteria

along Canadian waters. With the estimation of 40 million metric tons of ballast water

annually deballasted in Canada (Lo et al. 2008), and average bacterial abundance 8.5x I08

cells L- 1 in ballast water, 3.3x I019 prokaryotic cells are transported into Canadian ports

annually.

2.6 Conclusion and Future Directions

Here we present results of bacterial abundances and cell volumes for ballast and port

water samples from the West and East coasts of Canada and the Great Lakes, and how



these bacterial parameters are related to different ballast water managements, and

physiochemical factors. Overall, the consistently lower bacterial abundances in ballast

than in port water samples in our study showed that ballast water does not enhance

bacterial biomass in ports. However, considering the huge volume of ballast water

transported internationally and the high bacterial abundances in ballast water (107
- 109

cells L- 1
), ballast water may be an important contributor for the ubiquitous distribution of

certain phylogenetic groups of bacteria. Among the ballast water types, our results

indicate that unexchanged ballast water introduces higher propagule pressure than ballast

water exchanged at sea. Higher propagule pressure of bacteria was introduced into the EC

than the WC and GL in 2008, but no propagule pressure difference was observed among

the three locations in 2007. The larger cell volumes in 2007 than in the 2008 samples

suggests higher cell activity or/and lower grazing pressure during 2007. An inverse

relationship was recorded between the bacterial abundance of ICE samples and ballast

age. The lack of consistent relationships between measured physiochemical and bacterial

variables in all three ballast water types indicates there are regulatory factors, other than

those which were measured, influencing the bacterial population in ballast water.

Although ballast water introduces large numbers of bacteria into ports, the fate of bacteria

after being discharged from ballast tanks, and regional susceptibility to invasion are

poorly understood. It is critical to know who is there, and which phylogenetic groups are

present in receiving ports relative to those introduced via ballast water (Carlton 1996).

Thus, further studies to compare bacterial community composition, species abundance

and their physiochemical conditions between ballast and port water samples are necessary
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to evaluate the risk of bacterial invasion by ballast water. Furthermore, previous studies

show ships can globally distribute pathogens, such as Vibrio cholerae, and Escherichia

coli (Ruiz et al. 2000). It will be important to investigate the existence and abundances of

pathogens in ballast water to strengthen insights about the potential transport of

pathogenic microbes by ballast water.
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Table 2. f ample number according to sampling years (2007, 2008), samp\ing \ocati ns

(Great Lakes, West Coast and East Coast of Canada), and sample categories.

Year Sampling port MOE NonMOE Sum
Location TOE ICE

2007 West Coast 3 14 8 6 31
East Coast 5 19 4 0 28
Great Lakes 1 8 3 I 13

2008 West Coast 10 II 14 16 51
East Coast 11 2 19 6 38
Great Lakes 2 8 0 0 10

Sum 32 62 38 29 161

Note:

Port water samples (port), trans-oceanic exchanged ballast water (TOE), intra-coastal

exchanged ballast water (ICE), and without mid-ocean exchange ballast water (NonMOE).



Table 2.2 Bacterial abundances (109 cells L-') and cell volumes (~m3) in three ballast water types, three sampling regions

and two years.

Bacterial Abundance Cell Volume

Sampling Ballast Water 95%CI 95%CI
Year Location Types l n Min. Max. Mean - Min. Max. Mean

LL UL LL UL

2007 East TOE 19 0.09 1.75 0.68 a 0.49 0.88 0.051 0.119 0.074 a 0.065 0.083
Coast ICE 4 0.71 1.08 0.82 a

0.55 1.10 0.058 0.090 0.073 a 0.051 0.096
NonMOE 0

Great TOE 8 0.45 1.03 0.82 a 0.63 1.01 0.062 0.163 0.100 a 0.073 0.128
Lakes ICE 3 0.62 1.02 0.79 a 0.27 1.30 0.069 0.119 0.093 a 0.030 0.155

NonMOE 1 0.93 na 0.075 na

West TOE 14 0.25 1.88 0.61 b 0.32 0.89 0.064 0.102 0.079 b 0.072 0.087
Coast ICE 8 0.28 1.19 0.67 ab 0.46 0.88 0.069 0.120 0.097 a 0.084 0.110

NonMOE 6 0.74 2.09 1.15 a
0.47 1.82 0.061 0.106 0.077 ab 0.053 0.101

2008 East TOE 2 0.76 1.27 1.01 na 0.062 0.088 0.075 na

Coast ICE 19 0.66 2.60 1.16 a 0.96 1.36 0.048 0.061 0.054 a 0.052 0.056
NonMOE 6 0.82 1.81 1.37 a 0.94 1.81 0.044 0.065 0.054 a 0.046 0.062

Great TOE 8 0.53 0.87 0.70 na 0.60 0.79 0.047 0.067 0.057 na 0.052 0.062
Lakes fCE 0

NonMOE 0

West TOE 11 0.37 0.80 0.60 b 0.51 0.68 0.051 0.074 0.059 a 0.054 0.064
Coast ICE 14 0.34 1.62 0.84 ab

0.68 1.00 0.041 0.066 0.054 ab 0.050 0.059
NonMOE 16 0.55 1.61 0.92 a 0.77 1.07 0.039 0.063 0.050 b 0.045 0.055



Notes:

"I": Trans-oceanic exchanged ballast water (TOE), intra-coastal exchanged ballast water

(ICE), and without mid-ocean exchange ballast water (Non-MOE).

Analyses ofVariances were used to determine overall differences in bacterial abundances

and cell volumes among ballast water types at each location and each year. Tukey 95%

Simultaneous Confidence Intervals were used to determine the differences among

categories.

"a", "b", "na" and "ab": Significant differences among mean values of ballast water types

at each locations and each year are indicated by superscript codes: mean with superscript

"a" has significantly larger value than that with superscript "b"; "ab" indicate there are no

significant difference between means with "a" and "ab", or between means with "b" and

"ab"; means with same superscript are not significant different; mean with "na" was not

compared because of the limited sample numbers.



Table 2.3 Bacterial abundances and cell volumes of each sample category comparison

between 2007 and 2008 at each location.

Bacterial Abundance Cell Volume

Sampling Location Category I 2007 vs 2008 2007 vs 2008

Fvalue Pvalues Fvalues Pvalues
East Coast port F1• 14 = 2.62 0.128 FI . 14 =21.04 <0.001

TOE
ICE F I • 21 = 2.40 0.136 FI ,21 = 28.63 <0.001
NonMOE

Great Lakes port
TOE F I . 14 = 1.73 0.209 FI • 14 = 13.62 0.002
ICE
NonMOE

West Coast port F I , II = 0.62 0.448 F l , II = 49.39 <0.001
TOE F I ,23=0.01 0.905 FI • 23 = 21.38 <0.001
ICE F1,2o= 1.31 0.266 F i ,20= 76.61 <0.001
NonMOE FI 20= 2.09 0.164 FI 20= 26.18 <0.001

Notes:
1. Port water samples (port), trans-oceanic exchanged ballast water (TOE), intra-coastal
exchanged ballast water (ICE), and without mid-ocean exchange ballast water
(Non-MOE).

"ns": no significant difference
"-": no comparison was conducted due to insufficient samples
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Table 2.4 Bacterial abundances (109 cells Lot) and cell volumes (j.lm') in baHast water

samples and port water samples at each sampling region each year.

Bacterial Abundance Cell Volume

Sampling
Mean~

9S0f0CI
Year Location Category n Min. Max. Min. Max. Mean LL UL

East I.lI
0.31 1.90

0.096
2007 Port 5 0.34 1.97 0.074 0.134 0.065 0.126

Coast 0.71
0.55 0.87

0.074
Ballast 23 0.09 1.75 0.051 0.119 b 0.066 0.082

Great 10.06
0.00 0.00

0.066
Port

Lakes 0.82
0.69 0.95

0.096
Ballast 12 0.45 1.03 0.062 0.163 0.078 0.115

West 2.31
1.00 3.62

0.087
Port 3 1.72 2.73 0.078 0.093 0.068 0.106

Coast 0.74
0.56 0.93

0.084
Ballast 28 0.25 2.09 b 0.061 0.120 0.078 0.090

East 2.82
1.28 4.35

0.058
2008 Port 1\ 1.36 7.64 0.046 0.072 0.052 0.064

Coast 1.19
1.03 1.36

0.055
Ballast 27 0.66 2.60 b 0.044 0.088 0.052 0.059

Great 1.13
0.00 0.00

0.054
Port 2 1.08 1.17 na 0.051 0.057 na

Lakes 0.70
0.60 0.79

0.057
Ballast 8 0.53 0.87 na 0.047 0.067 na 0.052 0.062

West 1.86
1.20 2.52

0.058
Port 10 0.75 3.35 0.052 0.069 0.054 0.062

Coast 0.81
0.72 0.89

0.054
Ballast 41 0.34 1.62 b 0.039 0.074 0.051 0.057



Notes:

"a", "b"and "na": Significant differences among mean values of ballast water and port

water at each locations and each year are indicated by superscript codes: mean with

superscript "a" has significantly larger value than that with superscript "b"; means with

same superscript "a" are not significant different; mean with "na" was not compared

because of the limited sample numbers.

