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Abstract 

The natural mortality of teleost populations is age-dependent - young, small­

bodied individuals experience comparatively higher mortality rates than older, larger 

individuals. The use of structurally complex habitat, such as eelgrass (Zostera marina) 

and macroalgae, is believed to increase survival of early stages by providing protective 

cover from predators and increased food availability. However, few studies have actually 

quantified natural mortality rates for juvenile cod associated with nearshore habitat. I 

determined mortality rates for juvenile Greenland cod (Gadus ogac) and Atlantic cod (G. 

morhua) associated with eelgrass in the coastal zone ofNewman Sound, Newfoundland. 

During Oct-Nov 2002, I fin-clipped 818 age-0 Greenland cod; an additionall442 age-l 

Atlantic cod were fin-clipped during June-July 2003. During Oct-Nov 2003, a further 765 

age-0 Greenland cod were individually marked with visible implant alphanumeric 

(VIalpha ™) tags. Re-sampling revealed that juvenile cod remained near the site of 

release, rarely venturing beyond a distance of a few hundred metres. For age-l Atlantic 

cod in eelgrass habitat, the mortality rate was M = 0.068day-1 (estimated using the Jolly­

Seber method), which was significantly higher than that predicted (M = 0. 0 1 Oday-1
) using 

an age-dependent mortality model based on published cod mortality rates. High mortality 

rates may be attributed to high predation and other biotic and abiotic sources of mortality 

(i.e., starvation, environmental extremes). Juvenile cod mortality rates were high despite 

the availability of areas with complex structure; however, consistently low cod 

abundances in structurally simple habitats suggest such areas may be too risky to frequent 

for extended periods. 

11 



Acknowledgements 

Mark-recapture experimentation is extremely labour intensive and cannot easily 

be conducted by a single individual. Numerous people helped me over the various stages, 

from planning to sampling to writing, of my mark-recapture program and each individual 

must be thanked. First of all, I must thank my supervisors, Dr. David Schneider and Dr. 

Robert Gregory, for believing in my ability to complete this study under demanding 

conditions. They, along with committee member Dr. Paul Snelgrove, are greatly 

appreciated for their advice and constructive criticisms during the field program and 

completion of the manuscript. The analytical and statistical work for this thesis would be 

far from complete without the help of Danny Ings. Also, I greatly appreciate the advice 

given by Dr. John Anderson concerning the natural mortality of cod. 

Many thanks are extended to the field crews of 2002 (Janice Linehan, Mark 

Renkawitz, Melissa Pink, Kim Young, Katie Dalley, Dave Stirling) and 2003 (Maria 

Thistle, Jessica Anderson, Amanda Burry, Mark Renkawitz, Merv Langdon, Corey 

Morris). I am extremely grateful to several individuals that volunteered their services 

during fall sampling (Robyn Jamieson, Louise Copeman, Nicole Spencer, Christie 

Vickers, Mike Ryan, Megan Whitehead, Geert Van Biesen, Melissa Ellesworth, Mike 

Rose, David Cote, Rod Cox, Ross Collier). 

In the laboratory, I would like to thank the staff and students of the Ocean Sciences 

Centre, particularly Danny Boyce, Darryl G1;een, Megan Whitehead, Jessica Anderson, 

Amanda Burry, Maria Thistle and the custodial staff. Gratitude is also extended the staff 

of the Marine Interpretation Centre, particularly Johnny Denty and Kristy Hewitt in Terra 

111 



Nova National Park, for providing tank space and helpful advice. 

Funding support for this study was graciously provided by Natural Sciences and 

Engineering Council of Canada (NSERC; Discovery Grant ofDr. Schneider), Memorial 

University ofNewfoundland School of Graduate Studies and the Department ofFisheries 

and Oceans via the Environmental Sciences Strategic Research Fund. 

Lastly, I am forever indebt to my wife, Natalie, who supported me over the course 

of my academic life and motivating me to complete this manuscript, which at times 

seemed an impossible task. 

iv 



Table of Contents 

Abstract. ....... ... ............... .... .. ................. ............. ........ ... .............. .... .... .......... .. ..... ......... .ii 

Acknowledgements .. .. .................. ........ ........ ............ ..... ............ ...... ................ ............. .iii 

Table of Contents ...... .... ................... ..... ... ... ................... ... ..................... .... .......... .... .... .. v 

List of Tables ... ... ...... ..................... .... : ... ...... .......... ...... ...... .... .... .. .............. ... ............... viii 

List of Figures .................. ..... ...... .. .. ...................... ............. ........... .. .... ..... .. ........... .... .. . .ix 

List of Appendices .......... .... ... ..... .. ................... .. ....... ............................... .. .... ............... xi 

Chapter 1: Introduction and Overview 

1.1 Natural mortality of juvenile cod .. .................... .......... ...... .. .. ........ .. .... ... ........ 1 

1.2 Juvenile cod movement. .... .... ............................. ......... .............................. ... .4 

1.3 Habitat utilization ................................................ ........ ...... ... ......................... 6 

1.4 Morphological and ecological differences between juvenile Atlantic cod 
and Greenland cod ... .... ............... .... ... ..... .. ...... ................. .............. ...................... 7 

1.5 Mark-recapture experimentation ....... ......... ..... .. ......... ... .... ............ ..... ... ......... 9 

1. 6 References ..... ........... ........ , ................... .... ........ .... ...... .... ... .................... .. .. .. 14 

Co-authorship Statement ................................. .... ... .. ... ..... ..... .. .... ......................... ...... 22 

Chapter 2: Natural mortality and movement of batch marked juvenile cod 
(Gadus spp.) in Newman Sound, Newfoundland 

2.1 Introduction ...... ...... ... .......... ... ... ..... ..... ........................... ... ... ... .................... . 23 

2.2 Methods ... ...... .. .... ... .. .... ............................. ................... .... ..... ................ ...... 26 

2.2.1 Age-dependent mortality model.. .. ... .... ..... ...... ... ..... ...................... 26 

2.2.2 Study area .............. ........... .... .... .... ......... .. ............................ .. .. .. ... . 27 

2.2.3 Beach seining .............. .. ..... .... .. ....... .... .......... ... .. .... .................. ... .. 29 

v 



2.2.4 Fin-clipping and fluorescent grit marking of age-0 Greenland 
cod ................................................................................................. 30 

2.2.5 Acute mortality assessment ........................................................... 32 

2.2.6 Fin-clipping of age-l Atlantic cod ................................................ 3 3 

2.2.7 Jolly-Seber notation, formulae, and assumptions ......................... 34 

2.2.8 Determination of survival using the Jolly-Seber method ............. 35 

2.3 Results ......................................................................................................... 38 

2.3.1 Juvenile cod natural mortality hypothesis ................................... .38 

2.3.2 Alongshore movement of juvenile cod ......................................... 39 

2.3 .3 Acute mortality assessment of juvenile cod marking techniques.40 

2.3.4 Jolly-Seber parameter estimates .................................................. .42 

2.3.5 Validation of Jolly-Seber assumptions ........................................ .44 

2.4 Discussion .................................................................................................... 47 

2.5 Acknowledgements ...................................................................................... 59 

2.6 References .................................................................................................... 61 

Chapter 3: Movement, mortality, and growth of individually tagged age-0 
Greenland cod (Gadus ogac) inhabiting eelgrass in coastal Newfoundland 

3.1 Introduction .................................................................................................. 89 

3.2 Methods ....................................................................................................... 93 

3.2.1 Study area ..................................................................................... 93 

3.2.2 Collection of juvenile cod by beach seining ................................. 95 

3.2.3 Soft visible implant alphanumeric (Vlalpha) tagging ................... 95 

3.2.4 Estimation of mortality, growth, and movement.. ........................ 97 

Vl 



3.2.5 Determination of tag retention and survival of age-0 cod ............ 99 

3.3 Results ........................................................................................................ 103 

3.3 .1 Vlalpha mark-recapture of age-0 Greenland cod ........................ 1 03 

3.3.2 Movement of juvenile Greenland cod ........................................ 104 

3.3.3 Natural mortality of age-0 Greenland cod .................................. 1 05 

3.3 .4 Specific growth rates of tagged and untagged cod ...................... 1 05 

3.3.5 Vlalpha tag retention and survival tank studies ........................... 106 

3. 4 Discussion .................................................................................................. 1 08 

3.5 Acknowledgements .................................................................................... 118 

3. 6 References .................................................................................................. 119 

Chapter 4: Summary 

4.1 Juvenile cod mortality and movement in Newman Sound ........................ 137 

4.2 Implications and future study ..................................................................... 141 

4.3 References .................................................................................................. 144 

Appendix 1 ................................................................................................................. . 148 

Appendix 2 .................................................................................................................. 150 

Appendix 3 .................................................................................................................. 155 

Appendix 4 .................................................................................................................. 159 

Appendix 5 .................................................................................................................. 161 

Appendix 6 .................................................................................................................. 162 

Appendix 7 .................................................................................................................. 165 

Vll 



List of Tables 

Table 2.1: A summary table of marking information for juvenile cod fin-
clipped in Newman Sound during 2002 and 2003 ...... .. ...... ...... ......... ........ ................. ... 82 

Table 2.2: The Kolmogorov-Smimov test results comparing the length 
frequency distributions of subsampled cod and cod recaptured on the 
subsequent sampling day ............. ..... ........ ........ ......... .................... .... ... ... ... .. ........ ......... 83 

Table 2.3: The age (days) and natural mortality rates (M; day-' ) reported 
in the literature for the egg, larval, juvenile, and adult stages of Atlantic 
cod (Gadus morhua) ........ .... .. ............................ .............. ....... .... .... ... .............. ..... .. .. ... .. 84 

Table 2.4: Chi-square goodness-of-fit tests computed with program JOLLY 
comparing the validity of several Jolly-Seber models for mark-recapture data 
analysis .................................................. .. .. ..... ... ..... ... ..... .......... ... ... .... .... .. .................... .. 86 

Table 2.5: Summary table for various Model A population parameters 
computed with program JOLLY for juvenile Atlantic cod fm-clipped at 
Buckley's Cove and Dockside (pooled data) ........................................... .. .................... 87 

Table 2.6: The abundance ofvarious fin-clip combinations released at 
Buckley's Cove and Dockside during Fal12003 ............................................. ... .... ....... 88 

Table 3.1: Summary table of recaptured VIalpha tagged age-0 Greenland 
cod (Gadus ogac). Recapture sites in bold italics indicate cod recaptured 
at adjacent monitoring sites ..... ........ .... ...... .... ....... .... ........ ........ .. ... .... ... .... ................... 133 

Table 3.2: Initial length, recaptured length, length increase, and time at large 
of age-0 Greenland cod recaptured at Boulder Beach ................................ ..... ............ 13 5 

Table 3.3: Comparison of mean lengths (mmSL) ofVIalpha tagged and control 
Greenland cod between days ............................................................ .. ... .... .................. 136 

Vlll 



List of Figures 

Figure 2.1: Map of the study area, Newman Sound, Bonavista Bay, 
Newfoundland ............................................ ............ ... .......... ... ........ ................................ 72 

Figure 2.2: A comparison of length frequency distributions of subsampled 
cod (black bars) and cod recaptured during the subsequent sampling period 
(grey bars) at Buckley's Cove during Spring 2003 ........................................................ 73 

Figure 2.3: A comparison of length frequency distributions of subsampled 
cod (black bars) and cod recaptured during the subsequent sampling period 
(grey bars) at Dockside during Spring 2003 ........................................ .. .... ................... . 7 4 

Figure 2.4: The daily instantaneous natural mortality rates (M) of the life 
history stages of Atlantic cod (Gadus morhua) .................................................. ........... 75 

Figure 2.5: Alongshore movement of juvenile cod was limited with the 
majority offm-clipped cod (grey bars) recaptured at the site of release 
(middle graphs) .............................................................................................................. 76 

Figure 2.6: The acute mortality assessment for fin-clipped and fluorescent 
grit marked age-0 Greenland cod compared to control cod ........................................... 77 

Figure 2.7: Length frequencies of dead and surviving age-0 Greenland cod 
(Gadus ogac) after 65 hours in captivity ....................................................................... 78 

Figure 2.8: Juvenile cod abundances were variable from seine to seine 
during mark-recapture studies in nearshore Newman Sound during Fall 
2002 and Spring 2003 .................................................................................................... 79 

Figure 2.9: The mean percent recapture of the various fm-clip combinations 
applied to age-l Atlantic cod at Dockside and Buckley's Cove during Spring 
2003 ............................................................................................................................... 80 

Figure 2.10: The percent of fin-clipped cod recaptured (black squares) was 
fairly constant despite cod abundance (black circles) varying from one seine 
to the next ...................................................................................................................... 81 

Figure 3.1: Map of the study area, Newman Sound, Bonavista Bay, 
Newfoundland .............................................................................................................. l25 

Figure 3.2: Number of juvenile Greenland cod collected via beach 
seine for tagging purposes at Boulder Beach, Buckley's Cove, and Dockside 
over several days in Fall 2003 ............................ ............ .... ................................. ...... .. 126 

lX 



Figure 3.3: The dispersion of age-0 Greellland cod tagged at Boulder Beach 
during Fall2003 over time .......................................................................................... 127 

Figure 3.4: The distance travelled (m) by Vlalpha tagged age-0 Greenland cod, 
plotted against time after release (days) ....................................................................... 128 

Figure 3.5: Catch curve analysis of recaptured Vlalpha tagged age-0 Greenland 
cod. The slopes of the regression lines are estimates of apparent total mortality 
(Z; day-1

) when constant mortality rates are assumed .................................................. 129 

Figure 3.6: The effect of initial length (mmSL) on specific growth rates (%day-1
) 

for tank Vlalpha tagged age-0 Greenland cod and recaptured Vlalpha tagged 
Greenland cod ......... .. ........................ .......... ............. ........... ..... ...... ... .......................... . 13 0 

Figure 3.7: The change in specific growth rate (%day-1
) ofuntagged and 

tagged juvenile cod ...................................................................................................... 131 

Figure 3.8: Survival ofVIalpha tagged age-0 Greenland cod (n=27) and 
untagged controls (n=23) over the duration of the tank study conducted 
at the Marine Interpretation Centre, Terra Nova National Park, Newfoundland ......... 132 

X 



List of Appendices 

Appendix 1: Sampling intensity tables for mark-recapture experimentation in 
Fall 2002 and Spring 2003 ........................................................................................... 148 

Appendix 2: Overview of Jolly-Sebernotation, formulae, and models ............................ 150 

Appendix 3: Method B tables generated by program JOLLY for age-0 Greenland 
cod fin-clipped at Buckley's Cove in October 2002 and age-l Atlantic cod fin-
clipped at Buckley's Cove and Dockside in June 2003 ............................................... 15 5 

Appendix 4: SAS output with ANCOVA table and residuals vs. fits plot for 
juvenile cod age-dependent natural mortality model. .................................................. I 59 

Appendix 5: Summary data for age-0 Greenland cod (G. ogac) Vlalpha tagged 
at Newman Sound, Newfoundland, duringFall2003 ....................................................... 161 

Appendix 6: Sampling intensity tables for Boulder Beach, Buckley's Cove, and 
Dockside during Fall 2003 ........................................................................................... 164 

Appendix 7: Measurement error of 8 cunners (T adspersus) across five independent 
observers using a measuring board marked in millimetres .......................................... l65 

XI 



Chapter 1: Introduction and Overview 

1.1 Natural mortality of juvenile cod 

The natural mortality of many teleost populations is stage- and size-dependent, with 

early, smaller stages experiencing substantially higherrates than older, larger stages (Peterson 

and Wroblewski 1984). Mortality rates observed during the egg and larval stages can be 

entirely attributed to endogenous factors, such as lethal genetic or developmental 

abnormalities, and exogenous factors that include food shortages, predation, disease, 

parasitism, toxins, environmental extremes, and physiological stress (Heath 1992). 

Susceptibility to density-independent mortality lessens as fish grow. Larger individuals 

experience increased resistance to starvation, decreased vulnerability to predators, and 

increased tolerance to environmental fluctuations ("bigger is better" hypothesis; see review 

by Sogard 1997). The probability of surviving to maturity is positively correlated with 

individual growth rates. Fast growth rates are thought to allow individuals to reach size 

refuges from potential predators quicker than low rates (stage duration hypothesis; Houde 

1987; cf. Pepin 1991). 

Gadids, such as Atlantic cod (Gadus morhua) and Greenland cod (G. ogac), have 

evolved life history strategies whereby large numbers of eggs are produced, increasing the 

likelihood that at least some offspring will reach reproductive age. The probability of 

reaching maturity is low for northern cod with approximately one individual in a million 

surviving to the age of3 years (Hutchings 1999). Numerous quantitative estimates of natural 

mortality rates have been reported for the egg (Fossum 1988; Campana et al. 1989; Heessen 
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and Rijnsdorp 1989; Kristiansen et al. 1997; Serchuk et al. 1994; Wieland et al. 2000) and 

larval (Fossum 1988; Blom et al. 1994; Kristiansen et al. 1997) stages; however, few studies 

exist that document estimates for juveniles (Kristiansen et al. 2000a), particularly those aged 

0-1 years. Knowledge of mortality rates during the early life stages of fish populations is 

fundamental because the survival of young individuals can be used to predict year-class 

strength and subsequent recruitment to fisheries (Sissenwine 1984; Peterman et al. 1988; 

Campana et al. 1989). Maximum year-class strength is established during the pelagic egg 

and larval phase (Myers and Cadigan 1993a; Anderson and Gregory 2000), which is then 

succeeded by density-dependent regulation during the demersal juvenile stages prior to 

recruitment (Myers and Cadigan 1993b; Anderson and Gregory 2000). The majority of 

mortality estimates for post-settled juvenile cod result from stock enhancement studies 

conducted in Norway (Svasand and Kristiansen 1990; Ottera et al. 1999; Skreslet et al. 1999; 

Kristiansen et al. 2000a,b; Julliard et al. 2001 ; Larsen and Pedersen 2002). However, these 

estimates should be used with caution because reared cod may differ from wild cod in terms 

of behavioural responses to predators, prey, and their environment after release. For 

example, naive reared cod are less likely to form aggregations than experienced wild cod, 

making them more prone to predation from certain predators (e.g. , shorthorn sculpin 

Myoxocephalus scorpius; Whitehead 2005). Nonetheless, enhancement studies have 

demonstrated that mortality during the juvenile period is size-dependent and varies with 

season, geographic location, predator species and density, availability of alternate prey, and 

food availability. The occurrence of relatively high abundances of age 0-1 cod in shallow 
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water habitats ofNewman Sound, Newfoundland, offered an unique opportunity to determine 

the natural mortality rates ofthe juvenile stage. This age-class is not vulnerable to fisheries 

due to its small body size while the possibility of capture as by-catch is negligibly low 

because of its nearshore, shallow-water distribution. Therefore, natural mortality (M) 

estimates are not confounded by fishing mortalities (F), as often is the case with mortality 

studies of large-bodied fish populations (Ricker 1975). 

Many factors may contribute to the natural mortality of juvenile cod; however, the 

major source of mortality appears to be predation. A wide range of predators consume 

juvenile cod and include invertebrates, fishes, birds, and mammals (Scott and Scott 1988; see 

review by Palsson 1994). In Newman Sound, tethering studies have identified the 

predominant piscine predators as sculpins Myoxocephalus spp., white hake Urophycis tenuis, 

Atlantic cod, and Greenland cod (Linehan et al. 2001; Laurel et al. 2003a). Harbour seals 

Phoca vitulina, otter Lutra lutra, and minke whale Balaenoptera acutorostrata represent 

potential mammalian predators that are present in the fjord and potential avian predators, 

such as gulls, terns, mergansers, cormorants, loons, eagles, and osprey, are common (Linehan 

et al. 2001; personal observation). Nonetheless, the extent of predation by these groups has 

received little attention. In other areas, there are indications that these groups may have 

significant impacts on juvenile cod populations. For example, during stock enhancement 

studies in Masfjorden, Norway, more than 7% of the tags used during one experiment were 

found amongst regurgitates at the roosts of cormorants Phalacrocorax carbo and shags P. 

aristotelis (Ottera et al. 1999). The presence of a large host of potential predators in Newman 
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Sound may restrict juvenile cod distribution and movement to the shallow nearshore. 

Linehan et al. (200 1) suggested that age-0 cod most frequently inhabit the shallow margins 

of the coastal environment as a result of lower predation risk compared to deeper waters 

where larger piscivorous fishes reside. Furthermore, piscine predators, which are typically 

at least twice the length of their prey (Miller et al. 1988; Bogstad et al. 1994; Sal vanes 1995), 

are thought to be deterred from entering shallow waters by the threat of avian predators 

(Linehan et al. 2001). 

1.2 Juvenile cod movement 

The rate and extent of movement by gadids appears to be stage- and size-specific, and 

may vary depending on species, sexual maturity, diel period, season, and geographic location. 

Some populations of adult northern Atlantic cod have historically undertaken large-scale 

seasonal migrations among overwintering, spawning, feeding, and coastal nursery habitats 

(Templeman and Fleming 1963; Lear and Green 1984). The observed circuit of migration 

(Harden Jones 1968), which often spans tens to hundreds of kilometres, generally involves 

a transition from spawning areas in offshore shelf waters during the spring (Lear and Green 

1984; Hutchings et al. 1993) to inshore areas in summer to feed on capelin and other 

nearshore prey (Lilly 1987). The migration is completed when cod return to deep offshore 

waters in autumn (Templeman 1965; Lilly 1987; Methven and Piatt 1989). Similarly, but at 

a smaller geographic scale, large juveniles (age 2-4) exhibit seasonal movements, migrating 

from relatively shallow coastal waters inhabited during spring and summer to deeper waters 

in late autumn (Cote et al. 2004). Such movements may be mediated by abiotic (e.g. , 
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temperature, salinity) and( or) biotic (e.g., food availability, predator abundance, cod density) 

factors; however, it is uncertain whether similar seasonal movements are undertaken by cod 

aged 0-1 years. 

Numerous studies have been devised, typically involving mark-recapture 

experimentation, to determine the movements of juvenile cod aged 0-1 years. Reported 

conclusions about movements have been contradictory, with displacements ranging in scale 

from a few metres to thousands of metres. Post -settled juvenile cod in coastal habitats of St. 

Mary's Bay, Nova Scotia, have been described as extremely territorial and exhibiting high 

site fidelity (Tupper and Boutilier 1995a,b ). In contrast, age-0 cod that inhabit nearshore 

Newfoundland waters appear to be more mobile (Laurel et al. 2004). Newly recruited 

demersal age-0 cod in Trinity Bay were observed to remain localized, restricting movements 

to a few hundred metres in the shallow coastal zone (Grant and Brown 1998), but important 

(i.e., high-use) habitats were also very localized in that study. In adjacent Bonavista Bay, 

mark-recapture experimentation and observed density-dependent aggregatory behaviour 

suggested that the scale of age-0 cod movement was greater, possibly encompassing 

thousands of metres (Laurel et al. 2004). Laurel et al. (2004) suggested that discrepancies 

reported for juvenile cod movement among studies may result from the presence of differing 

habitat and shoreline complexities, unique genetic or phenotypic population characteristics, 

and( or) differing degrees ofhabitat heterogeneity. Furthermore, the range of movement for 

post-settled juvenile cod appears to be size-dependent. Small age-0 individuals have more 

restricted movement than larger age-l cod (see Schneider et al. 1999; Methven et al. 2003). 
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With increasing age, size, and maturity, juvenile cod seem to be less associated with 

nearshore habitats and begin to exhibit the migratory behaviours of older cod. Pihl and 

Ulmestrand (1993) observed relatively stationary behaviours for tagged cod <30 cmSL in 

length during summer and autumn along the Swedish coast; however, over the following 

winter and spring, larger cod (30-50 cmSL) were recaptured several kilometres from tagging 

sites, possibly while initiating spawning migration. The contradictory reports of juvenile cod 

movements in nearshore habitats necessitate the inclusion of a movement study while 

investigating age-class survival. 

1.3 Habitat utilization 

Juvenile cod minimize predation risk by using structurally complex habitats as 

protective cover. Habitat use is dynamic and age-dependent; smaller cod inhabit complex 

structure in shallow depths, while larger individuals are distributed in deeper waters (Cote 

et al. 2004). In shallow nearshore waters, age-0 cod utilize vegetative cover, such as seagrass 

(Gotceitas et al. 1997; Grant and Brown 1998; Linehan et al. 2001; Laurel et al. 2003a,b; 

Laurel et al. 2004) and macroalgae (Gjosaeter 1987; Keats et al. 1987), that presumably 

diminish the forage efficiency of larger piscivorous fishes (e.g. , Crowder et al. 1992). With 

increasing body size, juvenile cod become less reliant on vegetative cover as a predator 

refuge and more frequently inhabit coarse substrates, such as boulder, cobble, and gravel in 

deeper waters (Lough et al. 1989; Gregory and Anderson 1997). Age-l cod with mottled 

colouration frequent gravel, using crypsis to diminish capture probabilities, whereas older 

juveniles, aged 2-3 years, are more commonly observed using boulder and cobble substrates 

6 



for protective cover (Gregory and Anderson 1997). 

Though frequently associated with complex structure, juvenile cod also utilize bare 

habitats in response to changes in the densities of young conspecifics or their potential 

predators (Laurel et al. 2004). Laboratory studies have demonstrated that the presence or 

absence of a potential predator influences habitat use by age 0+ cod (Gotceitas et al. 1997). 

Prior to exposure to an older conspecific, juvenile cod frequent sand and gravel substrates; 

however, after exposure, highly complex habitats (boulder, eelgrass), which increased latency 

of time until capture, are utilized more often (Gotceitas et al. 1997). Field studies further 

show that habitat selection is density-dependent for juvenile cod (Laurel et al. 2004). High 

cod abundance, and subsequent saturation of eelgrass habitat, has been suggested to force 

post-settled individuals into non-vegetated areas where behavioural adaptations, such as 

aggregation, are used to presumably diminish predation risk (Laurel et al. 2004 ). Occurrence 

of juvenile cod in structurally simple habitats (i.e. , mud, sand) may also be species-specific 

because Atlantic cod exhibit a lower affinity for complex structure than Greenland cod at 

small spatial scales (800m2
; Laurel et al. 2003a). 

