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Abstract 

A Skolem sequence of order n is a sequence Sn - (s1, s2 , ... , s2n) of 2n integers 

satisfying the conditions: 

1. for every k E {1, 2, ... , n} there are exactly two elements si, s1 E S such that 

si = s1 = k, i.e. each number in {1, 2 ... , n} appear twice in the sequence, and 

2. if si = s1 = k, i < j, then j - i = k, i.e. the indices i, j where k appears has 

j- i = k. 

A hooked Skolem sequence of order n is a sequence hSn = (s1, s2 , ... , s2n+l) of 2n+ 1 

integers satisfying conditions (1), (2) and (3): s2n = 0. A triple system of order v and 

index..\, denoted TS(v, ..\), is a v-set of V elements, together with a collection B of 

3-element subsets of V called triples such that each 2-subset of V appears in precisely 

..\ triples of B. This is also called a .A-fold triple system. If ..\ is not specified, then 

..\ = 1 and the triple systems are Steiner triple systems, denoted STS(v). An STS(v) 

is cyclic if it has an automorphism consisting of a single cycle of length v. A cyclic 

STS(v) is denoted CSTS(v) and a cyclic TS(v, ..\)is denoted CTS(v, ..\). We denote 

by Intsn={k: there exists two [hooked]Skolem sequences of order n with k pairs in 

common}. This is the intersection spectrum of two [hooked] Skolem sequences of order 

n which gives the intersection spectrum of two CSTS(v), v = 1, 3 (mod 6). Given a 

CTS(v, ..\), the fine structure of the system is the vector (c1, c2 , ... , c>.)c, where ci is 

the number of base blocks repeated exactly i times in the cyclic triple system. 

In this thesis we prove, using [hooked] Skolem sequences of order n, that there 

exists two cyclic Steiner triple systems of order 6n+ 1 intersecting in 0, 1, 2, ... , n base 



blocks and there exists two cyclic Steiner triple systems of order 6n + 3 intersecting 

in 1, 2, ... , n + 1 base blocks. From here we derive that a twofold cyclic triple system 

of order 6n + 1 intersect in 0, 1, ... , n base blocks and a twofold cyclic triple system 

of order 6n + 3 intersect in 1, 2, ... , n + 1 base blocks. We also prove, with some 

possible exceptions, that there exists two [hooked) Skolem sequences of order n which 

can have 0, 1, 2, ... , n- 3, n pairs in common and, using this intersection spectrum, 

we determine the fine structure of a threefold cyclic triple system of order 6n + 1. 
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Chapter 1 

Introduction 

Combinatorial design theory is thought to have started in 1776, when Euler posed 

the question of constructing two orthogonal latin squares of order 6. This was known 

as Euler's 36 Officers Problem. Over the years, however, combinatorial researchers 

have discussed a wider range of designs. These have included: one-factorizations, 

Room Squares, designs based on unordered pairs, various tournament designs as well 

as other designs. 

Informally, one may define a combinatorial design to be a way of selecting subsets 

from a finite set such that specific conditions are satisfied. As an example, suppose 

it is required to select 3-sets from the seven objects {a, b, c, d, e, f, g}, such that each 

object occurs in three of the 3-sets and every intersection of two 3-sets has precisely 

one member. The solution to such a problem is a combinatorial design. One possi­

ble example is {abc, ade, afg, bdf, beg, cdg, cef}, which is also called a Steiner Triple 

System of order 7 and denoted ST S ( 7). 

Another subject systematically studied was triple systems and the most impor­

tantly is the celebrated Kirkman[25] schoolgirl problem which fascinated mathemati­

cians for many years: 

"Fifteen young ladies of a school walk out three abreast for seven days in succession: 

it is required to arrange them daily, so that no two shall walk twice abreast." 

Without the requirement of arranging the triples in days, the configuration is a 

1 
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Steiner triple system of order 15, and hence was known to Kirkman. The first one to 

publish a solution to the Kirkman schoolgirl problem was Cayley[lO]. 

Thiple systems were also studied by Heffter[22] who introduced his famous first 

and second difference problems in relation to the construction of cyclic Steiner triple 

systems of order 6n + 1 and 6n + 3. Skolem[47] also had an interest in triple systems; 

he constructed STS(v) for v = 6n + 1. He introduced the idea of a Skolem sequence 

of order n which is a sequence of integers which satisfies the following properties: 

every integer i, 1 ::; i ::; n, occurs exactly twice and the two occurrences of i are 

exactly i integers apart. The sequence (4, 2, 3, 2, 4, 3, 1, 1) is a Skolem sequence of 

order 4. In the literature, Skolem sequences are also known as pure or perfect Skolem 

sequences. Skolem proved that a Skolem sequence of order n exist if and only if n = 
0, 1 (mod 4). Skolem[48] extended this idea to that of the hooked Skolem sequence, 

the existence of which for all admissible n, along with that of Skolem sequences, would 

constitute a complete solution to Heffter's first difference problem and leads to the 

constructions of cyclic STS(6n + 1). An example of a hooked Skolem sequence of 

order 3 is (1, 1, 2, 3, 2, 0, 3) . O'Keefe[36] proved that a hooked Skolem sequence of 

order n exists if and only if n- 2, 3 (mod 4). 

Rosa[39], in 1966, introduced other type of sequences called Rosa and hooked 

Rosa sequences and proved that a Rosa sequence of order n exists if and only if 

n - 0, 3(mod 4) and a hooked Rosa sequence of order n exists if and only if n _ 

1, 2(mod 4). These two type of sequences constitute a complete solution to Heffter's 

second difference problem which leads to construction of cyclic ST S( v) for v = 6n + 
3. Thus, the study of triple systems has grown into a major part of the study of 

combinatorial designs. Triple systems are natural generalizations of graphs and much 

of their study has a graph theoretic flavour. Connections with geometry, algebra, 

group theory and finite fields provide other perspectives. 

One of the most important paper discussing disjoint cyclic Steiner triple systems 

was written by Colbourn[12]. Using graphical representations of solutions to Heffter's 

difference problem, he determined the size of the largest set of disjoint cyclic Steiner 
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triple systems for small orders and also established some easy bounds. 

In this thesis, we discuss cyclic Steiner triple systems and cyclic triple systems 

having a prescribed number of base blocks in common and their applications. We 

start from Rosa's paper [38] where the author discusses Steiner triple systems and 

their intersection spectrum and we provide similar results for the cyclic Steiner triple 

systems and cyclic triple systems with A = 2 and A = 3. 

Starting from a [hooked] Skolem sequence of order n, we prove that there exists 

two cyclic Steiner triple systems of order 6n + 1 intersecting in 0, 1, 2, ... , n base 

blocks and there exists two cyclic Steiner triple systems of order 6n + 3 intersecting 

in 1, 2, ... , n + 1 base blocks. Using these results we prove that a twofold cyclic 

triple system of order 6n + 1 intersect in 0, 1, ... , n base blocks and a twofold cyclic 

triple system of order 6n + 3 intersect in 1, 2, ... , n + 1 base blocks. We also prove, 

with some possible exceptions, that there exists two [hooked] Skolem sequences of 

order n that have 0, 1, 2, ... , n- 3, n pairs in common. For small orders, 1 ~ n ~ 

9, we provide examples of [hooked] Skolem sequences of order n which intersect in 

0, ... , n- 3, n pairs in Appendix A. Two Skolem sequences of order 5 can only have 

0, 1, 5 pairs in common. Then we assume inductively that there exists two [hooked] 

Skolem sequences of small orders which can have 0, ... , n- 3, n pairs in common and 

we prove that this is true also for larger orders. To prove this, we construct new 

[hooked] Skolem sequences of order n by adjoining a [hooked] Skolem sequence of a 

smaller order with a [hooked] Langford sequence. 

For this to be possible, the length of the [hooked] Langford sequence must be 

at least twice as big as the [hooked] Skolem sequence, so we split this problem into 

three parts. First, we determine, with few possible exceptions, the intersection of two 

distinct [hooked] Skolem sequences of order n in [0, l~J] pairs by adjoining the same 

[hooked] Skolem sequence with two disjoint Langford sequences. This proves to be 

complicated and as a result we have to work with many cases. Second, we prove, 

with few possible exceptions that two distinct [hooked] Skolem sequences can have 

( l ~ J, 2l ~ J) pairs in common. To prove this we develop new techniques. We construct 
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a [hooked] Skolem sequence of order n from three different parts. Part A contain the 

largest odd and even numbers and determine a shell, Part B is a [hooked] Skolem 

sequence of small order, or a 2-near Skolem sequence or an extended Skolem sequence 

and fills the hole in Part A and, finally, Part C is a Langford sequence. Again we have 

to work with many cases to solve this problem. Third, we prove that two [hooked] 

Skolem sequences of order n can have [2l ~ J, n] pairs in common by adjoining the same 

[hooked] Langford sequence with two disjoint [hooked] Skolem sequences. This proved 

to be the easiest case. We give a detailed list of all open cases (possible exceptions) 

in Appendix C. 

Finally, using the intersection spectrum of two [hooked] Skolem sequences of order 

n, we give the fine structure of a threefold cyclic triple system of order 6n + 1. 



Chapter 2 

Basic introduction to triple 

systems and their intersection 

spectrum 

This chapter is intended to be a brief survey of some well known results about triple 

systems, disjoint triple systems, intersection properties of triple systems and disjoint 

triple systems with .X ;::: 1. For more details, readers may consult Triple systems, by 

Colbourn and Rosa [15]. 

Definition A triple system of order v and index .X, denoted TS(v, .X), is a set V of 

v elements, together with a collection B of 3-element subsets of V called triples such 

that each 2-subset of Vis a subset in precisely .X triples of B. This definition permits 

B to contain repeated triples. An TS(v, .X) is also known as a .A-fold triple system. If 

.X is not specified, then .X = 1 and the triple systems are Steiner triple systems. 

Definition A set of blocks is a parallel class if no two blocks in the set share an 

element and it contains ~ blocks. A Steiner triple system ST S ( v) is resolvable if it 

has a partition of all blocks into parallel classes . 

Kirkman [24] proved in 1847 that a necessary and sufficient condition for the 

5 
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existence of a Steiner triple system of order v is v _ 1 or 3(mod 6). Therefore, in 

saying that a certain property concerning STS(v) is true for all v, it is understood 

that v = 1 or 3 (mod 6). 

Definition Two Steiner triple systems (V, BI) and (V, B2) are said to intersect in 

k triples if IB1 n B2l = k. If k = 0 then (V, B1) and (V, B2) are said to be disjoint 

(i.e. they have no blocks in common), and if IB1 nB21 = 1, they are said to be almost 

disjoint. 

Notation We use the notation Int(v)={k: exists two STS(v) intersecting in k 

triples}. 

2.1 Disjoint Steiner triple systems 

Definition Two set systems (V1, B1) and (\12, B2) are isomorphic if there is a bijection 

(isomorphism) ¢from Vi to V2 so that the number of times B1 appears as a block in 

B2 is the same as the number of times ¢(B1) = { ¢(x) : x E B1} appear as a block in 

B1. An automorphism from a set system to itself is an automorphism. 

We use the notation d(2, 3, v) for the maximum number of pairwise disjoint STS(v) 

and d*(2, 3, v) for the maximum number of pairwise disjoint and isomorphic STS(v). 

Since each STS(v) has v(v;l) blocks, and there are altogether v(v-l~(v-2) triples, 

we have v(v-l)(v-2) 
d(2, 3, V) ::; -v--,-(v-"'-~--::-1 ),..-- = V - 2 

6 

Definition A set of v- 2 ST S( v )s, i.e. { (V, Bi) : i = 1, ... , v- 2} is a large set 

if every two systems in the set are disjoint. 

The earliest results on disjoint STS(v) are due to Cayley [10] who showed in 1850 

that d(2, 3, 7) = 2. 
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Example: The following systems are disjoint: 

{abc, ade, afg, bdf, beg, cdg, cef}. 

{abd,acg,aef,bce,bfg,dcf,deg}. 

Kirkman [25] in the same year showed that d(2, 3, 9) = 7. However, Bays [5] 

was the first to show that there are exactly two non-isomorphic sets of seven disjoint 

STS(9). One of these sets is given by the 7 square arrays 

124 128 125 129 123 126 127 

378 943 983 743 469 357 346 

956 765 476 586 785 489 598 

while the other one is given by the other 7 square arrays 

139 192 127 174 148 186 163 

275 745 485 865 635 395 925 

486 863 639 392 927 274 748. 

Each of this square array gives a STS(v). The 12 triples of each system are the 

three rows, three columns and the six products in the expansion of the determinant 

of each array. 

For example, one STS(9) is given by the triples from the first square array: 

{124,378,956,139,275,486,176,354,928,479,236,158}. 

Doyen [19] was first to offer nontrivial lower bounds for d(2, 3, v). He showed that 

( ) { 
4m + 1 if m- 0, 2 (mod 3), 

d* 2, 3, 6m + 3 ;:::: 
4m - 1 if m = 1 (mod 3). 

This result was subsequently improved by Beenker, Gerards and Penning [7] to 

d*(2, 3, 6m + 3) ;:::: 4m + 2. 

Doyen has also shown that 

{ 

lm 

d* ( 2, 3, 6m + 1) ;:::: : 
if m = 0 (mod 2), 

if m _ 1 (mod 2); 
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and that 

d(2, 3, 2v + 1) 2: d(2, 3, v) + 2 for v 2: 7 

which has as its corollary the following result: 

d(2, 3, 6m + 1) 2: 2m- 1 form= 1(mod 2). 

This was also improved by Bays [5] to 

d(2, 3, 6m + 1) 2: 3m+ 1 form_ 1(mod 2). 

In 1917, Bays[5] conjectured that 

v-1 
d(2, 3, v) 2: -

2
- for all v > 7. 

This now has been shown true for all v except v- 1 (mod 12). It was also conjectured 

by Doyen [19] and Teirlinck [49] that 

d(2, 3, v) = v - 2, v 2: 9. 

Teirlinck [49] also proved the inequality 

d(2, 3, 3v) 2: 2v + d(2, 3, v) for every v 2: 3. 

by providing a recursive construction whose immediate corollary is that 

d(2, 3, 3m) =3m-2 for all m 2: 1. 

An exhaustive computer search showed that there are exactly two non-isomorphic 

sets of 11 disjoint STS(13) that can be obtained in this way [18, 28]. 

Schreiber [44] and Wilson [54] have independently showed how to construct an 

STS(v) with the property that the 3-subsets of V = Zv_ 2 U { oo1 , oo2 } are partitioned 

into orbits under the action of < j3 = (0, 1, ... , v- 3)(oo1)(oo2 ) >, where j3 is a 

permutation of V, provided all prime divisors p of v - 2 are such that the order of 

-2(mod )p is congruent to 2(mod )4. The first few orders for which this method 
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works are: v = 9, 25, 33, 49, 51, 73, 75, 81, 91, 105, 129, 153, 163, 169, 193,201 and for 

all these values of v, we have d*(2, 3, v) = v- 2. 

Rosa [38) showed that 

d(2, 3, 2v + 1) ;::: v + 1 + d(2, 3, v), for v;::: 7. 

This enables us to construct large sets of disjoint STS(2v + 1) whenever there is a 

large set of disjoint STS(v). 

A further result on d(2, 3, v) is due to Teirlinck [53): If vis the product of primes 

p for which the order of -2(mod p) is congruent to 2(mod 4) and if d(2, 3, w) = w- 2, 

then 

d(2, 3, v(w- 2) + 2) = v(w- 2). 

In 1983-1984, Lu [33, 34] first determined the existence of large set of disjoint 

Steiner triple systems for all v =/=- 7 with six possible exceptions. Teirlinck [52) solved 

the existence of the large set of disjoint Steiner triple systems for the remaining six 

orders. Therefore the existence spectrum for large set of disjoint Steiner triple systems 

has been finally completed. 

Theorem 1 (Lu{33, 34}, Teirlinck {52}}. 

For any integer v 1 or 3(mod 6) with v > 7, d(2, 3, v) = v- 2. 

Teirlinck also proved that every two Steiner triple systems can be made disjoint: 

Theorem 2 (Teirlinck {51}}. 

If (V, B1) and (V, B2 ) are Steiner triple systems, v ;::: 7, there exists a Steiner triple 

system (V, B3 ) so that B 1 n B 3 = 0 and (V, B2) "" (V, B3 ). 

2.2 Intersection of Steiner triple systems 

In [31), the sets Int(v) are completely determined. Lindner and Rosa examine the 

30 distinct STS(7) on the same set and found that, for any fixed STS(7), there are 
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exactly eight 8T8(7) that are disjoint from it, exactly 14 that are almost disjoint, and 

exactly seven that intersect it in three triples. Hence Int(7) = {0, 1, 3, 7}. Kramer and 

Mesner [27] showed that Int(9) = {0, 1, 2, 3, 4, 6, 12}. They show that for any given 

8T 8(9), there are 192 other 8T 8(9) disjoint from it, 216 that are almost disjoint, 

216 that intersect in two triples, 152 that intersect it in three, 27 that intersect it in 

four, and 36 that intersect it in six. 

Definition A partial triple system PT8(v, >.) is a set V of v elements and a 

collection B of triples, so that each unordered pair of elements occurs in at most A. 

triples of B. 

Definition Two partial triple systems (V, D1) and (V, D2) are mutually balanced 

if any 2-subset of V is contained in a triple of D1 if and only if it is contained in a 

triple of D2 . Two partial triple systems are disjoint if they have no blocks in common. 

For example, there exist two PTSs with four triples on the set {1, 2, 3, 4, 5, 6} that 

are disjoint and mutually balanced: 

D1 = {134, 156,235, 246} D 2 = {135, 146,234, 256}. 

Lindner and Rosa found the following important results: 

Lemma 1 (Lindner, Rosa {31]) 

There does not exist a pair of disjoint mutually balanced PT8's each having one, two, 

three, or five triples. 

As a consequence, they define bv to be the number of triples in any Steiner triple 

system (i.e., bv = v(v;l)) and Iv to be the set that contains all nonnegative integers 

not exceeding bv with the exception of {bv- 5, bv- 3, bv- 2 and bv- 1}, i.e. Iv = 

{0, 1, ... , v}- {bv- 1, bv- 2, bv- 3, bv- 5} and obtain: 

Lemma 2 (Lindner, Rosa {31]) 

For all v _ 1, 3 (mod 6), Int(v) ~ Iv. 

The main tools in the proof of Theorem 3 are the 2v + 1 and 2v + 7 constructions 

given in Lemma 3 and Lemma 4. 



Lemma 3 (Lindner, Rosa {31}) 

For v 2 13, Int(v) = Iv implies Int(2v + 1) = I 2v+l· 

Lemma 4 (Lindner, Rosa {31}) 

For v 2 15, Int(v) = Iv implies Int(2v + 7) = I 2v+7· 

Theorem 3 (Lindner, Rosa {31}) 

For every v 2 13, Int(v) = Iv. 

11 

Proof: For v E {13, 15, 19, 21, 25, 33}, Lindner and Rosa [30) proved the statement 

directly. They employed the proofs of Lemmas 3 and 4, and provided proofs of ST S( v) 

for certain cases. When v E {27, 34}, Lemmas 3 and 4 apply. So suppose that v 2 37. 

Assume inductively that Int(w) = Iw for all admissible w satisfying 15 ~ w ~ v. If 

v = 3, 7 (mod 12), then (v- 1)/2 _ 1, 3(mod 6) and 15 ~ (v- 1)/2 < v; hence 

by Lemma 3, Int(v) = Iv. If v _ 1, 9(mod 12), then (v- 7)/2 = 1, 3(mod 6) and 

15 ~ (v- 7)/2 < v; hence by Lemma 4, Int(v) = Iv. 0 

The pairs of Steiner triple systems in the previous theorem may or may not be iso­

morphic. Lindner and Rosa [30) posed the problem of determining the set Int*(v)={k: 

exists isomorphic Steiner triple systems of order v intersecting in k triples}, but stated 

incorrectly that I nt* ( v) =/- I nt( v) when v 2 13. 

Koszarek proved that: 

Theorem 4 (Koszarek [23}) 

For all v 1, 3(mod6), Int*(v) = Int(v). 

Rosa [38) also posed the problem of determining IntR(v)={l: exist two resolvable 

STS(v)s sharing l triples}. He showed that IntR(9) = {0, 1, 2, 3, 4, 6, 12}. Lo Faro 

[32), Shen [42), and Chang and LoFaro [11) established that h 5 \ {26, 29} ~ IntR(15). 

LoFaro [32) and Chang and LoFaro [11) established that I 27 \{54, 61, 62} ~ IntR(27). 

Theorem 5 (Chang, La Faro {11}) 

For all n 2 7, IntR(6n + 3) = hn+3· 
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v E lntR(v)? 
15 bl5 - 9' bl5 - 6 
21 b21 - 16, b21 - 9, b21 - 8 
27 b27 - 7' b27 - 4 
33 b33 - 13, b33 - 7, b33 - 4 
39 b39 - 13, b39 - 7, b39 - 4 

Table 2.1: Exceptions in resolvable ST S( v) 

Chang and Lo Faro [11] also established b27 - 13 can be realized by two resolvable 

STS(27)s, and leaves 13 possible exceptions as shown in Table 2.1. 

There is an extension of the problem to cases with higher index. 

Define bv,>. to be the number of base blocks in a TS(v, .A), i.e. bv,>.=.AG)/3 and define 

fv,>. = {0, 1, ... , V}- {bv,>.- 1, bv,>.- 2, bv,>.- 3, bv,>.- 5}. 

The sets Int(v, .X) have been completely determined by Ajoodani-Namini and 

Khosrovshani [2] and, for .A= 2, we have results due to Guo [20]. Colbourn and Rosa 

showed the following results: 

Lemma 5 (Colbourn, Rosa {15}) 

For .A= 2, 

1. Int(4,2) = {4} 

2. Int(6, 2) = {0, 4, 6, 10} 

3. Int(7, 2) = {2, 5, 8, 14} 

4. for v = 0, 1(mod 3), v 2:: 9, Int(v, 2) = Iv,2· 

Lemma 6 (Colbourn, Rosa {15}) 

For v = 5 (mod 6), Int(v, 3) = Iv,3· 

Lemma 7 (Colbourn, Rosa {15}) 

For .A= 6, 
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1. Int(8,6) ={56} 

2. Int(14,6) = {0,4,6, 7, ... , 175,176,178, 182} 

3. for all v- 2(mod 6), v > 14, Int(v, 6) = Iv,6 . 

Definition Given an TS(v, .A), the fine structure of a triple system of index .A is 

the vector (c1, ... , cA), where ci is the number of triples repeated precisely i times in 

the system. 

Colbourn, Mathon, Rosa and Shalaby [16] focused on .A = 3 and determined 

necessary conditions for a vector (c1, c2, c3) to be the fine structure of a threefold triple 

system, and proved the sufficiency of these conditions for all v- 1, 3(mod 6), v 2:: 19. 

They used the following notations for the fine structure: ( t, s) is the fine structure 

of a TS(v, 3) if c2 = t and c3 = ~v(v- 1)- s, (hence c1 = 3s- 2t). So, (t, s) ~ 

(3s- 2t, t, ~v(v- 1)- s). 

They defined Adm(v) = {(t, s) : 0::; t::; s ::; ~v(v- 1), s ¢. {1, 2, 3, 5}, (t, s) ¢. 

{ (1, 4), (2, 4), (3, 4), (1, 6), (2, 6), (3, 6), (5, 6), (2, 7), (5, 7), (1, 8), (3, 8), (5, 8)} }. 

Theorem 6 (Colboum, Mathon, Rosa, Shalaby {16}} 

For v = 1,3(mod 6),v 2:: 19, (t,s) is the fine structure of a TS(v,3) if and only if 

(t, s) E Adm(v). 

They used the notation Fine(v) for the set of fine structures which arise in TS(v, 3) 

systems. 

The above theorem asserts that for v 2:: 19, v _ 1, 3(mod 6), Fine(v) = Adm(v). 

They also describe the determination of the fine structure for small values of v. 

Colbourn, Mathon, Shalaby [17] proved that the necessary conditions are suffi-

cient for (c1 , c2 , c3 ) to be the fine structure of a threefold triple system with v = 
5(mod 6), v 2:: 17. 

Theorem 7 (Colboum, Mathon, Shalaby {17}} 

For v = 5(mod 6), v 2:: 17, Fine(v) = Adm(v). 
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2.3 Disjoint triple systems with ,\ > 1 

It is known that a necessary condition for the existence of aT S ( v, A) is A 0 (mod A ( v)) 

where 
A(v) = 1 if v = 1 or 3(mod 6), 

A(v) = 2 if v- 0 or 4(mod 6), 

A(v) = 3 if v = 5(mod 6), 

A(v) = 6 if v- 2(mod 6). 

It is also known that if one does not require all elements of B to be distinct as subsets 

then these conditions are also sufficient. 

We denote d;..(v) to be the maximum number of pairwise disjoint TS(v, A)s. 

In [39], Rosa showed that d;..(v) ::; (v~ 2). Teirlinck [49] conjectured that d>.(v)(v) = 

~~),for all v =J 7. Schreiber [43] proved d2(v) = Hv- 2), for v = 0 or 4 (mod 12). 

Teirlinck [49] proved 

1 
d2 (v) = 2(v- 2), for all v = 0 or 4 (mod6), v > 0 

and 
1 

d6 (v) = 6(v- 2) for all v- 2(mod 6), 

and so, for v even, d>.(v) ( v) is completely determined. 

For A(v) = 3 we have two partial results. Kramer [26] showed d3(v) = !(v- 2) 

whenever vis a prime power and v 5(mod 6), and Teirlinck [53] show that if v is a 

product of primes p for which the order of -2(mod p) is congruent to 2(mod 4), then 

d3(3v + 2) = v. 



Chapter 3 

Cyclic triple systems: Basic tools 

and definitions 

In this chapter we discuss cyclic Steiner triple systems and cyclic triple systems. We 

start with basic definitions and results taken from the literature which will be used 

in this chapter. Then in Section 3.1, we give a short history of how the investigation 

of disjoint cyclic Steiner triple systems started. For small orders we provide the 

maximum number of disjoint Steiner triple systems and some easy bounds proved 

by Colbourn [12], and also some other bounds proved by Baker and Shalaby [4]. In 

Section 3.2, we discuss generalizations of triple systems such as Mendelsohn triple 

systems. The most important results here are given by C. Colbourn, M. Coulbourn 

[14] and Baker, Shalaby [4]. 

Definition An ST S ( v) is cyclic if it has an automorphism consisting of a single 

cycle of length v, i.e. the automorphism when written in cyclic notation, consists of 

a single cycle of length v. 

Notation: We use the notation CSTS(v) for the cyclic Steiner triple systems of 

order v, and CTS(v, >.) for the cyclic triple systems of order v and index .X. 

15 
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Definition: The fine structure of a CTS(v, .\)is the vector (c1 , c2 , ... , c>.)c, where 

ci is the number of base blocks repeated exactly i times in the cyclic triple system. 

[Hooked] Skolem sequences, [hooked] Rosa sequences, Langford sequences, k­

extended Skolem sequences and 2-near Skolem sequences are important in the study 

of cyclic Steiner triple systems. We use these sequences in Chapter 4 to construct 

new [hooked] Skolem sequences of order n. 

Definition A Skolem sequence of order n is a sequence Sn = (s1, s2 , ... , s2n) of 

2n integers satisfying the conditions: 

1. for every k E {1, 2, ... , n} there are exactly two elements si, Sj E S such that 

Si = Sj = k, and 

2. if si = Sj = k, i < j, then j - i = k. 

Skolem sequences are also written as a collection of ordered pairs 

{ (ai, bi) : 1 ::; i ::; n, bi- ai = i} with ur=l { ai, bi} = {1, 2, ... '2n }. 

For example, a Skolem sequence of order 4 is: S4 = (1, 1, 4, 2, 3, 2, 4, 3) or, equiva­

lently, the collection {(1, 2), (4, 6), (5, 8), (3, 7)} (these are the indices where symbols 

1, 2, 3, 4 appear). 

Definition A hooked Skolem sequence of order n is a sequence 

hSn = (s1 , s2, ... , s2n+l) of 2n + 1 integers satisfying conditions (1), (2) and (3): 

S2n = 0. 

For example, a hooked Skolem sequence of order 3 is: hS3 = (3, 1, 1, 3, 2, 0, 2). 

Theorem 8 (Skolem [47}) 

A Skolem sequence of order n exists if and only if n 0, 1(mod 4). 

Theorem 9 (O'Keefe {36}) 

A hooked Skolem sequence of order n exists if and only if n 2, 3(mod 4). 

In 1957, Skolem [47], when studying Steiner triple systems, considered the possi­

bility of distributing the numbers 1, 2, ... , 2n inn pairs (ai, bi) such that bi - ai = i, 
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for i = 1, 2, ... , n. If { ( ai, bi) 11 ::; i ::; n} is a Skolem sequence, the differences that we 

get from the base blocks {0, i, bi +n} are { i- 0, bi +n-O, bi +n-i}={ i, bi +n, ai +n }. 

