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Anisomycin 

Abstract 

Posttraumatic stress disorder (PTSD) is an incurable psychological condition 

that develops as a result of being exposed to an extraordinary traumatic event. Many 

aspects of this affective disorder have been successfully initiated in animals through 

experimental shock, classical conditioning, pharmacological and predator stress 

procedures. This has led to the tentative hypothesis that all aspects ofPTSD may be 

reduced to functional alterations in specific pre-existing neural nuclei or circuitry. 

The theory is that these presumed alterations follow the induction of long-term 

potentiation (L TP), a model of long-term memory, within the amygdala and related 

circuitry. This is based upon evidence that implicates the phosphorylation of CREB 

within the amygdala following predator stress. The hypothesized result of the 

phosphorylation of CREB is ultimately the synthesis of new protein. If protein 

synthesis is necessary in order to consolidate a predator stress (cat exposure) memory, 

then subcutaneous administration of anisomycin, a protein synthesis inhibitor, just 

after predator stress should prevent the memory from being formed. The effects of 

treatments were tested using various behavioural measures of rodent affect (i.e. hole­

board, elevated plus-maze, light/dark box and social interaction tests; and, acoustic 

startle) 7-8 days post-exposure. Protein synthesis-dependent consolidation was 

demonstrated for open-arm exploration in the elevated plus-maze. A reconsolidation 

condition was added in order to probe whether or not a consolidated memory, once 

reactivated (i.e. exposed to a cat twice), was again susceptible to protein synthesis 
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inhibition. In this instance, anisomycin was given just after the second cat exposure. 

For some tests (elevated plus-maze) there was no evidence for protein synthesis­

dependent reconsolidation. The results were less clear for the other tests. Due to the 

effects of vehicle injection, i.c.v. administration of anisomycin in future work may 

clarify the role of protein synthesis in reconsolidation. 
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Effects of Anisomycin, a Protein Synthesis Inhibitor, on Disrupting a Fear Memory 

In a Predator-Stress Situation 

Posttraumatic Stress Disorder (PTSD), defmed by the Diagnostic and Statistical 

Manual (fourth edition), is a mental disorder that affects people who have been exposed 

to a perceived traumatic event. In the face of threats of terrorism, there is a growing need 

to find reasonable preclinical animal models of this incurable disorder. An animal model, 

to aid in pharmacological testing, must model some or all aspects ofPTSD. To evaluate 

animal models requires a sense of the disorder. There are six criteria ofPTSD: (A) the 

person has experienced a traumatic event; (B) the traumatic event is re-experienced in at 

least two of the following ways: intrusive memories invade consciousness; dreams, 

whereby the plot involves reliving the trauma; have a sense or feeling that the traumatic 

event is reoccurring; experiencing psychological anguish and or physiological arousal 

upon exposure to internal or external cues that are subjectively associated with the 

trauma; (C) a numbing of emotional experience; (D) the individual continuously 

experiences abnormal levels of arousal relative to his or her pre-trauma condition; (E) 

items B, C and D persist for at least one month plus a day; (F) the disturbances noted 

above cause subjectively significant distress and interfere with work and personal life. 

PTSD is subdivided into two categories: acute PTSD lasts for less than three .months 

while chronic PTSD endures for a period greater than three months. A secondary 

consideration is if the symptoms came into being immediately after the trauma or if 

PTSD occurred with delayed onset, defined as the appearance of symptoms at a period of 

(at least) 3 months post-trauma (American Psychiatric Association, 2000). Presumed 
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neurological differences underlie the different periods of onset in this subset, which 

would inevitably require differing therapeutic interventions. It is possible, however, that 

there are essential neurological changes in the development of the disorder that are 

common to all types of PTSD. 

Through the Neurological Looking Glass -A Potential Reduction of PTSD to an 
Altered Noradrenergic-Dependent Memory Network 

The release of norepinephrine in the amygdala modulates the consolidation of fear 

memories (Liang, Chen, & Huang, 1995). Administeringpropranolol, a 

jJ-noradrenergic receptor blocker, to PTSD victims within a short period of time post-

trauma attenuates PTSD symptom severity (Pitman, Sanders, Zusman, Healy, Cheema, 

Lasko, Cahill, & Orr, 2002; Vaiva, Ducrocq, Jezequel, Averland, Lestavel, Brunet, & 

Marmar, 2003). Complementing this research, Elzinger and Bremner (2002) have 

proposed that the various threads of PTSD may be reduced to an altered memory 

network. They propose that dysfunction in the hippocampus produces a decline in 

declarative memory that explains the trauma-related amnesia. Altered noradrenergic 

function in the amygdala increases sensitization to emotional stimuli, which enhances the 

subjective import of the traumatic memories. Dysfunction in the prefrontal cortex causes 

a decline in working memory, which produces deficits in concentration and an inability to 

inhibit cognitions not pertaining to an immediate task. This contributes to a decrease in 

its ability to inhibit emotional responses. This increases the number of intrusions and 

"flashbacks" and adds to the by now increased sensitization of the amygdala and its 
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consequent propensity for conditioning. Emotional sensitization symptoms associated 

with PTSD may be created experimentally in animal models, which provides an 

opportunity for understanding aetiology and developing various treatments. 

Animal Models of PTSD 

There are several potential animal models of PTSD. 

Inescapable Shock Model 

The inescapable shock model involves placing an animal in an enclosed 

environment with no opportunities to escape. The shock is traditionally delivered through 

a wire grid on the floor of the chamber. The rat will initially attempt to escape. Over the 

passage of time the rat, presumably sensing that the punishment is unavoidable, will 

consistently display a number of characteristics, including impaired cognition, signs of 

emotional discomfort and lethargy (Rosen & Fields, 1988). Enduring inescapable shock 

for lengthy periods will result in increased plasma catecholamine levels, increased 

norepinephrine turnover, a relatively low supply of central norepinephrine and increased 

production of MHPG 01 an der Kolk, Greenberg, Boyd, & Krystal, 1985). There are two 

striking objections raised by Yehuda and Antelman (1993) that challenge the wisdom of 

using inescapable shock as a model for PTSD. The effects of inescapable shock on the rat 

are gradual in nature. It cannot easily account for the fact that PTSD may manifest itself 

in people after a delay of three months or more post-trauma. Nor can it easily explain 

how PTSD may develop after a single, intense exposure. 

3 



Classical Conditioning Model 

The classical conditioning paradigm was developed by Pavlov (1927) in order to 

provide an explanation as to how a previously neutral stimulus (conditioned stimulus) 

may assume the psychic properties of an unconditioned stimulus to yield an 

unconditioned response. Applying this concept to the development ofPTSD, it must be 

taken as a given that an exposure to a traumatic event yields an innate anxious response. 

An association may then be assumed to have developed between the innate anxious state 

and the numerous quite arbitrary cues present at the time and place of the trauma (Kolb & 

Multalipassi, 1982). This model shares a striking criticism with the inescapable shock 

model. When Pavlov conditioned a dog to salivate upon hearing the activation of a tone, 

the response on the part of the dog was immediate. IfPTSD victims are indeed classically 

conditioned to cues present at the time of the trauma, then the anxious response to those 

cues post-trauma should be immediate. However, this is not the case, as there clearly is 

evidence for a sub-population of victims who have delayed-onset PTSD (Shalev, 1993). 

As in the case of the inescapable shock model, the effects of classical conditioning may 

aid in illuminating certain aspects of the disorder, but ultimately it fails to encompass the 

phenomena ofPTSD in its entirety. 

Pharmacological and Predator Stress Model 

There are certain brain structures, particularly limbic structures, which are 

associated with well-defined emotional states. Emotive biasing, generally stated, involves 

the sensitization of a particular (limbic) structure, with the result being an enhanced 

response to normal inputs which persists for a period of time long after the stimulation 
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has ceased to be applied (Adamec, 1978). Adamec (1994) found that this result might be 

achieved pharmacologically in cats by administering the anxiogenic compound (or 

inverse benzodiazepine agonist) FG-714 2 (N -methyl-beta-carboline-3 -carboxyamide ). 

The same circuitry sensitized by chemical and electrical stimulation is also sensitized by 

carefully engineering a predator stress exposure for a rat. What is lost in specificity is 

gained by a more naturalistic, immediate sensitization of emotional circuitry. This is the 

foremost consideration that places the predator stress model on a richer plane -

sensitization is invoked via the exposure of the animal to a natural, species-relevant 

trauma. The inclusion of this crucial external component should provide a more realistic 

view of the neuronal changes taking place, as the nature of the external stimulus would 

more closely parallel those encountered in the normal development ofPTSD. Researchers 

in the field have endorsed this view, claiming that emotive biasing does approximate the 

emotional disturbances found in those individuals suffering from PTSD (Pitman, Orr, & 

Shalev, 1993). 

