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Abstract

Acoustic surveys for marine fish in coastal waters typically involve identification of
species groups. Incorrect classification can limit the usefulness of both distribution and
biomass estimates. Fishing catch data can assist in identification, but are rarely spatially

comparable to acoustic data and are usually biased by gear type. This thesis describes a

technique and a software toolkit, “FASIT” (Fisheries A and Specie:

Toolkit), ped by the author to enabl identification of Atlantic cod (Gadus

morhus), capelin (Mallotus villosus), and redfish (Sebastes spp.) based on high resolution

acoustic imaging of fish aggregations. The approach has been to assess and analyze various

amplitude, shape and location featy fth i from shoals and indivi fish,
then th develop algori ich discrimi pecies. Fourteen
lassi based on Three-N ighbe i ion and is distance

classification have been implemented and tested. The best classifier had an average correct
classification rate of 96.8%. The data used for this thesis are fisheries data from a number
of Newfoundland bays and the Grand Bank region collected using a 38 KHz digital echo-

sounder.
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1.0 INTRODUCTION

Species identification is "the grand challenge of fisheries and plankton acoustics"
(MacLennan and Holliday, 1996). Fishermen and the military accepted this challenge early
on, and many can identify the "marks" on their echo-sounders with good success. In marine
science, hydroacoustic biomass surveys have depended on concurrent fishing to identify the
fish species observed. Problems with concurrent fishing are primarily due to two factors:
the variability in the species’ catchability and the difficulty in achieving spatial or temporal

sampling comparable with that of acoustic sampling.

The first formal attempts to classify the myriad of pulses and shapes that appear in
the water column on echosounders, and to identify them with some certainty, were made in
the late 1970's and early 1980's (Holliday, 1977; Deuser et al., 1979; Giryn et al., 1979;
Zakharia and Sessarego, 1982). These attempts were followed by several empirical studies

that applied simple signal i iques to fisheri ic data (Rose and Leggett,

1988; Souid, 1988; Diner et al., 1989). The availability of inexpensive and high speed small
computers in the late 1980's, coupled with the minor successes of the earlier attempts to
classify fish echoes to species, spurred research using narrow-band (single acoustic
frequency) systems. Attempts to use the information from single echos (or pings) gave way
to image processing techniques capable of assessing many pings at once, as complete images
(Weill et al., 1993; Lu and Lee, 1995; Reid and Simmonds, 1993; Richards et al., 1991).

Several of these methods provided high rates of correct classification in restricted ecological



situations, but none have provided a classifier which is successful over broad ranges of time
and space (see review by Scalabrin et al., 1996). Several recent efforts have been made to

use wide-band acoustics for ificati i and 1990; Si et

al., 1996; Zakharia et al., 1996). These methods show considerable promise in experimental
studies but they require equipment which for now is well out of the budgetary reach of most

fisheries organizations.

For some marine echo-systems, especially those at high latitudes (like
Newfoundland) where the number of different fish species is low it appears that information
from narrow-band echosounders (like the system used for this study) may suffice for
classification. It is important to recognize that it is unlikely that any classification algorithm
can be developed to classify all species over a broad range of ecological conditions
(Scalabrin et al., 1996). Rather, to increase the probability of success, it is necessary to
develop knowledge of the system under study, and to limit the questions to be resolved and

species to be classified. This detracts little from most applications.

In Newfoundland coastal waters, the most common species encountered on an
echosounder are Atlantic capelin (Mallotus villosus), herring (Clupea harengus) and cod
(Gadus morhua). In some areas Atlantic mackerel (Scomber scombrus) and redfish (Sebastes
spp.) are commonly observed. There is a great deal of seasonal variation in distribution and
aggregation patterns in all these species. During research and surveys it is imperative that

the acoustic traces from these species be consistently identified with a high degree of



accuracy. Hence, one aspect of this research was initiated to develop methods to extract

from high-resolution digital that might lead to improved signal

classification. Another aspect of this research was the exploration of a number of different

for application to this i

The specific objective of the research described here was the development of an
algorithm for timely classification of Atlantic capelin (Mallotus villosus), cod (Gadus
morhua) and redfish (Sebastes spp.) using image processing techniques and pattern
recognition. The data used for this research was collected from Placentia Bay,
Newfoundland, Trinity Bay, Newfoundland, and the 3Ps region of the Grand Bank [see

Appendix A for maps].

To make the results of the research easily usable, a Windows-based software
application, known as FASIT (Fisheries Assessment and Species Identification Toolkit) has

been developed. FASIT is used for post- ing of fisheri tic data. It can perform

biomass estimation using echo i ion and species i for capelin (Mallotus
villosus), cod (Gadus morhua) and redfish (Sebastes spp.). The version of the FASIT

program described in this thesis was developed by the author.

Much of the work described in this thesis has also been published in Fisheries
Research by LeFeuvre et al. in an article entitled “Acoustic species identification in the

Northwest Atlantic using digital image processing.”



2.0 BACKGROUND

The literature describing underwater acoustics is extensive. Elementary principles
have been described very well in Clay and Medwin, 1977 and Urick, 1983. This Section will
therefore be dedicated to describing aspects of underwater acoustics that are particularly

relevant to the problem of fish species identification. Section 2.1 gives a brief technical

to ech d hnology for readers iliar with fisheries acoustics.
Section 2.2 describes some aspects of fish as acoustic targets that contribute to making

species identification possible.

2.1 Echo-sounder Technology

A fisheries echo-sounder is a SONAR (SOund NAvigation and Ranging) system
which transmits an acoustic signal (or ping), most often in a vertical direction toward the
seabed [Figure 1 A]. The most common type of fisheries echo-sounder is single-beam,

ingl q1 . The i ignal emitted by the transducer (typically a piezoelectric

crystal) is generally a pulsed (duration 1) single-frequency (/) sinusoid of constant

In fisheries science most work has historically been done using short pulse lengths, usually
from 0.2 msec to 1.0 msec, and a limited number of carrier frequencies, primarily 38KHz and

120 KHz (Johannesson and Mitson, 1983). These provide a good

between signal range and signal resolution, and by using standard parameters researchers



have been able to make use of other’s work.

i Direction of ship motion

A)

from
Fish Shoal
B) Acoustic retum signals 9
from 7 transmitted pulses, \
taken at discrete \
locations as boat travels R

over the fish shoal. Each
return signal has been
illustrated below the location
of each transmission.

~~ Echo from Seabed
Figure 1: Echo-sounder graphic

An acoustic pulse is a i it that prop as a pressure wave in

a directional beam pattern away from the transmitter. The 3dB beamwidth of a typical
fisheries echo-sounder is between 5 and 15 degrees (MacLennan and Simmonds, 1992).
Figure 2 illustrates the beam pattern of a 120 KHz BioSonics DT echo-sounder. Due to
spherical spreading the intensity of the pressure wave decreases inversely with the square of
the distance travelled (). Any objects located in the transmitted signal’s path that have a

density not equal to the density of the surrounding water create echos that are returned to the
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Average energy curve for orthogonal directions; B. Expanded view cut-off 3 dB
down from the peak of the taller curve. (LeFeuvre et al,1996)

der’s receiver (a pi ic crystal, the same one used for signal
transmission) which transforms the acoustic signal to a proportional voltage signal [like the
voltage signals illustrated in Figure 1 B]. To compensate for the spherical spreading losses,
a time varied gain (7VG) is applied to the returned signal. In fisheries acoustics 40 log(r)
TVG is commonly applied to signals from single fish while 20 log(r) TVG is applied to
signals from densely packed fish schools. To compensate for absorption losses (where
acoustic energy is converted into heat energy) an appropriate absorption coefficient («) is

applied to the returned signal. The absorption coefficient is in units of dB/m and is constant



for a given acoustic frequency, water temperature and salinity. See Appendix B for the

equation used to estimate a.

The distance from the echo-sounder to the reflective object can be calculated using
the equation: r = Y% ct, where ¢ is sound velocity and ¢ is the time delay between the
transmitted pulse and the received echo (MacLennan and Simmonds, 1992). See Appendix

B for the estimation of ¢ as a function of water temperature and salinity.

Target strength (71S) is a common way of expressing an object’s ability to produce an
echo (Johannesson and Mitson, 1983) and is defined by the ratio of the reflected energy (/,)
from a target were it located at a distance of one meter from the sonar, over the incident
sound intensity (I):

TS = 10 log (I/I) in units of dB )

The strength of an echo reflected by an object is related to a number of factors
including the strength of the incident sound wave, the change in acoustic impedance between
the water and the object, and the shape and the size of the object. The greater the strength
of the incident sound wave or change in acoustic impedance the greater the echo. The effect

of shape and size however is more complicated.

Objects that are very small compared to the wavelength of the incident wave (1) will

act as an acoustic point source of scattered waves which radiate spherically in all directions.



According to the Rayleigh scattering law, the scattered energy is proportional to (@/A)* when
d<<). where d is the characteristic linear size of the target defined as the cube root of its
volume (MacLennan and Simmonds, 1992). The strength of echoes from objects that are
very large compared to the wavelength of the incident wave is not a function of frequency.
The scattering energy from a large spherical object increases approximately as the square of
the sphere radius (MacLennan and Simmonds, 1992). For objects with sizes similar to the
wavelength of the incident wave, the scattering is related to the shape of the object and its
material properties. In this region, resonances can occur as well, making theoretical

prediction of scattering strength difficult (MacLennan and Simmonds, 1992).

The returned signals from the echo-sounder transducer are usually displayed as an
echogram. Echograms, are graphical displays of the recorded reflection energy from
subsequent echos (or pings) taken as the vessel on which the echo-sounder has been mounted
traverses along the water. On an echogram subsequent echos are plotted next to each other
vertically. Each sample point is plotted using a colour or shade of grey to represent the
intensity of the echo received. This generates a two dimensional “image™ of a the water
column under the path of the vessel. Figure 3 illustrates an echogram displayed using the
FASIT software. It is from these echograms that many experienced fishers and fisheries

scientists can visually identify the species of fish being displayed.
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Figure 3: Example of an echogram containing loosely schooled cod located
near the seabed

2.2 Biological Acoustics

Fish are neither uniformly nor randomly distributed in the ocean. Different species

typically aggregate where different envi 1 conditions such as depth, and

bottom type occur. Species also aggreg: ing to phic itions and time

of day or year (Lee et al., 1996). This variation in behaviour among different fish species as
well as differences in physiology are what make species identification using acoustic signals

possible. Section 2.2.1 will describe some of the physiological differences between species



and how they assist in making identification possible. Section 2.2.2 will describe some

behavioural differences which also aid in acoustic identification.

2.2.1 Physiology

The backscattering ability, or target strength, of fish varies from species to species.
It is dependent on acoustic frequencies and is related to the physiological characteristics of
the species, particularly on whether or not the organisms contain gas (i.e. a swim bladder)
(Nakken, 1998). The swim bladder is the major cause of scattering from a bladder-bearing
fish contributing anywhere from 90 to 95% of the total echo (Foote, 1980). This is because
the acoustic impedance of the gas in the swim bladder is very different from the surrounding

‘water and other organs within a fish (Nakken, 1998).

‘Within a species the target strength is strongly related to the length of the fish (Love,
1971). In Table 1 the target strength of the three species of fish under study for this thesis
are presented as a function of fish length (L) expressed in centimeters. As shown, there are
differences between the three species. The echo from a cod is approximately 7.1dB greater
than that of an equally long capelin and 2.1dB greater that of an equally long redfish. Table
2 lists the typical length range of mature fish for the species of interest. Please note that
typical mature fish lengths vary from year to year, study to study, and region to region,

therefore these ranges arc used for illustrative purposes only.



Table 1: Echo ability of cod, capelin and redfish at 38 KHz

S)

cies

Target Strength (dB)

Cod (Gadus morhua)

20 log(L) - 66*

Capelin (Mallotus villosus)

20 log(L) - 73.1%*

Redfish (Sebastes marinus)

20 log(L) - 68.1***

* Rose and Porter, 1996, ** Rose, 1999, *** Gauthier and Rose, 2001

Table 2: Typical lengths of mature cod, capelin and redfish

Group Typical mature lengths (cm)
Cod (Gadus morhua) >45%
Capelin (Mallotus villosus) || >12*
Redfish (Sebastes spp.) >24*

* Correspondence with Dr. George Rose.

With the information from Tables 1 and 2, the expected 7S range for each species has
been calculated and is given in Table 3. Clearly, for identification of these three species,

echo strength data will provide very important classification information.

Table 3: Estimated T range for mature cod, capelin and redfish

Group Estimated 7S Range (dB
Cod (Gadus morhua) >.329
Capelin (Mallotus villosus) >-51.5
Redfish (Sebastes spp.) >.40.5

1



Another physiological factor that may in assist species identification is the variation
in swim bladder shape from species to species. Experiments on tethered fish have shown
that echo strength (or ability) is dependent on the angle between the fish and the incident
sound (tilt angle) (Nakken, 1998). Figure 4 shows the dorsal aspect reflectivity pattern for
two gadoid species, cod and saithe (data for capelin and redfish were not available in the
literature so these data are being used for illustration only). Note that in this figure, echo
ability has been expressed as backscattering cross section (o) in units of centimeters.

Backscattering cross section is related to target strength (7) as follows:

7S = 10log10(o/4™). @

Both species in Figure 4, cod and saithe, have their maximum echo ability when tilted with

their heads down a few degrees but the echo ability of saithe decreases more rapidly with ilt

1000

Echo abilty
Scattering cross section (cr? )

0 2w 10_ 0 )
Head down it (degrees) Head up

Figure 4: Dorsal aspect reflectivity pattern for
cod and saithe (Nakken, 1998)

12



angle than it does for cod. The reason for this is the more elliptical or spherical shape of the
cod swim bladder and the more clongated cylindrical shape of the saithe swim bladder

(Midttun and Hoff, 1962).

It is expected that these reflectivity patterns will produce different characteristic
hyperbolic arcs for each species. A hyperbolic arc appears on an echogram when an
individual fish is insonified by more than one ping. A reflection of an object is plotted on
an echogram as if the object was positioned directly beneath the sonar device, independent

ofits point of origin within the transducer beamwidth [see Figure 5]. For fish targets, there

Surace
- 2 -
i i
2 H
5 2 g )
H oz f 3
z
o
L— *< & iion
L oyt
< =
st Pt st ot
i i i i i
o) weinwpl | wymiwd ol wapanept
i, imd) | omedoped) fps
[

Figure 5: Derivation of the hyperbolic arc resulting from
plotting a single point whose energy is spread over several
pings.

13



is a significant difference between the actual “point” fish target and the recorded hyperbolic
reflection event. Figure 5 graphically illustrates how a point target is transformed to a
hyperbola when the acoustic returns are plotted on an echogram. In this figure, reflected

energy from the fish target at location (wp2,md2) appears at five different locations.

Figure 6 illustrates the difference a fish’s reflectivity pattern could theoretically have
on a the resulting hyperbolic arc. The object illustrated in 6 (a) is a modelled hyperbolic
arc given a fish with a more directional reflectivity pattern than the fish used to model the
arc in 6 (b). The simulated arcs were generated for two fish with the same maximum echo
ability but different reflectivity patterns (as was the case for cod and saithe in Figure 4 ). As
shown, the two arcs have different shapes. Given this, it may be possible to discriminate

between fish with equal 7S if they have different reflectivity patterns.

i

Figure 6: Theoretical hyperbolic arcs for fish
with different reflectivity patterns

2.2.2 Behaviour
Discrimination between species is also aided by differences in fish behaviour. Fish

behaviour has been studied for over 35 years with the aid of echo-sounder technology and

14



acoustic tags (Misund, 1997). Many studies have revealed species behaviour patterns that
may directly or indirectly aid in remote species identification (Misund, 1997 summarizes a
number of interesting studies). For example, many species show clear preferences for
swimming depth or off bottom distance. Some species prefer very specific temperatures,
therefore they are often found in thermal “layers” in the water column. As a result, depth
and off bottom distance features can be helpful for species identification. A number of
species exhibit what is known as avoidance behaviour: they avoid moving ships (Misund,
1997). Rapid swimming or diving away from a survey vessel could alter the shape of the

resulting arc in the echogram as illustrated in Figure 7.

Other behaviours such as schooling can provide another set of features that are
helpful for species identification. When fish school their hyperbolic arcs are no longer
visible in an echogram. It has been shown, however that the amplitudes of echos from
schooling fish are related to the number of fish within the acoustic beam i.e. the schooling
density (MacLennan, 1992).  Schooling densities as well as school shapes, sizes and

location in the water column are characteristic for different species (Misund, 1997).

Some commonly recognized behaviours of the species of interest for this thesis are
as follows. Capelin are typically found in schools year round, although the size and density
of the schools vary depending on the time of year, the time off day, the tides, and other
factors (Jangaard, 1974). These schools are usually located midwater or near the surface

(Rose and Leggett,1988). Redfish tend to stay close to the seabed during the day, moving

15



upward at night to feed (Pikanowski, 1999). Cod are typically found alone and near the

seabed or in very dense aggregations especially during spawning (Rose, 1992).

A. Stationary target B. Moving in the direction of
the boat

"-\

C. Moving up and horizontally D. Moving down and horizontally
in the direction of the boat in the direction of the boat

Figure 7: Effect of movement on single target hyperbolic arcs



3.0 REVIEW OF FISHERIES ACOUSTICS LITERATURE

A literature review has been conducted on fisheries acoustics in general and more

on ic identification of fish using acoustic signals. A list of helpful
papers and books reviewed but not specifically mentioned in the following Sections can be
found in the Bibliography. The literature regarding fisheries acoustics in general has been
discussed in Section 2.0. Section 3.1 will summarize the literature specifically describing

taxonomic identification of fish species.

3.1 Taxonomic Identification of Fish Species Publications

Early attempts at fish identification involved detailed analysis of the echo
signal (Giryn er al. 1981, Rose and Leggett 1988, and Magand and Zakharia 1992). Giryn,
Rojewski, and Somla (1981) describe a method to identify ‘sea creature species’ on the basis
of their hydroacoustic echo signals. They calculated the central moments of individual
echoes, which roughly determined a probability density function, and used them as inputs
to a Euclidean distance classifier. The paper briefly describes tests of their recognition
system carried out on echoes from (1) horse mackerel (Decapterus macrosoma) schools, (2)
single-species single-fish layers, (3) single-species multiple scattering layers, and (4) the sea
bottom. The paper did not provide classification results but did state that the system
operated with virtually no classification errors and that the classification of different fish

species would be possible in the future.



Rose and Leggett (1988) took two approaches to species identification: (1) using
target strength measurements of individual fish and (2) using features of the backscattered
energy from schooling fish. In the study by Rose and Leggett, three species were tested:
cod (Gadus morhua), capelin (Mallotus villosus), and mackerel (Scomber scombrus). As
mentioned in Section 2.2.1, fishes without swim bladders, such as mackerel, have target
strengths well below those of even much smaller fishes with swim bladders such as capelin
(Nakken and Olsen, 1977). Using a 120 KHz transducer Rose and Leggett measured the
relationship between fish length and target strength for each species and their results were
in agreement with those of various previous studies ( Nakken and Olsen, 1977, Midttun,
1984, and Foote 1987). While the relationship between length and target strength differed
for each species, the hypothesis that target strength alone could be used for classification was
proven false. First of all, the target strength of large mackerel was similar to the target
strength of capelin. The second reason was that the schooling behaviour of the fish under
study created fish densities at which the selection of single fish echoes became a very
subjective process. As a result, target strength became unpredictable and dependent on the
packing density of the school and other behavioural patterns. Rose and Leggett did indicate
that target strength could be used for classification if the target species had discrete target
strength distributions and when their schooling behaviour allowed for isolation of single
targets. They had more success with classification using school descriptors. The following
features were extracted from two sequences of four or five pings within each school: (1) off
bottom distance, (2) school depth, (3) mean squared voltage, (4) standard deviation of

voltage squared, (5) maximum squared voltage, (6) mean distance between within school
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voltage peaks (referred to as PP) and (7) mean peak to trough distance of the voltage squared
standardized to the mean squared voltage (referred to as SPT). The two most powerful
features were PP and SPT which the authors believe reflect internal school structure. Using
quadratic classification functions 91% of the 23 capelin schools, 96% of the 26 cod schools

and 91% of the 11 mackerel schools were correctly classified.

Later attempts at fish species identification have incorporated analysis of the echo

signal and analysis of the two di i spatial i ion in the eche image
(Richards e al. 1991, Scalbrin er al. 1994, and Lu and Lee 1995). Richards er al. (1991)

report on a project to classify fish schools based on echo integration survey data, in order to

that typical echo-i: ion data could be applied in species recognition. They
studied schools of rockfish (Scorpaenidea) living in two types of habitats. One category

stayed in an area of bedrock outcrops, while the other stayed close to a continental slope.

The ch istics used to discrimi between the di types of schools were (1) time
of day, (2) mean volume density, (3) dispersion, and (4) mean off-bottom distance. Using
nearest-neighbour classification they were able to classify the different shoals (105 of them

in total) with up to a 97% success rate.

Scalabrin ef al. (1994) describe the MOVIES-B software developed to perform
automated shoal recognition. Their linear discriminant classifier used the following

morphological shoal descriptors: (1) length, (2) area, (3) fractal dimension, and (4)

the following b i i (5) bottom depth, (6) shoal depth, and the



and

following ampli iptors:(7) volume ionindex, (8 g
(9) standard deviation of amplitude. Their system was developed using a data set made up
of 178 sardine (Sardina pilchardus) shoals, 449 anchovy (Engraulis encrasicolus) shoals,
645 horse mackerel (Trachurus trachurus) shoals, and 93 blue whiting (Micromesistius
poutassou) shoals. Training on 70% of their available data and testing on the remaining
30%, they were able to discriminate between sardine and blue whiting shoals 100% of the
time, between sardine and anchovy 96% of the time, and between blue whiting and anchovy
97% of the time. Their ability to perform classification was reduced when trying to
discriminate between other species and horse mackerel: 64% for anchovy, 76% for sardine,
and 96% for blue whiting. The authors did not design a classifier to perform classification

of all species studied.

