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Abstract

The natural mortality of teleost populations is age-dependent - young, small-
bodied individuals experience comparatively higher mortality rates than older, larger
individuals. The use of structurally complex habitat, such as eelgrass (Zostera marina)
and macroalgae, is believed to increase survival of early stages by providing protective
cover from predators and increased food availability. However, few studies have actually
quantified natural mortality rates for juvenile cod associated with nearshore habitat. I
determined mortality rates for juvenile Greenland cod (Gadus ogac) and Atlantic cod (G.
morhua) associated with eelgrass in the coastal zone of Newman Sound, Newfoundland.
During Oct-Nov 2002, I fin-clipped 818 age-0 Greenland cod; an additional 1442 age-1
Atlantic cod were fin-clipped during June-July 2003. During Oct-Nov 2003, a further 765
age-0 Greenland cod were individually marked with visible implant alphanumeric
(VIalpha™) tags. Re-sampling revealed that juvenile cod remained near the site of
release, rarely venturing beyond a distance of a few hundred metres. For age-1 Atlantic
cod in eelgrass habitat, the mortality rate was M = 0.068day ' (estimated using the Jolly-
Seber method), which was significantly highef than that predicted (M = 0.010day™") using
an age-dependent mortality model based on published cod mortality rates. High mortality
rates may be attributed to high predation and other biotic and abiotic sources of mortality
(i.e., starvation, environmental extremes). Juvenile cod mortality rates were high despite
the availability of areas with complex structure; however, consistently low cod
abundances in structurally simple habitats suggest such areas may be too risky to frequent

for extended eriods.
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repeated on May 25, 2003, with carbon dioxide (CO,; concentration = 1.0 gL."") used as
the anaesthetic. This concentration was obtained through dissolution of one 5 g packet
of Eno Antacid Effervescent (SmithKline Beecham, ON, Canada) in 5 L of seawater. The
steps of measuring length and the use of adhesives were again omitted. Survival improved
noticeably (>80%) and the method was adopted.

Cod tagged on May 25, 2003, were examined daily from May 26-June 1, 2003 for
tag retention, survival, and visibility of the tag. I removed each cod from the holding tank
and examined the site of insertion for tag presence, tag visibility, and presence of injury
or secondary infection. The examination process was accomplished within a few seconds
and tag visibility was enhanced with the use of a flashlight with blue light emitting diodes
(LED) and amber filter glasses. Anaesthetization was required if tags were difficult to
read or the cod was overly active. I transferred inspected cod to a mesh-bottom bucket
located in the holding tank. Dead fish were removed, measured, and codes recorded. On
June 1, the cod were examined, killed, and measured to nearest mmSL. Tags were
removed to verify code.

Tag retention was low (<50%) during the tank study. Some tags had been
completely shed while others were in the process of being shed. Because of the small size
of the cod used, the availability of transparent tissue on the head was limited. Tags barely
fit, with the distal edge of the tags located close to the injection wound. Tags may have
been lost as a result of body undulations. Tag loss appeared to be reduced with larger
body size. An increase in body size was also assumed to reduce the proportion of cod

rejected because of tissue tearing. From October 21-November 8, 2003, I conducted a
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second tag study at the Marine Interpretation Centre, Terra Nova National Park,
Newfoundland, to determine if shedding rates decreased with increased body size.

On October 17, 2003, 62 age-0 Greenland cod were collected and transferred to
a 1835 L semi-circular, flow-through (flow rate = 21Lmin™") holding tank composed of
fibreglass and plexiglass at the Marine Interpretation Centre. Cod were acclimatized to
tank conditions for four days. On October 21 (Day 0), juvenile cod were individually
anaesthetized with CO, (1.25gL™"). After inserting the tag beneath the eye, I recorded the
length (mmSL) and administered a partial (1/6th) upper caudal fin-clip. Processed fish
were then transferred to a 20 L mesh-bottom bucket partially submerged in the holding
tank. Control fish were processed in the same manner, except that actual tag insertion was
eliminated and the lower caudal lobe was partially clipped instead of the upper caudal fin.
Fish that were stressed, injured, or dead were removed and the tag code recorded, if
present. Successfully-processed cod were released into the holding tank. In total, 27
tagged cod (94.2+7.8 mmSL) and 23 (96.2+6.3 mmSL) control cod were released.

Tank cod were fed twice a day with minced capelin (Mallotus villosus) or
occasionally live mysids and amphipods. The tank was inspected daily for mortalities.
Every 2-3 days, I examined individuals for tag retention, tag visibility, and stress-related
injuries. Most cod could be examined without using the blue light and amber filter
glasses. A small portion of cod required anaesthetic because tags were partly obscured.
Lengths were measured to nearest mmSL. On November 8 (Day 18), the remaining
individuals were killed and preserved in ethanol for microscopic examination of the

wound area. The insertion wounds of all tagged fish had healed by Day 18.
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After the tank study. a fully factorial two-way analysis of variance (ANOV A) was
performed to determine whether mean length differed with treatment (VIalpha tagged cod,
control cod), and time (i.e., days after treatment). The significance level (@) was set at
0.05. Non-significant difference in lengths between treatments would rule out differences
in tagging mortality rates due to body size.

3.3 Results
3.3.1 VIalpha mark-recapture of age-0 Greenland cod

Despite an intensive sampling effort (>10 seines) at the marking locations, Boulder
Beach was the only site where a large number of cod (n =450) was collected, tagged, and
released. The majority of cod tagged at Boulder Beach were collected with a single seine
(Figure 3.2). From the releases at Boulder Beach, 18 were recaptured (Table 3.1),
resulting in a recapture percentage (R%) of 4%. Of the 18 recaptures, three were
recaptured twice, resulting in a multiple-recapture percentage of 17%. One cod was
recaptured twice on the same day of sampling; following release at Boulder Beach, it was
re-caught 83 m away at Otter Cove, indicating intersite movement was possible in a time
span of a few hours. Given that one fin-clipped cod was recaptured without a tag, the tag
loss was estimated at 6%, compared to the tank tag loss of 5%. Furthermore, readable tags
were readily observed for all recaptured cod.

Recapture percentages for tagged cod at Dockside and Buckley’s Cove were
relatively low (3% and 1%, respectively). All recaptures (n=5) were made at the site of
release, except for one cod at Dockside that was netted twice at Stairs Beach (Table 3.1).

