Data Re_resentation Sc \eme and Similarity
Measures r a Comprehensive Computational

Chemistry Database

by

(© Mark Sinclair Staveley

A thesis submitted to the

School of Graduate Studies

in partial fultilment of the
requirements for the degree of

Doctor of Philosoplhy

Department of Computer Science

Memorial University of Newfoundland

July 2009

St. John's Newfoundland



Abstract

This thesis draws upon rescarch in the arcas of information retrieval, chemical infor-

matices. and computational chemistry.

Many rescarch initiatives deal with very large amounts of data. and as a result
information retrieval systems are becoming more and more of a necessity, Chemically-
based information retrieval svstems are of particular interest to computational chemists,
as computational chemists not only produce large quantities of information (data).

but they also use large quantities of computer processing power (CPU eveles).

Currently there are no tools available through any of the Canadian High-Performance
C'omputing consortia that have been designed and nnplemented to support the data
managenient activities of computational chemists. The only electronic resources that
arc publicly available contain information that has either heen obtained experimen-

tallv or through patent and publication scarches.

A svstem by the name of Cheni-DRSN has heen designed and implemented in order
to support the structuring and browsing of computational chemistry data. It has
heen implemented using principles and methods associated with various chemically
based data representation schemes and similarity measures. This thesis presents and
discusses the desien. implementation and evaluation of the Chem-DRSN svstem. An
evaluation of the similarity measures found within the Chem-DRSM svstenr was con-

ducted using statistical information (precision and recall statisties). information from
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the distribution of similarity scores with test stroctures. and information gathered
from a human study that involved subjects with an expert level of knowledge in

chemistry.

The Chem-DRSN contains three  Herent similarity measnres (namely the contex-
tual cosine measure. standard cosine measure, and Tanimoto measure). which have
all heen adapted to make use of specialized chemical topological descriptors called
Chemical Atom Topological Indices (CATI). The evaluation not only compares the
performance of these metries with cach other, but also con ares their perforimance
with a version of the Tanimoto measure which uses chemical fingerprints (which is

considered to he an industry standard).

Results of the statistical evaluation showed that the standard cosine measure had
a higher average precision (v I a lower standard deviation) than the other measures
(including the Tanimoto with chemical fingerprints). During the evaluation of the
distribution of similarity scores produced by the different similarity measures it was
observed that the standard cosine measure assessed the similarity of chemical strue-
tures with the most granularity., The level of granularity associated with the standard
cosine measure is attributed. in part. to its use of statistical weighting inforniation
about the various descriptors found within chemical structures. This is in contrast to
the Tanimoto measure. with chemical fingerprints. whicli only looks at the presence
atd absence of properties when distinguishing chemical structures. Furthermore, the
standard cosine measure also identified more similar structures (as classified by the

human study participants) than the Tanimoto measure.
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All of these different evaluation results show  at the standard cosine measure. which
uses the CATT descriptors. defines a chemical information context for searching and
browsing that is more appropriate than the chemical information context created by

the Tanimoto measure which uses chemical fingerprints.
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Chapter 1

Introdu.tion

[t is in a person’s nature to want to learn about new things. and librarv-type resources
arc useful tools that can assist with the learning process. There are many different
ways of obtaining information. In one instance this might involve scarching for books
or documents relating to a particular idea or subject. In another. it could involve

browsing through information archives.

As information is gathered and collected, a need arises for this data to be stored
and organized so that it can be casily accessed by users. Conventional libraries have
developed techniques and schemes over himndreds of vears to do this very thing. How-
ever. clectronie or digital libraries are still very much in their infaney. Consequently.
questions arise as to how one should go about structuring, organizing and scarching
within these environments.  Additional questions relating to the tvpes of tools and

svstenrs available for suclr an o wizational task are also posed.



This thesis addresses the problem of managing and organizing large collections of
chemical structure data. A new system called Chem-DRSN (Chemical structure
Data Representation Similarity Measure) is presented. The Chen-DRSN svstem has
been designed to provide assistance to chemists and chemical researchiers within an
clectronic environment. This system distinguishes itself in two wavs. First. it uses
a customized data representation scheme that contains atom-based and bond-based
topological desceriptors. as well as computationally dertved information.  Scecond, it
uses varions sinilarity metric that have been designed to maximize the use of the
information contained within the  emical data representation scheme. These two
features enhance the usability of the clectronic information found within chemical
structures. which in turn alds with the organization and searching of clectronic chem-

ical structure archives.

1.1 Electronic C__er ical Structure rchives

One of the most influential developments i the way information is stored and ae-
cessed, s the development of what is known today as the Internet or the World Wide
Web (WWW). Since the development of the Internet. in the carly 1980°s. information
repositories that were once isolated ave now connected to other such repositories and
libraries. Some people have drawn similarities between the Internet and the begin-

ning of a world-based enevelopedia [1].

In an attempt to better organize collections of chemical structures. electronic databases

of chemical structur  have I n created. Examples of this include the Protein Data



Bank (PDB) [2]. the National Cancer Institute (NCI) database [3]. PubChem [1]. and
the ZINC database [5]. One of the main advantages of these types of resources is their
aceessibility as vou do not have to physically he at the location of the journal articles
or at the location where the structures mav be stored to obtain information about
a given structure. However. the maintainers of such collections are presented with a
difficult task when trving to obtain the same levels of structure and organization that

are commonplace within a conventional library.

One particular problem that is present with clectronic chemical structure collections
is that the metadata. which aids in the classification of the chiemical structures. is
not alwavs readily available. Tt is possible for chemical structures to be accompanied
by metadata: however in many cases the electronie versions of chemical structures do
not have the same amount of metadata as that found in specialized chemical reference

documents.

Text mining [6]. automatic document summarization [7]. and keyvphrase extraction [§]
arc examples of techniques that are applied to English language text documents to
solve this metadata problem. In terms of chemical structures. this problem is solved
by using a number ¢ different methods. including the translation of the chemical
structure into some tvpe of language-based representation (e.g SNILES [9. 10] or
InChI [L1]). some tyvpe of mc ~culi graph or topological based representation (e.g.
Maximum Common Subgraph (MCS) [12]). or some tyvpe of representation that is
hased on computational chemistry (e.g quantum chemistry) [13]. By combining the

computed information from the chemical structure with any metadata that might be



available. chemical structures within an electronic collection canr be better structured

and organized.

Bv relving on methods that involve little or no Inunan interaction to identifv the
information found with chemical structures, the structuring and organization of col-
lections of chemical structures has become easter. Furthermore, by relving primarily
on the topologically and computationally derived information as a basis for creating,
an organizational structure. whicl is representative of the chemical structures e the
collection. the task of updating the electronic collection can be accomplished much
faster as compared to the methods emploved by traditional libraries. This 1s a good
feature, as clectronic collections tend to require updating on a more frequent basis
because the contents of the collection are obtained from a variety of different sources

(c.g. experimental. theoretical. computational. publications. ete).

Being able to browse and scarch effectively in an electronic environment can be a
difficult task because the organizational structure and expertise found within a con-
ventional library is not there. As chiemici structures are converted into an electronic
format. an opportunity to maxinize information preservation and organization is
presented to the curators of digital archives. For example, different descriptors can
be obtained and calenlated during the conversion process of a chemieal structure
into an electronic format. A review of some of these electre ¢ deseriptors and data

representation schemes is presented in Chapter 2.



1.2 Thesis Outline

This thesis presents and investigates a method of electronically representing the in-
formation found within a chemical structure. Furthermore. it uses this information to
determine chemiceal similarity using a number of different similarity measures. Both a
precision-recall statistical evaluation and a hnman based study have heen carried out
to determine how well the information stored within the data representation scheme
can be used to determine chemical similarity when using adaptations of standard

nmformation retrieval metries.

Other than the Introduction. this thesis consists of six chapters (2-7). Chapter 2
reviews background work i the area of data representation and chemical structure
information. Chapter 3 reviews and discusses similarity measures and simtlarity co-
efficients in terms of chemice  v-based information retrieval. Chapter -4 presents the
Chem-DRSM svstem. which uses information from chemical structures to support
information structuring. scarching. and browsing activities. Chapter 5 discusses an
investigation desienced to evaluate the performance of the Chem-DRSM svsteni. and
presents the results that have been obtained. Chapter 6 draws from the observed
results and the architecture of the Chem-DRSM svsten to present a design for a
compreliensive computation:  chemistry database. Finallv, Chapter 7 presents a - dis-

cussion of the work within the thesis entive thesis as well as arcas for future work.

g |



Chapter ©

Chemical D.ta Representation

2.1 Introduction

Many different data representation schemes have been developed i order to pro-
coss and store chentical information. Some of the more common data representation
schenes have been ereated with a specitic purpose or user group in mind. As an ex-
ample. chemists. physicists and biochemists may use a scarching and browsing based
data representation scheme such as SMILES (Simplified NMolecutar Input Line Entry
Specification) when they are scarching large databases for structures, compounds, or

scaffolds.

However. once results that are of interest have been found. the same users are then
required to change data representation schemes in order to continue their work. One
reason for chianging data representation schemes might he the requirement to perform

additional calculations on a given stricture. In this case, a data representation scheme



that has preserved and contains the three-dimensional information of the structure

(for example. a Cartesian coordinate file or Z-matrix) is required.

This need to change data representation schemes highlights one of the wavs in which
there is a lack of continuity bhetween how chemical data is stored and how it is ac-
cessed. I some cases. chemical information repositories only store one or two of the
different data representation schemes and seientists are therefore required to employ
additional tools. such as conversion software like OpenBabel [ 15]. to complete

their work.

This chapter presents a review of common data representation formats that store
chemically based information. namely Chemical Properties and Metadata (2.2.1).

NMolecular Graph Theory (2.2.2). Natural-Language and Chemical Semanties (2.2.3).
. la) o

N/

and Quantum Chemistry (2.2.4).

2.2 Representir Chemical Infornr tion

There are many reasons why chemical data would need to be searched. Examples in-
clude the need to search for a particular structure or sub-structure. wanting to screen
structures for certain properties and characteristics. or perhaps trving to complete
a patent scarch for a drug or related chemical structure. patever the reason for
the search. the data representation scheme storing the chemical structure needs to he
able to capture . n vinfor  ation about the chemical structure to allow these types

of scarches to be completed in a fast. efficient and reliable manner.



Common data representation schemes for chemical structures typically involve one or
more of the following strategies: the use of metadata and other deseriptors relating
to the structure: the use of graph theorv: the use of chemical nomenclature combined
with Enelish language rules and construets: and the use of quantum chemistry-based

deseriptors {e.g. origin-invariant nuclear second moment and single point energy).

2.2.1 Chemical Properties and Metadata Approach

Metadata is not only limited to books or articles: metadata can be used to enhance
the deseription of anvthing.  owever. it is possible to extract too much metadata
and thereby capture redundant. information. Chemical structures have a large num-
her of properties and information that can be considered metadata, Nolecular de-
scriptors are good sources for chemical structure metadata as they are numerical
values that characterize the properties of a molecule. Feher and Schmidt [16). as an
example. use molecular properties to examine the differences hetween different com-
pountd classes (natural products, molecules from combinatorial synthesis. and dimg
molecules).  Classification of chemical structures based on this kind of infornition
is of particular interest to rescarchers in the area of combinatorial chemistry when
trving to identify lead candidates for drug discovery, Tu the study conducted by Feher
and Schmidt. 10 different properties were used when comparing structures. Exam-
ples of such properties include. the number of carbon-nitrogen honds, the number of

nitrogen atoms. the normalized number of ring svstems. and the ring fusion degree.



There are a wide range of properties that can be derived from chemical structures.
Some of the properties are more complex than others, and provide varving degrees
of information that can be used to distingnish structures from one another. Some of
the properties represent values that are simply the number of times a certain feature
occurs within the structure. These are known as simple counts and examples in-
clude the number of carbon-carbon bonds. the number of carbon-nitrogen bouds. the
number of rings. and the number of heavy atoms. However, simple counts are only
the beginning when it comes to deseriptors of chemical structures. Deseriptors can
he more advanced and subsequently require more information processing (time and
computer power). Examiples of advanced descriptors include topological indices [I7

21]. molar refractivity [22. 23], kappa she ¢ indices [24] and electrotopological state

indices [25].

Although most properties and deseriptors are derived from the information contained
within the chemical structure or the experimental conditions surrounding, its creation,
there are some descriptors and properties that have no relationship to the structure
at all. These deseriptors are sometimes referred to as dummy munbers and one of the
most well known examples of a dununy number is the Chemical Abstracts Service
(C'AS) nunber that is associated with a particular structure [26]. Just as student
numbers are assigned based on an enrollment or registration ovdering. the CAS num-
hers are assigned sequentially as structures are registered in the Chemical Abstracts

Service database.
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2.2.2 Molect ar Gr:z, h Theory Approach

Whercas molecular properties are considered to be derived from the chemical strue-
ture. the graph theory approach can be thought of as a means of translating the shape

and connectivity of the chemical structure into an alternate representation.

Chemical structures can be stored ina number of different file formats and representa-
tions. These file formats tvpicallv contain information such as the three-dimensioual
coordinates of cach of the atoms within the structure and information about how
the atoms are connected. The MDL (Molecular Design Limited) [27. 28] and SDIY
(Structure Data File) [23] file formats are good examples of types of file format where
botll structural and connectivity information is represented. However, file formats
with this information do not tvpically lend themselves to searching. as can be scen
in Figure 2.1, In order to better support scarching and browsing. the structures are

translated into some tvpe of a data structure that can support graphs and trees,

Test I '62500/62526 NCI
Open  el05220813423D

210000 00 0 0999 V2000
-1.0622 0.0000 0.0000F 00O0O0O
0.87 00000 0.0000Na 00 00O
121000

M END

Figure 2.1: Example MDL file for Sodium Fluoride (FNa)
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Such a trauslation process treats the atoms within the structure as vertices and the
bonds within the structure as edges. Onee the chenical structure has heen translated
into a molecular graph representation. desired components and comnon structural

fraginents can be identitied and secarched for.

Although molecular graph theory [29. 30] lends itself quite well to chenical strue-
tures, there are a number of prol ms. The most challenging problem relates to
how the graph should he ordered. Depending on the starting point. the same chem-
ical structure can generate graph representations that have the nodes within the
eraph numnbered differently. To solve this problem. a standard (or canonical) order-
ing scheme can be applied during the creation of the graph representation [31. 32).
As an example. Jochum and Gasteiger [31] use the following criteria to canonically
number atoms of a molecular eraplh: atomic munber. number of free electrons. num-
her of atoms. atomic number of neighbours, number of bonds. bond priority. and the

bond order.

Even with the canonical ordering of atoms within a molecular graphi. there is still
ambiguity in how the chemical s ctures are represented. Figure 2.2 shows an exan-
ple of two chemical structures and their translation to a graph. As can be seen. the
two different chemical conformations are represented by the same two-dimensional

eraph.
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2.2.3 Natural-Language / Chemical Sema ics Approach

An alternative to the extraction of chemical properties and molecular graph theory is
the combination of English language constructs and chiemical semantics to represent
chemical information. The most conimon representations to use this approach are the
Simplified Molecular Input Line Entry Specification (SNLES) [9. 10]. the Universal
Chemical Key (UCK) [33]. the TUPAC International Chemieal Identitier (InChl) [11]

and the Chemical NMarkup Language (CNL) [34).

Tvpically. these methods involve a similar translation process to that used with molee-
ular graphs. The structure is translated into its textual (or linear) represeutation as
it is being traversed. In tle case of SMILES. the translation process also involves
the removal of Hydrogen atoms from the molecular graphs and further parsing of the
molecular graph by a linguistic granuar. The SNIILES grammar can deal with many
different chennical semantics and various structural featwres. For example double
bonds are represented by = =" and triple bonds ave represented by = # 7. Figure 2.3
shows examples of four different SNILES orderings that can represent CyI1,05. The
SMILES representation also has the ability to capture stercocheniical relationships.
For example. the configuration around double bonds can be specified by using ~\"
and /70 and the configuration at a tetrahedral carbon is specified using either ~a”

or oo’ which represent counter-clockwise aid elockwise traversals.
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Figure 2.3: Four different SNILES representations for CyHyO,

The SMILES svsten has been farther extended by James. Weininger and Delany [35]
to allow for the specification of patterns within chemical structures (as opposed to a
single structure). This pattern specification language is referred to as SNHLES Arbi-
trary Target Specification (SMARTS). SNARTS is a language. based on the SNILES
natural-language grammar, that allows the user to specify substructures and patterns.
For example. [#61 [CX3] ) [($[0X2H0] ([#61) [#61) ,$C  "1)1 is a SMARTS ex-

pression that matches an est or amide [36].

Althiongh thiese methods are able to capture a reasonable amount of the information
associated with a chemical structure. it is possible to have an ambiguous represen-
tation. If the SMILES string is constructed using molecular graphs that are ordered

differently. then it becomes possible to have different SN ES striugs representing

I




the same chemical structure (Figure 2.3). To deal with this issue. a canonical order-
ing algorithm [10] is used with the SNMILES construetion process to produce what is
referred to as " Unigque SNILES™ or 7Canonical SMNILES™. This canonical ordering
aleorithn. called CANGEN. has two stages. The first stage of the algorithm. re-
ferred to as CANON. is used to label a molecular structure with canonical Tabels. In
CANON the structure is treated as a graph with nodes (atoms) and edges (bonds).
and ecach atom is given a numerical label on the basis of its topology. The second
stage of the algorithm. referred to as GENES. generates a unique SMILES notation
as a tree representation of the molecular graph. GENES selects the starting atom
and makes branching decisions by referring to the canonical labels, as generated by
the CANON algorithm. When the SNILES string has been canonically ereated. it
is considered a unique SMILES string. The unique SMILIES string for C3H 0, (as

shown in Figure 2.3) is 0C(=0)C .

A subsequent study by Grossman [33] has shown that the algorithm deseribed in
Weininger [10] does not create a unique SMILES string. and that it is possible
to produce ambiguous results with relatively simple chemical structures. Example
structures from Grossman’s work include 1.3-diethvl-H-methvibenzene (CyyHyg - NSC
structure 62141). Grossman’s work highlights how diflerences in the mitial ordering
of the atoms within the structure can lead to different unique SMILES strings when

the CANGEN algorithim is used.

[t is important to note however "t " C voalge  hmis not the

-
0

same as the commercially available algorithm that the creators of the SNILES rep-



reseiitation (Davlight Chemical Information Svstems Ine.) use for the generation of
unique SMILES strings [37]. Consequently. due to lack of access to this commercial
software. it s possible that the commercially based algorithm does not have the ambi-
guities that Grossman discovered. Although. since both SNILES representations are
based on the use of a molecular graph. information is still lost when converting chemi-

cal structures to molecular graphs (three-dimensional to two-dimensional conversion).

In response to the ambiguities discovered Grossman went on to propose his own
solntion. called the Universal Chemical Kev (UCK) [33]. The UCK starts by creating
a labeled graph for the chemical structure where the labels contain information about
the local connectivity of the structure. The next step is to combine the information
contained within the labeled graph with information relating to the shortest path
between every pair of atoms within the structure. This information is then concate-
nated to ereate a unique string. and for data storage purposes the string is further
processed using the MDS hashing algorithim. The two major disadvantages of this
method are that the NDS hashing algorithim can produce ambiguous results in that
different inputs into the NMD5S hashing algorithi can produce the same output [38].

and the resulting MDS string is not easilv deciphered.

The International Union of Pure and Applied Chemistry (IUPACY) has also created
their own chemieal structure representation. called the Inte  ational Chemical Iden-
tifier (InC'hl) [11]. In addition to using canonically ordered information about the
structure (ordered in a way very similar to the CANGEN algorithim), this approach

uses niany different types of information about the chemical structure and storves this
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in predefined lavers. An example of an InChl string can be seen in Figure 2010 As
can be seen, the InChl representation is not casily parsed. Although the InChl repre-
sentation was not designed to be interpreted by humans. some insight can be gained
by looking at the different Tavers that make up the InChl representation as a whole,
As pointed out within the InChl documentation [39]. there are six different InChl
layver types. cach representing a diflerent class of structural information. These Lavers
are the main laver. the charge laver, the stercochemical laver. the isotopic laver. the

Axed-11 Tayver and the reconmected laver.

INChI=1/""4402/c1-2-3(4)5/h2H,1H2,(H,4,5)

Figure 2.1 InChl representation for CyH O,

Different scientists have different needs when it comes to chemical structure informa-
tion. InChl has been designed in sueh a way as to provide maximum Hexibility in

how it represents different information components. The Hexibility of InChl can be



attributed. in part. to how the InChl identifier is represented. The identifier and asso-

ciated text output may he parsed and annotated in either a simple plain text or XML,

The fact that the InChl identifier conforms to XML standards means that it can also
become part of the structural representation generated using the Chemical Markup
Language (CNL) {31, CML has been designed in such o wav that it draws from
the information representation techniques found within various markup languages

(HTML. XML and SGML for example).

Markup languages have a fundamental concept. or building block. known as an iden-
tifier.  When a person ercates an - TML document thev use various identifiers to
structure. and then subsequently parse. the information within a document. CMIL
attempts to provide a similar mechanism for the identification and straeturing of in-
formation found within. and associated with. chemical structures. Ficure 2.5 is an

exainple of the CNML representation of a chemical structure.

If one wanted to add [nChl information to the CNL example in Figure 2.5, then the
following CNL code could be added to the CML file: <identifier convention="iupac
inchi" value= "InChI=1/C 1402/c1-2-3 15/h2H,1H2, (H,4,5)">. The case with
which the two can be combined demonstrates how the two i ormation representation
schemes can be adapted to compliment eachi other. The combination of InChl and
C'NL has become a primary method for representing chemical information within

environments that require XML standards.