"LL" and "UL": lower limit and upper limit of95% confidence intervals



Table 2.5 Summary of published studies about bacterial abundance in ballast water

Sampling

End of voyage: 62
samples from 28
hips along US

coastal line

End of voyage:
vessels arriving to
Chesapeake Bay
from foreign ports.
End of voyage: 25
bulk carriers
originating in
foreign ports and
arriving in
Chesapeake Bay

Bacterial
Abundance
mean ± S.D.:
3.1 ± 0.5 x
108 cells L- I

mean ± S.D.:
8.3 ± 1.7 x108

cells L'l

5.7 X 107
­

2.0 X 109 cells
L- I

, except for
one sample
with
abundance 15
x 109 cells L- I

Influential factors

Bacterial abundance was
unrelated to vessel type,
exchange status, age of
water, environmental
condition measured (pH,
DO, turbidity, nutrient ),
or phytoplankton
abundance.

Bacterial abundance was
uncorrelated with
temperature, and water
age, but negatively
correlated with salinity

Notes References

Bacterial Burkholder
abundance was et al. 2007
significantly
lower in ballast
tanks with
Atlantic than
Pacific Ocean
source water

Ruiz et al.
2000

Drake et al.
2001

End of voyage: 2.35 x109
­

ships arrived at 5.87 x 1010

Singapore Harbor cells L- '

During voyage:
vessel from
Hadera,
Israel to Baltimore
USA on a 19 - day
voyage.

9.2 - 22 x107

cells L-1
Bacterial abundance
decreased by a factor of
2.3 (unexchanged tanks)
and 1.6 (exchange tanks)
throughout the voyage.
There wa no difference
in bacterial abundance
between exchanged tanks
and unexchanged tank at
the end of voyage

Bacterial
abundance in
ballast water was
lower than that
in local seawater

Drake et al.
2002

Joachimsthal
et al. 2004

Sampling Bacterial
Abundance

End of voyage: 69 No
vessels arriving at concentration
lower Chesapeake reported
Bay from foreign
and domestic ports

Influential factors

No bacterial abundance
difference between
exchanged and
unexchanged tanks
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Bacteria
discharged from
vessels and
surviving in the
Port is 3.9 xlO l8

cells per year.

References

Drake et al.
2007
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Figure 2.1 Relationship between cell volumes (3.7% formaldehyde preserved samples)

and preservation duration (number of days between fixative addition and sample filtration)

(Cell Volume = 0.0731 + 0.0030 Duration, r2
= 0.52, P < 0.001). Cell volumes of samples

preserved for 2 hours (0 day) represented the in situ cell volumes.
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Figure 2.2 The number of ballast water samples (below) and the percentages by vessel

types (bulk carriers, general cargo, tankers and others) at the West Coast of Canada (WC),

East Coast of Canada (EC), and Great Lakes (GL) sites during 2007 (upper panel) and

2008 (lower panel) sampling seasons. Data on vessel types was collected from ballast

water management forms.
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Figure 2.3 Temperature of trans-oceanic exchanged (TOE, open circle) ballast water,

intra-coastal exchanged (ICE, open diamond) ballast water, without mid-ocean exchange

(NonMOE, closed star) ballast water, and port water samples (port, closed hexagon)

monthly distribution in 2007 (upper panel) and 2008 (lower panel) sampling seasons.

2-49



2-50



Figure 2.4 Bacterial abundance of ballast (grey) and port (red) water samples for the West

Coast (WC), East Coast (EC), and Great Lakes (GL) in 2007 (upper panel) and 2008

(lower panel). The lower and upper boundaries of each box are the 25th and 75th

percentile, respectively. The dashed and solid lines within the boxes are the mean and the

median, respectively. "*,, indicates that the bacterial abundance was significantly higher

in port than in ballast water samples (ANOVA, p < 0.05).
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Figure 2.5 Relationship between the bacterial abundance of intra-coastal exchanged (rCE)

ballast water samples and ballast water age (number of days between the date of exchange

and sampling date) sampled from the Great Lakes (red star), West (blue diamond), and

East Coast (black circle) of Canada (Bacterial abundance = (1.12 x 109) e-O.04xAge(dayl, r2

= 0.20, P < 0.001) during 2007 and 2008.
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Chapter 3 Bacterioplankton Communities Distributed Globally by

Ballast Water

3.1 Abstract

Ballast water is one of the primary vectors for the global transport of vegetative and

resting stages of pathogenic and non-pathogenic aquatic microorganisms. As part of the

Canadian Aquatic Invasive Species Network, the community structures of heterotrophic

prokaryotes (hereafter bacteria) in ballast and receiving port waters were characterized

along the West and East coasts of Canada and from the Great Lakes. Microbial

community structure was characterized using fluorescence in situ hybridization. The %

Bacteria in port and ballast water ranged from 34 to 78%, and 20 to 78%, respectively, of

the total bacteria detected. The % Archaea was low, and were only found in ballast and

port water from the West Coast. Cytophaga-Flavobacteria and Alpha-Proteobacteria

accounted for more than half of the Bacteria in both port and ballast water samples.

Vibrio spp. was only detected in nine out of 59 ballast water samples. Escherichia coli

was below detection using FISH, but its presence at low abundance could not be excluded.

Negative relationships between ballast water age and the % Bacteria, %

Alpha-Proteobacteria in ballast water samples implies that the proportion of metabolically

active Bacteria and Alpha-Proteobacteria in ballast water may have declined with ballast

water age. The three ballast water types defined by the Canada ballast water management

regulations did not differ in the bacterial community structures introduced at each

deballasting region. However, the distinct bacterial community structures between ballast
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and those in receiving port water samples have been observed, which implies that there is

potentially an environmental risk from ballast water distributed into Canadian harbors.

3.2 Introduction

Over 80% of the world's cargo is mobilized internationally by sea-going ships. Besides

cargo, over 12 billion metric tons of ballast water is moved across coastal and oceanic

domains annually (Anil et al. 2002). Ballast water is one of the primary vectors for the

global transport of vegetative and resting stages of aquatic microorganisms (Carlton and

Geller 1993; Ruiz et al. 2000), as well as bacterial pathogens, such as Vibrio cholerae OJ

and 0139 (Ruiz et al. 2000). Heterotrophic prokaryotes (hereafter bacteria), including

both Bacteria and Archaea, are abundant and ubiquitous in the World Oceans (Sherr and

Sherr 2000), and their abundances have been reported as 107 to 10 10 cells L- J in aquatic

environment (Whitman et al. 1998) and 107 to 109 cells L- J in ballast water (Ruiz et al.

2000).

Bacteria that are redistributed in ballast water around the world could impact both the

bacterial communities and, consequently, the ecological functions of receiving waters.

Bacteria have a central role in mediating biogeochemical processes of the ocean,

including the cycling of organic carbon, nitrogen, sulfur, phosphorus and other organic

and inorganic elements (Fenchel et al. 1998; Newman and Banfield 2002). Until recently,

studies of the role of bacteria in mediating water column biogeochemical processes have

viewed bacteria as a single group, neglecting the phylogenetic diversity of bacteria
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communities (Kirchman 2002). However, specific bacterial phylotypes differ in their

contribution to the marine biogeochemical processes (Fuhrman 2009). For example, the

Cytophaga-Flavobacteria cluster comprises the largest fraction of cells assimilating chitin

and protein, but the smallest fraction consuming amino acids. In contrast, the assimilation

of amino acids is dominated by the Alpha-Proteobacteria, for which protein consumption

was lowest (Cottrell and Kirchman 2000). The first step to understanding the function of

bacterial communities is to study the abundance and activity of different phylogenetic

groups within bacterial assemblages (Cottrell and Kirchman 2000; Malmstrom et al.

2005). A study comparing the bacterial phylogenetic structure of ballast water and

receiving port water will be valuable in understanding the potential ecological impacts of

ballast water introduced bacteria to receiving regions.

To attenuate the impacts of ballast water-mediated organisms, the International Maritime

Organization (IMO) established mid-ocean ballast water exchange (MOE) guidelines in

1991. Under these guidelines, Canada initiated mandatory mid-ocean exchange (MOE)

for ocean-going ships entering all Canadian ports as of June 8th
, 2006 (Transport Canada

2006). However, voyages from nearby US ports travelling to Canada do not require MOE

because nearby ports would have similar community compositions. Commercial ships,

which apply mid-ocean exchange management for ballast water, are divided into

transoceanic navigation and intra-coastal navigation. Transoceanic ships are required to

exchange their ballast water greater than 200 nautical miles from shore where the water

depth is at least 2000 m. In contrast, intra-coastal ships are required to exchange ballast

water at least 50 nautical miles from shore and at water depth of at least 500 m (Transport
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Canada 2006). Therefore, ballast water from ships arriving from international destinations

falls into three categories: trans-oceanic exchanged (TOE); intra-coastal exchanged (ICE);

without mid-ocean exchange (NonMOE).

