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Abstract 

Increased load demand can severely deteriorate the performance of a power 

system. Reactive compensation allocation is a common method to allow a power system 

to return to an acceptable performance level for an expected load increase. The reactive 

power planning problem (RPP) is used to determine the optimal placement of reactive 

devices for a set of objectives. The RPP is a large scale, multi-objective, highly 

constrained and partially discrete optimization problem that is very difficult to solve. 

Heuristic optimization techniques have been used as a means to solve difficult 

optimization problems including many power system optimization problems. Heuristic 

techniques based on evolutionary strategies have been used to solve RPPs as they 

overcome many of the difficulties with classical optimization techniques. However, new 

multi-objective evolutionary computational techniques have shown the ability to consider 

. an optimization problem's objectives independently for the determination of Pareto

optimal solutions. 

A popular multi-objective evolutionary strategy called the Non-Dominated 

Sorting Genetic Algorithm II (NSGAII) is applied to a series of multi-objective RPP case 

studies in this research. The results from the case studies presented show that the tool is 

able to determine feasible, non-dominated V Ar source allocation schemes that allow a 

system to operate safely under an assumed load growth. 
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Chapter 1 

Introduction 

One of the great challenges of modem day power system operations is to meet 

constantly increasing load demand while maintaining reliable power delivery to their 

customers. This load demand increase coupled with the new deregulated operations 

environment are forcing existing generation, transmission and distribution infrastructures 

to support loads that they were never originally designed to handle. As a result of this, 

modem power systems are being operated in stressed conditions where their security is 

threatened. The recent blackout of August 2003 that affected many parts of Ontario, 

Canada and the North-East United States has shown the real need to develop solutions 

that enhance the overall security of the power system [ 1]. 

Simple solutions to facilitate power system load growth are to reinforce the 

existing transmission system and/or install new generators near major load centers. In 

most cases however, these solutions are not practical as the costs associated with the new 

transmission installations are tremendous and feasible generation sites may be too remote 

and too expensive to be effective. 

In many cases, a simple solution that will allow a power system to safely handle a 

load increase is by allocating shunt reactive compensation devices at locations throughout 
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a system to provide sufficient local reactive power to system loads. This mitigates 

reactive power that must be produced by generators and transferred over the transmission 

infrastructure. By providing reactive power locally, the transmission system can be used 

more effectively as the negative effects of reactive power transmission are significantly 

reduced [2]. 

As compensation scheme installations can carry a substantial cost, it is desired to 

allocate them in a way that meets a range of operation criteria while minimizing costs. 

This multi-objective optimization problem (MOP) is known as the reactive power

planning problem (RPP) [3-10]. Although the objectives of the RPP (such as system 

voltage profile and reactor installation costs) vary depending on what a system planner 

deems important, in all cases the problem's mathematical formulation is exceedingly 

difficult to optimize. Over the last few decades the RPP has seen wide spread interest in 

the power industry as there are no widely accepted tools to solve the problem. 

1.1 Overview of RPP Challenges 

The RPP is a non-linear, non-convex and partially discrete MOP. For these 

reasons traditional optimization techniques based on non-linear, linear and integer 

programming have proven to be ineffective to adequately deal with all complexities of 

the RPP [3, 4]. While algorithms have been proposed based on these techniques, they are 

difficult to implement and require significant simplifying assumptions [4, 6, 7]. Coupled 

with these difficulties, classical optimization techniques are known to converge on non-
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optimal solutions due to non-convex objective functions [12], and/or converge on 

infeasible solutions due to the treatment of discrete control parameters as continuous [3]. 

The greatest challenge associated with the RPP however, is that it can contain 

multiple objective functions for simultaneous optimization. Typically RPP algorithms 

simplify the problem by expressing it as single objective optimization problem where a 

master objective function is composed of a weighted sum of all desired objectives [3, 4, 

6-8, 11]. The major problem associated with proposing a multi-objective problem as 

single objective problem is that an optimal solution may be highly dependent on how the 

weights are set [13]. This can be of great concern in cases where weights are arbitrarily 

assigned to objective functions. 

A second problem associated with formulating a constrained MOP as a single 

objective problem is that the optimization procedure may determine a solution that is 

bordering on one or more constraint violations [13]. With regards to the RPP, it may be 

unwise to implement solutions that are close to violating constraints as a variety of 

potential system disturbances may push the system into an undesirable state of operation. 

1.2 Research Objectives 

The development of alternative optimization techniques such as genetic, 

evolutionary and particle swarm algorithms provide planners with a means to overcome 

· many of the difficulties associated with the RPP problem [4]. These techniques have 

been applied to the RPP with weighted objective functions with good success [3, 4, 11]. 
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However, research into exploiting the ability of these techniques to treat RPP objective 

functions independently has only recently begun. It is therefore beneficial to investigate 

the use of multi-objective optimization strategies for solving the RPP. 

The purpose of the research presented in this thesis is to apply an algorithm based 

on a popular multi-objective genetic algorithm (GA) to solve the RPP while treating the 

selected objective independently. In comparison to other published approaches, it is 

easier to understand and provides a range of alternative solutions instead of a single 

potentially non-optimal solution. The principle goals of this research are summarized as 

follows: 

1. Recognize the negative impacts of the remote transmission of reactive power 

and how reactive compensation can mitigate them. 

2. Describe the general formulation of the RPP and outline some of the common 

tools used to solve it. 

3. Study the concepts of the GA and evaluate the tool for solving optimization 

problems. 

4. Outline and evaluate the concepts of multi-objective optimization. 

5. Develop a tool that expands the concepts of GA optimization to incorporate 

true multi-objective optimization. 

6. Apply the developed tool to suitable power system models in order to perform 

case studies that demonstrate the ability proposed algorithm to solve the RPP. 
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1.3 Thesis Summary 

Chapter 2 presents important background on the concept of reactive power. The 

difficulties of remote reactive power transmission are described and illustrated using a 2 

bus case study. Subsequently, the concepts and benefits of shunt reactive power 

compensation techniques are discussed. In chapter 3, a mathematical discussion of the 

RPP is presented along with three published techniques for solving the RPP. Chapter 4 

presents the fundamentals of single objective GAs. The use of the GA will then be 

illustrated by applying it to a common power system optimization problem called the 

optimal power flow (OPF) using a study on a 7-bus power system. Chapter 5 will discuss 

the fundamental concept of multi-objective optimization, known as Pareto Optimality. 

Along with this discussion, the chapter will also outline a popular technique that expands 

the ability of a GA to treat MOP objectives independently. Chapter 6 will apply the 

expanded genetic algorithm to specific RPP test cases using a 6-bus power system and 

the IEEE 30-bus power system. Finally, chapter 7 will highlight some of the key 

contributions of the research completed in this thesis along with suggestions for future 

work. 
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Chapter 2 

Reactive Power Transmission and Compensation: 

An Overview 

2.0 Introduction 

The remote generation and transmission of reactive power from load demand has 

a strong negative impact on power system operations. This chapter presents an overview 

of the challenges associated with the transmission of reactive power over a power system 

network. It will first illustrate the problems associated with reactive power transmission 

in section 2.2. Section 2.3 will give a fundamental understanding of shunt reactive power 

compensation and how it can be used to mitigate the negative effects of remote reactive 

power transmission. Section 2.4 concludes this chapter. 
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2.1 Reactive Power Transmission 
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where Vs is the generator terminal voltages, Vr is the load bus voltage, IX~nl is the 

magnitude of the line reactance and o is the difference in voltage angle between the 

generation and load bus of the system. ·Since it is assumed that that the transmission line 

is purely reactive, the real power generation is equal to the load power and is defined by: 

(2.3) 

To observe the implications of these equations on reactive power flow, assume 

that Vs = 1 p.u, Vr = .95 p.u, 8 = rt/6 rads and IX~nl = .1 p.u. Under these assumptions the 

sending reactive power, receiving reactive power and the active power are: 

Qs = 1.77 p.u 

Qr = -1.27 p.u 

Ps = 4.75 p.u 

The negative value for Qr is informing us that the load bus must have a means to 

inject reactive power into the transmission system in order to maintain the specified bus 

voltage while absorbing 4.75 p.u active power. The transmission line has become a sink 

for reactive power, demanding this power from both the generation system and the load 

bus for proper load bus voltage regulation. These results lead to the conclusion that for 

large load demand, reactive power does not have the ability to flow from the source to the 

load, even over a large voltage gradient [ 14]. 

A valuable technique widely used in industry to explore the relationship between 

power transfer and bus voltages is through the use of PV curves [14]. These curves are 

created by performing successive power flow studies on a system while increasing the 
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Another interesting point to note about figure 2.2 is the visualization of the 

amount of active power that can be transmitted through the transmission line. The 

maximum active power transfer is a direct result of practical power system operations, 

which typically requires bus voltages to be within ±5% the nominal voltage level. It is 

seen in figure 2.2 that the maximum amount of power transferred while maintaining the 

voltage requirement is exceedingly low for loads with high reactive demand. In fact, for 

this system, the maximum power transfer is only 45 MW for lagging power factor of 

0.7071 and 90 MW for a power factor of 0.8944. In contrast, a maximum power transfer 

capability for a unity power factor load is about 280 MW. These results show that the 

remote transfer of reactive power is inefficient and unnecessarily congests the 

transmission system. 

The results from above can be verified by observing the reactive power line losses 

and power demand as demonstrated in figure 2.3. When the load demand is low, reactive 

losses are not drastic as the line currents are low. However, as the load demand increases 

the line losses begin to dominate the system. Beyond the inflection point of these curves 

the reactive losses increase at an exponential rate, drastically reducing load bus voltage in 

a rapid fashion. These results properly correlate with figure 2.2. 
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2.2 Shunt Compensation for Reactive Power Flow Control 

As was shown obove. reocCI\'e power transmili'\iOn hn'\ a ncgati\'C impOCl 011 many 

A\pects of power sy,tem operation~ . Without Lhe proper control of reacuve power a 

power s»tcm can be fon .. -ed 10 opcr.ltc in way, that thrtaten 1h~ ')"1em\ \ ·oltages and ib 

dficu:ncy. The map ob]«1t\C\ tb.al the control of n::ach\t rower must satisfy 10 

achtc••c reliable and efltt.:tent power ")'tt:m operauon a.n:: (21: 
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• Bus voltages should be within an acceptable limit to ensure that all equipment 

connected to the busses is operating in conditions they were designed for. 

Prolonged exposure to inadequate bus voltages can damage connected equipment 

• Reactive power flow is minimized to reduce both active (iR) and reactive (iX) 

losses over transmission systems. This will ensure existing transmission 

infrastructure is utilized more efficiently. 

• Increasing power system stability by utilizing the transmission systems more 

effectively. 

By controlling the production, absorption and the flow of reactive power at all levels of 

the system, the above objectives for power system operations can be realized. 

Local reactive power compensation is a convenient and common method to 

control reactive power flow to meet the mentioned objectives. Most compensation 

devices come in the form of switched inductor or capacitor banks that are installed in 

parallel to various load centers throughout a power system. Their purpose is to supply or 

absorb reactive power to loads such that the generation and transmission systems are 

unburdened by load reactive power demand. Reactive compensating devices such as 

these provide passive compensation that regulates voltages modifying system network 

topology [14]. While there are many forms of active reactive power compensating 

devices such as static V Ar compensators and synchronous condensers, this thesis will 

focus strictly on passive compensation devices. 

12 



It is the complementary nature of inductive and capacitive loads that makes it 

possible to produce or absorb reactive power for power system loads locally. In order to 

understand this complementary operation in terms of reactive power, consider the 

inductor and capacitor with a potential across each device as seen in figure 2.4. 

+ 

I tQ~ +Q,~ 
v 

xind X cap 

~ 
Figure 2.4: Reactive Power Direction of Capacitor and Inductor 

The reactive power absorbed by a capacitor and an inductor in the steady state is 

given through the following equations respectively: 

- IVI2 
Qcap --~X I 

cap 

- IVI2 
Qind --,X. I 

md 

(2.4) 

(2.5) 

where V is the potential at the terminals of the reactive device, Xcap is the reactance of the 

capacitor and Xmd is the reactance the inductor. Since reactance is considered positive for 

13 



inductors and negative for capacitors the reactive power absorbed by the devices are 

positive and negative respectively. Reactive power can be modeled as flowing into an 

inductive load and as an injection into the capacitive load bus. This directional nature of 

reactive power flow for inductor and capacitor banks forms the basis for shunt reactive 

power compensation. Since the direction of reactive power for an inductive load is 

opposite that of a capacitive load, it can be viewed that the required reactive power 

absorption of an inductive load can be met through the capacitor banks' reactive power 

injection. 

In power systems operation, the use of capacitor bank reactive injections near 

loads with high reactive absorbing demand is useful in preventing the remote 

transmission of reactive power. To demonstrate the effectiveness of such an installation, 

consider the addition of capacitor banks to the system in figure 2.1 as shown in figure 

2.5. The load demand has been set to 250 MW at a lagging power factor of 0.8944 while 

the generator terminal voltage is set to 1 p.u. Without the use of any capacitive 

compensation the bus voltage is found to be 0.7980 p.u and the transmission line reactive 

loss is approximately 125 MV Ar (see the plots in figure 2.2 and 2.3 respectively). These 

results show a heavily congested transmission line that in practical system operations 

would not be tolerable as the load bus voltage is well outside safe operation limits. 
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this is that the reactive demand of the transmission line is still excessive, even when 

capacitor reactive injection is being used. 

2.3 Summary 

This chapter provided the basic foundations on the difficulties of reactive power 

transmission. It was shown that reactive power transmission unnecessarily congests 

transmission systems which reduce the amount of active power that can be safely 

transported. It was also shown that system bus voltages throughout a system are 

negatively impacted by remote reactive power transmission. A simple 2 bus power 

system was used to illustrate the concepts regarding reactive power. 

A cost effective and highly used approach to increase the efficiency of a power 

system was described. The use of local reactive power compensation devices that can be 

switched on or off can greatly increase the ability of a power system to meet a wide 

variety of load demands while insuring the system works within a specified voltage 

profile. This is an attractive option to power system planners as the costs associated with 

it are significantly lower then installing new transmission or generation systems to satisfy 

the increasing power demand. 
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Chapter 3 

Optimal Reactive Power Planning 

3.0 Introduction 

Chapter 2 discussed the difficulties with the remote transmission of reactive 

power and the use of shunt compensation reactor banks to control reactive power flow. 

The use of reactive compensation devices has become a practical solution in controlling 

the flow of reactive power and to increase the reactive power reserves of the system. In 

most instances these devices are looked to as a solution to increase system voltages and 

decrease active transmission power losses over a planning horizon [3]. The planning 

horizon is a prediction of load growth that is known to potentially violate power system 

operation constraints. 

The reactive power planning problem (RPP) is a common optimization problem 

faced by power system planners. It involves the allocation of reactive power reserves to 

meet a set of operational constraints while minimizing the costs associated with the 
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devices. As will be discussed below, the optimization of the RPP is exceedingly difficult 

for most optimization algorithms. 

