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I~a ny problems i n t opology can be cha racterized by using th e ideas

of "cxtendlnq" and "l ift ing- a map. An import ant special case of th e

cxtcnsl cn problem is the not ion of a homotopy. Homotopy defines an

equi val ence rel at ion on t he set of maps between two spaces X and Y,

The c lass ificat ion of t cpol ogica l spaces, up t o homotopy equi valence,

is a central problem of Ilomotopy Theory. The homotopy clas sif ica t i on

proble m can easi ly be facili tated if one has the "Homot opy Extensio n

Properly " (HF:P), or i t s dual , t he "Homot opy Lift ing Proper t y" (HLP).

Cofi bre ticns satis fy the HEP whereas fibrations satis fy th e HLP .

Moreover, i t i s import ant t o obser ve that every map fact ors as a

composi ti on of a cofi brat ion fo llowed by a homotopy equivalence

('J'heorem 2.2 . 10Ic) ) . Thus, as fa r as homot opy theory i s concerned,

every map Js a cofibrat ion upto a homotopy equivalence, sugges t ing t he

importa nce of cofi bration s in homotopy theo ry,

The materi al of th i s thes is is organ ized in four chapters. The

fi rst chapt er conta ins background materia l for the t hesi s. Following

th e defi ni tion of a category, the not ions of a pushout and pullback are

int roduced along wi t h their proper ties . We then characte rize pushout s

and pullbacks in 1..2I! (t he category of topologica l spaces and maps ) as

concrete examples. The l at ter par t of th is chapter is COncerned wi t h

some to polo gic al and homotopical not ions relevant to the t hesis.

The second chapt er, wh ich i s the core of t his t hesi s, is primarily

devot ed t o the t heory of cof ibra t i ons wit h a discussion of t he dual

theor y, t tcraucns, in context. We begin with the definition of a
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cofibration as a "veak pushout" and proceed to the catcqor ice l

properties of cofib ra t ions . In the sec ond section, an attempt is made

t o unify the various characterizat ions of cofibrations scattered in the

literature . Following t he characterization theorem [or cof lbretions , we

prove a number of results as Im edi at e consequences. It should be noted

that most theorems in t he li te rature append iI close dncss condi tion on

the subspace A of X and thus require the inclus ion 11 -+ X to be <l

closed cofibration . This requi rement is not a rea l restri ct lon if X

is a Hausdorff Space or if a su itable class of spaces such as

"Compactly Generated Spaces" i s assumed, However , since we arc

working on the category .!QQ, we have attempted the difficul t task of

circumventing the closedness condition whenever possib le . Finally, Wf)

conclude this chapter by providing some geometric examp les of closed

cofibrations and non-examples of cofibrat icns with the former

contrasted with an exampleof a non-closed cofibration.

An examination of the paper, lOA UnionTheorem for Coflb rati ons" by

til lig [11) constitutes the third chapter. The there of t he chapter

i s to tackle the following problem: Given subspeces A and B of 'I.

such that the inclusion maps A -l X and B oj X are cofibret ions,

under what assumptions on the subspaces fo. and R, is AU Jj -l X is

a cofibration?

The final chapter is devoted to a recent theoremof Kicboom 110J

and related resul t s . After having proved Kieboom's Theorem, we

proceed to develop somesophisticated machi nery such as the "Clue ing

Theorem for Homotopy Equivalences" (Theorem 4.61 concerninq hCJffiOlOpy

"



equiv al ences and pushcut s . We t hen conclude the Chapte r by ret r ieving

some or the well known result s of Strom [IS) as special cases of

r.icboolll 's Theorem.
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CHAPTER I

S.CCJJ.9!L ! : ~ory Theor y

This chapte r is divided into three sections : Category ~;leory ,

to poloqlca l Spaces and Homotopy Theory. The first section Introduces

Lhc "unive rsal const ruct.Ions" of pushout and pullback, with the

int ent ion of layi ng the categorical foundations on which many

tcpotoqlca l const ruct ions will s ta nd. The second section on

t opol ogica l spaces treat s basic propert i es of t opological space s and

map" and provides topolo g ical examples t hat can be const rued as

pusbouts and pullbacks. The Hnal sect i on is devoted to an outl i ne of

~;omc of the basi c pri nci ples of homotopy t heory.

r ho mat er ia l in th is chapter i s s tandard. Hence, in many

instances uc proofs a rc s ketchy or othe rwise the appropriate

references arc cited. The follo wing list of references is th e sain

source for th e sete r lel in t his chapter: Ii ) 18), Iii) 121, (iii) [41,

{ivi Ill.

S.'X'.1 io!\ .1. ~~J._cqo ry 1he0n'

l)et LtlU.Q!LLl..:.! : A catcqory ~ cons ists of t hree families of data:

lal @jecLs.

The objects of ~ will be denot ed by A, B, C, .. . , etc . and

we writ e A E I ~ I if A is an obje ct of ~.

(bl ~orph isms

'1'0 each ordered pair (A, B) of objects of ~ the re is

ass oc iated a set f IA,B) , called th e set of~ fro m

~Q.mai n A t o the codoma in B.
f

If f E ~ I A,B) , ....e write f :A ~ B or A ~ B.



(c l A Law of Composition

To each ordered triple lA, B, C) of objects of ~ , t here is

associ ated a l aw of composi tion ~ (A,Bl X ~ (II,Cl -I r (I\, e) .

f 9
If A -l B -l C, then we wri te t he compos it e A -I C ,1 S q-f

or gf .

In a category t , the foll ow ing axioms mus t be sat i afic d:

C2 (Associat iv ity): If A, S, C, D E 1 ~1 and f E c (A,lll,

9 E ~ (B,CI and h E ~ (C,Dl, the n [hql f = h tqf}.

C3 (Existence of ~dent i tie s ) : For all A E I~ l, 1A E C (A,Al,

cal led the identity morph ism of A, such that i r r e c IA,C) ,11I·l

9 E ~ IB,Al then flA '" f and l Ag g .

Remark 1. 1.1: 11\ i s uniquel y dete rmined. '1'0 sec t his, SUPpO f;(;

IA E ~ (A, A) is also an identity mo rphism. Then, IA - lillA'

s ince 1;" i s an identity. On the other hand IA ~ l illA, slnc 

lA i s an identi t y. Therefore, 1A '" lA and so t he identit y i :;

uni que .

Definition 1. 1. 2: f e ~ (A,BI is said to be i.§.q!1lo.rphj:;m if Ulr:rr:

exi st s 9 E ~ (B,A) such t hat gf '" I" and fg Ill'

Note that if f is an isomorphism, then 9 is uniqlJ':!ly

det ermined and is itself an i somorphism. ~Ic wrlt c q . f-l.

f l a:ld f 2 arc isomorphisms, ther, f l f /. is an i :;omo rphi .sfll

If 1f21 -1• f i 1f;1



DeU~j_t.iQ!LLJ..J.: Suppose A,B E I~ I f Then A and B are sa id to

be 99uivalent if there exists A -l B, where f i s an isomorphism .

DeLinit ion 1.1.4 : Let f E ~ (A,BI . Then f is called a monomorchis m

i f for each pai r of morphi sms 91,g2 E ~ (A' , A), f 'g1 '" f ' g2 "'> 91 = g2:

that is , f i s left cancella ble.
f

Jlot<lll.Q.f!: We will denot e a monomorphis mby A;-I B.

IlcfLn.i.l!.QB~ : Let f E ~ (A,Bl. Then f is called an epi morphi sm

if fo r each pai r of morphisms h1'h2 E ~ (B,B' I, hl 'f = h2' ( => hI = h2:

t hat is, f is right cancellable.

f
Not etlon: ~Ic shall denote an epimorphism by A -I> B.

1)c ~ i nJ.UQ.JLJ..:.lJ_: r.. natur al equivalence relat ion "-" on a category

~ is an equiva lence relation "_" on the cl ass of morphismsof

C such tha t

lil If X,Y,Z E I ~ I and f, 9 E ~ (X, Yl, then f - 9 =>

Domai n f = Domain g and Codomain f '-' Codoma in g.

(iil If X, Y,i: E I ~ I and f, g E ~ (X ,YI , f ',g ' E ~lY,Zl , then

( f - q and f ' - g' l => (f 'f _ q' ql .

If "_" is a natural equivalence re l at ion, then we can form the

Q~9.~LqnL.rg£9Q..!:Y ';./_ under the equivale nce rela t ion "<". ~/_

has the same objects as ~ , that is, I ~/_ I = I ~I , and the morphi sm

arc the equivalence classes of mo rphi sms in ~; th at i s,

C/_ (A,Bl " r;;(A,B I/_ .

The compos ition of mo rphisms {f l:A -l Band [g] :B -l C in ~/_

is defined b\' [91 . lfl " [g ' f ]: A-I C. The ident ity morphi sms



Definition 1.1.7 : Given an object A of a category f, the cat egor y

fA ", £ (A, -) of objects under A is def ined as follows:

An ob ject of r;.\ called an object under A, is a pa i r

consi s t i ng of an object X E 1£1 and a morphism u E £ (II,X),

called the insertion.

If x, Y E f.A with insertions u, v then a morphism ot r;.'\
called a morphism under A, is a morphism f s £ (X, YI such that

fu e v.

Note t hat equiva len ces i n t he cat egory £fI arc cano e

equivalences under A, denote by n=lIn.

Dualizing the above defin i tio n we have

Definit i on 1.1.8 : Given an object BE 1£1, t he categm. 1;;:1\ = ~ ( , II)

Qf...QQiects over B is defined as follows:

An object of £B' called an object over Il, is a pal r

consisting of an object X E 1£1 and a morphi sm p E £ (X, Il),

called the project ion .

If X, Yare objects over B with pr oje ctions p, q, th en u

morphism of £B' called a morphism over B, is a morphis m

f :X -i Y of £ such t hat qf = p-

Note t hat the equivalences of the category £n arc called

equiva lences over B, denoted by "=B".

Deflni tion 1.1.9 : Let {Ai}i E I be a famil y of objec ts of a cat (;'J'd:t

£. i ndexed by the set I. Then a product 1!\.;1tjl {if it exists ]



of the objects Ai is an object A of ~, together with

morphi sms xi E £ (A,Ai l , called proiections with the following

universal pro~:

Given any object Y E 1£) and morphisms f i E £ (Y,Ai l , 3 !

morphism f E £ (Y,AI with It/ = [i ; that is , the following

diaqran commu tes,

uualt al nq the above definition \ole have

DcJ.Jll ition 1.1. 1Q: Let {Ai}i E I be a family of objects of a

category £ i ndexed by the set I. Then a coproduct (A'~il

(H it exists) is an object 11 of £ together with morphisms

IIi E £ (lIi'A) called injections with the followi ng llnivers~!

~lllPQ.!1y:

Given any object Ye: 1£' and morphisms f i E (Ai' Y), 3 !

mo rphi sm [E £ lA, Y) with f~i = fi ; that is , the following

diagramcommutes,

~J'~
A---- - - - -'>1

f



Although the existence of products and coproducts cannot always be

guaranteed in ~,we can however guarantee their uniqueness, eucn

ever t hey do exis t .

Theorem 1.1. 1: Products and coproducts, shene...er they exist , arc

unique up to i somorphi sm,

Proof: Suppose both (A; XiJ and (AI;/tIJ are products in a category,.
Now, since (A;li1 is 'a product, 3 ! morphism u E ~ (AI , A)

such t hat /ti u :: 1t1. And since (A' , ltIJ is a product there

exists a unique morphism v E ~ (A, AII such that It{v ~ 7[i '

Thus, 7[i UV ::: 7[i V:: Xi lA and so by the universal property or
products, we conclude that uv > lA'

Asimilar arqueent shows that vu e lA and hence ll :A I 4 A is <III

isomorphism.

Similarly, one can s how that coproducts, whenever they oxlst , arc

unique up to isomorphism.

We now showthe existence of products and coproducts i n Lhe catcqorv

Set.

Example 1. 1.1 :

(al Let {Ai}iEI be a f amily of sets Inde xed by I and leL

A::: i~I Ai be the ca rtes i an product of the family of nels

the set of a ll families (a i l iEI' or mappings f : I oj V Ai
ie l

such that ai::: f(i) E Ai' for all i E I) . Associated wit h

n Ai we have a fa mil y Otj l lsr of projecLions (surjcct.ivc
leI



func:tions) , where It i : i~I Ai -+ Ai is defin ed by Iti ((ai) iEIl = ai'

We claim that (JtAi'ltil is a product in the category §.§1.

Suppose X E 1§.g1 1 and fo r each i e I, f i e §.§1 (X,Ai) , Define

i :x ; n Ai by 91' 1 = Ifi I'll i s r:
leI

~ is well defi ned, s ince f i are funct ions, for all i E I.

Moreover , (lti9)( X) = lti (' (X)) = tti {(fi(XI)ieI = f i(x), i ell

and so the followi ng diagram is commutative

Suppose also 3 ~ ' : X '" i~I Ai such that lti Q' = f l , I E I.

Given x E X, let ~ '(xl = (ai lie I '

Then,

t he ref ore, ~ is unique . Furthermore, n Ai is uniquely

dcternined up to a bi jection, ieI



(b) Let {Xi}ieI be a family of pairw ise d is joint sets a nd let

X '" i~I Xi (disjoi nt uni.on] . Associated with l~I Xi we have a

family (Ili }ie I of inclus ion fun ctions , where ~j :>:1 .oj X (j e I}.

We cla im that (i~I Xi'~i ) i s a coproduct i n t he cat egory sct •

Suppose Y E Iill I and f or each i e I, (i e gl (Xi ' VI.

Def ine f: V Xi -I Y by
ieI

f = .v f i ; that i s , fl = fiisr Xi

Clearly, f is we ll de fi ned, s ince () Xi = 0 and [ j s t he uni que
tsr

funct ion such t hat flli (Xi ) '" f (xi) = fI [x I1, l .e . flli = f i so th at

the following di agram commutes.

x

Note that if the sets \ fa il to be pai r wise dis joi nL,

"separ at e" t hem. This is done by writing the i r e lements as pal r s

(Xii i) where Xi E Xi and I states expli ci t ly which set is belnq

considered . Thus, instead of Xi' we work wi t h t he set

Xi x { i} " { (xi ,i ll xi a X) . The se t s Xi x Ii}, i e J arc pai rvlse

disjoint and so t he set X '" i~l Xi x [t}, togethe r wit h the



inc lusions Pi: Xi x [I] ~ X, i s a coproduct in~.

!i9..!!lM..Ll...:.: In the ca tegory ill, we usually refer to the coproduct

as the WJ of sets and denote it by U Xi' If I = {I, 2, . . . , n},
iEI

then we write X = L:J Xi '" Xl U X2 U . . . U Xn.
1"'1

~Ie now d iscuss the uni versal cons t ruct i ons "pushout s " and "pullbacks"

which are essentia l to our work i n lat e r chapte rs .

pe f init ion 1.1.11 : A pushout of a di3gram

in a category i s a commutative square

with the prope rt y that for e ach commuting square



3 a unique morphi sm h:P -l K wi th hg = PI and hf "PJ.' Th,ll is,

in t he diagram

the result i ng tr i angles coeue . By an abuse of lanqueqc, we

refer to P as the pushout of f and g.

The dual not i on to that of a pushout is that of a pul lback.

Defini tion 1.1.12: A pullback of a diagram

B----'--->l
c.

I II

in a category is a commutat i ve square



with the property that for each commut ing square

3 a unique morhpism h:Xof Q with gh '" Pt and fh '" P2' That

is, i n the diag ram

the res ulting t riangles commute. Again , by an abuse of language,

we refe r Lo Q as the pullback of f and g.

'rhcOr911l.--L-l.d. : Pushouts and pullbacks, shenever they exist, are

unique up to i somorphism.

(a1 Let P and (l' be pushouts of f and g. Then we have t he

following comnctetIve diagrams (pushout diagrams i n fl.

11



,I
A.

.}
nr""~7

'1 ' { > rJ~
A ~ A ~

Since P and p' are pusnout s of f and. g/ there cxi s t unlque

morphi sms ~: P 'i pi and (I' :P' -t P such that

"

and
, 'g' . 9
,'f ' • f

putting the above two diagrams toget her we obtain the Ici loainq

diagram



Since P is a pushout of f and g, ~ I • 9 is a unique morphism

in ~ such that $" ~ • q= $' 9' '"9 and ,, ~¢r '" $'f l = f u.e.
~ '9 makes th e t r i angles cceeute} . But Ip:P ~ P also sat ifies

the commuta tivity of the above diagram. Ilence , by uniqueness of

~ ! $ , it follows t hat ~ '~ = Ip' Similarly, it can be shown that

¢$' = Ip' and so $:P-IP' is an isomor phism i n ~ .

(bj The case of pull backs, which i s dual, is proved similarly.

f:.?':.!l.1IIP.]P. 1.1 J; Pushout s and pullback s exi st in the cate gory set.

(c1) In set the pushout of f :X -l Y1 and g:X" Y2 is obt ained as

roll ows:

l.cl Y = Y1 u ¥2 (coproduct of Y1 and Y2) and let - be the

coar se st equ i valence rel a t ion on Yl U Y2 with fIx) ~ g(x) , for

each x E X. To e xplain t he te r m coar se st, let R be an eq uiva

lence relat i on on a set A. We define a new re lat ion R on A

by aRb (=> t here i s a sequence a !' . . . , an of elements of A

such t hat

(a) a l ::" a, an '" b

(hI vi" 1, 2, • . . , n - I, ai R aitl or ai t1 Rai or

a i " aitl '

Il i s not hard to see that Ris an equi valence relation on t he

set A. Suppose also R' is an equivalence relation on A

cont a ining R. Let a Rib, and le t aI ' . .. . , an be a

sequence set.I srylnq tal and \bl above. No'll 'R> ~ R =>al ' aHl

(or each i " 1/ 2, .. , n - I (by (b) above). Hence , al R' an

and so a R'h. Therefore , R!; R> and wecall Rthe equivalence

relati on generat ed by R (or t he coarsest equi valence relationon Al ,

13



Now let ~:Yl U Y2 -; (Yl U Y2l /- denote t he quotient Iuncti cn

and let ~i: Y i oj Y1 V Y2 be the inclusion functions I '" I, ? .

It is now a routine matter to check that the square

is a pushout .

lb) To obt a i n t he pullback of two func tions f :X1 -I Y and g:X2 -; Y

in~, set Q '" I (xl ,x2) e Xl x X2lf lxl) " glx? )I and l et

1[l :XI X X2 -; Xl and IIl:XI x X2 -; X2 be t he proj ecti ons . Il i :j

now a ro utine matter to check that t he square

is a pu llback .

We now discuss some proper ties of pushouts and pullb acts.

Theorem 1. 1. 3: In any category £, the composi te of l'dO pvs hoct s

(respectively pul lbacks ] is a pushout (respect ivel y pull baek}.



P!oQ.[:

(iJ) Consider the foHowing commutative diagram

r~-r~j,
A )1> ~f

wncre square T and square II are pushouts . We claim the diagram

'IA-----'i

is a pushout .

1'0sec t his, let Z E I ~ I and let t 1 E £ (BIZ) and t 2 Er If', Z)

be isomorphisms such that t Ii " l2 9 f.

'rhus, we obtain the following coreut at ive diagram

15



Since square I is a pushout, 3 a unique morph ism ¢ E ~ (C,~,l

such t hat 9f "" t 1 and ~i = l29. Agai n, since square 11 is a

pushout, 3 !'I' E ~ lE,ZI such that ~ = ¢ and 1{Ii = l2' Nnw ,

'¥9 f ::: ~f ::: t 1 and 'lII::: t 2, To comp lete the prccr, we mus t

show that V is the only morphism satisfying the last set of

equations. So, suppose also 3 '{I' E ~ (E, Zl such that W'g -r - l ]

and 'V' I ::: t 2 , NO\<i, V'g i ::: ",'19 (by commutativity of square II)

'; t 29 and

V'g f ::: tv
But ~ is the unique morphism such that 4>1 ::: l2g and Qf - LI '

SO, ~'g ' $.

Agai n, I( is t he uniqaa map such tha t ~ ::: Q and Wi = l J.'

Hence \II' ::: IV·

(bl The proof for the case of pullb acks is analogous.

Remark 1.1.3: Composition of squares can be done yWjfal.1y as we ll

as hori zontally. The above proof re ma ins true in the ca se of

vert i cal composition. When quoting Theorem 1.1.3, we shal l IlC

refe rring to eithe r horizontal or vert ical compos iLion, ucpcndinq

on t he context of the discussion .

Theorem--Ll..J. : Consider the follo wing commuta t ive diag ram in a

category f

If,



If the le ft square is a pushout ana t he composi te square i s a

pushout, t hen t he right square i s a pus hout .

PrfJql: [,ct t 1 E ~ (D,ZI and t 2 E ~ IF, Zl be given morphisms i n

such that tiT = l 29.

~Ie thus ha ve the foll owinq commuta tive diagram:

, .J i

,E5~C7
A ft I F

since the compos ite square i s a pushout , !$ E ~ (E,Z) such t hat

{q . f) = t 1 . f and $i = l2 ' We now r educe the abcve

di agramt o the foll owing

Observe t hat ¢ . 9 and t1 both make the above diagram

commutat ive . Since the square is a pushout, we have by uniqueness

t hat Q ' 9 " t 1· But fr omabove, we a l so have ¢ . I = t 2.

17



Hence, the morphism ~ E §. IE,ZI is th e required uniq ue morphism

renderi ng the t ria ngle:; commutative in (*l. Th:::,. t he ri ght

Square is a pushout , as r equi red.

Remark 1.1.4 :

(al Dualizing the above theorem we have the foll owing result for

pullbacks:

If t he right squa re is a pull back and the composi t e square is il

pullback , then the left square i s a pullback.

(b) In t he case of ver t ical composit i on, th e resul ts above lake t he

following fo rm:

(1) If the composite square is a pushout and the bottomsquare

is a pushout , then t he upper square is a pushout.

(li ) If the compos i te square i s a pullback and the upper square

is a pullb ack, then the bottomsqu a re i s a pullback.

Sect ion 2: The Categ or y of Topological Spaces

We nowbri efly discuss someproper ties and resu lts i n point set

to pology which a re relevant to our work. Many of t he res ult s wUJ he

assumed or ot herwise s t ated with the necessa ry refe rences .

Throughou t our discuss ions , we sh all denote t he category o[

to pological spaces and cont in uous functi ons by !QQ.

Definit i on 1.2 .1 : Let X and Y be t opolog ical spaces and let

f: X -t Y be a funct ion. Then f is continou s at 1.0 E X iff ror

each neighbor hood V of f(1.O) i n Y, there i s a ne ighbor hood lJ

of Xo E X such tha t f (Uj ~ V. ~Ie say f is conti nuous on 'I.



if f is continuous at each Xo E X.

Note that continuous funct ions are al so called !!@.2§..

tot !I. and B be subspaces of a topological space. If f:A -l Z and

g:1l -l Z are functions which agree on t he intersect ion of A and B,

then we can define f U 9 :A U B -l Z by

(f vg) (a) ~. f(al , for a E A and

If u ql Ibl ' g lbJ, for b e B •

We say that f V 9 i s formed by "glueing together" the functions

and g. The following result allows us, under certain conditions, to

deduce the continuity of f v 9 from the continuity of f and g.

"!ap....9.!.!Jgjng Theorem1.2 . 1: Let X;: 11 V 8, where A and Bare

close d in X. let [ :A -l Y and 9:B oj Y be continuous. If

f(xl := 9 (X), for every x E A I"'IB, then f vg:X -l Y is continuous.

PrQ.C!J : See [12; pg. 108, Theorem 7.3J

Note that the Map Glueing Theoremremains true when A and B

an.. both open in AVB.

Il.9J init.ion ],2.1: A contin uous bijection f: X -+ Y such that

£- \ :Y -l X is also continuous is called a homeomorphi sm and is

denoted by f:X;;; Y. Two spaces X and 'f are said to be

homeomorphic, writ ten X;; t, if there is a homeomorphism

[;X;Y.

An equivalent definition would be to require the exis tence of

continuous functions f :X -l Y, g:'f -l X such that fg::: ly and
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Remark 1.2 .1:

lal If f :X :; Y and Ak XI then f IA:A ;;; f (AI and f IX_f\:X - f\ ~ Y - f(,\) .