Thus, when we look at the set of differences we get for all base blocks, we see that 

{ i, bi + n, ai + n} gets us 1, 2, ... , n and n plus all the ai and bi which gives us 

{ n + 1, n + 2, ... , 3n} differences. Developing the base blocks mod 6n + 1 gets us 

a C8T8(6n + 1). For example, for n = 4 the following Skolem sequence 84 = 
(1,1,3,4,2,3,2,4) gives the pairs: (1,2), (5,7), (3,6), (4,8). This partition gives 

rise to the base blocks {0, 1, 6}, {0, 2, 11}, {0, 3, 10}, {0, 4, 12}(mad 25) or to the base 

blocks: 

{0, 5, 6}, {0, 9, 11}, {0, 7, 10}, {0, 6, 12}(mad 25). 

Definition: Two [hooked] Skolem sequences 8 and 8' of order n are disjoint if 

8i = s1 = k = 8~ = 8~ implies that { i, j} =/= { t, u }, for all k = 1, ... , n, i.e. for 

any symbol, the two locations for that symbol are different as a pair then the two 

locations for that symbol in the other sequence. 

Definition: Given a Skolem sequence, 8 - (81 , ... , s2n) the reverse 

S= (82n, ... , s1) is also a Skolem sequence. If 8 and 8' are disjoint, then 8 is reverse­

disjoint. 

For example, the following two disjoint Skolem sequences of order 4 are reverse­

disjoint: 84 = (1, 1, 4, 2, 3, 2, 4, 3) and 84 = (2, 3, 2, 4, 3, 1, 1, 4). Both are reverse­

disjoint. Each reverse-disjoint Skolem sequence of order 4 gives four disjoint cyclic 

8T8(25). The first one, for example, gives the following 4 disjoint cyclic 8T8(25): 

1. {0, 1, 6}, {0, 2, 10}, {0, 3, 12}, {0, 4, 11}(mod 25) 

2. {0, 5, 6}, {0, 8, 10}, {0, 9, 12}, {0, 7, 11}(mod (25) 

3. {0, 1, 12}, {0, 2, 9}, {0, 3, 8}, {0, 4, 10}(mod 25) 

4. {0, 11, 12}, {0, 7, 9}, {0, 5, 8}, {0, 6, 10}(mod 25). 

Two disjoint hooked Skolem sequences of order 7 are: 

h87 = (5, 7, 1, 1, 6, 5, 3, 4, 7, 3, 6, 4, 2, 0, 2) and 

h87 = (6, 1, 1, 5, 7, 2, 6, 2, 5, 3, 4, 7, 3, 0, 4). 
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In 1966, Rosa [39] introduced two types of sequences: one of them is an extended 

Skolem sequence with a hook in the middle, sn+l = 0, known as a split Skolem 

sequence or a Rosa sequence and the other is a sequence with two hooks in the 

positions n + 1 and 2n + 1 called hooked Rosa sequence. 

Theorem 10 (Rosa {39}} 

1. A Rosa sequence of order n (Rn) exists if and only ifn = 0,3(mod 4). 

2. A hooked Rosa sequence of order n (hRn} exists if and only if n = 1, 2(mod 4). 

Rosa and hooked Rosa sequences gives rise to cyclic Steiner triple systems of order 

6n+3. 

For a cyclic STS(27), where we have a base block {0, 9, 18} we need other blocks 

to cover distances 1 to 13 except 9. A Rosa sequence of order 4 with a hook in position 

5 work, since this implies a set { ai, bi} li = 1, ... , n} which gives us every number in 

1, ... , 2n + 1 except n + 1, i.e. every number in 1, ... , 9 except 5. So, the base blocks 

{0, i, bi + n} give differences { i, bi + n, ai + n }. As i varies from 1 to 4 this will give 

every number inn+ 1, ... , 3n+ 1 except 2n+ 1, i.e. every number in 5, ... , 13 except 9. 

So, along with the short orbit will get every distance in {1, 2, ... , 3n+ 1}. Developing 

these blocks mod 6n + 3, i.e. 27 we get STS(2(3 x 4) + 3)=STS(27). So, in general 

a Rosa sequence of order n gives a CSTS(6n + 3). For example, the Rosa sequence 

of order 4: R4 = (1, 1, 3, 4, 0, 3, 2, 4, 2) gives rise to the pairs (ai, bi), i = 1, 2, 3, 4; 

i.e. {(1,2),(7,9),(3,6),(4,8)}. These pairs gives the base blocks {O,i,bi + 4} or 

{0, ai + 4, bi + 4) }, i = 1, 2, 3, 4, i.e. {0, 1, 6}, {0, 2, 13}, {0, 3, 10}, 

{0, 4, 12}(mod 27) or {0, 5, 6}, {0, 11, 13}, {0, 7, 10}, {0, 8, 12}(mod 27). With the 

addition of the base block {0, 9, 18}(mod 27), we get the blocks of two cyclic STS(27) 

with one base block in common. 

Definition: A k-extended Skolem sequence of order n is an integer sequence 

k- ext Sn = (s1, s2, ... , s2n+l) in which sk = 0 and for each j E {1, 2, ... n }, there exists 

a unique i E {1, 2, ... , n} such that si = si+j = j. 

Such sequence exists if and only if either 1) k is odd and n- 0 or 1 (mod 4) or 2) 
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k is even and n _ 2 or 3 (mod 4). 

For example, 3- ext S5 = (5, 3, 0, 4, 3, 5, 2, 4, 2, 1, 1) is a 3-extended Skolem se­

quence of order 5. 

Definition: A Langford sequence of order n and defect d, n > d (also called 

perfect sequence) is a sequence LT = (h, l2 , ... , l2n) of 2n integers satisfying the 

conditions: 

1. for every k E { d, d + 1, ... , d + n -1 }, there exist exactly two elements li, l1 E L 

such that li = l1 = k, i.e. symbol set for LT is n consecutive integers starting 

at d, each used twice, and 

2. if li = z1 = k with i < j, then j- i = k, i.e. between the two locations of symbol 

k, there are k- 1 other symbols. 

For example, a Langford sequence of order 5 and defect 3 is 

L3 = (7, 5, 3, 6, 4, 3, 5, 7, 4, 6). 

Definition: A hooked Langford sequence of order n and defect d is a sequence 

hLT = (h, l2 , ... , l2n+l) of 2n + 1 integers satisfying conditions (1) and (2) of the 

definition above and (3): l2n = 0. 

For example, a hooked Langford sequence of order 5 and defect 2 is 

(6,4,2,5,2,4,6,3,5,0,3). 

Definition Let m, n be positive integers, m ~ n. A near-Skolem sequence of 

order n and defect m is a sequence m - near Sn = (s1 , s2 , ... , s2n_2 ) of integers 

si E {1, 2, ... , m- 1, m + 1, ... , n} which satisfies the following conditions: 

(1) for every k E {1, 2, ... , m - 1, m + 1, ... , n }, there are exactly two elements 

si, s1 E S such that si = s1 = k, and 

(2) if si = s1 = k then j - i = k. 

Example: 3- near S5 = (4, 5, 1, 1, 4, 2, 5, 2) is a 3-near Skolem sequence of order 

5. 
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Definition A hooked near-Skolem sequence of order n and defect m is a sequence 

m - near hSn = (s1, s2, ... , s2n-1) of integers si E {1, 2, ... , m - 1, m + 1, ... , n} 

satisfying conditions (1), (2) and the condition (3): s2n_2 = 0. 

Example: 5 - near hS5 = (2, 3, 2, 6, 3, 7, 4, 1, 1, 6, 4, 0, 7) is a hooked 5-near 

Skolem sequence of order 7. 

We refer to near-Skolem sequences and hooked near-Skolem sequences of order 

n and defect mas m-near Skolem sequences and hooked m-near Skolem sequences, 

respectively. 

Theorem 11 (Shalaby {41}} 

An m-near Skolem sequence of order n exists if and only if n _ 0, 1(mod 4) and m is 

odd, or n _ 2, 3(mod 4) and m is even. 

Theorem 12 (Shalaby {41}) 

A hooked m-near Skolem sequence of order n exists if and only if n - 0, 1 (mod 4) and 

m is even, or n 2, 3(mod 4) and m is odd. 

Some important results are given in the following theorem: 

Theorem 13 (Bermond, Brouwer, Germa {8}, Linek, Mor {29}, Simpson [45}) Nec­

essary and sufficient conditions for a Langford sequence to be perfect are: 

1. n ~ 2d - 1, and 

2. n _ 0, 1(mod 4) ford odd, n- 2, 3(mod 4) ford even. 

Theorem 14 (Bermond, Brouwer, Germa {8}, Linek, Mor {29}, Simpson {45}) Nec­

essary and sufficient conditions for the sequence ( d, d + 1, ... , d + n - 1) to be hooked 

are 

1. n(n+1-2d)+2~2, and 

2. n = 2, 3(mod 4) ford odd, n = 0, 1(mod 4) ford even. 
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These results are important because we use these [hooked] Langford sequences to 

construct new [hooked] Skolem sequences of order n. 

We use Skolem sequences and hooked Skolem sequences to construct CST S ( v), 

v = 1, 3(mod 6). To construct Skolem sequences and hooked Skolem sequences of 

larger order we adjoin one Skolem sequence of small order with a Langford sequence. 

For example, the hooked Skolem sequence of order 3: hS3 = (3, 1, 1, 3, 2, 0, 2) and the 

Langford sequence of order 7 and defect 4: L~ = (10, 8, 6, 4, 9, 7, 5, 4, 6, 8, 10, 5, 7, 9) 

gives rise to the hooked Skolem sequence of order 10: 

hS10 = (10, 8, 6, 4, 9, 7, 5, 4, 6, 8, 10, 5, 7, 9, 3, 1, 1, 3, 2, 0, 2). 

From these sequence we can take the pairs: { (16, 17), (19, 21), (15, 18), ( 4, 8), (7, 12), 

(3, 9), (6, 13), (2, 10), (5, 14), (1, 11)}. These pairs gives rise to the base blocks for a 

cyclic STS(61): {0, 1, 27}, {0, 2, 31 }, {0, 3, 28}, {0, 4, 18}, {0, 5, 22}, {0, 6, 19}, {0, 7, 23}, 

{0, 8, 20}, {0, 9, 24}, {0, 10, 21}(mod 61). 

Now, if we take the same Langford sequence of order 7 and defect 4: 

L~ = (10, 8, 6, 4, 9, 7, 5, 4, 6, 8, 10, 5, 7, 9) with a different Skolem sequence of order 

3: hS3 = (1, 1, 2, 3, 2, 0, 3), we get another Skolem sequence of order 10: hS10 = 
(10, 8, 6, 4, 9, 7, 5, 4, 6, 8, 10, 5, 7, 9, 1, 1, 2, 3, 2, 0, 3) which has the first 7 pairs in com­

mon with the previous sequence. 

For n = 12 we can take a hooked Skolem sequence of order 3 and a reversed 

hooked Langford sequence of order 9 and defect 4 and concatenate them such that 

the hooks match. 

For example taking the hooked Skolem sequence of order 3: hS3 = (1, 1, 2, 3, 2, 0, 3) 

and the reversed hooked Langford sequence of order 9 and defect 4: 

hL~ = (12, 10, 8, 6, 4, 11, 9, 7, 4, 6, 8, 10, 12, 5, 7, 9, 11, 0, 5), we get the following Skolem 

sequence of order n = 12: 

512 = (1,1,2,3,2,5,3,11,9,7,5,12,10,8,6,4, 7,9,11,4,6,8,10,12). 

This is illustrated below: 
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(-------*-) ' ' ' ' ' ' ' ' 
(hooked Skolem) 

( -. * ,-,-,-,-,-,-,-,-) (reversed hooked Langford) 

( -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-) (Skolem not hooked) 

Now if we take the same Langford sequence of order 9 and defect 4 and a dis­

joint hooked Skolem sequence of order 3, for example: hS3 = (3, 1, 1, 3, 2, 0, 2) and 

concatenate them together in the same way we get another Skolem sequence of order 

12: sl2 = (3,1,1,3,2,5,2,11,9, 7,5,12,10,8,6,4, 7,9,11,4,6,8,10, 12) which have 9 

pairs in common with the previous sequence. (Therefore two cyclic Steiner triple 

system with v = 73 have 9 base blocks in common.) 

3.1 Disjoint cyclic Steiner triple systems 

We denote by dc(2, 3, v) the maximum number of disjoint cyclic Steiner triple sys­

tems, d~(2, 3, v) the maximum number of disjoint cyclic and isomorphic Steiner triple 

systems and dcc(2, 3, v) the size of the largest set of disjoint cyclic STS(v)s, where 

each have the same cyclic automorphism. 

Now we give a short introduction on what is done about CSTS(v). 

Heffter [21] observed that his constructions of the first and second difference prob­

lems, like Netto's constructions [35] gives cyclic Steiner triple systems. Skolem [46] 

developed simple techniques to construct cyclic Steiner triple systems, Bays [6] de­

velop an extensive theory of multiplier automorphism of cyclic triple systems and 

Bose [9] established a new method for the direct constructions of cyclic Steiner triple 

systems and, for the first time, the existence problem for A = 2 was systematically 

studied. Heffter [22] settled all orders less than 100 using solutions to his difference 

problems. Later, Peltesohn [37] solved completely Heffter's difference problems. Prior 

to this, Bays [6] undertook the enumeration of non-isomorphic cyclic Steiner triple 

systems. This research was continued by Colbourn [13]. Many other researchers stud­

ied restricted versions of Heffter's difference problems. Aleksejev [1] shows that the 

number of distinct cyclic Steiner triple systems tends to infinity as the order increases. 
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In 1966, Rosa [39] posed the problem of determining the size of the largest set of dis-' 

joint CSTS(v). Colbourn [12] introduce some computational tools for determining 

the maximum number of disjoint CST S( v) for small orders using the solutions to 

Heffter's difference problems. He gave a catalogue of solutions to Heffter's difference 

problems using a method of finding perfect matchings in hyper graphs. 

These catalogues provide exhaustive lists of distinct CST S ( v). These lists are 

valuable in suggesting and verifying conjectures and are especially useful in deter­

mining how many disjoint CSTS(v) exist. 

We recall here the correspondence of cyclic Steiner triple systems with a Heffter's 

difference problem (HDP) [21]: suppose that {1, 2, ... , 3n} can be partitioned into n 

triples {a, b, c} such that a+ b = c(mod 6n + 1) or a+ b + c _ 0 (mod 6n + 1). Any 

CSTS(6n + 1) yields a solution to H DP(6k + 1), and any solution to H DP(6n + 1) 

yields a cyclic ST S ( 6n + 1); in fact, it yields 2k distinct CST S ( 6n + 1), since for each 

triple {a, b, c} in the solution to H D P we can select either of the inequivalent starter 

blocks {O,a,a+b} or {O,b,a+b}. 

This transformation between CST S( v) and solutions to H D P( v) will be a fun­

damental tool in the determination of dcc(2, 3, v). 

The maximum number of disjoint CSTS for small orders found by Colbourn [12] 

are: 

dcc(2, 3, 7) = 2; dcc(2, 3, 13) = 2; dcc(2, 3, 19) = 8; 

dcc(2, 3, 25) = 15; 21 :::; dcc(2, 3, 31) :::; 26; 

dcc(2, 3, 37) = 32. 

Lemma 8 (Colbourn {12)) 

For v 2: 1, 

{ 

0, v ¢. 1, 3(mod 6) 

dcc(2, 3, v) = 0, v=9 

1, v - 3 (mod 6), v -1- 9 

Proof: A CSTS(v) must exist whenever dcc(2, 3, v) 2: 1. Since every CSTS(6k + 3) 

contains the same short starter block, i.e. (0, ~' 2 x ~),the last case is proved. 0 



We consider the case v = 1 (mod 6). 

Colbourn established the following bounds: 

Lemma 9 (Colbourn {12}} 

For v = 1(mod 6), dcc(2, 3, v):::; v- 5. 
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Proof: A triple in a CSTS(6k + 1) has the property that, for any two pairs of its 

elements, their differences are different. Thus, of the G) subsets of a v-set, v(v -1)/2 

are different. The bound follows. 0 

Lemma 10 (Colbourn {12}} 

Form 2:: 1, dcc(2, 3, 6m + 1) 2:: 2. 

Proof: Select any solution { { a1 , b1 , c1}, ... , { akl bk, ck}} to H D P( 6k + 1). Construct 

one CST S ( 6k + 1) by selecting starter blocks of the form 

{ { 0, ai, ai + bi} I i 1, ... , k}, and construct the second by selecting 

{{0, bi, ai + bi}li = 1, ... , k }. These two CSTS(6k + 1) are disjoint as required. 

0 

In 1991, Shalaby and Baker [4] showed the existence of disjoint Skolem, disjoint 

hooked Skolem sequences and applied these concepts to the existence problems of 

disjoint cyclic Steiner and Mendelsohn triple systems. 

Lemma 11 (Baker, Shalaby (4]) 

The maximum number of mutually disjoint Skolem sequences of order n is at most n. 

Proof: Since each [hooked] Skolem sequence must have an n in two places, n positions 

apart, there are only n distinct ways to select the pair of positions to contain n. 0 

Theorem 15 (Baker, Shalaby [4}) 

For all n _ 0, 1(mod 4), n 2:: 4, there exist at least four mutually disjoint Skolem 

sequences of order n. 

Corollary 1 (Baker, Shalaby (4}) 

For all v 2:: 25, v- 1 or 7(mod 24), dcc(2, 3, v) 2:: 8. 
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Theorem 16 (Baker, Shalaby [4]) 

For all n = 2, 3(mod 4), n > 6 there are at least three mutually disjoint Skolem 

sequences of order n. 

Corollary 2 (Baker, Shalaby [4]) 

For all v 2:: 37, v = 13 or 19(mod 24), dcc(2, 3, v) 2:: 6. 

3.2 Disjoint cyclic Mendelsohn triple systems 

In recent years, combinatorial design researchers investigated many generalizations 

of triple systems. Such generalizations include twofold triple systems, directed triple 

systems, and Mendelsohn triple systems. 

Definition A twofold triple system is a pair (V, B); V is a v-set, and B is a 

collection of 3-subsets of V, with the property that every 2-subset of elements of V 

appears in precisely two triples. 

Definition A directed triple system is a pair (V, B); V is a v-set and B is a 

collection of edge-disjoint transitive tournaments of order 3 with vertices from V, 

having the property that every ordered pair of elements of V appears in precisely one 

of the tournaments. 

Definition A Mendelsohn triple system MTS(v) differs from directed triple sys­

tems only in that B contains directed cycles of length 3. 

These three types of triples are related; if we omit the directions in a Mendelsohn 

or directed triple system, we obtain a twofold triple system. 

We use the notation mc(v) for the maximum number of disjoint cyclic Mendelsohn 

triple systems of order v. 

We have the following result due to C. Colbourn and M. Colbourn: 

Theorem 17 (C. Colbourn, M. Colbourn [14]) 

A cyclic MTS(v) exists if and only ifv = 1, 3(mod 6), v #9. 
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They also have some bounds on mc(v). For v =/= 1, 3(mod 6), v =J. 9, mc(v) = 0 by 

the previous theorem. For v _ 3(mod 6), v =J. 9, mc(v) = 1 since each such MTS 

contains the difference triple (v/3, v/3, v/3). m(v) :::; 2, since this is an upper bound 

on the number of disjoint MTS(v), and m(v) ~ dcc(2, 3, v) by using the conversion 

between ST S and MT S. 

As a consequence of the cyclic constraints, they were able to find a better upper 

bound. 

Lemma 12 (C. Colbourn, M. Colbourn {14}) 

For v = 1, 3(mod 6), mc(v) :::; v- 5. 

Proof: Each cyclic MTS(v) is presented as (v- 1)/3 difference triples. A difference 

triple of a MTS(v) contains three distinct differences. There are (v- 1)(v- 2)/3 

orbits of triples under the cyclic automorphism; v - 1 of these have differences triples 

with repeated differences. So, there are (v- 1)(v- 5) difference triples. Hence the 

bound follows. D 

In [14], there are described computational results for small orders of disjoint cyclic 

Mendelsohn triple systems. 

For example, mc(7) = 2, mc(13) = 8; 12 :::; mc(19) :::; 14; 17:::; mc(25) :::; 20. 

C. Colbourn and M. Colbourn [14] presented the solution in terms of starter blocks: 

given a difference triple (a, b, c), the corresponding starter block is (0, a, a+ b). For 

example, for order 7 there are two solutions: 

(0, 1, 2), (0, 3, 1) 

(0, 1, 5), (0, 3, 2) 

Also by Baker and Shalaby we have the following: 

Corollary 3 (Baker, Shalaby {4}) 

For all v ~ 25 and v = 1, 7(mod 24), mc(v) ~ 8. 

Corollary 4 {Baker, Shalaby {4}) 

For all v ~ 37 and v = 13, 19(mod 24), me ~ 6. 



Chapter 4 

The intersection spectrum of two 

distinct Skolem sequences and two 

distinct hooked Skolem sequences 

In this chapter we prove, with some possible exceptions, that there exists two [hooked] 

Skolem sequences of order n intersecting in 0, 1, 2, ... , n- 3, n pairs. In Appendix 

A, we provide all the intersections between two [hooked] Skolem sequences of order 

1 ~ n ~ 9. Then we assume inductively that, for small orders, there exists two 

distinct [hooked] Skolem sequences of order n intersecting in {0, 1, 2, ... , n - 3, n} 

pairs and we prove that this is true for larger orders, with few possible exceptions. 

In Appendix C we give a detailed list of all the possible exceptions. For this we first 

prove that it is not possible for two [hooked] Skolem sequences to have exactly n - 2 

and n - 1 pairs in common. We then split the problem of finding the intersection of 

two distinct [hooked] Skolem sequences of order n into three cases: first case for the 

pairs in the interval [0, L ~ J], second case for the pairs in the interval ( l ~ J, 2l ~ J) and, 

finally, the third case for the pairs in the interval [2l ~ J, n]. 

Lemma 13 It is not possible for two distinct [hooked] Skolem sequences of order n 

to intersect in exactly n - 1 pairs. 
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Proof: If we have n - 1 pairs in common then the last pair is also in common, so we 

haven pairs in common. D 

Lemma 14 It is not possible for two distinct {hooked} Skolem sequences of order n 

to intersect in exactly n - 2 pairs. 

Proof: Suppose that we have two Skolem sequences that intersect in exactly n -

2 pairs. Then we have two differences left, say a and b, and four positions, say 

a 1 , a2 , a3 , a4. Without loss of generality we assume that a1 < a2 < a3 < a4. 

Case I: In the first sequence consider a in positions a 1 , a2 and bin positions a3 , a4 

In the second sequence, consider: 

1 )a and b in the same positions which gives n pairs in common which is impossible 

because these two sequences have only n - 2 pairs in common, 

2)a in positions a1 , a3 so that we have to put bin positions a2 , a4 which is impossible 

because a2 - a1 = a in the first sequence and a3 - a1 = a in the second sequence but 

a3 =I a1, 

3)a in positions a 1 , a4 so that we need to put bin positions a2 , a3 which is impossible 

because a2 - a 1 = a in the first sequence and a4 - a1 = a in the second sequence but 

a4 =f. a2, 

4)a in positions a3 , a4 so that we need to put bin positions a1 , a2 which is impossible 

because a4 - a3 = b in the first sequence and a4 - a3 = a in the second sequence but 

a =f. b, 

5)a in positions a2 , a4 so that we need to put bin positions a 1, a3 which is impossible 

because a2 - a1 = a in the first sequence and a4 - a2 = a in the second sequence but 

a4 =f a1. 

Case II: In the first sequence consider a in the positions a 1, a3 and b in positions 

a2,a4 

In the second sequence, consider: 

1 )a and b in the same positions gives n pairs in common which is impossible because 

these two sequences have only n - 2 pairs in common, 

2)a in positions a 1, a2 so that we have to put bin positions a3 , a4 which is impossible 
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because a3 - a1 = a in the first sequence and a2 - a1 = a in the second sequence but 

a3 =f a2, 

3)a in positions a1 , a4 so that we need to put bin positions a2, a3 which is impossible 

because a3 - a 1 = a in the first sequence and a4 - a 1 = a in the second sequence but 

a4 =J. a3, 

4)a in positions a2, a4 so that we need to put bin positions a 1, a3 which is impossible 

because a3 - a 1 = a in the first sequence and a3 - a2 = a in the second sequence, but 

a1 =J. a2, 

5)a in positions a3 , a4 so that we need to put bin positions a1 , a2, which is impossible 

because a3 - a 1 = a in the first sequence and a4 - a3 = a in the second sequence but 

a4 =J. a1. 

Case III: In the first sequence consider a in positions a1, a4 and b in positions 

a2,a3 

In the second sequence, consider: 

1 )a and b in the same positions gives n pairs in common which is impossible because 

these two sequences have only n - 2 pairs in common, 

2)a in positions a 1 , a2 so that we have to put bin positions a3, a4 which is impossible 

because a4 - a1 = a in the first sequence and a2 - a 1 = a in the second sequence but 

a4 =J. a2, 

3)a in positions a1 , a3 so that we need to put bin positions a2, a4 which is impossible 

because a4 - a 1 = a in the first sequence and a3 - a 1 = a in the second sequence but 

a4 =J. a3, 

4)a in positions a2, a3 so that we need to put bin positions a 1 , a4 which is impossible 

because a3 - a2 = b in the first sequence and a3 - a2 = a in the second sequence but 

a =f b, 

5)a in positions a2, a4 so that we need to put bin positions a 1, a4 which is impossible 

because a4 - a1 = a in the first sequence and a4 - a2 = a in the second sequence but 

a1 =J. a2. 
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Therefore, it is not possible for two [hooked]Skolem sequences of order n to have 

exactly n - 2 pairs in common. 0 

We denote Intsn={k: there exists two [hooked]Skolem sequences of order n with k 

pairs in common}. This is the intersection spectrum of two [hooked] Skolem sequences 

of order n. 

For small orders 1 ::; n ::; 9 we give the intersection spectrum between two [hooked] 

Skolem sequences of order n in Appendix A. Using these results we have: 

Ints1 = {1 }, Ints2 = {2}, Ints3 = {0, 3}, Ints4 = {0, 1, 4}, Ints5 = {0, 1, 5}, 

Ints6 = {0, 1, 2, 3, 6}, Ints7 = {0, 1, 2, 3, 4, 7}, Ints8 = {0, 1, 2, 3, 4, 5, 8}, Ints9 = 

{0,1,2,3,4,5,6,9}. 

We prove that there exists two [hooked] Skolem sequence of order n such that 

Intsn ={0,1,2,3, ... ,n-3,n}. 

We assume inductively that for [hooked] Skolem sequences of small orders this is 

already true and we prove that this is true for [hooked] Skolem sequences of larger 

orders. 

We split the problem of finding the intersection spectrum of two [hooked] Skolem 

sequences in three cases: 

1. the number of pairs between [0, l~J]; 

2. the number of pairs between ( l ~ J , 2l ~ J); 

3. the number of pairs between [ 2l ~ J , n ]. 

Case (I): The intersection of two distinct Skolem sequences and hooked 

Skolem sequences of order n in [0, l~J] pairs 

To find the intersection spectrum in [0, l ~ J] pairs of two Skolem sequences of order 

n, we construct two new Skolem sequences of order n by adjoining a [hooked] Skolem 

sequence of small order with a [hooked] Langford sequence. 

We construct these sequences in the following way: let k be a positive integer and 

repeat the process below for k = 0, 1, ... , l ~ J - 2 or until all the pairs are found. 
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Take a Skolem sequence of order L ~ J - k and adjoin it with a Langford sequence of 

order n - L ~ J + k and defect L ~ J - k + 1. (If this Langford sequence does not exist 

for k = 0, take k = 1). If the Langford sequence is perfect, take the same Skolem 

sequence of order L ~ J - k and adjoin with the reverse Langford sequence of order 

n - L ~ J + k and defect L ~ J - k + 1. The number of pairs in common between these 

Langford sequences and their reverse is given in Table B.1 if the Langford sequence 

has order n = 4t, Table B.6 if the Langford sequence has order 2d- 1, Table B.2 if 

the Langford sequence has order 2d- 1 + 4r, where r is a positive integer. In this 

way we can form two new Skolem sequences of order n with L ~ J - k or more pairs 

in common. We can also adjoin a Skolem sequence of order L ~ J - k with a Langford 

sequence of order n - L ~ J + k and defect L ~ J - k + 1. Then adjoin another Skolem 

sequence of order l~J -k which can have 0, 1, ... , l~J -k-3, l~J -k pairs in common 

with the previous Skolem sequence and adjoin with the reverse Langford sequence of 

order n - L ~ J + k and defect L ~ J - k + 1. These give two Skolem sequences of order 

n with 0, 1, ... , L~J - k- 3, L~J - k pairs in common. If the Langford sequence of 

order n - L ~ J + k and defect L ~ J - k + 1 is hooked, fill the hook with the pair 2 

which makes the sequence perfect and adjoin this Langford sequence with a 2-near 

Skolem sequence of order l ~ J - k, then adjoin the previous 2-near Skolem sequence of 

order L ~ J - k with the reverse of the Langford sequence above. The number of pairs 

in common between the Langford sequences and their reverse is given in Table B.8 

if the Langford sequence has order 4t + 2, or in Table B.9 if the Langford sequence 

has order 2d + 1 + 4r, where t and r are positive integers. In this way we can form 

two Skolem sequences of order n which can have L ~ J - 2 or more pairs in common. 