The organization of this chapter is as follows: section 3.1 will provide an 

overview on the formulation of the RPP as well as the challenges associated with solving 

it. Section 3.2 will discuss the major difficulties associated with solving the RPP with 

traditional optimization techniques. As background on the application of techniques to 

the RPP, section 3.3 will give a review of three published strategies that have been 

applied to solve the problem. The first technique based on problem decomposition will 

be presented in section 3.3.1 while the second and third technique, both based on 

heuristic optimization, will be presented in sections 3.3.2.1 and 3.3.2.2 respectively. 

Section 3.4 will give a summary of the chapter. 

3.1 Reactive Power Planning Overview 

The optimal placement of reactive sources throughout a power system is not a 

simple task. As there are no widely accepted tools to plan for reactive source installation, 

many planning procedures resort to a trial and error approach in order to determine the 

best site locations and allocation of reactive devices to meet a variety of objectives and 

constraints [4]. This procedure requires the planner to perform many power flow studies 

while varying reactive compensation settings and other pertinent system controls in order 

to ensure that the planned installations meet desired operation requirements. The trial 
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and error method is cumbersome and does not guarantee that that the proposed solution is 

optimal. 

The RPP is a mathematical formulation that is intended to express the placement 

of reactive devices as an optimization problem in the steady state. As with many 

optimization problems, three major components need to be identified before formulating 

the RPP [12]. The first component is the identification of objective function(s), or the 

goals for optimization. Second, a set of controllable parameters need to be determined 

that have an impact on the selected objective function(s). Third, a set of operational 

constraints and conditions must be recognized in order to establish if the proposed 

solution is feasible. 

These three components of an optimization problem can be described in the 

following standard mathematical form [15]: 

Determine control parameter settings, x = (x1, x2, ... , xnl, that optimizes a vector of 

objective functions F(x, u) = [ F1(x, u) Fz(x, u) ... Fm(x, u)] (3.1) 

subject to: 

Gi(x,u) = 0 i = 1, 2 ... , z Equality Constraints (3.2) 

Hi (x,u) s 0 i= 1,2 ... ,p Inequality Constraints (3.3) 

XiL s Xi SXiU i= 1,2 ... ,k Control parameter bounds (3.4) 

UiLS Ui SUiU i = 1, 2 ... , v State variable bounds (3.5) 
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where F(x, u) is an array of objectives functions for simultaneous optimization, u is a 

state variable vector, XiL and UiL is the lower bound on each control parameter and state 

variable, XiU and uiU is the upper bound on each control parameter and state variable and 

m, n, z, p and v are the number of objective functions, control parameters, equality 

constraints, inequality constraints, control parameters and state variables respectively. 

Note that with regards to the RPP, the state variable vector consists of power system bus 

voltages and bus angles exclusively. 

In order to optimally plan for reactive power compensation devices the 

components of standard optimization formulation need to be addressed. The following 

sections will discuss typical RPP optimization components found in literature for its 

formulation. 

3.1.1 Reactive Power Planning Objective Functions 

The role of objective functions is to mathematically express the goals of an 

optimization process. The objectives presented in this section represent the most 

common RPP goals. There are other less common objectives that will not be discussed in 

this thesis. 
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3.1.1.1 V Ar Source Costs 

The primary· goal that is associated with all forms of the RPP is the minimization 

of costs for installing and procuring reactive devices for compensation [3-11]. Costs of 

reactive devices are typically broken down into two components: fixed installation costs 

and costs associated with purchasing devices. Installation costs are composed of the 

physical work that needs to be done and the cost of extra equipment required for the 

devices, such as switchgear and breakers. The combined costs of reactive sources can be 

modeled as follows: 

(3.6) 
iENc 

where e; is the cost of installation and additional equipment at bus i, Cci is the cost per 

MV Ar of the reactive compensator at bus i and Qci is the nominal rating (at 1p.u bus 

voltage) of the device in MV Ar at bus i. Qci can be positive or negative depending on 

whether the compensation device required is inductive or capacitive. 

3.1.1.2 Voltage Profile 

Another possible objective is to minimize the deviation of power systems bus 

voltages from their nominal value [5]. There are a few purposes for using this objective. 

First, as described in chapter 2, reactive power transfer is highly dependant on system bus 
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voltage levels. By keeping load bus voltages close to their nominal values, less reactive 

power will be transferred to each load bus in the system [16]. This has the effect of 

reducing line currents which also reduces eR losses. As eR losses are a form of wasted 

power, this objective has a strong economical impact. The second reason for using this 

objective is that a power system that has its load bus voltages close to their nominal 

values is more resilient to voltage instability scenarios due to unforeseen contingencies 

such as a line outage [14]. The calculation of an average load bus voltage deviation, V dev, 

used in this thesis is given by the following equation: 

Ilv:-v:·l 
v = _iE_N.:..;,:PQ __ _ 

dev N 
PQ 

(3.7) 

where vi is the actual bus voltage magnitude, vi* is the desired bus voltage magnitude 

andNPQ is the number of load buses contained in the system. 

3.1.1.3 Active Power Losses 

While equation 3.7 indirectly controls the active power losses, many forms of the 

RPP include an expression to directly minimize wasted MW [3-11]. Like equation 3.7 

this objective will help to ensure that the power system is performing economically. An 

expression for the overall active power losses accumulated in a power system is defined 

as: 

(3.8) 

24 



where Pg is the total active power produced by all system generators and Pz is the total 

active power load demand. 

3.1.2 Reactive Power Planning Control Variables 

As with the RPP objective functions, control parameters are dependent on what a 

planner believes will have an impact on system performance and the objective functions. 

Common RPP controllable parameters include the following [3-11]: 

• Shunt compensator installations 

• Generator terminal voltage levels 

• Line tap changing transformers 

These control parameters represent physical changes to the power systems operation and 

can be varied over their specified ranges. 

Shunt compensation control parameters vary the amount of reactive power, Qc, 

that the device will inject/absorb at nominal voltage (e.g. 1 p.u) at site installation busses. 

These control parameters are located and varied at any practical site location within the 

power system. Compensation devices, such as capacitors and inductors, commonly occur 

as blocks of reactive admittance and are purchased with fixed V Ar ratings. Thus, reactor 

bank parameters are treated as discrete. While there are continuous forms of reactive 

compensation devices such as static V Ar compensators and synchronous condensers, the 

costs associated with them tend to be significantly higher than fixed V Ar sources [14]. 
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As fixed reactor sources are a more commonly used reactive compensation device for 

cost reasons, this thesis will only focus on them. 

Generator terminal voltages are another primary means to control system 

voltages. A machine's terminal voltage IS controlled primarily through the use of 

automatic voltage regulators (AVR) [2]. The AVR is a closed loop control system that 

alters the synchronous machine's rotor field current to electromagnetically induce the 

desired voltage on the machine's stator winding. These control parameters are typically 

treated as continuous. 

Tap transformers, while less commonly considered, are used to raise or lower the 

voltage on system buses when voltages lie outside their desired range. They alter 

voltages by mechanically moving the transformers' secondary tap position, T. Since 

these transformers have fixed tap positions, they are considered a discrete form of 

control. 

3.1.3 Reactive Power Planning Constraints 

Constraints contained within the RPP problem are put in place in order to ensure 

that the solutions obtained by solving the RPP are feasible for practical power system 

operations. Without these constraints in place, any optimization procedure that is done 

on the RPP could potentially lead to solutions that can leave the system in a stressed 

condition even after compensation has been applied. This section discusses typical 

operational constraints used in RPP formulation. 
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3.1.3.1 Equality Constraints 

RPP equality constraints are represented by the power flow equations [16]. These 

equations define the physical link between scheduled generation and load demand and 

cannot be violated as they define the state variable conditions for a given system 

operating point. The power flow equations that govern the physics of the system are 

given in the following equations: 

Nbus 

P; = Ilv;llvjiiY:jicos(Bu -8; +8J i = 1, 2, ... , Naus (3.9) 
j=l 

Nbus 

Qi =-Ilv;llvjiiY:jlsm(eu -8; +8J i = 1, 2, ... , Naus (3.10) 
j=l 

where Pi and Qi are the active and reactive power bus injections at bus i, IVd and IVjl are 

bus voltage magnitudes, IYijl is the magnitude of the element (i, j) of the power system's 

admittance matrix, eij is the angle of the element (i, j) of the power system's admittance 

matrix, i)i and i)j are the bus voltage angles, and Naus is the number of system buses 

contained in the system. 
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3.1.3.2 Inequality Constraints 

With respect to the RPP, inequality constraints define the tolerable limits on both 

state variables and equipment usage. Important limitations used in the RPP problem are 

as follows: 

• Bus voltage magnitudes 

• Generator active power limits 

• Generator reactive power limits 

• Transmission line apparent power limits 

Bus voltage magnitudes must be held between a certain range in order to ensure 

that equipment is operating under design specifications, reactive power flow is 

controlled, line losses are reduced and voltage stability margins are within a desired range 

[14]. Allowable bus voltage levels depend on the nominal voltages that are applied to the 

bus. As an example, a typical tolerable voltage range for a 138kV bus is within ±5% of 

this value while buses with voltages of 345kV and over should be within ±10% [3]. 

Generation limits on active and reactive power are a result of the synchronous 

generators' design characteristics. These machines are rated in terms of maximum MVA 

at a specified voltage level and power factor which they can tolerate without overheating 

[2]. Synchronous machines have a maximum and minimum active power output that 

they can produce for efficiency and stability purposes [6]. Reactive power of a 

synchronous machine is limited primarily by the armature and field winding ratings. 
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Armature currents must be limited to reduce the windings' rlR losses to ensure the 

machine does not overheat. Thus, for a given active power output, there is a limit on the 

amount of reactive power that can be produced or absorbed. The field current excitation, 

which controls the machine's reactive power output and voltage, must also be limited to 

insure that the machine rotor windings are not damaged due to excess heating. 

All transmission lines have a limit for maximum MV A transfer, Strans, to ensure 

the system is operated safely. One of the primary reasons for this is to help ensure that 

MW losses due to resistance in the line do not cause it to overheat. For instance, it is 

known that during high power system loadings, the power flowing over a transmission 

line can cause the transmission line to sag. If the line sag touches vegetation, a fault 

occurs, possibly leading to partial or system wide blackouts. This is believed to be one of 

the causes of the blackout of August 2003 [1]. 

3.2 Reactive Power Planning Challenges 

The formulation of the RPP problem makes it quite difficult to solve usmg 

traditional optimization techniques. To show this, consider an example of the RPP where 

the goal of optimization is to minimize the costs of reactive sources (lc) and the average 

load voltage deviation (Vdev) formulation as follows: 
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Minimize F(x, u) = [ Ic Vaev] 

Subject to: 

~ = IIY;IIvjiiY;jlcos(B;j -5; +£>J 
j=l 

Qi =-IIY;IIvjiiY;jlsm(Bij -5; +£5j) 
j=l 

P min < p < pmax 
gi -gi-gi 

Q~in < Q . < Q~ax 
gz - gz- gz 

Q':'in < Q . < Q':'ax 
Cl - Cl- Cl 

V _min <V. <V.max 
l - ,- l 

Tmin < T < Tmax 
l - ,- l 

S min < s < smax 
transi - transi - transi 

where: 

i = 1, 2, ... , Nsus 

i = 1, 2, ... , Nsus 

i = 1, 2, ... , Npv 

i = 1, 2, ... , Npv 

i = 1, 2, ... , Ncomp 

i = 1, 2, ... , Nst.s 

i = 1, 2, ... , NTap 

i = 1, 2, ... , Nsranch 

Ncomp is the number of buses that have been designated for possible compensation 

Nsus is the number of system buses 

NTap is the number of tap transformers 

Nsranch is the number of transmission lines 
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It is clear from the above formulation that in its mathematical form, the RPP is a 

partially discrete, large scale, multi-objective, non-linear, non-convex and highly 

constrained optimization problem. Classical techniques based on non-linear, linear and 

integer programming all have certain strengths associated with them that make them 

applicable for specific forms of optimization problems. However, the RPP formulation is 

too varied to make a single tool effective for adequately handling all properties of this 

problem. 

The fact that the RPP is non-linear and non-convex poses a problem for using 

non-linear programming on the problem. While non-linear programming can deal with a 

problem's non-linearity, it works by taking derivatives to find the path of greatest 

ascent/descent. When this technique reaches a point in the search space where derivatives 

are equal to zero, an "optimal" solution is obtained. However, the technique's initial 

starting point coupled with function non-convexity can lead to local optimal solutions [ 4, 

12]. There is no way to know whether the obtained solution is truly global optimum over 

the problem's entire search space. 

Non-linear programming also suffers from the inability to deal with RPP's 

discrete control parameters such as reactor bank installations, hence discrete cost 

objective function, lc. This is due to the technique's need of functional derivatives to 

obtain an optimal solution. As it is impossible to take derivatives at points of 

discontinuity, the only way to overcome the obstacle is to approximate the discrete 

control parameters as continuous. After the solution is obtained, control parameters are 

31 



then approximated to the nearest practical settings. This can lead to sub-optimal 

solutions or even infeasible solutions [7]. 

Integer linear programming is a tool developed for solving discrete linear 

optimization problems [17]. However, due to the non-linear nature of the RPP, this 

technique cannot be directly applied. While some RPP algorithms were developed using 

this technique, linearization assumptions of the RPP formulation are required [ 4]. Any 

assumptions that are made with the RPP lead to non-optimal solutions. 

The RPP' s multiple objectives create another significant challenge for any 

optimization tool. Multi-objective problems deal with the simultaneous optimization of a 

variety of objectives in order to determine the most effective control parameter settings. 

As a problem's objectives can conflict with each other, it is often impossible to obtain a 

particular set of control parameter settings to simultaneously optimize all selected 

objectives. This fact will be described in greater detail in chapter 5. 

3.3 Review of RPP Optimization Techniques 

The optimal placement of reactive compensation for power system operations is a 

highly researched topic and a vast amount of literature exists on various techniques aimed 

at solving the problem for similar problem formulations. This section will review three 

methods found in literature for solving the RPP. The discussed methods encompass both 

traditional and heuristic optimization techniques. 
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3.3.1 Decomposition Based Reactive Power Planning 

Discussed in the previous section were the difficulties classical optimization 

techniques have with the RPP. Over the past few decades, decomposition techniques for 

large scale optimization problems were a highly sought after method to simplify difficult 

formulations so classical tools could be used more effectively [18]. As power system 

optimization problems are usually large scale, problem decomposition can improve 

computational efficiency and solution effectiveness by reducing the dimensionality of the 

overall formulation. 

Perhaps the most common decomposition technique is known as the General 

Benders Decomposition (GBD) [18]. In order to apply the GBD, an optimization 

problem needs to be broken down into a master problem with one or more sub-problems. 

Generally speaking, the master problem is comprised of a mixed integer problem while 

the sub-problems are continuous. By doing this, different tool sets, such as mixed integer 

programming and linear programming, can be applied to applicable levels of the RPP 

problem. 

Optimization via the GBD is done through the exchange of information between 

the master problem and the sub-problems. The master problem is comprised of a subset 

the control parameters that are usually discrete. During the iterative procedure, the 

master problem's control parameter settings are sent to the sub-problem level in order to 

optimize the remaining set of control parameters based on a different objective function. 

