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Introduction

Many problems in topology can be characterized by using the ideas
of "eztending" and "lifting" a map. An important special case of the
cztension problem is the notion of a homotopy. Homotopy defines an
cquivalence relation on the set of maps between two spaces X and Y.
The classification of topological spaces, up to homotopy equivalence,
is a central problem of Homotopy Theory. The homotopy classification
problem can easily be facilitated if one has the "Homotopy Extension
Property" (IEP), or its dual, the "Homotopy Lifting Property" (HLP).
Cofibratlions satisfy the HEP whereas fibrations satisfy the HLP.
Morcover, il is important to observe that every map factors as a
composition of a cofibration followed by a homotopy equivalence
(Theorem 2.2.10(c)). Thus, as far as homotopy theory is concerned,
cvery map is a cofibration upto a homotopy equivalence, suggesting the
imporLance of cofibrations in homotopy theory.

The material of this thesis is organized in four chapters. The
firsl chapter contains background material for the thesis. Following
Lhe definition of a category, the notions of a pushout and pullback are
introduced along with their properties. We then characterize pushouts
and pullbacks in Top (the category of topological spaces and maps) as
concrete examples. The latter part of this chapter is concerned with
some Lopological and homotopical notions relevant to the thesis.

The second chapter, which is the core of this thesis, is primarily
devoted to the theory of cofibrations with a discussion of the dual

theory, fibrations, in context. We begin with the definition of a




cofibration as a "weak pushout" and proceed to the categorical
properties of cofibrations. In the second section, an attempt is made
to unify the various characterizations of cofibrations scattered in Lhe
literature. Following the characterization theorem for cofibrations, wo
prove a number of results as immediate consequences. It should be noled
that most theorems in the literature append a closedness condilion on
the subspace A of X and thus require the inclusion A 4 X Lo bea
closed cofibration. This requirement is not a real restriction if X
is a Hausdorff Space or if a suitable class of spaces such as
"Compactly Generated Spaces" is assumed. However, since we are

working on the category Top, we have attempted the difficult Lask of
circumventing the closedness condition whenever possible. Finally, we
conclude this chapter by providing some geometric examples of closed
cofibrations and non-examples of cofibrations with the former
contrasted with an example of a non-closed cofibration.

An examination of the paper, "A Union Theorem for Cofibrations" by
Lillig [11] constitutes the third chapter. The theme of the chapler
is to tackle the following problem: Given subspaces A and B of %
such that the inclusion maps A4 X and B+ X are cofibrations,
under what assumptions on the subspaces A and B, is AUK 4 x is
a cofibration?

The final chapter is devoted to a recent theorem of Kichoom [10]
and related results. After having proved Kieboom's Theorem, we
proceed to develop some sophisticated machinery such as the "Glueing

Theorem for Homotopy Equivalences" (Theorem 4.6) concerning homotopy



cquivalences and pushouts. We then conclude the Chapter by retrieving
some of the well known results of Strom [15] as special cases of

Kicboom's Theorem.
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CHAPTER I

Section 1: Category Theory

This chapter is divided into three sections: Category Tieory,
Topological Spaces and Homotopy Theory. The first section introduces
the "universal constructions” of pushout and pullback, with the
intention of laying the categorical foundations on which many
Lopological constructions will stand. The second section on
topological spaces treats basic properties of topological spaces and
naps and provides topological examples that can be construed as
pushouts and pullbacks. The final section is devoted to an outline of
some of Lhe basic principles of homotopy theory.

‘The material in Lhis chapter is standard. Hence, in many
instances Lhe proofs are sketchy or otherwise the appropriate
references are cited. The following list of references is the main
source for Lhe material in this chapter: (i) [8], (ii) [2], (iii) [4],

(iv) [1].

Section I. Category Theory

Definition 1.1.1: A category C consists of three families of data:

(a) Objects
The objects of C will be denoted by A, B, C, ..., etc. and

we write A€ ICl if A is an object of C.
(b;

Morphisms

To cach ordered pair (A,B) of objects of C there is
associated a set C(A,B), called the set of morphisms from
domain A to the codomain B.

) 4
if feC(AB), we write f:A94B or A4B.



(c) A Law of Composition
To each ordered triple (A, B, C) of objects of C, Lhere is

associated a law of composition C (A,B) X C (B,C) 4 C (A,C).

£ 9
If A9 B3 C, then we write the composite A4 C as q-f
or gf.

In a category C, the following axioms must be satisficd:
CI: c (Al,Bl) ne (AZ,BZ) = @, unless A= by and B, Hz'

C, (Mssociativity): If A, B, C, De ICl and [ €C (AB),
g€C (BC) and heC (CD), then (hg)f = h(gl).

G (Existence of “dentities): For all A€ ICl, 1y €C (M),
called the identity morphism of A, such that il [ € C (AC) and
gecC (BA) then fly=f and 1,g=g.

Remark 1.1.1: 1, is uniquely determined. To sce Lhis, suppose
14 € C (3,A) is also an identity morphism. Then, 1, - Tt
since 11'\ is an identity. On the other hand l,‘\ = 1,\1;\, sinee

1p is an identity. Therefore, 1,

1,'\ and so Lhe idenlily is

unique.

Definition 1.1.2: f € C (A,B) 1is said to be isomorphism if Lhere

exists g € C (B,A) such that gf = 1y and fg - 1.

Note that if f is an isomorphism, then g is uniquely

determined and is itself an isomorphism. We write g - L,
£y and f, are isomorphisms, then f;f, is an isomorphism ari
e = g




ition 1.1.3: Suppose A,B € ICI. Then A and B are said to

be equivalent if there ezists A 4 B, where f 1is an isomorphism.

befinition 1.1.4: Let f e C (A,B). Then f is called a monomorphism
if for each pair of morphisms 91497 €C (A',A), fegy = £2g) => gy = gy;
that is, £ is left cancellable.

T
lloLalion: We will denote a monomorphism by A4 B.

Defini

ion 1.1.5: let f€eC (AB). Then f is called an epimorphism
if for each pair of morphisms hy,h, € C (B,B'), hy*f = hyef => hy = hy;
that is, f 1is right cancellable.

f
NoLation: We shall denote an epimorphism by A +> B.

Definilion 1.1.6: A patural equivalence relation "~" on a category
C is an equivalence relation "~" on the class of morphisms of
C such thal

(i) If X,¥,2€elICl and f,geC (XY), then f~g=>
Domain [ = Domain g and Codomain f = Codomain g.

(ii) 1f X,Y,z€lICl and f,9 € C(X,y), £',9' € C(Y,2), then
(f~g and f'~g') => (f'f ~g'g).

Il "~" is a natural equivalence relation, then we can form the
QuoLient Category C/_ under the equivalence relation "~". ¢/_
has the same objects as C, that is, IC/_I = ICl, and the morphism

are the equivalence classes of morphisms in C; that is,
C/_ (AB) = C(AB)/_ .

The composition of morphisms ([f]:A 4B and [g]:B4C in [

is defined by [g] - [f] = [g*f]:A 4 C. The identity morphisms



are [IAJ :A 9 A

Definition 1.1.7: Given an object A of a category C, the category
QA =C (A,-) of objects under A is defined as follows:

An object of QA, called an object under A, is a pair
consisting of an object X € IC| and a morphism u € C (A,X),
called the insertion.

If XYe QA with insertions u, v then a morphism of QA,
called a morphism under A, is a morphism f € C (X,Y) such Lhal
fu=v.

Note that equivalences in the category (_:’\ are called

equivalences under A, denote by ":A".

Dualizing the above definition we have

Definition 1.1.8: Given an object B € ICI, the category Cp=C (,B)
of objects over B is defined as follows:

An object of Cp, called an object over B, is a pair
consisting of an object X € IC! and a morphism p € C (X,B),
called the projection.

If X, Y are objects over B with projections p, g, Lhen &
morphism of Cp, called a morphism over B, is a morphism
f:X4Y of C such that gf =p.

Note that the equivalences of the category Cp are called

equivalences over B, denoted by =p -

Definition 1.1.9: Let {A;}; € T bea family of objects of a caleyury
C indezed by the set I. Then a product (A;m;) (if it ezists)



of the objects A

is an object A of C, together with
norphisns 7y € C (A,A;), called projections with the following
universal property:

diagram commutes.

Given any object Y € ICI and morphisns f£; € C (Y,3;), 31
worphisn £ € C (¥,A) with ®f = f;; that is, the following

w .
/}h___l_>A‘
1
4
| &
{

Dualizing the above definition we have

befinition 1.1.10: let {A;}; € T be a family of objects of a
category C indexed by the set I. Then a coproduct (A,li;)
(if it exists) is an object A of C together with morphisms
I € C (AA) called injections with the following universal
property:

Given any object Y e ICl and morphisms £; € (A;,¥), 3!
norphism [ € C (A, Y) with fj;
diagram commutes.

4 that is, the following



Although the existence of products and coproducts cannot always bo
quaranteed in C, we can however guarantee their uniqueness, whon-

ever they do exist.

Theorem 1.1.1: Products and coproducts, wherever they exist, arc

unique up to isomorphism.

Proof: Suppose both (A;ni) and (A‘;Il:i) are products in a category
c
Now, since (A;n;) is ‘a product, 3! morphism u € C (A',A)

such that miu = And since (A',ni) is a product there

exists a unique morphism v € C (A,A') such that ®iv = m;.
Thus, Tuv = ni’v = "ilh and so by the universal property of

products, we conclude that wv =1,.

A similar argurent shows that wvu =1j and hence wu:A' 4 A is on
isomorphism.
Similarly, one can show that coproducts, whenever they cxzisl, arc

unique up to isomorphism.

We now show the existence of products and coproducts in the category

Set.

Example 1.1.1:
(a) Let {Ai}iel be a family of sets indexed by 1 and lelL

A= 1 A; be the cartesian product of the family of scls (i.c.

ie1
the set of all families (a;)cy, or mappings f:14 U A;
i€l

such that a; = £(i) € A;, for all i€ I). Mssociated with

n A; we have a family (R;);.; of projections (surjective

iel



functions), where 7li:ll'[I Ai L) Ai is defined by "i((ai)iel) =a;.
ie

We claim that (mA;,m;) is a product in the category set.
Suppose X € Iset| and for each i€, f; € set (X,A;). Define
f:x 4 I Ay by ¢(z) = (ti(X“iGI'

iel

¢ is well defined, since f; are functions, for all i€ I.
Woreover, (M) (x) =y ((x)) = @; ((£;(x)) ey = £5(x), i€,
and so the following diagram is commutative

A
TA—— A

[
|
¢l i
1
I
X

Suppose also I ¢':X 4 Tl A; such that w9
eI

Given x€X, let ¢'(x) = (a

ilier
Then,

[0 = (K0 (1) = 1010 = Ky ((ag)yep) = 8y

= M%) = fag)jer = ((E5(X))gep) = 0(x) and

therefore, ¢ is unique. Furthermore, [I A is uniquely
P i i iel
determined up to a bijection. &



(o) tet {¥;};.; be a fanily of pairwise disjoint sets and lot

X = U X; (disjoint union). Associated with U X; we have a
iel i€l
family (l;)3; of inclusion functions, where |i:X; 4X (i € 1).

We claim that (U X;, 1) is a coproduct in the category scl.
iel

Suppose Y € Iset| and foreach i€ I, f; € sel (X;,¥).

Define f: U X; 4Y by
iel

£= U f;;that is, f
iel

Clearly, £ is well defined, since N X; =f§ and [ is thc unique
iel

function such that f}li(xi) = i(xi) = fi(xi), i.e. fui = (j 50 Lhal

the following diagram commutes.

X

T

Note that if the sets X; fail to be pairwise disjoint, we can
"separate" them. This is done by writing their elements as pairs
(X,1) where z; € X; and i states ezplicitly which sel is being
considered. Thus, instead of X;, we work with the sel

X X {i} = {(xi,i)lxi € Xi}A The sets X; X {i}, ie1 arcpairuise

disjoint and so the set X = U X; X {i}, together with the
iel



inclusions Jy:¥; X {i} 4 % is a coproduct in set.
Remark 1.1.2 : 1In the category set, we usually refer to the coproduct
as the sum of sets and denote it by U X If I= (il 2y sy n},
iel

n
then we write X = LJ K= X UX) UL ux

i=1 '

We now discuss the universal constructions "pushouts" and "pullbacks"
which are essential to our work in later chapters.
Definition 1.1.11: A pushout of a diagram

8

—_—
A 9 c

ina category C is a commutative square

g

[Z

A 9 c
wilh the property that for each commuting square

_ P X




3 a unique norphism h:P 4K with hE =p; and hf = Py That is,

in the diagram

the resulting triangles commite. By an abuse of language, we

refer to P as the pushout of f and gq.
The dual notion to that of a pushout is thal of a pullback.

Definition 1.1.12: A pullback of a disgram

p—F s

[+

in a category C isa commutative square
B _—) A
l———5
Q

o



with the property that for each commuting square

8 £ SA

Ja unique morhpism h:X 4 Q with gh = p; and th= py. That

is, in Lhe diagram

e

Bt A
3/[
7

Q—-)

-

Lhe resulting triangles commute. Again, by an abuse of language,

we refer Lo Q as the pullback of f and g.

Theorem 1.1.2: Pushouts and pullbacks, whenever they exist, are

unique up Lo isomorphism.
Proof:
(@) let P and P' be pushouts of f and g. Then we have the

following commutative diagrams (pushout diagrams in C).



-
-

. 8 ?:
—_—
A [] C
Now from the following commutative duqrans

'

7
/
B 3 P
];
3 c

Since P and P' are pushouts of f and g, there cxisL unique

morphisms ¢:P 4P' and ¢':P'+4 P such thal

b
mmlal

=g g
f T

A

and ¥
9

o

Putting the above two diagrams together we obtain Lhe following

diagram




Since P is a pushout of f and g, ¢' ‘¢ isa unique morphism
in C such that ¢' -0 +g=0'g'=g and 4Mf=0'T =T (ie.
0'0 makes the triangles commute). But 1p:P -4 P also satifies
the comutativity of the above diagram. Hence, by uniqueness of
0'0, it follows that ¢'¢ = lp. Similarly, it can be shown that
8 = lp' and so ¢:P4P' is an isomorphism in C.

(b) The case of pullbacks, which is dual, is proved similarly.

mple 1.1.2: Pusliouts and pullbacks exist in the category set.

(a) In set the pushout of £:X4Y; and g:iX4Y, is obtained as
fol Lows:
let Y=Y UY, (coproduct of ¥, and Yy) and let - be the
coarsest equivalence relation on ¥; WY, with f(x) ~g(x), for
cach x€ X. To explain the term coarsest, let R be an equiva-
lence relation on a set A. fe define a new relation R on A
by aRb ¢=> there is a sequence ay, ..., a, of elements of &
such that
@ aj=a, a=b
by wi=1,2 ...,0n-1, ay R agy Or a4 Ra; or
8 =By _
IL is not hard to see that R is an equivalence relation on the
set A, Suppose also R' isan equivalence relation on A
containing R. Let aR'b, and let a3, weeep 3y bea
sequence satisfying (a) and (b) above. Now R'2R => _'ai“
foreach i =1, 2, .., n -1 (by (b) above). Hence, ay R' a

and so a R'b. Therefore, RCR' and we call R the equivalence

relation generated by R (or the coarsest equivalence relation on



Now let §:¥; UYy 9 (Y) UYy)/~ denote the quotient function
and let |1;:Y; 4Y) UY, be the inclusion functions i =1, 2.

It is now a routine matter to check that the square

v &M NICATERYAS

$ dpa

X
w
&

is a pushout.
b

To obtain the pullback of two functions f£:X, 4 Y and g:X, 4 Y
inset, set Q= {(xg,%) € X; X X,IE(x;) =glxy)} and let
Tyiky X Xy 4 X and MyiXp X X 4 Xy be the projections. IL is

now a routine matter to check that the square

QT X

is a pullback.
We now discuss some properties of pushouts and pullbacks.

Theorem 1.1.3: In any category C, the composite of Lwo pushouts

(respectively pullbacks) is a pushout (respectively pullback).



Proof:

(3) Consider the following commutative diagram

T—}c[‘ _—_T
P

where square T and square IT are pushouts. We claim the diagram

is a pushout.

To see this, let 2 € ICI

and let t €

C (87)
be isomorphisms such that t;i = tygf

and ty e C (F,2)
Thus, we oblain the following commutative diagram

t

@
-1

»
-+



Since square I isa pushout, 3 a unique morphism § € C (C,4)
such that ¢Ff = t; and 0t = t)g. Again, since square 11 is a
pushout, 3!w € C (E,2) such that yg=0¢ and \|ﬁ = L2» Now,
‘VEE = q:f =t; and i = ty. To complete the proof, we musL
show that Y 1is the only morphism satisfying the lasL scl of
equations. So, suppose also 3 y' € C (E,%) such that y'g [ - L
and y'I=t,. Now yg1=ylg (by commutativity of square 11)
=t,g and

YaE=t,.
But ¢ is the unique morphism such that 01 = Lg and Of - L.
S0, y'g = 9.
Again, Y is the unique map such that \15 =0 and ¥ =

Hence V' =Y.

(b) The proof for the case of pullbacks is analogous.

Remark 1.1.3: Composition of squares can be done verLically as well
as horizontally. The above proof remains truc in Lhe case of
vertical composition. When quoting Theorem 1.1.3, we shall he
referring to either horizontal or vertical composilion, depending

on the context of the discussion.

Theorem 1.1.4: Consider the following commutative diagram in a

category C




If the left square is a pushout and the composite square is a

pushout, then the right square is a pushout.

Proof: let t; €C (D,2) and ty €C (F,2) be given morphisms in
such that &)1 = tyg.

We thus have the following commutative diagram:

tf
—
B ¥ 3
J S| A (I
i 1
OSSR (S 7
A + C 3

Since Lhe composite square is a pushout,
9 (g -E)=t; - and 67 =
diagram to the following

!¢ €C (E,2) such that
ty. We now reduce the abcve

(S
A

Observe that ¢ - § and t; both make the above diagram
comnulative. Since the square is a pushout, we have by uniqueness

that ¢ - g = t;. But fromabove, we also have ¢ » 1= ty.



Hence, the morphism ¢ € C (E,2) is the required unique morphism
rendering the triangles commutative in (*). Thue, the right

Square is a pushout, as required.

Remark 1.1.4:

(a) Dualizing the above theorem we have the following result for
pullbacks:
If the right square is a pullback and the composite square is a
pullback, then the left square is a pullback.
(b) In the case of vertical composition, the results above Lake the
following form:
(i)  If the composite square is a pushout and the bottom squarc
is a pushout, then the upper square is a pushout.
(1i) If the composite square is a pullback and the upper squarc
is a pullback, then the bottom square is a pullback.

Section 2: The Category of Topological Spaces

We now briefly discuss some properties and results in point scl
topology which are relevant to our work. Many of the resulls wili he
assumed or otherwise stated with the necessary references.

Throughout our discussions, we shall denote the category of

topological spaces and continuous functions by Top.

Definition1.2.1: Let X and Y be topological spaces and let
£:X 4 Y be a function. Then f is continous at z; € X Iff for
each neighborhood V of flx)) in Y, there is a neighborhood U

of x)€X suwh that £(U) CV. Wesay f is continuous on 7



if f is continuous at each zj € X.
lote that continuous functions are also called maps.

Let. A and B be subspaces of a topological space. If f:A -4 2 and
g:B 4 % are functions which agree on the intersection of A and B,

then we can define f UQ:AUB 472 by
(fug)(a) = f(a), for a€A and
(FUg)(b) =q(b), for beB .

We say that fuUg is formed by “"glueing together" the functions £

and q. The following result allows us, under certain conditions, to §

deduce the continuity of f Ug from the continuity of f and g.

Map Glueing Theorem 1.2.1: let X =A UB, where A and B are
closed in X. Jet f:A4Y and g:B+4 Y be continuous. If

f(x) = g(x), for every x € ANB, then fUQg:X4 Y is continuous.

Proof: See [12; pg. 108, Theorem 7.3]
Note that the Map Glueing Theorem remains true when A and B

arc both open in A U B.

Definition 1.2 A continuous bijection f:X 4 Y such that

:Y 9 X is also continuous is called a homeomorphism and is i

denoted by f£:X =Y. Two spaces X and Y are said to be
homeomorphic, written X =Y, if there is a homeomorphism

Xy,

An equivalent definition would be to require the existence of

continuous functions f£:X 4 Y, g:¥ 49 X such that fg = IY and



Remark 1.2.1:
(a) If £:X=Y and ACX, then f| :Az £(A) and £ X -AZY -0,
A X-A

(b) By an embedding of a space X into a space Y, we mean a map
f:X 4 Y such that X = f(X).

Definition 1.2.3: Suppose we are given a set X and a family
(Xa)aeA of topological spaces, together with functions (a:X 4 Ky

one for each @ € A. A topology on X is called initial with

respect to (£4)gep if it has the following property: For any
topological space Y, a function k:Y 4 X is continuous iff Lhe

composite fak:¥ 4 X, is continuous, for all @ € A.

Remark 1.2.2:
(a) If X has the initial topcilogy with respect to (E(l)mel\’ then

each f,:X 4 X, is continuous.

(b) The initial topology on X with respect to (fa)aE,\ is Lhe
smallest topology such that each o is continuous.
(c) The initial topology on X with respect to (fa)u&,\ ezisls and

has subbasis the sets fr[l(U), for U open in X(Z'

Example 1.2.1:

(a) Let A be a subspace of X and let i:A 4 X be the inclusion
map. The initial topology on X with respect to i has as sub-
base the sets i_l(U), for U open in X. Since 1 is continunus,
i'l(U) =UNA isopenin A. Hence, the initial topology on 7

with respect to i is simply the relative topoiogy on A.



