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Abstract 

Soil and sediment samples collected from PCB contaminated sites in 

Stephenville (soil) and Argentia (sediment) were used to isolate several microbial 

consortia capable of growth on biphenyl medium. These cultures were enriched by 

repeated transfer on biphenyl medium, and laboratory scale experiments were carried out 

to determine the ability of the Argentia consortia to degrade naphthalene, phenanthrene, 

phloroglucinol and toluene, as well as Aroclor 1254. The Stephenville cultures were also 

tested for the ability to degrade Aroclor 1254, using test tube, flask experiments (both 

soil-free and soil slurries) and bioreactor experiments. 

Results show that all of the cultures tested grew on biphenyl medium and several 

of the cultures were able to also degrade P AHs and PCBs. Results of soil slurry 

experiments showed that the addition of enriched consortia plus biphenyl as cosubstrate 

stimulated biodegradation of Aroclor 1254. Growth on Aroclor 1254 was also shown in 

soil-free microcosms by an increase in optical density at 600 nm, as compared with 

controls. Dry weight of cells also increased when compared with controls. A sequential 

anaerobic/aerobic treatment regime was also found to be successful in degrading Aroclor 

1254. 

These results show that indigenous bacteria, enriched by growth on biphenyl 

medium, can be useful in treatment of PCB-contaminated soils and sediments. 
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Chapter 1 

Introduction 

1.1. Polyaromatic compounds in soils and sediments 

Polycyclic Aromatic Hydrocarbons, or P AHs, are organic compounds which 

contain two or more fused benzene (aromatic) rings, hence the term polyaromatics. 

These organic chemicals are produced by a wide range of human activity, such as 

industrial pollution, chemical spillage from manufacturing plants, and incomplete 

combustion of fossil fuels, wood and charcoal (Young and Cerniglia, 1995). Many 

industrial processes produce large amounts ofPAHs synthetically, such as the 

petrochemical industry, which produces gasolines and other petroleum products. PAHs 

are also found in coal tars, wood treating chemicals (such as creosote) and refinery 

wastes (Baker and Herson, 1994; Norris eta!., 1994). 

P AHs are ubiquitous in the environment, mainly as a result of the production of 

petrochemicals. The combustion of fossil fuels can make many of these compounds 

airborne, which can transport them miles away from their source. Compounds which are 

more hydrophobic, once deposited in the soil via precipitation, tend to become adsorbed 

to soil particles (Gibson, 1984). Other compounds are more volatile, and are transported 

through the atmosphere in the gaseous phase. The major sources of PAHs in Canada are 

aluminum smelters and residential wood stoves. Natural sources, such as forest fires, can 
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contribute up to 2,000 tonnes of P AHs to the environment each year. 

Some eukaryotic microbes use mono-oxygenase enzymes to degrade aromatic 

hydrocarbons, and this leads to carcinogenic intermediates. This pathway is also used by 

mammals in detoxifying these compounds. (Ribbons and Eaton, 1982). PAHs have been 

declared toxic under CEP A (the Canadian Environmental Protection Act, 1999) 

(www.ec.gc.ca/pdb/npri). As a result, much attention has been placed on reducing the 

amounts of these compounds in the environment, as well as minimizing the effects of 

human exposure. 

The polyaromatic hydrocarbons selected for use in this study are shown in figure 

1.1. The following sections briefly describe the chemical characteristics for each, as well 

as their incidence and toxicity to humans and animals. 

1.1.1: Toluene in soils and sediments 

Toluene ( C7H8) is a clear, colourless liquid at room temperature. It is highly 

volatile and evaporates easily. It occurs naturally in crude oil and is found in the tolu 

tree. Also it is produced commercially and used as an industrial solvent in the 

production of paints, paint thinners, lacquers, adhesives, rubber and nail polish. Toluene 

is also used in the production of gasoline and other fuels, and the making of coke from 

coal (Smith, 1990; \Vww.atsdr.cdc.gov/toxprofiles ). It has been classified as a priority 

pollutant due to its carcinogenic effects as well as depressing the nervous system 
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(Coschigiano and 

Young, 1997). 

Toluene is also highly soluble in water, so can enter soils and sediments via 

accidental spills, or leakage, from gasoline storage tanks. Gasoline spills and 

petrochemical sludge from industrial plants are the primary sources of environmental 

toluene in soils and sediments (Gibson, 1984; Young and Cerniglia, 1995). Because of 

it's high volatility, toluene can rapidly become airborne and deposited elsewhere, hence 

the ubiquitous distribution in soils and sediments. 

4~' 00 
OH 

HO..©lOH Cl. s e 2' 3' Cl. 

1 ) PCB general structure 3) Naphthalene (C, 0H8) 5) Phloroglucinol (C,H.(OH),) 

@---@ ~ ~ 
2) Biphenyl (C, 2H10) 4) Phenanthrene (C, 4H,al 6) Toluene (C,H8) 

Fig. 1 .1 . Chemical structures of selected hydrocarbons. 
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1.1.2: Phloroglucinol in soils and sediments 

Phloroglucinol (C6HiOH)3) exists as a naturally occurring compound within 

several plant polymers such as flavones, anthocyanins and catechins (Armstrong and 

Patel, 1992). It consists of a benzene ring with hydroxyl groups substituted at positions 

1, 3 and 5 on the benzene ring, so is often called 1,3,5 trihydroxybenzene. 

Phloroglucinol is released into soils and sediments via the decomposition of plant 

material (Patel et at., 1981; Armstrong and Patel, 1994). It is manufactured for research 

purposes only and occurs as an off-white powder with a faint odour. 

1.1.3: Naphthalene in soils and sediments 

Naphthalene (C 10H8) is a dicyclic aromatic hydrocarbon, consisting of two fused 

benzene rings. It is a white, crystalline solid at room temperature. It is highly volatile 

and is commonly used in the production of moth repellants, such as mothballs and moth 

flakes (Young and Cerniglia, 1995). It is also a common component in wood 

preservatives, such as creosote, so can enter soils and sediments through leakage or 

accidental spills at wood treatment sites, or from discarding moth control products in 

municipal dumps (Baker and Herson, 1994; Young and Cerniglia, 1995). This compound 

is relatively insoluble in water, so tends to adhere to soil particles, rather than dissolve in 

groundwater (Leisinger et al., 1981). 

Human exposure to naphthalene occurs via inhalation of tobacco smoke, exhaust 
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from burning wood or fossil fuels, and exposure to mothballs and moth flakes. Exposure 

to large amounts of naphthalene can cause hemolytic anemia (the destruction of red blood 

cells) leading to fatigue, pale skin and lack of appetite (www.atsdr.cdc.gov). However, 

there is no direct evidence that naphthalene exposure leads to cancer in humans. 

1.1.4: Phenanthrene in soils and sediments 

Phenanthrene (C14H10) is a tricyclic compound, consisting of three fused benzene 

rings with no added substituents. Due to the three fused rings, it is far less volatile than 

toluene or naphthalene. It is relatively insoluble in water, so tends to bind to soil 

particles in the environment. It is a major component of creosote, a wood preservative, 

and is also found in smaller amounts in crude oils and petroleum products (Baker and 

Herson, 1994). It is an off-white, fine crystalline powder with a faint odour at room 

temperature. 

1.1.5: Biphenyl in soils and sediments 

Biphenyl (C12H10) is an aromatic compound consisting of two benzene rings 

which are joined at a C-C bond, thus are not fused. Biphenyls can occur in soils and 

sediments via dechlorination of lower molecular weight PCBs, as a component of 

petrochemical sludge, and via industrial spillage or dumping of used chemicals (Baker 

and Herson, 1994; Gibson, 1984). Biphenyl is a white, crystalline powder at room 

5 



temperature, with a mild chemical odour. It is relatively insoluble in water, so tends to 

adsorb to soil particles. This is the parent molecule for PCBs, which are produced by 

direct chlorination of biphenyl. 

1.1.6: PCBs in soils and sediments 

Polychlorinated biphenyls, or PCBs, are a class of aromatic compounds consisting 

of two benzene rings, joined by a carbon-carbon bond, which have one or more chlorine 

atoms as added substitutents. They are produced by direct chlorination of biphenyl and 

are named based on the percentage of chlorine in the mixture. For example, Aroclor 

1254, which is used in this study, has 54% chlorine. The number 12 refers to the number 

of carbon atoms in the two benzene rings of the parent compound (biphenyl). PCBs can 

be lightly or heavily chlorinated. Direct chlorination of biphenyl leads to a mixture of 

different congeners, each containing from 1-10 chlorine atoms per molecule. Mono- and 

dichlorobiphenyls occur as an off-white powder, while the heavier, highly chlorinated 

mixtures are oily in texture. This oily texture leads to adsorption of the PCBs to soil 

particles, increasing the difficulty in remediating contaminated soils and sediments. 

PCBs are ubiquitous in the environment. They occur in soils and sediments as 

a result of improper disposal of used electrical equipment, such as transformers and 

capacitors, and due to incineration ofPCB-laden materials. Due to their hydrophobic 

nature, PCBs usually adsorb strongly to soil particles (Baker and Herson, 1994; Young 
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and Cerniglia, 1995). PCBs released into the environment can have one of several fates. 

They can be weathered, over time, in exposed areas, causing changes in the composition 

of PCB mixtures in the environment. PCBs can become mobile via adsorption to 

particles which become airborne, such as soot, or via water droplets containing dirt 

particles coated with PCBs and thus can be transported long distances from their origin 

(Baker and Herson, 1994). 

PCBs in soils and sediments tend to bioaccumulate in the food chain. PCBs have 

been detected in organisms ranging from bacteria and fungi to fish, mammals and 

humans. As it moves up the food chain, bioaccumulation may lead to toxicity in the 

affected organism. Coplanar PCBs are considered the most toxic, having effects similar 

to dioxins and furans (de Voogt et a/., 1993 ). PCBs are also lipophilic, and as such tend 

to accumulate in fatty tissues. Finley et al. (1997) showed elevated levels of Aroclors 

1248, 1254, and 1260 concentrations in muscle and hepatopancreas of striped bass and 

blue crab sampled from the Passaic River, New Jersey. Surface sediments were 

contaminated with all three Aroclors. 

Winter flounder (Pleuronectes americanus), living near a contaminated site in 

Argentia, Newfoundland and Labrador, have been found to suffer from stress and 

increased parasitism as a result of exposure to PCBs in the sediment (Khan, 1999). 

Leonards et al. (1998) showed bioaccumulation ofPCBs in four species ofmustelids 

(weasel, stoat, polecat and otter) in the Netherlands. The otter was the most sensitive, 
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because of its diet, that consists largely of fish (ibid). Watanabe et a!. ( 1999) showed that 

PCBs are accumulated in the blubber of Caspian seals (Phoca caspica). 

Human exposure to PCBs occurs via inhalation of particles containing PCBs, 

ingestion of soil particles in partially washed vegetables grown in contaminated soil, and 

by consumption of contaminated fish or shellfish. The effects of exposure to PCBs in 

human adults include fatigue, acne, swelling of arms and legs, and increased incidence of 

cancer (Danse et a!., 1997). Guo et al. ( 1995) showed that children exposed in utero and 

early after birth to PCBs and dibenzofurans displayed physical deformities and mental 

retardation. Due to their lipophilic nature, PCBs can be passed from mother to child via 

human breast milk, thus posing a great risk to developing fetuses. Hack and Selenka 

(1996) used a digestive tract model to show mobilization of PAHs and PCBs via 

ingestion. They found that the addition of lyophilized milk doubled the fraction of P AH 

and PCB mobilized. These results show that intake of contaminated food is directly 

related to PCB exposure and subsequent bioaccumulation. 

1.2: Microbial degradation of hydrocarbons in soil 

1.2.1: Factors influencing degradation ofpolyaromatic hydrocarbons in soils and 

sediments 

The degradation of hydrocarbons in soil is dependant on a number of factors, such 

as ( 1) temperature of optimal enzyme activity, (2) pH of the soil matrix, (3) nutrient 
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composition of the soil, (4) moisture content of the soil, (5) bioavailability of the 

substrate to be degraded, and ( 6) the mixture of contaminants present and their 

concentration in the soil. P AHs occur in soils and sediments as complex mixtures of 

many different compounds (Baker and Herson, 1994). 

The temperature of optimal enzyme activity differs for each bacterial species and 

is directly related to the temperature of its natural environment. It was predicted that he 

samples collected from Argentia and Stephenville, Newfoundland and Labrador would be 

psychrotolerant- that is, they would be able to live and grow at low temperatures, but 

also at room temperature (22-28°C). The consortia used in these experiments were 

isolated at room temperature, and degradation experiments were also carried out at this 

temperature. The rationale for this is that enzyme activity doubles with each ten degree 

rise in temperature. Since the compounds being tested are considered, for the most part, 

recalcitrant, or difficult to degrade, the warmer temperature may induce a faster rate of 

degradation than incubation at lower temperatures. 

As temperature decreases, enzymes display a decreased catalytic rate due to a 

reduction in structural flexibility, eventually causing cold denaturation. The rigid 

secondary structure and disulfide bridges, present in enzymes of psychrotrophic 

organisms, are absent in those of psychrophiles, thus making psychrophilic enzymes 

more thermolabile (Nichols et a!., 1999). Morita ( 197 5) used the term psychrotrophic for 

cold-tolerant microorganisms previously referred to as facultative psychrophiles, the 
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maximum temperature for growth being above 25°C. Psychrotrophs are more abundant 

than psychrophiles at low temperatures and are numerous in even permanently cold 

environments. They are also more adapted to changes in temperatures than psychrophiles 

and are more resistant to environmental fluctuations in oxygen and nutrient availablilty, 

which makes them useful in biotechnological applications (Gounot, 1991; Mohn et al., 

1997). Master and Mohn (1998) showed that PCB degradation rates were higher in 

cultures incubated at 20°C than at lower temperatures, even in samples collected from 

Arctic and subarctic sites. Due to the recalcitrant nature of some P AHs and PCBs, any 

factor, such as increased temperature that can increase the rate of degradation, would be 

beneficial to the treatment of contaminated sites. 