Two disjoint Skolem sequences of order n can be found in [4]. Also if the Langford 

sequence has order 2d - 1 we are able to find more sequences of this kind and, in 

Table B.6, we have the numbers of pairs in common between these sequences or if 

the Langford sequence has order 2d, d even we can find two different sequences and 

their reverse, one from Table B.1 and the other from Table B. 7. 
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For example, to find if two Skolem sequences of order 16 intersect in 0, 1, 2, 3, 4, 5 

pairs, we have the following procedure: take a Skolem sequence of order 5 and adjoin 

it with a Langford sequence of order 11 and defect 6, then take the same Skolem 

sequence of order 5 and adjoin with the reverse Langford sequence of order 11 and 

defect 6. In [29], we can find more constructions for Langford sequences of order 

2d- 1. This Langford sequence and its reverse can have 0, 1, 2 pairs in common 

(Table B.6). Now, 

• taking those two Langford sequences that are disjoint and adjoining these two 

with the same Skolem sequence of order 5 gives two Skolem sequences of order 

16 with 5 pairs in common; 

• taking a Skolem sequence of order 5 and adjoining it with a Langford sequence 

of order 11 and defect 6, then taking a disjoint Skolem sequence of order 5 and 

adjoining it with a disjoint Langford sequence of order 11 and defect 6 gives 

two Skolem sequences of order 16 which are be disjoint; 

• taking a Skolem sequence of order 5 and adjoining it a Langford sequence of 

order 11 and defect 6, then taking a Skolem sequence of order 5 which have 

one pair in common with the previous Skolem sequence and adjoining it with a 

disjoint Langford sequence of order 11 and defect 6 gives two Skolem sequences 

of order 16 with one pair in common; 

• taking a Skolem sequence of order 5 and adjoining a Langford sequence of order 

11 and defect 6, then taking a Skolem sequence of order 5 which have one 

pair in common with the previous Skolem sequence and adjoin with a Langford 

sequence of order 11 and defect 6 which have one pair in common with the 

previous Langford sequence gives two Skolem sequences of order 16 with two 

pairs in common; 

• taking a Skolem sequence of order 5 and adjoining it a Langford sequence of 

order 11 and defect 6, then taking a Skolem sequence of order 5 which have 
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one pair in common with the previous Skolem sequence and adjoining it with 

a Langford sequence of order 11 and defect 6 which have two pairs in common 

with the previous Langford sequence gives two Skolem sequences of order 16 

with three pairs in common; 

• taking a Skolem sequence of order 4 and adjoining it a Langford sequence of 

order 12 and defect 5, then taking the same Skolem sequence of order 4 and 

adjoining it the reverse Langford sequence of order 12 and defect 5, gives two 

Skolem sequences of order 16 with four pairs in common. 

Using this technique we prove the following theorem: 

Theorem 18 For n 2:: 1, the necessary conditions are sufficient for the existence of 

two Skolem sequences of order n to intersect in [0, l ~ J] pairs with the following possible 

exceptions: for n = 12t, n 2:: 72, t 0, 1(mod 3) the exceptions are {l~J - 5, l~J}, 

fort= 2(mod 3), n =/:- 17 the exceptions are {l~J - 5, l~J - 2, l~J}, for n = 17 the 

exception is {4}, for n = 12t + 8,t- 0,2(mod 3) the exception is {l~J- 3}, for 

t _ 1(mod 3),n =/:- 20 the exceptions are {l~J- 3, l~J}, for n = 20 the exception is 

{3}, for n = 9(mod 12), n =/:- 21 the exception is {l~J} and for n = 21 the exceptions 

are {5, 7}. 

Proof: For 1 :::; n :::; 9, see Appendix A. For a list of all of the possible exceptions, 

see Appendix C. 

We divide this proof into 6 cases. Let t be a positive integer. 

Case (1): n = O(mod 12) 

We start with: 

(a) n = 12t, t = 0, 1(mod 3) 

and prove that Intsn = [0, l~J]- { l~J, l~J - 5}. 

Taking a 2-near Skolem sequence of order l~J - 1 with a Langford sequence of order 

n - l ~ J + 1 and defect l ~ J , then taking the same 2-near Skolem sequence of order 

l~J - 1 with the reverse of the Langford sequence above its reverse (Table B.9) gives 

two Skolem sequences of order n with l ~ J - 1 pairs in common. 
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Taking a 2-near Skolem sequence of order l~J - 2 with a Langford sequence of 

order n- l~J + 2 and defect l~J + 1, then taking the same 2-near Skolem sequence 

with the reverse of the Langford sequence its reverse (Table B.8) gives two Skolem 

sequences of order n with l ~ J - 2 pairs in common. 

Taking a Skolem sequences of order l ~ J - 3 with a Langford sequence of order 

n -l ~ J + 3 and defect l ~ J - 2, then taking another Skolem sequence of the same order 

which can have 0, 1, ... , l~J- 6, l~J- 3 pairs in common with the previous sequence 

with the reverse of the Langford sequence (Table B.2) gives two Skolem sequences of 

order n with 0, 1, ... , l~J - 6, l~J - 3 pairs in common. 

Taking a Skolem sequence of order l ~ J - 4 with a Langford sequence of order 

n- l~J + 4 and defect l~J - 3, then taking the same Skolem sequence with the 

reverse of the Langford sequence above (Table B.1) gives two Skolem sequences of 

order n with l ~ J - 4 pairs in common. 

Then we continue with: 

(b) n = 12t, t = 2(mod 3), n =1- 24 

and prove that Intsn = [0, l~J]- {l~J, l~J- 2, l~J- 5}. 

Taking a 2-near Skolem sequences of order l~J -1 with a Langford sequence of order 

n - l ~ J + 1 and defect l ~ J, then taking the same 2-near Skolem sequence of order 

l~J -1 with the reverse of the Langford sequence above (Table B.9) gives two Skolem 

sequences of order n with l ~ J - 1 pairs in common. 

Taking a Skolem sequence of order l ~ J - 3 with a Langford sequence of order 

n - l ~ J + 3 and defect l ~ J - 2, then taking another Skolem sequence which can have 

0, 1, ... , l ~ J - 6, l ~ J - 3 pairs in common and adjoining the reverse of the Langford 

sequence above its reverse (Table B.2) gives two Skolem sequences of order n with 

0, 1, ... , l~J - 6, l~J - 3 pairs in common. 

Taking a Skolem sequence of order l ~ J - 4 with a Langford sequence of order 

n - l~J + 4 and defect l~J - 3, then taking the same Skolem sequence with the 

reverse of the Langford sequence above (Table B.1) gives two Skolem sequences of 

order n with l ~ J - 4 pairs in common. 
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And we take a small case separately: 

(c) n = 24 

and we prove that Ints24 = [0, 8] - {3, 6, 8}. 

Taking a 2-near Skolem sequence of order 7 with a Langford sequence of order 17 and 

defect 8, then taking the same 2-near Skolem sequence of order 7 with the reverse 

of the Langford sequence above (Table B.9) gives two Skolem sequences of order 24 

with 7 pairs in common. 

Taking a Skolem sequences of order 5 with a Langford sequence of order 19 and 

defect 6, then taking another Skolem sequence which can have 0, 1, 5 pairs in common 

with the previous sequence and adjoining the reverse of the Langford sequence above 

(Table B.1) gives two Skolem sequences of order 24 with 0, 1 or 5 pairs in common. 

Taking a Skolem sequence of order 4 with a Langford sequence of order 20 and 

defect 5, then taking the same Skolem sequence with the reverse of the Langford 

sequence above (Table B.1) gives two Skolem sequences of order 24 with four pairs in 

common. 

Taking a 2-near Skolem sequences of order 3 with a Langford sequence of order 

21 and defect 4, then taking the same 2-near Skolem sequences of order 3 with the 

reverse of the Langford sequence above (Table B.9) gives two Skolem sequences of 

order 24 with two pairs in common. 

Case(2): n = 1(mod 12) 

We start with: 

(a) n ~ 25 

and we prove that Intsn = [0, l~J]. 

Taking a perfect Langford sequences of order n -l ~ J and defect l ~ J + 1 and adjoining 

a Skolem sequence of order l ~ J , then taking the reverse of the Langford sequence 

above and adjoining it with a different Skolem sequence of order l ~ J which can have 

0, 1, 2, ... , l~J - 3, l~J pairs in common with the previous Skolem sequence. The 

number of pairs in common between the Langford sequence and its reverse are given 

in Table B.6. Taking different combinations of these sequences gives two Skolem 
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Then, we continue with: 

(b) n= 13 

and we prove that Ints13 = [0, 4]. 
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Taking two perfect Langford sequences of order 9 and defect 5 which can have 0, 1 

or 3 pairs in common(Table B.6), and adjoining it two Skolem sequence of order 4 

which can have 0, 1 or 4 pairs in common( see Appendix A). 

Two disjoint Langford sequences of order 9 and defect 5 with two disjoint Skolem 

sequences of order 4 gives two disjoint Skolem sequences of order 13. 

Two disjoint Langford sequences of order 9 and defect 5 with two Skolem sequences 

of order 4 with one pair in common gives two Skolem sequences of order 13 with one 

pair in common. 

Two Langford sequences of order 9 and defect 5 with one pair in common with two 

Skolem sequences of order 4 with one pair in common gives two Skolem sequences of 

order 13 with two pairs in common. 

Two Langford sequences of order 9 and defect 5 with 3 pairs in common with two 

disjoint Skolem sequences of order 4 gives two Skolem sequences of order 13 with 

three pairs in common. 

Two disjoint Langford sequences of order 9 and defect 5 with two Skolem sequences 

of order 4 with four pairs in common gives two Skolem sequences of order 13 with 

four pairs in common. 

Case (3): n = 4(mod 12) 

We start with: 

(a) n ~ 28 

and we prove that Intsn = [0, l~J]. 

Taking a Skolem sequence of order l ~ J and adjoining it a Langford sequence of order 

n - l ~ J and defect l ~ J + 1 and then taking another Skolem sequence of order l ~ J 
which can have {0, 1, 2, ... , l~J - 3, l~J} pairs in common with the previous Skolem 

sequence and adjoining it the reverse of the Langford sequence (Table B.6). Taking 
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different combinations of these sequences gives two Skolem sequences of order n with 

[0, L~JJ pairs in common. 

Then we continue with a small case: 

(b) n= 16 

and we prove that I nts16 = [0, 5]. 

Taking a Skolem sequences of order 5 and adjoin a Langford sequence of order 11 

and defect 6, then taking another Skolem sequence of order 5 which can have 0, 1, 5 

pairs in common with the previous Skolem sequence (Appendix A) and adjoining 

it the reverse of the Langford sequence above (Table B.6). These gives two Skolem 

sequences of order 16 with 0, 1, 2, 3, 5 pairs in common, next taking a Skolem sequence 

of order 4 and adjoining it a Langford sequence of order 12 and defect 5 and then 

taking the same Skolem sequence and adjoining it the reverse of the Langford sequence 

above. These two Langford sequences are disjoint (Table B.1). So, we get two Skolem 

sequences of order 16 with 4 pairs in common. 

Case (4): n = 5(mod 12) 

We start with: 

(a) n =I= 17 

and we prove that Intsn = [0, L~JJ. 

Taking a Skolem sequence of order L ~ J and adjoining it a Langford sequence of 

order n - L ~ J and defect L ~ J + 1 and then taking a Skolem sequence of the same 

order as before which can have {0, 1, 2, ... , L~J - 3, L~J} pairs in common with the 

previous Skolem sequence and adjoining it the reverse of the Langford sequence above 

(Table B.1 and Table B. 7). Taking different combinations of these sequences gives 

two Skolem sequences of order n with [0, L~JJ pairs in common. 

Then we continue with a small case: 

(b) n = 17 

and we prove that Ints17 = [0, 5] - { 4}. 

Taking a Skolem sequence of order 5 and adjoin a Langford sequence of defect 6 and 

order 11, then taking another Skolem sequence of order 5 which can have 0, 1 or 5 pairs 



38 

in common with the previous Skolem sequence (see Appendix A) and adjoining the 

reverse of the Langford sequence above (Table B.6). Taking different combinations 

of these sequences gives two Skolem sequences of order n with {0, 1, 2, 3, 5} pairs in 

common. 

Case (5):n = 8(mod 12) 

We start with: 

(a) n = 12t + 8, t = 0, 2 (mod 3) 

and we prove that Intsn = [0, l~J]- {l~J - 3}. 

Taking a 2-near Skolem sequences of order l~J [41] and adjoining it a Langford se­

quence of order n- l~J and defect l~J + 1, then taking the same 2-near Skolem 

sequence of order l ~ J [51] and adjoining it the reverse of the Langford sequence above 

(Table B.8). These constructions gives two Skolem sequences of order n with l~J 

pairs in common. 

Taking a Skolem sequence of order l ~ J -1 with a Langford sequence of order n-l ~ J + 1 

and defect l ~ J, then taking another Skolem sequence of the same order which can 

have 0, 1, ... , l~J - 4, l~J - 1 pairs in common with the previous sequence and ad­

joining it the reverse of the Langford sequence(Table B.2). These constructions gives 

two Skolem sequences of order n with 0, 1, ... , l~J -4, l~J - 1 pairs in common. 

Taking a Skolem sequence of order l~J -2 with a Langford sequence of order n-l~J +2 

and defect l ~ J -1, then taking the same Skolem sequence with the reverse of the Lang­

ford sequence above (Table B.l). These constructions gives two Skolem sequences of 

order n with l ~ J - 2 pairs in common. 

Then we continue with: 

(b) n = 12t + 8, t = l(mod 3), n =I= 20 

and we prove that: Intsn = [0, l~J]- {l~J, l~J- 3}. 

Taking a Skolem sequence of order l ~ J -1 with a Langford sequence of order n-l ~ J + 1 

and defect l ~ J, then taking another Skolem sequence which can have 0, 1, ... , l ~ J -

4, l ~ J - 1 pairs in common with the previous sequence and adjoin the reverse of the 

Langford sequence (Table B.2)). These constructions gives two Skolem sequences of 
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order n with 0, 1, ... , L~J -4, L~J - 1 pairs in common; the same Skolem sequence of 

order L ~ J - 2 with a Langford sequence of order n - L ~ J + 2 and defect L ~ J - 1 and 

then with its reverse (Table B.1) gives two Skolem sequences of order n with L ~ J - 2 

pa1rs m common. 

Then we prove for a small case: 

(c) n = 20 

and we prove that Ints20 = [0, 6] - {3}. 

Taking a Skolem sequence of order 5 with a Langford sequence of order 15 and defect 

6, then taking another Skolem sequence of the same order which can have 0, 1, 5 pairs 

in common with the previous sequence with the reverse of the Langford sequence 

(Table B.2). These constructions gives two Skolem sequences of order 20 with 0, 1, 5 

pairs in common; taking a Skolem sequence of order 4 with a Langford sequence of 

order 16 and defect 5, then taking the same Skolem sequence with the reverse of 

the Langford sequence (Table B.1) gives two Skolem sequences of order 20 with four 

pairs in common; the a 2-near Skolem sequences of order 3 with a Langford sequence 

of order 17 and defect 4, then taking the same 2-near Skolem sequence of order 3 

with the reverse of the Langford sequence (Table B.9). These constructions gives two 

Skolem sequences of order 20 with two pairs in common. 

Case (6): n = 9(mod 12) 

We start with: 

(a) n =I= 21 

and prove that Intsn = [0, L~J]- {L~J}. 

Taking a 2-near Skolem sequence of order L~J - 1 with a Langford sequence of order 

n - L ~ J + 1 and defect L ~ J, then taking the same 2-near Skolem sequence of order 

L~J - 1 with the reverse of the Langford sequence above and its reverse (Table B.9) 

gives two Skolem sequences of order n with L ~ J - 1 pairs in common. 

Taking a Skolem sequences of order L ~ J - 2 with a Langford sequence of order 

n- L~J + 2 and defect L~J -1, then taking another Skolem sequence which can have 

0, 1, ... , L ~ J - 5, L ~ J - 2 pairs in common with the previous sequence with the reverse 
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of the Langford sequence (Table B.1) gives two Skolem sequences of order n with 

3, 4, ... , L i J - 2 pairs in common. 

Taking a Skolem sequences of order L i J - 3 with a Langford sequence of order 

n- L i J + 3 and defect L i J - 2, then taking another Skolem sequence which can have 

0, 1, 2 pairs in common with the previous sequence and adjoining it the reverse of 

the Langford sequence (Table B.2) gives two Skolem sequences of order n with 0, 1, 2 

pairs in common. 

We continue with: 

(b)n=21 

and we prove that Ints21 = [0, 7] - {5, 7}. 

Taking a 2-near Skolem sequence of order 6 with a Langford sequence of order 15 

and defect 7, then taking the same 2-near Skolem sequence with the reverse of the 

Langford sequence above (Table B.9) gives two Skolem sequences of order 21 with 6 

pairs in common. 

Taking a Skolem sequences of order 5 with a Langford sequence of order 16 and 

defect 6, then taking another Skolem sequence of order 5 which can have 0, 1, 5 pairs in 

common with the previous sequence and adjoin the reverse of the Langford sequence 

above (Table B.1), gives two Skolem sequences of order 21 with 3 or 4 pairs in common. 

Taking a Skolem sequences of order 4 with a Langford sequence of order 17 and 

defect 5, then taking another Skolem sequence of order 4 which can have 0 or 1 pair in 

common with the previous sequence and adjoin the reverse of the Langford sequence 

above (Table B.2) gives two Skolem sequences of order 21 with 0 or 1 pairs in common. 

Taking a 2-near Skolem sequence of order 3 with a Langford sequence of order 18 

and defect 4, then taking the same 2-near Skolem sequence with the reverse of the 

Langford sequence above (Table B.8) gives two Skolem sequences of order 21 with 

two pairs in common. 0 

Now, we construct new hooked Skolem sequences in the same way we constructed 

the Skolem sequences of order n above. 
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To find the intersection spectrum in [0, L~J] pairs of two hooked Skolem sequences 

of order n, form two new hooked Skolem sequences of order n, in the following way: 

let k be a positive integer and repeat the process below for k = 0, 1, ... , L ~ J - 2 

or until all the pairs are found. Taking a hooked Skolem sequence of order L ~ J - k 

and adjoin with a Langford sequence of order n - L ~ J + k and defect L ~ J - k + 1. 

(If this Langford sequence does not exist for k = 0, taking k = 1). If the Langford 

sequence is perfect, taking the same hooked Skolem sequence of order L~J - k and 

adjoin with the reverse Langford sequence of order n- L ~ J + k and defect L ~ J - k + 1. 

The number of pairs in common between these Langford sequences and their reverse 

is given in Table B.1 if the Langford sequence has order n = 4t, Table B.6 if the 

Langford sequence has order 2d -1 and Table B.2 if the Langford sequence has order 

2d - 1 + 4r, where r is a positive integer. In this way we can form two hooked 

Skolem sequences of order n with L ~ J - k or more pairs in common. We can also 

adjoin a hooked Skolem sequence of order L ~ J - k with a Langford sequence of order 

n- L~J + k and defect L~J - k + 1 and then taking another hooked Skolem sequence 

of order L~J - k which can have 0, 1, ... , L~J - k- 3, L~J - k pairs in common with 

the previous hooked Skolem sequence and adjoin with the reverse Langford sequence 

of order n - L ~ J + k and defect L ~ J - k + 1. These gives two Skolem sequences of 

order n with 0, 1, ... , L~J- k- 3, L~J- k pairs in common. If the Langford sequence 

of order n - L ~ J + k and defect L ~ J - k + 1 is hooked, fill the hook with the pair 2 

which makes the sequence perfect and adjoin this Langford sequence with a hooked 

2-near Skolem sequence of order L~J - k, then adjoin the previous hooked 2-near 

Skolem sequence of order L ~ J - k with the reverse of the Langford sequence above. 

The number of pairs in common between the Langford sequences and their reverse is 

given in Table 8 if the Langford sequence has order 4t+2, or Table B.9 if the Langford 

sequence has order 2d + 1 + 4r where t and r are positive integers. In this way we can 

form two hooked Skolem sequences of order n which can have L ~ J - 2 or more pairs 

in common. Two disjoint hooked Skolem sequences of order n can be found in [4]. 

Also if the Langford sequence has order 2d - 1 we are able to find more sequences of 
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this kind and in Table B.6 we have the numbers of pairs in common between these 

sequences or if the Langford sequence has order 2d, d even we can find two different 

sequences and their reverse, one from Table 1 and the other from Table B. 7. 

For example, if we want to find if two Skolem sequences of order 15 intersect in 

[0, 5] pairs, we have the following procedure: 

• taking a hooked 2-near Skolem sequence of order 4(41] and adjoining it with 

a hooked Langford sequence of order 11 and defect 5 which we can make it 

perfect if we put the pair 2 to fill the hook, then taking the previous hooked 

2-near Skolem sequences of order 4 and adjoining it with the reverse Langford 

sequence of order 11 and defect 5 above (The Langford sequence and its reverse 

can have 1 pair in common by Table B.9), gives 4 pairs in common. 

• taking a hooked Skolem sequence of order 3 and adjoining it with a Langford 

sequence of order 12 and defect 4, then taking a disjoint hooked Skolem sequence 

of order 3 and adjoining it with the reverse of the Langford sequence above (The 

Langford sequence and its reverse have 1 pair in common by Table B.1), get 

two Skolem sequences of order 15 with 1 pair in common. 

• taking a hooked Skolem sequence of order 2 with a Langford sequence of order 13 

and defect 3, then taking the same hooked Skolem sequence of order 2 with the 

reverse Langford sequence above(Table B.2), gives two hooked Skolem sequences 

of order 15 with 2 pairs in common. 

• to find two disjoint hooked Skolem sequences of order 15, see [4]. 

Therefore, two Skolem sequences of order 15 can have 0, 1, 2, 4 pairs in common. 

We are not able to discover, using these constructions, if two hooked Skolem sequence 

of order 15 intersect in 3 or 5 pairs. 

Using the same technique we prove the following result: 

Theorem 19 For n ;::: 1, the necessary conditions are sufficient for the existence of 

two distinct hooked Skolem sequences of order n to intersect in [0, l~J] pairs, with the 
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following possible exceptions: for n = 12t + 2, t = 0, 1, 2, 4, 5, 7, 10, 13, 14(mod 15) 

n =J 50 the exceptions are {L~J - 3, L~J}, fort_ 6, 11, 12(mod 15) the exception is 

{ L ~ J - 3}, for t = 3, 8, 9( mod 15), n =J 38 the exception is { L ~ J} and other 3 possible 

exceptions for the small cases n = 38, 50, for n = 3(mod 12) the exceptions are 

{L~J - 2, L~J}, for n = 12t + 6, t = 0, 1, 2, 5, 7, 10, 14(mod 15), n =J 30 the exceptions 

are {L~J -5, L~J -2, L~J}, fort= 6, 11, 12(mod 15) the exceptions are {L~J -5, L~J}, 

fort= 8, 9(mod 15) exceptions are {L~J - 2, L~J}, fort_ 4, 13(mod 15), n =J 54 the 

exceptions are {L~J -5, L ~ J-2}, fort 3(mod 15), n =J 42 the exception is {L ~J- 2}, 

and other 6 possible exceptions for the small cases n = 30, 42, 54. 

Proof: For 1 :::; n:::; 9, see Appendix A. For a list with all the possible exceptions, 

see Appendix C. 

We divide this proof into 6 cases. Let t be a positive integer. 

Case (1): n = 2(mod 12) 

We start with: 

(a) n = 12t + 2, t = 0, 1, 2, 4, 5, 7, 10, 13, 14(mod 15); n =1- 50 

and we prove that Intsn = [0, L~J]- {L~J, L~J- 3}. 

Taking a hooked Skolem sequence of order L ~ J - 1 with a Langford sequence of order 

n - L ~ J + 1 and defect L ~ J, then taking another hooked Skolem sequence which can 

have 0, 1, ... , L~J - 4, L~J - 1 pairs in common with the previous hooked Skolem 

sequence and adjoining it the reverse of the Langford sequence above (Table B.2) 

gives two hooked Skolem sequences of order n with 0, 1, ... , L~J -4, L~J - 1 pairs in 

common. 

Taking a hooked Skolem sequence of order L ~ J - 2 with a Langford sequence of 

order n - L ~ J + 2 and defect L ~ J - 1, then taking the same hooked Skolem sequence 

and adjoining it the reverse of the Langford sequence above (Table B.2) gives two 

hooked Skolem sequences of order n with L ~ J - 2 pairs in common. 

Then we continue with: 

(b) n = 12t + 2, t = 6, 11, 12(mod 15) 

and we prove that Intsn = [0, L~J] - {L~J - 3}. 
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Taking a hooked Skolem sequence of order l ~ J - 1 with a perfect Langford sequence 

of order n - l ~ J + 1 and defect l ~ J , then taking another hooked Skolem sequence 

which can have 0, 1, ... , l~J- 4, l~J -1 pairs in common with the previous sequence 

and adjoining it the reverse of the Langford sequence above (Table B.2) gives two 

Skolem sequences of order n with 0, 1, ... , l~J - 4, l~J - 1 pairs in common. 

Taking a hooked Skolem sequence of order l ~ J - 2 with a Langford sequence of 

order n-l ~ J + 2 and defect l ~ J -1, then taking the same hooked Skolem sequence with 

the reverse Langford sequence above (Table B.1) gives two hooked Skolem sequences 

of order n with l ~ J - 2 pairs in common. 

Taking a hooked 2-near Skolem sequence of order l~J - 4r with a Langford se­

quence of order n - l ~ J + 4r and defect l ~ J - 4r + 1, then taking the same hooked 

2-near Skolem sequence of order l ~ J - 4r and adjoining it the reverse of the Langford 

sequence above (Table B.8) r = 1, 2, 3 ... , one of these constructions gives two hooked 

Skolem sequences of order n with l ~ J pairs in common. 

Then we continue with: 

(c) n = 12t + 2, t = 3, 8, 9(mod 15), n =1- 38 

and we prove that Intsn = [0, l~J]- {l~J}. 

Taking a hooked Skolem sequences of order l ~ J - 1 with a perfect Langford sequence 

of order n - l ~ J + 1 and defect l ~ J , then taking another hooked Skolem sequence 

which can have 0, 1, ... , l~J- 4, l~J -1 pairs in common with the previous sequence 

and adjoining it the reverse Langford sequence above (Table B.2) gives two hooked 

Skolem sequences of order n with 0, 1, ... , l~J - 4, l~J - 1 pairs in common. 

Taking a hooked Skolem sequence of order l ~ J - 2 with a Langford sequence of 

order n - l ~ J + 2 and defect l ~ J - 1, then taking the same hooked Skolem sequence 

with the reverse of the Langford sequence above (Table B.2) gives two hooked Skolem 

sequences of order n with l ~ J - 2 pairs in common. 

Taking a hooked 2-near Skolem sequence of order l~J - 4r with a Langford se­

quence of order n - l ~ J + 4r and defect l ~ J - 4r + 1, then taking the same hooked 

2-near Skolem sequence and adjoining it the reverse of the Langford sequence above 
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(Table B.8) r = 1, 2, 3 ... , one of these constructions gives two hooked Skolem se­

quences of order n with l ~ J - 3 pairs in common. 

Then we continue with the small cases: 

(d) n =50 

and we prove that Ints50 = [0, 16]- {16}. 

Taking a hooked Skolem sequence of order 15 with a Langford sequence of order 35 and 

defect 16, then taking another hooked Skolem sequence which can have 0, 1, ... , 12, 15 

pairs in common with the previous sequence and adjoining it the reverse of the Lang­

ford sequence above (Table B.2) gives two hooked Skolem sequences of order 50 with 

0, 1, ... , 12, 15 pairs in common. 

Taking a hooked Skolem sequence of order 14 with a Langford sequence of order 

36 and defect 15, then taking the same hooked Skolem sequence with the reverse of 

the Langford sequence above (Table B.1) gives two Skolem sequences of order 50 with 

14 pairs in common. 

Taking a hooked 2-near Skolem sequence of order 12 with a Langford sequence of 

order 38 and defect 13 (which is perfect if we fill the hook with 2), then taking the 

same hooked 2-near Skolem sequence of order 12 and adjoining it the reverse of the 

Langford sequence above (Table B.9) gives two hooked Skolem sequences of order 50 

with 13 pairs in common. 

(e) n = 38 

and we prove that Ints38 = [0, 12]- {9, 12}. 

Taking a hooked Skolem sequences of order 11 with a Langford sequence of order 

27 and defect 12, then taking another hooked Skolem sequence which can have 

0, 1, ... , 8, 11 pairs in common and adjoining it the reverse of the Langford sequence 

above (Table B.2) gives two hooked Skolem sequences of order 38 with 0, 1, ... , 8, 11 

pairs in common. 

Taking a hooked Skolem sequence of order 10 with a Langford sequence of order 

28 and defect 11, then taking the same hooked Skolem sequence with the reverse 

of the reverse of the Langford sequence above (Table B.1) gives two hooked Skolem 
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sequences of order 38 with 11 pairs in common. 

Case (2): n = 3(mod 12) 

and we prove that Intsn = [0, liJ]- HR-J, liJ- 2}. 