1.4 Morphological and ecological differences between juvenile Atlantic cod and 
Greenland cod 

Juvenile Atlantic cod and Greenland cod, aged 0-1 years, co-occur in coastal 

Newfoundland waters (Methven et al. 2001) at similar lengths and are difficult to distinguish 

morphologically (Methven and McGowen 1998). Predators appear to prey indiscriminately 

on juvenile Atlantic and Greenland cod (Laurel et al. 2003), probably because of their 

inherently similar morphology and behaviour. Nevertheless, the two species may have 
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different survival probabilities during the juvenile stages based on differences in their life 

histories. For instance, Atlantic cod typically spawn pelagic eggs in deeper waters off 

Newfoundland during the spring. Developing eggs and larvae are transported to inshore areas 

by wind and currents. Atlantic cod settlement occurs in the nearshore during multiple 

recruitment pulses; the first occurring in August followed by subsequent pulses (Methven and 

Bajdik 1994; Grant and Brown 1998; Gregory et al. 2002). Little is known of pre-spawning 

movements of Greenland cod in Newfoundland. However, in Hudson Bay, adults spawn 

demersal eggs beneath the ice of estuarine waters during March and early April (Mikhail and 

Welch 1989). In eastern Newfoundland, juvenile Greenland cod settle in a single recruitment 

pulse in July/ August (Laurel et al. 2003 b). The differences in the timing of settlement pulses 

may affect the survival of both species through density-dependent effects. Greenland cod 

typically recruit to nearshore habitats ofNewman Sound earlier in the summer than Atlantic 

cod. However, the settlement pulse of Greenland cod usually coincides with the recruitment 

pulse of a third gadid- white hake (Ings 2005). Depending on relative densities, competition 

for habitat and food may be high amongst these species and may result in higher mortalities 

for Greenland cod if individuals are forced to occupy areas with suboptimal habitat and food 

abundances. Because juvenile Atlantic cod arrive after both Greenland cod and white hake 

have become established in nearshore Newman Sound (Ings 2005), the effects of interspecific 

competition may be higher for Atlantic cod than Greenland cod (B. Laurel, Memorial 

University of Newfoundland, personal communication). 
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1.5 Mark-recapture experimentation 

The release of marked individuals and subsequent recapture allows ecologists to 

determine population identity, movements, abundance, age, growth, mortality, behaviour, and 

enhancement success (MacFarlane et al. 1990). Numerous mark-recapture techniques have 

been devised to estimate population size and the components responsible for abundance 

variability in open populations: recruitment (birth + immigration) and loss (mortality + 

emigration). Few models permit the determination of all quantities simultaneously (Pollock 

et al. 1990). During my study, I used the J olly-Seber method (J oily 1965; Seber 1965; see 

comprehensive reviews by Seber 1982; Pollock et al. 1990; Krebs 1999; Pine et al. 2003). 

After assuming permanent emigration, this approach permits determination of population size 

at each sampling date (excluding the first and the last), estimation of apparent survival 

between samplings, and the addition of new recruits, which is part of the recruitment dynamic 

of the animals in my study. The estimated survival rate is confounded because mortality 

cannot be distinguished from emigration. True survival rate can be determined if either 

emigration is negligible or quantifiable (Pollock et al. 1990). Furthermore, the validity of 

Jolly-Seber estimates cannot be verified unless several explicit assumptions are met. The 

Jolly-Seber method assumes: 

(1) every animal present in the population at sampling time i has an equal probability of 

capture, 

(2) survival is equal for every marked animal that is present from one sampling period 

to the next, 
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(3) tags or marks are not overlooked or lost, and 

( 4) all animals are released immediately after the sample and all sample periods have a 

short duration (Seber 1982). 

Assumptions #2 and #3 specifically pertain to the marks applied to released animals; 

therefore, it is imperative that the marks or tags chosen are appropriate for the species and 

life stage in question to ensure unbiased estimates of Jolly-Seber parameters. This is 

particularly true for survival estimates. 

Numerous marking techniques have been developed to uniquely identify animal 

groups and individuals; however, relatively few exist for mark-recapture studies of 

individuals with small body size (i.e., <100 mmSL). The suitability of available marking 

techniques decreases further for small individuals, such as juvenile cod, residing in intertidal 

and subtidal zones where external tags can become tangled in complex structure. One of the 

most common techniques for marking intertidal fishes is fin-clipping (Moring 1990), the 

process whereby one or more fins are completely or partially excised (Nielsen 1992). The 

technique has several advantages (Nielsen 1992): 

(1) ease and rapidity of use, 

(2) limited growth effect, 

(3) suitability for all fishes and invertebrates, 

( 4) suitability for all sizes and life stages, and 

(5) adaptability for short and long term studies. 

Ergo, I believe that fin-clipping is an appropriate method for marking young cod in coastal 
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habitat. Furthermore, unlike external tags, the likelihood of clipped fms impeding the 

mobility of juvenile cod within nearshore habitats, such as cobble and vegetation, is 

negligible (Moring 1990). However, the method is not without its drawbacks, which include 

possible reduced survival, misidentification of marks due to fin regeneration or natural 

wounds ("false positives"), and negative public opinion (Nielsen 1992; Weitkamp and 

Sullivan 2002). Furthermore, fin-clipping is a batch mark technique- it does not uniquely 

identify individual fish - and the number of unique batch marks available is limited by the 

marking sites; in this case- fins (Nielsen 1992). Prior to mark-recapture studies, particularly 

those concerned about movement and mortality rates, it is essential to test whether fin­

clipping is suitable for the species, body size, and life stage in question. 

The soft visible implant alphanumeric (VIalpha™; Northwest Marine Technology, 

Shaw Island, Washington) tag is a small (1.0x2.5mm), individually coded tag that is injected 

into the transparent tissue of animals (Rikardsen 2000; Rikardsen et al. 2002). Originally 

developed as a rigid prototype by Haw et al. (1990), Vlalpha tags have been reported to be 

suitable for mark-recapture studies of various invertebrates (Jerry et al. 2001; Arce et al. 

2003; Brown et al. 2003) and fishes (Rikardsen 2000; Griffiths 2002; Rikardsen et al. 2002; 

Isely et al. 2004), including juvenile Atlantic cod (Olsen et al. 2004). The Vlalpha tag is a 

marking technique suitable for conducting survival, growth, and movement studies where 

there is a requirement for individually marked animals to be continuously recaptured and 

released over time (Lebreton et al. 1992) and where it is undesirable to kill specimens in 

order to individually identify them (Olsen et al. 2004); in contrast with coded wire tags 
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which require death of the animals. The tags are suitable for marking small individuals 

though tag retention may be size-dependent with a higher proportion of fish <150 mm 

experiencing tag loss (27-33%) than larger individuals ( 4%; Rikardsen 2000). Nevertheless, 

fish as small as 50 mm have been successfully tagged (Griffiths 2002). VIalpha tags also 

have little or no effect on survival and growth of marked individuals (Rikardsen 2000; 

Rikardsen et al. 2002; Isely et al. 2004); however, its use for long term studies (e.g. , years) 

should be cautioned as tags may become obscured with tissue pigmentation with time. 

I conducted mark-recapture experiments to determine the natural mortality rates and 

the extent of coastal movement of age 0-1 cod in Newman Sound, Bonavista Bay. 

Specifically, I asked (1) are natural mortality rates for juvenile cod low in coastal 

Newfoundland waters compared to published rates from other areas? and (2) is the movement 

of juvenile cod inhabiting eelgrass low? To address the first question, I used the Jolly-Seber 

open population model to quantify the natural mortality of fin-clipped age-0 Greenland cod 

and age-l Atlantic cod associated with eelgrass habitat during Fall 2002 and Spring 2003, 

respectively (Chapter 2). I used modified catch curves to determine natural mortality of age-0 

Greenland cod, individually marked with VIalpha tags, during Fall2003 (Chapter 3). Prior 

to data collection in the field, I developed a model (Chapter 2) to predict mortality rates for 

age 0-1 Atlantic cod by regressing published mortality estimates against age. To address the 

second question, I sampled for marked age-0 Greenland cod (Chapter 2 and 3) and age-l 

Atlantic cod (Chapter 2), using beach seine at sites located hundreds of metres along-shore 

from points of release. Laurel et al. (2004) demonstrated that juvenile cod exhibit density-
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dependent habitat use behaviour -juveniles are common over barren habitats during years 

of high abundance, but only occur in areas of dense cover in years oflow overall abundance. 

If movement rates into unstructured habitats (e.g., mud, sand) are high during high density 

years because protective structured habitats (e.g., eelgrass) are saturated, then movement rates 

should be lower during years of low juvenile cod density. My study has important 

implications for the assessment of year-class strength of inshore cod stocks and the 

conservation of preferred habitat of juvenile cod in coastal Newfoundland waters. 

13 



1.6 References 

Anderson, J.T., and Gregory, R.S. 2000. Factors regulating survival of northern cod (NAFO 
2J3KL) during their first 3 years of life. ICES Journal of Marine Science 57: 349-
359. 

Arce, S.M., Argue, B.J., Thompson, D.A., and Moss, S.M. 2003. Evaluation of a 
fluorescent, alphanumeric tagging system for penaeid shrimp and its application for 
selective breeding programs. Aquaculture 228: 267-278. 

Blom, G., Svasand, T., Jorstad, K.E., Ottera, H., Paulsen, 0.1., and Holm, J.C. 1994. 
Comparative survival and growth of two strains of Atlantic cod (Gadus morhua) 
through the early life stages in a marine pond. Canadian Journal of Fisheries and 
Aquatic Sciences 51 : 1 012-1 023. 

Bogstad, B., Lilly, G.R., Mehl, S., Palsson, O.K., and Stefansson, G. 1994. Cannibalism and 
year-class strength in Atlantic cod (Gadus morhua L.) in Arcto-boreal ecosystems 
(Barents Sea, Iceland, and eastern Newfoundland). ICES Marine Science Symposia 
198: 576-599. 

Brown, J.H., McCauley, S., Ross, B., Taylor, A., and Huntingford, F. 2003. A test of two 
methods for marking larvae and postlavae of the giant freshwater prawn, 
Macrobrachium rosenbergii. Aquaculture Research 34: 49-54. 

Campana, S.E., Frank, K.T.,Hurley, P.C.F.,Koeller,P.A., Page, F.H., and Smith, P.C. 1989. 
Survival and abundance of young Atlantic cod (Gadus morhua) and haddock 
(Melanogrammus aeglejinus) as indicators of year-class strength. Canadian Journal 
ofFisheries and Aquatic Sciences 46: 171-182. 

Cote, D., Moulton, S., Frampton, P.C.B., Scruton, D.A., and McKinley, R.S. 2004. Habitat 
selection and early winter movements by juvenile Atlantic cod in a coastal area of 
Newfoundland. Journal ofFish Biology 64: 1-15. 

Crowder, L.B., Rice, J.A., Miller, T.J., and Marschall, E.A. 1992. Empirical and theoretical 
approaches to size-based interactions and recruitment variability in fishes. pp. 237-
255. In: DeAngelis, D.L., and Gross, L.J. (eds). Individual-based Models and 
Approaches in Ecology: Populations, Communities, and Ecosystems. Routledge, 
Chapman and Hall, New York. 

Fossum, P. 1988. A tentative method to estimate mortality in the egg and early fish larval 
stages, with special reference to cod (Gadus morhua L.). Fiskeridirektorates Skrifter 
Serie Havundersogelser 18: 329-349. 

14 



Gjosaeter, J. 1987. Habitat selection and inter year class interaction of young cod (Gadus 
morhua) in aquaria. Flodevigen Rapportser 1. Arendal, Norway. pp. 27-36. 

Gotceitas, V., Fraser, S., and Brown, J.A. 1997. Use of eelgrass beds (Zostera marina) by 
juvenile Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic 
Sciences 54: 13 06-1319. 

Grant, S.M. and Brown, J .A. 1998. Nearshore settlement and localized populations of age-0 
Atlantic cod (Gadus morhua) in shallow coastal waters ofNewfoundland. Canadian 
Journal of Fisheries and Aquatic Sciences 55: 1317-1327. 

Gregory, R.S. and Anderson, J.T. 1997. Substrate selection and use of protective cover by 
juvenile Atlantic cod Gadus morhua in inshore waters ofNewfoundland. Marine 
Ecology Progress Series 146: 9-20. 

Gregory, R.S., Laurel, B.J., Ings, D.W., and Schneider, D.C. 2002. Relative strength of the 
2000 year-class, from nearshore surveys of demersal age-0 Atlantic cod in 3KL and 
in Newman Sound, Bonavista Bay. Can. Sci. Advisory Secretariat Proc. Ser. 
2002/087. 

Griffiths, S.P. 2002. Retention of visible implant tags in small rockpool fishes. Marine 
Ecology Progress Series 236: 307-309. 

Harden Jones, J.R. 1968. Fish migration. Arnold, London, 325 pp. 

Haw, F., Bergman, P.K., Fralick, R.D., Buckley, R.M., and Blankenship, H.L. 1990. Visible 
implanted fish tag. American Fisheries Society Symposium 7: 311-315. 

Heath, M.R. 1992. Field investigations of the early life stages of marine fish. Advances in 
Marine Biology 28: 1-174. 

Heessen, H.J.L. and Rijnsdorp, A.D. 1989. Investigations on egg production and mortality 
of cod (Gadus morhua L.) and plaice (Pleuronectes platessa L.) in the southern and 
eastern North Sea in 1987 and 1988. Rapports et proceis-verbaux des Reunions 
Conseil International pour !'Exploration de laMer 191: 15-20. 

Houde, E.D. 1987. Fish early life dynamics and recruitment variability. American Fisheries 
Society Symposium 2: 17-29. 

Hutchings, J.A. 1999. Influence of growth and survival costs of reproduction on Atlantic 
cod, Gadus morhua, population growth rate. Canadian Journal of Fisheries and 
Aquatic Sciences 56: 1612-1623. 

15 



Hutchings, J.A., Myers, R.A., and Lilly, G.R. 1993. Geographic variation in the spawning 
of Atlantic cod, Gadus morhua, in the northwest Atlantic. Canadian Journal of 
Fisheries and Aquatic Sciences 50: 2457-2467. 

Ings, D.W. 2005. Recruitment of Atlantic cod to Newfoundland coastal waters at daily and 
seasonal scales. MSc Thesis, Department of Biology, Memorial University of 
Newfoundland. 

Isely, J.J., Trested, D.G., and Grabowski, T.B. 2004. Tag retention and survivorship of 
hatchery rainbow trout marked with large-format visible implant alphanumeric tags. 
North American Journal of Aquaculture 66: 73-74. 

Jerry, D.R., Stewart, T., Purvis, I.W., and Piper, L.R. 2001. Evaluation of visual implant 
elastomer and alphanumeric internal tags as a method to identify juveniles of the 
freshwater crayfish, Cherax destructor. Aquaculture 193: 149-154. 

Jolly, G.M. 1965. Explicit estimates from capture recapture data with both death and 
immigration- a stochastic model. Biometrika 52: 225-247. 

Julliard, R., Stenseth, N.C., Gjosaeter, J., Lekve, K., Fromentin, J.-M., and Danielssen, D.S. 
2001. Natural mortality and fishing mortality in a coastal cod population: a release­
recapture experiment. Ecological Applications 11: 540-558. 

Keats, D.W., Steele, D.H., and South, G.R. 1987. The role of fleshy macroalgae in the 
ecology of juvenile cod (Gadus morhua L.) in inshore waters off eastern 
Newfoundland. Canadian Journal of Zoology 65: 49-53. 

Krebs, C.J. 1999. Ecological Methodology. Benjamin-Cummings, Don Mills, Ontario, 620 
pp. 

Kristiansen, T.S., Ottera, H., and Svasand, T. 2000a. Size-dependent mortality of juvenile 
Atlantic cod, estimated from recaptures of released reared cod and tagged wild cod. 
Journal ofFish Biology 56: 687-712. 

Kristiansen, T.S., Ottera, H., and Svasand, T. 2000b. Size-dependent mortality of juvenile 
reared Atlantic cod released in a small fjord. Journal ofFish Biology 56: 792-801. 

Kristiansen, T.S., Jorstad, K.E., Ottera, H., Paulsen, O.I., and Svasand, T. 1997. Estimates 
of larval survival of cod by releases of genetically marked yolk-sac larvae. Journal 
ofFish Biology 51 (Suppl. A): 264-283. 

16 



Larsen, L.-H., and Pedersen, T. 2002. Migration, growth and mortality of released reared 
and wild cod (Gadus morhua L.) in Malangen, northern Norway. Sarsia 87: 97-109. 

Laurel, B.J., Gregory, R.S., and Brown, J.A. 2003a. Predator distribution and habitat patch 
area determine predation rates on Age-0 juvenile cod Gadus spp. Marine Ecology 
Progress Series 251: 245-254. 

Laurel, B.J., Gregory, R.S., and Brown, J.A. 2003b. Settlement and distribution of Age-0 
juvenile cod, Gadus morhua, and G. ogac, following a large-scale habitat 
manipulation. Marine Ecology Progress Series 262: 241-252. 

Laurel, B.J., Gregory, R.S., Brown, · J.A., Hancock, J.K., and Schneider, D.C. 2004. 
Behavioural consequences of density-dependent habitat use in juvenile cod Gadus 
morhua and G. ogac: the role of movement and aggregation. Marine Ecology 
Progress Series 272: 257-270. 

Lear, W.H., and Green, J.M. 1984. Migration of the 'northern' Atlantic cod and the 
mechanisms involved. In: McCleave, J.D. et al. (eds). Mechanism of migration in 
fishes. Plenum Press, New York. 

Lebreton, J.-D., Burnham, K.P., Clobert, J., and Anderson, D.R. 1992. Modelling survival 
and testing biological hypotheses using marked animals: a unified approach with case 
studies. Ecological Monographs 62: 67-118. 

Lilly, G.R. 1987. Interactions between Atlantic cod (Gadus morhua) and capelin (Mallotus 
villosus) offLabrador and eastern Newfoundland and Labrador: a review. Canadian 
Technical Report of Fisheries and Aquatic Sciences: 37 p. 

Linehan, J .E., Gregory, R.S., and Schneider, D.C. 2001. Predation risk of age-0 cod (Gadus) 
relative to depth and substrate in coastal waters. Journal of Experimental Marine 
Biology and Ecology 263: 25-44. 

Lough, R.G., Valentine, P.C., Potter, D.C., Auditore, P.J., Bolz, G.R., Nielson, J.D., and 
Perry, R.I. 1989. Ecology and distribution of juvenile cod and haddock in relation 
to sediment type and bottom currents on eastern Georges Bank. Marine Ecology 
Progress Series 56(1-2): 1-12. 

MacFarlane, G.A., Wydoski, R.S., and Prince, E.D. 1990. Historical review of the 
development of external tags and marks. American Fisheries Society Symposium 7: 
9-29. 

Methven, D.A., and Bajdik, C. 1994. Temporal variation in size and abundance ofjuvenile 

17 



Atlantic cod (Gadus morhua) at an inshore site off eastern Newfoundland. Canadian 
Journal of Fisheries and Aquatic Sciences 51: 78-90. 

Methven, D.A. and McGowan, C. 1998. Distinguishing small juvenile Atlantic cod (Gadus 
morhua) from Greenland cod (Gadus ogac) by comparing meristic characters and 
discriminant function analyses of morphometric data. Canadian Journal of Zoology 
76: 1054-1062. 

Methven, D.A. and Piatt, J.F. 1989. Seasonal and annual variation in the diet of Atlantic cod 
(Gadus morhua) in relation to the abundance of cape lin (Mallotus villosus) of eastern 
Newfoundland, Canada. Journal du Conseil International pour !'Exploration de la 
Mer 45: 223-225. 

Methven, D.A., Haedrich, R.L., and Rose, G.A. 2001. The fish assemblages of a 
Newfoundland estuary: diel, monthly, and annual variation. Estuarine, Coastal, and 
Shelf Science 52: 669-687. 

Methven, D.A., Schneider, D.C., and Rose, G.A. 2003. Spatial pattern and patchiness 
during ontogeny: post-settled Gadus morhua from coastal Newfoundland. ICES 
Journal of Marine Science 60: 38-51. 

Miller, T.J., Crowder, L.B., Rice, J.A., and Marschall, E.A. 1988. Larval size and 
recruitment mechanisms in fishes: toward a conceptual framework. Canadian Journal 
of Fisheries and Aquatic Sciences 45: 1657-1670. 

Mikhail, M.Y., and Welch, H.E. 1989. Biology of Greenland cod, Gadus ogac, at 
Saqvaqjuac, northwest coast of Hudson Bay. Environmental Biology of Fishes 26: 
49-62. 

Moring, J.R. 1990. Marking and tagging intertidal fishes: review of techniques. American 
Fisheries Society Symposium 7: 109-116. 

Myers, R.A., and Cadigan, N.G. 1993a. Density-dependent juvenile mortality in marine 
demersal fish. Canadian Journal ofFisheries and Aquatic Sciences 50: 1576-1590. 

Myers, R.A., and Cadigan, N. G. 1993 b. Is juvenile natural mortality in marine demersal fish 
variable? Canadian Journal ofFisheries and Aquatic Sciences 50: 1591-1598. 

Nielsen, L.A. 1992. Methods of marking fish and shellfish. American Fisheries Society, 
Special Publication 23. Bethesda, Maryland. 

Olsen, E.M., Gjosaeter, J., and Stenseth, N.C. 2004. Evaluation of the use of visible implant 

18 



tags in age-0 Atlantic cod. North American Journal of Fisheries Management 24: 
282-286. 

Ottera, H., Kristiansen, T.S., Svasand, T., Nodtvedt, M., and Borge, A. 1999. Sea ranching 
of Atlantic cod (Gadus morhua L.): effects of release strategy on survival. In: 
Howell, B.R., Mokness, E., and Svasand, T. (eds). Stock Enhancement and Sea 
Ranching. Fishing News Books, Oxford. 606 pp. 

Palsson, O.K. 1994. A review of the trophic interactions of cod stocks in the North Atlantic. 
ICES Marine Science Symposia 198: 553-575. 

Pepin, P. 1991. Effect of temperature and size on development, mortality, and survival rate 
of the pelagic early life history stages of marine fish. Canadian Journal ofFisheries 
and Aquatic Sciences 48(3): 503-518. 

Peterman, R.M., Bradford, M.J., Lo, N.C.H., and Methot, R.D. 1988. Contribution of early 
life stages to interannual variability in recruitment of northern anchovy (Engraulis 
mordax). Canadian Journal of Fisheries and Aquatic Sciences 45: 8-16. 

Peterson, I. and Wroblewski, J.S. 1984. Mortality rate of fishes in the pelagic ecosystem. 
Canadian Journal of Fisheries and Aquatic Sciences 41 : 111 7-1120. 

Pihl, L., and Ulmestrand, M. 1993. Migration pattern of juvenile cod (Gadus morhua) on 
the Swedish west coast. ICES Journal of Marine Science 50: 63-70. 

Pine, W.E., Pollock, K.H., Hightower, J.E., Kwak, T.J., and Rice, J.A. 2003. A review of 
tagging methods for estimating fish population size and components of mortality. 
Fisheries 28: 10-23. 

Pollock, K.H., Nichols, J.D., Brownie, C. and Hines, J.E. 1990. Statistical inference for 
capture recapture experiments. Wildlife Monograph 107: 1-97. 

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish 
populations. Bulletin of the Fisheries Research Board of Canada 191: 1-382. 

Rikardsen, A.H. 2000. Effects of Floy and soft VIalpha tags on growth and survival of 
juvenile Arctic Char. NorthArnericanJournalofFisheriesManagement20: 720-729. 

Rikardsen, A.H., Woodgate, M., and Thompson, D.A. 2002. A comparison ofFloy and soft 
VIalpha tags on hatchery Arctic charr, with the emphasis on tag retention, growth and 
survival. Environmental Biology of Fishes 64: 269-273. 

19 



Salvanes, A.G.V. 1995. Pollack (Pollachius pollachius) stock size development and 
potential influence on cod (Gadus morhua) mariculture in a west Norwegian fjord. 
Fisheries Research 10: 265-285. 

Schneider, D.C., Bult, T., Gregory, R.S., Methven, D.A., Ings, D.W., and Gotceitas, V. 
1999. Mortality, movement, and body size: critical scales for Atlantic cod (Gadus 
morhua) in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic 
Sciences 56 (Suppl. 1): 180-187. 

Scott, W.B. and Scott, M.G. 1988. Atlantic Fishes of Canada. Canadian bulletin of 
Fisheries and Aquatic Sciences 219. 

Seber, G.A.F. 1965. A note on the multiple recapture census. Biometrika 52: 249-259. 

Seber, G.A.F. 1982. The estimation of animal abundance and related parameters. 2"d 
Edition. Charles Griffin, London. 

Serchuk, F.M., Grosslein, M.D., Lough, R.G., Mountain, D.G., and O'Brien, L. 1994. 
Fishery and environmental factors affecting trends and fluctuations in the Georges 
Bank and Gulf of Maine Atlantic cod stocks: an overview. ICES Marine Science 
Symposia 198: 77-109. 

Sissenwine, M.P. 1984. Why do fish populations vary? In: May, R.M. (ed). Exploitation 
ofMarine Communities. Springer-Verlag, New York, pp.59-94. 

Skreslet, S., Albrigtsen, I., Andersen, A.P., Kolbeinshavn, A., Pedersen, T., and Unstad, K. 
1999. Migration, growth, and survival in stocked and wild cod (Gadus morhua L.) 
in the Vestfjord Region, North Norway. pp. 306-314. In: Howell, E., Moksness, E., 
and Svasand, T. ( ed). Stock Enhancement and Sea Ranching, Fishing News Books, 
Oxford. 

Sogard, S.M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. 
Bulletin ofMarine Science 60: 1129-1157. 

Svasand, T., and Kristiansen, T.S. 1990. Enhancement studies of coastal cod in western 
Norway. Part IV. Mortality of reared cod after release. Journal du Conseil 
International pour !'Exploration de laMer 47: 30-39. 

Templeman, W. 1965. Some instance of cod and haddock behaviour and concentrations in 
the Newfoundland and Labrador areas in relation to food. ICNAF Special 
Publications 6: 449-461. 

