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Abstract 

The role RRM-type RNA-binding proteins (Rbps) perform in the cyanobacterial 

cell is unknown. However, evidence suggests that RRM-type RNA-binding proteins that 

contain a glycine-rich C-terminal auxiliary domain such as RNA-binding protein A from 

Synechococcus sp. PCC 7942 are involved in the cyanobacterial cold-shock response. In 

this investigation, the genomic SELEX technique was used to gain insight into the 

function of cold-inducible RbpA in the cyanobacterial cell by determining the nucleic 

acid binding specificity of the protein and by identifying the genes potentially regulated 

byRbpA. 

The genomic SELEX technique involved use of a dsDNA library that contained 

38-88 bp portions of Synechococcus 7942 genomic DNA sequence flanked by fixed DNA 

sequences. Representation of the entire Synechococcus 7942 genome in the genomic 

SELEX library was verified by nested-PCR analysis of a 43 base portion of the rbpB 

(RNA-binding protein B) gene. The library contained, in a staggered arrangement, 

molecules whose genomic portion terminated at 8 of the possible 13 nucleotides that 

correspond to bases 322 to 334 of the rbpB gene. These results indicated that if the 

genome was as equally represented in the library as that of the 13 base region of rbpB, 

then the genomic SELEX library would contain 3.38 x 106 different molecules. This 

number of library molecules corresponds to one molecule per 1.6 bases in the 

Synechococcus 7942 genome and thereby provided evidence that the library was a 

sufficient representation of the Synechococcus 7942 genome and could be used in the 

genomic SELEX procedure. 
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The genomic SELEX procedure involved multiple rounds of the same basic steps. 

The library was transcribed into RNA, RNA was mixed with N-terminal histidine-tagged 

RbpA (H6RbpA) in a protein-RNA binding reaction. Isolation of H6RbpA-RNA 

complexes was accomplished by Nt2-NTA metal chelate chromatography and the RNA 

molecules retained by this purification method were reverse-transcribed and PCR 

amplified to generate the dsDNA library used in the next round of selection. 

To identifY the nucleic acid binding specificity of RbpA, representative clones 

from the genomic SELEX library were sequenced after rounds 10 and 14 of selection. 

Following round 10 of selection, the amplified dsDNA was cloned into pUC19 and 

sequenced. Due to a lack of obvious sequence homology of the molecules selected after 

round 10 of SELEX, an additional 4 rounds of selection were performed under conditions 

of increased stringency. These conditions included an increase in salt concentration from 

75mM to 150mM and a decrease in the RNA/protein ratio from 200:1 to 1:1. These 

conditions greatly enhanced selection, as evidenced by a substantial increase in nucleic 

acid sequence homology of representative members ofthe round 14 SELEX library. RNA 

selected in both rounds were of three types, RNA molecules poor in G/U residues (less 

than 50% G/U), rich in G/U (greater than 50% G!U) and G/U very rich sequences (greater 

than 90% G/U). Existence of G!U poor sequences was suprising because like many RRM­

type RNA-binding proteins, RbpA has been shown to have a strong binding preference 

for GTP and UTP RNA homopolymers. Sequence homology analysis of the most 

homologous group of RNA molecules, the round 14 G/U rich RNA, identified a highly 

conserved putative RbpA consensus binding sequence 5'UGAAUGGGAGGUG 3'. The 

six 3' terminal ribonucleotides could be the most important nucleotides of the putative 
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consensus sequence due to the similarity ofthe 5' GAGGUG 3' sequence with a sequence 

5' GUGGUG 3' present in many GIU very rich RNA sequences. 

Comparative genomic sequence analysis of all sequences retained in rounds I 0 

and 14 of genomic SELEX allowed me to determine the genes whose RNA products are 

potentially regulated by RbpA via a binding interaction. Comparative BLAST analysis of 

the SELEX DNA sequences with that of the Synechococcus 7942 genomic sequence 

identified many genes. These include cold-shock inducible genes such dsg, putP and sodB 

that encode fatty acid desaturase, proline permease and superoxide dismutase 

respectively. Other interesting genes identified by comparative analysis include two 

transcription regulator proteins that contain conserved helix-tum-helix motifs and ntrB 

that encodes a nitrate reductase. Interestingly, some sequences identified by genomic 

SELEX corresponded to a sequence on the non-coding strand within the open reading 

frame of a gene. This result suggests that if RbpA is involved in regulating expression of 

these genes, it would involve the expression of a cis-encoded RNA molecule. This 

mechanism of gene regulation has not been studied extensively in prokaryotes and has not 

yet been characterized in cyanobacteria, however it has been identified in the eukaryotes. 

These results suggest that RbpA is involved in regulation of many genes that in some 

cases could involve a previously uncharacterized mechanism of gene regulation in 

cyanobacteria. 
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Introduction 

1.1 Cyanobacteria 

The cyanobacteria, once known as the "blue-green algae", are an important group 

of bacteria in terms of the role they played in the evolution of eukaryotic organisms as 

well as the role they played in creating the environment we know today. As bacteria 

capable of performing oxygenic photosynthesis, cyanobacteria played a role in leading to 

the creation of the oxygen-containing environment during the Archaean and Proterozoic 

eras (Schopf, 1983), an important step necessary for the evolution oflife on this planet. 

Cyanobacteria are integral to the evolutionary process not only by being involved 

in creating our oxygen-containing environment but also by playing a major role in the 

evolution of some eukaryotes. Through a process described by the endosymbiont theory 

(Gray, 1989), the evolution of green plants, red algae and glaucophytes was derived from 

a relationship involving a cyanobacterium living inside a eukaryotic host (Moriera et al., 

2000). Evidence ofthis relationship has been generated by biochemical analysis and more 

recently by comparison of whole genomic sequences of cyanobacteria and plants (Sato, 

2002; Moriera et al., 2000). For example, the conservation of extrinsic proteins that 

comprise the oxygen evolving centre of photosystem II of the photosynthetic apparatus is 

well conserved from cyanobacteria (Synechocystis sp. PCC 6803) to higher plants 

(Arabidopsis thaliana) according to genomic comparative analysis (Las Rivas et al., 

2004). 

The structural conservation of cellular components such as proteins that exists 

between cyanobacteria and other prokaryotes and to a lesser extent with eukaryotes, is 
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one feature that makes the cyanobacteria interesting organisms of study. They can 

provide insight into the most basic cellular processes that, upon elucidation, can generate 

a greater understanding of more complex analogous systems of other highly evolved 

organisms. For example, the existence of RNP-type RNA-binding proteins is conserved 

from cyanobacteria to humans. Investigation of the role these proteins play in the 

cyanobacterial cell can not only provide information regarding the function performed by 

these proteins in cyanobacteria but can also provide a clue to the function of these 

proteins in higher organisms. 

Many cyanobacterial species are capable of nitrogen fixation. In nitrogen starved 

conditions, some filamentous cyanobacterial species can convert atmospheric nitrogen 

into ammonia within a specialized anaerobic cell known as a heterocyst by the activity of 

the enzyme nitrogenase. Ammonia generated by the heterocyst provides an important 

source of nitrogen not only for itself but also for plants, protists and fungi which can have 

a symbiotic relationship with cyanobacteria. 

1.2 Synechococcus sp. PCC 7942 

Synechococcus sp. strain PCC7942 (hereafter referred to as Synechococcus 7942) 

ts a unicellular obligate photoautotroph (Herdman et al., 2001) that is nonheterocyst­

forming and does not reduce nitrogen. Light is captured by means of the photosynthetic 

pigment molecules chlorophyll A and phycocyanin; the combination of these pigments 

generates the blue-green colour of the bacterium. 

The first cyanobacterium demonstrated to be transformable was Synechococcus 

7942 (Shestakov et a/., 1970) and has thus been the subject of extensive molecular 

genetic study. The genome of Synechococcus 7942 has been sequenced by the Joint 
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Genome Institute and at the time of analysis was available to the scientific community as 

a draft sequence (http://www.jgi.doe.gov). The genomic sequence has since been 

upgraded to that of a complete fmished sequence. 

1.3 Cyanobacterial cold-shock response 

Both prokaryotic and eukaryotic cells have developed a diverse set of mechanisms 

designed to maintain cell viability in response to a wide range of environmental 

conditions. Cold temperatures present a variety of problems to the cell including 

decreased fluidity of the cell membrane, lowered processivity of enzymes due to an 

alteration of secondary and tertiary structures that affect the function of the protein and 

increased secondary and tertiary structures of DNA and RNA. RNA in particular is very 

susceptible to temperature change; a decrease in temperature introduces additional 

structures that can affect all aspects of RNA metabolism. Therefore in an effort to 

maintain viability at low temperature, cells generate a cold-shock response. In 

cyanobacteria, the cold-shock response is comprised of an induced expression of certain 

genes including those that encode fatty acid desaturases, protein chaperones and RNA­

binding proteins. Together, the activity of these proteins is enough to prevent cell death 

and maintain cellular viability at lower temperature. 

Cold temperature stress causes the membrane of a cell to become more rigid, 

which adversely affects the ability of the membrane to perform its normal function by 

preventing molecules from passing through the membrane. In cyanobacteria, fluidity of 

the membrane is re-established by desaturation of saturated fatty acids in the membrane 

by the activity of fatty acid desaturase enzymes, a process characterized in both Anabaena 

variabilis (Sato and Murata, 1980) and Synechocystis sp. PCC 6803 (Wada and Murata, 
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1990). Desaturation introduces a double bond in the carbon backbone of membrane fatty 

acids which in tum introduces a kink in the fatty acid structure resulting in a less ordered 

arrangment of phospholipid molecules. Since membrane fluidity is inversely related to the 

packing of phospholipid molecules in the membrane, introduction of a kink in the fatty 

acid structure increases fluidity. The importance of the fatty acid desaturases in the cold­

shock response is evident in the upregulation of these genes in conditions of colder 

temperature. For instance, Northern blot analysis revealed the cold-induced upregulation 

of desaturase genes such as: lipid desaturaseA (desA) (Los et al., 1993) and desD in 

Synechocystis 6803 as well as desA and desB in Synechococcus sp. strain PCC 7002 

(Sakamoto and Bryant, 1997). 

It is believed that rigidification of the membrane itself is the primary sensor that 

induces expression of genes upon conditions of cold-shock (Murata and Los, 1997). In 

Synechocystis 6803, a signal transduction pathway is initiated by a plasma membrane 

associated histidine kinase Hik33 (Suzuki et al., 2000) through detection of membrane 

rigidity. However, DNA rnicroarray analysis of a Synechocystis 6903 Hik33 mutant failed 

to provide evidence that the desA, desB and desD genes are under control of Hik33. 

Expression of all three genes was largely unaffected by the absence of Hik33 (Suzuki et 

al., 2001). In the case of desB activation, experiments involving a luciferase fusion under 

control of the desB promoter (Suzuki et al., 2000) demonstrated that another histidine 

kinase Hik 19 and a response regulator protein Rer 1, were required for the induction of 

desB under conditions of cold-shock. This result led to the description of a low 

temperature sensor responsible for desB induction. In the model, membrane-spanning 

Hik33 becomes autophosphorylated upon membrane rigidification generated under 
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conditions of cold-shock, the phosphate group is subsequently transferred to Hikl9 and 

eventually to Rerl which in tum activates transcription of desB (Suzuki et al., 2000). 

A recent development in the elucidation of the cold-shock response is the role of 

protein chaperones. Protein chaperones are large multisubunit proteins that are involved 

in the proper folding of nascent polypeptides or misfolded protein aggregates initially 

characterized as performing an important role in the heat-shock response. However, by 

western blot analysis, Hossain and Nakamoto (2002) showed that upon shifting a culture 

of Synechococcus 7942 to conditions of cold-shock (from 30°C to l6°C), the levels of 

chaperone proteins HtpG and GroEL increased. The requirement for HtpG in the cold­

shock response was further supported by the fmding that Synechococcus 7942 showed a 

reduced ability to recover from cold-shock conditions in the absence of functional HtpG. 

A third set of genes that are induced upon conditions of cold-shock are those that 

encode two types of RNA-binding proteins. Cold-shock conditions introduce a propensity 

to generate additional secondary and tertiary structures in RNA molecules. These 

additional structures could have deleterious effects such as premature transcription 

termination by introducing transcription pause or termination signals, alteration of RNA 

half-life or prevention of mRNA translation that in tum could compromise cellular 

viability. The two cold-inducible gene types are those whose protein products contain an 

RNA Recognition Motif (RRM) domain and those that contain a DEAD (consecutive 

amino acids Aspartate, Glutamate, Alanine and Aspartate) box domain. The function of 

RRM-domain-containing RNA-binding proteins is not known, however due to the 

structural similarity and limited amino acid similarity ofthese proteins to that ofthe cold 

shock domain (CSD) of cold-shock proteins (Csps) in Escherichia coli, they could 
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function as RNA chaperones or transcription antiterminators. Members of the DEAD box 

group of proteins include CrhB and CrhC in Anabaena 7120 (Chamot et al., 1999), which 

function as RNA helicases. These proteins unwind RNA secondary structures by use of 

energy derived from hydrolysis of ATP and are considered to be part of the cold-adapted 

ribosomal complex that re-establishes translation of mRNA at low temperatures. 

1.4 RNA-binding proteins 

The metabolism of RNA in prokaryotic and eukaryotic cells is accomplished by 

the activity of a multitude of RNA-binding proteins. Amino acid sequence comparative 

analysis of RNA-binding proteins characterized in animals, plants, fungi and bacteria has 

revealed the conservation of specific residues in groups of RNA-binding proteins. The 

most characterized group of RNA-binding proteins are the Ribonucleoproteins (RNPs) 

that contain the highly conserved RRM; this group is described in detail in the next 

section (1.4.1). 

In addition to the RRM, other conserved RNA-binding domains include the 

Arginine-rich motif (ARM), RGG box, KH motif, cold-shock domain (CSD) and others. 

The ARM is a short sequence ranging from 10 to 20 amino acids in length that contains 

numerous arginine residues. With the exception of the arginine residues, the ARM does 

not have any additional sequence homology (Lazinski and Grzadzielska, 1989). The RGG 

box is 20 to 25 amino acids in length and is characterized by repeated arginine-glycine­

glycine sequences within close proximity to each other (Kiledjian and Dreyfuss, 1992). 

The KH motif is composed of the consensus sequence VIGxxGxxl and can exist in 

multiple copies within an individual RNA-binding protein (Gibson et al., 1993). 
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1.4.1 RNP-type RNA-binding proteins 

RRM containing RNA-binding proteins (RNPs) are conserved throughout all 

kingdoms of life, thereby revealing the importance of these proteins in all cells. A 

multitude of cellular functions related to RNA metabolism from transcription to 

translation have been attributed to RNP activity. Examples include the activity of 

heterogeneous nuclear ribonucleoprotein (hnRNP) U1A and small nuclear 

ribonucleoprotein (snRNP) A2 Simian virus 40 (SV40) in splicing (Lutz and Alwine, 

1994), human polyadenylate binding protein (PABP) in recognition of the mRNA polyA 

tail (Bernstein et al., 1989), sex-lethal (Sxl) protein involved in splice-site selection ofthe 

transformer gene tra involved in sex determination in Drosophila melanogaster (Baker, 

1989), eukaryotic initiation factor eiF-4B involved in translation initiation of mRNA in 

rabbit reticulocytes (Benne and Hershey, 1978). In plants, chloroplast RNPs are involved 

in 3' mRNA processing. In Escherichia coli, RNPs/Csps are proposed to function as 

transcription antiterminators (Bae et al., 2000) or RNA chaperones (Jiang et al., 1997) 

both functions attributed to the activity of CspA. 

The characteristic feature of the RNP family of RNA-binding proteins is the 

RRM (Swanson et al., 1987). The RRM is approximately 90 to 100 amino acids in size 

and there can be one or more copies within a given RNA-binding protein. Conservation 

of amino acid residues in the RRM is focused within two regions termed the 

ribonucleoprotein 1 (RNP-1) and ribonucleoprotein 2 (RNP-2) sequences of 8 and 6 

amino acids in length respectively (Dreyfuss et al., 1988). In addition to the RRM, many 

RNA-binding proteins contain auxiliary domains rich in one or two amino acids. 

Examples include the glycine-rich domain of RbpA from Synechococcus 7942 (Mulligan 
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and Belbin, 1995), the glutamine-rich domain of the human cytolytic granule protein 

TIA-1 (Tian et al., 1991), the proline rich domain ofthe murine protein mSAP49 (Ruiz­

Lozano, 1997), the arginine-serine domain of the mammalian splicing factor U2AF 

(Zamore and Green, 1992), and the glycine-arginine rich domain ofnucleolin (Ghisolfi et 

al., 1992). 

The RRM has a conserved ~1a1~2~3a2~4 secondary structure, with the most 

conserved amino acid sequences RNP1 and RNP2 located on ~-strands ~3 and ~I 

respectively. Three-dimensional structural analysis of three eukaryotic RRM-domain­

containing proteins, human U1A (Oubridge et al., 1994) and Drosophila melanogaster 

proteins Sxl (Lee et al., 1994) and Yl4 (Shi and Xu, 2003), revealed a similar tertiary 

structure. The conserved ~1a1~2~3a2~4 secondary structure of the RRM when folded 

creates a four-stranded antiparallel ~-sheet flanked by two a helices. The interior ~­

strands create a scaffold that position the RNP-1 and RNP-2 conserved sequences in close 

proximity to one another (Nagai et al., 1990) (Figure 1.1). NMR studies involving the 

small nuclear ribonucleoprotein U1A (U1A) and its 21 nucleotide cognate U1 snRNA 

revealed that RNA-protein interactions are mediated by stacking interactions between the 

10 base loop of the hairpin RNA and highly conserved aromatic amino acids in RNP-1 

and RNP-2 (Oubridge et al., 1994). These conserved regions are required for the binding 

interaction between RNA and protein, however it has been shown that the nucleic acid 

specificity of the protein lies outside the conserved domains. In particular, RNA 

recognition is initiated by an interaction between variable portions of the RRM, namely 

the ~2-~3 and ~1-a1 loops (loops 3 and 1 respectively), and seven nucleotides located 
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Figure 1.1. Theoretical tertiary structure ofresidues 2 to 76 ofthe 107 amino acid RbpA 

protein of Synechococcus 7942. Structure was generated by use of the molecular viewer 

Deepview (Guex and Peitsch, 1997) accessed at the Swiss Institute of Bioinformatics 

website (www.expasy.org/spdbv/). The location of the RNP1 and RNP2 conserved 

sequences is shown. 
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within a well-structured helical regiOn of the U1 snRNA. Subsequently, the RNA 

undergoes a conformational change such that a region of single-stranded RNA is 

localized against the ~-sheet, whereupon stacking interactions between RNA and the 

conserved aromatic residues in RNP-1 and RNP-2 are initiated. When the stacking 

interaction is taking place, the C-terminal domain of the protein is reorganized, and this 

conformational change increases the interaction between the ~-sheet region and the RNA 

by further exposing the highly conserved hydrophobic ~-sheet (Allain et al., 1996). 

1.4.2 Cyanobacterial RNPs 

RNA-binding protein encoding genes (rbp) are not well conserved throughout 

prokaryotes. With the exception of one gene detected in each of the completed genomes 

of Helicobacter pylori (Tomb et al., 1997) and Treponema pallidum (Fraser et al., 1998), 

rbp genes have not been found in prokaryotes other than cyanobacteria. Within 

cyanobacteria however, a large number of rbps have been characterized including eight 

rbp genes (rbpAJ, rbpA2, rbpA3, rbpB-F) in Anabaena variabilis strain M3 (Sato, 1994; 

Sato, 1995; Sato and Maruyama, 1997; Maruyama et al., 1999), four genes (rbpA-D) in 

Anabaena sp. PCC 7120 (Mulligan et al., 1994), one gene (rbpA) in Chlorogleopsis sp. 

PCC 6912 (Mulligan et al., 1994), two genes (12rnpl, 12rnp2) in Synechococcus sp. PCC 

6301 (Sugita and Sugiura, 1994) and two genes (rbpA, rbpB) from Synechococcus 7942 

(Mulligan and Belbin, 1995). 

The cyanobacterial RNA-binding proteins are the smallest RRM-domain 

containing RNA-binding proteins characterized to date. Unlike RNA-binding proteins of 

eukaryotes which can contain multiple copies of the RRM module, all cyanobacterial 
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RNA-binding proteins contain one RRM. In cyanobacteria, there are two types of RNA­

binding proteins termed type I and type II (Maruyama and Sato, 2001) which differ in 

numerous respects most notably being the number of amino acid residues in the two 

types. 

1.4.2.1 Type I cyanobacterial RNA-binding proteins 

The type I cyanobacterial RNA-binding proteins range m s1ze from 83 to 110 

amino acids in length, they all contain one N-terminal RRM with or without a short C­

terminal auxiliary domain that, in many cases, is glycine-rich. A comparison of 17 Type I 

cyanobacterial RNA-binding proteins (Figure 1.2) illlustrates the high degree of 

conservation of amino-acid residues throughout the RRM. In particular, conservation of 

amino acid residues in loops 1 and 3, regions implicated in RNA sequence selection of 

the RRM (Allain et al., 1996), is high. With exception of position 3 of loop 1, and 

positions 2 and 9 of loop 3, the loops are highly conserved suggesting that they could not 

be the regions responsible for nucleic acid sequence selectivity unless they recognize the 

same RNA sequence. From the alignment, at, loop 4 and the C-terminal domain could be 

the most important regions that confer RNA sequence specificity due to the degree of 

sequence heterogeneity at these positions. As evident in the alignment, the auxiliary 

domain is not highly conserved however most proteins contain a glycine-rich C-terminal 

auxiliary domain, some have an auxiliary domain rich in both asparagine and glycine 

(Av-RbpB, SyEl-tsl2255, Av-RbpE, Av-RbpD) or have no auxilliary domain at all 

(Synechocystis 6803 ssrll480) (Figure 1.2). 
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Figure 1.2. Amino acid sequence alignment of 17 cyanobacterial RNP-type I RNA­

binding proteins. Sequences were aligned using the Clustal W 1.8 multiple alignment 

program accessed at the Baylor College of Medicine website and converted into a 

presentable form by use of the Boxshade 3.21 program (K. Hoffman and M. Baron, 

unpublished) accessed at the European Molecular Biologists Swiss node website 

(www.ch.embnet.org). Residues present in 70% or greater at each position in the 

alignment are shown in reverse type. Conservation of similar amino acids at a given 

position are shaded. Amino acid sequences are as follows: RbpA (7942-A) (Belbin, 

1999), RbpB (7942-B) from Synechococcus 7942, 12RNP1 (6301-A) and 12RNP-2 

(6301-B) from Synechococcus 6301, RbpA1 (M3-A1), RbpA2 (M3-A2), RbpA3 (M3-

A3), RbpB (M3-B), RbpC (M3-C), RbpD (M3-D), RbpE (M3-E) and RbpF (M3-F) from 

Anabaena variabilis M3, RbpA (6912-A) from Chlorogleopsis 6912, RbpA (6803-A) and 

gene product ssr1480 from Synechocystis 6803, and proteins encoded by genes tsl2255 

(Elong-1) and tsrl443 (Elong-2) from Thermosynechococcus elongatus BP-1. An amino 

acid consensus sequence is given below the alignment, residues conserved in all 17 

protein sequences are capitalized and in bold-type, residues not completely conserved yet 

present in greater than 50% of sequences are given in normal type and positions that do 

not have a particular amino acid residue in greater than 50% of sequences are blank. 
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6301-B 
7942-B 
M3-D 
M3-A2 
7120-C 
7120-A 
6912-A 
M3-A1 
M3-A3 
M3-F ....... 

~ 7942-A 
6301-A 
6803-A 
M3-B 
ELONG-1 
M3-E 

6803-ssr1480 
M3-C 
ELONG-2 

~1 Loop-1 Loop-3 Loop-4 Loop-S 

consensus MsiYvGNLSydvteedl avFaeYGsvkrvqlPtDRETGrlRGFgFvEm sdaeE aAieaLdGAeWmGRdLkVnKAkPredrg 

PAARSGATPTTKQLTV-----------­
PAARSGATPTTKQLTV-----------­
RGSWGKKQDY------------------

GGNR~-----GYG NRY----
GGNR -----GYG NRY----
GGNR -----GYG NRY----
GGR---------G NRY----
GNR- -----GYG NRY----
GG-R -----GYS GRY----
GGNR GRSRY--
SFGG -----GGRR GGGYRNY 
SFGG -----GGRR GGGYRNY 
SFGG -----RKSY SRY------

-----NRSNNNFRNRY---­
SNNRYSR-----NR------------­
RSGGGSW-----SRNN~Y--------

SSPRGGG~SWGNNNRGG~GNRRSY--
SNSSL----------------------

g g ggg 



The function of type I RNA-binding proteins in the cyanobacterial cell is not 

known, however, RNA-binding proteins that contain a glycine-rich C-terminal domain 

could be involved in the cold-shock response. It has been shown that the synthesis of 

some type I RNA-binding proteins increased upon introduction of a cold temperature 

stimulus. Examples include: RbpA in Synechococcus 7942 (Mulligan and Belbin, 

unpublished), 12RNP1 in Synechococcus 6301 (Sugita and Sugiura, 1994) RbpA1, 

RbpA2, RbpB, RbpC (Sato, 1995) and RbpE and RbpF (Maruyama et al., 1999) in 

Anabaena variabilis M3, RbpA1, RbpA2, RbpB, RbpC, RbpE, RbpF in Anabaena 7120 

(Ehira et al., 2003) and Rbp1 in Thermosynechococcus elongatus (Ehira et al., 2003). 

1.4.2.2 Mechanisms of cold-shock induction of type I cyanobacterial RNA-binding 

proteins 

Two mechanisms of cold-induced regulation of rbp genes have been described 

which may involve a set of conserved sequences termed box elements located in the 5' 

untranslated regions of the genes (Maruyama et al., 1999) (Figure 1.3). It is not known 

exactly how these cis-acting regulatory regions are involved in regulation, however it is 

interesting that the Box I element and the RBS as well as Box III and Box I exhibit 

complementary base pairing. The box elements could be involved in transcriptional 

regulation by a set of trans-acting DNA-binding proteins. Three proteins isolated from 

Anabaena variabilis M3 grown at 38°C were able to bind to a DNA fragment 

encompassing nucleotides +1 to +151 in relation to the start point ofthe rbpAJ transcript 

as evidenced by gel mobility shift analysis (Sato and Nakamura, 1998). Formation of 

DNA-protein complexes was not observed when protein fractions from cells grown at 

22°C were used. In addition, deletion of nine nucleotides upstream of the Anabaena 
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Figure 1.3. Alignment of the 5' untranslated region of 3 cyanobacterial rbp genes. The 

nucleic acid sequences of rbpA (7942-A) from Synechococcus 7942, and rbpAJ (A.v.M3-

A1) and rbpA2 (A.v.M3-A2) from Anabaena variabilis M3 were aligned using the 

Clustal W 1.8 multiple alignment program accessed at the Baylor College of Medicine 

website and converted into a presentable form by use of the Boxshade 3.21 program (K. 

Hoffman and M. Baron, unpublished) accessed at the European Molecular Biologists 

Swiss node website (www.ch.embnet.org). Complete nucleotide conservation is indicated 

by an asterisk under the alignment. The cold-shock inducible cyanobacterial rbp gene 

conserved box elements I, II and III (Maruyama et al., 1999) are outlined by a box. The 

experimentally determined transcriptional start site of the Anabaena variabilis M3 rbpA 1 

gene (Sato and Nakamura, 1998) is indicated by an arrow. In addition, the nine base 

sequence implicated as necessary for cold-shock induction of the Anabaena variabilis M3 

rbpAJ gene (Sato and Nakamura, 1998) is identified by a dotted box. 
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7942-A 
A.v.M3-A2 
A.v.M3-Al 

7942-A 

ACAGTGGTAAGCGCCCTGTTGCCGAACCAT_GAAAACTTTTAATCCTTCACATA TTGTCATCTCACACGAAGA 
ACAAGATAATGATCACAGGTATTTAGGTATCGATTGCTTTTATAAACTTATGTAACGGTTTTTGTAACTCCCCCCTGATA 
TCCCAATTAAAAGCTCTATT_TTCGATAATTTACAATCCTACGTAACTAAT_TA TCTAA4tTAGATGCAGAGA 

* * * * * ** * * * * ** * * * * 

A. v.M3-A2 GTTGGTTGCTGTGCCATACTAGAAAGTGAGAGTT 
CTGACGAGTCTTTTC_AG 
TTGACGGGCTTTTCC_TT 

-~~~~~~J_TTGACGGGCTTTTCCCTT A.v.M3-Al ATTGGCTTCTATGTCATCCTAGAAAAGGAGAGTT __ -,;,;;,:::-7-"....:..::...;:.:.:
1

_ 

* ** * ** * ***** * *** * 

7942-A 
A.v.M3-A2 
A.v.M3-Al 

TCCTTGTTGGCATAGTT 
TTGGTATTTACAGACTT 
TTAGTATTTACAGGCTT 

* * ** ** ** 
":::-:::,..,--.-,..,--.--:--;' 

Start 
codon 

TTTCGCTCTCAACTCTCTC____ AACT=T CTATTTACGT 
CCTAAATCTCTACGTACCTATGA AA_TC T CAGTTTATGT 
TTTACATCTCTAGACAGT~~- CA_T T CAATTTACGT 

* **** * *** ****** * ** ***** **** ** 
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variabilis M3 rbpAJ gene within the RBS prevented the binding ofthese DNA-binding 

proteins and resulted in constitutive transcription as detected by rbpA 1-lacZ fusion 

analysis (Sato and Nakamura, 1998) (Figure 1.3). Therefore, a set of DNA-binding 

proteins could be involved in preventing the transcription of rbp genes in conditions other 

than cold-shock. 