Because the number of recaptures were extremely low, results from these sites are not
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discussed in further detail.
3.3.2 Movement of age-0 Greenland cod

Intersite movement was prevalent for cod tagged at Boulder Beach and increased
over the duration of the mark-recapture program (Figure 3.3). Over the first 15 days of
the study, tagged cod were often captured at Boulder Beach, the site of release, with some
appearing at Heffern's Cove (a distance of 236 m). After day 15, more juveniles were
recaptured at Heffern’s Cove (n = 3) than the release site (n = 1). Only one cod was
recaptured at Otter Cove and it had previously been recaptured at the release site that same
day. Overall, percent migration from the release site was roughly 39% (total number of
tagged cod recaptured at the adjacent monitoring sites/total number of tagged cod
recaptured in outer Newman Sound = 7/18). Intersite movement was also observed at
Dockside, despite the low number of releases (n = 129) and recaptures (n = 2) made there.
One cod was released at Dockside and recaptured twice at Stairs Beach, suggesting that
the presence of the wharf between these sites did not completely deter along-shore
movement. Despite this movement between nearby sampling sites, tagged cod remained
at the same general marking location. From Oct. 9 - Nov. 23, 2003, a total of 473 age-0
Greenland cod were collected from 12 sites in Newman Sound that were sampled with a
single seine/site every two weeks. No tagged cod were collected during these seines,
suggesting that long range along-shore movements (>1000m) to other nearshore sites are
rare for this age class. However, the absence of recaptures at distant nearshore sites does
not exclude the possibility of extensive movements to offshore waters. No trend was

observed between distance travelled and the time tagged cod spent in the wild prior to
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recapture (Figure 3.4).
3.3.3 Natural mortality of age-0 Greenland cod

The daily M was estimated as 0.034 day' for all recaptures in the outer sound
(Figure 3.5); however, the fit of the regression line to the data was relatively poor
(r’=0.278). Furthermore, fit of the model proved non-significant (F, ;=1.16, p=0.361).
Goodness-of-fit greatly improved (r’=0.915), and the general linear model became
significant (F,,=21.39, p=0.044), when only recaptures collected at the marking site,
Boulder Beach, were regressed against time; M was estimated at 0.052 day'. Migration
of cod from Boulder Beach to the adjacent monitoring sites was estimated as 39% over
a period of 27 days. Handling mortality was estimated as 20% from a preliminary tank
study using the percent survival of both tagged (22 surviving tagged cod/27 total tagged
cod = 0.82) and control cod (18 surviving control cod /23 total control cod = 0.78).
Migration and handling mortality estimates reduced M to 0.021 day' [ =(0.052 day”' -
(0.39*%0.052 day™' - 0.20*%0.052 day")]. The Vobserved mortality rate would suggest that
roughly 880 out of 1000 age-0 Greenland cod survive a one week period.
3.3.4 Specific growth rates of tagged and untagged age-0 Greenland cod

Overall, mean SGR for recaptured cod (Table 3.2; mean= 0.27+0.38%day '; range
=-0.38 to 1.20%day") was noticeably lower than the tank cod (mean = 0.38+0.12%day';
range = 0.00 to 0.60 %day™"); but not significantly so (t = -1.18, p = 0.26, df = 17).
Recaptured field cod exhibited a significant trend of decreasing SGR with initial release
length (Figure 3.6 Fygg = 3.52 - 0.037F  pnomps F=8.45, df=1, p=0.011) whereas tank cod

exhibited a non-significant positive relationship (Tggg = 0.128 + 0.0027T,| cygrs F=0.67,
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df=1, p=0.42). The relationship between SGR and initial release length was significantly
different between the two groups (treatment term: F=11.56, df=1, p=0.002; length term:
F=9.68, df=1. p=0.004; interaction term: F=12.95, df=1. p=0.001). Figure 3.7 shows that
SGR does not decrease or increase with time since release for tagged cod, and that most
cod spent ten days or less post-release prior to recapture (Table 3.2). Two cod were
recaptured 26 days after release; one had an above average SGR (0.67%) and the other
was below average (0.22%). Six cod did not display any growth and two of these were
in the wild for more than one week and presumably had time to recover from the stresses
of handling and tagging. The SGR of wild, untagged Greenland cod was estimated from
juveniles collected during the bi-weekly sampling program. Newly-recruited juveniles
first appear in beach seines at Heffern’s Cove on July 31 with a mean SL of 40+6.6 mm.
Mean length on the last sampling day, November 23, was 106+6.2 mmSL. Though
individual SGRs could not be determined from unmarked fish, mean SGRs were
calculated for each sampling period between July 31 to November 23 (Figure 3.7). The
overall trend is a decrease in mean SGR with time. The mark-recapture program
commenced on September 30 and the individual SGRs for recaptured cod are also plotted
in Figure 3.7. All tagged cod, except one, either fall on the line or beneath it, suggesting
tagged cod have a lower daily length increase than untagged wild cod; however, this
difference was not significant (t=-1.1754, df=18, p=0.255).
3.3.5 Vlalpha tag retention and survival tank studies

Preliminary tank studies of Vlalpha tagged age-0 Greenland cod indicate that

survival and tag retention were high once an appropriate tagging technique was developed.
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Earlier attempts at tagging resulted in low survival and retention as a result of small cod
size, mortality-inducing collection and transportation stresses, and the use of clove oil as
an anesthetic. Tagging mortality may have also been attributed to inexperience with the
tagging method. At the conclusion of the third tank study, tag retention was 95% for the
22 surviving tagged cod (101.4+8.8 mmSL). Tag loss was recorded for one cod
measuring 85 mmSL on Day 6. Because tag loss was so low, the relationship between
retention and cod length could not be determined. Tag visibility was also good and tags
were generally readable without the aid of blue light; in only two cod was blue light
necessary to identify tags obscured by pigmentation.

The initial mean lengths of tagged and control cod were 94.2+7.8 mmSL (range
= 81-107; n=27) and 96.2+6.3 (range = 78-106; n =23), respectively. Throughout the
experiment, there was no significant difference between tagged and control cod in terms
of length (Table 3.3; x* = 5.79, df = 1, p = 0.061) or length with time (x* = 0.77, df = 6,
p = 0.993). The proportion of tagged and control cod surviving over the duration of the
tank study was plotted to determine if the mortality rate in tagged cod was higher (Figure
3.8). Survival for control cod was high (~ 96%) for the first 12 days of the experiment
with only one individual dying during the first three days. Three tagged experimental cod
died over a period of four days (Days 5-8). At the end of the study, tagged cod had similar
survival (82%, n = 22) compared to control cod (78%, n =18). Figure 3.8 shows a
noticeable increase in mortality on Day 13 for both treatments that was caused by severe
fin rot in three control and two tagged cod. These individuals were removed from the tank

and recorded as mortalities, though the tag itself was not the direct causative mortality
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agent. The mean length of the dead fish (88+7.2 mmSL) was significantly lower when
compared to that of all fish on Day 0 (95+7.1 mmSL; t=3.00, p=0.010, df=13) and all
survivors on Day 18 (102+8.4 mmSL; t=5.32, p<0.001, df=16). Smaller length may
indicate a tank effect or intraspecific competition with larger cod that inflict caudal
wounds on smaller conspecifics. Larger cod appeared to dominate food consumption
when fed, and smaller cod were often chased away from the food and could not feed until
larger individuals reached satiation.
3.4 Discussion

Age-0 Greenland cod exhibit low movement that is limited to migrations of a few
hundred metres and individuals remain in close proximity to sites of release. Olsen et al.
(2004) observed that VIalpha tagged juvenile Atlantic cod remained at release sites along
the Norwegian Skagerrak coast. Grant and Brown (1998) found that age-0 Atlantic cod
remained localized in eelgrass habitat at sites on the coast of Newfoundland for several
weeks after settlement to the bottom. They also found evidence for overwintering
behaviour in these habitats when they captured age-1 cod the following spring that had
been initially marked during the previous fall as age-0 cod. Enhancement studies
conducted in western Norway have shown that 90% of released juvenile (age 1 and 2) and
wild tagged cod were recaptured within 10 km of the release location (Ottera et al. 1999).
Skreslet et al. (1999) recaptured 84% of 2-3 year old tagged wild cod within 1 km of the
tagging areas in northern Norway. Others were captured within 20 km, though one
individual was found 65 km away 470 days post release. Older juvenile and adult

Greenland cod are reported to have high site fidelity with no large evidence of long-range
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migrations. For example. individuals (75-475 mmTL) in western Hudson Bay did not
venture beyond a few kilometres during their lifespans (Mikhail and Welch 1989). After
observing low returns of age 1-9 Greenland cod (121-596 mm) tagged in eastern James
Bay, Morin et al. (1991) suggested that the species may have a large, or diffuse, home
range; however, a low recapture rate may have resulted from the small abundance of
tagged cod released, tag losses and(or) tagging mortality.

