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Abstract 

Aspect-Oriented Software Development (AOSD) is an emerging paradigm that ad­

dresses the limitation of Object-Oriented (00) technology in localizing crosscutting 

concerns (e.g. logging, tracing, etc.) by introducing a new modularization mechanism: 

the aspect. Aspects localize the behaviour of crosscutting concerns (called advice) 

and specify points in the structure or execution trace of the core system (called join 

points) where advice applies. A weaving mechanism interleaves the execution of the 

aspects and the core. The behaviour of an Aspect-Oriented (AO) system is the woven 

behaviour of the aspects and the core; this woven behaviour may reveal conflicts in 

the goals of system concerns (core or crosscutting): such conflicts are called concern 

interactions. In this thesis, we present a process for detecting concern interactions 

in AO designs expressed in the UML and our weaving rule specification language 

(WRL). The process consists of two tasks: 1) a light-weight syntactic analysis of the 

AO model to reveal advice overlaps (e.g. instances where multiple advice applies to 

the same join point) as potential sources of interaction and 2) verification of desired 

i 
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model properties before and after weaving to confirm/reject findings of task 1 and/or 

to reveal new interactions. At the heart of task 2 is a weaving process that maps an 

unwoven AO model to a behaviourally equivalent woven 00 model. 
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Chapter 1 

Introduction 

1.1 The Aspect-Oriented Paradigm 

1.1.1 Objects and Separation of Concerns 

Over the years, computer hardware and software have evolved hand in hand. In 

the early days, due to hardware limitations, the problems solved by computers were 

simple and so was the software written to solve them. Demands for using computers to 

solve more complex problems led to advancements in hardware technology; software 

technology grew as a result to support the complex software solutions required for such 

problems. Traditional engineering disciplines manage the complexity of systems by 

separation of concerns (SOC); that is, identifying the system's concerns and dealing 

with each concern separately. With ideal SOC one can develop, test, and modify 

1 
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system concerns in isolation and evolve systems to handle new concerns without 

changing their existing parts. In 1972, Paras called for the application of SOC to 

software development to cope with the increasing complexity of software systems, and 

suggested that ideal SOC can be approached through the technique of modularization 

[36]. Over the years, programming paradigms have emerged to help developers achieve 

better SOC by providing better modularization mechanisms. The Object-Oriented 

(00) paradigm is currently the most popular; its primary unit of modularity, the 

class, improves SOC by grouping together data and behaviour related to a single 

concern; however not all concerns of a system can be simultaneously localized in 

classes. Consider the example (from [12]) of a typical 00 model for a simplistic figure 

editing program shown in Figure 1.1. The concerns ofrepresenting the display screen 

and the figures, points, and lines on the screen (i.e., the core concerns) are localized by 

the concrete classes Display, Figure, Point, and Line respectively. Now consider the 

concern of updating the display screen each time points or lines move. This concern 

cannot be localized in a single module in this model. Its implementation cross-cuts the 

Point and Line modules as invocations of Display.update() in each of the modifier 

methods of Point and Line. In this model, display updating is a crosscutting concern. 

What if we try a different modularization that localizes the display updating concern? 

We will sadly discover that this will leave other concerns scattered across the new 

model. The crosscutting nature of concerns is an inherent property of many real 
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Display 

update() 

Figure 

Point Line 

D!solayUpdating 

Figure 1.1: Crosscutting in 00 models 

problems and 00 technology falls short in localizing all concerns in such problems. 

As shown in Figure 1.2 (adopted from [24]), the concern space of many problems 

is multi-dimensional. An 00 system is modularized across a single dimension. All 

concerns along this dimension are neatly localized in the 00 model, while the remain-

ing concerns crosscut the model. This is the result of mapping a multi-dimensional 

concern space onto a single-dimensional implementation space. 

The inability of 00 technology to simultaneously localize orthogonal concerns has 

its consequences: crosscutting concerns are implemented in several modules (scatter-

ing) and a single module implements more than one concern (tangling). These are 

signs of poor modularity: scattering leads to poor traceability from crosscutting con-

cerns to their implementation, and tangling hinders ease of module implementation 
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Display element representation 
Display element representation 

Logging 

Concern space Implementation space 

Figure 1.2: Mapping a multi-dimensional concern space onto a single-dimensional 
implementation space 

(one has to focus on multiple concerns while implementing a module), comprehension, 

and reuse (the implementation of one concern comes with the baggage of other con-

cerns). It also becomes hard to evolve the system since implementing an additional 

crosscutting concern involves modifying multiple modules. 

1.1.2 Aspect-Oriented Programming 

Several post-object programming (POP) technologies emerged to address the limi-

tation of 00 technology in achieving SOC across more than one dimension. These 

include adaptive methods [26], subject-oriented programming [44], composition filters 

[3], and aspect-oriented programming [21]. These related research paths converged 

under the title of aspect-oriented programming (AOP). 

Despite ongoing and productive dialogue amongst the AOP community, a com-
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mon consensus on what constitutes an AOP approach is yet to be reached (though 

significant efforts have been made including [29], [31], and [14]). Perhaps the most 

widely cited endeavour to characterize AOP is that of Filman [14]: that AOP is 

quantification and obliviousness. Quantification means that programs can include 

quantified statements (i.e. statements that apply to more than one place) of the form 

In programs P, whenever condition C arises, perform action A. 

Obliviousness means that authors of a program P need not be aware of quantified 

statements that reference them. How do quantified statements help? Figure 1.3 

illustrates how the display updating concern from the figure editing example of Sec­

tion 1.1.1 can be localized in a quantified statement (another quantified statement 

could localize the logging concern). Notice how the authors of the Point and Line 

classes can be oblivious of the display updating concern (or other cross-cutting con­

cerns such as logging) and focus on implementing the concerns of representing points 

and lines. In general given an N-dimensional concern space and an M-dimensional 

implementation space where M i N, crosscutting concerns can be localized in quan­

tified statements in an AOP system (this supports the notion that AOP does not 

replace existing technologies, rather it complements them); this improves modularity 

with the following implications: 

• Improved traceability: Crosscutting concerns can be easily traced to quantified 

statements. 



1. Introduction 6 

class Point { class Line { 

private int x, y; private Point pl, p2; 
... . .. 
public void setX{int x) { public void setPl(Point pl) { 

this.x - X' this.nl - nl• 
I D.isp.!ay. U£dat:e (); Di . .sp.lav. update(); I 

) ) 

public void setY(int y) { public void setP2(Point p2) { 

this.~ = Y.i this.o2 = o2; 
I D.i sp.l~y. upda t:e (); Di.sp.J.ay. update () ; I 

) ) 
) ) 

~7 
Display updatin~ quantified statement 

In the figyre editing 12rogram, 

programP 
after execution of methods Point.§etX(int), Point.setY(int), Line.setPI(Point), Lin~:.setP2(Point) 

conditione 
invoke Di~J2la:l,l!l1Qat~:O 

action A 

Figure 1.3: Use of quantified statements in the figure editing example 

• Ease of implementation and comprehension: Authors/readers of modules can 

focus on implementing/understanding one concern and can be oblivious of cross-

cutting concerns. 

• Module reusability: Modules implement a single concern and do not come with 

the baggage of other concern implementations. 

• Improved evolvability: Adding a crosscutting concern is simply a matter of 

adding a quantified statement. 

According to [14], to implement an AOP language (i.e., a language that allows 

quantified statements over oblivious programs) one must consider three issues: 

• Quantification: What conditions can we use in quantified statements? In other 
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words, to what points in the execution of programs can actions be tied? Two 

broad types are: 

- Points that can be specified by elements of the static structure of programs 

(e.g. method calls which can be specified by method signatures) 

- Points that depend on run-time behaviour (e.g. size of the call stack) 

• Interface: How do quantified statements communicate with programs and with 

other quantified statements? 

• Weaving: What mechanism interleaves the execution of actions in quantified 

statements with the execution of affected programs? 

AspectJ [19) is a general purpose aspect-oriented (AO) extension to Java developed 

by the AOP group at Xerox Palo Alto Research Center (PARC) and is perhaps the 

most popular existing AOP language. AspectJ allows writing quantified statements 

over conventional Java programs. Quantified statements are specified by class-like 

constructs called aspects (note that the term aspect-oriented programming was coined 

by Gregor Kiczales of Xerox PARC). Let us see how AspectJ addresses the three 

implementation issues listed above: 

• Quantification: Conditions are specified by pointcuts, which are expressions 

that match a set of points in the execution of programs (i.e., join points). The 

kinds of join points supported (i.e., the join point model) include method or 
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constructor calls and executions, advice executions, static class initializations, 

object or aspect initializations, field read or write accesses, and exception han­

dler executions. 

• Interface: Aspect actions are specified by method like constructs called advice, 

which can be specified to execute before, after, or around join points. Aspects 

can gain contextual information from join points and use it in advice; this is done 

using parameterized pointcut expressions. Additionally, aspects can introduce 

fields and methods into types in the core through the inter-type declaration 

mechanism. 

• Weaving: the AspectJ compiler (ajc), combines core and aspect source files and 

jar files into woven class files or jar files. 

AspectJ terminology (e.g. aspect, join point, join point model, and advice) is widely 

used in AO literature, and will also be adopted in this document. Figure 1.4 shows 

an AspectJ aspect written for the display updating concern. 

Other AOP languages such as the DJ library [26], Hyper/ J [44], and composition 

filters [3] use different approaches to address the three implementation issues. The 

interested reader is referred to the cited sources for details. 
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aspect DisplayUpdating { 
pointcut move(): 

execution(public void Point.setX(int)) I I 
execution (public void Point. setY (int)) I I Polntcut 
execution (public void Point. setPl (Point)) 1 I expression 
execution(public void Point.setP2(Point)); 

after(): move() {I 
} Display. update advice 

Figure 1.4: Display updating aspect 

1.1.3 Aspect-Oriented Software Development 

9 

Software development has evolved from a programming activity to a full-blown engi-

neering process. Modern software engineering constructs systems using processes that 

progressively refine higher-level abstractions of the system to lower-level abstractions 

starting from requirements and stopping at executable code. Preserving two impor-

taut properties across this refinement process helps a great deal in producing high-

quality software: modularity and traceability. Both modularity and traceability are 

crucial in managing change in systems. When the system changes at a given level of 

abstraction, modularity ensures that the change is localized, and traceability ensures 

that the change can be propagated naturally and easily to other levels of abstraction. 

In Section 1.1.2, AOP was described as a technique that improves modularity at 

the code level. The benefit of applying the AO paradigm to earlier stages of the soft-

ware development cycle is two-fold: first it ensures improved modularity at all stages 
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of the development process; secondly, preserving the notion of aspects throughout the 

development process ensures traceability. These ideas launched the field of aspect­

oriented software development (AOSD) with an active research community. As stated 

in [13], the same way that AOP extends conventional programming technology, AOSD 

extends conventional software development practices. An excellent survey of research 

aimed at applying AO techniques to various stages of the development process includ­

ing requirements engineering, specification, design, implementation, and evolution is 

given in [4]. 

1. 2 Concern Interactions 

By untangling cross-cutting behaviour from core behaviour, the AO paradigm makes 

it easier to reason about individual concern behaviour. Reasoning about overall sys­

tem behaviour however, becomes a challenge as it requires examining the woven be­

haviour of the core and the aspects, which may or may not be explicitly available to 

the developer in a comprehensible form (this depends on the workings of the weaving 

mechanism). This situation can give rise to unanticipated anomalies in the behaviour 

of the woven system. The desired properties of the woven behaviour of two concerns 

(possibly compound, i.e. the result of weaving two or more primitive concerns) are 

(1) existing critical correctness properties of the behaviour of each individual concern 

and ( 2) new correctness properties of the woven system; if this set of properties is 
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inconsistent, we say that two or more of the concerns involved undesirably interact. 

In (1) we say critical correctness properties, to distinguish between desired and un­

desired interactions. The very purpose of weaving an additional concern may be to 

violate existing properties of constituent concerns in favor of achieving new properties 

for the woven system. In the remainder of this thesis the term interaction will be 

used to mean undesired interaction. A simple example of concern interactions from 

[10] is the interaction between logging and encryption aspects applied to some core 

system. The encryption aspect encrypts the content of messages passed within the 

core, while the logging aspect logs the messages for debugging purposes. If logging 

precedes encryption, encryption is compromised by a plain log file; and if encryption 

precedes logging, logging is compromised by an encrypted log file that is not very 

useful for debugging. More sophisticated instances of concern interactions have been 

identified in various domains including the following: 

• Telephony: In modern telephony systems, users can subscribe to various features 

on top of their basic call service. Features subscribed to by one or more users 

may interact. As an example, suppose a user subscribed to call waiting ( CW) 

and call forward when busy (CFB) is engaged in a call and receives a further 

call. If the call is forwarded due to CFB, CW is compromised and vice versa. 

Feature interactions in telephony systems has been an active research area for 

many years. A survey of the state of the art in this area is presented in [7]. 
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• Email: Basic email can also be improved by various features (e.g. spam filter, 

auto responder, etc.) that may interact. Suppose an email service equipped 

with decryption and forwarding features receives an encrypted message. In 

decryption applies before forwarding, then a clear email message is sent over the 

internet compromising the encryption/ decryption features. Such interactions 

have been studied in [16]. 

• Middleware: Middleware is software that connects software components, and 

supports the development and operation of these components by providing 

generic (e.g. security, messaging, etc.) and/ or domain specific services. As 

explained in [27], these services may interact. For example, consider interceptor 

services in a J2EE compliant application server. Interceptors are arranged in a 

pipeline and process incoming requests from end components in order. Suppose 

the concurrency interceptor ( CI), which allocates a thread from a limited pool 

to each request, comes before the priority interceptor (PI), which schedules re­

quests based on their priority. If CI has no threads left for a new high priority 

request, PI is compromised. 

• Multimedia: Interactions between Internet-based and multimedia/mobile ser-

vices have been identified in [5]. For example, mechanisms for power adaption 

and network bandwidth adaption in a mobile device interact: if the device is 

running low on power, power adaptation instructs applications using network 



1. Introduction 13 

bandwidth to stop; but as a result, network bandwidth adaptation instructs 

applications to make use of the bandwidth that has now become available. 

1.3 Research Objective and Overview 

The sooner an error is found in the software development process the easier it is 

to fix. In this document we present a process for detecting concern interactions at 

the design stage (see Figure 1.5). The process assumes AO designs expressed in the 

Unified Modeling Language (UML) [39] and our weaving rule specification language 

(WRL). Here, the data and behaviour of concerns are modeled separately using UML 

class and statechart diagrams, and rules for weaving concern behaviour are specified 

in WRL. WRL defines a join point model on UML statecharts and supports the 

following: 

• Before and after advice (before advice can conditionally consume the advised 

join point) 

• Assignment of aspect instances to core instances 

• Aspects of aspects 

• Aspect composition by a precedence operator on advice 

The process consists of two tasks: 
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i 
(Weaver) 

,---, /' ____ ..,~ I,...A_O_M_o_d_e_l .,..lu_;M_L .... j_w_R...,+~-----~;:-~~-
Desired Properties 

t 
Analysis Report ~ Syntactic Analyzer 

Figure 1.5: Design-level concern interaction detection process overview 

• Task 1: The AO model is syntactically analyzed to reveal advice overlaps; e.g. 

instances where multiple advice is applied to the same join point. Such overlaps 

can be the source of interactions and can easily be overlooked by the developer. 