The other proposed mechanism of cold-induced regulation of rbp gene expression 

involving the box elements of the 5'UTR involves mRNA stability. The half-life of the 

rbpAJ transcript in Anabaena variabilis M3 increases substantially (greater than four 

fold) upon shifting the cell culture to conditions of cold-shock in the presence of 

rifampicin (Sato and Nakamura, 1998). The mechanism ofRNA half-life regulation is not 

known; however, it could involve putative RNA hairpins generated between box elements 

and the RBS in the 5UTR. As discussed below in section 1.6, the conserved 5'UTR of 

cyanobacterial rbp genes could be responsible for increased stability at low temperature 

and thereby function as the main regulatory mechanism ofRbpA expression. 

It has been shown that the expression of type I RNA-binding proteins that do not 

contain a glycine-rich domain is not cold-induced. Examples include RbpB in 

Synechococcus 7942 (Mulligan and Belbin, unpublished), 12RNP2 in Synechococcus 

6301 (Sugita and Sugiura, 1994) and RbpD in Anabaena variabilis M3 (Sato, 1995). 

Interesingly, the 5'UTR of genes rbpB in Synechococcus 6301 and rbpD in Anabaena 

variabilis M3 do not contain the box elements implicated in cold-regulated expression of 

the cold-shock genes (Maruyama et al., 1999). 
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1.4.2.3 Type II cyanobacterial-RNA-binding proteins 

The second type of cyanobacterial RNA-binding proteins are the type II proteins 

(Maruyama and Sato, 2001 ). These proteins are significantly larger than type I RNA­

binding proteins. Open reading frame (ORF) detection analysis of genomic sequence data 

from Anabaena 7120, Synechocystis 6803 and Thermosynechococcus elongatus BP-1 

detected single type II RNA-binding proteins encoded in the genomes of each organism, 

with sizes of 166, 151 and 193 amino-acids respectively. A protein BLAST search ofthe 

draft sequence of Synechococcus 7942 (described in section 2.20) using the slr0193 

protein of Synechococcus 6803 as the query sequence identified an additional 

homologous protein encoded by gene 1105 (now designated ser2048, refer to table A1). 

Amino-acid sequence alignment (Figure 1.4) of the four proteins reveals that the RNP-1 

and RNP-2 modules are highly conserved, however, a number of differences exist with 

the type I RNA-binding proteins (Figure 1.2). In the RNP-2 module, the first residue 

which is isoleucine in type I RNA-binding proteins is replaced by leucine or valine in 

type II RNA-binding proteins. In the RNP-1 module, glutamate and methionine residues 

at postions 7 and 8 in type I RNA-binding proteins are replaced by tyrosine and valine in 

type II proteins. The most notable difference between type I and II RNA-binding proteins 

is the absence of a glycine or glycine/asparagine C-terminal auxiliary domain in type II 

RNA-binding proteins. However, type II RNA-binding proteins do exhibit amino acid 

conservation near the C-terminus with the existence of an absolutely conserved six amino 

acid sequence PDPRWA, and complete conservation ofthree leucine residues, one lysine 

residue and one alanine residue. The purpose of this conserved C-terminal region is 

unknown; an attempt to identify similar motifs of known function by comparative amino 
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Figure 1.4. Amino acid sequence alignment of 4 cyanobacterial RNP-type II RNA­

binding protein sequences. The proteins are as follows: that encoded by gene 1105 from 

Sy nechococcus 7942 (7942-p.l105), Rbp3 from Thermosynechococcus elongatus BP-1, 

RbpG from Anabaena 7120, and the protein encoded by gene slrO 193 from Synechocystis 

6803. Alignments were generated as described in figure 1.2. Identical residues are shown 

in reverse type, residues that are not completely conserved yet similar are shaded. 
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MPVLALGLGYERFLTPECPFFNHVVFKLPKGGFF 

RNP-1 
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I
KEEIDRQELQAVFAA 

KESIERIALQEVFAE 
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acid analysis (Interpro database accessed at www.ebi.ac.uk) failed to detect homology to 

any characterized amino acid moti£ 

The function of the type II RNA-binding proteins in the cyanobacterial cell has 

not been determined. However, Northern blot and immunoblot analysis of rbpG and rbp3 

gene expression in Anabaena 7120 and Thermosynechococcus elongatus grown at a 

variety of temperatures revealed that the genes are constitutively expressed and the 

proteins are constitutively present (Ehira et al., 2003). Efforts to construct a 

Themosynechococcus elongatus rbpG mutant were unsuccessful (Ehira et al., 2003). 

These results suggested that type II RNA-binding proteins are absolutely required for cell 

viability, and are likely involved in a basic aspect of RNA metabolism as opposed to 

being involved exclusively in a stress response. 

1.4.3 Synechococcus 7942 RNP-type RNA-binding proteins 

To date three RNP-type RNA-binding proteins have been found in Synechococcus 

7942: two type I RNA-binding proteins and one type II RNA-binding protein. The type I 

RNA-binding proteins RbpA and RbpB have been identified previously (Mulligan and 

Belbin, 1995) and I identified the third RNA-binding protein, a type II RNA-binding 

protein, by BLAST comparative analysis of the Synechococcus 7942 genome. RbpA 

expression is cold-inducible. Both the transcript and amount of this protein in the cell 

increase upon conditions of cold shock and is discussed in detail in the next section. In 

contrast, RbpB expression is not cold-inducible, expression remains constant regardless 

of growth temperature. The function of type II RNA-binding proteins, like those in 

Synechococcus 7942, is not known. 
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1.4.3.1 Synechococcus 7942 RNA-binding protein A 

RNA-binding protein A (RbpA) from Synechococcus 7942 is a 107 amino-acid 

protein with an 83 amino-acid RRM domain at its N-terminus and a 24 amino-acid 

auxilliary domain rich in glycine residues at its C-terminus. The RRM of RbpA is very 

highly conserved in comparison to other cyanobacterial type I RNA-binding proteins 

(Figure 1.2). The RNP-1 and RNP-2 sequences are completely identical to the type I 

consensus sequence. The cyanobacterial protein that is most homologous in sequence to 

RbpA is 12RNP 1 from Synechococcus 6301 which is nearly identical. The only 

difference occurs at postion 63 where RbpA has an aspartic acid residue and 12RNP1 has 

a glycine residue. 

The function ofRbpA, like the other cyanobacterial RNA-binding proteins is not 

known. RbpA has been shown to bind preferentially to RNA sequences solely composed 

of guanine or uracil nucleotides (Belbin, 1999 and figure 2.2), a characteristic feature of 

RRM-domain-containing proteins. The nearly identical 12RNP-1 protein from 

Synechococcus 6301 has also been shown to bind preferentially to poly(U) and poly(G) 

homopolymers (Sugita and Sugiura, 1994). RbpA could be involved in some way with 

regulating the photosynthetic apparatus as evidenced by a decreased growth rate and 

altered photosynthetic pigment composition of a Synechococcus 7942 strain in which the 

rbpA gene had been interrupted via a streptomycin/spectinomycin cassette (Mulligan and 

Belbin, 1995). In Synechococcus 6301, 12rnpl mRNA decreased gradually over 12 hours 

after transfer of the culture from light to dark (Sugita and Sugiura, 1994), thereby 

providing evidence that expression is light dependent. 
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RbpA could also be involved in the cold-shock response since transcription of 

rbpA is induced upon cold temperature (15°C) incubation (Belbin, 1999). 12RNP1 is also 

induced upon conditions of cold-shock: mRNA levels doubled in response to shifting the 

Synechococcus 6301 culture from 30°C to 20°C (Sugita and Sugiura, 1994). In Anabaena 

variabilis sp. M3, the rbpAJ and rbpA2 genes are induced upon shift of the cell culture 

from 38°C to 22°C (Maruyama et al., 1999). Another indication of cold-induced 

regulation ofRbpA is found in the sequence ofthe rbpA 5'UTR which contains regions of 

significant homology to the conserved box elements and RBS (Maruyama et a/., 1999) 

characteristic of type I cyanobacterial cold-induced genes. As shown in figure 1.3, the 

5'UTR of rbpA contains a completely conserved ribosome binding site and Box I element. 

In addition, rbpA also contains a Box II element that is identical to that present in the 5' 

UTR of Anabaena variabilis sp. M3 genes rbpAJ and rbpA2 at nine of twelve nucleotide 

positions and a Box III element that is not as highly conserved, having homology at four 

of eight nucleotide positions. As with type I cyanobacterial RNA-binding proteins, 

expression of the rbpA gene is cold-regulated via an unknown mechanism likely 

associated with the 5' UTR ofthe gene, a process that could also involve the stability of 

the transcript (refer to section 1.6). 

1.5 Convergent Evolution of the RRM and CSD 

Interestingly, as mentioned in section 1.4.2, RNP-type RNA-binding proteins are 

not well conserved in prokaryotes other than cyanobacteria. Therefore the question arises, 

what protein performs the analogous function of the RNA-binding proteins in other 

prokaryotes such as E. coli? The most likely candidates thus far are the cold-shock 

proteins (Csps). These have significant structural similarities with the RRM but only 
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limited amino acid similarity. Csps are able to bind to both ssDNA and RNA via an 

amino acid motif known as the cold-shock domain (CSD) that contains conserved regions 

similar to the RNP-1 (Landsman, 1992) and RNP-2 (Schroder et al., 1995) modules ofthe 

RRM. With the exception ofthe limited similarity ofthe RNP-1 and RNP-2 modules, the 

amino acid sequences are not homologous. However, conservation of protein tertiary 

structure has been observed. NMR analysis of the CSD containing CspA protein of E. coli 

revealed a ~~~2~3~4~5 secondary structure that when folded positioned the RNP-1 and 

RNP-2 conserved sequences on ~-strands ~2 and ~3 respectively (Schindelin et al., 1994; 

Newkirk et al., 1994) just as is the case with the RRM. This result suggests that the two 

types of proteins function as RNA-binding proteins via a mechanism in which conserved 

aromatic amino acid residues located within a ~-sheet scaffold interact with RNA 

(Graumann and Marahiel, 1996). 

If RNA-binding proteins perform the same function in cyanobacteria as Csps in 

E. coli, investigation of the cold-shock mechanism of E. coli and the function of Csps in 

the cold-shock response may provide an understanding of a putative function of RNA­

binding proteins in cyanobacteria. 

1.6 The cold-shock response in Escherichia coli 

In E. coli, the cold-shock proteins (CSPs) are involved in generating the cold­

shock adaptation response. When the environmental temperature decreases, the cell 

exhibits a sharp decline in cell metabolism known as the acclimation phase. During this 

phase, initiation of translation in the cell is minimal (Jones and Inouye, 1996). To re­

establish translation, the synthesis of two classes (I and II) of CSPs is induced and non­

CSP protein synthesis is halted. The difference between class I and II CSPs is their 
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relative induction levels within the acclimation phase. The class I CSPs are virtually non­

existent at 37°C but are induced at least 10 fold upon cold-shock. Examples include cold­

shock proteins A, B, G (CspA, CspB, CspG), an ATP-dependent RNA helicase (CsdA), 

and ribosome binding factor A (RbfA). Class II CSPs are induced less than 10 fold, 

examples include RecA, DNA gyrase (GyrA) and Initiation factor-2 (IF-2) (reviewed by 

Thieringer eta/., 1998). Together the class I and II cold-shock proteins perform a variety 

of functions including the re-establishment oftranslation ofnon-CSP encoding mRNA by 

formation of a cold-adapted ribosomal complex requiring CSPs, RbfA, IF2, and CsdA. 

Another function of CSPs is the destabilization of RNA secondary structures introduced 

in conditions of low temperature, a process involving the Csd RNA helicases and Csp 

RNA chaperone family of proteins. 

As a member ofthe cold-adapted ribosomal complex, CsdA functions as an RNA 

helicase. The RNA helicases are a group of RNA-binding proteins that unwind dsRNA 

into ssRNA through use of energy derived from ATP hydrolysis. This group ofproteins is 

of importance in the cold-shock response because conditions of lower temperature 

(approximately 20°C) promote the formation of dsRNA, creation of which can prevent 

translation of the mRNA by blocking the ribosome binding site. There are three groups of 

RNA helicases known as the DEAD (Linder et a/. 1989), DEAH and DEXH families, 

members of which are found in E. coli. These familial classifications are based on the 

sequence and arrangement of eight amino acid motifs within the primary structure of the 

protein (Gorbalenya eta/., 1993). During the cold-shock response, the amount ofDEAD 

box RNA helicase CsdA increases dramatically (greater than 10 fold) and is proposed to 
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be involved in maintaining translation of many mRNAs including those that encode the 

E.coli Csp proteins (Jones et al., 1996). 

Destabilization of RNA secondary structures is also accomplished by the activity 

of Csp proteins. These proteins maintain normal metabolism of RNA by acting as RNA 

chaperones, proteins that destabilize RNA secondary structures (Jiang et al., 1997). The 

function of Csps has not been completely elucidated however CspA, CspC and CspE have 

been shown to decrease transcription termination of the cold-shock inducible E. coli 

metY-rpsO operon (Bae et al. , 2000) in vivo. Also, CspE was shown to increase the 

stability of mRNA by binding to the 3' poly (A) tail of mRNAs thereby preventing 

degradation by nucleases polynucleotide phosphorylase and RNase E (Feng et al., 2001). 

The functions of the Csp proteins likely overlap due to the fmding that cellular viability 

under cold-shock conditions was compromised only by inactivation offour of nine E. coli 

csp genes (Xia et al., 2001), therefore the nucleic acid binding specificity of the Csps 

could be limited. SELEX experiments (refer to section 1.8) did not identify a consensus 

sequence for CspA but did detect a degree of RNA binding specificity for CspB, CspC 

and CspE ofUUUUU, AGGGAGGGA and AAAUUU sequences respectively. The latter 

proteins selected RNA sequences with binding a:ffmity in the 1 o-6 to 1 o-5 M range 

(Phadtare and Inouye, 1999). 

1.7 Function of the 5'UTR of csp and rbp genes 

The similarity of the 5' UTR of csp and rbp genes suggest that these genes could 

be regulated in a similar manner. Csp protein concentration in the cell during the cold­

shock response is increased by up regulation of the csp transcription, increasing the 

stability of csp transcripts at low temperature, and by improving the efficiency of 
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translation (Gualerzi et al., 2003). Analysis of the 5' UTR of E. coli cspA mRNA revealed 

a long 159 base untranslated region (Tanabe et al., 1992) which is common to several 

csp-family cold-shock inducible genes including cspB (Etchegaray et al., 1996), cspG 

(Nakashima et al., 1996) and cspl (Wang et al., 1999) as well as rbp genes. 

The most conserved region within the 5'UTR of cold inducible csp genes is a 13 

base sequence known as the upstream box (UB) that in cspA is located 11 bases upstream 

ofthe Shine-Dalgamo sequence. This sequence is implicated as a cis-acting element that 

regulates translation efficiency of the mRNA by providing an additional 16S rRNA­

binding site upstream of the Shine-Dalgarno sequence for the cold-adapted ribosome 

(Yamaka et al., 1999). Comparison of the 5'UTR of cspA and cspB to that of rbpA 

revealed that the highly conserved upstream box of the csp genes overlapped that of the 

highly conserved Box I element ofrbpA. As shown in figure 1.5, the Box I element ofthe 

rbpA 5'UTR is nearly identical (8 of 9 nucleotides) to the 5' portion of the cspA UB. 

Therefore, this degree of homology implies that like csp genes, regulation of rbp cold­

shock expression could exist at the level of translation efficiency mediated by the Box I 

element ofthe 5'UTR. 

The csp 5'UTR regulates, in addition to translation efficiency, expression at the 

level of mRNA stability. Upon deletion of the frrst 80 bases of the cspA transcript, the 

half-life of the transcript increased significantly at both high and low temperature 

(Goldenberg et al., 1996). Also, deletion of the entire 5'UTR of the cspA transcript 

resulted in constitutive expression (Fang et al., 1997). Stability of mRNA mediated by the 

5'UTR is also a regulatory mechanism of rbp expression. In a paper by Sato and 

Nakamura, (1998) the stability of A. variabilis M3 rbpAJ mRNA was dependent upon 
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Figure 1.5. Alignment ofDNA sequences (coding strand) from the 5' untranslated region 

ofthree prokaryotic cold-shock regulated genes. (A) The nucleotide sequence alignment 

of rbpA (7942-A) from Synechococcus 7942 and cspA (K12-cspA) and cspB (Kl2-cspB) 

from Escherichia coli Kl2 .. The location ofthe ATG start codon in the coding strand of 

each sequence is indicated. (B) Important features of the sequences contained in the 

alignment such as the location of the Box I element implicated in cold-shock regulation of 

cyanobacterial rbp expression and the upstream box (UB) implicated in cold-shock 

induction of Escherichia coli csp genes are shown. In addition, the location of the Shine­

Dalgamo (SD) sequence and start codon in the coding strand of each gene is indicated. 

Identical residues are shown in reverse type. 
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temperature. The half-life of the transcript was only 4.6 minutes at 38°C and increased to 

18.5 minutes at 22°C. In addition, deletion of a stretch of nine nucleotides located from 10 

to 19 bases upstream of the initiation codon partially within a putative ribosome binding 

site (Figure 1.3) (Maruyama et al., 1999) resulted in constitutive expression of the 

transcript in the cell independent of temperature. This evidence suggests that expression 

of both csps and rbps is negatively regulated by the 5'UTR of the transcript in conditions 

other than cold-shock. 

1.8 Identification of the RNA-binding specificity ofRbpA by genomic SELEX 

Although similarities with the Csp family of proteins provides an intriguing look 

into a potential function of RbpA, the function of RbpA can be further characterized by 

investigation of the nucleic acid specificity of the protein. As RNA-binding proteins, 

these proteins bind to stretches of nucleic acid sequence in either a specific or a non­

specific manner. In an attempt to identify the RNA-binding specificity ofRbpA protein I 

employed a variant of the SELEX technique known as genomic SELEX (Singer et al., 

1997). 

1.9 Genomic SELEX 

SELEX (systematic evolution of ligands by exponential enrichment) is a method 

whereby the nucleic acid binding specificity of a protein can be determined. This 

technique, independently and simultaneously developed by Tuerk and Gold (1990) and 

Ellington and Szostak (1990), uses partially degenerate DNA libraries generated by 

synthetic combinatorial chemistry to identify nucleic acid aptamers recognized by nucleic 

acid binding proteins. The technique involves multiple rounds of the same basic steps. 

First, the protein of interest is incubated with a library of nucleic acid molecules. Those 
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that are bound by the protein are captured and retained, those not bound by the protein are 

removed. Nucleic acids retained are amplified and become the pool of molecules used in 

the next round of selection. In this way, following multiple rounds of selection, only those 

molecules bound by the protein remain. Use ofthis technique has expanded rapidly, since 

its advent in the early 1990's. The use of SELEX has grown to the degree that 

construction of two aptamer databases, SELEX_DB (Ponomarenko et al., 2000) and 

Aptamer Database (Lee et al., 2004), have been developed. 

The SELEX technique has been used to identify nucleic acid aptamers recognized 

by a multitude of proteins including bacteriophage T4 DNA polymerase (Tuerk and Gold, 

1990), and mv type 1 Rev protein (Jensen et al., 1995). In addition to identifying nucleic 

acid-protein interactions, SELEX has been extended to identify aptamers recognized by 

nucleotide cofactors (Burke and Gold, 1997) and to isolate RNA with enzymatic activity 

(ribozymes) (Bartel and Szostak, 1993). 

In regular SELEX, huge libraries (1 015 unique sequences) of synthetically 

synthesized nucleic acids are required to generate the few sequences potentially 

recognized by a protein. The length of the nucleic acid sequence that can be varied in 

order to identify the binding specificity of the protein is restricted due to the enormous 

number of possible combinations that exist once the length of sequence is more than 

minimal. 

A variation of the SELEX technique known as genomic SELEX, developed by 

Singer (1997), utilizes a library of DNA molecules that contain genomic nucleic acid 

sequences from the organism of interest from which the protein in question was isolated. 

This technique has been employed in the identification of aptamers recognized by 
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proteins such as the bacteriophage MS2 coat protein (Shtatland et al., 2000) and human 

TAP(NXF1) (Zolotukhin et al., 2001) as well as splicing substrates of the Drosophila 

pre-mRNA splicing factor B52 (Kim et al., 2003). The use of genomic sequences 

provides an advantage over the use of the synthetically constructed libraries in terms of 

the size of the library and the information that can be generated from the analysis. 

The genomic SELEX technique utilizes a small library ( 106 unique sequences) that 

contains all sequences that are potentially recognized by the protein because the library is 

composed of DNA sequences from the genome of the organism itself. In addition, the 

genomic SELEX technique allows one to select the length of the variable portion of the 

sequence that is used to identify nucleic acid binding specificity. Since the library is 

composed of genomic sequences, the location in the genome of any sequence selected by 

the protein is identifiable. This information in tum, can provide an insight into the 

function of a nucleic acid binding protein by identifying the gene or transcript that is 

bound by the protein. The one disadvantage of the genomic SELEX technique however 

is eonstruction of the library. Since genomic nucleic acid sequences are used as a 

template, the library cannot be constructed synthetically, instead a lengthy protocol that 

involves the copying of genomic DNA sequences is required to construct a genomic 

SELEX library, a process described in chapter 3. 

1.10 Goals 

The initial goal of this study was to create a Synechococcus 7942 genomic SELEX 

library that sufficiently represented the entire genome. The library was created by a series 

of steps (Singer et al. , 1997) involving the copying of genomic DNA into small dsDNA 

fragments. The validity of the library was verified by determining the representation of a 
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portion of the rbpB gene in the library. The second goal was to use the library to 

determine the RNA-binding specificity ofRbpA. The genomic SELEX process consisted 

of multiple rounds of selection under conditions of increasing stringency to select RNA 

molecules bound by RbpA. Numerous controls were utilized in an effort to provide 

evidence that selection of RNA was mediated solely by RbpA. The fmal goal of this study 

was to analyze the RNA sequences selected by genomic SELEX and to identify the genes 

that encode or are adjacent to these RNA sequences. 
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Materials and Methods 

2.1 Primers, plasmids and strains 

Oligonucleotide primers used in construction and analysis of the Synechococcus 

7942 genomic SELEX library were purchased from Cortec Laboratories Inc. (Kingston, 

Ontario) and are listed in Table 2.1 (refer to page 41 ). Cloning procedures utilized the 

plasmid pUC19 (Yannisch-Perron et al., 1985) and the E. coli strain JM109 (Yannisch­

Perron et al., 1985). A prokaryotic expression vector construct containing the rbpA gene 

(courtesy ofTom Belbin) in E. coli BL21 (DE3) pLacl was used for in vivo production of 

RbpA. 

2.2 Purification of DNA 

DNA generated by PCR amplification or by restriction enzyme digestion was 

purified by one of two methods: phenol/chloroform extraction followed by ethanol 

precipitation, and column chromatography via the Qiaquick DNA purification column 

(Qiagen). 

A sample of DNA (1 OuL to 500uL) was extracted once with an equal volume of 

phenol and once with an equal volume of chloroform, using a centrifugation step of 

14,000 rpm for 1 minute to separate phases. Following chloroform extraction, Y2 volume 

7M ammonium acetate (pH 7.5) and 3 volumes 1 OOo/o ethanol were added to the aqueous 

phase. DNA was precipitated by incubation at -70°C for 1 hour and pelleted by 

centrifugation at 14,000 rpm for 15 minutes. The pellet was washed with 80o/o ethanol, 

dried for approximately 1 0 minutes at room temperature, and resuspended in TE buffer 

(lOmM Tris pH 7.5; 1mM EDTA). 

For Qiaquick column chromatographic purification, 5 volumes buffer 

(composition proprietory to manufacturer) were added to the DNA sample. The solution 

was applied to the column and passed through by centrifugation at 13,000 rpm for 1 
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minute. The column was washed with 750uL buffer PE (composition proprietory to 

manufacturer) followed by centrifigation at 13,000 rpm for 1 minute. Once the filtrate 

was removed, the column was centrifuged again at 14,000 rpm for 1 minute to remove 

residual liquid on the column. The DNA was then eluted by addition ofbuffer EB (lOrnM 

Tris-HCl, pH 8.0) or distilled water followed by centrifugation at 14,000 rpm for 1 

minute into a clean 1.5mL microfuge tube. DNA recovered was quantified by 

spectrophotometry utilizing wavelengths of 340nm and 260nm. The results obtained were 

then used in the following equation to determine the concentration ofDNA. 

Concentration (ng/uL) = (abs 260 nm -abs 340 nm) x 50 ng/uL x dilution factor 

2.3 Isolation of plasmid DNA 

Plasmid DNA was isolated from E. coli liquid cultures according to the Merlin 

mini-prep protocol described by Iyer (1994). Overnight cultures of E. coli grown in LB 

broth containing an appropriate antibiotic were pelleted by centrifugation and 

resuspended in 200uL of Cell Resuspension Solution (50rnM Tris-HCl, pH 7.5; 10mM 

EDTA; lOOug/mL RNase A). Cellular contents were released upon addition of 200uL 

Cell Lysis Solution (0.2M NaOH; 1 o/o SDS) and the resultant mixture was neutralized by 

the addition of 200uL Neutralization Solution (1.25M potassium acetate; 1.24M acetic 

acid) in the process precipitating protein and genomic DNA. The precipitated cellular 

components were pelleted by centrifugation at 14,000 rpm for 5 minutes and the 

supernatant was transferred to a clean tube containing lmL of DNA-binding resin (Celite 

resin slurry in 7M guanidine hydrochloride). Following mixing by inversion, a 3cc 

syringe was used to force the slurry through a mini-column (Promega, Madison WI) 

which retained non-soluble matter and plasmid DNA. The column was then washed with 

2mL Wash Solution (20mM Tris-HCl, pH 7.5; 200mM NaCI; 5mM EDTA; 50% 

Ethanol). Plasmid DNA was eluted by application of warm distilled water or TE, 
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incubation at room temperature for 1 minute, and centrifugation at 14,000 rpm for 1 

minute. 

2.4 Isolation of Genomic DNA from Synechococcus 7942 

A 500mL culture of Synechococcus 7942 was grown in BG-11 liquid medium 

(Rippka et a!., 1979) at room temperature with constant illumination for approximately 2 

weeks. Genomic DNA was isolated according to the protocol described by Golden 

(1997). Briefly, cells were harvested by centrifugation (5000 rpm, 5 min) and 

resuspended in 2.5mL buffer TE100 (lOOmM Tris-HCl, pH 8.0; 100mM EDTA). To the 

resuspended cells, 125uL 20% SDS, 50uL 1M DTT, 2.5mL phenol-chloroform-isoamyl 

alcohol (25:24:1) and 2.5mL autoclaved glass beads (150 - 212 microns in size) were 

added. Cells were ruptured by 3 rounds ofvortexing at top speed for 3 minutes followed 

by incubation on ice for 30 seconds. Non-soluble material in the mixture was pelleted by 

centrifugation (1 0000 rpm, 10 min) and discarded. The supernatant was transferred to a 

clean 25mL Corex tube and was extracted with an equal volume once with phenol, once 

with phenol-chloroform-isoamyl alcohol (25:24:1) and once with chloroform-isoamyl 

alcohol (24: 1 ). The phases were separated during each extraction by centrifugation 

(10000 rpm, 10 min). Nucleic acids were precipitated from solution by addition of one 

half volume 7.5M ammonium acetate (pH 7.5) and two and one half volumes 100% 

ethanol. The mixture was incubated on ice for 30 minutes followed by centrifugation 

( 1 0000 rpm, 10 minutes) to pellet nucleic acids. 