Juvenile cod undergo diel migrations in nearshore Newfoundland, which may
explain the low recapture percentage observed for Vlalpha tagged cod in this study. Older
juvenile cod (age 1+) move from deeper, cooler water inhabited during the day to
shallower, warmer water at night (Keats 1990; Cote et al. 2001). Transitory habitat
change is initiated before twilight to decrease predation risk from predominantly visual
predators, and to increase food availability (Linehan et al. 2001). When light intensities
diminish at dusk, aggregated cod disperse and distribute over the bottom, regardless of
substrate or associated vegetation. Reduced light levels lower the foraging efficiency of
predominantly visual predators in shallow water. Despite reduced visibility, predator
concentration increases in the nearshore because larger piscivorous fishes, such as older
conspecifics and Atlantic cod, are not deterred from entering shallow waters where avian
predators such as gulls, eagles, and osprey are abundant (Linehan et al. 2001). I observed
some evidence of inshore juvenile cod migration while seining for the second marking
event (October 2) at Boulder Beach. Repeated sampling attempts at the marking site
produced cod abundances that were too low for tagging. Collection was abandoned for

several hours so that monitor seining of adjacent sites could be completed. Later, a single
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seine pulled at the marking site, approximately an hour before dusk. captured over 300
individuals. Similar abundances were not observed at the adjacent sites, suggesting that
the cod had possibly migrated from deeper water or areas inaccessible to the seining gear.
It should be noted that observation was based on a single event and must be considered
speculative, though similar observations have been reported by other researchers. Morin
et al. (1991) observed higher captures of older Greenland cod at night during the day in
shallow water; however, juveniles <100mm were never captured in estuaries or along the
coast of eastern James Bay near their study site. Whether or not juveniles exhibited
similar diel movements remains unknown and requires study in Newfoundland waters.
The authors also noted that temperature-dependent seasonal movements occurred. Adult
Greenland cod were more abundant in shallow (2-5m) estuarine waters in winter than in
summer (Morinetal. 1991). Adults have also been captured in estuaries during the spring
with abundances declining in summer, suggesting offshore movements to avoid higher
temperatures (Lambert and Dobson 1982). A higher capture percentage might have been
achieved in Newfoundland waters if sampling had been conducted at night, instead of
solely during the day. Night sampling should be added as a component of any future
mark-recapture studies of cod. Also. further study is required to determine the extent of
diel migrations to deeper waters by age-0 Greenland cod because mortality rates may be
biased if the movements are perceived to be permanent. Apparent mortality estimates
group death and emigration as losses to the natural system, with the implication that the
observed emigration is permanent. However, Pollock et al. (1990) stated that temporary

emigration may be common in many field situations and that the resulting bias may be
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serious regarding parameter estimates. The existence of temporary emigration can lead
to apparent mortality being overestimated because animals seemingly lost are returning
to the system.

The instantaneous natural mortality (M) of 0.021 day™' determined in this study for
age-0 Greenland cod, though based on four data points, is comparable to estimates
reported from other studies. For 6-12 month old Atlantic coastal cod along the Norwegian
Skagerrak shoreline, Julliard et al. (2001) estimated M at 3.8 year', equivalent to a M of
0.010 day™'. Kristiansen et al. (2000) estimated M at 0.0056 day™' for age-0 Atlantic cod
tagged and released at Heimarkspollen, Norway. Although their estimate is nearly four
times lower than this study the cod they examined had a mean length of 120 mm, which
is slightly larger than the juvenile cod used in this study. The size difference between the
studies was slight, however, the larger size may have been sufficient for Heimarkspollen
cod have enter a size refuge from most piscivores. Julliard et al. (2001) found that Z
dropped dramatically for age-1 coastal cod compared to younger, smaller conspecifics
because individuals of the cohort were too large to be preyed efficiently upon by other fish
species. At the same time, these individuals were too small to be exploited in commercial
and recreational fisheries, and values of Z increased once the cod had recruited to the
fishery. The M estimate from this study was higher, as expected, than that reported for
larger, older (age 1+ to 3+) northwest (0.0002-0.005 day™'; Beverton 1964; Myers and
Doyle 1983; Anderson and Gregory 2000) and northeast Atlantic (0.0007-0.001 day';
Sundby et al. 1989; Larsen and Pedersen 2002; Pedersen and Pope 2003) juvenile cod.

For adult Greenland cod, Mikhail and Welch (1989) used catch curves to estimate
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mortality as 0.5 year”', which is roughly equal to Z = 0.00082 day"'. Therefore, even if
fishing mortality is assumed absent, the mortality of adult cod is 25 times lower than the
mortality of juveniles.

Low recapture abundances at Dockside and Buckley’s Cove precluded mortality
estimates for cod at those sites, and it is unknown if the mortality rate observed at Boulder
Beach is typical. Mortality may be high at Boulder Beach because predation risk may be
high. High prey abundance attracts high predator density; increased predation risk may
elevate prey mortality despite the presence of complex habitat (Laurel et al. 2003a). In
2003, Hefferns Cove was one of the highest producers of fish abundance in Newman
Sound (Gregory et al. 2005), which is similar to observations over the previous seven
years (Gregory et al. 2002). Of the 12 sites, Hefferns Cove was frequently the highest
producer of juvenile gadoid (Greenland cod, Atlantic cod, white hake Urophycis tenuis)
abundance and potential predators. Known piscine predators of juvenile cod at this site
included older (age-1+ to 3+) conspecifics, sculpins (Myoxocephalus spp.), and Atlantic
cod (Linehan et al 2001; Laurel et al. 2003a). Mammalian predators, such as otters (Lutra
lutra; H.Stewart, Department of Biology, Memorial University of Newfoundland, personal
communication) and harbour seals (Phoca vitulina; Hammill and Stenson 2000), were also
observed. Avian predators are also present, including gulls, terns, mergansers, loons,
cormorant, eagles, and osprey (Linehan et al. 2001). The presence of potential predators
is not sufficient evidence that predation mortality is high for Greenland cod, particularly
if predators prefer other available prey items. Greenland cod in Western Hudson Bay co-

exist with a number of potential marine mammalian (ringed seal Phoca hispida, harbour
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seal, beluga whale Delphinapterus leucas) and avian (black guillemots, thick-billed
murres) predators (Mikhail and Welch 1989): however, gadids were not a major part of
their diets. This finding. in combination with the absence of cod in the stomachs of 50
sculpins, led Mikhail and Welch (1989) to conclude that Greenland cod was not a vital
intermediary in Arctic food webs. This is in contrast with coastal co-habitants (e.g., Arctic
cod Boreogadus saida) that play an important role as major prey for whales, seals, birds
and charr. It is difficult to determine if Greenland cod in Newman Sound are vital prey
for larger species. Tethering studies of juvenile cod predation have often used both
Greenland and Atlantic cod juveniles (Linehan et al. 2001; Laurel et al. 2003a; Gorman
2004), because they are similar in morphology (Methven and McGowan 1998) and
behaviour while tethered (Laurel et al. 2003a). No studies have determined the gadoid
prey preferences of Newman Sound predators.

