

Arranging Arbitrary Data into

Structured Layouts

St. John ' s

by

© Grant Strong

A thesis submitted to the

School ofGraduate Studies

in partial fulfillment ofthe
requirements for the degree of

Doctor of Philosophy

Department ofComputer Science
Memorial Univers ity ofNewfoundland

May 13, 2013

Newfoundland

Abstract

Data. It can range from a single item to an exhaustive array of samples. It may be as

simple as a binary label or as complex as a set of high dimensional vectors. It may be

comparable by distance, by order, or not at all. In general, data is a term that encompasses

a wide gamut. While specific data types vary in makeup and comparability, the common

denominator is that it is always possible to take two elements of a data set and determine

how dissimilar they are to some degree. The purpose of this thesis is to use that

dissimilarity to arrange data into structured layouts in which each item occupies a unique

cell. These layouts are meant to be simple, minimal, and free of occlusion. Three novel

algorithms for this type of data arrangement are proposed. The first is an amalgamation

of the Self-Organizing Map and the k-d tree. It builds a semi-structured layout that is later

refined. It performs admirably but requires intermediary steps making it lack the speed

necessary for scalability. The second algorithm, called the Self-Sorting Map, is new and

is inspired by techniques from the field of dimension reduction. It approaches the

problem from a sorting perspective and generates minimal, occlusion-free layouts from

all types of data directly. It is fast, scalable, and parallel. The third algorithm transforms

the problem from minimiz ing local dissimilarity, like the others, to maximizing global

correlation. Entitled the Max Correlation Map, it is simpler and more robust than its

counterparts. Throughout this thesis the three algorithms are analyzed and applied.

Creative organizations of images, articles, and cities show the practical worth of

organizing data into structured layouts.

II

Acknowledgements

Formally, it is my fmest honor to thank my supervisor, advisor, and mentor Dr.

Minglun Gong for everything he has done for me over the past five years as a Masters

and Doctoral student. None of what we have accomplished together, or what I have

accomplished academically and vocationally in my life, would have happened without

him and his guidance. I must offer my highest thanks to David Mould, Antonina

Kolokolova, and Andrew Vardy for their meticulous review of my work, both on paper

and during the defense. I cannot forget Darlene Oliver whom I am indebted to for

aligning all the stars so the defense could even happened on schedule. I would like to

thank everyone from the students, to the faculty, to the staff in the Computer Science

department at Memorial University. I would not trade my experiences here with you for

anything. I also have to thank NSERC for their gracious funding throughout my program.

A special thanks to Yoones Sekhavat for printing this document in my absence at the 11 th

hour to allow me to graduate.

That said these formal thanks are not enough. So many astounding, amazing, and

phenomenal things have happened in my life, particularly in the last year and a half.

There is a big, detailed, informal story to be told and so many more to be thanked in it.

For that reason I have written it and placed it in the Appendix. Maybe I am the first

person to ever continue their acknowledgements in the form of a story in an appendix, but

after five years in grad school there was a lot to say so I did.

iii

Table of Contents

Chapter 1 Introduction 1

1.1 Motivation 2

1.2 Contributions and Overview 5

Chapter 2 Related Work 9

2. 1 Dimension Reduction 9

2.2

Chapter 3

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.2

3.2 .1

3.2.2

3.3

Information Visualization 13

Self-Organizing Map based Data Organization 19

Method 19

Input Data 19

Self-Organizing Map 20

K-D Tree Grid Alignment 22

Boundary Conditions 25

Results 26

Colors 26

Images 27

Discussion 32

Chapter 4 Self-Sorting Map 33

4.1 Method 33

4 .1 .1 Sorting Numbers into a 1 D Array 33

4 .1.2

4 .1.3

4.1.4

4. 1.5

4.2

4.2. 1

4.2.2

4 .2.3

4.2.4

4.2.5

Organizing Multi-Dimensional Data 35

Organizing Nominal Data 38

Handling 2D Structural Layouts 39

Boundary Conditions 42

Parallel Implementation 44

Target Generation Kernel44

Approximate Centroid Initial Block Size46

Data Swapping Kernel47

Execution 48

Performance Considerations48

iv

4.2.6

4 .3

4.3.1

4.3.2

4.3.3

4.4

Complexity Analysis 50

Results 51

Colors 52

Images 53

Benchmarks 55

Discussion 56

Chapter 5 Max Correlation Map 60

5 .I Method 60

5.1.1 Problem Definition 61

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

5. 1.7

5.2

5.2.1

5.2.2

5.3

Cell Correlation 62

Partial Correlation Updates 63

Enumerated MCM Search with Pruning 64

Coarse-to-Fine Swap-based MCM Search 66

Comparison 68

Fixed Item Conditions 69

Results 70

Colors 70

Images .. 71

Discussion 72

Chapter 6 Applications 75

6. 1 Artificial Data 75

6.2 Images 77

6.3 Art icles 82

6.4 Cities 84

Chapter 7 Conclusion 88

Appendix 97

Image Query Expansion ... 97

Acknowledgements Unabridged 1 01

v

List of Figures

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:
Figure 6:

Figure 7:

Figure 8:

Figure 9:

Presenting the weather of 20 key cities in North America. Top: Two
presentations used by the AccuWeather
(http://www.accuweather.com/enlnorth-america-weather) . Bottom: Cities
are arranged into a grid layout by a combination of country membership
and geographic location. (a) Directly positioning the cities using their
geographic coordinates causes occlusions, forcing users to interact with
the map. (b) Sorting the cities lexicographically by their names into a 20
grid allows particular cities to be found quickly, but makes it difficult to
grasp regional weather trends. (c) Arranging cites by country/ locat ion
similarity in a 20 grid structure promotes quick finding without loss of
the weather trend information. This layout is also valuable in situat ions
where interaction is difficult or there is none like on a mobile device or a
public billboard 4
Hierarchical data visualization. Left: A hierarchical clustering of objects
from [47] with 20 clusters displayed at different levels ofthe hierarchical
cluster tree. Right: A tree-map from [24] with rectangles where each co lor
be longs to the same level ofthe tree hierarchy 14
The structure of a similarity graph from the VisualRank literature [23].
Notice that the enlarged ones are the most connected 15
Image presentation structures obtained from [57]. Note that changing
image sizes are not reflected 16
A pathfinder network from [7] based on the images' co lor histograms 16
A snapshot obtained from Microsoft's Photosynth [32] which is built upon
the work from [45]. 17
A depiction of the conversion of a continuous set of points to a regular,
non-overlapping grid using a k-d tree 23
Pseudocode for the Self-Organizing Map data organization algorithm with
k-d tree grid alignment 24
The progression of the organization of 4096 Lab color vectors by a
64 x 64 SOM with k-d tree alignment. The frrst image on the left shows
the initial weight vectors. They are chosen randomly from the ranges of
the input item vectors. The next three images show the evo lution of the
weight vectors at various iterations. The neighborhood and learning rate
decay is ev ident as time passes. The last two images on the right show the
items themselves. The first ofthe two is the unaligned set of items placed
directly at the position of their best match units. Note the gaps as some
SOM units remain unoccupied while others contain multiple items. The
last image is the items at the positions acquired after the applicat ion of the

VI

k-d tree algorithm for alignment and the correlation score of the
organization 24

Figure I 0: Two organizations of 4096 Lab color vectors repeated in 3 x 3 grids.
Left: Generated using an SOM in the standard way. Right: Generated
using an SOM with wrapping. Clusters of items form in rounder blotches
since there is no way for them to retreat into a corner. 25

Figure II: The organizations of 4096 Lab color vectors. The frrst image in the row is
the starting set of items in both cases. Next are the original and aligned
results ofSammon's mapping and the SOM. The grid aligned versions for
these approaches are generated using k-d trees. Total organization time
and final correlation between position and dissimilarity across the grid
aligned maps is given below the respective images. All implementations
are single threaded Java ones running on a Intel Core 2 Duo P8600 CPU
at 2.4 GHz ... 27

Figure 12: Two layouts from a collection of images expanded out of the query
"Washington". Left: Images are placed in positions directly from the
SOM. Right: Images are placed at k-d tree aligned positions. In both, the
images have color-coded borders relative to their category. The regions
displaying "Denzel Washington" (red), "Washington State" (yellow),
"Washington, D.C." (blue), and "George Washington" (green) are clearly
visible. Within the regions, visually similar images also neighbor one
another. The organization times and correlations are given. The unaligned
SOM correlation is higher since images can be positioned in free space 31

Figure 13: The absolute differences between the given concept semantic distance
matrix and a distance matrix computed from the MDS generated concept
vectors 32

Figure 14: Self-sorting on a I D array: The algorithm goes through multiple stages
with decreasing block sizes .. 34

Figure 15: The neighborhoods used for target calculation when swapping data
between two paired blocks (color-coded as blue and red). Each
neighborhood contains 4 blocks 36

Figure 16: Organizing data without using global comparison operator; only target
distance minimization is used. The top row of each subfigure shows the
initial (random) arrangement. The remaining 5 rows show the
intermediate results after each stage 37

Figure 17: Splitting a 2D map into 4 x 4 blocks and grouping blocks using even-odd
(a) and odd-even (b) settings. In both subfigures the red cell is matched to
the three yellow cells from the grouped blocks40

Figure 18: The neighborhoods defined for the four color-coded grouped blocks in the
center. Each neighborhood encompasses a 4 x 4 block window that is
offset away from the other blocks in the same group 40

Figure 19: Pseudocode for the Self-Sorting Map 42

VII

Figure 20: The progression of the organization of 4096 Lab color vectors after
different stages. The corresponding correlation scores are given below the
images 42

Figure 21: Results generated using additional constraints on the border of the map.
Left: Using white color as boundary condition attracts bright colors to the
boundaries and pushes dark colors to the center. Middle: Using black as
boundary condition has the opposite effect. Right: Using white on top and
black on bottom attracts colors of different brightness to different sides.
Note that the correlation scores are much lower than the one obtained
without any boundary constraints43

Figure 22: The number of comparisons needed for computing the true centroid
targets of different block sizes increases dramatically as the number of
data items in each block does45

Figure 23: The first subfigure is the original data after items have been swapped into
16 x 16 blocks. The next four images show the approximate centroid
maps obtained using parallel reduction, leading up to the approximate
centroids ofthe 16 x 16 blocks. The last image shows the true centroids
ofthose blocks calculated directly using Equation (18) . The approximate
centroids are similar yet more vibrant.45

Figure 24: The charts show the total time and correlation respectively. An initial
block size of 2 means that centroids for any block size larger than 2 x 2
would be built by getting the centroids at block size 2 x 2 and then
reducing that map of centroids by half repeated ly until the centroids for
the desired block size have been approximated. In this case an initial
block size of 4 yields the best trade off of quality versus speedup4 7

Figure 25: One iteration of kernel execution. Here means are only generated from the
items that are contained in their respective blocks. Those from
ne ighboring blocks are excluded for simplicity48

Figure 26: Block group memory access patterns of four 4 x 4 blocks. (a) is when the
block group completely fits into local memory and is loaded by one local
workgroup. (b) is the interleaved pattern when the block group cannot fit
into local memory and is loaded by multiple local workgroups 50

Figure 27: The organizations of 4096 Lab color vectors. The first image in the row is
the starting set of items in both cases. For comparison, the SOM result
and the k-d tree generated gr id version is shown. Total time and final
correlation between position and dissimilarity across the grid a ligned
maps is given below the respective images. All implementations are
single threaded Java ones running on a Intel Core 2 Duo P8600 CPU at
2.4 GHz 53

Figure 28: Two layouts from a collection of images expanded out of the query
"Washington". Left: Images are organized using a mean driven SSM.
Right: Images are organized using a centroid driven SSM. In both, the
images have color-coded borders relative to their category. The regions
displaying "Denzel Washington" (red), "Washington State" (yellow),

viii

"Washington DC" (blue), and "George Washington" (green) are visible.
Within the regions, visually similar images also neighbor one another.
The times and correlations for each are given .. 55

Figure 29: The running times of the serial implementations versus the parallel GPU
implementation on datasets of varying size. The parallel GPU
implementation can arrange a million items in 6.4 seconds 56

Figure 30: The result from running the SSM on a set of binary RGB color vectors.
Every channel of each vector item is only allowed to have full or no color.
Each row of images presents the initial items, the centroids (top) or means
(bottom) of different block sizes, followed by the final organization of
colors and the correlation value. Given the fact that good centroid items
cannot be found at different levels, the final result of the centroid SSM
suffers. Since the means are generated by blending items, its result
converges to a better layout. .. 58
Figure 31: Left: An organization of 1024 random Lab color vectors.
Right: Visualization ofthe correlation scores at different cells, where high
intensity represents high correlation score. In this instance the lower left
corner is the worst correlated area 63

Figure 32: Illustration of how data are swapped in three levels: 2 x 2 blocks (left),
4 x 4 blocks (middle), and 8 x 8 individual cells (right). The
neighborhood for the same red cell is marked with a red dashed box, in
which its swap partner (shown in blue) is randomly selected 67

Figure 33: Pseudocode ofthe MCM algorithm 68
Figure 34: A comparison ofthe Brute Force, SSM, and MCM algorithms. The times

and correlations are given 69
Figure 35: Top row: An organization of Lab color vectors. Bottom row: A fixed item

is introduced 69
Figure 36: The organizations of 4096 Lab color vectors. The frrst image in the row is

the starting set of items in both cases. For comparison, the SSM result is
shown. Total time and final correlation between position and dissimilarity
across the grid aligned maps is given below the respective images. All
implementations are single threaded Java ones running on a Intel Core 2
Duo P8600 CPU at 2.4 GHz. Note that with this number of items the
MCM is not as good of a choice to do the organization as the SSM 70

Figure 37: The MCM layout of a collection of images expanded out of the query
"Washington". The images have color-coded borders relative to their
category. The regions displaying "Denzel Washington" (red),
"Washington State" (yellow), "Washington DC" (blue), and "George
Washington" (green) are visible. Within the regions, visually similar
images also neighbor one another. Left is the standard arrangement while
the right shows one with enlarged fixed items. The collage is fitted to the
fixed items 72

Figure 38: MCM running on binary RGB colors. This is the same set of data the
SSM had trouble with in Figure 30. In the case of the MCM, there is a

IX

logical progression to a result that is of higher correlation and visual
quality than the SSM even with means. The MCM code did require
significantly more time at I minute 73

Figure 39: Results of different approaches on four artificial datasets, each of which
contains I 024 color-coded 3D vectors. The original datasets are shown in
the left column, followed by organizations generated using existing
dimension reduction methods and the SSM under two different distance
measures. For the existing approaches, both the layouts before (top) and
after (bottom) applying k-d tree alignment are shown 76

Figure 40: An SSM organized set of 64 Eiffel Tower images using color histogram
vectors. Not only are dark and light images placed together but ones with
other properties like frreworks are also clustered. Duplicated images
(marked in green and red) retrieved from different sources are also placed
adjacent to each other as well. 78

Figure 41: An SSM organized set of I 00 textures using gist vectors. Notice how
regions of structurally similarity (i.e., round structures, cross hatching, or
vertical lines) form 79

Figure 42: An SSM organized set of I 024 Flickr photos using a combination of gist
and histogram vectors. Regions of structurally similarity form because of
gist, like the noisy forests and rivers, and the smooth beaches and flowers
marked and shown. Gist is favored in the result with 75% ofthe weight,
but the color histogram' s influence helps maintain smooth transitions
between regions across the map. The total organizational time was II
seconds at 50 iterations per block size 8I

Figure 43: This is an organization of the "Washington" Wikipedia articles based on
their relatedness produced using an SSM. For better visualization, cells
are shaded based on the cluster that the article belongs to. Note that the
cluster information is not available to the SSM algorithm, yet it was able
to group articles in the same cluster together using individual relatedness.
Mount Vernon is in the center because it is the article that is most similar
to every other (see Table 2). The organization time was 0.7 of a second
and the correlation is 0.668 83

Figure 44: The world ' s largest 5I2 cities arranged by an SSM. The top shows the
country flags ofthe cities ofthe entire 32 x 16 organization followed by
a zoomed in view, in which the city names are marked. The total
organization time was 3.3 seconds and the correlation is 0.836 85

Figure 45: A MCM organization for a set of global cities. More important ones
occupy four cells in the grid 86

Figure 46: Different organizations for a small set of cities. Even for such a small set,
finding destinations in the vicinity of a given city, say Ottawa, from the
Expedia layout can be difficult. The SSM layout allows users to limit
their search within a smaller neighborhood. Note that no boundary
conditions were used in this case 87

X

List of Tables

Table 1: The number of solutions needs to be evaluated with and without pruning.
Without pruning, the solution space becomes impractical to search for
maps as small as 4 x 4 64

Table 2: The semantic relatedness among different Wikipedia articles related to the
query "Washington". Cells in the table are shaded based on the
corresponding relatedness values for better visualization. The shading
helps to identifY the cluster of articles related to Denzel Washington and
his movies, but the relations among the rest are unclear since they are
somewhat interconnected 83

XI

List of Abbreviations and Symbols

BMU Best Match Unit

LLE Locally Linear Embedding

MCM Max Correlation Map

MDS Multidimensional Scaling

SOM Self-Organizing Map

SNE Stochastic Neighbor Embedding

SSM Self-Sorting Map

Xll

Chapter 1 Introduction

Data comes in many forms. Raw high dimensional data is hard for human beings to

understand. Our visual and analytical systems are brilliantly engineered to make sense of

and extract patterns from complex pictures, yet they are ill-equipped to deal with tables

of numbers directly. For this reason researchers have been trying for years to come up

with better approaches to visualization to facilitate data understanding [45] . Many

powerful algorithms have been designed to reveal the underlying structures of input data

[39]. Due to the output of these techniques being unconstrained, complex interfaces are

sometimes required for users to explore the results. This often limits the use of these

techniques to experienced users only.

There are a host of techniques for displaying data of all kinds. Typically if data is of

a hierarchical nature, trees are favored; if data is connected, graphs are used; if data is

tabular, grids are favored; and if data is multidimensional it is projected into a space that

can be readily visualized, like 2D or 30, and then displayed in some interactive way. The

first three are instances of structured layouts. The idea of organizing data into a structured

layout is what is studied here.

Common problems when attempting to visualize data, especially a lot of it, are those

of scope, focus, and occlusion. When data spans a broad range, it is hard to know exactly

what things to show and what to leave out at different leve ls of detail. Things need to be

summarized at different levels to accommodate users so that they are presented a

reasonable scope of information. The center of attention and the context surrounding it

are key factors in how quickly someone can make connections between data and fmd

what they are looking for, no matter where they start in the visualization. Creating

smooth paths between data facilitates easy transition of focus as users guide themselves

toward their goals. When a rendering space is saturated with data it is hard for things not

to overlap, especially if the data items require a portion of the available screen space to

be differentiated from others; for example when labeling is required or the items are

images. Normally working around occlusion in these circumstances requires interactivity

so that things can be translated, rotated, and scaled. Scaling requires collapsing of regions

of data into representative items. If not, and things are zoomed by the size instead, they

can shrink out ofview or grow over each other.

A simple approach to addressing the issues of scope, focus, and occlusion is

presenting data to viewers in a predictably structured layout like a tree, graph, or table.

We see tables displaying data often. For instance, search results, photo albums, operating

system file browsers, and many more use tables. The 2D grid layout of tables can help

users to memorize the location of particular data items to facilitate re-finding. However,

without an intuitive way of sorting the data, finding a data item for the first time requires

the users to linearly scan through the table, which can be time consuming.