Any infeasibility that is determined at the sub-problem level is passed back to the master 

33 



problem's optimization tool to correct it by varying its parameters. This process is 

continued until optimization is complete at both levels of the GBD and no operational 

infeasibilities are present. 

The GBD has been applied with varying success to large scale mixed integer 

power system applications such as the restructuring of transmission systems and the 

security constrained unit commitment problem (SCUC) [18]. There have been 

applications of the GBD to the reactive power planning problem [7-9]. 

The RPP can be broken down into the problem set seen by figure 3.1 for GBD . 

application. The investment problem is treated as the master problem and it contains all 

discrete elements of the RPP. Since the investment problem· can be made linear, its 

optimization is performed using mixed integer programming for the control of all discrete 

control parameters. The operations problem then accepts the proposed compensation 

scheme from the master objective problem. Linear programming can then be used on the 

remaining continuous control parameters by assuming the RPP constraints and objective 

function are linear [7]. 

Equipmeat 
Decisioas 

Investment Problem 
.... .. ... 

Operation Problem 

.. Operation 
Results 

Figure 3.1: Decomposition of the RPP [9] 
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Although the decomposition technique allows the ability to use various 

optimization techniques at different levels of the RPP, it still may require linearization 

assumptions and the algorithm's complexity is very high. It has also been established 

that the GBD RPP based algorithms have a difficult time converging on solutions for 

large scale, practical power systems [4]. 

3.3.2 Heuristic Optimization Based Reactive Power Planning 

Heuristic optimization techniques have been applied to give good results for 

solving the RPP problem as it searches for global optimal solutions. These techniques, 

which include the genetic algorithm (GA), evolutionary algorithm (EA) and particle 

swarm optimization (PSO), offer a robust means to solve optimization problems. They 

can be applied more readily to difficult optimization problems that classical techniques 

cannot be directly applied to [ 4]. The principles of the GA optimization technique will be 

discussed in chapter 4. 

The following sections will discuss the application of two heuristic techniques 

found in literature for solving the RPP. The first is the EA for solving a single objective 

RPP, while the second uses the GA to solve a MO RPP. 
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3.3.2.1 EA Based RPP Optimization 

The application of the EA to the RPP has resulted in a significant amount of 

published literature [3-5, 10-11]. The first published work for the application of EAs for 

solving the RPP problem was performed by Lai [3]. The goal of his work was to plan a 

shunt compensation scheme for a modified IEEE 30-bus test system and a practical UK 

40-bus power system under different forecasted load levels using the EA. These load 

forecasts were proven to cause low bus voltages and high transmission losses. 

The RPP objectives used in this study were the costs of reactive compensation 

devices Oc) and the active transmission loss (P1oss). While these objectives define a multi-

objective optimization problem, the problem was treated as single objective by weighting 

each objective appropriately and adding them together to form a master objective. The 

master objective function was defined by: 

F(x u) =I + h * d * P. ' c loss 
(3.18) 

where his the hourly cost of the active power transmission line losses in £/p.uWh and d 

is the duration period of the current load setting. Both d and h were used to ensure that 

the loss objective function was in units of £/year. It should be noted however, that the 

objective functions themselves are still in different units as the V Ar source cost is in units 

of £ while the loss cost is in units of £/year. However, as the planning horizon is 

considered over one year only, the overall objective function is considered to be in units 

of£. 
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To demonstrate the effectiveness of the EA for solving the RPP, an example of 

the results obtained from the work is briefly presented here. In this example, the IEEE 

30-bus system was used where the overall real and reactive load demands were assumed 

to be 5.668 p.u and 2.524 p.u respectively. Results obtained from the test procedure are 

given with respect to a base apparent power of 100 MV A. 

In order to explore the load expansion system operation violations, a base case 

power flow was performed for a predefined generation schedule and tap transformer 

settings (set to 1.0 p.u). The results of this base case power flow showed that the 

expected load demand caused violations for bus voltages and generation reactive power 

limits. The violations, as shown in table 3.1, put the power system in an undesirable state 

of operation. 

Table 3.1: List of Violated Constraints for a Modified IEEE 30-bus system 

Bus 9 10 12 14 15 16 17 18 19 20 
V;(p.u) 0.945 0.909 0.940 0.901 0.893 0.910 0.897 0.870 0.863 0.872 
Bus 21 22 23 24 25 26 27 29 30 -
V;(p.u) 0.879 0.880 0.866 0.849 0.855 0.811 0.880 0.829 0.799 -
Bus 1 2 5 8 11 13 - - - -
Qtri(p.u) -0.402 0.496 0.952 1.479 0.281 0.439 - - - -

The minimization of equation 3.6 was performed through the control of 14 

distinct parameters. The control parameters and type used for the RPP were as follows: 
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• Four reactive compensation installation sites on buses 6, 17, 18 and 27. 

• Four tap transformers, located on branches (6,9), (6,10), (4, 12) and (28, 

27). 

• Six generator bus voltages found at buses 1, 2, 5, 8, 11 and 13. 

Finally, the master objective function was evaluated for control parameter setting 

using the assumed objective function constants: 

• The hourly cost (h) of active power losses is 6000 £/(p.uWh). 

• The duration time (d) was given as 8760 hours. 

• Installation costs of reactive power sources (ei) are £1000. 

• Cost of procuring a reactive source (Cci) is 3,000,000 £/(p.uV Ar). 

The control parameter results of the EA optimization procedure are found in table 

3.2. The tap settings found in this table give the transformer tap setting position. They 

represent the desired increase or decrease on each of the devices' secondary winding 

voltage. The reactive power source installations represent the amount of V Ars the 

capacitor bank will inject into the system at a nominal voltage of 1 p.u. Based on the 

author's test case discussion, the optimization process performed by the EA managed to 

determine control parameter settings that removed all the observed constraint violations. 

Hence, a feasible solution was obtained. 
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Table 3.2: EA Based Optimal Control Parameter Settings 

Generator Bus Voltages (p.u) 
Bus 1 2 5 8 11 13 
vi 1.05 1.022 0.973 0.959 1.050 1.050 
Tap Transformer Settings (p.u) 
Branch (6, 9) (6, 10) (4, 12) (28, 27) -
Ti 1.05 1.1 1.1 1.1 -
Reactive Power Source Installations (p.u) 
Bus 6 17 18 27 -

Ql! 0.198 0.229 0.133 0.196 -

The costs associated with the EA's reactive compensation installation scheme and 

yearly losses are found in table 3.3. In order to show the strength of the EA approach to 

the RPP as a cost saving tool, a second method to determine compensation scheme was 

discussed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique [12]. The 

BFGS is based on the classical non-linear optimization technique based on Newton's 

method that seeks to optimize by taking first and second order derivatives of functions in 

order to guide the algorithm's search direction. 

Table 3.3: EA and BFGS Solution Costs for One Year Planning Horizon 

Method Cost of installation(£) Cost of losses(£) Overall costs(£) 
EA 12252262 2272000 14524262 

BFGS 12342665 3217000 15559665 

It is apparent from these results that the heuristic EA technique has significantly 

outperformed the BFGS optimization method with an overall cost savings of £1,035,403, 

assuming the system operates under this loading condition for a one year duration. Lai 

suggested that the reason for the differences in costs could be attributed to EAs ability to 
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perform a global search, while the BFGS, like any calculus optimization procedure, got 

caught on local optima. In this case, the costs associated with a local optimal answer are 

significant and should be avoided. 

3.3.2.2 Genetic Algorithm Based RPP Using Multiple Objectives 

Recent interest in Pareto optimization has sparked a significant amount of 

research in the area of engineering multi-objective optimization. This interest is due to 

Pareto optimization's ability to consider objective functions independently so any natural 

trade-off that occurs between objectives can be observed. This trade-off region shows 

that for true MOP, the simultaneous optimization of objective functions is not possible 

based on the selected control parameters. Pareto-optimality is described and illustrated in 

chapter 5 of this thesis. 

Pareto-optimality was applied to the RPP problem by Begovic et al. [10]. A hi

objective GA was used to approximate the true Pareto frontier between the installation 

cost objective and the active power losses for both a transmission system and a 

distribution system. The Pareto optimization algorithm for the transmission RPP was 

performed on a simple 4-bus system (see figure 3.2). To show the strength of the GA 

Pareto optimization rnethod, the results of the transmission line optimization found in the 

study are presented here. 
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4 2 3 

Figure 3.2: 5-Bus Test System Used for Pareto Optimization [ 10] 

In the study only the reactive compensation MV Ar installations were used as 

control parameters in this study. Two potential reactive compensation locations were 

selected at bus 1 and 3 as they help to satisfy the local reactive power demand. These 

control parameters were treated as discrete, where the step size for each parameter was 

assumed to be 1MV Ar. Installation costs for reactive compensation were neglected and 

the costs for the devices was assumed to be 10$/KV Ar. 

The results of the GA based Pareto optimization technique used in the paper is 

found in figure 3.3. In this figure the x-axis represents the total active transmission losses 

while the y-axis represents the combined reactive power compensation installation sizes 

for both buses 1 and 3. 
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3.4 Summary 

This chapter discussed the fundamentals of the reactive power planning problem 

and the difficulties in solving it. Along with this discussion three published techniques 

for application to the RPP were presented. One method was based on problem 

decomposition for the application of different traditional tool sets. The two other methods 

presented were based on based on heuristic optimization methods. From the literature on 

all three discussed methods, heuristic optimization is the most viable strategy for solving 

RPPs. 

Heuristic techniques are highly sought after as a realistic means to solve difficult 

optimization problems as they have proven themselves to be flexible and robust by 

design. The two examples of evolutionary heuristic techniques presented above show 

promising results. One reason that these methods are applicable to the RPP is that 

heuristic techniques have been shown to handle discrete elements of an optimization 

problem. Second, they have the ability to perform a global search of the problem space 

which gives it the ability to obtain better results than classical techniques. 

Heuristic optimization techniques can be implemented to produce a close 

approximation to the Pareto-optimal set. This has its own merit as the RPP objective 

functions are known to conflict with each other. Thus, there exists no unique answer to 

simultaneously minimize all objectives. This is an attractive alternative as other criteria, 

such as ease of solution implementation and engineering judgment can be used to 

determine the best solution out of an optimization problem's Pareto set. 
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The next chapter will discuss and give a detailed description of genetic algorithms 

as they will be used in this thesis to solve multi-objective RPPs in the Pareto-optimal 

sense. Genetic algorithms will be shown through two optimization problems to be an 

effective tool to locate optimal solutions. 
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Chapter 4 

Genetic Algorithms 

4.0 Introduction 

Genetic algorithms (GA) were first developed in the 1960's by Holland [19] as a 

unique tool geared towards optimization problems. It also provided the foundations for 

the development of other popular evolutionary programming techniques such as 

evolutionary algorithms (EA) and particle swarm optimization (PSO). The GA is a 

heuristic optimization technique that is inspired by biological functions. Heuristic 

optimization methodologies are, by definition techniques that use intelligent guesswork 

to obtain solutions instead of using some form of pre-established formula and/or 

methodology. The heuristic property of the GA comes from the algorithms' attempt at 

artificially emulating Darwin's theory of evolution [20]. Unlike a trial-and-error heuristic 

method, the GAs use of evolution as its decision making framework allows the algorithm 

to make intelligent assessments about promising areas of an optimization problem's 

search space in order to locate an optimal solution. While the GA does not guarantee the 
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true optimal solution, it can provide near optimal results with a significant reduction in 

computational time [ 19]. 

Since the initial development of the GA, significant research has been done 

involving its application to challenging engineering optimization problems including 

applications to the RPP [3, 4, 10]. This research has lead to different variations of the 

original simple genetic algorithm (SGA) [13] including the development of additional 

algorithm operators that allow it to cope with true multi-objective problems. A popular 

multi-objective GA will be described in chapter 5. 

The objective of this chapter is to provide the fundamental concepts regarding GA 

based optimization. It should be noted here that while many forms of GA coding exist 

such as integer and continuous, this thesis will focus on binary genetic algorithms only as 

described below. This chapter is organized as follows: Section 4.1 will provide an 

overview of a single objective GA. Along with this overview, common GA operators 

will be discussed. Section 4.2 describes the advantages of GA based optimization. 

Section 4.3 will illustrate the GA optimization process using a simple mathematical 

optimization problem. The development and application of the GA to the optimal power 

flow (OPF) [21] for a seven bus power system will be illustrated in section 4.4 to give 

better insight into GA based optimization. Section 4.5 will conclude the chapter. 
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4.1 Overview of the Genetic Algorithm 

Biological evolution primarily consists of three important functions that serve to 

strengthen a species' ability to cope within its surrounding eco-system. These functions 

are natural selection, genetic recombination and genetic mutation. Combined together 

and allowed to occur over many generations, they help ensure that a given population 

evolves important traits that allow a species to remain an intrinsic part of their living 

environment. In much the same way, Holland proposed to incorporate the mechanics of 

evolution into an algorithm that would.adapt dynamically to feedback from information 

stored within a population of solutions [ 19]. The overall goal of this algorithm is to 

evolve optimal solutions from a randomly generated set of solutions of size N. 

How can it be possible to use evolution to solve intricate optimization problems? 

Certainly one of the keys to the GAs success is in its artificial representation of a 

biological population. The GA uses a population of string structures to represent possible 

solutions to a given problem - analogous to living creatures. These string structures, 

called chromosomes, are comprised of an array of genes which represent control 

parameters for an optimization problem. Genetic traits are imprinted on each 

chromosome's genes to represent control parameter settings. Thus, the genetic traits, or 

the DNA of a chromosome actually represents a specific solution to an optimization 

problem. 

As an example of artificial genetic representation, consider the following 

optimization problem: 
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Minimize z = xsin(4x) + 1.1ysin(2y) (4.1) 

Subject to: 

O~x~lO (4.2) 

(4.3) 

where x and y are assumed to be continuous over their respective range. 

For this optimization problem, each chromosome contained within the population 

is comprised of two genes which are used to store the x andy control parameter settings. 

With binary genetic algorithms, control parameter settings are not stored as base-10 

numbers. Instead, set string lengths of 1 's and O's are used to represent them. This 

representation is shown in figure 4.1. 

,, ,, 
~Y Co11lrol Y Control 

~ • 1°1 1 1 1 I o I I o I o I 11 I 1 I 
~ n bits t t m bits ~ 

Figure 4.1: Binary Chromosome Representation for Control Parameters 

Modeling of control parameters as a binary set of strings is important to most of 

the GAs evolution operators. However, these strings are not particularly useful for 

numerically determining how fit each chromosome is. As the GA uses an optimization 

problem's objective function as afitness landscape [20], binary control strings must be 
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decoded into a base-10 number in order to evaluate each solution's fitness. For the case 

of the continuous control variable optimization problem above, an equation that can be 

used to convert a binary number into a decimal number is given as: 

min u. -u. 
( 

max min J 
u; = u; + ' 

2
:, _ { dec(str;) (4.4) 

where Ui is the decimal representation of a binary encoded parameter, Uimin and utax is the 

minimum and maximum allowable value of a parameter respectively, li is the number of 

bits used to represent the parameter and dec(stri) is the conversion of a binary to decimal 

number. The quantization of the conversion is highly dependant on the number of bits 

chosen to represent the control parameters. Using more bits will allow for a more precise 

representation of continuous control parameters. 