The nucleic acid pellet was resuspended in 450uL TE and transferred to a 1.5mL 

rnicrofuge tube. The solution was purified further by successive extractions with equal 

volumes of phenol, phenol-chloroform (1:1), and chloroform. RNA was removed from 

the aqueous solution by addition of one half volume 7.5M ammonium acetate (pH 7.5), 

incubation on ice for 30 minutes and centrifugation (10000 rpm, 10 min.). DNA 
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remaining in the supernatant was precipitated by addition of 2 volumes of cold 100% 

ethanol. The precipitated DNA was spooled out of solution with a drawn pasteur pipette, 

dried in air, and resuspended in 100uL TE buffer. The concentration of DNA was 

determined spectrophotometrically at 260 nm, purity was assessed by comparison of 

absorbance at 260 nm to that at 340 nm. 

2.5 Purification ofRNA 

Following transcription reactions the DNA used as the template was degraded by 

the addition ofRQ1 DNase (Promega) to a fmal concentration of0.06- 0.08 units/uL in 

RQ1 DNase buffer (40mM Tris-HCl, pH 8.0; 10mM MgS04; 1mM CaCI2). The resultant 

solution was incubated at 37°C for 1 hour. 

Following DNase digestion, RNA was purified using an RNeasy purification kit 

(Qiagen). For every 100uL of DNase digestion mixture, 350uL of buffer RLT 

(composition proprietory to manufacturer) containing 0.01% 2-mercaptoethanol and 

250uL 100% ethanol were added and mixed by inversion. The sample was then applied to 

an RNeasy minicolumn and centrifuged at 14,000 rpm for 15 seconds. Following 

centrifugation, the filtrate was emptied, 500uL buffer RPE (composition proprietory to 

manufacturer) was added to the column and it was centrifuged at 14,000 rpm for 2 

minutes. Again the filtrate was emptied and the column was centrifuged at 14,000 rpm 

for 1 minute to remove any residual solution. The RNA was then eluted by addition of 

20-50uL Diethyl pyrocarbonate (DEPC)-treated distilled water followed by centrifugation 

at 14,000 rpm for 1 minute into a clean 1.5mL rnicrofuge tube. 

Purified RNA was quantified by spectrophotometry utilizing wavelengths of 340 

nm and 260nm. The results obtained were then used in the following equation to 

determine the concentration of RNA. 

Concentration (ng/uL) = (abs 260 nm -abs 340 nm) x 40 ng/uL x dilution factor 
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2.6 Restriction endonuclease digestion and cloning 

DNA molecules containing a BamHJ restriction endonuclease site were digested 

by addition of template to a solution containing a fmal concentration of I unit/uL BamHJ 

restriction endonuclease (New England Biolabs) in IX NEB buffer BamHJ (lOmM Tris­

HCl, pH 7.9 at 25°C; I50mM NaCl; ImM DTT; IOmM MgC12) with IOOug/mL Bovine 

Serum Albumin (BSA). The solution was then incubated at 37°C for I hour. Similarly, 

DNA fragments containing a Sacl site were digested by addition of template to a solution 

containing a fmal concentration of I unit/uL Sacl restriction endonuclease (New England 

Biolabs) in IX NEB I buffer (lOmM Bis-Tris-Propane-HCl, lOmM MgCh, ImM DTT, 

pH 7.0 at 25°C) with IOOug/mL BSA. The solution was incubated at 37°C for I hour. 

Plasmids and DNA fragments were purified prior to cloning as described in 

sections 2.3 and 2.2 respectively. When required following restriction endonuclease 

digestion, plasmid DNA was dephosphorylated by the addition of purified DNA to a 

solution containing O.I unit/uL Shrimp Alkaline Phosphatase (SAP) (Amersham) in IX 

SAP buffer. The solution was then incubated at 37°C for I hour followed by a I5 minute 

incubation at 65°C to inactivate the enzyme. 

DNA fragments were cloned into plasmid vectors by incubation of purified, 

restriction endonuclease digested fragment and vector in a solution containing a fmal 

concentration of O.I5 unit/uL T4 DNA ligase (Promega) and IX ligation buffer (30mM 

Tris-HCl, pH 7.8; IOmM MgC12 ; IOmM DTT; ImM ATP) for 3 hours at room 

temperature. 

Ligation product was transformed into competent E. coli JMI09 (Promega) by a 

heat shock procedure (Huff et al. , 1990). A portion of the ligation product was mixed 

with SOuL competent E. coli JMI09 cells (>I08 cfulug) and incubated on ice for 30 

minutes. The next step was a heat shock incubation of the mixture at 420C for 45 
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seconds. Cell recovery was promoted by the addition of ImL LB broth followed by 

incubation at 37°C for I hour with shaking at 250 rpm. Transformed cells were grown 

overnight on LB/agar plates containing I OOug/mL Ticarcillin (Sigma) with 800ug 5-

bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) spread on the plate to enable 

detection of recombinant plasmid containing colonies by blue/white selection. 

2. 7 Agarose and urea/acrylamide gel electrophoresis, electrophoretic transfer of 

nucleic acids to membrane 

Samples of dsDNA and RNA were analyzed by agarose gel electrophoresis. 

Nucleic acids were separated in agarose gels that contained from 0.8% to 2% agarose in 

0.5X TBE buffer (IX TBE is lOOmM Tris-Cl, pH 8.0; IOOmM boric acid; 2.5mM EDTA) 

with 50ug/mL ethidium bromide at 5-l 0 volts/em. Results were recorded using an Alpha 

Innotech Corporation Chemilmager 4400 Low light imaging gel documentation system. 

Nucleic acid size determination and densitometric analysis was performed with Optiquant 

Image Analysis Software (Packard). 

Denaturing urea/acrylamide gel electrophoresis was used to analyze ssDNA 

samples. Gels were prepared that contained 8M urea, 4% acrylamide and 0.2% 

bisacrylamide in IX TBE buffer. Once the gel solution was made, it was filtered through 

I mm Whatman filter paper and placed on ice. To induce polymerization, lOuL of 

TEMED and 20uL of I 0% ammonium persulfate were added to the gel solution. The 

solution was then poured into the mini-Protean III gel casting system (Bio-Rad), allowed 

to set, then placed into the Mini-Protean III electrophoresis system. Prior to loading of 

samples, the gel was electrophoresed in IX TBE buffer at 20-40 volts until the anode 

buffer chamber reached a temperature of approximately 45°C. The wells were then 

flushed out using a pasteur pipette, samples were loaded and electrophoresed at 400 volts 

(required approximately 8 minutes for tracking dye to reach the bottom of the gel). 
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Samples were prepared by addition of an equal volume of 2X urea loading buffer (4M 

urea; 10mM EDTA; 2.5mM Tris-Cl, pH 7.5; 0.25% (w/v) bromophenol blue) followed by 

incubation at 90°C for 5 minutes. Nucleic acids were detected by incubation of the gel in 

a I50mL IX TBE buffer solution containing the SYBR Green II (Molecular Probes) dye 

(I:10,000 dilution) for approximately 30 minutes at room temperature in the absence of 

light. Visualization of the fluorescent dye was achieved by use of an activation 

wavelength of 302 nm, light emitted from the dye was filtered through the SYBR green II 

filter (blocks light of wavelength 500nm or lower) and captured by the Chemilmager 

4400 gel documentation system. 

Nucleic acids separated either by agarose or by urea/acrylamide gel 

electrophoresis were transferred to positively charged nylon membrane (Hybond) by 

electrophoretic transfer utilizing the mini-Protean III transfer apparatus (Bio-rad). 

Transfer was executed in 0.5X TBE buffer at 40 volts for approximately 5 hours at 4°C. 

Following transfer the membrane was dried at 80°C for 30 minutes. The efficiency of 

transfer was determined by SYBR Green II re-staining of nucleic acids that remained in 

the gel. 

2.8 Detection ofDigoxygenin (DIG)-labeled Nucleic acids 

Following transfer of DIG-labeled nucleic acids (refer to section 2.13) to nylon 

membrane, the membrane was equilibrated by a brief wash in Buffer I (IOOmM Tris-HCl, 

pH 7.5; 150mM NaCl). Following equilibration, non-specific antibody-membrane 

interactions were prevented by a 30 minute incubation in Buffer 2 [Buffer 1 containing 

0.5% (w/v) blocking reagent (Roche)]. The membrane was then briefly rinsed in Buffer 1. 

Detection of the DIG label was initiated by incubation in 10mL of a 150mU/ml solution 

of polyclonal sheep anti-DIG Fab-fragments conjugated to alkaline phosphatase (AP). 

The membrane was then rinsed twice for 15 minutes in Buffer I and once for 2 minutes in 
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Buffer 3 (100mM Tris-HCl, pH 9.5; 100mM NaCl; 50mM MgC12). Detection of alkaline 

phosphatase was accomplished by incubation ofthe membrane in colour solution [40mL 

Buffer 3; 0.4mM Nitroblue Tetrazolium salt (NBT); 0.4mM 5-bromo-4-chloro-3-indolyl 

phosphate (X-phos)] until coloured precipitate was evident. The colour reaction was 

stopped by incubation in 100mL ofBuffer 4 (lOmM Tris-HCl, pH 8.0; 1mM EDTA). 

2.9 In vivo synthesis of RbpA 

N-terminal histidine-tagged (six histidine residues) RbpA protein (H6RbpA) was 

generated in vivo by induction of a prokaryotic expression vector construct containing the 

rbpA gene (courtesy of Dr. Tom Belbin) in E. coli BL21 (DE3) pLacl. An overnight 

culture (approximately 5mL) was added to a larger volume (200mL to 1L) of liquid LB 

broth containing 100ug/mL Ticarcillin and incubated at 37°C with shaking (250 rpm). 

When cell growth reached mid-log phase (A595 of 0.6-0.8) H6RbpA protein production 

was induced with addition of isopropylthiogalactoside (IPTG) to a final concentration of 

2mM. Following a 30 minute induction period, the cell culture was harvested by 

centrifugation at 6000 rpm for 10 minutes and stored at -70°C until the next step in the 

purification protocol was conducted. 

Total protein extracts of cellular contents were generated by use of a non­

denaturing protocol (Petty, 1987). Pellets were resusupended in 1 OmL of Resuspension 

Buffer [50mM N~HP04, pH 8.0; 500mM NaCl; 10% glycerol; 1mM phenyl methyl 

sulfonyl flouride (PMSF) (Sigma)] , Triton X-1 00 was added to a final concentration of 

0.1% and cells were sonicated in ice water for 10 intervals of30 seconds followed by 30 

seconds of recovery (to dissipate heat generated by sonication). To prevent protease 

activity, a 150X inhibitor cocktail was added composed of 1mg/mL pepstatin A (Sigma) 

and 1mg/mL leupeptin (Sigma). The resultant solution was incubated on ice for 15 

minutes, followed by centrifugation at 15,000 rpm for 15 minutes to remove insoluble 
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cellular material. The supernatant (total protein extract) was removed and kept at 4oc 

until H6RbpA was purified by column chromatography utilizing a Nt2-NTA spin column. 

2.10 Purification ofRbpA with Ni+2-NTA spin columns 

H6RbpA protein was purified from other components of the total protein extract 

by use of a pre-made Ni+2-NTA spin column (Qiagen). The entire procedure was 

performed at 4°C. The column was equilibrated by the addition of 600uL Resuspension 

Buffer (section 2.18) and spun at 2,000 rpm for 2 minutes. A volume of total protein 

extract (600uL) was applied to the column which was centrifuged again for 3 minutes at 

1,000 rpm. The filtrate was applied to the column and centrifuged again at 1,000 rpm for 

3 minutes. These two steps were repeated until 5mL of total protein extract had passed 

through the column twice. The spin column was then washed by addition of 600uL of 

Wash Buffer (50mM N~P04, pH 7.5; 300mM NaCl; 40mM Imidazole) and spun 2,000 

rpm for 2 minutes, this process was repeated an additional 14 times to maximize the 

removal of contaminating proteins from the column. Proteins bound to the resin were 

eluted upon application of lOOuL Elution Buffer (50mM Na2P04, pH 7.5; 300mM NaCI; 

250mM Imidazole) and centrifugation at 2,000 rpm for 2 minutes. The elution step was 

repeated 9 additional times. The effectiveness of this procedure was analysed by Tricine 

SDS-PAGE (section 2.17) (Figure 2.1). 

2.11 Dialysis and Quantification ofRbpA 

Eluted fractions containing RbpA protein detected by discontinuous Tricine SDS­

PAGE were pooled together (approximately 2.5mL to 5mL) and placed in IOcm of 

snakeskin dialysis tubing (molecular weight cut-off of 3 kDa, Pierce). The tubing was 

placed in 500mL of DEPC-treated IX SELEX RNA-binding buffer [SRBB (50mM 

N~HP04, pH 7.5; 50mM NaCl; 2.5mM MgC12 ; 0.5% Triton X-100; 40mM Imidazole)] 

and gently stirred overnight at 4°C. Following dialysis, the amount of RbpA was 
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Figure 2.1. Evaluation of the H6RbpA purification protocol. (A) Tricine SDS-PAGE 

separation analysis of the total protein extract (TPE) following a 30 minute induction 

before and after the preparation had passed through a Ni+2_NTA affinity chromatography 

spin column, H6RbpA protein is indicated by an arrow. (B) Analysis of eluted fractions 1 

to 4 generated upon elution ofH6RbpA from the Ni+2_NT A affinity column with Elution 

buffer. The location of the H6RbpA protein and a higher molecular weight contaminant 

are indicated by an arrow and an asterisk respectively. Gels were stained with Coomassie 

G-250 blue strain. The location of applicable low molecular weight standards (Pharmacia) 

are indicated at left. 
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quantified by comparison of the band intensities of samples of RbpA and lysozyme 

produced by either SYPRO orange or Coomassie blue staining. A standard curve based 

on lysozyme was used to quantify the concentration ofRbpA (Figure 2.2A). 

2.12 RNA homopolymer analysis ofRbpA 

Binding analysis of RNA homopolymers was performed as described by Sugita 

and Sugiura (1994) and Belbin (I999). RNA homopolymer resins used in binding 

analysis were as follows: polyadenylic acid [poly(A) RNA] attached to cross-linked 4% 

beaded agarose (0.5 to l.Omg of RNA per mL resin), polycytidylic acid [poly( C) RNA] 

attached to cross-linked beaded agarose (0.25 to l.Omg RNA per mL resin), polyguanylic 

acid [poly(G) RNA] complexed to polyacrylhydrazido-agarose (1.5 to 4.5mg RNA per 

mL resin) and polyuridylic acid [poly (U) RNA] complexed to polyacrylhydrazido­

agarose (O.I to l.Omg RNA per mL resin) (Sigma). RbpA protein (1 ug) was incubated 

with 25ug of respective RNA homopolymers in I mL of 1 X SRBB and mixed by rotation 

at 4oc for 10 minutes. The mixture was added to a mini-column (Pro mega) used to retain 

the polymer and protein bound to it. Non-bound protein was removed by washing with 

1mL IX SRBB containing Img/mL heparin, ImL SRBB and ImL dH20. Removal of 

bound protein was achieved upon addition of SOuL Tricine sample buffer (1 OOmM Tris­

HCl, pH 6.8; 20o/o glycerol; I o/o SDS; 0.02o/o Coomassie Blue G-250; 62.5 mM DTT) and 

centrifugation at I4,000 rpm for 20 seconds. Protein bound to the resin was detected by 

discontinuous Tricine SDS-PAGE as shown in Figure 2.2B. 

2.13 SELEX: First and second-strand extension reactions 

First-strand extension reactions consisted of 28ug of Synechococcus 7942 

genomic DNA mixed with 54uM Aran primer (Table 2.I), IX USB Klenow buffer 

(50mM Tris-HCl, pH 7.5; IOmM MgC12 ; ImM DTT; 50ug/mL Bovine Serum Albumin), 

300uM each dNTP and I35 Units of the Klenow fragment of E. coli DNA polymerase I 
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Figure 2.2. Quantification and RNA homopolymer binding analysis of H6RbpA. (A) 

Tricine SDS-PAGE analysis ofknown amounts ofLysozyme (50ng, 100ng, 150ng and 

200ng) used as a standard to determine the unknown concentration of H6RbpA expressed 

and purified as described in sections 2.13 to 2.16. The location of a higher molecular 

weight protein contaminant in the H6RbpA preparation is indicated by an asterisk. (B) 

RNA homopolymer binding activity of H6RbpA was assessed by Tricine SDS-PAGE 

analysis of H6RbpA eluted from columns containing RNA homopolymers as indicated. 

The location of low molecular weight standards (Pharmacia) are indicated at left. 
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Table 2.1. Primers used in Construction and Analysis of the Synechococcus 7942 genomic SELEX library 

Name Length (bases) Sequence Tm (~)* Reference 

A ran 25 5 ' AGGGAGGACGATGCGGNNNNNNNNN 3 ' 58.3 Singer et al., 
1997 

Bran 25 5' TCCCGCTCGTCGTCTGNNNNNNNNN 3' 58.3 Singer eta!., 
1997 

T7A 37 5 ' GAAATTAATACGACTCACTATAGGGAGGACGATGCGG 3 ' 66.1 Singer eta/., 
1997 

T38 41 5 ' CTAGCAATTAACCCTCACTAAAGGGACCCGCTCGTCGTCTG 3 ' 67.7 This work 

~ 
\0 

8 16 5 ' TCCCGCTCGTCGTCTG 3 ' 44.8 Singer eta!., 
1997 

rbpB 1 25 5' CGCAGTTGGCGACCAAACCACTCAG 3 ' 58.3 This work 

rbpB 2 30 5 ' AAACCACTCAGTGCCATTGAGCTCGCTGAT 3' 62.3 This work 

T7 A(BarnHI) 41 5 ' AGACGGATCCAATACGACTCACCACAGGGAGGACGATGCGG 3 ' 67.7 Singer eta/., 
1997 

B(BamHI) 20 5 ' ATCTGGATCCTCGTCGTCTG 3 ' 52.3 Singer eta/., 
1997 

Elongated Forward 25 5 ' CGCCAGGGTTTTCCCAGTCACGACG 3 ' 58.3 This work 

Elongated Reverse 28 5' GCGGATAACAATTTCACACAGGAAACAG 3 ' 60.9 This work 

Forward Sequencing 17 5' ACGTTGTAAAACGACGG 3' Sanger eta!., 
1977 

* Melting temperature calculated by Cortec Laboratories Inc. according to the formula : 

Tm = 81.5°C- 16.6(log!O[Na+]) + 0.41(% G+C)- 0.63(% forrnamide)- (600/L) 
where Lis the length of the oligonucleotide in base pairs 



Table 2.2 Components of Polymerase Chain Reactions 

Template Amount First primer Second primer Reaction Annealing 
Template (ng) name cone (uM) name cone (uM) volume (uL) temperature ( C)o 

Construction of the Second-strand * 
genomic SELEX Extension product T7A 4 B 4 20 61 
library 

eDNA T7A 5 T3B 5 50 61 

Validation of the Nested PCR 180 T7A 5 rbpB1 5 20 51 
Ul genomic SELEX step I or 
0 library 

T3B 5 

Nested PCR 200 T7A(BamHI) 5 rbpB2 5 20 56 
step 2 

eDNA T7A 1.25 T3B 1.25 160 61 

detection of 200 T7A 10 rbpBI 10 20 51 
rbpB gene containing 
library molecules 

Cloning and Cloning T7A(BamHI) 5 B(BamHI) 5 20 46 
Sequencing 

Analysis of 
plasmid inserts ~ 100 Reverse 5 Forward 5 20 52 

*Concentration oftemplate DNA was unknown 



(exo+) (New England Biolabs) in a 150uL reaction volume. The genomic DNA and 

primer were denatured for 3 minutes at 93°C then incubated on ice for 5 minutes during 

which the remaining components of the reaction were added. The mixture was then 

incubated for 25 minutes at 25°C and 5 minutes at 50°C. Inactivation of the Klenow 

enzyme was achieved by the addition of 1.5uL 0.5M EDT A and incubation at 75°C for 

10 minutes. 

Second strand extension reactions were carried out in the same way as that of the 

first extension reactions except that the Bran primer (Table 2.1) was used at a 

concentration of 11.9uM. 

Aran and Bran extension reactions incorporating Digoxygenin-labelled 

nucleotides were carried out in the same way as the frrst-strand extension reaction with 

the exception that the nucleotide concentrations were as follows : 70uM dATP, 70uM 

dCTP, 70uM dGTP, 45uM dTTP and 25uM DIG-dUTP. Incorporation ofthe digoxygenin 

label was detected following application or transfer of labeled ssDNA to a nylon 

membrane via a dot blot or electrophoretic transfer from an 8M Urea/4% acrylamide 

denaturation gel respectively (section 2. 7). 

2.14 SELEX: Removal of excess A ran primer by filtration 

Removal of excess Aran primer (8.2kDa) was achieved by filtration with 

Microcon-1 0 filters (1 OkDa molecular weight cut-oft). The entire frrst-strand extension 

reaction (150uL) was brought up to 500uL with TE buffer and added to the retentate end 

of the filtration device. The filter was then wrapped in paper towel to ensure a tight fit 

when placed in a rotor sleeve and in turn placed in a Sorvall SS-34 type rotor within a 

Sorvall RC-58 Superspeed Centrifuge and spun at 4100 rpm for 15 minutes. 

Approximately 300ul of the initial volume was removed as filtrate and discarded. The 

retentate was recovered by inversion of the retentate vial into a clean tube, followed by 
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centrifugation for 2 minutes at 4I 00 rpm. The entire process was repeated a second time 

with a clean Microcon I 0 filtration device. 

2.15 SELEX: Purification of second-strand extension product by electroelution 

One-third the volume (I OOuL) of second-strand extension product was added to an 

equal volume of USB stop solution (95% formamide; 20mM EDTA; 0.05% bromophenol 

blue; 0.05% xylene cyanol) and electrophoresed using two 8M urea/4% polyacrylamide 

denaturing gels (20uL per well, I 0 wells per gel). Three segments of the gel were excised 

that corresponded to regions 3-4 em, 4-5 em and 5-6 em from the top of the gel. These 

segments were placed individually into snakeskin dialysis tubing (Pierce) (3000 Dalton 

molecular weight cut-oft) containing ImL 0.5X TBE and electroeluted for 3 hours at 

IOOV. Following electroelution, the ssDNA separated in each gel fraction was purified by 

ethanol precipitation (section 2.2) and resuspended in SOuL TE buffer. 

2.16 Amplification of DNA by Polymerase Chain Reaction 

Polymerase Chain Reactions contained IX Singer PCR buffer (IOmM Tris-HCl, 

pH 9.0; 50mM KCl; 0.1% Triton X-100; 3mM MgC12) (Singer et al., 1997), 50uM 

dNTPs and O.I - 0.2 units/uL Taq polymerase with an overlay of mineral oil. The 

remaining components such as the identity and amount of template DNA, identity and 

concentration of primers, volume of reaction and annealing temperature are given in 

Table 2.2. All reactions were conducted by the "hot start" method in a PTC-200 Peltier 

Thermal Cycler (MJ Research), whereby nucleotides and Taq polymerase were added 

following a 5 minute incubation period at 95°C to denature template and primers. Once 

all components were added, template DNA was amplified using 30 cycles with the 

following parameters: denaturation at 93oc for 30 seconds, annealing of primer to 

template at the temperature specified in Table 2.2 for 10 seconds, and extension of primer 

at 72°C for 45 seconds. Amplified products were purified by phenol/chloroform and 
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ethanol precipitated or by Qiaquick spin column chromatography (Qiagen) (section 2.2). 

2.17 SELEX: Transcription 

Two transcription reactions will be discussed in this section, the first pertains to 

transcription of the PCR amplified second-strand extension product involved in 

construction of the Synechococcus 7942 genomic SELEX library, the second pertains to 

transcription ofPCR amplified eDNA used to create RNA in each round of SELEX. 

Second-strand extension product was transcribed by a reaction that contained 2ug 

of the PCR product of the second-strand extension reaction amplified with primers T7 A 

and T3B in 1X Gibco transcription buffer [40mM Tris-HCl, pH 8.0; 10mM MgC12 ; 

20mM DTT; 25mM NaCl; 2mM Spermidine-(HC1)3], 6.25mM NTPs and 20 units of T7 

RNA polymerase in a fmal volume of 80uL. The reaction was incubated at 37°C for 2 

hours, then 4°C overnight. 

To generate RNA for a round of SELEX, transcription reactions were performed 

in duplicate; each contained 1.5ug of PCR amplified eDNA from the preceding round of 

SELEX in 1X NEB RNA polymerase buffer (40mM Tris-HCl, pH 7.9; 6mM MgC12 ; 

2mM spermidine; 1 OmM DTT), 0.5mM each NTP, and 250 units ofT7 RNA polymerase 

in a 500uL volume. The reaction was subsequently placed in either a thermocycler or 

water bath at 37oc for 14 to 18 hours. The resultant RNA was purified and quantified by 

RNeasy column chromatography and spectrophotometry respectively as described in 

section 2.5. 

2.18 SELEX: Reverse-transcription 

RNA was reverse-transcribed by the addition of RNA template to 1 uM T3B 

primer (Table 2.1), 0.5mM each dNTP, 5units/uL Omniscript reverse transcriptase 

(Qiagen) in 1X Buffer RT (composition proprietory to manufacturer) and incubation at 

37°C for 1 hour. To inactivate the reverse transcriptase, the reaction was incubated at 
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93oc for 5 minutes. 

2.19 SELEX: Isolation ofRbpA-RNA complexes 

RNA was denatured by incubation at 95°C for 1 minute, then kept on ice for at 

least 10 minutes before use. The RNA-protein binding reaction utilized in rounds 1 to 10 

of SELEX consisted of 1nmol (40ug, 10,000nM fmal concentration) denatured RNA and 

0.05nmol (540ng, 500nM fmal concentration) H6RbpA in a reaction volume of 1 OOuL 

containing 1X SELEX RNA-binding Buffer (SRBB) (50mM Na:zHP04 , pH 7.5; 50mM 

NaCl; 2.5mM MgC12 ; 0.5% Triton X-100; 40mM Imidazole). In rounds 11 to 14, 

components of the RNA-protein binding reaction were altered and consisted of 

0.025nmol (1 ug, 500nM fmal concentration) denatured RNA and 0.025nmol (27ng, 

500mM fmal concentration) H6RbpA in a reaction volume of SOuL containing 1X 

SELEX RNA-binding Buffer with High Salt (SRBBHS) (50mM Na:zHP04, pH 7.5; 

150mM NaCl; 2.5mM MgC12 ; 0.5% Triton X-100). In addition to the RNA-protein 

binding reaction, a control reaction was performed for each round that contained all 

components with exception of the protein itself Once all components were added, the 

reaction was incubated at room temperature for 1 hour with rotation (tube was inverted 

approximately 20/min). 

After the 1 hour incubation period, 2uL of resuspended Ni+2-NTA resm (5 

to 1 Omg/ml binding capacity of a 20 kDa protein, Qiagen) was added to both the control 

and RNA-protein reactions and incubated further at room temperature with rotation for 20 

minutes. Protein-RNA complexes bound to the resin were deposited at the bottom ofthe 

tube by centrifugation at 1,000 rpm for 2 minutes and the resulting supernatant containing 

free RNA, protein or protein-RNA complexes not bound to the resin were discarded. The 

remaining solution containing the resin (approximately SOuL to 100uL) was washed by 

addition of 200uL 1X SRBB (rounds 1 to 10) or 200uL of SRBBHS (rounds 10 to 14) 
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followed by a 2 minute incubation at room temperature with rotation. The mixture was 

then centrifuged at 1 000 rpm for 2 minutes, fo Bowed by removal of the supernatant. This 

process was repeated 4 additional times to maximize the removal of uncomplexed RNA. 

RNA-protein complexes were then eluted from the resin by addition of 1 OOuL SELEX 

Elution Buffer (SEB) (50mM N~HP04, pH 7.5; 50mM NaCl; 2.5mM MgC12 ; 0.5% 

Triton X-100; 250mM Imidazole), incubation at room temperature for 5 minutes with 

rotation, centrifugation at 1000 rpm for 2 minutes and removal of the supernatant which 

was retained. 