Scalabrin et al. (1996) describe further attempts to discriminate between sardine
(Sardina pilchardus) shoals, anchovy (Engraulis encrasicolus) shoals, and horse mackerel

(Trachurus trachurus) shoals. Although the results quoted were not as successful as the

results quoted in the 1994 paper, Scalabrin et al. have described somq

for species ification. The i ility density function (PDF) approach used
shoal PDFs to distinguish between species. The PDFs illustrated differences between
anchovy and horse mackerel shoals, but were not strong enough to be used alone for
classification, A second approach made use of spectral descriptors obtained by calculating
the relative energy contained in various frequency bands. As with the PDF features, the

spectral features alone were not sufficient to provide species identification. Another
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limitation of the spectral analysis approach is the requirement for a minimum echo length
which reduces the number of shoals that could be analyzed using this technique. Moreover
the use of a narrowband transducer limits the quality of information that can be obtained
using this technique. An image analysis approach similar to the one described in the 1994

paper gave the best classification rate of 57% overall.

Lu and Lee (1995) reported on an echo-signal image processing system (EIPS)

ped for fish species identification of fish shoal echograms. Their system measured

the following shoal descriptors: (1) area, (2) perimeter, (3) width, (4) height, (5) length, (6)

number of pixels, (7) major axis angle, (8) ion, (9) cii ity, (10) ity,

(1) mean signal amplitude, (12) standard deviation of amplitude, (13) skewness of signal

(14) kurtosis of signal li 151 d optical density, (16) horizontal
uniformity of optical density , and (17) vertical uniformity of optical density. They used

principl P T T T lysis and stepwise discrimi I

The most important descriptors were
numbers 1,2,3,4,6,7,9, 10, 11, 12, 13, and 14 as listed above. The accuracy of species
identification using the system (with all 17 features) was 98% for the 43 round scad
(Decapterus russelli) schools, 97% for the 60 anchovy (Engraulis japonicus) schools, 94%
for the 35 skipjack (Euthynnus affinis) schools, 91% for the 42 larval fish schools, and 67%

for the 49 horse mackerel (Decapterus macrosoma) schools.

Classification has also been using wideband ech ders (Magand,
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1994, and Zakharia et al., 1996). Magand (1994) describes the use of a “chirp’ echo-sounder

to obtain spectral parameters for fish species classification. He describes using auto-

gressive (AR) modelling of the echo spy from fish shoals and individual fish. Using

30 cepstral coefficients derived from 10 auto-regressive coefficients, a supervised neural

network i i iate b d (Gadus morhua), saithe (Pollachius virens)
and mackerel (Scomber scombrus) in one test and between sardine (Sardina pilchardus),
anchovy (Engraulis encrasicholus), and horse-mackerel (Trachurus trachurus) in another
test. Inatestinvolving individual caged fish, there was a discrimination rate of 87% (of 133
fish) for mackerel, 72% (of 7 fish) for saithe, and 66% (of 24 fish) for cod. The
discrimination rates for fish shoals were as follows: 73% (of 15 shoals) for sardine, 64% (of

10 shoals) for anchovy, and 74% (of 21 shoals) for horse-mackerel.

Zakharia et al. (1996) describe a classification approach based on echo analysis of
single pings from a wide-band chirp sounder, operated on a frequency range of 2 octaves (20
kHz to 80 kHz). The classifier used only the spectral signature of the echoes and did not
take into account characteristics of school shape. A modeling of the power spectrum of the
echo was used to limit the spectral signature to a reduced set of parameters (auto-regressive
and cepstral coefficients) that could be used for classification using a neural network. After
selecting the echoes corresponding to monospecific catches, only three species remained
available for setting up an echo database of single pings, where cach ping was used to
classify the species. The database consisted of: 270 pings from 15 sardine (Sardina

pilchardus) schools; 154 pings from 10 schools of anchovy (Engraulis encrasicolus); and
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465 pings from 21 schools of horse mackerel (Trachurus turchurus). The best classification
performance (all of the anchovy data was used for training) had an average success rate of
70%. When only 45% of the anchovy data was used for training the average success rate
dropped to 54%. While the use of power spectrum information has potential, most fisheries

echo-sounders are single frequency and therefore can not supply this information.

Miyashita et al, 1997 obtained multifrequency information by using two single

frequency (38 KHzand 120 Kh ducers simul ly. By ing th

in echo intensities at each frequency they were able to differentiate between isada krill
(Euphausia pacifica) and walleye pollock (Theragra chalcogramma). The authors failed to
give specific classification results but this technique seems to have merit although it

unfortunately requires the use of two echo-sounder systems.

Itisevident by ti ber of publicati acoustic fish species identification that

there are a number of groups working in this area around the world. The author does not
know of any groups besides those involved in this research working on automated acoustic
identification of species native to Newfoundland coastal waters. A problem with much of
the work reported in the literature is a result of the small amount of data available to the
researchers. The collection of data for this type of work is very time consuming and
expensive (as per a conversation with Dr. George Rose this can range from $500 to $20,000
per day depending on the vessel used). Although many results look impressive it appears

that many of these systems have been overtrained, meaning too many features were used
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given the small amount of data available. As well, in some of the research reported,
classifiers were tested on same data used to train them, a practice which can also give overly

optimistic results.
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4.0 DATA COLLECTION AND ANALYSIS

The following sections describe the data collection and analysis carried out for this
research. Section 4.1 describes the acoustic data and the circumstances under which it was
collected in the field. Section 4.2 describes the data pre-processing used before the
echogram data was analyzed. Section 4.3 describes the signal and image processing used
for segmentation of fish within each echogram. Section 4.4 lists and describes the features
extracted for each fish or fish shoal segmented and Section 4.5 describes the classification

techniques tested using the extracted features.

4.1 Acoustic Data Collection

The data collected for this study were obtained by Dr. George Rose, the NSERC

Chair in Fisheries C ion at M ial University of d. Dr. Rose

collected the data using a BioSonics DT4000 echo-sounder operating with a 38 KHz

towed at a depth of . i 1.5 m below the surface using either a 10 or

30 m vessel. The boat speed wa: il five knots. The idth was

6°, the transmitted pulse length was 0.4 ms and the echo sampling rate was 50 KHz. 50 KHz

is a fixed sampling rate for the BioSonics DT4000. Additional i

be found in Appendix C.

The capelin data used in this study were collected in Trinity Bay, Newfoundland, in
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May 1996. The capelin database was made up of 42 capelin shoals ranging in cross sectional
area from 0.9 m’ to 10,730 m’ at depths ranging from 53 to 164 m. Figure 8 contains an

echogram which contains two capelin shoals.

e

‘The cod database consisted of acoustic data from individual fish, small groups of up
to approximately ten fish, and cod shoals in which individual fish were difficult to

distinguish [see Figures 9 and 10]. The database contained a total of 226 data sets collected

in Placentia Bay, on the south coast of” in May, June, and during
the years 1995 to 1997. The smallest individual cod cross sectional area was 0.1 m? and the

largest shoal was 33,022 m’. The depth range for the cod data was from 24 to 218 m.
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Schooling Cod

Figure 9: FASIT
schooling cod
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The redfish data used in this study were collected in the 3Ps region of the Grand
Bank, off Newfoundland’s south coast in June 1996. The redfish data consisted of 134
redfish individuals and small shoals ranging in size from 0.2 m” to 144 m’ and in depth from
106 m to 155 m. Figure 11 is an echogram containing redfish. See Appendix A for maps

of the data collection areas for each species.

TETOR I Y L

Fiénr:ll: F.&Sl’l‘:ei:;m illustrating single and small groups of
redfish

Species composition of the acoustic records was determined by trawling and/or
handlining immediately before or after and as close as possible to where the acoustic data

collection occurred.
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4.2 Data Pre-processing

The acoustic data from each data collection transect was saved as an individual

datafile in the BioSonics DT4000 format. Each datafile is read by the FASIT software and

used h I fthe array ive pings.
The actual physical spacing between pings is estimated using the average boat speed and the
ping rate (distance between pings = average boat speed / ping rate). The average boat speed

is estimated using GPS information stored within the acoustic data files.

The value of each sample or column element within a ping is determined by the
amplitude of the backscattered energy where the amplitude is in units of dB relative to the
target strength of a 2 m sphere (this is the measure of amplitude exported by the BioSonics
DT4000 echo-sounder). The physical spacing between the rows in the echogram array
depends on the sampling rate, and the speed of sound in water (c) (distance between samples

= ¢ / sample rate). The value ¢ is based on water and salinity

information saved in the header section of each acoustic data file. A typical value for ¢ for

the conditions under which data was collected was 1467 m/s. An appropriate absorption

(«) s calculated based on water and salinity and applied to the data
along with a 20log(r) time varied gain (7VG), refer to Section 2.1. See Appendix B for the

equations used to estimate ¢ and .
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4.3 Segmentation

The first step toward segmentation of fish in the echogram was the detection of the
position of the seabed. The bottom returns are usually the samples with the highest
amplitudes in a ping. The following bottom detection routine is used. Assume that each
ping in a data set contains # sample points. For each sample p, where p ranges from 1 to n-

k+1, the window mean amplitude (WA(p)) is calculated:

i=

3 amplitudediy
e

WA(p) = @

where k is the window height (k = 60 is used). The sample p with the largest window mean

litude is tagged as th imate location of the bottom, if the average is greater than

-60 dB. Limiting the th -60 dB in thi restricts the data

being analyzed to lie in the amplitude range of valid bottom returns. If none of the window
mean amplitudes in the ping are above the lower threshold, it is determined that the ping in
question does not contzin a bottom echo. The above search is performed for each ping (or
column) in the echogram array to produce a rough bottom trace. A vertical offset of 1 meter
is applied to the bottom trace to move it up to ensure none of the bottom samples remain.
To smooth and remove outliers from the offset bottom trace a median filter of size m =5 is
used to replace each bottom point with the median of itself and two points to each side. The
samples below the bottom trace are then removed from further analysis by being set to the
lowest valid amplitude, -130 dB. The bottom detection algorithm has been summarized in
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the block diagram in Figure 12:

For each ping (q) in
the echogram

For each sample (p) inq
calculate the window
mean amplitude (WA(p))

Find the approximate
bottom location sample
Puunee() Where:

WA(p.....) = max (WA(p))
Define p......(q) as
undetected if max (WA(p))
is <-60dB

Move the approximate
bottom location up by
the number of samples
in 1 meter (x):

Peoar(@) = Poaus(Q) - X

For each ping (q
the echogram

Calculate the final bottom
location p,,..(q) by median
smoothing the offset bottom
locations as follows:

Peer(Q) = median (p.... (G-2),
Pecur (31), Possr (9), Pecn (@+1),
and p.... (9+2))

Figure 12: Bottom detection block diagram

After bottom removal, areas containing fish are manually windowed to maximize the

number of sample poi

when i region is re-sampled using

averaging to fit within a 512 x 512 (or smaller) array where 8-bit resolution is used for each

sample amplitude.
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In all subsequent operations, the array is treated as an image. The terms sample and

pixel will be used i b ining di ion. Figure 13 provides

an overview all of the image ing steps on the ech images:

Image generation from
echo amplitude data Preprocessing
Seabed detection
and removal
Morphological Fill
Morphological Clean
Labelling
Feature Extraction
Classification

Figure 13: Image processing block diagram

The first image processing function performed on the image is binarization using
threshold operation. The thresholding results in the creation of a binary image whose black

pixels represent the background and whose white pixels represent the areas containing
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acoustic targets where the signal magnitude exceeds the threshold value (-90 dB).
Thresholding is followed by a morphological fill and a morphological clean (Gonzalez and
Woods, 1993). These operations remove both small objects and small holes inside objects.
Figure 14 illustrates the result of the threshold operation and the morphological operations.
The objects in the cleaned image are labeled (numbered sequentially) and the features
describing each one are extracted as described in the following section. A single object is
defined as a collection of white pixels connected to each other vertically, horizontally or
diagonally. The image in Figure 14 (c) contains 19 different objects [See Figure 15] . A

number of those objects are single fish, evident by their characteristic boomerang shape

Fiéure 14: aiérigina] greyscale “image”after bottom removal, (b) After
threshold operation, (c) After morphological operations

w
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while other objects contain multiple fish. It should be noted that each object is classified as
asingle species. The classifiers for this thesis have been trained and tested on single species
objects and not on data were different species are intermingled. The species of interest here
rarely intermingle in the waters off Newfoundland therefore this should be adequate for this

environment.

Figure 15: Labeled
image



4.4 Feature Extraction

The features listed in this section, describing shape, texture, and position are
extracted from each object in the segmented image. The Matrox Image Processing Library

(MIL) is used to extract or to help derive many of the following features:

1. Area (4): measured in meters . The measurement does not include the area

of the holes in an object.
2. Perimeter (P): measured in meters.

3 Compactness (Comp): a function of area and perimeter, this value is
minimum for a circle and increases as shapes become more convoluted.
p?
Comp=——
A @

4. Roughness (R): a measure of the roughness of an object’s perimeter. A

smooth convex object has the minimum roughness of 1.

RE ®)
where:

P, =the perimeter of the convex hull of the object in meters (see

35



Gonzalez and Woods, 1993). The convex hull is

using 60 Feret di: d at 3° intervals.
A Feret diameter is defined as the distance between parallel

tangents touching opposite sides of an object (Russ, 1995).

Width (): the width of an object in meters, corrected for echo-sounder

beamwidth (Reid and Simmonds, 1993).

D,.+D,
W= W = 2 08 (1) ©
where:
W ihogram = the measured width of the object in meters,
6 = half angle of the acoustic beam in radians,
D,

e = depth, in meters, at the furthest right point of the object,

and D,,, = depth, in meters, at the furthest left point of the object.

Height (H): the distance from the top of an object to the bottom of the object

in meters, corrected for pulse length (Reid and Simmonds, 1993):

H=H poprm - 2 (U]

‘where:

H,j0r0m = the measured height of the object in meters,
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and t= the pulse length in meters

T Elongation (E): a measure of the shape of an object.

Length

B = Breadh ®

where:
Length and Breadth are calculated by simultaneously solving the
following equations for perimeter (P) and area (4):
P =2 (Length + Breadth)

A = Length x Breadth

8. Holes: the number of holes in an object.

9. Axis (4x): the angle at which the maximum diameter is found, it is an

indication of the object’s orientation in degrees, with positive values

a ise di: from the “positive X axis.”

Values can range from 90 to -90 degrees.

10.  Mean Amplitude (4mp,,,,): the average signal amplitude of the samples in
the original unthresholded image within the area defined by the object.
Amplitude was measured in dB relative to the return from a 2 m diameter

sphere.
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16.

Maximum Amplitude (4mp,,..): the highest signal amplitude, in dB, of the

samples within the area defined by the object.

Minimum Amplitude (4mp,.,): the smallest signal amplitude, in dB, of the
samples within the area defined by the object. This value can be less than the
lower threshold value (-90 dB) if the morphological fill operation has filled

in “holes” initially present in an object.

Amplitude Standard Deviation (4mpy,): the amplitude standard deviation,

in dB, of the samples within the area defined by the object.

Depth to the top of the object (D,,,): the water depth, in meters, to the top of

the object.

Depth to the centroid of the object (D.,.,,...): the water depth, in meters, to the

vertical centroid of the object.

Distance from the object to the seabed (Dist,,,,,): the distance, in meters,
from the bottom of the object to the seabed. The average seabed depth
directly under the object is used to calculate this distance. If there is no
seabed present in the echogram, the distance to the bottom boundary of the

echogram is used, giving the minimum possible distance to the seabed.
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17.  Central Moment X0Y2 (CMY2): Normalized second order central moment,
indB. A measure of how horizontally dispersed the pixels of an object are

from the object’s centroid (Glasbey and Horgan, 1995).

CMY2 ©®

2
_ P
A2
where:
¥, = horizontal distance from the i’th pixel to the centroid of
the object in meters.

p, = the intensity of the i’th pixel in dB.

18.  Central Moment X2Y0 (CMX2): Normalized second order central moment,
indB. A measure of how vertically dispersed the pixels of an object are from

the object’s centroid.

2
am - Bt (10)
Al

where:
x,= vertical distance from the i’th pixel to the centroid of the

object in meters.
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p,= the intensity of the i'th pixel in dB.

19.  Central Moment X1Y1 (CMXIYI): Normalized second order central
moment, in dB. A measure of how dispersed the pixels of an object are from

the object’s centroid.

CMXIYI = z—x‘yz‘—p‘ an
A4

where:
x, = vertical distance from the i’th pixel to the centroid of the
object in meters.
,= horizontal distance from the i’th pixel to the centroid of
the object in meters.

p,= the intensity of the i'th pixel in dB.

20.  Binarized Central Moment X0Y2 (BCMY?2): Normalized binary second order
central moment. A measure of how horizontally dispersed the pixels of an

object are from the object’s centroid (Glasbey and Horgan, 1995).

2
pd]
A2

BCMY2 = 12)



where:
¥, = horizontal distance from the i’th pixel to the centroid of

the object in meters.

21.  Binarized Central Moment X2Y0 (BCMX2): Normalized binary second order
central moment. A measure of how vertically dispersed the pixels in an

object are from the object’s centroid.

2
Bemxz = E a3)

where:
x,= vertical distance from the i"th pixel to the centroid of the

object in meters.

22.  Binarized Central Moment X1Y1 (BCMXY]): Normalized binary second
order central moment. A measure of how dispersed the pixels of an object

are from the object’s centroid.

P2
A2

BCMXIYI =

14

where:

41



x,= vertical distance from the i’th pixel to the centroid of the
object in meters.
¥,= horizontal distance from the i’th pixel to the centroid of

the object in meters.

4.5 Classifier Design

Training sets of 226 cod, 134 redfish, and 42 capelin objects (as object has been
defined in Section 4.5) have been used to generate a database of features for each species.
Using these data a number of different classifier designs, based on 3 nearest-neighbor and
Mahalanobis distance, have been built and tested. The following sections describe the steps

taken for feature reduction, and the types of classifiers assessed.

4.5.1 Feature Reduction

The first step in any classifier design is the analysis of the available feature data.
‘This analysis results in the removal of features which are biased or noisy and the removal
or combination of highly correlated features. The number of features used by the final
classifier should be as low as possible. A large number of features can lead to overtraining,
meaning that the classifier is too specialized for the training data, which can cause the
classifier to perform poorly on unseen data. A reduction in the number of features that

ultimately need to be calculated will also improve the speed performance of the software.
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After the removal of biased features, two types of algorithms were used for further

feature ion: a “filter” technique which evaluated the data based on a measure of

redundancy and a “wrapper” technique which evaluated the 1 of each feature given
aspecific classifier design (Hall, 2000). Section4.5.1.1 will describe biased feature removal,
Section 4.5.1.2 will describe the filter algorithm used and Section 4.5.1.3 will describe the

wrapper algorithms used.

4.5.1.1 Biased Feature Removal

Features describing shoal depth (D, and D,..,,...;) Were removed from the feature list because
they were biased. The acoustic data available was from a limited number of surveys in a
limited number of regions; therefore, including these features would give falsely high

classification results. Figure 16 presents the depth data for each database.

Depth to Top
g§ 8 8
x
3

2 8

© /

| O 4o
% 0 &0 a0 100 120 140 160 180 20 20
Depth to Centroid

Figure 16: Feature plot of D,,,,,,, and D,,, (in meters)
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4.5.1.2 Redundant Feature Removal

To reduce the number of remaining features, factor analysis was used. Factor

analysis reduces th ity of a classifier by combining or removing features which are

highly correlated (Duda and Hart, 1973). The correlation between two features can be

defined as:

@13

where o is the covariance of the features i and j; g, and g are the variances of the features

i and j, respecti Comp! features will have p, = 0, and completely
correlated features will have p,= 1. If the correlation between two features was above a
specified threshold for all three species (a threshold of 0.9 was used in this case) those
features were considered for removal. During the feature reduction procedure, one feature
from each pair of highly correlated features was temporarily removed from the database and

a Mahalanobis classifier was designed with the ining features. If

performance was not degraded or if performance was improved, one of those features was

fa Gkl

removed from . Using thi ique, it was possil the

following three features : £l ion (closel. lated with Ce BCMY2 (closely

correlated with CMY2), and CMX2 (closely correlated with BCMX?2). Correlation is evident

in Figures 17 and 18 il i ion vs. C¢ and CMY2 vs BCMY2

respectively. Redundant feature removal as well as the removal of the biased depth features



left 17 features that could be used by the classifiers tested.

© cod
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Figure 17: Feature plot showing El and Comp
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Figure 18: Feature plot showing CMY2 and BCMY2
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4.5.1.3 Classifier Specific Feature Reduction
Trying every combination of the remaining 17 features to find the optimum feature
set for the different types of classifiers to be tested was impractical. Two well known

“wrapper” feature reducti i ial backward selection (SBS) and

forward selection (SFS) were used to reduce the number of features for each classifier
developed. The chosen feature list for a given classifier was the best one found using both
SBS and SFS [see Appendix D for Matlab© code]. Please note that the Matlab © code for
feature reduction was written by the author, as was all of the Matlab © and C code referred

to in this thesis.

Sequential backward selection starts with all of the available features. One feature
is removed at a time and the resulting classifier is tested. The feature whose removal causes
the most improvement in classifier performance is permanently removed. This cycle is
repeated until all but one of the features remains. For this study the favored feature list was
the one with 10 or fewer features which gave the best classification performance. An upper
limit of 10 features was chosen somewhat arbitrarily but based on the author’s previous

experience with pattern recognition problems of a similar nature. This number was shown

to be iate when | it testing was on the various classifiers.
Performance usually dropped or stayed the same when more than 10 features were used,
indicating that the classifiers with more than 10 features were probably overtrained. Figures

19 and 20 show th ag ification pei f two single nod i (3-NN

and

pectively) , where was ined using | t



testing. It can be seen that performance was not improved by the inclusion of more than 10

features in either of these cases.

average classification accuracy (percentage)

0 12 4 16 0
number of features used

Figure 19: Single node 3NN classifier accuracy
as a function of number of features used

average closeficaton accurcy (poeontage)
i

W01 6
‘numbar of features used

Figure 20: Single node Mahalanobis classifier accuracy
as a function of number of features used
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Sequential forward selection starts with no features. One feature at a time is added
to the available feature list and the resulting classifier is tested. The feature whose inclusion

causes the most i

pi in classifier is included. For this
study this cycle was repeated until 10 features were included. As with SBS the favored
feature list was the one with 10 or fewer features which gave the best classification

performance.

4.5.2 Classifier Types
Two different classifier types were implemented and tested using: a 3-Nearest

Neighbor classifierand a is di lassifier. These : described i

the following two sections.