20 



Templeman, W., and Fleming, A.M. 1963. Longlining experiments for cod off the east 
coast ofNewfoundland and southern Labrador, 1950-1955. Bulletin of the Fisheries 
Research Board of Canada 141: 1-65. 

Tupper, M., and Boutilier, R.G. 1995a. Effects of habitat on settlement, growth, and 
postsettlement survival of Atlantic cod (Gadus morhua). Canadian Journal of 
Fisheries and Aquatic Sciences 52: 1834-1841. 

Tupper, M., and Boutilier, R.G. 1995b. Size and priority at settlement determine growth and 
competitive success of newly settled Atlantic cod. Marine Ecology Progress Series 
118: 295-300. 

Weitkamp, D.E., and Sullivan, R.D. 2002. Today's technologies for marking and tagging 
fish. Hydro Review 24-33. 

Whitehead, M. 2005. Anti-predator behaviour of juvenile Atlantic cod: the role of wild 
experience and effect of multiple predators. MSc Thesis, Department of Biology, 
Memorial University ofNewfoundland. 

Wieland, K., Hinrichsen, H.-H., and Gronkjaer, P. 2000. Stage-specific mortality of Baltic 
cod (Gadus morhua L.) eggs. Journal of Applied Ichthyology 16: 266-272. 

21 



Co-authorship statement 

Chapter 2: Natural mortality and movement of batch-marked juvenile cod (Gadus spp.) 

in Newman Sound, Newfoundland 

G .L. Sheppard designed the research program, organized collection of all data, performed the 

data analysis, and prepared the manuscript. D.C. Schneider contributed ideas, suggested 

methods, and advised on statistical analyses. R.S. Gregory contributed ideas, advised on the 

field program, and assisted in acquiring mark-recapture data. All co-authors contributed to 

editing of the manuscript. 

Chapter 3: Movement, mortality, and growth of individually tagged age-0 Greenland 

cod (Gadus ogac) inhabiting eelgrass in coastal Newfoundland 

G.L. Sheppard designed the research program, organized collection of all data, performed the 

data analysis, and prepared the manuscript. D.C. Schneider contributed ideas, suggested 

methods, and advised on statistical analyses. R.S. Gregory contributed ideas, advised on the 

field program, and assisted in acquiring mark-recapture data. All co-authors contributed to 

editing of the manuscript. 

22 



Chapter 2: Natural mortality and movement of batch-marked juvenile cod (Gadus 
spp.) in Newman Sound, Newfoundland 

2.1 Introduction 

Many teleost fishes experience age- and size-dependent natural mortality rates over 

their life histories. Mortality is inversely associated with age and body size (Peterson and 

Wroblewski 1984); egg and larva stages typically exhibit far higher mortality rates than older 

juveniles and adults. Some species, such as Atlantic cod (Gadus morhua) and Greenland cod 

(G. ogac), have evolved life history strategies whereby vast numbers of eggs are produced 

and released to increase the likelihood that some offspring will reach reproductive age. The 

probability of reaching maturity is low for northern cod with approximately one individual 

in a million surviving to the age of 3 years (Hutchings 1999). Numerous quantitative 

estimates of natural mortality rates have been reported for the egg (Fossum 1988; Campana 

et al. 1989; Heessen and Rijnsdorp 1989; Kristiansen et al. 1997; Serchuk et al. 1997; 

Wieland et al. 2000) and larval (Fossum 1988; Blom et al. 1994; Kristiansen et al. 1997) 

stages; however, few studies provide estimates for youngjuveniles, aged 0-1 years. Survival 

during this stage is frequently argued as a good indicator of year-class strength and 

subsequent recruitment to existing fisheries (Peterman et al. 1988; Campana et al. 1989). 

Species that exhibit age- and size-dependent mortality may increase survival by 

utilizing protected habitats. Koenig and Coleman (1998) observed that survival in juvenile 

gags (Mycteroperca microlepis) was approximately 100% when associated with seagrass 

habitat. Juvenile cod have also utilize nearshore habitats, such as eelgrass (Zostera marina), 
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kelp, and cobble, to increase survival by reducing predation risk (Keats et al. 1987; Gotceitas 

et al. 1995; Gotceitas et al. 1997; Gregory and Anderson 1997; Grant and Brown 1998; 

Linehan et al. 2001; Laurel et al. 2003 a,b; Laurel et al. 2004). Nearshore nursery habitats 

are thought to increase juvenile cod survival; however, actual mortality rates within habitats 

such as eelgrass have yet to be determined. 

Movement, including directed migration, can bias mortality rate estimates. Animals 

that disappear may have merely vacated the study area, resulting in underestimation of 

survival. The movement rates of cod exceed mortality rates at fine scales ( <1 000 m, <1 00 

d) whereas the opposite was true at coarser scales (Schneider et al. 1999). Older juvenile and 

adult northern cod undergo large scale seasonal migrations, moving inshore in the spring to 

summer feeding areas and returning offshore to over-wintering and spawning grounds during 

the autumn (Templeman 1965; Lear 1984; Rose 1993). Similar migrations to offshore 

regions are not undertaken by juveniles, aged 0-2 years (Anderson and Gregory 2000), which 

are affiliated with preferred substrate habitat and inshore nursery grounds. Movements of 

juvenile cod are less extensive than that of older conspecifics; however, estimates of the 

extent differ. Age-0 cod in coastal Nova Scotia exhibit high site fidelity (Tupper and 

Boutilier 1995), whereas studies in coastal Newfoundland (Grant and Brown 1998; Laurel 

et al. 2004) found that juvenile cod form schooling or shoaling aggregations with little 

evidence of site fidelity. The geographic variability of movements in coastal waters 

necessitate that movement be considered when estimating juvenile cod mortality. 

Mark-recapture techniques can be used to determine the mortalities, movements, and 
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population dynamics of animals in both closed and open natural systems. The Jolly-Seber 

method (Jolly 1965; Seber 1965) has been employed to describe the population dynamics of 

invertebrates (Fitz and Wiegert 1992), mammals (Johannesen and Ims 1996); birds (Sydeman 

et al. 1998), reptiles (Kazmater et al. 2001; Tucker et al. 2001), fish (Cone et al. 1988; 

Koenig and Coleman 1998; Zehfuss et al. 1999; Mills et al. 2002), and British taxicabs 

(Yellowus taxii; Carothers 1973). The Jolly-Seber method was designed for open populations 

whereby abundance is dynamic as a result ofbirths, deaths, and migration (Krebs 1999). This 

method is ideal for studies of juvenile fish in marine systems where populations may 

fluctuate dramatically over short time periods (i.e. , days) because mortality and movement 

rates are high and recruitment to nearshore habitats is occurring. 

In nearshore Newfoundland waters, the risk of juvenile cod mortality is lower in 

shallow depths vegetated by eelgrass than in deeper water with no eelgrass or macroalgae 

(Linehan et al., 2001). Based on this result I predicted that mortality of juvenile cod in the 

coastal zone would be low relative to that expected based on cod age. In order to evaluate 

whether juvenile cod mortality is low in vegetated nearshore habitats of Newman Sound, 

Newfoundland, I developed an age-dependent survival model using published estimates to 

determine expected mortality rates for age-0 Greenland cod and age-l Atlantic cod. Once 

expected mortality rates were determined, I used mark-recapture methodology and the Jolly­

Seber open-population model to infer the natural mortality and movement rates of juvenile 

Atlantic and Greenland cod that inhabit coastal waters ofNewman Sound. The assumptions 

associated with the Jolly-Seber model were tested to validate mortality rates observed in the 
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field. Prior to field studies, I conducted an acute mortality assessment to estimate the 

mortality associated with the batch marking techniques offm-clipping and fluorescent grit­

marking. The results of my study have important implications for the assessment of year­

class strength of inshore cod stocks and the conservation of preferred habitat of juvenile cod 

in coastal Newfoundland waters. 

2.2 Methods 

2.2.1 Age-dependent mortality model 

Prior to field studies, I conducted a literature review to summarize natural mortality 

(M) estimates for cod eggs, larvae, juveniles (ages 0-4 ), and adults (age 5+ ). Though survival 

may vary with time, mortality rates were assumed to be constant over the duration of each 

life stage, which allowed yearly M values to be converted to daily M estimates simply by 

dividing by 365. Mortality estimates for all life stages were plotted against cod age in days. 

Reported ages were sometimes approximated based on length, a practice typically necessary 

for juveniles and adults. For example, a cod reported as age-l could have a daily age ranging 

from 365 days old to 729 days old. To address this problem, the age in days for juveniles and 

adult cod were standardized as daily age= 365(yearly age+ 0.5). Mortality as a function of 

age was estimated for each life stage (eggs, larvae, juvenile ages 0-4, and adults age 5+) 

using a generalized linear model routine with log link and gamma distribution in SAS (1988). 

Tolerance of Type I error was set at a.=0.05 and residuals were examined for homogeneity, 

normality, and independence. The linear equation determined for the juvenile stage was used 

to calculate an expected M for juvenile Greenland cod and Atlantic cod of approximately 180 
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(6 mo) and 425 (14 mo) days old, respectively. No estimates of Greenland cod M could be 

found in the literature so species-specific M exponential decay plots could not be generated. 

Use of the Atlantic cod age-dependent mortality relationship for juvenile Greenland cod can 

be justified because of similarities in habitat choice, prey preference, and availability of 

potential predators. However, predicted mortality rates may be overestimated for age-0 

Greenland cod because these fish were generally larger than age-l Atlantic cod during my 

study. 

2.2.2 Study Area 

I conducted mark-recapture experiments during 2002 and 2003 in Newman Sound 

(48 o35'N, 53 o55'W; Figure 2.1), a fjord situated in Bonavista Bay on the northeast coast of 

Newfoundland. The fjord is 41 km long, 1.5-3.0 km wide, and divided into an inner and an 

outer basin. The basins are separated by a sill located approximately 7 km from the head of 

the fjord, rising to a depth of 18 m. Water depths reach a maximum of 55 m within the inner 

sound whereas outer sound depths areup to >300m. The coastline consists of moderately 

exposed rocky shores interspersed with sandy coves, or pocket beaches. Nearshore substrate 

varies throughout the sound and ranges from mud to bedrock. Vegetation is present in the 

form of macroalgae (Laminaria digitata Lamouroux, Agarum cribrosum Bory, Chondrus 

crispus Stackhouse, Fucus vesiculosus L. and Ascophyllum nodosum (L.)) and eelgrass 

(Zostera marina L.), with the latter found predominantly in the subtidal region to a depth of 

5-6 m, where present. Water temperatures in the study area range from 20°C in late August 

to -1 OC in early December. 
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Two marking sites within the sound were used for the mark-recapture studies. I fin­

clipped juvenile cod at two sites, namely Dockside (48 o33.772'N, 53 °57.747'W) and 

Buckley's Cove (48°35.406'N, 53o54.901'W); both are located in the inner sound (Figure 

2.1). These sites were chosen because they were known from bi-weekly seining data to be 

locations of high juvenile cod abundance (Gregory et al. 1997,2003, 2005). Both sites had 

eelgrass, mud-sand bottoms, and gently sloping bathymetric relief. The major difference 

between the two sites is that Dockside, named for its proximity to Headquarters Wharf, is a 

long strip of wind-exposed beach whereas Buckley's Cove is much more sheltered. An 

adjacent "monitoring" site was located within a few hundred metres on each side of both 

marking sites and used to assess short range juvenile cod movement. The monitoring sites 

(distance from the marking site and position in parentheses) were: Stairs Beach (248 m; 

48 °33.655'N, 53 o57.845'W) and Whiterock (166 m; 48 o33.772'N, 53 o57.704'W) for 

Dockside, and Mistaken Cove (162m; 48 °35.347'N, 53 °54.999'W) and Pipers Cove (280m; 

48 °35.345'N, 53 o54.692'W) for Buckley's Cove. Linear distances were converted from GPS 

coordinates recorded at the middle of each site. A wharf located between Dockside and 

Stairs Beach may act as a deterrent to juvenile cod along-shore movement. During October 

2002, I fin-clipped age-0 Greenland cod at Buckley's Cove and fluorescent grit -marked age-0 

Greenland cod at Dockside. Fin-clipping was used in June-July, 2003, to markage-1 Atlantic 

cod at both Buckley's Cove and Dockside. Logistical difficulties prevented mark-recapture 

experimentation in other potential juvenile cod habitats (e.g., mud, sand) because bare 

substrate sites did not consistently produce adequate cod concentrations for marking 
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purposes. 

2.2.3 Beach Seining 

Beach seining (modified from Lear et al. 1980; Methven and Schneider 1998) was 

used to collect juvenile cod for marking. The gear used was a 25 m modified Danish beach 

seine with a 19 mm stretch mesh, a 24.4 m headrope, and a 26.2 m footrope. Each wing had 

75 em aluminum spreading bars that were 25 mm in diameter. The seine was deployed from 

a 6 m boat at a distance of 55 m from shore, and retrieved by two people standing at 

landmarks approximately 16m apart on shore. The area sampled was approximately 880m2
• 

Chain link on the footrope and a reduced number of floats on the headrope allowed the net 

to be dragged along the bottom and it sampled 2 m up into the water column. SCUBA 

surveillance has demonstrated that the seine effectively collects 95% of the fish present in the 

sample area (Gotceitas et al. 1997). During Fall 2002, all fish collected were put into fish 

tubs filled with seawater, identified, and separated into two groups: age-0 Greenland cod and 

non-age-0 Greenland cod. The two groups were kept in separate tubs until all seining was 

completed. Cod were identified to age class, based on age-length values given in Dalley and 

Anderson (1997): age-0: ~ 100 mm standard length (SL), age-l: 100-200 mmSL, age-2: 

200-300 mmSL, and age-3+: >300 mmSL. Fresh seawater was regularly added to the tubs 

to replenish dissolved oxygen. Seining continued until an acceptable number of juvenile cod 

(n~300) were collected. The non-juvenile cod group was released back into the collection 

site after seining was completed. The procedure was repeated for age-l Atlantic cod during 

Spring 2003. 
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2.2.4 Fin-clipping and fluorescent grit marking of age-0 Greenland cod 

On October 2, 4, and 6, 2002, I fin-clipped and successfully released 331 (mean 

length±standard deviation; 90.7±5.8 mmSL), 197 (95.0±5.6 mmSL), and 290 (96.1±5.4 

mmSL) juvenile Greenland cod, respectively, at Buckley's Cove. Each day I applied an 

unique partial fin-clip to collected cod. The fms used were the upper caudal lobe (Oct. 2), 

the first anal fm (Oct.4), and the left pelvic fin (Oct.6). Recaptured cod were not removed 

from the system, but instead given the fin-clip unique for that particular day. This resulted 

in the possibility of a single individual having as many as three fin-clips. After marking, I 

transferred the cod to two 70 L holding containers situated in the nearshore (depth= 1.0 m 

at low tide) for recovery. Each holding tank had two 1 0 em x 1 0 em openings covered with 

semi-rigid black polyethylene netting with a mesh size of 6 mm2 to allow for water flow. 

Once all marking was completed, the holding containers were checked for stressed, injured, 

or dead cod and causalities, comprising less than 1% of cod marked, were removed. Healthy 

marked cod were released simultaneously at the site of capture. Two individuals marked all 

cod to reduce differential handling stress. Subsamples of individuals were measured to 

mmSL. I began monitoring for recaptures at Buckley's Cove, Mistaken Cove, and Pipers 

Cove on the day of the second marking event (Oct. 4). Subsequent monitoring was 

conducted on October 6, 8, 14, and 18. Monitoring ceased on October 18 as a result of 

deteriorating weather. The number of seines pulled per day for each site is tabulated in 

Appendix 1 (Table A1). 

On October 3, 2002, I marked 286 (90.8±6.8 mmSL) age-0 Greenland cod with 
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fluorescent grit at Dockside. Cod were collected and transferred to a mesh-bottomed (semi­

rigid polyethylene netting with 6 mm2 mesh size) fish tub nestled into a second fish tub filled 

with fresh seawater. Corona magenta (pink) grit (Day GLO Colour Corp., Cleveland, OH, 

USA) was directed into the dermis, following the method of Phinney et al. ( 1967), with a 

commercial grit gun retrofitted with a 5 mm orifice and attached cannister for grit storage. 

The marking gun and the cannister were secured to an 80 fe SCUBA tank with a high 

pressure hose. Reduction of the air pressure to 80 pounds per square inch (psi) was 

accomplished by a 250 psi SCUBA tank regulator. Grit application involved spraying of the 

cod for 2-3 seconds in the mesh-bottomed tub immediately after it was lifted out of the water 

a few centimetres. The gun was held roughly 40 em above the bottom of the tub. As the cod 

were sprayed, the tub was gently shaken to ensure even marking on each fish. I marked cod 

in batches of 40-50 individuals and a subsample of each batch was examined with ultraviolet 

light in a dark, completely enclosed tent to determine grit retention within the dermis. Once 

retention was deemed satisfactory, marked cod were transferred to nearshore holding 

cylinders for recovery. Once all marking was completed, the holding containers were 

checked for moribund cod. The causalities were removed and accounted for less than 1% of 

the total marked. Healthy marked cod were released simultaneously. A subsample was 

measured to determine mmSL. Dockside, Stairs Beach, and Whiterock were monitored on 

October 5-6 for recaptures. Monitoring ceased on October 6 after no recaptures were 

collected despite a large sampling effort (10 seines/site) and the high number of marked cod 

originally released. 
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2.2.5 Acute mortality assessment 

Prior to the mark-recapture experiments, I conducted an acute mortality assessment 

to determine whether the marking techniques contributed to mortality observed for age-0 

Greenland cod. On September 18, 2002, 80 juvenile cod were collected by beach seine at 

Stairs Beach and divided into batches of twenty. I fm-clipped 20 cod (78.6±4.9 mmSL; 

range 71-87 mmSL) by removing 116 ofthe upper caudal fin lobe with dissecting scissors. 

Twenty cod (78.1±5.3 mmSL, 71-91 mmSL) were used as fin-clip controls. I marked 20 

juveniles (79.7±5.5 mmSL, 68-89 rnmSL) with grit. Twenty cod (79.2±7.7 mmSL, 60-92 

mmSL) were grit mark controls. All cod were measured to the nearest mmSL. I subjected 

the two control groups to the same handling stress with the only difference was that no mark 

was administered. For example, grit mark cod were sprayed with grit for 2-3 seconds 

whereas grit mark control cod were sprayed with compressed air for the same time period. 

Each treatment batch, with its respective control batch, was placed in holding tanks situated 

in the nearshore. I inspected the holding containers after 8, 25, 49, and 65 hours for injured 

or dead cod. Mortalities were removed and measured (mmSL). I discontinued the 

assessment after 65 hours when no further mortalities were observed. Survivors were killed 

to prevent contamination of the study area with marked cod. The proportion surviving over 

the duration of the assessment was plotted for fin-clipped cod versus controls, grit marked 

cod versus controls, and fin-clipped versus grit marked. A fully factorial two-way analysis 

of variance (ANOVA) was performed to determine whether survival differed with treatment 

and time (i.e., days after treatment). A non-significant difference between treatments would 
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rule out differential mortality associated with the type of marks used to distinguish cod 

groups. The results indicated that observed mortalities were attributed to handling stress 

rather than the application ofthe mark. With slight modifications to reduce air exposure and 

mechanical stress, both methods were accepted for mark-recapture purposes. A long term 

mortality study was not conducted. 

Fluorescent grit marking was abandoned as a marking technique in 2002 because of 

two reasons: (1) few recaptures were collected on the second sampling day despite a high 

number of grit-marked fish released on the first day of the study, and (2) few juvenile cod 

were collected for marking purposes on the second day despite an extensive sampling effort. 

The absence of recaptures was a cause for concern. Possible explanations could include low 

population numbers, high movement rates, high predation risk, and/or human error. Ogilvie 

(2000) evaluated predation risk of grit marked age-0 cod using tank studies. He concluded 

that the marking technique could increase predation rates on juvenile cod. However, it is 

unknown if predation rates are increased for wild cod that are not confined to small areas 

(i.e. , aquaria) with potential predators. Small population size appeared to be the main issue 

because later attempts to collect fish for fin-clipping at Dockside were also unsuccessful 

despite a large collection effort (> 10 seine hauls). 

2.2.6 Fin-clipping of age-l Atlantic cod 

I fin-clipped age-l Atlantic cod at Dockside and Buckley's Cove in June, 2003. 

Juvenile cod were collected by beach seine and given an unique mark specific for day and site 

to provide information on when and where recaptured cod were caught. Three marking 

33 



events occurred at Dockside with 272 (79.6±13.4 mmSL), 209 (84.0±11.3 rnmSL), and 280 

(79.0±12.6 rnmSL) juveniles marked and released on June 7, 10, and 13, respectively. The 

lower caudal, second anal, and second dorsal fins were clipped on the respective dates. 

Likewise, I conducted three marking events at Buckley' s Cove, with 23 7 (85 .2± 14.5 rnmSL ), 

206 (86.9±14.4 rnmSL), and 238 (91.7±11.8 rnmSL) juvenile cod clipped and released on 

June 6, 9, and 12, respectively. The upper caudal lobe, the fust anal fin, and the third dorsal 

fin were clipped on the respective dates. Marking details are summarized in Table 2.1. The 

general marking procedure for each site was similar to that used for age-0 Greenland cod in 

2002. Cod were partially clipped (one-sixth of the fin) with dissecting scissors and marked 

individuals were transferred to nearshore holding containers for recovery. Recaptured cod 

were given a new mark. I conducted all the marking with one other trained person. Once all 

cod were marked, fatalities ( <1% of cod marked) were removed prior to mass release of 

healthy juveniles. Monitoring for recaptures began on the second marking day and 

discontinued on July 17 when low capture abundances were observed. Low catches possibly 

resulted from juveniles migrating to deeper, cooler water after nearshore water temperatures 

rose to approximately l0°C. The length (mmSL) and type of fin-clip were recorded for 

recaptured specimens. The number of seines pulled per day for each site is tabulated in 

Appendix 1 (Tables A2-A3). 

2.2. 7 Jolly-Seber notation, formulae, and assumptions 

I used the "J olly-Seber open population" method to determine the survival of juvenile 

cod. Survival rates and other ecologically important parameters were calculated using the 
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program JOLLY (Hines 1988; Pollock et al. 1990). Jolly-Seber notation, formulae and 

estimation methods (Appendix 2) followed that described by Seber (1982) and reviewed by 

Pollock et al. (1990). The method estimates parameters for open populations whereby 

changes occur as a result of recruitment (births and immigration) and losses (deaths and 

emigration). An extension of the Petersen population estimation technique, the Jolly-Seber 

method involves the application of time-specific marks or tags to animals over the duration 

of several marking events. The procedure permits the determination of population size, 

survival, and influx rates; however, unbiased estimates are not achievable unless several 

explicit assumptions are met: 

(1) Every organism in the population has the same probability of capture (i.e., equal 

catchability) in the i-th sample, regardless of whether it is marked or unmarked. 

(2) Every marked organism has the same probability of surviving from the i-th sample 

to the (i+ l)th sample. 

(3) Lost or overlooked marks are negligible. 

( 4) Time required to sample is negligible relative to the time intervals between sampling 

periods. 

2.2.8 Determination of survival of juvenile cod using the Jolly-Seber method 

Mark-recapture data for juvenile cod at the Buckley's Cove and Dockside study areas 

for Fall 2002 and Spring 2003 were entered into the program JOLLY in capture-history 

format. This format required the capture-history of each individual to be known and entered 

as binary code, whereby a capture event is recorded as" 1" and a non-capture recorded as "0" . 
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Sometimes a capture event for a particular animal was recorded as a "2" meaning that the 

animal was collected, but not released. For example, a capture-history of 1102 indicates the 

animal was collected during sample times 1 and 2, not observed at 3, then caught and not 

released during 4. The capture-histories are used to generate the Method B tables (Leslie and 

Chitty 1951) in JOLLY (Appendix 3; Tables A4-A7). Data sets were analysed using the full 

model (A), constant removal (model B), and constant removal and survival (model D) as 

described in Appendix 2. Each data set provided estimates of the parameters in question (Ni, 

Mi, <f>i, Bi, and p); however, small sample sizes prevented good-of-fit tests to be conducted, 

indicating the estimates were biased. Mark-recapture results for age-0 Greenland cod at 

Buckley's Cove, 2002, could not provide parameter estimates with JOLLY; however, 

estimates could be determined for age-l Atlantic cod at Buckley's Cove and Dockside, 2003, 

when the data sets were pooled. Prior to pooling the data, I performed t-tests assuming 

unequal variances to determine if the mean standard lengths of subsampled cod from both 

sites differed. Juvenile cod from the first two marking events (Days 0 and 3) were not 

significantly different; however, mean lengths differed for the third marking events (Day 6). 

To determine if size-selective sampling and mortality were possibly occurring at either site, 

I used the Kolmogorov-Srnimov (K-S) test for two populations to compare size class 

distributions of subsampled cod and cod recaptured during the next subsequent sample 

period. Each comparison indicated similar size-class distributions, except for cod marked 

at Dockside during the first marking event (Figures 2.2 and 2.3, Table 2.2). It appeared that 

larger cod than those subsampled were being recaptured; however, when the subsampled cod 
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were adjusted for daily growth [0.685mmSL day·1 for Atlantic cod, Newman Sound, 2002; 

lngs (2005)], the K-S tests indicated that the size-class distributions were not significantly 

different. lngs (2005) determined the growth rate by regressing the mode of daily size 

distributions for a pulse of newly settled age-0 cod with time; the modal lengths of 57, 66, 

75, 78,90,and90mmSLwereobservedfortheJuliandatesof143, 162,178,179, 19l,and 

192, respectively. The K-S tests provided no evidence that size-selective sampling and 

mortality were present, hence data from the sites were pooled. 