Long-Term Potentiation 

Long-term changes in behaviour following predator stress likely persist as a result 

of some reorganization of pre-existing neural connections. One such mechanism is long­

term potentiation (L TP). Originally conceptualized by Bliss and Lomo in 1973 to explain 

long-term changes in excitability in the hippocampus, L TP has up until the present day 
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retained the description of a mechanism that produces a long-lasting increase in synaptic 

efficacy by way of high-frequency stimulation of afferent fibres. 

The paradigm of associativity is often evoked to explain the fundamental 

requirements of L TP induction. Excitation of a neuronal pathway, associated with a 

representation of the conditioned stimulus, produces posttetanic potentiation (PTP) that 

may last for a number of minutes (Chapman, Kairiss, Keenan, & Brown, 1990). This 

action (e.g. a brief train of pulses, 20 ms duration at 1 00-400HZ), facilitates the release of 

neurotransmitter (glutamate), but alone cannot easily produce activation ofNMDA 

receptors on the post-synaptic cell (Maren, 1996). The pre-synaptic release of glutamate 

must be accompanied by a post-synaptic depolarization in the same pathway (via a 

repetition of PTP) that causes the removal of magnesium from ion channels. This allows 

the influx of calcium, which is crucial to L TP induction. Prolonged excitation of the 

perforant pathway eventually leads to intra-cellular genomic activation in the post­

synaptic neuron which, in turn, encourages an increase in the number of active synapses 

and a synaptic restructuring from, as an example, non-perforated, relatively 

undifferentiated synapses to perforated, fully partitioned ones that have segmented post­

synaptic density zones (Geinisman, de Toledo-Morrell, Morrell, Heller, Rossi, & 

Parshall, 1993). A unique contribution of these mechanisms is a long -lasting facilitation 

in communication between neurons that lasts, on average, 1.4 hours (early phase) to a late 

phase lasting from 5.1 days (Racine, Milgram, & Hafner, 1983) to one year (Abraham, 

2003). 
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Long-Term Potentiation in the Amygdala 

The existence of L TP has been established in the amygdala (Chapman & 

Bellavance, 1992; Watanabe, Ikegaya, Saito, & Abe, 1995). It can also be induced 

experimentally via seizure activity (Adamec, 1998). Dividing the thirty-five sub-units of 

the amygdala into functional polarities produces an image of sensory convergence in the 

basolateral nucleus and behavioural divergence in the central nucleus (Maren, 1996). The 

central nucleus, lacking intra-amygdaloid projection neurons, is more in the service of 

receiving amygdalar input and organizing information to send to the mid and hindbrain, 

frontal cortex and the bed nucleus of the stria terminalis for the purpose of executing 

adaptive behavioural patterns. The basolateral nucleus has a greater need for plasticity 

being the locus at which relevant sensory data is imposed on existing fear circuitry. 

Neurons in this nucleus exhibit increased firing rates to a recently conditioned stimulus. 

They also demonstrate receptive field plasticity (Rogan & LeDoux, 1996). There is also 

evidence of increased functional coupling of action potentials between cells in the lateral 

nucleus, which may explain the phenomenon of fear recovery, after extinction exhibits all 

behavioural signs of having occurred (Rogan & LeDoux, 1996). The stimulation of the 

amygdala via afferent inputs from the endopiriform cortex produces a long-term inl-rease 

in EPSPs in monosynaptic connections within the amygdala. This would appear to 

indicate that the amygdala, in and of itself, is capable of long-term plasticity (Maren, 

1996). Long-term potentiation in the amygdala is dependent on NMDA receptors 

(Goosens & Maren, 2004). Given that increases in post-cat exposure anxiety-like 
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behaviour (ALB) is mediated by an altered memory network; and that this alteration is 

presumably dependent on LTP, it therefore follows that the long-lasting effects of 

predator stress may potentially be blocked by the administration of an NMDA receptor 

antagonist. Indeed, a systemic injection ofMK-801, AP7 or CPP, 30 minutes prior to, but 

not after, a predator stress exposure, prevents increased anxiety-like behaviour measured 

7 days later in the elevated plus-maze (Adamec, Burton, Shallow, & Budgell, 1999). 

Relevance of the efficacy ofNMDA receptor antagonists for our current investigation 

assumes there is a contribution of the predator stress experience to the induction of LTP. 

This assumption appears to be accurate, as research on predator stress supports this 

hypothesis. 

Predator Stress Produces Long-Term Potentiation 

LTP has been induced pharmacologically in cats using FG-7142. This anxiogenic 

agent produced L TP in transmission between the amygdala and the dorsolateral column 

of the periaqueductal gray matter (PAG) in the right hemisphere. This potentiation 

resulted in an increase in ALB (Adamec, 1994). Exposing a rat to a cat for 5 minutes 

produces an effect on ALB in the elevated plus-maze similar to that of pharmacological 

potentiation in the cat (Adamec & Shallow, 1993). Adamec et al. (2003) found a direct 

link between predator stress and an increase in the degree of phosphorylation of cyclic 

AMP (adenosine monophosphate) response element binding protein (CREB) expression 

in cells in the right lateral column of the PAG (Adamec, Blundell, & Burton, 2003). It has 
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been proposed that pCREB expression is critical for the induction of L TP (Paynes, 

Goldbart, Gozal, & Schurr, 2004). Predator stress also increased potentials evoked in the 

right lateral column of the P AG by stimulation of the central amygdala. L TP was 

observed to persist for at least 11-12 days post-exposure in the right hemisphere only 

(Adamec et al., 2003). This lateralization is consistent with the increase in activation of 

the right amygdala found in combat veterans upon being exposed to combat cues (Shin, 

McNally, Kosslyn, Thompson, Rauch, Alpert, Metzger, Lasko, Orr, & Pitman, 1997). 

The ability to model PTSD using animals by way of a predator stress exposure 

may be valuable for developing pharmacological therapeutic interventions for PTSD 

sufferers. The blockade ofNMDA receptors is one possible intervention, but is restricted 

to a brief time-window prior to stress and hence has little therapeutic potential. The 

maintenance of the enduring alterations in ALB produced by predator stress depends 

upon post-stress activation of CCKa receptors, but not CCKA receptors, in the amygdala 

(Adamec, Kent, Anisman, Shallow, & Merali, 1998; Adamec, Shallow, & Budgell, 

1997). The neurotransmitter serotonin plays a modulating role in the predator stress 

potentiation of ALB. Administration of the 5-HT (1A) agonist Vilazadone (20-40mg/kg) 

to a rat, 10 minutes post-exposure to a cat, selectively blocked the stress-induced increase 

in the acoustic startle response measured 7 days following the predator stress exposure 

(Adamec, Bartoszyk, & Burton, 2004). Administration of a 5-HT (2A) antagonist within 

ten minutes post-cat exposure prevented increases in open arm avoidance in the elevated 

plus-maze and increased acoustic startle response measured 7 days later (Adamec, 

Creamer, Bartoszyk, & Burton, 2004). These fmdings suggest the predator stress model 
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not only produces alterations that are similar to those found in PTSD; it also provides 

evidence that the effects of predator stress are interruptible post-exposure. This makes it a 

potential model for screening post-trauma prophylactic interventions. 

These neural-chemical series of events, required for the trauma to maintain its 

long-lasting psychological effects, may culminate in an alteration in the architecture of 

the synapses involved in the formation of a fear memory. Any long-term change in the 

synaptic framework is ultimately realized by the synthesis of proteins. If consolidation of 

a predator stress memory hinges upon a corresponding synaptic change, it would be 

highly likely that the formation of this memory would depend on protein synthesis. 

Disruption of protein synthesis, and hence consolidation, may therefore have therapeutic 

potential as a pharmacological blockade in attenuating the effects of a trauma. 

Consolidation Theory and Protein Synthesis 

The concept of protein synthesis playing a vital role in consolidation is not new. 

