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Abstract 

This thesis draws upou research in the areas of information rC'tri<.'val, chemical iufor­

matic , and computationa.l ('hcmistry. 

Many research initiatives deal with very large amounts of da ta . and as c1 result 

information retrieval systems arc becomiug more and more of c1 necessity. Chemically­

based information retrieval systems arc of particular interest. to ('Ompu t.at.ional chemists, 

as computational chemists not only produce large quantit ies of informat ion (data), 

but they also usc large quanti t ies of computer proce sing power ( P cycles). 

Currently there arc no tools available through any of t he Cauadian High-Performance 

Computing consortia t hat hc1ve been designed and implemented t.o support. t.he clat<l 

management activit ies of computational chemists. The only C'lectrouic resources t hM 

are pu blidy available contain information that has ei thcr been o btaincd experimen­

tally or through patent and publication scarche . 

A system by the name of Chcm-DRSI\1 has been designed and implemented in order 

to support t he t ructuring and browsing of computational chemistry data. It has 

been implemented using principles and methods associated with variou chemica.lly 

based data representation schemes and similari ty measures. This thesis presents ancl 

discusses the design , implementation and evaluation of the Chem-DRSM system. An 

evaluation of the similari ty measures found within the Chcm-DRS I system was con­

ducted using statistical information (precision and recall statistics), information from 
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the distribution of similarity scores with test structures, ;-mel information gat.hcn'cl 

from a lmman study that involved subjects with an expNt level of lmowlcdge in 

chemistry. 

The Chem-D RSM contaius t hrrr different similarity measures (namely thr cont.rx­

tual cosiue measure, standard cosine measure, and Tanimoto measure), which have 

all beeu adapted to make use of specialized chemical topological descriptors called 

Chemical Atom Topological Indices (CATI). The evaluation uot only compares the• 

performance of these metrics with each other, but also compares their perfonuancc' 

with a version of the Tanimoto measure which uses chemical fingerprints (which is 

considered to be an industry standard). 

Results of the stati tical evaluation showed that the tanclard cosme measure had 

a higher average precision (with a lower standard deviation) than tbe other measures 

(including the Tanimoto with chemical fingerprints). During the evaluation of the 

distribution of similarity scores produced by the different similarity measures it was 

observed that the standard cosine measure assessed the similarity of chemical struc­

tures with the most granularity. The level of granularity associated with the staudard 

cosine measure is attributed, in part, to its u ·e of statistical weighting information 

about the various descriptors found within chemical structures. This is in contrast to 

the Tanimoto measure, with chemical fingerprints, which only looks at the prc'sence 

and absence of properties when distinguishing chemical structures. Furthermore, the 

standard cosine mea ure also identified more similar structures (as datit>ified by the 

human study participants) than the Tanimoto measure. 
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All of these different evaluation results show that t.he standard cosine measure, which 

uses the CATI descriptors, defines a chemical information context for searching aud 

browsing that is more appropriate than the chemical information context created by 

the Tanimoto measure which uses dlC'mical fingerprints. 
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Chapter 1 

Introduction 

It is in a person's nature to want to learn about new things, and library-type resources 

are useful tools that can assist with the learning process. There are many different 

ways of obtaining information. In one instance this might involve searching for books 

or documents relating to a particular idea or subject. In auot her, it could involve 

browsing through information archives. 

As information is gather d and collected, a need anscs for this da.ta to be stored 

and organized so that it can be easily accessed by users. Conventional libraries have 

developed technique and schemes over hundreds of years to do this very thing. How­

ever, electronic or digital libraries are still very much in their infancy. Consequ ntly, 

questions arise as to how one should go about structuring, organizing and searching 

within these environments. Additional questions relating to the types of tools and 

sy tems available for such an organizational task are also po ·eel . 

1 



This thesis ndclrcsscs the problem of mauagiug and orgamzmg large collections of 

chemical structure data . A new system called Chem-DRSM (Chemical structure 

Data Represrnta tion Similarity Mrasm r) is prcsrnted. The Chem-DRS l systrm has 

been designed to provide c1.Ssistance to clwmists and chemical rcsearchrrs wit hin an 

electronic environment . This system distinguishes itself in two WHys. First, it nses 

a customized da ta representation scheme that contains atom-based and boncl-basccl 

topological descriptors, as well as computa tionally derived informe1tion. Sec·ond , it 

uses various similarity metrics that have been designed to lllaximizc the usc of the 

infonnatiou contained within t he chemical data representation . cheme. Thrse two 

features enhance the usability of t he ekctronic information found within chemical 

structures, which in turn aids with the organization and searching of elect ronic dtcm­

ical structure archives. 

1.1 Electronic Chemical Structure Archives 

One of thr most influent ial developments in the way information is stored and ac­

cessed , is the development. of what i. known today as the Internet or the World Wick 

Web (WWW). Since t he development of the Internet, in the early 1980's, information 

repositories that were once isolated are now connected to other su h repositories and 

libraries. Some people have drawn , imilarities between the Internet and the begin­

ning of a world-based encyclopedia [1]. 

In an attempt to bet ter organize collect ions of chemical structures, electronic databases 

of chemical structures have been created. Examples of this include the Protein Data 
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Bank (PDB) [2], the ational Cancn Institute ( CI) database [3], PuhChem [4], and 

the ZINC database [5]. One of the main advantages of these types of resources is their 

accessibility as you do not have to physically brat the location of the journal articles 

or at the location where the structures may be storrcl to ohtain information about 

a given structure. However, the maintainers of such collections are presented with a 

difficult task when trying to obtain the ame levels of structure e:md organization that 

e:u·e commonplace within a co11ventional library. 

One particular problem that is present with electronic chemical trncture collections 

is that the metadata , which aids in the da sification of the chemical structures, is 

not always readily available. It is possible for chemical structures to be accomp<mied 

by metada ta; however in many cases the electronic versions of chemical struc-tures do 

not have t hr same amount of metadata as that found in specialized chemical rcfereuce 

documents. 

Text mining [6], automatic document summarization [7], and keyphrase extraction [8] 

are examples of techniques that are applied to English language text locuments to 

solve this metadata problem. In terms of chemical structures, this problem is solved 

by using a number of different methods, including the translation of the chemical 

c tructure into some type of language-based representation (e.g SMILES [9 10] or 

InCh! [11]), some type of molecular graph or topological based representation (e.g. 

Maximum Common Subgraph (MCS) [12]) , or some type of representation that is 

based on computational chemistry (e.g quantum chemistry) [13]. By combining the 

computed information from the chemical structure with any metadata that might be 
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ava ilahl<'. rlH'mical stm ct.ur0s withi11 an eh'dronic collection can be better structured 

and organized. 

By relying 011 met hod that involve little or 110 human interaction to identify the 

information found with chemical structures. the structuring and organization of col­

lections of chemical structures has bee-om<> easier. Furthermore, by relying primarily 

on the topologically and computationally derived information as a basis for creating 

an organizational structure, whkb is repres<>ntative of the chemical structures in the 

collection. the task of updating the electronic collection ce1n be accomplished much 

faster as compared to the methods employed by traditional librarie ·. This is a good 

feature, as electronic collections tend to require updating on a more frequent basis 

because the contents of the collection 11r<' obtained from a wu·icty of different sources 

(e.g. experimental, theoretical, computational, publications, etc). 

Being able to browse and search effectively in an electronic environment can be a 

difficult task because the organizational . truct.urc and expertise found within a con­

ventional library is not there. As chemical structures arc converted into au electronic 

format , an opportunity to maximize information pre. ervation and organization is 

presented to the curators of digital archives. For example, different desniptor can 

be obtained and calculated during the conversion process of a chemical structure 

into an electronic format. A review of some of these electronic descriptors and data 

representation schemes i presented in Chapter 2. 
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1.2 Thesis Outline 

This thesis pn'S('lll s and investigates a met hod of electronically l'C'PH'S<.'Jtt ing the in­

formation found within a chemical structure. Furthermore. it uses I his information to 

determine chemical similarity using a mnuber of differeut similarity measures. Both a 

precision-recall statistical Pvaluatiou Hnd a human based tudy have beeu nuTied out 

to determine how well the informatiou stored within the d1:1 ta representation scheme 

can be usect to cletennine chemical simile1rity when nsing adaptations of standard 

informatiou retrieval metrics. 

Other than the Introcluction, this thesis consists of six chapters (2-7). Chapter 2 

reviews background work in the area of cl;-tta representation and chemical structure 

information. hapter 3 reviews and discusses similarity mea. ure: and similarity o­

efficients in terms of chemically-ba:ect information retrieval. hap! er 4 presents the 

Chem-DRS I system, which uses information from chemical stwctures to . upport 

information structuring, searching, and browsiug activities. Chapter 5 discusses an 

investigation designee! to evaluate t he performance of the Chem-DR SM system, a ucl 

presents the results that have been obtained. Chapter 6 draws from the observed 

result and the architecture of the hem-DBS I ystem to present a design for a 

comprehensive computational chemistry database. Finally. hapter 7 pre ents a dis­

cussion of the work within the thesis entire thesis as well as areas for future work. 
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Chapter 2 

Chemical Data Representation 

2.1 Introduction 

Many different data representation schemes lw.ve been developed in order to pro­

cess and stme chemical information. Some of the more comrnon data representation 

schemes have been created with a specific purpose or user group in mind . As au ex­

ample, chemists, physicists and biochemists may use a searching and browsing based 

data representation scheme such as SMILES (Simplified Molecular Input Line Entry 

Specification) when they are searching large databases for structures, compounds, or 

scaffold . 

However , once results that are of interest have been found, the same users are then 

required to change data representation schemes in order to continue their work. One 

reason for changing data representation schemes might be the requirement to perform 

addit ional calculations on a given structure. In this case, a data representatiou scheme 
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that has preserved and contains t he thn'<'-climcusional information of the structure 

(for example, a Cartesian roordinat(' file or Z-matrix) is n"quircd . 

This need to chang . data representation schemes highlights one of the ways in which 

there is a lark of continuity between how chemical data is stored aud how it is ac­

cessed. In some rases, chemical information repositories only store one or two of the 

different data representation schemes and scientists arc therefore required to employ 

additional tools, such as conversion software like OpcnBabcl [14. 15], to complete 

their work. 

This chapter present. a rev1ew of common data rcprc'scntat.ion fonna.ts that store 

chemically ba ed information, namely Chemical Properties and tvletaclata (2. 2.1 ), 

I\lolerular Graph Theory (2.2.2), atural-Language and Chemical Semantics (2.2.3) , 

and Quantum Chemistry (2.2.4) . 

2.2 Representing Chemical Information 

There are many reasons why chemical data would need to be searched. Examples in­

dude th need to search for a particular structure or sub-structure, wanting to screen 

structures for certain properties and characteristics, or perhaps t rying to complete 

a patent earch for a drug or related chemical structure. Whatever the rca. on for 

the search, the data representation scheme storing the chemical structure needs to be 

able to rapture enough information about the chemical structure to allow these types 

of searche to be completed in a fast , efficient and reliable manner. 
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Commou dat a representation s('hcmcs for chemical st ruct mcs typically involve one or 

more of the following stra tegies: t be use of mctad ata and other dcscri pt.ors relating 

to t he stru<"t mc: tlw use of graph theory: the· usc of chemicalnomeiJdature combiued 

wit h English language rules and cmtstructs; and the usc of quant lllll <·hcmist ry- based 

descriptors (e.g. origin-invariant uudea.r sccoud moment a ucl single point energy). 

2.2.1 Ch mical Properties and M etadata Approach 

l\Ietadata is not ouly limited to books or Hrticlc.; metacla ta can be used to enha11ce 

the description of anything. However, it is possible to extract too umch llH'tadata 

and thereby captme redundant information. Chemical struct.un's have a. la.rge uuul­

ber of properties a.ud information t hat ca.u be considered mctac!H t.a. l\1olecular de­

scriptors are good sources for chemical structure mctadata as the,v are numcrical 

values that characterize the pro pert ics of <1 nwlecule. Feher and Schmidt [16], as an 

example, u,·c molecular propcrtie. to examine the diffen' nccs between different com­

pound cla.ssc. (n <ttural products, molecules from combinatorial synthesis, and drug 

molecules) . lassification of chemical structures based on this kind of information 

is of particular interest to researcher in the area of combinatorial chemistry when 

trying to i leutify lead candidates for drug discovery. Iu the study conducted by Feher 

and Schmidt , 40 different propert ies were used when compar ing ,t ructures. Exam­

ples of such properties include, the number of carbon-nitrogen bonds, the number of 

nitrogen atoms, the normalized number of ring systems, and the ring fusion degree. 
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There are <1 wide range of pro pert ics t h<-1 t n m be derived frout dtcwical stn1<'t mes. 

Some of tlH' pro pert ics are mon' cout plcx the-w others, and provide varying degree's 

of information that can hr used to dis! inguish st ructmcs front OlH' auother. Some of 

the properties rqm'scnt values that arr simply the number of t imcs a certain feature 

occurs wit lti11 the structure. These' arc !mown as simple counts and examples in­

dude the numl)('r of carbon-carbon h01tds, the number of carbou-nitrogen bonds, the 

munber of rings, ancl the number of heavy atoms. However, simple counts arc only 

the beginning whcu it comes to descriptors of chemical . tructurcs. Descriptors can 

be more advanced and sub equeut ly n'quirc' more inform at ion processing ( t imc and 

computer power). Examples of advanced descriptors include topological indicrs [17 

21], molar refractivity [22, 23], kappa shape indices [2.J] ancl clcctrot.opological stHI.c' 

indices [25]. 

Although most propertie. and descriptor.· arc derived from the information cmttaiuccl 

within the chemical structure or the experimental condi tion, surrounding its creation, 

there arc some descriptors and properties that have no relationship to the structure 

at all. These descriptors are sometimes referred to as dummy numbers and on<' of the 

most well known examples of a dummy number is the hcmical bstra.cts ervicc 

(CAS) mtmbcr that is as ociated with a p;uticular structure [26] . Just as stll(knt 

numbers arc assigned based on an cnrollwcnt or registration ordering, the CAS num­

bers are assigned sequentially as structures arc registered in the Chemical Abstracts 

Service database. 
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2.2.2 Molecular G raph Theory Approach 

Whereas mokcular properties are ('Onsiclcrecl to he derived from t.l!e ('hemical strnc-

ture, the graph theory approach ('<lll ])(' thought of as a means of translating the shape 

and coimecbvity of the chemical struct nn' into an altenwte represcutation. 

Chcmic:al structures ('an be stored iu a uuml>cr of difFerent fi.le formats n.ud reprcsent.a-

t ions. These fik forma ts typically coutaiu information such as the t hrce-dimeusiona l 

roordiuate. of each of the atoms within the structure allCi iufonnHt.ion about how 

the atoms arc romtertecl. The IDL Ct\ lole('ular Design Limited) [27, 2 '] and DF 

(Structure Data File) [2 ] file formats arc good examples of types of file format where 

both structural aucl connectivity information is reprcseutccl. However, file formats 

with this information do not typically lend themselves to sC<U'C'hing, as ran be seen 

iu Figure 2.1. In order to better Sllpport searching and browsing. the structures arc 

translated into some type of a dah·l structure that ran support graphs and trees. 

Test_NCI/62500/62526_NCI 
OpenBabei05220913423D 

2 1 0 0 0 0 0 0 0 0999 V2000 
-1.0622 0.0000 0.0000 F 0 0 0 0 0 
0.8778 0.0000 0.0000 Na 0 0 0 0 0 

121000 
MEND 

Figure 2.1: Example MDL file for Sodium Fluoride (F a) 
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Snd1 a tnmslatio11 pron·ss t reHts the atoms within the structure as vert ices aud tile 

bonds within the structure as edges. OllC(' t lw chemical struct nrc has bceu trauslatccl 

into a molecular graph representation, desired components and comn1011 structura l 

fragments can be iclent ificd and S('arched for. 

Although molecular graph theory [29, 30] lends itself qni te well to chcmicctl struc­

t ures, there arc a munher of problems. The most dw.lknging problem rclc1t.cs to 

how the graph should h(' ordered. Depending on the starting point the same chem­

ical structure can generate graph rrprrscntations that have the nodes within the 

graph muubrred differently. To solve this problem , a standard (or canm1ical) order­

ing scheme can be applied during the creation of the graph representation [31 32]. 

As an example, Joclmm and Gast<'iger [31] use the following criteria to canouica.lly 

number atoms of a mol<'cular graph: atomic number, number of free electrons, num­

ber of atoms. atomic number of neighbours, number of bonds, bond priority, and the 

bond orclrr. 

Even with the ('anonical ordering of atoms within a mokcnlar graph, there is st ill 

ambiguity in how the chemical tructurcs arr represented. Figure 2.2 shows an exam­

ple of two chemical structmcs and their tran la tion to a graph. s cau be srcn, thr 

two diffcr<'nt chemical conformations arc rcprc, cntcd by the same two-dinwnsional 

graph. 
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Figure 2.2: Example of two different 3D structures being converted to the same 2D 

graph representation (C10H140 3 ). (Note the position of the atoms within the CH3 

group that is connected to the ring component of the structure). 
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2.2 .3 Natural-Language / Chemical Semantics Approach 

An alt.eruaJ.ive to the extraction of chemical propC'rtiC's anc\ molecular graph thC'ory is 

the combination of English language constructs and chemical semantics to represent 

chemical information. The most common reprcsenta tions to use this a pproa.ch arc the 

Simplified Iolccular Input Line Entry Specification (Sl\IILES) [9, 10] , the Universal 

Chemical Key (UCK) [33], the IUPAC Interuational Clwmicc1l Idcntifi(~r (InChi) [11] 

and the Chemical Markup Language (CML) [34] . 

Typically. these methods involve a similar translation process to that used with molec­

ular graphs. The structure is translated into its textual (or linear) representation as 

it is being traversed. In the case of SMILES, the translation process also involves 

the removal of Hydrogen atoms from the molecular graphs auc\ further parsing of the 

molecular graph by a linguistic grammar. The S 1ILES grammar cau c\eal with many 

different chemical semantics and various structural features. For example double 

bonds arc represented by " = " and triple bonds arc representee\ by " # " . Figure 2.3 

shows examples of four different SMILES orderings that can represent C:{H4 0 2 . The 

SMILES representation also has the abili ty to capture stereochemical relationships. 

For example, the configuration around double bonds can be specified by using "\" 

and "/", and the configuration at a tetrahedral carbon is specified using either '~u" 

or "@@" which represent counter-clockwise and clockwise traversals. 
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I 
H 

H 
/ 

Figure 2.3: Four different SMILES representations lor C:3l-L10 2 

The Sl\IILES system has been further extended by James, Weiniuger ancl Delany [35] 

to allow for the specification of patterns within chemica.! structures (as opposed to a 

single structure). This pattern .'pecific-ation language is rcfern'd to as l\IILES rbi-

trary Target Specification (SMARTS). l\IARTS is a language, based on the SMILES 

natural-language grammar, that allows the usn to spe ify. ubstrnctures and patt.emt>. 

For example, [#6] [CX3] (=0) [($[0X2HO] ( [#6]) [#6]) ,$( [#7] )] is a MARTS ex-

pression that matches an ester or amide [36]. 

Although these methods are able to capture a reasonable amouut of the information 

associated with a chemical structure, it is possible to have an ambiguous rcpresen-

tation. If the 1ILES string is constructed using molecular graphs that arc ore! creel 

differently, then it becomes pos iblc to have different S IILE strings representing 
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the same chemical structure (Figure 2.3). To deal with this issue, a canonical order­

ing algorithm [10] is used with thC' SMILES construction process to produce what is 

referred to as "Unique S 1ILES" or , .. Canonical SI\IILES". This canonical ordC'ring 

algorithm, called CA GEN. has two stages. The first stagC' of thC' algorithm, re­

ferred to as CA 0 , is used to labd a molecular structurC' with canonical la hcls. In 

CA TON the structure is treated as a graph with nodes (atoms) and edge. (bonds), 

and each atom is given a numerical label on the basis of its topology. The sC'cond 

stage of the algorithm, referred to as G E ES, generates a unique Sl\1ILES no tat ion 

as a tree representation of the molecular graph . GE ES . elects the starting Htom 

and makes branching decisions by referring to the canonical labels. as generated by 

the CA 0 algorithm. When the SMILES string has been canonically CTC'ated , it. 

is considered a unique SMILES string. The unique SMILES string for C3H,10 2 (as 

shown in Figure 2.3) is OC(=O)C=C. 

A subsequent study by Grossman [33] has shown that the algorithm described in 

Weininger [10] does not create a unique SMILES tring, a.nd that it is possible 

to produce ambiguous results with relatively simple chemical structure . Example' 

structures from Grossman 's work include 1,3-diethyl-5-methylhenzene (CuHI6- rsc 

structure 62141). Grossman's work highlights how differences in the initial ordering 

of the atoms within the structure can lead to different unique SMILES strings when 

t he CA GEN algorithm is used. 

It is important to note however that the published CA GE algorithm is not the 

same as the commercially available algorithm that the creators of the SMILES rep-

15 



rescntation (Da.v light Chemin \! Information Systems Inc.) usc for the genera t. iou of 

unique SMILES strings [37]. Consequent ly, clue to la.ck of access to this commeiTial 

software. it i. possible that the commercially based algori thm clo<'s not have the l'lmbi­

guities that. Grossman discovered. Although. since both S IlLES representations arc 

based on the use of a molecular graph, informat ion is still lost when converting chemi­

cal structures to molecular grR phs ( thn'e-climensiona.l to two-dimcusioual conversion). 

In response to the ambiguities discovered Grossman went on to propose his own 

solution, called the Universal Chemical I<cy (UCK) [33]. The UCK starts by creating 

a labeled graph for the chemical structure where the labeL contain information about 

the local connectivity of the structure. The next stc'p is to combine the information 

contained wit hin the labeled graph with information relat iug to the short('St pe1 th 

bctweeu every pair of atoms within the structure. This information is then concate­

nated to create a unique string, a.nd for data storage purposes the string is furt her 

processed using the MD5 ha hing algorithm. T he two major clisadvantHgcs of this 

method arc that the -~dD5 hashing algorithm can produce ambiguous results in tha t 

different input· into the ,fD5 hashing algorit hm can produce th(' same output [3 ], 

and the result ing MD5 string is not easily deciphered. 

T he International Union of Pure and Applied Chemi. try (IUPAC) has also creat ed 

their own chemical structure representation, called the International Chemical Iden­

t ifier (InChi) [11]. In addi tion to using canonically ordered information about the 

structure (ordered in a way very similar to the CANGE algorithm), t his approach 

uses many different types of information about the chemical structure and stores this 
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in predefined layers. An example of an IuChi string cau be sc'cn in Figure 2.4. As 

ran be seen, the InCh! representation is not easily parsed. Although t.he InCh! repre-

seutation was not designed to be interpreted hy humans. some i11. ·ight can be gained 

by lookiug at the different layers that make up the InCh! reprcsentatiou as a whole. 

As pointed out within the InCh I clormnenta tion [39] , there arc six different· In Chi 

layer types, each representing a different d ass of structural information. These layers 

arc the main layer.. the charge layer , the stereochemical layer, the isotopic layer, the 

fixed- H layer and the reconnected layer. 

H 

1 
0 c H 

H 
/ ~c / ~ / c 

II I 
H 

0 

lnChi=1/C3H402/c1 -2-3(4)5/h2H, 1 H2,(H,4,5) 

Figure 2.4: InCh! reprcscnt.<-1.tion for C3H4 0 2 

Different scientists have different needs whcu it comes to chemical structure informa-

tion. InCh! has been designed in such a way as to provide maximum flexibility in 

how it represents different information components. The flexibility of InCh! can be 
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at.tri lmtcd. in part, to how the In Chi identifier is represcutc'cl. Tile iclcnt ificr ancl asso­

ciated text output may be parsed and annotated in either a simple plain text or X 11. 

The fact th8t. the InChi identifier conforms to XM1 standards means that it can also 

become part of the structural representation generated using the Chemical Markup 

1anguagl' (CM1) [34]. C 11 has been designed in such a way that it draws from 

the information representation techniques found within various markup hmguagcs 

(HT 11, X 11 and SG~11 for example) . 

Markup languages have a fundamental concept, or building block, known as au iden­

tifier. When a person ere a tcs an HTT\11 document they usc various iclent ifiers to 

structure. and then subsequently parse, the information within a document. C 11 

attempts to provide a similar mechanism for the identification and structuring of ill­

format ion found within. and associated with, chemical structures. Figure 2.5 is an 

example of the CM1 representation of a. chemical structure. 

If one wanted to add InChi information to the G~11 example in Figure 2.5, then the 

following CM1 rode could be added to the GM1 file; <identifier convention=" iupac 

inchi" value= "InChi=1/C3H402/c1-2-3(4)5/h2H, 1H2, (H,4,5) ">. The ease with 

which the two can be combined demonstrates how the two information representation 

schemes ran be adapted to compliment each other. The combination of InChi and 

Cl\11 has become a primary method for representing chemical information within 

environments that require X 11 standards. 
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<molecule id="id4 721_NCI.xyz" xmlns="http ://~N~~wt.xml-cml.org/schema"> 

<name>4 721_ NCI.xyz</name> 
<atomArray> 
<atom id="a1" elementType="C" x-3="0.654300" y3="-0.687000" z3="-0.000200"J> 
<atom id="a2" elementType="C" x3="-0.426200" y3="0.030400" z3="-0.000000"J> 
<atom id="a3" elementType="O" x3="-0.444700" y3="1.245700" z3="0.000200"/> 
<atom id="a4" elementType="O" xJ="-1 .586400" yJ="-0.659300" z3="-0.000100"/ > 
<atom id="a5" elementType="C" x-3="1 .997700" y3="-0.006000" zJ="-0.000100"/> 
<atom id="a6" elementType="H" x3="0.866900" y3="-1 . 766900" z3="0.0041 00"!> 
<atom id="a7" elementType="H" x3="-2.430300" y3="-0.187200" z3="-0.000000"/> 
<atom id="a8" elementType="H" x3="2.940200" y3="-0.533300" zJ="-0.000300"/> 
<atom id="a9" elementType="H" x3="1 .983000" y3="1 .073900" z3="0.000100"/> 

<! atomArray > 
<bondArray> 
<bond atomRefs2="a8 a5" order="1"/> 
<bond atomRefs2="a1 a5" order="2"/> 
<bond atomRefs2="a1 a2" order="1"/> 
<bond atomRefs2="a1 a6" order="1"/> 
<bond atomRefs2="a4 a2" order-"1"/> 
<bond atomRefs2="a4 a7'' order-"1"/> 
<bond atomRefs2="a5 a9" order="1"/> 
<bond atomRefs2="a2 a3" order-"2"/> 

<l bondArray> 
</molecule> 
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2.2.4 Quantum Chemistry-Based Approach 

All the methods reviewed thus far involve the identification a.ud orgauizM.iou of in­

formation associated with chemical structures. The approcwh involving quantum 

chemistry is no different. Quautum chemistry uses the information contaim'd within 

the wavefunction aucl density to bdter undrrstancl the properties and behaviom of a 

gi vcn chemical structure. 

The mam disadvantage of the quantum chemistry approach is that even the suu­

plest of approximations using the wavcfunrtion ran be very costly iu terms of PU 

time and required computational resomces. In contrast to this disadvantc1.ge, the only 

error associated with the quantum chemistry calculations is in the method itself. One 

part icular advantage of this approach, is that ba ·eel on the rc ·tdt from one raknla.­

tion, many other molecular de. criptors may subsequently be derived. This in tnru 

ran assist database designers as they decide what data values are to be stored and 

what data values arc to be derived [40]. 