<?xml version="1.0"?>

<molecule id="id4721 _NCl xyz" xmins="hitp./»www xml-cml org/schema">
<name>4721_NCl.xyz</name>

<atomArray>
<atom id="al1" elem [Ty "C"x3="0.854300" y3="-0.687000" z3="-0.000200":>
<atom id="a2" elen [Type="C" x3="-0.428200" y3="0.030400" z3="-0.000000"/>
<atom id="a3" elen [Type="0" x3="-0.444700" y3="1.245700" 23="0.000200"/>
<atom id="a4" elementType="0O" x3="-1.586400" y3="-0.659300" z3="-0.000100">

<atom id="a5" e tTy ="C" x3="1.997700" y3="-0.006000" z3="-0.000100"/>
<atom id="a6" e tType="H" x3="0.868900" y3="-1.766900" 23="0.004100":>
<atom id="a7" e tTyr 'H" x3="-2.430300" y3="-0.187200" z3="-0.000000"/>

<atom id="a8" elementType="H" x3="2.940200" y3="-0.533300" z3="-0.000300"/>
<atom id="a%9" e tType: " x3="1.983000" y3="1.073900" z3="0.000100"'>
</atomArray>

<bondArray>

<bond atomRefs2="aB ab" o ="
<bond atomRefs2="a1 a5" order="2":>
<bond atomRefs2="a1 a2" « 1>
<bond atomRefs2= ab” 1>
<bond atomRefs2= . a2" 1>
<bond atomRefs2="a4 a7" order="1"/>»
<bond atomRefs2="a5 a9" =" >
<bond atomRefsz= % a3" "2t
<’bondArray>

</molecule>

Figure 2.5: 'NL example for C5H,0.
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2.2.4 Quantum Che istry-Based Approach

All the methods reviewed thus far involve the identification and organization ol in-
formation associated with chemical structures. The approach involving gquantum
chemistry is no different. Quantum chemistry uses the information contained within
the wavefunction and density to better understand the properties and behaviour of a

given chenical structure.

The mam disadvantage of the qui tum chemistry approach is that even the sim-
plest of approximations using the wavefuuction can he very costly in terms of C'PU
time and required computational resources. In contrast to this disadvantage. the only
error associated with the quantum chemistry caleulations is in the method itself. One
particular advantage ol this approach. is that based on the result from one caleula-
tion. many other molecular desceriptors may subsequently be derived. This in turn
can assist database designers as thev decide what data values are to be stored and

what data values are to be derived [H0].

2.3 Summary

Upon the completion of the review of data representation schemes, it is concluded that
although a great deal of chemical information is captured through the use of meta-
data, chemical properties. molecular graphs, textual representations. and quantum
descriptors. there are still deficiencies as chemical information can be lost and im-
properly approximated based upon the choices made for data representation. These

deficiencies are highlighted by the changing needs of chemical rescarchers who are

2(0)



hecoming nore and more dependent on specialized information management.  TFor
exaniple, computational chemists need to he able to casily use the information that
is contained within transition states. excited states. and conformers and this is infor-
mation which is not casy (or in some cases. even possible) to represent with the data

representation schemes deseribed in this chapter.



Chapter 3

Similarity / Searching Methods

and Techni. ues

3.1 Introductio:

The quality of results obtained through searching and browsing activities is depen-
dent. in part. on the method  which the data has heen stored and organized. Over
the vears. librarians have plaved a vital role. not only in the organization and clas-
sification of information. but also in the arca of data scarch strategies and scarch
design. With the development of tools that organize and structure information (for
examiple. the World Wide Web and database svstems). information resources have
been migrated to electronic warchouses and digital libraries. As a result. people are
now able to access a wide range of information resources without being concerned

about geographical proximity or restrictions.

[N
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Google [11]. Bing [12] and the New Zealand Digital Library [13] are examples of
the many different svstems that are available to digitally store and access informa-
tion. These three svstenis serve as example inforiation repositories that arve generie in
nature as they have been designed to process multi-disciplinary information from mul-
tiple data sources (e.g. hmages. naps. text. books. ete). The Protein Data Bank [2]
and the National Cancer Institute (NCI) Database [3]. on the other hand. are exain-
ples of purpose built inforiation management and retrieval svstems that concentrate
on a specific area or discipline. This chapter outlines a number of different searching
methods designed to be used with the different chemical data representation schemes

outlined in the previous chapter.

3.2 Properties a d Metadata Search Methods

By using various scarch eriteria. one can proceed to searcli electronic resources through
the use of different query constructs. Boolean and ranked queries are the two most

connon tvpes of queries in use.

Boolean queries use logical operate s (such as AND. OR and NOT) to create logical
searcll expressions. These expressions are then combined in various wavs to return
to the user a list of matching scarch results from the eleetronic data resource. Al-

though Boolean query techniques arve useful. they are unable to provide any ordering

(or ranking) of the results. om e point of view of the retrieval syvstem. all the
arch resul are equally ¢ . theyv satisty the 7ol OeSs contained in
the gqu



By using Boolean gueries. it becomes possible to search for chemical structures using
logical expressions that are based on metadata and other property information that
has heen extracted from the chemical structure. As an example. a search query could

be constructed to tind all of the structures that contain a carbon-carbon triple bond.

However, the use of a Boolean query puts the onus ou the user to understand the
propertics heing considered. and to create a suitable logical expression for scarching.
If a user wanted to use an automatic approach where the search was simply to find
all the chemical structures that are similar to a given structure. then some type of
a scarching method that could provide a similarity or confidence rating would be
required. 1f a Boolean scarch strategy was used. then the task of query refinement
would be diflicult as the scarcher would have to reconstruct or add to their logical

expression with cach iteration.

In contrast to a Boolean query is the idea of a ranked query. Raunked queries scareh
for results by looking at a set of properties and rather than try g to mateh an explicit
logical expression. the information being scarched is instead ranked based on how well
the items best mateh the seareh eriteria. The ordering is based on a confidence or
siimilarity score that the search algorithm assigns to cach item based on the query it

IS given.



3.3 Similarity and Dista ce Coeflicients

The search specifications. which are contained within the gquery. need to e interpreted
in a timely fashion so that the delivery of information can be done in a reasonable
amount of time. Ax such. the aleorithim used to generate the ranking score must not

only be accurate, reliable. and consistent. but 1t must also be fast.

Information retrieval science  as been investigating manyv different ranking mech-
anisms for use with English Tanguage text. One approach is to use information re-
lating to the statistical occurrence of words within documents. as opposed to word
nicanings. Examples of this approach include the cosine coefficient [1]. or the inner
product cocfticient [1]. Other methods. such as semantic indexing [H]. attempt to
better understand and use word meanings and their context. However. even when
using advanced methods that utilize word semantics and meaning. there is still difli-

culty in capturing the author’s meaning and the linguistic context of the document,

C'hemieal properties. structure fragments, and metadata are considered to have less
ambiguous information when compared with English laneguage text. As a result. var-
ious mechanisms such as Wo o un Alpha [45] have been developed in an attempt to
capture chemical information an - subsequently provide accurate. fast. and reliable
scarch tools based on this chemical information. When scarching for chemical infor-
mation. it is possible to use Boolean search techniques but this approach is lmited in
nature. Conscquently. diffe it re "1 ¢ Hrithms have been moditied and adapted

for use with various types of chemical information.



A review of different chemical similarity scarching algorithms is presented by \Wil-
lett, Barnard and Downs [H6]. As part of the review. a performance comparison of
stmilarity and distance coefficients by Willett and Winterman [H7] was discussed. In
this performance review. a metric known as the Tauimoto similarity measure [48] was
deemed to be the preferred measure. The Tanimoto similarity coctlicient s caleulated
using the following equation

N
Tanimoto = °° (3.1)

(A'\'” + A'\'[] - *\’v{n [1)

where N, represents the number of properties found in Ao N, represents the muuber
of properties found i B and N, represents the nuber of properties common to
hoth A and B. Although A and B can he any two things being compared. Willett and
Wintermans evaluation of the Tanimoto similarity coetlicient was conducted using
chemical structures. The preference observed in the study was attributed partly to
the bias of a subjective evaluation of the similarity measure. and partly bhecause the
calculation of the Tantimoto cocfficient is not as complex as other measures, and as
such is faster. When implementing the Tanimoto equation in chemical information
management and retrieval svstems. it is the user and the system designer that have
the abilitv to determine what properties are considered when caleulating similarity.
This is in contrast to Boolean scarches where the user is required to create the logical

expression for searching.

A common approach for scarching is to use a Tanimoto cocficient that has been

calculated using chemical fingerprints. A fingerprint. in this context. is created by
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combining a number of different properties in order to summarize the chemical strue-
ture.  Some of the properties used within the chemical fingerprints inclhude simple
counts. and the presence of certain substructures. A list of all possible properties are
treated as a vector with cach property heing assigned a particular bit. If that itenn is
found within agiven strueture. then that particular bit is activated. otherwise the bit
remains off. An example of how Hugerprints are created can be seen in Figure 3.1,

where various structural bits are activated for CHOS.

/S\C/C\C/o

cN[ecocToolecolececelee~x]o N ] eco
csceCo U U | | l 0 1 | 1

Figure 3.1: Partial fingerprint for (' H,,08S. (Note: hvdrogen atoms are not shown in
2 gery i ]
structural representations).

Once the fingerprints have been determined for multiple structures, then the Tanimoto
equation can be applied to assess chemical similarity, Figure 3.2 shows representative
fingerprints for two different chemical structures, namely CH1OS and CgH 0,8, as
well as the intersection of the two  gerprints. Even though the Tanimoto equation

produces a confidence score of 1.0 (100% shmilarity) when using the set of properties
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Figure 3.2: Partial fingerprint comparison of C'yH 3OS and CgH,O,S. (Note: hydro-

gen atonis are not shown in structural representations).
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in Figure 3.2 it is important to note that only the presence of properties within the
chemical fingerprints. and not their quantities of occurance, is represented (as can
be seen with the (CCC) property). However. the use of the Tanimoto equation and
chemical tingerprints is considered to be an industry standard in teris of assessing

the simtlarity of chemical structures.

3.4 Fragment-B: ed Similarity Searching

The simitarity measures outlined thus far do not provide any means to identify local
regions of similarity between two structures [H9]. As an example, a Tanimoto similar-
itv score does not provide any insight into what commmon components two chemical
structures might have. Rather. the similarity score is just a measure of confidence as

to how siinilar the two structures are.

An alternative approach to calculating similarity scores. or cocthicients. involves the
generation of a mapping or alignment of the comumon components of two structures.
An example of this approach is called the maximum common subgraph (MCS) [12]
which is defined as the largest set of nodes (atoms) and edges (bonds) in connmon
between two molecular graphs (structures). Figure 3.3 is an example of the tvpe of
information that is captured within a MCS. the MOS of structure A & B represents
the structural components that are the same within the two different stroctures. It
is important to note that the determination of the MCOS for a given set of graphs
is 2 NDP-bound problem. As such. calculation times can ine case drastically as the

nmunber of graphs being compared inereases.
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However. the information contained within the MCS can bhe used as a measure of
similaritv. For example the ratio between the size of the NCS and the size of the
structures can provide insight into how similar two structures are. Additionally. the
MOS can be used to assist with modeling reactions. as the MOS bhetween products
and reactants provides information as to where reaction activity (bonds being broken.

honds changing. atoms being removed. ete) is taking place [50)].

Notable work i this arca includes the development of a similarity algorithm by Rav-
mond et. al. [51] in 2002 that uses various heuristies when identifving a MCS. One of
the notable features of this algorithm is that it has the ability to perform tens of thou-

sands of comparisons  or minute because it uses specialized pre-scereening techniques

to reduce the number of MCS calculations that ultimately need to be pertormed.

Using the MCS as scarch criteria provides localized information about the chemi-
cal structures heing considered. information such as receptor or docking sites which
can subsequentlv provide more insight into the nature of the chemical structure.
However, it ix still limited by the inability of the graph representation to capture

three-dinensional inforniation (as can be seen i Figure 2.2, Section 2.2.2).

Even though the NCS does not capture all of the three-dimensional information
relating to a chemical structure. it can be combined with other complimentary cal-
culations for the purpose of determining chemical structure aligninent which can be

useful when determining chemical similarity, Work in the arca of the automatic
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]\ Structure A Structure B

Maximum Common Subgraph (& B)

Figure 3.3: Maximum common subgraph example. (Note the only difference hetween

structures A and B is the different ring substituents)



aliecnment of three-dimensional structures has been completed by Girones. Robert.
aud Carbo-Dorea [52]. whose approach is based on the classification of atoms within
the structure and interatonic distances. Duea and Hopfinger [13]. on the other hand.
have taken an alternate approach to this problem as they use the conformational

cnergy profile of the molecule to assist with the determination of similarity.

3.5 Summary

Upon reviewing the different methods of assessing similarity and the associated searchi-
ing techniques. it is concluded that a ranked measure would serve to offer the hest
balance between data representatic  scheme Hexability and computer processing, re-
quircments. The next step is to implement a svstem that makes use of a suitable
data representation scheme and appropriate similarity measures. The next chapter
i this thesis outlines the Chem-DRSA svstem which is asvstewn that was created to

support searching and browsing activities that relate to chemical structure data.
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Chapter 4

The Chem---R€M System

C'omputational chemists require detailed information about the three-dimensional
nature of a chemical structure when performing caleulations. One of the design chal-
lenges with this thesis has been to either create or tind suitable methodologies that
will allow for the eficient storage of three-dimensional information. The caveat is
that this information must also be stored in such a way that it not only supports
scarching and browsing. but that it also provides users with results that are non-
ambiguous.  Furthermore. the information being returned must preserve all of the
structure’s information (e.g the three dimensional information of the structure and

not a two dimensional molecular graph or projection).

SMILES. InChl. and molecular graph-based approaches do support scarching and
browsing, but their representation of & chemical structure’s three-dimensional infor-
mation is cither stored in an ambiguous way or is non-existent. This makes it very
difficult for computational chemists to make use of the information found within these

approaches as it is the three-dimenstonal information that is required by many ditter-
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ent computational methods. On the other hand however. it is very difficult to search
for information based on the three-dimensional information alone and as such tools
that can support information scarcel 1g and browsing as well as preserving a chemical

structure’s three-dimensional information are needed.

4.1 Multi-Component Data Representation Scheme
(MCDRS)

There are many different mechanisms available for capturing the information con-
tained within a chemical structure. In addition to the mechanisis that use chemi-
cal properties and metadata (Section 2.2.1). molecular graph theory (Section 2.2.2)
and the combination of English language constructs with chemical semantics (Sec-
tion 2.2.3). there are also matrix based formats and numerteal nivariants that can bhe
derived from the information H>un  within a chemical structure. Some of the more
common examples of these include the atom connectivity matrix [53]. and the Weiner

nuniber [19].

One of the key components of this thesis is the creation and evaluation of a novel
method for capturing the information contained within a chemical structure. When
creating this novel data representation scheme. certain goals and objectives were
decided upon. A summary of these design goals can be seen in Table 4.1, The pur-
pose of the design goals is to influ - ce how the information used to classity chemical
structures is created. stored and accesse Two of the kev design goals are that the

representation of a chemical structure is not ambiguous. and that no information
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(including the three-dimensional shape of the structure) is lost.

A motivating factor for the development of this Multi-Component Data Represen-

tation Schenie (MCDRS) has been the special needs of rescarchers that work in the

arca of computational chemistry. Computational chemists have very complex needs.

including being able to distinguish between ground-state geometries and transition-

state geontetries. as well as being able to identify conformers and structural isomers.

Table -L1: Multi-Component Data Representation Scheme (MCDRS) design goals.

Design Goals

Three-dimensional informeaion
15 preserved

Notes
Ensure that no information

is lost.

The information is non-anmnguo

The information being used mr the aata
representation scheme is clear. coneise
and does not have multiple interpretations

The process to generate tne data
representation scheme is not
coniputationally intensive.

Information for the data representation
scheme will need to be processed in real
time to support scarching and browsing,.

The information format is portable
and casily accessible.

Not platforni or
operating svstemn restrictive.

The mformation format is compatible
with and casily integrated into
computational chemistry
and job scheduling systems

Supports parallel processing ana
parallel architecture.

Easy to use and casy for users to
adopt into their workflow.

pnsure scalability and
fexibility as data sizes
and Processig requirenents grow.

The design goals listed in Table J.1 have heen satisfied through the use of a data

representation scheme that combines topological. semantic. and computational infor-

mation as well as standard three-dimensional Cartesian coordinates, and both the




InChl and canonical SNILES descriptors. Figure 4.1 outlines the structure and the
components of this data representation scheme. which is referred to as the Nulti-
Component Data Representation Se cme (MCDRS). Each of the components will be

discussed m the following subscections.

XYz Chemical Atom Chemical Bond
Cartesian Topological Topoloegical

Coordinates Indices Indices
(CATI (CBTH

Nuclear Atomic Origin-Invariant
Repulsion Nuclear Nuclear

Repulsion

(complete structure) Second

(cc ribution of each atom)
Moment

Single-Point
STO-3G InChl SMILES

Energy

Optional Metadata

(Level of Theory, Caleulation Type. Sottware, Density Matrix, Frequencies)

Figure -1.1: Multi-Component Data Representation Schemne - Overview.
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4.1.1 Chemical Ator Tc rological Index (CATI)

It is trivial to label the nodes of a graph generated by a chemical structure with atomie
numbers. However. this does not provide much insight into the chemical structure as
this same information could bhe obtained by looking at the chiemical formula and the
connectivity matrix.  Furthermore. if one s to consider cach element in the periodic
table as a word. then we are given at most 100 of these words to desceribe all the
ditferent chemical structures which is insuflicient as it is possible to have very dif-
ferent structures with the sanie formula. Chemical Atom To ological Index (CATI).
developed by R.Poirier (unpublished). has been designed to provide an enhanced level
of granularity when representing the atoms that arve found within a given structure.
This enhanced level of granularity can be attributed to two simple mathematical

rules, which are used to define a new vocabulary that deseribes chemical structures.

In desiening this standardized vocabulary, two kev factors were considered: namely
the canonical ordering of information. and computer processing requirennents. By cre-
ating rules that do not require any canontcal ordering. sowe of the ditheultios that are
faced by other methods used to identify and name chemical structures (e.g. SMNILES
and InChl) have been avoided.  Likewise. by building on four simple components:
atomic number. valenev. maximum valeney. and connectivity. the requirement  for
fast computer processing times has not been compromised. Throughout the develop-
ment and testing of in-house software associated with this vocabulary it was observed
that the average time required to obtain and calculate all of the reguired information

from a Cartesian coordinate file was less than 1 second per structure when using a



2.6GHz computer processor.

The CATIs are created for cach atom by combining the atomic mumber with the
results from two different caleulations. The first value. ¢ which uses the connectivity
of the atom. is caleulated as

C:Z(Z—'-’)(i) (41)

where Z is the atomic mmnber. In the caleulation of (. the atoms are ordered from |

to n such that their atomic munbers are sorted from lowest to highest. The second

value, € . is caleulated as (¢ — ¢,,.) where ¢ is the current valence (# of atoms to
C

which the current atom is bonded) and ¢, is the maxinnun valence. The Z. € and

¢ values are combined to form a CATI . Z(C.€).

Figures 1.2 and 4.3 are examples of how the CATI can be used to distinguish two
diferent chemical structures with the same formula. The structure in Figure 1.2 has
six atoms with a CATI value of 1(4.0) and six atoms with a CATT value of 6(19. —1).
Whereas the structure in Figure 4.3 has six atoms with a CATI value of 1(4.0), five

atoms with a CATI value of 6(19. —1). and one atom with a CATI value of 6(9. —1).

Although the CATISs are quite descriptive in nature, they are not unique. It is pos-
sible, as it is with words. to have a CATI that has multiple nicanings. Oune example
is a carbon atom that is connected to two hydrogen atoms and two oxyvgen atous.
which has a CATI of 6(39.0). However, a carbon atom that is counected to two other

carbon atoms. a nitrogen atom. and a hvdrogen atom also has a CATI of 6(39.0).



. Node | (Z) ¢ ¢
| I 6 19 -1
SN v 2 619 -1
| I N G [
L X TN 1 G 19 -1
| 50 60 19 -1
v O 0 19 -1
T 1 1
& 1 L0
9 1 4+ 0
10 l 10
1 1 Y
12 l 1 0

Figure 4.2: CATI for C4Hg example 1.

4.1.2 Chemical Bond Topological Indices (CBTI)

CATI desceriptors only desceribe part of the topological information contained within
a chemical structure. If only the CATI were known. and not the connectivity, then it
would be difficult to tdentify important characteristics within the structure. Further-
more. as deseribed in Section 4.1.1. there are cases where CATI can have mnltiple
meanings, and consequently the information associated with CATI is not enough to
distinguish a structure from another or to determine if a certain functional gronp is

present or not.

An example of the inadequacy of CATI alone to distinguish some functional groups

can be seen in the following example. An oxvgen atonn that is double bonded to a
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s Node [ 2 ¢ ¢

I | G 19 -l
AN N 2 6 19 -1
| 316 19 -1
I AN G 19 -l
H G 19 -l

6 G 9 -l

T I 1 0

S 110

9 14 0

o [1 1 0
140

12 1 4 0

Figure 4.3: CATI for CiHg example 2.

carbon atom would have a CATT of 8(-1.-1). and an oxveen that is bonded to both a
carbon and a hvdrogen would have a CATI of 8(7.0). Unless information is known
about how these atoms are connected. and to what. it s impossible to determine
whether or not a certain functional group is present. In the case of an alcohol func-
tional group. there is an -OH group bonded to a carbon.  However, if that same
carbon is also double honded to an oxveen. then it is considered to be a carboxvl

oroup instead of an alcolol.

By combining the different CATT in such a wayv that their connectivity and bond in-
formation is also captured. additional information about the structure can be stored.
Chemical Boud Topological idices (CBTT). developed by R.Poirier (unpublished).
can be defined using CATI and various textual representations of the bhonds. The

general format of caclhi component of the CBTT representation is as follows:

(nodey : nodey)[CATI < textual bond identifier > CATI]
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where (nodey @ nodes) refers to nodes (or atoms) within the structure that are bonded
by the bond tvpe indicated in the textual bond identifier. and have CATT given by
CATI, and CATL respectivelyv, Table 4.2 outlines the different bond tvpes and tex-

tual representations used within the CBTI descriptor.

Table 4.2: Bond representation examples, as used in the Chemical Bond Topological

Indices (CBTT).