Katz and Halstead, in 1950, proposed that protein molecules are likely involved in the 

creation of memory traces (Katz & Halstead, 1950). J.B. Flexner et al. were the first team 

to demonstrate this by inhibiting protein synthesis in mice with puromycin (Flexne1, 

Flexner, & Stellar, 1963). Protein synthesis is required to alter the efficacy of synapses 

(Abraham & Williams, 2003). The alteration of synapses is necessary to achieve and 

maintain a high degree of differentiation and specificity of stored information (Davis & 

Squire, 1984). Barondes and Squire (1972) noted that the tasks the newly synthesized 
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proteins were involved in included (1) enzymes that regulate the synthesis or termination 

of neurotransmitters, (2) the creation of receptor molecules on the post-synaptic neuron, 

(3) providing support so that a neuron may maintain its new structural integrity and, ( 4) 

providing molecular markers to give direction to altered intercellular processes. The 

diverse nature of the intra-neuronal chemical cascades and the ultimate use that protein 

synthesis is put to is highly dependent on the species, task and brain structure stimulated 

(Lee, Hung, Lu, Chen, & Chen, 1992). 

Pharmacologically blocking the effects of fear in the laboratory is restricted to 

three intra-cellular biochemical targets: the site of protein kinase activation, CREB 

phosphorylation and mRNA translation. Protein kinase A is implicated in the early stages 

of L TP induction (Huang & Kandel, 1998). The inhibition of protein kinase A in the 

lateral nucleus of the amygdala impairs the consolidation of auditory fear conditioning 

(Schafe & LeDoux, 2000). It was suggested that this type of conditioning is also 

dependent on the activation of mitogen-activated protein kinase (MAPK) and the 

synthesis of new protein (Schafe & LeDoux, 2000). 

The CREB protein has been proposed as the "molecular switch" that controls the 

expression of the protein synthesis dependent element of long-term memory formation. In 

one study, mice lacking the alpha and delta isoforms of CREB exhibited significru1 

impairment in long-term memory for cued and contextual fear conditioning (Scharf, 

Woo, Latta!, Young, Nguyen, & Abel, 2002). Another study found that local 

microinjection of phosphorothiate-modified oligodeoxynucleotides antisense to CREB 

into the amygdala several hours before training impaired conditioned taste aversion when 
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measured at 3 and 5 days post-training (Lamprecht, Hazvi, & Dudai, 1997). It has also 

been found that the two periods of protein synthesis that occur after learning, the one 

immediately, and the other three to six hours post-training, overlap considerably with the 

two periods of effectiveness of CREB transcriptional inhibitors (Igaz, Vianna, Medina, & 

Izquierdo, 2002). 

Protein synth esis inhibitors characteristically exert their effects post-transcription 

by disrupting RNA translation at multiple sites. Cycloheximide inhibits rDNA 

transcription, phosphorylation of Rrn3 and causes dissociation from RNA polymerase. 

Puromycin disrupts the translation of RNA by binding to the carboxyl end of a growing 

peptide chain, thus causing the premature dissociation of the peptidyl fragment from the 

ribosome. Actinomycin and anisomycin inhibit the synthesis of mRNA (Davis & Squire, 

1984). Anisomycin, injected i.c.v., successfully blocked consolidation of contextual and 

auditory fear conditi oning measured 24 hours later (Schafe, Nadel, Sullivan, Harris, & 

LeDoux, 1999). In a similar paradigm, infusion of the drug directly into the basolateral 

nucleus of the amygdala immediately after fear conditioning training, during the initial 

consolidation phase, consistently disrupted performance on memory tasks administered a 

few days later (Schafe & LeDoux, 2000). It is also successful in disrupting fear memories 

during reconsolidation after undergoing reactivation 1-14 days post-training (Nader, 

Schafe, & LeDoux, 2000a). Amygdalar L TP, the mechanism proposed to perpetuate the 

fear memory, has been shown to be dependent on new protein synthesis (Okulski, Hess, 

& Kaczmarek, 2002). It is highly probable that behavioural sensitization of circuitry (i.e. 

L TP) that occurs as a result of predator stress is also dependent on the synthesis of new 
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protein. Although this dependency may be stated with great certainty, caution should be 

exercised in assuming that this synthesis occurs exclusively for new learning episodes. 

The post-translational modification of proteins theory (PTM), proposed by Routtenberg 

& Rekart (2005), posits that the necessary proteins required for the formation of any 

given memory are being continuously synthesized, irrespective of learning tasks. It 

further differentiates itself from consolidation theory by placing, at the time of learning, 

the primary locus of activity at the level of pre-and post-synaptic communication, with 

the primary action being one of protein rearrangement only. Confirmation of a 

consolidation effect in this experiment may prove to be a viable platform from which to 

further investigate any subtle variations within this scheme that may well result in 

elucidating existent processes highlighted in seemingly opposing models. 

The eventual development of a protein synthesis inhibitor for clinical application 

may potentially be used in exposure therapy for PTSD. Exposure therapy requires the 

victim to confront their episode directly in a relaxing setting. This theoretically causes the 

formation of a new association between their felt relaxation and the imagery associated 

with the trauma. This approach is based on the premise that the emotional aspects of 

trauma are generated by classical conditioning (Mowrer, 1960) and maintained by 

operant conditioning (Saigh & Bremner, 1999). Imaginal therapy, one therapeutic tangent 

of exposure therapy, involves the patient recalling the suppressed imagery of a trauma. 

This reactivation of a consolidated memory may potentially cause it to return to a labile 

state before it undergoes reconsolidation (Nader, Schafe, & Ledoux, 2000b). 
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Administration of a protein synthesis inhibitor at this time may prove advantageous in 

reducing the established emotional valence of the trauma memory. 

Implications for Blocking the Effects of Predator Exposure - Justification for the 
Present Study 

Post-traumatic stress disorder is produced in humans by exposure to a traumatic 

event. Exhibited changes in behaviour that follow its onset are mediated by neural 

mechanisms. The alteration at this level of functioning may be partially reproduced in 

animal models, most notably in the predator stress model. Its perpetuation is theoretically 

maintained by L TP, a putative mechanism of learning and memory. The amygdala is a 

structure that is highly plastic, a characteristic mediated by NMDA-dependent LTP in a 

number of its nuclei. Research has elucidated an important role for this structure in 

anxiety and in the initiation and continuation of PTSD. Predator stress produces L TP in 

the amygdala and a number of its efferents, which presumably underlies the sensitization 

of defensive behavioural programs. As discussed above, many amygdala-based learning 

tasks require the synthesis of new protein as does the induction and maintenance of 

amygdalar L TP, which provides support for the idea that an alteration of synaptic 

architecture is involved in the manifest behavioural changes. For any given memor)', 

oscillations between stability and more labile states exhibit themselves as a consequence 

of the memory undergoing reactivation. Given that "amygdala" learning and the 

maintenance of behavioural changes associated with predator stress may both hinge on 

neuro-plastic changes that likely culminate in the induction of L TP, and amygdalar 
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learning is known to be dependent on new protein synthesis, it may be hypothesized that 

the sensitization of behavioural change associated with predator stress endures a similar 

labile period during its initial consolidation as new proteins are being synthesized. 

The process of consolidation for multiple amygdala-based learning paradigms is 

blocked by the administration of a protein synthesis inhibitor. The present study was 

designed to determine if consolidation of lasting changes in affective response following 

predator stress is interruptible by protein synthesis inhibition after stress. In addition, the 

idea that re-exposure to the stress might involve a reconsolidation process also 

interruptible by inhibition of protein synthesis was tested. Clinically, reactivation may be 

achieved by re-exposing the victim to cues associated with the trauma. It is at the point -

during the act of reconsolidation - that therapeutic pharmacological intervention may 

prove viable. One justification for the present study is to provide evidence, using animal 

models, that a drug may potentially curb the anxiety associated with a species-relevant 

trauma. If positive results are found in animals, this may have interesting implications for 

PTSD victims by providing a means of erasure of a fear memory through the 

administration of a protein synthesis inhibitor during exposure therapy. 

Methods 

Animals 

One hundred and sixty Long-Evans male rats (rattus norvegicus) were used in this 

experiment. Eighty rats were used in the consolidation paradigm of the study. Eighty rats 
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were used in the reconsolidation paradigm of the study. The rats were housed singly in 

pol year bonate cages measuring approximately 46 centimetres (em) in length, 24 em in 

height and 20 em in width and fed ad lib. Rats were kept under a 12 hr-lightldark cycle; 

with lights on at 7 a.m. Rats were housed at the extreme opposite end of the building 

from the cats to ensure olfactory isolation. The rats in the consolidation and 

reconsolidation paradigms weighed approximately 90-100 and 50-60 grams, respectively, 

at the time of their arrival. This ensured that all rats weighed approximately the same at 

the time of their initial injection of anisomycin. The rats in the reconsolidation paradigm, 

however, were 50 grams lighter on average than the consolidation paradigm rats at the 

time of the initial handling. Upon arrival, the rats were removed from the traveling case 

and placed into their cages. They were allowed 1 day of adaptation to their home-cage. In 

the following 3 days, they were handled once per day for approximately 45 seconds to 1 

minute between the hours of 1 Oa.m. and 1 p.m. The consolidation rats weighed 

approximately 140-160 grams at the time of their first cat exposure. The reconsolidation 

rats weighed approximately 80-100 grams at the time of their first cat exposure and 140-

160 grams at the time of their second cat exposure. 