The RNA isolated in the presence and absence (control) of protein was purified 

using an RNeasy column and quantified by spectrophotometry as described in section 2.5. 

2.20 Computational data analysis 

The theoretical tertiary structure of RbpA was generated by use of the molecular 

viewer program Deepview (Guex and Peitsch, 1997) developed at the Swiss Institute of 

Bioinformatics (www.expasy.org/spdbv/). The structure was created by frrst identifying 

two proteins of known tertiary structure that have significant sequence homology with 

RbpA. These proteins; 1HD1A and 1HDOA (human heterologous nuclear 

ribonucleoproteins) were used as a scaffold onto which the sequence of RbpA was 

threaded to create the theoretical structure given in figure 1.1. Note that, although RbpA 

is 107 amino acids in length, the three-dimensional structure only encompasses residues 

2-76 because the remaining amino acids were not recognized as possessing homology to 

any domain of known tertiary structure. 

Comparison of RNA sequences identified by the SELEX procedure to those of 

other prokaryotes was accomplished by use of the BLAST and Gapped-BLAST programs 

(Altschul et al., 1997) accessed at the European Biotechnological Institute (EBI) website 

www.ebi.ac.uk. 
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The alignment of RNA sequences was accomplished by use of the multiple 

sequence alignment program Clustal W (Jeanmougin et al., 1998) accessed at the Baylor 

College of Medicine website http://searchlauncher.bcm.tmc.edu/multi-align/multi­

align.html. Alignments were made visually suitable by use ofthe boxshade 3.21 program 

(K. Hoffman and M. Baron, unpublished) accessed at the European Molecular Biologists 

Swiss node website (www.ch.embnet.org). 

Computational analysis to fmd homologous of both nucleic acid and protein 

sequences was performed using the FAST A program (Pearson, 1990). Protein sequences 

were also analyzed in terms of the presence of conserved amino acid residues and motifs 

and the likelihood that they belong to a group of conserved proteins by InterproScan 

(Zdobnov and Apweiler, 2001). Both programs were accessed at the EBI website 

www.ebi.ac.uk. Protein sequences within ORFs encoded in the Synechococcus 7942 

genome were analyzed by the Joint Genome Institute using the program Clusters of 

Orthologous Groups (COGS) to determine the identity of Synechococcus 7942 proteins 

based on similarity to other known groups of proteins, this analysis is referred to 

numerous times in section 5.6. 

A graphical version of the alignment used to defme the RbpA cognate RNA 

consensus sequence was generated by the Weblogo program (Crooks et al., 2004) 

accessed at the following website (http:://weblogo.berkeley.edu/). 

RNA secondary structural determination and analysis was accomplished by use of 

the program mfold version 2.3 (Zuker et al., 1999; Mathews et al., 1999) as developed by 

Michael Zuker at the Rensselaer Institute and accessed at the website 

www. bioinfo.rpi.edu/~zukerm/. 

2.21 Tricine SDS-P AGE analysis 

Proteins were analysed by discontinuous Tricine SDS-PAGE according to the 
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protocol ofSchagger and von Jagow (1987). An equal volume ofprotein was added to 2X 

Tricine Sample Buffer (200mM Tris-HCl, pH 6.8; 40% glycerol; 2o/o SDS; 0.04% 

Coomassie Blue G-250; 125mM DTT) and boiled 5 minutes. Prior to loading, the gel 

composed of a 3.8% acrylamide stacking gel (750mM Tris-HCl, pH 8.5; 0.075% SDS; 

3.8% acrylamide; 0.12% bis-acrylamide) and a I6% acrylamide resolving gel (750mM 

Tris-HCl, pH 8.5; 0.075% SDS; I6% acrylamide; 0.5% bis-acrylamide; I0.5% Glycerol) 

was pre-run at 60 volts for 30 to 60 minutes in 1X Anode buffer (200mM Tris-HCl, pH 

8.9) and 1X Cathode buffer (lOOmM Tris-HCl, pH 8.25; IOOmM Tricine). The wells of 

the gel were flushed out following the pre-run, samples were loaded and gel was 

electrophoresed at 30 volts through the stacking gel and 60 volts through the resolving gel 

till the bromophenol blue dye front reached the bottom of the gel. 

Following electrophoresis, gels were stained in 200mL IX SYPRO Orange dye 

(Molecular Probes, IX final concentration in 200mL 7.5o/o acetic acid diluted from a 

IO,OOOX concentrate) for IO to 40 minutes, destained 30 minutes in IOOmL 7.5o/o acetic 

acid and detected through a SYPRO orange filter using an excitation wavelength of 305 

nm. Gels were photographed by the Chemilmager 4400 gel documentation system then 

incubated in a Coomassie blue solution overnight at room temperature, destained in I Oo/o 

methanol, photographed under normal light and dried between sheets of cellulose for 

preservation. 
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Construction and validation of a Synechococcus 7942 

genomic SELEX library 

3.1 Introduction 

This chapter describes the theory and methodology used to create and validate the 

genomic SELEX library composed of Synechococcus 7942 genomic DNA sequences, 

which was used to identify RNA sequences recognized by the Synechococcus 7942 

RNA-binding protein, RbpA (RNA-binding protein A). Sections 3.2 and 3.3 discuss the 

theory and the results, respectively, involved in the creation ofthe Synechococcus 7942 

genomic SELEX library. Sections 3.4 and 3.5 deal with the theory and the results, 

repectively, involved in validation of the Synechococcus 7942 genomic SELEX library to 

ensure that the library is a sufficient representation of the Synechococcus 7942 genome. 

3.2 Construction of a Synechococcus 7942 genomic SELEX library: Theoretical 

Outline 

A genomic SELEX library is comprised of a pool of dsDNA molecules 

individually composed of both fixed and non-fixed (genomic) nucleic acid sequences. 

The non-fixed portion is located in the middle of each molecule and refers to the 

multitude of different DNA sequences copied from the genome of the organism of 

interest. It is this non-fixed or genomic sequence portion that contains the nucleic acid 

sequence ultimately recognized by the nucleic acid binding protein. The fixed portions 

are located at both ends of each library molecule. The identity of these fixed nucleic acid 

sequences enables one to transcribe, reverse-transcribe and PCR amplify the library, 

necessary steps in the SELEX procedure. To create a genomic SELEX library, genomic 

DNA isolated from the organism of interest is first copied and the product generated is 

then manipulated by transcription, reverse-transcription and PCR amplification in an 

effort to isolate molecules with specific fixed sequences at either end. Once generated, the 
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genomic SELEX library must then be validated to ensure that it sufficiently represents the 

genome of the organism of interest. This section discribes the protocol (outlined in Figure 

3.1) developed by Singer et al., (1997) that I used to create a Synechococcus 7942 

genomic SELEX library. 

3.2.1 Step 1: First-strand extension 

The frrst step in construction of the Synechococcus 7942 genomic SELEX library 

is copying the Synechococcus 7942 genome. This is accomplished by extension of the 

partially degenerate primer Aran (Table 2.1) by the Klenow fragment of E. coli DNA 

polymerase following hybridization of the primer to template (genomic) DNA, a 

procedure termed "frrst-strand" extension. The Aran primer consists of a 16 nucleotide 

fixed "A" sequence at the 5' end and a nine nucleotide single-standed DNA random 

sequence located at the 3' end of the molecule. During frrst-strand extension, Aran 

molecules hybridize to every nine-nucleotide sequence within the genome via the 

degenerate portion of the primer. Following hybridization, the 3' end of the primer is 

extended by Klenow enzyme in the reaction mixture (Figure 3.2, reaction 2). In addition 

to extension of hybridized Aran primer during the first-strand extension reaction, another 

extension product is generated by intra-strand hybridization of template strands to 

themselves (Figure 3.2, reaction 1). However, only Aran extended products will 

ultimately be used to prepare the genomic library. 

3.2.2 Step 2: Purification of first-strand extension product 

Excess Aran primer molecules that are not extended during frrst-strand extension 

are removed by filtration (Singer et al., 1997). This procedure is required because in the 

next step (second-strand extension) a different primer, Bran, is used instead of Aran. The 

presence of excess Aran primer molecules would interfere with Bran extension by acting 

as a competitor for extension by Klenow enzyme. 
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Figure 3.1. Flow chart describing the steps used to create a Synechococcus 7942 genomic 

SELEX library. The section that explains each corresponding step of the procedure is 

indicated at left. 
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Figure 3.2. Schematic diagram of (A) the mechanism and (B) the ssDNA products 

generated in the first and second strand extension reactions. All possible reactions and 

their corresponding products are shown. (1) Intra-strand genomic reaction generating 

ssDNA lacking any fixed primer sequences. (2) Primer extension of genomic DNA 

(green) generating ssDNA product with the A fixed sequence (red) at the 5' end followed 

by a length of genomic sequence (as indicated). (3) Aran primer extension of synthesized 

DNA containing the A sequence at the 5' end generating ssDNA product flanked by the 

A sequence at the 5' end and complementary A ( cA) sequence (pink) at the 3' end. ( 4) 

Primer extension of genomic DNA generating ssDNA product with the B fixed sequence 

(yellow) at the 5' end followed by a length of genomic sequence. (5) Bran primer 

extension products of synthesized template containing the A sequence at the 5' end, the 

ssDNA products have genomic sequence flanked by the B sequence at the 5' end and the 

cA sequence at the 3' end. Note that reactions I and 2 occur during first-strand extension 

synthesis, and reactions I, 3, 4, and 5 occur during second-strand extension synthesis. 
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3.2.3 Step 3: Second-strand extension 

The second-strand extension reaction is performed using the partially degenerate 

primer Bran (Table 2.1) that, like Aran, consists of a fixed sequence at the 5' end of the 

molecule ("B" sequence) and a random sequence within the nine nucleotide positions on 

the 3' end ofthe molecule. The purpose ofthe second extension reaction is to introduce a 

second fixed sequence on the opposite 5' end of the Aran extended products generated by 

first-strand synthesis, thereby creating molecules with Synechococcus 7942 genomic 

DNA sequences flanked by two different fixed sequences. Second-strand extension 

reactions generate five possible products as shown in figure 3.2. The first results from 

intra-strand hybridization as before (number 1 ). The second and third types of products 

result from the hybridization of Aran primers not removed by filtration to either genomic 

DNA (number 2) or to Aran primer extended products of the first-strand extension 

reaction (number 3). The fourth type of product is the result of Bran primer hybridization 

to genomic DNA (number 4). The fifth type corresponds to Bran primer extended ssDNA 

generated upon hybridization to Aran extended products of first-strand extension (number 

5). The size of these products is dependent on the distance between the location of the 

sequence complementary to the random portion of the Bran primer and the 5' end of the 

molecule. This extension event generates ssDNA with the B fixed sequence at the 5' end 

and the complementary A ( cA) sequence at the 3' end and constitutes the desired product 

of second-strand extension reactions. 

3.2.4 Step 4: Purification of second-strand extension product 

Once the Synechococcus 7942 genome is theoretically copied as a result of the 

first and second strand extension reactions, ssDNA extension products of a specific size 

must be separated from the genomic DNA template. Purification and size fractionation is 

achieved using denaturing urea polyacrylamide gel electrophoresis (PAGE), and 
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subsequent electroelution into a suitable buffer. In this way the molecular size of the 

genomic SELEX library and thus the length of Synechococcus 7942 genomic sequence 

located in the middle of each library molecule is selected. 

3.2.5 Step 5: PCR amplification of second-strand extension product 

After purification via electroelution, the ssDNA second-strand extension products 

are amplified by PCR utilizing primers T7A and B (Table 2.1) (Figure 3.3). The T7A 

primer contains the "A" sequence of the partially degenerate primer Aran at its 3' end, 

and a T7 RNA polymerase promoter at the 5' end. The B primer is composed ofthe "B" 

sequence of the other partially degenerate primer Bran. Amplification by PCR is 

necessary for three reasons. First, PCR amplification converts ssDNA to dsDNA and 

generates sufficient product that analysis by agarose gel electrophoresis is possible. 

Purification of the various sized second strand extension products cannot be verified 

directly due to the minute amount of ssDNA generated by the Klenow enzyme extension 

reaction. Second, PCR amplification selects against two unwanted ssDNA byproducts of 

the second strand extension reaction. Of the five ssDNA molecules produced by second­

strand extension reactions (Figure 3.2), only those that contain the "complementary A" 

("cA") or "B" sequences at both ends ofthe molecule are amplified (Figure 3.2, numbers 

3 and 5) That is, it is unlikely that PCR can amplify molecules that contain only the "A" 

or "B" sequence at one end of the molecule (Figure 3.2, numbers 2 and 4). Third, 

introduction of a T7 promoter by the T7 A primer allows an RNA copy of the library to be 

generated via a transcription reaction with T7 RNA polymerase. The purpose of creating 

the Synechococcus 7942 genomic SELEX library is to identify the nucleic acid binding 

sequences of an RNA-binding protein (RbpA), therefore, transcription of the library is 

necessary. 
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Figure 3.3. Schematic diagram of the two second-strand extension products that can be 

amplified by PCR with the T7 A and B fixed primers. (A) Second-strand extension 

products composed of genomic DNA (as indicated) surrounded by the complementary A 

( cA) (pink) and B (yellow) fiXed sequences are amplified by primers T7 A and B. The 

T7 A primer consists of two parts. One part (green) contains most of the T7 promoter 

(bold), the other part is the A sequence (red) which contains 3 bases on the 3' end ofthe 

T7 promoter and hybridizes to the A primer used in the Klenow enzyme extension 

reactions. (B) Second-strand extension product containing cA and A fixed sequences are 

recognized by the T7 A primer, and will be amplified to generate dsDNA products with 

the T7 A sequence at both ends. 
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3.2.6 Step 6: Purification of dsDNA PCR amplified second-strand extension product 

Column chromatography using a Qiaquick DNA purification column (Qiagen) 

was employed in purification of dsDNA following amplification by PCR. This step is 

necessary to remove excess dNTPs, enzyme and buffer components from the solution 

because these components may potentially interfere with the transcription reaction used in 

the next step of library construction. 

3.2.7 Step 7: Transcription ofPCR amplified second-strand extension product 

The next step in library construction is a conversion ofDNA to RNA in an effort 

to select molecules that contain the fixed sequences T7 A and B. This conversion is 

accomplished by T7 RNA polymerase transcription initiated at the T7 promoter located 

within the T7 A primer sequence (Figure 3.4, reaction A). This step in itself does not 

allow the selection of T7 AlB molecules because both types of molecules generated by 

PCR amplification in step 5 can serve as templates for transcription due to the existence 

of at least one T7 promoter in each type of molecule (Figure 3.4, reaction B). However, 

conversion of RNA back to DNA (eDNA) by reverse-transcription in the next step does. 

3.2.8 Step 8: Purification ofRNA transcript 

RNA molecules generated by the transcription reaction are purified from the DNA 

template in the reaction mixture first by degrading the DNA in solution via a DNase 

digestion reaction, then by the use of a column chromatographic purification strategy 

designed to retain only RNA molecules (RNeasy purification system, Qiagen). 

3.2.9 Step 9: Reverse-transcription of purified RNA 

In this reaction, (Figure 3.5) RNA is converted into eDNA by use of reverse 

transcriptase and the T3B primer (Table 2.1). This primer contains the "B" sequence at 

the 3' end of the molecule and a 26 nucleotide extension at the 5' end containing a T3 

promoter. The incorporation of the T3 promoter enables each library molecule to be 
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Figure 3.4. Transcription of PCR amplified second-strand extension products. (A) The 

dsDNA synthesized molecules that contain sequences T7 A and B at each 5' end 

respectively are transcribed by T7 RNA polymerase from the T7 promoter (bold) located 

within the T7 A primer sequence. The RNA transcript is composed of the partial A 

sequence (pt-A, the sequence downstream of the promoter), genomic sequence (black 

line) and the complementary B (cB) sequence. (B) The dsDNA synthesized molecules 

that contain genomic sequence flanked by T7 A fixed primers at both ends give rise to 

RNA molecules that contain genomic sequence flanked by partial-A (pt-A) and cT7 A 

sequences. Colour coding is the same as that in figure 3.3. 
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Figure 3.5. Schematic diagram of the reverse-transcription reaction used to select 

molecules containing the complementary B sequence. (A) RNA molecules with partial A 

(pt-A) and complementary B (cB) sequences are reverse-transcribed with the T3B primer, 

which is composed of the B sequence at the 3' end (yellow) of the molecule and a 26 

nucleotide extension containing the T3 promoter (bold) at the 5' end (grey). The product 

is single-stranded complementary DNA (eDNA) containing the T3B sequence at the 5' 

end and the partial complementary A (pt-cA) sequence at the 3' end. (B) RNA molecules 

with pt-A and cT7 A sequences are not reverse-transcribed because the T3B primer does 

not hybridize to the 3 'end of the molecule. Colour coding is the same as that in figure 3.3. 
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transcribed twice, thereby increasing the number of RNA sequences generated by 

transcription of the library by a factor of two. Reverse-transcription with the T3B primer 

enables a selective conversion of RNA molecules that exclusively contain the 

complementary B ( cB) sequence at the 3' end to eDNA. Therefore the only product of the 

reverse-transcription reaction should be single-stranded eDNA molecules with the T3B 

primer sequence at the 5' end and a portion ofthe cA sequence at the 3' end. 

3.2.10 Step 10: The second and final PCR amplification step 

The fmal step involved in creation of the Synechococcus 7942 genomic SELEX 

library is another PCR amplification. In this step, single-stranded eDNA generated by 

reverse transcription in step 9 is converted to double-stranded DNA by the use of the T7 A 

and T3B primers (Figure 3.6). The fmal product is a library of dsDNA molecules that 

contain Synechococcus 7942 genomic DNA sequences flanked by sequences T7 A and 

T3B. 

3.3 Construction of a Synechococcus 7942 genomic SELEX library: Outcome 

3.3.1 Step 1: First-strand extension 

First-strand extension reactions were carried out as described in sections 2.9 and 

3.2.1. To analyze the efficiency of the reaction, newly-synthesized products were labeled 

by incorporation of digoxygenin-dUTP (DIG-dUTP) (section 2.9). This method of 

labeling was used because the minute amount of product generated by first-strand 

extension would not be detected by direct staining methods following separation by gel 

electrophoresis. Colorimetric detection of DIG-dUTP labeled frrst-strand extension 

product following separation by urea-PAGE electrophoresis and transfer to nylon 

membrane revealed that both intra-genomic and extended products were synthesized 

when either Aran or Bran primers were used (Figure 3. 7 A). The relative amounts of Aran 

extension product (E) compared to that of the intra-genomic product (I) was estimated by 
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Figure 3.6. PCR amplification used to convert single-stranded eDNA to dsDNA in the 

fmal step of library construction. The eDNA preparation is composed of molecules 

containing the partial complementary A sequence (pt-cA) at the 3' end and the T3B 

sequence at the 5' end. A PCR amplification reaction utilizing primers T7 A and T3B 

generates the fmal product, the Synechococcus 7942 genomic SELEX library, composed 

of genomic sequence flanked by fixed sequences T7 A and T3B. Colour coding is the 

same as that in figure 3.3. 
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Figure 3.7. Analysis of the first-strand extension reaction synthesis by DIG-dUTP 

labelling. (A) Aliquots (2uL and 5uL) of the first-strand extension reaction product 

generated in the absence of primer (lanes 1 and 2), in the absence of Klenow DNA 

polymerase (lanes 3 and 4), with Bran primer only (lanes 5 and 6) and Aran primer only 

(lanes 7 and 8) were separated in an 8M urea/4% polyacrylamide gel. Following 

separation, DNA was transferred to nylon membrane by electrophoretic transfer and the 

DIG label was detected colorimetrically. The location of intra-genomic (I) and primer 

extended (E) products are indicated on the right. (B) Serially diluted aliquots (as 

indicated) of DIG-dUTP labeled extension reactions were dot blotted onto a nylon 

membrane and the DIG label was detected colorimetrically. Densitometric quantification 

(by Optiquant analysis software) of the intensity of each colorimetric signal (dot) was 

used to compare the amount of extension product generated in the presence of a primer 

(Aran or Bran) with that in the absence of a primer. 
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dot blot analysis (Figure 3. 7B). Densitometric analysis revealed that approximately 20 

fold and 14 fold more product was generated in the presence of Aran and Bran 

respectively, than in the absence of either primer. These results indicated that the first­

strand extension reaction was successful in creating a significant amount of primer 

extended product. The process was therefore repeated in the absence of DIG-dUTP to 

synthesize ssDNA for the next step of library construction. 

3.3.2 Step 2: Purification of first-strand extension product 

Following first-strand extension, molecules less than 1 OkDa including non­

extended Aran primer molecules (8.2kDa) were removed by filtration. Filtration was 

performed twice to maximize the removal of free primer. To assess the performance of 

two rounds of filtration, samples of retentate (the first-strand reaction) and filtrate 

(molecules less than 1 OkDa) were examined by agarose gel electrophoresis (Figure 3.8). 

Filtration of molecules less than 1 OkDa in size was qualitatively evaluated by a reduction 

in band intensity corresponding to the primer (designated by arrow) in samples from the 

first-strand reaction and retentate following each filtration. In addition to the reduction in 

band intensity in the retentate, a band corresponding to primer was evident in the filtrate 

as was expected. These results indicated that the vast majority of non-extended primer 

was removed from the first-strand product and thereby should not interfere considerably 

in the next step of library construction. 

3.3.3 Step 3: Second-strand extension 

Second-strand extension utilized the Bran oligonucleotide as the pruner and 

Microcon-1 0 filtered first-strand extension product as the template. The efficiency of this 

reaction was not analyzed but the ability of Bran to be extended by Klenow DNA 

polymerase was similar to that of Aran as stated in section 3.3.1 and shown in Figure 

3.7A. 
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Figure 3.8. The effectiveness of Microcon-1 0 filtration in removing excess Aran primer 

from the first-strand synthesis reaction. Samples corresponding to 1.3% total volume of 

Aran extension product (lane 1), 2.7% total volume of filtrate 1 (lane 2) and filtrate 2 

(lane 4), and 1% of retentate 1 (lane 3) and retentate 2 (lane 5) were separated by 

electrophoresis in a 1.5% agarose gel. The band corresponding to non-extended Aran 

primer and extended products less than 10kDa in size is indicated (arrow). The location of 

100bp dsDNA ladder molecules used as size markers are indicated. 
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3.3.4 Steps 4 and 5: Purification and PCR amplification of second-strand extension 

product 

Second-strand extension products were purified by electroelution of gel slices 

following separation by urea-PAGE. Three portions of the urea-PAGE gel containing 

second-strand extension product corresponding to the region between 3-4 em, 4-5 em and 

5-6 em from the top of the gel (Figure 3.9A) were excised, electroeluted, and DNA was 

purified and PCR amplified in a reaction containing primers T7 A and B (Figure 3.3A). 

Agarose gel electrophoretic analysis of the PCR amplified product revealed that a range 

of ssDNA sizes were recovered from each gel section (Figure 3.9B). That is, PCR 

amplification of ssDNA from gel slices 3-4 em, 4-5 em and 5-6 em generated dsDNA in 

the size range of 141-195 bp, 110-154 bp and 91-141 bp respectively. The PCR amplified 

second-strand extension product from the 5-6 em gel slice was chosen for construction of 

the library due to its size range. The genomic sequence portion of a library of 91-141 bp 

dsDNA fragments ranges in size between 38 bp and 88 bp. RNA expressed from this 

library is short enough that any RNA consensus sequence recognized by RbpA would be 

present, and long enough to form the necessary RNA secondary structures involved in an 

interaction with RbpA. 

3.3.5 Step 6: Purification of dsDNA PCR amplified product 

The PCR amplified second-strand product was purified prior to the next step in 

library construction by phenol/chloroform extraction and ethanol precipitation as 

described in Materials and Methods. Purification was required because it was necessary 

to remove excess dNTPs, enzyme and buffer components to prevent complications in the 

remaining steps of library construction. 

3.3.6 Step 7: Transcription ofPCR amplified second-strand extension product 

The PCR amplified second-strand extension product served as a template for 
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Figure 3.9. Purification of second-strand extension reaction product. (A) Schematic 

diagram of the strategy. The second-strand extension reaction product was separated in an 

8M urea/7% acrylamide gel of length 6 em as indicated. Following electrophoresis, 

segments ofthe gel corresponding to regions 3-4 em, 4-5 em and 5-6 em from the top of 

the gel were excised (dotted line), electroeluted and the DNA reaction product was 

purified. Each gel segment should correspond to a particular size of DNA fragment as 

shown. (B) Analysis ofthe product recovered from gel segments 5-6 em (lane 1), 4-5 em 

(lane 2) and 3-4 em (lane 3) following PCR amplification with T7 A and B primers and 

separation on a 2% agarose gel. The location of 100 bp DNA ladder molecules used as a 

marker are indicated at left. 
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transcription by T7 RNA polymerase. The transcription reaction was successful as 

evidenced by a comparison of band intensities of the transcription product and 47 ng of 

template (the amount loaded in the transcription lane) upon agarose gel electrophoresis 

(Figure 3.1 OA). That is, the amount of nucleic acids (DNA) in the template only lane is 

considerably less than the amount of nucleic acids (DNA and RNA) in the transcription 

reaction sample lane, thereby providing evidence that the transcription reaction had 

worked. 

3.3.7 Step 8: Purification ofRNA transcript 

RNA was purified with the RNeasy purification system (Qiagen) as described in 

sections 2.5 and 3.2.8. In this protoco4 DNA template was removed from the 

transcription reaction solution by RQl DNase (Promega) degradation followed by 

RNeasy column chromatography whereby RNA is retained and DNA is not. The 

effectiveness of the purification in terms of removing the DNA template from the RNA 

preparation could not be assessed directly after this step because I could not conveniently 

determine the relative amount of RNA versus DNA in the purified preparation. Therefore, 

as described in section 3.3.9, I had to wait until the fmal step of library construction to 

assess the efficiency of this important purification step. 

3.3.8 Step 9 : Reverse-transcription of purified RNA 

Purified RNA was converted into eDNA by reverse-transcription. The primer used 

in the reaction was T3B. RNA molecules that contained the cB sequence at the 3' end of 

the molecule would exclusively serve as a template for reverse-transcription. In addition 

to selection of RNA molecules containing the cB sequence, the T3B primer incorporated 

a T3 promoter into the end of the molecule opposite to that of the T7 promoter. This 

alteration was made with the intention of increasing the diversity of RNA molecules 

generated by transcription of the genomic SELEX library. In this way, both T7 and T3 
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Figure 3.10. Theoretical and experimental size range ofthe transcribable Synechococcus 

7942 genomic SELEX library. (A) Verification that transcription of the PCR amplified 

second-strand extension product was successful. The same amount of DNA template 

(47ng) as in the transcription sample (lane 2) was loaded in a template only control (lane 

1) and electrophoresed in a 2% agarose gel. (B) Analysis by 2% agarose gel 

electrophoresis of the dsDNA Synechococcus 7942 genomic SELEX library following the 

fmal PCR amplification step. The estimated size range of library molecules is shown on 

the right. A table displaying how the theoretical size range of library molecules was 

generated is also included. (C) A graphical representation of the genomic SELEX library. 

The length of each portion of a dsDNA library molecule is given in nucleotides. Colour 

coding is the same as that in figure 3.3. The location of IOObp DNA markers is given on 

the left. 
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RNA polymerase could be used to transcribe the library thereby increasing the diversity 

of possible RNA sequences generated from the library by a factor oftwo. 

3.3.9 Step 10: The second and final PCR amplification step 

The fmal step involved in creation of the Synechococcus 7942 genomic SELEX 

library was PCR amplification. In this step, single-stranded eDNA generated by reverse 

transcription was converted to double-stranded DNA by PCR amplification utilizing 

primers T7 A and T3B. Agarose gel electrophoretic analysis following PCR amplification 

revealed that the library had an experimental size range of 105bp to 169bp (figure 3.10B). 

This range was comparable with that of the theoretical expected size range of 116 to 166 

bp. The fmal product was a dsDNA library composed of molecules that contain 

Synechococcus 7942 genomic DNA sequences ranging from 38 to 88 nucleotides in 

length flanked by fixed primer sequences T7A and T3B (Figure 3.10C). 