Parameter estimates from the Jolly-Seber full model (Model A) were deemed most 

appropriate for the pooled data according to program JOLLY. The program's goodness-of-fit 

tests rejected B and D as acceptable models, indicating juvenile cod do not experience 

constant survival or capture probability over time. Model A provided a mean survival rate 

estimate per day ( <J>x) for age-l Atlantic cod and this variable was converted to daily 

instantaneous total mortality (Z) with the equation: 

(2.1) 

Becaus~ the survival rate included losses attributed to death and emigration, the 

computed Zi computed was positively biased. Incorporation of estimates of handling 

mortality and migration into Zi reduced the bias and provided an estimate closer to the true 

survival. Age-l Atlantic cod inhabiting the nearshore ofNewman Sound were not recruited 

to the fishery, and the fishing mortality was therefore assumed to be zero; Zi was thus equal 

to Mi, the daily natural mortality rate. 
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2.3 Results 

2.3.1 Juvenile cod natural mortality hypothesis 

A review of Atlantic cod natural mortality estimates in the literature indicated that 

early life stages, particularly eggs and larvae, have high daily mortality rates compared to 

juveniles and adults (Figure 2.4). For the egg stage, M ranged from 0.027-0.55 day- 1 (Table 

2.3) with a mean of0.21 day- 1 whereas larval mortality was only slightly lower (mean= 0.11 

day-1
, range= 0.031-0.26 day-1

). Juveniles, aged 0 to 4 years old, typically experience lower 

mortality, with a mean of0.029 day-1 (range= 0.00019-0.26 day- 1
). Adult Atlantic cod, age 

5+, have the highest survival; however, it is important to note that adult mortality was based 

on only five data points for which the average value was 0.00067 day-1 (range= 0.00041-

0.0011 day- 1
) or 0.25 year- 1

• Annual M of age-5+ (exploitable) fish is commonly assumed as 

0.2 year-1
• 

Three life stages- eggs, larvae, adults- exhibited poor model fit to a straight line with 

i values of0.0055, 0.24, and 0.12, respectively (Figure 2.4). Furthermore, the egg and adult 

stage models were non-significant (egg: X2<0.01, df=3, p=0.95; adult: X2=0.40, df=3, 

p=0.53). The larval mortality model (M=e-O.?OAge +0.29) was significant (X2=4.88, df=3, 

p=0.027). The juvenile stage was observed to have a significant age-dependent mortality 

model (M=e-2
·
47Age + 

10
·
39

; X2=28.22, df=3, p<0.0001; Appendix 4) with relatively high 

goodness-of-fit ( r2 = 0. 82). The model residuals were normal, independent, and homogenous 

(Appendix 4). This model provides a mortality estimate for juvenile cod inhabiting the 

nearshore of Newman Sound. Using the juvenile mortality model, the predicted daily 
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mortality for Atlantic cod that were approximately 425 days old, if spawning was assumed 

to occur during April 2002, was 0.010 day-1
• The mortality of age-0 Greenland cod 

approximately 210 days old was estimated as 0.060 day- 1
• 

2.3.2 Alongshore movement of juvenile cod 

Regardless of species, age, and season, juvenile cod remained near the site of release, 

rarely venturing further than a few hundred metres (Figure 2.5). Of 64 age-0 Greenland cod 

recaptured during October, 2002, 71% (n=46) were netted at the Buckley' s Cove marking 

site with 14% (n=9) recaptured at each of the adjacent monitoring sites. Though more seines 

were hauled at the marking site to collect cod for fm-clipping during the first two monitoring 

dates, large numbers of cod were also collected at the adjacent sites. Compared to Buckley' s 

Cove (n=807), cod abundances at Mistaken Cove and Pipers Cove were 446 and 1101 , 

respectively, yet few recaptures were observed. No recaptures occurred at the sites in 

Newman Sound that were concurrently sampled on a bi-weekly basis from October 2 to 

November 21 , 2002 (Figure 2.1), despite the collection of 1698 age-0 Greenland cod in a 

total of 52 seines. Similarly, age-l Atlantic cod fin-clipped at Buckley's Cove and 

Dockside in June, 2003, were never recaptured beyond 280 metres from their point of initial 

release. The majority of cod stayed near the points of release. Of 111 total recaptures, 96% 

occurred at Buckley' s Cove with 2% netted at each of the proximate monitoring sites. 

Juvenile cod at the Dockside marking site moved slightly more along shore with 2% and 4% 

of 82 recaptures observed at Stairs Beach and Whiterock respectively. Sampling effort 

differed among the sampling sites, but more cod were collected at the marking sites than the 
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adjacent sites in 2003 than in 2002. When the data were not standardized for sampling effort, 

the abundances of cod collected at Buckley's Cove, Mistaken Cove, and Pipers Cove, were 

697, 384, and 390, respectively; cod abundances for Dockside, Stairs Beach, and Whiterock 

were 690, 23 8, and 270, respectively. Standardization of the data, through the inclusion of only 

cod netted in the first collection seine, provided a similar picture of juvenile cod movement 

patterns. Of 43 total recaptures collected in the frrst seine, 98% occurred at Buckley' s Cove 

with 2% and 0% at Mistaken Cove and Pipers Cove respectively. Similarly, 78% of23 frrst 

seine recaptures were taken at Dockside while only 9% and 13% were taken at Stairs Beach 

and Whiterock respectively. 

Dispersal to adjacent sites would be expected to increase with time, but this did not 

occur (Figure 2.5). Age-0 Greenland cod recaptures were consistently highest at the marking 

site over the 17 days (Oct. 2-18) of the Fall2002 study. The mark-recapture studies conducted 

at Buckley's Cove and Dockside in Spring 2003 were twice as long in duration with 41 (June 

6-July 17) and 40 days (June 7-July 17) respectively; yet the capture frequencies remained high 

at the marking sites. It would be expected that the likelihood of collecting a fin-clipped cod 

outside the release sites during bi-weekly seining would increase as time progressed; however, 

no marked cod were recaptured outside ofthe marking locations despite extensive sampling. 

2.3.3 Acute mortality assessment of juvenile cod marking techniques 

The acute mortality assessment determined that the fin-clips and grit marks 

administered to the juvenile cod were not the major cause of death. After assuming normal 

distribution, a test of survival against treatment (fm-clipped cod, fm-clipped control cod) time 
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(i.e. , days after treatment), and the interaction between the two indicated that survival was 

not significant different between the treatments over the duration of the assessment (Figure 

2.6; treatment term X2=1.71 , p=0.191, df=1). Though overall percent survival differed by 

nearly 25%, a similar test showed that the difference between the grit-marked cod group and 

grit-marked control cod group was also non-significant (treatment term X2=2.39, p=0.122, 

df= 1 ). Furthermore, the survivorship ofthe fin-clipped cod did not differ significantly from 

the grit-marked cod survivorship (treatment term X2=0.91 , p=0.341 , df=1). Non-significance 

of the interaction terms indicated that changes in survival over time was also similar between 

the treatment groups (fin-clipped cod vs fm-clipped control cod: X2=0.16, p=0.685, df=1; 

grit-marked cod vs grit-marked control cod: X2=2.92, p=0.087, df=1; fm-clipped cod vs grit­

marked control cod: X2=0.090, p=0.770, df=1). No mortalities were observed for most 

treatments (fin-clipped, fin-clip control, and grit-marked) after 49 hours. Cod appeared to 

be in good condition when the study ceased after 65 hours. Although survival amongst the 

treatments was not significantly different, overall mortality was high (~50%), possibly 

resulting from handling and containment stress. Like survivorship, the differences in mean 

length of fm-clipped cod (two-tailed t-test assuming unequal variances; t=-0.278, df=38, 

p=0.782) and grit-marked cod (t=0.213 , df=36, p=0.832) with respect to their controls were 

non-significant. Mean standard lengths of the treatment fish were also similar (t=-0.681 , 

df=36, p=0.500). 

Mortality was significantly higher for small cod than relatively larger cod in the acute 

mortality experiment (Figure 2.6). The K-S test provided strong evidence (D=0.453 , 
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p<O.OOl) against the null hypothesis of similar length distributions of the cohorts. During 

the assessment, the largest number of mortalities was observed for cod grouped in the 75-79 

mmSL size class (n = 17). For next size class (80-84 mmSL), the number of mortalities are 

noticeably lower (n = 7). The highest number of survivors (n = 13) belonged to the 80-84 

mmSL size class, followed by cod belonging to the 75-79 mmSL (n = 11) and 85-90 mmSL 

group intervals (n=ll). Differential mortality was determined to be negatively affecting 

juvenile cod less than 80 mmSL because the probability of surviving was higher for cod ~ 80 

mmSL. For example, 79% of the observed mortalities (n = 39) were <80 mmSL while 66% 

of the surviving cod (n = 41) were ~ 80 mmSL. Differential mortality may be an issue for 

field experimentation because roughly 40% of the juvenile cod I marked were smaller than 

80 mmSL. During the assessment, the possible factors contributing to mortality include 

collection, handling, and containment stress; however, the precise cause was unknown. 

2.3.4 Jolly-Seber parameter estimates 

Data collected for juvenile Greenland cod and Atlantic cod were insufficient for 

analysis with the program JOLLY. · When the recaptures were entered separately for 

Buckley's Cove Fall2002, Buckley's Cove Spring 2003, and Dockside Spring 2003, JOLLY 

output parameters indicated that goodness-of-fit tests could not be determined for Models A, 

B, and D (Table 2.4). Failure to determine an appropriate test for juvenile cod was probably 

due to the small sample sizes at each site. Although not possible for age-0 Greenland cod at 

Buckley's Cove in Fall 2002, pooling the recapture data for age-l Atlantic cod at Buckley's 

Cove and Dockside in Spring 2003 provided a sample size large enough for JOLLY analysis. 
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The goodness-of-fit test rejected Models B and D as appropriate estimators of juvenile cod 

survival because of significantly large chi-square values (Model B: X2=6.81, df=2, p=0.033; 

Model D: X2=22.18, df=4, p<O.OOl). Furthermore, both Band D, the simpler models, were 

rejected when compared to Model A, the full model (B vs. A: X2=4.74, df=l, p=0.029; D vs. 

A: X2=20.12, df=3, p<O.OOl). I therefore used estimates and confidence limits from Model 

A (X2=2.07, df=l, p=O.l50) to describe the population ecology of juvenile Atlantic cod. 

Rejection of models Band D indicate that survival and probability of capture varies with time 

for age-l Atlantic cod in nearshore habitats of Newman Sound. Parameter estimates for 

Model A, with standard errors and confidence intervals, are provided in Table 2.5. 

Mean daily apparent survival for age-l Atlantic cod was estimated as 0.91±0.055 day· 

1 with 95% confidence intervals of 0.80-1.0 day·1
• The estimate is equivalent to an M of 

0.095 day·1 (95% confidence limit= 0:018-0.22 day- 1
), nearly an order of magnitude higher 

than the expected mortality rate of 0.010 day· 1
• Apparent mortality overestimates true 

mortality because the survival value includes both migration and handling mortality. Percent 

migration for the pooled data in Spring 2003 was estimated as 5% and the estimate was used 

to adjust the mortality rate from the Jolly-Seber method. The acute mortality assessment 

showed that cod <80 mmSL had a higher mortality rate compared to cod ~ 80mmSL. 

Approximately 60% ofthe cod marked and released in Spring 2003 were 80 mmSL or longer. 

In total, 49% of the 80 cod used in the assessment died. If cod >80 mmSL are excluded from 

the analysis, the percent mortality after approximately three days increases to 69%. However, 

if cod <80 mmSL are excluded, the percent mortality decreases to 23%. Because marked cod 
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were generally longer than 80 mmSL during the field study, the apparent M was adjusted 

using the lowest percent acute mortality estimate. Exclusion of migration and handling 

mortality estimates lowers the mortality rate to 0.068 day·1 with 95% confidence limits of 

0.013-0.16 day·1
• The observed M is equivalent to approximately 660 juvenile cod surviving 

out of 1000 after a period of one week. The expected mortality value of 0.010 day· 1 (i.e. , 

approximately 940 surviving after one week) does not fall within the confidence limits ofthe 

observed value, indicating the estimates are significantly higher than the predicted based on 

age. 

2.3.5 Validation of Jolly-Seber assumptions 

Statistical validation of equal probability of catch (Assumption# 1) was not possible 

because of small sample size even when data were pooled. Biological intuition was used to 

justify the equal catchability assumption. Juvenile cod were observed to be limited to short 

migrations of a few hundred metres and remained near a given study site. Therefore, it is 

unlikely that marked cod permanently left the study area, a phenomenon that would reduce 

catchability. Certain sampling gears can cause marked individuals to have trap-friendly or 

trap-shy responses that increase or decrease respectively the probability of recapture. Beach 

seining is an active sampling gear that offers no reward with capture. Furthermore, some cod 

were recaptured multiple times, suggesting that gear avoidance was minimal. One problem 

with beach seining is that the entire site cannot be sampled effectively because submerged 

obstructions and(or) the layout of the shoreline may prevent successful net retrieval. 

Furthermore, cod may inhabit waters beyond the sampling range of a hand-pulled seine. 
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Depths of 5-l 0 mare typically inhabited by age-0 cod in summer and fall (Cote et al. 2001) 

and by age-l cod during spring (personal observation), presumably to minimize distributional 

overlap with older, larger conspecifics patrolling deeper waters (Linehan et al. 2001). In 

addition, eelgrass beds in Newman Sound typically extend to depths of 6-7 m. The deepest 

site I monitored had a maximum depth of 5 m at the farthest extent of the seine, therefore 

some areas where juvenile cod and eelgrass may be distributed were not effectively sampled. 

Implementation of other sampling gears can determine whether some cod are inaccessible to 

the seining gear; however, beach seining was the only sampling gear used. Cod were not 

observed to leave the study sites; however, variability in catches from seine to seine (Figure 

2.8) suggests that cod move around within the site from gear inaccessible areas to accessible 

areas. There was neither statistical nor biological evidence for unequal catchability. 

Differential mortality among marked juvenile cod (Assumption #2) appeared to be 

negligible. Table 2.6 shows that 14 fin-clip combinations were used during Spring 2003. 

The assumption of survival homogeneity requires that all marked cod released, regardless of 

number of clips present per individual, must have the same probability of mortality. Some 

fin-clips, particularly the single caudal marks, were recaptured more frequently than other 

combinations because a higher abundance of caudal clipped individuals were released and 

present in the wild for a longer time period. To determine if certain fin-clip combinations 

had a higher probability of recapture, the recapture percentage for each respective 

combination (i.e., number of single caudal clips recaptured at time i/number of single caudal 

clipped cod present in the wild at time i-l) was calculated for each sampling period. Because 
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some fm-clip combinations were in the wild for a longer time period, the mean fin-clip 

percentage was determined and compared to assess whether differential mortality was present 

(Figure 2.9). Overall, mean fin-clip combination percent recapture ranged from 0% to 4%. 

Two fin-clip combinations (lower caudal-second anal-second dorsal and first anal-third 

dorsal) were not recaptured; however, very few cod possessed these marks (3 and 4, 

respectively), suggesting that extremely low abundance, not mark-related mortality, affected 

the probability of being re-encountered. Furthermore, it could be assumed that multiple 

marked cod would have a lower survival compared to cod with single marks; however, 

multiple marked cod [n = 18, mean length± standard deviation= 92.6 ± 9.3 mmSL, range 

= 79- 112 mmSL] had mean recapture percentages similar to single marked cod [n = 174, 

mean length = 92.6 ± 11.6 mmSL, range = 56 - 115 mmSL] during this study. These 

observations suggest that differential fin-clip mortality did not occur, which is surprising 

because the acute mortality assessment indicated that handling mortality may be high in the 

field. However, increased experience with the marking technique over time may have 

decreased handling stress, allowing multiple marked cod to survive despite repeated 

recapture. The mortality estimates determined for the marked population can also be 

extended to the whole population because marked cod were observed to have survival rates 

equivalent to unmarked cod (Figure 2.5). 

Estimation bias attributed to lost or overlooked marks (Assumption #3) was judged 

to be negligible. No evidence of fin regeneration was apparent for cod during the acute 

mortality assessment, nor for recaptured cod that were in the wild for several weeks. All 
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juvenile cod were examined for fin-clips by experienced field staff and no identifications 

were conducted by others (e.g., commercial and recreational fishermen). One problem with 

the marking method is that naturally occurring injuries sustained from predation encounters 

may obscure clipped fms. This could result in misidentification- mistaking a natural injury 

for a fin-clip - or the overlooking of clips because an injured fin may have been initially 

marked. One component of the sampling protocol was to note any marks that were 

questionable; however, such marks comprised less than 1% of all cod examined. 

During my study, the time required to sample was negligible relative to the time 

between sampling periods (Assumption #4 ). Figure 2.10 shows the trend of total catch and 

recapture percentage with time for standardized and unstandardized collection data. Despite 

differing sampling intensities that produced variable cod abundances, percent recapture 

remained fairly constant over the duration of the studies. Trends of increases in recaptures 

with time were observed at Buckley' s Cove in 2002 and 2003, largely because percent 

recapture was highest on the last days of sampling despite a decline in total cod caught ( 5 and 

6, respectively). Overall, the trends suggest that marked cod randomly dispersed within the 

unmarked population and that the time required for seining (i.e. , several hours) was negligible 

compared to the time between collection periods (i.e. , several days). 

2.4 Discussion 

Juvenile cod in nearshore Newman Sound experience a natural mortality rate of 

M=0.068 day-' in areas with eelgrass habitat. It is unknown if this value is high relative to 

other habitats because logistical difficulties prevented survival rate determination in other 
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potential juvenile cod habitats. Bare substrate (e.g., sand, mud) sites did not consistently 

produce adequate cod concentrations for ~ark-recapture purposes. Juvenile cod rarely 

frequent such habitats; however, when present, they are usually in high abundance because 

of aggregatory behaviour (Laurel et al. 2004). Cod residency is probably of short duration 

and the probability of recapture would be extremely low, thereby making marking 

impractical. Consistently low abundances in bare substrate sites may indicate that predation 

risk greatly outweighs foraging efficiency and that mortality is high relative to eelgrass 

(Gorman 2004). Other habitats, such as macroalgae and cobble, were located in areas of high 

wind and wave exposure and could not be sampled by beach seining. Studies have been not 

conducted to estimate the natural mortality of young cod in these habitats; however, tethering 

studies suggest cobble and bedrock habitats may be very risky for juvenile cod compared to 

eelgrass habitat (Gregory et al. in prep.). 

The natural mortality rate of juvenile cod in coastal Newman Sound was higher than 

estimates reported for cod of similar ages in other regions. Ottera et al. (1999b) reported 

mortalities of 0.0043-0.0071 day-1 for juvenile cod tagged and released in the 0ygarden 

archipelago of western Norway. However, the cod released by these authors were larger 

(length range=25-40 em) than those fin-clipped in Newman Sound and therefore would be 

expected to have a higher survival rate. Age-l Georges Bank cod also exhibit lower 

mortality rates (0.025 to 0.038 day-1
; Serchuk et al. 1994); however, a direct comparison 

between the estimates is not feasible because specific lengths were not reported in that study. 
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Despite adjustments for dispersal and handling mortality, the observed mortality rate 

was significantly higher than expected ;for juvenile cod. 1 olly-Seber parameter estimates can 

be biased if model assumptions are false. Heterogeneity of capture probability is typical of 

natural populations ( Caughley 1977; Carothers 1979). The equal catchability assumption can 

be violated if marked individuals have a lower capture probability than the unmarked 

population (Pollock et al. 1990). A low average capture probability will cause the marked 

population size to be underestimated and the survival estimate will be negatively biased 

(Pollock et al. 1990). Statistical tests could not refute the possibilty of unequal catchability 

of juvenile cod because data were insufficient. However, unequal catchability may have 

occurred if the efficiency of the sampling method to recapture marked cod depended on body 

size, a factor that requires testing for the type of beach seine used during my study. 

Furthermore, assuming emigration to be permanent may bias mortality rates because animals 

may simply be moving in and out of the study area while avoiding the sampling gear (Pollock 

et al. 1990). Temporary emigration can invalidate the unequal catchability assumption and 

cause mortality rates to be overestimated. In my study, the mortality rate observed for age-l 

Atlantic cod was calculated using the minimal value for movement rates (i.e., 5%). If 

movement rates were higher than the minimal value, then the mortality rate would be lower 

than the 0.068 day·1 observed for age-l Atlantic cod. For example, doubling the movement 

rate to 10% slightly reduces the mortality value to 0.064 day·1 while increasing movement 

to 50% greatly reduces mortality to 0.026 day·1
• Several authors have concluded that mean 

survival estimates are robust to capture heterogeneity because biases are negligible (Cormack 
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1972; Carothers 1973, 1979; Nichols and Pollock 1983); however, the precision of the 

estimates may be negatively biased (Carothers 1973; Pollock et al. 1990). Even if the 

variance of juvenile cod survival was underestimated, the precision should still be reliable 

given that the original estimate was reasonably precise. However, caution is warranted; high 

precision does not guarantee accurate estimates whereas low precision typically signifies that 

estimates are impractical (Koper and Brooks 1998). 

Heterogeneous survival probabilities of marked animals will positively bias mortality 

estimates if marking or handling reduces survival (Pollock et al. 1990). Juvenile cod were 

collected with a seine net, manually handled by field personnel, and marked with fin-clips. 

Each component of the marking procedure can induce stress that may result in short-term or 

long-term mortality (Ricker 1949). Collection procedures typically subject fish to abrasive 

contact with the net, with the sides and( or) bottoms ofholding containers, with other fish and 

invertebrate species, and with inadvertently entrained objects, such as woody debris 

(Matthews et al. 1997). Resultant effects may include mechanical damage, physiological 

stress, and scale loss (Matthews et al. 1997). Though fm-clipping is commonly used, there 

is considerable debate whether it increases mortality (Ricker 1949; Churchill 1963; 

Brynildson and Brynildson 1967; Coble 1971; Nicola and Cordone 1973; Mears and Hatch 

1976; Haines and Modde 1996; Pratt and Fox 2002). Possible detrimental fin-clipping 

effects include increased predation risk, diminished competitive ability, increased 

susceptibility to environmental changes, increased vulnerability to pathological invasion, and 

altered physiological processes and( or) behaviour (Coble 1967). Studies have reported that 
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fm-clipping does not elevate predation risk for a variety of juvenile fish species (walleye 

Stizostedion vitreum, Churchill 1963; yellow perch Perea jlavescens, Coble 1967; Colorado 

squawfish Ptychocheilus lucius, Haines and Modde 1996; Alantic cod, Ogilvie 2000). 

Furthermore, several authors have reported that fin-clipping has little effect on growth 

(Churchill 1963; Coble 1971; rainbow trout Salmo gairdneri, Nicola and Cordone 1973 ; 

muskellunge Esox masquinongy, McNeil and Crossman 1979; rainbow trout Gjerde and 

Refstie 1988; walleye, Pratt and Fox 2002), providing indirect evidence that foraging 

capability was not diminished. Similar recapture proportions of various fm-clip 

combinations suggested that heterogeneity in survival probabilities of marked individuals was 

absent from my study. 

Further research is required to determine the mortality associated with chronic 

handling stress for juvenile cod. Short-term handling and containment prior to release 

increased the observed mortality of juvenile cod in this study; however, survival estimates 

were adjusted to account for the effects of such stress. Like movement, the minimal value 

(23%) for handling mortality was used to adjust the observed mortality rate. This value may 

potentially be higher because prolonged mortality directly or indirectly attributed to handling 

and containment stress, which was not tested, may be occurring for field released fish. For 

example, fish may exhibit abnormal behaviour following release after a stressful event (Mesa 

and Schreck 1989), which may increase susceptibility to predation, reduce feeding efficiency, 

and decrease resistance to disease. For instance, once released, tagged cod may swim rapidly 

away from the point of disturbance, irrespective of the suitability of habitat types. This high 
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activity may increase encounter rates with nearby predators. If it was assumed that stress­

related chronic mortality was equal to stress-induced acute mortality during my study, then 

the actual mortality rate would be reduced to 0.047 day- 1
• The uncertainty in estimates of 

delayed stress-related mortality may be a major factor contributing to the high observed 

mortality rates for age-l Atlantic cod in nearshore Newman Sound. 

Tag loss or misidentification causes survival estimates to be underestimated, reducing 

accuracy (Amason and Mills 1981; Pollock 1981; Nichols and Hines 1993). Iftags are shed 

or overlooked, the marked population is reduced in size and apparent loss exceeds true loss. 

Pollock ( 1981) observed that tag loss decreases precision of estimates even when the rate of 

loss is known and parameters are adjusted. However, tag loss and tag misidentification were 

negligible during my study and did not affect the survival estimate. 

The natural mortality rate of juvenile cod in nearshore Newfoundland may be largely 

attributed to predation. In Newman Sound, tethering studies have indicated that the major 

predators of juvenile cod include older, larger conspecifics (Atlantic and Greenland cod), 

sculpins, and white hake (Linehan et al. 2001; Laurel et al. 2003). Other potential predators 

that are present, though in low abundance, are sea raven (Hemitripterus americanus; Tupper 

and Boutilier 1995) and thorny skate (Raja radiata; Palsson 1994 ). Intercohort cannibalism 

may be an important predation component, with cod as young as age-l that are capable of 

consuming smaller conspecifics (Linehan et al. 2001; Laurel et al. 2003 ). Gape size generally 

determines the maximum ingestable prey size and several studies have shown that successful 

predators typically are twice the length of their prey (Miller et al. 1988; Bogstad et al. 1994; 
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Salvanes 1995; Blom and Folkvord 1998; Linehan et al. 2001). Predatory loss may not be 

limited to piscivorous fishes because mammalian predators, specifically harbour seals (Phoca 

vitulina) and sea otters (Lutra lutra), are also present. Seals in other regions consume 

Atlantic cod juveniles that are less than 40 em in length (Hammill and Stenson, 2000). The 

impact of seal predation on the Newman Sound cod population is unknown, but is likely low 

because few seals frequent the sound (personal observation). Otters foraging in coastal 

regions of Terra Nova National Park have been observed to consume age-l juvenile cod 

(mean length= 17 em; H. Stewart, Memorial University, Department of Biology, personal 

communication). The inner basin of Newman Sound is a migratory bird sanctuary that 

supports populations of avian piscivores, including gulls, terns, mergansers, cormorants, 

loons, eagles, and ospreys (Linehan et al. 2001 ). Like seals, no studies have been conducted 

to determine avian predation on juvenile cod in Newman Sound. Bird predation may be 

significant as shown by Norwegian cod enhancement studies that routinely include searching 

seabird nesting areas for expelled tags. In Masfjorden, a 26 km2 fjord, cormorants 

(P halacrocorax carbo) and shags (P. aristotelis) have been recognized as important predators 

(Ottera et al. 1999a) and were estimated to consume 20 t of cod - primarily juveniles - over 

a six-month duration (Arnold Haland in Ottera et al. 1999a). 