Groups 

The 80 rats in the consolidation paradigm were randomly assigned to four g1. oups 

of20 rats: SEXP (a rat was exposed to a cat once), SHD (a rat was handled once), 

SEXPV (a rat was exposed to a cat once and given a vehicle injection) and SEXPA (a rat 

was exposed to a cat once and given an injection of anisomycin). The 80 rats in the 

reconsolidation paradigm were randomly assigned to four groups of20 rats: DEXP (a rat 
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was exposed to a cat twice), DHD (a rat was handled twice), DEXPV (a rat was exposed 

to a cat twice and given a vehicle injection) and DEXP A (a rat was exposed to a cat twice 

and given an injection of anisomycin). Therefore there were a total of 8 groups in the two 

paradigms. Rats were tested in blocks of 16 rats, 2 from each group of the eight groups. 

Drug Administration 

The dosage of anisomycin used was 210 milligrams per kilogram, suspended and 

sonicated in Tween 80 vehicle solution (2 drops sonicated in 10 ml of sterile saline). The 

dosage used was taken from the protocol established by Nader et al. (2000a), who used a 

similar experimental paradigm. The drug was prepared fresh daily with a maximum 

sitting time of2.5 hours. All injections of the drug and vehicle (in a volume of 1 ml) were 

subcutaneous. Injections were administered 1 minute after cat exposure. In the case of 

DEXPA and DEXPV rats, injections were given after the second cat exposure. 

Testing 

Four male cats were used and were counterbalanced among rats in the various 

groups to ensure that there were no cat effects. The cat exposures took place between 

9a.m. and 1 p.m. All rats were weighed prior to testing. 

Predator Stress 

The dimensions of the cat exposure room were 2 meters by 1.3 meters. The 

height of the windowless room was approximately 3.5 meters. The cat was transported in 
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the arms of an experimenter to the room before the rat. Next, a different experimenter 

(who was free of cat odour) travelled to the opposite end of the building to collect the rat. 

The rat was then placed into a grey plastic container measuring 18.5 em in height, 19 em 

in length and 14.5 em in width. The rat container was fitted into an opening into the cat 

testing room. The door of the rat container was opened and the rat slid in to the room on a 

slide within the container. The cat-rat encounter was videotaped remotely for 10 minutes. 

The cat exposure room did not contain any barriers. The cat had direct access to 

the rat. The cat normally approached the rat initially for inspection. Then, depending on 

the actions of the rat, the cat chased, pawed, bit, sniffed or circled the rat for a period of 

seconds, characteristically followed by inactivity. This cycle of inactivity and activity on 

the part of the cat was repeated until the test ended. At the end of the test the rat was 

removed from the room. This was accomplished by gently pushing the rat with a soft 

broom to the entrance of the rat container. The lid of the container was slid open and the 

rat was pushed inside. The rat was then returned to its cage in the room adjacent to the cat 

exposure room. The rat was left alone for 1 minute post-exposure to recover. Sufficient 

recovery was defined as a lack of: erect fir, bulging eyes, and excited loco-motor activity. 

When the rat recovered it was removed from its cage by a gloved hand and placed on the 

table. It was gently wrapped in a white cloth with the back one third of its body 

protruding. The rat was then given an injection of the drug or the vehicle and returned to 

its cage. Given the reported potential side effects ofthe drug (Davis & Squire, 1984), 

injected rats were watched carefully for evidence of debilitation. Based upon visual 

inspection of the rats at various times post-injection, zero cases of sickness were found. 
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The rat was then returned to its original room at the opposite end of the building. 

Depending on the sequence of cats, the cat in the cat exposure room was either returned 

to its home cage or left in the cat exposure room in preparation for the next rat. The cat 

activity measures scored included the number of: paw bats, bites, pursuits, cat 

approaches, head approaches, sniffs, near "orienting"s, and near "not orienting"s. Each of 

these were paired with three rat activity measures; active (defence), passive (defence), 

and escapes. The number of rat approaches was scored separately. 

Handled Control 

The control rats were handled on the same day as the cat exposure. At no time did 

the handled rats come into contact with the cats. A different experimenter with a clean lab 

coat handled the rats to ensure that the rats were not unintentionally exposed to cat 

odour/hair. The handled rats were weighed at the beginning of the day along with the 

exposed rats. A table was wheeled into the holding room and the rat, in his cage, was 

placed on top. The rat was removed from his cage by a gloved hand. He then was cradled 

on the left forearm of the experimenter. Squirming was discouraged by a loose grip along 

the rat's body (generally unnecessary after the rat nestled in). The rat remained in this 

position for 45 seconds to 1 minute. The rat was placed back into his cage and then 

placed back onto his shelf. For this exercise, none of the rats left their holding room. 

Behavioural Testing 

Behaviour was assessed in the hole-board test, elevated plus-maze test, light/dark 

box test and social interaction test. These are tests commonly used to assess rodent 
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anxiety (File & Wardill, 1975a & b; File 1993). Cameras mounted over the various 

apparatus videotaped all tests. There were no experimenters present in the room while 

testing was taking place. The videotapes were analysed at a later time. All behavioural 

tests were 300 seconds in duration. The acoustic startle test involved measuring the startle 

amplitude of the rat upon being exposed to a loud burst of noise. This was analysed 

separately by a computer program (discussed below). All behavioural testing occurred 

between 8a.m. and 1 p.m. 

Hole-Board Apparatus 

This apparatus provided measures of exploratory behaviour and activity 

independent of the elevated plus-maze (File & Wardill, 1975b). The apparatus was 

painted light grey and measured 60 em in width (on all sides) and 3 5 em in height. The 

floor of the apparatus was 12 em from the floor of the behavioural testing room. There 

were four evenly spaced holes on the floor of the apparatus. They were large enough for 

the rat to poke its head through to explore. The holes were approximately 14 em from the 

wall. 

Hole-Board Behavioural Measures 

Six behavioural measures were taken: ( 1) frequency of rearing; 

(2) total time spent in motion of any kind; (3) total number of head dips - a head dip 

occurred when the rat poked its head through any one of the four holes in the bottom of 

the apparatus; (4) total time spent near the wall; (5) total time spent in the center of the 
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box. The total time spent near the wall and in the center of the box was differentiated by 

observing where the rat was positioned relative to a piece of white tape surrounding the 

perimeter of the four holes. All four paws inside the tape counted as in the center, all four 

paws outside counted as near the wall. If any two paws were on the tape, the rat w as 

considered neither near the wall nor in the center. And (6) number of fecal boli was also 

counted. The time spent moving and the number of rears was indicative of the relative 

level of activity. The number of head dips indicated the level of exploratory behaviour. 

The time spent near the wall relative to the time spent in the center was used to measure 

thigmotactic tendency. 

Elevated Plus-Maze 

The elevated plus-maze had four arms arranged in a plus sign design. Each arm 

was 10 em in width and 50 em in length. The four arms were joined in the centre by a 10 

em square platform. There were two "closed" arms and two "open" arms. The two closed 

arms opposite each other had walls that rose approximately 40 em from the floor of the 

apparatus. The two open arms did not have walls; but did have a three em high ledge 

surrounding the perimeter of the arms to raise baseline open arm exploration (Treit, 

Menard, & Royan, 1993). The maze arms and its centre were positioned 50 em fron~ the 

floor. Immediately after the five-minute hole-board test, rats were transferred by gloved 

hand to the center of the plus-maze facing the same open arm of the maze. Behaviour was 

videotaped for five minutes. Rats were then returned to their home cages. 
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Elevated Plus-Maze Behavioural Measures 

Six measures were taken for this test. They were as follows: The number of arm 

entries into any arm (a rat was considered to be in an arm of the maze when it had all 4 

feet within the arm); the number of entries into either closed arm (tallied together) ; head 

dips (head dips occurred when the rat dipped its head over the side of an open arm); the 

number of rears, with the rat standing up on its hind legs, either freestanding or using one 

of the closed arms for support. Both head dips and rears were further subdivided into 

protected (within the closed arm), center or unprotected (within the open arm). Open arm 

exploration was quantified in two ways: Ratio time was the time spent in the open arms 

divided by the time spent in any arm of the maze. The smaller the ratio time, the more 

anxious the rat was considered to be. Ratio entry was the number of entries into either 

open arm divided by the number of entries into any arm of the maze. As was the case in 

the previous ratio, the smaller the ratio, the more anxious the rat was considered to be. 