Examination of the analysis report by the developer may lead to revisions of 

the AO model. 

• Task 2: A weaving process is applied to the AO model the output of which is a 

woven 00 model expressed in the UML. Existing UML verification techniques 

(such as [41], [34], and [33]) are applied before (on the UML component of the 

AO model) and after weaving against desired properties specified by the devel-

oper to detect interactions as defined in Section 1.2. The verification report may 

reveal indirect interactions not exposed by task 1, and may be used to determine 

whether advice overlaps revealed by task 1 do indeed correspond to interactions. 
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It should be noted that formal verification of UML is still a research topic; how­

ever, we view it as an available technology and will reasonably assume that such 

tools will mature in the not too distant future. In our work, we used IFx [33] 

to formally verify UML models. IFx extends the IF toolset, a set of tools for 

model-checking and simulating models of communicating extended timed au­

tomata expressed in the IF language. In IF, temporal properties are expressed 

using observer automata. Observers monitor the execution of the model and 

react to state changes and events (e.g. signal receptions). An observer state 

can be designated as an error state, allowing the specification of safety prop­

erties. IFx defines a UML observer formalism, where an observer is modeled 

as a class (error states in the class statechart are labeled with stereotypes) and 

maps UML models and observers to IF. 

The remainder of this document is organized as follows. Chapter 2 gives a survey 

of related work. Chapter 3 describes the details of the process: it describes our 

AO modeling language, the syntactic analysis of the AO model, and the process of 

weaving the AO model into a behaviourally equivalent 00 model. Chapter 4 applies 

the process to two case studies. Chapter 5 evaluates the process empirically (based 

on the case studies) and analytically. Finally, Chapter 6 presents the conclusion and 

directions for future work. 



Chapter 2 

Related Work 

In this chapter we present a survey of the state of the art in the area of concern 

interactions. Section 2.1 briefly describes research on a well-know'Il and extensively 

studied instance of concern interactions: feature interactions in telephony systems, 

which we mentioned in Section 1.2. Research on concern interactions in generic AO 

systems is more scarce: in Section 2.2 through Section 2.5 we present (what we 

deem a reasonable coverage of) relevant published work in AO literature. Section 2.2 

presents research on the classification of concern interactions. Section 2.3 describes 

event-based AOP (EAOP) a widely cited framework for AOP, with support for the 

detection and resolution of aspect interactions. Section 2.4 lists selected research 

on the application of formal specification and verification to AO systems. As we 

argued in Section 1.3, formal methods can be used to detect concern interactions. 

16 
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Section 2.5 lists research on methods that enable modular reasoning of AO systems. 

Modular reasoning eliminates the need for analyzing the entire system to understand 

the effect of applying an aspect to the core. Such an understanding will aid developers 

in foreseeing and resolving concern interactions. 

2.1 Feature Interactions 

In [7] research on feature interactions in telephony systems has been categorized into 

three trends: 

• Software engineering: It is argued that the creation of features is largely a 

software development task. Features are software entities that are complex, 

real-time, prone to frequent change, and must exhibit a high level of reliability. 

It is only natural to apply and adapt software engineering techniques used for 

development of software with similar attributes to the development of features. 

Such techniques include the use process models and methods for various phases 

of the development cycle (e.g. specification, design, testing, deployment, and 

maintenance). Software engineering can lessen the probability of unanticipated 

feature interactions indirectly by adding rigour, structure, and predictability to 

the feature creation process, and can directly aid feature interaction detection, 

resolution, and avoidance, with the design of process models with phases dedi-
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cated to the application of methods, notations, or techniques used elsewhere in 

software engineering to the feature interaction problem. 

• Formal methods: Formal description, modeling, and reasoning techniques 

(including process algebras, various flavours of automata, petri-nets, SDL, 

Promela, Z, and LOTOS) have been used to both detect unanticipated fea­

ture interactions and to validate expected ones at the specification level (i.e. 

independent of the implementation), though the latter use applies to most pub­

lished work. The (widely known) benefits of formal methods include having an 

unambiguous documentation for features and the ability to perform automated 

analyses. The approach for using formal methods is either of the following: 

- Modeling features and the basic service with abstract properties, and defin­

ing interactions as inconsistencies in the properties 

- Modeling features and the basic service with behavioural models and prop­

erties on the models, and defining interactions as when individual models 

satisfy their properties, but the combined model fails to satisfy the con­

joined properties 

Our definition of interactions in Section 1.2 resembles the former approach, 

while task 2 of our process (defined in Section 1.3) applies the latter. The 

operation of combining models in the latter approach is tailored to a known set 
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of features and basic call service, while we define a weaving process for generic 

AO systems. 

• Online techniques: Here, interactions are detected (and often resolved) at run­

time. The benefits of using online techniques include operating on the real 

system and not its model, and support for detecting interactions between fea­

tures developed by multiple vendors (where specification level information is 

not available) and features in legacy systems (where detailed documentation 

for features is not available). Online approaches require information about fea­

tures that can be collected a-priori at design-time or during run-time. Also 

the control of monitoring feature communications can be localized in a feature 

manager or distributed amongst features. Our approach is clearly an offiine 

technique. 

Using AO technology to detect feature interactions has also been studied [30], 

where AspectJ [19] is used to encode the control software as a finite state machine 

(FSM) and features as aspects that change the FSM (or core). Program slicing [47] 

is used to identify the part (slice) of the core affected by each aspect. Overlaps in 

aspect slices are reported as interactions between features encoded by the aspects. 

A program slice, is an executable portion of the program that manipulates variables 

referenced by a set of program points called the slicing criterion. To extract the 

core slice affected by an AspectJ aspect, pointcut expressions are used as the slicing 
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criterion. 

2.2 Classification of Concern Interactions 

An approach for classifying and documenting aspect interactions is presented in [40]. 

It is argued that classification helps identify common patterns of interaction and 

their response type, and documentation makes interactions explicit providing useful 

knowledge that can used throughout the system life cycle. The classification defines 

four types of interactions: 

• Mutual exclusion: An undesired interaction that occurs when two aspects im­

plement mutually exclusive concerns such as alternative algorithms or policies. 

For this type of interaction, no mediation is possible and only one of the aspects 

can be used 

• Dependency: An undesired interaction that occurs when the correct operation of 

aspect A depends on the presence and an expected mode of operation of aspect 

B (e.g. an authorization aspect that depends on an authentication aspect), and 

aspect B is not present or does not operate as expected 

• Reinforcement: A desired interaction that occurs when one aspect positively in-

fluences the correct operation of another aspect (e.g. extends its functionality). 

Suppose that in an auction system we have authorization aspect. Adding an 
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aspect that monitors the location of users allows us to extend the authorization 

aspect to implement a more sophisticated authorization procedure that takes 

the user's location into account. 

• Conflict: An undesired interaction that occurs when aspects semantically in­

terfere; that is, when one aspect works correctly alone, but fails to do so when 

composed with other aspects. The logging vs. security example of Section 1.2 

illustrates this kind of interaction. Conflict interactions can often be resolved 

by mediation. 

Our definition of concern interactions is closest to the conflict category, though we 

also consider core/aspect interactions. Mutual exclusion and dependency categories 

as defined in [40] deal with dependent aspects. Such interactions can be captured 

at a higher level (e.g. the requirements phase). Nevertheless our pre/post weaving 

verification approach can potentially be used to capture such interactions as well. 

An analysis of AO programs that classifies interactions between aspect advice and 

core methods is presented in [38] (interactions between aspects are not considered). 

Advice can interact with a method directly by augmenting, narrowing, or replacing 

its execution, or indirectly by using object fields also used by the method. Direct 

interactions can be found by task 1 of our process: before advice that does not 

consume, and after advice are augmenting advice; before advice that may consume is 

narrowing advice; and before advice that always consumes is replacement advice (see 
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Section 3.2 for a definition of consumes in before advice). Indirect interactions can 

be found by task 2. 

2.3 Event-Based AOP 

EAOP is perhaps the most explicit treatment of the problem of detecting and resolving 

aspect interactions in AO literature. EAOP defines a formal framework for AOP: the 

core is modeled by its execution trace, i.e. a sequence of join points emitted by the 

core in the course of its execution. Primitive aspects ( C t> I) are defined by a crosscut 

(C), which is a regular expression that matches a sequence of events in the execution 

trace, and an insert (I), which is the action to be performed when the crosscut is 

matched. Aspects can be composed by several operators: 

• Repetition (J-La.A): Repeats the behaviour of an aspect after it matches a join 

point sequence, where A is an aspect and a is the repetition variable. 

• Sequence (At-C ~ A2 }: Behaves like At until C matches a join point sequence, 

at which point it behaves like A 2• 

• Choice (A10A2}: Behaves like the first aspect to match a join point sequence 

(e.g. if A1 matches a join point first, the choice aspect behaves like A 1 and A 2 

behaviour is dropped). Behaves like At if both match a join point sequence. 
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Compound aspects are essentially state machines that evolve from one aspect to 

another in response to join points. 

Weaving is implemented by a monitor that observes the execution trace and prop­

agates join points one at a time to a parallel composition of aspects (A1JJ ... JJAn)· In 

response to each join point, the parallel composition evolves into the parallel compo­

sition of each constituent aspect evolved in response to the join point. The parallel 

composition of two aspects can be adapted to, for instance: 

• Propagate the join point to the first aspect and then to the second aspect 

• Propagate the join point to the aspects in an arbitrary order 

• Propagate the join point to the first aspect, and then only if the first aspect did 

(not) match a crosscut, to the second aspect 

In EAOP, two aspects are said to interact when they match the same join point. 

A static analysis is introduced to detect such interactions. In Section 3.3 we use 

the term advice overlap for this definition, and explain that it may fail to capture 

important interactions in a system. We illustrate via case studies in Chapter 4 how 

task 2 of our process can detect such interactions. Composition operators, including 

(adapted) parallel composition, serve as linguistic support to resolve interactions (i.e. 

advice overlaps). In Chapter 5 we point out that our approach falls short of EAOP in 

linguistic support for interaction resolution, due to less aspect composition operators. 
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Other features of EAOP include: 

• Aspects of aspects: Aspects themselves can contribute join points to the execu­

tion trace; that is, they can be advised by other aspects. 

• Aspect variables: Variables in compound aspects allow information sharing 

amongst constituent aspects. 

• Requirement aspects: These are special aspects that specify conditions that the 

core must satisfy in order for a normal aspect to be applicable. 

2.4 Applying Formal Methods to AO systems 

The following summarizes publications we came across that apply formal methods to 

AO systems, and in some instances explicitly state the applicability of their approach 

to the detection of interactions. Additional references on the subject can be found in 

[4]. 

• A process-algebraic foundation for AOP is presented in [2]. 

• A technique to verify properties of AspectJ [19] aspects is presented in [6]. It is 

argued that it is sufficient to analyze the aspect itself and the portion of the core 

program that it affects. Program slicing [47] is used to compute this portion 

(slice) as in [30]. Core slices are used to build useful models using tools such 
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as Bandera [9] (a tool that extracts FSMs from Java source code), that can be 

used to prove properties such as absence of aspect interactions at the code level. 

In a related work [45], model extraction and model-checking is applied to woven 

AspectJ. 

• The AOP language SuperJ is introduced in [42]. In SuperJ crosscutting concerns 

are implemented in superimpositions, which are collections of generic aspects 

and new (singleton) classes. Generic aspects do not reference program units 

(e.g. method names) of a particular core. Instead, they reference parameters 

that are later bound to a particular core. The new singleton classes provide 

services that are used in methods and advice of generic aspects. A preprocessor 

applies a superimposition to a particular core by turning generic aspects to 

concrete AspectJ aspects. This is done by binding program units of the core 

to parameters of generic aspects. Additionally, the new singleton classes are 

added to the bound program. A superimposition includes a specification of its 

applicability conditions to core programs, and desired properties of the bound 

program. This specification allows proofs on the correctness of superimpositions 

and the legality of combining them (i.e. detecting interactions) independent of 

a particular core. 

• Pip a, a behavioural interface specification language (BISL) for AspectJ, is intro­

duced in [48]. A BISL specification describes how to use a module by detailing 
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a module's interface (i.e. static information such as method signatures) and its 

behaviour from a client's point of view. BISLs are language dependent. Pip a is 

an extension to the Java modeling language (JML) [25), a BISL for Java, and 

enables the formal specification of AspectJ modules. A process for transform­

ing an AspectJ program with its Pipa specification into a corresponding Java 

program with its JML specification is described in [48]. This allows the use of 

JML-based tools to formally verify properties of AspectJ programs. 

While [6], [42], and [48] apply to AO systems at the source code level, the following 

research (like ours) targets AO systems at the design and specification level. 

• In [32] AO systems are modeled using the role modeling approach [37], where 

a system concern is modeled by a set of roles that collaborate to address the 

concern. Each role represents an object (that can be involved in one or more 

concerns) and describes those properties of the object that are relevant to the 

concern. Weaving two concerns involves merging their role models by identi­

fying roles in one concern with roles in the other and merging them into fat 

roles. Remaining roles are carried over to the woven model. Role models are 

expressed in Alloy [18], a formal object modeling language, and formal analyses 

are performed on the Alloy models. 

• In [35] the core and aspects are modeled using labeled transition systems (LTS). 

The core LTS is stored in a flexible data structure, allowing aspect LTS to be 
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woven in at run-time. A run-time manager is responsible for the dynamic aspect 

integration, and also applies run-time model-checking to detect aspect/aspect 

and core/aspect interactions. The run-time model checking only checks for in­

teractions in the current system execution and therefore does not suffer from the 

state-space explosion problem. Once an interaction is detected a combination 

of resolution strategies that use a-priori knowledge of interactions as well as 

generic resolution strategies are applied. The resolution strategies themselves 

are adaptive in that they can change based on the result of the detection and 

resolution. 

• In [23] aspect advice and the core program are modeled as FSMs. A process 

is presented that takes the core FSM, pointcut designators (i.e. points where 

advice apply), and desired behavioural properties of the core that are to be 

satisfied before and after weaving, and automatically generates interfaces that 

advice applied to the core can be verified against. The interfaces describe the 

model-checker state, at states of the core that lead to and return from advice. 