1.1 Motivation

This thesis presents novel ways of automatically laying out data using dissimilarity

into structures where each item occupies a unique cell. Layouts with this property are

2

referred to as structured layouts here. Based on the key constraint of a one to one item to

cell mapping, when an organization is complete, the structure of items has the appealing

property that it can be visualized directly; see Figure 1. Organizations of data into

structured layouts should exhibit the property that proximity reflects similarity, in the

sense that like items are close together and unlike items are separated. A I D grid

structure with I D numerical data items should be sorted comparatively to exhibit this

property. As dimensionality increases in either the structure or the data, the processes

proposed still strive to maintain this property. Optimally finding a solution to this

arrangement problem is intractable, but by using a course-to-fine-grained method and

some approximation, near-optimal solutions can be obtained in a fraction of the time

required by brute force enumeration ofthe so lution space. The techniques described work

with any data over which a dissimilarity measure is defined. This measure should tell

how unrelated two data items are, thus giving an idea of how far apart they should

appear. For instance, distance measures like Manhattan, Euclidean, cosine similarity, and

shortest path are useful for vector data. Using the relative dissimilarities of items, a

structured layout can be generated. Using the principle that proximity shou ld reflect

similarity, the layouts produced are expected to be simple and intuitive to help ordinary

users find the data they desire quickly without any learning curve.

3

North Amelia Weather CondiUons

MUICO (ity 7•

Montetny ts•

Montreal

New York -s•

Zapopan 11'

(a) Interactive map view (b) Lexicographical list view

Colgory Chtuoo Tot onto Montreal - ···• o Oetrott Ne.ww Yo..-tl -··
Monterrey ... Me•teo City 7' Houston ...

10' ... ·- 7' Ctudad Nezahualcoyott ... Puebfa . .
(c) 20 grid layout generated using similarity

Figure I : Presenting the weather of 20 key cities in North America. Top: Two presentations used by the
AccuWeather (http://www.accuweather.com/en/north-america-weather). Bottom: Cities are
arranged into a grid layout by a combination of country membership and geographic location .
(a) Directly positioning the cities using their geographic coordinates causes occlusions, forcing
users to interact with the map. (b) Sorting the cities lexicographically by their names into a 2D
grid allows particular cities to be found quickly, but makes it difficult to grasp regional weather
trends. (c) Arranging cites by country and location similarity in a 2D grid structure promotes
quick finding without loss of the weather trend information. This layout is also valuable in
situations where interaction is difficult or there is none like on a mobile device or a public
billboard.

To describe it formally, the data organization problem is transformed into the

following labeling problem: Let .n be a set of data, for which a dissim ilarity measure

o(·,·) is defined. Further assume that the dissimilarity satisfi es the following constraints:

o(s, s) = 0, o(s, t) ;:::: 0, and o(s, t) = o(t, s) for Vs, t E fl . Now g iven a structured

layout M with m (m ;:::: lfll) cells, where the distance between cells is defined by the

structure, the objective is to assign each data item s E .n a unique cell L5 , such that the

fo llowing normalized cross-correlation is maximized:

4

"' (IIP(L5)- P(Lt)ll- P)(o(s, t)- 8)
argmax ~

L Vs,tEfl O"pO"()
(1)

where P(x) is the location of cell x in the structured layout. P is the mean distance

between any two assigned cells and 8 is the mean dissimilarity between any two data

items. CJp and CJ0 are the corresponding standard deviation values which normalize the

correlation to the range (-1, 1]. 11·11 is a distance measure that is layout dependent. For

instance, a tabular grid might use Euclidean distance while a tree could use shortest path.

The result of the above maximization places data items that are more related to each

other closer together in the layout, and vice versa. Hence, it attempts to organize the data

based on the topology defined by 8 and within the space and structural constraints of M.

If D. is sufficiently small then it may suffice to evaluate every possible labeling

assignment and determine the one giving the highest correlation. However, since the

number of possible assignments is a function of the factorial of ID.I the problem soon

becomes intractable as ID.I increases. In these instances an efficient method that finds a

near optimal solution is needed. This work presents the details of some algorithms that

achieve that end with varying degrees of speed and accuracy.

1.2 Contributions and Overview

The core contribution of this thesis is a set of novel algorithms for organizing data

into structured layouts; in essence these algorithms sort multi-dimensional data into

mult i-dimensional structures. The mainstay ofthe layouts generated by these algorithms

is the property that proximity should reflect similarity and every item occupies a unique

5

layout cell. Structured layouts produced with this property can be visualized directly

without any occlusion. Applications and evaluations are provided and discussion on the

merit of each technique with respect to the results is also given.

The remainder of the thesis is organized as the follows: Chapter 2 discusses

foundational work that influences, or is closely related to, the work presented throughout

this thesis. It includes sections on dimension reduction and information visualization.

Chapter 3 presents the first algorithm for organizing data into structured layouts. It is

a Self-Organizing Map (SOM) based method. This is the preliminary work that inspires

the methods that follow.

The next algorithm in Chapter 4 is entitled the Self-Sorting Map (SSM). It is a multi­

data, multi-dimensional pseudo-sorting algorithm. If a dissimilarity measure can be

defined over the set of input items, the algorithm can run on them. It is flexible and fast,

and delivers high quality data organizations in a directly useable form. Chapter 4 includes

a theoretical complexity analysis of the algorithm and the speedup achievable through

parallelization. To complement the analysis, actual benchmarks are given for quantitative

evaluation.

The final algorithm in Chapter 5 is called the Max Correlation Map (MCM). It

approaches the organization of data items in a structured layout in the same way as the

SSM but optimizes directly on the overall correlation described in Equation (I). It is

simpler and more robust than its predecessor and produces better results more

6

consistently as well. The down side is a loss of parallelism and a longer overall runtime,

but often the tradeoff of quality for speed can be warranted depending on the data.

In their respective chapters, the algorithms are each evaluated and discussed. Their

benefits and impediments are described with respect to their performances in organizing

colors and images. Organizing 30 colors in 20 is the baseline experiment since the

results of organizations of colors are relatively easy to visualize and evaluate. The Lab

color space is used since the Euclidean distance between Lab color vectors represents the

perceived similarity between their colors [23]. Since just arranging colors does not

provide grounded real-world results on which to base initial comparative conclusions,

arranging images using visual similarities and contextual metadata is the second

evaluator m these sections. Organizing images based on visual [53] and conceptual

similarities [55] and presenting them in a coherent layout has been proven to be useful

and practical with regards to search [54]. Organizing images also introduces new

challenges. The first major challenge is acquiring a set of images; the second is

transforming those images into data that the algorithms can work with. The

transformation process is described in the respective sections of the chapters but the

acquisition of images is common to both. The images are obtained by pulling the top

results from an expanded query. The "concept information" of each image is considered

to be the sub-query the individual images were obtained with. A more elaborate

description of the query expansion process can be found in the Appendix.

7

Chapter 6 is dedicated to some test applications of the algorithms. It contains the

results of organizing different data types including artificial data, images, textures,

Wikipedia articles, and cities.

Chapter 7 concludes the work with an overview of what the proposed algorithms

bring to the field of data organization.

8

Chapter 2 Background

The techniques developed and examined throughout this thesis have their roots in the

field of dimension reduction. They have the ability to take a variety of data types as input

and generate structured layouts that provide a means of information visualization.

Relevant background in these areas is expanded upon in the sections that follow.

2.1 Dimension Reduction

Dimensionality reduction transforms high-dimensional data into a meaningful

representation at a lower dimensionality. What we want is for the reduced representation

to correspond to the intrinsic dimensionality, or topology, of the original data. This means

we look for the minimum number of parameters needed to account for the observed

properties of the data [14]. There are a number of techniques that have approached the

dimension reduction problem from a variety of angles. Some emphasize on the global

properties ofthe data and others on the local ones. These techniques have been surveyed

extensively [6, 60]. What follows is a general discussion of some of the distinctive

methods that define the different styles of reduction.

Principal Components Analysis (PCA) [26] is an established and popular technique

for linear data dimension reduction. It attempts to find a linear transformation (a lower

dimensional linear basis) using the covariance matrix ofthe data. Once a transformation

matrix is found, the original data is mapped to a low dimensional space via the new basis.

9

PCA works under the assumption the underlying data is linear so that the needed

transformation matrix can be found .

The non-linear counterpart of PCA in terms of age and popularity is the manifold

learning technique named Multidimensional Scaling (MDS) [4, 35]. It is often used to

map data onto a 20 or 30 space for visualization. Given the function IS, defining the

dissimilarity between every pair of data items, the goal of MDS is to find a set of vectors

{x11 ... , x 111} E ~N for the set of items I that minimizes the cost function:

(2)

Intuitively, the set of vectors should model the relative similarity between the data

items as positions in ~N. Since this is posed as a least squares optimization problem, an

approximate solution can be found using variety of techniques; generally gradient descent

is used. A notable variation of the MDS is Sammon's mapping [42] . It attempts to

minimize a different non-linear cost function that aims to preserve small distances :

(3)

The difference between MDS and the Isomap [56], Maximum Variance Unfolding

[64], and Diffusion maps [31] techniques is that they modify the data's Euclidean

distances in attempts to improve their reductions. Manipulating the distances has the

potential to better unfold underlying manifolds in the data [60]. Other global techniques

like a non- linear kernel variant of PCA [64] and neural network based approaches [20]

are also proposed, which have been applied to dimension reduction with success.

10

The next family of techniques emphasizes the local properties of data and assumes

that if they are represented accurately than the global information will be retained

implicitly. Locally Linear Embedding (LLE) [41] and Stochastic Neighbor Embedding

(SNE) [19] are two popular methods for local-based high-to-low dimensional embedding.

The basic idea is that a set ofweights (LLE) or neighborhood probabilities (SNE) that are

derived from the high dimensional data points can be used to guide the solution of the

low dimensional set of embedded points. LLE does this by solving for the matrix of

weights W using a linear system set up from each point' s neighbors (closest K points) to

itself in the high dimensional space. The least squares error equation for this is the

following:

(4)

Next, W is fixed and then the embedded low dimensional vectors {Yv ... , y111} E IR\N

for each data item point are found using the same formulation:

(5)

The assumption is that locally, in the high dimensional space, the data points can be

described as linear combinations of their neighborhood of data points. With this in mind,

LLE finds a low dimensional embedding that is a combination of linear clusters. SNE

applies the same idea to a set of probabilities that define how likely a g iven data point

will choose another data point as its neighbor. Gradient descent is then used to align the

11

probabilities of the high and low dimensional data. A common problem with these

techniques is so-called "crowding", where distant points in the original high dimensional

space with no close neighbors collapse those points that are close together in the center of

the low dimensional output. t-SNE [59] is a variant of SNE that addresses this problem

by introducing a repulsion factor.

Laplacian Eigenmaps [2] and Local Tangent Space Analysis [67] have the same goal

as LLE of producing a local property oriented low dimensional embedding. The first uses

a graph neighborhood and eventually the graph Laplacian. The second assumes that if

there is local linearity in the data than there is a linear mapping from the high

dimensional representation to its loca l tangent space. Both use their respective matrices to

solve for eigenvectors that will eventually become the reduced space.

When input data can be represented as vectors in a high-dimensional space, rather

than just a matrix of dissimilarities, the MDS problem degenerates into the so-called

Multidimensional Projection (MDP) problem [37]. A well-known MDP technique is the

Self-Organizing Map (SOM), which indirectly maps input vectors of N dimensions to

positions in the map [29, 30]. An SOM consists of a network of interconnected units,

each holds an N-dimensional, randomly initialized, weight vector. The weight vectors at

different units are trained by randomly selecting an input vector and computing its

Euclidean distance to all ofthe weight vectors ofthe SOM units. The closest vector found

in terms the distance is called the best match unit (BMU). The weights ofthe BMU and

its neighbors are then adjusted towards the input vector. Once this competitive training

procedure is complete, all input vectors are mapped to the location oftheir BMUs [21 ,

12

49]. The SOM is an integral part of the first data organization technique presented in

Chapter 3.

The dimension reduction techniques just discussed, with the exception of the SOM,

allow any data item s to be placed at an arbitrary location x5 • This differs from the

algorithms being proposed in this thesis since they enforce the constraint that s must be

assigned to a unique cell L5 in the output structure. This output property transforms what

is normally a continuous optimization problem into a discrete one that arranges things

within the confines of a given structured layout.

2.2 Information Visualization

One use of dimension reduction is to convert multi-dimensional data into a 20 or 30

format that can be visualized [4, 28, 35, 42, 62]. Standard artificial datasets exist for

testing the ability of dimension reduction techniques to unfold low dimensional

manifolds that have been embedded in higher dimensional spaces. Some ofthese datasets

include the swissroll, broken swiss, helix, and twinpeaks [60]. These datasets are used in

Section 6.1 to compare the techniques proposed by this thesis with other dimension

reduction techniques. The resulting structured layouts of the proposed approaches are

visualized for inspection. In terms of images, the Brodatz texture set [5] is one of the

standards for evaluation involving texture images [38]. In Section 6.2 it too is visualized

in a structured layout.

Beyond the process ofreducing dimensionality for facilitating visualization, actually

how to do the visualization of a set of data items has been discussed and debated in a

13

plethora of studies and surveys. The reason for this is that visualization can amp lify the

cogn ition of analysts to determine, among other things, if items appear separately or in

groups and to find re lationships between known interest points and new ones [61]. Some

of this literature focuses on the visua lizat ion of scientific data as a means of visual data

mining or relevance feedback [36, 44, 63]. Others focus on alternative visual treatments

of abstract data [12, 17, 44] . One such family of visual treatments is graphs or networks

[8, 12, 57, 66]. In these, each node represents an item or a cluster of data and edges

represent the connections between them. Techniques like edge bundling, radial

presentation and edge ghosting [13, 18] have been proposed in an effort to generate

readable visualizations when data is complex. Other approaches render hierarchically

c lustered data in a lternative ways such as 3D blobs [48] or tree-maps [25] shown in

Figure 2.

Figure 2: Hierarchical data visualization. Left: A hierarchical clustering of objects from [48] with 20
clusters displayed at different levels of the hierarchical cluster tree. Right: A tree-map from
[25] with rectangles where each color belongs to the same level of the tree hierarchy.

Next we explore some of these visualization techniques in the context of the

similarity-based image organizat ion problem [53]. Several approaches have been devised

14

for visualizing images. VisuaiRank [24] is one that generates a similarity graph of images

where the vertices are connected by weighted edges. As shown in Figure 3, the size of

images changes depending on how connected they are .

.
• .

• •
• rl • • •

• . .

. . .

•

.

.. . . . -
Fig ure 3: The structure of a similarity graph from the Visual Rank literature [24]. Notice that the enlarged

ones are the most connected.

Torres et al. have defined representations of images as concentric rings or spirals

[58]. The concentric representation consists of a series of rings where the position of each

image determines its size. The spiral version is similar to its concentric counterpart in

terms of image siz ing but the placement can vary. Placement order on the spiral depends

on rank with respect to a query image, but the placement positions can either be even or

depend on the s imilar ity with respect to the center image. Figure 4 shows examples of

these visualization structures.

15

(a) Concentric rings

,.,· .. ~

/:~>- -~:·.-<~·\
. , I / ·, \\ ·,

' .. : \ ·,
' . . ', '

I I, ' \ ... ~ 1!11 ,I'
\. . ', \ . ' .. ·-·· / ,. •' ,' /
\ " ' ··. .--" //'I

.... ''... -~ -··"' ""' ,l
' / , -··· / ... ·

(b) Ranked spiral

, <' ··.·.-·• --.. ~ .··:-"
I #' -, '\, ~ ..

/; ,(,.· ··" •\
. .. "' --..... \ ·, I .._ I ', . I 'I

' • , • t '

', ', . ', / : .'

· \ • -· -·· rl / . '
\., \ · ... ·· ·- __ , ... ~ /~,/

..... ,/ .. '
'··

(c) Similarity spiral

Figure 4: Alternative image presentation structures [58]. Note that changing image sizes are not reflected.

Chen et al. propose a way to visualize the contents of image databases by using

pathfinder networks which is a structured modeling technique [7] . It is a branched

clustering method based on the similarity between the images (i.e. , histogram or texture

in this case).

Figure 5: A pathfinder network based on the images' color histograms [7].

Snavely et al. have proposed how to arrange and browse large sets of photos of a

scene taken by a community of photographers from different viewpoints [46]. The

16

proposed method exploits the common underlying 30 geometry in the scene to build a

three dimensional rendition of it. This is different from the other methods discussed since

its visualization is based on the assumption that it is given a set of images coming from

the same region.

Figure 6 : A snapshot obtained from Microsoft's Photosynth [33] which is built upon the work of Snavely
et al. [46].

From what is presented here in the context of similarity-based image organization we

see images being visualized in the standard structures of graphs and trees or in tree space.

The structured layouts generated by the techniques described in this thesis provide an

alternative to these visualizations. The structured layouts are generated in such a way that

distances between data reflects similarity, which can be appealing to users [40, 54]. They

present things in a regularized format that allows for linear scanning of the organized

data. Existing user studies have demonstrated that such a presentation format can

17

improve users' confidence in their searches [54]. The structured, rather than scattered,

arrangement also facilitates re-finding ofknown data.

An alternative to linear scanning is Rapid Serial Visual Presentation [11]. RSVP, as

it is called, is known to improve speed in search tasks particularly in the case of limited

screen space on mobile devices [11, 16, 47, 65]. It requires constant attention to not miss

desired results which increases the task load [16]. On the other hand, if the output

structure is a 20 grid, then the resulting tabular representation is similar to existing

interfaces employed today to show search results and hence is familiar to use (see Figure

1). The structured layout can be searched at a user's own pace, whereas in RSVP the pace

is rapid as the name suggests. It also exhibits no occlusion which has merit for presenting

information to users in situations where interaction might be difficult (mobile devices) or

impossible (public billboards).

18

Chapter 3 Self-Organizing Map based

Data Organization

3.1 Method

Here the cornerstone Self-Organizing Map (SOM) algorithm by Kohonen [29] is re-

described in the context ofthis work. The SOM, being a dimension reduction technique,

has been used for organizing data onto 20 planes before [49, 50, 52, 53]. However, the

SOM cannot be used directly for the organization of data into a structured layout. This

chapter discusses how to address this limitat ion by using the SOM for placing data into a

20 grid layout and then performing a k-d tree [3] post-processing alignment step.

3.1.1 Input Data

All of the data organization algorithms described in this thesis assume that the data

input format can be a dissimilarity matrix, or alternatively a computable measure that is

not necessarily vector based. Ifthis is the case here, that matrix must be converted into a

set of vectors so that the SOM can work with them. The vectors need to model the

relat ionship information between data items as presented in the matrix as closely as

possible. That is to say, the distance between any two vectors shou ld be relatively

approximate to, if not the same as, the dissimilarity between the corresponding items.

This is the same as minimizing the following least-squares function:

(6)

19

where II Vi -l-JII is the Euclidean distance between the two vectors of items i and j, and D

is the given dissimilarity matrix. The task of finding a set of vectors based on D is the

classical multi-dimensional scaling (MDS) problem [4], which can be solved using

existing techniques [1].

3.1.2 Self-Organizing Map

A SOM consists of M x M units, where each unit x has its own N-dimensional

weight vector W(x). To train the SOM, on every iteration all of the items in the set of

data items .a are shown to the SOM in a random order. When a particular item i is shown

to the SOM for training, the goal is to find the best match unit (BMU) and then update

weight vectors in the BMU's neighborhood. To find the BMU location for a given i ,

B(i), a pass is done over the map to find the unit x that satisfies the following:

B(i) = argminiF(i)- W(x)l
X

(7)

where IF(i) - W(x)l is the Euclidean distance between the feature vector F(i) for the

item and the weight vector W(x) for the unit x.

Once the location ofthe BMU fori is found, the weight vectors of the nearby units

will be adjusted to match F(i) more closely. These nearby units can be captured by

w5 (B(i)) , which is defined to be the neighborhood window around the position B(i)

with a radius of s , where s is the neighborhood size which is initialized to M /2 in

practice. Updating the weight vectors for each unit x E w5 (B(i)) can be done by

applying the following to each:

20

W'(x) = W(x) + .1(x)(F(i)- W(x)) (8)

where A.(x) is the neighborhood influence of x. The new weight vector for unit x is a

linear interpolation between the vectors F(i) and W(x). The neighborhood influence

A.(x), which is the interpolation parameter, is computed using the Gaussian function:

llx-BCOUZ
A(x) = r . e- s2 (9)

where llx- B(i)ll is the Euclidean distance between the units x and B(i) in the SOM. s

is the neighborhood size and r is the learning rate, both of which decay exponentially

over time based on these equations:

tln s0 s = s0 • e--r­
t

r = r0 • e-r
(10)

where s0 and r0 are the initial neighborhood size and learning rate, t is the iteration

number and T is the total number of iterations. T is the key component affecting the rate

of decay of the neighborhood size and learning rate. Generally the more iterations the

SOM is put through, the slower the decay and the better the final convergence. Figure 9

shows the intermediate and the final states of an SOM obtained during the training.

