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Abstract

Acoustic surveys for marine fish. in coastal watm typically involve identification of

species groups. Incorrect classification can limit the usefulness of both distribution and

biomass estimates. Fishing catch data can assist in identification, but are rarely spatially

comparable to acoustic dala and are usually biased by gear Iype. This thesis describes a

teChnique and a softwan: toolkit, '·FASrr (Fisheries Assessmenl and Species Identification

Toolkit), developed by lhe author 10 enable automated identification ofAtlantic cod (Gadus

morhus), capelln (Mal19/us viJIosus), and redfish (Sebasles spp.) based on high resolution

acoustic imaging offish aggregations. The approach has been to assess and analyze various

amplitude, shape and location featurcsofthe acoustic returns from shoals and individual fish,

then to use these features to develop algorithms which discriminate among species. Fourteen

classifiers based on Three-Nearest Neighbour classification and Maha1anobis distance

classification have been implemented and tested. 1be best classifier had an average correct

classification rate of96.8%. The data used for this thesis are fisheries data from a number

of Newfoundland bays and the Grand Bank region collected using a 38 KHz digital echo­

sounder.
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t.O INTRODUcrlON

Species identification is "the grand challenge of fisheries and plankton acoustics"

(MacLennan and Holliday, 1996). Fishennen and the military accepted this challenge early

on, and many can identifY the "marks" on their echo-sounders with good success. In marine

science, hydroacoustic biomass surveys have depended on concurrent fishing to identifY the

fish species observed. Problems with concurrent fishing are primarily due to two factors:

the variability in the species' catchability and the difficulty in achieving spatial or lemporal

sampling comparable with that of acoustic sampling.

The first fonnal attempts to classifY the myriad of pulses and shapes Ihal appear in

the water column on echosounders, and to identifY them with some certainty, were made in

the lale 1970's and early 1980's (Holliday, 1977; Deuser el aI., 1979; Gi!)'n et aI., 1979;

Zakharia and Sessarego, 1982). These altempts were followed by several empirical sludies

that applied simple signal processing techniques to fisheries acoustic data(Rosc and Lcggett,

1988; Souid, 1988; Diner et aI., 1989). The availability of inexpensive and high speed small

computers in the lale 1980's, coupled with the minor successes of the earlier attempts to

classify fish. echoes to species, spurred research. using narrow-band (single acoustic

frequency) systems. Attempts to use the infonnalion from single ech.os (or pings) gave way

to image processing techniques capable ofassessing many pings at once, ascomplele images

(Weill et al., 1993; Lu and Lee, 1995; Reid and Simmonds, 1993; Richards et al., 1991).

Several ofthese methods provided high rates ofcorrect classification in restricted ecological



situations, but none have provided a classifier which is successful over broad ranges of time

and space (see review by Scalabrin et at., 1996). Several recent efforts have been made to

use wide-band acoustics for classification (Simmonds and Armstrong \990; Simmonds et

aL, 1996; lakhariaet aI., \996). These methods show considerable promise in experimental

studies but they require equipment which for now is well out ofthe budgetary reach of most

fisheries organizations.

For some marine echo-systems, especially those at high latitudes (like

Newfoundland) where the number ofdifferent fish spc<:ies is low it appears that infonnation

from narrow-band echosounders (like the system used for this study) may suffice for

classification. It is important to recognize that it is unlikely that any classification algorithm

can be developed to classify all species over a broad range of ecological conditions

(Scalabrin et al., 1996). Rather, to increase the probability of success, it is necessary to

develop knowledge ofthe system under study, and to limit the questions to be resolved and

species to be classified. This detracts little from most applications.

In Newfoundland coastal waters, the most common species encountered on an

echosounder are Atlantic capelin (Mallotus villosus), herring (Clupea harengus) and cod

(Gadus morhllo).ln some areas Atlantic mackerel (Scomber scombrus)and redfish (Sebastes

spp.) are commonly observed. There is a great deal ofseasonal variation in distribution and

aggregation patterns in all these species. During research and surveys it is imperative that

the acoustic traces from these spc<:ies be consistently identified with a high degree of



accuracy. Hence, onc aspect of this research was initiated to dcvelop melhods to extract

information from high-resolution digital backscatter tlmt might lead to improved signal

classification. Another aspect of this research was the exploration ofa number ofdiffercnt

classification tcchniques for application to this information.

The specific objective of the research described here was the developmenl of an

algorithm for timcly classification of Atlantic capelin (Mallows villosus), cod (Gadus

morhua) and redfish (Sebasles spp.) using image processing techniques and pattern

recognition. The data used for Ihis research was collected from Placentia Bay,

Newfoundland, Trinity Bay, Newfoundland. and the 3Ps region of the Grand Bank [see

Appendix A for maps].

To make the results of the research easily usable, a Windows-based software

application, known as FASIT (Fisheries Assessment and Species Identification Toolkil) has

been developed. FASIT is used for post-processing of fisheries acoustic data. It can perform

biomass estimation using echo integration and species identificalion for capelin (Mallorus

villosus), cod (Gadus morhua) and redfish (Sebastes spp.). Thc version of the FASIT

program described in this Ihesis was developed by the aUlhor.

Much of the work described in this thesis has also been published in Fi:lheric~

Research by LeFeuvre et 81. in an articlc entitled "Acoustic species identification in the

Northwest Atlanlic using digital image processing."



2.0 BACKGROUND

The literature describing underwater acoustics is extensive. Elementary principles

have been described very well in Clay and Medwin, 1977 and Urick. 1983. This Section will

therefore be dedicated to describing aspects of underwater acoustics that are panicularly

relevant to the problem of fish species identification. Section 2.1 gives a brief technical

introduction to echo-sounder technology for readers unfamiliar wilh fisheries acoustics.

Section 2.2 describes some aspects of fish as acoustic targets that contribute to making

species identification possible.

2.1 Echo-sounderTechnology

A fisheries echo-sounder is a SONAR (SOund NAvigation and Ranging) system

which transmits an acoustic signal (or ping), most often in a vertical direction toward Ihe

seabed [Figure I A]. The most common type of fisheries echo-sounder is single-beam,

single·frequency. The transmitted signal emitled by the transducer (Iypically a piezoelectric

crystal) is generally a pulsed (duration 't) single-frequency if) sinusoid ofconstant amplitude.

In fisheries science most work has historically been done using short pulse lengths. usually

from 0.2 msec to 1.0 msec. and a limited numberofcarrier frequencies. primarily 38KHz and

120 KHz (Johannesson and Mitson, 1983). These parameters provide a good compromise

between signal range and signal resolution, and by using standard parameters researchers



have been able to make use of other's work.

A)

~ f~ 2ll
------ECho from Stalled

Figure I: Echo-sounder graphic

An acoustic pulse is a mechanical disturbance that propagates as a pressure wave in

a directional beam pattern away from the transmitter. The 3dB beamwidth of a typical

fisheries echo-sounder is between 5 and 15 degrees (MacLennan and Simmonds, 1992).

Figure 2 illustrates lhe beam pattern ofa 120 KHz BioSonics DT echo-sounder. Due to

spherical spreading the intensity ofthc pressure wavedecreascs invcrsely with thl: square of

lhe distance travelled (r). Any objects located in the transmitted signal's path that have a

density not equal to the density ofthe surrounding water create echos that are returned to the
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Figure 2: Beam pattern measurements fOI" a 120 kHz BioSonics DT transducer. A.
Average energy curve for orthogonal directions; B. Expanded view cut-off 3 dB
down from Ihe peak of Ihe laller curve. (LeFeuvre et al,1996)

echo-sounder's receiver (a piezoelectric crystal, commonly the same onc used for signal

transmission) which transfonns the acoustic signal to a proportional voltage signal [like the

voltage signals illustrated in Figure I B]. To compensate for the spherical spreading losses,

a lime varied gain (TVa) is applied to the returned signal. In fisheries acoustics 40 log(r)

Tva is commonly applied to signals from single fish. while 20 log(r) TVa is applied to

signals from densely paeked fish schools. To compensate for absorption losses (where

acoustic energy is converted into heat energy) an appropriate absorption coefficient (a) is

applied to the returned signal. The absorption coefficient is in units ofdB/m and is constant



for a given acoustic frequency, water temperature and salinity. See Appendix B for the

equation used to estimate a.

The distancc from thc echo-soundcr to thc reflective object can be calculated using

the equation: r - Y. c/, where c is sound velocity and / is the time delay between the

transmitted pulse and the received ccho (Maclennan and Simmonds, 1992). Scc Appendix

B for the estimation of c as a function of water temperature and salinity.

Targct strength (TS) is a common way ofexpressing an object's ability to produce an

echo (Johannesson and Milson. 1983) and is defined by the ratio of the reflected energy (I,)

from a target were it located at a distance of one meter from the sonar, over the incident

sound intensity (1J:

TS '" 10 log (//1) in units of dB (I)

The strength of an echo reflected by an object is related to a number of factors

including the strength ofthe incident sound wave, the change in acoustic impedance between

the water and the object, and the shape and the size of the object. The greater the strength

ofthe incident sound wave or change in acoustic impedance the greater the echo. The effect

of shape and size however is more complicated.

Objects that are very small compared to the wavelength ofthe incident wave (J..) will

act as an acoustic point source of scaucred waves which radiate spherically in all directions.



According to the Rayleigh scattering law, the scattered energy is proportional to (dO..t when

d«). where d is the characteristic linear si7-c of the target defined as the cube root of its

volume (Maclennan and Simmonds, 1992). The strength of echoes from objects that arc

very large compared to the wavelength of the incident wave is not a function of frequency.

The scattering energy from a large spherical object increases approximately as the square of

the sphere radius (Maclennan and Simmonds, 1992). For objects with sizes similar to the

wavelength of the incident wave, the scattering is related to the shape of the object and its

material properties. In this region, resonances can occur as well, making theoretical

prediction of scattering strength difficult (Maclennan and Simmonds, 1992).

The returned signals from the echo-sounder transducer arc usually displayed as an

ecbogram. Eehograrns, are graphical displays of the recorded reflection energy from

subsequent echos (or pings) taken as the vessel on which the echo-sounder has been mounted

traverses along the water. On an echogram subsequent echos are plotted next to each other

vertically. Each sample point is plotted using a colour or shade of grey to represent the

intensity of the echo received. This generates a two dimensional "image" of a the water

column under the path of the vessel. Figure 3 illustrates an echogram displayed using the

FASIT software. It is from these echograms that many experienced fishers and fisheries

scientists can visually identify the species of fish being displayed.



Figure 3: Enmple of an echogram containing loosely schooled cod located
near the seabed

2.2 Biological Acoustics

Fish are neither uniformly nor randomly distributed in the ocean. Different species

typically aggregate where different environmental conditions such as depth, temperature, and

bottom type occur. Species also aggregate according to oceanographic conditions and time

ofday or year (Lee et aI., 1996). This variation in behaviour among different fish species as

well as differences in physiology are what make species identification using acoustic signals

possible. Section 2.2.1 will describe some of the physiological differences between species



and how they assist in making identification possible. Section 2.2.2 will describe some

behavioural differences which also aid in acoustic identification.

2.2.1 Physiology

The backscattering ability, or target slrength, of fish varies from species to species.

It is dependent on acoustic frequencies and is related to the physiological characteristics of

the species, particularly on whether or not the organisms contain gas (Le. a swim bladder)

(Nakken, 1998). The swim bladder is the major cause of scattering from a bladder-bearing

fish contributing anywhere from 90 to 95% of the total echo (Foote, 1980). This is because

the acoustic impedance ofthe gas in the swim bladder is very different from the surrounding

water and other organs wilhin a fish (Nallen, 1998).

Within a species the target strength is strongly related to the length of the fish (Love,

1971). In Table I the target strength of the three species of fish under study for this thesis

are presented as a function offish length (L) expressed in centimeters. As shown, there are

differences between the three species. The echo from a cod is approximately 7.ldB greater

than that ofan equally long capelin and 2.1 dB greater that ofan equally long redfish. Table

2 lists the typical length range of mature fish for the species of interest. Please note that

typical matutC fish lengths vary from year to year, study to study, and region to region,

therefore these ranges arc used for illustrative purposes only.

10



Table I: Echo ability of cod, capelin and redfish at 38 KHz

Snecies Tar et Strenpth dB

Cod (Gadus morhua) 20 10g(L) - 66·

Capelin (Mallo/us viflosus) 20 log(L) • 73.1"

Redfisb (Sebastes marinus) 20 log(L) _68.1"·

• Rose and Porter, 1996, .. Rose, 1999, ..- Gauthier and Rose, 2001

Table 2: Typical lengths of mature cod, capelin and redfish

Group Typical mature leoll,ths (cm)

Cod (Gadus morhua) > 45-

Capelin (Mallo/us vil/osus) > 12 -

Redfish (Seba~'/es spp.) > 24 -

• Correspondence with Dr. George Rose.

With the information from Tables I and 2, the expected T.Srange for each species has

been calculated and is given in Table 3. Clearly, for identification of these three species,

echo strength data will provide very importane classificalion information.

Table 3: Estimated TS range for mature cod, capelin and redfish

Group Estimated TS RaD2e dB

Cod (Gadus morhua) > -32.9

Capelin (Mallo/us vil/osus) > -51.5

Redfish (Sebastes spp.) > -40.5

11



Another physiological factor that may in assist species identification is the variation

in swim bladder shape from species to species. Experiments on tethered fish have shown

Ihat echo strength (or abilily) is dependent on the angle between the fish and the incident

sound (tilt angle) (Nakken, 1998). Figure 4 shows the dorsal aspecl reflectivity pattern for

two gadoid species, cod and saithe (data for capelin and redfish were not available in the

literature so these data are being used for illustration only). Note that in this figure, echo

ability has been expressed as backscattering cross section (0) in units of centimeters.

Backsealtcring cross section is relaLCd to target strength (T.S) as follows:

TS= IOlogIO(o/4n). (2)

Both species in Figure 4, eod and saithe, have their maximum echo ability when tilted with

their heads down a few degrees but the echo ability of saithe decreases more rapidly with tilt

30 20 10 0
H~ad dawn Ti~(degre~s)

20 30
Head up

Figure 4: Dorsal aspeci reflectivity paltern for
cod and saithe (Nakken, 1998)

12



angle than it does for cOO. The reason for this is the more elliptical or spherical shape ofthe

cod swim bladder and the more elongated cylindrical shape of the saithe swim bladder

(MidltlUl and Hoff, 1962).

It is expected that these reflectivity patterns will produce different characteristic

hyperbolic arcs for each species. A hyperbolic arc appears on an echogram when an

individual fish is insonified by more than one ping. A reflection ofan object is ploued on

an echogram as if the object was positioned directly beneath the sonar device, independent

of its point of origin within the transducer beamwidlh Lsee Figure 5J. For fish targets, there

T
~=..--.,.,..-.

r
~~

--""(~...-.)

Figure 5: Derivation of the hyperbolic arc resulting {rom
plotting a single point whose energy is spread over several
pings.

13



is a significant difference between the actual "point" fish target and the recorded hyperbolic

reflection event. Figure 5 graphically illustrates how a point target is transfonned to a

hyperbola when the acoustic returns are plolted on an echogram. In this figure, reflected

energy from the fish target at location (wp2,md2) appears at five different locations.

Figure 6 illustrates the difference a fish's reflectivity pattern could theoretically have

on a the resulting hyperbolic arc. The object illustrated in 6 (a) is a modelled hyperbolic

arc given a fish with a more directional reflectivily pattern than the fish used to modellhe

arc in 6 (b). The simulated arcs were generated for two fish with the same maximum echo

ability but different reflectivity pallerns (as was the case for cod and saithe in Figure 4). As

shown, the two arcs have different shapes. Given this, it may be possible to discriminate

between fish with equal TS if they have different reflectivity patterns.

Ii1
A B

Figure 6: Theoretical hyperbolic arcs for fIsh
with different reflectivity patterns

2.2.2 Behaviour

Discrimination between species isalso aided by differences in fish behaviour. Fish

behaviour has been sluJied for over 35 years with the aid ofecho-sounder technology and

14



acoustic tags (Misund, 1997). Many studies have revealed species behaviour patterns that

may directly or indirectly aid in remote species identification (MisWld. 1997 swnrnarizes a

number of interesting studies). For example, many species show clear preferences for

swimming depth or off bottom distance. Some species prefer very specific temperatures,

therefore they are often found in thennal "layers" in the water column. As a result, depth

and off bottom distance features can be helpful for species identification. A number of

species exhibit what is known as avoidance behaviour: they avoid moving ships (Misund,

1997). Rapid swimming or diving away from a survey vessel could alter the shape of the

resulting arc in the echogram as illustrated in Figure 7.

Other behaviours such as schooling can provide another set of features that are

helpful for species identification. When fish school their hyperbolic arcs arc no longer

visible in an echogram. It has been shown, however that the amplitudes of echos from

schooling fish are related to the number of fish within the acoustic beam i.e. the schooling

density (Maclennan, 1992). Schooling densities as well as school shapes, sizes and

location in the water column arc characteristic for ditTereD! species (Misund, 1997).

Some commonly recognized behaviours of the species of interest for this thesis are

as follows. Capelin are typically found in schools year round, although the size and density

of the schools vary depending on Ihe time of year, the time otT day, the tides, and other

factors (Jangaard, 1974). These schools are usually located midwater or near the surface

(Rose and Leggett,1988). Redfish tend to stay close to the seabed during the day, moving
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upward at night to feed (Pikanowski, 1999). Cod are typically found alone and near the

seabed or in very dense aggregations especially during spawning (Rose, 1992).

A. StatiOl'larytarget

C.Mo~ingupandhorizontally

in the direction of the boat

B.Movinginthedirectionof
the boat

II
D. Moving down and hori7.ontally
inlhedi~tionoftheboat

Figure 7: Effect of movement on single target hyperbolic arcs
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3.0 REVIEW OF FISHERIES ACOUSTICS LITERATURE

A literalUre review has been conducted on fisheries acoustics in general and more

specifically on taxonomic idemification of fish using acoustic signals. A list of helpful

papers and books reviewed but not specifically mentioned in the following Sections can be

found in the Bibliography. The literature regarding fisheries acoustics in general has been

discussed in Section 2.0. Section 3.1 will sununarize the literature specifically describing

taxonomic identification of fish species.

3.1 Taxonomic Identification of Fish Species Publications

Early attempts at automated fish identification involved detailed anaJysis ofme echo

signal (Giryn el al. 1981, Rose and Leggett 1988, and Magand and Zakharia 1992). Giryn,

Rojewski, and Somla (1981) describe amethod to identifY 'sea creature species' on the basis

of their hydroacoustic echo signals. Thcy calculated the central moments of individual

echoes, which roughly determined a probability density function, and used them as inputs

to a Euclidean distance classifier. The paper briefly describes tests of their recognition

system carricd out on echoes from (I) horse mackerel (Decaplerus macrosoma) schools, (2)

single-species single-fish layers, (3) single-species multiple scattering layers, and (4) the sea

bottom. The paper did not provide classification results but did slate that the system

operated with virtually no classification errors and mal the classification of different fish

species would be possible in the future.
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Rose and Leggett (1988) took two approaches to species identification: (I) using

target strength measurements of individual fish and (2) using features of the backscaltered

energy from schooling fish. In the study by Rose and Leggett, three species were tested:

cod (Gadus morhuo), capelin (Mallolus villosus), and mackerel (Scomber scombrus). As

mentioned in Section 2.2.1, fishes without swim bladders, such as mackerel, have target

strengths well below those ofeven much smaller fishes with swim bladders such as capelin

(Nakken and Olsen, 1977). Using a 120 KHz transducer Rose and Leggett measured the

relationship between fish length and target strength for each species and their results were

in agreement with those of various previous studies ( Nakken and Olsen, 1977, Midttun,

1984, and Foote 1987). While the relationship between length and target strength differed

for each species, the hypothesis that target strength alone could be used for classification was

proven false. First of all, the target strength of large mackerel was similar to the target

strength of capelin. The second reason was that the schooling behaviour of the fish under

study created fish dcnsities at which the selection of single fish echoes became a vcI)'

subjective process. As a result, target strength became unpredictable and dependent on the

packing density ofthe school and other behavioural patterns. Rose and Leggett did indicate

that target strength could be used for classification if the target species had discrete targct

strength distributions and when their schooling behaviour allowed for isolation of single

targets. They had more success with classification using school descriptors. The following

features wcre extracted from two sequences offour or five pings within each school: (I) off

bottom distance, (2) school depth, (3) mean squared voltage, (4) standard deviation of

voltage squared, (5) maximum squared voltage, (6) mean distance between within school
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voltage peaks (referred to as PP) and (7) mean peak to trough distance ofthe voltage squared

standardized to the mean squared vohage (referred to as SPl). The two most powerful

fcatures were PP and SPT which the authors believe reflcct intcrnal school structure. Using

quadratic classification functions 91 % of the 23 capelin schools, 96% ofthe 26 cod schools

and 91% of the 11 mackerel schools were correctly classified.

Later attempts at fish specics idcntification have incorporated analysis of thc echo

signal and analysis of the two dimensional spatial infonnation in the cchogram image

(Richards et al. 1991, Scalbrin et al. 1994, and Lu and Lee 1995). Richards et al. (1991)

report on a project to classify fish schools based on echo integration survey data, in order to

demonstrate that typical echo-integration data could be applied in species recognition. They

studied schools of rockfish (Scorpaenidea) living in two types of habitats. One category

stayed in an area of bedrock outcrops, while the other stayed close to a continental slope.

The characteristics used to discriminate between the different types ofschools were (I) time

of day, (2) mean volume density, (3) dispersion, and (4) mean off-bottom distance. Using

nearest-neighbour classification they were able to classify the different shoals (105 oflhem

in total) with up to a 97% success rate.

Scalabrin et al. (1994) describe the MOVIES-B software developed to perform

automated shoal recognition. Their linear discriminant classifier used the following

morphological shoal descriptors: (I) length, (2) area, (3) fractal dimension, and (4)

elongation, the following bathometric descriptors: (5) bottom depth, (6) shoal depth, and the
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following amplitude descriptors:(7) volume reverberation index, (8) average amplitude, and

(9) standard deviation of amplitude. Their system was developed using a data set made up

of 178 sardine (Sardina pilehardus) shoals, 449 anchovy (Engraulis enerasieolus) shoals,

645 horse mackerel (Traehurus traehurus) shoals, and 93 blue whiting (Micromesistius

POUiassou) shoals. Training on 70% of their available data and testing on the remaining

30%, they were able to discriminate between sardine and blue whiting shoals 100% of the

time, between sardine and anchovy 96% ofthe time, and between blue whiting and anchovy

97% of the time. Their ability to perfonn classification was reduced when trying to

discriminate between other species and horse mackerel: 64% for anchovy, 76% for sardine,

and 96% for blue whiting. The authors did not design a classifier to perfonn classification

of all species studied.

Scalabrin et al. (1996) describe further attempts to discriminate between sardine

(Sardinapilehardus) shoals, anchovy (Engraulis enerasieollls) shoals, and horse mackerel

(Traehurus traehurus) shoals. Although the results quoted were not as successful as the

results quoted in the 1994 paper, Scalabrin et al. have described some alternative approaches

for species classification. The amplitude probability density function (PDF) approach used

shoal PDFs to distinguish between species. The PDFs illustrated differences between

anchovy and horse mackerel shoals, but were not strong enough to be used alone for

classification. A s«:ond approach made use of spectral descriptors obtained by calculating

the relative energy contained in various frequency bands. As with the PDF features, the

spectral features alone were not sufficient to provide species identification. Another
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limitation of the spectral analysis approach is the requirement for a minimum echo length

which reduces the number of shoals that could be analyad using this technique. Moreover

the use of a narrowband transducer limits the quality of information that can be obtained

using this technique. An image analysis approach similar to the one described in the 1994

paper gave the best classification rate of 5701. o\'erall.

Lu and Lee (1995) reported on an echo-signal image processing system (EIPS)

developed for fish species identification of fish shoal echograms. Their system measured

the following shoal descriptors: (I) area, (2) perimeter, (3) width, (4) height, (5) length, (6)

number of pixels, (7) major axis angle, (8) elongation, (9) circularity, (10) rectangularity,

(II) mean signal amplitude, (12) standard deviation ofanlplitude, (13) skewness of signal

amplitude, (14) kurtosis ofsignal amplitude, (IS) integrated optical density, (16) horizonlal

unifonnity ofoptical density, and (17) vertical unifonnity ofoptical density. They used

principlecomponent analysis, variable clustering analysis and stepwise discriminant analysis

to detennine the relationships between the descriptors. The most important descriptOrs were

numbers 1,2, 3, 4, 6, 7, 9, 10, 11, J2, 13, and 14 as listed above. The accuracy of species

identification using the system (with all 17 features) was 98% for the 43 round scad

(Decopterus russel") schools, 97~o for the 60 anchovy (Engraulisjoponicus) schools, 94%

for thc 35 skipjack (Ellthynnus offinis) schools, 91 % for the 42 larval fish schools, and 67%

for the 49 horse mackerel (Dec;oplerus moc;rosomo) :schools.

