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Abstract 

Research under the framework of natural hazards monitoring with 

Interferometric Synthetic Aperture Radar (InSAR) has gained eminence in the 

last 10 years with advances in satellite imaging systems. Ground movement is 

known to be a form of natural hazard, which threatens the integrity of buried 

infrastructure as either massive instantaneous movement or visually 

imperceptible, slow incremental movement over a long period. Both types of 

movement can lead to serious damage. InSAR techniques have been well 

investigated for measuring ground subsidence, the vertical component of ground 

movement. If it is incorrectly assumed that the lateral movement component is 

zero, subsidence movement derived from one satellite look direction will contain 

errors. The research presented here has resulted in the derivation of a technique 

by which both vertical and lateral ground movement components can be 

estimated. Adopting the suggested technique for routine InSAR analysis in 

certain instances will provide the ability to derive more accurate subsidence 

estimates compared to the standard single look technique. 
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Chapter 1 

Introduction 

The financial and communal impact of a catastrophe instantiated by 

geophysical activity is significant. Landslides, subsidence, earthquakes and 

volcanoes endlessly impact on lives and damage expensive infrastructure every 

year [1]. Geophysical processes that drive these geohazards are all known to 

produce some kind of ground deformation [2]. This deformation of the ground 

in turn either damages or destroys capital infrastructure over or buried under 

these areas. As population increases each year, infrastructural development in 

hazardous areas is becoming common and the threats posed by these hazards are 

growing. Not all geophysical hazards are directed towards the uncertainty of 

crustal activity of the Earth. Earthquakes and volcanoes are probably the most 

devastating ones compared to other geophysical hazards that surface due to man 

made activities [1]. 
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Landslides and subsidence are a common consequence of ground 

instability. Infrastructure built on unstable ground can be subjected to damage 

[1]. The collapse of natural or man-made cavities may produces ground 

movement; these are common with excess withdrawal of ground water, mineral 

extraction, oil production from oil wells, underground storage and engineering 

works that encompass deep excavations. These forms of deformation can either 

occur instantaneously resulting massive failures or over long periods of 

gradual movement causing incremental damage. Gentle subsidence bowls 

develop almost imperceptibly slowly to a point where massive failure damages 

the regional infrastructure [3]. The effects of these damages have direct impact 

on the local economy. A means to detect the ground movement and prevent 

these damages would be a tremendous benefit to society. 

Slope inclinometers, accelerometers, strain gauges, Global Positioning 

Systems (GPS) and theodolite surveys are the techniques currently in place to 

monitor the range of ground movement activity [4]. Geologists have relied on 

level meters and theodolite and electronic distance measurement (EDM) systems 

to acquire accurate coordinate and change in coordinate positions for monitoring 

ground deformation. GPS based monitoring has been adopted in several places 

and is fully operational for ground activity monitoring. These techniques often 

require regular site visits to place sensors for measurements and primarily rely 

on human invention [5]. Satellite-based remote sensing technology is gaining 
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acceptance in performing these surveys. Satellites often have a larger coverage 

and can be used to continually monitor an entire area at regular intervals. 

Synthetic Aperture Radar (SAR) mounted on a satellite can acquire data remotely 

and provide valuable information that can be used to detect and measure ground 

deformation to accuracies similar to the best traditional surveying methods [2]. 

Table 1-llists common ground deformation monitoring techniques and lists their 

relative accuracies. 

Measuring Method Typical Range Observation Variable Typical precision 

GPS Variable(< 20km) Ax, ily, Llz 5-10mm +l-2ppm 

Elect. Dist. Meas. (EDM) Variable (1-14km) ~distance l-5mm + l-5ppm 

Wire Extensometer <10-80m ~distance 0.3mm/30m 

Surveying Triangulation <300-lOOOm Ax, ily, Llz 5-10mm 

Surveying Traverses Variable Ax, ily, Llz 5-lOmm 

Geometrical Leveling Variable Ill 2-5mm/km 

Ariel Photogrammetry Ideally <lOOm Ax, ily, Llz 10cm 

Terrestrial Photogrammetry Hmght < 500m Ax, ily, Llz 20mm from lOOm 

Table 1-1: Accuracies of commonly used ground deformation measunng instruments [6]. Note 
1 ppm means one part per million or 1 additional millimeter per kilometer of measured line. 

This thesis focuses on a microwave remote sensing technique, referred to 

as Interferometric Synthetic Aperture Radar (InSAR), for detecting and 

measuring ground movement. SAR interferometry is a phase-based technique, 

which uses a coherent imaging system to extract topographical or deformation 
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m.lp!o from image pairs. This technique was primarily inlroduced to produce 

D•g•tal Elevation Model (OEM) subsidence maps of deformmg areas. 

Acquiring and processing two or more single SAR imag~s with known 

•mage acquisition geometry creates lnSAR-derived deformation maps. These are 

<>flcn referred to as interferograrn~ Assuming the ground surface has changed 

dunng the acquisition of the two •mages, a comparison of image points &om one 

image to the other will show shght phase changes due to displae<>ment. Through 

a process called interferometric processing, topob'~'•phic signals can be 

eliminated and thus the residual intcrfcrogram will provide a one-dimensional 

ground deformation map as perceived by the satellite. Figure 1-1 qualitatively 

illustrate. the described technique. 

Aitltu<le+ 

Pll<el Phase Dlfference 
lnlefforogram I--+ 

OigUI -Model 
(OEM) 

/ 

fiS""' 1·1: illustration ol InSAR lor producing O.gdal Elevation Modot 
dlSplo«-menl map or Slant Range r.<R) <hange. 8 IS the separation o( lho 

4 
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A literature review on InSAR ground movement monitoring (see chapter 2) 

reveals that most researchers have used terrain geometry (e.g., down slope) to 

make an assumption on the direction of the ground movement or, in the case of 

flat terrain, have assumed subsidence movement only [2]. While there has been 

research on fusing two satellite look directions for glacier movements, there has 

not been any work on fusing multiple look directions to generate three­

dimensional movement in the absence of terrain trends. In the case where the 

terrain is flat and ground movement in the satellite look direction is significant, 

neglecting the lateral ground movement component could lead to significant 

errors in calculating the subsidence component. Consequently, deriving a 

technique to correct this problem in estimating both subsidence and lateral 

ground movement components will lead to more accurate movement 

measurements. In some cases, the estimation of the lateral ground movement is 

necessary to determine effects on buried infrastructure, including pipelines, 

foundations, wells, etc. In fact most regions that are undergoing subsidence are 

subjected to some sort of lateral movement. For example, an area in Southern 

California in the San Joaquin Valley is known to be subsiding [5]. The 

subsidence rate in the region is almost alarming and the region is also 

undergoing lateral movement due to such high subsidence rates. The work 

presented in [5] has estimated annual subsidence rates in North Belridge oil 

fields. Figure 1-2 is a photograph obtained of infrastructure damage in the 
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region of interest in North Belridge Oil Fields showing pipeline ruptured due to 

excessive ground movement. Careful observance of the picture reveals that the 

bend in the pipe appears to be due to lateral movement, not just subsidence. 

This region will be used as a test site for the research presented here. 

figure 1-2: Damages due to ground movement. IS] 

Motivated by the urgency of an accurate remote sensing technique to 

monitor ground deformation in both the lateral and vertical directions, this thesis 

presents a technique using interferometry with data from satellite SAR. The 

technique can be used to improve the accuracy over single-pair subsidence 

estimates by fusing two non-parallel pass image pairs and measuring the lateral 

movement and subsidence. It is shown that, with other assumptions, three 

dimensional movement estimates can be derived from only two satellite look 
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directions by combining the look geometry with a constrained least squares 

estimation technique. Measuring and detecting these movements from SAR 

images will prove an invaluable tool for monitoring and detecting ground 

failures. 
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Chapter 2 

Background Information 

This chapter presents a literature review on SAR and SAR interferometric 

techniques for various remote sensing applications. It opens with the 

fundamental principles of SAR systems, introducing the key concepts that are 

requisite for processing raw SAR images. InSAR is discussed in detail to build 

up the concepts that are required for differential Interferometric SAR (DinSAR). 

A self-contained background of SAR, InSAR and DinSAR as a remote sensing 

technique will introduce the readers towards the problem objectively. 

2.1 Synthetic Aperture Radar (SAR) 

Conventional radars use time separation in round-trip delay of the target 

echoes to form an imprint of the backscattered signals [7]. The time separation of 

the back-scattered echoes generally form one imaging dimension of the radar 

while the radar's antenna aperture forms the second dimension. An illustration 
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of this is shown in Figure 2-1 for a conventional ground-based scanning radar in 

which the antenna aperture is placed transverse to the direction of propagation. 

The dimension formed by the time domain propagation is called the "range" 

while the dimension formed by the antenna aperture is called the "azimuth" 

direction. Moving or spinning (beam steering) the antenna transverse to the 

main direction of propagation forms the azimuth dimension. 

Direction of Propagation 

_,,.,.,.,- -----........ Sensing section of antenna 
,.,.- ',, based on beam pattern (real 

\ :; aperture) 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 

\ / Range Direction 
\ I 
\ I 
\ I 
\ I 

Azimuth Direction \ / Moving or spinning 

..-----;:::::====------, antenna 
Radar Antenna 

I< Antenna Aperture >I 

Figure 2-1: 2-Dimensional imaging geometry of real aperture radar 

Real aperture radar forms its imaging "resolution" solely on the beam 

pattern of the real aperture of the antenna. Synthetic aperture radar is a 

modified version of real aperture radar. SAR combines the motion of the radar 

antenna to form a much bigger "synthetic aperture" that provides a much finer 
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azimuthal resolution than that of the real aperture alone. That is, instead of 

having an antenna with a large physical aperture to produce a desired 

resolution, SAR uses the antenna movement to synthesize a larger aperture. SAR 

is a coherent radar technique, which preserves both the amplitude and phase of 

the return signal thereby recording a measure of the target's aggregate reflection 

coefficient into each single imaged pixel [8,9] 

2.1.1 SAR Imaging Geometry 

The SAR imaging geometry as shown in Figure 2-2 graphically illustrates 

a satellite SAR antenna illuminating a surface strip (footprint) to one side of the 

nadir (directly below the flight path of the instrument) track. Side looking is 

necessary for SAR since it can eliminate any right-left ambiguity from symmetric 

equidistant points on the ground [8,9]. As the platform moves in its orbit, a 

continuous strip of swath width is mapped in the along-track direction of the 

satellite. The transmitted wave hits the target surface first at near range of the 

SAR illumination footprint and the separation of the backscattered signal along 

the swath width near range to far range is determined by the cross track 

resolution. The pulse width determines this cross-track or range resolution [8,9]. 
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Figure 2 .. 2: SAR imaging geometry illustration of a side looking SAR (redrawn from (101) 

An image is formed from the echoes which are sensed coherently in the across 

track (range) and along track (azimuth from synthetic aperture) directions 

[11,12]. 

2.1.2 SAR Raw Image Acquisition 

In raw SAR data, a single point target on the ground will have many 

return imprints on the acquired image. This means that, based on the target's 

shape, multiple pixels on the image will be affected. The objective of the raw 

SAR data processing step is to obtain a focused, single look complex (SLq 

image, which consists of the entire received signal distributed over an 

illumination time, on one point at time t = 0 (10]. Consider Figure 2-3 which 
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illustrates the illumination of a point target and its multiple e<:ho imprints on the 

obtained data. From Figure 2-3, x1 is the distance traveled by the flying antenna 

from position x=x0 =0 with r0the distance from the first position at w hich Pis 

illuminated by the antenna beam. The new distance 'i is when the antenna is at 

position x = x1• 

z 

Figure 2-3: SAR antenna movement along the X -axis, radar pulses to the ground along the 

y .axis, time instanl between position x = 0 to x = :c1 f10] 

From this it is possible to express the distance between the sensor and the target 

when the former is at position x = x1 as [1 0]: 

(2-1) 

The radar footprint on ground is usually much smaller than the target distance 
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( x1 << r0 ). Consequently, the square root approximation is followed by the 

binomial approximation [11,12]: 

(2-2) 

Thus, for a wavelength .IL0 , the phase qy(x) (as a function of distance x along the 

azimuthal path), of the received echoes resulting after a distance 71 is [11,12]: 

( 
2;r J( x[ J 2mf 4nro 2m[ <p(x) = 2 - r0 +- = --+ -- = --+ const, 
Ao 2ro -1oro Ao -1oro 

(2-3) 

where the factor of 2 in equation (2-3) accounts for the two-way travel path from 

antenna to target and back to antenna. 

Assuming constant sensor velocity v and neglecting the constant time 

independent phase term in equation (2-3), a quadratic phase behavior in time is 

obtained as [13]: 

qy(t) = kt 2 
1 (2-4) 

2 

where k = 
2

nv0 and v0 is a constant sensor velocity. Thus with this relation the 
~ro 

received azimuth frequency can be expressed as: [11,12] 

(2-5) 

Equation (2-5) is also called the Doppler effect and is only valid as long as x1 is 

very small compared to r0 ; otherwise, higher order terms in equation (2-2) have 
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to be considered. The Doppler ambiguity can be estimated by the blind de-

convolution technique as suggested in [14]. That paper also suggests a technique 

for efficient focusing of SAR data. 

To derive the expression of signal bandwidth in the azimuthal direction/ 

consider the illumination time of a point target as defined by the extension of the 

antenna footprint in azimuth. This time duration is equal to the length of the 

synthetic aperture and is determined as in [13,15] (see Figure 2-3) : 

(2-6) 

where lsa is the radar scan range on ground (synthetic aperture) 

r0 is the initial distance at x = 0 as shown in Figure 2-3 

()sa is the change in look angle due to length lsa 

v is the velocity of the platform. 

The bandwidth of the signal in azimuth is given as: [15] 

(2-7) 

The angular resolution ara with antenna length L in the azimuth direction can 

be represented as [13,15]: 

(2-8) 
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This is the minimum angular separation between two objects at the same 

distance that can be distinguished by the radar. 

The spatial resolution the azimuth direction for a given range r0 is: [13,15] 

(2-9) 

This means that azimuth resolution will decrease with the increase in r0 . A 

space-borne system of orbital height 800 km with L = 15 m would have a 

resolution of 3 km. However, for a SAR system the angular resolution asa of the 

synthetic aperture of length lsa can be determined as: [13,15] 

a=~ 
sa 2/ 

sa 
(2-10) 

The factor (1/2) in equation (2-10) is due to the synthetic aperture formation. 

The length of the synthetic aperture is the length of the traversed path from 

which a target is illuminated and can be expressed as: [13,15] 

(2-11) 

For a fixed range on a single strip of ground imaged with a SAR system, ()sa and 

asa are the same quantities. Thus, the achieved azimuthal spatial resolution can 

now be expressed as: [13,15] 

(2-12) 
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Equation (2-12) shows the independence of range distance and the azimuthal 

resolution is determined only by the size of the real antenna. Appendix C 

further illustrates key concepts on raw SAR processing steps. 

2.1.3 SAR Imaging Geometry and Terrain Relief 

Along the range direction, SAR measures the distance from targets to the 

sensor. This distance, also referred to as slant range, can be converted to ground 

distance using simple transformations. The latter distance is referred to as 

ground range. The terrain relief gets distorted in SAR images after the ground 

range transformation, and this entirely depends on the SAR look angle [16]. 