Aside from predation and cannibalism, starvation may contribute to the high 

mortality ofNewman Sound juvenile cod. Death resulting from starvation occurs frequently 

in the wild (Holdway and Beamish 1984); however, this loss goes largely unnoticed (Dutil 

and Lambert 2000). Starvation mortality may be attributed to predation when increased 
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vulnerability to predation risk arises from the diminished swimming capacity of weakened fish 

(Dutil and Lambert 2000). Furthermore, starved fish are likely to be slow-growing and 

increased susceptibility to predation may be associated with poor condition when greater 

behavioural risks are taken to procure food items (Sogard 1997). Small juvenile cod may be 

more sensitive to starvation because they may lack the energetic reserves required to maintain 

necessary activity during prolonged periods of restricted food availability. However, it is 

unknown what effect that starvation may have on theN ewman Sound juvenile cod population 

because little work has been conducted concerning food availability. 

Juvenile cod exhibited short range migrations in shallow, nearshore habitats in 

Newman Sound, rarely venturing farther than a few hundred metres during spring and autumn. 

There was no evidence for extensive migration as age 0-1 cod remain localized within 

sheltered coves which had substrates oflow bathymetric relief and structurally complex habitat 

(e.g., cobble, kelp, and(or) eelgrass). Juvenile cod may undertake long range "offshore" 

migrations into deeper waters; however; such movements are unknown because offshore sites 

were not sampled. Short range movements have been documented for juvenile cod in coastal 

areas ofNewman Sound (Gotceitas et al. 1996; Gregory et al. 1997), Trinity Bay (Grant and 

Brown 1998), Nova Scotia (Tupper and Boutilier 1995), and the Northeast Atlantic (Hjort 

1914; Svasand and Kristiansen 1990; Pihl and Ulmestrand 1993; Smedstad et al. 1994; 

Skreslet et al. 1999). Conversely, high rates of nearshore movement ofage-0 cod in Newman 

Sound have been reported for areas characterised by non-convoluted shoreline and contiguous 

bands of structural habitat (Laurel et al. 2004) in a high density year. Low site fidelity was 
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attributed to density-dependent aggregatory behaviour (i.e., schooling or shoaling) when 

juvenile cod were forced to frequent low quality habitats after high quality habitats became 

saturated (Laurel et al. 2004). Density-dependent aggregatory behaviour also suggests that 

the availability ofhabitat is not limiting during years oflow abundance and juvenile cod are 

not pressured to frequent areas of high predation risk. Juvenile cod abundances in Newman 

Sound were lower in 2002 (Gregory et al. 2003) and in 2003 (Gregory et al. 2005) than in 

previous years, which may explain why movement rates were low during the current 

investigation. Furthermore, movement rates may vary with season and age. Laurel et al. 

(2004) marked age-0 cod in late summer (August-September) whereas age-l Atlantic cod 

were marked in early summer (June-July) during my study. The juveniles of several species 

(Greenland cod, Atlantic cod, white hake) concurrently recruit to coastal habitats ofNewman 

Sound over a relatively short period of time in late summer (Gregory et al. 1997; personal 

observation). Meanwhile, age-l Atlantic cod, presumed to overwinter in the sound, may only 

compete with Greenland cod for habitat during spring. Large-scale seasonal migrations are 

probably not undertaken by juvenile cod younger than two years old. Winter migrations by 

age 2-3 year Atlantic cod to deeper waters beyond inner Newman Sound does occur (Cote 

et al. 2004). 

Juvenile cod remain localized in nearshore Newman Sound possibly because the 

availability of structurally complex habitats, such as eelgrass and kelp, provide predator 

refuges and high food densities. Several laboratory ( Gotceitas and Brown 1993; Gotceitas 

et al. 1995; Fraser et al. 1996; Lindholm et al. 1999) and field studies (Keats et al. 1987; 

55 



Gotceitas et al. 1997; Grant and Brown 1998; Linehan et al. 2001; Laurel et al. 2003 a,b; 

Laurel et al. 2004) have shown that juveniles frequent eelgrass habitat to reduce predation 

risk. Vertical structure, such as eelgrass blades, increases survival by providing protective 

cover for juvenile fish from visual predators (Orth et al. 1984; Werner and Gilliam 1984), 

such as older conspecifics, sculpinMyoxocephalus spp., and white hake (Bogstad et al. 1994; 

Linehan et al. 2001; Laurel et al. 2003 a,b). Additionally, food densities, in particular 

pelagic and epiphytic zooplankton, are higher in eelgrass than in bare substrate (e.g., mud, 

sand) habitats (M. Renkawitz 2005, Memorial University, M.Sc. thesis, in prep.). 

Consequently, the abundance of piscivorous fishes is also commonly highest in vegetated 

areas (Linehan et al. 2001 ), a situation that forces younger, smaller fish to adapt strategies to 

optimize foraging efficiency while at risk from mortality (Werner and Gilliam 1984; Lima 

and Dill1989). Some individuals may forage by adopting an activity reduction strategy that 

optimizes movement and subsequently the possibility of attracting nearby patrolling predators 

(Lima and Dill, 1989). Other juvenile cod may embrace more active foraging methods by 

forming aggregations (Grant and Brown 1998; Laurel et al. 2004). Utilization of different 

foraging tactics by members of the same cohort may explain conflicting reports on juvenile 

cod movement. 

The declining abundance of juvenile cod over time may result from a distributional 

shift from shallow habitats to deeper waters. After spring, the catch-per-unit effort of age-l 

Atlantic cod had diminished by July 17 (Day 40-41) at both marking sites. The apparent out­

migration may have been temperature-dependent because surface waters warmed to 9-1 0 o C, 
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the upper limit of the species' preferred temperature range (Scott and Scott 1988). A similar 

occurrence was observed for age-0 Greenland cod in the fall. Presumably this "offbeach 

migration" is to avoid the potential exposure to ice crystals in freezing water in autumn; such 

exposure is known to be fatal (Goddard et al. 1992; Goddard and Fletcher 1994). In 

Buckley's Cove, the majority of older juvenile Atlantic cod (age 2-3) begin an out-migration 

from the inner sound after water temperatures become isothermal in early November (Cote 

et al. 2004). Smaller juveniles may simply move to deeper waters (Methven and Bajdik 

1994) because predator density, and hence risk, is reduced. Age-0 cod probably overwinter 

within the sound because they possess the physiological ability to withstand colder 

temperatures relative to older conspecifics (Kao and Fletcher 1988; Goddard et al. 1992). 

Grant and Brown ( 1998) speculate that juvenile cod remain localized in nearshore Trinity 

Bay during their first winter. 

In summary, juvenile cod experience a high mortality rate (M = 0.068 day- 1
) relative 

to predictions based on age and life history stage. High mortality associated with eelgrass 

may suggest that juvenile cod abundance is low in other habitats (e.g. , mud, sand) because 

the risk of mortality is even greater, though other factors, such as food abundance and abiotic 

conditions, may also play significant roles. The natural mortality of juvenile cod may be 

largely attributed to predation, including cannibalism; however the high mortality rate may 

also be attributed to uncertainties in onshore-offshore movements and( or) chronic handling 

stress. Mark-recapture experimentation indicate that movement rates are low for juvenile 

Atlantic and Greenland cod in eelgrass habitat during years of low cod abundance. The 
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movement rates of cod aged 0-1 years are likely dependent on population dynamics because 

site fidelity has also been observed to be low when cod densities are high (Laurel et al. 2004). 

Low movement rates within eelgrass suggest that conservation of such nursery habitat is 

extremely important for juvenile cod when population sizes are small. 
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Figure 2.1: Map of the study area, Newman Sound, Bonavista Bay, Newfoundland. The two marking areas- Dockside (DS) and 
Buckley's Cove (BC)- are enlarged with the marking and adjacent monitoring sites depicted as circles. Also featured are 13 bi­
weekly seining sites, represented as squares. Nine bi-weekly sites [Big Brook (BB), DS, Whiterock (WR), Bermuda Beach (BE), 
Mistaken Cove (MI), BC, Heffems Cove (HC), Minchins Cove (MC), and South Broad Cove (SB)] have eelgrass habitat, shown 
with light green colouration, while the remaining four [Cannings Cove (CC), Newbridge Cove (NB), Mount Stamford (MS), and 
Little South Broad Cove (LS)] have no appreciable eelgrass. 
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Figure 2.2: A comparison oflength-:frequency distributions of subsampled cod (black bars) 
and cod recaptured during the subsequent sampling period (grey bars) at Buckley's Cove 
during Spring 2003. Distributions in graph A are original lengths whereas graph B depicts 
the lengths of subsampled cod after adjustment for daily growth. 
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Figure 2.3: A comparison of length-frequency distributions of subsampled cod (black bars) 
and cod recaptured during the subsequent sampling period (grey bars) at Dockside during 
Spring 2003. Distributions in graph A are original lengths, and lengths of subsampled 
cod were adjusted for daily growth in graph B. 

74 



Age (days) 

1 10 100 1000 10000 
eo 1 

• , . • • Eggs 
e-1 

·r~ ··········· ·;;;,·· \ 6. Larvae 
e-2 ······ ~ 0 6. • ~ ......... 6. ,. • Juveniles 0.1 

• • t::.'~t::. \ 
e-3 6. 6. \ 

6. \ • 0 Adults - 6. 
:E • \ 
~ 

e-4 \ :E 

ns • \ 0.01 ~ 
c e-s \ ns - '• c 
..5 '\ • 

e-s .. 
\ 

• '~· 0 0.001 e-7 
Eggs: M = e0.023Age -1.43 .-2 = 0.0055 ., 

~ e-s Larvae: M = e-0.70Age+0.29 r2 = 0.2434 t 
Juveniles: M = e "2.47Age + 10"39 .-2 = 0.8173 
Adults: M = e·1.23Age+2.37 r2 = 0_1203 • • 

e-9 0.0001 
eo e1 e2 eJ e4 es es e7 es e9 

In [Age (days)] 

Figure 2.4: The daily instantaneous natural mortality rates (M) of the life history stages 
of Atlantic cod (Gadus morhua). The data was broken into four groups (eggs, larvae, 
juveniles age 0-4, adults age 5+) because a regression of all data combined revealed a 
non-linear relationship on a log-log scale. Goodness-of-fit to a power law was poor for 
all stages, except juveniles. 
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Figure 2.7: Length frequencies of dead and surviving age-0 Greenland cod (Gadus ogac) 
after 65 hours in captivity. The length distributions for mortalities and surviviors were 
significantly different (D=0.453, p<0.05), indicating higher mortalities for cod 75 mmSL 
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temporal scale of hours, juvenile cod would migrate from areas inaccessible to the sampling 
gear to areas where capture was possible. The time required to conduct each seine was typically 
5-10 minutes. 

79 



5 

4 

3 

2 

Q) 1 .... 
:::s -c. 
ns 
(.) 0 
Q) 
~ 

Dockside 

LC SA so LCSA LCSD SASD LCSASD 

~ 
5 .---------------------~~------~--~~--~------------------------, 

Fin-clip Combinations 
s::::: 
ns 
Q) 

::!: 4 

3 

2 

1 

0 

Buckleys Cove 

uc FA TD UCFA UCTD FATD UCFATD 

Fin-clip Combinations 

Figure 2.9: The mean percent recapture of the various fin-clip combinations applied to age-l 
Atlantic cod at Dockside and Buckley's Cove during Spring 2003. Percent recapture of fin­
clips was determined as the number of cod recaptured possessing a particular fin-clip 
combination divided by the abundance of cod that were released with a particular fin-clip 
and multiplied by 100. Percent recaptures were averaged over the time period (days) the fin­
clips were at liberty. LC =lower caudal; SA= second anal; SO= second dorsal; UC = 
upper caudal; FA= first anal; TD =third dorsal. 

80 



300 .-------------------. 100 300 .--------=----=--=---=----=---=--~::-::-::~ 100 
Buckley's Cove Fall 2002 Buckley's Cove Fall 2002 

Standardized Unstandardized 
250 250 80 80 

200 200 
60 60 

150 150 

40 40 
100 100 

50 
• 20 

50 
• 20 .. 

• • · • • 0 ~·~~·~-.---·-· ~· -~-.----.--~~ 0 
· • 

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 
300 .-------------------,- 100 300 ,--------------------,- 100 

Buckley's Cove Spring 2003 Buckley's Cove Spring 2003 
Standardized Unstandardized 

250 250 80 
.s::::: 

Q) ... 
(J 200 ...... 

60 
200 

80 .a 
a. 
ca 

60 (J 
Q) ca 

0 150 150 0:: -ca 
0 100 
1-

40 
100 

40 ...... 
s:::::: 
Q) 

• 50 20 50 
20 ~ 

Q) 

a.. .... 
0 +-~--~--~~--~~~~--~--+ 0 o +--.-~~-~-.----.-~~r--+ o II 

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 

300 .------------------,- 100 300 -.------------------.- 100 
Dockside Spring 2003 Dockside Spring 2003 

Standardized Unstandardized 
250 250 80 80 

200 200 
60 60 

150 150 

40 40 
100 100 

• ...• 20 
50 

20 .. 
• . . . .. 

0 +--.--~--.----.--~--.----.--~--+ 0 
0 5 1 0 15 20 25 30 35 40 45 0 5 1 0 15 20 25 30 35 40 45 

Time (days) 

Figure 2.10: The percent offin-clipped cod recaptured (black squares) remained fairly constant despite 
cod abundance (black circles) varying from one seine to the next. Similar trends in percent recapture were 
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Table 2.1 : A summary table of marking information for juvenile cod fin-clipped in Newman Sound during 2002 and 2003. Mean lengths 
(mmSL) pertain to subsampled cod with the number measured in parentheses. 

Date Site Species Marking Event Fin Clipped Number of Cod Mean Length SD 
Marked mmSL (n) 

Oct. 3, 2002 Buckley's Cove Greenland cod M1 Upper Caudal 331 90.7 5.8 
(Day 0) (33) 

Oct. 4, 2002 Buckley's Cove Greenland cod M2 First Anal 197 95.0 5.6 
(Day 1) (89) 

Oct. 6, 2002 Buckley's Cove Greenland cod M3 Left Pelvic 290 96.1 5.4 
(Day 3) (104) 

June 6, 2003 Buckley's Cove Atlantic cod Ml Upper Caudal 236 85.2 14.5 
(Day 0) (41) 

June 9, 2003 Buckley's Cove Atlantic cod M2 First Anal 206 86.9 14.4 
(Day 3) (39) 

June 12, 2003 Buckley's Cove Atlantic cod M3 Third Dorsal 246 91.7 11 .8 
(Day 6) (25) 

June 7, 2003 Dockside Atlantic cod M1 Lower Caudal 271 79.6 13.4 
(Day 0) (31) 

June 10, 2003 Dockside Atlantic cod M2 Second Anal 209 84.0 11.3 
(Day 3) (20) 

June 13, 2003 Dockside Atlantic cod M3 Second Dorsal 280 79.0 12.6 
(Day 6) (29) 
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Table 2.2: The Kolmogorov-Smirnov test results comparing the length frequency distribution of subsampled cod and cod recaptured on 
the subsequent sampling day. Significant differences are represented in bold underlined lettering. All distributions became non-significant 
when lengths were adjusted for daily growth (0.685 mmSLday-\ D. Ings, Department of Biology, Memorial University personal 
communication). 

Site Subsample Recapture 
Collection Day Collection Day 

Buckley's Cove 0 3 

Buckley's Cove 3 6 

Buckley's Cove 6 13 

Dockside 0 3 

Dockside 3 6 

Dockside 6 14 

D 

0.314 

0.174 

0.291 

0.525 

0.238 

0.261 

p 

>0.05 

>0.05 

>0.05 

<0.05 

>0.05 

>0.05 

Growth Adjusted 

D p 

0.217 >0.05 

0.149 >0.05 

0.356 >0.05 

0.092 >0.05 

0.15 >0.05 

0.392 >0.05 



Table 2.3: The age (days) and natural mortality rates (M; day-1
) reported in the literature for the egg, larval, 

juvenile, and adult sta~es of Atlantic cod (Gadus morhua). 

Stage Age (days) M (day-') Source 

egg 3 0.075 Wieland et al. 2000 

egg 6 0.489 Wieland et al. 2000 

egg 11 0.296 Wieland et al. 2000 

egg 14 0.090 Fossum 1988 

egg 15 0.190 Kristiansen et al. 1997 

egg 16 0.270 Campana et al. 1989 

egg 16 0.140 Campana et al. 1989 

egg 16 0.245 Heessen and Rijnsdorp 1989 

egg 16 0.215 Heessen and Rijnsdorp 1989 

egg 17 0.511 Wieland et al. 2000 

egg 17 0.411 Heessen and Rijnsdorp 1989 

egg 17 0.277 Heessen and Rijnsdorp 1989 

egg 18 0.027 Heessen and Rijnsdorp 1989 

egg 18 0.297 Heessen and Rijnsdorp 1989 

egg 19 0.110 Fossum 1988 

egg 20 0.223 Serchuk et al. 1997 

egg 21 0.141 Heessen and Rijnsdorp 1989 

egg 22 0.549 Wieland et al. 2000 

egg 36 0.150 Campana et al. 1989 

larvae 20 0.111 Anderson et al. 1995 

larvae 23 0.260 Kristiansen et al. 1997 

larvae 23 0.150 Fossum 1988 

larvae 27 0.180 Fossum 1988 

larvae 33 0.070 Kristiansen et al. 1997 

larvae 35 0.046 Blom et al. 1994 

larvae 35 0.150 Fossum 1988 

larvae 36 0.035 Blom et al. 1994 

larvae 50 0.140 Fossum 1988 
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Table 2.3 (cont.): The age (days) and natural mortality rates (M; day-1
) reported in the literature for the egg, 

larval, juvenile, and adult sta~es of Atlantic cod ~Gadus morhua). 

Stage Age (days) M (day-1) Source 

larvae 60 0.031 Blom et al. 1994 

larvae 64 0.112 Anderson and Rose 200 1 

larvae 69 0.084 Anderson and Rose 2001 

larvae 71 0.046 Blom et al. 1994 

larvae 81 0.068 Anderson et al. 200 1 

juvenile 100 0.475 Serchuk et al. 1997 

juvenile 183 0.010 Julliard et al. 2001 

juvenile 183 0.108 Sundby et al. 1989 

juvenile 365 0.040 Sundby et al. 1989 

juvenile 548 0.0056 Kristiansen et al. 2000 

juvenile 548 0.0014 Julliard et al. 2001 

juvenile 548 0.0056 Ottera et a!. 1 999 

juvenile 548 0.0057 Ottera et al. 1999 

juvenile 548 0.0030 Larsen and Pedersen 2002 

juvenile 730 0.00019 Kristiansen et al. 2000 

juvenile 913 0.00071 Pedersen and Pope 2003 

juvenile 913 0.0014 Larsen and Pedersen 2002 

juvenile 1004 0.0048 Anderson and Gregory 2000 

juvenile 1095 0.0012 Sundby et a!. 1989 

juvenile 1278 0.00041 Myers and Doyle 1983 

juvenile 1278 0.00056 Myers and Doyle 1983 

juvenile 1278 0.00021 Myers and Doyle 1983 

juvenile 1278 0.00055 Beverton 1964 

adult 2373 0.00069 Beverton et al. 1994 

adult 2555 0.000493 Pinhom 1975 

adult 2738 0.00047 Beverton et al. 1 994 

adult 2738 0.0011 Sinclair 2001 

adult 3103 0.00041 Beverton et al. 1994 
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Table 2.4: Chi-square goodness-of-fit tests computed with program JOLLY comparing the validity of several Jolly-Seber models for mark­
recapture data analysis. A significant chi-square result indicates the first model is rejected when compared to the second model (e.g., D 
vs. A for pooled dataset). P-values equal to 1 indicate insufficient data to perform the test. 

Data Set 

Buckley's Cove 
Fall2002 

Buckley's Cove 
Spring 2003 

Dockside 
Spring 2003 

Dockside and 
Buckley's Cove Spring 

2003 (pooled) 

Models 

x2 

df 

p-value 

x2 

df 

p-value 

x2 
df 

p-value 

x2 

df 

p-value 

Dvs.A 

4.1266 

2 

0.127 

22.6918 

3 

<0.0001 

6.0586 

3 

0.1088 

20.115 

3 

0.0002 

Bvs.A Dvs. B 

0.6055 2.6046 

0 0 

1 1 

0 0 

0 0 

1 1 

1.9103 4.6069 

1 2 

0.1669 0.0999 

4.7447 15.2677 

1 2 

0.0294 0.0005 



Table 2.5: Summary table for various Model A population parameters computed with program JOLLY for juvenile Atlantic cod fin-clipped 
at Buckley's Cove and Dockside (pooled data). ~denotes the population parameter in question. SE(~ is the standard error including 
only samEling variance; SE'09 includes both samElin~ and non-samEling variance. COV(Xi i-1) is the estimator covariance. 

Parameter Period Xt SE(Xt) SE'(Xt) 95% C.I. COV(Xi,i-1) 

1.3169 0.31 0.3113 0.7094-1.9245 

<l>t 2 0.3783 0.1658 0.1651 0.0533-0.7032 -0.018033 

MEAN 0.8476 0.1479 0.1484 0.5577-1.1375 

1.0961 0.086 0.9275-1 .2647 

<I>tar1 2 0.7232 0.1057 0.5161-0.9303 -0.003188 

MEAN 0.9097 0.0552 0.8015-1.0178 

2 667.68 157.83 358.33-977.03 

Mt 
,., 

399 163 .09 79.34-718.66 .) 

MEAN 533.34 113.48 310.92-755.76 

2 5480.02 1463.8 1436.8 2611.0-8349.06 

Nt 3 3893.94 1658.29 1658 643.70-7144.18 

MEAN 4686.98 1105.77 1105.85 2519.7-6854.29 

2 0.0779 0.021 0.0367-0.1190 

pt 3 0.1328 0.0556 0.0239-0.2418 

MEAN 0.1054 0.0594 0.0164-0.2493 

Bt 2 1828.19 927.33 10.61-3645.76 

00 
-.....] 
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Table 2.6: The abundance of the various fin-clip combinations released at Buckley's Cove and Dockside during Fa112003. UC =upper 
caudal fin; FA= first anal fin; TD=third dorsal fm; LC=lower caudal fin; SA=second anal fm; SD=second dorsal fin. 

Buckley's Cove Fin-Clip Combinations 

Day uc FA TD UCFA UCTD FATD UCFATD 

0 236 0 0 0 0 0 0 

3 214 184 0 22 0 0 0 

6 191 180 206 17 23 4 5 

Dockside Fin-Clip Combinations 

Day LC SA SD LCSA LCSD SASD LCSASD 

0 271 0 0 0 0 0 0 

3 241 179 0 30 0 0 0 

6 230 172 259 27 11 7 3 



Chapter 3: Movement, mortality, and growth of individually tagged age-0 
Greenland cod (Gadus ogac) in coastal Newfoundland eelgrass habitat. 

3.1 Introduction 

Greenland cod (Gadus ogac) is a member of coastal fish communities of the 

northwest Atlantic. Its distribution ranges from Baffin Island to Nova Scotia and extends 

from the intertidal zone to the continental shelf (Scott and Scott 1988). In shallow coastal 

waters of Newfoundland, abundances of post-settled juvenile Greenland cod are 

consistently higher in structurally complex habitats (e.g., eelgrass Zostera marina) than 

in structurally simple habitats, such as mud and sand (Laurel et al. 2003b ). Fish species, 

such as Greenland cod, often use complex structure as refuges to reduce predation risk and 

to optimize growth (e.g., Gotceitas and Colgan 1989; Gotceitas and Brown 1993). In 

eelgrass, the ability of predators to forage is reduced, and hence, the chance of 

encountering and capturing prey is lower (Gotceitas et al. 1997). In structurally simple 

habitats, the foraging ability of predators is not impeded and such areas are risky for 

juvenile cod to occupy without using predator evasion tactics, such as aggregatory 

behaviour (Laurel et al. 2004). Association with nearshore habitat is frequently reported 

to increase the survival of juvenile gadids (Gotceitas and Brown 1993; Linehan et al. 

2001; Laurel et al. 2003 a,b), including Greenland cod; however, no studies have 

attempted to quantify their natural mortality rates within such habitat. 

Many fishes experience size-dependent natural mortality rates over their life 

histories (Sogard 1997). Mortality is inversely associated with age and body size 

(Peterson and Wroblewski 1984), with the early stages, namely the eggs and larvae, 

typically exhibiting far higher rates than older juveniles and adults. Presumably to 

89 



increase the likelihood that some offspring will reach age-of-maturity (age 3+ ), Greenland 

cod have evolved life history strategies whereby vast numbers of eggs are produced and 

released. Mature adults spawn in the spring (Mikhail and Welch 1989; Morin et al. 1991) 

and deposit demersal eggs (Methven et al. 2001). Hatched pelagic larvae eventually 

develop into benthic juveniles that recruit to coastal nursery habitats (Mikhail and Welch 

1989; Morin et al. 1992; Methven et al. 2001; lngs 2005) during the summer. Predation 

is a major source of natural mortality for fish species, particularly the juvenile stages 

(Lima and Dill1989; Sogard 1997). When occupying nearshore habitats, age-0 Greenland 

are prone to a wide array of potential invertebrate, avian, mammalian, and piscine 

predators. In Newman Sound, tethering studies have identified major fish predators as 

white hake Urophycis tenuis, sculpin Myoxocephalus spp., cunner Tautogolabrus 

adspersus, Atlantic cod G. morhua, and older conspecifics (Linehan et al. 2001; Laurel 

et al. 2003a; Gorman 2004). Gape size restrictions typically require piscivorous fish to 

be twice the body length of prey (Miller et al. 1988), therefore, vulnerability to predation 

is likely diminished for juvenile fish with high growth rates (see review by Werner and 

Gilliam 1984). Juvenile Atlantic cod have been observed to have higher growth rates in 

eelgrass habitat compared to other habitats (Tupper and Boutilier 1995) because of 

increased food availability (Renkawitz 2004). Juvenile Greenland cod may inhabit 

eelgrass in coastal Newfoundland in order to optimize the mortality-growth ratio (i.e. , 

optimal foraging theory; Werner and Gillam 1984). 