As part of the Canadian Aquatic Invasive Species Network (CAISN), during 2007, a

study was carried out to examine the bacterial community structure in ballast water (TOE,

ICE, and NonMOE) and receiving port water (i.e. Great Lakes, West Coast and East

Coast of Canada) where ships discharge their ballast water. The objectives of this study

are to: (1) evaluate the effects of different ballast water exchange protocols (ICE, TOE

and NonMOE) on bacterial communities in ballast waters; (2) assess the differences in

bacterial community structure between ballast water and receiving ports in each region; (3)

assess if there are differences in ballast water bacteria discharged into three sampling

regions, and (4) assess the relationships between bacterial community composition and

measured environmental factors (i.e. temperature, salinity, pH, and ballast water age).

3.3 Materials and Methods

3.3.1 The Effects of Preservation on Community Structure

The bacterial community structure was characterized by fluorescence in situ hybridization

(FISH). This technique, which applies fluorescently-Iabeled rRNA-targeted

oligonucleotide probes designed to hybridize to group-specific gene sequences, is widely

used to characterize the phylogenetic diversity of unicellular organisms at target

taxonomic levels (Glockner et ai. 1996). Samples that are preserved for FISH should
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retain all cellular rRNA content, protect cell integrity and morphology, and allow probe

penetration during hybridization (Lam and Cowen 2004). When used as a fixative,

formaldehyde forms DNA-protein cross-links within the cells (Bullock 1984). Therefore,

the effectiveness of target cell detection could be impaired in over-fixed samples, due to

the blockage of probe access to the targeted rRNA molecules. The standard protocol for

FISH is to filter a sample after the sample has been fixed for 1-6 h with 0.2 ~m prefiltered

3.7% formaldehyde (Glockner et al. 1996). However, samples shipped from the sampling

sites to the laboratory in St. John's, NL, where samples are processed and filtered, can

take up to five days.

To determine if samples that are preserved for up to five days can be reliably analyzed for

bacterial community structure using FISH, a 10-L seawater sample was collected from

Logy Bay, Newfoundland, Canada (47°37'30.32"N, 52°39'48.36"W), on March 13th,

2007. Seawater was preserved in formaldehyde (final concentration 3.7%) in five I-L

bottles and stored at 4°C. A sub-sample (100 011) from each bottle was analyzed at 2 hand

5 d to compare bacterial community structure. Bacterial community structure at 2 h

represents the in situ condition. Each seawater sample was filtered onto a white 0.2-~m

polycarbonate membrane filter (Millipore GTTP04700, Billerica) that was placed over a

cellulose prefilter (Millipore AP 1504700, Billerica). Each polycarbonate filter was

washed with 50 011 of saline phosphate buffer (sterile and prefiltered), and air-dried over

absorbent paper in individual sterile Petri dish. Filters were stored in parafilm-sealed Petri

dishes at -20°C until the analysis of prolonged fixation (five days) effects on bacterial

community structure with FISH.
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3.3.2 Ballast Water and Port Water Sampling

Sampling was carried out from March 2007 to November 2007 from three sampling

regions of Canada (EC-East Coast; GL-Great Lakes; WC-West Coast) that actively

engage in international shipping (Lo et al. 2007). These sites are the West Coast

(Vancouver, British Columbia) and the East Coast of Canada (Baie-Comeau, Sept-lies,

Port-Cartier, all on the lower north shore of the St Lawrence estuary, Quebec), and the

Great Lakes (Toledo, Ohio, USA; Milwaukee, Wisconsin, USA; Detroit, Michigan, USA;

and Sarnia, Ontario, Canada). Commercial vessels that arrived at those ports and had

ballast tanks with TOE, ICE, and NonMOE, were sampled. Port water samples were

periodically collected. The sampling goals were 10 samples in each of the TOE, ICE and

NonMOE categories from the West Coast of Canada and East Coast Canada, each region,

and 10 MOE (TOE or ICE) samples from the Great Lakes.

For each ballast tank, samples were collected, through a deck hatch, by a Niskin bottle

lowered to four depths in the tank (surface, mid surface, mid bottom, and bottom). Equal

volumes of ballast water from each of the sampling depths were combined together from

the same ballast tank. Associated environmental data (temperature, salinity, and pH) was

also recorded from each sampling depth using a handheld YSI Model 85 meter equipped

with a 15 m cable (YSI Incorporated, Yellow Springs, OH, USA). A sub-sample (500ml)

of the combined ballast water from one tank was preserved with formaldehyde (final

concentration 3.7%) and shipped on ice to the Ocean Sciences Centre (St. John's, NL) for
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analyses within five days. Along with the collected ballast water samples, the ballast

water management forms with information on vessel type, ballast water source, exchange

location, ballast water deballast port, onboard ballast water volume, exchanged ballast

water volume and deballast water volume of sampled vessels data were provided.

3.3.3 Sample Filtration

After a sample was received, 5 ml would be filtered onto a 25 mm diameter, 0.2 flm black

polycarbonate filter (GE Osmonics Labstore, Minnetonka), stained with acridine orange

(AO) (final concentration 1.872x 10-Sg L- 1
) for image analysis to determine the %

rod-shaped cells (Hobbie et al. 1977; Kirchman et al. 1982). Another 100ml of the sample

was filtered on a polycarbonate membrane filter for FISH analysis, as described above.

3.3.4 Image Analysis for Percent Rod-Shaped Cells

The slides for characterizing cell size and morphometries were observed using an

Olympus BH2-RFC epifluorescence microscope, equipped with a 100 x 1.30 oil objective

(1250 x total magnification), a lOOW mercury lamp and appropriate filter sets (502 nm

for excitation, 526 nm for emission). Cell dimensions were determined using an

Image-Pro Plus V6.2 Image Analysis System (Media Cybernetics, Inc., Bethesda). The

system is configured to capture and store digital images, which are then used for

subsequent measurement of the size distribution of cells. The epifluorescence microscope

was equipped with a CCD camera linked to a desktop computer. The image analysis

system used was digitally calibrated using a stage micrometer and initial calibration



software. Images of AO-stained cells that fluoresce on the slide were captured by the

camera and the image (.tit) diverted to a Dell Pc. Cell length and cell width as measured,

and the images were individually examined, and the cell dimensions were automatically

recorded. Manual determination of the fluorescence intensity threshold was essential in

determination of cell edge locations. Detritus particles or cells (i.e. clumped or aggregated)

were screened out from the analysis either through the direct removal from the working

image, or by constraints assigned to acceptable diameters. Slides for individual

experiments were made at the same time so that bacterial slide quality and cell sizes

within an experiment were comparable. The output measured variables for each sample

were downloaded to an Excel spreadsheet. Cells with an aspect ratio <1.5 were regarded

as spheres whereas cells with an aspect ratio> 1.5 were counted as rod-shaped cells.

3.3.5 Oligonucleotide Probes

In this study, fluorescently-Iabeled rRNA-targeted oligonucleotide probes (Integrated

DNA Technologies, Coralville, USA) were used for the phylogenetic analysis of

heterotrophic prokaryotes from the domain Bacteria (EUB338) and Archaea (ARCH9l5);

the intermediate taxonomic levels of Bacteria: Alpha-Proteobacteria (ALF968),

Cytophaga-Flavobacteria (CF319a) cluster; as well as the potential pathogens: Vibrio spp.

(GV) and Escherichia coli. (EcoI6S07C). The 'nonsense' probe (NON338), which is

complementary to the EUB338 probe, was used as a negative control for the detection of

non-specific binding and background fluorescence (Glockner et al. 1996). The targeted

bacterial groups and gene sequences for the oligonucleotide probes employed in this
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study are shown in Table 3.1. All oligonucleotide probes were labeled at the 5' end

position with the sulfoindocyanine dye, indocarbocyanine (Cy3). Bacteria (EUB338),

Alpha-Proteobacteria (ALF968) and 'nonsense' (NON338) probes were applied for the

study of the effects of prolonged preservation on community structure. The hybridization

efficiency of probes GV and Eco 16S07C were tested on pure cultures of Vibrio

parahaemolyticus and E. coli JMI09 lambda-pir, respectively (obtained from the

Department of Biology of Memorial University of Newfoundland). The presence of E.

coli was assessed in II samples selected to represent the highest bacterial abundance in

each sample type at each deballasting location.