Advice (authored possibly at a different time or place) can be verified against 

these interfaces in isolation from the core; the authors term this capability 

modular advice verification. This allows for the detection of core/aspect inter­

actions without the need for the computationally expensive verification of the 

entire woven system. 
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Our work differs from these efforts in two respects: First, it uses a practitioner-friendly 

AO modeling language made up of a main-stream design language (the UML) and a 

simple (and intuitive) domain specific language (WRL). Second, the computationally 

expensive formal verification is preceded by a light-weight syntactic analysis. Our 

work particularly differs from [35] in that it is an offline process: all tasks (e.g. syn­

tactic analysis, weaving, and formal verification) are performed at design time. In 

contrast, [35] presents an online process, where aspects can be woven and interac­

tions detected and resolved at run time. Also, it differs from [23] in that it targets 

aspect/ aspect interactions as well as core/ aspect interactions. 

2.5 Modular Reasoning on AO systems 

Modular reasoning, as defined in [20], is the ability to reason about a module by ex­

amining its interface, implementation, and the interfaces of other modules referenced 

in its implementation. AOP enables modular reasoning on cross-cutting concerns 

implemented in aspect modules. It is argued, however, that due to the obliviousness 

criterion (see Section 1.1.2), AOP hinders modular reasoning on core modules advised 

by aspects, since fully understanding a core module requires examining all aspects 

that advise it, references to which are not present in the core's implementation (i.e. it 

requires a global system analysis). The following research aims at enabling modular 

reasoning in AO systems: 
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• In [20] it is argued that regardless of whether AOP is used or not, reasoning 

about cross-cutting concerns does indeed require a global analysis of the system 

due to the scattering and tangling phenomena (see Section 1.1.2). With AOP, 

once the deployment configuration is known, a single pass of global analysis 

is sufficient to construct aspect-aware interfaces for modules. In an AspectJ 

implementation, the aspect-aware interface of an aspect module includes sig­

natures of advised join points, and that of a core module includes the core 

interface augmented with signatures of advice applied to the core. Once aspect­

aware interfaces are constructed, modular reasoning becomes possible in the 

AO system. 

• Open modules is introduced in [1] as a module system where a module's interface 

is made up of methods and advisable pointcuts. Details of when a pointcut is 

matched is hidden in the module's implementation. Here, aspects can only 

advise external calls to methods of a module's interface and pointcuts in a 

module's interface. It is argued that in AspectJ like languages, an aspect is 

tightly coupled with implementation details of a core module (such as method 

names and method implementation details). Open modules ensures that the 

dependency is restricted to a well-defined interface as in conventional module 

systems. 

• In [8] it is proposed to divide aspects into two groups: observers and assistants. 
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Observers do not change the specification of core modules they advise and 

as such they preserve modular reasoning, without the need for core modules 

to explicitly reference them. Assistants on the other hand can change the 

specification of core modules, and therefore, modular reasoning only becomes 

possible when core modules explicitly reference assistants. A module is said to 

accept assistance when it lists assistants that advise it or modules that it uses. 

• In [43], it is argued that the lack of constraints on the core program implied 

by obliviousness results in high coupling between aspects and the core. For 

example the change of a method name in the core can break many aspects that 

advise it (due to pointcuts). Design rules on AO programs is presented as an 

alternative to obliviousness. Design rules impose restrictions on 1) the kinds 

of exposed join points, 2) join point naming schemes, and 3) behaviour across 

join points (e.g. pre and post conditions for advice execution at join points). 

These restrictions imply an interface that aspects must adhere to. The first two 

restrictions imply that pointcut expressions, once written in compliance with 

the design rules, need not be changed, and the third restriction implies absence 

of core/ aspect interactions. 

In our approach we perform analyses to detect concern interactions, which is very 

different from the modular reasoning approach. For this reason no direct connection 

(other than the fact that both approaches are means to the same end) is described. 



Chapter 3 

Process 

3.1 A Restricted UML Formalism 

In this section we semi-formally describe a subset of the UML that is of interest in our 

process. The syntax of the UML subset of interest is expressed using sets, relations, 

and functions while the semantics of UML statecharts is expressed informally in 

English (presenting a formal semantics of UML statecharts is well beyond the scope 

of this thesis). In reading this section, the reader is encouraged to refer to Section 4.1.1 

and Section 4.2.1 for examples. This formalism is largely based on [46]. An 00 UML 

model is a set of classes. A class has a name, data, and behaviour. Class data is a 

set of variables called attributes. A variable is a tuple (name, type) E Var. 

Var = Id x { int, bool, class } 

31 
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Class behaviour is a statechart. A statechart S is a tuple: 

(Stateand, Stateor, '\,, ini, Signal, Call, Trans, label) E Statechart 

A description of elements of this tuple follows. The set of states State = 

Stateand U Stateor and the superstate relation '\, ~ State x State form a state 

tree rooted in root E Stateor with two restrictions: 

• Along any path from the root to a leaf, state types alternate between and (i.e. 

st E Stateand) and or (i.e. st E Stateor ). 

• Leafs are necessarily and states. 

For every or state st E State0 r, one child, ini(st) E Stateand, is designated as its initial 

state. When an and state is entered, the initial state of its children are automatically 

entered. Event = Signal U Call is the set of events that statechart S can receive. 

Signal events are for asynchronous (non-blocking) communication while call events 

are for synchronous (blocking - i.e., sender blocks until event processing completes) 

communication. An event is a tuple (name, Args) E Ev: It has a name, and a 

sequence of variables called arguments. Trans is the set of transitions of statechart 

S. A transition is a tuple (src, e, g, act, dst) E Trans with the equivalent graphical 

notation 

e[g]/act d t src s 



3. Process 33 

where srcjdst, e, g, and act are the transition's source/destination state, trigger, 

guard, and action respectively. 

Trans = Stateand X (Event U { ( *, Args = 0) } ) X Guard X Action X Stateand 

A transition with trigger * is called a null transition. Guard is the set of logical 

formulae over variables in the scope of S (i.e. data of the class with behaviour S) and 

Action is generated by the grammar: 

Action ::=Assign I Invoke I skip 

Assign ::= Id := Expr 

Invoke ::= (Id I self)(. I !) InvokeExpr 

InvokeExpr ::= Id ( [Expr (, Expr)*] ) 

The action language includes assignment actions (e.g. a := 5) and event invoca-

tion actions (e.g. obj!ev() for sending a signal event and obj.ev() for sending a call 

event). Here we assume only simple actions without loss of expressiveness: com-

pound actions such as conditionals and sequences can be realized by combining simple 

actions with statechart mechanisms such as guarded and null transitions: a transi-

. . h d . e[g]/actl;act2 d b d d h tlon wit a compoun sequence actiOn src st can e expan e to t e 

. . e[g]jact1 *[true]/act2 d d · · · h d' • 1 · transitions src sti st; an a transitiOn wit a con Itlona actiOn 

e[g]/if(cond) act1 else act2 • . e[gl\cond]jact1 
src dst can be expanded to the trans1twns src dst 

d e[gl\!cond]jact2 d t an src s . Actions can have labels. The label of an action act is given 

by label( act) E ld if one exists. 
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The active configuration a of statechart S is the set of states in which it resides 

(i.e. its active states). The following rules apply: 

• root is always active. 

• If an and state is active, then so are all of its children. 

• If an or state is active then so is exactly one of its children. 

• If a state is active, then so are all of its ancestors. 

The execution state of S is a tuple (u, v, q) where u is the active configuration, v is 

a map from variables in the scope of S to their values, and q is the queue for events 

received by S. The initial execution state is (a0 , v0 , q0) where a0 is given by the 

function ini and the state root (defined above) and the above rules on configurations, 

vo is given by the model's initial instantiation described later in this section, and 

q0 = 0. An execution state is stable if no state in the active configuration is the 

source of a null transition and is transient otherwise. Events in q are processed one­

by-one in FIFO order in a run to completion (RTC) step so long as q is not empty. 

The RTC processing of an event e takes s from one stable execution state to the next, 

(a;, v;, q;) ~ (ui+l, 1/;+1, Q;+t), by the following process (adopted from [17]): 

1. All enabled transitions are identified: A transition is enabled if its source state 

is in ai, it is triggered by e, and its guard is true with respect to values of 

variables in the scope of S described by v. 
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e[g]jact 
2. Enabled transitions are fired: Firing a transition src dst causes s to 

leave src (i.e. src and its descendants that were in the active configuration 

are removed from the active configuration), execute act updating vi (due to 

assignment actions) and qi (due to event invocation actions to self), and enter 

dst (i.e. dst and a subset of its descendants determined by ini and the rules 

governing active configurations described above are added to the active con-

figuration) updating ai. Two enabled transitions are in conflict if their source 

states have an ancestry relation, i.e. one is an ancestor of the other (multiple 

enabled transitions with the same source state are disallowed). Between con-

ft.icting transitions, only the transition whose source state is lowest in the state 

tree fires. The order of firing of enabled transitions is non-deterministic. 

3. Null transitions are handled: If Step 2 lands S in a transient execution state, 

* is dispatched causing all enabled null transitions to fire as per Step 2. This 

loop continues until a stable execution state is reached. Intermediate steps that 

occur within an RTC step are called microsteps. 

Based on the above definitions, a class c can be defined as a tuple (name, Attr, s) E 

Class 

Class= ld x P(Var) x Statechart 
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We will augment the definition of an 00 model with a specification of its initial 

instantiation: i.e. the set of objects, and initial values of their attributes, in the 

model's initial execution state. An object is a tuple (name, c, inilnst) E Object. 

Object= Id x Class x (Var --t Value) 

Finally we define an 00 model as a set of classes and their initial instantiation: i.e. 

a tuple ( C, 0) E OOM where Vo E 0, o.c E C (i.e. all objects in the models are 

instances of classes in the model). 

OOM = P(Class) x P(Object) 

3.2 The Aspect-Oriented Model 

This section gives a semi-formal definition of AO models which is an exten­

sion/modification of the AO modeling approach of [28] (our contributions will be 

discussed at the end of this section). In reading this section, the reader is encouraged 

to refer to Section 4.1.1 and Section 4.2.1 for examples. An AO model has two parts: 

a UML part (i.e. an 00 model), and a WRL part. The UML models data and 

behaviour for each concern (core or aspect) with classes. The WRL specifies how 

concerns cross-cut one another. Hence, an AO model is a tuple in the set: 

AOM = { (oom, wrl) I oom E OOM 1\ wrl E WRL(oom) } 
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The set WRL( oom) is defined in the remainder of this section. The WRL part of an 

AO model maps join points in the behaviour of an instance of one class c = ( C, Attr, s) 

(the core) to advice of instances of other classes (aspects). The WRL join point model 

follows: 

• Event join point: Is a tuple ( u, e) E JP ev (c) and corresponds to the RTC 

processing of event e by the core statechart, when it is in a configuration O"i just 

before the event is processed, where u ~ ui. 

JPev(c) = P(c.s.State) X c.s.Event 

For u to be valid, it must be the subset of some configuration of the core: 

where lea and ancest stand for least common ancestor and ancestor respectively. 

• Action join point: Is a label l E JP act (c) and corresponds to the execution of 

the action labeled l in the core statechart. 

JPact(c) = {lll E Range(c.s.label)} 

The WRL join point model can be extended to include join points for specific 

actions (e.g. event invocation). 

A join point can expose contextual data from the core that may be used in advice. 

The context of event join point (u, e) is e.Args. By default, action join points have 
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no context; however, context can be defined for extensions (e.g. an event invocation 

join point can expose parameters of the invocation). 

WRL advice is the aspect statechart's evolution in response to a join point. Several 

possible evolutions are described as a tree of evolution steps (or advice nodes), with 

each path from the root to a leaf corresponding to one possible evolution. Advice can 

be specified to apply before or after the join point. For an aspect (which is a class) 

a= (A, Attr, s), advice nodes can take one of two forms: 

• Action node: Is a tuple (u, act) E Nodeact(a) 

Nodeact(a) = P(a.s.State) X (InvokeExpr U { Skip}) 

where act = e(params) or skip. If act = e(params) the node's action is a single 

evolution step of the aspect statechart by the execution of the event invocation 

action e(params), which leads to the R'fC processing of event e E a.s.Event 

with arguments params (expressions over the the advised join point's context) 

by the aspect statechart. If act= skip, the node's action is to do nothing. The 

node's action is performed only if the node is enabled: i.e., the aspect statechart 

is initially in a configuration ui, where u ~ ui. For u to be valid, it must be the 

subset of some configuration of the aspect. 

• Consume node: A special node conE Nodecon(a) 

Nodecon(a) = { con(a)i I i EN } 
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that does not evolve the aspect statechart; rather it halts advice execution and 

consumes the advised join point. Here, the label con symbolizes a consume 

node and the subscripts i are used to differentiate one consume node in the tree 

from another. 

We define an advice of aspect a as a tuple (root( a), Nact, Ncan, '\.) E Advice(a). 

Advice(a) = { root(a) } x Nodeact(a) x Nodecon(a) x (Node(a) X Node(a) 

where Node(a) = {root( a)} U setNodeact(a) U setNodecon(a). The set of nodes 

N = { root(a) } U Nact U Neon and the parent relation '\, form a tree rooted in 

root with the following restrictions: 

• Consume nodes must be leaves, cannot have siblings, and can only appear in 

before advice 

• Sibling action nodes cannot be concurrently enabled for any configuration 

'tfn1, n2 ENact, n1 E siblings(n2), :ls1 E n1.a, s2 E n2.0", 

lca(s1 , s2) E a.s.Statear 1\ s1 tf. ancest(s2) 1\ s2 tf. ancest(st) 

where siblings(n) means the siblings of node n in the advice tree. 

Upon occurrence of the advised join point, the aspect statechart evolves through a 

sequence of steps described by action nodes of the advice tree along a path that is 

traced as follows: starting from the root and until a leaf is reached or the path is 
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blocked, the path is extended by the enabled child of its tail and the action described 

by the enabled child is performed (note that consume nodes are always enabled). If 

the tail has no enabled children, the path is blocked. 

set 

Based on the definitions above, we define a WRL specification as a tuple in the 

WRL(oom) = { (am, om) I am E AdvMap(oom) 1\ 

om E ObjMap(oom, am) } 

The first part of the WRL is an advice map, which is a member of the set: 

AdvMap(oom): CoreJP(oom) -t P(AspectAdv(oom)) 

CoreJP(oom) = { (c,jp) IcE oom.cl\jp E JP(c)} 

AspectAdv( oom) = { (a, adv) I a E oom.c 1\ adv E Advice( a) } 

where JP(c) = JPev(c) U JPact(c). An element [(c,jp) 1--t AS] E AdvMap(oom), 

specifies that for 00 model oom, the occurrence of join point jp in an instance of the 

core class c triggers a set of advice AS that is partitioned into a set of before advice 

ASbef and a set of after advice ABaft· Each partition of AS is totally ordered: the 

total order (of advice precedence) on AS serves as a composition operator on aspects. 

An element (a, adv) E AS specifies advice adv of an instance of the aspect class a. 

