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Abstract 

This thesis examines the problem of variational image decomposition, as first intro­

duced and developed by Meyer in [1], and its applications to textured image dis­

crimination and textured image denoising. Image decomposition generally refers 

to the splitting of an image f into the sum of two or more components, e.g. u, 

a cartoon component, and v, a texture component. After a brief overview of the 

use of partial differential equations in image processing, which has become very 

widespread in recent years, a novel image decomposition model called Improved 

Edge Segregation, based on the pioneering work of Vese and Osher [2], is put for­

ward, which gives better decomposition results, as it better separates cartoon and 

texture edges into their proper components. Decomposition with Improved Edge 

Segregation is generally performed in less time than that from Vese and Osher's 

model, and gives superior (better quality and faster) texture discrimination results 

when used in conjunction with Active Contours without Edges [3]. Then a new 

model, called the Simultaneous Decomposition/Discrimination model, which si­

multaneously decomposes and segments a textured image is described, also im­

proving decomposition and discrimination quality. Extensions to the image de­

composition model of Osher, Sole and Vese [4], which is itself based on the H-1-
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norm, are subsequently put forward. One such extension decorrelates the cartoon 

and texture components by using an energy term based on the correlation coef­

ficient between them in local windows, giving better decomposition results. The 

other combines the decomposition and nonlinear diffusion frameworks, for the 

purposes of ameliorating denoising performance. First, Perona and Malik [5] non­

linear diffusion is incorporated into decomposition, and subsequently the frame­

work of image denoising with Oriented Laplacians is incorporatd. Finally, two 

models where texture is represented by one subcomponent are presented, one 

which requires precomputation of image orientations, Orientation-Adaptive De­

composition, and another, Eikonal Orientation-Adaptive Decomposition, which 

does not. Orientation-Adaptive Decomposition is applied to both the decompo­

sition and the denoising of oriented textures, and some theoretical discussion of 

Eikonal Orientation-Adaptive Decomposition included. Finally some conclusions 

and suggestions for future work are given based on the research presented in the 

thesis. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

As the field of image processing grows more mature, along with its applications, 

new and challenging problems are encountered which require novel methods of 

solution. It will be seen that image decomposition [1] is a natural choice to solve 

these problems. However, some issues in tum exist with current image decomposi­

tion algorithms, namely poor quality and efficiency. This motivates the generation 

of new decomposition models, which perform better than the current state-of-the­

art, from which follows the work in this thesis. 

1.2 Existing Image Processing/ Analysis Challenges 

In the present day, digital images are becoming more and more ubiquitous, from 

cellular telephone cameras to barcode scanners in supermarkets. In most of these 
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m'tances, very fast (usually real-tim~) and accurate image pi'OCC'>sing and analysos 

a lgorithms are necessary 111 order to use these images to do somNhing useful, such 

ns !M'nding an image from a camera half-way across tlw world, or checking o ut a 

carton of milk at the local groc<'ry store. 

lm.1g~ segmentation. dt'IIOa.mg and compression/tran>mossion are examples of 

image processing problems for which .olutions are needed \<'I)' often 111 the real­

world. These problem> are now defined and describl.'<l Thl-n m the following 

~"Ction, the common frame-work of image decomposition is d~ribed. which facil­

itntes the solution of all of u,~sc problems. 

1.2.1 Image Segmentation 

Image segmentation refer.. to p.trtotionong an image domAJJI n onto do<joint region>, 

wh~re each region is "uniform ' in .ome >ense, with ""p<'ct to some characteristic. 

To define the disjoin In<.,> of the regions more rigorously, if the (non-empty) regions 

of the segmentation are {R,}/' 1, thenU;' 1 R, =nand R,nR1 0ifi f j. The 

human visual system ha> bl>cn shown to do this top-down >cgmcntation on its 
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own, separating images received by the optic nerve spontaneously and naturally 

to guide human actions in every sphere of life, from simple walking to parsing 

shapes into parts which are more easily processed [7]. 

For textured images, each region of the segmentation should consist of a uniform 

texture. An example of a segmented image, taken from [8], is shown in Figure 1.1. 

It is a result from the segmentation algorithm found in [9]. This result could actu­

ally be considered to be an oversegmentation, since the lizard would normally be 

considered in everyday life to represent one region, corresponding to that reptile. 

Uniformity in the context of texture means that statistical properties of the tex­

ture are uniform throughout the region. There are many classical statistical ap­

proaches of measuring texture characteristics, e.g. spatial gray tone cooccurrence 

probabilities and measures based on the textures in the frequency domain [10]. 

Now that the problem of image segmentation has been discussed, the next image 

processing problem to be reviewed is the important problem of image denoising. 

1.2.2 Image Denoising 

In its usual sense, noise in an image can be defined to be stochastic variation in 

the intensities of image pixels not caused by objects or detail in the scene being 

imaged itself [11]. The noise, being stochastic in nature, can have a multitude of 

different probability distributions. In general, two common types of noise found 

in digital images are Gaussian and impulse noise. Additive white Gaussian noise 

is usually introduced during image acquisition, while impulse noise is principally 

introduced by transmission errors [12]. In this thesis, only additive white Gaussian 
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(a) Original image (b) Image with Additive Wh.ite Gaussian Xoise 
(u = 30) 

Figure 1.2: Aerial Image of Downtown Toronto (from (14)) with and without 
Noise 

noise (AWGN) is considered, which has two parameters, the mean Jl and standard 

deviation u, however the research in this thesis could be extended to impulse noise 

models by using the methods in e.g. [13]. In this research, the assumption is always 

made that the mean of the additive white Gaussian noise is i' = 0. 

An example of a greyscale image (a one-meter resolution image of downtown 

Toronto, Canada by the IKONOS satellite on March 18, 2000 (14]) without any 

noise, and then corrupted with Additive White Gaussian Noise of standard devia­

tion u- 30 is shown in Figure 1.2. This image was selected since it contains many 

small-scale details, such as some buildings and roads, of which the obscurement 

by noise is more dramatic, than would be the case with larger scale structures. 

The sources of image noise are diverse, however some include electronic noise, 

which comes from random electrical currents in the electronic components of the 

digital image/video system, and grain and structure noise, which appears because 

of the grain structure of the film in the non-digital case [15]. Another unavoidable 
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type of noise in digital images is quantization noise, caused by the inevitability of 

rounding when digital images are processed by computer, since pixel intensities 

must be represented by the computer's finite precision arithmetic. The challenge 

in image denoising is to remove the high-frequency noise present in the image 

without destroying the high-frequency edges. Simple linear filtering will not work 

in this regard because it cannot distinguish between high frequencies originating 

from noise or image edges. As described in Chapter 2, the anisotropic diffusion of 

Perona and Malik [5] is a variational method which has much better performance 

than pure linear filtering for the task of edge-preserving image denoising. 

1.2.3 Image Compression and Transmission 

Another problem faced in image processing in the digital world is the ever in­

creasing amounts of image data. In order to store and transmit these images, it is 

desirable, and sometimes necessary to reduce the number of bits in the represen­

tation of the image. This problem could be related back to the problem of image 

segmentation discussed earlier, since often if a region in a segmentation is uniform 

in some sense, uniformity of the region can be taken advantage of to compress the 

data associated with it. 

For instance, real-time texture segmentation is useful for segmenting photos of 

Mars, see Figure 1.3 from the Pathfinder mission [16]. The segmentation can be 

used to compress the images to be transmitted by the land rover, by compressing 

the less important sky at a higher rate than the rocks and sand in the image, which 

are more salient features. 
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(a) Origi1\al Mars Image 

(c) Mano Fore-ground Segment (d) M11n. !-,~)' St.·gmeont 

Figurel.3: Segmentation of Mars Image into Section. that Can Be Compressed at 
Different Rates (from (16)) 

1.2.4 Unification of the Solution of Image Processing Problems 

Th~ JU!>t-dl">Cribed problems of image segmentation, dcnoising and compression 

c.m b..• unafic-d and considered as a mokcult of problem>, in that they are each sepa· 

rate hkealonb but can be combined together to form a larg~r unit. Though this may 

not be ammcdiately 00\"iOUS, the relati\ el) ne" frame\\ ork of image decomposi­

tion (I) unifiC'o the >elutions of these problem' m pro\ adang a common framework 

to tack!<' all of them. Decomposition has in the pa'l beo.-n u~ to refer to the split­

ting up of imag<'> into multiple resolutions in the context of wa.·elets (17). Instead 
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the recent work by Meyer [1] is referred to in this thesis, where images are split 

into parts of differing priorities, which can be recombined by taking a sum to form 

the original image, all in the variational framework. The way that image decompo­

sition can unify the three problems described above, and other image processing 

problems, is in providing a convenient representation of images for their joint so­

lution. Next, some background on the problem of image decomposition is given. 

1.3 Introduction to Image Decomposition 

In his monograph, Meyer [1] talks about separating images into a higher priority 

and a lower priority component. He states that there is an inherent difficulty in de­

ciding what information is considered to be of higher priority and what should be 

considered lower priority, but in general, the higher priority component is struc­

tured, while the lower priority component is more random, and can be described 

statistically. It can be easily seen that in general, there can be more than two prior­

ities, e.g. high, medium and low. 

Given that the original still-image information is split into these two components 

by their priority, if there is limited communication bandwidth, it is clear that the 

high priority component should generally be sent first, and then the lower priority 

component second. It is also possible to split an image into more than two compo­

nents by their priorities. This is done for example when the acquisition of image 

data is corrupted by noise, which can be placed in a third component separate from 

structure and texture information. 

In this thesis, attention is restricted to image decomposition models where the 
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high-priority component is piece>,..isc smooth (o,ometimcs called the cartoon com­

ponent), and th~ lower-priority comp011~nt(s) consist of texture/noise. A quick 

example of such a dl>composition is shown in Figure 1.4 and de.cribed in the next 

section. 

(a) OriglnJI ~ebn lmage (j) (b) u component (c.trtoon) 

(c) 1• wmJ"'<l"Wnl (texture) (d) r romponmt (rnddu.al) 

Figurt 1.4: Sampre.lmage O.."('()mposdion of zebra 1mage 

1.3.1 Example of Image Decomposition 

An example decompo•ltion, computed woth the variational model of Vcsc and Os­

ho.'r [2L is shown on bgure 1.4. The v • .,.,>o.Q.her model is dcscrib.>d on more de-
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tail in Section 2.4.2. This zebra image in Figure 1.4(a) has been chosen in order 

to illustrate the image decomposition process because it contains objects of many 

different scales- for example the zebra is of large scale whereas the grass on the 

ground is very small-scale. So the zebra as well as the ground could be consid­

ered as objects in the cartoon component u, and the texture component v would 

fill these objects with details, e.g. the zebra's stripes and the blades of grass. As 

can be seen, the cartoon component consists of the shape of the zebra, which looks 

more like a horse and the grass and background have been smoothed, though the 

interface between them is still not completely blurred. The residual component r 

(which equals f- u- v) is very close to zero, the maximum deviation from which 

is about 8 percent of the dynamic range of the original zebra image. Note that 

130 has been added to the texture and residual components for display purposes, 

where 255 is the maximum gray level in the images. 

Next we discuss how the operation of image decomposition can be considered 

simply to be the transformation to an alternate representation of the information 

in an image. 

1.4 Representation of Digital Images with Image De­

composition 

In engineering and mathematics, it is often advantageous to change the represen­

tation of data to facilitate operations on the data. For instance, as mentioned in 

the book by Marr [18], the representation of numbers will be different depending 
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on the operations we wish to do on them. For common use, the regular decimal 

system is sufficient, allowing for efficient performance of such common operations 

as subtraction and multiplication by human beings with pen and paper. However, 

a binary representation is more well-suited to the two-level logic of a digital com­

puter, so in this context, a number is represented by bits. If we were to use a binary 

representation for human use, then this would lead to very inefficient representa­

tions of numbers - for example, the 3-digit number 563 in decimal, would have to 

be represented by the 10-digit number, 1000110011 in binary. 

Similarly, in the context of signal and image processing, some representations 

are more conducive to certain operations than others. The classical example is 

representing an image in the frequency domain. Conversion to the frequency do­

main can be performed very efficiently using the 2-D Fast Fourier Transform (FFT), 

after which frequency filtering can be efficiently performed in the frequency do­

main by pointwise multiplication. Subsequently, the filtered frequency-domain 

image can be converted back to the spatial domain by the inverse Fast Fourier 

transform which has computational complexity equal to that of the forward FFT, 

namely 0( N log N) where N is the number of pixels in the image. 

Another example of an image representation conducive to certain operations is 

that of colour image representation in various colour spaces. The most common 

colour space is the usual RGB colour space, where each pixel is represented by the 

three intensities of red, green and blue. The RGB representation is used for exam­

ple in colour CRT and LCD monitors. On the other hand, for compression of RGB 

images, it is preferred to first transform to the YCbCr colour space, since the three 

colour planes in that space are much less correlated with each other than those for 
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the image in RGB space. Because of this reduced redundancy in the YCbCr repre­

sentation, higher compression rates may be obtained [19]. Image decomposition is 

simply another representation of a digital image, in this case as the sum of two or 

more component images. 

An interesting instance of image decomposition occuring in the natural world, 

is in the human psychovisual system. It has been demonstrated that patients with 

damage to one hemisphere of their brain draw different aspects of a picture shown 

to them for a short period of time, once the picture has been removed. They ei­

ther draw the outline of the picture (if their left hemisphere is damaged) or the 

details (if their right hemisphere is damaged) [20]. The outline corresponds to the 

cartoon component, while the details correspond to the texture/noise component. 

To the author's knowledge, this relation between image decomposition and psy­

chovisual function has not been observed before, and could be important to brain 

hemispheric modelling. 

The representation of digital images as sums of components obtained from im­

age decomposition is useful for many diverse image processing applications. In 

Meyer's monograph [1], decomposition was deemed to be important for image 

coding and transmission, with at least one practical implementation [21] appear­

ing in the literature. In subsequent literature, decomposition has also proven to be 

useful for texture discrimination [2], image denoising [4], image inpainting [22], 

and image registration [23]. For example, simultaneous structure and texture im­

age inpainting refers to reconstructing damaged or missing sections of an image 

from the image information surrounding the sections [22]. For this type of inpaint­

ing, an image is split into cartoon and texture components, and then inpainting 
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methods tuned to each component type are used. 

Image decomposition can also be used for image denoising [4], because the v 

component consists of texture and/ or noise. However, for a two-component im­

age decomposition model, this is done at the expense of losing some texture in­

formation from the u component as well. Image denoising is one of the examples 

of the applications of image decomposition examined in Chapters 5 and 6 of this 

thesis. 

1.5 How Decomposition is Applied - Sequential and 

Simultaneous Solutions 

1.5.1 Simultaneous Solution of Image Processing Problems 

Often, two or more image processing problems can be solved in tandem. The im­

petus for solving more than one problem simultaneously is not only that two prob­

lems are solved at once, but that the information from one problem can help in the 

solution of the other, and vice versa. 

For example, if it is desired to simultaneously deblur (without knowing the blur­

ring kernel) and segment an image, a segmentation of the image can help with this 

blind deblurring. This is because if the locations of the edges are known, then the 

shape of the blurring kernel can be determined by how the edge in the original 

image looks in the blurred image. Deblurring the image helps the segmentation 

process because then the edges of the objects in the image can be used in gradient-
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based image segmentation (for non-textured images). An example of such a si­

multaneous deblurring/segmentation algorithm is found in [24]. 

1.5.2 Sequential and Simultaneous Solutions in this Thesis 

During this research, image decomposition was used in two different ways. The 

more common and standard way was to first apply image decomposition to ob­

tain the component-by-component representation, and then after this, applying 

another image processing algorithm to this representation. A second way, was to 

simultaneously solve both the image decomposition problem and the other image 

processing problem by alternating between the solution of the two problems. 

In Figure 1.5, examples of the sequential and simultaneous solutions of the im­

age decomposition and image segmentation problems are shown. In this thesis, a 

simultaneous decomposition and segmentation scheme is developed in Chapter 4, 

as first published by Shahidi and Moloney in [25], and this fits into the simulta­

neous solution framework in Figure 1.5(b). However the scheme is more complex 

than the figure illustrates, in that there are texture subcomponents, and it is these 

subcomponents that the segmentation algorithm operates on, not the texture com­

ponent directly. 

1.6 Problem Statement 

Current methods for image decomposition as described above generally use nu­

merical partial differential equation techniques, more specifically the finite differ-
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ence method, to minimize energy functionals. 

One drawback of such variational image decomposition models is that, even on 

modem computers, they take a relatively long time, on the order of several minutes 

for some images. Although in this thesis, real-time/hardware implementations 

of the algorithms designed and used are not considered, this is a natural step to 

follow and an aim for future research. 

Additionally, many decomposition models do not perform well on certain types 

of images, or for certain image structures. For example, in the paper of Vese and 

Osher [2], the results from decomposition are input to an image discrimination 

method, but because sometimes the quality of decomposition is reduced, mainly 

by the presence of high-priority edges in the lower-priority component, so is the 

quality of the ensuing discrimination. As well, in a previous paper, Osher, Sole 

and Vese [4] apply their decomposition model to the problem of textured image 

denoising. However, for small-scale texture, often image structure is placed in the 

low-priority noise component, which is not desirable. 

Thus the problem that is being tackled in this thesis is the high-quality and ef­

ficient decomposition of images to simultaneously solve other image processing 

and analysis problems, e.g. texture denoising and discrimination/ segmentation 

or inpainting. 

The emphasis in this thesis is on the image decomposition problem itself, but 

some applications to the other image processing problems to which it can be ap­

plied are also included. 
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1.7 Proposed Method of Solution 

As stated in the previous section, existing variational image decomposition mod­

els often suffer from poor decomposition quality or efficiency of solution. Hence, 

these models are used as a base, and extended so these drawbacks are addressed. 

In general, the energy functionals for the various decomposition models are modi­

fied, either by adding extra terms to the functionals, their associated partial differ­

ential equations, or by changing the terms that are already present. 

When extra terms are added to these functionals, additional desirable conditions 

are imposed within and between the components of the decompositions. An ex­

ample is to not to allow texture and cartoon edges to be strong at the same image 

pixels. Another example is to add a term to the PDEs to be solved to promote 

diffusion along image isophotes in order to more effective use the decomposition 

model for oriented texture denoising. 

1.8 A Roadmap and Original Contributions of this The-

. 
SIS 

There are many existing image decomposition models, though it has been found 

that most are not as efficient as desirable. The aim of image decomposition is to 

separate the structure of an image from the texture, but it has been discovered in 

the course of this research that some of the implementations of existing models 

don't do this as cleanly as one would want. So these models have been modified 

by adding extra terms to the defining energy functionals to achieve both quality 
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and efficiency goals. New models have also been created for new applications, for 

example the denoising of oriented texture. In Chapter 3, the first modified model 

is presented, called Improved Edge Segregation (IES) , the main aim of which is to 

improve the quality of the existing Vese-Osher model, by placing more of the car­

toon edges in the original image into the computed cartoon component and more 

of the small-scale edges into the texture component. Also in Chapter 3, the first, to 

our knowledge, implementation of the solution of the image decomposition prob­

lem in the Message Passing Interface on a parallel computer is described. 

It is possible to view the decomposition and segmentation of images as two prob­

lems which can be naturally solved together, and this is done in Chapter 4 of this 

thesis, with the new Simultaneous Decomposition/Discrimination (SDD) model. 

This greatly improves the efficiency of these two tasks in terms of number of iter­

ations required over the usual sequential implementation, and gives better quality 

results as well. 

The strictly two-component decomposition model, called in this thesis the Osher­

Sole-Vese model after the original authors [4], is also modified to create three new 

models. These modifications fall under two categories, and these are described in 

Chapter 5. One modified model, which is referred to as the Decorrelated Osher­

Sole-Vese (DOSV) model, decorrelates the cartoon and texture component by ex­

plicitly adding a term based on the local correlation coefficient between these two 

components. Another modified model, referred to in this thesis as the Perona­

Malik-Osher-Sole-Vese (PMOSV) model, combines the nonlinear diffusion frame­

work of Perona and Malik with the decomposition model of Osher, Sole and Vese. 

This model has some drawbacks, which leads to the introduction of the Oriented 
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Laplacian Osher-Sole-Vese (OLOSV) model, also based on the idea of combining 

decomposition with nonlinear diffusion. Although the Osher-Sole-Vese model has 

been claimed by the authors to be very suitable for denoising of texture, it is shown 

here that the OLOSV model performs even better for certain images with very high 

frequency texture present. 

In Chapter 6, the new decomposition model called Orientation-Adaptive De­

composition (OAD) is introduced. This model is especially suitable for the decom­

position of oriented texture; hence, one of its applications is for the denoising of 

such textures. This model only uses one subcomponent which needs to be cal­

culated at each iteration to represent the texture, and so is simpler to understand 

and implement. An extension called Eikonal Orientation-Adaptive Decomposi­

tion (EOAD) is explored as well in that chapter. Finally, Chapter 7 summarizes 

the thesis, makes some conclusions, and suggests possible future work stemming 

from this thesis. 
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CHAPTER 2 

A Review of Variational Image 

Processing Models and Other 

Necessary Tools 

2.1 Introduction 

In the introductory chapter, variational methods for image processing and image 

decomposition were briefly touched upon, e.g. in Section 1.6. In this chapter, the 

Energy Method is reviewed, which is used for solving image processing problems 

within the variational framework, and some of the existing variational image de­

composition models in the literature presented. 

The decomposition and other variational models in this thesis use many image 

processing tools which are mathematical in nature, many of which are used repeat­

edly. So a description of these image processing tools needed for the various new 
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decomposition models and associated problems, e.g. texture discrimination/ seg­

mentation, are also presented in this chapter. 

2.2 Background: Nonlinear POE Models in Image Pro-

0 cesstng 

In the literature, PDE methods have been used for practically every image pro-

cessing and computer vision application, including continuous mathematical mor­

phology, invariant shape analysis, shape from shading, segmentation, object de­

tection, optical flow, stereo, image denoising, image sharpening, contrast enhance­

ment and image quantization [26]. 

Such methods were popularized with the introduction of scale space by Koen­

derinck [27] and Witkin [28] in 1983/1984. The possibility of the use of a multiscale 

framework for image processing is motivated by the fact that in the real world, ob­

jects can be observed and photographed at a variety of scales. A common example 

is that of a tree. From afar, only the main shape and outline are visible. Then a little 

closer, the shapes of the leaves and the ridges on the trunk can be seen. Extremely 

close, at a microscopic level, the individual cells of the tree can be distinguished. 

All of these scales describe the object, as they can be captured in a digital image; 

however only a certain range of scales can be observed in any given picture. 

In PDE-based methods for image processing, the digital image is considered to 

be a continuous three-dimensional surface, with the height at each point of the 

surface equal to the intensity of the image at the corresponding pixel or picture 
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element (at least for grayscale or other one-channel images). An example is shown 

in Figure 2.1. The conversion to a continuous 3-D surface is implicit in any PDE­

based image processing method because, theoretically, PDEs must operate on a 

continuous surface, and not on a regularly sampled surface, which is what defines 

a digital image. 

2.2.1 Example of the Energy Method in PDE-based Image Pro-

. 
cesstng 

2.2.1.1 The Energy Method 

An example is now given of how the Energy Method for PDE-based image process­

ing proceeds for a simple problem. Digital image processing problems consist of 

taking an input digital image (with domain and range elements quantized to dis­

crete quantities), and then processing it to create one or more output images. The 

processed image may be enhanced in some way (for example by being contrast en­

hanced or deblurred), and/ or the information in the image changed in some way 

to a more useful representation (for example by applying the wavelet transform). 

The first step in the Energy Method is to consider an image (assumed to consist 

of one colour channel for the purposes of this thesis) to be a first-order continu­

ously differentiable function I : 0 ~ JR2 ___,. lR, and then to define an energy on 

the class of such images. By a first-order continuously differentiable function, it 

is meant a function which is differentiable, and for which the first-order partial 

derivatives are continuous. The domain of the image is 0, which is usually rect­

angular since standard digital images are of this shape. This is opposed to the 
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original representation of the digital image as an MxN matrix of either bounded 

discrete quantized levels (e.g. bytes), or bounded values in R (e.g. floating point 

values). The energy is defined to be a functional, which takes as its inputs one 

or more first-order continuously differentiable functions and their partial deriva­

tives and gives a real number as its output. The energy is designed so that it is 

lower when its argument image functions have desired properties and is higher 

when they do not. So a desired processed image will be obtained when this en­

ergy functional is minimized. Because such energies are usually defined in terms 

of the integral of the argument functions and their partial derivatives, this min­

imization can be accomplished by the calculus of variations. Variational calcu­

lus shows that the minimizer of an energy functional satisfies the Euler-Lagrange 

equation(s), which is a set of one or more PDEs that the functions(s) minimizing 

the energy must satisfy. Given an energy functional, e.g. 

(2.2.1) 

where Ix and Iy are the partial derivatives of I, we say that E(I, Ix, Iy) is convex if 

E(Ah + (1- A)h) :S AE(h) + (1- A)E(h), (2.2.2) 

for all A E [0, 1], where I;_ = (h, h,x, I1,y) and I; = (12, h,x, h,y) are two vector­

valued functions, with the I1 and I2 element functions of I;_ and I; being themselves 

two first-order continuously differentiable image functions [29]. 

Then if the energy functional E( I, Ix, Iy) in Equation 2.2.1 is convex, and F satis­

fies certain inequalities (e.g. bounds on the growth of partial derivatives of f) [29], 
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it can be shown that E(I, Ix, Iy) has a minimum, and the image Imin minimizing 

E(I, Ix, Iy) is given by the following equation 

, aF d ( (Jf) d ( dF) 
E (I, Ix, Iy) = di - dx dix - dy diy = O, (2.2.3) 

when substituted for I, Ix and Iy. Equation 2.2.3 is called the Euler-Lagrange Equa­

tion of the energy E(I, Ix, Iy). If the energy functional E(I, Ix, Iy) depends on higher 

order partial derivatives of I, then the Euler-Lagrange equation will change; how­

ever for the purposes of this thesis, only functionals which depend solely on the 

input image and its first-order partial derivatives are considered. 

It is also possible (See Chapter 6 of this thesis) that there may be constraints 

placed on the image I, to force the final processed image to have certain desired 

properties. If it is wished to minimize the energy in Equation 2.2.1 subject to the 

constraint that G(I, Ix, Iy) = 0 everywhere, then the minimum of the constrained 

functional can be found by the method of Lagrange multipliers. If the space­

varying Lagrange multiplier A(x,y) is introduced, then the minimum of Equa­

tion 2.2.1 subject to the constraint G(I, Ix, Iy) = 0, is found by solving the Euler­

Lagrange equations of the energy 

(2.2.4) 

In order to be able to minimize the above constrained energy in Equation 2.2.4, 

the same conditions that had to hold for E( I, lx, ly) and Fin order for the solution 

of the Euler-Lagrange equation in Equation 2.2.3 to give a valid minimizer must 

hold, except that now the conditions must hold for the new E( I, lx, Iy ), and F + AG 
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instead of F. 

There will be an extra equation for the new function A(x,y), which has to be 

solved. The complete set of Euler-Lagrange equations is 

Next, an artificial time parameter tis introduced to represent the process of evo­

lution towards the energy minimum, so that I ( x, y) becomes I ( x, y, t), and the in­

put image is set to be I(x,y,O) = Io(x,y). 

Often, gradient descent with explicit timestepping is used to solve the Euler­

Lagrange equation. This means that a small time step tlt is introduced, and the 

following equation iterated 

In+l = In - fltE'(I I I ) 
I XI Y • 

If the time step is small enough, then it can be shown that the above equation con­

verges to a local minimum or a saddle point of the functional. With an appropriate 

choice of initial condition for I, the gradient descent equation will converge to a 

global minimum of the functional E(I, Ix, Iy), should one exist. The main draw­

back of explicit timestepping is that according to a condition called the Courant­

Frederichs-Levy (CFL) condition for hyperbolic equations [29], often the time step 

has to be extremely small leading to a slow solution of the Euler-Lagrange PDE. 

Similar upper bounds on the time step exist for the other classes of PDEs, namely 

elliptic and parabolic [30]. The entire procedure is now illustrated with the follow-
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ing example. 

2.2.1.2 Example of the Energy Method - the Heat Equation 

Continuous Heat Equation As a simple demonstration of the Energy Method, 

consider the following energy functional to be minimized 

(2.2.5) 

Clearly, this functional favours images I which are smooth, and the global mini­

mizer is a constant image. Using Equation 2.2.3 with F(I, Ix, Iy) = (I'i +I~), it is 

seen that the minimizer of Eheat(I, Ix, Iy) satisfies the equation Ixx + Iyy = 0. Be­

cause of the simplicity of this equation, it can be solved analytically, but instead 

this example is continued with the general methodology for the Energy Method. 

An artificial time parameter is introduced, so that now the equation 

It = Ixx + Iyy = ~I, (2.2.6) 

is obtained, where I(x,y,O) = Io(x,y), Io(x,y) being the initial input image. 

Clearly, when this PDE reaches steady-state Ut = 0), the original energy functional 

will be minimized. 

It has been shown by Koenderink [27] that evolution of an image by this heat 

equation is equivalent to convolution with a Gaussian - in other words the input 

image Io ( x, y) is isotropically blurred. As the time t increases, the variance of the 

Gaussian also increases, which means that there is more blurring and so the image 
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has a coarser resolution. In fact, as stated in [31], the variance of this Gaussian, as 

related to the time that diffusion is allowed to progress, is: cr2 (t) = 2t. 

Discretization of Heat Equation The above example used the theoretical con­

tinuous image Io(x,y) and the continuous processed output images of the Energy 

Method. However, digital images are not continuous so it is necessary to consider 

the numerical form of the Energy Method. In order to solve the PDE numerically, 

the digital image is brought back to its original representation as an MxN quan­

tized or real-valued matrix. The PDE(s), which is/ are discretized in time and 

space, yield(s) the processed image after iterative evolution in (artificial) time. Fi­

nite differences are generally used for the discretization because of their simplicity 

and also due to the fact that any digital image is composed of regularly spaced 

or sampled pixels, for which finite differences are a natural implementation, as 

opposed to, for example, finite elements. 

The art in this approach is choosing an appropriate energy functional for a given 

problem guided by the science of selecting features in the processed image which 

are desired to be maintained, enhanced or removed, and solving the PDE(s) using 

the appropriate numerical methods. 

Continuing with the example of the heat equation, assuming that Itj is the value 

of the digital image I at the ith column and ph row and at the kth iteration, the 

iterative finite difference equation derived from Equation 2.2.6 that is obtained is 

I~tl = Irj + ~t(I?-l,j + Irj-1 + Irj+l + I?+l,j- 4Irj) 

= c1- 4~t)Irj + ~tur-l,j + 1rj-l + 1rj+l + 1r+l,j) 
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This equation uses discretized second order derivatives, e.g. Ixx = I;+I,j- 2:~j+I;-l,j to 

approximate the partial derivatives in the continuous heat equation. Here, h is the 

grid spacing between adjacent entries in the matrix representing the image, and as 

done here, is generally taken to equal 1. Notice in the above equation, the value 

of any pixel (picture element, or entry in the digital image matrix) at the ( n + 1 )st 

iteration, only depends on the pixel values at the nth iteration. This type of dis­

cretization is called Jacobi iteration. Its advantage is that all the values of the pixels 

at a given iteration are independent of each other and can be computed in parallel. 

One disadvantage is slower convergence as opposed to more advanced methods, 

e.g. the Gauss-Seidel iteration that is discussed below. Another disadvantage is 

that storage is necessary both for the image data of one iteration, and the next. It 

can be shown using eigenvalue analysis of the underlying matrix formulation of 

the discrete heat equation that this solution is only stable for time steps ~t < i 
[30]. 

If the new pixel values in the image being processed are computed in row-major 

order, then some of the gridpoint (pixel) values from the current iteration will be 

available to be used for calculation of other gridpoint values of the same iteration. 

The expression for a method called Gauss-Seidel iteration, assuming that the pro­

gression being made is in row-major order, is given by 

I~:+- 1 = I~.+ ~t(I~+11 . + I~:t- 11 + I~.+l + I~+l ·- 4I~.) 1,] 1,] 1- ,] 1,]- 1,] I ,] l,] (2.2.8) 

This method can also be described by the pseudocode at the top of the next page. 

As can be seen, one advantage of Gauss-Seidel over Jacobi iteration is that extra 
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Algorithm 1 Gauss-Seidel Iteration for Heat Equation 

1: procedure GAUSS-SEIDEL ITERATION(!) 

2: for n <---- 1, numiters do 
3: for i <---- 1, rows do 
4: for j <---- 1, cols do 
5: Jn;+-1 = J:Z. + D.t(J:Z+11' + r:z;+-11 + J:Z. 1 + J!1+1 . - 4!!1.) l,] l,] l- ,, l,j- l,]+ l ,, l,] 

6: end for 
7: end for 
8: end for 
9: end procedure 

storage is not required - image values are overwritten in place. Also, Gauss­

Seidel iteration gives faster convergence. The disadvantage, however, is the fact 

that it is difficult to parallelize the iteration very well due to dependence between 

grid points of the same iteration. There is more on the comparison between Jacobi 

and Gauss-Seidel iteration in Section 3.7.2. 

Illustration of Heat Equation An example of the heat equation applied to a to­

mographical image is shown in Figure 2.2. 

As can be seen in Figure 2.2, as time increases, less detail can be seen in the 

evolving image I. Thus, the collection of images { I(x, y, t) }o::;t:s;T can be regarded 

as a linear scale space for use in a multiscale framework. Evolution of an image 

with the heat equation can be used for denoising, since noise is small-scale, and 

will dissipate with blurring. In digital images, however, edges, or regions of rapid 

change, carry the most information because they often indicate the boundaries of 

image objects. The utility of the linear scale space, described above, for denoising 

is hence limited by the lack of localization of edges. All parts of the image, edges 

and non-edges, are blurred by the same amount, so that some spatial information 
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about the location of image objects is lost. This limitation of linear scale space 

and of linear diffusion leads to the notion of inhomogeneous diffusion, which is 

described next. 

2.2.1.3 Perona-Malik Inhomogeneous Diffusion 

It was only when Perona and Malik [5] developed variable conductance diffu­

sion that the use of PDEs in image processing could be said to have become very 

widespread. They called their scheme anisotropic diffusion, though this is some­

what of a misnomer, as Weickert [32] explains and as will soon be discussed in 

the next paragraph. Perona and Malik introduced an edge-stopping coefficient to 

linear diffusion which ensures that only diffusion within regions which have low 

or zero edge-magnitude takes place and diffusion doesn't occur near strong edges. 

The implicit assumption of such diffusion is that the image is composed of non­

textured smooth objects. Perona and Malik's diffusion is defined by a non-linear 

PDE and is a very powerful denoising tool. 

The isotropic diffusion of the previous subsection could be expressed as It 

div(\7 I), where div is the divergence operator and measures the diffusion of its 

argument. Perona and Malik [5] introduced an edge-stopping coefficient inside 

the divergence, so that their evolution equation is 

(2.2.9) 

where g(IVII2 ) is the diffusivity with g being a non-increasing function. There­

fore, when the image gradient magnitude lVII is high, g(IVII 2) should be low, 
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because the edge should not be diffused. Similarly, when the image gradient mag­

nitude lVII is low, more diffusion is desired, so g(IVII2 ) should be high. Thus, 

this diffusion is inhomogeneous because it varies with image location depending 

on the gradient strength of the evolving image. It is isotropic however, and not 

anisotropic, because at any given image location, diffusion is constant along all 

directions. Anisotropic diffusion can be accomplished by the use of a diffusion 

tensor [32] instead of a single diffusivity function. 