Classification has also been attempted using wideband echo-sounders (Magand.
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1994, and lakharia et aI., 1996). Magand (1994)describes the use ofa 'chirp' echo·sounder

to obtain spectral parameters for fish species classification. He describes using auto­

regressive (AR) modelling ofthe echo spectrum from fish shoals and individual fish. Using

30 cepstral coefficients derived from 10 auto-regressive coefficients, a supervised neural

network was trained to differentiate between cod (Gadus morhua), saithe (Pollachius virens)

and mackerel (Scomber scombrus) in one test and between sardine (Sardina pilchardus),

anchovy (Engraulis encrasicholus), and horse-mackerel (Trachurus rrachurus) in another

test. In a test involving individual caged fish. there was a discrimination rate of87% (of 133

fish) for mackerel, 72% (of 7 fish) for saithc, and 66% (of 24 fish) for cod. The

discrimination rates for fish shoals were as follows: 73% (of 15 shoals) for sardine, 64% (of

10 shoals) for anchovy, and 74% (0f21 shoals) for horse-mackerel.

Zakharia et al. (1996) describe a classification approach based on echo analysis of

single pings from a wide-band chirp sounder, operated on a frequency range of2 octaves (20

kHz to 80 kHz). The classifier used only the spectral signature of the echoes and did not

take into account characteristics ofschool shape. A modeling ofthe power spectrum ofthe

echo was used to limit the spectral signature to a reduced set ofparameters (auto-regressive

and cepstral coefficients) that could be used for classification using a neural network. After

selecting the echoes corresponding to monospecific catches, only three species remained

available for setting up an echo database of single pings, where each pillg was used to

classify the species. The database consisted of: 270 pings from 15 sardine (Sardina

pilchardus) schools; 154 pings from 10 schools of anchovy (Engraulis encrasicolus); and
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465 pings from 21 schoolsoChorse mackerel (Trachurus lurchurus). The bestclassification

performance (all oCthe anchovy claw was used for training) had an average success rate of

70%. When only 45". of the anchovy data was used for training the average success rate

dropped to 54%. While the use ofpower spectrum information has potentiaJ, most fISheries

echo-sounders are singJe frequency and therefore can not supply this information.

Miyashita et ai, 1997 obtained multifrequcncy information by using two single

frequency (38 KHzand 120 Khz) Imnsducers simultaneously. Bycomparing the differences

in echo intensities at each frequency they wcre able to differentiate between isada krill

(Euphausia pacifica) and walleye pollock (Theragra cha/cogramma). The authors failed to

give specific classification results but this technique seems to have merit aJthough it

unfortunately requires the use of two echo-sounder systems.

It isevident by tile numberofpublications on acoustic fish species identification that

there are a number of groups working in this area aroWld the world. The author does not

Imow ofany groups besides lhose involved in this research working on automated acoustic

identification of species native to Newfoundland coastal waters. A problem with much of

the work reported in the literature is a result of the small amount of data available to the

researchers. The collection of data for this type of work is vel)' lime conswning and

expensive (05 per a conversation with Dr. George Rose this can range: from $500 to $20,000

per day depending on the vessel used). Although many results look impressive it appears

that many of these systems have been overtrained, meaning too many features were used
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given the small amount or data available. As well, in some or the research reponed,

classifiers were tested on same data used to train them, a practice which can also give overly

optimistic results.
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4.0 OATA COLLECTION ANO ANALYSIS

lne following sections describe the data collection and analysis carried out for this

research. Section 4.1 describes the acoustic data and the cin::wnstances under which it was

collecled in the field. Section 4.2 describes the data pre-processing used before: the

echogram data was analyzed. Section 4.3 describes the signal and image processing used

for segmentation of fish within each echogram. Section 4.4 IislS and describes the features

extracted for each fish or fish shoal segmented and Section 4.5 describes the classification

techniques tested using the extracted features.

4.1 Acoustic Dat.a Colleclion

lne data collected for this study were obtained by Dr. George Rose, the SERC

Chair in Fisheries Conservntion at Memorial University of NewfOlmdland. Dr. Rose

collected the data using a BioSonics DT4000 ectJo..sounder opemting with a 38 KHz

transducer towed at a depth of approximately 1.5 m below the surface using either a 10 or

30 m vessel. 1be boat speed was approximately five knolS. The transducer beanl\~idth was

6", the transmitted pulse length was 0.4 msand lheecho sampling rate was 50 KHz. 50 KHz

is a fixed sampling rate for the BioSonics DHOOO. Additional transducer parameters can

be found in Appendix C.

The capelin data used in this study were collected in Trinity Bay, Newfoundland, in
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May 1996. The capelin database was made upof42 capelin shoals ranging in cross sectional

llJ"ea from 0.9 m1 to 10,730 m1 at depths ranging from S3 to 164 m. Figure 8 contains an

echogram which contains """0 capelin shoaJs.

FIgure 8: FASIT echogram illustrating ddlnbutlons ofsc:hooling
c:apelin

The cod database consisted ofacoustic data from individual fish. small groups ofup

to approximately ten fish, and cod shoals in which individual fish were difficult to

distinguish [see Figures 9and 101. The database contained a total of226data SCIScOllecled

in Placentia Bay, on the south coast ofNewfoundland, in May, June, and November during

the years 1995 to 1997. The smallest individual cod cross sectional area wasO.! ml and the

largest shoal was 33,022 m1• The depth range for the cod data was from 24 to 218 m.
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Schooling Cod

~

Figure 9: FASIT echogram illustrating distributions of densely
schooling cod

.,....,
F-~~~~----"'~~~~~----"i

;.....-- Individual Cod

/~

Fignre 10: FASIT echogram illustrating single cod
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The redfish data used in this study were collected in the 3Ps region of me Grand

Bank. off ewfoundland's south coast in June 1996. The redfish data consisted of 134

redfish individuals and smaJl shoals ranging in size from 0.2 m2 to 144 m2 and in depth from

106 m to 155 m. Figure 11 is an echogram containing redfish. See Appendix A for maps

of the data collection areas for each species.

F--------''-------------'i,.,.

Redfish

,/'\..

Figure 11: FASlT ~bogram illustrating single and small groups of
redfish

Species composition of the acoustic records was detennined by trawling and/or

handlining immediately before or after and as close as possible to where the acoustic data

collection occurred.
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4.2 Data Pre.proc:ening

"The acoustic data from each data collection transect was saved as an individual

datafile in the BioSonics DT4000 formal. Each datafile is read by the FASIT softwa.re and

used to create an echogram array where the colwnns ofme array represent consecutive pings.

The actuaJ physical spacing between pings is estimated using the average boat speed and the

ping rate (dislarlce between pings - average boat speed I ping rate). The average boat speed

is estimated using GPS information stored within the acoustic data files.

The value of each sample or colwnn element within a ping is determined by the

amplitude of the backscattered energy where the amplitude is in units of dB relative to the

target strength ofa 2 m sphere (this is the measure ofamplitude exponed by the BioSonics

DT4000 echo-soW'lder). The physical spacing between the rows in the echogram array

depends on the sampling rate, and the speedofsound in water (e) (distance between samples

'" c I sample rate). lbe value e is calculated based on \\Iater temperature and salinity

information saved in the header section ofeach acoustic data file. A typical value for e for

the conditions under which data was collected was 1467 mls. An appropriate absorption

coefficient (a) is calculated based on water temperature and salinity and applied to the data

along with a 201og(r) time varied gain (TVG), refer to Section 2.1. See Appendix B for the

c<juutions used to estimate c and «.
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4.3 &gmentatioD

'The first step toward segmentation offish in the echogram was the detection of the

position of the seabed. The bottom returns are usually the samples willi the highest

amplilUdes in a ping. The follo....1ng txmom detection routine is used. Assume that each

ping in a data set contains n sample points. For each sample p. where p ranges from I to n-

k+ I, lhe window mean amplitude (WA(P» is calculated:

_ r.;:p,t-'amplitude(i)
WA(p)' 'k ' (3)

where k is the window height (k =60 is used). The samplep with the largest window mean

amplitude is tagged as the approximate location ofthe bottom, ifthe average isg.reater than

-60 dB. Limiting the act:eptable returns 10 those over -60 dB in this manner restricts the data

beingana1yzed 10 lie in the amplil1J(ic rangeofvaJid bottom retums.lfnoneofthe window

mean amplitudes in the ping are above the lower threshold, it is determined that the ping in

question does not contain a bottom echo. The above search is perfonned for each ping (or

column) in the ecbogram array to produce a rough bottom trace. A vertical offset of I meter

is applied to the bottom trace to move it up to ensure none of the bottom samples remain.

To smooth and remove outliers from the offset bottom trace Q. median filter of size m - 5 is

used to replace each boltom point with the median ofitselfand two points to each side. The

samples below the bottom trace are then removed from fun her analysis by being set to the

lowest valid amplitude. -130 dB. The bottom detection algorithm has been summarized in
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the block diagram in Figure 12:

For each sample (p) in q
calculate the window
mean amplitude (W1'(p»

Find the approximate
bottom localion sample
p_(q) where:
WA(,,-) =max (WAcp»
Define p'-(q) as
undelected if max (WA(p»
is<-60dB

Move the approximate
bottom location up by
the number of samples
in 1 meter(x):
P_(q) :: p'-(q) • x

IFor each ping (q) in I
the echogram I

Calculate the final bottom
location p-..(q) by median
smoothing the offset bottom
locations as follows:
p-(q) :: median CP- (q-2),
p_ (q.1), p_ (q), p_ (q+1),
and p-(q+2»

Figure IZ: Bottom detKtlon block dUlgram

Afterbottom removal, areas containing lishare manually windowed to maximize the

numbcrofSlllTlple pointsavo.i1ab1e when there<.:tangulo.rwidowed region is rc-sampled using

averaging to lit within a 512 x 512 (or smaller) array where 8-bit resolution is used for each

sample amplitude.
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In all subsequent operations, the army is treated as an image. The terms sample and

pixel will be used interchangeably throughout the remaining discussion. Figure 13 pro,'ides

an overview all of the image processing steps performed on the echogram images:

Feature Extraction

=B=,nanzatio=nII) Segmentation

Morphological Fill

===La=be=II=,n=g==1

I
~=c=,aSS=ffi=ca=tio=n==1
Figure 13: Image processing block diagntm

The first image processing function perfomled on the image is binarization using

threshold operation. The thresholding results in the creation of a binary image whose black

pixels represent the b:!ckground and whose white pixels represent the areas containing
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acoustic targets where the signal magnitude exceeds the threshold value (·90 dB).

Thresholding is followed by a morphological fill and a morphological clean (Gonzalez and

Woods, 1993). These operations remove both small objects and small holes inside objects.

Figure 14 illustrates the result of the threshold operation and the morphological operations.

The objects in the cleaned image are labeled (numbered sequentially) and the features

describing each one are extracted as described in the following section. A single object is

defined as a collection of white pixels connected to each other venically, horizontally or

diagonally. The image in Figure 14 (e) contains 19 different objects [See Figure 15] . A

number of those objects are single fish, evident by their characteristic boomerang shape

Figure 14: a) Original greyscale "image"after bottom removal, (b) Afler
threshold operation, (c) After morphological operalions
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while other objects con<a.i.n muhiple fish. It should be noted that each object is classified as

a single species. The classifiers for this thesis have been trained and tested on single species

objects and not on data were different species are intenningled. The species of interest here

rarely imenningle in the waters ofTNewfoundland therefore this should be adequate for this

environment.

Figure IS: Labeled
image
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4.4 Fealur-e EIlraction

The features listed in this section, describing shape, texture, and position are

eX1J3Cted from each object in the segmented image. The MattOx Image Processing Library

(MIL) is used to extract or to help derive many of the following features:

l. Area (A): measured in meters 1. The measurement does not include the area

of the holes in an object.

2. Perimeter (P): measured in meters.

3. Compactness (Comp): a function of area and perimeter, this value is

minimum for a circle and increases as shapes become more convoluted.

p'
Comp=­

4,A (')

4. Roughness (R): a measure ofthc roughness of an object's perimeter. A

smooth convcx object has the minimum roughness of I.

(S)

where:

p-.. - the perimeter ofthe convex hull of the object in meters (see
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Gonzalez and Woods, 1993). The convex hull is

approximated using 60 Feretdiameters spaced at 3° intervals.

A Feret diameter is defined as the distance between parallel

tangents touching opposite sides of an object (Russ, 1995).

5. Width (If'): the width of an object in meters, corrected for echo-sounder

beamwidth (Reid and Simmonds, 1993).

where:

w~ == the measured width of the object in meters,

= half angle of the acoustic beam in radians,

D... = depth, in meters, at the furthest right point of the object,

and D"", = depth, in meters, at the furthest left point of the object.

(6)

6. Height(N): the distance from the topofan object to the bottom ofthe object

in meters, corrected for pulse length (Reid and Simmonds, 1993):

where:

H..1ont;nut< = the measured height oCthe object in meters,
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and t .. the puJse length in meters

7. Elongation (E1): a measure of the shape of an object.

EI = Length
Breodlh

where:

(8)

Length and Breadth are calculated by simultaneously solving the

following equations for perimeter (P) and area (A):

P = 2 (Length + Bread/h)

A .. Length x Breadth

8. Holes: the number of holes in an object.

9. Axis (Ax): the angle at which the maximum diameter is fowxl, it is an

indication of the object's orientation in degrees, with positive values

indicating a counterclockwise displacement from the "'positive X axis."

Values ean range from 90 to -90 degrees.

10. Mean AmplilUde (Amp_): the average signal amplitude of the samples in

the original unthresholded image within the area defined by the object.

Amplitude was measured in dB relative to the return from a 2 m diameter

sphere.
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II. Maximum Amplitude (Amp....): the highest signal amplitude, in dB, of the

samples within the area defined by the object.

12. Minimum Amplitude (Amp->: the smallest signal amplitude, in dB, of the

samples within the areadefined by the object. This value can be less than the

lower threshold value (-90 dB) if the morphological fill operation has filled

in "holes" initially present in an object.

13. Amplitude Standard Deviation (Ampso): the amplitude standard deviation,

in dB, of the samples within the area defined by the object.

14. Depth to the top ofthe object (D,.): the WBterdepth, in meters, to the top of

the object.

15. Depth to thcccntroidoftheobject(D--J: the water depth, in meters, to the

vertical centroid of the object.

16. Distance from the object to the seabed (Disl->: the distance, in meters,

from the bottom of the object 10 the seabed. The average seabed depth

directly under the object is used to calculate Ihis distance. If there is no

seabed present in the echograrn, the distance to the bottom boundary of the

echogram is used, giving the minimum possible distance to the seabed.
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17. Central Moment XOY2 (c...m): Nonnalized second order central moment.

in dB. A measure ofbowborizontally dispersed the pixels ofan object are

from lhe object's centroid (Glasbey and Horgan, 1995).

,
eMY2 = I:Y,P,

A'
(9)

y," horizontal distance from the i'th pixel to the centroid of

the object in meters.

P, = the intensity of the i'th pixel in dB.

Itl. Central Moment X2YO (CMX2): Nonnalized second order central moment,

in dB. A measure ofhow vertically dispersed the pixclsofan object are from

the object's centroid.

,
CAfX2 = I:xl PI

A'

where:

(10)

X,- venica! distance from the i'th pixel 10 the centroid ofthe

object in meters.
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p, = lhe intensity of the i'th pixel in dB.

19. Central Moment XI VI (CMXl Yl): Nonnalized second order cenlral

moment, indB. A measure ofbow dispersed the pixels ofanobjectaI'e from

the object's centroid.

CMX1Yl '" E%~,P,

A'

where:

(II)

%/= vertical distance from the i'th pixel to the centroid of the

object in melers.

y, - horizonlal distance from the i'th pixel to the centroid of

the object in melers.

P, - the intensity of the i'th pixel in dB.

20. Binarized Central MomentXOY2 (BCMY2): Normalized binarysecond order

central moment. A measure of how horizontally dispersed the pixels of an

object are from the object's centroid (Glasbey and Horgan, 1995).

BCMY2 '" E)1,2

A'
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where:

Y, E horizontal distance from the i'th pixel to the centroid of

the object in meters.

21. BinarizedCenual Momenl X2YO (BCMX1): Normalized binarysecondorder

central moment. A measure of how venically dispersed the pixels in an

objcct are from the objcct's centroid.

where:

(13)

X,- venicaJ distance from the i'th pixel to the centroid of the

object in meters.

22. Binarized Central Moment XI YI (BCMXJ Y/): Normalized binary second

order central moment. A measure of how dispersed the pixels ofan object

are from the object's centroid.

BCMXJYJ = EXjYj

A'

where:
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x, - vertical distance from the i'th pixel 10 thecenlrOid ofthe

object in meters.

y, '" horizontal distance from the i'th pixel to the centroid of

the object in melers.

4.5 Chlssifier Design

Training sets of226 cod, 134 redfish. and 42 capelin objects (as Objecl has been

definN in Section 4.5) have been used to generate a database offealures f~each species.

Using these data a number of differenl classifier designs, based on 3 nearest-neighbor and

Mahalanobis distance, have been built and tested. The following sections describe the steps

taken for feature reduction, and the types of classifiers assessed.

4.5.1 Felilure Reduction

The first step in any classifier design is the analysis of the available feanrre data.

This analysis results in the removal of features which are biased or noisy and the removal

or combination of highly correlated features. The number of features used by the final

classifier should be as low as possible. A large number of features can lead 10 ovenraining,

meaning thai the classifier is too specialized for Ihe training data, which can cause the

classifier to perform poorly on unsecn dutu. A reduction in the number of features thal

ultimately need 10 be calculated will also improve Ihe speed performance of the software.
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After the removal ofbiased features. two types ofalgorithms were used for further

feature reduction: a '1i1ter" technique which evaluated the data based on a measure of

redundancy and a "wrapper" technique which evaluated the usefulness ofeach feature given

a specific classificrdesign(HaII, 2(00). Section 4.5. I. I wilIdescnbe biased feature removal,

Section 4.5.1.2 will describe the filter algorithm used and Section 4.5.1.3 will describe the

wrapper algorithms used.

4.5.1.1 Biased Feature Removal

Features describing shoal depth (D,.", and D.--/) were removed fromtbe feature list because

they were biased. The acoustic data available was from a limited number of surveys in a

limited number of regions; therefore, including these features would give falsely high

classification results. Figure 16 presents the depth data for each database.

UD lE ,.0 1m 18) 200 22IJ
DepthloCenlrtlld

[DE,,'
tlPllin

~ IIdfi.h

2lllr-~~-~~-~~-~~~---."

:lIll

'60

Figure 16: Feature plot ofD~ and D., (in mete")
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4.S.1.2 Redundant Feature Removal

To reduce the number of remaining features. faclor analysis was used. Factor

analysis reduces t~ complexity ofa classifier by combining or removing features ......hich arc

highly correlaced (Duda and Hart, 1973). The correlation betv.ttn two features can be

defined as:

p__ '" --.!!L, .;a;a; (IS)

......here qlj is the covariance of the fealUres i andj; 0;, and q,q are the variances ofthe features

i andj, respectively. Completely uncorrelated features will have p~ = 0, and completely

correlated features will have p,. 1. If the correlation between two fea-lUres was above a

specified threshold for all three species (a threshold of 0.9 was used in this case) those

features were considered for removal. During the feature reduction procedure, one feature

from each pairofhighly correlated features was temporarily removed from the database and

a MahaJanobis classifier was designed with the remaining features. If classification

performance was not degraded or if performance was improved. one of those features ......as

permanently removed from thedatabase. Using chis Icctmique, il was possible to remove the

following three features: Elongation (closely correlated with Compactness). SCMf2 (closely

correlated wilh CMY2). antiCMX2 (closely correlated with BCMX2). Correlation is evident

in Figures 17 and 18 illustrating Elongation vs. COT1lpaclness and CMY2 vs BCMY2

respectively. Redundam feature removal as well as the removal ofthe biased depth features
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left 17 features that could be used by the classifiers tested.
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Figure 18: Feature plot showing CMY2 and BCMY2
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4.5.1.3 Classifier Spec:ifit: fealure Reduction

Trying every combination of the remaining 17 features to find the optimum feature

set for the different types of classifiers to be tested was impntetit:a1. Two well kno"-n

"wrapper" feature reduction techniques, sequential backward selcction(SBS)and sequential

forward selection (SFS) were used to reduce the number of features for each classifier

developed. The chosen feature list for a given classifier was the best one found using both

SBS and SFS [see Appendix 0 for MatiabOcode}. Please note that the Matlab 0 code for

featurt reduction was written by the author, as was all ofche Matlab C and C code referred

to in this thesis.

Sequential backward selection starts with all ofche available features. One feature

is removed al a time and the resulting classifier is tested. The feature whose removal causes

the most improvement in classifier performance is pennanently removed. This cycle is

repeated until all but one of the features remains. For this study the favored feature list was

the one with 10 or feyrer features which gave the best classification perfonnance. An upper

limit of 10 features was chosen somewhat arbitrarily but based on the author's previous

experience with pattern recognition problerru; of a similar nature. This number was shown

to be appropriate when leave-one-out testing y:as performed on the various classifiers.

Performance usually dropped or stayed the same when more than 10 features were used,

indicating tlult the classifiers with more than 10 features were probably overtrained. Figurc.s

19 and 20 show the average classification performance oftwo single node classifiers (3-NN

and Mahalanobis respectively) , where perfonnance was determined using lcave-one-out
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testing. It can be seen thai performance was nol improved by the inclusion ofmore than 10

fealures in either of these cases.

Figure 19: Single node 3NN classifier aceuraey
as a function of number offeatura used
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Figure 20: Single node Mahalanobis classifier aecuraey
as a funetion of number offelltures used
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Sequential forwan:l sdection starts with no features. One feature at a time is added

to the available feature list and the resulting classifier is tested. lbe feature whose inclusion

causes the most improvement in classifier perfonnance is pennanently included. For this

study this cycle was repealed until 10 features were included. As with sas the favored

feature list was the one with 10 or fewer features which gave the best classification

performance.

4.5.2 Classifier Types

T.....o different classifier types were implemented and tested using: a ]·Nearest

eighborclassifier and a Mahalanobis distance classifier. lbese classifiers are described in

the following two sections.

4.5.2.1 Three Nearest-Neighbor Classifier

A nearest neighbor classifier is essentially a look-up table. It is completely non­

parametric, meaning it assumes nothing about the population and makes no generalizations

about the population (Weiss and Kulikowski, 1991). With thethree nearest-neighbor(3-NN)

classifiers that were implemented and tested, features were nonnalized and the Euclidean

distance was used. An unknown data point ....'aS said to be of the species that showed up at

least twice out ofthe three nearest neighbors. Since there were three possible species classes

a tic could result. In thill lIitWltion the single nearest neighbor Wall lIS\,-d.

48



4.5.2.2 Mahalanobis Distance Clusifier

Often a distance meas~ known as the Mahalanobis distance is useful for

classification. This parametric classifier measures the distance in feat~ space from an

unknown object, x. to the mean of class i using the following formula:

(16)

where m, is the class (species in our case) mean and K, is the class covariance matrix

calculated from the training data. lbe use of the class covariance mamx in the distance

measure takes into account the correlation among the features and ensures that the distance

measure is unaffected by scale changes between fealUres. It also ensures that the variance

in cluster "shapes" is taken into account.