4.5.2.1 Three Nearest-Neighbor Classifier
A nearest neighbor classifier is essentially a look-up table. It is completely non-

parametric, meaning it assumes nothing about the ion and makes no

about ion (Wei Kulil i,1991). Withthe -neighbor (3-NN)
classifiers that were implemented and tested, features were normalized and the Euclidean
distance was used. An unknown data point was said to be of the species that showed up at
least twice out of the three nearest neighbors. Since there were three possible species classes

a tie could result. In this situation the single nearest neighbor was used.
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4.5.2.2 Mahalanobis Distance Classifier
Often a distance measure known as the Mahalanobis distance is useful for
classification. This parametric classifier measures the distance in feature space from an

unknown object, x, to the mean of class i using the following formula:

Dist, = (x- m)'K; '(x- m,) (16)

where m, is the class (species in our case) mean and K, is the class covariance matrix
calculated from the training data . The use of the class covariance matrix in the distance
measure takes into account the correlation among the features and ensures that the distance
measure is unaffected by scale changes between features. It also ensures that the variance

in cluster “shapes” is taken into account.

The mean and class covariance matrices were computed for each species (Table 4,
contains the mean feature values for cod, capelin and redfish). The distance from the

unknown object, x, and each class was computed using the above equation. The unknown

object S PO i e mink di Thi

technique is quite simple, easy to implement, and, unlike many distance classifiers, the

speeds are very because it is y pute the di: to

all objects in each class.
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Table 4: Mean feature values for each species

Feature Mean Values

__Cod Ca) Redfish
Area 188.097 m* 946.2026 m* | 15.7034 m*
Perimeter 76.86 m 169.03 m 74.01 m
Compactness 16.38 831 349
Roughness 5.15 434 102
Width 15.60 m 41.77m 12.64 m
Height 1.31m 9.77m 0.91m
Elongation 49.41 24.05 107.64
Holes 0.45 0.76 0.18
Axis =i 5.1° -1.5°
Mean Amplitude -83.71dB -88.84 dB -87.56 dB
Maximum Amplitude -74.53 dB -73.58 dB -79.68 dB
Minimum Amplitude -101.79 dB -122.14dB -105.54 dB
Amplitude Standard Deviation 533dB 1091 dB 4.12dB
Depth to the top of the object 77.84m 97.56 m 131.98 m
Depth to the centroid of the object 7851 m 102.52 m 132.15m
Distance from the object to the seabed | 14.83 m 91.47m 223 m
Central Moment X0Y2 0.92dB 1.18dB 0.34dB
Central Moment X2Y0 190.24 dB 52.07dB 240.94 dB
Central Moment X1Y1 -1.424 dB -0.83 dB 1.86 dB
Binarized Central Moment X0Y2 0.011 0.016 0.005
Binarized Central Moment X2Y0 2.366 0.742 3.263
Binarized Central Moment X1Y1 -0.017 -0.01 0.025
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4.5.3 Classifier Configurations
Two classifier “tree structures™ were tested for each classifier type (3-NN and

Mahalanobis Distance). These configurations are illustrated in Figures 21 and 22. The

[ ] [t ] [ ]

Figure 21: Single-node classifier
configuration illustrated in Figure 21 is a single node classifier with three possible outputs:
species A, B or C based on a common set of features. The configuration in Figure 22
contains two nodes (or classifiers) which use two different sets of features. Classifier 1 will

classify an object as being species A or “not species A”. If an object is classified as “not

Figure 22: Dual node classifier tree structure
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Species A” classifier #2 will classify the object as Species B or Species C. This
configuration is useful if it is possible to remove one class from the others with very few
features or if there is a limited amount of data for one class which forces the use of a limited
number of features for its detection. Table 5 lists the fourteen classifiers combinations of

types and configurations implemented and tested.

Table 5: Classifier combinations

Config. # | Node 1 Node 2 Species A | Species B | Species C
Classifier Classifier
1 3NN NA cod capelin redfish
2 3NN 3NN cod capelin redfish
3 3NN 3NN capelin cod redfish
4 3NN 3NN redfish cod capelin
5 Mah.Dist. NA cod capelin redfish
6 Mah.Dist. Mah.Dist. cod capelin redfish
7 Mah.Dist. Mah.Dist. capelin cod redfish
8 Mah.Dist. Mah.Dist. redfish cod capelin
9 3NN Mah.Dist cod capelin redfish
10 3NN Mah.Dist capelin cod redfish
11 3NN Mah.Dist redfish cod capelin
12 Mah.Dist 3NN cod capelin redfish
13 Mah.Dist 3NN capelin cod redfish
14 Mah.Dist 3NN redfish cod capelin
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5.0 RESULTS AND DISCUSSION

Section 5.1 will provide the classification results for each classifier design listed in

Table 6. The results have been given for “I t” tests. The I t testis a

simple technique for estimating classifier error rates. For a given sample size x, a classifier
is generated using (x-1) cases and tested on the single remaining case. This is repeated x
times, each time regenerating the classifier by leaving one sample out. By doing this, each
sample is used as a test case thus maximizing the number of tests performed on “unseen™
data. This technique provides an almost unbiased estimation of a classifier’s error rate
(Weisse and Kulikowski, 1991). Ttis however very time consuming and only practical to use
when sample sizes are small, as they were with this research and when classifier construction

is not time consuming.

5.1 Classifier Performance

5.1.1 Three-Nearest Neighbor Classifiers
5.1.1.1 Classifier Configuration #1

Classifier Configuration #1 is a single node 3-NN classifier. The feature set used by
this classifier was found with backward feature selection and includes the following nine

features: Mean i Maxi i Minimum i itude Standard

Deviation, Distance from Object to Seabed, Central Moment X0Y2, Central Moment X1Y1,

Binarized Central Moment X2Y0, and Binarized Central Moment X1Y1. The confusion
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‘matrix for this classifier is presented in Table 6.

Table 6: Confusion matrix for classifier configuration #1

Predicted Class Membership
TrueClass | Cod Capelin Redfish

Cod 208 (92.0%) 2(0.9%) 16 (7.1%)

Capelin 2 (4.8%) 40 (95.2%) 0

Redfish 3(22%) 0 131 (97.8%)

Please note that the percentages given in the confusion matrix are the percentage of the true

class species database classified as the predicted class species.

.2 Classifier Configuration #2
Classifier Configuration #2 is a dual node classifier where both nodes are 3-NN
classifiers. The feature set used by the first node (for the identification of cod) was found

using backward feature selection and includes the following ten features: Compactness,

Height, Mean it Minimum Amplitude itude Standard Deviation,

Distance from Object to Seabed, Central Moment X1Y1, Binarized Central Moment X2Y0,
and Binarized Central Moment X1Y1. The feature set used by the second node (for the

identification of capelin and redfish) was found using backward feature selection and

includes the following seven features: C Mean lii Minimum.
Distance from Object to Seabed, Central Moment X1Y1, Binarized Central Moment X2Y0,

and Binarized Central Moment X1Y1. The confusion matrix for this classifier is presented
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in Table 7.

Table 7: Confusion matrix for classifier configuration #2

Predicted Class Membership
TrueClass | Cod Capelin Redfish
Cod 204 (90.3%) 2(0.9%) 20 (8.8%)
Capelin 12.4%) 40 (95.2%) 1(2.4%)
Redfish 2(1.5%) 0 132 (98.5%)

5.1.1.3 Classifier Configuration #3

Classifier Configuration #3 is a dual node classifier where both nodes are 3-NN
classifiers. The feature set used by the first node (for the identification of capelin) was found
using backward feature selection and includes the following six features: Compactness,
Minimum Amplitude, Distance from Object to Seabed, Central Moment X1Y1, Binarized
Central Moment X2Y0, and Binarized Central Moment X1Y1. The feature set used by the
second node (for the identification of cod and redfish) was found using backward feature

selection and includes the following five features: Mean

Standard Deviation, Distance from Object to Seabed, and Central Moment X0Y2. The

confusion matrix for this classifier is presented in Table 8.
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Table 8: Confusion matrix for classifier configuration #3

Predicted Class Membership
True Class Cod Capelin Redfish
Cod 213 (94.2%) 1(0.4%) 12 (5.3%)
Capelin 1(2.4%) 41 (97.6%) 0
Redfish 2 (1.5%) 0 132 (98.5%)

5.1.1.4 Classifier Configuration #4
Classifier Configuration #4 is a dual node classifier where both nodes are 3-NN
classifiers. The feature set used by the first node (for the identification of redfish) was found

using backward feature selection and includes the following ten features: Roughness, Mean

i Maxi dmpli

Minimum i Amplitude Standard Deviation,

Distance from Object to Seabed, Holes, Central Moment X0Y2, Binarized Central Moment
X2Y0, and Binarized Central Moment X1Y1. The feature set used by the second node (for
the identification of capelin and cod) was found using forward feature selection and includes
the following eight features: Compactness, Roughness, Height, Axis, Mean Amplitude,
Amplitude Standard Deviation, Distance from Object to Seabed, and Central Moment X0Y2.

The confusion matrix for this classifier is presented in Table 9.

Table 9: Confusion matrix for classifier configuration #4

Predicted Class Membership

True Class Cod Capelin Redfish
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Cod 211 (93.4%) 0 15 (6.6%)
Capelin 2(4.8%) 40 (95.2%) 0
Redfish 2(1.5%) 0 132 (98.5%)

5.1.2 Mahalanobis Distance Classifiers
5.1.2.1 Classifier Configuration #5

Classifier Configuration #5 is a single node Mahalanobis Distance classifier. The
feature set used by this classifier was found with backward feature selection and includes the
following eight features: Perimeter, Compactness, Roughness, Height, Axis, Minimum
Amplitude, Amplitude Standard Deviation, and Distance from Object to Seabed. The

confusion matrix for this classifier is presented in Table 10.

Table 10: Confusion matrix for classifier configuration #5

Predicted Class Membership
True Class Cod Capelin Redfish
Cod 214 (94.7%) 4(1.8%) 8(3.5%)
Capelin 1(2.4%) 41 (97.6%) 0
Redfish 23 (17.2%) 0 111 (82.8%)

5.1.2.2 Classifier Configuration #6

Classifier Configuration #6 is a dual node classifier where both nodes are

Mahalanobis Distance classifiers. The feature set used by the first node (for the
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identification of cod) was found by backward feature selection and includes the following
eight features: Perimeter, Compactness, Roughness, Height, Axis, Minimum Amplitude,
Amplitude Standard Deviation, and Distance from Object to Seabed. The feature used by
the second node (for the identification of capelin and redfish) was found using forward
feature selection and includes the following four features: Roughness, Axis, Maximum
Amplitude, and Distance from Object to Seabed. The confusion matrix for this classifier is

presented in Table 11.

Table 11: Confusion matrix for classifier configuration #6

Predicted Class Membership
True Class Cod Capelin Redfish
Cod 214 (94.7%) 2(0.9%) 10 (4.4%)
Capelin 1(2.4%) 41 (97.6%) 0
Redfish 23 (17.2%) 1(0.7%) 110 (82.1%)

5.1.2.3 Classifier Configuration #7

Classifier Configuration #7 is a dual node classifier where both nodes are
Mahalanobis distance classifiers. The feature set used by the first node (for the identification
of capelin) was found using backward feature selection and includes the following six

features: C Axis, Minimum litude, Distance from Object to

Seabed, and Holes. The feature set used by the second node (for the identification of cod and

redfish) was found using backward feature selection and includes the following eight



features: Perimeter, C Height, Axis, Minimum
Standard Deviation, and Distance from Object to Seabed. The confusion matrix for this

classifier is presented in Table 12.

Table 12: Confusion matrix for classifier configuration #7

Predicted Class Membership
TrueClass | Cod Capelin Redfish
Cod 217 (96.0%) 1(0.4%) 8 (3.5%)
Capelin 7(7.1%) 39 (92.9%) 0
Redfish 23 (17.2%) 0 111 (82.8%)

5.1.2.4 Classifier Configuration #8

Classifier Configuration #8 is a dual node classifier where both nodes are
Mahalanobis distance classifiers. The feature set used by the first node (for the identification
of redfish) was found using backward feature selection and includes the following nine

features: Perimeter, Cc Height, Axis, Minimum.

Standard Deviation, Distance from Object to Seabed, and Holes. The feature set used by the
second node (for the identification of capelin and cod) was found using forward feature
selection and includes the following ten features: Perimeter, Compactness, Height, Minimum

litude Standard Deviation, Distance from Object to Seabed, Holes, Central

Moment X0Y2, Central Moment X1Y1,and Binarized Central Moment X1Y1. The confusion

matrix for this classifier is presented in Table 13.
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Table 13: Confusion matrix for classifier configuration #8

Predicted Class Membership

TrueClass | Cod Capelin Redfish
Cod 211 (93.4%) 5(2.2%) 10 (4.4%)
Capelin 3(7.1%) 39 (92.9%) 0
Redfish 23 (17.2%) 0 111 (82.8%)

5.1.3 Combination Classifiers

5.1.3.1 Classifier Configuration #9

Classifier Configuration #9 is a dual node classifier where the first node is a 3NN
classifier and the second node is a Mahalanobis classifier. The feature set used by the first
node (for the identification of cod) was found using backward feature selection and includes
the following ten features: Compactness, Roughness, Height, Mean Amplitude, Minimum
Amplitude, Amplitude Standard Deviation, Distance from Object to Seabed, Central Moment
X1Y1, Binarized Central Moment X2Y0, and Binarized Central Moment X1Y1. The feature
set used by the second node (for the identification of capelin and redfish) was found using
forward feature selection and includes the following four features: Roughness, Axis,

Maximum Amplitude, and Distance from Object to Seabed. The confusion matrix for this

classifier is presented in Table 14.
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Table 14: Confusion matrix for classifier configuration #9

Predicted Class Membership
True Class Cod Capelin Redfish
Cod 204 (90.3%) 8 (3.5%) 14 (6.2%)
Capelin 1(2.4%) 41 (97.6%) 0
Redfish 2 (1.5%) 1(0.7%) 131 (97.8%)

5.1.3.2 Classifier Configuration #10

Classifier Configuration #10 is a dual node classifier where the first node is a 3NN
classifier and the second node is a Mahalanobis classifier. The feature set used by the first
node (for the identification of capelin) was found using backward feature selection and uses
the following six features: Compactness, Minimum Amplitude, Distance from Object to
Seabed, Central Moment X1Y1, Binarized Central Moment X2Y0, and Binarized Central
Moment X1Y1. The feature set used by the second node (for the identification of cod and
redfish) was found using backward feature selection and includes the following eight

features: Perimeter, Ce Height, Axis, Minimum Amplitude litude

Standard Deviation, and Distance from Object to Seabed. The confusion matrix for this

classifier is presented in Table 15.

Table 15: Confusion matrix for classifier configuration #10

Predicted Class Membership

True Class Cod Capelin Redfi
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Cod 217 (96.0%) 1(0.4%) 8 (3.5%)
Capelin 1(24%) 41 (97.6%) 0
Redfish 23 (17.2%) 0 111 (82.8%)

5.1.3.3 Classifier Configuration #11

Classifier Configuration #11 is a dual node classifier where the first node is a 3NN
classifier and the second node is a Mahalanobis classifier. The feature set used by the first
node (for the identification of redfish) was found using backward feature selection and uses

the following ten features: Mean litude, Maxi i Minimum

Amplitude, Amplitude Standard Deviation, Distance from Object to Seabed, Holes, Central
‘Moment X0Y2, Binarized Central Moment X2Y0, and Binarized Central Moment X1Y1. The
feature set used by the second node (for the identification of cod and capelin) was found
using forward feature selection and includes the following ten features: Perimeter,
Compactness, Height, Minimum Amplitude, Amplitude Standard Deviation, Distance from
Object to Seabed, Holes Central Moment X0Y2, Central Moment X1Y1, and Binarized

Central Moment X1Y1. The confusion matrix for this classifier is presented in Table 16.

Table 16: Confusion matrix for classifier configuration #11

Predicted Class Membership
TrueClass | Cod Capelin Redfish
Cod 206 (91.2%) 5(22%) 15 (6.6%)
Capelin 3(7.1%) 39 (92.9%) 0
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Redfish 2 (1.5%) 0 132 (98.5%)

5.1.3.4 Classifier Configuration #12

Classifier Configuration #12 is a dual node classifier where the first node is a
Mahalanobis classifier and the second node is a 3NN classifier. The feature set used by the
first node (for the identification of cod) was found using backward feature selection and uses
the following eight features: Perimeter, Compactness, Roughness, Height, Axis, Minimum
Amplitude, Amplitude Standard Deviation, and Distance from Object to Seabed. The feature
set used by the second node (for the identification of capelin and redfish) was found using
backward feature selection and includes the following seven features: Compactness, Mean
Amplitude, Minimum Amplitude, Distance from Object to Seabed, Central Moment X1Y1,
Binarized Central Moment X2Y0, and Binarized Central Moment X1Y1. The confusion

matrix for this classifier is presented in Table 17.

Table 17: Confusion matrix for classifier configuration #12

Predicted Class Membership
True Class Cod Capelin Redfish
Cod 214 (94.7%) 1(0.4%) 11 (4.9%)
Capelin 1(2.4%) 41 (97.6%) 0
Redfish 23 (17.2%) 0 111 (82.8%)

63



5.1.3.5 Classifier Configuration #13

Classifier Configuration #13 is a dual node classifier where the first node is a
Mahalanobis classifier and the second node is a 3NN classifier. The feature set used by the
first node (for the identification of capelin) was found using backward feature selection and

uses the following six features: C h Axis, Minimum litud

Distance from Object to Seabed, and Holes. The feature set used by the second node (for the
identification of cod and redfish) was found using backward feature selection and includes

the following five features: Mean i Amplitude Standard Deviation,

Distance from Object to Seabed, and Central Moment X0Y2. The confusion matrix for this

classifier is presented in Table 18.

Table 18: Confusion matrix for classifier configuration #13

Predicted Class Membership
True Class Cod Capelin Redfish
Cod 214 (94.7%) 1(0.4%) 11 (4.9%)
Capelin 3(7.1%) 39 (92.9%) 0
Redfish 2 (1.5%) 0 132 (98.5%)

5.1.3.6 Classifier Configuration #14
Classifier Configuration #14 is a dual node classifier where the first node is a
Mahalanobis classifier and the second node is a 3NN classifier. The feature set used by the

first node (for the identification of redfish) was found using backward feature selection and
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uses the following nine features: Perimeter, Compactness, Roughness, Height, Axis,

Minimum Amplitude, Amplitude Standard Deviation, Distance from Object to Seabed, and
Holes. The feature set used by the second node (for the identification of cod and capelin)
was found using backward feature selection and includes the following eight features:
Compactness, Roughness, Height, Axis, Mean Amplitude, Amplitude Standard Deviation,
Distance from Object to Seabed, and Central Moment X0Y2. The confusion matrix for this

classifier is presented in Table 19.

Table 19: Confusion matrix for classifier configuration #14

Predicted Class Membership
True Class Cod Capelin Redfish
Cod 216 (95.6%) 0 10 (4.4%)
Capelin 2 (4.8%) 40 (95.2%) 0
Redfish 23 (17.2%) 0 111 (82.8%)

5.2 Discussion

The best average classification accuracy (96.8%) was produced by classifier #3, the

dual node classifier where both nodes were 3-NN classifiers and the first node was used to

identify capelin. Based ification accuracy, the 3-NN i formed

the Mahalanobis distance classifiers by about 5.0% (as shown in Table 20). The
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of the ination classifiers were in general between the performance of the

3-NN i and the is distance i The 1 is distance

classifiers were relatively poor at separating redfish from cod and capelin but very good at
separating cod from the other two species. The 3-NN classifiers had a more consistent

performance for each of the three species’.

There was no significant difference in the number of features required for the
different classifier configurations. It is interesting to note that the two classifiers with the
best performance also used the fewest number of features per node. The Distance from the
Object to the Seabed feature was used by every node in every classifier, as was at least one

amplitude feature. As expected, amplitude features were very useful but never sufficient for

The N is distance i made use of hological shape and
size features such as drea, Compactness, Width and Height more often than the 3-NN
classifiers [see Figure 23]. The 3-NN classifiers used the binarized central moments which
are shape descriptors more often than the Mahalanobis distance classifiers [see Figure 24].

For the 3-NN classifiers, the amplitude features were very important [see Figure 25].

Although it did not give the best classification result, for speed optimization it was
decided that a Mahalanobis distance based classifier would be implemented in the FASIT
software (it was anticipated that a great deal of training data would be available to the
software in the future and a nearest neighbour classifier would be too slow). Further, since

there was limited capelin data (42 feature sets) the classifier chosen (to avoid overtraining),
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was the one that used the smallest number of features for the classification of capelin -
classifier configuration #7. Given the speed of computers today, classification speed is no
longer an issue for this application. 1 would therefore recommend that the classifier
configuration that gave the best overall results (configuration #3) be implemented in newer
versions of FASIT. This classifier not only provided the best classification accuracy but it

required on average the lowest number of features.

Table 20: Summary of classifier results

Class # Node 1 Node 2 Classification Accuracy | Average
type num |type [num | Cod | Capelin | Redfish Accuracy

#1 3NN (9 NA NA |92 952 978 95

#2 3NN |10 3NN |7 90.3 |95.2 98.5 94.7

#3 3NN |6 3NN |5 942 |97.6 98.5 96.8

#4 3NN 10 3NN |8 934 |952 98.5 95.7

#5 Mah. |8 NA NA |94.7 [97.6 82.8 91.7

#6 Mah. |8 Mah. |4 94.7 [97.6 82.1 915

#1 Mah. |6 Mah. |8 96 929 82.8 90.6

#8 Mah. |9 Mah. | 10 934 (929 82.8 89.7

#9 3NN 10 Mah |4 903 [97.6 97.8 95.2

#10 3NN |6 Mah |8 96 97.6 82.8 92.1

#11 3NN 10 Mah |10 912 929 98.5 942

#12 Mah 8 3NN |7 94.7 | 97.6 82.8 91.7

#13 Mah 6 3NN |5 94.7 {929 98.5 954
#14 Mah 9 3NN |8 95.6 [952 82.8 91.2
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6.0 CONCLUSION

The potential benefits of automated fish identification for fisheries scientists and
fishers are significant. ~Scientific acoustic surveys are destructive, expensive and labor
intensive partially due to the requirement for ground truthing by way of hand-lining or

trawling. For many years experienced scientists and fishers have been able to identify the

shapes on their but such j are subjective and i An
automated system will allow for objective, non-destructive, fast, and repeatable species
identification. Fora commercial fishery a real-time fish identification system would be very
beneficial from an environmental and economic point of view by helping to reduce by-catch.
The technology could be adapted to allow commercial fishers to identify the species seen
on their echo-sounders, allowing them to fish selectively by adjusting their fishing gear to

avoid harvesting non-target species.

