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ABSTRACT 

The witch flounder (Glyptocephalus cynoglossus), or grey sole, as it is commonly 

known, is a member of the family Pleuronectidae (right eye flounders) and is found in the 

Northwest Atlantic near Hamilton Bank off southern Labrador, southward over Newfoundland 

banks, Gulf of St.Lawerence, Scotian Shelf, Bay of Fundy and Gulf of Maine, to Cape 

Lookout, NC. The witch flounder has become increasingly important commercially since the 

1940's. There was heavy exploitation of witch flounder by foreign ships in the early 1970' s 

but with the introduction of Canada' s 200-mile limit in 1977, foreign fishing for the species 

was reduced and Canada's take increased. 

This study focused on the adaptation of wild witch flounder to captivity and the 

development of a captive broodstock. Areas of concentration focused on growth and 

maturation, with emphasis on the reproductive biology (pattern of oocyte development, 

endocrinology and gamete analysis) of the witch flounder. This information will be used to 

help determine whether the witch flounder is a good candidate as an aquaculture species. 

The reproductive cycle of both the male and female witch flounder is characterized by 

distinct seasonal variations and fluctuations in plasma sex steroids associated with 

reproductive activity. As seen in other teleosts, the circulating levels of sex steroids increased 

as gamete maturation and gonad growth proceed, reaching peak levels during spawning. 

Oocyte size-class frequency distributions of witch flounder demonstrate the presence of 

just a single clutch of progressively developing vitellogenic oocytes, indicating group

synchronous development, by far the most common reproductive strategy in teleosts. 
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Male witch flounder produce low volumes of viscous milt and sperm is only available 

for five months ofthe year (April- August). This correlates with spawning events in the 

female witch flounder, with ovulated eggs from late June to late August. 
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CHAPTER 1. 

General Introduction. 

1.1 THE NEED FOR AQUACULTURE 

As the world population continues to expand at an almost exponential rate, culture 

fisheries are becoming an ever more important source of food and resources. The natural 

stocks offish can only supply a limited amount of food in a sustainable fashion. Overfishing, 

pollution, and habitat destruction have severely limited seafood populations worldwide and 

experts believe the current level of fishing may not be sustainable beyond the year 2040 (F AO 

1996). Capture fisheries are the most widely known and recognized form of capturing aquatic 

organisms, and have been practiced since prehistoric times. Aquaculture, the cultivation of 

fish, shellfish and aquatic plants, is an established practice in many parts of the world (Fig. 1-

1 ). Culture fisheries or aquaculture involves growing a selected organism, or in some cases 

several selected organisms, in a controlled environment where the sole purpose of the 

organisms is to be harvested and then sold commercially. Most aquaculture crops are destined 

for human consumption. However, in the case of salmon, government agencies use their 

product to enhance the declining natural resources. Other products include baitfishes, 

ornamental and aquarium fish and aquatic animals used to increase natural populations for 

capture and sport. Aquaculture farms are very similar to their land based counterparts in terms 

of concept and management strategies. 

One of the advantages of cultured product over commercially harvested fish is the quality. 

Cultured fish suffer minimal handling and reach the market without delay, resulting in a 

fresher product. In fact, an increasing number of fish species are being sold live. In addition, 
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cultured products are not subject to seasonal shortages like commercially harvested fish, but 

are accessible year round, resulting in more stable prices (Bidwell 1999). 

C:=:J Others 14% 

- Korea2% 

- Pbilipines 2% 

- USA2% 

- Thailand 3% 

C:=:J China 56% 

Fig 1-1. Top 10 Aquaculture Producers (By volume in 1994) (FAO 1996) 

1.2 CANADIAN AQUACULTURE 

In Canada, aquaculture was first used to enhance natural stocks; however, it is now a 

large-scale commercial industry across the country providing direct and indirect economic 

benefits to many local and regional economies. All ten provinces and the Yukon Territory 

currently have a stake in commercial aquaculture and interest is increasing in the Northwest 

Territories. Aquaculture production in 1998 accounted for 27% oftotallanded value of 

Canadian fish and seafood (DFO 2000). Commercial aquaculture production dates to the 
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1950s, when trout and oysters were the species of interest. Over the past 20 years, commercial 

production has expanded to include several salmon species, mussels, clams, oysters and 

scallops. 

1.3 THE AQUACULTURE INDUSTRY IN NEWFOUNDLAND 

Since the dramatic collapse of the commercial fishery off the east coast of Canada in 

1993, interest in developing marine finfish aquaculture in Atlantic Canada has increased. The 

most promising solution for relieving the fresh fish deficit and likewise providing jobs for out

of-work fishermen is aquaculture. The Canadian government has increased its support for 

aquaculture research in the years since the fishery moratorium began in the Atlantic Provinces 

and the result has been the development of an aquaculture industry in Newfoundland. In 

1998, the total export value for aquaculture in Newfoundland and Labrador is estimated at 

approximately $11 million compared to $4 million in 1995, and employed more than 400 

people in 2000 (Table 1-1). There were also 125 licensed aquaculture sites: 68 commercial 

shellfish licenses (blue mussels and scallops) and 57 commercial finfish licenses (steelhead 

trout, Atlantic salmon, rainbow trout, arctic char, and cod) (Fig. 1-2). Research continues on 

mussels, scallops, haddock, Atlantic cod, yellowtail and witch flounder. There is an interest in 

halibut farming in the Atlantic provinces as the world demand for this premium product is 

high and the wild supply is low (DFO 1999). Witch flounder were considered an attractive 

species for culture given their high value in the market and low supply from the wild fishery. 
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Table 1-1: Newfoundland and Labrador Aquaculture Statistics 1998 (DFO 1999) 

Tonnes 
Type of Fish ·or Shellfish 

Produced Export V aloe ($000) 

(mt's) 

FINFISH 

Salmon 401 2,925 

Trout 48 197 

Steelhead 1,316 6919 

TOTAL FINFISH 1,765 10,041 

Blue Mussels 946 815 

Scallops 9 53 

Other 7 32 

TOTAL SHELLFISH 1,051 900 

GRAND TOTAL 2,724 10,941 

1.4 GENERAL BIOLOGY OF WITCH FLOUNDER 

The witch flounder (Glyptocephalus cynoglossus), or grey sole (Fig. 1-3), as it is 

commonly known, is a member of the family Pleuronectidae (right eye flounders) and is found 

in the Northwest Atlantic near Hamilton Bank off southern Labrador, southward over 

Newfoundland banks, Gulf of St.Lawerence, Scotian Shelf, Bay of Fundy and Gulf of Maine, 

to Cape Lookout, NC. Under international quota regulations in 1974, the fishery was divided 
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into five different stock areas for management purposes. The five stock areas are: (1) southern 

Labrador-eastern Newfoundland (2J-3KL), (2) southern Grand Banks (3NO), (3) St.Pierre 

Bank-Fortune Bay (3P), (4) northern GulfofSt.Lawerence (4RS) and (5) Scotian Shelf 

(4VWX) (Underwater World 1983). 

Fig 1-2. Aquaculture sites in Newfoundland and Labrador (1999) (DFO 1999) 

Witch flounder are generally deepwater flatfish living mainly at depths of 45-274 m, 

but may also be found between 18 and 1570 m. It prefers a mud-sand bottom and in summer 

they usually move up onto the soft mud and in winter move down into the deep gullies. Witch 

flounder have been caught in a bottom temperature range of -1 oc - 11 °C, however they are 

more abundant at temperatures of 2-6°C (Scott & Scott 1988). 
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Fig. 1-3. Witch Flounder, Glyptocephalus cynoglossus (Fishbase 2000) 

The witch flounder is dark greyish brown on the eyed side and white on the 

underside. The body is covered by smooth scales, which make it very slippery and extremely 

difficult to hold. It lies on its left side with the stomach and other visceral contents on the 

right. The body is relatively narrow when compared to other flatfishes and has a very small 

head (1/5 of the total body length) with a very small mouth not unlike the yellowtail flounder. 

It can grow as large as 78cm in length with a weight of3.5-4.0 kg but generally witch flounder 

beyond 60cm in length and 2. 5kg in weight are uncommon. 

Witch flounder is relatively slow growing; the fastest growth rate occurs in the 

northeast Newfoundland shelf area with the slowest growth rate in the Gulf of St. Lawrence 

area. They are a long-lived (30 year or more) species, with females living longer than males. 

Unlike most marine fish species where size at age is greater in the more southerly areas, the 

opposite is true of witch flounder for both males and females. 

It is a predaceous species, limited in choice in food items by its small mouth. 

Principal food items include polychaets, including tubeworms, and crustaceans (particularly 
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amphipods), small fishes and mollusks such as small bivalves. During spawning season these 

fish do not feed much, if at all. Size at sexual maturity is smaller for males than for females. 

Spawning usually takes place in very deep water and occurs over a prolonged period, 

extending from March to September in the northwest Atlantic. In southern Labrador

Newfoundland shelf region spawning occurs from March to July but most intensively from 

March to May. Spawning on the Grand Bank region occurs principally in July and August 

while spawning on the Georges Bank-Scotian Shelf region occurs from May to possibly 

October, reaching its peak in July and August (Scott & Scott 1988). A female 45cm long 

from the Grand Bank produces about 200,000 eggs annually, a female 55cm long about 

450,000 eggs. Eggs are spherical, 1.10- 1.45 mm in diameter, are pelagic but without an oil 

globule. Fertilized eggs float; hatching occurs in about 7-8 days at 8°C. 

Young flounder are 4-6 mm long on hatching and may remain floating about, in a 

pelagic state, for upwards of a year before settling down on the bottom, the longest pelagic 

stage of any North Atlantic flatfishes, such as yellowtail flounder, winter flounder, plaice and 

halibut (Rabe 1999). 