Once the SOM has converged, the final BMU for each item in .n is found just as it

was during training with Equation (7). The position of any item i in the final organization

is simply the coordinate of B(i). By design the SOM algorithm seeks to preserve data

topology as much as it can. This drives items having similar feature vectors to be mapped

to locations that are closer to each other, and vice versa.

21

Since the BMU finding can be done via parallel reduction and the weight vector

updates are independent, it is possible to implement the SOM in parallel so that it can run

on GPUs [50] and other parallel platforms to yield an impressive 19 times speedup.

K-D Tree Grid Alignment

The final stage is to align the output coordinates into a non-overlapping grid. A grid

layout makes it easy to enumerate all items within a given region. In the ideal scenario,

training an SOM with the total number of units equal to the number of items wou ld result

in every unit being occupied by one item and hence all items lining up on the implicit

grid formed by the network of SOM units. However, in practice the uneven distribution

ofthe item feature vectors in the high-dimension feature space they come from will likely

cause some units to become the BMUs of multiple items, while other units remain

completely unmatched with any item; see Figure 9. For this reason, it is often better to

use a SOM with more units than items. In this scenario the items will be able to influence

a unique region of SOM units. Then, as shown in Figure 7, given the collection of items

and their 2D SOM locations, a k-d tree algorithm [3] can arrange the items into a grid.

The algorithm starts by finding the median value among the horizontal coordinates

of all items, and uses this to split the collection into left and right halves. It then computes

the median value among the vertical coordinates of items in each half. Each half is further

split into top and bottom quarters. These two steps are repeated until each node contains

at most one item. In the end, all items are contained in the leaves of a balanced binary

22

tree. Based on the position of each leaf, a unique location is assigned to its associated

item in the final grid layout.

• : I . • I
•..• .••••.•• 1 .••. ••••••••••••• : . . :·························· • :

· ~~J....-
1

I I •

-......1--,-- :
I • I : :.

• j................. I

................ 1 • . I .I
• • •
• • •

•
• • •

Figure 7: A depiction of the conversion of a continuous set of points to a regular, non-overlapping grid
using a k-d tree.

It should be noted that after performing this translation from the SOM to the grid

layout, there is some detai led information lost. In an unconstrained SOM layout the

similarity between two neighboring items is visually encoded directly into their spatial

distance at the resolution of the SOM. The resulting gaps and irregular placement of

items provide a good representation of similarity through visual clustering, but makes

sequentia l scann ing ofthe items difficult to a viewer. Once the items have been aligned to

a grid, the layout is regularized and easier to follow, but the fine-grained degree of

similarity is sacrificed in lieu ofthis more structured overall appearance. Closeness in the

gr id still represents similarity, just not with the same accuracy.

At this point, a similarity-based organization of data items is achievable. Figure 8

gives pseudocode for this process of organizing a set of items based on their feature

23

•

•
•

vectors and aligning their positions to a grid layout. Figure 9 shows the process acting on

sample data by breaking it down into images at key stages.

Randomly initialize all SOM weight vectors ;

for a given number of iterations {

Compute the new decayed learning rate r and neighborhood size s;

for each randomly selected and unprocessed item i in n {
Find t he BMU B(Q using the item' s feature vector F0) ;

for each x in w5 (B(i)) {

Compute the neighborhood influence A(x);

Update W (x) using linear interpolation with A(x) and F(i);

for each item i in n

Find the position of the BMU B(i) and set i' s position to it ;

Align the positions of all items in n using a k- d tree ;

Figure 8: Pseudocode for the Self-Organizing Map data organization algorithm with k-d tree grid
alignment.

Initial Weights
1 = 0

Early Weights
1 = 5

Later Weights
I = 10

Final Weights
I = 15

Final Items
Unaligned

Final Items
c = 0.794

Figure 9: The progression of the organization of4096 Lab color vectors by a 64 x 64 SOM with k-d tree
alignment. The first image on the left shows the initial weight vectors. They are chosen
randomly rrom the ranges of the input item vectors. The next three images show the evolution
of the weight vectors at various iterations. The neighborhood and learning rate decay is evident
as time passes. The last two images on the right show the items themselves. The first ofthe two
is the unaligned set of items placed directly at the position of their best match units. Note the
gaps as some SOM un its remain un occupied while others contain multiple items. The last
image is the items at the positions acquired after the application of the k -d tree a lgorithm for
alignment and the correlation score of the organization.

24

Boundary Conditions

In some applications data might be visualized with wrap around (i.e. , overlays on a

world map) and the results should be organized and displayed repeatedly without a

boundary. To avoid seams among different tiles, the boundary of the SOM can be

wrapped around. With wrapping, a BMU near a border will influence units that are close

to the opposite border. Doing this a lso forces data that would normally retreat into a

corner to cohabitate with the rest.

Figure I 0: Two organizations of 4096 Lab color vectors repeated in 3 x 3 grids. Left: Generated using an
SOM in the standard way. Right: Generated using an SOM with wrapping. Clusters of items
form in rounder blotches since there is no way for them to retreat into a corner.

25

3.2 Results

3.2.1 Colors

In Figure II the result of organizing a set of 4096 Lab color vectors into 64 x 64

cells using an SOM is shown. For comparison, a Sammon's mapping version is also

provided.

The Sammon's mapping is obtained using the Sammon projection component of

HiSee [22] and the result of the SOM is generated using a previous implementation [21,

50]. Unfortunately, while MDS does admirably with RGB colors [34], it fails to organize

the tested sets of random non-linear Lab color data well, collapsing its organization to a

single dimensional line. For that reason it is not present here.

Visual inspection of the result of both the SOM and Sammon techniques confirms

that data overlapping has occurred. To uncover the occluded data, the k-d tree is applied

as described above to align all items. Nevertheless, artifacts (random and isolated dots)

and a significant divide show up in the result of Sammon's mapping. This is

understandable considering the result is not conducive to a grid layout having been

arranged in continuous space. The SOM result on the other hand does exhibit the nice

"color wheel" properties of the Sammon result, but without the salt and peppering of light

and dark items.

The Sammon result has a higher correlation due to its placement of primary colors

around the edges and the fact that the scattered positions of the light and dark items

26

balance with respect to their closest primaries. That said , the overall visual quality of the

SOM result is loca lly smoother.

Initial Items Sammon: T = 5.9s, C = 0.814 SOM: T = 9.4s, C = 0.794

Figure II : The organizations of 4096 Lab color vectors. The first image in the row is the starting set of
items in both cases. Next are the original and aligned results of Sammon's mapping and the
SOM. The grid a ligned versions for these approaches are generated using k-d trees. Total
organization time and final correlation between position and dissimilarity across the grid
aligned maps is given below the respective images. All implementations are single threaded
Java ones running on an Intel Core 2 Duo P8600 CPU at 2.4 GHz.

3.2.2 Images

The next example organizes a set of images obtained by searching with query

expansion [21]. For a given query, the query expansion process finds several related

concepts and searches fo r images using each of these concepts. Hence each image in the

search result carries a semantic concept tag. The images can then be organized based on

both concept and visual information using an SOM [21 , 55]. The process to expand a

g iven query, a Wikipedia one in this case, into concepts and acquire images for each

concept is descr ibed in [21] and in more detail in the Appendix.

Once a set of concept tags are obtained from the query expans ion, the extract ion of

conceptual vectors from them is not straightforward. To simplify the problem, assume

that different images retrieved using the same sub-query (i.e., the same related concept)

are conceptua lly the same and, hence have the same conceptual feature vector.

Consequently, a vector Ck needs to be derived for each concept Rk that was used fo r

27

retrieving images. Even though it is difficult to convert concepts into vectors directly, a

N x N semantic distance matrix for the N related concepts can frrst be computed using

the Normalized Google Distance (NGD) from Equation (30) in the Appendix:

r

0 NGD(R1 , Rz)
D = NGD(R2 , R1) 0

NGD(~N• R1) NGD(RN, R2)

... NGD(R11 RN)l

... NGD(R2 , RN)

... 0

(11)

where, by definition, we have symmetry since NGD(Rk, Rk) = 0 and NGD(R1, Rk) =

NGD(Rk, R1). Essentially NGD compares the shared hyperlink structure of two

webpages, links from the pages and links to the pages, to compute a measure of

similarity. Using this matrix which encodes the relatedness information among different

concepts (using their respective Wikipedia articles as the pages), a set of m-dimensional

vectors { C1 , ... , CN} is generated using MDS as described in Section 3 .1.1 above.

The next step is to generate visual feature vectors for each image for use with the

SOM. The distances between the vectors need to indicate the similarities between the

corresponding images. Ways of generating feature vectors from visual information and

their performances are studied in [52]. While these types of feature vectors can be used to

organize images based on color and/or shape similarities, they cannot group conceptually

related, but visually different, images together. To address this problem, a hybrid feature

vector is used. The hybrid feature vector for an image contains two parts; a conceptual

portion determined using the concept tag carried by the image and a visual portion

extracted from pixel intensities and distributions. For the visual portion, a color-gradient

correlation [52] approach which counts the combinations of the appearances of colors and

28

gradient orientations in a histogram is chosen. The reason for the choice is that it is

efficient to calculate and offers good organizational performance [52].

To compute the color-gradient correlation histogram of an image / , the gradient

magnitude lp and gradient orientation Bp for each pixel p is frrst computed by convolving

the image with the Sobel edge operator [15]. The color and gradient orientation spaces

are then divided into Nc and N8 bins, respectively. With functions C(p) and B(p)

providing the color and gradient orientation bin indices for pixel p, the sum of gradient

magnitudes for all pixels belonging to the kth color/gradient orientation bin of the

histogram can be computed using:

mk = L lp
C(p)xN9+e(p)=k

(12)

The visual feature vector V(l) is then formed using the normalized values of all bins

to make the vectors generated from images of different sizes comparable.

(13)

In the end, the hybrid feature vector for a given image I is formed as:

H(l) = (CR(l)• V(l)) (14)

where (-, ·) concatenates the two vectors into one and R (I) is the concept used to retrieve

image I. Since the conceptual portion has m dimensions and the visual part has Nc x N8

dimensions, the total dimensions of a hybrid feature vector is m + Nc x N9 , where

m = 4. In general m should be at least the number of unique eigenvalues that can be

29

extracted from the matrix to minimize error since MDS relies on having an eigenvalue

per dimension in the vectors it generates. In Figure 12 below Nc = N8 = 8 resulting 64

dimensional visual feature vectors and m = 4, which were found empirically.

In order to vary the contribution of the visual or conceptual information in the

organization, a weighted average ofthe distances from each part is computed like so:

Dist(H(I),HU)) = allcR(I) - CRCJ)II + (1- a)IIV(I)- VU)il (15)

where I and j are images and the parameter a controls the relative importance of the

conceptual and visual distances. Note that the results of the Euclidean vector distances

11·11 are expected to be normalized with respect to the minimum and maximum values of

all possible distances among the vectors ofthe given type. This is so the values fall in the

range [0,1] so that the conceptual and visual differences are comparable and the weight

factor a has the expected meaning.

In order to make it possible to map distinct feature vectors to unique locations in the

SOM settings should ensure that M x M » IDI. This is done so that each vector has room

to put a region of units, rather than one, in the map under its influence. Even so, there is

still no guarantee a balanced spread of influence will happen since the training is data

dependent.

Figure 12 shows a small example of the ambiguous query "Washington", the

expansion of which is described in the Appendix. Once the query has run through the

entire process, a small representative sample of64 images was organized using a 32 x 32

SOM run for 15 iterations with an initial learning rate of 0.1. For the distance measure

30

defined in Equation (15), the weight factor a has been set to 0. 7 5 so that the concept

vectors will get the majority of the influence and guide the overall layout while the visual

content vecto rs will only affect the loca l arrangements. Both the unconstrained SOM

layout and the grid a ligned layout from k-d tree post-processing are shown. T he results

show that the co lored regions related to the home articles of the query, "Denzel

Washington", "Washington State", "Washington, D.C .", and "George Washington", are

apparent. Visual similarity is also captured locally when comparing ne ighbors within

reg ions. The aligned, uncluttered vers ion of the organization displays no occlus ion and

does not require any extra interface contro ls to see all of the data.

T = 0.21s, C = 0.635 T = 0.25s, C = 0.543

Figure 12: Two layouts from a collection of images expanded out of the query "Washington" . Left:
Images are placed in positions directly from the SOM. Right: Images are placed at k-d tree
aligned positions. In both , the images have color-coded borders relative to their category. The
regions displaying "Denzel Washington" (red), " Washington State" (yellow), " Washington,
D.C." (blue), and "George Washington" (green) are clearly visible. Within the regions, visually
si milar images also neighbor one another. The organization times and correlations are given.
The una ligned SOM correlation is higher since images can be positioned in free space.

31

3·3 Discussion

There are some unavoidable issues with the SOM data organization approach.

Firstly, the SOM is not capable of organizing the images using their concepts based

directly on the semantic distance matrix. Converting the matrix to individual vectors for

each concept using MDS is required. The vectors are approximates of the true distance

matrix; see Figure 13. Next, the SOM often requires having more units than items it is

try ing to organize so it can produce well-spaced results without overlapp ing BMUs. This

makes an already computationally intensive algorithm even more expensive. Even with

all of the units, occlusion is evident when items are rendered since there is no constraint

on where they should appear with respect to one another and some will inevitably

overlap. The occluded output then needs to be transformed to a grid us ing a k-d tree. The

k-d tree pays no heed the feature vectors of the image, but rather splits based on positions

alone, arbitrarily sometimes in the cases where BMUs are shared. T he k-d tree then can

produce a result but it is not optimized to produce the best one.

ow GW woe ws
Denzel Washington 0 0

George Washington 0.024

Washington DC 0

Washington State 0.517

Figure 13: The absolute di fferences between the given concept semantic distance matrix and a distance
matrix computed from the MDS generated concept vectors.

32

Chapter 4 Self-Sorting Map

In this chapter a new data organization algorithm entitled the Self-Sorting Map

(SSM) is presented. It is tested using the same data as the SOM-based one in Chapter 3.

The SSM approaches data organization from a sorting perspective. It improves upon the

SOM since it can work on the final structured layout directly and in doing so gets better

speeds and eliminates the need for post-processing. It can also handle more input types

than the SOM instead of vector data alone.

4.1 Method

The key idea of this algorithm is that data is swapped within the constraints of a

structured layout instead of being placed at arbitrary positions [51]. To facilitate the

understanding ofthe presented algorithm, it will first be explained in terms of positioning

a set of numbers in a 10 array. Organizing general datasets into multi-dimensional

structures will follow.

4.1.1 Sorting Numbers into a 1D Array

When the objective is to organize a set of numbers into a 1 D array so that similar

numbers are positioned together, the optimal solution can be obtained by simply sorting

all of the numbers in either ascending or descending order. Being a fundamental

computer science and mathematics problem, sorting has been extensively studied. There

are many classic and efficient algorithms available for the task such as quicksort and

33

mergesort. Even though the SSM is designed to handle the organization of arbitrary data

types in multi-dimensional structures, it can also perform 1 D sorting.

As shown in Figure 14, given a set of numbers that are initially placed randomly

inside a 1 D array, the SSM first splits the cells into 2 blocks. All numbers in the first

block are paired up with the numbers at the corresponding cells in the same relative

positions of the second block. The two numbers in each pair (s, t) are compared against

each other and an exchange is performed if s > t. After all pairs are processed in parallel,

the first stage is completed.

Initial J:? I 9 I 7 I 3 I 5 11 I 8 I 6 I
,.,,.,, f1~)9T

!J2J l J7J .>J Js J9 Js JGJi

, .. '''•' T~II'(W~I : ~-:

0IJ~3 5 6 [!0}; ~1 ,
1) 8;
~ :

ii_= _I .. ~ . .JL ~ . I ~ IJ .. ~.J .~ .1[!0 ~
3'' ·~g' ~~~E@J~ ~ ;.!

,ITJQJ000[2][!]0}i ~ ~
l v v v ~ <> !

IQJQJ00ITJ [2][!]0
................................ ~····-····~···············

Figure 14: Self-sorting on a 10 array. The algorithm goes through multiple stages with decreasing block
sizes.

The second stage further splits each block into two, resulting in four smaller blocks.

Corresponding cells in adjacent (even, odd)-numbered blocks are ftrst compared and

34

swapped if necessary, fo II owed by corresponding cells in adjacent (odd, even)-numbered

blocks. The even-odd swap and odd-even swap alternates until the process converges,

i.e., all data at the corresponding cells of different blocks are sorted. The process then

continues to the next stage by dividing each block into two, until the final stage is

reached where all blocks contain only one cell.

The above process guarantees that the final result is a sorted array. If we only look at

the final stage where each block contains just one cell, performing even-odd and odd­

even swapping until convergence is essentially the odd-even sorting algorithm [32].

However, this approach is more efficient than odd-even sorting since it incorporates the

basic idea of shell sort [43], i.e., using an increment sequence to allow the comparison

and exchange of elements far apart. The increment sequence of {1, 2, 4, 8, ... , 2k} used

here is less efficient than other candidates, such as {1,4,10, 23,57, ... } [10], but it fits

well for parallel implementations due to the power of two constraint.

4.1.2 Organizing Multi-Dimensional Data

Multi-dimensional data, such as samples from the RGB color space, cannot be

perceptually sorted on all components in a 10 sense. One could sort colors

lexicographically based on the red channel f1rst, then the green, and then blue, but such a

sorting cannot guarantee that perceptually s imilar colors will be placed together. To

organize multi-dimensional data, the following changes are made to the above baseline

algorithm.

35

If the goal is to bring similar items together then the decision to exchange a given

pair of data items (s, t) can be based on whether an exchange will reduce the total

difference between the two data items and their neighbors. To perform this evaluation

efficiently, we first compute a target vector Ti for each block Bi using:

(16)

where D.(BJ is the neighborhood defined for block Bi ; see Figure 15 for an illustration.

ln essence, this equation computes the target Ti of block Bi as the average of the means of

different blocks inside the ne ighborhood. Ti is an aggregate representative ofthe items in

Bi. Each ne ighborhood includes 4 blocks and as shown in Figure 15, the neighborhood

windows of paired blocks are offset away from each other. The purpose of the offsetting

is to encourage diversification among the computed targets.

r ·rn· ··rn-:•·~iliillrn-rn:
'··································) ,

Figure 15: The neighborhoods used for target calculat ion when swapping data between two paired blocks
(color-coded as blue and red) . Each neighborhood contains 4 blocks .

Once the targets are calculated, the decis ion on whether a swap is needed for a given

pair (s, t) from adjacent blocks, s E Bi and t E Bi+l • is based on if the following

expression can be minimized after swapping:

argmin(lls- Ti II + li t - r i+lll)
(s,t)

where lla- bll computes the distance between two vectors a and b.

36

(17)

The above test (and swap if necessary) can be performed for all pairs across the map

m parallel. The target vectors are then updated based on the new data layout. The

processes of computing targets and swapping are alternated until a convergence is

reached, i.e. , no more swaps are available and all target vectors stay constant.

Notice that there is a similarity between the above iterative process and the k-means

clustering algorithm [27]. Both approaches alternate between finding the mean of each

cluster and rearranging data into appropriate clusters. As a result, both can properly

classify input data and convergence is guaranteed. That said, the k-means algorithm does

not impose any constraints on data moving into (or out of) clusters, resulting in different

clusters very likely having different numbers of data items. This approach on the other

hand, only allows swapping between blocks, which ensures that all cells are occupied by

at most one data item.

(a) grayscale color vectors

(b) RGB color vectors

• •

Figure 16: Organizing data without using g lobal comparison operator; only target distance minimization is
used. The top row of each subfigure shows the initial (random) arrangement. The remaining 5
rows show the intermediate results after each stage.