At this point in library construction, I was able to use PCR to qualitatively 

examine the efficiency of the RNA purification step. As described in section 3.3.7, 

following transcription the RNA product was subjected to DNase digestion for the 

purpose of removing the DNA template. Degradation of the template was important 

because I wanted all nucleic acid material used in creation of the library to "pass through" 

an RNA intermediate for the purpose of selecting those molecules that contain both T7 A 

and T3B primer sequences. Therefore I qualitatively assessed the relative amounts of 

RNA and DNA in the purified RNA preparation by comparing the amount of product 

generated by RT-PCR versus PCR using the purified RNA preparation as template. The 

amount of RNA present was detected by RT-PCR whereas the amount of contaminating 

DNA was detected by PCR amplification alone without a reverse transcription step. The 

amount of RNA and DNA was comparable by this method because one RNA molecule 

will generate one eDNA molecule by reverse transcription. 
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Once amplified, the relative amount ofRNA and DNA was determined by agarose 

gel electrophoresis of the "real-time" amplification products (Figure 3.11). After three 

DNase digestions and subsequent RNA purifications, trace amounts of DNA still 

remained in solution as evidenced by a band (lanes 9 and 11). Therefore I had to 

conclude that removal ofDNA template was not 100% effective. However, the amount of 

contaminating DNA was negligible compared to the amount of RNA. A strong signal 

(band) was produced following only 15 rounds ofPCR amplification ofthe RT product 

(lane 6). In contrast an additional 10 to 15 rounds (25-30 rounds in total) of PCR 

amplification without the RT step was required to generate a band of similar intensity, 

thereby indicating that 210 or approximately 1000 fold less nucleic acids were present in 

the PCR sample generated without an RT step compared to the RT-PCR sample. 

Therefore I concluded that the vast majority of nucleic acid molecules in the purified 

RNA preparation was RNA, and that most genomic SELEX library molecules are of the 

T7A/T3B type because these molecules had passed through the RT-PCR step employed 

in library construction. 

3.4. Validation of the Synechococcus 7942 genomic SELEX library by assessing the 

representation of the rbpB gene : Theory 

Prior to use of a genomic SELEX library to identify the sequence specificity of a 

nucleic acid binding protein, it must be ensured that the library is sufficiently 

representative of the genomic sequences from the organism used to create the library. If 

the library does not contain a good representation of the genome, any results would be 

suspect due to the lack of all possible genomic sequences. Validation of a genomic 

SELEX library is accomplished by assessing the representation of a portion of the 

genome in the library (Singer et a!., 1997). If a particular sequence is sufficiently 

represented, then it can be concluded that other sequences from the entire genome should 
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Figure 3.11. A qualitative assessment of the efficiency of RNA purification by "real­

time" PCR and RT-PCR. The amount of contaminating DNA template (detected by PCR 

amplification) and RNA transcript (detected by RT-PCR amplification) in an RNA 

preparation was compared by 2% agarose gel electrophoresis. Samples were taken from 

R T-PCR (odd numbered lanes) and PCR reactions (even numbered lanes) after a 

specified number of cycles as indicated (5, 10, 15, 20, 25, 30). The size of the PCR 

amplified band in the RT-PCR product is 25 bp larger than that of the PCR product due to 

the identity of the template molecules in each reaction. The RNA that served as the 

template for reverse-transcription and PCR amplification contains fixed sequences A and 

T3B whereas the DNA contaminant that served as the template for PCR contains fixed 

sequences A and B. The T3B sequence is 25 nucleotides longer than the B sequence. The 

location of 100 bp DNA molecules used as size markers are indicated at left. 
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be as equally well represented. 

To determine if a particular sequence is located within the library, those molecules 

containing the sequence of interest must first be isolated from the rest of the library. A 

simple method of isolating dsDNA molecules based on sequence is by nested PCR 

amplification. This method selectively amplifies and thus effectively isolates DNA 

molecules by the use two (or more) overlapping primers in successive polymerase chain 

reactions. Once isolated, the nucleic acid sequence of molecules containing the particular 

genomic sequence can be determined. To validate the Synechococcus 7942 genomic 

SELEX library, a portion of the genome corresponding to the rbpB gene was analyzed for 

its representation in the library. 

3.4.1 The nested-PCR strategy 

The region adjacent to nucleotide 335 of the rbpB gene was chosen as the 

sequence of interest (Figure 3.12) due to the presence of a Sac! restriction endonuclease 

site that could be used in cloning. Selective amplification was achieved by the use of 

nested primers rbpB1 and rbpB2 (Table 2.1) which hybridize to nucleotides 354-378 and 

335-364 of the rbpB gene respectively. The primer rbpB2 overlaps rbpB1 by 11 

nucleotides and recognizes 19 nucleotides upstream of the rbpB1 primer. In this way, 

molecules containing at least nucleotides 335 to 378 ofthe rbpB gene are amplified twice 

(60 rounds of amplification in total). The chance of amplification of non-rbpB gene 

sequences is greatly decreased by employing two successive PCR reactions specific to the 

rbpB gene. In addition, nested-PCR creates a vast excess of these molecules in 

comparison to that of the rest of the library and therefore essentially isolates these 

molecules from the library. 

Nested PCR amplification was performed in two steps. In the first step, the 

primers T7A and rbpB1 (Figure 3.13A) were used. The rbpB1 primer should hybridize to 
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Figure 3.12. Region of the rbpB gene used to validate the Synechococcus 7942 genomic 

SELEX library. Nucleotides 380 to 290 (3' to 5' orientation) of the 553 bp nucleotide 

sequence containing the rbpB gene (Genbank file accession number L25435, Dolganov 

and Grossman, 1993) (ser0515) are shown. Nested PCR primers rbpBl (blue) and rbpB2 

(blue and orange) hybridize to regions of nucleotide sequence from 378 to 354 and 364 to 

335, respectively. Note that the region of primer overlap is indicated by identical 

coloration. The Sac! site is boxed. Numbers indicate the location of important nucleotides 

referred to above. 
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I CGCAGTTGGCGACCAAACCACTCAGJ 

rbpB2 !AAACCACTCAG§ GCCATTGAGCTCGCTGAT] 
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members ofthe SELEX library that contained nucleotides 354 to 378 ofthe rbpB gene; 

and, the T7 A primer should hybridize to the fixed sequence present at the other end of the 

molecule. PCR amplification should generate dsDNA molecules with the rbpB 1 and T7 A 

primer sequences located at opposite ends of the molecule. These PCR products were 

used as the template in a second PCR amplification reaction in which the primers 

T7 A(BamHI) and rbpB2 were used (Figure 3.13B). The T7 A(BamHI) primer should 

hybridize to the T7 A sequence and incorporate a BamHI site to be used in cloning; the 

rbpB2 primer should hybridize to molecules that contain nucleotides 335 to 364 of the 

rbpB gene of which contains a Sacl restriction site also used in cloning. In this way, the 

second rbpB gene specific primer (rbpB2) overlaps a portion of the first (bases 364 to 

354) and specifically recognizes 19 bases upstream ofthe frrst (bases 353 to 335), thereby 

selecting and amplifying the sequence twice. The product of the second amplification 

reaction should be dsDNA molecules with the T7A(BamHI) sequence at one end and the 

rbpB2 sequence at the opposing end that contain BamHI and Sacl restriction 

endonuclease sites respectively, to be employed in cloning. 

3.4.2 Cloning nested PCR products and identification of potentially recombinant 

clones 

The products of nested PCR amplification were cloned into pUC19 using the 

BamHI and Sac! restriction sites as shown in figure 3.14. Cloning of fragments into 

pUC19 and subsequent transformation of ligation product into E. coli JM109 allowed 

detection of recombinant plasmid containing clones by blue/white selection (section 2.6). 

however, blue/white selection alone is not sufficient to identify recombinant clones due to 

the false positive results that can be generated. Therefore, since dideoxynucleotide 

sequencing is both expensive and time consuming, I devised a quick and easy method to 

identify potentially "positive" result generating clones, that is, plasmids that have an 
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Figure 3.13. Schematic diagram of the nested PCR amplification strategy used to verify 

representation of a portion of the rbpB gene in the SELEX library. (A) In the first PCR 

step, primers rbpB 1 (blue) and T7 A (green with A sequence in red) were used to amplify 

library molecules containing Synechococcus 7942 genomic sequence complementary to 

the rbpBl nucleotide sequence (nucleotides 378 to 354, refer to Figure 3.12) and the T7A 

primer sequence. The T3B fixed sequence which should be present in all library 

molecules is shown in grey and yellow (B sequence). (B) In the second amplification step 

primers T7 A(BamHI) and rbpB2 were used. The 5' end of rbpB2 (blue) hybridizes to the 

3' complementary sequence of rbpB 1 (light blue) and the 3' end of rbpB2 (orange) 

hybridizes to the sequence upstream of that recognized by rbpB1. The other end of the 

molecule is PCR amplified via the T7 A(BamHI) primer (sequence different to that of 

T7 A is shown in purple) which introduces a Bam HI restriction endonuclease site (as 

indicated) in the amplified products. The naturally occuring Sacl restriction endonuclease 

site located in the rbpB is indicated. Complementary nucleotide sequences are shown in a 

lighter shade ofthe same colour. 
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r---
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3' 4---------------------------------------~~AGTCGCTCGAGTTACC3GACTCACCA3 5' 
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Figure 3.14.. Cloning of nested PCR amplification products. A representative PCR 

amplification product containing a portion of the rbpB gene is cloned into pUC19 by use 

of the BamHI restriction site located at the 5' end of the T7 A(Bamlll) primer and the Sac! 

site located in the rbpB2 primer. Colour coding is the same as in figure 3.13. 
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insert and plasmid preparations that contain a single recombinant plasmid. 

The first criterion for "positive" clones is obvious because one does not want to 

sequence non-recombinant plasmids. The cloning process can generate non-recombinant 

plasmids or plasmids that contain an incorrect insert, and I did not want to sequence 

numerous plasmids that would not provide any data. The second criterion of a "positive" 

clone is recombinant purity because when colonies are chosen to inoculate a liquid 

culture of cells for plasmid isolation, a single colony may contain two strains with 

different recombinant plasmids. This would pose a problem during sequence analysis 

because the existence of more than one recombinant insert could lead to confusing results. 

Two methods can be employed to identify potentially "positive" clones: restriction 

enzyme analysis and PCR analysis. Plasmids can be digested with the restriction enzymes 

Hindlll and EcoRI because restriction sites recognized by these enzymes flank the insert 

within the multiple cloning site of pUC19 (Figure 3.14). To analyze plasmids by PCR 

(Figure 3.15), two standard sequencing primers that flank the multiple cloning site could 

be used. However, for the purpose of using PCR, both primers were modified so that the 

melting temperature for each primer was approximately 60°C (Elongated Forward and 

Elongated Reverse primers, Table 2.1). A relatively high melting temperature is important 

in PCR amplification to minimize the likelihood of non-specific primer-template 

interactions which lead to the amplification of undesirable sequences. 

An ideal Synechococcus 7942 genomic SELEX library would contain molecules 

whose genomic sequence portion is in a staggered arrangement such that there would 

exist one molecule per base pair of the genome. Therefore, upon nested-PCR analysis of 

the rbpB gene, molecules would be identified that contain each position downstream of 

nucleotide 335 ofthe rbpB gene in a staggered arrangement (Figure 3.16). 
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Figure 3.15. Diagram of the PCR amplification strategy used to identify potential 

positive clones prior to sequencing. The multiple cloning site of plasmid pUC19 

containing a representative nested rbpB PCR insert is shown. The insert was cloned via 

the BamHI site located in the T7 A(Bamlll) primer sequence and the Sac] site located in 

the rbpB2 primer sequence. The cloning site is flanked and thus can be PCR amplified (as 

denoted by arrows) using the Elongated Forward (25mer) (green boxed outline) and 

Elongated Reverse (28mer) (red boxed outline) primers. Colour coding is the same as in 

figure 3.13. 
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Figure 3.16. Schematic diagram of the results generated by nested-PCR analysis of an 

ideal Synechococcus 7942 genomic SELEX library. There would exist molecules that 

contain, in a staggered arrangement, the nucleotide sequence upstream and including 

nucleotide 334 ofthe rbpB gene (figure 3.12). Colour coding is the same as that in figure 

3.13. 
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5 'fAGCTCGCTGAiAGCAGc{ccGCATCGTCGTCCTcccfTAGTGAGTCGTfTGGATC4 3' 
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3.5 Validation of the Synechococcus 7942 genomic SELEX library by assessing the 

representation of the rbpB gene: Outcome 

3.5.1 Nested-PCR amplification and identification ofpotentially recombinant 

clones 

Nested PCR amplification of the Synechococcus 7942 genomic SELEX library 

generated dsDNA in the range of73bp to 107bp in size (Figure 3.17A). This PCR product 

size range was consistent with the expected size range of 74bp to 117bp. Theoretically, 

the smallest PCR product would be generated from a library molecule that contains the 

complementary rbpB2 sequence directly adjacent to T7 A and the largest PCR product 

would be generated from a library molecule with the largest genomic segment (88bp) that 

contained the complementary rbpB2 sequence located adjacent to T3B. 

Nested PCR products were cloned into plasmid pUC19 and positive recombinant 

clones were identified using the two procedures as described in section 3.4.2. The 

restriction enzyme digestion method did not prove to be useful in detecting the existence 

and confirming the purity of an insert in a plasmid preparation due to the extensive 

smearing observed after gel electrophoresis (Figure 3.17B). The smearing of bands and 

the fact that a large amount of plasmid DNA was required to generate a questionable 

result prompted me to develop the PCR based method. Agarose gel electrophoretic 

analysis of the PCR product generated by use of the Elongated Forward and Elongated 

Reverse primers revealed that the PCR-based method was accurate in assessing the 

existence and purity of an insert in a plasmid preparation (Figure 3.17C). Non­

recombinant plasmids were identified as a PCR product of approximately 140 bp in size. 

By this method, amplified plasmids shown in lanes 6, 7, 10 and 11 were identified as non­

recombinant due to the existence of one band approximately 140bp in size and were thus 

104 



Figure 3.17. Agarose gel electrophoretic analysis used to identify true recombinant 

clones that contain nested-PCR product inserts. (A) Analysis of T7A(Bamlll)/rbpB2 

nested-PCR product. The experimental size range of PCR product as determined by use 

of Optiquant image analysis software is shown at right (arrows). (B) Identification of 

pUC19 plasmid molecules that contain inserts by agarose gel electrophoretic analysis 

following restriction endonuclease digestion with EcoRI and Hindlll. Plasmid samples 

analyzed were isolated from colonies that were blue (lane 2), blue/white (lane 3) and 

white (lanes 3 to 12) in colour with use of non-recombinant pUC19 as a standard (lane 1). 

(C) PCR amplification with Elongated Forward and Elongated Reverse sequencing 

primers ofplasmids isolated from colonies blue/white (lane 2) and white (lanes 3 to 15) in 

colour. The PCR product generated by non-recombinant pUC19 plasmid was used as a 

standard (lane 1). The location of lOObp DNA sized markers are indicated on the left side 

of each figure. 
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excluded from dideoxynucleotide sequencing. In addition, the amplified plasmid 

preparation shown in lane 4 contained more than one recombinant plasmid as indicated 

by the existence of more than one band following PCR amplification. Therefore, this 

preparation was also excluded from dideoxynucleotide sequencing. In total, 48 plasmids 

were analyzed by the PCR-based method, 25 contained a single recombinant type, 12 

contained more than one recombinant type and 11 were non-recombinant. 

3.5.2 Sequence analysis of cloned nested-PCR product 

Of the 25 plasmid preparations that were identified with a single insert, 20 were 

sequenced. Of these 20 sequences, 15 contained a portion of the rbpB gene sequence as 

listed in figure 3.18. The end-points ofthese sequences lie within nucleotides 334 to 322 

of the rbpB gene as shown in figure 3.19. In total, 8 of 13 positions (61.5%) were 

represented in a staggered arrangement within the Synechococcus 7942 genomic SELEX 

library (Figure 3.19A). Assuming that both strands of the entire genome of 

Synechococcus 7942 (5.5 x 106 bases) are as equally represented in the library as 

nucleotides 334 to 322 of the rbpB gene, the genomic SELEX library would be composed 

of3.38 x 106 different molecules. This corresponds to one library molecule per 1.6 bases 

ofthe Synechococcus 7942 genome (Figure 3.19B). 

The genomic representation in the Synechococcus 7942 genomic SELEX library 

was similar to that of other genomic SELEX libraries as listed in figure 3.19C. The 

percentage of analyzed nucleotide sequence represented in the library was comparable in 

each case. A notable difference is the length of sequence analyzed, since I analyzed the 

shortest sequence length of 13 nucleotides. The reason why a larger region of variability 

was not observed was unclear. The largest size of genomic sequence encoded by a library 

molecule was 88 bp (Figure 3.10B). Of this, the rbpB1 and rbpB2 primers hybridize to 44 

bases (taking into account the 11 nucleotide overlap of nested primers) in molecules 
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Figure 3.18. Results of sequence analysis of 15 recombinant clones containing an rbpB 

nested PCR amplified insert. The sequence of the insert is shown starting from the Sac] 

restriction site in the rbpB2 primer sequence followed by various lengths of genomic 

sequence (whjte) corresponding to nucleotides 322 to 334 ofthe rbpB gene and ending in 

the complementary T7 A(BamHI) primer sequence. The colour coding is the same as in 

figure 3.13. 
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Figure 3.19. Representation of the rbpB gene in the genomic SELEX library and a 

comparison ofthe results to that of other libraries. (A) Representation ofnucleotides 334 

to 322 ofthe rbpB gene in the Synechococcus 7942 genomic SELEX library. Each 

vertical bar represents an individual molecule whose genomic sequence portion ends in 

the specified nucleotide. (B) Calculations based on the information shown in part A. In 

total, 8 of 13 positions (61.5%) were represented in a staggered arrangement within the 

genomic SELEX library. Assuming that both strands of the entire genome of 

Synechococcus 7942 (2 x 3.5 x 106 bases) are as equally represented in the library as 

nucleotides 334 to 322 of the rbpB gene, the genomic SELEX library would be composed 

of3.38 x 106 different molecules. This corresponds to one library molecule per 1.6 bases 

of the Synechococcus 7942 genome. (C) The results of nested PCR analysis of other 

genomic SELEX libraries. 
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containing nucleotides 378 to 335 of the rbpB gene. Therefore, theoretically the longest 

possible nucleotide sequence upstream of nucleotide 334 was 44 bp (88 minus 44) and 

not 13 bp as observed. 

My analysis indicated that my genomic SELEX library is a good representation of 

the Synechococcus 7942 genome, that is, all genomic sequences and thus potential RNA 

transcripts are encoded in the library. Therefore, the library is suitable to identify RNA 

aptamers recognized by RNA-binding protein A (RbpA) via the SELEX method as will 

be described in Chapter 4. 
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Isolation of H~bpA RNA aptamers by genomic SELEX 

4.1 Introduction 

The SELEX technique is used to select nucleic acid molecules that possess a 

desired characteristic such as an ability to be bound by a nucleic acid binding protein. The 

procedure involves multiple rounds ofthe same basic steps. First a library of nucleic acid 

molecules are incubated with the protein of interest, those molecules that are bound by 

the protein are captured and retained, those not bound by the protein are removed. 

Nucleic acid molecules retained are amplified and become the pool used in the next round 

of selection. In principle, with each round of SELEX, true nucleic acid aptamers 

constitute a greater proportion of the pool of molecules used at the start of each round. In 

this way, an enrichment of nucleic acid sequence(s) that bind to the protein is generated 

with each round. 

4.2 The SELEX technique: strategy 

Once I had established that the Synechococcus 7942 genomic SELEX library that 

I had constructed was sufficiently representative of the entire genome, I was able to use 

the library to determine the RNA binding specificity ofH6RbpA. The SELEX procedure 

outlined in Figure 4.1 was initiated by transcription of the genomic SELEX library, and 

the resultant RNA was mixed with H6RbpA in an RNA-protein binding reaction. In the 

next step, RNA-protein complexes were isolated by Nt2-NTA metal chelate 

chromatography via the histidine tag located on theN-terminus of H6RbpA. The RNA 

was purified from the protein, reverse-transcribed and PCR amplified to generate a new 

pool of dsDNA molecules, this pool was subsequently transcribed to generate RNA for 

the next round of selection. In addition to the H6RbpA binding reaction, a control reaction 

consisting of RNA without H6RbpA was conducted as a negative control. This procedure 

was repeated 13 times to promote selection and thus identification ofRbpA cognate 
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Figure 4.1. Outline of the steps involved in the SELEX procedure. Colour coding is the 

same as in figure 3.13. 
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RNA. 

4.2.1 Step 1: transcription ofthe library 

RNA was generated for each round of SELEX by T7 RNA polymerase 

transcription of the genomic SELEX library (round I), or the PCR amplified eDNA 

generated in each round (refer to section 2.I7). 

4.2.2 Step 2: The RNA-protein binding reaction 

Selection of H6RbpA binding RNA molecules was carried out by incubation of 

RNA with H6RbpA in a protein-RNA binding reaction (section 2.I9). To select the RNA 

molecules with greatest affmity to the protein, the stringency of the reactions was altered 

in later rounds (Figure 4.2) by varying the concentration of some components of the 

binding reaction, namely the molar ratio of RNA to protein and the concentration of salt 

in the binding buffer. 

In the initial eight rounds of SELEX, reaction conditions of low stringency were 

used to promote complex formation between protein and RNA. These conditions used a 

high RNA to protein ratio (20:I) and low salt concentration (50mM) in the reaction 

buffer. A 20: I molar ratio of RNA to protein was employed because in the initial rounds 

of SELEX, the number of each library molecule was low (sequence diversity is high). In 

addition, each molecule may not constitute an equal proportion of the library, therefore a 

large amount of RNA was added to ensure that the protein has an opportunity to bind to 

any RNA sequence that it recognizes with some affmity. 

In the intermediate and late rounds of selection, the stringency of the binding 

reaction was increased substantially. In the intermediate rounds (rounds 9 and I 0), a 

25mM increase in salt concentration within the binding buffer was used, and in the late 

rounds of selection, stringency was raised by both an increase in salt concentration (to 
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Figure 4.2. Methodology and RNA-H6RbpA binding reaction conditions used in the 

various rounds of the genomic SELEX process. Note that components of the three 

SELEX RNA binding buffers (SRBB) are identical with exception of the concentration of 

NaCl and the absence of 40mM Imidazole in the buffer used in rounds 11 to 14. The ratio 

ofRNA to H6RbpA was also varied: a ratio of20:1 was used in rounds 1 to 10 and a ratio 

of 1:1 was used in rounds 11 to 14. 
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150mM) as well using equimolar amounts ofRNA. 

The remaining components of the RNA binding buffer (Figure 4.2) are based on 

the buffer used in RNA homopolymer binding analysis of RbpA (Section 2.18) initially 

described by Sugita and Sugiura (1994). Under these reaction conditions RbpA exhibits 

RNA homopolymer binding activity, however some alterations were required for the 

SELEX application. First, a sodium phosphate buffer was used instead of a Tris buffer 

because the secondary or tertiary amines found in buffers such as Tris will reduce nickel 

ions on Ni-NTA, thereby preventing efficient binding of His-tagged protein (Ausubel et 

al., 1996). Second, in rounds 1 to 10, Imidazole ( 40mM) was added to the buffer in an 

attempt to prevent non-specific interactions between negatively charged RNA and Nickel 

cations in the resin as described in the next section (Qiagen, personal communication). 

4.2.3 Step 3: Isolation ofRNA-H6RbpA protein complexes 

RNA-protein complexes formed in the binding reaction must be purified from free 

RNA and protein so only those RNA molecules bound to H6RbpA are retained. The 

method generally used in SELEX experiments uses nitrocellulose filter binding (Tuerk 

and Gold, 1990) to retain RNA-protein complexes on the filter while uncomplexed RNA 

and protein molecules pass through. In my experiments, the histidine tag present at theN­

terminus of RbpA was used to purify RNA-protein complexes by use of Nt2 -NT A 

affmity chromatography (refer to section 2.19). 

One problem with this purification strategy is the background retention of RNA, 

that is, selection of RNA molecules independent of protein by non-specific retention of 

RNA during purification. Using Nt2-NTA to select RNA-protein complexes, background 

retention of RNA is possible via an interaction between negatively charged RNA and 

positively charged Nickel ions on the resin. To minimize the potential interaction between 

RNA and the resin, a few precautions were used. First, the smallest amount of resin that 
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could be detected visually during purification (enough to bind 0.6 nmol of a 20kDa 

protein, Qiagen) was used. Second, the highest concentration of Imidazole ( 40mM) that 

would not elute H6RbpA from the resin (refer to section 2.10) was used because 

Imidazole may be helpful in preventing an interaction between RNA and the Nt2-NTA 

resin (Qiagen, personal communication). Imidazole was excluded from the binding 

buffer in rounds 11 to 14 because the RNA molecules that exist at the higher rounds of 

SELEX should be bound tightly by the protein (high affmity) and therefore non-specific, 

weak interactions with the resin should not be a factor. In addition, in rounds 10 to 14 the 

stringency of the reaction was high, thereby discouraging the formation of weak 

interactions between RNA and resin. 

4.2.4 The remaining steps in a round of SELEX 

Following purification ofRNA-protein complexes, a round ofSELEX (figure 4.1) 

was completed by purification of RNA selected in the binding reaction by use of an 

RNeasy column (Qiagen) (section 2.5). The purified RNA was then reverse-transcribed 

(section 3.2.9) and the resultant eDNA product was PCR amplified using primers T7 A 

and T3B (section 3.2.10). DNA was then purified by use of the QIAquick DNA 

purification system (Qiagen, section 2.4) and transcribed by T7 RNA polymerase to 

generate RNA for the next round of SELEX. 

4.2.5 Methods used to determine if selection is taking place 

Prior to sequence analysis of nucleic acids isolated by SELEX, it would be 

advantageous to determine if the SELEX technique is working. In this way, one could 

fmd out if selection was occuring and make adjustments as necessary to ensure selection. 

Two methods that I used to evaluate nucleic acid sequence selection are discussed below. 

The amount ofRNA isolated in the presence ofH6RbpA versus that in the absence 

ofH6RbpA can be used to indicate if selection is taking place and if RNA is being bound 
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by protein or the resin. One would expect that with each round of SELEX, the amount of 

RNA isolated in the presence ofH6RbpA would increase due to the existence of a greater 

proportion of RNA sequences that bind to the protein in the pool of RNA molecules until 

the number of bound RNA molecules equals that of H6RbpA. If RNA was isolated 

independent of protein via a specific interaction with the Nt2-NTA resin, the amount of 

RNA isolated in the presence and absence of protein would increase with each round of 

SELEX due to the selection of RNA molecules that bind to the resin. To determine the 

amount of RNA isolated with and without protein, RNA concentration was estimated 

quantitatively by spectrophotometry (section 2.5) and qualitatively by gel electrophoresis 

of "real-time" RT-PCR products. Real-time RT-PCR served as a more sensitive method 

of assessing the amount of RNA isolated from RNA-protein complexes. Comparison of 

band intensity during the course ofthe reaction can assess the relative amount ofRNA in 

the two samples, as described in section 3.3.9. 

A second method that can be used to indicate selection ofRNA sequences in the 

SELEX process is to observe the loss of a particular nucleic acid sequence from the pool 

of nucleic acids present at the start of each round of SELEX. If a particular nucleic acid 

sequence is not bound by the protein, the absence of an amplified PCR product for that 

sequence would be evidence of loss of the sequence. The same strategy for analyzing the 

genomic representation of the SELEX library can be applied to the problem of analyzing 

selection during the SELEX process. Therefore, amplification of library molecules 

containing nucleotides 354 to 378 of the rbpB gene was used for this purpose. Agarose 

gel electrophoretic analysis of the PCR product (utilizing primers T7 A and rbpBl, section 

3.4) produced using the pool of DNA molecules generated at the end of each round of 

SELEX should indicate if this sequence has been removed and thus if selection is taking 

place assuming, that is, that H6RbpA does not bind to the sequence. We did not know if 
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nucleotides 354 to 378 ofthe rbpB gene are actually recognized by RbpA. This sequence 

was selected based solely on the fact that we had the primers to amplify this sequence. If 

H6RbpA actually binds to this sequence or selection is not taking place at all, a PCR 

amplified product will be observed. 

4.2.6 Cloning of selected nucleic acid molecules into pUC19 and identification of 

recombinant clones 

Members of the genomic SELEX library selected following multiple rounds of 

SELEX were sequenced to determine the binding specificity of H6RbpA. To accomplish 

this, the pool of molecules generated following the fmal round of SELEX were PCR 

amplified utilizing the T7 A(BamHI) and B(BamHI) primers which hybridize to primer 

sequences T7 A and T3B respectively (Figure 4.3) and incorporate a BamHJ restriction 

site at both ends of a DNA molecule. BamHI restriction digestion of the library was used 

to clone the fragments into pUC19 (Figure 4.4). Prior to nucleic acid sequence 

determination, plasmid preparations that contained a single recombinant plasmid were 

identified by PCR amplification using the Elongated Forward and Elongated Reverse 

primers as described in section 3.4.2. In this case however, the sole determinant of a 

desired clone for sequencing is the presence of an insert, regardless of its size. 