1.5 COMMERCIAL SIGNIFICANCE OF WITCH FLOUNDER 

The witch flounder has become increasingly important commercially since the 

1940's. There was heavy exploitation of witch flounder by foreign ships in the early 1970's 

but with the introduction of Canada's 200-mile limit in 1977, foreign fishing for the species 

was reduced and Canada's take increased. They are taken incidentally as a by catch when 

fishing for other species such as cod, halibut, plaice and redfish. Commercially caught witch 

flounder are usually 8-13 years old, weigh ~0 . 7 kg and are ~45 em long. The flesh is white 
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and considered to be of high quality in flavor and texture. It is usually marketed, fresh or 

frozen, as fillets of sole and when compared with the other small flounders, they command a 

higher price and sometimes more than halibut (Table 1-2). Worldwide, the US harvests 

between 2,000 and 2500 tones of witch flounder per year and the European production is 

estimated at 15,000 to 20,000 tons per year (Library 2000). In 1989, 7, 272 metric tonnes of 

witch flounder were caught in Atlantic Canada whereas in 1999 only 1, 109 metric tonnes were 

caught, following the decline that most fisheries are experiencing. 

1.6 OBJECTIVES OF RESEARCH 

The development of new candidate finfish species from the northwest Atlantic for 

aquaculture depends upon the control of many biological and physical environmental factors. 

It should be biologically manageable, have suitable growth profile, realistic promise of 

financial return and have existing markets and routes of commercialization identified 

(Barnette 1998). There are three strategies for aquaculture start-up: 1) start with stocks of 

juveniles collected from the wild, 2) start with viable gametes produced by adult fish from the 

wild and 3) start with developing a domesticated broodstock. Most importantly, it is essential 

to have a predictable source of offspring (Crim and Wilson 1998). 

Witch flounder have rarely been held in captivity so there is little information about 

its reproductive activities. This study focused on the adaptation of wild witch flounder to 

captivity and the development of a captive broodstock. Areas of concentration will be focused 

on growth and maturation, with emphasis on the reproductive biology (pattern of oocyte 

development, endocrinology and gamete analysis) of the witch flounder. This information 
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will be used to help determine whether the witch flounder is a good candidate as an 

aquaculture species. 

Table 1-2: Comparison prices for flatfish species (US$) (Fulton Fish Market 2000) 

SPECIES COMMON NAME PRICE (lb) 

Glyptocephalus cynoglossus Grey sole $4.00 

P leuronectes ferrugineus Yellowtail $2.00 

Pleuronectes americanus Blackback $1.48 

Hippoglossoides platessoids Plaice $1.51 

Hippoglossus hippoglossus Halibut $5 .27 
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6.1 Growth, maturation and ovarian development ] . . 

Normally, the conditions for holding newly acquired broodstock closely emulate the 

field situation, with similar light and oxygen levels, thermal regimes and feeding schedules. 

But for reasons of either convenience or practicality, broodstock usually will be acclimated to 

possible stressful rearing conditions, which may negatively impact reproductive performance. 

While most fish species appear capable of undergoing gonadal development in captivity, few 

are able to spontaneously spawn viable gametes ( eg. Atlantic cod). Therefore, considerable 

research is aimed at developing gamete collection and fertilization protocols for captive 

brood stock. 

Fish respond to changes in the environment, and reproduction is timed to coincide 

with environmental conditions that are most favorable for reproduction. In most species 

gonad growth is commonly influenced by changes in temperature and photoperiod because 

collectively, they are reliable cues, which foretell the advent of the appropriate time for 

spawning. Close to the time of gamete final maturation, appropriate physical cues (such as 

water flow or level, availability of suitable physical space and availability of spawning 

substrate) are often required for ovulation and/ spawning (Stacey 1984). 

Ovarian development can be classified into 3 basic types, 1) synchronous - species 

that spawn once and then die such as Pacific salmon, are characterized by a single clutch of 

oocytes that grow in unison. 2) Group synchronous and multiple group synchronous - at least 

two clutches of oocytes can be distinguished in the ovary at the same time, hence these species 

spawn more than once. Group synchronous species spawn more than once in a lifetime, but 

typically once per season whereas multiple group synchronous species have multiple 

spawning episodes within a single reproductive season. 3) Asynchronous- in these species, 
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oocytes are a mixture of stages and no distinct clutches can be identified, although 

asynchronous development is most likely an extreme case of multiple group synchrony 

(Pankhurst 1998). 

1. 6.2 Endocrinology of female and male witch flounder 

In order for reproduction to occur in captive fish, they have to undergo gonadal 

development and maturation, and gamete final maturation resulting in ovulation in females 

(release of eggs into the oviduct) and sperm production in males (Pankhurst 1998). 

Bottlenecks can occur at any ofthese stages, possibly as a result of inappropriate 

environmental conditions (social and physical) and/or chronic stress imposed by the 

conditions of captivity (Pankhurst 1998). Controlled approaches to managed reproduction 

rely on a solid understanding of the pattern of gamete development, duration and frequency of 

spawning events and associated endocrine changes. Armed with this information, potential 

bottlenecks can be identified and management strategies implemented. 

The role of steroids testosterone (T) and estradiol - 1713 (E2) is standard among teleost 

spec1es. Tis a precursor to & (Matsuyama et al 1988) and E2 stimulates synthesis of the yolk 

precursor vitellogenin (Vtg), which is incorporated into the growing oocyte during 

vitellogenesis (Speckler and Sullivan 1993). As vitellogenesis approaches completion there is 

a fall in&, then T and a surge in the production of 17a20j3 -dihydroxy-4-pregen-3-one, which 

is the maturation steroid on most species in which it has been investigated (Scott and Canario, 

1987). 

In male teleosts, plasma T levels tend to be highest during spermatogenesis 

(transition from spermtogonia to spermatids) and tend to drop off prior to spermiation (sperm 
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release) (Harmin et al., 1995; Carolsfield et al., 1996). In many species 11-ketotestoerone (11-

KT) is elevated during spermatogenesis and the early stages of spermiation, and is thought to 

be more effective than T at stimulating spermatogenesis, secondary sexual characteristics and 

spawning behavior (Borg 1994). 

1. 6.3 Sperm Analysis 

The pattern of male gamete development broadly reflects gamete synchrony shown in 

females (Pankhurst 1994). Milt is often present in the sperm duct one to two months earlier 

than the beginning of the spawning season in females, for example in starry flounder, 

Platichthys stellatus (Pallas) and plaice, Pleuronectes platessa L. (Barr 1963). Winter 

flounder males produce sperm five months longer than the female spawning season (Burton 

and Idler 1987) and in some species like the dab, Pleuronectes limanda L., and the yellowtail 

flounder, Pleuronectes ferrugineus, sperm is present throughout the year (Clearwater and 

Crim 1998). 

Like most other externally fertilizing marine teleosts, witch flounder sperm is 

immotile when collected from the urogenital pore and is activated upon dilution in seawater 

(Morisawa and Suzuki, 1980). Changes in osmotic pressure, pH and ionic concentrations are 

thought to be the most important factors in triggering sperm activation in teleost fish (Billard 

et al., 1992). Witch flounder males produce low volumes of sperm (200-350!-ll); therefore in 

order to manage male broodstock effectively, it is important to understand milt characteristics 

in order to effectively manage the low sperm volumes. 
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1.7 THESIS STRUCTURE 

• Chapter 2 - Focuses on the acclimation of captive witch flounder to laboratory conditions 

with an emphasis on growth and maturation 

• Chapter 3 - Focuses of the reproductive endocrinology of male and female witch flounder 

• Chapter 4 - Focuses on the biochemical characteristics of the milt of the male witch 

flounder. 

• Chapter 5 - Summary and Conclusions 
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CHAPTER2. 

Capture/growth, Maturation and Oocyte Development. 

2.1 INTRODUCTION 

The development of a new candidate fish species for cool-water aquaculture depends 

upon control of many factors, including a predictable source of offspring. While aquaculture 

projects may be started with founder stocks of juveniles or gametes collected from the wild, a 

secure supply of offspring can only be assured by adapting and manipulating captive 

broodstock to perform well under culture conditions (Crim and Wilson 1998). 

The physical injury and physiological stress of capturing, handling, transporting, 

injecting and holding brood fish can have a greater detrimental effect on spawning success 

than almost any other set of factors. Fish must be handled carefully and optimum water 

conditions must be maintained to minimize stress. The conditions for holding newly acquired 

broodstock must closely emulate the field situation, with similar light and oxygen levels, 

thermal regimes and feeding schedules. 

Oogonia in females develop into pre-vitellogenic oocytes, and at the acceleration of 

oocyte growth, the phospho lipoprotein yolk precursor vitellogenin (Vtg) is synthesized in the 

liver and subsequently taken up by developing oocytes (Tyler and Sumpter 1996). At the 

completion of vitellogenesis, oocytes undergo final maturation, which is characterised by the 

disintegration of nuclear membrane (germinal vesicle breakdown). In association with this, 

there is generally coalescence of lipid droplets and yolk to give the cytoplasm a homogeneous 

and often hyaline appearance (Nagahama 1983). In marine species with pelagic eggs there is 

a final increase in size as the oocyte hydrates and this may be accompanied by formation of 

one or more oil droplets (Wallace and Selman 1981). 
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There are generally three commonly recognized modes of oocyte development. In species 

such as anguilled eels or Pacific salmon, which spawn once and then die, there is a single 

clutch of maturing oocytes present in the ovary. This is described as synchronous ovarian 

development (Wallace and Selman 1981). Group synchronous development describes species 

that spawn more than once in their lifetime but typically only once per season. In this case, 

the ovary contains both a population of previtellogenic oocytes and the developing clutch 

destined for maturation and ovulation for the current spawning season. This type of 

development is found in cold temperate species such as trout (Tyler et al. 1990), deepwater 

marine species (Pankhurst et al. 1987) and high latitude marine species (North and White 

1987). In some species there is more than one developing clutch present in the ovary and is 

characteristic of species where there are multiple spawning events within a single reproductive 

season. 

For reasons of convenience or practicality, broodstock are generally acclimated to 

extraordinary and possibly stressful rearing conditions, which may negatively impact 

reproductive performance. While most fish species appear capable of undergoing gonadal 

development in captivity, few are able to spontaneously spawn viable gametes. Considerable 

research is aimed at developing gamete collection and fertilization protocols for captive 

female broodstock. 