(b) By an embedding of a space X int o a space Y, we mean a map

f:X -l Y such that X;;; f (X) .

Definition 1.2.3 : Suppose we are given a set X and a fami ly

(Xa' aeA of topological spaces, together with funct ions [a :X -l Xu'

one for each 11 E A. A topology on X is called i nitial. with

respect to (fal rxeA if it has the follo wing propert y: For any

topological space Y, a function k :Y -I X i s cont inuous iff the

composite fak:Y -l Xa is continuous , for all II e A.

Remark 1.2.2:

(a) If X has the i ni t i al topr;!.v.ji· with respect to (fa laeAI t hen

each fa :X-I Xa is continuous.

(bj The initial topoloqy on X with respect to (fal rxeA is t he

smallest topology such that each fa is continuous .

(cl The i nit ial topology on X with respect to Ifal rxe Tl exis t s and

has subbasis the sets fa-1IUl, for U open in Xcr

Example 1.2.1:

{al Let A be a subspace of X and let i :A -l X be t he inclus ion

map . The i ni t i al topology on X with respect t o j has at, sub

base the sets Cl iVI, for V open i n X. Since i is ccminuoun,

C 1(VI = u /I A is open in A, Hence, the ini t ia l topology on Z

with respect to i is simply the re lat ive topology on A.
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(bl Let {xalaeA be a family of topological spaces , and let X be

the product of the underly i ng sets ; t hat is X = ~A Xa. The

prod uct topology on X = ~A Xa is the initial topology with

respect to the family of project i ons 1t~:I1<a -t x~ . Thi s follows

from the universal property of the product topology.

Definition 1.2.4: Given a set X, let {Xu}aeA be a family of

topological spaces and l et fa: Xa -t X be a family of functions

one for each a E A. A topology on X is said to be final with

respect t o the functions fa if for any t opol ogi cal space Z and

any function q.X -+ Z, we have that 9 is contin uous if and only

if gfa:Xa -+ Z is conti nuous, for each a E A.

!~,-"!iIrk 1.7..3:

(a) If X has the fi nal topology with respect to (fa) neAt then each

fa:Xa -I X is conti nuous .

(b) "he final topology on X with respect to (fa) aeA is finer t han

any ot her topology on X such t hat each fa:Xa -l X is continuous.

(c) The fina l t opology on X with respect to lfal (lEA exi s t s and is

characterized by the followi ng st atement : U f X is open in the

final topology (=) f~l (U) is open in Xa, for each a E A•

.Example 1.2.2:

(a) Let X = U Xa be the m!!!! of the underly ing sets of the family

(Xa}aeA of topolog ic al spaces, and let ia:X(l -l X be t he

inclusions . The final t opology on X with res pect to i
a

is the

sum topcloqy.

(bl let X",u Xa (a sum of spaces Xa) . Given a set Y and func tions

fa:Xa -I Y, a E A, let f :X -l Y be the funct ion determined by the
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fa 's. Then the fi nal topologies on Y with respect t o f and

(fa) flEA coincide .

To see this, let ia :Xa -t Xa be the inclus i ons and le t g:Y oJ 7.

be any function , where Z is a topological space.

Consider the foHowing diagram:

NOw, from the fi nal topologies on Y with respect to f and

(fn)rtEA it follows t hat

(il 9 is continuous <::) gf n is continuous for eac h a E fl.

(iil g is continuous <:: ) gf is continuous .

We show that condition (i) and Iii) a re equivalent.

is contin uous <::) gf i s cont inuous (condi tion ii)

<::) gUa is conti nuous, for each n E fI ( Zrl

has t he final to pology with re spect to i rL)

<::) gf a is contin uous, for each a E fI

(gfo.i(1 :: g£a)'

Therefore , t he fina l t opologi es on Y wit h respect to I and

with respect t o (fal neA coi ncide.

22



lienee, by means of the topological sum we have reduced final

topol ogies with respect t o a family (falllEA to fina l topol ogies

with respect to a si ngle funct ion f.

Definitio n 1.2.5: Assume X is a t opological space, Y a set and

p:X -» Y a surje ct ive funct ion. The fi nal topology on Y with

respect to p is called t he identification topology. The

function p:X ..j Y i s called an identification map.

The foll owi ng is an import ant charac te r i zation of i dent ification maps .

'['heorem1.2 .2: Let X and B be topological spaces and p:X -i> B a

continuous sur jection. Then p i s an identifi cation map if and

only if , for each space Z and each funct ion 9:B -1 Z, g'P:X -l Z

i s continuous <=> 9:3 -i Z i s continuous . (L.e . p has t he usual

universa l propert y for final topologies.)

Prool : Follows f romDefini t ion 1.2.4 .

_t~'\ amp le 1.2.3:

lal Let X be a topologica l space and let - denote an equivalence

rel ation on X. Then X(- denotes the quotient set and X:X -i X/

denotes the canonical projection. We equip X/~ with the fina l

topology with respect to 1t. So, It i s an identifi cation map and

X/- is called t he quotient space.

tbl Let A be a subspace of the topological space X. Thf!n X wit h

A shrunk to a point is a t opological space, written X/A, which

is obtai ned from X by identifying all of A to a single point.

The ele ment s of X/A are the equivalence classes in X under the
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equi vale nce rel at ion generate d by x ~ . y <=> X E A and y E /0. .

The equi valence classes are therefo re the sets {xl for x E X - :\

and al so, when A 'I- 0, t he set A.

Let n:X; X/A be t he projection;

24

lx,
i.e . n(x) '"

A,

X E X - A

x E A

We give X/A the final t opology with respect to 11 and so It is

an identificatio n map. Note that if A "" 0, or consists of a

si ngle point , t hen X/A can be ident ified wit h X.

Let X and Y be topological spaces and denote by yX or Map{X , V)

the set of all continuous functio ns Xoj Y. De fi ne

"IX,lll = {r E Map Ix,Y1lf1KI pl .

Definition 1.2.6: The compact open topology in Map (X,Y) i s that

topology having as subbasis all sets W(K,U), where K£ X is

compact and U£ Y is open. Note that a funct ion f :Xoj Ma p(Y, r.)

induces a Iunct ion g:Xx Y -l Z which is defined by the rule

9 tx, y) '" f {Xl (yl . The most i mportant feat ure of the compact open

t opology is the follo wing result .

Theorem1.2.3:

(al If g:X X Y; Z is cont i nuous, then r rx ., Map(Y, ?) i s

conti nuous. (This i s known as the proper condition).

(bl If f: X; Map (Y,Z) is conti nuous and if Y is locally compact.

Hausdorff , then g:X X Y; Z is also continuous. (This is known

as the admiss ibl e condition . )



Proof: Sec 14:page 261 , Theorem 3. 1] .

Theorem 1.2 .4 :

ta} If X is locall y coepact and Ha usdorff , the evaluation function

e :~:apIX,YI x X of 'i , defined by e lf ,xl ., f ix) , f e Map(X, YI. is

continuous.

lb) Let Y be locally compact , Hausdorf f. Then Map(X, Hap (l , Zl)

is homeomorphic to Hap(Xx l ,Z) t he association f ( - ) 9 i n

Theorem 1.2.2 being the desired homeomorphi sm.

Proof : See [4; page 265, Theorem5. 3]

We nowdiscuss the fundamenta l t heorem [or identificat ion topologies

i n Carte sian product s. Note t hat if f : X -t t , [ I :X' 4 Y' are

ident ification maps, i t i s not t rue i n general that f x f' :Xx X' -l YX y'

i s an identificat ion map. An example is gi ven i n I 1. ; page 1021.

Ilowever, under additional assumpt ions on X and '(' or on Y and

X', the above sta tement holds t rue. We need the foll owing prel Lina ry

result.

l.cnwa 1.2 .1: If p:X -I B i s an identificat ion map and A i s locally

compact lIausdorff, t hen p X I :X X A -+ B X A is also an

Ioent i fica t.Ion map .

1?!!>.Q!: See [4: page 262, Theorem 4.1] .

Theorem 1.2.5: Let p:X -I B and q:Y -I C be identification maps.

Then, p x q:X X Y -I B x C is an identification map if either

(al X and C are locally compact Hausdorf f
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(b) Y and 8 ar e lo cally compact Hausdor ff .

Proof:

(a) p X q is th e composite

Ix x q P x Ie
XXY - - >X xC - -->B XC

8y Lemma 1.2 .1, bot h IX X q and p x ' c are ide ntification maps

and the composite of t wo i dentif ica tio n 1l\(IPS is an Idcnt If Icat ion

map.

(bl Simila r to (a) above.

We now di scuss some cate gor ic al properties in 19'2 and the i r

consequences. We are mainl y i nt er es t ed i n pull backs and pushouLs in

!QQ.

Theorem 1.2 . 6: Pullbacks and pushouts exist in 1'Q.Q and arc unique

up t o homeomo rphis m.

£.!2Q.f:

(a) We show how to fo rm a pullback in t he ca tegory 19£.

Consi der t he follow ing di agram in 1QE.

~}~
'( '1-

As di scusse d i n Example 1. 1. 2(b ), weca n form t he set

xf n g t » (Ix,yl E Xx Ylf l' ) ' glyl}.

Let Xl :Xf n g Y -l X and XI.:Xf n 9 Y -l Y be th e pro jection
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functio ns . Then the foll owing diagram is commutat i ve.

Tl,

~·1'-''(-----71
We 001 equip Xf n 9 t with the in it ia l topcloey wi t h respect t o

the pro jections It! :Xf n g Y oj X and 1t2:xf n g Y -I Y.

We cla im that diagram (*) is a pullback i n 1QQ.

Let Z be a to polo gic al space and l et f 1: Z -l X and f 2: Z -l Y

be maps such that ff l '" gE2 0

We requi re a unique map $ :Z -l Xfng Y such that lt1Q = f 1 and

'1~ • f 2,



Define t :Z -+ Xf " 9 Y by

Clearly, ,, i s unique by const ruct ion . We need to show t hat

is a map .

Since Xf n 9 'i has the initial topology wit h respect to xl and

'ltz, ' is conti nuous (::> 1[1' and Itz' are cont i nuous. uur,

' ,i l') : ' 11111'), f2(, )1 • II I' ) and

' 2i l' ) • ' 211, (' ), 12(,)) : f 2(, )·

Since f 1 and f 2 are continuous funct ions, . is continuous and

diag ram It I is a pullback. The uni queness of pullbacks in 1.9p

follows by Theo rem 1.1.2 .

(bl We now show how to form the pushout of the following diagram in

!QQ.

Let x u Y be the sum (coproduct ) of X and Y as objects

in §g1.

Define "- " as the coarsest equiva lence relation on XU Y such t hat

f (a) - g(a ), for all a e A. We t hen fo rm the quoti ent set

XU Y/- .. Xf U 9 Y, whose element s are t he equivalence classes of

XU 'f under the coarsest equivalence relat i on generat ed by - (see

"



~: zampl e 1.1.2(a), page 13). Hence, the equivalence cl asses inclu de:

(i ! pai rs of points {(f (a), gral}, a € A

(ii I indi vidual points of X - 9(A).

(ii i) individ ual points of Y - [ (A).

Wc now have the foll owing sequence of function :

i
X-=->XU Yl» XfU q Y

i y It
Y--) XU Y - » Xf U g Y

where i X' i y are inclus ion functions and It i s the canonical

projecLion.

l.el r '" lt i X:X -I XcU 9 Y and '9 '" It1y:Y -I Xf U 9 Y. Then th e

Foflowlnq diagram is coenutet.Ive .

\\'C now equip the set Xf U 9 Y wi t h the final topology with respect

co "( and g.
\~c clai mthat diagram (H ) i s a pushou t in I2I!. Let Z be any

topological space and let f 1:X-I Z and [2:Y -I Z be given maps such

that f \9 '" [2f.
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We require a map h:Xf U 9 Y of Z such that

hi. 11

and

Define h:Xf U 9 Y -I Z by

We claim t hat h is well defined . 10 see thi s, suppose [ (;.: ) : q(y).

Now, fIx ) .. g (YI <=> ltix{x) '" /tiy(Y )

<=> a E A such t hat qtal :: x and [(a) :: y.

But, f I9 (a\ :: f 1(xl and f2f(c1I:: f 2(yl as [19 = [2L therefore, Ii

i s well defined. Clearly, h i s unique . It remains t o show tha t h

is a map . Since Xf U g Y is equipped with t he final topoloq'f wiLtI
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respect to and g, and hf :. i l and hg'" (z where i1' f l are

continuous, i t Iol lces t hat b i s conti nuous. Hence, diagram (tt) is

a pusncut. Again , the uniqueness of pushouts i n 1Q2 foll ows from

'thecree 1.1.2.

~mark 1. 2 .~:

la) By Example 1.2.2I bl . t he [i naI t opology on Xf U g Y with respect

to r:x -I XfU g Y and 9':Y -t '\f U g Y coi ncides wi th t he

identi fic ati on t opology with respect t o the project ion

It:X Y... XcU 9 Y. A dual statement holds for the pullback

space Xcn g Y: L e . t he i nit ial topology on Xc r' g Y wi t h

respect t o lt 1:Xf n g Y -+ X and it2:Xf M 9 y -l Y coi ncides wit h

t he initial topology wit h respect to t he i ncl usion i:Xf n 9 Y -t X XY

(by Example 1.2.1(alJ 'IIhich i s just t he relative t opoloogy on

xfn g Y.

lb) In case A is a subspace of X and i:A -t X is the inclusion, we

can visualize XiU f Y as

L)X

~~>-<
and denote it si mply by XU f Y. We call t he pushout XW f Y

the adjuncti on space of X t o Y through f .
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Example 1.2 . 4:

(a) If A ;: e, th en XU ~ Y ;: XU Y (dis joint union) .

(b) If A, X, then X Wf I ' Y.

(c) Suppose X;: B v C and A '" B () C, where Band C ale closed

subspaces of X. Let j :A -I B be th e i nclusion .

We claim : X = B V C = BU j C.

We readily observe t hat at the set -theoret ic level , t he two sets

are identical. The only prob lem here is one of t opology. So H

suffices to show that X '" B U C has the fina l topology with

respect t o the inc lusions B ~ B v C and C -I B V C. So, let

Z be any topological space and let h:B U C -l Z be any function.

Let iB:B -l B V C and iC:C -l B V C be the inclus ion funct iona .

Now, if h:B U C -l Z is cont i nuous, t hen h restricted to it s

subspaces Band C IS cont t nuous . That IS, h ill '" hl[3 and

hl
c

= hiC are continuous. On the other hand, suppose hl B H -l ~,

and hl C:C -l Z ar e cont inuous. that IS, h!1l and hlc arc

continuous . By t he Map Gluei ng Theorem 1. 1; h:B U C -l 7.

cont inuous. Therefore , by Definit ion 1. 2. 4, X '" Il U C has the

fina l topo logy with respect to the i nclusions i B:B -l C and

ic :C -l B U C and so B U C '" BU j c .

(dl If f:A -l Y is an i dentification map, then so also is

f: X -I XU f Y. To see this, consi der the diagram
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Ctcar l y, f: X -I XU f Y is surjective. We have to prove XU f Y

has t he final topology wi t h respect to f. Let Z be any space

and let g: x U f 'i -l Z be such that gf : X -I Z i s continuous .

1-10\'/, q(:X oj Z is cont inuous => gfl is contin uous

:) gIf is contin uous,

(~S fi '" II .
But f is an identification and gif is cont inuous, so 91 is

conl lnuous . since t he topology on X f Y i s final wit h respect

Lo j and i , the continuity of gf and gI now implies that

is continuous. Therefo re, f is an identificat ion map. By way

or an applic ation, let Y be t he space consisting of a sing le

point *, and let A t- e, Then cle ar ly C:A -l * i " an i dent if i ca

t ion mapand so C:X -l XU c Y is a l so an identification map.

But C si mp ly shrinks A to a point , and so by Example lo2 .3(b)

\~r.- have that XUc {*} ;: X/A.

\\!,~ now briefly discuss Theorem 1.1.3 i n the context of the category

'1'0p' .

I\emil r k .1~..?c ~~ :

l.ll Given the fcl Io.... ing commutat ive diagram in !QQ.
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where square I and square II are pushouts in!QQ, it follows by

Theorem 1.1.3 that the composite square

1i

is a pushout. Moreover, by Theorem 1.2 .6 pushouts are unique upto

a homeomorph ism. Hencewe can express thi s fact by the statement

(XfU 9 YlfUh Z;. Xf U hg Z. We will refer to th is fact as t he

Law of Horizontal Composition.

(b ) In a similar manner we have the fo I Iovinq Law of Vertica l

"I }"U; tx, u,'h ',U,'

'l~r'
A )'(

Compos i t ion in !QQ. Zh U 9 (Xf U 9 Y) ;;; Zhf U 9 Y based on the

diagram



Ti!99.!9.rn-L.U: Let Z be a locally compact space. In the following

d ieqrema, assume th at the le f t s quare i s a pushout. Then the

r iqbt square is a pushout .

3S

x ~

F" ,·l l~',U"l.',I
l'( A.Z I

A ~.I '( ' Z

Proof": let W be any space and let k: X x Z -l Wand t :y x Z -i W

be give n maps such that kI f x 1):: L (g x 1) . Now consider the

follovi nq dlagram/----;/,, / lI W

<1> /
/,.l ,., 'F'\' l·'" 1

A..l ,0.\ ~ ... l
l'i(~ have t o show that 3 ! map $ : (Xf U gJ X Z -l W such that

~ . (g x 1) :: k and ~ . (r x 1) :: t. Now, by Theorem 1.2 .3(a)

t he maps k and .e det ermine maps k:X -l wZ and t:Y-l WZ -:

t bc rulos k{x) Izl "' k{x, z) and fly) (zl :: L(y, z). Hence, we

have the foll ow i ng diagram.



Now, t lf xl) '" ( (9 X 1) (=) k if x 1) (a,z) '" fIg x ll la, 'll, for

a ll (a , z) e A X Z

(,,) k( f (a),z) '" f (g (a), z), for all

(a, z) e A x Z

( =) kUl a» (zl " t (glalllz) , for all

z e Z and all a e A

(=) k(f(a)) = t(g(a l), for all e € h

(=) kf= (g.

Therefore , the diagram above coeeites and si nce i t is a pushout,
A Z A A A_ A

! map . :Xf 9 Y -l W such~ that Qg a k and 9f '"t.
Since Z is locall y compact, , induces a map ~ : IXf g Y) x 1. -I W

such that • . (9 XI ) (x,z) '" ' Hq X 1}(x,z ll

• ~ (ij(x i , ' I

• $ (ij(1.11 ('I

= klxlfz l , as ~f :;: k
'" k(x,z )



Tha t i s, • • 19' x 11 '" k.

Simil arly, ¢ . (i x 1) = t. Clearly,' is unique, as is

uni que. Therefore , diaqrem ' is a pushout .

HC!!"lr}:__.!d.:! : By uniqueness of the pushout object, we have that

(1.[ 9 Y) x Z;: X x Zxxl gXl Y x Z.
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Section 3: Homotopy Theory

Definition 1.3. 1 : Let f and 9 be continuous functions f rom X to

y. We say f is homotop ic to 9, written f .::.g, if t here is ,1

continuous f uncti on H:X x I of Y wit h H(x, O) = [ (xl a nd

Hlx, l ) = g{x), for all x E X. The map II is called a homotopy

from f to g.

Notation: We wr : te H:f =g , when H is a homotopy from f La g.

Letting \(x) = H(x,t ) , for x e X and t el, th e homot opy II is

se en to represent a family {htl t e I } of functions from X La V,

varying continuously with t, such t hat hO = f and ht '" 9.

Depending on the situation, we will represent a homotopy oi.the r as a

map H or as a family of maps !ht}t e I' varying cont inuously wi th 1.

The following re sults a re easy consequences of the deriniti on of

homotopy .

Theorem 1.3 .1:

(a) The rel ati on U=" is an e quivalence relat ion.

(b ) If f ,g:X-t Y, [ ',g ':Y of Z are maps such that f =g and f ' ., q",

then [ 'f.::. g'<] .

(e ) Let X,Y,Z be spaces. The n there exlats a homotopy lI:XX r -t Y

from f to g <=> there exi sts a homotopy G:X x Z x r -l Yx ii,

from f x l Z to g XlZ' for all Z,

(d) If H:XX I -t Y is a homot opy f rom f to g and $:Y -l '/, i s .)

map, t hen '3 a homotopy G:¢f = ~g .



(e) If H: X X ! -i Y is a homotopy from f to 9 and $:Z -l X is a

map, then 3 a homotopy G:f$:: g$ .

proof:

(a) We lea ve the details to ~he reader.

(b) Wll sketch t he proof.

l.ct H:[:: 9 and G:f':: 9' .

then, fIH:f'f::. f 'g and G(g X I I :f'g :: g 'g.

Therefore, by trans itivity of the rela t ion n::" (see part (a))

we have nat f 'f:: g 'g, as required.

(e) Since f and 9 are continuous, then so are f>: 1, 9 x I:X x Z -l Y XZ

tcartesle n product of maps) . Also, 0:>: X Z x I ;;; Xx I x Z

(commutativity) . Define G:X x Z X I -I Y X Z by

G • III x 1Z1 . Q

'l'hat i s , G(x ,z,t l := I (H )( lZI . OJ (X/lit)

(H X lZl (x/l, z)

IH(x,t l , ,)

Then G is a hoeotopy from f X 1 to 9 x 1, as required.

Conversely, suppose G:f x i , 9 X I:X X Z X I -i YX Z, for any

space Z. Taking Z = (*l, defi ne H:X x I -l Y by H:= Py G 6,

where 9:x X I;. XX {t} x I and Py:Y x {*} -l Y is projection

on the first factor. Then H is the required homotopy from f

to g.
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(d) Consider Kx I ~> Y-.l) Z.

$H is continuous and ~H :X x I -I Z is t he requir ed homotopy from

$f to jg.

Ie) Consider Z X I~> Xx I JL) Y.

Then, H($)( lx l:Z X I --l Y i s conti nuous and is th e requi red

homotopy f rom f~ to g~.

Remark 1.3 . 1: By Theorem l.3.1(a } and (b), t he relet Ion "e " is a

natural equivalence on the category !QQ. \~e can thus formthe

quotien t category Top!=, (see Definition l.UI denoted by tORtI.

Observe that t he objects of 1QQh are objects of.!.QQ and for all

X,YE I.TQQI = 1.!QRh 1; Toph( X,Yl is t hen t he set of all homolopy

cl asses of maps from X int o V, wri tt en Toph (X,Y)" IX,V], If

f:X -I Y is a map, we denote t he homotopy cl ass o f [ by If] .

Note tha t !QQhis the "base category" for Algebra i e tope logy,

Defin it ion 1.3.2: Acontinuous function f:X -t Y i s said t o be a

homotopy equivalence (or h-egui valencel, if If) is an

isomorphis:n in 1QE!l; that i s , if 3 a map g:Y ", X such t hat

gf ::. IX and f9 ::. l y . We t hen say 9 i s a homotoQYJ.9g,Jn ~9 rsc

of f and f is a homotopy right i nverse of g. The map q in

a homotopy inverse of f if it is both a ri ght and a le ft r.orrl(j l!i!'1

i nverse of f , and f is said to be an h-eguivaJc .!1.fQ i [ i t han iJ

homotopy inve rse.

Example 1. 3 .1: Ht1me<lmorphisms a re homotopy equivalences. A spcclc I

case of h-equ iv elence is the notion of a space being contractib le,

'0



Minition 1.3.3 : Aspace Y. is said to be contractible if it is

homotopy equivalent to a point. Equivalently, X is contract ible

if 3 ;':0E X such that t he map Ix:X -t X is homotopic to the

constant map Cito:X -I X at Xo (L.e. CxO!X) "" >:0 for all x E Xl.

rho following are easy consequences of the definition of h-equiveIence.

Again, as before we give a sketch of the proofs whenever necessary.

'rheorem1.3 .2:

(ill If f:A -l B, 9 :A oj C and h:B " C are maps such that 9 and h

arc h-eq uiveIencea and hf e. g, then f is an h-equivale ace.

(bl If f:A -l [l is a map andg:B .. A is a map such that gf:::. lA

and h:B oj A is a mapsuch that fh:: IB I then f is an

h-cquivalence .