Bond Tyvpe Representation

stngle bond -
double bond

triple hond
aromatic  ond

* 0

weak bond (e.g. transition state - forming. breaking)

An example of a CBTI would be (2: 1) 8(4. —1) = 6(34. —1) which deseribes a CATI
of tvpe 8(4.—1) that is conneeted by a double hond to a CATI of type 6(34. —1).
Figure 1.4 provides an example as to how the combination of CATT and CBTI can
be used to identify different components within a particular chemical structure. The
first structure in Figure 1.4 contains a carboxvl group which can be identified from

the following CBTI:

(3: D[R(7.0)=6(31. =1)]- (3 : D[S(T.0)=1(6.0)]. (2 - )[8(+ —1)=6(34. —1)]

From this information it can be determined that there is a double bond between
an oxveen and a carbon (nodes ~ a1 1), and a single bond between an oxvegen (node

2} that is bouded to a Livdrogen and the same carbon (node 1), Using similar infor-
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mation. it can also be determined that the seccond structure in Figure 11 only has an
-OH group connected to the central carbon and that it is not a carboxvl. The alcohol
functional group (-OH) can be identified using CATI descriptors on their own. but
the identification of the carboxvl group requires both CATI and CBT1 deseriptors.
This example illustrates how the combimation of CATI and CBT1 desceriptors can be

used to distinguish between different functional groups.

In some cases it is difficult to determine the tvpe of bond that exists hetween two
atoms. When using the Cartestan coordinates of a chemieal structure to determine
the different tvpes of honds that are present. the distance between the atoms provides
the necessary insight as how best to define a particular bond. For the creation of the
CBTT descriptors. the bond order {51] is calculated by evaluating the wave function
(using the Hartree-Foek method [55] and the STO-3G basis set [56]). However, if a set
of Cartesian coordinates has been  correctly constructed. or if a three-dimensional
structure has been “tlattened™ to two dimensions. then there is a high probability that
some of the bonds will be incorrect. In this case, the Cartesian coordinates would
have to be reconstructed or an approximation made by creating a representation of

the struceture using some tvpe of a chemical editor.



(a) Carboxyl CBTI Example

Group  Atomic Number  CATI

O 2 Sl-1)
74 /
—C C—1 (@ 6031.-1)
\
OH 3.1 SO0 16.0)
Node I Node? | CATI 1T Bond  CATI 2
3 1 8(7.0) 6341
3 I S(7.0) - 1(6.0)
2 | S(1.-1) = G(34.-1)

(b) Alcohol CBTI Example

Group Atomic Number  CATI

Cl, 23810 GELOO) L o) Lo
/
— —1 C—06(30.0)
\
Ol 6.7 SCTAN L HG.0)
Node I Node 2 [ CATI T Bond (AT 2
6 ! S(7.0) - 6G(:30.-1)
§ 7 8(7.0) . 1(6.0)
1 2 6(:30.0) - 6(10.0)
2 3 6G(10.0) - 1(4.0)
2 1 6(10.0) - 1(1.0)
2 5 G(10.0) - 1(4.0)

Figure -1 1 Chemical bond topological indices (CBTI) example differentiating be-
tween a structure that has a carboxyl functional group (a) and a structure that has
at alcohol functional group (h).
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4.1.3 Nuclear Repulsion

The nuclear repulsion and origin-invariant mclear second-moment (Hollett et al [H7]
- Section L 11) arve properties that o« casily calculated using the nuclear coordinates
of a chemical structure. Since these properties do not rely on either the electronic
wave function or density, they can bhe caleulated quicklyv. Tt was observed that on
average both the nuclear repulsion and origin-invariant nuclear second-moment can
be caleulated for a single structure in approximately 0.1 seconds when using a 2.6Gl11z

computer processor for structures with an average molecular complexity [58] of 102

The following cquation is used to caleulate the total nuclear repulsion energy (V)
for a given structure.

RV A Z Z
vv=3 Y — Sl (1.2)

Lo e ) g — )+ - )

where M ois the number of muelet within the structure. 4. gy 24 are the Cartesian
coordinates of nucleus A, and Z 4 1s the atomic charge of nucleus AL gy, 2p arve the
Cartesian coordinates of nucleus B. and Zp; is the atomic charge of nnclens B Within
a chemical structure there are three tvpes of interactions. namely the interactions he-
tween the nmuclel. the interactions between the electrons. and the interactions hetween
the muclei and the clectrons. The nuclear repulsion energy s the energy associated

withh the interaction between the nuelet.

The total nuclear vepulsion can be partitioned into contributions from cach atom.
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where

: ZaZy
\.\Inlnlr'.'\ﬂ'\'L\\ - L ; S > 5
By Ly =)+ gy —up)t 4 (2 = 2p)”

The nuclear repulsion contribution for cach atom. calculated using Equation 13,

provides additional information about a particular atom (c.g. describing an aton’s

proximity to other atoms within the same structure).

4.1.4 Origin-Invariant Nuclear second-moment

The origin-invariant nuclear sccond-moment (Sy) of a chemical structure is caleulated

by
<> < ry > < rs. o>
Sy = <yrs <> (Lh
< 2>
where
Ry | Al
(ry)y =3 Zarayy — T( ST Zara)D] Zayy) (1.5)
K A N

and N is the value of the total nuclear charge (Z Z). (racya.zq) is the location of
A

A and Z s its atomice charge.

After the diagonalization of Sy, the three resulting values (X2 Y72 and Z7) cor-



respond to the shape of the molecule. The calculation of the origin-invariant nuclear
second-monient is based on a methodology similar to the one outlined by Hollett ot
al [57]. and provides a standardized measure of the shape of a4 molecule that can be

calculated very quickly.

4.1.5 Single Point HF /STO-3G Energy

The calculation of the total energy of a chemical structure at a specific geometry (or
single point) can prove to be a useful picce of information. information that can he
calculated relatively guickly when compared to the time and computational resources
required to calculate an optimized geometry for a given structre, This calenlation
is more complex than the nuelear repulsion energy caleulation as the total energy of
a chemical structure is being calenlated (ie. including all tvpes of interactions). and
not just a component of the structure’s total energy. The total energy value used by
the Chem-DRSN svstem is approximated using the Restricted Hartree-Fock (RIHEF)

method with the STO-3G basis set.

Although the Single Point HF/STO-3G energy not necessarily associated with a
fully: optimized geometry or stationary point, the information obtained from this
calculation can be particularly useful when used as a criteria for comparing chemical

structures.

4.1.6 InChl and SMILES decscriptors

As deseribed in Section 2.2.3. the InChl and SNIILES deseriptors are very useful and

have become industry standards. By including both the InC'l and SMILES chiemical
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deseriptors within the data representation scheme. compatibility with existing chiemi-
cal information svstems can be ensured. Furthermore. nsers that are used to working
with InC'hl and SNHLIEES representations can casily trausition their work to use some
of the other components of the data representation scheme that are better suited to

their needs.

4.1.7 Metadata / Additional Propertics

The design of the data representation scheme has made provisions for the incelusion of
meta or descriptor-tyvpe tags and kevwords. Also included in the data representation
scheme is the ability to store experimentally and computationally derived properties.
Although these fields are currently treated as basie textual fields, the design and Hex-
ihility of the data representation scheme allows for these fields to bhe fullv indexed and
used by the various similarity metries without impacting any of the existing function-

ality,

Examples of some of the properties and metadata descriptors that can be included
are: the software used to complete the geometry optimization calculation, the tevel
of theory (ecnergy approximation method and basis set). any citations related to the
chemical structure. dimg company index numbers or references. drug company ven-
dor sources. cost. calculated frequencies, and the density matrix. These examples are
not exclusive as other properties may be included: they only serve to illustrate the

diversity and functionality available within this data-representation scheme.



4.2 Implementation and design of the Chem-DRSM

system

Building on the Multi-Component Data Representation Scheme. the next step is to
incorporate this scheme into the design of a shmilarity metrie (or set of similarity
measures) that will allow for fast. accurate, and reliable scarching of chemical strue-
tures using information contained within the data representation scheme. Table 1.3

outlines the design goals for the search and retrieval component.

The Chem-DRSM svstem provides a solution that builds on the Multi-Component
Data Representation Scheme and satisties the design goals outlined in Table 1.3, This
svstenr automatically processes the three-dimensional information contained within
a chemical structure. and proceeds to generate suitable indices and data representa-
tions. Onee this information has heen stored. the indices and the information con-
tained within the data representation scheme can be used to assess chemical similarity
and search for important sub-structures or components (i.e. functional groups). The
remainder of this chapter discusses the components aned design of the Chem-DIRSN

svstenn.

The Chem-DRSM svstem has been imiplemented using a series of interconnected
modular components. A conceptual design drawing of the Cheni-DRSN svstem can
be seen in Figure 4.5 where the complete svstem is shown along with the intermediary
chemical structure representations that are produced. The subsections pertaining to

the Chem-DRSM svstein ave been grouped according to their placement within the
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Table 1.3: Similarity engine design goals.

Design Goals

Notes

Exact chenical structures
cail be matched

This feature would be
required by many users.

Ability to distinguish chemical
structures based on their
bhased on thelr conformation,

Conformation scarchinge
ix difficult hecause of
how the three-dimensional
information is represented
in contmonly used data
representation sclicnes.

Ability to scaren 1or
substructures and
functional groups.

These features are niportant

as it allows for Hexible
searching and browsing.
providing not only
a ncasure of overall
similarity but also
localized similarity.

Ability to support both
Boolean and ranked
(ueries.

Both query types
would allow for greater
flexibility when meeting

the needs of users.

Ability to support bulk
operations.

Allow for the integration
and automatic processing
of large data sets.

Ability to support
mdividual queries.

Allow for interactive
work to be completed.

Ability to perform

a single query in a
reasonable amount of time

(on par with current
search engine technology).

Performance targets
are important. If the
svstenn 1s too slow,
then it would not bhe used.







4.2.1 Structure Pre-Processing

Chemical structure information is pre-processed prior to information extraction for
two reasons. First. to ensure that the chemical structure has valid three-dimensional
information. Second. to ensure that the chemical information is in a form that can
be processed by the information extraction component. The information extraction
component is designed to read in either Cartesian coordinates or Z-matrix formats.
The Cartesian coordinate format was specifically chosen as it is supported as a valid
output format by OpenBabel [ 5] and many different file formats (e.g. sdf. mol.
Gaussian-03 [59] input and output files) can be ecasily converted to the Cartesian
coordinate representation using OpenBabel. Figure 1.6 provides an example of the
Cartesian coordinate representation and the sdf file representation for C5H, O, Note
that the three-dimensional information is not altered. only the representation and the

formatting of the data has been changed.



i 4721_NClxyz

, OpenBabel(5290910463D
- ~i 9800000 0 0 0999 V2000
TN T X - 08543 -06870 -0.0002C 00000
I -04282 00304 -0.0000C 00000
H 4 -04447 12457 0.0002 0O 00000
’ -15864 -06593 000010 00000
9 19977 00060 -00001C 00000
0.8689 -1 /669 00041 H 00000
C 085430 068700  -000020 -2.4303 -01872 -00000H ©0000
C -0 42820 0.03040  -000000 29402 -05333 -00003H 00000
0O -0.44470 1.24570 0 00020 19830 10739 00001 H 00000
(@] -1 58640 -0.65930 -0.00010 1582000
c 1.99770 -0.00600 -0 00010 121000
H 0 86890 -1 76690 000410 161000
H -2 43030 0 18720 0 00000 421000
H 294020 -0.53330 -0 00030 232000
H 1.98300 1 07390 0.00010 471000
851000
XYZ Format 5481000
M END
$$8S
SDF Format

Figure 1.6: Example Cartesian coordinate and sdf representations for C3H,040 as
well as a molecular graph of the structure for comparison. Note. the drawing of the
structure is only included to aid the reader and is not part of cither the SDE or XYZ

data files.
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4.2.2 Information Extraction

A kev part of the information extraction process has heen to use the computational
chemistry software package MUNgauss [60] which has the ability to process the in-
formation contained within the Cartesian coordinate representation of a chemical
structure. Onlv a small subset of MUNeauss™s functionality is used for determining
the information that is required for similarity purposes. These components, when
combined with the translation abilities of OpenBabel. are referred to as the compu-

tational information extraction component in Figure 4.5.

The computational infor-
mation extraction component then uses information contained within the chemical
structure to calculate the CATL CBTILL and computationally derived deseriptors (nu-
clear repulsion. origin-invariant nuclear sccond-moment. and single point cnergyv). as
well as metadata and industry standard descriptors. all of which are components
found in the NMulti-Component Data Representation scheme. as shown in Section 1.
Table 4.4 shows all of the different components extracted from a given Cartesian
coordinate representation of a chemical structure. and the modules used within the

Chem-DRSANT svstenn.



Table L1: Information derived from the Cartesian coordinate representation of a

chemical structure by the Chem-DSRA svstemn.

Property Component Used for Extraction
CATI MU Ngauss
(Topological Deserintor)
("1l MUNeanss
(Topological Descriptor)
Nuclear Repulsion MUNgauss
(Computationally Derived Descriptor)
Origin-Invariant Nuclear  cond-Moment MUNgauss
(Computationally Derived Descriptor)
STO-3G Single Point Energy MUNgauss
(Computationally Derived Descriptor)
Canonical Sannlss ( 1Babel
(Industry Standard Descriptor)
InChl Open Babel
(Industry Standard Descriptor)
Chemical Formula NMUNgauss
(NMetadata Deserintor)
NCT Index ~yumber Cnem-DRSM
(Metadata Deseriptor) Transle »w / Builder
(only if included in source data)




4.2.3 Index Creation

Upon the completion of the information extraction process. cach chemical structure
will have a number of different descriptors associated with it. The use of indices to
further organize these deseriptors allows for the casy integration of many different
tvpes of search tools and similarity measures. For every descriptor two different in-
dices are required. namely an index that links the structure to the deseriptor. and an
imdex that links the deseriptor to one or more structures, Figure L7 provides an ex-
ample of the two indices that are produced for the canonical SMILES desceriptor. The
Chem-DRSA system ereates the following indices to support scarching and browsing,
activities. and to provide a consolidated means to use the information found within

key deseriptors:

o ("ATI -— Structure Indices

e Nuclear Repulsion — Structure Indices

e Single Point Encreyv — Structure Indices

e Oricin-Invariant Nuclear Second-Noment «— Structure Indices

e Formula — Structure Indices

e NCI Number — Structure Indices

e (Canonical SMILES — Structure hilices

e [INC'hl « Structure Indices

(e
a |



Canonical SMILES # of Structures Structure List
CSclcccecclC(=0)0 5 109910.113808,145573,146505.81687
CSCC{C@H](N)C(=0)O 5 203719,21022.39716,9092,90849
COclcc(/C=C\C(=0)C)ccclO 5 24042,38997,3985.39482,5252
CCCCCCCC(=0)0C=C.C=CN1cCccec1—o 5 87737,87738,87739,87740,87741
CC(C)0O[P@1(=0ONC)O 5 164544,164581,164586,164682.164731
CC(=0)CC[C@@H]1CC(=0)OC1(C)C 5 106812,106824,32216,39673,98243

Structure ID Canonical SMILES

93688 Cl/C=C{\clccc(Cl)ccl)/clccceclCl
8563 CCOclccc(ccl)C(=0)0

58017 CCCCCCCCCCCC[C@@HO)COo
44919 CLOCCN({CCO)Cclnc2cc(Chc(Clicc2[nH]1
127219 0.0C1(CCCCC1)cSclcccecl

87220 Cl.Oclccc2CCNCc2cl

63406 CCCCCCCCNCCOo

55548 CCOC{=C(/CCNC#NNC

31922 CC1=CC(=0)C(=CC1=0)C

18581 - ZCCOC(=0)C(ca)cc

67525 O=C(C(=0)Nclcccccl)clccccecl
89241 O=C1NC{=0)C2(CCNCC2)N1C
77451 CCC(=0)¢c1c(0)cc(0)cecl0

Figure -L.7: Example of the indices created for the canonical SNILES descriptor.
(Note how the two relationships are preserved SMILES — Structure. Structure —

SMILES)









4.2.4.1 Vector Space Models

Scection 3.3 outlines some of the more common approaches for producing similarity
scores. The nuse of the Tanimoto 48] coeflicient with chemical fingerprints is a very
widely used measure of chemical similarity [01]. As an alternative to the “standard”
Tanimoto coefficient. a modified version ol the Tanimoto measure has been imple-
mented. The modified Tanimoto measure uses CATI deseriptors instead of chemieal
fingerprints. and has been implemented using o modified version of Equation 3.1.
where N, represents the number of CATIL deseriptors found in structure AN, repre-
sents the number of CATI deseriptors found in structure 3 and N, represents the

number of CATI descriptors common to structures A\ and B.

It can be argued that the Tanimoto coetficient (and other similar similarity coeth-
cients) are limited in how the similarity coetficients are calculated. One characteristic
of the Tannmoto similarity coefficient is that it does not take into consideration the
significance. or weighting, of cach of the structural fragments or properties that make
up the structure. In the example shown in Figure 3.2, Chapter 3 one can see that it
ix possible. depending on the properties being considered. for two chiemical struetures
with ditferent formulas (in this case C11,,08 and Cil1;,0L8) to have a similarity

score of 1.0 (100% similarity).

Not considering the statistical distribution of the properties being used in the caleu-
lation of the stmilarity score gives cause for concern as frequently oceurring properties

are ated the same as rave properties. This is equivalent to having a linguistic scarch



tool that places the same significance on the term and and the term photosyntlic sis.

One way to correct how properties are weighted is to use the cosine measure (see
Scction 3.3). Although the cosine measure is more computationally expensive than
the Tanimoto measure it has gained a wider acceptance as a standard measure within
information retrieval cireles as it has the ability to capture the context of the terms
in a given query. Witten et al [1] deseribe a document veetor as a ray emanating from
the origin. picrcing space in some desired direction. Extending this desceription. the
task of scarching for similar docnments can be described as the process of selecting
those document vectors that lie closest to the rav in an angular sense. The angle
between two document ravs. or chemical structure ravs, is called €. The similarity
of the two representative vectors can be examined by looking at 6. The cosine of 6
cquals T when 6 = 00 which means that there is no difference in the representative
vectors. Additionallv., when the cosine of 6 equals 0 the vectors are at right angles to
cach other., which means that the representative vectors are unrelated. By computing
the cosine of the angles between the two veetors a similarity score between 0 and 1 is

produced.

The cosine measure traditionally uses words or kevphrases found within docnment
texts to produce representative vectors. The Chem-DRSM svstem draws on this and
modifies the cosine measure to use CATI In this context the CATI can be thought
of as chemical “words™. Two adaptations of the cosine measure to support the use
of CATI have been implemented within the Chem-DRSN system, namely a standard

cosine measure and a contextually based costne measure. These two cosine variants
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are commonly used within information retrieval svstems. and as the CATI deseriptors
are a new tvpe of chemical structure desceriptor. it was important that both variants

he considered.

The two adapted versions of the cosine measure are a standard cosine measure, 1<qua-
tion (4.6). and a contextual cosine measure. Equation (1.7) and are determined as

follows:

S g log =) fin - 1;—>

¢ [ / .
standard cos(Q). D) = ren ' ’ (-1.G)
V"//() l“%_ Z Ter l“"—.)_
1 5 7
. I , n

S (g log )W e -log —)
fe Qi) -/’ /I _
contextual cos(QQ. D) = (1.7)

N (fro m— ST log 2
\/r: 2 fe /

where (Q is the query structure. D is the structure being compared to the query strue-
ture. nis the number of structures in the database. f; is the number of structures that
contain CATL ¢, f, ¢, is the mumber of times CATI £ occurs within the query structure,
aud f, 15 the number of times CATI ¢ occurs within the structure bemg compared
to the query structure. It is worth highlighting that the only difference in the two
cosine measures is how the denominator is caleulated. The current implementations
of these two cosine measures within the Chem-DRSAT systein uses weighting informa-
tion that has been derived from over 178.000 ditferent chemical structures from the

NCT chemical structure database.
The kev diference between the standard cosine measure and the contextual cosine
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nmeasure is how the two chemical structure vectors are compared.  Each chemical
structure can be deseribed as a list of CATL deseriptors, as shown in IFigure 110,
When representing a chemical structure. hoth the tvpes and quantities of the CATI
that are present within the structure are considered. The different CATT deseriptors
can be thouglht of as vector dimensions. and the quantities of a given CATI within a

striucture can be used to caleulate the magnitude of the vector in that direction.

Figure 110 shows an example of both the CATI desceriptors and the frequencies for
1108 and CgH OLS. When comparing the two structures, the veetor space nsed
to determine similarity can be deseribed in different wavs, The standard cosine uses
the CATI deseriptors found in both the query {(Q - what is heing scarched for) and
the CATI descriptors found in the document (. or in this case. chemical structure)
being compared. Alternatively. the contextual cosine places a higher significance on
the CATI deseriptors found within the query, as opposed to the structure heing coti-
pared. It is iimportant to note that the vector space defined by the contextual method
is dependent on which structure is the queryv. However the vector space defined by
the standard cosine is the same for the two structures involved. regardless of which

structure is the query and which structure is the comparison.
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Figure 1.10: CATI listing. with quantitics, for C'yHOS and Cgll ;0.5 (Note: hv-
drogen atoms are not showi i structural representations.)

[n summary. when using the contextual method to define the vector space it is possi-
ble for the relationship defined by the comparison of Q to D. to be different than the
relationship defined by the comparison of D to (). However, when using the standard
cosine method to define the vector space. the relationship defined by the comparison
of () to D is the same as the relationship that is defined by the comparison of 1) to

Q.

In addition to determining the appropriate vector space  odel for the cosine niea-
sures. there is also the task of determining an appropriate statistical weighting scheme.
unlike the Tanimoto coefficient which is determined using information relating to if

a certain feature or deseriptor is present and not how statistically signiticant it is. A
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common weighting approach used in inlormation retrieval science combines the term
frequency (how many tines a given term occurs within a document) with the docu-
ment frequency (how many documents within the entirve library (or collection) contain
that particular term). This type of weighting approach has recently been adapted by
Lipkus et al.[10] to assist with a further analysis of the diversity and composition of

the structures within the Chemical Abstracts Service (CAS) registry database.

In the case of the work being done in this thesis. the weighting scheme has bheen
derived from the structures within the NCT database. Tt s important to note that
additional training data may be needed to make this weighting scheme more general
in nature. However, being able to create a weighting scheme from given structures
would allow the maintainers of different chemical information resources to ereate their
own weiehting schemes based on the arca of focus of that particular research group

O TCSOUICES,

Althougl both of these cosine measures can be used to assess the similarity of different
cheniical structures. there are still instances where these equations cannot distingnish
two different structures. It is in these cases where computationally derived chemical

deseriptors can be used to further assess and refine chemical structure similarity.