2.3 Summary 

Upon the completion of the review of data representation schemes, it is concluded that 

although a great deal of chemical information is captured through the usc of meta­

data, chemical properties, molecular graphs, textual representations, and quantum 

descriptors, there arc till defici ncics as chemical information can be lost and im­

properly approximated based up n the choices made for data representation. These 

deficiencies are highlighted by the changing needs of chemical researchers who are 
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becoming more aud more depencl('llt 011 SJWCializ:ecl iufomwt ion JllHnagemcut.. For 

example, romput.at.ioual chemists uccd to he able to easily usc the information that 

is contained wit hiu transition states, ('Xci Led sta t.cs, and conformers and this is infor­

mation which is not easy (or in some c-ases, even possible) to represent with the data 

representation schemes clcscribccl i11 this chapter. 
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Chapter 3 

Similarity / Searching Methods 

and Techniques 

3.1 Introduction 

The quali ty of re. ults obtained through searching and browsing activit ies is depen­

dent , in part , on the method in which the data ha. been to reel and organized . Over 

the years, librarians have played a vital role, not only in the organization and clas­

sification of information, but also in t he area of data search strategies and search 

design. With the development of tools that organize and structure information (for 

example, the World Wide Web and database systems), information resources have 

been migrated to electronic warehouses and digital libraries. As a result, people arc 

now able to access a wide range of information resources without being concerned 

about geographical proximity or restrict ions. 
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Google [41] , 13ing [42] and the New Zcal;md Digital Library [43] arc cxmnplcs of 

the many different systems that arc a vail able to digitally store and access iufonna­

tiou. These three system · serve as example information repositories that are generic in 

11aturc as they have been designed to process multi-disciplinary information from nml­

tiple data sources (e.g. images, maps, text. books. etc). The Proteiu Data Bank [2] 

a11d the National Cancer Institute ( CI) Database [3], on the other hand, are exam­

ples of purpose lmilt iuforma.tion mauagcment and retrieval systems that concentrate 

on a specific area or discipline. This chapter out lines a number of different searching 

methods designed to lw used with the different chemical data representation schemes 

outlined in the prC'vious chaptC'r. 

3.2 Properties and Metadata Search Methods 

13y usiug various search criteria, one can proceed to search electronic resources through 

the usc of different query constructs. Boolean and ranked queries arc the two mo, t 

common types of queries in use. 

Boolean querie usc logical operators (such as A D, OR and NOT) to create logical 

search expression ·. These expressions arc then combined in various ways to return 

to the user a list of matching search results from the electronic data resourcC'. Al­

though Boolean query techniques arc u. cful, they are unable to provide any ordering 

(or ranking) of the results. From the point of view of the retrieval . yst.C'm all the 

search resull.s are equally correct a. they satisfy the Bookan C'xpre. sion contained in 

the query. 
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By using 13oolcau qurrics, it becomes possible to search for c!H'lllicH I structures ttsiug 

logical c'xprcssions that arr based 011 lllC'( adclt a and other proprrty i11fonua tio11 that 

has been rxtnlctrd from the chrmical st ructurr. As an rxHmpk, a searc·h query could 

be constructed to find all of thr structures that contaiu a carbou-c·arbon triple bond. 

However, the usc of a Boolean query pu ts the onus on the user t.o understand t he 

pro pert ic's being consickred. and to ere ate c1 sui table logical expression for searching. 

If a user wanted to usc an automatic approach where thr srarch was simply to fiud 

all the dlC'mical stmcturcs t.hat arc similar to a given structure, then some typr of 

a searching method that could provide a similarity or conficlc'JH'<' rating would br 

required. If a Boolean search , tra.t.cgy was usrd, then the task of query refiurlllC'IIt 

would be difficult as the searcher wonlcl have to reconstruct or add to their logical 

expression with each iteration. 

Iu contrast to a Boolean query is the idea of a ranked query. Rankrd queries search 

for results by lookiug at. a set of properties aud rather than trying to match an explicit 

logical exprrssion, the information being SC'<UThed is instead ranked based on how well 

the items best match the earch criteria. The ordering i. based 011 a confidence or 

similarity scorr that the search algorithm ;-Lssigns to each item ba.secl on the qu<'ry it 

is given. 
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3.3 Similarity and Distance Coefficients 

The search specifications, which arc contained within the query, Heed to be iut.erprd .ecl 

in a timely fashion so that the cl rlivcry of information ran be done in a reasoua blr 

amount of t ime. As such. the algorithm used to genera te tlH' ranking score must· not 

only be accurate, reliable, and consistent, but it must also lw fast . 

Information retrieval sr1ence has been investigating m c-111y different ranking Ille('h­

cuusms for tL ·e wi th English language text. One approach is to usc informat ion r<'­

la t.ing to the statistical occurrence of words within documents, as opposed to word 

meanings. Examples of t his approach include t he cosine coefficient [1], or the i11ner 

product coefficient [1]. Other methods, such as semantic indexing [ 44], attempt to 

better underst and and use word meanings and their context. However, even when 

using advanrecl method, that utilize word semantics and meaning, t hc're is still diffi­

cul ty in rap turing the au thor '. meaning and the linguistic context of the document . 

Chemical properties, structure fragments, and metadata are considered to have less 

ambiguou information when compared with English language text . A a resul t , var­

ious mechanisms such as Wolfram Alpha [45] have been developed in an attempt t o 

capture chemical information and subsequently provide accurate, fast , and rcliahle 

search tooL based on t his chemical information. \i\ hen searching for chemical infor­

mation, it is possible to use Boolean search techniques but this approach is limited in 

nature. Consequent ly lifl'ercnt ranking algorit hms have been modified and adapted 

for usc wit h various types of chemical information. 
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A rev1ew of differmt chemical similari ty searching algorit.lun:-; is prCS('uted by Wil­

lett , Barnard and Downs [46]. As part of the review. a JH'rfonuHncc comparison of 

similarity aud clistauce coefficieuts by Willet t and Wintennau [47] was cliscussccl. In 

this perforu1ance review. a metric known as the Tanimoto similar ity measure [4 ] was 

deemed to be the preferred measllrc'. The Tanimoto simil;ui ty cod fi cicut is calculated 

using the following equation 

(3.1 ) 

where o represents the number of properties found in A, N& represents the muuber 

of properties foullCI in B and Non& represeuts the m1mber of propert ies common to 

both A aud B. Although A and 13 can be c-u1y two t hings being compared , Willet t and 

Wintermaus evaluation of the Tanimoto similarity coefficient was conducted using 

chemical structures. T he preference obser ved in the study was at t ributed partly to 

the bias of a subjective evaluation of t.lw similari ty measure, aucl part ly because t be 

calculation of the Tanimoto coefficient is uot as complex as other measures, and ns 

such is faster. Whcu implementing the Tanimoto equation in chemical information 

management and retrieval systems, it is t h user and t he system de. igncr t hat have 

the a bility to determine what propert ies a rc considered when calculating similarity. 

This is in contrast. to Boolean searches where the user is required to cr "at.c the logical 

expression for searching. 

A common approach for searching is t.o use a Tanimoto coefficient that. has been 

calculat e l u, ing chemical fingerprints. A fingerprint , iu this context , is created by 
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<"Ombiu iug a BumbC'r of different properties iu order to sunHllarir.c' I he dJcJnical stru<"-

tmc. Some of the properties us<'cl wit.l!iu LhC' chemical fingerprints iuclude sill!plc 

counts, and the presence of rcrt nin su hstrud urcs. A list of c1ll possible properties arc 

treated as a vector with each property bei ug assigned a particular hit. If that item is 

found within agiven structure, then that particular bit is activated. otherwise the bit 

remains off. n example of how fingcrpri11ts are created can be seen in Figmc 3.1. 

where va.riom; structural bits arc activated for C4H 100S. 

s 

/ 
c 

~/ c 

0 

~c / 
c 

CN coc cc co CCC c CCN 0 N ceo 
csccco 0 0 1 1 1 1 0 1 0 1 

Figure 3.1: Partial fingerprint for C.1 H 1008. ( ote: hydrogen atoms arc not. shown in 
structural representation ·). 

Once the fingerprint. have been determined for multiple , trurtures, then the Tanimoto 

equation ran be applied to a sess chemical similarity. Figure 3.2 shows representative 

fingerprints for two different chemical structures, namely ctl H 1008 and GH 14 028, as 

well as the iiJtersertion of the two fingerprints. Even though the Tanimoto equation 

produce, a confidence score of 1.0 (100% similarity) when using the set of properties 
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/ 
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~/~c/ 
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(' 
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s 

Structure A 

0 "-._ c /c ~c/ ~c / 
Structure B 

CN coc cc co CCC c CCN 0 N ceo 
Structure A (CSCCCO) 0 0 1 1 1 1 0 1 0 

Structure B (OCCCSCCCO) 0 0 1 1 1 1 0 1 0 
Structure A & B 0 0 1 1 1 1 0 1 0 

Figure 3.2: Partial fingerprint comparison of C4 H 100S and C6 H 14 0 2S. ( ote: hydro­
gen atom arc not shown in structural representations). 
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in Figun' 3. 2, it is important t.o note t lw t only the prcsC'ncc' of propC'rt ics wi t.hi11 t be 

chC'mical fingerprints, and not their quantities of occurancc, is rcprcscut.cd (as can 

be SC'cn with the (CCC) property) . However, the usc of the Tanimoto equation and 

chemical fingC'rprints is considered t.o bC' an industry standard in t C'n ns of assessing 

the . imilari t.y of chemical structures. 

3.4 Fragment-Based Similarity Searching 

The similarity measures outlined thus far do not provide' any means to identify lo al 

regions of similarity between two structures [49]. As an example, a Tanimoto similar­

ity score does not provide any in.'ight into what common components two chemical 

structure. might have. Rather , the similarity . core is just a measure of confidence as 

to how similar the two structures ar . 

An alternative approach to calculating similarity scores, or coefficient. , involves the 

generat ion of a mapping or alignment of the common components of two structures. 

An example of this approach is called the maximum common . ubgraph ( 1CS) [12] 

which is defined a the largest et of nodes (atoms) and edges (bonds) in common 

between two molecular graphs (structures). Figure 3.3 is an example of the type of 

information that is captured within a 1CS, the MCS of structure A & B represents 

the structural components that arc the sam e within the two different structures. It 

is important to note that t he determination of the l\ICS for a given set of graphs 

is a NP-bouncl problem. As such , calculation t imes can increase drastically as the 

number of graphs being compared increase . 
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However, the informa.tion contained wi thiu tbc M CS can he n sccl a::-> a 1ncasurc' of 

. imilarity. For example the ratio bl'twcctl the size of tbc MCS aud the size of the 

structures cau provide iusight into how similar two strnctures arc. Additionally, the 

l\l CS can be used to assist with modeling reactions, as thC' :i\1 CS between prod nets 

and reactants providC's information as to where reaction activity (b onds being broken, 

bouds changing, atoms b ciug rcmovc'd , etc) is taking pla.cc [50]. 

otable work in this area includes the development of a similarity algori thm by Ray­

mond ct.. e-ll . [51] in 2002 that. uses various heuristics when idcutify ing a 1\ICS. On<' of 

the nota ble features of this a lgorithm is t hat it has the ability to perform tens of thou­

sauds of comparisons per miuut.c lwcause it. uses specialized pre-screening techniques 

to reduce the munbcr of MCS calculatious that. ult imately nc'ed to be p erformed . 

Using the MCS as search criteria provides localized information ab out the chemi­

cal structures being considered, information such as recep tor or do king sites which 

can su bscquently provide m ore in::;ight into the na.ture of the chemical structure. 

However, it is . till limited by t he inabili ty of t he graph representation to capture 

three-dimensional information (as cau be seen in Figure 2.2, Section 2. 2.2) . 

Even though the M CS docs not capture all of the three-dimensional information 

relating to a chemical structure, it can be combined with other complimentary cal­

culations for t he purpose of determining chemical structure a lignment which can be 

useful when determining chemical . ·imilarity. Work in the a rea of t he automat ic 
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Structure A 
Structure B 

Maximum Common Subgraph (A & B) 

Figure 3.3: Maximum common subgraph example. ( ote the only difference between 

structures A and B is the different ring ub. t ituents) 
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alignment of three-dimensional strud.mcs has been complct.cd by Girones, Robert., 

e:u 1d Carbo-Dorca [52], whose approach is based on the classification of atoms within 

the structure and interatomic distances. Dura and Hopfinger [13], 011 the other hand , 

have taken a u alternate approach to this problem as they usc t.!Je conformational 

energy profile of the molecule to assist with t.he cletennination of similarity. 

3.5 Summary 

Upon reviewing the different. methods of assessing similarity and the a.ssocia t d . earch­

ing techniques, it is concluded that a ranked measure would scrv<' to offer the best. 

balance between data representation scheme flexibility and computer processing re­

quirements. T he next step i to implement a system tha.t. makes usc of a suitable 

dat a rcprcsc'ntation scheme and appropriate . ·imilarity measures. The next chapter 

in this t hcsi outlines the Chem-DRSl\1 system which is a system that was created to 

support searching a.nd browsing activit ies that relate to chemical st.mctnrc data. 
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Chapter 4 

The Chem-DRSM System 

Computational chemists rcqmrc detailed information a i)Ollt the three-dimensional 

nature of a chemical stmcturc when performing calculations. One' of the design chal­

lc11ges with this thesis has been to either create or find suitable methodologies that 

will allow for the efficient storage of three-dimensional information. The caveat is 

that this information must also be stored in such a way that it not only supports 

.-car-ching and browsing, but that it also provides users with rcsult.s that arc uou­

ambiguous. Furthermore, the information being returned must preserve a ll of the 

structure's information (e.g the three dimensional information of the structure and 

not a two dim('llsional molecular graph or projection). 

SMILES, InChi and molecular graph-based approaches do npport searching and 

browsing, but their rcpre.-cntation of a chemical structure's three-dimcnsiOIJal infor­

matiou is either stored in an ambiguous way or is non-existent. This makes it very 

difficult for computational chemists to make usc of the informat ion found within the, c 

approaches as it is the three-dimensional information that is required by many differ-
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cut compn te1 t ioual methods. 011 the other hand howcvc'r, it is vcTy difficult to scnrch 

for iuformation based on the three-dimensional information alone cUld as sud1 tools 

that can support information searching a.ncl browsing as well as preserving a chemical 

structure's three-dimensional information are needed. 

4.1 Multi-Component Data Representation Scheme 

(MCDRS) 

There are mauy different mechanisms available for capturing the information con­

tained within a chemical structure. In addition to the mechanisms that usc chemi­

cal properties a.nd metaclata (Sectiou 2.2.1), molecular graph theory (Section 2.2.2) 

and t he combination of Euglish language constructs with chemical semantics (Sec­

tion 2.2.3), there are also matrix based formats and numerical invariants that ca11 be 

derived from the information found within a chemical structure. Some of the more 

common examples of these include the atom connectivity matrix [53], and the Weiner 

number [19]. 

One of the key components of this thesis is the creation and evaluation of a novel 

method for capturing the information contained within a chcmi al structure. When 

creating this novel data representation scheme, certain goals and objectives were 

decided upon. A summary of these design goals can be seen in Table 4.1. The pur­

pose of the design goals is to influence how the information used to classify chemical 

structure is created, stored and accessed. Two of the key de. ign goals arc that. the 

representation of a chemical structure is not ambiguous, and that no information 
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( iududing the thrcc-dimeusional shH pe of the structure) is lost . 

A motivating factor for the dcvelopmcut. of this Multi-Compoucut Data Repn'S('ll-

tation Scheme ( ICDRS) has been the special needs of rcscardwrs tha t work in thr 

area of computational chemistry. Computational chemists have V<'ry complex uccds, 

including being able to distinguish between ground-state geometric. aud transition-

state gcometrit'S, a wdl as being a.ble to ideutify conformers and structural isomers. 

Table 4.1: ~Iulti-Component Data Represcut ation Scheme ( ICDRS) design goals. 

Design Goals Notes 
Threc-dimensioual information Ensure that no iufonnation 

is preserved. is lost. 
The information is non-ambiguous. The information being used in the data 

representation scheme is dear, concise 
and does not have multiple interpretatio11s 

The process to generate the data Information for the cia ta representation 
representation scheme is not scheme will need to be processed i11 real 
computationally intensive. t ime to support searching and browsing. 

The information format is portable Not platform or 
and easily accessible. operating sy. tem restrictive. 

The information format is compatible Easy to use and easy for users to 
with and easily integrated into adopt into their workflow. 

computational chemistry 
and job scheduling syst ems. 

Supports parallel processing and Ensure . calability and 
parallel architectm e. flexibili ty as data sizes 

and processing requirements grow. 

The design goals listed in Table 4.1 have b en satisfied through the use of a datH 

repre. eutation scheme that combines topological, semantic, and computational infor-

mation as well as standard three-dimensional Cartesian coordinates, and both the 
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In Chi and canonical Sl\1ILES d<'scriptors. Figme 4.1 outliuc's the' struct.ur<' awl the 

components of this data represent a t.ion scheme, which is referred to as the l\1 ult.i-

Component Data Represeut.ation Scheme ( ICDRS). Each of the compouent.s will be 

discussed in the following subscrt ions. 

X YZ Chemical Atom Chemical Bond 

Cartesian Topological Topological 

Coordinates Indices Indices 

(CATI) (CBTI) 

:'<Juclear Atomic Origin-In variant 

Repulsion Nuclear l\uclear 
Repul ion 

(complete structure) ccond 
(contribution of each atom) 

Moment 

Single- Point 

ST0-3G InC h I SMILES 

Energy 

Optional Mettulma 

(Level ofThcory, Calculation T. pe. Software, Density Matrix, Frequencies) 

Figure 4.1: Iulti-Component Data Representation Scheme - Overview. 
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4.1.1 Chemical Atom Topological Index ( CATI) 

It is t rivial to label t he nodes of a gn"lph gencra.tE'd by a cht'mical structure with atomic 

m1mbers. However , this docs not provide much insight iuto the chemical structme as 

this same information could he oht ainccl by looking at the chemica I formula aud the 

connectivity matrix. Furthermore. if one is to consider each cl<'meut i11 the periodic 

table as a word, then we arc given at most 100 of t hcs(' words to describe all the 

different chemical structures which is insufficient as it is possible to hcwe very dif­

ferent stmctures with the same formula . Chemical Atom Topological Index (CATI), 

developed by R.. Poirier (unpublished ), has been design eel to provide an E'nhancc'd level 

of granulari ty when representing the atoms that arc found within a given stntcture. 

This enhanced level of granularity Ci::Ul be attributed to two simple matlJcmaJ.ic<d 

rules, which arc used to define a new vocabulary that describes chemical structures. 

In designing this standardized vocabulary, two key factors were considered; namely 

the canonical ordering of information, and computer processing requirements. By cre­

ating rules that do not require any canonical ordering, some of the diffic ulties t hat arc 

faced by other methods used to identify and name chemical structures (e.g. S fiLES 

and InChi ) have been avoided. Likewi. e, by building on four simple components: 

atomic number , valency, maximum valency. and connectivity, t he requirement for 

fast computer processing t imes has not been compromised. Throughout the develop­

ment and tc ting of in-house software associated with this vocabulary it was observed 

that the average time required to obtain and calculate all of the required information 

h·om a Cartesian coordinate file was less than 1 second per structure when using a. 
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2.6G Hz computer processor. 

The CATis arc created for each atom by combining the atomic munber with the 

results from two different calculations. The first value, (, which uses the connectivity 

of the atom , is calculated as 
71 

( = L (Z- 2)(i) ( 4.1) 
i= l 

where Z is the atomic number. In the calculation of (, the atoms arc ordered from 1 

to n such that their atomic numbers are sorted from lowest to highest. The second 

value, E, , is calculated as ( v - l 1na:r) where v is t he current valence ( # of atoms to 

which the current atom is bonded) and Vma:r is the maximum valence. The Z, E, and 

(values are combined to form a CATI , Z((,E,) . 

Figures 4.2 and 4.3 arc examples of how the CATI can be used to distinguish two 

different chemical structures with the same formula. The structure iu Figure 4.2 has 

six atoms with a CATI value of 1(4, 0) and six atoms with a CATI value of 6(19, - 1). 

Whereas the structure in Figure 4.3 has six atoms with a CATI value of 1(4, 0) , five 

atoms with a CATI value of 6(19, - 1), and one atom with a CATI value of 6(9, -1). 

Although the CATis are quite descriptive in nature, they are not unique. It is pos-

sible, as it is with words, to have a CATI that has multiple meanings. One example 

is a carbon atom that is connected to two hydrogen atoms and two oxygen atoms, 

which has a CATI of 6(39,0). However, a carbon atom that is connected to two other 

carbon atoms, a nitrogen atom, and a hydrogen atom also has a CATI of 6(39,0). 
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Node (Z) ( ~ 
1 6 19 -1 
2 6 19 -1 
3 6 19 -1 
4 G 19 -1 
5 6 19 -1 

7 6 6 19 -1 
7 1 4 0 
8 1 4 0 
9 1 4 0 
10 1 4 0 
11 1 4 0 
12 1 4 0 

Figure 4.2: CATI for C6 H6 example 1. 

4.1.2 Chemical Bond Topological Indices (CBTI) 

CATI descriptors only describe part of the topological information contained within 

a chemical structure. If only the CATI were known, and not the connectivity, then it 

would be difficult to identify important characteristics within the structure. Further-

more, as described in Section 4.1.1 , there are cases where CATI can have multiple 

meanings, and consequently t he information associated with CATI is not enough to 

distinguish a structure from another or to determine if a certain fuuctional group is 

present or not. 

An example of the inadequacy of CATI a lone to distinguish some functional groups 

can be seen in the following example. An oxygen atom that is double bonded to a 
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Nod<' z ( E. 
1 6 19 -1 
2 6 19 -1 
3 6 19 -1 
4 6 19 -1 
5 6 19 -1 
6 G 9 -1 
7 1 4 0 
8 1 4 0 
9 1 4 0 
10 1 4 () 

11 1 4 0 
12 1 -1 0 

Figure 4.3: CATI for C6 H6 cxample 2. 

carbon atom would have a CATI of 8(4,-1) and an oxygen tha.t is bonded to both a 

carbon and a hydrogen would have a CATI of 8(7,0). Unless information i · known 

about how these atoms arc connected, and to what, it is impossible to determine 

whether or not a certain functional group is present. In the case of an alcohol func-

t ional group, there is an -OH group bonded to a carbon. However, if that same 

carbon is also double bonded to an oxygen, then it is considered to be a carboxyl 

group instead of an alcohol. 

By combining the different CATI in such a way that their connectivity and bond in-

formation is also captured, additional information about the structure can be stored. 

Chemical Bond Topological Indices (CBTI), developed by R.Poirier (unpublished), 

can be defined using CATI and various textual representations of the bonds. The 

general format of each component of the CBTI representation is as follows: 

(node 1 : node2 )[CATI 1 < textual bond identifier > CATI2] 
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where (uoclc1 : uod('2 ) refers to nodes (or atoms) withiu the structun' that an ' boll(lccl 

by the bond type indicc1 ted iu the textw-tl bond identifier, <1IHI hHv<' CATI given by 

CATI 1 ancl C TI2 respectively. Table 4.2 outlines the difl:'creut bond types alHI tex-

tual representations used within the CBTI descriptor. 

Tablr 4.2: Bond representation exH111plcs, HS used in th<' ChcmicHl 13om! Topological 
Indices ( CBTI). 

Bond Type n epreseut atiou 
singlc bond -

double bond --

triple bone! # 
aromatic bond rv 

weak bond (e.g. transit ion stHte - forming, breaking) * 

An example of a CBTI would be (2: 1) 8(4. - 1) = 6(34. - 1) which clrscribes a CATI 

of type (4, - 1) that is connected by a double bond to a CATI of type 6(34,-1). 

Figure 4.4 provides an excunple as to how the combination of CATI and CBTI can 

be used to identify different components within a particular dwmical structure. The 

first structure in Figure 4.4 contains a carboxyl group which can be identified from 

the following CBTI: 

(3 : 1)[ (7, 0)-6(34, -1)], (3 : 4)[ (7, 0)-1(6, 0)] . (2: 1)[8(4, - 1)= 6(34, - 1)] 

From this informat ion it can be determined that there is a double bond between 

an oxygen and a carbon (nodes 2 and 1), and a single bond betwren an oxygeu (node 

2) t hat i bonded to a hydrogen and the same carbon (node 1). sing imilar infor-
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uwtiou, it C'an e1 lso be cktcnuined that the sc'C'Ollcl stntcture in F igure -1.4 only has au 

-OH gronp comwcted to the central carbon and that it is not 1:1 ('arboxyl. The alcohol 

functional group (-OH) can bc> identified using CATI descriptors ou their ow11. but 

the identification of the carboxyl group requires both CATI and CBTI drsniptors. 

This example illustrates how the combination of CATI and CBTI drscriptors can be 

used to distinguish between different functional groups. 

Iu son1e cases it is difficult to clctenninc the type of bond that exists between two 

atoms. When using the Cartesian coordinates of a chemical structure to determine 

the diffcrc>nt types of bonds that are present, the distance between the atoms provides 

the necessary insight as how best to define a particular boud. For the creHtion of the 

CBTI descriptors, the bond order [54] is calculated by evalua.ting the wave function 

(using the Hart.ree-Fock method [55] and the ST0-3G basis set [56]). However, if a set 

of Cartesian coordinat.rs has been incorrectly constructrd. or if a threr-dimensional 

struct-ure has been "flattened" to two dimensious, then there is a high probability that 

some of the bouds will be inC'orrect . In this case, the Cartesian coordinates would 

have to be reconstructed or an approximation made by creating a representation of 

the structure using some type of a chemical editor. 
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(H) Carboxyl CI3TI Example 

Group tomic T umber CATI 

I! 
0 

('-(' 

\ 
('- J 

O il 

2 

I 
\ 

3.'1 

/'d(l,-1) 

c-c;(\,-1) 

8(7.0) .1 (6,0) 

Node 1 Node 2 CATI1 I3ond CATI2 
3 1 8(7,0) - 6(34,-1) 
3 4 8(7,0) - 1(6,0) 
2 1 8(4,-1) - 6(34,-1) -

(b) Alcohol CI3TI Example 

Group tomic Number CATI 

1
2,3,,1.5 /G( 10,0), I ('1,0), 1 ( 1,0), I ( 1,0) 

C- J \ C - 6(\,0) 

6, 7 '13(7.0), I (6,0) 

Node 1 Node 2 CATI1 Bond CATI2 
6 1 8(7,0) - 6(30,-1) 
6 7 8(7,0) - 1(6,0) 
1 2 6(30,0) - 6(10,0) 
2 3 6(10,0) - 1 ( 4,0) 
2 4 6(10,0) - 1(4,0) 
2 5 6(10,0) - 1(4,0) 

Figure 4.4: Chemical bond topological indices (CBTI) example differentiating be­
tween a tructurc that has a carboxyl functional group (a) and a structure that ha. · 
an alcohol functional group (b). 
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4.1.3 Nuclear Repulsion 

The unclear repulsion ancl origin-invariant uuclear sccond-momc11t (Hollett. et al [57] 

- Sert io11 4.1.4) arc propert ies that cu e easily calculated using the nuclear coordinat('S 

of a chemical structure. Since t he.-e proper t ies do not rely on either the clrct rouic 

wave function or density, they ce:m lw calc-ulated quickly. It was observed that on 

average both the nuclear repulsion and origin-invariant nuclear second-moment can 

be calculated for a single structure in approximately 0.1 seconds when using a 2.6G Hz 

computer processor for structures with au average molecular complexity [58] of 402. 

The following equation is used to calculate the tot al nuclee:u· repulsion eucrgy (~v N) 

for a given structure. 

where 1\I is the number of nuclei within the structure. :r·A , !JA, Z A arc the Cartesiau 

coordinates of nucleus A. and ZA is the atomic charge of nucleus A, .r 13 , y 13 . ::8 arc the 

Cartesian coordi11ates of nucleus B, and Z 13 is the atomic charge of nucleus B. Wi thin 

a chemical struct ure there are t hree type of interactions, namely the interactions be-

tween the nuclei. the interactions between the electrons, aud the interactions betw('Cll 

the nuclei and the electrons. The nuclear repulsion energy is the energy <1ssociatecl 

with the intera tion between the nuclei. 

The total nuclear repulsion can he part itioned into contribut ions from each atom, 
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where 

The nuclear repulsion contribution for each atom , calculated using Equation 4.3. 

provides addit ional informat iou ahou t c1 particular atom (e.g. dc'SCTi bing an atolll 's 

proximity to other atoms within the same structure). 

4.1.4 Origin-Invariant Nuclear second-moment 

The origi11-invariant nuclear second-moment ( S N) of a chemical struct. me is calculated 

by 

< .r2 > < .ry > < .iZ > 

< y2 > < y:; > (4.-1) 

< z 2 > 

where 

!II 1 /1 / !II 

(;ry) = L ZAJ'AYA- -( L ZAxA)( L ZAYA) (4.5) 
A = l A= l 11= 1 

and N is t he value of the total nuclear charge (L ZA), (J:A, !JA, zA) is the location of 
A 

A and Z is its atomic charge. 