(b) let {Xg}oep e a family of topological spaces, and let X bhe
the product of the underlying sets; that is X = aEA Xy The
product topology on X = IJEA Xo is the initial topology with
respect to the family of projections nB:l'b(‘1 £l Xﬂ' This follows
from the universal property of the product topology.

befinition 1.2.4: Given a set X, let {XCL}(IEA be a family of
topological spaces and let fy:X, 4 X be a family of functions
one for each 0 € A. A topology on X is said to be final with

respect to the functions £y if for any topological space 2 and
any function g:X 4 %, we have that g is continuous if and only

if gfy:Xy 4 % is continuous, for each @ € A.

Remark 1.

(a) If X has the final topology with respect to (fy) gear then each
[g:%q 4 X is continuous.

(b) The final topology on X with respect to (fo) gen is finer than
any other topology on X such that each fy:Xy 2 X is continuous.

(c) The final topology on X with respect to (fg) gep  exists and is
characterized by the following statement: U C X is open in the

final topology <=> f;l (U) is open in X, for each o €A.

Lxample 1.2.2:

(a) Tet X = LIX‘.1 be the sum of the underlying sets of the family
{X(x}(xel\ of topological spaces, and let ia:Xu - X be the
inclusions. The final topology on X with respect to i':l is the
sum topology.

(b) Let X =UX(x (a sum of spaces Xg) - Given a set Y and functions
fqiXg 4 Yy @ €A, let £:X Y be the function determined by the




fy's. Then the final topologies on Y with respect to f and

(fa,) o€ coincide.

To see this, let iu”‘u + Xy be the inclusions and lot g:Y 37
be any function, where 2 is a topological space.

Consider the following diagram:

Now, from the final topologies on Y with respect to [ and
(fu)wal\ it follows that
(1) g is continuous <=> gf(l is continuous for each @ € A.
(i1) g is continuous <=> gf is continuous.
We show that condition (i) and (ii) are equivalent.
g 1is continuous <=> gf is continuous (condition ii)

<=> gfia is continuous, for each @ e A ( xu
has the final topology with respect to i)

<> ofy is continuous, for each @ € A

(9fqiq = 9fg)-

Therefore, the final topologies on Y with respect to f and

with respect to (fg) gep Coincide.

"
B



Hence, by means of the topological sum we have reduced final
topologies with respect to a family (fy)q., to final topologies
with respect to a single function f£.

Definition 1.2.5: Assume X is a topological space, ¥ a set and
p:X 4> Y a surjective function. The final topology on Y with
respect to p is called the identification topology. The
function p:X 4 Y is called an identification map.

The following is an important characterization of identification maps.

Theorem 1.2.2: Let X and B be topological spaces and p:X 4> B a
continuous surjection. Then p is an identification map if and
only if, for each space 2 and each function g:B 4 2, g-p:X 3 2
is continuous <=> g:B A4 % 1is continuous. (i.e. p has the usual

universal property for final topologies.)
Proof: Follows from Definition 1.2.4.

xample 1.2.3:

(a) Let X be a topological space and let ~ denote an equivalence
relation on X. Then X/~ denotes the quotient set and %:X 4 X/~
denotes the canonical projection. We equip X/~ with the final
topology with respect to m. So, & is an identification map and
X/~ is called the guotient space.

(b) et A be a subspace of the topological space X. Then X with
A__shrunk to a point is a topological space, written X/A, which
is obtained from X by identifying all of A to a single point.

The elements of X/A are the equivalence classes in X under the
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equivalence relation generated by x ~'y <=>x€ A and y € A.
The equivalence classes are therefore the sets {x} for xe X -a

and also, when A # §, the set A.
let m:X 4 X/A be the projection;

. X, x€X-RA
ie. m(x) =
A, XEA
We give X/A the final topology with respect to = aad so & is
an identification map. Note that if A = f, or consists of a

single point, then X/A can be identified with X.

Let X and Y be topological spaces and denote by ¥ or Map(X,Y)
the set of all continuous functions X 4 Y. Define
WK, U) = {f € Hap (X,Y)If(K) cu.

Definition 1.2.6: The compact open topology in Map(X,Y) is thal
topology having as subbasis all sets W(K,U), where K CX is
compact and U CY is open. Note that a function f£:X 9 Map(Y,%)
induces a funstion g:X X Y 4 % which is defined by the rule
g(x,y) = £(x)(y). The most important feature of the compacL open

topology is the following result.

Theorem 1.2.3:

(a) If g:X X Y2 is continuous, then f£:X 9 Map(Y,4) Iis
continuous. (This is known as the proper condition).

(b) If £:X - Map (Y,2) is continuous and if Y is locally compact.
Hausdorff, then g:X X Y 4 2 is also continuous. (This is knoun

as the admissible condition.)



Proof: See [4;page 261, Theorem 3.1].

Theorem 1.2.4:

(a) If X is locally compact and Hausdorff, the evaluation function
e:Map(X,Y) X X 9 Y, defined by e(f,x) = £(x), f € Map(X,¥), is
continuous.

(b) et Y be locally compact, Hausdorff. Then Map(X, Map (Y,2))
is homeomorphic to Map(X X Y,2) the association f <->g in

Theorem 1.2.2 being the desired homeomorphism.
Proof: See [4; page 265, Theorem 5.3]

We now discuss the fundamental theorem for identification topologies

in Cartesian products. Note that if f:X 4 Y, £':X' 4 Y' are
identification maps, it is not true in general that f£x £':X X X' 4Y X Y'
is an identification map. An example is given in [ 4 ; page 102].
However, under additional assumptions on X and Y' oron Y and

X', the above statement holds true. We need the following preli.inary

result.

lemma 1.2.1: If p:X 4B is an identification map and A is locally
compact Hausdorff, then p X 1:X XA <4 BXA is also an

identification map.

Proof: See [4; page 262, Theorem 4.1].

Theorem 1.2.5: Let p:X 4B and q:Y - C be identification maps.
Then, p X q:X X Y 4 BX C 1is an identification map if either
(a) X and C are locally compact Hausdorff

or



(b) Y and B are locally compact Hausdorff.

Proof:
{a) pX g is the composite
1 xg pX1
XXY—>XXC—>BXC
By Lemma 1.2.1, both 1y X q and pX 1, are identificalion maps

and the composite of two identification maps is an idenLification

map.
(b) Similar to (a) above.

We now discuss some categorical properties in Top and their

consequences. We are mainly interested in pullbacks and pushouls in

Top.

Theorem 1.2.6: Pullbacks and pushouts exist in Top and arc unique

up to homeomorphism.

Proof:
(a) We show how to form a pullback in the category Top.

Consider the following diagram in Top.
X

Y 9 z
As discussed in Example 1.1.2(b), we can form the selL
%A = () e Xx¥|em = gtp).
Let K]:Xfrlg Y4X and nZ:ang Y 4 Y be the projection



functions. Then the following diagram is commutative.

Y with the initial topoloay with respect to

Y4 X and "Z:ang Y4y,

We nov. equip Xfl'lg

the projections f;:X¢ ng
We claim that diagram (*) is a pullback in Top.
Let 2 be a topological space and let f;:Z4X and f5:24Y

be maps such that ff; = gf,.

We require a unique map ¢:2 4 Xfl“\g Y such that m = f; and
M0 = £y,

27



Define @:2 4 X;M Y by

9
¥(2) = (£;(2), £5(2))

Clearly, ¢ is unique by construction. We need to show that ¢
is a map.
Since X¢ M g
Ty ¢ is continuous <=> M9 and %,¢ are continuous. But,
Tqd(2) = =y (£ (2), f(2)) = £y(z) and

T0(2) = ®y(fy(2), £5(2) = fy(z).

Since f; and f, are continuous functions, ¢ is continuous and

Y has the initial topology with respect to &, and

diagram (*) is a pullback. The uniqueness of pullbacks in Top
follows by Theorem 1.1.2.

(b) We now show how to form the pushout of the following diagram in
Top.

Let XU Y be the sum (coproduct) of X and Y as objects

in Set.

Define "~" as the coarsest equivalence relation on XUY such thal
f(a) ~ g(a), for all a € A. We then form the quotient set

XUY/- = XU g
XUY under the coarsest equivalence relation generated by ~ (see

Y, whose elements are the equivalence classes of

Ay



kzample 1.1.2(a), page 13). Hence, the equivalence classes include:
(i) pairs of points {(fa), gla)}, aen
(ii) individual points of X - g(A).
(iii) individual points of Y - £(A).
e now have the following sequence of function:
X =t xuy Lo ¥

iY n
yf——=> X4y —=>> xfuq Y

where ix, i‘! are inclusion functions and ® is the canonical
projection.

hel [ = Biy:X 9 XpU q Y and g =My 4 Xed q Y. Then the
following diagram is commutative.

x ¥ X,U, Y

3 3 (% %)

—
A 3 N

We now equip the set XeU q Y with the final topology with respect
w [ and g.

We claim that diagram (**) is a pushout in Top. Let Z be any
Lopological space and let flzx 42 and Y92 be given maps such
that g = fyf.



i

X
3] 3
—_—
A T N

We require a map h:)(fug Y 42 such that
and
Define h:Xleg Y2 by

_ {tl(x) if E(x) =
n(t) = -
fly) if gly) =

el

We claim that h is well defined. To see this, suppose T = qly.
Now, E(x) = g(y) <=> Tiy(x) = Riyly)

<=> a €A such that gfa) =z and [(a) =y.
But, fig(a) = £1(x) and fyf(a) = f5(y) as fyg = LHf. Therefore, N
is well defined. Clearly, h is unique. It remains Lo show that h

is a map. Since X L4 Y is equipped with the final topology with

9



respect to T and E, and hf = 1 and h§= fz where f;, f, are
continuous, it follows that h is continuous. Hence, diagram (**) is
a pushout. Again, the uniqueness of pushouts in Top follows from

Theorem 1.1.2.

Remark 1.2.4:
(a) By Example 1.2.2(b), the final topology on Xfl.lg Y with respect
to £:X 9 Xfl_lg Y and g:Y + :\[ng Y coincides with the
identification topology with respect to the projection
X Y4 xfuq Y. A dual statement holds for the pullback
space X[I'lq Y; i.e. the initial topology on X r‘\g Y with
respect to "1=Xf"‘g Y4X and ﬂzzxfﬁg Y4Y coincides with
Lhe initial topology with respect to the inclusion i:)(fl"\g Y4XXxY
(by Example 1.2.1(a)) which is just the relative topoloogy on
anq ¥

(b) In case A is a subspace of X and i:A 4 X is the inclusion, we

can visualize X;U4 ¥ as

T

and denote it simply by X U Y. We call the pushout XY s
the adjunction space of X to Y through f.

i
1
i
4

P——
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{
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Example 1.2.4:

(a)
(b)
(c)

If A=, then XLJW Y=XUY (disjoint union).

If A=X, then XUfY=Y.

Suppose X =BUC and A =BNC, where B and C arc closed
subspaces of X. Let J:A 9B be the inclusion.

We claim: X=BUC = Bl.lj C.

We readily observe that at the set-theoretic level, the two scls
are identical. The only problem here is one of topology. So il
suffices to show that X = B UC has the final topology with
respect to the inclusions B4BUC and C+4BUC. So, let

2 be any topological space and let h:B UC 4 Z be any function.
Let i3:B4BUC and {;:C4BUC be the inclusion functions.
Now, if h:BUC 4 & is continuous, then h restricted to ils
subspaces B and C is continuous. That is, h| = hiB and

h| = hic are continuous. On the other hand, suppose hiB:B ER/
and hiC:C < % are continuous; that is, hlﬂ and h are
continuous. By the Map Glueing Theorem 1.2.1; h:B UC 4 4 is
continuous. Therefore, by Definition 1.2.4, X = B UC has the
final topology with respect to the inclusions ip:B 4 C and
ig:C4BUC andso BUC =Buj 618

If f:A-Y isan identification map, then so also is

FX4x U Y. Tosee this, consider the diagram

X £ SX LY

1 T



Clearly, :X 4 XU ¥ is surjective. We have to prove ¥ Li; Y
has the final topology with respect to F. Let 2 be any space
and let g:XUg ¥4 2 be such that gf:X 4 % is continuous.

How, qf:X 4 % 1is continuous => gfi is continuous

=y g{f is continuous,

(s fL=1).

Bul f is an identification and gff is continuous, so gT is
conLinuous. Since the topology on X ¢ Y is final with respect
Lo i and f, the continuity of gf and gi now implies that g
is continuous. Therefore, f is an identification map. By way
of an application, let Y be the space consisting of a single
point *, and let A # §. Then clearly C:A 4 * i= an identifica-
Lion map and so C:X 4 X U Y is also an identification map.
But € simply shrinks A to a point, and so by Example 1.2.3(b)
we have Lhat X Uq {*} = x/a.

We now briefly discuss Theorem 1.1.3 in the context of the category

Top.

Remark 1,2.5:

(1) Given the following commutative diagram in Top.

% 3 MUYk UN) LL 2




where square I and square TI are pushouts in Top, it follows by
Theorem 1.1.3 that the composite square

X i3 XU, 2

A hy z

is a pushout. Moreover, by Theorem 1.2.6 pushouts are unique upto
a homeomorphism. Hence we can express this fact by Lhe statement
(Xfl_l g Y)fuh 2z xfuhg Z. We will refer to this fact as the
Law of Horizontal Composition.

(b) Ina similar manner we have the following Law of Vertical

Composition in Top. Zh\_l 3 (XfLIg Y) = thug Y based on the

diagram 3 1"“3()(F us‘{)gzh{_ USY

>
=1

ol

X XY

34



Theorem 1.2.7: let Z be a locally compact space. In the following
diagrams, assume that the left square is a pushout. Then the

right square is a pushout.

3

35

X__________5XFLI5\( xxi_____) (X;U,Y)xz

5 t Fad Exl

R —_—
A ) N ArE 94 Y2
Proof: let W be any space and let k:X X Z-4W and 2:¥XZ 4 W

be given maps such that k(f X 1) = £(g X 1). Now consider the
following diagram R

AMETTTR T
We have to show that 3 ! map ¢:(XpU g) X % 4 W such that
O - (@x1) =k and ¢ + (Ex 1) =L. Now, by Theorem 1.2.3(a)
thomaps k and £ determine maps J’;:X ! WZ and ﬁ:‘uwz
the rules ﬁ(x) (z) =k(x,2) and @(y) (z) = £(y,z). Hence, we

have the following diagram.



Now, k(f x1) = l(g X 1) <> k(f X 1) (a,2) = Lg X 1)(a,z), Ffor
all (a,z) €A X2

> k(f(a),z) = L(gla),z), forall
(a,2) € AX L

&> ﬁ({(a)) (z) = i(q(a))(z), for all
z€l andall a€aA

& k(e@) = bigla)), for all a €
<= ﬁf = ig.

Therefore, the diagram above commutes and since it is a pushout,
! map 3:)(f gt we suchhthat 0g=k ana f-L.
Since Z is locally compact, ¢ induces a map §: (X g Y)XZ4aW
such that ¢ * (G X 1) (x,2) = §((G X 1)(z2))
=00, 2)
= §G) (@
= ﬁ(x)(z), as éf = i{
= k(z2)



That is, ¢ - (@x 1) =k.
= "
Similarly, ¢ - (f x 1) = . Clearly, ¢ isunique, as ¢ is

unique. Therefore, diagram * is a pushout.

PRemark 1.2.6: By uniqueness of the pushout object, we have that

KJY) X B2 X X by

ol Y X 2.



Section 3: Homotopy Theory

Definition 1.3.1: Let f and g be continuous functions from X to
Y. Wesay f is homtopic to g, written f =g, if there is a
continuous function H:X X I4Y with H(x,0) = f(x) and
H(x,1) =g(x), for all x € X. Themp H is called a homotopy

from f to gq.
Notation: We write H:f =g, when H isa homtopy from f lo g.

Letting he(x) = Bz, t), for x €X and t €I, the homotopy Il is
seen to represent a family {htlt € I} of functions from X Lo VY,
varying continuously with t, such that hy = and h = g.

Depending on the situation, we will represent a homotopy either as a

map H orasa fanily of mps [ht}tel' varying continuously with L.

The following results are easy consequences of the definition of

homotopy .

Theorem 1.3.1:

(a) The relation '=" is an equivalence relation.

(b) If £,:Xx= Y, £',9":Y9 % are maps such that f=g and ' ~g¢',
then f'f ~ g'g.

(c) Let X,Y,%2 be spaces. Then there exists a homotopy H:XX I =Y
from f to g<=> there exists a homotopy G:X X 4X I 4V X %
from fX lz to g x 1Z, for all 4.

(d) If H:XXI3Y is ahomotopy from f to g and ¢:Y 44 isa
mp, then A a homotopy G:0f = dg.



(e) 1f H:XXTI 3Y is a homotopy from f to g and ¢:2-4X isa
map, then 3 a homotopy G:f¢ = g¢.

Proof:

(a) We leave Lhe details to the reader.

(b) We sketch the proof.
let H:f=g and G:f'=g'.
Then, £'H:f'f =~ f'g and G(g X 1):f'g= g'qg.
Therefore, by transitivity of the relation "=" (see part (a))
we have that f'f ~ g'g, as required.

(c) Since f and g are continuous, then so are f X1, gX 1:XX2Z24YXZ
(Cartesian product of maps). Also, XX Z2X I = XX IX2Z
(commutativity). Define G:X X2 X I4YX7Z by

G = (Il X IZ) - Q
That is, Glx,z,t) = [(HX 1p) + 0] (x,2,t)
= (HX 1) (xt2)
= (H(x,t),2)

Then G is a homotopy from f£X 1 to g X1, as required.
Conversely, suppose  Gif X 1=g X LIXX ZX I YX 2, for any
spice 7. Taking 7 = {*}, define W:XX I4Y by H=p, G0,
where 8:XX TzXx {#} x I and py:Y X {#} 9 ¢ is projection
on the first factor. Then H is the required homotopy from £

to g.
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(d) Consider Xx I l> YL> Z
¢H is continuous and ¢H:X X I4 2 is the required homotopy from
Of to dq.
ox1

(e) Comsider 2x I—2L>yx 14 v,
Then, H($ X 1,):2X T 4Y is continuous and is the required

homotopy from f§ to gf.

Remark 1.3.1: By Theorem 1.3.1(a) and (b), the relation "=" is a
natural equivalence on the category Top. We can thus form Lhe
quotient category Top/=, (see Definition 1.1.6) denoted by Toph.
Observe that the objects of Toph are objects of Top and for all
X,Y € |Topl = ITophl; Toph(X,¥) is then the set of all homolopy
classes of maps from X into Y, written Toph(X,Y) = [X,Y]. 1f
£:X4 Y is a map, we denote the homotopy class of [ by |[f].
Note that Toph is the "hase category" for Algebraic Topology.

Definition 1.3.2: A continuous function f:X 4 Y is said to he a
horotopy equivalence (or h-equivalence), if [f] isan
isomorphisn in Toph; that is, if 3 amp g:¥ 4 X such Lhal
gf=1y and fg=1ly. fe thensay g is ahomotopy left inverse
of £ and f isa homotopy right inverse of g. The map g s
a homotopy inverse of f if it is both a right and a lefl LomoLopy
inverse of £, and £ is said to be an h-equivalence if il has a

homotopy inverse.

Example 1.3.1: Homeomorphisms are homotopy equivalences. A special

case of h-equivalence isthe notion of a space being contraclible.
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Definition 1.3.3: Aspace ¥ dissaid tobe contractible if it is
homotopy equivalent to a point. Equivalently, X is contractible
if 3 %€ X such that the map 1y:X+4 X is homotopic to the

constant map cxa:}( 4 X at % (i.e. cxo(x) =% forall xeX).

the following are easy consequences of the definition of h-equivalence.

Again, as before we give a sketch of the proofs whenever necessary.

Theorem 1.3.2:

(a) If f:A 4B, g:A4C and h:B+4C are maps such that g and h
are h-equivalences and hf =~ g, then f is an h-equivalence.

(b) If f:A 4B isamap and g:B4A isa map suich that gf = 1
and h:B+4A isamapsuch that fh = lg s then f is an

h-cquivalence.

Proof:

(a) g is an h-equivalence => g¢':C 5 A such that g'g = 1, and
99" = 1.
But hf =g => g'hf = g'q (see Theorem 1.3.1(d))
=> g'hf ~ g'g = 1y
=> g'hf = 1, (see Theoren 1.3.1(a))
Thal is, g¢'h isa left homotopy inverse for f. Again, h is an
h-equivalence => h':C 4 B such that h'h= 1y and hh'= 1.
Now, h'h = 15 => h'hfg'h = 15 fg'h = fg'h  (by Theorem 1.3.1(d)
and the fact that h'h=1p). Again, since hf = g we have that

B'highh = h'gg™h = h'lg h=h'h = 1.

So, fg'h = h'hfg'h = 1,



Therefore, g'h is a right homotopy inverse for f. Therefore, {
is an h-equivalence.

Consider the following composite

=

(

RGP I

Now, fh = 1p => fgfh = fg 15 = fg.
=> fgfh = fg
But, fgfh = f 1y h=fh=
Hence, fg = fgfh = 15.
Since gf = 1, (by hypothesis) and fg =1y from above, we have

that f 1is an h-equivalence.

We now briefly discuss a more general concept of homotopy - Lhal of
homotopy relative to a subspace A. Here we require that Lhe homoLopy

remains invariant on pts. of A.