Proof:

(a) 9 is an h-equivalence =) g':C -l A such that gig::. I,., and

9q':: 'c
But hf::. 9 => q'hf ::. gig (see Theorem1.3.1ldl)

=> 9'hf ::: g'g = lA

=) q'hf e lA (see Theorem1.3 .1(aI1

That is , q'h is a left homotopy inverse for f. Again , h is an

h-equivalence=> h ' :C-lB such that h 'h::18 and hhl=lC'

NOW, h'h :: 13 => h'htq'h e 18 fg'h =: fg'h (byTheorem 1.3.lldl

and the fact that h'h::. lB) . Again, since hf = 9 we havethat
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Therefore , g 'h is a right homotopy inverse for f . Therefore, (

is an h-equi val ence.

(bl Consider the following composite

Now, fh:. 1B =) fgfh :. fg 1B = fg.

-, f gth = tg

But, fgfh ::. f lA h = fh :. lB'

Hence, fq e fgfh ::. lB'

Since gf::. 1A (by hypothesis ) and fg = l B fromabove, wehave

that f is an h-equivalence.

We nowbriefl y di scuss a more general concept of homotopy - Lb at of

homotopy relative to a subspace A. Here we require t hat t he homotopy

remains invariant on pts. of 11 .

Definition 1.3.4 : Suppose t hat A~ X and f,g :X -l '{ arc maps.

We say that f and 9 are homotopi c relative to II, denoted

f = 9 (ret A) or f = ret A9, if 3 a homotopy Hrf = g such

t hat H(a,t l = f(al = g(a) for all a E A, t E r.

Rema rk 1.3 .2: The re lation =rel A on the set of maps f rom X to

'{ is an equivalence relation .

Defintion 1.3.5: A subspace A of X is a ret ract of X if there

is a map r: X~ A, called a retr action such t hat t 'l = 1/1 '



Q.efinition t:.l.J.: A subspace A of X is called a deformation

retract (DR) of X if the re is a retraction r:X -+ A such that

i r ::: lX:X -+ X, where i:A -+ X is the inclusio n. In other words,

II is a deformation retract of X if there is a homotopy H:X x I -+ X

such that H(x,O) " x and H(x,I) " r(x) E A, for x E X.

J3..cmark 1.3.3: If A is a deformation retract of X, t hen A and X

are homot opy equi valent.

Defi nition 1.3 .7: A subset A of X is a st rong deformation retrac t

(SDR) i f there is a ret ract ion r:X -t A such that ir =. rel A'x

In ot her word s , A is a SDR of X if the r e is a homotopy F:X X I .j X

such that f(x /Ol '" X, for all x E X

F(a,t) '" a, for all x E A and all te l

F(x,ll '" r(x ) E A, for all x E X.

Note t hat a SDR is, obviously , also a DR.

We now extend the def init ion of homotopy to the categories !9.If: and

,'f9PB'

De finition 1. 3.8: Let i :A ...X and i ' :A '" Y be objects of Tmt.
Suppose f ,g: i -+ i ' are morphisms of .Tmt, That is, fi = i '

and ql = i". Then f is said to be homotopic to 9 under A

denoted f :.h g, if there i s a homotopy H:X x I ...Y such that

II:f :. 9 and H(i XII ' = i I • peA; that is, the following

diagram cometes •
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Notice that the equation Hli x l il = i ' . ptA can be replaced by

the statement ht l '" i' , for all t E I , ...here hL:X ~ Y i s the

homotopy such that hO '" f and hI '" g. Therefore, a homoLopy

under A of f into 9 is a homotopy in the ordinary sense which

is a map under II at each stage of the deformation.

Remark 1.3.4: If A is a subspace of X, then f;:;'" 9 reduces lo

the special case f::. rej Ag.

Defintion 1, 3.9 : Let p:X4 B and p r : Y -l B be objects of !9PIl'

Suppose t,g:p 4 p' are morphisms i n 1m?g; that is , p' f '" P and

p 'g = p . Then f is said to be homotopic to 9 ~ li, denoled

f ;:;89, if a homotopy H:X x I -t Y such that Il:f " 9 and

p'H '" P • prX; that is , the foll owing diagram commutes.



Therefore, as above, a homotopy over B of f into g is a

homotopy in the ordi nary sense wh ich is a map over B at each

stage of the deformation.

Remark 1.3 .5: The relations n} . and "=B" are natural equivalence

rela tions in TopA and Tops ' We then can forti" t he quotient

categories (se e Def i niti on 1.1,6)

Tol'/=A. '" TopAh and TOPB/=S '" TOPBh •

If i ,i 1 E ITopAI '" ITopAhl, 'l'opAh (i ,i ' l is t he set oiall

homo topy classes of maps X into Y under A; that is ,

Top,'Ih (i,i ') '" jX,yj A. Similar ly, for P,P ' E ITOPel '" ITOPBh1,

TO PBh (P,P') :: [X, Yls' If f is a morphism in TepA (Topsl , t hen

we denote the homotop y class of f by [f }A ( [fl a) .

I~c nowextend the notion of homotopy equi valence t o th e cate gories

TapA "ND TOPB'

l!9[inition 1.3.10 : Amorphism f in TepA (ToPal is a homotopy

~uivalence under A (over Bl if (fJA nf l s) is an

isomo rphismi n TopAh (TOPSh).

tn other words , if f :X -l '[ is a morphism in TopA [by an abuse

or language) , t hen f is an h-equivetence under A, if

q:Y ..j X in TopA such that gf ~ IX and fg ~ 1y.

B£i!!:1rk \. 3. 6:

l..) Let i and i I be maps under A. Then i i s h-equivalent

under A to i ', if i and I ' are isomorphic as object s in

1'opllh.
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(hi Let P and pi be maps ever B. Then p is h-equlvalencc over

B to pi, if P and pi are isomorphic as objects in TO!'ah.

We conclude t hi s sec tion with a brfet discussi on of somebasic

propert ies of adjunction spaces i ntroduced in Section 2. We begin by

Lit rcduci nq t he mappi ng cylinder, which is a special case of t he

adjunction space .

Definit ion 1.3.11 : Let X and Y be topologica l spaces and let

f :X -I Y be a given map.

Define f ' :X X 0 -I Y by [ ' (x,O) '" ( (xl.

Now, X X 0 i s a subspace of X x I and hence t he pushout of

f'
is the adjunction space H(f l = IX x IJ U [ I '{
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one of the important features of adjunction spaces is given by the

[o tl o.... ioq result.

'r_hp_o.!gm.l..:l.J.: Consider the following pushout in !2E

where A is a closed subspace of X and i is the i ncl usion

map. rhon i is a one to one closed map and fl i s one to
X-A

one and oper••

I ~IQ.Q!: Clearly, i is one to one , Now l et C be clo sed in Y and

let C' '" IIC). t hen, i - I (e ') '" I -I (IIC) ) '" C s ince I is one

La one. So, I - l (e ') '" C is closed in Y. If C' {) (Y f(Ajl '" 9,
Lhcn ["-1 fC' 1 ", ~ . If c : () 11 - [(All f. 6, then i-I (e') = ei(el .

Ilul [ is cont inuous and C is closed i n Y. lienee, e Ife ') = el (el

is closed in 11 and t hus in X, since A f X is closed. In any

event, '[ - I (C' ) f X i s closed. Therefore, c' is closed in

f Y, as X f Y has the final topology wi th respect to f
and i. (see Remark 1.2.3«n. The prooi t hat fl is one t o

X-A
one and open i s simil ar.
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Remark 1.3.7;

(a) Notice that it is i mmediate from above that i is a hoecceorphlsn

onto a closed subspace, and [I is a homeomorphism onto an
X-A

open subspace of XU f Y. Thus, we have that under the assumpl lon

A~ X is closed, Y is a closed subspace and X\lI i s an open

subspace of XU f Y.

(b) If X and Yare compact, then so is XU Y and hence as t he

continuous image of a compact space, XU [Y is also compact.

Ie) If A'/. $ and X and Ya re path connected , then XU rY is

path connected.

(dl If X and Yare normal, then XU f Y is norma J •

Lemma 1.3.1 : A is a strong deformation of h X r.

Proof: Clearly, {OJ is a SDR of I under the map F:1 x I -l I

given by F(x,tl = (1 - tlx.

Consider Ax I x I~> A X I .

Now, lA X F is a map s i nce both lA and F arc maps .

Furthermore,

(i) for all (a,s) E A X I;

(lA x FI (a ,5 ,Dj = (a, F(s, O)) = (a, s l

(ii ) for all (a,D) e A x 0) ;

(lA X F) (a,O,tl = (a, F(O,tll '" (a, OI

(Hil for all (a,s) e A X 1;

(11\ X Fl (a,s, ll '" (a,F(s , l))

= (a, O, e!l x 0,



'rhere tore , fo. x 0 i s a SDR of AX I.

rntu ftlve ly , the above result i s obvious since the bottom of the

cylinder is a SDR of the ent i re cylinder .

!I!..C.QIQ~: Consider the follo wing pushout diagramin .!QQ.

(a) If I} is c losed in Y and a SDR of Y, t hen A is a SDR of

fl U r Y.

(b} tn part icul ar if MtCl '" AUf 0 X I be the mapping cylinder of

t ho map f :D ~ A. Then A is a SDR of Mlfl .

Proof :

lal since I) is a SIlR of r , '3 a ret raction r: Y oj D and a homotopy

II:Y x I -I Y such th at

Illy,0) " y, ye Y

ll(d,tl '" d, de 0 and r e r

l\{y,1) " fly) ED

le t X '" AU f Y. Since I is locally compact, it follows from

Theorem 1.2 .7, that Xx I:; A x I U fX1 Y x 1. Consider now the

fol lowing diagram.

49



so

Observe that f H( i x IHd, t l :: fH(i(dl,ll

• f Hld, ' 1

• f ld)

and prx(I x Il [I x Il (d,t l :: prx(If (d), t l

. lfldl

• f ildl

• f ld)

Therefore, fH( i X 1) :: prx(l x 1) (f X 1) and so by the

universal properly of pushouts, 3! K:X X I -I X such t hat

and K(T x 1) :: prx(l x 1)

We now show t hat K is t he requi red deformat ion ret ract ion.

(i) Let xe x e AU f Y. Then ei t her Y. E II or Y. E Y.

Suppose x E A.

Then, Kfx,O) :: prx(l x 1)(;.:, 0)



'"Itx)

'" x
Suppose x E Y.

Then, K(;, 0) = K(f"x 1) (x, OJ

= f H(K,O)

~ fix i

:: X

Theref ore, K(x,0) :: X, for all xE AU f Y.

(ii) Let a E A.

Then, Kla,t) = prx(l x 1) (a,l )

= prxt'i"(a l , t l

= I fal

= a, for all tEl

'rnat is , K l eaves l (A) fi xed.

(ii i ) I[ x E A, then

Klx, 11 ~ prxII lx), 11

= IlK) E llAl

If x E Y, then

K(x, 1) = fH(x, l)

= fir (x)

~ If lrlx)1 E 11M

Therefore , I(A) is a SDR of AUf Y. But by Theorem 1. 3. 3,

i (Al -; A. l ienee, A is a SDR of AUf Y.
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Chapter II

Cofi brations

This chapt e r i s subdivided in to t hree sections . In Secti on J, ~'e

discuss the notion of HEP (Homot opy Ext ensi on Property} whi ch is a

pre lude t o t he definition of a cofi bration . The vari ous equivale nt

defi ni tions of a coHbration are discussed i n det ail along with some

basic pr operties of calibrat io ns , some of which a rc cate gor ica l i n

natu re .

The second sect ion is t he core of t he chapte r, where we disc uss

th e "Characteriza tion Theor em of Cofibrations ", al ong with some

immediate consequences of th is resul t . An attempt is made t o put

t oget he r t he various character izat i ons of cofib rations scatte red in

t he litera ture.

Fi nally, i n t he th ird sec tion we give some geomet ric example s of

cl osed colibrat ions , contras ted with exampl es t hat fa i l to be

cof ibr et.Ions , concl udi ng with an example of a non-cl osed corlb re tlon .

Sect ion I: Defi nitions and Categorica l Propert ies of C9fit! fill.i_on:;

De f i ni tion 2. 1. 1: Let A be a subspace of a space X. 'rhe lnci us ion

i:A -l X has t he homot opy ext ension proper ty (IlE?l wi th roapoct trl

a space Z if for all maps f :X -l 7., any homolopy of f l c%lf:JirJ:;
I,

to a homotopy of f. We say i: A -l X as the liE? i f the abo'J(:

sta te ment i s true for a ll spaces Z.

In oth er words, i :A -l X i s said to have the lIEP wit h respe ct t o Yo

if, given maps f:X -l Z and G:A x I -l Z such t hat [ tal GI- , (J)
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for a E A, t here is a map (not necess ar ily unique) F:Xx I -l Z such

t ha t F'(- ,Ol = [( xl a nd FI = G.
AX!

The existence of F is equivale nt to the existence of a map represented

by the dotted a ~ row which makes the followi ng diagramcommutat ive

~j
,r ~Fj· (>1

A A . I

Thus, the m;p for i :A -t X i s equi vaIent to the condi tio n t hat the

square in diagram (") above i s a wea k pushout.

J~cL.in i Li on 2.1.2: A cofibration is a map j :A -l X such that for any

nap r:x -l Z (Z arbit rary } and any homotopy G:A X I -l Z such

that Cla, Ol = f j( a) for all a E A, there exists a homotopy

F:X X 1 -l Z such t hat F{j X t I l = G and F(- , Ol = ( (x l for x EX.

'that is , there exi sts a map F rep resent ed by t he dotted arr ow

making the following diagram commutativ e.



Thus, if A is a subspace of X, the i nclusion map i:!I -I X is a

cofibration iff the pair (X,A) has the IIEP wi t h respect to any

space. In this case the pair (X , A) is called a cofibrcd pal r 01

is said to possess the "Absolute Homotopy Extension ProQ.c..!1.Y.

IAHEPI ".

Next , we shall show t hat all cofibrations are embe:ldngs. 1'hilt

is , if j :A -I X is a cofib ration , we can without any loss or

generality rest ri ct our attention to the case II is a subspace or

X and j is the inclusion. But before we do that we need the

followi ng

Lemma 2.1.1: Given a map j:A -I X, let M(jl denote the mapping

cylinder of [ . Define a function e:M(jJ -I X x I by

e[x] = (x,Ol, x E X

e [a, t ] ::: (jla) , t l, (a,tl E A x I

Then (al e is continuous

(h) j is a cof ibr at Ion <=> e has a left inverse.

Proof :

(a) Consider t he followi ng commutat ive diagram



where 0'0 and kO a re i ncl usions at the zero level and 0", j

are the canonical inclusions.

Now, j x 1 and kO arc eaps and H(j} is a pushout. Hence, e

is continuous <.,> j x 1 and kO are continuous (see Theorem

l.UI .

lh) -",>.; Suppose j i s a cafibr at ion. We will show t hat e adllli t s

a lef t i nverse . Consider t he fo llowi ng diagram

~'il

,I '. }~:
A 0; lA. l

where GO' kO' a and l' are defined, as above.

NoW, (Jj tal " Ij Ian. Since fa, OI - Hal, we have that

IHall :. la,OJ. Moreover, jOola) '"1'101 , 0) • (01,0) . Therefore,

a j : jaO'

Since j :A 'of X is a cafib ration, 3 Ip:x x I ..j Hlj l such that

!pkO " G and l{l( j x 11 '" 1.
Now, It' . rl xl " '1'(;'::, 0) '" lpk O(x) = O"(x) e Ixl and

. ela ,t j '" l{I(j(al,lJ = lp • (j x 11(a, l) • jlc1,ll = la,t l.

So, rp • e " 1~1(j1 and ql is a left inverse of e .

n<=":

Suppose the eep e: ~l l jl -I X x I admit s a left inverse
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t :X x I -+ Mljl such tha t t . e > lH(j }'

Consider the following coesat.at ive d iagram::._---~

+
~X.~'

;1 · f'
A <r. ~ .. t

where f: X -+ Z and g:A X I -I Z are given maps and the other

maps are defined as above. Si nce H(j) is a pushout, there

exists a unique map V:Hfjl -+ Z such that ~ "r and 'Vi -= g.

Composi ng t wi th " yields a map V · t :X x I -+7. vith the

desired propert i es . That is ,

~·/ · kO l x l • ,·h ·Olxl = ' ·Olxl • f lxl and

,./ . j x 11M) • , ·h·jIO,,} • ,· jl o"1 • glo,'I.

Therefore , j :A -I X is a colibration.

Theorem 2.1.1 : All cofib rat ions are embeddings.

Proof : Let j :A -+ X be a cofi bration.

We will show that A; j fA) .

By Lemma 2.LI(b} , the map e :l~ ( j ) -1 :'< x J admits a lcrt. Invcrsc ,

Hence e is a homeomorphismof IHjl onto eUh j ll " Z u (j (J,1 I 11 .
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Since i s an i nclusion and e:M(jl ;; Xu (j (A) X 1) , it foll ows

that e11 :11 X 1 -+ el (A x 11 is a homeomorph ism. Hence,
AXI

!I x l;;;eJ(AXI) : jXl{AXlj '<j(A) x r .

Therefo re, A x t s j (A) X 1 and hence 11;:; j(M .

'J'hc followi ng equivalent definit ion of a cofibra tion will be utilized

wheneve r it is appropriate .

12Q.fin i tion 2 .1.3: i :1I -I X i s a calibrat ion if for all spaces Z and

each commutat ive square

.j'<,Je ,

A , '~t

whe re EO(;l.) '< ;' (01, for all }.:I -I Z/ is the evaluat Ion map, t he

dolled arr ow exists making the triangles commute.

l""'<lA , ) ..1

Di agram {II)
(Definition 2.1.31

Diagram (I)
(Defini t ion 2.1.2)

'rhc equi valence of Definit ion 2.1.2 and Definition 2.1.3 i s established

by cons ideri og the fol Iovinq two diagrams

~l
/ s-:

,I 'F
A ~.I



(al Definition 2. 1.2 ,,> Defi ni t i on 2.1. 3

Assume i:A -I X is a calibration i n the sense of Definiti on 2.1.2

[l.e , consider diagram 11. Now, the given map g:A x 1 -l 7.

deter mines a map g:A -I ZI defined by 9(a) It I " g(a , t) (sec

'Theorem 1.2.3(a).

Similarly , the existence of ~ ; x x I -I Z such t hat ~Ix = r ilnd

~I "g, guarantees the existence of a map 19 :X -l jl,I such that
AX!

rp (xl{t) '" ~ (x/ t l (see Theorem 1.2.31all. Now, E09(a) '" g(al (0)

= 9(a,0) " ~(i x III (a,O) = ~ ( i ( a l , O l "fi (a) and so outer square

of diagram II coeutes . Moreover, EOltl (X) '" ~ (x J (OJ ::: ~ ( x ,Ol = f (>:)

and ~ l i l ' l l l tl " ~ I i l , ) , t l "~Ii x 111',t l "gl"t) "gl') It )

for all tEl and hence 'PIA" g. 'rt eret ore, qJ has the requi red

properties .

(b) Definition 2.1.3:) Definition 2.1.2

Assume i:A -I X is a calibrat ion i n t he sense or Definit ion ?. 1.3

(L.e . consider diagram II ) .

Since I is locally compact and Hausdorff ; g:A -l zl is contin uous

;) 9:11 X I ~ Z is continuous and ltl:X -l ZI is cont inuous "')

~ :X X I -l Z is conti nuous (see Theorem 1.2.3fbl).

Now, gl" OI "g l') 10) " ' olgl' l l

'" fi la) by commutativit y of diagram 1J.

Moreover, ~(x,OI :: l+I (x}(01 :: EO(l+I(xl1 :: ((1. ) and

lp(i xl ){a/ t ) '" ~( i (a) ,t) '" lp(i(al) (tl ""- g (al (tl " ~ ('l , t l .

Thus, ~ has the requi red properties of Def init Ion 7..1.7..

Therefore Def i niti on 2.1. 2 is equivalent to Def inition 7. . 1.3 .



The Io l Icvinq are easy consequences of the defi nition of a cofi bration.

Theorem 2.1.2 :

Ill} for any space X, IX,X) is a cofibred pai r.

Ibl Haps with empty d04lain are cafib rations .

tel Homeooorphisms are calibrations.

(d) Composition of cofibrations is a cofibra t ion .

~roor : [a}, tbl and (cl t ri viall y follow fromt he diagramof a weak

pushout. ld) similar t o the proof of Theorem 1. 1.3I al.

The following t heorem has interesting applications for adjunction

SpilCCS and mapping cylinders .

Theorem 2. 1.3 : The pushout of a cafibra tion is a cofibrat ion .

ss

Proof: Let

be a pushout diagram where i :A -J X is a cofib ration . We prove

that I:B -! Y is a cofib ration .

Cons tr uct the following diagram



such that Z i s any spa e, EO is the evaluation map and t he

right square commutes . Since t he lef t square i s commuta tive, the

compos ite square commut es. Now, i :A -i X i s a cof ibr at ion Ieplio a

that 3 a map ~ : X -l zI such t hat EO~ " gf and tpi = gL We

thus obtain the followi ng dIagram '; f ). 'l.

~7<1~

'f 't2"A f )"

where !pi " gf and gf i = E09f .

Since the square i s a pushout and !pi = gf , there exis ts a unique

map V:Y -i zI such that Wf = q> and ",I = g. Now , the coepositc

map EOlfl has t he followi ng propert ies :

But si nce the square is a pushout , it follows tha t EO"= 9by

uniqueness of EOljl . Hence, ljI :Y -i ZI i n rig hL square of diagram

(*l has the property that EOV " gand VI '" g. norercrc,

I:B -l Y is a cofibration by Defini tion 2.1.3 .

Theorem2.1.4:

(a) For any A and X, the incl usio ns X -l XU A and A -l 'I.U II am

ccrlbretions.

('0



(hj Suppose (X,D) is a cotlbred pai r. Let A f D and let f:A -t B

be a map . Then, (BU fX, B U f D) is iI cofib red pair.

?_:'Q.QI:

(al Consider the foHewi ng diagram

ehnrc ~ : lp -I X and $:9 -l A are the empty maps and i :A -I XU A

and j :X-I XW A are the i nclusi on maps .

Since ~ : 1fI -I X and $ : ~ -l A are cofibrations, it foll ows that

i :/I -I XU II and j:X -I XU A are cofibrations , being pushouts of

cofibralio ns .

(b) Construct tbe foll owi ng diag ram

;/ r
i [~"r
A ) 8
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(l)ser ve that BU f X ; (BU f DIu! X by t he "Law of Vertica l

Compos ition" (see Remark 1. 2 .5 (bl l .

Nov, composite square is a pushout and square I i s a pushout

ia!plies that square I I is a pushout (see Remark 1. 1 .~ Ibl J •

Since j:O -t X is a cofibr a ti cn, i t follows from "Theorem 2.1.]

that ] :BU f 0 -I Bu f X i s a cofib ration .

Sect ion 2 : The Charact e rization Theorem for Ccflbrat Ic.a and its
- -- consequences -- -. -

We begin th is sect i on by prov ing a l emma of Strom (See 116; I,cmm,1 30

whi ch dese rves spe cia l attention . Accordingl y, lie gi ve a br ie r

di s cussion of i ts importance.

Let Mlil denote th e raappi ng cyli nder of t he inc lusion map

i: A " X; t hat i s , H(iJ • xu i A x I. Clearly, as sets. HOI can b(~

i de nt if ied vith Xx 0 U Ax 1. In genera l , however, t nci r to poloqica

ar e diffe rent . Recall t hat XU i A x I has the fina l lopo loqy wilh

res pect t o t he inc lusion maps l :Ax I -I HOI and l :x .. Mli l and sn

C is open in H(i l (=) i - l lCI = C{'\11 x I is open i n 11 x I and

j -1 (C) '" C n (X x OJ is open i n Xx u. The l.cma we arc qolnq to

prov e bel ay i s just t he s tateme nt that t he t opoloqy on 7.x 0 U 11 X I

i nhe rited Iron X x I coincid es wit h t he mapping cyl i nder l oprJ10'-l'l ', 11

Ml i ), i n t he pre sence of ret rac t i on Z x [ -I Z 1. 0 u /, X I . :,:-:

readil y observe tha t th ese two top ologi es arc also i dcmice l i f (\ j!;

cl osed i n X, even if no retr action X x I -I X X 0 U (I Y. I czi st s .

