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Abstract 

Texture analysis has received a considerable amount of attention over the last 

few decades as it creates the basis of the most object recognition methods. Texture 

analysis mainly comprises texture classification, texture segmentation, and both of 

them require the important step: texture features extraction. Many approaches have 

been proposed either as spatial domain methods or frequency domain methods. Many 

texture features based on the spatial domain methods have been proposed as those 

methods are proven to be more superior. Texture can also be considered as a collec­

tion of patterns. Distances, directions and pixel gray-level values can determine the 

relationship among pixels within each pattern. Therefore, patterns are considered as 

the basis of textures and textures are considered to be different if they contain distin­

guished patterns. The procedure of pattern knowledge discovery has been started in 

order to find the distinctive texture patterns with gray-level deviations and distances 

deviations. An apriori algorithm with the joining step, cleaning step and pruning step 

has been introduced to find frequent patterns in order to generate higher order pat­

terns which can be used to categorize textures. A large number of textures from the 

benchmark album of Brodatz have been applied and tested in the proposed method 

in order to prove the validity of this system and the performance is promising. The 

overall high accuracy shows the great encouragement from the testing procedure. 
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Chapter 1 

Introduction 

1.1 The Texture Classification Field 

"Texture" is used to describe the surface of an object that contains a periodic orga­

nized area. People can easily observe them with their naked eyes from natural images, 

such as images of grasslands, leaves of trees or beach pebbles. Figure 1.1 shows some 

concrete examples. 

Homespun woolen cloth Lizard skin Woven matting 

Figure 1.1: Texture examples 

More examples may include satellite multi-spectral images, electron micrographs, 

and microscopic images in biological or medical studies. Although it is difficult to give 
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a universal definition of texture due to the diversity of natural and artificial textures, 

one could suffice by defining it as, The distinctive physical composition or structure of 

something, especially with respect to the size, shape,and arrangement of its parts [2]. 

Although no formal definition of texture exists, the three principal approaches used 

in image processing to describe the texture of a region are statistical, structural, and 

spectral [12]. 

Texture analysis has received a considerable amount of attention over the last few 

decades as it creates the basis of most object recognition methodologies. Texture 

analysis consists of three main parts: texture classification, texture segmentation, 

and texture synthesis. Texture classification refers to assigning a physical object 

or incident into one of a set of predefined categories. Generally speaking, the goal 

of texture classification is to assign an unknown sample image to one of a set of 

known texture classes. Therefore, it becomes obvious that a successful classification 

relies heavily on the efficient description of image textures. Texture segmentation, 

which deals with the partitioning of an image into regions that have homogeneous 

properties with respect to texture, and texture synthesis, the building of a model of 

image texture which can then be used for generating the texture. A major problem 

in texture analysis is that textures in the real world are often not uniform due to 

changes in orientation, scale or other visual appearance. In this thesis, only those 

textures with periodic patterns have been taken into account. 

A typical texture classification experiment is usually comprised of the following 

steps: The first, selection of benchmark data, which may be artificial or natural, 

possibly obtained in a real world application. Brodatz album [4] textures are probably 

the most widely used image data in texture analysis literature. Other well-known data 
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sets include VisTex [1] and MeasTex [3] textures. In this thesis, we have selected 

Brodatz album textures. 

The second, partitioning of the image data into subimages. Texture images are 

often limited in terms of the number of original source images available. Therefore, 

in order to increase the amount of data, the images are divided into subimages, either 

overlapped or disjoint, of a particular window size. In this thesis, one source texture 

has been divided into 20 subimages randomly with the window size of 64 pixels in 

each row and 64 pixels in each column. The window size of subimages is determined 

according to the experience. If the window size is too small, it may not capture the 

characteristics of the whole texture and if the window size is too large, the cost of 

involved computation may become out of control. 

The third step is the partitioning of the subimages data into training and testing 

sets. In order to obtain an unbiased estimate of the performance of the texture 

classification procedure, training and testing sets should be independent. Different 

approaches can be used such as the N-fold approach. This is when the collection 

of subimages is divided into N disjoint sets, of which the first N-1 sets serve as the 

training data in turn and the Nth set is used for testing. In this thesis, all subimages 

have been divided into two sets equally. One set is reserved for training while the 

other set is used for testing. 

The fourth step is selection of a classification algorithm, which may involve selec­

tion of metrics or (dis) similarity measures. Selection of a classification algorithm can 

have a great impact on the final performance of the texture classification procedure. 

No classifier can succeed with poor features, but good features can be wasted with 

poor classifier design. 
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Lastly, two basic alternatives definition of the performance are available: analysis 

of feature values and class assignments, of which the latter is used much more often. 

In the former, the similarity of feature values between training and testing sets, or 

the separation of class clusters provided by the feature values, provides the basis for 

the characteristics. Tuceryan and Jain [36] divided texture analysis methods into four 

categories: statistical, geometrical, model-based and signal processing. An extensive 

literature review will be provided in the following chapters based on these four main­

stream categories. From the extensive surveys on the area of texture classification, it 

has been concluded that those approaches on the spatial domain have been proven 

to be superior to other techniques. Mitchell G.A. Thomson et al [33] discovered that 

the role of second and third order statistics in the discriminability of natural images 

is crucial. Takahiro Toyoda et al [35] also proved that higher order local features play 

an important role in the texture analysis. However, the approaches on the extraction 

of meaningful texture features based on higher order statistics still remain completely 

unexplored. In this thesis, a new system has been created in order to classify textures 

from benchmark data, which are from the Brodatz Album. This new system adopts 

techniques in the area of knowledge discovery and uses the Apriori algorithm to dis­

cover the feature patterns, which have been used to classify textures. A new confuse 

table has been proposed to perform the task of classification. The main contribution 

of this thesis is the new approach on the classical problem and the new texture clas­

sification system, which shows a promising performance with the benchmark data on 

the texture classification experiment. 
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1.2 The Proposed System 

The main objective of this system is to discover distinctive patterns inside textures 

and take those patterns as the descriptor of this texture in order to classify unknown 

data sets. This proposed system comprises the following parts. The first part is the 

pre-processing phase. This phase includes scanning textures into the machine and 

taking blocks of a texture with sufficient periodic textons as training samples and 

testing samples. These samples are all in the 64 x 64 uniform resolution. Texton refers 

to fundamental microstructures in generic natural images and basic elements in early 

(pre-attentive) visual perception. The second and also the most important part is the 

mining phase. In this part, a certain amount of elastic patterns with grey-level value 

intervals have been discovered through the procedure using apriori algorithm. After 

patterns have been discovered, these distinctive patterns will go through the third 

phase in order to get the five most distinctive feature patterns of each texture class. 

The reason of choosing five patterns is to construct a voting stragety and empirical 

experiments showed that too much textures may cause much computaion while too 

little pictures can not build a solid voting stragety. Therefore, the value is set to five. 

In the fourth part, training samples from the first part have been scanned in order to 

find the occurrence of the five most distinctive feature patterns extracted from each 

texture class and the result yields a confuse table for all texture class. The last part 

is to perform the task of classification upon testing samples. The fourth part is called 

the learning phase, and the last part is called the recognition phase. The purpose 

of the learning phase is to build a confuse table that will be used in the recognition 

phase. During the learning phase, if any training sample contains three out of the 
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five most distinctive feature patterns from a certain texture class, this sample will be 

considered classified to this specific texture class. A predefined threshold for feature 

patterns is determined to help justify whether a sample contains feature patterns. If 

the occurrence of a feature pattern exceeds the predefined threshold in a sample, this 

sample is then believed to contain this feature pattern. 

1.3 Structure of this thesis 

This thesis is comprised of the following chapters. Chapter 2 is dedicated to the 

complete literature survey on the area of texture classification. More specifically, 

existing approaches on the feature description have been introduced and compared. 

Chapter 3 is for the area of classification algorithms. In Chapter 4, emphasis has been 

put on the area of knowledge discovery and Chapter 5 describes the implementation 

of the proposed system. In Chapter 6, conclusions are given and future work are 

suggested. 
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Chapter 2 

Survey On The Texture 

Description 

2.1 Introduction 

An extensive literature review has been conducted on the type of texture features 

and the comparison among these features based on different perspectives has been 

analyzed and is presented in this chapter. 

2.2 Texture Description 

In the research area of texture classification, it is crucial to extract the features that 

can be used to represent the texture. A wide variety of techniques for describing 

image texture have been proposed in recent years. Texture analysis methods have 

been traditionally divided into two categories: the statistical or stochastic approach, 

which treats textures by using a statistical approach; and the structural approach, 
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which is based on the concepts of texture primitives. The goal of the structural 

approach is to describe complex structures with simpler primitives. 

Tuceryan and Jain [36]divided texture analysis techniques into four categories: 

statistical, geometrical, model-based, and signal processing. The four types of texture 

techniques are based on the surveys that follow. 

2.2.1 Statistical Description 

Statistical methods analyze the spatial distribution of gray values through computing 

local features at each point in an image. The term, statistical feature, means a set 

of statistics from the distribution of the local features. Depending on the number 

of pixels, the local feature statistical methods can be classified into first-order (one 

pixel), second-order (two pixels) and higher-order (three or more pixels) statistics. 

The most widely used statistical methods are co-occurrence features [23] and gray 

level differences [40]. The latter method has inspired many variations. Other statis­

tical approaches include the autocorrelation function [16], which has been used for 

analyzing the regularity and coarseness of a texture, and the approach of gray level 

run lengths [10]. 

2.2.1.1 Descriptions of the Gray-Level Histogram 

A histogram deals with the distribution of pixels' value in an image and consists of 

two approaches: the global histogram and the local histogram. This process can be 

denoted by the expression g(x,y)=T[f(x,y)] where f(x,y) is the input image, g(x,y) is 

the processed image and Tis an operator on f, as defined over some neighborhood of 

(x,y). The essential difference between these two approaches is the selection of the 
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neighborhood over a point (x, y). If the neighborhood is a single pixel, the processed 

image g will depend only on the value of f at the pixel (x, y) and T will become 

a gray-level transformation function. Otherwise, T will become a local histogram 

function. 