The pH of the soil also plays a role in degradation of organic pollutants in the 

matrix. If the pH of the soil becomes too acidic, because of the buildup of intermediates 

of hydrocarbon metabolism, the bacteria in the soil may not be able to function as 

effectively in remediating the selected compounds. Research has shown that the rate of 

biodegradation of PCBs and P AHs in soil is higher at neutral pH than in acidic conditions 

(Baker and Herson, 1994 ). The nutrient composition of the soil is also important in 

providing a basic carbon source to allow the proliferation of hydrocarbon-degrading 

microbes. Psychrotrophic organisms tend to be zymogenous, moving into and colonizing 

a contaminated area to exploit the carbon source. Once the population has increased, the 

presence of the hydrocarbons could then stimulate the enzyme systems necessary to 

10 



degrade the compound in question. Co-metabolites are often added under laboratory 

conditions to stimulate growth of the desired microorganisms. During the research 

carried out in this study, biphenyl was added as cometabolite in some of the PCB­

degradation experiments to stimulate the bacterial consortia to produce the enzymes 

necessary to degrade the PCBs. This is a very useful cometabolite for use in the lab but 

can be toxic to living systems. In the environment, nutrients can be added to the soil (a 

process called biostimulation) to help the degradative process. Master and Mohn (1998) 

demonstrated that the addition of linoleic acid or pyruvate to the culture medium 

stimulated an increased percentage removal of PCBs in laboratory microcosms. 

The moisture content of the soil is also a major factor affecting the rate of 

biodegradation. If the soil is too dry, the bacteria cannot travel easily to the source of the 

pollution to effect degradation (Baker and Herson, 1994). Instead, they become 

localized, or stuck to soil particles, which slows down the rate of degradation. The use of 

soil slurries in the laboratory allows for maximum exposure of the microbes to the 

compounds of interest. Bioavailability of the compounds in the soil to the degraders is 

one of the most confounding factors to environmental biologists and engineers. Because 

the higher molecular weight compounds are extremely hydrophobic, and are often tightly 

bound to soil particles, conditions such as low water content in the soil reduces the 

bioavailability of the substrate. Some bacterial species produce biosurfactants, or 

emulsifying agents, which can render the compounds more soluble and thus increase their 
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rate of degradation (Alexander, 1994; Baker and Herson, 1994). Surfactants have also 

been used in degradation experiments in laboratory microcosms and were found to aid 

the degradation process (Baker and Herson, 1994). Triton X-100, a nonionic surfactant, 

is also used in extraction of PCBs for GC analysis. The addition of this surfactant 

increases the extraction efficiency for high molecular weight PCBs (Bedard et a!., 1986). 

The mixture of contaminants present in the soil also affects the rate of 

biodegradation. Complex mixtures, such as pesticides, BTEX compounds, creosote and 

coal tar are much more recalcitrant to degradation than a soil contaminated with a single 

type of hydrocarbon. Some compounds may be too concentrated, making it toxic for the 

naturally occurring biota. Lower molecular weight compounds are more easily degraded 

than those of high molecular weight. Also, the number of substituents appended to the 

ring(s), especially highly halogenated compounds (such as PCBs) are more resistant to 

biodegradation (Alexander, 1994; Baker and Herson, 1994; Gibson, 1984). Thus, it is 

important for the researcher to know the chemical composition of the soil before 

attempting any remediation strategy. 

1.2.2: Microbial degradation of polyaromatic hydrocarbons 

in soils and sediments 

Microbial degradation of polyaromatic compounds has been shown to occur 

under laboratory conditions as well as in situ (Leisinger et al., 1981; Young and Cerniglia, 
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1995). Compounds with fused rings, such as naphthalene and phenanthrene, are more 

difficult to degrade than toluene which is composed of a single benzene ring with an 

added methyl group. Toluene is also much more volatile than naphthalene or 

phenanthrene. Volatility is measured by Henry's Law constant, or KH The higher the 

value, the higher the volatility of the compound. Henry's Law constant is given by the 

following equation: 

KH = p/c 

Where p =partial pressure ofthe gas, and c =molar concentration. Toluene is the most 

volatile ofthe compounds used in this study, with a Henry's Law constant of6.3 x 10-3
• 

Naphthalene is next, with a value of 4.1 x104
, and phenanthrene is least volatile, with a 

Henry's Law constant of2.5 x 10-5 (Norris et al., 1994). Di- and tricyclic aromatic 

hydrocarbons are extremely insoluble, and tend to adhere to soil particles, making them 

less available for degradation (Leisinger et al., 1981 ). Increasing the number of aromatic 

rings also makes them more difficult to degrade, thus naphthalene is easier to degrade 

than phenanthrene (Baker and Herson, 1994, Leisinger et al., 1981 ). 

Cometabolism also plays an important role in bioremediation of higher molecular 

weight compounds. Some of the bacteria will utilize one intermediate compound, but not 

others in the degradative pathway. Enrichment of an indigenous culture by growth on a 

similar parent molecule also has the potential to increase the rate of degradation of that 

compound (Alexander, 1994; Young and Cerniglia, 1995). Benzene is the parent 
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molecule from which all aromatic molecules arise. Important intermediates of benzene 

metabolism are catechols, which are bright yellow compounds consisting of two 

hydroxyl groups on the benzene ring. These chemicals and their derivatives can be used 

to make synthetic flavours, such as vanillin (Smith, 1990). 

1.2.3: Microbial degradation of PCBs and biphenyls 

in soils and sediments 

Biodegradation of biphenyl, the parent molecule ofPCBs, is relatively easy to 

accomplish because of the lack of added substituents. Bacteria from sediments in the 

Hudson River have been shown to degrade mono- and dichlorobiphenyls (Harkness et 

al., 1993). The more chlorine atoms added to the benzene rings in the nucleus, the lower 

the rate of degradation, with the pentachlorobiphenyls, the major component of Aroclor 

1254, and hexachlorobiphenyls, the major component of Aroclor 1260, being more 

resistant to degradation (Furukawa, 1982). Coplanar PCBs are the most resistant to 

degradation because the folding of the molecule leads to steric hindrance, preventing the 

degradative enzymes from reaching the appropriate binding sites (de Voogt eta/, 1993). 

Thus, degradation of higher molecular weight Aroclors requires a sequential 

anaerobic/aerobic treatment (Baker and Herson, 1994; Young and Cerniglia, 1995). The 

anaerobic treatment allows for reductive dechlorination, followed by aerobic 

degradation of the low molecular weight PCB or biphenyl molecule. 
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Reductive dechlorination by methanogenic bacteria in soils and sediments 

produces a wide range of mono-, di- and trichlorinated PCBs which can easily be 

degraded by oxidative bacteria (Brown et a/., 1987). The predominant pathway is to 

cleave the parent molecule (benzene ring) using a 2,3 dioxygenase. This produces 

chlorobenzoic acid, which can then be degraded by other aerobic bacteria in the 

consortium (Harkness eta/., 1993). Catechols are often produced as central 

intermediates in PCB degradation. These are brightly coloured compounds (yellow or 

brown) which are common products from ring fission via ortho or meta ring cleavage 

(Leisinger eta/., 1981). The ultimate goal ofbiodegradation is to achieve total 

mineralization ofthe PAH or PCB. This can be achieved when utilizing a bacterial 

consortium which produces intermediates that can be fed into the Kreb's Cycle, then 

totally oxidized to C02 and H20. 

One of the limiting factors in the bioremediation of PCBs in soils and sediments 

is the availability of indigenous microbes to do the work. If the numbers are low, added 

nutrients can induce biodegradation. Bioaugmentation, achieved by addition of enriched 

consortia, can raise the bacterial numbers to a level which could increase the rate of 

degradation. Bioavailability of the substrate can also be a limiting factor. As PCBs are 

extremely hydrophobic they tend to become tightly bound to soil particles. Addition of a 

surfactant can make the PCBs more soluble and thus bioavailable to the native consortia 

(Norris eta/., 1994; Young and Cerniglia, 1995). Some bacteria produce their own 
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biosurfactants which act in the same manner and allow in situ bioremediation to proceed 

(Baker and Herson, 1994). 

1.3: Research objectives 

Because of the persistent nature of P AHs and particularly PCBs in the 

environment and their resulting toxicity to animals and humans, it is important to find 

ways to reduce the concentrations of these compounds in the environment (Danse et al., 

1997, de Voogt et al., 1993). The most cost-effective means of treating an area 

contaminated wit h these compounds is via bioremediation (Young and Cerniglia, 1995). 

Other methods, such as incineration, involve costly transport of contaminated materials 

to the incinerator with additional costs involved in the incineration process (Danse et al., 

1997). Microbes that are capable of degrading P AHs and PCBs are ubiquitous in the 

environment (Abramowicz, 1990; 1994). It is important to determine the range of 

specificity of the native consortia for the contaminants in question. 

To that end, the objectives of this research are: 

( 1) to isolate bacterial consortia from two PCB- and P AH -contaminated sites 

in Newfoundland and Labrador (Argentia and Stephenville) and to enrich 

these cultures by growth on biphenyl as sole carbon and energy source; 

(2) to determine the ability of these enriched cultures to degrade toluene, 
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phloroglucinol, naphthalene, phenanthrene, and Aroclor 1254; 

(3) to use these consortia in laboratory experiments to determine their ability 

to enhance biodegradation of PCBs by use of bioaugmentation. This was 

done by incubating the enriched consortia with soil slurries containing 

PCB mixtures, or by inoculating the enriched consortia into soil-free 

microcosms spiked with Aroclor 1254; 

(4) to investigate the effect ofbiostimulation in enhancing the rate of PCB 

degradation in soil slurry experiments. This was done by adding a 

cosubstrate (biphenyl) to soil slurries containing Aroclor 1254 and 

enriched consortia; 

(5) to examine the potential of using a sequential anaerobic/aerobic route for 

PCB degradation. The anaerobic portion involved reductive 

dechlorination, done using bioreactors, with subsequent aerobic treatment 

to further degrade the dechlorinated mixture; 

(6) to investigate the use of a Two-Phase Partitioning bioreactor to degrade 

PCBs by native consortia, and 
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(7) to partially characterize the bacteria found to have the ability to degrade 

PCBs and P AHs. 

Because native consortia are already adapted to local conditions, it was decided 

early on in this research to study mixed populations of indigenous bacteria. It has been 

shown in previous studies that microbes capable of biodegradation of a given 

hydrocarbon are most readily found in sites already contaminated with a given pollutant 

(Whyte eta/., 1996). In addition, the recalcitrance of the compounds, as well as the 

complex pathways required to achieve complete mineralization, would almost certainly 

require the efforts of several different species of bacteria, each able to degrade a specific 

intermediate in the degradation pathway (Young and Cerniglia, 1995). 

1.4: Sampling sites 

1.4.1: Argentia site description 

The town of Argentia is located on the western side of the A val on peninsula, in 

Placentia Bay on the island ofNewfoundland, province ofNewfoundland and Labrador, 

Canada. It is the site of a former U.S. air and naval base, which was active in the Second 

World War and thereafter used as a base for search and rescue operations. The base 

consisted of a northside, which contained the airstrip, maintenance hangars and supply 

shops; and a southside which contained all housing, a shopping centre, school, library, 

garages and warehouses. During the Second World War, Argentia played a vital role in 
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the protection of convoys crossing the Atlantic with troops and supplies to Britain. It 

served as a terminal for allied warships, cargo ships and tankers. Because fuels and 

supplies were distributed via this site, accidental fuel spills were common. Nearby 

landfill sites were also used to dump used transformers, capacitors, and other PCB-laden 

equipment. 

The U.S. airbase officially closed in 1973, and the Canadian government took 

control ofthe northside ofthe base in 1981. The U.S. navy relinquished its remaining 

buildings on the southside in 1994. Since that time, the Argentia Management Authority 

(AMA) was set up to remediate the site and sell all marketable structures and assets from 

the former base. The Department of Public Works and Government Services Canada 

(PWGSC) is the current landlord of the site, and is investigating remedial options for 

contaminated soil, groundwater, and sediment. Preliminary assessment of the site, from a 

remedial perspective, began with a Phase II environmental assessment carried out in 

1994, in which highly contaminated sites targeted for remediation were identified. A 

Phase III/IV Environmental Site Assessment was carried out in 1995 by the Argentia 

Remediation Group (ARG), which was contracted by PWGSC to determine the extent of 

pollution at each site. The ARG found extensive contamination by fuels, heavy metals 

and PCBs, which affected groundwater, soils and sediments. The report was released in 

October, 1995. 
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1.4.2: Stephenville site description 

The Pinetree Radar site is a former U.S. Military base located at an elevation of 

350 metres on Table Mountain in Western Newfoundland, province ofNewfoundland 

and Labrador, Canada. It is located 20 km northwest ofthe town of Stephenville, so the 

samples collected and used in this study were designated SV. The Pinetree site was used 

to monitor air traffic during the war, serving as an early warning against enemy aircraft 

entering British/Canadian airspace. 