4.2.4.2 Similarity refine :nt using computationally derived chemical de-

scriptors

To aid in the assessnient and refineient of chemical structure similarity. components

of the Multi-Component Data Representation Scheme (see ccetion 4.1). were eval-
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uated to determine their suitability, The values for nuclear repulsion energy (see
Section 4.1.3). origin-invariant nuclear second-moment (see Section -L1.-1). and the
single point energy of a chenneal structure calculated using the STO-3G basis set
(sce Section 1.1.5) were considered. Computational experiments were conducted to
determine the acceptable variances of these three values. which were then used as

threshold valnes for determining and refining chemical structure similarity,

Chapter 5. Section 5.1, outlines the experimental procedure and results that were
uscd to establish thresholds for similarity refinement using these computationally de-
rived chemical deseriptors. By comparing the nuclear repulsion energies. the origin-
invariant nuclear second-moment. and STO-3G single point energy valiues of over
20.000 chemical structures it was observed that there is a 2.16% variation in nuclear
repulsion energy. a 5.23% variation in the origin-invariant nuelear second-moment.
and a 0.00178% variation in the single po 1t STO-3G energies  1en comparing opti-
mized geometries that have been completed using the same structure, just different

basis sots.

Figure 4.11 shows five structures with the same chemical formula, CooHy o obtained
from the NCT database. These structures cannot be differentiated by their chemical
formula. or by the use of CATI or CBTI descriptors. However. by comparing the val-
ues in Figure 4.11 with the computed thresholds, the structures can be differentiated.
In terms of the origin-invariant nuclear second-moment values. there are some struce-
tures that have values that fall within the 5.23% threshold. but none of the structures

have all three values (N2 Y72 and Z2) falling within the 5.23% threshold of another



structure. Similarlv. there are only two structures (I and 5) out of the five structures
that have STO-3G enerey values that fall within the 0.00178% threshold of the other
structures. None of the CooHyy structures shown in Figure L 11T matched for all values
(nuclear repulsion. origin-invariant nuclear second-moment. and STO-3G single point
cnergy) with another structure. This example shows promise for the use of these
computationatly derived properties to allow for further refinement of candidate lists

of similar and / or matching chemical structures.
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Chapter 5

Investigativ~ Approach and Results

This chapter discusses observations and results from four diflerent investigations that
related to the Chem-DRSA systenn. The frst section of this chapter describes the
experimental process used to determine the similarity thresholds of three different
computationally derived properties. namely nuclear repulsion energy. origin-invariant
nuclear second-moment. and single point energy as caleulate  using the STO-3G basis
set. The second section of this chapter presents a statistical evaluation of the differ-
ent metries within the Chem-DRSM svstetn (standard cosine, contextual cosine. and
Tanimoto with CATI deseriptors) and compares them to a Tanimoto measure that
makes use of Chemical Fingerprints. Building on the statistical evaluation. the third
section presents results from a lman study that compares the same Chem-DRSM
metries with the Tanimoto Cheniical Fingerprint measure. however in this case the
comparison is based on the assessments made by 24 study participants with expert
knowledge in Chemistry. The fir section of this chapter preseuts an additional in-
vestigation that was completed in order to determine the suitability of the CATT and
CBTI desceriptors to rapidly identify the presence of different funetional groups within

a chiemical structure.
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5.1 Determination of Similarity Tk eshold for Com-
putatic _.ally Derived wescript: s

As introduced in Chapter 4. Section L2120 there is a need to be able to further
screent the search results that are produced by the various metries found within the
Clhiem-DRSN svstem that make use of CATI descriptors. Three computationally
derived deseriptors. namely nuelear repulsion energy. origin-invariant nuclear second-
moment. and the single point enerey of a chemical structure as calculated using the

STO-3G basis set. were chosen as candidates to perform further similarity sereening,

An experinent was conducted using a sample colleetion of 877 different optimized
structures from the computational and theoretical chemistry rescarch group at Memo-
rial University, These structures (stored as M UNgauss archive files) ranged in size
and composition. and contained anvwhere from zero to twelve carbon atoms. The
idea behind the experiment was to use ditferent basis sets while optimizing the chemi-
cal structure geometries to produce different optimized geometries for the same initial
chemical struceture. It was expected that the variances within the different basis sets.
would he observed as similarity thresholds for the different computationally dertved

descriptors.

The first stage of the experiment was completed by optimizing the geometry of cach
of the 877 structures using cach of five different basis sets: 3-21G. STO-3G. 6-31G.

O-31G(d). and 6-314+G(d). and the restricted Hartree-Fock (RHE) method.  This
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produced five different optimized geometries for cach of the 877 structures (1385
structures i total). The 4385 resulting structures were then cach optimized again
using the RHE method and the five basis sets listed above. This resulted in 25 new
optimized geometries for cach of the 877 initial structures (21.925 in total). Fieure 5.1
outlines all of the possible combinations produced for a single structure. and note that

there are five different optimized final geometries for cach of the basis sets that were

tested.

STO-3G STC STO-3G STO-3G STO-3G
3-21G 3-21o 3-21G 3-21G 3-21G
6-31G 31G 6-31G 6-31G 6-31G
6-31G(d) -31G(d) 6-31G(d) 6-31G( 6-31G(d)
6-31+G(d) 6-31+G(d) 6-31+G(d) 6-31+G(d) 6-31+G(d)

Figure 5.1: Calculation methodology showing the different optimized geometries that
are used to determine the nuclear repulsion threshold. the origin-invariant nuclear
sccond-moment threshold. and STO-3G single point energy threshold for any given
structure (UV).

Througl basic statistical analyvsis it became possible to deternine the average vari-
ance in nuclear repu Hn rev. origin-invariant nuclear second-moment . and single

point cnergy values for cach of the optimized geometries that were derived from cach
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of the 877 initial structures. The 25 different optimized geometries for cach structure
provides a maximu. mininmm and variance value for cach of the computational
deseriptors. Taking the average variance value. as a percentage. for cach of the 877
groups shows that there is a7 16% variation in nuclear repulsion energy. a 5.23%
variation in the origin-invariant nuclear second-moment. and a 0.00178% variation in
the single point STO-3G encergies when comparing optimized ccometries that have
been completed using the same structure, just different basis sets (Table 5.1). As
demonstrated in Chapter 4. Section 12,120 these threshold values can be applied to
sets of chenical structures to further distinguish similar structures. A further area
where these thresholds can be of use is when tryving to distinguish between structures

that are conforniers or structural isoners.

Table 510 Calculated thresholds for nuclear repulsion.  origin-invariant  nuclear
second-moment. and STO-3G single point energy values.

Nuclear Repulsion | Origin-Invariant Nuelear | STO-3G Single
second-moment Point Energy

2. 16 5.23% (N2 2and Z2) 0.001 78U

It is important to note however, the  the calculated thresholds are to be considered an
upper limit as there were observed cases where the resulting geometry optimizations
are conformers of the original structure. The presence of these conformers within the
analvsis population inflates the threshold values. Nanual sereening of the ~25.000

structures within the analvsis population would serve to reduce the threshold values.



5.2 Statistical Evaluation

The statistical evaluation component is designed to simulate the use of the Chemn-
DRSAI svstem by conducting searching and browsing activities through the creation
of ranked lists of chemical structures from a test collection. This has important
potential applications. as there are millions of chemical structures stored on comput-
crs throughout the world. and if these structures could be accessed using a svstem
that was more comprehensive in nature. then great benefits could be seen in how

rescarchers scarch for and acceess chemical structures.

The statistical experiment was carried out using the following procedure:
e Chemical structures were converted to Cartesian coordinate format.

e Chemical Atom Topological Indices (CATI) were determined for cachi chemiceal

stricture in the test collection.
e Indices were created based upon the resulting CATI desceriptors.
e 19 query structures were chosen.

e The similarity of cach chemical structure within the test colleetion (as it com-
pared to cach of the 19 query structures) was determined through the use of
the indices and three ditferent similarity measures. namely the standard cosine
measure. the contextual cosine measure. and the Tanimoto CATIL measure (as

nnplemented within the Chem-DRSAI svstem).

T2



e The similarity of cach chemical structure within the test collection (as it com-
pared to cach of the 19 query structures) was also determined through the use
of & Tanimoto similarity metrie that uses chemical ingerprints (as implemented

within the OpenBabel system).

o Listings of the different structures with a similarity score of 1.0 (as produced by
the three Chem-DRSN metries and the Tanimoto chemical fingerprint metric)
were produced for cach of the 19 query structures (four different metries. 19

different structures. 76 different lists of chemical structures)

o The different listings of the structures that had scores of 1O were evaluated

statistically (using pree on and recall).

o [listograms were created to further evaluate the nature of the similarity scores

produced by the different measures.

The following subscctions desceribe each of these items in more detail.

5.2.1 Choosing the 2st collection

The test collection of chemical structures was made up from structures found in
the National Cancer Institute (NCT) online database (Release 3 Files - Septenmiber
20053) [3]. Out of the 260.071 structures found within the NCI database 178175
structures were found to have suitable three-dimensional imforimation. The remaining
81.896 structures were not converted because they were stored as two-dimensional
projections of the three-dimenstonal information found within the original structure

(which resulted in a loss of original information).
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This collection was selected for a number of reasons. primarily because the data
associated with the 260.071 structures was available free of charge. but also because
the structures in the collection are quite diverse and representative of structures that

a wide range of chemists would use.

5.2.2 Information extraction and index c1 ation

Using in-house software that caleulates the CATI descriptors and determines the
quantitics of the different C'ATI descriptors within cach structure. summary files
for cacli of the 178175 chemical structures in the test collection were produced.
Based upon the valnes contained within the summary files for cach chemical structure.
the required indices for the Chem-DRSM svstem (as ontlined - Section -1.2.3) were

croated.

5.2.3 Chemical structure similarity computations

In order to determine the similarity between different chemical structures, three dil-
ferent in-house similarity measures were emploved.  To assess these three similarity
measures with respect to a be  line mcasurement. the standard Tanimoto metric with
chemical fingerprints (as implemented by OpenBabel) was also used. A summary of
the measures used for the evaluation can be seen in Table 5.2. The three in-liouse
stmilarity measures are explained i detail in Section 4.2, and more detail about the

Tanimoto metric that uses chemical fingerprints can be found in Section 3.3.



Table 5.2: NMethods that were used to produce similarity scores.

Method | alethod 2 Nethod 3 Method
cosine cosine Tanimoto Tanimoto
(Comextual + CNT]) (Standard + CNTH (CANTH tchemical fingerprints
Chem-DRSA Chem-DRSA Chem-DRSNI Opentiabel
Iquation (1.7) Fquation #1460 liguation (3.1) Fquation (3.1)

5.2.4 Precision and Recall Evaluation
The first component of the evaluation of the different chemical similarity metries in-
volves a statistical evaluation. The statistical evaluation was conducted using two

standard measures, namely precision and recall.

The precision () of a similarity measure for some cutoff point () is the fraction

of the top r ranked items that are relevant to the query.

number retrieved that are relevant

total nnmber retrieved

For example. if one hundred chemical structures are retrieved in response to a particu-
lar query (- = 100). and fifty of them are relevant. then the precision of the similarity

measure would be 50%. The precision metric measures the aceuracy of the search.

Complementing this is the recall measure. The recall measure (17) for a particu-
lar 1 value (some cutofl point) is the proportion of the total number of relevant items
retrieved within the top r.

nuinber relevant that arve retrieved
R = {(Hh.2)

total munber relevant

=1
o1



Continuing the example used with the precision measure (where = 100). if there
are seventv five relevant items in the entire colleetion then the recall of the similarity
measure would be 66% since only fiftv out of the seventy five were selected. Recall
measures the extent to which the retrieval is exhaustive and guantifies the coverage

of the items that are returned.

The biggest difficulty with this tvpe of evaluation is identifving a standard set of
documents. queries, and relevance  idgements (decisions as to which documents in
the collection are answers to cach query). In this experimment. a subset of the NC1
database was used as the standardized document set. and both the queries and an-
swers to the queries were obtained from within this collection. To obtain relevance
jndecments. a combination of canonical SMILES and InChl representations of the
cliemical structures were nsed. A chemical structure was considered to he a “correct
answer” to a query if it had both the same canonieal SNITLES and the same InChl

representation as the structure used for the query.

5.2.5 Data Analysis

Using ranked lists as obtained from the four different similarity measures. recall and
precision values were determined.  Sinee recall is a nondecreasing function of rank
(its position in the list), precision can be regarded as a function of recall rather than
rank. Morcover, precision is usually high at low recall levels and low at high recall
levels. if one were to plot a precision-recall curve. the curve generally decreases. If

a perfect ranking algoritlhun could be developed. all relevant items would be ranked
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ahead of all irrelevant items. In this case. precision would be 100 percent at all recall

levels, and the recall-precision curve would be a horizontal line at 100 percent.

For the 19 structures selected to he part of the statistical evaluation. the - (or cutofl
value. as relating to both precision and recall) used was a score of 1.0 as opposed
to a set munerical threshold (e.g. Arst ten structures returned). Since the order of
the returned structures was dependent on the order in which they were placed into
the index. rather than some other descriptive property. the information found within
a recall-precision curve would be biased as to their index placement.  Instead the
precision and recall vahies were calculated by reviewing all of the structures with a

score of 1.0.

In order to compute all the similarity scores for the 19 different structures with the
four different similarity measures, over 13 million pairwise similarity calculations were
required to be completed (4 million with OpenBabel and 12 million with the Chem-
DRSMI svstem). Table 5.3 lists the formulas. cancer chemotherapy National Service
Center (NSCY numbers. number of structures that are identical. and the number of
structures with the same formula within ¢ test collection for each of the 19 different

structures used in the statistical evaluation.

All four of the similarity measures had 100% recall with cach of the 19 test struc-
tures. and it was onlyv through the use of the precision results that anv difference
between the four similarity measures was observed.  Table 5.4 shows the precision

results for the four different similarity measures for cach of the 19 test structures.



Table 5.3 Formulas, NSC nmumnbers. number of structures that are identical. and the
number of structures with the same formula i the test collection for the 19 different
structures used in the statistical evaluation.

NSCID Fornnla Number of Number with
identical structures | same formula
with same formmla

131564 CeHio N0, n 13

134438 CoH 1504 S 56

152321 Y Hg O Il I

169899 | CxHoNSCL 5 5

170317 C<H<O, n Hi

200826 | C5H 2 N.0, T [

210746 | CxH (N, O. T I8

1880 CoHn05 ) 98

79367 C-H.O, 0 30
4765 C4H,0, 3 15
S13 CoH Oy 3 51
90799 C<H - N 2 20

131122 (HH5N 4 G

1315061 CsH N O 5 12

26613 ' H1LO; 4 06N

(23441 C'yH 0. 2 19

153096 CyH.OS 2 |

525079 CyHoN O 2 o3

15309 CH. O, 2 33

167030 ol 3 |
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When comparing the different siimilarity measures it was observed that. on average.
the Tanimoto similarity measure with chemical fingerprints had a precision of 7H%
and a standard deviation (o) of 31%4. This is in contrast to the Chem-DRSN mea-
sures which had an average precision of 9290 with a standard deviation of 174 for
the standard cosine measure. an average precision of 7090 with a standard deviation
of 37% for the contextial cosine measure. and an average precision ol 66% with a

standard deviation of 38% for the Tanimoto measure with CATI deseriptors.
tandard deviat f 38 for the T { th CATI d pt

Although the average precision and standard deviation values provide some insight
imto the behaviour of the different measures. the results do not give a complete pic-
ture. For example. the average precision of the standard cosine measure is 9290 and
the standard deviation s 17% . Although this shows the magunitude of the deviation,
it also makes one question how can there be a precision of 109% (92 + 17)7 To ob-
tain more insight additional statistical stmmary data was determined for the ditferent
data sets (as can be seen in Table 5.1). The range of the data points shows that the
values found within the standard cosine data set are ¢loser together than those found
in the other data sets. Furthermore. the skew (a measure of the lack of svimetry of
a distribution curve. a distribution curve is svnmmetric if it Hoks the same to the left
and right of the center point) and the kurtosis (a measure of the stope of the data
curve. the value of which deseribes if the data curve is peaked or flat as compared to
a normal distribution) values are very different for the standard cosine measure than
those found with the other three measures. The skew value shows that the distribu-
tion of the data points for the standard cosine are much more condensed towards the

right hand side of a distribution curve (negative skew values correspond to a data
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distribution where the left tail of the distribution is loneer than the right tail of the
distribution and positive skew values correspond to a data distribution where the
right tail of the distribution is longer than the left tail of the distribution). and the
Kurtosis value shows that the curve associated with the standard cosine measure has
a sharper peak (positive kurtosis indicates a sharper peak in the data distribution.

whereas a negative kurtosis value indicates a flatter distribution).

The shape of the distribution curves provides additional information about how to
interpret the standard deviation and the average precision. In the case of the stan-
dard cosine measure. the skew and the kartosis demonstrate the the majority of the
data points are concentrated around the middle of the curve (92% precision) and that
the data points with the greatest influence on the standard deviation are on the left

hand side of the curve (less than 92%).

Although these results ave ouly for a small number of structures from within the en-
tire test collection (19 query structures or 99 structures if vou inchude exact matches).
the results still show that within the scope of the  udy. the  andard cosine measure
has the smallest range of precision values. the highest avi age precision value and
the smallest standard deviation of precision values. These values show the validity of

the approach being taken by the Chiem-DRSM system with the CATH based measures.

To assist with further analysis, the statistical evaluation was extended bevond exact
matches. When considering the quality of results produced by similarity measures it

is important to consider the ability of the shimilarity measure to appropriately score

&0



Table H.d:

structures that were part of the statistical evaluation.

Precision (U0)

NSC mnnbers. precision values and statistical summary data for the 19

Precision (A)

Precision ()

Tanimoto cosine Tanimoto
NSCID (chemical fingerprintst | (Standard 1 CAT] (CATD
Chem-DRSN Chem-DRSN Chem-DRSN
Equation (3.1) Fquation (1.6) Eaquation {3.1)
1315614 100 100 100
131122 100 N 13
134138 100 100 100
152321 100 100 25
153096 50 100 N
L16TH30 23 H 0]
1765 100 100 1§
169899 100 100 100
170347 12 100 100
2009820 100 100 100
2107406 38 bty SN
15309 12 10 17
1880 Tl 100 83
525079 100 100 100
623141 100 100 S
26613 S0 100 100)
TO3067 50 100 100
s34 30 D )
90799 53 100 N
Average 73.61 91.32 G3.84
Median 87.50 100.00 75.00
NMode 100.00 100.00 100.00
Range 38 60 99
Deviation (a) 30.2 16.8 30.8
Skew -0.72 -2.09 -0.56
[N urtosis -0.99 3.7 -1.32

Precision (A)
COSIe
(Contextual + CATH
Openbiabel
LT

T
nTY
100

100
29

I~',|””vi“n

)
29
100
&3
100
o
]
H6
n
3

{
100
I8
100

63.05
83.00
100.00
100
30.1
-0.78
-1.01
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differences. both large and small. between the different items being considered. Tor
example. a measure that simply looks at the presence and absence of features instcad
of their statistical significance and quantities might have abrupt changes in similarity
scores. whercas a metrie that is more granutar in nature can deteet more subtle dif-
ferences and make appropriate scoring adjustments. Insight into the beliaviour of the
metric with respect to its granularity can be seen in the histograms of similarity scores
produced for varions queries. Figures 5.2 through 5.5 show histograms of the results
produced by the four different similarity measures with four of the guery structures
{rom the statistical evaluation (NSCL3IHG1, NSC 301220 NSCH L3138, and NSC
15232.1) which provide representative data for all of the histograms produced by the
19 query structures. The complete histogram data for cach of the four measures and
the 19 query structures with the test collection (over 13 million similarity scores) can
be reviewed i Appendix A, Please note that the scales found within the histograms
have been kept the same so as to highlight the differences in score distribution be-
tween the different metries. As such. the complete data {for a given columm mayv not

bhe shown.
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As can be seen from the histograms. the different metries behave differently when
assessing similarity, If the metries were simikar in nature. then the histograms would
cither he the same or lincar translations of cach other. Since this is not the case. ob-
servations can be made from the histogram data that allows for further differentiation
of the metries. Consider Table 5.5, which shows the histogram data for the one of the
19 query structures (NSC'9G. 09, CgH =), This structure is of interest when reviewing
the distribution of scores produced by the standard cosine measure and the Tanimoto
nicasure with chemical fingerprints because of the distribution of the similarity scores.
Wlhen the standavd cosine measure is used. a score of 100% precision is observed for
exact matches (Table 5.4). and the progression through the similarity scores of the
entire test collection 1s done gradually as the chemical structures become more and
more dissimilar to the query structure (3 structures with scores between 1.0 and 0.96.
H8 structures with similarity scores between 091 and 0.95. and 162 structures with
similarity scores between 0.86 and 0.90). This is in contrast to the Tanimoto mea-
surce with chemical ingerprints, which in addition to having a precision of H3% when
scarching for exact matches (Table H..1) has 22 structures with scores hetween 1.0 and
0.96. 0 structures with scores between 0.81 and 0,95, and 117 structures with scores
between (.76 and 0.80. The large spread of values with O scores (0.81 - 0.95) shows
the lack of granularity in the Tanimoto measure. behaviour which is also shown in
Table 5.6 (NSC 167530 - CyHg) v en the Tanimoto measure with chemical finger-
prints is in use. I this case there are 26 structures with scores between (.96 and
1.0, 0 structures with scores between 0.56 and 0.95. and 327 structures with scores
between 0.51 and 0.55. This is in contrast to the standard cosine measure which. in

this case. has 5 structures with scores between 0.96 and 1.0, 5 structures with scores
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between .91 and 0.95 and 39 structures with scores hetween 0.86 and 0.90. Upon
further investigation of the query results for cach of the 19 query structures. it was
determined that the Tanimoto measure with chemical fingerprints has. on average.
3.75 histogram data ranges (0.00 to 0.05. 0.06 to 0.10, 0.11 to 0.15. 0.16 to 0.20. 0.2]
to 0.25.0.26 to 0.30. 0.31 to 035, 0.36 to 0.40. 011 to 0.45. 0.-16 to 0.50. 0.51 to 0.55.
(.56 to 0.60. 0.61 to 0.65. 0.66 to 0.70. 0.71 to 0.75. 0.76 to 0.80. 0.81 to 0.8h. 0.86 1o
0.90. 0.91 1o 0.95. and 0.96 to 1.0) per structure with values equal to zero. whereas
the standard cosine measure. on average. has 0.1 histogram data ranges per structure

with values equal to zero.