After the diagona.lization of S , the three resulting values (X2
. Y2

. and Z 2
) cor-
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respond to the sh1:1pe of the molecule. The calcul1:1t.ion of the origin-invariant. nuclear 

second-moment is based on a met hoclology similar to the OlH' on t lined by Hollett. et 

al [57], and provides a standardized measnn' of t.hc shape of a molc'cnlc that cau be 

calcula ted very quickly. 

4.1.5 Single Point HF /ST0-3G Energy 

The calculation of the total energy of a chemical structure at. a specific geometry (or 

single point ) can prove to be a useful piece of information, information that can be 

calculated relat ively quickly when compan'd to the time aucl computational n'somH's 

required to cakulate an optimized geometry for a given st.ruct urc. This calculation 

is more complex than the nuclear repulsion energy calculation as the total energy of 

a chemical structure is being ca.lculatecl (i.e. including all types of iutera.ctions). aud 

not just a. component of the structure's t.ota.l energy. The total energy value n. cd by 

the Chrm-DRS 1 system is approximated using the Restricted Ha.r tree-Fock (RHF) 

method with the ST0-3G basis .·ct. 

Although the Single Point HF /ST0 -3G energy not necessarily associated with a 

fully optimized geometry or stationary point , the information obtained from thi: 

calculation can be particularly useful when used as a criteria for comparing chemical 

structures. 

4.1.6 InChl and SMILES descriptors 

As described in Section 2.2.3, the IuChi and S IlLES dr criptor. are very useful and 

have become industry standards. By including both th InChi and S},1ILES chemical 
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descriptors within the data H'PH'scntatiou scheme, romprltibility with existing chemi­

cal information systems can be cusmcd. Furthermore, users the~ t arc nsed to working 

with In Chi and SMILES representations ran ec1.sily tmusit ion their work to usc . om<' 

of the other components of the data representation s heme that arc bet ter suited to 

their needs. 

4.1. 7 M etadata / Additional Properties 

The design of the data representation . chemc has made provisions for the inclusiou of 

meta or descriptor-type tags and keywords. Also included in the data representation 

scheme is the ability to store experimentally and computationally derived prop('Itics. 

Although these fields arc currently treated as basic textual fields, the design and fiex­

ibility of the data representation scheme allows for these fields to be fully indexed and 

u ed by the various similarity mctrics without imparting any of the existing function­

ality. 

Examples of some of the properties and mctadata des riptor that ran be included 

arc: the software used to complete the geometry optimization calculation , t he level 

of theory (energy approximation method and basis set), auy citations related to the 

chemical structure, drug company index numbers or references, drug ompany ven­

dor source., cost, calculated frequencies, and the den. ity matrix. These examples arc 

not exclusive as other properties may be included; they only serve to illustrate thC' 

diversity and functionality available within this data-reprcscntatiou scheme. 
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4.2 Implementation and design of the Chem-DRSM 

system 

Building 011 the 11 ulti-Compouent Data R eprescntation Scheme, the next step is to 

incorporate this scheme into the design of a similarity metric (or set of similarity 

measure's) that will c11low for fast, accurate', and reliable . earching of C'hemical struc­

tures using iufonnatiou contained within the data representation scheme. Tc1blc 4.3 

outlines the design goals for the search and retrieval com pouent. 

The Chem-DRS1I systcm provides a solution that builds 011 the Iulti-CompOIICnt 

Data Representation Scheme and satisfies the design goals outlined iu Table 4.3. This 

system automatically processes the three-dimensional information co11t.ained withiu 

a chemical structure, and proceeds to generate suitable indices and data representa­

tions. Once this information bas heeu stored., the indices and the inform a t.ion con­

tained within the data repre. entation scheme can be used to assess chemical similarity 

and search for important sub-. tructures or components (i .c. functional groups). The 

remainder of this cha.pter discusses the components and design of the Chem-DRS I 

system. 

The Chcm-DRS 1 system ha. been im plementcd usmg a series of interconnected 

modular components. A conceptual design drawing of the Chem-DRS I[ system can 

be seen in Figure 4.5 where the complete system i shown along with the intermediary 

chemical structure representations that arc produced. The sub cctions pertaining to 

the Chem-DRS I[ system have been grouped according to their placement within the 
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TRble 4.3: Similarity engine design goals. 

Design Goals Notes 
Exact chemical structures This feature would IH' 

can be matched required by many users. 
Ability to distinguish chemical Conformation searching 

structures based on their is difficult. becau ·e of 
l>ascd 011 their conformation. how t he three-dimensional 

information is represented 
in commonly used data 
representation schemes. 

Ability to . earch for These features arc import ant 
substruct ures and as it allows for flexible 
functional groups. searching and browsing, 

providing not only 
a. nH'asure of overall 

imilarit.y but also 
localized similarity. 

Ability to support both Both query types 
Boolean and ranked would allow for greater 

quenes. flexibility when meeting 
the needs of users. 

Ability to support bulk Allow for the integration 
operations. and a.u tomatic proccssi ng 

of large data sets. 
Ability to support Allow for interactive 
individual queries. work to be completed. 
Ability to perform Performance targets 
a . ingle query in a are important. If the 

reasonable amount of time system i too slow, 
(on par with current then it would not be used. 

search eugine technology). 
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a.rchi teet ural design of the system as a whole. The first su bsect.ion r<'virws ;-dl the 

components relating to the pre-processing of t.he chemical structure cla ta. The second 

subsection discusses the infonnat io11 extraction prOC('SS, the third subsection di. ·cusst's 

the index creation process and the fourth su bsrction drscri hes the chemicFLlly based 

similarity measures that arc pc-ut of the Cb<'m-DRS}/1 system. 

F~l ~l( ~ENLl I Databas~j . 

"'-- -- Open SO<trce 

XYZ 

Index 
Creation 

Figure 4.5: Modular architecture of the Chem-DRSM system. 
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4.2.1 Structure Pre-Processing 

Chemical structure information is prc-proccssed prior to information extraction for 

two reasons. First , to ensure that the chemical structure has valid three-dimensional 

information. Second, to ensure that. the chemical information is ill a form that call 

be processed by the information ('Xt.ract.ion component.. The informr1tion cxt.n1ction 

component. is designed to read in either Cartesian coordinates or Z-matrix formats. 

The Cartesian coordinate format was specifically chosen as it is supported as a valid 

output format by OpenBabcl [14, 15], and many different file formats (e.g. sdf, mol, 

Gaussian-03 [59] input and output files) can be easily converted to the Cart<.'sian 

coordinate representation using OpenBabel. Figure 4.6 provides an example of the 

Cartesian coordinate reprcselltation and t he sdf file rcpresent.atio11 for C3 H4 0 2 . ote 

that the t hree-dimcnsional information is not altered. only the reprcsenta.tion and the 

formatting of the data has been changed. 
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9 

c 
c 
0 
0 
c 
H 
H 
H 
H 

H 

0 c r1 
H/ "-._ / ~ / 

0 85430 
-0 42820 
-0.44470 
-1.58640 
1.99770 
0 86890 
-24 3030 
2.94020 
1.98300 

c c 

II 
0 

-0.68700 
0.03040 
1.24570 

-0.65930 
-0.00600 
-1 76690 
-0.18720 
-0.53330 
1.07390 

XYZ Format 

l 
H 

-0.00020 
-0.00000 
0.00020 

-0.00010 
-0.00010 
0.00410 
0.00000 

-0.00030 
0.00010 

4721_NCI.xyz 
Open8abel0529091 04630 

9 8 0 0 0 0 0 0 0 0999 V2000 
0.8543 -0.6870 -0.0002 c 

-0.4282 0.0304 -0.0000 c 
-0.4447 1.2457 0.0002 0 
-1 5864 -0.6593 -0 0001 0 
1.9977 ·0.0060 -0 0001 c 
0.8689 -1 7669 0 0041 H 

-2.4303 -0.1872 -0.0000 H 
2.9402 -0.5333 -0 0003 H 
1.9830 1.0739 0.0001 H 
1 5 2 0 0 0 
121000 
161000 
4 2 1 0 0 0 
2 3 2 0 0 0 
4 7 1 0 0 0 
8 5 1 0 0 0 
5 9 1 0 0 0 

M END 
$$$$ 

SOF Format 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

Figure 4.6: Example Carte ian coordinate and sdf reprcscnta.tious for C3 H-1 0 2 , <ts 

well as a molecular graph of the structurc for comparison. ote, the drawing of the 

structure is only induded to aid the reader and is not part of either the SDF or XYZ 

data files. 
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4.2.2 Information Extraction 

A key part of the iufonua.tion <'xtrHctiou process has been to usc the coulpntational 

chemistry software package f\ IU gauss [60] which has the ability t.o process t lH' in­

formation contained wit hin the Car tcsiau coordinate representation of a chemical 

structure. Ouly a small sub, et of IU T gauss's functionality is used for determining 

the iuformation that is required for similarity purposes. T hese componeuts, whcu 

combined with the translation abilities of OpenBab cl, arc referred to as the compu­

tational information extraction compouent in Figure 4.5. The computational infor­

mation extract ion component then uses information cout aincd within t he chemical 

structure to calculate the CATI, CBTI. and computationally derived descriptor. (nu­

clear repulsion, origiu-invariant nuclear second-moment , and single point. energy) , Hs 

well as mctadata and industry standard descriptors, all of which are components 

found in the f\I ult i-Component Data Representation cheme. as shown in Section 4. 1. 

Table 4.4 shows all of the different components extracted from a given Car tesian 

coordinate representation of a chemical structure. and the modules used withi11 the 

Chem-DRS 1 system. 
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Table 4.4 : Information derived from the Cartesian coordinate n'presentM.ion of a 
chemical structure by the Chem-DSR 1 system. 

Property Component Used for Extraction 
CATI }.1UNgauss 

(Topological Descriptor) 
CBTI l\ fUN gauss 

(Topological Descriptor) 
Nuclear Repulsion l\IUN ga nss 

(Computationally Derived Descriptor) 
Origin-Invariant N udear Sccond-l\Iomcnt l\IUNgauss 

(Computationally Derived Descriptor) 
ST0-3G Single Point Energy }.1UN gauss 

(Computationally Derived Descriptor) 
Canonical SMILES OpeuBabd 

(Industry Standard Descriptor) 
InCh I Open Babel 

(Iudustry Standard Descriptor) 
Chemical Formula l\IUNgauss 

(Metadata Descriptor) 
N CI Index Number Chem-D RSJ\ [ 

(Metadata Descriptor) Tr-'tuslator / Builder 
(only if included in sour<:c data) 
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4 .2.3 Index Creation 

U pou the com plction of the information extraction process, each chemical structure 

will have c-1 munbcr of different descriptors associated with it. The usc of indices to 

further organi:t;e these descriptors allows for the easy integration of many different 

types of search tools and similarity measures. For every descriptor two different in­

dices arc required, namely an index that links the structure to the descriptor, aucl au 

index that links the descriptor to one or more structures. Figure 4. 7 provides an ex­

ample oft he two indices that arc produced for the canonical SMILES descriptor. The 

Chcm-DRS~I system creates the following indices to support searching and browsing 

activities, and to provide a consolidated means to usc the information found within 

key descriptors: 

• CATI f--7 Structure Indices 

• udear Repulsion f--7 Structure Indices 

• Single Point Energy f--7 Structure Indices 

• Origin-Invariant uclear Second- Iomcnt f--7 Structure Indices 

• Formula f--7 Structure Indices 

• CI umber f--7 Structure Indices 

• Canonical S HLES f--7 Structure Indices 

• InChi f--7 Structure Indices 
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# of Structures 
5 

Canonical SMILES 
CSc1ccccc1C(=O)O 
CSCC[C@H](N)C(=O)O 
COc1cc(IC= C\C(=O)C)ccc10 
CCCCCCCC( = O)OC= C.C= CN1CCCC1 = 0 
CC(C)O[P@](=O)(C)O 
CC(=O)CC[C@@H)1CC(=O)OC1(C)C 

5 
5 
5 
5 
5 

Structure List 
109910.113808,14 55 7 3.146505 .81687 
203719,21022.39716.9092,90849 
24042,38997 .3985,39482,5252 
877 37,87738,877 39,877 40,877 41 
164544,164581.164 586,164682.164 731 
106812,106824,32216,3967 3,982 4 3 

Structure ID 
93688 
8563 
58017 
44919 
127219 
87220 
63406 
55548 
31922 
18581 
67525 
89241 
77451 

Canonical SMILES 
CI/C= C(\c1 ccc(CI)cc1 )/c1 ccccc1 Cl 
CCOc1ccc(cc1)C( = O)O 
CCCCCCCCCCCC[ C@@H )(0 )CO 
CI.OCCN (CCO)Cc1 nc2cc(CI)c(CI)cc2 [ nH)1 
o .oC1(CCCCC1)cSc1ccccc1 
CI.Oc1ccc2CCNCc2c1 
CCCCCCCCNCCO 
CCC\C( = C(ICC)\C# N )\C 
CC1 = CC(=O)C(= CC1 = O)C 
CCCCCOC( = 0 )C( CC)CC 
0 = C(C(= O)Nc1ccccc1)c1ccccc1 
O=C1NC(=O)C2(CCNCC2)N1C 
CCC( = O)clc(O)cc(O)cclO 

Figure 4. 7: Example of the indices created for the canonical S IlLES descriptor. 

ote how the two relation. hips arf' prC'servC'd S fiLES ----t Structure, Structure ----t 

S 1ILES) 
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4.2.4 Chemically Based Similarity M easures 

As illustrated iu Chapter 2, there arC' many difFerent ways of capturing the information 

found within a chemical structure. Similarly, Chapter 3 dcmoustrates tha,t t.hC'r<' arc 

many different wHys of assessing the similarity of two chemical . tructures. FigurC' 4. 

shows the modular design of the similarity measures found within the Chem-DR l\1 

system. 

} 

Index Batch 
Indices '---se_rv_e_r _,,.----1 Similarity 

_ Engtne 

\ 
~, 

'\ Interactive 
Similarity 
Engine 

'----_./ 

Figure 4.8: Architecture of the similarity measures found within the Chem-DR M 

system. 

There arc two important features found within the design of the similarity mea. ures 

that are of note. First , it. independently uses the indices created by the build and 

information extraction process, as seen in Figure 4.5. This means that the index 

building and information extraction processes ran be executed without influencing 

the behaviour of the similarity mea. ures . Second, the similarity measures employ 

a design that has been influenced b. a client-server framework. The client-server 
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archi tecture found within the Cht'll l-DRS I system allows different similarity metrics 

to usc the same index cla ta ancl it allows for system designers aud maiutaiuers to take 

advantage' of different stalability aud load balancing tcdmiques, au cxamplC' of which 

can be seen in Figure 4.9. 

~ 

Index 
Server ~---

1 
"\ 

Index r 
Server 

1 
/ 

Batch 
Similarity 

Engine 

~ 
Batch 

Similarity 
Engine 

Interactive 
Similarity 

Engine 

Interactive 
Similarity 

Engine 

Figure 4.9: Example of similarity measure. calabili ty withiu the Chem-DRS I system. 

The Chcm-DRSM system currently supports a number of different similari ty mctrics 

that usc the information that i.· contained within the variou indices, as itemized in 

Section 4.2.3. The similarity mea ures used by the Chcm-DRSM system fall into two 

different categories, namely vector space models, and refinement via computationally 

derived descriptors. 
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4.2.4.1 ¥ ctor Space Models 

Sectiou 3.3 outlines some of the more conm1ou approaches for producing similarity 

scores. The usc of the Tanimoto [4 )] coefficient with chemical fingerprints is a very 

widely used measure of chemical similarity [Gl]. As an alternative to the "stancl~:ud'" 

Tanimoto codficiC'nt. a modified vcrsiou of the Tanimoto measur<' has been imple­

mentC'cl. The modified Tanimoto mea.'ure uses CATI descriptors instead of chemical 

fingerprints, and has bC'en implcmeuted usiug a modified versiou of Equ<l t.ion 3.1. 

where 0 represents the number of CATI descriptors found in structure A. Nb repre­

sent the number of CATI descriptor found in structure B and Nanb rcpreseut.s t.lH' 

number of CATI descriptors common to structures A aud B. 

It can be argued that the Tanimoto coefficieut (and other similar similarity coeffi­

cients) arc limited in how the similarity coefficients arc calculated. One characteri, tic 

of the Tanimoto similarity coefficient is that it does not take into consideration the 

significance, or weighting, of each of the structural fragmcnts or properties that. make 

up thc structure. In the example shown in Figure 3.2, Chapter 3 one can see that it 

is possible, depending on the properties being considered. for two chemical structur<-'s 

with different formulas (in this case C.1H 10 0S and C6H 14 0 2S) to have a similarity 

score of 1.0 (lOOo/c similarity). 

ot considering the statistical distribution of the properties being used in the calcu­

lation of the similarity score gives cause for concern as frequently occurring properties 

are treated the same as rare properties. This is equivalent to having a liuguistic search 
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tool that places the same siguifircmcc on the term a'lld nnd the term photo.<>.tJ'IIfhc8i8. 

One way to correct how properties are weighted is to usc the cosine measnre (see 

Section 3.3). Although the cosine measure is more computationally expensive than 

the Tanimoto measure it has gained a wider acceptance as a standard measure within 

information retrieval circles as it has the ability to capture the context of the terms 

in a given query. Witten et al [1] describe a document vector as a ray c'manating from 

the origin, piercing space' in some desired direction. Ext ending this descri pt iou, the 

task of searching for similar documents can be described as the process of selecting 

those clocmncnt vectors that lie closest to the ray iu au angular sense. The angle 

between two document rays, or chemical structure rays, is called B. The similarity 

of the two representative vectors can be examined by looking at fJ. The cosine of(} 

equals 1 wheu (} = oo, which means that there is no cliffcreuce in the representative 

vectors. Additionally, when the cosine of (} equals 0 the vectors arc at right a.ngles to 

each other, which means that the representative vectors arc unrelated. l3y computing 

the cosine of the angles between the two vectors a similarity score between 0 and 1 is 

produced. 

The cosine measure traditionally uses words or keyphrascs found within document 

texts to produce representative vectors. The Chcm-DR.SM system draws on this and 

modifies the cosine measure to usc CATI. In this context the CATI can be thought 

of as chemical "words... Two adaptation of the cosine measure to . upport. the use 

of CATI have been implemented within the Chem-DR.SM system, namely a staudard 

cosine measure and a contextually based rosine measure. These two rosine variants 
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arc conm1only used withiu information rd.ricval systems, and as the CATI descriptors 

arc a new type of chemical struct.me descriptor, it was important. that both variants 

be considered. 

The two ada pted versions of the rosine measure arc a standard cosine measure, Eqtw-

tion ( 4.G), aucl a contextual cosiuc measure, Equation ( 4. 7) and arc dct.crmiucd as 

follows: 
11 11 L UcQ · log -
1
. ) UcD · log -

1
. ) 

IEQ n D . I I 
standard cos( Q, D ) = ---;::=======;;;;==='"['=====;:;==== 

L (.lt,Q . log nf.· )2 L (fi ,D . log 1'~ )2 
IEQ · l LE D I 

(4.0) 

71 II L Ut.Q · log -
1
. ) Uu · log -

1
. ) 

IEQ n D I • I 
contextual ros( Q, D ) = --;:=='=======;;:=:==~========;;:;==== 

~· '/1 2 ~· '11 2 
L. (.ft.Q · log -

1 
) L. Ut.D · log -

1
. ) 

IEQ l IEQ · I 

(4.7) 

where Q is the query . tructurc, D i: the structure being compared to the query struc-

turc, Tl is the number of structures in the database. f 1 is the munbcr of structures that 

contain CATI t, ft.Q is t he number of times CATI t occurs withiu the query structure. 

and ft ,D is the uumber of times CATI t occurs within the structure being compared 

to the query structure. It is worth highlighting that the only diffcreuce in the two 

rosine measures is how t he denominator is calculated. T he current implementation. 

of these two rosine measures within the Chem-DRS 1 system uses weighting informa-

tion that has been derived from over 17 ,000 different chemirc1l structures from the 

CI chemical structure database. 

The key difference between the standard co ine m asure and the contextual cosine 
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mc~:1sme is how the two chemical strurt me vectors arc compan'cl. Each chc'micHl 

structure can be described as a list of CATI descriptors, as shown iu Figure 4. 10. 

When represent ing a chemical structure, both the types and quantities of the CATI 

that arc present within the structure arc considered. The different CATI descriptors 

can be thought of as vector dimeusious, and the quanti t ies of a given CATI withiu H 

structnre can be used to ralcula tc the magni t ucle of the vert or iu that direction. 

Figure 4.10 shows an example of both the CATI descriptors and the frequcucics for 

C4 H 1008 and C6H 14 0 28. When comparing the two strnrtures, the vector space used 

to determine similarity ran be described iu different ways. T he standard cosine uses 

the CATI descriptors found in both the query ( Q - what is being searched for) and 

the CATI descriptors found in the document (D , or in this case, chemical structure) 

being compared. Alternatively, the contextual cosine place's a higher significance on 

the CATI descriptors found within the query, a.s opposed to the structure being com­

pared. It is important to note that the vector space defined by the contextual method 

is dependent on which structure is the query. However the vector spare defined by 

the standard cosine is the same for the two structures involved, regardless of which 

structure is the query and which . tructure is the comparison. 
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s 

/ 
c 

~/ 
c 

0 

~c / 
c Structure A 

Structure B 

16(12,0) 8(7,0) 6(65.0) 6(50,0) 6(33,0) 6(25,0) 1(6,0) 1(4,0) 
Structme A 1 1 1 1 1 1 1 9 
Structure B 1 2 2 0 2 2 2 12 

Figure 4.10: CATI listing, with quantities, for C4H100S and C6H 14 0 2S. (Note: hy­
drogen a.toms arc not shown in structural representations.) 

In summary, when using the contextual method to define the vector space it is possi-

blc for the relation hip defined by the comparison of Q to D, to be different t han the 

relationship defined by the comparison of D to Q. However, wheu usiug the staudard 

cosine method to define the vector space, the relationship defined by the comparison 

of Q to D i. the same as the relationship that is defined by the comparison of D to 

Q. 

In addi tion to determining the appropriate vector space model for the cosine mea-

urcs, there is also the task of determining an appropriate stati t ical weighting scheme, 

unlike the Tanimoto coefficient which is determined using informat ion relati11g to if 

a certain feature or descriptor is present and not how statistically significant it is. A 
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common w<'ight iug approach used in information retrieval scienc<' combines t he term 

freqm'ncy (how many times a given term occurEi within a clonnnent) with the docu­

ment frequency (how many documents within the entire libnuy (or colkctiou) contain 

that pcuticular term). This type of weighting approach has recently been aci<l.ptecl by 

Lipkns ct al. [40] to assist with a further analysis of the diversity and composition of 

the structures within the Clwmical Abstracts Service (CAS) registry database. 

In the rase of the work being done in this thesis, the weighting scheme has beeu 

derived from the structures within t he CI database. It is importcmt to note that 

additional training data may he needed to make this weighting sdl<'me more general 

in nature. How<'ver , being able to create a weighting scheme from given struct ures 

would allow the maintainers of different chemical infonna t.ion resources to create their 

owu weighting schemes based on th<' area of focus of that particular research group 

or resourC('S. 

Although both of these cosine measures can be nscd to asse. s the similarity of differeut 

chemical structures, there are still instances where the. c equations cannot dist inguish 

two different structures. It is in the e cases where computationally derived chemical 

descriptors can be used to further ass('SS and refine chemical structure similarity. 

4 .2.4.2 Similarity refinement using computationally derived chemical d e­

scriptors 

To aid in the assessment and refinement. of chemical structure similarity, components 

of the Multi-Component Data Representation Scheme ( ser Section 4. 1), were eva!-
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uated to determine their suit a hili ty. The values for 1mdcH r rqmlsion energy (sec 

Section 4.1.3), origin-invariant nuclear sccoucl-momeut (see Section 4.1.4) , aud t hr 

siugle point encrgy of a chemical structure calculated nsing the ST0-3G basis set 

(sec Section 4.1.5) were considered. Computational experiments were conducted to 

determine the acceptable variances of these three values. which W<'n' then usc·cl as 

threshold values for determining and refining chemical structure similarity. 

Chapter 5. Section 5.1, outliues the experimental procedure aud results tlw t were 

used to establish t hrc.-holds for similarity refinement using tlH'se computa t.ionally de­

rived chemical descriptors. By comparing the nuclear repulsion energies, the origin­

invariant unclear second-moment. and ST0-3G single point e11ergy values of over 

20,000 chemical . truct.ures it was observed that there is a 2.16% variation in nuclce:-u· 

repulsion energy, a 5.23% variation in the origin-invariant nuclear second-moment , 

and a 0.0017 % variation in the single point ST0-3G energi<'S when comparing opt i­

mized geometries that have been completed using the same structure, just different 

basis sets. 

Figure 4.11 shows five structures with the same chemical formula, C22 H14 , obtained 

from the N CI database. These structures cannot be differentiated by their chemical 

formula, or by the usc of CATI or CBTI descriptor . However, by comparing the val­

ues in Figure 4.11 with the computed thresholds, the structures can be differentiated. 

In terms of the origin-invariant nuclear econd-moment values, there are some struc­

tures that have values that fall within the 5.23% threshold, but none of the tructures 

have all three values (X2 , Y 2 and Z2 ) falling within the 5.23o/c threshold of another 
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structure. Similarly, there arc only two structures (1 and 5) out of the five structur<'S 

that have ST0-3G energy values that fall within the 0.00178o/c threshold of the other 

structures. o11c oft he C22 H 1•1 stmcturcs shown in Figure 4.11 matched for all values 

(nuclear repulsion, origin-invariant nuclear second-moment , and ST0-3G single point 

e1wrgy) with another strnrturc. This example shows promise for the usc of t ltcse 

comput.atio11ally derived properties to allow for further refinement of cmHliclate lists 

of similar and / or matching chcmkal structures. 
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(5) 

uc lear Repulsion Origin-Invariant Nuclear Single Point Energy 
Energy Second-Moment (Bohr2 ) RHF I ST0-3G 
(Ha rtrees) x2 y 2 z2 (ll ar·trees) 

1 1548.1600 0.0015 1071.8667 6398.0 13 - 31.0702 
2 1536.8993 0.0002 1145.4508 6427.2661 -842.2723 
3 1504.3097 0.0012 815.6531 8008.2693 - 31.00 2 
4 1536.5591 0.0004 1039.0668 668 . 79 - 31.0552 
5 1545.6834 0.0004 1538.6471 5550.25 - 31.0734 

Figure 4.11: Example illustrating different nuclear repulsion , origin-invariant nuclear 
second-moment and single point energy values (RHF / ST0-3G) for different C22 H 11 

structures. 
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Chapter 5 

Investigative Approach and Results 

This chapter discusses ob erva tions and results from four differcut invcstiga tions t.ha t 

related to the Chem-DRSNI system. The first section of this chapter describes the 

experimental process us<'cl to determine the similarity thresholds of three cliff('rent. 

comput.at.ioually derived properties, namely nuclear repulsion energy, origin-invariant 

nuclear second-moment, and single point energy as calculated using the STO-JG basis 

set. The second sect ion of this chapter presents a statistical evaluation of the differ­

ent mctrics within the Chem-DRSM system (standard cosine, contextual cosiuc, and 

Tanimoto with CATI descriptors) and compares them to a Tanimoto mcasur(' that 

makes usc of Chemical Fingerpriut.. Building on the statistical evaluation, the third 

section pr<'.'ents results from a human study that compare. the same Chem-DRSJ\1 

metrics with the Tanimoto Chemical Fingerprint measure, however in this case the 

comparison is based on the assessments made by 24 study participants with expert 

know ledge in Chemistry. The final ection of this chapter presents an additional in­

vestigation that wa.. completed in order to determine the suitability of the CATI and 

CBTI de, criptors to rapidly identify the presence of different functional groups within 

a chemical structure. 
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5.1 Determination of Similarity Threshold for Com­
putationally Derived Descriptors 

As introclucccl in haptcr 4, Section 4.2.4.2, there is a need to be able to further 

screen the s<'arch results that arc produced by the various metrics found withiu the 

Chem-DRSM system that make us<' of CATI descriptors. Three computatioually 

deri vcd descriptors, namely nuclear repulsion energy, origin-invariant nudcar S('concl-

moment. and the single point energy of a chemical structure a. · calculated using the 

ST0-3G basis set, were chosen as candidates to perform further similarity screening. 