In this study, we attempted to capture witch flounder, transport them back to the lab 

and have them acclimate to lab conditions as potential broodstock. Surviving fish were then 

monitored for growth and maturation. 
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2.2 MATERIALS AND METHODS 

2.2.1 Broodstock collection 

Adult female and male witch flounder were caught by Danish seine fisherman, in 

Fortune Bay, Newfoundland at a depth of 260 meters. From the time the fish were brought on 

board the trawler, they were carefully handled and maintained in three plastic tubs with cool, 

flow through sea water from a deck hose. The trip to shore lasted one hour. Once on land, fish 

were transferred to a tank inside a cargo truck for a 9-hour drive to the Ocean Sciences Center, 

Logy Bay, Newfoundland. Temperature and oxygen concentration was monitored and 

recirculating pumps were used to increase oxygen availability when the oxygen concentration 

fell below 80%. Collections were made in November 1997 and July 1998. 

2.2.2 Holding conditions 

Upon arrival at the lab the fish were injected with 1 OO!J.Vkg of an antibiotic (Trivetrin, 

Pitman-Moore Company, Ontario, Canada) and kept quarantined in a tank with ambient flow

through sea water and minimum disturbance. During the first week, the fish were treated with 

Chloramine T, (Syndel Laboratories, Vancouver, BC, Canada) 5mg/L for one hour 3 times 

over a one-week period. After two weeks, the surviving fish were individually tagged with a 

passive integrated transponder (PIT) (BioSonics, Seattle, Washington, USA) and moved to the 

experimental tank. The fish were held in 200-liter fiberglass tanks with flow-through sea water 

at either ambient temperatures or in a mixture of ambient and chilled or heated sea water. 

Daily water temperatures were recorded from May 1998 through August 1999 by temperature 
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monitors (Radio Shack, Canada). Water temperatures ranged from as low as 3°C in the winter 

months to as high as 16°C during the summer (Fig. 2-1 ) . Fish were exposed to a simulated 

natural photoperiod for St. John's, Newfoundland (47°20'N, 52°45'W) from minimal indirect 

lighting (10 Lux). Fish were fed to satiation twice weekly on a moist shrimp-based 

formulated pellet (Table 2-1 ) . 

2.2.3 Oocyte Size-Frequency Distributions 

After the initial two week quarantine period, while the fish were being sorted into the 

experimental tanks, small amounts of ovarian tissue was collected from fresh mortalities and 

fixed in 0.6% NaCl containing 1% formalin (Harmin 1991) for a minimum of2 days before 

observations were made. Individual oocytes from the fixed tissues were separated under the 

microscope using fine forceps. Previtellogenic and vitellogenic oocytes could be easily 

distinguished by their size and appearance, and 1 00 vitellogenic eggs were measured by 

optical micrometer to the nearest 26f.lm under an Olympus dissecting microscope at 40X 

magnification. The size-class frequency was determined from these measurements. 

2.2. 4 Determination of Gonadosomatic Index 

At the time of autopsy, body weight and length, as well as gonad weight, were recorded for 

calculation ofgonadosomatic index (GSI) =((gonad weight I body weight) x 100). All fish 

autopsied resulted in three different GSI types. For purpose of discussion they were arbitrarily 

classified as follows: 1) immature (GSI < 1%), 2) maturing (GSI 1.1% < 8%) and 3) ovulating 

(GSI >10%). 
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Glyptocephalus cynoglossus. 
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Table 2-1: Moist pellet diet formulation for witch flounder broodstock 

(NRC, Halifax) 

Ingredient Purpose 
Company 

Finely ground shrimp protein 
Local1 

Herring meal protein 
Corey Feed Mills2 

Sapropeche (CPSPG) protein 
Surr Gain3 

Wheat middlings carbohydrate 
Corey Feed Mills 

National Starch and Chemical 
Pre-gelatinized starch binder c . 4 orporat10n 

Liquid krill extract gelatin BDH5 

Choline chloride 
Corey Feed Mills 

Vitamin premix vitamins Conners Brother Ltd6 

Mineral premix minerals Conners Brothers Ltd. 

Herring oil Corey Feed Mills 

1- Seafood Shop, Churchill Park, St.John's, NF AlB 4R5 
2- Corey Feed Mills, 136 Hodgson Rd., Fredericton, NB E3B 8W6 
3- Shur Gain, 494 Willow St., Truro, NS B2N 5G7 
4- National Starch and Chemical Corporation, Finderne Avenue, 

P.O.Box 6500, Bridgewater, NJ 08807 
5- BDH Inc., 350 Evans Avenue, Toronto, ON M8Z 1K5 
6- Conners Brothers Limited, Black Harbour, NB EOG lHO 

22 

g/kg 

450 

290 

40 

141 

40 

5 

4 

10 

5 
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2. 2. 5 Monthly Sampling 

Beginning May 1998 and terminating on August 1999, the surviving fish were 

measured (15 times). Individual body weight (g) and length (em) were recorded. Condition 

factor index (CF) (CF = (body weight/body length3
) x 1 00) was calculated for each fish. Each 

fish was checked for milt production and a blood sample was taken from every fish. Females 

were identified by the observance ofvitellogenic oocytes in the ovary. Oocytes were gently 

aspirated from the anterior of the right (eyed side) ovary by inserting a polyethylene cannula 

with an inner diameter of 1.9mm through the ovipore (Larsson et al. 1997). Gentle pressure 

was applied to the abdomen of the fish and males were identified by the presence of milt from 

the urogenital pore. 

2. 2. 6 Maturation 

Ovulation of female witch flounder was checked every second day, beginning early 

July 1999, by applying slight pressure to the swollen abdomen in the direction of the egg pore. 

Freshly ovulated eggs from individual females were collected in pre-chilled 100ml beakers 

and placed on ice. Milt used in the fertilization trials was collected from two males at the same 

time as egg collection. Milt, which was manually stripped by applying gentle pressure 

posterior to the urogenital pore, was aspirated into pre-chilled tuberculin syringes and stored 

on ice. Care was taken to avoid contamination of the milt sample with seawater or urine. 

Individual samples were checked for motility and only the samples of highly motile sperm 
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were used. After the major ovulation event, checking was continued twice more in two-day 

intervals, and no more eggs were collected. 

2. 2. 7 Egg Quality 

Egg quality has been defined by morphological criteria- egg viability, fertilization 

and hatching rates. Each batch of eggs collected from individual females was evaluated. 

High-quality eggs (good viability) from marine teleosts with pelagic eggs are generally clear, 

floating, and spherical, and have no previtelline space prior to fertilization (McEvoy 1984 and 

Larsson et al 1997). 

2.2. 7.1 Egg Viability 

For egg viability determinations, three aliquots of unfertilized eggs, per female were 

mixed with sea water. One hundred eggs were observed from each sample and the number of 

clear, floating, and spherical eggs lacking a previtelline space was noted. 

2.2. 7.2 Fertilization 

Fertilization trials were conducted in petri dishes on ice, by mixing 7 5 f.!l ( ~ 150 eggs) 

of eggs with 1 Of.!l of milt and then 200f.!l of seawater was added. This preparation was mixed 

again and left for 2 minutes after which 20mls of seawater was added to the petri dish and the 

dish was placed in a dark incubator (Hotpack Corp, Model# 352602, Philadelphia, PA 19154) 

set at 5°C. Three replicates of each female were tested. 
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Approximately 15 hours after fertilization, the numbers of fertilized eggs were 

counted by observing the 4-32 cell stage of development under an Olympus dissecting 

microscope at 16X magnification. Fertilization rates were calculated from the numbers of 

fertilized eggs out of the total number of viable eggs in the dish. Every two days after 

fertilization, dead eggs (opaque eggs showing no embryo development) and hatched larvae 

were counted and removed from the petri dish and the seawater was changed. This procedure 

continued until all the eggs had either hatched or died. The seawater used in the fertilization 

and hatching experiments was filtered, UV sterilized, and supplemented with antibiotics (30 

mg r 1 penicillin G, 50 mg r 1 streptomycin sulphate). 

2.2.7.3 Hatching Rates 

Hatching rates were determined by the total number of hatched larvae expressed as a 

percentage of fertilized eggs. 

2.2. 7.4 Estimation of Egg Production 

Egg batches were measured in a cold, clean, graduated 100 ml cylinder, and the 

volume recorded to the nearest milliliter. Triplicate batch fecundity estimates were done by 

pi petting aliquots of 200J.1l. After counting the eggs under a dissecting microscope, a mean of 

the triplicates was calculated and was converted to an egg concentration value (eggs per ml). 

Batch fecundity was calculated by multiplying egg volume by the mean egg concentration. 

Total egg production was determined from the sum of the batch fecundities. 
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2. 2. 8 Statistical Analysis 

Data were analyzedusing the non-parametric Wilcoxon Signed Ranks Test (p < 0.05) 

using the SPSS computer package. Data were log, square root or arcsine transformed when 

necessary to fit the assumptions of normality. Data are expressed as means ± standard error. 

2.3 RESULTS 

2. 3.1 Survivability and animal selection 

In November 1997, over two hundred animals were transported into the laboratory 

and less than 15o/o survived. By the beginning of the experiment (May 1998) only twenty-five 

fish were still alive. Ofthese fish, twelve were identified as females and six were confirmed 

males. Females were determined by the observance ofvitellogenic oocytes (yellow in color

indicating the presence of yolk) in the ovary. Oocytes were gently aspirated from the anterior 

of the right (eyed side) ovary by inserting a polyethylene cannula with an inner diameter of 

1.9mm through the ovipore (Larsson et all997). Gentle pressure was applied to the abdomen 

of the fish and males were identified by the presence of milt from the urogenital pore. These 

are the fish that were followed through the experimental time period. Approximately 120 fish 

were collected in July 1998, however none ofthese fish survived. The majority ofthese fish 

were mature females that would have likely spawned in the near future. 
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2.3.2 Growth -Males 

Male body weight ( F = 3.502, p < .001) and CF ( F = 2.544, p < .009) showed significant 

monthly changes during the experimental period. Weight increased from an average of 450 

gm in May 1998 to over 600 gm in August 1999. CF increased from 1. 0 % to 1.25 % over the 

same period (Fig. 2-2). 