As an example of decoding binary control parameters, consider the chromosome 

shown in figure 4.2. In this example each control parameter is coded using 6 binary 

digits. Using equation 4.4 and the inequality constraints set by equation 4.3 it can be 

found that the decoded decimal value for the x andy control parameters are 7.7778 and 

3.6508 respectively. 

,-------- Chromosome ---------., 

..J,. X Control Y Control ~ 
It tlolololtlloltloltlt tl 

Figure 4.2: Example of a Two Variable Chromosome 
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However, strong members have the traits that allow them to thrive. Natural selection 

rewards the strong individuals with a greater chance to pass on their genetic traits to 

future generations. It also helps to significantly increase the probability that poor genetic 

traits contained in weak individuals are not passed on to subsequent generations. This 

insures negative characteristics that impede the coping ability of an individual are 

eliminated from the gene pool. Similarly, the GA rewards solutions with large relative 

fitness. The reward is the opportunity to pass on their strong genetic traits into future 

generations. 

There have been many proposed methods to emulate natural selection such as 

roulette wheel and stochastic selection [22]. However, the most flexible and easily used 

strategy is known as tournament selection. Tournament selection is a probabilistic 

operator that randomly selects two chromosomes from the population and pits them into 

competition with each other. The winner of the tournament is the chromosome that has 

the largest fitness value. An example of a tournament is shown in figure 4.4. The 

tournament selection operator performs this task N times in order to create a mating pool 

of fit parents of size N. 

1 1 0 0 I 0 I 1 I I o I 1 I 0 1 1 

Fitness= -1.0844 

[1 
I Toumamont 0 0 1 I o I 1 I I 1 I ol 1 1 1 1 I 

Fitness= .0447 
___. Winner. Enter 

Mating Pool 

Figure 4.4: A Tournament between Two Competing Chromosomes. 
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Members of the mating pool are given the opportunity of passing on their genetic 

information on to the next generation. Just like natural reproduction, subsequent children 

consist of a mixture of genetic information from two parents. As tournament selection 

weeds out poorly fit chromosomes, children are expected to consist of only strong genetic 

material. This results in an improved overall fitness of the new population versus the old 

population. 

There have been many techniques to emulate genetic recombination. Common 

probabilistic methods include uniform, single point and two point crossover, with the 

latter being highly used [23]. The two point crossover operator works by first selecting 

two parents from the mating pool at random. These parents are then aligned as shown in 

figure 4.5 such that like control parameters are paired together. The operator gets its 

name from the fact that two crossover points are selected at random to mark which part of 

each parent's genetic data will get transferred to the two children. For instance, child 1 's 

x control setting is composed of the first two bits of parent 1, the third and fourth from 

parent 2 and the fifth and sixth from parent one. Child 2' s x control settings will be the 

inverse, taking its first two bits from parent 2 and so on. The parents used to create the 

children are then discarded from future consideration. This process of creating children 

is continued until there are N children. The next generation chromosomes consist of the 

newly created child population. 
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X Control Y Control 

Parent 1 1 I I I 0 I 0 I 0 I 1 IOI11ololtlo1 

Parent 2 i I 0 I 0 I 1 I 0 I I I I o I 1 11 I 0 I 1 I 

+ 
Child 1 1 I 1 I 0 I I I 0 I 1 I o I 1 I o I 0 I o I 

ChHd2 I I olololol I I o I I o I t I 1 I 

Figure 4.5: Two Point Crossover for Two Variable Optimization Problem. 

It should be noted here that the process of fusing genetic information to create 

children occurs within the GA with a high probability. However, the algorithm does not 

guarantee that new children are created. Instead, the selected parents are sometimes 

passed through the operator and enter the next generation unaltered. 

The ·final evolutionary function implemented in the GA is based on genetic 

mutation. In the natural world, it is fairly common for children to contain traits that 

neither parent nor any member of a population has. These new genetic traits may help or 

hinder the ability to adapt well to its surrounding environment. If these traits are 

beneficial to child's survival, natural selection helps to ensure that they are passed on to 

future generations of the species. If however, the traits adversely affect the child, natural 

selection should help ensure that these traits never make it into the next generation. 

Like the GAs selection and recombination operators, the mutation operator is 

probabilistic. After the children are created and have replaced the parents as the next 
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generation of solutions, this operator goes through each child's binary digits and converts 

them from a 0 to a 1 or vice versa with a low probability. A low probability is used to 

ensure that the search is based on evolution, not pure randomness [20]. However, even 

with a low probability, this operator helps to ensure that the entire fitness landscape has 

the opportunity of being searched. An illustration of mutation is shown in figure 4.6. In 

this figure, a gene is examined by the mutation operator where the second bit is converted 

from a 0 to a 1. 

1 1 0 0 0 I 

Mutation 

1 (J 0 0 0 1 

Figure 4. 6: An Illustration of Mutation. 

Most GAs uses an additional operator known as elitism [20]. While this operator 

is not based on evolutionary functions it does serve to enhance the overall effectiveness 

of GA based optimization. In many cases of GA evolution, the best obtained from 

previous generation may be lost due to the probabilistic nature of the GAs operators. 

This operator is used to keep track of the best (elite) solution obtained so far during the 

algorithm's search. If it is found that all members of the subsequent generation have 

lower fitness then the elite solution, the operator will replace a randomly selected solution 

in the population with it. If there is a member of the population with a higher fitness than 
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the current elite member, then that member becomes the new elite member. This 

operator is known to ensure faster optimization convergence. 

Using these operators iteratively over many generations, optimal or near optimal 

solutions can be obtained. A simple GA algorithm can be coding in any programming 

language by following the flow chart as shown in figure 4.7. Note that the loop contained 

within this flow chart will be called the main evolution loop in this thesis. 

Start 

Initialize Random Population 
Set Gen = 1 

Evaluate population Fitness 

Parent Selection 

Crossover 

Mutation 

Elitism 

End 

Figure 4. 7: A Simple Genetic Algorithm Flow Chart 
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4.2 Benefits of G A Based Optimization 

Evolutionary programming strategies, such as the GA, have several significant 

advantages over classical optimization methods and trial and error processes. These 

advantages include the ability to avoid local optima convergence and not needing to 

simplify portions of the optimization problem's formulation. 

GAs begin an optimization procedure by creating a randomly created population 

of solutions to the optimization problem. For this reason, as soon as the optimization 

procedure begins, the GA uses feedback from the strengths and weaknesses of the 

population to get an idea of good regions of the fitness landscape. These regions are 

rigorously explored by the GA by using the evolutionary operators as described above 

[19]. This has the advantage over the non-linear programming techniques which require 

a starting point to perform its search, often leading to local optimal solutions. Further, 

the use of evolutionary heuristics allows the GA to perform a guided search while a brute 

force trial and error approach requires variables to be changed without any benefit from 

the exploration of the fitness landscape. Thus, the GA requires less computational time 

then the brute force approach. 

Unlike non-linear optimization techniques that require the existence of first and 

second order derivatives and continuous control variables, the GA makes no assumptions 

about an optimization problem's formulation. As a result of this, the GA has the ability 

to be applied to challenging optimization problems to which classical techniques cannot 

be applied. One reason for this is that GAs work with the coding of the control 
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parameters, not the parameters themselves. By using different techniques to decode 

control parameters into base 10 numbers, it is possible to incorporate discrete control 

parameters into the GA. A second reason is that the GA guides its search by using payoff 

obtained from the optimization problem's objective function, not derivatives or other 

auxiliary knowledge [19]. 

4.3 An Example of Mathematical GA Optimization 

As a visual aid to see the evolution of an optimal solution with GAs, consider 

again the optimization problem represented by equations 4.1 to 4.3. By inspection, it is 

apparent that the global minimum solution is located approximately at x = 9.0 andy= 8.6 

which results in z = -18.5. 

The results presented here based on GA optimization were obtained by coding the 

GA from figure 4.7 using MATLAB 7.0 [24]. Table 4.1 lists the important GA settings 

used for this example. The crossover and mutation probability values were chosen based 

on recommendations given in [20]. These values allow good exploration while not 

resulting in a random search due to excessive mutation. 
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Table 4.1: GA Settings for Minimization of 4.3 

X Control Parameter Bit Number 12 
Y Control Parameter Bit Number 12 
Population Size 20 
Generation Number 100 
Mutation Probability 0.001 
Crossover Probability 0.85 

It should be noted here that in order to minimize an objective function using a 

tournament selection based GA, the optimization problem's objective function needs to 

be transformed in order to map negative values into higher fitness values for the GA 

chromosomes. A simple way to accomplish this is to simply multiply equation 4.1 by -1 

[20]. 

Figure 4.8 shows a contour plot of equation 4.1. Contained within this contour 

plot is a randomly generated set of chromosomes (solutions), where each is represented 

by a black asterix. It is clear from this figure that the chromosomes are well spread out 

over the fitness landscape to allow the GA to locate promising areas of the search space. 

Good solutions within this population are located in or near blue portions of the contour 

plot. 
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Figure 4. 9: Progress of the Elite Solution for each Generation 

The resulting population at the end of the GAs iterations is shown in figure 4.10. 

This figure shows a significantly improved population in terms of fitness. As expected, 

the entire population is biased towards the upper right quadrant of the contour plot as this 

is where the global optimal solution is located. For this reason, many of the population's 

chromosomes are scattered on or close to the global optimal point. Note the figure does 

not show all 20 chromosomes as many of the chromosomes are copies of each other. 
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Table 4.2: Two Control Parameter Optimization Results 

Method X Control Variable Y Control Variable Objective Evaluation 
GA·Method 9.0390 8.6682 -18.5547 

Newton's Method 9.0379 8.6740 -18.5540 

While these results are near identical, it is important to understand that Newton's 

method obtained the optimal solution because inspection of the surface plot for equation 

4.1 gave the proximity of the global solution. If a different starting point was chosen, the 

algorithm would converge on a local optimal solution. 

4.4 Application of the GA to _Optimal Power Flow 

The purpose of the OPF is to determine a generation schedule that meets a load 

demand while meeting a wide range of operational constraints. In its most general 

formulation the OPF is a single objective, large scale, non-convex optimization problem. 

It has been widely used by electric power utilities since its origin in the 1960's [21]. 

Many techniques have been used to solve the OPF, including linear, non-linear and 

evolutionary programming with good success [25, 26]. The objective of this section is to 

evaluate the effectiveness of the GA optimization technique for a 7-bus OPF problem. 

Simple power system models will be used to illustrate the effectiveness of the Genetic 

Algorithm approach. 
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4.4.1 Optimal Power Flow Formulation 

Most power system generators require the consumption of fuel to provide 

electrical power. The objective function of the OPF reflects these costs. A common 

representation for a generator fuel cost in dollars per hour is given by the following 

quadratic equation: 

CD = a. + fJ.Pa· + y.Pa2 
rc; l l l l ~ 

(4.5) 

where PGi is the active power output from generator i and Ui, pi, and 'Yi are the cost 

coefficients for generator i. 

The sum of all the generator costs represents the total operational costs, in dollars 

per hour, for providing the required active power to load demand. Thus, the OPF 

objective function for minimization is expressed as: 

(4.6) 

where P is a vector of generator power outputs. 

As with the RPP, the OPF is bounded by many operational constraints. The 

optimization equality constraints are representative of the OPF's equality constraints. 

The optimization inequality constraints represent limits on each generator active and 
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reactive power outputs, bus voltages and transmission line and transmission line MV A 

transfers. 

Using the objective function and the operational constraints, the OPF can be 

expressed in the following optimization form: 

Minimize f(P,u) = I(a; + /J;PGi + Y;P~;) 
i 

Subject to: 

P; = ~]V;IIvjllr;jlcos(eij -8; +8J i = 1, 2, ... , Nsus 
j=l 

Qi =-:i:lv;llvjllr;jlsin(eij -8; + 8J i = 1, 2, ... , Nsus 
j=I 

i = 1, 2, ... , Nrv 

Qmin < Q < Qmax gi - gi- gi i = 1, 2, ... , Nrv 

V.min < V. < v.max 
l - l- l i = 1, 2, ... , Nsus 

smin < s < smax 
transi - transi - transi i = 1, 2, ... , Nsranch 

Note that the above equality and inequality constraints are fully discussed in chapter 3. 

4.4.2 GA-OPF Objective Function and Fitness Function 

Unlike section 4.3, which dealt with an unconstrained optimization problem, the 

OPF is heavily bounded by operational constraints to keep the system inside safe 
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operational limits. Constrained optimization using non-linear optimization techniques 

introduce the concept of penalty factors to discourage the algorithm from obtaining 

infeasible solutions [21]. Similarly, GAs can use penalty factors to reduce the fitness of 

infeasible solutions to discourage the GA from searching infeasible portions of the search 

space [3, 20, 25, 26]. 

A simple way to apply the penalty factor approach to GA optimization is to 

simply augment the problem's objective function with weighted penalties for any 

constraint violation that occurs for a member of the GAs population. This leads to the 

following GA-OPF objective function: 

" lim 2 F(P,u)=f(P,u)+ ~A;(H;-H; ) (4.7) 
iENv 

where ~ represents the user defined weight of the penalty associated with the ith 

constraint, Nv defines the set of constraint violations, Hi is the value of the ith violated 

constraint parameter and H/im, depending on whether the violation is over or under the 

parameters constrained limit, is the minimum or maximum tolerable value. 

As with the minimization problem in section 4.3, the OPF requires a transform to 

map small or negative objective function values into high fitness. This again can be 

accomplished by multiplying equation 4.7 by -1 to yield a GA-OPF fitness function: 

Fitness(P,u) =-f(P,u)- LA;(H;- H;im )2 (4.8) 
ieNv 
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4.4.3 7-Bus GA-OPF Test Case and Results 

The goal of lhc OPF for the 7-b•"· 5 generator po"er ')>l<m (27) >eeo in figure 

4 II '" to mmam1zc gcDCTator fuel COO,h v..h1le adhcnng to power now cquatioru., 

'pec.:1hcd branch now (MV A). bu:, voltage magnuudc ... generator n:;&<;ti\·c power and 

,Jack generator active power limill:t. The lima!\, fuel C0\1 cocrticu:nts (md the :,ystem 

parrunciCr!. arc fo\md in Appendix A. The 101alload demanded by thi:, :,y:,tem i:, 760~-'fW 

and 130MVAr. This sy.,tcm ha:, 9 conuollahle parameter'\ m total: 4 generawr active 

po"er output "·ar•.abJc, omd 5 genera1or bus \Oitagc ma~nnudc ,·anahll:'l. The referet~ce 

hu' '' loc.atrd at bu' 7 

,• 

One 
• ThrH -.. ,__ __ _ 

I' 
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This test case was coded in MATLAB 7.0 and ran on a 3.0GHz Pentium 4 PC 

with 512MB of RAM. A MATLAB based power systems toolbox known as 

MA TPOWER [28] was used to perform the required power flows for chromosomes in 

the population in order to determine the value of the reference bus' active power output 

and to determine all constraint violations for fitness evaluation. The following table 

shows important GA parameters used in this study. 