Figure 16 shows the results of organizing both grayscale and color vectors into a 1 D

array using the approach just described. It demonstrates how data is rearranged without

37

requiring strict ordering information. Note that in Figure 16(a) grayscale vectors are

sorted by intensity even though pairwise dissimilarity is used.

Organizing Nominal Data

Some datasets, such as a set of concepts related to a query, are not real-valued and

hence the targets cannot be computed based on the above mean-based calculation.

Assuming the dissimilarity o(s, t) is defined for any given two data items s and t, here

we discuss how to handle non-vector nominal data based on only o(·,·).

The basic idea is to find a data item that best represents a given block Bi and use it as

the target Ti. More formally, we compute the target as the data item inside the

neighborhood of Bi that has the minimum total dissimilarity to other data in the

neighborhood:

Ti = argmin (I o(s, t))
ten(B ;) sen (B ;)

(18)

where ncsa is the same offset neighborhood as defined above.

It is noteworthy here that the selected target is not limited to come from Bi only. It is

allowed to be any data item within the neighborhood D.(Bi). This expanded target search

area lets more suitable targets be found in all stages of the algorithm including the last

where there is only one data item per block. Notice that ifthe neighborhood target search

is not used, in the final stage where there is one single data item to choose from per

block, those items will automatically become the targets oftheir respective blocks. What

38

this means is that nothing would swap. Expanding the target search to the neighborhoods

overcomes this by allowing items from neighboring blocks to be chosen as targets.

Handling 2D Structural Layouts

The algorithm posed so far can organize an arbitrary dataset into a I 0 array, as long

as a dissimilarity measure is defmed. It can be extended further for organizing data into a

20 grid. The same principles of target finding and exchange can also be applied to

organizing data into other lattice structures like a 30 grid or a 20 hexagonal grid.

As shown in Figure 17, when handling a 20 grid, all cells are split into 4 x 4 blocks

first, each of which will be further split into four smaller blocks in the next stage. Even­

indexed blocks are then grouped with odd-indexed blocks along both X andY directions

(see Figure 17(a)). This is followed by a shifted grouping in which odd-indexed blocks

are grouped with even-indexed blocks along both directions (Figure 17(b)). Alternating

between these two block group settings allows a given block to swap data with its four

nearest neighbors, facilitating data moving toward the desired cells.

Once the blocks are grouped together, we determine the neighborhood D.(Bi) for

each block Bi , which is used for computing the target h Similar to the 1 D case discussed

above, here we use windows that are offset from the centers of the respective block

groups; see Figure 18. With the neighborhood determined, the target Ti for each block Bi

is computed using either Equation (16) or (18) depending on the type of data to be

organized.

39

(a)

t.E-~~Jq3
~·~EE ~
EEEEEEEE
rn ·~rn·rn

(b)

Figure 17: Splitting a 2D map into 4 X 4 blocks and grouping blocks using even-odd (a) and odd-even (b)
settings. In both subfigures the red cell is matched to the three yellow cells from the grouped
blocks.

Figure 18: The neighborhoods defin ed for the four color-coded grouped blocks in the center. Each
neighborhood encompasses a 4 x 4 block window that is offset away from the other blocks in
the same group.

The next step is to swap data between the grouped blocks using the targets as the

gu ides. Here data items in the corresponding cells ofthe grouped blocks fo rm quadruples.

For example, the data item in the red ce ll shown in Figure 17(a) is grouped with the ones

in the three ye llow cells to form a quadruple. The organizat ions fo r a ll quadruples are

handled independently in paralle l. To place a given quadrup le (s, t , u, v) into four cells,

there are 4 ! = 24 possible a lignments. All 24 possibilities are enumerated and fi nd the

one that minimizes the fo llowing:

(19)

40

In practice, before each round of swapping the items within each block should be

randomly shuffled. No items should leave the blocks they occupy so that the block targets

do not change, but rather their positions are jostled so that the items grouped into

quadruples are not the same every time. This gives badly positioned items a chance to

move out of their block even if the map has converged because the items in their

swapping quadruples can change each round.

Figure 19 summarizes the SSM algorithm in the form of pseudocode. Here the size

of output grid is assumed to be N x N, where N is power of two. The extension for

rectangular and non-power-of-two grids is straightforward. Figure 20 shows the state of a

64 x 64 map of 4096 Lab color vectors after the algorithm has finished working at each

block size. For quantitative evaluation, the cross-correlation values, as defined in

Equation (1), are calculated and shown in the figure. As expected, the correlation is close

to zero for the initial layout, where the color vectors are randomly placed. The correlation

steadily increases as the organization goes through different stages as exchanges

performed improve the organization. The final score reaches a high positive correlation

between the colors and their positions in the structured layout.

41

Randomly place data into the layouc as an initial arrangement ;
while block size > 1 do {

Split each block into 4 smaller blocks ;
do {

for each of the two block groupings (even- odd and odd-even)
for each block Bi.i (i,j:::; n) do

Update the target ~.i for Bu using Equation (18) ;
Shuffle the items within each block ;
for each set of 4 blocks do {

Group each cell s in the 1st block with cells
in the remaining 3 blocks ;

for every quadruple (s, t, u, v) do {
rind the arrangement that minimizes the distance

between the items and the targets ;
Perform exchange if the arrangement has changed ;

while exchanges have occurred
and the maximum number iterations is not reached;

Figure 19: Pseudocode for the Self-Sort ing Map.

I st stage:
c = 0.009

4th stage:
c = 0.825

2nd stage:
c = 0.604

5th stage:
c = 0.830

3rd stage:
c = 0.789

Final:
c = 0.83 1

Figure 20: The progression of the organization of 4096 Lab color vectors after di fferent stages. The
corresponding correlation scores are given below the images.

Boundary Conditions

The a lgorithm discussed up until now does not provide any means to control the

o rganizat ion. In some applications, there may be a desire to have data arranged in

42

particular ways. For example, when positioning different cities in a 20 grid (see Figure

1), it is more familiar to have cities on the northern hemisphere placed on the top ofthe

grid, even though flipping the grid upside down does not affect the cross-correlation

score. ext shows how results can be influenced simply by adding boundary conditions

to t he proposed SSM approach.

c = 0.506 c = 0.581 c = 0.541

Figure 2 1: Results generated using additional constraints on the border of the map. Left: Using white color
as boundary condition attracts bright colors to the boundaries and pushes dark colors to the
center. Middle: Using black as boundary condition has the opposite effect. Right: Using white
on top and black on bottom attracts colors of different brightness to different sides. Note that
the correlation scores are much lower than the one obtained without any boundary constraints.

To achieve a desired result, users are allowed to specify data items outside the 20

grid. These data items do not participate in the swapping, but they are used during the

target search calculation and hence influence the targets generated for blocks near the

border. Consequently, input data items that are similar to the specified data items will be

attracted toward the corresponding border of the 20 grid. As shown in Figure 21, by

enforcing different boundary conditions, the same set of color samples is organized

differently.

43

4.2 Parallel Implementation

The Self-Sorting Map algorithm can be broken down into two major stages;

computing a target for each block and then swapping data between blocks based on those

targets. Both stages can be performed using parallel kernels on streaming multiprocessors

(SMPs) available in GPUs. In this section the design of those parallel kernels is

described, as well as analysis of the time complexity of the algorithm in parallel versus its

serial counterpart.

4.2.1 Target Generation Kernel

Taking the current data layout as input, the target generation kernel computes a

target for each block of data items. The actual calculation involved depends on whether

the mean or centroid is used. Here we will discuss how to compute mean targets ftrst,

followed by centroid targets.

Since the neighborhoods defined for adjacent blocks overlap each other, directly

calculating the mean target using Equation (16) will result in redundant computations. A

more efficient approach is to pre-compute the means of all blocks using only the data

items inside the blocks. The result forms a 2D mean map whose resolution depends on

the current block size. The mean map is then used to calculate the average in each block' s

neighborhood. To better utilize the parallel processing power of SMPs, the mean map is

generated using parallel reduction. That is to say, a mean map for blocks of 2 x 2 cells is

calculated first, which is then used to calculate a mean map for 4 x 4 sized blocks, and so

on, until the desired block size is reached.

44

Target Search Comparisons

- 20
"' c:

~ 15

~ 10
"' c:
0 5 "' ·;:::

"' c. 0 E
0 1 2 u 4 8 16 32

Block Size

Figure 22: The number of comparisons needed for computing the true centroid targets of different block
sizes increases dramatically as the number of data items in each block does.

Approximate centroids for blocks of different sizes Approx. targets True targets

Figure 23: The first subfigure is the original data after items have been swapped into 16 x 16 blocks. The
next four images show the approximate centroid maps obtained using parallel reduction,
leading up to the approximate centroids of the 16 x 16 blocks. The last image shows the true
centroids of those blocks calculated directly using Equation (18). The approximate centroids
are similar yet more vibrant.

Compared to mean target calculation, centroid target searching is a much more

expensive operation. For example, if we are given a map of 64 x 64 data items and want

to find the target for a 16 x 16 sized block, we have to search all of the items in that

block and the neighboring blocks to find the item that has the minimum total dissimilarity

among all of the others for the purposes of this algorithm. This leads to millions of

comparisons, as shown in Figure 22. Borrowing ideas from the mean target calculation,

we can mitigate a lot of this complexity by computing approximate targets rather than the

true ones. Since far fewer operations are required to compute the centroids of smaller

45

blocks than of larger ones, we find the approximate centroid of a given block by

repeatedly performing a centroid search on 2 x 2 sized blocks in a parallel reduction

fashion; see Figure 23. The approximate centroids for all blocks form a centroid map,

which is then used to fmd the approximate target of each block, i.e., the centroid of

centroids ofthe neighboring blocks.

4.2.2 Approximate Centroid Initial Block Size

Changing the initial block size at which the approximate centroid parallel reduction

starts can affect the speed and quality ofthe final outcome. Figure 24 shows the same set

of data organized by the SSM multiple times. The only independent variable in the

experiments is the initial block size from which the parallel reduction starts. It is clear

from the time chart in Figure 24 that the search time can be dramatically lowered if the

initial block size used is smaller. This stems directly from the fact that the first reduction

has the potential to be the biggest bottleneck if the initial block size is large, confirmed

by Figure 22. The only downside to approximate centroids is that the final organization

quality can suffer depending how small of an initial block size is used. This effect is

noted in the correlation graph below which shows a decrease in correlation at smaller

initial block sizes. In Figure 24 the middle range initial block size of 4 yields acceptable

results in a fraction ofthe time.

46

Vi
1:1

r:::

Approx. Centroids

Time
150 -.-------- ---­

8 100 +------
CII
~ e so +-----­
i=

"' ...
0
1- 1 2 4 8 16 32

Initial Block Size

Approx. Centroids

Correlation
0.85

r::: 0.8
0

·~ 0.75
4i
:::: 0.7
0
u 0.65

0.6

t--

t--

t--

f.-

f-

f-

1 2 4 8 16 32

Initial Block Size

Figure 24: The charts show the total time and correlation respectively. An initial block size of 2 means
that centroids for any block size larger than 2 x 2 would be built by getting the centroids at
block size 2 x 2 and then reducing that map of centroids by half repeatedly until the centroids
for the desired block size have been approximated. In this case an initial block size of 4 yields
the best trade off of quality versus speedup.

4.2.3 Data Swapping Kernel

Once the targets are determined, the second stage is carried out by a single kernel

that swaps items between grouped blocks in such a way that the dissimilarity between the

items and the targets of those blocks is minimized. To do this, the kernel looks at each

item in parallel in the context of a quadruple of four items formed by taking one item

from each of four grouped blocks. Items chosen for each quadruple only ever belong to

one such quadruple so as to maintain mutually exclusivity and thus the ability to have

items swapped between blocks in parallel without conflict. Once four data items are

grouped, they are swapped using the procedure described in Section 4. I .4, i.e., the four

items are aligned with the four targets by checking all 24 possible combinations to find

the one yie lding the lowest total dissimilarity.

47

Execution

The two stages of finding targets and swapping items occur in that order and are

repeated together as the algorithm dictates. Eventually the targets come to represent the

items in their blocks well and few swaps need to be done. At this annealing point the

algorithm moves on to the next block size where the map is considered to have more

blocks that contain fewer items. The kernels continue to work as defined even with

changing input sizes. Figure 25 illustrates a simplified version of the parallel kernels

executing on some data.

1 0 0 1 0 0 1 1

0 0 1 3
~

1 5
--7

0.25 1.25 0 0 1 1
---7

2 2 3 3 8 10 2 2.5 2 2 3 3

2 2 3 1 2 2 3 3
Input Map Add Reduction Division Swap

(Only one is required (Each sum is divided (Items are grouped and

from 4 x 4 to 2 x 2) by 4 to produce aligned with their closest
means) mean)

Figure 25: One iteration of kernel execution. Here means are only generated from the items that are
contained inside their respective blocks for simplicity.

Performance Considerations

In parallel implementations memory access can be a bottleneck. Random access

reads from many threads at once will result in the reads being queued and performed

sequentially. This negates a Jot of the effort of running things in parallel. For this reason

it is important to make use of the faster local shared memory available in parallel

hardware like graphics cards. As opposed to each thread reading data into registers from

slower global memory where the host process places data initially, chunks of data needed

by all threads sharing a local memory bank should be copied into that bank in parallel and

48

then read from there. To do this, each thread will usually load the element its thread

identifier aligns with. Doing this, all data will be loaded by all threads in conjunction in

contiguous swathes. This is known as coalesced loading. Once the data is in local

memory, random access to it from the group of cooperating threads sharing it is much

faster. Based on this, every kernel consists ofthree major portions: a coalesced data read

into shared local memory, computation on the data in local memory, and a coalesced

write of data from local to global memory.

In parallel hardware there are generally multiple independent compute units

available. These are the groupings of computational resources that share things like local

memory banks. Data should be divided up into workable chunks to maximize the

concurrent use of these compute units . An optimal data division is usually one that

produces enough local workgroups (OpenCL terminology) to activate all ofthe physical

cores (CPU) or stream processers (GPU) available. This is because each local workgroup

is executed by a separate physical compute unit. The goal is normally to have something

for each unit to be doing at the same time to achieve the best efficiency. In most cases the

local workgroup size is constrained by the local memory available for input and output

data to fit into. Usually with enough data, the local memory limitations will require the

problem to be divided up to activate all compute units. Based on this guidance the

determination of the optimal local workgroup size for each kernel is a matter of coming

up with a size that fits as much data as possible into the local memory, lower bounded of

the number of available compute units.

49

Most of the data reading and writing stages of the SSM algorithm have a direct

mapping of continuous areas of global memory into and out of local memory. The

exception to the rule is when the swapping block group size requires more local memory

than the device provides. In this case multiple local workgroups work on different areas

of the same group of blocks. When this happens four smaller loads of the small areas

from each of the four blocks in the group need to be done by each local workgroup. The

load happens slower using this scheme but is required for correctness. Figure 26 depicts

the different memory access scenarios. Keep in mind that a single local workgroup

executing all of the swaps is not an effective use of the hardware if there are multiple

compute units available. This example merely demonstrates what is occurring at a small

scale.

(a) (b)

Figure 26: Block group memory access patterns of four 4 x 4 blocks. (a) is when the block group
completely fits into local memory and is loaded by one local workgroup. (b) is the interleaved
pattern when the block group cannot fit into local memory and is loaded by multiple local
workgroups.

4.2.6 Complexity Analysis

To organize a set of N data items into a {N x {N map, the SSM algorithm needs to

go through log2 JN stages. On the kth stage, the data is split into 4k blocks with each

block containing N I 4k cells. Finding the mean for each block requires 0 (N I 4k)

operations since every item in the block needs to be added in. On the other hand, finding

50

the true centroid requires O((N I 4k) 2
) because every item needs to be compared with

each other item in the block to determine the one with the lowest total dissimilarity.

Hence at the kth stage, the total number of operations needed for target generation of all

4k blocks is 0 (N) for mean and 0 (N 2 I 4k) for centroid. Regardless of whether mean or

centroid targets are used, the data swapping step requires O(N) operations since each

data item is processed only once because it only belongs to one quadruple and quadruples

do not share items.

The target generation and data swapping steps are repeated until convergence or the

maximum number of iterations, L, is reached. L is a user imposed upper bound on

iterations. The number of iterations required may vary per application since different

datasets may converge at different times. Hence, we simplify the analysis here and

consider the worst case time complexity of the SSM algorithm, where L iterations are

used at all stages. Under this scenario, the serial SSM algorithm using mean targets

requires O(L · N ·log N) operations to complete all log2 VN stages. When centroids are

used, the time complexity can be computed as:

(20)

Now assume that we have a parallel computer with N processors. On the eh stage,

where each block contains N I 4k cells, the time needed for computing the mean targets or

the approximate centroid targets using the aforementioned parallel reduction approach is

O(log(N l4k)), whereas the time required for data swapping is 0(1). Hence, the time

complexity for the fully parallel version ofthe algorithm is:

51

L log(N) + L log(:)+ L log(~)+ ... + L = O(L ·(log N) 2
) (21)

The speedup of the parallelization is 0 (N /log N), with the efficiency being

0(1/log N). To see how these theoretical runtimes play out on real hardware, see Section

4.3.2 for some benchmarks.

4·3 Results

In order to exercise the proposed algorithm, the SSM was tested on the same data as

the SOM in Section 3.2. Benchmarks from the execution of a serial and a parallel

implementation of the algorithm on a CPU and a GPU, respectively, are also given.

Colors

In Figure 27 the results of organizing a set of 4096 Lab color vectors into 64 X 64

cells using the SSM is shown. This is the same set of colors used in Section 3.2.1 with the

SOM. For this example the SSM used mean targets with the maximum number of

iterations per stage set to 4. The quality of the SOM result after a lignment is similar to

the SSM's in terms of the topology, which is likely due to the fact that both techniques

incorporate a type of decay into their neighborhoods over t ime (i.e., the SSM blocks

split). In the end though, the SOM requires more computation and k-d tree post­

processing to eliminate occlusion.

52

Initial Items SSM: T = 0.82s, C = 0.831

Figure 27: The organizations of 4096 Lab color vectors. The first image in the row is the starting set of
items in both cases. For comparison, the SOM result and the k-d tree generated grid version is
shown. Total time and final correlation between position and dissimilarity across the grid
aligned maps is given below the respective images. All implementations are single threaded
Java ones running on a Intel Core 2 Duo P8600 CPU at 2.4 GHz.

Note that the Sammon's mapping result presented previously in Figure II also takes

more time and produces distinctly different visual appearance. The SSM directly

generates the desired result ofthe highest correlation score ofthose tested in the shortest

time.

Images

Here the same set of images that were organized by an SOM in Section 3.2.2 will be

organized by a SSM. Again, concept tags are available for each image which is obtained

through a query expansion process that is elaborated upon in the Appendix. The same

hybrid vectors used by the SOM can be used here. A change is that the SSM also requires

no k-d tree post-processing step like the SOM. This is because items are swapped around

directly in the structure they are eventually displayed in.

Use of the SSM does not require all vector data like the SOM if centroids are used.

This means that no MDS is needed to generate a set of vectors for the concept tags.

Instead, the distance measure used by the SOM in Equation (15) becomes a combination

53

of the dissimilarities directly from the matrix D defined in Equation (I I), and the visual

feature vectors defined in Equation (13). This new distance measure is:

Dist(/,j) = aDn
1
,n

1
+ (1- a)IIV(I)- V(/)11 (22)

where I and j are images and the parameter a controls the relative importance of the

conceptual distance and visual distance as it does in Equation (15).

Figure 28 shows the same small set of 64 images from the ambiguous query

"Washington". This time the images have been organized by an 8 x 8 SSM run to

convergence. Both the mean and centroid target layouts are shown. For the distance

measure defined in Equation (22) used in the centroid driven layout, the weight factor a

has been set to 0.75 so that the concept vectors will get the majority of influence and

guide the overall presentation while the visual content vectors will only affect the local

arrangement. In both cases images align to a grid implicitly from the fact that one image

will always occupy at least one position in the SSM.

The results show that the images related to the home articles of the query, "Denzel

Washington", "Washington State", "Washington DC", and "George Washington" . Visual

similarity is captured locally when comparing the borders of neighbors within regions.