Statistical moments of the gray-level histogram of an image or a region of an image 

are one of the simplest approaches for texture description. Let z be a random pixel 

denoting gray level and let p(zi) be the corresponding normalized histogram where i 

= 0,1,2,· · ·, L-1 where L is the number of distinct gray levels. 

The moment is defined by the order of n. The second moment is especially im­

portant in the texture description because a measure of gray-level contrast can be 

used to form descriptors of smoothness. The value of the second moment is 0 when 

the areas are of constant intensity, and 1 when the areas are of the maximum con­

trast. Therefore, the larger the value of the second moment is, the more obvious the 

contrast will be. The third moment is defined in order to measure the skewness of 

the histogram of the image. If the result of the third moment is of negative sign, this 

means the degree of the symmetry of the histogram is to the left. Otherwise, it is to 

the right. This measure gives an idea as to whether the gray levels are toward the 

dark side or light side of the mean value. 

Aside from the nth moment approaches, other texture measures, which are based 

on histograms, are available. This measure describes the smoothness of an image. 

The smoother the image is, the larger this measure will be. It is always used together 

with the second moment measure. Another measure is called the average entropy 

measure. The measure of variability is entropy and the value is 0 when the image is 

constant. The coarser the image is, the larger the value of entropy. 
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2.2.1.2 Co-occurrence Matrix Features 

Measures of texture using histograms lack the information of the relative position 

of pixels. Therefore, it is natural to solve this problem by taking the information 

of the positions of pixels with equal or nearly equal gray-level values into account. 

A condition of the probability density function is introduced which is defined as 

P(i,jld,q). Each P denotes a probability of concurrence of a pair of gray levels (i, j) 

at a given displacement operator with a distance d and an angle q. Therefore, the 

estimated values are an estimation of the joint probability that a pair of points match 

the given displacement operator and all those estimation values can generate a matrix, 

which is called a gray-level co-occurrence matrix. According to the different distances 

and angles, a number of co-occurrence matrices can be created. Haralick [23]has 

proposed the benchmark properties of textures such as energy, contrast, correlation, 

entropy and local homogeneity based on the co-occurrence matrix. These features arc 

basically varieties of characterization of the contents of the co-occurrence matrices. 

2.2.1.3 Gray Level Differences Features 

The gray-level differences method is similar to the co-occurrence approach. The con­

trast between the two is that the difference of the gray levels of the pair of pixels is 

utilized in the gray-level differences method while only absolute gray levels are used 

in the co-occurrence matrices approach. It is possible to achieve invariance against 

changes in the overall luminance of an image through the gray level differences ap­

proach. Another advantage is that the differences tend to have a smaller variability to 

the absolute gray levels in natural textures, thus resulting in more compact distribu-
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tions. \Veszka [40] proposed the use of the mean difference, the entropy of differences, 

a contrast measure, and an angular second moment as gray level difference features. 

2.2.1.4 Autocorrelation Function 

The autocorrelation function holds the characteristics of indicating the sizes of prim­

itives because the function will drop off and rise according to the size of primitives. 

If the size of a primitive is relatively large, its autocorrelation function value may 

decrease slowly. Otherwise, its autocorrelation function value may decrease rapidly. 

The spatial information can therefore be characterized by the correlation coefficients. 

2.2.1.5 Gray Level Run Length 

Gray level run length is a measure that is used to evaluate the degree of coarseness of 

textures. A gray level run is a set of neighboring pixels of the same gray level value. 

A matrix P can be made where each element P(i,j) denotes the number of runs with 

the length j for the gray value i. Therefore, for a coarse texture, long runs should 

appear quite often while short runs should occur more frequently for fine textures. It 

is easy to notice that this approach is sensitive to noise. 

2.2.1.6 Brief Summary of Statistical Features 

As discussed before, the histogram is one of the simplest approaches in the texture 

description. It is simple because it is derived from the distribution of the image 

histogram. It does not contain the relative information among pixels, however, it is 

widely adopted due to its easy implementation. 

Features using the co-occurrence matrix have proven to be superior features by 
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many researchers [40, 20]since they characterize the spatial relationships of gray levels 

in an image. However, the co-occurrence approach may tend to consume a large 

amount of computation because many matrices have to be computed. In addition, 

there is a lack of necessary guidance in choosing features that are derived from the 

co-occurrence matrices. The autocorrelation function is impervious to noise but is 

extremely expensive computationally. The Gray Level Run Length is very sensitive 

to noise, which does not make it the optimal method for gray value images. It is 

nevertheless suitable for binary images [28]. 

2.2.2 Geometrical Description 

Geometrical methods consider texture to be composed of texture elements or prim­

itives. The analysis method usually depends on the geometric properties of texture 

primitives. Once the primitives are determined in a textured image, there are two 

major approaches to analyze the texture. One is to compute the statistical properties 

from extracted texture elements and utilize these properties as texture features. The 

other approach is to extract the placement rule that describes the texture and take 

these rules as texture features. 

Image edges are the most often used texture primitives and one of the many ex­

isting approaches is the generalized co-occurrence matrix which describes the second­

order statistics of edges. The generalized co-occurrence matrix considers an arrange­

ment of gray values of a pixel neighborhood as a primitive. Here is an example: 

suppose a neighborhood with the size 3 3 with 4 gray levels for each pixel will result 

in 49 different primitives. Histogram statistics will be used to indicate the frequency 
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of the occurrence of all the primitives in the image and thus reveal the texture infor­

mation. Obviously, the problem with this method is the heavy computation due to 

the high dimensionality for the probability distribution. 

Another approach is to take into account the arrangement of texture primitives. 

The primitives can be as simple as a gray value, but they usually are a collection of 

pixels. Fu [9]proposed this approach to define the placement rule using a grammar 

tree. Therefore, a texture is considered to be a string defined by the grammar whose 

terminals are those primitives. Zucker [44] also proposed a model based on a similar 

idea. 

2.2.3 Model-based Description 

This approach supposes texture as a realization of a stochastic process which can be 

determined by a set of parameters. These parameters will then be used to describe 

this texture in classification and segmentation via different operations because they 

captured the essential perceived qualities of textures. Models generally can be divided 

into two categories: pixel-based model and region-based model. Pixel-based models 

consider an image as a collection of pixels where region-based models regard an image 

as a set of patterns placed according to given rules. The pixel-based models assume 

no spatial interaction between neighboring pixels and the image to be processed is 

assumed as the sum of a deterministic polynomial and additive noise [13], while 

the region-based models take the interaction among neighboring pixels into account. 

Generally speaking, the basic idea underlying model-based approaches is that the 

intensity function, which is an image, is considered to be a combination of a function 
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representing the known structural information on the image surface and an additive 

random noise sequence. Many researchers have been interested in the model-based 

approaches. The most commonly used models are the Markov Random Field (MRF), 

the Gibbs Random Field (GRF) and the 2-D Autoregressive (AR). 

Random field models analyze spatial variations in two dimensions and they consist 

of two models at large. The Global random field model treats the entire image as a 

realization of a random field while the local random field model assumes relationships 

of intensities in small neighborhoods. 

Markov Random Fields (MRF) are multidimensional generalizations of Markov 

Chains, which are defined in terms of conditional probabilities based on spatial neigh­

borhoods (so called Markov neighbors) [42, 27]. There are different orders of a neigh­

borhood and each neighborhood corresponds to a clique, which is a graph whose 

vertex set is composed of vertices such that each one is a neighbor of all others. 

Those parameters associated with the cliques of a given neighborhood configuration 

determine a Markov Random Field or MRF and these parameters are used to form 

a feature space in order to be used for the mission of texture classification and seg­

mentation. The same idea is applied to the Gibbs Random Field (GRF) and the only 

difference is that GRF is a global random field model while MRF is a local random 

field model. 

The Autoregressive Model considers an image as a linear combination of the neigh­

boring values with random noise values. The coefficients of these combinations could 

be considered as a set of features which explicitly express the spatial relation of each 

pixel with its neighbors. Both the Random Field model (RF) and the Autoregressive 

model (AR) consider the image as a linear combination of a set of parameters and it 
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has been pointed out that the estimation of the parameters in the AR model is less 

difficult than that of the Random Field Models [25, 30]. 

In order to use model-based approaches to describe texture images, there are 

generally three problems that need to be considered: (1) the selection of appropriate 

models and its order; (2) estimation of parameters for the chosen model; and (3) 

selecting appropriate classification techniques. Among these problems, the first two 

are interrelated in that the chosen model and its order determine the estimation of 

the parameters. A model with a higher order neighborhood increases the accuracy of 

the chosen model, however, makes the estimation job much harder to accomplish. 

Practically, it is not easy to choose an appropriate neighborhood order due to 

the heavy computation involved in this procedure. Therefore, a neighborhood is 

empirically chosen with a fixed size. 

For the estimation part of model-based approaches, Least Square Estimation 

(LSE) and Maximum Likelihood Estimation (MLE) are commonly adopted meth­

ods for estimation. Research has shown that the results obtained by LSE and by 

MLE are nearly the same. However, the former is easier for computation. Therefore, 

Least Square Estimation is frequently used in the area of parameter estimation. 

2.2.4 Signal Processing Description 

Methods that fall into this category analyze the frequency content of the image. The 

basic idea underlying this approach is that the transferred image from the spatial 

domain into the frequency domain may reveal useful information that is hard to 

discover in the spatial domain, but is easily spotted in the frequency domain. One 
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of the approaches is called the Fourier Transformation, which was proposed by the 

French mathematician Fourier in 1807. The philosophy behind this transformation is 

that any function can be expressed as the integral of sines and/ or cosines multiplied 

by a weighing function and the transferred function can be recovered completely via 

an inverse process, with no loss of information. Because an image with the size of 

MxN can be regarded as a two-variable discrete function, these two equations can be 

easily extended to the two-dimensional discrete Fourier transformation. 