Frequency of risk assessment was measured by examining the number of times the rat 

extended its head and forepaws into either open arm of the maze (the hind legs of the rat 

would remain inside one of the closed arms). This was divided by time in the closed arms 

of the maze to yield a ratio frequency of risk assessment measure. Finally, the number of 

fecal boli was counted. 

Light-Dark Box 

The light-dark apparatus was a rectangular box constructed of plywood 2.5 em 

thick. The dimensions ofthe box were: 31.75 em in length, 10.48 em in width and 14.06 
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em in height. There were two openly connected chambers within the box, both of equal 

size. The roof of the box was covered with Plexiglas to permit videotaping of behaviour. 

There were ventilation holes on the roof of the box. One side was white and the other 

black. Unlike the wooden floor on the white side, the floor on the dark side was 

constructed of wire. There was a 1 00-watt lamp mounted above the chambers, thus fully 

illuminating the white side. The light intensity that was produced on the floor of the light 

side was 850 Lux (or 79 foot candles). The light intensity that was produced on the floor 

of the dark side was 0 Lux. At the beginning of the test, rats were placed in the white side 

facing away from the dark chamber. 

Light-Dark Box Behavioural Measures 

There were 6 measures taken for the light-dark box test. Measures include the 

time spent in the light and time spent in the dark. Timing of presence in a chamber 

commenced with the crossing of all four paws into a particular chamber and terminated 

with the front two paws exiting the chamber. The number of entries into the light and 

dark chambers was scored separately. An entry was defined as the crossing of all four 

paws into a particular chamber. The latency to enter the dark was the time it took the rat 

to enter the dark from the beginning of the test. The number of fecal boli was also 

recorded. 
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Social Interaction Test 

The social interaction test involved two rats from the same testing group. One rat 

was marked with a black marker on its side and the other was unmarked. The rats were 

placed into the box at the same time. The square box was 3 5 em in height and 60 em in 

width. It was painted black. Red lighting was used to simulate nocturnal conditions in 

order to maximize social activity. The light intensity on the floor of the apparatus was 30 

Lux (2.7 foot candles). 

Social Interaction Test Behavioural Measures 

Seven measures were taken for this test. Duration of social interaction was 

defined as any physical contact between the two subjects with an obvious orientation 

towards each other. Withdrawal was defined as the termination of a social interaction on 

the part of one of the rats signified by clearly changing his orientation and moving away 

from the other rat. "Pursuit" was defined as one rat chasing after the other either after the 

termination of an interaction or before the initiation of a new one. The number of fights 

was recorded. Time immobile was the total amount of time a rat remained frozen. "Time 

near" was the total amount of time a rat remained near the other rat. This was defined as 

physically touching the rat or in very close proximity to the rat. "Time far" was the LOtal 

amount of time a rat remained apart from the other rat. This was defined as not being in 

close proximity to the rat and clearly not oriented towards the other rat. 
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Acoustic Startle Chamber 

A San Diego Instruments Startle Chamber was used. The San Diego Instruments 

S-R Lab Startle Program controlled startle testing. The rat was placed into a Plexiglas 

cylindrical container measuring 20.3 centimetres (length) by 10.2 centimetres (diameter). 

The cylinder was placed atop a platform that was connected (underneath) to a piezo 

electric transducer motion detector that fed sample readings to a computer. The entire 

apparatus was placed inside a soundproof chamber. Initially, there was a 5-minute 

acclimation period to a 60-decibel white noise background. Then testing began. The 

startle stimulus was a 120-decibel burst of white noise 50 milliseconds in duration. It rose 

out of the 60-decibel background of white noise. There were 40 trials in total, with 20 

trials in the light and 20 trials in the dark. Light and dark trials were in random order. The 

inter-trial interval was 30 seconds. The inter-trial period was spent in the dark. For a light 

trial, the total amount of time the light was on was 3.0 seconds. At 2.95 seconds into this 

period, the 120-decibel stimulus was delivered for the remaining 0.05 seconds (50 

milliseconds). At the conclusion of this 3.0-second period, the lights were turned off. 

Acoustic Startle Chamber Measures 

Two measures were taken; (1) V-max, and (2) V-start. V-max was the highest 

peak of "movement" detected over the span of 250 milliseconds (i.e. the record window) 

per trial. Movement was measured in voltage by a piezo electric transducer whose output 

was sampled by computer. V -start was the baseline movement just prior to the startle 
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stimulus. Peak startle amplitude for each trial for each rat was calculated as V -max minus 

V-start. 

Testing Across Days 

In the consolidation paradigm, the cat exposures occurred on day 1. Behavioural 

testing took place on days 7 and 8 after treatment (handling or predator stress). The social 

interaction test followed in 7 5 min by the acoustic startle test occurred on day 7. The 

light/dark box test, followed in 30 min by the hole-board test, immediately followed by 

the elevated plus-maze test occurred on day 8. 

In the reconsolidation paradigm, the two cat exposures (or handling for controls) 

were separated by 7 days. The second cat exposure served as the reactivation of the stress 

memory established by the first exposure. Anxiety and startle testing took place on days 7 

and 8 after the second treatment (handling or cat exposure) as described for the 

consolidation paradigm. 

Results 

Prior to analysis data were tested for normality. When there were deviations 

(D' Agostino Omnibus Test> 19.89, p<.001), data were either transformed to reduce 

deviation from normality or analyzed non-parametrically. Transformations and non­

parametric analyses will be noted where appropriate. 
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Effect of Cat Exposure on Time Immobility and Defensive Responses 

It was of importance to determine if rats in the different groups exposed to a cat 

experienced similar predator stress. In order to do this several ANOVAs were done on cat 

responses to the rat and on rat defensive responses to the cat. The first examined 

differences across three groups on first cat exposure and across paradigms (consolidation 

condition- consolidation versus reconsolidation). The groups were: cat exposed only, 

and cat exposed plus vehicle or anisomycin. There were no main effects or interactions. 

Another ANOV A was done to contrast first and second cat exposure experience in 

reconsolidation paradigm rats over the first and second cat exposures. The design 

examined groups as above with repeated measures on cat exposure (first or second). 

There were no effects on any measure of cat or rat behaviour except one, time spent 

immobile. On second cat exposure, reconsolidation paradigm rats spent more time 

immobile than in their first exposure (main cat exposure effect only, no interactions; 

F { 1,3 8 }= 42.71, p<.OO 1 ). For illustration, rat defensive responses and time immobile for 

first and second cat exposures appear in Figures 1 and 2. Rats exposed to a cat twice 

showed greater time immobility than rats exposed once (Tukey-Kramer, multiple 

comparison test, all p<.05) (Figure 1). The style of defence (active, passive or escape) did 

not differ between once and twice exposed groups (Figure 2). 
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Initial Analyses of Elevated Plus-Maze, Hole-Board, Light/Dark Box and Social 
Interaction Measures 

It was of interest to determine if two cat exposures produced a differential effect 

on rodent affect. To accomplish this, a two way ANOVA was executed assessing stress 

effects (three levels: cat exposure alone or with vehicle versus no cat exposure- handled 

control) and testing effect (one or two treatments - exposure or handling). There were 

only stress and testing main effects, no interactions. Of primary interest are those 

measures in which handled controls differed from stressed rats. Only these results will be 

reported in detail. Only four measures in two tests showed effects of predator stress. The 

two tests were the elevated plus-maze and the social interaction test. 

In the elevated plus-maze predator stress affected ratio time and ratio entry 

(square root transformed, all F {2,114}>3.74, p<.03). Mean contrasts revealed that 

stressed groups (stressed and stressed plus vehicle) did not differ, but were less than 

control (Figure 3, Fisher's LSD, p<.05). There was a trend for ratio frequency risk 

assessment to show a stress effect (square root transform, p<.11). In this case the two 

exposed groups did not differ, but were less than the handled group (t{114}=2.12, 

p<.037). In addition, one ofthese measures showed a test effect, ratio time (F {1,114}= 

7.56, p<.001). Handled and cat exposed animals that were tested twice displayed greater 

ratio times than animals that were tested once (Figure 3). 

There were no stress effects on measures of exploration or activity in the elevated 

plus-maze or hole-board. Therefore, the anxiogenic effects of predator stress cannot be 

attributed to changes in activity or exploratory tendency. 
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Frequency of fighting was reduced by predator stress in the social interaction test, 

but vehicle injection reversed this effect (stress effect, F {2,114 }=5.71, p< .005, 

t{114}=3.34, p<.002: upper panel, Figure 4). 