Not ice that the mean layout is nicer in terms ofthe consistency in the shape distributions

of the concept regions than the centroid, even though the dissimilarity matrix is

approximated by MDS generated vectors. This is also confirmed by the marked

improvement in the correlation. Reasons for this are discussed in Section 4.4 below.

54

Means: T = 0.148s, C = 0.679 Centroids: T = 0.141s, C = 0.482

Figure 28: Two layouts from a collection of images expanded out of the query " Washington" . Left:
Images are organized using a mean driven SSM. Right: Images are organized using a centroid
driven SSM. In both, the images have color-coded borders relative to their category. The
regions displaying "Denzel Washington" (red), "Washington State" (yellow), " Washington
DC" (blue), and "George Washington" (green) are visible. Within the regions, visually similar
images also neighbor one another. The times and correlations for each are given.

4·3·3 Benchmarks

Here we measure the processing speeds of both serial and parallel implementations

of the SSM algorithm over color vector datasets of different sizes. The serial version is

implemented using a single-threaded Java program, whereas in the parallel version the

core functions are replaced with OpenCL kernels, which are invoked through JOCL

bindings. To make the time measurements comparable across different implementations

and datasets, we force the a lgorithm to go through 5 iterations per stage regardless

whether the process converges or not. The CPU used is an Intel Xeon E5540 running at

2.5 GHz. The GPU used is a NVIDIA GeForce GTX 480 which has 480 streaming

mu ltiprocessors across 15 compute units running at 1.4 GHz. The timings in Figure 29

55

show that the parallelism ofthe SSM allows for a 14 times speedup for the largest dataset

tested.

CPU vs. GPU Runtimes
100

~
] 10
0
v
Cll 1
~
Cll
E
i=

18.4 91

1.6 6.4

Number of random color vectors

Figure 29: The running times of the serial implementations versus the parallel GPU implementation on
datasets of varying size. The parallel GPU implementation can arrange a million items in 6.4
seconds.

4 ·4 Discussion

The approach presented is entitled the Self-Sorting Map due the inspiration it garners

from the Self-Organizing Map. Given a set of data, both approaches map them to a multi-

dimensional structure while trying to preserve the topology ofthe input data in terms of

similar data items being placed near to one another and dissimilar being placed apart.

Hence, both can be used to visualize a high-dimensional data space in a lower one. The

main difference is that the SSM works to solve the discrete labe ling problem of optimal

item placement by swapping items between cells. Every item is always guaranteed to

have a position in the SSM grid. In contrast, no item has a position assigned to it in the

SOM. It does not actually hold the items in its units at all. The units contain only the

56

weight vectors, and so, finding the position of an item in an SOM is done indirectly by

searching for the BMU of that item and using its position. SOM' s often return the same

BMUs for multiple data items if they are similar. If the results are to be visualized

directly without occlusion with one item per cell grid cell like the output obtained directly

from the SSM, the SOM's BMU-based positions must be post-processed using something

like a k-d tree [55] to generate unique grid cell locations for each item. A second

difference is that since the SOM uses weight vectors, input items must be representable

by vectors or else they cannot be mixed with the weight vectors of the SOM which are

critical to its design. In all, if a minimalistic grid free of occlusion is desired then the

SSM can produce the result directly with only one item per grid cell more quickly than

the SOM. The SOM often requires a many to one unit to item ratio (i.e., a larger map than

the number of items being arranged) to generate quality BMU positions which then have

to be post-processed. The SSM can also accept the dissimilarity matrix as is rather than

requiring it to be converted into vectors. In saying this, it is clear from the images that

have been organized in Figure 28 that when the set of nominal data items is sparse, as the

concept dissimilarity matrix does dictate them to be in this case, good centroid items

cannot be found to represent blocks of items because the items in those blocks are too

varied. As a result the quality of the organization suffers. On the other hand, notice that

the mean organization is of good quality even though MDS generated concept vectors,

which introduce error in dissimilarity, were used. This is because fully numeric items can

be aggregated to form a new mean item that lies between those in each block's

neighborhood. In essence, the centroid is a pseudo-mean that approximates the true mean

57

that must be chosen from the items in a block neighborhood. When there are a lot of

items in a block and they lie at opposite ends of the spectrum then the algorithm has

trouble converging to a set of good representative centroid items for the blocks, meaning

that a high quality g lobal layout will not be established in the early stages.

Figure 30: The result from running the SSM on a set of binary RGB color vectors. Every channel of each
vector item is only allowed to have full or no color. Each row of images presents the initial
items, the centroids (top) or means (bottom) of different block sizes, followed by the final
organization of colors and the correlation value. Given the fact that good centroid items cannot
be found at different levels, the fina l result of the centroid SSM suffers. Since the means are
generated by blending items, its result converges to a better layout.

To replicate the problem broken concept c lusters appearing m Figure 28 more

clearly, the centroid and mean versions of the SSM can be run on binary RGB color

vectors, which are essentially a set of nomina l valued colors (red, green, blue, cyan,

magenta, etc.) in vector form. The results ofthese runs are shown in Figure 30. Much like

w ith the images before, the centroid version produces a scattered result w ith broken

regions since there is no good choice for centro ids. T his is because the centro ids must

represent whole blocks of heterogeneous items. Take the first centro id image: cyan, blue,

white, and green are chosen to represent the four large blocks of the initia lly random item

arrangement. These four co lors are c lose to some items and yet very far from others by

58

the polarized nature of the binary data. This trend continues until the blocks get small

enough that a homogeneous set of items exists in and around the blocks so that good

representative centroids can be chosen. At this point it is too late and the damage to the

global layout is already done. In the mean example, since items in blocks are blended a

good global layout can be established from the beginning. The later stages just refine the

edges of it. The mean SSM layout is not without fault though. There are some yellow

items that get separated and stranded due to the fact that the mean at the border of the

green and red regions does produce a dull yellow. Since the block size is small at this

point, and only local neighborhood jumps are possible, those yellow items have no way

of swapping out of their positions.

While the SSM does improve upon alternative data organization algorithms for

constrained grid layouts in terms of quality and efficiency, Figure 30 shows that its

centroid incarnation cannot handle sparse data well and that the algorithm is more greedy

overall than the alternatives. Due to the greediness, there is more potential to be trapped

by local minima because of the inability for items to jump globally, especially in the later

stages where block neighborhoods are small. In many cases these weaknesses are

acceptable given the superior speed at which results can be obtained, particularly when

using mean targets. Section Chapter 6 presents many applications where this is so.

59

Chapter 5 Max Correlation Map

This section presents a data organization algorithm that has the same properties and

features as the SSM while working in an alternative way. Decisions to move data items

are dictated by the overall correlation of the map. The Max Correlation Map (MCM), as

this approach is called, is simpler than the SSM in design, while being more robust and

able to produce improved results. The strength of this technique is the global optimization

based on correlation. The major downside is that correlation is expensive to compute and

results in a higher overall computational cost than the other techniques that were

previously described.

5.1 Method

The major difference in the design ofthe MCM versus the SSM or SOM approaches

is reformulation ofthe problem as an optimization that uses the correlation coefficient as

an objective function directly. This makes the MCM approach more flexible and able to

generate organizations that are of higher quality globally than the other methods. It has

the ability to handle all types of data and layouts that the SSM can, with the addition of

being able to place items in structured layouts with some items being fixed and/or

enlarged or cells being removed.

60

5.t.tProblem Definition

Here the problem of arranging data items into a structured layout is generalized

further in the context ofthe MCM.

Given a dataset fl , assume there is a dissimilarity function IS defined such that for

any two data items s and t in fl, if s = t then o(s, t) = 0, otherwise o(s, t) ~ 0. Now

assume there is a structured layout r that contains n cells, where n = lfll. We define a

mapping M: fl --+ r as a function that assigns each data item in the dataset fl to a cell in

the structured layout f. M is occlusion-free if no more than one data item can be

assigned to any given cell in f. According to this definition, the SSM in Chapter 4 is an

occlusion-free map, whereas the SOM in Chapter 3 is not.

The objective is to find an occlusion-free map where the proximity of data items in

the structured layout correlates with the similarities among them. More formally, such a

map is one that attempts to maximize the following Pearson correlation coefficient:

p(M)=(J
1
(J •

1
;

12
L (1/J(M(s),M(t))-ijj)(o(s,t)-8)

1jJ 0 Vs,tE!1

(23)

where l./JC·) is the distance between two cells, M(·) returns the cell to which a given item

is mapped, and where l{J and 8 are the means and (JlJl and (J0 are the standard deviations

ofthe distance and dissimilarity measures, respectively.

Different distance functions, such as Euclidean distance or geodesic distance, can be

used to define 1./J(·,·) . If we fix the structured layout rand the dataset fl , then the means

61

and standard deviations are constant. Equation (23) can be simplified by defining

normalized cell distance and data dissimilarity measures as:

() _t/J(u~v)-1{; ()-o(s~t)-<5 r.p ul V - 1 Ll s 1 t - ____:______;, __
a~ a8

Thus, in simplified form, the equation becomes:

p(M) = l;l 2 L r.p(M(s)~M(t)) ·Ll(slt)
Vs,tEn

(24)

5.1.2 Cell Correlation

Here we consider an alternative way to compute p. Since the mapping function

M: n ~ r is one-to-one for an occlusion-free map, its inverse function M-1
: r ~ n

exists. Equation (24) can also be expressed as:

p(M) = l:l 2 L I[J(ulv) ·Ll(M-1 (u)~M- 1 (v)) = l~l L Pu (25)
vu,vEr uEr

where Pu evaluates how well the data item stored in a given cell u correlates with the

remaining cells. Here Pu is referred to as the cell correlation score and is computed using:

Pu(M) = l~l L I[J(u~v) ·Ll(M-1 (u)~M-1 (v))
vEr

(26)

Figure 31 visualizes the correlation scores for different cells. By definition in

Equation (25), the overall correlation of a given map is equal to the average of all cell

correlation scores.

62

Figure 31: Left: An organization of I 024 random Lab color vectors. Right: Visualization of the correlation
scores at different cells, where high intensity represents high correlation score. In this instance
the lower left corner is the worst correlated area.

5·1·3 Partial Correlation Updates

Given a mapping M with its correlation p(M) evaluated, we first discuss how to

efficiently compute the correlation p(M') for the updated map M', which is obtained by

swapping two data items in M . The key to partially updating p lies in the fact that it can

be described as the sum of the cell corre lations, as shown in Equation (25). lftwo items,

s in cell u and t in cell v , are swapped then every cell correlation needs to be updated to

account for the change. This is done in two phases: First, the differences in correlation

between the old item placement and the new item placement must be applied to all other

cells, and secondly, the ce ll correlations for u and v need to be recomputed. These

operations can be described in the following way:

{

Pw + IJl(w, u)(L1(M-1 (w), t)- L1(M-1 (w),s))

p:,_ = +IJl(w, v)(L1(M-1 (w),s)- L1(M-1 (w), t))

L IJl(w, i) · L1(M- 1 (w), M-1 (i))
ier

If wE f\{u, v}

(27)
If wE {u, v}

where p:,_ is the new cell correlat ion score for cell w.

63

Equation (25) can then be used as usual to compute the updated correlation p(M')

after the swap. By doing updates in this way, only the necessary changes to the cell

correlations are carried out and the recalculation of all cell correlations on every swap is

avoided.

Enumerated MCM Search with Pruning

One way to solve for the best mapping M: .0. ~ r is by enumerating all possibilities

using "brute force" evaluation. Discussing this approach is useful for evaluation of the

optimal solutions of small datasets.

To enumerate all mappings we start with an empty map and fill the cells one by one

recursively. Once all of the cells are filled, we have an occlusion-free mapping. The

recursive process backtracks and continues forward again with a different items until all

possible mappings are evaluated and the one with maximum correlation is found. Even

though it is possible to find the true best mapping with this approach, the computational

cost is too high for practical use, as shown in Table I. In the rest of this section we

discuss a novel way of reducing the computational cost by pruning the recursive tree of

possible mappings being searched.

Table 1: The number of solutions needs to be evaluated with and without pruning. Without pruning, the
solution space becomes impractical to search for maps as small as 4 x 4.

Map Size # of Solutions Evaluated w/o Pruning # of Solutions Evaluated w/ Pruning
3x3 362,880 6,043
4x3 479,001,600 66,099
4x4 20,922,789,888,000 21,380,134

64

Rather than na'ively examining each potential mapping independently, we can

consider the above brute force search process as depth-first traversal of a decision tree

with all possible mappings represented as leaves in the tree. We can prune a branch

during the traversal if we know none of the leaves in the branch has a higher correlation

than a known solution. To apply pruning, we need a way to compute an upper bound

correlation score p for a given partially filled map. The upper bound is computed by

assuming that each unfilled cell u is occupied by an ideal data item, whose dissimilarity

to any other cell v is identical to the distance between u and v. Hence, the upper bound

ofthe cell correlation score for a given cell u is:

Pu(M)

{
I 'f'(u,v) ·Ll(M-1 (u),M- 1 (v)) + I 'f'(u,v) 2

_ vEF vEr\F

- L 'f'(u, v)z
ver

if u E F
(28)

if u E T\F

where F is a subset off containing occupied cells.

Summing together Pu(M) for all cells gives us the upper bound correlation score

p(N) for a partially filled map N. In this case, placing a data item s into a given cell u

means replacing the imaginary perfect data in u with the real data s , which will leave or

lower the correlation. Hence, if the upper bound p(N) is already smaller than the

correlation p(M) of an already found full map M, there will be no reason to conduct any

further search beyond the partial so lution N. This allows the corresponding subtree to be

pruned during the depth first traversal.

65

In practice, a solution M should be computed using one ofthe faster techniques like

the SSM and its value p(M) uses as the initial pruning threshold. Once a better solution

M' (p(M') > p(M)) is found during the traversal, the value p(M') is used instead. As

shown in Table I, pruning can greatly reduce the number of solutions that need to be

evaluated. It is also worth noting that during the traversal when a data item is filled into

an existing map N, the upper bound p(N') for the new map N' can be efficiently updated

based on the original p(N) using the approach discussed in Section 5.1.3.

While pruning does cut off searching to the leaves of the search tree in a lot of cases,

bui lding up partial solutions through the inner nodes ofthe tree still requires a lot oftime.

In reality, even small problems are impractical to solve with this approach. Figure 34

shows the dramatic increase in search time even for small datasets.

Coarse-to-Fine Swap-based MCM Search

From studying the enumerated MCM search approach, it is clear that the

performance cost is too high to find the optimal one every time. The SSM on the other

hand is an approach that moves items around at a high level frrst, and then works its way

down to only moving things around in smaller and smaller regions until eventually the

region is one item. The hierarchical approach generates quality results very quickly, but

since it is primarily a local sorting algorithm problems can arise if a good global layout is

not achieved in the early stages.

Here an MCM search method is presented that addresses the locality issues

associated with the SSM by sorting based on the correlation score directly. For this

66

method, data swapping is performed in a coarse-to-fine manner where the cells in the

map are initially grouped into a small number of large blocks. Each of the blocks is

further split into smaller blocks in the next block level, until the finest block level where

each block contains only one cell is reached. Figure 32 shows an example ofthis coarse-

to-fine block splitting scheme. At a given block level, the cell distance function is

adjusted to lj/(u, v) = lfJ(C(u), C(v)), where function CO returns the center cell for the

block that u belongs to. Once the distance measures are adjusted, the corresponding mean

lj;', standard derivation rJl/J ,, and normalized distance 'l''(u, v) are updated as well. Such a

change in the distance measure ensures that 'l'' (u, v) = 0 as long as u and v belong to the

same block. Consequently, the exact cell position where a data item is placed inside a

given block does not matter, allowing the swap-based optimization to focus on moving

data into the proper block.

fiiHI.!
~ EEEB EEEB ~
I EEEB~ I
"····································

OODODDDD qooooooo
oo• ooooo o• oooooo oomoooo
DDDDDDDD
DDDDDDDD
DODD DODD

Figure 32: Illustration of how data are swapped in three levels: 2 x 2 blocks (left), 4 x 4 blocks (middle),
and 8 X 8 individual cells (right). The neighborhood for the same red cell is marked with a red
dashed box, in which its swap partner (shown in blue) is randomly selected.

To move data at a given block level, the algorithm cycles through every cell u in the

map and looking for a random cell in u 's block neighborhood to swap the data with. This

neighborhood is a 3 x 3 block window with the block ofu at the center, as seen in Figure

32. After the swap the correlation is updated using Equation (27). If the correlation

67

increases the change is kept, otherwise it is reverted. Look to Figure 33 for pseudocode of

this MCM algorithm.

Randomly map the items from fl to cells in f;
whi1e block size b > l do {

Split each block into 4 smaller blocks and modify b;
Update if), 8, ay,, and a8 and t h en p at the new block size;
do {

for each cell u in r {
Select a random cell v f r om o ne of the 8 neighboring

blocks adjacent to u' s b l ock;
Swap items M-1 (u) and M-1 (v);
Partially update p ;
if p decreased {

Swap M-1 (u) and M-1 (v) back;
Partially update p;

whi1e changes have occurred
and the maximum number i terations is not reached;

Figure 33: Pseudocode of the MCM algorithm.

s.t.6 Comparison

Figure 34 contains a comparison between the enumerated Brute Force, MCM, and

SSM generated mappings. The implementations were in Java and only the Brute Force

one was multi-threaded. An Intel Xeon E5540 CPU with 4 cores at 2.53 GHz was used.

Note that while all of techniques place related colors together (i.e., light and dark hues)

and distinctly different colors apart (i.e., red, blue, green), the correlation ofthe SSM is

lower because it does not consider the global arrangement in as much detail as the others

do. For instance, intense colors should lie in the corners like in the Brute Force

arrangements but they do not in all of the SSM's. However, the search time for the Brute

Force algorithm at just 4 x 4 makes it impractical. The relative corre lations and

68

similarity in visual quality between the MCM and Brute Force optimal are much closer

than those ofthe SSM making it the best compromise here.

Brute Force
T = 0.333s, C = 0.816 T = 5.567s, C = 0.863

MCM
T = 0.122s, C = 0.806 T = 0.132s, C = 0.835

SSM
T = O.OlOs, C = 0.686 T = 0.012s, C = 0.797

T = 0.014s, C = 0.590

Figure 34: A comparison of the Brute Force, SSM, and MCM algorithms. Times and correlations are
given .

5·1·7 Fixed Item Conditions

Figure 35: Top row: An organization of Lab color vectors. Bottom row: A fixed item is introduced.

The design of the MCM algorithm makes the implementation of fixed items (or

alternatively removed cells from the layout) straightforward. The most significant

consideration is that dissimilarities of comparisons with fixed items are weighted in the

correlation calculation by a multiplicative factor. The magnitude ofthe factor changes the

strength ofthe fixed item' s influence and is set at the user' s discretion. This prioritizes

the relationships of the fixed items with other non-fixed ones. Fixed items can also

69

occupy a larger region than standard items without modification to the fundamenta l

design. Figure 35 shows an example of how a relatively large fixed item can affect the

organization of co lors.

5.2 Results

For consistent comparison, the MCM is evaluated here with the same test data as the

SOM in Section 3.2 and SSM in Section 4.3.

5.2.1 Colors

Initial Items SSM: T = 0.82s, C = 0.831 MCM: T =31m, C = 0.816

Figure 36: The organizations of 4096 Lab color vectors. The first image in the row is the starting set of
items in both cases. For comparison, the SSM result is shown. Total time and final correlation
between position and dissimilarity across the grid aligned maps is given below the respective
images. All implementations are single threaded Java ones running on a Intel Core 2 Duo
P8600 CPU at 2.4 GHz. Note that with this number of items the MCM is not as good of a
choice to do the organization as the SSM.

In Figure 36 the results of organizing a set of 4096 Lab color vectors into 64 x 64

cells using the MCM is shown. This is the same set of colors used in Section 4.3.1 with

the SSM. For this example the maximum number of iterations per level of the block

hierarchy was set to 10 to keep the processing time on this dataset down. Due to the low

number of iterations used by the MCM, the SSM generates a result of a higher correlation

score in the shortest time. The global layout ofthe MCM is actually better than the SSM

70

due to its overall color wheel pattern because of the global correlation optimization being

done at the coarse block level. Conversely, at a fine level local noise is not smoothed

because small swaps do not have enough positive effect on the global correlation.