The most important of texture features that can be reflected in the frequency 

domain is that fine textures are rich in high frequencies and course textures tend to 

dominate in the low frequencies. A good analogy is to compare the Fourier transform 

to a glass prism [11]. As a prism has the capabilities to separate light into various color 

components, which is on its wavelength content, the Fourier transform can be viewed 

as a "mathematical" prism that separates a function into various components based 

on frequency content. This is the key concept that lies behind the Fourier transform. 

Numerous papers have been published in terms of this discovery in the area of texture 

analysis and the common techniques are trying to catch those components separated 

by the Fourier transform and use them to represent textures. From the perspective of 

functions, those components can be viewed as the coefficient values in the transformed 

functions. There are still other transforms available besides the Fourier transform, 

such as the Hadamand and Slant transformation. However, it is reported that no big 

difference has been found among those methods [43]. 

Although the Fourier transform has been popular for quite a long time, it still 

has drawbacks which give room for the introduction of the wavelet transform. Unlike 

the Fourier transform that only reveals frequencies, the Wavelet transform reveals 
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more than those contents in terms of frequency. Because the Wavelet transform is 

based on small waves, which are called wavelets, of varying frequency and limited 

duration, this characteristic enables the Wavelet transform to provide the equivalent 

of a musical score for an image. In another way, it provides not only what notes (or 

frequencies) to play, but also when to play them. Typical Fourier transforms lost 

temporal information in the process of transformation. 

A Wavelet transform basically incorporates and unifies techniques subband coding 

from signal processing and pyramidal image processing. The philosophy behind this 

technique is that features of images (or signals) can be revealed at more than one 

resolution, and thus those features that might go undetected at one resolution may 

become clear at another resolution. It was proposed by Burt and Adelson that an 

image pyramid is a collection of decreasing resolution images arranged in the shape of 

a pyramid. The bottom of the pyramid contains the highest resolution of the image 

being processed and the top is the lowest-resolution approximation of the image. 

An original image can be regarded as a collection of images with decreasing­

resolution approximations and residuals. For instance, the original image, which 

is level j, can also be viewed as the approximation at level j-1 plus the prediction 

residual of level j. Level j prediction residual comes from the difference between 

the level j approximation and the level j-1 approximation. Therefore, in the area of 

multi-resolution analysis (MRA), a scaling function '1/J(x) is used to create a series 

of approximations of a function or an image and a wavelet function w(x) is used to 

encode the differences in information between adjacent approximations, also known 

as detail coefficients where Cj0 (k) are called the approximation coefficients and dj(k) 

are referred to as the detail. Wavelet transforms share the same characteristic with 
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Fourier transforms in that any function can be expressed as a lineal combination of 

expansion functions. However, in the Wavelet transform, approximation coefficients 

and the detail are the goals. Suppose an image with the size of m and n, W'I/J(j0 , m, n) 

is the approximation coefficients; W JI, WJ', W f stands for the horizon detail, the 

vertical detail and the diagonal detail for scales j when j is greater or equal to. 

A Wavelets transform is achieved by using a window function, (approximation 

filters), whose width changes as the frequency changes. If the filter is a Gaussian 

function, the obtained transform is called the Gabor transform [21]. Texture descrip­

tion under the wavelet transform can be found by filtering the image with a bank of 

filters. Texture features are then extracted from the filtered images. A well-known 

family of wavelets called Cohen-Daubechies-Feauveau wavelets is used widely as the 

decomposition filters (or approximation filters). Another commonly adopted tech­

nique is called the wavelet packets [6]. Basically, wavelet packets are nothing more 

than conventional wavelet transforms in which the details are iteratively filtered. 

2.2.5 Relationship Among Approaches 

Commonly used texture features have been introduced. It is impractical to track down 

all existing approaches in this area due to the large quantities of papers published in 

the last thirty years. Previous introductions, however, have included the mainstream 

approaches in the texture analysis area and interlinks [34] among approaches have 

been shown in the following figure 2.1. The figure 2.1 represents interlinks among 

approaches in the square. It shows that different approaches may have links among 

themselves. 
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Figure 2.1: Interlinks among texture analysis approaches 

19 

Fourier 
Transformation 

F(i, j) 

Power spectrum 

P(i,j) 

Autoregression 
model 

{apq}, S 



2. 3 Conclusion 

In this section, texture features have been reviewed and their relationship has been 

revealed also. This section can serve as a fundamental cornerstone for understanding 

texture features as the most important techniques and concepts have been explained 

here. 
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Chapter 3 

Common Classification Techniques 

3.1 Introduction 

After the texture description has been given, the next step is to find a suitable classi­

fication algorithm. Among the most widely used are parametric statistical classifiers 

derived from the Bayesian decision theory; nonparametric approaches like k-nearest 

neighbor classifier; the decision tree induction approach and the artificial neural net­

work approach. In this section, techniques on decision tree induction, Bayesian clas­

sifier, artificial neural network and kNN classifiers have been briefly introduced. 

3.1.1 Decision Tree Induction 

Decision Tree Induction is a common technique used widely for the purpose of classifi­

cation. A decision tree is a chart-like tree structure where each internal node denotes 

a test on an attribute, each branch represents an outcome of the test, and each leaf 

node represents a class or class distribution. Decision Tree learning is a supervised 

21 



learning method and it is best suited for problems such as instances that are rep­

resented by attribute-value pairs; the target function having discrete output values. 

The Decision Tree approach classifies instances by sorting them down the tree from 

the root node to the leaf nodes. Each non-leaf node is connected to a test that splits 

its set of possibilities to subsets in terms of different test results. And each branch 

indicates the direction according to the result of a particular test and the leaf node 

is connected to a set of possible answers. When the classification tree has been con­

structed, the classification rule is easy to build. Therefore, the decision tree induction 

consists of the following workflow represented in Figure 3.1: 

Data -------* DecisionTree -------* DecisionRules -------* Classification or Prediction 

Figure 3.1: Procedure of Decision Tree Induction 

The step of constructing a decision tree from a dataset is one of the most impor­

tant components. The key step during the construction is to determine the order of 

attributes, which is useful to build small trees. In order to select attributes, the con­

cept of average entropy is introduced. Entropy is a measure from information theory; 

it characterizes the degree of purity or homogeneity for a collection of samples. The 

approach is to find the average entropy of each attribute and choose the attribute 

with the minimum value of average entropy. In order to calculate the average en­

tropy, it is necessary to know the concept of nb, nbc and nt where nb is the number 

of instances in branch b, nbc is the number of instances in branch b of class c and 

nt is the total number of instances in all branches. Equation 3.1 is the formula to 
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calculate the average entropy. 

(3.1) 

The attribute with the minimum value of the average entropy has been selected and 

the decision tree is therefore constructed. The decision tree should go through a 

pruning algorithm in order to improve accuracy by removing tree branches. After 

this step, decision trees can easily be converted to classification IF-THEN rules in 

order to suit the task of classification. 

3.1.1.1 Bayesian Classifier 

Bayesian classifiers are statistical classifiers and are based on Bayes theorem. Bayes 

theorem is briefly introduced as follows: Let X be a data sample whose class label 

is unknown. Let H be some hypothesis, such as the data sample X belongs to a 

specified class C. For classification problem, the value of P(HIX) determines the 

probability that the hypothesis H holds given the observed data sample X. Bayes 

theorem indicates that P(HIX) can be determined through P(XIH),P(H) and P(X) 

in the Equation 3.2 

P(HIX) = P(XIH)P(H) 
P(X) 

(3.2) 

Where P(XIH) is the posterior probability of X conditioned on H; P(H) IS pnor 

probability of H and P(X) is the prior probability of X. 

There are two approaches in Bayesian classification: one is called the naive Bayesian 

classifier and the other one is the Bayesian Belief Network. Naive Bayesian Classifier 

assumes that the effect of an attribute value on a given class is independent of the 

values of the other attributes, which means there are no dependence relationships 

23 



among attributes. The Bayesian Belief Networks specify joint conditional probabil­

ity distributions. They allow class conditional independencies to be defined between 

subsets of variables. Thorough presentations of Bayesian classification can be found 

in textbooks of [8, 37, 33]. 

3.1.1.2 Artificial Neural Network 

A neural network is a set of connected input/output units where each connection 

has a weight associated with it. During the learning phase, the network learns by 

adjusting the weights so as to be able to predict the correct class label of the input 

samples. Neural networks involve long training times and are therefore more suitable 

for applications where this is feasible. They require a number of parameters that are 

typically best determined empirically, such as the network topology. Neural networks 

have been criticized for their poor interpretability since it is difficult for humans to 

interpret the symbolic meaning behind the learned weights. Advantages of neural 

networks, however, include their high tolerance to noisy data as well as their ability 

to classify patterns on which they have not been trained. An extensive survey of 

applications of neural networks in industry, business, and science is provided in [41]. 

3.1.1.3 K-nearest Neighbor Classifier 

Nearest neighbor classifiers are based on learning by analogies. The training samples 

arc described by n-dimcnsional numeric attributes. Each sample represents a point 

in an n-dimensional space. In this way, all of the training samples are stored in an 

n-dimensional pattern space. When given an unknown sample, a k-nearest neighbor 

classifier searches the pattern space for the k training samples that are closest to the 
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unknown sample. The k nearest neighbors of the unknown sample refers to these 

k training samples. The Euclidean of distance is defined to measure the closeness 

between two points. The unknown sample is assigned the most common class among 

its k nearest neighbors. When k= 1, the unknown sample is assigned the class of 

the training sample that is closest to it in pattern space. Nearest neighbor methods 

are discussed in many statistical texts on classification, such as [8, 15]. Additional 

information can be found in [32, 18]. 