Thi s is because i n this situat io n, Ax I ~ Z 'I. I is r: IfJ5r;rj an-l li' ;II ':':

X X 0 U A x I 1; X x I is closed. therefore , C ~ Z Z IJ U t. /. [ i::

cl 'jed ( "'> C n IX x 0) is closed in Z Yo 0 ant! C l'i fl, Z I) j::;



closed in 11 X I.

~;e now give a formal proof of the above discussion .

J!crnma 2.2.1: If (X,A) is a pai r such that Xx 0 U Ax I is a

retract of X x I, then a subset C of X x 0 U Ax I is open

in X x 0 V A x I (=) C n (X x 0) and C n (A x 1) are open in

h x 0 and lI. x I, respectively.

l~roQ[: (":>"):

Suppose C!;: Xx 0 V A X I is open '~n X X 0 U AX I . Now

X x 0 and II x I are subspaces of X x 0 V A x I. Hence,

C n (X X 0) and C n (1\ x II arc open in the re lat ivl zed

topo logyof X x 0 and A x I respectively.

Ict C c X x 0 V A x I be such that C n (X x 0) and C () (A x I)

arc open in X X 0 and A x I, respectively.

Consider the following subsets of X

u '" I;.; E Xl{x, 0) E c} and , for each natural number 0,

Un '" U {VIV ocpn in X and (Vn AI x IO,~) £" c}

Since en (Xx OJ is open in X x 0 by hypothesis and U can

naturally be identified wi t h C n (Xx 01/ we have that U is an

ooen set i n X. Clearly Un is open in X, for all n, as Un

is a union of open sets in X.

Now set B =UXOU U (IAf'lUnlx IO,lJ) .
n=1 n

~\..c claim uut C = {C(l (A x fO,l ))) VB where C (l {Ax 10, lJ

and B are open sets in X x 0 U A x I and hence C is open in

"



x x 0 v AX I.

We fi rst show t hat C I"l fAX (a,l)) is open in X Xau AX I.

Now, C I"l (A X{O,l J) ~ IC n A x I) nAx (0,11 where e n (AX 1)

is open in A X I by hypot hesis . Since II x 10, 11 is a subspace

of AX I it follo ws t hat en {A x (0, III is an open subset o f

Ax (0, 11. Also, A X (0,11 ;;.Xx (0,11 ,... IX x 0 VA x Il shoro

XX (0, 11 is open i n X x I and so A x IO, ll is all open subse t

of X x 0 V A X 1.

Hence we have c o x x (0,11 ~ AX 10,I Il;XX 0 VAX I where

c o x x (0,11 is open in A X (0, 11. Therefore , there exist s an

open subset, say \if ~ Xx 0 VA X I, such tbat. C f'l {A x (0,1 11

;;.A)( (0,1) n W.

There fore, C f'l (A)( (0,11) is open in X x 0 U A X I, ,15 it is

t he i ntersecti on of two open set s in X)( 0 V A x r. We nOli ~hCJW

that C:= (e 11 (ll x (O ,i ll ) u n.

"<;" :

Let c E C £ (X )( 01 ViA )( II .

Then eithe r c > (x, OJ, for sese 1. E X, in wh ic h C<1 5e

c E U X0 ~ B, or c » (a,tl, Cor a E A and l E 10,11 , in w/li d !

case c E C n IAx (0,1)).

In eithe r case c e C f'l (A x 10, I}) u a and so

C~ (CI1 (A X (0,11 11 VB.

"1':
Since en (II x (O,l ll ~ C, it su ff ices Loshow I! C C.

Let be B.



so b '" (a, t) e C.

C<lSC (i) If b E UX 0, then b e C by defin ition of U.

Case (iiI tr bE U (fA nUn) x 10,ll 1, t hen '3 nO E II ~ be
0=1 n

(II () Un I x (0,.1) and so b = la, t l for some a E (A ri Unol
o nO

and some t E [O, l ) .
nO

ilul a E fo. r. Uno ~ Uno implies, by definition of Uno' that 3 V,

an open subset of X, such that (a, tl E (V n A) x 10,.1..) C C and
nO -

ln ei t hcr case bee and so BfC.

uororo we can show t hat B i s open in X x 0 U A x I and hence

compl ete the proof t ha t C is ope n i n X X 0 U A x I , we need to

prove the Iol Ioel nq facts:

(il) fl nu " An Uun•
n-t

";! ' :

[ f x E II n S1 Un then '3. nO E N "J Y. E A (\ UnO'

By dcfin i t io,- of UnO '3 an open set V in X such th at

x E fI (] V and (Vn A) x [0,.1) c C. In particu lar, tx , OJ E C
nO -

and so x E U. Hence, x E A n U and we have th at A () 0 cAn U.
0=1 -

";;t":

X E A n U ~> x e U and x E A

=> (x,Oj E C and x E A

=> (x, O) E en {A x I)
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But C rv (A X 1) is open in AXI

exi sts a basic open set of the form

s uch tha t (x,D) e v' x [0,1..) cC.
nO -

by hypothesis . ltcnce, there

VI x [ 0,.1) c c r. fA X 1)
nO -

Since V' i s open i n A,

6 6

3 an open set V in

(x, OI E v' x 10,1-1 =
nO

But then x E A n Uno

A ou~ A nV Un'
n=1

X such that VI = V (\ A. Hence,

(V r. Al x [O,...L1 CC and so x E Un .
"o - 0

and hence x EA r. 0 Un that is ,
0:=1

(Ii) If V is an open subset of X such t hat V r.1I~ Un then

V fUn'

Since V is open in X, V i s a subset of Un if V has t he

pr opert y that (Vn Al x IO ,~ ) ~ C. NoW, if vE V f'oA, Lhon

v E Un by hypothes is and so anopen subse t W of X s uch

t hat v E Wn A and (1'1 () Al x [0,1 ) c c.
n

I n part i cular, we have that {v} x [O ,~l £:C and so

VE~ {v} X IO , ~) !;;C; that is , (V (\ AI X l O , ~1 ~ c .

Therefo re , V f Un' as requir ed .

(cl X -U Un£: A
n=1

Let 7. E X - U Un ' Then x rt. Un' f or any n ~ 1.
neI

Let Vy' be a ne ighborhood of x in X such that Vz ro A ~ .

Then, (Vi: roA) x [O,k ) ,, 0 f C, for all n. But th i s imp! i,::;

th at x E Un fo r each n, a contradic ti on. Hence, for ;JI I

ne ighborhoods Vz of x in X, Vz (\ AI 0 awl S'; ZE 1\ .



\I'e show t hat Y. E X - U.

(dl For tE (O,l ],r{AXtj ::Ax t , where r :XX I-lX x O UAX I

is e retraction (exists by hypothesis} .

Now, A is close d i n X and {t} is clos ed in I; hence,

Ax t :: Ax {t] " AXt i n X x I and so rIA x t ) :: r IAXt)

c; rIA x t) , by the conti nuity of r • But r i s a ret racti on.

Hence, r(A x t l " r{AX"t) c;~ '" A'X"t". Moreover , Yt E (0,1];

II Xl '" (Xx t) (l (X x 0 u A x 1) where X x t is closed in

X )( I and X x 0 V A x I i s a subspace of Xx I . Hence, A x t

is closed in Xx 0 V AX I.

'rhcrcrorc, (or all t E (0, 11, 'A'"Xt '"A x t in Xx 0 vA X L

Consequently, r (Ax t ) f II x t .

On the other hand, A x t :: r IA x t ) f r IA x tl as A ~ A,
Therefo re, for all t E (0,1 )

r (Ax tl '" Ax t

Using (aI, (b) I leI and (d) above we can now prove

{C') u!=UUn.
nvl

Let x E X - ~ Un '

By (c) x E A.
Let l E (0, 11 . 'fhen, by Idl, r(x , t) e A x t . Suppose n e 1

such th at r lx,t) E Un X 1. Since Un x I f Xx I is open, there

ex ist bas ic open neighborhoods V and W of x and t such

t hat r(x,Ll E r tv x \'il l f Un X 1.

lienee, IV() A) Xt '" r t (V ('I AJ Xt J f Un x I. 'fhis implies that ee

v ()A£= Un and hence by (bJ above V f Un ' But then, x E Un 5; ~ UOI



cont rary t o hypothesis.

Consequently , t (x , t) E (A - U Unl x 1.
neI

Now, by la l above, A n u = An U U a nd (ll -0 Unl x I
n=1 n nel

~ (A - IA n \) Un) J x I = IA- (An U) ) x I
n-l

= IA - U) x I £: (X- UJ x I

So, [ (x,t l e (X- UI x I for all t E (0,1]. Since r l x , ~l e

IX - UJ x I , for a ll n = 1, 2, , .. and IX - UI x I is closcd,

it f ol lws fr omthe cont i nuity o f r t hat (x,D) " r{ x,CI E IX · III x I

and so x E (X - u} .

Consequently, X - U Un S; X - U
n- l

(f l U= U Vn' where Vo : U t1Un,
n=1

and hence U ~ 0 Un'
n-!

n " 1, 2, " .

" U, since by tel U !;;0=1 Un'

(91 Afl Un " A n Yn f or all n e 1, 2, .. .

";I':

The i nclus i on A flVn r; AnUn is c le ar s ince Vn C rJn,

"f":
If Yo E A n Un' then x E Un and x E A, and so an opm :;r;t

W i n X such tha t (\II n AI x [ O , ~) C;C. stoec x E Ttl n I, ; j!_

foileve tha t , i n par t icul a r, (l , O) E C. uencc, X E U.



Consequently, x E 11 nUn 11U = 11 n Vn and therefore A Ii Ull f A (\ Vn •

~:l' now show that B ~ XX 0 UA x I is open. Recall t hat

From ( f) and (9) we have t hat

"- (X x 0 V A X I) n U (Vn x lO,A» )
0"'1

As Vn is open in X for each 0, and hence U (Yn X [O l ~ ) I i s
ne l

open in Xx I, it follows that B is open in Xx 0 U Ax 1.

ClltHa~j.g,[j~tion Theor em 2 .2 .2: Let A be a subspace of X. The

Iollo winq st a t ement s are eq uival ent:

(a) 'rhe i nclus io n i :A -l X is a cof i brat i on.

(b ) Per any space Y anymap XX 0 U A x I -l Y extends over

Xx 1.

(e) Xx 0 V A x I i s a retract of X x I.

(d) X x 0 U A x I is a strong defor mation retract (SDR) of X x 1.

(c ) there exis ts a map ,:X -:I I such that Af lp-l (OI and a

homotopy H:X X I -l X such that

es



H(x,O} = x, for all x E X

H(a,t) = a, for all a E A, for all t s t

and H(x,t) E A whenever t > !P(x ).

Proof :

(a) => (b l Let f:X x 0 V A x I .; Y be any map and consider the

wher e (jll = fl and lp2 = [I
XXO AX I

Si nce i :A -l X i s a cofibra ti on, 3 a map q:X x J -t Y ~;ut;h I.Ij'Jl

91 . ~l and gl • ~2 'xxn AX I

Hence, 91 = 91 U 1Il2 " f and consequentl y q i s Lhe
XX Oli\XI

required ex tensto n .

-o



(bl ,,> (el Suppose for any space Y, any map f:X x 0 u AX I.oj Y

extends over X X 1.

'ft"~n , in particu lar , t he ident i t y map lXXOlAX I:X x 0 VA X I -i

XX 0 u A X I extends over Xx I; that is, 3 a map h:Xx I -1

X X 0 vA X I such that hlxXOlAXI " lXXOLllXI" Ther ef ore,

X x 0 U 11 x I i s a retract of X x I.

[c] ='> (d) By Definition 1. 3. 6 we have to show that 3 a ret ract ion

r:X x J -t X X 0 u A x 1 and a homotopy R;(X x I) x I -I X x I

such t hat
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' {{x,tl, O! ' IX, t!

' 1Ix,tl ,s!' (x,t!

and R((r., t), ll '" rt x.t)

lJ(x,tl E X x I

lIlx,tl E X X 0 u A x I

\I (x,t) E X x I

By hypothesi s, 3 a ret raction, say r:X x I -+ X x 0 U AX I. Let

pr,:X x I -l X and pr2:X x I -l I denote the pr ojections on t he

f irs t and second factors respect ively . Define R:(X X II x I -l X X I

by

R((x,t ) , s) " (pr tc/x, l sJ, t(l - sl + s pr2f (X, ll)

Now

(i l R{fx, tJ, O) '" (pr tf(x ,OJ,Ll

(prl(X,OI,l l

IX,I!

O il Let (x, l) E X x 0 VII XL

Then (x, t) '" (x,OJ or {x,tl " (a ,t l for some a E A.



and

Hence , R{(x ,O),s) = (pr1r(x,OI, spr2clx,Ol)

= (pr1(x,OI, spr2(x,OIl

= (x,Oj

R((a, t) ,s) = (pcl rta .t.sl , t (1 ~ s) I sprZ[(a,Ll

= (prl (a. t.el, t (1 - 51 f spr2(a, l l

= (a,t (l -5) + su

'" (a,tl

(iii ) R( (x, tI,l) (prtc (x, t), prZ[(x,l))

= rtx.t l

Therefore, (X x 0) V (AX Il is a strong deforma t ion retr act of

X x I.

(dl ;) Ie) Suppose X x 0 U A x I is a strong dcroreetl on retr act

of XX I .

Let r :X x I.; X x 0 VA x I be a rctracLion . We defi ne ljl ilud

H as follows:

19 (xl = Sup It - pe2t /le , t ) I, for all x E X and
tEl

H[x, t l = pele/x,t), it E X, t e l

We cla im th at q> is continuous.

We shall give a general proof such that the cont i nui t y of rp

becomes a special case (see 11; page 2371l. Let ~ : X x c » R

be a map s uch t hat C i s compact. tet W:X ~ R he dcrlnco tq

Wl x) '" Stp 'Vlx,cl
cec

~le sbov that w is cont inuous.



For a11 x E X, x X C is compact and hence !f(x x C) is

compact in R. Th is impli es that \V{x x C) is a bounded subset

or R. Hence, u is well def ined.

Suppose mIx ) = r and let N " lr - E, r + al be a neighborhood

of r.

No..., by defi nit ion of mix) = r, c E C =) 'I'(x,c) .s: r < r + E

=) x X C~ 1{1(-"' , r t E)

Since f if-OQ, r +€) is open in X XC, t here exists a basic

open set Uy X Vy ;: X X C, such that (x,Y) E U
y

x V
y

£:'1'- 1(-co, r + €)

for all (x, Y) E x X C. Then the col lection {VY}YEC is an open

cover of C. Since C is compact , 3 finite subcover V
y1

' " ' f

V
y2

' • . Of V
Yk

of {Vylyec t hat cover C. Let U1 Je t he inter-

secl ion of the corres ponding fini te number of open sets U
yk

'

k
ThaL i s , U\ " DlUyi ' Now, i t is easy to see that

k
x x C ~ U1 x C ~ };{ (UYi x Vyil !;; 'l'-1(-"', r +E).

conscqucn~lY, (I)(U\) £ (- , r + El . However, '3 c E C such that

"' (x,c) E N and so as above, '3 an open set U2 containing x

such that If/(U2 x Cl f Nf N.

So, Y E U1 n U2 : ) ro(y) ~ r t E and Ol(y) ~ r - E

=) ro(y) E Ir - E, r t e) '" N

= ) (O (U1 ('\U2) f tt

th eref ore, Ol is continuous and so lp is continuous .

'rhc continuity of H i s clear.
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Now for all a E A, ql(al = sup It - pr2r(a, t )1
te l

= sup It - pr2(a, t l l
tel

= sup It - tl
te l

~ °
Hence, A~ If 1 (01.

Furthermore,

(i ) for x E X, H(x,O) = pr lr(x, Ol = prl (x,CI

(ii ) for a E A and t s L

A(a /t) = pr1r (a, t) = pr l (a,tl = a

and (iii ) t >~ ( x j =>pr 2r lx,tl > 0 s ince pr2r (x, tj =0 implies

t 5:sup I t - pr2r(a,t ) I = 19(x) .
tel

Consequently, r( x,tl E: Ax I and the refore lI(x,LI =

pr1r (x,tl eA .

Thus, H is a homotopy of IX relat iv e to !l such that

H(x,t l E A whenever t >!P(X) .

(e) => (al Given ql and A de fin e a functio n

r:XXI-lXXOv Ax ! by

(

(H(x,t l,OI
r(x,t) =

(A (x, tl , t - ql lxl

We claim t hat r i s a ret rac ti on:

Clear ly , r is well defined.

t $ ~ ( 'I

t e ~ ( 'I



NOI' IN

~k: prove that r is continuous .

Let U = { (s,ll E I x I I s ~ t]
V :o {(S ,t ) E I X I I 55: t]

t~
~

Clearly , U and V are closed set s in I x I.

Now, let W'" ((X , t] E X x I I qJ (xj ~ t] and

1, ~ I (x, t J E Xx I I ~I xl $ t]
Then,

s ince U and V are cl osed sets in I x I and lp x 1~ Is

continuous it lol Iovs t hat Wand Z are clos ed se: ~ in X X L

Moreover, X x I '" WU Z.

~) '" (1I Iw' 0) : \'1 -t X X 0 and

!¥ = Ox x II_II) (il!z' lp' prl ,pr2l:Z -I X x I x I -l Xx I

whe re o/(x, l) = (IX x "-" l (H(>:, l ) ,lp(x) ,l)

" (H(x, l ) , t -!PI x})

Then, r '" cj)U \jf :\~ V Z '" X x I -i X X 0 U A x I.

Since (~ and '¥ are continuous, it follo ws t hat r is

ccntinuous (sec Theorem1.~ , Il .

N~x l, \'C prove that r i s a retract ion.
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Since ~(x) :;:>: 0, r (x,O) '" (H(x,OI , O) '" (x,OI, x E X.

Also, since ttl(a l '" 0, r(a ,t) '" (Hla,q , t - 0) -, (a, t ), ,] E "

and t E I. Therefore, r is a retract ion.

Now, consider the following diagram

where i and g are arbitrary maps and j and k arc l nctuslous.

Si nce r:X x I -I Z X 0 V A x I is a retraction ,

'I '" ~t:A x I -I X X 0 u A x I
AX I

and rl '" k:X-I X X 0 'J A X I
XXO

Also, by Lemma 2.2 .1 , Hli } ;;; Xx 0 V Ax 1. lienee, h'l tile:

universal property of pushcuts, there exists a uniqu e m.J[J

q> :M(i) ;;;X x 0 u A x I -I Z such that ttl · k '" q ilnd !p' r.

Now, let IjI '" , . r: Xx I -I Z.

Then, "+'IAXI '" ~ . r [AXI '" <p ' j '" f and

VI • , . 'I . , .k • 9xxn xxO



Therefore, i:A -l X is a cofibra ti on.

Pf;lli ;j r ~_J.2-.J :

( i) If i:A -l X i s a cof i bret ion , then 14( i);;; X x 0 VA x I. Thi s

is just a consequence of Lemma 2.2.1 since i:/\ -l X is a

cofib retI on ( =) X x 0 U A x 1 is a retract of X x I (by

Characterization Theorem2.2 .2).

(ii i If X is Hausdorf f , all cof i bred pairs (X, A} are cl osed . Thi s

follows by obser ving the following two fact s. First, t he product

Xx r i s uausdorff as X and I are Hausdor ff. Secondly, by

the Cheractcrlae t lon Theorem, X x 0 V Ax I i s a re t ract of

Xx r and hence Xx 0 UAx I is closed in XX I being a
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retract of a Hausdorff space• . Now,

A xl '" [II X 1) f'\ IX x 0 V A x I ) where X X 0 V A X J is

closed in Xx 1. Hence Ax I .t; Xx I i s closed and

consequentl y A ~ s closed in X.

( i i i ) l f A Is a closed subspace of X, t ben the nap lp:X-l I i n

eta tcncnt Ie) of the Characterization Theorem 2.2.2 has the

property that fIlO) '" A. This is because if x E f l l ~ ) , then

~' ( x ) ~ 0 and so H(X,*l E A, for al l n > 1, 2, .• . But then,

si nce A is closed , X" H(x,OJ E A. Therefore, rp-ljOJ fA.

Also, in thi s situation , the proof (e ) "'> (a) does not require

t he use of Lemma 2.2.1. It is Imedi at e, here , tnat the subspace

topology Oil X x 0 U A x I coincides with the mappi ng cylind er

topology ae; we haveseen earlier at the beginning of Section 2.

( i \' ) St atement Ie) of the Cbaracter l aat Icn Theorem 2.2 .2 can be writ t en

in t he follow ing equivalent form:



te'} : There exists a map Ijf:X -j [0,001 such that II c { I IO) ill1<l

there exists a homotopy k:fl(O ,11 X I -j X such Lhat:

K(x,O) ::: x, for all x e ~r l [0, lJ

K(a,t) 0; a, for all (a,tl e A X 10,I )

K(' .,t) E A for t > '{I(x).

Clearly , (e) => Ie'}. Now, (e'} ::> (e) can be obtained rron the

following formulas:

!PIx) = Min (2Iv(x),I} and

IK(x,tl ir 2l1'(x} s 1
H(x,tl" ~(x,t(2 - 21¥(x))l 1~ ~(~l2~(f) s z

(v) In the Characterization Theorem 2.2.2 (e), ll(x,ljI(xl) E ~ whenever

~ (x J < 1.

This follows by observing that if 9(:-:) < 1, then for all

IX,t} E x x < !Plx),l l u.e, t > It'{xll we have that

H(xX < If/(x!, l ll ~!I. Hence, H(x X < ltI(xJ,ll} ~A. Now, consider

a decreasing sequence {tn} E < !P lx), l ) converging to !P(x}.

Then, H(x,tn) converges to H(x, lf!lx)) by continuity of fl.

Hence , H(x,!P(x)) E H(x x < ltI(x}, 11l fA. Therefore, J1(x ,ql{xll e {>,

whenever !Plx) < 1.

(vll By choosing U:: [x s X I pr l r (x, l ) e A}

!PIx) = sup It - pr2c(x,l}I
tel

statement (el of the Characte rization Theorem 2.2.2 for I, i;



£.1lEqQ subspace of X can be written in the form:

(a l There exi st s a neighbourhood U of A which is deformable

in X to A rel A u.e . there exist s a homotopy H:U x I .; X

such that

ll(u,OI " U, for u e U

IHa,t ) = a, a E A and t e r

end IIIu, 1) E A, fo r u E U,

(b) The ma p Ip:X -l I is such t hat A '" If! (0) (as A i s closed)

and to(;':) = 1 for x E X - u .

No te that t he last remark ee made i s close ly related to -he notion of

a ha).Q (which will be defined bel ow) and the characterization of

cofl brat ions in t erms of a halo . But firs t we give the followi ng

dcf ini li on,

IJd .i.Il..LLJ..Q.!l..1.,1"l : Let A, V be subspaces of a space X, with

{I. s;: V~ X. 'then, V is a halo of A in X if there exists a

map ltI: X -l I (t he haloin g function) such tha t A~ fl(O} and

X - v c ~- I {1 I . That is, AS; f il a) s f i IO, i ) c v s x.

Hi~mJrU_·_~!2 :

(a) Ir V is a halo of A in x, t hen V is al so a halo of Ai n X.

'rhls foll ows by observing that since f l (O) is closed ,

A, f 1IO) "> ~ , f I I O ) ,fI IO ,I) , v , X.

(hI From the defin ition of a halo and Remark 2. 2.1 (viI , the following

statements are equi valent :

iiI A 4 X is a cofibration .
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liil A has a halo U in X, deformable i n X to A re i I' \'Ll

a homotopy H:Ux I -t X.

(iiil A has a halo V in X, deformable i n X to A re i A vla

a homotopy H:X x I -t X.

The folloli'i ng theorem is a consequence of the Cheract c rl zat ion Thcort'm

2.2 .2 and Remark 2.2 .1 {vi.

Theorem 2.2 .3 : If IX/ A} is a ccl ibred pai r, then so is (X,hi .