An experiment was conducted using a s;:uu plc collection of 77 different optimized 

structures from the computational and t heorctical chemistry research group at Icmo-

rial University. These . tructures (c tored a. l\IU gauss archive files) ranged in size 

and composition, and contained anywhere from zero to twelve carbon a toms. The 

idea behind the experiment was to usc different basis sets while optimizing the chcmi-

cal structme geometries to produce different optimized geometries for the same initial 

chemical . tructure. It was expected that the variances within t.hc different basis sets, 

would be ob crvcd as similarity thresholds for t he different computationally derived 

descriptors. 

The first stage of the experiment was completed by optimizing the geometry of each 

of the 77 struct ures using each of five different basis sets; 3-21G, ST0-3G, 6-31G , 

6-31G(d), and 6-3l+G(d) , and the restricted Hartree-Fock (RHF) method. This 

69 



produced five diff.ercnt optimized geometries for each of the )77 structures ( 4.385 

structures in total). The 4,385 resulting structures were then eetch optimized again 

using the RHF method and the five basis set..- listed abOV('. 1 his resulted in 25 new 

optimized geometries for each of t he 877 initial structures (21,925 in total). Figure 5.1 

outlines all of the possible combinations produced for a single· structure. and note t hat 

there are five diff.erent optimized final geometries for each of the basis sets that were 

tested. 

ST0-3G ST0-3G ST0-30 ST0-3G ST0-3G 
3-21G 3-2 1G 3-21G .)-21 0 3-2 1G 
6-310 6-310 6-31G 6-310 6-31G 
6-31G(d) 6-31 O(d) 6-31G(d) 6-3 10(d) 6-31 O(d) 
6-31+0(d) 6-31 +G(d) 6-31+0(d) 6-31 +G(d) 6-3 1 +G(d) 

Figure 5.1: Calculation methodology howing the different optimized geometries thl"lt 
are used to determine the nuclear repulsion threshold, the origin-invariant nuclear 
second-moment thre ·hold, and ST0-3G single point energy threshold for any given 
structure (X ). 

Through basic statistical ann,lysis it became possible to determine the average vari-

ance in nuclear repulsion energy, origin-invariant nuclear second-moment. and single 

point energy values for each of the optimized geometries that. were cierived from each 
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of the 77 initial structures. The 25 diflereut optimized gcometri<'s for <'c-Kh structure 

provides a maximum. minimum and variance value for each of the computational 

descriptors. Taking the average variance value. as a percentage. for each of the 877 

groups shows that there is a 2.16% variation in nuclear repnlsio11 cuergy, a 5.23% 

variation in the origin-invariant 1mdcar second-moment, aud a 0.00178o/c varicltion in 

the single point ST0-3G energirs wheu comparing optimized geometries that. hc-we 

been completed using the same structure, just cliflercut basis sets (Table 5.1). As 

demonstrated in Chapter 4. Section 4.2.4.2, these threshold value, cau be applied to 

sets of chemical structmes to further distinguish similar structures. A fmthcT area 

where these' thresholds can be of usc is when trying to distinguish between strncturcs 

that arc conformers or structural isomers. 

Table 5.1: Calculated thresholds for nuclear repulsion, origin-invariant nuclear 
second-moment , and ST0-3G single point energy values. 

N udear Repulsion Origin-Invariant Nuclear ST0-3G Single 
second-moment Point Energy 

2.16% 5.23% (X2 ,Y:L ,and Z 2
) 0.00178% 

• 
It is important. to note however, that the calculated thresholds are to be considered an 

upper limit as there were observed cases where the resulting geometry optimizations 

arc conformers of the original structure. The presence of these conformers within the 

analysis population inflates the thre 'hold values. Manual screening of the rv25,000 

structures within the analysis population would serve to reduce the thrcr:;hold values. 
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5.2 Statistical Evaluation 

The statistical evaluation component is designed to simulate the US(' of the Chcm­

DRS 11 system by conducting searching and browsiug activities through the creation 

of ranked list. of chemical structures from a test collectiou . This has im porta.nt 

potential applications, as there arc millions of chemical structures stored on comput­

ers throughout the world, and if these structures could be accessed using a system 

tha.t was more comprehensive in nature, then great benefits could he seen in how 

researchers search for and access chemical structures. 

The statistical experiment was carried out using the following procedure: 

• Chemical structures were converted to Cartesia.u coordiuate format. 

• Chemical Atom Topological Indices (CATI) were determined for ca.ch chemical 

structure in the test collection. 

• Indices were created based upon the resulting CATI descriptors. 

• 19 query structures were chosen. 

• The similarity of each chemical structure within the test collection (as it com­

pared to each of t he 19 query structures) was determined through the usc of 

t he indices and three different similarity measures, namely t he standard cosine 

measure. the contextual cosine measure, and the Tanimoto CATI measure (as 

implemented within the Chem-DRSM system). 
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• The similarity of each chemical struct me within the test collcctiou (as it com­

parcel to each of the 19 query stmcturcs) was also detenuinecl through the usc 

of a Tanimoto similarity metric that uses chemical fingerprints (as implemented 

within t he OpenBabrl . y. tem). 

• Listings of the different structures with a similarity score of 1.0 (as produced by 

the three Chem-D R.Sl\1 metrics and the Tanimoto chemical fingerpriut metric) 

were produced for each of the 19 query structures (four different metrics, 19 

different. structures. 76 different lists of chemical structures) 

• The different listings of t he structures that had scores of 1.0 were evaluated 

statistically (using precision and recall). 

• Histograms were created to further evaluate the natme of the similarity , cores 

produced by the different measures. 

The following subsections describe each of these items in more detail. 

5.2.1 Choosing the t est collection 

The test collection of chemica.! structures was made up from structures found in 

the National Cancer Institute ( TCI) online database (Release 3 File - September 

2003) [3]. Out of t he 260,071 structures found within the CI database 17 ,175 

structures were found to have suitable three-dimensional information. The remaining 

81,896 structures were not converted because they were storecl a. two-climensional 

projections of the three-dimensional information foun I within the original structure 

(which re ulted in a. lo s of original information) . 
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This collection was selected for a munbcr of reasons, primarily bee a usc the data 

associated with the 260,071 structures was available free of charge, but also lwc;-utse 

the structures in the collection arc qui tc cl iver. ·c and reprcsenta tivc of structures that 

a wide nmgc of chemists would nse. 

5.2.2 Information extraction and index creation 

U siug iu-house softwarc that calculates the CATI descriptors aucl ckt.crmiucs t.be 

quantities of the different CATI descriptors within cach structure, smnnHH".)' files 

for each of the 178,175 chemical structures in the test collcction were produced. 

Based upon the values contained within the smnmary files for each chemical structure, 

the required iuclices for the Chem-DRS 1 system (as outliuecl in Section 4.2.3) were 

created. 

5.2.3 Chemical structure similarity computations 

In order to determine the similarity between different chemical struct urcs, three dif­

ferent in-house similarity measures were employed. To assess these three similarit.y 

measures with respect to a baseline measurcmeut, the standard Tanimoto metric with 

chemical fingerprints (as implemented by OpcnBabel) was a.lso usee!. A summcu·y of 

the measure.- used for the evaluation can be seen in Table 5.2. The three in-house 

similarity measures arc explained in detail in Section 4.2.4 and more detail about the 

Tanimoto metric that uses chemical fingerprints can be found in Section 3.3. 
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Table 5.2: Iet.hocls that were used to produce simihnity scores. 

r--Iethod 1 l\Icthocl 2 Method 3 r--Iethod -1 
COSllle cosme Tanimoto Tanimoto 

(Contextua l + CAT!) {Standard + CAT!) (C'ATI ) (ch<'Jilical fingerprints) 

C'hem-DH.S11'1 C'he 111- 0 RS111 C'hcm- 0 H.S 1 Open Ba lw l 

Equation (-1.7) Equat io n {·L G) 8q uatio n (3. 1) Equa tion U . l ) 

5.2.4 Precis ion and R ecall Evaluation 

The first component of the evaluation of the different chemical similarity mctrics iu-

valves a statistical evaluation. The statistical evaluat ion was conducted using two 

standard measures, namely precision and recall. 

The precision (P) of a similarity measure for some cutoff point (1· ) 1s the fraction 

of the top .,. ranked items that arc' relevant to the query. 

p = number retrieved that are relevant. 
total number retrieved 

(5.1 ) 

For example, if one hundred chemical structures are retrieved in response to a part.icu-

lar query (1· = 100) , and fifty of them arc relevant , then the precision of the similarity 

measure would be 50%. The precision metric measures the accuracy of the search . 

Complementing this is the recall measure. The recall measure (R) for a particu-

lar 1· value (some cutoff point) is the proportion of the tota l number of relevant items 

retrieved within the top T, 

R = number relevant that arc retrieved 
total number relevant 
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Coutinuing the example used with the prerisicm measure (where ,,. = 100), if there 

arc SC'vcuty five relevant items in the entire collection then the recall of the similarity 

measure wm!lcl lw GG<J{ since only fifty on t of t llC' seventy five were selected. R ccall 

measures the extent to which the retrieval is exhaustive and quantifi('S the coverage 

of the items that. arc returned. 

The biggest difficulty with this type of t'wtluation is identifying a standard set of 

documents, queries, aud rC'levance judgements (derisions as to which documents in 

the collertiou arc answers to each query). In this expcrimcut , a subset of the CI 

clataba. e was used a, the standardized document set. and both the C}llcrics and <Ul­

swers to the queries werr obtained from within this collecti011. To obtain relevance 

judgements, a combination of canonical SMILES and In Chi rC'prcscnta tions of the 

chemical structures were used. A chemical structure was considered to be a correct 

answer" to a query if it had both the same canonical SMILES and the same InChi 

representation as the structure used for the query. 

5.2.5 Data Analysis 

Using ranked lists as obtained from the four different similarity measures, recall aud 

precision values were determined. Since recall is a nondecreasing function of rank 

(its position in the list) , precision can be regarded as a functlon of recall rather than 

rank. Moreover, preci. ion is usually high at low recall levels and low at. high recall 

levels, if one were to plot a precision-recall curve, the curve geucrally decreases. If 

a perfect ranking algorithm could be developed , all rclC'vant items would bC' ranked 
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ahead of c'lll irrckvaut items. In this rase, precision would be 100 percent H t all recall 

lC'vels, and the recall-precision curve would be c-1. horizontal line at 100 percent. 

For the 19 structures selected to be part of the statistical evalnation, the ,,. (or cutoff 

value. as relating to both precision and recall) used was a score of 1.0 as opposc'd 

to H set numerical threshold (e.g. first ten structures ret nrncd). Since the order of 

the returned struc tures was dependent on the order in which they were placed into 

the index , rather than some other descriptive property, the information found within 

a recall-precision curve would be biased as to their index placement. Instead tlw 

precision and recall values were calculated by reviewing all of the structures with a 

score of 1.0. 

In order to compute all the similarity scores for the 19 different structures with the 

four difFerent similarity measures, over 13 million pairwise similarity calculations were 

required to be completed ( 4 million with OpenBabcl and 12 million with the Chem­

DRSM system). Table 5.3 lists the formulas, cancer chemotherapy National Service 

Center (NSC) numbers , number of structures t hat are identical, and the number of 

structures with the same formula within the test collection for each of the 19 different 

structures used in the tatistical evaluation. 

All four of the similarity measures had 100% recall with each of the 19 test struc­

tures , and it was only through the use of the precision results that any difference 

between the four imilarity measures was observed. Table 5.4 shows the precision 

results for the four different similarity measures for each of the 19 test structures. 
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Tablr 5.3: Formulas, SC nmnbcrs. mnnbcr of structures that arc id('llticaL and the 
umnber of structures with the same formula in the test collectiou for the 19 differcut 
structures used in the statistical cvaluatiou. 

rsc ID Formula umber of umber with 
idcuticc:d strurturcs same formula 
with samc fonnnl c-1 

131564 C6H10N202 5 -13 
134438 CgH,60:3 56 
152324 C2H602 14 14 
169)99 CtsHl9 SCl2 5 5 
170347 CsHsOt~ 5 54 
20982() CsH12 20 3 7 12 
210746 CsHt4 40 2 7 1 
1 0 CgHw03 5 9 
79367 C1Hs04 6 30 
4765 C3HI02 8 15 

134 CwH,403 3 54 
90799 CsHt7 2 25 
134422 C2Hs 4 6 
131564 CGHlO 20 2 5 42 
26613 CuHt203 4 ()8 

623441 CgH 0 2 2 19 
153096 C9H OS 2 4 
525079 C9 H9 0 3 2 73 
15309 CsH 0 2 2 33 
167530 C6H6 3 4 
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Whcu comparing the diffC'rcnt siudlari ty lllC'asmcs it was observed that, ou average, 

the Tanimoto similarity measure with chC'mical fingerprints hac! a precision of 75% 

and a staudard dc•viation (a) of 31 o/c. This is in contrast. to the Chcm-DRSM lllca­

surcs which had an average prC'C'ision of 92% with a standard deviation of 17% for 

the sta.nclard cosiue measure, an average precision of 70% with a sta.ndard dcviHtiou 

of 37% for the rout extual cosine llll'asurc', and an averagC' precision of GGo/c with a 

standard deviation of 38% for tlw Tanimoto mcasme with CATI descriptors. 

Although the average precisiou and standard dcviatiou values provide some iusight 

into the behaviour of the diffcreut nwasurC's. the results do not give a complete pic­

ture. For example, the average precision of the standard cosine measure is 92% and 

the standard deviation is 17 ?1(). Although this shows the magnitudl' of the deviation, 

it also makes one question how can there be a precision of 109o/c (92 + 17)? To ob­

tain more insight additional statistical sumnH-uy data was clctennined for the different 

data. sets (as cau be seen in Table 5.4). The range of the data points shows tlu-1.t t!H' 

values found within the . tandard cosine data set arc closer together than those found 

in the other data .'ct.' . Furthermore, the skew (a measure of the lack of symmetry of 

a distribution curve, a distribution curve is symmetric if it looks the same to the left 

and right of the center point) and the kurtosis (a measure of the slope of the data 

curve, the value of which describes if the data curve is peaked or flat as compared to 

a normal distribution) values arc very different for the standard cosine measmc th<Ul 

those found with the other three measures. The kew value shows that the distribu­

tion of the data points for the standard cosi11e are much more condensed towards the 

right hand ide of a distribution curve (negative skew values correspond to a cle1ta 
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distribution where tlH' left tail of the distribution is longer than the right tail of the 

distribution aud positive skew values correspond to a data clistrilmt ion where the 

right tail of the distribution is longer the-m the left tail of the clistri but.ion), aud the 

kurtosis value shows that the curve associated with the standard cosine measure has 

a sharper peak (positive kurtosis indicates a sharper peak in the data distribution , 

wherea. a negative kurtosis value indicates c1 flatter distribution). 

The shape of the distribution curves provides additional information About how to 

interpret the standard deviation and the average precision. In the case of the stan­

dard cosine measure, the skew and the kurtosi. demonstrate the the majority of the 

data points are concentrated around the middle of the curve ( 92 1() precision) and that 

the data points with the greatest influence on the standard deviation clie on the left 

hand side of the curve (less than 92 %). 

Although these results are only for a small number of structure, from within the en­

tire test ollection ( 19 query structures or 99 structures if you include exact matches) , 

the results till show that within the scope of the study the standard cosine mea.sure 

has the smallest range of precision values, the highest average precision value and 

the smallest standard deviation of precision values. These values show the validity of 

the approach being taken by the Chem-DRSM system with the CATI ba.'ccl measures. 

To assist with further analysis, the statistical evaluation was extended beyond exact 

matches. When considering the quality of results produced by similarity measures it 

is important to consider the ability of the similarity measure to appropriately score 
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Table G.4: NSC numbers, prccisiou \ alues and statistical summary data for the 19 
structures that were part of the statistical evaluation. 

Precision (%) Precision (o/c ) Precision (o/c) Precision (o/c.) 
Tanimoto C'OSlllC Tanimoto COSllle 

NSC ID (chc lllica l fingerprints) (Stand c~rcl + CAT!) (C'ATI ) (C'ont exlua l + C'J\TI ) 

Che m-OR.Sl\1 C'hc lll- DH.Sl\1 Chl·n•- D ilSJ\1 Open Babel 

Equation (3.1) Equation (tJ .G) Equa tion (3. I) Equatio n ("1.7) 

131564 100 100 100 100 
134422 100 57 13 57 
13443 100 100 100 100 
152324 100 100 25 100 
153096 50 100 67 29 
167530 23 75 () 75 
4765 100 100 50 29 

169 99 100 100 100 100 
170347 42 100 100 83 
209826 100 100 100 100 
210746 8 8 8 8 
15309 12 40 17 1 
1880 71 100 3 56 

525079 100 100 100 67 
623441 100 100 8 3 
26613 0 100 100 7 
79367 50 100 100 100 
8134 30 75 75 18 
90799 53 100 67 100 

Average 73.61 91.32 63.84 6 .05 
~Iedian 7.50 100.00 75.00 3.00 
Mode 100.00 100.00 100.00 100.00 
Range 88 60 99 100 

Deviation (a) 30.2 16.8 36. 36.1 
Skew -0.72 -2.09 -0.56 -0.7 

Kurtosis -0.99 3.77 -1.32 -1.04 
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di:ffereuces , both large and small. betweeu the different i t.cms being considered. For 

example, a measure that simply looks a.t the presence aud abscuce of features iustcc-1.d 

of their statistical significance and quantities might have abrupt changes in similarity 

scores, whereas a metric that is more granular in na.tnre can detect more snbt.le dif­

ferences and make appropriate scoring adjustments. Insight into the behaviour of the 

metric with re:pect to its graunlarity can be seen in the histograms of similarity scores 

produced for various queries. Figures 5.2 through 5.5 show histograms of the results 

produced by the four different similarity measures with four of the qu ry structures 

from the statistical evaluation ( rsc 131564, SC 134422, N SC 134438, and NSC 

152324) which provide representative data. for all of the histograms produced by the 

19 query structures. The complete histogram data for each of the four measures a.ud 

the 19 query structures with the test collection (over 13 million similarity scores) can 

be reviewed in Appendix A. Please note that the scales found within the histogTams 

have been kept the same so as to highlight the differences in score distribution be­

tween the different metrics. A: such, the complete data for a given column may not 

be shown. 
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Figure 5.2: Histograms of results (similarity scores) for query structure NSC 131564 

with 4 similarity measures (as indicated) 
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Figure 5.3: Histograms of results (similarity scores) for query structure SC 134422 

with 4 similarity measure. (sec Table A.2 for data) . 
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Figure 5.4: Histogram. of results (. imilarity cores) for query structure SC 13443 

with 4 .-imilarity measures (sec Table A.3 for data). 
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Figure 5.5: Histograms of results (similarity scores) for query structure NSC 152324 

with 4 similarity measures (sec Table A.4 for data). 
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A~ can be seen from the histogn:11ns, the different metrics behav(' differently when 

assessing similarity. If the metric~ were Himilar in nature, then the histograms would 

either b<' the same or linear translations of each other. Since this is not the ca. c, ob­

servations ran be made from the histogram data that allows for further differentiation 

of the metrirs. Consider Table 5.5, which shows the histogram data for the one of the 

19 query structures ( SC 90799, C8H17 ). This structure is of interest. when reviewing 

the distribution of scores produced by the standard cosine measure and the Tanimoto 

measure with chemical fingerprints because of the distribution of the similarity scon's. 

When the , tandard cosine measure is used, a score of 100% precision is observed for 

exact matches (Table 5.4), and the progression through the simila.rity scores of the 

entire test collection is done gradually as the chemical structures become more and 

more lissimilar to the query structure (3 structures with scores between 1.0 and 0.96, 

58 structures with similarity scores between 0.91 and 0.95, and 462 structures with 

similarity scores between 0.86 and 0.90). This is in contrast to the Tanimoto mea­

sure with chemical fingerprints, which in addition to having a precision of 53% when 

searching for exact matches (Table 5.4) has 22 structures with scores betweeu 1.0 and 

0.96, 0 structures with cores between 0.81 and 0.95, and 117 structures with scores 

between 0.76 and 0.80. The large spread of values with 0 scores (0. 1 - 0.95) shows 

the lack of granularity in the Tanimoto measure, behaviour which is also shown in 

Table 5.6 (l SC 167530 - C6H6 ) when the Tanimoto measure with chemical finger­

prints is in use. In this case there are 26 structmes with scores between 0.96 and 

1.0, 0 structures with scores between 0.56 and 0.95, and 327 structure with scores 

between 0.51 and 0.55. This is in contrast. to the standard cosine measure which, in 

this case, has 5 strurtmes with cores between 0.96 and 1.0, 5 structures with scores 
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lwtwc'C'll 0.91 aud 0.95 and 39 structures with scores hetwecu 0. G cllld 0.90. pon 

further investigation of the query results for each of the 19 query structures, it was 

determined that the Tanimoto mc'asun' with clJC'mical fingerprints has. 011 H veT age. 

3.75 hi t.ogTam data ranges (0.00 to 0.05, O.OG to 0.10, 0.11 to 0.15, 0.16 to 0.20, 0.21 

to 0.25, 0.26 to 0.30, 0.31 to 0.35. 0.36 to 0.40, 0.41 to 0.45, 0.46 t.o 0.50, 0.51 to 0.55, 

0.56 to 0.60, 0.61 to 0.65, 0.66 to 0.70. 0.71 to 0.75, 0.76 to 0.80, 0.81 to 0.85, 0.86 t.o 

0.90, 0.91 to 0.95, and 0.96 to 1.0) per structure with valucs equal t.o ~cro, whereas 

the staudarcl cosine measure, on average, has 0.1 histogram clatc-1. rHnges per structure 

with values equal to zero. 

The presence of a similar trend within the results from the Tauimoto measme that 

uses the CATI ck, rriptor (averagc of 3.55 histogram data ranges per structme with 

values equal to zero) makes one conclude that. the block-like behaviour (similar to a 

step function) of the histogram results observed within the results produced by the 

Tanimoto measure that uses chemical fiugcrprints is more likely to be attributed to 

the nature of the Tanimoto equation (for example the statistical di.tribut.ion) rather 

than the chemical fingerprint descriptor. This observation re-iterates the importance 

of taking into account the statistical distribution and weighting of the components 

being used to determine similarity. 
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Tabl<' 5.5: Di. tributiou of similarity scon's produced by different. similc1rity measures 
wheu structure NSC 90799, C8H 17N, is the query. 

cosmc COSlllC' Tauimot.o Tanimoto 
Interval (Contex tual + C'ATI ) (Standard + CATI ) (CATI) (chctnical finger pr ints) 

C'hcnt- DRS~I C' ltent- DHS~I Chcnt-D H.S~I Open Babel 

Equation ( I. 7) 1-=:quatiott (·1.6) Equation (3. I ) Equation (3. I) 

1.00 5 3 8 22 
0.95 5517 5 () 0 
0.90 6557 462 0 0 
0. 5 25 42 1263 0 0 
0.80 8986 1642 43 0 
0.75 5901 1698 0 117 
0.70 2199 1 3 ) 99 0 
0.65 5696 20 2 1 11 
0.60 2633 2393 232 383 
0.55 2406 270 509 0 
0.50 692 3310 92 119 
0.45 7483 3963 895 0 
0.40 12488 4543 2818 2936 
0.35 2988 5245 4649 2259 
0.30 637 6291 10520 9999 
0.25 3 0 7600 19849 23963 
0.20 20544 9376 2806 37 46 
0.15 3210 1185 33159 51309 
0.10 14452 15512 29915 84594 
0.05 44355 2221 37646 3 690 
0.00 5204 74112 8819 6744 
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Table 5.6: Distribution of similari ty scores produced by different similarity measures 
when structure SC 167530, C6 I-h, is the Query. 

cosme cosme Tanimoto Tanimoto 
Interval (Cont('xtual + CATJ) (Standard + CATJ) (CAT I) (ch('ntical fingerprints) 

Chem-DR M ('h('m- DH.SI\1 Ch('m-DHSI\1 O pPn 13al)('l 

Equation (4.7) Equation (4.6) J:;;quaLion (3. I ) Equalion (3. I ) 

1.00 13729 5 5 26 
0.95 36683 5 0 0 
0.90 11637 39 0 0 
0.85 6014 112 0 0 
0. 0 2400 246 0 0 
0.75 1 60 423 0 0 
0.70 1719 773 0 0 
0.65 1283 1023 131 0 
0.60 1017 1460 0 0 
0.55 696 1938 0 0 
0.50 565 2605 385 327 
0.45 443 3722 0 0 
0.40 430 4893 1309 0 
0.35 483 6751 0 0 
0.30 185 9508 2699 1165 
0.25 71 12797 14572 2773 
0.20 13 16427 28557 5035 
0.15 0 21056 48247 8381 
0.10 39723 23299 52009 65194 
0.05 0 17949 21449 96668 
0.00 59224 53144 8812 80502 
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5.3 Human Evaluation 

Although thc statistical analysis, as described iu Section 5.2, aJt.cmpted to obtain 

insight into the behaviour of the different similari ty meas1.1res, it can be thought of 

as incomplete siucr opinions of potential users of the Chem-DTI S}.l system wrrc not 

yet considered. To effectively compare the three proposed similarity mctrics with 

the Tanimoto measure that uses chemical fiHgerprints. a study was designed to com­

plement the statistical analysis. This study involved the usc of human subjects to 

evaluate and score the pairwise similarity scores and the correctness of the list rank­

ings thM WC'r<.' produced by t he t hrcr proposed similarity metrics aucl the Tanimoto 

metric with chemica] fingerprints. 

The human rvaluation of the different similarity measurrs was carrird out using the 

following procedure: 

• Chemical structures were convertrd to artesian coordinHtC' format. 

• Chemical Atom Topological Indices ( CATI) wcrr drtrrmined for the each chem­

ical structure in t he test collection. 

• Indices werr created based upon t hr resulting CATI descriptors. 

• Five query structures were idrutificd for use with thr human rvaluation. 

• The similarity of each chemical structure within t he trst collection (as it com­

pared to each of the five human study query structures) wa. det.enninrd through 

the use of the indices and t hrec different similarity measures: namely the stan-
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clare! cosine measure, the contextual cosiue lllC<lsurc, c1 nd the Tc1nimoto TI 

measure (as implemented within the Chem-DRSl\1 system). 

• The similarity of each chemical strncturc within the test collcdiou (as it com­

pared to each of the five human study query structures) was also clctenninecl 

through the usc of a Tanimoto similarity metric that uses chemical fingerprints 

(as implemented withiu the OpcnBa hcl system). 

• Lists of the top ten most similar struct ures (as determined by the three Chcm­

DRSM metrics and the Tanimoto chemical fingerprint metric) were produced 

for each of the five human study query structures (four different mctrics, five 

difFerent query structures, 20 different top ten lists of chemical struct urcs). In 

cases where there were more than ten structures with a score of 1.0. only the 

first ten structures returned were used. 

• The different top ten listings were evaluated in terms of pairwise similarity am! 

correctness of list ordering by the human study part icipant. ·. 

The following subsections d scribe each of these items in more detail. 

5.3.1 Building on the Statistical Evaluation 

The human evaluation builds on the methodology and framework t hat was u, eel in t.hc 

statistical analysis Section 5.2. The same test collection index creation scheme ancl 

similarity measures a the statistical evaluation were also employed in the human 

evaluation. The only difference in the experimental foundation is that. t he humau 

evaluation only looks at t he query results produced by five different query structures 
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from the test collection whereas the statistical evaluation used 19 different query 

structures from the test collection. Figure 5.6 shows the structures, formulas and NSC 

identification numbers of the five different chemical structures that were arbitrarily 

chosen for use with the human evaluation. 

(3) 

1 2 3 4 5 

NSC 2212 NSC 8134 NSC 18084 NSC 90321 NSC 90799 

c34H16o2 CwH1403 C14H19N30sS c22H14 CsH11N 

Figure 5.6: Query structures that were used to produce similarity scores for the 
human evaluation (the choice was arbitrary). 
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5.3.2 H y pothesis 

The main focus of the study we~s to dc>t.rrmine the appropriatruess in scoring and 

ordering of the results from the various chemical struct me qucric's. It was t hr intent 

of this study to find the answer to the following question, "Is there a diffcrrnce in 

the qnality of results that arc returned b_y the different similarity mctricsT. To 

answer this question , the following null hypothesis was used: ·'There is no difference 

in the similarity .'cores produced by the four different similarity mctrics that arc 

being considered in terms of precision, recall, distribution of similarity scores, and 

user e~sscsment. " 

5.3.3 Subjects 

Twenty-four university tudC'nts , staff and faculty members were recruited for this 

experiment . Tables 5. 7, 5.8 and 5.9 show the demographic background of the subjects 

that participated in the study. This study not only provided an evaluation of the 

different similarity metrics , but it also provided some additional insight i11to what 

types of criteria the study participants used to determinr chemical structure similarity. 