3.2 Conclusion 

In this part, a brief introduction has been given to classification algorithms. There are 

numerous comparisons on the different classification methods, and the comparison re­

mains a research topic. No single method has been found to be superior over all others 

for all data sets. Empirical comparisons [7, 5, 31] show that the accuracies of many 

algorithms are sufficiently similar and their differences are statistically insignificant, 

while training times may differ substantially. In general, most neural network and 

statistical classification methods involving splines tend to be more computationally 

intensive than most decision tree methods. 
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Chapter 4 

Knowledge Discovery 

4.1 Introduction 

A review on the area of knowledge discovery has been conducted in this chapter. 

Knowledge Discovery in Database (KDD) is concerned with extracting useful infor­

mation from databases. Because gray level images can be viewed as two-dimensional 

matrices, these matrices can be considered as large databases where useful information 

can be discovered by Knowledge Discovery techniques. A typical Knowledge Discov­

ery System (KDS) generally includes three components: data warehouse, data mining 

and postprocessing. In this chapter, these three components have been introduced 

and emphasis has been put on the part of data mining procedure. 

4.2 Data Warehouse 

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile 

collection of data organized in support of management decision-making [14]. It is 
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easy to understand what a data warehouse is by comparing data warehouse with 

regular relational database systems, which most people are familiar with. The major 

task of a relational database system is to perform on-line transaction and query 

processing (OLTP). They cover most of the day-to-day operations of an organization, 

such as purchasing and inventory. Data warehouse systems, on the other hand, serve 

users or knowledge workers in the role of data analysis and decision-making. These 

systems are known as on-line analytical processing (OLAP) systems. In order to build 

a data warehouse, data preprocessing is an essential issue, as real-world data tend 

to be incomplete, noisy, and inconsistent. Data preprocessing includes data cleaning, 

data integration, data transformation, and data reduction. Detailed discussion can 

be found in [26, 38, 22]. 

4.3 Data Mining 

The types of knowledge to be mined specify functions of data mining and these 

knowledge types include concept description, association, classification, clustering, or 

evolution analysis. Among these functions, an association rule mining searches for 

interesting association or correlation relationships within a large set of data items 

and therefore receives much attention. 

4.4 Association Rule Mining 

The association rule [24] is very useful in the market basket analysis because the 

results may be used to plan marketing or advertising strategies, as well as catalog 
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design. Let i = { i 1 , i2 , · · · , im} be a set of items. Let D be a set of database transac­

tions where each transaction T is a set of items such that T E L. Let A be a set of 

items. A transaction Tis said to contain A if and only if AET. An association rule is 

an implication of the form A=?B, where Ac L, BeL, and An B = 0. The supports 

of the rule A=?B means the percentage of transactions in D that contain AUB. This 

is taken to be the probability, P(AUB). The confidence c of the rule A=?B means 

the percentage of transactions in D containing A that also contains B. This is taken 

to the conditional probability, P(BIA). Association rule mining is a two-step process: 

the first step is to find all frequent itemsets that are defined in terms of the predefined 

value of support s; the second step is to generate associate rules from the frequent 

itemsets and these rules must satisfy predefined values of support s and confidence c. 

4.4.1 Apriori Algorithm 

Apriori is an influential algorithm for mining frequent itemsets. This algorithm uses 

prior knowledge of frequent itemset properties. Apriori employs an iterative level­

wise search, where k-itemsets are used to explore (k+l)-itemsets. First, the set of 

frequent 1-itemsets is found. This set is denoted as L1 . L1 is then used to find L2 , the 

set of frequent 2-itemsets, which is used to find L3 , and so on, until no more frequent 

k-itemsets can be found. Therefore, the finding of each Lk requires one full scan of 

the database. As the searching space for frequent itemsets may become huge, it is 

necessary to introduce the Apriori property in order to improve the efficiency of the 

level-wise search. The Apriori property is described as follows: all nonempty subsets 

of a frequent itemset must also be frequent. Given an itemset I, if I does not satisfy 
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the minimum support threshold min_sup, then I is considered as not frequent, that 

is P(I)<min_sup. As any superset of I cannot become more frequent than I, superset 

of I is not frequent either. Therefore, the searching space is reduced. 

Once the frequent itemsets are mined from transactions, it is straightforward to 

generate strong association rules from them. Strong association rules should satisfy 

both minimum support and minimum confidence. Therefore, for each frequent itemset 

L, generate all their nonempty subsets S; output the rule 8::::}(1-S) if its confidence is 

equal or greater than the predefined minimum confidence threshold. 

4.5 Post processing 

The step of post processing refers to how the data mining system displays the dis­

covered patterns. The visualization of discovered patterns in various forms can help 

users with different backgrounds to identify patterns of interest and to interact or 

guide the system in further discovery. Many good examples and visual snapshots can 

be found in [39, 17]. 

4.6 Conclusion 

In this chapter, a brief introduction has been given to the three components of the 

data mining system. Different data mining techniques may be adopted according 

to the types of the knowledge to be mined. Emphasis is put on the Association 

rule mining in that it may reveal the hidden relationship among itemsets within the 

large databases or data warehouses. And this feature may be applied to the image 
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processing area for finding hidden patterns. Apriori algorithm is widely used to find 

association rules and its variations including hashing and transaction reduction can 

be used to make the procedure more efficient. Other variations include partitioning 

the data, and sampling the data. These variations can reduce the number of data 

scans required. 
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Chapter 5 

The Proposed System 

5.1 Introduction 

It is natural for human beings to find the distinctiveness within texture images because 

human eyes can detect those patterns that occur frequently and take those patterns 

to differentiate texture images. Similar to the way that human beings detect those 

features, our system has grasped the uniqueness of textures and uses this uniqueness 

to classify the unknown features. 

In this chapter, the construction of a new system has been explained in order 

to discover those peculiar texture patterns which may represent textures. Those 

patterns are discovered through a data mining procedure. The Apriori algorithm has 

been adopted in order to find those frequent patterns. 
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5.2 Distinctive Texture Patterns 

Consider aM x N pixel size of textured image I(m,n) where m is the number of rows 

and n is the number of columns. The sample containing enough regular patterns 

is obtained from a textured image; practically, a sample with the size of 64x64 is 

adopted. A knowledge discovery process has been applied in order to find distinctive 

patterns inside the sample. Here, the distinctive patterns refer to patterns that are 

contained in this textured sample only. The number of pixels with gray level i is 

denoted as the frequency ni, where 0 :::; i :::; k and k is the maximum gray level. 

Table 5.1 shows all one-pixel patterns in a sample, which is called the candidate 

one-pixel itemset c1. 

Table 5.1: Candidate one-pixel itemset C1 

Frequency 
Itemset c1 

Table 5.2 contains the gray levels with frequency exceeding a predefined threshold 

Table 5.2: Candidate one-pixel itemset 1 1 

Frequency 
Itemset 11 

one-pixel itemset has been discovered, we start to find patterns with two frequent 

one-pixel itemsets in the itemset 1 1 . Figure 5.1 shows four types of patterns with two 

pixels. 
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Pixel with gray level 
deviation 9kp ± t5 

9kp ± J 
Pixel with gray level • 
deviation 9kq ± t5 0 

)------{J ------ d~4 p-------
/ 

d~~i±" ~' ±" 
--- goa d±A135° 

------ --- 0------
/ ! 

Distance with distortion 
d±T 

9kq ± J 9kq ± J g ± (5 kq 

Figure 5.1: Four types two-pixel patterns with deviations 

In Figure 5.1, T stands for the distance deviation; J for the gray-level deviation; e 
represents one offour degrees: 0°,45°,g0o and 135°; the value ofT and J are determined 

according to correspinding textures. The concepts of deviations are necessary because 

textures in reality are subject to the noise. Deviations may help find the essential 

patterns without being disturbed by noise. 

The candidate two-pixel itemset C2 can be discovered from frequent one-pixel 

itemset 1 1 . Table 5.3 shows the candidate two-pixel itemset C2 . Each entry in C2 is 

represented as {gkp, 9kq, Oi, dj} in order to reflect the information of angle and distance 

for patterns. Here, 9kp and 9kq are from frequent one-pixel itemset 1 1 . 

Table 5.3: Candidate two-pixel itemset C2 

t9k1' 9k1' oo, d:~! t9h' 9k1' 45°' d:3 )- tgk1, 9k1, goa, d:~ )- 19k1' 9k1' 135a' da )-
{ 0° d } {gkl' 9kl' 45°' d4} {gh, .9k:1, goo, d4} {gk:l' 9kl' 135°, d4} 9kl' 9A:l ' , 4 

• • 0 0 •• •• 0 ••• • ••• 0 • • •• 0. 0 

{gkl' 9k]' oo, dg} {gkl' 9k1' 45°, dg} {9k 1 ,g~,goa,dg} {9k 1 ,9k1, 135°,dg} 
{gk1' .rlk2) oo, d:3} {gk1,9k2,45°,d3} {gk1, 9k2, goa, d:3} {9k1,9k2, 135°,d3} 

...... . . . . . . ...... • 0 ••• 0 

{gk1,gk2,00,dg} {gkl' 9k2' 450, dg} {gki, Yk:2, goo, dg} {gk1,gk2 , 135°,dg} 
0 ••••• • • • • • 0 ...... . ..... 