Based on the work done here and the work of others it is evident that echosounder

puti and pattem it iques have evolved to a

point where species i i ion is i feasible. For the three species

studied here Atlantic capelin (Mallotus villosus), cod (Gadus morhua) and redfish (Sebastes
spp.) the classification results produced by this work were very good (the best classifier was
on average 96.8% correct) using a reasonable number of features. This classifier
(configuration #2) was a dual node classifier where both nodes were 3-NN classifiers. The

feature set used by the first node (for the identification of capelin) was made up by the
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following six features: Compactness, Minimum Amplitude, Distance from Object to Seabed,
Central Moment X1Y1, Binarized Central Moment X2Y0, and Binarized Central Moment

XIYI. The feature set used by the second node (for the identification of cod and redfish)

was made up by the following five features: h Mean litud

Standard Deviation, Distance from Object to Seabed, and Central Moment X0Y2. This
classifier provided the best overall classification and used on average the lowest number of

features.
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7.0 RECOMMENDATIONS

If this work it to be developed further, a number of areas need additional attention.

Classification may be improved by using the Mahalanobis distance classifiers if the species

data is further subdivided into sub of individual fish and schooling fish. The

nature of

distance i means that they try to make
generalizations about a population. This may have been made more difficult by grouping
schools and individuals of one species into a single class. As well, a more sophisticated
feature reduction technique should be implemented. The backward and forward sequential
feature selection schemes used here cannot anticipate the interactions between features and
likely did not find the optimum combination of features for each classifier tested. The
“windowing” of fish, which was done manually, should also be automated. Given the recent
increase in computer speeds, the allowable image size should be increased from the present

limit of 512 x 512 pixels.

Having said in Section 6.0 Conclusion that the system could be further developed for

general usage, it must realized that, as withany pattern ition system applied
to natural data, a great deal of ground truthed data is needed before a system can be ready for

more general usage. for species identification of fish, data collection is very

time consuming and expensive. To make a system for general scientific or commercial
usage, data would have to be collected over at least a full year cycle, in a variety of areas, and

for all species of scientific, environmental, and commercial interest. It should also be noted
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that the classifiers would likely have to be retrained for data from different echosounders.
Many amplitude and shape features are undoubtedly related to the echosounder properties
such as the carrier frequency used (f), the pulse length (t), beamwidth and sampling
frequency. Nonetheless, given enough data, from a variety of echosounders, it may be
possible to find features that are universally good descriptors for many species.
Classification results will also depend on the quality of the echosounder system used. It is
unlikely that consistently good classification results could be obtained from a low quality
system. It is essential to have a system with a high signal to noise ratio and good signal

stability.
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Appendix A
Data Collection Area Maps
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Trinity Bay

Placentia Bay
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Appendix B
Acoustic Calculations
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B. 1. Sound Velocity Calculation
The following calculation is used to estimate the speed of sound in sea water based
on ge of envi iti (Camp, 1970):

¢ = 1449+ 4.6T- 0.055T2+0.0003 73+ (1.39 - 0.0127)(S - 35)+ 0.017d

where: ¢ = velocity in metres/second

water temperature in degrees in Celsius
§= salinity in parts per thousand

d = depth in metres

B.2.A ion Coefficient C: ion (Fisher and Si 1997):

Sound absorption () in seawater can be approximated using the following. Since
the change in absorption due to water pressure at depths less than 1000 m is
negligible, pressure has been left out of the following equation, which assumes pH
=8.

o=

ML AL
R Ref

where:

A, = 1.03x10°*+2.36x101°T- 5.22x10 12T

4, = 3%(5-62”0'% 7.52x1071°T)

4y = (55.9- 2377+ 477x10°2T2~ 3.48x10 *T%)x10 15
1m0

£y = 132x10%(T+ 273.1)exp”* 2!

- 3052
£, = 155x107(T+ 273.1)exp™ 731

T = water temperature in degrees in Celsius
f= sound frequency in Hz
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§= salinity in parts per thousand

B. 3. Time Varied Gain

In order measure an acoustic target, it is necessary to correct the received echo for the
effects of spherical spreading and absorption losses. The correction for these losses
is done by applying time varied gain (TVG) to the receiving amplifier which until
recently was done using analog circuitry. For single fish targets a TVG of 40 log(r)
+ 2ar is used to compensate for two-way spreading and absorption losses (to and
from the target) where « is absorption coefficient [see B.2. for the estimation of «].
For densely schooling fish a TVG of 20 log(r) + 2ar is used. (MacLennan and
Simmonds, 1992)

B. 4. Target Strength
Target Strength (TS) is used to describe the acoustic reflectivity of targets. The
reflectivity is defined as the ratio of the reflected intensity at 1 m from the target (I,)
and the incident intensity (I,). 1, is proportional to I, therefore TS, given in dB, is
not quoted with reference to a specific pressure level. (MacLennan and Simmonds,
1992)

TS = 10 log (I/1,)



Appendix C
Echo-sounder Parameters
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Echo-sounder Parameters

BioSonics DT4000

Source Level 222dB
Receiver Sensitivity -52dB
Lower Data Threshold (used during data collection) -130dB
Transducer Frequency 38 KHz
Ping Rate 5Hz
Pulse Width 0.4 ms
Major Axis Beamwidth 6°
Minor Axis Beamwidth 6°
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Appendix D
Matlab© Code
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% classCl.m

%

% Patricia LeFeuvre

%

% Thesis classifier configuration #1

% 1 node:

% 3NN - separate cod, capelin and redfish
clear,

% Feature Key
81 Area

%2 Perim
%3 Compac
%4 Rough
%5 Width
%6 Height
%7 Axis
38 Elong
39 Mean
210 Max
811  Min
%12 Sigma

%13 depth to centroid
%14  depth to top
515 Dist off bottom
%16  holes

NA

%18 NA

323 mcxOy2bin
%24 mex2yObin
%25 mexlylbin

<
load capelin.txt;
load cod.txt;

load redfish.txt;

$normalize all of the data

MN_red = min(redfish);

MN_capelin = min(capelin);

MV cod = min(cod) ;

MN = min (min (MN_red, MN_capelin) MN_cod);

MX_red = max(redfish);

MX_capelin = max (capelin);

MX_cod = max(cod);

MX = max (max (MX_red,MX_capelin),MX_cod)-MN;

for i = 1l:length(redfish)

norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

ength (capelin)



norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;
end

for i = 1:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;
end

alldata = [norm_cod; norm capelin; norm_red];
num_cod = length (norm_cod);

num_capelin = length (norm capelin);
num_redfish = length(norm_red);

%% CLASSIFIER Configuration #1
% After depth feature removal, Factor Analysis and SBS

keepl = [9 10 11 12 15 20 22 24 25);
keepList = 1:25 * 0
keepList (keepl) = 1;

cod_called_red
cod_called_cod
cod_called_cap
capelin_called red = 0;
capelin_called_cod
capelin_called_cap
redfish_called_red
redfish_called cod = 0;
redfish_called_cap

for i = 1:length(alldata)
data = [alldata (i, keepl)];

for j = 1:length(alldata)
£ 4 ~=
tmp = data - alldata(j, keepl);
dist(3) = sqrt(tmp*tmp');
else
dist(3) = 25;
end
end
[sortedDist, Index] = sort(dist);

if ( length(find(Index(1:3) <= num_cod )) >= 2) % 2/3 were cod
called P % 3

elseif ( length(find( (Index(1:3) > num cod) & (Index(1:3) <=

(num_cod+num_capelin))) ) >= 2) & 2/3 were capelin
< d = 2; % 2
elseif ( length(find(Index(1:3) > (num cod+num_capelin))) >= 2) % 2/3 were
redfish
called = 3; % 3 = redfish

else
%3 way tie - use the distance to the nearest neighbour
if (Index(1) num_cod)

e
elseif (Index(1) <= (num cod+num_capelin))



else
called = 3;
end

end

if called
if (4 num_cod)
cod_called_cod

elseif (1> num_cod)

capelin_called_

else

redfish_called

end
elseif called
if (i <
cod_called_cap

elseif (i > num_cod)
capelin_called_
els
redfish_called
end
else
if (i <= num_cod)
cod_called red
elseif (i > num Ccd)
capelin_called )
else
redfish_called_:
end
end

end

£printf ('Number of Features =
fprintf('sd ', keepl);

#d\nFeature List =

= cod_ called cod +1;
& (1< od + num_capelin))
cod = capelm called cod + 1;

cod = redfish_called _cod + 1;

cod_called cap + 1;
um_cod + num_capelin))
capelin_called_cap + 1;

&
cap =

cap = redfish_called cap + 1;

cod_¢ called red + 1;
" cod + num_capelin))

&

(ny
red = capelin_called_red + 1;
red = redfish_called_red + 1;

s length (keepl));

fprintf ('\n\t\t\t\tPREDICTED CLASS\n');
£printf (' \t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fprintf('COD\t\t$.0f [8.1f $8]1\t%.0f [%.1f $3]\t3.0f [%.1f 3%]1\n’,...
cod_called_cod, cod_called_cod/num_cod*100,

cod_called_cap, cod_called_cap/num_cod*100, ...
cod_called red,cod_called red/num_cod*100);

fprintf ('CAPELIN\E\t$.0f [3.1f $5]\ts.0f [5.1f $8]\ts.0f [%.1f 88]\n',...

capelin_called_cod,capelin_called cod/num_capelin*100, ...
capelin_called cap,capelin_called cap/num_capelin*100, ...
capelin_called_red,capelin_called_red/num_capelin*100);

fprintf ('REDFISH\t\t%.0f [%.1f $8]\t3.0f [$.1f $8]\ts.0f
called_cod, redfish_called cod/num_redfish*100,
redfish_called cap, redfish_called cap/num_redfish*100

redfish_

redfish_called red, redfish_called red/num_redfish*100);

[%.1f %3]\n\n', ...



% classC2.m
%

% Patricia LeFeuvre

% Feb 25, 2001

%

%  Thesis classifier configuration #2

§ 2 nodes:

% node #1 - 3NN - extract

%  node #2 - 3NN - separate capelin and redfish
cle

Toad capelin. txts
load cod.txt;
load redfish.txt;

SEEEIER A B ERR e
My = min(redfish);

MN_capelm = min(capelin);

M cod = min(cod) 7

MN = min(min (MN_red, MN_capelin) MN_cod) ;

MX_red = max(redfish);

MX_capelin = max (capelin);

MX_cod = max(cod);

max (max (MX_red, MX_capelin) ,MX_cod) -MN;

for i = l:length(redfish)
norm_red(i,1:25) = (redfish(i,

5) - MN)./MX;
end

for i = 1:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - 'MN)./MX;
end

for i = 1:length(cod)
norm cod(i,1:25) = (cod(i,1:25) - MN)./MX;
end

% Classifier #2
alldata = [norm_cod; norm_capelin; norm red];
node2data = [norm_capelin; norm_red]

cod_called_red
Cod called cod
cod_called cap =

redfish_called red
redfish called cod
redfish_called cap = 0;

num_cod = length(norm_cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm_red);

% list of features selected



% Node 1 - extract cod
keepl = {34 6911 12 15 22 24 25);

% Node 2 - capelin vs. redfish
keep2 = [3 9 11 15 22 24 25];

for i = l:length(alldata)

data = [alldata (i, keepl)];
or j lenqthtalldata)

tmp data - alldata(j, keepl);
dist(j) = sqrt (tmp*tmp');

dist(3) = 25;

[sortedDist, Index] = sort(dist);

if ( length(find(Index(1:3) <= num_cod )) >= 2)
d = 1; % 1 = cod;
else
% Node 2
data = [alldata (i, keep2)];

sameCount = 0;
for j = 1: lengch(nedezdata)
= data - node2data(j, keep2);

dist(j) = sqru:mpwcmp'),

if (dist(3) 0) % the same point so don't use
dist(3) 25;
sameCount = sameCount + 1;
if sameCount > 1

fprintf ('Error - too many identical points ');

end

end
end
[sortedDist, Index] = sort(dist);

if ( length(find(Index(1:3) <= num_capelin )) >= 2) & 2/3 were capelin

called = 2; % 2 = capelin
else
called = 3; % 3 = redfish
end

end ¢ end of Node 2

if called 1
if (i <= num_cod)
cod_called cod = cod_called cod + 1
elseif (i > num God) & (i <= (num_cod + num_capelin))

capelin_called cod = capelin_called cod + 1

else
redfish _called cod = redfish_called cod + 1;



elseif called == 2
(i <= num_cod)
cod_called_cap = cod_called_cap + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin called cap = capelin_called cap + 1;

else
redfish_called_cap = redfish_called_cap + 1;
end
else
if (i <= num_cod)
cod_ called_red = cod_called_red + 1;
elseif (i > num Cod) & (i <= (num cod + num capelin))
capelin_called red = capelin called_red + 1
else
redfish_called_red = redfish called red + 1;
end
end
end
fprintf('Node #1 Number of Features = $d\nFeature List = ',length(keepl));
fprintf('éd ', keepl);
fprintf('\nNode #2 Number of Features = %d\nFeature List = ', length(keep2));
fprintf('sd ', keep2);

fprintf ('\n\t\t\t\tPREDICTED CLASS\n');
£printf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n");

fprintf('COD\t\t3.0f [4.1f $5]\t8.0f [.1f £5]\ts.0f [$.1f %%]\n',
cod_called cod,cod_called_cod/num_cod*100,...

cod_called cap, cod_called cap/num cod*100, .
cod_called_red,cod_called_red/num_cod*100);

fprintf('CAPELIN\t\t%.0f [%.1f 2%]\t%.0f [%.1f %%]\t2.0f [8.1f %%]\n',
capelin_called_cod,capelin_called cod/num_capelin*100,
capelin_called cap,capelin_called cap/num_capelin*100,
capelin_called red,capelin_called red/num_capelin*100);

fprintf ('REDFISH\t\t%.0f [$.1f $3]\t$.0f [8.1f $3]\t8.0f [8.1f $3]\n\n',
redfish_called_cod, redfish_called_cod/num_redfish*100,
redfish_called cap, redfish_called_cap/num_redfish*100,
redfish_called red, redfish_called_red/num_redfish*100);




% classC3.m

%

% Patricia LeFeuv:e

% Feb 25,

% Thesis classifier configuration #3

% 2 nodes:

% node #1 - 3NN - extract capelin

% node #2 - 3NN - separate cod and redfish
clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

$normalize all of the data
MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN = min(min (MN_red,MN_capelin),MN_cod);

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max(cod);

MX"= max (max (MX_red,MX_capelin),MX_cod)-MN;

for i = 1:length(redfish)
norm_red(i,1:25) = (redfish(i,

5) - MN)./MX;
end

for i = 1:length(capelin)

norm_capelin(i,1:25) = (capelin(i, - MN) . /MX;
end
for i = l:length(cod)
norm _cod(i,1:25) = (cod(i,1:25) - MN)./MX;
end
% Classifier #2
alldata = [norm_cod; norm capelin; norm_red];
node2data = [norm_cod; norm_red];

cod_called_red =
cod_called cod = 0;
cod_called cap = 0;

capelin_called red = 0;
capelin_called cod = 0;
capelin_called cap = 0;
redfish_called red = 0;
redfish_called_cod = 0;
redfish_called cap = 0;

e R
num_capeli: ngth (norm_capelin) ;
num_redfish lengthmermﬁred);

% list of features selected



% Node 1 - extract capelin
keepl = 3 11 15 22 25];

% Node 2 - cod vs. redfish
keep2 =

[4 9 12 15 201;

for i = 1:length(alldata)
data = [alldata (i, keepl)];
for j = l:length(alldata)
if 4=
tmp = data - alldata(j, keepl);
dist(3) = sqrt(tmprtmp');
else
dist(3) = 25;
end
end
[sortedDist,

Index] = sort(dist);
if ( length(find( (Index(1:3) > num cod) & (Index(1:3) <=
(num_cod+num_capelin))) ) >= 2) % 2/3 were capelin
called = 2; % 2 = capelin;
else
% Node 2

= [alldata
sameCount =

= 1:length(node2data)

(i, keep2)];

ata - node2data(j, keep2);

dist2(j) = sqrt(tmp*tmp');

if (dist2(3)
dist2(3)
samecount =

if sameCount

0) % the same point so don't use
25;

sameCount + 17

fprintf ('Error - too many identical points ');
end
end
end
[sortedDist, Index] = sort(dist2);

1f ( length(find(Index(1:3) <= num cod )) >= 2) % 2/3 were cod

called = 1; % 1 = cod
else
called = 3; % 3 = redfish
end
end § end of Node 2

if called =
i

(i <= num_cod)
cod_called_cod

¢ cod_called cod + 1;
elseif (i > num_cod)

¥ & (i <= (num_cod + num_capelin))
capelin_called_cod = capelin_called_cod + 1;
els
redfish_called cod = redfish_called_cod + 1;
end
elseif called
if (1 <

num_cod)

cod_called cap = cod_called cap + 1;



elseif (i > num cod) & (i <= (num cod + num capel:.n))
capelin_called_cap = capelin_called_cap

else
redfish_called_cap = redfish called_cap + 1;
end
else
if (i <= num_cod
cod_called_red = cod_called_red + 1;
elseif (i > num cod) & (i <= (num_cod + num capelin))
capelin_called_red = capelin _called red + 1;
else
redfish_called_red = redfish called red + 1;
end
end
end
£printf('Node #1 Number of Features = §d\nFeature List = ',length(keepl));
fprintf('sd ', keepl);
fprintf('\nNode #2 Number of Features = sd\nFeature List = ',length(keep2));
fprintf('sd ', keep2);

£printf ('\n\t\t\t\tPREDICTED CLASS\n');
fprintf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf('COD\E\t%.0f [%.1f §8]\ts.0f [#.1f #8]\t%.0f [&.1f %%]\n',
cod_called_cod, cod_called_cod/num _cod*100, ...

cod called cap, cod_called cap/num cod*100, . ..
cod_called_red,cod_called_red/num_cod*100);

fprintf ('CAPELIN\t\t$.0f [$.1f $3]\ts.0f [§.1f $8]\t8.0f [3.1f ¥%]\n',
capelin_called _cod,capelin_called cod/num_capelin*100,
capelin_called_cap, capelin_called_cap/num_capelin*100,
capelin_called red,capelin_called red/num_capelin*100);

fprintf ('REDFISH\t\t%.0f [%.1f $5]\t%.0f [%.1f $%]\t%.0f [%.1f %%]\n\n',
redfish_called_cod,redfish_called_cod/num_redfish*100,
redfish_called cap, redfish_called cap/num_redfish*100,
redflsh called_red, redfish called red/num redfish*100);




% classCd.m

3

% Patricia LeFeuvre

% Feb 26, 2001

% Thesis classifier configuration #4
% 2 nodes

%  node #1 - 3NN - extract redfish

node #2 - 3NN - separate cod and capelin
clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

tnormalize all of the data

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN"= min (min (MN_red,MN_capelin),MN_cod) ;

MX_red = max(redfish);

MX_capelin = max (capelin);

MX_cod = max(cod);

MX = max (max (MX_red,MX_capelin),MX_cod)-MN;

for i = l:length(redfish)

norm red(i,1:25) = (redfish(i, - MN) . /MX;
end
for i = 1:length(capelin)

norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;
end
for i = 1:length(cod)

norm cod(i,1:25) = (cod(i,1:25) - MN)./MX;

alldata = [norm _cod; norm_capelin; norm_red];
node2data = [norm_cod; norm_capelin];

cod_called_red = 0;
cod_called cod = 0;
cod_called_cap = 0;
capelin_called red
capelin_called cod
capelin_called cap
redfish_called_red
redfish_called_cod
redfish_called_cap

w

[
°

num_cod = length (norm_cod);
num_capelin = length(norm capelin);
num_redfish = length(norm_red);

% selected features
% Node 1 - extract redfish
keepl = [4 9 10 11 12 15 16 20 24 251;
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#Node
keep2

for i

2 - cod vs. capelin
- (346791215 201;

= 1:length(alldata)

data = [alldata(i,keepl)];
for 3 = 1: length(alldata)
if 1 ~=
tmp = data - alldata(j, keepl),
dist(j) = sqrt(tmp*tm
else
dist(3) = 25;

end

[sortedDist, Index] = sort(dist);
if ( lergth(find(Index(1:3) > (num_cod+num_capelin))) >= 2)% 2/3 were redfish
called = 3; % 3 = redfish;
else
% Node 2
deka; = [alldata(l keep?)ls
meCount = 0;
for 3 =1: lengthmodeZdata)
data - node2data (3, keep2) ;
dlst2(j) = qrt(tmptiup! )3
if (dist2(j) == 0) & the same point so don't use
dist2(3)
sameCount = sameCount + 1;
if sameCount > 1
fprintf('Error - too many identical points\n ')
pause;
end
end

end
[sortedDist, Index] = sort(dist2);

if ( length(fxnd!lndex(l 3) <= num_cod )) >= 2) & 2/3 were cod
d = 1; 81 =cod

se
called =27 % 2 = capelin

end
end % end of Node 2

if called 1
if (i <= num_cod)

cod_called cod = cod_called_cod + 1;

elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_cod = capelin_called cod + 1;

else
redfish_called_cod = redfish_called_cod + 1;

end

elseif called == 2
if (i <= num_cod)

cod_called cap = cod_called cap +

elseif (i > num God) & (i <= (num_cod + num capelin))

1



capelin_called cap = capelin called cap + 1;

else
redfish_called_cap = redfish_called_cap + 1;
end
else
if (i <= num
cod_ called red = cod_called_red + 1;
elseif (i > num_cod) & (i <= (num_cod + num_capelin))
capelin_called_red = capelin_called_red + 1;
else
redfish_called_red = redfish called_red + 1;
end
end
end
fprintf('Node #1 Number of Features = %d\nFeature List = ',length(keepl));
fprintf('sd ', keepl);
fprintf('\nNode #2 Number of Features = $d\nFeature List = ', length(keep2));
fprintf('sd ', keep2);

£printf ('\n\t\t\t\tPREDICTED CLASS\n');
f£printf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fprintf('COD\t\t%.0f [$.1f %%]\t$.0f [%.1f 23]\t%.0f [%.1f $%]\n',
cod_called_cod, cod_called_cod/num cod*100, ...

cod_called_cap, cod_called cap/num_cod*100,...

cod_called red, cod_called_red/num_cod*100);

fprintf('CAPELIN\t\t%.0f [%.1f 2%]\t%.0f [2.1f ¥%]\t2.0f [%.1f #%]\n’,
capelin_called _cod,capelin_called_cod/num_capelin*100, .