Little information is available concerning the effect that VIalpha tags have on
juvenile cod growth. Olsen et al. (2004) reported that tagged cod grew 0.46% daily under
lab conditions; however, similarity to untagged cod was not determined and specific
growth rates of recaptured cod were not compared between lab and wild tagged fish.
Rikardsen et al. (2002) stated that VIalpha tagged charr grew significantly better than Floy
tagged charr and that the former seemed to have no effect on the growth. During my
study, the mean SGR for tagged cod was lower than untagged wild cod, but differences
were non-significant. Though similar, the SGRs for tagged and untagged wild cod should
be treated with caution because size-selective mortality may be negatively affecting small

cod and bias the mean values upwards. The small size differences (i.e., millimetres)
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observed between sample times for juvenile cod may be concerning because fish lengths
recorded with good precision in the field may still involve a small degree of error
(Gutreuter and Krzoska 1994). Recently, field workers in Newman Sound, using the
measuring boards from my study, demonstrated that measurement error can be very small
after five independent observers recorded the lengths of eight juvenile cunners (pooled
standard error = 0.16 mmSL; range = 0.20 mmSL to 0.87 mmSL; see Appendix 7 Table
A12). The overall percent error, expressed as the ratio of standard error to mean length,
was 0.27%, indicating that in situ measurement error can be negligible. The relationship
between SGR and initial tagging length differed when tank cod were compared to field-
released cod. For cod held in tanks, SGR was relatively constant over the lengths
examined; however, the SGRs for field cod were negatively correlated with increasing
body size. The discrepancy between the growth rates of tank cod and field cod may be
attributed to tank effects. During tank studies, larger cod appeared to dominate food
consumption when fed, and smaller cod often could not feed until larger individuals
reached satiation. In the natural environment, the ability to forage may not be hindered
for small cod that require fast growth rates to reach size refuges from potential predators.
In addition, higher food densities would be available to field cod inhabiting eelgrass
(Renkawitz 2005).

The slightly higher estimate of M relative to previous studies may be attributed to
an underestimate of tagging and handling mortality. Tagging mortality was negligible in
tank studies; however, indirect tagging-induced mortality may be pres t. It is unlikely

that the tag itself was visually observable to potential predators given ; small size and
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subdermal implantation (Rikardsen 2000). However, altered behaviour caused by
handling stress may be a problem. For instance, once released, tagged cod may swim
rapidly away from the point of disturbance, irrespective of the suitability of habitat types.
This high activity may increase encounter rates with nearby predators. Furthermore, tag
insertion inflicts a small wound near the eye of the cod. Some predators, such as older
conspecifics, can track prey using chemosensory cues (Cote et al. 2001) and may detect
the presence of tagged cod because of its injury. Linehan et al. (2001) proposed a similar
scenario as a caveat of the tethering method where the injury caused by insertion of the
hook into the caudal fin may attract a higher density of predators than otherwise present.
A better estimate of tagging-related mortality would require the inclusion of known
predators in tank studies to compare encounter rates of tagged and untagged individuals.
Such a study has not been conducted so it is difficult to determine if VIalpha tagged cod
are more prone to predation than untagged conspecifics.

Tag retention was high for Vlalpha tagged juvenile Greenland cod in tank and field
experiments. Tag retention (95%) in this study was equivalent or higher than that reported
for other fishes. Olsen et al. (2004) observed relatively high overall tag loss (33%) after
a 150-day tank study for age-0 Atlantic cod (G. morhua), with the majority of losses
occurring between weeks 1 and 9. Hatchery rainbow trout (Oncorhynchus mykiss)
exhibited a mean retention of 83% over a period of 25 days (Isely et al. 2004), although
the VIalpha tags used were slightly larger (1.5 mm x 3.5 mm) than this and most other
studies. Recaptured lake-dwelling and sea-run smolts of Arctic charr (Salvelinus alpinus)

demonstrated strong size-dependent tag retention, ranging from 46-68% for individuals
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less than 150 mm and ranging from 91-100% for individuals greater than 150 mm
(Rikardson 2000). Rikardson et al. (2002) also reported tag retention of 78% for hatchery
charr, with most tags lost during the first 10 days. Small rockpool fishes, Girella elevata
and Bathygobius cocosensis, experienced very low retention of 32+20% after 90 days
under laboratory conditions (Griffiths 2002). In my study, size-dependent tag loss could
not be assessed because only one tag was shed in both lab and field environments.

Tag visibility was excellent throughout both the tank and mark-recapture studies.
The main problem with reading Vlalpha tags is that tissue pigmentation can sometimes
obscure the visibility of the code. Olsen et al. (2004) found that approximately 33% of
tags were partly hidden behind pigmented tissue of hatchery juvenile cod though the codes
were readable with the use of a blue light and amber glasses. Similar visual aids were
sometimes required to view tags on marked rockpool fishes after 90 days (Griffiths 2002).
Isley et al. (2004) found visibility was improved using slightly larger Vlalpha tags and less
than 0.1% were unreadable due to pigmentation. In my study, all tags were readable in
the lab and in the field.

Mortality associated with the Vlalpha tagging technique was low for age-0
Greenland cod with 82% survival after 18 days under lab conditions. Fish speciestagged
with soft VIalpha tags typically have high survival rates. High survival has been observed
in juvenile Atlantic cod (96% survival over 150 days, Olsen et al. 2004 ), rainbow trout
(93%; Isely et al. 2004), Arctic charr (96-98%:; Rikardsen et al. 2002), and intertidal fishes
(80+5%; Griffiths 2002). Observed mortalities during my study were attributed to

handling, tank conditions, and(or) aggressive behaviour of confined fish.
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In summary, the mortality rate of age-0 Greenland cod (M =0.021 day™') inhabiting
Newman Sound was higher than those reported for older conspecifics and Atlantic cod
juveniles. High mortality rates may be attributed to high predation, uncertainties in
onshore-offshore movements, or uncertainties in long-term handling and containment
stress. As with older conspecifics, juvenile Greenland cod exhibited low movement rates,
remaining near the point of release, though some evidence of diel migrations was
observed. VIalphatagging is an appropriate method for mark-recapture studies of juvenile
Greenland cod as small as 80 mmSL and provides high tag retention, visibility, and
survival for marked individuals. There seems to be a negative effect on growth; however,
decreased growth rates of tagged cod may be attributed to handling and containment

stress.
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Figure 3.2: Number of juvenile Greenland cod collected via beach seine for tagging purposes
at Boulder Beach, Buckley's Cove, and Dockside over several days in Fall 2003.
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during Fall 2003. The middle graph represents the tagging site (Boulder Beach) and the
upper and lower graphs depict the recaptures collected at the adjacent monitoring sites