{gkpl 9kp? oo, d3} 
{gkq) 9kql oo, dg} 

{gkp? 9kp? 45°, d3} 
{gkq 1 9k

0
,45°,dg} 

{gkp,9kp,goo,d3} 
{gkq,gk,,90°,dg} 

{gkp,gkp' 135°,d3} 
{gkql 9kq) 135°, dg} 
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After the candidate two-pixel itemset C2 has been constructed, frequencies of these 

two-pixel patterns are calculated by the following equations: 

foo,d(gkp, gkq) = l{[(k, l), (m, n)] ED: k- m = 0, ll- nl = d ± T, I(k, l) = gkp ± 6 

, I(m, n) = gkq ± 6}1 

(5.1) 

f4so,d(gkp, gkq) = l{[(k, l), (m, n)] ED: (k- m = d ± r, ll- nl = -(d ± r)) 
(5.2) 

OR (k- m = -(d ± r), ll- nl = d ± r)I(k, l) = gkp ± 6, I(m, n) = gkq ± 6}1 

fgoo,d(gkp, gkq) = l{[(k, l), (m, n)] ED: lk- ml = d ± T, ll- nl = 0, I(k, l) = gkp ± 6 

, I(m, n) = gkq ± 6}11 

(5.3) 

f135o,d(gkp, gkq) = I {[(k, l), (m, n)] E D : (k- m = d ± T, l- n = d ± r) 

OR (k- m = -(d ± r), l- n = -(d ± r))I(k, l) = gkp ± 6, I(m, n) = gkq ± 6}1 

(5.4) 

Equation 5.1 is used to find the occurrence of two pixels within a certain distance 

and the angle between them is 0 degrees;Equation 5.2 is to find the occurrence of two 

pixels within a certain distance and the angle between them is 45 degrees;Equation 5.3 

is to find the occurrence of two pixels within a certain distance and the angle between 

them is 90 degrees and Equation 5.4 is to find the occurrence of two pixels within a 

certain distance and the angle between them is 135 degrees. 

Two-pixel patterns whose frequency exceeds the predefined threshold t 2 are kept 

in the frequent two-pixel itemset L2 • This step is called pruning. Frequent two-pixel 
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patterns are used to discover frequent three-pixel patterns according to the Apriori 

algorithm. During this process two types of two-pixel patterns have to be removed. 

The first type is patterns that belong to the background, which should be removed; 

the other type with the equal e and similar gray levels and distances should be 

removed in order to reduce redundancy. Table 5.4 contains the frequent two-pixel 

After the pruning, frequent two-pixel patterns are linked into three-pixel patterns 

gPl' gP2' Do, d3 
{gPl' gP3' Do, d3} 

Table 5.4: Frequent two-pixel itemset L2 

gPl' gP2' 45o, d3 
{gPl,gP3,45o,d3} 

gPl' gP2' 9Do, d3 
{gPl,gP3' 9Do,d3} 

to form the candidate three-pixel itemset C3 . In Figure 5.2, an elastic three-pixel 

pattern is illustrated. Let L''k_1 ,L'k,_1 be itemsets in Lk_1. The notation L'k_1 [j] 

Pixel with gray level 
deviaton gw1 :::E 6 

Distance with -----distortion d1 ± 7 0 Distance with 
distortion d2 ± T 

~ ~ Pixel with gray level 
Pix~l with gray level deviaton gw3 :::E 6 
dev1aton gw2 :::E 6 -----......_ 

Figure 5.2: Elastic three-pixel pattern with gray level deviation 

refers to the jth pixel in L/:_1 . The join operation Lk_1 x Lk_1 is performed, where 

two members of Lk_1 are linkable if one pixel gray level has the same gray value 

deviation as the other one. That is, members L'k_1 and L'k_1 of Lk-1 are structurally 
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linkable if Lr_1 [i], Lk_1 [j] E [9 - 6, 9 + 6]; i, j E [l, k - l], m =/= n. An example in 

Figure 5.3 is used to explain how two two-pixel patterns have been linked to become 

a three-pixel pattern. In the Figure 5.3, £~[2], L~[l] E [92 - 6, 92 + 6]. Therefore, 

L~ and L~ are linked together to form a three-pixel pattern. Entry in the candidate 

91 ± 6 92 i 6 
A two-pixel pattern t t 
L~-~ 

d1 ±T 
93 ± 6 

A two-pixel pattern t 
LJ-~ 

/ 0 
d1 ± T t 

94 ± 6 

Two patterns 
are linked 

A three-pixel pattern LA 

l 

~ 
91 ± 6 

Figure 5.3: An example of the linking step 

three-pixel itemset C3 (see Table 5.5) can be represented as the following format: 

After itemset C3 has been discovered, the sample is scanned in order to find the 

frequency of patterns in C3 and only those patterns that exceed threshold t 3 are 

maintained in the frequent three-pixel itemset L3 in Table 5.6. A similar procedure 

can be applied in order to find other multi-pixel patterns such as four-pixel patterns, 
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Table 5.5: Candidate three-pixel itemset C3 

\9wt,9w2,oo,d4,gwt'gw3'90o,ds} 
{9wt,9w2,oo,d3,gw3'gwt'goo,ds} 
{gw2,9wt,0°,d5,gw1 ,gw3,45o,d3} 

{9w1,9w2,0°,d6,gw2,gw3, 135°,dg} 
{9wt,9w2,45o,d3,gwt,gw3'90o,ds} 

five-pixel patterns, and so on depending on users' choices on the value of the threshold. 

In this thesis, three-pixel patterns are determined. 

Table 5.6: Frequent three-pixel itemset 1 3 

{9wt,9w2,oo,d4,gwt,9w3,90o,ds} 
{gW2lgW1loo,d5,9w1,9w3,45o,d3} 
{9wt,gW2,45o,d3,gw1'gw3'90o,ds} 

5.3 Common Distinctive Patterns 

The distinctive patterns discovered using this technique are extracted from one sample 

of the original textured image. In order to find common distinctive patterns which 

can represent the original textured image, more samples are required in order to find 

those patterns. Therefore, ten samples from the original textured image have been 

extracted randomly and these random samples will be scanned in the distinctive 

patterns found previously in order to obtain the five most common and frequent 

patterns. These five patterns will be served as the feature of this textured image. 

For any sample, if it contains three out of five common distinctive patterns, it will be 

classified as the texture class that contains these common distinctive patterns. 
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5.4 Summary of Pattern Knowledge Discovery 

As introduced before, the entire procedure of the pattern knowledge discovery consists 

of two stages: the first step is to find distinctive patterns and the second step is to 

find common ones among distinctive patterns. The following six steps have shown 

the first stage of finding distinctive patterns for a textured image of Figure 5.4. 

Figure 5.4: A sample of textured image with the size of 64x64 

1. In the first iteration of the algorithm, each pixel of the textured image is a 

member of the set of candidate one-pixel pattern, C1 . L1 contains all gray levels 

that exceed the predefined occurrence threshold of t 1 . This step can be shown in the 

Figure 5.5. 

2. To discover the set of distinctive patterns, L 2 , the algorithm uses L1 x L1 to 

generate a candidate set of two-pixel patterns, c2. 

3. Next, the original sample is scanned to determine the occurrence of those 

patterns in C2 . Moreover, those redundant patterns in C2 are removed as well. Here, 

redundant patterns refer to patterns which arc similar to each other. 

4. The set of distinctive two-pixel patterns L 2 is then determined, which encom­

passes those candidate two-pixel patterns in c2 having the minimum threshold t2. 

Figure 5.6 shows this step. 
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5. The generation of the set of candidate three-pixel patterns, C3 , is similar to 

the technique of c2 as Ca = L2 X L2. 

6. The original textured image is scanned in order to determine L 3 , consisting 

of those candidate three-pixel patterns in C3 having the minimum threshold t 3 . Fig-

ure 5. 7 illustrates this step. 

c1 
The Collection of all 
Pixel in the textured 
image I(m,n) 

{35} 

{37} 

{36} 

{39} 

{38} 

{216} 

Eliminate all pixels that do 
not exceed threshold tr=20 

L1 
The Collection of all 
Pixel in the )textured 
image I(m,n 

{53} 

{54} 

{55} 
{101} C2 = Lr x £1 

{102} 

Figure 5.5: Candidate patterns set C1 and frequent patterns set L1 

c2 
The candidate list of 
all two-pixel patterns 

121 62 
101 66 
121 62 
101 66 
121 62 
101 66 
121 62 
121 62 
... 

45 
45 
90 
90 
135 
135 
0 4 
135 

3 
3 
3 
3 
3 
3 

4 

Scan the textured image and 
find the occurrence of those 
two-pixel patterns in c2 
Those patterns that exceed a 
threshold t2will be kept 

L2 
Distinctive two-pixel 

patterns 

105 66 0 3 
66 58 0 7 
61 68 45 6 
120 61 0 4 
69 62 0 8 

Figure 5.6: Candidate patterns set C2 and frequent patterns set L2 
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c3 
The candidate list of 
all three-pixel patterns 

105 66 0 3 66 58 0 7 
105 66 45 3 66 58 0 7 
105 66 45 3 66 62 0 8 
120 61 0 4 61 68 45 6 
105 66 0 3 66 62 0 8 

Scan the textured image and 
find the occurrence of those 
three-pixel patterns in c3 
Those patterns that exceed a 
threshold t 3 will be kept 

105 
105 
105 
120 
105 
... 

L3 
Distinctive Three-pixel 
patterns 

66 0 3 66 58 0 7 
66 0 3 66 62 0 8 
66 45 3 66 58 0 7 
61 0 4 61 68 45 6 
66 45 3 66 62 0 8 

Figure 5.7: Candidate patterns set C3 and frequent patterns set L3 

After distinctive patterns have been discovered, the second stage of finding com-

mon frequent patterns is started. Ten samples are randomly selected in order to 

obtain the five most common and frequent patterns. Figure 5.8 shows one dominant 

feature pattern inside the textured image. Figure 5.9 shows the occurrence of this 

feature pattern within the ten samples of textured image. 