The mean and class covariance mamces were eompUled for each species (Table 4,

contains the mean feature values for cod, capelin and redfish). The distance from the

unkno"''11 object, x. and each class ....'35 computed using the above equation. The unknown

object was classified as the class corresponding to the minimumdistanee. Thisclassifieation

technique is quite simple, easy to implement, and, unlike many distance classifiers, the

recognition speeds are very reasonable because it is unnecessary to compute the distances to

allobjccts in clI.ch class.
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Table 4: Men feature values for each sp«ies

Feature Mean Values

Cod Caoelin Redfuh

A= 188.097ml 946.2026 m2 15.7034 mJ

Perimeter 76.86m 169.03m 74.01 m

Compactness 16.38 8.31 34.9

Roughness 5.15 4.34 10.2

Width 15.60m 41.77m 12.64m

Height 1.31 m 9.77m 0.91 m

Elongation 49.41 24.05 107.64

Holes 0.45 0.76 0.18

Axis 2.7 0 5.1 0 _1.50

Mean Amplitude -83.71 dB -88.84 dB -87.56 dB

Maximwn Amplitude -74.53 dB -73.58 dB -79.68 dB

Minimum Amplitude -101.79 dB -122.14dB -105.54 dB

Amplitude Standard Deviation 5.33 dB 10.91 dB 4.12 dB

Depth to the top of the object 77.84 m 97.56m 131.98m

Depth to the centroid of the object 78.51 m 102.52 m 132.15m

Distance from the object to the seabed 14.83m 91.47m 223m

Central Moment XOY2 0.92 dB !.lSdB 0.34 dB

Central Moment X2YO 190.24 dB 52.07 dB 240.94 dB

Central MomentXIYI -1.424 dB ·0.83 dB 1.86dB

Binarized Central Moment XOY2 0.011 0.016 0.005

Binarized Cemral Moment X2YO 2.366 0.742 3.263

Binarized Central Moment XIYI -0.017 -0.01 0.025
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4,S.J Classifier Configu....lioDS

T....,o classifier ''tree structures" were tested for each classifier type (3-NN and

Mahalanobis Distance). These configurations arc illustrated in Figures 21 and 22. The

Figure 21: Singl~node c1UJifier

configuration illustrated in Figure 21 is a single node classifier with three possible outputs:

species A, B or C based on a common set of features. The configuration in Figure 22

contains two nodes (or classifiers) which use two different sets offeaturcs. Classifier 1 will

classify an object as being species A or "not species A". If an object is classified as "not

_A

Figure 22: Dual node classifier tree structure
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Species A" classifier #2 will classify the object as Species B or Species C. This

configuration is useful if it is possible to remove one class from the others with very few

features or if there is a limited amount ofdata for one class which forces the use of a limited

number of features for its detection. Table 5 lists the fourteen classifiers combinations of

types and configurations implemented and tested.

Table 5: Classifier combinations

Config. # Node I Node 2 Species A Species B Species C

Classifier Classifier

3NN NA cod capelin redfish

3NN 3NN cod capelin redfish

3NN 3NN capelin rod redfish

3NN 3NN rcdfish cod capelin

Mah.Dist. NA cod capelin redfish

Mah.Dist. MOO.Dist. cod capelin redfish

Mah.Dist. Mah.Dist. capelin cod redfish

Mah.Dist. Mah.Disl. rcdfish rod capelin

3NN Mah.Dist rod capelin rcdfish

10 3NN Mah.Dist capclin cod redfish

11 3NN Mah.Dist redfish cod capelin

12 Mah.Dist 3NN cod capelin redfish

13 Mah.Dist 3NN capelin cod redfish

14 Mah.Dist 3NN redfish cod capelin
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5.0 RESULTS AND DISCUSSION

Section 5.1 will provide the classification resulls for each classifier design listed in

Table 6. The results have been given for "leave-one-out" tests. The leave-one-out test is a

simple technique for estimating classifier error rates. For a given sample size x, a classifier

is generated using (x-I) cases and tested on the single remaining case. This is repeated x

times, each time regenerating the classifier by leaving one sample oul. By doing this, each

sample is used as a test case thus maximizing the number of tests performed on "unseen"

data. This technique provides an almost unbiased estimation of a classifier's error rate

(Weisse and Kulikowski, 1991). It is however very time consuming and only practical to use

when sample sizes are small, as they were with this research and when c1assifierconstruction

is not time consuming.

5.1 Classifier Performance

5.1.1 Three-Nearest Neighbor Classifiers

5.1.1.1 Classifier Configuration #1

Classifier Configuration # I is a single node 3-NN classifier. The feature set used by

this classifier was found with backward feature selection and includes the following nine

features: Mean Amplitude. Maximum Amplitude. Minimum Amplitude. Amplitude Standard

Deviation, Distancefrom Object to Seabed. Central Moment XOY2, Central Moment Xl Yl.

Binarized Central Moment X2fO, and Binarized Central Moment XI fl. The confusion
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matrix for lhis classifier is presented in Table 6.

Table 6: Confusion matrix for classifier configuration #1

Predicted Class Membership

TrucClass Cod Capelin Redfish

Cod 208 (92.0%) 2(0.9%) 16(7.1%)

Capelin 2(4.8%) 40(95.2%)

Redfisb 3(2.2%) 131 (97.8%)

Please note that lhe percentages given in lhe confusion matrix are lhe percentage oflhe [rue

class species database classified as the predicted class species.

S.1.l.2 Classifier Configunltion #2

Classifier Configuration #2 is a dual node classifier where both nodes are )·NN

classifiers. The fealUre set used by the first node (for the identification of cod) was found

using backward feature selection and includes the following ten features; Compacmess.

Roughness. Heighf, Mean Amplifude, Minimum Amplifude, Amplitude Standnrd Deviation,

Distance from Object to Seabed, Central Moment Xl Yl. Binarized Central Moment X1YO,

and Binarized Central Moment Xl Y1. The feature set used by the second node (for the

identification of capelin and redfish) was found using backward feature selection and

includes the following seven features: Compacme.\·s, Mean Amplitude. Minimum Amplitude,

Distance from Objecr to Seabed, Central Moment Xl Yl, Binarized Central Moment Xl YO,

and Binarized Central Moment Xl fl. The confusion matrix for this classifier is presented
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in Table 7.

Table 7: Confusion matrix for classifier configuration #2

Predicted Class Membersbip

True Class

Cod

Capelin

Redfish

Cod

204 (90.3%)

1(2.4%)

2(1.5%)

Capelin

2 (0.9"10)

40(95.2%)

Rcdfish

20(8.8%)

1(2.4%)

132(98.5%)

5.LI.3 Classifier Configuration #3

Classifier Configuration #J is a dual node classifier where both nodes are J·NN

classifiers. The feature set used by Ihe first node (forthe identification ofcapelin) was found

using backward feature selection and includes the following six features: Compactness,

Minimum Ampli/ude, Dis/ance from Object to Seabed, Cen/ral Moment Xl Y1. Binarized

Central Moment X2YO, and BinarizedCentral Moment XIYI. The feature set used by the

second node (for the identification of cod and redfish) was found using backward feature

selection and includes the following five features: Roughness. Mean Amplitude. Amplitude

Standard Deviation. Di:i/ance from Object to Seabed, and Central Moment XOY2 The

confusion matrix for this classifier is presented in Table 8.
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Table 8: Confusion matrix for classifier configuration #3

Predicted Class Membership

True Class Cod Capelin Redfish

Cod 213(94.2%) 1(0.4%) 12(5.3%)

Capdin 1(2.4%) 41 (97.6%) 0

Redfish 2(1.5%) 132(98.5%)

5.1.1.4 Classifier Configuration #4

Classifier Configuration #4 is a dual node classifier where both nodes are 3·NN

classifiers, The feature sel used by the first node (for the identification ofredfish) was found

using backward feature seleetion and includes the following ten features: Roughness, Mean

Amplitude, Maximum Amplitude, Minimum Amplitude, Amplilude Slandard Deviation,

Distancefrom Object roSeabed, Holes, Central MomentXOY2, BinarizedCentral Moment

X2YO, and BinarizedCentral Moment Xl Yl. The feature set used by the second node (for

the identification ofcapelin and cod) was found using forward feature scle<:tion and includes

the following eight features: Compactness, Roughness, Height, Axis, Mean Amplitude,

Amplitude Standard Deviation, Distancefrom Object to Seabed, and Central Moment XOY2.

The confusion matrix for this classifier is presented in Table 9.

Table 9: Confusion matrix for classifier configuration #4
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5. t.2 Mahalanobis Distance Classifiers

5.1.2.1 Classifier Configuration #5

Classifier Configuration #S is a single node Mahalanobis Distance classifier. The

feature set used by this classifier was found with backward feature selection and includes the

following eight features: Perimeter. Compactness, Roughness. Height. Axis, Minimum

Amplitude, AmplilUde Standard Deviation, and Distance from Object /0 Seabed. The

confusion matrix for this classifier is presented in Table 10.

Table 10: Confusion matrix for classifier configuration #5

Predicted Class Membership

True Class

Cod

Capelin

Redfish

Cod

214(94.7%)

1(2.4%)

23(17.2%)

Capclin

4(1.8%)

41 (97.6%)

Redfish

8(3.5%)

111(82.8%)

5.1.2.2 Classifier Configuration #6

Classifier Configuration #6 is a dual node classifier where both nodes are

Mahalanobis Distance classifiers. The feature sct used by the first node (for thc
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identification of cod) was found by backward feature selection and includes the following

eight features: Perimeter. Compactness. Roughness. Height. Axis. Minimum Amplitude.

Amplitude Standard Deviation, and Distance from Object to Seabed. The feature used by

the second node (for the idemification of capclin and redfish) was found using forward

feature selection and includes the following four features: Roughness, Axis. Maximum

Amplitude, and Distancefrom Object to Seabed. The confusion matrix for this classifier is

presented in Table II.

Table 11: Confusion matrix for classifier configuration #6

Predicted Class Membership

True Class

Cod

Capelin

Redfish

Cod

214(94.7%)

1(2.4%)

23(17.2%)

Capelin

2(0.9%)

41 (97.6%)

1(0.7%)

Redfish

10(4.4%)

110(82.1%)

5.1.2.3 Classifier Configuration #7

Classifier Configuration #7 is a dual node classifier where both nodes are

Mahalanobis distance classifiers. The feature set used by the first node (for the identification

of capclin) was found using backward feature selection and includes the following six

features: Compactness, Roughness. Axis. Minimum Amplitude, Distance from Object to

Seabed, and Holes. The feature set used by the second node (for the identification ofcod and

redfish) was found using backward feature selection and includes the following eight
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features: Perimeler, Compactness, Roughness, Heighl, Axis, Minimum AmpJilUde, AmpJilude

Siandard Devialion, and Distance from Object to Seabed. The confusion malrix for this

classifier is presented in Table 12.

Table 12: Confusion matrix for classifier configuration #7

Predicted Class Membership

True Class Cod Capelin Redfish

Cod 217(96.0%) 1(0.4%) 8(3.5%)

Capelin 7(7.1%) 39(92.9%) 0

RedfLsh 23(17.2%) 0 111(82.8%)

5.1.2.4 Classifier Configuration #S

Classifier Configuration #8 is a dual node classifier where both nodes are

Mahalanobisdistance classifiers. The feature set used by the first node (for the identification

of redfish) was found using backward fealUre selection and includes the following nine

features: Perimeter. Compactness, Roughness, Heighl. Axis, Minimum Amplitude, Amplitude

Standard Deviation, Distance/rom Objecllo Seabed, and Holes. The feature set used by the

second node (for the identification of capelin and cod) was found using forward feature

selection and includes the following ten features: Perimeler, Compactness, Heighl, Minimum

Amplitude, Amplilude Standard Deviation, Distancefrom Object to Seabed. Holes, Central

MomentXOY2, Central MomentXl Yl ,and BinarizedCentral MomentXl Yl. Theconfusion

matrix for this classifier is presenled in Table 13.
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Table 13: Confusion matrix for classifier configuration #8

Predicted Class Membership

True Class Cod Capelin Redfish

Cod 211 (93.4%) 5(2.2%) 10(4.4%)

Capclin 3(7.1%) 39(92.9''/0)

Redfish 23(17.2%) III (82.8%)

5.1.3 Combination Classifiers

5.1.3.1 Classifier Configuralion #9

Classifier Configuration #9 is a dual node classifier where the first node is a 3NN

classifier and the second node is a Mahalanobis classifier. The feature set used by the first

node (for the identification ofcod) was found using backward feature selection and includes

the following ten features: Compactness, Roughness, Height, Mean Amplitude, Minimum

Amplitude. Amplitude StandardDeviation, Distance/rom Object roSeabed, Central Moment

Xl fl, BinarizedCentral Moment X2YO, and BinarizedCentral MomentXl fl. The feature

set used by the second node (for the identification of capelin and redfish) was found using

forward feature selection and includes the following four features: Roughness, Axis,

Maximum Amplirude, and Disrancefrom Object to Seabed The confusion matrix for this

classifier is presented in Table 14.
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Table 14: Confusion matrix for classifier configuration #9

Predicted Class Membership

True Class Cod Capcllo Redfish

Cod 204 (90.3%) 8(3.5%) 14(6.2%)

Capelln 1(2.4%) 41 (97.6%) 0

Redfish 2(1.5%) 1(0.7%) 131 (97.8%)

5.1.3.2 Classifier Configuration #10

Classifier Configuration #lOis a dual node classifier where the first node is a 3NN

classifier and the second node is a Mahalanobis classifier. The feature set used by the first

node (for the identification of capelin) was found using backward feature selection and uses

the following six feattires: Compactness, Minimum Amplitude, Distance from Object to

Seabed. Central Moment Xlfl, Binarized Central Moment X2YO, and Binarized Central

Moment XlYl. The fe3ture set used by the second node (for the identification of cod and

redfish) was found using backward feature selection and includes the following eight

features: Perimeter, Compactness. Roughness. Height, Axis, MinimumAmplitude,Amplitude

Standard Deviation, and Distance from Object to Seabed. The confusion matrix for this

classifier is presented in Table IS.

Table IS: Confusion matrix for classifier configuration #10
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5.1.3.3 Classifier Configuratioo #11

Classifier Configuration #11 is a dual node classifier where the first node is a 3NN

classifier and the second node is a Mahalanobis classifier. The feature set used by the first

node (for the identification of redfish) was found using backward feature selection and uses

the following ten features: Roughnen, Mean Amplitude, Maximum Amplilude. Minimum

Amplitude. Amplitude Standard Deviation, Distancefrom Object to Seabed. Holes, Central

Moment XOY2. BinarizedCentral Moment X2YO.and Binari::edCentral Moment Xl YI. The

feature set used by the second node (for the identification of cod and capelin) was found

using forward feature selection and includes the following ten features: Perimeter,

Compactness, Height, Minimum Amplitude, Amplitude Standard Deviation, Distance from

Object to Seabed. Holes Central Moment XOY2, Central Moment Xl Yl. and Binarized

Central Moment XI YI. The confusion matrix for this classifier is presented in Table 16.

Table 16: Confusion matrix for dassifier configuration #11

Predicted Class Membersbip

True Class Cod ICapelin IRedflSh

Cod 206 (91.2%) 15(2.2%) 115(6.6%)

Capelin 3(7.1%) 139(92.9%) 10
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IRedfish 12(1.5%) 10 1132 (98.5%)

5.1.3.4 Classifier Configuration #12

Classifier Configuration #12 is a dual node classifier where the firsl node is a

Mahalanobisclassifier and the second node isa 3NN classifier. lbe feature set used by the

first node (forthe identification ofcod) was found using backward feature selection and uses

me following eight features: Perimeter. Compactness, Roughness, Height, Axis, Minimum

Amplitude. Amplitude Standard Deviation, and Distancefrom Object to Seabed. The feature

set used by the second node (for the identification of capelin and redfish) was found using

backward feature selection and includes me following seven features: Compaclness, Mean

Amplitude. Minimum Amplitude. Dis/ance from Object to Seabed, Central Moment Xl Yl,

Binarized Central Momen/ X2YO, and Binarized Central Moment Xl Yl. The confusion

matrix for this classifier is presented in Table 17.

Table 17: Confusion matrix for classifier configuration #12

Predicted Class Membership

True Class

Cod

Capelin

Redfish

Cod

214 (94.7%)

1(2.4%)

23(17.2%)

Cllpelin

1 (0.4%)

41 (97.6%)
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5.1.3.5 Classifier Configuration #13

Classifier Configuration #13 is a dual node classifier where the first node is a

Mahalanobis classifier and the second node is a 3NN classifier. The feature set used by the

first node (for the identification ofcapelin) was found using backward feature selection and

uses the following six features: Compactness, Roughness, Axis, Minimum Ampfilude,

Distancejrom Object toSeabed, and Holes. The feature set used by the second node (for the

identification of cod and redfish) was found using backward feature selection and includes

the following five features: Roughness, Mean Amplitude, Amplilude Standard Devialion.

Distance from Object 10 Seabed, and Central Moment XOY2. The confusion matrix for this

classifier is presented in Table 18.

Table 18: Confusion matrix for classifier configuration #13

Predicted Class Membership

True Class Cod Capclin Redfisb

Cod 214(94.7%) 1(0.4%) II (4.9%)

Capelin 3(7.1%) 39(92.9'%) 0

Redfisb 2(1.5%) 132(98.5%)

5.1.3.6 Classifier Configuration #14

Classifier Configuration 1# 14 is a dual node classifier where the first node is a

Mahalanobis classifier and the second node is a 3NN classifier. The feature set used by the

first node (for the identification ofredfish) was found using backward feature selection and
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uses the following nine features: Perimeter, Compactness, Roughness, Height, Axis,

Minimum Amplitude, Amplill/de Standard Deviation, Distance from Objectta Seabed, and

Holes. The feature set used by the second node (for the identification of cod and capelin)

was found using backward feature selection and includes the following eight features:

Compactness, Roughnen. Height, Axis. Mean Amplitude. Amplitude Standard Deviation.

Distancefrom Object to Seabed, and Central Moment XOY2. The confusion matrix for this

classifier is presented in Table 19.

Table 19: Confusion matrix for classifier configuration #14

Predicted Class Membenbip

True Class Cod Capelin Redfish

Cod 216(95.6%) 10(4.4%)

Capclin 2(4.8%) 40(95.2%) 0

Redfish 23(17.2%) 111(82.8%)

5.2 Discussion

The best average classification accuracy (96.8%) was produced by classifier #3, the

dual node classifier where both nodes were 3-NN classifiers and the first node was used to

identifycapelin. Basedon average classification accuracy, the 3·NN classifiers outperfonned

the Mahalanobis distance classifiers by about 5.0% (as shown in Table 20). The
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performance of the combination classifiers were in general between the performance of the

3-NN classifiers and the Mahalanobis distance classifiers. The Mahalanobis distance

classifiers were relatively poor at separating redfish from cod and capelin but very good at

separating cod from the other two species. The 3-NN classifiers had a more consistent

performance for each of the three species'.

There was no significant difference in the number of features required for the

different classifier configurations. It is interesting to note that the two classifiers with the

best performance aJso used the fewest number of features per node. The Distancefrom Ihe

Object 10 the Seabed feature was used by every node in every classifier, as was at least one

amplitude feature. As expected, amplitude features were very useful but never sufficient for

classification. The Mahalanobis distance classifiers made use of morphological shape and

size features such as Area, CompaCInCSS, Widlh and Height more often than the 3-NN

classifiers {see Figure 23]. The 3-NN classifiers used the binarized central moments which

are shape descriptors more often than the Mahalanobis distance classifiers [see Figure 24].

For the 3-NN classifiers, the amplitude features were very important [see Figure 25].

Although it did not give the best classification result, for speed optimization it was

decided that a Mahalanobis distance based classifier would be implementcd in thc FASIT

software (it was anticipated Ihat a greal deal of training data would be available to the

software in the future and a nearest ncighbour classifier would be too slow). Further, since

there was limited capclin data (42 feature sets) the classifier chosen (to avoid overtraining),
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was the one that used the smallest number of features for the classification of capclin -

classifier configuration #7. Given the speed o[computers today, classification speed is no

longer an issue for this application. I would therefore recommend that the classifier

configuration that gave the best overail results (configuration #3) be implemented in newer

versions of FASlT. This classifier not only provided the best classification accuracy but it

required on average the lowest number offeatures.

Table 20: Summary of classifier resullS

ClassN Node 1 Node 2 Classificalion Accuracy Average

typ' typ' Cod Capelin Redfisb Accuracy

#1 3NN 9 NA NA 92 95.2 97.8 95

#2 3NN 10 3NN 7 90.3 95.2 98.5 94.7

#3 3NN 3NN 5 94.2 97.6 98.5 96.8

#, 3NN 10 3NN 8 93.4 95.2 98.5 95.7

#5 M"". NA NA 94.7 97.6 82.8 91.7

#6 M"". M"". , 94.7 97.6 82.1 91.5

#7 M"". Mah. 96 92.9 82.8 90.6

#8 M"". M"". 10 93.4 92.9 82.8 89.7

#9 3NN 10 M""
, 90.3 97.6 97.8 95.2

#10 3NN M"" 96 97.6 82.8 92.1

#11 3NN 10 M,h 10 91.2 92.9 98.5 94.2

#12 M"" 3NN 7 94.7 97.6 82.8 91.7

#1J M"" 3NN 5 94.7 92.9 98.5 95.4

#14 M,h 3NN 8 95.6 95.2 82.8 91.2
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6.0 CONCLUSION

The potential benefits of automated fish identification for fisheries scientists and

fishers are significanl. Scientific acoustic surveys are destructive, expensive and labor

intensive partially due to the requirement for ground truthing by way of hand-lining or

trawling. For many years experienced scientists and fishers have been able to identify the

shapes on their echograms but such judgements are subjective and unquantifiable. An

automated system will allow for objective, non-destructive, fast, and repeatable species

identification. For a commercial fishery a real-time fish identification system would be very

beneficial from an environmental and economic point ofview by helping to reduce by-catch.

The technology could be adapted to allow commercial fishers to identify the species seen

on their echo-sounders, allowing them to fish selectively by adjusting their fishing gear to

avoid harvesting non-target species.

Based on the work done here and the work of others it is evident that echosoWlder

technology, compuling technology, and pattern recognition techniques have evolved to a

point where automated species identification is technically feasible. For the three species

studied here Atlantic capelin (Mallotus villosus), cod (Gadus morhua) and redfish (Sebasfes

spp.) the classification results produced by this work were very good (the best classifier was

on average 96.8% correct) using a reasonable nwnbcr of features. This classifier

(configuration #2) was a dual node classifier where both nodes were 3-NN classifiers. lbe

feature set used by the first node (for the identification of capelin) was made up by the
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following six features: Compacrness, Minimum Amplitude, Distancefrom Object to Seabed,

Central Moment Xl fl, Binarized Central Moment XlfO, and Binarized Central Moment

Xl fl. The feature set used by the second node (for the identification of cod and redfish)

was made up by the following five features: Roughness, Mean Amplitude, Amplirude

Standard Deviation, Distance from Object to Seabed, and Central Moment XV fl. This

classifier provided the best overall classification and used on average the lowest number of

features.
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7.0 RECOMMENDATIONS

If this work it to be developed further, a number of areas need additional attention.

Classification may be improved by using the Mahalanobis distance classifiers ifthe species

data is further subdivided into subclasses of individual fish and schooling fish. The

parametric nature of Mahalanobis distance classifiers means that they try to make

generalizations about a population. This may have been made more difficult by grouping

schools and individuals of one species into a single class. As well. a more sophisticated

feature reduction technique should be implemented. The backward and forward sequcntial

feature selection schemes used here cannot anticipate the interactions between features and

likely did not find the optimum combination of features for each classifier tested. The

"windowing" offish, which was done manually, should also be automated. Given the recent

increase in computer speeds, the allowable image size should be increased from the present

limit of 512 x 512 pixels.

Having said in Section 6.0 Conclusion that the system could be further developed for

gcneral usage, it must realized that. as with any automated pattern recognition system applied

to natural data, a great deal ofground truthed data is needed before a system can be ready for

more general usage. Unfortunately for species identification of fish, data collection is very

time consuming and expensive. To make a system for gen.:ral scientific or cornm.:!cial

usage, data would have to be collected over at least a full year cycle, in a variety ofareas, and

for all species of scientific, environmental, and commercial interest. It should also be noted
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Ihat the classifiers would likely have 10 be retrained for data from different echosounders.

Many amplitude and shape features are undoubtedly related to the echosounder properties

such as the carrier frequency used 0, the pulse length (t). beamwidth and sampling

frequency. Nonetheless, given enough data, from a variety of echosounders, it may be

possible to find features that are universally good descriptors for many species.