(Otter Cove and Heffern's Cove, respectively).
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Figure 3.4: The distance travelled (m) by Vlalpha tagged age-0 Greenland cod, plotted
against time since release (days).
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Figure 3.5: Catch curve analysis of recaptured Vlalpha tagged cod. The slopes of the
regression lines are estimates of apparent total mortality (Z; day'l) when constant mortality
rates are assumed (Total recaptures: Z = 0.034 day'], r’ = 0.278; Boulder Beach recaptures:

Z=0.054 day’', r* = 0.915).
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Figure 3.6: The effect of initial length (mmSL) on specific growth rates (%day'l) for

tank Vlalpha tagged age-0 Greenland cod (circles) and recaptured Vlalpha tagged

age-0 Greenland cod (triangles). An analysis of covariance indicated that the relationship
between SGR and initial tagging length was significantly different when field cod (dashed
line) were compared to tank cod (solid line).
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Figure 3.7: The change in specific growth rate (%day']) of untagged and tagged

juvenile cod. Specific growth rates for untagged wild cod (triangles) were determined

from mean lengths of age-0 Greenland cod collected during bi-weekly sampling at Heffern's
Cove. Tagged cod (squares) are depicted as individual specific growth rates. Mean

lengths (mmSL) with standard deviations for cod collected during bi-weekly sampling are
included (circles).
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when cod exhibiting severe caudal injuries ("fin rot") were removed and killed.
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Table 3.1: Summary data of recaptured Vlalpha tagged age-0 Greenland cod. Tag codes in bold italics indicate multiple recaptures.
Recapture sites in bold represent cod recaptured at adjacent monitoring sites. One cod (#17), identified by a caudal fin clip, shed its tag

and was speculated as being marked at Boulder Beach based on low movements observed for juvenile cod.

Recapture # Tag Code Tagging Date Tagging Site Recapture Date Recapture Site
(mm/dd/yy) (mm/dd/yy)

1 S36 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach
2 S37 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach
3 S02 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach
4 R28 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach
5 HO04 10/02/2003 Boulder Beach 10/07/2003 Hefferns Cove
6 R11 09/29/2003 Boulder Beach 10/07/2003 Boulder Beach
7 S32 09/29/2003 Boulder Beach 10/07/2003 Boulder Beach
8 H59 10/02/2003 Boulder Beach 10/07/2003 Boulder Beach
9 RI11 09/29/2003 Boulder Beach 10/07/2003 Otter Cove
10 S34 09/29/2003 Boulder Beach 10/14/2003 Hefferns Cove
11 $32 09/29/2003 Boulder Beach 10/14/2003 Hefferns Cove
12 S05 09/29/2003 Boulder Beach 10/14/2003 Boulder Beach




Table 3.1 (continued): Summary data of recaptured Vlalpha tagged age-0 Greenland cod. Tag codes in bold italics indicate multiple
recaptures. Recapture sites in bold represent cod recaptured at adjacent monitoring sites. One cod (#17), identified by a caudal fin clip,

shed its tag and was speculated as being marked at Boulder Beach based on low movements observed for juvenile cod.

Recapture # Tag Code Tagging Date Tagging Site Recapture Date Recapture Site
(mm/dd/yy) (mm/dd/yy)

13 §37 09/29/2003 Boulder Beach 10/14/2003 Boulder Beach
14 S87 10/02/2003 Boulder Beach 10/14/2003 Boulder Beach
15 W68 10/02/2003 Boulder Beach 10/21/2003 Hefferns Cove
16 HO7 10/02/2003 Boulder Beach 10/28/2003 Hefferns Cove
17 unknown unknown Boulder Beach?? 10/28/2003 Hefferns Cove
18 S63 10/02/2003 Boulder Beach 10/28/2003 Boulder Beach
19 K84 10/08/2003 Buckley’s Cove 10/15/2003 Buckley’s Cove
20 K87 10/08/2003 Buckley’s Cove 10/15/2003 Buckley’s Cove
21 F23 10/01/2003 Dockside 10/04/2003 Dockside
22 L36 10/01/2003 Dockside 10/09/2003 Stairs Beach
23 L36 10/01/2003 Dockside 10/16/2003 Stairs Beach




Table 3.2: Initial length (mmSL), recaptured length, change in change, and time at large of age-0

Greenland cod recaptured at Boulder Beach.

Specific growth rates (SGR) are presented as %

day’'. Codes in bold italics are multiple recaptures. R11 was recaptured twice in one day hence
time at large was less than one day. /n situ measurement error estimated as £0.0027 mmSL.

Tag Code Length at Length at ALength Time at SGR
Capture Recapture Large (Yoday™)
S36 88 87 -1 3 -0.381
S37 82 83 1 3 0.404
S02 87 87 0 3 0
R28 82 84 2 3 0.803
HO4 87 88 1 5 0.229
RI1 92 94 2 9 0.239
S32 94 94 0 9 0
HS59 81 86 5 5 1.198
RI1 94 94 0 <] 0
S34 92 93 1 7 0.154
§$32 94 94 0 7 0
S05 75 80 5 16 0.403
S$37 83 88 5 12 0.588
S87 87 87 0 12 0
W68 98 100 2 19 0.106
HO7 84 100 14 26 0.671
S63 84 89 7 26 0.222
Mean 87.3 89.9 2.6 9.8 0.273
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Table 3.3: Mean lengths (mmSL) of Vlalpha tagged and control age-0 Greenland cod reared in controlled conditions.

Tagged Greenland Cod Control Greenland Cod
Day 0 Mean Length Star?d:frd 0 Mean Length Stale:frd
(mmSL) Deviation (mmSL) Deviation
0 27 94.2 7.8 23 96.2 6.3
2 27 94.2 7.8 22 97.0 5.1
6 25 95.1 7.3 22 97.0 5.1
13 22 96.9 8.4 18 100.2 4.3
18 22 101.4 8.8 18 102.0 8.0




Chapter 4: Summary
4.1 Juvenile cod mortality and movement in Newman Sound

Age 0-1 cod experience high mortality rates, even in areas with protective vertical
structure in Newman Sound. A natural mortality rate of 0.068 day' was estimated for age-
1 Atlantic cod, suggesting that the population size of the cohort was reduced by nearly half
on a weekly basis. Age-0 Greenland cod were observed to exhibit a natural mortality rate
of 0.021 day', nearly three times lower than the rate estimated for the older Atlantic cod.
Juvenile cod preferentially settle in complex habitats (e.g., eelgrass, Laurel et al. 2003)
where vertical structure can provide: (1) refuge from predators (Gotceitas et al. 1995, 1997,
Hindell et al. 2000; Linehan et al. 2001; Laurel et al. 2003), (2) elevated food levels
(Connolly 1994; Renkawitz 2005), (3) reduced physical exposure (Bell and Pollard 1989),
and (4) increased water quality (Orth et al. 1984). Despite these benefits, juvenile cod
nonetheless experience high mortality rates in eelgrass habitat, suggesting that mortality
rates in other available habitats (i.e., mud, sand) are even worse. Available data on
predation risk suggests this is indeed the case (Tupper and Boutilier 1995; Linehan et al.
2001; Laurel et al. 2003).