246±6 6±T 44±6 

~ 
41£56 

Figure 5.8: One common frequent feature pattern 

Figure 5.91 indicates that this feature pattern is a common distinctive feature of 

this texture class. Figure 5.10 shows the occurrence of this feature pattern inside 

another 29 textured images. From the Figure 5.10, it clearly shows that D20 has 4 

feature patterns and D102 has 3 feature patterns. The other 27 textured images have 

1feature pattern can be showed distinctively on the color format 
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Figure 5.9: The ten samples of same textured iamge with feature patterns 

no occurrence of this feature pattern. Since 3 or 4 are below the predefined threshold, 

they are considered as trivial occurrences. Therefore, this feature pattern can be used 

to classify textured images because only textures that belong to this texture class 

show dominant occurrences while other texture classes show trivial occurrences. In 

the appendix, figures from Figure B.l to Figure B.17have shown another six examples. 

5.5 Confuse Table and Other Parameters 

The previous procedure of pattern knowledge discovery is applied to all known texture 

classes in the appendix Figure A.l. Ten training samples have been randomly selected 

from each texture class. After five frequent common distinctive patterns from each 

known texture class arc discovered, training samples of each texture class arc scanned 

to find whether they contain these common distinctive patterns. If a training sample 

contains three out of five frequent common distinctive patterns of a texture class, 

this training sample is classified to this texture class. This process relies on seven 
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D3 D4 D6 D8 Dll 

D14 D16 D17 D18 D19 
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D20 D21 D22 D24 D34 

D35 D52 D53 D55 D56 

D64 D68 D76 D82 

D83 D85 D92 

Figure 5.10: Occurrence of this feature pattern within other 29 textured images 
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parameters and a confuse table will be created for classification after the completion 

of this process. 

There are three sets of parameters that have been employed in order to complete 

this knowledge process. 

The first set consists of two parameters: 7 and c5. 7 stands for the distance 

deviation and c5 stands for the gray-level deviation. The purpose of this set is to add 

a certain level of deviations into discovered feature patterns in order to enhance their 

anti-noise capabilities.2 Normally, 7 is set to 3 and c5 is set to 3. 

The second set consists of three parameters: t 1 , t 2 and t 3 . The goal of h is to 

remove background from two-pixel candidate set C2 . For any two-pixel pattern, if the 

absolute value of the difference of two pixel values is less than t 1 , these two pixels arc 

then considered as the background. Figure 5.11 shows patterns that belong to the 

background. Suppose t 1 is 10, the absolute value of the difference between these two 

pixel values is 2, which is less than t 1 . After two-pixel patterns from background have 

~3 

Figure 5.11: Two-pixel pattern that belongs to the background 

been removed, patterns with the same direction, distance and similar pixel value will 

be removed in order to reduce redundancy. The parameter of t 2 will then be used 

to implement this goal. Figure 5.12 illustrates an example. Suppose t 2 is 10. In 

Figure 5.12, these two patterns are considered as similar patterns because they have 

the same direction and distance and the absolute value of the difference on each pair 

2In reality, pictures can be changed easily by the environment. This capability can allow picture 
to resist these changes in order to keep its original state 
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Figure 5.12: Two similar two-pixel patterns 

of pixel is less than t 2 . 

The parameter of t 3 is used to reduce the similarity of three-pixel patterns. Fig-

ure 5.13 illustrates an example. Suppose t 3 is 10. In Figure 5.13, these two patterns 

078 

L 
145 121 

Figure 5.13: Two similar three-pixel patterns 

are considered as similar patterns because they have the same direction and distance, 

and the absolute value of the difference on each pair of pixel is less than t 3 . 

The last set of parameters is made up of two parameters: n2 and n3 • This set of 

parameters is used during the process of discovering complex feature patterns. The 

parameter of n2 is used to select patterns in the candidate frequent set C2 and put the 

chosen patterns into the frequent set L2 . The parameter of n3 is used to select patterns 

in the candidate frequent set C3 and put the chosen patterns into the frequent set L3 . 

Table 5. 7 shows the complete list of parameters for the whole 30 texture classes. 

In the Table 5. 7, it shows that the value of n 2 is larger than n 3 . According to the 

apriori algorithm, complex feature patterns tend to show fewer occurrences than the 

less complex feature patterns. According to the characteristics of different textures, 

empirical parameters are set for each of the texture classes. 
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Table 5. 7: Complete list of parameters used in the discovery proces 

T o t1 t2 n2 t3 n3 I 
1 4 5 10 15 140 10 50 
2 5 3 10 10 65 10 40 
3 3 3 10 15 240 10 100 
4 3 3 10 15 300 10 75 
5 3 5 15 15 120 10 40 
6 3 3 10 15 250 10 160 
7 3 3 20 15 200 10 100 
8 5 6 10 15 180 10 70 
9 5 5 15 15 150 10 50 
10 3 3 20 15 180 10 60 
11 3 3 40 15 180 10 120 
12 4 3 10 15 300 10 120 
13 4 4 20 15 130 10 80 
14 3 5 10 15 55 10 40 
15 4 3 20 15 300 10 100 
16 4 5 20 15 190 10 35 
17 3 3 20 15 300 10 90 
18 5 6 20 15 170 10 50 
19 5 3 10 15 260 10 75 
20 5 4 15 15 180 10 50 
21 4 3 20 15 230 10 200 
22 4 3 20 15 220 10 110 
23 7 5 45 15 180 15 90 
24 5 5 20 15 150 15 50 
25 5 4 20 15 150 10 80 
26 5 4 10 15 200 10 65 
27 4 3 20 15 200 15 80 
28 3 4 10 15 150 10 52 
29 3 3 20 15 300 10 200 
30 3 3 30 15 350 10 100 
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After the parameters have been set, all texture classes have to go through the 

knowledge discovery process, which eventually yields the Confuse Table. Table 5.8 

shows the Confuse Table. Inside this table, some textures may contain feature pat­

terns from the other texture class because other textures' feature patterns could be 

less dominant than the feature patterns inside textures. Here, less dominant feature 

patterns refer to the patterns with less than ten times of occuence inside the texture. 

Therefore, in the Table 5.8, some training samples of one texture class are assigned 

to other texture classes. 

Entry in the table represents the number of training samples that have been 

assigned to texture classes. For example, texture class 3 has 10 training samples. 

From those 10 training samples, 10 out of 10 are assigned to texture class 3 according 

to the feature patterns of texture class 3 , 10 out of 10 is assigned to texture class 

8 according to the feature patterns of texture class 8, 1 out of 10 is assigned to 

texture class 12 according to the feature patterns of texture class 12, 6 out of 10 are 

assigned to texture class 23 according to the feature patterns of texture class 23. For 

10 training samples of each texture class, if less than three training samples contain 

feature patterns of a specific texture class, these training samples are believed to 

not belong to this specific texture class. The modified confuse table is shown in the 

Table 5.9 which will be used for classification. In Table 5.9, if the entry in the table 

contains 1, it means training samples of the texture classes on the row contain the 

feature patterns of the texture class on the column. 
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Table 5.8: Confuse Table for textured image samples 

Texture Classes 
II 11 ~ ~ ~ 51 ~ ~ 81 ~10illi12I13I14I15I16I17I18I19I20I21I22I23I24I25I26I27I28I29I30I 

1 10 61C 10 
2 10 2 1C 10 
3 1C 10 1 c 
4 4 10 10 
5 10 10 10 { r 1C 
6 10 g 10 1 g 10 910 
7 4 1 5 10 1 1 1 10 
8 1C 4 1 
9 .:.J 10 6 1 
10 10 10 10 9 10 110 10 10 
11 10 
12 10 10 10 1 10 10 
13 1C 3 
14 10 10 
15 1C 4 
1c 2 4 10 6 2 
lt 10 10 10 
18 1 10 2 
19 g 3 6 10 5 9 
20 1 2 10 10 9 3 1 
21 10 1C 7 10 110 
22 4 g 8 2 10 6 6 
2u 6 u 1( 
24 8 6 9 10 
25 4 510 10 10 1C .:.J 9 
26 10 10 10 2 10 11C 10 10 
2f 10 10 10 9 10 1C 10 10 
28 10 o 1C 6 10 1 3 10 
29 9 g g 
30 10 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

1C 
11 
12 
1u 
14 
15 
16 
1 ( 
18 
19 
20 
21 
2L 
22 
24 
25 
2E 
2t 
2E 
29 
3C 

Table 5.9: Modified Confuse Table 
Texture Classes 

111121 ~ ~ s1 ~ ~ ~ 9I10illl12l13l1~ 1511611 ~ 18I19I20I21I22I23I24I25I26I27I28I29I30I 
1 1 1 1 

1 1 1 
1 1 1 

1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 

1 1 
1 1 1 
1 1 1 1 1 1 1 1 

1 
1 1 1 1 1 

1 1 
1 1 

1 1 
1 1 1 

1 1 1 
1 

1 1 1 1 1 1 
1 1 1 1 

1 1 1 1 1 
1 1 1 1 1 1 

1 1 1 
1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

1 1 1 
1 
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5.6 Classification 

The procedure of classification is described as follows: An unknown test sample u 

is scanned in order to find the existence of common distinctive patterns for known 

texture classes. If the test sample u contains enough amounts of distinctive feature 

patterns from a known texture class, it may belong to this texture class. The amount 

of distinctive feature patterns has been defined as a threshold. After scanning the 

test sample u for feature patterns of all known texture classes, the test sample u is 

assigned to a texture class if the test sample u contains the feature patterns from this 

texture class only. If the test sample u contains the feature patterns from more than 

one texture class, the modified confuse table is applied to classify. For example, if 

the test sample u contains the feature patterns from texture classes 2 and 9, the test 

sample u could belong to texture class 2 or texture class 9. The modified confuse table 

is applied to check the properties of texture classes 2 and 9. It shows that texture 

class 9 contains the feature patterns from the texture class 9 while the texture class 

2 does not contain these feature patterns. Therefore, the test sample u is scanned 

to find the occurrence of the feature patterns from texture class 9. If the sample u 

contains these feature patterns, it is then assigned to texture class 9; otherwise, it is 

assigned to texture class 2. Table 5.10 shows the excerpted part from the Modified 

Confuse Table 5. 9. 
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Table 5.10: Excerpted part from the Modified Confuse Table 

Assigned Texture Classes 
Jill 21 ~ ~ 5\6\ ~ ~ ~l0\11\12\13\14\15\16\1~18\19\20\21\22\23\24\25\26\27\28\29\30\ 

2 . . . 1.. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . 1.. .. . .. . .. . . 1 ................................ . 
• • • 0 • ••••••••••••••••••••••••••••• 0 00 0 •••••••• 0 •••••••• 0 •• 0 •• 0 •••••••••••• 00 0 ••••••••••• 0 ••• 0 

9 ... 1 .................. 1 ........................... 1 ................................ . 
0 ••• 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 0 ••••••••••••• 

5.7 Results 

In our system, 30 textures (in the appendix Figure A.l) from the benchmark database 

(Brodatz album [4]) have been selected and 10 random samples with a size of 64x64 

have been tested for each texture. Table 5.11 shows the final result for all samples 

after classification. From this table, we observe that most regular textures have better 

accuracy than non-regular textures. This is normal because regular textures tend to 

have homogeneous properties more than non-regular textures. Therefore, random 

samples extracted from regular textures should have an increased likelihood to find 

common distinctive patterns than others. 