There are many possible choices for g(IY' Il 2 ); in [5], Perona and Malik primarily 

used 

2 1 
g(IVII)= l\7!12' 

1+---xr 

where A is the diffusivity parameter. Although Perona and Malik did not develop 

their method via minimization of an energy functional, and instead looked at the 

structure of the image being processed, Perona-Malik (P-M) diffusion fits within 

the energy minimization framework, described at the start of Section 2.2.1. As 

stated in [32], if the energy EpM is defined as 

then the derived Euler-Lagrange equation will be the same as Equation 2.2.9. 

An example of P-M diffusion on the same image as Figure 2.2(a) is shown in 

Figure 2.3, with diffusivity parameter A = 8 (assuming that the maximum gray 

level in the image is 255). 

Notice that the diffused images in Figures 2.3(b) and 2.3(c) are less blurry than 
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the corresponding diffused images in Figure 2.2. It can be seen that the P-M dif­

fusion keeps the large scale edges in the initial image so that the information pro­

vided by these edges is not lost, though there is some smoothing within regions 

of the tomographical image. This makes Perona-Malik diffusion better suited than 

isotropic homogeneous diffusion for scale space formation, and for use with im­

ages which are typically strongly characterized strongly by their edges. 

2.2.1.4 Summary 

The general approach being thus undertaken in this research is a common one for 

PDE-based image processing - first, an energy functional is defined on the image, 

generally an integral involving the image intensities and gradients, and the min­

imum of this energy found (i.e. the solution of the Euler-Lagrange equation(s)) 

using the calculus of variations [33]. The expression in the Euler-Lagrange equa­

tion is set to the derivative of the image with respect to an artificial time parameter, 

yielding a PDE or a system of PDEs, and the image is allowed to evolve (in theory 

continuously, in practice numerically) until it reaches a steady state. The contin­

uous steady state is a solution to the Euler-Lagrange equation(s), and thus the 

desired energy minimum (assuming certain conditions hold on the energy and its 

arguments). The PDE(s), which is/are discretized in time and space, yield(s) the 

processed image (the numerical steady state) after evolution in time. 

The advantage of using PDE models vs. traditional methods in image process­

ing such as linear or non-linear filtering is that there is a very broad and rigor­

ous theory of PDEs [34] that has already been developed for other purposes, and 

uniqueness and convergence of various schemes can be proven using this theory. 
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Also, such methods are sometimes of higher speed and are often more flexible and 

powerful than other forms of filtering. 

2.3 Additive Operator Splitting 

As Additive Operator Splitting (AOS) is used several times in this thesis, it is ex­

plained in some detail here for the purposes of completeness. In one dimension, 

for a signal u(x), general nonlinear diffusion takes the form 

(2.3.1) 

In the above equation, g is the nonlinear diffusivity function, and Ucr is the image 

u blurred with a Gaussian of standard deviation cr. This blurring is performed to 

make the model robust to noise and to make the problem well-posed [35]. When 

compared with the expression in Equation 2.2.9, it may be observed that the above 

equation is the one-dimensional analogue of the 2-D form of that equation. If u7 is 

set to be the value of u at position Xi and at time tk = k!1t, then this equation can 

be discretized explicitly as follows 

gk+l 
u~+l = uk + !1t " 1 1 (u~- u~) 

l l '--' 2 J l ' 
jEN(i) 

(2.3.2) 
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with N(i), the set of pixels neighbouring pixel i, and g7 approximating the nonlin­

ear diffusivity function at position xi and time tk. The formula for g7 is 

[ ( 
k k) 2] ~ _ ~ " up- uq 

gl - g 2 LJ 2 . 
p,qEN(i) 

(2.3.3) 

This reduces Equation 2.3.2 to the matrix equation uk+l = [I+ ~tA(uk)]uk, where 

the elements of matrix A(uk) = [aij(uk)] are given by 

for j E N(i) 
gf+g~ 

- LnEN(i) -2- if j = i 

0 otherwise 

It is proven in [36] that there is a rather severe time step restriction of ~t < !, 
so instead of explicit time stepping, it is proposed that semi-implicit time stepping 

be used instead. So, in lieu of the equation uk+l = uk + ~tA(uk)uk, the equation 

uk+l = uk + ~tA(uk)uk+l is solved. Because it can be seen from its definition 

that the matrix A(uk) is tridiagonal, and since it can be shown easily that A(uk) is 

diagonally dominant, the semi-implicit equation uk+l =(I- ~tA(uk))- 1 uk where 

I is the identity matrix, can be solved using the Thomas algorithm [36]. 

This is a very simple algorithm which is linear in the number of points in the 

solution domain. It consists of first performing an LR decomposition [37] of the 

tridiagonal matrix B =(I- ~tA(uk))- 1 , thus factoring it into the product of an 

upper bidiagonal and lower bidiagonal matrix (B = LR). Then LRu = d can be 

solved by forward and backward substitution, first by solving Ly = d, and then 
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Ru =y. 

The above procedure is valid for one-dimensional problems. For higher dimen­

sional problems, especially for the 2-D problems which are considered in this the­

sis, the above procedure doesn't generalize directly, and some modifications have 

to be made to the semi-implicit scheme described above. For two dimensions, the 

nonlinear diffusion equation becomes 

(2.3.4) 

The corresponding semi-implicit equation becomes 

2 
uk+l =(I- ~t L Al(uk))-luk (2.3.5) 

1=1 

The matrix A1 (uk) corresponds to the derivative matrix in the x direction, and 

A2 ( uk) to the derivative matrix in the y direction. Here the image at any iteration 

k is rewritten as a vector uk traversing the image matrix in row-major order. 

Unfortunately, in two dimensions, there is no ordering of the pixels that will 

ensure that the bandwidth of the matrix 

2 

I- ~t L A 1(uk) 
1=1 

will be small. Thus even for the semi-implicit solution scheme, it will be impossible 

to use the Thomas algorithm to solve each system. However, the semi-implicit 
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equation can be modified to form a new system [36] 

(2.3.6) 

It can be easily shown that both the original and modified semi-implicit equa­

tions have the same first-order Taylor approximations. The advantage of the new 

system is that once again the Thomas algorithm can be applied because each of 

the Az's is tridiagonal. This is called the Additive Operator Splitting scheme, and 

is highly efficient. It has been proven that the scheme is unconditionally stable, 

meaning that it will not grow unboundedly, regardless of the value of the time 

step l'lt. Only the accuracy of the solution is affected as l'lt is increased. 

2.4 Image Decomposition Models- Mathematical Un-

derpinnings 

2.4.1 Background Image Decomposition Theory 

To approach the simultaneous solution of two or more image processing problems, 

textured image decomposition has been examined. Decomposition is a common 

first step towards texture denoising and discrimination. Having the output of an 

image decomposition can lead to effective denoising of a digital image, and, as 

well, can make efficient texture segmentation/ discrimination much more practical. 

In a broad sense, image decomposition is defined by the separation of an image 

into two or more components which can be combined in some way to obtain the 
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original image. 

Often, the image f is split into the sum of two components (e.g. f(x, y) = 

u(x,y) + v(x,y)), where u(x,y) models the objects in the image and v(x,y) con­

tains the texture and/or noise in the image f(x,y). 

In most previous approaches, u and v are modelled as belonging to specific Ba­

nach spaces (complete normed vector spaces). For example the component u is 

assumed to belong to the space BV of functions of bounded variation (meaning 

the total integral of the gradient magnitude over the domain of the function is 

bounded above). This is because BV has been found in e.g. [38], to model piece­

wise smooth functions well. The image u ( x, y) is often restricted to be piecewise 

smooth, and is thus often referred to as the cartoon component, since the u image 

looks like a cartoon you would see in the comics section of a newspaper, or an an­

imated cartoon on Saturday morning television. The component vis what is left 

over and is the texture/noise component. There are also three-component mod­

els (see e.g. Aujol et. al. [39]), where the texture and noise are divided into two 

separate components, v and w respectively. 

In practice, because the decomposition is usually not exact, there is a residual 

component r which tends to be very small. Therefore, the two-component model 

can be expressed with the equation f(x, y) = u(x, y) + v(x, y) + r(x, y). 

Recently, Daubechies and Teschke [40] have proposed an image decomposition 

method based on Meyer's decomposition of images into cartoon, texture and noise 

components [1]; their method combines both wavelet and variational frameworks. 

This algorithm actually performs simultaneous deblurring and denoising of tex-
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tured images, and does this more efficiently than Malgouyres' variational algo­

rithm [41]. However, Daubechies' and Teschke's algorithm is mathematically very 

complex. Also, their method assumes that the blurring kernel is known. This could 

be extended to include blind deblurring, for example by adding a total variation 

term for this kernel as in [42], so that is a possibility which could be studied in the 

future. Meyer also considers the wavelet shrinkage procedure of Donoho when 

applied to functions of bounded variation, and functions belonging to other Besov 

spaces [1]. 

As just mentioned, various researchers, e.g. Meyer [1], have proposed or used a 

decomposition of an image f into a sum u + v where u is a cartoon component of 

bounded variation and v is an oscillating component consisting of texture and/ or 

noise. 

More generally, the usual total variation (TV) flow results from minimizing the 

energy functional 

(2.4.1) 

The first term (j0 j\7ujdxdy) is meant to produce a bounded variation (piecewise­

smooth) image upon energy minimization, while the second term is a fidelity term, 

which ensures that the result is close to the initial image f. This functional was first 

introduced in an image processing context in [38]. Although the minimization of 

ETv ( u) preserves sharp edges, it destroys fine structure such as texture. However, 

the flow has been used successfully for the denoising and deblurring of images of 

bounded variation. 
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In addition, in [1], Meyer proposed changing the second term in the above en­

ergy from including the L 2-norm of the residual to the *-norm of this residual, 

where* is a norm defined on a suitably defined Banach space G. The norm on G 

is defined by 

(2.4.2) 

over all g1 and gz such that v = div(g) where g = (gt,gz). In other words, the 

above L 00-norm (supremum) must be minimized over all g1 and gz such that 

(2.4.3) 

It is difficult in the literature to find an intuitive explanation of how or why this 

norm models texture and/ or noise in an image, however it has been shown that the 

norm is small for functions which may have large oscillations. In [1], it is proven 

in a lemma that if the following properties hold 

1. There exists a sequence of functions {fn}~=l' which are in L2(D), with D a 

disc, and the supports of fn contained in a compact set K <;;;: D. 

2. The Lq norms of the fn's are all bounded by some constant C, where q > 2. 

3. The sequence fn converges to 0 in the distributional sense. 

then the *-norm of the fn's will converge to zero as n goes to infinity. Such condi­

tions are found to hold for a wide range of oscillating functions. For example in 

[43], it is shown that for the simple one-dimensional example v(x) = cos(xt), the 

*-norm of vis}, and is thus inversely proportional to the oscillation in v. 
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An alternate to the *-norm is found in the work by Yin et. al., which replaces 

the L 2-norm of the residual in the second term of Equation 2.4.1 with the L 1-norm 

(see [44]). It has been shown that the use of the L 1-norm is especially effective in 

separating parts of an image into the cartoon or texture components based on their 

scale [44], creating a multiscale representation of an image. However, this so-called 

TV-L 1 model is not explored further in this thesis. 

2.4.2 Vese-Osher Decomposition 

The norm of Equation 2.4.2 for v motivated Vese and Osher in [2] to derive a prac­

tical implementation of the decomposition off into the sum u + v, by approximat­

ing the L 00 -norm of J gi + g~ by the LP -norm of the same quantity. Their energy 

functional is as follows 

Evo(u,g1,g2) = fo j\lujdxdy +A fo (f- u- dxg1- dyg2) 2dxdy+ 
1 

J1 [Jo ( J gi + g~)Pdxdy] r. (2.4.4) 

The model defined by the above energy is called the Vese-Osher (V-0) decompo­

sition model. The values A and J1 are user-specified parameters, A being a fidelity 

parameter controlling the amount of energy in the residual r, while J1 controls how 

strongly the texture component v is modelled as having a small *-norm, this norm 

being defined in Equation 2.4.2. The other variables and functions appearing in 

Equation 2.4.4 are as follows: f is the initial image, g1 and g2 are bounded func­

tions, and 0 is the image space. The value p is the index of the LP -norm, which is 
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set to 1 in [2] since this leads to simpler equations without substantial deterioration 

in image decomposition quality. 

The first term of the V-0 energy functional Eva ( u, g1, g2) is a total variation term 

to ensure that the cartoon component u is piecewise smooth. The second term is a 

fidelity term to ensure that f::::::: u + v. The last term is the LP-norm approximation 

to the L 00-norm of J gi + gi, which tries to make llvll* small, thus keeping the 

oscillating component off in v. 

If the V-0 energy functional Eva ( u, g1, g2) is formally minimized with the calcu­

lus of variations, the following system of Euler-Lagrange partial differential equa­

tions is obtained [2] 

u = f- dxgl- dyg2 + 2~ div c~~l) (2.4.5) 

tJ(IIVgi+gillp)1-P(Vgi+gi)P-2gl = 2,\ [axu -CJxf +a;xgl +CJ;yg2] (2.4.6) 

JJ(II V gi + gi lip) l-p( V gi + gi)P-2g2 = 2,\ [ CJyu- CJyf + a;ygl + a~yg2] . (2.4.7) 

Here II J gi + gillp = (j0 ( J g} + gi)Pdxdy) t, the LP-norm of J gi + gi. Vese and 

Osher's ( u, v) decomposition is implemented in their paper with a semi-implicit 

fixed-point iterative finite differences scheme, based on that of Aubert and Vese 

[45]. 
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The final equations that are iterated are as follows 

n+1 - ( 1 ) [ t .. - g~,i+1,j- g~,i-1,j - grj+1 - grj-1 u.. - }I} 
I,] 1 + ft ( c1 + c2 + c3 + c4) ' 2 2 

+ 2~ (c1 Uf+1,j + C2Uf-1,j + C3Urj+1 + C4Urj-1)] (2.4.8) 

n-T1 = ( 2;\. ) [uf+1,j- uf-1,j _ fi+1,j- fi-1,j + I! . + n. . 
g1,l,) JAH(gn . . , gn . . ) + 4;\. 2 2 gl+1,; g1,1-1,; 

1,1,] 2,1,] 

+!(2g2n .. +g2n. 1· 1+g~ 1' 1-g2n .. 1-g~ 1.-g2n. 1.-g2n .. 1)] (2.4.9) 2 ,!,] ,1- ,]- 1+ ,J+ ,1,]- 1- ,] ,1+ ,] ,l,J+ 

n+1 - ( 2;\. ) [urj+1 - urj-1 !i,j+1 - !i,j-1 n n 
g2,i,j - JAH(gn .. , gn .. ) + 4;\. 2 - 2 + g2,i,j+1 + g2,i,j+1 

1,1,) 2,!,] 

+! ( 2g1n · + gn1 · 1 · 1 + gn1 · 1 · 1 - gn1 · · 1 - g1n · 1 · - gn1 · 1 · - gn1 · · 1)] · 2 ,1,] ,1- ,;- ,1+ ,;+ ,1,;- ,1- ,; ,t+ ,; ,z,;+ 

(2.4.10) 

The function H(g1,g2) in Equations 2.4.9 and 2.4.10 is defined as H(g1,g2) = 

(II J gi + g~llp) 1 -P( J gi + gDP-2. The constants { ci}[=1, dependent on u, are given 
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by the expressions 

1 
c1 = ~========================~ 

( )
2 (uiJ. 1-uiJ. 1 )

2
' un . - ul!. + l,]+ l,]-

l+1J ~} 2 

1 
c2 = -----;============================= 

( )

2 (u"1·1-u1J1.1)
2

' ul!.- un . + l- ,;+ l- ,;-

l,] l-1,] 2 

1 
C3 = ~===========:============== 

(
un 1 .-un 1 .)

2 ( )2
1 

l+ ,; l- ,; + ul!. - un. 
2 z,;+1 z,; 

1 
C4 = -----;========================== 

(
u"1·1-u" 1· 1)

2 ( )2 l+ ,;- l- ,;- + un.- ul!. 
2 z,; z,;-1 

2.4.3 Osher-Sole-Vese Decomposition 

Another attempt at minimizing the *-norm of Equation 2.4.2 was made by Osher, 

Sole and Vese in [4]. They used the Hodge decomposition of g, which splits g 

into the sum of the divergence of a single valued function and a divergence-free 

vector field. The Osher-Sole-Vese (OSV) model only consists of two components, 

the cartoon component u and the texture/noise component v = f- u, with f the 

original image. In this model, using the Hodge decomposition of g and ignoring 

the divergence-free field part, it is found that the texture component v should have 

a small norm in the Sobolev space H-1(0), where this norm is defined as 
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The space H-1 ( 0) is not explicitly or directly used in the derivation leading up 

to the fact that the norm of v in that space should be small, however the final 

integral term J~ IV(~ - 1 )vl 2dxdy which is found to model the texture when small, 

happens to coincide with the definition of the norm on this space. Note that in this 

term (~-l )v refers to the function h such that ~h = v, or in other words, satisfies 

the Poisson equation with right-hand side v. 

Thus, Osher, Sole and Vese obtained the following energy to be minimized by 

ignoring the divergence-free part of g 

(2.4.11) 

In [4], a PDE that is a gradient descent solution for the above energy is found to 

be 

ut = 2\ ~ [ div ( I~: I ) ]- ( u - f) (2.4.12) 

with adiabatic boundary conditions, meaning that the boundary of u is padded 

with repetition at each iteration. The resulting energy functional contains an in­

verse Laplacian of f - u, but this was eliminated by showing that under some 

rather relaxed conditions, the equation Ut = ~E' ( u) always decreases the energy 

Eosv ( u), or in other words, is a gradient descent direction of that energy, just like 

the usual gradient descent equation Ut = -E'(u). The auxiliary functions g1 and 

g2 are no longer involved in the PDE, as they disappear in the derivation. In this 

thesis, the Osher, Sole and Vese decomposition model is called the OSV model , af­

ter the authors. In Chapter 5, this model is adapted and extended, first by adding 

an extra term for decorrelation of the cartoon and texture components, and then 
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modifying the Laplacian by introducing: a) a conductance coefficient inside of it, 

and (b) using an oriented Laplacian instead, both in attempts to make the model 

more effective for denoising. 

In those functionals that include g1 and gz, e.g. that of Vese and Osher [2] de­

scribed in Section 2.4.2, the functions g1 and gz can further be used for texture seg­

mentation/ discrimination by applying an Active Contour without Edges model, 

as found in [3], on lg1l or !gz!. This procedure can be time consuming, as demon­

strated by our experiments. A simpler and more efficient method based on the 

periodic texton model of textures [46] can be used by measuring the inhomogene­

ity of a blurred version of the square of one of the subcomponents g1 or gz, if the 

blurring is done with a Gaussian of appropriate variance. This type of efficient 

method is used in Chapters 3 and 4. Since the OSV model does not include g1 

and gz, it cannot be directly used in the fashion described for texture segmenta­

tion/ discrimination. 

Level set methods are now described, which are a vital part of the Active Contour 

without Edges (ACWE) model. The ACWE model is in turn applied to discrimi­

nation of images based on subcomponents from their decomposition. 

2.5 Level Set Methods 

Decomposition is the algorithm that feeds into texture discrimination in Vese and 

Osher's paper [2]. After a brief introduction to level set methods in this subsec­

tion, the Active Contours without Edges scheme, which is based on level sets, is 

examined in the following subsection. 
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Once an image has been decomposed, it is possible to use the subcomponents 

of the texture component v (gl and gz) for texture segmentation/ discrimination, 

as was done in [2], and as was explained at the end of the previous section. Ac­

tive Contours Without Edges, which has a natural implementation with level set 

methods, is a way to perform this segmentation/ discrimination. 

Since their invention by Osher and Sethian [ 47], level set methods have found 

widespread use in the fields of image processing and computer vision. For the 

problem of segmentation, a curve is overlaid on the image to be segmented, and 

the curve is allowed to evolve until it "hugs" the boundary of the object(s). 

The key observation behind level set methods is that a curve in 2-D space can be 

regarded as being the zero level-set of a three-dimensional surface (see Figure 2.4). 

The zero level-set is defined as being the intersection of the surface z = f(x,y) 

with z = 0. It can be shown (see [48]) that if a curve C evolves over an artificial 

time t according to the partial differential equation 

ac = f3N at ' (2.5.1) 

where C and N both depend on time and a parameterized arclength (N is the 

normal vector to the curve C at any point), and f3 depends on the curvature of C, 

then the corresponding level set function cp will evolve according to the equation 

acp at = f31V¢1· (2.5.2) 

This equation is usually solved iteratively via forward time-stepping with a time 

increment ~t, i.e. 
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A common procedure that must be incorporated into many practical level set 

methods is reinitialization. This specifically means that after every Nr iterations 

of the main level set method (with e.g. Nr = 20), the level set function z must be 

reinitialized to a signed distance function to avoid the gradient of z from becoming 

too large or small [29]. If this were to happen, then the curvature of the level set 

function would become undefined, and spikes would appear in z. The PDE that is 

used for reinitialization is Zt = sgn(z)(l- IVzl) [29]. This imposes the condition 

that the norm of the gradient z is equal to 1, which means that indeed z will be a 

signed distance function. 

2.6 Active Contours without Edges 

Active Contours Without Edges (ACWE) [3] is an active contours method, which 

means it involves an evolving curve or curves. A simple example of an active 

contour method is mean curvature motion [49], where an evolving curve C trav­

els at a speed equal to the curvature of C normal to the curve. become convex 

and converge to a circle [48]. Active contour models are used primarily for image 

segmentation so that the curve reaches equilibrium once it "hugs" the edges of an 

object in the image. 

Most active contour models developed thus far have been gradient based (e.g. 

[50], [51]), which means that the evolving curve's speed is dependent on the gra-
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client of the image over which the curve is evolving. Thus these image gradients 

must be explicitly calculated making these methods sensitive to noise. What dis­

tinguishes the ACWE model from more traditional models is that no such gradient 

calculations are needed. Instead the energy functional for the curve tries to mini­

mize the sum of the variances of the image inside and outside of the curve. Also, 

there is a term in the functional for the curve length, so that the curve which defines 

the boundary between two objects is itself smooth. The Active Contours Without 

Edges model is implemented with the level set framework; generalizations of the 

model have been extended to the segmentation of more than two regions [52] (by 

using more than one level set function), as well as to vector-valued images [53]. 

The energy functional that is to be minimized for the ACWE model is 

fiACWE · Length(C) + "-11 (uo(x, y)- m1)2dxdy + 
inside( C) 

"-2 r (ua(x,y)- m2)2dxdy, (2.6.1) J outside( C) 

where uo is the image being segmented, Cis the curve which is segmenting the 

image, and m1 and m2 are two constants which vary with each iteration and are 

calculated to be the average of uo inside and outside of the curve C respectively. 

A1 and A2 are both weighting parameters, which are set to 1, as is done in [3]. The 

only other parameter is fAACWE 1 which weights the length of the contour. In [3], it is 

demonstrated via examples that the larger fAACWE' the more likely that large objects 

will be detected and that smaller objects will be grouped together. The algorithm 

is more robust to noise with large values of fAACWE· 

This energy functional is more easily solved using a level-set formulation. As-
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Figure 2.5: S..1mple 4> ovt•rlind on g1l sulx;om-
ponent of image with Two Sep.-rntc Tl•xtun.•s 

>uming that tho curve C which forms the boundary bctw~cn the two regions of the 

omagc is the zero level..,et of the function <f>, the t:'ncrgy whoch mu.t be minimized 

by 4>" 

EAcwE(4>) = I'ACI\E fo 6(4>(x,y)) ~4>(x, y) dxdy 

At fo (uo(x, y)- m J)2 H(.p(x,y))d .rd_y 

+ A2 fo (uo(x, y) m2)1(1 H(<f>(x, y) ))dxdy. (2.6.2) 

where H( ·) is the Heaviside o r step function. The I ulcr·L.Igrange equa tion for the 

given functional is 

(2.6.3) 

"ith ad~.tb.ltic boundary conditions and with the initial condition 4>(x, y, t = 0) = 

fl, (x, y). In pracbce, 4\!(X,y) is set to be a sene. of 'mall vertically and horizontaUy 

alognt-d corclt.,., as this speeds up convergence of ACWE on Equation 2.6.3. An 

example of >Uch an initialization is given in Fogurc 2.5. 
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Figure 2.6: Ho.o2(z) and Jo.o2(z) 

A regularized delta function o£ is used above and is found by taking the deriva­

tive of the regularized Heaviside function [3]. The regularized Heaviside function, 

H£ ( z) , that is chosen for the purposes of this thesis, is given by the expression 

(2.6.4) 

and the corresponding regularized delta function o£ ( z) is 

(2.6.5) 

Plots of these two functions, with € = 0.02 are shown in Figure 2.6. 
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2. 7 Orientation and Coherence Calculation 

The algorithms presented in Chapters 5 and 6 require the noise-resistant computa­

tion of orientation at each pixel in the image in addition to the detection of which 

image regions are coherent, that is roughly consisting of one orientation. There are 

two methods from the literature which are considered here, in which such a calcu-

lation robust to noise can be performed, both of which use the structure tensor, or 

the outer product of the image gradient with itself. The first is based on the linear 

structure tensor, which corresponds to a linear diffusion or Gaussian blurring of 

the structure tensor elements, and the second is based on the nonlinear structure 

tensor, an extension of the linear structure tensor which corresponds to nonlin­

ear diffusion of the structure tensor entries. Both of these orientation calculation 

methods are now described in the next section, along with methods of determin­

ing the orientation coherence. If not otherwise specified in the following text, it 

is assumed the orientation refers to the gradient orientation, or the orientation in 

which the image changes the most in intensity. 

2.7.1 Linear and Nonlinear Structure Tensors 

The structure tensor is defined as the outer product of the image gradient vector 

with itself [31]. Supposing that the image is f, then the structure tensor J is defined 

as 

fxfy) . 
~~ 

The structure tensor is blurred elementwise with a Gaussian filter of standard 
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deviation o-, to obtain J(J = G(J * J. Robustness to noise is obtained because of this 

blurring operation. Then the orientation at each pixel is computed as the eigen­

vector W 1 of J(J corresponding to its larger eigenvalue A-1. This corresponds to the 

gradient direction at each pixel, and the isophote direction is simply computed as 

the eigenvector corresponding to the smaller eigenvalue of the structure tensor, 

since J(J can be shown to have orthogonal eigenvectors. 

The nonlinear structure tensor [54] is an extension of the linear structure tensor 

to compute the orientation field of an image f. The advantages of this nonlin­

ear tensor are lack of blurring of adjacent different orientations and resistance to 

noise. The nonlinear structure tensor is obtained from nonlinear matrix diffusion 

of the structure tensor, which is found by the outer product of the image gradient 

vector with itself, as just described. Nonlinear diffusion using Additive Operator 

Splitting is done separately on each element of the matrix, but with a diffusivity 

function g (with scalar argument) jointly computed from all the matrix entries 

The diffusivity (conductivity) function is chosen as c( I Vu 12 ) = 1Jul' corresponding 

to total variation flow. Then, the gradient and isophote directions at each pixel are 

computed in a manner similar to the linear structure tensor above. 

It was found that though the orientations determined by the nonlinear structure 

tensor were sometimes more accurate than those from the linear structure tensor, 

for the decomposition models in this thesis, the linear structure tensor estimates 

were sufficient. Thus, these estimates from the linear structure tensor were used, 
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since they were much more efficient in their computation, not requiring an iterative 

diffusion process as for the nonlinear structure tensor. 

2.7.2 Orientation Coherence 

In Chapters 5 and 6, it is necessary to determine which regions are oriented and 

which are not, so that different variational models can be applied to each type of 

region. A region is defined to be non-oriented when its gradient direction coher­

ence [55] is less than a pre-determined threshold, and this coherence function is a 

measure of how uniform are gradient directions around a pixel. In [56], the coher­

ence off is measured directly using a small window W around each pixel by the 

formula 

h (e .·)= lnfl· .L(u,v)EW IIY'flu,vCOs(ei,j- eu,v)l 
co er 1,7 v 1,7 " I Y'fl , L--(u,v)EW u,v 

where ei,j is the orientation calculated from the linear structure tensor at pixel (i, j); 

generally W is chosen to be 7 pixels by 7 pixels. However, the coherence can also 

be directly computed from the structure tensor as the difference between the two 

eigenvalues of the evolved structure tensor squared, i.e. (A1 - Az) 2. There are other 

expressions for the gradient direction coherence, e.g. ( ~~ ~~~) 2. The latter estimate 

has the advantage of always lying between 0 and 1. These coherence estimates 

obtained directly from the eigenvalues of the structure tensor were not generally 

used in this thesis. 
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2.8 Chapter Summary 

In this chapter, the Energy Method was described, which is one new approach 

to solving image processing problems in the literature. Image decomposition was 

explained in more depth than in the first chapter, with examples of existing decom­

position models given. In addition to this, major mathematical and image process­

ing auxiliary methods, such as Additive Operator Splitting and Active Contours 

Without Edges, that are utilized by the models in the remainder of the thesis were 

also presented. 

In the thesis roadmap in Section 1.8, brief descriptions of the various new decom­

position models were given. These new models are Improved Edge Segregation 

(IES, Chapter 3), Simultaneous Decomposition/Discrimination (SDD, Chapter 4), 

Decorrelated Osher-Sole-Vese Decomposition (DOSV, Chapter 5), Oriented Lapla­

cian Osher-Sole-Vese Decomposition (OLOSV, Chapter 5), Orientation-Adaptive 

Decomposition (OAD, Chapter 6) and Eikonal Orientation-Adaptive Decomposi­

tion (EOAD, Chapter 6). Table 2.1lists each tool/model that was exposited in this 

chapter, alongside the subsection in which the tool/model was introduced, and 

checkmarks indicate which of the proposed new image decomposition models use 

the tool or model. 
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Decomposition Model 
Section Tool IES SDD DOSV OLOSV OAD EOAD 

2.2 AOS .; .; 
2.3 V-0 Decomposition .; .; .; ./ 
2.3 OSV Decomposition .; ./ 
2.4 Level Set Methods .; 
2.5 ACWE ./ 
2.6 Orientation Coherence .; .; ./ 
Table 2.1: List of Tools/Models and the Decomposition Models Proposed in this 

Thesis which Use them 
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CHAPTER 3 

Improved Edge Segregation 

3.1 Introduction 

As mentioned in the previous chapter, the decomposition model of Vese and Os­

her [2] was the first practical implementation of the variational decomposition 

framework of Meyer [1]. In their paper, Vese and Osher iteratively solved the 

Euler-Lagrange equations from their model with Gauss-Seidel iterations (see Sec­

tion 2.2.1.2). This leads to a slow energy minimization procedure. Also, in the 

experiments conducted in the research of this thesis, it was found that sometimes, 

cartoon edges would appear quite strongly in the texture component of the decom­

position. This should not happen, because such edge information should appear 

as much as possible in the cartoon component, and not in the texture component 

where it does not belong. These two issues are addressed by proposing new de­

composition models in the following sections, of which one, the Improved Edge 

Segregation model, is particularly successful in giving good decomposition results 

in a short amount of time. 
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(a) OriginaJ bubua image (b) u cumpunl.'nl using Ja<:obi it· 
eration 

(<:) u oomponent U!oing C.1u 
Seidel iteration 

Figure 3.1: Onginal barbara image '-'nd u component us1ng J;lcobi and Gauss· 
St.•idcl iteration implementations of th~ V(•M .. O,tu:r model for image 
dl>composition of barbara (50 it('ration~, }I 0.05, >. 0.05) 

3.2 Example of Instability 

l1gurt' 3.1 •how> what occurs to the u (cartoon) component when an explidt Jacobi 

m,-thod i; used to discretize the Euler-Lagrange <'qUa !ion> m the image decompo­

Sition ..:h<-me of Vese and Osher [2). There i> clearl) >Orne m'labllil)\ as seen in the 

large a mph tude oscillations in Figure3.l(b). Th1s "not.,.,.n w1th the Gauss-Seidel 

fi>ed·poantlteration used in [2), depicted in F1gure 3.l(c). 
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In this chapter, three possible sets of terms are proposed to be added to Vese 

and Osher's energy functional. One of these sets of terms does not split individual 

edges between the cartoon and textured components (Edge Segregation), another 

imposes a geometric constraint, and another is a better version of Edge Segregation 

called Improved Edge Segregation. All these terms require a measure of texture 

inhomogeneity; two of which defined in subsequent sections are JVgJ (defined in 

Section 3.3) and JVgl (defined in Section 3.4). 

The aim is to use the additional terms to provide regularization of the Vese-Osher 

functional by imposing a priori conditions on the output decomposition, to the 

point that Jacobi iteration can be used instead of the usual Gauss-Seidel for Vese­

Osher. As indicated above, this is very desirable since a Jacobi iteration implemen­

tation is more parallelizable than a Gauss-Seidel one, and thus can be made much 

more efficient than a Gauss-Seidel method, despite the additional complexity of 

the Euler-Lagrange equations of the new methods themselves (due to the extra 

terms). These three sets of terms that were added to the Vese-Osher functional are 

now discussed. 
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3.3 Edge Segregation 

Recall from Equation 2.4.4 that Vese and Osher's energy functional is given by the 

expression 

Evo(u,gl,gz) = fo IVuldxdy +A fo (f- u- dxgl- dygz) 2dxdy + 
1 

11 [fo ( J gi + g~)Pdxdy] P (3.3.1) 

A new energy EEs is defined by adding a term to Eva· This new energy is 

(3.3.2) 

where 

(3.3.3) 

The coefficient 1 is a real-valued regularization parameter, Gcr is a Gaussian filter 

of standard deviation cr, and * denotes convolution. This new term attempts to 

ensure that edges are either kept in the u component or the v component but not 

both, because the energy becomes high when edge strengths in both the u and v 

components are high. This follows from an approximation from the arithmetic­

geometric mean inequality [57]. 

Because f ~ u + v, this means that \7 f ~ \7u + \7v, assuming that the gradient 
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operator does not amplify the residual r = f- u- v too greatly. By definition, 

==?- \lv 

==?- j\7vj 

( Vx, Vy) = (gl,xx + g2,xy' g1,xy + g2,yy) 

V (gl,xx + g2,xy ) 2 + (gl,xy + g2,yy ) 2
. 

For ease of implementation, the approximation 

jVvj = Gcr * jVgj 

(3.3.4) 

(3.3.5) 

is used, where J \7 gj is given by the expression in Equation 3.3.3, Gcr is a Gaussian 

filter of standard deviation CT and * is the convolution operation. Using the exact 

form of \lv was found experimentally to cause amplification of noise in the evo­

lution of image decomposition, which led to instability in the early stages of the 

fixed point iteration. 