Upon closure of the site following the Second World War, ownership of the site 

was transferred back to Canada, and between 1993-1997 the Department of Public Works 

and Government Canada (hereafter designated as PWGSC) carried out an Environmental 

Site Assessment (ESA) where three areas were found to contain high levels of PCB 

contamination. These included an abandoned dump site, containing used transformers 

and other electrical equipment, an adjacent swampy bog and parts of the site sewage 

system. All impacted soil and debris was transferred to a containment cell lined with an 

80 mil geomembrane. The cell was filled in two phases; Area 1 in 1998 and Area 2 in 

1999. PCB contaminated water was treated with activated carbon and the used carbon 

was also placed in the containment cell. Once the material, approximately 1000 m2
, was 

in place, the containment cell was sealed by closing the geomembrane and covering it 

with soil. Monitoring wells were drilled around the site to monitor PCB levels in the 

surrounding groundwater, and soil samples were taken for analysis. (PWGSC project 
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summary, 1998). 

Since then, PWGSC, in conjunction with Environment Canada, has been looking 

into remedial options for the site. To this end, Science Applications International 

Corporation (hereafter designated SAIC Canada) was contracted to investigate 

bioremediation and other modalities for treatment of the impacted soil in the containment 

cell. SAIC Canada contacted MUN in July of2000 to undertake research into aerobic 

degradation of biphenyl and PCBs using contaminated soil samples collected from the 

containment cell. 
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Chapter 2: Materials and methods 

2.1: Collection, isolation and characterization of the microbial consortia 

2.1.1 Sample collection: Argentia 

A total of twelve sediment samples were collected in January 2000 around the 

periphery of Shag Pond, located on the south side ofthe base (Figure 2.1) and were 

designated as AR1 to AR12. Samples were collected using a grab sampler, collecting the 

top 1 0 em of sediment. Samples were then refrigerated, and sent to a local company 

(Servco) for analysis ofhydrocarbon contamination levels. The samples were found to 

be contaminated with a wide range of P AHs and PCBs. The predominant Aroclor 

present in these samples was Aroclor 1260, which has a high concentration of 

hexachlorobiphenyls. The source of the PCBs can be traced to an adjacent transformer 

shop and landfill site, 

where used transformers were dumped (Glen Troke - PWGSC, Argentia, personal 

communication). The samples were stored at 5°C until transferred to MUN in March of 

2000. The samples contained a mixture of fine sediment, small rocks, and liquid. All 

sediment samples were grey-black in colour with no discernible odour. 
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Fig. 2.1. Map ofNewfoundland with reference to the Argentia site. 
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2.1.2: Sample collection- Stephenville 

A total often soil samples were collected by Jacques Whitford Environmental 

Services from the Pine Tree site on Table Mountain (Fig. 2.2). The sampling involved 

digging through the surface soil covering the containment cell, then opening the 

geomembrane to remove soil samples. Samples were taken from three different locations 

within the containment cell. From each location, they attempted to remove four samples 

from different depths. The deepest samples were taken at three feet below the surface. 

This was only possible for location number two. Each of the other locations, one and 

three, were immersed in groundwater at that depth, so soil samples could not be obtained 

below two feet. 

Samples were collected with stainless steel trowels disinfected with 95% 

ethanol, and placed in sterile glass bottles for transport. Samples were shipped on ice to 

MUN for culture isolation. Soil samples mostly consisted of fine grained particles, grey­

black in colour with a moderately strong hydrocarbon odour. The samples taken > 1 foot 

below the surface had a higher water content and resembled sediment. They had a strong 

odour of hydrocarbons. Soil analysis by SAIC showed that the soil contained high levels 

ofPCBs, primarily Aroclors 1254 and 1260, as well as numerous other hydrocarbons, 

such as toluene. 

24 



Fig.2.2. Map ofNewfoundland with reference to the Stephenville site. 
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2.1.3: Source of the chemicals used in this study 

Chemicals used to make Minimal Salts Medium (MSM) and Trace Elements Stock 

solutions were obtained from Fisher Scientific or Sigma Aldrich Canada. Toluene, 

phloroglucinol, naphthalene, phenanthrene and biphenyl were obtained from Fisher 

Scientific. Aroclors 1254 (neat, or undiluted) and 1254 (200 J..lg/ml in methanol) were 

obtained from Supelco Canada. Acetone was used to dilute the Aroclor 1254 (neat), which 

is extremely hydrophobic. A concentrated solution of Aroclor 1254 (50 mg/mL) was used 

in the test tube and soil slurry experiments. This solution was stored at 5°C in a tightly 

capped, brown glass vial to minimize volatilization of the solvent between experiments. 

2.1.4: Minimal salts medium 

The medium used to isolate the consortia from both sites was Minimal Salts 

Medium (MSM), as described by Armstrong and Patel, 1992. It contained (giL); 0.5 g 

(NH4) 2S04, 0.1 g MgS04 • 7H20, and 6.8 g KH2P04 in 1L distilled water. This mixture 

was autoclaved, then 0.1 mL oftrace elements solution and 0.1 mL ofyeast extract 

(0.001% yeast extract) were added. The trace elements solution contained (per 100 mL); 

0.002 g (NH4) 6M070 24, 0.002 g FeS04 • 7H20, 0.013 g MnC12 • H20, 0.012 g CuC12 • 

2H20, and 0.05 mL concentrated HCI. The trace elements and yeast extract solution were 

filter-sterilized before addition to the cooled MSM. If a solid medium was required 

(MSA), 20 g of agar per litre was added to the MSM base medium before autoclaving. 
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2.1.5: Enrichment of the cultures using biphenyl 

For each set of samples, 1 g of soil or sediment was added to 50 mL ofMSM, 

along with 0.5 g of crystallized biphenyl, in 125 mL screw- or metal-capped Ehrlenmeyer 

flasks. The flasks were placed on a gyrotary shaker at 150 rpm, and incubated at 22°C for 

28-30 days. Growth was measured by an increase in turbidity of the medium, with a 

colour change from clear to yellow or brown. Cultures were transferred to fresh MSM 

with biphenyl once a month, using 5 mL aliquots of culture, 50 mL MSM, and 0.5 g 

biphenyl per flask. After several transfers, sediment-free cultures were available for 

testing on Aroclors and other hydrocarbons of interest in this study. Flask cultures were 

also streaked onto solid MSM in petri plates, with biphenyl crystals placed on a filter 

paper in the lid to serve as the sole carbon source. 

2.1.6: Tests used in bacterial characterization 

Initial observations of bacteria in the Argentia sediment samples were made by 

recording colony characteristics using dilution and spread-plating technique. One gram of 

sediment was added to 99 mL of physiological saline, shaken, then 0.1 mL spread-plated 

in triplicate on Typticase Soy Agar (TSA). The plates were incubated, inverted, at 22°C 

and were checked at 24 and 48 hrs for growth of different colony types. A total of 

eighteen isolates were obtained by visual observation of differences in colony 

characteristics. These isolates were collected by picking well-isolated colonies from the 
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plates and streak-plating onto fresh TSA until a pure culture of each was obtained. These 

isolates were further characterized by use of standard microbiological and biochemical 

tests, such as those for Gram reaction, shape, motility, OF- test (glucose), urease, 

caseinase, lipase, hemolysis on blood agar, citrate utilization, acid and/or gas production 

from maltose, lactose, glucose and sucrose (using phenol red as indicator), cytochrome 

oxidase, the MRIVP test, catalase, nitrate reductase, growth in thioglycollate medium (to 

check oxygen requirements) and growth on eosin-methylene blue (EMB) agar (Morris et 

al., 2000). In a similar fashion, isolates were obtained in the Stephenville samples. 

However, time did not permit a more thorough examination of their biochemical 

characteristics. 

Following the Argentia experiments on growth of various consortia on 

naphthalene, phenanthrene, phloroglucinol, biphenyl and toluene, those plates showing 

growth had a portion of the growth scraped off and streak-plated onto TSA for colony 

isolation. Each pure isolate was then Gram stained to determine Gram reaction, shape 

and arrangement. Most of the isolates were also tested for motility and oxygen 

requirements (using OF medium with glucose). These isolates were then stored frozen in 

glycerol ( 0.15 mL glycerol+ 0.85 mL culture in 1.5 mL Eppendorftubes). 

The Stephenville samples were primarily used for PCB degradation experiments, 

so characterization of the bacteria was limited to describing the consortia SV2-4 and SV3-

2, which showed the most promise in degradation of Aroclor 1254. These consortia were 
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streak-plated from MSM!biphenyl medium onto TSA for separation of colony types, then 

well isolated colonies were picked off and streaked onto fresh TSA until pure colonies 

were obtained. The SV3-2 and SV2-4 consortia were separated into different isolates, 

using differences in colony morphology, Gram stain, shape, and cell size. The SV2-4 

consortium isolates were also tested for growth on MacConkey agar. 

2.2: Bacterial degradation of the hydrocarbons 

2.2.1: P AH biodegradation experiments 

For both the Argentia and Stephenville samples, initial cultures were obtained by 

first enriching the consortia by growth on biphenyl as sole carbon source. This was 

achieved by adding one gram of soil or sediment to 50 mL ofMSM, and adding 0.5 g of 

crystallized biphenyl in 125 mL Ehrlenmeyer flasks. Once growth on biphenyl was 

established, growth being determined by an increase in turbidity and a colour change of 

the medium to yellow, these cultures were used to streak onto MSA (MSM to which agar 

is added - see recipe in section 2.1.3 above) for use in degradation experiments. 

Naphthalene, phenanthrene, and phloroglucinol were provided to the bacteria by 

placing 0.5 g of the compound onto Whatman #9 filter paper and placing the filter paper 

with the growth substrate on the inverted lid of the inoculated petri plate. These plates 

were incubated at 28°C for two weeks and checked for growth daily. Growth was 

confirmed by (1) physical growth of visible colonies on the plates and (2) a colour change 
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of the bacterial growth or the surrounding medium, usually yellow or brown, indicating 

the production of coloured intermediates of metabolism. 

Because of its high chemical reactivity and volatility, growth on toluene was 

tested using sterilized glass petri plates containing MSA. Toluene is a liquid at room 

temperature, so 0.5 mL of toluene was pipetted into a glass Durham tube and stoppered 

with sterile cotton wool to slow down the rate of evaporation and allow exposure of the 

compound to the inoculated bacteria on the plate. The filled Durham tube was placed in 

the inverted lid of each petri plate. These plates were prepared in duplicate for each 

sample tested. The plates were incubated at 28°C in a chemical fume hood for 30 days, 

with observations for growth daily. Toluene was replaced if the contents of the Durham 

tube evaporated to dryness. Again, growth was confirmed by the appearance of yellow or 

brown colonies on the MSA. 

2.2.2: PCB degradation:Two-phase partitioning bioreactor 

(TPPB) experiments 

The two-phase partitioning bioreactor (TPPB) method was used in a series of 

experiments set up by myself and SAIC staff at SAIC labs, Ottawa, February 26-March 3, 

2001. Four bioreactors were set up to test the ability of the SV 3-2 consortium, previously 

enriched by repeated transfer on biphenyl medium, to degrade Aroclor 1254. The two 

phases were created by mixing the Aroclor 1254 in dodecane, which is not miscible with 
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water. Thus, the bacterial consortium within the growth medium was separated from the 

contaminant. In this way, the level of contamination was not a factor, as it allows for slow 

diffusion of the contaminant into the aqueous phase. 

Reactor A consisted of a two litre fermenter with sampling ports (Bioflo, N.B. 

Scientific, Edison, N.J). It contained one litre of modified MSM (recipe for MSM was 

doubled with 1 g tryptone and 1 g benzoic acid added), 30 mL bacterial culture and 200 

mL Aroclor 1254 in dodecane (100 ppm). Reactor A was run anaerobically, using 

nitrogen gas, and the others aerobically. All air/gas hoses contained Nalgene air filters. 

Reactors B, C and D were constructed using one litre Mason jars, with two holes in the 

lid. One was for sampling and the other for an aeration tube with an aquarium stone. All 

reactors and media used in these experiments were autoclaved before use. Reactors B and 

D contained 500 mL modified MSM with benzoic acid, as described above, 30 mL 

culture, except 20 mL for reactor D, and 100 mL Aroclor 1254 ~n dodecane (100 ppm). 

Reactor C contained 500 mL modified MSM with biphenyl as cometabolite (1 gadded), 

30 mL culture, and 100 mL Aroclor 1254 in dodecane (100 ppm). 

All reactors were agitated to allow mixing of the culture with the contaminant 

phase. Reactor A had a built-in agitator, while reactors B, C and D were placed on 

magnetic stirrers, with stir bars inserted prior to addition of the reactants. The experiment 

was run for 8 days, with samples taken daily for GC analysis and OD readings. 
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2.2.3: PCB degradation: Flask experiments using soil-free media 

The first flask experiment to test for growth on PCBs was set up on March 20, 

2001. This experiment used SV3-2 and AR2 cultures which were positive for growth on 

biphenyl. The Stephenville 3-2 culture was also used in the TPPB experiments set up in 

late February, 2001 at SAIC labs in Ottawa. 

The flask experiment was set up in duplicate, with the experimental flasks 

containing 50 mL MSM, 200 J.tL Aroclor 1254 (200 J.tg/mL in methanol), and 400 J.lL 

culture. In this experiment, AR2 and SV3-2 consortia were tested. The control flasks 

contained 50 mL MSM and 400 J.tL culture. The experiment was conducted for 22 days, 

with optical density at 600 nm taken every 2-3 days. 

The SV3-2 consortium showed growth in the experimental flask and was further 

characterized by streaking onto TSA to achieve colony isolation. Colonies showing 

differences in morphology were picked off and transferred to fresh TSA until four 

different colony types were isolated. The consortium from the flask was also observed 

via a wet mount to observe the cells for motility. 