Classification results will also depend on the quality of the echosounder system used. It is

unlikely that consistently good classification results could be obtained from a low quality

system. It is essential to have a system with a high signal to noise ratio and good signal

stability.
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Appendix A
Data Collection Area Maps
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Map orNAFO Convention Area (www.naro.caJimap/map.htm)
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Trinity Bay

Placentia Bay
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Appendix B
Acoustic Calculations
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B. l. Sound Velocity Calculation
The following calculation is used to estimate the speed of sound in sea water based
on knowledge ofenviromnental conditions (Camp, 1970):

1449+ 4.6T- 0.055 T 2+ 0.0003 T J+ (1.39 - 0.012 neS - 35)+ O.OI7d

where: c = velocity in metres/second
T = water temperature in degrees in Celsius
S = salinity in parts per thousand
d = depth in metres

B. 2. Absorption Coefficient Calculation (Fisher and Simmond, 1997):
Sound absorption (a) in seawater can be approximated using the following. Since
the change in absorption due to water pressure at depths less than 1000 m is
negligible, pressure has been left out of the following equation, which assumes pH
=8.

where:

A2 " -!s(5.62xJO- S + 7.52xJO- I0 1)

AJ " (55.9- 2.37T+ 4.77xlO- 2T 2 - 3.48xlO- 4T J)xlO- tS

-1700

1; " l.32xlO J(T+ 273.1)exp~

-J(lS2

h. .. I.55x10 7(T+ 273.1)exp~

T = water temperature in degrees in Celsius
f = sound frequency in Hz
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S = salinity in parts per thousand

B. 3. Time Varied Gain
In order measure an acoustic target. it is necessary to correct the received echo for the
effects of spherical spreading and absorption losses. The correction for these losses
is done by applying time varied gain (TVG) to the receiving amplifier which until
recently was done using analog circuitry. For single fish targets a TVG of40 log(r)
+ 20:r is used to compensate for two-way spreading and absorption losses (to and
from the larget) where 0: is absorption coefficient [see B.2. for the estimation of o:J.
For densely schooling fish a TVG of 20 log(r) + 2ar is used. (MacLennan and
Simmonds. 1992)

B. 4. Target Strength
Target Strength (TS) is used to describe the acoustic reflectivity of targets. The
rellectivity is defined as the ratio of the reflected intensity at 1 m from the target (12)
and the incident intensity (II)' 12 is proportional to II. therefore TS, given in dB, is
not quoted with reference to a specific pressure level. (MacLennan and Simmonds.
1992)
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Appendix C
Echo-sounder Parameters
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Echo-sounder Parameters

BioSonies DT4()(){)

Source Level 222 dB

Receiver Sensitivity -52 dB

Lower Data Threshold (used during data collection) -130 dB

Transducer Frequency 38 KHz

Ping Rate 5Hz

Pulse Width 0.4 ms

Major Axis Beamwidth 6°

Minor Axis Beamwidth 6°
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Thesis classifier configuration U
1 node:
3NN - separate cod, capelin and red fish

clear,

~ Feature Key
%1 Area
\2 Perim
~3 Compac

:~ :~~~~
~6 Height
%7 Axis
%8 Elong
%9 Mean
%10 Max
\11 Min
\12 Sigma
\13 depth to centroid
%14 depth to top
tl5 Dist off bottom
\16 hole5
\17 NA
U8 NA
\19 NA
i20 mcxOy2
%21 mcx2yO
\22 mcxlyl
%23 mcxOy2bin
%24 mcx2yObin
%25 mcxlylbin

clear,
load capelin,txt;
load cod. txt;
load redfish.txt;

%normalize all of the data
MN red = min(redfish);
MN-capelin - min(capelin);
MN-cod - min (cadi ;
!'IN--min (min (MN_red,MN_capelin) ,MN_cod);

MX red - max (redfish) ;
MX-capelin - max(capelin);
MX-cod - max(cod);
MX-. max (max IMX_red, MX_capelinl, MX_cod) -MN;

for i - l:length(redfish)
norm_red(i,1:25) • (redfi5h(i.l:25) - MN) ./MX;

for i - 1: length (capelin)



norm_capelin (1, 1: 25) - (cape1in (i, 1 :25) - MN) ./MXi

for 1 .. l:length(cod)
norm_cod(i,l:25) - (cOO(i,I:25) - MN)./MX;

num cod .. length (norm cod);
nwn-capelin .. length(norrn capelin);
nurn:::redfish" length(norm:::red);

n CLASSIFIER Configuration U
i After depth feature removal, Factor Ana1ysi" and SBS
keepl = [9 10 11 12 15 20 22 24 25];
keepList K 1:25 • 0;
keepList(keep1) .. 1;

cod called red '= 0;
cod-called-cod" 0;

~~~~~~~l~=~~:~ ;e~; = 0;
capelin-called-cOd - 0;
capelin-called-cap - 0;
redfish- called-red'" 0;
redfish-called-cod - 0;
redfish:::called:::cap .. 0;

for i - 1:1ength(alldata)
data - [alldata(i,keepl)];

tor j ~ l:length(alldata)
it i -- j

trop = data - alldata (j, keepl);
dist(j) - sqrt(tmp"tmp');

dist(j) .. 25;

[sortedOist, Index] - soz:t(dist);

if ( length(t1nd(IndeX(1:3) <= num cod » >= 2) i 2/3 wez:e cod
clliled - 1; % 1 .. cod; -

elseif ( length{find{ (Index(l:3) > num cod) " (Index(1:3) <­
(nurn cod+num capel in) )) ) >~ 2) % 2/3 were capelin

- called" 2; , 2 - capel in
elseif ( length{find(Index(1:3) > (nurn cod+num capelin))) >'" 2) , 2/3 were

redfish - -
called - 3; , 3 - redfish

%3 way tie - use the distance to the nearest neighbour
if (Index(1) <- num cod)

called K 1; -

elsei! (Index(l) <- (num cod+num capel in) )
called K 2; - -



if called _.. 1
if (i <.. nurn cod I

cod called cod - cod called cod + 1;
elseif (1-> num cod) & (1 <:- (num-cod + num capelin))

capelin_called_cod - capelin_called_cod + 1;

elsei! called -- 2
if (i <- num cod)

cod called cap - cod called cap + 1;
elseif (1-> num cod) Ii (1 <:- (num-cod + num capelin))

capelin_called_cap - capeI1n_called_cap + 1;

if (i <- num cod)
cod called red - cod called red ... 1;

elseif (i-> num cod) , (i <:- (num-cod + nUm capelin))
cape lin_call ed_red - capelin_called_red + 1;

fprintf (' Number of Features - %d\nFeature List - '/ len9th (keepl) );
fprintf('%d " keepl);
fprintf (' \n\t\t\t\tPREDICTED CLASS\n');
fprint! ( '\t\tCOD\t\tCAPELIN\t\tREDFISH\n') ;

fprintf('COO\t\U.Of [%.11' UJ\t%.Of {%.11' U)\t%.Of [%.11' U)\n',.
cod called cod/cod called cod/num cod*100/.

~~=~:ii:~=~:~:~~=~:ii:~=~:~~~:=~~~:~~~;;.
fpr1ntf('CAPELIN\t\U.Of [l.lf U)\t'LOf [%-If U]\t%.Of [%.11' U)\n', ..
capel in called cod,capelin called cod/num capelin"IOO,.
capelin=:called=:cap, capelin=:called=:cap/num=:capelin"IOO, .
capel in_ called_red, capelin_called_ced/num_capelin*lOOl ;

fpc1ntfr'REDFISH\t\t\.Of [%.11' lll\tl.Of [i.lf Uj\tLot {l.If UJ\n\n',.
rectt'ish called cod, redfish called cod/num redfish*lOO,.
redt'ish-called-cap, redt'ish-called-cap/num-redfish*lOO, .
red:fiSh=:called=:red, redtiSh=:called=:red/num=:redtish"100);



patri.ci.a LeFeuvre
Feb 25, 2001

Thesis classifier confi.guration '2
2 nodes:
node III - 3NN - extn.ct cod
node 112 - 3NN - separate capelin and redU_sh

clear,
load capelin.txt;
load cod. txt;
load redfish.txt;

\normalize all of the data
MN red" mi.n(redfish);
MN~capelin ~ mi.n(capelin);
MN-cod· min(codl;
MN-- mi.n (mi.n (MN_red,MN_capelin) ,MN_cod);

for i - l:length(redfishl
norm_red(i,1:25) • (redfish(i,1:25) - MN)./MX;

tor i ~ l:length(capelin)
norm_c/lpelin(i,1:25) - (capelin(i,1:25) - 'MN) ./MX;

for i • l:length(cod)
norm_codli,1:25) '" (cod(i,1:25) - MN) ./MX;

t Cl/lssifier '2
alldata • [norm cod; norm capel in; norm red];
node2dat/l • [norm_capelin: norm_red]; -

cod called red - 0;
cod~called-cod - 0;

~~~~~~l~=~~:~ ;e~; '" 0;
~:~:it~=~:ii:~=~~~ : ~~
redtish~called-red - 0;
redfish-called-cod· 0;
redfish=called=cap • 0;



% Node 1 - extract cod
keepl _ (3 4 6 9 11 12 15 22 24 25):

~ Node 2 - capelin vs. redfish
keep2 2 [3 9 11 15 22 24 25J;

for i - 1:1ength(alldata)

data - [alldata(i,keepl)];
for j _ 1:1ength(alldata)

it i -- j
tmp - data - alldata(j,keeplj;
distO} - sqrt(tmp*tmp'};

dist{j) - 25;

(sortedDist, Index] - sort(dist);

it ( length (tind (Index (1: 3) <- num cod ) >'" 2)
called ~ 1; " 1 - cod; -

else
" Node 2
data - [alldata(i,keep2));

sameCount - 0;
tor j '" 1:length(nOde2data)

tmp - data - node2data(j,keep2);
dist(]) - sqrt(tmp'tmp');
it (dist(j) ..- 0) % the same point so don't use

distljJ "'- 25;
sameCount .. sameCount + 1;
it sameCount > 1
end tprintt (' Error - too many identical points ');

"od
[sortedDist, Index) - sort(dist);

it ( length(find(Index(l:3) <'" nurn capelin )) >- 2) % 2/3 were capelln
called - 2; " 2 - capelin -

el.se
called - 3;

it called -- 1
if Ii <- num cOd}

cod called cod _ cod called cod'" 1:
elseit (i-> nurn cod) & (i <- (nurn-cod + nurn capelin) j

capelin_called_cod - capel in_call ed_cod ... 1;



e1sei! called -- 2
if (i <- num cod)

cod called cap - cod called cap + 1;
elseif (i-> num cod) &. (i <- (num-cod + nurn capel in) )

cape1in_ca11ed_cap '" cape1in_ca11ed_cap + 1;

i! (i <- nwn cod)
cod called red" cod called red -I- 1;

elsei! (i-:> nurn cod) 1< (i <- (nurn-cod -I- nurn capel in) )
cape1in_ca11ed_red - capelin_ca11ed_red -I- 1;

.nd
ond

fprintf( 'Node '1 Number of Features - ~d\nFeature List - ',length(keepl));
fprintfl'lId ',keepl);

fprintf (' \nNode '2 Number of Features .. ~d\nFeature List .. ',length (keep2) );
fprintf('%d ',keep2);

fprintt (' \n\t\t\t\tPREDICTED CLASS\n' J ;
fprintf I' \t\tCOD\t\tCAPELIN\ t\tREDFlSH\n');

fplCintf('Con\t\t'LOf ('Llf HI\tLOf [%.If Hl\U.Of [lI.1f HI\n', ..
cod called cod,cod called cod/nwn cod~IOO,.

cod-called-cap, cod-called-cap/nurn-cod-100, .
co{::calle{::red, cod:::called:::red/nwn:::cod-100) ;

fprintf('CAPELIN\t\t'LOf ['Llf Hj\t%.Of [ll.lf Hl\t%.Of (%.If HI\n',.
capel in called cod, capel in called cod/num capelin-IOO,.
capel in- called-cap, capel in- ca11ed-cap/nwn-capelin*100, .
capelin:::called:::red, capel in:::called:'::red/num::::capelin* 100) ;

fprintf('REDFISH\t\tll.Of ('L1f Hl\tt.O! [Ll! UI\t%.Of [1l.1f illl\n\n',.
redfish called cod,redfish called cod/num redtish·100,.
redtish-called-cap, red!ish- called-cap/nwn- red!ish'100, .
redtish::::called::::red, redfi.5h::::called::::red/num::::redfish 'IOO) ;



Patricia LeFeuvre
Feb 25, 2001

Thesis classifier configuration '3
2 nodes:
node U - 3NN - extract capel in
node 12 - 3NN - separate cod and red fish

clear,
load capelin.txt;
load cod. txt;
load redti"h.txtl

\normalize all ot the data
MN red" min(redfish);
MN-capelin .. min(capelin);
MN-cod" min (cod) 1
MN-- min (min (MN_red,MN_capelin), MN_cod~;

for i .. l:length(redfish)
norm_Led(i,1:25) ~ (redfish(i,1:25) - MN)./MXI

for i .. 1:length(capelin)
nOLm_capelin (i, 1: 25) K (capelin (i, 1: 25) - MN) ./MX;

for i .. l:length(cod)
norm_cod(i,1:25) .. (cod(i,1:25) - MN) ./MX;

cod called Led - 0;
cod-called-cod" 0;
COd-called-cap ~ 01

~:~:i~~-~:n:~-~~~ : g~
CIlPelin-called-cap K 0;
redfish-called-red" 0;
redfish-called-cod ~ 0;
redfish::::called::::cap .. 0;

num cod - length(norm cod);
num-capelin .. length (norm capelin~;

num::::redfish" length (norm::::redl ;



, Node 1 - extract capelin
keepl- [311152225];

, Node 2 - cod liS. redtish
keep2s [49121520];

for i - 1:length{alldatal
data" [al1data(Lkeeplll;
for j - 1:length(alldata)

if i -- j
trop - data - alldata(j,keep1);
dist(j) .. sqrt(tmp·tmp');

dist(j) '" 25;

[sortedDist, Index) - sort (dist);

if ( length(find( (Index{1:3) > nurn cod) '- (Index(l:31 <­
(nurn cod-tnum capelinl}) ) ;>; 21 % 2/3 were capelin

- - called" 2; % 2 - capel in;
else

% Node 2
data" (alldata(i,keep2)):

sameCount - 0;
for j .. 1: length (node2data)

trop - da ta - node2da ta (j, keep2) ;
dist2(j) - s<;rt(tmp~trnp');

if (dist2(j) -- 01 % the same point so don't use
dist2(jl -- 25;
sameCount - sameCount -t 1;
it samecount > 1

tprint! ( 'Error ~ too many identical points ');
"oct

"oct
"oct
(sortedDist, Index] - sort(dist2):

if ( length(find(Index(l:3) <= nurn_cod lJ >'" 2) , 2/3 were cod
called - 1; % 1 - cod

called - 3;
eoct

end % end of Node 2

it called -- 1
if O. <- nurn cod)

cod called cod - cod called cod -t 1;
e1sei! (i-;> nurn cod) '- (i <"" (nurn-cod -t nurn capel in) )

capelin_cal1ed_cod .. capelin_called_cod -t 1:

elsei! called -- 2
if (i <- num cod)

cod_called_cap '"' cod_called_cap -t 1;



elseif (i > nurn_cod) & (i <_ (nurn_cod .;. nurn_capelin) I
capelin_called_cap _ capelin_called_cap .;. 1;

it (i <- m,rn cod)
cod called red - cod called red';' 1;

el"eit (i-> nurn cod) & (i <~ (mw-cod .;. nurn capelin)}
capelin_cal1ed_red .. capelin_called_red .;. 1;

fprintt'( 'Node '1 Number ot' Features - td\nFeature List - " length(keepl));
fprintf('td " keepl);

tprintt (' \nNode 112 Number 01' Feature" .. td\nFeature List .. " length (keep2) );
fprintf('\d " keep2);

fprintf (' \n\t\t\t\tPREDICTED CLASS\n');
fprintf (' \t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fprintf('COD\t\U.Ot (i.lf HI\t\.Of [\.If Hl\t\.Of [L1f "I\n',.
cod called cod,cod called cod/nurn cod*lOO,
cod-called-cap, cod-called-cap/num-cod' 100,
cod=called=red, cad::::'called::::'red/num::::'cod*lOO) ;

fprintf('CAPELIN\t\tLOf [t.lf Hl\t%.Of (\.It %%)\t\.Of [\.If %%j\n'".
capelln called cod,capelin called cod/num capelin*lOO,
capelin-called-cap, capel in-called-cap/nurn- capelin'lOO, ..
capel in::::.called::::'red, capel in::::.called::::'red/num::::'capelin'lOO) ;

fprintf('REDFISH\t\tt.Ot (\.It %%j\t\.Ot [\.11' H)\t\.Ot (Llt H]\n\n',.
redfish called cod, redfish called cod/num redfish* 100, ..
redfish::::'called::::'cap, redfish::::'called::::'cap/num::::'redtish'lOO,
redtish_called_red, redtish_called_red/num_redfish* lOO) ;



% classC4.m,
, Patricia LeFeuvre
, Feb 26, 2001

: ~h~~~:s~laSSifier confiquration 14

, node 11 - 3NN ~ eKtract redfish
, node '2 ~ 3NN - separate cod and capel.in
clear,

load capelin.txt;
load cod. txt;
load redfish.txt;

'normalize allot the data
MN red" min(redtish);
!'IN-Capelin = min(capelin);
MN-cod" min(cod);
!'IN-" min (min (MN_red, !'IN_capelln) ,!'IN_cod);

MX red" rnax (redtish);
MX-capelin .. rnaK(capelin);
MX-cod" maK(cod);
MX-- rnax (rnax (MX_red,MX_capelin) ,MX_cod) -MN;

for i - 1:1enqth(redfish]
norm_red(i,1:25) _ (redfishli, 1:25) - MN)./MX;

tor i - l:length(capelin)
norm_capelln(i,1:25} .. Icapelin(i,L25) - MN) ./MX;

tor i - l:length(codl
norm_codli,1:25} ~ (cod(i,1:25) ~ MN)./MX;

alldata .. [norm Cad; norm capelin; norm redl;
node2dat", .. [nocm_cod; nann_capel in] ; -

cod called red - 0;
cod-called-cod" 0;

~:~~H~~~:IH~-~~r: ~~
~:~~~~~=~:ii:~=~:~: ~~
redtish-called-cod'" 0;
redtish=called=cap '" 0;

nwn cod ~ length (norm cod);
num- capelin .. lenqth (norm capelin);
num=redfish .. length (norm=red);

, selected features
, Node 1 - extract red fish
keepl- [491011121516202425];
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'Node 2 - cod vs. capelir:
k..ep2 - [3 4 6 ? 9 12 15 20);

for i - 1:length(a11data)

data - [alldata(i,ke..p1) 1;
for j - 1:length(alldat... )

ifi--j
tmp ~ data - alldata(j,keepl);
dist(j) ,. sqrt(tmp"tmp');

di"t(j) - 25;

[sortedDist, Index] = sort(dist);

if ( 1er:qthlfind(Indexll;3) > (num cod+num capelin))} >- 2]% 2/3 were redfish
called - 3; % :> - redfish; - -

else
% Node 2
data - [alldata(i,keep2)];

sameCount ,. 0;
for j - 1:lenqth(node2data)

tmp" data - node2datalj,keep2);
dist2[j) = sqrt(tmp*tmp');
it (dist2(j) :,. 0) % the same point so don't use

dist2(j) _ .. 25;
sameCount - sameCount + 1;
if sameCount > 1

fprintf (' Error - too many identical points\n ');
pause;

"od
"od

ond
[sortedDist, Index] _ sort(dist2);

if ( length(find(Index(1:3) <- num cod )) >'" 2) 'I; 2/3 were cod
called - 1; 'I; 1 - cod ~

else
called - 2; % 2 = capelin

"od
end % end of Node 2

it called -= 1
if (i <- num cod)

cod called cod - cod called cod + 1;
elseif (i-> num cod) ~ (1 <- Inurn-cad + num capel in) )

capelin_cilled_cod - capelio_called_cod + 1;

els..if called -- 2
if (i (- num cod)

cod called cap - cod c ...lled cap + 1;
elseif (1-> nurn_cod) & (1 <_ (num::::cod + nurn_capelln})

11



if (i <- num cod)
cod called red - cod called I:ed + 1;

elseif (1-> num cod) , (i <- (nurn-cod-+' nurn capelin))
capelin_called_red - capelin_called_red -+. 1;

••d
••d

tprintf ('Node 11 Number of Features - %d\nFeature List - " length (keepl) );
fprintf('%d " keepl);
fprlntt (' \nNode 82 Number of Featul:es .. %d\nFeature List'" ',length (keep2) );
fprintf('%d " keep2);

fprintf (' \n\t\t\t\tPREDICTED CLASS\n');
fprintt I '\t\tCOD\t\tCAPELIN\t\tREDFISH\n' I;

fprintf('COD\t\ti.Of {%.If Uj\t%.Ot (%.l! UI\t%.Ot [%.If U]\n', ..
cod called cod, cod called cod/num cod~lOO,.

cod-called-cap, cod-called-cap/num-cod·100, .
cOd::::called::::red, cOd::::called::::red/num::::COd"lOO);

fprintf('CAPELIN\t\t%.Ot [%.It Ul\t%.Ot I%.l! UJ\U.Of [%.If U)\n',.
capel in called cod,capelin called cod/num capelin"lOO,.
capelln- called-cap, capelin- c(llled-cap/num-capel1n~lOO, .
cillpelin::::cilllled::::red, cillpelin::::cilllled::::red/num::::capelin~100) ;

fprintf('REDFISH\t\t%.Of I%.lt Ul\t%.Of [%.l! Uj\t%.Of [%.l! %%I\n\n',.
redfish called cod, redfish called cod/num redfi"h~lOO,.

l:ed!1sh- called-cap, I:edfish- cilllled-cap/num-red!i"h~lOO, .
redti5h::::called::::red, I:edtish::::called::::I:ed/num::::l:edfish*lOO) ;

12



Patricia Lereuvre
reb 25, 2001

Thesis classitier contiguration '5
1 node:
MAli - separate cod, capel1n and redfish

clear,
load capelin.txt;
load cOd. txt;
load redfish.txt;

% Normalize
MN red ~ min(redfish);
MN-capelin" min(eapel1n);
MN-cod .. min (cod) ;
MN-" min (min (MN_red,MN_capelin), MN_cod);

MX red" max(redfi"h);
MX-capelin .. max (capel in) ;
MX-cod .. max(codl;
MX-" max (max (MX_red,MX_capelin) ,MX_cod)-MN;

for i .. 1:1ength{redfishJ
norm_red(i,1:25) '" (redfishli, 1:25) ~ MNl./MX;

for i = 1:1ength(capelin)
norm_capelin (1,1: 25) .. leapelin (1, 1.: 25) - MN) ./MX;

for i .. 1.:length(cod)
norm_cod(i,1:25) .. (cod(1, 1:25) - MN) ./MX;

alldata .. (norm_cod; norm_capelin; norm_r:ed];

nwn cod" length (noIlll cod) ;
nwn-capelin .. length (ii"or:m capelin);
num::::r:edtiSh .. length (nOrI:l::::r:ed);

% list of features still in the running
keep1 = (2 3 4 6 7 11 12 15J;

% look at performance vs nurn features used - look for over training
%keepl .. [1 2 3 4 5 6 7 9 10 11 12 15 16 20 22 24 25); % perf" 86.4285,
nurn feat" .. 17
%keepl" {l 2 3 4 5 6 7 9 10 11 12 15 16 20 24 25J; % perf = 88.1698,
nurn feats .. 16
%k..ep1 .. [1 2 3 4 5 6 7 10 11 12 15 1620 , pe:d .. 99.4136,
num feats .. 15
%keepl" (1 2 3 4 5 6 7 11 12 15 16 20 24 25J; % perf" 89.2187,
num feats" 14
%keep1 .. [1 2 3 4 5 6 7 11 12 15 1620 25]; % perf ~ 90.1136,
nurn feats .. 13
%keepl .. [1 2 3 4 5 6 7 25]; % per:f ~ 88.9225,
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num teats ~ 12
neepl" [123456'
num feats" 11
%keePl" [1 2 3 4 5 6 7
num feats .. 10
Heepl" [234567
num feats" 9
neepl" (
num feats" 8
%keep 1 .. [
num feats" 7
%keepl .. [
num feats .. 6
'keepl .. [
num feats" 5
%keepl .. [
num feats'" 4
%keep 1 .. (
num feats" 3
%keepl ., (
num feats" 2
%keepl .. [
num_feats .. 1

keepList .. 1:25 * 0;
keepList(keepl) .. 1;

111215

"
, perf · 91.1015,

"
, pert .. 91.0700,

I, , perf .. 91. 7150,

], i perf .. 91.1150,

], i peI:f · 91.7239,

], i perf .. 90.2852,

], i perf · 89.4465,

], i peI:f .. 87.7216,

], i perf .. 84.1180,

I, , perf · 81.6040,

I, .perf .. 67.0804,

%% CLASSIFIER jj5 - Distinguish cod hom capelin from Redfish
tI:aining cod .. norm cod; \ [norm cod(:. keep1) I;