4.3 Isolation ofRbpA RNA aptamers by genomic SELEX: outcome 

4.3.1 Did selection take place? 

The amount ofRNA isolated in each round ofSELEX in the presence and absence 

of protein was determined in an effort to obtain evidence of RNA sequence binding 

mediated by H6RbpA. Quantitative analysis of the amount of RNA was determined 

spectrophotometrically and the results are given in Table 4.1. The amount and percentage 

of RNA retained in the absence of protein (background) remained relatively constant 

through rounds 1 to 10 as would be expected ifthe Nt2-NTA resin has no effect on RNA 
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Figure 4.3. Introduction of BamBI restriction endonuclease sites after multiple rounds of 

genomic SELEX. The final library of molecules selected after multiple rounds of 

genomic SELEX are PCR amplified using the primers T7 A(BamHI) and B(BamHI) (light 

yellow, sequence different than primer T3B is shown in dark yellow). This introduces 

BamBI restriction sites at each end of the molecule so that they can be cloned. Other 

colour coded sequences are as shown in figure 3.13. 
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Figure 4.4. Cloning of molecules isolated following rounds 10 and 14 of genomic 

SELEX. The PCR amplification products containing different portions of the 

Synechococcus 7942 genome were cloned into pUC19 by use of two BamBI restriction 

sites introduced at both ends of the fragment. Since the fragment is not directionally 

cloned, it can be inserted into the plasmid in two orientations as shown. Colour coding is 

the same as in figure 3.13. 
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Table 4.1 Amount of RNA and H6RbpA in the binding reaction of each round of genomic SELEX and the amount of RNA retained in the presence and absence of 
protein as determined by spectrophotometric quantification. 

RNA H 6RbpA absent H6 RbpA present 
Round RbpA (nM) ug uM Amount Percentage Amount * Percentage 

retained (ng) * retained (%) retained (ng) retained (%) 

500 40 10 n/a n/a 320 0.797 

2 500 40 10 520 1.29 520 1.29 

3 500 40 10 400 1.00 600 1.49 

4 500 40 10 500 1.24 500 1.24 

5 500 40 10 600 1.49 750 1.87 
....... 
N 

6 500 40 10 600 1.49 550 1.37 -..J 

7 500 40 10 350 0.871 550 1.37 

8 500 40 10 450 1.12 450 1.12 

9 500 40 10 550 1.37 550 1.37 

10 500 40 10 550 1.37 500 1.25 

II 500 0.5 260 26 260 26 

12 500 0.5 240 24 260 26 

13 500 0.5 220 22 240 24 

14 500 0.5 220 22 240 24 

* Concentration (ng/uL) = (absorbance 260 nm- absorbance 340 nm) x 40 ng/uL x dilution factor 



sequence selection. 

Qualitative analysis of the retention of RNA in each round of the SELEX 

procedure by "real-time" RT -PCR provided an indication of protein-mediated selection. 

In 10 of the 12 rounds in which qualitative analysis was performed, a greater amount of 

PCR-amplified DNA was generated from eDNA template reverse-transcribed from RNA 

isolated in the presence of H6RbpA (Figure 4.5A) than that isolated in the absence of 

protein. For instance, RT -PCR amplification of RNA selected in the tenth round of 

SELEX revealed a stronger signal (band) from RNA template isolated in the presence of 

protein than that isolated in the absence of protein following 10 rounds of PCR 

amplification (Figure 4.5B). In RNA samples isolated in round 8 (Figure 4.5C) and round 

4 of SELEX, the opposite was observed as RT-PCR revealed a greater signal generated 

from RNA isolated in the absence of protein than in the presence of protein. Therefore, 

qualitative RT -PCR analysis was not definitive in determining whether RNA retained in 

the selection process was due to an interaction with H6RbpA, however~ since 10 of 12 

rounds indicated protein-mediated binding ofH6RbpA, it was more likely that the protein 

was involved in RNA sequence selection. 

Loss of molecules containing nucleotides 354 to 378 of the rbpB gene from the 

pool of double-stranded eDNA molecules generated in rounds 1 to 9 of SELEX provided 

better evidence that nucleic acid sequence selection was taking place. As shown in figure 

4.6, a high intensity band was observed in the lane corresponding to the double-stranded 

eDNA product of PCR amplification utilizing the T7 A and rbpB 1 primers generated in 

round one of SELEX. However, the amount of PCR amplified product decreased when 

eDNA templates generated from the later rounds of SELEX were employed. Therefore, 

this result suggested a gradual selection against molecules containing nucleotides 354 to 

3 78 of the rbpB gene throughout the SELEX process and thus provided a positive 
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Figure 4.5. Results of the qualitative "real-time" RT-PCR method used to detect 

H6RbpA-mediated retention of RNA during the SELEX process. (A) Table of results 

generated from RT-PCR analysis of the amount of RNA retained in the presence or 

absence of protein in the binding reaction in each round of genomic SELEX as shown for 

rounds 10 and 8 below. The greater amount of DNA present in one of the two samples as 

detected upon agarose gel electrophoresis following PCR amplification is denoted by a 

plus(+) sign. (B) Agarose gel electrophoresis of"real-time" RT-PCR products generated 

from the RNA isolated in round 10 of genomic SELEX in the absence (lanes 1, 3 and 5) 

and presence (lanes 2, 4 and 6) of protein. Samples taken following 20 cycles (lanes 1 and 

2), 25 cycles (lanes 3 and 4) and 30 cycles (lanes 5 and 6) ofRT-PCR were separated by 

agarose gel electrophoresis and compared in terms of band intensity. Since samples were 

taken at points during the RT -PCR amplification reaction, the analysis is referred to as 

"real-time". (C) Agarose gel electrophoresis of "real-time" RT-PCR products generated 

from RNA isolated in round 8 of SELEX in the absence (lanes 1, 3 and 5) and presence 

(lanes 2, 4 and 6) of protein. Samples of the RT-PCR were taken following 20 cycles 

(lanes 1 and 2), 25 cycles (lanes 3 and 4) and 30 cycles (lanes 5 and 6). The location of 

1 OObp markers are indicated at left. 
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A. 
Round 

Background Reaction 
(absence of protein) (presence of protein) 

1 + 
2 + 
3 + 
4 + 
5 + 
6 + 
7 + 
8 + 
9 + 
10 + 
11 + 
12 n/a n/a 
13 n/a n/a 
14 + 

B. 

1 2 3 4 5 6 

3 

2 

c. 
1 2 3 4 5 6 
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Figure 4.6. Loss of rbpB sequences from the library during genormc SELEX with 

H6RbpA. Agarose gel electrophoresis of dsDNA generated by PCR amplification of the 

pool of library molecules used in genomic SELEX rounds 1 to 9 with primers T7A and 

rbpB 1. The resultant PCR products were visualized by agarose gel electrophoresis. 

Location of 1 OObp markers are indicated at left. 
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indication of nucleic acid sequence selection. However, it does not provide evidence of 

the mode of selection, that is, whether the protein was involved in selection or not. 

4.3.2 Cloning of round 10 and round 14 double-stranded eDNA into pUC19 and 

identification of potentially positive result generating clones 

The pools of DNA generated following rounds 10 and 14 of genomic SELEX 

were cloned and sequenced as described in section 4.2.6. Agarose gel electrophoretic 

analysis of the PCR product generated by amplification of plasmid DNA with primers 

T7 A(Bamlll) and B(Bamlll) was successful in identifying recombinant and non­

recombinant plasmids as well as heterogeneous plasmid preparations. Non-recombinant 

plasmids were identified by the presence of one band 142bp in size (Figure 4. 7, control 

plasmid lane I). Recombinant plasmids that contained one insert were identified by the 

presence of one band of size greater than 142bp (Figure 4.7, clones 11, 12, 14, 15 to 18). 

The presence of more than one band identified a recombinant plasmid preparation that 

contained more than one insert sequence (Figure 4.7, clones 13, 19, and 20), these clones 

were therefore excluded from sequence analysis. 

4.3.3 Nucleic acid sequences selected by genomic SELEX 

Following round 10 of SELEX, the library was cloned and sequenced. Of the 36 

sequenced clones, 22 provided reliable sequence information (i.e. few unidentified bases). 

Individual sequences are given in table 4.2. Comparative sequence analysis (section 2.16) 

of these 22 sequences (refer to Chaper 5) did not provide an indication of a consensus 

sequence recognized by RbpA, therefore in an effort to maximize the selection process, 

an additional four rounds of SELEX were performed in reaction conditions of higher 

stringency (section 4.2.2). Following round 14, 34 cloned library molecules were 

sequenced ofwhich 27 provided reliable sequence information (Table 4.3) The additional 

four rounds of selection proved to be beneficial as evidenced by the dramatic increase in 
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the similarity ofthose sequences obtained (refer to section 5.1). 
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Figure 4. 7. Identification of recombinant clones by agarose gel electrophoresis of the 

PCR amplified product. Recombinant pUC19 molecules that contained an insert were 

amplified with primers T7 A(Bamlll) and B(Bamlll) and analyzed by agarose gel 

electrophoresis of the product. PCR amplification of non-recombinant plasmid, used as a 

comparative control (C), generated a 142bp fragment. Clones 11, 12, 14, 15, 16, 17, and 

18 are recombinant and contain one library molecule type as indicated by a single band 

whereas clones 13, 19 and 20 are recombinant but contain more than one insert as 

evidenced by the presence of multiple bands. Location of 1 OObp markers are indicated at 

left. 

135 



Lane 1 2 3 4 5 6 7 8 9 1 0 11 
Clone # C 11 12 13 14 15 16 17 18 19 20 
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Table 4.2 Genomic SELEX round 10 RNA sequences 

Clone Genomic sequence %G/U Sequence * 
Number len th (bases) 

GIU rich+ 57 61 5 ' UGAAAUUAAUACGACUCACUAUAGGGAGGACGAUGCGGAUGGUGUGAUGUGUGGGUG 3 ' 

4 32 84 5 ' UGCUGGGGGACGAGCUGGGUGUGGUGUUGUGG 3 ' 

6 26 85 5 ' UGGCUUGGGCAGUGGUGUGGAGUUUG 3 ' 

7 21 67 5 ' AUGAUGGGGUUCAGCCAUGGU 3 ' 

12 27 88 5 ' UCUGUGGGGACGUUGUUGUGGGUGGUG 3 ' 

13 33 64 5 ' UGUGACAAGAUGAAAGCGAUUGGGAGGUGGUGC 3 I 

14 24 83 5 ' GUAGGUGGUGGGAAUCGGUUUGGG 3 ' 

26 37 70 5 ' UGUGUUGGUUUGCUUACUGAGCUUGUCGCCAUUCGGC 3 ' 

29 23 74 5 ' UGAGGGGUAGUUGGUUAGGGCAA 3 ' 

30 29 76 5 ' GUGGUUGCAGGACUGAUGGUGUUGCGGGC 3 ' 

41 27 67 5 ' AUAGGGUUAGCGAUGAUGCCUUGGUGC 3 ' 

45 25 60 5 ' CUCUGGUCUGCAGCCCUAGUGAUGG 3 ' 

G/U very ri ch + 45 98 5 ' UGUGUGGUGUGUGGUGUGUGGUGUGUGGUGUGUGGUGUGGGUGUA 3 ' 

GIU poor+ 8 23 30 5 ' ACUGAGCUGCCGUAACCAAACAC 3 ' 

10 25 36 5 ' UGGCCGACUAAACCAUCACCACUGG 3 ' 

]] 51 41 5 ' UAAUGCAAGCCAGCUCCAGCGGGUUCGCAGCAGUCGAGCGCGAGGCAGACC 3 ' 

19 44 46 5 ' UNUGNNAGCGANCGCCAGAGGAGAUAGCGCACCGUCAGCAGNGC 3 ' 

23 31 23 5 ' ACUGAGCUGCCGUAACCAAACACCACCACAC 3 ' 

25 16 25 5 ' GGAUCCACCACCAGCC 3 ' 

42 44 33 5 ' UAGGUCAGCACUAUCACUAGGGAGAGAACACCCANUCCCAGNCA 3 ' 

43 27 31 5 ' ACCGAGCUGCCGUAACNCGAGCACCAC 3 ' 

49 24 29 5 ' CCUCAAGCUUGGAACCACAGCCAC 3 ' 

* sequence is the Synechococcus 7942 genomic sequence portion of each libary molecule, primer sequences are not given 

+ sequences are grouped according to composit ion of GTP and UTP residues. GIU very rich sequences contain greater than 90% GIU, GIU rich sequences contain between 50% and 90% GIU 
and GIU poor sequences contain less than 50% GIU residues 
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Table 4.3 Genomic SELEX round 14 RNA sequences 

C lone Genomic seq uence %G/U Sequence "* 
Num ber len th (bases) 

G/U r ich + 24 75 5' UCUAGUCGGGGUGAAUGGGAGGUG 3. 

3 41 78 5' UGUAUGGGANGUGGACGUAGGUUGUGGUUUCGUUGGACUGG 3' 

6 25 84 5' UGGUGGUGAUGAUAGAGGUGGUGGU 3' 

7 40 70 5' UGACUGGCUUGGCGGUGAGUGGAGUGAAUGGGAAGUGUAC 3' 

II 32 69 5' ACCUGGUCAGAGUGGAGGUGAUGGUGGCGGUA 3' 

16 41 80 5' UGUAUGGGAGGUGGACGUAGGUUGUGGUUCCGUUGGGCUGG 3' 

18 24 79 5' UUUAGUCGGGGUGAAUGGGAGGUG 3' 

36 15 73 5 . UGUAUGGGAGGUGAA 3' 

37 24 79 5' UUUAGUCGGGGUGAAUGGGAGGUG 3' 

39 26 69 5' GACUGGAGUGAAGUGGGAGGUGUAAU 3' 

47 24 79 5' UUUAGUCGGGUGAAUGGGAGGUG 3. 

52 24 79 5' UUUNGUCGGGGUGAAUGGGUGGNG 3' 

53 33 79 5' CAGUGGUGGUGGAGAUAGUAGUGGUGUGAGUGU 3. 

54 24 79 5' UUUAGUCGGGGUGAAUGGGAGGUU 3' 

56 41 78 5' AAGCCGUUUGAGUGUGAGUGAUGGAGUGUUUGUGUGGGUG 3. 

59 24 75 5 . UUUAGUCGGGGUGAAUGGGAGGUU 3' 

64 34 68 5' GUGCGAUCGCGAGGCUGCGUGAAUGGGAGGUGAU 3' 

67 43 70 5' AUCUGCACCUAGAGCUGAUGCGUNUGGGUGGAUGGGGGGUGUU 3' 

G/U very rich+ 35 36 92 5' GACUGCGGUGUGUGGUGUGUGGUGUGUGGUGUGUGG 3. 

43 24 92 5' NAGUGUGGUGUGUGGUGUGUGGUG 3' 

G/U poor + 5 25 52 5' AACUCCGUCCCAGACGUGUUGGUGN 3' 

8 21 24 5' AGCACCACAGCACCAAUGCAU 3' 

15 18 28 5' GGAGCGGACACACCACCA 3' 

34 30 23 5' AAGCCCACGACAGNNGACAAUAGCCCCAAU 3 ' 

45 24 25 5' AGCCGGGCGACACCAGACACACAC 3' 

55 30 27 5' ACCUGACGCUGCCGUAACCCAACACCACAU 3' 

63 29 34 5' CGGCACCAACCAGAUCCGUACUCCGCAU 3' 

+ sequence is the Synechococcus 7942 genomic sequence portion of each libary molecule, primer sequences are not given 

+ sequences are grouped according to composition ofGTP and UTP residues. G/U very rich sequences contain greater than 90% 0/U, GIU rich sequences contain between 50% and 90~o GIU 
and G/U poor sequences contain less than 50°o GIU residues 



Results and Discussion 

5.1 Analysis of nucleic acid sequences isolated by the genomic SELEX procedure 

The RNA sequence binding specificity of RbpA was examined by analyzing the 

RNA sequences bound by RbpA (tables 4.2 and 4.3) in terms of base composition and the 

location of these sequences in the Synechococcus 7942 genome. First, the percentage of 

guanine and uracil nucleotides in each sequence was determined to see if RbpA 

preferentially bound to RNA sequences predominantly comprised ofthese bases (Section 

5.2). Second, RNA sequences from rounds 10 and 14 were aligned independently to 

determine if a conserved RNA binding sequence was evident (Section 5.3). Third, the 

location in the Synechococcus 7942 genome of each sequence was determined to identify 

genes potentially regulated by RbpA (Section 5.6). Together, this information might 

provide an indication of the function ofRbpA in the cyanobacterial cell. 

5.2 Guanine and uracil nucleotide composition 

The abundance of guanine and uracil nucleotides in an RNA sequence is 

important because like many RNP-type RNA-binding proteins, RbpA has been found to 

exhibit preferential binding to guanine and uracil nucleotide homopolymers (Belbin, 

1999). Therefore, to determine if selective homopolymer binding specificity ofRbpA was 

evident in the RNA sequences isolated by the SELEX procedure, the G/U content of each 

sequence was determined. Analysis ofthe RNA revealed the existence ofthree classes of 

RNA sequences in each set of data (rounds 10 and 14). They are: sequences that are 

largely not composed of G/U residues (G/U poor) (less than 50% GIU), sequences rich in 

GIU residues (between 50% and 90% G/U) and sequences very rich in G/U residues 

(greater than 90%) and (tables 4.2 and 4.3). 

Comparison of the number of RNA sequences in each G/U class indicated that 

conditions of increased stringency likely generated a selection preference for RNA 
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molecules that are G/U rich. The percentage of G/U rich sequences that comprise the total 

number of RNA sequences isolated in round 14 (78%) is greater than that of round 10 

(59%). In addition, two very-rich G/U sequences were isolated in round 14 whereas one 

was isolated in round 10 of selection. These results suggested that RbpA has a greater 

binding specificity for RNA sequences that contain a high percentage of guanine and 

uracil nucleotides. This fmding however, does not rule out the possibility that RNA 

molecules that contain a low percentage of guanine and uracil residues are recognized by 

RbpA and are biologically relevant, it only corroborates previous data (Mulligan and 

Belbin, unpublished) regarding the binding specificity of RbpA, that the protein has a 

preference for RNA predominantly composed of guanine and uracil residues. 

5.3 Sequence alignment ofRNA from rounds 10 and 14 

The next question regarding the sequence of RNA molecules obtained from 

rounds 10 and 14 of SELEX was the extent of sequence homology. If a protein has 

ribonucleic acid binding specificity, RNA sequences retained in the SELEX process will 

become more alike with each round of selection. If homology is high, alignment of RNA 

sequences could identify a conserved RNA binding site of the protein. Since the 

percentage of G/U residues in the RNA sequence is important in the analysis of the 

cognate RNA for RbpA, the RNA sequences were aligned according to G/U classification 

(G/U poor, rich and very rich) and round of selection (10 or 14). 

5.3.1 G/U poor RNA 

A qualitative comparison of the alignments of G/U poor RNA from round 10 and 

round 14 (Figure 5.1 , A and B, respectively) revealed that round 14 RNA sequences had a 

higher degree of RNA sequence conservation. This is evident by the presence of fewer 

conserved bases in the consensus sequence of the round 10 GIU poor RNA than in the 

round 14 G/U poor RNA. Since round 14 used reaction conditions of higher stringency, a 
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Figure 5.1 Alignment of G/U poor RNA sequences selected in (A) round 10 and (B) 

round 14 of genomic SELEX. (C) Comparative alignment of two RNA molecules bound 

by Nt2-NTA resin alone (N1 and N9) (Hofmann et al. , 1997) with G/U poor RNA 

molecules selected in rounds 10 and 14 of genomic SELEX. Sequence alignments were 

performed by use of the CLUST AL Wl.8 (Jeanmougin et a/. , 1998) multiple alignment 

program at the Baylor College of Medicine Search Launcher website 

(http://searchlauncher.bcm.tmc.edu/multi-align/multi-align.html). Shading was introduced 

into the alignment by use of the Boxshade 3.21 program located at the website 

(http://www.ch.embnet.org/software/BOX_form.html). Conservation of residues that 

occur in at least 70% of the number of sequences is indicated by reverse type face, 

conservation of the same class of RNA bases (purines or pyrimidines) are indicated by 

light shading. 
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correlation exists between stringency and sequence homology. This result suggests that 

the G/U poor sequences are not retained in a non-specific manner but are likely 

specifically bound by RbpA. If RNA was bound in a completely non-specific manner, an 

increase in sequence similarity would not have been observed. 

The binding preference ofRbpA for guanine and uracil nucleotide homopolymers 

would suggest that these G/U poor sequences were retained in a non-RbpA mediated 

manner. One possible explanation is that selection of GIU poor RNA occurred due to an 

interaction with the positively-charged Nt2-NTA resin used to purify RNA-H6RbpA 

complexes in the genomic SELEX procedure. Nt2
- NT A resin has been shown to exhibit 

RNA binding specificity in a study utilizing the regular SELEX protocol whereby RNA 

sequences were randomized at 50 positions (Ho:finann et al., 1997). The resin exhibited a 

selective binding for RNA motifs composed of a purine rich internal loop and a mismatch 

G-A base pair with a dissociation constant as low as 0.8 uM. Comparative sequence 

alignment analysis of the two most selected RNA sequences (N1 and N9) from the 

Ho:finann study and the G/U poor RNA sequences selected during rounds 10 and 14 

identified partial homology (Figure 5.1 C). This result suggests that G/U poor RNA 

molecules were selected by the resin but it still does not rule out the involvement of 

RbpA. Interestingly, the sequence of many GIU poor RNA molecules are slight variations 

of the sequence ACACCAC, a sequence complementary to the repeated UGUGGUG 

sequence found in G/U very rich sequences (refer to section 5.3.3). Therefore, G/U poor 

RNA could have been retained via an interaction with G/U very rich RNA bound by 

RbpA. 

5.3.2 G!U rich RNA 

Comparative alignment of GIU rich sequences from round 1 0 and round 14 

identified greater homology of RNA selected in conditions of higher stringency (Figure 

141 



5.2). The lack of sequence conservation evident in the alignment of round 10 RNA 

molecules contrasts with a strikingly high amount of conservation in the round 14 RNA 

sequences. The round 10 G/U rich RNA sequences do not contain any sequence that was 

selected more than once, and there is no position in the alignment that is completely 

conserved in all 12 sequences (Figure 5.2A). The eighteen round 14 G/U rich RNA were 

highly homologous due to selection of a nearly identical sequence seven times (clones 1, 

18, 37, 47, 52, 54, 59) (Figure 5.2B). In fact, the most selected sequence was identical to 

the consensus sequence generated from the alignment with the exception of one base 

difference at position 4 (as indicated) in which the most selected sequence contains a 

cytosine nucleotide but the other sequences in this group are aligned with a gap, a guanine 

nucleotide or an undefmed residue (N). A high degree of sequence homology and the 

multiple selection of the same RNA sequence indicate that this group of sequences are 

likely bound with greater a:ffmity by the protein compared with the G/U very rich and 

G/U poor classes of RNA and is consistent with previous evidence indicating a preference 

of RbpA for G/U homopolymers. Therefore, the sequence 

5'AGUNGGGGUGAAUGGGAGGUG3' can be postulated as the most likely consensus 

sequence ofRbpA; it is further characterized in section 5.5. 

5.3.3 G/U very rich sequences 

Alignment of the RNA sequences very rich in G/U residues (Figure 5.2C) 

identified the conservation of a repeated UGUGGUG sequence. In fact, all three G/U 

very rich RNA sequences are composed almost entirely of this repeat. Some G/U rich and 

G/U poor RNA sequences identified from both rounds 10 and 14 of SELEX also contain 

UGUGGUG or a closely related sequence such as GUGGUG or UGUGGGUG (Figure 

5.3). Therefore, the consistent degree of conservation of this sequence in all three groups 

of RNA sequences from both rounds of genomic SELEX indicate that the GUGGUG 
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Figure 5.2 Alignment of GIU rich RNA sequences selected in (A) round 10 and (B) 

round 14 of genomic SELEX. The revised consensus sequence outlined in figure 5.4 is 

given above the alignment. Designation of residues 1 and 4 are shown. (C) Alignment of 

GIU very rich RNA sequences from round 10 (5-10) and round 14 (35-14, 43-14) of 

genomic SELEX. Alignments were performed as described in figure 5 .1. Consensus 

sequences generated by the alignment program are given at the bottom of each alignment. 
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36 