2.3. 3 Growth -Females 

Four out of the twelve females matured and produced viable eggs. These fish were 

also significantly larger (F = 2.278, p < .002) than the remaining non-spawning females . For 

the purpose of this study the two groups will be discussed separately. 

2.3.4 Growth -Spawningfemales 

The body weight (p < 0.866) and CF (p < 0.962) of the spawning females showed no 

significant monthly changes for the experimental period. The average body weight increased 

from 825g in May 1998 to 900g in July 1999. However, there was a decrease in weight in 

August, after the spawning period. Notably, the average post-spawning weight was unchanged 

from the beginning of the study (Fig. 2-3). 

27 



:<ig. 2-2 : Mean body weight (g) changes (Panel A) and mean CF (%)changes (Panel B) in male witch 

flounder from May 1998 to August 1999. Error bars represent standard errors (n=6). 

Means with an asterisk (*) were significantly different from the initial time period (Wilcoxon 

Signed Ranks Test, p < 0.05). 
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2.3.5 Growth- Non-spawning females 

Non-spawning female body weight (p < 0.012) and CF (p < 0.036) showed 

significant monthly changes for the duration of this experiment. The average body weight was 

515 g in May 1998 and increased to an average of 5 80g in August 1999. CF ranged from 

1.12% in May 1998 to 1.25% in August 1999 (Fig. 2-4) 

2. 3. 6 Ovarian biopsies 

Oocyte distributions from mortalities from fish collected in November 1997 

demonstrated only GSI types 1 & 2, while samples collected in July 1998 reflected only GSI 

type 3 (Fig 2-5). The ovary of immature females (type 1) contained only vitellogenic 

oocytes with diameters, which ranged from 250J..lm to 450J..lm. Type 2 or maturing females 

consisted of ovaries with two clearly distinguishable clutches of oocytes. Vitello genic oocytes 

made up 90% of the biopsy sample and the remainder oocytes were previtellogenic. The 

diameters of the vitellogenic oocytes ranged from 850J..lm- 1040J..lm. Ovulating females 

exemplify only type 3 GSI's. All oocytes measured were hydrated and clear. The oocyte 

diameters ranged from 1120J..lm- 1350J..lm. Estimates ofGSI's were hard to obtain as oocytes 

were loosely contained within the body cavity. 
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2. 3. 7 Egg production 

Of the twelve females in this study only four females produced viable eggs in 1999. 

Only one batch of eggs per female was released. The range of body weight varied from 596g 

to 973g. 

2.3 .7.1 Egg volumes 

Egg volumes fluctuated from as low as 3 7mls to as high as 77mls (Table 2-2). Once egg 

volume is correlated to body weight, the fecundity of these females varied from 44,884 

eggs/kg- 57,136 eggs/kg, with an average of 50,099.5 eggs/kg (Table 2-3). 

2.3.7.2 Viability 

Viability rates varied from a low of 67% to a high of 90%. Numbers reflect an 

average of three replicates± standard error (Table 2-3). 

2.3 . 7. 3 Fertilization Success 

Fertilization rates ranged from 71% to 88%. Numbers reflect an average of three replicates± 

standard error (Table 2-3). 
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spawning female witch flounder from May 1998 to August 1999 (n=4). 
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Table 2-2: Daily Egg Volumes (ml) for female witch flounder 

Date Fish# 1 Fish# 2 Fish# 3 Fish# 4 

July 7 

July 9 

July 11 

July 13 <1 

July 15 75 <1 

July 17 <1 35 

July 19 <1 <1 

July 21 58 

July 23 3 

July 25 < 1 

July 27 53 

July 28 DNC <1 

July 30 DNC DNC 

August 01 DNC DNC 

August 03 DNC DNC DNC 

August 05 DNC DNC DNC 

August 07 DNC DNC DNC 

DNC: Did not check 
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Fig. 2-5: Ovarian biopsies from mortalities after fish collections in November 1997 and July 
1998. 
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2.3.7.4 Hatch Success 

Hatch rates fluctuated from 58% to 68%. Numbers reflect an average of three 

replicates± standard error (Table 2-3). 

2.4 DISCUSSION 

There are several methods to capture witch flounder brood fish- by seines, nets, and 

angling. The method chosen for a specific species depends on the location depth, and 

abundance of fish available. This study utilized a seine, which is effective for fishing large 

areas. This type of gear is relatively good for broodstock collection because it does not drag 

as much as other gear types. It is generally the most popular, and versatile method of 

collection. However this method can also cause physical damage to the animal. Animals 

collected in the initial moments of the tow are subjected to extremes pressures of crowding 

between the net and subsequent caught animals. 

In this study fish were initially caught in November 1997 and was less than successful. 

From the time the fish were brought on board the trawler, they were carefully handled and 

maintained with cool, flow through water. The trip to shore lasted one hour. Once on land, 

fish were transferred to a tank inside a cargo truck. Transport back to the lab was also 

uneventful with the water quality and temperature carefully monitored. During the transfer to 

the holding tanks, much physical damage (bruising, small cuts and fin tears as well as scale 

damage) was noted. This suggests that the method of collection was physically intense and 

damaging to the fish. Also, these fish were caught at a depth of 260m and the speed at which 
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Table 2-3: Egg quality for female witch flounder 

Date 

Body 

Weight (g) 

Egg Volume 

(ml) 

Total 

Number of 

Eggs 

Number of 

eggs I kg 

fish 

Viability 

(%) 

Fertilization 

Success(%) 

Hatch 

Success(%) 

July 15 

Fish 1 

973 

77 

55594 

57136 

82.3 ± 1.20 

88 .7 ± 0.88 

61.7 ± 4.33 

July 17 

Fish2 

596 

37 

26751 

44884 

67.3 ± 

1.45 

71.3 ± 

1.76 

61.0 ± 

3.21 

July 21 

Fish 3 

895 

62 

44826 

50084 

90.0 ± 3.61 

85 .3 ± 1.45 

68.3 ± 1.76 

July 27 

Fish 4 

812 

55 

39215 

48294 

80.3 ± 

1.76 

81.0 ± 

0.58 

58.0± 

3.46 

Average 

55.25 ± 10.48 

50099.5 ± 2581.57 

80.0 ± 2.63 

81.6 ± 2.04 

62.3 ± 1.82 

the fish were brought to the surface could also be a contributing factor to the heavy 

mortalities. The duration and speed of the tow as well as the method ofbringing the fish to the 

surface can be altered to minimize the physical injury to the fish. 
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Additionally, the timing of collection is important. The second collection was 

attempted in July 1998. This time, the duration and speed of the tow was of a shorter duration 

to attempt to reduce the physical damage to the animals. However, increased water 

temperatures and proximity to.the spawning season contributed to the mortalities. Water 

temperatures ranged from 14- 19°C. All animals returned to the lab ultimately died. It 

should be noted that all fish collected were mature females that would have spawned in the 

near future. Animals should not be collected during the spawning season as females are in a 

particularly delicate condition, and also not during times of seasonally high air and water 

temperatures. In conclusion, brood fish must be handled carefully to minimize physical injury 

and stress. Speed and gentleness during fish capture and handling, are of utmost importance. 

Damage to the slime (mucus) layer, scales and skin of the fish can result in infection. It is 

known that in at least one species of flatfish the epidermis can undergo profound seasonal 

changes in thickness and fragility (Burton and Fletcher 1983) and a histological study would 

indicate whether this is the case for witch flounder. Crowding, dissolved oxygen depletion, 

rapid changes in temperature and osmotic imbalances are well known causes of stress and 

must be avoided when transporting fish. 

Overall growth for the fish in this experiment was good. Condition factors were 

higher than expected (ranging from 0.9- 1.3% in males; 1.1- 1.3% in non-spawning females; 

1.2-1 . 5% in spawning females) from data collected in the wild. Beecham ( 1982) reported 

witch flounder with CF's in the range of0.94- 1.09%. This could be attributed to a variation 

in the diets used for the two groups of fish. Cultured witch flounder have had reported CF' s as 

high as 1.1% in 1-year fish and 1.4% in 4 year fish (Unpublished data, Aquaculture Resource 

Development Facility, St.John's, NL- D. Boyce 2004). These fish were the offspring of the 

eggs collected in this experiment and had been reared on commercial diets. 
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Oocyte size-class frequency distributions of witch flounder demonstrate the presence 

of just a single clutch of progressively developing vitellogenic oocytes, indicating group

synchronous development, by far the most common of teleost reproductive strategy in teleosts. 

The homogeneity of oocyte size in the maturing female witch flounder suggest that they are 

seasonal spawners, like the winter flounder (Harmin et al. 1995), in contrast to species that 

spawn multiple batches such as halibut, yellowtail (Norberg et al 1991) and the English sole, 

Parophrys vetulus (Johnson et al. 1991). The data reported for egg volume collections also 

supports the theory of a single seasonal spawning event. While small amount of eggs can be 

collected around the primary egg release, regular significant volumes of eggs cannot be 

collected over an extended period as shown in the batch-spawning yellowtail flounder 

(Manning and Crim 1998). 

Good quality eggs are usually defined as those that demonstrate low levels of 

mortality at fertilization, eying, hatch and first-feeding and those which produce the fastest

growing and healthiest fry and older fish (Bromage et al.1992). Egg survival and hatching 

rates, however, while being the ultimate measure of egg quality, tells us nothing about the 

factors that determine egg quality. There is no general agreement on methods for quality 

assessment in eggs of marine fish. "Good" quality pelagic eggs are generally distinguished 

from "poor'' quality eggs by virtue of the eggs ability to float in seawater (Brooks et al . 1997). 

The quality of the eggs collected from the females in this study was very good. The 

viability, fertilization and hatch rates were similar to those reported for yellowtail and summer 

flounder (Manning and Crim 1997; Watanabe et al . 1998). 