These distortions can be broadly classified as follows: 

Foreshortening Effects - For terrain that faces towards the SAR sensor whose 

slope is less than the radar incident (Figure 2-4), the slopes appear shorter than 

they actually are when observed in the map projection. The opposite happens 

for terrain facing away from the SAR sensor to apparently lengthen the slope in 

the SAR image. The amount of shortening or lengthening is determined by the 

incidence angle of the SAR beam relative to the slope [16]. Foreshortened areas 

appear bright (or dark on lengthened slopes) on SAR images since the reflected 

signal from terrain slope gets compressed in less pixel area on the image. Which 

means that the backscattered energy is a function of the local slope. 
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Shadowing Effects - If terrain facing away from a SAR sensor has a slope 

greater than the radar incident angle (Figure 2-4) then the area is not imaged by 

the radar. The incident angle and the back slope of the terrain determine this 

formation of a radar shadow [16]. 

1 2 3 4 

Orbit Height ! 
I 
I 

5 6 7 

I 

I 

I 

I 

I 

F =Foreshortening 
L =Layover 
S =Shadow 

Figure 2-4: Terrain relief affecting SAR images. Slant range image shows the terrain as perceived 
by the SAR due to foreshortening, shadowing and layover distortions. [16] 

Layover Effects- For terrain that faces towards the SAR sensor whose slope is greater 

than the radar incident angle, the top of the slope will appear closer than the bottom of the 

slope in SAR images [16]. This distortion is called layover, which means the top of the 

slope is laid over the bottom. Figure 2-5 illustrates this distortion effect on SAR images. 

Note the regions that are dark in the image and appear closer than the base ofthe slope. 
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Figure 2-5: Image of Greenland (October 2002, ENVISAT) showing terrain relief and its impact on 
the SAR image [Courtesy C-CORE]. 

2.1.4 SARimages 

Each pixel (picture element) of a SAR image is a complex number and can 

be represented in magnitude and phase form as shown in Figure 2-6. The 

intensity of each pixel in the image represents the measured backscatter of the 

area. Bright areas on the image occur where a large proportion of the signal gets 

reflected back, while dark areas are where little energy is reflected back and a 

large part of the signal either gets absorbed or reflected away from the radar. In 

standard polar notation each SAR pixel can be represented as: 

Z(x,y) = I(x,y)ej¢(x,y) I 

Where Z is the complex value of the pixel 

I is the intensity of the pixel 

¢is the phase of the pixel 

x, y are the image coordinate 
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Figure 2-6: SAR imaging system with I(x,y)eN(x,y) a SAR pixel (complex number) 

The intensity and the phase terms in equation (2-13) are usually independent of 

each other. 

2.2 Review of SARflnSAR Development and 
Applications 

Over the years, various possibilities for remote sensing with SAR have 

been demonstrated. Retrieval of imaged surface parameters has been the subject 

of many studies. In all of these studies, the areas of primary focus were on 

expressing backscattering coefficients and the parameters of phase difference 

statistics in terms of surface parameters such as height, correlation lengths and 

dielectric constants. These studies have enabled researchers to model and 

classify surfaces obtained from SAR images. 
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InSAR was first introduced for topographic mapping (sometimes referred 

to as relief maps) by Zebker and Goldstein [17] and its usefulness for accurate 

terrain mapping has been validated. Two complex SAR images of the ground 

under observation with similar viewing geometry will correlate with each other 

if obtained back to back. This correlated image pair is also referred to as 

coherence image [18]. Interferometry takes advantage of the coherence images 

and the created phase interferograms from these images to precisely measure 

terrain heights [17,19]. 

Land cover classification of terrain parameters has been extensively 

studied by a number of researchers. The primary focus in most of these studies 

was land-use mapping, where separation of forests and open fields was 

investigated. Some of the various applications for land classification from SAR 

images that have been investigated are canopy closure in dense forests, crop 

signature, barren land identification and agricultural crop heights [20,21,22]. 

Studies by Baronti [21] with C-band SAR shows the possibility of discriminating 

herbaceous crops and bare soil. Palosda [23] investigated the possibility of 

extracting soil moisture content and hydrological parameters from SAR images. 

These techniques with SAR data open a range of possibilities to remotely observe 

crop watering cycle and soil moisture retention capabilities of different 

agricultural sites. 
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Zebker and Goldstein demonstrated capabilities of topographic mapping 

by InSAR observations using two L-band radar systems and verified results with 

data from the United States Geological Survey (USGS) [17, 24]. This success 

stimulated growing interest in InSAR terrain elevation and surface movement 

studies. A technique to detect surface motion was presented by Gabriel, 

Goldstein and Zebker [19]. Seasat images were used for this study and a great 

focus on surface change and parallax caused by topography is discussed. 

A team of Italian researchers led by Prati and Rocca analyzed the limits 

and achievable resolution of elevation maps from stereo SAR images. Their main 

focus was on altimetric resolution with respect to satellite displacement in the 

cross-track direction [25]. They concluded that the maximum allowable 

displacement is limited by speckle noise (an artifact of a coherent imaging radar) 

and showed that achievable vertical resolution is better than slant range 

resolution times the cosine of off-nadir angle for about 99% of the image points. 

Speckle noise appears as random noise that can be visually observed as grains 

within a single SAR image. The phenomenon of speckle is common to all 

coherent radar systems. This type of noise can be reduced by an averaging 

technique called multi-looking [26, 27]. In the 1990's, there were several papers 

published mainly on InSAR error analysis techniques. These studies were on 

error sources and ways to mitigate errors [25,26,27]. A team of researchers [28] 

showed the effectiveness of SAR in areas of high seismic activities. Their main 
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focus was on the areas of seismic faults and ways to determine time-scale 

changes of the ground under observation . 

To measure and detect subtle changes of the land under observation, an 

accurate baseline model is required. The InSAR baseline is the separation of the 

two orbits for the interferometric pair. The larger the separation of the two 

orbits, the larger are the errors associated with differential interferometric data. It 

is required to have a minimum separation to measure very small-scale 

movement. Li and Goldstein [29] reported the relation between InSAR 

correlation and topographic surfaces for the investigation of InSAR baseline 

models. Another study [30] showed that it is possible to develop very accurate 

topographic maps by eliminating errors due to shadowing and overlays in SAR 

image scenes by combining ascending and descending orbit data. In 1994, 

Gatelli et al. [31] reported further findings on mitigating errors for accurate 

topographic models. They describe the effects of terrain slopes in the imaged 

scene [31]. They suggested that, in the presence of a terrain slope, image one will 

be different from image two based on the acquisition geometry. This difference 

in the obtained data produces a shift in the range spectra of the interferometric 

couple. This effect, known as wave-number shift, has to be taken into account in 

order to avoid interferogram decorrelation associated with the geometry. The 

technique suggested to correct this decorrelation effect is to filter the image pairs 

with several wave-number filters [31]. These wave-number filters can be 
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developed from the knowledge of the local interferogram fringe frequency 

analysis. 

SAR interferometry was successful in providing insight about the Landers 

earthquake by analyzing coseismical surface displacement gradients using SAR 

interferometry. It has been shown [32] that it is possible to measure slip 

distribution in earthquake belts. Various other earthquake studies with SAR 

interferometry indicated a promising future for this technique. Massonnet et al. 

[32] showed that fault lines could be detected with InSAR data and in particular 

the effects of the Landers earthquake could be measured by identifying fault 

lines from SAR images. 

Various glacier studies show that ice velocity and melt rate of glaciers (in 

Greenland) could be measured using InSAR. In most of these studies (for 

example, [33]) the glacial movement was known or assumed for analysis. Using 

the same idea to detect changes from time series SAR data, various ground 

movement detections and measurements were carried out. It was shown that 

one-dimensional ice sheet movement can be detected and measured by InSAR 

[33]. To measure small-scale surface movement, a good topographic model of 

the same area is required. This can be used as the base reference model of the 

terrain under investigation and any change to that can be recorded as movement. 

Various InSAR application projects for monitoring surface deformation 

proved the effectiveness of precisely measuring ground movement using SAR 

23 



images. A study was conducted in 1995 [26] to measure ground movement 

activity in Thuringia, Germany, an active mining area for uranium. A technique 

called Differential Interferometry or (DinSAR) was used to monitor movement in 

this region [26]. A set of corner reflectors (CR) was used to obtain a satisfactory 

coherence level in the successive image pairs for DinSAR. The CR's usually are 

the brightest objects in any SAR scene. With the knowledge of the imaging 

geometry and relative shift in the CR positions, a one-dimensional displacement 

measurement is possible. Other studies of subsidence monitoring in mining 

areas using a combined InSAR and GPS approach have been conducted [34,35]. 

These studies address the mitigation on mining disasters due to subsidence and 

collapse of underground mines, and demonstrated that by exploiting InSAR and 

global positioning system (GPS) data and fusing them together could obtain 

more accurate estimate of moving areas than either of the techniques alone. 

Traditionally monitoring these surface movements has been done using GPS 

surveys. However, GPS is limited in spatial coverage by the number of 

accurately placed receivers. InSAR under favorable condition is able to provide 

estimates of surface deformation due to these subsidences over the entire imaged 

scene. 

Numerous studies have been carried out within this framework of natural 

hazards monitoring caused by ground movement, mainly subsidence. Slope 
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stability, landslide assessment and land-subsidence studies due to man-made 

disruption are the most researched areas with InSAR and DinSAR [9, 17, 19, 24, 

28, 32, 33, 35]. 

Satellite remote sensing is still an evolving field; InSAR applications are 

not suitable for all areas. Areas with dense vegetation suffer from temporal 

decorrelation since in those regions InSAR image pairs become incoherent due to 

vegetation growth. Another source of errors would be uncertainty in satellite 

orbit. In the following section, an in-depth discussion of SAR interferometry is 

intended to lead the reader to the understanding that, even with these 

limitations, InSAR still remains an effective and accurate geodetic measurement 

method to monitor, measure, detect and anticipate surface movements remotely. 

2.3 SAR Interferometry 

To understand satellite interferometry one may consider the principles of 

a simple interferometer used in physics laboratories. The simplest interferometer 

is a two-sensor Michelson Interferometer/ which can be used to measure path 

length differences as shown in Figure 2-7. The operation of the interferometer 

relies on two electromagnetic field sensors, S1 and S2 separated by a known 

distance called the baseline B . The two paths, .R_ and P2 , start at sensors S1 and 

S2 , respectively, and end at the target t. A sinusoidal signal is generated at 
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sensor S1 and the echo is received at both the sensors. If the triangle whose sides 

are Jl, P2 and B are not isosceles then the reflected signal received at S1 and S2 

will be out of phase. This phase difference ¢; = 2 · 
2

Jr (P2 -Jl) is used to compute 
A 

the path length differences between Jl and P2 . Obviously, the phase difference 

¢; is directly proportional to path length difference (P2 -Jl) [36]. The sensors can 

both transmit and receive signals, which implies the effective path traveled by 

the signal is twice and hence a factor of 2 is observed in the phase difference 

equation. For a simple interferometer with one sensor acting as the transmitter 

and the other sensor acting as the receiver the phase difference can be related as 

2Jr 
¢ = -(P2 -Jl). 

A 

Figure 2-7: A simple interferometer geometry illustrated. A is the wavelength, P1and P2 are the 
sensor to target distances, s1 and s2 are the sensors and B is the baseline. 

InSAR uses the same principle to measure path length differences mapped to 

phase difference in estimating terrain height. With this information, 
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displacement of surfaces along the InSAR look direction can be detected and 

measured. 

2o4 SAR Interferometry Data Acquisition Techniques 

There are three primary ways that interferometric data can be acquired 

using onboard SAR sensors. A significant amount of research has been 

conducted in this area to identify which of these methods are suitable for various 

applications. There is information available on these methods elsewhere in the 

literature [9,11, 24, 29]. The basic principles of all these methods are given below. 

2.4.1 Across-track Interferometry 

In across-track interferometry two SAR sensors are mounted on a moving 

platform and are always perpendicular to the flight path. This technique is 

mostly used when SAR sensors are onboard an aircraft The geometry used for 

phase to path variation is obtained from the aircraft flight plan. Consider Figure 

2-8, which illustrates the basic geometry. The two sensors S1 and S2 are separated 

by a baseline B looking towards a point on the ground. 
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Figure 2-8: Across-track interferometry. St and S2 are the SAR sensors, rt and r2 are the path 
lengths, B is the baseline [11] 

The main disadvantage of this technique is that the aircraft roll is often difficult 

to account for and gets mixed with the terrain's natural slope. 

2.4.2 Along-Track Interferometry 

Along-track interferometry is similar to across-track interferometry and 

requires that both sensors be placed on the moving platform as shown in Figure 

2-9. The difference in this case is that the flying antenna is mounted parallel to 

the flight path. This technique has been used to measure the velocity of targets 

since the flying path and look direction are on the same axis [24]. The measured 

phase difference between corresponding signals obtained from the two sensors 

accounts for the velocity of the target. Research has shown that this technique is 
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successful in obtaining ocean currents and moving targets such as glaciers and 

ice-sheets [24]. 

. . .. .. 

y 

.. .. .. .. 
······~light Path 

X 

Figure 2-9: Along-track interferometry. S1 and Sz are the SAR sensors; r1 and rz are the path 
lengths; B is the baseline [11] 

2.4.3 Repeat-Pass Interferometry 

In repeat-pass interferometry, a single SAR sensor, which is flown over 

the same region twice, is used. Since this technique requires only a single SAR 

antenna to be mounted onboard, it is suitable for satellites which have precisely 

known flight paths. The difference in satellite position for the consecutive passes 

forms the baseline. Consider Figure 2-10, which illustrates repeat-pass 

interferometry. The two observations from S1 and S2 at two different times are 

not the antenna phase center locations but points on the reference paths, which 

govern the cycle of phase difference along the swath. The horizontal separation 
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bh and the vertical separation 8v of the reference paths, assuming the reference 

paths to be parallel, give the interferometric baseline. However, the actual 

separation is not always known; for example, there may be an uncertainty in the 

satellite orbit estimation. Therefore, the baseline should be estimated from the 

correlation between the two complex images obtained from S1 and S2. From the 

image acquisition geometry as shown in Figure 2-10, the difference p- p
1 

in 

slant range, is as follows [11]: 

(2-14) 

All the variables in equation (2-14) are known from the geometry (indicated in 

Figure 2-10) and thus the path length difference to phase difference becomes 

¢ = 4n 8,. for the repeat-pass interferometry process. Table 2-1lists some recently 
A, 

and previously available interferometric satellites used for remote sensing; all of 

them operate in repeat-pass mode. 
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Figure 2·10: Repeat-pass interferometry. SJ and S1 are the SAR sensors, p and p 
1 

are path lengths 

with 8p as the absolute difference, 8 is tl\c base~. His how far the orbit is from ground, n 
is the ground range, Pis the target poU\t on grouJ\d and h is the eleva lion of P, Q, and l\, are the 
components of 8 [11] 

Table 2-1: List of remote sensing satellites capable of interferometry 
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2.5 SAR Interferometric Images 

An interferogram is derived from the mathematical product of two 

complex co-registered SAR images; shown as an illustration in Figure 2-11. 

First SAR Image {MASTER) Second SAR I ma~te (SLAVE) 
.,...,.. -r 

Zint(x,y) 
lnterferogram 

M­
< 

Fi&u.rt 2--11: SAR master/ slave patr ~·ith an U'lter(erogr•rn ll(T.)') b m the master SAR ~· 

Zz<•. )lil In 1M sl.l.e SAR image and Z,"'(•.Yl i> m 1M inwrierognm used to illusln"' d.. 
conctpt. Every rolo< qcle rq>resents half .... ,et..nglh olull of tn. propagabon path. 