~~:~~t~~=~:~e~i~o~:~~;Capelin;\ [norm_ca~7~~~~~~~~~~~~~~P1} J;

cod called red'" 0;
cod-called-cod" 0;

~~~~~~~l~~~~:~ ~e~; .. 0;

;:~~H~=~:H:~=;:~:g~
redtish-called-cod'" 0;
redfish:::called:::cap .. 0;

for i '" 1: length (alldata~

M cod" mean (training codl:,keepl})'
M~capel in ., me"n (tI:"ining capelin (: keepl});
M:::red" mean(tI:aininq_red(:,keep1});

K cod .. COy (training cod ( : • keepl) ~ ;
K~capel in - coy (training capeiin 1:, keep1)) ;
K:::red .. cOVltraini.ng_I:ed(:. keep1) );

\ leave out the sample we (Ire testing
if( i<-num_cod)
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M cod - mean(traininq cod(tind(l:nwn CQd--i),keepll);
'(cad - cov(trainin,;,-cod(tind(l :nwn_cod--iJ, keepl)):

elseif (i > nwn cod) " (i <- (num cod -+- nu."ll capelinJ)
M capel.1-n ~ ~an (t.ra1.n1.nq capelin (t1.nd(l:nwn capelin--(i-nu:ll cod)), keepl)':
K-capel in - cov(tulininq capelin(tind(l: num capelin--(i-nwn cod)), keepl)):

.ls~ - - -
K red -

-.an (trainin9_red (tind (l: num_ redhsh-- (i-nwn_cod-num_capelin)), keepl) ) ;
K red -

cov(t.raIninq red(tind(l :num redtish-- (i-num cod-nwn capellnl), keepl));
end- - --

<Uta - [alldata(l,keepl)]:
dist cod - (data - M cod) • lnv(K codl • (data - M cod)':
dist-capelin ~ (data-- M capeUnj-' lnv(K capelin,-· (data - M capelin)';
dist-red - (data - M red)' inv(K red) • (data - H red)': -
it (-(dist cod < dist capelin) , (dist. cod < diet red) j

called;l:\l-cod: - -
elaeit ( (dist_capeUn < dist_cod) , (dist_capelin < dillt_red))

called - 2: \ 2 - capelln
eheit ((dist red < dist cod) , (dist red < dist capeUn) }

called - 3; % 3 - redtlllh - -
else

called - 4: \ we have a tie
printt (. \nwe have a tie with the distances\n');
pause:

end

it called -- 1
it (i <- num cod)

cod called cod - cod CAlled cod -+- 1;
elsel!-(i > nUn. cadI' Ii <- (num cod -+- num capelln))

capelln callid cod - capelin called cod :; 1;
else - - --

redfish called cod - re:dtish called cod -+- 1;
end -- --

elsei! called - 2
if Ii <- num cod)

cod called cap - cod called cap -+- 1;
elseif- (i > nUn. cod) " (1 <- (num Cod + nUlD. capelin))

capelln called cap - capelln called cap" I:
elae - - --

redfish called cap - redfish called cap -+- I:
e~ - - --

elseit called -- 3
if (i <- num codl

cod called red _ cod called red -+- I:
elseir-(i > nUn. cod) , Ii <- (num cod + nurn capelin))

capelln called red - capelin called red:; I:
else - - --

r ..dfish_called_red - redfish_called_red .. 1;
end

end

end' ..nd of i - l:length(alldata)
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fprintf('Number of Features" \d\nFeature List .. ',length(keepl));
fprintft'\d ',keepll:
fprinrf (' \n\t\t\t\tPREDICTED ClASS\n',;
fprintf (' \t\tCOD\t\tCAPEI.IN\t\tREDFISH\n' J;

fprintf('COD\t\t\.Of 1t.1t "J\t\.Of (\.It "1\t\.Of l\.lt "I\n',.
cod called cod,cod called cod/nu:a cod·100,.

~~:~:ii:=~::~~=~:ii~:~~~~==~~:i~~i;.
fprintft'CAPELIN\t\tl.Of {\.It Ul\t\.Of (\.It "1\t.\.Of I\.lt "I\n',.

capelin_called_cod, capelin_called_cod/nl.:.lll_capelin* 100, .
capelin called cap. capelln ealled eap/num capelin*lOO, .
capelin::::called::::red, capelin::::called::::red/nwn::::capelin* 100) ;

fprintfl'REDFISH\t\t\.Of 1\.1t Ul\tl.Of I\.lt Ul\t\.Of I\.lt Ul\n\n',.
redtish called cod, redflsh called cod/num redtish*lOO,.
redtish-called-cap, redfish-called-cap/nwn- redtish*lOO•.
redfish::::talled::::red, red fish::::called::::red/nwn::::redtish* 100) :

overallyerformance .. tccd_called_cod/nultl_cod*lOO +
capel in_called_cap/num_capelin"100 + redfish_called_red/nultl_redfish* 100) /3

\ to illustrate OVf!r training

perf(17) .. 86.4285;\. nUl"l feats" 17
perf(16) .. 88.1698;\. nUll'-featll .. 16
perft15) .. 89.4136;\. nu~'-feats" 15
perfll4) .. 89.2187;\. nwn-feats" 14
perfll3) .. 90.1136;\. num-feats .. 13
perf(l2) .. 88.9225;\. nw::-feats .. 12
perflll) .. 91.1075:\. nwn-feats = 11
perf (0) .. 91.0700;\. nwn-feats .. 10
perf(9) = 91.7150;\. nUl:l feats" 9
perf(8) .. 91. 7150;\. num-feats .. 8
perfp) .. 91.7239;\. nUlll-feats .. 7
perf(61 .. 90.2852;\. nUl:l-feats .. 6
perf(51 ... 89.4465;1. num-feat... 5
perf(4) .. 87.7216;\, num-featll .. 4
perf(3) .. 84.1180;\num feats" 3
perf(2) .. 81.6040;\. nw... feats" 2
perfil) .. 67.0804:\. ","'IIl-f•• t ... 1

plottpertl; grid; xlabe1('nwnber of featurea used'); ylabel('average classification
accuracy tpercentage) ');
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Patricia LeFeuvre
Feb 25, 2001
Thesis classitier contiquratJ.on '6
2 nodes:
node '1 - Mah - extract cod
node '2 - Mah - separate capelin and redtish

clear,
load capelin.txt;
load cod. txt;
load redtish. tJ<t;

, Normali:.e
HN' red" lllin(redtish);
MN=capelin - m.J.n(capelinl;
!'IN cod" min (cod) ;
MN-" min(lIIin (MN_red,MN_cape1J.nl, MN_cod};

MX red" max(redtish);
Joo(capelin - max(capelin);
KX cod .. max (cod);
HX-" max (max (MX_red,MX_capelin) ,MX_codl-MN;

tor i .. l:length(redfhh)
nOrnl_red(i,l:25) .. (redfish(i,1:25} - MN} ./MX;

for i .. 1:1enqth(cape11n)
nOrrD_capelin(i,l:25J .. (cllpelin(i,l:251 - MN)./MX;

for i - l:lenqthjcod)
norm._cod(i,1:25) .. (cod(i,l:25) - MNI./HX;

nWll cod .. length (norm cod);
nlm-capelin" lenqth(nOrlll capelin);
nWD:redtish - lenqth(norm:red);

, Classifier '6
alldata .. [norlll_cod; nOrnl_capelin; norm_red];

, IJ.st of features selected
, Node 1 - extract cod
keep 1 - [2 3 4 6 7 11 12 15];
'Node 2 - capelln vs. redtish
keep2- [4 71015];

cod_c.. lled_red _ 0;
cod called cod" 0;
cod-call ed-cap .. 0;
capelin_called_red .. 0;
capelin called cod" 0;
capelin-called-cap .. 0;
redtiSh:called:red .. 0;
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redU.h caUed cod _ 0;
redtish::::called::::cap - 0;

tor 1 • l:length(alldatal

K codl .. cov(noI1D cod{:,keeplll;
K::::e..pelinl s eov{i,ol:lll_eApelin(:,keep111:
K_redl - eov(norm_red{:,keepllI;

M cod2 - mean (norm eodl:,keep2Il;
M- capelin2 - mean ("orr.! capelln (:, keep2ll:
M::::red2 - mean (norm_reel!:, keep2)l :

, leave out the sample we are testing
it( i<-num cod)

M cadI;: mean (norm cod(Und(l:nwn cod--il,keeplll:
K-cod1 = cov(norm codltind(l:nwn COd--i),keeplll:
H::::COd2 - mean (norrn_Cod(tind{l :nurn_cod--i), keep2ll :
K cod2 - cov(norm cod(Und(l:nwn cod--il,keep2));

e1se1t (i > num codl-' (i <_ (num cOd -+ nwn capelinll
M capelin1 --meanl"orlll capel1.nltind(l:num capel1.n--U-nwn codll,keeplll:
K-c..pelinl - cov(n'rnI capelin(tindl1:num capelin--(i-num Codll, keepll I;
M-capelin2 - mean(noriii capelin(tindll:nuiii capel1n--(i-num codll,keep211;

ela~::::capelin2 - cov (norm_capelin(tindll:num_capelin~-(i-num_Cod) I, keep2)1 :

M redl - mean (norm red {tind{ 1 :nWII. teedti.h-'"'li-nwa cod-nwn capelinll, keeplll:
K-:redl .. cov(noJ:nl redlUndll:n1,1lll cedtish~-li-n1,1lllcod-nWll capelinl I ,keepll I:
M-:red2 - n:ean(noriii :red{find{l:nuiii redtish~_li_nuiiieod-num eapelinll,keep211:
K::::red2 - cov (norm_ced I tind 11 :num_cedfish--li-n1,1lll_cod-num_capelinll, keep211:

end

d"ta - [alld"ta{i,keeplIJ:
dist cod - (data - M codl) • inv(K codll • {data - M codll':
dist-capelin = {data-- to! capelinll-· inv(K eapel1.nll-· (data - H eapelinl)':
dist-teed '"' {data - H redll • inv{K teedll ·-ldata -" :redll'; -
it l-{dist cod < dist capellnl , (chat. cod < dist teedl )
called" 1: , 1 - coZ; --

else
, Node 2
data" {alldata(i,k.eep211:
dist capel in - {data - " capel1n2) • inv{K capelin21 • (data - " capelin21';
diat::::red'" {dat" - "_red21 • inv(K_teed2l ·-(data - "_red2l '; -

it (diat_capelin < dist_red)
called _ 2; t 2 .. capelin

else
called - 3;

end
end
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it e~lled = 1
it (i <- num_eod)

cod called cod - cod called cod + 1;
eheit-(i > nlim cod) .Ii Ii <- (num. cod + num capelin))

eapelln callid cod _ capelln called cod .. 1;
else - - --

redfish called cod - redti.sh called cod + 1;
end -- --

else11' called -- 2
it Ii <- num cod)

cod called cap - cod called cap + 1;
eheit-Ii > n"iinl cod) .Ii 11 <- (num. eod + num. c~pelin))

capelln_called_cap _ capelln_called_cap .. 1;
elae

redtJ.sh called e~p _ redtish ealled cap + 1;
end -- --

elseif called -- 3
it (i <- nurn cod)

cod called red _ cod called red + 1;
elseit- (1 > nWn cod) .Ii Ii <- (nurn cod + nUn! capelin))

capelln called red - capelin called red" 1;
else - - --

redtish c~lled red - redtish called red + 1;
e~ - - --

.ed

tprintt (' Node .1 Nl,lQl/:)er ot Features - td\nFeature Llat - ',length (keepl));
fprlntf{'td t, keepl);

fprintf{ '\nNode 'Z NWlIber of Features - td\nFeature L1St - ',length{keepZ));
fprintf{'td ',keepZ);

fprintf l '\n\t\t\t\tPR£DICTED CIJI.SS\n');
fprintfl '\t\tCOD\t\tCAPELIN\t\tR£DrISH\n ');

tprintt('COD\t\tt.O! 1\.1f ttl\tt.Ot [t.!! ttl\tt.Of [t.tt ttl\n',.
cod celled cod,cod c~lled cod/num Cod"IOO,.
cod-called-cap, cod-calle(Ceap/num-cod"lOO, ..
cod:celled:::red, cod:::c~lled:::red/num:::cod"lOOI ;

fprint!('CAPELIN\t\tt.Of [l.lf Ul\tl.Of (t.U ttl\tt.Of 1\.1t ttl\n',.
capel in called cod, capelln cllllled cod/num capelin'IOO, .
capelln- called-ClllP, capelln- celled-cap/nurn-capelln"IOO, .
capelin:called:red, capelin:::ealled:::red/nwn::::capel in' 100 ) ;

fprintf('REDFISH\t\tt.Of (t.1t ttl\tt.Of [Ll! UI\tl.Of [l.lf ttl\n\n',.
redfish called cod, redfish called cod/own redfish" 100, .
redfish-called-cap, redfish- called-cap/nun!- redfish'100, .
redfish::::"alle.{::red. rfldfish::::"allfld:::: red/num::::redU.h*100) ;
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Patricia LeFeuvre
Feb 26, 2001
Thesis classifier configuration '7
2 nodes:
node /11 ~ Mah - extract capelin
node ~2 ~ Mah - separate cod and redfish

clear,
load capelin.txt:
load cod. txt;
load redfish.txt;

, Normalize
MN red" min(redfish);
MN-capelin .. min Icapelin);
MN-cod" min(cod);
MN-" min (min (MN_red,MN_capelin) ,MN_cod);

MX red" max (redfish);
MX-capelin .. max(capelin);
MX-cod" max(cod);
MX-" max (max (MX_red,MX_capelin) ,MX~cod)~MN;

for i .. l:length(redfish)
norm_red(i,1:25) .. (redfish(i,1:25) ~ MN) ./MX;

for i .. l:length(capelin)
norm_capelin(i,1:25) .. (capelin(i,1:25) - MN) ./MX;

for i '" l:length(cod)
norm_cod Ii, 1:25) .. (cod(i, 1:25) ~ MN) ./MX;

num_cod" length(norm_cod);
num capelin .. length(norm capelin);
num=redfish .. length tnorm:red);

% Classifier jj7
alldata .. [norm_cod; norm_capelin; norm_red];

% list of featuces selected

% Node 1 - extcact capelin
keep1 .. [3 4 7 11 15 lSJ;

'Node 2 - cod vs. cedfish
keep2 "" [2 3 4 6 7 11 12 15J;

cod called red" 0;
cod-ca1led~cod : 0;

~:~~H~;~:I~:;:~~r: 6~

20



capellon called cap" 0:
redfillh-called-red - 0:
redtiah- called-cod .. 0:
redUlIh:c:alled=:cap .. 0;

for i .. l:length(alldatal

H_cod2" mean(norm_cod(:,keep211;
H capelin2 _ mean (nom capelinl:, keep21):
H:red2" mean(norm_red(:,keep2));

K cOO2" cov(norlll cod(:,keep21):
K-capelin2 - cov\nOrlll capelil'l(:, keep2));
K=:red2 - cov(norm_red(:, keep2}) :

, leave out the sample we are testing
if( i<-num cod)

H codl --meanlnorm cod(tind(l:num cod~-i),keepl111

K-codl - cov(norm eod(find(l:num eod--i),keepllli
H-cod2 - meanlnom cod(find(l:nuiii cod--i),keep2)I;
K=:Cod2 - cov lnorm_cod I find 0 :num_Cod--l), keep211 ;

elseif (i > num cod) " Ii <- Inurn cod + num. capelinll
H C<'lpelinl - - rr.e<'ln (norm c<'lpelinltind(l :nuiii capelin-- (i-num codl ), keepl) I;
K-cape1J.nl - cov(norm capelin(findo:num. c<'lpelin~-(i-numcodll,keeplll;
H=:C<'lpe1J.n2 - mean Inorm_capelin (findll:nuiii_capelin~-li-nuii._Codll,keep211;
K capelin2 - covlnorlll capelin(findll:num capelin--li-n\llll codl), keep2) I ;

else- - - -

H redl" meanlnorm redltind(l:num redtish~-(i-num cod-num capelinll,keeplll;
K-redl - cov(norm i=ed( find ( 1 :num ;edfish--li-num eod-num capelli'll I, keepl) I;
H-red2 - l:lean(nOm red(find(l;nuiii redfish--(l-num cod-nuiii capelin)),keep2)):
K:red2 - cov lnorm_i=ed(tind(l :num_;edfillh--li-num_eod-nUlll_capelinll, keep2) I ;

e.d

data - [alldatea(i,keepll];
dist cod - (data - H codl) ~ invlK codll ~ (data - H codll':
diste=:capelin - (datea-- H_capfllinll-~ inv(K_cilpelinll-~ (data - M_capelinll':
dist_red - (data - H_redll • inv(K_redl) • (data - H_redl) ':

if I (dlst capelln < dist codl , (dist capelin < diet redll
called" 2: , 2 .. capelin: - -

else
, Node 2
data" (alldata(i,keep2)];

dist_red _ (data - M_red2} ~ lnv(K_r..d2) • (data - H_red2)"
dillt_cod - ~dat<'l - M_cod2) • inv(K~cod2) ~ (data - M_cod2) ';

it (dist cod <- dist red)
called - 1; , 1 ; cod

else
called - 3; , 3 - red fish
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it called - 1
it Ii <: num cod)

cod called cod ... cod called cod + 1;
eheit-Ii > nlim cod} 'Ii <- (nWII cod'" nWII eapelin))

capelin called cod - capelin called cod '+ 1;
else - - --

cedhsh called cod _ redtish called cod ... 1;
end -- --

el"eif called -- 2
11' (1 <g nWII cod)

cod called cap'" cod called cap + 1;
e1'lleif-U > nlim cod) , Ii <- (nUlll cod + num eapelin))

capelin called cap - capelin called cap '+ 1;
el"e - - --

redtish called cap'" cedtillh called cap'" 1;
e~ - - --

elsei! called ".", 3
if Ii <- nurn cod)

cod called red'" cod called red'" 1;
eheif- (i > nurn cool' Ii <- (nurn cod'" nurn capelin))

capelin called red - capelin called red '+ 1;
elae - - --

cedfish called red _ redfillh called red'" 1;
end -- --

".d
end' end of i • l:lenqth(alldata)

tprintt I 'Number of Features Node 1 - 'd\nFeature List - ',len9th (keepl));
fprintt("d " keepl};
fprintf('\nNwM:>er of Features Node 2- 'd\nFeature List ... ',length(keep2));
tpdntf("d ',keep2);
fprintf( '\n\t\t\t\tPREDICTED ClASS\n ');
fprintf ('\t\tCOD\t\tCAPELIN\t\tREDFISH\n' J;

fprintf('COD\t\U.Of 1\.It' "J\t\.Of (\.It "J\U.Of (\.It "I\n',.
cod called cod,cod called cod/nWII cod·lOO,.
co<Ccalled-cap, cod-called-cap/num- cOO·lOO, .
cod::::called::::red, cod::::called::::red./nWII::::cOO·l00) ;

fprinttl'CAPELIN\t\t\.Of ['.It UJ\t\.Of ('.It UI\t\.Of I\.lt "I\n', ..
eapelln called cod,capelin called cod/num e ..pelin·l00,.
capel in- calle<:Cc ..p, capelln- called-cdp/num- capelln ·100, .
eapelin::::called::::red, capelin::::called::::ced/nur(capelin ·100) ;

!prlntf('REDFISH\t\t1.0f l'l.lt Ul\t'l.Of I\.lt UI\t'.Of l'l.1f ttl\n\n',.
redfiah called cod, redU"h called cod/nurn redt1sh·l00, ..
redt1ah=called=cap, redt1Sh=called::::cap/nurn::::redt1Sh·IOO,
redfiah_called_red, redUsh_called_red!nurn_redt1sh·l00) ;
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Patricia LeFeuvre
Feb 26, 2001

Thesis classifier configuration ~8

2 nodes:
node U - MAli - extract redfish
node 82 - MAH - separate cod and capel in

, classc8.m···,,··clear,

load capelin.txt;
load cod. txt;
load redf1sh.txt;

, Normalize
MN red ~ min(redfish);

:=~~e;,i::U~(~~i~apelin);
MN-" min (min (MN_red,MN_capelin), MN_cod) ;

for i .. l:length(redfish)
norm_red(i,l:251 .. lredfish(1,1:25) - MN).!MX;

for i .. l:length(capelin)
norm_capelin(i,1:25) .. (cape1in(i,1:25) - MN) .!MX;

for i .. l:length(codl
norm_cod (1, 1:25) .. lcod(i,1:25) - MN) ./MX;

num cod" length (norm cod);
nwn- capelin .. length (norm capelln) ;
num=redfish = length (norm=red) ;

, list of features selected
, Node 1 - extract redfish
keepl .. [2 3 4 6 ? 11 12 15 16j;
%Node 2 - cod vs. capelin
keep2 .. [2 3 6 11 12 15 16 20 22 25J;

training_cod" no em_cod;
training capel in .. norm capel in;
traininq=red .. norm_red;

cod called red" 0;
cod-ca1led-cod .. 0;
cod=called=cap '" 0;
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capel in called red "' 0;
capalin:called:CO<t "' 0;
capelin called cap" 0;
redtish- called-red - 0;
redtish- called-cod - 0;
redfish:called:cap - 0;

t'or i _ l:lengt.h(allclat.a)
H codl - mean (training codl:,keepll ;
H-capelinl .. mean (training capelln ( , keepl));
H-redl - mean (training red!;, keepl) ;
K-codl • covltraininq eod(:,keepl)
K:capel1nl '" covltrain1n;_capelinl: keepl»):
K :cadl '"' covlt:caining :ced(:, keepl))
H-cod2 - lDean(traininq cod(:,keep2) :
H-capelin2 '"' mean(traln1n; capelin( ,keep2);
M-red2 - meanitrainin; :cedl:,keep2l .
K-cod2 - cov(t:caining cod(:,keeP2Il
K-capelin2 - cov (training capel in (: keep2l)1
K:red2 - cov (training_redl:, keep2)}

, leave out the sample we are testing
'itn--2)

1t'( l<-num cod)
"_cod1 ; mean (training_cod( t'ind(l: num_cod~"'l),keep1} l ;
K codl" cov(training cQ(1(t'ind(l:num cod~"i),keep1)l;

"-cod2 - mean (training cod (t'ind(l : nurn cod~-i), keep2));
K-cod2· cov(training CQ(1(tind(l:nurn Cod-"'il,keep2)):

elseIt' Ii > nurn cod) , II <- (nurn cod +-num capelin))
H capelinl • - moean(training cape1inlt'ind(l: num capelin--li-num cod)), keep1 J):
K:capelinl - cov(trainlng_capelin(find(l: num_capelin~-(l-num_cod»). keep1);

" cape1ln2 - meanltraining capelin(find(l: nurn capelin~- (i-num cod»), keep2});
K::capelin2 • covltrainin;_capelin(find (l :num_cape1in-- (i-nurn_Cod) J, keep2) );

else
H red1 •

meanltrainlng red(find( 1 :nwa redtish-- fi-nwa cod-mUll capel in} ), keepll);
Kred1: - --

cov (traIning red I find (l :num redfish~"(i-num cod-num ef.pelin)), keep1));
Hred2-· - --

mean (training redlhndl1:num redfish~-(i-num cod-num c.pe1in)), keep2»);
Kred2: - --

eov(traIning redlfind(1:num redt'ish--(i-num cod-num capalin)),keep2)};
end- - --

'end

data· [al1data{i,keepll];
dist cod - (data - M cod1) • inv(K cod1) • (data - " cod1) 'I
dist-capelin· (data-- H capelinl)-· inv(K capelln11-' (data - H cape11n1)':
dist- :ced - (data - M :cedll • inv(K redl) • - (data - " red1}'; -
if (- (di"t_:c..d < dist_cod) , (dist::::red< dist_capalinT)

called· J; , J .. redfish;
else

, Nod.. 2
dlltll • [alldllta (i, keep21 J;

dist capelln - (data - "capelin2) • inv(K_capelin21 • (data -
"_capelin2) '; - -
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if (dist cod <- dist capelin)
called - 1: % 1;;; cod

else
called" 2: % 2 - capelin

if called -- 1
if (i <- nurn cod)

cod called cod" cod called cod + 1;
elseif- (i > nurn cod) , (i <.. (nurn cod + nurn capel in) )

capelin called cod - capelin called cod:; 1:
else - - --

redfish_called_cod .. redfish_called_cod + 1;
ond

elseif called .... 2
if (i <.. nurn codl

cod called cap" cod called cap + 1;
elseif-(i > nlim cod) & (i <- (nUrn cod + nurn capelin))

capelin_called_cap '" capelin_called_cap :; 1:
else

redtish_called_cap .. redtish_called_cap + 1;
ond

elseif called .... 3
it (i <= nurn codl

cod called red = cod called red + 1;
elseif-(i > nurn cod) & (i <.. (nurn cod + nurn capelin))
elS~apelin_called_red '" capelin_called_red :; 1;

redfish_called_red _ redtish_called_red + 1;
ond

ond

end % end of i - l:length(alldatll.)

fprintf( 'Number of Features Node 1 .. %d\nFeature List .. ',length(keepl));
fprintf('td ',keepl):
fprintf( '\nNumber of Features Node 2:0 %d\nFeature List .. ',lengthlkeep2));
fprintf('%d ',keep2);
fprint! (' \n\t\t\t\tPREDICTED CLASS\n');
fprintf (' \t\tCOD\t\ tCAPELIN\t\tREDFISH\n');

fprintf('COD\t\tLOf It.lf UJ\tLO! [Llf Ul\tLOf [Llf %\)\n',.
cod called cod,cod called cod/nurn cod~IOO,.

cod-called-cap, cod-called-cap/nurn-cod'IOO, .
cod-called-red, cod-called-red/nurn-cod~lOO);

fprintt('CAPELIN\t\t%-:-Of [Llf %%l\t%.Of (%.If U)\tLOf (Ll! U]\o',
capelin_called_cod, capel in_ called_cod/nurn_capelin'IOO, .
capel in_called_cap, capel in_called_ cll.p/nurn_capelin'IOO, .
capel in called red, capel in called red/nurn capelin'IOO):

fprintt('REDFISH\t\U.Of [Llf %\l\t%.Of (Llf U]\U,Of (t.It %\]\o\n',.
redtish called cod, redfish called cod/nurn redfish'IOO,.
red fish::::called::::cap, redfish::::called::::cap/num::::redfish*lOO, .
cedfish_called_red, rec'.fiSh_called_red/nurn_ redfish'l 00) ;
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PatrJ.cia LeFeuvre
April 18, 2002
Thesis classifier confiquration '9
2 nodes:
node tl - 3NN - extract cod [based on node 1 class con fig i21
node '2 - Mah - seJnrate capel in and redfish [based on node 2 class con fig

'"
clear,
lOo1ld capeli.n.txt:
load cod.t.xt:
load redtiah.t.xt:

\norfll,1lltze all of the dat ...
HN red" min(redfish);
MN-capelin. min(capelin};
MN-cod. min(cod);
MN-· min(rninlMN red,MN capelin},MN cod);
t1X red" lMX (redtish) : - -
t1X-capelin. max(capelin);
t1X-cod • lMll'(cod);
t1X-. max (max (t1X_red, t1X_capelin), t1X_cod) -MN;

tor i .. l,length(redtiah)
nOrn\_redli,1:25) • (redtish(i,1:25) - MN) ./HX;

tor i .. 1.: lenqth {capel in)
no till_capel in (i,1: 25) • (capelin(J., 1 :25) - HNI./MX;

tor i .. 1:1ength(cod)
notlll_cod(i,l:25) • (codti,1:251 - KHI./KX;

cod called red"' 0;
cod-called-cod"' 0;

~::~~~;l~~~:~ :e~;. 0:
capel1n-callect-cod .. 0:
capelin-called-cap .. 0;
redtiah-called-re;d·O;
redtiah-called-cod .. 0:
redtish::::called::::cap • 0;

nurn cod .. length(norm cod);
num-capelin .. length(nOrm cspelin):
num::::redfillh .. length (norm::::redl :

, liat ot feature" .elected
, Node 1 - extract cod
keep1 .. (3 4 6 9 11 12 15 22 24 251;
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, Node 2 - capelln vs. redU.sh
ke.p2 _ {4 1 10 151;

for i - l:length(alldataJ

K cod2 - cov(norm cod(:,keep2)1;
K-capelin2 - cov(norm capelin I:, keep2));
K:reed2 - cov(norlD_roed(:,keep2));

, leave out the .sample we are testing
if I i<-nwn codl

"cod2;; ml!an{nonn cod(find(l:nwn cod--i.I,keep211;
K-cod2 - cov(nonn eod(find(l:nwn cod--i),keep2J);

elserf (1 > nurn COd)-' (i <- (nurn cOd + nurn capelln))
" capelin2 --mean (nonn Capelin(flnd (1 :nurn capelin-- (i-nwn cod»), keep2) );
K-capelin2 - cov(notTll capelinlfindll:nurn capelin~-\i-nurncod)),keep2));

els~ - - -
M red2 - mean (norem reed ( find (1: nurn roedfish-- 11-num cod-num capelln)), keep21 );
K-reed2 - cov(nolll\ redttindll:nurn redfillh-'"(l-num cod-nurn capel1nll,keep2»;

end - - - --

data - [alldata(l,keepl)];
for j '" l:lengt-h(alldat-al

ifi --j
t.mp - data - alldata(j,keep1);
dist(:!) - sqret(tlllp-tmp'l;

diat(jl .. 2S;

[soretedDist. Index) - .sort ld1at);

it ( lenqth(Und(Index(l:31 <'" nurn cod 1I >- 21 , 2/3 were cod
called - 1; , 1 - cod; -

elae
, Node 2

data - [alldata(i,keep2)1;
dist_capelin - Idata - "_capelin21 - invlK_capelin2l - (data - "_cape1ln2)';

dlst_red - (data - "_red2) - inv(K_red21 - (data - "_red2J';

if (disl. eapelin < dial. red)
called - 2; , 2 - cape1ln

else
called _ J; , J - redfish

.od
end 'end of Node 2

it called -- 1
if (i <- nurn cod)

cod caTled eod .. cod called cod + 1:
e1sei! (i-> nurn_codl , Ii :(- lnurn:cod + nu.'lI_capelinll
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n.d
el••1 t' called ~ 2

if (1 <- oUl1l_codl
cod called e ..p ., cod called Clip'" I:

el"eit (1-> OWII cod) , (1 <- (nWll-cod ... OWll capellol)
clIpel1o_cilled_cap • capelln_called._cip .. 1:

if Ii <- nWII cod)
cod caTled red" cod called red ... I;

else!! U-> own cod) , (i <- (num-cod'" ourn capello))
capelio_ciUed_red .. capelin_called_reo + 1;

n.d
n.d

fprintfl'Node U NUmb'H of Features .. %d\nFeature List .. ',length(keepll);
fprlntf('id ',keepl):

fprintt (' \nNode '2 Numb'H of Features .. 'I;d\nFeature List .. I, length (keep2»);
fprintf("d " keep2):

fprint! (. \n\t\t\t\tPfl.EDICTED ClASS\n' 1;
fprintf (. \t\tCOD\t\tCAP£LIN\t\tREDFISH\n');

fprintfl'COD\t\t\.Of t\.H U)\t'.Of ['.If nj\u.Ot ('.It "]\0',.
cod called cod, cod called cod/nUlll <:00 9 100•.
eocec~111ed-cap. eocecalled-cap/nUlll-cod· 100•..
cod::::cll11ecCred, coc(::cal led::::red/num::::coo" lOOI ;

fprintfl'CAPELIN\t\tl.Of 1\.1f "1\tl.Of [I.lf "1\tl.Of II.lf "I\n',.
capel in called cod,capelin called cod/num capelin·lOO,.
capelin::::called::::cap, capelin::::called::::cap/num::::capelin·lOO, .
capelin_called_red, cilpeli n_called_red/num_capelin·lOOl ;

fprintfl'REDFISH\t\tl.Of II.1f "J\U.Of [1.1f UJ\tl.Of II.lf "l\n\n', ..
redhah called cod, redfiah called coo/num redfiah·lOO,.
redfiah-called-cap, redfiah- called-cap/num- redfiah"lOO, .
redfiah::::called::::red, redfiah::::called::::red/num::::redfish"lOOI ;
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Patricia LeFe\lvre
Apnl 18. 2002
Thesis class:Ltier contig\lration '10
2 nodes:
node '1 - 3NN - extract capelln (based on node 1 cl.ss config '3J
node '2 - !'tah - separate cod and redfish [based on node 2 class config li7J

clear.
10.d capelin.txt;
10;lld cod. txt;
load redtish.t:l<t;

lnormallze allot the dat;ll
MN red· min(redfish);

::~:e:J.~:(~~:~apellnl;
MN-· IlUn(min (MN_red, MN_capelinl. MN_cod);

MX red" lll.'lx(redfish);
I-O':-capelin .. lll.'lx(capelln);
MX-cod .. max (COd) ;
MX-" max (lll.'lX (MX_red,MX_capelin), MX_cod) ~MN;

tor i • l:lenqth(redfish)
norm_red 11, 1:2$) .. (redfiah(i,I:25) - MN)./MX;

tor 1 • 1:1ength(capelin)
norm_c:apelin(i,l:2~) • (C:;IIpelin(i,1:25) - HN)./HX;

tor i .. l:length(codl
no=_cod(1,1:25) - (cod(i,l:25) - HN)./!iX;

cod called red = 0;
cod-called-cod ~ 0;

~:~H~~EI!:~~~;:~~
capeli"- called-cap" 0;
redfish- called-red" 0;
redfish- called-cod .. 0;
redtish::::called::::cap" 0;

n\lm cod - lengthlnorm cod);
n\lm- capel in • length (iiorm capelln);
n\lm:r.dfi"h .. lenqth (norm:r.dl;

, list ot teat\lres selected
, Node 1 - extract capel in
keepl .. [3 11 15 22 2~J;

29



, Node 2 - cod vs. red fish
keep2 - (2 3 4 61 11 12 1$J;

tor i - l:lenql:h(alldatal

H c0ci2 - JDeanlnorm cod(:.keep2JI;
H-capelin2 - JDeanlnorm cllpelinl:.kee-p2JI;
H::::red2 - me.anlnortD_red(: , keep21 I;

, leave out the sample we are testing
itl i<-n..:.'n cod)

H cod2 -; mean (norm codltind{l:num cod--iJ,keep211;
K-cod2 - cov(norm Cod(tind(1:num cod-"il.kee-p2JI;

else-it. (i > num COd)-' (i <- (num cOd + nurn capelinll
M capelin2 --mean (l'Oeil' capelin(find(l: nurn capelin--(i-num codll. keep2111
K::::capelin2 - cov (ncrm_capelin (find (1: num_capelin-- (i-nwn_cOd)) ,keep211 ;

else
M red2 - mesn (nonn r.d(find(l:num redtish--(i-num cod-nwn cspelin)), keepZll;
K-red2 - cov{norm red(tind(l:num redtish--(i-num cod-null' capelin)),keepZ));

end- - - --

dats - [slldata(l,keepll J;
tor j .. 1:length(a1ldatal

1f1-"'1
tmp '" data - al1data(j,keep11;
dist(j: - sqrt(tl!lp~tmp'l;

dutlj} - 2$;

[liortedDist, Index] - sortldistl;

it t 1engthlfindl (Index(l:3) > nl,UD. codl , (Indexll:3) <=
lnum cod+num capelin)11 J >- 21 \ 2/3 were capelln

- called '" 2; , 2 - caFHl'lin;
else

, Node 2
data - [slldatall,keep2)]1

dist cod- (data - H cod21 • inv(K codZ) • (data - H codZI';
(iist_red - (data - H_red21 ~ Inv(K_redZ) • (data - H_red2)';

it (dist cod < dist redl
called - 1; \ 1-- cod

else
called - 3; t 3 _ redfish

eod
end \ end ot Node 2

it called =_ 1
it (i <- nurn codl

cod called cod .. cod called cod + 1;
elseit (1-> nurn_codl , Ii <:'" (nwn:::cod + num_capelin))

30



,"d
else!! called •• 2

if (1 <- nurn cod)
cod called cap" cod called cap + 1 ..

elsei! (1-> nurn codl &. Ii <- (nUrn-COd + nwn capel in) )
capelio_called_cap .. capelin_called_cap .. 1:

it (1 <- nUln cod)
cod called red'" cod called red + 1:

elsei! 11-> nurn cod) &. Ii <- (num-cod + Ourn capelin))
capello_called_red .. capelin_called_red .. 1;

fprintf( 'Node '1 Number of Features D %d\nFeature List .. ',length{keepl)) ..
fprintf('%d " keepl);

tprintf (. \nNode '2 Number at Features" %d\nFeature List = ',length (keep2l ) ..
fprintf('%d " keep2l;

fprintf('\n\t\t\t\tPREDICTED CLASS\n');
fprintt (. \t\tCOD\t\tCAPELIN\t\tREDFISH\n') ..

fprintf('COD\t\tLOf ['Ll! t't1\U.Of ILl! t'tl\t%.Ot (t.lt ttl\n',.
cod called cod,cod called cod/nwn cod*100,