The movements of the species investigated may bias observed mortality rate 

estimates when conducting survival studies. Some animals that disappear may have 
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merely vacated the study area, a situation resulting in underestimation of survival. 

Schneider et al. (1999) confrrmed the importance of spatial and temporal scale by showing 

that movement was of greater importance than mortality at fine scales ( <1 000 m, <1 00 d), 

whereas the opposite occurred at coarser scales. Over the course of their life histories, fish 

species exhibit varying movement and migratory habits (e.g., Schneider et al. 1999) that 

result from ontogenetic shifts in diet and habitat association. Larger Greenland cod 

juveniles (age 1-2) and adults (age 3+) have been described as non-migratory, non­

schooling, sedentary fish (Mikhail and Welch 1989; Morin et al. 1991; Nielsen and 

Andersen 2001). In western Hudson Bay, adult Greenland cod are thought to remain in 

home inlets for their entire lives and not venture more than a few kilometres (Mikhail and 

Welch 1989). Age-0 Greenland cod may exhibit higher movement rates than older age­

classes. In Newman Sound, Newfoundland, age-0 Greenland cod were observed to 

exhibit low site fidelity and moved between sampling locations separated by thousands 

of metres during years of high cod abundance (Laurel et al. 2004). When cod densities 

are comparatively low in Newman Sound, age-0 Greenland cod appear site-attached, 

rarely venturing beyond a few hundred metres alongshore (see Chapter 2). Density­

dependent movement rates for age-0 Greenland cod necessitates an estimate of movement 

in order to evaluate survival. 

Mark-recapture methodology is routinely utilized to determine key demographic 

variables, such as population size, growth, survival, and migration, for terrestrial and 

aquatic species (McFarlane et al. 1990). However, many of the tagging techniques 

available are more suited for larger, older specimens than for smaller and(or) younger 
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individuals. When conducting studies on species with small body size or the juveniles of 

a species, the marking method, soft visible implant (VIalpha™; Northwest Marine 

Technology Inc., Shaw Island W A, USA) alphanumeric tagging has been used 

successfully with juvenile Atlantic cod (Olsen et al. 2004). To date, this technique has not 

been used with juvenile Greenland cod. The minute (1.0 x 2.5 mm), fluorescent tags are 

subdermally implanted beneath transparent tissue and are externally visible, without the 

use of expensive equipment, allowing recaptured specimens to be individually identified 

and released (Rikardsen 2000; Rikardsen et al. 2002). This is in contrast to some internal 

tags (e.g., coded wire tags) that require the individual to be killed (lsely and Stockett 

2001). Individuals can be recaptured multiple times, offering better insight into 

movement patterns, growth rates (Olsen et al. 2004), and mortality rates (Lebreton et al. 

1992). Furthermore, internal placement minimizes the possibility of tag entanglement in 

complex environments, such as seagrass, macroalgae, or dense undergrowth (Moring 

1990), and diminishes the onset of secondary infections and injuries induced by tag 

movement (Mourning et al. 1994). 

If no published accounts are available, experimentation must be conducted to 

assess tag retention (Shepard et al. 1996), tag visibility, and survival of tagged individuals 

before the tags are used. Some species have a minimum body size at which tags are 

sufficiently retained and visible for short-term (i.e., days, months) or long-term (i.e., years) 

mark-recapture studies. Northwest Marine Technology, the tag producer, recommends 

individuals be at least 150 mm, based on the studies of Rikardsen (2000) and Rikardsen 

et al. (2002), to ensure high tag retention and low tagging mortality. Some studies have 
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proposed smaller length limits ( 50mm, Griffiths 2002; 140mm, 0 lsen et al. 2004 ), though 

tagging success may be highly species specific. Other species may lack a sufficient 

amount of transparent external tissue for implantation (Haw et al. 1990). Despite the tag's 

limitations, it may be appropriate for mark-recapture studies on juvenile Greenland cod. 

The main objective of this study was to determine the movement, survival, and 

growth of age-0 Greenland cod in several eelgrass sites in Newman Sound, 

Newfoundland, using mark-recapture experimentation. Prior to field studies, I conducted 

laboratory studies to determine the tag retention, tag visibility, and survival of young-of­

the-year Greenland cod inserted with soft VIalpha tags. 

3.2 Methods 

3.2.1 Study area 

I conducted a mark-recapture experiment with age-0 Greenland cod during 

September-October, 2003, in Newman Sound (48 o35'N, 53 o55'W; Figure 3.1). The fjord 

( 41 km x 1.5-3.0 km) is situated in Bonavista Bay on the northeast coast ofNewfoundland 

and is divided into two basins, the inner sound and the outer sound. The basins are 

separated by a sill that rises to an 18 m depth, located approximately 7 km from the head 

of the sound. The inner sound is shallow (~55 m maximum depth) relative to the outer 

sound (max >300m deep). The coastline consists of moderately exposed rocky shores 

interspersed with sandy coves (pocket beaches). Nearshore substrate varies throughout 

the sound and ranges from mud to bedrock. Macroalgae (Laminaria digitata, Agarum 

cribrosum, Chondrus crispus, Fucus vesiculosus, and Ascophyllum nodosum) and eelgrass 

are the dominant vegetative cover, with the latter found predominately, where present, in 
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the subtidal region to a depth of 6 m. 

Three major marking sites within the sound were used for the mark-recapture 

studies. I marked age-0 Greenland cod at two inner sound sites- Dockside (48o33.772'N, 

53 o 57.747'W) and Buckley's Cove (48°35.406'N, 53 °54.901 'W)- and one outer sound site 

-Boulder Beach (48o33.714'N, 53o53.326'W). I chose Dockside and Buckley's Cove 

because they were known from ongoing bi-weekly seining data to be locations of high 

juvenile cod abundances (Gregory et al. 2002, 2003, 2005). Boulder Beach was located 

within 236m of Heffern's Cove (48o33.661'N, 53o53.501'W), a bi-weekly seining site. 

Exploratory sampling at Boulder Beach indicated high juvenile cod abundances similar 

to that at Heffern's Cove. All three sites had eelgrass, mud-sand bottoms, and gently 

sloping bathymetric relief. The major difference among the sites is that the shoreline at 

Dockside is a long strip of unconvoluted beach whereas Buckley's Cove and Boulder 

Beach are more sheltered coves. Eelgrass at the three sites consist of extensive meadows 

interspersed with patches of bare substrate (i.e., mud, sand, gravel). Dockside was 

adjacent to Headquarters Wharf; Buckley's Cove and Boulder Beach were completely 

undeveloped. Each marking site was flanked by two adjacent sites ("monitoring sites") 

located within a few hundred metres that were used to monitor short range juvenile cod 

movement. The monitoring sites (linear distance from the marking site in parentheses) 

were Stairs Beach (248 m; 48o33.655'N, 53°57.845'W) and Whiterock (166 m; 

48o33.772'N, 53o57.704'W) for Dockside; the sites for Buckley's Cove were Mistaken 

Cove (162 m; 48o35.347'N, 53o54.999'W) and Pipers Cove (280 m; 48°35.345'N, 

53 o 54.692'W). The sites for Boulder Beach were Heffern's Cove (236m) and Otter Cove 
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(83 m). A wharf located between Dockside and Stairs Beach may act as a barrier to 

juvenile cod along-shore movement. During September-October, 2003, I used VIalpha 

tagging to mark age-0 Greenland cod at the three main marking locations. 

3.2.2 Collection of juvenile cod by beach seining 

I collected juvenile cod for marking and tagging studies using a beach seine (Lear 

et al. 1980; Methven and Schneider 1998). The gear used was a 25 m modified Danish 

beach seine with a 19 mm stretch mesh, a 24.4 m headrope, and a 26.2 m footrope. Each 

wing had 75 em aluminum spreading bars that were 25 mm in diameter. The seine was 

deployed from a 6 m boat at a distance of 55 m from shore, and retrieved by two people 

standing 16m apart on shore. The area sampled was approximately 880m2
• Chain link 

on the footrope and a reduced number of floats on the headrope allowed the net to be 

dragged along the bottom and sample 2 m up into the water column. All fish collected 

were put into fish tubs filled with seawater, identified, and separated into two groups: age-

0 Greenland cod and non-age-0 Greenland cod. The two groups were kept in separate 

tubs until all seining was completed. Fresh seawater was regularly added to the tubs to 

replenish dissolved oxygen. Cod were identified to age class, based on age-length values 

given in Gregory et al. 2002: age-0: ~ 100 mm standard length (SL), age-l: 100-200 

mmSL, age-2: 200-300 cmSL, and age 3+: >300 mmSL. After juvenile cod were 

collected for tagging, the other species were released at the capture site. 

3.2.3 Soft visible implant alphanumeric (VIalpha) tagging of age-0 Greenland cod 

The VIalpha technique involved the insertion of small (1.0 x 2.5 mm), rectangular 

tags beneath transparent tissue with a modified syringe injector. Each fluorescent tag was 
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individually labelled with a unique three digit code composed of one letter and two 

numbers. The implant procedure started with the transfer of one cod to the anaesthetic 

bath via dip net. When loss of equilibrium in the fish was apparent, I transferred the cod 

to a moistened measuring board. The tag was implanted beneath the transparent tissue 

located below the left eye on all individuals. Length was determined to the nearest mmSL 

and recorded along with the tag code. Prior to measurement, tag visibility and tissue 

integrity were assessed. Successful tag implantation required all three digits of the code 

to be visible and that the size of the entry wound be minimal. Mis-marked cod were 

killed. To determine the rate of tag loss I partially clipped the upper caudal lobe. Double­

marked cod were then placed in the recovery bucket containing well-oxygenated seawater. 

Fully recovered cod were transferred to nearshore holding containers. Total time to 

process a single cod from the anaesthetic stage to placement in the recovery stage was one 

minute. Once all cod had been tagged, noticeably stressed or dead cod were removed 

prior to mass release ofhealthy individuals. I tagged all released cod along with one other 

trained person. 

Two marking experiments were conducted at Boulder Beach with 106 (85 .2±4. 7 

mmSL) and 308 (84.1±4.3 mmSL) tagged juveniles released on September 29 and 

October 2, 2003, respectively. Despite an intensive collection effort(> 10 seines), catches 

of age-0 Greenland cod were extremely low at Dockside and Buckley's Cove. During 

three marking experiments at Dockside, 101 (88.8±4.8 mmSL), 8 (89.0±4.5 mmSL), and 

7 (91.0±3.0 mmSL) cod were tagged and released on October 1, 4, and 9, respectively. 

Five marking events were performed at Buckley's Cove, which resulted in 30 (88.8±8.2 
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mmSL), 24 (88.9±5.6 mmSL), 93 (88.8±4.6 mmSL), 72 (91.1±4.3 mmSL), and 16 

(99.6±4.2 mrnSL) tagged juveniles released on Sept. 30, Oct. 4, 8, 15 and 21, respectively. 

Monitor seining occurred at each site during every marking event subsequent to the first 

marking event. I concluded all monitor seining on October 31, 2003. Summaries of the 

marking data and sampling intensity are presented in Appendix 5 (Table A8) and 

Appendix 6 (Tables A9-A11), respectively. 

A bi-weekly seasonal seining program that was initiated in 1996 (Gregory et al. 

2002) commenced on May 27,2003 and ended November 23,2003. Sampling consisted 

of pulling one beach seine haul at each of 12 sites in Newman Sound (Figure 3.1) at low 

tide(± 2 hours). Collected specimens were enumerated, measured, and then released at 

the site of capture. Five ofthe nine sites involved in the mark-recapture study- Dockside, 

Whiterock, Mistaken Cove, Buckley's Cove, and Heffern's Cove- were part of the bi­

weekly program. 

3.2.4 Estimation of mortality, growth, and movement of age-0 Greenland cod 

Low sample size of recaptured juvenile Greenland cod prevented the determination 

of survival, and hence mortality, with mark-recapture formulae such as the Jolly-Seber 

method (see Chapter 2). Instead, I estimated mortality by regressing In-transformed 

recaptures against sampling time (days). True mortality rates could not be estimated 

solely with this method because losses can be caused not only by various sources of 

mortality (e.g., natural, fishing, tagging, and handling) but also by migration. If mortality 

rates at a given size are constant with time, as indicated by the goodness-of-fit, the slope 

of the line produces an estimate of apparent total mortality (Z) (Kristiansen et al. 2000); 
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however, in this study, fishing mortality was nil, and Z therefore approximates the 

instantaneous natural mortality rate (M) assuming tagging/handling mortality and 

migration losses are not substantial. If migration and tagging/handling mortality can be 

estimated, then the apparent M can be adjusted to reflect better the true M. I used this 

method by incorporating all recaptures collected in the outer sound, but a poor model fit 

suggested that the assumption of constant temporal mortality rates was violated. Instead, 

only recaptures netted at the marking site, Boulder Beach, were used. Although tagging 

mortality was negligible, tank studies indicated that handling mortality may have 

approached nearly 20% (see Section 3.3 .5). A rough measure of minimal migration from 

the marking site was estimated using the following equation: 

(3.1) 

where %m is the minimal percent migration from the marking site, RAs is the number of 

recaptures collected at the adjacent monitoring sites over the duration of the entire study, 

and RMs is the number of recaptures captured at the marking site over the duration of the 

entire study. 

I estimated individual specific growth rates (SGR; %day-1
) for tagged cod in tank 

and field studies with the equation used by Olsen et al (2004): 

(3.2) 

where L2 and L 1 symbolize the standard lengths (mm) of individuals examined (or 

sampled) during sample time (t2) and the previous sample time (t1). The mean SGRs were 

calculated for both tank controls and age-0 Greenland cod netted at Heffern's Cove for 

each bi-weekly sampling date. Linear regressions were performed to determine if SGR 

98 



was related to initial length at tagging for tank cod (T SGR = tank cod SGR, T LENGTH = tank 

cod initial length) and field cod CFsGR =field cod SGR, FLENGTH =field cod initial length). 

In addition, an ANCOV A was performed to determine if the relationship of SGR and 

initial tagging length differed between the two treatments. 

3.2.5 Determination of tag retention, tag visibility, and survival ofVIalpha tagged 
cod 

Preliminary studies were required to determine tag retention, tag visibility, and 

survival of VIalpha tagged cod. From May 19-June 1, 2003, I used a tank study to 

compare the tag retention and survival of tagged and untagged (control) cod. Age-0 

Greenland cod were not available at the time of the tank study; age-0 Atlantic cod were 

therefore used instead. Age-0 Atlantic cod were reared at the Ocean Science Centre, Logy 

Bay, Newfoundland, from Placentia Bay broodstock. Juveniles were raised from eggs 

hatched at the facility and were initially given live feed (algae, rotifers, Artemia), then 

switched to dry feed at 50-60 days old (Boyce 2003, personal communication). 

Photoperiod was 24 hours/day with a light intensity of ca.1 00 lux. Mean water 

temperature was 11.0°C. 

When cod were 50-60 mmSL ( ~90 days old), I transferred 100 individuals to a 

fibreglass holding tank (1.0 m2 x 0.5 m) on May 19,2003. Cod were allowed to acclimate 

to tank conditions for three days before tagging commenced. On May 22, ten cod at a 

time were transferred from the holding tank to a 20-L bucket. Cod were individually 

anaesthetized to a state of complete loss of equilibrium and reduced operculum movement 

with a 40 mg clove oil/L and 400 pL/L ethanol mixture added to 5 L of seawater. Cod 

were then transferred to a Petri dish partially filled with seawater for tag injection. I 
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inserted an orange VIalpha tag beneath the transparent skin located below the left eye with 

an injector sterilized with ethanol. Length was recorded to the nearest rnrnSL. Tagged 

cod were transferred to a 20 L recovery bucket filled with fresh sea water and oxygenated 

with a bubbler and airstone. Tearing of the cheek tissue occurred with four of the smaller 

cod during the injection process. These cod were discarded. Once individuals had 

completely recovered, they were transferred to a black, mesh-bottom bucket in the holding 

tank to prevent mixing of tagged and untagged cod. Control cod were subjected to the 

exact procedures as the tagged cod, with the exception of active tag insertion. Instead, the 

tag applicator was placed near the site of insertion for 2-3 seconds, the time typically 

required to inject a tag. 

Three adhesives were tested to determine if tag retention could be improved. The 

adhesives used were Crazy Glue (Elmer's Product Inc., NY, USA), New Skin Antiseptic 

Liquid Bandage Spray (Medtech, NJ, USA), and Vetbond Skin Adhesive (3M, Toronto, 

ON, Canada). Using a fine tipped artist brush, I applied the adhesives to the injection 

wounds of30 age-0 cod (10 cod/adhesive). 

Problems with this procedure immediately became apparent when the majority 

(>80%) of processed cod did not recover. To determine the cause of the high mortality, 

steps in the procedure were removed sequentially: (1) morphometric measurements 

(thereby reducing air exposure); (2) use of adhesive; and, (3) sterilization of the injector. 

The concentration of the clove oil-ethanol mixture was also varied. None of the changes 

improved the survival rate of tagged cod. I speculated that the anaesthetic or the small 

size of the cod may have contributed to the increased mortality. The procedure was 
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repeated on May 25, 2003, with carbon dioxide (C02; concentration= 1.0 gL-1
) used as 

the anaesthetic. This concentration was obtained through dissolution of one 5 g packet 

ofEno Antacid Effervescent (SmithKline Beecham, ON, Canada) in 5 L of seawater. The 

steps of measuring length and the use of adhesives were again omitted. Survival improved 

noticeably (>80%) and the method was adopted. 

Cod tagged on May 25, 2003, were examined daily from May 26-June 1, 2003 for 

tag retention, survival, and visibility o(the tag. I removed each cod from the holding tank 

and examined the site of insertion for tag presence, tag visibility, and presence of injury 

or secondary infection. The examination process was accomplished within a few seconds 

and tag visibility was enhanced with the use of a flashlight with blue light emitting diodes 

(LED) and amber filter glasses. Anaesthetization was required if tags were difficult to 

read or the cod was overly active. I transferred inspected cod to a mesh-bottom bucket 

located in the holding tank. Dead fish were removed, measured, and codes recorded. On 

June 1, the cod were examined, killed, and measured to nearest mmSL. Tags were 

removed to verify code. 

Tag retention was low (<50%) during the tank study. Some tags had been 

completely shed while others were in the process ofbeing shed. Because of the small size 

of the cod used, the availability of transparent tissue on the head was limited. Tags barely 

fit, with the distal edge of the tags located close to the injection wound. Tags may have 

been lost as a result of body undulations. Tag loss appeared to be reduced with larger 

body size. An increase in body size was also assumed to reduce the proportion of cod 

rejected because of tissue tearing. From October 21-November 8, 2003, I conducted a 
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second tag study at the Marine Interpretation Centre, Terra Nova National Park, 

Newfoundland, to determine if shedding rates decreased with increased body size. 

On October 17, 2003, 62 age-0 Greenland cod were collected and transferred to 

a 1835 L semi-circular, flow-through (flow rate= 21Lmin-1
) holding tank composed of 

fibreglass and plexiglass at the Marine Interpretation Centre. Cod were acclimatized to 

tank conditions for four days. On October 21 (Day 0), juvenile cod were individually 

anaesthetized with C02 (1.25gL-1
). After inserting the tag beneath the eye, I recorded the 

length (mmSL) and administered a partial (1/6th) upper caudal fin-clip. Processed fish 

were then transferred to a 20 L mesh-bottom bucket partially submerged in the holding 

tank. Control fish were processed in the same manner, except that actual tag insertion was 

eliminated and the lower caudal lobe was partially clipped instead of the upper caudal fm. 

Fish that were stressed, injured, or dead were removed and the tag code recorded, if 

present. Successfully-processed cod were released into the holding tank. In total, 27 

tagged cod (94.2±7.8 mmSL) and 23 (96.2±6.3 mmSL) control cod were released. 

Tank cod were fed twice a day with minced capelin (Mallotus villosus) or 

occasionally live mysids and amphipods. The tank was inspected daily for mortalities. 

Every 2-3 days, I examined individuals for tag retention, tag visibility, and stress-related 

injuries. Most cod could be examined without using the blue light and amber filter 

glasses. A small portion of cod required anaesthetic because tags were partly obscured. 

Lengths were measured to nearest mmSL. On November 8 (Day 18), the remaining 

individuals were killed and preserved in ethanol for microscopic examination of the 

wound area. The insertion wounds of all tagged fish had healed by Day 18. 
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After the tank study, a fully factorial two-way analysis of variance (ANOV A) was 

performed to determine whether mean length differed with treatment (Vlalpha tagged cod, 

control cod), and time (i.e., days after treatment). The significance level (a) was set at 

0. 05. Non-significant difference in lengths between treatments would rule out differences 

in tagging mortality rates due to body size. 

3.3 Results 

3.3.1 Vlalpha mark-recapture of age-0 Greenland cod 

Despite an intensive sampling effort(> 10 seines) at the marking locations, Boulder 

Beach was the only site where a large number of cod (n = 450) was collected, tagged, and 

released. The majority of cod tagged at Boulder Beach were collected with a single seine 

(Figure 3 .2). From the releases at Boulder Beach, 18 were recaptured (Table 3.1 ), 

resulting in a recapture percentage (R%) of 4%. Of the 18 recaptures, three were 

recaptured twice, resulting in a multiple-recapture percentage of 17%. One cod was 

recaptured twice on the same day of sampling; following release at Boulder Beach, it was 

re-caught 83 m away at Otter Cove, indicating intersite movement was possible in a time 

span of a few hours. Given that one fm-clipped cod was recaptured without a tag, the tag 

loss was estimated at 6%, compared to the tank tag loss of 5%. Furthermore, readable tags 

were readily observed for all recaptured cod. 

Recapture percentages for tagged cod at Dockside and Buckley's Cove were 

relatively low (3% and 1%, respectively). All recaptures (n=5) were made at the site of 

release, except for one cod at Dockside that was netted twice at Stairs Beach (Table 3.1). 

Because the number of recaptures were extremely low, results from these sites are not 
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discussed in further detail. 

3.3.2 Movement of age-0 Greenland cod 

Intersite movement was prevalent for cod tagged at Boulder Beach and increased 

over the duration of the mark-recapture program (Figure 3.3). Over the first 15 days of 

the study, tagged cod were often captured at Boulder Beach, the site of release, with some 

appearing at Heffern's Cove (a distance of 236 m). After day 15, more juveniles were 

recaptured at Heffern's Cove (n = 3) than the release site (n = 1). Only one cod was 

recaptured at Otter Cove and it had previously been recaptured at the release site that same 

day. Overall, percent migration from the release site was roughly 39% (total number of 

tagged cod recaptured at the adjacent monitoring sites/total number of tagged cod 

recaptured in outer Newman Sound= 7/18). Intersite movement was also observed at 

Dockside, despite the low number of releases (n = 129) and recaptures (n = 2) made there. 

One cod was released at Dockside and recaptured twice at Stairs Beach, suggesting that 

the presence of the wharf between these sites did not completely deter along-shore 

movement. Despite this movement between nearby sampling sites, tagged cod remained 

at the same general marking location. From Oct. 9- Nov. 23, 2003, a total of 473 age-0 

Greenland cod were collected from 12 sites in Newman Sound that were sampled with a 

single seine/site every two weeks. No tagged cod were collected during these seines, 

suggesting that long range along-shore movements (> 1 OOOm) to other nearshore sites are 

rare for this age class. However, the absence of recaptures at distant nearshore sites does 

not exclude the possibility of extensive movements to offshore waters. No trend was 

observed between distance travelled and the time tagged cod spent in the wild prior to 
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recapture (Figure 3.4). 

3.3.3 Natural mortality of age-0 Greenland cod 

The daily M was estimated as 0.034 day·1 for all recaptures in the outer sound 

(Figure 3.5); however, the fit of the regression line to the data was relatively poor 

(r=0.278). Furthermore, fit of the model proved non-significant (F13=1.16, p=0.361). 

Goodness-of-fit greatly improved (r=0.915), and the general linear model became 

significant (F 1,2=21.39, p=0.044), when only recaptures collected at the marking site, 

Boulder Beach, were regressed against time; M was estimated at 0.052 day·1
• Migration 

of cod from Boulder Beach to the adjacent monitoring sites was estimated as 39% over 

a period of 27 days. Handling mortality was estimated as 20% from a preliminary tank 

study using the percent survival of both tagged (22 surviving tagged cod/27 total tagged 

cod = 0.82) and control cod (18 surviving control cod /23 total control cod = 0.78). 

Migration and handling mortality estimates reduced M to 0.021 day·1 
[ = (0.052 day· 1 

-

(0.39*0.052 day· 1 
- 0.20*0.052 day- 1

)].. The observed mortality rate would suggest that 

roughly 880 out of 1000 age-0 Greenland cod survive a one week period. 

3.3.4 Specific growth rates of tagged and untagged age-0 Greenland cod 

Overall, mean SGRforrecapturedcod (Table 3.2; mean= 0.27±0.38%day·1
; range 

= -0.38 to 1.20%day-1
) was noticeably lower than the tank cod (mean= 0.38±0.12%day·1

; 

range = 0.00 to 0.60 %day-1
); but not significantly so (t = -1.18, p = 0.26, df = 17). 

Recaptured field cod exhibited a significant trend of decreasing SGR with initial release 

length (Figure 3.6; FsoR = 3.52- 0.037FLENGTI-I; F=8.45, df=1, p=0.011) whereas tank cod 

exhibited a non-significant positive relationship (TsaR= 0.128 + 0.0027T LENGTH; F=0.67, 
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df=1, p=0.42). The relationship between SGR and initial release length was significantly 

different between the two groups (treatment term: F=11.56, df=1, p=0.002; length term: 

F=9.68, df=1, p=0.004; interaction term: F=12.95, df=1, p=0.001). Figure 3.7 shows that 

SGR does not decrease or increase with time since release for tagged cod, and that most 

cod spent ten days or less post-release prior to recapture (Table 3.2). Two cod were 

recaptured 26 days after release; one had an above average SGR (0.67%) and the other 

was below average (0.22%). Six cod did not display any growth and two of these were 

in the wild for more than one week and presumably had time to recover from the stresses 

of handling and tagging. The SGR of wild, untagged Greenland cod was estimated from 

juveniles collected during the bi-weekly sampling program. Newly-recruited juveniles 

first appear in beach seines at Heffern's Cove on July 31 with a mean SL of 40±6.6 mm. 