From the table 5.11, 19 out of 30 textures have 9 or 10 out of 10 samples classified 

correctly and 5 textures have 7 or 8 out of 10 samples classified correctly and the 

remaining 6 textures have 5 or 6 out of 10 samples classified correctly. Reasons for 

the misclassified testing samples are: (1) they are not textures with enough constant 

patterns. As distinctive three-pixel patterns are discovered from 10 training samples, 

those testing samples would become significantly different from training samples if the 

texture does not contain constant patterns; and (2) the degree of similarity between 

some textures is high. For instance, D83 and D85 look very close so that it is hard 

to classify them correctly. D3 and D35 cannot be differentiated greatly because they 
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are both visually similar. 

It should be noticed that the number of textures employed in the testing is bigger 

than that of many experiments reported in this area. The large number of textures 

in the test surely increases the difficulty of the recognition task. 

5.8 Comparison Experiments 

In order to evaluate the performance of the proposed system, a strategy of mak­

ing comparison experiments have been conducted. According to the strategy, the 

proposed system will be compared with another four popular techniques which are 

Co-occurrence Matrix, 2-D Artificial Autoregressive, Edge Frequency and Law's Fil­

ter method. The testing database is not restricted to Broadz Album because the 

VisTex database and MeasTex database are also chosen for evaluation in order to 

increase objectivity. VisTex and MeasTex are chosen because they are benchmark 

image databases in the area of texture analysis. Many researchers have used these 

databases to investigate their approaches. 

5.8.1 Comparison with Co-occurrence Technique 

The features of the co-occurrence matrix adopted for the comparison experiments are 

correlation, energy and homogeneity. Distances are set from 2 to 4 and features from 

four directions are averaged which give nine features for each texture samples in total. 

The classification algorithm is the nearest neighbor algorithm. Ten training samples 

and ten testing samples from each texture class are selected randomly. Table 5.12 

shows the classification result from the co-occurrence method. The average classifica-
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Table 5.11: Final results table 
Assigned Texture Classes 

111121 ~ ~ 51 ~ ~ ~ ~ 10I11I12I13I14I15I16I1 ~ 18I19I20I21I22I23I24I25I26I27\28\29\30I 
1 ( 2 
2 6 
3 1C 
4 1 g 
5 10 
6 g 1 
7 5 5 
8 7 
9 1 E 

1C g 
11 { 

12 g 
l.J 10 
14 
15 
16 4 1 
17 
18 
19 1 
20 2 
21 
22 
2o 
24 
25 
2t 
2l 
2E 1 2 
2S 2 
3C 
1. Reptile Skin ( d3) 
3. Woven aluminum wire (d6) 
5. Homespun woolen cloth ( d11) 
7. Herringbone weave ( d16) 
9. Raffia weave ( d18) 
11. French canvas (d20) 
13. Reptile skin ( d22) 
15. Netting ( d34) 
17. Oriental straw cloth ( d52) 

~ 

10 

1 

19. Straw matting fiat lighting ( d55) 
21. Handwoven Oriental rattan ( d64) 
23. Oriental grass fiber cloth ( d 76) 
25. Oriental straw cloth ( d82) 

10 

27. Straw matting with bamboo( d85) 
29. Cane ( d101) 

5 
1C 

1 
2 

2 1 
1 

1 

g 
g 

8 
10 

10 
10 

10 
10 

5 5 
1 g 
1 6 

8 
10 

2. Pressed cork( d4) 
4. Abstract illusion of woven wire( d8) 
6. Woven aluminum wire (d14) 
8. Herringbone weave ( d17) 
10. Woolen cloth (d19) 
12. French canvas (d21) 
14. Pressed calf leather( d24) 
16. Lizard skin ( d35) 
18. Oriental straw cloth ( d53) 
20. Straw matting ( d56) 
22. Wood grain ( d68) 
24. Cotton canvas (d77) 
26. Woven matting ( d83) 
28. Pigskin ( d92) 

52 30. Cane ( d102) 



Table 5.12: Classification result from Co-occurrence method 
Assigned Texture Classes 

111121 ~ ~ ~ ~ ~ ~ 911~ 11l12l13l14l15l16l1 ~ 1SI19I20J21I22I23I24I25I26I27I2SI29I3DI 
1 I 2 1 
2 6 4 
3 10 
4 1U 
5 £ 1 
6 10 
7 10 
8 1C 
9 1 E 1 

10 5 3 1 1 
11 10 
12 1C 
13 10 
14 1 9 
15 10 
1t 1( 
11 2 8 
1E 10 
1S 5 1 4 
2.::: 1 9 
21 10 
22 1C 
2u 10 
24 10 
25 10 
26 1 5 4 
2t 1 £ 
28 10 
29 10 
30 1C 
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tion rate from the co-occurrence matrix technique is 85% while the proposed system 

is 84%, which is slightly lower. Table 5.13 gives the detailed information about the 

classification rate on each texture class. For each texture class, the classification rate 

of proposed system and co-occurrence technique has been displayed. From this table, 

it shows that most texture classes have almost equal rate except texture no.15. For 

the texture no.15, which is d34 in the Brodatz album, the proposed system has 100% 

classification rate while the co-occurrence technique has a nil classification rate. This 

clearly shows that the proposed system is superior to the co-occurrence technique in 

dealing with textures with regular patterns. 

Table 5.13: The comparison between proposed system and co-occurrence method 

II PI q PI q PI q PI q I PI q PI q 
1 0.7 0.7 6 0.9 1 11 0.7 1 16 0.5 1 21 1 1 26 0.5 0.4 
2 0.5 0.6 / 0.5 1 12 0.9 1 17 1 0.8 22 1 1 27 0.9 0.9 
.:; 1 1 8 0. { 1 13 1 1 18 0.9 1 23 1 1 28 0.6 1 
4 0.9 1 9 0.6 0.8 14 1 1 19 0.9 0.4 24 1 1 29 0.8 1 
5 1 0.9 10 0.9 0.3 15 1 0 20 0.8 0.9 25 1 1 30 1 1 

5.8.2 Comparison with 2-D AR Model 

The 2-D AR model for texture classification [43] was chosen for 12 textures (Ap-

pendix Figure A.2). The same texture classes are selected and the same numbers of 

testing samples are provided. The results in the table 5.14 showed that the overall 

performance is slightly different. However, for d21 texture, our proposed system can 

get 9 out of 10 testing samples classified correctly while the method based on the 

neural network can only classify 5 out of 10 testing samples correctly. 
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Table 5.14: The comparison between 2-D AR approach and proposed system 

1 2 3 4 5 6 7 8 9 10 
1 7(9 
2 9(10 
3 9(5 
4 10(10 
5 10(10 
6 9(10 
7 9(10 
8 8(10 
9 10(10 
10 10(10 
11 
12 
1. Herringbone weave (d17) 2. Woolen cloth (d19) 
3. French canvas (d21) 4. Netting (d34) 
5. Oriental straw cloth ( d52) 6. Oriental straw cloth ( d53) 
7.Straw matting fiat lighting ( d55) 8. Straw matting ( d56) 
9.Handwoven0riental rattan (d64) 10. Wood grain (d68) 
11. Oriental grass fiber cloth (d76) 12.Cotton canvas (d77) 

11 12 

10(10 
10(10 

Note: The figure inside the parenthesis of the table is the result of using 2-D AR technique. 

5.8.3 Comparison with Law's Method 

For Law's method, a total of 25 masks are convolved with the image to detect differ-

ent features such as linear elements and ripples. These masks have been proposed by 

Law's [19]. In [29], they compute five amplitude features for each convolution, namely 

mean, standard deviation, skewness, kurtosis, and energy measurement. The classifi-

cation algorithm is linear classifier for it gives the best performance. The benchmark 

database is MeasTex, which is a popular public texture database and can be found 

in the Appendix Figure C.l. The classification result of the Law's method in the 

MeasTex database is 82.8%. Table 5.15 shows the parameters when textures in the 

MeasTex database have been applied into our proposed system. Table 5.16 shows the 

classification result. 
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Table 5.15: Parameters used for MeasTex database 

-ri ~ t1l t2l n2l t3l n3l 
Asphalt 3 3 51 20 200 15 150 
Concrete 2 3 10 15 250 10 160 

Grass 3 u 10 15 200 10 100 
Rock 4 u 10 15 130 10 60 

Table 5.16: Classification result of MeasTex 
Assigned Texture Class 

II Asphalt! Concret~ Gras~ Rock! 
Asphalt 10 0 0 0 
ConcretE 1 9 0 0 

Grass 0 0 10 0 
Rock 0 0 0 8 

From Table 5.16 ,the total classification rate is 90%, which is higher than the Law's 

method. The reason is because these textures all contain strong regular patterns. 