Taking a hooked Skolem sequences of order liJ - 2 and adjoining it a Langford 

sequence of order n - l R" J + 2 and defect l R" J - 1, then taking another hooked Skolem 

sequence which can have {0, 1, 2, ... , liJ - 5, liJ - 2} pairs in common with the 

previous hooked Skolem sequence and adjoin the reverse of the Langford sequence 

above (Table B.1). These constructions gives two hooked Skolem sequences of order 

n with { 0, 1, 2, ... , l R" J - 4, l R" J - 1} pairs in common. Then, taking a hooked Skolem 

sequence of order l R" J - 3 with a Langford sequence of order n - l R" J + 3 and defect 

l R" J - 2 and then taking the same hooked Skolem sequence with the reverse of the 

Langford sequence above (Table B.2). These constructions gives two hooked Skolem 

sequences of order n with l R" J - 3 pairs in common. 

Case (3): n = 6(mod 12) 

We start with: 

(a) n = 12t + 6, t = 0, 1, 2, 5, 7, 10, 14(mod 15), n =f. 30 

and we prove that Intsn = [0, liJ]- HR-J, liJ- 2, liJ- 5}. 

Taking a hooked 2-near Skolem sequence of order l R" J -1 with a Langford sequence of 

order n -l R" J + 1 and defect l R" J, then taking the same hooked 2-near Skolem sequence 

with the reverse of the Langford sequence above (Table B.9) gives two hooked Skolem 

sequences of order n with l R" J - 1 pairs in common. 

Taking a hooked Skolem sequences of order l R" J - 3 with a Langford sequence of 

order n - l R-J + 3 and defect l R" J - 2, then taking another hooked Skolem sequence 

which can have 0, 1, ... , liJ - 6, liJ - 3 pairs in common with the previous hooked 

Skolem sequence and adjoining it the reverse of the Langford sequence above (Table 

B.2) gives two hooked Skolem sequences of order n with 0, 1, ... , liJ -6, liJ -3 pairs 

in common. 

Taking a hooked Skolem sequence of order l R" J - 4 with a Langford sequence of 

order n - l R" J + 4 and defect l R" J - 3, then taking the same hooked Skolem sequence 
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with the reverse of the Langford sequence above (Table B.1) gives two hooked Skolem 

sequences of order n with L i J - 4 pairs in common. 

(b) n = 12t + 6, t = 6, 11, 12(mod 15) 

and we prove that Intsn = [0, Li-J]- Hi-J, Li-J- 5}. 

Taking a hooked 2-near Skolem sequence of order Li-J -1 with a Langford sequence of 

order n- L i J + 1 and defect L i J , then taking the same hooked 2-near Skolem sequence 

with the reverse of the Langford sequence above (Table B.9) gives two hooked Skolem 

sequences of order n with L i J - 1 pairs in common. 

Taking a hooked Skolem sequence of order L i J - 3 with a Langford sequence of 

order n - L i J + 3 and defect L i J - 2, then taking another hooked Skolem sequence 

which can have 0, 1, ... , Li-J- 6, Li-J- 3 pairs in common with the previous sequence 

and adjoin the reverse of the Langford sequence above (Table B.2) gives two hooked 

Skolem sequences with 0, 1, ... , Li-J - 6, Li-J - 3 pairs in common. 

Taking a hooked Skolem sequence of order L i J - 4 with a Langford sequence of 

order n- li-J + 4 and defect li-J -3, then taking the same hooked Skolem sequence 

with the reverse of the Langford sequence above (Table B.1) gives two hooked Skolem 

sequences of order n with l i J - 4 pairs in common. 

Taking a hooked 2-near Skolem sequence of order L i J - 2 - 4r with a Langford 

sequence of order n- L i J + 2 + 4r and defect l i J - 4r -1, then taking the same hooked 

2-near Skolem sequence with the reverse of the Langford sequence above (Table B.8) 

r = 1, 2, 3 ... ,one of these constructions gives two hooked Skolem sequences of order 

n with L i J - 2 pairs in common. Then we continue with: 

(c) n = 12t + 6, t = 8, 9(mod 15) 

and we prove that Intsn = [0, li-J]- Hi-J, Li-J- 2}. 

Taking a hooked 2-near Skolem sequence of order l~J -1 with a Langford sequence of 

order n- l ~ J + 1 and defect l ~ J , then taking the same hooked 2-near Skolem sequence 

with the reverse of the Langford sequence above (Table B.9) gives two hooked Skolem 

sequences of order n with l i J - 1 pairs in common. 
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Taking a hooked Skolem sequence of order L ~ J - 3 with a Langford sequence of 

order n- L~J + 3 and defect L~J - 2, then taking another hooked Skolem sequence 

which can have 0, 1, ... , L~J- 6, L~J- 3 pairs in common with the previous sequence 

and adjoin the reverse Langford sequence above (Table B.2) gives two hooked Skolem 

sequences with 0, 1, ... , L~J - 6, L~J - 3 pairs in common. 

Taking a hooked Skolem sequence of order L ~ J - 4 with a Langford sequence of 

order n - L ~ J + 4 and defect L ~ J - 3, then taking the same hooked Skolem sequence 

and adjoin the reverse of the Langford sequence above (Table B.1) gives two hooked 

Skolem sequences of order n with L ~ J - 4 pairs in common. 

Taking a hooked 2-near Skolem sequence of order L~J - 2- 4r with a Langford 

sequence of order n- L ~ J + 2 + 4r and defect L ~ J - 4r- 1, then taking the same hooked 

2-near Skolem sequence with the reverse of the Langford sequence above (Table B.8) 

r = 1, 2, 3 ... one of these constructions gives two hooked Skolem sequences of order n 

with L ~ J - 5 pairs in common. 

And we continue with: 

(d) n = 12t + 6, t = 4, 13(mod 15), n =/=54 

and we prove that Intsn = [0, L~J] - { L~J - 2, L~J - 5}. 

Taking a hooked 2-near Skolem sequence of order L~J - 1 with a Langford sequence 

of order n - L ~ J + 1 and defect L ~ J , then taking the same hooked 2-near Skolem 

sequence with the reverse Langford sequence above (Table B.9) gives two hooked 

Skolem sequences of order n with L ~ J - 1 pairs in common. 

Taking a hooked Skolem sequences of order L ~ J - 3 with a Langford sequence of 

order n - L ~ J + 3 and defect L ~ J - 2, then taking another hooked Skolem sequence 

which can have 0, 1, ... , L~J- 6, L~J- 3 pairs in common with the previous sequence 

and adjoin the reverse of the Langford sequence above (Table B.2) gives two hooked 

Skolem sequences with 0, 1, ... , L~J - 6, L~J - 3 pairs in common. 

Taking a hooked Skolem sequence of order L ~ J - 4 with a Langford sequence of 

order n - L ~ J + 4 and defect L ~ J - 3, then taking the same hooked Skolem sequence 

and adjoin the reverse of the Langford sequence above (Table B.1) gives two hooked 
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Skolem sequences of order n with L ~ J - 4 pairs in common. 

Taking a hooked 2-near Skolem sequence of order L ~ J - 2 - 4r with a Langford 

sequence of order n- L ~ J + 2 + 4r and defect L ~ J - 4r -1, then taking the same hooked 

2-near Skolem sequence and adjoin the reverse of the Langford sequence above (Table 

B.8) r = 1, 2, 3 ... one of these constructions gives two hooked Skolem sequences of 

order n with L ~ J pairs in common. 

Then, we prove also for: 

(e) n = 12t + 6, t = 3(mod 15), n =F 42 

and we prove that Intsn = [0, l~J]- {l~J - 2}. 

Taking a hooked 2-near Skolem sequence of order L~J -1 with a Langford sequence of 

order n- L ~ J + 1 and defect L ~ J, then taking the same hooked 2-near Skolem sequence 

with the reverse of the Langford sequence above (Table B.9) gives two hooked Skolem 

sequences of order n with L ~ J - 1 pairs in common. 

Taking a hooked Skolem sequence of order l~J - 3 with a Langford sequence of 

order n - L ~ J + 3 and defect L ~ J - 2, then taking another hooked Skolem sequence 

which can have 0, 1, ... , L~J- 6, L~J- 3 pairs in common with the previous sequence 

and adjoin the reverse of the Langford sequence above and its reverse (Table B.2) 

gives two hooked Skolem sequences with 0, 1, ... , L~J - 6, L~J - 3 pairs in common. 

Taking a hooked Skolem sequence of order L ~ J - 4 with a Langford sequence of 

order n - L ~ J + 4 and defect L ~ J - 3, then taking the same hooked Skolem sequence 

and adjoin the reverse of the Langford sequence above (Table B.1) gives two hooked 

Skolem sequences of order n with L ~ J - 4 pairs in common. 

Taking a hooked 2-near Skolem sequence of order l ~ J - 2 - 4r with a Langford 

sequence of order n- L ~ J + 2 + 4r and defect L ~ J - 4r - 1, then taking the same hooked 

2-near Skolem sequence with the reverse of the Langford sequence above (Table B.8) 

r = 1, 2, 3 ... two of these constructions gives two hooked Skolem sequences of order n 

with l ~ J and l ~ J - 5 pairs in common. 

And finally, some small cases: 
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(f) n = 42 and we prove that Ints42 = [0, 14] - {9, 12, 14}. 

Taking a hooked 2-near Skolem sequence of order 13 with a Langford sequence of 

order 29 and defect 14, then taking the same hooked 2-near Skolem sequence with 

the reverse of the Langford sequence above and its reverse (Table B.9) gives two 

hooked Skolem sequences of order 42 with 13 pairs in common. 

Taking a hooked Skolem sequence of order 11 with a Langford sequence of or­

der 31 and defect 12, then taking another hooked Skolem sequence which can have 

0, 1, ... , 8, 11 pairs in common with the previous sequence and adjoin the reverse of 

the Langford sequence above (Table B.2) gives two hooked Skolem sequences of order 

42 with 0, 1, ... , 8, 11 pairs in common. 

Taking a hooked Skolem sequence of order 10 with a Langford sequence of order 

32 and defect 11, then taking the same hooked Skolem sequence with the reverse of 

the Langford sequence above (Table B.1) gives two hooked Skolem sequences of order 

42 with 10 pairs in common. 

(g) n = 30 

and we prove Ints30 = [0, 10]- {5, 8}. 

Taking a hooked 2-near Skolem sequence of order 9 with a Langford sequence of order 

21 and defect 10, then taking the same hooked 2-near Skolem sequence and adjoin the 

reverse of the Langford sequence above (Table B.9) gives two hooked Skolem sequences 

of order 30 with 9 pairs in common; taking a hooked 2-near Skolem sequence of order 

8 with a Langford sequence of order 22 and defect 9, then taking the same hooked 

2-near Skolem sequence with the reverse of the Langford sequence above (Table B.8) 

gives two hooked Skolem sequences of order 30 with 10 pairs in common. 

Taking a hooked Skolem sequences of order 7 with a Langford sequence of or­

der 23 and defect 8, then taking another hooked Skolem sequence which can have 

0, 1, 2, 3, 4, 7 pairs in common with the previous sequence and adjoin the reverse of 

the Langford sequence above (Table B.2) gives two hooked Skolem sequences of order 

30 with 0, 1, 2, 3, 4, 7 pairs in common. 
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Taking a hooked Skolem sequence of order 6 with a Langford sequence of order 

24 and defect 7, then taking the same hooked Skolem sequence with the reverse of 

the Langford sequence above and its reverse (Table B.l) gives two hooked Skolem 

sequences of order 30 with 6 pairs in common. 

(h) n =54 

and we prove that Ints54 = [0, 18]- {16}. 

Taking a hooked 2-near Skolem sequence of order 17 with a Langford sequence of 

order 37 and defect 18, then taking the same hooked 2-near Skolem sequence with 

the reverse of the Langford sequence above (Table B.9) gives two hooked Skolem 

sequences of order 54 with 17 pairs in common. 

Taking a hooked 2-near Skolem sequence of order 16 with a Langford sequence 

of order 38 and defect 17, the taking the same hooked 2-near Skolem sequence with 

the reverse of the Langford sequence above (Table B.8) gives two hooked Skolem 

sequences of order 54 with 18 pairs in common. 

Taking a hooked Skolem sequence of order 15 with a Langford sequence of or­

der 39 and defect 16, then taking another hooked Skolem sequence which can have 

0, 1, ... , 12, 15 pairs in common and adjoin the reverse of the Langford sequence above 

(Table B.2) gives two hooked Skolem sequences of order 54 with 0, 1, ... , 12, 15 pairs 

in common. 

Taking a hooked Skolem sequence of order 14 with a Langford sequence of order 

40 and defect 15, then taking the same hooked Skolem sequence with the reverse of 

the Langford sequence above (Table B.l) gives two hooked Skolem sequences of order 

54 with 14 pairs in common. 

Taking a hooked 2-near Skolem sequence of order 12 with a Langford sequence of 

order 42 and defect 13, then taking the same hooked 2-near Skolem sequence with 

the reverse of the Langford sequence above (Table B.8) gives two hooked Skolem 

sequences of order 54 with 13 pairs in common. 

Case (4): n = 7(mod 12) 

and we prove that Intsn = [0, L~J]. 
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Taking a hooked Skolem sequences of order l~J and adjoin a Langford sequence of 

order n - l ~ J and defect l ~ J + 1, then taking another hooked Skolem sequence of 

the same order which can have {0, 1, 2, ... , l~J - 3, l~J} pairs in common with the 

sequence above and adjoin the reverse of the Langford sequence above (Table B.6 for 

the number of pairs in common between this Langford sequence and its reverse). 

Case (5): n = 10(mod 12) 

nd we prove that Intsn = [0, l~J]. 

Taking a hooked Skolem sequences of order l ~ J and adjoin a Langford sequence of 

order n- l ~ J and defect l ~ J + 1, then taking another hooked Skolem sequence which 

can have {0, 1, 2, ... , l~J - 3, l~J} pairs in common with the above hooked Skolem 

sequence and adjoin the reverse of the Langford sequence above(Table B.1 and Table 

B.7). 

Case (6): n = ll(mod 12) 

and we prove that Intsn = [0, l~J]. 

Taking a hooked Skolem sequences of order l ~ J and adjoin a Langford sequence 

of order n - l ~ J and defect l ~ J + 1, then taking another hooked Skolem sequence 

which can have {0, 1, 2, ... , l~J - 3, l~J} pairs in common with the previous hooked 

Skolem sequence and adjoin the reverse Langford sequence above (Table B.1 and 

Table B. 7). These constructions gives two hooked Skolem sequences of order n with 

[0, l~J]- {l~J - 1} pairs in common. To get two hooked Skolem sequences of order 

n with l ~ J - 1 pairs in common, taking a hooked Skolem sequence of order l ~ J - 1 

with a Langford sequence of order n - l ~ J + 1 and defect l ~ J and then taking the 

same hooked Skolem sequence above with the reverse of the Langford sequence (Table 

B.2). 0 

Case II): The intersection of two distinct Skolem sequences and two 

hooked Skolem sequences of order n in ( l ~ J , 2l ~ J) pairs 

To find the intersection of two [hooked] Skolem sequences of order n in ( l ~ J, 2l ~ J) 
pairs we construct new [hooked] Skolem sequences from three different parts: 

• Part A: this part is a sequence formed by even and odd numbers starting with n 
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and a hole in the middle of the sequence. Let t be the order of A (i.e. the number 

of pairs in A, tis an odd number). The sequence is: n, n-2, ... , n-t+ 1, n-1, n-

3, ... , n-t+2, ------ -- , n-t+1, ... , n-2, n, n-t+2, ... , n-3, n-1. 

n- t- l~J free spaces 
Example: For n = 12 and t = 7, the sequence i: 

12, 10, 8, 6, 11, 9, 7, -- '6, 8, 10, 12, 7, 9, 11. .._,., 
2 spaces 

• Part B: this part is the space inside part A (we call this a hole). We try to fit 

in this space a [hooked] Skolem sequence, or a k-extended Skolem sequence, or 

a 2-near Skolem sequence. In the example above, since there are only 2 spaces 

left, we can fit a Skolem sequence of order 1: 81 = (1, 1). 

• Part C: in this part we form a [hooked]Langford sequence from the elements 

left from part A and part B. 

Example: For n = 12 and t = 7, the elements left from part A and part B 

are 2, 3, 4, 5 and we can form a Langford sequence of defect 2 and length 4: 

L~ = (5, 2, 4, 2, 3, 5, 4, 3). 

So, the sequence look like this: I ..... A .... II .... B .... II .... A .... II .... C .... I 
---..---

hole 

shell 
The Skolem sequence of order 12 formed by this construction is: 

812 = (12, 10, 8, 6, 11, 9, 7, 1, 1 '6, 8, 10, 12, 7, 9, 11, 5, 2, 4, 2, 3, 5, 4, 3) 
'---....----' '-v-" ' v_.-__. 

A B A C 
If, in part B, we need to fit a k-extended Skolem sequence in order to have a 

[hooked] Skolem sequence in the end, we have to fill the hole with another pair, and 

in this case we take the largest pair left in Part C. 

Example: If n = 25, t = 11, Part A is: 

25, 23, ... , 15, 24, 22, ... , 16, ~ , 15, 17, ... , 25, 16, 18, ... , 24. Since there are 9 spaces 

9 spaces 
left we can fit there a k-extended Skolem sequence of order 4. The largest pair left 

for Part C is 14. We put 14 at the beginning of the sequence and since t = 11 
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this takes the third place in Part B. So in Part B we are able to fit a 3-extended 

Skolem sequence of order 4(see [3] for construction of k-extended Skolem sequences). 

For Part C the following numbers are left: 5, 6, 7, 8, 9, 10, 11, 12, 13, so we can form 

a Langford sequence of order 9 and defect 5. (See [8, 29, 45], for constructions of 

[hooked] Langford sequences.) 

Another sequence that we can fit in Part B is a 2-near Skolem sequence, and in this 

case we add the pair (2, 0, 2) to the Langford sequence in Part C; if the Langford 

sequence is hooked the pair (2, 0, 2) fits exactly in the hole and makes the Langford 

sequence perfect, if the Langford sequence is hooked we add the pair (2, 0, 2) either 

to the Langford sequence in Part C or to the sequence in Part A. For example, for 

n = 38, t = 19, there are n- t- l~J = 10 spaces left for Part B of the sequence. So, 

we can fit here either a Skolem sequence of order 5 or a 2-near Skolem sequence of 

order 6. If we fit a Skolem sequence of order 5 in Part B, in Part C we have a Langford 

sequence of defect 6 and length n- t- 5 = 14. If we fit a 2-near Skolem sequence 

of order 6 in Part B, then in Part C we have a Langford sequence of defect 7 and 

length n- t- 6 = 13 which is a hooked Langford. So we add the pair (2, 0, 2) to this 

hooked Langford sequence and the Langford sequence becomes a perfect sequence. 

Now, using these constructions, we can get different pairs in common between 

two [hooked] Skolem sequences of order n. We take the first sequence formed by 

Parts A, B, C in their normal positions and the second sequence by taking the reverse 

sequences of Part A, B or C. The reverse of Part A is always disjoint, since the 

even pairs are interchanged with the odd pairs and vice versa. In part B, if we have 

a Skolem sequence of order n, we can have different Skolem sequences of the same 

order with 0, 1, 2, ... , n- 3, n pairs in common. In part C, taking the reverse of the 

Langford sequence, the Langford sequence and its reverse will have pairs in common 

or not. To see how many pairs in common these sequences have we check Table B.1 

-Table B.9. 

Notations: Define Sn +s pairs to mean that we have a [hooked] Skolem sequence 

of order n and s other pairs. These pairs are the largest pairs left in Part C. 



55 

Define Sn + s to mean Sn+s. 
<-

Define A, B, C to mean that we take a Skolem sequence of order n first with Parts 

A, B, C in their normal positions and then with Parts A, B in their normal position 

and Part C is reversed. This helps us find some pairs in common between these two 

sequences. 

Define B* to mean that in Part B, we have a [hooked] Skolem sequence of order p 

and we understand that we can find two [hooked] Skolem sequences of order p with 

0, ... , p - 3, p pairs in common. 

Define hLJ: + (2, 0, 2) to mean that we add the pair (2, 0, 2) to the hooked Langford 

sequence and we end with a perfect sequence. 

Define LJ:, (2, 0, 2) to mean that we have a perfect Langford sequence with the pair 

(2, 0, 2) added to the end of sequence which make the sequence hooked. 

Example: For n = 24, we can get a construction with t = 11, B = S4 , C = L~. 

If Part A stay in its normal position we have 11 pairs in common, if we take the 
<-

reverse of Part A, A and A are disjoint, therefore have 0 pairs in common. In Part B, 

we can find two Skolem sequences of order 4 which can be disjoint, other two Skolem 

sequences of order 4 which can have 1 pair in common and two Skolem sequences 

of order 4 which can have 4 pairs in common (Appendix A). In part C we have a 

Langford sequence where m = 2d- 1, so if we check Table B.6, we can find two 

perfect Langford sequences of order 9 and defect 5 with 0, 1, 3 pairs in common. On 

short, we write this: 
<-

Taking A, B*, C, get the pairs 9, 10, 13. 
<-

Taking A, B*, C, get the pairs 11, ... , 16, 18. 

Therefore, Ints24 = (8, 12). 

We use this technique to prove the following theorem: 

Theorem 20 For n ;::: 1, the necessary conditions are sufficient for the existence of 

two Skolem sequences of order n, to intersect in ( l ~ J, 2l ~ J) pairs with the following 

possible exceptions: forn- O(mod 12),n;::: 72 the exceptions are {l~J +3,2l~J -2} 

and other 16 possible exceptions for 10 ::::; n < 72, for n - 1(mod 12), n ;::: 109 
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the exception is 2l~J - 4 and other 14 possible exception for 10 :::; n < 109, for 

n = 4(mod 12), n 2:: 112 the exception is {2l~J- 1} and other 12 possible exceptions 

for 10 :S n < 112, for n = 5(mod 12), n 2:: 77 the exceptions are { l~J + 1, l~J -

3, l~J - 2} and other 17 exceptions for 10 :::; n < 77, for n _ 8(mod 12), n ;:=: 92 the 

exceptions are {l ~ J + 1, 2l ~ J - 3} and other 14 possible exceptions for 10 :::; n < 92, 

for n = 9(mod 12), n 2:: 81 the exceptions are {l~J + 3, 2l~J- 6, 2l~J- 2} and other 

25 possible exceptions for 10 :::; n < 81. 

Proof: For 1 :::; n :::; 9, see Appendix A. For a list with all the possible exceptions, 

see Appendix C. 

Let i = 1, 2, ... and t1, t 2 , ... , ti+1 be the orders of A 1, A2 , ... Ai+1 

We divide this proof into 6 cases. 

Case (1): n = O(mod 12) 

We start with: 

(a) n;::: 72 

and we prove that Intsn = ( l~J, 2l~J) - {l~J, l~J + 3, 2l~J - 2}. 

S ){ 
t1 = 2l~J -1, B1 = s1, o1 = L:~=;l~J; 

tep 1 
t2 = t1 - 4; B2 = B1 + 3 = 84, 02 = L~~m1 +1 

Taking A 1,B1,01, where 0 1 and its reverse are disjoint [40], get the pair 2l~J. 
<-

Taking A2 , B2*, 0 2 , get the pairs l~J + 1, l~J + 2, l~J + 5. 

Taking A2 , B2*, 0 2 , where 0 2 and its reverse are disjoint (Table B.2), get the pairs 

2l~J - 5, 2l~J - 4, 2l~J - 1. 

Step 2) { t 3 = t2 - 8, B3 = 2- near S11 , 0 3 = hL~~~~i1 + (2, 0, 2) 

Taking A 3 , B3, 0 3 , where 0 3 and its reverse are disjoint(Table B.8), get the pairs 

t3 + 10. 

S ) { t4 = t2 - 12, B4 = B 2 + 9, 0 4 = L:I:~~~t3 

tep 3 t - t 4 B - B + 3 0 - £m5=m4+1 
5 - 4 - ' 5 - 2 ' 5 - d5=d4+3 

<-

Taking A4 , B4*, 0 4 , where 0 4 and its reverse have 3 pairs in common (Table B.8) and 

get the pairs t4 + 3, ... , t4 + p, t4 + p- 3. 
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<-

Taking As, Bs*, Cs, where Cs and its reverse are disjoint (Table B.2), get the pairs 

ts, ... , ts + p- 3, ts + p. 

Taking As, Bs*, Cs and get the pairs ms, ... , ms + p- 3, ms + p. 

) { 
ti =ti-l- 12, Bi = Bi-1 + 9, Ci = Lmd·~dm;-+1 +9 3 

Ste 4 ·- ·- 1 

p mi+1=m;+l 
ti+l = ti- 4, Bi+l = Bi + 3, Ci+l = Ldi+1=d;+3 

+-

Taking Ai, Bi*, Ci, where Ci and its reverse have 3 pairs in common (Table B.8), get 

the pairs ti + 3, ... , ti + p, ti + p - 3. 

Taking Ai, Bi*, Ci, get the pairs mi, ... , mi + p- 3, mi + p. 
+-

Taking Ai+1, Bi+1 *, Ci+1, where Ci+1 and its reverse are disjoint (Table B.1), get the 

pairs ti+1, ... , ti+1 + p- 3, ti+l + p. 

Taking Ai+1, Bi+1*, Ci+1, get the pairs mi+1, ... , mi+1 + p- 3, mi+1 + p. 

Repeat Step 4) for all admissible orders mi 2: 2di + 1 or mi+1 2: 2di+1 - 1. 

Now we deal with the small orders: 

(b) 10:::; n < 72 

For n = 12, we prove that Ints12 = (4, 8)- {6, 7} 

t = 7, B = 51, C = L~ 

Taking A, B, C, where C and its reverse are disjoint [40] and get the pair 8. 
+-

Taking A, B, C, get the pair 5. 

For n = 24, we prove that Jnts24 = (8, 12) 

t = 11, B =54 , C = L~ 

Taking A, B*, C, where C and its reverse can have 0, 1, 3 pairs in common (Table 

B.6), get the pairs 11, ... , 16. 
+-

Taking A, B*, C and get the pairs 9, 10, 13. 

For n = 36, we prove that Ints36 = (12, 24)- {16, 18, 21, 22} 

t = 17, B =55 + 1 pair, C = £~3 

<-

Taking A, B*, C, get the pairs 14, 15, 19. 

t = 19, B = 54, C = Lg3 
<-

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

19, 20, 23. 



.._ 
Taking A, B*, C, get the pairs 13, 14, 17. 

t = 23, B = S1 , C = £~2 

.._ 
Taking A, B, C, where C and its reverse are disjoint [40], get the pair 24. 

<-

Taking A, B, C, get the pair 13. 

For n = 48, we prove that 

Ints48 = (16, 32)- {23, 24, 29, 30} 

t = 21, B = 5- ext S8 + 1 pair, C = L§8 

Taking A, B, c get the pair 27. t = 23, B = s6 + 2 pairs, c = Lf 
+-

58 

Taking A, B*, C, where C and its reverse are disjoint [40], get the pairs 25, 26, 27, 28, 31. 
+-

Taking A, B*, C, get the pairs 19, 20, 21, 22, 25. 

t = 27, B = S4, C = Lf 
+-

Taking A, B*, C, where C and its reverse are disjoint(Table B.2), get the pairs 

27, 28, 31. 
.._ 

Taking A, B*, C, get the pairs 17, 18, 21. 

t = 31, B = S1 , C = L~6 

Taking A, B, C, where C and its reverse are disjoint[40], get the pair 32. 
+-

Taking A, B, C and get the pair 17. 

For n = 60, we prove that Ints60 = (20, 40)- {29, 30, 32, 33, 34, 36} 

t = 25, B = 10 - ext S 11 + 1 pair, C = Lg 
+-

Taking A, B, C, get the pair 35. 
+-

Taking A, B, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), get 

the pairs 37, 38, 39. 

t = 29, B = S8 + 1 pair, C = £~2 

+-

Taking A, B*, C, get the pairs 23, ... , 28, 31. 

t = 35, B = S4 , C = L~1 

+-

Taking A, B*, C, where C and its reverse are disjoint(Table B.2), get the pairs 

35, 36, 39. 
+-

Taking A, B*, C and get the pairs 21, 22, 25. 

t = 39, B = S1, C = L~0 



<-

Taking A, B, C, where C and its reverse are disjoint [40] and get the pair 40. 
<-

Taking A, B, C, get the pair 21. 

Case (2): n = 1(mod 12) 

We start with: 

(a) n ~ 109 and we prove that 

Intsn = (LiJ, 2LiJ)- {2LiJ- 4}. 
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Step 1) Taking£~~~~~~+ Sl~J, where the Langford sequence can have 0, 1, 2 pairs in 

common (Table B.6) and get the pairs: LiJ, LiJ + 1, LiJ + 2. 

Step 2) { t1 = 2liJ - 7; B1 = 2- near 81; C1 = hL~~l~J+l + (2, o, 2) 

Taking A1, B1, C1, where C1 and its reverse are disjoint (Table B.2), get the pair 

2LiJ - 1. 

Ste 3) 2 - I ' 2 - g, 2 - d2=10 
{ 

t - t - 4· B - S . C - £m2=ml+2=l"iJ+3 

P t3 = t2 - 4; B3 = B2 + 3; C3 = L~~7~j1 

Taking A2, B2*, C2, where C2 and its reverse are disjoint (Table B.2) and get the pairs 

t2, ... 't2 + p- 3, t2 + p. 

Taking A2, B2*, C2, get the pairs m2, ... , m2 + p- 3, m2 + p. 
<-

Taking A3 , B3*, C3, where C3 and its reverse are disjoint (Table B.1), get the pairs 

t3, . .. 't3 + p - 3, t3 + p. 