3.3.1 Justification of Approximation 

Next, we tum to the justification of this approximation in Equation 3.3.5. Because 

f ::::::: u + v, \7 f ::::::: \lu + \lv, and this approximation was found through tests to 

be especially true away from very small-scale texture, since then the gradient op­

erator did not unduly amplify the residual component. The error in this approx­

imation is manifested in the sometimes relatively poor texture quality measures 

obtained in Section 3.7.6.1, where a possible remedy is proposed. Assuming that 

the approximation is valid, then by definition, v = g1,x + g2,y which implies that 

63 



As in Equation 3.3.4, 'Vv = (gl,xx + g2,xy,gl,xy + g2,yy)· In Equations A.l.4 and 

A.1.5 of Appendix A, it is shown that g1 = 2~-fxK(u) and g2 = 2~-!yK(u), where 

K(u) is the curvature of the level lines of the cartoon component u. Therefore, 

Admittedly, this holds for the case of minimizing llvll~, where the exponent of 

the approximating LP -norm is taken to be p = 2, since this is the assumption from 

[4]. However, this is considered to be a good approximation to the solution of the 

IES model, since both models approximate the L 00-norm in the *-norm from the 

basic model of Meyer of Equation 2.4.2, and so the derivation and justification of 

the new terms assume this relation is true. 

Because g1,y = g2,XI and v = gl,x + g2,y, we obtain 

(3.3.6) 

where 1'1. is the Laplacian operator. Then, if a Fourier Series approximation of each 

side of this equation is used, as in [4], it can be shown that g1 will be a negative 

and attenuated version of Vx. Thus, gl,x will be a negative and attenuated version 

of Vxx· In a similar fashion, g2,y will be a negative and attenuated version of Vyy· 

It is well known from the image processing literature [18] that the second deriva­

tive of a signal will produce spikes adjacent to and on both sides of an edge. This is 

the basis for the well known Laplacian zero crossings technique for edge detection. 
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When g1 or g2 is blurred with a Gaussian of small standard deviation (o- = 1 or 2), 

as is done in the calculation of IV§I, a large value of this gradient at and very close 

to the edges of the texture component v is obtained. This approximation was found 

to be much more stable than the direct IV vI quantity of Equation 3.3.4, and it is also 

more efficient. 

3.3.2 Euler-Lagrange Equations 

The additional edge segregation term in Equation 3.3.2 changes the Euler-Lagrange 

equations for u, g1 and g2 from those in Equations 2.4.5-2.4.7 to the following 

(3.3.7) 

(3.3.8) 

(3.3.9) 

The resulting Euler-Lagrange equations were discretized using a semi-implicit scheme 

without a clear-cut time step, the time step being understood to be equal to 1. This 

scheme is based on that of Vese and Osher, but does not use the most recently cal­

culated function values at an image point, instead always using the values from 

the previous time step. In other words, here a Jacobi method is used, whereas 

as described in Section 3.2, Vese and Osher must use a Gauss-Seidel method to 

force convergence and ensure stability. For this scheme, the PDEs are discretized 

by keeping them in divergence form and enforcing Dirichlet boundary conditions 
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(zero-padding) on g1 and g2 and Neumann (adiabatic or repeating) boundary con­

ditions on u (see [2] for more details). Due to the increased stability of the proposed 

scheme, and in addition to this benefit, due to increased efficiency, the computa­

tions are vectorized. This leads to a time savings, offsetting the additional com­

plexity of the Euler-Lagrange equations themselves. 

3.3.3 Residual with Edge Segregation 

Unfortunately, despite the increased stability of this model, and the ability to dis­

cretize it using Jacobi iterations, the model itself is flawed. It was found that there 

was nothing to prevent cartoon edges and other image information from being 

transferred to the residual r, because both j\7uj and Gcr * j\7gj can be low at edges 

in f, where one of them should be high. In fact, this does happen in practice. In 

Section 3.5, a more elaborate model is proposed to circumvent this problem. 

An example of the increased amplitude of the residual r component (with 130 

added to its graylevel for visualization purposes) is shown in Figure 3.2 with the 

test image barbara from Figure 3.l(a). The parameters for Vese-Osher (V-0) de­

composition were A = 11- = 0.05, and this method was run for 50 iterations. The 

parameters for Edge Segregation that were used here were A = 11- = 0.05 and 

1 = 0.2, though any positive value of(, where the Edge Segregation term is in­

cluded would lead to a residual component which is too great and which should 

include extra information which should instead be present in the cartoon and tex­

ture components. 

This method was also run for 50 iterations. It is seen that the residual r compo-
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ncnt "' too strong "·ith Edge Scgl'\'gation which mean• that cartoon/texture infor· 

mahon is lost from the u and v components. 

(a) r component with v .. o (b) ,. rompon('nt wllh l:dKl' St•grcgation 

Figure 3.2: Compari-.on of n.•to1duaJ r component behvt•(•n V-0 ._,nd l:.dge Segrega­
tion Methods 

3.4 Geometric Constraint 

ln this section, a geometric constraint between the texture and ca rtoon components 

of the V.() image decomposition model is introduced. Re<X'ntly (Nov. 2004), Aujol 

and Chan (58) used a logical framework to combine non· texture and texture chan· 

ncl' However this wa._.;, for "'upt.·rvi~ clac:;t;;Jfication, where each pixel in the image 

i• a."•gned to one of several g•\'en cia...,.. In the worl.. lcadmg to th" thesis, it was 

ob-<>rwd that there are natural con:.tramts on the textured (v) romponent of an 

•magt•. Each texture in this component should lie completely within one region of 

the cartoon or 11 component. Thi~ could require the ability to measure the gradient 

of the texture; as explained later, thil. does not havc to be done using the model 
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of [2]. Then this measurement of texture boundaries is applied to other proposed 

decomposition models. These ideas are now developed. 

To impose a geometric constraint, the following term was added to the Vese­

Osher energy functional for decomposition of textured images 

(3.4.1) 

Here 1 is a weighting parameter, and £ is a small positive constant which is set to 

1 to ensure that the denominator does not vanish. Thus, an energy EGc(u,g1,g2) 

can be defined as 

(3.4.2) 

Prior to defining the expression IV§initl in Equation 3.4.1, consider first defining 

a quantity IV§I as 

IV§I = VI(Ga- * (gi))xl + I(Ga- * (gi))yl + I(Ga- * (g~))xl + I(Ga- * (g~))yl. (3.4.3) 

Here, IV §I is a measure of texture heterogeneity- the higher its value at a pixel, 

the more likely that there is a texture boundary at that pixel. 

Then, we can let IV§initl refer to the value of IV§I after a small number Ng of 

iterations. Unless stated otherwise, Ng was chosen to be 10, since this was suffi­

ciently small for efficiency purposes, and enough information had been transferred 

to g after this number of iterations. IV §in it I is calculated by setting 1 = 0 for the 

first Ng iterations, so that for this number of iterations, Vese and Osher's origi-
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nal model is used, and not the proposed model (because the energy functional 

EGc(u,g11g2) = Evo(u,gl,g2) + "(GCT(u,gl,gz)). After this, r can be set to any 

constant value. We now briefly discuss why there is a Gaussian blurring operator 

in the definition of Equation 3.4.3. 

3.4.1 Explanation of requirement to blur g1 and g2 

An explanation of why Gaussian blurring is present in the expression for [ V g[ in 

Equation 3.4.3 follows. From the relation v = g1,x + gz,y in Equation 2.4.3, it can 

be determined, as done in Section 3.3.1, that g1 and g2 to an approximation have 

the same period as v (recall v is a texture, many of which display repetitions) in 

the x and y directions, respectively. This is because the period stays invariant with 

respect to derivatives. It is easy to show that g1 is primarily large in absolute value 

at horizontal level regions of v, while g2 is large in absolute value at vertical level 

regions. The intra-region means of g1 and g2 will be different. By blurring the 

squares of g1 and g2 with a Gaussian of the appropriate radius (approximately 

the same or greater than one period of v in each dimension), the result will be 

approximately constant within regions with a jump between different textures. 

3.4.2 More on the Geometric Constraint Energy 

The term in Equation 3.4.1 would penalize large cartoon gradients which occur in 

regions where the texture gradient is quite small. One way of viewing this is that 

the mean of a given texture generally does not change significantly with location. 

This is because the u cartoon component contains the structure of an image, and 
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if the means of the various image regions are associated wtih u, then the v com­

ponent is zero-mean. For the vast majority of images, there are no cartoon edges 

within a given texture. An example of such an uncommon configuration of texture 

and cartoon components is shown below in Figure 3.3. A notable exception when 

such a configuration can occur is when one part of a texture region is illuminated 

by strong sunlight while the other is in the shade, an example of which is found 

in [59]. However, this is a very rare occurrence over the whole class of textured 

images. 

The Euler-Lagrange equations for the new functional of Equation 3.4.2 contain 

the sgn function. These Euler-Lagrange equations are not included here since they 

do not add to the current discussion. The sgn function comes from differentia­

tion of the absolute value function, which is found in the expression for IV gl in 

Equation 3.4.3. 

It was found experimentally that the regularization power of such a geometric 

constraint was not strong enough to prevent instability of a Jacobi implementation 

when added to V-0 decomposition. Regularization power refers to the ability of a 

modified model to restrict the class of possible minimizers of the Euler-Lagrange 

equation(s) of a system, and thus make the iterative process more stable. It is 

speculated that adding this term to an already constrained version of Vese-Osher 

decomposition, e.g. the Improved Edge Segregation model, would ameliorate re­

sults. This is an opportunity for further research, in addition to trying to imple­

ment it with Gauss-Seidel iterations, despite what are expected to be slower speeds 

than Jacobi iterations. 
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Figure 3.3: Artificial !mage Violating the Geometric Con,tramt of Section 3.4 

3.5 Improved Edge Segregation 

3.5.1 Proposed New Terms 

A> alre.1dy m<'flttoned in Section 3.3.3, one problem found v•a runs of the Edge 

Segregation model on test images with the previou~ly mentioned term in Equa· 

lion 3.4.1 added to Vesc and Osher's model is the fact that it allows for both the 

gradient of the 11 component and the v component to be smaU, so that much of the 

high gr,td icnt information can be moved to the residual r. To prevent this from 

happening, the add ition of another two terms to the V-0 image decomposition 

functional "' prupo>cd. The new energy, ddming the lmpruv.>d Edge Segregation 

(lES) d<<rompo>lttOn model is 
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where r 1 and {2 are both non-negative real coefficient parameters, which may 

depend on the image being decomposed and spatially within an image, and €1 

and €2 are small positive constants introduced to avoid division by zero. 

Though the V-0 model was almost always unstable when implemented with 

Jacobi iterations, a wide range of choices of the coefficients r 1 and r 2 led to a stable 

Jacobi implementation of Improved Edge Segregation. The values of r1 and r2 
chosen in the experiments in this chapter were image dependent, and were within 

this large range of stability (which was also image dependent). It is possible that 

different choices within these experimentally determined ranges could have led to 

even better decomposition results. 

Observe that the coefficients (including the minus signs) of both new terms are 

negative. This means that the energy functional will favour these terms (other than 

the coefficients) to be positive and large, rather than small. Also note that the first 

subtracted term in Equation 3.5.1 is similar to the Geometric Constraint term in 

Equation 3.4.1. 

The same justification for the use of Gc:r * I \7 ffl in the above IES energy functional 

in Equation 3.5.1, as for the case of Edge Segregation in 3.3.1, can be made to show 

that this quantity is high at and close to textural edges. 

The coefficients {1 and {2 of the second and third terms of Equation 3.5.1 in 

Section 3.5.1 are adapted in order that the regularization only occurs where it is 

needed. Both {1 and {2 depend on fNLD, a nonlinear diffused version of the initial 

image f. Now as an aside, we describe this nonlinear diffusion flow both mathe­

matically and through an illustrative example. 
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3.5.2 Example of Nonlinear Diffusion Flow 

The whole purpose of nonlinear diffusion flow is to circumvent the blurring of 

edges which occurs with usual Gaussian blurring (e.g. see Section 2.2.1.3). An 

Additive Operator Splitting (AOS) isotropic diffusion scheme [36], as described in 

Section 2.3, was used for the implementation of nonlinear diffusion flow in IES. A 

fidelity term (j 0 (J - u )2dxdy) was not used in the nonlinear diffusion functional, 

though one could be used, at the expense of having to choose another weighting 

parameter. The general form of such nonlinear diffusion is atu =div(g(/'Vu/ 2)\lu). 

For the total variation flow already described in Section 2.4.1, g(/'Vu/ 2 ) = IJul· It 

was found from experiments that the TV flow still blurred some edges too much, 

so a weaker diffusivity function, g(/Vu/ 2 ) = IV~ 12 , was used instead. 

As described in Section 2.3, AOS is characterized by a semi-implicit discretiza­

tion in time with computational steps and memory requirements linear in the num­

ber of pixels of the image on which AOS is performed. The Thomas algorithm, de­

scribed in [36], is used to solve a tridiagonal linear system and AOS also involves 

the use of a Gaussian derivative calculation. AOS can be used for any nonlinear 

diffusion with a variable conductance coefficient, and it has been reported [36] that 

it is on the order of 10 times more efficient than a usual explicit discretization for 

nonlinear diffusion problems. 

The result of using AOS nonlinear diffusion on the test image barbara is shown 

in Figure 3.4. This nonlinear diffusion is evolved with the conductivity function 

g ( / \7 u /2) = 
1 

J u 
1

, corresponding to TV flow. Notice that the texture has been re­

moved from barbara. For example, the checkerboard pattern on the tablecloth, 

73 



th~ 't"I"'S on the hea<bcarf and o,ome of the detaib on S..rb.ua's lace ha,·e disap­

pt'Jrcd. The resulting imag<> ;, pi<eewise smooth. regtons !x'ing .eparated from 

t>ach o ther by large-seal<> contours. 

(a) Original bubara am.1ge (b) barbara. lmap,e atu.•r AOS totl.l \'.tri· 
abonOow 

Figure 3.4: 1:.\..tmpte of AOS Total Variation llow 

3.5.3 Description of Parameters 

As already mentioned in Section 3.5.2, 'l'l and 1'2 are sp.ttially varying coefficients 

tn the energy functional 3.5.1, and depend on /NLD• tht> initial image f evolved 

with th~ nonlinear dilfu•iun lluw of the previous su~tion. l'he coefficient 'l'l 

wa> set to 11.J V /."w'. Heno 11 "a !'O'itive real con.tant. Th<' values of11 cho­

S<'n later (.ee Table 3.1) assume that the maximum gray level m the tmage is 2.55; 

otherwbe, the values of11 havt> to be adjusted accordingly. Thus, the second term 

of L:quation 3.5.1 is only activated at cartoon edges- otht>rwise it is very small 

11\"<•IUS<' of a small coefficient. 'lhe term itself is large when IVul is large, and 

C, • V.~l is small. This lavou" the cartoon edge staying mort' m the u compo-
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nent, and not spreading to the v or r component where it does not belong. Alter­

natively, cartoon edges could have been detected in the image using the method of 

[60] however the nonlinear diffusion method used fits nicely into the variational 

framework of the entire IES algorithm and is quite quick to compute. 

The second term has coefficient (2, where (2 = 'hnorm (lvt~~;/+€J. Similar 

to f 1, f2 is a positive real constant. The rest of the term is normalized with a 

norm function so that the maximum value is mapped to 1. €3 is a small positive 

constant used to ensure that the denominator of the coefficient does not vanish. 

This coefficient is large where IV' fl is large and IV' fNLD I is small. This corresponds 

to textured regions which have an underlying smooth cartoon component. In this 

instance, it is desired that the high gradient be transferred to the v component, and 

as little as possible to the u component, because the high gradient corresponds to 

texture. This is precisely what occurs (as will be seen in the experimental results in 

Section 3.7.6) due to the construction of the r2 term. 

3.5.4 Euler-Lagrange Equations 

Adding the Improved Edge Segregation terms in Equation 3.5.1 changes the Euler­

Lagrange equations from those of Equations 2.4.5-2.4.7 for all three of the functions 
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u, g1 and g2. The new PDEs to solve are 

(3.5.2) 

(3.5.3) 

(3.5.4) 

The subtracted terms in the functional for IES in Equation 3.5.1 make it especially 

difficult to solve, or at least to solve in a provably convergent and stable manner. 

This is due to the fact that such terms make the functional non-convex, so that 

usual theorems for minimization do not apply. 
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In Appendix B, some elementary convex analysis is reviewed, after which it is 

demonstrated how IES can be solved using the Difference of Convex Functionals 

framework. Within this framework, the solution process is stable and converges 

to the correct minimum of the IES functional, however due to the difficulty of its 

implementation, it is left to future work. 

3.6 Parallel Implementation 

The Improved Edge Segregation code was originally written in MATLAB, but to 

test it in a parallel fashion on a multi-computer cluster, the code was rewritten 

using the Message Passing Interface (MPI) with C++ [61]. This was done as a 

proof-of-concept to show that IES can indeed be implemented in parallel. 

Since the IES code was written in C++, existing C++ code was used from the 

Tornado 1.2 classes included with the SourceForge project called restoreinpaint 

[62]. These classes include implementations of many variational and other im­

age restoration algorithms as well as many mathematical routines and image l/0 

functions for various image file formats. Code from the libpng library [63] was 

added, and modified, to read in PNG format files, since this was not included in 

restoreinpaint. The Additive Operator Splitting implementation of nonlinear dif­

fusion from the Tornado classes was used for the calculation of /NLD in the parallel 

implementation of IES. 

The parallel IES code written was based on code found in [64] for the Jacobi 

solution of the heat equation. The image domain is partitioned using a 1D parti­

tion into horizontal sections as shown in Figure 3.5. Each partition corresponds 
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• • • 

2 

3 

p 

Figure 3.5: lD Block Partitioning of Image 

to one processor. Supposing that there are p processors in the parallel computer, 

there will also be p partitions. At each iteration it should be noted that only one 

row of the cartoon component u each from the top and bottom rows of each sec­

tion are sent to neighbouring sections (except for the very top and bottom sections 

for which there is only one neighbouring section), while r (T l rows each of both gl 

and gz from the top and bottom of every section are sent to neighbouring sections. 

Here CT is the radius of the Gaussian filter GO" used to blur g1 and g2 in the defin­

ing functional for IES (Equation 3.5.1). This is because for any pixel in the image 

domain, including the inter-section boundaries, at any iteration, a window of the 

given radius is needed. 

Blocking send and receive calls were employed for communication between com­

puters, with the MPI C++ function MPI_Sendrecv. If nonblocking send and receive 

calls were to be used, the code would likely run faster. With nonblocking calls and 

suitable hardware, it is possible for example for data to be sent by one process at 

the same time as computations on that process' node are executed, something not 

possible with blocking calls. This is left for future work. For the code written for 

this section, the number of processors is set with a single variable, and thus the 
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code is scalable. Null processes are used so that there are no special cases for the 

processes at the top and bottom of the image. A diagram of the communication 

structure of the program is shown in Figure 3.6. 

UA UB 

Process o 

Process 1 

~ 

Process 2 

Figure 3.6: Diagram of MPI Communication Structure for IES 

In Figure 3.6, there are two image data arrays per process, UA and UB. These 

can be assumed to correspond to the function u, which is the cartoon component 

of the image decomposition. Two image data arrays are necessary because we are 

assuming the use of Jacobi iterations, so that the original data cannot be overwrit­

ten. For the purposes of illustration in Figure 3.6, it is assumed that there is one 

row of overlap between the image data UA of one process and that of the process 

immediately below, if such a process exists. Image decomposition for one process 

from one iteration operates on the corresponding UA array as input, for example 

(there are actually three input image data arrays operated on per process, corre­

sponding to the three functions u, g1 and gz of the decomposition), and the output 
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is written to the corresponding UB array. The UB output is the calculated u for the 

next iteration. Then this UB output is copied to the interior of the UA data array of 

the same process to be used as input for the next iteration. Since the calculation of 

the decomposition for the next iteration at the boundary of the interior of the UA 

data array depends on data just calculated from the neighbouring processes, the 

data on the boundaries of the adjacent UB processes is also required. Therefore, 

this data is sent to the boundary of the UA data array from the boundary of the 

UB data arrays of these neighbouring processes. The transmission of this data is 

represented in Figure 3.6 by the arrows going from the boundaries of the UB data 

arrays to the boundaries of the neighboring UA data arrays. 

3.7 Results 

3.7.1 Test Set 

The test images used in this chapter's experiments are shown in Figure 3.7. The 

first is a slightly cropped barbara image (256x256 pixels), the second is a zoomed 

portion of the entire barbara image (171x147 pixels) which is called barbzoom, 

while the third test image is mosaic (160x160 pixels), a mosaic of two Brodatz tex­

tures [65, 66] (brick on top and scale on the bottom). The image barbara was 

chosen because it is very "busy", with a lot of small-scale texture throughout the 

image, along with some cartoon parts, e.g. the table leg. The image barbzoom was 

selected since it had some medium-scale texture (the top of Barbara's headscarf). 

The image mosaic was chosen because it could be used for texture segmentation 
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(a) (b) (c) 

(d) (e) 

Figurl! 3.7: Images used to test image decomposition: (a) barbara,. {b) barbzoolll, 
(c) mosaic, (d) woodangle and (e) cactous 

once the discrimination was complete. The fourth test image, woodangle (256x256 

pixels), was chosen for the same reason as well as due to the fact that the texture 

(a Brodatz texture) is the same in both parts of the image, with one a 90 degree 

rotation of the other. Also, the texture is less structured and more random and 

sparse than in the other images in the test set. Finally, cactus (225x300 pixels) was 

selected because it was larger than the other images and was simple, other than 
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the cactus plant itself. As can be seen, it is a picture of a cactus in a pot. All the im­

ages were in Portable Network Graphics (PNG) format, except for barbara, which 

was in ASCII Portable Gray Map (PGM) format. They were also all 8-bit grayscale 

images. 

3.7.2 Jacobi vs. Gauss-Seidel Iterations 

In the experiments conducted for this chapter, and in this thesis as a whole, Jacobi 

iterations were looked upon more favourably than Gauss-Seidel iterations for the 

discretization of the solution of any systems of PDEs. This is because Jacobi solvers 

are more easily parallelizable than Gauss-Seidel ones. In fact, since the values of 

all of the grid points of the previous iteration have already been computed, and 

only these points are being used, one processor can be used separately for each 

grid point. In a true parallel implementation, this would lead to a substantial time 

savings. 

On the other hand, it is impossible to parallelize Gauss-Seidel iterations to this 

extent, because previously computed grid points from the current iteration also 

have to be used, so that there is some dependence between various grid points 

of the current iteration. The best parallelization for Gauss-Seidel uses a red-black 

colouring scheme, and leads to a speedup ratio of ~, where N is the total num­

ber of points in the 2-D grid. An illustration of the red-black colouring scheme is 

shown in Figure 3.8, taken from [ 67]. This colouring is based on a Gauss-Seidel 

solution of the heat equation (Equation 2.2.6). The values of all the nodes which 

are of the same colour can be calculated in parallel because there is no dependency 
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withan each group of nodes. First, all the red node 'alul-. ar<' computed, and then 

•II the black node values using the just<alculated n.'CI node ,-alues. This alterna­

tion rontinu~ until com·ergence. So this end• up b,ang at lca>t twice as slow a. 

a p.uallel Jacobi <mplementation. In practice, It t• ewn wor..e for the case of de­

composihon, due to discretization of the mixed deriVativ.,., of 8I and 82· If these 

are discr~tiLed in such a way that for a given p;rid poant, not only the grid points 

immediately vertically or horizontally adjacent arc u~ed in the computation of its 

\•aluc, but othe" as well, then a red-black coloudng as shown in the figure will 

not be p<>">sible. For the discretizations in the paper by Ve>e and Osher (2], this is 

always the c•~-

It w.- found by trial and error that for Gau"·Seidcl dhcretization of V-Q de­

compo..Ihon, at least 5 colours would be n~sary. A diagram of the colouring is 

shown In Figure 3.9. 

!'or each of the functions u, 8I and g,_ a 3x3 grid, or stl>f1Cil, as it is commonly 

called. " •hown. This stencil sho"'S which gnd function valu~ are used in the 

fmitc diitcrencc computation of the iterative "'luh<>n of the POE at the central 
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u 

3 

Figure 3.9: S.Co1ounng or "\od~ for v.o Decompo!tlhon 

"'uare m the grid. Tht:> number I on a "'JUart:> reft:>rs to the function 11, thE' number 2 

to 8l and the number 3 to g2. Additionally, the top >tt:>ncil, labelled I, corresponds 

to th~ computation of the function u, tht:> middle stt:>ncil, labelled 2, to the compu· 

tution of g1 and the bottom stencil, labelled 3, lor 82· A number on a square in a 

stencil mt:>ans that the value of the function corresponding to the number on that 

"!Ual\' is used in tht:> computation of the function ,•alue for thE' Ct'ntral square of 

th< function that the grid corresponds to. It should be not,od that .-ach stencil is 

hll'<l "'that it spans ovt:>r th<> whole domain of tht:> image. 

Though a proof has not b.-en found that there is no colouring of the grids for 

Cnuss·Scidcl computation of the V-0 model solution which requires fewer than 5 

colour>, no counterexample which uSE'S four colours or lc"" has bet:>n found after 



an extensive search, and it is strongly suspected that 5 is indeed the minimum. The 

criterion that was used to show that the colouring indeed leads to each processor 

only computing grid values which are independent of each other was that no grid 

values for any function coloured with a given hue should appear both on the left­

hand side of a computation and a right-hand side. If a square in a grid for a given 

function, say h, to make the argument generic, is of a certain colour, that means that 

grid value for h is used on the left hand side of a computation. For each colour used 

up to that point, a separate 3x3 colour grid is used to ensure that function values 

for that colour don't appear on both left and right hand sides of iterative equations. 

Then remembering that both the 3x3 colour grids and stencils are periodically tiled 

to cover the whole image, when a square in a function stencil is coloured with a 

given hue, the 3x3 stencil for that function is superimposed (periodically repeated 

horizontally and vertically) on that position in the colour grid, and the numbers 

in the stencil placed on the matching squares in the colour grid. This is repeatedly 

done, while keeping in mind the rule that if there is a number at a certain square 

in a colour grid, then that hue cannot be used to colour that position in the stencil 

for the function corresponding to that number. 

But even if at least 5 processors are necessary for optimal speed-up of Vese-Osher 

decomposition, there is another problem inherent with Gauss-Seidel iteration for 

the purposes of solving the equations for this model, or for Gauss-Seidel iterations 

in general. The communication costs between processors will be prohibitively high 

due to the fact that for any block or section of the image, there will have to be 

"vertical" communication between the same pixels being processed by different 

processors for different functions, i.e. u, g1 and g2. This is in addition to the com-
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away from the cartoon edges. 

The approach that is taken is that first the decomposition of Vese and Osher [2] is 

run on the image u(x, y). Suppose that, starting from the initial image, u0 (x, y) = 

f(x,y), the evolved image is ui(x,y) at the ith iteration. Then V-0 decomposition 

is continued until the following condition is reached: 

ITV(un)- TV(un-1)1 = TV(un-1)- TV(un) < ~TV(u), 

where TV(u) = J0 IVuldxdy, and ~TV(u) is a suitably selected constant. The first 

equality holds because the process was found experimentally to be TVD (Total­

Variation Diminishing), see e.g. Figure 3.10. Then, IES is also run until this condi­

tion is met. Say that for IES, nrEs iterations are required until this occurs. The algo­

rithm of Osher, Sole and Vese [4] is run until the first iteration k where llvf5VIILz < 

Pv · llvniES IILz with Pv a previously determined constant greater than or equal to 

1, which is set to 1.1 for all test images. This gives a fixed procedure which con­

forms well to qualitative human perception of when the iterative decomposition 

has essentially converged. However it is possible that better stopping criteria exist. 

In the OSV decomposition scheme, a gradient projection method was used, so 

that the fidelity parameter A varied with each iteration. The parameter A was 

found by assuming that at equilibrium, llvosvllo = llvrEsiiLz· Using integration 

by parts, it was determined that 

(3.7.1) 

with K = llvhES IILz. To see why the dynamic formula for A in Equation 3.7.1 holds 
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true, recall that the defining partial differential equation for the evolution of u is 

Ut = _J:_~div ( V'u ) - (u- f) 
2A IY'ul · 

(3.7.2) 

Thus, at equilibrium, the right-hand side of the equation will equal zero, mean-

ing that 

1 ( V'u ) f - u = 2A ~div IV' u I . (3.7.3) 

If each side of the above equation is multiplied by f- u, then, 

( 2 ( 1 . ( V'u ) f- u) = f- u)2A~div IY'ul , (3.7.4) 

and subsequently integrating each side of the above equation over the entire image 

domain 0, and using the fact that II vi liz = J0 (f- u)Zdxdy, the following equation 

is obtained 

II 
IES 2 1 { . ( \i'u ) 

Vn IILz = 2A Jo (f- u)~d1v jV'uj dxdy. (3.7.5) 

Using integration by parts, the integral above can be replaced by 

(3.7.6) 

This is found using standard integration by parts, and the fact that fxdiv c~~l) 

and jydiv ( ~~~~) are both equal to zero in the OSV model [4]. Then Equation 3.7.1 

follows upon rearrangement of Equation 3.7.6. 

After each test image was decomposed, discrimination was attempted between 

the textures in the image with Active Contours without Edges (ACWE) on either 
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the absolute value of the g1 component or g2 component. ACWE texture discrim­

ination was tested for only two images, mosaic and woodangle. This is because 

these are the only images in the test set which each consist of two spatially sep­

arated textures. If there were more than two textures, then more than one level 

set function would be required. Although this is possible, it would make the code 

more complex. 

3.7.4 Choice of Parameters 

In this section, the parameters selected for the various image decomposition meth­

ods are listed. It may be possible in the future to use a heuristic similar to that 

found in [59], to automatically select the parameters needed for a given image so 

that it is not necessary to experimentally determine these parameters values. All 

the values of A and J1 were in the same general ranges as those found in the paper 

by Vese and Osher [2]. 

For all the images, the time step for AOS nonlinear diffusion was L'lt = 6, and the 

regularization constant E was set to 1. The standard deviation (TNLD used for the 

calculation of Gaussian derivatives was (TNLD = 2 for all images. The number of 

iterations that AOS diffusion was run on each image is shown in Table 3.1, along 

with the other parameter choices. 

For IES on all the test images, the regularization parameters, Ei (1 ::; i ::; 3), were 

set as follows: €1 = 0.5, €2 = 1 and €3 = 1. 

There are only two main parameters for ACWE that need to be specified, the 

grouping parameter J1 and !'lt, the time step. To avoid confusion with the param-
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Image name J1 A 'h iz (]" ~TV(u) nyv 
barbara 0.05 0.05 0.12 1.2 1 1000 15 
barbzoom 0.05 0.02 0.1 0.5 2 700 20 
mosaic 0.05 0.02 0.12 0.6 2 700 35 
woodangle 0.05 0.03 0.1 0.6 2 700 15 
cactus 0.05 0.05 0.12 0.6 2 800 15 

Table 3.1: Parameter choices for IES on test images 

Image name Decomp. Alg. JiACWE (x2552
) ~tACWE niter ACWE tACWE 

mosaic V-0 0.2 0.1 220 58.03 
mosaic IES 0.4 0.1 171 45.11 
woodangle V-0 - - - -
woodangle IES 0.5 0.1 940 636.20 
Table 3.2: Decomposition Algorithm, parameter choices, number of iterations re­

quired, and timing results for ACWE Texture Discrimination 

Image name A~nalvt n~nalvt llvllz,IES ~tanalyt 
barbara 0.02 10 1995 0.002 
barbzoom 0.02 10 2937 0.0008 
mosaic 0.02 10 5305 0.0005 
woodangle 0.01 3 3848 0.00003 
cactus 0.02 10 2111 0.005 
Table 3.3: Parameter choices for OSV decomposition 
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eters for the decomposition phase, the parameter names JA ACWE and l'lt ACWE are 

used. For this chapter's tests, a stopping condition for convergence of the active 

contours algorithm needed to be specified. Discrimination was run for both IES 

and V-0 Jg1 J subcomponents until all "specks" were gone, and there were only 

two large contiguous regions remaining. The parameter choices and resulting tim­

ings for ACWE texture discrimination are shown in Table 3.2. Finally, in Table 3.3 

are shown the various parameter choices for OSV decomposition as well as the 

L 2-norms of the texture components v experimentally obtained via IES on the test 

images. Recall that these L 2-norms were required for the dynamic selection of,.\ in 

the OSV test runs. 

3.7.5 Decomposition Quality Measures 

It is possible to visually compare the quality of two series of decomposition com­

ponents obtained from different algorithms or different parameter sets with each 

other. A decomposition result is of higher quality when cartoon information, as 

found in cartoon edges, is kept in the cartoon component u, and does not spread 

to the texture component v. Similarly, texture information should be kept in the 

texture component v, and not be present in the u component. A visual compar­

ison, keeping these two quality guidelines in mind, is subject to interpretation, 

especially when results are similar, and it becomes difficult to quantify how much 

better one decomposition result is over another. Thus it would be beneficial to de­

velop one or more quantitative decomposition quality measures. A series of such 

simple decomposition quality measures is now given and described. 
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In order to determine how good a given decomposition result is, it is impor­

tant to first determine which edges in the original image are cartoon, or large-scale 

edges, and which are texture, or smaller-scale edges. One way in which this can be 

done by using the total variation (TV) flow of Rudin, Osher and Fatemi [38], de­

rived from the total variation energy given earlier in Equation 2.4.1. The TV flow 

can be implemented efficiently with an Additive Operator Splitting scheme, which 

is known to be unconditionally stable [36]. The output of the TV flow for the de­

composition quality measure in this paper, !Tv is determined by running Additive 

Operator Splitting for 4 iterations with a timestep 6.t AOS equal to 2. This total vari­

ation flow eliminates small-scale texture and maintains large-scale cartoon edges, 

though the latter may be blurred. Thus, texture edges can be determined as be­

ing located at pixels with a high gradient magnitude in the original image f, but a 

low gradient magnitude in the image !Tv output from the TV flow, relative to the 

original high gradient magnitude in f. 

Cartoon edges on the other hand, are determined as being located at pixels with 

high gradient magnitude both in the original image and the image evolved with 

the TV flow. By setting a gradient magnitude threshold gmt and a gradient ratio 

parameter rgmt, the set of cartoon edge pixels C in the image f is defined to be 

C = {(x,y) such that IVJ(x,y)l >gmt and IVJTv(x,y)l > rgmtiVJ(x,y)i} 

and the set of texture edge pixels T in f to be 

T = {(x,y) such that IVJ(x,y)l >gmt and IVJTv(x,y)l::; rgmtiVJ(x,y)i}. 
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The value of the threshold gmt used in these two definitions is selected to be 20, 

assuming a maximum image intensity of 255, and the gradient ratio parameter 

rgmt = 0.6. 

Then the cartoon quality measure CQ of a decomposition result set ( u, v) is cal­

culated as being the average value of~~~~ inC, and the texture quality measure TQ 

of this set is defined to be the average value of ~~~~ in T. In the calculation of TQ, 

one-sided forward differences are used in the computation of the gradient magni­

tudes of v and f, since texture edges are very small scale, and a central difference 

discretization may not adequately detect these edges. Clearly, in general if CQ and 

TQ are higher in value, then cartoon and texture edges are better preserved in their 

respective components, and the decomposition is of superior quality. 

One potential problem with the cartoon measure CQ occurs when there is texture 

on one or both sides of a cartoon edge. In this case, if this texture is better extracted 

to the v component of the decomposition, which indicates better decomposition 

quality, then it will be more blurred on that/those side(s) of the edge in the u 

component, and potentially the cartoon edge will actually be weaker. This leads to 

a lower CQ value. Thus, a new cartoon quality measure CQ' can be defined as the 

average value of ~~~~ on the set of cartoon edge pixels inC which are at a distance 

of over 2 pixels away from any pixels in T, the set of texture edges. This avoids the 

problem just described, though the number of cartoon edge pixels in the set over 

which the average in the cartoon quality measure is computed, is reduced. Denote 

this set of cartoon edge pixels by C'. An example of the two sets of detected cartoon 

edges C and C', as well as the set of detected texture edges T, is shown in white in 

Figure 3.11, corresponding to calculation of these sets for the test image barbara. 
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The decomposition quality measures CQ, CQ' and TQ are now used in the next 

subsection to compare results obtained from V-0 and IES decomposition on the 

images in the test set. 