3.3.6 Fluorescence In Situ Hybridization

A modification of the protocol of GlOckner et al. (1996) was used. Each filter was cut into

eight triangular sections, and each section was placed onto a microscope slide. To ensure

that the side containing the bacteria was facing upwards, a slit was cut in the right edge of

each filter section. The filter sections were hybridized with SOng of oligonucleotide probe

diluted in 25 III of hybridization solution (0.9 M NaCl, 20 mM pH 8 Tris-HCl, formam ide

concentration varying for each probe (Table 3.1), and 0.01% sodium dodecyl sulphate).

Each slide was placed in a sealed hybridization chamber containing a piece of absorbent

paper and 1 ml of hybridization buffer (to create a humid atmosphere), and incubated in

the dark for two hours at 46°C. Following incubation, filter sections were placed into

individual 50ml sterile glass bottle of pre-warmed (46°C) washing buffer, containing 20

mM Tris-HCl, 5 mM EDTA, 0.01% SDS, and NaCI concentration varying for each probe
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(Table 3.1), and incubated in the dark for 15 min at 46°C. Each filter section was dried

over absorbent paper at room temperature, placed on a glass slide, and counter-stained

with 50 f.ll of I f.lg mr' DAPI (4',6-diamidino-2-phenylindole) for I minute (on ice). After

staining, each filter section was washed with 1 ml of filtered Milli-Q water, dried over

absorbent paper and mounted on a glass slide in glycerol medium (Citifluor Ltd; London,

UK). The slides were then stored at -20°C (for a maximum of 48 hours) before

microscopic analysis.

3.3.7 Epifluorescence Microscopy for Community Structure

The slides with the hybridized filter sections were observed using the same

epifluorescence microscope described above but equipped with the filter sets for Cy3

(41007-HQ) and DAPI (UG-l). All probes were fluorescently-Iabeled with the

sulfoindocyanine dye Cy3, which absorbs at 552 nm (green light) and emits at 565 nm

(orange light). As Cy3 fluorescence fades much more rapidly than DAPI fluorescence

(Pemthaler et al. 2001), direct counts of hybridized (group specific) cells were completed

first, followed by DAPI counts (under UV light), for total bacteria, in the same field of

view. At least 500 hybridized cells were enumerated for each of the filters, or at low

abundances of hybridized cells, at least 1,000 DAPI stained cells vyere counted

(Pemthaler et al. 1998). All probe-specific cell counts were presented as the percentage of

cells visualized by DAP!. The mean of each sample was calculated from the percentage

values of 10 to 20 randomly chosen fields on each filter section.
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3.3.8 Determination of the Proportion of DAPI Stained Cells Detected as

Each Phylogenetic Group

The proportion of DAPI stained cells detected as each target phylogenetic group was

determined by dividing the number of hybridized cells for the target phylogenetic group

by the total number of DAPI stained cells in each field of view: % of specific

phylogenetic group = Probe positive/ DAPI positive. All values were corrected for

non-specific binding and background fluorescence by subtracting counts obtained with

the Non338 probe. If the adjusted value was less than zero, it was record as zero.

3.3.9 Statistical Analyses

Randomized-block ANOVA was used to investigate the effect of the duration of

preservation on FISH (Kirk 2003). The response variables were the % Bacteria and %

Alpha-Proteobacteria, the random blocking explanatory variable was five replicate bottles,

and the fixed explanatory variable was fixation duration (2 h or 5d). Multivariate

Analyses of Variance (ANOVA) were applied first to analyze the relationships of

measured bacterial parameters among different sample types and sampling locations;

however, the statistics showed that the interaction terms were significant. Therefore,

one-way ANOVA were carried out to compare the measured bacterial parameters (the %

rod-shaped cells, the % Bacteria, % Alpha-Proteobacteria, and %

Cytophaga-Flavobacteria) among the three ballast water types, and between ballast and

port waters at each deballasting location, and among three deballasting locations. If a

statistically significant result was found in an omnibus F-test for a one-way A OVA,
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post-hoc analyses using the Tukey test were conducted. There was no NonMOE samples

collected from the EC, and only one port and one NonMOE samples were collected from

the GL, which prevented their use in the above statistical comparisons. Multiple

regression analyses were carried out to determine the relationships between measured

bacterial parameters and environmental variables (i.e. temperature, pH, salinity, ballast

water age).

All statistical analyses were conducted using Minitab Release 14 (Minitab Inc., State

College). For each analysis, the residuals were examined and met the assumptions of

linearity, normality, independence, and homogeneity (Seber and Lee 2003). Therefore, the

proportion (percentage) data were not necesssary to transfonll to arcsin. The significance

judge criterion for statistics in this study is a=0.05.

3.4 Results

3.4.1 Effects of Preservation Duration on Community Structure

The preservation experiment was carried out to test the stability of preserved samples for

FISH analysis. Bacteria and Alpha-Proteobacteria were tested because they are both

abundant in marine environment, and also they represent different phylogenetic levels of

bacterial community structure. There was no significant difference in either % Bacteria or

% Alpha-Proteobacteria between the 2 h (i.e., the in situ condition) and 5 d preservation

duration (% Bacteria: F'.4= 0.72, P = 0.443; % Alpha-Proteobacteria: F'.4= 0.33, P =

0.594). The % Bacteria ranged from 59 to 64% at 2 hours, and from 59 to 61 % at 5 days.



The % Alpha-Proteobacteria ranged from 24 to 29% detected at 2 hours, and from 25 to

29% at 5 days.

3.4.2 Vessels Sampled and Ballast Water Management

A total of 59 ballast water samples and 10 port water samples were collected. The ballast

water samples were primarily from commercial bulk carriers, general cargo, and tankers,

with a few container vessels, roll on/roll off and multi-purpose ships (Figure 3.1). The

majority of ballast water samples that were collected from the West Coast (85%) of

Canada were from bulkers and general cargo, while the majority of ballast water samples

from Great Lakes (100%) and the East Coast of Canada (83%) were from bulkers and

tankers (Figure 3.1).

3.4.3 Percent Rod-Shaped Cells

The % rod-shaped cells among sample types (port, TOE, ICE, and NonMOE) are reported

in Table 3.2. ANOYA results show that there was a significant difference in the %

rod-shaped cells among port, TOE, and ICE at the EC (F2,25 = 5.50, P = 0.0 I0, Table 3.2).

Post-hoc comparisons using the Tukey test indicated that the % rod-shaped cells was

significant higher in port than TOE samples, but there was no significant difference

between port and ICE, or between TOE and ICE samples at the EC. There was no

significant difference in % rod-shaped cells among ballast water categories at the WC (F3,

27= 0.42, P = 0.742, Table 3.2); nor between TOE and ICE samples at the GL (Fi,g= 0.87,

P = 0.374, Table 3.2). Too few port and NonMOE samples were collected from the GL,
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which prevented their use in the statistical comparison. Taken together, there was no

significant difference in % rod-shaped cells among ballast water types in each region.

The % rod-shaped cells between ballast and port water samples at each sampling region

are shown in Figure 3.2. ANOVA results showed that the % rod-shaped cells was

significantly higher in port than ballast water samples that were deballasted into the EC

(F'.26= 11.30, P = 0.003, Table 3.2), but there was no difference at the WC (F'.29= 0.12,

P = 0.726, Table 3.2). Since only one port sample was collected from the GL, the

statistical test for differences between port and ballast water sample at the GL was not

conducted.

There was no significant difference in the % rod-shaped cells of port samples between EC

and WC (F 1•6= 4.36, P = 0.082, Table 3.2), or in the % rod-shaped cells of the TOE (F2, 38

= 0.26, P = 0.776, Table 3.2) or ICE (F2. 13 = 0.46, P = 0.639, Table 3.2) samples among

the three deballasting locations. Due to the low number of NonMOE samples, the

statistical test for differences in the % rod-shaped cells in NonMOE samples among

locations was not carried out (Table 3.2).

3.4.4 Microbial Community Composition Determined by FISH

Detection with the Domain Probes: Bacteria and Archaea

The results of the % Bacteria (EUB338) for each ballast water type and each sampling

region are shown in Table 3.3. There was no significant difference in the % Bacteria
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among TOE, ICE, and NonMOE samples at the WC (F2, 22 = 1.28, P = 0.299, Table 3.3),

or between TOE and ICE samples at the EC (F,,20= 3.71, P = 0.069, Table 3.3) and GL

(F i ,9= 0.11, P = 0.748, Table 3.3). The number of NonMOE samples collected at the EC

and GL ports was low, and nO statistical analysis was carried out.

The % Bacteria was compared between ballast and port water samples. The % Bacteria in

port water samples ranged from 34 to 78%, with a mean of 66 % (95% CI, 57 to 74%,

n= 10), and 20 to 78% in ballast water samples, with a mean of 47 % (95% CI, 43 to 50%,

n=59). The mean % Bacteria were significantly higher in port than ballast water samples

at the EC and WC (EC: F i ,25 = 12.07, P = 0.002; WC: F i ,27= 11.07, P = 0.003, Figure 3.3).