These pure cultures, as well as the consortium, were also tested for their ability to 

grow on the methanol solvent used to dissolve the PCBs. Experimental flasks contained 

50 mL MSM, 200 J.lL Aroclor 1254 (200 J.tg/mL in methanol), and 1 mL culture. Single 

colony isolates SV3-2A, B, C and D were harvested from TSA and suspended in 0.89% 

NaCl before addition to the flasks. The SV 3-2 consortium was streaked onto TSA from 
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the MSA/bp flask, then harvested as for the single colony isolates. Two controls were set 

up for this experiment: the first control contained 50 mL MSM, 200 fJL methanol 

(analytical grade) and 1 mL culture; the second set contained 50 mL MSM and 1 mL 

culture. The flasks were incubated at 25°C on a gyrotary shaker for 48 days with optical 

density readings taken every three to four days. 

2.2.4: PCB degradation: Test tube experiments using soil-free media 

Test tube experiments were typically set up in duplicate, with 9.5 mL MSM, 0.5 

mL bacterial culture (soil-free cultures were obtained from MSM-biphenyl flasks), and 

200 fJL Aroclor 1254 (50 mg/mL in acetone) in the experimental tubes. For each 

experiment two controls were set up. One (labeled C1) contained 9.5 mL MSM, 0.5 mL 

culture and 200 fJL acetone (solvent used to dissolve PCBs). The other set of controls 

(labeled C2) contained 9.5 mL MSM and 0.5 mL culture, with no added carbon source. 

The first set of controls was designed to test whether or not the bacteria could grow on the 

solvent alone, and the second was to show that the bacteria would not grow in the absence 

of a carbon source. All tubes were incubated at room temperature (22°C) for 54-60 days, 

with optical density measurements taken every two to three days. 

Early test tube experiments using SV 2-1 and SV1-2 consortia showed that the 

bacteria grew as well on the acetone solvent as in the experimental tubes. Because of this 

result, it was not possible to confirm growth on the Aroclor tested. As a result, further test 
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tube experiments were set up in which all22 flask cultures grown on MSM-biphenyl (ten 

from Argentia samples and twelve from Stephenville samples) were tested for the ability 

to grow on acetone as sole source of carbon. The experimental tubes contained 10 mL 

MSM, 100 ~L bacterial culture (to minimize any autophagy which would confuse the 

results), and 100 ~L acetone. Controls contained 1 0 mL MSM and 100 ~L bacterial 

culture. Each set oftubes was prepared in duplicate and incubated at 22°C for 19 days. 

Those cultures positive for growth on acetone were eliminated from further testing on 

Aroclors. Thirteen cultures (five from Argentia and eight from Stephenville samples) 

were negative for growth on acetone. Three of these consortia, SV3-l, SV2-2 and SV3-3 

were selected for subsequent testing for growth on AR1254. 

Experimental tubes contained 9.5 mL MSM, 0.5 mL culture (unwashed, from 

MSM/biphenyl flasks), and 200 ~L Aroclor 1254 (50 mg/mL in acetone). Two sets of 

controls were set up. The first set contained 9.5 mL MSM, 0.5 mL culture and 200 ~L 

acetone and the second set contained 9.5 mL MSM and 0.5 mL culture. All tubes were 

prepared in duplicate and incubated on a gyrotary shaker at 150 rpm for 29 days at 22°C. 

Optical density was measured every two to three days using the Bausch and Lomb 

Spectronic 20 Spectrophotometer (Milton Roy Co., Rochester, N.Y.). 

In order to determine whether any biodegradation had occurred, total bacterial 

counts (cfu/mL) were performed on all cultures on day one and day 29 for each 

consortium. Dry weights were also determined for all experimental and control replicates 
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by pouring the aqueous fraction of each sample into sterile Pyrex test tubes and drying in a 

hot air oven for two days. Samples were then weighed using the Sartorius B 120s 

analytical balance (Sartorius-Werke, Germany). 

2.2.5: PCB degradation: Soil slurry experiments 

Five different soil slurry experiments were set up to examine the ability of native 

consortia to degrade biphenyl and Aroclor 1254. The cultures used were SV mixed 

consortium and SV2-4, previously enriched by repeated transfer on biphenyl medium. 

Three different soil samples were used in these experiments. Experiments 1 and 2 used a 

low-PCB soil (20 mglkg), experiments 3 and 4 used a high-PCB soil sample (80 mg/kg), 

and experiment 5 used a soil slurry from a bioreactor in Kingston, Ontario, which had 

been dechlorinated using cultures provided by Dr. W. Mohn at the University of British 

Columbia. The setup for the experimental flasks is outlined in Table 2.1. Some of the 

experimental flasks were spiked with biphenyl as cosubstrate, while others were spiked 

with Aroclor 1254 (50 mg/mL in acetone). The biphenyl was added in crystal form, while 

the liquid Aroclor/acetone mixture was delivered to the flasks using 50 J.!L glass Hamilton 

microsyringes. The controls contained the same elements (MSM, culture and soil, or just 

MSM and soil) without the addition of a carbon source. 

The soil used in these experiments was collected from the Pinetree site and 
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delivered to MUN in January 2002 (experiments 1 and 2) and August 2002 (experiments 3 

and 4). The soil was sieved to 2 mm particle size using a metal mesh sieve. It was sieved 

while still wet to preserve the natural microbial biota. The rationale for sieving the soil 

was that SAIC Canada labs had performed PCB analyses on the soil fractions, and found 

that >80% of the PCBs were contained in the fines (ie. :S.2mm particle size) fraction 

(Monique Punt, SAIC, Personal communication). A dechlorinated soil slurry from a 

bioreactor at Royal Military College (RMC), Kingston, Ontario, was used in experiment 5. 

A dilution series was set up for the soil before and after sieving, using 0.1 mL 

aliquots spread-plated in triplicate on TSA. Dilutions of 1 o-2 to 1 o-s were prepared for 

enumeration. Dilution series were prepared for the experimental and control flasks at the 

beginning and the end of each experiment, and for the SV consortium culture added at the 

beginning of each experiment. Each experiment used 500 mL Ehrlenmeyer flasks with 

plastic screw caps lined with teflon. All flasks were incubated at 22°C on a gyrotary 

shaker at 150 rpm for 21 to 22 days. Following each experiment all samples were 

shipped, on ice, to SAIC labs in Ottawa for GC (PCBs) and HPLC (biphenyl) analysis. 

36 



Table 2.1. Contents of experimental flasks for TPPB : Experiments 1-5 

Experiment # 1 2 3 4 5 

# ofexptl. 3 3 4 4 4 
replicates 

type of soil 2mm 2mm(low 2mm 2mm dechlorinated 
(lowpcb) pcb) (high pcb) (high pcb) soil slurry 

amt. of soil 10 g 10 g 20 g 20 g 20 mL (-2 g) 
added/flask 

amt. ofMSM 100mL 100mL 200mL 200mL 20mL 

amt.of 10mL 10mL 10mL 10mL 10mL 
consortium 
culture added 

amt. ofpcb 0.0 0.0 200 f.d 0.0 0.0 
added (E1-E4) 
(50mg/mL in 
acetone) 

Amt. of biphenyl 0.0 0.01 (E1-E3 1.0 (E3 1.0 (E1 0.5 (E1 and 
added (g) +control) andE4 andE2 E2 only) 

only) only) 

Control flasks contained either soil + MSM ( expts. 1 ,4,5) or soil + MSM + 
consortium culture (expt 2,3). The control for expt. 2 was also spiked with 0.01 g 
biphenyl. 

All cultures were incubated at room temperature(@ 22°C) on a gyrotary shaker at 
150 rpm for 21-22 days. Total bacterial counts were performed using dilution and spread­
plating technique on day 1 and day 22 of each experiment. Samples were analysed using 
GC-MS (HP Gas Chromatograph 5900 Series II with electron capture detector, Hewlett 
Packard) for PCBs and HPLC (High Performance Liquid Chromatography with 
autosampler, Varian) for biphenyl. 
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2.2.6: Analytical methods 

In the case of the TPPB experiments, samples were analyzed using an HP5890 

series II gas chromatograph with an autosampler (model 7673) and electron capture 

detector. Samples of the solvent phase were collected from each bioreactor daily. 

Aliquots of 10 IlL were added to 10 IlL of internal standard (2,4,5,6 tetrachlorometaxylene 

+ tributylchlorendate) and 980 f.lL isooctane. These samples were run at time 0 and every 

24 hrs until completion of the experiment. 

Samples oftest tube experiments using soil-free microcosms (SV3-l, SV2-2, and 

SV3-3) could not be run through the GC due to technical problems with the machine. In 

order to determine whether or not any growth had occurred in these samples, total 

bacterial counts were taken on the first and last days of the experiment. Dry weights (mg) 

were also calculated for both control and experimental tubes, as described in section 2.2.4. 

For the soil slurry experiments both PCB and biphenyl analyses were 

undertaken. PCBs were analyzed using an HP 5900 Series II Gas Chromatograph 

equipped with autosampler (HP7673) and electron capture detector, all by Hewlett 

Packard. Biphenyls were analyzed using a Varian High Performance Liquid 

Chromatograph (HPLC) equipped with solvent delivery system model 9012 and 

autosampler model 9100. 

PCB samples from soil slurry experiments were extracted using equal volumes of 
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hexane and the hexane layer analyzed for total PCBs. Total PCBs was calculated by 

looking at changes in the ratios ofhexa- to nonachlorobiphenyls, which were more 

resistant to degradation, to the mono-, di-, and trichlorobiphenyls, which were more easily 

degraded, in the PCB mixture over time. Changes in the ratio can then be attributed to 

losses of PCBs because of microbial activity (Harkness et al., 1993). All data provided by 

analysis of PCBs is in J.tg/g, unless otherwise stated. 

Biphenyl samples were extracted using equal volumes of methanol, ultrasonicated, 

then centrifuged and the solvent phase injected directly into the HPLC. Biphenyl 

concentrations are reported in ppm. Both liquid and soil fractions of the samples were 

analyzed for PCB and biphenyl. 

2.2.7: Measurements of bacterial growth 

Growth of cultures was measured in several ways. First, the testing of 

Stephenville and/or Argentia consortia for growth on phenanthrene, phloroglucinol, 

toluene, naphthalene and biphenyl was done by streaking flask cultures onto MSA in petri 

plates. The compounds were provided by (a) placing powdered substrate on Whatman's 

#9 filter paper, with the exception of toluene, which is a liquid at room temperature. 

Toluene was supplied in a Durham tube stoppered with sterile cotton wool to allow the 

toluene vapour to reach the bacterial cells inoculated on the agar. The powdered and 

liquid substrates were placed on the inside of the inverted lid. Growth of brown, yellow, 
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or white colonies indicated the consortium tested was able to grow on the test compound 

as sole carbon and energy source. Each colony type was then picked off and streaked on 

TSA to confirm viability of the bacterial cells and to use them for biochemical tests used 

in characterization. 

Growth of the consortia on biphenyl was measured by growth on solid media, as 

described above, and, for liquid media, by increases in optical density over time. Argentia 

flask cultures were set up by addition of 1 g of soil to 50 mL MSM and 0.5 g biphenyl. 

The flasks were incubated at 22°C on a gyrotary shaker at 150 rpm for 30 days, then 

streaked on TSA and grown for 24 hrs, after which growth was scraped off and transferred 

to fresh MSM with biphenyl. For the Stephenville cultures, the initial flasks were set up 

as for the Argentia cultures, but these cultures were maintained by transferring 5 mL of 

each flask culture directly to fresh MSM with biphenyl. This process was repeated 

monthly, until soil-free cultures were available for microcosm experiments. Growth of 

these soil-free cultures was measured by recording optical density at 600 nm using the 

Shimadzu UV 260 Spectrophotometer (Shimadzu Corp., Kyoto, Japan). These enriched 

cultures were then used in test tube and flask experiments. 

Growth in test tube experiments was measured by increases in optical density at 

600 nm, using a Bausch and Lomb Spectronic 20 Spectrophotometer (Milton Roy Co., 

Rochester, N.Y.). Optical density readings for experimental cultures containing Aroclor 

1254 or other source of carbon was compared with those for controls, where no carbon 
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source was provided, to show growth on the selected compound. 

Growth in these cultures was also shown by measuring their dry weights. This 

was done by placing the aqueous fraction, approximately 9.5 mL per test tube, into 

preweighed Pyrex test tubes. The test tubes were placed in a Pyrex beaker in a 1 ooac oven 

for 24 to 48 hrs. Test tubes were weighed every 24 hrs until constant weight was 

obtained. Weight measurements were performed using the Sartorius B120S analytical 

balance (Sartorius-Werke, Germany). Increases in dry weights ofthe experimental tubes, 

as compared with controls, were used as an indicator of growth on Aroclor 1254. 

Growth in soil slurry experiments was measured by an increase in the cell numbers 

following incubation with the selected substrate. Enumeration of the cells in each culture 

flask, including experimental and controls, was carried out on day one and day twenty-two 

of each experiment. Because of the addition of soil to these flasks, it was not possible to 

measure increases in optical density. A dilution series was prepared for each flask, as well 

as for the culture being used in the experiment (SV 2-4) by addition of 1 mL culture fluid 

to 99 mL dilution blank, shaking vigorously to mix, then transferring 1 mL of this to a 9 

mL dilution blank, vortexing and continuing until the cultures were diluted between 1 o-2 

to 10-8
• Aliquots of0.1 mL were spread-plated in triplicate on TSA and incubated for 24 

to 48 hrs before counting the colonies. Only those plates containing between 30 and 300 

colonies were considered in the calculation of the number of colony forming units (cfu) 

per milliliter of culture. The calculation for cfu/mL (or cfu/g) is as follows: 
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cfu/mL = average # colonies * dilution factor * 1/amount transferred 

Growth on the selected substrate was also shown by measuring the concentration 

ofPCBs (using GC -ECD) and biphenyl (using HPLC) in the mixtures, both before and 

after the experiment. A decrease in concentration of the substrate in the experimental 

flasks, as compared with the controls, was also used as a measure of bacterial growth (see 

section 2.2.6 for analytical methods). 