As in [68] by Shahidi and Moloney, it is desired to reduce the presence of cartoon 

edges in the texture component of the outputs from image decomposition schemes. 

3.7.6 Serial Decomposition Results and Discussion 

As can be seen in Figure 3.12, the V-0 image decomposition model leaves many 

cartoon edges in the texture component v. Cartoon edge strength is considerably 

lower in the v component from the proposed IES decomposition in Figure 3.13. 

Image name nitervo tvo(s) niter1Es tiEs(s) niteranalyt tanalyt ( S) 
barbara 50 55.00 43 48.80 (+4.75) 314 66.06 
barbzoom 40 20.09 52 24.55 (+0.95) 948 67.06 
mosaic 101 45.92 99 41.00 ( + 1.80) 1447 95.98 
woodangle 63 68.48 78 88.92 ( +4.77) 31417 6963.2 
cactus 33 39.80 44 49.27 (+3.05) 100 19.84 

Table 3.4: Number of Iterations and CPU Time required for Vese-Osher vs. pro­
posed algorithms on Test Set 

The v component of this IES decomposition actually has more texture in some 

parts (for example the top of the tablecloth) than Vese and Osher's. On the other 

hand, there is an obvious reduction of cartoon edges in the texture component v 

(e.g. the legs of the table or Barbara's arm). The reduction of cartoon edges in 

the texture component is very desirable because it indicates better decomposition 

quality- this cartoon information should only appear in the u component, as has 

been stated in several papers, e.g. [4] and [40]. As a result, it is seen that the edges 

in the u component of barbara in Figure 3.13 (IES) are sharper than the correspond-
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(a) Oo:Mt,od Cartoon Edgo (Q 

(c) Detected T.-tu .. EdK .. (T) 

flguro 3.11: O,tech!d Cartoon and Tel< lure Edg,.., tn lc,t Image bubara US<!<! for 
Cakulabon of Ooo>mpostbon Qua hi) 
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(a) "'component 

(c) r comPQrwnt 

Figu~ 3.12: V.O Decomposition (2] (I' - ,\ 0.05) of barbara after 50 iterations 
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(a) w component (1>1 • cumponmt 

(c) r component 

Figure 3.13: IES Decomposition of barbara (J' • ,\ • 0.05, •fl 0.12. iz = 1.2, 
" - 1) after 43 iterations 
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ing edges in Figure 3.12 (V-0). There is slightly more information remaining in the 

r component of the proposed IES scheme; it is possible that the energy in the r com­

ponent could be reduced with suitable parameter selection, e.g. a higher fi, but this 

has not been done for this thesis. Overall, a better decomposition is achieved by 

IES over Vese-Osher. 

Not only is there a better quality result, but it is achieved in approximately the 

same amount of time as the standard V-0 decomposition. This can be seen in 

Table 3.4 where CPU times on a 2.6 GHz Pentium 4 desktop with 1 GB of RAM are 

reported. For IES, the time required for the PDE solution proper is given in seconds 

followed in brackets by the time needed for the pre-computation of fNLD using 

AOS nonlinear diffusion flow. Recall that these times are despite the increased 

terms in the energy functional of IES over Vese-Osher. 

Similar statements can be made for the image mosaic. The brick edges on the top 

of the mosaic are considered to be cartoon edges since they are very large scale. 

For the V-0 decomposition (Figure 3.14), these edges are quite evident in the v 

component. However, the IES result (Figure 3.15) is much improved. The bottom 

part of the u component of the mosaic for IES is very similar to Vese and Osher's 

with most of the scale texture smoothed or removed. The top section of the u 

component of the mosaic is sharper in IES than in V-0, since the cartoon edges 

are retained more in the correct component. For instance, the brick edges in the v 

component are much more prominent with V-0 decomposition as opposed to IES. 

Once again, fewer iterations and comparable CPU time are required for a superior 

result (see Table 3.4). 

The auxiliary functions g1 and g2 for V-0 decomposition are shown in Figure 
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(a) ., component (b) • wmpon<nt 

(c) r component 

Figure 3.14: V.Q D<composition (2] (u, ''• and r) of 1101alc (p - 0.05,.\ - 0.02) 
after 101 iterations 
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3.11>, whcrt' it can be seen that as according to the analyticall'l'5ult in Appendix A, 

g, largely contams the horizontal enerm of the te,turt', while 82 mo.tly contains 

the vertical l-netg)'. \:ote that for \isualiution pufP<N."'· 130 has been added to 

g1 .1nd g2, where the maximum possible •mage inkn>•ty corl'l'5ponds to a value of 

255. 

(c) r compon.-n1 

Figuro ).15: lfS O.Composition of 1001alc (~ • O.O<;,A • 0.02, •}, ; 0.11, 'h = 
0.75, cr = 2) after 99 iteration .. 

finally for the cactus unage, the improwm.,nt of both LES and the OSY result 

0\Cr Y.() dl-.:omposition is seen once again in flgun'> 3.17, 3.18 and 3.19. Es~ 

c•ally lor the IES result, it is observed that hardly any of the edges of the pot hold· 

100 



(A} :<:1 romponent (b) 82 rompon(.'nt 

Fig11re 3.16: V.() 0c'COmp05ition (2( (.1'1 and.~>) ofmosuc (/1 0.05, A 0.02) after 
101 h-.-rations 

mg the cactus <how up in the u component . 

TheOSV results ar~ better in quality, but u•ually took more t•mc than either V-0 

or IES. 'This is due to the fact that often a wry small stepsilc must be chosen for 

the explicit time st~pping to ensure stabihty. 

(a) u rompon~nt (b) t• etHl'lponl'nt {c) r romponcnt 

Figure 3.17: V.() Ot'Composition (2( of cactuo (p - 0.05. A • 0.05) after 35 itcra· 
lion~ 

Next, quanhtahve ....,u)., comparing the V<'>C-Osher and rES dc'CO!Tip05ition al· 
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(b) t>(OCI'lponrnt (c• rcocnpontnt 

Figun 3.18: rFS 0..-.:omposition of cactua (~ 0.05,A = 0.05, i1 0.12. 'fz ; 0.6, 
cr • 2) after 44 iterations 

(a) u component (b) ''component 

Figure 3.19: OSV Decompo!tition of cactus after 100 tt('rations 
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gorithms using the decomposition quality measures in Section 3.7.5 are given. 

3.7.6.1 Decomposition Quality Measure Results 

Test Image Decomp. Alg. CQ CQ' TQ 

barbara 
V-0 0.5727 0.6501 0.7974 
IES 0.8670 0.9327 0.6000 

barbzoom 
V-0 0.1416 0.1876 0.8230 
IES 0.2274 0.3013 0.8050 

mosaic 
V-0 0.2596 0.4379 0.8020 
IES 0.4346 0.7635 0.7793 

wood 
V-0 0.1605 0.3980 0.6435 
IES 0.3049 0.5826 0.7578 
V-0 0.5060 0.7774 0.8152 

cactus 
IES 0.7558 0.9684 0.5897 

Table 3.5: Decomposition Quality Measures of Test Images for V-0 and IES De­
composition Models 

Table 3.5lists the calculated cartoon and texture quality measure values (defined 

in Section 3.7.5) for the cartoon and texture components of the Vese-Osher and IES 

decompositions of the test images used in the experiments in this chapter. Ob­

serve that the cartoon quality measures CQ and CQ' are much higher for the IES 

decompositions than the V-0 decompositions. On the other hand, the texture qual­

ity measure TQ is significantly lower for the IES decompositions of barbara and 

cactus than the corresponding V-0 decompositions. However, for all the test im­

ages, including barbara and cactus, the average value of the cartoon quality mea-

sure CQ and the texture quality measure TQ is higher for the IES decomposition 

results than the corresponding V-0 decompositions. For barbara and cactus, this 

deterioration in texture quality was found to be due to the fine scale nature of the 

texture in those images. Observe that for the test image wood, there was actually a 
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substantial improvement in the texture quality measure TQ as well as the cartoon 

quality measures CQ and CQ'. 

To improve the texture quality measure values, preliminary promising experi­

ments have been performed, replacing the second additional term 

(3.7.7) 

in Equation 3.5.1 with the following term 

1 v2 1 (gl,x + g2,y)
2 

-/2 IV I dxdy = -12 IV I dxdy, n u + c2 n u + E2 
(3.7.8) 

which also serves to emphasize texture in the texture component, but which also 

has been found to work well for fine-scale texture, unlike the term in Equation 

3.7.7. Further experiments with this revised term are left to future work. 

3.7.7 Parallel Decomposition Results and Discussion 

The parallel MPI code that was written for Improved Edge Segregation and that 

was briefly discussed in Section 3.6, was run on a 4-node Linux cluster with ver­

sion 5 of the Clustermatic package installed. Clustermatic is based on LinuxBIOS 

(which replaces the usual BIOS bootstrap procedure) and BProc, short for the Be­

owulf Distributed Process Space, which allows processes to be started on any of 

the machines in the duster easily [69]. Each node of the cluster was a PC with 

2 gigabytes of memory and a 3.0C GHz Pentium IV processor. The nodes were 

connected together with a 1 gigabit per second Dell router. The times required for 
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running IES with the test images as input on the cluster are shown below in Table 

3.6. The same number of iterations of IES were run as for the serial case for each of 

the test images, these numbers of iterations given in Table 3.4. 

Image name Time on 1 node of cluster (s) Time Required on all4 nodes (s) 
barbara 5.89 1.52 
barbzoom 4.07 1.25 
mosaic 8.20 2.46 
woodangle 16.42 4.34 
cactus 8.95 2.57 

Table 3.6: CPU Time Required for IES Decomposition on Parallel Beowulf Cluster 

Both the running times on one node of the cluster (as measured with the UNIX 

clock command), and on all of the nodes of the cluster (using logfiles as soon 

explained) are given in Table 3.6. There is some time required for initialization, 

e.g. for reading in the input image to be decomposed, and performing nonlinear 

diffusion to determine cartoon and texture edges, but after this, as expected, since 

there are 4 nodes in the cluster, the time required for the actual decomposition on 

all 4 nodes is roughly a quarter of that required for the actual IES decomposition 

on just one node. Also, much less time was required even when the code was run 

on just one node as compared to the running times reported in Table 3.4. This is 

because the running times in Table 3.4 were found on a computer with a slower 

processor (2.6 GHz vs. 3.0C GHz) and less memory, and also importantly, were 

measured in a MATLAB environment, which is interpreted and not compiled, and 

is thus substantially slower. 

On the cluster, log files were created using the mpilog command-line option to 

mpirun, and were viewed graphically using Jumpshot-4 [70], which comes with the 

MPICH package [61] for running MPI programs on the cluster. From the log files, it 
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was seen that a negligible amount of time was required for the passing of messages 

between cluster nodes, and the bulk of the time was used either for preprocessing, 

the actual execution of the IES parallel decomposition or waiting for messages to 

be received from other nodes because of unevenness in the running times between 

the nodes. 

An example snapshot of the Jumpshot viewer with the log file for the image 

barbara is shown in Figure 3.20. The green block to the left of the graph shows 

pre-computation time for MPI to be initialized, etc. The numbers 0, 1, 2 and 3 can 

be seen in the left pane of the captured window. The white vertical arrows which 

appear periodically in the figure correspond to messages being passed between the 

cluster nodes with numbers in the left pane at the same horizontal position as that 

arrow's endpoints. As can be seen from the Jumpshot viewer snapshot, the actual 

passing of messages is extremely rapid, and most of the overall time is taken with 

the actual calculation of the IES decomposition of barbara; this being the case with 

the other images as well. 

3.7.8 Texture Discrimination 

3.7.8.1 Background 

As discussed in Chapter 1, the characteristic that distinguishes texture discrimina­

tion from segmentation is that for discrimination, the textures have already been 

separated out spatially, with very little mixing between them. For the general seg­

mentation problem, each texture can be spread across the entire image, making it 

a more difficult problem than discrimination alone. 
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figure 3.20: Snapshot of Jumpshot \•Vindow runrung wath Logfile from ba..rbara. 
on cluster 

Only the probl~m of textu~ d•scruninatit>n hcs in th<> '"'P" of thi> the>ts, but th<> 

approoch taken c.1n be generoli~ed to segmentation as well, as statt'd by Vese and 

O.h~r [2). As in Ve:.e and Osher'• pap<>r [2), th<> textur<> components .~ 1 and g~ are 

ust'd for textur<> dlSCnmination. The tradthonal approach to texture dbaimina· 

lion has been the usc of Gabor fi lters [71). This is, however, very computationally 

inten"'·e, since th~ n.'Sponsc to an entir<• ftlt~r bank of C•bor filtc,., of differing 

ori.,ntations, scall'S and frequt'I1Cies has to be used, fonrung a larg<' number of 

channels. This fact is reported in [2). However, with the usc of the components 

g, and 82 of the texture decomposition, only one or two channels nct'd be used, 
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leading to great time savings. 

3.7.8.2 Results 

Table 3.2 gives the parameters used for the discrimination runs on the two test im­

ages mosaic and woodangle, together with the obtained timing results. For both 

images, the absolute value of the g1 subcomponent was used for the discrimina­

tion. 

For the image woodangle, it was found that the difference between the texture 

patches in g1 and gz was so slight with V-0 decomposition that texture discrimi­

nation was not possible for a wide range of parameters in ACWE . This problem 

was not seen with IES decomposition, as the two texture patches were more distin­

guishable, though discrimination did take a relatively large amount of time (app. 

10 minutes). However, the discrimination could be stopped earlier without signif­

icant deterioration in discrimination quality. A rough discrimination result from 

an early stopping of IES may be considered to be better than the lack of any re­

sult whatsoever for V-0 decomposition. The IES discrimination result is shown in 

Figure 3.21. 

For mosaic, a more accurate contour between the two textures was seen when 

IES decomposition was used as the first step of the two-step scheme as opposed 

to V-0 decomposition (See Figure 3.22). Additionally, this better result was ac­

complished in less time (45.11 seconds) than required for the discrimination from 

absolute value of the g1 subcomponent V-0 decomposition of the mosaic image 

(58.03 seconds). 
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(a) (b) 

Figure 3.21: (a) ACWE S<>gmontation result for woodangl• overlaid on lg, ob­
tained via IFS dc.••composition$ and (b) Segmentation t'l'!tult overlaid 
on original vood~&le lrnage for IES dl'C<\mp. 

3.8 Conclusions 

In this chapter, three different dt>composition models were prcscntt'<i extending 

that of V(";(> and Osher, namely the C..Ometnc Con.traint (GC) Model, the Edge 

Segregation (ES) Model and the Improved Edge Segregation (IES) Model. The IES 

model gave particularly good I'Cliulh>, both in lerms of execution time and quality 

of decomposition. IES also gave superior discrimination results, as compared to 

the V.() modd, when a texture >ubcomponent from decomposition was fed into 

an Acth e Contours "~thout Edges discrimination o;cheme. Additionally, the IES 

model wa< Implemented on a parallel Beowulf computer duster which signifi· 

canUy decreased execution time as compared to IES implemented on a regular 

serial computer. 
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(a) (b) 

(c) (d) 

Figure 3.22.: (a) ACWE Segmentation rt"!tult ior mosaic o,·erlaid on .~ 1 obtained 
'lA V.() dl'<Omposilion. (b) S.."l\m.."'t.>lion result o' .r1A1d on original 
ltOaaic lD'Wge forV-Oderomp ,(c)ACWESeg. n...._ult for.oA.ic o,·er­
la•d on (g1 obtained 'ia IES d<wmpo.silion. and (d) S..'gm<nt.>lion 
n."Sult O\'erlaid on originalmoaa1c tmage for rES dt'Comp. 
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CHAPTER 4 

Simultaneous Decomposition and 

Discrimination 

4.1 Introduction 

It is becoming increasingly common for human image processing researchers to 

propose and implement algorithms that solve more than one problem at the same 

time, e.g. deblurring and segmentation [24] or regularization and classification 

[72]. This approach utilizes the synergy which exists between the solutions of these 

problems, so that information from the solution of one can simplify the solution of 

the other, and vice versa. 

In this chapter, simultaneous textured image decomposition and discrimination 

is studied; an earlier version of the material was published in [25]. Modifications 

here generalize the method to textured images with more than 2 different regions, 

and there are also some modifications in this thesis to fine points of the algorithm. 
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This work is inspired by the paper of Vese and Osher [2], where auxiliary texture 

components obtained from image decomposition are used along with the Active 

Contours without Edges (ACWE) scheme of Chan and Vese [3] to perform tex­

ture discrimination. Here, instead of first performing decomposition and then dis­

crimination, a method is described which alternates between the two individual 

solutions. 

Note that similar work has been published very recently by Bresson and Thi­

ran in [73]. However, their model only uses information from a rough image de­

composition to help in the solution of the general segmentation problem, and the 

information from image segmentation is not utilized for decomposition. Their al­

gorithm uses the Mumford-Shah segmentation model, where within each region, 

the structure (cartoon) component is assumed to be smooth. On one hand, this ap­

proach is better than one based on ACWE, because any number of regions can be 

segmented with just two level set functions, as can be proven by the Four-Colour 

Theorem from graph theory [74]. With the ACWE model, in general flog2(n)l 

level set functions are required for n segments. For example, if there are 2level set 

functions 11 and 12 being used, then the final segmentation of the image I with 

domain 0 would consist of the regions { Ri} [=1, where 

R 1 = { (X I y) E 0 111 (X I y) > 0 I 12 (X I y) > 0} I 

R2 = {(x,y) E 0111(x,y) > 0,12(x,y)::; 0}, 

R3 = { (X I y) E 0111 (X I y) ::; 0 I 12 (X I y) > 0} I 

and R4 = { ( x, y) E 0111 ( x, y) ::; 0, 12 ( x, y) ::; 0} 
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On the other hand, their algorithm doesn't handle large-scale texture, as does the 

scheme proposed here. Each texton, or repeating texture unit, is considered to be 

a separate region with Bresson and Thiran's model if the texton is too large, and if 

they are not considered as textons, but instead as one texture, in the cartoon com­

ponent, the model performs a smoothing. This is usually alright, but for example 

in the test image shown later in Figure 4.3(a), the mortar between the bricks would 

be blurred, which is not desirable, since these should be cartoon edges, by virtue 

of separating the large-scale bricks in the image. Additionally, the algorithm pro­

posed here makes use of the g1 and g2 texture subcomponents in the V-0 decom­

position model, which leads to efficient segmentation. A combined active contour 

algorithm is employed, using both local edge information and global region in­

formation (without edges). Finally, Bresson and Thiran's method cannot segment 

two textures of the same mean because the segmentation is made primarily on the 

basis of the structural component u. 

4.2 Proposed Energy Functional 

To implement simultaneous textured image decomposition and discrimination, 

five new terms are added to the sum of the energy Ev0 (u,gl,g2) of Vese and Os­

her [2], and the energy EACWE_vec(<P, { uo,i}7=1) from the Active Contours without 

Edges for Vector-Valued images model of Chan and Vese [3]. Recall that the V-0 
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energy functional is given, as in Equation 3.3.1, by 

Evo(u,gl,g2) = Jo IVuldxdy +A Jo (f- u- dxgl- dyg2) 2dxdy 
1 

+~ [fo ( J gf + g~)Pdxdy] P, (4.2.1) 

The ACWE for Vector-Valued Images energy is based on the ACWE energy in 

Equation 2.6.2, except that instead of including terms measuring the deviation of 

the base image from the mean in each region in the energy, the sum of deviations 

from each of the channels of the base image to each channel mean is included. The 

energy for ACWE for Vector-Valued images, EAcWE_veCt is given by the equation 

EAcWE_vec(cp, {uo,i}7=1) = ~ACWE fo b(cp(x,y))IV'cp(x,y)idxdy+ 

t ("-t f (uo,i(x,y)- c{)2H(cp(x,y))dxdy+ 
i=l lo 

Aj fo (uo,i(x,y)- cj)2(1- H(cp(x,y))dxdy). 

where n is the number of channels used for segmentation. The new energy for 

the proposed SDD scheme, Esoo ( u, g1, g2, cp), as initially published in [25], has the 
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following form 

Term 1 Term 2 Term 3 

1 
ci 1'2 · scale21 2 (3 · scale31 2 +r1·scale1 e-zdxdy+ (f-u) dxdy+ lcpiiVul dxdy 

0 2 0 2 0 
Term 4 Term 5 

+r4 fo CSgiV(Go-* lgil)llcpldxdy+ !fwo;einit fo(1Vcpl-1fdxdy 

(4.2.2) 

The parameters (i, 1 ~ i < 4 and !fworeinit are positive constants, Go- is a Gaussian 

filter with standard deviation (J" and * denotes convolution. The spatially-varying 

coefficients scalei, 1 ~ i ~ 3 are calculated using the TV-based scale computa­

tion of the following section. One of the channels, CSglgil is a contrast-stretched 

version of the absolute value of one of the subcomponents gi of the decomposi­

tion, as is described in more detail in Section 4.3. CS5 is also a contrast-stretching 

factor, this time for the spatially varying scale1; CS5 is set to 1 for all of the two­

region simultaneous decompositions/ discriminations in this chapter. The value of 

CS5 was not varied in the experiments for this chapter, and so it is very possible 

that other values could lead to better discrimination results. The energy Esoo in 

Equation 4.2.2 could be modified by changing the lcpl factors inside each of the 

integrands of new terms 3 and 4, to lsign(cp)l, where the sign function is approx­

imated by 2He(cp) -1, with He(cp) the regularized Heaviside or step function. To 

be even more proper and to avoid the non-differentiability of the absolute value 

function at the origin, it would be better to take (2He(cp) -1) · sign(2He(cp) -1) = 

(2He ( cp) - 1) · (2He (2He ( cp) - 1) - 1). Neither the sign function nor its regulariza-
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tion were used in [25], or here, but could perhaps improve stability. 

The Euler-Lagrange equations can be easily obtained from the calculus of varia­

tions. Those for the auxiliary functions g1 and g2 are the same as those in Equations 

2.4.6 and 2.4.7 from the V-0 functional, and so are not included here. The other two 

for u and cp, which are obtained directly from the energy in Equation 4.2.2, are 

(4.2.3) 

(4.2.4) 

In Equation 4.2.4, observe that there is a term {3 · sc~e3 1Vul 2sign(cp). In the early 

stages of discrimination, IV u I may be high at small-scale texture edges but these 

initial estimates eventually dissipate in the decomposition process. Where the gra­

dient magnitude of the cartoon component is high, the level set function cp is un­

duly forced close to zero, creating false boundaries at these small-scale texture 

edges. So instead, the following modification of the term in Equation 4.2.4 is con­

sidered 

where !Tv is the original image f evolved according to total variation flow (note 

the square root). This total variation process has to be computed anyway for the 

calculation of the scale coefficients, so no extra work is needed for this modification 

of the Euler-Lagrange equation. 
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The above energy can be generalized to two level set functions ¢1 and ¢2 instead 

of just one function cp. This can be done to allow for the discrimination of up to 4 

regions. The new energy would be 

Esoo,2(u,gl,g2,C/Jl,C/J2) = Evo(u,gl,g2) 

+ E ACWE~e~hase ( C/JJ, ¢2, CSgfgi f, CSsscale1, CS f /TV) 

+1'1 · scale1 fo (e-Pf + e-Pf) dxdy + 'Yz·s~alez J0 (f- u)2dxdy + 

'Y3 ·s~ale3 fo IC/Jlllo/2ll Vu f2dxdy + 1'4 fo CSgf Y' (GO"* fgif) IIC/Jlllo/2ldxdy + 

!1wo;,einit fo [(fV'C/Jlf-1)2 + (f\7¢21-1)2] dxdy 

The first new term with coefficient 1'1 has been changed so that in large scale re­

gions, both ¢1 and ¢2 should be large, to ensure that there are no boundaries for 

either level set function in such regions. The third new term with coefficient 1'3 has 

been modified so that if fV'uf 2 is large, then either there can be a boundary in ¢1 

or ¢2, but not necessarily both (one of these level set functions ¢1 or ¢2 should be 

close to zero). A similar change has been made to the fourth new term with coef­

ficient f'4, and finally the last new term ensures that both ¢1 and ¢2 stay close to a 

signed distance function. The energy functional E ACWEmphase refers to the energy 
vee 

for ACWE with 2 level set functions ¢1 and ¢2 (thus the mphase, for multiphase), 

and has the subscript vee (for vector) because there is more than one channel being 

segmented. In fact, there are three: CSgfgif, CStfTv and CS5 scale1. Here, CSt is a 

positive contrast-stretching factor, similar to CSg and CS5 • 

For the purposes of stability, it was found that the terms with coefficient 1'3 and 

1'4 could be combined. This is because often edges in fgif and fY'uf (or f\7 !Tv f) 

117 



coincide. So instead of including 

(4.2.5) 

these two terms are changed to 

(4.2.6) 

Note that as opposed to the two-region case, IV frvl was used in Equations 4.2.5 

and 4.2.6 instead of IVul. Not much sensitivity was found to this choice, and this 

could be the subject of further investigation. The change from Equation 4.2.5 to 

4.2.6 is done because often edges in lgil and lfrvl coincide, so that if these two 

terms are summed, the contribution of the term to the overall energy will be too 

great. This was found to be the case experimentally, where the effect of the other 

terms in the energy functional of Equation 4.2.5 was found to be negligible, though 

sometimes these terms were necessary to yield an accurate segmentation result. 

In Section 4.2.3, it will be seen that the spatially-varying scale coefficients scale1 

and scale2 for both Esoo and Esoo,2, though computed in slightly different man­

ners, are large in large-scale regions, while scale3 is large in regions with small local 

scale. 

Now the meaning of the new terms in Esoo, and by extension Esoo,2 are further 

explained, keeping in mind the just mentioned behaviour of the scale coefficients. 
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4.2.1 Meaning of New Terms 

Here the purposes for adding each of the five new terms to Eva and EAcWE to 

obtain Esoo are expounded, one by one: 

1. The first additional term, with coefficient rl steers the value of cp away from 

zero in regions of large-scale. This is done because, in general, there will not 

be texture boundaries in such large-scale regions. If an image is piecewise­

smooth and doesn't contain textures, then the other terms in the energy will 

override this term. This term can also be turned off by setting 'Yl to zero, 

since other more straightforward methods such as edge detection will work. 
2 

An exponential is used in the integrand because unlike -cp2, e-~ is bounded 

below, while still being decreasing in cp. 

2. The second additional term is a fidelity term (the cartoon component is kept 

close to the original image f) which ensures that large-scale features are not 

placed in the texture component v or the residual (r = f- u - v). This is 

accomplished only for large-scale regions because the coefficient includes a 

multiplicative factor of scale2 which is only high in such regions. 

3. The third extra term ensures that in small-scale regions, 1Vul2 is small when 

let> I is large. This term is only turned on in small-scale regions because of the 

scale3 factor in the coefficient. So in small-scale regions, far away from the 

texture boundaries, blurring of the cartoon component u is promoted. This 

is an example of how the discrimination process helps decomposition. 

4. In order to reduce the number of iterations necessary for ACWE to converge 
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to the correct discrimination result, some local edge information was also 

included for that techinique. This is similar in spirit to what Kimmel and 

Bruckstein [75] do except that only the gradient magnitude is considered in­

stead of the gradient vector, and here a Gaussian-blurred version is used in 

the proposed algorithm. The term with coefficient 1'4 accomplishes this by 

forcing cp to be small in absolute value when this gradient is large. Thus, 

when the gradient is large, there will be a boundary since the level set bound­

ary is defined implicitly by cp = 0. Unlike Kimmel and Bruckstein's extra 

term, this term is robust to noise because of the Gaussian blurring. 

5. The final term is taken from the paper by Li et. al. [76]. It provides an alter­

native to having to reinitialize the level set function every several iterations. 

Instead the level set function cp is kept close to a signed distance function 

by keeping the difference between the norm of its gradient and unity small. 

This is based on the easily seen fact that the gradient magnitude of any func­

tion h is equal to the magnitude of the maximum directional derivative at 

that point. This fact will now be shown. The maximal directional derivative 

of the function h occurs in a direction perpendicular to the level set at that 

point, and is given by the formula h(x, y) = (dxh, dyh ). Locally, if any point 

z on C is chosen as the origin, the distance function on one side of the curve 

to z will equal cp(x,y) = }x2 + y2, and so the gradient magnitude will equal 

IV cp I = I ( ~, ~) I = 1, as desired. This term stabilizes the evolu-
x +y X +y 

tion of the level set, keeping the level set function smaller in magnitude than 

would be the case without the term. 
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The calculation of the scale coefficients scale1, scale2 and scale3 for Esoo and its 

generalization Esoo,2 is now described. 

4.2.2 Calculation of Scale 

Brox and Weickert [77] determined the scales of textures in an image using the 

rate of change of the gray-levels of pixels when the image underwent total vari­

ation (TV) flow. This underlying flow can either be implemented semi-implicitly 

and efficiently with Additive Operator Splitting (AOS, [36]), or explicitly and less 

efficiently with forward time-stepping. 

There are two underlying formulae valid for both approaches. One formula con­

tains an explicit stopping timeT, whilst the other has no stopping parameter [77]. 

These two formulae are 

sca[eBrox,stop 

scaleBrox,nostop 

4 faT (1 - batu,a)dt 

faT latuidt 

4 faTmax latuidt 

faTmax latui2dt 

(4.2.7) 

(4.2.8) 

where u is evolved with a TV flow from time 0 toT. The function bx,y equals 1 if 

x = y and zero otherwise. In the second formula, without a stopping time, Tmax 

is the time when the image reaches equilibrium, or the time at which the estimate 

doesn't change more than a certain small E in L 2-norm, between iterations. As 

usual, latul refers to the absolute value of the change in u from one iteration to the 

next. 
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It was found that by using AOS for the TV flow, large regions had bigger scale, 

but their boundaries did not. By using explicit forward time-stepping for the TV 

flow, object boundaries had big scale while the scale determined for large regions 

was not as big. One option is to linearly combine the two scale measurements 

obtained with the AOS (scaleAos) and explicit (scaleexp) TV flows. Instead, rea­

soning based on mathematical morphology was used to combine scale AOS and 

scaleexp in a meaningful manner to form the three scale coefficients scale1, scale2 

and scale3, given above in Equation 4.2.2. In this manner, scale1 ensures there 

are no discrimination contours in large-scale regions or small-scale regions within 

such large-scale regions, the coefficient scale2 preserves the cartoon component 

in large-scale regions, and scale3 promotes blurring of the cartoon component in 

small-scale regions and promotes the presence of discrimination contours at car­

toon edges that remain in such small-scale regions. Since it did not require much 

extra time, the scale formula with no fixed stop time was used for scaleAOS· Ex­

plicit time-stepping took longer to compute, so the formula with stopping time 

from [77] and Equation 4.2.8 was used for scaleexp· 

Scale itself can be used as a cue for texture discrimination. To include this im­

portant information, ACWE for vector-valued images [53] is used in the proposed 

SDD algorithm, with the data vector consisting of the absolute value of gi and 

scale1. 
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4.2.3 Calculation of Coefficients based on Scale 

The scale coefficient scale1 of the first term will be high where it is known there 

are no discrimination contours. This is found by either taking a morphologically 

closed (with a flat square structuring element of size 5) scaleAos when the distance 

to a pixel with high scaleexp value (greater than 30) is less than or equal to 3, or 

scale AOS otherwise. 

The second scale-based coefficient scalez is calculated by conditionally dilating 

scale AOS with the same type of structuring element. This dilation is initially done 

unconditionally, and then for each pixel the value of scalez is set to be equal to that 

obtained after dilation if the pixel is within a Euclidean distance of 3 from a pixel 

with high scaleexp (again greater than 30), and equal to scaleAos otherwise. 

Finally, scale3 is meant to be large in small-scale regions. The term scale~ +O.l (the 

0.1 in the denominator added to avoid division by 0) is added to G l~f l+l 
""TV* TV 

where crrv = 5, with the two summands normalized so their maxima are equal. 

In this expression frv is the original image having undergone TV-flow with AOS 

nonlinear diffusion. Only pixels in regions of size greater than 250 where the first 

summand is greater than 0.25 were considered, to eliminate spurious small re­

gions. 

4.3 Contrast Stretching 

Especially in the early stages of decomposition when using the same initialization 

as in [2], u = J, the absolute values of the auxiliary texture components g1 and 
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g2 are small. In order to magnify the differences in lg1l and lg2l in the first itera­

tions, contrast stretching is performed by multiplying the component by a scalar 

iteration-dependent factor(> 1). 

This factor is given by 

CSg = 20 + (ntota/dec/10- 1) 
2 + (ntota/dec/10- 1) 

(4.3.1) 

where ntataldec is the total number of decomposition iterations that have been run. 

This number is necessarily less than or equal to 10, because decomposition is ini­

tially run for 10 iterations, and CSg is only used for discrimination, which starts 

after the initial decomposition iterations. A plot of how the contrast-stretching 

factor varies with iteration is shown in Figure 4.1. 

Different forms of the contrast stretching factor CSg could be considered. As 

decomposition progresses, both the g1 and g2 subcomponents increase in their 

magnitude. Therefore, it is reasonable to have a contrast stretching factor which 

is decreasing as the number of decomposition iterations, ntataldeo increases, since 

otherwise the terms in Esoo ( u, g1, g2, cp) including this CSg factor would have too 

much influence in the overall energy. The form of CSg in Equation 4.3.1 was the 

first attempted, with only experimentation performed on the added term 20 in the 

numerator and the added term 2 in the denominator of this equation. 
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CS , Contrast Stretching Factor g 

2L_~~--~~~--~~~~~ 

o to ~ ~ ~ ~ oo m oo oo 100 

ntotaldec 

Figure 4.1: Iteration-Dependent Change in Contrast-Stretching Factor CSg 

4.4 Methodology 

4.4.1 Numerical Implementation 

The alternation between decomposition and discrimination is described by the 

flow diagram in Figure 4.2 and the pseudocode in Algorithm 2. In the flow di­

agram of Figure 4.2, the statements in each rectangle are executed while the pro­

gram is in that state, and solid arrows are followed if the condition written next 

to them holds true. If there is no condition written next to a solid arrow, then the 

solid arrow is followed unconditionally after the statements in the current rectan­

gle have been executed. Dotted arrows represent data flow, so that variables from 

the start of the arrow are fed into the state at the arrow's end. 

The variables decompi ter and discrimi ter represent the number of iterations 

of decomposition and discrimination respectively and were chosen in an image­

dependent manner. 

Vese and Osher's (u,v) decomposition is implemented in their paper with a 
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Initialization 
iter1 = 0 
iter2 = o 

,, 
Decomposition 

iter2 = o if (iten < decompiter) 

iter1 = iter1 + 1 ..... 
~ 

n t 
if (iter2 == discn 'miter) ~~ I'~' if (iten == decompiter .. ,, ) 

Discrimination 
iter1 = 0 if ( iter2 < discrimiter) 

iter2 = iter2 + 1 .... ...... 