The presence of a similar trend within the results from the Tanimoto measure that
uses the CATI deseriptor (average of 3.55 histogram data ranges per structure with
values equal to zero) makes one conclude that the block-like behaviour (similar to a
step function) of the histogram results observed within the results produced by the
Tanimoto measure that uses chemical fingerprints is more likely to be attributed to
the nature of the Tanimoto cquation (for example the statistical distribution) rather
than the chemical fingerprint deseriptor. This observation re-iterates the importance
of taking into account the statistical distribution and weighting of the components

being used to determine similarity.
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Table 5.5: Distribution of similarity scores produced by different similarity measures
when structure NSC 90799, CoH =N is the query.

Interval

Coste
(Contextual + CAT]H
Chem-D RSN

llquation ¢ 1.7)

Cosne
(Standard + CA'T'D
Chem-DRSAL

lquation ( L6)

Tanimoto
(CA'TLY
Chem-DRSAI

Fguation (3.1)

Tanimoto
{cheical fingerprints)
OpenBabel

Fquation (3.1)

.00
0.95
(.90
0.85
.30
0.75
0.70
0.65
0.60
0.55
.50
0.45
0.4
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

8930
H901
2199
H696
2633
2406
092
83
12188
2988
637
380
20544
3210
14452
44355
5204

3
Hy
162

1263
16-12
LGOS
1838
2082
2393
2708
3310
3963
1543
5245
6291
7600
9376
11858
15512
22218
1112

13
0
99
IS
232
H09
928
395
2818
4649
10520
19819
23068
33159
29915
376146
3819

22

11
383
0
1198
0
2936
2259
9999
23963
37810
51309
34594
38690
64

39




Table 5.6: Distribution of stmilarity scores produced by different similarity measures
when structure NSC' 167530, CgHy. is the Query.

Interval

Cosine
(Contextual + CATDH
Chem-DRSA

Iguation (1.7)

cosine
(Standard + CAT)
Chem-DRSN

Equation ( 1.6)

Tanimoto
(CATD
Chem-DRS)NI

Fquation (3.1)

Tanimoto
(chemieal fingerprints)
OpenBabel

[Semitinn (3.1)

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
.50
0.-15
0.40
0.35
0.30
0.25
(.20
0.15
0.10
0.05
0.00

13729
360683
11637
6O
2400
1860
1719
1283
1017
696
H6H
443
130
183
185
!
13
()
39723
()
59224

-

\a

39
112
240
423
T3
1023
1160
1938
2605
3722
4893
6751
9508
12797
16427
21056
23299
17949
53144

385
0
1309
0
2699
14572
28057
48247
52009
211149
8812

20
0
0
0
0
0
0
0
0

327
0
0
0
1165
2773
035
8381
65194
96603
80502
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5.3 Human Evaluation

Although the statistical analysis. as deseribed in Section 520 attempted to obtain
insight into the behaviour of the different similarity measures. it can be thought of
as incomplete since opinions of potential users of the Chem-DRSN svstemn were not
vet considered.  To eflectively compare the three proposed sinilarity metries with
the Tanimoto measure that uses chemical fingerprints. a study was designed to coni-
plement the statistical analysis. This study involved the use of human subjects to
evaluate and score the pairwise similarity scores and the correctness of the list rank-
ines that were produced by the three proposed similarity metries and the Tanimoto

metric with chemical fingerprints.

The Inman evaluation of the different similarity measures was carried out using, the

following procedure:

Chemical structures were converted to Cartesian coordinate format.

e Chemical Atom Topological Indices (CATI) were determined for the eacli chem-

1cal structure in the test collection.

e I[ndices were created based upon the resulting CATI descriptors.

o Five query structures were identified for use with the human evaluation.

e The similarity of cach chemical structure within the test collection (as it con-
pared to caclr of the five nman study query structures) was deternnined through

the use of the indices and three different similarity measures: namelyv the stan-
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dard cosine measure. the contextual cosine measure. and the Tanimoto CATI

measure (as implemented within the Chem-DRSN svstem).

e Tlhe similarity of cach chemical structure within the test collection (as it coni-
pared to each of the five human study query structures) was also determined
through the use of a Tanimoto similarity metrie that uses chemieal fingerprints

(as implemented within the OpenBabel system).

o Lists of the top ten most similar structures (as determined by the three Chemn-
DRSAN mietries and the Tanimoto chemical fingerprint metric) were produced
for cach of the five human study guery structures (four different metries. five
ditferent query structures. 20 different top ten lists of chemical structures). In
cases where there were more than ten structures with a score of 1.0, only the

first ten structures returned were used.

o Tlie different top ten listings were evaluated in terms of pairwise sitnilarity and

correetiiess of list ordering by the hnnnan study participants.

The following subscctions deseribe cacli of these items in more detail.

5.3.1 Buildir on the Statistical Evaluation

The Inmman evaluation builds on the methodology and frantework that was used in the
statistical analvsis Section 5.2. The same test collection. index ereation schenie and
siiilarity measures as the statistical evaluation were also emploved m the human
cevaluation. The only difference in the experilmental foundation is that the human

evaluation only looks at the query results produced by five different query structures






5.3.2 Hypothesis

The main focus of the study was to determine the appropriateness in scoring and
ordering of the results from the various chemical structure queries. It was the intent
of this study to find the answer to the following question. ~Is there a difference in
the quality of results that are returned by the different similarity metries?”. To
answer this question. the following null hyvpothesis was used: “There is no ditference
in the similarity scores produced by the four different similarity metries that are
being, considered in terms of precision. recall. distribution of similarity scores. and

user assesment.”

5.3.3 Subjects

Twentv-four university students. staff and faculty members were recruited for this
experiment. Tables 5., 5.8 and 5.9 show the demographic background of the subjects
that participated in the study. This study not only provided an evaluation of the
different similarity metries. but it also provided some additional insight into what
tvpes of eriteria the study participants used to determine chemical structure similarity,
Prior to the commencenient of the studv. ethical approval was sought and granted by
the Interdisciplinary Committee on Ethies in Human Rescareh (ICEHR) at Memorial

University of Newfoundland.

Table 5.7 Gender breakdown of study participants.

I e Female
[V L) | T (29%)
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Table 5.8: Educational background of study participants.

BSc NSe AMSe Phb
(Chemistry) (Chemistry) (Computational Science) (Chemistry)
L (2% 3 (12.5%) 1 (-1.29) 19 (79.2%0)

Table 5.9 Arca of expertise of study participants.

Number of stuav participants

Arca of expertise

2 (8.3%)
G (25%)

F(16.7%)
2 (8.3%)
|

Theoretical
Theoretical / Computational
Phyvsical
Physical / Computational

(4.2%) Physics / Condensed NMatter
3 (12.59) Organic / Experimental
2 (8.3%) Organic
1 (4.2%) Crystallography / Inorganic
[ (4.29%) Inoreanic
> (N RV Analvtical

5.3.4 Method

Each subject was required to complete two tasks for cacli of the different similarity
measures. The first task consisted of scoring the similarity of structures within a list
of chemical structures to a structure that was designated as the search query. The
second task involved providing an overall score for the correctness of the ordering
of the list that was produced. For cach task. there were five lists generated using
the test colleetion from the NCT database (NSCIS081 - ¢ H g N3OS, NSC 2212 -
CyHigOso NSC 8134 - CpHO40 NSC 90321 - Coo g and NSC 90799 - Col=N)
and the generation of cach of thel

s required ~178.000 similarity calculations. The

mechanies of the four different tasks are all the same, it is simply the content of the
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cenerated lists that are different.

To account for the possibility that the results could be influenced by the order in
which the tasks were completed. counterbalanced measures were implemented (see
Table 5.10). The 21 subjects were cach given a different ordering of tasks so that all
ol the possible task orderings were considered. The only variation within the study
was the ordering of the different similarity measures.  Throughout the experiment
subjects were presented the same lists for cach of the similarity measures in the same
order. Table 5.11 illustrates the ordering of the structures used to produce the lists

of chemical structures that w o reviewed by each study participant.

[t is important to note that cach of the lists reviewed by the study participants con-
tained only ten structures. total of ten structures was chosen as the cutoft for
user evaluation. as a study by Beitzel et. al. [62] using web-based queries from more
than 50 million users showed that users only view the results presented on the first
page (Hrst ten documents) of a web-query 81% of the thme. Sinee the purpose of this
cevaluation is to simulate and evaluate searching and browsing activities only the first
ten structures were presented to study participants. even it aere were more than ten

with the same similarity score.

5.3.5 Data Cc ection

Throuchout the course of the experiment data relating to the following arcas was
g ] 2 g
collected: similarity to the original query structure and correctness of list ordering.

In order to measure both of these values a scale from one to seven. otherwise known
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Table H.10: Summary of similarity measure ordering for subject tasks.

CosINe cosine Tanimoto Tanimoto
(Contextual + CANTDH | (Standard + CA'TH tCANTD (chemical tingerprints)
Subject A 1 4

Subject B
Subject
Subject D
Subject K
Subject F
Subject G
Subject
Subject 1
Subject
Subject K
Subject L
Subject Nl
Subject N
Subject O
Subject P
Subject Q)
Subject R

g

T

IO W — e — e WY e 1O e Ll

Subject |
Subject

Subject U
Subject V
Subject W
Subject X

— 0 — WIS N — I e Y e N e N e Y N = W

e B T T T TU T (Ui
N N N U U N AU I U R RS

I — N — WIS IS — = = -

Table 5.11: Ordering of structures used to produce lists for cach similarity measure
that were assessed by study participants.

Structure 1| Structure 2 | CStructure 51 Strneture 4 Structure b
NSC 2212 NSC 8134 NSC 1806+ Ao Yuszl | NSC907TYY
CyHigOs | CoHGOn L OV HWYNLORS (o H CoH 2N
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as o Likert scaleo was used so that the study participant could communicate their
responses in a simple and effective manner. For the evaluation of similarity the value
I was considered to bhe mnot similar™ and the value 7 was considered to be ~very
similar”™. For the correctness of ordering measurement, a value of 1 was considered

to be “incorrect”™ while a value of 7 was considered to he “correct™.

To colleet this information a web-based interface was developed using the Jmol ap-
plet [63]) and FormMlail [61]. The Jmol applet provided an interactive Java-based vi-
sualization environment for the chemical structures that worked in any web-browser.
Using the Jmol applet the query structure and all of the structures that were gener-
ated in the “top ten™ lists were visualized in 3D for the study participants. Figures 5.7
and H.8 show screenshots from the web-based imterface that was developed for this

study.,

Before the results could be presented in an organized manner. the raw data obtained
from the e-mail messages generated from the interactive web-based interface needed
to be formatted and analvzed. This section shows examples of the results that were
obtained and provides an overview of the caleulations performed. Figure 5.9 shows
a sample e-mail message that was generated during the survev when a subject was

viewing and scoring one of the lists generated by the standard cosine measure.
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chemicals @noareoly.com (1 <chemicalsurvey@nareply.com>

Cl nical ture _valuation Survey - FORA A
May 14, 200010 43:28 AMNDT
Mark Stave

Below is the result of your feedback form. t was submitte by
(Chere aloarees vnoreply comlon Thureday, May 14, 2008 at 10 43:¢28

QOUTFILES 8011 43420 7
QOUTFILES BO11 31533 7
OUTFILES BO11 22B23. 6
QUTFILES BO11 22817 7
OUTFILES BO11 58/740.6
OUTFILES BO11 b8, 5
OUTFiLES BO11 2211605
QUTFILES 8011 221 b
OUTFILES BO11 1984355
OUTFILES BD11 2102¢ 5
OUTF!LES listscore: 6
Mysubrut Submit

Figure 5.9: Sample e-mail generated from the web-based study interface.
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F-mails similar to the one in Fieure 5.9 were generated for 20 different lists during
the course of the survey for cach participant. With the 21 participants there were 180
resulting survey e-mail messages that were collected and processed. Fach e-mail that
was received contained 11 user submitted values, namely the assessed similarity scores
for cach structure within the “top ten” hist and the assessed score for the correetness
of the ordering of the list. Appendix B contains all of the user generated data that

was obtained from cach of the 480 survey e-mail messages.

5.3.6 Data Analysis and Interpretation

After compiling and organizing the raw data. it was important to look at the ac-
curacy of the results that were obtained from the study participants. Within the
various “top ten” lists, there were structures that were known to he exactly the same
as the query structures. By assessing how well the subject participants scored these
vitlues, it hecane possible to measure the accuracy at which the study participants
were assessing similarity, On average. the 210 different study participants assessed the

sttilarity of the structures that were exactly the same as 97.4% (0 = 0.64).

This result demonstrated two things: Firstlv it showed that there is a certain or-
ror factor here as even experts in the field of chemistry have difficulty in assessing
chemical similarity. and secondly it provided additional insight as to the quality of
the results that were obtained through the human evaluation. In the statistical com-
pouent of the evaluation, the similarity measures were assessed on their ability to tind

structures that matched exactlv. The data obtained through the human evaluation
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cnables the assessment of the different similarity measures with respeet to finding
sitnilar structures. as relevance judgements can now he defined based on the scores

provided by the study participants.

Taking into account the ability of the study participants to identifv exact structure
matches, a user score threshold of 664 (a value of 4 or higher on the Likert scale
that was used throughout the study) was chosen as a basis for assessing similarity.
All structures that had an average assessed score of 669 or greater were considered
to be similar. Using this threshold it was possible to compare the different similar-
ity measures based on the number of similar structures that were identified within
the different ~top ten™ lists. Table 5.12 shows the number of similar structures that
were identified. excluding exact matches. for cach of the different test structures and
different similarity measures by study participants. Note that the standard cosine
measure identifies the greatest number of structures with a user-assessed similarity
score of 66 or ereater. Exact matches are excluded from the counts as the purpose
of this value is to highlight the abilities of the different metries to go bevond the task
of finding an exact mateh. In the case of all query structures. if there were exact
matches within the test collection. then theyv were identified with a score of 1.0 (as

mentioned in subsection 5.2.4).

Throughout the human evaluation. participants were also asked to assess the cor-
rectness of the ordering of the different “top ten” lists that were presented to theni.
Table 513 " ows " ere i I list correctness score. and standard devi-

ation. for each of the hists produced i the human evaluation. It is important to note
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Table 5.12: Number of similar structures that were identifiecd by study participants
excluding exact matches. for cach of the different test structures by the four different
similarityv measures using a threshold of 66 .

Structure Ccosie cosine Tanimoto Tanimoto
(Contextual + CATH | (Standard + CATD (CAT) (chemical fingerprints)

4 Hi60, l l 0 0
CoH, 04 2 3 3 3
(‘“HH,N;;();S () 0 0 ()
Contly () 4 0 (0
CyH =N 0 0 0 0
Total 3 T 3 3

that the lists contained only the first ten chemical structures returned. regardless if

there were more than ten str tures with the same similarity score.

As can be seen. the standard cosine mecasure consistently has a better user assessed
list order correctness score. with a smaller standard deviation. than the scores given
to the lists generated using the industry standard Tanimoto measure with chemical
fingerprints. In some cases the list order correctness results are based upon lists where
the metric has scored all of the items within the List as having perfect similarity scores
(test structure 4 with the contextual cosine measure - Figure B2, test structures 1.2,
and 4 with the Tanimoto CATI  casure - Figures B.7 an B.8. and test structures
2.4 and 5 with the Tanimoto meas ¢ that uses chemical fingerprints - Figures BL10.
B.11 and B.12 - note there were no cases of this with the standard cosine measure).
An additional example of this can be seen in Figures B.21 and B.16. In this case the
first figure (B.21) shows the first five structures returned using the Tanimoto measure

that uses chemical fingerprints. All five of the structures were given a score of 1.0 by
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Table H.13:

for cach of the lists produced in the mmman evaluation.

The average user-assessed list correctness score. (and standard deviation).

the metric.

structures returned using the standard cosine measure.

Structure cosine Ccostne Tanimoto Tanimoto
(Contextual += CNT]) (Standard + CATH (CNTH fehemical lingerprints)
CyHy6O0 IRVARE VA 660 (HA) 3671190 YLO)
CoH; L O4 TRYATY) TR (0% 179 (40 (i()‘/((\‘/)
C H o N3OS ASYC(30) D290 (1) A7 (HA) AHY (9
CouHyg 504 (174) T30 (29) REVARYA 3 A(TA)
CyH-N (990 ()()/ (2%) TAA(0) JOV(6%)
Average List
C'orrectiess Do 6T A AR H0%
Score
Average
Standard 8.8 2.6 14.6%¢ 9.2
Deviation

This is in contrast to the second figure (B.16) which shows the first five

Onlv the tirst four structures

were given a score of 1.0 by the metrie. This example also shows tremds that were
observed with the histograms. namely the granularity in which the structures are
diferentiated by the similarity measure.

The issue with the lists where all of the scores are 1.0 lies with the assessment of
the ordering.  In these cases the ordering is based on the order in which thev are
found within the indices. Even though the vahie of assessing the order in these cases
can be questioned. these results were still presented in this thesis as it highlights
performance differences in the metries that echo back to the precision scores of the
1ctures bevond a certain

different metries. Should a metrie be unable to distin ish

point, then a deficiencey in the metrie has been highlighted. These same deficieneies
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can also be scen when reviewing the different histograms that show the distribution
of the similarity scores of the different metries when using the test structures [rom

the statistical evaluation.

5.4 Functional Group Investigation

The studies presented thus far concentrate on using various properties, either chemical
fingerprints or the CATI topological deseriptors. and their ability to assess chemical
similarity with a variety of metries. However, these deseriptive properties are not
only used as components of metries to produce similarity scores. hut can he also used

to identifv components and classify chemical structures.

The CATI and CBTT descriptors. as presented in this thesis, are topological deserip-
tors that use computed information to capture different tvpes of chemical information
({for example bond information. and the ditferent types of atoms within the structure).
In Section 4.2.4. the CATI descriptors were treated as “words™ within standard infor-
mation retrieval measures. Following this analogy, CBTI descriptors can be thought
of as “chemical phrases™. This is one approach that can bhe taken when reviewing
functional groups. as functional groups are made up of distinet “chemical words™ and

“chemical phrases™.

To evaluate the appropriateness of this analogy. different functional groups were
represented in terms of CAT  and CBTI desceriptors to determine if they could be

uniquely identified. Table 5,141 summarizes the functional groups that were reviewed
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during this analvsis and shows what descriptors arve required for identification. As an
example, it was determined that some functional groups. such as sulfides. could be
identified by only using CATI descriptors. whereas other functional groups. such as
esters. required additional information that is found within the CBTT deseriptors for

succeessful identification.

Table 5.1 I Functional group listing and the information required for identification.

Functional Group | CATIs | CBTIs
Alkenes °
Alkyvnes
Alkanes
Aromatic
Alcohol
Carboxvl
Fxster
Thioester
Ether

alide
Amine
Nitro ®
Thiol
Sulfide
Nitrile
Aldehyde °
Ketone ®
AcvIHalide
Amide
Acid Anhvdriude

This shows a great deal of promise. as one of the traditional methods to identify
functional  oups  w through some tyvpe of substructure secarch involving analvsis of

molecular subgraplis [65]. - creating indices based on the CATT and CBTI descrip-
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tors within chemical structures. a new tvpe of comprehensive functional group search-
ing tool can be created. Because of the proposed architectural framework and the
information already found within the Multi-Component Data Representation Scheme.
this type of functionality could be implemented with minimal design and coding ef-
forts.

Fieure 5.10 through Figure 5.16 provide niore detail about the actual CATI and
CBTI desceriptors needed to identify the different functional groups. As can be seen.
the presence of some functional groups can be determined by the occurrencee of a single
CATI deseriptor. In all figures. the items shown in boldface are the kev components

that arc used to identify the functional group with either CATI or CBTT descriptors.
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Amine

Cc/

7(9,0)
7(19,0)
7(24,0)

A structure that contains at least one of the above CATI
descriptors contains an amine functional group.

CBTI

8(5,-1)-7(34,0) x 2

A structure that contains two 8(5,-1)-7(34,0) CBTI
descriptors which have a common 7(34,0) CATI descriptor
has a nitro compound functional group.

2o E
C-N(-H)-H 7(9,0)
C-N(-H)-C 7(19,0)
C-N(-C)-C 7(24,0°
Nitro Compound

Z . . o 2|z
[C-N(-0)=0 7(34,0) |5(5,-1) [8(5,-1)
Thiol

z o =z ¢
|c-sH 16(7,C 1(14,0)

Ci

16(7,0)

A structure that contains at least one 16(7,0) CATI

descriptor |

; a thiol functional group.

Figure 5.10: CATI and CBTI deseriptors used to identify the presence of amines.

nitro compounds, and thiols within chiemical structures.
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Sulfide CATI

Z: = 16(12,0)

[C-SC 16(12

A structure that contains at least one 16(12,0) CATI
descriptor has a sulfide functional group.

Nitrile
CATI
M= 1z o &
C-C#N 7(4,0) 6(14,-2)
H-C#N |6(10,-2){7(4,0) 6(10,-2)
A structure that contains either a 6(14,-2) or 6(10,-2)
CATI descriptor has a nitrile functional group.
Aldehyde
Ci...
Z < & lz<o 1z o Z
[C-C(:O)-H 6(25,- 1|8(4,-1) 1(4,0) 6(25,-1)

A structure that contains at least one 6(25,-1) CATI
descriptor has an aldehyde functional group.

Figure H5.11: CATI and CBTI descriptors used to identify the presence sulfides. ni-

triles. and aldehvdes within chemical structures.
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Carboxyl

CBTI

=

o oz |z o =
[c-c(-oH)=0 1b(34,-1) |8(7,0) 8(4,-1) 8(7,0)-6(34,-1)
8(4,-1)-6(34,-1)

structure that contains an 8(4,-1)-6(34,-1) CBTI
descriptor, and an 8(7,0)-6(34,-1) CBTI descriptor where
both CBTI descriptors share a co n 6(34,-1) CATI
descriptor contains a carboxyl functional group.