Definition 1.3.4: Suppose that A CX and f,g:X4 Y arc maps.
We say that f and g are homotopic relative to A, denoted
f=g(relB) or f= o ,09 if 3 a homotopy I:f =g such
that H(a,t) = f(a) = g(a) forall aed, tel.

Remark 1.3.2: The relation = rel A On the set of maps from X to
Y is an equivalence relation.

Defintion 1.3.5 : A subspace A of X isa retract of X if Lhere

is a map r:X 4 A, called a retraction such that r| = T
A
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Definition 1.3.6: A subspace A of X is called a deformation

retract (DR) of X if there is a retraction r:X- A such that

ir = 1y:X 4% where i:A4X is the inclusion. In other words,
A is a deformation retract of X if there is a homotopy H:XX I 41X

such that H(x,0) =x and H(x,1) = r(x) € 3, for x € X.

Remark 1.3.3: If A is a deformation retract of X, then A and X

are homotopy equivalent.

Definition 1.3.7: A subset A of X is a strong deformation retract
(SDR) if there is a retraction r:X -+ A such that ir =~ el & lX'

In other words, A is a SDR of X if there is a homotopy F:X X I 4 X
such that F(x,0) = x, for all x € X

F(a,t) = a, for all x €A and all tel

F(x,1) = r(x) € & for all x € X.

Nole that a SDR is, obviously, also a DR.

We now extend the definition of homotopy to the categories @p_A and
Topy-

Definition 1.3.8: Let i:A+4X and i':A 4Y be objects of @&A.
Suppose  f,g:i 9 i' are morphisms of @p_A. That is, fi = i'
and gi = i'. Then f is said to be homotopic to ¢ under A
denoted £ =t g, if there is a homotopy H:X X I4 Y such that
H:f =g and H(ix1y) =1i' - pry; that is, the following

diagram commutes.



¢
i

— e ]
AxI A A

Notice that the equation H(i X 1;) = i' pr, can be replaced by
the statement hti =1i', for all t € I, where hX 4t is the
homotopy such that hy = f and h; =g. Therefore, a homoLopy
under A of £ into g is a homotopy in the ordinary sensc which

is a map under A at each stage of the deformation.

Remark 1.3.4: If A is a subspace of X, then E:A g reduces Lo
the special case f = rel A 9

Defintion 1.3.9 : Let p:X 4B and p':Y 48 be objecls of Topy.
Suppose f,g:p 4 p' are morphisms in topy; that is, p'l = p and
p'g=p. Then f is said to be homotopic to g over B, denoted
f=q, if a homotopy K:X X 19 Y such that H:f =g and

p'i=p - pry; that is, the following diagram commules.
% 4T H N

$rx £

a4



Therefore, as above, a homotopy over B of f into g isa
homotopy in the ordinary sense which is a map over B at each

stage of the deformation.

Remark 1.3.5: The relations M and "=p" are natural equivalence
relations in TcpA and Top,. We then can form the quotient

categories (see Definition 1.1.6)
TcpAle = 'I‘opAh and TopB/=B = Topgh .

It i,i'e ITop’l = ITopPnl, TopPh (1,i') is the set of all
homotopy classes of maps X into Y under A; that is,

‘l‘op‘nh win = xuh Similarly, for p,p' € ITopgl = ITopghl,
Topgh (v,p') = [%,¥]g. If £ is a morphism in TopA (Topg), then
we denote the homotopy class of f by 1£1? ([£1p).

We now extend the notion of homotopy equivalence to the categories
‘l‘op'\ AND TopB.

Definition 1.3.10: A morphism f in TopA (Topg) 1is a homotopy
equivalence under A (over B) if (i ({flg) isan
isomorphism in TopAh (Topgh) .

In other words, if f£:X4Y is a morphism in TopA (by an abuse
of language), then f is an h-equivalence under &, if

g:¥ 4 X in TopA such that ¢f = lx and fg = 1y.

Remark 1.3.6:

fu) et i and i' be mapsunder A. Then 1 is h-equivalent
under A to i', if 1 and i' are isomorphic as objects in
'l'opAh.
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(b) Let p and p' be maps over B. Then p is h-equivalence over
B to p', if p and p' are isomorphic as objects in Topyh.

We conclude this section with a brief discussion of some basic
properties of adjunction spaces introduced in Section 2. We begin by
iatroducing the mapping cylinder, which is a special case of the
adjunction space.

Definition 1.3.11: Let X and Y be topological spaces and let

f:X 9 Y be a given map.

Define f":X X 09 Y by f'(x,0) = f(x).

Now, X X 0 1is a subspace of X X I and hence the pushout of

XxT

G‘

is the adjunction space M(f) = (XX 1)Ud¢i ¥
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which is called the mapping cylinder of f£.

Cne of the important featvres of adjunction spaces is given by the

following result.

1.3.3: Consider the following pushout in Top

X% xuy

|
i i
A £ N
where A is a closed subspace of X and i 1is the inclusion

map. Then i is a one to one closed map and i is one to
X-A

one and oper.

let €' =1i(C). Then, T
Lo one. So, i (C') =C isclosed in Y. If C' N (Y £(A) = ¢,
then T7h(ery =0, T €' (Y -£m) #0, then 10" = £L(0).

BuL [ is continuovs and C is closed in Y. Hence, f’l(C') = f_l(C)

ey =171 (Ee) = ¢ since T is one

is closed in A and thus in X, since A CX is closed. In any

ovent, £1 (et CX is closed. Therefore, C' is closed in

X Y as X Y has the final topology with respect to T

and i. (see Remark 1.2.3(c)). The proof that f is one to
X-A

onc and open is similar.



Remark 1.3.7:
(a) Notice that it is immediate from above that 1 is a homevinorphism

onto a closed subspace, and f is a homeomorphism onto an
X-A

open subspace of XU Y. Thus, we have that under the assumption
ACX isclosed, Y is a closed subspace and X\A is an open
subspace of XU . Y.

(b) If X and Y are compact, then so is XWY and hence as Lhe
continuous image of a compact space, XU ¥ is also compacl.

{c) If A#¢ and X and Y are path connected, Lhen XU RANE
path connected.

(d) If X and Y are normal, then XI_If Y is normal.
lemma 1.3.1: A is a strong deformation of A X T.

Proof: Clearly, {0} isa SOR of I under the map K:1 x 14 1
given by F(x,t) = (1 - t)x.

. 1, XF
Consider AXIX I ———> AXI.
Now, 1, X F is a map since both 1, and F are maps.
Furthermore,
(i) for all (a,s) € AX I;

“’A X F) (a,s,0) = (a,F(s,0)) = (a,s)
(ii) for all (a,0) € AX 0);

(lA X F)(a,0,t) = (a,F(0,t)) = (3,0)
(iii) for all (a,s) € AX I;

(lA X F)(a,s,1) = (a,F(s,1))

= (a,0) e A X 0.
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Therefore, A X 0 isa SDR of AXI.
Intuitively, the above result is obvious since the bottom of the

cylinder is a SDR of the entire cylinder.

Theorem 1.3.4: Consider the following pushout diagram in Top.

5 AUy
—

i)

D 3 A

(a) If D is closed in Y and a SDR of Y, then A is a SDR of
AU r Y.

(b) In parlicular if M{f) = AU ¢ DX I be the mapping cylinder of
Lhe map f:D 4 A. Then A is a SDR of M(f).

Proof :
(a) Since D is a SDR of Y, 3a retraction r:Y - D and a homotopy
;Y X [ 4Y such that

Hy,0) =y, yey
iid,t) =d, deD and t el
iy, 1) = rly) €D

et X=AU £ Y. Since I 1is locally compact, it follows from
Theorem 1.2.7, that XX I Z A X TU gy Y X I Consider now the

following diagram.



[

XxL2AT L Nal -7~

X-AU‘Y
Yx I_____, !

DT £x1 AL

Observe that £ H(i X 1)(d,t) = FH(i(d),t)
= EH(d,t)
= E(d)
and pry (I X 1) (£ X 1)(d,t) = pry(if(d),t)
= 1f(d)
= fi(d)
= E(a)
Therefore, FH(i X 1) = pry(1 X 1) (£ X 1) and so by the
universal property of pushouts, 3! K:X X I 4 X such Lhat

K(Ex 1) = TH
and K(I X 1) =pry(ix1)

We now show that K is the required deformation rclraction.
(i) Let XeX=AU Y. Theneither z€h or z €.
Suppose % € A.
Then, K(%,0) = pry(i X 1) (z,0)
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= ;('A)
=%
Suppose x € Y.
Then, K(x,0) = K(E X 1) (%,0)
= H(x,0)
= £(x)
= X

Therefore, K(¥,0) = %, for all X €A Uy v

{
|
H

(ii) Let a€A.
Then, K(3,t) = pry(i X 1) (a,t)
= pry(ital t)
= i@
=3 forall tel
That is, K leaves 1(A) fixed.
(iil) If x € A, then

KX, 1) = pry(ifx), 1)

=i eim

If x €Y, then
K(%1) = FH(x,1)
= fir(x)

= TE(r(x) € 1(3)

Therefore, 1(A) is a SDR of AU Y. But by Theorem 1.3.3,
T(A) = A. Hence, A isa SIR of ALig Y.




Chapter II

Cofibrations

This chapter is subdivided into three sections. In Seclion 1, we
discuss the notion of HEP (Homotopy Extension Property) which is a
prelude to the definition of a cofibration. The various equivalent
definitions of a cofibration are discussed in detail along wilh some
basic properties of cofibrations, some of which are categorical in
nature.

The second section is the core of the chapter, where we discuss
the "Characterization Theorem of Cofibrations", along with some
immediate consequences of this result. An attempl is made Lo put
together the various characterizations of cofibrations scattered in
the literature.

Finally, in the third section we give some geomelric examples of
closed cofibrations, contrasted with examples that fail to be

cofibrations, concluding with an example of a non-closed cofibralion.

Section I: Definitions and Cateqorical Properties of Cofibralions
Definition 2.1.1: Let A be a subspace of a space X. 'The inclusion
i:A 4 X has the homotopy extension property (HEP) wilh respecl Lo

a space 2 if for all maps f:X 4 7%, any homotopy of f[ exlends
A

to a homotopy of f. We say i:A4 X as the HEP il the above

statement is true for all spaces 4.

In other words, i:A 9 X is said to have the HEP with respect Lo 4

if, given maps f:X 4% and G:A X 142 such that f(a) = G(-,0)



for a € A, there is a map (not necessarily unique) F:X X I 4%

that F(-,0) = f(z) and E‘|AXI =6

such

The ezistence of F 1is equivalent to the exzistence of a map represented

by the dotted airow which makes the following diagram commutative

£
X ﬁXli//
3 irt
A"

Ax1

Thus, the HEP for i:A 4 X 1is equivalent to the condition that the

squarc in diagram (*) above is a weak pushout.

Definition 2.1.2: A cofibration is a map j:A 4 X such

map f:X+ 2 (2 arbitrary) and any homotopy G:A
Lhat G(a,0) = fj(a) for all a € A, there exists
F:X X [ 9% such that F(j X 11) =G and F(-,0)

That is, there exists a map F represented by the dotted arrow

making the following diagram commutative.

X

a

that for any

I472 such

homotopy

f(x)

for

XEX.



Thus, if A is a subspace of X, the inclusion map i:A 4 X isa
cofibration iff the pair (X,A) has the HEP with respect to any
space. In this case the pair (X,A) is called a cofibred pair or

is said to possess the "Absolute Homotopy Extension Property
(RHEP) ",

Next, we shall show that all cofibrations are embedrings. 'That
is, if j:A 4 X is a cofibration, we can without any loss of
generality restrict our attention to the case A is a subspace of
X and j is the inclusion. But before we do that we nced Lhe

following

Lemma 2.1.1: Given a map j:A 4 X, let M(j) denote Lhe mapping
cylinder of j. Define a function e:M(j) 4 X X I by
elx] = (x,0), xeX
ela,t] = (j(a),t), (a,t) eAX 1T
Then (a) e is continuous

(b) j 1is a cofibration <=> e has a left inverse.

Proof:

(a) Consider the following commutative diagram




(b)
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where L) and kO are inclusions at the zero level and G, j
are the canonical inclusions.

Now, j X 1 and ky are maps and M(j) is a pushout. Hence, e
is continuous <=> j X 1 and kj are continuous (see Theorem
1.2.6).
L5

Suppose j is a cofibration. We will show that e admits

a left inverse. Consider the following diagram

e e
A o, AxT

where 60, ko, ¢ and ; are defined, as above.
Now, aj(a) = [j(a)]. Since (a,0) - j(a), we have that
1)1 = [a,0]. Moreover, jop(a) = j(a,0) = [,0). Therefore,
6 = 3.
Since j:A 4 X isa cofibration, 3 @:X X I 4 M(j) such that
Py =0 and (X 1) =7,
Now, @ - rlx] = 9(x,0) = gko(x) = 0(x) = [x] and

9 elat] = (3@, t) = ¢ (3 X Uat) = 3(at) = [a,t].
So, 9 re= 1M(j) and ¢ is a left inverse of e.

ng=n,

Suppose the map e:M(j) 4 X X I admits a left inverse




£2:XX I M(j) suchthat £ :e= IH(j)'
Consider the following commutative diagram.

A

E3 AT

where f£:X9 % and g:AX I+ 2 are given maps and the other

maps are defined as above. Since M(j) is a pushout, Lhere
exists a unique map Y:M(j) 9 Z such that yo=1f and ¥ -g.
Composing ! with y yields amap Y - £:X X [ 9 % with Lhe
desired properties. That is,

y-lkylx) = y-l-e-olx) = y-o(x) = £(x) and
VLI 1at) = yleglat) = ¥t =glat).
Therefore, j:A 4 X is a cofibration.

Theorem 2.1.1: All cofibrations are embeddings.

Proof: Let j:A - X be a cofibration.
We will show that A = j(A).
By lemma 2.1.1(b), the map e:M(j) 4 X X I

Hence e is a homeomorphism of M(j)

admits a left inverse,

onto e(Mti)) = Z U (jlk) 2 1).



Since j is an inclusion and e:M(j) = X U (J(A) x 1), it follows

Lhat 55 1:?\ X149 e_j(A X 1) 1is a homeomorphism. Hence,
AX

AX1ZejAx1) =3x1(Ax1) =3(A) x1.
Therefore, A X 1 = j(A) X 1 and hence A = j(A).

‘The following equivalent definition of a cofibration will be utilized

whenever it is appropriate.

Definition 2.1.3: i:A 4 X 1is a cofibration if for all spaces 2 and

each commutative square
X £,z
N
N
1 ~¢ LN
A 3 2"

where EO(A) = M0), for all A:I 4 Z, is the evaluation map, the

dotled arrow exists making the triangles commute.

The equivalence of Definition 2.1.2 and Definition 2.1.3 is established

by considering the following two diagrams

£
X X A 3
—_— (EEEEE——]
N
~
. \\
L 13 \“g €4
~
~
™,

—_— —_—

A A 3 z
Diagram (I) Diagram (II)

]
(Definition 2.1.2) (Definition 2.1.3)
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(a) Definition 2.1.2 => Definition 2.1.3
Assume 1:A 4 X is a cofibration in the sense of Definition 2.1.2
(i.e. consider diagram I). Now, the given map §:A X 147
determines a map g:A 4 ZI defined by gfa)(t) = g(a,t) (scc
Theorem 1.2.3(a).
Similarly, the existence of §:X X I 4 % such that § ¢ =1 and
E)AXI = §, guarantees the existence of a map §:X - 1 such Lhat
9(x) (t) = P(x,t) (see Theorem 1.2.3(a)). Now, éog(a) = gla)(0)
=3(a,0) =9(ix 17) (a,0) = $(i(a),0) = fi(a) and so outer squarc
of diagram IT commutes. Moreover, €y9(x) = ¢(x)(0) = P(x,0) = (x)
and (ifa)) (t) = Plifa),t) = P x 1) (a,b) = Gla,b) = gla)(t)
for all t € I and hence ¢ " =g. Therefore, ¢ has the required
properties.
(b) Definition 2.1.3 => Definition 2.1.2
Assume 1:A 4 X is a cofibration in the sense of Definilion 2.1.3
(i.e. consider diagram II).
Since I is locally compact and Hausdorff; g:A -4 2! is continuous
=> §:AX I+ 2 is continuous and ¢:X 4 20 is conLinuous =>
§:X x I 42 is continuous (see Theorem 1.2.3(b)).
Now, §(a,0) = gla) (0) = €;lg(a))
= fi(a) by commutativity of diagram II.

Moreover, @(Z,O) = @(z)(0) = Eo(tp(z)) = f(z) and

Blix1) (a,t) = Blifa),t) = o(ifa)) (t) = gla) (t) = Ela,1).
Thus, § has the required properties of Definition 2.1.2.

Therefore Definition 2.1.2 is equivalent to Definition 2.1.3.



The Eollowing are easy consequences of the definition of a cofibration.

‘Theorem 2.1.2:

(a) For any space X, (X,X) is a cofibred pair.
(b) Maps with empty domain are cofibrations.

(c) Homeomorphisms are cofibrations.

(d) Composition of cofibrations is a cofibration.

Proof: (a), (b) and (c) trivially follow from the diagram of a weak
pushout. (d) similar to the proof of Theorem 1.1.3(a).

‘The following theorem has interesting applications for adjunction

spaces and mapping cylinders.
Theorem 2.1.3: The pushout of a cofibration is a cofibration.

Proof: Let X '{3 v

—_—

NS

A § )
be a pushout diagram where i:A 4 X is a cofibration. We prove
that 1:B4Y is a cofibration.
Construct the following diagram

X

z

N
=
=3
— =

:

A

£ N 3
— —,
\\\\ " \\\
. AN \Y
L 1™~ \\ € (*)
St
£
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such that 2 1is any spafe, €, is the evaluation map and the

0
right square commutes. JSince the left square is commutative, the
composite square commutes. Now, i:A 4 X is a cofibration implics
that 3 a map ¢:X 4 31 such that €9 = gf and ¢i=gf. W

thus obtain the following diagram 3f o1

A
where @i = gf and g fi= €q9f.
Since the square is a pushout and @i = gf, there exists a unique
map Y:Y¥ 4 21 such that YE = @ and Wi = g. Now, the composile
map €yy has the following properties:

(W E = €glyE) = o =g E
and (GuwlI = &y (\ﬁ] =€ = g1
But since the square is a pushout, it follows that €py = g by
uniqueness of €py. Hence, Yy:Y 4 2l in right square of diagram

(*) has the property that €py = E and \ﬁ =g. Therelore,

1:B4 Y isa cofibration by Definition 2.1.3.

Theorem 2.1.4:
(a) For any A and X, the inclusions X 4 XWA and A4 XUA arc

cofibrations.



(b) Suppose (D) is a cofibred pair. Let A cD andlet f:A-9B
be a map. Then, (BU g% BLI; D) isa cofibred pair.

Proof:

(a) Consider the follecwing diagram

x__i_) XU A=XUA
$ i
R, )

@ [ A
where  §:p 4 X and ¢:9+ A are the empty maps and i:A 4 XLIA
and j:X 4 XWA are the inclusion maps.
Since ¢:p 4 X and ¢:94 A are cofibrations, it follows that
i:A4 XUA and j:X 4 XU A are cofibrations, being pushouts of
cofibralions.

(b) ConstrucL the following diagram

” f BLX 2 (B L) L X

j T=1g ]

_—
D BL]F'D

~1
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Observe that BU Xz ((BUW D)uf X by the "Law of Vertical
Composition" (see Remark 1.2.5(0)) .

Now, composite square is a pushout and square I is a pushout
implies that square II is a pushout (see Remark 1.1.4(b)).
Since j:D 4 X is a cofibraticn, it follows from Theorem 2.1.3

that ;:Bu g DABUI X is a cofibration.

Section 2: The Characterization Theorem for Cofibraticas and ils
Eonseguenc

Wie begin this section by proving a lemma of Strém (Sce |16;lemma 3])
which deserves special attention. Accordingly, we give a brief
discussion of its importance.

let M(i) denote the mapping cylinder of the inclusion map
i:A 4 X; that is, M(i) = XU i AXI. Clearly, as scts, M(i) can be
identified with XX 0 UAX I. Ingeneral, however, Lheir topologics
are different. Recall that XU ; AX I has the final topology wilh
respect to the inclusion maps i:AX I 4M(i) and j:X 4 M(i) and so
C isopenin M(i) <> i1C) =CNAXT isopenin AX I and
Tl =cn@x 0 isopnin Xx 3. The lema we are going Lo
prove below is just the statement that the topology on %X 0 UAX |
inherited fron X X 1 coincides with the mapping cylinder Lopology on
M(i), in the presence of retraction X X [ 9 A X0UAX 1. ¥n
readily observe that these two topologies are also identical if A is
closed in X, even if no retraction Z X I 39 ZX0U A X1 exists,
This is because in this situation, AX 1 C¥ % 1 is closed and hence
AX0UAXICXXI isclosed. Therefore, CCZ X HUL X | iz

cl sed<=>CnN (XxX0) isclosedin %0 and CN (%) is



closed in A X I.

#ic now give a formal proof of the above discussion.

lemma 2.2.1: If (X,A) is a pair such that XX 0 UAX I isa
retract of X X I, then a subset C of X X0 UAXTI iscpen
in XX0UAXI<>CnN (Xx0) and CN(AXI) areopen in
4% 0 and AX I, respectively.

(n=5my s

Suppose CCX X O UAXTI isopenin XX 0UAXTI. Now
X x 0 and AX1 are subspaces of XX 0 UA X I. Hence,
CN(xx0) and CN (AXI) are open in the relativized

Lopology of X X 0 and A X I respectively.