The above formulation allows a class to be both a core and and an aspect; hence, the 

possibility of aspects of aspects. We impose the following restrictions on advice maps: 

1) aspect classes cannot receive signal events and 2) two classes may not mutually 
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(transitively) advise one another. The reason for these restrictions will be explained 

in Section 3.4. 

The second part of the WRL is an object map, which is a member of the set: 

ObjMap(oom, am)= { (oc, a) t-t oa I oc E CoreObj(oom, am) 1\ 

a E Aspect(oom, am, oc.c) 1\ 

oa E oom.O 1\ oa.c = a } 

CoreObjevfact(oom, am)= { o E oom.O I o.c E Coreev/act(oom, am) } 

CoreObj(oom, am)= CoreObjev(oom, am) U CoreObjact(oom, am) 

Coreevjact(oom, am)= { c E oom.C I 3jp E JP ev/act(c), a, adv, 

(c,jp) t-t (a, adv) E am} 

Aspectevjact(oom,am,c) = {a E oom.C I 3jp E JPev/act(c),adv, 

(c,jp) t-t (a, adv) E am} 

Aspect(oom, am, c)= Aspectev(oom, am, c) U Aspectact(oom, am, c) 

An element (oc, a) t-t oa E ObjMap(oom, am) specifies that for 00 model oom 

with advice map am, the core instance oc is advised by the instance oa of aspect a. We 

require that every instance of a core be assigned exactly one instance of every aspect 

the core is advised by (this restriction can be can be checked for by a straightforward 

analysis of the WRL specification). 
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WRL 
Aspect 
Core 
BeforeAdvice 
After Advice 
Be f oreAdviceN ode 
After AdviceN ode 
AdviceAction 
JoinPoint 
ObjectMap 
Precedence 

::=Aspect+ Precedence* 
::= className Core+ 
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::= className ((advLabel: )? (BeforeAdvice I After Advice))+ ObjectM, 
::=before JoinPoint (consume I BeforeAdviceNode+) 
::=after JoinPoint AfterAdviceNode+ 
::= AdviceAction (consume I BeforeAdviceNode*) 
::= AdviceAction After AdviceN ode* 
::= (StateExp, aspectEvent (Args)) I null 
::= (StateExp, coreEvent) I actionLabel 
::= (coreObject -> aspectObject)+ 
::= coreName JoinPoint: adviceLabel(> adviceLabel)+ 

Figure 3.1: Alternative WRL syntax 

We have presented a mathematical syntax for WRL; however, alternative practi-

tioner friendly syntax such as that shown in Figure 3.1 (which resembles conventional 

programming languages) can be developed (StateExp is a regular expression that 

matches a set of states). See sections Section 4.1.1 and Section 4.2.1 for a correspon-

dence between the mathematical syntax for WRL and that of Figure 3.1. 

At this point it is appropriate to highlight the extensions/modifications of our 

AO modeling approach with respect to that presented in [28]. The AO modeling ap-

proach of [28] consists of modeling each concern structurally and behaviourally using 

UML class and statechart diagrams. The weaving of aspects with the core is based on 

the notion of event interception and reinterpretation: events targeted at the core are 

intercepted and reinterpreted to an event of the aspect. Reinterpretation can occur 

before/after the core handles the event and may also consume the event. This frame-
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work for specifying the behaviour of AO systems using statecharts is implemented in 

Java as event interception and reinterpretation cannot be expressed directly in the 

UML. Our approach extends these concepts by introducing an extensible join point 

model for UML statecharts that not only captures event interception/reinterpretation 

via event join points but also includes action join points which allow aspects to ex­

tend/modify core behaviour in more interesting ways. In addition, the presentation 

of advice as a tree as well as advice precedence are new to our approach. But perhaps 

more importantly, we separate weaving rule specification from the concern models 

(which can be produced with the user's favourite UML CASE tool) and present a 

weaving algorithm in Section 3.4 to produce a woven UML model from the concern 

models and the weaving rules. This woven model can be formally verified using UML 

verification tools, the process of which is much less expensive than the verification of 

Java models produced via the AO statechart framework of [28]. 

3.3 Syntactic Analysis of the AO model 

The syntactic analysis of the AO model reveals the following to the developer: 

• When multiple advice applies to the same join point. While this information 

is explicit in the WRL syntax of Section 3.2 (as the mapping of join points to 

sets of advice), it may be hidden in an alternative WRL syntax such as that 
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of Figure 3.1. In the syntax of Figure 3.1, a WRL specification is made up of 

a number of aspect declarations (each designates a class as an aspect), each of 

which can have any number of core declarations (each designates classes that 

the aspect advises). Each core declaration is made up of one or more pieces of 

advice that apply to given join points of the core. Detecting instances where 

more than one piece of advice applies to the same join point is the straight­

forward process of maintaining a list of advised join points per aspect (which 

can easily be done during parsing) and computing the intersection of these lists. 

• When one advice consumes a join point preventing other advice from executing. 

This could happen in two cases: 

- A before advice consumes a join point preventing all before advice (of lower 

precedence) and all after advice that apply to the same join point from 

executing. 

- An advice consumes an event join point preventing all advice on action 

join points that may occur within the event join point from executing. For 

action join point iPact = l and event join point iPev = (cr, e) of core c, 

define tr as: 

tr E c.s.Trans, tr.act = c.s.label(l) 

Let trans( e, ai, cr f) be the set of transitions that fire in the RTC step 
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Tr = u,..EEi,O"jEEj(e,O"i) trans( e, O'i, (]'f) 

Ei = { O'i E valid configurations of c.s I 0' ~ O'i } 

EJ(e, O'i) = { O'J l3vi, qi, liJ, qh (O'i, vi, qi) ~ (O'J, llf, qJ) } 

We say that iPact may occur within iPev if an only if tr E Tr. The com­

putation of T could be expensive, in particular, due to the computation 

of the E f sets, which requires an (potentially exhaustive) exploration of 

the state-space. To make the computation feasible, one could specify a 

maximum depth on the exploration, as the goal is to simply alert the user 

of possible interactions. An exhaustive exploration of the state-space is 

deferred to task 2 of the process as explained in Section 1.3. 

As stated in Section 1.3, such advice overlaps are potential sources of aspect inter­

action. However, not all aspect interactions are due to advice overlaps and not all 

advice overlaps cause aspect interactions. Additionally, advice overlaps do not point 

to aspect/core interactions. 

3.4 The Weaving Process 

In this section, we present a functional description of the transformation of an AO 

model to a (by definition) behaviorally equivalent 00 model. The transformation 



3. Process 46 

serves two purposes: 

• It gives an operational semantics for WRL in UML. 

• it describes an unoptimized weaving process (WPl). 

The highest level description of the transformation is given by the function weave, 

which is defined below: 

weave :AOM --+ OOM. Maps an AO model, aom, to an 00 model that is a modi-

fication of the AO model's UML as prescribed by its WRL. 

df 
weave( aom) = 

(mod Classes( aom ), modObjects( aom)) 

modClasses :AOM--+ P(Class). Maps AO model, aom, to a set of classes that is a 

modification of the AO model's classes as prescribed by its WRL. This involves: 

• Adding one proxy class per core class whose event join points are advised 

• Modifying core classes whose event join points are advised to enable synchronous 

communication with their proxy 

• Transferring references to core classes whose event join points are advised to 

their proxy counterparts 

• Modifying core classes whose action join points are advised 



3. Process 

df modClasses(aom) = 

modCoreClients( Coreev, aom.oom.C \Core U Proxy U Core') 

Proxy= { proxy(aom, c) IcE Coreev } 

Core'= { modCore(aom, c) IcE Core} 

Coreevfaet = Coreevfact(aom.oom, aom.wrl.am) 

Core = Coreev U Coreaet 

Complexity. The number of classes added to aom is ICoreevl· 

47 

proxy :AOM x Class --+ Class. Maps a core class c in AO model aom, whose event 

join points are advised, to a proxy class for the core. The purpose of the proxy is 

to implement advice on event join points of the core. We describe the proxy class 

in parts (partial classes) and obtain a full description by merging the parts: base 

describes the proxy name P c (all names for classes, attributes, and states introduced 

by the weaving process are arbitrary and are assumed to be unique in their scope); its 

data, which are associations with the core (attrc) and all aspects a that advise event 

join points on the core (attra); and its basic behaviour, which is to forward incoming 

events that do not correspond to advised event join points, to the core. advSetElems 

is merger of a set of partial classes that each describe class elements that implement 

a set of advice on an advised event join point. 
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df 
proxy(aom, c)= 

Pc = rnerge(Pc, { base, advSetElems } ) 

II References to core and aspects, and basic behaviour 

base= (Pc, Attr, s) 

Attr = { attrc: c} U { attra: a I a E Aspectev } 

Aspectev = Aspectev(aom.oom, aom.wrl.am, c) 

s = ( Stateand = { idle }, State0 r = { root }, '\.= { (root, idle) }, 

ini = {root 1-t idle }, Signal= c.s.Signal, Call= c.s.Call, 

Trans= Tr, label= 0) 

Tr -- { l. dle e[g(e)J/act(e) I E } 
__;;:__:....:..::____:_-'-* idle e E c.s. vent 

true JJjp E JP ev, jp.e = e 
g(e) 

'v'jp E JP ev, jp.a ~ attrc.a else 

attrc!e(ergs) e E c.s.Call 
act(e) -

attr c·e( e.Args) e E c.s.Signal 

II Elements implementing advice on event join points 

advSetElems = rnerge(Pc, { advSetElerns(Pc, aom, c,jp, idle, idle) I 

jp E JPev }) 

JPev = { jp I jp E JPev(c) 1\ (c,jp) E Dornain(aom.wrl.arn)/\ 

aom.wrl.am(c,jp) =/= 0} 

48 
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Complexity. The number of attributes, states, and transitions added to Pc is 1 + 

JAspectevl, 1, and Jc.s.EventJ, respectively. 

modCore :AOM x Class --+ Class. Maps a core class c in AO model aom to a 

modified version of the core. There are two modification tasks: 

• Core data and behaviour are modified to wrap advised action join points in be-

fore and after advice (if present): this involves adding to core data, associations 

to aspects that advise action join points of the core (Attr), and replacing core 

transitions whose action execution corresponds to an advised action join point, 

with states and transitions that describe the join point and its set of advice 

(advSetElems). 

• If any signal receptions of the core trigger an advised event join point, they 

are made into call receptions. This modification, together with the restriction 

from Section 3.2 that aspects can only have call event receptions, are neces-

sary to impose order on the evolution of core and aspect statecharts, since call 

events correspond to synchronous (blocking) communication. However, for the 

same reason, mutual advice between two classes leads to a woven model that 

deadlocks; hence the restriction from Section 3.2 that disallows mutual advice. 

elf modCore(aom, c)= 

merge(c.name, { (c.name, c.Attr U Attr, s), advSetElems } ) 
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II References to aspects 

Attr = { attra: a I a E Aspectact } 

Aspectact = Aspectact(aom.oom, aom.wrl.am, c) 

II Signal to call transformation and transition removal 

s = ( c.Stateand, ... , 

Signal = c.Signal \ Sig, Call = c.Call U Sig, 

Trans= c. Trans\ { tr(jp) I jp E JPact }, c.label) 

Sig = { sig E c.s.Signal I 3jp E JP ev, sig = jp.e } 

tr(jp) = t E c.s, t.act = c.s.label(jp) 

II Elements implementing advice on action join points 

advSetElems = merge( { advSetElems( c. name, aom, c, jp, 

tr(jp).src, tr(jp).dst) I 

jp E JPact }) 

JPevfact = { jp I jp E JPevfact(c) 1\ (c,jp) E Domain(aom.wrl.am) 1\ 

aom.wrl.am(c,jp) f- 0} 

Complexity. The number of attributes added to cis IAspectactl· 
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advSetElems :ld x AOM x Class x JP(c) x Id x ld ---+ Class. Maps a core join 

point (c,jp) of AO model aom to a partial class that describes elements of the class 

id, that implement the set of advice as on the core join point. The partial class itself 
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is described in parts: attrs describes attributes Attre_arg that are place-holders for ar­

guments of event e (the event that starts event join point jp or triggers the transition 

whose action execution is action join point jp), and an attribute attrjp_con that flags 

the consumption of the join point by some before advice; advTrees is the merger of 

a set of partial classes that each describe a cluster of states and transitions that im­

plement a single advice tree in as (a cluster for advice adv has an initial state stadv-1 

and a final state stadv..t); advTreeLinksbef/aft describes transitions that link the clus­

ters for advice trees in asbeffaft in order of advice precedence (head/tail(asbef/aft) is 

the highest/lowest precedence advice in asbeffaft); advSetLinks describes transitions 

that link sti (the state id resides in before the join point), lists of before/ after advice 

tree clusters, and st1 (the state id resides in after the join point) so as to implement 

the behaviour of wrapping the join point with before and after advice (if present) and 

suppressing the join point if some before advice consumes it. 

advSetElems(id, aom, c,jp, sti, stf) ~ 

merge(id, { attrs, advTrees, advTreeLinksbef, advTreeLinksaft, 

advSetLinks } ) 

II Argument place-holder and consume flag attributes 

attrs = (id, Attr = Attre_arg U Attrjp_con, s0) 

Attre_arg = { attra_arg : arg.type I arg E e.Args } 
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{ attr jp_con : bool } asbef =/:- 0 
Attrjp_con = 

0 aSbef = 0 

S0 = (0, ... , 0) 

II Clusters of states and transitions each implementing 

II an advice tree 

advTrees = merge(id, { advTreeElems(id, c, jp, a, adv, parent(sti)) I 

(a, adv) E as } ) 

II Transitions linking clusters that implement advice trees 

advTreeLinksbef/aft = advTreeLinksbef/art(id, aom, c, jp, as, sti) 

II Transitions linking the idle state, and cluster sets 

II for before and after advice 

advSetLinks = ( id, Attr = 0, 

s = (0, ... , Trans= Tr8 U Trm U Trf, 0)) 

{ 
e[g]/Attre_arg:=e.Args;stm } 

Trs = sti stadv_i 

attrjp_con :=false, head.(asbef) aSbef =/:- 0 
stm,adv = 

act, head.(asaft) asbef = 0 

1
0 asbef = 0 V aSaft = 0 

Trm = 

{ 
[!attrjp_con]/acte.Args<-Attre..args 

Sttail(asbef }_f sthead(aSajt)-i } else 
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E, tail( aS aft) aBaft =J 0 
l, adv = 

[!attr jp_conl/ acte.Args<-Attre-args, tail( asbef) aS aft = 0 

jp.e, jp.O' ~ attrc.O', attrc.e(e.Args) jp E JPev(c) 
e, g, act= 

tr.e, tr.g, tr.act jp E JP act(c) 

tr = t E c.s, t.act = c.s.label(jp) 

as= aom.wrl.am(c,jp) 

Complexity. The number of attributes and transitions added to id is at most 1 + 

ie.Argsl and at most 3, respectively. 

advTreeLinksbef/aft :ld x AOM x Class x JP(c) x P(AspectAdvice)(aom.oom) 

xld--+ Class. Maps a set of before/ after advice as on core join point (c,p) of AO 

model aom to a partial class that describes transitions in the statechart of proxy id 

that link clusters of statechart elements for each advice in as in order of precedence. 