The SAR images (master/slave) in Figure 2-11 may bl! represented as a complex 

matrix Z with x rows and y columns. Then 7.,., the interferometric image, is 

ma thematically defined as (38]: 
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* Zint = Z1(x,y)Z2(x,y) 

= 1
1 
(x,y)I

2
(x,y)ej(rf1 (x,y)- ¢Jz(x,y)) 

= J. (x y)eirAnt(x,y) 
mt , 

Where Zint is a pixel on the interferogram, 

z1 (x,y) is the pixel on the master SAR image, 

Z2(x,y) is the pixel on the slave SAR image, 

lint is the intensity of the interferometric pair and 

(2-15) 

(2-16) 

(2-17) 

rAnt(x,y) is the interferometric phase with pixel coordinates x andy. 

The operation of producing an interferogram requires that the obtained 

interferometric pair (master and slave image) be registered on either the master 

or slave image's grid (i.e. a pixel on both images should be the same 

geographical location). The registration of the two images has to be sub-pixel 

level accurate in order to obtain the proper interferometric patterns 

(interferometric fringes or fringes) [37,38]. The interferometric phase information 

is the most important for surface movement detection analysis or for generating 

a terrain map, otherwise known as a digital elevation model (DEM). ADEM of 

the area shown in Figure 2-11 can be found in Figure B-3, Appendix B. 

2.6 Unwrapping of Interferometric Phases 

In an interferograrn, the measured phase will show an ambiguity of many 

cycles. To rectify this, it is necessary to add the correct integer number of phase 
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cycles to each of these measurements to "unwrap" the phase and remove the 

ambiguities. The measured phase from the interferogram ~nt(x,y) is 

continuous, and is wrapped modulo 2rc I i.e. the original phase is wrapped to the 

base band of (-rc 1 1C). Let the wrapped phase be defined as ~~(x,y)where W 

symbolizes wrapped phases. The calculation of ~nt(x,y) I which is the true phase, 

requires an integer multiple k(x, y) of 2Jrto be added to the wrapped phase 

~~(x,y). The problem in solving this 2Jr ambiguity is defined as phase 

unwrapping and can be expressed as follows [11]: 

w 9\nt (x,y) = ¢int (x,y) + 2k(x,y)Jr, (2-18) 

where k (x, y) is a 2-D array of integers such that -Jr < q}i~(x,y) ~Jr. 

2.7 Fringe Patterns in Interferometric SAR Images 

The phase patterns of an interferogram are sometimes referred to as 

interferometric fringes since they form edge-like patterns over the image. The 

fringes are observed in the interferogram as principle values of the measured 

phases on the interval ( -rc ,;r ). The modulo 2;r unwrapping operation as 

discussed above may cause sudden discontinuities in the phases on this interval. 

To avoid such discontinuities and to be able to generate high quality fringe 
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images, it is important that the interferometric pairs be highly correlated. In other 

words, the coherence between the interferometric pair should be high [37]. 

Visible observation of an interferogram or fringe image gives valuable 

information about the nature of the terrain. High-density interferometric fringes 

suggest rapid variation of terrain altitude. Each 2:r fringe cycle represents a 

specific elevation interval for all fringes in the interferogram. This interval is 

known as the altitude of ambiguity. Continuous dosed fringe lines suggest areas 

of high phase-field consistency. The expression for roundtrip range variation as 

detailed in Figure 2-10, corresponds to altitude ambiguity h(a), tied to wrapped 

phase, is as follows: 

h( ) 
(p + ~p )A. tan .9 h 

a = , w ere 
28h 

p, f:.p are the range and range difference, 

A is the wavelength, 

.9 is the look angle (in the range direction), 

8 h is the horizontal component of the baseline. 

(2-19) 

The altitude ambiguity reflects the variation in terrain altitude corresponding to 

a 2 :r phase change [9]. 

It is well known that the interferometric phase is composed of the phase 

due to the real topography, phase due to the flat earth (reference phase) and 

phase due to the possible deformation of topography. In the raw interferogram, 

they are entangled into each other. The flat-earth phase caused by the reference 
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ellipsoid world geodetic system 1984 (WGS84) for the interferometric processing 

requires correction. For a certain (line, pixel) in the master image with 

corresponding coordinate (x, y, z) of the master/ slave image pair, the same point 

on the reference ellipsoid is identified. The reference phase is then computed in a 

number of such points distributed over the total image. Next a 2-D polynomial is 

estimated, fitting these observations. A polynomial of degree 5 normally is 

sufficient to model the reference phase for a full scene and can be used to remove 

the flat-earth phases. This process is also referred to as the flattening of 

interferograms. After removing the flat earth phase components, the resultant 

phases reflect topography and change in topography (if at all present). 

2.8 Coherence of SAR Images 

Similar patterns of observed radar backscatter is a somewhat loose 

definition of coherence [38, 39]. Radar echoes are said to be coherent if the 

measurable quantities, both amplitude and phase are consistent. Two coherent 

echoes will be correlated with each other if they undergo the same interaction 

between a scatterer or a set of scatterers [39]. The coherence y between two SAR 

images Z1 and Z2 is often defined as a complex correlation [38, 39] and is given 

by 

36 



(2-20) 

where E[ .. . ] is the expected value or mean value and can be calculated as the 

sampled average of the image scenes. Thus, sampled coherence is given by 

(2-21) 

where Ln denotes summation over n pixels. This means coherence is a measure 

of statistical confidence in two SAR images. The standard deviation of the 

coherence estimator is proportional to );; [38, 39]. 

In practice, coherence is often estimated by combining several adjacent 

pixels to limit statistical error propagation. From the above equation, the 

numerator is a sum of two vectors pointing in different directions, while the 

denominator is the square root of the sum of their individual squared moduli. 

This will induce an unwanted effect due to interferometric phase change thnt and 

must be removed for accurate coherence estimation. To compensate for this in 

the coherence estimation, the vectors in the numerator must be de-skewed before 

summing [39]: 

(2-22) 
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A useful parameter can be estimated based on the coherence r between a SAR 

interferometric pair. Signal to noise ratio determines effective signal power or 

usable signal power over noise power and in this case is a measure of quality 

between two SAR images. Here the signal is defined as the measured or 

observed phases in the interferometric pair. The expression that can be used to 

measure the induced phase noise over the fringe pattern of the interferogram is 

given by [39]: 

SNR =_M_ 
1-lrl 

2.9 Sources of Phase Noise in SAR Interferometry 

(2-23) 

Coherence r is a quantitative measure that gives information about the 

usefulness of the SAR interferogram. High coherence is essential in the 

interferograms for accurate digital elevation model (DEM) generation and any 

other interferometric analysis involving SAR imagery. In repeat-pass 

interferometry, since the individual images of an image pair are not acquired at 

the same time, coherence can sometimes reveal information about changes in the 

imaged area between the two passes. The absolute value of coherence ranges 

between 0 (incoherence) to 1 (absolute coherence). The degree of coherence 

significantly influences the accuracy of phase differences and hence height 

measurements [40]. For repeat-pass interferometry, assuming there are no 
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volume scattering sources, such that all scattering happens at the surface, and 

neglecting errors in the SAR imaging process, the sources for coherence 

degradation can be classified as temporal decorrelation, baseline decorrelation 

and rotational decorrelation. Discussion below illustrates each of these 

decorrelation effects and their symptoms on SAR images. 

Temporal Decorrelation. 

Temporal decorrelation often arises due to the physical changes in the 

imaged area between the two observations. The repeat times for various InSAR-

capable satellites (Table 2-1) are from 24 hours to several months. Any change of 

the imaged terrain during this interval will influence the correlation of the image 

pair. These changes could be due to snowfall, vegetation growth, rain and 

melting of ice. The existing literature [39] suggests that the ground resolution-

cell be modeled as a random set of point scatterers. Then temporal decorrelation 

can be thought of as changes in the positions of these scatterers between two 

observations. If it is assumed that changes in the position of these scatterers are 

independent of their initial position and their horizontal and vertical positions 

can be characterized by the independent Gaussian probability distributions, then 

the temporal correlation coefficient ')ltemporol can be written as [39]: 

1 47!" 2 2 2 2 2 
- - (-:;-) (ax sin 9 + a z cos 9) 

r -e 2 /L 
temporal - , (2-24) 
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where 

u x root mean squared movement across track direction 

u z root mean squared movement in the vertical direction 

Baseline Decorrelation 

In the previous sections the importance of the baseline in the quality of 

InSAR measurement from repeat-pass interferometry was discussed. Precise 

knowledge of the repeat orbit and the reference orbit is essential for quality 

InSAR products (interferogram, slant range change, DEM). For DEM, baselines 

that are too short can degrade the sensitivity to signal phase difference and are 

undetectable in extreme conditions, whereas baselines that are too long may 

induce additional noise due to spatial decorrelation and may corrupt the phase 

signal [29]. The theory relating to spatial baseline decorrelation has been 

extensively detailed in the literature [29, 41]. In reference to Figure 2-10, the 

relation between loss in correlation and increasing baseline are approximately 

linear and can be expressed as: 

2IBIRa cos2 
,9 

Yspatial = 1- Ap ' (2-25) 

where Yspatial is the spatial correlation coefficient, 

B is the baseline, 

Ra is the along track resolution, 

,9 is the look angle, 
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p is the slant range 

and A is the radar wavelength. 

From the above equation, for a given wavelength A and slant range p being 

constant, and assuming negligible variation in look angle -9, y spatial is 

approximately linearly related to the baseline B. The value of B for which the 

spatial correlation coefficient Yspatial reduces to zero is defined as the critical 

baseline Bcr. This results in the backscatter of each pixel of the interferometric 

pair becoming completely uncorrelated. This can be easily shown using the 

equation above relating Yspatial and Bcr in the horizontal direction as follows 

[41]. 

when 

Yspatial = 0 

2BcrRa cos
2 

.9 = l, 
J..p 

J..p 
Bcr = 2 ' 

2Ra COS .9 

(2-26) 

(2-27) 

(2-28) 

As an example, it may be noted that the critical baseline for ERS-1 and ERS-2 is 

approximately 1100 m [41]. Intense topographic variation can reduce the largest 

attainable baseline for topographic mapping. For a good quality DEM using ERS-

1/2, it was estimated that the optimum baseline is around 200m. Recent studies 
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in baseline estimation and decorrelation effects show that, by using spectral 

filters during range compression in the SAR data processing step, spatial 

decorrelation can be reduced [31]. This research publication introduces the 

concept of a tunable interferometric SAR (T-InSAR), which reduces loss of 

coherence due to large baselines. 

Decorrelation due to Rotation 

The rotation decorrelation effect is due to non-uniform illumination of the 

same scene in repeat-pass interferometry. It is not possible to illuminate the 

same patch of surface from two different angles and expect a fully correlated 

image pair. Literature suggests that, in repeat-pass interferometry, this effect can 

be mitigated if the two orbits are near-parallel [39]. Research and simulation 

suggest that rotational correlation coefficient r rotational drops to zero at about 2.8° 

of orbital separation at L-band and about 0.7° at C-band [39]. 

Using all the decorrelation parameters listed above, the observed 

correlation coefficient can be obtained as the summation of all individual 

correlation coefficients. That is, 

Ytotal = Ytemporal · Y spatial · Y rotational · (2-29) 
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Knowing the SAR imaging geometry and SNR it is possible to estimate Ytotal and 

then obtain a sense of the value of Ytemporal . This information is extremely 

important for any land surface change analysis with InSAR [39]. 

2.10 Principles of Extracting Topography from SAR 
Interferometry 

To detect changes of a surface under investigation or to measure surface 

changes with centimeter accuracy, it is important to have a priori information 

(i.e. hilly, flat, rocky, vegetation, etc.) about the terrain. For detection and 

measurement of sub-centimeter level ground movement, an accurate DEM is 

required unless a zero baseline interferometric pair is made available. In the 

previous sections, the relation between topographic elevation and interferogram 

phases was quantitatively illustrated. This section will illustrate the viewing 

geometry for interferometric SAR in order to derive the fundamental equations 

for generating a DEM. It is almost impossible to obtain a zero baseline 

interferometric pair. A DEM under these conditions will enable differential 

interferometric processing to detect and measure ground movement. The 

technique in which two or more SAR interferometric pairs are combined together 

for ground movement analysis is known as differential interferometry (D-

InSAR). 
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2.11 Equations for Deriving Topography from SAR 
Images 

Consider Figure 2-12, which gives the same spatial configuration as Figure 2-10, 

illustrating repeat-pass interferometry viewing geometry. The SAR sensors 51 

and 52 both illuminate the same patch on the ground and obtain images at two 

different times as a repeat-pass pair. In a right-handed coordinate system, the 

ground elevation at every point is a function of the range axis coordinate y and is 

denoted by h(x,y). The separation of 51 and 52 is shown as B, which is the 

interferometric baseline and a is the angle of B with the horizontal plane. The 

distance between 51 and a point P on the ground is shown as p and the distance 

between S2 and that same point P on the ground is shown as p + op . Angle .9 

denotes the SAR look angle of the imaging point P on the ground with respect to 

51. On each pass, the SAR onboard single antenna acts as both transmitter and 

receiver. Thus, for each observation the total distance measured will be double 

the path length. The elevation h(x,y) of a point P on the ground can be written as 

[17, 19, 41, 42]: 

h(x,y) = H- pcos.9 (2-30) 

Using the law of cosines: 

(2-31) 
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: p 2 + B2 + 2p8son(a- 9) 
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(2-32) 

Flguro 2-12: Repoal·paso geometry. s, and S, are the SAR """'"'" (anwnn.a), pand li> are the pilth 
lengtht and varmtion of tht!' path length and 8 i.S the ba5C'hnt'. H is how far the orbit is from the 
ground1 l' is th<! ground r.tnge, Pis the target point on th~ ground and L ""the elevatton of P. 

After expanding the right hand side and rearranging the equation: 

Op2 -82 
p = (2-33) 

2Bsin(a- .9)-20p 

where lip 15 the difference in range between the two pa>SCS. The phase 

difference, ~ earlier defined as ..._(x,y) is betw'-""1 So and S, is directly 

proportional to lhe range difference as perceiwd by the two sensors and can be 

written ilS 
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op = ;_q; . 
4;r 

(2-34) 

Combining equations (2-30), (2-32), (2-33) and (2-34) surface elevation can be 

written in terms of known or observed system parameters [17, 19, 41, 42]: 

(2-35) 

Thus, an equation to generate the DEM from an interferometric pair is derived. 

The measured phase ¢ denoted in equation (2-34) is the principal value of the 

phase and is wrapped around (-1r 1r ). The wrapped interferometric fringes will 

have discontinuities. Each interferometric fringe is interpreted as a constant 

separation of elevation increments &from point to point as h(x,y). In other words 

they represent height contours. As the real observed phases are wrapped around 

2;r , the phase must be unwrapped. The importance of coherence as detailed 

qualitatively in the previous section can now be mathematically expressed with 

the error in elevation estimates as follows (see, for example, [38]): 

a ~ A¢sin.9l-lrl 
h 2td3 2lrl (2-36) 

where y is the coherence and a h is the expected error in elevation. 

An interesting observation can be made after rearranging equation (2-34) 

as 
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(2-37) 

In this form, it is justified to say that the difference in phase measurement 

depends only on the imaging geometry and not on the scattering mechanism. 

Rearranging equation (2-33) so that the range change 8p is expressed in terms of 

the imaging geometry gives 

B2 . 8p2 
8p =-+ Bsm(a- 9)--. 

2p 2p 
(2-38) 

8p2 Bz 
The terms-- and can be dropped since 2p >> 8p2 and 2p >> B. 