5.2.2 Images

The image test deals with a far smaller number of items and introduces a concept

dissimilarity matrix, described in Section 3.2.2, which needed to be converted to vectors

for both the SOM and SSM. When an MCM is used to organize the same set of images as

the SOM and SSM, as seen in Figure 37, the result is slightly better and practically the

time is not a factor with this number of items. Visually it appears to be of the same

quality, although the correlation is improved slightly, as it should with the MCM, the

speed ofthe organization is slower, as is also expected. The major benefit in this case is

simplicity because the MCM achieves the best layout of the three algorithms being

compared using the concept dissimilarity matrix directly instead of needing MDS

generated concept vectors to get a good layout like the others. Although it has the

potential to do the same thing, this is where the SSM with centroid representatives falters

since centroid items fail to represent intermediate targets for the polarized concepts used

here for the reason given in Section 4.4. The MCM does not exhibit the same concept

fragmentation using the dissimilarity matrix as the SSM with this type of data. The

reason for this is elaborated on in Section 5.3 below.

71

' - - r~.• ~ .. ~' . ''-' , • -' ~

r\ - t.'t ~ ... '• ., ~-~ r1 " / '

~ '-•
~.., -~ .~. i ~~·.,i r -4

"' ,/1 ~

Jllll"1' ,_ "'
,.,
~ ~ . ~ • ·.I ' '

_,.,... I ... ~ ""!"" f

··• · :~ -._..

t t .. ,..
lii...l ~

., EiJ ~- P"_, . - ~ ~ It ;

iiiJto --. ""'\

Figure 37: The MCM layout of a collection of images expanded out of the query "Washington". The
images have color-coded borders relative to their category. The regions displaying "Denzel
Washington" (red), "Washington State" (yellow), " Washington DC" (blue), and "George
Washington" (green) are visible. Within the regions, visually similar images also neighbor one
another. Left is the standard arrangement while the right shows one with enlarged fixed items.
The collage is fitted to the fixed items.

Section 5.1.7 described the introduction of fixed item conditions in the context ofthe

MCM. Figure 37 shows an example of this in action with two double sized fixed items.

The result is interesting and shows the flexibility of the MCM in dealing with "obstacles"

in the layout.

5·3 Discussion

From looking at the results, the MCM bests the other methods except in terms of

time. This is because the calculation ofthe correlation coefficient, which is integral to the

swapping process, also slows it down, even if partial updates are used. There is also a

loss of parallelism due to the partner selection regions overlapping. Even in light of the

losses, the quality improvement for small maps where performance is not an issue shows

worthwhile gains. Beyond that, the algorithm is significantly simpler than the SSM since

the need for the use of block representatives is eliminated as well as the need for shifted

72

block groupings during the alignment stage. In essence, the MCM only consists of a

s ingle straightforward alignment stage that uses the correlation score as the guide for

swapping items.

In Section 4.4, the issue of bad organizations resulting from an SSM using centroid

representatives with nominal data was illustrated in Figure 30. The SSM works by

moving items around at a high level and then in smaller and smaller regions until

eventually the regio ns are one item. This hierarchical approach generates high quality

results very quickly, but the problem w ith polarized data like binary vecto rs is that

centroids cannot capture the important facets of the data at the top level. Due to this, the

global layout, which is a critical building block ofthe organizational process, suffers. The

subsequent levels of the organizational hierarchy do not recover because the SSM

approach is primarily a local sorting o ne that uses large blocks to do its g lo bal sorting

early on. T he MCM rectifies this issue by eliminating the need for representative targets

altogether and organizing things globally.

Initial MCM at different block sizes c = 0.613

Figure 38: MCM running on binary RGB colors. Th is is the same set of data the SSM had trouble with in
Figure 30. In the case of the MCM, there is a logical progression to a result that is of higher
correlation and visual quality than the SSM even with means. The MCM code did require
significantly more time at I minute.

Figure 38 shows the stages ofthe MCM arrang ing the same dataset. Its arrangement

is more correlated and more symmetrical. Also, the mixed segmentat ion after the first

73

split when there are 4 large blocks is logical given the relationships between the primary

and secondary colors. The tradeoff is speed. The correlation updates, even partial

updates, take time. This forces the single-threaded Java implementation of the MCM

tested to take I minute to complete this organization of 32 x 32 vectors, as opposed to

the original SSM which takes less than a second to generate its version.

Overall, when it comes to quality structured layouts the MCM is generally the first

choice of the methods presented, especially if constraints like fixed items and removed

cells are to be imposed. A major issue is that the MCM is only worth waiting for when it

is organizing relatively quantities of items, otherwise, for time critical applications the

SSM should be considered as the alternative. A final drawback with the MCM' s coarse­

to-fine grained greedy approach is shown in Figure 36 where the global arrangement is

done well (color wheel) while the local arrangement is noisy. This makes sense given the

design of the algorithm since a greedy search is used. At a coarse level, the choice is

small and it is possible to find a good solution greedily. At a finer level there are too

many possible solutions so the greedy search becomes trapped in a local minimum. Local

minima are more evident in balanced datasets like random colors then many real world

datasets that contain more distinct items like images.

74

Chapter 6 Applications

This section shows the results of the organizations of some varying data types.

Included types are artificial datasets, images and textures with varying feature vectors,

Wikipedia articles, and cities. The figures and discussion showcase the features of

structured layout style data organization under more practical circumstances than the

results sections ofthe previous chapters. All figures were generated using single threaded

Java implementations running on an Intel Core 2 Duo P8600 CPU at 2.4 GHz.

6.1 Artificial Data

The datasets presented in Figure 39 are commonly used to evaluate dimension

reduction techniques because their underlying topological structures are known [60]. The

swissroll is a 20 manifold embedded in 30 space. The broken swiss is similar but

exhibits discontinuities. The helix and twinpeaks datasets are non-linear. They are all

rendered in 30 in the figure to help realize the underlying structures in them.

Figure 39 presents the results ofMDS, SOM, SSM, and MCM run on these datasets.

Multiple outcomes are demonstrated in the figure . The most notable one is that none of

the techniques are able to organize the swissroll and broken swiss based on the

underlying topological structure when the Euclidean distance is used. An overlap

between the two layers ofthe 20 manifold manifests in the form of peppering (MDS and

MCM) and tangled regions (SOM and SSM), which is due the small Euclidean distance

between the two layers between overlapping layers.

75

Euclidean Distance Geodesic Distance

MDS
SOM SSM

(mean)
MCM

MDS SSM (cent) MCM

Swissroll

Broken Swiss

Helix

Twin peaks

Figure 39: Results of different approaches on four artificial datasets, each of which contains I 024 color­
coded 3D vectors. The original datasets are shown in the left column, fol lowed by
organizations generated using existing dimension reduction methods and the SSM under two
different distance measures. For the existing approaches, both the layouts before (top) and after
(bottom) applying k-d tree alignment are shown.

One way to address the overlapping issue is to organize the data using geodesic

distance instead of Euc lidean distance. The geodesic distance between two data items 1s

76

calculated along the shortest path between the two items that passes through other data

items. Hence, it measures the distance between data items along the 20 manifold and

forces the rolls to unwind. The geodesic distances must be represented using a distance

matrix so the SOM method cannot be applied due to the nature of the weight vector

updates it requires. The MCM, MDS and the SSM with centroid representatives can work

directly on the distance matrix and generate layouts that respect the underlying

topological structures. For the non-linear helix and twinpeaks datasets all techniques

generate logical results. The MDS results show blocky artifacts due to the k-d tree post­

processing used to adapt their raw organizations to the structured layout ofthe grid. The

geodesic MCM result is the smoothest of the helix ones with only a small number of

isolated items. The MCM is the only technique that separates the twinpeaks under both

distance measures. From the figure we can see that changing the distance measure can

have a significant effect on the outcome.

6.2 Images

In Section 2.2, previous research is discussed on how organizing images based on

visual similarities can improve the users ' browsing experience [40, 54). Although a

variety of techniques have been proposed for organizing images into complex structures,

such as clusters or networks [7], popular image search engines still present image search

results in a grid layout due to its simplicity.

Figure 40 illustrates how the SSM can rearrange image search results based on visual

similarities while still maintaining the conventional 20 grid presentation. Here the input

77

is 64 images retrieved from Google Image Search using the query "E iffel Tower". To

extract visual information, the RGB color space is quantized into 64 bins to compute a

64-dimensional histogram for each image [52].

Figure 40: An SSM organized set of 64 Eiffel Tower images using color histogram vectors. Not only are
dark and light images placed together but ones with other properties like fireworks are also
clustered. Duplicated images (marked in green and red) retrieved from different sources are
also placed adjacent to each other as well.

78

Besides organizing image search results obtained online, the SSM can also rearrange

existing image collections. Figure 41 shows the results obtained for the Brodatz texture

collection 1•

Figure 4 1: An SSM organized set of I 00 textures using g ist vectors. Notice how regions of structurally
similarity (i.e., round structures, cross hatching, or vertical lines) form.

1
Downloaded from http://www.ux.uis.no/-tranden/brodatz html

79

For the texture collection a 320-dimensional gist [24] feature vector is computed for

each image [68]. Gist vectors are low dimensional representations of scenes and are

created by measuring edge responses from a series of convolutions on images using a

filter at different orientations. The distances between gist vectors can be used to measure

perceptual similarity [17] . Hence, the SSM result based on gist vectors effectively

separates texture images based on overall edge and structure patterns.

The inputs to the SSM in the two image experiments are high-dimensional vectors.

These vectors can be combined in the same way the hybrid concept and content vectors

were created in Section 3.2.2 to generate a feature descriptor that carries both color and

structure information. The dissimilarity between any two images is then measured by

computing a weighted sum of the normalized distances between their gist vectors and

histograms. Figure 42 presents a set of 1024 images obtained from Flickr using a variety

of queries. There are trees, roadways, waterfalls, pyramids, lightning, and so on. The

images are varied and have distinct color and structural signatures. The SSM separates

these images based on their overall gist scene feel and color. Even though from a high

level there are evident clusters resulting from the color signatures ofthe histograms, since

gist is given 75% of the weight in this arrangement the edge and structure based

description of the scenes is most influential. Figure 42 gives closer views of regions to

illustrate what the SSM does with these types of vectors. The first cutout shows images

with high frequency vertical line scenes like forests and waterfalls. The second shows

images with smooth features like desert dunes and pedals of flowers. The organization

that the SSM is generating exhibits the mixed properties of the hybrid vectors being used.

80

Figure 42: An SSM organized set of I 024 Flickr photos using a combination of g ist and histogram
vectors. Regions of structurally similarity form because of gist, like the noisy forests and rivers,
and the smooth beaches and flowers marked and shown. Gist is favored in the result with 75%
of the weight, but the color histogram 's influence helps maintain smooth transitions between
regions across the map. The total organizational time was II seconds at 50 iterations per block
size.

81

6.3 Articles

The next experiment uses an SSM to organize the abstract non-vector data that is the

set ofWikipedia articles retrieved using the query "Washington". Due to the ambiguity of

the query, a diverse set of articles is retrieved, ranging from persons, to movies, to places.

The semantic relatedness between any two articles is computed using Wiki Miner [34].

As shown in Table 2, it is difficult to grasp relatedness information from the Wiki Miner

similarity scores directly. Hence, an effective organization method is desirable in this

circumstance. This is a typical nominal dataset where the mean operation cannot be

applied without vectorization of the matrix data like in Section 3.2.2. To organize this

data, the semantic relatedness values in Table 2 are negated to be used as dissimilarity.

Since this is sparse data, centroid selection will not work well (as shown in Section 4.4)

and since it is a small amount of data, an MCM (as described in Chapter 5) is used to get

a high quality result. The result shows the relation between things corresponding to

Denzel Washington and his movies, Washington DC and its landmarks, Washington

State and its neighboring states, as well as George Washington and the persons and

places related to him. Other data-driven properties emerge from the organization like the

Washington DC cluster and the George Washington cluster being placed adjacent to one

another because of their relatively high relatedness and the article Mount Vernon being

placed at the center because overall it is the most related to every other article based on

the matrix in Table 2.

82

Table 2: The semantic relatedness among different Wikipedia articles related to the query
" Washington" . Cells in the table are shaded based on the values for better visualization. The
shading helps to identify the cluster of articles related to Denzel Washington and his movies,
but the relations among the rest are unclear since they are somewhat interconnected.

Training Day
The Great Debaters
Cry Freedom
Fc:t Queen and
Country
Denzel Washington
Out of Time
Inside Man
The Bone Co-.ctor
Russell Crowe
Gene HackmCil
Mount Vernon
Martha Washington
Be!ljamin Franklin
George Washington
James Madison
Charles WiUson Peale
American Revolution
Valley Fcrge
Fort Le BoetJf
Washington Circle
United States Capitol
Washington Monument
VVhite House
Verizon Center
Georgetown i
George Washington
Howard University
Washington DC
Seattle
Mount Rainier
Oregon
Montana
Cascade Rev1ge
Olyrfllic National Park
Crnumbia Ri><lf
Washington State

George
Washington U.

Washington
Circle

American
Revolution

Benjamin
Franklin

George
Washington

Fort Le Boeuf

0
0
0
0
0
0
0
0

0 0
0 0.36
0 0
0 0
0 0

0.31 0
0.22 0
0.45 0
0.190.15

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.38 0
0 0
0 0
0 0
0 0.23
0 0
0 0
0 0
0 0
0 0

0.290.21
0 0

0.35 0
0 0
0 0
0 0

0.220.13
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Howard
University

Georgetown
University

James Madison

Valley Forge

Martha
Washington

Charles Willson
Peale

0
0.17 .

0
0
0
0
0
0
0 0 0

0.22 0.31 :s.-o.S40.47flr01"0.35 0.41
0.350.360.580.44 0.29 0 0.49 0
0.06 0.32 0.45 0.43 0.31 0.29 0.480.28

0 0 0.46 0 0 0 0.5 0 0.19
0.13 0.27 0.34 0 0.28 0 0.5 0 0.26
0.020.11 0 0 0.25 0.150.17 0.180.24 0

0 0 0.45 0 0.18 0 b. 0 0.24 0.28
0.21 0.22 0.3 0.27 0.38 0.33 0.5 0.14 0.44 0.35
0.090.060.45 0.080.14 0.1 0.11 0 0.05 0

0 0 0.52 0 0 0 0 0 0.11 0.48 0
0.1 1 0.150.050.16 0.15 0.19:o:5li 0 0.18 0.06 0.22
0.07 0 0.47 0 0.22 0.19 0 0.19 0.21 0

0 0 .53 0.31 0.09 0.33 0 0 0.07 0 0
ooo o ooooo · . - o
0 0 0.42 0 0.29 0 0.34 0 0.15 0 0
o o o.sei o o o o o o o.24 o

000 000 0 000000

00 00 0 0 00 0
0 0.29 0.35 0 0.22 0 0 0 0
0 0.21 0 0 0.13 0 0 0 0

00 0 00 00 0000 0
0.22 0.35 0.06 0.13 002 0.210.09 0.11 0.07 0 0 0

0 0.31 0.36 0.32 0 0.27 0.11 0 0.22 0.06 0 0.15 0 0 0 0 0
o ~0.580.450.46 0.34 o 0.45 0.3 o.45Q.5oo5 o.47~ o 0.42--:-
o .u.54 0.44 0.43 o o o o 0.27 o.oa o 0.16 o 0.31 o o o

0.470.290.31 0 0.28 0.250.18 0.38 0.14 0 0.150.220.09 0 0.29 0
0.55 0 0.29 0 0 0.15 0 0.33 0.1 0 0.190.19 0.33 0 0 0

.490.480.510.51 0.36o:sl 0.5 0.11 0 . 0 0 0.34 0
0.35 0 0.28 0 0 0.18 0 0.14 0 0 0 0 0 0 0 0

0.19 0.26 0.240.240.44 0.05 0.110.180.190.07 0 0.15 0
0 0 0 0.28 0.35 0 0.48 0.06 0.21 0 ~ 0 0.24
0 0 0 0 0 0 0 0.22 0 0 0 0 0

0.3 0 0.32 00000 00
0.17 0.41 0.52 0.27 0.41 0.310.36 0.15 0.31 0.25 0.3
0.150.340.41 0.280.52 0.260.31 0 0.51 0.31 0.34

.140.41 170.24 0.25 0 0.17 0.11 0.25
0.24 0.48 0 0 0 0.42

=••v.vv v.·•• v.- 0.450.47 0 0 0 0.14
0.14 0.14 0.07 0.1 0.1 0 0 0.19
0.12 0.4 0.430~ 0 0 0 0.1

0.430.410.31 0.23 0.35 0.22
0.450.41 u.- ... ~. u.·,.~•'l

Verizon Center Oregon Olympic Cascade Range
National Park

Washington
Montana Mount Rainier

Washington
DC State

United States Washington
Seattle Columbia River Capitol Monument

Wh ite House Mount Vernon Russell Crowe Gene Hackman

Out of Time
The Great

Inside Man Training Day Debaters

For Queen and Cry Freedom Denzel The Bone
Country Washington Collector

Figure 43: This is an organization of the "Wash ington" Wikipedia articles based on their relatedness
produced using an SSM. For better visualization, cells are shaded based on the cluster that the
article belongs to. Note that the cluster information is not available to the SSM a lgorithm, yet it
was able to group articles in the same cluster together using individual relatedness. Mount
Vernon is in the center because it is the article that is most similar to every other (see Table 2).
The organization time was 0.7 of a second and the correlation is 0.668.

83

6.4 Cities

Tests using a dataset consisting ofthe major cities ofthe world are shown here. They

are represented using a data structure containing both real and nominal values. Each city

item A carries three properties: Its latitude Atat• longitude Atong• and the name of its

nation Anation· The objective is to place cities based on geological proximity, while at the

same time encouraging cities from the same nation to be clustered together. To achieve

this goal, we define the dissimilarity between two cities A and B to be based on both the

great-circle distance between the respective latitudes and longitudes, and their country

membership:

o(A,B)
= (Anation == Bnation ? a : 0)
+ (1

(

Btat - Atat Btong -A tong
-a) 2r sin-1 sin2

2
+cos Atat cos Btat sin2

2

(29)

where the first term represents the country influence, the second computes the great-

circle distance between the two cities (r being the earth's radius), and the a varies the

weight between the two terms.

Here boundary conditions are used so that the SSM generates something that is not

only accurate in terms city versus city dissimilarity, but also that viewers are familiar

with, namely the common world map; see Figure 44. The constraints across the northern

border of the map vary from 90°N, 180°W to 90°N,0° to 90°N, 180°E from the top left to

top middle to top right points. The other borders are given suitable constraints based on

their relative positions as well. The rest of the layout is then guided by the dissimilarity

84

between cities. Note that the dissimilarity measure given in Equation (29) is merely a

proof of concept. Presumably, encoding different information about the relationships

between places (e.g., trade, lending, conflict, or aid) could produce other interesting

results describing po litical landscapes.

Cllicaoo ln<ianapoi' Niagara Monteal swansea Bi'mingllam Bris1ll
Fals

~ ~~~~~1+11 1 ~1 ~1 ~1 = ===== '!"4 'l'".a '!"4
Patand Sal Lake CAd!lllomil St LOUIO l.OUISIIile Bulllo Saint JoM Dublin ~

Ciy Ciy

~~~~~~1+11+1 :1: 
Plloenix Alluquetque Tulsa Nasllllle Cell mbus Pilsburgll t.4onclcn F redtnclln Plymoull 

1 1~~~~~~1+11+1 
Atlllllem Cildad llalao Springteld Llerrc>llio CrlciMaii Balmore Boslln -

~~~~~~~~~ 
Uexicali San Atlblio Auslin Hou- Bir~am Jad<sonllle 011ando was~~· Q1Dn Cleveland Providenco Soma Cnlz

de Tenenle

I I I I I ~~~~~~~~~
r...- TOI!tOn t.4ometrey New A1on1a TII1'C)II

Figure 44: The world 's largest 5 12 cities arranged by an SSM. The top shows the country fl ags of the
cities of the entire 32 x 16 organization followed by a zoomed in view, in which the city
names are marked. The total organization time was 3.3 seconds and the correlation is 0.836.