Proof : As (X,AI is a cofi bred pair, assume the oxlstoncc of r.p 'llll i

H satisfying the properties of cnarecrcr taet ion Theorem ??. ?. (o! .

We now def ine H(x,tl '" H(x, t A !P I x ) ~ , where t A ~( X I :- Min! t,l{l():l j .

Clearly , H is continuous. Noli' ,

[al if aE: A, let {an} E A be such that an -t a. Since ql i:;

continuous, , (ani -t ,(a ) . But an E A, for a ll n E N, a lld

Ak f l (Ol . Hence 0 -t 'il(a) and ,fal .: O. Therefore

• E fIl a) and so A~ fIl a) .

(bl H{x,O) '" Hlx, O ~ rtl{xll

'" Htx,OI as ,Ix} ~ 0

'" x, by hypothesis.

tel for all a E A and r s r ,

H(a,t) '" H(a, t A !prall

'" H(a,t ~ 01 as !Pta) = 0 by (11 ) above:

• HI', O(



(d) given t > !9I:o:) and hence !i'lx) < 1, we have tha t

Ii(x, tl '= II tx,t ~ 19 (xll

= U(x ,et'(xl) E A by Remark 2.2. 1 (v).

' rhorefore, by the Characterization Theorem 2.2 .2, (X,A) is a

cof ibred pai r.

~Ir: now br ie fly discuss the notion of a ribration which is dual to

that of ccf ibret Ion. We remind the reader that not all properties we

have d iscussed fo r coribrat ions are dual to properties for f i brat ions .

l!ulI'cvcr, we sha ll record some of those proper ties t hat are genuinely

dual. But first, we def ine the notion of homotopy li f t i ng~

(H1.P) which dualizes IlEP and wh ich is the basis for the definition of

J librul ion.

ncf iniJlglLl~ : A map p:E.j B is said to have the homotopy

FLUng Q.r.QQQ!..ty (HLP) with respect to a space Z if far every

map f;z -l E and homotopy G:Z x I -l B of pi, there is a

homotopy F:Z x I.; i': with F(- , O) '" f and pF '" G (F is

said to be a lifting of Cl.

'l'haL is , p:F. ~ B is said to have the hLP with respect to ... space

{, if, for avery commutative diagram below, where iO(zl '" (l ,OI,
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t here exis ts a :nap F: Z x I -+E (dot ted ar row) lllJking the

resu lt i ng tria ngles coseute .

p i s called a fib ration if i t has t he HLP for all spaces X. I f

furth ermore for Xo E X, F( I O' t l is indcpendent of t vhcncvor

G(xo,t l is , t hen p: E -+ B is called a .rggill..r pb ra!l~l). ~

wi ll refer t o :: as the to t al~, B as the ~~£ ~p'a~ and

IE,p,Bl as t he f ibre~.

We now re cord some of t he propert ies of t Ibrat Icns wh ich wil l be nee ll"d

later on i n connect ion with cot lbrat Ions .

.8§!\ack2. 2.3 :

(a l Compos it ion of Ilbret ions i s a f ibration. ('fhis is dua l t o

Theorem 2.1. 2 (dl ) .

lb) Pull back of a fib rat io n is a fib rati on. (Dua l to Ttlcorcm ?.1.3) .

(c) Let pcl :8 x F of Band pr2:B x f ... F' be t he pro jecti ons on t he

fi rs t ar.d second fact or s . t hen pr t and pr2 arc rcquta r

fibrations. To see t hi s, given Z and eeps h:Z x 0 -t II x r awl

H:Z x I ... B, defin e F:Z x 1 -+ B x F by

F(z, t l = IH(z,tl , pr2h{z, O)J .

Then pF "" H and F(- ,Ol '" h; so prJ and prcil arc r ibrali fJrl:; .

lie call pr J and pr2 the t ri via l fi bral.!9!!:'i . note t hat

regul ar ity i s t ri vi all y sat i s fied .

(dl If PA:EAoj SA (A = O, l) is a I ihretl cn, t ht:n

Po x PI :£0 X £} -I 80 x B} is a fib rati on.



(e) Thc cveluet ion map EO :XJ -l X, defined by EOO.} '" AIOl , is a

fibr ation . For a proof, see (14, Page 97, 'Theorem2].

'1'0 nave a closer look at Hbret ions, le t fE,p,Sl be a fiber space.

let f:Z X 0 -l E be given, and let G:Z X I -l B be a homotopy of

pl . For every 'I. E Z, the map t -l G(z/t l defines a path ,¥Z i n B,

that is, ,¥I(:r -l B is such that '¥z(tl = G{z,t ). The HLP is then

Ii fLing each path "7. i n B to a path in E start i ng at f(z,O),

in such a way that the famil y {ljIz lZ E Z} is lifted "continuously"

to ~:. rnl s leads us tv the foll owing defi nit ion.

[)cfi ~L~j.Q.r:!-l:b.1 : Let (E,p,B) be a fiber space, and let q, ~ E: x B1

be t he subspace q, = I(e/w) E E X SIlp(e} '" wID)} of the

cartesian product. A lifting function for (E/p,SI is a map

A :~~ -l ~~ I such that A(e/ W) (01 = e and p' A(e,lOl lt J '" wIt) for

al l (e/M E ~ and t E I. We say that A is regular if

A(e , lll) is a constant path whenever ro is a constant path.

Note that q, "Epn EoaI is t he pull back defined earl ier i n

Chapter I, and the l if ti ng function A:~ '" Epn GO BI
-l E1

has t he [allowing property shown i n the diagram below;
E1 _

~' ,; t

~r = :,~.nl·' '].
'>l.8t-----.-----4) B



where EOla) = a la) , EolClll = 1Il (0) and pI(al = p . a E Ill.

Clear l y, EOpI = PEa and hence by the universa l propert y of

pullbacks , t here exists a map X: EI
-l B~O n p E such t hat

pr2 . 1t '" EO and prl . x = pI, and consequentJy x(a) " (p . tl,Cl((lll .

Therefore, A:~ -l EI is a li fti ng function if f n' A .~ IIlion r~:
l\'e nowprove a theorem where the basic ideas of I lbratlons and

cofib rations are jointly used to yield an Ieportent result on 1:111 iura

lions . The theorem esse nti ally asserts that "t he pullba~JUJ.L~l C I () :; ( 'd

cofibration over a fibration is a cl osed cofibration ".

Theorem 2.2.4 : If (B,A) is a cofibr ed pair wit h A cl osed and

p:E -l B is a fib ration, then (E, p-l( A)) is a lso a c losed

cofibred pair.

Proof : We first note that the follo wing diagram is a pul lback.

S·l

:1'"
A

}
'B

Since (B, A) is a cofibred pai r , tbcre exist maps q> :B -l I ij(lrj

H:B x I -l B satisfy ing the properties of t he Characlcriz,lL irili T

Theorem 2.2.2 lei .

Now conside r the foll owing diagram



s ince p: E -l B is a fi bration, t here exis ts a map H:E X I -l E

such that pH '" IIlp X III and HIE: IE'

nefl ne a map V:E -l I by Ij1'" lpp:E -l I.

then ~- I( O I • ( ~pl - I ( O I • p-I fiIOI • p- II AI {see Remark 2.2.1

Oilll.

111 50, define H:E x I -l E by

~(e ,t) ~. ii(e, t A ltlP(el ), where t f. lpp (el '" Min{t,tpp(el}

ii is continuous and

Ii ) ii (c / O) " Hfe,a A ltIP(e) )

= U(e/O) as ~p(e ) ~ 0

• IEle}

"e for all e e E

( ii ) ret c e p- l (A). Then p(el Ell

So, iile, l ) " H(e,t A IfIP(e}l

'"H/e,t A 0) as pte l E l\ and A '" fI fO) .

" Hie/D)

"e for all e E p-l(A} .

( i i i ) Because II i s clo sed, H(b,ql(bl ) E II whenever lp(bl < 1.

(sec Remark 2.2.1 (vl l.

Suppose l E rand t > ljI le) . That i s , t > tpp(e) and so

~P(C } < l.

Then, H(e, t) " H(e,t A lpp(e)l

= H(e,ljlp(e)), as lfIP(e) < 1 and t El

and t herefore, pHte,t) = pH(e, (jIp (el l

• Hlp X II I l e, ~p le l l

'H lpleJ , ~p leI J E A as
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A is closed and ,(p{e» = VIe} < l .

Hence, pH le, t ) e A and therefore, iile ,t) E p- l'Al.

Theref ore, by the Characteri zation Theorem2. 2 .2 Ie) ,

\E,p-lfAll is a closed ccf ibrcd pair .

The cl osedness condit ion on A can be ci rcumvented by requiri ng th,ll

t he fib ration p:E -I B of Theorem 2.2.4 be regular . lienee, we can

refo rmulate Theorem 2.2.4 as

Theo rem2. 2.5: The pullbac k of a cofibr ati on over a regular flb ration

i s a cot i brat.Ion.

Proof : Let ltI :B -I I and H:B x I -I B be maps sat isfyin g the propcnl ca

of the cherecte r laet icn Theorem2.2 .2 (e! . Since p:E -I 11 is ,1

regular fib rat ion, t here exi s t s ),,:'1> -I &1, a rcqule r lifti ng

function for p.

Set V= rw:F. -I I, as before and defi ne ii:r.x I -I~: by

Hfe,t) '" )"le, Hple1llt ) r where Hp1e) It I = IIlp tcl, LJ .

Then

Iii Hle,OI' lle,Hp lellOI

(ii) Let e e p. I (A) .

Then pie) E A and H(ert) = A(e,lIp(cllftl.

But Hp lell tl = Hlplel,t l

'" ptel , as pte) E /I and H(a, t) .<a,

for all a e A and t el,

Hence, Hp (el1t) i s the const ant pat h and 50 by the

regularity of A, it follows that Ale,upIC)}(l l = c.



Therefore, Hle,l) = ~ (e , Hp le ) ) Itl = e , for all e E p·lIA).

(Ji ) suppose t el and t >'tI(e) = !p(p le) ).

'I'hen, pH(e,l l = p).(e, Hp(el l (tl

• "Pie) It)

= H(p(el,ll e A, as pte) E B

and t) ~lplell .

lienee, H(e, t ) e p- l(A) whenever t > Ij/(e).

Therefore, by t he Characteriza tion Theorem 2.2.2 (e)

(E,p- I(All i s a cofibred pair.

~Ic now prove a t heorem whi ch states that if a compos ite map is a

cof ibralion and t he second map i s a cofibration, the f i rst map is a

cor ibret Ion. But before we do t hat, we need to prove the following

lemma which in simple terms asserts that global HEP => local HEP .

J09[ll.!!!Lb..2...:!: Let i:/\ -l B be an incl us ion of topological spaces with

t he 1l~;P and let V f B be such that a cont i nuous funct ion

T:B -l [O,lJ wit h A()V £: t -1(0, 1] f V. Then the restriction

iv:J\ n V -l V has the HEP.

Pr9.Q[: Since i :,o\ -l B is a cofibration, take 19 and H as in

Cha racterizat ion Theorem2.2 .2 (ej • We define functio ns

ltf:V -l [0,00] and K:V-I[O,l J X I -l V as i n Remark 2.2.1 {Ivl.

Let i:B -l [0, 1] be defi ned by

t(b) '" Min {tH/h,t) 10 ~ t ~ I}.

Clearly , t is contin uous.
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Now, for all a E A, 1 (a) " Min {;:H(a,tl IO ~ t ~ I}

'" Min [t (alia ~ t ~ I}, as lI(a, t l '"' d

=t(al

Hence, flA =t IA.
Let a E A. Then {an} E A such that a = Jim an .

So, 1 (a) =1 (lim an) = lim 1(an)

= lim t {anl, as fl" '" {I"
= t uIn anI

= {(a)

Therefore, 11A= {IA .
But by hypothesi s , A1"\ V ~ t -1(0 , l J ~V . Moreover, A I"\VC;;A.

Hence, 1lAriJ = t lAm > O.

Since V~ B and by hypothesis H(b,t ) € A, for all t > tp(b), u
follo ws that f1(v ,t) E A for all t > lil(v). Now, if v E V and

!P(v) = 0, t hen H(v,tl E A for all t > O. But, 1I1v, lil(v) ) E A

as 'P(v} = 0 c 1 (Remark 2.2.1 (v)) ; that i s, v .: lI(v, O) E A.

Consequently , v E A 1"\V and so f( v) > O. 'rhoretoro, t he

functions ljl and f have no common zeros In V. 'rhus, the

funct ion \V:v -i 10,00] defined ,¥(v) =~ is well defi ned.
'Iv)

Moreover, ljf is continuous. Now, let 1:0 E A 1"\ V. 'I'hen Xo E II

and hence ¢ (XO) = O. But then t (XOI f. 0 as ¢ ilnd 1 haVl:

no common zeros in V. Therefore, '¥(I:O ) :: 0 and so 11 1"\ II c q.tl (IJ).

Let v E V be such that ljf (v) ~ 1.



Then, If'(v) 5:1 =) i (v) ) 0

=) t H(v, t) >0, for all tel

=) H(v,t) E t - 1(0, I] s: V

=) H(v,t) E V, for all tel

Thus, we can def ine K:fl {O , l J x I -+ V by

K(v, t) = Htv.t] •

Clearly , K is cont inuous,

Now, (i) for all v e lf1(o, I ) !; V!; E, K(v,Ol '" ll(v,O) '" v

Iii ) for all a e A 11 V and tE l , Kla,t) = Jlfa,l ) '" il

liii) for all v € fI[O ,l l, W(v) 5: 1 and hence ltv) ) O.

That i s,~ ~ 1, wh ich implies !M ~ $ lvl and
f {v ) f {V)

consequently, 'flv) ? ~(v ) ,

Now, suppose t > Ij/ (v). Then , from above, t ) Q(v) and so by

hypothes i s H(v, l) e A. Therefore, K(v, ll '" lI{v,l l e ll n V.

Hence, K(v,tl e 11 11 v, whenever t » Ij/(v) and Ij/ (v) 5:1. thoro

fore , by Remark 2,2.1 (iv), iv :A 11 V -+ V has the liE?

We now are i n a position to prove the followi ng theorem.

1'heorem2.2 .7: If j:B -+ A and i:A -l X are maps such that and

ij are cofibrat ions, t hen j i s also a cofibr at ion.

Proof : Si nce i:A oj X and ij:B oj X are cofibra t ions, we can aSSU1f1{~

without any loss of generality that i and i j are inclus ions

(Theorem 2.2.1) and hence j is also an inc lusio n. Since

i :A-l X is a cofib ration, it follo ws f rom Remark 2.2.7. lbl Iii )

that 3 a halo U around A i n X togethe c with a rct ract lon

r :U-lA such that A !; r 1(01 £:9-1[0, 11 ~ U~X. Since B~ !\ ,



it follows that U is also a halo around B in X.

So, by Lemma 2.2.6, jU:B n U~ U, that is , Ju:B -l U is a

cofibration .

Now, for an arbitrary topological space Y, and maps F:B -l yI

and f:A -j t, cons ider the following commutative diagram:

where EO ((I)) " 00(0) is the evaluation map. We cla im that diagram

(1) admits a diagonal H:A -l yI such t hat the resulting triangles

commute. Now the diagram

is also commutative si nce frju:: fj where r :U -l A is a retraction

(see Remark 2.2.2(b)) := EOr, f romdiagram (1).

Since iU:B -t U is a cofibration, diagram madmits a diagona l

G:U -l yI such that EOG'" Ir and Giu '" F.

Now, let H '" GIA' Then , H" GIA:A-l yI i s a map such that

90



(i) EOH(a) '" EOG /a! '" fr lal '" ! (a), for "1 11 a E fl . That is ,

EOH '" f , and

(ii l Hj (bl '" Gju(bl '" f{bl for alJ b e B, as BfA ~ U; t hat

i s , Hj '" F.

Therefore, by Definitio n 2.1.3, j :B -l A is a cofl bret ion.

The following theorem i s an applica t ion of the pullback theoremand

the composit ion theorem wehave proved above .

'l'heorem 2.2.8: Given the commutative diagram

r
~. 'i.

1'..
)B'

't

(a! if p, Po, q, qo are fibra tions and (X, XO!, (B, 110), lY, YO)

closed cofi bred pairs, then (Xn Y, XOn YOl is a clo sed

cofibr ed pai r . (See (6: Proposit ion 1.71)

fb) if p, PO' q, qo are regular fi bratio ns and lX, XO), (B, 1l0) ,

(y, YO) are cofi bred pairs, t hen (Xn Y, xOn YOI is a corlhreu

pai r.



"-:r
01

B,

Proof :
- - I --)

1'1 Let Xo = p IBOI and YO = q IBOI-

Then the following dia grams ar e pullbacks.

'OT 'OI-~}

B, ) B

where BO -l B is a clo sed cofibration and p :X -I Band q:Y -l B

are fibrations . Hence, by Theorem 2.2. 4, it follows t hat

Xo = p- l(BOl -l X and YO = q-l(BOI -1 Yare closed ccf ibrat ions .

Now, for all Xo E x, p(xOl = pi xQ(xOI = iblo (Xol E B. Hence,

Xo -l Xo i s an i nclusion . Similarl y, YO -l YO is an inclus i on.

thus, we have t he follow ing two composi tions

where th e composi te inclusions are clos ed cof ibrat i ons and the

second i ncl us i ons are closed cofi brat io ns . Theref ore, by Theorem

2.2.7, the fi rs t inclusions Xo -l Xo and YO -l YO are closed

cof ibrat ions.

Now, consider t he follow i ng diagrams . For convenience we drop th e

double subscript notation on th e pullback symbol.

"



tr6;F~l
x. ~. ~.

:t;c~J:~~
y. \ 'e

In each of t he above t wo dia grams, t he r ight hand squares ar c

pullbacks and t he oute r squares are pullbacks. lienee in bot h

cases the le ft hand squares are pullbacks (see Rema rk 1. 1. ~ ( a l ) .

Si nce qo and p are fib rations and pullbacks of f ibralions a rc

fibra t ions, it follows t hat pr
X

:xOn YO'" XO and pry: :xOn YO -I YO
are fibrations . 0 0

Nov, let Xn y be the pullba ck of t he dia gram

X

If
y:---".,- -'I) B

That is , X n y = {lx/ y} e Xx Ylp(x) :; q(yl} . Si nce p and q

are fib rat ions , the composite q ·pry:X n Y -I B is a H brati cn.

Ccnsider t he following diagr am
Xn Y

IHr~
"B-,-----4\~

The pullback of t his diagram i s {lz, y)l qpry(x, Yl = pprxlz, Yl E I\r) l

= { (q jl q(yJ =p(xl E "01
= {11.,y) lr.e p- l WOl and y e q- l (J!(J)

= Xon y~
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That is ,

So, we have the following three pullback diagrams

T->iF·r:'--:T iFi~'I':·,
x. lx. 'i. \ B. 19

since the right hand vertical maps are fi brat i ons and the bottom

horizontal maps are closed cofibratians , it follows f rom Theorem

2 . 2.~ t hat each of the inclus ions Xon Yo...j:<o n YO -t XoYO -I

X n Yare closed cofibrations. Sinc e the composite of cl osed

cofibra tions is a closed cofibration, it follows t hat Xon YO-J

X n Y is a closed cofibration.

(b} The proof is analogous, except t hat we use t he fact that a pullback

of a cofibration along a regular fibration is a cofibrat.ion.

As an application of the above theorem we have the following

result.



Corollary 2.2.9: If (X/A) and (Y,C) are (vclosed-i cofIbred pairs/

then (X x Y/ A x Cl a t-clceed-l cofi bred pai r.

Proof:

£Mtl: Suppose (X/A) and (Y ,Cl are closed cot i brcd pairs.

We const ruct the foll ow ing diagram

where Xo '" A/ YO = C and B = BO '" ~ in the tneorca above.

The i ncl usi ons i , j and k are closed coflb ra t lcns . Clearly ,

p, q, PO and go are fi brat ions . Hence , by 'rhcoren ;U .8 (al ,

A X C -I X X Y is a closed cofibration .

~: Suppose lX/ A) and (Y ,CI are cofibred pa i rs.

Then, clea r l y p:X -I ', q:Y -l ", PO :A -l ~ and qO :C -l •



regular fib rations . Hence, by Theorem2.2 .8 (bl A x C -l X X Y

is a caf ibrat ion .

Finally, t o conclude t hi s sect ion we have the following importan t

resul t s which wi ll be applied in Chapter IV.

T~.Q9 rem /. .2 .10 : Let f:O -l A be any map and l et M(f l denot e the

mapping cylinder of f .

Then

(al t he incl usi on i :A -l M(fl is a closed cafib ration.

(b) the composite map

i O:]) ;: D x 1 -l OX I -l M(f)

is a clos ed ccf ib rat i on,

(e) the map f facto rs through 1D; more precisely, r '" cf . i O
where r f is an b-equ.ivalence.

(ell f :[) -l A is an h-equlve lence <=> 10:0 -l M(t ) is an h-equivalence.

P! 9.91:

(a) Cons ider the following diagram

It will be sncsn in the next section (see Example z.\ .t that t he

incl usi on {oj -l I i s a cofibrat i cn . Renee, by Corollary 2.2.9 ,
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i :O x 0 -l OX I is a ccflbrat icn. Therefore, T:A -l ~l(O i s als o

a cofibration by Theorem 2.1.3 .

(b) Construc t the follo wing diagram

Jl 0<1>, 1 ----L,~'~ r---'.'--4IF ll>

I>ul> ,,]),i~A'UA \:l>,r)"-AUll

~ ~ ~,d h
observe that D x I = D x 0 u 0 X I ;; 0 w 0 (disjoint union).

Consider the followi ng diagram

By horizonta l composition (see Remark 1.2.5 (al) i t, follows lhal

A Uf tn x i) ;A U D.

NoW, bottom square of diagram It} is a pushout and composite

square is a pushout. Hence , by Remark 1.1.4 lb} (i i) , i t Iottovs

that upper square of diagram (t) is a pushouL.

Now, i -l I i s a cofibra tion (see Example 2.3.1)

=> 0 x i -l O X I is a cof ibrat ion (Corollary 2.2.91

=> }:A D -l/1(f) is a coflbrction (Theorem 2.1.3 )

Now, i O = r'k = Ijl = 1 . fl .
Dxl oxl

!17

From above, 1:A o -l /1(fl is a coflbret lon and 71
OXl
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inclusi on 0 -I A U D wh ich i s a cofi bratio n (Theorem2.1.4 (all .

there fore, the compos i t e ID " ! . JcD x 1 -l H(f) is a ccfibration.

Clearly , 0 ~ 11(0 i s closed .
\ . t'"

leI Const ruct the fOllO~ A

;1' ''[7
1>..0 \ .

Now, {f • pro) . I Id, 0) = fprOtd, 0)

~ f ldl

and 1/\ f (d,OJ " f (dl . Therefore, diagr am commutes and si nce the

square is a pushout, there exis ts a unique map [(M(!l -I A such

Lhet, crt '" f . prO and ftT " l A' Hence, we have t he following

diaqrem i.
"l> ;;;: 1>.1 1> ) M \I)

~;J:
A

Now [or a ll de D, cf l o (d) "[t (f k(d, l) ) (see par t (bJ above)

'" [ t(f(d,l} l

'" fp ro(d,l l

~ fldl

therefore, rf . 10 " f .

\~c now show that [f i s an h-equivalence. lI'e alre ady have fr om

above, t hat rfT " lA' We need only show that Irf ;: I M(f) ' So,



we defi ne a homotopy H:MIO x I -I Hff) as foll ows

H{(x, t] , s l '" lx, {1 - alt} , (x,ll e o x I

HlCa],s l ;; Iel , a E A

Then,

lal Hllx, tl ,OI " IX , t l

Hlal,OI : lal

Ibl Hllx,tLI) · Ix,O]

HI[a],II " (al

But, irf((x/llJ "In ' pr o (l<,l ))

" Tt(l<)

'" f i( l< , O)

" (x, D]

and irf la J . ir fI (al

• I(al, since rfI" l A

" lel

Theref ore , I tf ;; IH([) and rf i s a hcmotopy equiva len ce.

ld) From part Icl above, we have the foll owing cosmcte t Ivc diagram

where rf is an h-equiva lence, i o a c losed ccfl bratl cn and

f = rf iO'

If i O:O -I H(f) i s an h-equivalence, then so is t he corroposiL<:

!J!I



r f . i o an h-equlvale nce. Therefore, f :D-; A is an b-equi valence.