(ng=ny s
et CCXXO0UAXT besuchthat CN (XX 0) and CN(AXI)
arc open in X X 0 and A X I, respectively.

Consider the following subsets of X

= {x e xl{x,0 e} and, for each natural number n,

U = U{VIV oepn in X and (VNA) X [0,%) gC}

Since C N (X X 0) is open in X X 0 by hypothesis and U can
naturally be identified with C N (X X 0), we have that U is an
open set in X. Clearly Uy is openin X, for all n, as U,
is a union of open sets in X,

Now sot B~Ux0uU () x ok,

We claim that C = (cn (A X (0,1])) UB where Cn (AX (0,1]

and B are open sets in X X 0 UA X I and hence C is open in
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XX0UAXI. £

We first show that Cn (A X (0,1]) isopenin XX0UAXI.
Now, C N (AX(0,1]) =(CNAAXI) NAX (0,11 where C N (AX 1)
is open in A X I by hypothesis. Since AX (0,1] is a subspace
of A X1 it follows that Cn (A X (0,1]) is an open subscl of
AX (0,1]. Also, A X (0,1) =XX (0,1] A (XX 0 UAX 1) where
XX (0,1) isopen in XX I and so A X (0,1] isan open subsel
of XX0UAXI.

Hence we have CNAX (0,1] cAX (0,1] CXX 0 UAX | where
CNnAX(0,1] is openin AX (0,1). Therefore, Lhere cxists an
open subset, say W CXX 0 UAX I, such that Cn (A x (0,1])
=AX (0,1] NW.

Therefore, C N (A X (0,1]) isopenin XXO0UAXI, as il is
the intersection of two open sets in X X 0 UA X I. We now show

that C= (Cn (A X (0,1))) UB.

“ehs
let ceCc(Xx0) U (AXI).
Then either ¢ = (x,0), for some =z € X, in which case
ceUX0cB,or c= (a,t), for a€ A and L€ (0,1}, in which
case ceCn(Ax (0,1]).
In either case c € Cn (A X (0,1]) VB and so
cc(Cn(ax(0,1])) UB.

s
Since Cn (A x (0,1]) cC, it suffices to show BCC.
let beB.



Case (i)

1f beUx 0, then beC bydefinition of U.
®

case (i) 1t b e\ (anuy x10,1), thenangensbe
n=1

(a)

(AnU_) X {0,*1—) and so b= (a,t) for some a€ ANU )
" ) "y

and some L € [O,L)A
"o
But aeAn U"[l (= U“0 implies, by definition of U”O' that3 v,

an open subset of X, such that (a,t) € (VNA) X [o,nl) cC and
0

so b= (at) €C.

In either case be C and so BCC.

Before we can show that B is open in X X 0 UA X I
is open in X X 0 UA X I, we need to

and hence
complete the proof that C

prove the following facts:
S
anu=anJu.

n=1
o,
- 0
it senn\Ju thendngeNsxerny .
n=] 0

By definitior of UnO 3 an open set V in X such that

x€ANV and (VNA) X [0,ni} c C. In particular, (x,0) €C
0

o
and so x € U. Hence, x € A NU and we have that A (‘-UgA nu.
n=1

ey
SEANU=>x€eU and x €A
=> (x,0) €C and x€A
= (x0) eCn(AXxI)



(c)

But CN (AXI) is openin AXI by hypothesis. llence, Lhere

exists a basic open set of the form V'X [0,%} ccn{Ax

n
0
such that (x,0) € V' X (ﬂ,;‘lv) cC. Since V' is open in A,
0
= anopenset V in X such that V'=V NA. Hence,
=0 evx (0,4 = vam x0,2) cc andso xev .
n, n, Ny
0 0
o
But then x€ A nUno and hence x € AnUUn that is,
n=1
©
anvcan\Juy,
n=1 "

If V is anopen subset of X such that V nAc Un then
VU,
Since V isopenin X, V is asubsetof U, il V has Lhe
property that (VAA) X [u,%) cC. Now if veVnh Lhen
v el by hypothesis and so an open subset W of X such
that vewna ad won xid cc
In particular, we have that (v] X [0,%) cC and s0

U (v} x 10,3 co; enat is, wamx(0,hcc.
MSidrobe ; de

Therefore, VC Uy, as required.

Ce

U ch

X - n

n=

0
Let xEX-UUn. Then z ¢ Uy, forany n21.
n=1

Let V, bea neighborhood of =z in ¥ suchthat v, nnr .

Then, (V, nA) X [0,1) =9 cC, for all n. tal Lhis inpl i
that z €U, for each n, a contradiction. Hence, for all

neighborhoods V, of =z in %V, NA/ andso zeh.




(d) For t € (0,1], z("Axt) =AXt, where r:XXI-4XX0UAXI
is 3 retraction (ezists by hypothesis).
Mow, A is closed in X and {t} is closed in 1I; hence,
AXt =hX (E} =AXt in XX I and so r(XX t) = r[m)
Cm, by the continuity of r. But r is a retraction.
Hence, rtx Xt)= r(m) gm =AXE. Moreover, ¥t € (0,1];
AXL = (XXt)Nn(XX0UAXI) where XXt isclosed in
XX1 and XX0UAXI is asubspace of X X I. Hence, A Xt
isclosed in XX 0 UAXI.
Therefore, for all t € (0,1], AX t=AXt in XX 0 UAX I.
Consequently, r(AX t) CAXt,
On the other hand, A X t = r(AX t) gr(x Xt) as Agx.
Therefore, for all t € (0,1]

rAXL) =AXt
Using (a), (b), (c) and (d) above we can now prove
e uc\Ju.
n=1

o
Lel x € X - \JU. Weshowthat x€X -U.
Rl

By (o) x €A

Let L € (0,1]. Then, by (d), r(x,t) € A Xt., Suppose n2 1

such that r(x,t) € Un X 1. Since Un X I cXXx1I is open there
oxist basic open neighborhoods V and W of x and t such

thal r(xl) € r(VX W gUn X I,

Hence, (VAA) Xt=r((VNA)Xt) clUy X I This implies that
VnAcC Un and hence by (b) above VC Un' But then, x € Un i QU“



(f)

(g)

contrary to hypothesis.
o
Consequently, r (x,t) € (A - L{ U“) X I.
=

o ®
Now, by (a) above, ANU = mliu“ and (A -\Jl U x1 =
n= n=

®

=[A-(AnL1}un)1x1 =h- (An0)]
o

=p-uxIig

S0, r(xt) € (X-U)xI forall te (0

(X-Ux1I, forall n=1,2 ... and

X1
X-uxI
,1].  Since [(x'ili’ €

(X-U) x1 isclosed,

it follows from the continuity of r thal (x,0) = r(x,0) € (X-U) x|

and so x € (X-U).

©
Consequently, X - \.{ Uy SX-U and hence U C
P

Uy

iCs

®
U= \.{vn, where Vo =UNU, n=1, 2, ...
n=

® o
Uy =\Junuy
n=1 n=1
©
=un\Ju,
n=1
o
=U, since by (e) ugn:l n

ANU =A NV, forall n=1, 2, ...

Th

@

inclusion A NV, C ANy,

h iscleca

s
If zehNnU, then z € U and z€ A,
W in X suchthat (A A X (0} cc.

follows that, in particular, {z,0) € C.

i [
rsince V, U

and so  an open sl
Since z € WAk it

Hence, z€ U.

o8



Consequently, z €A N Un NnU =4nNn Vn and therefore A N UIl CAN VnA

Wlo now show that B CX X 0UA X I is open. Recall that

-
p=ux0u N (ang) x b)),
n=1

From (f) and (g) we have that

=
W

o © i
(A %00 Uﬁ (V) X (0,50

® = 1 1
= H vy X0U (H (A X [0,5) vy x [0,1))

-
=xx0alJy x 0 d1viexn n
n=1

= (X 0 UAX nn\_{wnxw.%))
e

z
<

)

open in X for each n, and hence \_]J(Vn X [0,%)) is
n=

open in X X I, it follows that B isopenin XX 0 UAX I.

Characterization Theorem 2.2.2: Let A be a subspace of X. The

following sLatements are equivalent:

(a) ‘e inclusion i:A4X is acofibration.

(b) For any space Y anymap XX 0 UAX I4Y extends over
X I
(€) XX 0UAXI is aretractof XxI.

(d) XX 0UAX I is astrong deformation retract (SDR) of X X I.

<

There exists amap ¢:X 9 I such that Ag‘o_l(m and 2
homotopy H:XX I 4 X such that
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H(x,0) =x, for all xe€X
H(a,t) = a, for all a €A, forall tel
and H(x,t) € A whenever t > §(x).

Proof:
(a) => (b) Let £:X X 0UAXTI4Y beanymp and consider Lhe

following diagram:
@

XxQ

—_—
A=O AxT

where =f and @, =f
" Ixxo 2 !Axl
Since i:A 4 X is a cofibration, 3 a map g:X X I 4 Y such Lhal
= and g =0,
glxxu o |AXI %
Hence =@, U, = f and consequently is Lhe
,q[xxouw 9 V0, q V9

required exztension.



(b) => (c) Suppose for any space Y, any map f:X X0UAXIA4Y
cztends over X X 1.
Then, in particular, the identity map Lywouax K X OUAXTIA
XX 0UA X 1 extends over X X I; that is, 3 amp h:XX I+

KX 0UA X1 suchthat h - = lyyouxy- Therefore,

OUAXT
AX0UMXT is aretract of XX I.

(c) => (d) By Definition 1.3.6 we have to show that 3 a retraction
(XX 14 XX0UAXI and a homotopy R:{X X I) X T4 XX I

such that
R{(z,£),0) = (%) Yix,t) eX X I
R((x,t),8) = (xt) V(x,t) EXX 0UAXI
and R((x,t),1) = r(zt) Vix,t) eX X1

By hypothesis, 3 a retraction, say r:X X I4 X X0UAXTI. Let
pri:X X 19 X and pry:X X I41 denote the projections on the
first and second factors respectively. Define R:(X X I) X I 4XX I
by

R{(s,t),8) = (pryr(x,ts), t(l -s) +s pryr(it)
Now
(1) R, £),0) = (pryr(x, 0),t)

= (pry (%, 0),t)
= (xt)

(i) Lel (x,t) € XXO0UAXI,

Then  (x,t) = (x,0) or (x,t) = (a,t) for some a € A.



ence, R((x,0),s) = (pryr(x,0) spryt(s, 0))
= (pry (x,0), spry(x,0))

= (%0
and

R{(a,t)s) = (pryr(ats), t(1-s) i spryrial)
= (prlta,ts), t(l-s) t sprz(a,L)
= (a,t(l -s) + st)

= (a,t)

(1i1) R((x,£),1) = (pryr{x,t), prrix,t))

= rxt)

Therefore, (XX 0) U (A X I) is a strong deformation retract of
XX 1.
=> (e) Suppose X X0 UAXI isa strongdeformation reLracl
of XXI.
Let XX I4XXO0UAXTI be aretraction. Wedefine ¢ and
H as follows:

9lx) = Sup It - pror{x,t)l, forall ze X and

ter
Hix, t) = prlr(x,t)‘ xeX, tel

We claim that ¢ is continuous.

We shall give a general proof such that the continuily of ¢
becomes a special case (see [1; page 237]). lel W:X X C+4 R
be a mep such that C is compact. Let X 4 R he defined by

0(z) = Sup y(z,c)
ceC

We show that © is continuous.
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For all z€ X, xX C is compact and hence V(x X C) is
compact in R. This implies that WY(x X C) is a bounded subset
or R. Hence, 0 is well defined.
Suppose O(z) =r and let N=[r - € r+ €] be a neighborhood
of r.
Now, by definition of ©(x) =r, c €C=> Y(xc) Sr<r+e

= x X ng'l(-w, r+eE)
Since V_lt-w, r+€) isopenin X XC, there exists a basic
open seb Uy X V, X X C, such that () €U X V€ Vi rg
for all (x,y) € xX C. Then the collection {Vy}yEC is an open
cover of C. Since C is compact, 3 finite subcover Vyl, —

Vg By of {Voho that cover €. Let Uy ue the inter-

¥y! g
scclion of the corresponding finite number of open sets U,
X k
That is, U = ﬂl Uy~' Now, it is easy to see that
=1 i

v
. 1
XXCCUXxC gj\:{ (inxvyj)gw (= £ +€).

Consequently, (u(Ul) C (-, r +€]. However, 3c € C such that
Y(x,c) eg and so as above, 3 an open set U, containing x
such thal (U, XC) CHCN.
So, y €UynU, > 0(y) $r+e and Ofy) 2r-€

=D W0(y) €[r-¢ r+€ =N

= 0(U) nUy)
Therefore, © is continuous and so ¢ is continuous.

The continuity of H is clear.



|
!

and

fe)

Now for all a €A, ¢(a) = sup It - przr(a,t)l
tel

sup It - pryla, t) !
tel

sup It - tl
tel

=0

Hence, A glp_l(()).

Furthermore,

(i) for x € X, H(x,0) = pryr(x,0) = pry(x,0) = x
(ii) for a € A and teI,

H(a,t) = pryr(a,t) = pry(a,t) = a

(1) t > (x) = pryrixt) >0 since prorixt) =0 implics
t <sup It - pryr(at) = g(x).
tel
Consequently, r(x,t) € AX I and therefore I(x,t) =

pryr(x,t) € A.

Thus, H 1is a homotopy of lx relative to A such thal
H(xt) € A whenever t > ¢(X).

=> (a) Given ¢ and H define a function
XX I4XX0UAX T by

(H(z,t),0) L€ o)
(Hix,t), t - 9lz)  t2 @)

rxt) =

We claim that r is a retraction:

Clearly, r is well defined.

K2l



e prove that r is continuous.
et U={(s,;t) eTxI|s2t}
v={(s,t) eI1x11s<t}

s
Clearly, U and V are closed sets in I X I.
Now, let W={(xt) eXx11lo@ 2t} and
={mt) exx 11 g <t}

n

‘Then,
W= lpx 107 and 2= (gx 1,7 ).

Since U and V are closed sets in I X I and ¢ X 1 s
conLinuous it follows that W and 2 are closed se!. in X X L.
Morcover, X X 1 = WU Z.

Now lel @ = (1||w,u):w 4 Xx0 and

Y= HX X -ty (H|Z,(o'pr1,prz):z AXXIXT4XXI

where Yix,t) = (1y X "=") (H{x,t),9(x),t)
= (H{s,t), t - Q(x))
Then, r=QUYEWUZ=XXT4XX0UAXI.
Since ® and y are continuous, it follows that r is
conlinuous (see Theorem £.a.1).

Nest, we prove that r is a retraction.




Since @(x) 20, r(x,0) = (H(x,0),0) = (x,0), x € X.
Also, since ¢(a) =0, r(a,t) = (H(a,t), t - 0) = (a,l), a €A

and t e I. Therefore, r is a retraction.

Now, consider the following diagram 3
A,
-

(?//

XA uARL & N(1)

A AxT
where I and g are arbitrary maps and j and k arc inclusions.
Since r:X X I42X0UAXTI is a retraction,

r =GAXTAXX0UAXT
AXT

and r|xx0=k:X-»XXO'JAXI
Also, by Lemma 2.2.1, M(i) = XX 0 UA X I. Hence, hy Lhe
universal property of pushouts, there ezists a unique map

Q:M(i) SXXOUAXTI42 suchthat ¢ - k=g and ¢ -] f.
Now, let Y=0 - r:xXx1I92Z.

Then, wlAXI =9 =¢-j=f and

rII\XI

Toa ™0 ™94



Therefore, 1:A 4 X 1is a cofibration.

Bemar

(i) If i:A 4% is acofibration, then M(i) = XX 0 UAX I. This
is jusL a consequence of Lemma 2.2.1 since i:A 4 X isa
cofibration <=> XX 0 UAX I 1is a retract of X X I (by
CharacLerizalion Theorem 2.2.2).

(ii) If % is Havsdorff, all cofibred pairs (X,A) are closed. This
follows by observing the following two facts. First, the product
X X | is Nausdorff as X and I are Hausdorff. Secondly, by
the Characterizalion Theorem, X X 0 UA X I is a retract of
XX 1 and hence XX 0UAXI isclosed in X X I being a
retract of a Hausdorff space. * Now,
AX1=(AXI)N(XXO0UAXI) where XX0UAXI is
closed in X X I. Hence AX I CXX I is closed and
consequently A is closed in X.

(iii) If A is a closed subspace of X, then the map @:X -4 I in
statement (e) of the Characterization Theorem 2.2.2 has the
property that 7 (0) = A. This is because if x € oM, then
@(x) =0 and so N(x,%) €A, forall n=1,2, ... But then,

H(x,0) € A. Therefore, ¢"1(0) C A.

since A is closed, x

Also, in this situation, the proof (e) => (a) does not require

the use of Lemma 2.2.1. It is immediate, here, tnat the subspace

Lopology on X X 0 UA X I coincides with the mapping cylinder

topology as we have seen earlier at the beginning of Section 2.
(iv) Statement (e) of the Characterization Theorem 2.2.2 can be written

in the following equivalent form:




(e'): There exists a map Y:X = [0,°°] such that A g\y'l(o) and
there exists a homotopy k: w (0,1 X T 4 X such that:
K(x,0) = x, for all x € \y IU,I]
K(a,t) = a, for all (a,t) € A X [0,1]
K(=,t) € A for t > y(x).

Clearly, (e) => (e'). Now, (e') => (e) can be oblained from Lhe

following formulas:
0(x) = Min(2y(x),1) and

K(x,t) i 2y(x) €1
Hx,t) = K(X,t(Z - 2y(x))) if 1< ZW( 2) €2
if oy 21

(v) In the Characterization Theorem 2.2.2 (e), H(x,((x)) € A whenover
ox) < 1.
This follows by observing that if ¢(z) < 1, then for all
(x,t) € x X < Q(x),1] (i,e, t > @(x)) we have Lhal
H(x X < @(x),1]) cA. Hence, m gf\. How, consider
a decreasing sequence {t,} € < 9(x),1] converging Lo @(x).
Then, H(x,tn) converges to H(x,Q(x)) by continuity of H.
Hence, H(x,Q(x)) € mgﬁ. Therefore, fi(z,@(z)) ¢ A
whenever @(x) < 1.

(vi) By choosing U ={x € x| pririz 1) € A}

"y

§(x) = sup It - pryr(zt)l
tel

statement (e) of the Characterization Theorem 2.2.2 for L a



closed subspace of X can be written in the form:
(a) 'here ezists a neighbourhood U of A which is deformable
in X to Arel A (i.e. there exists a homotopy H:UX I 4X

such that

H(u,0) =u, for uey
H{a,t) =a, a€h and tE€T

and H(u1) € A, for vuevy,

(b) The map @:X 4 I is such that A= w'l(ﬂ) (as A 1is closed)

and o(z) =1 for x€ X -U.

Molc Lhat Lhe last remark we made is closely related to “he notion of
a halo (which will be defined below) and the characterization of
colibrations in terms of a halo. But first we give the following

definition.

Definition 2.2.1: Let A, V be subspaces of a space X, with
ANcVcX. Then, V is a halo of A in X if there exists a
map ¢:X 4 1 (the haloing function) such that A C¢™L(0) and
x-veol. matis, acelo colo,n cvex.

Remark 2.,

(a) If V isahaloof A in X, then V is also a halo of Ain X.
This follows by observing that since q)'l(O) is closed,
acolo > acylo gt o cven

(b) From the definition of a halo and Remark 2.2.1 (vi), the following
statements are equivalent:

(i) A9 X is a cofibration.
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(ii) A has a halo U in X, deformable in X to A rel A via
a homotopy H:UX I4X.
(iii) A has a halo V in X, deformable in X Lo A rel A via

a homotopy H:X X I4X.

The following theorem is a consequence of the Characlerizalion Theorem
2.2.2 and Remark 2.2.1 (v).

Theorem 2.2.3: If (X,A) is a cofibred pair, then so is (X,A).

Proof: As (X,A) is a cofibred pair, assume the exislence of ¢ and

H satisfying the properties of Characterization Theorem 2.2.2 (c).

We now define H(x,t) = H{x,t @(x)), where L & @(x) = Min{L,p(x)}.
Clearly, H is continuous. Now,
(a) if Fed let {a} €A besuchthal a,+43. Since ¢ is
continuous, @(aj) 4 9(a). But a, €A forall nel, and
A gv'l(l)). Hence 04 @(3) and @(3) = 0. Therefore
Teqgl(0) andso Acolin).
(o) H(z,0) = H(x,0 » 9(x))
= H(x,0) as @(x) 20
= %, by hypothesis.
(c) forall 3€A and tel,
H(3,t) = H(E, t » 9(@)
=H(@t ~0) as @@ =0 by (a) ahove
= H(3,0)

=3
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(d) given t > @(x) and hence @(x) <1, we have that
H(z,t) = Hizt * 9fx)
= H(x,0(z)) €A by Remark 2.2.1 (v).
Therefore, by the Characterization Theorem 2.2.2, (X,X) is a

cofibred pair.

vie now bricfly discuss the notion of a fibration which is dual to
Lhal of cofibration. We remind the reader that not all properties we
have discussed for cofibrations are dual to properties for fibrations.
However, we shall record some of those properties that are genuinely
dual. But first, we define the notion of homotopy lifting property
(ILP) which dualizes NEP and which is the basis for the definition of

a libration.

befinition 2.2.2: A map p:E -3 B is said to have the homotopy

lifling property (HLP) with respect to a space 2 if for every
map f:Z 9 E and homotopy G:Z X I 4 B of pf, there is a
homotopy F:%4 X I 4K with F(-,0) = f and pF =G (F is
said Lo be a lifting of C).