Taking A3 , B3*, C3, get the pairs m3, ... , m3 + p- 3, m3 + p. 

) { 
ti =ti-l -12; Bi = Bi-1 + 9; Ci = Lmd ~=dmi1-+1 +9

3 

Ste 4 ,- ,_ 
p . _ . _ mi+l=m;+l 

ti+l = ti- 4, BH1 - Bi + 3, Ci+l - Ldi+l=d;+3 
<-

Taking Ai, Bi*• Ci, where Ci and its reverse are disjoint (Table B.2) and get the pairs 

ti' ... ' ti + p - 3' ti + p. 

Taking Ai, Bi*• Ci, get the pairs mi, ... , mi + p- 3, mi + p. 
<-

Taking Ai+1, Bi+1*, Ci+1, where Ci+1 and its reverse are disjoint (Table B.l), get the 

pairs ti+1, ... , ti+l + p- 3, ti+l + p. 

Taking Ai+1, Bi+l *• Ci+1, get the pairs mi+l• ... , mi+1 + p- 3, mi+l + p. 

Repeat Step 4) for all admissible orders mi ~ 2di- 1 or mi+1 ~ 2di+1 - 1. 

And now we deal with the small orders: 
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(b) 10::::; n < 109 

For n = 13, we prove that Ints13 = (4, 8)- {6} 

L~ + 84 , where the Langford sequence can have 0, 1, 3 pairs in common (Table B.6) 

gives the pairs 4, 5, 7. 

For n = 25, we prove that Jnts25 = (8, 16)- {11, 12, 13, 15} 

L§7 + 88 , where Langford sequence can have 0, 1, 2 pairs in common (Table B.6) gives 

the pairs 8, 9, 10. 

t = 11, B = 3- ext S4 + 1 pair, C = L~ 
<-

Taking A, B, C, get the pair 14. 
<-

Taking A, B, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), get 

the pairs 16, 17, 18. 

For n = 37, we prove that Ints37 = (12, 24)- {17, 18, 19, 21, 22, 23} 

L~g + 812 ; L~g gives the pairs 12, 13, 14. 

t = 17, 85 + 2 pairs, C = £~3 

<-

Taking A, B*, C, get the pairs 15, 16, 20. 

For n = 49, we prove that I nts49 = (16, 32) 

LN + 816 , where for the Langford sequence we can have 0, 1, 2, 3 pairs in common 

(Table B.6) gives the pairs 16, 17, 18, 19. 

t = 21, B = Sg, C = L~5 
<-

Taking A, B*, C, get the pairs 19, ... , 25, 28. 

Taking A, B*, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), 

get the pairs 21, ... , 32. 

For n = 61, we prove that Ints61 = (20, 40)- {36, 37} 

L~~ + 820 . The perfect Langford sequence can have 0, 1, 2 pairs in common (Table 

B.6), gives the pairs 20, 21, 22. 

t = 33, B = 2- nearS7 , C = hL~1 + (2, 0, 2) 
<-

Taking A, B, C, get the pair 28. 

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.9), get the 

pair 40. t = 29, B = 2 - near 810 , C = hLii + (2, 0, 2) 
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<-

Taking A, B, C, get the pair 32. 
<-

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.8), get the 

pair 39. 

t = 29, B = 89 , C = L~~ 
<-

Taking A, B*, C, get the pairs 23, ... , 29, 32. 
<-

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

29, ... '35, 38. 

For n = 73, we prove that Int873 = (24, 48)- {44} 

£~~+824 , where the perfect Langford sequence can have 0, 1, 2 pairs in common (Table 

B.6), gives the pairs 24, 25, 26. 

t = 41, B = 2- near 87 , C = hL~5 + (2, 0, 2) 
<-

Taking A, B, C, get the pair 32. 
<-

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.9), get the 

pair 48. 

t = 37, B = 89 , C = L~b 
<-

Taking A, B*, C, get the pairs 27, ... , 33, 36. 

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

37, ... '43, 46. 

t = 33, B = 812, C = L~~ 
<-

Taking A, B*, C and get the pairs 28, ... , 37, 40. 
<-

Taking A, B*, C, where C and its reverse are disjoint (Table B.1), get the pairs 

33, ... '42, 45. 

t = 31, B = 11- ext 813 + 1 pair, C = L~~ 
<-

Taking A, B, C, get the pair 42. 

Taking A, B, C, where C and its reverse have 1, 3 pairs in common (Table B.7 and 

Table B.1), get the pairs 46, 48. 

For n = 85, we prove that Jnts85 = (28, 56) 

L~~ + 828 ; The perfect Langford sequence can have 0, 1, 2, 3 pairs in common (Ta­

ble B.6) and the perfect Skolem sequence can be the same. This gives the pairs 
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28, 29, 30, 31. 

t = 45, B = Sg, C = L15 
,_ 

Taking A, B*, C, get the pairs 31, ... , 37, 40. 
,_ 

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

45, ... '51, 54. 

t = 41, B = S12, C = L~~ 
,_ 

Taking A, B*, C, get the pairs 32, ... , 41, 43. 
,_ 

Taking A, B*, C, where C and its reverse are disjoint (Table B.l), get the pairs 

41, ... '50, 53. 

t = 39, 7 - ext S13 + 1 pair, C = L~~ 
,_ 

Taking A, B, C, get the pair 46. 

Taking A, B, C, where C and its reverse have 3 pairs in common (Table B.l), get the 

pairs 56. 

t = 35, B = 15 - ext S 16 + 1 pair, C = L~~ 
,_ 

Taking A, B, C, get the pair 50. 

Taking A, B, C, where C and its reverse have 0, 1, 2, 3 pairs in common (Table B.6) 

and get the pairs 52, 53, 54, 55. 

For n = 97, we prove that Ints97 = (32, 64) 

L~~+S32 , where the perfect Langford sequence can have 0, 1, 2 pairs in common (Table 

B.6) and gives the pairs 32, 33, 34. 

t =57, B = 2- near S7 , C = h£~3 + (2, 0, 2) 
,_ 

Taking A, B, C,get the pair 40. 

Taking A, B, C, where C and its reverse have 0 pair in common (Table B.2), get the 

pair 63. 

t = 53, B = S9 , C = L~g 
,_ 

Taking A, B*, C, get the pairs 35, ... , 41, 44. 
,_ 

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

53, ... ' 59, 62. 

t = 49, B = S12, C = L~~ 
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+-

Taking A, B*, C and get the pairs 36, ... , 45, 48. 
+-

Taking A, B*, C, where C and its reverse are disjoint (Table B.1), get the pairs 

49, ... '58, 61. 

t = 47, B = 3- ext 513 + 1 pair, C = L~~ 

Taking A, B, C, where C and its reverse have 3 pairs in common (Table B.1), get the 

pair 64. 

t = 43, B = 11- ext S16 + 1 pair, C = L~+ Taking A, B, C, where C and its reverse 

have 0 pairs in common (Table B.2), get the pair 60. 

Case (3): n = 4 (mod 12) 

We start with: 

(a) n 2: 112 

and we prove that Intsn = ( L~J, 2L~J) - {2L~J - 1} 

Step 1)£~~~~~ 1 + slJJ and get the pairs: L~J' L~J + 1, L~J + 2. 
Step 2) { t = 2L~J - 7; B = 2- near S7 ; C = L~JJ+l + (2, 0, 2) 
Taking A, B, C, where C and its reverse have one pair in common (Table B.8), get 

the pair 2l ~ J . 

) { 
t1 = 2l~J - 11; B1 = Sg; C1 = L:~~JJ+3 

Step 3 n m2=l~J+4 
t2 = 2LJJ - 15; B2 = B1 + 3; C2 = Ld2 =1/ 

+-

Taking A1, B1 *, C1, where C1 and its reverse have 3 pairs in common (Table B.1), get 

the pairs t1 + 3, ... , t1 + p, t1 + p + 3. 

Taking AI, Bl*, cl, get the pairs ml, ... 'ml + p- 3, ml + p. 
+-

Taking A2 , B2*, C2 , where C2 and its reverse are disjoint (Table B.2), get the pairs 

t2, ... 't2 + p- 3, t2 + p. 

Taking A2, B2*, C2, get the pairs m2, ... , m2 + p- 3, m2 + p. 

{ 
B B C L m;=m;-1+3 

) 
ti = ti-l - 12; i = i-1 + 9; i = d·-d· +9 Ste 4 ,- •- 1 

p _ . _ . _ mi+1=m;+l 
ti+l - ti- 4, Bi+l - Bi + 3, Ci+l - Ldi+ 1=d;+3 

+-

Taking Ai, Bi*, Ci, where Ci and its reverse have 3 pairs in common (Table B.8), get 

the pairs ti + 3, ... , ti + p, ti + p- 3. 
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<-

Taking Ai+1 , Bi+1 *, Ci+1 , where Ci+1 and its reverse are disjoint (Table B.2), get the 

pairs ti+1 , ... , ti+1 + p- 3, ti+l + p. 

Taking Ai+l, Bi+I*, Ci+I, get the pairs mi+l, ... , mi+l + p- 3, mi+1 + p. 

Repeat Step 4) for all admissible orders mi ~ 2di- 1 or mi+1 ~ 2di+1 - 1. 

Now we deal with the small orders: 

(b) 10::; n < 112. 

For n = 16, we prove that Int816 = (5, 10) 

£~1 + S5 , where the Langford sequences have 0, 1, 2 pairs in common and gives the 

pairs 5, 6, 7. 

t = 7; B = S2 + 2 pairs; C = L~ 
<-

A, B, C and get the pair 9. 

For n = 28, we prove that Ints28 = (9, 18)- {13, 14, 16, 17} 

Lf6 + S9 ; The perfect Langford sequence can have 0, 1, 2 pairs in common (Table B.6) 

and gives the pairs 9, 10, 11. 

t = 13; B = S4 + 1 pair; C = Lg0 

<-

Taking A, B*, C, get the pairs 11, 12, 15. 

For n = 40 we prove that Ints40 = (13, 26)- {18, 19, 20, 22, 24} 

LII + S13 ; The perfect Langford sequence can have 0, 1, 2 pairs in common (Table 

B.6) and gives the pairs 13, 14, 15. 

t = 19; B = 85 + 2 pairs; C = L~4 

<-

Taking A, B*, C, get the pair 16, 17, 21. 

t = 17; B = 6 - ext 87 + 1 pair; C = L§5 

<-

Taking A, B, C, get the pair 23. 

Taking A, B, C, where C and its reverse have 0, 1, 2, 3 pairs in common (Table B.6), 

get the pairs 25, 26, 27, 28. 

For n =52, we prove that Ints52 = (17, 34) 

L~~ + 817 ; The perfect Langford sequence can have 0, 1, 2 pairs in common (Table 

B.6) and gives the pairs 17, 18, 19. 

t = 27; B = 2- near 87 ; C = hL~8 + (2, 0, 2) 
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.___ 

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.8), get the 

pair 34. 

t = 23; B = 5g; C = Li8 
.___ 

Taking A, B*, C, get the pairs 20, ... , 26, 29 . 
.___ 

Taking A, B*, C, where C and its reverse have 1, 3 pairs in common (Table B. 7 and 

Table B.1), get the pairs 24, ... , 33, 35. 

For n = 64, we prove that Ints64 = (21, 42) 

L~~ + 521 ; The perfect Langford sequence can have 0, 1, 2 pairs in common (Table 

B.6) and gives the pairs 21, 22, 23. 

t = 35; B = 2 - near 57 ; C = £~2 + (2, 0, 2) 

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.8), get the 

pair 42. 

t = 31; B = 2- near 510 , C = Lif + (2, 0, 2) 

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.9), get the 

pair 41. 

t - 31· B- 5 · C- £ 24 
- ' - g, - 10 

.___ 

Taking A, B*, C, get the pairs 24, ... , 30, 33. 

Taking A, B*, C, where C and its reverse have 3 pairs in common (Table B.1), get 

the pairs 31, ... , 37, 40. 

t = 27; B = 512; C = Li~ 
<-

Taking A, B*, C, get the pairs 25, ... , 34, 37 . 
.___ 

Taking A, B*, C, where C and its reverse are disjoint (Table B.6), get the pairs 

27, ... '36, 39. 

For n = 76, we prove that Ints76 = (25, 50)- {49} 

L~~ + S25 ; The perfect Langford sequence can have 0, 1, 2, 3 pairs in common (Table 

B.6) and gives the pairs 25, 26, 27, 28. 

t = 43; B = 2- near 57 ; C = L~6 + (2, 0, 2) 

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.8), get the 

pair 50. 
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<-

Taking A, B*, C, get the pairs 28, ... , 34, 37. 
<-

Taking A, B*, C, where C and its reverse have 3 pairs in common (Table B.l) and 

get the pairs 42, ... , 48, 51. 

t - 35· B - 8 · C - £ 29 
- ' - 12, - 13 

<-

Taking A, B*, C, get the pairs 29, ... , 38, 41. 
<-

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

35, ... '44, 47. 

For n = 88, we prove that Ints88 = (29, 58)- {57} 

£~5 + 829 ; The perfect Langford sequence can have 0, 1, 2 pairs in common (Table 

B.6) and gives the pairs 29, 30, 31. 

t =51; B = 2- near 87 ; C = h£~0 + (2, 0, 2) 

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.8), get the 

pair 58. 

t = 47; B = 89; C = £~6 
<-

Taking A, B*, C, get the pairs 32, ... , 38, 41. 

Taking A, B*, C, where C and its reverse have 3 pairs in common (Table B.l), get 

the pairs 50, ... , 56, 59. 

t = 43; B = 812; C = Lf~ 
<-

Taking A, B*, C, get the pairs 33, ... , 42, 45. 
<-

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

43, ... ' 52, 55. 

For n = 100, we prove that Ints100 = (33, 66)- {65} 

Lgi +833 ; The perfect Langford sequence can have 0, 1, 2 pairs in common (Table B.6) 

and the perfect Skolem sequence can be the same. These gives the pairs 33, 34, 35. 

t = 59; B = 2 - near 87 ; C = hL~4 + (2, 0, 2) 
<-

Taking A, B, C, where C and its reverse have 1 pair in common (Table B.8), get the 

pair 66. 

t =55; B = 89; C = Lf8 
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+-

Taking A, B*, C, get the pairs 36, ... , 42, 45. 
+-

Taking A, B*, C, where C and its reverse have 3 pairs in common (Table B.1), get 

the pairs 63, ... , 69, 72. 

t =51; B = 812 ; C = L~~ 
+-

Taking A, B*, C, get the pairs 37, ... , 46, 49. 
+-

Taking A, B*, C, where C and its reverse are disjoint (Table B.2), get the pairs 

51, ... ' 60, 63. 

Case (4): n = 5(mod 12) 

We start with: 

(a) Case n ~ 77 

and we prove that Intsn = (l~J, 2l~J)- {l~J + 1, 2l~J- 2, 2l~J- 3}. 

Step 1) { t1 = 2l~J - 7; B1 = 2- near 86 ; C1 = L~~~LftJ+l + (2, 0, 2) 
Taking A1, B1, C1 , where C1 and its reverse have 0 pairs in common (Table B.8), get 

last pair 2l ~ J . 

Step 2 ) 2 = 3 - ' 2 = 5' 2 = d2 =6 
{ 

t 2lnJ 7· B 8 . C Lm2=m1+l 

_ . _ , _ m3=m2+l 
t3 - t2 - 4, B3 - B2 + 3, C3 - Ld

3
=d2+3 

+-

Taking A2 , B2*, C2, where C2 and its reverse are disjoint (Table B.2), get the pairs 

t2, ... 't2 + 1, t2 + 5. 

Taking A2, B 2*, C2, get the pairs m2, m2 + 1, m2 + 5. 
+-

Taking A3, B3*, C3, where C3 and its reverse are disjoint (Table B.1), get the pairs 

t3, ... 't3 + p - 3, t3 + p. 

Taking A3, B3*, C3, get the pairs m3, ... , m3 + p- 3, m3 + p. 

) 
{ 

ti =ti-l - 12; Bi = Bi-1 + 9; Ci = Lmd ~=dmi-+1 +9 3 
Ste 3 ·- •- 1 

p _ . _ . _ mi+1=mi+l 
ti+l - ti- 4, Bi+l - Bi + 3, Ci+l - Ldi+ 1=di+3 

Taking Ai, Bi*, Ci, where Ci and its reverse are disjoint (Table B.2), get the pairs 

ti' ... ' ti + p - 3' ti + p. 

Taking Ai, Bi*, Ci, get the pairs mi, ... , mi + p- 3, mi + p. 
+-

Taking Ai+1,Bi+1*,Ci+1, where Ci+1 and its reverse are disjoint (Table B.1), get the 

pairs ti+1, ... , ti+l + p- 3, ti+l + p. 



..... 
Taking Ai+1 , Bi+1 *, Ci+1, get the pairs mi+1 , ... , mi+1 + p- 3, mi+1 + p. 

Repeat Step 3) for all admissible orders mi ~ 2di- 1 or mi+1 ~ 2di+1 - 1. 

And now we deal with the small orders: 

(b) 10:::; n < 77 

For n = 17 we are not able to use these constructions. 

For n = 29, we prove that Ints29 = (9, 18)- {10, 17} 

t = 13, B = 55 , C = L~1 

..... 
Taking A, B*, C, get the pairs 11, 12, 16. 

68 

Taking A, B*, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), 

get the pairs 13, ... , 16, 18. 

For n = 41, we prove that Ints41 = (13, 26)- {14, 23, 24, 25} 

t = 21, B = 55 , C = L~5 

..... 
Taking A, B*, C, get the pairs 15, 16, 20 . 

..... 
Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.2), get 

the pairs 21, 22, 26. 

t = 19, B = 56 + 1 pair, C = Lj5 

..... 
Taking A, B*, C, get the pairs 16, 17, 18, 19, 22. 

For n = 53, we prove that Ints53 = (17, 34)- {18, 31, 32} 

t = 29, B = 55 , C = 619 

..... 
Taking A, B*, C, get the pairs 19, 20, 24. 

Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.2) and 

get the pairs 29, 30, 34. 

t = 25, B = 58 , C = L~0 
..... 

Taking A, B*, C, get the pairs 20, ... , 25, 28 . 
..... 

Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.1), get 

the pairs 25, ... , 30, 33. 

For n = 65, we prove that Ints65 = (21, 42)- {22, 30, 31, 39} 

t = 27, B =55 , C = 623 

..... 
Taking A, B*, C, get the pairs 23, 24, 27. 
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...... 
Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.2) and 

get the pairs 27, 28, 32. 

t = 33, B = S8 , C = £~4 

...... 
Taking A, B*, C, get the pairs 24, ... , 29, 32 . 

...... 
Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.1), get 

the pairs 33, ... , 38, 41. 

t = 27, B = 11- ext S12 + 1 pair, C = Li3 
...... 

Taking A, B, C, get the pairs 38 . 
...... 

Taking A, B, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), get 

the pairs 40, 41, 42. 

Case (5): n = 8(mod 12) 

We start with: 

(a) n ~ 92 

and prove that Intsn = (L~J,2L~J)- {L~J + 1,2L~J- 3}. 

Step 1) { t1 = 2l~J - 5; B1 = 2- near S6; C1 = hL~~~l~J+l + (2, 0, 2) 
...... 

Taking A1, B1, C1, where C1 and its reverse have 0 pairs in common (Table B.2), get 

last pair 2 L ~ J . 

Step 2) 2 - 3 - ' 2 - 5, 2 - d2=6 
{ 

t - 2LnJ 5· B - S . C - £m2=m1+1 

t3 = t2 - 4; B3 = B2 + 3; C3 = L~~r;~t 1 

Taking A2, B2*, C2, where C2 and its reverse have 3 pairs in common (Table B.1), get 

the pairs t2 + 3, t2 + 4, t2 + 8. 

Taking A2, B2*, C2, get the pairs m2, m2 + 1, m2 + 5 . 
...... 

Taking A3, B3*, C3, where C3 and its reverse are disjoint (Table B.2), get the pairs 

t3, ... 't3 + p - 3, t3 + p. 

Taking A3, B3*, C3, get the pairs m3, ... , m3 + p- 3, m3 + p. 

Step 3 ·- •- 1 ) { 
ti =ti-l- 12; Bi = Bi-1 + 9; Ci = Lmd-~=dmi-+1 +9 3 

_ . _ . C _ ffii+1=m;+l 
ti+1 - ti- 4, Bi+l - Bi + 3, i+l - Ldi+1=d;+3 

...... 
Taking Ai, Bi*, Ci, where Ci and its reverse have 3 pairs in common (Table B.1), get 

the pairs ti + 3, ... , ti + p, ti + p + 3. 
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Taking Ai, Bi*, Ci, get the pairs mi, ... , mi + p- 3, mi + p. 

Taking Ai+1 , Bi+1 *, Ci+1, where Ci+1 and its reverse are disjoint (Table B.1), get the 

pairs ti+l, ... , ti+l + p- 3, ti+l + p . 
..... 

Taking Ai+l, Bi+I*, CH1, get the pairs mi+l' ... , mi+l + p- 3, mi+l + p. 

Repeat Step 3) for all admissible orders mi 2: 2di- 1 or mi+1 2: 2di+1 - 1. 

And now we deal with the small orders: 

(b) 10 ~ n < 92 

For n = 20, we prove that Ints20 = (6, 12)- {7, 9} 

t = 9, B = 53 + 1 pair, C = Ll 
.-

Taking A, B*, C, get the pairs 8, 11. 

Taking A, B*, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), 

get the pairs 10, 11, 12. 

For n = 32, we prove that Ints32 = (10, 20)- {11, 14, 15} 

t = 15, B = 55 , C = £~2 

.-
Taking A, B*, C, get the pairs 12, 13, 16. 

Taking A, B*, C, where C and its reverse have 1, 3 pairs in common (Table B.7 and 

Table B.1), get the pairs 16, ... , 19. 

For n = 44, we prove that Jnts44 = (14, 28)- {15} 

t = 23, B = 55 , C = L~6 

.-
Taking A, B*, C, get the pairs 16, 17, 21. 

Taking A, B*, C, where C and its reverse have 3 pairs in common (Table B.1), get 

the pairs 26, 27, 31. 

t = 19, B = 58 , C = £~7 

.-
Taking A, B*, C, get the pairs 17, ... , 22, 25. 

Taking A, B*, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), 

get the pairs 19, ... , 28. 

For n =56, we prove that Ints56 = (18,36)- {19,33} 

t = 31, B = 2- near 56 , C = h£~9 + (2, 0, 2) 

Taking A, B, C, where C and its reverse are disjoint (Table B.9), get the pair 36. 
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t = 31, B = 85 , C = L~0 
+-

Taking A, B*, C, get the pairs 20, 21, 25. 
+-

Taking A, B*, C, where C and its reverse have 3 pairs in common (Table B.l), get 

the pairs 34, 35, 39. 

t = 27, B = 88 , C = £~1 

+-

Taking A, B*, C, get the pairs 21, ... , 26, 29. 
+-

Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.2), get 

the pairs 27, ... , 32, 35. 

For n = 68, we prove that Ints68 = (22, 44)- {23, 34,41} 

t = 39, B = 2 - near 86 , C = hL~3 + (2, 0, 2) 

Taking A, B, C, where C and its reverse are disjoint (Table B.9), get the pair 44. 

t = 39, B = 85 , C = L~4 

+-

Taking A, B*, C, get the pairs 24, 25, 29. 
+-

Taking A, B*, C, where C and its reverse have 3 pairs in common (Table B.l), get 

the pairs 42, 43, 47. 

t = 35, B = 88, C = L~5 

+-

Taking A, B*, C, get the pairs 25, ... , 33, 36. 

Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.2), get 

the pairs 35, ... , 40, 43. 

t = 33, B = 89 + 1 pair, C = L~5 
+-

Taking A, B*, C, get the pairs 26, ... , 32, 35. 

For n = 80, we prove that Ints80 = (26, 52)- {27, 39, 40} 

t = 47, B = 2- near 86 , C = hL~7 + (2, 0, 2) 

Taking A, B, C, where C and its reverse are disjoint (Table B.9), get the pair 52. 

t = 47, B = 85 , C = £~8 

+-

Taking A, B*, C, get the pairs 28, 29, 33. 

Taking A,B*,C, where C and its reverse have 3 pairs in common (Table B.l), get 

the pairs 50, 51, 55. 

t = 43, B = 88 , C = L~9 
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+-

Taking A, B*, C, get the pairs 29, ... , 44, 47. 
+-

Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.2), get 

the pairs 43, ... , 48, 51. 

t = 39, B = 510 + 2 pairs; C = hL~7 + (2, 0, 2) 
+-

Taking A, B*, C, get the pairs 30, ... , 37, 40. 
+-

Taking A, B*, C, where C and its reverse have 0 pairs in common (Table B.9), get 

the pairs 41, ... , 48, 51. 

t = 33, B = 14 - ext 515 + 1 pair, C = L~~ 
+-

Taking A, B, C, get the pair 47. 

Taking A, B, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), get 

the pairs 49, 50, 51. 

Case (6): n = 9(mod 12) 

We start with: 

(a) n 2: 81 

and prove that Intsn = (l~J, 2l~J)- {l~J + 3, 2l~J- 2, 2l~J- 6}. 

Step 1) t1 = 3 - ' 1 = 1, 1 = d}=2 
{ 

2lnj 1 B S C Lm1 =l%J 

t2 = t1- 4; B2 = B1 + 3 = 84, C2 = D;h~m1 + 1 

Taking A1,B1,C1, where C1 and its reverse are disjoint [40], get the pair 2l~J. 
+-

Taking A2, B2*, C2, get the pairs l~J + 1, l~J + 2, l~J + 5. 
+-

Taking A2, B2*, C2, where C2 and its reverse are disjoint (Table B.2), get the pairs 

2l~J - 5, 2l~J -4, 2l~J - 1. 

Step 2) { t3 = t 2 - 12, B3 = 2- near 8 14, C3 = hL~~r;~i02 + (2, 0, 2) 
+-

Taking A3 , B 3 , C3 , where C3 and its reverse are disjoint(Table B.8), get the pairs 

t3 + 13. 

Ste 3) { t4 = t3, B4 = B2 + 9, C4 = L:I.:~r:~t3 

P ts = t4 - 4, Bs = B4 + 3, Cs = L~~7~t1 
+-

Taking A4 , B4*, C4 , where C4 and its reverse have 0 pairs in common (Table B.2), get 

the pairs t4, ... , t4 + p- 3, t4 + p. 

Taking A4 , B4 *, C4 , get the pairs m 4 , ... , m 4 + p- 3, m4 + p. 
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+-

Taking As, Bs*, Cs, where Cs and its reverse are disjoint (Table B.2), get the pairs 

ts, ... , ts + p - 3, ts + p. 

Taking As, Bs*, Cs, get the pairs ms, ... , ms + p- 3, ms + p. 

{ 
12 B B 9 C Lm;=m;-1+3 

S ) ti = ti-l - ' i = i-1 + ' i = d·-d· +9 tep 4 ,- •- 1 

t t 4 B B 3 C Lmi+1=m;+l 
i+l = i - ' i+l = i + ' i+l = d· -d·+3 •+1-' 

+-

Taking Ai, Bi*, Ci, where Ci and its reverse have 0 pairs in common (Table B.2) and 

get the pairs ti + 3, ... , ti + p, ti + p- 3. 
+-

Taking Ai, Bi*, Ci, get the pairs mi, ... , mi + p- 3, mi + p. 
+-

Taking Ai+1, Bi+l*, Ci+1, where Ci+1 and its reverse are disjoint (Table B.2), get the 

pairs ti+l, ... , ti+l + p- 3, ti+l + p. 

Taking Ai+1 , Bi+1*, Ci+1, get the pairs mi+1, ... , mi+1 + p- 3, m 1= 1 + p. 

Repeat Step 4) for all admissible orders mi ~ 2di + 1 or mi+1 ~ 2di+1 - 1. 

And now we deal with the small cases: 

(b) 10 ~ n < 81 

For n = 21, we prove that Ints21 = (7, 14)- {9, 10, 11, 12, 13} 

t = 13, B = 51, C = L~ 
Taking A, B, C, where C and its reverse are disjoint [40], get the pair 14. 

+-

Taking A, B, C, get the pair 8. 

For n = 33, we prove that Ints33 = (11, 22)- {14, 15, 19, 20} 

t = 21, B = 51, C = £~1 

Taking A, B, C, where C and its reverse are disjoint [40], get the pair 22. 
+-

Taking A, B, C, get the pair 12. 

t = 17, B = 54, C = £~2 

+-

Taking A, B*, C, where C and its reverse are disjoint(Table B.1), get the pairs 

17, 18, 21. 
+-

Taking A, B*, C, get the pairs 12, 13, 16. 

For n = 45, we prove that Ints45 = (15, 30)- {22, 27} 

t = 29, B = 51 , C = L~s 
Taking A, B, C, where C and its reverse are disjoint [40], get the pair 30. 
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;-

Taking A, B, C, get the pair 16. 

t = 25, B = 84 , C = L~6 

;-

Taking A, B*, C, where C and its reverse are disjoint(Table B.1), get the pairs 

25, 26, 29. 
;-

Taking A, B*, C and get the pairs 16, 17, 20. 

t = 21, B = 86 + 2 pairs, C = Li6 

;-

Taking A, B*, C, where C and its reverse are disjoint(Table B.1), get the pairs 

23, 24, 25, 26, 29. 
;-

Taking A, B*, C, get the pairs 18, 19, 20, 21, 24. 

t = 19, B = 7- ext 88 + 1 pair, C = £~7 

;-

Taking A, B, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), get 

the pairs 28, 29, 30. 
;-

Taking A, B, C, get the pair 26. 