Suppose [ :0 -; A is an h-equi valence . Since f'" [fio and rf
is an h-oquivalence, it foll ows fromTheorem 1.3.2 (a) that io
is an h-equlvelence .

SQ_c:.~jon II I : Examples and Non-Examples of Coflbrations

The fol lowing are examples of closed cafi brat ions :

t~:·:~l!lplQs 2.3. 1: The incl usion i :50
-
1 -; an (0 - 1 dimensional sphere

into the n-dimensional ball) is a closed cofibration . By Theorem

2.2, 2 tel it i s sufficien t to show tha t an x 0 u SO x J is a

retract of B X 1. Clearl y 50- 1 is cl osed i n an.

Consider the following f igure

Oeonc tri cal Iy, the required retraction is obt ai ned by projecting

Hn x I onto En x I u 50-1 x I via the radial projection from

z " (0,2) E Rn x R. An explicit descript ion of the re t raction

1 00



is obtained as foll ows :

The vector equat ion of the line in an x R passi nq t hrough

{Orl } E an x R and (i, t) e an x I f Rn x R is gi ven by:

t'*) l~l' Y21 '" (O,21 +A(~,t - 21, where A ~ 0

We want t he point on the lin e t hrough 1G,21 for which Y2 '" O.

Now, Y2 '" 0 <,,> 2 +A{t - 2) '" 0

<=> ).= _ 2_
2 - t

Therefore , the point on t he line through 10,2l for wh ich

y =O is A (i,O).

Now, observe t hat when -2 2 ,, _..1 I that i s, Is l '" 1 - -2t , t he
- t ls i

poi nt A (~,O l belongs to 50- 1 x O. Hence, for Ii i s I - ~ ,

we have t hat for all such li, l) E an x I, 2 ~t (1,0 1 E Bn X o.

Constder again equation I-J . Suppose we wa nt Yl E: so-I. Then,

yE 50- 1 <=> 'Yl ' z 1 <:> ui. = 1 (:) 1. "'+,si nce l .~ O.
lsi

Hence , t he poi nt on t he line th rough 10,2) for which ~l E 50-1

is given by 10,2) t + (tt - 21 =+ li , 2,i r +t - 2)
lsi ls i..

"ht ,2 - 21 ~ l t ]

So define r:S" x I -I Bn x 0 u Sn-l x I by
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2 < '<I < t
4 --12-,t (s,O) , s - 1 - "2

r(s rtl -.

[
l 2 _ 1....:..1] n11> 1 . 1
I~ I r 111 I - 2

Then , r is the retraction described geometrically above aod so

the inclusion [ :50
-

1 -+ Bn i s a closed cofibration . Notice t hat

if n = I, then i :{-l ,l } ~ [-1,1] is a closed cofibrat ion.

Since {-I , I} ;;; {O,l } and [-1,1];;; [0, 11 and homeomorphisms

are cof ibrations, i t follo ws t hat I = {n. r ] -I I is a closed

cofibr at ion.

Exa m~: The i ncl usi on of the ba se point ~O = (1" • • , 0) E Sn

is a c losed cofibr ation .

We use the Chai acter i zet .ion Theorem for closed cofibrations (see

Hcrna rk 2,2, 1 (vi )) .

Write ~o '" (1 , 0) E R X an,

Lel U '" I l x, ~) e sn lx ~ 0, ~ E an} . For the case n'" 1, see

diagram below.

4 4
Define Il:U x I -I SO by H(ttl '" (1 - t ) x + teo

11(1 - t)~ + t~o l

'02



Then, (il H(ti,O) = ti as .til ", 1

(iii H(~o, t ) .. ~o as I~o l "" 1

(i ii) H,ti, l} ,. ~o

So, U is deformable i ll Sll to ~o re t ~o '

Next, de fine , :sn -+ I by

1 0 3

wx.ill . 1~--2111 -x

, if x s: 0

, if x ~ 0

Clear ly, ~ is well defined and cont inuous. NOw, ,(60) '" $(1,0) " 0

and so ~o e ~- 1(0) . On the other hand, suppose $tx, V) '" 0

where (x,y) e s", Then, ~~ '" a whee x ~ 0 and so x "' J .

But then Y"" 0 and hence (x,y) " ~O " (1, 01. That is , f l (OI

Moreove r , . 1 x. , ~ 1 · 1, for all IX,~) e Sll - U s ince x < G.

Theref ore i : ~o -I Sll is a clos ed cof ibrat ion.

Finally, observe t hat each inclusi on eO-+SO and Sn -I Boll is

a clo sed cofibrat ion . Hence, the compos i te eO -I BnH is als o a

closed cofi brat i on. Consequently, when n » 0, the i ncl usion

{I} -I [-1 ,1) i s a cl osed ccf ib ret ic n, Now, cceposi nq wit h

homeomorphisms, t he i nclus ion {O} -I I is a closed cofib rat ion.

Let- us give a geometric proof of th is las t statement.

Example 2.3.2 : to} -+ I i s a closed cofibrat ion. We show t hat

I x 0 u 0 x I is a ret ract of I x I. Take z " (1,2) E R2

and consider I x I !;;:R2. Let )( 1 E (0 x I) V (I x 01. Now,

consider t he following diag ram

;

' 0'



( o .o) (1, 0)
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As before, r t x -t x' is the required retraction . Using similar

techniques as in Example 2.3 .1, the requi red retracti on

r : I x I -+ 0 x I V I X 0 i s defined by

1

1
10, 2 t r-:s (t - 2)) ,

r(s/ tl '"
(1 t~ (S -llI Ol l

t ~ 25

t S 2s

there fore {a} -+ I i s a (closed) cofi bration by Theorem 2.2.2 (e).

t:xample 2.3 .4: The i ncl usions A -+ A v B and B -+ A v B where

r.. v B is the "~" of two spaces A and 8, are cofibr at ions .

The 'Oog. A' B i s defined by: A' B • (A x {bo)1 U I{.o} x BI.

Consi der the commutat ive diagram 3=" v ~

/ ~'T»>: r:~- - '
A tI



wb -re 9 and F arc given NpS such t hat g '" h on Ax {bol,
g. k on {aol x B.

MoW' define G:X -i Y by

" F U Ck where Ck. :B x I -l Y i.s the constant homotopy to

k; that is, Cklb,t l • k{aO,bJ for all t E I. This shows tha t

i: A -i A v 8 is a colib ration. Sillila ry (or j :B -i A v II.

Examples 2.3.1 - 2 .3.3 are part i cular cases of t he general st ate 

sent that "In clusions of subcc:q>lexes i n Of complexes are

cofibratio ns. (See (13, page 28, tbeorea 1.4. 121

The follow1ng fa il to be cofi bratio ns .

Example 2 .3.5: Let X II {~ In E N} U Ie} be topolcqized as a sub

space of R and le t A= {O}. We show that 1:A -t X is not a

cofibration.

Suppose, on the cont rary, i :A -l X is a cofibration . Thcn , by

Char acteri zation Theorem2.2.2 Ic l ~ a ret ract ion e X x I -i

XX 0 v Ax I. No W', consider the follo winqdieqran
( 0, ') \ \. , ) 1I.' )

( 1,0 )

ius



Since r is continuous and the points (l ,Ol f or all II '" I, 2,
n

11),

are left fi xed by r, r then collapses {i} X I to (~ , O) for

each n by connect ness. On t he other hand, [( O,t ) '" (O, t ) for all

tel . That is, 0 X I i s l eft fixed pointwise by r. Now,

(~ , 1) converges t o (0,1 ), but r (~ ,1) := (~ , 0) does not

converge to (0,1).

But th i s contradicts t he continuity of r at (0,1). Therefore,

there exists no retract ion r:X X I oj XX 0 IJ Po X I and hence

1:11 -l X is not a cof ibration.

Ji,,;ample 2. 3.6: Let M be an uncountable set.

Let X '" 1M with the product t opology and A " OM.

We cl a im OM -l 1M is not a cofibration . Suppose that i :OM-l 1M

is a cofi bration. Since 0 is cl osed in I, it fo llows that

OM is closed in 1M• Hence, by Remark 2.2 .1 (vil , '3a map

u: IH -t I such that u- 1{O) '" OM,

Now, 0 '"n [0,1) and hence u-1(0) = n u-110,1).
n-l n nel. n

Since u is cont inuous, for each n E U-l [ O, ~) i s an open

neighbourhood of OM in 1M• Thus , for each n, t here exists a

basic open set B = n Bm wi th OM e B f; u-110,1 ) , where BmmEM n

i s open in I for all e e M and Bm= I for all but f in it ely

many m, say, ml' m2, . , '/ mn, Let En= {mp rIl2, . , .,~} sM.

Then En is a fi nite set i n M and oEn x 1
M
-
En

c u-110,1J,
- n

Noh' let W ;: S En' Then M' is a countable set with



OM' X IM-H' f nu ' l [O,! ) = U~ l(O) = OM. But M - ~" f. 0, as H
0=1 n

is an uncountable set. This is imposs ib le and hence i cannot

be a cofibration.

The following is an example of a cafibration which i s not c losed .

Example 2 .3,7: Let X " [a,a] and TX= { ~ , x, l a }} be a t opology on

X, Let A = {a}. Clearly, A is not closed i n X.

We cla im i :A -l X i s a ca fibration.

Now AXI = (Ia, t l It E I)

X X°= {(a,OI) U [(b, OII

XX1 = {Ia,t l lt E I} U(lb,tll t Ell

Def i ne r: X x I -l X X 0 V A x I by

107

{
Ix, t l

r (x, l ) =
(a, l )

if t = O

if t> O

( 0,0) (' .o)

I t i s easy to check t ha t r is cont i nuous and obv.loualy

r I " 1 • Hence , r is the requi red re tracti on and ;0
XxOlAXI XxOU\X I

i :A -I X i s a non-c losed cafi b r at ion .



CHAPTER III

tHUg 's Union Theorems

This chapter is enti rely devoted to a pape r of Lillig "A Union

Theorem for cot Ibratlons" fll] . The gist of the problem i s the following:

Given subspeces Po and B of a space X such that the i nclusion

maps l :A -t X and j :B -I X have the H.E .P. wi th respect to z, under

what condltlons does A VB... X have the H.E.P. with respect to Z

and consequently is a cofibration?

In t he prese ntation of this chapte r, theorems wi ll be stated and

proved for the case of H.E.P. with respect to Z and then

reformulated for cofibrations, as a consequence. Before we prove our

ri rsl result on the HEP , we need the following two Ieeees .

l.cmma..1.J.. : If i:A x I -l Xx I has the H.E.P. with respect to Z,

then (Po x II V (Xx I} -l X x I and

(A x I) U (X x 0) oj X XI have the H.E .P with

respect to Z.

Here (A x II U (Xx i) is not considered as a subspace

of X x 1, but as a quotie nt space of the topological sum

(II. x I I U (X x i) obtained by identifying (a,OI with

i (a, O) and (a/ I ) with i(a/ll . Similar ly for

(A x I) U (X x 0).

P.!QQf : Assume we are gi ven the following commutative diagram

l OB



1'1

r os

r:

/5/)/
T, ~, '1 '

Il lIXI) U(XX I)XO 11""!lVIXXI )) X]

where g and !If are given maps such that

We have to show :J a map W:XX I XI ~ Z such that

Let Q:I x 1'-+ I x I be a homeomorphi sm such th at

QII I X 0) V II x II I • 1 x O.

The existenc e of such a homeomo rphismis illust rated by the diagram

below.

~ --4'~<~'~'
a. \a c, Q,. \> Co

Now, Q- l (I x 0) = (1 x 0) u Ii x I) .

Hence, we have the followingmap



I l Q- l . .
X X! XO-- >X X (l X OUI X Il= XXI xOU x x IX I

Define maps g6 :: 9 . n, x Q-l ,I III
XXO ll xO I

1 XQ-l
i .e. XxOll x OJ _ x - > X x I x 0 i ) z

and V' , II x Q- l l / . 121
Q ~ • AxlXlUO<Ql lXl1

110

i.e . Ax I x I U X x «i X II lXO~ l > A x I X I V XX i X I ..Y_ Z

Nowdefine 'I'Q:A X I x I -I Z by

III

On t ho other hand, X x I x 0 '" X x 01(I x 0) U Ii x I) 1

~ Xx Oil x 01 u Xxolix II

So, def ine 90:X x I x 0 -I Z as follows :

91 '" gl andoXXQIIXOI 0

"hat is ,

(41

if It, OI E QII x 01
if (t , OI E QIi x 11 Ibyeq . (411



• (96IX,t'OI if {t ,OI ' Q{t' ,Ol , It',O I E 1 x °
1V6fx,t, Ol if (t, Ol '" Qfs, s 'l, (s, s') E r x 1

(
9 (1 x Q-l l1x,Qlt' ,OII tby eq. 1111

= o/(l x Q-l , (x,Ols, s 'll (by eq. (2l)

111

• (9(X,t " Ol
IjI(x, s, s' )

if (t ,O I = O(l ' /O)

if (t , O) ::: Q(5, 5')
151

Now, if (t, O) E Q(I X 0) , I.e. (t,Oj = Olt ',O),

then, 9Q( a,t ,Ol = g(a,t I ,Ol

= VIa,t " OJ by comctet ivi ty of (~l

• ~Q la ,t, O I {by eq. {211

• ~Q la , t , 01 (by eg. 1311

Again, if (t,O) E Qli x II, Le . (t,D) = 0(5,5 '), then

gO(a/t ,D) = v(a, s, s ' ) Iby eq. (51)

• ~la ,Q-llt ,OIl

.. "6/a,t ,O) (by eq. (2 ))

• ~Q la, t , 01 tby eq. (311



'rhus we have the foll ow ing commut ative diagram, "---'"

Si nce Ax I oj Xx I has the H.E. P. wit h respect to Z, a map

ctJQ: X x I x I oj Z such that

112

161

and

Now define a map <l:l:Z x I x I oj Z by

We c la imthat 4> is the re quire d map comple t i ng the diag ram (*1.

~'i rst. ,

cP(x, t , O) = l1b(lx X Qj(x/ t, O) = <Ib (X,Q(l, OI)

• gOlx,Olt, Ol1 (by eq. (61 as

Q(t, OI E I X 01

• 961x,Olt , Oli (by eq. (411



= 9 . (lx x 0-1) (x,Qll , Oll

lby cq. (III

::: 9lx, t , OI

Therefore, cIll . gl
XX!xO XXIxG

Now, let (a,t,s ) E Ax I x I.

Then ¢I(a, t, s) '" c!b l1xx Ql(a, l ,s , ) :: 4lQ(a,Q(t, s ll

" ' Ola,Oll ,s ll (by cq. (6) as

O(l , sl E I x 0 C; J J( II

• V61a,0It ,s l l Iby cq. IJI)

" V • (1x x 0-11(a, OIl,s ) J

Iby cq. 1211

'" 'la,l , s)

Aga i n, let (x,t ,s ) E X x i x I; t hat i s , It ,S) e Ii x II ,

Then ¢l(x, l ,s) = \ 11x Q) lx,t/s) = 4!a1 x,Olt,s)}

• '6 11. ,0It ,s l) Iby oq. I' l l

• V ' 11 ' 0-1111.,0I L, ' 11 tby oq. I'l l

" , IZ,l, s)

" '



(ll x I) U IX x I I -l X x I hasTherefore, 411 . '" l!/ and so
AXIXHJ(X!X!

th e fl.E .P. with respect to Z.

Similarly, one can show that (A X I) U IX X OJ -l X X I has the

IU :.P. with respect t o Z. Noti ce that in t his case we use a

homeomo rphism P:I x I -l I x I with the property t hat

P((l x 0) U (0 x III = I XO. Such a homeomorph ism P can be

i ll ustrated di agramaticall y as follows:

'O'-4 'L~} --4 {)

We leave t he det ails of the proof t o the reader.

Bef ore we proceed to the second lenuna , we need the following

defini tion.

1~9Jjni l ion 3.1: 11 subspace A of a space X is called a Nullstellen

§£1. if there exists a continuous map u:X -l r with U- 1(0) .: A.

Ily Remark 2.2( ii ), if (X,A) is a closed cofibred pair, then A

is a Nullstellen set.

1~_mma 3. 2: tet A!; X be a Nullstellen set. Let f ,g:){ -i Z be

cont i nuous maps with 4l:f = q reI A. Then there exists a homotopy

ill: f :::. q rel A with i1l(x , t l " i7>{x, u(x} J = l!>(x,l ) , for all x E X

and t ~ u(:':) .

1~!J2.91 : Since A~ X i s a Nullstell en set, t here exists a map u:X.; 1

such that u-1(OI " A.
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N,;,w, ([:I:f :. q re i A means t hat ¢>:X X I -I Z i s a map such that

~ lx, O ) 0 f

~I " l ) 0 9

and cl>(a,tl '" f (a) = 9(a) , a E A and t E I.

Define (b:XX I -I Z by

115

f or t ;?: u (x}

f or u(x) = 0
f or t ~ ulx) and ulx ) 1- 0

If t :: U (x), th en ~( x ,~) :: $(x, 11.

If u(x) = 0, then x E A and l1l(x, l l '" lP(x, l), for all t E I.

Hence, C1J is ven -oer tnec.

Let F = {Ix, t l E Xx l it ~ ti(XI} and

G = {("t l E XX l it ~ ti IXI }

No;;, 1111F = 4l(x, 1) and hence (III ~ is conti nuous .

We now show that itll G is continuous.

~: Let x E:< - A. Then u(x) t o and so lDlG (Zit) " cl>(X' ufll l

Hence, ill i s continuous at {x,l} .

Case 2: Let a E A. Then u( al = 0 and so la,O) E G. We cla im

1IliG i s continuous at {a,Ol for all (a,O) E A x O.

Now, il>IG (a,OI = ~(a ,O I 0 f (a l .

Let V be a neighbourhoodof ita) in Z.

Si nce ~ is continuous at (a , l ), 3 neighbourhoods Ut of a in Z



and R
t

of t E L such that $ (Ut x Rt ) f V.

Since r i s compact , there exist finitely many l OI t I l"" t mE I)
m

such that I '" k~O Rt k,

Let U be the intersection of the corresponding finite number of
m

nclghbourhoods U
t k;

that i s, U = k~O U
t k·

Then, U i s a neighbour-

hood of a i n X such that , f or all (a,t ) E, U x I , cIl(U x I ) s;: V.

Now, if (a,t) E (0 x I) ()G, then t = 0 ar.d iIl(a ,Ol '" 4>(a,O) E

<I>(U x II ~ V.

'J'herefore, (Ux I) 1"1 G is a neighbourhood of la,O) in G such tha t

ij'l ( (U X l) nGI eV.G -

Therefore, iJ>IG i s continuous at (a,O), for all ", 0) E AX O.

lienee, combining cases 0) and (2) we have that (bIG i s continuous.

NOW, ill is continuous on each of the closed sets F and G, and on

thei r intersect ion where t = U(x)I iil(x, t ) has the unique value

~)(x,l ) . Thus ¢l i s cont i nuous by Theorem 1.2 .1 .

Fi nal ly, ~( x, O ) :: l1l(x,Ol :: f

iIl(x, 1I = iIl(x,ll = 9

ij)(a, t l :: l1l{a,tl :: f(al :: g(a) , a E A, tEl

mso, for t ~ u(xl ,

i1J(x, t l " lP(x, l l = ib(x,u(x)), as required.
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Theorem3. 1: Assume A... X has t he H.E.P. wi th respect to Z and

l et B be a subspace of X. Assume al so t hat t here exists a sap

u:X'" r wit h Af u-1(OI and [ UI B]~ l I O I :: AIi B. If

B x I ... X x I and IA" B) x I '" B x I have the H.E.P. wi t h

respect to 2, t hen AUB '" X has t he H.E.P. wi th respect to Z.

Proof : Given the commutat ive diagram

xxe '1'/'7(.) I I /~
(A U BI X 0 - ----"» IA U BI X I : IA x I) U IIIX I)

Constr uct t he following diag ram

Since th e diagram (l' coeeutes , it follows t hat (\ : ~ I .
AXO ""0
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u s

NOli, since i :A oj X has the H.E.P. wi th respect to z, there exists

a map <b:Xx I -+ Z suchthat

$1 . f and $1 . ~ I
XXO AX! AXI

Defi ne maps ¢l':x x I X 0 -+ Z by

~' : B X I X 1 -; Z by

~ '(b,s,l) • ~(b, s)

F:X X 0 X 1-+ Z by

F(x,O, tl = f (x,OI

and "': (A n B) X I X I -l Z by

v(a,s, l l " v(a, s,Ol = !fI (a,s) .

Nowconstruct the follo wing commutati ve diagram

;(1.
/

'1' /
/'r . ~ "T" ...'..'

(ArB)xOxIUlxOXI (ArB) XIXIUlXIXOUlX!Xl



By Lemma 3.1, t here exists 1V:B x I x I -l Z such that

'P(b/ s, O) = cIl' (b,s/O) = $ (b,s)

W(b, s, l l = f (b/l rs} = lp(b,t)

Wlb, O, t) • Flb,O,t ) . l lb,O)

'V(a,s, t) '" v(a/s , t l = lj/ (a,s, O) = !p(a, s) .

This implies that W:<l> :. ql re l. A ('\ B

Now define u' :B x I -l I by

u' (b,s) = u(bl

Then lu ' l -I(O):: (UI
B
1-1 (OI X I '" (AnSI x I and so (AfiG) X I

i s a Nullstellan set.
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Hence, by Lemma 3.2, we can def orm IV to

W:cfI::. qJ rel A ('\ B with

'V(b,s , tl = V(b,s ,u ' (h,s) l

such t hat

= V(b,s ,u(b)l = lfI(b,s, ll, for (b,s) E B x r

and t ~ u' (b,s ) = u(bl

'I?'



Since B x I -I XX I has the H.E.P. with respect to Z, it Iol lovs by

Lemma 3.1 tha t (B x II U (Xx 0) oj XX I has t he H.E.P. with respect

to Z and so there exists a map Q:x x I x I -l Z such that

n(x,s/ Dl '" ¢l'(x, s, O) = <P(x,s)

Q(x, O, t l = F(x,O,tl = f (x,O)

and O(b/s, t ) = Wlb, s, t j , bE B

Plnal Iy, define ll:X x I oj Z by

Il(X,S} = O:(x,s,u(xl }

Then,

H(x , O) .:: O{x, O, u (x))

= F(x,O,u(x)l

= f(x ,O)

and H(b, sl '" n fb/ 5/U(b))

• Vlb,s,u lbll

• o/( b,s, 1)

• ~ (b , s l

Also,

Il(a, sl ,. Q{a, s ,u(al )

= Q(a, s/OJ
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= <bfa,s l

= q1 la, s)

Therefore, H:X X I ~ Z as defined above, is t he required map making

ft ) corrunute.

Therefore , fA U B) -+ X has the H.E.P. wi th respect to Z.

Gi ven two subepeces A and B of X, we defi ne an equivalence

relation • in Xx I by identifying (x, t] and (x, O) for t el

and x E A I"'l B.

That is ,

{

(X, t) if x ~ A ('l B
I lx,t l l =

{ (x, t l lt E II if x € 11 fiB
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T
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Let 1[:X -l X be the pro ject ion map; L.e• It(x,tJ = x,

Definition 3.2: Let - be the equivalence relation defined above.

We call two subspaces A and B of X separated if there

exists a continuous map j :X-t X such that 11: • j = Ix and

j( xl = {x, Oj for A E A, j( x) = (x, I ] for x E B.

We now give several criteria for the separation of two subspaces of a

space X and eventually show t hat closed cofibrations are separated .

J,cmma 3.3 :

(a) Gi ven subspaces A and B of X and a map

u:X - IA 1"(8) -l I with A - (A (\ B) 5; u-1(0) and

B - (A ('\ BI ~ u- 1(1) , t hen A and B are separated.

(bl (il If A and Bare Nullstellen sets , t hen a map u

exists satisfying the hypothesis in (a). In part icular,

if A-l X and B -l X are closed cofibrat ions, then A

and B are separated.