capelin_called_cap,capelin_called_cap/num_capelin*100,
capelin_called _red,capelin_called red/num_capelin*100);

fprintf ('REDFISH\t\t$.0f [$.1f $3]\t$.0f [¢.1f $3]\ts.0f [3.1f 3%)\n\n',
redfish_called_cod, redfish_called cod/num_redfish*100,
redfish_called cap, redfish_called_cap/num_redfish*100,
redfish_called _red, redfish_called_red/num_redfish*100);




o0 o0 a0 op 0 o0

clear,

load capelin.txt;

classC5.m

load cod.txt;

load redfish.txt;

% Normaliz:

-

MK_red =
MX_capelin

MX_cod = max(cod) ;

e

Patricia Lei‘euvre

Feb 25,
Thesis classmxe: configuration #5
1 node:
MAH - separate cod, capelin and redfish

min(redfish);

min(capelin);

min(cod) ;
min (min (MN_red,MN_capelin) MN_cod) ;

max (redfish);

max (capelin) ;

MX = max (max (MX_red, MX_capelin) ,MX_cod) -MN;

for i = 1:length(redfish)

norm_red(i,1:25)

for i = l:length(capelin)

(redfish(i,1:25)

norm_capelin(i,1:25)

for i = 1:length(cod)

norm_cod(i,1:25)

alldata =

num_cod
num_capeli
num_redfis

% list of
keepl =

tkeepl =

{norm_cod;

length (norm_cod) ;
length(noxm_capelin);
length (norn_red);

n
h

(capelin(i,1:25)

(cod(i,1:25)

norm_capelin;

features still

234

67 11

performance vs

"

- MN)./MX;

norm_redl;

used - look for over training

MN) /MK

MN) /MK

15 16 20 22 24 25];

15

15

in the running

12 15];

num features
56791011 12
5679101112
567 1011 12
567 11 2
567 11 12
567 11 12

16

16

16

16

24 25);
24 25];
24 25];

251;

2517

2

i

®

i

i

B

perf
perf
perf
perf
perf

perf

4285,
.1698,
L4136,
.2187,
1136,

L9225,



num_feats = 12

Skeepl 1234567 1112 15 20 17 % perf
num_feats = 11

Skeepl (1234567 1112 15 1; % perf
num_feats = 10

ikeepl [ 234567 11 12 15 1; % perf
num_feats = 9

tkeepl = [ 234 67 11 12 15 17 perf
num_feats = 8

tkeepl = [ 34 67 11 12 15 1; % perf
num_feats = 7

skeepl = [ 34 7 11 12 15 i perf
num_feats = 6

tkeepl = [ 4 7 11 12 15 1 perf
num_feats = 5

tkespl = [ 4 7 w 1s 1 perf
num_feats = 4

Skeepl = [ 4 7 15 1; % perf
num_feats = 3

tkeepl = [ 4 15 1 perf
num_feats = 2

tkeepl = [ 15 1 perf
num_feats = 1

keepList = 1:25 * 0;

keepList (keepl) = 1;

%% CLASSIFIER #5 - Distinguish cod from capelin from Redfish
training_cod = norm cod; % [norm_cod (:, keepl)];
training_capelin = norm_capelin; %[norm_capelin(:,keepl)];
training_red = norm red; % [norm_red (:, keepl)];

cod_called_red
cod_called cod
cod_called_cap = 0;
capelin_called red
capelin_called_cod

capelin_called cap =

redfish_called_red = 0;
redfish_called cod = 0;
redfish_called cap = 0;

for i = l:length(alldata)
M_cod = mean(training_cod(:, keepl));
M_capelin = mean(training capenm /keepl));
{_red = mean(training _red(:, keep:

K_cod = cov(training_cod(:, keepl));
K_capelin = cov(training_ capelm( ,keepl)),
K_red = cov(training_red(:,keepl)

% leave out the sample we are testing
if( i<=num cod)

.107s,
.0700,
L7150,
L7150,
.7239,
.2852,
.4a465,
.7216,
.1180,
.6040,

.0804,



M_cod = mean(training_cod(£ind(1:num_cod~=i),keepl));

K_cod = cov(training_cod(find(1:num_cod~=i),keepl));
elseif (i > num cod) & (i <= (num_cod + num capelin))

M_capelin = mean(training_capelin(find(17num_capelin~=(i-num_cod)),keepl));

K_capelin = cov(training_capelin(find(1:num_capelin~=(i-num_cod)),keepl));
else

red =
m-n(r_xlimnq red(find(1:num_redfish~=(i-num_cod-num_capelin)), keepl));
K_red =

cov(training_red(find(1l:num_redfish~=(i-num_cod-num_capelin)), keepl));
end

data = [alldata(i,keepl)]:
dist cod = (data - M_cod) * inv(K_cod) * (data - M _cod)';

dist_capelin = (data - M_capelin) * inv(K_capelin) * (data - M capelin)';
(dat dai

dist_red a - M_red) * inv(K red) * (data - M_red)

if (T(dist_cod < dist_capelin) & (dist_cod < dist_red) )
called = Tod;

elseif ( (dist_capelin < dist_cod) & (dist_capelin < dist_red))

called = 2; % 2 = capelin
elseif ((dist xed < dist_cod) & (dist_red < dist_capelin) )
ca = = redfish
else
called = 4; % we have a tie
printf('\nwe have a tie with the distances\n');
pause;

_cod)
cod_called cod = cod_called cod + 1;
elseif (i > num cod) & (i <= (num cod + num capuh.n))
capelin_called_cod = capelin_called_cod +
else
redfish_called_cod = redfish_called cod + 1;
d

en
elseif called == 2
if (i <= num cod)
cod_called cap = cod_called cap + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called cap = capelin _called cap + 1;
else
redfish_called_cap = redfish called cap + 17
end
elseif called == 3
if (i <= num_cod)
cod_called_red = cod_called_red + 1;
elseif (i > num _cod) & T <= (num cod + num capeun))
capelin_called_red = capelin_called_red + 1;
else
redfish_called_red = redfish_called red + 1;
end
end

end & end of i = l:length(alldata)



fprintf ('Number of Features = 3d\nFeature List = ', length(keepl));
fprintf('sd ', keepl);

£printf ('\n\E\E\E\LPREDICTED CLASS\n');
£printf('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fprintf('COD\E\t:.0f [%.1f %%]\t:.0f [2.1f “}\:Lut [%.1f %%]\n"
cod_called cod,cod_called_cod/num_cod*100,
cod_called cap,cod_called_cap/num cod*100,
cod_called red,cod_called_red/num cod*100

capelin called red,capelin_called red/num_capelin*100);

fprintf ('REDFISH\t\t:.0f [§.1f ¥%]\te.Of [8.1f $3]\te.0f [8.1f $2]\n\n',
redfish_called_cod, redfish_called_cod/num_redfish*100, .
redfish_called cap, redfish_called cap/num _redfish*100,.
redfish_called_red, redfish_called_red/num_redfish*100);

overall performance = (ccd_called_cod/num _cod*100 +
capelin_called_cap/num_capelin*100 + redfish_called_red/num_redfish*100)/3

% to illustrate over training

perf(17) = 86.4285:%, num_feats = 17
perf(16) = 88.1698;%, num feats = 16
perf(15) = §9.4136;%, num_feats = 15
perf(14) = 89.2187;%, num_feats = 14
perf(13) =
perf(12) =

perf(11) ®
perf(10) = 31.0700;%, num_feats = 10
perf(9) = 91.7150;%, num_feats = 9
perf(8) = 91.7150;%, num_feats = 8
perf(7) = 91.7239:%, num_feats = 7
perf(6) = 90.2852;%, num_feats = 6
perf(S) = 89.4465;%, num_feats = 5
perf(4) = 87.7216;%, num feats = 4
perf(3) = 84.1180;%num feats = 3
perf(2) = 81.6040;%, num feats = 2
perf(l) = 67.0804;%, num_feats = 1

plot (perf); grid; xlabel ('number of features used'); ylabel('average classification
accuracy (percentage)');



% classcé.m

®

s Patricia LeFeuvre

t Feb 25, 2001

3 Thesis classifier configuration #6
% 2 nodes:

3 node #1 - Mah - extract cod

% node #2 - Mah - separate capelin and redfish
clear,

load capelin.txt;

load cod. txi

load redfish.txt;

% Normalize

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN = min (min(MN_red,MN_capelin),MN_cod);

MX_red = max(redfish);

MX_capelin = max (capelin);

MX_cod = max(cod);

MX = max (max (MX_red,MX_capelin) ,MX_cod)-MN;

for i = 1:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = 1:length(cod)
norm cod(i,1:25) = (cod(i,1:25) - MN)./MX:

num_cod = length(norm_cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm_red);

t Classifier #6
alldata = [nomm _cod; norm_capelin; norm red]:

& list of features selected
& Node 1 - extract cod

keepl = {2 3 4 6 7 11 12 15];
#Node 2 - capelin vs. redfish
keep2 = [4 7 10 15];

cod_called_red = 0:
cod_called cod = 0;
cod_called cap = 0
capelin_called_red = 0;
capelin_called cod = 0;
capelin_called cap = 0;
redfish_called red = 0;




redfish_called cod = 0;

redfish_called cap =

for i = l:length(alldata)

M_codl = mean(norm_cod(:,keepl));

n {_capelinl = mean(norm_capelin(:

keepl));

1 = mean(norm_rec(:, keepl)

K_codl = cov(norm _cod(:,keepl));

K_capelinl = cov(norm_capelin(:
K_redl = cov(norm_red(

keepl));

keepl));

cod2 = mean(norm_cod(:, keep2));
u {_capelin? = mean (norm_capelin(:,keep2)):

red2 = mean(norm_red(:,keep2));

K_cod2 = cov(norm_cod(:, keep2))
K_capelin2 = cov(norm_capelin(: ,keepzn,
K_red2 = cov(norm_red(:, keep2))

% leave out the sample we are testing

if(

M_codl = mean(noxm_cod (find (1:num_cod~
K_codl = cov(norm_cod (find(1:num_cod:
M_cod2

i<=num _cod)
1), keepl) ) ;

cod2

cov (norm_cod (£ind (1:num_cod:-

elsexf (1 > num_cod) & (i <= (num_cod + num_capelin))

M_capelinl = mean(norm_capelin(find(1:num_capelin~=(i-num_cod) ), keepl))
K_capelinl = cov(ncrm_capelin(find(1:num capelin~=(i-num cod)),keepl)
M_capelin2 = mean(norm_capelin(find(1:num_capelin~=(i-num _cod)),keep2));
K_capelin2 = cov(norm_capelin(find(1:num_capelin-=(i-num_cod)),keep2));

else
M_redl = mean(norm_red(find(1:num_redfish~=(i-num_cod-num capelin)),keepl));
K_redl = cov(norm red(find(1:num _redfish-=(i-num_cod-num_capelin)), keepl)):
M red2 = mean(norm_red(find (1:num redfxsh-:(x-num cod-num capelln)) keep2) ) ;

ta - M codl) * inv(K codl) * (data - M_codl)';

dist_capelin = (data - M_capelinl) * inv(K_capelinl) * (data - M_capelinl)';
dist_red = (data - M_redI) * inv(K _redl) * (data - M redl)';

if (T (dist_cod < dist_capelin) & (dist_cod < dist_red) )
called = = coc;
els.

% Node 2

end

data = [alldata(i,keep2)];
dist_capelin = (data - M capelin2) * inv(K_capelin2) * (data - M_capelin2)';
dist_red = (data - M_redZ) * inv(K red2) * (data - M_red2)';

if (dist_capelin < dzst zgd)
called = 2; § 2 = capel
else
called = 3; % 3 = redfish
end



if called = 1

if (i <= num_ced)
cod_ Called cod = cod_called cod + 1;

elseif (i > num cod) & (i <= (num cod + num capelxn}l
capelin_called cod = capelin called cod +

else
redfish_called_cod = redfish_called cod + 1;
d

en
elseif called == 2
if (i <= num_cod
cod_called cap = cod_called cap + 1;
elseif (i > num cod) & (i <= (num cod + num_capelin))
capelin called_cap = capelin_called cap + 1;

1se
redfish_called_cap = redfish_called cap + 1;
nd

elseif called == 3
(i <= num_cod)
cod_called_red = cod_called red + 1;
elseif (i > num cod) & (i <= (num _cod + num capelin))
capelin_called_red = capelin _called red + 1;
else
redfish_called_red = redfish called red + 1;
end
end

end & end of i = 1:length(alldata)
fprintf('Node #1 Number of Features = Sd\nFeature List = ', length(keepl));
fprintf('sd ', keepl);

fprintf('\nNode #2 Number of Features
fprintf('td ', keep2):

td\nFeature List = ', length(keep2));

fprintf ('\n\t\t\t\tPREDICTED CLASS\n'):
fprintf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n'

fprintf('COD\t\t3.0f [%.1f $3]\t:.Of [s. 1: n]\n of [%.1f $%]\n‘,...
cod_called_cod,cod_called_cod/num_cod*
cod_called cap,cod_called_cap/num cod* 100, ¢
cod_called red,cod_called_red/num _cod*100);

fprintf ('CAPELIN\t\t$.0f [§.1f $8]\ts.0f [8.1f $8]\ts.0f [8.1f %]\n’,...
capelin_called cod,capelin_called cod/num_capelin*100, .
capelin_called cap,capelin_called cap/num_capelin*100,...
capelin_called_red,capelin_called red/num_capelin*100);

fprintf ('REDFISH\t\t:.0f (&.1f $8]\t$.0f [2.1f $3]\t$.0f [\.1{ %%]\n\n',

redfish_called_cod, redfish_called_cod/num_redfish*100, ...
redfish_called cap, redfish called_cap/num_red£ish#100, .
redfish_called_red, redfish_called_red/num_redfish*100)




% classc7.m

% Patricia LeFeuvre

1 Feb 26, 2001

3 Thesis classifier configuration #7

3 2 nodes:

3 node #1 - Mah - extract capelin

% node #2 - Mah - separate cod and redfish
clear,

load capehn txt;

load cod.txt;

Toad rearish. txt;

% Normalize

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN = min (min(MN_red,MN_capelin),MN_cod);

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max(cod);

MX = max (max (MX_red, MX_capelin),MX_cod) -MN;

for i = 1:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = 1:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;

num_cod = length (noxm_cod) ;
num_capelin = length(norm_capelin);
num_redfish = length (norm_red);

% Classifier #7
alldata = [norm_cod; norm_capelin; norm_red];

% list of features selected

% Node 1 - extract capelin
keepl = [3 4 7 11 15 15];

#Node 2 - cod vs. re
keep2 = [23 4 6 7 11 12 15);

cod_called red = 0;
cod_called cod
cod_called cap = 0;
capelin_called red = 0;
capelin_called cod = 0;

20



capelin_called cap
redfish_called_red
redfish_called_cod
redfish_called cap

for i = l:length(alldata)

M_codl = mean(norm_cod(:, keepl)
M_capelinl = mean (norm_capelin(
M_redl = mean(norm_red(:, keepl));

keepl)):

K_codl = cov(norm_cod(:,keepl));:
K_capelinl = cov(norm, c.peun(.,keepn),
K_redl = cov(norm_red(:, keepl))

M_cod2 = mean (norm_cod(:,keep2))
M_capelin2 = mean (norm capeun(..keep2)),
M_red2 = mean(norm_red(:,keep2));

K_cod2 = cov(norm_cod(:, keep2)
K_ capennz = cov(norm capelln( ykeepzn,
K_red2 = cov(norm_red(:, keep2));

% leave out the sample we are testing
if( i<=num_cod)

mean (norm_cod (find (1:num_cod~=1) , keepl));

cov (norm_cod (£ind (1:num_cod~=i), keepl))

mean (norm_cod (find (1:num_cod~=i), keep2)) ;

cov(norm_cod (find (1:num_cod~=i),keep2));

elseif (i > num cod) & (i <= (num_cod + num capelin))
M_capelinl = mean(norm_capelin(find(1:num_capelin~=(i-num cod)), keepl));
K_capelinl = cov(norm_capelin(find(1l:num _capelin~=(i-num_cod)), keepl)):
M_capelin2 = mean(norm_capelin(find(1:num_capelin~=(i-num _cod)),keep2));

K capelinz = cov(norm Gapelin(£ind(1:num Capelin~=(i-num God)), keep2) )

mean (norm_red(find(1:num_redfish~=(i-num_cod-num_capelin)), keepl));
cov(norm_red(find(1l:num redfish~=(i-num cod-num_capelin)), keepl)):
M_red2 = mean(norm_red(find(l:num _redfish~=(i-num_cod-num_capelin)),keep2));:

K_red2 = cov(norm_red(find(1:num_redfish~=(i-num_cod-num capelin)),keep2));

data = [alldata(i,keepl)];

dist_cod = (data - M_codl) * inv(K_codl) * (data - M_codl)*

dist_capelin = (data - M capelinl) * inv(K_capelinl) * (data - M_capelinl) ';
dist_red = (data - M_redl) * inv(K redl) * (data - M_redl)';

if ( ldist _capelin < dist_cod) & (dist_capelin < dist_red))
led = 2; & 2 = capelin;

else
% Node
data = [alldata(i, keep2)];
dist_red = (data - M_red2) * inv(K_red2) * (data - M_red2)';

dist_cod = (data - M_cod2) * inv(K_cod2) * (data - M_cod2)';

if (dist_cod <= dist_red)
called = 1; % 1 = cod

else
called = 3; % 3 = redfish
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end
end

if called = 1
if (i <= num cod)
cod_called cod = cod_called cod + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called cod = capelin called cod +
else
redfish_called_cod = redfish called cod + 1;

e
elseif called == 2
if (i <= num_cod)
cod_called cap = cod_called cap + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_cap = capelin called cap + 1;

1se
redfish_called_cap = redfish _called_cap + 1;

el!elf called == 3
if (i <= num cod)
cod_called red = cod_called red + 1;
elseif (i > num cod) & (i <= (num_cod + num capeanH
capelm called_red = capelin_called red +

redfish‘called_zed = redfish_called_red + 1;
end
end

end % end of i = 1l:length(alldata)

fprintf('Number of Features Node 1 = id\nFeature List = ',length(keepl));
fprintf('ed ', keepl);

fprintf('\nNumber of Features Node 2= id\nFeature List = ',length(keep2)):
fprintf('td ', keep2);

£printf (*\n\t\t\t\tPREDICTED CLASS\n');

£printf (*\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf(*COD\t\ts.0f [§.1f $3]\ts.0f [8.1f 38]\ts.0f [%.1f 38]\n',...
ed_cod, cod_called_cod/num_cod*100,
cod_called _cap, cod_called_cap/num_cod*100,
cod_called_red, cod_called_red/num_cod*100) ;

fprintf ('CAPELIN\t\t$.0f [8.1f $3]\t3.0f [8.1f ¥8]\t:.0f [E.1f §8]\n',...

capelin_called_cod,capelin_called_cod/num_capelin®100,...
capelin_called cap,capelin_called _cap/num capelin*100, .
capelin_called red,capelin_called_red/num_capelin*100);

fprintf ('REDFISH\t\t#.0f [$.1f $8]\ts.0f [8.1f #%]\t8.0f [&.1f $3]\n\n',
redfish_called cod, redfish_called cod/num_redfish*100,.
redfish_called_cap, redfish_called_cap/num_redfish*100, .
redfish_called red, redfish_called_red/num_redfish*100);




classc8.m

%
%
% Patricia LeFeuvre
% Feb 26, 2001

% Thesis classifier configuration #8

% 2 nodes:

% node #1 - MAH - extract redfish

% node #2 - MAH - separate cod and capelin

clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

% Normalize

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN = min(min (MN_red, MN_capelin),MN_cod) ;

MX_red = max(redfish);

MX_capelin = max(capelin);

MK _cod = max(cod) ;

MX = max (max (MX_red, MX_capelin),MX_cod)-MN;

for i = l:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm_capelin(i,1:25) = (capelin(i,

for i = 1:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;

num_cod = length(norm cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm_red);

8 Classifier #8
alldata = [norm_cod; norm _capelin; norm_red];
node2data = [norm_cod; ncrm_capelin];

% list of features selected
% Node 1 - extract redfish

keepl = [2 3 4 6 7 11 12 15 16];

$Node 2 - cod vs. capelin

keep2 = [2 3 6 11 12 15 16 20 22 25];

training_cod = norm_cod;

training_capelin = norm capelin;
training red = norm red;
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capelin_called red = 0;
capelin_called cod

capelin_called cap
redfish_called_red
redfish_called_cod
redfish_called _cap

0;
0;
for i = l:length(alldata)
M_codl = mean(training_cod(:,keepl));:
M_capelinl = mean(training_capelin(:, keepl));
M_redl = mean(training_red(:,keepl));:
K codl = cov(training_cod(:, keepl))
K_capelinl = cov(training_capelin(:,keepl));
K_redl = cov(training_red eepl))
M_cod2 = mean(training_cod(:,keep2)
M_capelin2 = mean(training_ capelin(' keepZ)):
M_red? = mean(training_red(:, keep2)):
K_cod2 = cov(training_cod(:, keep2)):
K_capelin2 = cov(training_capelin(
K_red2 = cov(training_red(:,keep2));

keep2)):

§ leave out the sample we are testing

$1f (1==2)
if( i<=num
M_codl
K_codl
M cod2

M_capelinl
K_capelinl =

i-num_cod)), keepl));
i-num_cod) ), keepl));

i-num _cod)), keep2));

M_capelin2 = mean(training_capelin(find(1:num_capelin~
- i-num_cod)), keep2));

K_capelin2 = cov(training_capelin(find(1:num_capelin:

else

M_redl
mean (training_red(find(1:num_redfish~=(i-num _cod-num_capelin)), keepl));
K_redl

cov(training red(find(1:num_redfish-=(i-num _cod-num_capelin)), keepl));
M_red2

r
mean (training_red(find(1:num_redfish~=(i-num_cod-num_capelin)), keep2));
K_red2

cov(training_red(find(1:num_redfish~=(i-num cod-num_capelin)),keep2));

tend

data = {audacau,keepm.
dist_cod = (data - M_codl) * inv(K_codl) * (data - M_codl)';
dist_capelin = (data - M_capelinl) * inv(K_capelinl) * (data - M_capelinl)';
dist_red = (data - M_redl) * inv(K redl) * (data - M_redl)';
if ( (dist_red < dist, _cod) & (dist_red< dist cnp.lin])

called = 3; & 3 = redfish;
else

% Node 2
data = [alldata (i, keep2)];
dist_capelin = (data - M_capelin2) * inv(K_capelin2) * (data -