Figure 4.2: Flow Diagram for SOD Algorithm 

Algorithm 2 Pseudocode for Simultaneous Decomposition/Discrimination 

1: procedure lNITIALIZATION(u, g1, g2, C/J) 

2: u = u0,g1 = g~,g2 = g~ and cp = cp0; 
3: j = 0; 
4: k = 0; 
5: end procedure 
6: procedure MAIN SDD ALGORITHM(u,gl,g2,C/J) 

7: while at least one of u, g1, g2 or cp has not converged do 
8: fori +-- 1, decompiter do 
9: (ui+1 ,g{+1 ,~+1 ) = decomp((ui,g{,~),cpk); 

10: j = j + 1; 
11: end for 
12: fori +-- 1, discrimiter do 
13: cpk+1 = discrim(cpk, (ui,g{,~)); 
14: k = k + 1; 
15: end for 
16: end while 
17: u = ui,g1 = g{,g2 = ~,cp = cpk; 
18: end procedure 
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semi-implicit fixed-point iterative finite differences scheme, based on that of Aubert 

and Vese [45]. A similar discretization is followed for the minimization of the pro­

posed functional for decomposition. 

For the active contour evolution, a discretization similar to that found in the liter-

ature [3] is used, except that a semi-implicit Gauss-Seidel procedure was followed 

like that of the decomposition procedure, instead of a fully implicit one. The time 

step used for the level set discretization is t-.t = 0.1. 

The initial conditions for the components/subcomponents ofthe image decom-

. ' - J - 1 fx d - 1 _h__ d f V 0 d position are uo - , g1 - - 2A IV !I an gz - - 2A IV !I, as were use or - e-

composition [2]. The initial condition for cp is a set of horizontally and vertically 

aligned small circles as shown in Figure 2.5 of Chapter 2. 

The defining equation for cp for normal Active Contours Without Edges [3] at the 

( n + 1 )st iteration given the values of cp at the nth iteration is given by 

n+1 c/Jrj + !:-.Mh(c/Jr)[tx(c1c/Jt+1,j + czfi!1~j + C3c/Jrj+1 + C4c/J~i~\)J 
c/Ji,j = 1 + f:..Mh(c/Jrj)[p(c1 + C2 + C3 + C4)] 

!:-.Mh(cpr1)[-i\.1(uo,i,J- m1(cpn))2 + i\.2(uo,i,J- m2(cpn))2] 

+ 1 + f:..Mh(c/Jf)[p(c1 + c2 + c3 + c4)] ' 
(4.4.1) 
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where 

1 
,on ,on ,on ,on 1 

( 't'i+l,r't'i,j )2 + ( 't'i,j+l~'t'i,j-1 )2 

1 
c2 

This discretization can be extended easily to the level set iterative solution of the 

simultaneous decomposition/ discrimination scheme. In these equations h is the 

grid spacing which can be taken to be unity, without loss of generality. 

4.4.2 Varying the coefficients specific to the algorithm 

The coefficients {i, 1 ::; i ::; 4, of the new terms can be varied depending on 

whether decomposition or discrimination is being performed, since at any instance, 

only iterations for one of the algorithms is being run. It was found by experiment 

that as long as these coefficients are kept constant within each algorithm, the entire 

simultaneous decomposition and discrimination (SDD) algorithm gives meaning­

ful results. 

The solution thus found by the entire process is not likely to be a global mini­

mum of the energy Esoo(u,gl,g2,cp), but still yields better results than either of 

the algorithms run separately, as will be illustrated in Section 4.5.1. This is only an 
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t<<ue for the coefficoent parameters "rl and 1'< ''"ct> th<•"' are the only coefficients 

of th<> in I< 'grab on Esoo whoch depend both on an element of { u,g1,g2} and .p. 

4.4.3 Test Images 

{b) OrigiNI-.oN1c2 urwgt> 

(c) Originitl mo•aie3 tm.ag(' 

Figure 4.3: Test Images used in l::'A.pcnmenb 

Thn.-e t,-.t omages used in th<> aperiments on th" chapl<'f, .. aaic 1, aosaic2 and 

aoauc3. are shown m Fogure 4.3 below. The fir.t h\'O omag•• are 160><160 pixels 

large, while the third is l92x192 pixels in size. 1\ote the na>d for at least two level 

set functions for proper discrimination of mosuc3 (b<'<:au;e ot contains 3 different 
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textures) motivates its inclusion in the test set. 

4.4.4 Parameter Selection 

Image name Ji A /1 /2 (3,dp (3,dsc 

mosaic! 0.05 0.02 50 25 2.5 30 
mosaic2 0.05 0.005 30 30 50 300 
mosaic3 0.05 0.01 0 0 0.01 5 
Table 4.1: Parameter choices for SDD on test images 

Image name l4,d_p l4,dsc Jiworeinit Ji ACWE (x255L) decompiter discrimiter 
mosaic! 0 50 20 1.0 10 50 
mosaic2 0 70 70 2.0 20 110 
mosaic3 0 5 20 3.0 10 150 

Table 4.2: Parameter choices for SDD on test images (cont.) 

There are many parameters, e.g. coefficients of terms in energy functionals, that 

should be selected for the proposed SDD algorithm. The values of these parame-

ters for the images mosaic!, mosaic2 and mosaic3 are shown in Tables 4.1 and 4.2. 

These choices were not optimized - it is very likely that there are better values of 

the parameters, e.g. for decompi ter and discrimi ter, that would lead to quicker 

convergence, or slightly better solutions in quality. The decomposition parameters 

Ji and A for Vese-Osher decomposition used in sequential decomposition/ discrim­

ination are the same as those for SDD. The grouping parameter JiACWE for the 

discrimination part of the sequential scheme is set to 0.2x2552 both for mosaic! 

and mosaic2. The grouping parameter JiACWE is different for SDD on the three 

images: l.Ox2552 for mosaic!, 2.0x2552 for mosaic2 and 3.0x2552 for mosaic3. In 

Active Contours without Edges for Vector-Valued images, At and At are set to 1, 

both for the minimization of Esnn and Esnn,2 . 
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4.5 Results and Discussion 

4.5.1 Two-Region Test Images 

(a) Cartoon romponent ., o1 lh) c,.rtol'4'1 Ct~nr..--.. c~\1 w of 
•Micl w1th \'.()deoocnp. .oaatcS "'•lh SOl> 

........... -........... , ... ,.; ........................ '""'·············· ' ·················4··· .... ····· .... , ..... . '•···············.)·· .~~ .................... ,.., . ', ................. . 
'''············~~­............ ~ 
~ ........ -

(c) T~xture component v of (d) Tl'll.hlrt' '-'tllllJXWlmt t• of 
mo•aic::lw•th V-Qd«:omp. ao .. icl w1th S,l)l) 

flsure 4.4: !mage decomposition re!>u1b. from V.() ilnd SDD dec:omposition for 
IDO&Utl 

Dl'<Omf'O'ttion results for the image •oouel • ..., •hown m Figure 4.4. Discrim­

t!l.lllon n. .. ult:. (computed via the g1 component of the same 11'1\ilge) are giwn in 

Figure 4 5 As c.m be seen by comparing Figun.-. 4 4(a) and 4.4(b), the large-scale 

bric~ tc\ture in the top half of mosaic I is P"""'" <'<lalmO'>t perfectly in the cartoon 
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(•) ACW"F dti~enm~n~tJOn n"MMIt (b) ACW£ dtin'im.tr .. ;tiotl n:sult 
for \'..0 chocompoe.1hon 01oediid for SOD 0\ft'Laid on ongan.alun. 
on originaltm.ap age 

Figure 4.5: Texture dtscnmtn.H•on result!> from V.Q and SOD dt."(\Jmpt)!;ition for 
mosaic1 

component for SOD, but for V-0 decomposition this component and its cartoon 

edge. are blurred considerably, which is undesirable 140). MOl\' "'markable is that 

thi; is accomplished in only 20 dcoomposition iteration> in the proposed scheme 

in,tead of 101 for V-0 decomp<>-~hon. 

In Figure 4.5, it can be ob:.crnod that the contour betwl"-'1\ the two regions is more 

.lCcuratc "ith SOD rather th.1n with ACWE performed wquenhally after decom­

position. What is notable, is that as •een in Table 4.3, only 100 iterations of ACWE 

discrimination are needed for SDD, as opposed to 220 for ACWE in a sequential 

framework. 

It u. more difficult to decomP<"<' and di<Criminate the tc•tu"" of the test un­

age aoauc2 than of aoaa1c 1 bt."Cause there are cartoon edgl-:t v .. ithin the texture, 

.1nd the tc.turc is very >par.c F.-en though there are no long<'r any large-scale 

'tructurcs to preserve, th(l'f\."' Ml' ";till comparable decompoo,ttion results with fewer 

iterations (30 iterations for SDD vs. 80 for sequential decomposition/discrimina-
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(a) ACWE dacn.NNI"'" ,..ull (b) ACWE d..aimlno,_ ...ull 
for V~ decompot•ttcJft 0\~id f« SOD 0\-eTia.d on onpwl un-
on on.gm.lllma~ •ge 

Figure 4.6: Texture dt«rimuutaon re;ults from V-0 anJ SOD dt.Xompo:iihon for 
aosaie2 

tion). Once again g,l is u~ lor discrimination, and the discrimination results 

lor both the sequ~ntial and <tmultanrous schemes are shown in ngure 4.6. Both 

'<hem., require 220 iterations lor discrimination, though with adjustment of the 

parameters, it is belie-.·ed that the l"'rlorrnance of the simultan<'OOS scheme could 

be improwd. Though of ac<:.'Pt.1blt> quality, impro\ing decompo-otion results such 

._on Figure 4.7 is left lor future work. 

S<.>quential SimultanrouS 
Image uJr~~" n ACl'VE "d~~ 11 /.'( 'wr. 
m.osaicl 101 220 I 20 100 
.. oaale2 ,_ 80 220 30 220 

T•ble 4.3: ~umber of ttt.-ratton" requtred for SOD, and V.O dl'COmpo<-thon o,equen• 
bally follo"t.od by AC\\'E dtscnmmation on h\'O*R."tPon h."""t amages 

In Table4.3, the numberolotcrabon:. required lor the •·ariou• components of both 

sequential decomposihon/do>crinunabon and simultaneous d<'Composition/dis­

crimination (SOD) are given. It can be seen that the number of ilcrations required 

both for decomposition nnd discrimination does not incrcas.t.." for SOD from these-
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(a) CM100n rompo.wnt • ol (b) Cor1<>0ft """f''C'<"I • of 
_.saic2 "ith \'~ d«otnp- .ou.ic2 With SOD 

Figutt 4.7: lm.a~ dec,)mposu.on reults from V..O and SOD dt"('t)Mposition for 
mosUc2 

! ~u~nt:;:••::.l -,------1--:-<T,...,~iiir::.;=::<nn;:::., 
Image t vo t A~wr: t.,.9 tsoo 
mooucl 45.92 58.03 103.95 124.31 
mooa>c2 32.78 58.09 90.87 209.79 
mooa>c3 352.44 

To~ble 4.4: Tune (sees) rttqual'\'d for SOD and V-0 decomposthon ....._-oquentially fol· 
lo" ed by ACWD d1tcrunination on n~o and thn. .... ··n..,r;:ion tl"'-t tmages 

quential scheme. In Tablt> 4 4, the time required for tht> propoo.t'd Stmultaneous 

method vs. the sequential d<eomposttion/discriminalion on th~ test images are 

shown. The experiments "'""' performed on a 2.6 GHz Pentium 4 desktop with 

I GB of RAM and a MATI.AB implementation. The column with l~b shows the 

tome necessary for Vcse-()<.ht>r d<'COmposition, and ~~~wr ;, the time necessary 

for AC\'I'E ~mentation afler V.Q decomposition has bt't'n run. The column t "'! 

refe~ 10 the time nect"'"l'\ for the entire sequential dt>eompooihon/discrimina· 

non scheme, and so equal' t:i, + l~wE· The quantity t:J>.C "'fer. to the amount 

of ltme required for prt>·computation of the various scale codftcicnts for SOD in 

MATLAB .. the column 1;.~:.~~"'' to the total amount of time nl'C'{l'-,sary for the decom· 
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position and t~~f.vE the total time necessary for discrimination, all in the proposed 

SDD scheme. The column tsoo( = t;c~I~ + tJ~?mp + tJgc~im) refers to the total time 

necessary for SDD to run on each test image. As can be seen from Table 4.4, the 

time required for the complete SDD process is slightly more than the sequential 

process for the mosaic! test image. However, SDD gives both superior decompo­

sition and discrimination results. For mosaic2, SDD takes more than double the 

time, due in large part to the fact that the entire image is mostly of one scale. The 

simultaneous scheme is not optimized for such images, though it does give good 

quality results, as evidenced by the ultimate discrimination results in Figure 4.6. 

4.5.2 Test Image with More Than Two Regions 

As is obvious from Figure 4.3, mosaic3 has three distinct textured regions to be 

discriminated. The Euler-Lagrange equations derived from the energy functional 

Esoo,2 in Equation 4.2.5 are used to simultaneously decompose/ discriminate this 

image. It would be expected that even though there are now two level set functions 

which could handle up to four distinct regions, the problem of discrimination in 

this case will be more difficult than the two-region case, because the three regions 

have to be in general pair-wise discriminated from each other. 

Because of this extra difficulty, for the test image mosaic3, an extra channel, frv 

is fed in to the ACWE for Vector-Valued Images discrimination process. The terms 

with coefficients {3 and {4 from Equation 4.2.5 are also combined in the discrimi­

nation process, because both are quite similar. Recall that for the two-region case, 

JIV frvl was used in the place of 1Vul2. A similar replacement, this time with 
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I \1 frv I is done for the multiphase case with 2 level set functions </J1 and </Jz. For 

the 3-region case on mosaic3, the absolute value of the g2 texture subcomponent is 

used for discrimination. 

The expression for the iteration-dependent contrast stretching parameter CSg is 

slightly different than that for the two-region case in Equation 4.3.1, but is of the 

same form. The new expression is 

CSg = 50+ 3(ntotaldec/10- 1) 
2 + 3( ntotatdecf10- 1) 

(4.5.1) 

The two contrast stretching factors CSt and CS5 are chosen so that the maximum 

value of channels CSt frv and CS5scale1 for the multiphase ACWE discrimination 

are 0.5 and 0.25 times that of CSglgzl. It was found important that the value of CSt 

be chosen carefully, because if too large or too small, the channel CSt frv would 

have either too much or too little influence on the ACWE discrimination. 

It is also important to note that for the multiphase SDD model defined by the 

energy Es00,2, Jacobi iterations were used instead of Gauss-Seidel iterations to 

accelerate solution of the model, because with Gauss-Seidel iterations, the solution 

required substantially more time. This was not done for the two-region case but 

preliminary experiments with that case showed that the difference in running time 

between the two implementations was not very great. 

The SDD scheme was only run on the test image mosaic3 to show that the model 

could be extended to images with more than 2 textured regions. It was found that, 

in fact, the extension to this case is possible, with a good quality of decomposi­

tion and discrimination. Only 30 decomposition iterations and 450 discrimination 
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(a) Cartoon Componertt r.. (b) lt•\tu~ Cvmponent t• 

fig~re 4.8: Doo:>mpositioo Result of f>Top<>'><'<l SOD Algonthm for mouic3 image 

Fis~~ 4.9: DiscrimiNtion Result of l'ropo8<d SOD Algvnthm on 80suc3 
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iterations were required. The amount of CPU time needed for the entire simultane­

ous decomposition/ discrimination process was only about 6 minutes. Because the 

total number of level-set functions needed to segment an image with n regions, 

is only llog2 ( n) l, there is not expected to be a substantial decrease in efficiency 

even for images where more regions to be segmented are present. The sequen­

tial decomposition/ discrimination algorithm was not run on this image, but this 

problem is very difficult since there are three different regions, and the cartoon 

component is not fed into the discrimination part of the sequential algorithm. 

4.6 Conclusions 

In this chapter, it was shown how decomposition and performing texture discrim­

ination can be naturally solved in conjunction with each other, improving there­

sults obtained by each. The measurement of local scale [77], was a vital part of 

this new procedure, and was instrumental in preserving the large scale structure 

in the image, especially in the 2-region case, to improve both decomposition and 

discrimination results. One problem found in this chapter's experiments was the 

selection of many different parameters needed for SDD, both for the two-region 

and multi-region cases. The SDD model was robust to variation in some less im­

portant parameters, for example the widths of Gaussian filters used for blurring 

the scale coefficients, but the rate of convergence was very sensitive to relatively 

small variations in some of the other parameters, e.g. the contrast-stretching coef­

ficient CSg. However, overall the SDD model was effective for the simultaneous 

decomposition and discrimination of textured images with 2 or more regions. 
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CHAPTER 5 

Modifying the Osher-Sole-Vese 

Decomposition Model 

5.1 Introduction 

In this chapter, two ways of extending the Osher-Sole-Vese (OSV) image decom­

position model are explored. The first introduces a decorrelation term to the en­

ergy functional of OSV decomposition based on the correlation coefficient between 

the cartoon and texture components of the decomposition. For decomposition, 

improved results over OSV are obtained with the proposed decorrelated model. 

There are two models which fall under the framework of the second extension, 

which combines image decomposition with nonlinear diffusion for the purpose of 

image denoising. The first model combines Perona-Malik diffusion with OSV de­

composition, and is abbreviated PMOSV, but unfortunately it does not give very 

good denoising results. However, the second model, called OLOSV for short, com-
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hines oriented Laplacian diffusion and OSV decomposition, and is shown to give 

dramatically better results for images with oriented texture. The chapter begins, 

in the next section, with a description of the Decorrelated Osher-Sole-Vese (DOSV) 

model. 

5.2 Decorrelating decomposition components 

Although the OSV decomposition model outperforms the V-0 model in terms of 

separating cartoon from texture edges into their respective components [4], result­

ing decompositions are not always of the highest quality. For example, often car­

toon edges appear in the texture component v even though they belong in the 

cartoon component u. Therefore it is desirable to somehow improve the quality of 

decompositions obtained from the Osher-Sole-Vese model. A new model is pro­

posed by regularizing that of Osher, Sole and Vese, based on the assumption that 

the cartoon and texture components of a decomposition are generated from inde­

pendent processes, and thus are uncorrelated. 

In [78], Aujol, et. al. propose using the correlation between the cartoon and 

texture components of a decomposition to determine the regularization parameter 

A by finding a local minimum of this correlation as A is varied. The assumption 

made is that the cartoon component u and the texture v are uncorrelated, which 

could signify that they are generated from independent processes. In practice, they 

will have some correlation, but this value will be very close to zero. 

However, to find this correlation minimum, the method proposed by Aujol, et. 

al. must evolve the original image with a whole range of A's to form a scale space, 
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a process which requires excessive computation time. Also, the underlying energy 

functional is not changed. Instead, it is proposed here to impose a regularization 

term which ensures the correlation between the two components is not signifi­

cant. Because the residual doesn't come into play, this term is added to a pure 

two-component model, namely the OSV model, where there are only the cartoon 

component u, and the texture/noise component v = f- u. 

The absolute value of the correlation is measured in small windows around each 

pixel and integrated across the entire image. The implicit assumption is that each 

small window can be considered to be a random sample of the whole image, and 

that the independence of the cartoon and texture components holds for this small 

random sample. As will be seen in the results in Section 5.2.6, while this may be a 

simplifying assumption, it allows good decomposition results to be obtained. 

5.2.1 Correlation coefficient 

From statistics, the correlation coefficient between two random variables X and Y 

is defined to be 
Cov(X, Y) 

Px,Y = crxcry 
E[(X- X)(Y- Y)] 

CTxCTy 
(5.2.1) 

where E[·] (note the square brackets), and an overbar denote the expectation of 

a random variable, and cr denotes the standard deviation of the random variable 

appearing in its subscript. This correlation coefficient measures the amount of 

linear dependence between X and Y, and ranges between -1 and 1. If two random 

variables are independent, then their correlation coefficient will be zero, but the 

reverse implication does not necessarily hold. 
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Recall from Section 2.4.3 that the energy for OSV decomposition can be defined 

by 

(5.2.2) 

It is shown in [4] that this energy can be minimized by evolving the cartoon 

component u according to the following partial differential equation 

Ut = _ _.!.._~ [div (~)]- (u- f) 
2A IV'ul · (5.2.3) 

The right-hand side of the above equation is actually the negative Laplacian of the 

formally derived first variation of the energy 5.2.2, however in [4], it is shown that 

this quantity still results in a gradient descent direction of the energy functional of 

Equation 5.2.2. 

To force the correlation between cartoon and texture to be small, the integral term 

Edecorrei(u) =(dIn IP:,~x,y)(x,y)ldxdy (5.2.4) 

is added to the Osher-Sole-Vese energy Eosv ( u) in Equation 5.2.2, to form the new 

Decorrelated OSV (DOSV) model energy Eoosv(u) 

Eoosv(u) = Eosv(u) + Edecorrei(u) 

= Jo IV'uidxdy +A In IV'(~- 1 )(!- u)i2dxdy 

+(dIn IP:,Jx,y\x,y)ldxdy. 

(5.2.5) 

The correlation coefficient p:,~x,y) at a pixel (x, y) is taken over a square window 
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W(x,y) of width Wx and of height Wy about the pixel (x,y). The formula for this 

spatially varying correlation coefficient, as obtained from Equation 5.2.1 is 

W(x,y) _ Ew(x,y)[(u- a)(f- u- (f- u))J 
Pu,v - (T (T 

u J-u 

w!w; fw(x,y)(u- a)(f- u- -:-(f:--_-u-..,...))dxdy 

JEw(x,y)[(u- a)2]Ew(x,y)[(f- u- (f- u))2] 

w}wy fw(x,y)(u- a)(f- u- (f- u))dxdy 

w}wy v fw(x,y) ( u - a)2dxdy fw(x,y) (f- u - (f- u) )2dxdy 

(5.2.6) 

A global correlation coefficient over the entire image is not taken, since there would 

be a global mean a used in the calculation, and any given pixel would contribute 

directly to this mean. The means should only be taken over a local window, since 

in general, the average intensities of different objects in the image will not be the 

same. 

It was also attempted to add the term J0 (p~Jx,y)(x,y)) 2dxdy, but this was too 

permissive of large values of p. This extra term is too permissive because the p val­

ues will necessarily lie between 0 and 1, and by squaring these correlation values 

in the interval [0,1], larger correlations will still be considered as less significant in 

the additional term in the energy. 

5.2.2 Simplifying Assumptions 

To derive the Euler-Lagrange equations of Eoosv(u), various assumptions on the 

correlation coefficient field p~Jx,y) calculated at each pixel ( x, y) of Equation 5.2.6 

can be made. For example, from iteration to iteration, the means a and v = f- u, 
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and/or the standard deviations CTu and CTv = CTJ-u can be taken to be constant. In 

fact, it was found in extensive experiments in which with (i) both the means and 

standard deviations constant, (ii) only the standard deviations constant, or (iii) nei­

ther the means or standard deviations constant, that there was very little difference 

in the obtained decomposition results. Therefore, for simplicity, both the means 

and standard deviations are kept constant from iteration to iteration, thus sim­

plifying the Euler-Lagrange equations obtained from the energy term Edecorrel ( u) 

appearing in Eoosv(u). 

If the means and standard deviations are taken to be constant from iteration to 

iteration, then CTu and CTv, the standard deviations of the cartoon and texture com­

ponents respectively, can be taken out of the integral expression of Edecorrel ( u) so 

that 

Edecorrel(u) = ...1E_ r IEw(x,y)(u- a)(f- u- (f- u))l dxdy. 
CTuCTv Jo (5.2.7) 

Note here that Ew(x,y)[·] denotes the sample mean over the window W(x,y) cen­

tered on ( x, y). 

In fact, v = f- u can be assumed to be equal to zero, as in [4], so that the expres-

sion becomes 

Edecorrel(u) = ...1E_ r IEw(x,y)(u- u)(f- u)l dxdy 
CTuCTv Jo (5.2.8) 

Although the property v = 0 may not hold over all local windows W(x,y) in the 

image, it was found experimentally that imposing this assumption did not signifi­

cantly change the quality of obtained image decompositions, and since the result-
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ing Edecorrel ( u) in Equation 5.2.8 is simpler than that without this assumption, as 

in Equation 5.2.7, the former expression for Edecorrel ( u) is taken. 

5.2.3 Euler-Lagrange Equation 

The first variation of Edecorrel ( u) can be somewhat complicated to derive since 

in general u is calculated from u values in the window W(x, y), and may not be 

merely a constant. When the simplifying assumptions from the previous subsec­

tion are taken, so that the means and standard deviations of u and v are constant 

between one iteration and the next, and the mean of v is taken to be zero in any 

window W ( x, y), the first variation of Edecorrel ( u) (from Equation 5.2.8) is found to 

be 

1 
Ew(x,y)[sign(Cov(u,f- u))](f- 2u + u) 

Edecorrel ( U) = f d (T, CT · 
u f-u 

(5.2.9) 

In general, the gradient descent solution of the PDE(s) derived from minimiza­

tion of an energy E ( u) is obtained by solving the time-dependent PDE Ut = - E' ( u), 

where E'(u) is the Euler-Lagrange equation for u, obtained from E(u) via the Cal­

culus of Variations. In [4], Osher, Sole and Vese show that under some rather weak 

conditions, gradient descent can be replaced by the solution of the following PDE: 

Ut = ~E'(u), where~ is the Laplacian operator. This is the approach taken in [4] 

to solve the OSV model, and since this model is now being extended, the same 

procedure is followed in this paper, though we have not verified the validity of 

the assumption that these conditions always hold for the proposed model. How­

ever, the obtained results indicate that this assumption still leads to better results 

than from the OSV model it is based upon. The PDE that must be solved for the 
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proposed decorrelated Osher-Sole-Vese (DOSV) model is 

Ut ~Ebosv(u) 

1 . ( \7u ) 1 1 ( ) J- U- 2,\. ~ dlv IVul + 2,\. ~Edecorrel U 

with E~ecorrel ( u) (without the Laplacian) given by Equation 5.2.9. 

5.2.4 Test Images 

The proposed DOSV decomposition model of this section was tested on a test set 

of four separate grayscale images, and the PMOSV and OLOSV decomposition 

models of the following section, were tested on a test set of three separate test im­

ages. The test set of images for DOSV consists of smallbarbara (a smaller version 

of another test image barbara), lena, mandrill and grass. The test image set for 

PMOSV /OLOSV is made up of barbara, lena and grass. The sizes of the images 

are as follows: barbara, lena and mandrill are 512x512 pixels large, small barbara 

is 256x256 pixels in size, and grass is 380 pixels wide and 332 pixels high. All these 

test images are shown in Figure 5.1. 

Especially for PMOSV and OLOSV, such large images were used, since these 

depend on coherence of texture orientations, these coherences being higher when 

the texture is of slightly larger scale. 
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(a) bvbua (b) amallb&rbara 

(tl) mandrill 

(e) v••• 
Figu.re 5.1: Test lm.age, u!K!d in thi~ Ch.lpter 
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5.2.5 Experimental Setup 

The window W(x, y), first appearing in Equation 5.2.4, and used in the simulations 

here, is taken to be 5 pixels by 5 pixels large. A larger window of 7x7 pixels was 

also tested, but did not lead to a significant improvement in decomposition results 

and required additional computations. 

The value of ry a, the coefficient of the new decorrelation term, and also first ap­

pearing in Equation 5.2.4, was set to 5.0. The fidelity parameter A. for both models 

was set to 0.015 for all iterations. Osher-Sole-Vese decomposition was run for 150 

iterations on all test images, with explicit timestepping (!:lt = 0.0015). A larger 

number (200) of iterations of DOSV decomposition was used on the test images, 

since it was found that in the initial stages of tests with that decomposition model, 

texture was extracted more slowly to the v component than by the OSV model. 

Once again, explicit timestepping was performed with tlt = 0.0015. For both OSV 

and DOSV decomposition, the same initial conditions are used, namely u0 =f. 

5.2.6 DOSV Experimental Results 

5.2.6.1 Qualitative Results 

As by Shahidi and Moloney in [ 68], and in the Improved Edge Segregation algo­

rithm presented in Chapter 3 of this thesis, it is desired to reduce the presence 

of cartoon edges in the texture component of the outputs from image decompo­

sition schemes. In Figure 5.2, the cartoon components u from the decomposition 

of smallbarbara with the OSV model and the just-described DOSV models from 
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Sections 5.2.1 and 5.2.3 are shown. Figure 5.3 shows the texture components v 

of the decomposition of the same image with the OSV and DOSV models. It is 

obvious that large scale features such as the edge of Barbara's' arm and her facial 

features are much less evident in the texture component in Figure 5.3(b) than that 

of the conventional OSV model in Figure 5.3(a). Texture also appears to be slightly 

enhanced in this figure. 

The DOSV algorithm was also tested on three other images, grass, mandrill 

and lena. For all three test images, there was a suppression of cartoon edges and 

enhancement of texture edges in the texture component v output from the pro­

posed DOSV decomposition model as compared to the OSV decomposition model, 

DOSV is based upon. A qualitative comparison of the DOSV and OSV decompo­

sitions of the test image lena is made next. 

For the test image lena, there was also a noticeable reduction of cartoon edges in 

the texture component v of DOSV decomposition as opposed to OSV decomposi­

tion. A zoom is shown in Figure 5.4. The cartoon edges associated with lena's hat 

are less prominent in the DOSV decomposition in Figure 5.4(b) than in the OSV 

decomposition in Figure 5.4(a), while the smaller scale texture edges in the feath­

ers of the hat are stronger in the OOSV texture component than those in the OSV 

texture component. 

The above comparisons between OSV and DOSV are qualitative in nature. Quan­

titative comparisons between the two decomposition algorithms are made next. 
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(a) Cartoon Compt._Jilel'lt of OSV IJE.comf'O"tUun of 
small barbara 

(b) CMtoon C'ompt)llcnt of Propoe;cd DOSV [)e((lmfl'O"'iltinn 
of nallb6rbua 

Figure 5.2: Cartoon compon<"nts o( Decomposition of barbara w1th OSV a.nd pro­
posed DOSV mod,•l, 
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(.t) T~11.ture Component (If OSV Otorompo~dKW\ oi 
..all barbara. 

(b) Texture component of Propo!o4.-d OOSV ().,•cum~ltion 
Qf emallbarb&ra 

Figure 5.3: n~xturecomponents of Decompo~ilion of aullbarba.ra with OSV and 
proposed DOSV models 

151 



(a) h•totul'\" Ct,.mponcnt o£ OSV l)e(ompoo,ihl)ll tll 

lona 

(b) ' Jc)t;hJI\' c:ompont>nl o£ Propose.."<~ DOSV 1)~1'1\· 

J"l)"itlon of l•o• 

Figure 5.4: Textu.recompon(•nt~ of Decomposition of hna w1th OSV and proposed 
DOSV modrls 152 



5.2.6.2 Quantitative Results 

To quantify the improvement in separation of cartoon and texture edges into their 

respective components, the decomposition quality measures of Section 3.7.5 are 

used, so that the qualitative comparisons in Section 5.2.6.1 are not relied upon 

exclusively. 

Recall from Section 3.7.5, that there are two cartoon quality measures, CQ and 

CQ', each measuring the average ratio of the cartoon edge strength IVul to the 

original edge strength I \7 fi over different sets of cartoon edges, the set for CQ' a 

subset of that for CQ. Recall as well that in that section, there was defined a texture 

quality measure TQ measuring the average ratio of the texture edge strength IVvl 
to the original edge strength I \7 f I· The higher any of these three measures is in its 

value, the better the decomposition is. 

Test Image Decomposition Method CQ CQ' TQ 

small barbara 
osv 0.9491 0.9623 0.7853 

DOSV 0.9688 0.9770 0.7997 

lena 
osv 0.9527 0.9650 0.5551 

DOSV 0.9749 0.9769 0.5770 

mandrill 
osv 0.9418 0.9440 0.7093 

DOSV 0.9794 0.9569 0.7357 
osv 0.9566 0.9449 0.6927 

grass 
DOSV 0.9909 0.9625 0.7171 

Table 5.1: Decomposition Quality at Cartoon and Texture Edges for OSV and pro­
posed DOSV Decomposition Models 

In Table 5.1, it is seen that all three decomposition quality measures are higher 

in value for all four test images DOSV was tested upon. Although the amount of 

improvement may not appear at first sight to be very substantial, it should be re­

membered that these quality measures are already quite high for the OSV decom-
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position model, and so the amount of improvement is limited. However, despite 

the high decomposition quality measure values for the OSV model, low decompo­

sition quality edges are still present. Significant improvements in edge quality for 

DOSV at certain pixels may result in a small overall increase in the decomposition 

quality measures, since an average is taken over a set of pixels, and these large 

improvements may be offset by less significant improvements at other pixels in 

the set. This fact is confirmed by the visual results in Section 5.2.6.1. Also observe 

that the values of the decomposition quality measures in Table 5.1 are higher in 

general than those for the Vese-Osher and IES models in Table 3.5. The fact that 

the OSV model outperforms the Vese-Osher model in better separating large-scale 

from small-scale edges in resulting decompositions has already been observed in 

[4]. 

In the following section, the next extension to the OSV model, based on the in­

corporation of nonlinear diffusion into the Euler-Lagrange equations of the OSV 

model, is introduced, for the purpose of denoising. 

5.3 Incorporating Nonlinear Diffusion into the OSV 

Model 

5.3.1 Perona-Malik Nonlinear Diffusion 

Note that for the remainder of this chapter, decomposition is applied to the prob­

lem of textured image denoising. The noisy image f is split into the sum of a 

denoised image, corresponding to the cartoon component u, and the noise itself, 
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which is placed in the v component. As demonstrated in [4] by examples, the 

Osher-Sole-Vese decomposition (OSV) model is especially effective for denoising 

textured images in this way. In [78], it is shown that this is due to the higher 

weighting of lower frequencies in the texture component of an image using the 

H-1-norm from the OSV model as opposed to the L 2-norm, used e.g. in the To­

tal Variation model of Equation 2.4.1. So high frequency and small scale noise is 

more likely to be placed in the texture component by decomposition with the OSV 

model compared to other models, e.g. the Rudin-Osher-Fatemi model and even 

the Vese-Osher model. In [4] and e.g. Section 5.2.1 of this thesis, it is shown that 

the energy functional for OSV decomposition can be minimized by evolving the 

cartoon component u according to the following partial differential equation 

(5.3.1) 

The second term of Equation 5.3.1 can be considered as a fidelity term, which keeps 

the cartoon component u close to the original noisy image f. However, it is pro­

posed to introduce a nonlinear edge-stopping coefficient, as inspired by Perona 

and Malik's classic work [5], into the negative Laplacian of the curvature of u in 

the first term of the above evolution equation. Recall the discussion of this work 

in Section 2.2.1.3. This leads to the following PDE 

Ut = -2~ div (c(IVui)V [div c~~l) ]) - (u- f). (5.3.2) 

Although it is not immediately obvious that this is the gradient descent solution of 

any energy functional easily expressible in closed form (and may in fact not be), the 
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use of the PDE can be justified by the following argument. The PDE used to solve 

the OSV decomposition model, given in Equation 5.3.1, is known experimentally 

to perform well when applied to the task of denoising. The second term in that 

equation - ( u - f) makes the cartoon component u gravitate towards the original 

image f, which may contain noise. Therefore, any denoising must come from the 

first term, proportional to (with positive ratio A) the negative Laplacian of the 

curvature of the level lines of u. Thus this denoising can be limited by including 

the edge-stopping coefficient c(IVul) as in Equation 5.3.2. 