Prior to the commencement of the study, ethical approval was sought and granted by 

the Interdisciplinary Committee 011 Ethics in Human Research (ICEHR) at Memorial 

University of ewfoundland. 

Table 5. 7: Gender breakdown of study participants. 

Male Female 
17(71%) 7 (29%) 
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Table 5.8: Educational background of study pcuticipauts. 

I3Sc }.ISc }.ISc PhD 
( C'hcn1 is try) (Chcmistr.v) (Computational Scicnc<') (Chemistry) 

1 (4.2%) 3 (12.5o/t) 1 (4.2o/c ) 19 (79.2%) 

Tabk 5.9: Area of expertise of study participants. 

Number of study participants Area of expertise 
2 (8.3o/i) Theoretical 
6 (25o/c ) Theoretical I Computational 

4 (16.71( ) Physical 
2 ( .3%) Physical I Computational 
1 (4.2%) Physics I Condensed Ma.t.t.E'r 

3 (12.5~) Organic I Experimental 
2 ( .3%) Organic 
1 (4.2%) Cry tallography I Inorganic 
1 (4.2%) Inorganic 
2 (8.3%) Analytical 

5.3.4 M ethod 

Each subject was required to complete two tasks for each of the different similcuity 

measures. The first task consisted of scoring the similarity of structures wit bin a list. 

of chemical structures to a structure that was designated a.s the search query. The 

second task involved providing an overall score for the correctness of the ordering 

of the list that was produced. For each task , there were five lists generated nsiug 

the test collection from the CI database ( SC 18084 - C 14 H19 30 58, SC 2212 -

and the generation of each of the lists required rv178,000 similarity calculations. The 

mechanics of the four different tasks arc all the same, it is simply the content of the 

95 



gcnerat<'cl lists that are different . 

To account for the possibility that the results could be infineurccl by the ord('r in 

which the tasks were completc'd, counterbalanced measures were implemented (sec 

Table 5.10). The 24 subjects were each given a different ordering of tasks so that all 

of the possible ta . k orderings were ron idercd. The only variation within the study 

was the or lcring of thr different similarity measures. Throughout the experiment 

subjects WC'I"e prc'sent ed the same lists for each of the similarity measures in the same 

order. Table 5.11 illustrates the ordering of the structures used to produce tlH' lists 

of chemice1l structures that were reviewed hy each study participant. 

It is important to note that each of the lists reviewed by the study participants con­

tained only ten structures. A total of teu structures was chosen as the cutoff for 

user C'valuation. as a study by Bcit;t;el ct. al. [62] u, ing web-based querie, from more 

than 50 million users showed that users only view the results presented on the first 

page (first ten documents) of a web-query 81 % of the t ime. Since the purpose of this 

evaluation is to simulate and evaluate searching and browsing activities only the first 

ten strnct.ures were presented to study participants, even if there were more than ten 

with the same similarity score. 

5.3.5 Data Collection 

Throughout the course of the experiment data relating to the following areas was 

collected; similarity to the original query structure and correctness of list ordering. 

In order to measure both of the, e values a Tale from one to seven, ot herwisc known 
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TablC' 5.10: Summary of similarity UlC'asure ordering for subject tasks. 

C'OSlllC C"OSJll(' Tanimoto Tanimoto 
(Contextua l + CJ\T l) (Standard + CJ\T l) (C'J\T l) (chelllieal fingerpri nt s) 

Subject. A 1 2 3 4 
SubjC'ct B 1 2 4 3 
Subject C 1 3 2 4 
Subject D 1 3 4 2 
SuhjC'ct E 1 4 2 3 
Sn bjcct. F 1 4 3 2 
Subject G 2 1 3 4 
Subject H 2 1 4 3 
SubjC'ct I 2 3 1 4 
Subjrct J 2 3 4 1 
Subject K 2 4 1 3 
Subject L 2 4 3 1 
Subject l\1 3 1 2 4 
Subject N 3 1 4 2 
Subject 0 3 2 1 4 
Subjrct P 3 2 4 1 
Subject Q 3 4 1 2 
Subjrct R. 3 4 2 1 
Subject S 4 1 2 3 
Subject T 4 1 3 2 
Subject U 4 2 1 3 
Subject V 4 2 3 1 
Subject W 4 3 1 2 
Subject X 4 3 2 1 

TablC' 5.11: Ordering of structures used to produce li ts for each similarity measure 
that werr assessed by study participants. 

Structure 1 Structme 2 Structure 3 Structure 4 Structure 5 
NSC 2212 NSC 8134 NSC 18084 NSC 90321 NSC 90799 
c34HI6o2 CLOHI403 C,4H,gN305S c22H14 C8H,7N 
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as a LikC'rt scale', was usC'cl so that thC' study participant could cmumm1icatc their 

responses in a simple and effrctive manner. For the evaluatiou of similarity the value 

1 was considered to lw '·not similar·· and the value 7 was considered to lw ''very 

similar" . For the correctness of ordering mcasuremcut, a value of 1 was ronsiclerecl 

to be "incorrect'' while a value of 7 was considered to be "correct' .. 

To collect this information a web-based iuterface was dewlopecl usiug the Jmo1 ap­

plet [63] and Forml\Iail [64] . The .)mol applet provided an interactive Java-based vi­

sualization environment for the chemical stm cturcs that worked iu c\.lly web-hrowsrr. 

Using the Jmol applet the query structure and all of the structures that. were gener­

ated in the "top tell ' lists were visualized iu 3D for the study participants. Figures 5. 7 

and 5. show screenshots from the web-based interface that was d('velopecl for this 

study. 

Before' the results could be presented in an organized manner, the raw data obtained 

from the e-mail messages gC'nerated from the interactive' web-based iutC'rface needed 

to be formatted and analyzed. This section shows exam piC's of the results that were 

obtained and provides an overview of the calculatiou.· performed. Figure 5.9 shows 

a sample e-mail me sage that was generated during the survey when a subject was 

viewing and scoring one of the lists generated by the stauclarcl cosine measure. 
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Top 10 Search Results 

Figure 5.7: Sample pairwise similarity scoring web-form as used in the human evalu­

ation with the query structure on the left and the comparison tructure on the right. 

Note that users were able to zoom in and out and rotate each structure if needed 

through the web-form. 
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!correctness In List Or(iaing 

Scbmit 

Figure 5. Sample correctness of list. scoring web-form as used in the human cvalu-

ation. 
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F"rorr chemicalsurvey@noreply.com () <CI1emicalsurvey@noreply.com:> 
SutJ}(;c;, Chemical Structure Evaluation Survey- FORMULA 

._aft- May 14, 2009 10:43 :28 AM NDT 
it Mark Stave ley 

Below is the result of your f·eedback forr1 . It was sub mined by 
(cherlicalsur ... e·,@noreolv com) on Thursday, May 14. 2009 at 10 :43:28 

OUTFtL E !:> 8011 43420: 7 

OUTFILE5 8011 31533 _ 7 

OUTFtLE!:> 8011 22823 : 6 

OUT FILES 8011 2281 7 7 

OUTFfLE5 8011 58 740: 6 

OUTF~LE5 8011 58 7'41. 5 

OUTFILE5 8011 221160. 5 

OUTFILE5 8011 221626 : 5 

OUTFILE5 8011 199435: 5 

OUTFILE5 8011 210249 . 5 

OUTFILE5 listscore : 6 

t"r!ysubmit: Submit 

Figure 5.9: Sample e-mail generated from the web-based study interface. 
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E-mails similar to the ouc iu Fig nrc 5. 9 were gt'ncn'l ted for 20 different lists d uriug 

the course of the survey for each participaut. With the 2-! particip<-mts there wcrc 480 

resulting surwy e-mail messages that werc collt'cted and processed. Each e-mail that 

was received contained 11 user submitted Vcllues, namely the asscss('d similarity scores 

for each structure within the "top ten'· list aud the aSS('S. ·eel score for the correctness 

of the ordering of tht' list . Appendix B co11tains all of tht' user generated data that 

was obtained from each of the 480 survey e-mail messages. 

5.3.6 Data Analy sis and Interpretation 

After compiling and orgamzmg the raw delta, it was important to look at. the ac­

curacy of the results that were obtained from the study partieip<Ults. Within the 

various ·'top ten" lists, there were structures that were known to be exactly the same 

as the query structures. By assessing how well the subject participants scored these 

values, it became possible to measure the accuracy at which the study participa.nts 

were assessing similarity. On average, the 24 different study participants assessed the 

similarity of the structures that were exactly the same as 97.41(, (a= 0.6%) . 

This result demonstrated two things: Firstly it showed that there is a certain er­

ror factor here as even experts in the field of chemistry have difficulty in assC'ssing 

chemical similarity, and secondly it provided additional insight as to the quality of 

the results that were obtained through the human evaluation. In the statistical com­

ponent of the evaluation, the similarity measures were assessed on their ability t.o find 

structure that matched exactly. The data obtained through the human evaluation 
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enables thC' asscssmcut of the diffcreut similarity mcasun's with respect to find iug 

similar structm es, as relevance judgements can uow be defined based on the scores 

provided by the study participants. 

Takiug into account the ability of the study participants to ident ify exact structure 

matches, a user score threshold of 66% (a value of 4 or higher 0 11 the Likert scale 

that was used throughout the study) was chosen as a basis for a.ssessing similari ty. 

All structures that hacl clll average assessed score of GG% or greater were considen'd 

to be similar. Using this threshold it was possible to compare tll<' different similar­

ity measures based on the number of similar structures that were ident ifiecl wi thiu 

the different ''top tc>n" lists. Tahlt' 5.12 shows t he number of similar structures thc1 t 

were identified , excluding exact matches, for each of t he different test structures and 

different imilari ty measures by study participants. Note that t he standard cosine 

measure identifies the greatest uumbcr of structures with a user-assessed similarity 

score of 66% or greater. Exact matches arc excluded from the counts as the purpose> 

of this value is to highlight the abilit ies of the different metrics to go beyond t hr task 

of finding an exact match. In t he case of all query structures, if there were exact 

matches within the test collection, then thry were identified with a score of 1.0 (as 

ment ioned in ubsection 5.2.4) . 

Throughout the human evaluation. par t icipants were also asked to assess the cor­

rectness of the ordering of the different 'top ten lists that wen' presented to them. 

Ta ble 5.13 shows the average user-asse ·sed li t correctness , core, cmcl stand cud devi­

ation, for each of the lists produced in the human evaluation. It. is important to note 
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Table 5.12: umber of similar structures that were idcnt ifiPd by study participants 
excluding exact matches, for each of the different test structures by the four different. 
similarity measures using a t hreshold of 66%. 

Structure cosine cosine Tanimoto Tanimoto 
(Cont.ext.ual + CJ\TI) (St.anclarcl + CJ\TI) (CJ\TI) (chemical lingcrprint.s) 

C34 H1 60 2 1 1 0 0 
CIO HI 40 3 2 3 3 3 

C14Ht 9N30 5S 0 0 0 0 

c22 H'" 0 4 0 0 
C8HI 7N 0 0 0 0 

Total 3 7 3 3 

t hat. the lists contained only t he first ten chemical structures returned , regardless if 

t here were more than ten structures with t he same similarity score. 

As can be seen , t he st andard cosine measure consistently has a better user assessed 

list order correctness score, wit h a smaller standard deviation , t han t he scores given 

to the lists generated using t he industry standard Tanimoto measure with chemical 

fingerprints. In some cases the list order correctness results are based upon lists where 

the metric has scored all of the items within the list as having perfect similari ty scores 

(test structure 4 wit h t he contextual cosine measure- Figure B.2, test structures 1,2, 

and 4 with t he Tanimoto CATI measure - Figures B. 7 and B.8, and test structures 

2,4 and 5 wit h the Tanimoto measure that uses chemical fingerprints- Figures B.10 , 

B.ll and B .1 2 - note there were no cases of this wit h the standard cosine measure) . 

An additional example of t his can be seen in Figures B. 21 and B.16. In t his case t he 

first figure (B.21 ) shows t he first five structures returned using t he Tanimoto measure 

t hat uses chemical fingerprints . All five of the structures were given a score of 1.0 by 
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Table 5.13: ThC' a.verage user-assessed list correctness Hron>, (and standard deviation), 
for each of the LiHts produced in tlw lunnan C'valuation. 

Structure COSlllC COSllle Tanimoto Tanimoto 
(Conlcxlua l + C'ATI ) (Standard +CAT! ) (CAT I) (che mical fin gerprints) 

c3.,H16o2 53%. ( 8o/c ) 66o/c (5%) 36%(11 <;{ ) 53%(1Go/c ) 
CwH1403 7 o/c. ( 7o/c ) 78<;{ (0%) 47%(4%) 60%(8o/r ) 

cl,HI9 30sS 48o/c. (3%) 52o/c ( 4 o/c ) 47%(5%) 45%(9%) 
c22H1.1 50% (17%) 73o/r (2%) 38%(3%) 53%(7%) 
CsH11N 44% (9%) GGCX (2%) 74%(0%) 40%(6%) 

Average Li t 
Correctness 55% 67% 48o/r 50% 

Srore 

Average 
Standard 8.8% 2.6o/c 4.6% 9.2% 
Deviation 

the metric. This is in contrast to thC' second figure (B.1G) which shows thC' first fivC' 

structures returned using the standard cosine measure. Only the first four structures 

were given a score of 1.0 by the metric. This example also shows trends that wC'I'c 

observed with the histograms, namely the granularity in which the structures me 

differentiated by the similarity measure. 

The issue with the lists where all of the scores are 1.0 lies with the assessment of 

the ordering. In these cases the ordering is based on the order in which they arc 

found within the indices. Even though the value of assessing the order in these cases 

can be questioned, these results were till presented in this thesis as it highlights 

performance differences in the metrics that rho back to the precision scores of the 

different metrirs. Should a metric be unable to distinguish structures beyond a certain 

point , then a deficiency in the metric ha. been highlighted. These same defiricnrie. 
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can also he seen when reviewing the cliH'ercnt· histognm1s tlw t show the distribution 

of the similari ty sc-ores of the different metriC's when using t.lH' test. structures from 

the statistical cvalun.t ion. 

5.4 Functional Group Investigation 

The studies presented thus far c-olH'Ciltrcltc on using various properties, either chemic-al 

fingerprints or the CATI topological descriptors, and their ability to e1sscss chemical 

similarity wit h a variety of metrics. However , these d('Scriptivc proper ties an ' not. 

only used as components of metrics to produce similarity scores, hu t ca.n he also used 

to identify components and classify chemical structures. 

The CAT I aud CBTI deHcriptors, as preseuted in this thesis, arc topological descrip­

tors that n e computed information to captme different types of chemical information 

(for example bond information, and the different types of a toms wi thin the structure). 

In Section 4.2.4, t he CATI descriptors were trea ted as "words" within standard infor­

mation retrieval measures. Following t his analogy, CBTI desniptor. can be thought 

of as "chemical phrases" . Thi i. one approach that can be taken when reviewing 

functional groups. as functional groups arc made up of distinct "chemical words" and 

"chemical phrases" . 

To evaluate the appropriateness of this analogy, different functional groups were 

represented in terms of CATI and CBTI descriptors to determine if t hey could be 

uniquely ident ified. Table 5. 14 ummarizes the functional groups that were reviewed 
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dmiug this analysis and shows wh<\t. descriptors arc rcquin'd fo r iclcntificatiou. As m1 

example, it was dctenniued that some fuuctional groups, such as suLfides, could l)(' 

identified by only using CATI descriptors, whereas other functional groups, such as 

esters, required additional informatiou that is found within the CBTI descriptors for 

successful identification. 

Table 5.14: Functional group listing and the information required for identification. 

Functional GroUJ> CATis CBTis 
Alkenes • 
Alkyncs • 

lkanes • 
Aromatic • 
Alcohol • 

Carboxyl • 
Ester • 

Thioester • 
Ether • 
Halide • 
Amine • 

itro • 
Thiol • 

Sulfide • 
Nitrile • 

Aldehyde • 
Ketone • 

AcylHalide • 
Amide • 

Acid Anhydride • 

This shows a great deal of promise, as one of the traditional methods to idcutify 

functional groups was through ome type of substructure search involving analysis of 

molecular subgraphs [65] . By creating indices based on the ATI and CBTI dcscrip-
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tors within chemical structures, a new type of comprchrnsivc functional group search­

ing tool cc-m be created. Because of the proposed architectural framework and the 

information already found within the Iulti-Component Data Representation Scheme, 

this typr of functionality could be implemented with minimal design and coding ef­

forts. 

Figure 5.10 through Figure 5.16 provide more detail about the actual CATI and 

CBTI descriptors needed to identify the different functional groups. As can be seen, 

the presence of some functional groups can be determined by the occurrence of a single 

CATI descriptor. In all figures , the items shown in boldface arc the key components 

that are used to identify the fuuctional group with either CATI or CBTI descriptors. 
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Amine 

C-N ( -H)-H 
C-N ( -H)-C 
C-N ( -C)-C 

Nitro Compound 

lc-N(-o)= O 

Thiol 

lc-SH 

z :::. .:; 

7(9,0) 
7( 19,0) 
7(24 0) 

CATI 

7(9,0) 
7(19,0) 
7(24,0) 

A structure that contains at least one of the above CATI 
descriptors contains an amine functional group. 

CBTI 

l z ~ ~ ~z~ - ~ z '" ·-
7(3~,o{sc5~-1)..8(5~-1).:; 8(5,-1)-7(34,0) X 2 

A structure that contains two 8(5, - 1)-7(34,0 ) CBTI 
descriptors which have a common 7(34,0) CATI descriptor 
has a nitro compound functional group. 

CATI 

16(7,0) 

A structure that contains at least one 16(7 ,0) CATI 
descriptor has a th iol functional qroup. 

Figure 5.10: CATI an l CBTI descriptors u eel to identify the presence of amincs. 

nitro compounds, and thiols within chemical structure::;. 
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Sulfide 

le-se 

Nitrile 

z ~ ~ 

IC-C # N 6 (1 4 ,- 2) 
IH-C # N 6(1 0 ,-2) 

Aldehyde 

IC-C(=O)- H 

CATI 

16(12,0) 

A structure that contains at least one 16( 12,0) CAT! 
descriptor has a sulfide functional group. 

z t 
7(4 0) 
7(4 0) 

E 
CATI 

6(14, -2) 
6(10,-2) 

A structure that contains either a 6(14, -2) or 6(10, -2) 
CATI descriptor has a nitrile functional group. 

CATI 

6(25, -1) 

A structure that contains at least one 6(25,-1) CAT! 
descriptor has an aldehyde functional group. 

Figure 5.11: CATI and CBTI descriptors used to identify t he presence sulfides, ni-

triles, and aldehydes wit hin chemical structures. 
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Carboxyl 

Ic-C( -OH)=O 

Ester 

Ic-C( -OC) = 0 

Thioester 

IC-C( -SC) = 0 

6(34, -1) 8(7,0) 8( 4, -1 ) 

CBTI 

8(7,0)-6(34, - 1) 
8( 4,-1 )-6(34,-1) 

A structure that contains an 8(4, -1)-6(34,- 1) CBTI 
descriptor, and an 8(7,0)-6(34, - 1) CBTI descriptor where 
both CBTI descriptors share a common 6(34,-1) CATI 
descriptor contains a carboxyl functional group. 

lz ~ - lz :::. ~ lz ~ -
6(3~,-1~8(12,0)8(4:-1) !; 

CBTI 

8( 12,0 ) -6( 34,-1) 
8(4,-1)-6(34,-1) 

A structure that contains an 8(4, -1)-6(34,- 1) CBTI 
descriptor, and an 8(12,0)-6(34,-1) CBTI descriptor where 
both CBTI descriptors share a common 6(34,-1) CAT! 
descriptor contains an ester functional group. 

I 
z ~ ·- I z ~ - I z ~ ·-
6(5~,-1)16(~2,;)8(4~-1 ) ~ 

CBTI 

16( 12,0 )-6( 58, - 1) 
8( 4, - 1 )-6( 58, - 1) 

A structure that contains an 16(4,-1)-6(58,- 1) CBTI 
descriptor, and an 16{12,0)-6(58, -1) CBTI descriptor where 
both CBTI descriptors share a common 6(58,- 1) CAT! 
descriptor contains a functional group that is a 
sulfur variant of an ester. 

Figure 5.12: CATI and CBTI descriptors used to identify the presence of carboxyl 

groups, esters, and thioesters within chemical structures. 
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Ether 

lc-o-c 

Halide 

C- F 
C-CI 
C-Br 
C- l 
C-At 

z t, t: 

"' 
9(4,0) 
17( 4,0) 
35(4,0) 
53(4,0) 
85(40) 

CATI 

8( 12,0) 

A structure that is not defined as an ester, and still has a 
8(12,0) CATI desctiptor is identified as a structure with an 
ether functional group. 

CATI 

9(4,0) 
17(4,0) 
35( 4,0) 
53(4,0) 
85(4,0) 

A structure that contains at least one of the above CATI 
descriptors contains a halide functional group. 

Figure 5.13: CATI and CBTI descriptor. u. cd to identify the presence of ethers aud 

halides within chemical structures. 
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Alkenes 

z ~ ~ 

H2C= CH2 6(9, - 1) 
HCC= CH2 6(19,-1) 

C2C= CH2 6(24 ,-1) 
C2C= CCH 6(24,-1) 
C2C= CC2 6(24-1) 

Alkynes 

z ~ ~ 

HC#CH 6(7 ,-2) 
CC#CH 6(12, -2) 
CC#CC 6(12 -2) 

Alkanes 

z t ~ 

C-C( -C)( - C)-C 6(40,0) 
C-C( -C)( - C)- H 6(35,0) 
C-C( -C)( -H ) -H 6(25,0) 
C-C( - H )( - H )- H 6(10,0 ) 
H - C( - H )( - H )-H 6(-10 0) 

z ... ~ 

6(9, - 1) 

6(9, -1) 

6(9, -1) 

6(19,-1) 

6(24 - 1) 

CBTI 

6(9, - 1)-6(9, - 1) 

6(19, -1)-6(9, - 1) 

6( 24, - 1 )- 6 (9, -1 ) 
6(24, - 1)-6(19, - 1) 

6( 24, - 1 ) -6(24, - 1) 

A structure that is made up of on ly carbon and hydrogen 
atoms which containes at least one of the above CBTI 
descriptors is an alkene. 

z :; !: 
6(7, -2) 
6(7, -2) 
6(12 - 2) 

CBTI 

6(7, -2) -6(7, -2 ) 
6( 12, -2) -6(7 , -2) 

6( 12, - 2) -6( 12, -2) 

A structure that is made up of only carbon and hydrogen 
atoms which contains at least one of the above CBTI 
descriptors is an alkyne . 

z :: .::: 

1(4,0) 
1(4,0) 
1(4,0) 
1(4 0) 

CATI 

6(40,0) 
6(35,0) 
6(25,0) 
6(10,0) 
6( -10,0) 

1(4,0) 

A structure that is made up of only the above CATI 
descriptors is an alkane. 

Figure 5. 14: CATI and CBTI descriptors used to ident ify structures that are alkenes, 

alkynes or alkanes. 
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Aromatic 

Alcohol 

H-(H- )C-0 -H 
C- (H - )C-0 - H 
C-(C- )C-0 - H 

z = 6 
:; = - 1 
~ = 19 

CBTI 

6(19,-1)-6(19,-1) 
6(> 19,- 1 )-6(19,- 1) 

6 x 6(19,-1) and part of the same ring 

z t 2 
8(7 0) 
8(7 0) 
8(7 0) 

z ::: ~ 

6(33 0) 
6(43 0) 
6(48 0) 

CBTI 

8(7,0)-6(33,0) 
8(7,0)-6(43,0) 
8(7,0)-6(48,0) 

A structure that cont ains at least one of the above CBTI 
descriptors. The 8(7,0) CATI descriptor that is part of the 
above CBTI desctiptors cannot be bonded to a 6(34,-1) 
or 6(29, -1) CATI desctiptor. If these conditions are 
met, then the structure contains an alcohol functional 
group. 

Figure 5.15: CATI and CBTI descriptors used t.o identify structures that ~tre either 

aromatic (e.g. C6 H6 ) or that. contain alcohols. 
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Ketone 

l c -C(=O)-C 

Acyl Halide 

C-C( = O)-F 
C-C( = O)- CI 
C-C( = O) -Br 
C-C( = 0 )-1 
C-C( = O)-At 

Amide 

H- C( = 0 ) -N ( - H)- H 
H-C( = 0 ) -N ( - H)-C 
H- C( = 0 )- N ( -C) - H 
H- C( = 0 ) - N ( - C) -C 
C-C( = 0 )- N ( -H)-H 
C-C( = 0 )- N ( -H)-C 
C-C( = 0 )- N ( -C)- H 
C-C( = 0 )- N ( -C)-C 

Acid Anhydride 

CATI jz ~ ~ jz ~ ~ 
6(~0,-~) 8(4~ - 1)~ 6(30,-1) 

z ~ <.. .::; 

9(4,0) 
17(4,0) 
35(4,0) 
53(4,0) 
85(4 0) 

z :::. ~ 

6(27, - 1) 
6(27, - 1) 
6(27, - 1) 
6(27, - 1) 
6(32, - 1) 
6(32, - 1) 
6(32, - 1) 
6(32 -1) 

A structure that contains at least one 6(30,-1) CAT! 
descriptor has a ketone fu nctional g roup. 

z ~ ~ 

8(4, - 1) 
8(4, - 1) 
8(4, - 1) 
8(4, - 1) 
8( 4 - 1) 

z ~ .::; 

6(37, - 1) 
6( 61, - 1) 
6( 115,- 1) 
6(169, - 1) 
6(265 - 1) 

CBTI 
9(4,0) -6(37, - 1) 
17( 4 ,0)- 6(61, - 1) 

35(4,0)-6(115, - 1) 
53( 4 ,0) -6( 169, - 1) 
85(4 ,0) -6(265,-1) 

The presence of 1 or more of these CBTI descriptors 
identifies the presence of an acid halide functional group 

z ;:: ~ 

8(4, - 1) 
8(4,-1) 
8(4, - 1) 
8(4, - 1) 
8(4, - 1) 
8(4, - 1) 
8(4,-1) 
8(4 - 1) 

z :::. 
7(9,0) 
7(19 ,0) 
7(19,0) 
7(24,0) 
7(9,0) 
7(19 ,0) 
7(19,0) 
7( 24 0) 

~ 

CBTI 
8(4,1) -6 ( 32 ,-1) 
7(9,0)-6(32,- 1) 

7(19,0)- 6(32,-1) 
7(24,0)- 6(32,- 1) 

The presence of a 8(4,1)-6(32,- 1) CBTI descriptor, that 
shares a 6(32, - 1) CATI descriptor with either a 
7(9,0)-6(32, - 1) or 7( 19,0) -6(32, - 1) or 7 (24,0)-6(32, -1 ) 
CBTI descriptor identifes the presence of an amide 
functional group. 

CBTI 

l
z ~ t: jz ~ ·· jz ~ " 

I O = C{ -C) - 0 -C( -C) = O 6(3~, - 1) 8( 4~ - 1 )c:; 8(1~,0) ~ 
8( 12,0 )-6(34, - 1) 
8(4 ,- 1)-6(34, - 1) 

The presence of two 8(12,0) -6(34, - 1) CBTI descriptors 
that are connected to the same 8( 12,0) CAT! 
descriptor, as well as t he presence of two 
8(4, - 1)-6(34,- 1) CBTI descriptors identifies the 
presence of an acid anhydride functional group 

Figure 5.16: CAT I and CBT I descriptors used to identify tlH' presence of k<:'t.oucs, 

acyl halide , amicles, or acid anhydride. within a chemical structure. 
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5.5 Discussion 

Upon cxcuuining the results obt.aiucd from both the stat istiral evaluation ( prC'cision 

and recall data) and the human cvalua t ion (assessment of pairwise similarity vs. list 

rank, and the correctness in list ordering), it is observed that tll<' null hypot besis is 

rejected. The first rcsul t that demonstn-1 tes the performam'c difference of the two 

metrirs is t lw precision data that is observed when using the 19 test. st.ruct.urcs in 

the statistical evaluation. If there was no cliffereuce in the mctrirs. then the precision 

data would be the same for the Chem-DRST\I metrics and the Tauimoto metric tlwt 

uses chemical fingerprints. Furthermore, the histogram data demonstn-1t.cs Lha t the 

111etrirs arc not just linear shifts or t.ranslat ions of one another, re-affirming that the 

mctrics arc not the same. 