1 

18 
64 

59 
56 

54 
52 
37 
39 

47 
7 

1 1 

67 
53 

6 

16 
3 

B. 
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-------------------G 
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I
~~~~GUA 
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CG--t!JA 
CG--t!JA 

A-------------

0-------------

AAU-----------

AC------------

0-------------
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0-------------
UUCCGUUGGGCUGG 
UUUCGUUGGACUGG 

consensus agu ggggUGaa UggG ggUg 

c. 

35-14 
43-14 

5-10 

GACUGCGGU 
-------NA 
-UGUGUGGU 

consensus 

GUGUGGUGUGUGGUGUGUGGUG 
GUGUGGUGUGUGGUGUGUGGUG 
GUGUGGUGUGUGGUGUGUGGUG 

GUGUGGUGUGUGGUGUGUGGUG 
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Figure 5.3 RNA sequences identified in rounds 10 and 14 of genomic SELEX that 

contain a UGUGGUG or closely related sequence (boxed). The round of selection in 

which the RNA sequence was identified, the clone number and the percentage of GIU 

residues in the RNA sequence is given. 
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UGUGGUG repeat 

Round C~one 

10 1 

10 4 

10 5 

10 6 

10 12 

10 13 

10 14 

14 6 

14 35 

14 56 

14 53 

14 43 

\G/U 

61 

84 

98 

85 

88 

64 

83 

84 

92 

78 

79 

92 

Sequence (5'-3') 

UGAAAUUAAUACGACUCACUAUAGGGAGGACGAUGCGGAUGGUGUGAUGPGUGGGUG 

UGCUGGGGGACGAGCUGGGPGUGGUGPUGUGG 

UoPGUGGUGpGUGGuGpGuGGUGPGUGGUGpGuGGUGfGGGUGUA 

UGGCUUGGGC~UGGUGPGGAGUUUG 

UCUGUGGGGACGUUGUUGUGG~UGGUGI 

UGUGACAAGAUGAAAGCGAUUGGGAGPUGGUGf 

GUAGpUGGUG~GAAUCGGUUUGGG 

UGGUGGUGAUGAUAGAGPUGGUG~U 

GACUGCGGUGPGUGGUGfGUGGUG~GUGGUGPGUGG 

AAGCCGUUUGAGUGUGAGUGAUGGAGUGUUUGPGUGGGUGI 

C~UGGUGpUGGAGAUAGUA€UGGUGfGAGUGU 

NAqpGUGGUGPGUGGUG~GUGGUGI 
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motif could be a binding site for RbpA. 

5.4 Characterization of an RbpA consensus binding sequence 

Identification of a putative RbpA consensus binding site was difficult due to 

retention of three apparently different groups ofRNA sequences (G/U poor, G/U rich and 

G/U very rich). If there is one, the G/U rich group of RNA sequences from round 14 most 

likely contain the RbpA consensus sequence for three reasons: these sequences were 

selected in conditions of higher stringency; they represent the majority of sequences 

identified in round 14 (18 of 27, Table 4.3 ); and, because alignment identifies this group 

as containing the greatest degree of sequence homology. 

Careful examination of the round 14 G/U rich RNA sequence alignments allows 

the putative consensus sequence identified by the alignment to be further defmed. Clone 

36 was the shortest sequence (15 nucleotides) recovered during round 14 of selection. 

Nearly the entire sequence of clone 36 is highly conserved in all of the other G/U rich 

group of sequences selected in this round as shown in figure 5.4. However clone 36 does 

not contain the initial UUUAGUNGGGG portion (where N is GTP, CTP or a gap) ofthe 

conserved sequence shown in figure 5.2B, therefore this initial region may not be 

important in RbpA binding or recognition. As a result, a revised consensus sequence 

UGAAUGGGAGGUG (Figure 5.4A) of 13 nucleotides in length is considered to be the 

best candidate for an RbpA consensus binding sequence. The frrst 2 nucleotide positions 

are completely conserved in all 18 sequences with bases U and G respectively; positions 8 

and 12 are also completely conserved with G and U residues respectively. The remaining 

nine positions are degenerate (Figure 5.4B). However, with the exception of position 9, 

whose most prominent residue is an A present in only 53% of sequences, the remaining 

positions in this consensus sequence are dominated by one particular base present in 68% 

to 95% of all sequences (Figure 5.4C). A graphic representation of the relative abundance 
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Figure 5.4 Characterization of the RbpA consensus binding sequence. (A) Comparisons 

used to generate a revised RbpA consensus binding sequence. Note that the G/U rich 

consensus sequence is largely a tandem repeat of 10 (I) and 11 (II) nucleotides as shown. 

(B) The degeneracy of conservation (of RNA bases) at each position in the 13 base 

consensus sequence. (C) Degeneracy of nucleic acid conservation is given as the 

percentage in which each base occurs in each position of the 13 base revised consensus 

sequence. (D) Graphic representation of ribonucleic acid conservation in the RbpA 

consensus binding sequence created by use of the Weblogo version 2.6 program 

(Schneider and Stephens, 1990) accessed at the University of California at Berkeley 

website (http:/ /web logo. berkeley .edu/). 
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A. 

B. 

c. 

D. 

2 

Cll 

:ii1 

Round 14 GIU rich 
consensus sequence 

Clone36 

Revised consensus 
sequence 

Degeneracy of revised 
consensus sequence 

Position 

1. u 100% 
2. G 100% 
3. A 68%, 
4. A 79%, 
5. u 79%, 
6. G 74%, 
7. G 84%, 
8. G 100% 
9. A 53%, 
10. G 84%, 
11. G 95%, 
12. u 100% 
13. G 79%, 

G 21%, u 
u 16%, G 
G 21% 
A 16%, u 
A 10%, u 

u 37%, c 
u 10%, A 
u 5% 

u 16%, A 

u 

n 

UUUAGUNGGGGUGAAUGGGAGGUG 

1111111111111 
UGAAUGGGAGGUGAA 

UGAAUGGGAGGUG 

Position 1 2 3 4 s ' 7 8 9 10 u 12 13 

u G A A u G G G A G G u G 

G U G AA u u u u 

u G u u c A A 

G 

11% 
5% 

10% 
5% 

5%, G 5% 
5% 

5% 
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of a particular base within each position of the revised consensus sequence is given in 

figure 5.4 D. 

Interestingly, the six bases, GAGGUG, on the 3' end of the putative RbpA 

binding site are nearly identical to the GUGGUG repeated motif shown in figure 5.3. Five 

ofthe six residues ofthe GAGGUG portion ofthe RbpA binding site (positions 8 to 13) 

are highly conserved. The exception is position 9 which is the most degenerate of all 

positions in the 13 base consensus sequence (Figure 5.4D) and corresponds to the only 

difference between GAGGUG and GUGGUG. The most prominent residue at position 9 

is an A, present in only 53% of sequences. In addition, the second most selected residue 

at position 9 is a U residue, present in 3 7% of round 14 G/U rich SELEX sequences. In 

this way, the round 14 G/U rich sequences and the group of sequences from rounds 10 

and and 14 that contain the GUGGUG motif are very similar, thereby defming the six and 

14 that contain the GUGGUG motif are very similar, thereby defming the six nucleotides 

on the 3' end of the revised consensus sequence as potentially being very important in 

sequence recognition by RbpA. A six base RNA recognition sequence for RbpA is 

consistent with the length of another RRM-type RNA binding protein U1A, which 

recognizes a seven base sequence: AUUGCAC (Oubridge eta!., 1994). 

The mechanism in which H6RbpA binds to the putative consensus sequence is not 

known. Potentially H6RbpA could recognize a conserved binding sequence, a conserved 

structure, or a sequence-independed set of nucleotides. The alignment of round 14 G/U 

rich RNA suggests that RbpA recognizes a consensus sequence because ofthe sequence 

conservation in this group of RNA molecules. If it was a structure that was conserved, a 

greater degree of sequence variability in this group of molecules would likely have been 

the case. In addition, an attempt to identify an RNA consensus structure of the RNA 

molecules selected in both rounds 10 and 14 by use of an RNAfold program was 
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unsuccessful (refer to section 2.20) These results suggest that a conserved sequence, not a 

structure, is recognized by H6RbpA. 

5.5 Comparison of the putative RbpA consensus sequence with the consensus 

binding sequence of three Csps 

RbpA may perform a function m cyanobacteria analogous to that of the Csp 

proteins in Escherichia coli described in section 1.5. Therefore, once the putative RbpA 

consensus sequence of RbpA was identified, I wanted to compare the binding specificity 

of RbpA with that of the Csps. The RNA binding specificity of CspB, CspC and CspE 

was identified by SELEX as UUUUU, AGGGAGGGA and AAAUUU residues 

respectively (Phadtare and Inouye, 1999). None of the 49 RbpA binding sequences 

identified by genomic SELEX here contain an entire Csp consensus sequence, however a 

portion of the putative RbpA consensus sequence UGAAUGGGAGGUG is homologous 

to a portion of the CspB consensus sequence. Both the RbpA and CspC consensus 

sequences contain the six nucleotide sequence GGGAGG. This result identifies a 

similarity in the binding specificity of RbpA and CspB and thereby provides further 

evidence that these proteins could perform the same function in Synechococcus 7942 and 

Escherichia coli respectively. RbpA is a cold-shock protein and could perform the same 

function as CspB of the CspA-family of cold-shock proteins in E. coli by acting as an 

RNA chaperone or a transcription antiterminator. 

5.6 Genomic Analysis of SELEX isolated sequences 

Since the RNA sequences identified in the genomic SELEX protocol are derived 

from genomic sequences, one can identify the location in the genome in which the RNA 

sequence is encoded and determine which genes are potentially regulated by RbpA. 

Therefore, identification of the genes that contain an RbpA target sequence may provide 

information regarding a putative function ofRbpA. 
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Genomic similarity analysis detected a high degree of conservation between most 

SELEX sequences isolated from rounds 10 and 14 of SELEX and the Synechococcus 

7942 draft genome sequence (Tables 5.1 to 5.6). All alignments with the Synechococcus 

7942 genome sequence with the exception ofround 14 clones 7 and 39 and the G!U very 

rich sequences are 75% or greater. Theoretically, the degree of homology between the 

genomic SELEX RNA and the Synechococcus 7942 genome sequences should be 100%, 

however the fact that there is a lack of complete homology is not surprising for a number 

of reasons. Firstly, amplification of dsDNA generated in each round of genomic SELEX 

was performed using Taq polymerase, a polymerase that compared with other 

thermostable DNA polymerases, has low fidelity. However, although the likelihood of a 

mistake incorporated into the SELEX sequences is low, given that the error rate of Taq 

polymerase is 8.0 x 1 o-6 errors/bpi duplication (Cline et a/. , 1996) which translates into 

one mistake in 4166 bp in 30 cycles of amplification, mistakes could make an RNA 

molecule better able to be recognized by RbpA, thereby greatly increasing the chance that 

the molecule is retained during the many rounds of selection. Secondly, the use of primers 

completely randomized at 9 nucleotides at the 3' end of the primer for first and second 

strand extension reactions can generate mispairing between primer and template. The lack 

of complete complementarity can therefore lead to mistakes in the genomic portion of 

library sequences. In a paper by Singer et a/., 1997, the introduction of mistakes in 

genomic SELEX library sequences is well documented, with the greatest likelihood of a 

mistake generated by the random nucleotide adjacent to the first fixed nucleotide of the 

primer. Indeed, ofthe 49 sequences identified by genomic SELEX, 23 sequences did not 

align with the Synechococcus 7942 genome at the first position. Lastly, molecules in a 

PCR can undergo recombination events, generating new sequences in the process (Jensen 

and Straus, 1993). 
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Table 5.1 Comparative sequence analysis of round 10 G/U very rich RNA and the Synechococcus 7942 genome 

Clone Alignment 3 Homology (%) Location in Synechococcus b Gene Name/ Function Location in Gene 
Number(s) 7942 genome 

UG- UGUGGUGUGUGGUGUGUGGUGUGUGGUG- -UGUGGUGUGGGUGUA 
I I I Ill 111 11 111111 1 111 I I I I I Ill I II I 75.6 contig 135, 

Chlorophyll synthase 33kDa subunit In ORF, 
TGATTTGGGGTGTGGTGTGTGGTGCG- GCTGCTTCTGGCGGCTATGAA gene 1922 coding strand 

a Sequences identi fied by genomic SELEX are given as RNA and are shown in the top line of each aligmnent, sequences from the Synechococcus 7942 genome are given as DNA are shown in the 
bottom line. 

b Designations according to the Synechococcus 7942 genomic sequence given by the Joint Genome Institute, consult table Al for pem1anent gene designations. 



Table 5.2 Comparative sequence analysis of round 10 G/U rich RNA and the Synechococcus 7942 genome 

Clone 
Number(s) 

Alignment a Homology(%) 

4 

6 

7 

12 

13 

14 

26 

29 

30 

41 

45 

UGAAAUUAAUACGACUCACUAUAGGGAGGACGAUGCGGAUGGUGUGAUGUGUGGGUG 
I II II II II II I I Ill lllllll IIIII II I Ill I I 63.2 

GCAGATGCGATCGCCTGTCTCCAGCAAACGGGGTGCGGATGGTGTGATGTGTGGGCG 

UGCUGGGGGACGAGCUGGGUGUGGUGUUGUGG 
IIIII Ill llllllllllllllllll 

CGCTGGAGGATGAGCTGGGTGTGGTGTTGCTA 

UGGCUUGGGCAGUGGUGUGGAGUUUG 

Ill I llllllllllllllll 
TGG-TCGGGCAGTGGTGTGGAGGAAA 

AUGAUGGGGUUCAGCCAUGGU 

Ill llllllllllllllll 
GTGAGGGGGTTCAGCCATGGT 

UCUGUGGGGACGUUGUUGUGGGUGGUG 
I II lllllllllllllllllllll 

ACAGTAGGGACGTTGTTGTGGGTGGTG 

UGUGACAAGAUGAAAGCGAUUGGGAGGUGGUGC 
I llllllllllllllllllllllllllllll 

CGAGACAAGATGAAAGCGATTGGGAGGTGGTGC 

GUAGGUGGUGGGAAUCGGUUUGGG 

llllllllllllllllllll Ill 
GTAGGTGGTGGGAATCGGTTGGGG 

UGUGUUGGUUUGCUUACUGAGCUUGUCGCCAUUCGGC 
I lllllllllllllllllllllllllllllllll 

CGCCTTGGTTTGCTTACTGAGCTTGTCGCCATTCGGC 

UGAGGGGUAGUUGGUUAGGGCAA 
llllllllllllllllllll 

CCTGGGGTAGTTGGTTAGGGCAA 

GUGGUUGCAGGACUGAUGGUGUUGCGGGC 

1111 llllllllllllllll lllllll 
GTGGCTGCAGGACTGATGGTGCTGCGGGC 

AUAGGGUUAGCGAUGAUGCCUUGGUGC 

llllllllllllllllllllllllll 
TTAGGGTTAGCGATGATGCCTTGGTGC 

CUCUGGUCUGCAGCCCUAGUGAUGG 

I I lllllllllllllllll 
GGTTTGGTTGCAGCCCTAGTGATGG 

81.2 

76.9 

90.4 

88.8 

93.9 

95.8 

91.9 

93 .1 

96.3 

82.6 

Location in Synechococcus b 

7942 genome 

contig 136, 
gene 2374 

contig 125 
gene 169 

contig 128, 
gene 467 

contig 127 
gene 343 

contig 136, 
gene 2533 

contig 122, 
gene 13 

contig 133 
gene 1155 

contig 126, 
gene 284 

contig 136, 
gene 2748 

contig 135, 
gene 1766 

contig 135, 
gene 2061 

contig 136, 
gene 2061 

Gene Name/ Function 

probable tRNA dihydrouridine 
synthetase (Dus) 

lrrA, transcriptional regulator 

GDP-D mannose dehydratase 

Leu!Phe tRNA protein 
transferase, Aat 

phosphoglycolate phosphatase 

uncharacterized conserved 
bacterial protein 

unknown protein 

class I aminoacyl-tRNA 
synthetase (E and Q amino acids) 

uncharacteri zed flavoprotein, 
FpaA 

Aspartate-semialdehyde 
dehydrogenase, Asd 

conserved hypothetical protein 

Location in Gene 

In ORF, 
coding strand 

In ORF, 
coding strand 

In ORF, 
coding strand 

overlaps 3' end of ORF , 
non-coding strand 

starts at stop codon, 
coding strand 

In ORF, 
coding strand 

InORF, 
non-coding strand 

In ORF, 
non-coding strand 

between ORFs 

In ORF, 
codmg strand 

In ORF, 
coding strand 

In ORF, 
coding strand 

a Sequences identified by genomic SELEX are given as RNA and are shown in the top line of each alignment. sequences from the Synechococcus 7942 genome are given as DNA are shown in the 
bottom line. 

b Designations according to the Synechococcus 7942 genomic sequence given by the Joint Genome Institute. consult table Al for pem1anent gene designations. 
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Table 5.3 Comparative sequence analysis of round 10 G/U poor RNA and the Synechococcus 7942 genome 

Clone Alignment 3 Homology(%) Location in Synechococcus b Gene Name/ Function Location in Gene 
Number(s) 7942 genome 

ACUGAGCUGCCGUAACCAAACACCACCACAC 
contig 135, 

8, 23, 43 Ill/ II II II II II II II II I II II I I I 90.3 putP, sodium/proline symporter In ORF, 

ACTGAGCTGCCGTAACCAAACACCACCATTG 
gene 2106 non-codtng strand 

UGGCCGACUAAACCAUCACCACUGG 
10 I II I II II II II I II II II II I II I 100 contig 136, uncharacterized conserved protein In ORF, 

UGGCCGACUAAACCAUCACCACUGG gene 2771 non-coding strand 

UAAUGCAAGCCAGCUCCAGCGGGUUCGCAGCAGUCGAGCGCGAGGCAGACC 
11 Ill/ I I I I I I I II I I I I I I I II I II II I I I I II II I I I I II II I I I I I I I 98 

contig 136, two-component histidine kinase In ORF, 

UAAUCCAAGCCAGCUCCAGCGGGUUCGCAGCAGUCGAGCGCGAGGCAGACC 
gene 2816 non-coding strand 

UNUGNNAGCGANCGCCAGAGGAGAUAGCGCACCGUCAGCAGNGC 
19 I I II II I I I I I I I I I I I I I I I I I I I I I I I I II I I I I II 86.4 contig 136, UDP-glucose-beta-0-glucan- In ORF, 

TGAGAGAGCGAACGCCAGAGGAGATAGCGCACCGTCAGCAGAGC 
gene 2809 glucosyltransferase non-coding strand 

GGAUCCACCACCAGCC 
contig 133, 25 11111111111111 87.5 conserved hypothetical protein upstream of start codon, 

CTATCCACCACCAGCC 
gene 1184 non-coding strand 

UAGGUCAGCACUAUCACUAGGGAGAGAACACCCANUCCCAGNCA 
42 II II II II II II II II II II I II I II I II I II I II II I II 90.7 contig 133, signal transduction protein, contains InORF, 

AAGGTCAGCACTATCACTAGGGAGAGAACACCCAGCCCCAGCCA 
gene 1258 PAS, PAC, GGDEF and EAL domains non-coding strand 

CCUCAAGCUUGGAACCACAGCCAC 
contig 132, 49 II II I II I II II II II II II 83.3 sodB, Iron superoxide dismutase In ORF, 

GCTCAAGCTTGGAACCACAGCTTT gene 996 coding strand 

8 Sequences identified by genomic SELEX are given as RNA and are shown in the top line of each alignment, sequences from the Synechococcus 7942 genome are given as DNA are shown in the 
bottom line. 

b Designations according to the Synechococcus 7942 genomic sequence given by the Joint Genome Institute, consult table Al for pennanent gene designations. 
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Table 5.4 Comparative sequence analysis of round 14 G/U very rich RNA with the Synechococcus 7942 genome 

Clone Alignment a Homology(%) Location in Synechococcus b Gene Name/ Function Location in Gene 
Number(s) 7942 genome 

GACUGCGGUGUGUGGUGUGUGGUGUGUGGUGUGUGG 
35,43 I II 111111111111111 I I II I 65 .1 contig 135, Chlorophyll synthase 33kDa subunit JnORF, 

TGATTTGGGGTGTGGTGTGTGGTGCG-GCTGCTTCT gene 1922 coding strand 

a Sequences identified by genomic SELEX are given as RNA and are shown in the top line of each alignment, sequences from the Synechococcus 7942 genome are given as DNA are shown in the 
bottom line. 

b Designations according to the Synechococcus 7942 genomic sequence given by the Joint Genome Institute, consult table AI for pem1anent gene designations. 



Table 5.5 Comparative sequence analysis of round 14 G/U rich RNA with the Synechococcus 7942 genome 

Clone 
Number(s) 

1, 18, 36, 37, 
47, 52, 54, 59 

I , 18, 36, 37, c 
47, 52, 54, 59 

3, 16 

5 

6, 53 

7 

11 

39 

56 

64 

67 

Alignment 3 

UUUAGUCGGGGUGAAUGGGAGGUG 
1111111111111111111 I 

TTTAGTCGGGGTGAATGGGGCTGG 

UUUAGUCGGGGUGAAUGGGAGGUG 
1111 II I Ill 111111111 
TTTA-TCCGTGTGTTTGGGAGGTG 

UGU-AUGGGAGGUGGACGUAGGUUGUGGUUCCGUUGGGCUGG 
II I 11111111 11111111111111 II 1111 Ill 

GGTAAAAGGAGGTGGGCGTAGGTTGTGGTTTCGGTGGGATGG 

UUGAGGCAGGGUCUGCUGUUGGUGN 
IIIII 111111111111111111 
TTGAG-CAGGGTCTGCTGTTGGTG 

CAGUGGUGGUGGAGAUAGUAGUGGUGUGAGUGU 
111111111111111111111111 IIIII 

GCGTGGTGGTGGAGATAGTAGTGGTGGGAGTGG 

UGACUGGCUUGGCGGUGAGUGGAGUGAAUGGGAAGUGUAC 
I Ill 11111111111111111 

GATCCCAACCAAGCCTGACCGGAGTGAATGGGAAGTGGCA 

ACCUGGUCAGAGUGGAGGUGAUGGUGGCGGUA 
I 1111111111111111111111111111 

TCTTGGTCAGAGTGGAGGTGATGGTGGCGGTG 

GACUGGAGUGAAGUGGGAGGUGUAAU 
I I 111111111111111 

ATGGGAAATGAAGTGGGAGGTGTTGC 

AAGCCGUUUGAGUGUGAGUGAUGGAGUGUUUGUGUGGGUG 
111111111111111111111111111111 1111 II 

TAGCCGTTTGAGTGTGAGTGATGGAGTGTTTTTGTGATTG 

GUGCGAUCGCGAGGCUGCGUGAA-UGGGAGGUGAU 
11111111111111111 IIIII 111111 II 
GTGCGATCGCGAGGCTGAGTGAAATGGGAG-TGGA 

AUCUGCACCUAGAGCUGAUGCGUNUGGGUGGAUGGGGGGUGUU 
I 111111 1111111111 II 111111 1111 IIIII 

AATTGCACCAAGAGCTGATGGGTCTGGGTGAATGGTGGGTGGG 

Homology(%) 

83.3 

83.3 

85.4 

100 

87.9 

52.5 

90.6 

65.3 

90 

88 .2 

79.1 

Location in Synechococcus b 

7942 genome 

contig 126 
gene 274 

contig 135, 
gene 2154 

contig 124 
gene 79 

contig 126 
gene 240 

contig 135, 
gene 2163 

contig 126, 
gene 269 

contig 129 
gene 578 

contig 133 
gene 1215 

contig 122, 
gene 18 

contig 135, 
gene 1928 

contig 124, 
gene 141 

Gene Name/ Function 

Homology to ABC transporter, 
Uup protein ofE.coli 

phosphorylase kinase 

ntrB, nitrate reductase 

ArgD, omithine/acetylomithine 
aminotransferase 

Protein with Winged-helix 
DNA-binding domain and 
Glycine-rich domain 

ABC transporter 

dsg gene, fatty acid desaturase 

Beta 1,4 xylanase 

unknown function 

Type II secretory pathway ATPase 
PuiE/Tfp pilus assembly pathway 

Hypothetica I protein, 
unknown function 

Location in Gene 

In ORF, 
coding strand 

In ORF, 
codmg strand 

In ORF, 
non-coding strand 

In ORF , 
coding strand 

In ORF, 
coding strand 

In ORF, 
coding strand 

ln ORF, 
non-coding strand 

ln ORF, 
coding strand 

In ORF, 
non-coding strand 

In ORF, 
coding strand 

ln ORF, 
coding strand 

a Sequences identified by genomic SELEX are given as RNA and are shown in the top line of each alignment, sequences from the Synechococcus 7942 genome are given as DNA are shown in the 
bottom line. 

b Designations according to the Synechococcus 7942 genomic sequence given by the Joint Genome Institute, consult table Al for permanent gene designations. 

c Second alignment of this group of RNA sequences, generated by using the C-tenninalnine base sequence (in bold) as the query sequence in BLAST analysis of the Synechococcus 7942 genome. 
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Table 5.6 Comparative sequence analysis of round 14 G/U poor RNA with the Synechococcus 7942 genome 

Clone Alignment 3 Homology(%) Location in Synechococcus b Gene Name/ Function Location in Gene 
Number(s) 7942 genome 

AGCACCACAGCACCAAUGCAU 
11111111111111111 I 81 contig 136, gamma-glutamyltransferase downstream of stop 

AGCACCACAGCACCAATCCTC gene 2663 codon, coding strand 

GGAGCGGACACACCACCA 77.8 contig 123, 15 I 11111111111 II Molybdopterin-guanine In ORF, 

GATGCGGACACACCCCCT 
gene 56 dinucleotide biosynthesis protein coding strand 

'AAGCCCACGACAGNNGACAAUAGCCCCAAU 
34 1111111111111 111111111111 83.3 contig 136, uncharacterized, low complexity In ORF, 

AAGCCCACGACAGCCAGCAATAGCCCCAAA gene 2520 protein non-coding strand 

AGCCGGGCGACACCAGACACACAC 
45 II I I I II II II II I II I II I I 87.5 contig 135, between 

AGCCGGGCGACACCAGACACCGCC genes 1700 and 170 I 

ACCUGACGCUGCCGUAACCCAACACCACAU 
55 II II IJIIIIIIIIII 11111111 82.7 contig 135, putP, sodium/proline symporter In ORF, 

GACTGA-GCTGCCGTAACCAAACACCACCA gene 2106 non-coding strand 

CGGGCACCAACCAGAUCCGUACUCCGCAU 
63 1111111111111111111111111111 96.7 contig 129, between 

CGGGCACCAACCAGATCCGTACTCCGCAC genes 615 and 616 

3 Sequences identified by genomic SELEX are given as RNA and are shown in the top line of each alignment, sequences from the Synechococcus 7942 genome are given as DNA are shown in the 
bottom line. 

b Designations according to the Synechococcus 7942 genomic sequence given by the Joint Genome Institute, consult table AI for permanent gene designations. 



The location in the Synechococcus 7942 genome of each RNA sequence is given 

in tables 5.1 to 5.6. Of the 49 sequences obtained, 44 were identified as being located 

within the open reading frame (ORF) of a gene, a result that was expected given that 

89.5% ofthe Synechococcus 7942 genome encodes annotated genes. Genomic analysis of 

some sequences identified homology with a gene whose protein product is hypothetical, 

unknown or isn't well characterized in the literature; these results are not discussed in 

further detail. Also, some RNA sequences had poor homology with the genomic sequence 

or were not located within an open reading frame (ORF); these are also excluded from 

further discussion. The RNA sequences discussed in further detail (section 5.6.1) are 

those that were selected multiple times such as the group of seven GIU rich round 14 

sequences as well as those that have nearly complete homology to a gene that is well 

characterized. 

The majority of RNA sequences identified by genomic SELEX ( 44 of 49) are 

within the open reading frame of a gene. Of these 44 sequences, 28 are encoded on the 

coding strand and 16 are encoded on the non-coding strand. Therefore, in the majority of 

cases (28 of 44), RbpA could function by binding directly to the mRNA transcript of a 

gene within the open-reading frame. By doing so, RbpA would not likely function in 

altering translation initiation, as that would require the RbpA binding site to be located 

near the ribosome binding site. Likewise, RbpA would likely not function as a 

transcription terminator or antiterminator since sequences that regulate expression of the 

transcript in this way are generally located within the 5' untranslated regions of the 

transcript, (e.g. include the bgl operon of E. coli, and the trp and pyr operons of Bacillus 

subtilis (reviewed by Yanofsky, 2000)). Therefore the most obvious function of RbpA 

when bound to the mRNA transcript within an ORF would be to destabilize RNA 

secondary structures generated in conditions of cold-shock or to regulate the stability 
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(half-life) ofthe mRNA. 

The remaining sequences (16 of 44) were located in the non-coding strand of an 

ORF. In these cases, if RbpA is involved in regulation of gene expression via the mRNA 

transcript, it could involve a mechanism mediated by a cis-encoded antisense RNA. 

Regulatory antisense RNAs are encoded either in trans or in cis. Those that are encoded 

in trans are located in a region of genome that does not encode the gene being regulated. 

Those that are encoded in cis are located within the regulated gene on the non-coding 

strand. Antisense RNA regulation in prokaryotes was first characterized by Tomizawa 

and ltoh ( 1981) but the amount of knowledge concerning chromosomally encoded 

antisense RNA regulation in prokaryotes is very limited, with only nine examples 

characterized thus far (reviewed by Wagner et al., 2002). Interestingly, a role for two 

antisense RNAs has been characterized in E. coli stress responses. These antisense RNAs, 

MicF and DrsA, regulate the expression of genes by acting as translational inhibitors or 

activators (Lease et al., 1998) and at the level of mRNA stability (Lease and Belfort, 

2000). MicF regulates the expression of outer membrane porins such as OmpF in 

response to changes in temperature and osmolarity (Andersen et al., 1989). DrsA acts as 

both a translational activator of the rpoS gene (encodes stationary phase sigma factor S) 

in response to cold temperature (Sledjeski, et al., 1996) and as a repressor ofthe hns gene 

(encodes a histone-like repressor protein) (Lease et al., 1998; Majadalani et al., 1998). 

Therefore, the RNA sequences retained by RbpA in the genomic SELEX that do not 

correspond to known transcribed RNA but are located on the non-coding strand within a 

transcript, could be part of a cis-encoded antisense RNA mechanism of gene regulation in 

cyanobacteria. 
Interestingly, a correlation exists between the percentage of G/U residues in the 

RbpA recognition sequence and the location of the sequence in terms of being encoded in 

the coding or non-coding strand of a gene. Of the 28 RNA sequences located in the 
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coding strand of a gene, the vast majority of these sequences (26) are G/U very rich or 

GIU rich sequences (93o/o). This result suggests that an RbpA-mediated mechanism of 

post-transcriptional regulation that involves binding of RbpA to the coding strand within 

the ORF of an mRNA would involve an RbpA recognition sequence predominantly 

composed ofG and U residues. In addition, ofthe 16 RNA sequences encoded in the non­

coding strand of a gene, the majority of these sequences (9 or 56%) are G/U poor 

sequences. While not as dramatic as that for the coding strand outlined above, it identifies 

the tendency of G/U poor sequences bound by RbpA to be located on the non-coding 

strand of an ORF. This result suggests that an RbpA-mediated cis-encoded antisense 

RNA mechanism of regulation would involve binding ofRbpA to a G/U poor sequence. 

5.6.1 Comparative analysis of round 10 sequences and the Synechococcus 7942 

genome 

With exception of the clone 49 sequence, which is located within the sodB gene 

(Table 5.3) encoding a superoxide dismutase protein that could be involved in 

maintaining the photosynthetic apparatus under conditions of cold-shock (c. f section 

5.6.1.6), the genes identified by homology to SELEX round 10 sequences have no 

obvious connection to the cold-shock response or with a possible function of RbpA. 

Therefore, I selected genes for further analysis and discussion based on (a) good 

homology between the gene and the corresponding round 10 RNA sequence (greater than 

80% homology) and (b) if the function for the encoded protein is related to nucleic acid 

function or gene regulation. 
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5.6.1.1 Clone 4 

The clone 4 sequence has an 81.2% homology with a sequence within the ORF of 

the coding strand of gene 169 which encodes the protein LrrA (Table 5.2). The function 

of this protein is not known however it is likely a transcriptional regulator. Interpro 

analysis ofthe 294 amino acid protein revealed that it contains anN-terminal helix-tum­

helix domain (HTH) of the LysR family (Anandan et al., 1996), and a LysR substrate 

binding domain at the C-terminal end. The LysR family of proteins are involved in the 

activation of a diverse set of operons and genes (Schell, 1993) including lysR 

(autoregulation) and lysA involved in lysine biosynthesis (Stragier, 1983). In E. coli, 27 

putative LysR-type proteins have been detected in the genome (Karp et al., 2004). 

FAST A analysis of the E. coli proteome with LrrA detected greatest homology to the 

uncharacterized LysR-type transcriptional regulator Yfer. Interestingly, efforts to create 

an lrrA inactivated mutant strain of Synechococcus 7942 were unsuccessful, suggesting 

that the protein could be involved in an integral cellular function (Anandan et al., 1996). 

5.6.1.2 Clone 7 

Clone 7 has greatest homology (90.4%) to a region in the non-coding strand of 

gene 343 of the Synechococcus 7942 genome (Table 5.2). This gene encodes the Leu!Phe 

tRNA protein transferase protein Aat, a protein that transfers a leucine or phenylalanine 