~~~=~:~i:~=~:~:~~~=~:ii:~=~:~~~~~=~~~:igg; ;
fprintt('CAPELIN\t\tLOt [Ll! UJ\t%.Ot [L1f Uj\t%.Ot [%.H UJ\n',.
capelin called cod,capelin called cod/num capelin*lOO,

~:~:i~~:=~:~i:~=~:~:~:~:it~:=~:ii:~:=~:~~~~~=~:~:tt~:igg; ;
fprintf('REDFISH\t\t%.Of [%.If UJ\t%.Of (%.If %%j\t%.Of (%.If UJ\n\n',.
redt1sh called cod, redt1sh called cod/num redtish* 100, .
redfish-called-cap, redfish- ca1led-cap/num-redfish*100,
redt"ish:::called:::red, redfish:::called:::red/num:::redtish* 100) ;
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pat~icia LeFeuv~e

April 23, 2002
'ih~~:s~laSSiher cOl'ltiquration '11

node U - 3NN - extu,ct redtish [based on nod. 1 class confi9 '4)
node '2 - Mah - separate cod and capel in [based on node 2 class conU9 '8)

cl.ar,
load capelin.~x~;

load cod.~x~;

load redf1sh.tx~;

'noOlll1li-.:e all of the data
MN red· min(redfish);

::~:e:i~~(~:~apelin);
MN-. min (min (MN_red,MN_Capelin) ,MN_cod);

MX red· max (redfillh) ;
MX-capel1n - maxlcllpelinl;
MX-cod· maxlcod);
MX-- max (rnax IMX_red, !iX_capelinl, MX_cod) -MN;

for i .. l:lenqth(redtishl
norlll_red(i,1;25) • (redfillh(i,l:25) - MN).!MX;

for i .. l'lenqth(c...pelln)
nOtm_capelln(i.l:25) • (capelin{i.l:25) - MN)./KX;

for 1 • 1:1enqth(cod)
norm_codll,l:251 .. (cod(1,1:25) - ~)./Kl':;

cod called red" 0;
cod-called-cod .. 0;
Cod-called-cap" 0;
cflpelin called red • 0;

~:~:ii~:~:ii~:~~: ~~
redfish-efllled-red·O;
redtiah-ealled-cod· 0;
redfish:edled:eap - 0;

nurn cod" length (norm cod);
nl.lrn-c ...pelin • length(nOrm eapelln};
num:>:edfish _ lenQth(norn,:r.d);

, list of feature.!! selected
, Node 1 - extract redfish
keepl • [4 9 10 11 12 15 1620 24 25);
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\ Node 2 - cod vs. capelin
keep2 .. [2 3 6 11 12 IS 16 20 22 2~1 I

tor i e l:lenqth(alldat.al

H cOO2" meanlnotrll cOOI:.keep2111
H-capelin2 - mean Inorm e"pel1n(:. keep211 I
H::::red.2 - lOOanlnorm_red.l:.keep211;

K c0d2 .. cov(norm cOO(:.keep2111
K-capelin2 .. eovlnorm capelint:.keep211;
K::::red2 '" covlnortll_redl:. keep211 I

\ leave out the saI:lple we ace test.1nq
if I i<"'num codl

H cod2;; meanlnorm co<l(flnd(l:num cod--il.keep21}I
K-cod2 - cov(norm codlf1ndll:num Cod--i}.keep2111

e18eIt Ii> num cod}-' 11 <- (nwn cOd + nwn capelinl}
"capel1n2 --mean (norm capel1nlfind(1:num capelin~-(1-num cod}}.keep2}}1
l(capel1n2 _ cov (nOrlfl_capelin(find (1: num_cllpelin~-(1-num_Coo)}. keep2}} ;

el"e
"_red2 - mean Inorm_ced (find (1: num_",edfillh-_ (1-num_cod-num_capel1n) ), keep2) ) ;
X red2 = cov(nocm red(find(l:num redfish~-(i-num cod-num capel in) I. keep2» I

end- - - --

data - [<Illdata(i.keepll];
for j - l:lenqth(alldau,)

if1--j
t.mp - d"ta - alldatal).keeplll
dist(jl - aqrtlt.lIlp·tlnp'll

dist(jl - 2S1

(sort.edDiat., IndeJt] - sort. ldi.st.1 I

If ( lenqth(tindIIndex(1:31 > (nUlll cod+nWll capelin))I >- 21\ at lea.st 213
were redfish - -

called - 3; \ 3 - cedfishl
elae

\ Node 2
data - [alldatali,keep2}jl

di"t capel1n - (data - H c",pelin2} • invlK_capelin21 • ld",ta -
M capel1n2}'; - -

- dist._cOO - (dat.a - M_cod2} • inv(K_cod2) (data - "_cOO21 'I

if (dist cod. <- dist. capel in I
called - 1/ \ 1 ;; cod

else
called - 21 \ 2 - capelin

if called. == 1
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if (i <_ num cod)
cod_called_cod _ cod_called_cod .. 11

el.,eif (1 > nwn codj , (1 <- InWll cod .. nl.llll capelinll
capel~n_cilled_cod - capel~n_called_cOet .. 1;

o.d
elaeif called -- 2

if (i <- n\lllll cod)
cod called cap - cod called cap" 1;

elseit (i-> n\lllll Codj , (i <- (nUlll-cod .. nUlll capelinl)
capell.n_called_cap ~ capeli;;_called_cap .. 1;

redfiah_called_cap ~ redfish_called_cap .. 1;

if (i <- num codl
cod called red - cod called red .. 1;

elsei! (i-> nwn cod) , (1 <- (nwn-cod .. n\,lm c"'pelin))
capelin_called_red - capelin_called_red .. 1;

Md
o.d

fprint! ('Node '1 Nwnber o! fe"'t\,lre' - ld\nFeatl,lre Li't - ',length (keepl));
fprint!('\d " keepl);

!printf( '\nNode 12 Nwnber o! Featurea - \d\nFeature List - ',lengthlkeep2));
!ptint!('ld " keep2);

fprint!( '\n\t.\t\t\t.PREOICT£O CLASS\n' I;
!print!( '\t\tCOO\t\tCAP£LIN\t\tREOFISH\n 'j;

!print!\'COO\t\tt.01' ".If "1\tl.Of l\.lf ")\tl.Of [l.1f "1\n',.
cod c;alled cod,cod c"'lled cod/nUl'll cod-l00,.
Cod-called-cap, cocecalled-cap/mllll-cod-100, .
cod:::called:::red, cocCcalled::::red/nUlll::::cod-1001;

!print1'('CAP£LIN\t\tt.01' ['.tt "]\t'.01' (l.tt "l\t'.Of l\.tt "l\n',.
c",peUn c"'lled Cod,cllpelin Called cod/num capelin-lOO,.
capel in- called-cap, capel in- called-cap/nwn- capelin-lOO, .
capel in::::called::::red, capel in:called:red/num::::cllpelin-lOO) ;

1'printf('R£OFISH\t\tt.O! ['.tt "l\tt.Of I\.1f "1\tl.O! [l.lf "I\n\n', ..
redfiah called cod, redfiah called cod/num. redfi'h-lOO,.
redfish- called-clip, redfillh- called-cap/num- redfillh·l 00, .
red1'ish::::called::::red, redfll1h::::called::::red/num::::redfish· 1001 ;
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P"'trici,," LeFeuvre
April 23, 2002

Thesis cl""ssifier confi9ur"'tion 112
2 nodes:
node '1 - !"..ah - extr",ct cod [based on node 1 cla•• confiq '61
node '2 - 3NN - separAte c.pelin and redf'i.h [ba.ed on node 2 cla•• confiq .2]

clear,
load capelin.txt;
load cod.t.xt;
load redfish.txt;

'normali;:e all of the d.la
KN red" min(redfish):
HN-capelin .. min(c.pelinl;
MN-cOO· min(cOO);
MN-· min (min (l·tN_red, MN_c.pel1nl, MN_cod);

MX red" max(redUsh);
MX-capelin .. max (capel in) ;
MX-cod" ll\llX (cod) ;
MX-· max (max (MX_red, MX_capelinl, MX_cod) -MN;

for 1 .. 1:1ength(redf1eh)
nOrJrI_red(i,1'25}" (redfiah(i,1:25) - MN)./MX;

for i .. 1,length(cape11n)
nOrl'l_capel1n (i,l: 25) • (capel in (i,l :25) - MN} ./MX;

f'or i .. l:lenqthlcod)
norm_cOOI1,l:25) • (cod(i,1:25) - MNI./MX:

alldata • (no=_cod: nOOll_capelin; norm_:cedj;
node2data .. [no=~cepelin; narDI_red];

cod called red'" 0;
cod-call ed-cod .. 0;
cod-c.lled-cap" 0;

~:~:H~:~:nE:~E:~~
red fish-called-red" 0:
redhsh-called-cod .. 0;
redfish:called:c,,"p .. 0;

nurn cod .. length(norm cod);
nurn:c,,"pelln • lenqth(norrn_c,,"pelinl;
num_redfish - length(norm_redl;

, 11st of features selected
, Node 1 - extract cod
keepl .. [2 3 4 6 7 11 12 15J;
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, Node 2 - cClpelin vs. fedUsh
keep2 - [3 9 11 IS 22 24 25):

K codl '" cov(norm cod(:,keepll);
K-capelinl - cov(norm cllpelin(:'''''''epl)I;
K::::fedl .. cov(norm_fedl:,keepl)I;

, leave out the aample we afe testinq
H( i<*num cod)

H codl; mean(noIlll cod(find(l:num cod--il,keepl));
K-cocil "" cov(norrn eod(Und(l:num cod-"'l),ke",plll;

elaert (i > num_Cod)-' (i <- Inurn_cOd + nwn_capelinl)
H capelinl - mean(norm cape!in(find(l:num capelin-·(i-num cod)},keepl));
K-capelinl - coy (norm capt'llin (find( 1 :nwn -Capelln-_U_num cod) ), k",,,,pl) );

els~ - - -
H fedl • mean (nofm fed (find (1: nurn fedfish-- (i-num cod-num capelinl), keepl) );

endK::::fedl - cov(nOrm_red (tind (1: num_redfish-. (i-num_cod-num_capelin) 1 ,keepl) );

data· [alldata(i,keepll];
dist cod· (data - M cadI) • inv(K codl) • (data - M codl) ';
diat-capelin. (data-- M capelinll-· inv(K capelinll-' (data - M capelinl) ';
diat-fed'" (data - M fed!) • inv(K cedI) '-(data - H cedll'; -
it (-(dist cod < dist capeliol , (dLst cod < dist fed) I

called-· 1; , 1 O'-cod; - -
else

, Nocle 2
data· [alldata(i,keep21);

aameCount • 0;
tOf ) .. 1:lenqth(nocle2data)

tr:p - data - node2datalj,keep211
dist(j} - sqft(tq>·~'l;

if (dist(l) .- 0) , the Saml!'! p0l.nt so don't use
dut(jl -- 25;
saraeCount • sllll'leCOunt + 1 I
it sameCount > 1
",ndfpdntf('ECfOC - too many identieal points 'II

ood
[soctedDist, Index] • soct(dist);

it ( lenqth(find(Ind",x(l:3) <- num capel in )) >- 2) , 2/3 wec", cClpelin
call ..d _ 2; , 2 • capel in -

called" 3; , 3 .. cedfish

end '",nd of Node 2

36



i! called -- 1
if (i <- num codl

cod_called_cod - cod_called_cod + 1;
elsei! (i > nUIll cod) & (i <- (nurn cod + num capelin})

capelin_called_cod - capelin_called_cod + 1;

elsei! called -- 2
i! (i <- num cod)

cod_called_cap" cod_called_cap + 1;
elsei! Ii > nurn_codl & (i <- (nurn_cod + num_capelin))

capelin_called_cap - capelin_called_cap + 1;

if (i <- num cod)
cod called red'" cod called red + 1;

elsei! (i-> nurn cod) & (i <" (nurn-cod + num capelin))
capel in_called_red - capelin_called_red + 1;

fprintf('Node f1 Number o! Features - %d\nFeature List _ ',length(keepl));
fprintf('%d " keepll;

fprintf (' \nNode 82 Number of Features - %d\nFeature List'" ',length (keep2) );
fprintf('%d ',keep2);

fprintf (' \n\t\t\ t\tPREDICTED CLASS\n');
fprintf ( '\t\tCOD\t\tCAPELIN\t\tREDFISH\n') ;

fprintt('COD\t\t%.Of ['-If UJ\t%.O! [%.l! Ul\t%.Of (%.l! U]\n',.
cod called cod,cod called cod/nurn cod*lOO,.
cod::::calle{:cap, cod::::called::::cap/nurn::::cOd* 100, .
cod_called_red, cod_called_red/nurn_cod* 100) ;

fprintf('CAPELIN\t\t%.Of (%.If UJ\t%.O! !%.l! U]\t%.Of [%.l! %%l\n',.
capelin_called_cod, capel in_ called_cod/num_capelin* 100,
capelin called cap,capelin called cap/num capelin*lOO,
capelin::::called::::red, capel in::::called::::red/num::::capel in * 100) ;

fprintf('REDFISH\t\t%.Of (Ll! %%J\t%.Of (%.If 'i%l\t%.Of [%.If Ul\n\n',.
redfish called cod, redfish called cod/num redfish*lOO,.
redfish::::called::::ca.p. redfish::::called::::cap/nurn::::redfish* 100,
red fish_called_red, redfish_ called_red/num_redfish *100) ;
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Patricia LeFeuvre
April 23, 2002