The statistical results demonstrate that the me tries arc not the same, and if the 

performance of the metriC's was only based on prcrisi n then the standard rosine 

measure that is part of the Chem-DRS 1 system would have the best performance. 

However, the statistical evaluation primarily looks at exact matches (as there were no 

other ways available to independcnt.ly confirm rrlcvanre judgement.) and the metrics 

arc not just boolean queries thcl.t look for an exact structure. The hum au eva! uation 

results extend the results obtained throughout the stat.i tical evaluation by consult­

ing with . tudy participants that have expert knowledge. Throughout the study, the 

human participants identified the standard cosine metric as their preferred measure 

(through anecdotal comments), comments which were subsequently reaffirmed when 

reviewing the results that were obtained through the study. Throughout the study, 
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the standard cosiuc measure iclcnt ihcd the highest uumbcr of struct urcs to be giveu a11 

average user-assessed similarity score of 66% or better. This is au important. stclt.istic 

as it shows thHt the standard cosine measure is nscful beyond searchiug for exact 

matches. 

The high quality of the results produced by the standard cosine measure which uses 

the CATI descriptors can be attributed to two features of this particula.r measure. 

1 he fir. t featun' is that the cosine measure (as implemented in the Chcm-DRSl\1 sys­

t.c'm, Section 4.2.4) uses information about the, tatistical distribution of components 

when asse,·sing similarity. This is in contrast to the Ta.nimoto measure that docs not 

usc any ]dud of statistical distribution information. The second fea tnrc, is the usc of 

the CATI descriptor. The CATI descriptor (as mentioned in Section 4.1.1) is derived 

from the topological information and valency of each atom within a given structure. 

This provides au increased chemical vocabulary that can be used to describe chemical 

tructnres. The combination of both of these features ha · resulted in high qualit~' 

results, as assessed not only by statistical values (precision ancl recall) but also by 

human ·ubjects that are considered to hcwc expert knowledge in the field of chemistry. 

Looking forward, the experimentally determined thre ·hold values for the various com­

putationally derived descriptors and the work being done with the identification of 

functional groups highlights even more way in which the various descriptors found 

within the Chem-DRSl\1 system can be extended and applied to activities related to 

the searching, browsing, and organization of chemical structure information. 
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Chapter 6 

Prototype Comprehensive 

Computational Chemistry 

Database 

This C"hapter exte11ds the work that has been completed through tlH' creation of the 

Chcm-DRSl\I system and presents additio11al work that builds 011 the core function­

ality of the tools that arc found witltin the Chem-DRS I[ system. This chapter is 

divided into a 11umbcr of sections, uamely data rcprcsentat.io11, integration, and en­

hanced rhcmiraJ information classificat iou . 

This work is still i 11 the very early stages, but the promising results that have been 

observed warrant that. it be indnclccl with the work contained withi11 this thesis. In 

particular, it highlights the architcctmal flexibility and moduhrity that is inhNent 

with the data-representation scheme at the core of the Chcm-DR I system. It also 

highlights the range of information that is raptured within that da t a-represcntatiou 
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scheme <-tnd illustrHtes some of th<' c1ltrmative ways tlwt it ce-nt lw used to cuc1hlr 

comprehensive access to chemical iuformation. 

6.1 Data Representation 

As mrnt ioned throughout this thesis. one of the mam challenges faced by digital 

librarimts and lllcutagcrs of digital archives is the automatic processing and classi­

ficatiou of data. The I\1ulti-Component Data Representa tion Scltemt' found wit.hiu 

the Chcm-DR.SM system provides a universal framework for data management that 

can be extended very easily to be used with large-scale resources. Furthermore, the 

modules required to build the different data components that make up this cia ta 

represeut.ation scheme arc iudependent of one another and do not require any spe­

cialized computational resources. The presence of these design fea tures meau that 

researchers and scientists could contribute results very easily, and a.u tomatirally, to 

large scale resources (for example a centra.l cla.tabasc) using the tools found within 

the Chrm-DR.SM system. 

6.2 Integration 

By building 011 the foundation established by the Chem-DR.SM system , a fully in­

teractive and dynamic database could be easily const.ructrcl and integrated into the 

computational resources usee! by chemical researchers. Figure 6.1 illustrates the archi­

tecture of such a system. Within the system, there arc fonr key layers (the interface 

layer , the management layer, the processing layer , and the storage layer ) that make 

up the overall arc hi t.ccture. One key feature of the layered design is that comnnmi-
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ca t.ion only occurs betwec'll adjacc'nt layers. This means t.ha t t be compoucnts wit· hin 

the layers cau be updn ted, modifit•d and added to wi t.h minimal implications t.o the 

system as a whole. 

T he only components that arc required outside of the Chem-DRS~I systellJ to im­

plement a large scale' chemical iHforma t ion resource arc an a ppropria t.cly designed 

interface that supports interactive usc all([ batch procc·ssing and a software compo­

uent. thH t would manage all thr communi<' at ions and interactions between the different 

c-omponents. By including thC:c~se t.wo modules, a comprehe11sivr computational chem­

istry dclt.abase could he• deployed. 
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Figure 6.1: Comprehensive Computational Chemistry Database arrhitcctmc, includ-

ing Chem-DRS 1 romponeuts. 
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6.3 Enhanced Chemical Informat ion Classification 

Once the basic functionality of a c·om]H·chensivc compnt.atioual chemistry database 

has been impletuentcd , work C'<lll be clone to improve how the chemical iufomtHtiou 

within the clat.abase i. · classified and used. lui tial invcstiga t ions clmH' Hs part of this 

thesis have shown significant promise in extending tltc usc of the components fonucl 

within the Multi-Component Data Tiepresentation Srhrme to allow for comprrhen­

sivc searching tools that could identify functional groups within chemical structures 

and also dynamically duster and link the chemical structures within the database iu 

different wc-t.ys. This section specifically discu scs how the similarity scores that <U'C' 

derived from the CATI descriptors can he used to create dustc'rs of chemical struc­

tures and establish links between them. 

Having a system that can automatically cluster and classify structmc's found within 

a database based on user rustomizable properties could be particularly usC'ful for au­

tomating the process of identifying lead compounds. If a chemist is required to test all 

structures that have a certain property or functional group, it might make more sense 

to test very diverse samples from the collection of availa blc structures as opposed to 

te. ting a . ct. of structures that are all similar in compo ition. This type of selection 

ran assist a (·hemist. '. productivity a , they may oul. be able to test a small number 

of compouuds at a t ime (for example, having 5000 test structures and only being able 

to test 80 at a time - see case study in Subsection 6.3.1). By allowing the system 

to cluster the structures based on diversity, the chemist, in this particular example, 

could increase their productivity by improving the efficiency of each experimental nm. 
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One possible way of creating dusters of chemical structures is to usc the pairwise 

similarity scores of all structures within the database to generate links. This is con­

sistent with methods already established in the area of Hypertext and link-creation 

methodology [66]. As au exampk, a pairwise similarity scorC' of 0.9 could be usccl as 

the link threshold. This means that a relationship is defined ])('tWC'<:'ll two struct urcs 

when their similarity is assessed to be greater than or equal to 0.9. 

Since it is possible' for a relationship to bC' only in one direction (whcr<' A = B. 

but B =I A), there arc two diffC'rC'nt types of rclationshi ps to be considered. The first 

is an "outbound'. relationship, where the similc-uity score between "A'' and some other 

structure is greater than 0.9. The second type of relationship. an "inhouud'' rcl<ltion­

shi p where the similarity score lwtween some other structure and ' " is grea tcr t lH'lJ 

0.9. Based on this link definition, the number of inbouud and outbouud relatiouships 

can be determined for each structure. 

Once the inbound and outbound relationship, arc determined then the structures 

can be assessed by reviewing differences in the number of incoming and outgoing 

relationships. The difference in the number of inbound and outbound relationships, 

(calculated using II n- Out I). provides some iusight. into how significant tlw strnctnrr 

is within th<' entire collection of tructures. Structm<'s that have equal number of 

inbound and outbound links are not considered to be as important. as those that have 

a disproportionate number of either inbound or outbound links. This difference iu the 

number of relationships can be used to provide a guide as to what structures should 
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be considered or not considered for various clusters or summary lists. 

Figures 6.2 and 6.3 show two different structures (C6H5 N20 2Cl and C10H11 N20 3Cl) 

that when compared using the contextual cosine measure, produce different similarity 

results depending on how they are compared (A to B, or B to A). When comparing 

structure A to structure B, the similarity is scored as 0.93 (or 93%), and when com­

paring B to A the similarity is scored as 0.90 (or 90%). It is differences like this 

that can impact how links are established since, depending on the threshold used, the 

structures may or may not have links between them or they may only have one-way 

links. Subsection 6.3.1 outlines work that was done in collaboration with a researcher 

from Merck Frosst to create clusters and links using the contextual cosine measure. 

This work was done on a collection of 5000 carboxylic acids that are supplied by 

different vendors and the Chem-DRSM system was used to find the 80 most diverse 

structures out of the given 5000. 
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Figure 6.3: Example Structure B - C10HnN203Cl. 

6.3.1 Practical Example of Clustering Groups of Chemical 

Structures- Carboxylic Acids 

Large collections of chemical structure data can be an obstacle for many experimen­

tal chemists. In particular, the process of determining what structures should be 

considered as candidates for an experiment can, in some cases, be a difficult deci­

sion. This subsection discusses how the Chem-DRSM system can assist chemists 

with t his decision-making process by automatically determining the most interesting 

(or representative) structures from a given list of candidates. It is worth noting that 

this project would not have happened without the assistance of the Combinatorial 

Chemistry Gordon Research Conference (GRC). It was at this conference where the 

author and Dr. Rejean Fortin (a Senior Researcher with Merck Frosst Canada Ltd.) 

met and were able to talk about research within an environment that supported and 

encouraged collaboration. Dr. Fortin provided a list of 5000 commercially available 
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carboxylic acids for aualysis. 

For thr steps outlined below, all timings providc'd arr from a computeT with H 2.-1 

GH~: clnaJ core procrssor and 2G.I3 of nA I (unkss otherwise specified). It is also 

important to note that these steps do not he-we to 1><' repc<lted <'very time work is 

clone with 1:1 particular set of structures. Only the proc-C'ss rclHt.ing to "flC'lHtionship 

Drtcrmina.tion" ( 6.3.1.6) would need to b<' repea ted with every subsequent itC'rH t ion. 

6.3 .1.1 SMILES to SDF to XYZ 

Upon initial rC'viC'w of the list, it was determined that no t.hrce-climeusional Cartesic-111 

coordina te iuforma t ion was present. This was troublesome. as all of t he tools and 

metrics within the Chem-D RSl\11 system USC' the information cont.ainC'd within CHrtc­

sian coordinate files. pou furthC'r investigation , a novel method was discovered that. 

allowed for the conversion of a SlVIILES to three-dimensional Cartcsiau coordinates. 

Experimental opC'n source softwarr was used to p erform this conversiou. The first 

program, smi2sdf , generates a rough set of three-dimensional Cartesiau coorclinc-lt.cs, 

cont.ainC'd within a SDF data filr , using an iterative refinement procedure. ThC' coordi­

nates arC' t hrn optimized using a IMFF94 force field by the sC'coud prognun mengine. 

These two programs havr been grouped together under tlw name smi23D [67] and the 

whole process has been built. upon a met.ho lology described by Ballester and Graham 

Richards [68]. 

In-how-><' code was written to automatically extract, process, and convert the fiLES 

reprcscntH.t. ion for each structurr from the original list into Cartesian coordinates 
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(S IlLES to SDF to Cartesia11 ('Oorcliuates). This exc'r-cis<' highlights the flcxi l>ility 

of the Chem-D RS.l\1 system ancl how differc11t data formats can he easily COllVC'Itcd 

and integrated to work with the system (typically it had been standard prnctice t.o 

have the geometry or the structure in either .XYZ or .SDF files). To translate Hll 

5000 SMILES into Cartesian ('Oorclinnte data files took a pproxima tcly 42 minu t.cs to 

complete. 

There were 99 structures out of 5000 (2o/c" of structmes) that ronld uot be converted 

using this method. The result from this pro('ess was c1 SDF data file that contained 

the three-dimensional coordinates for 4901 structnres. This DF file was subsequent l.v 

converted to an XYZ data file using Open Babel, and the ronvc'rsion pro('ess took 

approximately 2 minutes to complete. 

6.3.1.2 XYZ file Preparation 

s mentioned above, Open Babel has the ability to convert SDF data files to XYZ 

files. However, the SDF that is produced from the previous processing step is a 

single file that contains all of the information for all of the 4901 structures. As such, 

the resnlt ing conversion from Open Babel is a single XYZ cia ta file that contains 

all of the information for each of the 4901 • tructures. The information within the 

XYZ file ran then be processed by Chem-DRS ri and the appropriate descriptors 

obtained. A decision wa made to convert the large XYZ data file into smaller XYZ 

files, where an XYZ file was created for each chemical structure. The reason for 

creating the individual XYZ files for each stru ture was so that the structures can be 

independently read and processed. The Chem-DRS.l\1 sy tem took approximately 5 
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minu t.es to complete' this conversion I t rauslat iou procc'ss. 

6.3.1.3 Computational Chemistry Calculations 

Using tltc Chem-DRS.t\I input files produced in the previous step , all of the structures 

were subs<'quently processed in batch by customized Perl scripts that cxc'cuted the 

various Chcm-DRS.t\1 commands and stored the results from the different calcula­

tions iuto suitably named output files. During the processing and analysis of each 

structure, CATI descriptors wer identified and recorded. The entire process took ap­

proximately 40 minutes to complete when using a computer with a 2. GHz proces. ·or 

and 4GB of RAM. It is important to mention that this part of the process cau lw 

complC'tecl in parallel (where linear speedup has been observed) . As an example of 

the parallelism performance, this same work could be completed in 10 minutes when 

using a machine with 4 processors. 

During this process only 4632 structures produced valid results. The 269 strurtmcs 

that did not produce valid results had errors resulting from charge I multiplicity er­

rors. Unlcs, charge information is specifically mentioned (SMILES docs not contain 

charge information) the structures charge was assumed t.o be 0. The rcsultiug collec­

tion of 4632 structures is 93% of the ize of the original collection of 5000 structures. 

The processing rate is typically 120 structures I minute I processor. 

6.3.1.4 Index Creation 

Indices were then created for the 4632 different structures based upon the frequency 

and type. · of CATI desniptors that were found within the structures. ThL· index ere-
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at ion process took approximately :3 winutcs to c-omplet.e aud t.he observed proc-essiug 

rate was typically 2000 structures I minute. 

6.3.1.5 Similarity Scoring 

As context is important when establishing clusters and liuks, the contextual cos me 

measure as implemented with the Chem-DRS:t-.1 system, was used to compute tlw con­

textua l similari ty between each strnctmal pair. In this case, it took approximHtely 

72 hours to complete all of the similarity c-alculations at a n1.te of 90 scores I second 

on a single processor. 

As with the computational chemistry calculation step (Sect.iou 6.3.1.3), this process 

is designed to support a parallel implementation with linear scaling. The result from 

this process was a 46:32 x 4632 matrix where all the entries in the matrix corresponded 

to the similarity scores for that relationship (i.e row 1, olumn 2 is the rcla.t.ionship 

where structure 1 is compared to structure 2 and row 2, column 1 is the relationship 

where structure 2 is compared to structure 1). For the carboxylic acid collection 

( 4632 structures) , the average similarity score of all of the pairwise comparisons is 

0.53, and the processing time is estimated at 5400 comparisons I minutr I processor. 

6.3.1.6 Relationship D etermination 

Using t he contextual Cosine measure and methods already rstablishcd with Hypertext 

and link-creation methodology, pathways connecting the cliffrrcnt structures were 

identified. For our purposes. a score of 0.9 was used as H the link threshold. This 

meant that a relationship was defined when there was a similarity score greater than 
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0.9 bctwee11 two stmctm rs. Thrn' arr two cliffcrr11t t.ypes of rdHtio11ships t.o l>r 

consi<ierccl, thr first is an "outbcnmd" relationship. This is when' t.hc similarity 

score between "A" <tnd some ot hrr structure' is grra.trr than 0. 9. The second type' of 

rela t.ionshi p , 1:111 " iubouud'' rclcttioushi p. is whrre the similarity score between some 

other structure and " A" is grcc-lt.<'r then 0.9. Based 011 this link definiti on, thC' mnnb<'r 

of inbound and out bound relationships were determined for cc1ch structure. The 

analysis of the quant ities of inbound a11cl outbound links provides insight HS to what 

structures should be considered wit hiu the summary of the carboxylic arid rollcrtio11. 

6.3.1. 7 Discussion 

Initial feedback of this work was provided by Dr. Fortin and a muub r of key points 

were r aised. First, the concept of having the same structure ideut ified as being a 

':member" or present in more than one set of structures was something thc1t n '­

searrhers C'\.t Merck Frosst working with Dr. Fortin had not considered. This is in 

contrast to our method , which allows multiple links to be established between struc­

tures subsequently giving each structure a different browsing or linking pa thway. Sec­

ond, the refinement of computationally derived descriptors (such as nuclear repulsion 

e11ergy and origin-invariant. nuclear second-moment) was encouraged so that a.ddi­

tional informa tion about particular features within a structure could be evaluated . It 

was highlighted that iu some cases, the overall shape or energy of a structure might 

be misleading, particularly when chemists arc only interested in a prutirular func­

tional group or combination of atoms. Overall however, the study itself was viewed 

as promising and further work in the area of automatically clusteriug, linkiug, and 

summariziug collections of chemical struct.urec· was e11couraged. 
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6.4 Summary 

Although this chapter is a brief overview of some of the dt'sigu cousickratious, hmc­

tional cnlumccmcnts, aud properties fouucl withiu the cla ta. used aucl geuerat.ed by t be 

Chcm-DRSl\1 system, it shows that t l1e fonudat.ion laic! by the Chem-DRSl\I system 

can he easily ext.enclcd to further support chemical research in a way that is aligned 

with the comprehensive needs of chemical researchers. This in itself wa.s very encour­

aging, as the work clone with Merck Frosst was cornpletccl brforc clevdopmcnt work 

on the Chcm-DRSl\1 system was completed. 
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Chapter 7 

Discussion and Future Work 

Iu order to better organize the conclusions that are made, thi .· che1ptcr has becu di­

vided into three sect ious. The first .-ection discusses conclusions that can be drc-nv11 

from the results of the precision-recall evaluation of the similarity measures, th(' da t e1 

obtained through the evaluation of the distribution of the similarity scores, and the 

humau evaluation of the similc1rity measures , as shown in Chapter 5. The second 

section discusses sy. t.em performance issues with the Chem-DRS 1 system, and the 

third section discusses further experiments that could he conducted, proposes suggc's­

tions for de. ign euhancements and the refinement of the Chem-DR ~~ system, and 

presents au overview of what. is being couceptually called a ational Comprehensive 

Computational Chemistry DataBase ( CCCDB). 

7.1 Conclusions Drawn from Experimental Results 

For each similarity measure (the contextual cosine measure, the standard cosine mea­

sure and the Tanimoto measure all using the CATI de criptor and the Tanimoto mea-
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sure with chemic ell fiugerpriuts), three JUcl bods were usc'd for eva! ua lion: pn'CJSlOll­

recall data. (Section 5.2.4), distributiou clHt.H relating to similarity scores and different 

query structures (Sect ion 5.2.5), and a lnun<ln evaluation ( edion 5.3) where ranked 

lists produced by ec-H'h of the similarity measures were evaluated in terms of the simi­

larity of each item in the list to the query structure and the correctness of list ordering. 

Five different structures were used throughout the human eve1luat ion cOlllJ)()llcnt., aud 

the statistical evaluation was conducted using 19 different struct.m cs. 

7.1.1 Precision-Recall Statistical Evaluation of Performance 

In order to detenuine t he precision and n'call values for H given chemical structure, 

relevance j udgcmcnts arc required. In t lw case of the statistical c'valna t ion, the rele­

vance judgements were based on the struct ures that were exactly the same (equivalent 

canonical S IlLES and equivalent InChis). 

In terms of recall. all four similarity measures achieved 100% recall by c-1ss1gnmg 

a score of 1.0 to all the structures that were exactly the same. However. the precision 

of the four different similarity mea. ures was different. The measure with tll<' highest. 

average precision. across the 19 structures, was the standard cosine measure with 

an average precision score of 92o/c (standard deviation of 17%) . This is in contrast 

to the average precision observed across the 19 structures by the Tanimoto measure 

that used dwmical fingerprints, where the average preci. ion score was 75<.;{ (standard 

deviation of 31%). 

Although exact matches can be found u ing either InChi or canonical Sl\IILES de-
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scriptors, prccisiou scores provides lllC'asmabk insight into the how <HTmate tlw dif­

ferent similarity uwaslm's cau be. Too m·\Jly false positives wil l serve to dil utc t.bc 

quality of the results presented to users when they prrfonu S('arC"hiug aucl browsing 

activities. The impart of which C'<:11l be seen in the analysis of the distributions of 

similarity scores all( I the human evaulat ion. 

7.1.2 Analysis of the Distribution of Similarity Scores 

The precision and recall data was generated by assessing the perfornJauce of the d if­

fcrcnt similarity mc•asurc's in their ability to fiucl exact nw tclws. This cia t a, although 

import aut, only provided a partial pic·turc of the quality of t.hc rcs1tlt.s producccl by the 

different similar i t.y uwasun.'s. By a JJ a. l y:~.iug the distribution of the similarity scores 

produced by the different measures, it becomes possible to fmther assess how grall­

ular the similarity measmes arc in asse.'sing similarity and ickut.ifyiug distinguishing 

propertie . . 

Upon reviewing the similarity scores generated for the 19 quNy stmctmes as they 

compared to the structures within t.hr test. collection , it. wa.s observed that the stan­

dard cosi11c measure hacl a tendency to be more granular in nature when dctenuiuiug 

how similar two structures arc, as con1pared to the Tanimoto mea. ure that makes 

usc of chemical fingerprints. Similar behaviour wc1s observed when reviewing results 

prod uccd by tltc Tanimoto measure which uses the CATI desni ptors. T he fact !.hat. 

both of these 111casures exhibit similar behaviour leads one to coucluck that this be­

haviour is prilllarily attributed to the 11ature of the Tanimoto measure where only 

the presence / absence of a feature is con:iderecl, and uot its quantity or statisti-
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cal siguificance; a conclusion t ha t l'<'- itt'n·ltes the importance of taking iut.o <H'count 

the stat istical distribnt iou and weight ing of t he' componmts being used to determine 

simil<n i t.y. 

7.1.3 R esults and Observations of Performance from the Hu­

man Evaluation 

Upon com plct.iou of the precisiou and rec·all statistical evalna t.iou, it was observed 

that the .tandard cosine measure which uses t he CATI descriptors had t h(' highest 

average precision across the 19 str ucture. and the smallest variance when compared to 

the contextual cosine measure, the Tanimoto measure which uses t he CATI descrip­

tors and the Tanimoto measure that. uses Chemical F ingerprints. However, a furt her 

evalua t.iou was required, as even though the results could be considered correct. lll 

terms of relevance judgments and precision-recall da ta , there was still t he issue of 

the quality of the results that did not score 100% similari ty and the orderiug of the 

result s being returned by t he similarity measures. 

Pa rticipants i11 the humau evalua tion of these measures were a.skecl to provide two 

different types of assessments. T he first type of assessment provide I by the study 

participants scored t he similarity between t he earch structure and each of the struc­

tures wit hin a list of the first ten .tructures returned by t he mea. ure (structur<..'s arc 

returned by the metric in descending order of similarity score). T lw second type of 

assessment provided by t he study participants scored t.hc orcleriug a bility of t l](' sim­

ilarity measure. 
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According to t IH' rcsnl ts re ·orckd by study part iripauts, t Itt' st. a ucla rei cosnH' ntt'H­

sme which uses the CATI descriptor fouud aud plaredntotT siuti!ar structures iu the 

fir,·t teu struct mes ret urued by the tucasun'. Furt hcrmore. the quality of list ordering 

provided by the st audarcl cosine Illt'asun' had a smaller standard cleviat iou amongst 

the study pcut iri pants, and for four out of five of the test st ruct un's the stan dare! co­

sine ntcasure It ad the highest q nali ty of list ordering, as scored by st ndy participHnt s. 

For the ease where the standard eosine mc'asure did not have the highest quality list 

ordering, it had the second highest list ordt'ring score as cout pared to the other three 

similarity measure:. 

Although limitc'd. both of these indicators from the human evaluation component 

along with the precision and recall iufonnatiou from the statistical evaluati011 romper 

ncnt, and the distributions of similarity scores demonstrates that. when ronsidc'riug 

our test cases, the staudard rosine UH'asme produce.· ranked lists of candidate struc­

tures that <1r more appropriate. 

7 .2 System Performance Differences 

Although the work being presented within this the is has concentrated prim·u·ily ou 

the results obt aiuecl from the four different st. udies (com pu tat ioual de."criptor thresh­

olds, statistical evaluation of metrirs, human evaluation of met.rics, and fnuctioual 

group searching a. sessment ) there arc many other factors to be considered. This 

section cksrribes some of the i sues that influence the creatiou allCI storag<' of tlw 
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information required by the diffncnt similarity mcasun's. 

7.2.0.1 Storage 

The first factor to consider is disk storage space. Indices are n 'CJ uired by t be two 

cosine and t he CATI Tanimoto similarity measures. Furthermore. the type of m<'H-

sure being n.'ed ran have an influence 011 t lw size of the indices thc-1 t arc required to 

he stored, not ouly on disk but also in ma.iu memory during the calculation process. 

Table 7.1 shows the siz<'S of the different indices that arc ttscd by each of the simi-

la.rity measures that are part of the Chem-DRS I system. A value for the Tanimoto 

chemical fingerprint measure i. also showu. This value has been a pproximated h.v 

creating the same type of indices that arc required by the CATI Tnnimoto measure. 

except with 128-bit rhemira.l fingerprints as determined by OpenBahel. 

Table 7.1: Differences in Storage Requirements for Different Indexing Schemes when 
Indexing 178,175 Structures. 

Index CATI CATI Chemical Fingerprints 
type (cosine') (TanimoLo) (Ta nimoLo) 

59 I\,IBytes 18 MBytes 6.1 MBytes 
Index ( uncomprcssed) (uncompressed) (uuconJprC~<scd ) 

SJZC' 12.7 1Bytcs 4.4 I\1Bytes 1.7 1Bytes 
(compressed) {compressed) (compressed) 

347 Bytes 106 Bytes 36 Bytes 
Required spare ( u ncom pressed) (uncomprcsscd) {uncomprcss<x l) 

p er structure 75 Bytes 26 Bytes 10 Bytes 
(compressed) (compressed) (COillpn~Sl'd ) 

The results in Table 7.1 indicate a significant difference in the sizes of the indices 

required by the different similarity mC'asure,·. Even when compression is used, thC' 
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ratios iu sil';<' still rC'maiu constant. with t lw Ta uimoto dl('mic<ll fingerpriut llH'asun' 

using t he least amouut. of storage' spa.ce <lllcl the cosine mc'asures requiring the most 

iuclex spac·c. This is to he exp<'d<'cl since the CATI descriptors are more complex 

t hau chemical fingc'rprints and thC'l'e is a deli t iona! iuformation about statistical dis­

tribution of the CATI descriptors that is required. 

Iudcx space' is an importaut consideration. as computing perfonuauce suffers wheu 

the r('quired indices cmmot be stored ent irdy in main nH'mory cl uring pro('('Ssing. 

The si~e of the indices required by the two Tauimoto measur{'s are smaller than those 

r<'quired by the rosine measures. but the cosine indices arc all still quite small ,~.:hen 

considcriug the baseline memory si~e that is currently available on most. commod­

ity compute servers. Table 7.1 also provides e-m approximate calculation (number of 

structures divided by the size of the indices) that. shows the size required for each 

chemical structure within the iudiC'es. Even with the larger disk space requirements of 

the cosine measure, it is still less space than the average size of a cla ta file represPnting 

the Cartesian coorclinatps for a chemical structure ( approxima tcly 20-!8 I3ytes). 