Table 4.3: GA Settings for Minimization GA-OPF Test Case 

Generator Power Parameter Bit Number 12 
Generator Voltage Parameter Bit Number 8 
Population Size 30 
Generation Number 200 
Mutation Probability 0.001 
Crossover Probability 0.85 

The GA-OPF results presented in table 4.4 are based on the best and worst case of 

10 runs to show that the GA's heuristic approach can lead to different solutions. Each 

GA-OPF run required approximately 115 seconds of processing time. As a comparison 

to the GA-OPF technique, the results of MATPOWER's Newton based OPF technique is 

also presented in the table. The table shows each of the control variable set points along 

with the slack generator output and the overall cost to operate the system for the required 

load demand. None of the results presented in this table had any constraint violations. 
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Table 4.4: GA-OPF and MATPOWER OPF Case Study Results 

Bus Unit Best Run GA-OPF Worst Run GA-OPF MATPOWER OPF 

lVI p Cost 1\-1 p Cost 1\-1 p Cost 

(p.u) (MW) ($/hr) (p.u) (MW) ($/hr) (p.u) (MW) ($/hr) 

1 1 1.05 100.00 1155.50 1.049 100.00 1155.50 1.05 100.00 1155.50 

2 2 1.048 161.71 1656.12 1.041 160.05 1646.55 1.048 160.56 1646.91 

4 3 1.037 127.73 1275.34 1.028 130.04 1294.22 1.037 128.36 1280.48 

6 4 1.041 205.13 1997.08 1.031 205.42 1996.35 1.047 205.72 2001.88 

7 5 1.024 173.04 1595.87 1.011 172.07 1587.69 1.024 172.95 1595.14 

Total 767.61 7679.91 Total 767.58 7680.31 Total 767.59 7679.91 

From the table it is apparent that there are slight differences in the results of best 

and worst case GA results. This is due to different initialized populations being biasing 

to different but promising areas of the search space from run to run. However, the overall 

costs associated with the two cases are almost identicaL Also, the best case solution of 

the GA-OPF is identical in terms of cost as MATPOWER's optimal solution. While 

these results obtained do not show that the GA is any better at solving the OPF, it does 

show that its optimization technique gives acceptable results and is applicable to difficult 

optimization problems. 
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4.5 Summary 

This chapter provided an overview of key genetic algorithm concepts along with 

the benefits of using it for solving difficult optimization problems. As the GA does not 

require any auxiliary knowledge of an optimization problem, such as the existence of 

functional derivatives, the GA is applicable to many types of optimization problems to 

which techniques such as non-linear programming cannot be easily applied. 

Through a highly non-linear mathematical optimization problem, the GA was 

shown to provide a global approach to optimization. Its performance for this application 

was excellent as it was able to provide the global optimal solution. The optimization 

problem consisted of multiple local optimal solutions that caused non-linear 

programming strategies to locate sub-optimal solutions. The only reason the non-linear 

technique managed to find the global solution was the inspection to find close proximity 

of where the global solution was located. In most optimization problems, the ability to 

visually determine where the optimal solution is located is impossible due to 

dimensionality. 

This chapter also proved the applicability of the GA to power system applications. 

It was demonstrated that the GA could locate an optimal solution for a 7 -bus OPF. While 

the results were not superior to Newton's OPF method, the results show the GAs ability 

to solve difficult optimization problems. As was shown in chapter 3, the RPP contains 

discrete control parameters. The GA's ability to cope with discrete control parameters 
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and its ability to deal with highly non-linear optimization problems as illustrated in this 

chapter, potentially make it a good fit for solving the RPP. 

The only downfall to the GA with respect to non-linear programming was the 

longer processing time required for solving optimization problems as was shown with the 

GA's application to the OPF. Extended processing time inherently limits the GAs 

applicability to problems that do not require near instantaneous solutions. The processing 

time expense for planning type problems is greatly offset by the GA' s ability to perform 

global searches and its use of discrete control parameters. 
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Chapter 5 

Multi-Objective Optimization: 

Algorithm Approach 

5.0 Introduction 

A Genetic 

Chapter 3 alluded to the fact that, in general, MOPs contain a set of optimal 

solutions instead of a single solution. These solutions are called Pareto-optimal and show 

the inherent trade-offs that occur between competing objective functions [10, 13, 29, 30]. 

In the absence of any auxiliary information, it is impossible to say that any Pareto

optimal solution is better than the others. A good optimization procedure should seek out 

as many of these optimal solutions as possible in order to select the best solution based on 

other criteria. 

Strategies based on classical optimization techniques have been proposed to solve 

MOPs [10, 13, 29, 30]. These strategies involve assigning a weight to each of the 

objective functions based on relative importance and summing them together to create a 

single objective function [10, 13, 29, 30]. With this formulation, a single solution can be 
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obtained. However, multiple solutions can be obtained by applying an optimization 

algorithm many times while assigning different weights to the objective functions. While 

this method is intuitive, there is no guarantee that the algorithm will produce Pareto

optimal solutions due to the local search of classical techniques [13]. A second problem 

that is common to a weighting scheme is that each objective may be of different units, 

such as time or money. It may be difficult to transform these objective functions such 

that all objective functions are composed of the same units [13]. 

Over the past few decades, many MO optimization tools based on evolutionary 

strategies have been proposed. These techniques are well suited to search out multiple 

optimal trade-off solutions as they operate globally on a collection of points instead of 

relying on a starting point like classical optimization techniques. Thus, a range of 

optimal solutions can be obtained with just one run of the algorithm. Just as important 

however, is their ability to treat a problem's objectives independently [30]. This removes 

the issues associated with the aggregate objective function technique as described above. 

The aim of this chapter is to discuss a powerful and popular extension of genetic 

algorithms that allow them to effectively solve MOPs. This chapter is organized as 

follows: Section 5.1 will discuss the concept of Pareto-optimality for minimization 

problems. 5.2 will overview a state-of-the-art technique known as the Non-dominated 

Sorting Genetic Algorithm-II (NSGAII) for MOP optimization. Section 5.3 will illustrate 

the effectiveness of the NSGAII for a simple hi-objective optimization problem. Section 

5.4 will give a summary of this chapter. 
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5.1 Pareto Optimality 

As stated above, most MOPs do not allow for a single solution to optimize all 

desired objective functions. As many practical problems are defined to contain 

conflicting objective functions, trade-offs between objectives are apparent. For instance, 

consider an optimization problem that has two objectives (called hi-objective), where one 

objective is the minimization of costs to create a product and the other is the 

minimization of time required to produce a product. Assuming that spending more 

money allows a plant to purchase more efficient machinery, the overall time to create a 

product should be lower. However, if less efficient machinery is purchased to save 

money, the time expected to produce should be higher. 

The conflict that exists between the mentioned objectives is clearly shown in 

figure 5.1. From the figure's objective space, it is apparent that solution X (requiring a 

greater. cost) and solution Y (requiring greater time) have attributes that, in a sense make 

them optimal. Clearly, there is a trade-off here; an increase in the optimality of one 

objective degrades the quality of the other objective. Thus, the only way to actually say 

that one solution is better then the other is to use other criteria not defined in the MOP. 
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Figure 5.1: Trade-off between Two Solutions. X and Y 

While the above example illustrated that it may be impossible to determine a 

solution to optimize all objectives, the question still remains as to what is an optimal 

solution is for a MOP. A key to this lies in the definition of solution domination. By 

definition, a solution X, is said to dominate a solution Y, if both conditions 1 and 2 are 

true [30]: 

1. The solution X is no worse than solution Y in all specified objective functions. 

2. The solution X is strictly better than Y in at least one of the specified objective 

functions. 

If either of the above conditions is violated, solution X does not dominate solution Y. In 

fact, if we consider the above conditions with respect to solution Y instead, it may be 

determined that Y dominates X. 

To illustrate the concept of domination, consider a minimization hi-objective 

optimization problem with only two solutions, X andY, as illustrated in figure 5.2. It is 
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evident in this figure that solution X has a lower value with respect to both objective 

functions. In no way is solution Y optimal in any sense. Since solution X meets both 

conditions for domination of solution Y, it is said that solution X dominates solution Y. 

In fact, if other solutions did exist and were located in the region highlighted in this 

figure, the solutions would also be dominated by solution X. 

"' .. 
~ .. 
:i> 
0 

Q XSolution 

• YSolution 

• 

Objective 1 

Figure 5.2: A Depiction of Solution Domination. 

Dominated solutions are not of interest for MOPs. The reason for this is that there 

are other solutions in the objective space that better facilitate the optimization of all 

required objectives. Instead, MOP optimization is focused on obtaining non-dominated 

solutions, which are in direct contrast to dominated solutions. 

A non-dominated solution is defined as any feasible solution such that there does 

not exist any other feasible solution contained in the entire objective space that is strictly 

better than it for all objectives. These solutions are called Pareto-optimal, after the Italian 
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economist Vilfredo Pareto (1848-1923) [13]. For a given MOP, the collection of Pareto-

optimal solutions is called the Pareto front. As described above, Pareto-optimal solutions 

are in a sense optimal. 

Continuing with the cost-time example from above, figure 5.3 shows the optimal 

trade-offs that occur between the two objective functions. The solid line represents the 

Pareto-optimal frontier that contains all the non-dominated solutions for the MOP. 

Clearly the front is showing that as we increase the optimality of time we decrease the 

optimality of cost, however no solution within the front is better with respect to both 

objectives. This line also shows that any objective space solution that is above and to the 

right of the front is dominated by at least one solution contained in the Pareto frontier. 

-"' 0 
u 

-- Pareto Front 
0 Dominated Solutions 

0 * Pareto Solutions 

0 

0 

Time 

Figure 5.3: The Pareto Frontier for the Cost-Time Example 
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5.2 Non-Dominated Sorting Genetic Algorithm-II (NSGAII) 

Proposed in 2001 by Debet al. [29, 30], the NSGAII is a powerful and commonly 

used MO optimization technique that is well suited to solve highly constrained 

optimization problems. In fact, it was shown in [29] to produce significantly better 

approximations to the true Pareto frontier then other popular MO evolutionary strategies 

such as the strength-Pareto evolutionary algorithm (SPEA) [31] and the Pareto-archived 

evolutionary strategy (PAES) [32]. 

Before discussing the foundations of the NSGAII, it is useful to outline the two 

goals of the algorithm as they dictate the construction of its operators. The first goal is 

obvious: to identify as many optimal solutions contained within the Pareto frontier as 

possible. The second goal is to ensure that the solutions obtained by the algorithm are 

diverse and well spread out over the Pareto frontier. 

In order to illustrate the importance of solution diversity, consider two distinct 

Pareto solution sets used to represent the same Pareto frontier for a hi-objective problem 

as shown in figure 5.4 [13]. In this figure solution sets (a) and (b) are both non

dominated; however the sets have a varying degree of diversity. Clearly, the solution 

set with low diversity (a) only outlines a small segment of the Pareto front while the high 

diversity set (b) gives a good approximation of the same Pareto front as the solutions are 

well spread out. Thus, solution sets with high diversity give a much better picture of the 

natural objective function trade-offs. 
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Figure 5.4: Two Pareto Optimal Sets with Distinct Diversity. 

--Pareto Front 
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At its heart, the NSGAII uses the principles of evolution to evolve a Pareto-

optimal set in much the same way the simple genetic algorithm does as was described in 

chapter 4. However, the definition of chromosome fitness and tournament selection must 

be tailored to the concepts of non-domination and population diversity to allow the 

NSGAII to meet the two goals mentioned above. Also, in order to properly implement an 

elitist strategy to help optimization convergence, the NSGAII main evolution loop must 

be altered from the single objective GA. 

The following sections are used to give an overview of key concepts used by the 

NSGAII. In section 5.2.1 a description of chromosome fitness and tournament selection 

for the NSGAII is given. Section 5.2.2 will present an overview of how the NSGAII is 

constructed. 
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5.2.1 NSGAII Chromosome Fitness and Tournament Selection 

Chromosomes (solutions) used in the NSGAII reqmre more then just an 

evaluation of the fitness function for each chromosome as is the case with the single 

objective GAs. While it is still important to evaluate the problem's objective functions, 

the NSGAII requires three distinct metrics to determine the fitness of each chromosome 

for parent selection. These metrics are based on the concepts of feasibility, non

domination and diversity. As will be shown in this section, these metrics are vital for the 

tournament selection operator and the overall ability of the NSGAII to obtain diverse 

Pareto-optimal solutions. 

For any constrained optimization problem, each solution within a population is 

either feasible or infeasible. If a solution is found to be infeasible, an infeasibility 

calculation must be performed. The infeasibility calculation is accomplished by 

determining the normalized value for each solution's constraint violations and summing 

the absolute values of the violations together [30]. For example, if a solution has the 

constraint violations 20 < 10 and 1 > 3, they are normalized as (20/10-1) and (1/3-1) 

respectively. After summing together the absolute values of the normalized violations, 

the infeasibility metric for this arbitrary solution would be 1.667. 

The second metric is used to score each solution based on dominance. The 

NSGAII scoring procedure works in an iterative fashion, by first identifying all non

dominated solutions contained in the population. Non-dominated solutions are all 

assigned a rank of 1 and constitute the first Pareto front. With these solutions removed 
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from consideration, the procedure then identifies the resulting non-dominated solutions 

and assigns them all a rank of 2. This iterative procedure continues until the entire 

population is assigned a rank based on which front they occupy. It should be noted that 

the NSGAII considers the ranking of feasible solutions first. When all feasible solutions 

have been ranked, the NSGAII will the finish the ranking procedure by scoring infeasible 

solutions based on the infeasibility calculation described above. 

An illustration for the ranking of 10 particular solutions of an arbitrary 

minimization hi-objective problem is shown in figure 5.5. All solutions are assumed to 

be feasible except for the solution represented by the triangle. It is evident that the 

NSGAII will obtain 4 distinct sets of rankings. The three rank one chromosomes are 

globally non-dominated by the population. With rank 1 solutions removed from 

consideration, the rank 2 solutions are non-dominated by any of the remaining solutions. 

Similarly, three solutions are identified to occupy the third front. Finally, the infeasible 

chromosome is given a rank of 4, despite appearing to dominate one of the rank 3 

chromosomes. 
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D Rank 3 Solu!ions 
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Figure 5.5: Ranking of 10 Chromosomes 
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The third metric, called the crowding distance, is used to estimate the density of 

solutions surrounding a particular solution for each non-dominated set. The crowding 

distance allows the NSGAII to understand how diversified each chromosome in the 

population is. 

For each member of a non-dominated set, the crowding distance is obtained by 

first forming a perimeter around a particular member using the neighbors nearest to it of 

the same non-dominated set. An example of this perimeter for a member, XJ, is shown in 

figure 5.6 for a hi-objective problem. The sides of the perimeter are obtained by finding 

the distances between x2 and x4 along each of the objective axis. In order to ensure that 

these distances are of the same scale, they are normalized by dividing them by the 

difference between the maximum and minimum values of the corresponding objective 

functions. Finally, these normalized distances are added together to represent the 

chromosomes diversity. 

ro2 d2 * l x3 

k--dl x4 
+ 

x5 

fl 

flmin fl max 

Figure 5.6: Perimeter Created by Nearest Chromosomes ofx3 

81 



It should be noted that for boundary members such as x 1 and xs, the perimeter 

method does not apply. Instead, a large number is appended to their crowding distance 

metric to ensure that the NSGAII recognizes that they are the end points of their non

dominated front. 