‘hat is, p:E 4 B is said to have the huP with respect to . space

%4 if, for every commutative diagram below, where io(z) = (z,0),

™
-
m
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there exists a map F:Z2X I 3 E (dotted arrow) making Lhe
resulting triangles commute.

p is called a fibration if it has the HLP for all spaces 4. If
furthermore for X € X, F(xu,tl is independent of L whenever
Glxy,t) is, then p:E 4B is called a reqular fibra We
will refer to £ as the total space, B as Lhe base space and

(E,p,B) as the fibre space.

We now record some of the properties of fibralions which will be needed

later on in connection with cofibrations.

Remark 2.2.3 :

(a) Composition of fibrations is a fibration. (This is dual Lo

Theorem 2.1.2 (d)).

(b) Pullback of a fibration is a fibration. (Dual to Theorem 2.1.3).

(c) Let pr;:BX F4B and pry:BXF - F be the projections on Lhe

(d

first and second factors. Then pry and pr, are reqular
fibrations. To see this, given 2 and maps h:Z X 0 4B X F anl

H:Z X 1 4B, define F:iZXI-4BXF by
Flz,t) = (H(z,t),przhlz,0)).

Then pF =H and F(-,0) =h; so pry and pre, are fibrations.
We call pr; and pry the trivial fibrations. Hote thal
reqularity is trivially satisfied.

It pyiEy 4 By (A =0,1) 1is a fibration, Lhen

Py X py:Ep X Ey 4 By X By is a [ibration.
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{c) The evaluation map eo:)’.I 4 X, defined by EOO') =M0), isa
fibration. For a proof, see (14, Page 97, Theorem 2].

o have a closer look at fibrations, let (E,p,B) be a fiber space.
lel f:42X04E begiven, and let G:Z X I 4 B be a homotopy of
pl. For every z €17, themap t 4 G(zt) defines a path y, in B,
that is, YT 4 B is such that Vztt) = G{z,t). The HLP is then
lifting each path V, in B to apath in E starting at £(z,0),
in such a way thal the family {y,lz €2} is lifted "continuously"

Lo k. This leads us to the following definition.

Definition 2.2.3: let (E,p,B) be a fiber space, and let Qp CEX B!
be Lhe subspace Qp = {({e,w) €EX BIIple) =w(0)} of the
cartesian product. A lifting function for (E,p,B) is a map
Al 4 BT such that Me,0)(0) = e and phie,0)[t) = 0(t) for
all (e, er and t € I. Ve saythat A is reqular if
Me,® is a constant path whenever © is a constant path.

Nole Lhal Qp = Epné‘ Bl is the pullback defined earlier in
Chapler 1, and the lifting function Z:Qp = Epﬁ 6 Bl 4 Ef
has Lhe [ollowing property shown in the diagram below:




where € (0) = a(0), €j() = 0(0) and pl( = p - ae sl
Clearly, Et')pI = pey and hence by the universal property of

pullbacks, there exists a map mEl 4 Bé.r\ P E such thal

pry * T =€ and pry t k= pI, and consequently ®(0) = (p - o, (0)).

Therefore, )»:Qp 5! is a lifting function iff & - A =1 |
“E'r‘ ()
T
We now prove a theorem where the basic ideas of fibralions and
cofibrations are jointly used to yield an important resull on colibra-
tions. The theorem essentially asserts that "the pullback of a closed

cofibration over a fibration is a closed cofibration".

Theorem 2.2.4: If (B,A) is a cofibred pair with A closed and
p:E 4 B is a fibration, then (E, p‘l(l\)) is also a closed

cofibred pair.

Proof: We first note that the following diagram is a pullback.

»-'(A) £
b P
A —8

Since (B,A) is a cofibred pair, there ezist maps @:B 41 and
H:B X I 4B satisfying the properties of the Characterizalion T
Theorem 2.2.2 (e).

Now consider the following diagram

Exl H(px‘\x) B



Since p:E 4 B is a fibration, there exists a map HEXI4E

such that pil = H(p X 1) and H 3 Ip

Define a map Y:E4 I by VY =¢p:E 4 I.
then yH0) = (gp) 7L (0) = ploh0) = pTH(A) (see Remark 2.2.1
(iii)).
Mso, define H:E X I 4E by
fife,t) = fie,t 4 gp(e)), where t # @pfe) = Min{t,gp(e)}

Il is continuous and

(i) ife,0) = Hie,0 # gple))
= Hi(e,0) as gple) 20
= lgle)
=e forall eck
(i) et eepl(a). Then ple) €A
S0, fi(e,t) = Hie,t » gple))
STle,t £ 0) as ple) €A and A=gl(0).
= Hie,0)
=e forall e€ p'l(A).
(iii) Because A 1is closed, H(b,@(b)) € A whenever @(b) < 1.
(sce Remark 2.2.1 (v)).
Suppose t €I and t >Vy(e). That is, t > @p(e) and so
ople) < 1.
Then, Hie,t) = H(e,t & gple))
= Hie,gp(e)), as gpfe) <1 and te€I
and therefore, pﬁ(e,t) = pﬁ(e,tpp(e))
= H(p X 17) (e, ¢p(e))
= Hiple),pple)) € A as



A is closed and @(p(e)) = y(e) < 1.
Hence, pﬁ (e,t) € A and therefore, ﬁ(e,l) € p'l(l\).
Therefore, by the Characterization Theorem 2.2.2 (c),
\E,p'l (A)) is a closed cofibred pair.

The closedness condition on A can be circumvented by requiring Lhal
the fibration p:E 4 B of Theorem 2.2.4 be rcqular. licnce, we can
reformulate Theorem 2.2.4 as

Theorem 2.2.5: The pullback of a cofibration over a regular fibration

is a cofibration.

Proof: Let ¢:B-4 I and H:BX I 4B be maps salisfying Lhe propertics
of the Characterization Theorem 2.2.2 (e). Since p:E 4B isa
regular fibration, there exists l:% £l EI, a reqular lifting
function for p.

Set Y = ¢gp:F 4 I, as before and deline WEX14E by
Hle,t) = Meyliy () (t), where Hy(g) (1) = Hip(e),L).
Then
W He,0) = Meyty g (0
=e
(i) Let eep ).
Then ple) €A and Fi(e,t) = Ale,H
But H )(t) = H(ple),t)
= ple), as ple) € A and l(a,t) = a,
forall a€A and t €l

bte)) 1)+

ple

Hence, )(t) is the constant path and so hy the

L =e.

Hp (e

regularity of A, it follows that 'A(e,Hp(e



Therefore, ﬁ(e,t] = AeH
(i ) Suppose t €I and t >V(e) =g(ple)).

Then, pli(e,t) = pl(e,HP(e)) (t)

fiy ey (1)
= H(p(e),t) € A, as ple) € B

and t > @(ple)).
lience, Ti(e,t) € p_l(A)

whenever t > y(e).
Therefore, by the Characterization Theorem 2.2.2 (e)
(E,p'l(l\)) is a cofibred pair.
Wi now prove a theorem which states that if a composite map is a

cofibration and the second map is a cofibration, the first map is a

cofibration. But before we do that, we need to prove the following

lemma which in simple terms asserts that global HEP => local HEP.

Let 1i:A 4 B be an inclusion of topological spaces with

Lhe HEP and let V C B be such that a continvous function

T:B 4 (0,1] with Anvct0,1] CV. Then the restriction
iv:I\ NV 3V has the HEP.

Proof: Since i:A 9B isa cofibration, take ¢ and H as in
Characterization Theorem 2.2.2 (e). We define functions
y:V 4 [0, and K:\v_lll],l] X 14V asin Remark 2.2.1 (iv)

let T:B4 [0,1] be defined by
T(b) = Min {tH(rt)10 €t < 1},

Clearly, T is continuous.

o))t = ¢, forall ee o).
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Now, for all a e A, T(a) = Min {tH(a,t)10 < t < 1}
=Min {t(@logt <1}, as Hat) =a
= 1(a)

Hence, T| =1| .
A A

let 3 €A Then {an} €A such that 3= limag .
So, T(a) = T(lim ;) = lim T(ay)
=limtla), as T =1
S T
=1 (lim an)

=1(3)

Therefore, |-
A

But by hypothesis, anv {on 1_110,1] CV. Moreover, ANVCA.
Hence, T|—- =1|- >0.
AW AV

Since V CB and by hypothesis H(b,t) € A, for all t > ¢(b), iL
follows that H(v,t) € A forall t > @(v). Now, il veV and
¢0(v) =0, then H(v,t) € A for all t > 0. But, v,p(v)) € A
as @(v) =0 <1 (Remark 2.2.1 (v)); that is, v = H(v,0) € A.
Consequently, v € ANV and so T(v) > 0. Therefore, the
functions @ and T have no common zeros in V. Thus, Lhe

function Y:V 4 [0,%) defined Y(v) = 91(11 is well defined.
T(v)

Moreover, Y is continuous. Now, let % € A NnV. 'Then %y € A
and hence ¢ (xy) = 0. But then ?(7,0) #0 as ¢ and T have
no common zeros in V. Therefore, Ylzg) = 0 and so ANV C lv'l (u).

let v eV besuch that W(v) € 1.



Then, Y(v) 1 =>T(v) >0
=>tH(v,t) >0, forall tel
= Hv,t) et l0,1] cv
=>H(v,t) €V, forall tel

Thus, we can define K:\y'l[ﬂ,l] X144V by

K(v,t) = H(v,t).

Clearly, K is continuous.

Now, (i) for all ve V'I[O,I] cV cB, K(v,0) = H(v,0) = v
(ii) for all aeANV and t €I, K(a,t) = lifa,t) = a
(iii) for all ve V’1[0,1], y(v) £1 and hence T(v) > 0.

That is, _LZ 1, which implies ?—(ﬁ 2 f(v) and
T(v) T(v)

consequently, Y(v) 2 ¢(v).
Now, suppose t > y(v). Then, from above, t > ¢(v) and so by
hypothesis H(v,t) € A. Therefore, K(v,t) = li{v,L) € ANV,
Hence, K(v,t) € ANV, whenever t > y(v) and Y(v) < 1. There-

fore, by Remark 2.2.1 (iv), iV:A NV 9V has the HEP.
We now are in a position to prove the following theorem.

Theorem 2.2.7: If j:B 9 A and i:A+ X are maps such thal i and

ij are cofibrations, then j is also a cofibration.

Proof: Since i:A 94X and 1j:B 4 X are cofibrations, we can assumc
without any loss of generality that i and ij are inclusions
(Theorem 2,2.1) and hence j is also an inclusion. Since
i:A 4 X 1is a cofibration, it follows from Remark 2.2.2 (b) (ii)
that 3 ahalo U around A in X together with a retraclion
r:04 A such that Acd o) col(o,1) cucx. Since BCh,



it follows that U is also a halo around B in X.

S0, by lemma 2.2.6, jy:B NU 4 U, that is, J:B 4 U is a
cofibration.

Now, for an arbitrary topological space Y, and maps F:B 4 YI

and f:A 9 Y, consider the following commutative diagram:

(1) i H
v
-

Z

B F Ra
A
e
Ve =
__;___HY

A

where €)(0) = 0(0) is the evaluation map. We claim that diagram
(1) admits a diagonal H:A 4 1 such that the resulting triangles

commute. Now the diagram

B F ¥

is also commutative since fryy = fj where r:U+ A is a retraction

(see Remark 2.2.2(b)) = EOE‘, from diagram (1).
Since jU:B 4 U is a cofibration, diagram (2) admits a diagonal
G:U YT such that €6 = fr and Gj, = F.

Now, let H =6 Then, =G| :A+ Yl is a map such that
A




(i) egH(a) = €oGla) = fr(a) = £(a), for all a€A. That is,

eOH = f, and
(ii) Hj(b) = Gju(b) =F(b) for all beB, as BCACU; that

is, Hj = F.
Therefore, by Definition 2.1.3, j:B 4 A is a cofibration.
The following theorem is an application of the pullback theorem and

the composition theorem we have proved above.

Theorem 2.2.8: Given the commutative diagram

%o £, B, % AR
i, b, t4
X » B q Y

(a) if p, pys qr 9o are fibrations and (X, Xo), (B,By), (Y,¥g) are

closed cofibred pairs, then (XmMY, XgM Yg) is a closed
cofibred pair. (See [6;Proposition 1.7])
(b) if p, py, 9, 9y are reqular fibrations and (X, %)), (B,By),

(Y,YO] are cofibred pairs, then (X€1Y, Xgr\ ‘{U) is a cofibred

pair.
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Proof:
(a) Let % =p By and Yy = a7,

Then the following diagrams are pullbacks.

X, =408 XN, =98 N
» » % %
R _—
B, B B,

where By 4 B is a closed cofibration and p:X+4 B and q:Y 4B
are fibrations. Hence, by Theorem 2.2.4, it follows that

7(0 = p'](BO) 4 X and “20 = q'l(BO) 4 Y are closed cofibrations.
Now, for all xg € X, p(xg) = pixutxol = ibopo(xn) € B. Hence,

Xo 7 iO is an inclusion. Similarly, Y, + ?0 is an inclusion.

Thus, we have the following two compositions
xo-axo-»x and YOAYOAY,

where the composite inclusions are closed cofibrations and the

second inclusions are closed cofibrations. Therefore, by Theorem

2.2.7, the first inclusions XO L] }[) and YO -+ ;0 are closed
cofibrations.
Now, consider the following diagrams. For convenience we drop the

double subscript notation on the pullback symbol.
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Lty xln'(. . L0 A %oy, e %on g bR X
X

B. ° Y

In each of the above two diagrams, the right hand squares arc
pullbacks and the outer squares are pullbacks. llence in both
cases the left hand squares are pullbacks (see Remark 1.1.4(a)).
Since qp and p are fibrations and pullbacks of fibrations arc
fibrations, it follows that pr_ xon Yo+ )(o and pr. xol'\ YD 4 VO
are fibrations. Y
Now, let XMY be the pullback of the diagram

X

P
—
Y 3 &8
That is, X M ¥ = {(x,y) € X X YIp(x) = qly)}. Since p and q
are fibrations, the composite q-pry:X MV Y5 B is a fibration.
Censider the following diagram
xnY
TPy
R
B, B
The pullback of this diagram is {(z,y) lapry (z,9) = ppry(z,y) € 1‘.”}
= {(zylaly = pta) € ny)
={mylze p—1 (By) and y e q"lllﬁﬂj
=KAo



That is,

[m}
%P"q'ﬁ"iJ ’“'x'f?"x
B

OV,
B

So, we have the following three pullback diagrams

—3

3. %% X

e
=
=
<

(b)

bE

Since the right hand vertical maps are fibrations and the bottom
horizontal maps are closed cofibrations, it follows from Theorem
2.2.4 that each of the inclusions X, Yy 4 XM ¥y 4 ¥) ¥y
X MY are closed cofibrations. Since the composite of closed
cofibrations is a closed cofibration, it follows that X n Yy 4
X MY is a closed cofibration.

The proof is analogous, except that we use the fact that a pullback
of a cofibration along a reqular fibration is a cofibration.

As an application of the above theorem we have the following

result.

o>



Corollary 2.2.9: If (X,A) and (Y,C) are (rclosed") cofibred pairs,
then (XX Y, AXC) a (-closed") cofibred pair.

Proof:

Case 1: Suppose (X,A) and (Y,C) are closed cofibred pairs.

We construct the following diagram

X
P A— N Xpr\“f

Y 3 Y Ixk
3
i =1 AxC=A,M,C
R
A,
-
* C

©

where )(0 = A YO =C and B= BO = * in the theorem above.

The inclusions i, j and k are closed cofibrations. Clearly,

Pr 9 Py and qp are fibrations. Hence, by Theorem 2.2.8 (a),
AXC4XXY is a closed cofibration.

Case 2: Suppose (X,A) and (Y,C) are cofibred pairs.

Then, clearly p:X 4% qi¥4* ppiAd4* and qp:C4* arce



reqular fibrations. Hence, by Theorem 2.2.8 (b) AXCA4XXY

is a cofibration.

Finally, to conclude this section we have the following important

results which will be applied in Chapter IV.

Theorem 2.2.10: Let f:D 4 A be any map and let M(f) denote the
mapping cylinder of f.
Then

(a) the inclusion T:A 4 M(f) is a closed cofibration.
(b) Lhe composite map
ipDZDX 14D X149 H(E)

is a closed cofibration.
(c) Lhe map [ factors through iD,' more precisely, f = e - iD

where rp is an h-equivalence.

(d) f:D 4 A is an h-equivalence <=> ip:D 4 M(f) is an h-equivalence.

Proof:

(a) Consider the following diagram

mt__i_)nu)

Da0 2 D £ A

It will be shown in the next section (see Example2ad that the

inclusion {0} 4 1 is a cofibration. Hence, by Corollary 2.2.9,
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i:DX 04 DX I isa cofibration. Therefore, T:A 4 M([) is also
a cofibration by Theorem 2.1.3.

(b) Construct the following diagram o
D 2Dxi DI 4 3, M (§)

i ¥
Dud adi—t AL (3aE)zauD
A i
D b0 £ A
observe that D X I =DX0UDX1z=DuW D (disjoinL union).

Consider the following diagram

D DUD AL (Da1)2ALD

A

D B A
By horizontal composition (see Remark 1.2.5 (a)) it follows Lhal
AU, DxD)zAaU D

Now, bottom square of diagram (*) is a pushout and composilc
square is a pushout. Hence, by Remark 1.1.4 (b) (ii), iL follous
that upper square of diagram (*) is a pushout.
Now, 141 isa cofibration (see Ezample 2.3.1)

>DXxT4DXT isa cofibration (Corollary 2.2.9)

= 3 D 4 M(f) is a cofibration (Thcorem 2.1.3)
Now, iy = Frk = TjIDxl =

.
Xl

From above, J:A D4 M(f) isa cofibration and [ is the

97



3

inclusion D 4 A & D which is a cofibration (Theorem 2.1.4 (a)).

Therefore, the composite iD =T - k:DX 14 M(f) is a cofibration.

Clearly, D c M(fy is closed.
T f+#"
Construct the following diagram

DL ML)

T

i
mo—F
Now, (£ - prp) - i(d,0) = fprp(d,0)
= f(d)
and 'I\ f(d,0) = f(d). Therefore, diagram commutes and since the
square is a pushout, there exists a unique map rf:M(f) 3 A such
that rrf =f - Prpy and ff'i' = 1A‘ Hence, we have the following

diagram L
D xDdxl > y M)
E)

Now for all d €D, e iD(d) = rf(fk(d,l)) (see part (b) above)
= rglE(d, 1))
= fpry(d,1)
= f(d)

Therefore, ry + ip = f.

We now show that r¢ is an h-equivalence. We already have from

above, that th = 1p. We need only show that Trf g IM(f)' So,



we define a homotopy H:M(f) X I 4 M(f) as follows
H([%t],s) = [x,(1 - s)t], (x,t) €DXI
H([a],s) = [a], ae A

Then,
(a) H([x,t],0) = [x,t]
H[a],0) = [a)
(b) H([x,t],1) = [x,0]
H([a],1) = [a]
But, Irf([x,t)) = T(f « pry(xt))
= Tf(x)
= Fi(x,0)
= [x,0]
and Trgla) = Trel(a)
=T(a), since rf‘f =21
= [a]
Therefore, Irf = IH(E) and ¢ is a homotopy equivalence.

(d) From part (c) above, we have the following commulative diagram

D s N)
. i
A
where g is an h-equivalence, iD a closed cofibration and
£ = relp.
ngan,

If iD:D <4 M(f) is an h-equivalence, then so is the composile
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e+ ip an h-equivalence. Therefore, £:D 4 A is an h-equivalence.
(RS

Suppose f:D 4 A is an h-equivalence. Since f = rfiD and r¢

is an h-equivalence, it follows from Theorem 1.3.2 (a) that iD
is an h-equivalence.

Seclion 11T: Examples and Non-Examples of Cofibrations

The following are examples of closed cofibrations:

The inclusion i:8"1 4 B" (n - 1 dinensional sphere
into the n-dimensional ball) is a closed cofibration. By Theorem
2.2.2 (c) it is sufficient to show that B" x 0 US" X I isa
retract of B X I. Clearly $""L is closed in 8"

Consider the following figure

2=(32) e W R

R

x O

Geometrically, the required retraction is obtained by projecting

B"x 1 onto B"x 1US"™ x T via the radial projection from

4
©=(0,2) € "X R, An esplicit description of the retraction




is obtained as follows:
The vector equation of the line in R" X R passing through
@1 e B xR and (3,t) €BPX ICRVXR is given by:
4 4
) @y = @2 + MGt - 2), vhere A2 0
We want the point on the line through (3,2) for which y, =
Now, y2=o<=>z+1(t—2) =
2
&> )= —4—
A 2 =t
Therefore, the point on the line through (3,2) for which
“0 4§ —2— i3
y=0 is TE (s,0).

Now, observe that when S (U , that is, sl =1 - L , the
2-t 2
4 = 5
point (s,0) belongs to " Lyo. Hence, for Isl <1 - ; "
we have that for all such (s t) e B X I, —£— (s,l)) en"x0.