Anisomycin and the Effects of Predator Stress on Social Interaction and Behaviour 
in the Elevated Plus-Maze 

The effects of anisomycin on those behaviours changed by predator stress were 

assessed. For social interaction, vehicle injection single and double exposed groups were 

combined (combined vehicle injection), as were single and double exposed only groups 

(exposed only), because they did not differ in the initial analyses. All handled groups 

(control) were also combined. Analysis of fight frequency in the social interaction test 

revealed a group effect (F {4,159}=2.87, p<.025). Predator stress reduced fights. 

Curiously, combined vehicle injection and injection of anisomycin after a second cat 

exposure (reconsolidation + anisomycin group) reversed the reduction in fighting . It is 

possible that the anisomycin effect in the reconsolidation + anisomycin group is an 

injection effect like that seen with both vehicle alone groups. However, injection of 

anisomycin after a single cat exposure (consolidation + anisomycin group) returned 

fighting levels to that of predator stressed only rats (Figure 4, lower panel, all t { 159} > 

4.92, p< .001), conceivably by reversing the vehicle injection block of predator stress 

suppression of fighting. 

For the elevated plus-maze, all cat exposed and cat exposed given vehicle were 

combined (combined cat exposed, i.e. SEXP, SEXPV, DEXP, and DEXPV), because 

they did not differ in the initial analyses. A one way ANOV A was used to compare the 

29 



four groups. The groups were: all handled controls (single and double handled), 

combined cat exposed, cat exposed given anisomycin after the first exposure 

(consolidation) and cat exposed given anisomycin after the second cat exposure 

(reconsolidation). 

In the elevated plus-maze, there were group effects for ratio entry, ratio frequency 

risk and ratio time (all F {3,156} > 2.90, p<.037, all square root transformed, Figure 5). 

Planned mean contrasts revealed different patterns for the various measures (all t {156} > 

2.25, p<.026). Predator stress reduced all measures relative to control. Anisomycin given 

after one cat exposure (consolidation + anisomycin group) returned ratio entry to control 

levels, elevated ratio time to a level between control and predator stressed and was 

without effect on the predator stress induced reduction of risk assessment (Figure 5). 

Anisomycin given after the second cat exposure (reconsolidation + anisomycin group) 

did not alter the predator stress induced reductions in any measure used. 

Because of the test effect in ratio time, the consolidation mean was compared to 

the control mean of handled controls of the single cat exposure groups. The means were 

nearly identical (control versus consolidation mean+ SEM: 0.30 + .04 versus 0.29 + .05). 

So like ratio entry, ratio time was returned fully to control levels. 

A similar analysis was conducted on measures of activity and exploration in the 

plus-maze (closed arm entries) and hole-board (rears, head dips) to determine if 

anisomycin was having an effect on these measures. There were no group effects. 

Therefore, activity and exploration tendency changes cannot account for drug effects in 

the plus-maze. This is a critical distinction to observe, as anisomycin has been reported to 
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alter the locomotor activity of animals, albeit restricted to a few hours post-injection 

(Davis & Squire, 1984). 

Initial Analyses of Response to Acoustic Startle 

Groups were compared with respect to body weight prior to analysis of startle. 

Larger rats may produce greater startle responses simply because of weight. Two 

analyses were conducted, one for rats exposed once and associated groups (consolidation 

paradigm rats) and one for rats exposed twice and associated groups (reconsolidation 

paradigm rats). Each analysis assessed group effects for four groups: handled controls, 

cat exposed only, cat exposed plus vehicle, and cat exposed plus anisomycin. There were 

group effects in both analyses (all F {3,76}~3.40, p<.022). Both sets of groups differed in 

the same pattern. Handled controls differed from anisomycin groups and the remaining 

groups fell in between (Figure 6, Tukey-Kramer multiple comparison test, p<.05). 

Comparable groups in the consolidation and reconsolidation groupings did not differ (all 

t, p>.05). 

The difference in weight was accommodated in the analysis of peak startle 

amplitude by dividing peak startle amplitude by body weight (in kg). Relative peak startle 

amplitude (in arbitrary units) was then analyzed further. 

Startle data were not normally distributed, so Kruskal-Wallis one way non­

parametric analysis of variance on medians was used. To make these analyses 

manageable, consolidation and reconsolidation paradigm rats were compared in separate 

analyses. Responses in the light and dark for these groups were also analyzed separately. 
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Anisomycin and the Effects of Predator Stress on Amplitude of Response to 
Acoustic Startle 

One way Kruskal-Wallis ANOV A was used to separately compare four groups in 

two conditions, consolidation and reconsolidation conditions. Relative peak startle 

amplitude data were collapsed across 20 trials. In all analyses there were significant 

group effects (X2(3)> 17.97, p<.OOI). Planned comparisons within treatments were 

performed with Kruskal-Wallis multiple comparison test (z test). Comparisons of 

comparable groups in light versus dark conditions or across consolidation versus 

reconsolidation conditions were made with Wilcoxon Rank Sum Test for median 

differences. Significant differences (p<.05) are displayed in Figure 7. 

Within the consolidation paradigm rats, startle in the dark and in the light 

displayed similar patterns of differences across groups except for the anisomycin groups. 

Cat exposure alone increased ratio peak startle amplitude over controls, which is 

consistent with previous research. Vehicle injected immediately following cat exposure 

blocked this increase in startle amplitude, reducing it below control and cat exposed 

(alone) groups. For startle in the dark, anisomycin appeared to block the vehicle injection 

reduction in startle amplitude, returning it to the cat exposed only elevated levels (Figure 

7). A parallel effect of anisomycin was observed for startle in the light, except that 

anisomycin tended to block both vehicle and cat exposure effects, returning startle 

amplitude to a level between cat exposed alone and control groups (Figure 7). 

Within the reconsolidation condition, startle in the dark and in the light showed 

the same patterns of differences across groups. Unlike the consolidation condition, cat 

exposure alone had no effect on startle amplitude, though it tended to reduce it relative to 
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control levels in the dark. Like the consolidation paradigm rats, cat exposure plus vehicle 

reduced startle amplitude below control and anisomycin reversed this effect of injection. 

Suppression of startle amplitude by vehicle was comparable to that seen in the 

consolidation paradigm rats. Unlike the consolidation paradigm rats, however, 

anisomycin given after the second cat exposure actually potentiated startle response 

above control in both the dark and light tests (Figure 7). 

Comparisons of light and dark conditions revealed light-potentiated startle 

response in the consolidation and reconsolidation controls and the reconsolidation cat 

exposed only groups. Comparing consolidation and reconsolidation paradigm rats 

revealed the following: cat exposed only groups in light and dark tests in the 

consolidation paradigm rats (exposed once) had greater startle responses than their 

counterparts exposed to a cat twice (reconsolidation, Figure 7). The only other difference 

across groups was the anisomycin group startle response in the light. Consolidation + 

anisomycin group startle amplitude in the light was less than its counterpart in the 

reconsolidation + anisomycin group. 

Anisomycin and the Effects of Predator Stress on Habituation of Startle 

Predator stress has been shown to prolong habituation to startle (Adamec, 19CJ 7). 

Given these past fmdings, habituation to startle in the different groups was determined 

and compared. For this analysis, the 20 startle trials were condensed into 10 blocks of2 

trials each (average of2 trials). Exponential decline functions ofthe form: 

y =Yo+ ae-bh 
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were fit to the relative peak startle amplitude mean data from each group using Jandel 

Table Curve V 4.0. In the equation, y and Yo are ratio peak startle amplitude, a is a 

constant, e is the base of the natural logarithm, b is trial block and tau is the trial constant, 

or the number of trial blocks to decline to 3 7% of the maximal peak startle amplitude. 

Data were smoothed to improve fit. An FFT smoothing function provided in the program 

( 15% FFT smooth) was applied to means from each group to improve fit. Special care 

was taken to ensure the smoothing did not distort the data (Figure 8). All fits were good 

(degrees of freedom adjusted r squared range: 0.75 to 0.98; all Fit F(2,9)> 17.2, p<.OOl; 

t{9}>2.00, p<.05 for all t tests of difference from zero of tau). The estimate of tau 

included a standard error of estimate. These standard errors were used to perform t tests 

between the trial block constants of the different groups of rats. Planned comparisons 

between tau values estimated for each group were executed using two-tailed t tests 

(Figure 9). 