Figure 45 shows how an MCM can be used to arrange items of varying size. In it a

grid of world cities is produced where the proximity among the c ities is based on their

geographical distance and the sizes of the cities indicate the ir importance. All c ities are

85

organized simultaneously. Alpha and Alpha+ cities, as per Figure 45, occupy four times

the area in the grid than the less important ones. For simplicity, a single cell city is not

allowed to move into the region occupied by an alpha city. For this reason we enlarge the

ne ighborhood w indow to 5 x 5 so that they have a better choice of places to move. Even

so, compro mises have to be made so that the single cell cities can fit around the alpha city

layout. For instance, Oslo and Istanbul are placed close together under Moscow which

then forces The Hague further from Amsterdam. Another compromise is Singapore being

higher than it sho uld be w ith respect to Kuala Lumpur and Bangkok, yet w ith limited

space for a large city in that area the layout is sufficient.

Figure 45: A MCM organization for a set of g lobal cities. More important ones occupy four cells in the
grid.

Once structured layout of cities is g iven it is possible to build an interactive pyramid

by ha lv ing the map repeatedly until o ne cell remains at the top level of the pyramid.

Every time a group of fo ur cells collapses into one, a criter ion can be used to choose the

c ity to p lace in the new cell; highest population for instance. This is a style of hierarchical

86

visualization is similar to the 30 blob approach described in Section 2.2 and can be

applied to other data types by modifying the comparison criterion.

Another use of c ity organization w ith a different objective is shown in Figure 46. A

table of links to cheap hotels in popular destination c ities from the trave l website Expedia

is taken as input. T he c ities are arranged by geographical distance only in this case. The

output from the SSM is a table that facilitates searching by proximity s ince destinations

that are close to one another and can be found by checking their neighborhoods.

Cheap Hotels in las Vegas

Cheap Hotels in Toronto

Cheap Hotels in Montreal

Cheap Hotels in New York

I cheap Hotels in Ottawa I Cheap Hotels in Honolulu

Cheap Hotels in london Cheap Hotels in Paris

Cheap Hotels in Niagara Falls Cheap Hotels in Quebec

Cheap Hotels in Victoria Cheap Hotels in Orlando

Cheap Hotels in Chicago

Cheap Hotels in Rome

Cheap Hotels in Richmond

Cheap Hotels in Seattle

Cheap Hotels in Vancouver Cheap Hotels in Calgary Cheap Hotels in Los Angeles Cheap Hotels in San Diego

Cheap Hotels in Edmonton Cheap Hotels in Anaheim Cheap Hotels in Banff Cheap Hotels in Halifax

(a) Layout used by Expedia (extracted from www.expedia.ca/hotels)

Cheap Hotels in Rome

Cheap Hotels in Paris

Cheap Hotels in Banff

Cheap Hotels in Vancouver

Cheap Hotels in los Angeles

Cheap Hotels in Honolulu

Cheap Hotels in london

Cheap Hotels in Halifax

Cheap Hotels in Edmonton

Cheap Hotels in Richmond

Cheap Hotels in Seattle

Cheap Hotels in Quebec

Cheap Hotels in Montreal

Cheap Hotels in Calgary

Cheap Hotels in Victoria

Cheap Hotels in Las Vegas

Cheap Hotels in San Diego Cheap Hotels in Anaheim

(b) SSM layout based on distances

I cheap Hotels in Ottawa I
Cheap Hotels in Toronto

Cheap Hotels in Niagara Falls

Cheap Hotels in New York

Cheap Hotels in Chicago

Cheap Hotels in Orlando

Figure 46: Different organizations for a small set of cities. Even for such a small set, fi nding destinations
in the vici nity of a given city, say Ottawa, from the Expedia layout can be difficult. The SSM
layout a llows users to limit their search within a smaller neighborhood. Note that no boundary
conditions were used in this case.

Figure 46 and Figure I , which presents weather data attached to c ities, are generated

in the same way by a SSM. Note that it is the c ities and their metadata of locat io n and

country membership that drive the organizat ions, while it is the data attached to the

subsequent results that change the use case of the visualizations. In the first case it is

showing links and in the second examining weather.

87

Chapter 7 Conclusion

Dimension reduction is a well-studied field. The problem of reducing high

dimensional data to 2 or 3 salient dimensions has been approached fro m countless

mathematical angles. Some approaches require linear input data (e.g., MDS), and some

deal w ith non-linear (e.g., SOM, Sammon, LLE). Some approaches output to continuous

space (e.g., MDS, Sammon, LLE), while others output to an unconstrained grid (e.g.,

SOM). This thesis diverges from past approaches in that it considers the problem of data

organization from a sorting perspective with structured layouts fo r easy, balanced,

occlusion-free visualization as the end goa l. Data can have many facets; it can be

numeric, multi-dimensional, linear, non-linear, non-numeric, or a combination of one or

more ofthese. The only stipulation is that a measure ofpairwise diss imilarity be defined

over the set of input. The layout can vary in shape, dimension, and constraint; it might be

square, rectangular, circular, or tree-like; it might be 1 D, 2D, 30, or more; it can have

boundary conditions or arbitrarily removed or fixed positions. The only st ipulation is that

there are enough locations for each data item to uniquely occupy one of them. The reason

for studying this alternative approach to data dimensionality reduction and subsequent

organization is that structured arrangements of this type are suited for direct renderings

and intuitive presentation.

Three novel algorithms have been presented throughout the body of this work. All

three organize data on the principle that proximity should reflect similarity. With this

principle in mind, results from the algorithms are evaluated using the Pearson correlat ion

88

coefficient where the more that distance and dissimilarity positively correlate across all

pairings of items, the higher the quality of the result overall. The frrst algorithm is an

adaptation of existing techniques. It uses a Self-Organizing Map (SOM) [29] to first

arrange data in a semi-structured way and then a k-d tree [3] to fit the result to a fully

structured layout. The second algorithm draws inspiration from the first, as well as other

dimension reduction, sorting, and clustering techniques, but it is designed around the

specific requirements of organizing arbitrary data into structured layouts. It is called the

Self-Sorting Map (SSM) [51] due to its pseudo-sorting of data in the layouts. The third

algorithm is a significant alteration of the SSM. It shares the same input and output

characteristics of the SSM but differs from the SSM in that does not primarily focusing

on local adjustments to the layout from coarse to fine levels. It considers movements

globally by optimizing directly on the correlation coefficient that is used to evaluate the

results of all ofthe techniques presented. It is called the Max Correlation Map (MCM).

On the whole, the SOM technique performs well with vector data but is limited to

that. Since the SOM has no constraint on how many items can be placed in a location, the

results have to be post-processed in a structured way by a k-d tree. Overall the results

tend to exhibit the balancing property of the SOM, which the alternative dimension

reduction techniques presented lack, even after structuring. In the end, this method can

generate adequate results but lacks the speed and flexibility needed to achieve the goal of

this thesis.

The SSM is a novel a lgorithm for organizing and visualiz ing data. It consolidates

many ideas and features from some established dimension reduction, clustering, and

89

sorting techniques like the flexible dissimilarity matrix input of MDS, the balanced and

structured output of the SOM, the speed and parallelism of shell sort, and the target

converging nature of k-means. It blends the ideas of these and yet it has an alternative

objective. Instead of solving the continuous optimizing problem, as many other

dimension reduction approaches do, the SSM transforms it into a discrete labeling

problem. As a result, it can organize a set of data into a structured layout guaranteeing no

overlap. The SSM is more flexible than the SOM-based approach in terms of input. It can

organize numeric data, like its counterpart, or non-numeric data using a provided

dissimilarity matrix. The key improvement of the SSM over the SOM-based approach

with respect to the goal here is that it avoids organizing data indirectly through weight

vectors like the SOM, instead it works on the actual data directly. This makes it possible

to organize non-numeric nominal data without computing a contrived numeric average

between items. The SSM is fully parallel by design and as such can run efficiently on

high-performance hardware. It is the most scalable structured layout generator of those

presented. As shown, using a GPU tens of thousands of data items can be organized in a

fraction of a second, and over a million in close to six seconds. These are excellent

speeds for integration into interactive search and visualization applications.

The final algorithm, the MCM, improves upon the SSM in terms of quality. The

reason for the quality boost is that it actively seeks to maximize the correlation score

holistically whereas the SSM bases decisions on minimizing local dissimilarity. The

MCM algorithm is considerably simpler in implementation and more robust in execution

than the SSM but it is also considerably slower. At this stage it is only useful for

90

relatively small numbers of items. The overhead of updating the correlation is too

computationally expensive, even when using the more efficient incremental method

derived and presented.

To prove the usefulness of structured data layouts, and particularly these techniques

for generating them, experiments on different types of data show that these algorithms

can be successfully applied to a variety of applications. The applications range from

rearranging image search results based on visual similarities, to visualizing semantic

relatedness between articles, to the generation of alternative yet intuitive world maps.

Limitations of certain techniques are uncovered throughout the tests, and solutions are

posed for them.

Overall, the results show how these novel algorithms can produce high quality

organizations that strive for topology preservation of input data within the confines of a

given output structure. In particular, the SSM technique is quite scalable to larger datasets

than the others due to the efficient parallel implementation that its design lends itself to.

The MCM, on the other hand, can be effective at handling awkward polarized datasets,

varied item sizes, and modified fixed item layouts that the other techniques have trouble,

or the inability, to work with. As a body of work, this thesis makes inroads into the

demonstration of the utility the proposed algorithms in the area of structured layout

generation from arbitrary data as well as the utility of structured layouts for visualization

in general.

91

References

[I] Algorithmics Group, "MDSJ: Java Library for Multidimensional Scaling (Version
0.2)," 2009.

[2] M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for
embedding and clustering," Advances in neural information processing systems,
vol. I4, no., pp. 585-59I , 2001.

[3] J. L. Bentley, "Multidimensional binary search trees used for associative
searching," Communications of the ACM, vol. I8, no. 9, pp. 509-5I7, 1975.

[4] I. Borg and P. Groenen, Modern Multidimensional Scaling: theory and
applications, 2nd ed. New York: Springer-Verlag, 2005.

[5] P. Brodatz, Textures: a photographic album for artists and designers, vol. 66:
Dover New York, I966.

[6] C. J. Burges, "Dimension reduction: A guided tour," Foundations and Trends® in
Machine Learning, vol. 2, no. 4, pp. 275-364, 2009.

[7] C. Chen, G. Gagaudakis, and P. Rosin, "Similarity-based image browsing," Proc.
IFIP International Conference on Intelligent Information Processing, pp. 206-
213, 2000.

[8] T. T. Chen and L. C. Hsieh, "The Visualization of Relatedness," Proc.
International Conference on Information Visualisation, pp. 4I5-420, 2008.

[9] R. L. Cilibrasi and P. M. Vitanyi, "The google similarity distance," Knowledge
and Data Engineering, IEEE Transactions on, vol. I9, no. 3, pp. 370-383, 2007.

[IO] M. Ciura, "Best Increments for the Average Case of Shellsort," Proc.
International Symposium on Fundamentals of Computation Theory, pp. I 06-II7,
200 1.

[II] 0. de Bruijn and R. Spence, "Rapid serial visual presentation: a space-time trade­
off in information presentation," Proc. AVI: Proceedings of the working
conference on Advanced visual interfaces, pp. I89-192, 2000.

[I2] G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs: Prentice Hall, I999.

[13] G. M. Draper, Y. Livnat, and R. F. Riesenfeld, "A survey of radial methods for
information visualization," Visualization and Computer Graphics, IEEE
Transactions on, vol. I5, no. 5, pp. 759-776,2009.

[I4] K. Fukunaga, Introduction to statistical pattern recognition: Academic press,
I990.

[I5] R. C. Gonzales and R. Woods, Digital image processing: Addison-Wesley
Publishing Company, I993.

[16] Gustav, #2I4, quist, and M. Goldstein, "Towards an Improved Readability on
Mobile Devices: Evaluating Adaptive Rapid Serial Visual Presentation," in
Proceedings of the 4th International Symposium on Mobile Human-Computer
Interaction: Springer-Verlag, 2002, pp. 225-240.

92

[17] D. Heesch, "A survey of browsing models for content based image retrieval,"
Multimedia Tools and Applications, vol. 40, no. 2, pp. 261-284, 2008.

[18] I. Herman, G. Melan9on, and M. S. Marshall, "Graph visualization and navigation
in information visualization: A survey," Visualization and Computer Graphics,
IEEE Transactions on, vol. 6, no. 1, pp. 24-43, 2000.

[19] G. Hinton and S. Roweis, "Stochastic neighbor embedding," Advances in neural
information processing systems, vol. 15, no. 1, pp. 833-840,2002.

[20] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with
neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.

[21] E. Hoque, G. Strong, 0. Hoeber, and M. Gong, "Conceptual query expansion and
visual search results exploration for Web image retrieval," Proc. Atlantic Web
Intelligence Conference, pp. 73-82, 2011.

[22] S. Hotton and J. Yoshimi, "HiSee," 1.0.0 ed, 2004.
[23] A. K. Jain, Fundamentals of digital image processing: Prentice-Hall, Inc. , 1989.
[24] Y. Jing and S. Baluja, "VisuaiRank: Applying PageRank to large-scale image

search," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
30, no. 11 , pp. 1877-1890, 2008.

[25] B. Johnson and B. Shneiderman, "Tree-Maps: a space-filling approach to the
visualization of hierarchical information structures," in Proceedings of the 2nd
conference on Visualization '91. San Diego, California: IEEE Computer Society
Press, 1991 , pp. 284-291.

[26) I. T. Jolliffe, Principal component analysis, vol. 487: Springer-Verlag New York,
1986.

[27] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A.
Y. Wu, "An efficient k-means clustering algorithm: Analysis and
implementation," IEEE Transaction on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 881-892, 2002.

[28] S. Kaski and J. Peltonen, "Dimensionality Reduction for Data Visualization,"
IEEE Signal Processing Magazine, vol. 28, no. 2, pp. 100-104, 2011.

[29] T. Kohonen, Self-Organization Maps: Springer-Verlag, 1995.
[30) T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, V. Paatero, and A. Saarela, "Self

Organization of a Massive Document Collection," IEEE Transactions on Neural
Networks, vol. 11 , no. 3, pp. 574-585, 2000.

[31] S. Lafon and A. B. Lee, "Diffusion maps and coarse-graining: A unified
framework for dimensionality reduction, graph partitioning, and data set
parameterization," Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 28, no. 9, pp. 1393-1403,2006.

[32] S. Lakshmivarahan, S. K. Dhall, and L. L. Miller, "Parallel sorting algorithms,"
Advances in Computers, vol. 23, no., pp. 295-354, 1984.

[33] Microsoft and Schn828, "Photosynth: Kiyomizu-dera "Pure Water Temple"
Kyoto Japan," vol. 2009, 2009.

[34] D. Milne and I. H. Witten, "An effective, low-cost measure of semantic
relatedness obtained from Wikipedia links," Proc. AAAI Workshop on Wikipedia
and Artificial Intelligence, pp. 25-30, 2008.

93

[35] A. Morrison, G. Ross, and M. Chalmers, "Fast multidimensional scaling through
sampling, springs and interpolation," Information Visualization, vol. 2, no. I, pp.
68-77, 2003.

[36] M. C. F. d. Oliveira and H. Levkowitz, "From visual data exploration to visual
data mining: a survey," IEEE Transactions on Visualization and Computer
Graphics, vol. 9, no. 3, pp. 378-394, 2003.

[37] F. V. Paulovich, C. T. Silva, and L. G. Nonato, "Two-Phase Mapping for
Projecting Massive Data Sets," IEEE Transactions on Visualization and
Computer Graphics, vol. I6, no. 6, pp. 128I-I290, 20IO.

[38] R. W. Picard, T. Kabir, and F. Liu, "Real-time recognition with the entire Brodatz
texture database," Proc. Computer Vision and Pattern Recognition, 1993.
Proceedings CVPR'93., 1993 IEEE Computer Society Conference on, pp. 638-
639, I993.

[39] F. H. Post, G. M. Nielson, and G.-P. Bonneau, Data Visualization: The State of
the Art: Springer, 2002.

[40] K. Rodden, W. Basalaj, D. Sinclair, and K. Wood, "Does organisation by
similarity assist image browsing?," Proc. SJGCHI Conference on Human Factors
in Computing Systems, pp. 190-I97, 2001.

[4I] S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally
linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.

[42] J. W. Sammon, "A Nonlinear Mapping for Data Structure Analysis," IEEE
Transactions on Computing, vol. I8, no. 5, pp. 40 I-409, I969.

[43] R. Sedgewick, "Analysis of Shellsort and related algorithms," in Algorithms­
ESA '96: Springer, I996, pp. 1-11 .

[44] S. F. Silva and T. Catarci, "Visualization of linear time-oriented data: a survey,"
Proc. Web Information Systems Engineering, 2000. Proceedings of the First
International Conference on, pp. 310-319, 2000.

[45] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, "Content­
based image retrieval at the end ofthe early years," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349-1380, 2000.

[46] N. Snavely, S. M. Seitz, and R. Szeliski, "Photo tourism: Exploring photo
collections in 3D," Proc. SIGGRAPH, pp. 835-846, 2006.

[4 7] R. Spence, "Rapid, serial and visual: a presentation technique with potential,"
Information Visualization, vol. I, no. I , pp. I3-19, 2002.

[48] T. C. Sprenger, R. Brunella, and M. H. Gross, "H-BLOB: a hierarchical visual
clustering method using implicit surfaces," Proc. Proceedings of the conf erence
on Visualization'OO, pp. 61-68, 2000.

[49] G. Strong, "Similarity-Based Image Organization and Browsing," in Computer
Science, vol. M.Sc. St. John's, NL, Canada: Memorial University, 2009.

[50] G. Strong and M. Gong, "Browsing a Large Collection of Community Photos
Based on Similarity on GPU," in Advances in Visual Computing, vol. 5359,
Lecture Notes In Computer Science. Las Vegas, NV, USA: Springer Berlin, 2008,
pp. 390-399.

94

[51] G. Strong and M. Gong, "Data organization and visualization using self-sorting
map," pp. 199-206,2011.

[52] G. Strong and M. Gong, "Organizing and Browsing Photos Using Different
Feature Vectors and Their Evaluations," Proc. International Conference on Image
and Video Retrieval, pp. 1-8, 2009.

[53] G. Strong and M. Gong, "Similarity-based image organization and browsing using
multi-resolution self-organizing map," Image and Vision Computing, vol. 29, no.
11, pp. 774-786, 2011.

[54] G. Strong, 0. Hoeber, and M. Gong, "Visual image browsing and exploration
(vibe): user evaluations of image search tasks," Proc. International Conference on
Active Media Technology, pp. 424-435, 2010.

[55] G . Strong, E. Hoque, M. Gong, and 0. Hoeber, "Organizing and browsing image
search results based on conceptual and visual similarities," Proc. International
Symposium on Visual Computing, pp. 481-490, 2010.

[56] J. B. Tenenbaum, "Mapping a manifold of perceptual observations," Advances in
neural information processing systems, no., pp. 682-688, 1998.

[57] A. Tikhonova and K.-L. Ma, "A Scalable Parallel Force-Directed Graph Layout
Algorithm," Proc. Eurographics Parallel Graphics and Visualization Symposium ,
pp. 25-32, 2008.

[58] R. S. Torres, C. G. Silva, C. B. Medeiros, and H. V. Rocha, "Visual structures for
image browsing," Proc. Conference on Information and Knowledge Management,
pp. 49-55, 2003.

[59] L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," The Journal of
Machine Learning Research, vol. 9, no. Nov, pp. 2579-2605, 2008.

[60] L. van der Maaten, E. Postma, and H. van den Herik, "Dimensionality reduction:
A comparative review," Technical Report TiCC TR 2009-005, no., 2009.