Ester
CBT1
z: i '=meslzo s
]C-C(-OC)=O 6(34,-1" ,0) 1B(4,-1) 8(12,0)-6(34,-1)
8(4,-1)-6(34,-1)
A structure that contains an 8(4,-1)-6(34,-1) CBTI
descriptor, and an 8(12,0)-6(34,-1) CBTI descriptor where
both CBTI descriptors share a common 6(34,-1) CATI
descriptor contains an ester functional group.
Thioester
CBTI
Z 27 sz ¢
|C-C(—SC)=O 6(58,-1) 110(12,0) |8(4,-1) 16(12,0)-6(58,-1)

8(4,-1)-6(58,-1)
A structure that contains an 16(4,-1)-6(58,-1) CBTI
¢ icriptor, and an 16(12,0)-6(58,-1) CBTI ¢ riptor where
both CBTI descripters share a common 6(58,-1) CATI

descriptor contains a functional group that is a
sulfur variant of an ester.

Figure 5.12: CATI and (BT descriptors used to identify the presence of carboxyl

groups. csters. and thioesters with  chemical structures.
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Ether

CATI
zZ &
|c-0-c 8(12,0) 8(12,0)
A structure that is not defined as an ester, and still has a
8(12,0) CATI desctiptor is identified as a structure with an
ether functional group.
Halic
CATI
Z . &
C-F 9(4,0) 9(4,0)
C-Cl 17(4,0) 17(4,0)
C-Br 35(4,0) 35(4,0)
C-1 53(4,0) 53(4,0)
C-At 85(4,0) 85(4,0)

A structure that contains at least one of the above CATI
descriptors contains a halide functional group.

Figure 5.13: CATI and CBTI desceriptors used to identity the presence of ethers and

halides within chemical structures.



Alkenes

CBTI

zZ o sz ¢
H,C=CH, 6(9,-1) [6(9,-1) 6(9,-1)-6(9,-1)
HCC=CH, 6(19,-1) |6(9,-1) 6(19,-1)-6(9,-1)
C,C=CH, 6(24,-1) [6(9,-1) 6(24,-1)-6(9,-1)
C,C=CCH 6(24,-1) |6(19,-1) 6(24,-1)-6(19,-1)
C,C=CC, 6(24,-1) 16(24,-1) 6(24,-1)-6(24,-1)

A structure that is made up of only carbon and hydrogen
atoms which containes at least one of the above CBTI
descriptors is an alkene.

Alkynes
CE
Z 3 5
HC#CH 6(7,-2 oi7s,-2) 6(7,-2)-6(7,-2)
CC#CH 6(12,-2) (6(7,-2) 6(12,-2)-6(7,-2)
CC#CC 6(12, 6(12,-2) 6(12,-2)-6(12,-2)
A structure that is made up of only carbon and hydrogen
atoms which contains at least one of the above CBTI
descriptors is an alkyne.
All  «
o CATI
Z s |L - =
C-C(-C)(-C)-C 6(40,0) 6(40,0)
C-C(-C)(-C)-H 6(35,0) 11(4,0) 6(35,0)
C-C(-C)(-H)-H 6(25,0) {1(4,0) 6(25,0)
C-C(-H)(-H)-H 6(10,0) {1(4,0) 6(10,0)
H-C(-H)(-H)-H 7r-10 7 e 6(-10,0)
1(4,0)

A st cture that is made up of only the above CATI
descriptors is an alkane.

Figure 5.14: CATI and CBTT deseriptors used to identify structures that are alkenes.

alkynes or alkanes.
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Aromatic C¢Hg Ring

CBTI
=6 6(19,-1)-6(19,-1)
i=-1 6(>19,-1)-6(19,-1)
=19
6 x 6(19,-1) and part of the same ring
Aicohol
CBTI
Z < < |2 =
H-(H-)C-0O-H 8(7,0) 6(33,0) 8(7,0)-6(33,0)
C-(H-)C-0-H 8(7,0) “(43,0) 8(7,0)-6(43,0)
C-(C-)C-O-H 8(7,0) 1o 3,0) 8(7,0)-6(48,0)

A structure that contains at least one of the above CBTI
descriptors. The 8(7,0) CATI descriptor that is part of the
above CBTI desctiptors cannot be bonded to a 6(34,-1)
or 6(29,-1) CATI desctiptor. If these conditions are

met, then the structure contains an alcohol functional
group.

Figure H.15: CATI and CBTI descriptors used to identify structures that arve either

aromatic (c.e. CHg) or that contain alcohols.
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Ketone

CATI
PN VA
lc-c(=0)-C 16(30,-1) [8(4,-1) 6(30,-1)
A structure that contains at least one 6(30,-1) CATI
« criptor has a ketone functional group.
Acyl Halide
Z . e - |2z CBTI
C-C(=0)-F 9(4,0) 8(4,-1) 6(37,-1) 9(4,0)-6(37,-1)
C-C(=0)-CI 17(4,0) |8(4,-1) 6(61,-1) 17(4,0)-6(61,-1)
C-C(=0)-Br 35(4,0) [8(4,-1) 6(115,-1) 35(4,0)-6(115,-1)
C-C(=0)-1 53(4,0) |(8(4,-1) 6(169,-1) 53(4,0)-6(169,-1)
C-C(=0)-At 85(4,0) [8(4,-1) 6(265,-1) 85(4,0)-6(265,-1)
The presence of 1 or more of these CBTI descriptors
:ntifies the presence of an acid halide functional group
Amide
CBTI
z o -l 8(4,1)-6(32,-1)
H-C(=0)-N(-H)-H 6(27,-1) |o(4,-1) 7(9,0) 7(9,0)-6(32,-1)
H-C(=0)-N(-H)-C 6(27,-1) |8(4,-1) 7(19,0) 7(19,0)-6(32,-1)
H-C(=0)-N(-C)-H 6(27,-1) |8(4,-1) 7(19,0) 7(24,0)-6(32,-1)
H-C(=0}-N(-C)-C 6(27,-1) |8(4,-1) 7(24,0)
C-C(=0)-N(-H)-H 6(32,-1) |8(4,-1) 7(9,0)
C-C(=0)-N(-H)-C 6(32,-1) |8(4,-1) 7(19,0)
C-C(=0)-N(-C)-H 6(32,-1) |8(4,-1) 7(19,0)
C-C(=0)-N(-O)-C 6(32,-1) '°"31,-1) 7(24,0)

The presence of a 8(4,1)-6(32,-1) CBTI descriptor, that

shares a 6(32,-1) CATI descriptor wi

either a

7(9,0)-6(32,-1) or 7(19,0)-6(32,-1) or 7(24,0)-6(32,-1)
I descriptor identifes the presence of an amide

functional group.
Acid Anhydric
« 1
=z S = 8(12,0)-6(34,-1)
[0=C(-C)-0-C(-C)=0 |b(34,-1) [B(4,-1) 18(12,0) 8(4,-1)-6(34,-1)

The presence of two 8(12,0)-6(34,-1) CBTI descriptors
that are connected to the same 8(12,0) CATI
descriptor, as well as the presence of two
8(4,-1)-6(34,-1) CBTI descriptors identifies the
presence of an acid anhydride functional group

Figure 5.16: CATI and CBTI descriptors used to identify the pro nce of ketones,

acvl halides. amides. or acid anhvdrides within a chemical structure.

B



5.5 Discussion

Upon examining the results obtained from both the statistical evaluation (precision
and recall data) and the human evaluation (assessment of pairwise similarity vs. list
rank. and the correctness in list ordering). it is observed that the null hvpothesis is
rejected. The first result that demonstrates the performance difference of the two
nietries is the precision data that is observed when using the 19 test structures in
the statistical evaluation. If there was no difference in the metries, then the precision
data would be the same for the Chem-DRSA metries and the Tanimoto metrie that
uses chemical ingerprints. Furthermore, the histogram data demonstrates that the
metries are not just linear shifts or translations of one another, re-attirming that the

metries are not the same.

The statistical results demonstrate that the metries are not the same. and if the
performance of the metries was only based on precision then the standard cosine
measure that is part of the Chem-DRSAN svstem would have the best performance.
However, the statistical evaluation primarily looks at exact aatches (as there were no
other wavs available to independently confirm relevanee judgements) and the metries
arc not just boolean queries that look for an exact structure. The human evaluation
results extend the results obtained throughout the statistical evaluation by consult-
ing with study participants that have expert knowledge. Throughout the studv. the
human participants identified the standard cosine metric as their preferred measure
(through aneccdotal comments). co ments which were subsequently reattirmed when

reviewing the results that were obtained throueh the study. Throughout the study.
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the standard cosine measure identified the highest number of structures to be given an
average user-assessed similarity score of 66% or better. This is an important statistic
as it shows that the standard cosine measure is useful bevond searching for exact

natches.

The high quality of the results produced by the standard cosine measure which uses
the CATI deseriptors can be attributed to two features of this particular measure.
The first feature is that the cosine measure (as implemented in the Chem-DRSN sys-
ten. Section -1.2.4) uses information about the statistical distribution of components
wlien assessing similarity, This is in contrast to the Taniimoto measure that does not
use any kind of statistical distribution information. The second feature, is the use of
the CATI deseriptor. The CATI deseriptor (as mentioned i Section L1.1) s derived
from the topological information and valency of each atom within a given structure,
This provides an inereased chemical vocabulary that can be used to deseribe chemical
structures. The combination of hoth of these features has resulted in high quality
results, as assessed not only by statistical values (precision and recall) but also by

himnan subjects that are considered to have expert knowledge in the field of chiemistry.

Looking forward. the expertmentally determined threshold values for the various com-
putationally derived deseriptors and the work being done with the identification of
functional groups highlights even more wavs in which the various descriptors found
within the Chem-DRSM svstem can be extended and applied to activities related to

the searching, browsing. and organization of chemical structure mformation.



Chapter 6

Prototype C-r.prehensive
Comput tional Chemistry

Database

This chapter extends the work that has been completed through the creation of the
Chemn-DRSA svstem and presents additional work that builds on the core function-
ality of the tools that are found within the Chem-DRSM systen. This chapter is
divided into a number of sections. namely data representation. integration. and en-

hanced chemical information classilication.

This work is still in the very carly stages, but the promising results that have been
observed warrant that it be included with the work contained within this thesis. In
particular. it highlights the architectural flexibility and modularity that is inherent
with the data-representation scheme at the core of the Chem-DRSN svstem. It also

highlights the range of information that is captured within that data-representation
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scheme and illustrates some of the alternative wavs that it can be used to enable

comprehensive acceess to chemical information.

6.1 Data Repres ntation

As mentioned throughout this thesis. one of the main challenges faced by digital
librarians and managers of digital archives is the automatic processing and classi-
fication of data. The Multi-Component Data Representation Scheme found within
the Chemi-DRSN systemn provides a universal framework for data neanagement that
cail be extended very casily to he used with large-scale resonrces. Furt hermore. the
modules required to build the different data components that make up this data
representation scheme are independent of one another and do not require any spe-
cialized computational resources. The presence of these design features nican that
rescarchers and scientists could contribute results very casily, and automaticallyv, to
large scale resources (for example a central database) using the tools found within

the Chem-DRSM svstenn.

6.2 Integration

By building on the foundation established by the Chem-DRSN svstem. a fullv in-
teractive and dyvnamic database could be casily constructed and integrated into the
computational resources used by chemical rescarchers. Figure 6.1 illustrates the archi-
tecture of such a svstem. Within the svstem. there are four kev lavers (the imterface
laver. the management laver, the processing laver. and the storage laver) that make

up the overall architecture. One kev feature of the lavered design is that communi-
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cation only occurs between adjacent Tavers. This means that the components within
the lavers can be updated. modified and added to with minimal implications to the

svstenn as a whole.

The only components that are required outside of the Chem-DRSN svstem to im-
plement a large scale chiemical information resource are an appropriatelv designed
interface that supports interactive use and batch processing and a software compo-
nent that would manage all the commmunications and interactions bhetween the ditferent
components. By including these two modules. a comprehensive computational chem-

istry database could be deploved.
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Figure 6.1: Comprehensive Computational Chemistry Database architecture, includ-

ing Chem-DRSA components.
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6.3 Enhanced Chemical Informatic | Classification

Once the basic functionality of a comprehensive computational chemistry database
has been implemented, work can be done to improve how the chemical information
within the database is classified and used. Initial investigations done as part of this
thesis have shown significant promise in extending the use of the components found
within the NMulti-Component Data Representation Scheme to allow for comprehen-
sive searching tools that could identify functional groups within chemical structures
and also dvnamically cluster and link the chemical structures within the database in
different wavs. This section specifically discusses how the similarity scores that are
derived from the CATI descriptors can he used to ereate clusters of chiemical strue-

tures and establish links between them.

Having a svstem that can automatically cluster and classify structures found within
a database based on user customizable properties could be particularly usetul tor au-
tomating the process of identifving lead compounds. If a chemist is required to test all
structures that have a certain property or functional group. it might make more sense
to test very diverse samples from the collection of available structures as opposed to
testing a set of structures that are all similar in composition. This type of selection
can assist a chemist’s productivity as thev mav only be able to test a smiall munber
of compounds at a time (for example. having 5000 test structures and only being able
to test 80 at a time  see case studv in Subsection 6.3.1). By allowing the svstem
to cluster the structures based on diversity. the chemist. in this particular example.

could increase their productivity by improving the etficiency of cach experimental run.



One possible wav of creating clusters of chemical structures is to use the pairwise
similarity scores of all structures within the database to generate links. This is con-
sistent with methods already established in the arca of Hypertext and link-creation
methodology [66]. As an example. a pairwise similarity score of (.9 conld he used as
the link threshold. This means that a relationship is defined between two structures

when their sinnilarity is assessed to be greater than or equal to 0.9,

Since 1t is possible for a relationship to be only i one direction (where A = B.
but B # ). there are two different tvpes of relationships to be considered. The first
is an “outhound™ relationship. where the similavity score between “A™7 and some other
structure is greater than 0.9, he second type of relationship. an “inbound™ relation-
ship. where the stmilarity score between some other structure and A7 is greater then
0.9. Based on this link definition. the number of inbound and outbound relationships

call be determined for each structure.

Once the inbound and outbound relationships are determined then the structures
can be assessed by reviewing differences in the number of incoming and outgoing
relationships. The difference in the number of inbound and outbound relationships.
(calenlated using [In — Outl]). provides some insight into how significant the structure
is within the entive collection of structures. Structures that have cqual nunmber of
inbotmd aned outbound links are not considered to be as important as those that have
a disproportionate number of either inbound or outbound links. This difference in the

nuniber of relationships can be used to provide a guide ax to what structures should
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carboxylic acids for analysis.

For the steps outlined below. all timings provided are from a coniputer with a 2.1
GHz dual core processor and 2GB of RAN (unless otherwise specified). Tt is also
nportant to note that these steps do not have to be repeated every time work is
done with a particular set of structures. Only the process relating to “Relationship

Determination”™ (6.3.1.6) would need to be repeated with every subsequent iteration.

6.3.1.1 SMILES to SDF to XYZ

Upon initial review of the list. it was determined that no three-dimensional Cartesian
coordinate information was present. This was troublesome. as all of the tools and
metries within the Chem-DRSM svstem use the information contained within Carte-
sian coordinate files. Upon further investigation. a novel method was discovered that
allowed for the conversion of a SN ES to three-dimensional Cartesian coordinates.
Experimental open source software was used to perform this conversion. The first
program. smi2sdf. generates a rough set of three-dimensional Cartesian coordinates,
contained within a SDIT data file, using an iterative refinement procedure. The coordi-
nates are then optimized using a MMEFF94 foree field by the second program mengine.
These two programs have been grouped together under the name smi23D [67] and the
whole process has been built upon a methodology desceribed by Ballester and Gralam

Richards [68].

In-house code was written to automatically extract. process. and convert the SMILIES

representation for cach structure from the original list into Cartesian coordinates
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(SMILES to SDE to Cartestan coordinates). This exercise hiehlichts the flexibility
of the Chem-DRSN svstem and how different data formats can be casilv converted
and integrated to work with the svstem (tvpically it had been standard practice to
have the geometry of the structure in etther . XYZ or SDI tiles). To translate all
5000 SMILES into Cartesian coordinate data files took approximately 42 minutes to

complete.

There were 99 structures out of H000 (2% of structures) that could not be converted
using this method. The result from this process was a SDIT data file that contained
the three-dimensional coordinates for 4901 structures. This SDFE file was subsequent 1y
converted to an XYZ data file using Open Babel, and the conversion process took

approximately 2 minutes to complete.

6.3.1.2 XYZ file Preparation

As mentioned above. Open Babel has the ability to convert SDF data files to XYZ
files.  However. the SDIEIT that is produced from the previous processing step is a
single file that contains all of the information for all of the 1901 structures. As such.
the resulting conversion from Open Babel is a single XYZ data file that contains
all of the information for cach of the 4901 structures. The information within the
XYZ tile can then be processed by Chem-DRSM and the appropriate deseriptors
obtained. A decision was made to convert the large XY7Z data file into smaller XY7Z
files. where an XYZ file was created for cach chemical structure. The reason for
creating the individual XYZ files for cach structure was so that the structures can be

independently read and processed. The Chem-DRSN svstemn took approximately 5
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minutes to complete this conversion / transhition process.

6.3.1.3 Computational Chemistry Calculations

Using the Chem-DRSA input files produced in the previous step. all of the structures
were subsequenthy processed in bateh by customized Perl seripts that executed the
various Chemn-DRSAN commands and stored the results from the different caleula-
tions into suitably named output files. During the processing and analvsis of cach
structure. CATT deseriptors were identified and recorded. The entire process took ap-
proximately 40 minutes to complete when using a computer with a 2.8GHz processor
and 4GB of RANL It is important to mention that this part of the process can be
completed in parallel (where linear speedup has heen observed). As an example of
the parallelisim performance. = is same work could be completed in 10 minutes when

using a machine with 1 processors.

During this process only 1632 structures produced valid results. The 269 structures
that did not produce valid results had errors resulting from charge / multiplicity er-
rors. Unless charge information is specitically mentioned (SMILES does not contain
charge mformation) the structure’s charge was assumed to be . The resulting collec-
tion of 1632 structures is 93% of the size of the original colleetion of 5000 structures,

The processing rate is tyvpically 120 structures / minute / processor.

6.3.1.4 Index Creation

Indices were then created tor the 4632 ditlerent structures based upon the frequency

and tyvpes of CATI descriptors that were found within the structures. This index cre-
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ation process took approximately 3 minutes to complete and the observed processing

rate was tvpicallv 2000 structures / minute.

6.3.1.5 Similarity Scoring

As context is important when establishing clusters and links. the contextual cosine
measure as implemented with the Chem-DRSN svstem. was used to compute the con-
textual similarity between cach structural pair. In this case. it took approximately
72 hours to complete all of the similarity calenlations at a rate of 90 scores / second

on a single processor.,

As with the computational chemistry calculation step (Section 6.3.1.3). this process
is designed to support a parallel implementation with linear scaling. The result from
this process was a 16077 x 1632 matrix where all the entries in the matrix corresponded
to the similarity scores for that relationship (i.e row 1. columm 2 is the relationship
where structure 1 is compared to structure 2 and row 2. colmmn 1 s the relationship
where structure 2 is compared to structure 1), For the carboxvlic acid collection
(4632 structures). the average sim ity score of all of the pairwise comparisons is

0.53. and the processing time is estimated at 5100 comparisons / minute / processor.

6.3.1.6 Relationship Determination

Using the contextual Cosine measure and methods already established with Hypertext
and link-creation methodology, pathwavs connecting the different structures were
identified.  For our purposes. a score of 0.9 was used as a the link threshold. This

meant that a relationship was defined when there was a similavity score greater than
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0.9 bhetween two structures. There are two ditferent tvpes of relationships to be
considered. the first is an “outbound™ relationship.  This is where the similarity
score between "AT and some other structure is greater than 0.9, The second tvpe of
relationship. an “inbound™ relationship. is where the similarity score between some
other structure and “A7 is greater then 0.9, Based on this link definition. the munber
ol inbound and outbound relationships were determined for cach structure. The
analysis of the quantities of inbound and outbound links provides insight as to what

struct ures should be considered within the summary of the carboxvlic acid collection.

6.3.1.7 Discussion

Initial feedback of this work was provided by Dr. Fortin and a number of kev points
were raised. First. the concept of having the same structure identified as being a
“member” or present in niore tle o one set of structures was something that re-
scarchers at Merck Frosst working with Dr. Fortin had not considered. This is 1n
contrast to our method. which allows multiple links to be established between strue-
tures subsequently giving cach structure a different browsing or linking pathwayv. Sec-
ond. the refinement of computationally derived descriptors (such as nuclear repulsion
energy and origin-invariant nuclear second-moment ) was encouraged so that addi-
tional information about particular features within a structure could he evaluated. It
was highlighted that in some cases, the overall shape or energy of a structure might
be misleading. particularly when cheuiists are only interested i a particular fune-
tional group or combination of atoms. Overall however, the study itself was viewed
as prowising and further work in the arca of automatically clustering. linking. and

summarizing collections of chemic:  structures was encouraged.
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6.4 Summary

Although this chapter is a brief overview ol some of the design considerations. fune-
tional enhancements. and properties found within the data used and generated by the
C'hen-DRSN svstem. it shows that the foundation Taid by the Chem-DRSN svstem
can be casily extended to further support chemical rescareh inoa way that is aligned
with the comprehensive needs of chemical researchers, This in itsell was very encour-
aging. as the work done with Nerck Frosst was completed before development work

on the Chem-DRSM svstem was completed.



Chapter 7

Discussion and Future W-rk

[ order to better organize the conclusions that are made. this chapter has been di-
vided into three sections. The first section discusses conclusions that can be drawn
from the results of the precision-recall evaluation of the similarity measures. the data
obtained through the evaluation of the distribution of the similarity scores. and the
human evaluation of the similarity measures. as shown in Chapter H. The second
section discusses svstem performance issues with the Chem-DRSM svstem. and the
third section discusses further experiments that could be conducted. proposes sugges-
tions for design enhancements and the refinement of the Chem-DRSN svstem. and
presents an overview of what is being conceptually called a National Comprehensive

Computational Chemistry DataBase (NC'C'CDB).