7.2 .0.2 Index Creation 

Not only should the sizp of the indices be considered when designing such a system. 

but processi11g times should be considerE'd al ·o. As the number of t.E'nns in the 

index increases, so docs the construction time. This was taken into consideration 

throughout the con:t.ruction of the Chem-DRS I system and is one of the reasons for 

its modular design. Not only can the build process be completed without impacting 

the similarity measures, but the indices can be constructed in parallel thereby further 
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n'clucing the timC' n•quirC'cl to complete tlH' build process. This is illlportant as dat<-1 

should be easily accessed and integrHt.ccl iuto such a system. 

7.2.0 .3 Similarity Measure Calculations 

Another type of performance issue to he considered rcla.tes to the computation of sim­

ilcu-ity scores. The Tanimoto measure is a computationally fast measure as there is 

no stHt.istical weighting being consiclerccl cmd only the tenus present within the struc­

tures being c-ompared arc cousiclcrcd. Although this makes for fctster query cou1plctiou 

t imcs aucl smaller indices, it docs not do the best job in measuring chemical similarity. 

When considering the two cosu1c measures th('re are two thiugs that iufluence the 

t ime associated with the calculation of similarity values. First there is the wmJber of 

descriptor· associated with each chemical structure. This not only influences the iu­

dex size, which in tum influences the memory requirements, but it also infiuc11ccs the 

number of mathematical operations required to produce the similarity score. Even 

a small difference in the uumber of terms, in this ca. e contextual vs. standard, can 

influence the number of summations required in the cosine calculation. Second, the 

nature of the similarity measure being used also influences computational time re­

quiremcHts. As already observed and discussed. the Tanimoto measure has fewer 

calculations that need to be completed, as compared to the cosine measure ·, before 

a similarity score can be determined. The cosine measure ha.s already demonstrated 

itself to be a very thorough yet computationally intensive measure of docmncnt sim­

ilarity in the area of Information R etricval [ 1]. 
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However, there arc llH'asun's that <lpproximat(' different values within the cosnH' 

measure and the resulting approximat(' cosme measure has the ability to decrease 

the mJmbcr of calculations that arc required, which in turn decreases the coJHputa­

tion time. Oue example of such e-m a pproximat c cosi11r measure is t be work done by 

dr Kret.srr et al [69]. In de Kretser 's work, the components of thl' weighting value 

that rcquirr any data pertaining to the frequency of a descriptor with rcsprct to th<' 

entire document collect ion is approximated using a logarithmic vc~lue. This type of 

approximation has two major benefits. First, the reduction of computat.iou time to 

determine the similarity of a query and a document. Second. less maiuteu<:UlC<' is n'­

quired when building collections a.nd collection indic('S as the process of drtermining 

how mauy struct urcs have a giveu property (a process that would need to be redone 

every time new data is added) would no longer need to he completed. Although this 

type of cosine measure approximation work has been done within the context of Eu­

glish language and textually based informatim1 retrieval, it h11s not been applied to 

chemical information retrieval. This a.rea is of interest for future work as t lw nH'asures 

used in the evaluation were just simple ad;-tptat.ions of the cosine measure that used 

standard weighting schemes with CATI descriptors. Sp<'cial CATI-based measures 

need to be further developed in order to take advantage of the unique properties 

and characteristics that arc found in chemical structures, and the information, both 

topological and computational. that is contained within them. 

One possibility for extending the accuracy of the CATI based measures could in­

volve the combination of topological information and computational informat ion to 

form one single measure instead of having to he:we a topological term-based measure 
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that is further refined usiug cmn pnta t ionHlly derived information. Another area for 

consideration is to usc the presence and a bscncc of general topological fea tmef:i, such 

as the munbcr of rings, to improve similarity assessments. 

7.3 Future Work 

The results obtained from the evaluation of the Chcm-DRS I system arc cncourHging. 

Although there arc areas where the results can be extended and refined, the results 

nonetheless show a great deal of promise with the work cliscussccl thus far . This 

section pre. cuts three different avenues for future work involving the Chem-DRSM. 

The first subsection comments further on the human evaluation and discusses pos­

sible extensions of this work. The second subsection outlines areas where the ini tial 

investigation of the ChCin-DRS 1 system could be extended, and the third . u bs('C'tion 

discusses areas for the modification and extension of the Chem-DRSM . ystem, along 

the proposition of a National Computational Chemistry DataBase (NCCCDB) that 

could be used to assist computational and chemical re. earchcrs on a very large scale. 

7 .3.1 Extending the Human Evaluation 

Although the results relating to the Human Evaluation arc quite encouraging, there 

is more work that can be clone to build on the results obtained thus far. Firstly, 

it is important to point out the demographics of the subjects participating in the 

study. Even though there were chemists from many different disciplines, there was a 

noticeable lark of medicinal chemists and biologists from the subject population. It is 

important. to consider extending the Human Evaluation to include medicinal chemists 
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and biologists as this t.vpe of fnnct ionali l.y offered in the hem-D RS.l\ I system would 

he very useful for them. 

Furt hcrmorc, it is worthwhile' to consider hut her studies involving the assessment 

of the ranking algorithms. One opt ion may be to give sn hjects c-1 nnrankecl list of 

st ructures and ask them to rank the structures themselves. then compcuing the re­

sult ing list to those produced by the different similarity nH'asures. 

7.3.2 Further Experiments involving t he Chem-DRSM sys­

t em 

T here arc a number of areas where refinements and extensions to the invest igc~ tion 

conducted in thL thesi. · would be appropriate. The first. area relates to the test col­

lection of structures that arc used for testing and evaluatiug iuformatiou retrieval 

performance. The most difficult part about the precision-recall e aluatiou was the 

process of determining appropriate relevance judgements. T he relevance judgements 

used could be con idered restrictive as the judgements were made by two descriptors 

that arc designed for finding exact . tructural matche (InChi and canonical Sl\1ILES) 

instead of being assessed in a standard way by experts in the field of chemistry. It 

would be useful to undertake the process of designing a purpo. ·e built test corpus for 

testing these different chemical similarity measures, something that could possibly 

follow a imilar model to the TREC (Text Retrieval Conferc'lH'e) initiative [70] . 

Another area that warrants further investigation is the notion of establishing dusters 
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amlliuks within collections of dwmicn.l structure collections hasccl 011 the results from 

the different similarity measures. As presented in Section 6.3. there arc very definite 

real-world applications that could bcnc·fit from the assistauce provided by systems 

that assist with the organization and clustering of groups of chemical structures. Im­

plementing experiments to test and evaluate the clustering abili ties of the different 

chemically based similarity measures would certainly be of interest and rclc•vancc to 

the work presented in this thesis. 

Related to experiments that extend the results from chemically hasecl similarity 

measures would be additional experiments to determine if there are appropriate ap­

proximations that could be made within the various measures, as discussed in Sec­

tion 7.2.0.3 and if any correlation could be cletennined between the resulting similarity 

scores and t he activity of a given chemical structure. 

A prdiminary investigation was couducted to examiue the correlatiou between AIDS 

activity and similarity scores produced by the standard cosine measure with the 

CATI descriptors and the similarity scores produced by the Tanimoto measure that. 

u, e chemical fingerprints. The National Cancer Institute has AIDS activity data 

for rv28,000 of the chemical structures that are found within the test collection that 

has been used throughout the evaluation of the Chem-DRSl\1 system. These 28,000 

structures are classified either as active, moderately active or inactive. 

A· a performance indicator for the initial study, results from a separate study by 

Martin et al [71] were nsed. According to the work done by ilartin, there is only a 
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30o/c' chance that stntctures with a similarity score of 85<;{ or greater, as H.sscssed by 

the Tanimoto measure with chemical fingerprints to <-111 active stmcture, will them­

selves be Hctive. As such, the threshold of 5o/c or greater wc-1s used iu this initial 

investigatiou. 

Au initial analysis of the rv28,000 structures used for this preliminary invcstigat icm 

revealed that only 185 of the rv28,000 structures were classified as active. \1\fheu using 

the Tanimoto measure with chemical fingerprints none of the Hctive structures within 

the test collection were assigned a score of 0. 5 or greater when they werP comparee! 

to the query structure (randomly chosen out of the 185 active structures). This is iu 

contrast to the standard cosine measure with the CATI descriptors which assiguccl 

H score of 0.85 or greater to 15 of the actiw structure's. Thi,· reprcseutecl a preci­

sion of 24o/c and a recall of 8%. Even though additional work needs to be compkt.ecl 

to fu lly and quantitatively evaluate the r ' lationship between the different similarity 

scores ancl the biological activity of a chemical structure, this initial result. shows 

promise tlw t the standard cosine measure with the CATI descriptors may be able to 

successfully idcnt ify candidate struct urcs that have a , imilar biological activity. 

7 .3.3 Future Development and Applications 

There arc a lll imber of potential applications for the Chem-DRS:l\'1 system. The ini tial 

integration of the Chcm-DRSM system into a prototype comprehensive computational 

chemistry database, as shown in Chapter 6, has identified a number of areas where 

enhancements and refinements of the current Chem-DRS:l\1 system could be made. 

Similarly, this prototype comprehcusive computational chemistry database has high-
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lighted areas where this type of system. if deployed 011 c-l largc-sn1lc. could be of grc<lt 

benefit to <'I large number of researchers. 

This subsection has two parts: the first part eli. cusses possible enhcmcrment.s am! 

clesigu change. · to the Chem-DRS I system. allC! the second part discusses st n1tcgies 

and suggestions as to how the prototype system in Chapter (j could be extended to a 

large-scale' resource. 

7.3.3.1 Chem-DRSM Version 2.0 

There are a number of areas where the performance and design of the Chem-DRSr-I 

system could he improved. However , these performcn1ce cnlHu1cemeuts allCl cksigu 

changes were' not realized and deemed feasible until after the iui t ial prototype sys­

tem h<'ld been tested and evaluated. The first area for improvement involves how the 

indices are created. maintained and stored. The current architecture of the Chcm­

DRSf\.1 system employs a very simple index module. All the indices arc created in the 

form of tab-delimited text files. Tab-clrlimitcd files arc useful since not only arc they 

easy to read and process, but they arr easily imported into rclc1 tional databases. Sim­

ilarly. qm'ries from relat ional databases can also be returned in tab-delimited form . 

Based on the experimental and performance results observed with the Chcm-DR Sf\I 

system thus far. a logical progression iu the evolution of the . ystcm would be to store 

the built indices in a relational database tha.t. has the same logical design as what bas 

been implemented with the indices in the flat-file format . 

Another area to be considered is the integration of the build process and the usC'r 
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search process with the schcd nlers t lw t arc used 011 la rge scale com put <'l' cl uskrs. By 

integrating the job srh('dulers during the build process a11cl the information cxtract.io11 

phase, both procrsscs can become cvc11 morr automated them thry HH' now. Also by 

dynamically intrgrating with the job scheduler. the job schrdulrr would be able' to 

clctrrmiuc the optimal method for t be procrssing of thr inform a t.ion instead of having 

a fixrd algorithm that limits how thr work C<Ul be distributed. 

The fina.l two rc'vJsJons relatr to the uscr-cxpcncucc with the Chem-DRS 1. Cou­

sult.at.ions with users will need to t.akr place to ensurr that appropriate wd>-hased 

interfaces are drsignrd to support. thr functionality found within Chcm-DRS}-1 sys­

t.rm. Currrntly, interaction with the Chcm-DRSM system is donr through a tcxt. ue1ll.v 

based she'll interface and script files. This can be easily ('Xtcnded through the usc of 

a dynamic language such as Python or through the usr of PHP code to integrate 

with a suitable web-based interface. Consult at ionf> with both technical desiguers and 

chemists will be required to ensure maximum usability. Also. thr samr script filrs and 

shell interfaces can be extended to support an automated batch intcrfa.cr that can be 

used for th(' importation of large data collections and the a ut.omat('cl importation of 

chemical information as it becomes available. 

7.3.3.2 National Comprehensive Computational Chemistry DataBase (NC­

CCDB) 

The work presented throughout this thesis highlights t.ll<' strrngths of the Chrm­

DRS 1 system and how it ran be used to support chemical I'('S('arch. As mentioned 

in the introduction of this thesis, it is envisioned that a nation-wide, a.nd C'vcntu-
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ally world wide, n 'sourc·c' of this ki1H I \.v i 11 not ouly be H som ce of iu formatiou for 

researchers, but it. would also lw au iutclligeut system thctl could attLomHtically col­

lect aucl classify bot h public domain <lltd ttser-coutribut.cd dnta. 

13y providing a solid founclat ion for cl at H management , uanH'Iy t lw l\lul t i-Com ponent 

Data Ilcprcscut.atioll scheme, that is contbiuccl with intelligent. searching and brows­

ing tools, such as the similarity mc'asun's within the Chnu-Dl . l\J system , the goal of 

rstablishiug a highly reliable chemicalrc'somTc that extends beyollCI tlt<' realm of just 

experimental or patcut dHta is now one step dosrr to brcoming a rc'ality. This thesis 

has demonstrated various applicatious of the tools withiu t It<' hem-DRSl\1 syst rm, 

ancl it bas Hlso shown that thrrc arc cases where the hcut-DRSl\1 system yields 

results that. a.r·c HS goocl as or bct.t.er t.ha.n the results (as assessed both statistically 

aud by test su bjccts with expert level dH'mist ry knowledge) yidcled by the Tanimoto 

measure with chemical fingerprints (an industry standard). 
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Appendix A 

Statistical Data 

The histogram data for the distribution of the quer:v result scores when using the 

statistical evaluation test structures with the different similarity mcHsun's is shown 

in Tables A.l to A.l9. The discussion pertaining to these results can be found in 

Chapter 5. Section 5.2. 
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Table A.l: Distribution of similarity scores produced by different similarit.v IJWHsun's 
when structure rsc 131564 is the query. 

COSlllC cosine Tanimoto Tcwimot.o 
Interval (Contextual + CATI) (Standard + C'J\TI ) (C'ATI ) (chemical fing<'rprinls} 

C'h<' tii- DH.SI\1 C'h<'m-D H.SI\ I C'h<'m- DHSI\1 OpenBalw l 

Equation ('1.7} Equation (-1.6) Equation (:t I ) Equation (J . I ) 

1.00 6 6 12 12 
0.95 0 6 2 6 0 
0.90 0 16 190 0 
0.85 13 22 586 
0.80 0 64 376 -4 
0.75 141 107 162 14 
0.70 49 109 108 1 l 
0.65 490 144 356 28 
0.60 1527 122 1552 66 
0.55 2126 139 2126 104 
0.50 7520 571 21336 5 )2 
0.45 6027 2789 62246 800 
0.40 15879 3585 32330 159 
0.35 21660 4329 20662 3984 
0.30 -42445 6171 26830 94 4 
0.25 64419 9505 7 90 31198 
0.20 5342 12857 6910 61052 
0.15 29978 15714 56966 79836 
0.10 11142 19482 60 9052 
0.05 1957 2532 465 8 55 26 
0.00 1264 77109 68778 22684 
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Table A.2: Distribution of similarity scores produced by cliff.crent similarity weasmes 
when strurt.mc SC 134422 is the query. 

cosine cosine Tanimoto Tanimoto 
Interva1 (Contex tual + C ATI ) (Standard + CATI ) (C'ATI ) (chcnti cal fingerprints) 

C'hcm- DRS 1 C'hcm- DI{St\1 C hctn- DHS I OpcnBabt' l 

Equation (·1.7) Equation (,I.G) Equation (3. 1) Equation (3. I ) 

1.00 6 8 31 8 
0.95 0 (j 4700 0 
0.90 0 41 8419 0 
0.85 0 93 17906 0 
0.80 0 17G 4997 14 
0.75 (j 337 5489 0 
0.70 () 571 1084 0 
0.65 11 911 895 81 
0.60 25 1163 528 2 
0.55 () 1495 301 171 
0.50 203 1968 90 480 
0.45 0 2695 23209 0 
0.40 684 3279 9496 2405 
0.35 56 4089 1646 2245 
0.30 1918 5269 232 8231 
0.25 10114 64 )2 17733 16143 
0.20 20867 8779 1 61 23991 
0.15 41651 12202 66 25011 
0.10 109267 17060 3 35198 
0.05 65667 22576 0 55626 
0.00 9596 88975 79489 8569 
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Table A.3: Distribution of similarity scores produced by different simihuity measures 
when structure NSC 134438 is the query. 

COSlllC' COSlll(' Tanimoto T<mimot.o 
Interval (Contextual + C'ATI) (Standard + CATI) (CAT I) (clwtnical fingPrprints) 

C'hent-DH.Sl\1 C'hem-DH.Sl\1 C'ltetn-DRSJ\1 Openl3abel 

Equation (4.7) Equation (<1.G) Equation (3. 1) Equation (:!. I ) 

1.00 9 9 9 9 
0.95 0 1 0 
0.90 0 7 34 () 

0.85 0 33 121 0 
0.80 2 90 837 1 
0.75 25 171 1776 14 
0.70 32 220 920 40 
0.65 129 293 459 119 
0.60 455 386 281 868 
0.55 767 379 165 1192 
0.50 3559 471 401 4186 
0.45 4043 652 1130 3485 
0.40 11534 879 2323 9756 
0.35 19689 1441 5381 12636 
0.30 29012 2312 13207 15316 
0.25 50990 4909 28067 21916 
0.20 54085 9316 22614 25689 
0.15 43293 14367 28360 31722 
0.10 33192 22943 21947 30079 
0.05 7847 35006 29776 11683 
0.00 1408 84291 20366 9464 
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Table A.4: Distribution of similarity scores produced by cliffcrrnt similarity llH'asnn's 
when structure SC 152324 is thr query. 

C"OSllle COSlllC Ta nimoto Tanimoto 
Intrrval (Contextual + Ci\TI) (Standard + C'ATI } (C'ATI } ( chernical fingerprints) 

C hem- DI{St\1 C hcm- DitSt\1 C henr-DilSl\1 O penf3abel 

Equation ( 4. 7) Equation {4.G} Equation {:U) Equat ion (:l . l} 

1.00 15 15 57 15 
0.95 0 6 3654 0 
0.90 0 33 2302 0 
0.85 9 GO 574 0 
0.80 18 146 222 23 
0.75 17 213 26296 0 
0.70 144 318 3195 0 
0.65 71 520 787 137 
0.60 457 783 13740 1 
0.55 741 1237 11096 351 
0.50 1221 1494 6473 466 
0.45 688 1929 912 0 
0.40 2651 2697 144 1852 
0.35 2690 3565 43 1801 
0.30 5797 5058 15 6836 
0.25 13467 7243 12 11024 
0.20 29219 10291 1 15029 
0.15 67202 11960 0 15980 
0.10 107281 1297 0 30749 
0.05 26519 9660 0 84143 
0.00 1864 107969 108652 9768 
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Table A.5: Distribution of similarity scores proclured by diffrrcut similarity mcasun•s 
when struC"tur<' NSC 153096 is the query. 

cos me CO Sill(' Tanimoto Tauimot o 
Interval (Contntual + Ci\TI) (Standard + C"i\T I) (Ci\TI) (ehenlieal fingPrprints) 

C'hcn1-DRSI\ I C'hPn l-DIL')l\1 C hC'm-DH.Sl\1 OpE'11BabE'I 

Equation (4.7) Ecp1atiou (-I.G) Equation (3. 1) Equation (:3.1) 

1.00 5 3 4 8 
0.95 0 1 337 0 
0.90 4 31 790 
0. 5 4 46 472 11 
0.80 0 112 2675 37 
0.75 9 169 2719 56 
0.70 23 293 4531 134 
0.65 63 465 3142 242 
0.60 263 673 1 7 639 
0.55 692 85 ) 4 01 -141 
0.50 2938 1030 66 3 3124 
0.45 3639 1655 2392 3110 
0.40 10528 2437 2 02 8430 
0.35 18650 3094 20448 15047 
0.30 29875 4367 39389 21463 
0.25 50465 8308 41432 38774 
0.20 48510 17177 22721 34262 
0.15 40389 2 194 2191 23096 
0.10 32800 33892 5 75 14637 
0.05 18030 34775 7912 5462 
0.00 31 4 40578 4981 9194 
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Table A.6: Distribu tion of similarity scon•s produced by diffcrcut similarity 111casun~s 
when strnctnn' NSC 167530 is the query. 

cosine rosin(' Tanimoto Tanimoto 
Interval (Conll'xtual + C!\TI ) (Standard + C'/\TI ) (C'/\TI ) (elt('lltical fi nger pri nts) 

C'ltent- D H.S 1 C'ltPm- DHSI\1 C ltl'III-D ilSI\1 Open Babel 

Eqnatio11 ( "1. 7) Equation ( I.G) Equation (:l . I ) l~qnation (3. I ) 

1.00 2() 5 13729 5 
0.95 0 5 36()83 0 
0.90 0 39 11637 0 
0.85 0 112 6014 0 
0.80 0 246 2400 () 

0.75 0 423 1860 0 
0. 70 0 773 1719 () 

0.65 0 1023 1283 131 
0.60 0 1460 1017 0 
0.55 0 1938 69() () 

0.50 327 2605 5()5 3 5 
0.45 0 3722 443 0 
0.40 0 4893 430 1309 
0.35 0 6751 483 0 
0.30 1165 9508 185 2699 
0.25 2773 12797 71 14572 
0.20 5035 16427 13 28557 
0.15 3 1 21056 0 4 247 
0.10 65194 23299 39723 52009 
0.05 9666 17949 0 21449 
0.00 80502 53144 59224 8812 
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Table A. 7: Distribution of similarity scores produced by different similarity measures 
when structure NSC 4 765 is the query. 

cosmc C'OSlllC Tanimoto Tanimoto 
Interval (Contextual + CATI) (Standard + CATI) (CATI) ( chcm ical fi ngcr pri nts) 

C'hcm-DRSI\ 1 C hc111- D H.SI\ 1 C'hem-DH.SI\1 Opcnl-3a i>t>l 

Equation ( 4. 7) Equation (4.G) Equation (3. I ) l~quation (3.1) 

1.00 19 9 13 9 
0.95 0 4 173 0 
0.90 0 20 426 0 
0.85 35 49 825 17 
0.80 68 79 1773 0 
0.75 lOG 143 902 97 
0.70 320 173 196 30 
0.65 325 223 136 378 
0.60 1059 341 44 852 
0.55 1213 381 65 9 362 
0.50 5664 693 7316 3841 
0.45 5417 1042 5885 2973 
0.40 11382 1489 11524 5601 
0.35 18086 2502 9021 6911 
0.30 34111 3475 13644 11967 
0.25 51655 4773 8599 20247 
0.20 50749 69 5 2979 27373 
0.15 43648 11320 824 37440 
0.10 28826 15697 37657 37501 
0.05 5961 20395 50732 14430 
0.00 1427 108382 18917 8146 
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Table A.8: Distribution of similc-1.rity scores produced by different similarity measures 
when structure NSC 169899 is tbr qurry. 

cosi11e COSlll(' Tanimoto Tanimoto 
Interval (Contex tua l + C AT! ) (S ta ndard + C'ATI ) (CAT! ) (che mical fin gerprints ) 

C hern- D RSJ\1 C he lll - DRSI\1 C hcni-DRSI\ 1 OpPnBa bel 

Equa tion (4. 7) Equ a tion ('1.6) Equation (3. J) Equation (3. I) 

1.00 6 6 6 6 
0.95 0 2 9 0 
0.90 11 5 33 1 
0.85 0 11 28 4 
0.80 43 32 229 2 
0.75 78 84 1147 12 
0.70 61 229 1140 34 
0.65 313 347 1179 78 
0.60 697 544 5808 233 
0.55 906 1024 15389 376 
0.50 3573 1874 10024 1051 
0.45 3573 2781 4127 1180 
0.40 9401 4120 7142 3577 
0.35 16712 5513 14674 6977 
0.30 28145 8255 35184 12306 
0.25 56726 12313 33616 24614 
0.20 63083 17873 11962 34141 
0.15 50402 23848 11046 41737 
0.10 21787 30017 12132 30234 
0.05 4017 33993 8156 10111 
0.00 537 35304 5144 11501 
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Table A.9: Distribution of similarity scores produr<:'cl by different. similarity measnn's 
when structure NSC 170347 is the query. 

cosine rosine Tanimoto Tanimoto 
Interval (Contextual + CATI} (Standard + C'ATI ) (C'ATI ) (chPntical ringcrprints) 

Chem- D H.Si\ I Chcm- D H.Si\ I Ch<>tn- D it S I OpPnBab(•l 

Equation (4.7) Equation (tJ.G) Equation (3. 1) Equation (:t I ) 

1.00 13 6 12 14 
0.95 0 4 1S4 0 
0.90 4 41 234 0 
0.85 0 41 24 26 
0.80 15 18 6 0 
0.75 16 20 214 48 
0.70 46 3292 20 
0.65 34 184 5538 184 
0.60 109 308 5098 474 
0.55 218 487 8 4 570 
0.50 1301 709 39 2924 
0.45 1480 812 106 384 
0.40 5772 964 22 7826 
0.35 12672 1132 16 15126 
0.30 27595 1103 30044 23650 
0.25 69599 1257 31238 45076 
0.20 64501 2375 17836 61186 
0.15 42687 6285 42280 74140 
0.10 26299 12942 43740 73394 
0.05 6411 29 44 130 10 29272 
0.00 1337 119597 44374 18572 
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Tnblc .10: Distribution of similc-trit.y sc-on's produced by cliHcrcnt similarity measures 
when structure SC 209 26 is the query. 

COSlllC' COSillC' Tanimoto Tanimoto 
l11t.erval (C'ouLexLual + C'ATI ) (St.audard + C'ATI) (C'ATI ) (clwruica l fiJJg<'rpriuLs) 

C lrPJJr- DRSI\ 1 C'lr<'llr- DILS I Clr('nr-1 HSI\1 0p<'11 Balwl 

8quaLio11 (4.7) Equat io11 (•l.G) 8quatio11 (:3.1) l ~quaLiou (:l . l ) 

1.00 8 8 8 8 
0.95 0 4 16 0 
0.90 0 -l. 315 5 
0. 5 0 47 936 () 

0.80 107 252 12 
0.75 8 285 4395 73 
0.70 0 423 5653 69 
0.65 40 677 6717 172 
0.60 1 1103 13709 501 
0.55 150 1732 15509 716 
0.50 7 9 2593 14959 1937 
0.45 938 3695 17027 1713 
0.40 3267 5054 7814 4994 
0.35 8630 7017 22295 8246 
0.30 16364 9504 1 704 12930 
0.25 41329 12650 14 2 26239 
0.20 68639 16056 11063 30439 
0.15 70264 20487 117 31378 
0.10 3 831 22959 0 26695 
0.05 9243 26052 10 77 21455 
0.00 1482 47718 24051 10593 
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Table A.ll: Distribution of similarity scores produced b,i different similarity measure's 
vvbeu structure SC 210746 is t he query. 

cosmc COSlllC Taui moto Tanimoto 
Interval (Cont<'xtual + C'ATI) (Standard + CAT!) (C'ATI ) (chC'n1ical fingE'rprints) 

C hC'm-DRSJ\1 C hC'ln-DRSJ\1 C hC'm-DH.S I 0pC'nl3abl'l 

Equation (4.7) 8quatiou (-1.6) Equation (3. I ) Equation (:3. 1) 

1.00 9 9 9 9 
0.95 0 1 1-1 0 
0.90 7 13 73 9 
0. 5 0 22 375 3 
0.80 3() 172 847 32 
0.75 74 255 1840 114 
0.70 142 358 4481 215 
0.65 251 673 92 5 320 
0.60 1032 1346 121 )5 830 
0.55 2013 2191 14803 163 
0.50 8488 3536 1 )58() 3491 
0.45 9722 5311 150 3 4621 
0.40 26161 7290 13798 10410 
0.35 32329 10296 17415 17578 
0.30 36673 13406 11609 26093 
0.25 49707 16G88 11354 30716 
0.20 42311 1 999 11268 291 3 
0.1 5 2853 21979 9882 21353 
0.10 17338 23171 9 46 14290 
0.05 4323 20265 557 7728 
0.00 917 32194 9844 9542 
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Table A.12: Distribution of similarity scores produced by different. similarity nH'asurc's 
when stntct.me NSC 15309 is the query. 

cosine COSlllC Tanimoto TauinJOto 
Int.crve1l (Cont extual + Ci\TI ) (Standard + C'ATI ) (C'ATI ) {cltelllical fingerprint s) 

C'lte111- DitS I C'ltcm- DH.St·d C'hclll- D H.S I Open Habel 

Equation (tJ.7) Equation ( I.G) Eqnation {:l. L) Equation ( ~ . L) 

1.00 20 6 13 175 
0.95 0 18 1 '03 0 
0.90 65 39 5697 0 
0.85 0 72 7891 332 
0. 0 178 193 9756 157 
0.75 2 9 295 9744 829 
0.70 261 534 11231 257 
0.65 650 871 136 4 1509 
0.60 1508 1434 18970 2643 
0.55 1883 2004 13 44 2703 
0.50 5550 2762 14 43 '291 
0.45 4523 3912 114 5 6584 
0.40 11147 5106 10008 13393 
0.35 17771 7010 133 0 17949 
0.30 29023 9554 9691 25442 
0.25 535 2 12841 5519 32770 
0.20 53211 17584 62 9 24525 
0.15 43544 22450 21 16600 
0.10 28648 27447 -l 9 33 
0.05 67 9 29753 9005 5448 
0.00 1429 34290 5100 8735 
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Ta blc A .13: Distribution of similari t.y scores produced by different similrui ty me' a sure's 
when structure S 1 0 is the query. 