2p 2p 

Consequently, the equation (2-38) can rewritten as 

8p ~ Bsin(a- .9). (2-39) 

This is a valid assumption since the baseline Band change in slant range 8p2 are 

very small compared to two times the distance from a space borne radar to the 

Earth's surface, which is 2 p. Next consider two interferograms ( 4 images, 2 

interferometric pairs) acquired over the same area for a DinSAR pair, whose 

measured phase differences are ¢I and ¢;2 with B1 and B2 as their baselines. If it 

is considered that the look angle [) remains the same for the DinSAR pair, then 

the ratio of the phase differences only depends on the ratio of their baseline as: 

(2-40) 
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(2-41) 

(2-42) 

Equation (2-42) suggests that, if two interferograms were obtained from two 

independent SAR sources but using the same reference geometry, then one 

interferogram can be scaled by the ratio of their baselines and then subtracted 

from the other to yield displacement in the satellite line of sight (LOS) [48]. 

The sensitivity of phase change with respect to height change in a 

differential pair can be shown by first differentiating the phase equation to get 

4;r 
drp = --Bcos(a- .9)dS 

A-
(2-43) 

and then differentiating equation (2-30) with respect to S and rearranging 

results as 

d8= dh . 
psin 3 

Combining equations (2-43) and (2-44) 

4;r dh 
d¢=--Bcos(a-3) . 

A psm8 

(2-44) 

(2-45) 

Rearranging equation (2-45), reveals the dependence of phase change with 

respect to topographic elevation as [11, 17] 

d¢ = _ 4;r B cos(a-8) 
dh A psin8 

(2-46) 
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Equation (2-46) can be used to very accurately estimate the change in topography 

provided every parameter on the right hand side is known. This effectively 

forms the foundation for DinSAR to detect and estimate change of topography. 

The following section illustrates DinSAR and different approaches towards 

DlnSAR. 

2.12 Differential Interferometry 

Differential SAR Interferometry was proposed for the detection and 

measurement of very small elevation changes over large areas. The basic 

premise is to obtain interference patterns from SAR images due to changes in 

topography. In the conventional sense, DinSAR can be used to estimate one­

dimensional ground movement from one interferometric SAR pair and a DEM. 

Optical path variation of the imaged scene due to changes in the terrain as 

perceived by the SAR system can be measured precisely using this technique, 

generally to sub-centimeter accuracy. 

The detection and measurement of the displacement fringe from a change 

in topography is obtained by first generating an interferogram and then 

subtracting the fringes due to topography. After the removal of topographical 

fringes, the residual interference patterns provide a measure of displacement of 

topography between the interferometric image pairs. 
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DinSAR can be achieved by two different approaches: 

Four-pass interferometric pair or two-pass with an external DEM. 

Three-pass interferometric pair. 

For the four-pass interferometric pair method, the first pair of images is used to 

generate a DEM; thus, no movement is assumed to have occurred between the 

acquisitions of the first two images. The subsequent interferometric pair is used 

for the DinSAR. In the four-pass method, DEMS can be generated for example 

using ERS-1/2 tandem mode where the time difference between passes is 

generally only one day. The third and fourth images are captured over the time 

period in which ground movement is desired to be measured and is generally 

obtained over a longer interval. For example, the time interval may be one or 

several orbit cycles of a single satellite, as long as coherence is maintained over 

that interval. The interferogram from the third and fourth image will exhibit 

fringes due to topography for non-zero baseline and might exhibit fringes due to 

change in topography. The reference DEM generated from the first pair or 

another source is used to remove topographical fringes. 

The three-pass DinSAR method uses an interferometric triplet. Three SAR 

images are obtained, with the first two used to generate a reference DEM. The 

second and third image are used as the differential pair. For this case, the second 

and third images are chosen over the time period in which it is desired to 

measure ground movement. 
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2.13 Interpreting Subsidence from Differential 
Interferogram 

From the discussions on interferometric fringes in Section 2.7, it was seen 

that interferometric phase of an interferogram is composed of the phase due to 

the real topography (assuming negligible decorrelation), phase due to the flat 

earth (reference phase) and phase due to the possible deformation of 

topography. Flat-earth phases are a result of the reference ellipsoid WGS84 used 

for the interferometric processing. After removal of topographic and flat earth 

phase components, a differential interferogram is left with interferometric fringes 

that arise due to ground movement. In stable areas where no ground movement 

is expected, a differential interferogram should be flat with no residual fringes. 

Figure B-4 in Appendix B, illustrates one such interferogram overlaid on top of 

the master SAR image as a transparent layer. Observe the area of subsidence 

shown in 3-D, which is also identified on the interferogram and the master SAR 

image. Note the flat areas beside the subsiding region in the interferogram. It is 

apparent by the uniform distribution of single colors that these regions are not 

undergoing any movement. 

Displacement, being a vector, has both magnitude and direction, and the 

direction of this movement in flat regions is generally assumed to be along the z-

axis (subsidence) [2,5,19]. However, in reality the differential interferogram only 
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shows ground movement as percch·cd along the SAR look angle. That is, only 

one component of the actual three-dimensional movement is recorded. Consider 

Figure 2-13, which illustrates the constituents of a differential interferogram. In 

Figure 2-13, 0 indicates the SAR look direction and 8 indicates the movement of 

a point on ground. SAR can only estimate the movement along its look direction; 

hence, 0 can be interpreted as the component of the movement 8 along the SAR 

look direction. Therefore, it becomes obvious that to measure subsidence 

(movement along the z-direction), it must be assumed that lateral movement 

components are zero such that 0 is the projection of subsidence alone. 

Figure ~13: Ground $Ubstdence from lnSAR.. where sd is the de'leending pass look angLe 
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In principle, only one component of the displacement vector can be 

obtained from a single interferometric pair [19]. To measure three components of 

displacement, one must have three sets of interferometric pairs, each of which 

have different look directions, unless additional information (e.g., from ground 

observations) is available to determine the full three-dimensional displacement 

field [19]. However, the remote-sensing satellites capable of interferometry as 

listed in Table 2-1 can only obtain interferometric pairs with two different look 

directions. Most of these satellites are in near polar orbit, which means their 

trajectories are confined to roughly North Pole to South Pole orbits. The satellite 

trajectory from north to south is referred to as the descending pass and that from 

south to north as the ascending pass. Ascending pass interferograms differ from 

descending pass interferograms in their look directions. Thus, the combination 

of ascending pass and descending pass interferograms will give two components 

of the displacement vector along the plane of the radar line-of-sight. Each 

ascending and descending pair can be fused together to obtain 2-D ground 

movement from which the third dimension of movement can be estimated based 

on prior knowledge of the terrain. In the next chapter, this issue is further 

explored along with a technique to estimate 3-D movement from two look 

directions. 
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Chapter 3 

Fusion of Ascending and Descending Pass 
Interferograms 

The previous chapters have described SAR and DlnSAR methods to 

derive general ground movement. It was seen that with satellite repeat-pass 

interferometry, topographical maps could be obtained. This leads to the 

discussion of the DlnSAR technique and ways it can be used to obtain one 

dimensional displacement vectors of the imaged scene. This chapter will further 

dissect the DinSAR technique and develop a means to fuse more than one look 

direction. 

Using DinSAR; if one look direction is used to obtain ground movement 

estimates, then only one dimension of movement can be derived. Other 

directions of movement must then be assumed from the topography. For 

example, moving slopes are generally assumed to be moving along the slope 
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direction. This would be a poor assumption if there are known "slumps" along 

the slope. Also, regions that are generally flat are assumed to have no lateral 

movement component such that the only movement is vertical (heave or 

subsidence). However, even for flat regions, the assumptions of zero lateral 

movement can produce significant subsidence measurement errors. This is true 

especially in the case of significant localized movement, whereby the sides of the 

moving region "cave in" towards a central maximum (negative sign convention 

used for subsidence) as shown in Figure 3-1. 

Slides caving in produce 
significant lateral movement 

_( ) 
Maximum 

Figure 3-1: Sliding from both sides to produce lateral movement. Note: Figure B-4 in Appendix B 
illustrates the 3-D perspective. 

Consequently, there is a rationale to improve ground movement estimates by 

fusing data from different look directions to produce 2D and possibly 3D 

movement. The sections below illustrate a technique to fuse different look 
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directions, and with the aid of least square techniques to produce an estimate of 

30 movement. 

3.1 Ascending and Descending Pass Geometry 

As mentioned previously, space-borne SAR allows imaging of two look 

directions from ascending and descending passes. The fusion of two differential 

interferograms obtained from ascending and descending passes can be 

understood on the basis of their imaging geometry. 

Figure 3-2 below provides an illustration of the orbital path of a typical 

polar orbiting satellite that allows two different look directions from ascending 

and descending passes. 

Descending Orbit 

West Looking ~ ,~ 

• 

..a..,." ... Ascending Orbit 
~ ~ £.1st looking 

Figure 3-2: f>escending and ascending orbits {RADARSAT Inte-rnational, 1996) 

Most polar orbiting satellites look in a single direction, either the left or the right 

of their orbital path. For example RADARSAT-1 and ERS-1/2 arc right looking 
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satellitl'l>, such that their look direction is to the East on the ascending pass, and 

to the West on the descending pass. The upcomong RADARSAT-2 can rotate its 

antenna to produce both a left and right looking direction. As Figure 3-2 

illustratl'l>, the orbital path is tilted slightly off the poll'S; for RADARSAT-1 and 

ERS-1/2 this tilt is roughly 8" from true North .1t the e<.tuator. As the satellites 

approach the poles, the map-projected orbit vades significantly from the s• tilt. 

This is illustrated in Figure 3-3, which shows the map-projected coverage of 

RAOARSAT-1. 

fl&ure ~ Cover•~ area for RAOARSAT-1 for both ~ndang and descendmg passes 
(RADARSI\f lntcrNbonol. 1996) 

Figure 3-3 shows gradual change in map projected tilt angle from the equator, 

and then an abrupt curve in tilt angle at the top and bottom of the map. Over a 
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small segment of the orbit (one or two images) that is not near the poles, the map 

projected orbit path can be approximated by a straight line with a fixed tilt angle. 

A plan view of the look directions is illustrated in Figure 3-4 below. 

Ascending 

-West Look 
direction 

, ,--.so for RADARSAT -1 and for 

-·-·- --'~ ERS-1/2 at the equator 

-East Look 
direction 

Figure 3-4: Plan view of satellite look direction illustrated 

Now, consider a detailed profile view of the satellite look direction for 

each pass in Figure 3-5 and Figure 3-6. This profile view geometry has been 

discussed previously (cf. Figure 2-10), and will allow the decomposition of the 

differential slant range change to an actual ground movement vector. Consider 

the case where a point P on the ground has moved during a repeat pass and this 

movement vector is denoted as: 

B=L+S, 
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where 8 LS the movement of point P to P' from pass one to pass two, L is the 

lateral component (East-West and North-South components) and S is the 

sub!.idenc.! component Using Cartesian coordanatc, 

(3-1) 

and 

(3-2) 

thus, 8 can be represented as 

(3-3) 

where x, .i and z denotes the East-West, 1\orth-South and Vertical direction in a 

right hand coordanate system with ongin at P. 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' P' 

' ' ' ' r' 

s 
' ' ' \A 

' ' 

L 

~ 

figure J-.5: ru.ccndmg pass. B is the actuaJ movement vector from P to P', A is the measured 
component of B fron\ ASCCndU\g pass, Sis subsidCilC'e romponent and Lis lateral component. 
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As shown in Figures 3-5 and 3-6, A and D are obtained from ascending and 

descending differential interferogram, and are the measured components of the 

movement B. Thus, A denotes the measured component of B along the SAR look 

direction for an ascending pass as shown in Figure 3-5. Similarly D denotes the 

measured component of B along the SAR look direction for a descending pass as 

shown in Figure 3-<i. 

I 
I 

I 
I 

I 
I 

PI L 
Dl 

\ ~··~.... B ,'/ 

'~~-~·,~, ! :;,,/ 

'··· .... ~-- --~-- / 

' ,,---·-·, ~ 
~. 

' 

Figure )..6: Dcsccnding pass. B is the actual movcme.nt vector from P to P', 0 is tl'e measured 
component of B from des<endi•'& pass, Sis subsidence component and Lis lateral component. 

3.2 Ascending and Descending Pass Equations 

The fact that the satellite measures a slant range change along the line of 

sight of the sensor is suggestive of the use of a circular coordinate system. This 

60 



will conveniently allow the conversion to a Cartesian (map oriented) coordinate 

system to express ground movement in terms of vertical and lateral components. 

Consider now the relationship beh"'een the satellite coordinate system, consisting 

of incidence angle fJ, orbit tilt angle tp and slant range change (D, A, since these 

vectors are obtained from a differential intcrferogram) to the standard spherical 

coordinate system consisting of unit vectors < p,O,¢ >. As shown in Figure 3-7, 

the satellite incidence angle 8 can be expressed in circular coordinates< p,B,(>> 

as 

(3-4) 

z 

D 

Figure 3-7: Relating look a1\gle 9 with respect to circular coordinate 8 

The satellite orbit, presently expressed in terms of the tilt angle tp, can also be 

expressed in terms of the circular coordinates with the origin at the measured 
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point on the ground shown in Figure 3-8. Since the geometry of the tilt angle is 

different for the ascending and descending passes, Figure 3-8 shows the two 

different cases relating (/)a to ¢a on the ascending pass and (/)d to ¢d on the 

descending pass. Thus, the relation between orbit tilt to spherical coordinates 

becomes: 

¢a = (/Ja, and 

¢d = ff- (/)d 

(3-5) 

(3-6) 

Finally, the slant range change vectors D and A are oriented in the p direction. 

Therefore, it becomes possible to formulate the transformation of slant range 

change, look angle and look direction for two different look directions to 

standard spherical coordinates, replacing <A, Sa, (/Ja > to corresponding 

<pa,Ba,¢a> for ascending pass geometry, and <D,ad,(/)d> to <pd,()d,¢d> for 

descending pass geometry. 
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Figure~: Relating satellite ei>ordinate system to geometrical coordinate system., where fPa and 

f!Jd are the ang.Les relating to i.ndinatioo of satcllit<- trajectory with JeSpl'Ct to geographkaJ North­
South for ascending and descending passes. 

The final transformation from the spherical to map projected Cartesian (EW, NS 

and Subsidence) system is achieved with a standard dot product table (Table 3-

9). 

p • . 
0 (J ; 
i sinO cos¢ cosO cos¢ -sin¢ 

. 
sinO sin¢ cosO sin¢ cos(! y 

. cosO -sinO 0 z 

TabJe 3--9: Dot product tnblc relating s-pherkal coordinate system to Cartesian coordinate system 

Using all of the previous relationships, equations can now be derived to aUow 

the fusion of ascending and descending pass DlnSAR data. For the descending 

pass geometry, the equations are 
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D = !lp d p = !lxl X+ Ayly + L~.Z}Z (3-7) 

B = l1xX + ll;Y + Azi (3-8) 

where, 

/1x1 = llpd sin(Bd )cos(¢J) (3-9) 

!lyl = Apd sin(Bd )sin(¢J) (3-10) 

Az1 = !lpd cos(Bd), (3-11) 

come directly from the dot product table of Figure 3-9 and !lpd is the measured 

slant range change in the descending direction. Hence the dot product of B and 

D is given by: 

B · D = !lx1 ·!lx + !ly1 • Ay + Az1 · Az 

B · D = l!:.pd[ -sin(Sd )cos(rpd )!lx + sin(Sd )sin(rpd )l!:.y + cos(()d )Az] 

(3-12) 

(3-13) 

Now, to get the component of Bin the D direction, the dot product is divided by 

IDI as follows: 

B·D ~ 
w=B·D, (3-14) 

where, 
(3-15) 

Expanding the above equation gives: 

B · D = -sin(9d )cos(qyd )!lx + sin(.9d )sin(rpd )!!:.y + cos(Sd )Az. (3-16) 

Recall now the elements of equation (3-16): 

e Pd is the slant range change (differential interferogram of descending 

pass); 

e (/JJ is the projection of the satellite trajectory for descending pass; 

e 9d is the corresponding incidence angle of the descending pass; 
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e !Jx is the displacement along the x axis; 

e L\y is the displacement along the y axis; and 

e bz is the displacement along the z axis. 