Two terms are often used to describe the fecundity offish: absolute fecundity, which 

is the total number of eggs ovulated per fish, and relative fecundity, which is the number of 

eggs, ovulated per unit (kg) body weight. The number of eggs is typical of a species, even 
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though, as with egg size, intraspecific genetic variation, age, body size, environmental 

conditions and nutrition may increase the variance in this number (Tyler and Sumpter 1996). 

Marine teleosts, producing small pelagic eggs, tend to be very fecund. The sole 

(Solea solea L.), for example, has a relative fecundity of200,000 - 400,000 (Millner et al. 

1991). Teleosts with the highest absolute fecundity include cod and halibut, which produce 

several million eggs each season. 

Witch flounder, in the wild, have an average relative fecundity of300,000 eggs kg-1 

(Bowering 1978). This is considerably greater than the 50,000 eggs kg-1
, reported in this 

study. The wild fish reported in this study were considerably larger in length and there is 

evidence that larger fish produce larger number of eggs and smaller fish produce smaller 

number of eggs (Kjesbu et al, 1996). Very little research has been done on the genetics of 

fecundity in fish but it is likely, that as in mammals, there is a strong genetic basis. Putting 

genetics aside, a number of studies have indicated that fecundity can be modulated by body 

growth rate and/or nutrition. For example, studies on the winter flounder have shown that 

there is a nutritionally sensitive period where lack of energy reserves during gametogenesis 

causes the winter flounder to switch off gonadal development (Burton 1994). Previous studies 

in captive yellowtail flounder have shown that 50% of the females were not attaining their 

respective fecundity estimates (Manning and Crim 1998). 

None ofthe eight females in this experiment spawned in 1998 and only 4 spawned in 

1999. This could be a reflection of poor holding conditions, stress due-to handling, dietary 

deficiencies or any number of factors, which can influence reproductive success. However it 

may be possible that these fish do not spawn every year. The occurrence of non-reproductive 

individuals has been noted previously in the long rough dab, Hipploglossoides platessoides, 

winter flounder and the European plaice, Pleuronectes platessa. It has been suggested that 
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these fish do not spawn every year once having attained a certain size and age. More 

importantly, poor condition determines a reproductive strategy where trade-offs are made in 

egg production to maintain a good body size for a better year (Burton and Idler 1984). 

The primary concern of any fish hatchery is to produce the maximum number ofhigh 

quality eggs from the available broodstock. There is little doubt that poor husbandry 

profoundly affects the number and quality of the eggs produced in cultured fish (Bromage et al 

1992). Ideally broodfish should be maintained under controlled conditions, which as far as 

possible match or improve upon those to which the fish will have been exposed in the wild. 

Unfortunately it is almost impossible to manage all of the rearing conditions. Water 

temperatures and quality, feeding regime and diet, stocking density, handling stress must all 

be optimized to establish the best husbandry practices for the successful reproductive 

performance of the brood stock fish. 
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CHAPTER3. 

The reproductive steroidal cycle of the witch flounder, Glyptocephalus cynoglossus. 

3.1 INTRODUCTION 

In order for reproduction to occur in fish, they have to undergo gonadal development and 

maturation, and gamete final maturation resulting in ovulation in females (release of eggs into 

the oviduct) and sperm production in males. Bottlenecks can occur at any of these stages, 

possibly as a result of inappropriate environmental conditions (social and physical) and/or 

chronic stress imposed by the conditions of captivity (Pankhurst, 1998). Controlled 

approaches to managed reproduction rely on a solid understanding of the pattern of gamete 

development, duration and frequency of spawning events and associated endocrine changes. 

Armed with this information, potential bottlenecks can be identified and management 

strategies implemented. 

Witch flounder, Glyptocephalus cynoglossus, has never previously been held in captivity 

throughout the annual cycle of reproduction, therefore there is no information on whether they 

will mature or produce viable gametes. Levels of reproductive steroids in the blood have been 

used in a number of fish species as indicators of reproductive development (e.g. Scott et al 

1984 and Scott and Canario 1990) and should be useful in elucidating the mechanisms 

involved in reproduction of the witch flounder. 

This study examines the seasonal changes in reproductive steroids found in the blood of 

captive witch flounder; focusing on the plasma levels of the gonadal steroids testosterone (T), 

17P-estradiol (E2) , and 11-ketotestosterone (11-KT). These steroids were chosen for 

measurement because they are markers of reproductive events in other teleosts species. 
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E2 and T are commonly measured in females as indicators of ovarian development 

(Pankhurst and Carragher 1991; Methven et al 1992) while in male teleosts, elevated levels of 

plasma Tare often associated with spermatogenesis (Fostier et al 1987; Pankhurst and Conroy 

1987; Harmin et al 1995). 11KT is also suggested to play a role in spermatogenesis (Borg 

1994; Harmin et al 1995) and possibly spermiation (Fostier et al 1987; Carolsfield et al 1996). 

3.2 MATERIALS AND METHODS 

3. 2.1 Experimental fish 

In August 1998, twelve mature females and six mature males, from the captive 

broodstock, were selected for this study. Females were selected by the observance of 

vitellogenic oocytes (yellow in color- indicating the presence of yolk) in the ovary. Oocytes 

were gently aspirated from the anterior of the right (eyed side) ovary by inserting a 

polyethylene cannula with an inner diameter of 1.9mm through the ovipore (Larsson et al 

1997). Gentle pressure was applied to the abdomen ofthe fish and males were identified by 

the presence of milt from the urogenital pore. Fish were held in the same tanks and conditions 

as described in Chapter 2. 

3.2.2 Blood collection 

During the experimental period, in addition to the monthly measurements, these fish were 

not anaesthetised and were restrained by hand, during which a blood sample was collected. 

Using a pre-heparinized syringe with a 23G needle, a 0.5ml blood sample was taken from the 

46 



caudal vein, transferred to a 1.5ml micro-centrifuge tube and then stored on crushed ice for 1-

2 hours. The blood was then centrifuged for 10 minutes, 8325 x gat 4°C (Heraeus Sepatech, 

Centrifuge 17RS, Germany). Blood plasma was aliquoted and stored in 0.5ml micro

centrifuge tubes at - 70°C until sex steroid radioimmunoassay analysis . 

3.2.3 Radioimmunoassay 

For determination of 11-ketotesterone concentrations (11-KT), ether was used to extract 

steroids from a 50JJ.l sample of plasma and prepared for RIA according to Harmin and Crim 

(1993). The extraction efficiency ranged from 87-95% and all data were corrected 

accordingly. The 11-KT was assayed using a trititated label synthesized from tritiated cortisol 

as described by Truscott (1981). The antibody was diluted at 1:50,000, and tritiated 11-KT, 

ca. 5000cpm, were added to each tube. 11-KT antibody cross-reactivity with testosterone and 

11J3-hydroxy-testosterone was <0.1% (Ng and Idler, 1980). 

Testosterone (T), in both male and female plasma, and 17J3-estradiol (E2) concentrations 

in female plasma were determined using a no-extraction, solid-phase 1251 radioimmunoassay 

(Coat-A-Count, Diagnostic Products Corporation, Los Angeles, CA). The Coat-A-Count 

procedure is a solid-phase radioimmunoassay, based on steroid-specific antibody immobilized 

to the wall of a polypropylene tube. A 1 OOJ.!l of plasma was pi petted directly into the bottom 

of the antibody-coated tubes (in duplicate). After the addition of 1.0 ml of 1251-labelled steroid 

the tubes were vortexed and then incubated at room temperature. This is where 1251-labelled 

steroid competes with the steroid in the plasma sample for antibody sites on the tubes. After a 

3-hour incubation at room temperature, the separation ofbound from free is achieved by 
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decanting. The tubes containing the bound fraction are then counted for 1 minute in a gamma 

counter (Packard Autogamma 5650 Series, United Technologies Packard), with the counts 

being inversely related to the amount of steroid present in the sample. The quantity of steroid 

in the sample is determined by comparing the counts to a calibration curve. 

T antibody cross-reactivity was non-detectable for cortisone, estradiol, estrone and 

progesterone, 0.01% for androstendione, and 0.027% for 11-KT. E2 antibody cross-reactivity 

was 0.32% for estriol, 10.0% for estrone, 0.006% for 11-KT, 0.001% for testosterone and was 

non-detectable for progesterone (Instruction manual, DPC, 1999). 

Intra-assay (within assay) variation for the male androgens testosterone and 11- KT was 

4.3% (n=5) and 6.2% (n=5), respectively. Intra-assay (within assay) variation for testosterone, 

and 17J3-estradiol, in females was 5.7% (n=5) and 4.3% (n=5), respectively. All samples were 

done within one assay so inter-assay (between assays) variation could be eliminated. 

3. 2. 4 Statistics 

Data were analyzed using one or two way ANOVA and Duncan's multiple range means 

test (P < 0.05) (Sokal and Rohlf, 1969) on the statistical computer package, SPSS. Data were 

log, square root or arcsine transformed when necessary to fit the assumptions of ANOV A 

Data are expressed as means ± standard error. 
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3.3 RESULTS 

3.3.1 Females 

Of the twelve females chosen for this experiment, only four spawned. For this reason, the 

steroid profiles were separated for spawning and non-spawning females. 

Spawning females showed seasonal changes in both the plasma E2 (F= 4 .544 p<0.05) and 

T (F = 2.528, p<0.05), (Fig. 3-1). Plasma E2 began to elevate in January or earlier, being 4.3 

ng/ml compared with 2.4 ng/ml in August 1998. and steadily increased to and decreased 

sharply to 2.1 ng/ml in August. Plasma T ranged between 3.2-4.7 ng/ml until increasing 

rapidly in May to 8.5 ng/ml and decreased in August. 

Non-spawning females showed a seasonal increase in E2 (F = 2.528, p < 0.05) during the 

spawning season but no seasonal change in T (F = 0.079 ,P = 0.608) (Fig. 3-2). Similar to the 

spawning females, but with slightly lower overall levels, plasma E2 ranged between 2.5 and 

3.5 ng/ml until slight increases in May to 4.0 ng/ml, in June to 4.98 ng/ml and to 6.2 ng/ml in 

July and finally decreases in August. Plasma T remained constant from 2 .2 to 3.2 ng/ml. 