Pattern of findings were the same for Consolidation and Reconsolidation 

paradigm rats. In both conditions, cat exposure decreased habituation rate or increased 

trial block constant, but only when measuring startle in the light. There were no effects of 

injection ofvehicle or anisomycin on the delay of habituation (all t{18}>2.32, p<.033, 

Figure 9). Additionally, there were no differences in values of tau between comparable 

consolidation and reconsolidation paradigm rats. There were, however, differences 

between light and dark startle within conditions. All groups (except control) showed 

greater tau in the light than in the dark (all t{18}>2.12, p<.05, Figure 9). 
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Discussion 

The Predator Stress Experience 

With one exception there were no group differences in cat response to rats and rat 

response to cats. This suggests drug and injection effects cannot be attributed to 

differential stress experiences. Predator stress did cause greater immobility during cat 

exposure in the double exposed rats on second exposure in comparison with the single 

exposed rats (Figure 1). This suggests an enhanced impact on defensive response ofthe 

second cat exposure. It may also suggest an element of contextual fear conditioning to the 

cat exposure room. Without an exposure to room alone control, however, this must 

remain a speculation. The enhanced immobility, however, may be relevant to the 

interpretation of the startle data discussed below. 

Anisomycin and the Effects of Predator Stress on Anxiety Measures 

Elevated Plus-Maze 

The elevated plus-maze results offer the most compelling data that anisomycin 

blocks consolidation, but not reconsolidation of predator stress induced ALB (Figures 5). 

Administration of the drug resulted in values of ratio-entry and ratio-time that were 

statistically identical to, or approaching, control values. Risk assessment was unaffected 

by the drug. It is likely that different circuitry is at play with these two behaviours. For 

example, it has been shown that blockade of the NMDA receptors in the lateral nucleus 

of the amygdala with NMDA receptor antagonist MK-801 abolishes the decrease in risk 
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assessment following a predator exposure, but is without effect on ratio-time or ratio­

entry (Adamec et aL, 1999). 

Social Interaction Test 

It was presumed that predator stress caused an increase in anxiety, as the 

experience reduced fighting in the social interaction test (Figure 4). A vehicle injection 

following a single exposure returned predator stress fight levels to those of the control 

groups. The effects of the vehicle injection may be attributed to a rapid increase in the 

circulation of glucocorticoids. This release may indirectly provide hormonal prophylaxis 

by heightening activity in the HP A stress axis (Roozendaal, 2002) immediately after the 

predator stress. This claim is speculative, as glucocorticoid levels were not recorded in 

this experiment. However, in support of this idea, it was found that administration of 

cortisol to humans immediately following a traumatic experience significantly attenuated 

re-experiencing symptoms by interfering with the formation of memory (Aerni, Traber, 

Hock, Roozendaal, Schelling, Papassotiropoulos, Nitsch, Schnyder, & de Quervain, 

2004). One line for future research may be to cannulate the drug i.c.v. to avoid the stress 

of systemic injection. 

Anisomycin given in the consolidation condition appeared to reverse the effed of 

the vehicle injection block of predator stress suppression of fighting (Figure 4). This 

suggests anisomycin is interfering with a protein synthesis dependent process engaged by 

the vehicle injection. Anisomycin had the same effect as the vehicle injection in the 

reconsolidation paradigm. Thus, it cannot be concluded that protein synthesis disruption 
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by anisomycin was effective in blocking reconsolidation. It is likely that anisomycin 

interferes with protein synthesis dependent effects of the vehicle injection on a first cat 

exposure, but vehicle injection effects on subsequent cat exposures are no longer protein 

synthesis dependent. The mechanisms are unclear. 

Acoustic Startle 

In consolidation paradigm rats there was a difference between the effects of 

anisomycin in the dark versus the light condition (Figure 7). In the dark, anisomycin 

blocked the vehicle effect of suppressing startle amplitude, bringing startle back to 

predator stressed (only) levels, as it did in the social interaction test. In the light, 

anisomycin blocked both the effects ofthe injection and of the predator stress exposure, 

bringing levels back to those of controls. The addition of an anisomycin (only) group 

without predator stress may be included in future experimentation to eliminate the 

possibility that anisomycin increases startle independently of predator stress. However, 

given the above results of anisomycin in the light, this does not appear to be a probable 

effect. 

Vehicle injection interfered with cat exposure amplification of startle amplitude in 

the consolidation and reconsolidation paradigm rats (Figure 7). Anisomycin interferes 

with this effect of vehicle, suggesting vehicle effects involve protein synthesis. In the 

consolidation paradigm, the block of vehicle effects by anisomycin is complete with 

startle in the dark but may only be partial in the light. Alternatively, the effects of 

anisomycin in the light might also reflect a block of both vehicle and predator stress 
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effects. The results at present are ambiguous and might be resolvable (again) with an 

i.e. v. cannulation of anisomycin. 

In the reconsolidation paradigm, predator stress marginally reduced startle 

amplitude; vehicle injection reduced startle amplitude and anisomycin not only blocked 

vehicle injection effects, it enhanced startle. This suggests that anisomycin may be 

interfering with a protein synthesis dependent process that reduces startle enhancement 

on re-exposure to a cat in both light and dark startle conditions. In this regard, it is of 

interest that rats exposed to a cat twice become more immobile during the second cat 

exposure (Figure 1). If these rats are adopting an enhanced immobility defensive 

response to threat, it might interfere with the startle response, producing the slight decline 

in startle amplitude observed in predator stressed reconsolidation rats. Moreover, if the 

decrease of predator stress potentiation of startle is due to response interference (more 

immobility when threatened), then this process may be protein synthesis dependent as 

anisomycin relieves this suppression allowing a normal enhancement of startle in light 

and dark. If true, this argues in favour of the interpretation of consolidation data that 

startle enhancement in the dark at least is not protein synthesis dependent. Startle findings 

suggest different neural substrates and possibly neural mechanisms mediate effects of 

predator stress on habituation of startle and on potentiation of startle response in the dark 

and in the light. It is of interest in this regard that different forebrain substrates, including 

the central amygdala and bed nucleus of the stria terminalis may contribute differentially 

to light and fear potentiation of startle (Davis & Shi, 1999; Walker & Davis, 1997). 

Moreover, recent fmdings implicate different amygdala efferents in stress-induced 

38 



potentiation of startle and delay of habituation (Adamec, Blundell, & Burton, 2005). Fear 

potentiated startle and light potentiation of startle may also be modulated differently 

(DeJongh, Groenink, VanderGugten, & Olivier, 2003). 

Habituation of Acoustic Startle 

As expected, cat exposure decreased habituation (Figure 9). Neither anisomycin 

nor injection of vehicle had significant effects. The startle reflex is unique amongst the 

anxiety measures, as the stimulus is auditory. The neural circuitry mediating this 

behaviour may potentially be entirely different from the circuitry mediating all other 

behavioural tasks used in this study. The auditory component may implicate a tract from 

the cochlear root neurons to the nucleus reticularis pontis caudalis inclusive, but possibly 

exclusive, from the amygdala (Davis, 1992). If the latter scenario prevails, it is unlikely 

that habituation results would parallel those found in measures assessing an amygdala­

based form of fear, such as in the elevated plus-maze or startle amplitude. 

A possible mechanism of habituation could be a homosynaptic depression 

mediated by AMP A trafficking away from appropriately located synapses in the startle 

pathway (Kittler & Moss, 2001 ). Predator stress might interfere with this by interfering 

with the AMPA trafficking. Such a mechanism would not require long-term synaptic 

structural modification, but would require a long-term interference with the normal 

habituation process (Weber, Schnitzler, & Schmid, 2002). 
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Light-Dark Box 

Predator stress was without effect on light-dark box behaviour. Nor were there 

effects of injection of vehicle or anisomycin. These findings are consistent with the view 

that different neural substrates mediate changes in ALB measured in different tests 

(Adamec, 2001). Under the present testing conditions, the question of the necessity of 

protein synthesis in the circuitry mediating the behaviour in the light-dark box is 

unanswerable. 

Conclusions 

The purpose of this experiment was to investigate the possibility that long-term 

fear sensitization by predator stress requires the synthesis of new protein. One interesting 

implication of this idea is that fear memories associated with PTSD may be susceptible to 

disruption upon reactivation, if the act of reconsolidation is essentially a recapitulation of 

the neuro-chemical events associated with the initial consolidation. Thus, administration 

of a protein synthesis inhibitor post-reactivation may curb anxiety associated with PTSD. 