2=
Consider again equation (*). Suppose we want y1 el Then,

Jesl e by h=1¢> NA =1¢>4=-L, since 420.
! ]

Hence, the point on the 1ine through (8 2) for which ? e s
is given by (3 2) + (s,t -2) = —- (s 2|s| +t-2)
[
= i i 2 Z;t]
131 131

So define rB" X TA4B" X 0USTIX T by



Then, r 1is the retraction described geometrically above and so
the inclusion r:8""1 48" isa closed cofibration. Notice that
if n =1, then i:{-1,1} 4 [-1,1] isa closed cofibration.
since {-1,1} = {0,1} and (1,11 = [0,1] and homeomorphisms
are cofibrations, it follows that 1 = {0,1} 41 isa closed

cofibration.

. 3
fixample 2.3.2: The inclusion of the base point € = {Lissgl) & st

is a closed cofibration.

We use the Characterization Theorem for closed cofibrations (see
Remark 2.2.1 (vi)).

Write &= (1,0) € RXR".

el U= [(x,;) € Snlx 20, ;E R"}. For the case n =1, see

diagram below.
(o,4)
z

2,=(1,0)

4 9
(1-t)x+te

Define H:UX T4S% by H(AL) = — L

Ia-t)x+ teol
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4 4 .
Then, (i) H(u,0) =u as hl=1
R 4 4
(i) H(ept) =ey as legl =1
T
(1ii) H(u,1) = ¢,
3
So, U is deformable in S" to 20 rel ).
Next, define ¢:5" 41 by

i x<0

1
3 e
L LR s

Clearly, ¢ is well defined and continuous. Now, @(go) = 9(1,0) - 0
and so 30 € ¢'1(0). On the other hand, suppose @(x,;) =0
where (x,-y’) € S". Then, ‘Jﬁz =0 whee x20 andso x=1.
But then ;= 0 and hence (x,;) = 20 = (1,0). That is, 0'1(0)
Moreover, .(x,;) =1, for all (x,;") €s" - U since x<O0.
Therefore 1:20 48" is a closed cofibration.

Finally, observe that each inclusion ej 4 s and s"aB"! s
a closed cofibration. Hence, the composite e 4 8" s also a
closed cofibration. Consequently, when n = 0, the inclusion

{1} 4 [-1,1] is a closed cofibration. Now, composing with
homeomorphisms, the inclusion {0} 4 I is a closed cofibration.

Let- us give a geometric proof of this last statement.

Example 2.3.2: {0} 9 1 is a closed cofibration. He show that
IX0UO0XTI isaretract of I X I. Take z=(1,2)ek2
and consider IX I CRS, Let ' € (0XI) U(IX0). Hou

consider the following diagram
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z2=(1,2)
t=as
¢ IL/_
* =i
tzas FE3 ters
7
L
7
(0,0) (1,0)

As before, r:x 4 x' is the required retraction. Using similar
techniques as in Example 2.3.1, the required retraction

r:IXI30XIUIXO0 isdefined by

02+t t-2), t22s

r(s,t) =
L 2
2=t

1+ (s-1,0, t<

~
>

therefore {0} 4 I is a (closed) cofibration by Theorem 2.2.2 (c).

I'xample 2.3.4: The inclusions A+ AV B and B+ AV B where

Av B is the "wedge" of two spaces A and B, are cofibrations.

The wedge A v B is defined by: AV B = (AX {bg}) U ({ag} x B).

Consider the commutative diagram 3=kv k.

~ -
AvE (AvB)x1l-~
ey

AxI
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wh've g and F are given maps such that g =h on AX {bO],
g=k on {ao] X B.
Now define G:X4 Y by

G=F UCqI{BO}XD

=FUC where C:BXI4Y is the constant homotopy Lo
k; that is, Cylb,t) =k(apb) forall teI. This shows that
i:A9AvB isa cofibration. Similary for j:B4A v B.
Examples 2.3.1 - 2.3.3 are particular cases of the general state-
ment that "Inclusions of subcomplexes in CW complexcs are

cofibrations. (See (13, page 28, Theorem 1.4.12)
The following fail to be cofibrations.

Example 2.3.5: let X = [% Ine N} U{0} be topologized as a sub-
space of R and let A ={0}. We show that i:A+4X is not a

cofibration.

Suppose, on the contrary, i:A4 X is a cofibration. Then, by
Characterization Theorem 2.2.2 (c) 3 a retraction r:XX 1 4

XX 0UAX I. Now, consider the following diagram

(o) e ()

AxI

(uo)

S

Xx=xL



Since r is continuous and the points (% 00 forall n=1,2 ...

are left fizxed by r, r then collapses {%} XTI to (% 10 for
each n by connectness. On the other hand, r(0,t) = (0,t) for all
teI. That is, 0 X I is left fixed pointwise by r. Now,

(% , 1) converges to (0,1), but r(% 1) = (% , 0) does not

converge to  (0,1).

But this contradicts the continuity of r at (0,1). Therefore,
Lhere exists no retraction r:XX I 4XX 0 UAX I and hence

i:A 4 X is not a cofibration.

Example 2.3.6: Let M be an uncountable set.

et X =1 with the product topology and A = 0,

We claim 0" 4 1™ is not a cofibration. Suppose that ERULES
is a cofibration. Since 0 is closed in I, it follows that

o™ is closed in M. Hence, by Remark 2.2.1 (vi), Ja map

w5 1 such that uho) = oM,

! -1 Rl 1
Now, 0 =) [0,3) andhence u™(0) =) u™(0,3).

w1 ! n=1 &
Since u is continuous, for each neu'li(),%) is an open

neighbourhood of (}M in IM. Thus, for each n, there exists a

basic open set B= Tl B, with Mes & u'lll),l), where B
meM n "

is open in I forall me M and By =TI forall but finitely ‘
many m, say, my, My, ... M. let Ep={my,m, ., om}on.

E M-
Then E, is a finite set in M and 0" x 1 = pE

®
Nowlet W' = JE,. Then ' is a countable set with
n=1



%
Mo M n1 u‘I[o,%) =ulio = oM et w-w 2, as n
o

is an uncountable set. This is impossible and hence i cannot

be a cofibration.

The following is an example of a cofibration which is not closed.

Examle 2.3.7: lLet X ={ab} and Ty ={9,x{a}} bea topology on
. Let A ={a}. Clearly, A is not closed in X.

Wle claim i:A4X isa cofibration,

Now AXI={(at)lte1}
xx0 = {(a,0} {0}
Xx1I={(t)lte1} u{b,t)lte 1}
Define r:X X I+ XX0UAXI by

{4x,t) if t=0
r(xt) =
fa,t) if >0
— bx1
axl 5
- N
(9,0 (b,0)

It is easy to check that r is continuous and obviously
i =1 . Hence, r is the required retraction and ;o
XXOBAXI  XXOURXI

i:A4X isa non-closed cofibration.
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CHAPTER III

1illig's Union Theorems

This chapter is entirely devoted to a paper of Lillig "A Union

Theorem for Cofibrations" [11]. The gist of the problem is the following:
Given subspaces A and B of a space X such that the inclusion
maps i:A4X and j:B <X have the H.E.P. with respect to 2, under
what conditions does A UB + X have the H.E.P. with respect to 2
and consequently is a cofibration?

In the presentation of this chapter, theorems will be stated and
proved for the case of H.E.P. with respect to 2 and then
reformulated for cofibrations, as a consequence. Before we prove our

firsl result on the HEP, we need the following two lemmas.

Lommy 3.1: If i:AX I 4XX T has the H.E.P. with respect to 2,

then (AX I)U(XXD)4XXI and
(AX I) U(XX0)+4XXI have the H.E.P with

respect to 2.
Here (AX I) U (XX i) is not considered as a subspace
of X X1, but as a quotient space of the topological sum
AX T) U(XXT) obtained by identifying (a,0) with
i(a,0) and (a,1) with i(a,1). Similarly for
(AX I)uU(Xx0).

Proof: Assume we are given the following commutative diagram




9
z
-
$ -~
e
e
7
XXIX0 ;XXI)(I
¥
(*)
. 3 §

{ (AXT)U(XXT) X0 ((AXT)U(XXT) ) XT
where g and Y are given maps such that

9 > =V i

( (AXT)U(XXI))X0 ( (AXT)U(XX1))X0

Wle have to show = amap ®:XX IXI 42 such that

o = [ v =

oo ™ ¢ | merrumciyyns ™ ¥
Let Q:IXIAIXI bea homeomorphism such that

QUIX0) U IX D) =TX0.
The existence of such a homeomorphism is illustrated by the diagram
below. .

& 6 Y i
/ aj@ ' — d / <
@
[ Qb 'c

Now, LI X 0) = (Tx0) U(IxT).

Hence, we have the following map
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-1
1x . .
AXIX0——> XX (IX0UIXT) =XXIX0UXXIXI
: =
Define maps gy =g+ (1, XQ ) (1)
e |quux01
1007 .
ie. XXQ(Ix0) SEXIX0-=> 3
-1
and ¥ =y - (1xQ7h) ; )
%oy lmxrumouxn

-1
1x .
@ s axixTuxxixiYg

fe. AXIXTUXXQEIXT)
Now define Yo:AX IX 142 by
_ 3
%™ Y| ppr &
On Lhe other hand, X X TX 0 =X X Q[{I X 0) U (IX I)]
=XXQIX0) UXXQIXD

So, define qQ:X XIX 042 as follows:

=gy and 4
gQ|XXQ(IX0) 9y an (4)
%lowqrinn) ™ ¥lworixn

That is,
gé(x,l,()) if (£,0) € Q(I X 0) 2

golxit,0) = n . (by eq. (4)) s
Yolsit, 0 E (8,00 € QI X T) i




gt 0l HE (5,0 = Qt',0), (L0) €1X 0
gt 0 = 065,50, (58t € DX 1

Cfsax e m by eq. m)
v x 0 (00,5 (by eq. (20)

glx,t',0) if (t,0) = Q(t',0) 51
Yix,s,s') i (£,0) = Q(s;s")

Now, if (t,0) € Q(I X 0), i.e. (t,0) = Q(t',0),
then, gQ(a,t,O) =g(a,t',0)

= y(a,t',0) by commutativity of (*)
=y, 07 e, 00

=y xoh a0

al ‘Vé(a.t,ﬂl (by eq. (2))

= Yplart, 00 (by eq. (3))

Again, if (t,0) € Q(i x 1), i.e. (t,0) = Q(s,s"), then
qQ(a,t,O) = VYla,s,s') (by eq. (5))

= y(a, 072t 00)
=y (1 xgh @
= Yhlait,0) (by eq. (2))

2 ‘FQ(a,t,O) (by eq. (3))



Thus we have the following commutative diagram

XxIxO

Ax1:0 AxTxl
Since AX I 4 XX I has the H.E.P. with respect to 2, a map

WO:X XTI X142 suchthat

() = 6
°|xx1x0 % o

and

o, "
Q(Axm %

Now define a map ®»:2X I X142 by

o=

" 1, X Q)

We claim that @ is the required map completing the diagram (*).

First,
Os,t,0) = (1, X Q) (x,t,0) = y(x,0(t,0))

= QQ(X,Q(t,DH (by eq. (6) as
Q(t,0 € Ix0)

= 9g(xQ(t,0)  (by eq. (4)



=g+ (1 x 0 (5,00, 00)
(by eq. (1))

= q(x,t,0)

Therefore, =g
XXIX0 XXIX0

Now, let (a,t,s) eAX I X1I.
Then ®fa, t,s) = QQ(IXX Q) (a,t,s,) = OQ(a.Q(t,s))

= VYpla:Q(t,s)) (by eq. (6) as
Qot,she Ix0cixn

= Ypla:Qlt,s)) oy eq. (3))

=y 1, x 0,0
(by ¢q. (2))

= y(a,t,s)

Again, let (x,t,s) €XX IXI; that is, (t,s) € (IX I).
Then Ofx,t,5) = (1 X Q) (x,t,5) = 0y(z,01t,5))

= t by . (6) si
9l QlL,s)) é(!,gl} E(I)XS‘IJI)K:E
= Yg(=Qlt,8)) by eq. (1))
=y x 0heor, s by eg. ()

= Ylz,t,s)



Therefore, O =y andso (AXI)U(XX 1) 9 XXI has

IXIXIURXIXT
the H.E.P. with respect to 2.

Similarly, one can show that (A X I) U (XX 0) 4 X X I has the
H.F.P. with respect to Z. Notice that in this case ve use a
homecomorphism P:I X I 41X I with the property that

P((IX 0)U(0XxTI))=Ix0. Such a homeomorphism P can be
illustrated diagramatically as follows:

C,‘ Ca ¢ Ca

o a—, 4 — 4

b e b a b
We lcave the details of the proof to the reader.

Before we proceed to the second lemma, we need the following

definition,

Definition 3.1: A subspace A of a space X is called a Nullstellen
set if there exists a continuous map u:X 4 I with u'l(ol = A,
By Remark 2.2(ii), if (X,A) is a closed cofibred pair, then A

is a Nullstellen set.

Lemma 3.2: let ACX bea Nullstellenset. Let f,9:X- Z be
continuous maps with ®:f = g rel A. Then there exists a homotopy
B £ =qrel A with Dx,t) = O(x,ufx)) = d(x,1), for all x € X

and t 2 u(x).

Prool: Since A CX is a Nullstellen set, there exists a map u:X 41
such that vl(0) = .
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Now, ®:f = g rel A means that ®&:X X I 4 2 is a map such that

O(x,0) = f

Ox,1) =g
and Oa,t) =f(a) =gla), ae A and tel.
Define ®:X XTI 2 by

O(x,1), for t 2 u(x)
Bix,t) = {D(x,t), for u(x) =0
O(X'ﬁ)' for t < u(x) and ulx) #0

= ulx), _
If t = u(x), then ¢(X'u(x)) (x,1).

If u(x) =0, then x € A and Ox,t) = D(x,1), for all t el.
Hence, ® is well-defined.
Let F ={(x,t) eXX Ilt2u(x)} and
6 ={(xt) exx Ilt<u(x)}
Now, ﬂ>|F =®(x,1) and hence ®|F is continuous.

We now show that ®|G is continuous.

Case 1: let x €X-A. Then u(x) #0 andso ¥ (z,t) :fb(x,a -

Hence, ® is continuous at (x,t).

Case 2: 1let a €A, Then u(a) =0 and so (2,0) € G. We claim

?IJ|G is continuous at {a,0) for all (a,0) € A X 0.
Now, ﬁ)|G (a,0) = ®la,0) = f(a).

Let V be a neighbourhood of f(a) in 3.

Since @ is continuous at (a,t), aneighbourhoods U of a in %
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and R of teTI suchthat ®(U XR) CV.
Since I is compact, there exist finitely many tg, ty, ..., tp € I)

m
such that T= U R .
k=0 "k

Let U be the intersection of the corresponding finite number of
neighbourhoods Uy i that is, U= 80 Utk. Then, U is a neighbour-
hood of a in X such that, for all (a,t) e UXI, ®UX I) cV.
Now, if (a,t) € (UXI) NG, then t =0 arnd ®(a,0) = B(a,0) €

BU XTI cV.

Therefore, (UX I) NG is a neighbourhood of (a,0) in G such that
ﬂ)‘c ((UXI) NG cV.

Therefore, ®|G is continuous at (a,0), for all ‘3,0) € A X 0.
llence, combining cases (1) and (2) we have that iDG is continuous.

Now, O is continuous on each of the closed sets F and G, and on
Lheir intersection where t =u(x), ®(x,t) has the unique value
®(x,1). Thus ® is continuous by Theorem 1.2.1.

Finally, ®(x,0) = ®(x,0) = £

D(x,1) = O(x,1) =g
D(a,t) = Bla,t) = f(a) =gla), aeh tel
Aso, for t 2u(x),

D(x,t) = B(x,1) = B(x,u(x)), as required.




Theorem 3.1: Assume A 4 X has the H.E.P. with respect to 2 and
let B be a subspace of X. Assume also that there exists a map
wX4 1 with Acul(0) and [u’B]'l(m =AnB. If

BXI4XXI and (ANB) X I4BXI have the H.E.P. with
respect to Z, then A UB 4 X has the H.E.P. with respect Lo 7.

Proof: Given the commutative diagram

(*)

—_—
(A UB) X0 (AUB) XI=(AXI) UBXI)

Construct the following diagram

£

7
& N, o
@l ax

AX 0 Pax1

Since the diagram (*) commutes, it follows that [l 0= Qll o
AX X
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Now, since i:A 4 X has the H.E.P. with respect to J, there exists
amp ®:XXx1I472 such that

®xx0 =k mlm ) (D|AXI

Define maps @':X X I X 042 by

P (%,5,0) = O(x,s)

PBXIX143 by

9'(b,s,1) = 9(b,s)
F:XX0XI42 by H

F(x,0,t) = £(x,0)

and Y:(ANB) XIXI42 by
Yia,s,t) = y(a,s,0) = 9fa,s).

Now construct the following commutative diagram

E Z
/77
L 4
7
BX0XI $BXIxI”

i

Vo vy

{

(APB)XOXTUBXOXT (3B XIKIUBXIXOUBXIX1

P



By Lemma 3.1, there exists Y:B X IX I 42 such that
y(b,s,0) = ' (b,s,0) = Dlb,s)
Yibs,1) = ¢'(b,1,5) = b, t)
y(b,0,t) = F(b,0,t) = £(b,0)
VYia,s,t) = yla,s,t) = y(as,0) =0(a,s).

This implies that y:®= ¢ rel ANB
Now define u':BXI4 1 by

u' (b,s) = u(b)
Then (u')7L(0) = [uis]'l(()) XI=(ANB) XI andso (AND) X1

is a Nullstellan set.
Hence, by Lemma 3.2, we can deform y to ¥ such that
J:0= ¢ rel ANB with

Yib,s,t) = Plb,s,u' (bs))
= {(b,s,u(b)) = yib,s,1), for (b,s) €BX I

and t 2 u'(b,s) = u(b)

Now construct the following commutative diagram &I z
z
e
-Q/
v
XXIXO0 yAXIXI
NV uF

[ (BXI)U(X0) ]X0 ? [ (BXI) U(x0) IXT



Since BX I 4 XX I has the H.E.P, with respect to 2, it follows by
Lemma 3.1 that (B X I) U (XX 0) 9 XX I has the H.E.P. with respect

to % and so there exists a map Q:X X I X I % such that
Q(x,s,0) = ¢ (x,5,0) = d(x,5)
Qx,0,t) = F(x,0,t) = £(x,0)
and Q(b,s,t) = Ylb,s,t), b€ B
Finally, define H:X X I -4 by
(x,s) = Q(x,s,u(x))
Then,
H(x,0) = Qx,0,u(x))
= F(x,0,u(x))
= f(x,0)
and H(b,s) = Qb,s,u(b))
= Vb, s,u(b))
= Y(b,s,1)

= Q(b,s)
Also,

H(a,s) = Qa,s,u(a))

= Ua,s,0)




= O(a,s)
= 0a,s)

Therefore, H:X X I 9 Z as defined above, is the required map making
(*) commute.
Therefore, (A UB) 4 X has the H.E.P. with respect to Z.

Given two subspaces A and B of X, we define an equivalence
relation ~ in X X I by identifying (x,t) and (x,0) for t el
and x € ANB.

That is,

(x,t) if x¢ANB
lx,t)] = )
{(xtilt e1} if xeAnsB

Xx4i

X»0

Let X =XX I/~. Observe that X is the pushout of the diagram

ANB) X I 3ANB



Let 7m:X 4 X be the projection map; i.e. f{x,t] = x.

Definition 3.2: Let ~ be the equivalence relation defined above.
We call two subspaces A and B of X separated if there
exists a continuous map j:X 4 X such that © - j=1x and
j(x) = [x,0] for ze€A, jlx) = (x,1) for x € B.

We now give several criteria for the separation of two subspaces of a

space X and eventually show that closed cofibrations are separated.

lemna 3.3:
(a) Given subspaces A and B of X and a map
WX - (ANB) 41 with A- (AnB) cul(0) and
B-(ANB) c u'ltl), then A and B are separated.
(b) (i) If A and B are Nullstellen sets, then a map u
exists satisfying the hypothesis in (a). In particular,
if A4X and B+ X are closed cofibrations, then A
and B are separated.
(i1) If A and B are Nullstellen sets and if
FrA NFrB CANB, then a map u exists satisfying the
hypothesis in (a). In particular, if A4 X and
B9 X are cofibrations and if FrA NFrB C A NB, then
A and B are ceparated. (Here, FrA denotes the
frontier of &; i.e. FrA=An (ﬂ).)

Proof:

(a) Define j:X-)i by




. [x,u(x)], for x¢ (ANB)
jlx) =

[x,0] = [x,t], for x€ (ANB), t el

We claim j is continuous.

Define W:X - (ANB) 41 by
uU=u on X- (ANB) and if

lim ¥ =X€EANB vhere (x)) € X - (ANB) is a net, then
is the following

() =1 = lin(x)). Hence j
u(x) m\u(xl) mu(x;') lence ]X-(AI‘B)

[ — ] G o o 4 Y
composite X - (A NB) ——> X X I —> X which is continuous.

is

Moreover, j ANB4X is continuous since clearly j
B

continuous and if lim ¥ =x€eX-(ANB where (x)) €ANB is a
net, then lim ]'(xl) = lim lxl,ol = IM[xA,u(x)]

= [xu(x)]

=jx)
are continuous,

Since X=X-ANBUANB and jl_. and j|
ArB X-(ArB)

it follows by the Map Glueing Theorem (Theorem 1.2.1) that j is
continuous.

Now,

. m((xux)])), x¢ANB
Teojx) =

n((x,0]), XEANB
=x forall xeX

That is, ® + § = 1y.
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Suppose % € A.

Case 1: X€EANB
Then j(z) = [x,0] by definition of j.