Since only one port sample was collected from the GL, statistical analysis of the

differences between port and ballast water samples at the GL site was not carried out.

Since there was no significant difference in % Bacteria among ballast water types at each

of the locations (Table 3.3) and the interactive term between ballast water types and

locations was not significant (F3, 5\ = 0.745, P = 0.530), the data from all three ballast

water types at each location were grouped together as combined ballast water samples.

There was no significant difference in % Bacteria of combined ballast water samples

among deballasting sites (F2, 56 = 0.57, P = 0.570, Table 3.3), or for port water samples

between the EC and WC (F I , 7= 0.03, P = 0.871, Table 3.3).

The % Archaea (ARCH915) was low « 2%) for both ballast water and port water

samples in the EC and GL (Table 3.3, Figure 3.3). The % Archaea in ballast water
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samples deballasted into the WC ranged from 0 to 6%, with the mean of 1.6%; and the %

Archaea of port samples from the WC ranged from 2 to 12%, with the mean of 6% (Table

3.3, Figure 3.3). The % Archaea in ballast water deballasted into the WC is significantly

lower than in port water samples (F 1,27= 10.79, P = 0.003).

Detection with Group-Specific Probes: Alpha-Proteobacteria and

Cytophaga-Flavobacteria

The results for the % Alpha-Proteobacteria (ALF968), and % Cytophaga-Flavobacteria

(CF319a) for each sample category and each sampling region are shown in Table 3.4.

There were no NonMOE samples collected from the EC. At the EC site, there was no

significant difference in the % Alpha-Proteobacteria among port, TOE and ICE samples

(F2, 24 = 3.34, P = 0.053, Table 3.4). ANOYA results showed that there was significant

difference in the % Cytophaga-Flavobacteria among port, TOE, ICE at the EC (F2, 24 =

8.57, P = 0.002, Table 3.4). Post-hoc comparisons using the Tukey test showed that the %

Cytophaga-Flavobacteria was significantly higher in port than TOE and ICE samples, but

there was no significant difference between TOE and ICE samples at the EC (Table 3.4).

There was no significant difference in the % Alpha-Proteobacteria, or %

Cytophaga-Flavobacteria among sample types at the WC (% Alpha-Proteobacteria: F 1,9

= 0.75, P = 0.410; % Cytophaga-Flavobacteria: F 1,9= 0.67, P = 0.435, Table 3.4); nor

between TOE and ICE samples at the GL (% Alpha-Proteobacteria: F3, 25 = 2.76, P =

0.063; % Cytophaga-Flavobacteria: F3,25= 1.61, P = 0.212, Table 3.4). Too few port and

NonMOE samples were collected from the GL, so port and NonMOE samples were not
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included in the statistical comparison. Taken together, the % Cytophaga-Flavobacteria

was significantly higher in port than ballast water samples, but there was no significant

difference between ballast water types at the EC site. There was no significant difference

in the % Cytophaga-Flavobacteria among the sample type comparisons at the WC or GL.

There was no significant difference in the % Alpha-Proteobacteria among sample types in

each of the three locations.

Since there was no significant difference in % Alpha-Proteobacteria and %

Cytophaga-Flavobacteria among the ballast water types at each of the locations (Table

3.4) and the interactive term between ballast water types and locations was not significant

(% Alpha-Proteobacteria: F3, 51 = 2.245, P = 0.094; % Cytophaga-Flavobacteria: F3, 51 =

0.369, P = 0.776), the data from all three ballast water types at each location were

combined and compared among regions. ANOYA results showed that there was a

significant difference in the % Alpha-Proteobacteria among the three regions (F2, S6 = 4.86,

P = 0.0 II). Post-hoc comparisons using the Tukey test indicated that the %

Alpha-Proteobacteria was lower at the GL than the EC and WC, but there was no

difference between the EC and WC (Table 3.4). There was no significant difference in %

Cytophaga-Flavobacteria of the combined ballast water samples among the three

deballasting locations (F2,56= 0.88, P = 0.422, Table 3.4). ANOYA results showed there

significant difference in the % Alpha-Proteobacteria or %

Cytophaga-Flavobacteria of port samples between the EC and WC (%

Alpha-Proteobacteria: F l,7= 1.17, P = 0.315; % Cytophaga-Flavobacteria: F l, 7= 4.21, P

= 0.079).
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Detection of Vibrio spp. and E. coli

The hybridization efficiencies of the GV and Eco16S07C probes were 100% on strain

cultures Vibrio parahaemolyticus and E. coli JM I09 lambda-pir, respectively, confirming

the suitability of these probes. Vibrio spp. were detected in approximately 15% ballast

water samples (nine out of 59 samples), with % Vibrio spp. ranging from 2 to 17 %. E.

coli was not detected in the eleven samples tested.

3.4.5 Relationships between Microbial Community Structure and

Physiochemical Factors

The relationships between bacterial community structure in ballast water samples and

physiochemical factors (salinity, pH, temperature, and ballast water age) were examined.

Since there was no significant difference in % Bacteria, % Alpha-Proteobacteria or %

Cytophaga-Flavobacteria among the ballast water types at each of the locations (Table

3.3 and Table 3.4), the data from all ballast water types at each location were grouped as

combined ballast water samples. The only statistically significant relationships discerned

were between the % Bacteria, % Alpha-Proteobacteria and ballast water age, and between

% Cytophaga-Flavobacteria and temperature. Both the % Bacteria and the %

Alpha-Proteobacteria in ballast water samples decreased with an increase in ballast water

age (% Bacteria: P = 0.014, r2=0.10, n = 59, Figure 3.4; % Alpha-Proteobacteria: P <

0.001, r2=0.24, n = 59, Figure 3.5). The % Cytophaga-Flavobacteria in ballast water
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samples decreased with the increase of ballast water temperature (P = 0.015, r2=0.15, n =

59, Figure 3.6).

3.5 Discussion

3.5.1 Preservation Duration Effects on Community Structure

It took one to five days for samples to be delivered from the sampling sites to the

laboratory in StJohn's, NL, where they were filtered and processed. Therefore, the effect

of short-term sample preservation (5 days) in suspension on the hybridization efficiency

and reproducibility was assessed. One possible effect of prolonged preservation could be

the blockage, due to the cross-linking structure formed during the preservation, of the

probe access to targeted rRNA. However, there was no significant difference in the %

Bacteria or % Alpha-Proteobacteria detected between standard and extended preservation

times. Lam and Cowen (2004) tested various methods for FISH sample storage. They

reported probe-targeted cell loss during long term preservation (40 days) with

formaldehyde preservation in suspension. Formaldehyde is monomer, and also is the

smallest molecule among all aldehydes. Therefore, it may take longer for formaldehyde to

form cross-links within cells, compared to paraformaldehyde and other aldehydes. Our

results show that the oligonucleotide probes can penetrate the cross-linking structure

fomled by formaldehyde during the 4 or 5 days preservation in suspension. All samples in

this study were filtered within 5 days after formaldehyde preservation, so this extended

preservation time should not have affected the FISH results.
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3.5.2 Comparisons of Bacterial Communities among Ballast Water

Types

The % rod-shaped cells, % Bacteria, % Alpha-Proteobacteria, and %

Cytophaga-Flavobacteria were not significantly different among the three ballast water

types. However, the effective propagule pressure of each targeted phylogenetic group is

total bacterial abundance measured by AO staining multiplied by the proportion of

hybridized cells for each of the groups. The total bacterial abundance was more than 50%

higher in NonMOE than TOE samples (Chapter 2, Table 2.2). Hence, the release of

NonMOE ballast water into Canadian ports may have higher propagule pressure of each

phylogenetic group than TOE or ICE.

3.5.3 Measured Bacterial Parameters: Comparisons between Ballast

Water and Port Water Samples

Since only one port sample was collected from the GL, statistical analysis about the

differences between port and ballast water samples at the GL site was not conducted.

However, a sufficient number of ballast and port water samples is available to carry out

robust statistical analyses between ballast and port water samples at the EC and WC sites.

A previous review(Glockner et al. 1999) of the bacterioplankton compositions in lakes

and oceans with FISH showed that the % Bacteria has a wide range among various

aquatic environments, from 39% in the North Sea to 96% in the Antarctic Ocean in the

surface (95% CI: 46 to 61 %; n = 26). However, previous studies have reported lower %
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Bacteria offshore than inshore (Bouvier and del Giorgio 2007; Gameau et al. 2006). Thus,

the offshore sources ofMOE ballast water samples could be one explanation for the lower

% Bacteria in ballast (95% CI, 43 to 50%) than port (95% CI, 57 to 74%) water samples

observed in this study. The difference in the % Bacteria between ballast and port water

suggests that different bacterial communities could have been introduced by deballasting

into Canadian waters.