Thesis classifier contiguration 813
2 nodes:
node U - Mah - extract capelin [based On node 1 class confiq jj7]
node j/2 - 3NN - separate cod and redtish [based on node 2 class config jj3]

clear,
load cllpelin.txt;
load cod. txt;
load redfish.txt;

%norrnalize all of the data
MN red - min(redfishl;

:::::~~~e:i~i~(~~)(~apelin);
MN-- min (min (MN_red, MN_capelin), MN_cod) ;

!'IX red - max(redtishl;
MX-capelin - max(capelin);
MX-cod = max (cod);
MX-· max (max (MX_red,MX_capelin), l'C<_codl-MN;

for i • l:lenqth(redtish)
norm_red 11, 1:25) .. (redtish(i,1:25) - MN) ./MX;

tor i ~ 1: lenqth (capel in)
norm_capelin(i,1:25) ., (capelin(i,1:25) - MN) ./MX;

tor i - l:lenqth(cod)
norm_cod(i,1:25) = (codI1,1:25) - MN) ./MX;

cod called red _ 0;
cod-called-cod· 0;

g~m~g;m=~~r:::
redfi"h- called-red. 0;
redfi"h-called-cod D 0;
redtish::::calle(:cap = 0;

% list at features selected
% Node 1 - extract capelin
keepl _ [3 4 7 11 15 16];
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t Node 2 - cod V5. redfish
keepZ- (49121520];

for i - l:length(alldata)

K codl - cov(norrn codl :,keepl));
K::::cllpelinl - covl~orm_cllpelin(:,keepl));
K_redl - cov(norrn_red(:,keepl»);

" leave out the sample we are testing
if I i<-num cod)

M codl :; mean (norm cod( find (I :num cod--i) ,keepl) );
K-codl· cov(norm cod(findll:num cod--il,keepl));

elseIf (i > num codl-' 11 <: (nwn cod + num capel in) )
M capelinl --mean (norm capel in(find (I: num capelin-- (i-num cod) l, keepl) l;
K::::capelinl • cov(nol"m_Capelin (find (I :num_capelin-- (i-nwn_cod) l, keepl) );

else
M redl· melln(nOrm red(find(l:nurn redfi5h--(i-nurn cod-num capelin)),keepl));

endK::::redl - cov (norm_red I findO :num_redfish-_ (i-num_cod-num_capelin) ) ,keepl) J ;

data - [alldata(i,keepl)];
dist cod - (data - H codl) * inv(K codl) * (data ~ M cadI) ';
dist-capelin - (data-~ H capelinl)-* invlK capelinl)-· (data - H capelinll ';
dist::::red - (data - M_redl) • inv(K_redl) *-(data - H_redl) '; -

if ( (dist capelin < dist cod) , (dist_capelin < dist_red) l
called-- 2; % Z = capel in;

else
% Node 2

% Node 2
data - [alldata(i,keep2)];

sameCount - 0;
for j ~ 1:length(node2data)

tmp - data ~ node2data(j,keep2);
dist2(jl - sqrt(tmp*tmp');
if (dist2(j) ~- 0) % the same point so don't use

dist2(j) =.. 25;
sameCount· sameCount + 1;
if sameCount > I

fprintf('Error - too many identical points ');
.ed

.ed
eod
[sortedDist, Index] - sort(dist2);

if ( lenqth(find(Index(I:3) <_ num cod l) >- 2) % 2/3 were cod
called - 1; % 1 - cod -

called ~ 3; 'il 3 '" redfish

end % end of Node 2
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it called .... 1
if (1 <- num COd)

cod_called_cod _ cod_call ed_cod + 1;
elsei! Ii > num codl & (i <- (num cod + num capelin)

capel in_called_cod .. capel in_called_cod + 1;

elsei! called -- 2
i! (1 <'" num cod)

cod called cap - COd called cap + 1;
elsei! (i-> num cod) & (1 <_ (num-cod + num capelinl)

capelin_called_cap - cape lin_call ed_cap + 1;

i! (1 <- num cod)
cod called red - cod called red + 1;

elsei! (i-> num cod) , (i <- (num-cod -l- num capelin»
capelin_called_red - cape11n_called_red + 11

fprintf( 'Node III Number o! Features'" %d\nFeature List _ ',length(keep1}) I
fprint!( '%d ',keepl);

fprintf('\nNode'2 Number ot Feature" _ %d\nFeature List _ ',length{keep2))I
tprintf( 'td ',keep2);

fprintt( '\n\t\t\t\tPREDICTED CIASS\n');
!printf ( '\t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fprintf('COD\t\t%.Of [%.If Uj\t%.Of [%.1! UJ\t%.O! {t.lt UJ\n' •.
cod called cod,cod called cod/num cod·IOO,.

~~=~:ii:~=~:~: ~~~=~:ii:~=~:~~~::=~~~: i~~; ;
fprintf('CAPELIN\t\t%.Of (%.If U]\tLOf [%.It t'iJ\t%.Of [\.It UJ\n',.
capel in called cod, capel in called cod/num capelin"IOO,.
capel in::::called::::cap, capel in::::called::::cap/num::::capelin"lOO, .
capel in_called_red, cape11n_called_red/num_capelin"lOO) ;

tprintf('REDFISH\t\t%.Of {L1! Uj\U.Of [\.If UI\t'i.Ot [t.lf Ul\n\n',.
redfish called cod, redfi ... h called cod/num redfish"lOO,.
redfish::::called::::cap, redtish::::called::::cap/num::::redfi"h"lOO, .
redtish_called_red, redtish_called_red/num_redtish'100) I
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patricia LeFel,lvre
April 23, 2002

Thesis classifier configuration 1114
2 nodes:
node 11 ~ Mah - extract cape1in [based on node 1 class config '6)
node ~2 - 3NN - separate cod and redfish [based On node 2 class con fig 14)

clear,
load capelin.txt;
load cod. txt;
load redfish.txt;

%normalize all of the data
MN red'"' min(redfish);
MN-capelin .. min(capelin);
MN-cod .. min (cod) ;
MN- .. min (min (MN_red,MN_capelin), MN_cod) ;

MX red" max(redl'ish);

:=~:e:i~:(~~:~apelin);
MX-" max (max (MX_red,MX_capelin), HX_cod) -MN;

tor i - 1:1ength(redfish)
norm_red[i,1:25) .. (redfish(i,1:25) - MN) ./MX;

for i .. 1:1engthlcapelin)
norm_capelin(i,1:25)" (capelin[i,1:25) - MNI./MX;

tor i .. l:length(cod)
norm_cod(i,1:25) '"' (codli,1:25) - MN)./MX;

alldata .. [norm cod; norm capelin; norm red);
node2data .. [noCm_cod; norm_capel in] ; -

cod called red" 0;
cod-called-cod'" 0;

~:~~H~;~:~~:~=~~r:g~
capelin called cap" 0;
red fish-called-red" 0;
redfish-called-cod'" 0;
redfish=called=cap .. 0;

% list of featl,lres selected
% Node 1 - extract redfish
keep1 .. (2 3 4 6 7 11 12 15 16);
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% Node 2 - cod VIl. capel in
keepZ - [3 4 6 7 9 12 15 20];

tor i - l:length(alldataj

M codl" mean(norm cod(:,keepl));
M-capelinl - mean (norm capelin (:, keepl) );
M::::redl" mean(norm_red(:,keepl));

K_codl - cov(norm_codl:,keepl});
K_cllpelinl - cov(nofln_capelin(:,keepl));
K_redl - cov(norm_red(:,keepl»);

% leave out the sample we are testing
it( i<-num cod)

M codl -; mean(norm cod(find(l:num cod~-i),keepl));

K-codl" cov(norm codlfindll:num cod--i},keepl»);
elseIt (i :> nwn COd)-ji Ii <- (num cod + num capel in) )

M capelinl --mean(norm capelin(find(l:num capelin~-(i-nwn cod),keepl»;
els~::::capelinl - COV(nOrm_capelin (find (l :num_capelin--(i-num_cOd) ), keepl) );

M redl - mean (norm red( find 0 :num redfish-- (i-num cod-num capelin}) ,keepl»;
endK::::redl = cov(nOrm_red(find(l: num_redfish-- (i-num_cod-num_capelin», keepl»;

dlltll - [alldata(i,keepl)];
dist cod ~ (data - M codl) • inv(K codl) • (data - M codl) ';
dist-capelin = (data-~ M capelinl)-' inv(K capelinl)-' (data - M capelinl) ';
dist::::red - (data - M_redIl • inv(K_redl) ·-(data - M_redl) '; -

it ( (dist red < dist cod) , (dist red< dist capelin))
called .. 3; % 3 -; redtish; - -

data - [alldata(i,keepZ}];
sameCount'" 0;

tor j - l:length(nodeZdata)
tmp" data - node2data(j,keep2);

dist2(j) _ sqrt(tmp*tmp');
if (dist2(j) == 0) , the same point so don't use

distZ(j) -- 25;
sarneCount - sameCount + 1;
if sameCount ,. 1

tprinttl'Error - too many identical points\n 'I;

endPaulle;

.od
.od
[sortedDist, Index) .. sort(dist2);

if ( length(tindllndex(1:3) <- num cod)) :>_ 2) , 2/3 were cod
called" 1; , 1 - cod -

else
called - 2; % 2 = capelin
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if called -- 1
if (i <_ num cod)

cod called cod - cod called cod + 1;
elseif (i-> num_cod) ~ (i <- (num:::cod + num_capelin))

capelin_called_cod - capelin_called_cod + 1;

elseif called -- 2
if (i <- num cod)

cod called cap'" cod called cap + 1;
elseif (i-> num codl ~ Ii <'" (num-cod + num capel in) )

capelin_cAlled_cap - capelin_called_cAp + 1;

if (i <- num cod)
cod called red - cod called red + 1;

elsei! li-> num cod) ~ (i <- (num-cod + num capel in) )
capelin_called_red .. capelin_called_red + 1;

fprint!( 'Node #1 Number of Features _ %d\nFeature List - ',length(keepl));
fprintf('%d " keep1);

fprint! (' \nNode 112 Number of Features" %d\nFeature List _ " length (keep2) );
fprintf('%d " keep2);

fprintf (' \n\t\t\t\tPREDICTED CLASS\n');
fprint! (' \t\tCOD\t\tCAPELIN\t\tREDFISH\n') ;

fprintf('COD\t\U.Ot ILlt U)\t%.Of ILl! UJ\t%.Of [%.l! %%j\n',.
cod called cod,cod called cod/nurn cod*lOO,
cod-called-cap, cod-call ed-cap/num- cod*100, .
cod:::called:=red, cod:::called:::red/nurn::::cod* 100) ;

fprintf('CAPELIN\t\tLOt [Ll! Uj\U.Ot [%.l! Uj\U.Ot ['S.lt UI\n', ..
capelin called cod,capelin called cod/nurn capelin*100,
capel in::::called::::cap, capel in::::called::::cap/num::::capelin* 100, .
capel in_called_red, capeiin_called_ red/nurn_capelin* 100) ;

fprintf('REDFISH\t\t%.O! [Llf UJ\t%.Of [%.It %%l\t%.Of [%.l! %%I\n\n'.
redfi"h called cod, redfi"h called cod/num redfi"h*100,.
"edfi"h::::called::::cap. r"'dti"h::::called::::cap/num::::redti"h *100.
redti"h_called_"ed, "edfish_called_red/nurn_ "edfish* 100) ;
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% sbs3nn.m
% sequential backward selection for the
: 3-nearest neighbour cl<lssit1ers for cod, capel in, and red!ish

% Patricia LeFeuvre

clear,
load capelin.txt;
load cod. txt;
load redfish.txt;

%normalize all of the d<lta
MN red" min(redfish);
MN-capelin • min(c<lpelin);
MN-cod" min(cod);
MN-'" min (min (MN_red, MN_capelin) ,MN_cod);

MX red'" max (redfish);
MX-capelin .. max (capelin);
HX-cod" rnax(cod);
MX-'" max (max (MX_red. MX_capelinl ,MX_cod) -MN;

for i .. l:length(red!ishl
norm_red(i,1:25) .. (redfish(i,1:25) - MN) ./MX;

for i .. 1:length(capelin)
norm_capelin (i, 1 :25) .. {capelin (i, 1: 251 - MN) ./MX;

for i • l:length(cod)
norm_cod(i,1:25} = (cod(i,1:25) - MN)./MXI

% Classifier U or stage 1 of the other three classifiers
alldata '" [norm_cod; norm_capelin; norm_red);

% Classifier '4 - stage 2 cod vs capel in
%alldata '" [norm_cod; norm_capelin] I

nurn cod" length (norm cod);
num=capelin .. length (norm_Capelin) ;
num_redfish" length(norT'l_red);

U CLASSIFIER
%keepl" (1 3 4 56? ,,~O 11 12 15 16 17 16 1920222425]; % After depth
feature removal
%keepList '" [1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 I);
Analysis results

% list of features still in the running
keepl .. [1 2 3 4 5 6 7 9 10 11 12 15 16 24 25);

% After depth feature removal and fact Ana
keepList .. [1 I 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1);

% no feret features
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:~:el ~r~~~7ot best pertormance tor each number ot features

bestForNumFeatures(i) - 0;

for num_removed .. 0: 16

performance" zeros(25,1);
torfeat-l:25

iflkeepList(feat) .... 1)
newkeepList - keep List;

it Inurn removed> 0)
- newkeepList(feat) _ 0;