C'OSlllC COSllH' Tanin10t.o Tanimoto 

Interval (Contextual + C'ATI) (Standard + C'/\T I ) (C'/\TI) (d1e1nica l lingerprints) 

C'ht'rn-DRSI\1 C'henr-DRSI\1 C'lrern-DRSI\1 Openl3abel 

Eq ualion ( 4. 7} Equation (·I.G} Equation {:l . l ) Eqnation (:!. J} 

1.00 8 6 7 10 
0.95 0 6 85 0 
0.90 9 35 465 0 
0. 5 14 54 993 17 
0. 0 31 13 2419 ~19 

0.75 53 205 4755 52 
0.70 158 406 7732 179 
0.65 151 811 141 4 135 
0.60 576 1237 11469 598 
0.55 603 1821 7703 729 
0.50 3405 2676 16319 3472 
0.45 3265 3795 8123 2902 
0.40 289 5049 12401 5726 
0.35 15430 65 1 16427 9118 
0.30 2 95 773 7603 13682 
0.25 549 2 11049 1459 23603 
0.20 63834 13749 42549 26740 
0.15 50411 16962 2271 23965 
0.10 24568 21234 448 40025 
0.05 4420 29446 16353 1 022 
0.00 969 54142 4410 9151 
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Table A.14: Distribution of similarity scores produced by diff('r<'nt similarity llH'<1S1IrC's 

whC'n strurtmC' NSC 525079 is t llC' query. 

COSill(' COSlll(-' Tanimoto Tanimoto 
Interval (C'ontcxlual + C'ATI) (Standard + C'ATI) (C'ATI ) (chemical fingPrpri nt.s) 

C'hcm- DRS I C'hem- D RSJ\ I C hent- DH.Sl\1 Open Babel 

Equation (4.7) Equation (' I.G) Equation (:3. 1) Equation (3. I ) 

1.00 3 J 3 4 
0.95 0 3 116 0 
0.90 6 27 1240 46 
0.85 15 47 2299 0 
0.80 58 1()9 4492 114 
0.75 151 316 8587 406 
0.70 378 602 10121 497 
0.65 452 970 117 '4 1301 
0.60 1147 1698 13943 32 0 
0.55 1897 2 43 14033 4369 
0.50 6798 4230 12747 12655 
0.45 8547 5391 13816 9273 
0.40 22297 7220 18517 20424 
0.35 30508 9724 18134 22476 
0.30 37944 12503 19444 21929 
0.25 49439 156 8 11680 26598 
0.20 39487 19112 2914 18977 
0.15 31527 22203 4389 14178 
0.10 23171 24100 559 9343 
0.05 5174 23956 5413 4453 
0.00 1072 27370 3944 7852 
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Table A.15: Distribut.iou of similarity scores produced by different similarity measures 
when structure SC 623441 is the query. 

C"OSlllC cosme Tanimoto Tanimoto 
Interval (Contextual + CAT I) (Standard + C'ATI ) (C'ATI ) (chPrnical firrg<'rprints) 

C'hcrn- DRSJ\1 C ht'm-DRS I ('hpnr- DRS I O pPnBabel 

Equation (<1.7) l":;quation {·I.G) Equation (;t I ) Equation (3. I ) 

1.00 22 3 26 77 
0.95 0 37 4470 0 
0.90 98 104 3825 0 
0. 5 0 224 7479 311 
0.80 280 427 774 0 
0.75 234 773 13172 875 
0.70 594 1024 9216 120 
0.65 1323 1473 12196 343 
0.60 2557 2078 48561 2212 
0.55 2594 2818 18020 2166 
0.50 10342 3686 7337 6352 
0.45 664 4634 7680 5047 
0.40 20108 6009 6037 9157 
0.35 29776 7747 1672 12571 
0.30 37 10 9925 1170 17991 
0.25 50-!60 13001 409 29254 
0.20 41940 16859 2049 30325 
0.15 323 3 21117 8601 24513 
0.10 15512 25488 1478 16982 
0.05 4371 23176 12302 10816 
0.00 1003 37572 4727 7975 
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Table A.16: Distrilmtiou of similarity scor<'s producC'd hy difft'rt'llt sitnilruity lllt'asun's 

when structure' NSC 26613 is the query. 

COSlllt' COSlllC' Tanimoto Ta ni llloto 

IntC'rval (C'onl<.'xtnal + CAT! ) (Standard + C't\Tl ) (C't\Tl ) (chPn1intl ling('rprints) 

C'h<'m- DH.Sl\1 Ch!'III- DHSl\1 C'lt<.'III- DHSl\ I Opl' lll3ah<'l 

Gqnalion (·1. 7) Equation ( I.G) l ~qnation (:1. 1) l ·~qnalion (:1. I ) 

1.00 6 5 5 59 
0.95 () 102 5 ..J. 0 
0.90 2 ) 250 1366 296 
0. 5 0 46 3239 () 

0.80 91 997 5416 819 
0.75 242 1513 9846 GG1 
0.70 213 1810 9729 11 7 
0.65 599 2115 11322 1471 
0.60 1647 2451 10998 3533 
0.55 2006 2979 12900 3386 
0.50 6076 3620 1256 10276 
0.45 5705 ..J.36 8 7 7059 
0.40 16137 5249 11319 15001 
0.35 24370 6710 20070 17812 
0.30 34395 )984 26 ) 0 19 30 
0.25 55461 11830 9394 27223 
0.20 53132 15297 5104 23810 
0.15 33239 1975 ) 51 9 1 752 
0.10 21071 25314 3194 13522 
0.05 463 30231 6006 5355 
0.00 1015 34124 4168 8123 
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Ta.ble A.17: Distribution of similcuity scores produced by different similarity measures 
when structure N SC 79367 is the query. 

C'OSllle COSlllC' Tanimoto Tanimoto 
Int.c'rval (Contextual + C'ATI } (Standard + C'ATI } (C'ATI) (chemical fingerprints} 

C'he111- D RS.td C'hern-DH.SI\1 C'ht•rn-DH.S I Opt•nl3alwl 

Equation (4.7) Equation ( I.G} Equation (3. 1} Equal ion (;l. I) 

1.00 13 7 7 7 
0.95 () 0 11 () 

0.90 -! 13 59 0 
0. '5 0 14 25 
0.80 15 17 222 1 
0.75 16 83 629 28 
0.70 0 11-!7 30 
0.65 34 211 735 69 
0.60 109 331 2000 415 
0.55 218 544 8126 131 
0.50 1301 900 12146 2102 
0.45 14 0 1441 917 2214 
0.40 5772 2158 14344 4238 
0.35 12672 3148 7131 7535 
0.30 27595 501 136 11 74 
0.25 69599 7050 8629 21136 
0.20 64501 9273 4305 26748 
0.15 42687 11509 25837 35065 
0.10 26299 15298 17 77 40577 
0.05 6411 26860 36564 16277 
0.00 1337 94220 21067 9720 
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Table A.18: Distribution of similarity scores produced by diff<'n'nt similarity Ulcasun's 
when strnrt.me NSC 8134 is the query. 

cosine COSlllC Tcmimot.o Tauimoto 
Iuterval (C'onLt'xLtml + Ci\Tl) (Standard + CAT! ) (Ci\TI ) ( chcnt ical fi ngcrpri nls) 

C'hctn- DHSI\1 Chctn-DltSI\ I C'hcnt- DHSI\1 OpC'nBalwl 

Equal.iou (J! .7) EquaLiou ( I.G) Equnliou (:l . l ) l ~quntiou (:l . l ) 

1.00 11 5 5 18 
0.95 0 11 95 () 

0.90 10 52 725 35 
0. '5 0 62 1044 () 

0.80 43 20 ) 4431 153 
0.75 1 335 3659 276 
0.70 174 530 3310 366 
0.65 57 946 11 53 851 
0.60 447 1494 7155 2070 
0.55 345 193 10236 2287 
0.50 2046 2755 15900 7036 
0.45 1870 3635 9540 5472 
0.40 4102 4991 0228 11502 
0.35 6569 6280 1545 15509 
0.30 1331 77 2 9717 1 515 
0.25 36034 10137 19 '2 ) 2 666 
0.20 61005 13382 40665 26316 
0.15 76258 17592 12238 24020 
0.10 47801 23040 6374 18393 
0.05 176 34093 9274 7870 
0.00 1204 48907 4353 8814 
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Table A.19: Distribution of similarity scores produced by different similcuity n1casnrcs 
when structure N SC 90799 is the query. 

COSlllC' C'OSlllC Tanimoto Te~uimoto 

Interval (ConL<•xLtml + CAT! ) (SLanda.rd + C'.i\Tl ) (C'.i\Tl ) (dtC' tnieal finger prints) 

C'ltctn- D 1\.Sl\1 C lw111- D 1\.Sl\ I C'ltem- DHS I O penl3abC'l 

l ~q ua.Uon ( 4. 7) Equation ( I.G) Equation (:j . I ) Eqnation (3. 1) 

1.00 22 3 5 8 
0.95 () 58 5517 0 
0.90 0 462 6557 0 
0. 5 () 1263 25 42 0 
0. 0 0 1642 89 6 43 
0.75 117 1698 5901 0 
0.70 0 1838 2199 99 
0.65 11 20 2 5696 18 
0.60 383 2393 2633 232 
0.55 0 2708 2406 509 
0.50 119 3310 692 92 
0.-!5 0 3963 74 3 895 
0.40 2936 -!543 124 8 2818 
0.35 2259 5245 29 8 4649 
0.30 9999 6291 637 10520 
0.25 23963 7600 3 0 19 49 
0.20 37 46 9376 20544 2 068 
0.15 51309 11858 3210 33159 
0.10 4594 15512 14452 29915 
0.05 38690 22218 44355 37646 
0.00 6744 74112 5204 )819 
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Appendix B 

Human Evaluation Data 

The data that was obtained from the responses given b.v participants of the human 

evaluation .tudy (Section 5.3) is shown in Table 13.1 and Figures 8 .1 to B.22. Personal 

information that could identify study participants was not collected and the study 

subjects were assigned an ID number based on the order in which they completed 

the various task (for example, ID 1234 corresponds to contextual cosine measnre 

first, standard rosine measure second, Tanimoto CATI measure third, and Tanimoto 

Chemical Fingerprint measure fourth). Tahlc 8.1 summarizes the demographic data 

of study participants and also shows their ID numbers. Following Table B.1 is all of 

the data collected for each of the 20 'top ten'' lists, data which in t urn was used to 

asses. the four different similarity measures (Figures B.l to 8 .12). Additionally, F ig­

ures 8.13 to B.22 show images of the fir. t five structures that were returned for each 

of the five test structures using the standard ro ·inc measure ( Chcm-DRS 1 system) 

and the Tanimoto measure with chemical fingerprints (OpcnBa.bcl). 
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Ta b!<:> B.l: ID number , geuder. cducat io11 ancl area of specializat ion of hllman study 
participants. 

ID Gender Ecluca t ion Area of Specialization 
1234 M PhD (Chemistry) T heoretical 
1243 !J PhD (Chemistry) Theoretical I Compute1 tional 
1324 F PhD (Chemistry) Physical 
1342 F l\ ISc (Chemistry) T heoretical I Computational 
1423 I PhD (Chemistry) Physical 
1432 I 1\.ISc (Chemistry) Orgcmic I Experimental 
2134 F PhD (Chemistry) Physical 
2143 M BSc (Chemistry) Organic 
2314 F PhD (Chemistry) T heoretical 
2341 l\1 l\ISc (Computational Science) Physics I Ccmcicusccl l\1attcr 
2413 1 PhD (Chemistry) Theoretical I Computational 
2431 I PhD (Chemistry) Physical I Computational 
3124 I PhD (Chemistry) Theoretical I Computational 
3142 1 l\1Sc (Chemistry) Physical Chemistry 
3214 1 PhD (Chemistry) Analytical 
3241 l\1 PhD (Chemistry) Physical I Computational Chemistry 
3412 F PhD (Chemistry) Crystallography I Inorganic 
3421 F PhD (Chemistry) Analytical 
4123 l\1 PhD (Chemistry) Inorganic 
4132 M PhD (Chemistry) Organic I Experimental 
4213 M PhD (Chemistry) Organic I Experimental 
4231 l\1 PhD (Chemistry) Organic 
4312 M PhD (Chemistry) T heoretical I Computational ChemL try 
4321 F PhD (Chemistry) Theoretical I Compu tational Chemistry 
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Context 
Cosme 1234 4321 12431324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 32414132 4213 4123 4231 2413 3124 3214 4312 3421 

Struct 1 

1.1 6 
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1 

5 

4 

2 

2 

5 

6 

3 

5 

5 

3 

3 

3 

3 

2 

2 

6 

5 

1 

2 

2 

Avg Avg Metnc 
User Std User Std Score Exact 

Score Dev Score Dev 
(7) (%) (%) 

56 11 77.1 2.2 1000 

1 6 1 0 10.4 0.0 100 0 

4 2 1.6 53 5 10.7 99.00 

4 0 1 7 49 3 10.9 99.00 

1.9 1.0 15.3 0.0 99.00 

2 3 1.2 20 8 2 5 99 00 

40 2.1 50.0 17.7 99.00 

~1 1.1 18.1 1~ 99.00 

2.0 1.0 17.4 0.0 9900 

2 0 1.0 16.7 0.4 99.00 

42 15 535 79 

Context Avg 

Cosme 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 User 
Struct. 2 Score 

{7) 

Avg 
Std User Std Meine 
Dev Score Dev Score Exact 

{%) (% ) 
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5 

7 

7 
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7 

6 

5 

5 

4 

3 

2 

7 

7 

5 

7 

7 

3 

3 

4 

68 

67 

57 

6.6 

5.1 

40 

38 

3.6 

3.3 

2.8 

1.0 97.2 00 100.0 R 

1 0 95 1 0 0 100 0 R 

1.3 78 5 4.5 100 0 

1.0 93.8 0.0 100.0 R 

1.6 68.8 9.5 99.00 

1.7 50.0 12.0 99.00 

1 6 47 2 10.1 99.00 

1.7 438 11 .5 99.00 

1.6 37.5 9.9 99.00 

1.4 29.2 7.0 99.00 

5.7 1.4 78.5 7.1 



Conte•t 
Cosme 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 

Struct. 3 

3 .1 

3.2 

3,3 

3,4 
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3.7 
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COSine 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 
Struct 4 

4.1 

4 .2 

4.3 

4,4 

4 ,5 

4 .6 

4 .7 

4 .8 

4 .9 

4 10 

Quality 

2 

1 

2 

4 

3 

3 

3 

3 

3 

3 

3 

3 

4 

3 

2 

4 

4 

4 

4 

4 

4 

4 

2 

4 

3 

1 

1 

2 

2 6 6 

4 

4 

3 

3 

3 

3 

2 

3 

1 

2 

4 

2 

2 

2 
2 

2 

2 

2 

2 

4 

2 

2 6 5 

3 

2 

2 

2 

2 

2 

2 

2 

2 

4 

3 

4 

3 

3 

2 

3 

2 

3 

1 

2 

5 

2 

5 7 

2 

1 

2 

3 

4 

3 

3 

3 

3 

3 

3 

5 

3 

3 

4 

4 

3 

4 

4 

3 

3 

3 

3 

5 

4 

2 7 

3 

3 

2 

2 

2 

3 

3 

2 

2 

2 

6 2 

Avg 
User 
Score 

(7) 

46 

46 

46 

24 

24 

4 .1 

37 

2.5 

4.0 

4 .0 

39 

Avg 
User 
Score 

(7) 

1.9 

1 8 

1.7 

1.7 

1.6 

1.7 

1.6 

1.7 

1.6 

1.7 

4 .0 

Avg 
Sid User 
Oev Score 

(%) 

Sid Meine 
Oev Score Exact 

(%) 

1 5 62.5 7.5 97 00 

1.5 60.4 6.3 97.00 

2 .0 62.5 16.4 97 00 

1.2 22.9 3.5 96.00 

1.1 22.9 2.2 96 00 

1.4 51.4 6.9 96.00 

1.6 44.4 9.2 96.00 

1.3 25.0 4.2 96.00 

1.6 49 3 9 .6 96.00 

1.5 50.0 8.9 95.00 

1.2 47.9 3.2 

Avg 
Std User 
Dev Score 

(%) 

Std Metnc 
Dev Score Exact 

(%) 

1.2 153 35 100.0 

1 1 13.2 2.4 100.0 

1.0 11 .6 0.7 100.0 

1.0 11 8 0.7 100.0 

1.0 10 4 0.0 100.0 

1.0 11 8 0.0 100.0 

1.0 10 4 0.0 100 0 

1 0 11 8 0.7 100 0 

1.2 10 4 2 9 100.0 

1 0 11 1 0.0 100.0 

2.0 50 0 17 0 

0 
00 
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Context 
Avg Avg 

Metric 
Cosine 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 341 2 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 

User Std User Std 
Score Exact 

Struct 5 
Score Oev Score Oev 

(%) 
(7) (%) 

5,1 4 3 1 3 2 2 1 3 5 4 2 1 1.8 1.2 13.2 3.6 100.0 

5.2 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 70 1.0 99.3 0.0 100.0 R 

5.3 7 7 7 7 7 7 7 6 6 7 7 7 7 7 7 7 7 6 7 7 6.9 1.0 97 .9 0.0 100.0 R 
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::::::: 
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cr. 
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[f) [f) 
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.;,.;~ 
[f) 
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5.4 3 3 3 1 2 2 1 3 2 5 4 2 2 1 8 11 13.9 2.2 100.0 

5 .5 2 2 3 3 2 2 2 2 1 3 3 3 1 7 1.0 11 1 0.0 99.00 

5.6 2 2 3 3 2 2 2 2 1 3 3 3 1 7 1.0 111 00 99.00 

'7d if] 
+J r::c: ,...-< 
'7d Q 00 

"'0 I 
,...-< 

,..... ,.... 
...... ,.... 

57 3 2 2 3 2 2 3 2 1 5 1.0 7.6 0.0 99 00 

5,8 3 2 1 2 3 2 2 3 4 2 1.6 1.0 9.7 0.0 99.00 

5,9 4 4 5 6 2 3 2 3 6 2 5 3 4 6 6 6 4 3.3 1.9 37.5 15.7 99.00 

5.10 1 3 3 2 2 1.3 1.0 4.2 00 99.00 

0 8 ·.;::; ,.... -ro C) 
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Standard Avg Avg Metnc 

Cosme 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 ~c~% ~:~ ~c:: ~:~ Score Exact 

Struct 1 (7) ("kl (%) 

1.1 

1.2 

1.3 
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5 

58 

46 

1.2 

1.6 

79 2 3 7 

60 4 10 6 

100.0 

99.0 

4 5 1.6 58 3 9 8 99 0 

30 15 340 86 990 

2 4 1.4 23 6 6 3 99.0 

4 0 1 6 49.3 9 6 99 0 

4 0 1.5 50 7 8 1 99.0 

2.6 1.4 26 4 7.4 99.0 

2 4 1 4 23 6 6 3 99 0 

1 6 1.0 10.4 0 0 99.0 

50 1.3 66 0 50 

~~d ~ ~ 
Cosone 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 User Std User 
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(7) (%) 

Dev Score Exact 
(%) 

70 1.0 1000 00 100.0 R 

68 1.0 965 00 100.0 R 

56 1.1 764 17 100.0 

6 8 1.0 95 8 0 0 100.0 R 

50 1 4 66 0 6 .6 98.0 

44 1.5 563 83 980 

4 4 1.4 56 3 7 3 98.0 

5.0 1 4 66 7 6 4 98 0 

52 1 5 69.4 8 7 98.0 

4 9 1.5 65.3 7 9 98 0 

5.7 1.0 778 0 .1 
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Standard Avg Metric 

Cosme 1234 4321 1243 1324 1342 2431 
Struct 3 

Avg 

1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 43 12 3421 SUser 
core 

Std 
Dev 

User Std 
Score Dev Score Exact 
(%) (%) 

3 1 6 

3,2 5 

3 .3 6 

3,4 5 

3,5 4 
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3,1 0 4 
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4 
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(7) 

4 4 4 1.6 56.3 10.2 96.0 

1 41 1.4 51.4 7.4 95.0 

2 4 8 1 .7 63.9 11.4 95.0 

2 4 6 1.7 59.7 12.4 95.0 

3 0 1.3 33.3 4 8 94.0 

4 4 3 1.6 55.6 10.1 93.0 

3 3 2 1 2 36.8 3 0 93 0 

6 4.4 1.6 56.9 9.8 93 0 

2 3.0 1.2 33.3 3.0 93.0 

3 3.3 1 3 37 5 4 9 93.0 

4 4.1 1 .3 51.4 47 

Standard Avg Avg Meine 
Cosme 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 User Std User Std Score 

Struct 4 Score Dev Score Dev 
(7) (%) (%) 
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2 

3 

3 

4 

48 

5.0 

53 

5.1 

33 

35 

33 

37 

34 

20 

1.4 63.9 6 7 

1.5 66 7 8.9 

1.4 72 2 7.2 

1.4 68 8 6.5 

15 389 7.7 

1.4 41 7 6.9 

13 382 56 

1.5 44.4 8. 7 

1.5 39.6 7 8 

1.0 16.7 04 

54 1.1 72.9 1.6 

100 0 

1000 

100 0 

100.0 

99 0 

99.0 

99 0 

99.0 

99.0 

99.0 

Exact 
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Standard 
Avg Avg 

Metnc 
Cosme 123.1 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 41 23 4231 2413 3124 3214 4312 3421 ~ser Std User Std 

Score Exact 
Struct. 5 

core Dev Score Dev 
(%) 

(7) (%) 

5 1 7 7 7 7 7 6 7 7 7 7 7 0 1 0 99.3 00 100 0 R 

5.2 7 7 7 6 7 7 7 6 6 7 7 7 7 7 7 6.9 1 0 97.9 00 100.0 R 

5.3 3 2 1 1 2 1 3 2 2 2 1 6 10 97 00 99 0 

5.4 1 2 3 1 1 2 2 2 3 2 2 2 1.6 1.0 10.4 00 98 0 

5.5 6 5 6 2 6 5 5 3 6 2 6 6 6 4 6 6 5 4 5 3 4 4 17 569 11 5 980 

56 1 1 1 2 1 1 2 4 3 2 2 1 5 10 9 0 00 97 0 

5.7 3 5 1 4 3 2 2 2 5 2 6 4 4 3 2 2.6 1 5 27.1 8.3 97.0 

58 3 3 4 2 2 2 5 2 3 2 2 2 2 1 11 18 1 1.0 97 0 

5.9 3 2 4 2 2 2 2 1.6 1 0 97 00 97 0 
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Tan1moto 
(CATI) 1234 4321 1243 1324 1342 2431 

Slruct 1 

1.1 

1,2 

1.3 

1 4 

1,5 

1,6 

1,7 

1,8 

1.9 

1.10 

Quality 

3 

2 

4 

3 

3 

5 

5 

6 

Avg 

1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 SUser 
core 

3 

2 

2 

2 

3 

2 

2 

1 

2 

4 
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3 

4 

5 

4 

2 
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3 

3 

3 

2 

3 

2 

4 

2 

4 

2 

3 

3 

4 

3 

2 

2 

3 

2 

3 

3 

2 

2 

(7) 

20 

2.1 

1 5 

20 

1 9 

23 

1.6 

20 

24 

1.9 

Avg 
Sid User Std 
Dev Score Dev 

(%) 

Metnc 
Score Exact 

(% ) 

1 1 17 4 2.0 100.0 

1.2 188 26 1000 

1 0 7.6 0.0 100 0 

1 2 17 4 3.9 100.0 

10 146 00 1000 

1 4 20 8 7.0 100.0 

1.0 9.7 0.0 100 0 

12 160 27 1000 

1 7 22 9 11 .1 100.0 

1.0 153 00 1000 

6 5 4 3 4 3.2 1. 7 36 1 11 0 

Tammoto Avg Avg 

ICATI) 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3241 4132 4213 4123 4231 2413 3124 3214 4312 3421 SUser Sid User Std 
Struct 2 core Dev Score Dev 

Meine 

2,1 

2.2 

2,3 

2.4 

2,5 

2.6 

27 

2.8 

2.9 

2 .10 

2 

7 

6 

6 

6 

6 

Ouahty 4 
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6 

6 

6 

6 

5 

5 

7 
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3 

6 

4 

6 

6 

4 

2 

7 
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5 

5 
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6 
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7 
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1 

5 

5 

3 

7 

7 

6 

6 

5 

6 

6 

7 

7 
4 2 

5 

5 

6 

6 

5 

6 

6 

6 

4 

5 

2 

6 

6 

6 

6 

4 

3 

6 

5 

6 

5 
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6 
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4 
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6 
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4 

4 

7 

6 

6 

4 

7 

7 

3 

6 

5 

6 

5 

3 

4 

3 

3 

5 

5 

6 

5 

5 

3 

(7) (% ) 

2 3 6 1 .6 43 8 9. 7 

5 4.3 1.5 54 .9 9 .1 

1 2 5 1.4 25.0 6 9 

7 7.0 1.0 99.3 0.0 

6.8 1.0 95.5 0 0 

3 2 8 1 3 30 6 5. 7 

6 5.5 1 1 74 .3 2 4 

6 56 1 0 77.1 0.0 

6 5.1 1 2 68.8 2.6 

6 50 1.1 66.7 1.7 

4 3.8 1.2 47.2 40 

Score Exae1 
(%) 

100.0 

100.0 

100.0 

100.0 R 

1000 R 

100.0 
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100 0 

1000 
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Tantmolo 

(CATI) 1234 4321 1243 1324 1342 2431 
Strucl 3 

3,1 

3,2 

3.3 
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3,5 

3.6 

3,7 

3.8 

3.9 

3 10 
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3 

5 
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2 

2 

2 

6 

Quality 2 
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5 
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6 

5 

2 

2 

3 

4 

5 

4 

5 

5 

5 

4 

5 

2 

3 
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4 

3 
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4 
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5 
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6 

(CATI) 1234 4321 1243 1324 1342 2431 
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(4) 

(5) 

Figure B.13: First five structures returned when using the standard cosine measure 

(Chem-DRSM system) with query structure 1 from the human evaluation. 
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Figure B.l4: First five structures returned when using the standard cosine measure 

(Chem-DRSM system) with query structure 2 from the human evaluation. 
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Figure B.l5: First five structures returned when using the standard cosine measure 

(Chem-DRSM system) with query structure 3 from the human evaluation. 
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Figure B.l6: First five structures returned when using the standard cosine measure 

(Chem-DRSM system) with query structure 4 from the human evaluation. 
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(4) 

Figure B.l7: First five structures returned when using the standard cosine measure 

(Chem-DRSM system) with query structure 5 from the human evaluation. 
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Query 

Figure B.18: First five structures returned when using the Tanimoto measure which 

uses chemical fingerprints (OpenBabel) with query structure 1 from the human eval­

uation. 

196 



(1) 

(5) 

Figure B.l9: First five structures returned when using the Tanimoto measure which 

uses chemical fingerprints (OpenBabel) with query structure 2 from the human eval­

uation. 
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(2) 

Figure B.20: First five structures returned when using the Tanimoto measure which 

uses chemical fingerprints (OpenBabel) with query structure 3 from the human eval­

uation. 
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(3) 

Figure B.21: First five structures returned when using the Tanimoto measure which 

uses chemical fingerprints (OpenBabel) with query structure 4 from the human eval­

uation. 
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Figure B.22: First five structures returned when using the Tanimoto measure which 

uses chemical fingerprints (OpenBabel) with query structure 5 from the human eval­

uation. 

200 