In many teleost populations, natural mortality is stage- and size-dependent, with
younger age-classes experiencing higher rates than older, larger stages (Peterson and
Wroblewski 1984). As fish age and grow, the susceptibility to density-independent
mortality decreases, resulting decreased predation risk, increased resistence to starvation,
and increased tolerance to environmental fluctuations (see review by Sogard 1997). During

my study, age-1 Atlantic cod were typically smaller and more variable in size compared to
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age-0 Greenland cod, which may explain the discrepancy between the mortality estimates
for the two age-classes. Furthermore, size-dependent mortality related to handling stress
may have elevated the estimate for age-1 Atlantic cod because individuals <80 mmSL were
more vulnerable to this mortality than larger individuals. The mean lengths for age-1
Atlantic cod fin-clipped on Day 0 and Day 6 at Dockside during Spring 2003 were <80
mmSL, which suggests a large portion of these releases were prone to stressed-related
mortality. Conversely, the mean lengths of VIalpha-tagged age-0 Greenland cod were
larger than 80 mmSL, suggesting that these individuals were predominately tolerant to
handling mortality.

Despite adjustments for handling mortality and emigration, the natural mortality
rate determined for age-1 Atlantic cod in nearshore Newfoundland waters was high
compared to published rates. The rate estimated for age-0 Greenland cod may also be
overestimated, but cannot be verified because published rates are largely absent. Several
uncertainties may have contributed to the overestimation of natural mortality rates during
my study. For example, I estimated acute stressed-related mortality for juvenile cod over
aperiod of a few days; however, delayed stressed-related mortality may be occurring weeks
or months after release (Ricker 1949). Abnormal behaviour may be exhibited following
a stressful event (Mesa and Schreck 1989), possibly leading to increased susceptibility to
predation, reduced feeding efficiency, and decreased resistance to disease and
environmental fluctuations, resulting in mortality rates being positively biased. Further
study is required to quantify mortality directly or indirectly related to long-term handling

stress for cod age 0-1 years. In addition, tagging mortality was negligible in tank studies;
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however, indirect tagging-related mortality may have occurred for fin-clipped age-1
Atlantic cod and Vlalpha-tagged age-0 Greenland cod released into the natural
environment. It is unlikely the minute marks were visually observable to potential
predators; but both techniques involve the infliction of wounds that may increase the
probability of detection by potential predators using chemosensory cues. Similar scenarios
have been proposed for cod during field studies that involve sonic tag implantation (Cote
et al. 2001) and tethering (Linehan et al. 2001). A better assessment of tagging-related
mortality would require the inclusion of known predators in tank studies to compare
encounter rates of marked and unmarked individuals. In addition, uncertainties in
temporary emigration may result in erroneous mortality estimates. Animals suspected to
be dead or permanently emigrated may be moving in and out of the study area, leading to
mortality values being overestimated. Age-1+ Atlantic cod undertake diel migrations from
deep, cool waters inhabited during the day to shallow, warmer waters at night (Keats 1990;
Cote et al. 2001). Higher captures of Greenland cod >100 mm occur at night than during
the day in the shallow waters of James Bay (Morin et al. 1991), and similar movements are
conducted by Greenland cod <100 mm in Newman Sound (personal observation). These
“onshore-offshore” movements suggest temporary emigration occurred for both species
during my study and possibly caused mortality rates to be positively biased. Sampling at
night and in deeper water is recommended to determine the extent of diel migrations for
age 0-1 cod in the Newfoundland coastal zone.
Juvenile cod, aged 0-1 years, exhibited small scale movements in nearshore habitat

during my study - rarely moving more than a few hundred metres - regardless of age,
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species, or season. These observations are consistent with the findings of other Northern
Atlantic Ocean studies (Hjort 1914; Svasand and Krisitiansen 1990; Pihl and Ulmestrand
1993; Smedstad et al. 1994; Tupper and Boutilier 1995; Gotceitas et al. 1996; Gregory et
al. 1997; Grant and Brown 1998; Skreslet et al. 1999). During the study period, marked
cod were not recaptured outside of the coves where they were initially marked and released,
which suggests that the probability of large-scale alongshore movements is low for age 0-1
cod during late spring (June-July) and early fall (October-November). The limited
nearshore movements of age-0 Greenland cod and age-1 Atlantic cod are consistent with
the life history movement patterns of each respective species. Larger Greenland cod
juveniles (age 1-2) and adults (age 3+) have been described as non-migratory, non-
schooling, sedentary fish (Mikhail and Welch 1989; Morin et al. 1991; Nielsen and
Andersen 2001) that remain in home inlets for life (Mikhail and Welch 1989). Demersal
eggs are spawned beneath the ice in the vicinity of nearshore nursery habitats (Mikhail and
Welch 1989; Methven et al. 2001), which are subsequently occupied by benthic age-0
juveniles (Ings 2005). Over their life history, Greenland cod appear limited to relatively
small scale movements compared to Atlantic cod. The scale of movement varies over the
life history of Atlantic cod. Spawning occurs tens to hundreds of kilometres offshore in
deep waters and the pelagic eggs and larvae are transported to nearshore nursery habitats
by winds and currents. Settlement occurs in the nearshore during multiple recruitment
pulses (Methven and Bajdik 1994; Grant and Brown 1998; Gregory et al. 2002) and small
scale movements are exhibited by benthic juveniles, aged 0-1, associated with structurally

complex habitats (e.g., eelgrass, macroalgae). As body size increases with age, the affinity
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for structural habitats decrease and the size of home ranges increase as seasonal and
spawning migrations occur (Cote et al. 2001).

The limited small-scale movements of juvenile cod may result from density-
dependent habitat selection. Laurel et al. (2004) suggested that the probability of large-
scale movements (> 1000 m) was high for young cod in Newman Sound during years with
high cod densities. These authors speculated that saturation of optimal nearshore habitats
by conspecifics forced juvenile cod to: (1) occupy suboptimal habitats with limited
availability of vertical structure (e.g., mud, sand) and (2) form highly mobile shoaling
aggregations to offset the elevated predation risk experienced in such suboptimal habitats.
In 2002 and 2003 - the years of my study- juvenile cod abundances in Newman Sound were
low compared with previous years (Gregory et al. 2003, 2005), which may explain why I
did not observe any evidence of large-scale alongshore movements for age-0 Greenland
cod and age-1 Atlantic cod.

4.2 Implications and future study

The mortality rates I estimated in this study will provide fisheries managers and
marine ecologists with quantified values of juvenile cod survival in coastal Newfoundland
waters. Furthermore, the development of an age-dependent mortality model will allow
investigators to predict mortality rates for juveniles, particularly individuals aged 0-3 years.
However, further study is warranted to determine whether the mortality rates observed for
juvenile cod in Newman Sound are similar to those experienced by young cod in other
coastal areas of Newfoundland. The mortality rates observed in my study occurred over

small spatial (<1000 m?) and temporal (i.e., days to weeks) scales. Conclusions based on
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small scale studies are not necessarily transferable to larger scale processes or vice versa
(Thrush et al. 1997; Schneider 2001).