The coefficient c( I \7 u I) is chosen as one of the two functions given in [5], namely 

1 
c(IVul) = JV'uJ2' 

1+1(2 

where K is a constant determined at each iteration based on the integral of gradient 

magnitudes in the image at that iteration. The value of K is set to be 0.9 times the 

integral of the gradient magnitudes over the entire image, as done in [5]. One thing 

to notice about the function cis that it is decreasing in its argument IVul. It is also 

important to emphasize the fact that in the finite difference discretization of IVul, 

the filters 

-3 0 3 
1 

Dx=- -10 0 10 32 
(5.3.3) 

-3 0 3 

and 

3 10 3 
1 

Dy=- 0 0 0 32 
(5.3.4) 

-3 -10 -3 
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were used to determine the partial derivatives of u with respect to x and y. These 

filters are more resistant to noise than the usual central difference scheme [31], so 

that noise will be diffused more easily by the proposed method. Noise resistance 

stems from the smoothing orthogonal to the magnitude of the gradient in the direc­

tion being measured. This new model is called by the rather lengthy concatenation 

of the inspiring authors of [5] and [4], the PMOSV decomposition model. 

Note that the PMOSV model theoretically may not yield excellent results because 

the Perona-Malik diffusion flow is known to enhance edges [5], so that the "over­

shoot" of the edge caused by the enhancement may end up in the noise component 

v. However, it will be seen in Section 5.3.3 that PMOSV will inspire another de­

composition model based on nonlinear diffusion, namely the Oriented-Laplacian 

OSV model, which does improve results over the OSV decomposition model. 

5.3.2 Results for PMOSV 

The original barbara image, which is 512x512 pixels large is shown in Figure 5.5(a). 

To this and the other test images, white Gaussian noise of standard deviation 

CT = 20 is added (see e.g. Figure 5.5(b)). Then both OSV decomposition and the 

proposed PMOSV model are run on the noisy image, until the SNR values hit their 

peak. A time step !'1t = 0.002, is used for all images except for lena. For the lena 

test image, the denoising process became unstable for OSV decomposition, so that 

a smaller timestep of !'1t = 0.001 was selected. For all test images, the parameter 

it for OSV decomposition is determined by gradient projection as in [4] given the 

known noise standard deviation. The same is done for the proposed model except 
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(.-) Ori~Jn.a..l Jm&ge barbara (b) Image b&rbara w1th •dded noise 

Figure 5.5: C>riginaland noisy test image 

that A is kept ron.,tant for a small number of iterations (10) before gradient pro­

Jection is used. Thio IS done because the initi,ll noisy image led to negative values 

of A being cakulat<-d which in turn C.lu"'d the noise to be amphfi~d. The value 

of A at each iteration for the P~10SV model (after the in•tial 10) •• found using the 

following formula 

A- 2~2 /n c(lv11,) { {f, u,)K,(u) + {fy- lly)Ky(ll)) dxdy, (5.3.5) 

where K( 11) is the cun·ature ol11 given by K( 11) - div ( ~~ ) . 

As can be noti«'ll. there is less te•ture present in the nOL'o(' component of the 

proposed model (l'lgure 5.7(b)), than m the noise component of the OSV model 

(Figure 5.6(b)). This can be especially noticed in the stripe pattcrru. of the pants 

and the bottom of the scarf. A quantitative comparison between OSV and PMOSV 

denoising is given in Table 5.2, where the obtained signal·to·noioe ratios (SNRs) 

between the dcno•"'-'<1 images (conesponding to the u componenb) with OSV and 
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(a) Cartoon-Texture romponmt ., 

(b) '"oise romponent P 

Figllre s.r. Denoising results from OSV 0..'«>11\l"""bon model 
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(a) C•rlO\"'~IH Te11;ture compom.•nt u 

(b) r\oiw component t> 

Figure 5.7: Denoi:,ing rt~ults from propo~ PMOSV Dl">Compoo;itlon modt!l 
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Image OSVSNR PMOSVSNR 
barbara 12.639 12.634 

lena 16.528 14.666 
grass 11.015 10.595 

Table 5.2: SNRs for OSV denoising vs. PMOSV denoising on test images 

PMOSV are compared. As usual, the SNR between the processed denoised image 

Idenoised and the ideal denoised initial image Io is computed using the formula 

r:M r:N (I ( · ·) r )2 
SNR(I I · ) - 10lo i=O j=O 0 Z,J - 0 

Q, denozsed - glO "M "J:l (I . ( · ') _ I ( · ') )2' 
L....1=0 L....;=O denozsed l,] 0 l,] 

(5.3.6) 

where it is assumed that the two images are of size MxN pixels and Fa is the mean 

value of Io. 

Contrary to what is expected from the qualitative results, the PMOSV SNRs are 

slightly worse than the OSV SNRs. This is because while the PMOSV model is 

better at keeping texture away from the noise component v (recall that there are 

only two components for these denoising experiments, with the v component cor­

responding to noise), it also keeps some noise, especially near large-scale edges. 

For example, this preservation of noise near large-scale edges can be seen on both 

sides of the table leg at the bottom-left of the barbara image. 

The timings required for the two algorithms run using the same 2.6 GHz Pentium 

IV with 1 GB RAM as used in Chapters 2, 3 and 4 on the test images, are shown 

in Table 5.3. Once again implementation of the algorithms was done in MATLAB. 

Observe that these times are substantially greater than those found for previous 

algorithms, e.g. IES in Chapter 3 (see Table 3.4), in part because the test images 

themselves are much bigger (512x512 pixels). 
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osv PMOSV 
Image # of iterations Time (s) # of iterations Time (s) 

barbara 334 106.59 868 278.88 
lena 1092 104.25 637 246.59 

grass 196 28.78 457 74.28 
Table 5.3: Time required for OSV denoising vs. PMOSV denoising on test images 

Although the SNRs are not very high for PMOSV, it is believed that with some 

more work on this algorithm, results could be improved, e.g. by improving per­

formance near cartoon edges. 

5.3.3 Diffusion with Oriented Laplacians 

As was seen in the previous section (Section 5.3.2), nonlinear Perona-Malik diffu­

sion was found not to lead to a great improvement in decomposition quality over 

the plain OSV model. However, Weickert's coherence-enhancing diffusion as in 

[55] could be directly incorporated. The problem with this idea is that it is not suit­

able in a decomposition framework due to its closing of discontinuous structures 

and smoothing of comers. This enhancement of local coherence of structures in the 

image is largely due to the Gaussian blurring of the structure tensor from which 

the eigenvectors representing the diffusion axes are computed. An alternative to 

this which would be more in line with the general framework of decomposition is 

that of nonlinear diffusion with Oriented Laplacians [79]. In essence, this is very 

similar to the coherence enhancing diffusion of [55] without the Gaussian blurring 

of the structure tensor. 

In the usual heat equation, Ut = t..u = Uxx + Uyy' there is diffusion equally in all 

directions. If at any point, a polar plot were made of how much diffusion occurs 
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, 

Level Une 

Figure 5.8: lllustr.ltion of lsophote and Gradient Din.""'CtiOJ\S 

at C\·ery angle, with the radiu' r(8) correspondmg to the amount of diliusion at 

the angle 9, a orcle would be obtained, becau.e diliusion is isotropoc (equal in all 

directions). Any two orthogonal directions ' nnd 'I can be chosen, and an oriented 

Laplacian 6;7 - "" + "~• ddinl'd. It can be ca;ily sho, .. m that the Laplacian, 

correspondong to isotropic doffuMon. is rotation onvariant, so that on fact 6,, -
6, the >tandard Laplacian in Cartesian coordonat.,.,. Diffusion can be promoted 

along certain directions and inhibited in other!>, >O that in general an ellipse os 

obtained for the polar diffusion plot. The advantage of the new rcpl'<'scntation of 

the Laplacian 6, as an oriented Laplacian 6 , '' that coeffkil"llb can be added to 

each second dorcctional derivative to limit thl' amount of diliusoon on l'ach of the 

orthogonal dirc>ctions q and ,, to form this clliphcal polar diffusion plot. 

So the general diffusion equation 

(5.3.7) 

can be obtained, as in [79]. 

U the vector ' is chosen at every point to be the isophote din>chon, or the di­

rection in which u chang'-"> thl' least, and 'I to be the gradient dorl'ction, or the 

direction in which u changes the most (see Figure 5.8), then smoothing can be pro-
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moted along the isophotes by setting c(; = 1 at all points. When there is a low 

gradient, there can be a large amount of smoothing in the gradient direction, but 

if there is a high gradient, no smoothing is desired across the edge in that direc­

tion. The spatially varying constant c11 can be set equal to g()Vu)), with g(O) = 1 

and g(x) approaching 0 as x becomes large. Then, isotropic diffusion will only be 

obtained in regions without a large gradient and only diffusion along isophotes at 

pixels around which a gradient is present. 

However, the diffusion equation, Equation 5.3.7 only applies to image regions 

where there are well-defined gradient and isophote directions. The determination 

of such strongly oriented regions is now discussed. 

5.3.4 Determining Oriented and Non-Oriented Regions 

A region is defined to be oriented when its gradient direction coherence [55] is 

greater than a pre-determined threshold. This coherence function is a measure of 

how uniform the gradient directions are around a pixel. 

To determine gradient direction at a pixel, the nonlinear structure tensor from 

Section 2.7.1 could be used. However this is rather inefficient because it requires 

an iterative process. Instead the linear structure tensor from the same section can 

be used, based on blurring of the following structure tensor J 

J- ( !} 
fxfy 

Instead of using a Gaussian filter to blur J, an averaging filter of size 7x7 pixels 
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was used. Then the gradient direction ei,j at pixel (i, j) is determined to be the 

eigenvector corresponding to the larger eigenvalue of the average-filtered J at pixel 

( i, j), and the isophote direction is determined to be the eigenvector corresponding 

to the smaller eigenvalue of this average-filtered J tensor. 

In [56], coherence is measured directly using a small window W around each 

pixel by the formula 

h (() . ·)- l't/ I· .L(u,v)EW IIVglu,vCos(ei,j- eu,v)l 
co er z,; - v g 1,1 " I \7 I , 

w( u,v) E w g u,v 

where ei,j is the gradient direction as determined above. The window Where is 

also chosen to be of size 7 pixels by 7 pixels. Because the above coherence measure 

can be calculated quite efficiently, it is used for the experiments in this chapter. 

5.3.5 The Oriented-Laplacian Osher-Sole-Vese Image Decompo­

sition Model 

Recall the defining partial differential equation for OSV decomposition 

1 
Ut =- 2;\.~K(u)- (u- f). (5.3.8) 

Instead of including the Laplacian of the curvature, ~K ( u), the oriented Lapla­

cian of the curvature can be taken instead, by substituting the oriented Laplacian 

expression of the right-hand side of Equation 5.3.7 for the Laplacian in Equation 

165 



5.3.8. The new equation becomes 

(5.3.9) 

Heres is the isophote direction of the curvature in the regions of the image where 

there is a dominant orientation, and 1J is the gradient direction of the curvature in 

such regions. Denote the union of the pixels in the image where there is a domi­

nant orientation in the curvature K(f) of the initial image f as O~(f), and the rest 

of the image, where there is no such dominant orientation as 0~~). These regions 

are determined by thresholding the coherence, as measured in the previous sub­

section, of the curvature K(f). In fact, the oriented regions could also be defined 

to be those where there is a dominant orientation in f itself, to obtain o£ and 0~0 
for the oriented and non-oriented regions respectively. This is the definition that 

is used, so that for the rest of this chapter, the superscripts are dropped and 0 0 

is defined to be the set of pixels where the image f is oriented, and ONo to be the 

set of pixels where it is not. This was done because the determination of oriented 

regions of curvature was substantially more sensitive to noise and discretization 

choices than that of oriented regions of the original image f. With the use of o£ 
and 0~0 , there was found to be no decrease in the SNR of the overall denoised 

results (see Section 5.3.7). The threshold used for the coherence of the orienta­

tions off is dependent on the image, and this parameter is called coherthresh· In 

Oo, Equation 5.3.9 is used, whereas in ONo, the ordinary evolution equation for 

Osher-Sole-Vese decomposition, as in Equation 5.3.8 is utilized. For the coefficient 
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ciJ in Equation 5.3.9, the usual Perona-Malik diffusivity function 

1 
ciJ = g(I\7K(u)i) = IVK(u)l2' 

1 + K2 
d 

(5.3.10) 

could be chosen (with Kd set to 10). However, it was found that just setting ciJ to 

zero gave similar results and was more simple, so the expression in Equation 5.3.10 

was not used. Thus this coefficient is set to zero. Also cs is set to a constant value 

of 1, so that there is full diffusion along the isophote direction. Substituting these 

values of the coefficients ciJ and cs into Equation 5.3.9 yields 

1 
Ut =-2A Kss(u)- (u- f), (5.3.11) 

for the iterative solution of the proposed decomposition model. The values of 

the second directional derivatives of the curvature in its isophote and gradient 

directions can be computed without actually calculating the isophote and gradient 

angles. This is done by using the general formula for the second -order directional 

derivative of the function K( u) in the direction w = ( Wx, Wy ), i.e. 

and then substituting the unit gradient and isophote vector directions for w. The 

unit gradient vector is simply 
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and the unit isophote vector is 

The formulae for the second directional derivative of the curvature in the isophote 

direction(') and its gradient direction (1J) are thus 

-2Kx(u)Kxy(u)Ky(u) + Kxx(u)K~(u) + Ki(u)Kyy(u) 
Kss(u) = Ki(u) + Kp(u) (5.3.12) 

Ki(u)Kxx(u) + 2Kx(u)Kxy(u)Ky(u) + K~(u)Kyy(u) 
Kryry(u) = Ki(u) + Kp(u) (5.3.13) 

These expressions for the two directional derivatives can be substituted into Equa­

tion 5.3.9, with the function K( u) representing the curvature of the cartoon compo­

nent u. Better results were found to be obtained by using the normalized isophote 

orientation estimates on the original image f, /iso,x and /iso,y, which are similar to 

the curvature isophote orientation, and then diffusing along the isophote direction. 

The quantities /iso,x and /iso,y were determined from the linear structure tensor (see 

Section 2.7.1). This is thought to be due to the sensitivity to noise of the formulae 

in Equations 5.3.12 and 5.3.13. So, the following approximation is obtained 

(5.3.14) 

The approximation in Equation 5.3.14 is subsequently substituted in the oriented 

Laplacian expression in Equation 5.3.11, to obtain the final evolution equation for 
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the proposed decomposition/ denoising model 

The proposed model is called the Oriented-Laplacian Osher-Sole-Vese (OLOSV) 

decomposition model. 

5.3.6 Implementation Details 

Equation 5.3.15 is solved via explicit timestepping (time step ~t = 0.002) for all 

test images except for lena, which is more sensitive, and for which a smaller time 

step of 0.001 is needed. It was found that better denoising results were obtained 

for OLOSV by using the first-order derivative coefficients fiso,x and fiso,y measured 

using the same filters as in PMOSV, which were 

-3 0 3 
1 

Dx = 32 -10 0 10 (5.3.16) 

-3 0 3 

and 

3 10 3 
1 

(5.3.17) Dy = 32 0 0 0 

-3 -10 -3 

As with other decomposition/denoising schemes, with known texture/noise 

variance, the value of A is dynamically updated with iteration number using a 
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method based on gradient projection. In fact, in oriented regions (Oo) one dynam­

ically updated value Ao is used, and in non-oriented regions, a separate dynami­

cally updated coefficient parameter ANO is calculated. Because there is no simple 

closed-form expression for the integrals with respect to x or y of Kss(u) or K1111 (u), 

the expression obtained for Ao is not simplified using integration by parts. The 

final formula that is obtained is 

Ao = 
2

\ { (f- u)(ci;Kss(u) +c11 K1111 (u))dxdy. (]" lo0 

(5.3.18) 

In non-oriented regions, integration by parts is also not used to find the value of 

ANo at each iteration. The expression for ANo at each iteration is 

(5.3.19) 

It was found that by not using integration by parts to compute A, convergence was 

slower, but the entire denoising process was more stable (a larger step size could 

be used) and converged to a result denoised with a higher signal-to-noise ratio as 

compared to the ideal image uncorrupted by noise. 

Results obtained for the three test images barbara, grass and lena are presented 

in the next subsection, from which it can be observed that, in general, denoised 

images with higher signal-to-noise ratios than those from OSV and PMOSV de­

composition are obtained with OLOSV. In fact, it was found that the performance 

improvement of OLOSV over OSV decomposition was due in some part to the 

separate calculation of A in both oriented and non-oriented regions of the test im­

ages, but that the oriented Laplacian calculation in OLOSV still gave substantial 
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Image OSVSNR PMOSVSNR OSV2SNR OLOSVSNR 
barbara 12.639 12.634 13.226 13.713 

lena 16.528 14.666 16.887 16.994 
grass 11.015 10.595 11.056 11.250 

Table 5.4: SNRs for OSV denoising vs. PMOSV, OSV2 and OLOSV denoising on 
test images 

osv OSV2 OLOSV 
Image Iters. Time (s) Iters. Time (s) Iters. Time (s) 

barbara 334 106.59 582 499.47 (+27.53) 630 718.89 ( +30.30) 
lena 1092 104.25 1523 1313.06 (+29.00) 1540 1734.84 ( +29.42) 

grass 196 28.78 215 94.63 (+11.61) 269 150.44 ( + 12.25) 
Table 5.5: Time and Number of Iterations required for OSV denoising vs. OSV2 

and OLOSV denoising on test images 

improvement in the visual quality of the noise component v. In the next section, 

some examples are shown of OSV decomposition run with separate values of A 

computed in the two types of image regions, and compared with decomposition 

results for OSV with a single image-wide A value and OLOSV. The OSV algorithm 

with separate A values in each region type is called OSV2. 

5.3.7 Results for OLOSV 

Table 5.5 shows the number of iterations and computation times required on a Pen­

tium IV 2.6 GHz PC with 1 GB of RAM in a MATLAB environment, as in Chapters 

3 and 4 for the OSV, OSV2 and OLOSV denoising algorithms. The PMOSV algo-

rithm is omitted since the execution times for that algorithm were already given in 

Table 5.3. All four algorithms (OSV, PMOSV, OSV2 and OLOSV) were run once to 

determine at which iteration the SNR between the image being denoised and the 

original uncorrupted image reached its peak, and then run again for this number of 
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iterations. This was done to ensure fair comparison between the algorithms, since 

perhaps one algorithm would require fewer iterations to reach the peak SNR. In the 

OSV2 and OLOSV columns, each entry has a numerical value in brackets, referring 

to the extra amount of time needed to calculate the coherence of the curvature of 

the original image f, or f itself, using the linear structure tensor framework. This 

process was required in order to determine which part of the image was oriented 

(Oo), and which was non-oriented (ONo). Observe that in Table 5.5, even OSV2 

with the separate calculation of Ao and ANo in oriented and non-oriented regions, 

leads to a substantial increase in running time over the plain OSV algorithm (e.g. 

1313.06 seconds for OSV2 on grass vs. 104.25 seconds for OSV on the same im­

age). Though some of this difference in running time is due to the difference in 

the number of iterations required to reach the SNR peak for both algorithms, the 

actual calculation of the A values for each iteration in oriented and non-oriented 

regions also leads to an increase in running time for OSV2. Additionally, this sepa­

rate calculation of Ao and A No is thus also a major factor in the slow running time 

of the proposed OLOSV algorithm. This slowdown could perhaps be mitigated 

by only dynamically calculating these A values every several iterations, instead of 

every iteration. 

The confidence threshold coherthresh for the coherence depended on the image 

being denoised, and was equal to 20 for barbara and lena, and 25 for grass. These 

confidence threshold values were determined experimentally, so that the deter­

mined oriented regions corresponded qualitatively to be roughly the same as those 

which would be determined visually from the test images, though the overall re­

sults were not extremely sensitive to the thresholds chosen. As long as actual non-
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oriented pixels were not considered to belong to the oriented part of the image Oo, 

in which case Equation 5.3.15 would be applied to these non-oriented pixels, the 

qualitative and quantitative denoising results obtained from OLOSV were better 

than those from OSV or OSV2. 

Table 5.4 gives the signal-to-noise ratios of the denoised results from OSV de­

composition, and from the extensions combining it with the Perona-Malik and 

Oriented-Laplacian nonlinear diffusion models, along with OSV2 decomposition. 

Recall that OSV2 decomposition is the same as OSV decomposition except that 

the A parameter is calculated separately in oriented and non-oriented regions. As 

can be seen, the Oriented-Laplacian SNRs are the best, but of course this is at the 

expense of extra computation time, as shown in Table 5.5. 

From Table 5.4, it is observed that some of the improvement associated with 

OLOSV is due to the separate computation of the A coefficient in oriented and non­

oriented regions, since there is a substantial SNR gain of OSV2 over OSV. But there 

is another substantial gain of OLOSV over OSV2, and OLOSV still reduces the 

amount of oriented texture in the v component from OSV2, and keeps the texture 

in the denoised cartoon component u. 

Denoising results from the test image barbara are shown in Figures 5.9 (denoised 

cartoon components u) and 5.10 (noise components v). The texture for example on 

the pants of barbara and on her scarf are much sharper and more prominent in the 

OLOSV result of Figure 5.9(c) than in the OSV result of Figure 5.9(a) and the OSV2 

cartoon component of Figure 5.9(b). Also, for the noise components in Figure 5.10, 

there is much less oriented texture in the OLOSV noise component v of Figure 

5.10(c) than in the v components of Figures 5.6(b) and 5.10(b) for OSV and OSV2 
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(a} OSV Cartoon componL'I"'I C'll barbara (b) OSV2 Cartor~tl cvmpon,•nt of ba.rba.ra. 

(c) OLOS\' C.rtotlfl romponent of bu'&ua 

Figure 5.9: Cartoon (denm"->d) components from OSV, OSV2 and Ol.OSV O..'<Om· 
positions of bnbara image 
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(a) OSV '\;oise component of bubara (b) OSV2 'ou.t" wmpcwwnt ot ba.rba.ra 

(c) OlOSV '.-r com~t of barbara 

Flgurt 5.10: :>Ioise comJl<>n•nt> from OSV, OSV2 and OIOSV 0..'C<>mpositions of 
barbara image 
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(a) 7.oom on !\oise (b) Zoom on Nob~· (c) /All.lnl on 'oise 
component v of component v of component t• of 
barbara from OSV barbara. from 0SV2 b&rban !rom 
model model Ol.~V modl'l 

figure 5.11: Zoom on Noise Components from OSVoOSV2 and OLOSV decompo­
bitions of barbara image 

rcspech\'el)'o A zoom of the same small portion of this component for the barbara 

image i~ 'ho•m in Figure 5.11, where !hi> diff<>n'l1<'<' "more ob\ious. 

The doff~rena. in the amount of orientro te•lure wothin the " and ~components 

on Figun-. 5.12 and 5.13 respecth·elyo between the thrt'<' algonthms for the test im­

age gra.u i> Ieos visible, but can be seen more clearly in the loom of the v compo­

nents in Figun· 5ol4. 

5.4 Conclusions 

This chapter introducro two proposed extensions to the OSV moMI of Section 

2.4 3. The Decorrelated OSV (DOSV) model from !*ction 5.2 added a tenn which 

kept -ampl.- of the local correlation field small on value Good results •imilar to 

those from 1£5 on Chapter 3 were obtained, with cartoon and lt'•tun> infonnation 

better o;eparated into their respecti•·e decompoo;otoon components. 
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,,., OS\ C.rtoon c:omponent oi era•• 

(c) OLOSV Ctrtoon C(~t ol crua 

flgurt 5.12: C..rtoon (denoised) c:ompont.-nb from OSV. OSY2 ond OLOSV De­
romposltions of grass imag..-
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(b) OS\"2 ~oi:r-r component of grass 

(c) OLOSV 1'\oise componcn1 o( cru• 

Flgu.., S.U: ~Oise components resulting from OSV. OSV2 and OLOSV Dcrompo­
..,itions o! grass image 
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(ot) Zoom on 1\:oise (b) :luum on r\oiw (c) loom on 1\os..~ 

rompontont t• (lf srau comf"ln('f'lt l' of gn .. Ctlmpot'l'-'1'\t t• Of II'••• 
from OSV 1nodcl from OSV2 model from OLOSV model 

Figu,.. 5.14: Zoom on 'Ioise Componmk from OSV, OSV2 and OLOSV Dl.'COm· 
J>OS"'"'"'" of grass ima~<.> 

Th~n two decornpc>'>1hon mod~ls combining the dl>compos1hon and nonlinear 

difh"ion frameworks, for the purpOSC<. of denoising, were developed. l11e Oriented· 

1..1placian OSV (OI.OSV) model of Sccbon 5.3.5 wasl.,pecially effective for the de­

noising of oriented texture. Addihonally. it wa> found from tht' ••penments m 

this chapter that cartoon edges were not as visible in the noise components v of 

the Ol.OSV results wh~n compared with the OSV noise compon<'nl:.. This is 1><'­

causc a d~onal d1ffu,ion wa> performed close to these cartoon edges if they 

w~re calculated as bemg in the coherent regions of the in1agc. and along the d1· 

rection of the edg~s. not perpendicular to them. Unfortunately, there was slight 

\-isible smearing of the noise close to the edges, but this could be reduced by only 

includmg pixels on cartoon edges in the region m the in1age computed to have a 

coherent orientation, and not those around. The df:tl'ction of such cartoon edges 

could be 1mplemented w1th a Totai·Variation-tik~ diffusion. as done in Chapter 3. 

It may be argued th.lt the Oriented Laplacian OSV model used for denoising in 

this section is very similar to ordinary Oriented Laplacian diffusion 179]. How· 
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ever, the OLOSV model has two main differences from plain Oriented Laplacian 

diffusion: 

1. Mathematically it is a novel nonlinear diffusion flow based on the Laplacian 

of the level set curvature of the cartoon component, instead of the Laplacian 

of the image, and 

2. It is based on a model for image decomposition, and thus variations of it 

could potentially be used for the other applications of image decomposition, 

e.g. inpainting. 

As for the second point above, the OLOSV model as presented in this chapter 

cannot be directly applied to pure decomposition, but could perhaps be altered to 

do so. In summary, the OLOSV model is a very powerful one for the denoising of 

oriented texture, and offers substantial performance improvements over the OSV 

model on which it is based. This problem of denoising oriented texture has impor­

tant applications to medical imaging, for example for Diffusion-Tensor Magnetic 

Resonance Imaging (DT-MRI) [SO] and to forensics, for example as preprocessing 

for the recognition of fingerprints [81]. 
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CHAPTER 6 

Orientation-Adaptive Decomposition 

6.1 Introduction 

In Chapter 3 and in the papers by Shahidi and Moloney [82, 68], the Improved 

Edge Segregation image decomposition model was introduced, and it was shown 

that it gave better decomposition results than the standard Vese-Osher method and 

also led to improved texture discrimination results. In this chapter, a new model 

called Orientation-Adaptive Image Decomposition (initially presented in [83, 84]) 

is introduced which models the texture component v of an oriented image with 

just one subcomponent instead of the two required by virtually all existing mod­

els, e.g. [1, 68], with the exception of the Osher-Sole-Vese model [4]. Although the 

texture component is only comprised of one subcomponent, the proposed model 

could be strictly considered to be a three-component model - the u and v compo­

nents are as defined from [2], but the r component is also important because it is 

in this component that the noise in the image is placed. This is similar to very 

mathematically complex three-component models, such as that of Aujol [39], but 
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in those models, the noise is explicitly modelled and placed in a third component 

w, and there is a fourth residual term. The proposed model is significant because 

it is efficient, simple to solve, gives good decomposition results, and provides a 

novel method for the denoising of oriented texture. 

6.1.1 Motivation for the Simplification of the Vese-Osher Decom­

position Model for Oriented Images 

As already given in several previous chapters in this thesis, the Vese-Osher energy 

functional, the first practical method to minimize Meyer's variational decomposi­

tion model [1 ], is based upon the following energy functional 

Evo(u,gl,g2) = k JVuJdxdy+A fou -u-gl,x-g2,y)2dxdy+JJ fo Jgi+g~dxdy. 
(6.1.1) 

The first term is a total variation term, ensuring that u is piecewise smooth, the sec-

ond term is a fidelity term and the third models v in terms of the subcomponents 

g1 and g2 as texture. The Euler-Lagrange equations for the above functional can be 

easily calculated [2]. The three equations in each of u, g1 and g2 are 

K(u) = 2A(u + g1,x + g2,y- f) 

I' J gl = 2A(ux + gl,xx + gz,xy- fx) 
gi+g~ 

fl J gz = 2A(uy + g1,xy + gz,yy- /y) 
gi +g~ 
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(6.1.2) 

(6.1.3) 

(6.1.4) 



where K( u) = div ( ~~~~) is the curvature of the level lines of u. Observe that the 

right-hand side of Equation 6.1.3 is equal to the partial derivative with respect to 

x of this curvature (from Equation 6.1.2), and that similarly, the right-hand side 

of Equation 6.1.4 is equal to the partial derivative with respect to y of the same 

quantity. Therefore, Equations 6.1.3 and 6.1.4 become 

(6.1.5) 

(6.1.6) 

Also observe that the fidelity term in the V-0 functional (Equation 6.1.1) which 

imposes the condition that f- u ~ gl,x + g2,y, includes a partial derivative with 

respect to x of g1, and a partial derivative with respect to the same variable is taken 

of the curvature in Equation 6.1.5 relating g1 and K(u). A similar relation holds for 

This suggests varying the direction of the partial derivatives so that one of the 

derivatives consistently vanishes, also called taking gauge coordinates. This is 

shown in Figure 6.1 where the coordinates at a point are taken in the gradient and 

isophote directions. This idea is now developed in the following section. 
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Figure 6.1: Example of isophote and gradient directions (ej_ and e respectively) 

6.2 Orientation-Adaptive Decomposition Model 

6.2.1 Derivation 

In Meyer's work [1], the norm of a function von the Banach space G is defined as 

(6.2.1) 

over all bounded g11 gz such that v = gl,x + gz,y· A local rotation e(x, y) is intro­

duced in an effort to eliminate gz. Define the gradient direction of K(u) to be 

e(x,y), and the isophote direction to be ej_(x,y) = e(x,y) + ~· So now generalize 

the model of Meyer, and suppose that the norm of vis the same as in Equation 

6.2.1 except that it is taken as the minimum over all bounded g1 and g2 such that 

(6.2.2) 

The original Meyer model [1] with the *-norm can be recovered by setting 8(x, y) = 

0. Now it is attempted to eliminate g2 by an appropriate choice of e(x,y) with con­

strained minimization of an appropriate energy functional. 
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Define the energy functional 

ERoT(u,gl,g2, e)= fo i"Vuidxdy + 11 fo J gt + g~dxdy + 

A fo (f- u- aeg1 - a8j_g2)2dxdy, 

where aeg1 + a8 j_g2 is as defined in Equation 6.2.2. Using the calculus of variations, 

the following Euler-Lagrange equations for u, g1 and g2 are obtained 

The first equation can now be substituted into the second and third to get 

I' J g, = (K(u) cos 9), + (K(u) sin 9)y 
g! +g~ 

(6.2.6) 

11 g2 = ( -K(u) sine)x + (K(u) cose)y· 
Jg!+g~ 

(6.2.7) 

Assuming that locally e(x,y) is almost constant, the sine and cose can be taken 
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out of the partial derivatives in Equation 6.2.7 to yield 

14 gz = - Kx ( u) sin 8 + Ky ( u) cos 8 
Jgy+g~ 

= K(u) 8j_ ~ 0::::;. gz ~ 0. 

since e...L was defined to be the isophote direction of the curvature K ( u). Thus, it 

has been shown that with an appropriate choice of the local rotation angle, 8(x, y ), 

the texture subcomponent gz can be made negligible. Because only g1 remains, it 

is renamed g. 

Next, with the assumption that gz = 0, a new energy EoAo(u,g,8) is defined 

EoAo(u,g,8) = fo JVuJdxdy + 14 fo JgJdxdy + 

A fo (f- u- cos8gx- sin8gy) 2dxdy, 

The third term is the new soft constraint fidelity term 

f- u ~ cos8gx + sin8gy 

and the second term is now so defined because gz = 0. 

(6.2.8) 

(6.2.9) 

The angular function 8 has already been constrained to be the gradient direction 

of the curvature of the level lines of the cartoon component, i.e. 8 = arctan ( ~:~~~). 

With the assumption that 8(x, y) doesn't change too much locally, the gradient an­

gle of K( u) can be approximated by that of the original f, assuming that the latter 

is measured in a noise-resistant manner. Recall that a similar approximation was 
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taken in Chapter 5 for the OLOSV algorithm. Thus, B can be calculated once, before 

the Euler-Lagrange iterations, thereby effectively reducing the texture information 

that needs to be dynamically updated to the one subcomponent g. 

The gradient direction measurement of f, as described in the next section, is 

relatively insensitive to noise. Thus, the proposed one-subcomponent model can 

be shown to be an effective model for both decomposition and denoising. It was 

found empirically that since the noise typically doesn't have a preferred orienta­

tion, it is mostly transferred to the residual. Also, by setting g2 to be 0, the implicit 

constraint is being added that the directional derivative of the curvature K( u) in its 

isophote direction is zero, thus eliminating any noise or other irregularities along 

this isophote. The proposed model, based on the energy in Equation 6.2.9, is called 

Orientation-Adaptive Decomposition (OAD). 

6.2.2 Solution of Proposed Model 

The Euler-Lagrange equations for the proposed one-subcomponent model with 

energy from Equation 6.2.9 are 

div ( ~~~~) + 2A(f- u- g8) = 0 (6.2.10) 

psign(g) = 2A(ue +gee- fe) + 2A(f- u- ge) ((- cosB)x + (- sinB)y) 

* psign(g) ~ 2A(ue +gee- fe). (6.2.11) 

The last equation includes the assumption that B does not change too much lo­

cally, so that the second term in the Euler-Lagrange equation for g vanishes. The 
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equations are solved by a semi-implicit fixed-point scheme as in [2], where the 

curvature of u term is kept in divergence form. The discretization of the various 

directional derivatives in the above equations is discussed below in Section 6.3.1. 

The initial conditions u0 = f and g0 = 0 are chosen, along with Neumann bound­

ary conditions for u and Dirichlet boundary conditions for g. Recall that in prac­

tice, Neumann boundary conditions refer to padding the function with repetition 

around the border of its domain, and that Dirichlet boundary conditions refer to 

zero-padding. 

It is necessary to compute the orientation field of the original image f in order 

to obtain the angles e(i, j) at each pixel. As described in Section 2.7.1, though 

the nonlinear structure tensor [54] could be used to compute the orientation field 

of the image f very accurately, the linear structure tensor is preferred due to its 

increased efficiency. Thus, the linear structure tensor is used in the experiments in 

this chapter. 

6.3 Division of Orientations into Sectors 

It was found empirically by the experiments in this thesis that the given OAD 

model works gives the best decomposition results for gradient angles e such that 

tan( e) is close to -1. In fact, the model was found to work extremely well for angles 

e in the set 

Pe = { e such that le- 3
; I ::; ; or le + ; I ::; ; } · (6.3.1) 
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In this case, the angles e are considered modulo 2n, and restricted to the usual 

2n interval ( -n, n]. Similar angle preference in decomposition output is observed 

with Vese-Osher decomposition. However after several iterations of their method 

this effect was found to dissipate. 