M_capelin2) ';
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dist_cod = (data - M_cod2) * inv(K_cod2) * (data - M_cod2)';

if (dist_cod <= dist capelln)
called = 1; & 1 =

else
called = 2; & 2 = capelin
end
end
if called

(i <= num_cod)
cod_called cod = cod_called_cod + 1;

elseif (i > num_cod) & (i <= (num cod + num_capelin))
capelin_called_cod = capelin called cod ¥ 1;

else
redfish_called cod = redfish_called_cod + 1;
end

else;f called == 2
if (i <= num_cod)
cod_called cap = cod_called_cap + 1;
elseif (i > num_cod) & (1 <= (num cod + num Lespaliny)
capelin_called_cap = capelin_called cap + 1;

se
redfish_called cap = redfish_called_cap + 1;
end
elseif called == 3
(i <= num_cod)
cod_called red = cod_called_red + 1;
elseif (i > num_cod) & (i <= (num_cod + num capelin))
capelin_called red = capelin_called_red + 1;

se
redfish_called_red = redfish called red + 1;
en
end

end % end of i = 1:length(alldata)

fprintf('Number of Features Node 1 = td\nFeature List = ',length(keepl));
fprintf('¢d ', keepl);
fprintf('\nNumber of Features Node 2= td\nFeature List = ',length(keep2));
fprintf('ed ', keep2);

fprintf ('\n\t\t\t\tPREDICTED CLASS\n');
£printf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fprintf('COD\t\ts.0f [#.1f $3]\ts.0f [%.1f $8]\te.0f [3.1f $%)\n',
cod_called_cod,cod_called_cod/num_cod*100, .
cod_called_cap, cod_called_cap/num_cod*100
cod_called_red,cod_called_red/num cod*100);

fprintf('CAPELIN\E\ES OF [3.1f $3]\t3.0f [5.1f 38]\ts.0f (3.1f 8%1\n’,
capelin_called_cod,capelin_called_cod/num capelin*100,
capelin_called_cap,capelin_called_cap/num ¢ capenmmo,
capelin_called_red,capelin_called red/num capelin*100);

fprintf ('REDFISH\E\tS.0f [¢.1F $3]\t3.0f [%.1f §5]\t8.0f (5.1f $8]\nm\n',...

redfish_called cod, redfish_called_cod/num _redfish*100, .
redfish_called cap, redfish_called cap/num_redfish*100, .
redfish_called_red, redfish_called red/num_redfish*100);
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% classCs.m

s

s

1 Patricia LeFeuvre

* April 18, 2002

% Thesis classifier configuration ¥9

% 2 nodes:

s node #1 - 3NN - extract cod [based on node 1 class config #2]

s node #2 - Mah - separate capelin and redfish [based on node 2 class config
#6]

clear,

load capelin.txt;

load cod. txf

load redfish.txt;

#normalize all of the data

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN = min(min(MN_red,MN_capelin) ,MN_cod);
MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max(cod);

MX = max (max (MX_red, MX_capelin) ,MX_cod)-MN;

for i = 1l:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = l:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX:

alldata = [norm cod; norm capelin; norm red];

cod_called red = 0;
cod_called _cod
cod_called_cap
capelin_called red = 0;
capelin_called cod = 0;
capelin_called cap = 0;
redfish_called red = 0;
teﬂflsh called cod ;
redfish_called cap

num_cod = length(norm cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm_red);

% list of features selected
% Node 1 - extract cod
keepl = [3 4691112 15 22 24 25);

26



4 Node 2 - capelin vs. redfish
keep2 =  [4 7 10 15];

for i = l:length(alldata)
cod2 = mean(norm_cod(:,keep2));

M
M capelin2 = mean (norm_capelin(
M_red2 = mean(norm_red(:, keep2)

keep2))

K_cod2 = cov(norm cod(:,keep2)):
K_capelin2 = cov(norm_ capenn(- skeep2)) ;
K_red2 = cov(norm_red(:,keep2

¢ leave out the sample we are testing

if( i<=num _cod)

M_cod2 = mean(norm_cod (£ind(1:num_cod~=1) keep2));
K_cod2 = cov(norm_cod (f£ind(1:num cod~=i),keep2));

elself (i > num cod) & (i <= (num_cod + num capelin))

2 = mean (norm_capelin(find (1:num_capelin~=(i-num_cod)) keep2));

M_capelin;
K_capelin2 = cov(norm_capelin(find (1:num_capelin~=(i-num_cod)),keep2));
else
M_red2 = mean(norm_red (find(1:num_redfish~=(i-num_cod-num_capelin)) keep2));
K_red2 = cov(norm_red (find(1:num_redfish~=(i-num_cod-num_capelin)),keep2)):
end
data = [alldata(i,keepl)];
ength (alldata)
if i -=
tmp = data - alldata(j, keepl):
dist(j) = sqrt(tmp*tmp');
else
dist(3) = 25;
en
end
[sortedDist, Index]) = sort(dist);
if ( length(find(Index(1:3) <= num cod )) >= 2) & 2/3 were cod
calle ;
else
& No

data = [alldata(i,keep2)];
dist_capelin = (data - M_capelin2) * inv(K_capelin2) * (data - M_capelin2)';
t_red = (data - M_red2) * inv(K_red?) * (data - M_red2)

if (dist_capelin < dist_red)
called = 2; % 2 = capelin

else
called = 3; % 3 = redfish

en:
end % end of Node 2

if called == 1
if (i <= num_cod)

cod_called_cod = cod_called_cod + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
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capelin_called_cod = capelin_called cod + 1;
else
redfish_called_cod = redfish called_cod + 1;

end
elseif called == 2
if (i <= num_cod)
cod_called_cap = cod_called cap + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_cap = capelin called cap + 1;

else
redfish_called cap = redfish called cap + 1;
end
else
if (i <= num_cod]
C l‘led red = cod_called_red + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called red = capelin_called red + 1;
else
redfish_called_red = redfish called_red + 1;
en
end

end
fprintf('Node #1 Number of Features = 3%d\nFeature List = ', length(keepl));
fprintf('td ', keepl);

fprintf('\nNode #2 Number of Features = td\nFeature List = ', length(keep2));
fprintf('td ', keep2);

fprintf('\n\t\t\t\tPREDICTED CLASS\n');
£printf (' \t\tCOD\t\tCAPELIN\t\tREDFISH\n"

fprintf('COD\L\ts.0f [i.1f ¥8]\ti.0f [E.1f 38]\te.0f [%.1f 88]\n’,...
cod_called_cod,cod_called_cod/num_cod*100, ...

cod_called_cap, cod_called_cap/num_cod*100
cod_called_red,cod_called_red/num_cod*100);

£printf('CAPELIN\t\ts.0f [8.1f $3]\t$.0f [S.1f $3)\ts.0f [%.1f 3%]\n',
capelin_called cod,capelin_called_cod/num capelin*100,
capelin_called cap,capelin_called cap/num_capelin*100,
capelin_called red,capelin_called_red/num capelin*100)

fprintf('REDFISH\t\t:.0f [%.1f $8]\t%.0f [:.1f $3]\t8.0f [%.1f #%]\n\n',
redfish called cod, redfish_called_cod/num_redfish*100, .
redfish_called cap, redfish_called cap/num redfish*100, .
redfish_called red, redfish_called_red/num_redfish*100);




L] classCl0.m

*

A Patricia LeFeuvre

& April 18, 2002

%  Thesis classifier configuration §10

% 2 nodes:

% node #1 - 3NN - extract capelin [based on node 1 class config #3]
% node §2 - Mah - separate cod and redfish [based on node 2 class config #7]
clear,

load capelin.txt;

load cod. tx

load redfish.txt;

tnormalize all of the data
MN_red = min(redfish);
MN_capelin = min(capelin);
MN

MN"= min(min(MN_red,MN_capelin),MN_cod);

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max (cod) ;

MX = max(max (MX_red,MX_capelin),MX_cod)-MN;

for i = l:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;
end

for i = 1l:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;
end

for i = 1l:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;
end

alldata = [norm_cod; norm_capelin; norm red];

cod_called red = 0;
cod_called cod = 0;
cod_called cap = 0;
capelin_called red
capelin_called cod
capelin_called cap
redfish_called red
redfish_called_cod
redfish_called_cap

num_cod = length(norm_cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm red);

% list of features selected
% Node 1 - extract capelin
keepl =  [3 11 15 22 25];
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% Node 2 - cod vs. redfish
keep2 = [23467111215);

for i = l:length(alldata)
M_cod2 = mean(norm_cod(:, keep2)

M_capelin2 = mean(norm_capelin(
M_red2 = mean(norm_red(:, keep2)

keep2));

K_cod2 = cov(norm cod(:,keep2));
K_capelin2 = cov(norm_capelin(:,keep2));
K_red2 = cov(norm_red(:, keep2));

% leave out the sample we are testing
if( i<=num_cod)
M_cod2 = mean (norm_cod (£ind(

K_cod2 = cov(norm_cod (£ind(1:num_cod~:

um_cod~=1)  keep2)) ;
) keep2) ) ;

elseif (i > num cod) & (i <= (num_cod + num_capelin))
M_capelin2 = mean(norm_capelin(find(1:num_capelin~=(i-num_cod)),keep2));
K_capelin2 = cov(ncrm_capelin(find(1:num capelin~=(i-num_cod)),keep2)):
else

M_red2 = mean (norm_red (find(1:num_redfish~=(i-num_cod-num_capelin)),keep2));
K_red2 = cov(norm_red (find(1:num_redfish~=(i-num_cod-num_capelin)),keep2));

data = [alldata(i,keepl)];
g’

tmp = data - alldata(j,keepl);
dist(j) = sqrt(tmp*tmp');

dist(3) = 25;

end

end
[sortedDist, Index] = sort(dist);
if ( length(find( (Index(1:3) > num cod) & (Index(1:3) <=

(num_cod+num capelxn))l ) >=2) % 2/3 were capelin
-alld 2; % 2 = capelin;

(data - M_cod2) B xnv(K cod2) * (data - M_cod2)';
dur. red = (data - M_red2) * inv(K_red2) * (data - M_red2)';

if (dist_cod < dist_red)
called = 1; & 1 = cod
else
called = 3; % 3 = redfish

en
end % end of Node 2

if called

X
cod_called_cod = cod_called_cod + 1;
elseif (i > num cod) & (i <= (num cod + num_capelin))
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capelin_called cod = capelin_called_cod + 1;
els
redfish_called_cod = redfish called cod + 1;

end
elseif called == 2
if (i <= num_cod!
cod_called cap = cod_called_cap + 1;
elseif (i > num Cod) & (i (num_cod + num_capelin))
capelin_called_cap = capelin _called cap + 1;

else
redfish_called_cap = redfish called_cap + 1;
end
else
if (i <= num_cod)
cod_called red = cod_called_red + 1;
elseif (i > num cod) & (i <= (num cod + num_capelin))
capelin _called_red = capelin_called red + 1;
else
redfish_called red = redfish_called_red + 1;
end
end
end
fprintf('Node #1 Number of Features = id\nFeature List = ',length(keepl));

fprintf('sd ', keepl);

fprintf(‘\nNode #2 Number of Features = $d\nFeature List = ',length(keep2));
fprintf('sd ', keep2);

£printf (' \n\t\t\t\tPREDICTED CLASS\n');
fprintf('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf ('COD\t\t$.0f [%.1f $5]\t$.0f [¢.1f ERI\ER.OZ (3.1 881\n",
cod_called cod,cod_called_cod/num_cod*100,
cod_called_cap, cod_called_cap/num_cod*100
cod_called red,cod_called_red/num_cod*100) ;

fprintf("CAPELIN\t\t%.0f [%.1f 33]\t%.0f [3.1f $%]\ti.0f [%.1f %%]\n’,
capelin_called_cod, capelin_called_cod/num_capelin*100,
capelin_called_cap, capelin_called cap/num_capelin*100,
capelin_called red,capelin_called_red/num_capelin*100);

fprintf ('REDFISH\t\t:.0f [$.1f §%]\t%.0f [$.1f $8]\t§.0f [5.1f $%]1\n\n',
redfish_called_cod, redfish_called cod/num_redfish*100,
redfish_called cap, redfish_called_cap/num_redfish*100,
redfish_called_red, redfish_called_red/num_redfish*100);

31



% classCll.m

s

% Patricia LeFeuvre

% April 23, 2002

% Thesis classifier configuration #11

% 2 nodes:

% node #1 - 3NN - extract redfish [based on node 1 class config #4]

% node #2 - Mah - separate cod and capelin [based on node 2 class config #8]
clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

tnormalize all of the data

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod) ;

MN = min (min(MN_red, MN_capelin) ,MN_cod);

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max(cod) ;

MX = max (max (MX_red, MX_capelin) ,MX_cod) -MN;

for i = 1:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX:

for i = 1:length(cod)
norm _cod(i,1:25) = (cod(i,1:25) — MN)./MX;

alldata = [nomm_cod; norm capelin; norm red];

cod_called_red = 0;
cod_called cod
cod_called cap
cupelu\ called_red
capelin_called cod
capelin_called cap
redfish_called red
redfish_called cod
redfish_called_cap

num_cod = length(norm cod);
num_capelin = length(norm_capelin);
num_redfish = length (norm_red);

% list of features selected
% Node 1 - extract redfish
keepl = [4 910 11 12 15 16 20 24 25];
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$ibged —aiia. ol

in
keep2 = [2 3 11 12 15 16 20 22 25];

for i = 1:length(alldata)
cod2 = mean (norm_cod(:, keep2)

n capelin2 = mean(norm_capelin(
M_red2 = mean(norm_red(:, keep2)

keep2));

K_cod2 = cov(norm_cod(:, keep:
K_capelin2 = cov({norm :apelm( ,keepZ)).
K_red2 = cov(norm_red(:, keep2));

% leave out the sample we are testing
if( i<=num_cod)
M_cod2 = mean (norm_cod(find(1:num_cod~=i) ,keep2) )
K_cod2 = cov(norm_cod (£ind(1:num_cod~=i),keep2));
elseif (i > num cod) & (i <= (num cod + num capelin))
M_capelin2 = mean(norm_capelin(find(1:num_capelin~=(i-num_cod)),keep2));
K_capelin2 = cov(norm_capelin(find(1:num_capelin~=(i-num_cod)),keep2));
else
M_red2 = mean (norm_red (find(1:num_redfish~=(i-num_cod-num_capelin)), keep2));
K_red2 = cov(norm_red(find(1:num redfish~=(i-num_cod-num_capelin)),keep2))

end

data = [audatau keepl)];
for j ength (alldata)

3
tmp = data - audata(:,keepn,
dist(j) = sqrt(tmp*tmp'

el
dist(3) = 25;
enc
end
[sorteddist,

Index] = sort(dist);

were redfish
called = 3; & 3 = redfish;

if ( length(find(Index(1:3) > (num cod+num_capelin))) >= 2)% at least 2/3

else
% Node 2
data = [alldata(i, keep2)];
dist_capelin = (data - M capelin2) * inv(K_capelin2) * (data -
M_capelin2) ';
d

ist_cod = (data - M_cod2) * inv(K_cod2) * (data - M_cod2)';
4f (dist_cod <= dist capelin)
called = 1; & 1

e
called =

% 2 = capelin
end

if called =



if (i <= num_cod)
cod_ cllled |_cod = cod_called cod + 1;

elseif (i > num cod) & (i <= (num_cod + num . capelin))
capelin_called cod = capelin_called_cod

else
redfish_called_cod = redfish_called cod + 1;
end
elseif called == 2
if (1 num_cod
cod_called_cap = cod_called cap + 1;
elseif (i > num cod) & (i <= (num_cod + num, c.peunn
capelin_called cap = capelin_called_cap

else

redfish_called_cap = redfish _called cap + 1;
en

else
if (i <= num_cod)
cod_called_red = cod_called_red + 1;
elseif (i > num cod) & (num_cod + num_capelin))
capelin_called_red = capelin called_red + 1
els
redfish_called_red = redfish_called_red + 1;
end
end
end

fprintf('Node #1 Number of Features = ¥d\nFeature List = ', length(keepl));
fprintf('td ', keepl);

fprintf('\nNode #2 Number of Features = Sd\nFeature List = ',length(keep2));
fprintf('sd ', keep2);

fprintf('\n\t\t\t\tPREDICTED CLASS\n'):
£printf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n");

SPELEELSCIONNERIOF [N, 16 SUINER. OF ke u]\u Of [8.1f §8]\n',.
cod_called_cod,cod_called_cod/num_cod*10

cod_called cap, cod_called_cup/num_cod'lﬂo,
cod_called_red, cod_called_red/num_cod*100);

fprintf('CAPELIN\t\tS.0f [§.1f $8]\ts.0f [5.1f $8]\t8.0f [¥.1f ¥8)\n’,...
capelin_called cod,capelin_called cod/num_capelin*100, .
capelin_called cap,capelin_called_cap/num capelin*100, .
capelin_called red,capelin_called_red/num _capelin*100);

fprintf('REDFISH\C\tS.0f [$.1f $3]\ts.0f [8.1f ¥8]\ts.0f [8.1f ¥2]\n\n',...
redfish_called cod, redfish_called_cod/num_redfish*100,
redfish_called cap, redfish_called_cap/num_redfish*100, .
redfish_called_red, redfish_called_red/num_redfish*100);




classCl2.m

Patricia LeFeuvre
April 23, 2002
Thesis classifier configuration 12
2 nodes:
node #1 - Mah - extract cod [based on node 1 class config #6]
node #2 - 3NN - separate capelin and redfish [based on node 2 class config

P

clear,

load capelin.txt;
load cod.txi
load redfish.txt;

tnormalize all of the data

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN= min (min (MN_red,MN_capelin) ,MN_cod) ;

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max (cod) ;

MX = max (max (MX_red, MX_capelin),MX_cod)-MN;

for i = l:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = 1:length(cod)
norm_cod(i,1:25) = (cod(,1:25) — MN)./MX;

alldata = [norm_cod; norm_capelin; norm red];
node2data = [norm capelin; norm_red];

cod_called_red = 0;
cod_called cod = 0,
cod_called cap = 0.
capelin_called_red
capelin_called cod =
capelin_called_cap

redfish_called red
redfish_called cod
redfish_called _cap = 0

num_cod = length(norm_cod);
num_capelin = length(form_capelin);
num_redfish = length(norm_red);

% list of features selected
% Node 1 - extract cod
keepl = [2 2 4 6 7 11 12 15);
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% Node 2 - capelin vs. redfish
keep2 = [3 9 11 15 22 24 25);

for i = l:length(alldata)
M_codl = mean(norm_cod(:,keepl)

u capalxnl = mean (Rorm_capelin(
= mean (norm_red(:, keepl));

keepl)):

K_codl = cov(norm_cod(:,keepl))
K_capelinl = cov(norm_capelin(: .keepn).
Credl = cov(norm_red(:, keepl))

& leave out the sample we are testing
if( i<=num_cod]
M_codl = mean(norm_cod (find(1:num_cod~=i) keepl));
K_codl = cov(norm_cod (find(1:num cod~=i),keepl));
elseif (i > num cod) & (i <= (num_cod + num_capelin))
M_capelinl = mean (norm_capelin(find(1:num_capelin~=(i-num_cod)), keepl));

1u|

K_capelinl = cov(norm_capelin(find(1:num_capelin~=(i-num_cod)),keepl));
else
M_redl = mean(norm_red (find (1:num_redfish~=(i-num_cod-num_capelin)) keepl));
K_redl =

cov (norm_red (find(1:num_redfish~=(i-num_cod-num capelin)),keepl));

end

data = [alldata(i,keepl)];

dist_cod = (data - M_codl) * inv(K codl) * (data - M_codl)';

dist_capelin = (data - M_capelinl) * inv(K_capelinl) * (data - M_capelinl)

dist_red = (data - M_redl) * inv(K redl) * (data - M_redl)';

if (T(dist_cod < dist_capelin) & (dist_cod < dist_red) )
called = 1; & 1 = cod

2
data = [alldata(i,keep2)];
0;

for 3 = 1:length(node2data)
tmp = data - nodezdata(j skeep2) i
dist(j) = sqrt(tmp*

if (dist(j) == 0) & the same point so don't use
dist(j) == 25;
sameCount = sameCount + 1;
if sameCount > 1

fprintf ('Exror - too many identical points

end
end

end

[sortedDist, Index] = sort(dist);

if ( lenqth(find(Index(l 3) <= num_capelin )) >= 2) % 2/3 were capelin
= capelin
else

called = 3; % 3 = redfish
en

end % end of Node 2
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if called
if (i <= num_cod)
cod_called_cod

cod_called_cod + 1;

elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_cod = capelin _called cod + 1;
else
redfish_called cod = redfish_called cod + 1;
end
elseif called == 2
if (1 <= num_cod)
cod_called cap = cod_called cap + 1;
elseif (i > num cod) & (i (num_cod + num_capelin))
capelin_called cap = capelin called cap + 1
els:
redfish_called cap = redfish_called_cap + 1;
end
else
if (i <= num_cod)

cod_called_red = cod_called_red + 1;

elseif (i > num cod) & (i <= (num cod + num_capelin))
capelin_called red = capelin called red + 1;
else
redfish_called_red = redfish_called red + 1;
end
end
end

fprintf('Node #1 Number of Features
fprintf('td ', keepl);

= 2d\nFeature List = ', length(keepl));

fprintf('\nNode #2 Number of Features
forintf('sd ', keep2);

= td\nFeature List = ', length(keep2));

fprintf ('\n\t\t\t\tPREDICTED CLASS\n');
£printf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf('COD\E\ts.0f [%.1f §8]\t8.0f [%.1f PEINEROF (3.0 430\,
cod_called_cod,cod_called_cod/num _cod*100,

cod_called_cap, cod_called cap/num_cod*100, .
cod_called red,cod_called_red/num_cod*100) ;

fprintf('CAPELIN\t\t3.0f [%.1f $3]\t%.0f [%.1f $%]\t%.0f [3.1f #%]\n’',
capelin_called_cod,capelin_called_cod/num_capelin*100,
capelin_called cap,capelin_called_cap/num_capelin*100,
capelin_called_red,capelin_called_red/num_capelin*100);

fprintf('REDFISH\E\t$.0f [$.1f $8]\t%.0f (3.1f 83]\t¢.0f [2.1f 3%]\n\n',
redfish_called cod,redfish_called_cod/num_redfish*100,
redfish_called cap, redfish_called_cap/num_redfish*100,
redfish_called red, redfish_called_red/num_redfish*100);
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% classCl3.m

%

8 Patricia LeFeuvre

% April 23, 2002

%  Thesis classifier configuration #13

% 2 nodes:

% node #1 - Mah - extract capelin [based on node 1 class config #7]

4 node #2 - 3NN - separate cod and redfish [based on node 2 class config #3]
clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

$normalize all of the data

MN_red = min(redfish);

MV_capelin = min(capelin);

MN_cod = min(cod);

MN = min(min (MN_red,MN_capelin),MN_cod) ;

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max (cod);

MX = max (max (MX_red,MX_capelin),MX_cod) -MN;

for i = 1:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = l:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = l:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;

alldata = [norm_cod; norm_capelin; norm_red];
node2data = [norm_cod; norm_red];

cod_called red = 0;
cod_called _cod = 0;
cod_called cap = 0;
capelin_called_red
capelin _called cod
capelin_called cap
redfish_called red
redfish_called cod =
redfish_called cap =

0
0
0
0
0
0

num_cod = length (norm_cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm_red);

% list of features selected
% Node 1 - extract capelin
keepl = [3 4 7 11 15 16];
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% Node 2 - cod vs. redfish
keep2 = [4 9 12 15 201;

for i = 1:length(alldata)

M_codl = mean(norm cod(:, keepl));
M_capelinl = mean(norm_capelin(:,keepl));
M_redl = mean(norm_red(:, keepl)):

K_codl = cov(norm_cod(:,keepl));
K_capelinl = cov(norm capelin(:, keepl));
K_redl = cov(norm_red(:, keepl));

% leave out the sample we are testing
if( i<=num_cod)
M_codl = mean(norm_cod (find (1:num_cod~=i)  keepl));
K_codl = cov(norm cod(find(1:num cod~=i),keepl));
elseif (i > num cod) & (i <= (num cod + num _capelin))
M_capelinl = mean(norm_capelin(find(1:num capelin~
K_capelinl = cov(norm_capelin (find(1:num capelin:

i-num_cod)), keepl));
-num_cod) ) , keepl) ) ;

M_redl = mean(norm_red (find(
K redl =
end

um_redfish~= (i-num_cod-num_capelin)), keepl));
cov (norm_red (find(1:num redfish~=(i-num_cod-num_capelin)), keepl)):

data = [alldata(i, keepl)];
dist_cod = (data - M_codl) * inv(K_codl) * (data - M_codl)';

dist_capelin = (data - M_capelinl) * inv(K_capelinl) T* (data - M_capelinl)';
dist_red = (data - M_redl) * inv(K_redl) * (data - M_redl)';
if ( (dist_capelin < dist_cod) & (dist_capelin < dist_red))

2 = capelin;

for j = 1: lengthtncdezdata)
tmp ata - node2data(j, keep2);

dist2(3) = sqrt(tmp*tmp');
if (dist2(§) % the same point so don't use
dist2(3)

sameCount = sameCount + 1;
if sameCount > 1
fprintf('Error - too many identical points ');

end
end
end
[sortedDist, Index] = sort(dist2);
if ( length(find(Index(1:3) <= num_cod )) >= 2) & 2/3 were cod
%1 =cod
else
called = 3; & 3 = redfish
end

end % end of Node 2



if called == 1
if (i <= num_cod)
cod_called_cod = cod_called_cod + 1;
elseif (i > num cod) & (i <= (num_cod + num capelin))
capelin_called_cod = capelin _called cod + 1;

else
redfish_called cod = redfish called cod + 1;

end
elseif called
(1

2
num_cod)
cod_called_cap = cod_called_cap + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called cap = capelin_called_cap + 1;

else
redfish_called cap = redfish_called cap + 1;
end
else
if (i <= num_cod)
cod_called red = cod_called_red + 1;
elseif (i > num cod) & (i <= (num cod + num capelin))
capelin_called red = capelin_called_red + 1;
else
redfish_called red = redfish called_red + 1;
end
end

end

fprintf('Node #1 Number of Features = id\nFeature List =
fprintf('sd ', keepl):

', length (keepl));

fprintf('\nNode #2 Number of Features = $d\nFeature List = ', length(keep2)):
fprintf('td ', keep2);

£printf ('\n\t\t\t\tPREDICTED CLASS\n');:
fprintf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fprintf ('COD\t\t%.0f [$.1f $3]\t%.0f [%.1f ’ﬁ%]\t% Of [%.1f %%)\n',
cod_called_cod,cod_called_cod/num_cod*100,

cod_called cap, cod_called_cap/num_cod*100
cod_called_red,cod_called_red/num_cod*100) ;

fprintf ('CAPELIN\t\t5.0f [$.1f $8]\t$.0f [§.1f ¥3]\ts.0f [¢.1f %8]\n',
capelin_called cod,capelin_called cod/num_capelin*100,
capelin_called_cap,capelin_called cap/num_capelin*100,
capelin_called red,capelin_called red/num_capelin*100);

fprintf ("REDFISH\t\t%.0f [%.1f $3]\t%.0f [%.1f %3]\t%.0f [%.1f %%]\n\n',
redfish_called_cod, redfish_called cod/num_redfish*100,
redfish_called cap, redfish_called cap/num_redfish*100,
redfish_called red, redfish_called_red/num _redfish*100);
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$  classCld.m
%

% Patricia LeFeuvre

% April 23, 2002

% Thesis classifier configuration #14

% 2 nodes:

% node #1 - Mah - extract capelin [based on node 1 class config #8]

t node #2 - 3NN - separate cod and redfish [based on node 2 class config #4]
clear

load capelin.txt;
load cod.txt;
load redfish.txt;

énormalize all of the data
MN_red = min(redfish);
MN_capelin = min(capelin);
MN_cod = min(cod);

MN = min(min (MN_red,MN_capelin) ,MN_cod) ;

MX_red = max(redfish);
MX_capelin = max (capelin);
MX_cod = max (cod) ;

MX = max (max (MX_red, MX_capelin) ,MX_cod) -MN;

for i = 1:length(redfish)
norm red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = l:length(capelin)
norm _capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = l:length(cod)
norm cod(i,1:25) = (cod(i,1:25) - MN)./MX;
end

alldata = [norm_cod; norm_capelin; norm_red];
node2data = [norm_cod; norm_capelin];

cod_called red = 0;
cod_called cod = 0;
cod_called cap = 0;
capelin_called red
capelin_called cod
capelin_called_cap
redfish_called_red
redfish_called cod =
redfish_called cap =

0
0
0
0
0
0

num_cod = length(norm cod);
num_capelin = length (norm_capelin);
num_redfish = length(norm_red);

% list of features selected
% Node 1 - extract redfish
keepl = [2 3 4 6 7 11 12 15 16];
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% Node 2 - cod vs. capelin
keep2 = (34679 1215 20];

for i = l:length(alldata)
M_codl = mean (norm_cod(:,keepl))
M_capelinl = mean(norm_capelin (: ,keepl))y
M_redl = mean(norm_red(:, keepl

K_codl = cov(norm_cod(:, keepl)
K_capelinl = cov(norm capeler
K_redl = cov(norm_red(:,keepl));

ykeepl) )i

% leave out the sample we are testing
1£( i<=num_cod)

M_codl = mean (norm cod(find(1:num_cod~=1i),keepl));
K_codl = cov(norm cod(find(1:num cod~=i), keepl));
(i > num cod) & (i <= (num_cod + num_capelin))
= mean (norm_capelin(find (1:num_capelin~
K _capelinl = cov(norm_capelin(find(1:num_capelin

i-num_cod-num_capelin)), keepl));

i-num_cod) ), keepl)) ;
i-num Cod)), keepl));

else
M_redl = mean(norm_red(find (1:num_redfish X
K_redl = cov(norm_red (find(1:num_redfish~=(i-num cod-num capelin)) keepl)):
end
data = [alldata(i,keepl)];
* (data - M_codl)';

dist_cod = (data - M_codl) * inv(K_codl)
= (data - M_capelinl) * inv(K_capelinl) * (data - M_capelinl)';

dist_capelin =

dist_red = (data - M_redl) * inv(K_redl) * (data - M redl)';

if ( (dist_red < dist_cod) & (dist_red< dist_capelin))
called = 3; ¢ 3 = redfish;

else
data = [alldata (i, keep2)];
Count = 0;
for j = 1:length{node2data)
data - node2data(j, keep2) ;
dist2(j) = sqrt(tmp*tmp');
if (dist2(j) == 0) & the same point so don't use
dist2(j) == 25;

sameCount = sameCount + 1;

if sameCount > 1
fprintf('Error - too many identical points\n ');

pause;
end
end
end
[sortedDist, Index] = sort(dist2);
if ( length(find(Index(1:3) <= num cod )) >= 2) & 2/3 were cod
calle 1; % 1 = cod

1se
called = 2; % 2 = capelin
end

end % end of Node 2
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if called
if (i <= num_cod)
cod_called_cod

elseif (i > num_cod)

capelin_called_

else

redfish_called ¢

end

elseif called == 2
if (i <= num_cod)
cod_called_cap
elseif (i > num_cod)
capelin called_c:

els:
redfish_called
end
else
if (i <= num_cod)
cod_called_red
elseif (i > num_cod)
capelin_called ;
els
redfish_called
end
end

end

fprintf('Node #1 Number of Features =

fprintf('sd ', keepl);

fprintf('\nNode #2 Number of Features =

fprintf('sd ', keep2);

= cod_called_cod + 1;
& (i <= (num_cod + num capelin))
cod = capelin _called cod + 17

cod = redfish_called _cod + 1;

sod el edonry &y
(i (num_cod + num_capelin))
ap = cape11n~called7cap 1

&

{_cap = redfish called cap + 1;

= cod_ called red + 1;
& (1

um_cod + num_capelin))
red = capelm called_red + 1;
red = redfish _called red + 1;

$d\nFeature List = ',length(keepl));

#d\nFeature List = ', length(keep2));

f£printf ('\n\t\t\t\tPREDICTED CLASS\n');
£printf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf('COD\t\ts.0f [8.1f 38]\ts.0f [8.1f m\n Of [%.1f 22]\n’,
cod_called_cod,cod_called_cod/num_cod*100

cod_called cap, cod_called cap/num cod*100, .
cod_called red,cod_called_red/num_cod*100) ;

fprintf ('CAPELIN\t\t%.0f (%.1f $3)\t%.0f (%.1f %%]\t%.0f [%.1f 3%]\n',
capelin_called_cod,capelin_called cod/num_capelin*100,
capelin_called _cap,capelin_called cap/num_capelin*100,
capelin_called_red,capelin_called red/num_capelin*100);

fprintf ('REDFISH\t\t$.0f [%.1f $5]\t%.0f [5.1f $3]\ts.0f [5.1f $2]\n\n’,
redfish_called cod, redfish_called_cod/num_redfish*100,
redfish_called_cap, redfish_called_cap/num_redfish*100,
redfish_called_red, redfish_called red/num redfish*100);
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sbs3nn.m
sequential backward selection for the
3-nearest neighbour classifiers for cod, capelin, and redfish

Patricia LeFeuvre

clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

$normalize all of the data

MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN = min (min (MN_red,MN_capelin) ,MN_cod) ;

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max(cod) ;

MX = max (max (MX_red,MX_capelin),MX_cod) -MN;

for i = 1l:length(redfish)

norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;
end
for i = 1:length(capelin)

norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;
end
for i ength (cod)

norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;
end

% Classifier #1 or stage 1 of the other three classifiers
alldata = [norm_cod; norm_capelin; norm_red];

% Classifier #4 - stage 2 cod vs capelin
$alldata = [norm_cod; norm_capelin];

num_cod = length(norm cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm_red);

%% CLASSIFIER

Skeepl = [13 4 567 92011 12 15 16 17 18 19 20 22 24 25]; % After depth
feature removal

fkeeplist = [1011111011110011111101011]; % from Factor
Analysis results

% list of features still in the running

keepl = 1234567 9 10 11 12 15 16 20 22 24 25];
% After depth feature removal and fact Ana

keeplist = (11111110 1 1 1 1 0 0 1
% no feret features

1000 1 0 1 0 1 1];
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$kaep/tEacl ot fiast AEOruanGe ok Wanh BUSHE GXIT8ATULES
fo.

bastFoxNumFeatuxes{x) =0
end

for num_removed = 0:16

performance = zeros(25,1);
for feat = 1:25

if (keepList (feat) == 1

newkeepList = keepList;

if (num_removed > 0)
newkeepList (feat) = 0;
end

keepl = fxndtnewkeepLisL
cod_called r 07

cod_called ¢ :od
cod_called cap = 0;
capelin_called_red
capelin_called_cod
capelin_called cap
redfish_called red
redfish_ called cod
redfish called |_cap

for i = 1:length(alldata)
data = [alldata(i, keepl)];

for j = l:length(alldata)
ifdo~= g

tmp = data - alldata(j, keepl);

dist(j) = sqrt(tmp*tmp');
else

dist(j) = 25;

end
[sortedDist, Index] = sort(dist);
if ( length(find(Index(1:3) <= num cod )) >= 2) % 2/3 were

alled = 1; % 1 = cod;
elseif ( length(find( (Index(1:3) > num cod) & (Index(
(num_cod+num_capelin))) ) >= 2) % 2/3 were capelin
=2; % 2 = capelin
elseif ( length(find(Index(1:3) > (num cod+num_capelin))) >= 2) %
2/3 were redfish

called = 3; % 3 = redfish
else
33 way tie - use the distance to the nearest
neighbour
if (Index(1) <= num_cod)
d = 1;

elseif (Index(l) <= (num_cod+num_capelin))
called = 2;

els

called =
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end

num_cod)
cod_called cod = cod called cod + 1;
elseif (i > num cod)

= (num_cod + num capelin))

capellnicalledicod capelin_called cod + 1;

els:

redfish_called_cod = redfish_called cod + 1;

elseit caued 2
if (4

um_
cod_ called _cap = cod_called cap + 1
elseif (i > num cod) & (i

capelin_called_cap = capelin_called_cap

els:
redfish_called cap = redfish called cap + 1;
end
else
if (1 <= num_cod
cod_called red = cod_called red + 1;
elseif (i > num ¢ cod) & (i (num cod + num_capelin))
capelin _called red = capelin_called red + 1;
else
redfish_called_red = redfish _called_red + 1;
end
end

end

$Classifier #1
tperformance (feat) = (cod_called cod/num_cod) +
(capelin_called cap/num capelin) + (redfish_called_red/num_redfish);

$Classifier #2 - stage 1 cod detection
sperformance (feat) = (cod called cod/num_cod) +
(1-capelin_called_cod/num_capelin) + (l-redfish_called_cod/num redfxsh).
Classxfler #2 - stage 2 capelin vs “redfish detecti:
erformance (feat) = capelin_called_cap/num_capelin b
redfish called_red/num redfish;

3Classifier #3 - stage 1 capelin detection
performance (feat) = (l-cod_called cap/num cod) +
(capelin_called cap/num _capelin) + (l-redfish called cap/num_redfish);
Yclassirirchy = aEkys 2 jcid Vi redfish detection
sperformance(feat) = cod_called_cod/num_cod +
redfish_called_red/num_redfish;

§Classifier #4 - stage 1 redfish detection
tperformance (feat) = (1-cod_called_red/num cod:
(1fcapelin_called_red/nuntpapel1n) + (redfish_called_red/num_redfish);
iClassifier 41 - stage 2 cod vs capelin detection
formance (feat) = cod_called cod/num cod +
capelin_called cap/num capeling

end % 1f(keepmst(£eat> 1)
1:

end % for feat =

[Best. I] = max(performance);
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ind = length(keepl):
bestForNumFeatures (ind) = BestPerformance;
if (num_removed > 0)
keepList(I) = 0;
end

rintf('\nnum Features removed = %d, performance = $.3f\n', num_ removed,
BestPerformance) ;

keepl = find(keepList

cod_called_ red
cod_called _cod
cod_called cap = 0;
capelin_called red
capelin_called cod
capelin_called_cap
redfish called red
redfish called |_cod
redfish_called cap

for i = 1:length(alldata)
data = [alldata (i, keepl)];

ength (alldata)

for j =
%

tmp = data - alldata(j, keepl);
dist(§) = sqrt (tmp*tmp’);

else
dist(3) = 25;
end
end
[sortedDist, Index] = sort (dist);
if ( length(find(Index(1:3) <= num cod )) >= 2) % 2/3 were cod
e =1; 3 1 = cod, -

elseif ( length(find( (Index(1:3) > num cod) & (Index(1:3) <=
(num_cod+num_capelin))) } >= 2) § 2/3 were capelin
called = 2
elseif ( length(find(Index(1:3) > (num cod+num_capelin))) >= 2) % 2/3
were redfish

called = 3; & 3 = capelin

else
%3 way tie - use the dlstance to the nearest neighbour
if (Index(lb X
elseif 1Index(]) <= (num_cod+num_capelin))
called = 2
else
called = 3;
end
end

if called
if (

num_cod)
cod_called cod = cod_called cod + 1;
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elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_cod = capelin_called_cod + 1

els:
redfish_called cod = redfish_called cod + 1;
end
elseif called
if (i <= num_cod)

cod_called_cap = cod_called cap + 1;
elseif (i > num Cod) & (i (num_cod + num_capelin))
capelin_called cap = capelin_called cap + 1;

else
redfish_called _cap = redfish_called_cap + 1;
end
else
if (i <= num_cod
cod_called_red = cod_called red + 1;
elseif (i > num cod) & (i <= (num_cod + num capelin)
capelin called red = capelin_called_red + 1;
else
redfish_called_red = redfish_called red + 1;
end
end
end
fprintf('Number of Features = $d\nFeature List = ',length(keepl));
fprintf('sd ', keepl);

£printf ('\n\t\t\t\tPREDICTED CLASS\n');

fprintf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf ('COD\t\t$.0f [8.1f $8]1\t%.0f [$.1f $%]\t:.0f [%.1f $%]\n',...
cod_called cod,cod_called_cod/num_cod*100, ...

cod_called_cap, cod_called_cap/num_cod*100, ...

cod_called_red,cod called_red/num_cod*100);

fprintf('CAPELIN\t\t$.0f [5.1f $3T\t:.0f [3.1f $%)\t8.0f [5.1f %3]\n',.
capelin_called_cod, capelin_called_cod/num_capelin*100, .
capelin_called cap,capelin_called cap/num_capelin*100, .
capelin_called red, capelin_called _red/num_capelin*100
£printf('REDFISH\t\t$.0f [¥.1f 33T\t?.0f [3.1f 8%]\ts.0f [x 1f %2)\n\n',
redfish_called cod, redfish_called_cod/num_redfish*100,
redfish_called cap, redfish_called_cap/num_redfish*100
redfish_called_red, redfish_called red/num_redfish*100);
pause (1)

end % num_removed = 1:18

plot (bestForNumFeatures
xlabel('number of features used')

gri
ylabel ('average classificat '
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% sfs3nn.m

% sequential forward selection for the

% 3-nearest neighbour classifiers for cod, capelin, and redfish
%

% Patricia LeFeuvre

clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

$normalize all of the data
MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN = min (min (MN_red,MN_capelin) ,MN_cod);

MX_red = max(redfish);
MX_capelin = max(capelin);

MX_cod = max(cod)

MX"= max (max (MX_red,MX_capelin) ,MX_cod)-MN;

for i = 1l:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = 1l:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;

% Classifier #1 or stage 1 of the other three classifiers
alldata = [norm_cod; norm capelin; norm_red]

% Classifier #4 - stage 2 cod vs capelin
$alldata = [norm cod; norm capelin];

num_cod = length (norm_coc);
num_capelin = length(norm_capelin);
num_redfish = length(norm red);

% list of features still in the runnin
tkeepl = [1 3 4 56 7 9 10 11 12 15 16 17 18 19 20 22 24 25]; % After depth
feature removal

fkeepListl = [1011111011110011111101011); % from Factor
Analysis results

% 1list of features still in the running

keepl (1234567 9 10 11 12 15 16 20 22 24 25];
After depth feature removal and fact Ana
keepListl = (11111110 1 1 1 1 0 0 1
% no feret features

Exl

100 010 1 0 1 1);

% starting point
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keep = [];
keepList = [0 000000000000000000
$keep track of best performance for each number of
for i = 1:18

bestForNumFeatures (i)

0;
end

for num_added = 1:11

performance = zeros(25,1);

for feat = 1:25

if ((keepList(feat) == 0) & (keepListl(feat)
newKeepList = keepList;
newKeepList (feat) ;
keepl = find (newKeepList == 1);

cod_called_red = 0;
cod_called cod = 0;
cod_called_cap = 0;
capelin_called red = 0;
capelin_called_cod = 0;
capelin_called cap = 0;
redfish_called_red = 0;
redfish_called_cod = 0;
redfish_called cap = 0;

for i = 1:length(alldata)

data = [alldata(i,keepl)];

for j = 1:length(alldata)
if i 3

00000 01;

features

= data - alldata(j, keepl);

dxst(J) = sqrt(tmp*tmp');
else
dist(3) = 25;
en
end
[sortedpist, Index] = sort(dist);
if ( length(find(Index(1:3) <= num cod )) >= 2) % 2/3 were
cod
called = 1; cod;
elseif ( length(find( (Index(1:3) > num_cod) & (Index(1:3)
<= (num_cod+num_capelin))) ) >= 2] 8:2/3 wese cabelin
led = 2; % 2 = capelin
Selseif ( length(find(Inden(113) > (num_cod+num_capelin)))
>=2) % 2/3 were redfish
called = 3; % 3 = redfish
else
%43 way tie - use the distance to the nearest
neighbour

if (Index(1) <= num_cod)
calle

elseif (Index(1) <=

50

(num_cod+num_capelin))



called = 2

else
called =
end
end
if called
um_co
cod_called cod = cod_called cod + 1;
elseif (i > num cod) & = (num_cod + num_capelin))
capelin_called cod = capelin_called_cod + 1;
else
redfish called cod = redfish_called_cod + 1;
end
elseif called == 2
if (i <= num_cod)
cod_called cap = cod_called cap + 1;
elseif (i > num Cod) & (i <= (num_cod + num _capelin))
capelin_called cap = capelin _called cap +
else
redfish_called_cap = redfish called cap + 1;
end
else
if (i <= num_cod)
od_called_red = cod_called_red + 1;
elaeit (1> mum od) & (3 2o (num_cod + num_capelin))
capelin_called_red = capelin_called red + 1;
else
redfish_called_red = redfish _called red + 1;
end
end

end

$Classifier #1
Sperformance (feat) = (cod_called_cod/num cod) +
(capelin_called cap/num_capelin) + (redfish called_red/num_redfish);