(ii ) If A and B are Nullstellen set s and if

FcA fl FrB f A11 B, then a map u exists satis fyi ng the

hypothesis in (al • In particular, if A -l X and

B oJ X are coflbrat.Ions and if FrA 11 Fr Bf Ail 8, then

A and Bare ..eparated . (Here, FrA denotes the

f rontier of Ai I.e. FrA= An (x-:A").j

Proof :

(a) Define j:X -l X by
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for x f. (A11BI
{

IX' U(X) J,
jlx) •

(x,D] .. (x,tJ, for x E (A () BI, tE l

We claim i is cont i nuous.

Define u:X - (AnB) 1 I by

u = u on X - (A (\BI and if

lim x). = x E A11B where IX).} E X - (A" B) is a net, t hen

u{x) = lim u(x).) = lim u{x).l. Hence i l- - is the following
' -IArB)

composite~ (i, ii} ) X x I ....9.....) X which is conti nuous.

Moreover, i l'Ar8:A""""i1B -l X is continuous since clea rl y il N"B Is

continuous and if lim x). = x E X - IA "Bl where IX).} € A " B is a

net , then lim j( X).J = lim (xl,D) =lilll !x).,u(xi l

• (x, u(x)1

• ilx )

Since X = X - A () B U A (\ Band il-;;:;; and il- - are continu ous,
N O ' -(ArB)

it follows by the Map Cluei ng Theorem (Theorem 1.2. 11 that i is

conti nuous.

Now,

(

' II X, U(X) I ) , x I A (\ B
•. jlx) •

It([x ,OJ), x E A"B

= x for all x E X

That i s , ~ . i = Ix '
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Suppose x EA .

~:XEA('\B

'Then j (x) " [x, Oj by definition of j.

Case 2: Yo E A - (A f"'IB)

Then j (x) = [x/u(x) 1

But xeA- (AnS) =) u(xl =0 as A-AnBfu- 1(O)

Therefor e j (x) :: [x, D] .

In eit he r case, j(xl '" {x,OJ for x E A.

Suppose x E B.

~: K e A n B

Then j (xl = [x,D] " lx. tl , tEl

In particular, j( x):: x,1 1.

Case 2: x E B - fA n B)

Then j (Xl = [x, u (x) J, as x ~ (A n Bl

:: [x/ I ] , as B - fA n B) f; u- 1(1) .

In eit her case , jlx) = [x, I) , for x E B.

Thus, A and B are separated .

(b) (i) Thi s is a specia l case of case (ii). To see this , A

and B are Nullstellen sets implies that t here exis t

maps u:X oj I and v:X ... I such that u-1(0) :: A and

v-I (0) :: B. Since u-1(0) and V-liD) are closed in

X, we have that A =Ii and B :: B and so A and B
are Nullstellen sets . Now, FetAl:: An (x......:-jlj fA:: A

and FefS) :: B" (X'='B, ~ B= B and so Fe(AI (\ Fr(Bl ~
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A f'I B. Hence, by case (Il l there exis ts a map u

satisfyin g the hypothes i s in (a). Therefore, A and 13

are separated .

Now, if A -l X and B -I X are closed cofibrations ,

then by Remark 2.2 jii), A and B are Nullstellen sets

and hence from above it follows that A and Bare

separated . therefo re, closed cctibrat ions are separated .

(ii ) A and a are Null stellen sets eo maps "',I1:X -l I

such that A:O ",-1(0) and a :o 11-1(0).

Defi ne u:X - (A f'lB) -I I by

{
A ( x~ ( ~ I Il ( X ) ' for x E TI1'"B

u(x) '" 1 , for x e III - AI f'I B

o , for x e (8 - Bl f'I A

We claim that u i s continuous.

Observe that A f'I B '" IAu Fr A) f'I (8 U FrBl. ., .
'" (A t"'IB) U tA f'I FrB) U (8 f'I F'rAi U

(FrAf'lFrB)

Since Af'I Iif A () B and FrA f'I FrB f A () a, i t Io l loom l hi,l

11\ n BI - IA n BI • [IA n FrBI - IAn BIJ u In nFrAj - IA n 111 1

= A(] IE - 81 U B(] (A - Al

Therefore, X - fA () B) '" X - IA() B) U fA - TI) n B u (8 - B) n A.
Now, X - {A ()al , A, B f X are open. So , X - IAn Bl, A - (A n BJ,

8- fA (] B) f X - fAn B) are open and X - IA() B) '" X - fA() Bl U

(A- A n Bl U (8 - A n 81 . Now define TJ :X - IA('I Bl -I I by



-~
~ Ixl - ).Ixl + ~ I x l

CO: A - AnB .. I by COl x} = 0, for all x.

C1:8 - A () B ... I by C1(xl " 1, for all x.

Clearly , 1J, Co and C1 ar e conti nuous and q u Co U C1:X - An B .. I

is continuous since t he maps 1}, Co and C1 agree on overla ps of

open sets (sec comment followi ng Theorems 1. 2.1) . For example if

Yo E IX- {Ii Ii BI I n A- (A n B) then x E A, x f a, I .e . x E A,

x ~ H, so ~( xl " 0 t ~ (X l ,, 0 and COlx) II: O. Note that

(A- 11 () B) n fB - An Bl " e. Finally, t he continuity of u

fol lows by observing that u = 1.1 u Co U CI •

We now show t hat t he map u:X - (An Bl -+ I satisfies the hypot hes is

i n (a).

tc t x E B - fA n B). Then, x E B and x ~ A. So, x e {A - AI () 8 or

X I 1.,181 .

If x e (A - AI n a, then u(xl = 1 by defi nition of u.

I[ x E {A" n B), then since x E B and hence x e ii, i t foll ows that

x E A. Consequentl y, ).(x) j. 0 and ~( xl ::: O. Therefore ,

ulx! "~I x ,.~o = 1. In either case, u(x) = 1. That
~~xi- +~{xJ riXJ to

is, B - (At"IB) ~u - l(ll. A si milar argument ilorks for A - (AriB),

t hat is , A - (A ri B) ~ u- l ( O) . Hence, the map u defined above

satisf ies the hypothesi s in fa) and so A and B are separat ed.

12.



Suppose now tha t A~ X and B ~ X are cali bratio ns such t hat

FrAn FrB~ An B. Then by Theorem 2.6, A-I X and B.... X arc

closed cofib rat i ons and so by Remar k 2.2IiiJ, A and B are
Null sl ellen sets with FcAn FrB£ A n B. Therefore by Lcllllla

3.3tb) (iii above, A and B are separated .

Lenma 3.4 : Let A be a subspace of X such that A x I !; X x I has

t he H,E.P. with respect t o Z. Let 1(, L:X x I .. Z be hosotopics

with KO '" K(- , O) " L(- ,O) '" LO and KI . LI . "hen there
AX! AX!

exists a homotopy ¢l:K= L rel (A XII U IXx 0).

Proof: Define 9: IX x I x II U IXx 0 x I) .. Z by

I ~

(

KIXIS) f or
glx,s ,tl '"

Llx, sl for

and , :Ax I x I .. Z by

t = 0 or 5 " 0

t " 1

,la, s , l l "l((a, s l = L(a,s ) , for 031 t E I.

Since 9 is defined by conti nuous maps on closed subspaces, and on

the overlaps Xx 0 x 0 and Xx 0 x 1 these maps agree, that is ,

g lx, O,OI = Klx, O) and g(x,O,l) '" K(I, OI '" L(x,OI, 9 is cont inuous

by t he Map Gluei ng Theorem (see rheorea 1.2 .1) . Clea rly, V is

continuous.

Consider now the foll owi ng commutat ive diagram



(A x II

12'

s ince A x I -l Xx I has t he H.E.P. with respect t o ll, Lemma 3.1

implies the existence of a map 4J: X x I x I .oj Z such that

~I · gl and $1 .=o/Ugl ., that i s ,
XXOXI xxOxr AX IXIUOC IX! XXIX!

~I = '¥ and c1l1 ' :: g. We show t hat dl:K ::. L rel
!lx!xI XX!XIU<xOX!

u IX x 01 .

rtrst, <I:l (x,s, OI "g(x,s,OI = K(x,s) and

<!l(x,s,l l = g(x, s, l} = L(x,s)

Now, let la,s ) E A x 1. Then,

¢l(a,s, t J = w(a, s, t ) = K(a, s) = L(a,s) , t E 1.

let (x ,o) p X X O. Then,

:: K(x,ol = L(x,O)

Therefore , ¢l:K ::.L rel fAX I I U (Xx 0), as required .



A X °

129

Theorem 3.2: Assume that A-J X, B -J X have the H.E.P. wi t h

respect to ?" If (A n B) x I -l X x I has the H.E.P. with

respect co Z ant! A and B are separated, t hen A u B -l X has

the H.E.P. with respect to Z.

Proof: Let~}

T TJ,
IAU B) X° I tAU BI X I

be a commutative diagram, where f and 19 are given maps such

that !P I . II . But 11 -l X and B-l X have the
(AUl)XO (AUl)XO

H.E.P. wi t h respect to z; that is , the following diagrams arc

co""utatl~l .r:
T ")~Z:r 'r~··I'"

l A X I BxQ ) B X l

and hence maps $A:Xx I -l Z and lbg:X x I -l Z such that

<l>AIAX I • ~ IAXI r <l>AI- ,O) • I and <!>a IBXI' ~ IBXI ' <!>ah~) • L



Now, A ('j 3 £:A and A n B !; B andhence

<I>' ! IArIlIXI " ~ 1 ' ArIl ' Xl : <lal (llriliXI .

Since (A t"I H) x I ~ XX I has the H.E.P. with respect to Z,

t here exists , by Lemma 3.4, a homotopy ¥:$A= l1lg rel ((A11BI x I)

U (XX Oll . By hypothesis, we have a continuous map j :X -l X with

j(x) '" [x, OJ, x E A and

j (x} '" (x, l l , x E B.

Now cons i der th e followi ng diag ram

where p:X x I -l X is the identification map and T:I X I -l I X I

switches t he factors . The map ". (lx x T) factors through

p x II and hence by the universal prope rty of quotients, it

i nduces a map n:XX 1 -+ Z such that

Now def ine

Q . ( j x i d ) :Xx I -l Z

Then, n · (j x i d)(x,O) '" n(j (x), OJ

" Qllx, t j,OI

" Qlplx, t l,OI
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· 01(p x 1I I I" t ,OI I

• ~ . Ox x TII',t ,O)

• ~ ( K, 7 It ,0) I

'" lj/fx, O,tl

• $A(X, O) - <1] 1,,01
- f

Similarly, n · 15)( id ){x, l) = 19(x,t), x E A UB. Therefo re,

n· Ij x id) is the required diagram fi ller in ( *) andso

A UB --+ X has the Il.E.P. with respec t to Z.

We nowreformulate Theorem 3.1 and Theorem3.2 i n terms of cc t ibratl ona

and obtai n the following importan t results on co fibrations.

Theorem 3.3 : (Union Theoremsl Let A --l X and B -I X be cof Ibratlons .

Suppose

either [a } An B -I B i s a cofibrati on and A n B '" II n B

or (b) An B -I X i s a cofibration and A, II are separa ted.

Then A Va-I x is a cafibrat ion.

Proof:

(al Sinc e A -i X is a cofi bratio n, A -I X is a c losed cofibre tl on

by Theorem 2.6, and so by Remark 2.2( iil, there exls t s a map

~ : X ; I with A' fl (OI .

Consequently, (ll'IBr 1
(OJ '" A(\ B

'" An a, by hypothesis.

Now, B-i X and An B -oj B are cofibrat i ons imply t hat

B x I -l X x I and (An B) x I --l Bx I arc coribrat l onntq

"I



Corolla ry 2 .9 and hence have the H.E.P. wit h respect t o

eve ry space Z. Theref ore , by Theorem 3.1, AV B ~ X is a

cof i bration.

(b) Since A ~ X and B ~ X are cofibrations , A and B have

t he H.E. P. wit h respect t o eve ry space Z. Moreover,

A n B of X i s a cofibration illl'*lies t hat (An BI x I ~ Xx I

is a cofi bratio n and hence has t he H.E.P. with respect t o

eve ry space Z. Byhypot hesis, A and B are separated and

so it follows f romTheorem 3.2 t hat A V B of X has the H.E,P.

wi th respect to every space Z. Therefore , A U B -l X is a

cof i bration.

The followi ng are easy consequences of the Union Theorems for

colf bratl ons :

Theorem3.4:

Ca l If I. of X and B of X are clos ed cofibrat i ons and if

An B of X i s a cofi bration, t hen AU B -l X is a

cot Ibrat ion.

(bl Let Al -l X, . .. , An -l X be close d cofi br ations. For each

subse t af{ l, 2, .. ., n], let Aa = n At ~ X bea
m teo

cofib rati on. The, t~l A t -oJX i s a cofi brat ion.

Proof :

te I If A -oJ X and B .. X are closed cofi brat ions , then A and

B ar e sepa rated by Lemma 3,3(bl Ii ). Since A fI " -I X is a

cofi bration by hypot hesi s , it follows th at AU B ~ X i s il

cof i brat ion by Theorem 3. 3(b).



(b) Follows by induct ion.

Rema rk 3 .1: Theorem 3. 41bl does not hold in gene ra l for countably

many cofibr ations . to see tnts, let X '" I, and A( '" {O,l/!} .

t = 1, 2, • • • •nd A= ~ At = {OJ U{tit = 1, 2, • •·1.
1=1

Clearl y, t he set A is closed in X. Now, {or each ! E {I, 2, . . . [ ,

At '" {O,l /t } :;; {O, l} -+ (0, 1) '" X and hence the inclusion maps

At 4 X are closed cofl bret ions by Example (2. 11. But IiC have

seen in Example (2 .6) that A -l X is not a cof ibrat ion.

Example 3.1: If aOE A and bOE B are non-deqenate base point s

(i , e . {aD} -l A and {bO} oJ B are closed cofibrati onsl and

Av B = A x {bol u {. O) x B (called the ~g of A and BI ,

t hen A v B -+ Ax B is a cofi bration. This follows [ rOIl

Theo rea 3. 4 (a1 si nce Ax {bol -l Ax B, taO} x B -+ A x Band

AX {bO) n {. O) X B • {.O) X{b~) ; AX B are closed cofib rati oos

by Coroll ary 2.9.
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CHAPTER IV

Further Results on Cofibrations

This chapter i s devoted to a recent t heorem of Kleboom (see (10))

and related results. In particula r, some of the lIell known classica l

res ults of Strom [lS I are retrieved as special cases of Kieboom's

theoren, t hus avoiding the techni cali ties of loca l arguments given by

Strom, But fi rst , we give a prelimi nary definition which i s essentia l

to Kieboom's Theorem.

OcU nition 4. 1: A map i : PA~ Px in 1..QQB i s said to be cofi b ration

over B

A~)X

B

if t here exists a fibre ret raction of the canonical i nclusion

oC the mapping cyli nde r over B; tha t is t he dotted arr ow exis ts

in the diagram
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su ch that the r e sulting triangles commute.

Remark 4.1: If i: A -1 X is a cl ose d cof ibration in!Q.Q and if

furt her PA and Px are Hure wicz Fib rat ions , then

i : PA-1 Px is a cofibration ove r B (see [1; 'lheore m 1.3]) .

We now prove the main theor em in t h is chapter. I t is due to Kic boom

(see [ 10; Theorem 1] ) .

Kleboam1s Theorem 4 .1: Consider the follow ing diagram i n !Qll.

-r ' tA) = E
A

i. E

'4.'(~1= ll./ltA i ~ .)"1>7 li'
'1y< ----i;?'

~

i n which i and j are incl usio ns, 0A:: q- l(Al and Ell '" p-l (fI) .

The ot he r maps iE' io' jAr PA and qA are i nduced by l , j, P

and q, re spectively.

If

(a) i is a closed cofibrat I on

is a fi bration and

is a cofi brat ion ove r B

OR

(b) i is a cof ibra t i on

is a reqular fib ration and

is a closed co fibrat io n ove r B
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then EA V D of E is a cofibration .

Proof:

(a) j:O -l E is a cofibration over B => 3 a retract ion r :E X I -t E

X 0 U D X lover B, th at is, the follow ing triangles commute

a nd lienee q(j) r (e,t} =: pre) for all fe,t) E E x 1. Note that ,

d e DnEA <=> d e D and de Ell. = p-l(A)

<=> d E 0 and p(d ) :: q (dl e 11

<=> d E q-l (A) " DA

and so 0 nE A = DA,

Now, for a ll (e,t) E EA X I, q(jlr(e,t) :: p(el e A and so

r Ie .tl E (E f'I EAl x G u lD nEAl x I

=> [(C,t ) eEAx OUDAXI

::=> r restricts to a retraction [/I:EA x I -t Ell. x 0 U DA x I

"'> jA:DA -l EA i s a cot Ibret ion .

NO W, consider the follo wing di agram
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where i :A.oj B is a closed cofib rat ion and ptE .oj B i s a fib ra t ion.

By Theorem 2.2 .4, i t foll ows t hat i E:EA -4 E is a closed ccl ibrat ion.

But iEjA '" j i o from PI and iEjA is a cafibrat ion (c omposi t i on

of cofibrations) and so ji o is also a cot ibrat Lon. Sin ce j is

a cofibration by hypothesis and j i o is a collbratton, it follows

from Theorem 2.2.7 t hat 1D:01l -+ D is also a cof i bration .

SInce p:E ~ B is cont inuous and A is a closed subspace of H,

it follows that EA '" p- l(A) is a cl osed subspace of E.

Consequently , EA = EA and Ell n 0 = EA o o.

We nowhave EA -I E }

o -l E are all cof i brat ions

EA n O'" DA of 0

and &A I'"'lD '" EA o n

Therefore, by L1111g ' s Theorem 3.3 (al , £A un -l E is a cofi brat ion.

(b) Since p:E .oj B is a regular fibration and 1:11 -l B is a ccl lb retlon ,

i t follows f romTheorem2.2. 5 that iE:EA ..j E is a cofIbretio n.

Now, as in (a) above wehave

Dol'

'A -r E ) are all cofibra ti ons

D() EA = 0A 'i Ell

and D()EA = 0 (l EA (since j i s a c losed cor ibret Icn] .

Therefore, D U Ell ..; E is a cofibra tion by Lilli g ' 5 Theor em3.3 (,1).

Corollary 4.1 : If in diag ram {*} of Theorem 4. 1, i and j am cl osct

calibrations and p and q are fi bratio ns , then F.AV 0 -j E is

a closed calibration .

137



Proof: By Rema rk 4.1, j i s a cofibr atio n over B. Hence , by Theorem

4.1(a), EAuD i s a closed cofibration.

the following theoremis a modified version of Str om ls Theorem (see

116;13]) .

Theorem4.2: Let i:1\ -l B be a closed cafib rat ion, and p:E -l B a

fi brat ion with s:B -l E a section of p u.e. p.s . :: 1a) such

that s (8) -l E is a closed cofibrat ion . Then Ell. U s (HI -l E is

a closed cofib ration.

Since s:B -l E is a section of P, it follows that

1 38

q= pi :5 fB) -t B is a homemorphism
s(BI

and therefore q'" pi
siB)

Now, q-l (Al = sIB) /"'IEll.'

is a closed calibration.

is a fibration.

Hence, by Corollary 4.1, Ell. Us (B) ..j E I



We now see how Theorem 4.1 is applied to retrieve Strom' s Product

Theorem (see [16; Theorem 6] ) .

Theor em 4.3: If (X,AI and (Y,B) are cofibred pairs with either A

or B closed, the n the product pai r (X,A) x (Y,B) :: (Xx Y,

X x B V A x Y) i s also ccf ibred .

Proof: Let j :A oj X and i :B oj Y be i nclusions . Assume without any

l os s of gener alit y that A is a closed subspace of X.

We construct t he followi ng commutative diagram

1'"'(8)= x.1> 1• • -l »)(.y

All,' ) 71'?'-T· .~:'e,y . J~
t

By hypothesis , i :B oj Y i s a cofibrat i on and Py is a regular

fi bration being t he tri v i al fibration . Since j:A oj X is a

closed cofibra tion , it f oll ows fromTheorem 2.2 .9 th at

j x 1y:A x Yoj X x Y i s a closed cofibration. As Py and qy

ar e Hurewicz Fibrations , it follows from Remark 4.1, thet

j x ly is a closed cofibration over Y. Thus, by Theorem " .1(b l

we have that X x B VA x Yoj X x Y is a cofi bration. 7bc case

tha t B i s a closed subs pace of Y i s a consequence of Theorem

4.1(a) . The verification is l e f t for t he reader.
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Note th at (X x t, X x BU A x'O need not he cofibred if neither A

nor 8 is cl osed. To see t his we consider t he following example

(see [2; page 81, Example 3.23 }).

Example 4,1: Take X = [e,b ] where a t. b and A = {a} . Topo l ogize

X by taking $, A and X as the open sets . Clearly , A is not

a closed subspace of X and we have seen that A -I X is a

cofib rati on by Example 2.3. 7.

Now t ake B '" A and Y = X. We will showt hat C'" (X x Al U (Ax Xl

.; X x X is net a cofibra t i oa.

Suppose C -I XX X is a cafibration. Then, by Remark 2.2.2 (b) , C

has a halo V i n XXX and a re traction e-» -I C. Again, by

Rema rk2 .2 . 2(a) ,V is also a halo of C in X. Since A;; x,

i t f o1101ol5 that ~ '" X x X and so we t ake V = X X X.

NoW, b e A• faT .) Ib,b) E faT X W' raJXlbr • "[Ta"";biJ
=> (J(b,b) E~ by cont in uity of 0".

Now, la /b) E C and orv ... C i s a retraction. Hence o( a/b)

(iI/ bl and so G(b,blE~. Notice that {(a;blT:: Tar x m
= raT x fbT as {b} is closed in X and consequent l y, a lb,b) E

lar x [b]. Thus, prXG{b , bl '" b . But (j(b,b) E C and so we have

a{b, bl " (a , b) . By a symmetri c argument, we obtain O(b, bJ :: (b,d)

wh i ch then impli es a " b contrary to hypothes is . The re fore,

C :: (A X Xl v IX x Al -t X X X is not a cct lbret ion.

Re ma rk 4.2 : (X,A} i s cct ibred e> IX x I, X x 0 U Ax I u X x 1) i s

cof ibred. By Example 2.3. 1 (the case n " 11, I -l I is a closed

cofi br at ion and hence by Theorem 4.3 (X,A) x {I, ll :: (X x I,

x x 0 V AX I U X x II i s a cofibredpair.
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The following theoremis a type of converse to the product r ule

(Theorem 4.3) .

Theorem 4. 4: Suppose that for A~ X, there exists a contin uous

function O' :X -t I wi th A f; 0'-1(0) , and t hat there exists a poi nl

Xo E X - A such that O' (xO) i- O. Then if (Y,B1 is a pai r such

that (Xx Y, X x B U A x Y1 is cofi bred, (Y,B) itself is

cofib red.

Proof: Let ~ : X x Y -t I and ~:X x Y x I -i X X Y be maps for

(Xx Y, Xx B U A x Y) as described in t he Characterization

Theorem 2.2.2 (el.

That is , X x B U A x Y£:11- 1 (0) and

~ (x , y, O l = (x,y) for all (x,y) E X x y

~(r,s ,tJ .. (r,sl, (r ,s) E X X B VA X Y, tEl

~(x,y, t) € X x B U A x Y whenever t > TI (x, y).

Let O(xOl =E, whe re 0 < E S 1; and define W:I -l I by WIl l =
tIE. Then ljKl' :X -l I is a map such that ¥Jla ) = \f(Ol = 0 and

1jKi (xO) = 1. Hence, we may assume that (J(x01 = 1. We nowdefine

functions G:Yx I -l Y and \f:Y ~ I by G(y,tl = pryF(y.O,y,t)

and '1(Y) ::: Max (~ {xo' Y ) ' 1 - Inf aprxr (xo, y, t ).
tel

Clearly, G is continuous as F is continuous and pry is

continuous. In the case of V, notice that TIl! } :Y -l 1 is
;':OXY

continuous and the continuity of lnf O'prXr (;':O,y, t) is analogous
t el

to the continuity of the t unct lon 0' defined in Charecterlzet ion

Theorem 2.2.2(e). So, 0/ being the maximun of two continuous



r eal val ued functio ns is continuous. Furthermore,

'V(b) "max(T\(xO ,bl , 1 - I nf aprxF(xO,b, t ll
t El

" max 11l {xO, b) I 1 - I nf Gprx(xO, bll
tEl

= max(l1(xO, bl, 1 - Inf O(XO »)
tE l

= T\ (xO,bl , as T\ (xO, bJ :2: 0

= 0, as (xO/b) E X X B and X x B U A X Y f 1'\-1(0)

Therefore,

Next, G(y,Ol '" pryF/xOIY/O) = pry(xo,Yl '" y.