It is evident that consolidation of some, but not all, of the behavioural effects 

associated with predator stress requires the synthesis of new protein. This corresponds 

with previous research on the initial formation of fear memories, which have reporte<.i a 

necessity of the activation ofPKA and the expression ofpCREB. The results for 

reconsolidation are more ambiguous. There are at least three possibilities concerning the 

necessity of protein synthesis for consolidation of changes of those behaviours unaffected 

by anisomycin (i.e. risk assessment) and for reconsolidation. First, protein synthesis may 
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be unnecessary as there is little new information that must be recorded for 

reconsolidation (but in any case it argues against the proposition that all reactivation puts 

memory in a labile form susceptible to disruption, so has implications for McGaugh 

(2004) versus Nader et al. (2000b) arguments). Changes in defence may be regulated by a 

more cost-saving mechanism, such as the redistribution of extra-synaptic AMP A 

receptors (Tardin, Cognet, Bats, Lounis, & Choquet, 2003). 

Second, in those cases where anisomycin was without effect, it cannot be 

unequivocally stated that protein synthesis is not involved. Protein synthesis may be 

necessary, but our drug administration schedule may not have overlapped successfully 

with the end of a second independent wave of protein synthesis. Work on hippocampal 

(CAl) mRNA synthesis for consolidating inhibitory avoidance training revealed two 

phases of gene expression: (a) activation of immediate early genes (c-fos, c-jun) 

immediately following training, and (b) at 3-6 hours post-training, structural genes are 

expressed (Igaz, Vianna, Medina, & Izquierdo, 2002). These windows closely parallel 

those found for the susceptibility of rats to PKA inhibitors (Huang, Martin, & Kandel, 

2000) and the two peaks of CREB phosphorylation (Stanciu, Radulovic, & Spiess, 2001) 

for similar tasks. Although the dose of anisomycin used reportedly inhibits 80 percent of 

protein synthesis for 5-8 hours post-training (Davis & Squire, 1984), it cannot be staLed 

with certainty that it successfully covered the second wave of gene expression entirely. 

Assuming a 5-hour period for the action of anisomycin and an upper limit of 6 hours for 

the synthesis of proteins for consolidation of predator stress effects on affect, there 

potentially could be a maximum window of 1 hour when long-term structural proteins 

41 



may have been synthesized, thus allowing for consolidation of behavioural changes 

dependent on these proteins to occur. Further experimentation could include more 

extended periods of protein synthesis inhibition. 

Third, most of the literature examines the effect of a protein synthesis inhibitor on 

a strictly visual, auditory or tactile (i.e. shock) memory. Accordingly, this experiment 

was designed on the premise that for any given event, one single memory is formed that 

oscillates between a stable state and a fragile one, as a function of the number of times it 

undergoes reactivation. However, predator stress combines all three sensory modalities. 

Such unique complexity warrants a consideration of multiple trace theory (MTT), 

proposed by Nadel & Land (2000). MTT posits that every time a memory is recalled, a 

new trace is formed that is a replication of the original. If multiple traces of a single 

memory exist, then the very splintering of memory into whole new ones creates an 

inevitable condition whereby differing attributes of traces may be recalled in preference 

to others due to their relative subjective strength. This splintering would not necessarily 

be restricted to a given fear component, but to any conceivable attribute a rat may 

associate with a testing situation. A single reactivation may presumably activate 

numerous traces, yet others would inevitably lay dormant due to the likely failure of the 

reactivation to successfully eclipse all aspects of every trace. It is these lingering trac-..;s 

that may potentially contribute to the negative results of anisomycin for any given 

reconsolidation condition. Although at the present time purely speculative, this could be 

applicable to our current pattern of results. 
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Two major caveats must be addressed concerning further experimentation. It was 

stated above that an i.c.v. injection may avoid injection effects and their complication of 

the interpretation of the effects of anisomycin. If positive results for the drug are found 

with i.c.v. injection, then cannulation of anisomycin directly into the amygdala would 

further clarify the debate if this structure is necessary for consolidating and maintaining a 

predator-stress induced fear-related memory, as postulated by Fanselow and LeDoux 

(1999), or if the amygdala serves a modulatory influence, with such long-term memories 

being stored elsewhere (McGaugh, 2004). 

The issue of a possible secondary effect of a simultaneous decrease in 

catecholamine synthesis as a result of the administration of a protein synthesis inhibitor 

has been raised by a number of researchers as a possible explanation of the drug-induced 

amnesia for a given learning task (Flexner & Goodman, 1975; Flood, Smith, & Jarvik, 

1980). Although still considered a debatable point, Lundgren and Carr (1978) have 

concluded that the two processes may be successfully dissociated: the attenuation of the 

inhibitory effect of anisomycin by the administration of stimulants was not due to any 

obvious influence on catecholamine synthesis. Replication of Lundgren and Carr in the 

predator stress paradigm might clarify this issue. 

While further experimentation on protein synthesis inhibition would certainly 

elucidate additional processes that are involved in the consolidation and reconsolidation 

of a predator stress memory, protein synthesis inhibition will not likely be a viable 

pharmacological adjunct to exposure therapy in the foreseeable future. 
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Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure Captions 

Mean + SEM of time immobile during cat exposure are plotted for three 
cat exposed groups. The groups were all cat exposed rats exposed to a cat 
once (Single Exposure) and all cat exposed rats exposed to a cat twice, 
plotting responses on first and second cat exposure separately (Double 
Exposure Groups First and Second Exposure). Means marked similarly do 
not differ but differ from means marked differently. 

Mean + SEM of rat defensive response to cats over three cat exposed 
groups. The groups were all cat exposed rats exposed to a cat once (Single 
Exposure) and all cat exposed rats exposed to a cat twice, plotting 
responses on first and second cat exposure separately (Double Exposure 
Groups First and Second Exposure). Plotted are frequencies of active, 
passive and escape responses. Unmarked means do not differ. 

Mean+ SEM of elevated plus-maze behaviours (square root transformed) 
collapsed over one and two treatment conditions are plotted over three 
groups: handled controls, cat exposed with and without vehicle. Upper 
right panel shows the test effect for ratio time. In any given plot, means 
marked similarly do not differ but differ from means marked differently. 

Plotted in the upper panel are mean + SEM of number of fights in the 
social interaction test collapsed over one and two treatment conditions for 
three groups: handled controls, cat exposed with and without vehicle. The 
lower panel shows the group effect for this measure comparing controls, 
cat exposed only and vehicle collapsed over one and two treatment 
conditions, and groups exposed to a cat and given anisomycin after the 
first exposure (consolidation) or after the second cat exposure 
(reconsolidation). In any given plot, means marked similarly do not differ 
but differ from means marked differently. 

Mean+ SEM of elevated plus-maze behaviours (square root transformed) 
are plotted over four groups: handled (Control), cat exposed (once or twice 
with or without vehicle) (Predator Stressed), cat exposed once and given 
anisomycinjust after exposure (Consolidation) and cat exposed twice and 
given anisomycinjust after the second cat exposure (Reconsolidation). In 
any given plot means marked similarly do not differ but differ from means 
marked differently. Means with two letters fall between means marked 
with either letter. 
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Figure 6. 

Figure 7. 

Figure 8. 

Figure 9. 

Mean+ SEM of body weight (g) are plotted over four groups: handled 
controls, cat exposed with and without vehicle and cat exposed and given 
anisomycin. Data are plotted separately for rats in the consolidation (upper 
panel) and reconsolidation (lower panel) paradigms. In any given plot, 
means marked similarly do not differ but differ from means marked 
differently. Means with two letters fall between means marked with either 
letter. 

Median peak startle amplitudes as a ratio of body weight (kg) are plotted 
over four groups: handled controls, cat exposed with and without vehicle, 
and cat exposed and given anisomycin. Data are plotted separately for rats 
in the consolidation (upper panel) and reconsolidation (lower panel) 
paradigms. Within a paradigm plot, data from startle in the dark and in the 
light are also plotted separately. Within a panel, medians marked similarly 
do not differ but differ from medians marked differently (p<.05). Medians 
with two letters fall between means marked with either letter. 

Mean peak startle amplitude in the dark as a ratio of body weight is plotted 
over trial block for cat exposed only rats in the reconsolidation paradigm 
(raw data means). The means after 15% FFT smoothing are also plotted 
(smoothed data) along with the fitted exponential decline function. This 
example fit was good (p<.OOl, dfadjusted r2=.92). 

Mean+ SEM of block constants (tau) over four groups: handled controls, 
cat exposed with and without vehicle, and cat exposed and given 
anisomycin. Data are plotted separately for rats in the consolidation (upper 
panel) and reconsolidation (lower panel) paradigms. Within a paradigm 
plot, data from startle in the dark and in the light are also plotted 
separately. All means in the startle in the dark condition are unmarked and 
do not differ. For startle in the light, within a panel, means marked 
similarly do not differ but differ from means marked differently. 
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