The % Archaea was low, and they were found only in ballast and port water from the WC

site. Archaea is one of the three domains of life along with the Eukarya and Bacteria

(Woese 1990). Crenarchaeota and Euryarchaeota are two major groups of planktonic

Archaea (Hemdl et al. 2005). In previous studies, the relative abundance of

Crenarchaeota was more abundant in mesopelagic and bathypelagic waters than in

surface waters (Hemdl et al. 2005), and Euryarchaeota appears to be a common element

of coastal assemblages and surface waters (Pemthaler et al. 2002). However, in surface

seawater, Archaea generally represents less than 2% of the total cells count (Bouvier and

del Giorgio 2003). Euryarchaeota seasonally formed >30% of all cells in the surface

picoplankton of the North Sea (Pemthaler et al. 2002). Seasonal blooms of Euryarchaeota

were also observed during a long-term study in surface waters of the upper Santa Barbara

Channel (Murray et al. 1999). Archaea can survive in extreme environments, such as

hydrothermal vents and hot springs (DeLong 2003). However, the low % Archaea in all

ballast water samples indicates that Archaea may survive but is not favored in the ballast

tank environment during voyage. Altematively, the lack of Archaea detection in ballast
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water is that Archaea may not be present in the environment where ballast water was

collected or exchanged.

Overall, 34% to 81% of bacteria in port water samples (mean ± SD: 68 ± 15, n = 59), and

20% to 78% of cells in ballast water samples (mean ± SD: 47 ± 14, n = 10) were detected

by either EUB338 or ARCH915 probe in this study. Kamer et al (2001) sampled monthly

from September 1997 to December 1998 at the Hawai'i Ocean Time-series station in the

North Pacific subtropical gyre, and they found that the sum of% Bacteria and % Archaea

remained fairly constant in the surface waters through their sampling season, roughly

80% of the total cells.

The limitations of the FISH technique contribute to the sum of % Bacteria and %

Archaea being lower than 100% of DAPI stained cells. For example, (1) If only small

numbers of the targeted rRNA molecules are in a cell, the fluorescence intensity from the

few binding probes may fall below detection limit (Amann et at. 1995). (2) Probe

EUB338 is incapable of hybridizing with all taxa in the Bacteria domain, and excludes

some taxa, such as Planctomyces. Kuypers et al (2003) reported at least 2 x 106 cells L- 1

of anammox bacteria (members of the Planctomyces) in the Black Sea's suboxic layer,

and so these bacteria can be abundant in some locations. Other limitations of this

technique have been elaborated in reviews by Amann et at. (1995) and by Dorigo et at.

(2005).
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The relative abundance of cells that can respond to target oligonucleotide probes should

represent the proportion of metabolically active bacteria in the water column. Faster

growing or highly active cells have a greater rRNA content, and thus may bind

proportionally more to probe molecules, resulting in a stronger fluorescence signal

(Bouvier and del Giorgio 2003). This is supported by previous findings of a positive

correlation between the universal 16S rRNA probe counts with the autoradiography of

3H-Iabeled amino acid uptake (Kamer and Fuhrman 1997). If this is generally applicable,

the response of target groups to FISH is an indicator of the physiological state of cells.

The higher % Bacteria in port than in ballast water samples (Figure 3.2) might indicate

that the Bacteria in port water samples are more active than in ballast water samples, in

addition to a possible explanation that different bacterial communities were introduced by

ballast water into Canadian waters.

The % Alpha-Proteobacteria ranged from 0% to 38% (mean ± SO: 17 ± 9%, n = 59) in

ballast water samples, and from 0% to 30% (mean ± SO: 22 ± 9%, n = 10) in port water

samples. Alpha-Proteobacteria are abundant free-living bacterioplankton in coastal and

open-ocean habitats (DeLong et al. 1993). Although there was no significant difference in

% Alpha-Proteobacteria between ballast and port water samples in both regions, our

results show that Alpha-Proteobacteria is a common and abundant phylogenetic group in

ballast water.

The % Cytophaga-Flavobacteria ranged from 0 to 44% (mean ± SO: 12 ± 9%, n = 59) in

ballast water samples, and from I to 33% (mean ± SO: 24± 9%, n = 10) in port water
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samples. Cytophaga-Flavobacteria can account for one third of all Bacteria in coastal

marine waters (Bouvier and del Giorgio 2003), and ranged from 20 to 40% of the DAPI

count on a transect from 49°S to 700 S during the austral summer (Simon et al. 1999). In

our study, both the % rod-shaped cells and % Cytophaga-Flavobacteria showed the same

pattern in the comparisons between ballast and port water samples at the EC and WC.

Both % rod-shaped cells and % Cytophaga-Flavobacteria did not differ between ballast

and port water samples at the WC. However, higher % rod-shaped cells and %

Cytophaga-Flavobacteria was found in port than ballast water samples at EC, which

suggests different bacterial communities may have been introduced to the EC.

Vibrio species are commonly found in marine environments and are readily cultured from

seawater and marine animals (Lipp et al. 2002). Some representatives of Vibrio species,

such as Vibrio cholerae, V vulnificus, V harveyi, and V parahaemolyticus have been

implicated in a variety of human diseases (Koenig 2009), and some of them, such as V

alginolyticus, V anguillarum, and V penaeicida are pathogens for a broad range of

cultured marine organisms (Oliver et al. 1983). In our study, the % Vibrio spp. was low

for both ballast and port water samples. Vibrio spp. was only detected from nine of 59

ballast water samples, and they ranged from 2 to 17% where they occurred. Similar

results were reported in a previous study, which sampled 62 ballast tanks from 28 ships

along the U.S. West Coast and East Coast (Burkholder et al. 2007). In their study, Vibrio

spp. were detected in 16 of the 62 tanks, comprised 0-10% of the total bacterial

abundances in the ballast tanks determined by quantitative PCR, but no toxigenic V

cholerae strains were detected in any tanks (Burkholder et al. 2007). However, toxigenic
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V. cholerae 0 I was recovered from ballast water from five out of 19 cargo ships docked

in ports of the Gulf of Mexico by sample cultivation (McCarthy and Khambaty 1994).

Ruiz et al (2000) studied 28 vessels arriving to Chesapeake Bay from foreign ports, and

found V. cholerae in plankton samples from all studied ships, with toxigenic serotypes V.

cholerae Oland 0139 detected in 93% of the ships. It should be noted that studies or

pathogens commonly perform cultivation to enrich the number of pathogens within

samples (McCarthy and Khambaty 1994). Without cultivation, some pathogens may be

present, but in too low numbers to be detected, which might be the case of V. cholerae in

Burkholder et aI. (2007).

3.5.4 Measured Bacterial Communities Comparisons Among the Three

DebaIIasting Locations

Ballast water from the Pacific is deballasted into the WC and ballast water from the

Atlantic is deballasted into the EC and GL. However, using FISH, community

composition differences between the Pacific and Atlantic Ocean sources were not

detected. The % rod-shaped cell, % Bacteria, and % Cytophaga-Flavobacteria of

combined ballast water samples did not differ among the three regions. The only

difference among the three regions was in the % Alpha-Proteobacteria (Table 3. 4), which

was significantly lower at the GL (the Atlantic source) than the EC (the Atlantic source)

and WC (the Pacific source). Our results indicate that ocean sources are not the primary

influencing factor for the bacterial community structure in ballast water deballasted in

Canadian waters.
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3.5.5 Microbial Community Structure and Physiochemical Parameters

Ballast water age and temperature influenced the bacterial community structure. With an

increase in ballast water age, both the % Bacteria and the % Alpha-Proteobacteria

decreased. The decreasing % Bacteria and % Alpha-Proteobacteria with the increase of

ballast water age might indicate that the proportion of metabolically active Bacteria and

Alpha-Proteobacteria in ballast water declined with ballast water age. Previous studies

have reported that species richness and biomass of fish (Wonham et al. 2000),

zooplankton (Gollasch et al. 2000), and phytoplankton (Burkholder et al. 2007) decreased

as ballast water aged. Similar patterns have been reported that bacterial abundance

declined with an increase in ballast water age during shipping voyage from Israel to the

USA (Drake et al. 2002). The observed inverse relationships between % Bacteria, %

Alpha-Proteobacteria and ballast water age in this study is possibly due to a number of

biotic and abiotic reasons: (1) The DOM from the phyto- and zooplankton die-off during

voyage could not be utilized by bacteria efficiently (Drake et al. 2002) (2) Bacteria are

removed by micro-zooplankton grazing or virus lysis (Drake et al. 2002). (3) The

reduction in dissolved oxygen (DO) or the release of toxic metal corrosion from the

interior ballast tanks may also be a factor. None of the above reasons are mutually

exclusive.