6.3.1 Rotation of Derivative Filters 

In the experiments in this chapter, OAD was applied to both decomposition by it­

self, and to decomposition with denoising, both for images with oriented texture. 

It was found in initial experiments that the OAD algorithm is very sensitive to the 

choice of derivative filters used. It is especially important that the derivative filters 

used should be as insensitive as possible to rotation, in particular for decomposi­

tion, and less so for denoising. In Sections 6.3.1.1 and 6.3.1.2, the choices of these 

derivative filters are discussed, for the application of OAD to pure decomposition 

and to denoising respectively. 

6.3.1.1 Rotated Derivative Filters for Decomposition 

Farid and Simoncelli [85] used an optimization procedure to find the derivative 

filters in the x and y directions of various small extents with the least integrated er­

ror when used to find directional derivative estimates across all angles e. For first­

order directional derivatives, for example, the standard formula De = cos( e) Dx + 
sin(e)Dy is used to find the directional derivatives, where Dx and Dy are the 

derivative filters in the x and y directions respectively. It was found in this re­

search that the best choices of these derivative filters Dx and Dy for decomposition 
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were the 3-tap filters from [85]. The 5-tap filters from [85] were found to be the best 

choices for the second derivative filters, Dxx, Dxy and Dyy for decomposition. 

In [85], the derivative filters are assumed to be separable, and are found by dif­

ferentiating an interpolation filter. This amounts to using a smoothing pre-filter 

p in the direction perpendicular to the derivative filter d. The actual numerical 

values of the first-order filters are found with the formulae 

where 

Dx(x,y) = d1(x)p1(y) 

Dy(x,y) = p1(x)d1(y), 

dJ(x) [ ~0,42529 0 0.42529 rand 

P1 (y) [ 0.22988 0.54024 0.22988 ] , 

(6.3.2) 

and d1(y) = d[(x) and Pl(x) = p[(y), with the T superscript denoting the trans-

pose operator. For the second-order derivatives, the expressions 

Dxx(x,y) = e2(x)p2(y) 

Dxy(x, y) = e1 (x)e1 (y) 

and Dyy(x,y) = p2(x)e2(y) 
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are used, where 

e2(x) [ 0.23291 0.00267 -0.47115 0.00267 0.23291 ] T, 

P2 (y) [ 0.03032 0.24972 0.42638 0.24972 0.03032 l 
e1 (x) [ -0.10455 -0.29232 0 0.29232 0.10455 ] T. 

Similar to the first-derivative filters, e1(y) = e[(x), e2(y) = eJ(x) and p2(x) = 

pJ(y). All these equations are expressed in terms of the usual MATLAB image 

coordinates. 

As described in the previous section, these derivative filters are most effective 

for angles in the set Pe (as defined in Equation 6.3.1). For other orientations, the 

derivative filters have to be rotated. The only rotations which are needed are by 

angles ± .;f and + ~. Let 

P1 = Pe_IJ. 
4 

{ e such that e- : E Pe} (6.3.4) 

P2 = Pe+z.t { e such that e + : E Pe} (6.3.5) 

P3 = Pe+?f: { e such that e + ; E Pe} (6.3.6) 

For simplicity and consistency, let Pe be Po. The sectors {Pi }r=o are shown diagram­

matically in Figure 6.2. When the angle e lies in each of the angular sectors P1, P2 

and P3 as shown in Figure 6.2, the corresponding derivative filters are defined by 

Tables 6.1 and 6.2 in terms of the filters Dx, Dy, Dxx, Dxy and Dyy for angular region 

Po. 
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Cl" ... ... 
11:1 .. 

Figuft 6.2.: Regions P, "-ith dtfferent denvab.,•e filtel"'i (or d('(('lmpo"ition (not de­
l"k>blng} 

Fm.t order 
Domain X 

D, v, 
-L2(D, + o1 ) +,co,- D,J 
"1 "" .. 

1'2 I ~(D, - Dy) ~(D.+ D,) 
l':l -D. D, 

Table 6.1: FirsH)rder Derivative Filters for eJch Angular Sector { P,} :.&0 
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• 111• D '" .... ... 
D ,, CIPu 

Figure 6..3: Regions P, with different den••t~tl\ e ftlt(·r~ for denmsi.ng 

6.3.1.2 Ro~ted Derivotive Filters for Denoising 

Although th~ use of th~ derivati\'C filtc,.,; wa. wry cffrt:II\C for the purposes of 

image d<'Comp<,.,ilion, on the other hand for deno"mg, "mpler first and second­

order d('rivativc filters of small size gave better r~sults. The region where OAD 

was found to work well for denoising was slightly ;maller than that for pure de­

mmp<hltlon 

{ I 
37r I( ' I( I( } 

Po,. = 8 such that 8 - T $ 
16 

or 0 + 4 :5 16 · (6.3.7) 

Tlw. lead~ to angular regions for denoising ;lightly d1ffcn.'nt than those for decom­

p<h•bon wh1ch were shown in Figure 62. Figure 6.3 'hows ~ regions for the 

t.l'k of dmoising. Tht> regions P* ~ .. and P, .. arc ddirll-d Jan,r m !hi> ><.'<lion, but 

can be ""'" m Figure 6.3. The first-<>rder denvahvc filte" D, and D• in Po both 
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had size 3x3 pixels, and are based on central differences. In Po, these first-order 

filters are 

1 
Dx =-

2 

-1 

0 

1 

I Dy = ~ [ -1 0 1 l· (6.3.8) 

For sector Po,a, the second-order derivative filters are also based on central dif­

ferences, and are given by 

1 1 1 0 2 -2 

Dxx = -2 , Dxy = 1 1 1 
I Dyy = [ 1 -2 1 ] . -2 -2 ( 6.3.9) 

1 0 1 1 
-2 2 

The region P3,a is defined to be the same as Po,a except flipped along the y axis 

P3,a = {esuchthat Je- 7J ~~or le+ 
3:1 ~ 1:} · 

Dx = ~ [ 1 0 -1 ] and Dy = ~ 
-1 

0 

1 

(6.3.10) 

(6.3.11) 

The second-order derivative filters for P3,a can be derived from those in Equation 

6.3.9: Dxx and Dyy are switched, and Dxy for P3,a is obtained from Dxy for Po,a by 
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flipping the filter matrix horizontally to obtain 

0 1 1 
-2 2 

Dxy = 1 1 1 
-2 -2 

1 1 0 2 -2 

The regions Po,b and P3,b are defined to satisfy Po = Po,a U Po,b and P3 = P3,a U P3,b' 

where Po and P3 are as defined in Section 6.3.1.1. The first-order derivative filters 

for Po,b are the same as those for Po,a, and those for P3,b are the same as those for 

P3,a in Equation 6.3.11. The second-order derivative filters are however defined 

differently; for Po,b and P3,b, 

(6.3.12) 

where { Dx, Dy} is the set of first-order derivative filters for Po,b and P3,b respec­

tively. 

For P1, the first-order derivative filters are 

1 1 
Dx=-

32 v'2 

1 
Dy = 32 

1 

v'2 

-3 -10 -3 

0 

3 

0 

10 

0 

3 

-3 -10 -3 

0 

3 

0 

10 

0 

3 

195 

-3 0 3 
1 

+ v'2 -10 0 10 

1 
+-v'z 

-3 0 3 

-3 0 3 

-10 0 10 

-3 0 3 

(6.3.13) 

(6.3.14) 



For P2, these first-order derivative filters are 

-3 -10 -3 -3 0 3 
1 1 1 

(6.3.15) Dx=-
J2 0 0 0 J2 

-10 0 10 32 
3 10 3 -3 0 3 

-3 -10 -3 -3 0 3 
1 1 1 

(6.3.16) Dy = 32 J2 0 0 0 +- -10 0 10 
J2 

3 10 3 -3 0 3 

Finally, for orientation sectors P1 and P2, the second-order derivative filters are 

obtained from those of Farid and Simoncelli (Dxx, Dxy and Dyy), as found in Equa­

tion 6.3.4. The second-order derivative filters in sector P1, Dxx, Dxy and Dyy' are 

almost the same as those that were used for pure decomposition (except for the 

use of D~ instead of - Dxy), and are given by 

- 1 H - 1 - 1 
Dxx = 2(Dxx + 2Dxy + Dyy), Dxy = -2(Dyy- Dxx), Dyy = 2(Dxx + 2Dxy + Dyy), 

(6.3.17) 

where the H superscript denotes a horizontal flip of the matrix. 

6.4 Boundary Conditions 

For the entire image, the cartoon component u is padded adiabatically (with rep­

etition), and the texture subcomponent g is padded linearly out from each image 

boundary, so that v will roughly be padded adiabatically as well. Since g has dif-

ferent meanings in oriented and non-oriented regions, a similar padding was used 
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for g between these regions. However, because the inter-region boundaries are 

in general irregular, each region's boundary condition consists of a weighted sum 

of g values from the same type of region (oriented or non-oriented) with weights 

inversely related to distance from the boundary. Also the oriented regions are mor­

phologically closed with a disk element of radius 3, to make the boundary more 

regular, because an irregular boundary results in the weighted sum being taken 

from pixels all around the boundary pixel, and because these could have very dif­

ferent values, instability could result. 

Even within the oriented part of the image, there are many orientation sectors Pi 

as explained in Section 6.3. Boundary conditions are necessary for these orienta­

tion sectors as well, as explained in the next section. 

6.4.1 Boundary Conditions between Orientation Sectors 

6.4.1.1 Oriented Gaussian and Linear Filters 

The function g in each of the orientation sectors Pi has a different meaning, in the 

sense that the texture component v is derived differently from g in each of these 

regions. So special care has to be taken at the boundary between such regions. The 

g values from different sectors cannot be directly used in the same finite difference 

equation for the update of gat each iteration. Neumann conditions are not very 

easy to implement because of the irregular nature of the boundaries, and are not 

very accurate because of the fine detail involved with the oriented texture. Some 

type of inpainting [22], or extension of the isophotes across the boundary is neces­

sary in order to solve the iterative Euler-Lagrange equations (Equations 6.2.10 and 
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6.2.11) with accuracy and stability. 

Two different methods of extending the isophotes were attempted, one using 

oriented Gaussian filters (which will be seen to have the form given in Equation 

6.4.1), and the other using linear angular filters (which will be seen to have the 

form of Equation 6.4.2). It was found that the oriented Gaussian filters were only 

modestly better than the linear angular filters, but much more inefficient. There­

fore, the linear angular filters were used. A description of both types of filters now 

ensues. 

For the oriented Gaussian filters, oriented diffusion of the g subcomponent is 

used, but adapted to be one-sided, so the only information used is from the same 

section as the pixel at which the solution is being calculated. According to [79, 86], 

such an oriented diffusion can be efficiently implemented by convolution with an 

appropriate oriented Gaussian filter. 

Define the structure tensor T = A,lJlJT +As-ssT, where 1J is the gradient direction 

of f and s is the isophote direction. Then a corresponding oriented Gaussian can 

be defined as 

(6.4.1) 

so that oriented diffusion after a time step ~t can be computed by 

The amount of diffusion in each of the gradient and isophote directions can be 

controlled by the magnitude of the eigenvectors A, and As- of the structure tensor 

T. Since diffusion is to be promoted mainly along the isophote direction, A, is 
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set to approximately 0 and As to 1. Note that if AIJ is set exactly to zero, then the 

structure tensor is singular, and thus does not have a well-defined inverse. So AIJ is 

set equal to 0.01 in order to deal with this problem. An analytic expression for the 

inverse of the structure tensor was found using the symbolic computation package 

Maple [87], (not reproduced here), which was subsequently tested in the MATLAB 

implementation of OAD. This calculation of the tensor inverse was rather time 

consuming. Also, the oriented Gaussian in Equation 6.4.1 fades with distance from 

the filter centre, which is not desirable especially in early iterations, when pixels 

on the boundary have very low intensities in g. Therefore, linear angular filters are 

used for the convolution instead, these filters having the form 

L(x,T) = Oe(sin(IT- L:xl)), (6.4.2) 

where Tis the estimated isophote angle at the pixel, L:x is the angle that the spatial 

filter position x makes with the filter centre, and Oe is the regularized Dirac delta­

function given by the expression 

1 t 
Oe(s) =- 2 2 , 

ne +s 

withE a small positive constant (set to 0.1 for the experiments in this chapter). Note 

that the values of this filter only have angular dependencies and do not depend on 

distance from the filter centre. 
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6.4.1.2 Calculation of Isophote Angle of Linear Angular Filters 

The isophote angle Tis estimated at each pixel which has been determined to have 

a phase discontinuity. This angle is computed by finding a weight for each neigh­

bouring pixel in a window around the pixel with the phase discontinuity which 

satisfies a certain condition, which is now described. Call the pixel which has 

the phase discontinuity, p. Then weights are computed only for pixels in the 9x9 

window around p which are from a different orientation sector or for which the 

gradient angle computed by the linear structure tensor as described earlier in Sec­

tion 6.2.2 differs from that of p by at least 0.7rr. For each such pixel q, the angle 

between q and p is found. Call this angle w1 ( p, q). The isophote angle of the win­

dow pixel is just ~plus the gradient angle, which was already computed by the 

linear structure tensor. Call this isophote angle w2 ( q). 

Then the isophote angle T of pis set to be equal to that of the isophote angle of 

the pixel in the window around p from the set of pixels that was considered having 

the maximal weight 

5 
w(q) = 21 cos(wl(p,q)- wz(q))l + 2 + lf(p) _ f(q)l' (6.4.3) 

In the second term in Equation 6.4.3 above, f (p) and f ( q) are the intensities of the 

original image f being denoised at pixels p and q respectively. This second term 

assures that pixels which are on the same isophote as that of p have higher weights. 

Note that this definition can be recursive in that isophote angles calculated for 

pixels with a phase discontiniuty can be used to compute other isophote angles 

for pixels with phase discontinuities. The isophote angles Tare computed in row-
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major order, and these are used as parameters to the linear angular filters of the 

form of Equation 6.4.2. These linear angular filters are then used to extend the 

isophotes of g, as will be described in Section 6.6. 

6.5 Phase Unwrapping 

The governing equation fore, the angle component which is pre-computed in the 

OAD model of Section 6.2.1, is e = arctan (?x) . More simply, e is the gradient di­

rection of f. There is a distinction between direction and orientation. Two gradient 

vectors can point in opposite directions, but are said to have the same orientation, 

because if the vectors were to be drawn as arrows, but without their arrowheads, 

they would be exactly the same. In other words, two vectors have the same di­

rection if they are the same modulo 2rr, but they have the same orientation with a 

more relaxed condition, i.e. if they are the same modulo rr. 

Because ge = V, it is desired to avoid rr-jumps in e, since this leads to instability 

in the result. To do this, phase unwrapping, which is used to reduce the number of 

or eliminate 2rr-jumps, is performed. Phase unwrapping has applications to SAR 

interferometry, optics and magnetic resonance imaging. If <t> is an unwrapping 

function to unwrap 2rr-jumps, then to eliminate spurious rr-jumps, euwp is set to 

euwp = <t>~e). That is, the previous formula converts rr-jumps to 2rr-jumps, which 

are then partially eliminated and then division by 2 is performed since input angle 

was doubled before unwrapping. From now on, the function e refers to euwp, the 

orientation field with a reduced number of rr-jumps. 

To avoid unnecessary complication in code development, existing software was 
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Figure 6.4: fingerprint test image 

used lor the unwrapping procedure. There are two packages that were found on 

the World Wide Web to perform phase unwrapping. The first is Phase Vision [88], a 

commercial package with a limited-time evaluation download; the second is SNA­

PHU (Statistical-Cost, Network-Flow Algorithm lor Phase Unwrapping) [89). AJ. 

B,ough the unwrapped phase results obtained from Phase Vision were generally 

superior, the freely available SNA PHU also produced adequate results, and was 

used lor the majority of the experiments. SNAPHU is based on a series of papers 

by Chen and Zebker, the first being [90), in which phase unwrapping is posed as 

an optimization problem solved using network flow techniques. As the full name 

suggests, SNAPHU relics on statistical models for phase unwrapping- in this case 

the statistical models are lor SAR interlerograms. Because the images tested here 

are more general, the statistical model is turned off by using a command-line op­

tion, and instead an L 1-norm cost function is used. 

For Phase Vision, a minimum<Ost matching aJgorithm with branch cuts is used 

[91); so like SNAPHU, a graph theoretical approach is taken. 

Figure 6.5 shows the unwrapping process on a small section of the fingerprint 
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(a) W.app<d Angles for Sec- (b) Unwrapp<d Angles for 
tjOI\ of f1n.gerpr1ftt Section of fingerprint 

Figure 6.5: Ex::.mple of Phase Unwrapping 

image from Figure 6.4 ·Figure 6.5(a) shows the wrapped angles while Figure 6.5(b) 

shows the result alter unwrapping has been run using Phase Vision. Notice that in 

Figure 6.S(a), there are many neighboring arrows pointing in opposite directions. 

The unwrapped result in Figure 6.5(b) has all but eliminated these opposing ar­

rows, but in general there may still be some rr-jurnps due to the intrinsic nature of 

the image. The phase unwrapping process was very fast with SNAPHU, usually 

complete in a fraction of one second. 

6,6 Generation of Texture from g Subcomponent 

As just stated, even alter phase unwrapping, there may be some discontinuities 

in the form of n·jumps present in the phase. Also, there will be inherent phase 

discontinuities at the borders between the different orientation sectors. Thus these 

phase discontinuities have to be dealt with so that instability and incorrect solu· 

tions do not result. These phase discontinuities leads to incorrect reconstruction of 
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Figure 6.6: Generation of Texture Component from.~ at Phnse DiSCOntinuities 

''from gin the fonn of very high positi,·e and negative valul'> at pixels where the 

phase d1!>rontinuiti1'> exist. 

As will b<' """n rn the denoising resulls <;«bon, S..'Cbon 6.9 .3.2. there are two 

categonc:. of \'anatiOO> of the propo:.ed OAD algonthm. One includes orienta· 

bon M.'(tol"\ and rotation of derivative fille~. wh1le the other does not. First the 

generation of the texture component t• from the .~ subcomponent for the simpler 

variation without orientation sectors is discussed, followed by an explanation of 

the generation of texture from g for the version with orientation sectors. 

n,c fir-t version of OAD published in 1831 did not include derivative filter rota· 

lion or orientation sectors, and so included simpler adapt"·e adiabatic conditions 

usmg the mformation in g and 9. These boundal) cond1hons were imposed by 

adapti' cl)' e<tending 150photes of g into the pi•cls w1th phase diSCOntinuities. A 

dcscnphon of how tlus was done now follows, and " 'hown diagramatically in 

hgure6.6. 

There were no orientation sectors, and so a pixel was de~nnined to ha"e a phase 
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discontinuity only if one of its 4-connected neighbours differed in gradient angle 

by more than 0.7n. If a pixel did not have a phase discontinuity, the texture com­

ponent v was calculated using the formula 

v = ge(i,j) =cos(B(i,j))gx(i,j) + sin(B(i,j))gy(i,j) = 

(e( . '))g(i + 1,j)- g(i -1,j) . (e(· '))g(i,j + 1)- g(i,j -1) 
cos z, 1 

2 
+ sm z, J 

2 
. 

At pixels with a phase discontinuity, all of the original g values in the 3x3 neigh­

bourhood of the pixel should not be used in the finite-difference solution of the 

Euler-Lagrange equation for g. For example, if there is an-jump at a pixel p, but 

the v component is smooth, then the g values around p will exhibit an abrupt sign 

change due to the fact that ge = v but there is a big jump in e. For each of the 8 pix­

els { ni}f=1 in this neighbourhood, another 3x3 neighbourhood is formed, this time 

around ni. The pixels in the neighbourhood around ni are used to first determine 

the direction where thee values are closer to thee value for p. This direction will 

have angle approximately e ± .g:. The three pixels CJ, c2 and C3 closest to forming 

an angle with p of e - If in the 3x3 window around p, are considered and the sum 

s1 = t ( 1- IO(ck)~e(ni)l) taken. A similar sum is taken for those three pixels clos-
k=l 

est to forming angle with p of e + If. The maximum of the two sums determines 

which of e ±If is the isophote direction with more of the same e values and thus 

the direction from which the g values with which to interpolate are taken. Call 

this isophote direction 1/Ji· Each of the three closest pixels around ni, say { ck}L1, 

is at a certain corresponding angle { <Pdf=l toni. For example c1 may be located 

one pixel to the right and one pixel to the left of ni, in which case 4J1 = -.;f. The 
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weights {wk}~=l were formed by wk = (cpk -l/'i) 2. Then in the finite-difference 
3 

calculation of g(p), g(ni) = L wkg(ck) is substituted for g(ni), which is in effect a 
k=l 

weighted sum of g values in the isophote direction. Good results were obtained at 

a low cost using this approach, but recall that this method of extending isophotes is 

only valid for the version of OAD without orientation sectors and derivative filter 

rotation. 

Now the generation of g for the more elaborate version of OAD, a slight mod­

ification of one already published [84], is presented, and includes the derivative 

filter rotation already described. For this method, the value of e calculated from 

the linear structure tensor is examined to see in which of the orientation sectors, 

P0, P1, P2 or P3 it lies. If the angle e is not in Po, then either±~ or +-T is added to 

e to obtain a new angle eadj' which lies in Po. Then the rotated derivative filters, 

as found in Tables 6.1 and 6.2, along with eadj are used to compute the directional 

derivatives of u, f and gin Equations 6.2.10 and 6.2.11. So, for example, 

ge = cos(eadj)(Dx * Wg) + sin(eadj)(Dy * Wg)· 

Wg is a window of g values, of the same size as the filters Dx and Dy taken about 

the pixel r, for which the value g8 is being calculated. The raw values of g are taken 

in Wg for those pixels which are in the same orientation sector as r. For those pixels 

in Wg that are not in the same orientation sector, or which differ in the calculated 

value of e by at least 0.7n, an alternate computation of g is made. 

For such pixels s I another window w~ of g around the pixel s is taken. In w~, 

the g values of pixels which are in the same orientation sector ass are set to zero. 
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Then the value of gats in the original window Wg is taken to be the convolution 

of the g values (some set to 0) in W~ with the oriented angular filter of Equation 

6.4.2 corresponding to the pixels. 

6.7 Non-Oriented Regions and How to Deal with Them 

The proposed methodology works well when the underlying texture is oriented, 

but in other non-oriented regions tends to smear the noise, for which there is not 

a single dominant orientation. To avoid this, another decomposition model is 

needed to handle such regions. A region is defined to be non-oriented when its 

gradient direction coherence [55], as described in Section 2.7.2, is less than a pre­

determined threshold. The energy functional that is used for such non-oriented 

regions is based on that of Bresson and Thiran [73], which was used in the context 

of applying decomposition to image segmentation. Their energy functional was 

EBT(u, v) = fo IVujdxdy + Jl fo lvldxdy +A fo (f- u- v) 2dxdy (6.7.1) 

An extra term (with coefficient() is added to the energy of Bresson and Thiran, 

to obtain the energy shown below. The r term has been added to promote noise 

being placed in the residual component r. 

ENo(u,v) = fo IVuldxdy + Jl fo lvldxdy + 

A fo (f- u- v) 2dxdy + r fo ¢(1Vvj)dxdy. 
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Here cp ( s) is a nonlinear diffusion potential, chosen to be cp ( s) = 2 J 1 + s2 - 2, as 

in [92]. The Euler-Lagrange equations for this energy functional are then 

divC~~ 1 ) =21l(v+u-J) 

~sign(v) + 21l(v + u- f)= (div ( 
2 

vv) . Jl + 1Vvl2 

This particular potential cp( s) is chosen over others because it does not enhance 

strong edges, as Perona-Malik diffusion does for example [5]. Therefore it is better 

suited to the purposes of image decomposition, where the original image is the 

sum of cartoon, texture and residual components, and where such an enhancement 

in one component will necessarily appear as well in at least one other component. 

The important observation should also be made that now the texture component v 

is being directly dealt with, and not any subcomponents g. 

Note that alternatively a subcomponent g could be used instead of v in non­

oriented regions, with g = v, so that there would be one texture subcomponent 

throughout the image. In this case, the texture component v would be computed 

from the subcomponent g as 

in oriented regions 
(6.7.3) 

in non-oriented regions 
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6.8 Eikonal Orientation-Adaptive Decomposition 

6.8.1 Derivation of EOAD model 

In this section, the Eikonal Orientation-Adaptive Decomposition (EOAD) model 

is derived. The word eikonal is used in the name of this model because it has 

many similarities both in the definition of the texture component v in terms of 

the texture subcomponent g, and in the initialization of the texture subcomponent 

g, to the Eikonal partial differential equation IVF(x,y)l = P(x,y). The Eikonal 

equation was originally applied to a problem in the realm of image processing/­

computer vision, namely shape-from-shading, in [93]. Using results from the OAD 

algorithm, it was found that in general e ::::::::: arctan (fx). It was found empirically 

from various runs of the OAD algorithm on oriented textured test images, the g­

subcomponents were also oriented with the same gradient angles as f. Therefore, 

the relation e ::::::::: arctan (;~) , holds as well. Thus, it follows that in most circum­

stances ge ::::::::: ±IVgl, since the gradient magnitude is equal to the absolute value 

of the maximal directional derivative of g. This relation can be exploited in the 

solution of the proposed model. However the ambiguity of the plus/minus sign is 

problematic. What makes this even more difficult to implement is that the relation 

ge = ±I \7 gl is only valid when there is exactly one strong orientation at a point, 

but is not valid when there is no oriented structure, or when there are two or more 

dominant orientations, e.g. at corners or triple-junctions. However, it is still pos­

sible to use the gradient magnitude based energy for strong-oriented regions, and 

another formula for less coherent regions. This would reduce the amount of com­

putation necessary, because the angle related computations take up a substantial 
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part of the solution time of the OAD model. 

As in Equation 6.2.9, for OAD the following relation was found to exist 

f- u ~ cosegx + sinegy. (6.8.1) 

Since cos egx +sin egy 

constraint 

±I'Vgl (at least in oriented regions), there is the new 

f- u ~ ±I'Vgl =? v = f- u ~sign(!- u)I'Vgl. (6.8.2) 

Converting this to a soft constraint, a new energy functional based on EoAD in 

Equation 6.2.9 can be formed as 

This energy functional is only valid in oriented regions where there is exactly one 

dominant orientation. The Euler-Lagrange equations from this energy functional, 

after some mathematical derivation and simplification, are 

u- f + IVglsign(f- u) 

;A sign(g) 
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2A K(u) ( 6.8.3) 

[( 
lf-ul) ] 'V· 1 - IVgl 'Vg. (6.8.4) 
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6.8.2 Numerical Solution of Euler-Lagrange Equations and Im­

plementation Details 

The above Equations (6.8.3 and 6.8.4) are solved with a semi-implicit numerical 

scheme with a time-step ~t = 0.01. The initial conditions are a bit tricky to se­

lect, because if g(t = 0) = go = 0, then it was found that g would stay close to 

0 for all future times, as can be seen from Equation 6.8.4. For simplicity, and in 

conformance with all the previous decomposition models in this thesis, the ini­

tial condition u(t = 0) = uo = f is used, with f the original image. For g, the 

Euler-Lagrange equation for u (Eqn. 6.8.3) is instead used to find initial condi­

tions. Because uo = f, IVglsign(f- u) = 2\K(u). Now, f = u, so in theory, the 

left-hand side should vanish, but if this is allowed to be perturbed slightly, then 

the Eikonal equation I \7 g I = I A K ( u) I is obtained, since the gradient norm of g is 

always positive. 

Here A is chosen to be 0.05, and set to this value also for the first four iterations 

of decomposition. This Eikonal equation can be solved using the Fast Marching 

method of Sethian [94] in a matter of seconds. This was done in the tests here. The 

Fast Marching Toolbox for MATLAB [95], which includes very efficient MATLAB 

MEX code based on Sethian's Fast Marching method to solve this Eikonal equation, 

was used. In fact, it was found that solving the Eikonal equation with the right 

hand side 1 2\ K ( Ucr) I, where Ucr is the cartoon component u blurred with a Gaussian 

filter of standard deviation cr (with cr small, say 1 or 2), gave superior results. It 

eliminated the need of detecting corners in the image and using a special PDE in 

a neighborhood around these corners. Corners are defined as being parts of the 
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image where there is more than one dominant gradient orientation. These can be 

found for example by the method in [96], which has the drawback of having a 

parameter K which has to be determined empirically, or by detecting when both 

eigenvalues of the nonlinear structure tensor are distinct and large, which has the 

disadvantage of long running time. With the unblurred Eikonal equation, there 

was often instability at and in the vicinity of these comers. The Fast Marching 

algorithm propagates a level-set function from a number of starting points, where 

the solution is assumed to be 0, at a speed proportional to the right-hand side 

P(x,y) of the Eikonal equation IVgl = P(x,y). The propagation is performed by 

a gradient descent of the distance function g, and finds an approximate geodesic 

(shortest path) through the image domain with pixel weights 1/P(x,y) using an 

algorithm similar to Dijkstra's algorithm for the shortest-path in a graph. The start 

points for the Eikonal equation solution were chosen to be all the points on the 

boundaries of coherent regions in the image. 

Non-oriented regions are dealt with in the same way as for plain Orientation­

Adaptive Decomposition, as described in Section 6.7. 

6.8.3 Discussion of EOAD model 

The EOAD model is a marked improvement over the regular OAD model because 

the calculation of the gradient angle of f has been removed completely. Only a 

very rough estimate of the angles from the noisy image f are used to determine 

which regions are coherent and which are not, but after this no angle information 

is utilized. Thus there is a significant time savings with the EOAD model, and 
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also somewhat more simplicity. No phase unwrapping or special calculation of 

the texture subcomponent g has to be made at pixels for which there is a disconti­

nuity in gradient angle from those in neighboring pixels. The original divergence 

of two subcomponents g1 and gz in the Vese-Osher decomposition model has been 

replaced by the magnitude of the gradient of one subcomponent g in oriented re­

gions. More work needs to be done to relate this to function spaces, so that this 

work can be placed on a firm functional analytic footing. 

It was found that the texture component v would become close to 0 as the decom­

position progressed. Because theoretically the OAD and EOAD models should be 

equivalent, but this equivalence does not occur in practice, it is believed this is 

due to some intricacies in the implementation, e.g. the discretization of the Euler­

Lagrange equations. 

Better results were obtained by using the fact that e is approximately the gradient 

angle off, u and gin the Euler-Lagrange equations for OAD (Equations 6.2.10 and 

6.2.11). However in that case the g-subcomponent obtained from solution of the 

model was very disordered and was not even oriented, although in tests conducted 

on the fingerprint image, the texture component v derived from g resembled that 

image quite closely. This is a matter which should be examined in future research. 
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6.9 Experimental Setup and Results 

6.9.1 Test Images 

The different versions of the proposed one-subcomponent OAD model are tested 

onsiximages:fingerprint, marble, barbzoom, concentric, smallconcentric 

and eye. 

The test image fingerprint was chosen because it consists of oriented texture, 

along with a non-oriented background. The second test image marble was selected 

because it had more rapidly changing gradient angles, and had some very fine­

scale oriented texture. The test image barbzoom was chosen since the background 

consists of some pixels where there is more than one dominant orientation. The 

two test images concentric and smallconcentric have oriented texture with all 

possible gradient angles, the former image with texture of larger scale than the 

latter. The final test image was eye, and was selected because it had a wide variety 

of both oriented and non-oriented texture. 

The test image fingerprint is 160x192 pixels large, the test image marble has di­

mensions 210x287 pixels, barbzoom is 147x171 pixels in size, concentric is 200x200 

pixels large, smallconcentric has dimensions lOOxlOO pixels, and eye is an an­

giogram of the eye of size 247x192 pixels. Both concentric and smallconcentric 

are synthetic images, generated using radial sinusoids of a fixed frequency ema­

nating from the image centres. 
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(b) aa.rbl• 

(d) coftc:entric (e) (0 oyo 
smallconcentric 

figure 6.7: Test Jmagb UM.>d in [:;._,penml"nts 
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The equation for the image intensity function h (x, y) of smallconcentric is 

f ( ) _ 1 +sin( J3{ (x- 50)2 + (y- 50)2}) 
1 X, y - 2 I (6.9.1) 

where x andy are integer pixel positions ranging from 1 to 100, except that h (x, y) 

is set to zero within a distance of 7 pixels from the centre of the image. 

Similarly, the equation for the image intensity function h(x, y) of concentric is 

f ( ) _ 1 +sin( J0.5{ (x- 100)2 + (y- 100)2}) 
2 X, y - 2 I (6.9.2) 

with x and y integers ranging from 1 to 200, except that h ( x, y) is set to zero also 

within a distance of 7 pixels from the image centre. Both h and h are set to zero 

near their respective image centres to avoid the pathological case of having all 

orientations present at the image centres. 

6.9.2 Experimental Setup 

Different versions of the proposed OAD algorithm are tested for their ability to 

decompose and denoise the four test images. First, decomposition was run on 

the test images without added noise. Then in the second set of experiments for 

denoising, test images were generated by adding to each image white Gaussian 

noise of a rather high standard deviation (J = 20 to the original 'noise-free' images 

of Figure 6.7, and then decomposition was run with a dynamic value of A based 

on the value of (J. In practice, if the standard deviation of the noise (J is not known, 

it can be estimated (see for example [97]). As stated earlier, most of the noise in the 
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OAD model will end up in the residual component r of the decomposition. The 

performance of OAD on the denoising of the smallconcentric test image, with 

three sets of filters was compared; the first set of filters was the more rotation­

invariant derivative filters described in Section 6.3.1.1, the second set was the set 

of filters described in Section 6.3.1.2, first with filter rotation, and the third set was 

the set of filters in Section 6.3.1.2 without filter rotation. 

Denoising based on Vese-Osher decomposition on the four test images was also 

run, and it was also seen there is more noise in the v component, and less in the 

residual. Vese-Osher decomposition is run in general for 10 iterations (less than 

that needed for decomposition, e.g. in Chapter 3, since we are now denoising), 

unless the SNR is still increasing at this point. In such a case, iterations are contin­

ued until the SNR (between the denoised and noise-free image) peak is achieved. 

A preliminary run of OAD is made, measuring the SNR at each iteration to find 

out at which point the peak in SNR between the uncorrupted image and the image 

denoised via decomposition is attained. Then each decomposition algorithm for 

the purposes of denoising is run up to the iteration with the SNR peak to obtain 

the timing results. For both algorithms and all images, 11- is set to 0.05. The 1 coeffi­

cient for non-oriented regions is set to a value of 0.2 for the denoising experiments, 

to ensure that noise is placed in the residual r. For the decomposition test runs, 

it is set to 0, since there is no added noise which has to be diffused. The fidelity 

parameter i\. is chosen dynamically for both decomposition models, similar to the 

method in [38], since the noise variance is known. This is done in order to ensure 

unbiased comparison between the two decomposition algorithms. When the same 

parameters are chosen for both algorithms, the proposed algorithm performs rad-
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ically better, but since the two models are different, these parameters should not 

generally be the same. As in [38], using the integral form of the known noise stan­

dard deviation (7 and integration by parts on the Euler-Lagrange equations for u, 

an iteration-dependent choice of A 

A= ~ r YxUx + ryUy dxdy, 
2(7 lo Jui + u~ 

is arrived at for the OAD algorithm. Here r is the residual as earlier. 