The distribution of juvenile cod habitat, such as eelgrass, is non-uniform and may
vary with geographic location, environmental conditions (e.g., temperature, salinity),
bottom geology and morphology, wind-generated wave dynamics. tidal currents, water
depth, light penetration, and storm severity (Kelly 1980; Turner et al. 1999). These factors
induce eelgrass habitats to range in complexity from large continuous meadows (i.e., low
2-D complexity) to small sparse patches (i.e., high 2-D complexity). Juvenile cod
abundance is related to the 2-D complexity of eelgrass habitat (Wells 2002; Hammond
2003). The relationship between juvenile cod abundance and habitat complexity depends
on whether fish can hide from patrolling predators while accessing benthic prey items
(Wells 2002). For example, low complexity habitats (i.e., dense eelgrass meadows)
provide sufficient shelter, but restrict access to benthic prey, whereas highly complex
habitats (i.e., sparse eelgrass patches) offer unrestricted access to prey but limited
protection. Juvenile cod abundance is highest in habitats of intermediate complexity where
the ability to hide and forage appear balanced (Wells 2002; Hammond 2003). In my study,
mortality rates were estimated for cod at eelgrass sites of intermediate complexity
according to the criteria of Wells (2002). The high abundances of juvenile cod in eelgrass
with intermediate complexity, despite high mortality rates, suggest that survival may be
greatly reduced in eelgrass with low or high complexities. Further work is required to
determine whether juvenile cod mortality is influenced by habitat complexity.

The low movement rates of juvenile cod in nearshore habitats suggest that Marine
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Protected Areas (MPAs) will be an effective conservation measure for cod. In
Newfoundland, MPAs have been proposed near Gilbert Bay, Eastport, and Leading Tickles
(Morris and Power 2004). Juvenile cod habitat, in the form of vegetation, has been
documented at all three localities (C. Morris, Department of Fisheries and Oceans, personal
communication). The distribution of young cod in shallow waters during spring and fall,
along with low movement, will increase the juvenile cod survivorship. However,
protection may decrease when age-0 Greenland cod and age-1 Atlantic cod presumably
move to deeper waters in late fall and early summer, respectively. Further study is needed
to determine the mortality rates of juvenile cod when distributions shift to deeper waters
where protective structure (i.e., macroalgae, cobble) may be unavailable. My study has
shown that age 0-1 cod exhibit high site fidelity within eelgrass habitats where they exhibit
higher mortality than expected from published accounts, which suggests that predation

mortality in other habitats is worse.
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Appendix 1

Table Al: The number of seines used to recapture fin-clipped age-0 Greenland cod (Gadus ogac) for each sampling day at
Buckley’s Cove, Mistaken Cove, and Pipers Cove during the period of October 3-20, 2002. Day 0 refers to the day juvenile cod
were collected for marking purposes.

Site

Number of Seines

October 3 October 4 October 6 October 8 October 10 October 16 October 20
(Day 0) (Day 1) (Day 3) (Day 5) (Day 7) (Day 13) (Day 17)
Buckley’s 4 7 5 1 1 1 1
Cove
Mistaken 0 1 1 1 1 1 1
Cove
Pipers Cove 0 1 1 1 1 1 1
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Table A2: The number of seines used to recapture fin-clipped age-1 Atlantic cod (Gadus morhua) for each sampling day at
Dockside, Stairs Beach, and Whiterock during the period of June 7 to July 17, 2003. Day 0 refers to the day juvenile cod were

collected for marking purposes.

Number of Seines
Site June 7 June 10 June 13 June 21 July 3 July 10 July 17
(Day 0) (Day 3) (Day 6) (Day 14) (Day 26) (Day 32) (Day 40)
Dockside 9 9 3 4 3 3 3
Stairs Beach 0 4 1 4 3 2 3
Whiterock 0 2 2 5 3 1 2

Table A3: The number of seines used to recapture fin-clipped age-1 Atlantic cod (Gadus morhua) for each sampling day at
Buckley’s Cove, Mistaken Cove, and Pipers Cove during the period of June 6 to July 17, 2003. Day 0 refers to the day juvenile
cod were collected for marking purposes.

Number of Seines

Site June 6 June 9 June 12 June 19 June 26 July 4 July 8 July 17
(Day 0) (Day 3) (Day 6) (Day 13) (Day 20) (Day 28) (Day 33) (Day 41)
Buckley’s 10 15 4 5 2 3 2 3
Cove
Mistaken 0 3 1 5 3 2 2 3
Cove
Pipers Cove 0 4 2 3 2 2 3 3




Appendix 2

Jolly-Seber Notation and Formulae

If the assumptions of the Jolly-Seber method are justified. the proportion of marked or

tagged specimens in the captured sample should equal that in the actual population, N,

lun M,

EN (Al.1)

where m; is the number of marked animals captured in the ith sample, », represents the

total number of animals captured in the ith sample, and M, in the number of marked
animals in the population when the ith sample is collected. M, is estimated as M , which

is computed from with the number of animals released after the ith sample (R)), the
number of animals released at i that are recaptured (r,), the number of animals captured

before 7, not captured at i, and captured again after i (z,), and m,:

i Rz, (A1.2)

14

After the marked population sizes M, . are estimated. manipulation of the previous

equation yields an estimator for the population size:

N, = M (A1.3)

141

Population sizes are not directly required for estimation of ¢, , the probability of
survival from sample i to sample i+ /. Instead. the survival rate is estimated by comparing

the number of marked individuals present in the population immediately after sample i
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with the marked population before sample /. after correcting for removals or accidental

deaths occurring during sample i:

A M+l
= (A1.4)

M.+ R - m,
The Jolly-Seber survival rate estimator actually provides an apparent survival rate as it
does not distinguish between animals dying and animals simply leaving the study area.
For model simplicity, animals leaving the study area are assumed permanent losses to the
system. If migration patterns can be evaluated. the apparent survival rate can be adjusted

to provide an estimate of true survival. Aside from estimating losses to the study area, the

JS method can also assess recruitment, B,, between sample / and sample i+/:

Bi: N1+l— ¢?I(NAI_ n: + RI) (A15)
The precision of estimates depend on whether the animals being studied can be efficiently
collected in the area of habitation by the sampling gear. The probability of capture, pi,

can be estimated from the proportion of marked (m,), or total (»,), animals alive at sample

i that are captured in /:

P (AL6)
M N

Probability of capture should not be confused with the recapture proportion (RP)),
routinely calculated as RP,= m /n,, though both parameters are useful as sampling intensity

indicators (Fitz and Wiegert 1992).