3.3.2 Males 

Males showed seasonal changes in both plasma T (F = 3.498, p<0.05).and 11-KT (F= 

4.209, p<0.05) (Fig. 3-3). Plasma T ranged from 2 .25 to 3.25 ng/ml from October to March 

when sperm was not present and then increased to 4.5 ng/ml at onset of visible milt 

production, peaked in June to 11.5 ng/ml and decreased rapidly to 2.25ng ml in August. 

Plasma 11-KT ranged between 1. 7 5 to 3.15 ng!ml from October to March, 
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Fig. 3-1: Seasonal changes in plasma steroids (ng/ml) for spawning female witch flounder, 
Glyptocephalus cynoglossus. 

Means ± standard error 
plasma E2 (empty circles) and plasma T (filled circles) 

Means with similar letters were not significantly different (Duncan's multiple 
range test, p<O.OS). Upper and lower case letters show Duncan's grouping of 

plasma E2 and T respectively. 
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increased in to 7.25 ng/ml in April and peaked in May and June at 12.25 ng/ml then decreased 

to 4.5 ng/ml in July and 2.25 ng/ml August. 

3.4 DISCUSSION 

The reproductive cycle ofboth the male and female witch flounder is characterized by 

distinct seasonal variations and fluctuations in plasma sex steroids associated with 

reproductive activity . 

The role of steroids T and E2 is well established in several teleost species. T is a 

precursor for the synthesis ofE2 (Matsuyama et al 1988) and is also involved in positive 

feedback stimulation of the pituitary synthesis of gonadotropin ( GtH) ( Crim et al 1981 ; 

Barnette and Pankhurst 1999). ~stimulates synthesis ofthe yolk precursor vitellogenin, 

which is incorporated into the growing oocyte during vitellogenesis (Specker and Sullivan 

1993). As vitellogenesis approaches completion there is a fall in E2, then T and a surge in the 

production of 17a20P-dihydroxy-4-pregen-3-one, which is the maturation steroid in most 

species in which it has been investigated (Scott and Canario, 1987). The annual cycles of 

plasma T and E2 have been reported in the female greenback flounder Rhombosolea tapirina 

(Gunther) (Barnett and Pankhurst 1999), plaice Pleuronectes platessa L . (Wingfield and 

Grimm, 1977, Scott et al 1998), halibut Hippoglossus hippoglossus L. (Methven et al 1992), 

yellowtail flounder Pleuronectes ferrugineus (Clearwater 1996) and winter flounder 

Pleuronectes americanus (Walbaum) (Harmin et al1995). 

While the elevated plasma levels ofE2 and Tin the female witch flounder that released 

viable eggs were consistent with changes in plasma T and~ reported in other species, the 
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Fig. 3-2: Seasonal changes in plasma steroids (ng/ml) for non-spawning female witch 
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Fig. 3-3: Seasonal changes in plasma steroids (ng/ml) for male witch flounder, 
Glyptocephalus cynoglossus. Means± standard error. 11-KT (empty circles), plasma T (filled 

circles) 

Means with similar letters were not significantly different (Duncan's mutiple range test, 
p<0.05). Upper and lower case letters show Duncan's grouping of plasma 11-KT and T 

respectively. 
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range of steroids found the witch flounder are more consistent with lower steroid levels 

( <25ng/ml) found in the yellowtail and greenback flounder than the halibut and winter 

flounder which generally have steroid levels greater than 25ng/ml (Harmin et el., 1995; 

Methven et al. 1992). The levels of plasma E2 were low in August and began to increase 

throughout the winter season and peaked in late June, before the beginning of the spawning 

season in July and then decreased rapidly. Plasma T levels remained low until April and then 

increased rapidly to peak at the beginning of the spawning season and decreased until the end 

of the spawning season in August. 

The non-spawning females showed a similar but lower seasonal plasma E2 cycle, however 

there was no seasonal change in plasma T. The physiological role ofT in female teleost 

reproduction is not well understood; evidence from other species suggests that this pattern of 

seasonal change could be related to the role ofT as a precursor to ~ (Kagawa et al. 1983) or to 

its possible role in stimulating the pituitary release of GtH in the pre-spawning GtH surge 

(Young et al1983, Kobayashi et al.1989). Testosterone may also be of importance to oocyte 

maturation and ovulation in coho salmon (Fitzpatrick et al 1987). It should be noted that T 

levels in spawning females didn't increase until well after plasma E2 began to increase. Since 

all females showed the presence of vitellogenic oocytes in the ovary at the beginning of this 

study, without the seasonal increase ofT in this group, females failed to undergo ovulation, 

suggesting that the role T may be important to these functions. Since none of these fish 

produced eggs in 1998 (see Chapter 2), it is also possible that these fish do not spawn every 

year but could take much longer between reproductive events. 

The annual reproductive cycle of the male witch flounder is accompanied by fluctuations 

in plasma sex steroids similar to the changes recorded in females. Following the end of a 

spawning season, plasma T and 11-KT levels are very low, similar to levels reported in other 
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marine species such as winter flounder (Harmin et al 1995), plaice (Scott et al 1998), 

greenback flounder (Barnette and Pankhurst 1999) and halibut (Methven et al 1992). 

Thereafter, androgen levels remained relatively steady until the spawning period when 

maximum concentrations ofT and 11-KT were observed in spermiating males. 

In male teleosts, plasma T levels tend to be highest during spermatogenesis (transition 

from spermtogonia to spermatids) and tend to drop off prior to spermiation (sperm release) 

(Methven et al1992, Harmin et al., 1995; Carolsfield et al., 1996, Barnette and Pankhurst 

1999). In many species 11-KT is elevated during spermatogenesis and the early stages of 

spermiation, and is thought to be more effective than T at stimulating spermatogenesis, 

secondary sexual characteristics and stimulating behaviour (Borg 1994). 

Plasma T and 11-KT generally began to increase prior to spermiation and dropped before 

the onset of spermiation in many species such as halibut, winter and greenback flounder. In 

this study, I found that T is low preceding milt production, increasing with the beginning of 

spermiation and the highest concentrations were detected in the middle of the spermiation 

period; 11-KT is elevated coincidently with Tin these fish. 

In summary, this study is the first to describe the endocrine changes associated with 

reproduction in the witch flounder. As seen in other marine teleosts, the circulating levels of 

sex steroids increased as gamete maturation and gonad growth proceed, reaching peak levels 

during spawning. 

This work will provide a framework upon which strategies for controlling witch flounder 

reproduction can be designed. Concentration can now be focused on over coming the hurdle 

of incomplete final oocyte maturation and ovulation in the broodstock females. 

55 



3.5 REFERENCES 

Barnette, C.W. and N .W. Pankhurst. (1999) Reproductive biology and endocrinology of green 

back flounder Rhombosolea tapirina (Gunther 1862). Mar. Freshwater Res. 50: 35-42 

Borg, B. (1994) Androgens in teleost fishes. Comp. Biochem. Physiol. 109C: 219-245 . 

Carolsfield, J., A.P. Scott, P.M. Collins and N .M . Sherwood. (1996) Reproductive steroids 

during maturation in a primitive teleost, the Pacific herring (Clupea harengus pallasi) . Gen. 

Comp. Endocrinol. 103 : 331-348. 

Crim, L.W., R .E. Peter and R. Billard. (1981) Onset of gonadotropic hormone accumulation in 

the immature trout pituitary gland in response to estrogen or aromatizable androgen steroid 

hormones. Gen. Comp. Bioch. 44: 374-381. 

Clearwater, S.J. (1996) The Reproductive Physiology of Yellowtail Flounder, Pleuronectes 

ferrugineus, with an Emphasis on Sperm Physiology. PhD thesis, Memorial University, St. 

John' s NL. 

Fitzpatrick, S.M., J.M. Redding, F .D . Ratti and C. Schreck (1987) Plasma testosterone 

concentrations predict the ovulatory response of coho salmon (Oncorhynchus kisutch) to 

gonadotropin-releasing hormone analog. Can. J. Fish. Aquatic Sci. 44: 1351-1357. 

Fostier, A., F . LeGac and L. Moir (1987) Steroids in male fish. In: D.R. Idler, L .W. Crim and 

J.M. Walsh (Editors), Reproductive Physiology ofFish 1987. Memorial University of 

Newfoundland, St.John' s, pp. 239-245. 

Harmin, S.A. and L.W. Crim (1993) Influence of gonadotropic hormone-releasing hormone 

analog (GnRH-A) on plasma sex steroid profiles and milt production in male winter flounder, 

Pseudopleuronectes americanus (Walbaum). Fish. Phys. Bioch. 10: 399-407. 

56 



Harrnin S.A., L .W. Crim and M.D. Wiegand (1995) Plasma sex steroid profiles and the 

seasonal reproductive cycle in male and female winter flounder, Pleuronectes americanus. 

Mar. Biol. 121: 601-610. 

Kagawa, H ., G. Young andY. Nagahama (1983) Relationship between seasonal plasma 

estradiol-17B and testosterone levels and in vitro production by ovarian follicles of amago 

salmon (Oncorhynchus rhoduras). Biol. Reprod. 29: 301-309. 

Kobayashi, M., K . Aida, and I. Hanyu (1989) Involvement of steroid hormones in the 

preovulatory gonadotropin surge in female goldfish. Fish Phsiol. Biochem. 7 : 141-146 

Larsson, D . G., C. C. Mylonas, Y. Zohar and L.W. Crim (1997) Gonadotropin releasing 

hormone analogue (GnRH-A) advances ovulation and improves the reproductive performance 

of a cold-water batch-spawning teleost, the yellowtail flounder (Pleuronectes ferrugineus). 

Can. J. Fish. Aquat. Sci. vol 54, no 9, 1957-1964 

Matsuyama, S., S. Adachi, Y. Nagahama, and S. Matsuura (1988) Diurnal rhythm of oocyte 

development and plasma steroid hormone levels in the female red sea bream, Pagrus major, 

during spawning. Aquaculture. 73 : 357-372. 