[61] J. Venna, Dimensionality reduction for visual exploration of similarity structures:
Helsinki University ofTechnology, 2007.

[62] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski, "Information retrieval
perspective to nonlinear dimensionality reduction for data visualization," Journal
of Machine Learning Research, vol. 11 , no. Feb, pp. 451-490, 2010.

[63] J. Vesanto, "SOM-based data visualization methods," Intelligent Data Analysis,
vol. 3, no. 2, pp. 111-126, 1999.

[64] K. Q. Weinberger, F. Sha, and L. K. Saul, "Learning a kernel matrix for nonlinear
dimensionality reduction," Proc. Proceedings of the twenty-first international
conference on Machine learning, pp. 106, 2004.

[65] K. Wittenburg, C. Forlines, T. Lanning, A. Esenther, S. Harada, and T. Miyachi,
"Rapid serial visual presentation techniques for consumer dig ital video devices,"
in Proceedings of the 16th annual ACM symposium on User interface software
and technology. Vancouver, Canada: ACM, 2003, pp. 115-124.

[66] J. Zhang, C. Chen, and J. Li, "Visualiz ing the Intellectual Structure with Paper­
Reference Matrices," IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1153-1160, 2009.

95

[67] Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimension reduction via
local tangent space alignment," arXiv pre print cs/0212008, no., 2002.

[68] X. S. Zhou and T. S. Huang, "Relevance feedback in image retrieval: A
comprehensive review," Multimedia Systems, vol. 8, no. 6, pp. 1432-1882, 2003.

96

Appendix

Image Query Expansion

The process of obtaining query-expanded image search results warrants elaboration

since it is not straightforward.

Images retrieved using a user specified query do not carry metadata with conceptual

information. To address this problem, as well as to obtain a set of conceptually diverse

images, conceptual query expansion is applied to discover different concepts related to

the input query. The concepts are then used to diversify the image search results, as well

as for generating conceptual feature vectors for the images found.

Wikipedia is used as the knowledge base for the query expansion process in this case

because it is an excellent source of information for the purposes of image search since it

includes a large number of diverse articles describing people, places, and things. It is

densely structured, with hundreds of millions of links between articles within the

knowledge base. Most of the articles also contain various representative images and

associated textual captions.

The query expansion mechanism [21] works by finding the article that best matches

the user-supplied query Q (referred to as the home article) using Wikipedia 's search

feature. In the case where query Q is ambiguous and Wikipedia suggests multiple links,

the ones with higher commonness values are used as home articles. Here the

commonness value of an article is calculated based on how often it is linked to by other

97

articles. In analyzing Wikipedia, it can be observed that the in-link articles (ones having

links to a home article) and out-link articles (ones to which a home article links) often

provide meaningful information that is closely related to one of the home articles, and

hence the query. As a result of this, these linked articles are located and their titles are

extracted as candidates for related concepts.

For some queries, the total number of linked articles found might be very high and

some of them may not be closely related to the query. To mitigate this, a filtering step is

necessary to ensure the quality of the concepts that are extracted. The filter ing is

performed using the semantic distance between each linked article and its corresponding

home article. The so-called Wikipedia Link Measure (WLM) [34] is used for this

purpose, which applies Normalized Google Distance (NGD) [9] to the domain of

Wikipedia articles. The NGD between any two articles a and b is calculated using the

hyperlink structure of the associated articles to determine how much they share in

common. That is:

()
log(max(IAL IBI))- log(IA n Bl)

NGD a, b = -------,--------,--
log(IWI) -log(min(IAI, IBI))

(30)

where A and B are the sets of all articles that link to the article of a and b, respectively,

W is the set of a ll articles on Wikipedia, and operator 1·1 computes the number of articles

in the set. The distance obtained lies in the range [0,1], with a smaller value indicating a

higher degree of re latedness.

Once the semantic distance measures for all linked articles are calculated, they are

sorted in ascending order. The titles of the top N articles are then selected as related

98

concepts. Given a query Q and the corresponding related concepts {Rk 11 ~ k ~ N}, a set

of N sub-queries is generated by combining the query with each related concept. Each

sub-query (Q, R k) (where (-, ·) is a concatenation operator that appends a space between

the two arguments) is then used to retrieve a set of images from the Web. To avoid

duplicate images returned for different sub-queries, a union operation is performed when

combining the result sets. All images retrieved are tagged with the corresponding concept

Rk. The final set of results contains a diversified concept tagged collection of images that

all stem from the common point of the original query Q.

To get a picture of what occurs during query expansion in an ambiguous case where

the original query exhibits many facets, the expansion ofthe query "Washington" will be

outlined. This single word query can commonly be considered as a political figure, state,

capital, and/or actor. As a result, when given the query "Washington", a Wikipedia

search will return multiple articles related to "Washington", but under each of the

different perspectives. Articles having higher commonness scores, such as "George

Washington", "Washington State", " Washington DC", and "Denzel Washington" are

then selected as home articles. All articles linking to or linked from one of the home

articles are considered as candidates for related concepts. The top N candidates with

smallest semantic distances are then used for generating sub-queries (e.g. , "Washington

Monument" and " White House" for the home article "Washington DC"; "Martha

Washington" and "Benjamin Franklin" for the home article "George Washington", and so

on). In the end a tree of expanded queries is produced that is rooted at "Washington",

then branches into "George Washington", "Washington State", "Washington DC", and

99

"Denzel Washington", and then from those branches into sub-queries related to each. For

the purposes ofthis thesis the expansion is halted at this first level of sub-queries after the

initial home article generation.

100

Acknowledgements Unabridged

The first person that deserves bigger thanks than I could ever give is my supervisor

Dr. Minglun Gong. When the Head ofthe Computer Science Department at the time, Dr.

Wolfgang Banzhaf, received an application for a Master' s student addressed to the

Faculty of Engineering (courtesy ofthe remarkable administrative mess I had myself in at

that time) and called me instead of slipping into the recycling bin, little did I know that

my life course was about to altered forever.

Originally, when I had finished my undergraduate degree in Computer Science I had

decided that instead of leaving school I would stay there forever. Not in university per

say, but I heard that across the road from engineering if you did a year with the education

crowd they would give you this add-on degree and I could go teach young up and comers

in the high school system about computers until the cows come home. I did that. One

year, B. Ed., and I was off to the races . . . or was I? No, I was not. I was still not ready to

leave the hallowed halls of MUN just yet. I had just figured it all out. Every nook and

cranny; the broken vending machines, the CS printing scam, the water fountains that taste

like a stream, the water fountains that taste like disease, the times to go to the UC, and the

times when the frrst years were there (i.e., when not to go). It felt like the place was

running by my watch. Why, I was so comfortable I would even go for walks in the

residence tunnels at night. .. in groups of two ... armed to the teeth .. . but still! So I decided,

again, that instead of leaving, I would head back across the road, again; back to my

beloved Engineering building. I would apply to do a graduate degree in something in

10 I

realm of computers and then go into public school teaching with the added bonus of a

plumper paycheck. Boy was I wrong.

I picked up the phone and it was Dr. Banzhaf, much to my surprise. He tells me that

even though my M.Sc. application should have ended up in the Computer Engineering

Department, as I had planned, it came across his desk for some odd reason. I had

expected that to be that and if this was my first test of grad school I had failed it. That

was not the case. In fact, Dr. Banzhaf did not say he would just forward my application

blindly on to the correct people, instead he offered me a potential position with a new

faculty member coming on stream in the next semester. I said yes, half because I was way

past the deadlines for entrance into either of the Engineering or Computer Science

departments, and half because this just felt right. Dr. Banzhaf went ahead and set up a

meeting with this professor that was currently in Alberta. I got a call in the next couple

days from a calm voice on the other end of the receiver that kindly introduced himself as

Minglun Gong! Gong and Strong, think ofthe conference paper bylines! It was meant to

be! P.S. I had no idea grad students wrote conference papers at that time, nor that they got

paid. Yes, I got paid! I was a professional student in every sense of the word. Life was

good. I was happy. I was also the minority in all of my classes, in fact since all of the

students and professors were Chinese the first semester they probably would have been

speaking Mandarin had I not been in the room; so they were a little less happy than me I

guess, but life was good nonetheless. A year and a half past, Tao Chen and Zheng Chen

got me through my courses (I never forgot you guys!), Dr. Gong and I wrote some

papers, we had some laughs, I went to Vegas for a conference on the university dime

102

("You mean they pay for me to go to this thing?!"), and then when I was about a term and

a half out from being all done another critical character in the story of my life came into

the picture. Elaine Boone. Basically, think of her as a female version ofGandalfthe Grey

in the department with a candy dish instead of a big stick. Come to think of it, she

probably was the one that often enough was tasked with telling grad students, "You shall

not pass!" I am not saying she enjoyed that. .. but I digress. Elaine contacted me and told

me that I should apply to NSERC (the big federal pot of money for research in Canada)

to see if I could get funding for a doctoral degree. I told her that I was not really

considering a Ph.D. since my plan was to go back to school (high school) and teach

teenagers there was more to computers than MSN and Myspace (at that time, yes, MSN

and Myspace). She insisted that even ifl did not take up the award I should at least apply

and not close the door. Honestly I felt obligated to at that point. Who says no to Gandalf?

Obviously not the Hobbits or there would not have been so many books, movies, or

merchandising deals! Also, Dr. Gong had expressed interest in having my back as a Ph.D.

student. So I set about writing up the most captivating research proposal and self­

promoting, self-proclaiming drivel I could stomach. I have a weak stomach for that sort

of thing so it took me a solid week. I did not really want to hear back from them because

in reality, I did not want to have to make a decision on whether to stay to do a Ph.D. or

simply become a teacher and badger kids about leaving their monitors on all day after

class. I also had no idea what I would do for 3+ years during another graduate degree. So

on the application I just put down what I was already doing for my M.Sc. with some sort

103

of Star Trek Next Generation add-ons. Little did I know that NSERC's favorite starship is

the Enterprise ...

I got money, NSERC money, and plenty of it. So much in fact that considering I did

not know I was going to be paid during my Master' s a year and a half before, I did not

even know what do with myself now. Should I stay or should I go? I was thinking that at

that point I would have done a bit better as a teacher financially. A few days later NSERC

trampled over that thought when I received another letter in the mail from them. More

money! What were they trying to do to me? Drive my blood pleasure through the roof

with stress over this decision? At this point I could not say no. Being a grad student?

Working on neat stuff with little to no real life responsibility? How could I not take them

up on this?! Thank you Elaine!

Flash forward a couple years. In that time, I had been a student representative on all

of the committees and boards directly connected to the department for at least some

amount oftime. The new crop of graduate students had reinvigorated the social life of the

department in a big way. You are all awesome and I would not trade our soccer games for

the world. Messi .. .l mean Wasiq, I will probably feel those vicious cutbacks in my ankles

for the rest of my life ! And Anastasia, the next time I see you winding up to kick a ball,

forget defense, I am diving out of sight. During that time I found fr iends and

collaborators in M.Sc. student Enamul Hoque and Dr. Orland Hoeber (a.k.a. the reference

referee, with reluctant thanks I submit that you did make my paper writing better).

Hoque, Hoeber, Gong, and Strong had a good run there for an awhile. Probably the most

memorable thing of all over this period oftime had nothing to do with academics. It was

104

when the arcade machine I bought to rebuild for the grad student lounge mysteriously

went missing one Halloween night. Even though the door was normally locked, the huge,

heavy, awkward cabinet was nowhere in sight the next day. With the help ofNolan White

(who puts up with my left-field tech requests left, right, and center), Mike Rayment (the

faculty's own walking, talking almanac of computer science extraordinaire), Paul Price

and Aaron Casey (Nerf warriors!), Marian Wissink, Renesa Nizamee, and Nasir, we

successfully tracked down and recovered the cabinet. It was full on CSI style, tracing

drag marks on the tiles out into a lab, back out and down the hall, up the elevator four

floors, down another hall, and into a stairwell. What happened next is insane and best told

in person. Ask me about it sometime if you need a laugh .. . hey, Alejandro? Also, the

undergrads (Robert, Justin, Simon, etc.) of this era deserve a shout out too. You guys

appreciated "The Brooklyn Heist" as much or more than any of us.

May 20 II: I am the lead volunteer at the GI/AI/CRV conference that happened to be

local to St. John's that year. During those few days I met lots of great people I will keep

in contact with forever (Malika) and became better friends with ones I knew (Jason

Gedge, Hamed). I also met someone that would eventually offer me an opportunity that

would rock my wor ld in the months and years to come.

One of the event organizers runs out to me in a panic and tells me that the Head of

Research for Google NY is upstairs poised to give a keynote talk and her laptop will

absolutely not connect to the wireless network. He says that she must be on the Internet

as of two seconds ago. I scamper upstairs and burst through the door to find a short

blonde lady in what appears to be running clothes in front of a Macbook scratching her

105

head. I step forward and state my purpose. She allows me to access her laptop and I try to

figure out what our dear friends at Computing & Communications have set up for these

guests to access the internet. After fumbling around a little while I got the thing online by

using my credentials. The lady thanks me kindly and proceeds to bring up her talk. I turn

to leave to continue my duties downstairs, as this was the AI portion of the conference

and not my thing, but then decided to stay to see how it was going to go having just met

the speaker. She proceeds to talk about all sorts of Googley things and then brings up

something that I actually referenced in my Master's thesis! Well, after the talk I waited

around to mention this interesting fact and comment on my past research. She was very

kind and genuinely interested in seeing how it worked the next day. Over the next couple

of days I fixed her Internet again (surprise, surprise from C&C), demoed my old proof of

concept image organizer, and we proceeded to talk about fun stuff that had nothing to do

with computers whatsoever; which is exactly what any respectable Computer Scientists

do at Computer Science conferences isn't it? We parted ways and that was that. But it

wasn 't. ..

About a week and a half later I got an email from the lady offering me an internship

in New York with Google. I said I was too busy at the moment and that. .. no I didn't! I

said yes of course. I had to do a couple interviews (which in my opinion were not stellar)

but given whose name was on my reference at the company I guess that got me through. I

eventually got an offer. Thank you Corrina Cortes! You may be short on stature but you

are big on heart!

106

Before leaving for New York City I set wheels in mot ion to do an exchange at

NTNU University in Trondheim, Norway after the internship. By wheels I mean begged

for money to do the trip from NSERC with another application about the life-altering,

world-changing, dynamic, buzzword-filled vision I had for the work I would accomplish

while studying aboard. In reality I wanted to do all ofthese things, plus my brother had

just moved there for a job so that narrowed down my choice of location to the "few

places in the world to do work like this", which happened to be Trondheim.

During the fall I spent at Google in NYC I frankly had a ball. I met tons of great

people inside the company walls and out. Tomasz Zurkowski (lunchtime burrito fanatic) ,

Yuriy Znovyak (sushi connoisseur), and Nemanja Petrovic (my mentor), if it was not for

you guys I would still be debugging memory leaks in C++. My ice cream adventuring

partners Andreea Gane and Gillian Chin; nobody worked as hard as us to eat so bad.

Special thanks to Stephanie Chan for guiding us interns around the city on adventures

courtesy of the company, and especially for introducing us to the street meat cart on 53 rd

Street. Sketchy food never tasted so good! There were way too many good times to list

here so I will just sum it up in one word: scooters.

Near the end of my time at Google I received a mass email from some graduate

student conference organizers in the company that were looking for referrals for

underrepresented grad students in the academic world that met a certain criteria. I read

the criteria, realized I fit it, convinced myself I was underrepresented, and submitted my

own name.

107

A little while after that I received word from NSERC that I would be getting the

money for the trip to Norway I had set the wheels moving on before I went to Google.

My face hurt from smiling for the next hour or so. I booked the flights for the end of

January.

A little while after that I got word back that I was invited to come to the Google

Grad Student Forum in Silicon Valley that I had referred my own self to. The point ofthe

thing was to visit the Google HQ and hang out with a bunch of other grad students simply

to network. I replied I was too busy and ... no I didn 't! I obviously accepted the invitation.

The grinning continued. It actually turned out that the Google conference slotted

perfectly into the time frame of when I would be able to go a couple days before I had to

leave for Norway. All was well in the world.

Before leaving Google I did interviews for a full time position, like you would. I left

for home two days before Christmas.

Late January I went to San Francisco. I enjoyed the conference, meeting fantastic

folks and had a hilarious time sight-seeing around SF after it was over with Omid Mola

and Daniel Orozco whom I had just met at the conference. Thanks for having my back

around the city guys, especially in that "non-legit" hotel we decided to stay in on the

cheap; and thanks for not taking up too much room in the king-sized bed we three were

forced to share in said hotel room!

Two days later I was on a plane to Trondheim, Norway. After some harrowing wind

shears and what felt like nearly crashing a couple times on the way into Vrernes airport I

108

arrived safe and sound. Let me tell you though, there were shrieks and barf bags were

being exercised all over the place on that plane. I just sat and clenched everything. I spent

a life-changing four months in Norway. I fell in love with the place and the

people ... everything except the prices. Driving the crazy roads in my brother's under­

powered, over-sized van, hiking up glorious untouched mountains and snowboarding

down, and generally hanging around with some of the most active and fun people I will

ever meet. Deter fantastisk! That was just the fun stuff. At NTNU I met creative thinker

and debugging master Rune Jensen. I am indebted to you for your help with my research!

Also for wacky knowledge about alternative space stations and ahead of the curve 27

inch 120Hz monitors. I have to thank IvarNikolaisen for allowing me to invade his office

for four months. I hope you finally got your dream machine set up and purring nicely!

My stomach thanks Gunnar Inge for the introduction to gmt (Norwegian rice

porridge) . .. every Friday. And last but not absolutely, positively, not least, none of the

trip would have ever been possible without the response from and subsequent gracious

hosting of Anne Elster. You were my point of contact at NTNU the first and the last.

Thank you so much for opening up your research group and home to me. I will visit for

the best chili ever any time you are making and offering it. Texas must have rubbed off

on you a bit in that respect! Do you think the government will give me a visa to come

"study" chili?

Before leaving Norway, while I was on an extreme snowshoe excursion in the woods

(basically jumping off whatever it was possible to climb up) and I received a call from a

Google recruiter Cyndi Tran (another thanks here) confrrming that based on the

109

internship and interviews and everything else, they were offering me a full time position

in Mountain View in Silicon Valley. Funny enough that happened to be the same office I

had visited during the Google Grad Student Forum I had attended months prior. I said no

I was too busy and . .. no I didn't! Cyndi got a resounding yes. When I hung up I was

speechless in thought at the rollercoaster, nay, rocket ship, my life had been on up to that

point. It was hard to believe how much I had been in the right place at the right time and

how well everything had clicked together perfectly. As my mind wandered I snapped

back to the sound of my brother's voice coaxing me across the log I was on, in

snowshoes, over a frigid cold and running river. I promptly tripped over a couple of the

log's branches, caught myself at the other end, and proceeded to barrel up the mountain

through thigh-high snow in my jeans (a little ill-prepared I admit).

I left Norway at the limit of my stay time. After returning home I resumed my duties

as a MUN Ph.D. Candidate and set a course to clue up all loose ends of my research and

finish writing this thesis. Upon my re-arrival to MUN I noticed that while some old

friends had finished and moved on, and new friends had started and moved in. During the

past months I have had the pleasure of meeting and greeting all of them. For instance,

Dominick Feininger, Germany exchange student and all around bicycling fiend. Thanks

for the brake-less fixie by the way! I am not dead yet! Another addition to the crew was

Esteban Ricalde, who has assumed the role of CS grad student representative. And there

are so many more. You guys and girls are the heart and soul ofthe department as far as I

am concerned. You are some of the most genuine people I have ever met and look out for

each other like brothers and sisters. I am better having known you.

110

So that is it. Maybe the longest acknowledgements section in the history oftheses?

After all of everything I just went through and the thanks I passed out, I would like to end

with this. Regardless of what you believe, there is no doubt in my mind that the favor on

my life comes from somewhere, or more specifically someone. He deserves the final and

everlasting thanks.

Let not mercy and truth forsake you; Bind them around your neck, Write them on the

tablet of your heart, And so find favor and high esteem in the sight of God and man. -

Proverbs 3:3-4

Ill