Finally, OAD requires an image-dependent orientation coherence threshold to 

determine which regions of the image are oriented. This threshold was set to the 

following values for the test images in this chapter: 30 for fingerprint, 15 for 

barbzoorn, 13 for marble, 20 for eye and 10 for srnallconcentric. The overall OAD 

method was not very sensitive to these values, which were chosen to roughly cor­

respond to what an observer would consider to be the oriented and non-oriented 

regions of the image being decomposed or denoised. As already stated in Section 

6.2.2, the linear structure tensor is used for orientation estimation. 

6.9.3 Results 

6.9.3.1 OAD Results for Decomposition 

In Figure 6.8, the effect of derivative filter rotation on decomposition (not denois­

ing) results for the test image concentric is examined, as well as a comparison 

to Vese-Osher decomposition, on which OAD is based, made. Observe that for 

some angles in the texture component of OAD decomposition without derivative 
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(ll) 11.-ldurc Cumpone'l\t v (b) TelCture Compo•ll~nt 1' (c) li:)l;tun: romponer~t u o( 
of V·O f>l"('OmJ"'!';ition of OAD Occomposil~t\n OAO rA•composition with 

with01t1 Oeriv•tlvt Hlh.~r l~rlvati\'C Filter Rot.lhOn 
Rotation 

Figure 6.8: Comparison of Texture Components of Dcoomposihon from V.O Al­
gorithm and OAD u.•ith '"d ufitlumt O...n\'ntive hlter Rotation 

filt~r rotahon m Ft),'Ure 6.8(b) are more prom>nent than others. Tlus orientation­

dependent effect is also seen for the te•1ure compont>nt from the v-o decomposi­

tion of coocootnc in Figure 6.8(a). How~er, in Figure 6.8(c), where the texture 

compon.-nt v of OAD wtth derivath·e filter rotahon " shown, the. cff.-ct is much 

I""!> pronouncro. This illustrates one advantage of the proJ'<l'>"d OAD scheme, in 

addilion to the simplicity of having one te•ture subcomponent >Il!>tead of the usual 

two. 

In rlgure 6.9, the result of running OAD with fi lt~r rotation and with the oph­

mitcd dcrivativ.- fi lters from Section 6.3.1.1 against the v-o dl>composition result 

are compared on a real-world image, hngerpr>nt. OAD is run for 10 iterations 

whtle v-o dl>composition is run for 9tterations (thl'" the fir..t iteration where the 

total variahon of the cartoon component u ~~ 1<"' than that from OAD after 10 iter­

ations) to ""' how the components appear for both model>. For both algorithms, 

the fidehty p.uametcr A was set to 0.02 and the paramder p Wb set to 0.05. Usu­

ally the two >ubcomponents for Vese-Oshcr dl'COmP<">bon have initial conditions 
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g1 =-A I;JI and g2 = --ft l~!l' but to allow fair comparison with OAD, the ini­

tial conditions g1 = g2 = 0 are used, since for OAD, the initial condition for the 

texture subcomponent g is g = 0. Note that the usual initial conditions for V-0 

decomposition were used in the previous V-0 decomposition example in Figure 

6.8(a). 

Vese-Osher decomposition did a slightly better job of extracting the fingerprint 

texture from the original fingerprint image (the texture component in Figure 

6.9(d) is more pronounced than that in Figure 6.9(c)), but OAD still performed 

well. There is more orientation selectivity with the Vese-Osher decomposition re­

sult than the OAD result, as some parts of the fingerprint in the texture component 

of the V-0 decomposition are brighter than others, though there is not a substan­

tial difference in their scale or in their intensity in the original fingerprint image. 

The L 2-norms for the non-cartoon components of the two decompositions were: 

4.34xl03 for the v component from V-0 decomposition vs. 3.37xl03 for the v com­

ponent from OAD, and 1.53x103 for the r component from V-0 decomposition vs. 

2.1lxl03 for the r component from OAD. The decrease in texture extraction capa­

bility is thought to be due to small inaccuracies in gradient angle estimation in 

OAD, as well as discretization error. 

A similar experiment was performed for the smallconcentric image for which 

the difference between the texture extraction performance of V-0 decomposition 

and OAD was not as pronounced. For that image, the L 2-norm of the v component 

was 5.88x103 for V-0 decomposition vs. 4.85x103 for OAD, and the L 2-norm of the 

residual component r was 1.97x103 for V-0 decomposition vs. 2.36x103 for OAD, 

after 10 iterations of each algorithm. This improved texture extraction is thought 
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to be due to the smaller scale of texture present in smallconcentric as opposed to 

fingerprint. 

6.9.3.2 OAD Denoising Results 

Next the denoising performances of OAD and V-0 denoising are compared, where 

it is seen that OAD does a better job at denoising than V-0 decomposition. First 

of all, it is seen once again as talked about in Section 6.3.1.2, that filter rotation is 

necessary in the OAD algorithm for the case of denoising. It was found that OAD 

denoising was most effective for small scale texture, and for large-scale texture 

there was often noise left in the texture component v. This is, however, precisely 

the kind of texture as seen in Chapter 5, that OSV denoising performs poorly on, 

e.g. the barbara test image from that chapter. Results are shown here for three sets 

of runs on the smallconcentric image- first for denoising with the same rotation­

invariant derivative filters as for decomposition (which is called OADl), second 

with the specialized filters based on central differences (non rotation-invariant) 

from Section 6.3.1.2, and without filter rotation (which is called OAD2), and then 

third with the same specialized filters with filter rotation (called OAD3). If only 

OAD is used as an abbreviation, then this refers to OAD3, since this generally 

gave the best denoising results out of the three versions of Orientation-Adaptive 

Decomposition. 

For OADl, where the same rotation-invariant filters as those based on the ones 

found in Equations 6.3.2 and 6.3.3 are used, results for the smallconcentric image 

are presented in Figure 6.10. As can clearly be seen, the OAD model with these 

filters is not suitable for denoising. For instance, the residual component r in Figure 
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6.10(d) contains a very large amount of the circle texture, much more than the noise 

in this component. 

In Figure 6.11 is seen the 3 components u, v and r of the OAD2 decomposi­

tion result on the test image smallconcentric. This time, the filters have been 

changed, but filter rotation is not performed. As with the decomposition, there is 

more strength in the texture component v for angles (:} with tan( 8) close to -1. For 

such angles, the denoising performance of OAD2 is also very good, since at these 

angles, the residual r consists almost exclusively of noise. However for other an­

gles, there was a large amount of texture transferred to the residual component r, 

although this component should be reserved for noise. 

The denoising results of Figure 6.12 correspond to OAD3, and are the best of 

the OAD results on the smallconcentric image. In the limited range of angles 

with tangent close to -1, there is a diminution of denoising quality as compared 

to OAD2, but this effect is very slight, and for other angles, the OAD3 denoising 

results are much better than the OAD2 ones. 

Overall, for smallconcentric, the SNR values of the denoised result (u + v) for 

the OAD implementations after 10 iterations of OAD1 and OAD2, and 12 iterations 

of OAD3, were: 11.88 for OAD1, 12.02 for OAD2 and 15.19 for OAD3. The SNRs 

of OAD1 and OAD2 were very close (within 0.2) to each other, and OAD3 was 

the clear winner of the group of OAD implementations, at least for this test image. 

Since this test image contains all orientations, OAD3 is chosen as the standard 

OAD implementation for texture denoising. 

Denoising results based on OSV decomposition and V-0 decomposition are also 
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227 



compared with OAD results. In Figures 6.13(a) and 6.13(b), it is seen that very 

little noise gets transferred to the v component of the OSV decomposition before 

the SNR of the denoised result goes down. The final SNR for OSV denoising on 

smallconcentric is 13.25, which is less than that for OAD, and this OSV result 

is achieved in only 25 iterations. In the first several iterations, the SNR of the 

denoised result from V-0 denoising is quite high, but steadily decreases. In these 

early iterations, there are results similar to that from OSV denoising, where there 

is very little energy in the noise component. After 22 iterations, another SNR peak 

is reached, this time with an SNR of 11.40, and the results after 22 iterations are 

shown in Figure 6.13(c) and 6.13(d). The noise component r is comparable to that 

of OAD in that the best denoising performance is obtained for a narrow range of 

angles e, with tan( e) close to -1. However the quality of denoising from OAD is 

better than that from V-0, as can be seen from visual comparison of Figures 6.13(d) 

and 6.11(e), and will soon be seen in numerical comparisons in Table 6.3. 

OAD was generally the best denoising algorithm on the test images considered 

in this chapter, which is remarkable since it is based on the V-0 model, and still 

outperforms the OSV model, which is designed for denoising while the V-0 model 

is not. This performance improvement can be seen in Table 6.3 for the five test 

images. 

This suggests that a model similar to OAD but based on OSV decomposition 

instead of Vese-Osher decomposition would give even better results than OSV de­

composition when used for denoising. This modification however would be dif­

ferent than the models in Chapter 5. There was only a deterioration in denoising 

performance for OAD as compared to OSV denoising for the barbzoom image. This 
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Signal-to-Noise Ratio of Denoised Images 
Test Image V-0 denoising OAD denoising OSV denoising 

fingerprint 9.99 12.41 11.57 
barbzoom 6.46 9.82 9.93 
marble 5.32 7.71 7.64 

eye 12.99 15.32 14.98 
smallconcentric 11.51 15.19 13.25 

Table 6.3: Signal-to-Noise Ratio (SNR) of OAD denoising vs. V-0 and OSV de­
noising results 

is to be expected since most of the background consists of texture where there are 

two dominant orientations, and thus the estimation of gradient orientation with 

the structure tensor is not accurate. This problem could perhaps be circumvented 

by selecting a larger window in the computation of gradient direction coherence 

(Section 2.7.2) to compute which regions are oriented, since with the smaller 7 by 7 

pixel window used throughout this thesis, and in the experiments in this chapter, 

in particular, some pixels with more than one dominant gradient direction were 

still considered to be in the oriented part of the image. However, the difference in 

SNR was so insignificant in this image (9.82 for OAD vs. 9.93 for OSV), that this is 

not a major issue. 

Figure 6.14 shows Vese-Osher (V-0) image denoising results on fingerprint. 

Observe that there is still quite a bit of noise in the texture component v and that 

there is a lot of texture in the residual r. In Figure 6.14(c), a zoom of the sum of car­

toon and texture components is shown, corresponding to f- r. In this context, this 

corresponds to the denoised image. In Figure 6.15, it is seen that the decomposi­

tion results for the OAD2 version of the Orientation-Adaptive model are also good. 

There is less noise in the texture component v and the residual r consists of more 

noise than for V-0 decomposition. Quantitatively, the SNR of the denoised result 
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from the proposed algorithm without filter rotation and with rotation-invariant 

derivative filters (OAD2) is 11.07, while for V-0 decomposition, this SNR is 9.99. 

Once again, in Figure 6.15(b), a zoom of the sum u + v, a roughly denoised image, 

is shown. 

The OAD3 algorithm was also run on fingerprint, in which the central difference­

based filters of Section 6.3.1.2 were used, with filter rotation. After 9 iterations, this 

gave an SNR of 12.41. V-0 denoising gave a much lower SNR of 9.99. As seen in 

Figure 6.16(c), the residual contains less texture than the residual for OAD2 and 

V-0 denoising. As well, the amount of noise is more uniform across all gradient 

angles, as it can be seen that there is approximately an equal amount of texture in 

the v component in Figure 6.16(a) across the entire fingerprint, which is not what 

is observed for the OAD2 result in Figure 6.15(a). 

In Figure 6.17, the noisy image eye, is also denoised with the proposed OAD3 

algorithm (by taking u + v). Though this is strictly not an oriented texture, the 

use of directional diffusion in the proposed model allows this image also to be 

denoised. 

There is less success on the barbzoom image because at many of the pixels in 

the image there is more than one dominant orientation. Thus instability occurs, 

and a relatively bad denoising result ensues, as seen in Figure 6.18. There is quite 

a bit of texture in the noise component r (not shown), and the beginning of the 

aforementioned instability was visible in this component. Despite this, OAD3 still 

outperforms Vese-Osher denoising. 

The timing results of the three denoising algorithms as well as the number of 
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iterations each algorithm is run are shown in Table 6.4. OAD denoising was run 

until the SNR peak was achieved for all test images being denoised. V-0 denois­

ing was also run until an SNR peak occured between the denoised result and the 

image uncorrupted by noise, or after 10 iterations, whichever came later. This lat­

ter condition was included because often multiple SNR peaks would occur, some 

before the absolute SNR peak was achieved. Finally, OSV denoising was run until 

the SNR peak was attained. 

The timings for OAD were one or two orders of magnitude greater than those 

for the other algorithms. The code in its present form is not entirely optimized 

for speed; with additional work, the running times should be made substantially 

lower. Of the two benchmark decomposition algorithms, Vese-Osher and Osher­

Sole-Vese decomposition, which are applied to denoising and which are compared 

to Orientation-Adaptive Decomposition, only Vese-Osher decomposition splits the 

original image into the sum of cartoon, texture and noise components. OSV de­

composition on the other hand, although being the only decomposition algorithm 

competing with OAD yielding denoising results of comparable quality, only gives 

two components, the denoised component u and the noise component v, when 

applied to the problem of denoising. Therefore, the additional time complexity of 

OAD can be reconciled with the fact that it is doing more, by both decomposing 

and denoising the original image. However the additional time required by OAD 

could become an issue for real-time applications, which are beyond the scope of 

the research in this thesis. 
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Tune (sec) for lA'nOi'lng No. of iterations 

Test lmagt:> V.() 
1 OA~~~~ ~ OAD OSV 

f1ns:erprint 13.97 1114.08 32.80 25 9 466 
barbzoom Ul 572.67 47.41 10 5 694 

marble 25.20 1535.25 187.30 

l 
22 6 1112 

oyo 3.31 1295.31 114.73 4 6 ~4 
smallconcentr1c 1.75 721.01 0.44 12 10 25_, 

7 . Table 6.4: Exoculton Time and Number of lterJtlons Required for OAD Oenotsing 
vs. V-0 and OSV Denoising 
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'thon (0AD2) of J't(')by f1-natrpr1nt 
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figure 6.17: Oenoising results with Onentahon-Adaph• e!A'(Umpostlion (0A03, 
6 iterations) on noisy eye 
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(a) OriHu'l,ll n01~y barbzooe (b) Oenolsed barbzoom hn· (c) IA'lloi~d bubzoom 1m· 
lmaK"' age with propot.ed OAO:l al ;l~t" wilh V.() decomposition 

gorith1n 

f igure 6.18: Dc:noising results with Orit"ntation·Adapthl' DL>ct)mposition (0A03, 
5 atcr-ations) and Vcse-Osher d('C{lMpo$1hOn on noa .. y barbzoom 

6.10 Conclusions 

In tha. ch.lpter, a one-subcomponent textured imag~ dl"CCmp<Niion model, called 

Oril'fltatoon·Adapti\·e Doxomposition, was proJX""'d Thb model was applied to 

the d=mpoo.ttion and denoising of oriented texture. Although there are other 

methods for the denoising of oriented texture, the propoo.<'CI method stands out be­

cnu~ 1t is bas-ed on a decomposition model, and thus th~cartoon and texture com­

ponents of the obtained decomposition can be used for prioritized image trans· 

mission or image inpainting. if some part< of the region are damaged. The OAD 

model wa. abo extended to a simpler and more elegant model not requiring as 

many computations called Eikonal Orientation·Adapllve lA'COmposition (EOAO). 

Howewr, more work is needed in thl' impll'ml'ntahon to makl' EOAO a viable 

•llemallve to ordmary OAO. 

OAD, hk~ the OLOSV model of the pre\·oou• ch.lpter " an efkctwe one for the 
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denoising of oriented texture. The main difference is that it is also very effective for 

the problem of normal image decomposition without noise, and is a novel model 

for this problem, also computing cartoon and texture components for the denois­

ing case. 
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CHAPTER 7 

Conclusions 

7.1 Thesis Summary 

In this thesis, the problem of image decomposition has been studied from a varia­

tional point of view, with existing decomposition models extended and new mod­

els created. The models described and developed in this thesis improve the quality 

of decomposition and in many cases the efficiency as well. 

In general, existing decomposition models were modified either by adding ex­

tra terms to their defining energy functionals under the variational framework, 

or by modifying existing terms, e.g. by introducing local image-dependent rota­

tions. The addition of extra terms provided some regularization of the solutions 

of the PDEs, and also imposed some constraints between the various functions in 

the defining energy functional of the various models. With both the existing and 

novel decomposition models, care had to be taken with their solution, which gen­

erally involved the numerical solution of a system of partial differential equations 
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derived from the model's energy. Solutions were implemented with either explicit 

or semi-implicit methods, the latter usually being more stable. Additive Opera­

tor Splitting [36] was seen to be a particularly fast implementation of nonlinear 

diffusion flows. 

Chapter 1 consisted of an introduction to image processing and its current open 

problems. Then, the motivation for the use of image decomposition in the solution 

of these problems and an overview of existing variational image decomposition 

models were given in Chapter 2. 

Improved Edge Segregation (IES), a new model created based on the existing de­

composition model by Vese and Osher was introduced in Chapter 3, with results 

on both serial and parallel computers given. The decomposition results from IES 

were found to be better than those from the Vese-Osher model, as measured by the 

lack of cartoon edges in the obtained texture component. Additionally, the decom­

positions were found in less time than previous models, due in large part to the 

fact that IES was found empirically to be implementable with Jacobi iterations as 

opposed to Gauss-Seidel iterations. This difference was found to be even greater 

on a multi-computer cluster because of the increased capacity for parallelization of 

the solution. As well, the output from IES was shown to give superior discrimina­

tion results when fed into an Active Contours without Edges scheme as compared 

to the output from Vese and Osher's algorithm. 

In Chapter 4, another new variational image processing model, Simultaneous 

Decomposition/Discrimination (SDD), was developed. As the name suggests, it is 

used for the simultaneous discrimination and decomposition of textured images, 

combining the two stages in the discrimination tests in Chapter 3 into one. This 
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model used the natural coupling of the two problems where information from one 

could be used for the solution of the other, leading to more effective solutions for 

both. 

In Chapter 5, two extensions were presented to the decomposition model of Os­

her, Sole and Vese (the OSV model), one which decorrelated the cartoon and tex­

ture components of an image, and the other which combined two frameworks, 1) 

decomposition and 2) nonlinear diffusion. The first extension, the DOSV model, 

was shown like IES to more accurately separate cartoon and texture information 

into their respective components. For the second extension to OSV, the new mod­

els, incorporating the Perona-Malik and Oriented-Laplacian nonlinear diffusion 

schemes, respectively, combined both decomposition and nonlinear diffusion and 

were used for the purpose of textured image denoising. The latter nonlinear dif­

fusion model was especially effective in preserving many textured regions in the 

cartoon component u and not in what is now defined to be the noise component v. 

Denoising results were better than those obtained by the plain OSV model. 

A new model for the decomposition of oriented texture, called Orientation-Adapt­

ive Decomposition (OAD), was brought forward in Chapter 6 and this model was 

applied to the denoising of such textures. This model reduced the number of 

texture subcomponents from two to one, and relied on the pre-calculation of ori­

entation in the original image. A variation of OAD called Eikonal Orientation­

Adaptive Decomposition was also presented. The advantage of this scheme was 

that it did not require the precomputation of orientations as does OAD, leading to 

a time savings. 
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7.2 Future Work 

In the introductory Chapter 1, it was stated that the aim of this thesis was to mod­

ify existing and create new variational decomposition models in order to represent 

digital images as a sum of components, in order to facilitate the solution of other 

image processing and analysis problems. With the work presented in this thesis, 

the quality and efficiency of image decomposition schemes have been improved so 

that they could possibly be applied to high-quality real-time and hardware imple­

mentations of decomposition. Though real-time and hardware implementations 

were not done for this thesis, it is a natural and logical step to be explored further 

in the future. Especially for larger sized images, the efficiency of decomposition 

becomes an issue, and it is also important if image decomposition is to be applied 

to image sequences, e.g. for the automatic registration of such sequences [23]. A 

comparison of IES with V-0 decomposition in this regard would be especially in­

teresting to see. The statement about the importance of efficiency is also valid for 

colour I multispectral images, because they have more than the usual one colour 

intensity plane present in grayscale images, and so require the calculation of more 

than one value per component per pixel. 

In Chapter 3, the IES model was implemented on a Beowulf cluster with only a 

handful of nodes, and a substantial speed-up was witnessed. Implementation on 

a much larger parallel computer to see how fast it could be made is a logical next 

step. Based on the results obtained on the small cluster in this thesis, such decom­

position could be performed in a fraction of a second, given enough processing 

power. Additionally, the other models in this thesis should be implemented in a 
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parallel fashion using MPI or another high level parallel language to see how much 

they could also be sped up. As well from Chapter 3, more work should be done 

on the Geometric Constraint model, either by combining it with the IES model or 

developing it further on its own, so that convergence is improved. 

For the SDD model of Chapter 4, a more systematic justification and setting of 

parameters should be sought, along with different numerical methods for the solu­

tion of the model which are more easily proven to converge to a global minimum of 

its defining energy functional. The SDD model is based on Vese-Osher deccompo­

sition, and also compared to sequential decomposition/ discrimination with Vese­

Osher decomposition as the first step. It would be useful to instead use the IES 

decomposition model, also proposed in this thesis, as the basis of and comparison 

against, the SDD model. Better results would be expected, since in Chapter 3 better 

discrimination results were obtained by IES over V-0 when applied sequentially 

as the first step, followed by Active Contours Without Edges discrimination. 

The decomposition/ discrimination algorithms should also be tested on noisy 

images to see how robust they are to corruption by noise. It is suspected that the 

model will be able to withstand small amounts of noise, especially for the discrim­

ination phase, because of the Gaussian blurring of the lgil subcomponent. With 

larger amounts of noise, much of the lgi I subcomponent will consist of the noise 

itself, and there will be less separation between the textures in the channel consist­

ing of that subcomponent for the purposes of discrimination. 

Though decomposition was applied to several problems, such as texture discrim­

ination and denoising, the new and existing decomposition models have not been 

applied to the problem of image inpainting. It would be interesting to see if similar 
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ideas to those used for the simultaneous decomposition/ discrimination scheme in 

Chapter 4 could be used for the simultaneous solution of decomposition and in­

painting, or even the simultaneous solution of all three problems- decomposition, 

discrimination and inpainting. 

The OLOSV model of Chapter 5 could be extended to images with multiple dom­

inant orientations [98]. Additional work is also needed to convert it to a model for 

pure decomposition, rather than primarily for denoising, as it is now. 

There are many further modifications that can be made to the OAD and EOAD 

models of Chapter 6. For future work, more care can be taken with the approxima­

tions, both in the derivations of the OAD and EOAD models, as well as with the 

implementation, perhaps improving the obtained results. An alternative model 

could be formed by using closed-form expressions in terms of the partial deriva­

tives of the various components/subcomponents of the directional derivatives of 

these components/ subcomponents in the Euler-Lagrange equations from the OAD 

model, and not in the energy. This was not done here, but gave promising results 

when attempted, and is left to be completed for future work. 

It is desired to make the OAD denoising algorithm blind by roughly estimating 

noise variance [97] so that the standard deviation does not have to be known be­

forehand. If this were to be done, then it would have to be ensured that OAD is 

robust to errors in the noise variation estimation. More direct comparisons should 

be made between OAD and OLOSV denoising in the future to see which of the 

two proposed denoising algorithms is better for which images. Automatic param­

eter selection for the energy coefficients of the OAD model is desirable, and this 

work should be extended to colour images, as with other methods in this thesis. 
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Additionally, a better choice of derivative filters and general numerical implemen­

tation may improve the practicality of using EOAD for denoising, and perhaps the 

restriction of the necessity of having an image with some oriented texture as input 

could be relaxed. 

In fact, of the proposed decomposition models in this thesis, OLOSV, OAD and 

EOAD all require that there at least be some strongly and singly-oriented regions 

in the image that the model is being applied to. Otherwise the proposed model 

would degenerate to another one (OSV for OLOSV, and Bresson and Thieran's 

model [73] for OAD and EOAD). Occasionally, as with the barbzoom test image 

in Table 6.3, where OSV gives a slightly better denoising Signal-to-Noise Ratio, 

the proposed decomposition models may not provide optimal performance. In 

this case, it could be beneficial to use an image classification scheme to determine 

which decomposition model should be applied to any given image to give the 

best decomposition/ denoising quality. Such a classification scheme, which is left 

to future work, could be partially based on what fraction of an image consists of 

oriented structure, among possibly other image features. 

As well, more effort could be made to combine the new models in this thesis. If 

this were to be done, it is expected that results would be even better, except that 

perhaps efficiency would be sacrificed. For example, the IES model of Chapter 3 

could be incorporated in the OAD model of Chapter 6 to remove cartoon edges 

from the texture component, and a version of IES for a two component model 

could be used in DOSV from Chapter 5 to further improve performance over ex­

isting models. OLOSV from Chapter 5 and OAD from Chapter 6 could also be 

combined to provide better denoising performance for oriented texture images. 
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Finally, the decomposition models in this thesis were not applied to colour im­

ages. This is a definite future step that should be taken, and could be implemented 

for all the models in this thesis. This could be done using the colour Total Variation 

model of Chan and Blomgren [99]. Previous instances of colour decomposition 

models in the literature are [100] and [101]. Similar ideas to those used in those 

papers could be carried over to the decomposition models in this thesis. 

7.3 Final Reflections 

Image decomposition has become important in the image processing research com­

munity only in the last several years. However, it is a fundamental problem in the 

field as it reaches to the deepest image processing questions, such as "What is Tex­

ture?" and "What is Noise?" for which there are no universally accepted precise 

answers. Though no attempt to answer these types of questions were made in this 

thesis, ideas related to these questions often played a role in the development of 

the algorithms herein. 

It is believed that the representation of images by components from variational 

decomposition models will be a central part of many image processing applica­

tions in the coming months and years, for example for PDE-based compression 

[102]. With efficient algorithms to perform decompositions of high quality, it is 

more likely that researchers and other practitioners will use decomposition fre­

quently when developing their own image processing solutions, for example in 

the way that the Fourier Transform or wavelets are used today. It is hoped that 

this thesis will help these researchers in achieving their goals. 
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APPENDIX A 

Analytical Solution of OSV 

Decomposition Model 

A.l Introducing Subcomponents into the OSV Decom­

position Model 

In the Vese-Osher model, there are two subcomponents g1 and g2, the absolute 

value of one of which can be used for the purposes of discrimination. However, 

in the Osher-Sole-Vese model, the subcomponents are eliminated in the Hodge 

Decomposition used for its solution, so that discrimination is no longer possible 

directly with these subcomponents. Instead there is just the cartoon component u, 

and the texture is whatever is left over, f - u. However, it is possible to preserve 

the presence of these subcomponents if hard constraints are used to enforce that 

the texture v = div(g1,g2). In the OSV model, the square of the Sobolev H-1-

norm of v is included in the energy functional. It is now shown that the same 
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evolution equations for u can be derived using a much simpler approach, that 

maintains the subcomponents g1 and g2 which can in tum be used for the purposes 

of discrimination. 

Consider the modified Vese-Osher functional, where instead of using the VJO­

norm of J gi + gi, the square of the L2-norm of J gi + gi is used. This is done to 

simplify the subsequent derivation. The following functional is hence obtained 

In IVuidxdy +A In (f- u- g1,x- g2,y)2dxdy 

+11 In (gi + gi)dxdy. (A.l.l) 

Instead of including the middle term with coefficient A, which is a soft constraint 

ensuring that f ~ u + v ~ u + g1,x + g2,y, a hard constraint is included, so that a 

new energy functional to be minimized is obtained 

subject to the constraint 

f - U - gl,x - g2,y = 0. (A.l.2) 

The Euler-Lagrange equations for this functional can be calculated by including 

the constraint with a Lagrange multiplier A con (not to be confused with A in Equa-
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tion A.l.1). The obtained system is 

K(u) =-Aeon 

2rtgl = -A~on = aaxK(u) 

2rtgz = -A~on = lyK(u ), 

(A.l.3) 

(A.l.4) 

(A.l.5) 

where K ( u) = div c~~l) is the curvature of the level lines of u. Back-substituting 

g1 and gz into the constraint f- u- g1,x- gz,y = 0 yields 

1 ( a2 a2 
) 1 f- u = 2rt axzK(u) + ayzK(u) = 2rt!:!.K(u). (A.l.6) 

As stated in Chapter 5, the evolution equation for u in the model of Osher, Sole 

and Vese is: 

Ut = _ _!_!:!. [div (~)]- (u- f) 
2A IVul ' (A.l.7) 

and since at equilibrium Ut = 0, the two Equations A.l.6 and A.l.7 are the same 

(ft and A can be identified as being the same parameters upon comparing the two 

models). So, for the modified Vese-Osher model, u can be evolved according to 

Equation A.l.7, and at any iteration, g1 and gz can be solved for using Equations 

A.l.4 and A.l.5 respectively, without having to resort to solving for them at each 

iteration with separate PDEs. The previous derivation is significant because it is 

much simpler than that in [4], not requiring the Hodge decomposition or proof of 

the equivalence of gradient descent and Laplacian of gradient ascent evolution to 

arrive at the ultimate solution. 

An example of the subcomponents obtained from running this modified Vese-
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Osher m<>deltS !<~>own in Figure A.l. Observe that the 111 ~ubcomponent contains 

mo..t of the honzontal energy/edges of the unag~. while the g2 subcomponent 

cont;ur" mo-t of the 'ertical energy and edges. nw,.- could be u.ro for discrimi­

nation, a~ done in Chapters 3 and 4. Howe-ver there 1~ <lnC potential difficulty - the 

slow sp<'<.'<.i of the gradient descent solution of the moMI, due to the n>quirement 

of a •moll time step. 

(a) u component 

(c) 81 .. ubcompontnt !d I ~~ oul>romf""""'t 

fiJUte A.l: O..hlor-Sc>l~V~ decompoMtion of barbara w1th AMI)·tical .Rt and g2 
components after 3U iterations 
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APPENDIX B 

Difference of Convex Functionals 

Solution of IES 

B.l Difference of Convex Functionals Solution 

B.l.l Some Elementary Convex Analysis 

Some basic convex analysis is reviewed in this subsection, mostly adapted from 

[103]. Recall that a function his called convex on 0 if 

h(tx + (1- t)y):::; th(x) + (1- t)h(y) (B.1.1) 

for all t E [0, 1] and x, y E 0. An example of a convex function on the positive 

reals is shown in Figure B.1. 

If a function h E C2 ( 0), the class of continuously differentiable functions up to 

second order on 0, then it is convex if and only if h" 2:: 0 on 0. It is clear that 
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Figure B.l: Example of convex function h 

the integral of a convex function is also convex. Also, if a functional is convex in a 

function, then it is also convex in the partial derivatives of the function, because of 

linearity of the partial differentiation operation. 

An alternate definition of a convex function is one such that its tangent plane at 

any point lies below the graph of the function. However, this is not defined for 

non-differentiable functions. Thus, a generalization of the gradient for a convex 

function can be made. This is called the subgradient. The subgradient of a convex 

function h is defined to be any vector s such that 

f(z) 2: f(x)+ < s,z- x > Vz. 

Here< c, d > denotes the inner or dot product of c and d. In general, there will be 

more than one subgradient, and the set of all subgradients of a convex function h 

at a point xis called the subdifferential of hat x, written as ah(x). 
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One observation that makes an iterative solution possible for IES is that its en­

ergy functional can be expressed as the difference of two convex functionals in 

each of u, g1 and g2. This method for the provably convergent iterative solution of 

IES is based in the next subsection. 

B.1.2 Difference of Convex Functionals Solution of IES 

Recall the entire form of the energy functional EIES ( u, g1, g2) for IES (an abbrevi­

ated form where the Vese-Osher terms were not expanded was given in Equation 

3.5.1) 

Term 1 Term 2 

[1 V 2 2 ] 1 IV u I 1 Gcr * I v §I fl g1 + g2dxdy - {1 IV-I dxdy- {2 IV I dxdy. 
0 0 Gcr * g + t'1 0 U + t'2 

Term 3 Term 4 Term 5 

(B.l.2) 

Clearly, the term A J0 (f- u- g1,x- g2,y)2dxdy is convex in u because the second 

derivative with respect to u is 2 ;::: 0. The difference of convex functional solu­

tion framework has the following three steps, assuming that the image space is 

isomorphic to JR.mxn and the difference of convex (d.c.) functional has the form 

F = G- H, where G and Hare convex functionals: 

1. Choose x(O) in JR.mxn 

2. Set y(k) in oH(x(k)) 
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3. Set x(k+I) in ()G*(y(k)). 

Above, the G* refers to the convex conjugate of the functional G, defined as: 

G*(y) =sup{< y, x > - f(x) lx E 0}, (B.1.3) 

once again< y, x >denoting the inner product of the two vectors x andy. 

By Corollary 23.5.1 from [104], the subdifferential of the conjugate of a func­

tion is equal to the inverse subdifferential of the function itself. In other words, 

x(k+I) = aG*(y(k)) = (ac)-1 (y(k)). Therefore, the above three-step procedure can 

be condensed to initialization followed by iteration of the equation ac(x(k+l)) = 

dH(x(k)), since y(k) is equal to both. Also, because only continuous functionals are 

considered, the subdifferential a corresponds to the usual gradient \7. For func­

tionals, which are present instead of functions for this variational problem, it is 

easy to show that the gradient corresponds to the first variation of the functional. 

So, for example for u, the equation Gu(u(k+l)) = Hu(u(k)) is obtained, where G 

and H are both convex functionals, and e.g. Gu ( u) = ~ - fx "*ft - jy *ff;. Table 

B.1 shows which terms are convex in u, g1 and g2, which can then be used to find 

the function-dependent G and H functionals, from which the iterative equations 

for the cartoon component u and the texture subcomponents g1 and g2 can be de­

rived. 
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Function Terms included in G Terms included in H 
u 1, 2, 5 4 
gl 2, 3, 4 5 
gz 2, 3, 4 5 

Table B.l: Terms in IES functional contained in each convex functional in DC func­
tional 

Thus, the following implicit equation to find u at timestep k + 1 from that at 

timestep k is derived 

-div u + 2A.(u(k+l) + g(k) + g(k)- f) 
( 

\1 (k+l) ) 
JVu(k+l)J l,x 2,y 

. (lz(Gcr*l\lg(k)J)Vu(k+l)) . ( (1\lu(k) ) 
-div JVu(k+l)J3 = -div (Gcr * JVg(k)J)JVu(k)J3 .(B.1.4) 

Similarly, for g1 and gz, the following implicit iterative equations are found 

(B.1.5) 

(B.1.6) 

These equations are all highly non-linear, so they can't be solved directly. What 

makes them especially problematic is the future values of the functions at timestep 

k + 1 in the denominators of some of the divergence terms. As an approximation 

however, these future values in the denominators can be changed to current values 

253 



at timestep k. This changes the iterative equations to the following 

(B.l.7) 

(B.l.8) 

(B.l.9) 

Then, Additive Operator Splitting can be used to solve these equations at each 

iteration because each of them is semi-implicit, and basically of the form ht = 

A(h(k))h(k+l), where A is a suitably defined matrix, derived from Equations B.l.7-

B.1.9 above, and primarily of the nonlinear diffusion form ht = div(d(/V'h/ 2)V'h), 

where dis a diffusivity function. A Difference of Convex functionals solution of 

Improved Edge Segregation was not implemented in this thesis, however, this dis­

cussion is valuable in that it proves that there is a method to solve the IES equations 

that converges to the correct solution. 
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