For before advice, the final state of each advice cluster is additionally linked to the idle 

state conditional upon the consume flag, attrjp_con, to prevent execution of further 

advice upon consumption of the join point. 

advTreeLinksbef/aft(id, aom, c, jp, as, sti) ~ 

merge(id, { links, advTreeLinksbef/aft(pop(as)) } ) lasl ;?: 1 

(id, Attr = 0, s0) else 
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links= (id, Attr = 0, s = (0, ... , Trans= Trbeffaft, 0))) 

iasi > 1 

else 

{ Sttop(asajt).f --+ Sttop(pop(asajt))-i } iasi > 1 
Traft = 

0 else 

Complexity. The number of transitions added to id is at most 2lasl- 1 

advTreeElems :ld x Class x JPev(c) x Class x Advice(a) x ld--+ Class. Maps as-

pect advice (a, adv) applied to the event core join point ( c, jp), to a partial class that 

describes a cluster of statechart elements of class id (under state stp), that implement 

the aspect advice. The partial class is described in two parts: terminalStates de-

scribes the initial and final states ofthe cluster (stadv_i and stadv.t) and body describes 

the internals of the cluster. 

advTreeElems(id, c,jp, a, adv, stp) ~ 

merge(id, terminalStates U {body } ) 

II Start and end states of cluster 

terminalStates = { (id, Attr = 0, s = sc)) } 
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sc = ( Stateand = { stadv_i, stadv_t }, Stateor = 0, 

~= { (stp, stadv_i), (stp, stadv_t) }, 0, ... , 0) 

II Cluster body 

body= advNodeElems(id, c,jp, a, adv, adv.root, stp) 
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Complexity. (together with advNodeElems). The number of states and transitions 

added to id is 1 + iadv.NI and at most 2iadv.NI, respectively. 

advNodeElems :ld x Class x JPev(c) x Class x Advice( a) x a.Node x ld-+ Class. 

Maps aspect advice (a, adv) applied to the event core join point ( c, jp), to a partial 

class describing statechart elements of the class id (under state stp) that implement 

the part of advice tree adv that is rooted in node n (i.e. part of the internals of the 

cluster for adv). The partial class has two parts: nodeElems: for a non-leaf node n, 

it describes states for children of n and transitions Trchild leading to them from the 

state st corresponding to node n (these correspond to choices in selecting the next 

evolution step of the aspect statechart), as well as a possible transition Trexit from 

st to the final state of the cluster (this corresponds to exiting advice execution when 

the execution path is blocked); for a leaf node n, it simply describes a transition 

Trzeaf from st to the final state of the cluster to mark the end of advice execution. 

childElems is the merger of partial classes each describing a part of the cluster for 

adv due to subtrees of adv rooted in a child of n. 
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advNodeElems(id, c, jp, a, adv, n, stv) ~ 

merge( id, nodeElems U { childElems } ) 

II Child node states, and transitions leaving the state 

II corresponding ton 

nodeElems = (id, Attr = 0, s = sc) 

sc = ( Stateand = { stadv_ch I ch E children(n) }, Stateor = 0, 

",.= { (stp, stadv_ch) I ch E children(n) }, 0, ... , 0, 

Trans= Trchild U Trleaf U Trexist, 0) 

{ 
l(ch) . 

Trchild = st-+ stadv_ch I ch E chlldren(n) } 

l(ch) = 
[ch.a ~ attra.a]jch.actjp.e.Args<-Attr._args ch E adv.Nact 

/attrjp_con :=true ch E adv.Ncon 

{ st-+ stadv..f } children(n) = 0 
Trleaf = 

0 else 

0 children(n) n adv.Ncon t 0 
Trexit = 

[VchEchildren(n), ch.u~attra.u] } 
{ st stadv..f else 

stadv_i n = adv.root 
st = 

stadv_n else 

II Cluster parts rooted in children of n 
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childElems = merge(id, { advN odeElems(id, c, jp, adv, ch) I 

ch E children(n) } ) 

modCoreClients :P(Class) x P(Class) -+ P(Class). Maps the set of classes Class 

to a modified version of the set, where all references to core classes whose event joint 

points have been advised (i.e. members of Coreev) are changed to references to proxies 

of those core classes. 

modCoreClients(Coreev, Class)~ 

{ (c.name, c.Attr \ Attrcore U Attrproxy, c.s) IcE Class} 

Attrproxy = { (name,pc) I (name, c) E Attrcore} 

Attrcore = { attr E c.Attr I attr.type E Coreev } 

modObjects :AOM-+ P(Object). Maps AO model, aom, to a set of objects that is 

a modification of the AO model's objects as prescribed by its WRL. This involves: 

• Adding a proxy instance per instance of core classes whose event join points are 

advised, and transferring initial references to such core instances to their proxy 

counterparts. 

• Setting initial aspect references of proxy instances and instances of core classes 

whose action join points are advised, to the appropriate aspect instance as 

prescribed by the object map of the AO model's WRL. 
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modObjects(aom) ~ 

{ (o.name, o.c, o.ini \ inicore U iniproxy) I o E Obj' } 

iniproxy = { attr H OPe I attr H oc E inicore } 

inicore = { attr 1-+ oc E o.ini I attr.type E Coreev } 

Obj' = aom.oom.O \ CoreObj U CoreObj' U ProxyObj 

CoreObj' = { (oc.name, oc.c, oc.ini U ini'(oc)) I oc E CoreObjact } 

ini'(oc) = { attra ~---+ oa I a E Aspectact(oc.c) 1\ wrl.om(oc, a) = oa } 

ProxyObj = {(ope, Pe, pJni(oc)) I (oc, c, ini) E CoreObjev} 

pini(oc) = { attrc Hoc} U 

{ attra H oa I a E Aspectev(oc.c) 1\ wrl.om(oc, a)= oa } 

CoreObjevfact = CoreOhjevfact(aom.oom, aom.wrl.am) 

Coreevfaet = Coreev/act(aom.oom, aom.wrl.am) 

Aspectevfact(c) = Aspectev/act(aom.oom, aom.wrl.am, c) 

Complexity. The number of objects added to aom is ICoreObjevl· 
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merge :Id x P(Class) --+ Class. Maps a set of partial descriptions of class id to a 

merger of those descriptions. 

merge(id, C) ~ 

(id, UeEC c.Attr, (UeeC c.Stateand, ... , UeEC c.label)) 
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If we define the size of an 00 model as the sum of the number of classes, objects, 

attributes, states, and transitions in the model, we conclude from the above definitions 

that the size increase of the woven 00 model with respect to the 00 component of the 

unwoven AO model is in O(ICevl + ICobjevl +stev +stact +attrev +attract +trev +tract) 

where 

stevfact = ICevfactl X (iPevfact X adv X n) 

attrevfact = ICevfactl X (aevfact + iPevfact X args) 

trev = ICevl X (ev + iPev X adv2 
X n) 

tract = ICactl X (iPact X adv2 
X n) 

with definitions 

• Cevfact: Core classes whose event/action join points are advised 

• CObjev : Objects of classes in Cev 

• aevfact : Number of aspects advising each core in Cevfact 

• iPevfact : Number of advised event/action join points per core in Cevfact 

• args: Number of arguments of events of each advised join point 

• adv : Number of advice trees per advised join point 

• n: Number of nodes per advice tree 

• ev : Number of event receptions per class 
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3.5 An Optimized Weaving Process 

In this section, we present an optimized weaving process (WP2 ), whose outcome is 

a woven 00 model better suited to formal verification. The key to the optimization 

is to move class elements that implement advice on event join points of a core from 

the core proxy to the core itself, removing the need for proxies. In the absence of 

proxies, the size of such elements (i.e. stev + attrev + trev defined in Section 3.4) has a 

lesser impact on the size of a flat finite state automata that simulates the woven 00 

model. This implies lower verification complexity. Unfortunately, the benefits of the 

optimization come with a cost: loss of support for after advice on event join points, 

since after advice applies after the completion of a join point, and while it is possible 

to observe when an advised event join point of a core completes from its proxy (this 

is when the call action that triggers the join point completes), it is not possible to do 

so from within the core in the presence of concurrency. 

We augment the UML statechart action language of Section 3.1 with condition and 

sequence compound actions. We will replace states and transitions that implement 

an advice set on a core event join point (as introduced by WPl) with an equivalent 

compound action. This is necessary, since our optimized weaving process relies on the 

atomic execution of advice on event join points with respect to actions of the core. 

In the interest of reusing some of the definitions of Section 3.4, we will assume the 

unwoven model makes use only of simple actions. 
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Action ::=Assign I Invoke I skip I If I Seq 

If ::= if(BoolExpr)Action 

Seq ::= Action;Action 

In the following, we describe WP2 by its differences (function redefinitions and 

new functions) with WPl. 

modClasses :AOM ~ P(Class). Maps AO model, aom, to a set of classes that is a 

modification of the AO model's classes as prescribed by its WRL. The modifications 

apply only to core classes. 

df 
mod Classes( aom) = 

aom.oom.C \Core U Core' 

Core'= { modCore(aom, c) IcE Core} 

Coreevfact = Coreevfact(aom.oom, aom.wrl.am) 

Core = Coreev U Coreact 

modCore :AOM x Class ~ Class. Maps a core class c in AO model aom to a 

modified version of the core. Here, core data and behaviour are modified to prepend 

advised event join points with before advice, and to wrap action join points in before 

and after advice. 

df 
modCore(aom, c)= 

merge( c. name, { (c.name, c.Attr U Attr, s), advSetElems } ) 
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II Modifications for advice on event join points 

c' = modCoreev(aom, c) 

II Modifications for advice on action join points 

Attr = { attr a : a I a E Aspect act } 

Aspectact = Aspectact(aom.oom, aom.wrl.am, c') 

s = ( c'.Stateand, ... 'd.Trans \ { tr(jp) I jp E JP act }, d.label) 

advSetElems =merge( { advSetElems( d.name, aom, d,jp, 

tr(jp).src, tr(jp).dst) I 

jp E JPact }) 

tr(jp) = t E d.s, t.act = d.s.label(jp) 

JPact = { jp I jp E JPact(c) 1\ (c,jp) E Domain(aom.wrl.am) 1\ 

aom.wrl.am(c,jp) =J 0} 
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modCoreev :AOM x Class -4 Class. Maps a core class c in AO model aom to 

a modified version of the core. Core data and behaviour are modified to prepend 

advised event join points with before advice. The data modification is the addition of 

references to aspects that advise event join points of the core, consume flags for the 

consumption of advised event join points by some before advice, and place-holders 

for arguments of events that trigger an advised event join point. The behavioural 

modification is the splitting of the core statechart into two concurrent regions: 

• The core region rooted in stcore that contains a modified version of the original 
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core statechart, where each transition tr E Tr(jp) that may be triggered upon 

occurrence of an advised event join point jp is replaced with a set of transitions 

Tr'(jp, tr) that delay jp by a microstep. 

• The advice region rooted in stadv that contains a single state stidle with self 

transitions tradv(jp), triggered by advised event join points jp, whose actions 

implement before advice on the join points. The resulting behaviour is that 

upon occurrence of an advised join point, the corresponding self-transition in 

the advice region is taken (causing the corresponding before advice to execute) 

concurrently with the delay microstep of transitions Tr' in the core region. In 

the next microstep, the join point proceeds if it has not been consumed by some 

before advice. 

df 
modCoreev(aom, c)= 

(c.name, c.Attr U Attr, s) 

II References to aspects, join point consume flag, 

II and event argument place-holders 

Attr = { attra: a I a E Aspectev } U 

{ attrjp-con : bool I jp E JP ev } U 

{ attr E Attre_arg I e = jp.e 1\ jp E JP ev } 

Attre_arg = { attre_arg : arg.type I arg E e.Args } 
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II Concurrent regions 

s = ( c.s.Stateand u { Sttop, stidle } u 

{ Sttr I tr E Tr(jp) 1\jp E JPev }, 

c.s.Stateor u { stcore, Stadv }, 

'\,', ini', c.s.Signal, c.s.Call, Trans', c.s.label) 

'\,'= c.s. '\, \ { (root, st) E c.s. '\, } U 

{ (stcore, st) I (root, st) E c.s. '\, } U 

{ (parent(tr), sttr) I tr E Tr(jp) 1\ jp E JPev} 

ini' = c.s.ini \ { root 1--t st E c.s.ini } U 

{ stcore 1--t st I root 1--t st E c.s.ini } U 

{ root 1--t Sttop, Stadv 1--t Stidle } 

II Transition replacement/addition 

Trans'= c.s.Trans \ { tr E Tr(jp) I jp E JPev} U 

{ tr' E Tr'(jp, tr) I jp E JPev 1\ tr E Tr(jp) } U 

{ tradv(jp) I jp E JP ev } 

II To be replaced 

Tr(jp) = { tr E c.s.Trans I 3CT E Ei, tr.src E CT 1\ tr.e = jp.e } 

Ei(jp) = { CTi E valid configurations of c.s I jp.CT ~ CTi } 
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II Replacement 

Tr'(jp, tr) = 

{ t 
tr.e 

r.src ----+ sttr, 

[tr.g;p.e.Args-Attre..args 1\ !attrjp_con]/tr.act;p.e.Args-Attre_args 
sttr tr.dst, 

[!tr.gjp.e.Args-Attre_args V attrjp..con] 
tr.src } 

II New advice transition 

t ( 
. ) _ jp.e[jp.u~this.u]/act 

radv JP - stidle stidle 

act= attrjp_con :=false; Attre_args := jp.e.Args; 

advAction(aom, c, jp) 

Aspectev = Aspectev(aom.oom, aom.wrl.am, c') 

JPev = { jp I jp E JPev(c) 1\ (c,jp) E Domain(aom.wrl.am) 1\ 

aom.wrl.am(c,jp) =f. 0} 

advAction :AOM x Class x JPev(c) -tAction. Maps the set of before advice on the 

event core join point (c,jp) of AO model aom to a compound action that implements 

the advice set. Note that seq(Act) is the sequential composition of actions in Act. 