For the TPPB experiments optical density was measured daily by sampling the 

aqueous phase from each bioreactor. Growth was shown by an increase in turbidity of the 

liquid medium. Samples were also removed daily from the solvent phase for GC analysis. 

(See section 2.2.6 for analytical methods). 
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Chapter 3: Results and discussion 

3.1. Characterization of the consortia 

3.1.1: Argentia cultures 

The characteristics of the Argentia sediment consortium are outlined in Table 3.1. 

Eighteen isolates were obtained using dilution and spread-plating technique. Ten of the 

isolates were Gram negative while eight were Gram positive. All isolates were rod­

shaped, except isolate 5a, which was coccus. It is important to note that these 

characteristics were taken from diluted sediment samples prior to enrichment on biphenyl, 

so not all of the isolates would be capable of biodegradation of hydrocarbons. Some of 

the isolates are probably saprophytes, feeding on dead cells and other detritus. 

Based on the information in Table 3.1, the isolates can be grouped into possible 

genera. For example, isolates 1 b, 1 c, 2b, 2c, 11 b and 12a can be placed in the 

Enterobacteriaceae, with 2b, 2c and 11 b being in the genus Escherichia and 1 b, 1 c and 12a 

probably belonging to the genus Enterobacter. This is shown by the results of the EMB 

test, which is a selective medium used to isolate Gram negative enteric bacteria. This 

medium also differentiates between the enteric bacteria, based on the colour of the 

colonies. Isolates 1 b, 1 c and 12a showed pink or purple colonies, indicating the genus 

Enterobacter or Klebsiella, while isolates 2b, 2c and 11 b all showed blue-black colonies 
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Ta bl b f hI d h . I e 3. I. 0 servattons o morpt o ogy an 1 pi ysto ogyo fl8 b . I. I b . d fr Sh P d Ar actena tso ates o tame om ag on, r~entta, N fi dl d ew oun an . 

ID# colony cell Gram motility OF urease caseinase lipase hemolysis citrate 
characters shape reacti (glucose) 

on 

Ia off-white, rod - - no growth - - - - -
raised, shiny 

lb white, slimy, rod + OF (weak + - - - - -
shiny, raised in oiled 

tube) 

lc beige, rod + OF (weak + - - - - -
raised, shiny in oiled 

tube) 

2a white, rod + + no growth + - - - -
filamentous, 
flat, rough 

2b off-white, ovoid + OF (weak + + - - - -
raised, shiny rods in oiled 

tube) 

2c beige, flat, rod + OF (weak + + - - -
rough in oiled (w) +(w) 

tube) 

4a orange, flat, rod OF (weak + - - - - - -
smooth, in oiled 
shiny tube) 

4b off-white, rod - - no growth - - - -
raised, + 
smooth 

Sa white, flat, cocci + no growth + - - - - -
rough 

9a white, rod + + no growth + + - - -
rough, raised (pleom 

orphic) 

9b white, rod + + no growth + + - - -
filamentous, 
flat, rough 

9c orange, flat, rod - no rxn no growth - - - - -
rough 

9d white, shiny, rod + norxn no growth + - - - -
mucoid, 
raised 

lOa orange/beige rod + + no growth + beta + - -
, dry, raised 
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JOb orange, flat, rod + no growth - - - - -
rough no rxn 

II a fried egg- rod + no growth + - - - - -
light beige with 
centre, clear clear 
edges, capsule 
mucoid 

llb off-white, rod + OF (weak + - - - - -
raised, shiny in oiled 
with bumpy tube) 
surface 

12a orange, rod - - no growth - - - alpha -
raised, 
bumpy 
surface, 
shiny 

Notes: OF = oxidation-fermentation test; A= acid; AG = acid and gas; w = weak; NT = not tested 
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Table 3 .I. Observations on morphology and physiology of 18 bacterial isolates obtained from Shag Pond, Argentia, Newfoundland 
continued) 

Acid and/or gas from 

ID# maltose lactose glucose sucrose cyt. MRIVP catalase nitrate thiogly- EMB 
Oxidase reduc- collate 

tion 

Ia - - - - - - no growth + (Nz)g no growth -

lb + (w) + + (Nz)g facultative + - - - - -
(pink) 

lc + (w) + + (Nz)g facultative + - - - - -
(pink) 

2a - AG(w) AG(w) AG - - no growth + (Nz)g facultative -

2b AG +I- + facultative +(me-- - - - -
tallic 
green) 

2c +!- + + (Nz)g facultative +(me-- - - - -
tallic 
purple) 

4a AG(w) AG(w) no growth +(Nz)g aerobe + - - - -
(clear) 

4b - A(w) A(w) - - NT NT NT aerobe -

Sa AG(w) AG AG +!- + +(Nz)g facultative - - -

9a A(w) AG +/- + + (Nz)g facultative - - - -

9b AG AG - +/- + + (Nz)g facultative - - -

9c A + aerobe - - - - - - -

9d + facultative - - - - - - - -

lOa A(w) A(w) AG(w) A - - /+ + + (Nz)g facultative -

lOb AG(w) AG(w) AG(w) A - - no growth - no growth -

lla +I-- + aerobe - - - - - - -

lib + + (Nz)g facultative +(me-- - - - - -
tallic) 

12a - A(w) A(w) - - no growth + (Nz)g aerobe + -

Notes: A= acid; AG = acid and gas; w =weak; NT = not tested 
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with a metallic sheen, indicating the genus Escherichia (Zimbro and Power, 2003). 

Further evidence is shown by other characteristics, such as Gram reaction (all above 

isolates tested Gram negative), all were motile (except for isolate 12a, which did not grow 

in the motility test medium) and all were facultatively anaerobic (again, with the exception 

of isolate 12a, which was an aerobe). It is understandable that these genera would be 

found in the soil, as the samples were collected near sites of human habitation. Leakage 

from septic tanks into surrounding groundwater would allow these organisms to mobilize 

into the soil. 

Isolates 4a and 4b also grew on EMB agar, but produced clear colonies. This 

would indicate that these isolates probably belong to the genus Proteus, Salmonella or 

Shigella, which do not ferment lactose and thus do not produce a colour change on this 

medium (Zimbro and Power, 2003). Isolate 5a also grew very slightly on this medium, 

producing small, clear colonies. This isolate tested Gram positive, with cocci - shaped 

cells which were non-motile, urease positive, produced acid and gas in sucrose medium, 

had a positive Methyl Red and negative Voges-Proskauer test, was positive for catalase, 

was able to reduce nitrate to nitrogen gas, and is a facultative anaerobe. These are all 

characteristics consistent with the genus Staphylococcus (Sneath et al, 1986). 

Isolates 2a, 9a and 9b were very similar in their biochemical reactions, so will also 

be considered as a group. These isolates were all Gram positive, facultatively anerobic 

motile rods, urease and caseinase positive, negative for lipase and citrate utilization, and 
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positive for nitrate reduction. These characteristics correspond to the genus Oerskovia, an 

actinomycete often found in soil (Sneath et a/., 1986). Further evidence to support this 

choice was the colony appearance (rough surface with filamentous edges) and cell 

arrangement (pleomorphic rods with coccoid elements), which are also common in 

actinomycetes (Sneath eta/., 1986). 

Isolates la and 9c were more difficult to characterize, as they didn't grow in many 

ofthe media used for classification in Table 3.1. They were both Gram negative, non­

motile rods which showed negative results for all tests except a positive nitrate reduction 

test (isolate 1 a) and a positive catalase test and acid production in sucrose media (isolate 

9c ). These organisms are probably saprophytes which require a more fastidious diet. 

Isolates 1 Oa and 1 Ob were both Gram positive, non-sporeforming rods which 

formed orange colonies on solid media. They were both urease and lipase negative and 

produced acid and/or gas from maltose, lactose, glucose and sucrose. These are probably 

species of the genus Arcanobacterium. It is interesting to note that isolate lOa 

demonstrated beta hemolytic activity when grown on sheep's blood agar, a characteristic 

common to the species Arcana bacterium hemolyticus (Sneath et a/., 1986). These species 

are also known for production of orange-pigmented colonies. Isolate 1 Ob did not 

demonstrate this ability to hemolyse blood agar, and also differed from isolate 1 Oa in that 

it was negative for caseinase, citrate reductase and nitrate reductase (positive for 1 Oa). 

Thus, isolate 1 Ob could also belong to the genus Brevi bacterium, also known to produce 
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orange colonies on solid media (Sneath et al., 1986). 

The remaining two isolates, 9d and 11a, were both Gram positive, non-motile rods 

which produced mucoid colonies on solid media. Both were negative for urease, lipase, 

citrate reductase, cytochrome oxidase, acid and/or gas production from carbohydrates, and 

nitrate reductase, They were both positive for casein hydrolysis and were catalase 

positive. Isolate 9d produced white, mucoid colonies while 11a produced colonies which 

had a "fried egg" appearance, with light beige centres and clear edges. This isolate also 

had a clear capsule around the cells which was easy to see when Gram-stained. These 

characteristics, especially the formation of a capsule or slimy colonies, are often found in 

strains of Arcanobacterium or Brevi bacterium, both of which are Gram positive, aerobic 

rods which are catalase positive (Sneath et al., 1986). Both of these genera are commonly 

isolated from soil, and are nutritionally nonexacting chemoorganotrophs (ibid.). 

Of the isolates obtained from the Argentia samples, several genera, such as 

Arcana bacterium, Brevibacterium, and the actinomycetes are capable of biodegrading 

P AHs and PCBs. Also of interest is the observation that isolates 2b, 2c and 11 b grew quite 

readily at 5 degrees Celsius. As described above, these organisms are probably strains of 

the genus Escherichia, and as such have an optimum temperature of 37 degrees. If these 

isolates are of this genus, they are exhibiting psychrotrophic tendencies. 
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3.1.2: Stephenville cultures 

Similar colony types were observed in the soil samples from Stephenville, but time 

and funding constraints prevented a more through examination of their biochemical 

characteristics. The characterization of these consortia was limited to those which showed 

growth on Aroclor 1254. The results of characterization of the SV 3-2 consortium are 

shown in table 3 .2. Gram stains were not done on these isolates, as confirmation of 

Aroclor degradation was not obtained via GC analysis. However, since the consortium 

grew in the presence of Aroclor 1254, and was shown to also degrade methanol, the 

colony characteristics are included here. Colonies were either beige or white in colour, 

and were all smooth except for SV3-2C, which had a rough surface. Isolate SV3-2A also 

showed growth at 5 degrees when stored in the refrigerator. 

Following the experiments using this consortium, visual observations of the 

consortium were made from a wet mount of the culture taken from the experimental flask. 

The wet mount showed motile, rod-shaped bacteria, which moved about using a spinning 

and twirling motion, indicating the presence ofperitrichous flagella. Using a wet mount 

prepared and stained using crystal violet, four types of cells were observed: long thin rods, 

long, fat rods, pleomorphic (or bent) rods, and coccoid elements. These observations are 

consistent with the colony and cell descriptions of the actinomycetes, which display a 

marked rod/coccus cycle, and often show pleomorphic rods. Some genera which fall into 

this category are the brevibacteria, corynebacteria, and Rhodococcus, all commonly found 
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in soil and all of which are capable of biodegrading hydrocarbons (Sneath eta!., 1986). 

In addition, the flask culture which grew on the Aroclor 1254/methanol mixture showed 

the presence of star-shaped, yellowish colonies flocculating the liquid media. This is a 

common characteristic of the genus Pseudomonas, especially P. rhodos and P. echinoides 

(Kreig and Holt, 1984), which use their pili to form these aggregates in liquid media. 

Pseudomonas strains are also capable of degrading aromatic compounds using a 1 ,2 or 2,3 

dioxygenase for ring cleavage (ibid.). 

Table 3.2. Colony characteristics for SV3-2 consortium used for AR1254 (in methanol) 
fl k d TPPB . t as an expenmen s. 

Sample 10 Colony characteristics 

SV3-2A white, mucoid, raised, lobose, 4-5 mm 

SV3-2B beige, smooth, raised, entire, 1-2 mm 

SV3-2C off-white, rough, raised, entire, 1-2 mm 

SV3-2D beige, smooth, raised, entire, pinpoint 

Note: The colony descriptions are given as colour, texture, elevation, margin and size. The 
strain SV3-2D produced a brown pigment which diffused into the surrounding 
medium. 

The results of characterization of the SV2-4 consortium, used in the soil slurry 

experiments, are shown in table 3.3. This consortium consisted of six strains of bacteria, 

four of which were Gram negative and two were Gram positive. The two Gram positive 

isolates, SV2-4A and B, exhibited colony and cell morphology consistent with the 
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corynebacteria and brevibacteria, which have pleomorphic rods, and grew only slightly on 

MacConkey agar. MacConkey agar is a slective and differential medium used for the 

isolation and differentiation of Gram negative, enteric bacilli. It contains bile salts and 

crystal violet, which inhibit the growth of Gram positive organisms while allowing the 

growth of Gram negative organisms (Zimbro and Power, 2003). It also contains an 

indicator dye, neutral red, which causes a colour change in the medium when lactose is 

fermented. The rest of the isolates, SV2-4B-F, showed moderate to profuse growth on 

MacConkey agar, with a colour change of the medium to orange or yellow, indicating that 

these organisms belong to the Gram negative, lactose fermenting bacilli. Typical genera 

belonging in this group are Escherichia, Enterobacter, Klebsiella, Citrobacter and 

Serratia. These organisms belong to the Enterobacteriaceae, and are often found in 

clinical specimens, the intestinal tracts of man and animals, and are also commonly 

isolated from soil. All produce acid from lactose fermentation (Kreig and Holt, 1984). 