%Classifier #2 - stage 1 cod detection
erformance (feat) = (cod_called_cod/num_cod)
(1-capelin_called_cod/num_capelin) + (1-redfish_called_cod/num_redfish);
%Classifier #2 - stage 2 capelin vs redfish detection
sperformance (feat) = capelin_called_cap/num capelin +
redfish_called_red/num_redfish;

$Classifier #3 - stage 1 capelin detection
#performance (feat) = (1-cod_called_cap/num_cod)
(capelin_called_cap/num_capelin) + (1-redfish called cap/num_redfish);
lassifier #3 - stage 2 cod vs redfish detection
performance (feat) = cod_called_cod/num_cod
redfish_called_red/num_redfish;

3Classifier #4 - stage 1 redfish detection
$performance (feat) = (1-cod_called_red/num_cod)

(1-capelin called_red/num capelin) + (redfish _called_red/num_redfish);
#Classifier #4 - stage 2 cod vs capelin detection
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performance (feat) = cod_called_cod/num cod +
capelin_ called |_cap/num_capelin;

end & if {keepLLst (feat)

1)

end % for feat =
[BestPerformance, I] = max(performance);
bestForNumFeatu:es(num 1_added) = BestPerformance;
keepList (I)
keepl = flnd(keepLxsr_ =1);
fprintf('\nnum Features used = %d, performance = %.3f\n', num added,
BestPerformance) ;
cod_called_red
cod_called _cod
cod_called_cap = 0;
capelin called_red
capelin_called cod
capelin_called cap
redfish_called red
redfish_called_cod
redfish_called_cap = 0;
for i = 1l:length(alldata)
data = [alldata (i, keepl)];
for j = 1:length(alldata)
if i ~e g
tmp = data - alldata(j,keepl);
dist(3) = sqrt(tmprtmp');
else
dist(3) = 25;
end
end
[sortedDist, Index] = sort(dist);
if ( length(find(Index(1:3) <= num cod )) >= 2) % 2/3 were cod
called = 1; % 1 = cod;
elseif ( length(find( (Index(1:3) > num_cod) & (Index(1:3) <=
(num_cod+num_capelin))) ) > 2)'s 2/3 were capelin
al - elin
elseif ( length(flnd(lndexil 3) > (num_cod+num_capelin))) >= 2)
were redfish
called = % 3 = capelin
else
33 way tie - use the distance to the nearest neighbour
if (Index(1) <= num_cod)
elseif (Index (1) <= (num_cod+num_capelin))
else
called = 3;
end
end
if called

% 2/3



if (i <= num_cod)
cod_called cod = cod_called cod + 1;

elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called cod = capelin_called cod + 1

redfish_called_cod = redfish_called_cod + 1;
end

elseif called
(i <= num_cod)
cod_called cap = cod called cap + 1;
elseif (i > num_cod) (num_cod + num_capelin))
capel)n_called_cap = capelin_called cap + 1;

else
redfish_called_cap = redfish_called cap + 1;
en
else
if (i <= num_cod)
cod_called red = cod_called_red + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_red = capelin called red + 1;
else
redfish_called_red = redfish_called red + 1;
end
end
end
fprintf('Number of Features = %d\nFeature List = ',length(keepl));

fprintf('sd ', keepl);
fprintf ('\n\t\t\t\tPREDICTED CLASS\n');
£printf('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf ('COD\t\t%.0f [%.1f $%]\t8.0f [3.1f %%]\t% Of [8.1f #3%]\n',
cod_called_cod, cod_called_cod/num_cod*100,
cod_called_cap, cod_called_cap/num_cod*100,
cod_called_red, cod_called_red/num_cod*100

fprint('CAPELIN\t\t:.0f [$.1f $2]\t?.0f [5.1f ¥¢]\t$.0f [8.1f 22]\n',
capelin_called_cod,capelin_called_cod/num_capelin*100, .
capelin_called _cap,capelin_called cap/num_capelin*100, .
capelin_called_red,capelin_called red/num_capelin*100);

fprintf('REDFISH\E\tS.0f [5.1f $%]\t?.0f [5.1f 28]\t:.0f [%.1f %&]\n\n',
redfish_called_cod, redfish_called cod/num_redfish*100, .
redfish_called cap, redfish _called_cap/num_redfish*100, .
redfish_called _red, redfish_called_red/num_redfish*100);

pause (1);

end % num removed = 1:18



SBSMal.m

Patricia LeFeuvre
Feb 19, 2001

Program to perform sequental backward selection to find the best
10 or fewer features to distinguish capelin from cod and redfish
Using Thesis data

cnwonmew

clear,

load capelin.txt;
load cod.txt;
load redfish.txt;

& Normalize
MN_red = min(redfish);

MN_capelin = min(capelin);

MN_cod = min(cod);

MN"= min(min (MN_red,MN_capelin),MN_cod);

MX_red = max(redfish);

MX_capelin = max (capelin);

MX_cod = max(cod);

MX = max (max (MX_red,MX_capelin),MX_cod)-MN;

for i = l:length(redfish)
norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1l:length(capelin)
norm_capelin(i,1:25) = (capelin(i,1:25) - MN)./MX;

for i = 1l:length(cod)
norm_cod(i,1:25) = (cod(i,1:25) — MN)./MX;

alldata = [norm cod; norm_capelin; norm red];

num_cod = length(norm cod);
num_capelin = length(norm_capelin);
num_redfish = length(norm_red);

% list of features still in the running
tkeepl = [1 34567 9 10 11 12 15 16 17 18 19 20 22 24 25]; % After depth
feature removal

fkeepList = [1011111011110011111101011]; % from Factor
Analysis results

% list of features st).l‘ in the running
keepl = 1234 7 9 10 11 12 15 16 20 22 24 25);
# After depth ieaLux‘e removal and fact Ana
keepz.ist={11111110 1111001100010 1 01 1)z
no feret features

training_cod = norm_cod; 8 [norm_cod(:,keepl)1;
training_capelin = norm capelin; %[norm capelin(:,keepl)];
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training_red = norm_red; % [norm_red(:, keepl)];
% to illustrate over training
for 1 = 1:17
bestForNumFeatures (i) 0;
end
for num_removed = 0:16 $0:16
performance = zeros(25,1);

for feat = 1:25

if (keepList(feat)

1)

newKeepList
if num_removed >
newKeepList (feat) = 0;

keepList;

end
keepl = find(newKeepList == 1);

cod called red = 0;

"~ cod_called cod = 0;
cod called_cap = 0;
capelin_called_red
capelin_called_cod
capelin_called cap =
redfish called_red
redfish_called cod
redfish_called cap =

cocoooo

M_cod = mean(training_cod(:,keepl)
M_capelin = mean (training_ capelm(,,keepm,
mean (training_red(:, keepl));

M_red

K_cod = cov(training_cod(:, keepl)
K_capelin = cov(training_¢ Sapetinl:,keepl))s
K_red = cov(training_red(:, keepl));

for i = 1:length(alldata)
ata = [alldata(i, keepl)];
dist_cod = (data - M_cod) * inv(K_cod) * (data - M_cod)':

dist_capelin = (data - M_capelin) * inv(K_capelin) * (data -
M_capelin) '; -
dist_red = (data - M_red) * inv(K_red) * (data - M_red)';
if ( (dist_cod < dlst _capelin) & (dist_cod < dist_red) )

called = 1; $ 1 = cod;
elseif ( (dist_capelin < d).sv; _cod) & (dist_capelin < dist_red))
called = 2; % 2 = cape
elseif 1(d15t red < dist_cod) & (dist_red < dist_capelin) )
called = 3; % 3 = redfi:

els
Called = 4; % we have a ti
fprintf('\nwe have a ele with the distances\n');
pause;

end

if called 1




if (i <= num_cod)
cod_called cod = cod_called cod + 1;

elseif (i > num cod) & (i <= (num cod + num capel.\n))
capelin_called_cod = capelin_called cod

else
redfish_called_cod = redfish _called cod + 1;

end
elseif called = 2
4211 o= sm cod)
cod_called cap = cod_called_cap + 1;
elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin called cap = capelin_called cap + 1
else
redfish_called cap = redfish called cap + 1;

elsext Cllled =3
(i <= num_cod)

cod_¢ called red = cod_called _red + 1;

elseif (i > num co\i) & (1 <= (num cod + num_capelin))
capelin_called_red = capelin_called red + 1;

els
redfish_called_red = redfish_called_red + 1;

end
end

end & end of i = 1l:length(alldata)

%Classifiez #5
performance (feat) = (cod_called_cod/num_cod) +
(capelin_called cap/num capelin) + (redfish called red/num redfish);

sClassifier #6 - stage 1 cod detection
sperformance (feat) = (cod_called_cod/num_cod) +
(1-capelin_called cod/num_capelin) + (1-redfish_called_cod/num_redfish);
TsClassifier #6 - stage 2 capelxn vs redfish detm:r.xon
tperformance (feat) = capelin_called_cap/num_capelin
redfish_called_: :ed/num redfish;

iClassifier §7 - stage 1 capelin detection
tperformance (feat) = (1-cod_called_cap/num_cod) +
(capelin_called cap/num_capelin) + (1-redfish _called cap/num_redfish);
sClassifier #7 - stage 2 cod vs redfish detection
$performance (feat) = cod_called_cod/num cod +
redfish_called_red/num_redfish;

iclassitier 48 - stage 1 redfish detection
tperformance (feat) = (1-cod_called red/num_cod)
(1-capelin_called_; Sad/nem \_capelin) + (redfish called_red/num redfish);
T¥Classifier #8 - stage 2 cod vs capelin detection
performance (feat) = cod called_cod/num_cod
capelin_called cap/num_capelin;
end % end of if (keepList(feat) == 1)

end % end of for feat = 1:25

$performance,
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[BestPerformance, Indx] = max(performance);
£printf('\nnum Features removed = %d, performance = §.3f\n', num_removed,
BestPerformance) ;

% to illustrate over training
ind = length(keepl);
perf_per_num feats(ind) = BestPerformance/3.00%100;

if num_removed > 0
keepList (Indx) = 0

nd
keepl = find(keepList == 1);

cod_called red
cod_called cod
cod called i_cap
capelin_called py
capelin_called_cod

cocooo

redfish_called_cod
redfish_called cap =

M_cod = mean(training_cod(:, keepl)
M_capelin = mean(training_ capelm(.,keepn»,
M_red = mean(training_red(:, keepl))

K_cod = cov(training_cod(:,keepl))
K_capelin = cov(training capelin(.,keepl)),
K_red = cov(training_red(:, keepl))

for i = l:length(alldata)
data = [alldata(i, keepl)];

dist_cod = (data - M_cod) * inv(K_cod) * (data - M_cod)';
dist_capelin = (data - M_capelin) * inv(K_capelin) * (data -
M_capelin) ';
dist_red = (data - M_red) * inv(K_red) * (data - M_red)';
if (T(dist_cod < dist_capelin) & (dist_cod < dist red) )
called = 1; & 1 cod;
elseif ( (dist_capelin < dist_cod) & (dist_capelin < dist_red))
called = 2; % 2 = capelin
elseif uaus: red < dist_cod) & (dist_red < dist_capelin) )
= % 3 = redfish

called = 4; % we have a tie
fprintf('\nwe have a tie with the distances\n');
pause;

end

if called == 1
if (i <= num_cod

cod_called cod = codﬁcalled cod + 1;

elseif (i > num‘cod) & (i <= (num_cod + num_capelin))
capelin_called cod = capelin called_cod + 1;

else
redfish_called_cod = redfish_called_cod + 1;
end



elseif called == 2

if (i <= num _cod)
cod_called_cap = cod called cap + 1;

elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_cap = capelin_called_cap + 1;

else
redfish_called cap = redfish called cap + 1;
end

elseif called ==
num_cod)
cod_called red = cod_called red + 1;
elseif (i > num cod) & m_cod + num_capelin))
capelin_called red = capelin called red + 1;

else
redfish_called_red = redfish called_red + 1;
end - - - -
end
end
fprintf('Number of Features = td\nFeature List = ', length(keepl));

fprintf('td ', keepl)
£printf ('\n\t\t\t\tPREDICTED CLASS\n');
£printf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf ('COD\t\ts.0f [8.1f 23]\t2.0f [% 1f B‘s]\t% Of [%.1f #%)\n',
cod_called_cod,cod_called cod/num_cod*1l

cod_called _cap,cod _called_cap/num_¢ cod“lOD,
cod_called red, cod_called_red/num_cod*100);

fprintf('CAPELIN\t\ts.0f [$.1f $8]\t$.0f (8.1f 38]\t8.0f [3.1f 3%]\n’,
capelin_called _cod,capelin_called_cod/num_capelin*100, .
capelin_called cap,capelin_called cap/num_capelin*100, .
capelin_called_red,capelin_called_red/num_capelin*100);

fprintf ('"REDFISH\t\t%.0f [%.1f $%]\t$.0f [$.1f 33]\t%.0f [%.1f %%]\n\n’,
redfish_called cod, redfish_called_cod/num_redfish*100,
redfish_called cap, redfish_called_cap/num redfish*100, .
redfish_called_red, redfish_called_red/num_redfish*100);

perf = (cod_called cod/num cod) + (capelin_called cap/num capelin) +
(xedﬁsh called_red/num redfish),

end

plot (perf_per_num_feats)

xlabel ('number of features used')

grid

ylabel ('average classification accuracy (percentage)')



SFSMal.m

Patricia LeFeuvre

Program to perform sequental forward selection to find the best
10 or fewer features to distinguish capelin from cod and redfish

3
3
%
% Feb 26, 2001
%
%
%
%

Using Thesis data

clear
load capelin.txt;
load cod.txt;

load redfish.txt;

% Normalize
MN_red = min(redfish);
M‘N {_capelin = min(capelin);
MN_cod = min (cod);
MN = min (min(MN_red,MN_capelin),MN_cod) ;

MX_red = max(redfish);

MX_capelin = max(capelin);

MX_cod = max(cod) ;

MX = max (max (MX_red,MX_capelin),MX_cod)-MN;

for i = l:length(redfish)

norm_red(i,1:25) = (redfish(i,1:25) - MN)./MX;

for i = 1:length(capelin)
norm capelin(i, 1:25) = (capelin(i,1:25)

for i = 1l:length(cod)

- MN) . /MX;

norm_cod(i,1:25) = (cod(i,1:25) - MN)./MX;

alldata = [norm_cod; norm_capelin; norm_red];

num_cod = length(norm_cod);
num_capelin = length(norm capelin);
num_redfish = length(norm red);

3 List of features still in the running

skeepl = 1 34567 9 1011 12
% After depth feature renoyal
%keepL:Lscl =[10111110 1 110

from Factor Analysis results

keepl = (1234567 9 10 11 12

After depth feature removal and fact An:
1110

®
keepListl = (11111110 1
% no feret features

? terp to illuserate overtraining
tkeepl = [1234567809101112
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% After depth feature removal
fkeeplistl = (1111111111 1 1 0 01 1 1 1 1 1 1 1 1 1
from Factor Analysis results
% starting point
keep = [1;
keepList = [0000000000000000000000000];

%% CLASSIFIER #5 - Distinguish cod from capel).n from Redfish
d;

training_cod = norm_co % [norm_cod (:, keepl)];
training_capelin = norm capelin; % [norm_capelin(:, keepl)];
training_red = norm_red; % [norm red(: keepl)];

t temp to illustrate overtraining
for i

bestForNumFeatuxes (1)
end

for num_added =
performance = zeros(25,1);

for feat = 1:25

if ((keepList(feat) 0) & (keepListl(feat)
newKeepList = keepList;
newKeepList (feat) = 1;
keepl = find(newKeepList == 1);

cod_called_red = 0;
cod_called cod = 0;
cod_called cap = 0;
capelin_called red
capelin_called cod
capelin_called cap =
redfish_called_red
redfish_called_cod
redfish_called_cap

cocococoo

M_cod = mean(training_cod(:,keepl));
M_capelin = mean(training_capelin(:, keepl));
mean (training red(:, keepl));

M_red

K_cod = cov(training_cod(:,keepl));
K_capelin = cov(training_capelin(:,keepl));
K_red = cov(training_red(:, keepl)):

for i = 1:length(alldata)
data = [alldata(i,keepl)];
dist_cod (data - M_cod) * inv(K_cod) * (data - M_cod)';
dist_capelin = (data - M_capelin) * inv(K_capelin) * (data -
M_capelin) ';
dist_red = (data - M red) * inv(K red) * (data - M_red)';
if (T(dist_cod < dist _CRPELS), & {dist_cod < dist_red) )
called 1; ¥ 1 = co
elseif ( (dist_capelin < dist_cod) & (dist_capelin < dist_red))
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called = 2; & 2 = capelin

elseif ((dist red < dist_cod) & (dist_red < dist_capelin)

called = 3; % 3 = redfish

else
called = 4; & we have a tie
prlntf('\nwe have a tie with the distances\n'):
pause;
end
if called
if (i <= num_cod
cod_called_cod = cod_called cod + 1;
elseif (i > num cod) & = (num_cod + num_capelin)
capelin_called cod = capelin_called cod + 1
else
redfish_called_cod = redfish called cod + 1;
en
elseif called == 2
(i <= num_cod:
cod_called cap = cod_called_cap + 1;
elseif (i > num ccd) & (1 3= (num_cod + num_capelin))
capelin_called cap = capelin_called cap + 1;
else
redfish_called_cap = redfish called cap + 1;
end
elseif called == 3
if (1 <= num_cod)
cod_called_red = cod_called_red + 1;
elseif (i > num_¢ cod) (i (num_¢ _cod + num capel:\.m)
capelin_called_red = capelin_called_red +
else
redfish_called_red = redfish_called_red + 1;
end
end

end % end of i = 1:length(alldata)

#Classifier #5
performance (feat) = (cod _called cod/num_cod)
(capelin_called cap/num capelin) + (redfish_called_red/num_redfish);

%#Classifier #6 - stage 1 cod detectio:
Specioruance(fest) = (a6 calléd cod/num_cod) +
(1-capelin_called_cod/num_capelin) + (1- redfish called ccd/nuln redfish);
$Classifier #6 - stage 2 capelin vs redfish detection
sperformance (feat) = capelin_called_cap/num capelin +
redfish_called_ red/num redfish;

sClassifier #7 - stage 1 capelin detection
sperformance (feat) = (l-cod_called_cap/num_cod!
(capelin_called cap/num capelin) + (l-redfish_called_cap/num_redfish);
Aclaasision §7 - stagec2 cod vs redfish detection
sperformance (feat) = cod_called_cod/num _cod +
redfish_called red/num redfish;

%Classlfler #8 - stage 1 redfish detection

tperformance (feat) = (1-cod_called_red/num _cod) +
(1-capelin_called_: xed/num . capelin) + (redfish_called_red/num_redfish);
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#Classifier #8 - stage 2 cod vs capelin detection
performance (feat) = cod_called_cod/num_c
capelin_called_cap/num_capelin;

end % end of if (keepList(feat) 1)

end % end of for feat =

25

tperformance
[BestPerformance, Indx] = max (performance);
fprintf ('\nnum Features used = %d, performance = %.3f\n', num_added,
BestPerformance) ;

% temp to illustrate overtraining

perf_per_num_feats(num_added) = BestPerformance/3.00%100;

keepList (Indx) = 1
keepl = find(keepList

cod_called_red

capelin_called red
capelin_called_cod
capelin_called cap
redfish_called red
redfish_called _cod
redfish_called_cap

M_cod = mean(training_cod(:,keepl));
M_capelin = mean(training_capelin|(:,keepl));
M_red = mean(training_red(:,keepl));

K_cod = cov(training_cod(:, keepl));
K_capelin = cov(training_capelin(:, keepl));
K_red = cov(training_red(:,keepl));

for i = 1:length(alldata)
data = [alldata(i,keepl)];

dist_cod = (data - M _cod) * inv(K_cod) * (data - M_cod)';

dist_capelin = (data - M_capelin) * inv(K_capelin) * (data -
M_capelin)';

dist_red = (data - M _red) * inv(K_red) * (data - M_red)';

if ( (dist_cod < dist _capelin) & (dist_cod < dist_red) )

called = 1; § 1 = cod;

elseif ( (dist_capelin < dist_cod) & (dist_capelin < dist_red))

called = 2; % 2 = capelin

elseif ((dist_red < dist_cod) & (dist_red < dist_capelin) )

called = 3; %3 = redfish

else

called = 4; % we have a tie

printf('\nwe have a tie with the distances\n');

pause;

end
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if called ==
if (i <= num

cod_called cod cod_called_cod + 1;

elseif (i > num cod) & (i <= (num_cod + num_capelin))
capelin_called_cod = capelin_called cod + 1;

else
redfish_called_cod
end

redfish_called_cod + 1;

elseif called =
if (i <= num_cod)
cod_called cap = cod called Lcap + 1
elseif (i > num cod) & (i <= (m + num_capelin))
capelin called cap = Capelln called cap + 1;

else
redfish_called cap = redfish called_cap + 1;
end

elseif called =
(i <= num_cod)
cod_called_red = cod_called_red + 1;
elseif (i > num Cod) & (i <= (num_cod + num_capelin))
capelin_called_red = capelin called red + 1;

else
redfish_called red = redfish_called_red + 1;
end
end
end
fprintf('Number of Features = %d\nFeature List = ', length(keepl));
fprintf('sd ', keepl)

f£printf ('\n\t\t\t\tPREDICTED CLASS\n');
fprintf (' \t\tCOD\t\tCAPELIN\t\tREDFISH\n');

£printf('COD\t\t%.0f [§.1f $8]\t%.0f [%.1f $8]\t%.0f [%.1f 8%]\n’,...
cod_called_cod,cod_called_cod/num_cod*100, ...

cod_called_cap, cod_called_cap/num_cod*100, .

cod_called red,cod called_red/num_cod*100);

fprintf('CAPELIN\E\t3.0f [$.1f $5]\t3.0f [%.1f $3]\ts.0f [8.1f ¥8]\n',...
capelin_called cod,capelin_called_cod/num_capelin*100, ...
capelin_called_cap,capelin_called cap/num_capelin*100, ...
capelin_called red,capelin_called red/num capelin*100);

fprintf('REDFISH\t\ts.0f [5.1f $5]\ts.0f [%.1f $8]\ts.0f [¢.1f 88]\n\n',...
redfish_called_cod, redfish_called cod/num 1_redfish*100, .
redfish_called cap, redfish_called_cap/num_redfish*100, .
redfish_called_red, redfish_called_red/num redfish*100);

rf = (cod_called_cod/num cod) + (capelin_called cap/num_capelin) +
(:edflsh called_red/num_redfish),

end

% temp to illustrate overtraining
plot (perf_per_num_feats)
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