For n =57, we prove that 

Ints57 = (19, 38)- {22, 23, 25, 26, 27, 28, 29, 31, 32, 35} 

t = 37, B = 81, C = L§9 

Taking A, B, C, where C and its reverse are disjoint [40], get the pair 38. 

t = 33, B = 84 , C = L~0 
;-

Taking A, B*, C, where C and its reverse are disjoint(Table B.1), get the pairs 

33, 34, 37. 
;-

Taking A, B*, C, get the pairs 20, 21, 24. 

t = 27, B = 3- ext 88 + 1 pair, C = £~1 

Taking A, B, C, where C and its reverse are disjoint(Table B.2), get the pair 36. 
;-

Taking A, B*, C, get the pairs 30. 

For n = 69, we prove that Ints69 = (23, 46)- {26, 40, 43, 44} 

t = 45, B = 81, c = L~3 

Taking A, B, C, where C and its reverse are disjoint [40], get the pair 46. 

t = 41, B = 84 , C = L~4 

Taking A, B*, C, where C and its reverse are disjoint(Table B.1), get the pairs 
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41, 42, 45. 
<-

Taking A, B*, C, get the pairs 24, 25, 28. 

t = 29, B = S13, C = L~1 
Taking A, B*, C, where C and its reverse have 0, 1, 2, 3 pairs in common (Table B.6), 

get the pairs 29, ... , 46. 
<-

Taking A, B*, C, get the pairs 27, ... , 37, 40. 0 

To prove the following theorem we use the same technique as above. 

Theorem 21 For n ~ 1, the necessary conditions are sufficient for the existence 

of two hooked Skolem sequences of order n, to intersect in ( l ~ J, 2l ~ J) pairs with 

the following possible exceptions: for n = 2(mod 12), n > 98, n = 98 + 60r the 

exceptions are {l~J + 1, l~J + 21 + 16r, l~J + 22 + 16r, l~J + 24 + 16r, ... , 2l~J -

4, 2l~J - 2}, otherwise the exceptions are {l~J, l~J + 1, l~J + 9 + 16r, l~J + 10 + 

16r, l~J + 12 + 16r, ... , 2l~J- 4, 2l~J- 2} and other 55 exceptions for 10:::; n:::; 98, 

for n = 3(mod 12), n > 75, n = 75 + 60r the exceptions are {l~J + 3, l~J + 15 + 

16r, l~J + 16 + 16r, l~J + 18 + 16r, ... , 2l~J- 3, 2l~J- 1}, otherwise the exceptions 

are {l~J +3, l~J +3+ 16r, l~J +4+ 16r, l~J +6+ 16r, ... , 2l~J -3, 2l~J -1} and 41 

exceptions for 10 :::; n :::; 75, for n = 6(mod 12), n > 78, n = 78 + 60r the exceptions 

are {l~J + 3, l~J + 15 + 16r, l~J + 16 + 16r, l~J + 18 + 16r, ... , 2l~J- 2}, otherwise 

the exceptions are {l~J + 3, l~J + 3 + 16r, l~J + 4 + 16r, l~J + 6 + 16r, ... , 2l~J- 2} 

and 51 other exceptions for 10:::; n:::; 78, for n- 7(mod 12), n ~ 67, n = 55+ 60r the 

exceptions are {l~J + 10 + 16r, l~J + 11 + 16r, l~J + 13 + 16r, ... , 2l~J- 2}, otherwise 

the exceptions are {l~J + 14+ 16r, l~J + 15+ 16r, l~J + 17 + 16r, ... , 2l~J- 2} and 14 

other possible exceptions for 10 :::; n < 67, for n = lO(mod 12), n ~ 70, n = 58+ 60r 

the exceptions are {l~J + 10+ 16r, l~J + 11 + 16r, l~J + 13+ 16r, ... , 2l~J}, otherwise 

the exceptions are {l~J + 14+ 16r, l~J + 15+ 16r, l~J + 17+ 16r, ... , 2L~J} and other 26 

exceptions for 10 :::; n < 70, for n _ ll(mod 12), n > 95, n = 95 + 60r the exceptions 

are {l~J + 1, l~J + 21 + 16r, l~J + 22 + 16r, l~J + 24 + 16r, ... , 2l~J -1}, otherwise 

the exceptions are {l~J + 1, l~J +9+ 16r, l~J + 10+ 16r, l~J + 12+ 16r, ... , 2l~J -1} 

and other 56 exceptions for 10 :::; n :::; 95, where r, t are positive integers. 
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Proof: For 1 ::; n ::; 9, see Appendix A. For a list with all the possible exceptions, 

see Appendix C. 

We divide this proof into 6 cases. Let r, p and i be positive integers. 

Case (1): n = 2(mod 12) 

We start with: 

(a) n > 98, n = 98 + 60r 

and we prove that Intsn = ( L~J, 2L~J)- {L~J + 1, L~J + 21 + 16r, L~J + 22 + 16r, L~J + 
24 + 16r, ... , 2L~J - 4, 2L~J - 2}. 

Step 1) t1 = 3 - ' 1 = 5, 1 = d1=6 
{ 

2LnJ 5 B S C Lml=L~J+2 

t2 = t1 - 4; B2 = B1 + 3 = Ss, C2 = £~~~7~! 1 

Taking A1,B1*,C1, get the pairs: 

L~J + 2, L~J + 3, L~J + 7. 

Taking A2, B2*, c2, get the pairs: L~J + 3, ... ' L~J + 8, L~J + 11. 

Ste 
2
) { t3 = t2 - 8; B3 = 2 - near S15; C3 = L~~~r;~i 1 , (2, 0, 2) 

p - 4· B - 2 S · C - Lm4 =m3 + 1 (2 0 2) t4 - t3- , 4 - -near 1s, 4- d4 =d3 + 3 , , , 

Taking A3 , B3 , C3 , (2, 0, 2), where C3 and its reverse have one pair in common (Table 

B.1), get the pair: 2L~J - 1 

Taking A4 , B4 , C4 , (2, 0, 2), where C 4 and C4 are disjoint (Table B.2), get the pair: 

2L~J - 3. 

Step 3) 5 = 4, 5 = 2 ' 5 = dFd2+9_ 
{ 

t t . B B + 9· C £m5=m2+3 

t6 = t5 - 4; B6 = B5 + 3; C6 = L~~-;~!1 

+-

Taking A5, B5*, C5, get the pairs: m5, ... , m5 + p - 3, m5 + p. 

Taking A6, B6*, C6, get the pairs: m6, ... , m6 + p- 3, m6 + p. 

If r = 1, take i = 7 and go to Step 5), otherwise, take i = 7 and go to Step 4). 

Ste 4) ti =ti-l- ; i = i-1 + ; i = d;=d;-1+9 

{ 
12 B B 9 C L

m;=m;-1+3 

p _ . _ . C _ mi+l=m;+l 
ti+l - ti- 4, Bi+l - Bi + 3, i+l - Ldi+l=d;+3 

+-

Taking Ai, Bi*, Ci, get the pairs: 

mi, ... , mi + p- 3, mi + p. 
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mi+l• ... , mi+l + p- 3, mi+l + p. 

Repeat Step 4) r- 1 times, then take i = 5 + 2r and go to Step 5). 

S 5) 12 B B 9 C Lm;=m;-1+3 
tep ti =ti-l- ; i = i-1 + ; i = d;=d;_ 1+9 

Taking Ai, Bi*• Ci, get the pairs: 

mi, ... , mi + p- 3, mi + p. 

Then we continue with: 

(b)n>98,n=50+60r, n=62+60r, n=74+60r, n=86+60r 

and we prove that Intsn = (L~J, 2L~J)- {l~J + 1, L~J +9+ 16r, L~J + 10+ 16r, L~J + 

12 + 16r, ... , 2L~J -4, 2L~J - 2}. 

Taking Step 1),2),3) and 4) above without Step 5). 

And now we taking the small cases: 

(c) 10::; n::; 98 

For n = 14 and n = 26 these constructions cannot be applied. 

For n = 38, we prove that 

Ints38 = (12, 24)- {13, 16, 17, 18, 20, 22, 23}. 

t = 19, B = S5 , C = L~4 

+-

Taking A, B*, C, get the pairs 14, 15, 19. 

t = 17, B = 4 - ext 56 + 1 pair, C = L~4 
+-

Taking A, B, C, get the pair 21. 

For n =50, we prove that Ints50 = (16, 32)- {17, 25, 26, 28, 30}. 

t = 27, B = S5 , C = L~8 

+-

Taking A, B*, C, get the pairs 18, 19, 23. 

t = 23, B = S8 , C = L§9 

+-

Taking A, B*, C, get the pairs 19, ... , 24, 27. 

t = 21, B = 7- ext S9 + 1 pair, C = Li5 
+-

Taking A, B, C, get the pair 29. 

Taking A, B, C, where C and its reverse can have 0, 1, 2 pairs in common (Table B.6), 

get the pairs 31, 32. 



For n = 62, we prove that 

Ints62 = (20, 40)- {21, 29, 30, 32, 34, 35, 36, 37, 38}. 

t = 35, B = S5 , C = £~2 

+--

Taking A, B*, C, get the pairs 22, 23, 27. 

t = 31, B = S8 , C = L~3 

+--

Taking A, B*, C, get the pairs 23, ... , 28, 31. 

t = 29, B = 3- ext S9 + 1 pair, C = Lr5 
+-

Taking A, B, C, get the pair 33. 
<-

Taking A, B, C, where C and its reverse are disjoint (Table B.2), get the pair 39. 

For n = 7 4, we prove that 

Int874 = (24, 48)- {25, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47}. 

t = 43, B = S5 , C = L~6 

<-

Taking A, B*, C, get the pairs 26, 27, 31. 

t = 39, B = 58 , C = L~7 

+--

Taking A, B*, C, get the pairs 27, ... , 32, 35. 

t = 33, B = 7 - ext S12 + 1 pair, C = Lt~ 
+--

Taking A, B, C and get the pairs 41. 
+--

Taking A, B, C, where C and its reverse are disjoint (Table B.1), get the pair 46. 

For n = 86, we prove that 

Ints86 = (28, 56)- {29, 37, 38, 40, 41, 42, 43, 44, 46, 48, 50, 51, 52, 53}. 

t =51, B = S5 , C = L~0 

+--

Taking A, B*, C, get the pairs 30, 31, 35. 

t = 47, B = S8 , C = £~1 

+--

Taking A, B*, C, get the pairs 31, ... , 36, 39. 

t = 41, B = 3- ext S12 + 1 pair, C = Lf~ 
+--

Taking A, B, C, get the pair 45. 
+--

Taking A, B, C, where C and its reverse are disjoint (Table B.1), get the pair 54. 

t = 39, B = 2- near S15 , C = Lf~, (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 47. 
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Taking A, B, C, (2, 0, 2), where C and its reverse have one pair in common (Table 

B.1), get the pair 55. 

t = 37, B = 12- ext 815 + 1 pair, C = L1~ 
<-

Taking A, B, C, get the pair 49. 

For n = 98, we prove that 

Ints98 = (32, 64)- {33, 53, 54, 56, 58, 59, 60}. 

t = 59, B = 85, C = L~4 
<-

Taking A, B*, C, get the pairs 34, 35, 39. 

t =55, B = 88, C = L~5 

+-

Taking A, B*, C, get the pairs 35, ... , 40, 43. 

t = 47, B = 2- near 815 , C = L1~ + (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 51. 

Taking A, B, C, (2, 0, 2), where C and its reverse have one pair in common (Table 

B.1), get the pair 63. 

t = 43, B = 2 - near 818 , C = L1~ + (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 55. 

Taking A, B, C, (2, 0, 2), where C and its reverse have 0, 1, 2 pairs in common (Table 

B.6), get the pairs 61, 62, 63. 

t = 43, B = 811, C = L1~ 
<-

Taking A, B*, C, get the pairs 38, ... , 52,55 

t = 41, B = 16- ext 818 + 1 pair, C = L1~ 
+-

Taking A, B, C, get the pair 57. 

Case (2): n = 3(mod 12) 

We start with: 

(a) n > 75, n = 75 + 60r 

and we prove that Intsn = (l~J, 2l~J)- {l~J +3, l~J + 15+ 16r, l~J + 16+ 16r, l~J + 

18 + 16r, ... , 2l~J- 3, 2l~J -1}. 

){ 
t1 = 2l~J -1, B1 = 81, c1 = L;~~lfi'J 

Step 1 I-

t2 = t1 - 4; B2 = B1 + 3 = 84, C2 = L~~7~t1 
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<-

Taking AI, Bl, 01, get the pair l~J + 1. 
<-

Taking A2, B2*, 02, get the pairs l~J + 1, l~J + 2, l~J + 5. 

Step 2) { t3 = t2 - 8, B3 = 2- near Su, 0 3 = £~~~7~;\ (2, 0, 2) 

Taking A3, B3, 0 3, (2, 0, 2), 0 3 and its reverse are disjoint (Table B.2), get the pair 

2l~J - 2. 

) { 
t4 = t3 - 4; B4 = B2 + 9; 

Step 3 
ts = t4 - 4; Bs = B4 + 3; 

Taking A4 , B4*, 0 4 , get the pairs: 

m4, ... , m4 + p- 3, m4 + p. 

Taking A5 , B5*, 0 5 , get the pairs: 

ms, ... , ms + p- 3, ms + p. 

If r = 1, take i = 6 and go to Step 5), otherwise, take i = 6 and go to Step 4). 

) { 
ti =ti-l- 12; Bi = Bi-1 + 9; Oi = Lmd-~=dmi-+1 +9 3 

Ste 4 ·- •-1 

p _ . _ . _ mi+1=mi+l 
ti+l - ti- 4, Bi+l - Bi + 3, Oi+l - Ldi+1=di+3 

<-

Taking Ai, Bi*, Oi, and get the pairs: 

mi, ... , mi + p- 3, mi + p. 

Taking Ai+1, Bi+1 *, Oi+1, get the pairs: 

mi+I, ... , mi+l + p- 3, mi+l + p. 

Repeat Step 4) r- 1 times, then take i = 4 + 2r and go to Step 5). 

S ) B B 9 C Lmi=mi-1+3 
tep 5 ti = ti-l - 12; i = i-1 + ; i = di=d;_ 1 +9 

<-

Taking Ai, Bi*, Oi, get the pairs: 

mi, ... , mi + p - 3, mi + p. 

Then we continue with: 

(b) n > 75, n = 27 + 60r, n = 39 + 60r, n =51+ 60r, n = 63 + 60r 

and prove that I ntsn = ( l ~ J, 2l ~ J) - {l ~ J + 3, l ~ J + 3 + 16r, l ~ J + 4 + 16r, l ~ J + 6 + 

16r, ... ,2l~J- 3,2l~J- 1}. 

Take Step 1), 2), 3) 4) without Step 5) above. 

And now we take the small cases: 

(c) 10::; n::; 87 



For n = 15, we prove Ints15 = (5, 10)- {7, 8, 9}. 

t = 9, B = S1, C = Lg 
+-

Taking A, B, C, get the pair 6. 

For n = 27, we prove that I nts27 = (9, 18) - {12, 13, 15, 16, 17}. 

t = 17, B = S1, C = L~ 
+-

Taking A, B, C, get the pair 10. 

t = 13, B = S4 , C = Lg0 

+-

Taking A, B*, C, get the pairs 10, 11, 14. 

For n = 39, we prove that Ints39 = (13, 26)- {17, 19, 21, 22, 23, 24, 25}. 

t = 21, B = S4, C = Lg4 

+-

Taking A, B*, C, get the pairs 14, 15, 18. 

t = 19, B = 2 - near s6 + 1 pair, c = LP' (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 20. 
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Taking A, B, C, (2, 0, 2), where C and its reverse can have 0, 1, 2 pairs in common 

(Table B.6), get the pairs 26, 27, 28. 

t = 19, B = S5 + 1 pair, C = L~4 

+-

Taking A, B*, C, get the pairs 15, 16, 20. 

For n = 51, we prove that 

Ints51 = (17, 34)- {20, 21, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33}. 

t = 29, B = S4 , C = Lg8 

+-

Taking A, B*, C, get the pairs 18, 19, 22. 

t = 23, B = 5 - ext S8 + 1 pair, C = L§9 

+-

Taking A, B, C, get the pair 28. 

For n = 63, we prove that Ints63 = (21, 42)- {30, 31, 33, 35, 37, 38}. 

t = 37, B = S4 , C = L~2 

+-

Taking A, B*, C, get the pairs 22, 23, 26. 

t = 31, B = S8 + 1 pair, C = L~3 

+-

Taking A, B*, C, get the pairs 24, ... , 29, 32. 

t = 29, B = 2- near S11 + 1, C = Lg, (2, 0, 2) 
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Taking A, B, C, (2, 0, 2), get the pair 34. 

Taking A, B, C, (2, 0, 2), where C and its reverse can have 0, 1, 2 pairs in common 

(Table B.6), get the pairs 40, 41, 42. 

t = 27, B = 8 - ext Sn + 1 pair, C = Li~ 
...._ 

Taking A, B, C, get the pair 36. 

Taking A, B, C, where C and its reverse can have 0,1 pairs in common (Table B.7 

and Table B.1), get the pairs 39, 40. 

For n = 75, we prove that 

Ints75 = (25, 50)- {28, 41, 43, 44, 45, 46, 47, 49}. 

t = 45, B = 84 , C = Lg6 

...._ 
Taking A, B*, C, get the pairs 26, 27, 30. 

t = 37, B = 2- near Sn, C = Lg, (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 38 . 
...._ 

Taking A, B, C, (2, 0, 2), where C and its reverse are disjoint (Table B.2), get the pair 

48. 

t = 35, B = 4 - ext Sn + 1 pair, C = Li~ 
...._ 

Taking A, B, C, get the pair 40. 

Taking A, B, C, where C and its reverse have one pair in common (Table B.1), get 

the pair 48. 

t = 33, B = S13, C = Lt~ 
...._ 

Taking A, B*, C, get the pairs 29, ... , 39, 42. 

Case (3): n = 6(mod 12) 

We start with: 

(a) n > 78, n = 78 + 60r 

and we prove that Intsn = ( {L~J, 2L~J)- { L~J +3, L~J + 15+ 16r, L~J + 16+ 16r, L~J + 

18+ 16r, ... ,2L~J- 2}. 

The proof for this case is similar with Case (2)(a) with the only difference that in 

Step 2) C3 and its reverse have one pair in common and get the pair 2L~J- 1. Then 

we continue with: 



(b) n > 78, n = 30 + 60r, n = 42 + 60r, n = 54+ 60r, n = 66 + 60r 

and we prove that: 
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Intsn = ( {L~J, 2L~J)-{L~J +3, L~J +3+16r, L~J +4+16r, L~J +6+16r, ... , 2L~J -2}. 

The proof for this case is similar with Case (2)(b) with the only difference that in 

Step 2) C3 and its reverse have one pair in common and gives the pair 2L~J - 1. 

Now we take the small cases: 

(c) 10:::; n:::; 78 

For n = 18,we prove that: 

Ints18 = (6, 12)- {8, 9, 10, 11}. 

t = 11, B = 81, C = L~ 
+-

Taking Taking A, B, C, get the pair 7. 

For n = 30, we prove that Ints30 = (10, 20)- {13, 14, 16, 18}. 

t = 15, B = 84 , C = £~1 

+-

Taking A, B*, C, get the pairs 11, 12, 15. 

t = 13, B = 13 - ext 85 + 1 pair, C = £~1 

+-

Taking A, B, C, get the pair 17. 

Taking A, B, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6), get 

the pairs 19, 20, 21. 

For n = 42, we prove that: 

Ints42 = (14, 28)- {17, 18, 20, 21, 22, 23, 24, 25, 26, 27}. 

t = 23, B = 84 , C = £~5 

+-

Taking A, B*, C and get the pairs 15, 16, 19. 

For n = 54, we prove that 

Ints54 = (18, 36)- {21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35}. 

t = 31, B = 84, C = L~9 

+-

Taking A, B*, C, get the pairs 19, 20, 23. 

t = 25, B = 3 - ext 88 + 1 pair, C = L~0 
+-

Taking A, B, C, get the pair 29. 

Taking A, B, C, where C and its reverse are disjoint (Table B.1), get the pair 34. 



For n = 66, we prove that: 

Ints66 = (22, 44)- {25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41}. 

t = 39, B = S4 , C = L;3 

+-

Taking A, B*, C, get the pairs 23, 24, 27. 

t = 31, B = 2 - near S11 , C = L~t (2, 0, 2) 
+-

Taking A, B, C, get the pair 35. 
+--
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Taking A, B, C, where C and its reverse can have 0,1 pairs in common (Table B.1 

and Table B. 7), get the pairs 42, 43. 

t = 29, B = 8 - ext S11 + 1 pair, C = Li~ 
<-

Taking A, B, C, get the pair 37. 

For n = 78, we prove that: 

Ints78 = (26, 52)- {29, 42, 44, 46, 47, 48}. 

t = 47, B = S4, C = L;7 

+--

Taking A, B*, C, get the pairs 27, 28, 31. 

t = 39, B = 2- near S11 , C = L~~' (2, 0, 2) 
+-

Taking A, B, C, (2, 0, 2), get the pair 39. 

Taking A, B, C, (2, 0, 2), where C and its reverse can have one pair in common (Table 

B.1), get the pair 51. 

t = 37, B = 4- ext S11 + 1 pair, C = Li~ 
+-

Taking A, B, C, get the pair 41. 

t = 35, B = 2- near S14 , C = Li§, (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 43. 
+-

Taking A, B, C, (2, 0, 2), where C and its reverse can have 0, 1, 2 pairs in common 

(Table B.6), get the pairs 49, 50, 51. 

t = 35, B = S13, C = L~~ 
+-

Taking A, B*, C, get the pairs 30, ... , 40, 43. 

t = 33, B = 12 - ext S14 + 1 pair, C = L~g 
+-

Taking A, B, C, get the pair 45. 



Case (4): n = 7(mod 12) 

We start with: 

(a) n ~ 67, n =55+ 60r 
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and we prove that Intsn = ( L~J, 2L~J)- { L~J + 10 + 16r, L~J + 11 + 16r, L~J + 13 + 

16r, ... , 2L~J - 2}. 
8 1) { L2L~J+l S 

tep L~J+l + L~J 

Table 3.6 gives two perfect Langford sequences £~~~~~~ with 0, 1, 2 pairs in common. 

These constructions gives the pairs L ~ J, l ~ J + 1, l ~ J + 2. 

) 
{ 

t1 = 2l~J - 7, B1 = 2- near S7, C1 = L;~L1J'J+\ (2, 0, 2) 
&~2 1 

t2 = t1 - 4; B2 = 2 - near Sw, C2 = VcJ~::'J;'~j 1 , (2, 0, 2) 
+-

Taking A1, B 1, C 1, (2, 0, 2) , where C 1 and its reverse are disjoint (Table B.2), get the 

pair 2L~J. 
+-

Taking A2, B 2, C2, (2, 0, 2), where C2 and its reverse are disjoint (Table B.1), get the 

pair 2L~J - 1. 

Ste 3) 3 = 2; 3 = g, 3 = d3=1D 
{ 

t t B S . C £m3=m2+l 

p t4 = t3 - 4; B4 = B3 + 3; C4 = L;;:~~~j1 
+-

Taking A3, B3*, C3, get the pairs: 

m3, ... , m3 + p - 3, m3 + p. 

Taking A4, B4*, C4, get the pairs: 

m4, ... , m4 + p - 3, m4 + p. 

For r = 1, take i = 5 and go to Step 5), otherwise, take i = 5 and go to Step 4). 

{ 
12 B B 9 C L

m;=m;-1+3 

) 
ti = ti-l - ; i = i-1 + ; i = d·-d· +9 Ste 4 ·- •-1 p _ . _ . _ mi+1=m;+l 
ti+l - ti- 4, Bi+l - Bi + 3, Ci+l - Lai+1 =d;+3 

+-

Taking Ai, Bi *, Ci, get the pairs: 

mi, ... ,mi + p- 3,mi + p. 

Taking A+I, Bi+l *, ci+l, get the pairs: 

mi+1, ... , mi+l + p- 3, mi+l + p. 

Repeat Step 4) r- 1 times, then take i = 5 + 2r and go to Step 5). 



Taking Ai, Bi *, Ci, get the pairs: 

mi, ... , mi + p- 3, mi + p. 

Then we continue with: 

(b) n 2: 67, n = 67 + 60r, n = 79 + 60r, n = 91 + 60r, n = 103 + 60r 
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and we prove that Intsn = [Li'J, 2Li'J]- {L:g:J + 14 + 16r, Li'J + 15 + 16r, Li'J + 17 + 
16r, ... ,2Li'J- 2}. 

The proof is similar with Case ( 3) (b), the only difference is that Step 4) are repeated 

r times. 

And now we prove for small cases: 

(c) 10:::; n < 67 

For n = 19, we prove that Ints19 = (6, 12)- {9, 10, 11 }. 

L~3 + s6. 

Taking two Langford sequences £~3 with 0, 1, 2 pairs in common (Table B.6), get the 

pairs 6, 7, 8. 

For n = 31, we prove that Ints31 = (10, 20)- {14, 15, 17, 18, 19}. 

Ln + sw. 
Taking two Langford sequences Ln with 0, 1, 2, 3 pairs in common (Table B.6), get 

the pairs 10, ... , 13. 

t = 15, B = S4 + 1 pair, C = £~1 

<-

Taking A, B*, C, get the pairs 12, 13, 16. 

For n = 43, we prove that Ints43 = (14, 28)- {17, 18, 19, 20, 21, 23, 25}. 

L~~ + sl4· 

Taking two Langford sequences L~~ with 0, 1, 2 pairs in common (Table B.6), get the 

pairs 14, 15, 16. 

t = 19, B = 2 - near 87 , C = LA5 , (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 22. 

Taking A, B, C, (2, 0, 2), where C and its reverse can have 0, 1, 2, 3 pairs in common 

(Table B.6), get the pairs 26, 27, 28. 

t = 19, B = 4 - ext S7 + 1 pair, C = L~6 
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+-

Taking A, B, C, get the pair 24. 
+-

Taking A, B, C, where C and its reverse can have 0, 1 pairs in common (Table B. 7 

and Table B.1), get the pairs 27, 28. 

For n =55, we prove that Jnts55 = (18, 36)- {28, 29, 31, 33}. 

Lr~ + slB· 

Taking two Langford sequences Lr~ with 0, 1, 2 pairs in common (Table B.6), get the 

pairs 18, 19, 20. 

t = 29, B = 2- near 87 , C = L~9 , (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 26. 

Taking A, B, C, (2, 0, 2), where C and its reverse are disjoint (Table B.2), get the pair 

36. 

t = 25, B = Sg, C = Lf6 
+-

Taking A, B*, C, get the pairs 21, ... , 27, 30. 

t = 23, B = 8 - ext 810 + 1 pair, C = Ln 
+-

Taking A, B, C, get the pair 32. 

Taking A, B, C, where C and its reverse can have 0, 1, 2, 3 pairs in common (Table 

B.6), get the pairs 34, 35, 36, 37. 

Case (5): n = lO(mod 12) 

We start with: 

(a) n;::: 70, n =58+ 60r 

and prove that Intsn = (l~J, 2l~J)- {l~J + 10 + 16r, l~J + 11 + 16r, l~J + 13 + 
16r, ... ,2l~- 1}. 

The proof for this case is similar with Case( 4) (a) with the only difference that in 

Step 2) C1 and its reverse have one pair in common (Table B.1) and gives the pair 

2L~J + 1. 

Then we continue with: 

(b) n;::: 70, n = 70 + 60r, n = 82 + 60r, n = 94 + 60r, n = 106 + 60r 

and we prove that Intsn = (l~J, 2l~J)- {l~J + 14 + 16r, l~J + 15 + 16r, l~J + 17 + 

16r, ... ,2l~J- 1}. 
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The proof is similar with Case(4)(b), with the only difference that in Step 2) C1 and 

its reverse have one pair in common (Table B.1) and gives the pair 2 L ~ J + 1. 

And now, we prove for small cases: 

(c) 10 ::; n < 70 

For n = 22, we prove that Ints22 = (7, 14)- {11, 12, 13}. 

L~5 + S7. 

Taking two Langford sequences £~5 with 0, 1, 2, 3 pairs in common (Table B.6), get 

the pairs 7, ... , 10. 

For n = 34, we prove that Ints34 = (11, 22)- {14, 15, 16, 17, 18, 20, 21 }. 

L~~ + Su. 

Taking two Langford sequences L~~ with 0, 1, 2 pairs in common (Table B.6), get the 

pairs 11, 12, 13. 

t = 15, B = 3- ext S5 + 2 pairs, C = £~2 

+-

Taking A, B, C, get the pair 19. 

Taking A, B, C, where C and its reverse can have 1, 3 pairs in common (Table B.1 

and Table B.7), get the pairs 23, 25. 