7.1 Conclusions Drawn from Experimental Results

For cach similarity measure (the contextual cosine nieasure. the standarvd cosine mea-

sure and the Tanimoto measure all using the CATI deseriptor and the Tanimoto mea-



sure with chemical fingerprints). three methods were used for evaluation: precision-
recall data (Section H.2.:1). distribution data relating to similarity scores and different
query structures (Section H.2.5)0 and a human evaluation (Seetion H5.3) where ranked
lists produced by each of the similarity measures were evaluated in terms of the simi-
larity of cach item in the list to the query structure and the correctness of list ordering,.

Five different structures were used throughout the lnnman evaluation component. and

the statistical evaluation was conducted using 19 different structures,

7.1.1 Precision-Recall Statistical Evaluation of Performance

In order to determine the precision and recall values for a given chemical structure.
refevance judgements ave required. In the case of the statistical evaluation, the rele-
vance judgements were based on the structures that were exactlv the same (equivalent

canonical SNILES and equivalent InChls).

In terms of recall. all four similarity measures achieved 100% recall bhy assigning,
a score of 1.0 to all the structures that were exactly the same. [lowever, the precision
of the four ditferent similarity measures was different. The measure with the highest
average precision. across the 19 structures, was the standard cosine measure with
an average precision score of 92% (standard deviation of 17%). This is in contrast
to the average precision observed across the 19 structures by the Tanimoto measure
that used chemical fingerprints. where the average precision score was 7H% (standard

deviation of 31%).

Although exact matches can be found using either InChl or canonical SNILES de-
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scriptors. precision scores provides measurable insight into the how acenrate the dif-
ferent similarity measures can be. Too many false positives will serve to dilute the
quality of the results presented to users when they perform searching and browsing,
activitios.  The impact of which can be seen in the analvsis of the distributions of

similarity scores and the human evaulation.

7.1.2 Analysis of the Distribution of Similarity Scorcs

The precision and recall data was generated by assessing the performance of the dif-
ferent similarity measures in their ability to find exact matches. This data. although
important. onty provided a partial picture of the quality of the results produced by the
different similarity measures. By analvzing the distribution of the similarity scores
produced by the ditferent measures. it becotes possible to further assess how gran-
ular the similarity measures are in assessing similarity and identifving, distinguishing,

propertics.

Upon reviewing the similarity scores generated for the 19 query structures as they
compared to the structures within the test collection. it was observed that the stan-
dard cosine measure had a tendeney to he more gramilar in nature when determining
how similar two structures are. as compared to the Tanimoto measure that makes
use of chemical fingerprints. Similar hehaviour was observed when reviewing results
produced by the Tanimoto measure which uses the CATI deseriptors. The fact that
hoth of these measures exhibit similar behaviour leads one to conclude that this be-
laviour is primarily attributed to the nature of the Tanimoto measure where only

the presence / absence of a feature is considered. and not its quantity or statisti-
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cal significance: a conclusion that re-iterates the importance of taking into acconnt
the statistical distribution and weighting of the components being used to determine

sitnilarity.

7.1.3 Results and Observations of Performance from the Hu-

man Evaluation

UUpon completion of the precision and recall statistical evaluation. it was observed
that the standard cosine measure which uses the CATI deseriptors had the highest
average precision across the 19 structures and the simallest varianee when compared to
the contextual cosine measure. the Tanimoto measure which uses the CATI deserip-
tors and the Tanimoto measure that uses Chemical Fingerprints, However. a further
evaluation was required. as even thongh the results could be considered correet in
terms of relevance judgments and precision-recall data. there was still the issue of
the quality of the results that did not score 100% similarity and the ordering of the

results being returned by the similarity measures.

Participants in the human evaluation of these measures were asked to provide two
ditferent tvpes of assessments. The first tvpe of assesstent provided by the study
participants scored the similarity between the search structure and each of the strue-
tures within a list of the first ten structures returned by the measure (structures are
returned by the metric in descending order of similarity score). The second tvpe of
assessment provided by the study participants scored the ordering ability of the sim-

ilarity measure.



According to the results recorded by study participants. the standard cosine mea-
sure which uses the CATIL descriptor found and placed more similar structures in the
first ten structures returned by the measure. Furthermore. the quality of list ordering
provided by the standard cosine measure had a smaller standard deviation amongst
the study participants. and for four out of five of the test structures the standard co-
sine measure had the highest quality of list ordering. as scored by study participants.
For the case where the standard cosine measure did not have the highest quality list
ordering. it had the second highest list ordering score as compared to the other three

similarity measures,

Although lmited. both of these indicators from the human evaluation component
along with the precision and recall information from the statistical evaluation compo-
nent. and the distributions of similarity scores demonstrates that. when considering,
oir test cases. the standard cosine measure produces ranked lists of candidate strue-

tures that are more appropriate.

.2 System Per rmance ifferences

Although the work being presented within this thesis has concentrated primarily on
the results obtained from the four diflerent studies (computational deseriptor thresh-
olds. statistical evaluation of metries. human evaluation of metries. and functional
oronp scarching assessment) there are many other factors to be considered. This

section deseribes sonie of the issues that influence the creation and storage of the
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information required by the different similaritv measures.

7.2.0.1 Storage

The first factor to consider is disk storage space. Indices are required by the two
cosine and the CATI Tanimoto similarity measures. Furthermore, the tvpe of mea-
sure being used can have an infuence on the size of the indices that are required to
be stored. not only on disk but also in main memory during the caleulation process.
Table 7.1 shows the sizes of the di rent indices that are used by cacli of the <imi-
larity measures that are part of the Chem-DRSM svstem. A value for the Tanimoto
chicmical fingerprint nieasure is also shown.  This value has been approximated by
creating the same tvpe of indices that are required by the CATI Tanimoto measure.

except with 128-bit chemical fingerprints as determined by OpenBabel.

Table 7.1: Differences in Storage Reguirements for Different Indexing Schemes when
Indexing [78.17H Structures.

[udex LAll CATI Chientical Fingerprints
type (cosine) (Tanimoto) (Tanimoto)
59 NMDBytes | I8 MBates G.1 NDBytes
Index {(uncompressed) {(uncompressed) tuncompressed)
size 12.7 NMBytes | 14 MBuytes 1.7 NMByvtes
{compressed) {compressed ) (compressed )
317 Byvtes 106 Bytes 36 Bytes
R(‘(lllil'(‘(l space (uncompressed) tuncompressed) (uncomproessed)
per structure ™ Byvtes 26 Byvtes 10 Bytes
(compraossed) (compressed) feampressedy

The results in Table 7.1 mdicate a siegnficant difference i the sizes of the indices

required by the different similarvity mcasures. Even when compression is used. the
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ratios in size still remain constant. with the Tanimoto chemical fingerprint measure
using the least amount of storage space and the cosine measures requiring the most
index space. This is to be expected since the CATI deseriptors are ntore complex
than chemical fingerprints and there is additional information about statistical dis-

tribution of the CATI descriptors that is required.

[ndex space is an important consideration. as computing performance suffers when
the required indices cannot be stored entirely in main memory during, processing,.
The size of the indices required by the two Tanimoto measures are staller than those
required by the cosine measures. but the cosine indices ave a - still quite small when
considering the baseline memory size that is currentlyv available on most comnod-
itv compute servers.  able 7.1 also provides an approximate calculation (mmmber of
structures divided by the size of the indices) that shows e size required [or cach
chemical structure within the indices. Even with the larger disk space requirements of
the cosine measure. it is still less space than the average size of a data file representing

the Cartesian coordinates for a chemical structure (approximately 20408 Bytes).

7.2.0.2 Index Creation

Not only should the size of the indices be considered when designing sucli a svsten,
but processing times should be considered also. As the nuuiber of terms in the
mdex incereases. so does the construction time. This was taken mto consideration
throughont the construction of the Chem-DRSN svstem and is one of the reasons for
its modular design. Not only can the build process he completed without impacting

the similarity measures. but the indices can be constructed in parallel thereby further
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reducing the time required to complete the build process. This is important as data

should be casily accessed and integrated into such a svstenn.

7.2.0.3 Similarity Measure Calculations

Another type of performance issue to be considered relates to the computation of sin-
ilarity scores. The Tanimoto measure is a computationally fast measure as there is
no statistical weighting being considered and only the terms present within the strue-
tures being compared are considered. Although this makes for faster query completion

tinies and smaller indices. it does not do the best job in measuring chemical similarity.

When considering the two cosine measures there are two things that intluence the
time associated with the caleulation of similarity values. First. there is the munber of
deseriptors associated with cach chemical strueture. This not only influences the in-
dex size, which in turn influences the memory requirements. but it also influences the
numnmber of mathematical operations reguired to produce the similarity score. iven
a small ditference in the number of terms. in this case coutextual vs. standard. can
influenee the muuber of summations required in the cosine caleulation. Second. the
nature of the similarity measure being used also influences computational time re-
quirements.  As already observed and discussed. the Tanimoto measure has fewer
calculations that need to be completed. as compared to the cosine measures. before
a similarity score can be determined. The cosine measure has already demonstrated
itself to be a very thorough vet computationally intensive measure of document sim-

itarity in the arca of Information Retrieval [1].
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[However. there are measures that approximate different values within the cosine
measure and the resulting approximate cosine measure has the ability to decrease
the number of calculations that are required. which in turn decrcases the compnta-
tion time. One example of such an approximate cosine measure is the work done by
de Kretser et al [69]. In de Kretser's work. the components of the weighting value
that require any data pertaining to the frequency of a deseriptor with respect to the
entire document collection is approximated using a logarithinic value. This tvpe of
approximation has two major benefits. First. the reduction of computation time to
determine the similarity of a query and a document. Second. less maintenance is re-
quired when building colleetions and collection indices as the process of determining,
low many structures have a given property {a process that would need to be redone
every time new data is added) would no longer need to be completed. Although this
tvpe of cosine measure approximation work has been done within the context of lun-
elish language and textually based information retrieval. it has not been applied to
chiemical information retrieval. This area is of interest for future work as the measures
used in the evaluation were just simple adaptations of the cosine measure that used
standard weighting schemes with CATI deseriptors. Special CATI-based measures
need to be turther developed in order to take advantage of the unique properties
and characteristies that are found in chemical structures. and the information. hoth

topological and computational. that is contained within them.

One possibility for extending the accuracy of the CATI based measures could in-
volve the combination of topological infornation and computational information to

form one single measure instead of having to have a topological term-based measure
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that is further refined using computationally derived information. Another arca for
consideration is to use the presence and absence of general topological features. such

as the number of rings. to improve similarity assessients.

7.3 Future Work

The results obtained from the evaluation of the Chem-DRSN system are encouraging,.
Although there are arcas where the results can be extended and refined. the results
nonctheless show a great deal of promise with the work discussed thus far. This
section presents three different avenues for future work involving the Chem-DRSNL
The first subsection comments further on the hnman evaluation and discusses pos-
sible extensions of this work. The second subsection outlines arcas where the initial
investigation of the Chem-DRSN svstem could be extended. and the third subscetion
discusses arcas for the modification and extension of the Chem-DRSNM svstenn. along
the proposition of a National Computational Chemistry DataBase (NCCCDB) that

could be used to assist computational and chemical researchers on a very large scale.

7.3.1 Extending the Human Evaluation

Although the results relating to the Human Evaluation are quite encouraging. there
is more work that can be done to build on the results obtained thus far. Firstly.
it is important to point out the demograplics of the subjects participating in the
study. Even though there were chiemists from many different disciplines. there was a
noticeable lack of medicinal chemists and biologists from the subject population. It is

important to consider extending the Human Evaluation to include medicinal chemists
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and biologists as this tvpe of functionality offered in the Chem-DRSN system would

bhe very usetul for them.

Furthermore, it is worthwhile to consider further studies involving the assessnient
of the ranking algorithms. One option mav be to give subjects a unranked list of
structures and ask them to rank the structures themselves. then comparing the re-

sulting list to those produced by the different similarity measures,

7.3.2 Further xperime :s involving the ‘hem-DRSM sys-

tem

There are o number of arecas where refinements and extensions to the investigation
conducted in this thesis woul  bhe appropriate. The first area relates to the test col-
leetion of structures that are used for testing and evaluating information retrieval
performance. The most difficult part about the precision-recall evaluation was the
process of determining appropriate relevance judgements.  he relevance judgements
used could be considered restrictive as the judgements were made by two deseriptors
that are designed for finding exact structural matches (InChl and canonical SNILISS)
instead of heing assessed ina standard wav by experts in the tield of chemistry, It
would be useful to undertake the process of designing a purpose built test corpus for
testing these different chemical similarity measures, something that could possibly

follow a similar model to the TREC (Text Retrieval Conference) initiative [70].

Another area that warrants further investigation is the notion of establishing clusters



and links within collections of chemical structure collections based on the results from
the different similarity measures. As presented in Section 6.3. there are very definite
real-world applications that could benefit from the assistance provided by systens
that assist with the organization and clustering of groups of chemical structures. Im-
plementing experiments to test and evaluate the clustering abilities of the diflerent
chemically based similarity measures would certainly be of interest and relevance to

the work presented in this thesis.

Related to experiments that extend the results from chemically bhased similarity
measures would be additional experiments to determine if there are appropriate ap-
proximations that could be made within the various measures, as discussed in Sec-
tion 7.2.0.3 and if any correlation could be determined between the resulting similarity

scores and the activity of a given chemical structure.

A preliminary investigation was condnceted to examine the correlation between AIDS
activity and similarity scores produced by the standard cosine measure with the
CATI desceriptors and the similarity scores produced by the Tantmoto nieasure that
uses chemical fingerprints. he National Cancer Institute has AIDS activity data
for ~25.000 of the chemical structures that are found within the test colleetion that
has been used throughout the evaluation of the Chent-DRSAN svsten. These 28.000

structures are classified either as active.  oderately active or inactive.

As a performance indicator for the initial study. results from a separate study by

Martin et al [T1] were used. According to the work done by Martin. there is only a
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309 chance that structures with a similarity score of 854 or greater. as assessed hy
the Tanimoto measure with chemical fingerprints to an active structure. will them-
selves e active. As such. the threshold of 85% or greater was used in this initial

mvestigation.

An initial analvsis of the ~28.000 structures used for this preliminary investigation
revealed that only 185 of the ~28.000 structures were classified as active. When using,
the Tanimoto measure with chemical fingerprints none of the active structures within
the test collection were assigned a score of .85 or greater when they were compared
to the query structure (randomlby chosen out of the 185 active structures). This is in
contrast to the standard cosine measure with the CATIL deseriptors which assigned
a score of 0.85 or greater to 15 of the active structures. This represented a preci-
sion of 24% and a recall of 8%, Even though additional work needs to he completed
to fully and quantitatively evaluate the relationship between the different similarity
scores and the biological activity of a chemical structure. this initial result shows
promise that the standard cosine measure with the CATI deseriptors may bhe able to

successfullv identify candidate structures that have a simitar biological activity,

7.3.3 Future Develc mc t and Applications

There are a munber of potential applications for the Chem-DRSN system. The initial
integration of the Chem-DRSM svstem into a prototype comprehiensive computational
chemistry database. as shown in Chapter 6. has identified a number of areas where
cnhancements and refinements of the current Chem-DRSN svstem could be made.

Similarly. this prototvpe comprehensive computational chemistry database has high-
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lichted arcas where this tvpe of svstem. if deploved on a large-scale. conld be of great

henelit 1o a large number of researchers.

This subscction has two parts: the first part discusses possible enhancements and
design changes to the Chem-DRSM svstem. and the second part discusses strategies
and suggestions as to how the prototyvpe svstem in Chapter 6 could be extended to a

large-scale resouree,

7.3.3.1 Chem-DRSM Version 2.0

There are a munber of arcas  here the performance and design of the Chem-IDRSN]
svstem could he improved.  However. these performance enhancements and design
changes were not realized and deemed feasible until after the mitial prototvpe svs-
tem had been tested and evaluated. The first area for improvement involves how the
indices are created. maintained and stored. The current architecture of the Chem-
DRSMI svstem cmploys a very simple index module. All the indices arve ereated in the
form of tab-delimited text files. Tab-delimited files are useful sinee not only are they
casy to read and process. but they are casily imported into relational databases. Sim-
tlarlv. queries from relational databases can also be returned in tab-delimited form.
Based on the experimental and performance results observed with the Chem-DRSN
svstem thus far, a logical progression in the evolution of the svstem would be to store
thie built indices in a relational database that has the same logical design as what has

been implemented with the indices in the Hat-file format.

Another arca to he considered is the integration of the build process and the user
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search process with the schedulers that are used on large scale computer clusters. By
integrating the job schedulers during the build process and the information extraction
phase. both processes can become even more automated than thev are now. Also by
dyvnamically integrating with the job scheduler. the job scheduler would be able to
determine the optimal method for the processing of the information instead of having

a fixed algorithim that limits how the work can be distributed.

The final two revisions relate to the user-experience with the Chem-DRSM. Clon-
sultations with users will need to take place to ensure that appropriate web-based
interfaces are designed to support the functionality found within Chem-DRSN svs-
tem. Currentlv. interaction with the Chenm-DRSM svstem is done through a textually
hased shell interface and seript tles. This can be casily extended through the use of
a dyvnamic laneuage such as Python or through the use of 1P code to integrate
with a suitable web-based interface. Consultations with both technical designers and
chemists will be reguired to ensure maximum usabilitv. Also. the same seript files and
shell interfaces can be extended to support an automated batelr interface that can be
used for the importation of large data collections and the automated importation of

chemical information as it becomes available.

7.3.3.2 National Comprehensive Computational Chemistry DataBase (NC-
CCDB)

The work presented throughout this thesis highlights the strengths of the Chem-
DRSN svstem and how it can be used to support chemical research. As mentioned

i the introduction of this thesis, it is envisioned that a nation-wide, and eventu-
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allv worldwide. resouree of this kind will not only be a source of information for
researchers. but it would also be an intelligent svstem that could antomatically col-

leet and classifv both public domain and user-contributed data.

By providing a solid foundation for data management. namely the NMulti-C'oniponent
Data Representation scheme. that is combined with intelligent searching and hrows-
ing tools. such as the similarity measures within the Cheni-DRSA system. the goal of
establishing a highlyv reliable chiemical resouree that extends hevond the realm of just
experimental or patent data is now one step eloser to becoming a reality. This thesis
has demonstrated various applications of the tools within the Chem-DRSM svstenn,
and it has also shown that there are cases where the Cheni-DRSN svstenn vields
results that are as good as or better than the results (as assessed both statistically
and by test subjects with expert level chemistey knowledge) vielded by the Tanimoto

measure with chemical ingerprints (an industry standard).
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Appendix A

Statistical Data

The histogram data for the distribution of the query result scores when using the
statistical evaluation test structures with the different similarity measures is shown
in Tables AL to A 19, The discussion pertaining to these results can be found in

Chapter 5. Section 5.2,



Table ALT: Distribution of similarity scores produced by different similarity measures

when structure NSC' 31564 is the query.,

[nterval

Cosine
P CATH
Chem-DRSA

(Contextual

Fquation (1.7)

COSIe
(Standard + CATD
Chem-10 S\

Fquation { 1.6)

1.00
.95
.90
0.8)
(.80
0.75
0.70
0.65H
0.60
0.55
(.50
0.4
0.-10
0.35
.30
(.25
(.20
0.15
0.10
0.0H
().00

111
19
190
1527
21206
H20
0027
IH879
21666
12445
64419
3428
29978
L1142
1957

1264

O
O
16
22
0O-1
1607
109
144
122
139
hil
2789
3585
1329
6171
9505
12857
L5714
19482
25328
TT109

Tanimoto
(CATH
Chem-DRSN

Cattion (3.1

Tanmnoto
(chemieal fingerprints)
OpenBabel

Fquation (3.1)

12
280
190
NG
376
162
1OS
350
1H5H2
21206
21336
62210
32330
206062
206830
TR0
6910
569006
OO
46H8S
OS7TTS

12
0
0
S
|
I
IS
28
606
104
a2
300
1HOS
3981
184
31198
61052
79836
390H2
HH8206
220684
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Table A.2: Distribution of similarity scores produced by different similarity measures
when structure NSCE3H22 0s the query.

Interval

COSHIe

(Contextual 4 CATI

Chem-DRSM

lquation (1.7)

COSIe

(Standard + CNT

Chem-DRSN

Fquation ( 1.6)

Tanimoto
(CATD
Chem-DRSNI

Fquation (3.1)

Tanimoto

{chemical tingerprints)

OpenBabel

Fquation i3.1)

1.00
0.95
(.90
(.85
0.30)
0.7H
0.70
(.65
0.60
(.55
(.50
0.-1H
(.40
0.35
(.30
(.25
.20
0.1H
0.10
0.05
0.00

6
0
0
0

684
H6
1918
10114
20867
4165H1
109267
06H66T
9596

S
8]
11
93
176
337
H7l
911
1163
1495
196N
2695
3279
1089
D269
682
8779
12202
17060
22570

S897H

31
1700
3419
17906
1997
H439
1081
895
H28
301
90
23209
9196
1616
232
17733
1861
60
3
0
TO48Y

S
0
0
0
I
0

HH620
3H69




Table A3: Distribution of similarity scores produced by different similarity measures

when structure NSCI3SS is the query.

COSIe cosie Tanimoto “Lanimoto
Interval | (Contestual + CATD | (Standard « CATD) (CAT) [ehemieal fingerprints)

Chem-DIRSM Chem-DRSA Chen-DRSM OpenBabel

Fquation (1.7) lquation (1.6} Iquation (3.1) lquation (3.1)
1.00 9 9 9 )
(.95 0 | (
(.90 () T 34 ()
(.87 0 33 121 0
(.80 2 90 837 |
0.7H 25 171 1776 4
0.70 32 22(0) 920 40
0.65 129 203 159 119
.60 459 386 281 808
0.55 TOT 379 105 1192
.50 3559 171 101 1186
0.45 1013 652 1130 3185
0.10 11534 87Y 2323 9750
.35 19689 1441 n381 12630
0.:30 29012 2312 13207 15316
0.25 H0990 1909 280067 21916
.20 54085 0316 22614 25689
0.15 47793 14307 283060 31722
0.10 33192 22043 219047 30079
0.05 T8AT 350006 29770 11683
0.00 1108 84291 20360 9464
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Table A 1: Distribution of similarity scores produced by different similarvity measures

when structure NSC'IH2324 is the query.