Methven, D .A. , L .W . Crim, B . Norberg, J.A. Brown. G.P. Goff and I.Huse. (1992) Seasonal 

reproduction and plasma levels of sex steroids and vitellogenin in Atlantic halibut 

(Hippoglossus hippoglossus). Can.J.Fish.Aquat.Sci. Vol49: 754-759. 

Ng, T.B. and D.R. Idler (1983) Gonadotropic regulation of androgen production in flounder 

and salmonids. Gen. Comp. Endo. 42: 25-38. 

Pankhurst N .W. (1998) Reproduction. InK. Black and A.D . Pickering (Editors). Biology of 

farmed fish. Sheffield Academic Press, Sheffield 

57 



Pankhurst, N .W. and J.F. Carragher (1991) Seasonal endocrine cycles in marine teleosts. In: 

A.P. Scott, J.P. Sumpter, D .E . Kline and M .S. Rolfe (Editors), Reproductive Physiology of 

Fish 1991, FishSymp 91 , Sheffield, pp. 131-135. 

Pankhurst, N.W. and A.M . Conroy. (1987) Seasonal changes in reproductive condition and 

plasma levels of sex steroids in the blue cod, Partapericis co lias (Bloch and 

Schneider)(Mugiloididae). Fish Physiol. Biochem. 4: 15-26. 

Scott A.P . and A.V.M. Canario. (1987) Status of oocyte maturation-inducing steroids in 

teleosts. In D.R. Idler, L .W. Crim and J.W. Walsh (Editors.) Reproductive Physiology ofFish 

1987. Memorial University ofNewfoundland, St. John's, pp. 224-232. 

Scott, A.P. and A.V.M . Canario. (1990). Plasma levels of ovarian steroids, including 17A, 21-

dihydroxy-4-pregnen-3, 20-dione (11-deoxy-cortisol) and 3A, 17 A, 21-dihydroxy-SB

pregnen-20-one, in female plaice Pleuronectes platessa induced to mature with human 

chorionic gonadotropin. General and Comparative Endocrinology 78 : 286-298. 

Scott, A.P ., P .R . Witthames, R .J. Turner and A.V.M . Canario. (1998). Plasma concentrations 

of ovarian steroids in relation to oocyte final maturation and ovulation in female plaice 

sampled at sea. Journal ofFish Bioi. 52:128-145. 

Scott, A.P ., D. S. Mackenzie and N .E. Stacey. (1984) Endocrine changes during natural 

spawning in the white sucker, Catostomus comersoni II. Steroid hormones. General and 

Comparative Endocrinology, 56: 349-59. 

Sokal, RP. and F.J. Rohlf (1969) Biometry: The Principles and practice of statistics in 

biological research. W.H . Freeman and Company. 776pages. 

Speckler, J.L. and Sullivan C.V. (1993) Vitellogenesis in fishes : Status and perspectives. In 

K.G. Davey, R .E . Peter and S.S. Tobe (Editors). Perspectives in Comparative Endocrinology. 

National Research Council of Canada, Ottawa, pp. 304-315. 

58 



Truscott, B. (1981) An alternative method for the synthesis of 11-CHJketotestoterone and 11-

~-eH]hydroxytestosterone from CHJcortisol. Gen. Comp. Endo. 45:409-411. 

Wingfield, J.C. and A.S. Grimm. (1977) Seasonal changes in plasma cortisol, testosterone and 

oestradiol-17B in the plaice, Pleuronectes platessa L . General and Comparative 

Endocrinology 31 : 1-11 . 

Young, G., H . Kagawa andY. Nagahama. (1983) Evidence for a decrease in aromatase 

activity in the ovarian granulosa cells of the amago salmon (Oncorhynchus rhoduras) 

associated with final maturation. Bioi Reprod. 29: 310-315 

59 



CHAPTER4. 

Spermiation and milt characteristics of the male witch flounder ( Glyptocephalus 

cynoglossus) in captivity. 

4.1 INTRODUCTION 

Like with many externally fertilizing marine teleosts, witch flounder (Glyptocephalus 

cynoglossus) sperm is immotile in the seminal plasma and when collected from the urogenital 

pore (Morisawa and Susuki, 1980). During natural reproduction, motility is induced upon 

contact with seawater and mass forward motility tends to last from 3 0-120 seconds. The 

particular factors that suppress motility are, as a rule, neutralized by the environmental 

conditions during spawning. Therefore, in teleost fish, sperm activation is thought to be 

triggered by changes in osmotic pressure, pH and ionic composition ofthe diluent compared 

to the seminal plasma (Billard et al. 1992). In marine fish, an increase in osmotic pressure 

relative to the seminal plasma is the most commonly known factor causing sperm activation, 

with motility being less sensitive to changes in pH (Billard et al. 1992) 

Various traits are used to assess reproductive condition and sperm quality in fish. These 

include sperm motility, adenosine triphosphate (ATP) concentration, sperm density, 

gonadosomatic index and various components of the seminal plasma. Many of these traits 

have been examined to devise techniques for short-term storage, long-term cryopreservation 

or for comparative studies (Geffen and Evans 2000). 

Witch flounder males produce relatively low volumes of highly concentrated sperm (200-

350f.11) for five months of the year, beginning in April and finishing in September. This 
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correlates with the timing of ovulation in the females. In order to manage male witch flounder 

broodstock effectively it is important to have a basic understanding of sperm availability, 

quantity and quality as well as factors such as pH, osmolality, which influence sperm 

activation. With this knowledge, further work can be done on improving sperm volume and 

possibly sperm storage since the limited sperm volume could be a potential problem for an 

aquaculture operation. 

4.2 MATERIALS AND METHODS 

4. 2.1 Experimental fish 

The same six males, from the previous study (Chapter 3), were followed from May 1998 

through August 1999 for this study. Males were identified by the presence of milt from the 

urogenital pore, after applying gentle pressure to the abdomen of the fish. Milt was only 

available during five months ofthe year (April through August) . However, in 1998 there were 

no samples collected in April. The fish were held in the same tanks and under identical 

conditions as the fish described in Chapter 2. 

4.2.2 Milt collection 

For milt collection, the males were carefully dried and all available milt was manually 

stripped from the urogenital pore in a pre-chilled tuberculin syringe and stored in O.Sml micro

centrifuge tubes for analysis. Urine contamination was unavoidable at times, but its 
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presence/absence was noted. For both years, milt was collected once a month during the 

spermiation period. 

4.2.3 Motility 

Approximately 1 hour after milt collection, motility was checked by making a 1: 10 

dilution (one part semen: 9 parts diluent) using a substitute seminal plasma, containing 

I50mM sucrose, plasma 7mM MgS04, 1. 7mM CaCh, 86mM glycine, and 30mM Trizma (pH 

8.0) (Billard et al. , 1993). A 10Jll pipette tip was dipped into the diluted sperm sample and 

quickly stirred into a 1 OOJ.!l sample of seawater already prepared on a chilled microscope slide 

on the stage of the microscope (Micromaster, Fisher Scientific, Model CK). Percentage of 

sperm clearly demonstrating forward motion at the point of mixing was recorded for each 

sample. The data for percentage of sperm activated were grouped into arbitrarily defined 

classes (Table 4-1). Motility estimates were replicated three times for each sample with a 

blind procedure. 

4.2. 4 Milt Volume 

Milt volume was measured using a 1.0ml Nichyio pipette (Fisher Scientific). Milt was 

repeatedly drawn up in the pipet until the entire sample was measured without any air bubbles. 

Measurements were recorded to the nearest 1 0 J.!l. 
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4.2.5 Milt pH 

Milt pH was measured by dripping milt from a glass pipet, directly on indicator paper 

(ColorpHast sticks, EM Science, New Jersey, U .S.A.; pH range 6.5-10.0). pH was measured 

and recorded twice for each sample. 

Table 4-1: Ranking of sperm motility 

Motility Rank 

No motile sperm 0 

<25% motile sperm 1 

26 - 50 % motile sperm 2 

51 -75% motile sperm 3 

76-100% motile sperm 4 

4. 2. 6 Spermatocrit 

Spermatocrit (packed cell volume) was determined, in duplicate, on small aliquots of milt 

in sealed 70fJ.l capillary tubes (ID 1.1 to 1.2 rnm; length 75rnm, Pyrex Corning). After 

centrifuging (Hematocrit Microcentrifuge, International Equipment Co. , Model MB) at 15,000 

x g for 30 min., the packed cell level and total volume was measured to the nearest 0.5mm. 

The spermatocrit value calculation was determined as follows: % spermatocrit = packed cell 

63 



(mm) I total volume of milt (mm) x 100 (Baynes and Scott, 1985). Three replicates of 

undiluted milt in haematocrit tubes were measured for each sample. 

4. 2. 7 Seminal Plasma Osmolality 

Seminal plasma was obtained by the centrifuging of milt samples, in 0.5ml micro

centrifuge tubes, for 10 minutes, 8325 x gat 4°C. Seminal plasma was removed from the top 

of the packed cells, stored in tubes and placed on ice. Osmolality was then determined by 

using a Fiske 110 osmometer (Fiske Associates, Massachusetts, USA). Three 1 Of.ll aliquots 

were measured and the results averaged to obtain the osmolality of each seminal plasma 

sample. 

4.2. 8 Statistical Analysis 

Data were analyzed using non-parametric Wilcoxon Signed Ranks Test (p < 0.05) using 

the SPSS computer package. Data were log, square root or arcsine transformed when 

necessary to fit the assumptions of normality. Data are expressed as means ± standard error. 

4.3 RESULTS 

4.3.1 Motility (Rank) 

Sperm motility varied from the beginning of the spermiation season until the end of the 

spermiation period in August (Fig. 4-1 ). There was no significant difference in motility 
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rankings between 1998 and 1999 (p<0.495). There was no significant seasonal pattern within 

the rankings in 1998 (p>0.352) or in 1999 (p<0.117). However, there was a significant 

difference between July and August in both years. Motility was lower at the beginning and 

end of the period of spermiation. 