For n = 46, we prove that 

Ints46 = (15, 30)- {18, 19, 20, 21, 22, 24, 26, 27, 28, 29}. 

LlA + S1s· 

Taking two Langford sequences Ln with 0, 1, 2 pairs in common (Table B.6), get the 

pairs 15, 16, 17. 

t = 23, B = 2- near 87 , C = L~6 , (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 23. 

Taking A, B, C, (2, 0, 2), where C and its reverse are disjoint (Table B.7), get the pairs 

30. 

t = 21, B = 4- ext 87 + 1 pair, C = Lf 
+-

Taking A, B, C, get the pair 25. 

For n =58, we prove that Ints58 = (19, 38)- {29, 30, 32, 34, 35, 36}. 

£~6 + s19· 
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Taking two Langford sequences £~5 with 0, 1, 2, 3 pairs in common (Table B.6), get 

the pairs 19, 20, 21, 22. 

t=31, B=2-nearS7 , C=£~0,(2,0,2) 

Taking A, B, C, (2, 0, 2), get the pair 27. -Taking A, B, C, (2, 0, 2), where C and its reverse have one pair in common (Table 

B.1), get the pair 39. 

t = 27, B = 2 - near Sw, C = LfL (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 31. 

Taking A, B, C, (2, 0, 2), where C and its reverse have 0, 1, 2, 3 pairs in common (Table 

B.6), get the pairs 37, 38, 39, 40. 

t = 27, B = Sg, C = Lf6 -Taking A, B*, C, get the pairs 22, ... , 28, 31. 

t = 25, B = 8 - ext S10 + 1 pair, C = Lf! -Taking A, B, C, get the pair 33. 

Case (6): n = ll(mod 12) 

We start with: 

(a) n > 95, n = 95 + 60r 

and we prove that Intsn = ( l~J, 2l~J)- { l~J + 1, l~J +21 + 16r, l~J + 22 + 16r, l~J + 

24 + 16r, ... , 2l ~ J - 1}. 

The proof for this case is similar with Case (1)(a), with the only difference that C3 

and its reverse are disjoint (Table B.2) and gives the pair 2l~J - 2. 

Then we continue with: 

(b) n > 95, n = 4 7 + 60r, n = 59 + 60r, n = 71 + 60r, n = 83 + 60r 

and prove that Intsn = (l~J, 2l~J)- {l~J + 1, l~J + 9 + 16r, l~J + 10 + 16r, l~J + 

12+ 16r, ... ,2l~J- 1}. 

The proof is similar with Case ( 1) (b), with the only difference that C3 and its reverse 

are disjoint (Table B.2) and gives the pair 2l~J- 2. 

And now we prove for small cases: 

(c) 10:::;; n:::;; 95 



For n = 23 these construction cannot be applied. 

For n = 35, we prove that 

Ints35 = (11, 22)- {12, 15, 16, 17, 19, 21}. 

t = 17, B =55 , C = L~3 

+-

Taking A, B*, C, get the pairs 13, 14, 18. 

t = 15, B = 4 - ext 56 + 1 pair, C = Li3 

+-

Taking A, B, C, get the pair 20. 
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Taking A, B, C, where C and its reverse have 0, 1, 2 pairs in common (Table B.6) and 

get the pairs 22, 23, 24. 

For n = 4 7, we prove that 

Ints47 = (15, 30)- {16, 24, 25, 27, 28, 29}. 

t = 25, B =55 , C = L~7 

<-

Taking A, B*, C, get the pairs 17, 18, 23. 

t = 21, B = 58 , C = L§8 

<-

Taking A, B*, C, get the pairs 18, ... , 23, 26. 

For n = 59, we prove that 

Ints59 = (19, 38)- {20, 28, 29, 31, 33, 34, 35, 36, 37}. 

t = 33, B = 55 , C = L~1 

<-

Taking A, B*, C, get the pairs 21, 22, 26. 

t = 29, B = 58 , C = L~2 

+-

Taking A, B*, C, get the pairs 22, ... , 27, 30. 

t = 27, B = 5 - ext 59 + 1 pair, C = Lf6 
+-

Taking A, B, C, get the pair 32. 

For n = 71, we prove that 

Ints71 = (23, 46)- {24, 35, 37, 38, 39, 41, 42, 43, 44, 45}. 

t = 41, B = 55 , C = L~5 

+-

Taking A, B*, C, get the pairs 25, 26, 30. 

t = 37, B = 58 , C = £~6 
<-

Taking A, B*, C, get the pairs 26, ... , 31, 34. 



t = 35, B = S9 + 1 pair, C = Lig 
<-

Taking A, B*, C, get the pairs 27, ... , 33, 36. 

t = 31, B = 9- ext SI2 + 1 pair, C = Ln 
<-

Taking A, B, C, get the pair 40. 

For n = 83, we prove that 

Ints83 = (27, 54)- {28, 36, 37, 39, 40, 41, 42, 43, 45, 47, 49, 50}. 

t = 49, B = Ss, C = L~9 

<-

Taking A, B*, C, get the pairs 29, 30, 34. 

t = 45, B = S8 , C = L~0 
<-

Taking A, B*, C, get the pairs 30, ... , 35, 38. 

t = 39, B = 5 - ext SI2 + 1 pair, C = L~~ 
<-

Taking A, B, C, get the pair 44. 

t = 37, B = 2- near Sis, C = L~~' (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 46. 
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Taking A, B, C, (2, 0, 2), where C and its reverse have 0, 1, 2 pairs in common (Table 

B.6), get the pairs 52, 53, 54. 

t = 35, B = 12 - ext Sis + 1 pair, C = L~~ 
<-

Taking A, B, C, get the pair 48. 

Taking A, B, C, where C and its reverse have 0,1 pairs in common (Table B.7 and 

Table B.l), get the pairs 51, 52. 

For n = 95, we prove that 

Ints95 = (31, 62)- {32, 52, 55, 56, 57, 58,61 }. 

t =57, B = Ss, C = L~3 

<-

Taking A, B*, C, get the pairs 33, 34, 38. 

t = 53, B = S8 , C = L~4 

<-

Taking A, B*, C, get the pairs 34, ... , 39, 42. 

t = 45, B = 2- near Sis, C = L~~' (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 50. 

Taking A, B, C, (2, 0, 2), where C and its reverse are disjoint (Table B.2), get the pair 



92 

60. 

t = 41, B = 2- near 818 , C = Lf~, (2, 0, 2) 

Taking A, B, C, (2, 0, 2), get the pair 54. 

Taking A, B, C, (2, 0, 2), where C and its reverse are disjoint (Table B.l), get the pair 

59. 

t = 41, B = 817, C = Lf~ 
...... 

Taking A, B*, C, get the pairs 37, ... , 51, 54. 0 

Case (III): The intersection of two Skolem sequences of order n and two 

hooked Skolem sequences of order n in [2Li'J, n] pairs 

We take the same Langford sequence and adjoin it first with a [hooked] Skolem 

sequence of order n and second with a disjoint [hooked] Skolem sequence of order n. 

For example, taking two hooked Skolem sequences of order 15, these intersect in 11, 12 

or 15 pairs: 

• for 15 pairs in common take the same hooked Skolem sequence of order 15 twice 

[4]. 

• for 12 pairs in common, take a Langford sequence of order 12 and defect 4 [45] 

(which is a perfect sequence) and adjoin it a hooked Skolem sequence of order 

3 [4], then take the same Langford sequence of order 12 and defect 4 and adjoin 

it a disjoint [hooked]Skolem sequence of order 3. 

• for the 11 pairs in common, take a Langford sequence of order 11 and defect 

5 [45] (which is a hooked sequence) and adjoin it with a Skolem sequences of 

order 4 [4], then take the same hooked Langford sequence of order 11 and defect 

5 and adjoin a disjoint Skolem sequence of order 4. 

Theorem 22 The necessary conditions are sufficient for two {hooked} Skolem se­

quences of order n = 0 or l(mod 3) to intersect in {2 L :go J + 1, ... , n- 3, n} pairs. 

Proof: For 1 ~ n ~ 9, see Appendix A. 

For n pairs in common, take the same Skolem sequence of order n twice [4]. 
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For n- 3 pairs in common, take a Langford sequence of order n- 3 and defect 4 [45], 

and adjoin this sequence first with a hooked Skolem sequence of order 3, and second 

with a disjoint hooked Skolem sequence of order 3. 

For n - 4 pairs in common, take a Langford sequence of order n - 4 and defect 5 and 

adjoining it first a Skolem sequence of order 4, and second with a disjoint Skolem 

sequence of order 4. Continue this process until n < 2d - 1. This gives the entire 

spectrum. 0 

Theorem 23 The necessary conditions are sufficient for two [hooked} Skolem se­

quences of order n _ 2(mod 3) to intersect in {2L~J + 2, ... , n- 3, n} pairs. 

Proof: For 1 :::; n:::; 9, see Appendix A. 

For n pairs in common, take the same Skolem sequence of order n twice. 

For n- 3 pairs in common, take a Langford sequence of order n- 3 and defect 4 [45], 

and adjoining it this sequence first with a hooked Skolem sequences of order 3 and 

second with a disjoint hooked Skolem sequence of order 3. 

For n - 4 pairs in common, take a Langford sequence of order n - 4 and defect 5 

and adjoin this sequence first with a Skolem sequence of order 4, and second with a 

disjoint Skolem sequence of order 4. Continue this process until n < 2d - 1. This 

gives the entire spectrum. 0 

Theorems 18 - 23 gives the primarily result of this thesis which we state in the 

following two theorems. 

Theorem 24 Main Theorem 

The necessary conditions are sufficient for two Skolem sequences of order n to in­

tersect in {0, ... , n - 3, n} pairs, with the following possible exceptions: for n = 

12t, n ~ 72, t = 0, 1(mod 3) the exceptions are {L~J - 5, L~J}, otherwise the ex­

ceptions are {L~J - 5, L~J - 2, L~J} and other 23 exceptions for 10 :::; n :::; 60, for 

n = 1(mod 12), n ~ 109 the exceptions are {2L~J - 4, 2L~J} and other 16 pos­

sible exceptions for 10 :::; n :::; 97, for n = 4(mod 12), n ~ 112 the exception is 

{2L~J- 1} and other 14 exceptions for 10:::; n:::; 100, for n 5(mod 12),n ~ 77 
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the exceptions are {L~J, L~J + 1, 2L~J - 3, 2L~J - 2, 2L~J + 1} and other 24 ex­

ceptions for 10 ::; n ::; 65, for n 2: 92, n = 12t + 8, t _ 0, 2(mod 3) the ex­

ceptions are {L~J - 3, L~J + 1, 2L~J - 3, 2L~J + 1}, otherwise the exceptions are 

{L~J- 3, L~J, L~J + 1, 2L~J- 3, 2L~J + 1} and other 28 exceptions for 10::; n::; 80, 

for n = 9(mod 12), n 2: 81 the exceptions are { L~J, L~J + 3, 2L~J - 6, 2L~J - 2} and 

other 31 possible exceptions for 10 ::; n ::; 69. 

Proof: For 1 ::; n ::; 9, see Appendix A. For a list with all the possible exceptions, 

see Appendix C. Otherwise, apply Lemma 13, Lemma 14, Theorem 18, Theorem 20, 

Theorem 22 and Theorem 23. 0 

Theorem 25 Main Theorem 

The necessary conditions are sufficient for two hooked Skolem sequences of order 

n to intersect in {0, ... , n - 3, n} pairs, with the following possible exceptions: for 

n = 12t + 2, n > 98, n = 98 + 60r, t 0, 1, 2, 4, 5, 7, 10, 13, 14(mod 15) the exceptions 

are {L~J- 3, L~J, L~J + 1, L~J + 21 + 16r, L~J + 22 + 16r, L~J + 24 + 16r, ... , 2L~J-

4, 2 L ~J, 2 L~ J + 1} (1}, fort = 6, 11, 12(mod 15) the exceptions are { (1}-{L ~J}}, for 

t = 3, 8, 9(mod 15) the exceptions are {(1}-{L~J - 3} }, for n = 12t + 2, n > 98, n = 
50+60r, 62+60r, 74+60r, 86+60r, t = 0, 1, 2, 4, 5, 7, 10, 13, 14(mod 15) the exceptions 

are {L~J - 3, L~J, L~J + 1, L~J + 9 + 16r, L~J + 10 + 16r, L~J + 12 + 16r, ... , 2L~J -

4,2L~J -2,2L~J,2L~J +1} (2}, fort= 6,11,12(mod 15) the exceptions are {(2}­

{L~J}}, fort _ 3, 8, 9(mod 15) the exceptions are {(2}-{L~J - 3}} and other 89 

exceptionsfor10::; n::; 98, forn- 3(mod 12),n = 75+60r,n > 75 the exceptions are 

{L~J -2, L~J, L~J +3, L~J + 15+ 16r, L~J + 16+ 16r, L~J + 18+ 16r, ... , 2L~J -3, 2L~J-

1, 2L~J}, otherwise the exceptions are {L~J- 2, L~J, L~J + 3, L~J + 3 + 16r, L~J + 4 + 

16r, l~J + 6 + 16r, ... , 2l~J - 3, 2l~J - 1, 2L~J} and other 52 pairs for 10::; n::; 75, 

for n = 12t + 6, n > 78, n = 78 + 60r, t - 0, 1, 2, 5, 7, 10, 14(mod 15) the exceptions are 

{ l~J -5, l~J -2, l~J, l~J +3, l~J + 15+ 16r, l~J + 16+ 16r, l~J + 18+ 16r, ... , 2l~J -2} 

(3}, fort= 8, 9(mod 15) the exceptions are {(3}-{l~J -5}}, fort= 4, 13(mod 15) the 

exceptions are {(3}-{l~J}}, fort_ 3(mod 15) the exceptions are {(3}-{L~J-5, l~J}}, 

for n = 12t + 6, n > 78, n = 30 + 60r, 42 + 60r, 54+ 60r, 66 + 60r 
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t = 0, 1, 2, 5, 7, 10, 14(mod 15) the exceptions are {lfi'J- 5, lfi'J- 2, lfi'J, lfi'J + 3, lfi'J + 

3 + 16r, lfi'J + 4 + 16r, lfi'J + 6 + 16r, ... , 2lfi'J - 2} (4), fort 8, 9(mod 15) the 

exceptions are {(4)-{lfi'J -5}}, fort_ 4, 13(mod 15) the exceptions are {(4)-{lfi'J}}, 

fort= 3(mod 15) the exceptions are {(4)- {lfi'J- 5, lfi'J}}, and other 63 exceptions 

for 10 ~ n ~ 78, for n = 7(mod 12), n 2:: 67, n = 55 + 60r the exceptions are 

{lfi'J + 10+ 16r, lfi'J + 11 + 16r, lfi'J + 13 + 16r, ... , 2lfi'J- 2}, otherwise the exceptions 

are {lfi'J + 14+ 16r, lfi'J + 15+ 16r, lfi'J + 17 + 16r, ... , 2lfi'J -2} and other 21 exceptions 

for 10 ~ n ~ 55, for n - 10(mod 12), n 2:: 70, n = 58 + 60r the exceptions are 

{lfi'J + 10 + 16r, lfi'J + 11 + 16r, lfi'J + 13 + 16r, ... , 2lfi' J }, otherwise the exceptions are 

{lfi'J+14+16r, lfi'J+15+16r, lfi'J+17+16r, ... , 2lfi'J} and other27 possible exceptions 

for 10 ~ n ~ 58, for n - 11(mod 12), n > 95, n = 95 + 60r the exceptions are 

{ lfi'J, lfi'J + 1, lfi'J +21+16r, lfi'J +22+ 16r, lfi'J +24+ 16r, ... , 2lfi'J -1, 2lfi'J, 2lfi'J + 1 }, 

otherwise the exceptions are {lfi'J, lfi'J + 1, lfi'J + 9 + 16r, lfi'J + 10 + 16r, lfi'J + 12 + 

16r, ... , 2lfi'J- 1, 2lfi'J, 2lfi'J + 1} and other 75 possible exceptions for 10 ~ n ~ 95, 

where r, t are positive integers. 

Proof: For 1 ~ n ~ 10, see Appendix A. For a list with all the possible exceptions, 

see Appendix C. Otherwise, apply Lemma 13, Lemma 14, Theorem 19, Theorem 21, 

Theorem 22 and Theorem 23. D 



Chapter 5 

Applications of the spectrum of 

[hooked] Skolem sequences with a 

prescribed number of pairs in 

common to cyclic triple systems 

In this chapter, we prove that there exists two cyclic Steiner triple systems of order 

6n + 1 intersecting in 0, 1, 2, ... , n base blocks and there exists two cyclic Steiner 

triple systems of order 6n + 3 intersecting in 1, 2, ... , n + 1 base blocks. From here, 

we derive that a twofold triple system of order 6n + 1 has 0, 1, 2, ... , n base blocks in 

common and a twofold triple system of order 6n + 3 has 1, 2, ... , n + 1 base blocks in 

common. 

We also prove that the necessary conditions are sufficient for the vector ( c1 , c2 , c3 ) c 

to be the fine structure of a CTS(v, 3) for v = l(mod 6). This is similar with the 

results obtained by Colbourn, Mathon, Rosa, Shalaby [16] for the non-cyclic triple 

systems. Their results are given in Chapter 2. 

We denote I ntc( v) = { k : there exist two cyclic Steiner triple systems of order v 

intersecting in k base blocks}. 

96 
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Theorem 26 Intc(6n + 1) = {0, 1, 2, ... , n}. 

Proof: Case (1): n = 0, 1(mod 4) 

Let Sn be a Skolem sequence of order n. Take the base blocks of the form: 

1. {{ 0, ai + n, bi + n }(mod 6n + 1) li = 1, ... , j} together with the base blocks 

{ { ( 0, i, bi + n} (mod 6n + 1) I i = j + 1, ... , n} 

2. { {(0, ai + n, bi + n}(mod 6n + 1)li = 1, ... , n}. 

Repeating this process for j = 1, 2, ... , n we get two cyclic Steiner triple systems of 

order 6n + 1 with j base blocks in common. Taking the base blocks of the form: 

1. {{ 0, ai + n, bi + n }(mod 6n + 1) I i = 1, ... , n} 

2. {{ ( 0, i, bi + n }(mod 6n + 1) I i = 1, ... , n} 

we get two CSTS(6n + 1) which are disjoint. 

We can replace the base block {0, ai + n, bi + n} by the base block {0, i, bi + n}, 

i = 1, ... , n because these blocks gives the same differences, and therefore the same 

pairs. 

Case (2): n = 2, 3(mod 6n + 1) 

Let hSn be a hooked Skolem sequence of order n. Take the base blocks of the form: 

1. {{0, ai+n, bi+n }(mod 6n+ 1)li = 1, ... , j} together with the base blocks {{0, i, bi+ 

n} (mod 6n + 1) li = j + 1, ... , n} 

2. {{0, ai + n, bi + n}(mod 6n + 1)Ji = 1, ... , n}. 

Repeating this process for j = 1, 2, ... , n we get two cyclic Steiner triple systems of 

order 6n + 1 with j base blocks in common. Taking the following systems: 

1. {{ 0, ai + n, bi + n }(mod 6n + 1) li = 1, ... , n} 

2. { {(0, i, bi + n}(mod 6n + 1)li = 1, ... , n} 

we get two CSTS(6n + 1) which are disjoint. D 

Corollary 5 A twofold triple system of order 6n + 1 intersect in 0, 1, ... , n base 

blocks. 

Proof: Two CSTS(6n + 1) from the above theorem gives a twofold triple system of 

order 6n + 1 which intersect in 0, 1, ... , n base blocks. D 
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Theorem 27 Intc(6n + 3) = {1, 2, ... , n + 1} 

Proof: Case (1): n = 0, 3(mod 4) 

Let Rn be a Rosa sequence of order n. Take the following two systems: 

1. { {0, ai+n, bi+n}(mod 6n+3)li = 1, ... ,j} together with the base blocks { {0, i, bi+ 

n}(mod 6n + 1)li = j + 1, ... , n} and {0, 2n + 1, 4n + 2}(mod 6n + 3) 

2. {{O,ai + n,bi + n}(mod 6n + 3)ji = 1, ... ,n} together with {0,2n + 1,4n + 

2}(mod 6n + 3) 

Repeating this process for j = 1, ... , n we get two cyclic ST S ( 6n + 3) with j + 1 base 

blocks in common. 

Taking the following systems: 

1. {{0, ai + n, bi + n }(mod 6n + 3)li = 1, ... , n} together with the base block {0, 2n + 

1, 4n + 2}(mod 6n + 3) 

2. {{0, i, bi + n}(mod 6n + 1)ji = 1, ... , n} together with the base block {0, 2n + 

1, 4n + 2}(mod 6n + 3) 

we get two CSTS(6n + 3) with one base block in common. 

Case (2): n = 1, 2(mod 4) 

Let hRn be a hooked Rosa sequence of order n. Take the following two systems: 1. 

{ {0, ai + n, bi + n }(mod 6n + 3)ji = 1, ... , j} together with the base blocks { {0, i, bi + 

n}(mod 6n + 1)li = j + 1, ... , n} and {0, 2n + 1, 4n + 2}(mod 6n + 3) 

2. {{O,ai + n,bi + n}(mod 6n + 3)li = 1, ... ,n} together with {0,2n + 1,4n + 

2}(mod 6n + 3) 

Repeating this process for j = 1, ... , n we get two CSTS(6n + 3) with j base block 

in common. Taking the following systems: 

1. {{O,ai +n, bi +n}(mod 6n+3)ji = 1, ... , n} together with the base block {0, 2n+ 

1, 4n + 2}(mod 6n + 3) 

2. { {0, i, bi + n}(mod 6n + 1)li = 1, ... , n} together with the base block {0, 2n + 

1, 4n + 2}(mod 6n + 3) 

we get two CSTS(6n + 3) with one base block in common. D 

Corollary 6 A twofold triple system of order 6n + 3 intersect in l, 2, ... , n + 1 base 
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blocks. 

Proof: Two CSTS(6n + 3) from the above theorem gives a twofold triple system of 

order 6n + 3 which intersect in 1, 2, ... , n + 1 base blocks. 0 

In [16], it is proven that the necessary conditions are sufficient for a vector 

(c1, c2 , c3 ) to be the fine structure of a threefold triple system of order v- 1, 3(mod 6), 

v 2:: 19. Also, in [17] it is proven that the necessary conditions are sufficient for 

a vector (c1 , c2 , c3 ) to be the fine structure of a threefold triple system of order 

v- 5(mod 6), v 2:: 17. 

In this thesis we give similar results for the fine structure of a threefold cyclic triple 

system of order v 1 (mod 6). 

We use next the intersection spectrum of two [hooked] Skolem sequences to de­

termine the fine structure of a cyclic triple system of order v = 1(mod 6) with A= 3. 

Since we proved with some possible exceptions that two [hooked] Skolem sequences 

of order n intersect in {0, 1, ... , n - 3, n} pairs, to determine the fine structure of a 

CTS(v, 3), v 1(mod 6), we first find the fine structure of a CTS(v, 3) when two 

[hooked] Skolem sequences of order n intersect in n pairs (take the same [hooked] 

Skolem sequence twice), then we determine the fine structure of a CTS(v, 3) when 

two [hooked] Skolem sequence intersect in p pairs and finally, we determine the fine 

structure of a CT S( v, 3) when two [hooked] Skolem sequences intersect in 0 ~ p ~ 

n- 3 pairs. Using these we determine in the Main Theorem 31 the fine structure of 

a CTS(v, 3), when two [hooked] Skolem sequences intersect in {0, ... , n- 3, n} pairs 

with some possible exceptions. These exceptions are given by the exceptions in the 

Main Theorems 24 and 25. 

Theorem 28 For v = 1 (mod 6), v 2: 7 the necessary conditions are sufficient for the 

vector (n- j, n- j, j)c, j = 0, ... , n to be the fine structure of a CTS(v, 3), where 
v-1 n = -6-. 

Proof: Let Sn be a [hooked] Skolem sequence of order n and let (ai, bi), 1 ~ i ~ n, 

be the pairs determined by this [hooked] Skolem sequence. Then, if we take the same 
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sequence twice, these pairs gives the base blocks of four CST S ( 6n + 1). 

1) ( 0, ai + n, bi + n) (mod 6n + 1), i = 1, ... , n 

2) ( 0, i, bi + n) (mod 6n + 1), i = 1, ... , n 

3) (0, ai + n, bi + n)(mod 6n + 1), i = 1, ... , n 

4) (0, i, bi + n)(mod 6n + 1), i = 1, ... , n. 

We use only the first three systems because these gives the fine structure for a three­

fold cyclic triple system. It is known that the first two systems are disjoint. Taking 

the first three systems together, we get a CTS(v, 3) with the fine structure (n, n, O)c. 

Take the base blocks: 

1) ( 0, ai + n, bi + n), i = 1 ... , n 

2) (O,ai+n,bi+n),i=1, ... ,j 

( 0, i, bi + n), i = j + 1, ... , n 

3)(0, ai + n, bi + n), i = 1, ... , n. 

Repeat this process for j = 1, ... , n. This gives a CTS(v, 3) with the fine structure 

(n- j,n- j,j)c,J = 1, ... ,n. D 

Theorem 29 For v _ 1(mod 6), v 2: 19 the necessary conditions are sufficient for 

the vector (3n- 2(p- i + j)- 3i,p- i + j, i)c, i = 0, ... ,p, j = 0, ... , n- i to be the 

fine structure of a CTS(v, 3), where n = v6l and pis the number of pairs in common 

between two [hooked} Skolem sequences of order n. 

Proof: Let Sn and S~ to be two [hooked] Skolem sequences of order n with p pairs 

in common, 0 :::; p :::; n- 3, and let (ai, bi), 1 :::; i :::; n, and (ai, /3i), 1 :::; i :::; n, be the 

pairs determined by these two [hooked] Skolem sequences. Without lost of generality, 

assume that the first p pairs are in common. Then, these gives the base blocks of 

four CSTS(6n + 1). 

1) (0, ai + n, bi + n)(mod 6n + 1), i = 1, ... , n 

2) ( 0, i, bi + n) (mod 6n + 1), i = 1, ... , n 

3) ( 0, ai + n, bi + n) (mod 6n + 1), i = 1, ... , p 

(0, ai + n, f3i + n)(mod 6n + 1), i = p + 1, ... , n 

4) ( 0, i, j3i + n) (mod 6n + 1), i = 1, ... , n 



We use only the first three systems. 

Take 

1) ( 0, ai + n, bi + n) (mod 6n + 1), i = 1, ... , n 

2) ( 0, ai + n, bi + n) (mod 6n + 1), i = 1, ... , j 

( 0, i, bi + n) (mod 6n + 1), i = j + 1, ... , n 

For i = 1, ... , j take the base blocks 

( 0, ai + n, bi + n), i = p + 1, ... , k 

(0, i, bi + n), i = k + 1, ... , n. 

Repeat this process for k = p + 1, ... , n. 

3) ( 0, ai + n, bi + n) (mod 6n + 1), i = 1, ... , p 

(0, ai + n, f3i + n)(mod 6n + 1), i = p + 1, ... , n 

Repeat this process for j = 1, ... , n. 
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This gives a CT S( v, 3) with a fine structure (3n- 2(p- i + j) - 3i, p-i+ j, i)c, i = 

0, ... , p, j = 0, ... , n - i. 0 

Theorem 30 For v = 1(mod 6), v 2: 19 the necessary conditions are sufficient for 

the vector (3n- 3i- 2j, j, i)c, i = 0, ... , n- 3, j = 0, ... , n- i to be the fine structure 

of a CTS(v, 3), where n = v~ 1 • 

Proof: Apply Theorem 29 for p = 0, ... , n - 3. 0 

Theorem 31 Main Theorem 

For v = 1 (mod 6), v 2: 19, v =/= 31, the necessary conditions are sufficient for the vector 

(3n-2j -3i,j, i)c, i = 0, ... , n-3, j = 0, ... , n-i, and the vector (n- j, n- j,j)c,J = 
0, ... , n, with the possible exception of the vector (3n-2i-3p, i,p)c, i = 0, ... , n-4-p, 

to be the fine structure of a CTS(v, 3), where n = v~l, and p is the number of pairs 

in common between two {hooked} Skolem sequences of order n. 

Proof: Theorem 30 gives the fine structure of a CTS(v, 3) when two [hooked] Skolem 

sequences intersect in 0, ... , n- 3, n pairs and Theorem 29 gives the fine structure of 

a CTS(v, 3) when two [hooked] Skolem sequences intersect in p pairs. If two [hooked] 
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Skolem sequences do not intersect in p pairs (see Theorems 24, 25 and Appendix C 

for the exceptions), then taking the difference between the fine structure given in 

Theorem 30 and Theorem 29, we get that (3n- 2i- 3p, i, P)c, i = 0, ... , n- 4- p, is 

not a fine structure for a CTS(v, 3). D 

Small cases 

For v = 7, we can use a Skolem sequence of order 1 to get a cyclic Steiner triple system 

of order 7. Since there is only one possibility for the Skolem sequence of order 1, we 

take the same Skolem sequence twice and, by Theorem 28, (1, 1, O)c and (0, 0, 1)c is 

the fine structure of CTS(7, 3). 

For v = 13, we can use a hooked Skolem sequence of order 2 to get a cyclic Steiner 

triple system of order 13. Since there is only one possibility for the hooked Skolem 

sequence of order 2, we take the same hooked Skolem sequence twice. By Theorem 

28, (2, 2, O)c, (1, 1, 1)c, (0, 0, 2)c is the fine structure of a CTS(13, 3). 