Similarly it is possible to derive the equation for the ascending pass geometry. 

( 3-17) 

where in this case, 

e (/Ja is the projection of the satellite trajectory for ascending pass 

e 9a is the corresponding incidence angle of the ascending pass. 

Using equation (3-16) and (3-17) it is now possible to complete a relationship 

between components Ax, L\y, L\z and slant range change measurements. The 

derived set of equations can be represented in a compact matrix form: 

[
- sin(!} d ) cos( rp d ) 

- sin(!} a ) cos( rp a ) 

sin(!} d ) sin( rp d ) 

-sin( f) a) sin(rpa) 
(3-18) 

Equation (3-16) and (3-17) can be independently used to extract any one of the 

three dimensional ground movement components, either by setting the other 

two components to be zero or by using prior information about their magnitude 

and direction. The system of equations (3-18) is under-determined with two 

equations and three unknowns. The incidence angles of the SAR, 9a and 9d are 

represented as constants over the entire scene and the representative value is at 
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the center range pixel of the SAR scene. The incidence angle can be calculated 

for each range pixel of the SAR scene with the knowledge of its value at the 

center. Though the change in incidence angle from one pixel to the other is very 

small over a given scene, this information can be utilized to construct an over­

determined system of equations. The variations in (/)a and (/Jd are negligible over 

a single scene and are often treated as constants. 

To resolve the under-determined system, as a first approximation, one 

of the displacement variables can be assumed to be zero. For example, polar 

orbiting satellites have look directions that are predominantly in the East-West 

direction. As a result, the slant range change is less sensitive to lateral movement 

in the North-South direction. Thus, a first approximation could use the 

assumption that lateral movement in the North-South direction (i.e. Lly) is zero. 

3.3 Estimating 3-D Ground Movement 

The synthesis equations that were derived for extracting ground 

movement from the two non-parallel passes can, in general, be used to derive 

two dimensional ground movement. In principle, only one component of the 

displacement vector can be obtained from a single interferometric pair of similar 

viewing geometry. To measure three components of displacement, one must 

have three sets of interferometric pairs, each of which have different look 

66 



directions, unless additional information (e.g., from ground observations) are 

available to determine the full three-dimensional displacement field. To extract 

the third component of movement, assumptions have to be made in the absence 

of a third differential interferogram with unique look direction. With satellite 

interferometry, it is not possible to obtain this third unique pair. However, under 

certain conditions it may be possible to estimate three dimensional ground 

movement using least squares techniques. These conditions include regions 

experiencing well-behaved ground movement, in which the movement is 

generally homogeneous over many resolution cells of the SAR sensor. 

With reference to Figure 3-10, consider a small area on the ground viewed 

by a varying incidence angle -9 to -9 + ~ -9 over which the surface change is a 

small-scale coherent change common to several adjacent pixels. In other words, 

the deformation is well behaved with no discontinuities. With this assumption, 

the under-determined system in equation (3-18) can be restructured into an over­

determined system for pixels within the region bounded by ( -9, .9 + ~ -9). 

Consider n pixels in that neighborhood where the position of the radar scatter 

has not changed substantially; however, the ensemble of the scatter has moved 

up, down, or sideways in some correlated fashion. This implies that an area on 

the ground experienced homogenous movement and can be collectively grouped 

by those n pixels. 
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n pixels in a square 
patch 

Region coherently 
/moves together 

Variation in look angle 
over each column 

Figure 3-10: Bounded region of n pixels that coherently move together 

For the ith pixel in that n pixel region (Figure 3-10), the 3-D movement 

!::.xi, !lyi and !lzi can now be estimated. The conversion matrix for each pixel i is 

given as 

[

- sin(.9di )cos(tpd) 

- sin(.9a.) cos(tpa) 
l 

sin( .9d. )sin(tpd) 
I (3-19) 

-sin(.9a. )sin( cpa) 
l 

The least squares solution for the system of equations in (3-19) can be 

represented as MX = b where M is the system matrix, 

The least squares solution of X is such that the size of the residual vector is 

minimal. The over-determined system of equations permits a solution for each 

b.xt ,IJ.yi and !lzi; however, as discussed in Section 3.2, meaningful measurements 
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might only be obtained from !:vc1 and /Jzi . The reason is due to the imaging 

geometry of the SAR satellite (Figure 3-10) whereby the slant range change (SRC) 

is relatively insensitive to changes in the y direction compared to x and z 

directions. As a consequence, the measurement error of the SAR sensor may be 

greater than that of the measured by (North-South) movement, except in the 

case of substantial lateral movement. Averaging many interferograms might 

reduce the measurement errors sufficiently to allow reasonable estimates in the 

y direction. 

The grid for the over determined system of equations with 

overlapping ascending and descending pass images is illustrated in Figure 3-11. 

The variation of 9a. and 9d. over a small area on the ground is insignificant. 
I l 

Therefore a relatively large area has to be chosen to provide a meaningful result 

from the least squares estimation. The rationale for this is based on the 

convergence of a least squares solution. However, it also reduces the likelihood 

of having a region of homogeneous ground movement with no discontinuities. 

To mitigate these potential problems, an optimization routine can be employed 

to determine the region of most suitable size. This can be achieved by varying 

the size of n (number of pixel as a variable) pixel neighborhood as shown in 

Figure 3-11 to estimate subsidence movement using any one of the two 

differential interferogram (either ascending or descending) until a satisfactory 
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level of correlation is achieved when compared with data obtained from the 

global positioning systems (GPS). By doing this, a number of homogeneous 

ground movement pixels can be estimated for the region under investigation. 

This number can then be used for the least squares solution to estimate ground 

movement in 3-D. 

/Change in .9 d 
/~ 

n pixel 
neighborhood 
of the overlapping 
region 

Figure 3-11: Ascending and descending pass grid with varying incidence angle. The n 
neighborhood identifies region of continuous displacement field used for the least-squares 
solution. 

In summary, this chapter has derived a technique to estimate 3D ground 

movement from DinSAR by fusing ascending and descending pass images. It 

has also illustrated the difficulty in extracting 3D ground movement vectors from 

only two look directions. If any of the movement components are known a 
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priori, then the other two components can be easily estimated except for the lack 

of sensitivity in the north-south direction. With a homogeneous ground 

movement assumption, mathematical modeling techniques were derived to 

estimate the three unknowns. The verification of the proposed method is 

explored in the following chapter, which illustrates and explains the rationale of 

each verification step and resolves issues with the results as encountered. In this 

chapter a test region is used to illustrate the validity of the movement 

measurement technique by comparing DinSAR derived movements with in-situ 

measurements. 
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Chapter4 

Verification and Results 

The previous chapter has outlined a technique to extract 3D ground 

movement by fusing data from two satellite look directions. A least squares 

technique was proposed, aided with a uniform ground movement assumption. 

To verify the derived method and to validate the technique, an area with known 

and measured ground movement should be used. This is the subject of the 

present chapter. 

Based on historical surveys, the North Belridge Oil Field located in San 

Joaquin Valley in southern California is known to be experiencing significant 

ground movement due to oil production [49]. This ground movement has 

resulted in significant problems for companies operating in the region. For 

example, one gas pipeline company has experienced several ruptures to a 

pipeline that runs directly through the subsiding region. The failure modes of 
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this pipeline have generally been in a latt...-al din.'Ction (F1gure H), hence the 

rationale for seeking to accurately measure lateral movement "~th DlnSAR 

Area of 
around 
mo\trtH'IU 

t Failure due 
to lateral 
movement 

Flpre 4-1: r,pehi,. f.Uure due to 14ter•J ground mo•eme<U. (Coui'IC<y of Southern Qlifomi4 

c .. Comp•ny and C.CORE) 

To measure tlus movement, CPS sun·eys were made of bS monuments scattered 

throughout the region, which is illustrated 1n Figure 4-2. 'The area of coverage 

for this survey was approximately 10km2 where measurements from these bS 

monuments were recorded by Southern California Gas Company (SoCal Gas). 
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SoCal Gas provided a total of ten surveys for thi!. OlnSAR research. including sil< 

survey~ in 2000 and four surveys in 2001 

fi3ure 4-2! CPS monument position along the pipehnr vector 

The n.'Cordmg of these GPS surveys was not periodic and there were instances 

when the interval of readings exet.>edcd many months. To normalize these 

inconsistencies in the GPS survey, standard slope fitting tc'Chniques were used to 

~timatl.! a general movement trend for each monument from the GPS measured 

data set. These data were used to ''alidate ground movement data derived from 

a ~ries of SAR images using DlnSAR and the techniques discussed in Chapter 3. 

Th" OEM required to remove topographoe<~l information with the 

OlnSAR tcchruque was obtained from a tandem mode ERS-1 and ERS-2 pair. 

The time interval between interferometric acquisitions of ERS-1/2 is only one 
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day and "'&uitable for OEM generation, since philsc dccorrelation due to changes 

tn the o;cattcring properties of the ground IS hmttcd over !hilt period. The 

intcrfcrogram shown in Figure -l-3 is obtain<'\! after processing the ERS-1/ 2 

interferometric pair, which contains the topographtcaltnfonnation . 

.).IIIHilll' frl.nge frequency 
mNning ti!LUively hlg.h 
ctw.nse in temin height 

figure 4-3: Jnle-rft>rogram obtained from ER.S-.1 / 2 alter lnSAR pr~ing. F..ach contour hne 
represents 28mm (i e 1\aH of the radar wa\'elength) 

Figure 4-4 is the corresponding OEM for the intcrfcrogram shown in Figure 4-3. 

figure 4-4: DhM (rom ~1/2 after lnSAR proces!tmg 
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RADARSAT ascending and descending scenes were obtained over a 7-

month period during 2001 for the validation. The area of interest containing the 

65 monuments is well contained by the coverage of RADARSAT Fine Mode 

(~ 8m resolution of 50 km by 50 km). Table 4-1 lists all the images used for 

validating the fusion method, including both ascending and descending passes. 

Interferograms were derived for each of the 8 pairs. All pairs exhibited excellent 

coherence, thus DinSAR results were expected to be of very good quality. 

1 c::::: 
2 c::::: 
3 c:::: 
4 c:::: 

27662 
28348 
29377 
30406 
30749 

27726 
28412 
29441 
30470 

Orbit 

Ascending 
Ascending 
Ascending 
Ascending 
Ascendin_g 

Descending 
Descending: 
Descending 
Descending 

Date of Acauisition 

February 21st 2001 
Aprillotn 2001 
June 21 8 2001 
Sep_tember 1st 2001 
September 25tn 2001 

February 25th 2001 
Anril 141n 2001 
June 25th 2001 
September 5tn 2001 

30813 Descendin Se tember 29m 2001 g p 

,. Interferogram pairing [1&5, 2&6, 3&7, 4&8] as the D-InSAR 
Fusion Pairs. 

,. Dem was generated from ERS-1/2. 
" ERS-1 ORBIT=22517-FRAME=2891, November 4th 1995 
., ERS-2 ORBIT=02844-FRAME=2891, November 5th 1995 

Table 4-1: Satellite orbit and data processed for differential interferometry 

Two examples of differential interferograms (only displacement fringes with 

removed topographical fringe contribution) for ascending and descending passes 

are shown in Figure 4-5 and Figure 4-6. 
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figw~ 4-5: Differential mterff't"Stlm of 
JO.I70 and ~t31Je5<ondong r- from 
RADARSAT-1 

Figure 
30406 and 30749 A...cendmg pass from 
RADARSAT I 

Linear trends on the intcderogram are often mnnifc&tcd due to inaccurate 

l>atellite orbit parameter~ and atmospheric pressure variation!> [50[. Figure 4-5 i• 

a roomed interferogram, (ocu;mg on the area of ground movement shown in 

Figure 4-7. Figure 4-7 show~ ~)ant-range change proc<.-.~ for the image pair 7 

and 8 listed in Table 4-1 Non-uniform contrast variation can be observed on the 

left hand image of Figure 4-7 starting from the bottom lc£t corner (bright) to the 

top right corner (dark). This am plies the presence of a uniform slope in the image 

o;cene on the left hand ~ide of Figure 4-7. However, there "' no such slope in 

reality and the area is known stable from the geographic location of the scene. 

Thus, it is quite obvioUl> that the evidence of thil> olope may have been 

introduced due to the satellite imaging system and must be removed. This can 

be achieved by sampling points around the fringe ellipse ns &een in Figure 4-7. 

This is done by multiple rc>gn.'SSions to fit a trend plane and remove that from the 
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scene. In this case, a two-dimensional regression model is used to estimate the 

best plane that can be fitted with sampled data points around the region of 

maximum displacement from the differential interferogram. The resultant 

residue image as shown in the right hand image of Figure 4-7 is the differential 

slant-range change and is a result of ground movement only. 

Points being 
Uniform Planar trend sampled 
background pattern 
plane 

Figure 4-7: Figure on the left is with a planar trend and the figure on the right is after removing 
the planar trend. 

4.1 Comparison of GPS Measurements Projected onto 
SARLOS 

The measurements of ground position via global positioning satellites or 

GPS is a popular and convenient method for measuring ground movement. 

Although it does not achieve the same accuracy as a rigorous theodolite-derived 
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survey; differential GPS measurements with a fixed and moving station can 

achieve reasonably accurate positional estimates. The accuracy of these estimates 

increases with the amount of time the roving station collects its data at a single 

point and accuracies of 1-2 em in x, y and 2-5 em in z are achieved respectively if 

data are collected for greater than 20 minutes or so. 

The GPS readings that were collected at the ground station monuments 

were measured with the standard rover/base station system. Each survey was 

captured over a two day period, and measurements were generally taken at each 

monument for only a few minutes. As a consequence, the GPS measurements 

are only expected to have accuracies on the order of 5 em. Since the accuracy of 

DinSAR measurements is on the order of 5 mm or so, the DinSAR measurements 

were instead compared with linear trends of movement at each GPS monument. 