Temperature is often used as a predictor for bacterial activity, and many studies have

shown positive relationships between bacterial growth rates and temperature (pomeroy
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and Wiebe 2001; Weston and Joye 2005). However, it is premature to relate limited

number of physiochemical forcing to the bacterial community structure changes in ballast

water, since ballast water tanks is a complex environment, and bacteria in ballast water

experience series of survival selections (Carlton 1985). The negative relationship between

the % Cytophaga-Flavobacteria in combined ballast water samples and the sample

temperature (range from 4 to 28 DC) suggests that temperature control of bacterial

community structure is influenced by other factors, such as substrate availability (Weston

and Joye 2005).

3.6 Conclusion and Future Directions

Here we reported on the bacterial community structure in ballast and port water samples

collected along the West and East Coast of Canada and on the Great Lakes. We compared

the community structure among ballast water types, between ballast water and port water,

and among three deballasting locations. In addition, physiochemical factors, which might

regulate the bacterial communities in ballast water samples, were evaluated.

The three ballast water types defined by the Canada ballast water management regulations

did not differ in the bacterial community structures introduced at each deballasting region.

The bacterial communities in ballast water deballasted in Canadian waters show little

regional patterns. The only detected difference among the three regions was that lower %

Alpha-Proteobacteria in ballast water samples was deballasted into the Great Lakes than

the East Coast and West Coast of Canada. However, different bacterial communities Were
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introduced to Canadian waters through ballast water. The % Bacteria in ballast water

samples was significantly lower than that in port water samples at the EC and We. In

addition, lower % rod-shaped cells and % Cytophaga-Flavobacteria in ballast water were

deballasted into the ports at the EC. Ballast water age and temperature influenced

bacterial community structures in ballast water tanks. An inverse relationship was

observed between % Cytophaga-Flavobacteria in ballast water samples and temperature.

The results presented here suggest that there are regulatory factors other than temperature

influencing bacterial community structure in ballast water. With an increase in ballast

water age, both the % Bacteria and the % Alpha-Proteobacteria in ballast water decreased.

The negative relationships observed between ballast water age and bacterial communities

imply controlling ballast water age could have a possible ballast water management

application. We would suggest that ships carry out MOE at the beginning of shipping

voyage, instead of at the end of voyage to increase the ballast water age.

Here the introduced bacterial communities from ballast water into Canadian waters were

reported. However, the fate of bacteria after discharged from ballast tanks, and the

regional susceptibility to invasion are poorly understood. Further study of the adaptation

of introduced bacterial communities to the environmental conditions in the receiving

waters and interactions between introduced bacterial communities and native

communities are needed to understand the survival and reproduction of introduced

bacteria in new environment.
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Table 3.1 Oligonucleotide probes, sequences, target bacterial groups, and percentage of formamide required for hybridization.

Oligonucleotide Sequence (5'-3') Specificity Formamide in NaCI Reference
Probe Hybridization Required in

Buffer Washing
Buffer

EUB338 GCTGCCTCCCGTAGGAGT Most Bacteria; not 35% 70mM Amannet
Planctomyces al. 1990

CF319a TGGTCCGTGTCTCAGTAC Cytophaga-Flavobacteria 35% 70mM Manzetal.
1996

ALF968 GGTAAGGTTCTGCGCGTT Alpha-Proteobacteria 20% 215mM Neefetal.
1999

ARCH915 GTGCTCCCCCGCCAATTCCT Archaea 35% 70mM Stahl eta!.
1991

GY AGGCCACAACCTCCAAGTAG Vibriospp. 30% 112mM Eilers et al. 2000;
Giulianoetal.
1999

Eco16S07C ACTTTACTCCCTTCCTC Escherichia coli, 10% 450mM Stenderet al.
Shigella, 2001
P aeruginosa

NON338 ACTCCTACGGGAGGCAGC Negative control probe; 35% 70mM Wallner et al.
complementary to 1993
EUB338
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Table 3.2 Percent rod-shaped cells among sample types, in each sampling region.

Sampling Location Sample Types· n Minimum Maximum Mean SO CV 95%CI
LL UL

East Coast port 5 22.1 30.3 27.6 ' 3.3 11.8 23.5 31.6
TOE 19 10.8 32.9 18.9 b 5.8 30.4 16.2 21.7
ICE 4 17.0 25.2 20.4,b 3.7 18.0 14.6 26.3
NonMOE 0

Great Lakes port I 14.6 0
'

TOE 8 10.9 27.8 18.6' 5.7 30.6 13.9 23.4
ICE 3 14.3 17.1 15.4" 1.5 9.5 11.8 19.0
NonMOE 1 11.3 00

West Coast port 3 15.8 23.0 20.5 " 4.0 19.8 10.4 30.6
TOE 14 11.2 36.9 20.4 • 8.5 41.5 15.5 25.3
ICE 8 9.9 35.0 17.6 0 8.6 48.8 11.0 24.2
NonMOE 6 14.2 22.0 16.9" 3.1 18.3 13.1 20.8



"1": Port water samples (port), trans-oceanic exchanged ballast water (TOE), intra-coastal

exchanged ballast water (ICE), and without mid-ocean exchange ballast water (NonMOE).

Analyses of Variances were used to determine the overall differences in % rod-shaped cells

among sample types at each location. Tukey 95% simultaneous confidence intervals were

used to determine the differences among sample types.

"a", "b", "na" and "ab": Significant differences among mean values of ballast water types

at each locations and each year are indicated by superscript codes: mean with superscript

"a" has significantly larger value than that with superscript "b"; "ab" indicate there are no

significant difference between means with "a" and "ab", or between means with "b" and

"ab"; means with same superscript are not significant different; mean with "na" was not

compared because of the limited sample numbers.



Table 3.3 Proportion of cells detected as Bacteria and Archaea ((probe positive/DAPI positive) x 100) among ballast
water types, in each sampling region.

% Bacteria % Archaea
Sampling Ballast Water
Location Types l n Minimum Maximum Mean SD CV Minimum Maximum Mean SD CV

East Coast TOE 18 20 66 42 15 36 0 1.3 0.1 0.3 268
ICE 4 48 64 56 9 15 0 1.9 0.6 0.9 161
NonMOE 0

Great Lakes TOE 8 28 78 48 14 30 0 0.9 0.3 0.3 163
ICE 3 39 49 44 7 16 0 0.0 0 0.0 141
NonMOE I 53 0.3

West Coast TOE 13 21 64 45 12 27 0 5.9 2 1.8 101
ICE 8 28 73 51 13 25 0 3.4 1 1.2 132
NonMOE 4 43 71 54 12 22 0 4.0 3 2.0 75

Notes:

"1": Trans-oceanic exchanged ballast water (TOE), intra-coastal exchanged ballast water (ICE), and without mid-ocean

exchange ballast water (Non-MOE).



Table 3.4 Proportion of cells detected as Alpha-Proteobacteria, and Cytophaga-Flavobacteria «(probe positive/DAPI positive) x

100) among sample types, in each sampling region.

% Alpha - Proteobacteria % Cytophaga - Flavobacteria

Sampling Sample n Minimum Maximum Mean SD CV Minimum Maximum Mean SD CV
Location Category·

East Coast port 5 18 28 23,b 4 18 22 33 29' 4 14
TOE 18 0 38 16 b 11 67 0 36 lOb 9 97
ICE 4 23 36 28' 6 21 3 25 13 b 11 83
NonMOE 0

Great Lakes port I On, In,

TOE 8 4 34 11' 10 85 2 31 11' 9 82
ICE 3 3 7 5' 3 52 4 7 5' 2 43
NonMOE 1 6 n, 16 n,

West Coast port 4 23 30 26' 3 II 21 27 24' 3 11
TOE 13 7 30 18' 6 34 2 26 12' 8 63
ICE 8 13 28 19' 5 25 2 44 15' 13 88
NonMOE 4 15 24 20' 4 20 5 30 17' 11 65



"I": Port water samples (port), trans-oceanic exchanged ballast water (TOE), intra-coastal

exchanged ballast water (ICE), and without mid-ocean exchange ballast water (NonMOE).

Analyses of Variances were used to determine the overall differences in %

Alpha-Proteobacteria and % Cytophaga-Flavobacteria among sample types at each

location. Tukey 95% simultaneous confidence intervals were used to determine the

differences among sample types.