These organisms are also chemoorganotrophic, which would allow growth on minimal 

media. 
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Table 3.3. Characteristics of bacterial strains isolated from SV2-4 consortium used in soil 
1 s urry expenments. 

Sample Gram cell shape and cell size (L *colony growth on 
ID reaction arrangement x Win J.lm) morphology MacConkey agar 

SV2-4A + pleomorphic rods - 2.5-3.5L x Off-white, 0/+ (brick red 
pairs and short chains 0.5W smooth, convex, growth) 

entire, 2mm 

SV2-4B + rods - singles and 1.5-2.5L x white, rough, +(purple 
pairs 0.5W raised, entire, colonies) 

pinpoint 

SV2-4C - rods - singles and 1.5-2L x beige, smooth, +++ (pink/purple 
pairs 0.25-0.5W convex, entire, colonies with 

pinpoint colour change of 
medium to 
orange) 

SV2-4D - rods - singles and 1.5-2L x 0.5- yellow, ++(purple 
pairs 0.75W smooth, convex, colonies with 

entire, 1-2 mm colour change of 
medium to 
orange) 

SV2-4E - rods - singles, pairs 2-4L X 0.5W beige, smooth, ++ (pink/purple 
and chains raised, entire, colonies with 

pinpoint colour change of 
medium to 
yellow/orange) 

SV2-4F - rods - singles 2L X 0.5W beige, smooth, +++ (pink/purple 
raised, entire, colonies with 
2mm colour change of 

medium to 
orange) 

Note:* Colony morphology is given as colour, texture, elevation, margin, and size; 0/+ = 
scant growth, ++ = moderate growth, +++ = profuse growth; L = length, W = width. 
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3.2: Biodegradation of P AHs 

3.2.1: Petri plate experiments : Growth of soil consortia on 

biphenyl, toluene, phloroglucinol, phenanthrene, and naphthalene 

Prior to testing the soil and sediment consortia for the ability to grow on the above 

listed compounds, the consortia were enriched by repeated transfer into liquid MSM + 1% 

biphenyl. All soil (Stephenville) and sediment (Argentia) samples showed growth in 

liquid MSM +biphenyl, as shown by an increase in turbidity and by the production of 

catechols, which turned the medium yellow. 

The results of soil-free Argentia flask cultures streaked on MSA and incubated 

with the above substrates for 25 to 30 days at 28°C are shown in Table 3.4. For toluene, 

glass plates were used for the MSA, and toluene was supplied in the form of a vapour, 

dispensed via a durham tube in the lid of the inverted dish. The plates were incubated at 

28°C for 30 days. Seven of the twelve flask consortia produced colonies on MSA when 

exposed to toluene. Colonies were cream - coloured or brown, 1-3 mm in size. They were 

raised with entire edges. When these colonies were picked off and streaked on TSA, the 

colonies were creamy white with a pinkish tinge, and were mucoid with a shiny surface, 

while others were more granular in appearance. This may be due to mixtures of cell types 

on the plate. Gram stains showed that all but one were Gram negative, and all were rod­

shaped cells. OF and motility tests showed all were aerobic, and most were motile. 

Toluene can be readily degraded by strains of Pseudomonas putida (Zylstra et 
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al., 1988; Zylstra and Gibson, 1989) and Pseudomonas aeruginosa , Achromobacter, and 

Nocardia corallina (Ribbons and Eaton, 1982). The mucoid colonies obtained when 

toluene-positive isolates were grown on TSA were Gram negative, aerobic, motile cells, 

consistent with Pseudomonas spp. The Gram positive isolate may belong to the 

nocardioforms, which are mostly strict aerobes, with motile and nonmotile species in the 

group (Sneath et al., 1986). Anaerobic metabolism of toluene has been demonstrated in 

the genus Azoarcus (Coschigiano and Young, 1997) and in mixed microbial cultures in 

sediments (Zeyer et al., 1986). 

Table 3.4. Results oftesting of Argentia consortia for growth on selected hydrocarbons 

Substrate Number of isolates* Shape Gram reaction 

toluene 7 rod - (6), + (1) 

phloroglucinol 7 rod - (6), + (1) 

naphthalene 5 rod - (4), + (1) 

phenanthrene 10 rod - (9), + (1) 

* 12 samples were tested for each compound. 

Seven isolates were obtained when the flask consortia were streaked on MSA and 

incubated with phloroglucinol (PG) as sole source of carbon. Seven of the flask cultures 

were positive for growth on PG when incubated at 28°C for 30 days. Colonies were 
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mostly creamy yellow, beige or brown in colour, raised, with entire edges. Two of the 

samples (from flasks 2 and 7) produced white colonies with a filamentous edge. Flasks 2 

and 5 each produced three distinct species of bacteria capable of growth on PG. Flask 2 

colonies were beige or white, raised and smooth, with the filamentous-edged colonies 

being flat with a rough surface. Flask 5 colonies were yellow and mucoid white (both 

types were raised with entire edges). OF and motility tests showed that all of the isolates 

were motile, and most were aerobic. Gram stains showed that all were Gram negative 

except for the white, filamentous colonies, which were Gram positive. 

Phloroglucinol can be degraded by both aerobic and anaerobic organisms. 

Aerobic degradation has been demonstrated in Pseudomonas and Arthrobacter , as well as 

Mycobacterium, Flavobacterium, and fungi such as Penecillium spp. (Patel et al., 1981 ). 

The Gram positive strain isolated in this experiment corresponds to Oerskovia spp., a 

facultatively anaerobic rod which tends to produce filamentous colonies on solid media 

(Sneath et al., 1986). This strain was also isolated from the Argentia sediment consortia 

before enrichment on biphenyl. The Gram negative isolates most closely correspond with 

Pseudomonas spp. (Kreig and Holt, 1984). Anaerobic degradation of phloroglucinol can 

be accomplished using Eubacterium oxidoreductans, Pelobacter acidigallici, 

Streptococcus spp., and Coprococcus spp., which is found in the rumen of cattle 

(Armstrong and Patel, 1992; Patel et al., 1981 ). 

The results show that five out of twelve consortia tested were positive for growth 
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on naphthalene. Colonies were generally smooth and raised, and were yellow or brown in 

colour. One filamentous white colony grew, but slowly. Isolates grown on naphthalene 

were obtained from flasks 1, 5, 7, 9, and 11. Gram staining showed that four out of the 

five isolates were Gram negative, while one was Gram positive (the filamentous strain). 

All were rod-shaped organisms. Two of the isolates were both oxidative and 

fermentative, three were strict aerobes, and most were also motile. 

Naphthalene can be degraded aerobically by species of Pseudomonas putida (Patel 

and Gibson, 1974; Samanta and Jain, 2000), Pseudomonas fluorescens (Whitman et al., 

1998) and Pseudomonas spp. (Whyte et al., 1997). The Gram negative organisms isolated 

in this experiment may be strains of Pseudomonas, which are aerobic, Gram negative, 

motile rods (Kreig and Holt, 1984). The Gram positive isolate again most closely 

corresponds to Oerskovia spp., which are Gram positive, motile rods with filamentous 

edges to the colonies on solid media (Sneath et al., 1986). Anaerobic degradation of 

naphthalene can be achieved under nitrate-reducing conditions using a microbial 

consortium (Rockne et al., 2000). 

Samples streaked onto MSA with phenanthrene (Phen) as sole carbon source 

showed growth in ten out of twelve samples tested. Colonies were generally white or 

brown, 1 mm in size, raised and smooth in appearance. Samples 1, 6 and 8 showed 

growth of the white, filamentous-edged colonies seen in the tests with other compounds. 

This strain may correspond to Oerskovia spp, being Gram positive with filamentous edges 
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to the colonies (Sneath et al., 1986). It is interesting to note that sample 10 produced 20 

orange colonies with a raised, wrinkled surface. This is the only compound showing this 

colony type. This strain may be a species of Pseudomonas, such asP. aureofaciens, or 

Xanthomonas spp. which are Gram negative, aerobic rods that produce an orange pigment 

(Kreig and Holt, 1984). Gram stains showed that all were Gram negative rods, except the 

filamentous white colonies, which were Gram positive rods. OF and motility tests showed 

that all were aerobic, and most were motile. 

Many of the enzymes used by bacteria to degrade naphthalene can also be used 

in phenanthrene degradation. Biochemical and genetic plasticity of these organisms 

provides them with a range of metabolic options for degradative pathways. For example, 

some species can utilize more than one pathway for initial ring cleavage (Ribbons and 

Eaton, 1982). Phenanthrene degradation has been shown to occur in the Antarctic, by 

bacteria isolated from fuel spill sites (Smith, 1990). To further show the plasticity of 

degradative enzymes, a recent study has shown that naphthalene degrading enzymes can 

also be used in the degradation of biphenyl (Barriault eta/., 1998). 

All of the flask samples tested were also grown on MSA with biphenyl in the lid. 

This served as a positive control. Since all of the flask consortia were positive for growth 

on biphenyl in liquid MSM, they were also positive for growth on MSA with biphenyl 

crystals in the lid. Colonies were yellow or brown in colour, and all were Gram negative 

rods. Flask samples were also inoculated onto MSA and incubated at 28°C without a 
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carbon source to ensure growth which occurred was due to the substrate provided. All 

plates not supplied with a carbon source did not grow. 

3.3: Biodegradation of PCBs 

3.3.1: Two-phase partitioning bioreactor (TPPB) experiments: 
Growth of soil-free consortia on Aroclor 1254 

The two-phase partitioning bioreactor (TPPB) was developed in the early 1990s by 

researchers at Queen's University, Ontario, Canada for use in bioremediation of organic 

compounds. It was developed by Dr. Andrew Daugulis and his colleagues for use as a 

bioreactor in the treatment ofBTEX and other polyaromatic hydrocarbons (Daugulis, 

2001 ). It works by maintaining a level of partitioning, which separates the aqueous layer 

(containing the bacterial culture of biodegraders) from the immiscible solvent layer 

(containing the contaminant to be degraded). Because the solvent layer is floating on top 

of the aqueous, the contaminant slowly diffuses into the aqueous layer, where degradation 

occurs. Thus, the level of contamination can be high, without becoming toxic to the 

microbes. This technology has been shown to be highly successful in degrading 

polyaromatic hydrocarbons such as naphthalene, phenanthrene and pyrene (Janikowski et 

al., 2002, MacLeod and Daugulis, 2003). A diagram of the bioreactor configuration is 

shown in figure 3 .1. This set of experiments was conducted at SAl C labs in Ottawa, 

Ontario from February 26-March 2, 2001. Four bioreactors were set up to test the ability 

59 



of SV3-2, a consortium enriched by growth on biphenyl medium, to degrade Aroclor 

1254. Three of the reactors were aerated aerobically, and the fourth was anaerobic 

(nitrogen gas). The four bioreactors are shown in figures 3.2 and 3.3. In each bioreactor, 

a cometabolite was added to stimulate the enzymes necessary for biphenyl, and 

subsequently, Aroclor degradation to occur. Three of the bioreactors (A, B, and D) had 

benzoic acid as cometabolite, and one (bioreactor C) had biphenyl. The reactors were set 

up on magnetic stirrers for 8 days, with samples taken daily for optical density and GC 

analysis . The results in Figure 3.4 show the changes in total PCBs over the length of the 

experiment. Total PCBs were calculated by measuring the ratios of six PCB congeners 

within the Aroclor mixture in each sample. Any changes in the ratio of these peaks 

indicates changes in the composition , including changes in degree of chlorination, of the 

Aroclor. Changes in these ratios, then, would provide evidence of bacterial action (Punt et 

al., 2002). 

Optical density readings, taken daily, showed that the bacterial consortia grew in 

all bioreactors, including the anaerobic reactor. This result shows that the bacteria could 

grow with or without 0 2 as terminal electron acceptor. The PCB results show that the 

ratios of the peaks in the Aroclor mixtures remained relatively constant. However, the 

figure does show a decrease in PCB concentrations for Reactor A, which was run 

anaerobically. This may be due to some anaerobic dechlorination which changed the 
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Fig. 3.1. Schematic diagram of a TPPB bioreactor. (From Punt et al., 2002) 
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Fig. 3.2. Bioreactor A used in Two-phase partitioning bioreactor (TPPB) 
experiments- Anaerobic (nitrogen gas). Notes: Reactor A was spiked with 
0.1% benzoic acid and 100 ppm Aroclor 1254 and augmented with SV3-2 
bacterial consortium. 
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Fig. 3.3 (L-R). Bioreactors B, C, and D used in TPPB experiments (aerobic). 
Notes: Reactors B and D spiked with 0.1% benzoic acid and 100 ppm 
Aroclor 1254; Reactor C spiked with 0.2% biphenyl and 100 ppm Aroclor 
1254. All reactors were augmented using SV3-2 bacterial consortium. 
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ratios of the congener peaks. Also, reactors C (aerobic, biphenyl as cometabolite) and D 

(aerobic, benzoic acid as cometabolite) show an initial increase in PCB concentration, 

followed by a steady decrease in concentration towards the end of the experiment. This 

initial increase in the PCB concentration could be due to the production of biosurfactants 

by the bacterial consortia during their metabolism, which emulsified the PCBs, making 

them more bioavailable. Agitation of the mixtures within the reactors also allowed the 

bacteria optimal access to the Aroclor in the solvent phase. 