from their respective aminoacyl-tRNA to the N-terminus of an acceptor protein (Kaji et 

al., 1965). Acceptor proteins are those destined for the N-end rule pathway of protein 

degradation characterized in E. coli (Varshavsky, 1992) and are recognized by Aat via an 

N-terminal Arg or Lys residue. The existence of anN-end pathway of protein degradation 

in cyanobacteria has not been characterized, however evidence for the pathway is 
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supported by complementation of anN-end defect in E. coli by the Synechocystis 6803 

Aat protein (Ichetovokin et al., 1997). 

5.6.1.3 Clone 11 

Clone 11 has 98% homology to the non-coding strand within the ORF of gene 

2816 (Table 5.3). The JGI classification of the protein is a two-component histidine 

kinase that by COGS comparative analysis, is most closely related to the BaeS family of 

histidine kinases. However, when I analyzed protein 2816 by Interpro it revealed that the 

protein contains ATPase and histidine kinase domains like BaeS, but that it also contains 

a GAF domain. The GAF domain is present in phytochrome proteins as well as cGMP­

specific phosphodiesterases and NifA, a transcriptional regulator of nif operons involved 

in nitrogen fixation. Regulation of protein 2816 expression by RbpA would have to be 

mediated by an antisense RNA mechanism, since RbpA recognizes a sequence on the 

non-coding strand of the gene. 

5.6.1.4 Clone 26 

Clone 26 has 91.9% homology to the non-coding strand of gene 284 of the 

Synechococcus 7942 genome (Table 5.2). Gene 284 encodes a class I glutamyl-tRNA 

synthetase. This protein catalyzes the attachment of the amino acids glutamic acid and 

glutamine to their respective tRNA molecule by means of the Rossman fold tertiary 

structure, a conserved structure characteristic of all type I aminoacyl-tRNA synthetases 

(Steitz et al., 1993). 

5.6.1.5 Clone 42 

Clone 42 has 90.7% homology to the non-coding strand within the ORF of gene 

1258 (Table 5.3) which encodes a protein that contains the following four domains 
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normally associated with signal transduction proteins: PAS, PAC, GGDEF and EAL. The 

only published data regarding a protein with all four domains relates to the FimX protein 

of Pseudomonas aeruginosa. Inactivation ofji.mX in Pseudomonas aeruginosa identified 

a potential involvement in regulation oftwitching motility involving type IV pili (Huang 

et al., 2003). The involvement of type IV pili in movement of cyanobacterial species has 

been characterized in Synechocystis 6803, whereby the pili are involved in gliding 

motility ofthe cyanobacterium (reviewed by McBride, 2001). 

5.6.1.6 Clone 49 

The sequence identified (83.3% homology) by clone 49 is found in the coding 

strand of gene 996 (Table 5.3). BLAST analysis of the protein identified it as So dB, an 

iron superoxide dismutase (SOD) protein. Synechococcus 7942 contains two SODs, an 

iron SOD located in the cytoplasm and a thylakoid-associated manganese SOD 

(Laudenbach et al. , 1989). Together the SOD proteins function as antioxidants by 

catalysing the conversion of harmful superoxide radicals (02-) into hydrogen peroxide 

(H202) and molecular oxygen (02). In conditions of light irradiation and cold shock, 

oxidative stress in photosynthetic organisms including cyanobacteria and plants occurs. 

This effect is created because cold temperature decreases enzymatic activity of all 

proteins including those of the Calvin cycle, whereas the ability to harvest light energy is 

not compromised leading to the formation of reactive 0 2 molecules. Oxidative stress in 

tum damages the cell photosynthetic apparatus such as photo system I (Thomas et al., 

1998). Antioxidants such as SodB are involved in maintaining cellular viability in 

conditions of cold shock and oxidative stress as indicated by the reduced viability of 
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Synechococcus 7942 in moderate cold shock conditions (17°C-1 0°C) in the presence of 

light (Thomas et al., 1999). 

Recognition of a sequence within the coding strand of the sodB gene ORF 

suggests that RbpA could be involved in regulating expression of SodB in cold-shock 

conditions. The sequence recognized by RbpA is located near the middle of the 690 base 

ORF, comprising nucleotides 303 to 327. Therefore, RbpA could potentially be involved 

in increasing the stability of the sodB mRNA as a means of increasing the amount of 

SodB in the cell. The reason for an RbpA-mediated increase in the concentration ofSodB 

in conditions of cold-shock is due to the involvement of SodB in the oxidative stress 

response and because induction of Fe-SOD has been observed in the chloroplast of 

tobacco plants in conditions of cold-shock under normal light (Tsang et al., 1991). 

5.6.2 Comparative analysis of round 14 sequences and the Synechococcus 7942 

genome 

To further characterize the genes potentially regulated by RbpA in the 

cyanobacterial cell, round 14 SELEX selected RNA sequences that exhibited nearly 

complete homology (greater than 80%) with a portion of a gene in the Synechococcus 

7942 genome that encodes a protein that is well characterized in the literature were 

further investigated. In addition, genes associated with the cold-shock response that were 

identified as containing a SELEX RNA sequence were also analyzed due to the 

involvement ofRbpA in the cold-shock response. 

5.6.2.1 Clones 1, 18, 36, 37, 47, 52, 54, 59 

The sequence of clones 1, 18, 36, 37, 47, 52, 54 and 59 are almost entirely 

identical and therefore are considered together. Since this group contains the entire 
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revised consensus sequence and comprised the greatest proportion of the fmal pool of 

nucleic acid molecules sequenced from round 14 of genomic SELEX, determination of 

the location of this sequence group in the Synechococcus 7942 genome was important. 

Comparative analysis ofthe Synechococcus 7942 genome with all clones revealed 

an identical result, that these sequences have 83.3% homology with two regions of the 

genome (Table 5.5). The first region is located at nucleotides 45304 to 45327 of contig 

126 within the coding region of gene 274. The problem with this alignment is the absence 

ofhomology within one ofthe most conserved regions ofthe sequences, namely AGGU 

near the 3' end (c. f Figure 5.2B). Since the 3' end of this group of sequences is highly 

conserved among the round 14 G/U rich RNA selected sequences, and is therefore an 

important sequence, I tried to detect a region ofthe Synechococcus 7942 genome that is 

homologous to the 3' end of this group of sequences by using the sequence 

UGGGAGGUG as the query sequence (BLAST search with a word size of 9 was used). 

The result was 83.3% homology with nucleotides 99425 to 99440 of contig135 within the 

coding region of gene 2154, which encodes a phosphorylase kinase protein. The lack of 

complete homology between the genome and this group of sequences was disappointing. 

However, the reason for the lack of complete homology could be due to mistakes in the 

SELEX sequences themselves, as explained in section 5.6. 

Gene 274 (ser2217) encodes a 569 amino acid protein with 75o/o identity and 86% 

similarity to an uncharacterized ATP-ase ABC (ATP-binding cassette) transporter of 

Nostoc sp. PCC 7120 (Anabaena 7120). Interpro analysis (Mulder et al., 2003) of the 

protein encoded by gene 274 detected the presence of two NTP-binding motifs termed P­

loops, one ATP-binding P-loop at theN-terminus (amino acids 29-50) and a GTP-binding 
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loop near the middle of the protein (amino acids 352-372). Both P-loops are part of 

individual AAA (A TPases Associated with diverse cellular Activities) ATPase domains 

(Karata et al. , 1999) characteristic of ABC transporters. 

Gene 2154 encodes a phosphorylase kinase protein that, according to Interpro 

analysis, is the alpha subunit of phosphorylase kinase. This purpose of this enzyme is to 

phosphorylate glycogen phosphorylase at its Serine 14 residue, a process that activates 

the protein. Active glycogen phosphorylase in turn functions in the breakdown of 

glycogen to yield glucose-1-phosphate. Cyanobacteria like many prokaryotes and 

eukaryotes, store glucose in the form of glycogen, to be used accessed in energy depleting 

conditions (Preiss, 1982). The amount of knowledge concerning cyanobacterial glycogen 

is very limited therefore it is difficult to make any inferences about a potential function of 

glycogen breakdown during the cold-shock response. 

5.6.2.2 Clone 11 

Comparative analysis with the clone 11 sequence revealed nearly complete 

homology (90.6%) to a region ofthe non-coding strand within the dsg gene (Table 5.5). 

Synechococcus 7942 and 6301 are desaturase group I strains of cyanobacteria (Murata 

and Wada, 1992), a group that does not have the ability to introduce a second double 

bond into monounsaturated fatty acids. The desaturase Dsg is a non-specific delta 9 

desaturase that can generate a cis-double bond at the delta 9 position of both 16 and 18 

carbon saturated fatty acids (lshizaki-Nishizawa, 1996). 

Desaturases have been shown to be extremely important in maintaining cellular 

viability in conditions of cold shock. As mentioned in section 1.3, cold temperature stress 

causes the membrane of a cell to become more rigid, adversely affecting the ability ofthe 
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membrane to perform normal functions of export and import of molecules. In 

cyanobacteria, fluidity of the membrane is re-established by desaturation of saturated 

fatty acids in the membrane, a process characterized in both Anabaena variabilis (Sato 

and Murata, 1980) and Synechocystis sp. PCC 6803 (Wada and Murata, 1990). The 

existence of one desaturase and thus the ability to generate only monounsaturated fatty 

acids in Synechococcus 7942 and 6301 has been implicated as the reason why these 

cyanobacteria are somewhat cold-sensitive (Wada et al., 1990). In fact, increased 

desaturation of membrane lipids of Synechococcus 7942 by introduction of the desA gene 

that encodes a delta 12 desaturase from Synechocystis 6803 enhanced the ability of the 

strain to survive at cold temperature (22°C) (Wada et al., 1994). 

Evidence suggests that the mechanism of induced desaturase expression in cold­

shock conditions is increased stability of desaturase transcripts. In a study by Sakamoto 

and Bryant (1997), upon shift of Synechococcus 7002 cells from 38°C to 22°C, desaturase 

transcripts that encode DesA and DesB increased in stability by 3.5 fold and 15 fold 

respectively. Interestingly, the level of the desC transcript was shown to be not dependent 

upon temperature. However this result does not disprove the possible role of the 

Synechococcus 7942 DesC homologue, Dsg, in cold shock. Although Synechococcus 

7942 has only one desaturase and is somewhat temperature sensitive, the importance of 

the Dsg protein to act as a desaturase in cold-stress conditions is evidenced by a study in 

which expression ofthe Synechococcus 7942 Dsg protein in tobacco plants decreased the 

level of saturated fatty acids and increased resistance to cold (Ishizaki-Nishizawa, 1996). 

If RbpA regulates expression of dsg, it could do so via a cis-encoded antisense RNA that 

is complementary to nucleotides 288-320 of the ORF located in the dsg mRNA. Since 
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RbpA could presumably increase the expression of Dsg in cold-shock conditions, the 

binding of RbpA to the antisense RNA could either prevent binding of the inhibitory 

antisense RNA to the dsg mRNA or activate the antisense RNA if binding of dsg and the 

antisense RNA increases expression ofDsg. 

5.6.2.3 Clones 3 and 16 

Clones 3 and 16 are 41 bases in length and differ in sequence at two nucleotide 

positions, therefore the two sequences are considered together. The most homologous 

sequence in the Synechococcus 7942 genome (85.4%) was to a region on the non-coding 

strand within the ORF of the narB gene which encodes nitrate reductase (NarB) (Table 

5.5). Homology to the non-coding strand of nitrate reductase indicates that any RbpA­

mediated mechanism of nitrate reductase regulation would involve a cis-encoded 

antisense RNA (refer to section 5.6). 

NarB is involved in the processing of nitrate to nitrite, a two electron reduction 

reaction involved in the assimilation of nitrate (Rubio et a/., 1996). A role for RNA­

binding proteins in the regulation of nitrogen metabolism has been identified by Mori et 

al. (2003). In the nitrogen fixing heterocystous cyanobacterium Anabaena 7120, the level 

of the rbpA, rbpB, rbpC and rbpD transcripts upon cold-shock were dependent upon 

nitrogen status suggesting that a relationship exists between nitrogen status and stress 

responses. Unfortunately the study did not measure the effect of rbp gene expression in 

the presence of nitrate. A role for RNA-binding proteins in repression of h~terocyst 

formation in conditions of low temperature was outlined by Sato and Wada, (1996). In 

wild-type heterocyst forming cyanobacteria, both nitrate and ammonia repress initiation 

of heterocyst formation at all temperatures. However, upon inactivation of the rbpAJ 

gene, Anabaena variabilis M3 was unable to repress heterocyst formation at low 

temperature when nitrate was present, while the more potent inhibitor ammonia was still 
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able to repress differentiation. This fmding suggests that RbpA1 is involved in the 

mechanism of nitrate induced repression of heterocyst formation at low temperature. 

In non-heterocyst forming cyanobacteria such as Synechococcus 7942 and all 

Synechococcus species other than PCC 7335 (a Synechococcus species that fixes 

nitrogen) (Bergman eta/., 1997), RbpA would not be involved in repression ofheterocyst 

formation, therefore the question arises: what function would regulation of narB levels in 

the cell by RbpA in conditions of cold-shock serve? In a study by Sakamoto and Bryant 

(1999), a decrease in the growth rate of Synechococcus 6301 in conditions of low 

temperature ( 15°C) is attributed to a decrease in the rate of nitrate consumption. The 

authors believe this could be due to a decreased ability of the cell to import nitrate 

because of the compromised function of nitrate permease (NtrA) in conditions of cold 

temperature due to decreased membrane fluidity. Therefore, although nitrate permease is 

not fully functional , RbpA could be involved in maintaining cellular levels of nitrate 

reductase to process the limited amount of nitrate imported during conditions of cold 

shock. In fact , when nitrate uptake is completely shut down at a temperature of 15°C, 

active nitrate reductase was still present (Sakamoto and Bryant, 1999). 

5.6.2.4 Clones 6 and 53 

RNA sequences from clone 6 and 53 are considered together because clone 53 

contains the entire clone 6 sequence. Comparative sequence analysis of the 

Synechococcus 7942 genome detected significant homology to the coding strand of gene 

2163 (Table 5.5). The gene is 1298 nucleotides in length and encodes a 432 amino acid 

protein characterized as a protein with unknown function by JGI. Interpro analysis ofthe 

protein revealed the existence of a winged helix-tum-helix DNA binding domain located 

within N-terminal 73 amino acids, a glycine-rich sequence encoded in amino acids 122 to 

149 and two hypothetical conserved domains of unknown function encoded by amino 
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acids 151-330 and 333-410. The winged-helix DNA binding domain is found in a large 

superfamily of proteins that contain a myriad of protein domains in tandem with a 

winged-helix domain. These proteins function as transcription factors, involved in the 

transcription regulation of many genes in both prokaryotes and eukaryotes (Gajiwala and 

Burley, 2000). 

Efforts to further characterize the potential function of this protein by 

identification of homologous proteins by FAST A analysis were unsuccessful since all 

proteins with significant homology were uncharacterized, hypothetical proteins. 

Therefore, a putative function of this protein in cyanobacteria cannot be proposed. 

However, involvement of winged-helix containing proteins in the cold-shock response 

has been suggested in Archaea by the presence of a gene encoding a helix-tum-helix 

protein in cold-adapted bacteria (Saunders et al., 2003). 

5.6.2.5 Clone 55 of round 14, clones 8, 23 and 43 of round 10 

The only sequence that was identified in the Synechococcus 7942 genome in both 

rounds 10 and 14 of genomic SELEX was a sequence located on the non-coding strand 

within gene 2106 encompassing nucleotides 1713 to 1739 ofthe 1786 base ORF. This 

G/U poor sequence was identified by clones 8, 23 and 43 of round 10 (Table 5.3) and 

clone 55 of round 14 (Table 5.6). COGS homology analysis performed by JGI identified 

the product of gene 2106 as putP, a proline permease that acts as a sodium: proline 

symporter. PutP acts as the main uptake mechanism of proline (Wood and Zadworny, 

1979) in Salmonella and E. coli, whereby proline taken in by the cell is used not only as a 

nitrogen and carbon source, and also as a cryoprotectant in conditions of cold temperature 

(Rudolph and Crowe, 1985). In response to varying conditions of cold, heat and salt 

concentration, some bacteria have been shown to accumulate a variety of low molecular 

weight compounds, including proline, that act as chemical chaperones (Tatzelt et al. , 
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1996). These chemical chaperones likely function by increasing the stability of proteins 

and preventing denaturation and subsequent aggregation. For instance, addition of proline 

was shown to be involved in heat shock adaptation by activating heat-shock protein 

chaperones GroEL, DnaK and ClpB in E. coli (Diamant et al., 2001 ). Therefore, in 

theory, RbpA could upregulate the expression of PutP (via binding to a regulatory 

antisense RNA) in conditions of cold-shock, to increase the amount of the chemical 

chaperone proline as part of the diverse cold-response mechanism of maintaining cellular 

viability. 

5.6.2.6 Clones 35 and 43 from round 14 and clone 5 from round 10 

The sequences of clones 35 and 43 from round 14 like that of clone 5 from the 

round 10 RNA are very rich in G/U residues and contain numerous consecutive copies of 

the sequence UGUGGUG. Clone 5 contains 5 consecutive UGUGGUG repeats and both 

clones 35 and 43 contain 3 consecutive repeats. The only portion of the Synechococcus 

7942 genome that has some similarity (75.6%) with this repeat sequence is the coding 

strand of gene 1922 that encodes the 33kDa subunit of chlorophyll synthase (Tables 5.1, 

5.4). The reason for the lack of complete homology in the Synechococcus 7942 genome is 

unclear, the absence of homology could be due to the mistakes in the Synechococcus 

7942 genomic draft sequence or highly repetitive sequences could have been excluded 

from the genomic sequence provided by JGI. 
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Conclusion 

The genomic SELEX procedure was an effective method to determine both the 

ribonucleic acid binding specificity of RbpA and the identity of genes potentially 

regulated by it. The genomic SELEX library was shown to be sufficiently representative 

of the Synechococcus 7942 genome. Determination of the representation of a 43 bp 

portion of the rbpB gene in the genomic SELEX library by nested-PCR revealed that on 

average, the library contains in a staggered arrangement, one library molecule per 1.6 

bases ofthe genome or a total of 3.38 x 106 library molecules. This result showed that all 

sequences potentially bound by RbpA should be present within the RNA binding reaction 

of the initial round of selection. 

It was surprising to fmd that three classes ofRNA sequences (G/U poor, GIU rich 

and GIU very rich) were isolated in both rounds 10 and 14 of genomic SELEX given that 

RbpA and other glycine-rich RRM-type RNA-binding proteins have shown a binding 

preference for poly U and poly G homopolymers. However, since RNA sequences rich or 

very rich in G/U residues comprise the majority of sequences identified following rounds 

10 and 14 of selection and exhibit a greater degree of sequence homology than those poor 

in G/U residues, RbpA could have a higher binding affmity for RNA sequences 

predominantly composed of G and U residues. 

A putative RbpA consensus binding sequence was characterized by analysis ofthe 

RNA sequence alignment of round 14 G/U rich and GIU very rich RNA sequences. 

Identification of a nearly identical 13 base RNA sequence UGAAUGGGAGGUG 

sequence eight times in the round 14 G/U rich RNA pool that is highly conserved among 
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all round 14 G!U rich sequences suggests that this sequence likely contains the RNA­

binding sequence ofRbpA. Since RNA-binding proteins usually bind to a sequence 5-10 

ribonucleotides in length, the actual binding sequence may be shorter than 13 bases in 

length. Interestingly, the six nucleotide sequence at the 3' end ofUGAAUGGGAGGUG 

is almost identical to a six base sequence, GUGGUG, present in many RNA sequences 

selected in both rounds 1 0 and 14 and are present in the three G!U very rich RNA 

identified in rounds 10 and 14 of genomic SELEX. This suggests that GUGGUG could be 

the target of RbpA binding. In order to verify this, experiments to detect specific RNA­

RbpA complexes by non-denaturing PAGE gel shift analysis must be conducted. In this 

way, one should be able to investigate the relative binding affmity of RbpA not only to 

the putative revised consensus sequence but also to sequences in each of the three classes 

ofRNA sequences isolated by genomic SELEX (G!U rich, G!U very rich, G!U poor). In 

addition, this should defmitively prove that RNA selected in the genomic SELEX process 

was due to RbpA binding and not to an interaction with the Nt2
- NT A resin. 

Induction of RbpA expression in conditions of cold-shock suggests that the 

protein is involved in the cyanobacterial cold-shock response. Alteration of prokaryotic 

gene expression in cold-shock conditions suggests that the cold-inducible RbpA could be 

involved in the mechanism of altered gene expression at the RNA level. I was able to 

identify some intriguing candidate genes potentially regulated by RbpA in the 

Synechococcus 7942 cell. Nearly all round 10 and round 14 RNA sequences were found 

within an open reading frame (90o/o). Most sequences were encoded on the coding strand 

of the ORF (64o/o) and interestingly some sequences were located on the non-coding 

strand 36o/o). Nearly all encoded on the coding-strand were G/U rich or very rich 
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sequences whereas most sequences located in the non-coding strand were GIU poor. 

Therefore, RbpA could regulate gene expression by binding to GIU rich sequences within 

the ORF of an mRNA in an attempt to either increase the half-life of the mRNA or 

maintain efficient translation by preventing the formation of additional secondary 

structures that can exist in cold temperature conditions. RbpA could also regulate gene 

expression by binding to GIU poor sequences within regulatory cis-encoded antisense 

RNAs. One could probe for the presence of cis-encoded antisense RNA in Synechococcus 

7942 cells when subjected to a variety of conditions including cold-shock to demonstrate 

that these RN As are in fact transcribed and potentially function in regulating gene 

expression by a process involving RbpA. 

The most interesting genes identified by comparative genomic analysis with the 

genomic SELEX sequences were those known to be important for maintaining cellular 

viability in cold-shock conditions because of the putative function of RbpA as a cold­

shock regulator of gene expression. For instance, the dsg gene encoding fatty acid 

desaturase is involved in maintaining cellular viability in cold shock conditions by 

maintaining the fluidity of the cell membrane by desaturation of membrane fatty acids. 

The putP gene encodes a proline permease protein involved in the accumulation of 

proline in conditions of cold temperature. Proline is used as a cryoprotectant by some 

prokaryotes and has been characterized as a chemical chaperone, required to prevent 

protein denaturation in conditions of heat stress. The sodB gene encodes the iron 

superoxide dismutase protein involved in preventing the accumulation of harmful 

superoxide radicals in conditions of cold temperature. Therefore, the fact that RbpA 

recognizes a portion of the RNA sequence encoded within these genes provides evidence 
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that RbpA may play a role in regulating the expression of genes involved in the cold­

shock response. 

In addition to cold-regulated genes, other interesting genes potentially regulated 

by RbpA include genes that encode transcriptional factors such as LrrA and the protein 

encoded by gene 2163. RbpA could also be involved in nitrate assimilation by regulation 

of nitrate reductase, in maintaining the cyanobacterial circadian rhythm by regulation of a 

protein similar to CikA that acts as an environmental sensor, and in the breakdown of 

glycogen by regulation of glycogen phosphorylase kinase. 

In conclusion, although the function of RbpA in the Synechococcus 7942 cell has 

not been elucidated, the RNA sequence binding specificity of the protein is now better 

characterized and genes potentially regulated by RbpA have been identified for further 

analysis. 
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Suggestions for future work 

By use ofthe genomic SELEX protocol, I isolated a large set of RNA molecules 

potentially recognized by RbpA and I identified a putative RbpA consensus binding 

sequence. To verify binding of RbpA to these RNA molecules, quantitative assays are 

required because evidence that protein-mediated selection of RNA sequences occurred 

during the SELEX procedure was primarily qualitative. Quantitative assays such as an 

electrophoretic mobility shift assay (EMSA) or a filter binding assay would enable one to 

verify and thus validate the protein-RNA interaction and also to obtain binding constants 

for the interaction. In addition, with the use of quantitative assays one could investigate 

the relative binding affmity of G/U poor, rich and very rich RNA classes to RbpA and 

determine if G/U poor RNA (that contain the sequence CACCAC) was retained due to a 

direct interaction with RbpA or via an indirect mechanism such as hybridization to G/U­

rich sequences (that contain the sequence GUGGUG). 

The best candidate sequences for initial binding studies should be from round 14 

of genomic SELEX and be those with the most extensive similarity to the Synechococcus 

7942 genome sequence such as clone 63 (in the G/U-poor class of selected RNA 

sequences), or have been selected the greatest number of times such as clone 18 (G/U­

rich RNA class) and clone 35 (G/U-very rich RNA class) because retention of multiple 

copies of a sequence may indicate that these sequences are bound with greatest affmity by 

the protein. In addition, since the SELEX-selected sequences contain mismatches in 

comparison to the Synechococcus 7942 genome sequence, the genomic sequences 

themselves should also be used in quantitative binding studies to determine if RbpA 
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binding to the sequences retained by genomic SELEX is biologically relevant. If RbpA 

does not bind to the genomic sequence, then RbpA would have retained the SELEX­

selected sequence after it was altered by mutation and thus the retention of the SELEX­

selected sequence would not be biologically relevant. I would expect that RbpA would 

have greater binding affmity in each case for the SELEX-selected sequence than for its 

genomic equivalent, therefore providing evidence that the relatively large number of 

differences between the SELEX-selected sequences and the Synechococcus 7942 

genomic sequence) may have occurred due to mutation and subsequent selection ofthose 

RNA sequences. 

The existence of cis-encoded antisense RNA molecules retained in the genomic 

SELEX process indicated that RbpA could be involved in a mechanism of gene 

regulation that is poorly understood in prokaryotes. To determine if RbpA actually binds 

to these sequences, a quantitative assay would be required. The synthesis of these cis­

encoded antisense RNAs in Synechoccocus 7942 would need to be investigated by 

Northern blot analysis to determine if these molecules are produced in the cyanobacterial 

cell. Similarly, one could investigate the expression of genes potentially regulated by the 

RbpA-antisense RNA mechanism by Northern blot analysis in a variety of conditions 

including cold-shock and in strains that contain wild-type or mutant rbpA alleles. 
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Table AI: Synechoccus 7942 genome gene numbers. 

Old gene3 new geneb 
designation designation 

13 -c 

18 
51 sefOOOl 
56 ser0006 
79 sef0035 
141 ser0107 
169 ser0142 
240 sef0226 
269 sef0263 
274 
343 ser0349 
467 ser0485 
578 ser0609 
615 ser0648 
616 ser0649 
996 serll09 

1105 sefl230 
1155 ser1286 
1184 
1215 sefl357 
1258 
1700 
1701 sef1925 
1766 sef2003 
1922 sef2200 
1928 sef2207 
2061 ser2359 
2106 ser2417 
2154 ser2470 
2163 ser2479 
2374 ser2719 
2520 sef2641 
2533 ser1339 
2663 
2748 
2771 
2809 
2816 

a arbitrary gene designation numbers used by the Joint Genome Institute (JGI) during create of a draft 
sequence of the Syn. 7942 genome 
b Permanent gene names generated upon completion of the Syn. 7942 genome, gene names were accessed 
at http:/ /ramsites.net/-biolingual 
c classified as no longer considered a gene 
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