5.8.4 Comparison with Edge Frequency Method 

According to [29], they compute the gradient difference between a pixel f(x,y) and 

its neighbors at a distance d. For a given value of distance, the gradient differences 

can be summed up over the whole image. For different values of d, different feature 

measurements for the same image have been obtained. The classification algorithm 

is kNN and k is set to 3 empirically. The benchmark database is the public VisTex 

database which can be found in the appendix Figure C.2. The classification rate of 

Edge Frequency method is 66.8% while the proposed system gives the classification 

rate of 62.8%. Table 5.17 shows the parameters when VisTex has been applied to the 

proposed system and Table 5.18 shows the detailed classification result of VisTex. 

From Table 5.18 , it indicates that the proposed system does not perform well on 
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Table 5.17: Parameters for VisTex 

II 'r1 ~ t1l t2l n2l 
Bark 3 3 10 15 100 10 70 

Fabric 2 3 10 15 230 10 100 
Food 4 3 10 15 80 10 35 
Metal 6 3 10 15 50 10 35 
Sand 3 3 20 20 200 20 65 
Tile 3 3 10 15 210 10 100 

Water 4 0 10 15 100 10 50 

Table 5.18: Classification result for VisTex 

II Bar~ Fabriq FoodJ Meta~ SandJ Til~ Wate~ 
Bark 3 1 0 0 3 0 3 

Fabric 0 9 0 0 0 1 0 
Food 0 2 7 0 0 0 0 
Metal 0 1 0 7 0 0 2 
Sand 0 0 0 0 8 0 2 
Tile 0 5 1 0 0 4 0 

Water 3 1 0 0 0 0 5 

Bark, Tile and Water. Detailed investigation reveals that these three textures contain 

little or no regular patterns while other texture classes with high classification rates 

contain much more regular patterns.3 This again confirms that our proposal system 

excels in dealing with textures with regular patterns. 

5.8.5 Summary of Comparison Experiments 

In order to evaluate the proposed system, four popular approaches in the texture 

analysis have been employed and three public texture databases have been involved. 

Results showed that the proposed system has almost equal classification rate with 

co-occurrence matrix technique and 2-D AR Model method. However, the proposed 

3The texture of tile is considered as irregular because its random images with the window size 
contain inconsistent regular patterns 
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system distinguished itself from performing well on textures with regular patterns. For 

MeasTex database, the proposed system has been compared with the Law's Method 

and showed a higher classification rate. When the VisTex database has been em­

ployed, both proposed system and edge frequency failed to yield satisfying results. 

Detailed investigation has shown that our proposed system is dealing well with the 

regular textures while it gives poor results to the textures with irregular patterns. 

This phenomenon is under the normal range because if the texture does not contain 

enough regular patterns, the extracted feature patterns cannot represent the texture 

class well and hence lead to the poor performance. 
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Chapter 6 

Summary and Future Research 

6.1 Summary of Contributions 

In this thesis, an approach of texture classification which uses the knowledge dis­

covery process to find distinctive patterns has been studied. An original system has 

been developed to perform texture feature extraction for texture classification. This 

system consists of two steps for the texture feature extraction: the first step is to find 

distinctive patterns within one training sample of the texture class and the second 

step is to find common distinctive patterns among the rest of the training samples of 

this texture class. 

In the first step of finding distinctive texture patterns, the Apriori algorithm 

guides the procedure in order to conduct the level-wise search. Complex patterns are 

discovered through less complex patterns and predefined thresholds have been used 

in order to reduce the searching space. 

In the second step, distinctive texture patterns from the first step have to go 
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through the rest of the training samples in order to find out common distinctive pat­

terns. The discovered common distinctive patterns have the following characteristics: 

(1) they are anti noise. Because textures in reality are subject to all kinds of noises, 

grey level deviations and distance deviations are added in order to find strong texture 

patterns that can handle noise issues; and (2) common distinctive patterns can be 

used repeatedly in order to classify unknown test samples. 

In the learning procedure, all training samples have been scanned according to 

the common distinctive texture patterns of each texture class. If one sample contains 

three out of five common distinctive texture patterns, it is then classified into the 

corresponding texture class. This procedure also yields a modified confuse table 

that can be used to help determine samples containing more than one texture class's 

feature patterns. 

A series of experiments were conducted to test the performance of the proposed 

texture classification system on natural textured images. A classification problem of 

thirty natural textures provided by the Brodatz album was considered to demonstrate 

the ability of the proposed system in classification and highly satisfactory results were 

achieved for most of the textures involved in the test phase. 

The proposed system used a systematic way to find the distinctive patterns of 

textured images and the discovered texture patterns is scalable, which means higher 

complex patterns can be discovered from existing patterns and it depends on the 

users to determine the level of complexity for texture patterns. 

In order to evaluate the performance of the proposed system, comparison exper­

iments have been organized systematically. Four popular approaches with two other 

public texture databases have been employed. Results have proven the superior ca-
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pability of the proposed system in dealing with textures with regular patterns. 

6.2 Future Work 

For the future work, the emphasis should be put on the classification of broad cate­

gories of textures. For example, for textures of lizard skin and snake skin, the feature 

patterns of these two categories can be combined together in order to find the feature 

patterns of the reptile skin which include skins of lizard and snake. The potential 

tricky part would be the level of similarity between the categories. If the level of 

similarity is high , the classification result may not become encouraging. 

As images in RGB format are made up of three matrices which correspond to 

one of the colors red, green or blue, for each matrix, the proposed system might be 

applied in order to find the feature patterns. Together, feature patterns for this RGB 

image can be determined. 
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Appendix A 

Textures for the experiments 
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1 2 

6 7 

11 12 

16 17 

21 22 

26 27 

1. Reptile Skin ( d3) 
3. Woven aluminum wire (d6) 
5. Homespun woolen cloth ( dll) 
7. Herringbone weave (d16) 
9. Raffia weave ( d18) 
11. French canvas ( d20) 
13. Reptile skin ( d22) 
15. Netting (d34) 
17. Oriental straw cloth ( d52) 
19. Straw matting fiat lighting ( d55) 
21. HandwovenOriental rattan (d64) 
23. Oriental grass fiber cloth ( d76) 
25. Oriental straw cloth ( d82) 
27. Straw matting with bamboo( d85) 
29. Cane (d101) 

3 

8 

13 

18 

23 

28 

4 5 

9 10 

14 15 

19 20 

29 30 

2. Pressed cork( d4) 
4. Abstract illusion of woven wire(d8) 
6. Woven aluminum wire (d14) 
8. Herringbone weave ( d17) 
10. Woolen cloth ( d19) 
12. French canvas ( d21) 
14. Pressed calf leather( d24) 
16. Lizard skin ( d35) 
18. Oriental straw cloth (d53) 
20. Straw matting ( d56) 
22. Wood grain ( d68) 
24. Cotton canvas ( d77) 
26. Woven matting (d83) 
28. Pigskin ( d92) 
30. Cane ( d102) 

Figure A.1: Texture from the Brodatz album for classification experiments. 
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1 

4 

7 

10 

1. Herringbone weave ( d1 7) 
3. French canvas (d21) 
5. Oriental straw cloth (d52) 
7. Straw matting flat lighting ( d55) 
9. Handwoven Oriental rattan ( d64) 
11. Oriental grass fiber cloth (d76) 

2 

5 

8 

11 

3 

6 

9 

12 

2. Woolen cloth ( d19) 
4. Netting ( d34) 
6. Oriental straw cloth ( d53) 
8. Straw matting ( d56) 
10. Wood grain ( d68) 
12. Cotton canvas (d77) 

Figure A.2: Textures for the experiments of comparison 
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Appendix B 

Results of some experiments 

237± 8 

5±T 

225 ± 8 

4±7 

236± 8 

Figure B.l: One common frequent feature pattern of the texture class d6 
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Figure B.2: Ten random samples of same textured image d6 with feature patterns 
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Figure B.3: Occurrence of d6 feature pattern within other 29 textured images 
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80 ± 6 
0 

3±T 

69 ± 6 
3±T 

83± 8 

Figure B.4: One common frequent feature pattern of the texture class d8 

Figure B.5: Ten random samples of same textured image d8 with feature patterns 
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Figure B.6: Occurrence of d8 feature pattern within other 29 textured images 

74 



159 ± b 

7±T 
o~----~o 

148 ± c5 160 ± c5 

Figure B.7: One common frequent feature pattern of the texture class d16 

Figure B.8: Ten random samples of same textured image d16 with feature patterns 
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Figure B.9: Occurrence of d16 feature pattern within other 29 textured images 
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129 ± b 

3±T 

108 ± b 

4±T J------------0 
125 ± b 

Figure B.10: One common frequent feature pattern of the texture class d19 

Figure B.ll: Ten random samples of same textured image d19 with feature patterns 
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Figure B.12: Occurrence of d19 feature pattern within other 29 textured images 
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249±8 

4±T 

5±T 

233 ± 0 250 ± 0 

Figure B.l3: One common frequent feature pattern of the texture class d34 

Figure B.l4: Ten random samples of same textured image d34 with feature patterns 
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Figure B.l5: Occurrence of d34 feature pattern within other 29 textured images 
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67±6 5±7 174 ± b 

6±T 

135 ± b 

Figure B.16: One common frequent feature pattern of the texture class d35 

Figure B.17: Ten random samples of same textured image d35 with feature patterns 
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.!<··~ 

Figure B.l8: Occurrence of d35 feature pattern within other 29 textured images 
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Appendix C 

Textures of Meastex and Vistex 

databases 

(a) Asphalt (b) Concrete (c) Grass (d) Rock 

Figure C.l: Samples of Meastex database 
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(a) Bark (b) Fabric (c) Food (d) Metal 

(e) Sand (f) Tile (g) Water 

Figure C.2: Samples of Vistex database 

84 