In Act is ordered, the order is preserved in the sequential composition, and if it is 

unordered, the order of composition is arbitrary. 

advAction(aom, c, jp) ~ 

seq( { treeAction(a, adv) I (a, adv) E asbef } ) 

treeAction( a, adv) ~ 
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if(!attrjp_con) { 

seq( { advAction(a, adv, ch) I ch E children(adv.root) } ) 

} 

nodeAction(a, adv, n) g 

if(n.cr ~ attra.cr) { 

attra.ch.act; seq( { advAction(a, adv, ch) I ch E children(n) } ) 

} n E adv.Nact 

attrjp_con := true n E adv.Ncon 

as= aom.wrl.am(c,jp) 

modObjects :AOM ·---+ P(Object). Maps AO model, aom, to a set of objects that 

is a modification of the AO model's objects as prescribed by its WRL. This involves 

setting initial aspect references of instances of core classes whose action join points 

are advised, to the appropriate aspect instance as prescribed by the object map of the 

AO model's WRL. 

modObjects(aom) ~ 

aom.oom.O \ CoreObj U CoreObj' 

CoreObj' = { (oc.name, oc.c, oc.ini U ini'(oc)) I oc E CoreObj } 

ini'(oc) = { attra 1-+ oa I a E Aspect(oc.c) 1\ wrl.om(oc, a)= oa } 
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CoreObj = CoreObj(aom.oom, aom.wrl.am) 

Core = Core(aom.oom, aom.wrl.am) 

Aspect( c) = Aspect(aom.oom, aom.wrl.am, c) 

Based on the above definitions, for the optimized weaving approach, the size 

increase of the woven 00 model with respect to the 00 component of the unwoven 

AO model is in O(stev + staet + attrev +attract+ trev +tract) with redefinitions 

stev = ICevl X UPev X adv X n + iPev X trans) 

trev = ICevl X UPev X adv2 
X n + iPev X trans) 

where trans is the number of transitions triggered by an event corresponding to an 

advised event join point. 

3.5.1 Optimized Weaving without Concurrent Regions 

To accommodate UML verification tools such as [33] that do not support concurrent 

regions in UML statecharts (i.e. and states that have more than one child), we present 

a variation on WP2 (WP2.1 ) described above that does not make use of concurrent 

regions. Once again, the compromise comes at a cost: we require that statecharts in 

the UML part of the AO model: 

• Do not have concurrent regions. 

• Do not have conflicting transitions (see Section 3.1). 
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The FITEL AO model and many other useful AO models (we believe) satisfy these 

conditions. We describe WP2.1 by its difference with the WP2; that is, the modCoreev 

function. 

modCoreev :AOM x Class --+ Class. Maps a core class c in AO model aom to 

a modified version of the core. Core data and behaviour are modified to prepend 

advised event join points with before advice. The data modification is the same as 

in WP2, and the behavioural modification is different only in that advice actions 

are embedded directly in the one microstep delay of transitions Tr' rather than in a 

separate concurrent region. Restriction 1 above, ensures that exactly one member of 

a possible set of conflicting transitions can be triggered upon occurrence of an advised 

event join point, and restriction 2 ensures that this set has only one member. So it 

is possible to precisely determine the transition in the core statechart that advice 

actions should be embedded in. 

df 
modCoreev(aom, c)= 

(c.name, c.Attr U Attr, s) 

II References to aspects, join point consume flag, 

II and event argument place-holders 
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Attr = { attra: a I a E Aspedev } U 

{ attrjp_con : bool I jp E JP ev } U 

{ attr E Attre_arg I e = jp.e 1\ jp E JP ev } 

Attre_arg = { attre_arg : arg.type I arg E e.Args } 

II Behaviour modifications 

s = ( c.s.Stateand U { Sttr I tr E Tr(jp) 1\ jp E JP ev }, c.s.Stateor, 

'\,' U { (parent(tr), sttr) I tr E Tr(jp) 1\jp E JPev }, 

... , Trans', c.s.label) 

II Transition replacement 

Trans'= c.s.Trans \ { tr E Tr(jp) I jp E JPev} U 

{ tr' E Tr'(jp, tr) I jp E JPev 1\ tr E Tr(jp) } U 

{ tradv(jp) I jp E JPev} 

II To be replaced 

Tr(jp) = { tr E c.s.Trans I :3a E L:i, tr.src E a 1\ tr.e = jp.e} 

L:i(jp) = { ai E valid configurations of c.s I jp.a ~ ai } 

II Replacement 

Tr'(jp, tr) = 

{ 
tr.ejact(tr,jp) 

tr.src _:.__...:.......:.:~ sttr, 

[tr.g;p.e.Args+-Attre..args A !attXjp_con]/tr.adjp.e.Args+-Attre_args 
sttr tr.dst, 

[!tr.gjp.e.Args+-Attre_args V attrjp..con] } 
Sttr tr.src 

69 



3. Process 

act( tr, jp) = attr jp_con := false; Attr e_args := jp.e.Args; 

advAction(aom, c,jp) 

Aspectev = Aspectev(aom.oom, aom.wrl.am, c') 

JPev = { jp I jp E JPev(c) 1\ (c,jp) E Domain(aom.wrl.am) 1\ 

aom.wrl.am(c, jp) =/=0 } 
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Based on the definition above, for WP2.1, the size increase of the woven 00 model 

with respect to the 00 component of the unwoven AO model is in O(stev + stact + 

attrev +attract+ trev +tract) with redefinitions: 

stev = ICevl X UPev X trans X adv X n + )Pev X trans) 

trev = ICevl X UPev X trans X adv2 
X n + JPev X trans) 



Chapter 4 

Case Studies 

4.1 Feature Interactions in Telephony Systems 

Our first case study is a well-known example from the domain of feature interactions in 

telephony systems adopted from [22]. Here, the telephony system is comprised of a set 

of users (telephone receivers), a network switch, and a set of control software modules 

(one per user). All communication between users and control software modules goes 

through the switch. In its basic form, a control software module manages a simple 

connection between its user and another party by communicating with its user and 

the other party's control software module. In modern telephony systems, users can 

enhance their control software module by subscribing to various features such as call 

forwarding ( CF), which forwards incoming calls to a third party, and originating call 
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screening (OCS), which prevents outgoing calls to users on a screening list. In some 

instances, features fail to co-exist: i.e. features interfere with one another's operation 

or in other words, they interact. As an example, imagine that user 1 has subscribed 

to OCS, with a screen on user 3, and that user 2 has subscribed to CF, with all 

calls forwarded to 3. If 1 calls 2, and the call is forwarded to 3 due to 2's CF, then 

1's OCS is compromised, and if the call is not forwarded due to 1's OCS, 2's CF 

is compromised. Hence the two features interact. We will show our process can be 

used to detect this interaction. The case study will be referred to as FITEL for 

feature interactions in telephony systems. Note that in this case study and the next 

(Section 4.2) the weaving was performed by hand. 

4.1.1 AO model 

UML 

The UML part of FITEL's AO model is shown in the following figures: 

• Class names and data are shown graphically in Figure 4.1. 

• Class statecharts are shown graphically in Figure 4.2 and Figure 4.3 (note that 

stm1; ... ;stmn d t . bb . . £ stm1 . . stm., d ) d src ' s IS an a rev1at10n or src ----+ t1 ... tn-1 ---+ st , an 

their event receptions are shown in abbreviated notation in Figure 4.4. 

• The initial instantiation is shown in Figure 4.5. 
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User_Caller 
Controll 

1!3 id:int 
8 call:int 8id:int 

u: J 

1!3 oid:int 

cl 

Switch Control2 
User_Callee ' 

X 

x/ 
/ X c2 8id:int 
~u2 8 oid:int 
'u3 

X 

X 
c3 

Control3 
CF ocs 

E3iid:int 
B fw:int 8 screen:int B oid:int 

Figure 4.1: FITEL 00 model class names and data 

To see the mapping between the set-based notation for classes presented in Sec-

tion 3.1 and the alternative notation used in the figures, compare the set-based rep-

resentation of class CF below, with that of Figure 4.1, Figure 4.2, and Figure 4.4. 

cf = (CF,Attr,s) 

Attr = { (fw, int), (x, Switch) } 

s = ( { idle }, {root }, { (root, idle) }, [root~--+ idle], 

{ (iring, { (oid, int) } ) }, 0, 

{ idle iring/x!oring(oid,fw) idle }, 0) 
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Control 

BUSY BUSY BUSY 

w J + I .. 
alterted offtx!oconn(id,oid) answered idisconn/X!disconn(id) twaiton 

~ 

~ 
irin p!this.oid := oid; 
x!o ee(id,oid);x! ring(id) 

on/X!odisconn(id oid) 

ist prin~ Vx! topring(id) on 

on/X!odisconn(id,oid) 

BUSY ID ~ r--1-
idle on owaiton idisconn/X!disconn(id) connected 

.. 
~ 

on/X!o ring(id,oid) 
on 

ibusy !busy(id) iconn/X! onn(id) 
off 

offhook dial/oid := num; x!oring(id,oid) dialed ifree/this .old := oid waitans 

I + L__j I _, 
BUSY* BUSY BUSY 

* B U 5 Y: iring/x!obusy(id,oid) 

Figure 4.2: FITEL 00 model statecharts for Controll, Control2, and Control3 
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CF User_Callee 
iring/x! oring( oid,fw) 

idle 
ring/x! off( id) 

talking 

"'"disconn/x!on(id) 

User_Caller conn/x! on(id) 

~ • [ca 11-1 ]lea II :- 2 I 
idle /x!off(id);x!dial(id,call) toggle waitans 

~ [ca11=2]/call := 1 

f I 
busy/x!on(id) 

ocs ~ dial dial 
idle 

.... check screen .. 
.. .... 
[num !=screen] [num =screen] 

Switch 

oring[oid=n)/cn! iring(id) ,.. _____ ..,.... on[id=n)/cn! on() 

ostopring[oid=n]/cn! istopring(id) off[id=n]/cn! off(id) 

conn[id=n]/un! conn() dia l[id=n]/cn! dia l(num) 

disconn[id=n]/un!disconn() ofree[oid=n)/cn! ifree(id) 

bus y[id=n]/un! busy() obus y[oid=n]/cn!ibus y(id) 

ring[id=n]/un! ring() oconn[oid=n]/cn! iconn(id) 

s topring[id=n]/un! stopring() odis conn[oid=n]/cn! idis conn( id) 

Figure 4.3: FITEL 00 model statecharts for CF, User_Caller, User_Callee, OCS, and 
Switch 
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Control1- 3 

Signal= { on(), off(), dial(num: int) I I from user 

Call= 0 

ifree(oid: int), iconn(oid: int), idisconn(oid: int), ibusy(oid: int), 
iring(oid: int), istopring(oid: int) I I from control } 

User _Caller - Callee 

Signal= { conn(), disconn(), busy(), ring(), stopring() } 
Call= 0 

CF 

Signal = 0, Call = { ring(oid: int) } 

ocs 
Signal= 0, Call= { dial(num: int) } 

Switch 

Signal= 
{ on(id: int), of f(id: int), dial(id: int, num : int) I I from user 

ofree(id: int, oid: int), oconn(id: int, oid: int), odisconn(id: int, oid: int), 
obusy(id: int, oid: int), oring(id: int, oid: int) 
ostopring(id: int, oid: int) I I from control (to control) 
conn(id: int), disconn(id: int), busy(id: int), 
ring(id: int), stopring(id: int) I I from control (to user) } 

Call= 0 

Figure 4.4: FITEL 00 model events 
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WRL 

( os 1, Switch, [ c1 ~---+ ocl, c2 ~---+ oc2, c3 ~---+ oc3, 
ul~--+ oul, u2 ~---+ ou2, u3 ~---+ ou3]), 

( oc1, Control!, [x ~---+ os1, id ~---+ 1]), 
( oc2, Control2, [x 1--+ os 1, id 1--+ 2]), . 
( oc3, Control3, [x 1--+ os 1, id ~---+ 3]), 
(ou1, User_Caller, [x ~---+ os1, id ~---+ 1, call~--+ 2]), 
(ou2, User_Callee, [x ~---+ os1, id ~---+ 2]), 
( ou3, User_Callee, [x ~---+ os 1, id ~---+ 3]), 
( ocf, CF, [x ~---+ os1, fw ~---+ 3]), 
( oocs, OCS, [x ~---+ os1, screen ~---+ 3])} 

Figure 4.5: FITEL 00 model initial instantiation 
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The WRL part of FITEL's AO model is shown in Figure 4.6, and is explained below: 

• Weaving rule 1: Before core instance oc1 :Control! can process event 

dial(num: int) when it is in state offhook, aspect instance oocs: OCS pro-

cesses the event. If as a result, oocs's statechart lands in state screen, the 

event is consumed (preventing the core from seeing it). Otherwise, oc1 pro-

cesses the event as usual. 

• Weaving rule 2: Before core instance oc2: Control2 can process event 

iring( oid : int) regardless of its current state, aspect instance ocf : CF pro-

cesses the event. Then, unconditionally, the event is consumed. 

Figure 4.7 shows FITEL's WRL in the alternative syntax of Figure 3.1. 
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Advice mapping: 
( cl, jpl) ~----+ asl 
cl = control1 
jpl = ({ offhook },dial(num: int)) 
asl = aslbef = { (Des, adv1) } 
advl = 

root 
({idle},dial(num)) 

({idle}, skip) 
({screen}, skip) 

consume 
({screen},dial(num)) 

({idle}, skip) 
({screen}, skip) 

consume 

0 b j ect assignment: 
{ ( oc1, ocs) I-+ oocs } 

Weaving Rule 1 

Advice mapping: 
(c2,jp2) 1---+ as2 
c2 = control2 
jp2 = ({root },iring(oid: int)) 
as2 = as2bef = { (CF, adv2) } 
adv2 = 

root 
({idle},iring(oid)) 

consume 

Object assignment: 
{ ( oc2, CF) 1---+ ocf } 

Weaving Rule 2 

Figure 4.6: FITEL WRL 

Aspect OCS 
Core Control1 

before ({offhook},dial) 
({idle},dial(num)) 

({idle}, skip) 
({screen}, skip) 

consume 
({screen},dial(num)) 

({idle}, skip) 
({screen}, skip) 

consume 
ObjectMap 

ocl -> oocs 

Weaving Rule 1 

Aspect CF 
Core Control2 

before ({root},iring) 
({idle},iring(oid)) 

consume 
ObjectMap 

oc2 -> ocf 

Weaving Rule 2 

Figure 4. 7: FITEL WRL in alternative syntax 
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4.1.2 Woven 00 model 

WPl 

FITEL's woven 00 model (using WP1) is shown in the figures below: 

• Class names and data are shown in Figure 4.8. 

79 

• Statecharts of proxies for core classes Control1 and Control2 are shown in 

Figure 4.9 and Figure 4.10 respectively (statecharts of other classes are the 

same as in the unwoven AO model), and event receptions of all statecharts 

are shown in Figure 4.11. Note that some statechart transitions added by the 

weaving process may be unreachable in the sense that they are not enabled for 

any configuration of the woven model. The woven model can be simplified by 

removing such transitions. In FITEL's woven model (using WP1), the unreach­

able transitions are: transitions from st_advLi, st..n1, and st..n2 to st_advLf 

in PControl1; and transition from st_adv2_i to st_adv2_f and the transition 

from st_adv2_f to idle guarded by !jp2_con in PControl2. 

• The initial instantiation is shown in Figure 4.12. 