Mean length on the last sampling day, November 23, was 106±6.2 mmSL. Though 

individual SGRs could not be determined from unmarked fish, mean SGRs were 

calculated for each sampling period between July 31 to November 23 (Figure 3.7). The 

overall trend is a decrease in mean SGR with time. The mark-recapture program 

commenced on September 30 and the individual SGRs for recaptured cod are also plotted 

in Figure 3. 7. All tagged cod, except one, either fall on the line or beneath it, suggesting 

tagged cod have a lower daily length increase than untagged wild cod; however, this 

difference was not significant (t=-1.1754, df=18, p=0.255). 

3.3.5 Vlalpha tag retention and survival tank studies 

Preliminary tank studies of Vlalpha tagged age-0 Greenland cod indicate that 

survival and tag retention were high once an appropriate tagging technique was developed. 
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Earlier attempts at tagging resulted in low survival and retention as a result of small cod 

size, mortality-inducing collection and transportation stresses, and the use of clove oil as 

an anesthetic. Tagging mortality may have also been attributed to inexperience with the 

tagging method. At the conclusion of the third tank study, tag retention was 95% for the 

22 surviving tagged cod (101.4±8.8 mmSL). Tag loss was recorded for one cod 

measuring 85 mmSL on Day 6. Because tag loss was so low, the relationship between 

retention and cod length could not be determined. Tag visibility was also good and tags 

were generally readable without the aid of blue light; in only two cod was blue light 

necessary to identify tags obscured by pigmentation. 

The initial mean lengths of tagged and control cod were 94.2±7.8 mmSL (range 

= 81-107; n=27) and 96.2±6.3 (range= 78-106; n =23), respectively. Throughout the 

experiment, there was no significant difference between tagged and control cod in terms 

of length (Table 3.3; X2 = 5.79, df= 1, p = 0.061) or length with time (X2 = 0.77, df= 6, 

p = 0.993). The proportion of tagged and control cod surviving over the duration of the 

tank study was plotted to determine if the mortality rate in tagged cod was higher (Figure 

3.8). Survival for control cod was high(~ 96%) for the first 12 days of the experiment 

with only one individual dying during the first three days. Three tagged experimental cod 

died over a period of four days (Days 5-8). At the end of the study, tagged cod had similar 

survival (82%, n = 22) compared to control cod (78%, n =18). Figure 3.8 shows a 

noticeable increase in mortality on Day 13 for both treatments that was caused by severe 

fin rot in three control and two tagged cod. These individuals were removed from the tank 

and recorded as mortalities, though the tag itself was not the direct causative mortality 
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agent. The mean length of the dead fish (88±7.2 mmSL) was significantly lower when 

compared to that of all fish on Day 0 (95±7.1 mmSL; t=3.00, p=O.Ol 0, df=l3) and all 

survivors on Day 18 (102±8.4 mmSL; t=5.32, p<O.OOl , df=l6). Smaller length may 

indicate a tank effect or intraspecific competition with larger cod that inflict caudal 

wounds on smaller conspecifics. Larger cod appeared to dominate food consumption 

when fed, and smaller cod were often chased away from the food and could not feed until 

larger individuals reached satiation. 

3.4 Discussion 

Age-0 Greenland cod exhibit low movement that is limited to migrations of a few 

hundred metres and individuals remain in close proximity to sites of release. Olsen et al. 

(2004) observed that Vlalpha tagged juvenile Atlantic cod remained at release sites along 

the Norwegian Skagerrak coast. Grant and Brown (1998) found that age-0 Atlantic cod 

remained localized in eelgrass habitat at sites on the coast ofNewfoundland for several 

weeks after settlement to the bottom. They also found evidence for overwintering 

behaviour in these habitats when they captured age-l cod the following spring that had 

been initially marked during the previous fall as age-0 cod. Enhancement studies 

conducted in western Norway have shown that 90% of released juvenile (age 1 and 2) and 

wild tagged cod were recaptured within 10 km of the release location (Ottera et al. 1999). 

Skreslet et al. (1999) recaptured 84% of2-3 year old tagged wild cod within 1 km of the 

tagging areas in northern Norway. Others were captured within 20 km, though one 

individual was found 65 km away 4 70 days post release. Older juvenile and adult 

Greenland cod are reported to have high site fidelity with no large evidence oflong-range 
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migrations. For example, individuals (75-475 mmTL) in western Hudson Bay did not 

venture beyond a few kilometres during their lifespans (Mikhail and Welch 1989). After 

observing low returns of age 1-9 Greenland cod (121-596 mm) tagged in eastern James 

Bay, Morin et al. (1991) suggested that the species may have a large, or diffuse, home 

range; however, a low recapture rate may have resulted from the small abundance of 

tagged cod released, tag losses and( or) tagging mortality. 

Juvenile cod undergo diel migrations in nearshore Newfoundland, which may 

explain the low recapture percentage observed for Vlalpha tagged cod in this study. Older 

juvenile cod (age 1 +) move from deeper, cooler water inhabited during the day to 

shallower, warmer water at night (Keats 1990; Cote et al. 2001). Transitory habitat 

change is initiated before twilight to decrease predation risk from predominantly visual 

predators, and to increase food availability (Linehan et al. 2001 ). When light intensities 

diminish at dusk, aggregated cod disperse and distribute over the bottom, regardless of 

substrate or associated vegetation. Reduced light levels lower the foraging efficiency of 

predominantly visual predators in shallow water. Despite reduced visibility, predator 

concentration increases in the nearshore because larger piscivorous fishes, such as older 

conspecifics and Atlantic cod, are not deterred from entering shallow waters where avian 

predators such as gulls, eagles, and osprey are abundant (Linehan et al. 2001). I observed 

some evidence of inshore juvenile cod migration while seining for the second marking 

event (October 2) at Boulder Beach. Repeated sampling attempts at the marking site 

produced cod abundances that were too low for tagging. Collection was abandoned for 

several hours so that monitor seining of adjacent sites could be completed. Later, a single 
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seine pulled at the marking site, approximately an hour before dusk, captured over 300 

individuals. Similar abundances were not observed at the adjacent sites, suggesting that 

the cod had possibly migrated from deeper water or areas inaccessible to the seining gear. 

It should be noted that observation was based on a single event and must be considered 

speculative, though similar observations have been reported by other researchers. Morin 

et al. (1991) observed higher captures of older Greenland cod at night during the day in 

shallow water; however, juveniles <1 OOmm were never captured in estuaries or along the 

coast of eastern James Bay near their study site. Whether or not juveniles exhibited 

similar diel movements remains unknown and requires study in Newfoundland waters. 

The authors also noted that temperature-dependent seasonal movements occurred. Adult 

Greenland cod were more abundant in shallow (2-5m) estuarine waters in winter than in 

summer (Morinet al. 1991). Adults have also been captured in estuaries during the spring 

with abundances declining in summer, suggesting offshore movements to avoid higher 

temperatures (Lambert and Dobson 1982). A higher capture percentage might have been 

achieved in Newfoundland waters if sampling had been conducted at night, instead of 

solely during the day. Night sampling should be added as a component of any future 

mark-recapture studies of cod. Also, further study is required to determine the extent of 

diel migrations to deeper waters by age-0 Greenland cod because mortality rates may be 

biased if the movements are perceived to be permanent. Apparent mortality estimates 

group death and emigration as losses to the natural system, with the implication that the 

observed emigration is permanent. However, Pollock et al. (1990) stated that temporary 

emigration may be common in many field situations and that the resulting bias may be 
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serious regarding parameter estimates. The existence of temporary emigration can lead 

to apparent mortality being overestimated because animals seemingly lost are returning 

to the system. 

The instantaneous natural mortality (M) of0.021 day·1 determined in this study for 

age-0 Greenland cod, though based on four data points, is comparable to estimates 

reported from other studies. For 6-12 month old Atlantic coastal cod along theN orwegian 

Skagerrak shoreline, Julliard et al. (2001) estimated Mat 3.8 year·1
, equivalent to aM of 

0.010 day·1
• Kristiansen et al. (2000) estimated Mat 0.0056 day·1 for age-0 Atlantic cod 

tagged and released at Heimarkspollen, Norway. Although their estimate is nearly four 

times lower than this study the cod they examined had a mean length of 120 mm, which 

is slightly larger than the juvenile cod used in this study. The size difference between the 

studies was slight, however, the larger size may have been sufficient for Heimarkspollen 

cod have enter a size refuge from most piscivores. Julliard et al. (2001) found that Z 

dropped dramatically for age-l coasta,l cod compared to younger, smaller conspecifics 

because individuals of the cohort were too large to be preyed efficiently upon by other fish 

species. At the same time, these individuals were too small to be exploited in commercial 

and recreational fisheries, and values of Z increased once the cod had recruited to the 

fishery. TheM estimate from this study was higher, as expected, than that reported for 

larger, older (age 1+ to 3+) northwest (0.0002-0.005 day-1
; Beverton 1964; Myers and 

Doyle 1983; Anderson and Gregory 2000) and northeast Atlantic (0.0007-0.001 day·1
; 

Sundby et al. 1989; Larsen and Pedersen 2002; Pedersen and Pope 2003) juvenile cod. 

For adult Greenland cod, Mikhail and Welch (1989) used catch curves to estimate 
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mortality as 0.5 year·1
, which is roughly equal to Z = 0.00082 day-1

• Therefore, even if 

fishing mortality is assumed absent, the mortality of adult cod is 25 times lower than the 

mortality of juveniles. 

Low recapture abundances at Dockside and Buckley's Cove precluded mortality 

estimates for cod at those sites, and it is unknown if the mortality rate observed at Boulder 

Beach is typical. Mortality may be high at Boulder Beach because predation risk may be 

high. High prey abundance attracts high predator density; increased predation risk may 

elevate prey mortality despite the presence of complex habitat (Laurel et al. 2003a). In 

2003, Heffems Cove was one of the highest producers of fish abundance in Newman 

Sound (Gregory et al. 2005), which is similar to observations over the previous seven 

years (Gregory et al. 2002). Of the 12 sites, Hefferns Cove was frequently the highest 

producer of juvenile gadoid (Greenland cod, Atlantic cod, white hake Urophycis tenuis) 

abundance and potential predators. Known piscine predators of juvenile cod at this site 

included older (age-l+ to 3+) conspecifics, sculpins (Myoxocephalus spp. ), and Atlantic 

cod (Linehan et al200 1; Laurel et al. 2003a). Mammalian predators, such as otters (Lutra 

lutra; H. Stewart, Department ofBiology, Memorial University ofNewfoundland, personal 

communication) and harbour seals (Phoca vitulina; Hammill and Stenson 2000), were also 

observed. Avian predators are also present, including gulls, terns, mergansers, loons, 

cormorant, eagles, and osprey (Linehan et al. 2001). The presence of potential predators 

is not sufficient evidence that predation mortality is high for Greenland cod, particularly 

if predators prefer other available prey items. Greenland cod in Western Hudson Bay co­

exist with a number of potential marine mammalian (ringed seal Phoca hispida, harbour 
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seal, beluga whale Delphinapterus leucas) and avian (black guillemots, thick-billed 

murres) predators (Mikhail and Welch 1989); however, gadids were not a major part of 

their diets. This finding, in combination with the absence of cod in the stomachs of 50 

sculpins, led Mikhail and Welch (1989) to conclude that Greenland cod was not a vital 

intermediary in Arctic food webs. This is in contrast with coastal co-habitants (e.g., Arctic 

cod Boreogadus saida) that play an important role as major prey for whales, seals, birds 

and charr. It is difficult to determine if Greenland cod in Newman Sound are vital prey 

for larger species. Tethering studies of juvenile cod predation have often used both 

Greenland and Atlantic cod juveniles (Linehan et al. 2001; Laurel et al. 2003a; Gorman 

2004), because they are similar in morphology (Methven and McGowan 1998) and 

behaviour while tethered (Laurel et al. 2003a). No studies have determined the gadoid 

prey preferences of Newman Sound predators. 

Little information is available concerning the effect that Vlalpha tags have on 

juvenile cod growth. Olsen et al. (2004) reported that tagged cod grew 0.46% daily under 

lab conditions; however, similarity to untagged cod was not determined and specific 

growth rates of recaptured cod were not compared between lab and wild tagged fish. 

Rikardsen et al. (2002) stated that Vlalpha tagged charr grew significantly better than Floy 

tagged charr and that the former seemed to have no effect on the growth. During my 

study, the mean SGR for tagged cod was lower than untagged wild cod, but differences 

were non-significant. Though similar, the SGRs for tagged and untagged wild cod should 

be treated with caution because size-selective mortality may be negatively affecting small 

cod and bias the mean values upwards. The small size differences (i.e., millimetres) 
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observed between sample times for juvenile cod may be concerning because fish lengths 

recorded with good precision in the field may still involve a small degree of error 

(Gutreuter and Krzoska 1994). Recently, field workers in Newman Sound, using the 

measuring boards from my study, demonstrated that measurement error can be very small 

after five independent observers recorded the lengths of eight juvenile cunners (pooled 

standard error= 0.16 mmSL; range= 0.20 mmSL to 0.87 mmSL; see Appendix 7 Table 

A12). The overall percent error, expressed as the ratio of standard error to mean length, 

was 0.27%, indicating that in situ measurement error can be negligible. The relationship 

between SGR and initial tagging length differed when tank cod were compared to field­

released cod. For cod held in tanks, SGR was relatively constant over the lengths 

examined; however, the SGRs for field cod were negatively correlated with increasing 

body size. The discrepancy between the growth rates of tank cod and field cod may be 

attributed to tank effects. During tank studies, larger cod appeared to dominate food 

consumption when fed, and smaller cod often could not feed until larger individuals 

reached satiation. In the natural environment, the ability to forage may not be hindered 

for small cod that require fast growth rates to reach size refuges from potential predators. 

In addition, higher food densities would be available to field cod inhabiting eelgrass 

(Renkawitz 2005). 

The slightly higher estimate ofM relative to previous studies may be attributed to 

an underestimate of tagging and handling mortality. Tagging mortality was negligible in 

tank studies; however, indirect tagging-induced mortality may be present. It is unlikely 

that the tag itself was visually observable to potential predators given its small size and 
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subdermal implantation (Rikardsen 2000). However, altered behaviour caused by 

handling stress may be a problem. For instance, once released, tagged cod may swim 

rapidly away from the point of disturbance, irrespective of the suitability of habitat types. 

This high activity may increase encounter rates with nearby predators. Furthermore, tag 

insertion inflicts a small wound near the eye of the cod. Some predators, such as older 

conspecifics, can track prey using chemosensory cues (Cote et al. 2001) and may detect 

the presence of tagged cod because of its injury. Linehan et al. (2001) proposed a similar 

scenario as a caveat of the tethering method where the injury caused by insertion of the 

hook into the caudal fin may attract a higher density of predators than otherwise present. 

A better estimate of tagging-related mortality would require the inclusion of known 

predators in tank studies to compare encounter rates of tagged and untagged individuals. 

Such a study has not been conducted so it is difficult to determine ifVIalpha tagged cod 

are more prone to predation than untagged conspecifics. 

Tag retention was high for Vlalpha tagged juvenile Greenland cod in tank and field 

experiments. Tag retention (95%) in this study was equivalent or higher than that reported 

for other fishes. Olsen et al. (2004) observed relatively high overall tag loss (33%) after 

a 150-day tank study for age-0 Atlantic cod (G. morhua), with the majority of losses 

occurring between weeks 1 and 9. Hatchery rainbow trout (Oncorhynchus mykiss) 

exhibited a mean retention of 83% over a period of 25 days (Isely et al. 2004 ), although 

the Vlalpha tags used were slightly larger (1.5 mm x 3.5 mm) than this and most other 

studies. Recaptured lake-dwelling and sea-run smolts of Arctic charr (Salve linus a/pinus) 

demonstrated strong size-dependent tag retention, ranging from 46-68% for individuals 
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less than 150 mm and ranging from 91-100% for individuals greater than 150 mm 

(Rikardson 2000). Rikardson et al. (2002) also reported tag retention of78% for hatchery 

charr, with most tags lost during the first 10 days. Small rockpool fishes , Girella elevata 

and Bathygobius cocosensis, experienced very low retention of 32±20% after 90 days 

under laboratory conditions (Griffiths 2002). In my study, size-dependent tag loss could 

not be assessed because only one tag was shed in both lab and field environments. 

Tag visibility was excellent throughout both the tank and mark-recapture studies. 

The main problem with reading VIalpha tags is that tissue pigmentation can sometimes 

obscure the visibility of the code. Olsen et al. (2004) found that approximately 33% of 

tags were partly hidden behind pigmented tissue ofhatchery juvenile cod though the codes 

were readable with the use of a blue light and amber glasses. Similar visual aids were 

sometimes required to view tags on marked rockpool fishes after 90 days (Griffiths 2002). 

Isley et al. (2004) found visibility was improved using slightly larger VIalpha tags and less 

than 0.1% were unreadable due to pigmentation. In my study, all tags were readable in 

the lab and in the field. 

Mortality associated with the VIalpha tagging technique was low for age-0 

Greenland cod with 82% survival after 18 days under lab conditions. Fish species tagged 

with soft Vlalpha tags typically have high survival rates. High survival has been observed 

in juvenile Atlantic cod (96% survival over 150 days, Olsen et al. 2004), rainbow trout 

(93%; Isely et al. 2004), Arctic charr (96-98%; Rikardsen et al. 2002), and intertidal fishes 

(80±5%; Griffiths 2002). Observed mortalities during my study were attributed to 

handling, tank conditions, and( or) aggressive behaviour of confined fish. 
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In summary, the mortality rate of age-0 Greenland cod (M = 0. 021 day-1
) inhabiting 

Newman Sound was higher than those reported for older conspecifics and Atlantic cod 

juveniles. High mortality rates may be attributed to high predation, uncertainties in 

onshore-offshore movements, or uncertainties in long-term handling and containment 

stress. As with older conspecifics,juvenile Greenland cod exhibited low movement rates, 

remaining near the point of release, though some evidence of diel migrations was 

observed. Vlalpha tagging is an appropriate method for mark -recapture studies of juvenile 

Greenland cod as small as 80 mmSL and provides high tag retention, visibility, and 

survival for marked individuals. There seems to be a negative effect on growth; however, 

decreased growth rates of tagged cod may be attributed to handling and containment 

stress. 
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Figure 3.1: Map of the study area, Newman Sound, Bonavista Bay, Newfoundland. The three marking areas- Dockside (DS), 
Buckley's Cove (BC), and Boulder Beach (BO) - are enlarged with the marking and adjacent monitoring sites depicted as circles. 
Also featured are the 12 bi-weekly seining sites, represented as squares. Eight bi-weekly sites [Big Brook (BB), DS, Whiterock 
(WR), Mistaken Cove (MI), BC, Heffems Cove (HC), Minchins Cove (MC), and South Broad Cove (SB)] have eelgrass habitat, 
shown with light green colouration, while the remaining four [Cannings Cove (CC), Newbridge Cove (NB), Mount Stamford 
(MS), and Little South Broad Cove (LS)] have no appreciable eelgrass. 
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Figure 3.2: Number of juvenile Greenland cod collected v ia beach seine for tagging purposes 
at Boulder Beach, Buckley's Cove, and Dockside over several days in Fall 2003. 
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Figure 3.3: The dispersion over time of age-0 Greenland cod tagged at Boulder Beach 
during Fall2003. The middle graph represents the tagging site (Boulder Beach) and the 
upper and lower graphs depict the recaptures collected at the adjacent monitoring sites 
(Otter Cove and Heffern's Cove, respectively). 
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tank Vlalpha tagged age-0 Greenland cod (circles) and recaptured Vlalpha tagged 
age-0 Greenland cod (triangles). An analysis of covariance indicated that the relationship 
between SGR and initial tagging length was significantly different when field cod (dashed 
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Table 3.1: Summary data of recaptured Vlalpha tagged age-0 Greenland cod. Tag codes in bold italics indicate multiple recaptures. 
Recapture sites in bold represent cod recaptured at adjacent monitoring sites. One cod (#17), identified by a caudal fin clip, shed its tag 
and was speculated as being marked at Boulder Beach based on low movements observed for juvenile cod. 

Recapture# Tag Code Tagging Date Tagging Site Recapture Date Recapture Site 
(mm/dd/yy) (mm/dd/yy) 

1 S36 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach 

2 S37 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach 

3 S02 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach 

4 R28 09/29/2003 Boulder Beach 10/02/2003 Boulder Beach 

5 H04 10/02/2003 Boulder Beach 10/07/2003 Hefferns Cove 

6 Rll 09/29/2003 Boulder Beach 10/07/2003 Boulder Beach 

7 S32 09/29/2003 Boulder Beach 10/07/2003 Boulder Beach 

8 H59 10/02/2003 Boulder Beach 10/07/2003 Boulder Beach 

9 Rll 09/29/2003 Boulder Beach 10/07/2003 Otter Cove 

10 S34 09/29/2003 Boulder Beach 10/14/2003 Hefferns Cove 

11 S32 09/29/2003 Boulder Beach 10/14/2003 Hefferns Cove 

12 S05 09/29/2003 Boulder Beach 10/14/2003 Boulder Beach 



Table 3.1 (continued): Summary data of recaptured Vlalpha tagged age-0 Greenland cod. Tag codes in bold italics indicate multiple 
recaptures. Recapture sites in bold represent cod recaptured at adjacent monitoring sites. One cod (#17), identified by a caudal fin clip, 
shed its tag and was speculated as being marked at Boulder Beach based on low movements observed for juvenile cod. 

Recapture# Tag Code Tagging Date Tagging Site Recapture Date Recapture Site 
(mm/dd/yy) (mm/dd/yy) 

13 S37 09/29/2003 Boulder Beach 10/14/2003 Boulder Beach 

14 S87 10/02/2003 Boulder Beach 10/14/2003 Boulder Beach 

15 W68 10/02/2003 Boulder Beach 10/21/2003 Hefferns Cove 

16 H07 10/02/2003 Boulder Beach 10/28/2003 Hefferns Cove 

17 unknown unknown Boulder Beach?? 10/28/2003 Hefferns Cove 

18 S63 10/02/2003 Boulder Beach 10/28/2003 Boulder Beach 

19 K84 10/08/2003 Buckley's Cove 10/15/2003 Buckley's Cove 

20 K87 10/08/2003 Buckley's Cove 10115/2003 Buckley's Cove 

21 F23 10/01/2003 Dockside 10/04/2003 Dockside 

22 L36 10/01/2003 Dockside 10/09/2003 Stairs Beach 

23 L36 10/01/2003 Dockside 10/16/2003 Stairs Beach 



Table 3.2: Initial length (mmSL), recaptured length, change in change, and time at large of age-0 
Greenland cod recaptured at Boulder Beach. Specific growth rates (SGR) are presented as % 
day-'. Codes in bold italics are multiple recaptures. R11 was recaptured twice in one day hence 
time at large was less than one day. In situ measurement error estimated as ±0.0027 mmSL. 

Tag Code Length at Length at L\Length Time at SGR 
Capture Recapture Large (

0/oday-1
) 

S36 88 87 -1 3 -0.381 

S37 82 83 3 0.404 

S02 87 87 0 3 0 

R28 82 84 
I ' 

2 3 0.803 

H04 87 88 5 0.229 

R11 92 94 2 9 0.239 

S32 94 94 0 9 0 

H59 81 86 5 5 1.198 

Rll 94 94 0 <1 0 

S34 92 93 7 0.154 

S32 94 94 0 7 0 

S05 75 80 5 16 0.403 

S37 83 88 5 12 0.588 

S87 87 87 0 12 0 

W68 98 100 2 19 0.106 

H07 84 100 14 26 0.671 

S63 84 89 7 26 0.222 

Mean 87.3 89.9 2.6 9.8 0.273 
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Table 3.3: Mean lengths (mmSL) ofVIalpha tagged and control age-0 Greenland cod reared in controlled conditions. 

Tagged Greenland Cod Control Greenland Cod 

Day 
Mean Length Standard Mean Length Standard 

n 
(mmSL) Deviation 

n 
(mmSL) Deviation 

0 27 94.2 7.8 23 96.2 6.3 

2 27 94.2 7.8 22 97.0 5.1 

6 25 95.1 7.3 22 97.0 5.1 

13 22 96.9 8.4 18 100.2 4.3 

18 22 101.4 8.8 18 102.0 8.0 



Chapter 4: Summary 

4.1 Juvenile cod mortality and movement in Newman Sound 

Age 0-1 cod experience high mortality rates, even in areas with protective vertical 

structure in Newman Sound. A natural mortality rate of0.068 day- 1 was estimated for age­

l Atlantic cod, suggesting that the population size of the cohort was reduced by nearly half 

on a weekly basis. Age-0 Greenland cod were observed to exhibit a natural mortality rate 

of 0.021 day-1
, nearly three times lower than the rate estimated for the older Atlantic cod. 

Juvenile cod preferentially settle in complex habitats (e.g., eelgrass, Laurel et al. 2003) 

where vertical structure can provide: (1) refuge from predators (Gotceitas et al. 1995, 1997; 

Hindell et al. 2000; Linehan et al. 2001; Laurel et al. 2003), (2) elevated food levels 

(Connolly 1994; Renkawitz 2005), (3) reduced physical exposure (Bell and Pollard 1989), 

and (4) increased water quality (Orth et al. 1984). Despite these benefits, juvenile cod 

nonetheless experience high mortality rates in eelgrass habitat, suggesting that mortality 

rates in other available habitats (i.e., mud, sand) are even worse. Available data on 

predation risk suggests this is indeed the case (Tupper and Boutilier 1995; Linehan et al. 

2001; Laurel et al. 2003). 