Assuming a linear trend of movement, the GPS measurements were fitted with a 

regression line to extract the movement trend. The survey of ground movement 

taken over year 2000 and 2001, revealed a standard deviation of 0.75 em in East­

West, 0.86 em in North-South and 1.56 em in subsidence of the GPS points about 

the regression line for the 65 monuments. This indicates that GPS measurements 

cannot be directly compared with that of InSAR, since GPS measurements 

themselves contain errors. However, the GPS trends have accuracies that are 

much more favorable to DinSAR comparison and the results presented here will 

confirm that this is indeed the case. 
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The first validation that was conducted involved a comparison of the GPS 

trends with the DinSAR Line of Sight (LOS) measurements. This comparison 

was performed to determine if, in fact, the satellite slant range change 

measurements after SAR and InSAR processing are correct. To perform this 

comparison, the measurements of each GPS monument were projected onto the 

SAR look directions. The existence of a tight linear trend of GPS and DinSAR 

should validate the SAR line of sight measurements of the satellite and should 

compare favorably with industry accepted in-situ measurements. Each GPS 

monument reading is denoted as 

G1· = gps x . · .X+ gpsy . · y + gps z . · z , 
J J J 

(4-1) 

where G j is the movement at the jth monument. For the descending pass 

geometry, the satellite look direction at the jth GPS monument is in the direction 

D 1 . Thus, the projection of the GPS measured movement vector G 1 onto the 

descending pass geometry can now be represented as per equation 3-18 as 

Similarly, the LOS projected component of G 1 for ascending pass geometry can 

be expressed as 

G
1 
.. A1· = -sin(9a. )cos(qJa ).gpsx. - sin(.9a. )sin(qJa).gpsy. + cos(9a .).gpsz. (4-3) 

J j J J } } 
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A comparison of DinSAR and projected GPS was performed for each of the 8 

DinSAR pairs. The GPS movement measurements were normalized (movement 

per day translated to movement in 24 days, which is one RADARSAT-1 cycle) to 

the same time period of each DinSAR pair, so that a perfect correlation would 

have a slope of unity. Figures 4-8 and 4-9 give examples of the correlation for 

ascending and descending passes for one pair set (interferogram pairing order 1 

and 5 of Table 4-1) from February to April2001. Figure 4-10 and 4-11 shows the 

average of all four pairs of SAR data acquired for both passes from February 

2001 to September 2001 compared to GPS measurements projected on the SAR 

look direction. These plots show an excellent correlation of 98% and 97%, which 

is improved over the single DinSAR measurements with correlation of 89% and 

90% in Figures 4-8 and 4-9. Note that the slopes of each of the Figures from 4-8 

to 4-11 as shown below are close to unity. 
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Figure 4-8: InSAR SRC (em) versus G ·A [Feb-Apr 2001] 
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Figure 4-9: InSAR SRC (em) versus G · D [Feb-Apr 2001] 
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Ascending Pass [Feb21-Sept25 2001] Averaged 
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Figure 4-10: InSAR SRC (em) versus G ·A [Averaged Feb-Sept 2001] 
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Figure 4-11: InSAR SRC (em) versus G · D [Averaged Feb-Sept 2001] 
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The two plots in Figure 4-10 and 4-11 show a strong positive correlation and 

indicate the trend achieved with all eight pairs (4 descending pair and 4 

ascending pair). This validates that averaging DinSAR measurements over a 

series of interferograms will reduce the measurement error of the sensor to 

provide a more accurate movement estimate. Appendix A contains the 

remaining plots, Figures Al to A6 for rest of the DinSAR pairs. 

4.2 Validation of 2-D Ground Movement 

To properly verify the fusion technique presented here to estimate lateral 

ground movement, a region experiencing significant lateral ground movement is 

required. This can be verified by examining companion ascending and 

descending pass interferograms. Specifically a difference in slant range change 

between ascending and descending pass differential interferograms that is 

greater than the sensor measurement error (- 5 mm) for some incidence angle 

indicates that lateral ground movement has been detected. Conversely, if the 

SRC measurements of the companion ascending and descending pass 

interferograms are equal, this indicates that only a vertical (z direction) 

movement was measured. For the series of interferograms used here, the 

presence of lateral movement as discussed earlier via Figure 1-2, can be 

confirmed by plotting the ascending/ descending SRC difference at each of the 
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ground st.ttion monuments as shown in Figu~ -1-12. The ground station 

monu!Til'flt positions were obtained by sampling at the correct 

latitude/ longitude from the interferogram for the locations of the GPS survey. 

Figure 4-12 shows SRC differences in exce:.s of 10 mm lor a substantial number 

of ground station monuments in each of the interferograms. 

Magnitude o~Ascending · Oesct'otlln&)Simt Runse Cho1nge 
·-r I' I 'I 

fi.'t).Apr 2001 I 
A Aj><.jun 2001 

• JW>Sepl""" -~ ' A 

5q><200~l __J 

Jll , 
i! • •• .e 
~15 

!. 
• 

• 

Index of ~ lonu mcnb 

Flsure 4-12: Vara.tbon O\o·er time in SRC (em) between ~ndl.ng pa.ss .tnd Descending pass 

Thi> phomomenon can be confirmed by in.s~'Cimg ascending and descending 

pass gl'<lmetry (cf. Figures 3-6 and 3-7). Had th<.' ground movement been only 

vertical then the measured SRC vectors A and D should be the same in 

magnitude. Alternatively, the magnitude of A and D will be different if the~ 
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are displacements other than subsidence. From Figure 4-12, taking the absolute 

difference of SRC from ascending and descending passes shows the magnitude 

of lateral movement that can be expected over the region of interest One can 

conclude that for example I A I > I D I the lateral movement is generally 

eastward. Conversely, for example for I D I > I A I one can conclude that the 

magnitude of lateral movement is generally westwards. Figure 4-12 shows the 

absolute magnitude of lateral movement in the region under investigation. 

According to the processing steps and necessary equations developed in 

previous sections, the subsidence and lateral movement were derived from each 

of the interferograms. The first technique that was attempted was a 2D 

movement estimate, whereby the movement in one direction was assumed to be 

known to allow estimation of the other two directions. Since satellite DinSAR is 

more sensitive to East-West (x) and Subsidence (z) movements, the North-South 

(y) movement was arbitrarily set to zero. The technique was applied to each of 

the 8 DinSAR pairs. The result for a single DinSAR pair and an overall average 

of all 8 pairs is provided in Figures 4-13 to 4-16. Figures 4-13 and 4-14 are 

comparisons of 2-D ground movement from February to April 2001 (48 days, 

which is 2 RADARSAT-1 cycles) from DinSAR with respect to GPS derived 

movement trends, both normalized (movement per day translated to one 

RADARSAT-1 cycle) to 24 days. 
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Figure 4-13: InSAR versus GPS subsidence normalized to 24 days from February -April2001 
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Figure 4-14: InSAR versus GPS East-West movement normalized to 24 days from February -
April2001. 
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Subsidence [Feb-Sept 2001] Averaged (with North-South= 0) 
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Figure 4-15: InSAR versus GPS subsidence normalized to 24 days averaged over 4 DinSAR pairs 
from February - September 2001. 
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Figure 4-16: InSAR versus GPS East-West movement normalized to 24 days averaged over 4 
DinSAR pairs from February - September 2001. 
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Figure 4-15 and 4-16 are comparisons of 2-D ground movement from February to 

September 2001 from DinSAR with respect to GPS derived movements 

normalized to 24 days. DinSAR pairs from February to September 2001 were 

obtained by processing each differential pair from the list of images shown in 

Table 4-1 and then averaged. These plots illustrate the following: 

1. Subsidence and East-West movements derived from DinSAR correlate 

very favorably to GPS. 

2. Subsidence estimates appear to correlate more favorably than East-West 

measurements. 

3. The average variance (scatter of the data) from the trend line achieved in 

subsidence and East-West movement for an individual interferogram is [1 

and 0.58] em while the overall variance (from the trend line) in subsidence 

and East-West movement is [0.39 and 0.35] em, respectively. 

These results are very encouraging and the achieved accuracies may be sufficient 

for many applications. However, for this case study, it was known that many of 

the 65 GPS monuments were taken along a line that runs East-West through the 

region of greatest ground movement Consequently, many of the monuments 

experienced more East-West movement than North-South. 

The results may not have been as favorable if substantially higher North­

South movement was experienced at these monuments, making the assumption 
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of .6.y = 0 to be invalid, A more robust approach would involve no prior 

assumptions of movement As will be shown, the previously presented 

technique employing least squares estimation, instead of the .6.y = 0 assumption, 

produces improved subsidence and lateral movement estimates and thus, in 

general, is a better overall technique, 

4.3 Simulation with Synthetic Data 

To validate the ground displacement estimation method using the least 

squares technique, an artificial ground movement model was created. The 

objective is to verify estimated ground movement in each direction using 

artificially created SRC data for two look directions (ascending and descending). 

The simulated ground movement data were modeled after the ground 

displacement occurring in the San Joaquin Valley, which is the field location of 

the satellite and GPS data collection that will be presented later. Consequently, a 

direct comparison can be made between the simulated and measured results. 

4.3.1 Derivation of Synthetic Data 

The San Joaquin Valley site is experiencing localized subsidence that is 

spatially shaped like a 11bowl11 of movement. The maximum subsidence occurs 

roughly in the middle and gradually drops off in a radial direction to a point of 
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negligible subsidence at some max1mum radius. The simulated movement 

model was created to emulate the one observed in Figure B-4 in appendix B, and 

is given in Figure 4-17. 

Figure 4-17: The simulated Subsidence movement. 

The corresponding lateral movement is modeled from the subsidence by 

examining the rate of change of subsidence ground movement. The location of 

maximum lateral movement is where the "slope" of the subsidence pattern is 

maximum. Therefore, lateral movement is inferred to be zero at the center of the 

"bowl" at the point of maximum subsidence and also at tl1e outer perimeter of the 

bowl. The point of maximum lateral movement occurs at the middle point 

between the center and tl1e outer perimeter of the bowl, simulating where the 

sides of the bowl will •cave-in" towards the center. The direction of this "cave-in" 

indicates the proportion of the movement that is North-South and East-West. 
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The somulatl'd lateral movements that emulate ~ behavior are shown in 

Figun:" 4-18 and 4-19. 
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The sub6idcnce movement was simulated u~ing a BlilCkman window, which is 

• boro•l sltn~d". If the lateral movement is then "iufrrrtd" from the rate of change of 

subsidence, taking the derivative of the Blackmar1 window will produce the 

desired lateral movement magnitude. If the lateral movement direction is 

inferrl'd as the radial direction to the center of the ;,ubsidence "bowl", both East· 

W~'!>t and North-South movements can be thus derived. Using this model, the 

lateral movcll'l<'f\t can be sirnulatl'd using two rai'<!d coMnes equally spaced and 

oppo>ite ltl diNCtion and tapered at the ends to ~imulate East-West and North-

South movements. The movements have been scaled to be on the same order as 

the actual San joaquin Valley movement. 
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Figure 4-19: Ulustrates the North-South movement 

From these three sets of synthetic movement data, appropriate slant range 

change (SRq data for both ascending and descending passes were generated. 

This can be achieved by projecting the movement vectors to satellite look 

directions. Thus, two artificial SRC (descending/ascending) data sets were 

generated by combining the synthetic movements using equation 3-16 and 3-17. 

Figure 4-20 illustrates one such SRC dataset for the ascending pass. 

Ground movement estimates were derived using the two SRC data 

(ascending/ descending pass) and with the aid of equations derived in Section 

3.3. The estimated ground movement was then compared with the simulated 

movement data. In doing this, the accuracies of the 3-D ground movement 

estimation model can be verified. The verification results with artificial data will 

indicate the maximum accuracy that can be achieved in practice. 
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4.3.2 Movement Components Derived from Simulated Data 

The GPS survey that was conducted in the Siln }OO<fUin VaJJey site was 

conducted mainly along the p ipdinc right-of-way (ROW), which tUJlS generally 

along an East to West dirc'Ction. The movement expcrici1C<'d along this line is 

pl'<!dominantly East-West and sub,.dence because the ROW comcidentally runs 

through the point of maximum movement. In addition to the ROW monuments, 

there was a coarse grid of monuments that were equally spaced around the 

region of ground movement, the majority of which fell into non-moving regions. 

As i1 consequence, the majority of the moving monum('nts experienced 

prc>donunantly East-West and Sub>idence mo,•ement, and North-South 
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mO\·~mcnt was only minor in most ca;es. This pn.-sented some difficulty in 

verifying the r.;orth-South satellite estimates from the satellite imaging geometry 

bccau'!e the actual North-South movement proJected onto the satellite look 

din...:tlon was comparable to the sensor error Figure 4-21 illustrates sampled 

CPS monum~nt positions that were obtained by the survey. 

Moving Region. 
CPS survey in San 
Joaquin Valley 

Areas of zero 
ground movement 

:-...;ote: Movement 
Rq.100 is sampled 
honzonl.llly. 

Fisure ~21: CPS monument positions obtamed by t~ t~urvcy Note that most of the 
monument po.s•bons msrde the dotted empse shown Ill arc• of movt!ment are mainly on the 
hori1_ontal (East-West dJt«tion). 

The comparison between the simulated movement and estimated movement 

from the Simulated SAR plots are shown m scv~rallorrns, as detailed below: 

1. To emulate the CPS monument positions along the pipeline ROW, the 

simulated data were sampled hon1.ontally along the center of the data 

through the maximum subsidence location. 

2. To determine the algorithm's l"'rformance m the region of ma;cimum 

North-South movement the simulntl'<l datil were sampled vertically 
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along the center of the data through the region of maximum 

subsidence. 

3. To determine the overall performance, the sunulated data were 

sampled with a uniform grid, both vertically and hori1.ontally. 

Results from each of these cases will be considered individually. Firstly, consider 

the ca~c wlwn monument position is sampled along the horizontal line. Figure 4-

22 illustrates the position of these monuments that arc used for the subsidence 

estimatos. 

t 
lQ • • 

rhe plot:. shown in Figures -1-23, -1-2~ and -1-25 depict the solution of the least 

squares t.'l>timates compared with synthetic data sampk>d along the horizontal 

line. 
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Figure 4-23: Comparison of East-West movement sampled horizontally 

North-South Comparison with Simulated Data. (Without added noise) 
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Figure 4-24: Comparison of North-South movement sampled horizontally 
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Subsidence Comparison with Simulated Data. (Without added noise) 
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Figure 4-25: Comparison of Subsidence sampled horizontally 

Note that East-West and Subsidence movement correlate favorably, however, the 

North-South movement estimate is highly scattered, but very regular and grossly 

overestimated. This problem is closely investigated in Section 4.3.3, and a 

possible solution is illustrated. For now1 the reasons for these problems are 

intimated below: 

1. InSAR based on polar-orbiting satellite sensor is relatively insensitive to 

ground movement in the North-South direction due to its imaging 

geometry. Since the contribution of the SRC measurement to the North-
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South direction is low, the potential for the least squares estimate to be 

non-convergent to the actual solution is high. As noted, the convergence 

issues with least squares solutions on the problem at hand are dealt with 

in Section 4.3.3. 

2. Synthetic ground movement data for each directions (East-West, 

subsidence and North-South) was first generated as discussed earlier. 

These data sets were then combined to obtain the SRC-D (SRC descending 

pass) using equation 3-16 and SRC-A (SRC ascending pass) using equation 

3-17. The least squares estimation technique as discussed and defined by 

equation 3-19 was then used on the simulated SRC-D and SRC-A to 

estimate individual movement directions. The estimated movement from 

the results obtained from equation 3-19 was then compared with the 

initial synthetic dataset for movement in each direction. The least squares 

estimation technique works well for the East-West and subsidence 

estimates, provided the homogenous ground movement assumption 

holds true for a bounded region of n points as illustrated by Figure 3-10. 

In this case, the assumption was that the solution of the over-determined 

system is the result of all measured components (x, y and z) being 

homogeneous over a given grid of n points. Otherwise, the solution of the 

predicted components may exhibit large errors if it is discontinuous or 

substantially non-homogeneous over that grid. Figure 4-26 illustrates 
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that, for the case of the horu:ontal line through the center of the maximum 

subsidence, the North-South component changes dil\.'Ction from positive 

to negative, while the East-West and Subsidence components do not. As a 

result, the assumption of non-homogeneous movement is least applicable 

to the North-South movement as this would mantfest in the SRC. Under 

this situation, the l'>hmated 1\orth-Sooth mO\ l"mt:nt rrught not only have 

large errors but mtght also not correlate well. Both of these problems 

occur in this case a~ illustroted previously in Figure 4-24. 