G(b,tl = pI/lxO/b,ll = pry(xO, bl "b .

Suppose , T\ (xo' y) :2: 1 - ~~~ aprxF(xo,y, l ) .

Then, F(xo1y,tl e Ax Y=>l\(xo,Yl '" 1. Hence , if t >Vly) =

TJ ("0'yJ/ then 11. (xO ' yl < 1 and so G(y,tl = pryF(xO' y,t l E B,

s i nce FlxO/ y,t l E XX B. A s i mila r argument holds tr ue f or the

case 1 - Inf crprXF(xo, y, t l 2 ll (xo' Y) ' Therefore, (Y,81 i s
rsr

c oflbred by the Cha racterizat ion Theorem 2.2.2Ie l.

Corollary 4. 2: IX .A) i s cofibred <=> (X X I, X X 0 u A X II is

cofibred.
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Proof :

.",>- : Suppose (X,AI i s ccflbred.

By Example 2.3. 3, (I , {o}) is a closed cofi bred pair. Hence , by

r tie orea 4. 3, Xx 0 V A x I i X X I i s a cofi bration.

•( =" : Suppose X x 0 U A x I -i Xx I is a cofibrat ion. Put

A = [e], Y : X, B "' A and X '" I in Theorem 4.• , and obse r ve

th a t si nce 0 .. 1 is a cl osed cofibra t ion, th ere exists a map

0':1 .. I wi th 0'- 1(01 " 0, as { OJ is closed in I and so t here

ex ists XoE I - to}, tt .e. Xo * Ol such that tT (xo) '10. There

fore, by Theorem 4.4, (X,A) i s cofi br ed.

Theore m 4.5: Let i:A" X be a cofibra t ion . Then, i is a homot opy

equivalence iff A i s a strong deformation retract of X.

Proof : Suppose i: A .. X is a homotopy equivalence . Then t here

exi s t s f :X.. A such that fi =. IA and if = IX' Consider t ile

fo11 olling diagram



where F:A X I -t A is the homotopy fi to Ill.; t hat is,

F(- , Ol '" fi and F(- ,l ):; lA'

So, F«o(a) = F(a/O) = fila ) ; and t herefore, fi = FIlO' Since

i:!I oJ X is a calibrat i on, there exis ts (J:X x I -f A such t hat

aflO(xl = (J(x, O) = f( xl and G(i (a ), t ) = F(a,t ) . Defi ne

eX -l A by I (xl = (J(x, l J. Then, for all a E A, ri ta ) = CJ {i (a ) , l l

= F(a,l) = IA(a) = a .

=> r i s a retraction of X onto A and <f: X x I -l A is such

th at (i (x, O) = f{xl and a (x,l ) = [(xl.

=> f :: r {i.e . f i s homotopic to a ret ract ) .

=> if ::. ir

:> Ix :: Lr

So, l et G:X X I -I X ~ a homotopy f rom IX to i r. That is,

G(x, OI ~ IX and G(x, I ) '" I r ,

Since I -l I and A -l X are conurettcns, so i s the i r product

(Xx I , X X 0 U A X I V X x 1) a cofibred pair by Remark 4.2.

Now, defi ne a homotopy Hot : (X X 0 U A X I V Xx 1) x I -1 X by

the followi ng equations

11. ( (:<,0 ) , 5) " X

Ilt( (a,tl,s) = G{a, (l -s l t l

H*((x,ll,s l = Glr (xl,l-s l

NOI<I , f or all a e A,

H~({a,O l ,s l = a = G(a, OJ by the fi rst tvo equations and

H~ ( (a, 11 , al = G(a, l -s)

= G(r (al , I-51 by
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the las t t wo equat ions. Hence, H. i s well defined . w~ cla illl

that Ht is continuous .

Since (X,A) is cafibred and (I , I I is a ccf ibred pair by

Example 2:3 .1 (the case n = 11, it follo ws by Theorem 2.2 .9 that

IXx I x I, A X 1 x 0) is cofibred and hence, by t he Character iza

tio n Theorem 2.2.2(cl and Remark 2.2 .2(al, we have that Xx I x I

U A X I x I ;;; Xx I x I U A X I x I has t he fina l topology vlt h

respect to t he inclusions of the subspaces Xx I x I and IIx t x I.

But th e rest rictions of R. t o each of t he subspaces X x I x I

and A x 1 x I is clearly conti nuous. Hence, gl obally II. is

continuous.

Consider now the following diagralll

G__----~"'x

/'
H /'
/'

/'r -----7''1'/
X.ou A, _'I ux A1. ( X..Ou AA't u )(..1) 11:1

Since A. lx/O,O! = Yo ., G(z,OI

H.fa, t/ OJ - G(a, tl

H.lx, l ,OI = G(r!xl , 1) " i r ([ (1.1) " i el;.:} = G(z, l)

the diagram coeeutes and hence there exists a map 11 :7. x I x I -j 7.

such t hat HI = G and HI = H ~.
XXI IXXOl1"'IUlX II XI

'"



Define H:X x I -i X by

H(x,t) '" H(x,t , I):X X I oj X

Then (i ) H(K,Ol '" H(x,O,l l '" H.(x,O,l} :: x

[i i l ii(x,ll = H(x,l ,l ) = Glr(x) ,O) =r{x) E A

{iii} Hla,t);;: H(a/t ,l ) = Ht(a/ t,l) '" G(a,O} = a

Therefore, A is a SDR of X.

"<=": Clearly, 1:A oJ X i s a SDR of X",> i is a homotopy

equivalenc e.

t.orolla ry 4.3: [: 0 -I A is an h-e qulval ence <=> the map 10:0 oJ Mlf}

defined by i O(xl = Ix,l] is an h-equivalence <:=> 0 is a SDR of

Mlfl via i O'

r! Q.9! : We have already proved that f:O -l 11 is an h-equivalence

( ,,) io:O -l MIO is an h-equivalence {See Theorem 2.2.10 (dll.

Furthermore, by Theorem 2.2.10Ibl 10:0 -t M(E) is a closed

cofibration. Hence, by Theorem 4.5, 0 is a SDR of tHO via

in <~> 10 i s an h-equlvalence .

We now prove the Glueing Theorem for Homotopy Equivalences. There are

scrvcra l proofs of this t heorem in the literature . For example [1;7.571.

novcvcr, the proof given here is due to R. Picci nini and R. Fritsch

(see 151l . But before we do that weneed the following result.

l.cmm~..3 _J : If f: D .; A is an h-equivalence and i:D.; Y is a

cofibration , then the induced map f:Y -I AUf Y is an h-equlve lence.

!' rpQl: Given the follo wing diagram
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r :
:t> )A

We need t o show that f :Y-I A f Y i s an b-equlval ence. Since

f :O-I A i s an n-equlva l ence, i t follows fromCorolla ry 4.3 that

14 7

o is a SDR of Mi l l via iO' Now consider the following t wo

diagrams

Ml~l

T"'"
y

"1'''''<bl ,1
J) ~ '( ».1 "1) l "\l l

By Theo rem 1.3 .4(al, Y i s a SDR of Y U j M{l l ;:; M(fl Uio Y

o is a a SDR of M(l ) . We now compute AUf (0 x I v Y x 1l hy

consideri ng the follo wing diagram

) ~1. v '( ..1 ) A U \ (1l ' 1. ... ~, , )

1 li 1Mlf\U;l»,I l vy, t

+"1>.1.

~rr I

J) f A



Squar e I is a pushout and out squar e i s a pushout. Hence, by

Rema rk.1.1.4 (b) (i) , square II is also a pushout. So, by vertical

composition (see Remark 1.2 .5(bl) ; we have t hat AUf (0 X I UY XI)

; M(f) f (0 X I U Yx 1) . Again, we consi der the follmling

diagramr-:'T": l'U:::i:,:~':'
1> ~'I~' lMl f l

Since 1:0 -l OX I is a cofibration, it follows t hat

M(l) ;;; Dx J V Yx 1 (see Remark 2.2.2(al ). Hence, square 1 is a

pushout. Since out er square is a pushout , we have that square II

is a pushout (see Theorem 1.1. 4). Therefore, by Horizon ta l

Composi tion, M(f) Ui (DX I U'1 X 1) ;:M(fl UiD Y. Thus,

combin ing the resul ts we have obtained so far, we have the

following: AUf (0 X I U Y X 1) ;;;Mlf) U i
O

Y

;;;M(fl U 'fllo.W x I U Y X 11
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Bya similar argument as above, M'(f) .. 1M ( f ) U i
D

YlU r 'f x I

;;A U f YX I

Aga in , by considering the diagram

r---~1:: "U,' lU, '''''' 'U,,.,

]) A

We get M(f) = AU f Y X I. Combin ing the result obtained above,

M'lfT;; AUf YX I

Since i :d -I Y is a calibrat ion, it foll ows by Charecter izetl cn

Theorem2.2.2 (dl, that D X I U Y X I is a SDR of YX I (where

YX 1 is ident if ied by YJ . We now consider the Icl Jovinq diagram



Si nce j:O x I U Y X I -+ Y X I is a SOR, there exis t s a homotopy

F: Y x I x I -l Y X I such t hat

F(- , - ,O) ;: lYXI

F(- , - , l) ;: r :Yx I -l n x I V 1 x I

Now, let Ph:1I x I -l 11 be the proj ectio n map and observe that

(AU f (Y x III x I ;;; 11 x I U [Xl (Y x I x II. We nowconsider
PAU F

the [unct ion 11 x I U fX1 (1 x I x I) -l 11 U f (1 x I l

defined by:

I (a,tll -l la] and

I (y,u ,vl l -l IF(y,u, v)]

Since A X I U [xl (Y x I x I ) is a pushout , i t follows t hat

PAU F is conti nuous. It is now an easy matter t o show t hat

A UF (0 X I U Y x 11 is a SOR of 11 U f (V x Il under t he

homotopy PAU F: (AUf (Vx III x I;;; 11 x I U fXI (Y x I x I)

-l AU f (Y x IJ . Therefore, M(f) U in Y ;;: A U f (0 x I U Y x II

SIlR _ SDR SOR_ _
-+ AUf (¥ X IJ ;;; M{f). Thus, Y -l M(fJ U io Y -+ Mlfl ;;; M(fl

SOR _
=) Y -l ,~(()

=) [ :Y -l AU f Y i s an h-equivale nce by Corollary 4. 3.



The Glueing Theorem 4.6: Let

h{
1>

'I!h. h.

'( If

"
J)' .

I' '/Jt

be a commtet ive diagram in which I, L' are closed coflbretl ona,

and hy, hD I hA are h-equivalencea. then AUf Y : A 1 U r: Y' .

Proof: Let X= AUf Y and X' = A1 U f " Y'. Consider the

followinq 0,,,"/7j'
.1 f E/(h.

J) lA

The universal property of pushouts yields a unique map h:X -l X'

such t hat

lSI
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TlP*:. IX'

1'* I' :. l A'

Four different cases will be discussed:

~: D closed and a SOR of Y and 0 ' closed and a SOR of Y'.

fhen by Theorem 1.3 .4 (a) , A is a SDR of X and A' is a SDR of

X'. So, I and i ' are homotopy equivalences. Hence,

T* :x ... A and l'*;X -l A' such that ~ I~:. Ix and

i* i :. I"

Similarl y, since hA rse h.e , hA* :A' -I A such t hat

:'i 'i'*:'lX'

Therefore, h is a homotopyequivalence .

G~U: Suppose f and f ' are homotopy equivalences. Then by

Lemma 4.1, f and fi are homotopy equiva lence e . Now using the

equality h·f = f1' hy f rom eq. (1) and using t he sere kind of

lcchniques as in Case 1, we conclude that h is a homotopy

equivalence.
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IS .l

Case 3: The map f ' i s a cofi brat ion.

We t hen constru ct t he following commutat ive diagrambelow stepwise.

,'Yl
9
' ~ E>~'~'U"

1 ]~:" ~ 1-
f' ~

~~ :L...-------'---------'l~· h
~

J> ~ A
lliL!.: Construct tra pezoid 1 as a pushout .

Since i:n -+ Y is a ccfibret icn and hn:D -+ 0' is a

homotopy equivale nce, i t foll ows that hn: 'I -l yn i s a homotopy

equivalence by Lemma 41.

By coreut at i vi t y of (*) we have t hat hyi = i ' hO' lIence,

3 lg:y" -+ 'I ' such that

q-I" '" i ' and g' hO '" hy .. . eq. (2)

since hn and hy are homotopy equivalences, it follows l haL q

i s a h.e .

llif!..1; Construct square 2 as a pushout.

Hence, X" '" A' U f , 'In

Since f ' i s a cofibrat ion and square 2 is a pushout it

follows by Theorem 2.1. 3 t hat f is a cofibrat ion.

Now, f 'gi n = fli t by eq. (2)

'" flf ' since X' = A' U f 'i T [i.e . square COrflfl'luLcsl



Since square 2 i s a pushout and larger square is a pushout

i.e. X' "A' ( I 't', it follows t hat square () ) is a pushout and

hence X" f l ' ;; X' .

Also, by the universal property of pushouts applied t o square 2, g
is the unique map such tha t

9f .. fig and 9y; ..l' ... eq. (3)

Now, i i s a cofibra tion and 9 is a h.e . ; hence by Lemma 4.1,

9" is a h.e ,

~!::£Q..]: Consider t he outer rect angl e where X '" A f Y. NOli',

rho: Y'" x· and iihA:A .. X· are maps such that

(hDi " [ i "hO (commutat iv ity of trap. 1)

,,"'[iif1hO (colMlutativity of square 2)

'" "'[iihAf {commutativi ty of *l

lienee, !hA :X" X" such that

154

h'-:~ Ute maps h:X -t X'

hf '" {I hy and

hT '" f'hA,

Ilut , qhA f " 9rhO

" figho
" fihy

and ghA i " 9PhA
'-PhA

and 9hA:X... X· are such that

by eq. (31

Cornrnunit ivity of square 13)

equation (2)

equation (4)

equation (3)



Therefore , by uniqueness of n, h = 9 . hA .. . equation (5) .

But both 9 and hA are homotopy equiva lences.

There fore , h i s a homotopy equivalence .

~: General Case:

Consider the mapping cylinders M(f}, M(f ' } of the maps ( and

f ' respectively .

Let j :O -+ D x I and j ' :D' -+ D' X I denote the embcddings at the

Oth level .

Then j and j ' are closed cofibra tions and D and D' arc

SDR's of D X I and D' X I respe ctively .

Case I applied to t he di agram

,··,T
J) f

Fj..
l)' l r.'( j' 1>' f ' )A'

implies the existence of a homotopy equiva lence

hM :M(f) -I M(t' ) such that

Since 0 and 0 ' are SDR 's of D X I and 0 ' x I re specti ve ly,

it follows by Theorem 1. 3.4 (b) t hat A and A' are SDR' s of

M(f) and (Mf ' ) respective ly .

Let rf:M (f) -I A and r f:M(f ' } -+ A' be t he re spect I ve dcf omaticn

retracts such that rff = f . pr l and r{f' = f' . pr l (sec

15!'i



" cf f ' (1l0 (dJ, tl

'" hAl /d) by commiti vity of (*)

and It"[f[(d , t l " hAfpel(d ,ll

Similarly, cfhH1 · itA • hArf} ' Hence, by uniqueness of cfhH' i t

[allows t hat

(1)

Now consider the following dia gram

t'

IS'



where i, L", iD and in are cofibrations and hy, hO
and hM are h-equivalences. From (*1, hyi =- i 'hO' On the other

hand, hMio(dl = hM[d, l l

= hi(d,l)

= f' (hD x III (d,ll

• f ' IhOld),l)

• [hold) ,l]

Therefore, the above diagram is commutative. Applying case (3) Lo

the above diagram, we obtain an h-equlvalence

h:M(f)UY -I M(f'I Uy l suchthat

(8)

Finally , consider the following dieqran

"~lr~-T '~}
Mlf').:J'b''I < ~ \'1\") 'ff ' 1>1

By equat i on (81, hi = Ilh M and by equation (7) . hArf :: rf .hW
Hence, t he diag ram i s corrunutative; I, II are cof ibrut icns ,

rf' r f l, hA, hM and hare h-equlvalences . Hence, case (?)

appli ed to t he diagramabove gives rise to an h-equlvalence

15 7



But by Theo r em2.2 .10, f = r f i o and f '" r f , i VI and hence

apply ing horizont a l composition , we get

"'> AU f Y: A' U f ' Y'

'l~hS2rem 4.1: Suppose in addition t o the hypothesis in Theorem4.1 lal ,

j is closed and a homotopy equivale nce over B. Then EAV D is

a SDRof E •

.P.CQ.Q.f : j :D-I Eo is an h-equive lence over B => the re exists a map

m:E -i Dover B and homotopies H:m' j: 10 over Band

K:j . m: IE over B.

Clearly, m rest ri ct s to a map mA:EA -l DA end similar ly Hand

over A. Therefor e , jA is an b-equiva lence (over A).

,"low consider the Iollovinq diagram

15 8



EAU jA0 =.EA U l EAE.

EAU i
A

0 :: EAU 0 , and

such that 11 1-,0) (19

where i o and i E are c l osed cofibrat i ons and th e vert ical maps

are h-equi valence s . Hence, by rhecrea 4. 6, \Ie have that

Since 0 n EA :: 0A' i t {ol lows that

EAU 1 E = E. therefore, 0 U Ell -+ f:
EA

i s an h-eq uivalence. Now, by Theorem 4. 1 (e}, 0 V E" -+ E is a lso

a co fib rat io n. Theref ore , by Theorem 4. 5, i t foll ows t hat

o U EA -+ E is a SDR.

LeImla 4. 2: Let p:E -+ 8 and q:E' -+ B be maps to a Hxcd space B.

Let 9:E -+ E1 be a map such that q, =p. If q is a fibrat ion,

t hen ~:. 1¥ {or some o/:E -+ E' over B.

(

. Proof : q¢ :. p ::) the re exi s t s a map H:E x t -+ R

and HI- , 1) • p.

Consider the following commuta tive diag ram

:l>_c: <t~
Sinc e q is a fi brat ion, t here exist s a map F: f: x J -+ f: ' such

t hat qr:: Hand F[ = Q.
EXO

Let F(-, I ) = , :E -+ [ ' . The;'! F:¢ : w and

qlf = qF(-, ll '" H(-,I) = P and so 0/ is a mep over B.



~.llJ.: Let p :E -l B be a fibration. Let O: E -l E be a map

over E, and suppose that a : IE' Then t he r e exists a map

a ' :F: -l E ever i3 such that em l =a IE'

Proof: Consider t he following diagram

Since (J is a mapover B, per= p. Now, a =IE ,,> there exists

F: E x I ... E such t hat F(-,O l = Q' and F(-, II = IE'

Now, pF:E x I -l B is a map such that

pf'h OI " plJ" P and

p'I -I, } " pI, " P

0·> pf':p : p and so pFle,t) = p te)

Nowcons ider the foll owi ng commutative diagram

Since p is a fibra tion there exis ts a map K:EX I -l E such

t hat t he resu lting t ri angle s commute .

tc t Q = K (~, l). Then, ¢ : B lE, We now consider the following

diagram

160



pF(-,O) "pO' '" p e p~ (as ~ is a map over Bl. Hence, diagram

commutes .

Since p:E -I B is a fibration , there exists G:E x I -l E such

that pG" pF and GI ;; <1> .
''0

Let cr ' ;; G(- , l) :E -I E.

We cla i m aa ' =8 IE'

Define H:E X I -l E by

{
OGle, 1-2S), e E E and 0 s s s II/.

Hfe, sl "
F(e,2s-1), e E E and 1/ 2 s s s 1

Then , Hf-, Ol '" OG(-, l ) '" ocr ' and

H(-,11 '" FI-, lj "IE

Hence, H:oa ' =IE' We sti ll need t o show O"O' : B 1,,:.
Observe that

__ lpG le ,2s.1l , 1/2 '$ s s 1
pH{e,l-s)

pFle , i-z» , 0- 5" s s 1/2

But fr om above, pG" pF.

Hence,

1(,\



os s s 1/2

{
PFfe,2S- 1I, 1/2 s s S 1

pHle,l-s ) "
pFle, l - 2s). 0 ofs S 1/2

On t he ot her hand,

(
raGle/ I- 2SI, 0 S s S 1/ 2

pll( e,s ) =
pF(e,2s-1I, 1/2 S s S 1

~ jpF le, I-2s ), 0 ~ s ~ 1/2

lpE"le ,2S-1) , 1/2 S 5 S 1

Therefo re , pJlle,sl "pH (e , }-s) .

We now defi ne ¢l:E x I x I oJ B by

{
PFle, I-2s U- t ll ,

¢l(e, s, l l "
pF'(e,l -2 (1-s) u-u) , 1/2 S s S 1

tbcn,

(
PFle, I-2SI, 0 s s s 1/2

4>lc,s,O I"
pFle,2s· 1), 1/2 s s S 1

" pH{e, sJ

and $ (c, O,t l " ¢lle , s, l) '"' eIlle,l , tl • pi e) . So , t he following

diagramconnotes.

i e



Since p:E oj B is a fibration, there exists a map ~E x t x 1 oj E

such t hat pi) '"4l and ¢lte, s,BI = IIle, s) .

Ik! neil define $ (S, tl :E.. E by

$ (S,t ) (el = ¢>(e,s,t l

Then, 00' • R(-, Ol • ~I O ,O ) :B $10,11 ;, ~I1,1 1 :B ~I1, OJ 0 III-,ll . I,.
=) uat =a IE'

Theorem 4.8: Iet p: E .. Band q:E' -l B be fibrations. le t $:.: oj 1-: '

be a map over B. Suppose that 9, as an ordinary map, is an

h-equivalence. Then, ~ is an h-equivalencc over II.

Proof : let V:E' -I E be a homotopy inverse of t , as an ordinary lap.

Tten, p'f = eN,: q. lienee, by Lema 4.2, ,: V' for SOllC "

over B. Since Q¥': 1[, and 9" is over B, uere exists by

Lerrma 4.3 a map V' :E' -I [ ' over B such thal . , 'Y' : I\I.:,.

1hus, ' adnit s a hOllOtopy right inverse 0' = ,'r over B.

NOlll, ~ ' i s an h-equlvalence, si nce 9 is an h-cqelvet cccc, and

so t he same argument applied to q' inst ead of 0, shows lhill 0'
admits a tomotopy rig ht i nverse ~. over 8. Thus, Q' adnits

both a hOllotopy le ft inverse Q over B and a homcl opy righl

inverse ¢tt over B. lienee, 9' is an h-eqlvelcocc over Bawl

so Q itse lf is an h-equivalence over B,

Theorem 4.9: If In diag rall I t) of Theorem 4. 1, i and j arc cl oscd

cofibrat icns, p and q are flbret icns and j : iD -I .: is als'J ar,



h-equi valence, then EllU0 is a SDR of E.

!'.fQ.Q1.: By Remark 4.1, j is a closed cofibration over B and by

Theorem 4.8, j is an h-equivalence over B. Therefore, by

Theorem 4.1, it follows that EllV D is a SDR of E.

Finally, by way of applic at ion of the above theore m, we have t he

foll owing result of Strom on SDR (see LHl j'J1lCorcm 6 ]

~Q!"~: Let lX/A) and (Y,B) be clo sed cefibred pairs. If

in add i lion, A (or B) is a SDR of X(Y), then X XB U 11 X'{

is a SDR of X x Y.

I'roQI: We consider t :;[ diagram used in Theorem 4.3

and assumewithout los s of generality that 11 is a SDR of X.

Then Z .oj X is an h-e qulvalence and so 11 X Y -l X X Y is an

h-cquiva Ierce . there fore, by Theorem 4.9, X x BU 11 x Y i s a

SDR of X x Y.
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