Case 2: x€A- (ANB)
Then j(x) = [x,u(x)]
But xeA-(ANB) =>ulx) =0 as A-ANBCu(0)
Therefore j(x) = [x,0].

In either case, j(x) = [x,0] for x € A.

Suppose x € B.

Case 1: x € ANB
Then j(x) = [x,0] = [x,t], t €1
In particular, j(x) = x,1].

Case 2: x €B- (ANB)
Then j(x) = [x,u(x)], as x ¢ (ANB)
= [x1],as B- (AnB) culq).
In either case, j(x) = [x,1], for x € B.

Thus, A and B are separated.

(b) (i) This is a special case of case (ii). To see this, A
and B are Nullstellen sets implies that there exist
maps u:X- I and viX- I such that u_l(Ul =3 and
v(0) =8 since uwl(0) and vTl(0) are closed in
X, ve have that A=A and B=B and so A and B
are Nullstellen sets. Now, Fr(a) = an (m) (_:X =3
and Fr(B) =B N (X-B) CB=8 and so Fr(d) NnFr(8) C



A NB. Hence, by case (ii) there exists a map u i

satisfying the hypothesis in (a). Therefore, A and B

are separated.

Now, if A4 X and B -4 X are closed cofibrations,
then by Remark 2.2 (ii), A and B are Nullstellen sels
and hence from above it follows that A and B are

separated. Therefore, closed cofibrations are separaled.

(ii) A and B are Nullstellen sets => maps hpix a1
such that A =A"N0) and B =p7l(0).
Define u:X - (ANB) 41 by v
ﬁ(%]m , for x¢ i_nE )
u(x) = 1 , for xe (A-A) NB
0, for xe (B-B) Nh

We claim that u is continuous.
Observe that A B = (A UFIA) n (B U FrB)
= (AnB) U (hNFIB) U (BNFrA) U
(FrA N FrB)
Since 1.\ n }'3 CANB and FrANFrB c A NB, it follows Lhal
(ANnB) - (ANB) = [(ANFB) - (ANB)] U (BNEA) - (ANB)|
=An@B-B UBN(A-A

Therefore, X - (ANB) =X - (AnB) U@ -A NBU(E-B nh.
Now, X - (ir\ﬁ),f\, B CX are open. So, X—(Kr\E),[x~ (AnB),
B-(ANB) CX-(ANB) areopenand X - (ANB) =% - (ANE) U
(A-ANB) U(B-ANB). Nowdefine N:X - (ANB) 41 by



M) L(x) + plx)

CpA-ANBAT by Cyix) =0, forall x.
C:B-ANB4T by Cy(x) =1, forall x.

Clearly, 1, Cp and C, are continuous and 1 UCyUCi:X-ANBSI
is continuous since the maps 1, Cy and C; agree on overlaps of
open sets (see comment following Theorems 1.2.1). For example if
ve(X-(ANBNA-(ANB) then x€h x¢B, i.e. xeh,

% ¢ B, so (x) = =0 and Colx) = 0. Note that

el
0+ pu(x)
(I.\ -ANB N (lll - ANB) =§. Finally, the continuity of u
follows by observing that u = U Couty.

We now show that the map u:X - (ANB) 4 I satisfies the hypothesis

in (a).

let x€B- (ANB). Then, x€B and x €A, So, x€ (A-A) NB or
X¢ AnB).

If xe (A-A) nfl, then u(x) =1 by definition of u.
I x¢ (A n§), then since x € B and hence x € E, it follows that
x ¢ A. Consequently, A(x) # 0 and ji(x) = 0. Therefore,

. AMx A : -
u(x) = TRYT = m‘—i—o 1. In either case, u(x) = 1. That

is, B~ (ANB) C u'l(l)‘ A similar argument works for A - (ANB),
that is, A - (A NB) gu'l(Ol. Hence, the map u defined above

satisfies the hypothesis in (a) and so A and B are separated.
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Suppose now that A4 X and B 4 X are cofibrations such that
FrA NFrB C A NB. Then by Theorem 2.6, A4X and B4 X are
closed cofibrations and so by Remark 2.2(ii), A and B are
Nullstellen sets with FrA NFrB c A NnB. Therefore by Lemma
3.3(b) (ii) above, A and B are separated.

Lemma 3.4: Let A be a subspace of X such that AX 1 CXX I has
the H.E.P. with respect to 2. Let K, L:XX I 42 be homotopics
with KO = K(-,0) = L(-,0) = I"O and K =L . Then there

AXT AT

exists a homotopy ®:K =L rel (AXI) U (XX 0).

Proof: Define g:(XX IXI) UXXO0XT) 42 by

K(x,s) for t =0 or s=0
qlx,8,t) =
L(x,s) for t =1

and WAXIXI4Z by

yla,s,t) =K(a,s) = L(a,s), foral tel.
Since g is defined by continuous maps on closed subspaces, and on
the overlaps XX 0x 0 and XX 0 X 1 these maps agree, that is,
q(x,0,0) = K(x,0) and g(x,0,1) = K(x,0) = L(x,0), g is continuous
by the Map Glueing Theorem (see Theorem 1.2.1). Clearly, ¥ is
continuous.

Consider now the following commutative diagram



e
xx0x1_7 SXXIxT

5 3 3
AXOXTUXXO0XI AXIXIUXXIXI

Since AX I+ XX I has the H.E.P. with respect to 4, Lemma 3.1

implies the existence of a map ®:X X I X I 4% such that

4)‘ =g and Q| L=yuUg ., that is,
XXOXT XX0XI AXIXIURXIXT XXIXI
O s and @ s =g. We show that ®:K ~ L rel (A XI)
y 9
AXIXT XXIXTURXOXT
U (X x0).

First, ®(xs,0) = g(x,5,0) = K(x,s) and
(x,s,1) = g(x,s,1) = L{x,s)>
Now, let (a,s) € A X I. Then,

Ola, s, t) = yla,s,t) = K(a,s) = L{a,s), t € I.
Let (x,0) p X X 0. Then,
B(x,0,t) = g(x,0,t)
= K(x,0) = L(x,0)

Therefore, ®:K = L rel (A X I) U (X X 0), as required.
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Theorem 3.2: Assume that A 9 X, B4 X have the H.E.P. with
respect to %, If (ANB) XI9XXI has the H.E.P. with
respect co 2 and A and B are separated, then AUB 4 X has
the H.E.P. with respect to 2.

Proof: Let

-
XX 0 3 XX 1

(AUB) X0™AUB) X I

be a commutative diagram, where f and ¢ are given maps such

that ¢ =f . But A9 X and B4 X have the
(AUB) X0 (AUB) X0

H.E.P. with respect to Z; that is, the following diagrams arc

commutative, /7‘2
§7
/ vl
X 0—’)( X I XXx0 )X X1
@ pax
—_— ey
AX0 AXI BX0 BXI

and hence maps dJA:X X I42 and (DB:X X I 4% such that

¢A|AXI - ¢|m s Oy(-,0) = £ and QB|B><I - (p|sx1 ) By-0) = 1




Now, ANBCA and ANBCB and hence

tb"|(mz)><1 ) Ro| (BT mB| (arB)x1

Since (A NB) X 14X X I has the H.E.P. with respect to Z,
there exists, by Lemma 3.4, a homotopy w:@A = d)E rel ((ANB)XI)
U (Xx 0)). By hypothesis, we have a continuous map j:X 9 X with
jlx) = [%,0], x € A and

j(z) = [x,1], x € B.

Now consider the following diagram

L, xT
XX IXI SXXIXI 2
=l
”//
P, 2 —
=
g
~ //
X1

where p:X X I+ X is the identification map and T:T X I 4 IXI
switches the factors. Themap Y (1, XT) factors through
p X 1y and hence by the universal property of quotients, it
induces a map Q:X X 142 such that

Q- (px I =y (lyx 1)
Now define

Q- (3xid):XxI42

Then, Q - (3 X id) (x,0) = Q(j(x),0)
= Q((x,t1,0)
= Qp(x,t),0)




= QU(p X 17) (x,t,0))
=y (X Tint,0)
= yix,7(t,0))

= Yix,0,t)

= 0 (x,0) = Glx,0)
s f

Similarly, Q - (j X id)(x,t) = ¢(x,t), x € A UB. Therefore,
Q- (j X id) is the required diagram filler in (*¥) and so
AUB - X has the H.E.P. with respect to 7.

Wle now reformulate Theorem 3.1 and Theorem 3.2 in terms of cofibralions

and obtain the following important results on cofibrations.

Theorem 3.3: (Union Theorems) Iet A= X and B4 X be cofibralions.
Suppose

either (a) ANB 4B isacofibration and ANB=ANB

or (b) ANB 34X is a cofibration and A, B are separaled.

Then A UB4 X isa cofibration.

Proof:
(a) Since A5 X is a cofibration, A4 X isa closed cofibralion
by Theorem 2.6, and so by Remark 2.2(ii), there ezists a map
9:X 4T with A =970).
Consequently, {@l ]_1(0) =inB
3 = AN B, by hypothesis.
Now, B4 X and ANB- B are cofibrations imply that
BXI4XXI and (ANB)XI3BXI arecofibrations by



Corollary 2.9 and hence have the H.E.P. with respect to
every space Z. Therefore, by Theorem 3.1, AUB 34X isa
cofibration.

(b) Since A4 X and B4 X are cofibrations, A and B have

the H.E. P. with respect to every space 2. Moreover,
ANB4X 1isa cofibration implies that (ANB) XTI 4 XX I
is a cofibration and hence has the H.E.P. with respect to
every space 4. By hypothesis, A and B are separated and
so it follows from Theorem 3.2 that A UB 4 X has the H.E.P.
with respect to every space Z. Therefore, AUB4X isa

cofibration.

The following are easy consequences of the Union Theorems for

cofibrations:

Theorem 3.4:
(a) If A4X and B+4X are closed cofibrations and if
ANB+4X isa cofibration, then AUB A4 X isa

cofibration.
(b) let A;4X ..., A 94X beclosed cofibrations. For each
subset 6 C{l, 2, ..., n}, let Ag= N A CX bea
& Leo
cofibration. The, U A giX is a cofibration.
=1
Proof:
(@) If A4X and B4 X are closed cofibrations, then A and

B are separated by Lemma 3.3(b) (i). Since AN" 34X isa
cofibration by hypothesis, it follows that AUB 4 X isa
cofibration by Theorem 3.3(b).



(b) Follows by induction.

Remark 3.1: Theorem 3.4(b) does not hold in gemeral for countably

many cofibrations. To see this, let X =1, and Ay = {o,1/2}.
®

=12 ... and A= U A ={o}u{ll=1 2 ]
21 : l| s

Clearly, the set A is closed in X. Now, for each £ € {1, 2 ],
L {0,172} ={0,1} 4 [0,1] = X and hence the inclusion maps

By 3 X are closed cofibrations by Example (2.1). But we have

seen in Example (2.6) that A 9 X is not a cofibration.

Example 3.1: If ag€h and b0 € B are non-degenate base points
(i.e. {ag} 44 and {bg} 4B are closed cofibrations) and
AvB=ax b} Ufag} X B (called the wedge of A and B),

!
i
|
!
i
i
i

then Av B -4AX B is a cofibration. This follows from

Theoren 3.4 (a) since A X {bg} + 2x8, {a} x B4A X B and

AX {ba] n {ao} X B= {ao} X [bQ} 4A X B are closed cofibrations
by Corollary 2.9.
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CHAPTER IV

Further Results on Cofibrations

This chapter is devoted to a recent theorem of Kieboom (see (10])
and related results. In particular, some of the well known classical
results of Strém [15] are retrieved as special cases of Kieboom's
Theorem, thus avoiding the technicalities of local arguments given by
Strom. But first, we give a preliminary definition which is essential

Lo Kieboom's Theorem.

Definition 4.1: A map i:pA 4 Py in Topg is said to be cofibration

over B

if there exists a fibre retraction of the canonical inclusion

: PyP:
i) Doy =xxougaxt g xxr 3%

of the mapping cylinder over B; that is the dotted arrow exists
in the diagram
XxOLLAxT P—C { T T XY
_7

—
-

oli) A7 4(1)
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such that the resulting triangles commute.

Remark 4.1: If i:A 4X is aclosed cofibration in Top and if
further p, and py are Hurewicz Fibrations, then

i:py 4 py is a cofibration over B (see [7; Theorem 1.3]).

Wle now prove the main theorem in this chapter. It is due to Kieboom
(see [10; Theorem 1]).

Kieboom's Theorem 4.1: Consider the following diagram in Top.

(A E

Ajii 2 €
» . i)
9 (A = Dy 2> 43 b
A ki B
% 4/ \ i
AL

i
B,
4

-3

\
N

in which i and j are inclusions, DA=q_1(1\] and B = p'1

(n) .
The other maps  ip, iD' jA' pp and gy are induced by 15 dnp
and q, respectively.

If

(a) i is a closed cofibration

p is a fibration and

j is a cofibration over B

(b) i is a cofibration
p is a reqular fibration and

j is a closed cofibration over B



then E; UDSE isa cofibration.

Proof:
(a) j:D4E isa cofibration over B => A 2 retraction r:EXISE
X 0UD X I over B, that is, the following triangles commute

Ex0 U Dil Exoly DI
=7

. // -
o) Pl 30d)

—
-

E '~
(39 Ppre )
and hence q(j)r(et) =p(e) forall (e,t) € EX I. Note that,
deDNE,<>deD and d€ B =p i)
<=>d €D and p(d) =q(d) €A
e deqlm =,
and so D NEy = D,.
Now, for all (e,t) € EA X1, q(jlr(e,t) = p(e) € A and so
r(e,t) € (EAEA) X0 U (DhE.A) X1
=> rfe,t) €8y X 0UDy X T
=> r restricts toa retraction ry:Ey X T4 EyX 0 UD X T

=> jyidy 4 By 1is a cofibration.

Now, consider the following diagram
prw-Ea_ te  E
%, P
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where 1i:A 4 B is a closed cofibration and p:E - B is a fibration.
By Theorem 2.2.4, it follows that

a7 B is a closed cofibration.

But ipjy = Jip from (*) and igj, dis a cofibration (composition
of cofibrations) and so jip is also a cofibration. Since j is
a cofibration by hypothesis and jiD is a cofibration, it follows
from Theorem 2.2.7 that ij:Dy 4D is also a cofibration.

Since p:E 4 B is continuous and A is a closed subspace of B,
it follows that Ep

p'l(A) is a closed subspace of E.
Consequently, By = Ej and E,nD =8 ND.
We now have Ep4E
DA4E } are all cofibrations
EA np = DA 4D
and Ey ND=E ND
Therefore, by Lillig's Theorem 3.3(a), By UDSE is a cofibration.
(b) Since p:E 4 B is a regular fibration and i:A - B is a colibralion,
it follows from Theorem 2.2.5 that igiEp 4 & is acofibration.

Now, as in (a) above we have

D2 E
Ey4E are all cofibrations
D_ﬁ Ep = DA ) EA
and DN Ey=DNE, (since j is a closed cofibration).

Therefore, D UE, 4 E is a cofibration by Lillig's Theorem 3.3 (a).

Corollary 4.1: If in diagram (*) of Theorem 4.1, i and j are closed
cofibrations and p and q are fibrations, then ByUDAE s

a closed cofibration.



Proof: By Remark 4.1, j is a cofibration over B. Hence, by Theorem

4.1(a), EA UD is a closed cofibration.

The following theorem is a modified version of Strém's Theorem (see
116;131).

Theorem 4.2: Let 1i:A 4 B be a closed cofibration, and p:E- B a
fibration with s:B 4 E a section of p (i.e. p.s. = 1p) such

that s(B) 4 E is a closed cofibration. Then EyUSB)4E s

a closed cofibration,

Proof: Consider the following diagram

B, ‘e LE
@ J
L /’
e 2,58l $
A B

‘h'\// 4
A .
4

Since s:B+4 E is a section of p, it follows that

q= p‘ :s(B) 4+ B is a homemorphism
s(B)

and therefore q = p‘ i is a fibration.
s(B

Now, q’lll\) = s(B) NE,. Hence, by Corollary 4.1, Ey Us(B) 4 E

is a closed cofibration.
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We now see how Theorem 4.1 is applied to retrieve Strém's Product

Theorem (see [16; Theorem 6]).

Theorem 4.3: If (X,3) and (Y,B) are cofibred pairs with either A
or B closed, then the product pair (X,A) X (Y,B) = (XX Y,
XX BUAXY) isalso cofibred.

Proof: 1let j:A-+ X and 1i:B+Y be inclusions. Assume without any

loss of generality that A is a closed subspace of X.

We construct the following commutative diagram
pp=xee Mty

Tx4 A
g0 =Are 8l faxt LAy *y

By hypothesis, i:B4Y isa cofibrationand py is a regular
fibration being the trivial fibration. Since j:A -4 X is a
closed cofibration, it follows from Theorem 2.2.9 that

X 1A X Y4 XXY is aclosed cofibration. As py and gy
are Hurewicz Fibrations, it follows from Remark 4.1, thal

j X 1y is a closed cofibration over Y. Thus, by Theorem 4.1(b)
we have that X X BUA X Y4 X X Y is a cofibration. The case
that B is a closed subspace of Y is a consequence of Theorem

4.1(a). The verification is left for the reader.



Note that (X XY, XX BUA X ¥) need not be cofibred if neither A
nor B isclosed. To see this we consider the following example

(see [2; page 81, Example 3.23]).

Ezample 4.1: Take X = {a,b} where a#b and A= {a}. Topologize
X by taking ¢, A and X as the open sets. Clearly, A is not
a closed subspace of X and we have seen that A4 X isa
cofibration by Example 2.3.7.

Now take B=A and Y = X. We will show that C= (X X&) U (AX X)
4 X XX isnec a cofibration.
Suppose C 4 X X X 1isa cofibration, Then, by Remark 2.2.2(b), C
has a halo V in XXX and a retraction 0:V+4C. Again, by
Remark 2.2.2(a), V 1is also a halo of C in X. Since A= X,
it follows that T =XX X and so we take V =XXX.
Now, bed =Ta] = (o) efa] x [of = [af x {0] = {(a,0)}

=> 0(b,b) € m}' by continuity of 6.
Now, {a,b) € C and 6:V - C is a retraction. Hence G(a,b) =
(a,b) and so G(b,b) € {(a,b)]. Notice that {(a,b)} = Ta} x {o]
- [af x m as {b} is closed in X and consequently, G(b,b) €
{af x {o}. mhus, pryo(b,b) =b. Bt G(o,b) € C and so ve have
0(b,b) = (a,b). By a symmetric arqument, we obtain o (b,b) = (b,a)
which then implies a=b contrary to hypothesis. Therefore,

C= (AXX) U(XXRA) 4X XX is nota cofibration,

Remark 4.2: (X,A) is cofibred => (X X I, X X0 UAXIUXX1) is
cofibred. By Example 2.3.1 (the case n =1), I 41 is a closed i
cofibration and hence by Theorem 4.3 (X,A) X (I,I) = (XX I,

XX 0UAX TUXX1) is acofibred pair.



The following theorem is a type of converse to the product rule

(Theorem 4.3).

Theorem 4.4: Suppose that for A CX, there exists a continuous
function 6:X 41 with A 50'1(0), and that there exists a poinlL
%) € X - A such that ©O(xg) #0. Then if (Y,B) is a pair such
that (XX Y, XX BUAX Y) is cofibred, (Y,B) itself is

cofibred.

Proof: Let M:XXY4 I and F:XXYXI3XXY bemaps for

(XX Y, XXBUAXY) as described in the Characterization
Theorem 2.2.2(e) .
That is, XX BUAX Ycn H(0) and

F(x,y,0) = (x,y) for all (x,y) e X XY

F(r,s,t) = (r,;s), (r,s) EXXBUAXY, tel

F(x,y,t) € XX BUA X Y whenever t > n(x,y).
let O(x)) = € where 0 < €<1; and define W:I 41 by y(t) =
t/e. Then Yo:X - I is a map such that Yo(a) = y{0) = 0 and
w(xo) =1. Hence, we may assume that U(XO) =1. We nowdefine
functions G:YX I4Y and WY 41 by Gly,t) = pryF (%5, t)
and Y(y) = Max((xq,y), 1 - z:g OpryF (kg y,t) -

Clearly, G is continuous as F is continuous and pry is

continuous. In the case of V, notice that 17 Y41 s
{zo}x‘{
continuous and the continuity of Inf Opryf (zg,y,t) is analogous
tel

to the continuity of the tunction ¢ defined in Characterization

Theorem 2.2.2(e). So, ¥ being the mazimum of two continuous



real valued functions is continuous. Furthermore,

(b} = max({x,b), 1 - Inf GpryFixyb,t))
tel
= max(n(xﬂ,b), 1 - Inf szx(xo,b))
tel

= max (1{xg,b), 1 = Inf 0{x4))
tel
= max(n(xo,b),m
:n(xo,b), as n(xo,b) 20
=0, as (xpb) X XB and XX BUAX yenlo .
Therefore,
3!
Beylo .

Next, G(y,0) = pryF(xg,y,0) = pry(xg,y) = y.
G(b,t) = szF(xo,b,t) = prylxg,b) =b.
Suppose, n(xo,y) 21 - Inf cerF(xo,y,t]‘
tel
Then, F(xyy,t) € AX Y =>7(xqy) = 1. Hence, if t>yly) =
N (s y), then T(xy,y) < 1 and so Gly,t) = pryF(xq,y,t) € B,
since F(xu,y,t) € X X B. A similar argument holds true for the

case 1 - Inf o‘erF(xO,y,t) 2 ﬂ(xO,y). Therefore, (Y,B) is
tel
cofibred by the Characterization Theorem 2.2.2(¢).