keep 1 - find(newkeepList =: 1);
cod called red" 0;
cod-called-cod _ 0;

~~~~~~~l~~~~:~ ;e~; .. 0;
capelin-called-cod" 0;
capelin-called-cap" 0;
redfish-cdlled-red - 0;
redtish-called-cod" 0;
redfiSh::::calle{::cap _ 0;

for i - l:length(alldataJ
data" [alldata(i,keepl»);

tor j '"' l:length(alldata)
it i -- j

tmp .. data - alldata(j,keepl);
dist{j) = sqrt(tmp*tmp');

distljl .. 25;

[sortedDist, Index] - sort(dist};

if ( lengthltind(Index(I:31 <_ nW'Lcod » >- 2) % 2/3 were

called - 1; % 1 .. cod;
elseif ( length(tind( (Index(I:3) > nwn cod) & (lndex(l:3)

<- (num_cod+num_capelin») ) >_ 2} % 2/3 Were capel in -
called - 2; % 2 .. capelin

elseif ( length(findllndex(l:3) > (nwn cod+num cdpelin))) >_ 2) %
2/3 were redtish - -

called"' 3; % 3 - redtish

%3 w;;,y tie - use the distance to the nearest
neighbour

if (Index(l) <- num cod)
called" 1; -

elseit {lndex(l} <- (num cod+num capel in) )
called'"' 2; - -

called - 3;
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••d
it called ... 1

if (i <.. num_cod)
cod called cod" cod called cod';' 1;

elseif (1-> num_cod) , (1 <- (num::::cod .;. nwn_capelin))
capelio_called_cod .. capelin_called_cod .;. 1;

••d
elsei! called -- 2

if (1 <= nwn cod)
cod_called_cap - cod_called_cap + 1;

elsei! (1 ) nwn cod) , (i (= Inurn cod + nwn capelin))
capello_called_cap" capel in_called_cap + 1;

redfiah_called_cap .. redtish_called_cap .;. 1;

it (1 <'" nwn cod)
cod called red" cod called red.;. 1;

elsei! (1-> nurn cod) , (1 <= Inurn-cod + num capelin))
capello_called_red" capelin_called_ced + 1;

%Classifier n
%perfoI:mance(feat) .. (cod called coct/num cod) +

(capelin_caUed_cap/num_capelin) + (redfi"h_called_red/num_redtishl;

%Classitier 82 - stage 1 cod detection
%performance(teatl .. (cod called cod/num cod) +

(l-capelin called cod/num capel in) + (l-redflsh called cod/num redfish):
- %Clas5ifier 12 - stage 2 capel in vs-redfish detectIon
%performance{feat) '= capelin_called_cap/num_capelin +

redfish~called_ red/num_ redfish:

%Classif1er 13 - stage I capel in detection
%perforlll<'lnce(feat) - (l-cod called cap/num cod) +

(capel in called cap/num capelin) + (l-redfish called cap/num redfish);
- %Classifier-13 - stage 2 cod vs redfish detection

%perforlll<'lnce(feat) - cod called cod/num cod +
redfish_called_red/num_redfish: - - -

%Classifier 14 - stage 1 redfish detection
%performance(feat) - (l-cod called red/num cod) +

(l-capelin called red/num capel in) + (redfi,sh called red/num redfish):
- %Classifier 14 - stage 2 cod vs capel in detection

performance (feat) - cod_cal1ed_cod/nu"'_cod +
capel in_called_ cap/num_ capel in;

end % if(keepList(feat) -- 1)
end % for feat - 1:25

[Be,stPerformance, I] - max(perfol:mancel:
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ind .. lenqth(keepll:
bestForNurnFeatures (ind> '" BestPertormam::e;

it (num removed> OJ
en~eePLIst(I) .. 0:

!print! ( '\nnum Features removed = td, performance" %. 3f\0', num removed,
BestPerformance): -

keep I .. !ind(keepList ... lj;

cod called red .. 0;
cod-called-cod" 0:

m~m~gm~=j:r:::
red!ish-called-red" 0;
cedtish-called-cod" 0;
redfish::::cal1ed::::cap .. 0;

for i .. l:length(alldata)
data - (alld.. t .. li,keepl) I;

for j - l:ler:gth(alldata)
if i -~ j

t!l1p .. data - al1data(j,keepll;
dist(j) .. sqrt{tmp*tmp'};

dist(j) .. 25;

[sortedDist, Index] = sort Idist):
it ( length(find(Index(I:3) <'" nurn cod) 1 >~ 2) % 2/3 were cod

called'" 1; % 1 ~ cod; -
elseif ( length{find( (Index(l:3) > nurn cod) , (Index(l:3) <­

(nurn cod+nurn capelin))) j >'" 21 % 2/3 were capel in -
- - called ~ 2; t 2 .. capelin

elseif ( length(!ind(Index(l:31 > Inurn cod+num capelin))) >= 2) % 2/3
were red!ish - -

called - 3; % 3 .. capelin

%3 way tie - use the dist ..nce to the nearest neighbour
if (Index(l) <- nurn cod)

called - 1; -
elseif (Index(!) <- (nurn cod+num capelio) >

called - 2; - -

if c .. l1ed "'= 1
if (i <:- nurn cod)

cod_called_cod ., cod_call ed_cod + 1;
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elsei! (i > num cod) & (i <m (m.Ull cod + nurn capelinl)
capelin_called_cod _ capelin_caUed_cod + 1;

elself called -- 2
if (i <- nurn cod)

cod_called_cap - cod_call ed_cap + 1;
else1f (1 > nurn codl & (i <- (nurn cod + nurn capelln))

capelin_called_cap - capelin_called_cip + 1;

if (1 <- nurn cod)
cod_called_red - cod~called_red + 1;

elseif (1 > nurn cod) & (i <.. (num cod + nurn capelin})
capelin_called_red '" capelin_called_red + 1;

fprintf ('Number of Features - %d\nFeature List - ',length (keepl» ;
fprintf('%d " keepl);
fprintf (' \n\t\t\t\tPREDICTED CLASS\n') ;
fprintf (' \t\tCOD\t\tCAPELIN\t\tREDF!SH\n' 1 ;
fprintf('COD\t\t%.Of [%.If UJ\t%,Of [%.If Uj\tLOf [%.If UI\n',.
cod called cod,cod called cod/num cod~IOO,.

cod-call ed-cap, cod-call ed-cap/nurn-cod~100, ..
cod-call ed-red, cod-called~red/num-cod*IOOI ;
fprIntf('cAPELIN\t\t\.Of [%,If UI\t%.Of ['Llf UI\t\.Of [%.If UJ\n'"
capel in called cod, capel in called cod/num capelin*lOO,.
capelln-called-cap, capel in- called-cap/num- capelin-100, .
capel in- called-red, capelin- called-red/num- capelin~lOOl ;
fprtntt('REDFISH\t\t%.Of [i.lf UI\t\.Of [%.If Ul\t%.Of [%.If Uj\n\n',.
redfish called cod, redfish called cOd/num redfish~100,.

redfish-called-cap, redfish- called-cap/num-redfish-100, .
redfish-called-red, redfi.'lh- called-red/num- redfish*lOOl;
paUSe(l); - - - -

plot (bestrorNumreatures)
xlabel('number of features used')
grid
ylabel('average cl........ ific.. tion ..ccur..cy (percentage)' >
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% sts3nn.m
% sequential forward "election fOJ:: the
% 3-ne"J::e!lt neighbouJ:: classifie"s fo" cod, capel in, and "edfish,
% Pat"icia LeFeuvre

cle"",
load capelin.txt;
load cod. txt;
load redfish.txt;

%no:nn<llize ,,11 at the data
MN "ed _ min(redfish);

:=~~~e:i::u~(~~:~apelin);
MN-- min (min (MN_red,MN_capelin) ,MN_cod);

MX "ed" max("edfish);
MX-capelin .. max(c"pelin);
MX-cod" max(cod);
MX-" max (max (MX_J::ed,MX_c"pelin) ,MX_cod) -MN;

to" i .. l:lengthlredtish)
no"m_red(i,1:25) .. (redtiSh(i,1:251 - MN)./MX;

tor i .. 1:1ength Ic"pelin)
no"m_capelin(i,1:25) = (capelin{i,1:25) - MN)./MX;

fa" i .. l:lengthlcod)
norm_cod(i,I:25) .. (cod(i,1:25) - MN) ./MX;

% Classifie" U or stage 1 of the othe" th"ee classifiers
alldata .. (norm_cod; norm_capelin; norm_red];

% Classifier .4 - stage 2 '::od vs cape1in
%alldata ~ [norm_cod; norm_capelin);

num cod" 1engthlnorm co<::);
num-capelin .. length(nOrm capelin);
num="edfish .. 1ength(no"m="ed);

% list of featu"e" !ltill in the running
%keepl .. [1 3 4 5 6 7 9 10 11 12 15 16 17 18 19 20 22 24 25]; % Aite" depth
featur<! "emoval
%keepListl = [1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1);
Analysis r<!sults
, list of feature" still in the J::unning
keepl .. [1 2 3 4 5 6 7 9 10 11 12 15 16 24 25J;

, After depth f<!ature J::emoval and fact Ana
keepList1 .. [1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1J;

% no feret features

% "tarting point
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keep - [];
keepLil'lt - (O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01;

%keep track of bel'lt performance for each number af feature::;
fori-1:lS

bestForNurnFeatures(i) m 0;

for nurn_added - 1:11

performance" zeros(25,l);

for feat .. 1:25
H «keepList(feat) -·0) & (keepLlst1(feat) == 1»

newKeepList .. keepLlst;
newKeepList(feat) .. 1;
keepl .. find(newKeepList .... 1);

cod called red" 0;
cod-called-cod - 0;

~:~~E~~~:I~:~-~~r: ~;
capelin-called-cap" 0;
redfil'lh-called-red _ 0;
redfi5h-called-cad - 0;
redfish::::calle{::cap .. 0;

fOI: i .. l:length(alldata)
data - [alldata(i,keepl)];

for j - l:length(alldata)
ifi --j

tmp - data - alldata(j,keep1);
dist(j) - sqrt(tmp*tmp');

dist(j) = 25;

[sortedDi"t, Index] - "ort(dist);

if ( length(find(Index(1:3) <= num_cod ») >= 2) % 2/3 were

called - 1; % I - cod;
elsei! ( length(tind( (Index(1:3) > num cod) & (Index(1:3)

<- (nurn cod+nurn capelin»)) ) >= 2) % 2/3 were capel in -
- ~ called - 2; % 2 - capelln

telsei! ( length (find (Index (l: 3) > (num cod+num capelln}) }
>= 2) % 2/3 were redtish ~ -

'l called _ 3; 'l 3" r ..d!ish
el"e

%3 way tie - u"e the distance to the neare5t
neighbour

if (Index(l) <- nurn cod)
called" 1; -

e15eif (Index(l) <- (nurn_cod+nurn_capelin»)
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called - 2;

if called -- 1
if (i<-nurncod)

cod called cod" cod c<llled cod 1- 1,
e1seif (i-> nurn cod) & (i <'_ (num-cod + nurn capelin»)

capelin_cal1ed_cod '"' capelin_called_cOd 1- 1,

e1seif called '=~ 2
if (1 <- num_cod)

cod called cap" cod called cap + 1,
elsei! (i-> nurn cod) & (i <'- (nurn-cod + num capelin))

cape1in_called_cap - capelin_called_cap 1- 1;

if (i <- num_cod)
cod called red" cod called red 1- 1,

.,l",eU' (1-> num_cod) & (i <'- (num::::cod + num_capelinl)
capelin_called_red _ capel1n_called_red + 1;

~Classitier 11
tperfonnancelfeat) _ (cod called cod/nurn cod) 1­

(capelin_called_cap/num_capelin) + 1redtiah_called_red/num_redfish} ,

\Classitier 1f2 - stage 1 cod detection
\performancelfeat) - (cod called cod/num cod) +

(l-capel1n called cod/num capelin) + (l-redtIsh called cod/num redfish),
- \Cla",'ii.tie:r *'2 - stage 2 capelin vs- :redtis'h detection

\pe:rl'o:rmancell'eat) - capel in called cap/num capel in +
redtish_called_red/num_redfish; - - -

'Classifier 13 - st<lge 1 capel in detection
\performance(feat) .. (i-cod called cap/num cod) +

(capel1n called cap/num capel1n) + (l-redfish called cap/num cedl'ish);
- ~Classitil'!r-13 - stage 2 cod vs cedUsh detection

%performancelfe"t) _ cOd_called_cod/num_cod -+
redti sh_called_ red/ num_red t i sh;

tClassifier 14 - stage 1 redUsh detection
tperl'ormancelfe<lt) - (l-cod called red/nurn cod) -+

(l-cape1in called ced/num capelin) -+ (redtish called ced/num redfillh);
- tClassifier .4 - stage 2 cod "s capelin detection
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perfonnance(featj .. cod called cod/num cod
capelin_called_cap/num_cap.lin, - - -

end %; it(keepList(teat) == 1)
~ tor teat .. 1,25

[BestPertormance. I) - max (pertormance) ,
bestForNumFeatureslnurn added) .. BestPe"formance:

keepList(I) .. 1; -
keepl - t'ind(keepList .... 1);

tprint! (. \nnum Features used" 'd, pertormance _ ,. 3f\n', nurn_added,
BestPerformance);

cod c ... lled red" 0;
cod-calLed-cod ~ 0:

m~m;mm=~~r:::
redtish-called-red'" 0;
redflsh-called-cod", 0;
redfish=:calle{::cap = 0;

tor i '" l:length(alldata)
data - [alldata(i,keepl));

for j = l:ler,gth(alldata)
if i ~ •. j

tmp - data - alldata(j,keepl);
dist(j) = sqrt(tmp*tmp');

c'.ist(j) "'25;

(sortedDist, Index) .. sort(dist);
if ( length(t1nd(Index(I:3) <'" num cod)) >.. 2) , 213 were cod

called'" 1; , 1 - cod; -
elseif [ length(find( (Index(l:3) > num cod) , (Index!!:3) <=

(num cod+num capelin))) ) >- 2) %; 2/3 were capelin -
- - called - 2; % 2 '" capelin

elseif ( length(find(Index(l:3) > (num cod+num capelinl)) >_ 2) , 2/3
were redtish - -

called - 3; % 3 '" capelin

%3 way tie - use the distance to the nearest neighbour
if (Index(l) <- num cod)

called = 1; -
el"eif (Index(l) <- (num cod+nurn capelin))

called .. 2; - -

called'" 3;

it called =- 1
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i! (1 <,. num cod)
cod called cod - cod called cod + 1;

elsei! li-> num cod) & (1 <'= (num-cod -+- num capel in) )
capelin_called_cod - cape1in_ca1led_COd + 1;

elsei! called -- 2
if (i <- num cadi

cod called cap" cod called cap.;. 1;
elsei! (i-> Own cod) & (i <'- (num-cod .;. num capelin)}

cape1in_ca1led_cap • capelin_ca11ed_cap -+- 1;

if (i <" nwn cod)
cod called red'" cod called red -+- 1;

e1seif (i-> Own cod) & (i <'_ (nwn-cod -+- nwn capelin))
capelin_cal1ed_red - capelin_called_red -+- 1;

fprintf 1'Number a! Features· %d\nFeature List _ ',length(keepl));
!print.!('%d ',keepl);
fprint!( '\n\t\t\t\tPREDICTED CLP.SS\n');
fprintf (' \t\tCOD\t\tCAPELIN\t\tREDFISH\n' );

fpcintf:('COD\t\U.Of [%.It U]\t%.Of [%.1t UI\t.%.Of [%.It %%I\n',.
cod called cod,cod called cod/num cod*lOO,.
cod::::called::::cap, cod::::called::::cap/num::::cod"lOO, .
cod_called_",ed, cod_called_ ",ed/nwn_cod* 100) ;

fprintf:('CAPELIN\t\t%.Of [Ll! %%1\t%.Of IL1t Ul\t%.Of [%.It U)\n',.
capel in_called_cod, capelin_ called_cod/nwn_ capelin'lOO, ..
capel in called cap,capelin called cap/nwn capelin*lOO, ..
capel in::::called::::",ed, cape lin::::called::::red/nu.'ll::::capelin '100) ;

fprintf('REDFISH\t\t%.Of [%.if UI\tt.Of I\.lt \%l\t%.Of [%.If %%)\n\n',.
l'II',dfish called cod, redfish called cod/num redfish'lOO, .
redfish- called-cap, redfish-called-cap/num-",edfish'100, ..
redfish::::called::::red, ",edfish::::called::::red/num::::redfish"'lOO) ;

pause(l);

% num_removed .. l:lB
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Patricia LeFeuvre
Feb 19, 2001

Progr;lm to perfo= ••quent&l backward selection to find the beat
10 or fewer fe{ltures to d.1atingu.iah c{lpelln froll! cod and redfiab
USlng Thesis data

, SBSMal.m,,,,,,,
clear,
load capelin.txt:
load cod. txt:
load redtish.txt:

'Norrn.alize
MN red· min(red!lshl:
MN-capel1n. min{capel1n):
MN-cod· min{cod);
MN-· mJ.nlmin (MN_red, MN_capelin), MN_cod);

!'IX red" rn.ax{redf1shl:
MX-capel in .. max (capelin);
MX-cod .. max (cod) :
MX-· max (max (MX_red, MX_capelin), MX_codl-MN;

for i - l:length(redfish)
norm_red(i.I'25)" (redfish(1.1,251 - MN)./MX:

for i • l'length(capelinl
norm_capelin(i.l:2~) .. (capelin(i,1:251 - MN)./MX;

for i .. l:length(codl
norm_cod(i.I:251 • (codli,l:25) - MN)./HX:

nwa cod .. length(norm codl;
num- capel in .. lengthlnonr; capelin);
num:redflsh .. length(nora::::::redl:

, list of features still in the running
'keepl· [13456791011 12 15 16 171819 20 22 24 25]: • After depth
feature removal
'keepLiat .. [1 0 1 1 1 1 1 0 1 1 I 1 0 0 1 1 1 1 I I 0 1 0 1 1]; • from Factor
Analysis results

, list of features still in the running
keepl .. {I 2 3 4 5 6 'I 9 10 11 12 1~ 16

" After depth feature removal and fact Ana
keepList - (l 1 1 III 1 0 1 1 1 1 0 0 I 1 0 0 0

, no feret features

2425);

1 I];

training cod" norm cod: '[norm codl:.keepll);
training::::capelin .. nOrDl_capelin; '{norm_capel1n I:, keepl»);
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%[norm_red(:,keepl) I;

~ to illustrate over training
for i - 1:17

bestForNumFeatures(i) _ 0;

for num_removed - 0:16 %0:16

performance _ zerosl25, 1);

if (keepList (feat) -- 1)

newKeepList - keepList;
if nurn removed> 0

- newKeepList(featl = 0;

keepl - find(newKeepList == 1);

cod called red - 0;
- cod called cod" 0;

cod-called-cap - 0;
capelin called red - 0;
capelin- called-cod" 0;

~:~~~;~:::~:~~:~:::~:~: 6~
redfish- called-cod - 0;
redfish::::called::::cap - 0;

M cod" mean(training cod(:,keepl));
M-capelin" meanltn.ining capelinl:,keepl});

M_red "-mean (training_red (:, keep1) );

K_cod = cov(training_cod(:,keep1));
K capel in = covltraining capelin(:,keepl)};
K::::red - Cov(training_ICed(:, keep!));

for i = l:lengthlalldata)
data" [alldatali,keeplll;

dist cod = ldata - M cod} • inv(K cod) • (data - M cod)';
dist::::capelin" (data-- M_capelin)-· invIK_capelin)-· (data ­

M_capell.nl ';
dist ICed = ldata - M red) • inv(K ICed) • (data - M red) ';
if (-Idist cod < dist capelin) Ii: (dist cod < dist cedi )

called;;;l;%l-cod; - -
elseif ( (dist_capelin < dist_cod) Ii: (dist_capelin < dist_red))

called _ 2; % 2 .. capel in
elsei:!' ((dist red < dist cod) & (dist red < dist capelin) )

called - 3; % 3 - ICedfIsh - - -
..18e

called - 4; % we have" tie
fprintf (' \nwe have a tie with the distances\n');
p,,"use;

".ct
if called "'= I
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it (i <", nurn cod)
cod called cod. _ cod called cod .. 1;

elseit U-> nUlll cod) , (1. <'- (num-cod + nUlll capelin))
capelin_called_cod - capelin_called_cQd .. 1;

else..•
elaeit called - 2

it (i <- nwn cod)
cod_called_cap - cod_call ed_cap .. 1;

el.eif (1. > num cod) , (i <- (num cod .. num capelln))
cape1in~ca11ed_cap - capelin_called_cap .. 1;

...
daeit called .... 3

if (i <- nurn cod)
cod call ...d r ...d _ cod call...d r ...d .. 1;

... l ....if (i-> nurn cod) , Ii <'- (nurn-cod .. nurn capel in) )
cap"'Un_called_ced - cap"'lin_called_red .. I;

end' ...nd Of i - l:length(alldata)

'Classifier I:'
'pe.l'fOrlMonCe (feat) .. (cod called cod/num cod) i­

(cllpelin_called_cap/num_capelin) i- (redflsh::::called::::red/nurn::::redtiSh);

'Classl.fier 16 - stage 1 cod detection
'performancelfeat) .. (cod called cod/num cod) i­

(l-capelin c ... lled cod/nl.Ull capelin) i- (l-redfish called cod7nl,lQl redtish);
- -'Classifier .6 - stage 2 capelin vs redtish detection

'performance(te;at) - capel in c;a11ed c;ap/nUlll cape!.in +
redtish_c;alled_red/nUlll_redtlah; - - -

'Classitler '7 - stage 1 capelin detection
'pertormance(feat) ,. (I-Cod called c.p/nl,lQl cod) +

[capelin called cap/mull capelin) ... ll-.l'edtish- called-cap/num- .l'edfish);
- - 'Cla.aiher 17 - stage 2 cod v. redtish detection

'perforlllllnce (teat) .. cod called cod/num cod ...
redtish_called_ced/nl,lQl_redtish; - - -

'Classitler 18 - stage 1 redti.h detection
'pecformance(teat) K ll-cod called red/num cod) i­

(l-capelin called red/nW'l c",pelinl ... (redtish-called-red/num- cedfishl;
- -'Classifier ,e - stage 2 cod vs capelin detection

pertorr.l&nce(teat) .. cod called cod/num cod ...
capelin_called_cap/num_c£pelin; - - -

end' ...nd of it (keepList(feat) .K 1)

'performanc... ,

56



[BestPertonnance, Indxl .. max (pertormancel ;
fprintf (' \nnum Fe..tun... removed - %d, performance _ 11;. 3f\n', nurn_removed,

BestPel'tormancel;

% to illust.l'ate over training
ind" length(keepl);
pertyer_nurn_teats (ind) - BestPel'formance/3.00·100;

i! nurn l'ernoved » 0
end keepList(IndX) "" 0;

keepl _ find(keepList -- I};

cod called red. 0;
cod-called-cod" 0;
cod-called-cap. 0;

~:~:~~~-~:n:~-~~~: ~~
~:~~i;~=~:~i:~=~:~ : g~
redtish- called-cod" 0;

redfish_called_cap - 0;

M_cod - mean(training_cod(:,keepl});
M_capelin" rnean(training_capelin(:,keepl));

M_red - mean (training_red (:, keepl) I;

K_cod - cov(tl'aining_cod(:,keepl)};
K capel in .. cov(training capelin(:,keepl});
(:red .. cov(tra:fning_l'ed(:, keepl));

tOI' i .. l:length(alldata)
data" (alldata(i,keepl) I;

dist cod" (data ~ M cod) * inv(K cod) • (data - M cod)';
dist=capelin" (data-- M_capelin)-' inv(K_capelin)-* (data _

M capelin) ';
- dist red" (data - M red) * inv(K red) • (data - M red)';

it (-(dist_cod < dist_capelinl & (dist_cOd < dist_red) I
called - 1; % 1 .. cod;

eilleif ( (di"t ctlpelin < dillt cod) &: (dillt capelin < dist l'ed))
called _ 2; II; 2" .. capel in - - ­
elsei! (dist red < dist cod) & (dist red < dist capelinl )
called" 3; '-3 .. l'edtish - -
else
called - 4; % we have a tie
fprint!('\nwe have a tie with the distances\n');
pause;
nnd

i! called -- I
if (i <= nurn codl
cod called cod" cod called cod + 1;

elseIf (i »-nurn cod) "& (i <--(nurn cod + nurn capelin))
capel in called-Cod" capel in called cod + 1;

else - --
redfish called cod - redfi"h called cod';' 1;
end-- --
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elseif called -- 2
if (i <.. num codl

cod called cap'" cod called cap + 1;
elseif (i-> num cod) & (1 <- (num-cod + num capelin))

capelin_called_cap .. cape lin_call ed_cap + 1;

elseif called .... 3
if (i <'" num cod)
cod called r;d - cod called red + 1;

elseif (i-> num cod) , li <= (num-cod + num capel in) )
capelin_called_red .. capelin_called_"ed + 1;

,od
,od

fprintf ('Number of Features" %d\nFeature List .. ',length{keepl));
fprintf('\d ',keepl};
fprintf (' \n\t\t\t\tPREDICTED CIASS\n');
fprint! (' \t\tCOD\t\tCAPELIN\t\tREDFISH\n');

fp"int!('COD\t\tLO! [L1f U]\t'LOf [\.l! U]\tLOf [Llf U)\n',.
cod called cod,cod called cod/num cod*lOO,.
cod:=calle{::cap, cod:=called:=cap/num:=cod*lOO, .
cod_called_red, cod_ called_red/num_cod*lOO) ;

!printf('CAPELIN\t\tLOf [Llf U)\t\.Of ILl! UJ\t\.Of l\.1f U]\n',.
capelin_called_cod, capelin_called_cod/num_capelin*100, .
capelin called cap,capelin called cap/num capelin*lOO,.
capelin:=called:=red, capelin:=called:=red/num:=capelin*100) ;

fprintf('REDFISH\t\t\.Of [\.If UJ\t\.O! ILl! Uj\t\.O! (Ll! U]\n\n',.
red fish called cod, redtish called cod/num I:edfish*lOO, ..
red fish- called-cap, redt:ish- called-cap/num-redtish*lOO, .
redfish:=called:=red, redtish:=called:=red/num:=redtish *100) ;

% perf" (cod called cod/num cod) + (capel in called cap/num cap<!llin) +
Iredfish_called_"ed/num_redfish)-; - - -

plot (perfyer_num_feats)
xlabel( 'number of features used')
grid
ylabel ('average classification accuracy (percentage)')
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" SFSMal.m.
% Patricia LeFeuvre
" Feb 26, 2001,
" Program to perform sequental forward selection to find the best
% 10 oe fewee featuees to distinguish capelln from cod and redfish
" Using Thesis data

clear,
loadcapelln.txt;
load cod. txt;
load redfish.txt;

" Normalize
MN eed • min(redfish);
MN-capelin" min(capelinl;
MN-cod· min (cod);
MN-· min (min IMN_red, MN_cll-pelin), !'IN_cod) ;

for i • 1:1ength(redfish)
norm_red(i,I:25) • lredfish(i,1:25) - MN) ./MX;

for i '" 1:length(capelin)
norm_capelln(i,1:25) - (capelin(i,I:25) - MN)./MX;

for i - l:length(cod)
noem_cod(i,1:25) - (cod(i,1:25) - MNl./MX;

alldata .. [norm_cod; nann_capel in; norm_red];

num cod· length (norm cod);
num:::capelin - length (norm_capelin) ;
num_redfish • length (norm_red);

% list of features still in the running
'keepl • [1 3 4 5 6 7 9 10 11 12 15 16 17 18 19 20

, After depth feature removal
%keepLlstl - [1 a 1 1 1 1 1 a 1 1 1 1 0 0

" from Factor 1\.nalysis reSUlts

keepl - [1 2 3 4 5 6 7 9 10 11 12 15 16
" After depth feature removal and fact Ana

keepListl - [1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
" no teret features

2425J;

011];

2425];

11J;

% temp to illustrate overtraining
%keep 1 .. [1 2 3 4 5 6 7 8 9 10 11 12
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l After depth feature removal
%keepLi..tl - (1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1);

% from Factor Analysis results

% starting point
keep: [J;
keepList - [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OJ;

n CLASSIFIER 85 ~ Distinguish cod from capel in from Redtish
training cod - norm cod; %[norm cod (:, keepll J ;
training=capelin '" norm_capel in; %[norm_capelIn (:, keepl) J;
training_red - norm_red; %[norm_red(:,keep1));

% temp to illustrate overtraining
for i - 1:17

bestForNwnFeatures(i) - 0;

for num_added • 1: 17

performance - zero.!l(25,1};

if ((keepList(featl _. Ol .. (keepListl(feat) -- 1))

newKeepList - keepList;
newKeepLlst(feat) - 1;
keepl - find(newKeepList -- 1);

cod called red· 0;
- cod called cod· 0;

~~~~~1~1~~~~:~ ;e~;_0;

~:~;~~~:~:H:~:~:~:~~
redfish-called-cod", 0;
redfish=called=cap _ 0;

M cod'"' mean(training cod(:,keepl));
M-capelin - mean(training capelin(:,keepl));

"'_red '"'-mean (training_red (:, keepl}) ;

K cod'" cov(tz:aining cod(:,keepl)l;
K-capelin - cov(training capel in ( :, keepl));
K=red - COV(training_red(:,keeplll;

tor i '" l:length(alldata)
data - [alldata(i,keepl) 1;

dist_cod _ (data - "'_cod) * inv(K_cod) * (data - "'_cod) ';
dist_capelin'" (data - M_capelin) • inv(K_capelin) • (data ­

M_capel1n) ';
dist red - (data - M red) * inv (K red) • (data - M red)';
if (-(dist cod < dist capelinl &. (dist cod < dist red) )

called; 1; % I-cod; - -
elsei! ( (dist_capelin < dist_cod) &. (dist_capelin < dist_red))



called - 2; , 2 '" capel in
elseif ((dist red < dist cod) & (dist_red < dist_capelin) )

called - 3; % 3 .. redfI5h -
e15e

called" 4; % we have a tie
printf (' \nwe have a tie with the distances\n');
pause;

"od

if (i <- nurn cod)
cod called cod" cod called cod -I- 1;

elseit (i-> nurn cod) & (i <- (nurn-cod -I- nurn capelin»
capelin_called_cod - capelin_called_cQd -I- 1;

"od
el5eif called -- 2

it (i <= nurn cod)
cod called cap - cod .::alled cap -I- 1;

else1t (i-> nurn codl & (1 <- (nurn-cod -I- nurn capel in) )
capelin_called_cap - capelin_called_cap + 1;

eod
elseif called _. 3

it (i <- nurn codl
cod called red" cod called red + 1;

elseit {i-> nurn cod) & (1 <- (nurn-cod + nurn capel in) )
capelin_called_red - capelin_called_red + 1;

redtish_called_red - redfi5h_called_red + 1;

end % end of i '" 1:1ength(alldatal

%Classifier .5
%performance(feat) '" (cod called cod/num cod) +

(capelin_called_cap/nurn_capelinl + (redfish::::called::::red/num::::redtiShl;

%Classifier '6 - 5tage I cod detection
%perfor:nance(featJ '" (cod called cod/num cod) +

(l-capelin called cod/num capel in) + (l-redfish called cod/nurn redfishl;
- -%Classifier 116 - stage 2 capelin vs redfish detection

%performance(featl .. capelin called cap/num capelin +
redtish_called_red/nurn_redfi:'lh; - - -

%Classit'ier '7 - stage 1 capel in detection
%performance(feat) - (I-cod called cap/num cod) -I­

(capelin_called_cap/num_capelin) -I- (l-redfi5h::::called::::cap/num=redfish);
iCl1l5sifier '7 - stage 2 cod VlI radfillh detection
iperfor:nance(feat) '" cod called cod/num cod +

redtish_calIed_red/num_redfish; - - -

%CIassifier 18 - stage 1. redfish detection
%performance(feat) - (I-cod called red/nurn cod) +

(l-capelin_called_red/mur,_capelinl -I- (.J:edti5h::::called::::red/nurn::::redfishl;
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%Classifier *8 - stage 2 cod vs capelin detection
performance (feat) - cod called cod/num cod .;-

capelin_called_cap/nurn_capelin; - - -

end % end of if O::eepList(feat) a,. 1)

%performance.
[BestPerformance,Indx) - max (performance) ;

fprint! ( '\nnurn Feature5 used _ %d, performance - %. 3f\n', nurn added,
Be5tPerformance); -

% temp to illu5trate overtraining
per!yer_num_feats (nurn_added) .. BestPerformance/3. 00.100;

keepListlIndx) - 1;
keepl - find(keepList -- I):

cod called red - 0;
cod-called-cod'" 0;

~~~~~~~l~~~~:~ ;e~;" 0;
capelin- c",Ued-cod - 0;

~:~~t~~=~:~~:~=~:~: 6;
redfish- called-cod'" 0:

redfish_caIled_cap • 0;

M cod· mean(training cod(:,keepl»;
M::::capelin • mean (training_capelin (', keep!) ):

M_red '" mean(training_red(:,keepl));

K_cod - cov(training_cod(:.keepl);
K capelin • coy (training capel in (:, keep!») ;
K::::red. Cov(training_red(:,keepl)):

for i .. l:length(alldatal
data - (alldata(i,keepll);

dist cod _ (data - M cod) • inv (K cod) • (data - M cod) ';
dist::::capelin • (data-- M_capelin)-· inv(K_capelin)-. (data -

dist red" (data - M red) • inv(K red) • (data - M red) ';
it (- (dist cod < dist capelin) '" (di5t cod < diSt ced) )

called· I; % 1-" cod; - -
elseif ( (dist capel in < dist cod) '" (dist capel in < dlst red))
called'" 2: % 2" '" capel in - - ­
elseif ((dist red < di5t cod) & (dist red < dist capelin) )
called'" 3; '-3 • r ..dfi"t> - -
else
called - 4; % we have a tie
printf('\nwe have a tie with the distances\n');
pause:
"od

62



it called -- 1
if (i <.. nurn cod)
cod called cod" cod called cod ... 1;

elseTt (1 >- num cod) &" (i <-- (nurn cod + nurn capelin))
capelln called-cod" capel in called cod + 1;

else - --
redfish called cod" redtish called cod ... 1;
end-- --

elsei! called -- 2
it' (1 <- nurn cod)

cod_called~cap - cod_call ed_cap + 1;
elseif (i > num cod) , (1 <_ (nurn cod'" num capelin))

capelin_called_cap _ capelin_called~cap + 1;

elseif called -- 3
it' (i <- nurn cod)
cod called red - cod called red + 1;

elsei!C~~:~i~~~a~~~~_~e~i..<~a~~~~~:~~l~e~~~e~a~ei;n))

.nd

.nd

fprint!( 'Number at' Features - %d\nFeature List .. ',length(keep1));
fprintt'('%d " keep1);
fprintt' (' \n\t\t\t\tPREDICTED CLASS\n ');
fprintf (' \t\tCOD\t\tCAPELIN\t\tREDFIS1t\n') ;

fprintf('COD\t\tLOf [%.If U1\tLOf I%.l! Uj\tLOf [%.l! UJ\n',.
cod called cod,cod called cad/nurn cod*100, ...

~~~=~:ii:~=~:~: ~~~=~:ii:~=~:~~~:=~~~: i~~j ;
fprlntf('CAPELIN\t\U.Of (%.If UI\t%.Of [Ll! UI\t%.Of [%.If %%1\n',.
capel in_called_cad, capel in_called_ cad/nurn_capelin* 100, ..
capel in called cap, capelln called cap/nurn capelin*lOO,.
capel in::::called::::red, capelin::::called:::: red/num::::capelin* 1 00) ;

t"printf('REDFISH\t\t%.Of (t.l! UI\t%.Of [Ll! UI\tt.Of [%.it %%]\n\n',.
redtish called cod, redt'ish called cad/nurn redUsh*lOO,.
redtish-called-cap, redfi.'lh-called-cap/nwn- redfish"lOO, ..
redtish::::called::::red, redtish::::called::::red/num::::redfish* 100);

% perf "" Icod_called_cod/num~codl + (capelin_called_cap/num_capelin) +
(redtish_called_red/num_redfi.'lh) ,

% temp to illustrate overtraining
plot (perfyer_nurn_feats)
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