The @, and pi are maximum likelihood estimators and all estimates described

above can appear reasonable despite being biased. For this reason, approximately
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unbiased estimators have been devised by Seber (1982) for Jl, ]V,, E,, and M, :

T - M, (A1.7)
M+ R - m
5o DM (A1.8)
m:+ 1
E,: ﬁ+]‘$/(ﬁ_nl+ RI) (A19)
~ (RI+1)ZI
M= 2 (A1.10)
ro+ 1

Jolly (1982) reported the following unbiased estimator for p;:

ni
5= (A1.11)
P =8

Approximate asymptotic variances and covariances for Jolly-Seber formulae
are calculated by the program JOLLY. Pollock et al., (1990) stated that the variances

include estimation variability, or the variation resulting from capture probabilities not

equalling 1. They used the symbol Var(é1|t9i)to distinguish from Seber’s (1982)

var(@i) that incorporated sampling and nonsampling variation associated with birth

and death. The expected or mean value of a particular parameter is denoted by E(*).
Variance equations are shown below and all covariance terms, excluding ¢, and B,, are

7Ero:

var( M| M) = [ M. - E(m)[ M.~ E(m) + R,]{ E(lh) - H (A1.12)
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[M,+.—E(m,-.)]{ | 1 ]

R R ey R (A1.13)
- B M - E(m)+ R/| 1 1 (V- M)
var(N/|N:) = N[N - E(n,)]{ v {E(h) - RJ *NEOmy } (A1.14)
[M+:—E(mi+1)][M+|—E(m,+1)+R,+1]{ 1 1 }
o (]\J,WL])2 E(r,+1) R+
e A1.15)
var(glg) = ¢ e o) { . i} (
[M - E(m)+ R|[E(m) R
- 2 2 1 1 1 1
var(plp) = p*(1- p) {E(n) "= Eon E(zl)} (A1.16)
[M+1—E(n,+1)](M+|— M, 1)
(}} l} )_ - . M+l
COVABEL B = B,R,H( 1 1 )+ N (AL17)
. M 1 E(r:+1)_ R+ E(m,+1)
B M- B )][M”—E(nz,+.)+R,”]
! b= E(nn - >
(M- 1)
! I } [M— Eon)]  [#R(N.- M)]
aln ._E(,+1)_R,+| [M—E(m.)+ R,]. M’
(var B|B) =1 (A1.18)

[ L} . [N - EG)](N - = BYN - M)(1- @)
E(r) R N[M. - E(m)+ R

N[N E(r D[N - M . $> N[N - E(n))(N. - M)
' N1 E(mi+1) N.E(m)
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Appendix 3

Table A4: Method B table determined by program JOLLY for age 0 Greenland cod fin-clipped at Buckley's Cove in October 2002. R,
denotes the number of animals released after the ith sample; z, denotes the number of animals captured before #, not captured at 7, and
captured again in some later sample.

Time of Last Capture Time of Recapture

1 2 3 4

1 0 21 5 3

2 0 4 0

3 0 2

4 0

Marked (mi) 0 21 9 5
Unmarked (ui) 364 266 280 40
Total Caught (ni) 364 287 289 45
Released (si) 331 287 289 45
R, 29 4 2 0
z; 0 8 3 0
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Table AS: Method B table generated by program JOLLY for age 1 Atlantic cod fin-clipped at Dockside in June 2003.

Time of Last Capture Time of Recapture
1 2 3 4
1 0 30 11 1
2 0 10 2
3 0 8
4 0
Marked (mi) 0 30 21 11
Unmarked (ui) 272 189 259 68
Total Caught (ni) 272 219 280 79
Released (si) 271 209 280 79
R, 42 12 8 0
z; 0 12 3 0
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Table A6: Method B table determined with program JOLLY for age 1 Atlantic cod fin-clipped at Buckley’s Cove in June 2003.

Time of Last Capture Time of Recapture
1 2 3 4
1 0 22 23 2
2 0 9 3
3 0 3
4 0
Marked (mi) 0 22 32 8
Unmarked (ui) 237 193 214 30
Total Caught (ni) 237 215 246 38
Released (si) 236 206 238 38
R, 47 12 3 0
z; 0 25 5 0







Appendix 4: SAS output with ANCOVA table and residuals vs. fits plot for the juvenile
cod age-dependent natural mortality model.

Model:

lnM = ﬁo + BAgc*ln(Age)

Symbols:

M = instantaneous natural mortality rate (day™)
Age = age of juvenile cod in days

Results:
Distribution:
Link Function:

Dependent Variable:
Observations Used:

Parameter

Intercept
age
Scale

DF

=

Gamma
Log

M
17

Source

Estimate Error Limits
10.3856 2.3361 5.8068 14.9644
-2.4724 0.3577 -=3.1735 -1.7713
1.3808 0.4284 0.7517 2.5365
LR Statistics For Type 3 Analysis
DF X 2
1 28.22 <.0001

age

BAnalysis Of Parameter Estimates

Standard Wald 95% Confidence

Therefore the regression equation 1s:
M — e-2.47Age +10.39

pr > X°

2

X

19.76
47.77

159
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Appendix 6

Table A9: The number of seines used to recapture Vlalpha age-0 Greenland cod (Gadus ogac) for each sampling day at Boulder
Beach, Hefferns Cove, and Otter Cove during the period of September 29 to October 28, 2003. Day 0 refers to the day juvenile
cod were collected for tagging purposes.

Number of Seines
Site September 29 October 2 October 7 October 14 October 21 October 28
(Day 0) (Day 3) (Day 8) (Day 15) (Day 22) (Day 29)
Boulder Beach 11 12 2 3 3 2
Hefferns Cove 0 3 3 3 2 2
Otter Cove 0 3 3 3 2 3
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Appendix 6 (cont.)

Table A10: The number of seines used to recapture VIalpha age-0 Greenland cod (Gadus ogac) for each sampling day at
Buckley’s Cove, Mistaken Cove, and Pipers Cove during the period of September 30 to October 21, 2003. Day 0 refers to the
day juvenile cod were collected for tagging purposes.

Site

Number of Seines

September 30 October 4 October 8 October 15 October 21
(Day 0) (Day 5) (Day 9) (Day 16) (Day 22)
Buckley’s Cove 13 6 9 3 4
Mistaken Cove 0 3 2 3 3
Pipers Cove 0 3 2 1 2
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Appendix 6 (cont)

Table A11: The number of seines used to recapture Vlalpha age-0 Greenland cod (Gadus ogac) for each sampling day at
Dockside, Stairs Beach, and Whiterock during the period of October 1-16, 2003. Day 0 refers to the day juvenile cod were

collected for tagging purposes.

Number of Seines

Site October 1 October 4 October 9 October 16
(Day 0) (Day 3) (Day 8) (Day 15)
Boulder Beach 11 12 2 3
Hefterns Cove 0 3 3 3
Otter Cove 0 3 3 3




Appendix 7

Table A12: Measurement error of 8 cunners (7. adspersus) across five independent observers
using a measuring board marked in millimetres. Percent error was determined as the ratio
of standard error to mean length. Data by S. Mayor, Department of Biology, Memorial
University of Newfoundland.

Mean Number Standard Standard Percent
Fish Length of Deviation Error Error
(mmSL) Observations (mmSL) (mmSL) (%)
A 442 5 0.45 0.20 0.45
B 84.0 5 0.71 0.32 0.38
C 91.4 5 1.95 0.87 0.95
D 45.4 5 0.89 0.40 0.88
E 40.6 5 0.55 0.25 0.60
F 78.2 S 1.10 0.49 0.63
G 45.4 5 0.89 0.40 0.88
H 48.8 5 0.84 0.37 0.77
Pooled 59.8 40 1.02 0.16 0.27
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