WP2 

FITEL's woven 00 model (using WP2) is shown in the figures below: 

• Class names and data are shown in Figure 4.13. 
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User_Caller ocs 
8id:int 8 screen:lnt 
8 call:lnt 

Toes 

u: I PControll 
User Callee .... Switch ~ x' 8 num_arg:lnt ~ Controll 

/ 

'u2 
8Jpl_con: bool 

8 id:lnt 
/ ..,.x 8old:lnt 

u3 
' Control3 c3 ..,.x 

Control2 
' 8id:int X 

8 oid:lnt ~ PControl2 ~ 8 id:lnt 
, .... 8 old:lnt 

8 old_ a rg:lnt 
'r'- 8 jp2_con : bool 

J,ct 
CF 

8 fw:lnt 

Figure 4.8: FITEL woven 00 model (using WP1) data 

• The modified portion of statecharts of core classes Control1 and Control2 are 

shown in Figure 4.14 and Figure 4.15 respectively (statecharts of other classes, 

as well as event receptions of all classes are the same as in the unwoven AO 

model). 

• The initial instantiation is shown in Figure 4.16. 

WP2.1 

FITEL's woven 00 model (using WP2.1) is shown in the figures below: 

• Class names and data and the initial instantiation are the same as in WP2. 

• The modified portion of statecharts of core classes Control1 and Control2 are 
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I 
sLadvl_f 

ntocs.inStaterldlel or [!(ocs.lnState(ldle) or 
ocs.lnS tate(screen))] ocs.ln!> tate {screen))J 

f 
I sLn121 I I sLn221 I 

~pl_con :=true ~pl_co :=true 
I sLn11 I 

l sLn12 J I sLn21 I I sLn22 I 
[ocs.lnS ~te(ldle)] 

[ocs.lnStatE Idle)] 

[ocs.i ~tate(screen)] [ocs.lnSt te(screen)] 

I sLnl I I sLn2 r-
[ocs .isS tate(ldle)]/ocs .tia l(num_a rg) [ocs .InS ta_;(sc reen)]/ocs .dia l(num_a rg) 

I I 
[!(ocs.lnState(idle) or I st advl_l [I (ocs.inS tate(ldle) or 
ocs.1n~ tate{screenm ocs.ln!> tate{sc reenm 

ijpl_con] 
dlal[c.lnState(offhook)]/numjarg := num; jpl_con :=false 

Idle I [!jpl_con]/c.dlal(num_arg) - ., 
-t. j 

diaiOc.inState(offhook)]/c.dlal(num) U L_j I~ 
all slg In controll.Signal 

slg/clslg(slg.Args) 

Figure 4.9: FITEL woven 00 model (using WPl) statechart for PControl1 (proxy 
of Control!) 
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[!cf.inS te(idle)] ~p2_con :=true 

[cf.inState( dle)]/cf.iring(oid_arg) 

Op2_con] [!jp2_con]/< .iring(oid_arg) 

Figure 4.10: FITEL woven 00 model (using WPl) statechart for PControl2 (proxy 
of Control2) 
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Control1 

Signal= { on(), off() I I from user 
ifree(oid: int), iconn(oid: int), idisconn(oid: int), ibusy(oid: int), 
iring(oid: int), istopring(oid: int) I I from control } 

Call= { dial(num: int) } 

Control2 

Signal= { on(), off(), dial(num: int) I I from user 
ifree(oid: int), iconn(oid: int), idisconn(oid: int), ibusy(oid: int), 
istopring(oid: int) I I from control } 

Call = { iring(oid: int) } 

PControl1 - 2 

same as Control1 - 2 of Figure 4-4 

Control3,User_Caller-Callee,Switch 

same as Figure 4.4 

Figure 4.11: FITEL woven 00 model (using WPl) events 

( os1, Switch, [ clt-t opel, c2 t-t opc2, c3 t-t oc3, 
ult-t oul, u2 t-t ou2, u3 t-t ou3]), 

( opc1, PControl1, [c t-t oc1, ocs t-t oocs, numarg t-t 0, jpLcon H false]), 
( opc2, PControl2, [c t-t oc2, cf t-t ocf, oidarg t-t 0, jp2_con t-t false]), 
... (other initial instantiations in FITEL's 00 model, unchanged)} 

Figure 4.12: FITEL woven 00 model (using WPl) initial instantiation 
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User_Caller ocs 

8id:int 8 screen:int 

8 call:int 
ocst 

u: I Control1 

User_Callee ' Switch 8 id:int X_.... 

/ X cl 8 oid:int 
l'u2 E3J num_arg:int 
v E3J jpl_con : bool 
'u3 

Control3 Control2 
X c2 

8id:int c3 X X~ 8 id:int 
131 oid:int 

CF cf 131 oid:int 
/ E3J oid_arg:int 

131 fw:int "' 131 jp2_con : bool 

Figure 4.13: FITEL woven 00 model (using WP2) data 

I sLtop 

st_core 

... I offhookl 

dial 1 [jpl_con] 

1 st_tr, 1 

~-~~~~:arlts I [ljpl_con]/ 
I Controll I old:= num_arg; 
1 statechart j xlorlng{ld,oid) 

I {not s_hown) 

1

. 
rema1n 

L~~~~~~-~~~~:_J ... 1 dialed 1 

I 
I sLadvlce 

I 

~~ 
I 

I 
I 

dla l[thls .InState ( offhook)J/ 
jp1_con :=false; 
num_arg := num; 
lf(ocs.lnS tate(ldle)) { 
ocs.dial(num); 
if(ocs.lnState(idle)) { 
skip}; 

if(ocs.lnState(screen)) { 
skip; jpl_con :=true}}; 

lf(ocs.lnS tate(screen)) { 
ocs.dlal(num}; 
lf(ocs.lnState(idle)) { 
skip}; 

if(ocs.lnS tate(screen)) { 
skip; jpl_con :=true }} 

Figure 4.14: FITEL woven 00 model (using WP2) statechart for Control 
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I st_top 

st_core 

ijp2_con] 

+ ... I offhookl Iring 

I I 

+ 

I 
.I st_trl I ... 
I I 

[!jp2_con]/ 
x!obus y(ld,oid_a rg) 

I'S~a-me applleslDotile"i'self-transltions L') 

I labeled 'BUSY' (not shown). Other I 
• parts of original Control2 statechart f I (also not shown) remain unchangedj 

~--·~-N~'"--~~~·~~----~~ 

I 
I st_advice 

I 

i1=P 
I 
I 
I 

Iring/ 
jp2_con :=false; 
old_ a rg := old; 
if(cf.lnState(ldle)) { 

if(ocs.lnState(idle)) { 
cf.irlng(old); 
jp2_con :=true )} 

Figure 4.15: FITEL woven 00 model (using WP2) statechart for Control2 

( oc1, Control!, [x f-+ os1, id f-+ 1, ocs f-+ oocs, numarg f-+ 0, jpLcon f-+ false]), 
(oc2, Control2, [x f-+ os1, id f-+ 2, cf f-+ ocf, oidarg f-+ 0, jp2_con f-+ false]), 
... (other initial instantiations in FITEL's 00 model are unchanged)} 

Figure 4.16: FITEL woven 00 model (using WP2) initial instantiation 
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;- otile·r-pa.ris-··r·,: 
of original 
C ontroll 

diaV 
jpl_con :=false; 
num_arg := num; 
if(ocs.inState(idle)} { 
ocs .dia l(num); 

[!jpl_con]/ 
oid := num_arg; 
x! oring(id,oid) 

s tatechart 
(not shown) 
remain 
unchanged. 

1'-o~~~o~ok~~~----~·~~~s~t~trl~~ .,~d-ia-led~, 

Qpl_con] 

Figure 4.17: FITEL woven 00 model (using WP2.1) statechart for Control1 

r·sam-e-applies t0-~1:1 

I other self-transitions I 
; labeled 'BUSY' (not I 
i shown). Other parts ; 
! of original Control2 I 
l statechart (also not ' 
I shown) remain 
I unchanged. 

··~··~-·-·-···-.···--~·_j 

~ 

offhook 

t 

Up2_con] 

iring/jp2_con :=false; 
aid_ a rg := aid; 
if(cf.inS tate(idle)) { 
if(ocs.inState(idle)) { 
... 

r 
st_trl 

[!jp2_con]/ 
x! obus y(id,oid_a rg) I 

Figure 4.18: FITEL woven 00 model (using WP2.1) statechart for Control2 
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shown in Figure 4.17 and Figure 4.18 respectively (statecharts of other classes, 

as well as event receptions of all classes are the same as in the unwoven AO 

model). 
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4.1.3 Reports 

Analysis Report 

The syntactic analysis of the FITEL AO model reveals nothing, while as we know, 

interactions do exist in this model. These are revealed in the verification report as 

we shall see in the next section. 

Verification Report 

We verified the following correctness property of FITEL's woven 00 model using IFx 

[33] as discussed in Section 1.3: 

Propocs = 'No connection from user 1 to user 3 is possible' 

Propocs is required by the OCS subscription of user 1. Its observer class behaviour 

is shown in Figure 4.19 (the class has no data). Propocs was verified once with only 

Weaving Rule 1 (only weave OCS), and once with both Weaving Rule 1 & 2 (weave 

both OCS and CF) of Figure 4.6 on a machine with 2GB of memory. Table 4.1 

tabulates the results using weaving processes WPl and WP2.1 (IFx does not yet 

support concurrent regions). The column States is the size of the state space of an 

IF model equivalent to FITEL's woven model and is a measure of the woven model's 

verification complexity (using WPl and with both OCS and CF woven, the state­

space is too large to fit even in 2GB of memory). Note that Propocs is satisfied with 
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match receivesignal: oconn(id, oid) [id != 3 or oid != 1] 

• r--1 
ok match receivesignal: oconn[ld, oid) Od = 3 and oid = 1] <<error>> 

~ ko 

Figure 4.19: Propacs observer class behaviour 

only OCS woven, but fails to satisfy with both OCS and CF woven: this indicates an 

interaction between these two features. 

Table 4.1· FITEL verification results using IFx 
WP1 WP2.1 

States PrOPocs States Prop0c8 

ocs ~ 160000 ./ ~ 57000 ./ 
OCS+CF 550000+ - ~ 120000 X 

4.2 Interactions in an Electronic Commerce Shop 

Our second case study is an adaption of the e-commerce shop example used to il-

lustrate EAOP in [11]. Here we consider a trivial electronic commerce shop where 

a customer makes requests for purchasing products and is billed accordingly. The 

shop has two promotions in place: the regular discount promotion is that any pur-

chase that exceeds some threshold t is awarded a pd percent price reduction from 

their purchase; the bingo promotion is that the nth customer is awarded a pb percent 

price reduction from their purchase (and the promotion is repeated for the next n 
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customers). The shop has a profiling mechanism that allows the manager to monitor 

the number of discounts awarded to customers so far. Suppose the shop has a price 

reduction limit (PRL) policy that the total price reduction awarded to a customer 

for a given purchase shall not exceed some percentage pt. If pd + pb > pt and the nth 

makes a purchase that exceeds t, PRL is violated (i.e. the promotions interact). We 

will illustrate how our process can be used to detect this violation. This case study 

will be referred to as ECOMM. 

4.2.1 AO model 

UML 

The UML part of FITEL's AO model is shown in the following figures: 

• Class names and data are shown graphically in Figure 4.20. 

• Class statecharts (with action labels) are shown graphically in Figure 4.21, and 

their event receptions are shown in abbreviated notation in Figure 4.22. Note 

that the customer continually makes purchases of $40. 

• The initial instantiation is shown in Figure 4.23. Note that here, t - $30, 

n = 100, pd = %10, pb = %50, and pt = %50. 
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Bingo 

8count:int 
~rate :int 

Customer 

~order :int 

8 threshold : int 
8 c :Customer 
8pr:int 

.... 
s"' 

Profiling 

8count:int 

Shop 

Discount 

8rate :int 
~threshold :int 
8 c :Customer 
E3pr :int 

Figure 4.20: ECOMM 00 model class names and data 

Shop buy/custlbill(cust.order) 

~ 
/order:= 40; s!buy(self,order) 

waiting 
bill 

----------------------~------------
Discount Profiling 

[pr > threshold]/11: c. order := c. order- pr*rate/1 00 
discount/count:= count+ 1 

buy/c := cust; pr := price 

[pr <= threshold] 

Bingo 

buy/count :=count+ l;c := cust;pr :=price 

[count I= threshold] 

Figure 4.21: FITEL 00 model statecharts (with action labels) 
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Customer 

Signal = { bill(price : int) }, Call = 0 

Shop 

Signal= { buy(cust: Customer,price: int) }, Call= 0 

Discount 

Signal= 0, Call= { buy(cust: Customer,price: int) } 

Bingo 

Signal= 0, Call= { buy(cust: Customer,price: int) } 

Profiling 

Signal= 0, Call= { buy(cust: Customer,price: int) } 

Figure 4.22: ECOMM 00 model events 

(oc, Customer, [s 1-t os, order~--+ 0] 
( os, Shop, 0), 
( od, Discount, [rate~--+ 10, threshold 1-t 40, c ~--+null, pr ~--+ 0]), 
( ob, Bingo, [count ~--+ 0, rate~--+ 50, threshold~--+ 100, c ~--+null, pr ~--+ 0]), 
(op,Profiling, [count~--+ 0])} 

Figure 4.23: ECOMM 00 model initial instantiation 
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WRL 

The WRL part of ECOMM's AO model is shown in Figure 4.24. Here, Shop is advised 

by Discount and Bingo, which themselves are advised by Profiling (this illustrates 

an aspect of aspect scenario). The weaving rules are explained below: 

• Weaving rule 1: Before core instance os : Shop can process event 

buy(cust: Customer, price: int) when it is in state idle, first aspect instance 

od : Discount and then ob : Bingo process the event. Then unconditionally, os 

processes the event. 

• Weaving rule 2: After the execution of action 11 in core instance od: Discount, 

event discount() is dispatched to aspect instance op : Profiling if its state­

chart is in state idle. 

• Weaving rule 3: After the execution of action 12 in core instance ob: Bingo, 

event discount() is dispatched to aspect instance op : Profiling if its state­

chart is in state idle. 

Figure 4.25 shows FITEL's WRL in the alternative syntax of Figure 3.1. 