The importance of the three metrics is evident when the possible scenarios of 

tournament selection are considered as they define the outcome. Since the tournament 

selection operator is usually coded to randomly select two chromosomes at a time, there 

are four scenarios that can occur. The scenarios and their outcomes are listed as follows: 

1. Both chromosomes are of the same non-dominated set. The winner of this 

tournament is the chromosome that has the largest crowding distance. 

2. Both chromosomes are feasible but are part of different non-dominated sets. 

The tournament winner is the chromosome with the lowest rank. 

3. One chromosome is feasible while the other is not. The feasible solution is 

always chosen to be the winner. 

4. Both chromosomes are infeasible. The chromosome that has the lowest 

infeasibility value is the winner of the tournament. 

From the list it is evident that the infeasibility, non-domination and diversity 

metrics allows the NSGAII to always pick the best chromosome for each tournament 

scenario. For instance, if two solutions are of the same rank, it is best to select the 

chromosome with the higher crowding distance in order to "fill in" portions of the Pareto 

frontier that are missing. Picking the right solution to be added to the parent pool helps to 

find feasible solutions that are near Pareto-optimal with a high level of diversity. 
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5.2.2 NSGAII Main Loop Strategy 

Before entering the main evolution loop, the NSGAII operates in a similar fashion 

as the single objective genetic algorithm. In the first generation of artificial evolution, the 

NSGAII starts by creating a randomized population, P1 of size N where it then assigns 

fitness to each member based on the three metrics described in section 5.2.1. Next, 

tournaments selection is performed to pick a pool of parents of size N. Finally, the usual 

genetic recombination and mutation operators are invoked to create a child population, 

Q1 of size N. 

The subsequent iterations are different from the initial generation. This is due to 

the fact that in order to retain the best chromosomes from generation to generation 

(elitism), the child population must be compared with the parent population. From this 

comparison, the best overall N chromosomes are selected from the two populations based 

on non-domination and crowding. 

The process of the ith iteration is shown in figure 5. 7. At the beginning of the 

iteration the parent population, Pi, and the child population, Qi, are merged into one large 

population, Ri, of size 2N. Each chromosome in Ri is then placed into its respective non

dominated set using non-dominated sorting. This forms multiple Pareto fronts. 

Chromosomes contained within the first front, F1, are the best overall chromosomes and 

should be preserved into the subsequent parent population, Pi+1, to ensure elitism. If the 

size ofF 1 is smaller than Pi+ 1' s size N restriction, each chromosome contained in the front 

is assigned a crowding distance and passed on to the Pi+1 population. The additional 
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members of Pi+I are obtained from the remaining fronts in the ranked order. Thus, the 

next group of chromosomes to be placed into Pi+! is from the second non-dominated 

front, followed by the third and so on. This process continues until it reaches a front that 

cannot be completely accommodated by Pi+I's size N restriction. When it reaches this 

front, call it Fn, each chromosome must be ranked according to its crowding distance, 

where larger crowding distance means better rank. The best ranked chromosomes from 

Fn are then placed into Pi+! one at a time until the overall size of Pi+! contains N 

chromosomes. All chromosomes that have not been placed into Pi+! are discarded from 

future consideration. With the elite parent population formed the evolutionary operators 

(tournament selection, parent recombination and mutation) are invoked to create the next 

generation child population Qi+l· This ends one iteration of the NSGAII's main evolution 

loop. 
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Figure 5.7: NSGA/1 Main Loop Strategy [29] 
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5.3 An Illustration of NSGAII Optimization 

The purpose of this section is to apply the NSGAII to a simple MO optimization 

problem to show its effectiveness for obtaining Pareto-optimal solutions. In section 

5.3.1, a description of the optimization problem is given along with a description of its 

optimal solution. Section 5.3.2 will present the optimal results obtained by the NSGAII. 

5.3.1 Problem Overview 

Consider the following simple hi-objective optimization problem [13]: 

Minimize f;(x),i E {1,2} (5.1) 

Subject to: 

-10:5x:510 (5.2) 

where 

! 1 (x) = X
2 (5.3) 

f 2 (x)= (x-2) 2 (5.4) 

Figure 5.8 shows the plots for the optimization problem's objective functions for 

values of x between -4 and 4. The minimum solution for objective functions f1 and f2 are 
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located at 0 and 2 respectively. Clearly, there is not a value of x that minimizes both 

objective functions simultaneously. 
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Figure 5.8: Plot for Objective Functions, f 1 and f2 

Turning our attention to Pareto-optimality, it is obvious that there is an objective 

function trade-off region for x e [0, 2] as function f1 increases while fz decreases over 

this range. Solutions contained in the sets x e [-10, 0) and x e (2, 10] are dominated by 

at least one solution in the trade-off range. Thus, the expected Pareto-optimal solution 

should consist only of the region defined by the set x e [0, 2]. 

While figure 5.8 indirectly shows the Pareto solutions, a better illustration of the 

Pareto frontier can be obtained by plotting the objective space for the optimization 

problem. Figure 5.9 shows the plot of the f1(x) versus f2(x) as xis varied from -3 to 3. It 

is evident from this figure that the Pareto frontier is given by the. sets f1 e [0, 4] and 
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f2 e [0, 4] which is shown in the figure as a solid line. Note that these ranges correspond 

to the set x e [0, 2]. The dominated sets are represented by the dashed lines are obtained 

from the sets x e [ -10, 0) and x e (2, 10]. 
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Figure 5.9: Illustration of Pareto Frontier 

5.3.2 Results of NSG All Optimization 

The optimization results presented here were obtained by using MA TLAB 7.0 to 

code the NSGAII algorithm. The following table shows important NSGAII parameters 

used for this application. Equation 4.4 was used to decode the binary strings into a 

continuous decimal representation. It should be noted that unlike the GA single objective 

optimization problem found in section 4.3, even a simple MOP requires a significant 

number of chromosomes to approximate the Pareto frontier. 
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Table 5.1: NSGAll Settings for Optimization Problem 

X Variable bits 10 
Population Size 100 
Generation Number 150 
Mutation Probability 0.001 
Crossover Probability 0.85 

Figure 5.10 shows the objective space of optimization problem for an initialized 

random population generated by the NSGAII. It is clear from this figure that the 

population is well spread out over the objective space which will allow the NSGAII seek 

out promising areas. It is also evident that the population consists mostly of dominated 

solutions while only 10 solutions are contained within the Pareto front. 

Initialized Random Population 

• Initial Generated Points 

--All Possible Objecli-.e Space Points 

100 

f1(x) 

Figure 5.10: Objective Space for the Initial Random Population 
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With the initial population created, the NSGAII enters the evolution loop for 150 

generations. The resulting solution obtained by the NSGAII after these generations is 

presented in figure 5 .11. As expected, the final population contains only non-dominated 

solutions. Further, by superimposing the true Pareto front onto the NSGAII solution plot, 

it is apparent that the solutions are Pareto-optimal. This conclusion was also verified by 

ensuring that each Pareto solution control variable (x) setting was between 0 and 2. 

NSGAII Results 

• NSGAII Pareto Solutions 

3.5 --True Pareto Front 

1.5 

0.5 

oL_~--~--~--~--~-=~~----~--~ 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 

f1(x) 

Figure 5.11: FiiU.ll Population 

Another excellent result obtained here is that the Pareto solutions ~e very well 

distributed over the entire Pareto front without any significant gaps between solutions. 

This spread shows the effectiveness of the NSGAII's crowding operator ability to add 

value for obtaining a better approximation of the true Pareto front. 
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5.4 Summary 

This chapter provided a fundamental overview of MO optimization problems. 

From the discussion, it is obvious that it is impossible to obtain a single optimal solution 

to optimize all objectives in question. However, using the concepts of Pareto-optimality, 

it is possible to define a set of solutions that describe the optimal trade-offs between 

competing objectives. As all of these solutions are in a sense optimal, it is beneficial to 

have as many of them as possible so the best solution from the set can be selected based 

on other criteria. 

Evolutionary techniques have been widely applied to MOPs because of their 

global searching capability and the ability to obtain multiple Pareto-optimal solutions in 

one run. One of the most popular MO evolutionary programming strategies, the NSGAII, 

was overviewed in this chapter. Using the fundamentals of evolution, non-domination 

and solution diversity, the NSGAII has the ability to obtain multiple Pareto-optimal 

solutions in one run of the algorithm that are well spread out over the Pareto frontier. 

This was clearly shown through a hi-objective optimization problem presented in this 

chapter. 

The next chapter will focus on applying the NSGAII to two reactive power 

planning case studies. This will put the tool to the test as it 1s exceedingly more 

challenging than the optimization problem presented in this chapter. 

90 



Chapter 6 

Application of the NSGAII to Reactive Power 

Planning 

6.0 Introduction 

Chapter 3 introduced a challenging power systems optimization problem known 

as the multiple objective reactive power planning problem (RPP). In all of its various 

formulations, the RPP was shown to be difficult to optimize for traditional optimization 

techniques. It was shown in chapter 4 that genetic algorithms have the inherent ability to 

seek out global or near global optimal solutions to difficult optimization problems. This 

was demonstrated by applying it to a single objective nonlinear optimization problem and 

the optimal power flow (OPF). However, the foundations of the single objective GA 

cannot treat multiple objectives independently. A powerful technique known as the non

dominated sorting genetic algorithm-If (NSGAII) was introduced in chapter 5 that 

extends the capability of genetic algorithms to handle multiple objectives independently 
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using the concepts of Pareto-optimality. The ability of the NSGAII to solve the RPP has 

yet to be demonstrated. 

The aim of this chapter is to evaluate the effectiveness of the NSGAII for solving 

RPPs that contain two objective functions as described below. Two case studies were 

performed using two distinct power systems. For both case studies, the NSGAII was 

required to generate a feasible and non-dominated set of shunt compensation schemes 

that correct for system operation constraint violations due to large system load increase. 

This chapter is organized as follows: Section 6.1 will give an overview of the 

common assumptions made for both studies and the simulation test environment. In 

section 6.2, a RPP case study using a 6-bus power system [21] will be discussed, where 

the optimization objectives were to minimize the costs of shunt reactive power 

allocations and active power transmission losses. Section 6.3 will provide a RPP case 

study using a modified IEEE 30-bus power system [28], where the goals of optimization 

were to minimize shunt reactive power allocations costs and average load bus voltage 

deviation. Section 6.4 will summarize the chapter. 

6.1 Case Study Assumptions and Testing Environment 

For the purposes of the two case studies presented in this chapter, the following 

important assumptions will be made with respect to RPP: 
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• Reactive compensation will be considered for the systems operating only at peak 

load. The peak load will be based on a forecasted load growth that increases 

apparent power demand at all system load bus locations uniformly. This loading 

will place significant stress on the systems and will violate multiple operational 

constraints. 

• Possible reactive shunt installation locations are predetermined. No reactive 

compensation will be applied to any location outside of the specified sites. This is 

a practical consideration as many power systems cannot install shunt 

compensation at every location in the system. 

• A predefined active power generation schedule will be given and will be held 

constant throughout the optimization procedure. The only variability to the total 

generator active power output is from the system's reference bus. 

• Potential compensation schemes will not be influenced by the effects of various 

contingencies, such as line outages. 

• V Ar sources (Qc) will be available in discrete banks only. Each bank will be 

rated to inject 0.5 MV Ar of reactive power into the system at nominal voltage. 

The nominal voltage of 1.0 p.u will be assumed. 

• The fixed installation cost for reactive compensation devices is assumed to be 

$50,000 at each site chosen for compensation. The purchasing costs for the 

devices will be $10,000 per MVAr. 
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In order to perform the studies, NSGAII based RPPs were coded in MA TLAB 

7 .0. MATLAB was chosen as the test setup as an interface between it and a MA TLAB 

based power systems analysis toolbox called MATPOWER [28]. Moreover, 

MA TPOWER is fully capable of solving the required power flows for determining 

constraint violations which removed the need to develop a power flow software package. 

The test PC was laptop containing a Pentium IV 3.0GHz processor and 512MB of RAM. 

6.2 6-Bus Case Study 

In this section, a RPP case study was performed where the goal of optimization 

was to minimize both the costs of reactive power compensation devices and the active 

power transmission losses for a large load forecast. These objectives were discussed in 

detail in chapter 3. The RPP presented here uses the same objectives as the RPP 

performed by Lai [3], except the objective functions will be treated independently instead 

of augmenting the objectives together. 

The 6-bus power system used for this study is shown in figure 6.1 [21]. ·The 

system consists of 3 generators, 3 loads and 11 transmission lines. Note that bus 1 is the 

reference bus. All system parameters along with the initial load demand and generation 

schedule are available in Appendix B using an apparent power base of 100 MV A. Table 

6.1 lists important operational constraints assumed for this case study. 
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Figure 6.1: Single Line Diagram of the 6-Bus Test System {21} 

Table 6.1: Operational Constraints for the 6-bus Power System 

Generator Reactive Power Limits (MVAr) 
Bus l 2 3 
Qgmax 100 100 100 
Q~min -10 -10 -10 

Generator Active Power Limits (MW) 
Bus 1 2 3 
pgmax 165 165 165 
pgmm 0 30 40 

Load Bus Volta2e Limits (p.u) 
Vbus 

max 
Vbus 

mm 

1.05 0.95 

Generator VoltaS!e Limits (p.u) 
v .. max v .. mm 

1.05 0.95 

Transmission Line Apparent Power Limits (MV A) 
Strans < 130 
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In the following sections, details about the specifications of the case study and 

NSGAII will be given. Along with this, a discussion on the results obtained by the 

NSGAII will be provided. 

6.2.1 Load Forecast and Generation Schedule 

The initial load demand and generation schedule do not violate any operational 

constraints. In order to emulate load growth that facilitates operational constraint 

violations, active and reactive power demand by each load was increased to 150 MW and 

120 MV Ar respectively. Thus, the total active power and reactive power demand was 

450 MW and 360 MV Ar. 

The total active power generation capacity for the power system was 495 MW. 

Taking into account that the load demand nearly meets the total generation capacity and 

the active power limits of the generators, the active power of generators 2 and 3 were set 

to their upper limits of 165 MW. As the reference generator must make up for any active 

power generation deficiency and provide the active power for transmission losses, the 

specified generation schedule ensures that the reference generator does not violate its 

own active power constraint. 
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6.2.2 6-Bus Base Case Power Flow 

Before beginning with the planning of a reactive power compensation scheme, it 

is important to first verify that the system cannot be operated with the increased load 

demand. A base case power flow was performed to get an idea of the severity of the 

constraint violations. For the base case power flow, the generator voltage levels were set 

to 1p.u. Table 6.2 lists all the constraint violations. It should be noted that even after 

increasing the generator terminal voltages to their maximum levels, the operational 

constraint violations from table 6.2 were still apparent. 