In many teleost populations, natural mortality is stage- and size-dependent, with 

younger age-classes experiencing higher rates than older, larger stages (Peterson and 

Wroblewski 1984). As fish age and grow, the susceptibility to density-independent 

mortality decreases, resulting decreased predation risk, increased resistence to starvation, 

and increased tolerance to environmental fluctuations (see review by Sogard 1997). During 

my study, age-l Atlantic cod were typically smaller and more variable in size compared to 
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age-0 Greenland cod, which may explain the discrepancy between the mortality estimates 

for the two age-classes. Furthermore, size-dependent mortality related to handling stress 

may have elevated the estimate for age-l Atlantic cod because individuals <80 mrnSL were 

more vulnerable to this mortality than larger individuals. The mean lengths for age-l 

Atlantic cod fin-clipped on Day 0 and Day 6 at Dockside during Spring 2003 were <80 

mrnSL, which suggests a large portion of these releases were prone to stressed-related 

mortality. Conversely, the mean lengths of Vlalpha-tagged age-0 Greenland cod were 

larger than 80 mrnSL, suggesting that these individuals were predominately tolerant to 

handling mortality. 

Despite adjustments for handling mortality and emigration, the natural mortality 

rate determined for age-l Atlantic cod in nearshore Newfoundland waters was high 

compared to published rates. The rate estimated for age-0 Greenland cod may also be 

overestimated, but cannot be verified because published rates are largely absent. Several 

uncertainties may have contributed to the overestimation of natural mortality rates during 

my study. For example, I estimated acute stressed-related mortality for juvenile cod over 

a period of a few days; however, delayed stressed-related mortality may be occurring weeks 

or months after release (Ricker 1949). ·Abnormal behaviour may be exhibited following 

a stressful event (Mesa and Schreck 1989), possibly leading to increased susceptibility to 

predation, reduced feeding efficiency, and decreased resistance to disease and 

environmental fluctuations , resulting in mortality rates being positively biased. Further 

study is required to quantify mortality directly or indirectly related to long-term handling 

stress for cod age 0-1 years. In addition, tagging mortality was negligible in tank studies; 
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however, indirect tagging-related mortality may have occurred for fin-clipped age-l 

Atlantic cod and Vlalpha-tagged age-0 Greenland cod released into the natural 

environment. It is unlikely the minute marks were visually observable to potential 

predators; but both techniques involve the infliction of wounds that may increase the 

probability of detection by potential predators using chemosensory cues. Similar scenarios 

have been proposed for cod during field studies that involve sonic tag implantation (Cote 

et al. 2001) and tethering (Linehan et al. 2001). A better assessment of tagging-related 

mortality would require the inclusion of known predators in tank studies to compare 

encounter rates of marked and unmarked individuals. In addition, uncertainties in 

temporary emigration may result in erroneous mortality estimates. Animals suspected to 

be dead or permanently emigrated may be moving in and out of the study area, leading to 

mortality values being overestimated. Age-l+ Atlantic cod undertake diel migrations from 

deep, cool waters inhabited during the day to shallow, warmer waters at night (Keats 1990; 

Cote et al. 2001 ). Higher captures of Greenland cod > 100 mm occur at night than during 

the day in the shallow waters of James Bay (Morin et al. 1991 ), and similar movements are 

conducted by Greenland cod <100 mm in Newman Sound (personal observation). These 

"onshore-offshore" movements suggest temporary emigration occurred for both species 

during my study and possibly caused mortality rates to be positively biased. Sampling at 

night and in deeper water is recommended to determine the extent of diel migrations for 

age 0-1 cod in the Newfoundland coastal zone. 

Juvenile cod, aged 0-1 years, exhibited small scale movements in nearshore habitat 

during my study - rarely moving more than a few hundred metres - regardless of age, 
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species, or season. These observations are consistent with the fmdings of other Northern 

Atlantic Ocean studies (Hjort 1914; Svasand and Krisitiansen 1990; Pihl and Ulmestrand 

1993; Smedstad et al. 1994; Tupper and Boutilier 1995; Gotceitas et al. 1996; Gregory et 

al. 1997; Grant and Brown 1998; Skreslet et al. 1999). During the study period, marked 

cod were not recaptured outside of the coves where they were initially marked and released, 

which suggests that the probability oflarge-scale alongshore movements is low for age 0-1 

cod during late spring (June-July) and early fall (October-November). The limited 

nearshore movements of age-0 Greenland cod and age-l Atlantic cod are consistent with 

the life history movement patterns of each respective species. Larger Greenland cod 

juveniles (age 1-2) and adults (age 3+) have been described as non-migratory, non­

schooling, sedentary fish (Mikhail and Welch 1989; Morin et al. 1991; Nielsen and 

Andersen 2001) that remain in home inlets for life (Mikhail and Welch 1989). Demersal 

eggs are spawned beneath the ice in the vicinity of nearshore nursery habitats (Mikhail and 

Welch 1989; Methven et al. 2001 ), which are subsequently occupied by benthic age-0 

juveniles (Ings 2005). Over their life history, Greenland cod appear limited to relatively 

small scale movements compared to Atlantic cod. The scale of movement varies over the 

life history of Atlantic cod. Spawning occurs tens to hundreds of kilometres offshore in 

deep waters and the pelagic eggs and larvae are transported to nearshore nursery habitats 

by winds and currents. Settlement occurs in the nearshore during multiple recruitment 

pulses (Methven and Bajdik 1994; Grant and Brown 1998; Gregory et al. 2002) and small 

scale movements are exhibited by benthic juveniles, aged 0-1, associated with structurally 

complex habitats (e.g., eelgrass, macroalgae). As body size increases with age, the affinity 
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for structural habitats decrease and the size of home ranges increase as seasonal and 

spawning migrations occur (Cote et al. 2001). 

The limited small-scale movements of juvenile cod may result from density­

dependent habitat selection. Laurel et al. (2004) suggested that the probability of large­

scale movements(> 1000 m) was high for young cod in Newman Sound during years with 

high cod densities. These authors speculated that saturation of optimal nearshore habitats 

by conspecifics forced juvenile cod to: (1) occupy suboptimal habitats with limited 

availability of vertical structure (e.g., mud, sand) and (2) form highly mobile shoaling 

aggregations to offset the elevated predation risk experienced in such suboptimal habitats. 

In 2002 and 2003 -the years of my study- juvenile cod abundances in Newman Sound were 

low compared with previous years (Gregory et al. 2003, 2005), which may explain why I 

did not observe any evidence of large-scale alongshore movements for age-0 Greenland 

cod and age-l Atlantic cod. 

4.2 Implications and future study 

The mortality rates I estimated in this study will provide fisheries managers and 

marine ecologists with quantified values of juvenile cod survival in coastal Newfoundland 

waters. Furthermore, the development of an age-dependent mortality model will allow 

investigators to predict mortality rates for juveniles, particularly individuals aged 0-3 years. 

However, further study is warranted to determine whether the mortality rates observed for 

juvenile cod in Newman Sound are similar to those experienced by young cod in other 

coastal areas of Newfoundland. The mortality rates observed in my study occurred over 

small spatial (<1000 m2
) and temporal (i.e. , days to weeks) scales. Conclusions based on 
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small scale studies are not necessarily transferable to larger scale processes or vice versa 

(Thrush et al. 1997; Schneider 2001). 

The distribution of juvenile cod habitat, such as eelgrass, is non-uniform and may 

vary with geographic location, environmental conditions (e.g., temperature, salinity), 

bottom geology and morphology, wind-generated wave dynamics, tidal currents, water 

depth, light penetration, and storm severity (Kelly 1980; Turner et al. 1999). These factors 

induce eelgrass habitats to range in complexity from large continuous meadows (i.e., low 

2-D complexity) to small sparse patches (i.e., high 2-D complexity). Juvenile cod 

abundance is related to the 2-D complexity of eelgrass habitat (Wells 2002; Hammond 

2003 ). The relationship between juvenile cod abundance and habitat complexity depends 

on whether fish can hide from patrolling predators while accessing benthic prey items 

(Wells 2002). For example, low complexity habitats (i.e., dense eelgrass meadows) 

provide sufficient shelter, but restrict access to benthic prey, whereas highly complex 

habitats (i.e., sparse eelgrass patches) offer unrestricted access to prey but limited 

protection. Juvenile cod abundance is highest in habitats of intermediate complexity where 

the ability to hide and forage appear balanced (Wells 2002; Hammond 2003). In my study, 

mortality rates were estimated for cod at eelgrass sites of intermediate complexity 

according to the criteria of Wells (2002). The high abundances of juvenile cod in eelgrass 

with intermediate complexity, despite high mortality rates, suggest that survival may be 

greatly reduced in eelgrass with low or high complexities. Further work is required to 

determine whether juvenile cod mortality is influenced by habitat complexity. 

The low movement rates of juvenile cod in nearshore habitats suggest that Marine 
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Protected Areas (MPAs) will be an effective conservation measure for cod. In 

Newfoundland, MP As have been proposed near Gilbert Bay, Eastport, and Leading Tickles 

(Morris and Power 2004). Juvenile cod habitat, in the form of vegetation, has been 

documented at all three localities (C. Morris, Department ofFisheries and Oceans, personal 

communication). The distribution of young cod in shallow waters during spring and fall, 

along with low movement, will increase the juvenile cod survivorship. However, 

protection may decrease when age-0 Greenland cod and age-l Atlantic cod presumably 

move to deeper waters in late fall and early summer, respectively. Further study is needed 

to determine the mortality rates of juvenile cod when distributions shift to deeper waters 

where protective structure (i.e., macroalgae, cobble) may be unavailable. My study has 

shown that age 0-1 cod exhibit high site fidelity within eelgrass habitats where they exhibit 

higher mortality than expected from published accounts, which suggests that predation 

mortality in other habitats is worse. 
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Appendix 1 

Table A1: The number of seines used to recapture fm-clipped age-0 Greenland cod (Gadus ogac) for each sampling day at 
Buckley's Cove, Mistaken Cove, and Pipers Cove during the period of October 3-20,2002. Day 0 refers to the day juvenile cod 
were collected for marking purposes. 

Number of Seines 

Site October 3 October 4 October 6 October 8 October 10 October 16 October 20 
(Day 0) (Day 1) (Day 3) (Day 5) (Day 7) (Day 13) (Day 17) 

Buckley's 4 7 5 1 1 1 1 
Cove 

Mistaken 0 1 1 1 1 1 1 
Cove 

Pipers Cove 0 1 1 1 1 1 1 



Table A2: The number of seines used to recapture fin-clipped age-l Atlantic cod (Gadus morhua) for each sampling day at 
Dockside, Stairs Beach, and Whiterock during the period of June 7 to July 17, 2003. Day 0 refers to the day juvenile cod were 
collected for marking purposes. 

Number of Seines 

Site June 7 June 10 June 13 June 21 July 3 July 10 July 17 
(Day 0) (Day 3) (Day 6) (Day 14) (Day 26) (Day 32) (Day 40) 

Dockside 9 9 3 4 3 3 3 

Stairs Beach 0 4 1 4 3 2 3 

Whiterock 0 2 2 5 3 1 2 

Table A3: The number of seines used to recapture fin-clipped age-l Atlantic cod (Gadus morhua) for each sampling day at 
Buckley's Cove, Mistaken Cove, and Pipers Cove during the period of June 6 to July 17, 2003. Day 0 refers to the day juvenile 
cod were collected for marking purposes. 

Number of Seines 

Site June 6 June 9 June 12 June 19 June 26 July4 July 8 July 17 
(Day 0) (Day 3) (Day 6) (Day 13) (Day 20) (Day 28) (Day 33) (Day 41) 

Buckley's 10 15 4 5 2 3 2 3 
Cove 

Mistaken 0 3 1 5 3 2 2 3 
Cove 

Pipers Cove 0 4 2 3 2 2 3 3 



Appendix 2 

Jolly-Seber Notation and Formulae 

If the assumptions of the Jolly-Seber method are justified, the proportion of marked or 

tagged specimens in the captured sample should equal that in the actual population, N;: 

m; U 

n; M (Al.l) 

where m; is the number of marked animals captured in the ith sample, n; represents the 

total number of animals captured in the ith sample, and M; in the number of marked 

A 

animals in the population when the ith sample is collected. M; is estimated as M , which 

is computed from with the number of animals released after the ith sample (R;), the 

number of animals released at i that are recaptured (r;), the number of animals captured 

before i, not captured at i, and captured again after i (z;), and m;: 

A R;z; 
M; = --+ m; 

r; 

A 

(A1.2) 

After the marked population sizes Mi , are estimated, manipulation of the previous 

equation yields an estimator for the population size: 

A nM 
M=-­

m; 
(Al.3) 

Population sizes are not directly required for estimation of ¢;,the probability of 

survival from sample ito sample i+ 1. Instead, the survival rate is estimated by comparing 

the number of marked individuals present in the population immediately after sample i 
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with the marked population before sample i, after correcting for removals or accidental 

deaths occurring during sample i: 

(A1.4) 

The Jolly-Seber survival rate estimator actually provides an apparent survival rate as it 

does not distinguish between animals dying and animals simply leaving the study area. 

For model simplicity, animals leaving the study area are assumed permanent losses to the 

system. If migration patterns can be evaluated, the apparent survival rate can be adjusted 

to provide an estimate of true survival. Aside from estimating losses to the study area, the 

JS method can also assess recruitment, B;, between sample i and sample i + 1: 

(Al.5) 

The precision of estimates depend on whether the animals being studied can be efficiently 

collected in the area of habitation by the sampling gear. The probability of capture, pi, 

can be estimated from the proportion of marked (m;), or total (n;), animals alive at sample 

i that are captured in i: 

(A1.6) 

Probability of capture should not be confused with the recapture proportion (RP;), 

routinely calculated as RP; = m/n;, though both parameters are useful as sampling intensity 

indicators (Fitz and Wiegert 1992). 

The f/J; and pi are maximum likelihood estimators and all estimates described 

above can appear reasonable despite being biased. For this reason, approximately 
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unbiased estimators have been devised by Seber (1982) for ¢;,N;,B;,and M: 

~ (n;+ l)M 
M=---­

m;+ 1 

Jolly (1982) reported the following unbiased estimator for p;: 

m; 
]5, =-=-

M; 

(A1.7) 

(A1.8) 

(Al.9) 

(A1.10) 

(A1.11) 

Approximate asymptotic variances and covariances for Jolly-Seber formulae 

are calculated by the program JOLLY. Pollock et al., (1990) stated that the variances 

include estimation variability, or the variation resulting from capture probabilities not 

equalling 1. They used the symbol var( BiJei)to distinguish from Seber's (1982) 

"' var( 8;) that incorporated sampling and nonsampling variation associated with birth 

and death. The expected or mean value of a particular parameter is denoted byE(*). 

Variance equations are shown below and all covariance terms, excluding t/J; and B;, are 

zero: 

(Al.12) 
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( 

A I ) [ J{ U - E (m;) + R; [ 1 1 l ( M - U) } var M N ; = M M- E(n;) ---- + --'-------__:_ 
U E(n) R ; NE(m;) 

[ U + 1 - E ( m; + 1) ][ U + 1 - E ( m1 + 1) + R; + 1] [ 1 

( I ) 2 (U + 1) 2 E(n + 1) 
var r/Ji ¢; = ¢ 

[ U - E ( m;)] [ 1 1 l 
+ [ U- E(m;) + R ;] E(n)- R ; 

cov(Bi,B; + 1) = 

[ N; + 1 - E ( ni+ 1) ]( M + 1 - U + 1) 
- r/Ji + 1-"----------=------­

N ;+ ) 

[ 
B;R; + 1 ( 1 1 ) M + 1 ] 

. U + 1 E(r; + 1) - R; + 1 + E(m; + 1) 

2 [ ] [ U + 1 - E ( m; + 1) + R; + 1] 
B; Mi +I-E(mi+ l) 2 (U + 1) 

[ 
1 1 l [ U- E(m;)] [¢;R;(N;- U) r 

. E (; + 1) R; + 1 + ( M; - E ( m ;) + R;] . U 2 

. [-1-. _ ~] + [ M- E(n~) ](Ni+ 1- B;)(N;- U)( 1- ¢;) 
E(r1) R1 N{U- E(m;) + R;] 

1 l 
Rl+ I 

. [ N; + 1( N; + 1 - E ( n; + 1) )[ N ; + 1 - M; + 1] l + ¢; 2 N{ N; - E ( n;) ]( N; - M;) 
N1 + 1E(m; + 1) ME(m;) 

(A1.13) 

(A1.14) 

A1.15) 

(A1.16) 

(A1.17) 

(A1.18) 
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Pollock et al., (1990) included a means to calculate the full variance of ¢;: 

,... ( "I ) ¢,(1 - ¢;) var( ¢;) = var ¢; ¢; + ____:____:_______:___::__ 
N ;- n;+ R; (A1.19) 

because they felt that biologists are more interested in the ¢; itself, and that variance 

estimates including sampling and nonsampling variation would be of interest. 

All formulae described thus far is applicable to the JS full model, also commonly 

referred to as Model A, whereby /j; and p; vary with time. More restricted models 

have been devised by Jolly (1982) in an attempt to increase the precision of parameter 

estimators, and these differ from the full model by making /j; constant (Model B) or p; 

constant (Model C) or both (Model D). The use of these models may increase precision; 

however, when applied, the restrictions must be biologically reasonable or the estimates 

will be biased. The program JOLLY provides an option to analyse mark-recapture using 

Models A , B, and D. Two other models, labelled as Model A ' and Model 2, are 

available in JOLLY and are commonly known as the Death Only Model and the 

Temporary Trap Response Model, respectively. Models A ' and 2 were not used in the 

analysis of juvenile cod mark-recapture data. A further advantage of the program 

JOLLY, other than being able to analyse mark-recapture data with different estimation 

models, is it conducts chi-square goodness-of-fit tests to determine the most appropriate, 

biologically reasonable model. These tests were developed and outlined by Brownie et 

al. (1986). 
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Appendix 3 

Table A4: Method B table determined by program JOLLY for age 0 Greenland cod fin-clipped at Buckley's Cove in October 2002. Ri 
denotes the number of animals released after the ith sample; zi denotes the number of animals captured before i, not captured at i, and 
captured again in some later sample. 

Time of Last Capture 

1 

2 

3 

4 

Marked (mi) 

Unmarked (Ui) 

Total Caught (m) 

Released (si) 

1 

0 

0 

364 

364 

331 

29 

0 

2 

21 

0 

21 

266 

287 

287 

4 

8 

Time of Recapture 

3 

5 

4 

0 

9 

280 

289 

289 

2 

3 

4 

3 

0 

2 

0 

5 

40 

45 

45 

0 

0 



Table A5: Method B table generated by program JOLLY for age 1 Atlantic cod fin-clipped at Dockside in June 2003. 

Time of Last Capture Time of Recapture 

1 2 3 4 

1 0 30 11 1 

2 0 10 2 

3 0 8 

4 0 

Marked (mi) 0 30 21 11 

Unmarked (Ui) 272 189 259 68 

Total Caught (ni) 272 219 280 79 

Released (si) 271 209 280 79 

R. 
I 

42 12 8 0 

zi 0 12 3 0 



Table A6: Method B table determined with program JOLLY for age 1 Atlantic cod fin-clipped at Buckley's Cove in June 2003 . 

Time of Last Capture Time of Recapture 

1 2 3 4 

1 0 22 23 2 

2 0 9 3 

3 0 3 

4 0 

Marked (mi) 0 22 32 8 

Unmarked (Ui) 237 193 214 30 

Total Caught (ni) 237 215 246 38 

Released (si) 236 206 238 38 

R. 
I 

47 12 3 0 

zi 0 25 5 0 



Table A 7: Method B table generated by program JOLLY for pooled mark -recapture data from age 1 Atlantic cod fin-clipped at Buckley's 
Cove and Dockside in June 2003. 

Time of Last Capture Time of Recapture 

1 2 3 4 

1 0 52 34 3 

2 0 19 5 

3 0 11 

4 0 

Marked (mi) 0 52 53 19 

Unmarked (m) 509 382 473 68 

Total Caught (ni) 509 434 526 87 

Released (si) 507 415 518 87 

Ri 89 24 11 0 

zi 0 37 8 0 



Appendix 4: SAS output with ANCOV A table and residuals vs. fits plot for the juvenile 
cod age-dependent natural mortality model. 

Model: 
lnM =Po+ PAge*ln(Age) 

Symbols: 
M =instantaneous natural mortality rate (day-' ) 
Age = age of juvenile cod in days 

Results: 
Distribution: 
Link Function: 
Dependent Variable: 
Observations Used: 

Parameter OF 

Intercept 1 
age 1 
Scale 1 

Gamma 
Log 
M 
17 

Analysis 

Estimate 

10 . 3856 
- 2 . 4724 

1 . 3808 

Of Parameter Estimates 

Standard Wald 95 % Confidence 

Error Limits 

2 . 3361 5 . 8068 14 . 9644 
0 . 3577 - 3.1735 - 1 . 7713 
0 . 4284 0 . 7517 2 . 5365 

LR Statistics For Type 3 Analysis 

Source OF 

age 1 28 . 22 < . 0001 

Therefore the regression equation is: 
M = e-2.47Age + 10.39 

x2 
19 . 76 
47 . 77 
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Plot of Streschi*Pred . Legend : A 1 obs , B 2 obs , etc . 

s 
t 
R 
e 
s 
c 
h 
i 

4 + 
I 
I 
I A 
I 
I 
I 

3 + 

2 + 
I 
I 
I 
I 
I 
I 

1 + 

A 

0 + 
I AA 
I A 

I A 
I 
I A 
I A 

- 1 + 
I A 
I 
I 
I 
I 
I 

- 2 + 
I 

A 

A 

c 

A 

A 

A 

--+------------+------------+---- - -------+------------+---------
0 0 . 02 0 . 04 0 . 06 0 . 08 

Pred 

160 



Appendix 5: 

Table A8: Summary data for age-0 Greenland cod (G. ogac) VI alpha tagged at Newman Sound, Newfoundland, 
during Fall 2003. Numbers of cod marked, mean lengths, and standard deviations (SD) represent cod released 
during the tagging study. Percent recapture was calculated as the number of recaptures divided by the number 
ofcodmarked and multi2lied bl: 100. 

Date Site Event Tag Codes Number Mean SD Number of Percent 
Used of Cod Length Recaptures Recapture 

Marked (mmSL) 

Sept. 29, Boulder Ml SOO-S53, 106 85 5 9 8.5 
2003 Beach ROO-R58 

(Day 0) 

Oct. 2, Boulder M2 S54-S99, 308 84.1 4 9 2.9 
2003 Beach R59-R99, 

(Day 3) VOO,V17, 
V37-V99, 
WOO-W99, 
HOO-H42, 
H51-H75 

Sept. 30, Buckley' s M1 Y01-Yl6; 30 88 .8 8 0 0 
2003 Cove Vl8-V36 

(Day 0) 

Oct. 4, Buckley's M2 KOO-K24 24 88.9 6 0 0 
2003 Cove 

(Day 4) 

Oct. 8, Buckley' s M3 K25-K99, 93 88.8 5 2 2.2 
2003 Cove H43-H50, 

(Day 8) H76-H92 

Oct. 15, Buckley' s M4 H93-H98, 72 91.1 4 0 0 
2003 Cove J00-166 

(Day 15) 

Oct. 21 , Buckley' s M5 167-183 16 99.6 4 0 0 
2003 Cove 

(Day 21) 

Oct. 1, Dockside Ml LOO-L42, 101 88.8 5 2 2 
2003 FOO-F59 

(Day 0) 

Oct. 4, Dockside M2 GOO-G08 8 89 5 0 0 
2003 

(Day 3) 

Oct. 9, Dockside M3 G09-G16 7 91 3 0 0 
2003 

(Day 7) 

I = 765 x = 89.5 I=22 
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Appendix 6 

Table A9: The number of seines used to recapture VIalpha age-0 Greenland cod (Gadus ogac) for each sampling day at Boulder 
Beach, Hefferns Cove, and Otter Cove during the period of September 29 to October 28, 2003. Day 0 refers to the day juvenile 
cod were collected for tagging purposes. 

Number of Seines 

Site September 29 October 2 October 7 October 14 October 21 October 28 
(Day 0) (Day 3) (Day 8) (Day 15) (Day 22) (Day 29) 

Boulder Beach 11 12 2 3 3 2 

Hefferns Cove 0 3 3 3 2 2 

Otter Cove 0 3 3 3 2 3 



Appendix 6 (cont.) 

Table A10: The number of seines used to recapture Vlalpha age-0 Greenland cod (Gadus ogac) for each sampling day at 
Buckley's Cove, Mistaken Cove, and Pipers Cove during the period of September 30 to October 21,2003. Day 0 refers to the 
day juvenile cod were collected for tagging purposes. 

Number of Seines 

Site September 3 0 October 4 October 8 October 15 October 21 
(Day 0) (Day 5) (Day 9) (Day 16) (Day 22) 

Buckley's Cove 13 6 9 3 4 

Mistaken Cove 0 3 2 3 3 

Pipers Cove 0 3 2 1 2 



Appendix 6 (cont) 

Table All: The number of seines used to recapture Vlalpha age-0 Greenland cod (Gadus ogac) for each sampling day at 
Dockside, Stairs Beach, and Whiterock during the period of October 1-16, 2003. Day 0 refers to the day juvenile cod were 
collected for tagging purposes. 

Number of Seines 

Site October 1 October 4 October 9 October 16 
(Day 0) (Day 3) (Day 8) (Day 15) 

Boulder Beach 11 12 2 3 

Hefferns Cove 0 3 3 3 

Otter Cove 0 3 3 3 



Appendix 7 

TableA12: Measurementerrorof8 cunners (T adspersus) across five independent observers 
using a measuring board marked in millimetres. Percent error was determined as the ratio 
of standard error to mean length. Data by S. Mayor, Department of Biology, Memorial 
University of Newfoundland. 

Mean Number Standard Standard Percent 
Fish Length of Deviation Error Error 

(mmSL) Observations (mmSL) (mmSL) (%) 

A 44.2 5 0.45 0.20 0.45 

B 84.0 5 0.71 0.32 0.38 

c 91.4 5 1.95 0.87 0.95 

D 45.4 5 0.89 0.40 0.88 

E 40.6 5 0.55 0.25 0.60 

F 78.2 5 1.10 0.49 0.63 

G 45.4 5 0.89 0.40 0.88 

H 48.8 5 0.84 0.37 0.77 

Pooled 59.8 40 1.02 0.16 0.27 
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