4.3.2 Milt volume 

Milt volume ranged between 250-325 f.1ls (Fig. 4-2). There was no significant difference 

in milt volumes in 1998 and 1999 (p>0.576). There was also no significant seasonal effect on 

milt volumes for 1998 (p>0.676) or 1999 (p>0.240). 

4.3.3 Milt pH 

At the initiation of spermiation, the mean pH of the milt varied from 7. 3 in 1998 and 7. 1 

in 1999. The milt pH increased in July to 7.6 for both years and then declined to 7.1 at the 

cessation of spermiation in 1998 and 7.3 in 1999(Fig. 4-3). There was a significant difference 

in the milt pH from 1998 and 1999 (p>0.015) and there was a significant seasonal influence on 

the milt pH (p>0.002) in 1998 but not in 1999 (p>0.244). 

4. 3. 4 Spermatocrit 

At the beginning of the spermiation season, the spermatocrit ranged from 56-65% and 

gradually increased to 74% and declined to 65% at the conclusion of the spermiation period 
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Fig. 4-1 : Mean seasonal motility rankings for male witch flounder sperm. Means ± standard 
error 

Means with an asterisk are significantly different from each other 
(Wilcoxin Signed Ranks Test, p<O.OS). 
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Fig. 4-2: Mean seasonal changes in milt volume (to the nearest lOf.!l) of the male witch 
flounder, Glyptocephalus cynoglossus. Means± standard error 

Means with similar symbols were not significantly different (Duncan's mutiple range test, 
p<0.05). 
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(Fig. 4-4). There was no significant difference in spermatocrit between 1998 and 1999 

(p>0.168). There was also no significant seasonal influence on spermatocrit for either year 

(p>0.079 and p>0.110 respectively) . 

4.3. 5 Seminal Plasma Osmolality 

The osmolality ofthe seminal plasma ranged from 325 mmol kg-1 in May 1998 and April 

1999, increased to 330 mmol kg-1 in July and decreased to 327 mmol kg-1 in August (Fig. 4-

5). There was a significant difference in seminal plasma osmolality in 1998 and 1999 

(p>0.020). There was no significant seasonal influence on seminal plasma osmolality in 1998 

(p>0.123), however there was a significant seasonal influence in 1999 (p>0.028). 

4.4 DISCUSSION 

Generally, duration of sperm motility in teleosts is relatively short and mature males 

approach females and release spermatozoa immediately after oviposition (Morisawa and 

Suzuki 1980). The released sperm can reach the spawned oocytes within a short period. It is 

speculated that during the approach of sperm to oocyte, shrinkage and maybe swelling of 

sperm cells caused by changes in external osmolality, causes the initiation of motility of the 

motility apparatus in the flagellum, resulting in sperm motility in teleosts (Takai and 

Morisawa 1995). 

Motility is the most commonly used parameter to evaluate sperm quality, although 

fertilization capacity remains the most conclusive (Coward et al2002) . This parameter is 

acceptable, as in general sperm must be motile to achieve fertilization. Evaluation of motility 
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requires some care. A high dilution is required (at least 1:1 000) to initiate synchronously the 

motility of all the sperm. Several methods are used to measure motility. As in this study, the 

most commonly used in the past was the estimation of the global movement of the sperm 

according to an arbitrary scale, usually 0 to 5 units (Billard et al 1992). Motility of witch 

flounder sperm does not appear to be influenced by the time of spermiation. The motility 

remains unchanged from the initial point of spermiation until sperm can no longer be 

collected. 

Male witch flounder produce low volumes (0.6 - 0.8ml kg-1
) of viscous milt (Set 60-80%) 

similar to yellowtail flounder, Pleuronectes ferrugineus (Clearwater and Crim 1998). Sperm 

is only available for five months ofthe year (April- August). This correlates with spawning 

events in the female witch flounder, with ovulated eggs available from late June to late 

August. Small amounts of milt are difficult to collect and handle, particularly ifthe milt is 

highly concentrated and viscous, also urine contamination which can have a negative effect on 

sperm quality, is difficult to avoid (Clearwater and Crim 1996). It is well established that the 

stimulation of milt production, in many teleosts, can be achieved by treatment with 

gonadotropin (GtH) or gonadotropin releasing hormone (GnRH) (Pankhurst 1994). Future 

work should include investigation into use of this treatment to stimulate both sperm 

production and milt volume. 

Increase in pH of milt is also a factor in sperm motility in sea urchins (Christen et al 

1982) and in mammals (Babcock et al 1983). Motility ofwitch flounder sperm was best in 

July when the mean pH ranged between 7.5-8.0 (Fig 4-6). 
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Fig. 4-3: Mean seasonal milt pH for male witch flounder, Glyptocephalus cynoglossus. 
Means ± standard error 

Means with an asterisk are significantly different from each other (Wilcocon Signed Ranks 
Test, p<0.05). 
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Seminal plasma osmolality is generally found to range from 240-450 mmol kg-1 for 

various freshwater teleosts such as 300 mmol kg-1 in salmonids and 254-335 mmol kg-1 in 

cyprinids (Billard and Cosson 1992) and some marine species e.g. 306 mmol kg-1 in turbot 

(Suquet et al1993), 355.6 mmol kg-1 in ocean pout (Wang and Crim 1997) and 364.6 mmol 

kg-1 in the seminal plasma ofthe sea bream, Sparus aurata (Chambeyron and Zohar 1990, 

Morisawa 1985). The seminal plasma osmolality in the witch flounder, which ranged between 

320-330 mmol kg-1
, is low among marine fishes, similar to turbot. 

A better understanding of sperm biochemistry and physiology and the mechanisms that 

regulate sperm motility in teleosts, in particular, the mechanisms for the initiation of motility 

are important for the development of techniques for artificial fertilization in each species. 

These techniques include short-term preservation and cryopreservation. My study provides a 

baseline of milt characteristics for the male witch flounder. As a result of this study, further 

research must be done on improving sperm volumes as well. Low sperm volumes as well as 

the short duration of spermiation are two areas, which would be of major concern in an 

aquaculture facility. 
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CHAPTERS. 

Summary and Future Research 

5.1 SUMMARY 

The experiments described in this thesis focused on developing a captive broodstock 

and collecting preliminary information about the reproductive strategies, behaviour and 

endocrinology of the witch flounder. The objective of the experiments was twofold. First, 

the results can be used to design methods for the capture and holding conditions for optimal 

growth and maturation. Second, the reproductive information can be used as a both a baseline 

and guidelines for further studies. 

The initial objective was to capture witch flounder and transport them to the Ocean 

Science Center. Once acclimated to laboratory conditions and feeding on a formulated diet, 

growth and maturation in the surviving fish was monitored. The lack of success in the capture 

and collection, overwhelmingly indicate that capture method is extremely important. Timing 

(season) of collection attempts is also extremely important. After the initial two-week 

acclimation period, the rate of survival among the remaining fish was very good, with the only 

mortalities during the study being the post-spawned females . Further research should 

investigate other methods of fish collection/capture as well as varying tow speed and time 

with the original collection method. 

The overall growth of the witch flounder broodstock was good but highly variable. The 

weight of male fish increased greater than either group of females. The males grew 54% 

during the duration of this study, while spawning females increased only 12% and the non

spawning females 13. 5%. More work should be done understanding the dietary requirements 

for optimal growth and reproductive success within the broodstock population. 
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Male witch flounder produce milt for only five months of the year and this timing is 

synchronized with the spawning season of the females . The analysis of milt indicates that the 

motility of witch flounder is highest in July when the seminal plasma pH ranged from 7.5-8.0 

and osmolality ranged from 320-330 mmol kg-1
. The most significant result from this study 

was the discovery of the low volumes of available milt. Witch flounder males produce low 

volumes (0.6- 0.8 ml kg-1
) , viscous milt (Set 60-80%). Further research must be done on 

extending the spermiation period as well as increasing overall milt volume. 

Female witch flounder demonstrate group-synchronous oocyte development, with only 

one spawning event per season. Only 30% of the females in this study matured. This could 

indicate that the diet was insufficient for gonadal development and oocyte maturation or it 

could also suggest that female witch flounder may not release oocytes every year. All females 

in this experiment revealed the presence ofvitellogenic oocytes in their ovaries at the 

beginning of the study but still failed to undergo final oocyte maturation and ovulation. 

Egg quality in the witch flounder was variable but still very respectable. Viability ranged 

between 67-90%, fertilization ranged from 71-88% and hatch rates ranged between 58-68%. 

Future research should include a longer and more intense study of oocyte development. 

Ovarian biopsies from mature females over several reproductive seasons would give a clearer 

picture of the pattern of oocyte development as well allow for a closer correlation with the 

information collected from the plasma steroid analysis. 

The reproductive steroids of the witch flounder follow the same seasonal pattern as many 

other species. For most of the year, circulating levels of androgens, in males, remain low until 

there is a sharp increase in both plasma T and 11-KT which coincides with the onset of 

spermiation. The spawning females also demonstrated a clear seasonal cycle in the circulating 

levels of~ and T. Both steroids remain low, with E2 increasing slightly in advance ofT, until 
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both steroids peak and then drop at the time of ovulation. In the females that failed to spawn, 

the E 2 levels still reflected a seasonal pattern, however, the levels ofT remained low and 

constant. Further research should investigate the possibly of inducing final oocyte maturation 

and ovulation through artificial means such as hormone treatments or photoperiod 

manipulation. 

5.2 FUTURE RESEARCH 

1. This species acclimates easily to an aquaculture situation if it can be collected with 

minimal physical damage. One possible suggestion is to reduce towing times and 

therefore number of animals collected. This could reduce crowding stress during 

capture and therefore reduce mortality. 

2 . The time of year for collection can also have an impact on mortality. Increased 

seasonal water temperatures, seasonal maturation state as well possibly seasonal 

thinning of skin can influence the survival success at capture. 

3 . These fish will grow in captivity however, more research on the dietary 

requirements of these fish is necessary for optimal growth. 

4. Female witch flounder will mature and produce viable eggs in captivity but further 

investigation is required into understanding ovarian and oocyte development. 

5. Male witch flounder produce low volumes of milt and future research should 

concentrate on improving sperm volumes through hormone (GnRH) treatments. 
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