4.2.2 Woven 00 model 

WPl 

ECOMM's woven 00 model (using WPl) is shown in the figures below: 
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Advice mapping: 
(cl,jpl) ~-t asl 

c1 =Shop 
jpl = ({idle}, buy(cust: Customer, price: int)) 
asl = aslbef = { (Discount, adv1), (Bingo, adv2) } and 

(Discount, adv1) > (Bingo, adv2) 
advl = adv2 = 

root 
({idle}, buy(cust, price)) 

Object assignment: 
{ ( os, Discount) 1---t od, ( os, Bingo) ~-t ob } 

Weaving Rule 1 

Advice mapping: 
( c2, jp2) ~-t as2 
c2 = Discount 
jp2 = l1 
as2 = as2aft = { (Profiling, adv3) } 
adv3 = 

root 
({idle},discount()) 

Object assignment: 
{ ( od, Profiling) ~-t op } 

Weaving Rule 2 

Advice mapping: 
( c3, jp3) ~-t as3 
c3 =Bingo 
jp3 = l2 
as3 = as3aft = { (Bingo, adv4) } 
adv4= 

root 
({idle},discount()) 

Object assignment: 
{ ( ob, Profiling) 1---t op } 

Weaving Rule 3 

Figure 4.24: ECOMM WRL 
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Aspect Discount 
Core Shop 

Aspect Bingo 
Core Shop 

94 

before ({idle},buy) 
({idle},buy(cust,price)) 

ObjectMap 

before ({idle},buy) 
({idle},buy(cust,price)) 

ObjectMap 
OS -> od OS -> ob 

Weaving Rule 1 (part 1} Weaving Rule 1 (part 2} 

Aspect Profiling 
Core Discount 

after 11 
({idle},discount()) 

ObjectMap 
od -> op 

Core Bingo 
after 12 

({idle},discount()) 
ObjectMap 

ob -> op 

Weaving Rules 2 and 3 

Figure 4.25: ECOMM WRL in alternative syntax 
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Customer PShop Shop 
' ' 13 order: int s' 13 cust_arg :Customer s' 

8 price_arg : int 
8jpl_con: Boolean 

I I 
bJ, ld 

Bingo Profiling Discount 

8count:int 
_, 

p' 8count:int 'p 13 rate :int 
l3rate:int l3 threshold : int 13 threshold : int 8 c :Customer 
13 c :Customer 8Jpr :int 
8pr :int 

Figure 4.26: ECOMM woven 00 model (using WPl) data 

• Class names and data are shown in Figure 4.26. 

• Statecharts of the proxy for core class Shop and modified core classes Discount 

and Bingo are shown in Figure 4.27 (statecharts of other classes are the same 

as in the unwoven AO model), and event receptions of all statecharts are shown 

in Figure 4.28. Note that the jp1con attribute of PShop is not necessary due 

to the absence of consume nodes in advice. All transitions guarded by !jp1con, 

therefore are unreachable and can be removed. The same is true of all transitions 

guarded by !s.inState(idle), !d.inState(idle), or !b.inState(idle). 

• The initial instantiation is shown in Figure 4.29. 
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PShop [!d.inState(idle)] 

• I 
I st_advU I J st_n 1 L [d.inState(ldle)]/d.buy(cust_arg, prlce_arg) .I st_advl_l J 
1 r 1..__-Jr I I 

buy/cust_arg := cust; price_arg := price; jp1_con :=false T 
I Idle I _ 

[jp1_con] 

-L r ...... 
[!jp1_conl [!Jp1_conJ/s.buy(cust_arg,prlce_argl r r Up1_conl 

,-----JI:.,.---, 1 st_adv2_i 1 [b.inState(idle)]/b.buy(cust_arg, prlce_arg) J st_n2 1 J st_adv2_f 1 
I I -1 I I I 

f 
[!b.inState(ldle)] 

Discount [!p.lnState(ldle)] 

[p.lnState(ldle)]/p.discount() 

buy/c := cust; pr := price 

[pr <=threshold] 

Bingo [!p.lnState(idle)] 

[p.lnState(idle)]/p.discount() 

uy/count :=count+ 1;c := cust;pr :=price; count :=0 

[count!= threshold] 

Figure 4.27: ECOMM woven 00 model (using WPl) statecharts for PShop (proxy 
of Shop), Discount, and Bingo 

Shop 

Signal= 0, Call= { buy(cust: Customer,price: int) } 

Figure 4.28: ECOMM woven 00 model (using WPl) events 
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(oc, Customer, [s 1-+ ops, order 1-+ OJ 
( ops, PShop, [ s 1-+ os, b ~---+ ob, d ~---+ od, 

custarg ~---+ null,pricearg ~---+ O,jp1con ~---+false]), 
( od, Discount, [p 1-+ op, rate 1-+ 10, threshold 1-+ 40, c 1-+ null, pr 1-+ 0]), 
( ob, Bingo, [ p 1-+ op, count 1-+ 0, rate 1-+ 50, threshold 1-+ 100, 

c ~---+ null,pr 1-+ 0]), 
... (other initial instantiations in ECOMM's 00 model are unchanged) 

Figure 4.29: ECOMM woven 00 model (using WP1) initial instantiation 

WP2 

ECOMM's woven 00 model (using WP2) is shown in the figures below: 

• Class names and data are shown in Figure 4.30. 

97 

• The statechart of core class Shop is shown in Figure 4.31 (statecharts of other 

classes as the same as in WP1, and the event receptions of all classes are the 

same as in the unwoven AO model). 

• The initial instantiation is shown in Figure 4.32. 

WP2.1 

ECOMM's woven 00 model (using WP2.1) is shown in the figures below: 

• Class names and data and the initial instantiation are the same as in WP2. 

• The statechart of core class Shop is shown in Figure 4.33 (statecharts of other 

classes, as well as event receptions of all classes are the same as in WP2). 
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Customer Shop 
' 

1!!31 order: int 
s ..... 8 cust_arg :Customer 

8 price_arg : int 
8jp1_con: Boolean 

I I 
bJ ld 

Bingo Profiling Discount 

8count :int 
... _, 

p' 8count:int 'p 8rate:int 
8rate :int 8 threshold : int 8 threshold : int 8 c :Customer 8 c :Customer 8pr:int 
!3pr:int 

Figure 4.30: ECOMM woven 00 model (using WP2) data 

st_top 

st_core 
ijp1_con] buy[this.lnState(idle)]/ 

t ,~., I jp1_con :=false; 

~ I buy 1 I cust_arg := cust; • I 1 st_ldle I:J prlce_arg := price; • lf(d.lnState(ldle)) { 
d.buy(cust, price) J; 

[!jp l_con]/cust!blll(cust_arg.order) I 
lf(!jpl_con) { 

if(b.inState(ldle)) { 
b.buy(cust, price) l} 

Figure 4.31: ECOMM woven 00 model (using WP2) statechart for Shop 

( oc, Customer, [s ~ os, order ~ 0] 
( os, Shop, [ b ~ ob, d ~--~' od, 

cust ~ null,pricearg ~ O,jplcon ~false]), 
... (the initial instantiation of other classes is the same as in WPl)} 

Figure 4.32: ECOMM woven 00 model (using WP2) initial instantiation 
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ijp1_con] 

buy/ 
jp 1_con :=false; 
cust_arg := cust; 
price_arg := price; 

,, if(d.inState(idle)) { 

idle 
... 

st_tr1 .. .. 

f 
[!jp 1_con]/cust!bill( cust_arg.order) 

Figure 4.33: ECOMM woven 00 model (using WP2.1) statechart for Shop 

4.2.3 Reports 

Analysis Report 

The syntactic analysis of the ECOMM AO model reveals an overlap between advice 

(Discount, advl) and (Bingo, adv2) of Figure 4.24, as they both apply to the same 

join point (jpl) and (Discount, advl) > (Bingo, adv2) (note that while the overlap is 

explicit in the state-based WRL syntax of Figure 4.24, it is not so in the alternative 

syntax of Figure 4.25). This overlap indicates a possible interaction between concerns 

Discount and Bingo. 
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Verification Report 

We verified PRL (whose observer class data and behaviour are shown in Figure 4.34) 

for the UML part of ECOMM's unwoven AO model, and for its woven 00 model 

(using WP1 and WP2.1) with all aspect combinations (for combinations involving 

Profile, the unbounded incrementation of the count attribute of Profile was ex-

eluded from its behaviour to reduce verification complexity - this behaviour change 

does not affect PRL). The results are tabulated in Table 4.2. For the unwoven model, 

the state-space size is 37 states and PRL is satisfied. Note that PRL only fails to 

satisfy with combinations Discount+ Bingo and Discount+Bingo+Profiling. This 

confirms that the advice overlap detected by the syntactic analysis (Section 4.2.3) task 

does indeed correspond to an interaction between concerns Discount and Bingo. 

Table 4.2: ECOMM verification results using IFx 
WP1 WP2.1 

States PRL States PRL 
No advice ~ 160000 .; ~ 57000 .; 
Discount 550000+ .; ~ 120000 .; 
Discount + Bingo 550000+ X ~ 120000 X 

Discount+ Profiling 550000+ .; ~ 120000 .; 
Discount+ Bingo+ Profiling 550000+ X ~ 120000 X 

Bingo 550000+ .; ~ 120000 .; 
Bingo+ Profiling 550000+ .; ~ 120000 .; 



4. Case Studies 101 

PRL 

8 c :Customer 

8order:int 

8bill:int 

~ 
idle match send : buy{cust, price) /c := cust; order:= price ordered 

r 

t match receivesignal : bill{price) !bill :=price ~ 
{(order- bill)*l 00/order <=SO) 

check billed 

-
i({order- bill)*l 00/order >50) 

<<error>> 
ko 

Figure 4.34: PRL observer class data and behaviour 



Chapter 5 

Discussion 

This chapter evaluates the proposed process by informal analytical arguments con­

cerning the verification complexity of the woven model generated by the weaving 

processes, the expressiveness of the AO modeling language, and the traceability of re­

sults from the static analysis and verification tasks to the AO model; and by empirical 

results obtained from applying the process to FITEL and ECOMM. 

Verification complexity. The three weaving processes (WPl, WP2, and WP2.1) 

introduced in this paper differ both in the number of class elements they introduce to 

implement advice on event join points, and in where they allocate such elements in 

the woven model. The increased verification complexity of the woven model compared 

to the UML part of the unwoven model depends on both the number and allocation 

of advice elements (for event join points). The number of advice elements depends 
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on the AO model (as explained in previous sections), while for a given number of 

advice elements, the impact of the allocation of these elements on the verification 

complexity ofthe woven model decreases in order, from WPl to WP2 to WP2.1. The 

decrease in verification complexity from one weaving process to another comes at the 

expense of support for AO model features: From WPl to WP2 we lose support for 

after advice, and from WP2 to WP2.1 we additionally lose support for concurrent 

regions and conflicting transitions. 

Expressiveness of AO model. We will assess the expressiveness of the AO mod­

eling language described in Section 3.2 by comparing it to the (in our opinion, ex­

pressive) aspect definition language of EAOP. As described in Section 2.3, in EAOP, 

an aspect in its most basic form, is a rule that maps a join point in the execution 

trace of the core to advice. Aspects can be composed by recursion, choice, sequential, 

and (adapted) parallel composition operators. Compound aspects are state machines 

that evolve from one constituent aspect to another (based on the composition oper­

ators) in response to join points. Aspects themselves can contribute join points to 

the execution trace; that is, they can be advised by other aspects. In our modeling 

approach, a basic aspect is a state machine that reacts to join points by executing 

one or more advice trees (before or after the join point), where each advice tree pre­

scribes one or more evolution steps based on the join point context (and optionally, 

the consumption of the join point in the case of before advice). Aspects can only 
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be composed sequentially, but at the granularity of advice; that is, order is imposed 

on advice (within a before/after category) and not on aspects. As explained in Sec­

tion 3.2 aspects of aspects are also supported in our approach. We believe, there is 

no fundamental difficulty is changing the weaving processes to support the rich com­

position operators of EAOP; however, the affect of such support on the verification 

complexity of the woven model is an important consideration. 

On another note, with static weaving processes such as ours, per instance advice 

(i.e. advice on a particular instance of a core class rather than on all instances of 

the core) cannot be supported. FITEL (Section 4.1) is an example of where per 

instance advice is needed: ideally, we would model the basic control software with a 

single class (say Control) and assign features to specific instances of this class. Per 

instance advice can be (perhaps not attractively) simulated statically by duplicating 

the core class for each advised core instance. This method has been applied to FITEL 

in Section 3.1 by duplicating Control per user (Control!- 3). 

Traceability Static analysis is performed on the unwoven model, and as such, its 

results are readily traceable to elements of the AO model. Formal verification however, 

is performed on the woven model. Assuming the UML verifier tool presents error 

scenarios in UML (rather than in a language that the tool translates UML to, e.g. 

Promela [41] or IF [33]- and both [41] and [33] do so), traceability of error scenarios to 

the unwoven AO model deteriorates from WP1 to WP2 to WP2.1, as class elements 
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that implement advice on event join points become less localized (advice elements 

for action join points have the same allocation for all approaches). Regardless of the 

weaving process used, the direct mapping from advice elements to advice trees allows 

reasonable traceability. 

Empirical Results It appears that with current UML verification technology 

(based on a sample of one verification tool), WPl is not feasible for moderately 

complex models (such as FITEL- Section 4.1), and should be used only if the model 

requires after advice on event join points and/or is relatively simple (such as ECOMM 

-Section 4.2). WP2.1 and we speculate WP2 (though without empirical evidence due 

to the limitation of the UML verification tool at our disposal) on the other hand, do 

appear feasible, and we believe a large set of useful AO models satisfy their restric­

tions. 



Chapter 6 

Conclusion 

We have presented a process for detecting concern interactions in AO designs ex­

pressed in UML (for modeling concern data and behaviour) and WRL (a domain 

specific language for specifying how concerns crosscut). The process consists of two 

tasks: 1) A syntactic analysis of the unwoven AO model to alert the developer of 

potential sources of interaction. 2) Verifying properties of the model before and after 

the weaving of concerns to confirm/reject findings of task 1 and/or to reveal new 

interactions. At the heart of task 2 is a weaving process that maps an unwoven AO 

model to a behaviourally equivalent woven 00 model. We present three weaving pro­

cesses: WP1 (supports all features of WRL; yields a woven model of high verification 

complexity), WP2 (does not support after advice; verification complexity of woven 

model is generally lower than WP1), and WP2.1 (does not support after advice, con-
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current regions, and conflicting transitions; verification complexity of woven model is 

generally lower than WP2), the choice of which is driven by required WRL features 

and the complexity of the AO model. For the (moderately complex) FITEL case 

study, we observed that using IFx [33] for UML verification, WPl and WP2 are not 

feasible (due to verification complexity and lack of support for concurrent regions by 

the verification tool respectively), while WP2.1 is feasible. For the simple ECOMM 

case study, we observed that WPl and WP2.1 are feasible, while WP2 is not (due to 

lack of support for concurrent regions by the verification tool). 

6.1 Future Work 

We propose the following directions for future research: 

• Further optimizations to the weaving processes. 

• Improving expressivity of our AO modeling language by 

- Implementing EAOP [10] composition operators and studying their affect 

on verification complexity. 

- Adding introductions (ala AspectJ [19]) to WRL. 

• Experimenting with more case studies to empirically evaluate the effect of the 

weaving processes on verification complexity, and the expressivity of our AO 

modeling language. 
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• Investigating UML verification tools to determine the feasibility of verifying 

larger models. 
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