,.._, SDIDCCCIIIC 

' t 
II' • • 

Towards Nortlr nnd Soul/• ..... --... 

l\.·1ovcment Vector not in 
the same direction. 

f1sur< 4-26: North-South ground m""ement sho""S discontlnuoty OV<'T • sm.tll ~ on tho 
sround ¥~·hen sampled horizonully 

Consider the second case where points are sampled along the vertical axis that is 

running from North to South. Figure 4-27 illustrat!.'S the position of these 

simulated monuments. 
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Figure 4-27: Monuments s.ampk~d W I tkaJiy as shown by the arrow 

The plots shown in Figure 4-28,4-29 and 4-30 are the solution of the least squares 

t--;tunates compared wilh synthetic data sampled along the vertical line. 
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Note that in the second case, a tight linear trend observed in the estimated 

North-South movement. This may be explained by observing that the North-

South movement along the line does not change direction (Figure 4-31) over the 

least squares estimation region, as it did for the first case along the horizontal 

line. llowever, the North-South movement is still grossly overestimated 

indicating that the least squares solution has not converged to the correct 

solution. It is speculated that this is due to the fact that SRC measurements do 

not contribute significantly to the North-South component. Therefore, the least 

squares solution is not convergent for this direction. 
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Figure 4-31: North-South ground movement shows hoO\ogencity over a smaU region on the 
ground when sampled vertically 
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It can be observ~d that the slope of the l'Stimatcd East-Wl>st movement in Figure 

4-28 had degradL'<l in comparison with Figure 4-23 w1thout the loss of 

correlation. Th" degradation IS hkely due to the fact th.lt the East-West 

components will change direction over the small image region u""d for the least 

squares estimation However, loss in correlation is not obscrvt.-d. in the East-West 

movement bl>cau..., of the large contribution of the SRC component to the East-

West direction. 

The conclusion from the above analysis suggests that the estimated North-

South ground movement will be gro""IY overestimated irrcspl>ctivc of being in 

regions of large (with no expected dlt\.>ction changes) or •mall (with expected 

direction changes) North-South movement. This is due to the fact that the 
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Figures 4-34, 4-35 and 4-36 illustrate the comparison between estimated ground 

movement and artificially generated ground movement vectors for this case. The 

results appear similar to those previously exhibited by the horizontally sampled 

line, whereby good results appear in subsidence and East-West High scatter and 

overestimation is exhibited by the North-South component estimate. It is 

therefore speculated that the major reason for non-convergence to an optimal 

solution is due to the low contribution of the North-South component to the SRC. 
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Figure 4-34: Comparison of East-West movement sampled over the entire image 

The points were sampled over the entire image region, extreme Eastward 

movement and extreme Westward movements are observed in Figure 4-34. 
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Similarly, extreme Northward movement and extreme Southward movement are 

observed in Figure 4-35. 
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Figure 4-35: Comparison of North-South movement sampled over the entire image 
Subsidence Comparison with Simulated Data 
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Figure 4-36: Comparison of subsidence movement sampled over the entire image 
Accuracies of DinSAR in measuring ground movement are often limited 

by atmospheric artifacts and phase noises due to spatial decorrelation, and the 
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accepted measurement errors are ± 5 mm in the SRC measurements. To account 

for this in the simulated data, Gaussian noise can be introduced to the 

synthetically generated Slant Range Change data to get a sense of the additional 

measurement scatter associated with practical ground movement measurements. 

Figure 4-37 illustrates SRC-A generated as discussed above after adding 

Gaussian noise with a variance of (5 mm) >. 

0 0 
Oirta.nc! U\ u~ 

' ' •' . . . 

Figure 4-37: Slant range change data for a.'tCending pass with noise added. (Artificially crealed 
from individual East-West, North-South aJ\d Subsidence data. SRC shown as positive here.) 
Figures 4-38, 4-39 and 4-40 show the comparison of ground movement derived 

by the least squares estimation model with that derived from the SRC. In this 

case, the monument sampling is a uniform grid (both vertical and horizontal) 
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about the SRC data. The effect of noise on the solution of individual movement 

components is shown in the plots below as additional scatter about the trend 

line. As with the previous data set, the plots illustrate that the least squares 

model provide fairly accurate estimate of subsidence and East-West movement. 

The North-South movement is overestimated and does not correlate very well 

for reasons explained earlier. 
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Figure 4-38: Comparison of East-West [with noise] 
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North-South Comparison with Simulated Data wit.l-t (Added Noise) 
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Figure 4-39: Comparison of North-South [with noise] 
Subsidence Comparison with Simulated Data with (Added Noise) 
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Figure 4-40: Comparison of Subsidence [with noise] 
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4.3.3 Simulation of Movement Components Derived from 
Modified Least Squares Technique 

The key component for estimating North-South ground movement 

presented earlier relies on Least Squares Solution (LSS). Recall that this method 

relies on the translation of an underdetermined system to an over determined 

one based on variation of satellite incidence angle over a homogeneous ground 

movement region. Results presented in the previous section shows that the 

method requires modification to address the gross over estimation of the North-

South movement and the observed scatter, as shown in Figure 4-39. 

Consider a solution of the linear system in the least squared sense as 

defined in equation (3-19) as MX =b. Solving an over determined system MX = 

b in the least-squared sense means minimizing the square sum of the error vector 

defined as eTe, where e = MX-b and the superscript T indicates transpose. The 

LSS solution then becomes X= (MTM)-1MTb [43] provided the inverse exists. In 

this case X is the column vector of size 3 x 1 and M is of size 2n x 3, where n is 

the number of grid spaces considered for estimation of 3-D ground movement. 

Let the estimated component obtained from the LSS be denoted as X. 

Then for all X, IIMX - b// :::; IIMX- bll should hold if LSS truly reduces the error e. 

However, the LSS technique fails when columns of Mare linearly dependent [44, 

45]. In this case the existence of a single minimizing solution X =X is in 
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question [44]. This implies that if the columns of the matrix M in the least 

squares problem manifest linear dependency, then there is no unique solution. 

In this case it is still possible to construct a solution provided the (MIM) matrix is 

invertible but it is likely to be inaccurate. The problem becomes dominated by 

the dependent columns, and becomes very ill conditioned [43]. 

A closer investigation on the transformation matrix M for the simulated 

data reveals linearly dependent columns of M, which indicates that estimation of 

non-measured component of the movement may be very inaccurate. The 

satellite SAR geometry is natively more sensitive to East-West and subsidence 

' 

directions than North-South direction. This implies that the solution of the 

estimated North-South component might be inaccurate. The previous results 

indicate that this inaccuracy is manifested in the poor estimation of the North-

South component. Given this, the obvious question is whether it is possible to 

improve the estimated North-South movement with the aid of a modified LSS. 

Various other forms of LSS techniques are proposed in the literature to address 

the problem with linear dependency including [46]. Constrained LSS is the most 

desirable one in this case because it provides a control over the estimates. 

Observing the previously simulated results indicates the expected error in the 

North-South direction. This knowledge can be imposed on the matrix M to 

obtain a constrained LSS solution. The expected errors in measuring North-South 

movement that is due to the relative insensitivity of InSAR along North-South 
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direction can be used to create a constrained matrix W with the same number of 

rows and columns as that of M. Figures 4-38, 4-39 and 4-40 suggest that for every 

unit of subsidence movement the North-South movement is over estimated by 

~400%. Under the assumption of bowl shaped homogeneous ground movement 

presented earlier, it was observed that the magnitude of lateral ground 

movement is limited to 1.5cm. Thus 400% of 1.5 em corresponds to 6cm, which 

can be used as a constrained coefficient in the matrix W. The matrix W then 

becomes: 

(4-4) 

where i = 1 to number of rows, 

a· = c· = 1 and l l 

The coefficients ai and ci are that of East-West movement and subsidence 

respectively, and can be set to unity since these components are the measured 

components and manifests no errors in the estimations. The coefficients bi are 

that of North-South movement estimates and can be weighted to 6. This could 

balance the estimated ground movement solution by fixing the relative error that 

was observed in the plots before. 

The new system then becomes 
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WMX=b. (4-5) 

The new system is identical in form with the old one, but the LSS of the new 

system becomes 

X= ((WM)TWM)-1 (WM)Tb, (4-6) 

which should not adversely affect the East-West and subsidence estimates while 

improving the North-South estimation. The state of singularity for equation (4-

6) is controlled by the coefficients ai , bt and ci . The coefficients for the 

weighting matrix W were chosen to fix the relative errors observed in the 

previous plots. The choice of coefficients would enable a non-singular system of 

equation by which ground movement parameters can be estimated. Figure 4-41 

illustrates the North-South estimation with the aid of constrained LSS. It can be 

observed that the gross over-estimation in Figure 3-39 was minimized 

considerably. 
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North-South Comparison with Simulated Data 
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The solution of equation (4-6) can be further constrained by taking the 

gradient of the SRC over a neighborhood of pixels, where ground movement is 

to be estimated. The gradient vector magnitude of the SRC over a small grid will 

be proportional with respect to the amount of lateral ground movement of that 

region as explained in Section 4.2. This assumption is on the basis of uniform 

subsidence, whereby the region is sinking with uniform lateral movement from 

both directions (East-West and North-South) resulting in a bowl-like shape as 

illustrated in Figure 3-1. Figure B-4 in appendix B shows the true shape of the 

subsiding area and is indeed like a bowl. Thus, more lateral movement is likely 

to occur when the rate of change of the SRC with respect to distance is observed 
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in a particular region. With this assumption, the solution obtained from equation 

(4-6) for North-South movement can be adjusted (weighted) using the gradient of 

the SRC vector of that region. Ground monument positions were sampled 

uniformly over the entire image as was done previously. Figure 4-43 illustrates 

the success of this improved estimation technique, where the estimated North-

South ground movement compared with synthetic data reduces the scatter to 

0.47 em. 
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Figure 4-42: Comparison of East-West ground movement from constrained LSS solution 
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a North-South Comparison with Simulated Data 
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Figure 4-43: Comparison of North-South ground movement from constrained LSS solution 
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Figure 4-44: Comparison of North-South ground movement from constrained LSS solution 
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Note that the new technique estimates the North-South movement more 

accurately by minimizing the scatter about the slope line in Figure 4-39 from 9.6 

em to 0.47 em in Figure 4-43. 

Although this section mentions various assumptions that have to be made 

to apply the constrained LSS technique, it is important to realize that these 

assumptions can be generally identified by observing the DinSAR derived slant 

range measurements. Therefore, the application of this technique only requires 

information obtained by remote sensing and need not rely on any in-situ or other 

non-remote sensing sources of a priori information. 

4.4 Validation of 3-D Ground Movement Measurements 

The final step in the validation is to test the 3D movement estimation 

technique that employs the least squares model as presented in Section 3.3. The 

same interferograms and monument data were employed for this validation as 

presented in the section 4.2. As discussed previously, the least squares technique 

requires homogenous ground points of coherent movement. To determine the 

optimum size of the homogeneous patch of moving ground points, an 

optimization technique was used. Specifically, the least squares method was 

applied to a variable-sized window to extract lateral movement and subsidence; 

the subsidence component was then compared with the GPS data to determine 

the correlation. The window size n as introduced in Figure 3-10 was varied to 
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determine the best correlation as shown in Figure 4-45. The rationale behind 

using this method is that the subsidence should get progressively better as the 

lateral movement estimate improves; at some point the window size will become 

too large as the assumption of "coherently moving patch of ground" fails. A 

maximum distance of 10 pixels was limited to the range direction (row). Each 

pixel on the SAR image processed was of 8 m, which results to 80 m for 10 pixels. 

It was assumes that coherent ground movement on the range direction would be 

preserved under 80m. The number of pixels was incremented on the range 

direction to 10 and then perform the similar by incrementing one of the azimuth 

direction. This would collectively form the bounded region of coherent ground 

movement. A plot of this analysis is given in Figure 4-45. Careful observation of 

this plot shows that a suitable window would be 51 pixels ( 408m) in a 

rectangular configuration. Spatially this implies 5 rows of 10 pixels and 1 pixel 

on the 6th row. 
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Figure 4-45: Correlation between DinSAR & GPS versus Least Mean Square (LMS) window size 
(n). The y-axis represents the correlation of InSAR estimated subsidence with respect to GPS 
measurements for all GPS monuments. The x-axis represents increase in the number of pixels for 
each InSAR versus GPS analysis. 

Using this window size of 51 pixels, the simple least squares technique was 

applied to all sets of interferograms. These plots show an overall improvement 

in correlation of subsidence and East-West movement when compared with the 

previous results where it was assumed ~y = 0 (cf. Figures 4-13 and 4-14). Figures 

4-46, 4-47 and 4-48 show subsidence, East-West and North-South movement 

obtained from the February - April 2001 pairs, compared with GPS measured 

movements all normalized to 24-day movement scale. 
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The subsidence and East-West movement shown in Figure 4-49 and 4-50 

shows good correlation between the GPS measured movement and InSAR 

estimated ground movement The north-south movement in Figure 4-51 shows 

poor correlation and is similar to the simulated results presented in Figure 4-39. 

The results are explained as follows: 

1. The measurement error in the North-South direction is fairly significant 

compared to East-West or subsidence as explained in the previous section. 

With a 5 mm SRC error the expected scatter in East-West, subsidence and 

North-South are estimated to be 0.25 em, 0.12 em and 9.5 em. The 

observed scatter about the slope line for the plots shown in Figure 4-49, 4-

50 and 4-51 are within the expected limit as per the simulation results. 

Hence, the nature of the results is as expected from the simulation. 

2. The measurement error of the GPS exacerbates the problem of 

decorrelated North-South movement and the additional scatter is 

observed about the plot's x-axis, which further degrades the results. 
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Figure 4-46: InSAR versus GPS Subsidence movement normalized to 24 days from February -
April2001 
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Figure 4-4'7: InSAR versus GPS East-West movement normalized to 24 days from February -
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Lateral Movement (North-South) [Feb-Apr 2001] 
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Figure 4-48: InSAR versus GPS North-South movement normalized to 24 days from February­
April2001 

Figures 4-49, 4-50 and 4-51 show averaged movement from InSAR (February-

September 2001) compared with GPS measured movement trends, both 

normalized to a 24-day movement scale. Appendix A contains the remaining 

plots for the entire interval. Carefully observing the two groups of plots (Figure 

4-13 to 4-16) and (Figure 4-46 to 4-51) and Figures A-13 to A-21 in Appendix A, it 

can be seen that the correlation between InSAR measured movement and GPS 

measured movements have improved over single interferogram results by ~2% 

for subsidence and -13% for East-West movement estimates, except for the 

North-South movement. A marked difference is seen in the East-West 

displacement when Figure 4-50 is compared with Figure 4-16. The correlation 
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improved from 0.74 to 0.87, slope improved from 0.8 to 0.81 and scatter about the 

slope line was minimized from 0.35 to 0.22. The relatively poor results with the 

North-South movement indicate that additional interferograms might be 

necessary for the averaging to reveal an improved correlation. More precise 

measurements of the monuments with a theodolite would also have helped 

demonstrate better correlation of the North-South movement. However, to truly 

demonstrate improved results an alternate LSS technique must be applied as was 

done previously for the simulated SRC data. 
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Figure 4-49: InSAR versus GPS Subsidence movement normalized to 24 days from February -
September 2001 
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Figure 4-50: InSAR versus GPS East-West movement normalized to 24 days from February -
September 2001 
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Figure 4-51: InSAR versus GPS North-South movement normalized to 24 days from February­
September 2001 
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4.5 Validation of 3=D Ground Movement Measurements 
with Constrained Least Squares Solution 

A constrained least squares solution as discussed in Section 4.3.3 showed 

considerable improvement in estimating North-South movement for the 

simulated results. The same technique can be applied to the obtained series of 

DinSAR data to validate 3-D ground movement Figures 4-52, 4-53 and 4-54 

show subsidence, East-West and North-South movement obtained from the 

February - April 2001 pairs compared with GPS measured movements all 

normalized to a 24-day movement scale. 
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Figure 4-52: Comparison of East-West ground movement from constrained LSS solution 
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Lateral Movement (North-South) [Feb-Apr 2001] with Constrained LSS 
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Figure 4-53: Comparison of North-South ground movement from constrained LSS solution 
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Figure 4-54: Comparison of subsidence ground movement from constrained LSS solution 
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Figures 4-55, 4-56 and 4-57 shows averaged movement from InSAR (February -