Table 6.2: Operational Constraint Violations for the 6-Bus System 

Bus 3 4 5 
Vbus (p.u) 0.853 0.819 0.866 
Bus 2 3 -

Ql! (MVAr) 206.68 159.19 -

Line 2-4 3-6 -
Strans (MV A) 140.26 158.60 -

It is evident from table 2 that five of the operation constraints are being violated 

by large margins. As was discussed in chapter 2, remote reactive power transmission can 

lead to low voltages and congested transmission lines as are seen in the above table. 

These results show the real need to add local VAr support to the system in order allow 

the system to operate within desired specifications. 
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6.2.3 6-Bus Case Study Control Parameters and NSGAII Specifications 

This case study used six control parameters for the RPP: three generator bus 

voltages (V g) and three V Ar source allocation busses (Qc). The V Ar allocation buses 

were chosen on the basis that each of the system's loads demand significant amounts of 

reactive power that can be met with local reactive power support. 

Table 6.3 gives the NSGAII parameters used for this case study. For the purposes 

of this test case, each generator voltage was coded using the same number of bits. 

Similarly, each reactive source allocation was coded using the same number of bits. 

Table 6.3: NSGAII Parameters for the 6-Bus Case Study 

Population Size 100 
Generations 150 
Mutation Probability 0.001 
Recombination Probability 0.85 
V j( Variable Bits 6 
Qc Variable Bits 9 

As this case study has both continuous and discrete control parameters, two 

methods of control variable decoding must be invoked. For the voltage control 

parameters, the conversion of each binary string into a continuous decimal value was 

done using equation 4.4. 

In order to properly account for the discrete step size of the reactive source 

allocations, the following equation was used to decode a binary V Ar source allocation i, 

into a decimal number: 
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Qci = dec(strci) * 0.5 * 1 MV Ar (6.1) 

where dec(strci) is conversion of the binary encoded V Ar source parameter, i, to its base 

10 representation. As 9 bits are used to represent each V Ar source, equation 6.1 decodes 

each binary VAr source string in discrete steps of 0.5 MVAr over a range from 0 to 

255.5MVAr. This range is more than sufficient to meet load reactive power demand as 

each load only demands 120 MVAr. 

6.2.4 6-Bus Case Study Results 

As the NSGAII is a heuristic optimization technique, it is not guaranteed to 

converge on the identical solution with each run of the algorithm. With this knowledge, 

multiple runs were performed in order to observe the ability of the NSGAII to locate non

dominated frontiers. Figure 6.2 shows the results of two of these runs. From this figure 

it is clear that the NSGAII managed to obtain similar solution sets. 
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sources, lower line losses are achieved. This is an intuitive result based on the discussion 

of reactive power compensation from chapter 2. 

The obvious trade off between V Ar costs and transmission line losses is best 

illustrated by considering the maximum and minimum cost solutions for the second 

Pareto frontier. These solutions' control parameter settings are given in table 6.4. It is 

apparent from the table that the maximum cost V Ar source allocations are significantly 

higher than the minimum cost V Ar sources. As a result of these allocations, it was found 

that the maximum VAr source scheme induces a $3,915,000 cost while the minimum cost 

scheme has a cost of $2,065,000. The maximum and minimum cost solutions have 

transmission line losses of 21MW and 16.5 MW respectively. Thus, by allowing an 

additional spending of $1,850,000 it is possible to reduce the transmission losses by 22%. 

Table 6.4: Control Parameter for Maximum and Minimum Solutions of Pareto Front Two 

Control Parameter Maximum Cost Solution Minimum Cost Solutions 
Vgl (p.u) 1.050 1.050 
Vgi (p.u) 1.050 1.050 
VgJ (p.u) 1.050 1.050 

Qc4(MVAr) 128.0 64.50 
Qcs(MVAr) 127.0 79.00 
Qc6(MVAr) 121.5 48.00 

Ultimately, the choice of the "optimal" solution is up the planner. There may be 

many reasons for choosing one solution over another. For instance, if the cost of 

equipment is of great concern and losses are of secondary importance, the minimal cost 
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solution should be chosen. It is an acceptable solution as the power system equipped 

with the minimum V Ar source scheme can handle the load forecast without violating 

operational constraints. If transmission losses are of primary concern, the 22% reduction 

in line losses between the maximum and minimum cost solutions may be very attractive 

and should be favored. This is especially true if the system is known to operate at peak 

loading for long periods of time and the costs of MW losses per hour is high. If however, 

the V Ar source costs and MW losses are of the same importance, the best solution would 

be contained somewhere in the middle of the Pareto-front as neither objective is 

minimized but a better balance between the two objectives is realized. 

As a further example of how external information not given in the problem's 

definition may bias the choice of an optimal solution, consider again the control 

parameter settings in table 6.4. The load bus voltages for this power system under these 

control parameter settings are shown in table 6.5. It is apparent from this table that the 

minimal cost solution is close to bordering on the bus voltage limits. Thus, this solution 

is the minimal feasible solution obtained by the NSGAII. However, the maximum cost 

bus voltages are much closer to their nominal value of l.p.u. With regards to voltage 

stability and the safety of power system equipment, the voltages pertaining to the 

maximum cost solution are significantly more attractive than the minimum cost solution. 

Table 6.5: 6-Bus System Load Voltages for Maximum and Minimum Cost Solutions 

Control Parameter Maximum Cost Solution Minimum Cost Solutions 
Vbus4 (p.u) 1.015 0.963 
Vbus5 (p.u) 1.012 0.954 
V 6bus6 (p.u) 1.023 0.966 
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6.3 IEEE 30-Bus Case Study 

In this section, a RPP case study was performed where the goal of optimization 

was to minimize the costs of V Ar source compensation devices and the average load bus 

voltage deviation [33]. The costs objective is identical to the cost objective used for the 

6-bus case study. The average load bus voltage deviation was discussed in chapter 3. 

The creation of a single objective by weighting and summing these two objectives would 

be difficult as it would be difficult to convert voltage profile into a dollar value. Thus, 

these objectives should be treated independently. 

The IEEE 30-bus power system used for this study is shown in figure 6.3 [28]. 

The system consists of 6 generators, 21 loads and 41 transmission lines. Note that the 

bus 1 is the reference bus. All system parameters along with the initial load demand and 

generation schedule are available in Appendix C using an apparent power base of 100 

MVA. Table 6.6 lists important operational constraints assumed for this case study. 
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Figure 6.3: One Line Diagram of the IEEE-30 Test System [28] 

Table 6.6: Operational Constraints for the 30-bus Power System 

Generator Reactive Power Limits (MV Ar) 
Bus 1 2 5 8 11 13 
Qgmax 150 60 62.5 48.7 40 44.7 
Qgmm -20 -20 -15 -15 -10 -15 

Generator Active Power Limits (MW) 
Bus 1 2 5 8 11 13 
P.max 100 140 100 100 100 100 
pl:mm 0 0 0 0 0 0 

Load Bus Voltage Limits (p.u) 
Vbus 

max I Vbus 
mm 

1.05 I 0.95 

Generator Voltage Limits (p.u) 
v.max (p.u) I v.mm (p.u) 

1.05 I 0.95 

Transmission Line Apparent Power Limits (MV A) 
Strans < 110 
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In the following sections, details about the specifications of the case study and 

NSGAII will be given. Along with this, a discussion on the results obtained by the 

NSGAII will be provided. 

6.3.1 Load Forecast and Generation Schedule 

For the purposes of this test case the initial real and reactive power demand of 

each system load bus was multiplied by 2 in order to uniformly emulate a future load 

growth. Thus, the total real and reactive power demanded by the system was 566.8 MW 

and 252.4 MV Ar respectively. 

The active power generation schedule used in this case study is shown in table 

6.7. Similarly to the 6-bus case study, all generators except for the reference generator 

were set to their maximum active power output limit. As the total generation capability 

for the system was 640 MW, the specified schedule helps to ensure that the reference 

generator does not exceed its active power output by having to make up for deficiencies 

in power generation. 

Table 6. 7: Generation Schedule for the 30-Bus Case Study 

Generator Active Power Schedule 
Bus I 2 I 5 I 8 I 11 I 13 

Pg(MW) l 140 I 100 I 100 I 100 I 100 
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6.3.2 30-Bus Base Case Power Flow 

The base case power flow presented here was performed to get an idea of the 

severity of the operational constraint violations. For the base case power flow, all 

generator bus voltages were maintained at 1 p.u. 

Table 6.8 lists all the violations that occur due to the forecasted load increase. 

Due to the forecasted load demand a significant portion of the system's constraints are 

being violated. Many of the load bus voltages are well below the specified 0.95 p.u value 

while half of generators are operating well above their maximum reactive power limits. 

These results show that the addition of reactive power support to the system will help the 

power system operate safely under peak loading. 

Table 6.8: 30-Bus Constraint Violations for the Base Case Power Flow 

Bus 9 10 12 14 15 16 17 18 19 20 
vi (p.u) 0.941 0.908 0.944 0.908 0.894 0.910 0.897 0.870 0.863 0.872 
Bus 21 22 23 24 25 26 27 29 30 -
vi (p.u) 0.878 0.880 0.866 0.848 0.852 0.809 0.878 0.826 0.799 -
Bus 5 8 13 - - - - - - -

Jl2i (MVAr) 90.38 106.32 47.43 - - - - - - -

6.3.3 30-Bus Control Parameters and NSGAII Specifications 

The total number of control parameters used in this case study was ten. This case 

study limited the possible VAr source allocations to four different buses. These buses 
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were selected based on areas of large reactive power demand and reactive power 

transmission. As V Ar compensation will have a strong local impact on bus voltages near 

the V Ar allocation sites, it was important to distance the sources throughout the network 

in order to help raise the voltages of all system buses. For this case study the buses that 

were selected for compensation are 5, 17, 18, and 27. Also, the s'ix generator terminal 

voltages were used as control variables in this case study. 

Table 6.9 gives the NSGAII parameters used for this case study. Note that an 

increased population size was used over the case study in section 6.2 as this case study is 

of larger scale and has many more operational constraints. The increased population 

helps to ensure that a more rigorous exploration of the search space is performed by 

NSGAII. The larger population used in this case study is at the expense of longer 

processing times. 

Table 6.9: NSGAII Parameters for the 30-Bus Case Study 

Population size 150 
Number of generations 150 
Mutation probability 0.001 
Crossover probability 0.85 
V g parameter bits 6 
Qc parameter bits 7 

For the purposes of this test case, each generator voltage was coded using the 

same number of bits. The decoding of the voltage control binary strings is done using 

equation 4.4. Each V Ar source was also coded using the same number of bits. Equation 
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6.1 was used to decode each V Ar source binary string into a decimal value. Thus, each 

V Ar source control variable was in discrete steps of 0.5 MV Ar over the range 0 MV Ar to 

63.5 MVAr 

6.3.4 IEEE 30-Bus Case Study Results 

As with the 6-bus case study, multiple runs of the NSGAII for solving the 30-bus 

RPP were done to observe the variability in the obtained solutions. Presented in figure 

6.4 are the three non-dominated solutions sets obtained for three separate runs of the 

NSGAII. All solutions contained within these Pareto fronts do not violate any operating 

constraints. 
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Figure 6.4: Pareto Frontiers for the 30-Bus Case Study 
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It is apparent from the figure that the NSGA-II managed to converge on two 

distinctive non-dominated fronts. While fronts two and three have similar solution sets, 

front one is significantly different. The primary reason for this variable convergence is 

fact that there are well over 1.8*1019 distinct control parameter configuration possibilities 

while the NSGA-II only uses 30000 power flows in the attempt to locate the true Pareto 

frontier! It is clear however, that in the case of each of the fronts shown in the figure, the 

solution sets are all non-dominated and well distributed over their established front. 

In figure 6.4, front one's non-dominated solutions induce significantly larger costs 

to obtain a similar load bus voltage deviation than the second and third frontiers, hence is 

called a local optimal solution. For instance, in the case of minimal V Ar source cost 

solutions for fronts one and two, the parameter configurations found in table 6.10 were 

obtained. Clearly the cost of front one's minimum cost solution far exceeds the cost of 

front two's solution while giving a similar load bus voltage profile. With this train of 

thought, it is apparent that the majority of solutions contained within front one are 

dominated by both front two and three solutions. 

Table 6.10: Example Solutions Taken from Two Pareto Frontiers 

Front vl!l v22 Yes Yes Ven vl!l3 QcS Qcl7 Qcts Qc27 Cost Vdev 
1 1.05 1.05 1.02 1.01 1.05 1.05 32 0 18 32.5 9.75e+005 0.024487 
2 1.05 1.05 1.01 1.02 1.05 1.05 0 0 16 32.5 5.85e+005 0.024979 

The trend obtained by the NSGAII for reactive power planning is as expected. In 

each of the fronts we see that as we devote more money to installing reactive 
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compensation in the network, the load bus voltage profile reduces significantly. To 

illustrate this fact, consider the maximum and minimum cost solutions of front two, 

where the costs of these solutions are $585,000 and $1,270,000. Their reactive power 

allocation is shown in table 6.11. 

Table 6.11: Maximum and Minimum VAr Allocations for Pareto Front Two 

Minimum Cost Allocations Maximum Cost Allocations 
Qs (MVAr) 0.00 22.50 
Q17 (MVAr) 0.00 20.00 
Qts (MVAr) 16.00 31.00 
Q27 (MVAr) 32.50 33.50 

The results of the power flows usmg the minimum and maximum V Ar 

installations are shown in tables 6.12 and 6.13 respectively. From these tables, it is 

apparent that increasing spending on reactive installations improves the load bus voltage 

profile. The minimum cost solution has many bus voltages that deviate sharply from the 

desired 1 p.u voltage. By increasing the spending on reactive sources fewer voltages 

deviate greatly from the desired 1 p.u voltage. If a planner believes that the average load 

bus voltage deviation is very important, it may be worth the extra investment costs to 

implement the maximum cost solution. However, if minimizing the costs of V Ar sources 

is more attractive, the minimal cost solution may be the most attractive as the solution 

still accommodates the load increase without violating any operational constraints. 
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Table 6.12: Pareto Frontier 2 Minimal Cost Load Bus Voltage Profile 

Bus 2 3 4 6 7 10 12 14 15 16 
V;(p.u) 1.029 1.0243 1.018 0.998 1.002 0.983 1.01 0.983 0.976 0.981 

Bus 17 18 19 20 21 22 23 24 25 26 
V;(p.u) 0.972 0.974 0.96 0.964 0.96 0.962 0.957 0.95 0.992 0.955 

Bus 27 28 29 30 - - - - - -

V;(p.u) 1.037 1.017 0.996 0.972 - - - - - -

Table 6.13: Pareto Frontier 2 Maximum Cost Load Bus Voltage Profile 

Bus 2 3 4 6 7 10 12 14 15 16 
V;(p.u) 1.018 1.014 1.006 0.989 1.01 1.006 1.02 1 0.998 1.004 

Bus 17 18 19 20 21 22 23 24 25 26 
V;(p.u) 1.007 1.02 0.999 0.999 0.983 0.985 0.978 0.97 1.002 0.965 

Bus 27 28 29 30 - - - - - -
V;(p.u) 1.041 1.005 1.00 0.976 - - - - - -

6.4 Summary 

This chapter evaluated the NSGAII' s performance for the identification of Pareto 

optimal solutions for specific multi-objective RPP formulations. Case studies were 

performed on a 6-bus power system and the IEEE 30-bus test system. From the results it 

is apparent that the NSGAII obtained feasible non-dominated solution sets that are well 

spread out over the non-dominated fronts. The results also showed that the NSGAII 

correctly identified the intuitive trade-off between reactive power support and 

transmission line losses as well as the trade-off between reactive power support and 

power system violate profile. 
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One of the pit-falls of heuristic optimization techniques is also apparent from the 

results however. The NSGAII managed to identify two significantly different Pareto 

frontiers for the 30-bus case study. Thus, even after multiple solutions are obtained from 

the NSGAII it is not quite clear that the obtained results are truly global optimal. 