Corollary 4.2: (X.A) is cofibred <=> (X X I, X X0UAXI) is

cofibred.
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Proof:

"=>": Suppose (X,A) is cofibred.
By Example 2.3.3, (I, {0}) is a closed cofibred pair. Hence, by

Theorem 4.3, XX 0 UAX I4X X I is a cofibration.

"<=": Suppose XX0UAXI- XXI isa cofibration. Put

A= [n}, Y=X B=A and X= 1 in Theorem 4.4, and observe
that since 04 I is a closed cofibration, there exists a map
0:I 41 with U-l(ﬂ) =0, as {0] is closed in I and so therc
exists xp €1~ {0}, (i.e.%) #0) suchthat o(xg) #0. There~

fore, by Theorem 4.4, (X,A) is cofibred.

Theorem 4.5: 1let i:A+4 X be a cofibration. Then, i is a homotopy

equivalence iff A is a strong deformation retract of X.

Proof: Suppose i:A 4 X is a homotopy equivalence. Then there

exists £:X4A such that fi =1) and if = 1y. Consider the

following diagram




vhere F:AX 14 A isthe homotopy fi to 1,; that is,

F(-,0) = fi and F(-1) = IA‘

So, Fao(a) = F(a,0) = fi(a); and therefore, fi = E‘(!O. Since

i:A 9 X is a cofibration, there exists 0:X X I 4 A such that

Bg(x) = 6(x,0 = £(x) and G(i(a),t) = Fla,t). Define

r:X 9 A by r(x) = 6(x,1). Then, for all a € A, ri(a) = 6(i(a),1)

=F(a,l) = 1A(a) =a.

=>r is a retraction of X onto A and G:X X I3 A is such
that o(x,0) = f(x) and O(x,1) = r(x).

= f=r (i.e. f 1is homotopic to a retract).

=> if = ir

Sy = ir

So, let G:X X I 4 X be a homotopy from lx to ir. That is,

G(x,0)

Since 141 and A4 X are cofibrations, so is their product

]X and G(x,1) = ir.

(XX I, XX 0UAXIUXX1) acofibred pair by Remark 4.2.
Now, define a homotopy Hy:(XX 0 UAXIUXX 1) XI4X by

Lhe following equations

He((x,0),8) = x
Hel(a,t),s) = Gla, (1-s)t)
He((x,1),8) = G(r(x),1-s)

Now, for all a € A,

Hi((a,0),s) = a =G(a,0) by the first two equations and

Hi((a,1),s) = Ga,1-s)
= G(r(a),1-s) by




the last two equations. Hence, H, is well defined. We claim
that H, is continuous.

Since (X,A) is cofibred and (I,i) is a cofibred pair by
Example 2.3.1 (the case n = 1), it follows by Theorem 2.2.9 that
XX IX i, A X IX0) is cofibred and hence, by the Characteriza-
tion Theorem 2.2.2(c) and Remark 2.2.2(a), we have that X X I X 1
VA X IXI;XXiXIUAXIX I has the final topology with
respect to the inclusions of the subspaces X X I XTI and AX TXI.
But the restrictions of H, to each of the subspaces X X I X I
and AXIXTI is clearly continuous. Hence, globally H, is
continuous.

Consider now the following diagram

G

XxT

-
XxOUAxT uXxl (%<0 uAsT uxxl)xI
Since H,(x,0.0) = % = G(%,0)
Hy(a,t,0) = Gla,t)
Helz,1,0) = Gr(x),1) = ir(c(x) = ir(z) = Giz,1)
the diagram commutes and hence there ezists a map H:Z X I X T 4%

such that H =G and H =H
I (AXOURXTUAXT ) XT

145
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Define H:XX 14X by
Hix,t) = Hiz,t, )X x T4 X
Then (i) A(x,0) = H(x,0,1) = Hy(x,0,1) = x
(i) Hi(x,1) = H(x,1,1) = Glr(x),0) = r(x) €A
(iii) f{a,t) = H(a,t,1) = Hela,t,1) = G(a,0) = a
Therefore, A is a SDR of X.

"¢=": Clearly, i:A+4 X is a SDRof X=>1i is a homotopy

cquivalence.

Corollary 4.3: f:D 4 A is an h-equivalence <=> the map ij:D - M(f)
defined by ip(x) = [x,1] is an h-equivalence <=> D is a SDR of

M(f) via iD'

Proof: We have already proved that f:D 4 A is an h-equivalence
<=> i 4 M(E) is an h-equivalence (See Theorem 2.2.10(d)).
Furthermore, by Theorem 2.2.10(b) ip:D <4 M(f) is a closed
cofibration. Hence, by Theorem 4.5, D is a SDR of M(f) via

iy <> iD is an h-equivalence.

We now prove the Glueing Theorem for Homotopy Equivalences. There are
serveral proofs of this theorem in the literature. For example [1;7.57].
llowever, the proof given here is due to R. Piccinini and R. Fritsch

(see [5]). But before we do that we need the following result.

lemma 4.1: If £:D 4 A 1is an h-equivalence and i:D 4 Y is a

cofibration, then the induced map Fiva AU Y is an h-equivalence.

Proof: Given the following diagram



—,
D ¥ A

We need to show that £:Y 4 A ¢ Y 1is an h-equivalence. Since
£:D4 A is an h-equivalence, it follows from Corollary 4.3 that

D isa SDRof M(f) via i). Now consider the following two

diagrams
M) Yugnd) M N{TFUTO)
ib A
_— _—
D 4 X Dt [ M)

By Theorem 1.3.4(a), Y 1is a SDR of Yl.li M(f) = M(f)uj Y as
D isaa SDR of M(f). We now compute Auf DX ITUYXI1) hy

considering the following diagram

DaT u¥al Au‘(lnlu‘ﬂ‘)
I M\Huvu.l)u\{nl
Dal £ S M)
T
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Square I is a pushout and out square is a pushout. Hence, by

Remark 1.1.4(b) (i), square II is also a pushout. So, by vertical
composition (see Remark 1.2.5(b)); we have that Aldg (DX I UYX1)
SM(E) FOXIVYX). Again, we consider the following

diagram
Yol L DeTuYxd B Mo (setovat)
MLE LIy Yxd
1 I i
D EY: g MF)

Since 1:D 4 DX I 1is a cofibration, it follows that

M(i) =DXTUYX1 (see Remark 2.2.2(a)). Hence, square I is a
pushout. Since outer square is a pushout, we have that square IT
is a pushout (see Theorem 1.1.4). Therefore, by Horizontal
Composition, M(i)u? DX ITurxl) s M(f)ui Y. Thus,
combining the results we have obtained so far, we have the

following: AU DXTUYXT) ;M(f)ui ¥
D
;M(f)ugn(bx IvYxl)

We now consider the following two diagrams.

Yar_ L K= (NEIL N U AT
AU, (¥xL)

Dalgvald m;)u.‘\{;,s‘u¥ (DaT o¥xt)
D
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By a similar arqument as above, M(f) = M Y)L‘f YXxI
D
H ALlf YXI
Again, by considering the diagram

Y M)z (AU YU (D)2 ALLYT

;
YAl
]‘______J‘

D £ A
We get M(F) =AU ¢ YX I. Combining the result obtaincd above,
M(f) = Al_lf YXI

= ()

Since 1i:d 4 Y is a cofibration, it follows by Characlerizalion
Theorem 2.2.2(d), that DX TUY X 1 is a SDRof YX I (where
YX 1 is identified by Y). We now consider the following diagram

NxI _)AU:\‘(\‘I)E ()
) fuy

—
DA Ul A, (OxT u Y24 ) NHIL Y
f Yy



Since j:DXIUYXI-YXI is a SDR, there exists a homotopy
F:YXIXI4YXI suchthat
Flmami0) = lyyg
F(-=1) = :Y X I4DXIUYXI

Now, let pp:AX T4 A be the projection map and observe that
(I\I_If (YXI) XIZAX quxl (Y X IXI). We now consider
ur

4

the function A X I Uy (EXIXT) Al (YXT)

defined by:
(a,t)] 4 [a] and
[you,v)) A [Flyu,9)] .

Since AX Il (YXIXI) is a pushout, it follows that
pyU F is continuous. It is now an easy matter to show that
r\uF (DXTUYX1) isa SDR of ZH_If (Y X I) under the
homotopy ppu F:U\uf (YXI)) XITzAX quxx (YXIXI)

El nuf (Y X I). Therefore, M(f)l_li]J Yz ALIf DXIUVYXI)

) — SDR SDR — =
4 AU (YXI) = M(f). Thus, ¥ 4 M(f)l_lin‘{ 9 M(f) = M(f)
SR _
=S¥ 4 u(f)

= 1Y 4 Al ¢ Y is an h-equivalence by Corollary 4.3.

150
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The Glueing Theorem 4.6: Let

Yo * D> 4 A
h‘ “b hA
¥ i ' g A\A'

be a commutaiive diagram in which 1, i' are closed cofibrations,

and hY' hD, hA are h-equivalences. Then A U Yya'ul f ¥¥s
Proof: Let X=AU;Y and X'=A"Ulz Y'. Consider the

Fh

following diagram

The universal property of pushouts yields a unique map h:X 4 %'
such that

hi=Th, and KE=F'hy m



Four different cases will be discussed:
Case 1: D closed and a SDR of Y and D' closed and a SDR of Y'.
Then by Theorem 1.3.4 (a), A is a SDR of X and A' is a SDR of

X'. S0, 1 and I are homotopy equivalences. Hence,

THXa A and I7:X9A' such that Ii*rz1y =R
and
1, =2
Sinilarly, since hy is a h.e. such that

hphp* = 1p0 and hp*hy = 1p

Now, h(ihy* T%) = (hD)h,*i'*
= (Thy)bysi* ... by eq. (1)
TR

Again, Thy*T7*hi T = Thy*iT*

= dhy T E* 2 Ghy* T

= 1y = (ihy*i™h

Therefore, h 1is a homotopy equivalence.

Casc 2: Suppose f and f' are homotopy equivalences. Then by
Lemma 4.1, f and ' are homotopy equivalences. Now using the
equality hef = f_'-hY from eq. (1) and using the same kind of
Lechniques as in Case 1, we conclude that h is a homotopy

cquivalence.



Case 3: The map f' is a cofibration.

We then construct the following commutative diagram below stepwisc.

, X=ALY

-l

D £
Step 1: Construct trapezoid 1 as a pushout.

Since i:D 4 Y is a cofibration and hp:D4D' isa

homotopy equivalence, it follows that HD: Y4 Y" is a homotopy

equivalence by Lemma 41.
By commutativity of (*) we have that hyi = i'hy. Hence,
3!g:¥" 4 Y' such that

gi"=1i' and g'hy=hy ... eq. (2)

since HD and hy are homotopy equivalences, it follows thal ¢

is a h.e.
Step 2: Construct square 2 as a pushout.
Hence, X" = A‘L_lf. il
Since f' is a cofibration and square 2 is a pushout it
follows by Theorem 2.1.3 that f isa cofibration.
Now, ng" = 'i' byeq. (2)

=1'f' since X'= A'Llf Y' (i.e. square commules)
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Since square 2 is a pushout and larger square is a pushout
ie. X' =A" 4 Y, it follows that square (3) is a pushout and
hence X" EYI X'
Also, by the universal property of pushouts applied to square 2, g
is the unique map such that

gi=f'g and gI" = I ... eq. (3)
Now, T is a cofibration and g is a h.e.; hence by Lemma 4.1,

g isah.e.

Slep 3: Consider the outer rectangle where X =A ¢ Y. Now,
Fhy:Y 4 X" and i_'hA:A 4 X" are maps such that
'f.i‘hD (commutativity of trap. 1)

= i_af'hD (commutativity of square 2)
= FhA( (commutativity of *)

llence, !EA:X 4 X" such that

=Ty and by F=Fhy eq. ()

Now the maps h:X 4 X' and gﬁA:X -4 X' are such that

by eq. (3)
Communitivity of square (3)

equation (2)

equation (4)

and E EA i-
equation (3)




Therefore, by uniqueness of h, h =§ g E}\ ... equation (5).
But both a and EA are homotopy equivalences.

Therefore, h 1is a homotopy equivalence.

Case 4: General Case:
Consider the mapping cylinders M(f), M(f'} of the maps [ and
£' respectively.
Let §:D4DX I and j':D'4D'XI denote the embeddings al Lhe
Oth level.
Then j and j' are closed cofibrations and D and D' are
SDR's of DX I and D' X I respectively.
Case 1 applied to the diagram

DI J D +
L\wx i hy hy
T ) D g A

implies the existence of a homotopy equivalence
hy:M(f) 4 M(f') such that
Myl =3hy and hy - E=ET - (p X1 ...oeq. (6)

Since D and D' are SDR'sof DX I and D' X I respectively,
it follows by Theorem 1.3.4 (b) that A and A' are SDR's of
M(f) and (Mf') respectively.

Let rf:M(f) 4 A and t%:H(f') - A" be the respective deformation

retracts such that rff =f: pry and r%F = f' . pry (see



Theorem 2.2.10). Y"f'(h'b“t)
Now, consider the following diagram

Now, cihyE(d,t) = rp £ (hy X 1) (Q,t)

=} F(Hy(d),t)

= £'pry(hy(d),t)  (See

= £'hy(d)

= hpf(d) by commitivity of (*)
and hyref(dt) = hyfpr; (d,t)

= hyfld)
=> rihyf = hprf
Similarly, rEi\M]T =hy= nAsz. Hence, by uniqueness of rihy, it
follows that

rihy = hyrg m
Now consider the following diagram
e 4 D - M)
hy hy by
—_—

T AL ()




vhere i, i', iD and iﬁ are cofibrations and hy, by
and hM are h-equivalences. From (*), th = i'hD. On the other
hand, hMiD(d) = hyld,1]

= hyf(d, 1)

= F(hy X 1p) (d,1)
= £ (hyld),1)

= [hy(d), 1]

= ipihp(d)

Therefore, the above diagram is commutative. Applying case (3) Lo

the above diagram, we obtain an h-equivalence

ReM(E) LI Y 4 M(E)LIY' such that

hi=ihy (8)
Finally, consider the following diagram
MU h_ M) %A
h hy ha
' >
M{'Llin,‘{ 7 M) 3 A

By equation (8), h 1= T'h, and by equation (7), Marg = ey
Hence, the diagram is commutative; 1,10 are cofibrations,
g Lpoy By, by and h oare h-equivalences. Hence, case (2)

applied to the diagram above gives rise to an h-equivalence



1s8

F\LIrf M)y iD Y) 4 ALY If M(£ )4 iD‘ X

But by Theorem 2.2.10, f = r; iy and f£'=rg, iy and hence

applying horizontal composition, we get

- .
Rt g, 12 B 0,

S AU YZA U oY

‘theorem 4.7: Suppose in addition to the hypothesis in Theorem 4.1 (a),
j is closed and a homotopy equivalence over B. Then E, UD is

a SDR of E.

Proof: j:D -4 E is an h-equivalence over B => there exists a map

m:E 9D over B and homotopies Him - j = p over B and

kg oomZ lg over B.

Clearly, m restricts to a map mp:Ey 4 Dy and similarly H and
K restrict to Hp:my -+ jp = ]DA over A and Ky:jy - My = lEA

over A. Therefore, jA is an h-equivalence (over A).

Now consider the following diagram

D ‘v Da ’;\A NN
# 4a 1EA
E [ E; {EA Ex
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where iD and iE are closed cofibrations and the vertical maps
are h-equivalences. Hence, by Theorem 4.6, we have thal

EU i DzgU IEA E. Since D NE, =D, it follows that

F.AIJ jA D= EA U D, and EALI 1!: E=E. Therefore, DU Ep 3 E
A

is an h-equivalence. Now, by Theorem 4.1 (a), D U By AE is also

a cofibration. Therefore, by Theorem 4.5, it follows Lhat

DUE,4E isa SDR.

Lemma 4.2: Let p:E -4 B and q:E' 4B be maps to a [ixed space B.

let §:E - E' be amap such that of = p. If q is a fibralion,

then ¢ = y for some Y:E-E' over B.

- - od
p AR roof ¢ q) = p => there exists amap H:E X T4 B such that H(-,0) q¢

and H(-,1) =p.

Consider the following commtative diagram

E:0 ¢ SE'
>r
il
i E~ %
gl
-
P
T S 4
Eal H 8
Since q is a fibration, there ezists a map F:E X I 4 E' such

that of = H and F =90.
EX0

Let F(-,1) =yE 4E'. Thea F:0 =y and
QY = gF(-,1) =H(-,1) =p andso y is a map over B,




lemma 4.3: Let p:E 4B be a fibration. Let G:E 4 E be a map
over B, and suppose that 0 = lp. Then there exists a map
0':E4E over B such that 60"z 1p.

Proof: Consider the following diagram
E o E

N
B

Since 6 is a map over B, p0 = p. Now, 0 = 1p = there exists
F:E X 14 E such that F(-0) =0 and F(-,1) = 1.
Now, pt:E X 1 4 B is a map such that
pF(-,0) = po =p and
pF(-1,) = plp = p
=> pF:p=p andso pFlet) = ple)

Now consider the following commutative diagram

E ‘e SE

//
LA L
o
s
s
ExT pF B

Since p is a fibration there exists a map K:EX I 4E such
Lhat Lhe resulting triangles commute.
let ¢ = K(-,1). Then, ¢ Zp 1p. We now consider the following

diagram
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PF(-,0) =p6 = p=pd (as ¢ is a map over B). Hence, diagram
commutes.
Since p:E- B isa fibration, there exists G:E X I 4 E such
that pG=pF and G =0,

EX0

let G' =G(-,1):E4 E.

We claim 06" =p Ip.
Define H:EX I 4E by

0G(e,1-2s), e €E and 0< s<1/2
H(e,s) ={
F(e,2s-1), e€E and 1/2 £s5¢ 1

Then, H(-,0) = 0G(-,1) =06' and

H(=1) = F(1) =1
Hence, H:00' = IE' We still need to show GG' " IH'
Observe that

pG(e,2s-1), 1/2< s <1
pH(e,1-s) =[

PF (e, 1-25), 0- < s < 1/2
But from above, pG = pF.

Hence,



pFle,2s-1), 1/2<s <1
pH(e,1-s) = {
pFle,1-2s), 0 < s £ 1/2

On the other hand,
poG(e,1-2s), 0 £ s £ 1/2

pHife,s) ={
PFle,2s-1), 1/2 $s €1

{pF(e,1-2s), 0<¢s<1/2
PF (e,25-1), 1/2 <5< 1
Therefore, phife,s) = pH(e,1-s).

We now define ®:E X IX I 4B by

pF (e, 1-2s(1-t)), 0<s<1/2

e, s, t) = {
pF(e,1-2(1-s) (1-t)), 1/2<¢s <1

Then,

PFle,1-2s), 0 < s < 1/2
de,s,0) = {
pF(e,2s-1), 1/2 <s <1

= pH(e,s)
and ®fe,0,t) = B(e,s,1) = dle,1,t) = p(e). So, the following

diagram commutes.

E«Ix o___H__ﬁ
- -
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Since p:E 4B is a fibration, there exists a map MEXIX I 4E
such that pd=® and ®le,s,0) = He,s).
We now define o(s,t):E 4E by

B 1) (el = Blesit)
Then, 06" = H(-,0) = o(nlo) :30(0,1) = 0“’” B ¢(1,0) =L -
= 00" :B 1E‘

Theorem 4.8: Let p:E 4B and q:E' 4B be fibrations. let ¢:£4 k'
be a map over B. Suppose that ¢, as an ordinary map, is an

h-equivalence. Then, § is an h-equivalence over B.

Proof: let Y:E'+4E be a homotopy inverse of ¢, as an ordinary map.
Then, py = qdy = q. Hence, by Lemma 4.2, Y= y' for some '
over B. Since Qy'=1p, and Qy' is over B, Lhere exists by
lemma 4.3 a map Y":E'4E' over B such thal Qy'y" 7 1p..
Thus, ¢ admits a homotopy right inverse §' = y'y" over B.

Now, §' is an h-equivalence, since § is an h-cquivalence, and
50 the same arqument applied to ¢' instead of ¢, shows that §'
admits a homotopy right inverse ¢" over B. Thus, ¢' admils
both a homotopy left inverse ¢ over B and a homolopy right
inverse ¢" over B. Hence, 9" is an h-eqivalence over B and

so ¢ itself is an h-equivalence over B,

Theorem 4.9: If in diagram (*) of Theorem 4.1, i and j are closed

cofibrations, p and q are fibrations and j:iD 4K is also an



164

h-equivalence, then E,UD is a SDRof E.

Proof: By Remark 4.1, j isa closed cofibration over B and by
Theorem 4.8, j is an h-equivalence over B. Therefore, by

Theorem 4.7, it follows that EA UD is a SDRof E.

Finally, by way of application of the above theorem, we have the

following result of Strom on SDR (see [ 16;Mheoren 6 1

Corollary 4.4: Let (X,A) and (Y,B) be closed cofibred pairs. If
in addition, A {or B) is a SDR of X(Y), then XXBUAXY

is a SDRof X X Y,

Proof: We consider vic diagram used in Theorem 4.3 H

£,18) = xx8 At S¥xY
/ { v
x4
3,(8) =4s0 LS AxY y

and assume without loss of generality that A is a SR of X,
Then Z 4 X is an h-equivalence and so A X Y4 X XY is an
h-cquivalence. Therefore, by Theorem 4.9, X XBU AXY isa
SDRof XX Y. !




1

=

15,
16.
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