September 2001) compared with GPS measured movement trends both 

normalized to 24-day movement scale. It is clearly observed from the series of 

Figures 4-52 to 4-57 and additional Figures in appendix A, Figures A-22 to A-30 

that the constrained least squares solution has obtained better estimates for all 

three ground movement components, given that the space-borne SAR 

configuration is insensitive to North-South movement. The scatter about the 

slope line also falls well within the order of expected errors as suggested by the 

simulation results. 
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GPS Measured North-South Movement (units: em) 

Figure 4-56: Comparison of averaged North-South ground movement from [Feb-Sept 2001] with 
constrained LSS solution. 
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With the use of the constrained least squares method, 3-D ground 

movement estimation was verified from two satellite-look directions with 

additional assumptions. The obscurity that was encountered in estimating the 

inadequately measured component, which is North-South, was handled 

reasonably well with the constrained least squares technique. Subsidence and 

East-West movement estimation has also improved to near perfect slope and 

correlation with this method. Thus under the framework of natural-hazard 

monitoring, DinSAR combined with the derived fusion technique can be 

employed to monitor ground movement activity in remote locations, exploiting 

the unchallenged spatial coverage provided by satellite based remote sensing. 
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Chapter 5 

Conclusion and Recommendations for 
Future Work 

In the context of deriving 3-D ground movement from SAR, a technique 

for fusing data from ascending/ descending pass SAR images in order to extract 

directional ground movement has been derived and successfully validated 

especially for East-West movement and Subsidence. The results give an excellent 

indication of the capability of DlnSAR to measure 2-D ground movement. In 

addition, the technique derived to extract 3-D ground movement demonstrated 

the existence of a linear trend between DlnSAR estimated lateral ground 

movements and GPS estimated ground movements. The results of the 

constrained Least Squares Solution (LSS) illustrated in Figures 4-55, 4-56 and 4-57 

have a correlation coefficient of 0.87, 0.64 and 0.98. This suggests a good 

correlation between DinSAR and GPS derived ground movement for East-West, 
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North-South and Subsidence. The results for extracting East-West movement 

showed an excellent correlation of 0.87, especially for the averaged results shown 

in Figure 4-55. In addition, the technique improves the vertical measurements to 

near perfect correlation of 0.98 with GPS. The North-South movement also 

showed promising correlation. However, it demonstrates the need for averaging 

of interferograms to reduce the overall errors. Varying the incidence angle from 

the center of the SAR scene to the total image area as described in Figure 3-10 

helped formulate the over-determined system in Section 3.3. Over a single scene, 

the variation of incidence angle is about a degree or two. The pattern of inter­

correlation among the coefficients makes the M'*M system matrix nearly 

singular, which, makes estimation of the LSS imprecise for the non-measured 

component. This problem can be overcome by using a constrained least squares 

technique that demonstrates substantially improved results. Overall, it can be 

said that the technique provides a much improved subsidence estimate and a 

very favorable East-West movement estimate. 

There are various limitations to SAR interferometry and the fusion 

technique discussed here can be applied to mitigate these limitations. Steep 

slopes facing the SAR look direction cannot always be monitored due to 

foreshortening or layover. However, research has shown that, for east-west 

facing slopes, fusing ascending and descending pass images can mitigate this 

problem. DinSAR, as illustrated in Chapter 4 is not sensitive at all to the ground 
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movement component along-track However, in this thesis it was shown that by 

combining ascending and descending data, it is possible to accurately estimate 

two components of the deformation and possibly estimate the third component if 

it is at all present 

Future work in this area should include the examination of the possibility 

of fusing multiple look directions obtained from different satellites for generating 

the DinSAR pair. This would enable the derivation of an over-determined 

system from other satellite look directions. Additional beam positions from the 

same satellite that provide slightly different viewing geometry may also prove 

useful. Though it is not possible to find another completely unique and 

orthogonal viewing perspective from present satellite interferometry, fusing 

interferometric data with GPS data would be an interesting investigation. 

More work can be done to validate the fusion technique presented in this 

thesis on other regions undergoing ground movement. Using data sets from 

different terrain configuration and ground movement characteristics can be used. 

The idea that homogeneous ground movement improves estimation of results 

could be verified by using new datasets of San Joaquin valley and performing 

analysis similar to that presented in this work However, the ideas presented in 

this thesis can be applied to a broad range of satellite-based ground movement 

monitoring assignments in reasonably flat areas. 
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Appendix A 

Figures and explanations not included in text. 

[Validation of InSAR derived ground movement 

compared with GPS measured ground movement 

and InSAR sensitivity on the North-South 

direction.] 
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Lateral Movement (East-West) [Apr-Jun 2001] (with North-South= 0) 
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Lateral Movement (East-West) [Jun-Sept 2001] (with North-South= 0) 
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Lateral Movement (East-West) [Sept 2001] (with North-South= 0) 
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Lateral Movement (East-West) [Apr-Jun 2001] 
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Figure A-13: InSAR versus GPS East-West normalized to 24 days from Apr-Jun 2001. 

Lateral Movement (North-South) [Apr-Jun 2001] 
20 

jCorrelaticin = 0.20 
S 18 ~- Slore = 2.p8 

~ :: ~ &.~,.~utSlope 

~ ur-
~ I 
-:5 10 f------------
;:l : 

~ 8~- ------------•-------

~ 6~- --------------------

------------------------=l 
' ' ----------------

••••I 
_: _______________ ~ 

i 
-----'----------------~ 

I 
-----------·-----1 

' 1l I I 

1 r ................... :···•••••······•••·•·••••••• 
-2 L _ ____L __ ___j__ __ _L,'L __ __L_ __ _L_ __ I 

-1.5 -1 -0.5 0 0.5 1 1.5 
GPS Measured North-South Movement (units :em) 
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Subsidence [Apr-Jun 2001] 
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Figure A-16: InSAR versus GPS East-West normalized to 24 days from Jun- Sept 1st 2001. 

147 



10 

s 
u 

ii 8 '8 
2-..... 
~ s 
OJ 

~ 
;:?; 
..:; 
::l 

4 0 
CQ 
o:S 
'" 0 z 

"0 2 
.8 
«l s ·_p 

"' f;LI 
0 

~ 
CJ) 

..s 

Lateral Movement (North-South) IJun-Sept 2001] 

Correlatiqn = 0.31 

Slope=2:04 

. Scatt~r a~l:mt~lop~.Li!}~ .=.3.-:5? (:~·•···· .. 

-1 -0.5 0 0.5 1 
GPS Measured North-South Movement (units: em) 

1.5 

Figure A-17: InSAR versus GPS North-South normalized to 24 days from Jun- Sept tst 2001. 
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Figure A-18: InSAR versus GPS Subsidence normalized to 24 days from Jun- Sept 1st 2001. 
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Figure A-19: InSAR versus GPS East-West normalized to 24 days from Sept 1st-Sept 25th 2001. 
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Figure A-20: InSAR versus GPS North-South normalized to 24 days from Sept 1st-Sept 25th 2001. 
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Figure A-21: InSAR versus GPS Subsidence normalized to 24 days from Sept l•LSept 25th 2001. 
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Figure A-22: InSAR versus GPS East-West normalized to 24 days from Apr-Jun 2001 
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Lateral Movement (North-South) [Apr-Jun 2001] with Constrained LSS 
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Figure A-23: InSAR versus GPS North-South normalized to 24 days from Apr-Jun 2001. 
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Figure A-24: InSAR versus GPS Subsidence normalized to 24 days from Apr-Jun 2001. 
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Lateral Movement (East-West) [Jun-Sept 2001] witl:l Constrained LSS 
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Figure A-25: InSAR versus GPS East-West normalized to 24 days from Jun- Sept 1st 2001. 
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Figure A-26: InSAR versus GPS North-South normalized to 24 days from Jun- Sept 1st 2001. 
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Figure A-27: InSAR versus GPS Subsidence normalized to 24 days from Jun- Sept 1st 2001. 
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Figure A-28: InSAR versus GPS East-West normalized to 24 days from Sept 1st-Sept 25th 2001. 
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Lateral Movement (North-South) [Sept 2001] with Constrained LSS 
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Figure A-29: InSAR versus GPS North-South normalized to 24 days from Sept 1 sLSept 25th 2001. 
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Figure A-30: InSAR versus GPS Subsidence normalized to 24 days from Sept lsLSept 25th 2001. 
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Figure A-31: InSAR Error Analysis. Estimated relative error in the North-South direction. This 
plot is based on satellite look direction and look angles projected to map co-ordinates. 

The plot illustrates the results of sensitivity analysis of InSAR for movement 

vectors away from the InSAR look direction with a constant look angle of 38°. 

For a unit movement along the East-West direction identified as 0° in the plot, 

observed to have minimum error since that component of movement is along the 

InSAR look direction. As the movement vector deviates from the InSAR look 

direction to the negative maximum as complete southward movement, or to a 

positive maximum as complete northward movement the relative error also 

increases. The sensitivity drops and becomes completely insensitive to any 

movement along the azimuth vector that is North-South (i.e. movement is 

orthogonal to the look direction and SAR cannot measure it). 
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Appendix B 

• DEM of San Joaquin Valley in Southern 

California 

• SLC image draped over DEM showing San 

Joaquin Valley in Southern California 

• 3-D subsidence and results not included in text 
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Figure B..J: Dlgltnl Elevation Model20' perspective rotatNI 180° 
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Figure 8-4: 3-0 subsidence as estimated by lnSAR draped over SLC 
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Appendix C 

• SAR & InSAR Processing Steps. 
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& InSAR Processing Steps 

Broadly, there are two main steps involved in SAR interferometry and 

differential interferometry. The first step is to process the raw SAR data using 

standard SAR processing techniques, which will be shortly discussed. The 

second step is the interferometric processing step. A SAR processor can be 

thought of as a realization of a signal compression technique in azimuth and 

range directions. The objective is to derive a high-resolution image from raw 

SAR data stored by the sensor after acquisition. In principle, a one-dimensional 

Fourier Transform (FT) is performed in the range direction and each range image 

line is multiplied by theFT of the reference function. After this, the inverse FT is 

taken to transform back to time domain and a range-focused image is formed, 

which is still defocused in azimuth. The same is done along the azimuth 

direction to obtain a fully focused single look complex (SLC) SAR image [31, 35]. 

To mathematically formalize the main steps involved for raw data processing of 

SAR images, azimuth and range processing are considered below. 

Csl Azimuth Processing 

The received raw signal can be expressed as a function of time by 

Z(t) = IejqJ(t) (C-1) 
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where I is the energy of the return signal due to backscatter and qJ(t) is the 

received phase from the same scatterer at time t as defined in equation (2-4) in 

Chapter 2. In azimuth compression, multiple phase values of the same target 

points are adjusted to the same value of a reference function using coherent 

simulation [31]. This is achieved by correlating the return signal Z(t) with a 

reference function R(t) for a particular point target. The reference function is 

constructed such that it has the opposite phase of an ideal impulse response at 

every point. 

R(t) = e-jkt
2 

(C-2) 

2 

where k = 
2
.w and was defined previously in equation (2-4) in chapter 2. 
Jlro 

A weighting function W(t) is used to limit the length of the reference function. In 

practice, this weighting function is a Kaiser-Bessel window. However, it could be 

any appropriate window function. For illustration, consider a rectangular 

window as the weighting function W(t): 

W(t) = lfor- tmax < t < tmax 
2 2 

W(t)=O otherwise, 

where tmax is the illumination time and was previously defined in (chapter 2) 

equation (2-6). Then the reference function R(t) can be expressed as 

R(t) = W (t)e- jkt
2 

(C-3) 
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The resulting correlation of Z(t) with R(t) can be expressed as [5, 6, 36]. 

+oo 
V(t)= fZ(t)R(t+~)d~ (C-4) 

-00 

(C-5) 
-OCJ 

{C-6) 

It is possible to approximate W(t + ~) ;::; W(~) since only small times are 

important. Thus, the correlation result can be solved as in [5, 6 36]: 

+!max 

V(t)=Ie-Jkt2..[2; f e-2Jkt;d~ (C-7) 
-tmax 

2 

(C-8) 

The result of this correlation is the image of a particular point target at location 

Z(x,y). 

C.2 Range Processing 

The range direction is perpendicular to the flight path direction. To obtain 

a high-resolution image in range, short duration pulses, r, are necessary. In 

general, SAR utilizes linear frequency modulation (chirp) to obtain high signal 
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bandwidth for better resolution and sufficient signal strength. The frequency f(t) 

is given by 

B T T 
f(t) = _r t for -- < t <-

1: 2 2 
(C-9) 

where B,. denotes the bandwidth of the emitted pulse. The chirp rate q can be 

defined as 

(C-10) 

To compress the signal, a new reference function is constructed similarly as 

described in Section C.1 for azimuth compression. Following the same steps, an 

expression can be derived [5, 6, 36] as 

Vr(t) = Jr.Ji;eikt2 [sin(ktr)J 
ktr 

(C-11) 

Equation (C-11) signifies the intensity distribution of a point-like target in the 

final SLC SAR image. 

A typical SAR data processing step can now be formalized in the form of a 

flow chart as shown in Figure C-1. Note that the first step is to perform a FFT 

over all return signals of a single point scatter. The range compression step 

utilizes equation (C-11) over all range bins. Taking the inverse FFT of the 

compressed range signal will result in a focused range image and further 

followed by azimuth processing. Similarly, in the azimuth direction, azimuth 

compression is followed by inverse FFT whereby combining with the range IFFT 

produces a single look complex image. There are various other steps involved in 
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processing of SAR images and they depend on diverse sensor types. However, 

the basic recipe remains the same and is as shown Figure C-1. 

RAWSARDATA 
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Figure C-1: Simple SAR raw data processing steps 
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Ce3 Interferogram Processing 

Figure C-2 details the processing steps required to combine the two SLC 

(single look complex) images (an interferometric pair) to generate an 

interferogram and a DEM. 
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Figure C-2: Simple InSAR processing steps 

The SLC images, when taken from slightly different geometries, will contain 

frequency regions that do not overlap. Common band filtering can eliminate this 

non-overlapping frequency band. Common band filtering of azimuth and range 
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spectra of the SLC pair optimizes interferometric correlation and minimizes the 

effects of the baseline geometry on the data pair [35]. After this, the image pair is 

co-registered to sub-pixel accuracy. Then, the second SLC (slave image) is re-

sampled to the first SLC's (master image) grid. Now there are two images that 

are similar in geometry and contain the same overlapping information that is co-

registered to a sub pixel level. An interferogram can now be computed using 

(C-12) 

The expected phase trend in the interferogram due to a smooth curved earth 

ellipsoid must be removed. This flattening operation is done using orbit 

information or state vectors coordinates. A flattened interferogram, also referred 

to as a normalized interferogram, is modulo 2 1r wrapped. As a consequence, the 

interpretation of interferometric phases must be preceded by phase unwrapping 

as detailed in Section 2.3. 

The geocoding step embeds cartographic information onto the phase 

unwrapped interferogram, also referred to as a geocoded interferogram. This 

transforms the range-Doppler coordinate of the SAR to orthonormal map 

coordinates. The standard geocoding step requires the user to detect homologous 

points in a reference map and in the SLC. Using these ground control points, the 

image is then re-sampled to the geometry of a cartographic system. Geocoding 

requires experience and a considerable amount of familiarity with SAR images to 

identify suitable ground control points. A geocoded DEM is a perspective of the 
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terrain as visualized by the SAR. A SAR-derived DEM typically has height 

information of every latitude and longitude on the image grid. 
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