As the experiment was run for only 8 days, it is not conclusive whether extensive 

degradation of Aroclor 1254 could be achieved using this method. A longer incubation 

time, typically 3-6 weeks, is usually required to achieve extensive degradation ofPCBs 

(Young and Cerniglia, 1995). Also, the additional carbon source in the form of tryptone 

may have caused competition for limited resources (Aroclor 1254). The preliminary 

results, however, are encouraging. Since the consortium was shown to grow in anaerobic 

conditions , and was able to lower the level of PCB by approximately 10% in 8 days, it is 

possible that it may be employed in a sequential anaerobic/aerobic treatment process for 

degradation of Aroclor 1254. More research on this method is required to establish it's 

effectiveness in degrading PCBs. 
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Figure 3.4 Bioreactor PCB Concentrations in Four TPPB Systems 
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3.3.2: Flask experiments using soil-free microcosms: Growth of soil consortia on 

methanol and Aroclor 1254 

The first flask experiment was conducted using a weak Aroclor 1254 mixture 

(200 J..lg/mL in methanol). The experimental flask contained 200 J..lL of this mixture in 50 

mL MSM + 400 J..lL culture (AR2 and and SV3-2 were used). After three weeks 

incubation, optical density readings increased for SV3-2, but not for AR2 (Figures 3.5 and 

3.6). Because only one control was set up (MSM +Culture, with no methanol control), it 

was not possible to determine whether the growth observed in the experimental SV3-2 

flask was due to growth on the Aroclor or the solvent. Wet mounts prepared from the 

successful SV3-2 culture showed that the cells were motile, exhibiting a twirling and 

spinning motion. The culture was streaked onto TSA to obtain isolated colonies. Four 

different colony types were found, based on colony characteristics. Each of these was 

purified by repeated streaking on TSA, then all were tested for the ability to degrade 

Aroclor 1254 in methanol. 

The results of this second flask experiment are shown in Figures 3. 7 - 3 .11. The 

results show that the individual bacterial species were unable to grow on the Aroclor 1254 

or on the methanol solvent. In contrast, the consortium did grow on both the Aroclor (200 

J..tg/mL in methanol) and on the solvent alone. These results indicate that a cometabolic 

process may be involved in the metabolism of methanol (CH30H). It has been shown in 
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Fig. 3.6. Growth of SV3-2 soil-free consortium spiked with Aroclor 1254 in Methanol. 
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previous studies that methanol can be degraded by methanotrophic bacteria such as 

Methylobacter, Methylococcus, Methylomonas and Pseudomonas spp. utilizing the 

enzyme methanol dehydrogenase (Gibson, 1984). The growth in the Aroclor flask 

indicates that the consortium was not inhibited by the concentration of Aroclor present, 

and some PCB degradation may have occurred. Previous research has shown that 

methanogenic bacteria can also dechlorinate high molecular weight PCBs (Van Dort and 

Bedard, 1991). As the consortium grew on both the Aroclor mixture and the solvent 

alone, it cannot be stated with certainty that this consortium can degrade PCBs. Due to the 

ambiguity of the results, no GC analysis was performed on these samples. 

3.3.3: Test tube experiments using soil-free microcosms: Growth of soil consortia on 

acetone and Aroclor 1254 

This set of experiments was set up to determine whether any of the consortia (both 

Argentia and Stephenville cultures) could degrade Aroclors. Due to the hydrophobic 

nature of Aroclor 1254 (it is an oil at room temperature), it was dissolved in acetone to 

create a concentrated solution. Early experiments using this mixture (Aroclor 1254 - 50 

mg/mL in acetone) showed growth in controls as well as in experimental cultures. As a 

result, a series of test tube experiments were set up to test the ability of all consortia to 

grow on acetone as sole source of carbon. Thirteen of the 22 consortia tested were 

negative for growth on acetone. Three ofthese acetone-negative consortia, SV 3-1, 2-2 
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and 3-3 were then selected to test for the ability to grow on Aroclor 1254 in acetone. 

Previous research has shown that microbial dechlorination can be accomplished using a 

defined, sediment-free medium (Cutter et al., 1998, Wu et al., 2000). However, most 

research on PCB degradation has concentrated on the use of soil slurries, as they are more 

applicable to in situ studies (Tiedje et a!., 1993 ). Despite this fact, several studies have 

focused on biodegradation ofPCBs and biphenyls using defined, sediment-free media. 

These include oxidation of biphenyl by a Beijerinckia spp. (Gibson et al., 1973 ), 

degradation of PCBs by Alcaligenes sp JB 1 (Commandeur et al., 1996) and an assay to 

show the ability of several bacterial species, including Pseudomonas putida LB400 and 

Alcaligenes eutrophus H850, to degrade high molecular weight PCBs (Bedard et al., 

1986). In contrast to the present study, the aforementioned research has focused on the 

degradative abilities of individual species of bacteria. This research is based on the use of 

bacterial consortia, as it is widely known that complete mineralization of PCBs requires a 

bacterial consortium consisting of several species, each capable of degrading one of the 

compounds or their intermediates. Recent work has shown that locally isolated bacterial 

consortia are capable of degrading benzothiophene, carbazole and dibenzofuran under 

aerobic conditions in a defined medium (Meade, 1997). 

The plots of optical density over time for these three consortia are shown in figures 

3.12 to 3 .14. The figures show that SV3-1 and 2-2 maintained a relatively stable growth 

pattern (figs 3.12 and 3.13). In contrast, SV3-3 grew much more readily in the Aroclor 
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mixture (fig. 3.14). Optical density remained relatively stable until day 22, then increased 

steadily until the end of the experiment at day 28. In addition, SV3-3 showed a slight 

increase in optical density in the C 1 controls, which contained 0.1% acetone. This growth 

may be due to traces of biphenyl metabolites left in the culture when it was added acting 

as 

a usable carbon source, or may be due to the bacteria feeding on dead cells. In contrast, 

acetone controls for the remaining two consortia, SV 3-1 and 2-2 (Figs. 3.12 and 3.13), 

show no increases in optical density over the length of the experiment. This would 

indicate that these consortia were unable to grow without a substantial source of carbon. 

All samples were extracted in hexane at the end of each experiment for GC 

analysis. Samples were to be analyzed at DFO labs in St. John's. Unfortunately, the GC 

machine ceased functioning before the samples could be analyzed. To determine whether 

any PCB degradation had occurred in these samples, total bacterial counts, using dilution 

and spread-plating technique were performed on the experimental cultures on the first and 

final days of the experiment. As well, dry weights of the controls and experimental tubes 

were also determined, to see whether bacterial biomass had increased in the experimental 

tubes. 
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The results ofthese analyses are shown in Table 3.5. Bacterial counts decreased 

for all cultures tested, with the smallest decrease observed in SV3-3. Observations during 

the experiment showed that SV3-3 produced a large pellicle of clumped cells, which did 

not disperse when the samples were vortexed prior to taking optical density readings. The 

pellicles were largest in the experimental tubes, indicating a visual confirmation of an 

increase in bacterial biomass. This result is supported by the dry weights shown in table 

5. Each of the three consortia showed an increase in dry weight of cells in the 

experimental tubes as compared with controls, with the highest increase noted for SV3-3. 

The experimental results are encouraging for these consortia, especially sample SV3-3. 

The increases in dry weight in all three consortia indicate that these consortia were able to 

grow on the Aroclor 1254. Dry weight measurements are often used to show growth on 

the compound of interest (Meade, 1997). Cell numbers decreased for all consortia tested 

between day one and the final day of the experiment. The decreases observed in the 

bacterial counts are probably due to the cells beginning to die off after 28 days incubation. 

As the available carbon is used up, the bacteria start to die due to lack of a suitable energy 

source. The lack of a cometabolite also may have contributed to the decrease in cell 

numbers. 
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Table 3.5. Total bacterial counts (cfu/mL) and dry weights (mg) for selected Stephenville 
b d . h A 1 1254 £ 28 d consortia mcu ate Wlt roc or or ays. 

Sample ID Bacterial Bacterial Dry Weight Dry weight Dry weight 
Count count (final) of bacteria of bacteria of bacteria 
(initial) (expt) (C1) (C2) 

SV3-1 1.61 X 108 4.38 X 106 79.35 77.75 64.95 

SV2-2 1.03 X 108 9.9 X 106 78.50 76.65 73.30 

SV3-3 8.6 X 107 2.65 X 107 72.80 68.75 70.60 

Notes: Experimental tubes contained 0.1% Aroclor 1254; C =controls; C1 tubes 
contained 0.1% acetone; C2 tubes contained no additional carbon source. All 
tubes were prepared in duplicate - results shown are averages of two tubes for each 
dry weight value. 
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3.3.4: Soil slurry experiments: Growth of consortia on biphenyl and Aroclor 1254 

In conjunction with SAIC Canada, the Department of Public Works and 

Government Services Canada (PWGSC), Royal Military College, and the University of 

British Columbia (UBC), a series of experiments were carried out from 2001-2003 to 

investigate treatment options for the PCB- contaminated Pinetree Radar Site, northwest of 

Stephenville. Investigators, led by Dr. W. Mohn ofUBC were investigating anaerobic 

dechlorination of heavily chlorinated PCBs (Kuipers et al., 1999) and were brought into 

the project to utilize the dechlorinating consortia isolated from this previous work to 

dechlorinate the Stephenville soil samples. Once this was achieved, the bacteria used for 

dechlorination were sent to RMC for scaleup using 500 kg bioreactors. The bacteria were 

inoculated into the bioreactors with soil slurries and incubated anaerobically for two 

months, then samples were sent to MUN for use in the last of five experiments carried out 

in this study. 

PCBs are very resistant to degradation without first undergoing dechlorination, 

especially in soils and sediments contaminated with Aroclors 1254 and 1260, with 54% 

and 60% chlorine by weight, respectively. The anaerobic dechlorination ofPCBs has 

been widely studied and is reviewed by Heider and Fuchs (1997). It occurs naturally in 

anaerobic sediments using nitrate, sulfate, or the PCB molecule itself as the primary 

electron acceptor (Alder et al., 1993; Brown et al., 1987; Tiedje et al., 1993). Some 

researchers have also shown that some native bacterial consortia can preferentially remove 
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ortho chlorines (Berkaw et al., 1996; van Dort and Bedard, 1991) while others 

dechlorinate para chlorines (Wu and Weigel, 1997) and still others meta chlorines 

(Kuipers et al., 1999) Other researchers have demonstrated reductive dechlorination by 

bacteria in soil or sediment free media (Cutter et al., 1998; Wu eta/., 2000). Most 

previous work has concentrated on the use of soil slurries to demonstrate dechlorination, 

as these are applicable to in situ studies (Bedard et a!., 1997; Brown et al., 1987; Quensen 

III et al., 1990; Tiedje et al., 1993). 

The benefits of reductive dechlorination are ( 1) it reduces the number of chlorines 

on the parent molecule, which can reduce the toxicity of the molecule, especially in the 

case of coplanar PCBs which resemble dioxins and furans (Furukawa, 1982) and (2) 

reduction of chlorines on the parent molecule makes it more susceptible to attack by 

aerobic microbes (Tiedje et al., 1993; Wu et al., 1998). Kuipers et al. (1999) studied 

reductive dechlorination of octa- and nonachlorobiphenyls in marine sediments by 

addition of enrichment cultures isolated from British Columbia, Canada, and showed 

evidence of complete reduction of the compounds to biphenyl. Typically, dechlorination 

takes up to 3 to 4 months incubation to achieve complete reduction of the compound to 

biphenyl. The bacteria capable of dechlorination of PCBs are not able to degrade the 

parent biphenyl molecule. Master et a!. (200 1) showed that reductive dechlorination did 

not lead to degradation ofbiphenyl by measuring the number ofmo1es ofbiphenyl before 

and after treatment. The mole % remained relatively constant, although dechlorination did 
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occur. 

The aim ofthese experiments was to investigate the ability ofSV2-4 consortium, 

enriched by repeated transfer on biphenyl medium, to aerobically degrade PCBs, when 

inoculated into soil slurries. It has long been known that effective degradation of PCBs is 

usually achieved by use of bacterial consortia which contain from 6 to 12 species of 

bacteria. Each species is capable of attacking either the parent compound or one of its 

intermediates. As the primary goal in bioremediation is complete mineralization to C02 

and H20, the most extensive mineralization is achieved by a mixed community of 

microbes (Baker and Herson, 1994; Gibson, 1984; Norris et al., 1994; Young and 

Cerniglia, 1995). The action ofthese microbial communities can be enhanced using 

biostimulation, which is addition of nutrients to stimulate in situ degradation of the 

compound by indigenous microbes (Harkness et al., 1993), or by enriching a culture 

isolated from a contaminated site on a single substrate, such as biphenyl or chlorobenzoate 

and then inoculating the soil with the enriched culture, a process called bioaugmentation, 

to increase the rate of PCB biodegradation (Hickey et a!., 1993 ). 

The experiments were carried out using three different soil samples, all originally 

collected from the Stephenville site. The first two experiments used low-PCB soil (20 

mglkg), the second two used high-PCB soil (>80 mglkg), and the last used the 

dechlorinated soil slurry from RMC, as described above. The consortium was tested in 

soil slurries with MSM alone, spiked with biphenyl as cometabolite, or spiked with both 
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Aroclor 1254 and biphenyl. 

In experiment 1, no PCB or biphenyl was added. When the enriched bacteria 

were incubated on a shaker in a soil slurry for 22 days, GC results show a decrease in PCB 

concentration ranging from 25-95% , or an average of 63% reduction for the three 

experimental replicates as compared with the control (Fig. 3 .15). Bacterial counts (Fig. 

3 .16) show that the bacterial numbers decreased between day 1 and day 22 of the 

experiment. This was expected, as no supplemental source of carbon was added. 