For v = 31, we can use a Skolem sequence of order 5 to get a CSTS(31). We 

showed in Appendix A, that two Skolem sequences of order 5 can have 0, 1, 5 pairs in 

common. Since in Theorem 30, we proved that (3n-3i-2j, j, i)c, i = 0, ... , n-3, j = 

0, ... , n- ito be the fine structure of a CTS(v, 3) using the fact that two [hooked] 

Skolem sequences intersect in 0, ... , n- 3, n pairs, we can use this result here with 

the only exceptions that two Skolem sequences of order 5 intersect in 0, 1, 5 pairs. 

Therefore, (3n-3i-2j, j, i)c, i = 0, 1, j = 0, ... , 5-i and (5- j, 5- j, j)c, j = 0, ... , 5 

is the fine structure of a CTS(31, 3). 

These results can also be applied for ..\ = 4 by taking all four systems given by 

two Skolem or two hooked Skolem sequences of order n in the previous theorems. 



Chapter 6 

Conclusions and open questions 

In this thesis, we discussed triple systems and their intersection spectrum and then 

gave similar results for cyclic triple systems and their intersection spectrum. In 

Chapter 1, we gave a short introduction to this field. In Chapter 2, we discussed 

triple systems, disjoint triple systems and their intersection spectrum. In Chapter 3, 

we discussed Steiner triple systems and Mendelsohn triple systems and, in Chapter 4, 

we proved, with some possible exceptions, that there exists two Skolem sequences and 

there exists two hooked Skolem sequences of order n which can have 0, 1, 2, ... , n-3, n 

pairs in common. The exceptions are listed in Appendix C. We proved then in 

Chapter 5, using Skolem sequences of order n and hooked Skolem sequences of order 

n, that there exists two cyclic Steiner triple systems of order 6n + 1 intersecting in 

0, 1, 2, ... , n base blocks and there exists two cyclic Steiner triple systems of order 

6n+3 intersecting in 1, 2, ... , n+ 1 base blocks. Using these we proved that a twofold 

cyclic triple system of order 6n + 1 can have 0, 1, ... , n base blocks in common and 

a twofold cyclic triple system of order 6n + 3 can have 1, 2, ... , n + 1 base blocks in 

common. 

Also in Chapter 5, using the intersection spectrum between two Skolem sequences 

and two hooked Skolem sequences of order n, we proved that the necessary conditions 

are sufficient for the vector (3n - 2j - 3i, j, i)c, i = 0, ... , n - 3, j = 0, ... , n -

i, and the vector (n - j, n - j, j)c, j = 0, ... , n, with the exception of the vector 
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(3n - 2i - 3p, i, p )c, i = 0, ... , n - 4 - p, to be the fine structure of a cyclic threefold 

triple system of order 6n + 1. We now present some problems available for future 

work. 

Open questions: 

1. Solve all the remaining possible exceptions for the intersection spectrum of two 

Skolem sequences of order n. 

2. Solve all the remaining possible exceptions for the intersection spectrum of two 

hooked Skolem sequences of order n. 

3. Find the intersection spectrum of two Rosa sequences of order n. 

4. Find the intersection spectrum of two hooked Rosa sequences of order n. 

5. Find the fine structure of a CTS(v, ,.\),for v = l(mod 6) with).= 4. 

6. Find the fine structure of a CTS(v, ,.\),for v _ 3(mod 6) with).= 3 or).= 4. 

7. Extend the result in chapter 5 to Mendelsohn cyclic triple systems and to di­

rected cyclic triple systems. 

8. Find more applications of these intersection spectrum of two Skolem sequences 

of order n and hooked Skolem sequences of order n. 



Appendix A 

The intersection of Skolem and 

hooked Skolem sequences for small 

orders 

In this Appendix we list all the small 1 :::; n :::; 9 cases necessary for Theorems 24 and 

25. 

There is only one Skolem sequence of order 1: 8 1 = (1, 1). Taking the same 

sequence twice we have Ints1 = {1}. 

There exist only one hooked Skolem sequence of order 2: h82 = (1, 1, 2, 0, 2). So, 

Ints2 = {2}. 

There are two disjoint hooked Skolem sequences of order 3: 

h83 = (1, 1,2,3,2,0,3) 

h83 = (3, 1, 1, 3, 2, 0, 2) 

Taking these two disjoint sequences or taking the same sequence twice will give us: 

Ints3 = {0, 3}. 

Two Skolem sequences of order 4 can have 0, 1 or 4 pairs in common: 

0 pairs in common: 

84 = (4, 1, 1,3,4,2,3,2) 

84 = (2,3,2,4,3,1,1,4) 
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1 pair in common: 

84 = (2,3,2,4,3,1,1,4) 

84 = (1,1,3,4,2,3,2,4) 
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For 4 pairs in common we will take the same sequence twice. So, Ints4 = {0, 1, 4}. 

Two Skolem sequences of order 5 can have 0, 1 or 5 pairs in common. 

0 pairs in common: 

85 = (1, 1,5,2,4,2,3,5,4,3) 

85 = (5,2,4,2,3,5,4,3,1,1) 

1 pair in common: 

85 = (5,1,1,3,4,5,3,2,4,2) 

85 = (1,1,5,2,4,2,3,5,4,3) 

For 5 pairs in common we will take the same sequence twice. So, 85 = {0, 1, 5}. 

Two hooked Skolem sequences of order 6 can have 0, 1, 2, 3 or 6 pairs in common. 

0 pairs in common: 

h86 = (1, 1, 2, 5, 2, 4, 6, 3, 5, 4, 3, 0, 6) 

h86 = (3, 4, 6, 3, 2, 4, 2, 5, 6, 1, 1, 0, 5) 

1 pair in common: 

h86 = (1, 1, 2, 6, 2, 3, 4, 5, 3, 6, 4, 0, 5) 

h86 = (3, 4, 6, 3, 2, 4, 2, 5, 6, 1, 1, 0, 5) 

2 pairs in common: 

h86 = (1, 1, 2, 5, 2, 4, 6, 3, 5, 4, 3, 0, 6) 

h86 = (1, 1, 2, 6, 2, 3, 4, 5, 3, 6, 4, 0, 5) 

3 pairs in common: 

h86 = (6, 3, 5, 2, 3, 2, 6, 5, 4, 1, 1, 0, 4) 

h86 = (6, 3, 1, 1, 3, 5, 6, 2, 4, 2, 5, 0, 4) 

For 6 pairs in common take the same sequence twice, so, Ints6 = {0, 1, 2, 3, 6} 

Two hooked Skolem sequences of order 7 can have 0, 1, 2, 3, 4 or 7 pairs in common. 

0 pairs in common: 

h87 = (6, 4, 2, 5, 2, 4, 6, 7, 5, 3, 1, 1, 3, 0, 7) 



hS7 = (2, 3, 2, 4, 3, 7, 5, 4, 6, 1, 1, 5, 7, 0, 6) 

1 pair in common: 

hS7 = (4, 5, 1, 1, 4, 7, 5, 3, 6, 2, 3, 2, 7, 0, 6) 

hS7 = (3, 1, 1, 3, 6, 7, 2, 4, 2, 5, 6, 4, 7, 0, 5) 

2 pairs in common: 

hS7 = (3, 1, 1, 3, 4, 5, 6, 7, 4, 2, 5, 2, 6, 0, 7) 

hS7 = (2, 3, 2, 5, 3, 4, 6, 7, 5, 4, 1, 1, 6, 0, 7) 

3 pairs in common: 

hS7 = (1, 1, 2, 5, 2, 6, 4, 7, 5, 3, 4, 6, 3, 0, 7) 

hS7 = (4, 5, 1, 1, 4, 6, 5, 7, 2, 3, 2, 6, 3, 0, 7) 

4 pairs in common: 

hS7 = (1, 1, 3, 6, 4, 3, 5, 7, 4, 6, 2, 5, 2, 0, 7) 

hS7 = (4, 1, 1, 6, 4, 3, 5, 7, 3, 6, 2, 5, 2, 0, 7) 
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For 7 pairs in common take the same sequence twice, so Ints7 = {0, 1, 2, 3, 4, 7}. Two 

Skolem sequences of order 9 can have 0, 1, 2, 3, 4, 5 or 8 pairs in common: 

0 pairs in common: 

Sa= (5, 7,2,6,2,5,4,8, 7,6,4,3,1,1,3,8) 

Sa= (3,1,1,3,6,4,8,5, 7,4,6,2,5,2,8, 7) 

1 pair in common: 

S8 = (2,5,2,6, 7,3,5,8,3,6,4,7,1,1,4,8) 

S8 = (1,1,3,7,4,3,6,8,4,5, 7,2,6,2,5,8) 

2 pairs in common: 

S8 = (3,4,6,3,5,4, 7,8,6,5,1,1,2,7,2,8) 

Sa= (5,1,1,6,4,5, 7,8,4,6,2,3,2, 7,3,8) 

3 pairs in common: 

S8 = (3,1,1,3,4,6, 7,8,4,5,2,6,2, 7,5,8) 

S8 = (1,1,2,5,2,6, 7,8,5,3,4,6,3, 7,4,8) 

4 pairs in common: 

Sa= (1,1,2,5,2,6,7,8,5,3,4,6,3, 7,4,8) 



88 = (1,1,2,6,2,5, 7,8,4,6,5,3,4, 7,3,8) 

5 pairs in common: 

88 = (3,1,1,3,6, 7,8,2,5,2,6,4,7,5,8,4) 

88 = (3,6,2,3,2, 7,8,6,5,1,1,4, 7,5,8,4) 
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For 8 pairs in common take the same sequence twice, so, Ints8 = {0, 1, 2, 3, 4, 5, 8}. 

Two Skolem sequences of order 9 intersect in 0, 1, 2, 3, 4, 5, 6 or 9 pairs. 

0 pairs in common: 

89 = (9,5,3,1,1,3,5,6,8,9,7,4,2,6,2,4,8, 7) 

89 = (8,9, 7,4,2,6,2,4,8,7,9,6,5,3,1,1,3,5) 

1 pair in common: 

89 = (9,5,8,4,1, 1,5,4, 7,9,8,6,2,3,2, 7,3,6) 

89 = (9, 7,5,8,6, 1, 1,5, 7,9,6,8,4,2,3,2,4,3) 

2 pairs in common: 

89 = (9, 7,8,3, 1, 1,3,6, 7,9,8,4,5,6,2,4,2,5) 

89 = (9,6,8,5,7,1,1,6,5,9,8,7,4,2,3,2,4,3) 

3 pairs in common: 

89 = (9,7,8,2,3,2,6,3,7,9,8,5,6,4,1,1,5,4) 

89 = (9, 7,8,3,1,1,3,6, 7,9,8,4,5,6,2,4,2,5) 

4 pairs in common: 

89 = (9, 7,8,4,2,6,2,4, 7,9,8,6,5,3,1,1,3,5) 

89 = (9, 7,8,4,1,1,6,4, 7,9,8,5,6,2,3,2,5,3) 

5 pairs in common: 

89 = (9, 7,8,4,1,1,6,4,7,9,8,5,6,2,3,2,5,3) 

89 = (9, 7,8,2,3,2,6,3, 7,9,8,5,6,4,1,1,5,4) 

6 pairs in common: 

89 = (9, 7,5,8,6, 1, 1,5, 7,9,6,8,4,2,3,2,4,3) 

89 = (9, 7,5,8,6,1,1,5,7,9,6,8,3,4,2,3,2,4) 

For 9 pairs in common,take the same sequence twice, so Int89 = {0, 1, 2, 3, 4, 5, 6, 9}. 



Appendix B 

Tables giving the intersection 

between a Langford sequence and 

its reverse 

In this Appendix we give the number of pairs in common between a Langford sequence 

and its reverse. 

In Simpson's paper [45], all the Langford sequences of order n = 4t are perfect 

sequences. Table B.1 gives the intersection between a Langford sequence of order 

n = 4t and defect d and its reverse. For example, taking the Langford sequence of 

order n = 8 and defect d = 4 (t = 2 and s = 1) from [45] the pairs are: 

(t- 2s + 1, 3t + s + 1); (5t- s + 1, 7t + 2s); (3t- s + 2, 5t- s + 2); (2t, 4t + 1); 

(t- s + 1, 5t- s + 3); (2t- 3s + 2, 6t- s + 3); (2t + 1, 6t- s + 2); (2t + s, 6t + 3s). 

These pairs gives the following Langford sequence of order 8 and defect 4: L~ = 

(7, 10, 11,5,8,9,4, 7,5,6,4,10,8,11,9,6). 

Its reverse is another perfect Langford of order 8 and defect 4: 

L~ = (6, 9, 11, 8, 10, 4, 6, 5, 7, 4, 9, 8, 5, 11, 10, 7). 

These two Langford sequences have one pair in common(i.e. 11 is in the same position 

in both sequences). 

To see that these sequences are disjoint or have some pairs in common, we check that 
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all the values ( i, j) and their new positions (2n + 1- j, 2n + 1- i) are distinct or not. 

For example, (t- 2s+ 1, 3t+s+ 1) becomes (8t+ 1- (3t+s + 1), 8t+ 1- (t- 2s + 1)) 

in the reverse sequence and the two pairs are distinct. 

In [8], we can find other perfect Langford sequences of order n - 2d - 1 (mod 4). 

The number of pairs in common between these sequences and their reverse is given 

in table B.2. 

Table Oa) [29], gives perfect Langford sequences of order 2d- 1 and defect d. The 

number of pairs in common between these sequences and their reverse are given in 

table B.3. 

Table OB[29], gives other perfect Langford sequences of order 2d- 1 and defect d. 

The number of pairs in common between these sequences and their reverse are given 

in table B.4. 

Table OC[29], also gives other perfect Langford sequences of order 2d - 1 and 

defect d. The number of pairs in common between these sequences and their reverse 

are given in table B.5. 

In table Oa)[29], the pair n = 2d-1 can be in the first or last position, therefore we 

can have two different Langford sequences of order 2d- 1 and defect d. For example, 

from the following Langford sequence of order 5 and defect 3: 

L3 = (6, 7, 3, 4, 5, 3, 6, 4, 7, 5) we can get the following Langford sequence of order 

5 and defect 3 by changing 5 from the last position to the first position: L3 = 

(5, 6, 7, 3, 4, 5, 3, 6, 4, 7). 

Now if we take the Langford sequence of order 2d- 1 and defect d and its reverse 

from[7], another Langford sequence of order 2d - 1 and defect d and its reverse from 

Table0a)[29] and the Langford sequence and its reverse obtained from the previous 

sequences by moving the pair 2d - 1 from the last position to the first position, we 

will have six different Langford sequences of order 2d - 1 and defect d. The number 

of pairs in common between these sequences and their reverse are given in table B.6. 

Another perfect Langford sequence of order n = 2d and defect d for d even is 

given in Table 1d[29]. The number of pairs in common between these Langford and 
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their reverse are given in table B. 7. A Langford sequence of order 4t + 2 or order 

2d + 1 + 4r [29] is a hooked Langford sequence. If the Langford sequence is hooked 

we will fill the hook with the pair (2, 0, 2) and this will make the sequence perfect. 

Table B.8 will give the number of pairs in common between such Langford sequence 

of order n = 4t + 2 and defect d and their reverse. 

Table B.9 will give the number of pairs in common between a hooked Langford 

sequence of order 2d + 1 + 4r and defect d and its reverse. 

n d Conditions Pairs in common 
n=4t d=4s s ~ 1, t ~ 2s 1 

d=4s+2 s ~ 1, t ~ 2s + 1 3 
d=4s-1 s ~ 1, t ~ 2s 0 
d=4s+1 s ~ 1, t ~ 2s + 1 0 

Table B.1: Intersection of Langford sequences of order n = 4t and defect d with their 
reverse 

d ~ 2, d even the sequences are disjoint 
d ~ 3, dodd if n _ 2d- 1, n =!= 2d- 1 the sequences are disjoint 

if n = 2d - 1 the sequences have one pair in common 

Table B.2: Intersection of Langford sequences of order n _ 2d- 1(mod 4) and defect 
d with their reverse 

d = 2(mod 3); d ~ 1 the sequences are disjoint 
d = 0, 1(mod 3); d ~ 1 the sequences have one pair in common 

Table B.3: Intersection of Langford sequences of order 2d- 1 and defect d with their 
reverse 
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d = 1, 2 (mod 4); d ~ 4 the sequences are disjoint 
d- 0, 3(mod 4); d ~ 4 the sequences have one pair in common 

Table B.4: Intersection of Langford sequences of order 2d- 1 and defect d(2) with 
their reverse 

d = 0, 2 (mod 3), d ~ 8 the sequences have one pair in common 
d = 1 (mod 3), d ~ 8 the sequences are disjoint 

d=7 the sequences have one pair in common 

Table B.5: Intersection of Langford sequences of order 2d- 1 and defect d(3) with 
their reverse 

d = 2;n = 3 disjoint 
d = 3;n = 5 0 or 1 pairs in common 
d = 4;n = 7 0, 1 or 2 pairs in common 
d = 5;n = 9 0,1 or 3 pairs in common 

d _ 0, 1 (mod 3); d ~ 6 0, 1 or 2 pairs in common 
d _ 2 (mod 3); d ~ 6 0,1,2 or 3 pairs in common 

Table B.6: Intersection of Langford sequences of order 2d- 1 and defect d(4) with 
their reverse 

n = 2d, d = 2t disjoint if t is even 
1 pair if t is odd 

Table B. 7: Intersection of Langford sequences of order n = 2d and defect d with their 
reverse 
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defect d Conditions Pairs in common with its reverse 
d = 4s t- 2s = r;::: 0 1 pair if d = 8, 0 pairs otherwise 

d = 4s + 2 t- 2s- 1 = r;::: 0 2 pairs if s _ 2(mod 3) 
0 pairs if s- 0, 1(mod 3); s =/= 1 

1 pair if s = 1 
d = 4s + 3 t- 2s- 1 = r;::: 0 0 pairs if s _ 1(mod 3) 

1 pair if s _ 0, 2(mod 3); s =/= 0 
0 pairs if s = 0 

d = 4s + 1 t- 2s;::: 0 0 pairs if d = 5 
3 pairs if d = 9 
2 pairs if d = 13 

s- 1 pairs if s- 1(mod 3) 
s pairs if s- 0, 2(mod 3) 

Table B.8: Intersection of Langford sequences of order n = 4t + 2 and defect d with 
their reverse 

d=3 r=O 1 pair 
r;::: 1 0 pairs 

d=4 r=O 2 pairs 
r > 1 0 pairs 

d even, d;::: 6 r = 0,1 1 pair 
r;:::2 0 pairs 

dodd, d;::: 5 r=O 1 pair 
r;::: 1 0 pairs 

Table B.9: Intersection of Langford sequences of order n- 2d + 1(mod 4) and defect 
d with their reverse 



Appendix C 

The possible exceptions in 

Theorems 24 and 25 that are still 

open 

Below are the possible exceptions of the intersection spectrum of two Skolem se-

quences. 

n = O(mod 12) 

n = 12, the possible exceptions are 4, 6, 7. 

n = 24, the possible exceptions are 3, 6, 8. 

n = 36, the possible exceptions are 12, 16, 18, 21, 22. 

n = 48, the possible exceptions are 16, 23, 24, 29, 30. 

n = 60, the possible exceptions are 20, 29, 30, 32, 33, 34, 36. 

n = 12t, n ~ 72, t- 0, 1(mod 3), the possible exceptions are liJ - 5, liJ, otherwise, 

the possible exceptions are l i J - 5, l i J - 2, l i J. 
n = 1(mod 12) 

n = 13, the possible exceptions are 6, 8. 

n = 25, the possible exceptions are 11, 12, 13, 15. 

n = 37, the possible exceptions are 17, 18, 19, 21, 22, 23, 24. 

n = 61, the possible exception is 36, 37. 
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n = 73, the possible exception is 44. 

n ~ 109, the possible exceptions are: 2 L ~ J - 4, 2 L ~ J. 

n = 4(mod 12) 

n = 16, the possible exception is 10. 

n = 28, the possible exceptions are 13, 14, 16, 17, 18. 

n = 40, the possible exceptions are 18, 19, 20, 22, 24. 

n = 76, the possible exception is 49. 

n = 88, the possible exception is 57. 

n = 100, the possible exception is 65. 

n ~ 112, the possible exception is 2 L ~ J - 1. 

n = 5(mod 12) 

n = 17, the possible exceptions are 5, 10, 11. 

n = 29, the possible exceptions are 9, 10, 17, 19. 

n = 41, the possible exceptions are 13, 14, 23, 24, 25, 27. 

n = 53, the possible exceptions are 17, 18, 31, 32, 35. 

n = 65, the possible exceptions are 21, 22, 30, 31, 39, 43. 

n ~ 77, the possible exceptions are L~J, L~J + 1, 2L~J - 3, 2L~J - 2, 2L~J + 1. 

n = 8(mod 12) 

n = 20, the possible exceptions are 3, 6, 7, 9, 13. 

n = 32, the possible exceptions are 10, 11, 14, 15, 20, 21. 

n = 44, the possible exceptions are 14, 15, 29. 

n = 56, the possible exceptions are 18, 19, 33, 37. 

n = 68, the possible exceptions are 22, 23, 34, 41, 45. 

n = 80, the possible exceptions are 26, 27, 39, 40, 53. 
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n?: 92, n = 12t+8, t- 0, 2(mod 3), the possible exceptions are L~J -3, L~J +1, 2L~J-

3, 2 L ~J + 1, otherwise, the possible exceptions are L~J -3, L~J, L ~J + 1, 2 L~J -3, 2 L~J + 

1. 

n = 9(mod 12) 

n = 21, the possible exceptions are 5, 7, 10, 11, 12, 13, 14. 



n = 33, the possible exceptions are:11, 14, 15, 19, 20. 

n = 45, the possible exceptions are 15, 22, 27. 

n =57, the possible exceptions are 19, 22, 23, 25, 26, 27, 28, 29, 31, 32, 35. 

n = 69, the possible exceptions are 23, 26, 40, 43, 44. 
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n = 9(mod 12), n ~ 81, the possible exceptions are l~J, l~J + 3, 2l~J - 6, 2l~J - 2. 

Below are the possible exceptions of the intersection of two hooked Skolem se-

quences. 

n = 2(mod 12). 

n = 14, the possible exceptions are 1, 4, 5, 6, 7, 8, 9. 

n = 26, the possible exceptions are 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. 

n = 38, the possible exceptions are 9, 12, 13, 16, 18, 20, 22, 23, 24, 25. 

n =50, the possible exceptions are 16, 17, 25, 26, 28, 30, 33. 

n = 62, the possible exceptions are 17, 20, 21, 29, 30, 32, 34, 35, 36, 37, 38, 40, 41. 

n = 74, the possible exceptions are 21, 24, 25, 34, 36, 39, 40, 42, 43, 44, 45, 47, 48. 

n = 86, the possible exceptions are 

25,28,29,37,38,40,41,42,43,44,46,48,50,51,52,53,56,57. 

n = 98, the possible exceptions are 32, 33, 53, 54, 56, 58, 59, 60, 64, 65. 

n = 12t + 2, n > 98, n = 98 + 60r, t - 0, 1, 2, 4, 5, 7, 10, 13, 14(mod 15): l~J -

3, l~J, l~J + 1, l~J +21+ 16r, l~J +22+ 16r, l~J +24+ 16r, ... , 2l~J -4, 2l~J, 2l~J + 1 

(1), t = 6, 11, 12(mod 15): (1)-{l~J}, t 3, 8, 9(mod 15): (1)-{l~J - 3}, n = 12t + 

2, n > 98, n = 50+60r, 62+60r, 74+60r, 86+60r, t- 0, 1, 2, 4, 5, 7, 10, 13, 14(mod 15): 

L~J -3, L~J, L~J +1, L~J +9+16r, L~J +10+16r, L~J +12+16r, ... ,2L~J -4,2L~J-

2, 2L~J, 2L~J + 1 (2), t = 6, 11, 12(mod 15): (2)-{l~j}, t _ 3, 8, 9(mod 15): (2)-

{l~J- 3} 

n = 3(mod 12). 

n = 15, the possible exceptions are 3, 5, 7, 8, 9, 10. 

n = 27, the possible exceptions are 7, 9, 12, 13, 15, 17, 18. 

n = 39, the possible exceptions are 11, 13, 17, 19, 21, 22, 23, 24, 25. 

n = 51, the possible exceptions are 15, 17, 20, 21, 23, 27, 29, 30, 31, 32, 33, 34. 
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n = 63, the possible exceptions are 19, 21, 30, 31, 33, 37, 38. 

n = 75, the possible exceptions are 23, 25, 28, 41, 43, 44, 45, 46, 47, 49, 50. 

n = 3(mod 12),n = 75 + 60r,n > 75: l~J- 2, l~J, l~J + 3, l~J + 15 + 16r, l~J + 

16 + 16r, l~J + 18 + 16r, ... , 2l~J- 3, 2l~J -1, 2l~J, otherwise: l~J- 2, l~J, l~J + 

3, l~J + 3 + 16r, l~J + 4 + 16r, l~J + 6 + 16r, ... , 2l~J - 3, 2l~J - 1, 2l~J. 

n = 6(mod 12). 

n = 18, the possible exceptions are 6, 8, 9, 10, 11, 12. 

n = 30, the possible exceptions are 5, 8, 13, 14, 16, 18. 

n = 42, the possible exceptions are 9, 12, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28. 

n =54, the possible exceptions are 15, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36. 

n = 66, the possible exceptions are 

22,25,26,28,29,30,31,32,33,34,35,38,39,40,41,44. 

n = 78, the possible exceptions are 26, 29, 42, 44, 46, 47, 48. 

n = 12t + 6, n > 78, n = 78 + 60r, t _ 0, 1, 2, 5, 7, 10, 14(mod 15): l~J - 5, l~J -

2, l~J, l~J + 3, l~J + 15 + 16r, l~J + 16 + 16r, l~J + 18 + 16r, ... , 2l~J - 2 (3), t = 
8,9(mod 15): (3)-{l~J- 5}, t = 4, 13(mod 15): (3)-{l~J}, t _ 3(mod 15):(3)­

{l~J - 5, l~J}, n = 12t + 6, n > 78, n = 30 + 60r, 42 + 60r, 54+ 60r, 66 + 60r 

t- 0, 1, 2, 5, 7, 10, 14(mod 15): l~J- 5, l~J- 2, l~J, l~J + 3, l~J + 3 + 16r, l~J + 4 + 

16r, l ~J + 6+ 16r, ... , 2l ~J- 2( 4), t 8, 9(mod 15): ( 4)-{l~J- 5}, t - 4, 13(mod 15): 

(4)-{l~J}, t 3(mod 15): (4)- {l~J - 5, l~J}. 

n = 7(mod 12). 

n = 19, the possible exceptions are 9, 10, 11, 12. 

n = 31, the possible exceptions are 14, 15, 17, 18, 19, 20. 

n = 43, the possible exceptions are 17, 18, 19, 20, 21, 23, 25. 

n =55, the possible exceptions are 28, 29, 31, 33. 

n = 7(mod 12), n 2: 67, n = 55+ 60r: l~J + 10 + 16r, l~J + 11 + 16r, l~J + 13 + 

16r, ... , 2l~J -2, otherwise: l~J +14+16r, l~J +15+16r, l~J +17+16r, ... , 2l~J -2. 

n = 10(mod 12). 

n = 22, the possible exceptions are 11, 12, 13, 14. 



n = 34, the possible exceptions are 14, 15, 16, 17, 18, 20, 21, 22. 

n = 46, the possible exceptions are 18, 19, 20, 21, 22, 24, 26, 27, 28, 29. 

n =58, the possible exceptions are 29, 32, 34, 35, 36. 
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n = 10(mod 12), n ;::: 70, n = 58+ 60r: L~J + 10 + 16r, L~J + 11 + 16r, L~J + 13 + 

16r, ... , 2L~J, otherwise: L~J + 14 + 16r, L~J + 15 + 16r, L~J + 17 + 16r, ... , 2L~J. 

n = 11(mod 12). 

n = 23, the possible exceptions are 7, 8, 9, 10, 11, 12, 13, 14. 

n = 35, the possible exceptions are 11, 12, 15, 16, 17, 19, 21. 

n = 47, the possible exceptions are 15, 16, 24, 25, 27, 28, 29, 30. 

n =59, the possible exceptions are 19, 20, 28, 29, 31, 33, 34, 35, 36, 37, 38. 

n = 71, the possible exceptions are 23, 24, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46. 

n = 83, the possible exceptions are 27, 28, 36, 37, 39, 40, 41, 42, 43, 45, 47, 49, 50. 

n = 95, the possible exceptions are 31, 32, 52, 53, 55, 56, 57, 58, 61, 62. 

n = 11(mod 12),n > 95,n = 95 + 60r: l~J, l~J + 1, l~J + 21 + 16r, l~J + 22 + 

16r, l~J + 24 + 16r, ... , 2l~J - 1, 2l~J, 2l~J + 1, otherwise: l~J, l~J + 1, l~J + 9 + 

16r, l ~ J + 10 + 16r, l ~ J + 12 + 16r, ... , 2l ~ J - 1, 2l ~ J , 2l ~ J + 1. 
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