Interval

Cosine
(Contextunal 4 CAT
Chem-DRSM

lequation (1.7)

COSIe

(Standard + CATH

Chem-DRSNI

Igquation (1.6)

Tanimoto
(CATI
Chem-DRSNI

Lquation {3.1)

Tanimoto
{chemical fingerprints)
OpenBabel

Eqguation (3.1)

1.00
0.95
0.90
0.85
(.30
0.75H
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
.20
0.15
0.10
0.05
0.00

N
11
12214
0688
2651
2690
Snin
13467
“)219
(7202
107251
26519
1364

—

=1

15
0
33
60
116
213
318
H20)
83
1237
1194
1929
2697
3565
HOHY
7243
10291
11960
12978
9660
107969

161

n
3654
2302
il
222
26296
3195
8T
13710
096
6473
912
114
43

137
!
3h1
166
0
1852
1801
6R36
11024
15029
15980
30719
84143
97068




Table A5 Distribution of similarity scores produced by ditferent similarity measures

when structure NSC L3096 is the query.

Interval

COSIe

(Contextual + CNTD

Chem-DRSA

Feaguation (1.7)

(Standard -

CORINe

Chem-DRSA

Iquation  L6)

AT

Tanimoto
(CATD
Chem-DRS)N

Fquation (3.1

Lanmoto
tchemical fingerprints)
OpenBabel

Foquation (3.1

1.00
0.95
0.90
0.85
0.80
0.75H
0.70
0.65
0.60
.55
0.50
0.-15
0..10
0.35
0.30
0.25
0.20
0.15H
0.10
0.05
0.00

23
63
2063
692
2038
3639
10528
13650
2087H
H0465
48510
10389
32800
15030
JIad

3
N
31
16
112
[6Y
203
165
673
SHN
1030
1655
2437
3091
1367
8308
7.7
28191
33892
31TTH

10578

N
337
TH0
172
2675
2719
4531
3112
IRTR
4301
6683
2392
2802
2018
39389
d1-132
22721
2191
NITH
7912
4981

S

0

S

Il
37
H6
134
212
639
11
3121
3110
S 130
1047
21463
BATIS
31262
23096
11637
H162

9194

162




Table A6 Distribution of similarity scores produced by different similarity measures

when structure NSCUL6TH30 is the query.

Interval

cosine
(Contextual + CANTD
Chemn-D RSN

liquation {1.7)

cosine
(Standard + CXT
Chem-DRSM

Iiquation (1.6}

Tanimoto
{CANTD
Chem-DRSA

Fquation (3.1)

Tanimoto
(chemical tingerprints)
OpenBabel

lquation (3.1)

1.00
0.95
0.90
.85
.80
0.75
0.70
0.65
0.60
0.55
0.50
015
.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
(1.00

206

1165
2773
D035
3381
65194
Y6066S
30502

112
216
123
B
1023
1460
1938
2605
3722
48933
67hH1
9H08
12797
16427
21056
23299
17919
D314

13729
3006873
11637
6O
2100
| 8GO
1719
1283
1OL7
06
H65H
113
430
183
185
Tl
13
0
39723
()
9221

-

D
0
0

38H
0
1309
{)
2694
11572
28057
18247
52009
21449
S812

163




Table A.7: Distribution of similarity scores produced by different similarity measures

when structure NSCHHLT65 1s the gnery.

COsINe COSINe Tanimoto Taninioto
[nterval | (Contextual £ CATH | (Standard + CAT1) (CATD (ehomical fingerprints)

Chem-DRSN Chem-DRSM Chem-DRSNI OpenB3abel

Equation (.L.7) lsquation (1.6) liquation (3.1) liguation (3.1)
1.00) 19 9 13 9
0.95 0 173 0
(.90 0 20) 426 0
(.85 35 49 825 17
(.80 68 Y 1773 0
0.7H 106 143 902 97
0.70 320 173 196 30
0.65 325 223 136 378
0.60 1059 341 14 Sh2
0.55 1213 331 6HE9 362
.50 D661 693 T30 3811
0.45 5417 1042 nES8H 2973
0.40 11382 1189 11524 5601
0.35 180806 2502 9021 6OI11
0.30 34111 3475 13614 11967
0.25 n1655 1773 3H99 20247
.20 H0749 06985 2979 27373
0.15 43648 11320 82 37440
0.10 28826 15697 37657 37H01
0.05 5901 20395 0732 14430
0.00 1427 FOK3S2 18917 S146
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Table A.8: Distribution of similarity scores produced by different similarity measures

when structure NSCTG9899 is the query.

[nterval

CosIe
(Contextual + CATIY
Chem-DRSN]

Equation (17

1.00
0.95
0.90
0.35
0.30
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0
0
11
0
43
S
Gl
313
697
900
3573
3573
9401
16712
28145
506726
063083
H0-402
TTUNT
1017

H3T

COSINe
(Standard 4 CAT
Chem-DRSN

Joemmntiom 11 .¢)

Tanimoto
(CATT)
Chem-DRSN

Fquation (3.1)

Tanimoto
(chemieal fingerprints)
Openbabel

Laquation (3.1)

L

N2 I )

1
32
84
229
347
YRS
1024
1874
2781
4120
5513
8255
12313
1787
23848
30017
33993
35304

§)
9
33
28
229
L1117
1140
LI79
H308
153839
100241
1127
T2
14674
3H181
33616
11962
11046
12132
81506
Hld

165

6
0

1
1

(8]

12
3
TS
233
3706
1051
1180
3577
6OTT
123006
24611
BESEN
41737
30234
10111
11501




Table A9 Distribution of similarity scores produced by different similarity measures

when structure NSCHIT0347 is the query.

Interval

COSIe
(Contextual 4 CA'T)
Chem-DRSA

liquation ( 1.7)

COSIe

(Standard  CNTT)

Chem-DRSNI

Fquation (1.6)

Tanimoto
(CATD
Chem RSN

Fquation (3.1

Tanimoto
{ehemical fingerprings)
OpenBabel

Fonation (3.1)

1.00
0.95
0.90
.85
(.80
0.7H
0.70
0.6H
.60
0.5
(.50
(.15
0.-10
0.30
0.30
0.25
0.20
0.15
0.10
0.05
(.00

13
0
4
0

1087
26299
0111
1337

0
1
41
41
IS
2()
16
184
308
487
709
812
96-1
1132
1103
1257
237H
6285
12942
2081
119597

12
18]
23
21
O
211
3292
HHi3s
HOYS
S84
398
106
22
16
300 1
31238
17836
12280
13740
130810
11374

[
0
0
206
0
A8
20
184
174
HT0
202
BREN]
820
15126
23650
45076
61136
O
73394
29272
18572

166




Table AL10: Distribution of similarity scores produced by different similarity measures

when structure NSC 209826 1s the guery.

COSIe cosine Tanimoto Tanimoto
Interval | (Contextual + CATH | (Standard + CATIY (CATT {chemical fingerprints)

Chemn-DRSA Chem-DIRSA Chem-DRSAL OpenBBabol

Fguation (1.7) Fgnation ( 1.6) Fquation (3.1) Iquation (3.1)
.00 N S & S
0.95 0 | 16 0
.90 ( | 315 h
(.85 (0 17 936 0
0.50 S 107 2528 12
0.75 S 2805 1395 B
0.70 0 123 5653 69
0.6H 10 ' 0717 172
(.60 S 1103 13709 H01
0.55 150 1732 15509 716
(.50 T8Y 2593 1 1959 1937
0.-15 938 3695 17027 1713
(.10 3267 H05H-1 T8I 1991
0.35 8630 TO1T 22205 82406
(.30 16364 9501 1870 12930
0.25 11329 12650 1182 26239
0.20 68639 16056 11063 30:139
0.15 2064 20187 117 31378
0.10 38831 22959 0 26695
0.05 9243 260502 1OSTT 21455
0.00 1482 47718 24051 105933




Table A.11: Distribution of similarity scores produced by different similarity nmeasures

when structure NSC 210746 1s the query.

cosine cosine Tanimoto Tanimoto
Interval | (Contextnal + CATH | (Standard 1 CATI) (CAT] (chomical fingerprints)

Chem-1YRS)\ Chem-DRSM Chem-DRS)M] Openliabel

Fquation ( 1.7} Faquation ( 1.6} Equation (3.1) Fquation (3.1
1.00 9 9 9 9
0.95H {) | 11 0
(.90 T 13 ] 9
(.89 { 22 37H 3
(.80 36 172 Ko 32
0.7H Tl 200 1810 111
0.70 112 308 1181 215
0.65 251 673 9285 320
(.60 1032 1316 12180 830
0.5 2013 2191 14803 1638
(.50 SIS 3530 I 8H86 3191
0.15 9722 D311 15083 1621
0.0 26161 7290 13798 10110
0.35 32329 10296 17415 17578
0.30 36073 13 106 11609 26093
0 49707 1GH8S 11351 30. .06
0.20 12311 18999 11268 20183
0.15 RARA 21979 9882 21353
0.10 17338 R 9816 11290
.05 1323 20265 BUYE 7728
(.00 917 32191 9844 9512
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Table A12: Distribution of similarity scores produced by ditferent similarity measures

when stracture NSCIN309 1s the query.

Interval

COSINe
(Contextnal + CNTDH
Chem-DRSA

[quation (1.7)

Ccosie

(Standiad <+ CNT)

Chem-DRSN

Fqguation ( 1.6)

Tanimoto
(CATT)
Chem-DRSA

Fquation (3.1)

Tanimoto
tchemical fingerprints)
Opentiabel

Iquation (3.1)

1.00
0.95
0.90
(.85
(.30
0.75
0.70
0.65
0.60
0.55
.50
0.5
0.-10
.35
0.:30
0.25
(.20
0.15
0.10
0.05
0.00

20
()
06H
()
17&
289
201
(600
1508
1883
5550
1523
11147
|
29023
N3H82
H3211
43044
28648
6789
1129

O

200 |
2762
3912
5106
7010
955-1
12811
17H&1
22050
27T
29753
24290

13
18033
He97T
891
97H6
9711
[123]
13684
13970
13514
L1813
LTH8H
10008
13380
9091
H5H19
(289
218
1
9005
5100

17hH
0
0
332
157
829
257
1509
20143
2703
8291
0H8:
133933
17919
25412
32770
2.45h25
16600
9833
OIS
ST3H

169




Table AL 13: Distribution of similarity scores produced by different similarity measires

when structure NSCULISSO is the query.

Interval

COSINe

(Contextual + CAT)

Chem-DRSN

Fquation ( 1.7)

COSINe

(Standard + CAT

Chem-1RSN

lquation ( 1.6)

Tanimoto
(CATDH
Chem DRSNS

Lquation (3.1

Tanimoto
(chemical tingerprints)
Openbabel

Iepuation (3.1)

1.00
0.95
.90
(0.8
(.80
0.7H
0.70
0.65
(.60
0.55
0.50
0.-15
0.40
0.35
0.30
0.25
.20
0.15
0.10
(.05
.00

S

9
11
31
n3
158
151
576
603
3-105
3265
8289
15430
23395
H4082
(63834
Ho411
245068
4420
969

O
O
35
O
138
205
400
Sl
1237
Lo
26706
3795
5049
(6581
773
11019
13719
16962
2123
29-H06
A2

{
~h
465
993
2119
4750

==

R
LTINS
11169
7703
16319
8123
12101
16427
7603
[-159
42549
2271
JA8
[6G3HS
4HO

10
0
0
17
19
52
179
3h
DN
729
3172
2902
D120
911N
13682
23603
26740
239065
10025
18022
9151

170




Table A 1L Distribution of similarity scores produced by different similarity measures

when structure NSC'H25079 is the query.

COSICe cosine | Tamnoto Tanimoto
Interval | (Contextual 4+ CATH | (Standard & CATD (CAT {ehemical lingerprints)
Chem-DRSA Chem-DERSA Chem- DRSA Openlabel
Equation (1.7) Iquation (1 6) Fquation (3.1) Ilquation (3.1)

1.00 3 3 3 4

0.95 0 3 116 0

0.90 § 27 1210 16

0.85 15 17 2249 0

(.80 Hs 169 1492 114
0.75 151 310 SHNT 106
0.70 3T 602 10121 197
0.65 452 970 11784 1301
0.60 1147 1608 13943 3280
(.55 1897 2843 11033 4369
0.50 LIS 4230 12747 12655
0.15 SHAT N391 138106 9273
0.40 222497 7220 I8H1T 20424
0.35 30508 0721 18131 22170
.30 37944 12503 19444 21929
0.25 19139 1HOIS 11680 9008
0.20 SO487T 19112 2914 18977
0.15 31527 222033 1389 11..38
0.10 3T 21100 559 9343
0.05 5174 239506 D113 4453
0.00 1072 27370 3914 T8H2
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Table A 15 Distribution of similarity scores produced by different similarity measures

when structure NSC 623441 is the query.

Interval

COSHIEe
(Contextual + CANTD
Chem-DRSN

Fquation ( 1.7)

COSIIEe

(Standard + CNT

Chem-DRSM

quation ( 1.6)

Tanimoto
(CNTD
Chem-DRSA

Isquation (3.1

Tanimoto
(chemical Hingerprints)
OpenBabel

Equation (3.1)

1.00
0.95
0.90
0.85
.50
0.7H
(.70
0.65
0.60
0.55
0.50
0.45
0. 10
0.35H
0.30
0"
0.20
0.15
0.10
0.05
0.00

22

13233
25
u)rj

<1t

=1

94
10312
366
20108
20776
37810
H0-160
1T940
32383
15512
4371
1003

3
37
104
22
127
TS
1021
1173
2078
2818
3686
1634
6009
En
9925
13001
16859
21117
25188
23176

37H72

26
1170
AR825H
179
TTIS
13172
9216
12196
18001
18020
TNT
TOS0
6037
1672
1170
109
20-19
8601
1178
12302

1727

T
0
0

17991
29251
30325
24513
[GYS2
10816

TOTH




Table A 16: Distribution of similarity scores produced by different similarity measures

when structure NSC 26613 is the query

Interval

COsIe
(Contextnal + CANTD
Chem-DRSN

Equation (1.7)

cosine

(Standard + CANTT)

Chem-DRSN

Iquation { 1.6)

Tanimoto
LCNT
Chem-DRsN

Lquation (3.1)

Tanimoto
tehemical tingerprints)
OpenlBabel

quation (3.1)

1.00
0.95
0.90
().8)
().30)
0.7H
0.70
0.65
0.60
0.59
(.50
0.15
0. 10
0.35
.30
0.25
(.20
0.15
0.10
0.0h
(.00

O
0
28
0
91
202
213
599
1617
20006
6076
HT0H
16137
24370
31395
H5161
n3132
33239
21071
4638
1015

3

102
250
108
997
1513
IS810
2115
2451
2979
3620
13068
5219
6710
AINE!
11830
15297
197THY
25314
30231
34124

D

UYS

1366
3239
5116
98 10
9729
11322
109498
12900
125068
SRTS
11319
20070
2685(0)
9391
D10
D1IsY
3191
6006
1168

09
0
296
(0
S19
6O
LIRT
1171
3533
3386
10276
7059
15001
17812
19830
27223
23810
I87TH2
13522
BRUY
8123

173




Table AU17: Distribution of similarity scores produced by ditferent similarity measures

when structure NSC 79367 1s the query.

Interval

COSINe
(Contextual + CATH
Chem-DRSN

ILquation ( 1L.7)

COSIICe

(Standard 4+ CANTD

Chem-DRSM

Fquation ( L6y

Tanimoto
(CATD
Chemn-DRS\

Fguation (3.1

Tanimoto
(chemical lingerprints)
Openbiabel

Iquation (3.1)

1.00
0.95
0.90
0.85
(.80
0.79
.70
0.65
0.60
(.55
(.50
0.15
0.-10
0.35
0.0
0.25
0.20
0.15
0.10
0.05
(.00

13
0
|
0
15
16
S
3-
109
N
1301
1430

D72

12672
27595
6G9H99
61501
12687
26299
G411
1337

—

{
0
13
I
17
83
3()
211
331
HH
Y00
111
2158
3148
5018
7050
9273
11509
15298
26360)
91220

]
Il
H)
20
222
629
I
T35
2000
S126
12116
917s
L3 4]
7131
3136
8029
1305
2H83T
17877
30656
21067

28
30
(69
415
131
2102
2214
1238
TH3h
1871
21130
20718
35065
JOLTT
16277
9720

171




Table AL I8 Distribution of similarity scores produced by dilferent similarity measures

when structure NSC R34 s the query.

[nterval

cosine
(Contextual + CATH
Chem-DRSA

Faquation ( 1.7)

cosine
(Standard -
Chem-DRSN]

Fquation ( 1.6)

CATH

lanimoto
(CNTH
Chem DRSN

Iquation (3. 1)

[animoto
tehemical fingerprints)
Openbiabel

Fquation (33.1)

1.00
(.95
0.90
(0.80
(.80
0.70
0.70
0.65
0.60
.50
0.50
0.-1H
0.-10
0.35
(.30
0.25
(.20
0.15
0.10
0.05H
(.00

Il

2016
1870
1102
6GHGY
13318
306634
61005
TH25H8
4780
S176
1204

=

D
I
H2
G2
208
335
530
946
1494
19:38
2755
3635
4991
(280
TT82
10137
13382
17592
23040
34093
48907

)

95
25
1044
A3
30659
3310
11853
T1H5
10236
15900
9510
(228
1515
Oy
19828
H066H
12238
6371
9271
4303

[
0
35
0
153
276
3606
851
2076
2287
7036
D2
11502
15509
[8515H
28660
265316
21020
18393
TNT0
SS1H




Table A 19: Distribution of similarity scores produced by ditfevent similarity measures

when structure NSC90799 is the query.

[nterval
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Appendir- B

Human val—-ation Data

The data that was obtained from the responses given by participants of the human
evaluation study (Section 5.3) is shown in Table B.1 and Figures BT to 13.22. Personal
information that could identifv study participants was not colleeted and the study
subjects were assigned an ID number based on the order in which thev completed
the various tasks (for example. 1D 1231 corresponds to contextual cosine measure
first. standard cosine measure second. Tanimoto CATT measure third. and Tanimoto
Chemical Fingerprint measure fourth). Table B.1 summarizes the demographic data
of study participants and also shows their ID numbers. Following Table B.1 is all of
the data colleeted for cach of the ") “top ten” hsts. data which i turn was used to
assess the four different similarity measures (Figures B.1 to Bo12). Additionallv. Fig-
ures B 13 to 13,22 show images of the fivst five structures that were returned for each
of the five test structures using the standard cosine measure (Chem-DRSN svstemn)

and the Tanhmoto measure with chemical fingerprints (OpenBabel).



Table 3. 1:

participants.

=

ID number. gender. education and area of specialization of human study

ID | Gender Education Area of Specialization

1234 M I’ 1D (Chemistry) Theoretical

1243 AY| hD (Chemistry) Theoretical / Computational
1324 I ’hD (Chemistry) I’hyvsical

1342 I \IS( (Chemistry) Theoretical / Computational
1123 \Y| D (Chemistry) ’hysical

1132 A \IS( (Chemistry) Oreanic / Experimental
2134 I PhD (Chemistry) Physical
2113 Ay BSe (Chemistry) Organic
2314 I PhD (Chemistry) Theoretical
2341 N MSe (Computational Science) Phyvsies / Condensed Matter
2413 \Y| PhD (Chemistry) Theoretical / Computational
2431 AY| PhD (Chemistry) Physical / Computational
3124 Ay PhD (Chemistry) Theoretical / Computational
3142 \Y| MSe (Chemistry) Physical Chennstry
3211 \Y| P 1D (Chemnistry) Analvtical
3241 M D (Chemistry) Physical / Computational Chemistry
3112 I PllD (Chemistry) Cryvstallography / Inorganic
3421 I PhD (Chemistry) Analyvtical
4123 AY PhD (Chemistry) Inorganic
1132 Ay PhD (Chennistry) Organic / Experimental
1213 Ay PhD (Chemistry) Organic / Experimental
1231 N D (Chemistry) Organic
1312 M I llD (Chemistry) Theoretical / Computational Chemistry
1321 F PhD (Chemistry) Theoretical / Computational Chemistry
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Qoabty 24 3 5 4 & 5 3 1 s & 5 2 2 4 5 5 4 4 4 4 1 5 3 3& 13 472 51

Tanmote A_Vg Avg Metric
(CATI) 1234 4321 1243 1324 1342 2431 1432 2341 2314 2143 3142 3412 1423 2134 3251 4132 4213 4123 4231 2413 3124 3214 4312 3421 2% S User SW o e Exact

Swuct 4 Score Dev Scare Dev o

\7) {7)

41 1 2 4 3 1 2 2 4 1 2 1 2 1 1 5 1 2 1 1 2 4 2 3 t 20 t2 174 33 1000

42 1 2 303 32 1 2 1 1 2 1 1 2 3 2 301 1 2 5 2 3 1 26 19 167 04 1000

4% 1 2 Kl 4 3 1 3 2 2 3 3 2 1 2 4 3 4 1 2 2 4 3 3 1 25 1Y 250 11 1000

a4 1 3 ER 3 1 22 3 3 3 2 1 2 5 4 4 1 22 5 3 3 127 12 278 40 1000

45 1 1 4 3 2 1 2 3 1 2 2 2 i 1 5 2 3 1 1 3 4 2 3 121 12 188 26 100U

46 1 3 4 4 2 1 2 a 1 z 1 2 1 1 [ 4 4 1 2 2 5 3 4 125 15 257 84 1000

7 1 33 3 3z 1 2 333 1 1 1 4 3 5 1 1 2 4 2 3 124 12 228 35 1000

48 2 1 4 3 1 6 1 2 1 2 1 1 1 2 32 22 1 2 302 2 1020 12 157 30 wWO0C

49 1 5 5 4 3 5 2 3 1 2 3 2 1 2 6 3 6 1 5 5 4 3 3 132 17 381 110 1000

$10 2 Kl 2 4 2 5 2 3 3 4 3 2 1 1 6 3 6 1 4 4 El 3 3 3 32 14 31 82 1000

Quaty 1+ 2 2 3 4 2 4 2 3 5 4 3 3 2 4 4 1 & 2 3 4 3 5 3 33 12 375 31

Fabulated human evaluation data for test structures 3 and 4 usine the
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Tanimoto measure with CATI deseriptors that is part of the Chem-DRSN svsten.

Figure B.S:
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Sieure 3.10: Tabulated human evaluation data for test structures | and 2 using the

[animoto measure with chemical fingerprints that is part of the OpenBabel svstem.
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