However, considering that there are no other widely accepted techniques based on 

traditional mathematics that can handle multi-objectives without a weighting scheme, the 

evolutionary approach performed well. 

112 



Chapter 7 

Conclusions and Future Work 

In this thesis, the RPP was shown to be an exceedingly difficult optimization 

problem as its formulation is multi-objective, partially discrete, non-linear, highly 

constrained and of large scale. As power systems rely on reactive compensation as a 

means to overcome operational constraint violations due to increased load demand, tool 

sets that rise above the limitations of classical optimization techniques must be developed 

in order to allocate compensation in an optimal way. 

Heuristic strategies are powerful optimization tools that are known to overcome 

many of the limitations imposed by classical techniques. This thesis investigated the 

application of a heuristic technique called the NSGAII to RPPs. Studies performed on 

different power system models illustrate the effectiveness of the strategy. 

The investigation performed in this work highlighted three key abilities of the 

NSGAII that make it a better choice for application to RPPs over classical optimization 

strategies. The NSGAII can treat objective functions independently, perform global 

searches for the optimal solution and use a mixture of control types. 

113 



The ability to handle objective functions independently is highly important to a 

power system planner. Using the NSGAII as an optimization strategy for the RPP 

completely removes the necessity of weighting and summing objectives together to create 

a single objective. A weighted sum methodology is not attractive as optimization results 

may be erroneous due to objectives being of different units. Instead, the NSGAII uses 

the concept of Pareto-optimality to discover a range of feasible solutions that depict 

trade-offs that most often occur between competing objectives. With these trade-off 

solutions, a system planner has the ability to determine the best solution to implement 

based on some other information not defined in the RPP. 

As the costs of purchasing and installing reactive devices for system load increase 

can be enormous, any optimization technique that inherently performs local search 

techniques can lead to solutions that may cost an electrical utility significantly more 

money than is actually required. However, the NSGAII's ability to search for global 

optimal V Ar source allocations ensures that the optimization algorithm does not 

necessarily get stuck on local optimal solutions. Due to this, a power utility can 

potentially save considerable amounts of money using the NSGAII for RPP. 

The last attribute that makes the NSGAII a good choice for the RPP is its ability 

to use a mixture of control parameter types. As the NSGAII works on the encoding of 

control parameters, the use of functional derivatives is not required for searching the 

problem space. The NSGAII does not require the approximation of discrete control 

parameters as continuous. Thus, the NSGAII further avoids sub-optimal solutions due to 

the rounding of each continuous control parameter to the nearest discrete value. 
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The three abilities of the NSGAII coupled with case study results presented make 

it possible to recommend the tool to electrical utilities as a potential means to solve the 

type of RPP used in this thesis. 

It is important to note again that there is no guarantee that a solution obtained by 

the NSGAII is the true global solution for a particular RPP case study. This was evident 

from the case study presented in section 6.3 of this thesis. For this test case the results of 

three independent runs of the NSGAII resulted in two distinct Pareto-optimal solutions. 

Variable solution convergence is an attribute that must be accepted when using a 

heuristic optimization tool such as the NSGAII. However, the NSGAII can still be 

recommended as a RPP tool as it overcomes many of the limitations of classical 

optimization techniques. 

7.1 Summary of the Research and Contribution of the Thesis 

The main contributions of this thesis can be summarized as follows: 

1. A complete analysis on the negative effects of reactive power transmission 

and the use of shunt reactive compensation devices to mitigate these effects. 

2. A detailed study on reactive power planning problems, including important 

aspects such as its objectives and required operational constraints. 
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3. An investigation into binary GAs including their applicability to power 

system optimization problems. 

4. Publication of technical paper [25] related to the application of GA 

methodologies to power system optimal power floW. 

5. An overview of the Pareto-optimality concept that highlighted important 

implications of true multi-objective optimization. 

6. The development of a MA TLAB software tool based on the NSGAII for 

handling MOP objectives independently. 

7. The application of the NSGAII software to two power system case studies 

highlighting the effectiveness of the heuristic strategy for overcoming the 

challenges associated with the RPP formulation. 

7.2 Recommendations for Future Work 

The NSGAII provide excellent quantitative and qualitative insight into the 

optimal allocation of V Ar sources. However, it is impossible to say that the NSGAII 

technique will perform well for power systems of larger size that are operating under 

difficult conditions. As a result, further application of the tool to practical power systems 

under different operating conditions must be performed to increase its validation. 

The GA parameters used in the case studies presented in this thesis were all 

chosen based on typical values found in GA literature. However, a minimal investigation 
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into how different GA parameter settings affect the NSGAII' s output solution was 

performed. A study into the effects of different GA parameter settings is recommended 

as it may lead to the fine-tuning of the NSGAII, which may provide better solutions for 

RPPs. 

On-going research into the use of multi-objective evolutionary strategies for 

solving RPPs indicates that no general strategy has been widely accepted to solve RPPs. 

Further, new research into multi'-objective evolutionary strategies is constantly leading to 

new tool sets that outperform their predecessors. It is advised to investigate alternative 

evolutionary methodologies for application to RPPs in order to better gauge the capability 

of the NSGAII based RPP strategy. Alternative evolutionary strategies should include 

particle swarm algorithms and evolutionary algorithms. 

This research focused solely on the use of binary based GAs. Some research has 

pointed out that continuous or integer encoded GAs can outperform binary GAs for 

specific problem applications [29]. Investigations into the benefits of using different 

encoding methods or even a . mixture of encoding types should be done in order to 

possibly improve the performance of the NSGAII for solving RPPs. 

Power systems should be able to operate without violating operational constraints 

·after any possible single line outage [ 14]. In order to increase the practical quality of the 

solutions obtained by the NSGAII, only solutions that do not violate any operational 

constraint upon any single line outage should be considered feasible. An investigation 

into NSGAII' s ability to recognize these solutions should be undertaken. 
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Appendix A: 7-Bus Power System Data 
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table, A. I. A.2. A.J and A.4 re.,peCi ively. Note that all bull voltages arc rcquarcd to be in 

the mngc of 0.95 p.u Ottd 1.05 p.u. 
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Table A. I: Line Characteristics for the 7-Bus System 

Resistance Reactance Line Charging Line Limit 
Line No. From Bus To Bus (p. u) (p. u) (p. u) (MVA) 

1 1 2 0.02 0.06 0.06 50 

2 1 3 0.08 0.24 0.05 50 

3 2 3 0.06 0.18 0.04 80 

4 2 4 0.06 0.18 0.04 100 

5 2 5 0.04 0.12 0.03 100 

6 2 6 0.02 0.06 0.05 200 

7 3 4 0.01 0.03 0.02 100 

8 4 5 0.08 0.24 0.05 60 

9 7 5 0.02 0.06 0.04 200 

10 6 7 0.08 0.24 0.05 200 

11 6 7 0.08 0.24 0.05 200 
*All characteristics in p.u are based on lOOMV A 

Table A.2: Generation Schedule and Generator Limits for the 7-Bus System 

Maximum Minimum Maximum Minimum 
Active Power Active Power Active Power Reactive Power Reactive Power 
Generation Generation Generation Generation Generation 

Bus (MW) (MW) (MW) (MVAr) (MVAr) 

1 102 400 100 9900 -9900 

2 170 500 150 9900 -9900 

4 95 200 50 9900 -9900 

6 200 500 150 9900 -9900 

7 200.94 600 0 9900 -9900 
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Table A.3: Active and Reactive Load Demand for the 7-Bus System 

Bus Active Power Load (MW) Reactive Power Load (MV Ar) 

2 40 20 

3 110 40 

4 80 30 

5 130 40 

6 200 0 

7 200 0 

Table A.4: Generator Fuel Cost Coefficients of the 7-Bus System 

Bus a p y 

1 373.5 7.62 0.002 

2 403.61 7.519 0.0014 

4 253.24 7.836 0.0013 

6 388.93 7.573 0.0013 

7 194.28 7.771 0.0019 
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Appendix B: 6-Bus Power System Data 

App<nd" 8 &J\CS contams the pertmcnl mfomiJIIOO aboul lhe 6-BU> Po"er 

S)',tc:m 1211 dl\cU\\ed 1n the thesis. The ~lngle hne daagram ~~ 'ho"'n m figure 8.1 . The 

line chnmctcri~tics. iniliaJ generation schedule and matuJI load demand are presented in 

I able> B. l , 13.2. and 8.3. Nolc thai all bus vollages are reqmrcd 10 be in 1he range of 0.95 

p.u and I .05 p.u. 
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Table B. I: Line Characteristics for the 6-Bus System 

From Resistance Reactance Line Charging Line Limit 
Line No. Bus To Bus (p. u) (p. u) (p. u) (MVA) 

1 1 2 0.1 0.2 0.02 100 

2 1 4 0.05 0.2 0.02 100 

3 1 5 0.08 0.3 0.03 100 

4 2 3 0.05 0.25 0.03 100 

5 2 4 0.05 0.1 0.01 100 

6 2 5 0.1 0.3 0.02 100 

7 2 6 0.07 0.2 0.025 100 

8 3 5 0.12 0.26 0.025 100 

'9 3 6 0.02 0.1 0.01 100 

10 4 5 0.2 0.4 0.04 100 

11 6 5 0.1 0.3 0.03 100 
*All characteristics in p.u are based on lOOMV A 

Table B.2: Initial Generation Schedule and Generator Limits for the 6-Bus System 

Maximum Minimum Maximum Minimum 
Active Power Active Power Active Power Reactive Power Reactive Power 
Generation Generation Generation Generation Generation 

Bus (MW) (MW) (MW) (MVAr) (MVAr) 

1 108.5 165 0 100 -10 

2 50 165 30 100 -10 

3 60 165 40 100 -10 

Table B.3: Initial Active and Reactive Load Demand for the 6-Bus System 

Bus Active Power Load (MW) Reactive Power Load (MV Ar) 

4 70 70 

5 70 70 

6 70 70 
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Appendix C: IEEE 30-Bus Power System Data 

Appendix C gives contains the pertinent information about the IEEE 30-Bus 

Power System discussed in the thesis. The single line diagram is shown in figure C.l. 

The line characteristics, initial generation schedule and initial load demand including 

initial reactive compensation are presented in tables C.l, C.2, and C.3. Note that all bus 

voltages are required to be in the range of 0.95 p.u and 1.05 p.u. 

18 

19 

17 

26 

25 

27 29 30 

Figure C. I: One Line Diagram of the IEEE-30 Test System 
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Table C.l: Line Characteristics for the IEEE 30-Bus System 

Resistance Reactance Line Charging Line Limit 
Line No. From Bus To Bus (p. u) (p. u) (p. u) (MVA) 

1 1 2 0.0192 0.0575 0.0528 110 

2 1 3 0.0452 0.1652 0.0408 110 

3 2 4 0.057 0.1737 0.0368 110 

4 3 4 0.0132 0.0379 0.0084 110 

5 2 5 0.0472 0.1983 0.0418 110 

6 2 6 0.0581 0.1763 0.0374 110 

7 4 6 0.0119 0.0414 0.009 110 

8 5 7 0.046 0.116 0.0204 110 

9 6 7 0.0267 0.082 0.017 110 

10 6 8 0.012 0.042 0.009 110 

11 6 9 0 0.208 0 110 

12 6 10 0 0.556 0 110 

13 9 11 0 0.208 0 110 

14 9 10 0 0.11 0 110 

15 4 12 0 0.256 0 110 

16 12 13 0 0.14 0 110 

17 12 14 0.1231 0.2559 0 110 

18 12 15 0.0662 0.1304 0 110 

19 12 16 0.0945 0.1987 0 110 

20 14 15 0.221 0.1997 0 110 

21 16 17 0.0524 0.1923 0 110 

22 15 18 0.1073 0.2185 0 110 

23 18 19 0.0639 0.1292 0 110 

24 19 20 0.034 0.068 0 110 

25 10 20 0.0936 0.209 0 110 

26 10 17 0.0324 0.0845 0 110 

27 10 21 0.0348 0.0749 0 110 

28 10 22 0.0727 0.1499 0 110 

29 21 22 0.0116 0.0236 0 110 

30 15 23 0.1 0.202 0 110 

31 22 24 0.115 0.179 0 110 

32 23 24 0.132 0.27 0 110 

33 24 25 0.1885 0.3292 0 110 

34 25 26 0.2544 0.38 0 110 

127 



35 25 27 0.1093 0.2087 0 110 

36 28 27 0 0.396 0 110 

37 27 29 0.2198 0.4153 0 110 

38 27 30 0.3202 0.6027 0 110 

39 29 30 0.2399 0.4533 0 110 

40 8 28 0.0636 0.2 0.0428 110 

4.1 6 28 0.0169 0.0599 0.013 110 

*All characteristics in p.u are based on lOOMV A 

Table C.2: Initial Generation Schedule and Generator Limits for the IEEE 30-Bus System 

Maximum Minimum Maximum Minimum 
Active Power Active Power Active Power Reactive Power Reactive Power 
Generation Generation Generation Generation Generation 

Bus (MW) (MW) (MW) (MVAr) (MVAr) 

1 87.56 100 0 150 -20 

2 40 140 0 60 -20 

5 40 100 0 62.5 -15 

8 40 100 0 48.7 -15 

11 40 100 0 40 -10 

13 40 100 0 44.7 -15 

Table C.3: Initial Active and Reactive Load Demand for the IEEE 30-Bus System 

Active Power Load Reactive Power Load Reactive Power Injection 
Bus (MW) (MVAr) (MVAr at 1.0 p.u voltage) 

2 21.7 12.7 0 

3 2.4 1.2 0 

4 7.6 1.6 0 

5 94.2 19 0 

6 0 0 0 

7 22.8 10.9 0 

8 30 30 0 

9 0 0 0 

10 5.8 2 19 

128 



12 11.2 7.5 0 

14 6.2 1.6 0 

15 8.2 2.5 0 

16 3.5 1.8 0 

17 9 5.8 0 

18 3.2 0.9 0 

19 9.5 3.4 0 

20 2.2 0.7 0 

21 17.5 11.2 0 

22 0 0 0 

23 3.2 1.6 0 

24 8.7 6.7 4.3 

25 0 0 0 

26 3.5 2.3 0 

27 0 0 0 

28 0 0 0 

29 2.4 0.9 0 

30 10.6 1.9 0 
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