However, the decrease in PCB concentration indicates that the added consortia was able to 

substantially degrade the PCB present. Without the addition of a cometabolite, or spiking 

with the Aroclor mixture, there was not enough carbon available to sustain the bacterial 

consortia for the full 22 days. Despite this fact, the bacterial consortium was able to 

decrease the concentration of PCB in the soil by up to 95% in 22 days. This result shows 

the benefit of using bioaugmentation to enhance the degradation of PCBs in soil. The 

enrichment of the consortium on biphenyl activated the enzymes necessary to effect PCB 

degradation (Hickey et al., 1993). 
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Experiment 1 II PCB 
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Fig.3.15. PCB concentrations (Jig/g) for soil slurries augmented with SV 
Consortium culture (unspiked). Notes: Biphenyl was not analyzed ; 
E = experimental; C = control. 
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Fig. 3.16. Bacterial counts (cfu/ml) for soil slurries augmented with 
SV consortium culture. Notes: Initial counts taken on day 1, 
final counts on day 22; E = experimental, C = control. 
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In experiment 2, the experimental flasks and the control were supplemented with 

0.01% biphenyl. The only difference between the experimental and the control is the 

addition ofbacterial consortia culture to E1-E3, but not to the control. The results show a 

decrease in the PCB concentration for the experimental flasks ranging from 15-54% in the 

experimental replicates, averaging 32% reduction as compared with the control (Fig. 

3 .17). This result shows that the addition of the biphenyl-enriched bacterial consortia 

aided the native consortia in degrading the PCB present. Bioaugmentation with 

enrichment cultures grown on the parent compound has been shown to enhance 

biodegradation ofPCBs in soil slurry experiments (Abramowicz, 1990). Bacterial 

numbers (Fig. 3 .18) also decreased, but not as much as in experiment 1, due to the 

addition of the biphenyl as co substrate. However, the extent of PCB degradation was 

only half that observed in experiment 1. This may be due to the fact that the control was 

also spiked with 0.01% biphenyl. The addition of biphenyl as cosubstrate probably 

allowed some biodegradation of PCBs to occur via the native, non-enriched consortia 

present in the PCB-contaminated soil used in the slurries. Without an unspiked soil 

sample for comparison, this hypothesis cannot be confirmed. 
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Experiment 2 ~PCB 

E1 E2 E3 c 
Fig. 3.17. Total PCB concentrations (,ug/g) for soil slurries augmented 

with SV2-4 consortium (experimental flasks) Notes: All flasks 
spiked with 0.1% biphenyl; E =experimental, C =control; 
biphenyl not shown as concentration was below detection limits. 
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8.00 X 1 

6.00 X 1 

4.00 X 1 
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Fig. 3.18. Total bacterial counts (cfu/mL) for soil slurries augmented with SV2-4 
consortium (experimental flasks). Notes: E =experimental, C =control; 

All flasks spiked with 0.01% biphenyl. (lnitial:day 1, Final:day 22) 
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Experiment 3 used 2 mm soil spiked with 200 JlL AR1254 (E1-E4) and one gram 

ofbiphenyl (E3 and E4). Following 22 days incubation, PCB concentrations (Fig 3.19) 

for E1 and E2 (no biphenyl) were slightly lower than that for ES1, which contained only 

soil and AR1254, with a concomitant increase in biphenyl concentration, as compared 

with the control, C 1. These results show that some PCB may have been degraded in these 

cultures. The results for E3 and E4 (soil plus AR1254 and biphenyl) show that both 

experimental cultures almost completely metabolized the added biphenyl (as compared 

with the soil plus AR1254 and biphenyl, ES2). As well, the PCB concentration decreased 

by almost half in E4 as compared with ES 1 and ES2 (Fig.3 .19). These results show that 

PCB was more efficiently degraded when biphenyl was added as cosubstrate. Further, as 

compared with experiment 2, the increase in the amount of biphenyl added as co substrate 

has the potential to effect greater biodegradation of PCBs, as the bacterial consortia were 

able to continue growing throughout the experiment. Figure 3.20 shows that bacterial 

numbers increased in E3 and E4, indicating that they were able to grow on the substrates 

provided. The increase in bacterial numbers for E 1, which was not spiked with biphenyl, 

may be due to the presence of other hydrocarbons in the soil sample which could serve as 

a co substrate. Previous work has shown that the inhomogeneity of PCBs can cause large 

variability in their measurement, especially in environmental samples (Master et al., 

2001). 
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Experiment 3 ~PCB • Biphenyl 
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Fig. 3.19. PCB (fig/g) and Biphenyl (ppm) concentrations for soil slurries augmented 
with SV2-4 consortium culture (experimental flasks). Notes: E =experimental, 

C = controi;E1-E4 spiked with Aroclor 1254 (50 mg/ml in acetone); E3 and E4 
Also spiked with 1g biphenyl; ES1 =soil+ PCB, ES2 =soil+ PCB+ biphenyl) 
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Fig. 3.20. Total bacterial counts (cfu/ml) for soil slurry experiment 3. 
Note: E1-E4 spiked with 200f<L Aroclor 1254 (50 mg/mL in acetone); 
E3 and E4 also spiked with 1 g biphenyl. E = experimental, C = control. 
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In experiment 4, a higher PCB (- 80 mg/kg) soil sample was used. E 1 and E2 

were spiked with 0.5% biphenyl plus added consortia, while E3 and E4 had microbial 

consortia only added. The resulting PCB concentrations show higher values for E3 and 

E4 (no biphenyl) than for E1 and E2 (biphenyl added). All experimental cultures showed 

a dramatic decrease in PCB concentration as compared with the control (Fig.3 .21 ). In all, 

there was a 35 to 90% reduction in the total PCB concentration in experimental flasks 1-4 

as compared with the control. The average percent reduction in experimental flasks 1 and 

2, where biphenyl was added was 80%. In contrast, experimental flasks 3 and 4, where no 

cosubstrate was added, had an average total PCB reduction of 50%. Results also show 

that bacterial numbers increased for E 1 and E2, where biphenyl was added, but decreased 

in E3 and E4, where no cosubstrate was added (Fig. 3.22). These results further support 

that added biphenyl plus consortia effects greater rates of PCB degradation than added 

consortia alone. This result is supported by other studies, which have shown that 

bioaugmentation with PCB degrading bacteria and biostimulation with biphenyl enhances 

the rate of PCB degradation (Master et a/., 2001 ). 
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Experiment 4 
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Fig. 3.21. Final PCB {J.tg/g) and Biphenyl (ppm) concentrations for soil slurries 
augmented with SV2-4 consortium, experiment 4. Notes: E = experimental, 
C =control; E1 and E2 spiked with 1g biphenyl. 
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Fig. 3.22. Total bacterial counts (cfu/ml) for days 1 (initial) and 22 (final) for 
Soil slurries augmented with SV2-4 consortium. Notes: E = experimental, 
C =control; E1 and E2 spiked with 1 g biphenyl. 
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The last experiment was performed using dechlorinated soil obtained from RMC 

labs in Kingston, Ontario. This experiment was done to show the effect of the added 

bacterial consortia on the dechlorinated PCB present. In this experiment, E 1 and E2 were 

spiked with biphenyl. Results show that PCB concentration decreased for both 

experimental setups to half of the control concentration (Fig. 3.23), regardless of the 

amount of biphenyl added. The decrease in PCB concentration, even in the samples not 

supplemented with biphenyl, indicates that the dechlorination of the PCBs reduced the 

number of chlorine constituents on the PCB molecules, thus allowing the consortia to 

effect degradation at similar rates to the unspiked samples. These results show that PCB 

degradation can be accomplished by sequential anaerobic/aerobic degradation steps. 

Bacterial numbers increased for E 1 and E2, and decreased for E3 and E4, as compared 

with the control (Fig. 3.24). This result indicates that the use of biphenyl as cosubstrate 

kept the bacteria growing throughout the experiment. However, the results of this 

experiment show that dechlorinated soil may not need biostimulation with a cosubstrate to 

effect degradation, since the addition of the enriched consortia was enough to stimulate 

biodegradation of the lower molecular weight PCBs. The problem with dechlorination is 

that it requires a lengthy incubation time (up to three months) and the dechlorianting 

strains are incapable of degrading the parent biphenyl molecule (Kuipers et al., 1999, 

Master eta/., 2001). 
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Experiment 5 ~PCB • Biphenyl 

3.5- -700 

3 600 

2.5 500 

2 400 

1.5 300 

1 - 200 

0.5 100 

o~ 

E1 E2 E3 E4 c 0 

Fig. 3.23. PCB {J.lg/g) and Biphenyl (ppm) concentrations for soil slurry experiment 5. 
(E1 and E2 spiked with biphenyl). Note: dechlorinated soil used; not enough 
Sample to analyze each flask for both PCB and biphenyl, so E1, E3 analyzed 
For PCB, E2 and E4 for biphenyl, C for both; E =experimental, C =Control. 
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Fig. 3.24. Total bacterial counts (cfu/ml) for slurry experiment 5, using dechlorinated 
Soil augmented with SV2-4 consortium. Notes: E1 and E2 spiked with 0.5g 
biphenyl; E = experimental, C = control. 
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Chapter 4: Summary and conclusions 

4.1: Research summary 

All ofthe soil (Stephenville) and sediment (Argentia) samples contained bacteria 

that grew on biphenyl as sole source of carbon, showing the ubiquitous nature of biphenyl 

degraders in soils and sediment. It is probable that these organisms proliferate and 

ultimately dominate the soil microflora when contamination with polyaromatic 

hydrocarbons occurs. Many of the Argentia consortia also showed the ability to degrade 

other compounds, such as toluene, naphthalene, phenanthrene, and phloroglucinol. 

Several enzymes responsible for naphthalene degradation are also able to metabolize 

biphenyl and other polyaromatic compounds (Barriault et al., 1998). 

The sediment samples from Argentia showed a wide diversity of microbes present, 

with 18 strains characterized based on Gram reaction, shape, motility, and several 

biochemical tests which outlined their enzyme systems. It should be noted that these 

strains, initially delineated by differences in colony characteristics, were collected from all 

1 0 samples, so may not be representative of each individual consortium. The consortia 

which were characterized in this study were those which showed growth on the 

compounds of interest. Most of the P AH and PCB degraders were Gram negative rods, 

and several were shown to be capable of anaerobic growth (for example, SV3-2 grew 

anaerobically in the TPPB experiment). This result is consistent with the growth of many 

of the Argentia soil isolates in the anaerobic region of Thioglycollate broth. 
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PCB degradation was clearly demonstrated by three of the consortia in this study. 

GC results were used to confirm the bacterial action on Aroclor 1254, a PCB mixture. 

From the data, it is apparent that the consortia were able to degrade some of the congeners 

present in the mixture. Due to the complexity of the mixture, and the number of 

homologues for several of the congeners, it was not possible to tell which of the congeners 

was being degraded, as well as the metabolic end products for each congener. For 

example, the Aroclor 1254 used in this study contains a large proportion of 

tetrachlorobiphenyls ( 42 possible isomers), pentachlorobiphenyls ( 46 possible isomers) 

and hexachlorobiphenyls ( 42 possible isomers) 

(http:/www.epa.gov/toxteam/pcbid/defs.htm). It has been shown in previous studies that 

most aerobic consortia can degrade only the lower-chlorinated congeners (mainly mono-, 

di-, and trichlorobiphenyls), due to steric hindrance, especially in the case of coplanar 

PCBs (Baker and Herson, 1994). Thus, most studies have concentrated on use of single 

congeners, or defined mixtures of congeners (Bedard et a!., 1986). Research is currently 

underway to isolate and characterize single strains of bacteria, from local soils, which are 

capable of PCB biodegradation (Lambo and Patel, 2005a, in press). When using single 

strains, it is possible to determine the metabolic end-products of PCB metabolism using 

GC-MS. In this way, the abilities ofthe local bacteria to degrade PCBs can be 

characterized. 
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4.2: Potential for on-site bioremediation 

Master and Mohn showed that PCB degradation rates were higher at temperatures 

above 20°C than at lower temperatures, even for species of bacteria isolated from Arctic 

and subarctic sites. This demonstrates that enzyme activity, and thus PCB degradation is 

temperature sensitive (Master and Mohn, 1998). For this reason, it was decided to run the 

PCB degradation experiments at 22°C rather than at 5°C. Most on-site applications would 

be undertaken in the summer, so the bacterial consortia would be more effective if grown 

at a higher temperature to allow maximum enzymatic activation. PCB degradation is a 

slow process due to the recalcitrance of the PCB molecule, so any factor, such as 

increased temperature, which could increase the rate of reaction would be beneficial to the 

removal of PCBs from northern environments. The consortium's ability to be 

psychrotolerant would allow the bacteria to survive in temperatures which may be 

suboptimal to some mesophilic species. Use of native consortia thus increases the chance 

of survivability in situ. Since many contaminated sites are in riverbeds, the lower ambient 

temperatures may slow down the naturally occurring biota from degrading the PCBs. 

Enrichment of native consortia by growth at higher temperatures may make these bacteria 

and their enzymes more thermostable and increase their degradative abilities. 

This study shows that the catalytic activity ofthese psychrotolerant enzymes was 

maintained at temperatures up to 28°C. Thus, these bacterial consortia may be used in 

applications in temperate regions, such as soils and aquifers. Mohn et al. (1997) showed 
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that Arctic soil bacteria could mineralize biphenyl and PCBs at 7°C and 30°C. However, 

the rate of degradation was higher at 30°C. This research demonstrates the thermostable 

nature of some psychrotrophic, or psychrotolerant bacteria. Several of the isolates used in 

this study were observed to be capable of growth at refrigeration temperatures. Recent 

work has confirmed that psychrotrophic bacteria cable of degrading PCBs are present in 

Newfoundland soils (Lambo and Patel, 2005b, in press). 

In this study, the use of biphenyl as cosubstrate was shown to enhance PCB 

degradation in soil slurry experiments. This result is supported by recent studies, which 

also show that soils contaminated with PCBs showed higher rates of mineralization of 

biphenyl than soils not contaminated (Mohn et al., 1997). This research shows that 

previous contamination with hydrocarbons selects for organisms capable of their 

degradation. 
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