"a", "b", "na" and "ab": Significant differences among mean values of ballast water types

at each locations and each year are indicated by superscript codes: mean with superscript

"a" has significantly larger value than that with superscript "b"; "ab" indicate there are no

significant difference between means with "a" and "ab", or between means with "b" and

"ab"; means with same superscript are not significant different; mean with "na" was not

compared because of the limited sample numbers.
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Figure 3.1 Ballast water samples by vessel types in the three regions. The number of

ballast water samples collected (below) and the percentages by vessel types (bulk carriers,

general cargo, tankers and others) at the West Coast (WC) and East Coast of Canada (EC),

and the Great Lakes (GL) sites. Data have been collected from ballast water management

forms.
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Figure 3.2 Percent rod-shaped cell in ballast (grey) and port (striped) water samples for the

West Coast (WC) and East Coast of Canada (EC), and the Great Lakes (GL). The lower and

upper boundaries of each box are the 25th and 75th percentile, respectively. The dashed and

solid lines within the boxes are the mean and the median, respectively. "*,, indicates bacterial

abundance is significantly higher in port than in ballast water samples (ANOYA, p < 0.05).
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Figure 3.3 The % Bacteria (grey) and % Archaea (red) in ballast water samples (non-pattern)

and jX)rt water samples (striped) in the West Coast (WC) and East Coast of Canada (EC), and

the Great Lakes (OL) sites. The lower and upper boundaries of each box are the 25th and

75th percentile, respectively. The dashed and solid lines within the boxes are the mean and

the median, respectively. "." indicates that the proportion of cells detected as Bacteria was

significantly higher in port than in ballast water samples (ANOVA, p < 0.05). Too few port

samples were collected in the GL to penni! statistical analysis.
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Figure 3.4 Relationship between the % Bacteria and ballast water age (% Bacteria = 55.63

e-O.02 x Age (day), r2 = 0.10, n = 59, P = 0.014).
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Chapter 4 Summary

4.1 Synopsis of Manuscript Chapters

Over 80% of the world's cargo is mobilized internationally by sea-going ships. Ballast water

has been recognized as one of the primary vectors for the global transport of vegetative and

resting stages of aquatic microorganisms (Carlton and Geller 1993; Ruiz et al. 2000).

Previous studies have shown that ships can globally distribute pathogens, such as Vibrio

cholerae and Escherichia coli (Ruiz et al. 2000). Successful aquatic invasion of

non-indigenous species can cause unwanted economic (Pimentel et al. 2005), ecological

(Carlton et al. 1990; Mills et al. 1993) and human health impacts (McCarthy and Khambaty

1994).

Heterotrophic prokaryotes (hereafter bacteria) are small, unicellular organisms that are

ubiquitous in the worlds' oceans (Sherr and Sherr 2000). Bacterial abundance has been

reported ranging from 107 to 10 10 cell L- 1 in aquatic environment (Whitman et al. 1998). Thus,

bacteria are ready to be entrained into ballast tanks with sea water uptake and to be released

at receiving ports when ballast water is deballasted. Positive cOlTelations have been shown

between propagule pressure (the number of individuals introduced into a given environment)

and the number of successful species that can be established in their new environment

(Lockwood et al. 2005). The abundance of microorganisms in ballast waters has been

considered as a proxy for propagule pressure (Drake and Lodge 2007). Therefore, a study

about bacterial abundance in ballast water will benefit future risk assessment modeling about

bacterial invasion through ballast water.



Bacteria which are redistributed in ballast water, could impact both the bacterial community

composition and the ecological function of receiving waters. Bacteria have a central role in

mediating biogeochemical processes of the ocean, including the cycling of organic carbon,

nitrogen, sulfur, phosphorus and other organic and inorganic elements (Fenchel et al. 1998;

Newman and Banfield 2002). However, specific bacterial phylotypes differ in their

contribution to the marine biogeochemical processes (Fuhrman 2009). Thus, studying the

abundance and activity of different phylogenetic groups within bacterial communities is the

first step in understanding the potential impacts of ballast water introduced bacteria on the

ecological function of receiving regions.

To reduce the impacts of ballast water-mediated organisms, the International Maritime

Organization (lMO) established mid-ocean ballast water exchange (MOE) guidelines in J991.

In Canada, ballast water from the arrival of all international ships falls into three categories:

trans-oceanic exchanged (TOE), intra-coastal exchanged (ICE) and without mid-ocean

exchange (NonMOE), according to whether MOE is conducted and where MOE is conducted

(Transport Canada 2006). Hence, it is essential that the effects of these different ballast water

operations on bacterial communities be studied.

Chapter 2 presented the results of the spatial patterns in bacterial abundance and cell volume

in ballast and port water samples collected along the West Coast (WC) and East Coast (Ee)

of Canada and from the Great Lakes (GL) in 2007 and 2008. The results here howed that

higher bacterial abundance and hence potentially greater propagule pressure were introduced



by unexchanged ballast water than ballast water exchanged at sea. Although lower bacterial

abundance was observed in ballast water compared to port water in this study, the bacterial

abundance in ballast water was still as high as 107 to 109 cells L-'. In this study, the bacterial

abundance and cell volume showed inconsistent spatial distribution in ballast water samples

among the three deballasting locations. For example, higher bacterial abundance in ballast

water was found at the EC, compared to the WC and the GL in 2008. However, there was no

difference in bacterial abundance of ballast water samples among the three regions in 2007.

Ballast water age and temperature were the only influential factors detected for bacterial

abundance and cell volume in ballast water samples. A negative relationship was found

between the bacterial abundance of ICE samples and ballast water age, while a positive

relationship was found between cell volumes of 2007 TOE samples and temperature.

However, the lack of relationships between the measured physiochemical parameters and

bacterial variables in all three ballast water types during both years indicates there are other

regulatory factors influencing the bacteria in ballast water.

Chapter 3 presented the results of a study on the % rod-shaped cells and the bacterial

community structure in ballast and port water at the EC, WC and GL during 2007. Bacterial

community structure was characterized using fluorescence in situ hybridization (FISH), and

was related to a number of concurrently-measured physiochemical parameters (ballast water

age, temperature, pH, and salinity). Although the ballast water deballasted into Canadian

jurisdiction may experience three different operations, there was no difference detected in

bacterial community structure among the ballast water types in each deballasting region.

Different bacterial communities from those in Canadian waters were introduced by ballast
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water. The % Bacteria in ballast water samples was significantly lower than that in port water

samples at the EC and we, and both the % rod-shaped cells and % Cytophaga-Flavobacteria

were lower in ballast than in port water samples at the EC. The bacterial communities in

ballast water deballasted in Canadian waters show little spatial patterns. Lower %

Alpha-Proteobacteria in ballast water samples deballasted into the OL than the EC and WC

was the only detected difference in bacterial communities among the three regions. In this

study, Vibrio spp. was only detected from nine of 59 ballast water samples, and % Vibrio spp.

ranged from 2 to 17% where they occurred. Although the fecal contamination indicator bacterium

E. coli was not detected, we cannot exclude its presence at abundance below the detection

limit ofFISH. Ballast water age and temperature were the only influential factors detected for

bacterial community structure in ballast water tanks. With an increase of ballast water age,

both the % Bacteria and the % Alpha-Proteobacteria in ballast water samples decreased. A

negative relationship between the % Cytophaga-Flavobacteria in combined ballast water

samples and the sample temperature was observed in this study. This implies there are

regulatory factors other than temperature regulating bacterial community structure in ballast

water.

4.2 Overall Significance

The results of our study contribute to the current understanding of bacterial abundance and

phylogenetic diversity of the bacterial community in ballast water. To my knowledge, this is

the first study that examined both bacterial abundance and community structure on a large

spatial and seasonal scale. Prior studies about bacteria in ballast water have been limited to



bacterial abundance (Drake et al. 200 I, 2002; Ruiz et aI. 2000) and the presence of pathogens

(Ruiz et aI. 2000). Moreover, no prior studies have collected ballast water samples from

commercial ships on such a large scale. Large number of ballast water samples has been

collected from military vessels in the United States (Burkholder and Glibert, 2006). However,

it is the commercial ships that globally transport ballast water in massive volumes and follow

the IMO regulations, which makes this study relevant. It provides an opportunity to estimate

the role of ballast water globally redistributing bacteria, and how IMO regulations can affect

the bacterial community in ballast water.

This study has shown that both the total bacterial abundance and the proportion of

physiologically active cells decreased with the increase of ballast water age. Similar results

were reported in previous studies of species richness and the biomass of fish (Wonham et aI.

2000), zooplankton (Gollasch et al. 2000), and phytoplankton (Burkholder et aI. 2007)

decreased as ballast water aged. The negative relationships observed between ballast water

age and the number of organisms present in ballast water imply that increasing the age of

ballast water could have a management application for ballast water introduced invasions. we

would suggest that ships carry out MOE at the beginning of shipping voyage, instead of at the

end of voyage to increase the ballast water age.

4.3 Future Directions

Before a species can successfully invade a new environment and become established, it must

first overcome a series of barriers. MacIsaac et al (2007) summarized these barriers as



biogeographic filter, physiological filter, and biotic filter. Our study described how bacteria

may survive the biogeographical barrier by "hitching a ride" in ballast water and how they

may affect the bacterial abundance and community in introduced environment. Further

studies concerning the adaptation of introduced bacterial communities to new environmental

conditions in receiving waters, as well as the interactions between introduced bacterial

community and native community are needed to understanding how bacteria are capable of

surviving these barriers. This in turn may allow the development of predictive and intention

tools.
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